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Abstract

Prompted by its performance on a variety of benchmark tasks, machine learning
(ML) is now being applied to tackle real-world problems. Yet, there is growing
evidence that benchmark performance does not convey the full picture. Existing
ML models turn out to be remarkably brittle: a striking example of which is their
susceptibility to imperceptible input perturbations known as adversarial examples.

In the first part of this thesis, we revisit adversarial examples, to use them as
a window into current models. Our investigation provides a new perspective on
why this susceptibility arises: it is a direct consequence of models’ reliance on pre-
dictive, yet brittle input features. In fact, our findings demonstrate that adversar-
ial examples are a manifestation of a deeper problem: the mechanisms by which
current models succeed on benchmarks are fundamentally misaligned with what hu-
mans tend to envision. This prompts the question:

How can we build ML models that generalize not only on the benchmarks used for their
development but also to the real world?

To answer this question, we examine the ML pipeline from a “features per-
spective”: focusing not only on what label models predict, but also on what fea-
tures they use to do so. To this end, in the second part of this thesis, we develop a
suite of tools to get a better grasp on: (i) what features models learn, (ii) why they
learn them, and (iii) how one can modify the learned features at train or test time.
These tools enable us to gain new insights into crucial design choices made during
model development, such as how we create datasets, and train and evaluate mod-
els. Equipped with these insights, we then propose concrete refinements to the ML
pipeline to improve model generalization in the aforementioned broader sense.

Thesis Supervisor: Aleksander Mądry
Title: Cadence Design Systems Professor of Computing

Thesis Supervisor: Nir Shavit
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Over the last decade, the field of machine learning (ML) has witnessed remark-

able progress: enabled by the confluence of fast compute and large-scale datasets,

and, crucially, renewed interest in a family of models known as deep neural net-

works. Deep learning, in particular, emerged as a popular approach with its suc-

cess on a classic computer vision task: the ImageNet large scale visual recogni-

tion challenge (ILSVRC) [Den+09; Rus+15]. By now, deep networks have greatly

improved state-of-the-art on benchmarks across domains—such as natural lan-

guage [Bow+15; Raj+16; Wan+18], speech [Dah+10; Den+10], robotics [Fin+16],

games [Sil+17; Ber+19], and biology [Joh+16; Wan+17; Sen+20]. One of the ma-

jor appeals of these models stems from the belief that they can extract meaning-

ful high-level feature representations from data [BCV13; Ben19; GBC16]. Conse-

quently, deep networks are viewed as being highly versatile: they can be effec-

tively leveraged in a variety of tasks and settings. But is this indeed so?

1.1 A Dent in the Picture

If we examine deep networks a bit more closely, inconsistencies start to appear: the

performance of these models on benchmarks actually turns out to be quite brittle.

A striking illustration of this is the phenomenon of adversarial examples [Big+13;

Sze+14]. Namely, for classification tasks, one can fool a state-of-the-art deep net-
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work into making an incorrect prediction by applying a carefully-crafted, yet im-

perceptible perturbation to the input, as shown in Figure 1-1.

“pig”  
(p=0.91)

noise  
(non-random)

“airplane”  
(p=0.99)

=+ 0.005x

Figure 1-1: An adversarial example: It is possible to fool state-of-the-art vision
classifiers on a correctly-classified input (left) by adding a carefully-chosen imper-
ceptible perturbation to it (center). On the resulting adversarial example (right), the
model makes a highly-confident, yet erroneous prediction.

The existence of adversarial examples clearly indicates that there is a problem

with current models: the two “pig” images shown above are indistinguishable to

humans, yet high-performing models classify them differently. This problem can,

in fact, also cause failures in deep learning systems deployed in the real world—

e.g., models misclassify photographs taken with a smartphone camera [KGB16],

or of objects that have been intentionally modified [Sha+16; Ath+18; Eyk+18].

In light of this, let us now return to the drawing board and reexamine what

we know about these models. To begin with, we need to understand: what causes

models to be fooled by adversarial examples?

1.1.1 Why do adversarial examples arise?

Tracing the origins of adversarial examples has, in fact, been a major focus of re-

search in ML [Sze+14; GSS15; Sch+18; Gil+18; MDM18; BPR19; Sha+19a]. The

prevalent view in the field has been that they arise due to “unnecessary sensi-

tivities” of the model, caused, for example, by the high dimensionality of the in-

put space, statistical fluctuations in the data and/or overfitting [Sze+14; GSS15;

Gil+18; TG16]. That is, adversarial examples stem from glitches in the model that

do not affect its behavior under normal test conditions. Fixing these glitches is
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thus treated as a goal that can be disentangled and pursued independently from

maximizing accuracy [Mad+18; SHS19; Sug+19]—through regularization [TG16]

or by pre/post-processing the network’s inputs/outputs [Ues+18; CW17; He+17].

A new perspective on adversarial examples. In this thesis, we demonstrate that

this canonical view on adversarial examples may not be entirely justified. We show

that adversarial vulnerability is inextricably linked to how models make predic-

tions. Specifically, that they do so based on predictive features in the data that are

imperceptible or unintuitive to humans (Chapter 2). But why is this the case?

The answer to this lies in the fact that in supervised learning, models are typi-

cally trained to maximize accuracy. In this case, a model is incentivized to exploit

any available signal in the data—even features that look incomprehensible to hu-

mans. After all, a priori, a “tail” is no more natural to a model for detecting a

“dog” than another equally predictive feature. Indeed, it turns out that this is the

case in practice. That is, standard datasets do contain such predictive yet incom-

prehensible “non-robust” features. Current models, in turn, end up relying on

such features to attain accuracy on the corresponding benchmarks, but do so at

the cost of robustness to small input changes.

A key consequence of this is a new perspective on adversarial examples. Namely,

that they should no longer be viewed purely as a security concern, but as a marker

of a fundamental misalignment between how we expect models to behave and how

they actually make predictions. In other words, adversarial examples are a “hu-

man phenomenon”: we should not be surprised that models exploit predictive

features that happen to be brittle under a human-selected notion of similarity.

1.1.2 A fundamental misalignment

It turns out that the aforementioned misalignment between humans and ML mod-

els goes far beyond adversarial examples. Once we start pulling this thread, we see

numerous instances where models rely on brittle features in the data—for example,

image texture [Gei+19], backgrounds [Zha+07; RSG16b; RZT18; Bar+19; Xia+20]
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and high-frequency information [Yin+19]. This misalignment provides a justifi-

cation for various other inconsistencies observed in deep learning. For instance,

it explains the heightened sensitivity of current models not only to adversarial

examples but also to fairly benign changes in standard datasets, such as data cor-

ruption [Hen+19b], camera angle and lighting [BVP18], object pose [Bar+19] and

affine transformations [Eng+19c]. After all, some of the features that are predic-

tive within standard datasets could be useless or even spurious for mild variants

of them. Further, it also hints at why models tend to be hard to interpret [Lip18;

Ade+18; Ade+20]—they often do rely on features that are unintelligible to humans.

The bigger picture. More broadly, this misalignment hints at deeper issues: not

only with current models but also with the way in which we develop them in

the first place. Namely, our dominant learning paradigm—optimizing models to

solely maximize accuracy—is flawed. Models trained in this fashion tend to rely

on any predictive patterns in the data, even ones that are misleading or brittle.

Since typical test sets are drawn from the same distribution (and thus share the

same features) as the training data, benchmark accuracy (or i.i.d. generalization)

masks this problem. Overall, this implies that it is possible for models to succeed

on (challenging) benchmarks without truly solving the motivating real-world task.

This prompts the central question examined in the second part of this thesis:

How can we build ML models that generalize not only on the benchmarks used for their

development but to real-world tasks we ultimately care about?

The quest to answer this question makes us rethink basic design choices made

during ML development: how we create datasets, and train/evaluate models.

1.2 A Features Perspective on the ML Pipeline

To tackle the question posed above, we start by looking back at our findings on

adversarial examples (Section 1.1.1). In particular, we posit that building models

that truly generalize requires us to rethink the ML pipeline from what we call a
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“features perspective”. Concretely, we need to look beyond what label models pre-

dict on benchmarks, and also pay heed to which features these predictions are based

on. In doing so, our focus should be on assessing and ensuring the pertinence of

these features in the real-world task we eventually hope to tackle. Note that aside

from improving generalization, by penalizing models for relying on meaningless

or brittle features, this perspective can guide the design of models to meet other

key considerations, such as interpretability or fairness.

In the second part of this thesis, we thus examine the ML pipeline from such

a features perspective, characterizing: (i) the features that models depend on, (ii)

where these dependencies stem from, and (iii) how we can modify them.

1.2.1 What features do models learn?

As we discussed in the previous section, existing models often base their predic-

tions on undesirable features in the data. Aside from adversarial examples, other

instances of this include visual artifacts used by skin-lesion detectors [BVA20],

and image backgrounds exploited by object recognition systems [Zha+07; RSG16b;

RZT18; Bar+19; Xia+20]. Thus, to determine whether a model will generalize

to real-world settings, we must first characterize the features it relies on. More

broadly, as ML becomes pervasive in sensitive domains (e.g., healthcare or re-

cidivism), the need for model auditing mechanisms becomes even more pressing.

In principle, one could recruit domain experts to conduct such audits. However,

while effective [BG18; SC18; Tsi+20; Sey+20], this approach does not always scale.

Thus, there is a rising demand for general-purpose model understanding tools.

The challenges with model interpretability. Indeed, the whole field of inter-

pretability is devoted to the problem of characterizing how a model make its pre-

dictions. For deep networks, however, this problem turns out to be far from trivial.

The major challenges that prior work has focused on are:

1. Complexity: Direct model inspection, which is the standard approach in sim-

pler settings (such as for small linear classifiers or decision trees), quickly be-
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comes infeasible. To circumvent this problem, prior work attempts to charac-

terize model behavior in a localized or decomposed manner [SVZ13; Yos+15;

RSG16a; Bau+17]. However, such interpretations are often hard to aggregate,

and can even be misleading [Ade+18; Ade+20; LM20].

2. Causality: The high-dimensionality of the data makes it hard to uncover fea-

tures that are not just correlated with the prediction but are causally linked to

it [Goy+19b]. Prior work has found that many interpretability techniques are

independent of both the model and data [STY17; Ade+18; Ade+20], and have

little impact on human understanding or trust [Cha+17; Alq+20; CRA20].

The work in this thesis makes apparent another, more fundamental challenge

with understanding models today. Namely, that their reliance on unintelligible fea-

tures precludes them from being fully interpretable. This can be seen in practice—

raw interpretations of existing models can be hard to parse (Figure 5-3). Further-

more, while the visual appearance of these interpretations can be improved via

post-processing [SVZ13; Yos+15; OMS17], our work suggests that this might just

be a way to suppress the “non-robust” features that the model depends on.

Overall, these challenges prompt us to reconsider whether the current desider-

atum of interpretability—completely characterizing the model’s decision process

in every setting—may simply be too broad and ill-posed. This, in turn, could not

only hinder the development of interpretability techniques but also to make it hard

to quantify how good an interpretation is—both in terms of constructing metrics

and conducting human-in-the-loop assessments. So, where do we go from here?

A toolkit for model debugging. To make progress in this context, and circum-

vent some of these challenges, we take an alternative approach:

1. We focus on a more quantifiable (and actionable) sub-problem, namely model

debugging. Specifically, rather than trying to completely characterize how

the model makes every decision, our goal is to (semi-)automatically pinpoint

some of the problematic features it depends on.
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2. We change the model architecture and training process itself, to mitigate the

aforementioned issues of scale and reliance on unintuitive features.

3. With specific downstream tasks in mind (e.g., identifying spurious corre-

lations), we design ablation studies and human-in-the-loop experiments to

verify that the identified features causally relate to the model’s predictions.

Guided by these design principles, we develop two complementary approaches

for model debugging:

∙ Post-hoc model debugging via counterfactuals. Our first approach (Chap-

ter 3) is rooted in the primitive of counterfactuals: a classic tool to understand

the causal structure of a model [Pea10; Goy+19b; Goy+19a; Bau+20b]. In

particular, we put forth a procedure to obtain realistic image counterfactuals,

i.e., semantically-meaningful image variants that cause the model to change

its prediction. Crucially, we are able to do so without detailed annotations or

human inspection, by leveraging state-of-the-art instance segmentation and

style transfer networks. This, in turn, enables us to precisely quantify how

particular high-level data features influence a pre-trained model’s perfor-

mance. For instance, we can diagnose (and measure) how sensitive the pre-

diction of a certain class is to background features (e.g., “grass” or “snow”) or

frequently co-occurring image objects (e.g., “person” for the class “tench”).

∙ Deep networks that are debuggable by-design. Our discussion on adver-

sarial examples above suggests that even the most sophisticated post-hoc de-

bugging techniques will invariably only highlight a subset of feature depen-

dencies learned by the model. (After all, these models do rely on features that

are not intelligible to humans.) This motivates us to go beyond purely post-

hoc analysis, and modify deep networks to be inherently more debuggable.

We find that even fairly simple interventions (Chapters 3 and 5) end up being

surprisingly effective for building deep networks that are more amenable to

debugging—one can easily detect biases in these models, and identify input

features that are responsible for misclassifications.
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1.2.2 Why do models learn these features?

Next, we might want to understand why models rely on the features they do. We

discussed in Section 1.1 that the dominant learning paradigm significantly influ-

ences these feature dependencies. In particular, training models to solely maximize

accuracy incentivizes them to pick up on all sorts of predictive (in term of test ac-

curacy) correlations in the data—even ones that are meaningless or spurious to

humans. For instance, a model might rely on “grass” to detect a “cow”—which

while typical, need not be present in every “cow” photo taken in the wild.

Note, however, that it is not only the training algorithm that is at fault here.

The core issue lies in our datasets—after all, they contain undesirable input-label

associations in the first place. For example, standard dataset contain unintelligible

non-robust features, that are highly predictive of the image label (even on the test

set)—cf. Section 1.1. So, where do such dataset artifacts stem from?

One natural explanation is that datasets just mirror biases that are already

present in the real world—e.g., facial recognition benchmarks under-represent mi-

norities [BG18], and language corpora contain various historical biases [CBN17],

both neutral (e.g., “flowers” are more often deemed pleasant than “insects”) and

problematic (e.g., European American names being deemed pleasant more fre-

quently than African American ones). This explanation has, in fact, guided the

progression of datasets in ML, which Torralba and Efros [TE11] aptly phrase as a

“revolution” in which “...every new dataset was, in a way, a reaction against the

biases and inadequacies of the previous datasets in explaining the (visual) world.”

Scalable data collection vs dataset quality. We now discuss how another factor,

outside of real-world biases, influences datasets. Specifically, we focus our atten-

tion on the data collection pipeline. Our investigation is motivated by the fact that

the scale of modern datasets necessitates data collection practices that are very dif-

ferent from what is ideally envisioned—e.g., automated data retrieval and crowd-

sourced annotation. As a result, the dataset and its corresponding annotations can

sometimes be ambiguous, incorrect, or otherwise misaligned with ground truth.
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(a) missile (b) stage (c) monastery (d) Staffordshire bull
terrier

Figure 1-2: Judging the correctness of ImageNet labels may not be straightforward.
While the labels shown above appear valid for the corresponding images, none of
them actually match the ImageNet labels (which are “projectile”, “acoustic guitar”,
“church”, and “American Staffordshire terrier”, respectively).

While imperfect and noisy data collection pipelines are used extensively, the ex-

tent of the resulting ground truth-label misalignment and how it affects the feature

learned by models still remains poorly understood.

In this thesis, we take a step towards bridging this gap in understanding. To

this end, we develop a toolkit for collecting fine-grained data annotation via large-

scale human studies. These annotations then enable us to precisely quantify the

extent to which labels of existing datasets fall short of capturing the underlying

ground truth. We demonstrate the utility of our toolkit via a case study on Ima-

geNet [Den+09; Rus+15]—arguably one of most-widely used datasets and a key

driver of progress in computer vision.

Indeed, we will see in Chapter 4 that seemingly insignificant design choices

made during data collection have a large impact on dataset quality. For instance,

the ImageNet labeling task was phrased as a leading question—wherein annota-

tors were not asked to label the image, but only if a single pre-selected label could

be valid. Consequently, we see a number of systemic annotation errors in ImageNet

(cf. Figure 1-2)—e.g., the label often does not correspond to what humans consider

the main (ImageNet) object in the image, and there exist pair of classes with over-

lapping image distributions.

Crucially, we find that these annotation errors greatly impact what ImageNet-

trained models learn (and don’t learn), and how we perceive model progress. For

instance, top-1 accuracy often underestimates model performance by unduly pe-
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nalizing them for predicting a different, but also valid, label. Further, these models

derive part of their accuracy from exploiting ImageNet-specific features that hu-

mans are oblivious to, and hence may not generalize well to the real world.

These findings also offer some broader lessons as to the design of the ML pipeline,

and how it could cause a mismatch between datasets and the underlying task they

are meant to simulate:

∙ It suggests that the idealized notion of a clear “ground truth” label(s) may be

fundamentally at odds with building complex large-scale datasets. Namely,

a perfect label(s) may not even exist for every input, and even if it does, a

noisy or scalable data collection process may fail to elicit it.

∙ The canonical approach of treating datasets as the “gold standard”—i.e., train-

ing and evaluating models to perfectly match datasets—can cause the model

to learn undesirable feature dependencies. Note that this approach not only

overlooks biases that our datasets inherit from the real world, but also imper-

fections that stem from the data collection process. As our study shows, mod-

els optimized for performance on these datasets end up relying on dataset-

specific spurious features and artifacts.

1.2.3 How can we control the features our models learn?

Our exploration so far underlines the importance of features in determining whether

a model will generalize (to the real world). This finding lays bare the need for tools

that can control the features a model relies on. For instance, mechanisms through

which one can ensure that a model does not rely on specific families of features

(such as backgrounds or sensitive attributes). The traditional way to specify what

models learn is via data collection. That is, gather (more) data that reflects the de-

sired model behavior, and use it to (re-)train the model. However, data collection

can be expensive, time-consuming and even infeasible in certain contexts—e.g.,

think of collecting x-rays from every single hospital. Moreover, as we discussed in
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Section 1.2.2, even carefully curated datasets may deviate from the tasks that we

hope to model. Can we do something more?

In this thesis, we propose two complementary approaches to directly control the

features utilized by a model:

Robustness as a feature prior. Recall that one of the major appeals of deep learn-

ing is its ability to automatically extract meaningful patterns from the data. Can

we somehow direct a model to focus on (or ignore) certain features, without hav-

ing to manually modify the data? Indeed, we find that the robustness framework,

although originally designed for making models secure against adversarial exam-

ples [GSS15; Mad+18; CRK19], can provide a means to impose a prior on the fea-

tures a model learns. As our work shows (Chapter 5), this framework can be lever-

aged to build models with more general and perceptually-aligned feature repre-

sentations [Eng+19a]. As a consequence, such robust models generalize better: to

vision tasks beyond classification [San+19] and across different domains [Sal+20].

Observe that given the findings of this thesis, these improvements should not be

entirely surprising—after all, in order to be insensitive to adversarial examples,

robust models must ignore predictive, yet brittle features in the input data.

Direct model editing. In several cases, modifying the training data or objective

might not be feasible—e.g., in applications that use pre-trained models trained on

large, possibly private datasets [Dev+18; Bro+20]. Additionally, the undesirable

feature dependencies learned by models may not even be evident until test time.

Retraining the model whenever this occurs may not be an option. In this thesis

(Chapter 6), we take a step towards filling this gap in the ML pipeline. To this end,

we build on the work of [Bau+20a] to develop a set of tools to directly edit the pre-

diction rules—i.e., mappings from input features to labels—learned by classifiers.

Our approach can be applied to any pre-trained classifier in a post-hoc manner,

without additional data collection. Using as few as a single exemplar—for instance,

a “car” on a “snowy road”—we can improve model generalization across categories
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(e.g., to other vehicles such as “trucks” and “mopeds” on snow). We demonstrate

several practical applications of our approach: including improving model gener-

alization to new data subpopulations and eliminating spurious correlations.

1.3 Looking forward: Towards a holistic view on the ML pipeline

A key contribution of this thesis is to shed light on and characterize the disconnect

between the conceptual outlook and benchmarks that guide the development of

ML models today, and the diverse real-world conditions they will need to even-

tually tackle. One manifestation of this disconnect is that the impressive perfor-

mance of existing models quickly starts to degrade under mild deviations from

their development conditions (e.g., adversarial examples). However, our inves-

tigation uncovers another, perhaps more concerning and fundamental, problem.

Namely, even in settings where these models perform well (according to conven-

tional metrics), the mechanisms driving this performance—i.e., the data features

models make decisions based on—are very different from what we would expect.

That said, the picture is not all bleak: it is undeniable that current ML mod-

els, particularly deep networks, have remarkable potential. Indeed, these models

can automatically discover complex predictive patterns in large datasets—the flip

side of which is that they, at times, end up extracting unintended ones. This view-

point suggests that we have some of the right primitives already; the challenge is

coupling them together to ensure that models learn the “right” things.

Crucially, as our work shows, tackling this challenge requires us to move be-

yond a compartmentalized view of ML systems. After all, our investigation con-

stantly reinforces how intertwined the different parts of the ML pipeline and their

downstream effects are. Thus, building models that can reliably generalize in prac-

tice requires thinking about the entire pipeline—also factoring in the human-ML

interactions therein. That is, expanding our focus to consider the societal ramifi-

cations of ML models’ decisions, including possible feedback loops, and how well

these models can collaborate and integrate with humans.
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1.4 Thesis Organization

We now outline the organization of this thesis.

Chapter 2 revisits adversarial examples, and discusses our findings as to their ori-

gins. The material in this chapter draws upon joint work with Logan Engstrom,

Andrew Ilyas, Aleksander Mądry, Brandon Tran and Dimitris Tsipras [Ily+19].

Chapter 3 introduces our toolkit for debugging feature dependencies learned by

models: either post-hoc, or by modifying them to be more debuggable. This mate-

rial is based on joint work with David Bau, Mahalaxmi Elango, Eric Wong, Alek-

sander Mądry, Antonio Torralba and Dimitris Tsipras [WSM21; San+21].

Chapter 4 examines the effect of scalable data collection procedures on the quality

of a dataset and its alignment with the motivating real-world task. The material

presented in this chapter is based on joint work with Logan Engstrom, Andrew

Ilyas, Aleksander Mądry, and Dimitris Tsipras [Tsi+20].

Chapter 5 demonstrates how the robustness framework can be a viable approach

for constraining the features a model can rely on. Our results confirm that mod-

els trained using this methodology seem more aligned with perception, and are

better-suited for certain downstream tasks. This material is based on joint work

with Logan Engstrom, Andrew Ilyas, Aleksander Mądry, Brandon Tran, Dimitris

Tsipras, and Alexander Turner [Tsi+19; Eng+19a; San+19].

Chapter 6 introduces a toolkit for directly rewriting prediction-rules learned by

models. We demonstrate how this approach can be used to adapt pre-trained mod-

els to novel subpopulations and modify them to ignore spurious correlations. The

material presented in this chapter is drawn from joint work with David Bau, Maha-

laxmi Elango, Aleksander Mądry, Antonio Torralba and Dimitris Tsipras [San+21].
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Part I

A Dent in the Picture
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Chapter 2

Through the Lens of Adversarial

Examples

In this chapter, we investigate one of the most widely-studied failures of models to

generalize beyond i.i.d. settings—adversarial examples [Big+13; Sze+14; NYC15].

Adversarial examples gained prominence in the security context, as they were

found to induce model failures on benchmarks [Sze+14; GSS15; Eng+19c; FFF18b]

and in real-world settings [KGB16; Sha+16; Ath+18; Eyk+18]. One of the key con-

tributions to this thesis is to show that adversarial examples are more than just

a security concern. In particular, we link the adversarial vulnerability of current

models to fundamental flaws with their decision making process in standard, non-

adversarial contexts. Moreover, we show that these flaws are a direct consequences

of the dominant learning paradigm. This chapter is structured as follows: Sec-

tion 2.1 outlines our contributions, Section 2.2 covers background, and Sections 2.3-

2.5 detail our analysis and Section 2.6 discusses its broader implications.

2.1 Summary of our Results

We put forth a new perspective on adversarial examples—imperceptibly perturbed

natural inputs that induce erroneous predictions in state-of-the-art classifiers. In

particular, the predominant view on adversarial examples previously was that
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they stem from aberrations in the model (discussed further in Sections 2.2). From

this point of view, it is natural to treat adversarial robustness as a goal that can

be disentangled and pursued independently from maximizing accuracy [Mad+18;

SHS19; Sug+19]. In contrast, we cast this vulnerability as a fundamental conse-

quence of the dominant supervised learning paradigm. Specifically, we claim that:

Adversarial vulnerability is a direct result of our models’ sensitivity to well-generalizing

features in the data.

Recall that classifiers are usually trained to maximize (distributional) accuracy.

Consequently, they tend to use any available features in the data to do so, even

those that are incomprehensible to humans. We posit that our models rely on such

“non-robust” features, and adversarial perturbations exploit this dependence.

We corroborate our theory by showing that it is indeed possible to disentangle

robust from non-robust features in standard image classification datasets (cf. Sec-

tion 2.4). Notably, we show that by adding adversarial perturbations to standard

data points, we can construct a dataset wherein the only predictive features are

non-robust features. Even though this dataset appears completely mislabeled to

humans (cf. Figure 2-1a), standard classifiers are still able to learn from them and

perform well on the original test set. This demonstrates that adversarial perturba-

tions can arise from flipping features in the data that are useful for classification

of correct inputs (hence not being purely aberrations). Additionally, we present a

simple setting where the connection between adversarial examples and non-robust

features can be studied rigorously (cf. Section 2.5). We discuss broader implica-

tions of these findings on model generalization and interpretability in Section 2.6.

2.2 Background: Adversarial Examples

Adversarial examples, originally discovered by [Sze+14] correspond to impercep-

tible perturbations of natural data points which can “fool” state-of-the-art mod-

els into making erroneous predictions. Typically, these perturbations are specially

crafted to either maximize the classifier’s loss (“untargeted attacks”) or to fool it
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into predicting the desired target class (“targeted attacks”). Formally, an untar-

geted adversarial perturbation—illustrated in Figure 1-1—can be constructed by

solving the following constrained optimization problem:

arg max
δ∈∆

E(x,y)∼𝒟[ℒ(x + δ, y; θ)] (2.1)

where ℒ is the loss function (e.g., cross entropy), θ denotes model parameters, and

(x, y) denote an input-label pair drawn from the distribution 𝒟. A key parameter

here is the set ∆, which constrains the perturbations the adversary is allowed to

apply. In practice, ∆ is usually chosen such that the semantic meaning of the input

is preserved—e.g., small `p perturbations [Sze+14; GSS15]; rotations and trans-

lations [Eng+19c; Xia+18] or variations in Wasserstein distance [WSK19]. Unless

otherwise specified, in this thesis we focus on `∞ and `2 perturbations.

This phenomenon has been extensively studied in prior work, giving rise to a

range of explanations as to its origins. Broadly, previous work in the field tends

to view adversarial examples as aberrations in the model—that are orthogonal to

its behavior in standard test conditions. Many of these explanations, however, are

often unable to fully capture behaviors we observe in practice, as discussed below.

Concentration of measure in high-dimensions. One line of work argues that the

high dimensionality of the input space can present fundamental barriers on classi-

fier robustness [Gil+18; FFF18a; MDM18; Sha+19a]. For certain data distributions,

one can show that any decision boundary will be close to a large fraction of in-

puts and hence no classifier can be robust against small perturbations. However,

this model cannot fully explain the fact that in practice, one can train (reasonably)

robust classifiers on standard datasets [Mad+18; RSL18; WK18; Xia+19; CRK19].

Boundary Tilting. Tanay and Griffin [TG16] introduce the “boundary tilting”

model, and suggest that adversarial examples are a product of over-fitting. Conse-

quently, the authors suggest that mitigating adversarial examples may be a matter

of regularization and preventing finite-sample overfitting.
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Local Linearity. Goodfellow, Shlens, and Szegedy [GSS15] suggest that the local

linearity of DNNs is largely responsible for the existence of small adversarial per-

turbations. While this conjecture is supported by the effectiveness of adversarial

attacks exploiting local linearity (e.g., FGSM [GSS15]), it is not sufficient to fully

characterize the phenomena observed in practice. In particular, there exist ad-

versarial examples that violate the local linearity of the classifier [Mad+18], while

classifiers that are less linear do not exhibit greater robustness [ACW18].

Piecewise-linear decision boundaries. Shamir et al. [Sha+19b] prove that the ge-

ometric structure of the classifier’s decision boundaries can lead to sparse adver-

sarial perturbations. However, this result does not take into account the distance to

the decision boundary along these direction or feasibility constraints on the input

domain. As a result, it cannot meaningfully distinguish between classifiers that are

brittle to small adversarial perturbations and classifiers that are moderately robust.

As we discuss in the rest of this chapter, the key differentiating aspect of our model

for adversarial perturbations is that they arise as well-generalizing, yet brittle, fea-

tures, rather than statistical anomalies or effects of poor statistical concentration.

In particular, we show that adversarial vulnerability does not stem from using a

specific model class or a specific training method, since standard training on the

“robustified” data distribution of Section 2.4.1 leads to robust models. At the same

time, as shown in Section 2.4.2, these non-robust features are sufficient to learn a

good standard classifier. We defer the discussion of other theories on adversarial

examples that are complementary to our work to Appendix A.4.

2.3 The Robust Features Model

We begin by developing a framework, inspired by the setting in Tsipras et al.

[Tsi+19], that enables us to rigorously refer to “robust” and “non-robust” features.
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Setup. We consider binary classification1, where input-label pairs (x, y) ∈ 𝒳 ×
{±1} are sampled from a distribution 𝒟; the goal is to learn a classifier C : 𝒳 →
{±1} which predicts a label y for a given input x. We define a feature to be a

function mapping from input space 𝒳 to real numbers, with the set of all features

being ℱ = { f : 𝒳 → R}. For convenience, we assume that the features in ℱ are

shifted/scaled to be mean-zero and unit-variance (i.e., so that E(x,y)∼𝒟[ f (x)] = 0

and E(x,y)∼𝒟[ f (x)2] = 1), in order to make the following definitions scale-invariant.

Note that this formal definition also captures what we abstractly think of as fea-

tures (e.g., we can construct an f that captures how “furry” an image is).

Useful, robust, and non-robust features. We now define the key concepts re-

quired for formulating our framework. To this end, we categorize features as:

∙ ρ-useful features: For a given distribution 𝒟, we call a feature f ρ-useful

(ρ > 0) if it is correlated with the true label in expectation, that is if

E(x,y)∼𝒟[y · f (x)] ≥ ρ. (2.2)

We then define ρ𝒟( f ) as the largest ρ for which feature f is ρ-useful under

distribution𝒟. (Note that if a feature f is negatively correlated with the label,

then − f is useful instead.) Crucially, a linear classifier trained on ρ-useful

features can attain non-trivial generalization performance.

∙ γ-robustly useful features: Suppose we have a ρ-useful feature f (ρ𝒟( f ) >

0). We refer to f as a robust feature (formally a γ-robustly useful feature for

γ > 0) if, under adversarial perturbation (for some specified set of valid

perturbations ∆), f remains γ-useful. Formally, if we have that

E(x,y)∼𝒟

[
inf

δ∈∆(x)
y · f (x + δ)

]
≥ γ. (2.3)

1Our framework can be straightforwardly adapted though to the multi-class setting.
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∙ Useful, non-robust features: This refers to a feature which is ρ-useful for

some ρ bounded away from zero, but is not γ-robust for any γ ≥ 0. Such fea-

tures help with classification in the standard setting, but may hinder accuracy

in the adversarial setting, as the correlation with the label can be flipped.

Classification. A classifier C = (F, w, b) is comprised of a set of features F ⊆ ℱ ,

a weight vector w, and a scalar bias b. For an input x, the classifier predicts

C(x) = sgn

(
b + ∑

f∈F
w f · f (x)

)
.

For convenience, we denote the set of features learned by a classifier C as FC.

Standard Training. Classifier training is typically performed by minimizing a

loss function (via empirical risk minimization (ERM)) such as 2

E(x,y)∼𝒟 [ℒθ(x, y)] = −E(x,y)∼𝒟

[
y ·
(

b + ∑
f∈F

w f · f (x)

)]
. (2.4)

When minimizing classification loss, no distinction exists between robust and non-

robust features: the only distinguishing factor of a feature is its ρ-usefulness. Namely,

the classifier will utilize any ρ-useful feature in F to decrease the classifier’s loss.

Robust training. In the presence of an adversary, any useful but non-robust fea-

tures can be made anti-correlated with the true label, leading to adversarial vulner-

ability. Therefore, ERM is no longer sufficient to train classifiers that are robust, as

we need to explicitly account for the effect of the adversary. To do so, we use an

adversarial loss function [Mad+18]:

E(x,y)∼𝒟

[
max

δ∈∆(x)
ℒθ(x + δ, y)

]
, (2.5)

2Just as for the other parts of this model, we use this loss for simplicity only—it is straightfor-
ward to generalize to more practical loss function such as logistic or hinge loss.
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Figure 2-1: A conceptual diagram of the experiments of Section 2.4. In (a) we con-
struct a dataset which appears mislabeled to humans (via adversarial examples)
but results in good accuracy on the original test set (Section 2.4.2). In (b) we disen-
tangle features into combinations of robust/non-robust features (Section 2.4.1).

for an appropriately defined set of perturbations ∆. Since the adversary can exploit

non-robust features to reduce classification accuracy, minimizing this loss (as in

adversarial training [GSS15; Mad+18]) can be viewed as explicitly preventing the

classifier from learning a useful but non-robust combination of features.

Remark. Though the framework above enables us to formally describe and pre-

dict the outcome of our experiments, it does not completely capture the notion

of non-robust features exactly as we might think of them. For instance, it would

allow for useful non-robust features to arise as combinations of useful robust fea-

tures and useless non-robust features [Goh19b], which are however precluded by

our experiments in Section 2.4. This shows that our experimental findings cap-

ture a stronger, more fine-grained statement than our formal definitions are able to

express. We view bridging this gap as an interesting direction for future work.

2.4 Finding Robust (and Non-Robust) Features

Our chief hypothesis is that there exist both robust and non-robust features that

constitute useful signals for standard classification. We now provide evidence in

support of this by disentangling these two sets of features. A conceptual descrip-

tion of these experiments can be found in Figure 2-1.
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2.4.1 A “robustified” version for robust classification

Recall that under our conceptual framework, a classifier learns to rely on features

based purely on how useful they are for (standard) generalization. Thus, if we can

ensure that the only useful features are robust, standard training should result in a

robust classifier. Unfortunately, we cannot directly manipulate the features of very

complex, high-dimensional datasets. Instead, we will leverage a robust model and

modify our dataset to contain only the features that are relevant to that model.

Dataset construction. At a high level, given a robust model (i.e., adversarially

trained [Mad+18]) C we aim to construct a distribution 𝒟̂R which satisfies:

E(x,y)∼𝒟̂R
[ f (x) · y] =





E(x,y)∼𝒟 [ f (x) · y] if f ∈ FC

0 otherwise,
(2.6)

where FC again represents the set of features utilized by C. Conceptually, we want

features used by C to be as useful as they were on the original distribution𝒟 while

ensuring that the rest of the features are not useful under 𝒟̂NR. We will construct

a training set for 𝒟̂R via a one-to-one mapping x ↦→ xr from the original training

set for 𝒟. In the case of a deep neural network, FC corresponds to exactly the set

of activations in the penultimate layer (since these correspond to inputs to a linear

classifier). To ensure that features used by the model are equally useful under both

training sets, we (approximately) enforce all features in FC to have similar values

for both x and xr through the following optimization:

min
xr
‖g(xr)− g(x)‖2, (2.7)

where x is the original input and g is the mapping from x to the representation

layer. We optimize this objective using gradient descent in input space. Since we

don’t have access to features outside FC, there is no way to ensure that the expec-

tation in (2.6) is zero for all f ̸∈ FC. To approximate this condition, we choose the
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starting point of gradient descent for the optimization in (2.7) to be an input x0

which is drawn from 𝒟 independently of the label of x. This choice ensures that

any feature present in that input will not be useful since they are not correlated

with the label in expectation over x0. The underlying assumption here is that,

when performing the optimization in (2.7), features that are not being directly op-

timized (i.e., features outside FC) are not affected..

Given the new training set for 𝒟̂R (random samples are visualized in Figure 2-

2a), we train a classifier using standard (non-robust) training. We then test this

classifier on the original test set (i.e. 𝒟). The results (Figure 2-2b) indicate that

this classifier attains good accuracy in both standard and adversarial settings. As a

control, we repeat this methodology using a standard (non-robust) model for C

in our construction of the dataset. Sample images from the resulting “non-robust

dataset” 𝒟̂NR are shown in Figure 2-2a—they tend to resemble more the source

image of the optimization x0 than the target image x. We find that training on this

dataset leads to good standard accuracy, yet yields almost no robustness (Figure 2-

2b). We also verify that this procedure is not simply a matter of encoding the

weights of the original model—we get the same results for both 𝒟̂R and 𝒟̂NR if we

train with different architectures than that of the original models.

Implications. Overall, our findings corroborate the hypothesis that adversarial

examples can arise from (non-robust) features of the data. By filtering these fea-

tures out of the data (e.g. restricting the set of available features to those used by a

robust model), one can train a significantly more robust model using standard train-

ing. Moreover, this provides evidence that adversarial vulnerability is caused by

non-robust features and is not inherently tied to the standard training framework.

2.4.2 Non-robust features suffice for standard classification

The results of the previous section show that by restricting the dataset to only

contain features that are used by a robust model, standard training results in clas-
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Figure 2-2: Left: Random samples from our variants of CIFAR-10 [Kri09]: the orig-
inal training set; the robust training set 𝒟̂R, restricted to features used by a robust
model; and the non-robust training set 𝒟̂NR, restricted to features used by a standard
model (labels appear incorrect to humans). Right: Standard and robust accuracy
on the CIFAR-10 test set (𝒟) for models trained with: (i) standard training (on 𝒟)
; (ii) standard training on 𝒟̂NR; (iii) adversarial training (on 𝒟); and (iv) standard
training on 𝒟̂R. Models trained on 𝒟̂R and 𝒟̂NR reflect the original models used to
create them: notably, standard training on 𝒟̂R yields non-trivial robust accuracy.

sifiers that are significantly more robust. This suggests that when training on the

standard dataset, non-robust features take on a large role in the resulting learned

classifier. Here we set out to show that this role is not merely incidental or due

to finite-sample overfitting. In particular, we demonstrate that non-robust fea-

tures alone suffice for standard generalization— i.e., a model trained solely on non-

robust features can perform well on the standard test set.

Dataset construction. To this end, we construct a dataset where the only features

that are useful for classification are non-robust features. To accomplish this, we

modify each input-label pair (x, y) as follows. We select a target class t either (a)

uniformly at random among classes (hence features become uncorrelated with the

labels) or (b) deterministically according to the source class (e.g. using a fixed

permutation of labels). Then, we add a small adversarial perturbation to x in order

to ensure it is classified as t by a standard model. Formally:

xadv = arg min
‖x′−x‖≤ε

LC(x′, t), (2.8)
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where LC is the loss under a standard (non-robust) classifier C and ε is a small

constant. The resulting inputs are nearly indistinguishable from the originals (Ap-

pendix Figure A-4)—to a human observer, it thus appears that the label t assigned

to the modified input is simply incorrect. The resulting input-label pairs (xadv, t)

make up the new training set. Now, since ‖xadv − x‖ is small, by definition the ro-

bust features of xadv are still correlated with class y (and not t) in expectation over

the dataset. After all, humans still recognize the original class. On the other hand,

since every xadv is strongly classified as t by a standard classifier, it must be that

some of the non-robust features are now strongly correlated with t (in expectation).

In the case where t is chosen at random, the robust features are originally uncor-

related with the label t (in expectation), and after the adversarial perturbation can

be only slightly correlated (hence being significantly less useful for classification

than before Goh [Goh19a]). Formally, we aim to construct a dataset 𝒟̂rand where:

E(x,y)∼𝒟̂rand
[y · f (x)]




> 0 if f non-robustly useful under 𝒟,

≃ 0 otherwise.
(2.9)

In contrast, when t is chosen deterministically based on y, the robust features

actually point away from the assigned label t. In particular, all of the inputs la-

beled with class t exhibit non-robust features correlated with t, but robust features

correlated with the original class y. Thus, robust features on the original training

set provide significant predictive power on the training set, but will actually hurt

generalization on the standard test set. Viewing this case again using the formal

model, our goal is to construct 𝒟̂det such that

E(x,y)∼𝒟̂det
[y · f (x)]





> 0 if f non-robustly useful under 𝒟,

< 0 if f robustly useful under 𝒟

∈ R otherwise ( f not useful under 𝒟)

(2.10)

For both these datasets, we find that standard training on them actually gener-
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Source Dataset Dataset

CIFAR-10 ImageNetR

𝒟 95.3% 96.6%

𝒟̂rand 63.3% 87.9%
𝒟̂det 43.7% 64.4%

Table 2.1: Test accuracy (on 𝒟) of classifiers trained on the 𝒟, 𝒟̂rand, and 𝒟̂det
training sets created using a standard model. For both 𝒟̂rand and 𝒟̂det, only non-
robust features correspond to useful features on both the train set and 𝒟.

alizes to the original test set—cf. Table 2.1). Remarkably, even training on 𝒟̂det

(where all the robust features are correlated with the wrong class), results in a

well-generalizing classifier.

Implications. Our findings indicate that non-robust features are useful for clas-

sification in the standard setting, and not merely artifacts of finite-sample overfit-

ting. Further, our experiments show that non-robust featurescan be picked up by

models, even in the presence of predictive robust features Note that, despite their pre-

dictive power on standard datasets, non-robust featuresare brittle, and thus give

rise to adversarial vulnerability.3 .

2.5 A Theoretical Framework for Studying (Non)-Robust Features

The experiments from the previous section demonstrate that the conceptual frame-

work of robust and non-robust features is strongly predictive of the empirical

behavior of state-of-the-art models on real-world datasets. In order to further

strengthen our understanding of the phenomenon, we instantiate the framework

in a concrete setting that allows us to theoretically study various properties of the

3It is worth emphasizing that while our findings demonstrate that adversarial vulnerability does
arise from non-robust features, they do not preclude the possibility of adversarial vulnerability
also arising from other phenomena [TG16; Sch+18; Nak19a]. Still, the mere existence of useful
non-robust features suffices to establish that without explicitly discouraging models from utilizing
these features, adversarial vulnerability will remain an issue.
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corresponding model, inspired by the model presented by [Tsi+19].

Setup. We study a simple problem of maximum likelihood classification between

two Gaussian distributions. Fiven samples (x, y) sampled from 𝒟 according to

y u.a.r.∼ {−1,+1}, x ∼ 𝒩 (y · µ*, Σ*), (2.11)

our goal is to learn parameters Θ = (µ, Σ) such that

Θ = arg min
µ,Σ

E(x,y)∼𝒟 [`(x; y · µ, Σ)] , (2.12)

where `(x; µ, Σ) represents the Gaussian negative log-likelihood (NLL) function.

Intuitively, we find the parameters µ, Σ which maximize the likelihood of the sam-

pled data under the given model. Classification under this model can be accom-

plished via likelihood test: given an unlabeled sample x, we predict y as

y = arg max
y

`(x; y · µ, Σ) = sign
(

x⊤Σ−1µ
)

.

In turn, the robust analogue of this problem arises from replacing `(x; y · µ, Σ) with

the NLL under adversarial perturbation. The resulting robust parameters Θr can

be written as

Θr = arg min
µ,Σ

E(x,y)∼𝒟

[
max
‖δ‖2≤ε

`(x + δ; y · µ, Σ)

]
, (2.13)

A detailed analysis of this setting is in Appendix A.3—here we present a high-level

overview of the results.

(1) Vulnerability from metric misalignment (non-robust features). Note that in

this model, one can rigorously make reference to an inner product (and thus a met-

ric) induced by the features. In particular, one can view the learned parameters

of a Gaussian Θ = (µ, Σ) as defining an inner product over the input space given

by ⟨x, y⟩Θ = (x− µ)⊤Σ−1(y− µ). This in turn induces the Mahalanobis distance,
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which represents how a change in the input affects the features learned by the clas-

sifier. This metric is not necessarily aligned with the metric in which the adversary

is constrained, the `2-norm. Actually, we show that adversarial vulnerability arises

exactly as a misalignment of these two metrics.

Theorem 1 (Adversarial vulnerability from misalignment). Consider an adversary

whose perturbation is determined by the “Lagrangian penalty” form of (2.13), i.e.

max
δ

`(x + δ; y · µ, Σ)− C · ‖δ‖2,

where C ≥ 1
σmin(Σ*)

is a constant trading off NLL minimization and the adversarial con-

straint4. Then, the adversarial loss ℒadv incurred by the non-robustly learned (µ, Σ) is

given by:

ℒadv(Θ)−ℒ(Θ) = tr
[(

I + (C · Σ* − I)−1
)2
]
− d,

and, for a fixed tr(Σ*) = k the above is minimized by Σ* = k
d I.

In fact, note that such a misalignment corresponds precisely to the existence of

non-robust features, as it indicates that “small” changes in the adversary’s metric

along certain directions can cause large changes under the data-dependent notion

of distance established by the parameters. This is illustrated in Figure 2-3, where

misalignment in the feature-induced metric is responsible for the presence of a

non-robust feature in the corresponding classification problem.

(2) Robust Learning. The optimal (non-robust) maximum likelihood estimate is

Θ = Θ*, and thus the vulnerability for the standard MLE estimate is governed

entirely by the true data distribution. The following theorem characterizes the be-

haviour of the learned parameters in the robust problem. In fact, we can prove

that performing (sub)gradient descent on the inner maximization (also known as

adversarial training [GSS15; Mad+18]) yields exactly Θr. We find that as the pertur-

4The constraint on C is to ensure the problem is concave.
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Figure 2-3: An empirical demonstration of the effect illustrated by Theorem 2—
as the adversarial perturbation budget ε is increased, the learned mean µ remains
constant, but the learned covariance “blends” with the identity matrix, effectively
adding more and more uncertainty onto the non-robust feature.

bation budget ε is increased, the metric induced by the learned features mixes `2

and the metric induced by the features.

Theorem 2 (Robustly Learned Parameters). Just as in the non-robust case, µr = µ*,

i.e. the true mean is learned. For the robust covariance Σr, there exists an ε0 > 0, such

that for any ε ∈ [0, ε0),

Σr =
1
2 Σ* + 1

λ · I +
√

1
λ · Σ* + 1

4 Σ2*,

where Ω
(

1+ε1/2

ε1/2+ε3/2

)
≤ λ ≤ O

(
1+ε1/2

ε1/2

)
.

The effect of robust optimization under an `2-constrained adversary is visualized

in Figure 2-3. As ε grows, the learned covariance becomes more aligned with iden-

tity. For instance, we can see that the classifier learns to be less sensitive in certain

directions, despite their usefulness for natural classification.

(3) Gradient Interpretability. Tsipras et al. [Tsi+19] observe that gradients of ro-

bust models tend to look more semantically meaningful. It turns out that under

our model, this behaviour arises as a natural consequence of Theorem 2. In partic-

ular, we show that the resulting robustly learned parameters cause the gradient of

the linear classifier and the vector connecting the means of the two distributions to

better align (in a worst-case sense) under the `2 inner product.
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Theorem 3 (Gradient alignment). Let f (x) and fr(x) be monotonic classifiers based on

the linear separator induced by standard and `2-robust maximum likelihood classification,

respectively. The maximum angle formed between the gradient of the classifier (wrt input)

and the vector connecting the classes can be smaller for the robust model:

min
µ

⟨µ,∇x fr(x)⟩
‖µ‖ · ‖∇x fr(x)‖ > min

µ

⟨µ,∇x f (x)⟩
‖µ‖ · ‖∇x f (x)‖ .

Figure 2-3 illustrates this phenomenon in the two-dimensional case. With `2-

bounded adversarial training the gradient direction (perpendicular to the decision

boundary) becomes increasingly aligned under the `2 inner product with the vec-

tor between the means (µ).

2.6 Broader Implications: Robustness, Interpretability and Gener-
alization

We conclude this chapter by discussing some broader implications of our experi-

mental and theoretical analysis.

2.6.1 Adversarial transferability

One of the most intriguing properties of adversarial examples is that they trans-

fer across models with different architectures and independently sampled train-

ing sets [Sze+14; PMG16; CRP19]. Here, we show that this phenomenon can in

fact be viewed as a natural consequence of the existence of non-robust features.

Given that such features are inherent to the data distribution, classifiers trained

on independent samples from that distribution are likely to utilize similar non-

robust features. Consequently, an adversarial example constructed by exploiting

the non-robust features learned by one classifier will transfer to any other clas-

sifier utilizing these features in a similar manner. To test this, we train models

with various architectures on the dataset generated in Section 2.4.2 with respect to

a standard ResNet-50 [He+16]. Our hypothesis would suggest that architectures

which learn better from this training set (in terms of standard test set accuracy) are
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more likely to learn similar non-robust features to the original classifier, and hence

be amenable to transfer attacks. Indeed, we find this is the case—see Figure 2-

4. These findings thus corroborate our hypothesis that adversarial transferability

arises when models learn similar brittle features of the underlying dataset.
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Figure 2-4: Transfer rate of adversarial examples from a ResNet-50 to different
architectures alongside test set performance of these architecture when trained on
the dataset generated in Section 2.4.2. Architectures more susceptible to transfer
attacks also performed better on the standard test set supporting our hypothesis
that adversarial transferability arises from utilizing similar non-robust features.

2.6.2 The cost of robustness

Our new perspective on adversarial examples suggests that building robust mod-

els requires preventing said models from utilizing predictive, yet brittle data fea-

tures. We now discuss the implications of this constraint:

The need for new training objectives. Even in simple settings where a classifier

with perfect robustness and accuracy is attainable—e.g., cf. Appendix Figure A-

7—it is straightforward to show that any standard loss function will still lead to

an accurate yet non-robust classifier. It turns out that this issue arises in practice

as well—ERM-trained classifiers are easily fooled by adversarial examples. Con-

sequently, building classifiers that are robust (to adversarial examples) requires

fundamentally changing the training methodology—e.g., to robust optimization.
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Robustness vs accuracy [Tsi+19]. In practice, it has been observed that robust

models tend to have lower clean (also known as standard) accuracy than their

ERM-trained counterparts—cf. Figure 2-5. Our view on adversarial examples pro-

vides a justification for why such a trade-off could arise—after all, training models

to be robust prevents them from learning the most accurate classifier.
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Figure 2-5: Comparison of the standard accuracy of models trained against an `2-
bounded adversary as a function of size of the training dataset. We observe that
when training with few samples, adversarial training can have a positive effect on
model generalization. However, as training data increase, the standard accuracy
of robust models drops below that of the standard model (εtrain = 0).

The need for more data Schmidt et al. [Sch+18]. In prior work [Sch+18], we pro-

posed a simple setting wherein there is a large sample complexity gap between

standard and robust generalization. Namely, in this model, a single sample is suf-

ficient to learn a good, yet non-robust classifier, whereas a good robust classifier

requires O(
√

d) samples. This effect can also be viewed as a natural consequence

of our conceptual framework. Since training models robustly reduces the effective

amount of information in the data (as non-robust features are discarded), more

samples may be required to generalize robustly.

2.6.3 Robustness as a feature prior

Our theoretical analysis suggests that rather than offering any quantitative classifi-

cation benefits, a natural way to view the role of robust optimization is as enforcing
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a prior over the features learned by the classifier. For instance, training with an `2-

bounded adversary prevents the classifier from relying heavily on features which

induce a metric dissimilar to the `2 metric. We explore this connection, as well as

its impact on the features learned by models, in Chapter 5.

2.6.4 Interpretability vis-a-vis adversarial examples.

A natural consequence of our findings is that standard models—which rely on hu-

man unintelligible features—cannot be fully human interpretable. On one hand,

this suggests that approaches aiming to enhance the interpretability of a given

model by enforcing “priors” for its explanation [MV15; OMS17; Smi+17] actually

hide features that are “meaningful” and predictive to standard models. On the other

hand, it suggests that producing human-meaningful explanations that remain faith-

ful to underlying models cannot be pursued independently from the training of the

models themselves. In Chapters 3 and 5, we will discuss possible modifications to

model training to make models inherently easier to understand.

2.6.5 Human-ML misalignment

Finally, our analysis establishes adversarial vulnerability as a human-centric phe-

nomenon, since, from the standard supervised learning point of view, non-robust

features can be as important as robust ones. Viewed differently, adversarial exam-

ples stem from a misalignment between the features humans and ML models use

to success on a given task.
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Part II

A Features Perspective on the ML

Pipeline
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Chapter 3

A Toolkit for Model Debugging

In this chapter, we develop a set of tools to probe model behavior in a more fine-

grained manner: rather than focusing solely on benchmark accuracy, we investi-

gate what data features models use to achieve said accuracy. In part, this explo-

ration is motivated by our findings in Chapter 2—where we saw that the vulnera-

bility of models to adversarial examples stems from their reliance on unintelligible

or imperceptible features in the data. However, the failure of current models to

generalize in the “right way” goes beyond this single instance. Numerous studies

provide evidence that current models rely on other context-dependent or spurious

features in the data—ones that are not fundamental to the task they are designed

to perform [BVP18; Xia+20; Tsi+20; BVA20].

Precisely characterizing how models make decisions has been a major focus of

interpretability research. However, the scale of typical deep networks makes this

extremely challenging—limiting one to localized explanations [RSG16a; SVZ13;

Yos+15; Bau+17], or requiring specially annotated data [Bau+17; Kim+18; Bau+19a;

Bau+20b], or human inspection [Ola+18; WSM21]. Thus, we instead focus on

a simpler, more-actionable, problem—model debugging. Specifically, rather than

aiming for a complete characterization of the model’s decision process, our goal

is to uncover (unexpected) feature dependencies in models (semi-)automatically.

This chapter is structured as follows: Section 3.1 outlines our contributions, Sec-

tions 3.2-3.5 detail our approaches for model debugging, Section 3.6 discusses re-
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lated work and Section 3.7 contextualizes the broader implications of our analysis.

3.1 Summary of Our Results

Our key contribution is a pair of complementary toolkits, that help us better un-

derstand the features typical vision and/or language models rely on.

Approach I: Post-hoc debugging (Section 3.2). Here, we attempt to obtain a

coarse understanding of a given pre-trained model. To this end, we approximate

its behavior with simple, concept-level prediction rules—links between high-level

input features (e.g., “road”) and the predicted label (e.g., “car”). To do so, we

leverage the classic primitive of counterfactuals, which we automatically synthesize

via existing methods for instance segmentation and style transfer. Using these

counterfactuals, we can then quantify how individual concepts impact model pre-

dictions, without the need for detailed annotations or human inspection.

Approach II: Designing debuggable deep networks (Sections 3.3-3.5). Instead

of grappling with understanding models entirely post-hoc, we modify them to be

inherently more debuggable. To this end, we train “sparse linear decision layer”

on the “deep features” from a given pre-trained deep network. Then, we can probe

the behavior of the resulting model by focusing on how a handful of deep features

are (linearly) combined by the decision layer. This simple approach ends up being

surprisingly effective at building models that are accurate, and at the same time

measurably easier for humans to understand and debug.

3.2 Post-hoc debugging via counterfactuals

Our first goal is to develop tools to identify the data features a given pre-trained

model relies on to make its predictions. In particular, we would like to be able to

query whether (and to what extent) a specific high-level feature or concept in the

data affects the model’s ability to recognize objects of a certain class—e.g., race or
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Dataset
II. Intervene on 
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(via style transfer)
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(via instance 
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Create counterfactuals(a) (b)

Figure 3-1: Model debugging via counterfactuals. To pinpoint the high-level con-
cepts that have an impact on model predictions, we (a) synthesize counterfactual
images in which a given concept in the image (detected via instance segmentation)
is modified (via style transfer). Then (b) the impact of this concept-level transfor-
mation on classifier predictions is measured. For example, we see that the model
relies on “sea” to predict well on “albatros”, and on “tree” to detect “sandbar”.

gender of a patient while predicting a medical treatment, or “wheel” while detect-

ing “cars”. The need for such tools might arise both in the debugging context, and

to provide users with recourse [USL19]. We now discuss our approach to automat-

ically discover such prediction-rules—i.e., input feature-class mappings—learned

by a given pre-trained classifier.

3.2.1 Leveraging counterfactuals

Our pipeline for discovering such prediction rules revolves around input counter-

factuals—a primitive commonly used in causal inference [Pea10] and interpretabil-

ity [Goy+19b; Goy+19a; Bau+20b]. Counterfactuals can be used to identify the data

features that the model uses to make its prediction on a given input: by assessing

how its prediction changes when the input is modified along a particular axis. In

our case, we use counterfactuals to glean how the model’s prediction depends on

high-level features (used synonymously with concept) in the image. For exam-

ple, to understand whether the model relies on the “wheel” to recognize a “car”

in an image, we will evaluate it on the same image with a different (transformed)

“wheel”. Our complete rule-discovery pipeline is illustrated in Figure 3-1.
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Figure 3-2: Automatically synthesizing concept-level counterfactuals in the Ima-
geNet dataset: We transform the concept “road” in images belonging to various
classes via style transfer. Each row (within (a) and (b)) depicts the stylization of a
single image with respect to the style described in the label (e.g., “snow”).

3.2.2 Synthesizing concept-level counterfactuals

Given a dataset, we generate counterfactuals with respect to a given high-level

concept (e.g., “wheel”) in two steps:

1. Concept identification: First, we find images in which this concept is present,

and pinpoint the regions of each image it appears in. In principle, this could

be accomplished by manually segmenting images in a fine-grained manner;

however this would be quite costly. We instead leverage pre-trained instance

segmentation models (e.g., trained on MS-COCO [Lin+14] and LVIS [GDG19])
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to automatically obtain approximate concept segmentations.

2. Concept transformation: Once we have identified where in a given image

the relevant concept is present, we need to transform it. We do so by lever-

aging existing methods for style transfer [GEB16; Ghi+17] so as to preserve

fine-grained image features and realism. For our analysis, we manually col-

lect a set of realistic textures (e.g., “snow” and “graffiti”) which we then use

to transform image regions where the concept is present.

These two steps, when combined, allow us to automatically synthesize coun-

terfactuals1 with realistic concept-level transformations, such as “snowy road” or

“wooden wheels”—cf. Figure 3-2 for an illustration.

3.2.3 Probing model behavior via counterfactuals

We now evaluate classifiers on counterfactuals created with respect to various

concept-style pairs, and measure the change in their performance (relative to un-

modified images) on a per-class level. This allows us to pinpoint:

The effect of specific concepts. We can measure and compare the influence of a

given high-level concept on model performance for various classes—in terms of

the accuracy drop caused by the transformed concept. For instance, in Figure 3-3a,

we find that the accuracy of a VGG16 ImageNet classifier drops by 25% on images

of “croquet ball” when “grass” is transformed, whereas its accuracy on “collie”

does not change. In line with previous studies [Zha+07; RSG16b; RZT18; Bar+19;

Xia+20], we also find that background concepts, such as “grass”, “sea” and “sand”,

have a large effect model performance. We can contrast this measure of influence

across concepts for a single model (Appendix Figure B-1), and across architectures

for a single concept (Appendix B.1.4). Finally, we can also examine the effect of the

style used to transform a concept—cf. Figure 3-3b.

1In other recent work [Lec+21], we propose an alternative approach to construct such counter-
factuals with the help of 3D simulators.
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(a) Classes sensitive to the visual concept “grass”

(c) Concept sensitivity, class “groom”

(b) Style impact on accuracy

Figure 3-3: Model sensitivities diagnosed using our pipeline in a VGG16 classi-
fier trained on ImageNet. (a) The accuracy drop induced by transformations of the
concept “grass” highlights classes for which the model relies on this concept: e.g., a
“croquet ball” is not accurately recognized if “grass” is not present, while “collie”s
are not affected. (The twenty classes for which the visual concept is most often
present are shown.) (b) Applying different styles to visual concepts reduces accu-
racy by varying amounts. (c) Visual concepts that cause accuracy losses for a given
class can highlight context-dependent rules: e.g., the class “groom” is sensitive to
the presence of “dress.”

Per-class prediction rules. If we focus on the model’s predictions for counterfac-

tual inputs belonging to a single class, we can identify high-level concepts that it

relies on for performing well on said class. It turns out that aside from the main

image object, ImageNet classifiers also heavily depend on commonly co-occurring

objects [SC18; Tsi+20; Bey+20] in the image—e.g., the objects “dress” for the class

“groom”, “person” for the class “tench” (sic), and “road” for the class “race car” (cf.

Figure 3-3c and Appendix Figure B-3). We can also examine which concept-level

transformations hurt model performance the most—e.g., making “plants” “floral”

hurts accuracy on the class “damselfly” 15% more than making them “snowy”.

Remark. In addition to automatically discovering and validating concept-level

sensitivities of a given model, this pipeline has several additional advantages:

∙ Versatility: It does not require any annotation effort and can be directly ap-

plied to new datasets.

∙ Human input: It makes it easier for humans to encode their prior knowledge
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and understanding of how the model should behave in the real world into

the debugging process. For instance, one can test whether an image classifier

relies on specific background features such as “snow” or “grass” that may

not always be predictive in the real world.

∙ Causality: There has been growing interest in explaining the computations

of deep networks in terms of human-understandable features by identify-

ing neurons [Erh+09; ZF14; OMS17; Bau+17] or activation vectors [Kim+18;

Zho+18] that correspond to high-level concepts within the model. However,

these works that can identify concepts that are correlated with the model’s

output, we can validate whether and to what extent each of these concepts is

actually used for classification.

3.3 Designing Debuggable Deep Networks

We now shift gears and discuss an alternative approach to model debugging. This

shift is prompted by the fact that debugging networks post-hoc has inherent lim-

itations. Firstly, due to the scale of these networks, it is challenging (and possibly

infeasible) to exhaustively identify the data features they depend on. Moreover, as

we discussed in Chapter 2, one cannot hope to fully interpret a model that relies

on features that humans cannot even understand. This motivates the question: can

we modify deep networks to be intrinsically easier to debug?

As we will demonstrate, this is indeed possible. Our approach is motivated

by an alternative view of deep networks: as a combination of a deep feature2 rep-

resentation and a linear decision layer. This view is frequently adopted in other

contexts such as transfer learning and domain adaptation [PY09; Yos+14]. How-

ever, it also turns out to be very useful in the debugging context. In particular, it

allows us to gain insight into a complex, non-linear model by directly examining

its deep features, and the coefficients used to aggregate them.

This simplified problem is however still intractable for current deep networks.

2Not to be confused with input features.
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“unicycle”

Sparse decision  
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extractor

+

deep network dataset“wheel”

Figure 3-4: Illustration of our pipeline: For a given task, we construct a sparse
decision layer by training a regularized generalized linear model (via elastic net) on
the deep feature representations of a pre-trained deep network. We then debug
model behavior by simply inspecting the few relevant deep features (with existing
feature interpretation tools), and the linear coefficients used to aggregate them.

Their decision layers can easily have millions of parameters operating on thou-

sands of deep features. To mitigate this, we modify the network itself: we retain

the learned feature representation, but combine this with a sparse decision layer in-

stead (cf. Figure 3-4). Debugging this sparse decision layer then entails inspecting

only the few linear coefficients and deep features that dictate its predictions.

It turns out that the debuggability of such modified networks can be improved

even further if we use a different training objective to obtain deep feature represen-

tations. The reason for this is that despite significant research, even a single deep

feature (or neuron) within a standard network can be hard to interpret—these fea-

tures often do not correspond to human-recognizable patterns in practice [OMS17].

Based on our findings in Chapter 2, this should not be surprising: after all, these

models do rely on features that are incomprehensible to humans. In contrast, the

deep feature representations from robust (adversarially-trained) models tend to

have more human-aligned features, as we will see in Chapter 5. Thus, for unless

otherwise specified, we use robust vision models for our analysis in this chapter.
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3.3.1 Constructing sparse decision layers

One possible approach for constructing sparse decision layers is to apply pruning

methods from deep learning [LDS90; Han+15; HS93; Li+16a; HMD16; Bla+20]—

commonly-used to compress deep networks and speed up inference—to the dense

decision layer. It turns out however that for linear classifiers we can actually do

better. In particular, the problem of fitting sparse linear models has been exten-

sively studied in statistics, leading to a suite of methods with theoretical optimality

guarantees [Tib94; Efr+04; Has+07]. Here, we leverage the classic elastic net for-

mulation [ZH05]—a generalization of LASSO and ridge regression that addresses

their corresponding drawbacks.

For simplicity, we present an overview of the elastic net for linear regression,

and defer the reader to Friedman, Hastie, and Tibshirani [FHT10] for a more com-

plete presentation on the generalized linear model (GLM) in the classification set-

ting. Let (X, y) be the standardized data matrix (mean zero and variance one) and

output respectively. In our setting, X corresponds to the (normalized) deep fea-

ture representations of input data points, while y is the target. Our goal is to fit a

sparse linear model of the form E(Y|X = x) = xTβ + β0. Then, the elastic net is

the following convex optimization problem:

min
β

1
2N
‖XTβ + β0 − y‖2

2 + λRα(β) (3.1)

where

Rα(β) = (1− α)
1
2
‖β‖2

2 + α‖β‖1 (3.2)

is referred to as the elastic net penalty [ZH05] for given hyperparameters λ and

α. Typical elastic net solvers optimize (3.1) for a variety of regularization strengths

λ1 > · · · > λk, resulting in a series of linear classifiers with weights β1, . . . , βk

known as the regularization path, where

βi = arg min
β

1
2N
‖XTβ− y‖2

2 + λiRα(β) (3.3)
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In particular, a path algorithm for the elastic net calculates the regularization path

where sparsity ranges the entire spectrum from the trivial zero model (β = 0) to

completely dense. This regularization path can then be used to select a single linear

model to satisfy application-specific sparsity or accuracy thresholds (as measured

on a validation set).

Scalable solver for large-scale elastic net. Although the elastic net is widely-

used for small-scale GLM problems, existing solvers can not handle the scale (num-

ber of samples and input dimensions) that typically arise in deep learning. In fact,

at such scales, state-of-the-art solvers struggle to solve the elastic net even for a sin-

gle regularization value, and cannot be directly parallelized due to their reliance on

coordinate descent [FHT10]. We remedy this by creating an optimized GLM solver

that combines the path algorithm of Friedman, Hastie, and Tibshirani [FHT10]

with recent advancements in variance reduced gradient methods [GGS19]. The

speedup in our approach comes from the improved convergence rates of these

methods over stochastic gradient descent in strongly convex settings such as the

elastic net. Using our approach, we can fit ImageNet-scale regularization paths to

numerical precision in the order of hours on a single GPU (cf. Appendix B.2.1).

3.3.2 Interpreting deep features

A sparse linear model allows us to reason about the network’s decisions in terms

of a significantly smaller set of deep features. When used in tandem with off-the-

shelf feature interpretation methods, the end result is a simplified description of

how the network makes predictions. For our study, we utilize the following two

widely-used techniques (cf. Figure 3-6 for sample visualizations):

1. LIME [RSG16a]: Although traditionally used to interpret model outputs, we

use it to understand deep features. We fit a local surrogate model around the

most activating examples of a deep feature to identify key “superpixels” for

images or words for sentences.
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2. Feature visualization [Yos+15]: Synthesizes inputs that maximally activate a

given neuron.

3.4 Are Sparse Decision Layers Better?

We now apply our methodology to widely-used deep networks and assess the

resulting sparse decision layers along a number of axes. We demonstrate that:

1. The standard (henceforth referred to as “dense”) linear decision layer can be

made highly sparse at only a small cost to performance (Section 3.4.1).

2. The deep features used by sparse decision layers are qualitatively and quan-

titatively better at summarizing the model’s decision process (Section 3.4.2).

Note that the dense and sparse decision layers operate on the same deep

features—they only differ in the weight (if any) they assign to each one.

3. These aforementioned improvements (induced by the sparse decision layer)

translate into better human understanding of the model (Section 3.4.3).

We perform our analysis on: (a) ResNet-50 classifiers [He+16] trained on ImageNet-

1k [Den+09; Rus+15] and Places-10 (a 10-class subset of Places365 [Zho+17]); and

(b) BERT [Dev+18] for sentiment classification on Stanford Sentiment Treebank

(SST) [Soc+13] and toxicity classification of Wikipedia comments [WTD17].

3.4.1 Sparsity vs. performance

While a substantial reduction in the weights (and features) of a model’s decision

layer might make it easier to understand, it also limits the model’s overall pre-

dictive power (and thus its performance). Still, we find that across datasets and

architectures, the decision layer can be made substantially sparser—by up to two

orders of magnitude—with a small impact on accuracy (cf. Figure 3-5). For in-

stance, it is possible to find an accurate decision layer that relies on only about 20

deep features/class for ImageNet (as opposed to 2048 in the dense case). Toxic
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Figure 3-5: Sparsity vs. accuracy trade-offs of models with sparse decision layers
for (a) vision and (b,c) language tasks. Each point on the curve corresponds to
single linear classifier from the regularization path in (3.3).

comment classifiers can be sparsified even further (<10 features/class), with im-

proved generalization over the dense decision layer.

For the rest of our study, we select a single sparse decision layer to balance per-

formance and sparsity—specifically the sparsest model whose accuracy is within

5% of top validation set performance. However, as discussed previously, these

thresholds can be varied based on the needs of specific applications.

3.4.2 Sparsity and feature highlighting

Instead of sparsifying a network’s decision layer, one could consider simply focus-

ing on its most prominent deep features for debugging purposes. In fact, this is the

basis of feature highlighting or principal reason explanations in the credit indus-

try [BSR20]. How effective are such feature highlighting explanations at mirroring

the underlying model?

In Table 3.1, we measure the accuracy of the dense/sparse decision layer when

it is constrained to utilize only the top-k (5-10) features by weight magnitude. For

dense decision layers, we consistently find that the top-k features do not fully cap-

ture the model’s performance. This is in stark contrast to the sparse case, where

the top-k features are both necessary, and to a large extent sufficient, to capture

the model’s predictive behavior. Note that the top-k features of the dense decision

layers in the language setting almost completely fail at near random-chance per-

formance (∼50%). This indicates that there do exist cases where focusing on the
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Dataset/Model Dense Sparse

k All Top-k Rest All Top-k Rest

ImageNet (std)
10

74.03 58.46 55.22 72.24 69.78 10.84
ImageNet (wide, std) 77.07 72.42 48.75 73.48 73.45 0.91
ImageNet (robust) 61.23 28.99 34.65 59.99 45.82 19.83

Places-10 (std) 10 83.30 83.60 81.20 77.40 77.40 10.00
Places-10 (robust) 80.20 76.10 76.40 77.80 76.60 40.20

SST 5 91.51 53.21 91.17 90.71 90.48 50.92

Toxic-BERT (toxic)

5

83.33 55.35 57.87 82.47 82.33 50.00
Toxic-BERT (severe toxic) 71.53 50.00 50.14 67.57 50.00 50.00
Toxic-BERT (obscene) 80.41 50.03 50.00 77.32 72.39 50.00
Toxic-BERT (threat) 77.01 50.00 50.00 76.30 74.17 50.00
Toxic-BERT (insult) 72.72 50.00 50.00 77.14 75.80 50.00
Toxic-BERT (identity hate) 79.85 57.87 50.00 74.93 71.49 50.00

Debiased-BERT (toxic)

5

91.61 50.00 83.26 87.59 78.58 50.00
Debiased-BERT (severe toxic) 63.08 50.00 50.00 55.86 53.81 50.00
Debiased-BERT (obscene) 85.36 50.00 58.36 81.50 81.17 50.00
Debiased-BERT (threat) 77.49 50.00 50.00 68.96 50.00 50.00
Debiased-BERT (insult) 85.63 50.00 59.95 79.28 71.48 50.00
Debiased-BERT (identity hate) 76.12 50.00 50.84 71.98 50.00 50.00

Table 3.1: Comparison of the accuracy of dense/sparse decision layers when they
are constrained to utilize only the top-k deep features (based on weight magni-
tude). We also show overall model accuracy, and the accuracy gained by using the
remaining deep features.

most important features (by weight) of a dense decision layer provides a mislead-

ing picture of global model behavior.

3.4.3 Sparsity and human understanding

We now visualize the deep features utilized by the dense and sparse decision layers

to evaluate how amenable they are to human understanding. We show represen-

tative examples from sentiment classification (SST) and ImageNet in Figure 3-6a.

Specifically, we present word cloud interpretations of the top three deep fea-

tures used by both of these decision layers for detecting positive sentiment on the

SST dataset [Soc+13]. It is apparent that the sparse one selects features which ac-
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Figure 3-6: (a) LIME-based word cloud visualizations for the highest-weighted fea-
tures in the (dense/sparse) decision layers of BERT models for positive sentiment
detection in the SST dataset. As highlighted in red, some of the key features used
by the dense decision layer are actually activated for words with negative seman-
tic meaning. (b) Visualization of deep features used by dense and sparse decision
layers of a robust (ε = 3) ResNet-50 classifier to detect the ImageNet class “quill”.
Here we present five deep features used by each decision layer, that are randomly-
chosen from the top-k highest-weighted ones—where k is the number of features
used by the sparse decision layer for this class. For each (deep) feature, we show
its linear coefficient (W), feature visualization (FV) and LIME superpixels.

tivate for words with positive semantic meaning. In contrast, the second most

prominent deep feature for the dense decision layer is actually activated by words

with negative semantic meaning. This example highlights how the dense decision

layer can lead to unexpected features being used for predictions.

In Figure 3-6b, we present feature interpretations corresponding to the Ima-

geNet class “quill” for both the dense and sparse decision layers of a ResNet-50

classifier. These feature visualizations seem to suggest that the sparse decision

layer focuses more on deep features which detect salient class characteristics, such

as “feather-like texture” and the “glass bottle” in the background.

Model simulation study. To validate the perceived differences in the vision set-

ting, and ensure they are not due to confirmation biases, we conduct a human

study on Amazon Mechanical Turk (MTurk). Our goal is to assess how well anno-
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tators are able to intuit (simulate) overall model behavior when they are exposed to

its decision layer. Simulatibility is a standard evaluation criterion in interpretabil-

ity [RSG16b; Lip18], wherein an interpretation is deemed to be good if it enables

humans to reproduce what the model will decide (irrespective of the “correctness”

of that decision).

To this end, we show annotators five randomly-chosen features used by the

(dense/sparse) decision layer to recognize objects of a target class, along with the

corresponding linear coefficients. We then present them with three samples from

the validation set and ask them to choose the one that best matches the target class

(cf. Appendix Figure B-8 for a sample task). Crucially, annotators are not provided

with any information regarding the target class, and must make their prediction

based solely on the visualized features.

For both the dense and sparse decision layers, we evaluate how accurate an-

notators are on average (over 1000 tasks)—based on whether they can correctly

identify the image with the highest target class probability according to the corre-

sponding model. For the model with a sparse decision layer, annotators succeed

in guessing the predictions in 63.02 ± 3.02% of the cases. In contrast, they are

only able to attain 35.61 ± 3.09% accuracy—which is near-chance (33.33%)—for

the model with a dense decision layer. Crucially, these results hold regardless of

whether the correct image is actually from the target class or not.

Note that our task setup precludes annotators from succeeding based on any

prior knowledge or cognitive biases as we do not provide them with any semantic

information about the target label, aside from the feature visualizations. Thus, an-

notators’ success on this task in the sparse setting indicates that the sparse decision

layer is actually effective at reflecting the model’s internal reasoning process.

3.5 Debugging deep networks

We now demonstrate how deep networks with sparse decision layers can be sub-

stantially easier to debug than their dense counterparts. We focus on three prob-
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lems: detecting biases, creating counterfactuals, and identifying input patterns re-

sponsible for misclassifications.

3.5.1 Biases and (spurious) correlations

Our first debugging task is to automatically identify unintended biases or correla-

tions that deep networks extract from their training data.

Toxic comments. We start by examining two BERT models trained to classify

comments according to toxicity: (1) Toxic-BERT, a high-performing model that was

later found to use identity groups as evidence for toxicity, and (2) Debiased-BERT,

which was trained to mitigate this bias [Bor+19].

We find that Toxic-BERT models with sparse decision layers also rely on iden-

tity groups to predict comment toxicity (visualizations in Appendix B.6.1 are cen-

sored). Words related to nationalities, religions, and sexual identities that are not

inherently toxic occur frequently and prominently, and comprise 27% of the word

clouds shown for features that detect toxicity. Note that although the standard

Toxic-BERT model is known to be biased, this bias is not as apparent in the deep

features used by its (dense) decision layer (cf. Appendix B.6.1). In fact, measuring

the bias in the standard model required collecting identity and demographic-based

subgroup labels [Bor+19].

We can similarly inspect the word clouds for the Debiased-BERT model with

sparse decision layers and corroborate that identity-related words no longer ap-

pear as evidence for toxicity. But rather than ignoring these words completely, it

turns out that this model uses them as strong evidence against toxicity. For exam-

ple, identity words comprise 43% of the word clouds of features detecting non-

toxicity. This suggests that the debiasing intervention proposed in Borkan et al.

[Bor+19] may not have had the intended effect—Debiased-BERT is still dispropor-

tionately sensitive to identity groups, albeit in the opposite way.

We confirm that this is an issue with Debiased-BERT via a simple experiment:

we take toxic sentences that this model (with a sparse decision layer) correctly la-
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Toxic sentence Change in score

DJ Robinsin is ! he so much!
[+christianity]

0.52→ 0.49

Jeez Ed, you seem like a
[+christianity]

0.52→ 0.48

Hey , quit removing FACTS from the article
!! [+christianity]

0.51→ 0.45

Table 3.2: Bias detection in language models: Using sparse decision layers, we
find that Debiased-BERT is still disproportionately sensitive to identitity groups—
except that it now uses this information as evidence against toxicity. For example,
simply adding the word “christianity” to clearly toxic sentences flips the prediction
of the model to non-toxic (score < 0.5).

bels as toxic, and simply append an identity related word (as suggested by our

word clouds) to the end—see Table 3.2. This modification turns out to strongly im-

pact model predictions: for example, just adding “christianity” to the end of toxic

sentences flips the prediction to non-toxic 74.4% of the time. We note that the biases

diagnosed via sparse decision layers are also relevant for the standard Debiased-

BERT model. In particular, the same toxic sentences with the word “christianity”

are classified as non-toxic 62.2% of the time by the standard model, even though

this sensitivity is not as readily apparent from inspecting its decision layer.

ImageNet. We now move to the vision setting, with the goal of detecting spu-

rious feature dependencies in ImageNet classifiers. Once again, our approach is

based on the following observation: input-class correlations learned by a model

can be described as the data patterns (e.g., "dog ears" or "snow") that activate deep

features used to recognize objects of that class, according to the decision layer.

Even so, it is not clear how to identify such patterns for image data, without

access to fine-grained annotations describing image content. To this end, we rely

on a human-in-the-loop approach (via MTurk). Specifically, for a deep feature of

interest—used by the sparse decision layer to detect a target class—annotators are

shown examples of images that activate it. They are then asked if these “prototyp-
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Patterns (%) Dense Sparse

Non-spurious 18.43 ± 2.48 34.43 ± 3.38
Spurious 9.56 ± 1.76 12.49 ± 2.02

Total 27.85 ± 2.70 46.97 ± 3.15

(a)
Pattern descriptions 

(via MTurk)
“bullet train”

spurious

“greenhouse”

non-spurious

“suit”

non-spurious

“groom”

spurious

Class pairs

(b)

Figure 3-7: (a) The percentage of class-level correlations identified using our
MTurk setup, along with a breakdown of whether annotators believe the pattern
to be “non-spurious” (i.e., part of the object) or “spurious” (i.e., part of the sur-
roundings). (b) Examples of correlations in ImageNet models detected using our
MTurk study. Each row contains protypical images from a pair of classes, along
with the annotator-provided descriptions for the shared deep feature that these
images strongly activate. For each class, we also display if annotators marked the
feature to be a “spurious correlation”.

ical” images have a shared visual pattern, and if so, to describe it using free-text.

However, under this setup, presenting annotators with images from the target

class alone can be problematic. After all, these images are likely to have multiple

visual patterns in common—not all of which cause the deep feature to activate.

Thus, to disentangle the pertinent data pattern, we present annotators with proto-

typical images drawn from more than one classes. A sample task is presented in

Appendix Figure B-11, wherein annotators see three highly-activating images for

a specific deep feature from two different classes, along with the respective class

labels. Aside from asking annotators to validate (and describe) the presence of
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a shared pattern between these images, we also ask them whether the pattern (if

present) is part of each class object (non-spurious correlation) or its surroundings

(spurious correlation)3.

We find that annotators are able to identify a significant number of correlations

that standard ImageNet classifiers rely on (cf. Table 3-7a). Once again, sparsity

seems to aids the detection of such correlations. Aside from having fewer (deep)

feature dependencies per class, it turns out that annotators are able to pinpoint the

(shared) data patterns that trigger the relevant deep features in 20% more cases

for the model with a sparse decision layer. Interestingly, the fraction of detected

patterns that annotators deem spurious is lower for the sparse case. In Figure 3-7b,

we present examples of detected correlations.

3.5.2 Counterfactuals

A natural way to probe model behavior is by trying to find small input modifica-

tions which cause the model to change its prediction. Such modified inputs, which

are (a special case of) counterfactuals, can be a useful primitive for pinpointing in-

put features that the model relies on. Aside from debugging, such counterfactuals

can also be used to provide users with recourse [USL19] that can guide them to

obtaining better outcomes in the future. We now leverage the deep features used

by sparse decision layers to inform counterfactual generation.

Sentiment classifiers. Our goal here is to automatically identify word substitu-

tions that can be made within a given sentence to flip the sentiment label assigned

by the model. We do this as follows: given a sentence with a positive sentiment

prediction, we first identify the set of deep features used by the sparse decision

layer that are positively activated for any word in the sentence. For a randomly

chosen deep feature from this pool, we then substitute the positive word from the

sentence with its negative counterpart. This substitute word is in turn randomly

chosen from the set of words that negatively activate the same deep feature (based

3We focus on this specific notion of “spurious correlations” as it is easy for humans to verify.
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(a)

Original sentence Counterfactual Change in score

...something lik-
able about the
marquis...

...something irri-
tating about the
marquis...

0.73→ 0.34

Slick piece of cross-
promotion

Hype piece of
cross-promotion

0.73→ 0.34

A marvel like none
you’ve seen

A failure like none
you’ve seen

0.73→ 0.31

(b)

Figure 3-8: (a): Word cloud visualization for tokens that are positively/negatively
correlated with the activation of a particular deep feature. (b): Using the word-
clouds from (a), we can make word substitutions (as highlighted in green and red)
to generate counterfactuals that change the model’s predicted sentiment (scores
below 0.5 are predicted as negative).

on its word cloud). An example of the positive and negative word clouds for one

such deep feature is shown in Figure 3-8a, and the resulting counterfactuals are

in Table 3-8b. Such counterfactuals successfully flip the sentiment label assigned

by the sparse decision layer 73.1± 3.0% of the time. In contrast, they only have

52.2 ± 4% efficacy for the dense decision layer. This highlights that for models

with sparse decision layers, it can be easier to automatically identify deep features

that are causally-linked to model predictions.

ImageNet. We now leverage the annotations collected in Section 3.5.1 to generate

counterfactuals for ImageNet classifiers. Concretely, we manually modify images

to add or subtract input patterns identified by annotators and verify that they suc-

cessfully flip the model’s prediction. Some representative examples are shown

in Figure 3-9a. Here, we alter images from various ImageNet classes to have the

pattern “chainlink fence” and “water”, so as to fool the sparse decision layer into

recognizing them as “ballplayers” and “snorkels” respectively. We find that we are

able to consistently change the prediction of the sparse decision layer (and in some

cases its dense counterpart) by adding a pattern that was previously identified (cf.

Section 3.5.1) to be a spurious correlation.

72



Sa
m

pl
es

Co
un

te
rf

ac
tu

al
s

+ “chainlink fence" + “water”

(a)

“trilobyte” predicted  
as “dough”

Top activating features
ImageNet class Predicted class

“whistle” predicted  
as “maraca”

Misclassified  
images

“trilobyte” feature “dough” feature
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Figure 3-9: (a) Counterfactual images for ImageNet. We manually modify samples
(top row) to contain the patterns “chainlink fence” and “water”, which annotators
deem (cf. Section 3.5.1) to be spuriously correlated with the classes “ballplayer”
and “snorkel” respectively. We find that these counterfactuals (bottom row) succeed
in flipping the prediction of the model with a sparse decision layer to the desired
class. (b) Examples of misclassified ImageNet images for which annotators deem
the top activated feature for the predicted class (rightmost column) as a better match
than the top activated feature for the ground truth class (middle column).

3.5.3 Misclassifications

Our final avenue for diagnosing unintended behaviors in models is through their

misclassifications. Concretely, given an image for which the model makes an in-

correct prediction (i.e., not the ground truth label as per the dataset), our goal is to

pinpoint some aspects of the image that led to this error.

On ImageNet, it turns out that over 30% of misclassifications made by the

sparse decision layer can be attributed to a single deep feature—i.e., manually set-

ting this “problematic” feature to zero fixes the misclassification (cf. Figure 3-10

for examples). In these cases, can humans understand why the problematic fea-

ture was triggered in the first place? Specifically, can they recognize the pattern in

the input that caused the error?

To test this, we present annotators on MTurk with misclassified images. With-

out divulging the ground truth or predicted labels, we show annotators the top

activated feature for each of the two classes via feature visualizations. We then ask

annotators to select the patterns (i.e., feature visualizations) that match the image,
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Problematic features

Misclassified images

Figure 3-10: Misclassified images (top) along with the feature visualization for
the corresponding “problematic” deep features from the erroneous class (bottom).
Manually deactivating this single problematic feature (per image) is sufficient to
correct the erroneous model prediction.

and to choose one that is a better match for the image (cf. Appendix B.8.1 for de-

tails). As a control, we repeat the same task but replace the problematic feature

with a randomly-chosen one.

For about 70% of the misclassified images, annotators select the top feature for

the predicted class as being present in the image (cf. Table 3.3). In fact, annotators

consider it a better match than the feature for the ground truth class 60% of the

time. In contrast, they rarely select randomly-chosen features to be present in the

image. Since annotators do not know what the underlying classes are, the high

fraction of selections for the problematic feature indicates that annotators actually

believe this pattern is present in the image.

We present sample misclassifications validated by annotators in Figure 3-9b,

along with the problematic features that led to them. Having access to this infor-

mation can guide improvements in both models and datasets. For instance, model

designers might consider augmenting the training data with examples of “mara-

cas” without “red tips” to correct the second error in Figure 3-9b.
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Features Matches image Best match

Prediction 70.70% ± 3.62% 60.12% ± 3.77%
Random 16.63% ± 2.91% 10.58% ± 2.35%

Table 3.3: Fraction of misclassified images for which annotators select the top fea-
ture of the predicted class to: (i) match the given image and (ii) be a better match
than the top feature for the ground truth class. As a baseline, we also evaluate
annotator selections when the top feature for the predicted class is replaced by a
randomly-chosen one.

3.6 Further Related Work

We now discuss prior work with similar objectives or primitives to our toolkits.

Regularized GLMs and gradient methods. Estimating GLMs with convex penal-

ties has been studied extensively [Efr+04; PH07; FHT10]. Our solver in Section 3.3

also builds off a line of work in variance reduced proximal gradient methods [JZ13;

DBL14; GGS19]. Unlike our approach, prior solvers are best suited for problems

with few examples or features, and are not directly amenable to GPU acceleration.

Counterfactual explanations and causal classification. Previous research has ob-

served that causal effects of features can be clarified using counterfactual tests, ei-

ther through synthetic data [Goy+19b]; by swapping features between individual

images [Goy+19a]; or by silencing sets of neurons [Bau+20b]. In Section 3.2, we

adopt the approach of generating counterfactual images, introducing a method

that can scale to large datasets such as imagenet.

Interpretability tools. There have been extensive efforts towards post-hoc in-

terpretability tools for deep networks. Feature attribution methods provide in-

sight into model predictions for a specific input instance. These include saliency

maps [SVZ13; Smi+17; STY17], surrogate models to interpret local decision bound-

aries [RSG16a], and finding influential [KL17], prototypical [KKK16], or counter-

factual inputs [Goy+19a]. However, as noted by various recent studies, these local
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attributions can be easy to fool [GAZ19; Sla+20] or may otherwise fail to capture

global aspects of model behavior [STY17; Ade+18; Ade+20; LM20]. Several meth-

ods have been proposed to interpret hidden units within vision networks, for ex-

ample by generating feature visualizations [Erh+09; Yos+15; Ngu+16; OMS17] or

assigning semantic concepts to them [Bau+17; Bau+20b]. Our work is complemen-

tary to these methods as we use them as primitives to probe sparse decision layers.

Another related line of work is that on concept-based explanations, which seeks to

explain the behavior of deep networks in terms of high-level concepts [Kim+18;

Gho+19; Yeh+20]. One of the drawbacks of these methods is that the detected con-

cepts need not be causally linked to the model’s predictions [Goy+19b]. This is

not the case for our approaches—we can quantify the effect of a given concept on

the model’s prediction in Section 3.2; and for our other approach in Section 3.3 the

identified high-level concepts, i.e., the deep features used by the sparse decision

layer, entirely determine the model’s behavior.

3.7 Broader Implications: Quantifying interpretability

A major challenge in the field of interpretability is evaluating the quality of a given

explanation. After all, ultimately, these explanations are intended to assist humans

in understanding the models. Defining a metric that captures human understand-

ing, and then measuring it without introducing confirmation biases is a highly

non-trivial problem in itself. For instance, it may be hard for annotators to decou-

ple “what they think the model should label the input as” from “what the inter-

pretation suggests the model actually does” (and we are interested in the latter).

These considerations played an important role in the design of our model de-

bugging toolkits. Firstly, rather than aiming for a complete characterization of

how models make decisions, we focus on explanations that can help with concrete

downstream tasks (e.g., identifying spurious correlations). Second, we verify that

the data features we identify are not merely correlated with the model output, but

in fact causally influence its predictions—via counterfactuals in Section 3.2 and
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feature ablations in Section 3.4. Finally, we design a suite of human-in-the-loop

experiments to evaluate the quality of our explanations. In particular, these tech-

niques allow us to assess whether an explanation improves human understanding

and helps them with specific downstream tasks. Crucially, we are able to do so

in practical deep learning settings (e.g., for ResNets trained on ImageNet-1k) and

while, to the best of our ability, mitigating human biases.
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Chapter 4

The Role of Data (Collection) in

Learning

In this chapter, we take a step towards understanding why models learn the fea-

tures they do. As we saw in Chapters 2 and 3, current models often succeed based

on data features that are spurious, or context-dependent. Note, however, that

these unintended features ultimately stem from the datasets that models are devel-

oped using. After all, despite their role in guiding the development of ML mod-

els [KSH12; Sze+16; He+16], these datasets [Eve+10; Den+09; Lin+14; Rus+15] are

only proxies for real-world tasks that we actually care about—e.g., object recog-

nition or localization in the wild. Thus, we ask: How aligned are existing bench-

marks, and the features therein, with their motivating real-world tasks? Here, we ex-

plore this question, paying special heed to the data collection process. Through

a case study on the popular ImageNet dataset [Den+09; Rus+15] we find that

seemingly inconsequential design choices made during data collection actually in-

troduce systematic—and fairly pervasive—biases in the dataset. These biases, in

turn, percolate into ImageNet-trained models and strongly influence the features

they rely on. This chapter is structured as follows: Section 4.1 outlines our contri-

butions, Section 4.2 covers background, Sections 4.3-4.5 detail our analysis , and

Section 4.6 discusses its broader implications.
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4.1 Summary of Our Results

We first develop a methodology for obtaining fine-grained data annotations via

large-scale human studies—to precisely quantify ways in which typical bench-

marks, and their features, fall short of capturing the underlying ground truth. We

then study how such benchmark-task misalignment impacts state-of-the-art models—

after all, models are often developed in a way that treats existing datasets as the

ground truth. We focus our exploration on the ImageNet dataset [Den+09; Rus+15],

one of the most widely used benchmarks in computer vision.

Quantifying benchmark-task alignment. We find that systematic annotation is-

sues pervade ImageNet, and can often be attributed to design choices in the dataset

collection pipeline itself. For example, annotators were not asked to classify im-

ages, but rather to validate a specific automatically-obtained candidate label with-

out knowledge of other classes in the dataset. Consequently, a large subset of

the annotations are ambiguous or systematically biased—with confusion between

fine-grained object classes or multiple image objects. Moreover, we find that the

ImageNet label often does not even correspond to what humans deem the “main

object” in the image. Nevertheless, models still achieve significantly-better-than-

chance prediction performance on these images, indicating that they must exploit

artifacts or spurious features in the dataset that humans are oblivious to.

Human-based performance evaluation. In light of this, we use our annotation

pipeline to more directly measure human-model alignment. We find that more ac-

curate ImageNet models also make predictions that annotators are more likely to

agree with. In fact, we find that models have reached a level where non-expert an-

notators are largely unable to distinguish between predicted labels and ImageNet

labels (i.e., even model predictions that don’t match the dataset labels are often

judged valid as by annotators). While reassuring, this finding highlights a differ-

ent challenge: non-expert annotations may no longer suffice to tell apart further

progress from overfitting to idiosyncrasies of the ImageNet distribution.
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4.2 Background: Datasets and Biases

There has been a long line of work on building datasets for ML. For instance, in

computer vision, this ranges from the famous Lena stock image to more recent

constructions with millions of real-world photographs. Torralba and Efros [TE11]

reflect on the history of dataset collection, describing it as a “revolution”: where

every new benchmark was, to an extent, designed to fix shortcomings and biases in

its older counterparts. We now overview prior work on understanding the source

of such biases, and how our work fits into it. We refer the reader to Crawford

[Cra13] and Friedman and Nissenbaum [FN17] for a more detailed discussion.

Three sources of dataset bias. Friedman and Nissenbaum [FN17] introduce a

framework for studying bias in computer systems, breaking it down into:

∙ Pre-existing: This refers to biases that predate and exist independently of the

dataset (or computer system), and percolate into it as a result of conscious,

unconscious or despite best efforts of creators, and the society on which it

is modeled. For instance, these might range from innocuous artifacts like

photographer bias [TE11] or more pernicious effects such as gender or racial

bias [Bol+16; CBN17; BG18; SC18].

∙ Technical: This includes biases that stem during the formulation of the task—

in this case the dataset creation process. For instance, errors in the formu-

lation of the target variable, or imperfections from the utilized software or

human resources. The former frequently shows up in contexts such as pre-

dictive policing, or medicine, wherein the target variable (number of arrests

or medical spending) can be an imperfect proxy for the real-task that one

wants to model (crime or health risk) [LI16; Obe+19].

∙ Emergent: These biases arise during deployment, due to changes in society

or the population of interest. Such biases have been studied in the con-

text of model robustness and distribution shift—e.g., due to natural or ad-

versarial input corruptions [Sze+14; FF15; FMF16; Eng+19c; For+19; HD19;
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Kan+19], differences in data sources [Sae+10; TE11; Kho+12; TT14; Rec+19b],

and changes in the relative frequencies of subpopulations [Ore+19; Sag+20].

Scalable data collection pipelines. Prior research discussed above has delved

into understanding pre-existing and emergent biases in large-scale ML datasets.

However, there are relatively few studies on technical biases in this context. It is

worth noting that, despite best efforts, the sheer size of machine learning datasets

makes meticulous data curation virtually impossible. Dataset creators thus resort

to scalable methods such as automated data retrieval and crowd-sourced anno-

tation [Eve+10; Rus+15; Lin+14; Zho+17], often at the cost of faithfulness to the

task being modeled. As a result, the dataset and its corresponding annotations can

sometimes be ambiguous, incorrect, or otherwise misaligned with ground truth (cf.

Figure 1-2). Still, despite our awareness of these issues [Rus+15; Rec+19b; Hoo+19;

NJC19], we lack a precise characterization of their pervasiveness and impact, even

for widely-used datasets. In this chapter, we take a step towards bridging this gap

in the context of the ImageNet dataset [Den+09; Rus+15].

4.3 A Closer Look at the ImageNet Dataset

We start by briefly describing the original ImageNet data collection and annotation

process. As it turns out, several—seemingly innocuous—details of this process

have a significant impact on the resulting dataset.

The ImageNet creation pipeline. ImageNet is a prototypical example of a large-

scale dataset (1000 classes and millions of images) created through automated data

collection and crowd-sourced filtering. Broadly, this process comprised two stages:

1. Image and label collection: The ImageNet creators first selected a set of classes

using the WordNet hierarchy [Mil95]. Then, for each class, they sourced

images by querying several search engines, in multiple languages, with the

WordNet synonyms of the class, augmented with those of its parent node(s).
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Note that for each of the retrieved images, the label—which we will refer to

as the proposed label—that will be assigned to this image should it be included

in the dataset, is already determined. That is, the label is simply given by the

WordNet node that was used for the corresponding search query.

2. Image validation via the CONTAINS task. To validate the image-label pairs re-

trieved in the previous stage, the ImageNet creators employed annotators via

the Mechanical Turk (MTurk) crowd-sourcing platform. Specifically, for ev-

ery class, annotators were presented with its description (along with links to

the relevant Wikipedia pages) and a grid of candidate images. Their task was

then to select all images in that grid that contained an object of that class (with

explicit instructions to ignore clutter and occlusions). The grids were shown

to multiple annotators and only images that received a “convincing major-

ity” of votes (based on per-class thresholds estimated using a small pool of

annotators) were included in ImageNet. In what follows, we will refer to this

filtering procedure as the CONTAINS task.

Revisiting the ImageNet labels

The automated process described above is a natural method for creating a large-

scale dataset, especially if it involves a wide range of classes (as is the case for

ImageNet). However, even putting aside occasional annotator errors, the resulting

dataset might not accurately capture the ground truth (see Figure 1-2). Indeed, as

we discuss below, this pipeline design itself can lead to certain systematic errors in

the dataset. The root cause for many of these errors is that the image validation

stage (i.e., the CONTAINS task) asks annotators only to verify if a specific proposed

label (i.e., WordNet node for which the image was retrieved), shown in isolation,

is valid for a given image. Crucially, annotators are never asked to choose among

different possible labels for the image and, in fact, have no knowledge of what the

other classes even are. This can introduce discrepancies in the dataset in two ways:

83



Images with multiple objects. Annotators are instructed to ignore the presence of

other objects when validating a particular ImageNet label for an image. However,

these objects could themselves correspond to other ImageNet classes. This can

lead to the selection of images with multiple valid labels or even to images where

the dataset label does not correspond to the most prominent object in the image.

Biases in image filtering. Since annotators have no knowledge of what the other

classes are, they do not have a sense of the granularity of image features they

should pay attention to (e.g., the labels in Figure 1-2 appear reasonable until one

becomes aware of the other possible classes in ImageNet). Moreover, the task itself

does not necessary account for their expertise (or the lack of thereof). Indeed, one

cannot reasonably expect non-experts to distinguish, e.g., between all the 24 terrier

breeds that are present in ImageNet. As a result, if annotators are shown images

containing objects of a different, yet similar class, they are likely to select them as

valid. This implies that potential errors in the collection process (e.g., automated

search retrieving images that do not match the query label) are unlikely to be cor-

rected during validation and thus can propagate to the final dataset.

In the light of the above, it is clear that eliciting ground truth information from

annotators using the ImageNet creation pipeline may not be straightforward. In

the following sections, we present a framework for improving this elicitation (by

bootstrapping from and refining the existing labels) and then use that framework

to investigate the discrepancies highlighted above (Section 4.4) and their impact

on ImageNet-trained models (Section 4.5).

4.4 From Label Validation to Image Classification

We begin our study by obtaining a better understanding of the ground truth for

ImageNet data. To achieve this, rather than asking annotators to validate a sin-

gle proposed label for an image (as in the original pipeline), we would like them

to classify the image, selecting all the relevant labels for it. However, asking (un-
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Figure 4-1: Overview of our data annotation pipeline. First, we collect a pool of
potential labels for each image using the top-5 predictions of multiple models (Sec-
tion 4.4.1). Then, we ask annotators to gauge the validity of each label (in isolation)
using the CONTAINS task (described in Section 4.3). Next, we present all highly se-
lected labels for each image to a new set of annotators and ask them to select one
label for every distinct object in the image, as well as a label for the main object
according to their judgement, i.e., the CLASSIFY task (Section 4.4.2). Finally, we
aggregate their responses to obtain fine-grained image annotations (Section 4.4.2).

trained) annotators to choose from among all 1,000 ImageNet classes is infeasible.

To circumvent this difficulty, our pipeline consists of two phases, illustrated in

Figure 4-1. First, we obtain a small set of (potentially) relevant candidate labels for

each image (Section 4.4.1). Then, we present these labels to annotators and ask

them to select one of them for each distinct object using what we call the CLASSIFY

task (Section 4.4.2). For our analysis, we use 10,000 images from the ImageNet

validation set—i.e., 10 randomly selected images per class. Note that since both

ImageNet training and validation sets were created using the same procedure, an-

alyzing the latter is sufficient to understand systematic issues in that dataset.

4.4.1 Obtaining candidate labels

To ensure that the per-image annotation task is manageable, we narrow down the

candidate labels to a small set. To this end, we first obtain potential labels for each

image by simply combining the top-5 predictions of 10 models from different parts

of the accuracy spectrum with the existing ImageNet label (yields approximately

14 labels per image). Then, to prune this set further, we reuse the ImageNet CON-

TAINS task—asking annotators whether an image contains a particular class (Sec-

tion 4.3)—but for all potential labels. The outcome of this experiment is a selection

frequency for each image-label pair, i.e., the fraction of annotators that selected the
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image as containing the corresponding label.1 We find that, although images were

often selected as valid for many labels, relatively few of these labels had high se-

lection frequency (typically less than five per image). Thus, restricting potential

labels to this smaller set of candidate labels allows us to hone in on the most likely

ones, while ensuring that the resulting annotation task is still cognitively tractable.

4.4.2 Image classification via the CLASSIFY task

Once we have identified a small set of candidate labels for each image, we present

them to annotators to obtain fine-grained label information. Specifically, we ask

them to identify: (a) all labels that correspond to objects in the image, and (b)

the label for the main object. Crucially, we explicitly instruct annotators to select

only one label per distinct object—i.e., in case they are confused about the correct

label for a specific object, to pick the one they consider most likely. Moreover,

since ImageNet contains classes that could describe parts or attributes of a single

physical entity (e.g., "car" and "car wheel"), we ask annotators to treat these as

distinct objects, since they are not mutually exclusive. We present each image to

multiple annotators and then aggregate their responses (per-image) as described

below. We refer to this annotation setup as the CLASSIFY task.

Identifying the main label and number of objects. From each annotator’s re-

sponse, we learn what they consider to be the label of the main object, as well as

how many objects they think are present in the image. By aggregating these two

quantities based on a majority vote over annotators, we can get an estimate of the

number of objects in the image, as well as of the main label for that image.

Partitioning labels into objects. Different annotators may choose different la-

bels for the same object and thus we need to map their selections to a single set of

distinct objects. To illustrate this, consider an image of a soccer ball and a terrier,

1Note that this notion of selection frequency (introduced by Recht et al. [Rec+19b]) essentially
mimics the majority voting process used to create ImageNet (cf. Section 4.3), except that it uses a
fixed number of annotators per grid instead of the original adaptive process.
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where one annotator has selected “Scotch terrier” and “soccer ball” and another

“Toy terrier” and “soccer ball”. We would like to partition these selections into ob-

jects as [“soccer ball”] and [“Scotch terrier” or “Toy terrier”] since both responses

indicate that there are two objects in the image and that the soccer ball and the

terrier are distinct objects. More generally, we would like to partition selections in

a way that avoids grouping labels together if annotators identified them as distinct

objects. To this end, we employ exhaustive search to find a partition that optimizes

for this criterion (since there exist only a few possible partitions to begin with). Fi-

nally, we label each distinct object with its most frequently selected label.

The resulting annotations characterize the content of an image in a more fine-

grained manner compared to the original ImageNet labels. Note that these annota-

tions may still not perfectly match the ground truth. After all, we also employ un-

trained, non-expert annotators, that make occasional errors, and moreover, some

images are inherently ambiguous without further context (e.g., Figure 1-2c). Nev-

ertheless, as we will see, these annotations are already sufficient for our examina-

tion of ImageNet.

4.5 Quantifying the Benchmark-Task Alignment of ImageNet

Our goal in this section is two-fold. First, we want to use our refined image an-

notations to examine potential sources of discrepancy between ImageNet and the

motivating object recognition task. Next, we want to assess the impact these de-

viations have on models developed using ImageNet benchmark. To this end, we

will measure how the accuracy of a diverse set of models is affected when they are

evaluated on different sub-populations of images identified using our annotations.

4.5.1 Multi-object images

We start by taking a closer look at images which contain objects from more than

one ImageNet class—how often these additional objects appear and how salient
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they are. Recall that if two labels are both simultaneously valid for an image—i.e.,

they are not mutually exclusive (e.g., “car” and “car wheel”)—we refer to them

as different objects. Figure 4-2a shows that a significant fraction of images—more

than a fifth—contains at least two objects. In fact, there are pairs of classes which

consistently co-occur (see Figure 4-2b). This indicates that multi-object images in

ImageNet are not caused solely by irrelevant clutter, but also arise due to sys-

tematic issues with the class selection process. Indeed, even though, in principle,

ImageNet classes correspond to distinct objects, some of these objects can overlap

greatly in terms of how they occur in the real world.
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Figure 4-2: (a) Number of objects per image—more than a fifth of the images con-
tains two or more objects from ImageNet classes. (b) Pairs of classes which consis-
tently co-occur as distinct objects. Here, we visualize the top 15 ImageNet classes
based on how often their images contain another fixed object (“Other label”). (c)
Random examples of multi-label ImageNet images.

Model accuracy on multi-object images. Model performance is typically mea-

sured using (top-1 or top-5) accuracy with respect to a single ImageNet label, treat-

ing it as the ground truth. However, it is not clear what the right notion of ground

truth annotation even is when classifying multi-object images. Indeed, we find

that models perform significantly worse on multi-label images based on top-1 ac-
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curacy (measured w.r.t. ImageNet labels): accuracy drops by more than 10% across

all models—see Figure 4-3a.
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Figure 4-3: (a) Top-1 model accuracy on multi-object images (as a function of over-
all test accuracy). Accuracy drops by roughly 10% across all models. (b) Evaluating
multi-label accuracy on ImageNet: the fraction of images where the model predicts
the label of any object in the image. Based on this metric, the performance gap be-
tween single- and multi-object images virtually vanishes. Confidence intervals:
95% via bootstrap.

In light of this, a more natural notion of accuracy for multi-object images would

be to consider a model prediction to be correct if it matches the label of any object in

the image. On this metric, we find that the aforementioned performance drop es-

sentially disappears—models perform similarly on single- and multi-object images

(see Figure 4-3b). This indicates that the way we typically measure accuracy, i.e.,

with respect to a single label, can be overly pessimistic.Note, however, that while

evaluating top-5 accuracy also accounts for most of these multi-object confusions—

which was after all the original motivation for considering that measure [Rus+15],

it tends to inflate accuracy on single object images, by treating several erroneous

predictions as valid (cf. Appendix C.3.1).

Human-label disagreement. Although models suffer a sizeable accuracy drop

on multi-object images, they are still relatively good at predicting the ImageNet

label—much better than the baseline of choosing the label of one object at random.

This bias could be justified whenever there is a distinct main object in the image,
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which also corresponds to the ImageNet label. However, we find that for nearly

a third of the multi-object images, the ImageNet label does not denote the most

likely main object as judged by annotators—see Figure 4-4. Nevertheless, model

accuracy (w.r.t. the ImageNet label) on these images is still high—see Figure 4-5a.
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Figure 4-4: (a) Fraction of annotators that selected the ImageNet label as denoting
the main image object. For 650 images (out of 2156 multi-object images), the ma-
jority of annotators select a label other than the ImageNet one as the main object.
Examples of such images are presented in (b).
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Figure 4-5: (a) Model accuracy on images where the annotator-selected main object
does not match the ImageNet label. Models perform much better than the baseline
of randomly choosing one of the objects in the image (dashed line)—potentially
by exploiting dataset biases. (b) Example of a class where humans disagree with
the label as to the main object, yet models still predict the ImageNet label. Here,
for images of that class, we plot both model and annotator accuracy as well as the
selection frequency (SF) of both labels.

On these samples, models must thus base their predictions on features that
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humans do not consider salient. For instance, we find that these disagreements

often arise when the ImageNet label corresponds to a very distinctive object (e.g.,

“pickelhaube”), but the image also contain another more prominent object (e.g.,

“military uniform”)—see Figure 4-5b. To do well on these classes, the model likely

picks up on ImageNet-specific biases, e.g., detecting that military uniforms often

occur in images of class “pickelhaube” but not vice versa. While this might be a

valid strategy for improving ImageNet accuracy, it causes models to rely on fea-

tures that may not generalize to the real world.

4.5.2 Bias in label validation

We now turn our attention to assessing the quality of the ImageNet filtering pro-

cess. Our goal is to understand how likely annotators are to detect incorrect image-

label pairs during the image validation process. Recall that they are asked a some-

what leading question, i.e., if a specific label is valid for the image, making them

prone to answering positively even for images from a different, yet similar, class.

Indeed, we find that when we replicate the original task setup (i.e., the CON-

TAINS task) with different proposed labels, annotators consistently select some of

these labels, in addition to the ImageNet label, as being valid for an image. In fact,

for nearly 40% of the images, another label is selected at least as often as the Ima-

geNet label (cf. Figure 4-6). Moreover, this phenomenon does not occur only when

multiple objects are present in the image—even when annotators observe a sin-

gle object, theyoften select as many as 10 classes (cf. Figure 4-7a). Thus, even for

images where a single ground truth label exists, the ImageNet validation process

may fail to elicit this label from annotators.2

In fact, we find that this confusion is not just a consequence of using non-expert

annotators, but also of the CONTAINS task setup itself. If instead of asking annota-

tors to judge the validity of a specific label(s) in isolation, we ask them to choose the
2Note that our estimates for the selection frequency of image-ImageNet label pairs may be bi-

ased (underestimates) [Eng+20] as these specific pairs have already been filtered during dataset
creation based on their selection frequency. However, we can effectively ignore this bias since: a)
our results seem to be robust to varying the number of annotators (Appendix C.3.2), b) most of our
results are based on the CLASSIFY task for which this bias does not apply.
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Figure 4-6: Number of labels per image that annotators selected as valid in iso-
lation (determined by the selection frequency of the label relative to that of the
ImageNet label). For more than 70% of images, annotators select another label at
least half as often as they select the ImageNet label (leftmost).
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Figure 4-7: (a) Number of labels selected in the CONTAINS task: the y-axis mea-
sures the number of labels that were selected by at least two annotators; the x-axis
measures the average number of objects indicated to be present in the image dur-
ing the CLASSIFY task; the dot size represents the number of images in each 2D
bin. Even when annotators view an images as depicting a single object, they often
select multiple labels as valid. (b) Number of labels that at least two annotators se-
lected for the main image object (in the CLASSIFY task) as a function of the number
of labels presented to them. Annotator confusion decreases significantly when the
task setup explicitly involves choosing between multiple labels simultaneously.

main object among several possible labels simultaneously (i.e., via the CLASSIFY

task), they select substantially fewer labels—see Figure 4-7b.

These findings highlight how sensitive annotators are to the data collection and

validation pipeline setup, even to aspects of it that may not seem significant at first

glance. It also indicates that the existing ImageNet annotations may not have be

vetted as carefully as one might expect. ImageNet annotators might have been
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unable to correct certain errors, and consequently, the resulting class distributions

may be determined, to a large extent, by the fidelity (and biases) of the automated

image retrieval process.

Confusing class pairs. We find that there are several pairs of ImageNet classes

that annotators have trouble telling apart—they consistently select both labels as

valid for images of either class—see Figure 4-8a. On some of these pairs we see that

models still perform well—likely because the search results from the automated

image retrieval process are sufficiently error-free (i.e., the overlap in the actual

image search results for the two classes is insignificant enough) to allow the models

to disambiguate between these pairs.
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Figure 4-8: (a) ImageNet class pairs for which annotators often deem both classes
as valid. We visualize the top 10 pairs split based on the accuracy of EfficientNet B7
on these pairs being high (top) or low (bottom). (b) Model progress on ambiguous
class pairs (from (a) bottom) has been largely stagnant—possibly due to substantial
overlap in the class distributions. In fact, models are unable to distinguish between
these pairs better than chance (cf. pairwise accuracy).

However, for other pairs, even state-of-the-art models have poor accuracy (be-

low 40%)—see Figure 4-8b. In fact, we can attribute this poor performance to

model confusion within these pairs—none of the models we examined do much

better than chance at distinguishing between the two classes. The apparent perfor-

mance barrier on these ambiguous classes could thus be due to an inherent over-
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lap in their ImageNet distributions. It is likely that the automated image retrieval

caused mixups in the images for the two classes, and annotators were unable to

rectify these. If that is indeed the case, it is natural to wonder whether accuracy on

ambiguous classes can be improved without overfitting to the ImageNet test set.

The annotators’ inability to remedy overlaps in the case of ambiguous class

pairs could be due to the presence of classes that are semantically similar, e.g.,

“rifle” and “assault rifle”—which is problematic under the CONTAINS task as dis-

cussed before. In some cases, we find that there also were errors in the task setup.

For instance, there were occasional overlaps in the class names (e.g., “maillot” and

“maillot, tank suit”) and Wikipedia links (e.g., “laptop computer” and “notebook

computer”) presented to the annotators. This highlights that choosing labels that

are in principle disjoint (e.g., using WordNet) might not be sufficient to ensure that

the resulting dataset has non-overlapping classes—when using noisy validation

pipelines, we need to factor human confusion into class selection and description.

Remark. Some of the ImageNet label issues we study have already been iden-

tified in prior work. Specifically, Recht et al. [Rec+19b], Northcutt, Jiang, and

Chuang [NJC19], and Hooker et al. [Hoo+19] demonstrate the existence of classes

that might be inherently ambiguous (similar to our findings in Section 4.5.2). More-

over, the existence of cluttered images was discussed by Russakovsky et al. [Rus+15]

as an indication that the dataset mirrors real-world conditions—and hence deemed

desirable—and by Stock and Cisse [SC18], Northcutt, Jiang, and Chuang [NJC19],

and Hooker et al. [Hoo+19] as a source of label ambiguity (similar to our findings

in Section 4.5.1). Additionally, Stock and Cisse [SC18], motivated by the multi-

label nature of images, perform human-based model evaluation, similar to our

experiments in Section 4.6. Finally, Stock and Cisse [SC18] use manual data collec-

tion and saliency maps to identify racial biases that models rely on to make their

predictions. However, the focus of all these studies is not on characterizing the

extent of these issues and they only provide coarse estimates for their pervasive-

ness in ImageNet. In particular, none of these studies evaluate how these issues
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affect model performance, nor do they obtain annotations that are sufficient (in

granularity and/or scale) to rigorously draw per-class conclusions.

4.6 Broader Implications: Task Formulation and Model Evaluation

We now discuss implications our findings about annotation issues in ImageNet on

model evaluation and dataset design.

4.6.1 Beyond test accuracy: human-in-the-loop evaluation

Our analysis so far makes it clear that using top-1 accuracy as a standalone per-

formance metric can be problematic—issues such as multi-object images and am-

biguous classes make ImageNet labels an imperfect proxy for the ground truth.

With this in mind, we now focus on augmenting the model evaluation toolkit with

metrics that are better aligned with the underlying goal of object recognition.

We start by directly employing annotators to assess how good model predic-

tions are. Our goal is to understand whether more accurate models also make

higher-quality predictions, i.e., if the labels they predict (including the erroneous

ones) also appear more reasonable to humans? Intuitively, this should not only

help account for imperfections in ImageNet labels but also to capture improve-

ments in models that might not be reflected by improvements in accuracy alone

(e.g., predicting a dog breed that is incorrect but more similar to the correct one).

Concretely, given a model prediction for a specific image, we measure how often

annotators select the predicted label as being present in the image (determined us-

ing the CONTAINS task). Note that this metric accommodates for multiple objects

or ambiguous classes as annotators will confirm all valid labels.

We find that models do improve consistently along these axes as well (cf. Fig-

ure 4-9)—faster than improvements in accuracy (i.e., more predictions matching

the ImageNet label) alone could explain. Moreover, we observe that the predic-

tions of state-of-the-art models have gotten, on average, quite close to ImageNet

labels with respect to these metrics. That is, annotators are almost equally likely to
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Figure 4-9: Using humans to assess model predictions—we measure how often an-
notators select the predicted/ImageNet label to be contained in the image (selection
frequency [SF]), along with 95% confidence intervals (shaded).

select the predicted label as valid for the image as the ImageNet label. This in-

dicates that model predictions might be closer to what non-expert annotators can

recognize as the ground truth than accuracy alone suggests.

Implications. These findings do not imply that all of the remaining gap between

state-of-the-art model performance and perfect top-1 accuracy is inconsequential.

After all, for many images, the labels shown to annotators during the ImageNet

creation process (based on automated data retrieval) could have been the ground

truth. In these cases, striving for higher accuracy on ImageNet would actually ex-

tend to real-world object recognition settings. However, the results in Figure 4-9

hint at a different issue: we are at a point where we may no longer by able to easily

identify (e.g., using crowd-sourcing) the extent to which further gains in accuracy

correspond to such improvements, as opposed to models simply matching the Im-

ageNet distribution better.

4.6.2 Defining and constructing benchmark tasks.

Our findings highlight an inherent conflict between the goal of building datasets

that are large and diverse enough to capture complexities of the real world and
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the need for the corresponding annotation process to be scalable. Indeed, in the

context of ImageNet, we found that some of the very reasons that make the collec-

tion pipeline scalable (e.g., resorting to the CONTAINS task, employing non-expert

annotators) were also at the core of the afore-mentioned annotation issues. We

believe that developing annotation pipelines that better capture the ground truth

while remaining scalable is an important avenue for future research.

Taking a step back, our exploration also raises concerns about how benchmark

tasks are formulated in the first place. For instance, the assumption that there exists

a single “ground truth” label for each input may be fundamentally flawed in many

scenarios. It is unclear whether humans can even agree upon such a label, or if

such a single-label classification task is even pertinent in the real world. This also

calls into question the currently dominant approach to ML model development,

which datasets as the “gold standard” for measuring and guiding progress. Our

work demonstrates that this practice might not be well-founded—these datasets

are often imperfect proxies for the real-world tasks they were meant to capture.

Finally, our analysis highlights the importance of doing away with the black-

box view on datasets. Namely, if we want to build models that can generalize

reliably, it is crucial that we periodically revisit and scrutinize the datasets that we

use to train them. This may be even more pertinent when instead of using curated

benchmarks, we must resort to training models on observational data in real-world

applications—e.g., medicine or self-driving cars.
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Chapter 5

Robustness as a Feature Prior

In this chapter, we introduce a training framework that allows us to control the

features that ML models rely on to make their predictions. Recall that our find-

ings so far indicate that while current models perform well on typical benchmarks,

the mechanisms underlying this success differ from those that humans employ

or envision. For instance, these models tend to utilize unintuitive or undesirable

features in the data—e.g., non-robust ones, image backgrounds or sensitive at-

tributes. Crucially, these dependencies are the consequence of core aspects of the

ML development pipeline. For instance, the dominant training paradigm of opti-

mizing models to solely maximize (distributional) accuracy causes them to latch

onto any predictive features in the data—even ones that are brittle or spurious.

Thus, the natural question that arises is: can we modify our training objectives

to prevent models from relying on specific types of features? Here, we discuss

how the classic robust optimization framework [Wal45]—which is commonly used to

build models that are robust to adversarial examples—can provide a natural solu-

tion to this problem. This chapter is structured as follows: Section 5.1 outlines our

contributions, Section 5.2 introduces the robust optimization framework, and Sec-

tions 5.3-5.4 focus on a closer examination of the resulting robust models (and their

features) and finally Section 5.5 discusses the broader implications of our analyses.
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5.1 Summary of Our Results

We propose using the robust optimization framework [Wal45] as a tool to enforce

(user-specified) priors on features that models should learn. In particular, we dis-

cuss how this approach can be used to train models that do not depend on `p

non-robust features in input images (Section 5.2).

We then study the effect of this train-time intervention on the resulting “robust

models” [GSS15; Mad+18], focusing on their feature representations, as well as

their performance on downstream tasks. We find that these models have:

“Better” features (Section 5.3). The feature representations learned by robust

models address many of the shortcomings affecting their standard counterparts.

For instance, as illustrated in Figure 5-1, they tend to be approximately invertible

and amenable to direct feature visualization. Broadly, our results indicate that ro-

bust optimization is a promising avenue for learning representations that are more

“aligned” with our notion of perception.

Figure 5-1: Illustration of the properties of “robust representations”.

Improved performance on downstream tasks (Section 5.4). Robust models suf-

fice to perform a range of downstream image synthesis tasks—e.g., image gener-

ation, interpolation and manipulation (c.f. Figure 5-2 for examples). Moreover,
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doing so only requires: (i) a generic robust classifier (say, ResNet-50) trained on a

standard dataset (say, ImageNet) with minimal tuning, and (ii) performing a sim-

ple input manipulation: maximizing predicted class scores with gradient descent.

Paint-with-Features

Inpainting Super-resolution

Translation Sketch-to-Image

Generation

original + stripes + background horse zebra sketch turtle → → 

Figure 5-2: Image synthesis tasks performed using a single robust classifier.

5.2 The Robust Optimization Framework

In the canonical classification setting, the focus is on maximizing standard accu-

racy, i.e., the performance on (yet) unseen samples from the underlying distribu-

tion. Specifically, to find a set of model parameters that minimizes the expected loss

(also known as population risk):

min
θ

E(x,y)∼𝒟 [ℒθ(x, y)] . (5.1)

We refer to (5.1) as the standard training objective or empirical risk minimization

(ERM). In general, there are several choices for the loss function ℒ (e.g., hinge,

squared), though the most popular one is the cross-entropy loss.

5.2.1 Adversarial robustness

The existence of adversarial examples [Sze+14] largely changed the picture de-

scribed above. In particular, there has been a lot of interest in developing models

that are resistant to them, or, in other words, models that are adversarially robust.
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A natural approach (and one of the most successful) for doing so is to use the ro-

bust optimization framework: a classical tool for optimization in the presence of un-

certainty [Wal45; Dan67]. In particular, instead of just finding parameters which

minimize the expected loss (5.1), a robust optimization objective also requires that

the model induced by the parameters θ be robust to worst-case perturbation of the

input, or have low expected adversarial loss:

E(x,y)∼𝒟

[
max
δ∈∆
ℒθ(x + δ, y)

]
. (5.2)

We refer to (5.2) as the robust training objective. Here, ∆ represents the set of per-

turbations that the adversary can apply to induce misclassification. The most com-

mon choice for ∆ is the set of `p-bounded perturbations, i.e., ∆ = {δ ∈ Rd | ‖δ‖p ≤
ε}. It is worth noting though that several other notions of adversarial perturba-

tions have been studied. These include rotations and translations [FF15; Eng+19b],

smooth spatial deformations [Xia+18] and Wasserstein distance [WSK19].

5.2.2 A different perspective on robustness

Traditionally, adversarial robustness has been explored as a goal in the context of

ML security and reliability [BR18]: to build models that are robust to manipulation

in safety-critical settings. Here, we discuss how this framework could be a way to

engineer the features models learn to rely on during training.

To motivate this, we first note that a model trained with the robust optimiza-

tion framework (5.2) must be invariant to the set of perturbations ∆. This implies

that the resulting robust model cannot depend on an input feature, even if it is pre-

dictive of the label, if this correlation can be flipped by a perturbation within the

set ∆. Formally, this means that while standard (ERM-trained) models can rely on

any ρ-useful features in the data (2.2), robust models can only rely on ones that are

γ-robustly useful (2.3). Thus, one can intuitively think of robust optimization as a

feature prior, where ∆ specifies the family of features that one would like the model

be agnostic to (e.g., small `p-norm perturbations). In general, incorporating such
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human-selected priors and invariances in this fashion has a long history in ML—

convolutional layers, for instance, were introduced as a means of introducing an

invariance to translations of the input [Fuk80].

5.2.3 A closer look at robust models

In the context of deep networks, perfectly optimizing (5.2) is infeasible—after all

these models are not concave/convex. That being said, approximations of this ob-

jective, for instance adversarial training [GSS15; Mad+18]) have arisen as practical

ways of obtaining adversarially-robust models. Typically, this entails training the

model against a projected gradient descent (PGD; a standard first-order optimiza-

tion method) adversary.

We now shift our focus to better understand the precise effect imposing such

a feature prior—specifically invariance to small `2 perturbations—during training

has on the resulting robust models. At a high level, our goal is to understand which

input features they rely on to make their predictions, and contrast these the ones

utilized by standard classifiers. To this end, we leverage a classic technique from

ML interpretability—feature attribution [SVZ13; Smi+17; STY17]. In particular, we

visualize the gradients of the loss with respect to individual features (pixels) of the

input in Figure 5-3.

We observe that gradients for robust models align well with perceptually rel-

evant features (such as edges) of the input image. In contrast, for standard mod-

els, these gradients have no coherent patterns and appear very noisy to humans.

We want to emphasize that no preprocessing was applied to the gradients (other

than scaling and clipping for visualization). On the other hand, extraction of in-

terpretable information from the gradients of standard networks has only been

possible with additional sophisticated techniques [SVZ13; Yos+15; OMS17].

These gradients reveal a surprising side-effect of adversarial training. Namely,

constraining models to be invariant to small `2 changes in the input causes them

to depend on features that seemingly align better with human perception. In the

rest of this chapter, we demonstrate that this effect goes beyond just qualitative
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Figure 5-3: Visualization of the loss gradient with respect to input pixels. Recall
that these gradients highlight the input features which affect the loss most strongly,
and thus are important for the classifier’s prediction. For MNIST, blue and red
pixels denote positive and negative gradient regions respectively. For CIFAR-10
and ImageNet, we clip gradients to within ±3 standard deviations of their mean
and rescale them to lie in the [0, 1] range.

differences in gradients between standard and robust models. In particular, robust

models seem to learn more perceptually-aligned representations (Section 5.3), that

are also useful for other downstream tasks beyond classification (Section 5.4).

5.3 Properties and Applications of Robust Representations

In Section 5.2, we saw that models trained via robust optimization seem to differ

from their standard counterparts (obtained via ERM) in terms of the input fea-

tures they rely on to make predictions. We now attempt to get a more precise

understanding of these differences by directly examining the feature representa-

tions learned by standard and robust models. After all, beyond achieving high

accuracy on a variety of tasks [KSH12; He+15b; CW08], a major appeal of deep

learning is the ability to learn effective feature representations of data. Specifically,

deep neural networks can be thought of as linear classifiers acting on learned feature

representations (also known as feature embeddings). A major goal in representation

learning is for these embeddings to encode high-level, interpretable features of a

given input [GBC16; BCV13; Ben19].
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Remark. Following standard convention, for a given deep network we define

the representation R(x) ∈ Rk of a given input x ∈ Rd as the activations of the

penultimate layer of the network (where usually k ≪ d). The prediction of the

network can thus be viewed as the output of a linear classifier on the representa-

tion R(x). In what follows, we refer to “standard representations” as the repre-

sentation functions induced by standard (non-robust) networks, trained with the

objective (5.1). Analogously, “robust representations” refer to the representation

functions induced by `2-adversarially robust networks (5.2). We refer to the dis-

tance in representation space between two inputs (x1, x2) as the `2 distance between

their representations (R(x1), R(x2)), i.e., ‖R(x1)− R(x2)‖2.

5.3.1 Inverting representations

To probe the features learned by robust models more closely, we now directly ex-

amine their representations. Recall that a common aspiration in representation

learning is to have that for any pixel-space input x, R(x) is a vector encoding a set

of “human-meaningful” concepts in x [Ben19; GBC16; BCV13]. Intuitively, these

high-level features would make different classes linearly separable, allowing the

subsequent linear classifier to attain high accuracy.

For standard models, running somewhat counter to this intuition, we find that

it is straightforward to construct pairs of images with nearly identical representa-

tions yet drastically different content, as shown in Figures 5-4 and 5-5a. Finding

such pairs turns out to be as simple as sampling two images x1, x2 ∼ 𝒟, then

optimizing one of them to minimize distance in representation space to the other:

x′1 = x1 + arg min
δ

‖R(x1 + δ)− R(x2)‖2. (5.3)

This process can be seen as recovering an image that maps to the desired target rep-

resentation, and hence is commonly referred to as representation inversion [DB16b;

MV15; UVL17]. Ideally, one would expect the result of such inversion to match, in

terms of high-level features, the target image being inverted.
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x′�1 x2

R(x′�1) ≈ R(x2)

Figure 5-4: A limitation of standard neural network representations: it is straight-
forward to construct pairs of images (x′1, x2) that appear completely different yet
map to similar representations.

In contrast, we find that for robust models, minimizing (5.3) actually yields

images that are actually semantically similar to the original (target) images whose

representation is being matched. Moreover, this behavior is consistent across mul-

tiple samplings of the starting point (source image) x1 (cf. Figure 5-5a).

Representation proximity seems to entail semantic similarity. In fact, the con-

trast between the invertibility of standard and robust representations is even stronger.

To illustrate this, we will attempt to match the representation of a target image

while staying close to the starting image of the optimization in pixel-wise `2-norm

(this is equivalent to putting a norm bound on δ in objective (5.3)). With stan-

dard models, we can consistently get close to the target image in representation

space, without moving far from the source image x1. On the other hand, for robust

models, we cannot get close to the target representation while staying close to the

source image—this is illustrated quantitatively in Figure 5-5b. This indicates that

for robust models, semantic similarity may in fact be necessary for representation

similarity (and is not, for instance, merely an artifact of the local robustness in-

duced by robust optimization). We also find that even when δ is highly constrained

(i.e. when we are forced to stay very close to the source image and thus cannot

match the representation of the target well), the solution to the inversion problem

still displays some salient features of the target image (c.f. Figure 5-6). Both of

these observations suggest that the representations of robust networks function

much more like we would expect high-level feature representations to behave.
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Figure 5-5: Inverting representations (5.3) via PGD learned by standard and ro-
bust models trained on the Restricted ImageNet dataset. (a) Target (x2) & Source
(x1): random examples image from the test set; Robust and Standard (x′1): re-
sult of inverting the representation of the target image starting from the corre-
sponding source image for (top): a robust (adversarially trained) and (bottom): a
standard model respectively. (b) Representation inversion with an `2-norm con-
straint around the source image. On the x-axis is the radius of the constraint set,
and on the y-axis is the normalized distance in representation space between the
minimizer of objective (5.3) within the constraint set and the target image, i.e.,
yi = min‖δ‖2≤xi

‖R(x + δ)− R(xtarg)‖2/‖R(xtarg)‖2.

Inversion of out-of-distribution inputs. We find that the inversion properties

uncovered above hold even for out-of-distribution inputs, demonstrating that ro-

bust representations capture general features as opposed to features only relevant

for the specific classification task. In particular, we repeat the inversion experi-

ment (simple minimization of distance in representation space) using images from
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Constraint = 2 Constraint = 8 Constraint = 32 Constraint = 128 Target image

Figure 5-6: A visualization of the final solutions to the optimizing objective (5.3)
with PGD when constraining the solution to lie in an `2 ball around the source
image for an adversarially robust neural network.

classes not present in the original dataset used during training (Figure 5-7 right):

the reconstructed images consistently resemble the targets.
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Figure 5-7: Robust representations yield semantically meaningful embeddings.
Target: random images from the test set (col. 1-5) and from outside of the training
distribution (6-10); Result: images obtained from optimizing inputs (using Gaus-
sian noise as the source image) to minimize `2-distance to the representations of
the corresponding image in the top row.

Interpolation between arbitrary inputs. Note that this A natural consequence

of the “natural invertibility” property of robust representations is the ability to syn-

thesize natural interpolations between any two inputs x1, x2 ∈ Rn. In particular,

given two images x1 and x2, we define the λ-interpolate between them as

xλ = min
x
‖ (λ · R(x1) + (1− λ) · R(x2))− R(x)‖2. (5.4)

where, for a given λ, we find xλ by solving (5.4) with projected gradient descent.

Intuitively, this corresponds to linearly interpolating between the points in repre-

sentation space and then finding a point in image space that has a similar represen-

tation. To construct a length-(T + 1) interpolation, we choose λ = {0, 1
T , 2

T , . . . 1}.
The resulting interpolations, shown in Figure 5-8, demonstrate that the λ-interpolates
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of robust representations correspond to a meaningful feature interpolation be-

tween images. (For standard models constructing meaningful interpolations is

impossible due to the brittleness identified in Figure 5-4.)

Figure 5-8: Image interpolation using robust representations compared to their
image-space counterparts. The former appear perceptually plausible while the
latter exhibit ghosting artifacts. For pairs of images from the Restricted ImageNet
test set, we solve (5.4) for λ varying between zero and one, i.e., we match linear
interpolates in representation space.

We emphasize that linearly interpolating in robust representation space works

for any two images. This generality is in contrast to interpolations induced by

GANs (e.g. [RMC16; BDS19]), which can only interpolate between images gen-

erated by the generator. (Reconstructions of out-of-range images tend to be de-

cipherable but rather different from the originals [Bau+19b].) It is worth noting

that even for models with analytically invertible representations, interpolating in

representation space does not yield semantic interpolations [JSO18].

5.3.2 Direct feature visualization

A common technique for visualizing and understanding the representation func-

tion R(·) of a given network is optimization-based feature visualization [OMS17], a

process in which we maximize a specific feature (component) in the representa-

tion with respect to the input, in order to obtain insight into the role of the feature

in classification. Concretely, given some i ∈ [k] denoting a component of the repre-

sentation vector, and a seed image x0 (e.g., random noise), we use gradient descent
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Figure 5-9: Correspondence between image-level patterns and activations learned
by standard and robust models on the Restricted ImageNet dataset. Starting from
randomly chosen seed inputs (noise/images), we use PGD to find inputs that (lo-
cally) maximally activate a given component of the representation vector. In the
left column we have the seed inputs x0 (selected randomly), and in subsequent
columns we visualize the result of the optimization (5.5), i.e., x′, for different acti-
vations, with each row starting from the same (far left) input x0 for (top): a robust
(adversarially trained) and (bottom): a standard model.

to find an input x′ that maximally activates it, i.e., we solve:

x′ = x0 + arg max
δ

R(x0 + δ)i (5.5)

For standard networks, optimizing this objective typically yields unsatisfying

results. While we can easily find images for which the ith component of R(·) is

large (and thus the optimization problem is tractable), these images tends to look

meaningless to humans, often resembling the starting point of the optimization.

Even when these images are non-trivial, they tend to contain abstract, hard-to-

discern patterns (c.f. Figure 5-9 (bottom)).

For robust representations, however, we find that easily recognizable high-level

features emerge from optimizing objective (5.5) directly, without any regularization

or post-processing—cf. Figure 5-9. Furthermore, these concepts are not merely an ar-

tifact of our visualization process, as they consistently appear in the test-set inputs

that most strongly activate their corresponding coordinates (Figure 5-10).
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Figure 5-10: Maximizing inputs x′ (found by solving (5.5) with x0 being a gray im-
age) and most or least activating images (from the test set) for a random activation
of a robust model trained on the Restricted ImageNet dataset. For that activation,
we plot the three images from the validation set that had the highest or lowest
activation value sorted by the magnitude of the selected activation.

The limitations of regularization for visualization in standard networks. Given

that directly optimizing objective (5.5) does not produce human-meaningful im-

ages, prior work on visualization usually tries to regularize objective (5.5) through

a variety of methods. These methods include applying random transformations

during the optimization process [MOT15; OMS17], restricting the space of possi-

ble solutions [NYC15; Ngu+16; Ngu+17], or post-processing the input or gradi-

ents [Oyg15; Tyk16]. While regularization does in general produce better results

qualitatively, it comes with a few notable disadvantages that are well-recognized

in the domain of feature visualization. First, when one introduces prior informa-

tion about what makes images visually appealing into the optimization process, it

becomes difficult to disentangle the effects of the actual model from the effect of

the prior information introduced through regularization1 (cf. Chapter 2). Further-

more, while adding regularization does improve the visual quality of the visual-

izations, the components of the representation still cannot be shown to correspond

to any recognizable high-level feature [OMS17].

Natural consequence: feature manipulation The ability to directly visualize high-

level, recognizable features reveals another application of robust representations,

1In fact, model explanations that enforce priors for purposes of visual appeal have been often
found to have little to do with the data or the model itself [Ade+18].
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“Stripes” (selected) “Red limbs” (random)

Figure 5-11: Visualization of the results from maximizing a chosen (left) and a
random (right) representation coordinate starting from random images for the Re-
stricted ImageNet dataset. In each figure, the top row has the initial images, and
the bottom row has a feature added.

which we refer to as feature manipulation. Consider the visualization objective (5.5)

shown in the previous section. Starting from some original image, optimizing this

objective results in the corresponding feature being introduced in a continuous

manner. It is hence possible to stop this process relatively early to ensure that the

content of the original image is preserved. As a heuristic, we stop the optimiza-

tion process as soon as the desired feature attains a larger value than all the other

coordinates of the representation. We visualize the result of this process for a va-

riety of input images in Figure 5-11, where “stripes” or “red limbs” are introduced

seamlessly into images without any processing or regularization.

5.4 Image Synthesis via a (Single) Robust Classifier

Our findings so far indicate that robust models exhibit more human-aligned gra-

dients and feature embeddings. Moreover, we saw that these models could be

leveraged to manipulate the input image itself, by simply performing gradient de-

scent on their predictions—cf. Figure 5-11 for an illustration. Another instance of

this can be seen in Figure 5-12, where salient features of a class emerge when we

simply maximize the probability of said class (targeted attacks) for a robust model.

We now demonstrate how this property of robust models makes them well-

suited for various downstream image synthesis tasks—such as generation (Section 5.4.1),

inpainting (Section 5.4.2), translation (Section 5.4.3) and superresolution (Section 5.4.4).

Previously, these tasks have largely been tackled by training models in the gen-

erative adversarial network (GAN) framework [Goo+14; ISI17; Zhu+17; Yu+18;
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catdog frog turtle primate fish insect
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Targeted attack

Figure 5-12: Maximizing class scores of a robustly trained classifier. For each im-
age, we visualize the result of performing targeted projected gradient descent. The
resulting images actually resemble samples of the target class.

BDS19], using priors obtained from generative models [Ngu+16; Ngu+17; UVL17;

Yeh+17], or leveraging standard classifiers via task-specific methods [MOT15; Oyg15;

Tyk16; GEB16]. However, it turns out that one can obtain competitive performance

on these tasks using only robust (feed-forward) classifiers. In particular, our ap-

proach does not involve fine-grained tuning, highlighting the potential of robust

classifiers as a versatile primitive for sophisticated vision tasks.

5.4.1 Realistic Image Generation

Synthesizing realistic samples for natural data domains (such as images) has been

a long standing challenge in computer vision. Given a set of example inputs, we

would like to learn a model that can produce novel perceptually-plausible inputs.

The development of deep learning-based methods such as autoregressive mod-

els [HS97; Gra13; VKK16], auto-encoders [Vin+10; KW15] and flow-based mod-

els [DKB14; RM15; DSB17; KD18] has led to significant progress in this domain.

More recently, advancements in GANs [Goo+14] have made it possible to generate

high-quality images for challenging datasets [Zha+18a; Kar+18; BDS19]. Many of

these methods, however, can be computationally intensive, and tricky to train.

In contrast, we demonstrate that robust classifiers, without any special train-
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ing or auxiliary networks, can be a powerful tool for synthesizing realistic natural

images. At a high level, our generation procedure is based on maximizing the

class score of the desired class using a robust model. The purpose of this maxi-

mization is to add relevant and semantically meaningful features of that class to a

given input image. This approach has been previously used on standard models

to perform class visualization—synthesizing prototypical inputs of each class—in

combination with domain-specific input priors (either hand-crafted [NYC15] and

learned [Ngu+16; Ngu+17]) or regularizers [SVZ13; MOT15; Oyg15; Tyk16].

As this process is deterministic, generating a diverse set of samples requires a

random seed as the starting point for class maximization. Formally, to generate a

sample of class y, we sample a seed and minimize the loss ℒ of label y

x = arg min
‖x′−x0‖2≤ε

ℒ(x′, y), x0 ∼ 𝒢y,

for some class-conditional seed distribution 𝒢y, using PGD. Ideally, samples from

𝒢y should be diverse and statistically similar to the data distribution. Here, we

use a simple (but already sufficient) choice for 𝒢y—a multivariate normal distribu-

tion fit to the empirical class-conditional distribution and 𝒟y is the distribution of

natural inputs conditioned on the label y.

This approach enables us to perform conditional image synthesis given any tar-

get class—cf. Figure 5-13. The resulting images are diverse and realistic, despite

the fact that they are generated using targeted PGD on off-the-shelf robust models

without any additional optimizations. 2

5.4.2 Inpainting

Image inpainting is the task of recovering images with large corrupted regions [EL99;

Ber+00; HE07]. Given an image x, corrupted in a region corresponding to a binary

mask m ∈ {0, 1}d, the goal of inpainting is to recover the missing pixels in a man-

2Interestingly, the robust model used to generate these ImageNet samples is only 45% accurate,
yet has a sufficiently rich representation to synthesize semantic features for 1000 classes.
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house finch armadillo chow jigsaw Norwich terrier notebook

cliff anemone fish mashed potato coffee pot

(a)
dog bird primate crab insect fish turtle

(b)

Figure 5-13: Random samples (of resolution 224×224) produced using a robust clas-
sifier. We show samples from several (random) classes of the (a) ImageNet and (b)
restricted ImageNet datasets.

ner that is perceptually plausible with respect to the rest of the image. We find that

simple feed-forward classifiers, when robustly trained, can be a powerful tool for

such image reconstruction tasks.

From our perspective, the goal is to use robust models to restore missing fea-

tures of the image. To this end, we will optimize the image to maximize the score

of the underlying true class, while also forcing it to be consistent with the orig-

inal in the uncorrupted regions. Concretely, given a robust classifier trained on
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Original Corrupted Inpainted Original Corrupted Inpainted

(a) random samples

Original Corrupted Inpainted Original Corrupted Inpainted

(b) select samples

Figure 5-14: Image inpainting using robust models – left: original, middle: cor-
rupted and right: inpainted samples. We use PGD to maximize the predicted class
score while penalizing changes to the uncorrupted image regions.

uncorrupted data, and a corrupted image x with label y, we solve

xI = arg min
x′

ℒ(x′, y) + λ||(x− x′)⊙ (1−m)||2 (5.6)

where ℒ is the cross-entropy loss, ⊙ denotes element-wise multiplication, and λ is

an appropriately chosen constant. Note that while we require knowing the under-

lying label y for the input, it can typically be accurately predicted by the classifier

itself given the corrupted image.

In Figure 5-14, we show sample reconstructions obtained by optimizing (5.6)

using PGD. We can observe that these reconstructions look remarkably similar to

the uncorrupted images in terms of semantic content. Interestingly, even when

this approach fails (reconstructions differ from the original), the resulting images

do tend to be perceptually plausible to a human, as shown in Figure 5-15.
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Figure 5-15: Failure cases for image inpainting using robust models – top: original,
middle: corrupted and bottom: inpainted samples. The failure modes can be cate-
gorized into “good” failures – where the infilled region is semantically consistent
with the rest of the image but differs from the original; and “bad” failures – where
the inpainting is clearly erroneous to a human.

5.4.3 Image-to-Image Translation

In this section, we demonstrate that robust classifiers give rise to a new method-

ology for performing image-to-image translation: where the goal is to translate an

image from a source to a target domain in a semantic manner [Her+01]. The key is

to (robustly) train a classifier to distinguish between the source and target domain.

Conceptually, such a classifier will extract salient characteristics of each domain in

order to make accurate predictions. We can then translate an input from the source

domain by directly maximizing the predicted score of the target domain.

In Figure 5-16, we provide sample translations produced by our approach using

robust models—each trained only on the source and target domains for the Horse

↔ Zebra, Apple↔Orange, and Summer↔Winter datasets [Zhu+17] respectively.

In general, we find that this procedure yields meaningful translations by directly

modifying characteristics of the image that are strongly tied to the corresponding

domain (e.g., color, texture, stripes).

Note that, in order to manipulate such features, the model must have learned

them in the first place—for example, we want models to distinguish between horses

and zebras based on salient features such as stripes. For overly simple tasks, mod-

els might extract little salient information (e.g., by relying on backgrounds instead
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horse→ zebra zebra→ horse horse→ zebra zebra→ horse

apple→ orange orange→ apple apple→ orange orange→ apple

summer→ winter winter→ summer summer→ winter winter→ summer

(a) random samples (b) select samples

Figure 5-16: Image-to-image translation on the Horse↔ Zebra, Apple↔ Orange,
and Summer↔Winter datasets [Zhu+17] using PGD on the input of an `2-robust
model trained on that dataset.

of objects) in which case our approach would not lead to meaningful translations.

Nevertheless, this not a fundamental barrier and can be addressed by training on

richer, more challenging datasets. From this perspective, scaling to larger datasets

(which can be difficult for state-of-the-art methods such as GANs) is actually easy

and advantageous for our approach.

Unpaired datasets. Datasets for translation tasks often comprise source-target

domain pairs [Iso+17]. In contrast, our method operates in the unpaired setting,

where samples from the source and target domain are provided without an explicit

pairing [Zhu+17]. This is due to the fact that our method only requires a classifier

capable of distinguishing between the source and target domains.

5.4.4 Super-Resolution

Super-resolution refers to the task of recovering high-resolution images given their

low-resolution version [DFE07; BSH12]. While this goal is underspecified, our aim
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is to produce an image that is consistent with the input and plausible to a hu-

man. In order to adapt our framework to this problem, we cast super-resolution

as the task of accentuating the salient features of low-resolution images. This can

be achieved by maximizing the score predicted by a robust classifier (trained on

the original high-resolution dataset) for the underlying class. At the same time, to

ensure that the structure and high-level content is preserved, we penalize large de-

viations from the original low-resolution image. Formally, given a robust classifier

and a low-resolution image xL belonging to class y, we use PGD to solve

x̂H = arg min
||x′−↑(xL)||<ε

ℒ(x′, y) (5.7)

where ↑ (·) denotes the up-sampling operation based on nearest neighbors, and ε

is a small constant.
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(b) 8x on restricted ImageNet

Figure 5-17: Comparing approaches for super-resolution. Top: random samples
from the test set; middle: upsampling using bicubic interpolation; and bottom:
super-resolution using robust models.

We use this approach to upsample random 32× 32 CIFAR-10 images to full Im-

ageNet size (224× 224)—cf. Figure 5-17a. For comparison, we also show upsam-

pled images obtained from bicubic interpolation. In Figure 5-17b, we visualize the

results for super-resolution on random 8-fold down-sampled images from the re-

stricted ImageNet dataset. Since in the latter case we have access to ground truth

high-resolution images (actual dataset samples), we can compute the Peak Signal-

to-Noise Ratio (PSNR) of the reconstructions. Over the Restricted ImageNet test
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set, our approach yields a PSNR of 21.53 (95% CI [21.49, 21.58]) compared to 21.30

(95% CI [21.25, 21.35]) from bicubic interpolation. In general, our approach pro-

duces high-resolution samples that are substantially sharper, particularly in re-

gions of the image that contain salient class information.

Note that the pixelation of the resulting images can be attributed to using a

very crude upsampling of the original, low-resolution image as a starting point for

our optimization. Combining this method with a more sophisticated initialization

scheme (e.g., bicubic interpolation) is likely to yield better overall results.

5.5 Broader Implications: Robustness Beyond Security

Before concluding our discussion, we provide a brief overview of other contexts in

which robust models, and their “better” feature representations, may be desirable.

We also discuss how priors beyond just `p perturbations can be imposed via the

robust optimization framework.

5.5.1 Towards interpretability by-design

Recall from Chapter 2 that there are some fundamental roadblocks in interpreting

standard ERM-trained classifiers. In particular, these models tend to rely on input

features that are imperceptible or unintuitive to make their predictions. Conse-

quently, directly applying interpretability methods to these models tends to yield

explanations that are hard to parse (e.g., Figure 5-3). While one can improve the

quality of interpretations via post-processing [SVZ13; Yos+15; OMS17], this could

suppress input features that are key in determining the model’s prediction. We

also saw models trained via the robust optimization framework rely on a different

set than their standard counterparts—seemingly ones that are more-aligned with

human perception. This prompts the question: is robustness a path3 to building

models that are interpretable by-design?

The gradients of robust models (cf. Section 5.3) provide some hints that this

3In Chapter 3 we discussed how modifying networks to be sparse is another viable approach.

120



m
is

cl
as

si
fie

d

label: “primate”; prediction: “dog”

co
rr

ec
t

label: “primate”;  prediction: “primate”label: “insect”;  prediction: “dog”

m
is

cl
as

si
fie

d

label: “fish”;  prediction: “frog”

m
is

cl
as

si
fie

d

label: “bird”; prediction: “bird”

co
rr

ec
t

label: “dog”;  prediction: “dog”

co
rr

ec
t

Figure 5-18: Accentuating the highest-weight features for correctly classified
(right) and incorrectly (left) classified images.

might be the case. We now explore this question through the lens of another com-

mon interpretation technique—interpretation via perturbation [FV17]. Here, for an

image x, the model explanation consists of a similar image x′ (or several such im-

ages) along with its (or their) classification(s). Typically, the qualitative differences

between x and x′ are used to assess the input features used by the model. This

explanation technique is akin to counterfactuals from causal inference [Pea10].

In applying this technique to standard models, we once again run into the

aforementioned roadblock: one must either apply priors at interpretation time

(e.g. using regularization), or else end up with unintelligible explanations [FV17;

Cha+19; DG17]. The picture for robust models, however, looks quite different—

cf. Figure 5-18. Here, for a given input image x, we find the three most activated

components of the representation layer (appropriately weighted and scaled). We

then construct counterfactuals by magnifying these coordinates in the input by

performing the feature addition objective described in Section 5.3.2.

In Figure 5-18, accentuating the highest-weight features reveals a natural trans-

formation from the ear of a monkey to the eye of a dog (top), from negative space

to the face of a dog (middle), and from the heads of two different fish to the two

eyes of a single frog, with a reed transforming into a mouth (bottom). These trans-

formations hint at the most sensitive directions of robust models on specific (mis-

classified) inputs, thus could provide insight into model decisions or errors. These

findings suggest that robustness could indeed be an avenue to build deep net-

works that are inherently more interpretable. We view exploring this direction
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further—e.g., via human-in-the-loop studies to evaluate these explanations—as an

interesting direction for future work [RD18].

5.5.2 Other downstream tasks

As discussed previously, one of the major appeals of deep networks—aside from

their impressive performance on benchmarks—is that they are able to learn mean-

ingful high-level representations of the data. Indeed, this belief is what drives the

use of learned deep feature representations in transfer learning [Gir+14; Don+14],

and similarity metrics such as VGG distance [DB16a; JAF16; Zha+18b]. From this

viewpoint, robust models could be particularly advantageous: after all, their rep-

resentations overcome many shortcomings exhibited by standard ones? But how

far do these benefits of robust representations extend?

Follow up work has shown that robust models also perform better on other

downstream tasks, outside of image synthesis and manipulation, than their stan-

dard counterparts. These include: (i) transfer learning [Sal+20; Utr+20], (ii) zero-

shot learning [Agg+20], (iii) weakly-supervised object localization [Agg+20] and

(iv) better robustness to data corruptions [For+19; Kan+19; Tao+20]. These demon-

strations indicate that robust models may indeed be a step towards learning more

general data representations—that transfer between different tasks and domains.

5.5.3 Diverse feature priors

Finally, our analysis so far has been limited largely to `p feature priors. However,

in practice, one might also want to enforce other forms of invariance into models—

e.g., to backgrounds, lighting, affine transformations, protected attributes. While

some of these notions have been formalized [FF15; Xia+18; Eng+19b; WSK19], a

significant design space still remains to be explored. In particular, designing meth-

ods to translate high-level features (e.g., invariance to “people”) into simulatable

perturbations and extending the robustness framework to handle these more com-

plex perturbations could be valuable directions for future work.

122



Chapter 6

Post-hoc Model Editing

In this chapter, we introduce a toolkit to directly rewrite a model’s prediction rules

post-hoc. We have seen so far that in the process of discovering predictive correla-

tions in the data, models often latch features that are not entirely meaningful [TE11;

BVP18; Ily+19; SSF19; ASF20; Xia+20; BVA20; Gei+20; WSM21]. In particular, such

correlations can arise from biases in the training data, and thus may not reflect

the real world—e.g., a pasture, while typical, need not be present in every cow

image [BVP18]. In Chapter 5, we discussed how one might train models that do

not depend on specific families of features—e.g., ones that are sensitive to small `p

changes in the input. However, performing such train-time interventions requires

a priori knowledge of the invariances we would like our models to satisfy.

This might not always be feasible in practice—for instance, some of the unde-

sirable correlations learned by a model may only come to light upon deployment.

This raises the question: How can we modify, post-hoc, the way in which a given

model makes its predictions? The canonical approach doing so is to intervene at the

data level: collect additional input-label pairs that capture the desired behavior

and use them to further train the model. Unfortunately, collecting such data can

be challenging: how do we get cows to pose for us in a variety of environments?

Furthermore, data collection is ultimately a very indirect way of specifying the in-

tended behavior of a model. Even when the data has been carefully curated to

reflect a given real-world task, models still end up learning unintended prediction
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Figure 6-1: Editing prediction rules in pre-trained classifiers using a single exem-
plar. (a) We edit a VGG-16 ImageNet classifier to map the representation of the
concept “snow” to that of “asphalt road”. (b) This edit corrects systematic classifi-
cation errors on snowy scenes for various ImageNet classes. (c) We edit an OpenAI
CLIP model such that the text “iPod” maps to a blank area. (d) This change makes
the model robust to the typographic attacks from Goh et al. [Goh+21].

rules from it [Pon+06; TE11; Tsi+20; Bey+20]. Thus, our focus in this chapter is on

directly modifying the prediction rules learned by a model instead. This chapter is

structured as follows: Section 6.1 outlines our contributions, Sections 6.2-6.3 detail

and evaluate our model editing toolkit, Section 6.4 presents relevant related work

and Section 6.5 discusses the broader implications of our findings.

6.1 Summary of Our Results

We build on the recent work of Bau et al. [Bau+20a] to develop a method for mod-

ifying a model’s prediction rules in a targeted and controlled manner, with es-

sentially no additional data collection. Fundamentally, our method changes the

behavior of the model on occurrences of a particular concept beyond just the spe-

cific classes it encounters during the edit. We demonstrate the effectiveness of this

approach in two different settings.

Synthetic transformations (Section 6.3.2). First, we apply our approach to cor-

rect model sensitivities to concept-level transformations identified using our de-
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bugging pipeline in Section 3.2. For instance, we can modify a pre-trained Im-

ageNet classifier to correctly recognize vehicles with unusual “wooden wheels”

by teaching it to treat a “wooden wheel” in a “car” image as it would a regu-

lar wheel—see Figure 6-2 for an illustration. In contrast, the typical approach of

adapting models via fine-tuning consistently fails to generalize in the same way.

Real-world demonstrations (Section 6.3.3). Then, we apply our approach to sce-

narios reflecting concept-level transformations that could arise in the real world.

First, we focus on adapting an ImageNet classifier to a new environment, namely,

recognizing actual photographs of vehicles on snowy roads. Second, we consider

the recent “typographic attack” of Goh et al. [Goh+21] on a zero-shot CLIP [Rad+21]

classifier: attaching a piece of paper with “iPod” written on it to various household

items causes them to be incorrectly classified as “iPod.” We find that our approach

significantly improves model performance in both settings, using only a single syn-

thetic example—cf. Figure 6-1.

Overall, our findings demonstrate that there is a rich design space around directly

rewriting a model’s prediction rules and that this approach can lead to a powerful

model debugging toolkit.

6.2 A Toolkit for Editing Prediction Rules

As we saw in Section 3.2, models often pick up context-specific correlations in

the data—e.g., using the presence of “road” or a “wheel” to predict “car”. Such

prediction rules could hinder models when they encounter novel environments

(e.g., snow-covered roads), and confusing or adversarial test conditions (e.g., cars

with wooden wheels). As a result, after identifying undesirable prediction rules, a

user might want to modify them before deploying their model in the wild.

The canonical approach to modify a classifier post hoc is to collect additional

data that captures the desired deployment scenario, and use it to retrain the model.

However, even setting aside the challenges of collecting such data, it is not obvious
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a priori exactly what effect such adaptation (e.g., via fine-tuning) will have on the

model’s prediction rules. For instance, if we fine-tune our model on “cars” with

wooden wheels, will it now recognize “scooters” or “trucks” with such wheels?

Our goal here is to instead develop a more direct way to modify a model’s

behavior by rewriting its prediction rules in a targeted manner. Ideally, in our

previous example, we would like to enable the classifier to recognize vehicles with

wooden wheels by simply teaching it to treat any wooden wheel as it would a

standard one. Before describing our approach, we first provide a brief overview of

recent work by Bau et al. [Bau+20a] which forms the basis for our approach.

6.2.1 Background: Rewriting generative models

Bau et al. [Bau+20a] developed an approach for rewriting a deep generative model,

enabling a user to replace all occurrences of one selected object (say, “dome”) in

the generated images with another (say, “tree”), without changing the model’s

behavior in other contexts. The approach is built on the observation that, using a

handful of example images, we can identify vectors in the model’s representation

space that encode a specific high-level concept [Kim+18; Bau+20a]. Leveraging

this, Bau et al. [Bau+20a] treat each layer of the model as an associative memory,

which maps the concept vector at each spatial location in its input (which we will

refer to as the key) to a concept vector in its output (which we will call the value).

In the simplest case, a linear layer with weights W ∈ Rmxn transforms the key

k ∈ Rn to the value v ∈ Rm. Observe that in this setting, one could perform a

rewrite by modifying the layer weights from W to W ′ so that v* = W ′k*, where k*

corresponds to the old concept that we want to replace, and v* the new concept.

For instance, if we wanted to replace “domes” with “trees” in the generated im-

ages, we would modify the layer so that the key k* for “dome” maps to the value

v* for “tree”. Consequently, when this value is fed into the downstream layers

of the network it would result in a tree in the final image. Crucially, this update

should change the model’s behavior to every instance of the concept encoded in

k*—i.e., all “domes” in the images should now be “trees”.
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To extend this approach to typical deep generative models, two challenges re-

main: (1) handling non-linear layers, and (2) ensuring that the edit doesn’t sig-

nificantly hurt model behavior in other scenarios. With these considerations in

mind, Bau et al. [Bau+20a] propose making the following rank-one updates to the

parameters W of an arbitrary non-linear layer f :

min
Λ

∑
(i,j)∈S

∥∥∥v*ij − f (k*ij; W ′)
∥∥∥ (6.1)

s.t. W ′ = W + Λ(C−1d)⊤. (6.2)

Here, S denotes the set of spatial locations in representation space corresponding

to the concept of interest, d is the top eigenvector of the keys k*ij corresponding

to locations (i, j) ∈ S and C = ∑d kdkd
⊤ captures the second-order statistics for

other keys kd. In general, the keys and values in (6.1) can be obtained not just from

various spatial locations in the representations of a single image, but over multiple

images containing the concept as well. Intuitively, the goal of this update is to

minimally modify the layer parameters to rewrite the desired key-value mapping.

We refer the reader to Bau et al. [Bau+20a] for additional details.

6.2.2 Editing classifiers

We now shift our attention to the focus of this work: editing classifiers. To describe

our approach, we will use as a running example the task of enabling classifiers to

recognize vehicles with “wooden wheels”. Specifically, let us start with a single

image x from the dataset, say, from class “car”, that contains the concept “wheel”.

Moreover, let the location of the “wheel” in the image be denoted by a binary mask

m.1 We first create a transformed image x′ of a “car” with a “wooden wheel”—i.e.,

by manually replacing the wheel, or by applying the counterfactual-generation

procedure described in Section 3.2. Next, we would like to apply the approach

described above to modify a chosen (potentially non-linear) layer L of the network

1Such a mask can either be obtained manually or automatically (cf. Section 3.2).
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Figure 6-2: Overview of our pipeline for directly editing the prediction-rules of a
classifier. The edit in (a) seeks to modify the network to perceive wooden wheels
as standard ones, using a small set of exemplar images (say from class “car”).
To achieve this, we to first obtain the keys k*ij corresponding to the new concept
(here, “wooden wheel”), and the values v*ij corresponding to the original concept
(here, “standard wheel”) in the input and output representation space of a layer
L respectively. We then update the weights W of the layer to enforce this new
key-value association (6.1). (b) To test our editing technique, we measure the im-
provement in model performance on test instances (from any class) containing the
new concept—in this case, example images of vehicles with “wooden wheels”.

to rewrite a suitable key-value association. But, we need to first determine what

the relevant keys and values are.

Intuitively, we want the classifier to perceive a “wooden wheel” in the image as

it would a standard one. To achieve this, we must map the keys for wooden wheels

to the value corresponding to their standard counterparts. Thus, the keys that we

want to rewrite correspond to the network’s representation of the concept in the

transformed image directly before layer L. Similarly, the values that we want to map

these keys to correspond to the network’s representation of the concept in the orig-

inal images directly after layer L. (The relevant spatial regions in the representation

space are simply determined by downsampling the mask to the appropriate di-

mensions.) Finally, the actual edit is performed by feeding the resulting key-value

pairs into the optimization problem (6.2) to determine the updated layer weights

W ′—see Figure 6-2 for an illustration of the overall process.
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6.3 Does Editing Generalize?

We now demonstrate how the methodology described above can be applied to edit

vision classifiers—specifically, VGG [SZ15] and ResNet [He+15a] models trained

on the ImageNet [Den+09; Rus+15] and Places-365 [Zho+17] datasets.

6.3.1 Evaluation Setup

We start by describing our evaluation setup, using as a running example the task

of editing the model to recognize vehicles with “wooden wheels” akin to their

standard counterparts.

Train-test split. To edit the model with respect to a particular concept-style pair

(say “wheel”-“wooden”), our training set comprises N exemplars, i.e., pairs of orig-

inal and transformed images, (x, x′) (cf. Section 6.2.2) that belong to a single

(randomly-chosen) target class in the dataset (e.g., “car”). All other transformed

images containing the concept, including those belonging to classes other than

the target one, are used for validation and testing (30-70 split). We select the best

hyperparameters—including the choice of the layer to modify—based on the vali-

dation set performance (cf. Appendix E.1.4).

Baselines. We comparing editing to the canonical fine-tuning approach, i.e., di-

rectly minimizing the cross-entropy loss on the new data (in this case the trans-

formed images) with respect to the target label. We consider two variants of fine-

tunin: (i) local fine-tuning, where we only train the weights of a single layer L

(similar to our editing approach); and (ii) global fine-tuning, where we also train

all other layers between L and the output of the model. It is also worth noting that

unlike fine-tuning, our editing approach does not utilize class labels in any way.

Evaluation criteria. To evaluate the effect of the modification, we need to mea-

sure the change in model performance on the transformed examples (e.g., vehicles

with “wooden wheel” in Figure 6-2b). We will only focus on the subset of examples
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D that were correctly classified before the transformation, since we cannot expect

to correct mistakes that do not stem from the transformation itself. Concretely, we

will measure the change in the number of misclassifications made by the model on

the transformed examples:

Npre(D)− Npost(D)

Npre(D)
(6.3)

where Npre/post(D) denotes the number of transformed examples misclassified by

the model before and after the modification, respectively. Note that this metric can

range from 100% when rewriting leads to perfect classification on the transformed

examples, to even a negative value when the rewriting process causes more mis-

takes that it fixes.

To quantify the effect of the modification on overall model behavior, we also

measure the change in its (standard) test set performance. Since we are interested

in rewrites that do not significantly hurt the overall model performance, we only

consider hyperparameters that do not cause a large accuracy drop (≤0.25% unless

otherwise specified). We found that the exact accuracy threshold did not have

significant impact on the results.

6.3.2 Synthetic Transformations

Our first use case will be improving model generalization to the concept-level

transformations from Section 3.2. Recall that our analysis pinpointed a number of

concepts in the data that when transformed—even in fairly natural ways—caused

the model performance to drop significantly We will now use our editing approach

to correct these sensitivities.2

Crucially, note that we want the resulting prediction-rule rewrites to general-

ize. That is, if we modify the way that our model treats a specific concept, we want

2Note that some of these cases might not be suitable for editing, i.e., when the transformed
concept is critical for recognizing the label of an input image (e.g., transforming concept “dog” in
images of class “poodle”) . We thus manually exclude such concept-class pairs from our analysis—
cf. Appendix E.1.4.
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Figure 6-3: Editing vs. fine-tuning, averaged over concept-style pairs. Both meth-
ods (and their variants) are fairly successful at correcting misclassifications on
the target class (examples of which are used to perform the modification). This
holds even when the transformation applied during testing is different from the
one present in the train exemplars (e.g., a different texture of “wood”). However,
crucially, only the improvements induced by editing generalize to other classes
where the transformed concept is present, while fine-tuning fails in this setting—
typically, causing more errors than it fixes. See Appendix Figures E-1-E-4 for other
experimental settings.

this modification to apply to every occurrence of that concept. For instance, if we

edit a model to enforce that “wooden wheels” should be treated the same as reg-

ular “wheels” in the context of “car” images, we want the model to do the same

when encountering other vehicles with “wooden wheels”. Thus, while analyzing

model performance, we treat inputs belonging to the (target) class used to perform

the modification separately. Additionally, to test generalization across styles (for

a particular transformation), we create two variants of the test set: one using the

same style image as the exemplars (i.e., same wooden texture) for the transforma-

tion; and another using held-out style images (i.e., other wooden textures).

Editing. We find that editing is able to consistently correct mistakes in a manner

that generalizes across classes—cf. Figures 6-3 and 6-4. That is, editing is able to

reduce errors in non-target classes by often more than 20 percentage points, even

though it is performed using only three exemplars from the target class.

Fine-tuning. In contrast, while the two fine-tuning baselines are able to correct

mistakes on transformed inputs of the target class used to perform the modifica-
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(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure 6-4: Performance vs. drop in overall test set accuracy: Here, we visualize
average number of misclassifications corrected by editing and fine-tuning when
applied to an ImageNet-trained ResNet-50 classifier—where the average is com-
puted over different concept-transformation pairs. See Appendix Figures E-8-E-10
for additional configurations.

tion, they typically decrease the model’s performance on other classes—i.e., they

cause more errors than they fix. Moreover, even when we allow a larger drop in

the model’s accuracy, or use more training exemplars, their performance often be-

comes worse on inputs from other classes. This suggests that fine-tuning causes the

model to overfit to the class it was trained on.

Interestingly, we find that in all cases where a method improves performance,

this improvement extends to transformations using other variants of the style.

For instance, the modification generalizes to textures of “wood” other than those

present in exemplars used to perform the modification (cf. Figure 6-2b). We pro-

vide a per-concept/style break down in Appendix Figures 6-5 and 6-6.
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(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure 6-5: Performance of editing and fine-tuning on test examples from non-
target classes containing a given concept, averaged across transformations.
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(a) Concepts derived from an instance segmentation model trained on MS-COCO.
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(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure 6-6: Performance of editing and fine-tuning on test examples from non-
target classes transformed using a given style, averaged across concepts.

Ablation studies. In order to get a better understanding of the core factors that

affect performance in this setting, we conduct a set of ablation studies. Note that
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we can readily perform these ablations as, in contrast to the setting of Bau et al.

[Bau+20a] we have access to a quantitative performance metric that does not rely

on human evaluation.

∙ Layer: We compare both editing and local fine-tuning when they are applied

to different layers of the model in Appendix Figure 6-7. For editing, we find

a consistent increase in performance—on examples from both the target and

other classes—as we edit deeper into the model. For (local) fine-tuning, a

similar trend is observed with regards to performance on the target class,

with the second last layer being optimal overall. However, at the same time,

the fine-tuned model’s performance on examples from other classes contain-

ing the concept seems to get worse.
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Figure 6-7: Editing vs. fine-tuning performance (with 10 exemplars) on an
ImageNet-trained VGG-16 classifier, as a function of the layer that is modified.
Wwe visualize the average number of misclassifications corrected over different
concept-transformation pairs, with concepts derived from instance segmentation
modules trained on MS-COCO; and transformations “snow” and “graffiti”.

∙ Number of exemplars: Increasing the exemplars used for each method typically

leads to qualitatively the same impact, just more significant, cf. Figure 6-4.

We also perform a more fine-grained ablation for a single model (ImageNet-

trained VGG16 on COCO-concepts) in Figure 6-8. In general, for editing,

using more exemplars tends to improve the number of mistakes corrected

on both the target and non-target classes. For fine-tuning, this improves its

effectiveness on the target class alone, albeit the trends are more noisy.
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Figure 6-8: Editing vs. fine-tuning on an ImageNet-trained VGG-16 classifier, with
concepts derived from MS-COCO, as a function of the number of train exemplars.

∙ Rank restriction. We evaluate the performance of editing when the weight

update is not restricted to a rank-one modification. We find that this change

significantly reduces the efficacy of editing on examples from both the tar-

get and non-target classes—cf. curves corresponding to ‘-proj’ in Figure 6-9.

This suggests that the rank restriction is necessary to prevent the model from

overfitting to the few exemplars used.

0.0 0.5 1.0
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.0 0.5 1.0
Overall accuracy drop (%)

0

10

20

30

40

50

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.0 0.5 1.0
Overall accuracy drop (%)

0

10

20

30

40

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.0 0.5 1.0
Overall accuracy drop (%)

0

5

10

15

20

25

30

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:Places, concepts:COCO, arch:vgg16
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

Figure 6-9: Ablating constraints in the editing procedure for a Places365-trained
VGG16 classifier, with concepts derived from MS-COCO. See Appendix Figures E-
8-E-10 for additional configurations.

∙ Mask. During editing, Bau et al. [Bau+20b] focus on rewriting only the key-

value pairs that correspond to the concept of interest. We find, however, that

imposing the editing constraints on the entirety of the image leads to even

better performance—cf. curves corresponding to ‘-mask’ in Appendix Fig-

ures 6-3-6-4. We hypothesize that this has a regularizing effect as it constrains
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Figure 6-10: (a) Adapting a pre-trained ImageNet classifier to images of vehicles
on snowy roads with a single exemplar. Fine-tuning (both local and global) only
slightly improves accuracy, while editing to map “snowy road”→“road” leads to
a consistent improvement across multiple classes. (b) Improving the robustness
of CLIP [Rad+21] models to typographic attacks [Goh+21]. Editing the model to
map the text “iPod”→“blank” using a single exemplar—either based on hand-
written text on a physical teapot or from pasting typed text on an image of a “can
opener”—completely corrects this vulnerability. While global fine-tuning can also
improve model performance in this setting, it requires more careful hyperparame-
ter tuning and typically hurts model performance in other contexts.

the weights to preserve the original mapping between keys and values in re-

gions that do not contain the concept.

6.3.3 Real-World Demonstrations

So far, we have seen that our rule rewriting methodology can significantly improve

model generalization to concept-level transformations synthesized using our pre-

diction rule-discovery pipeline (cf Section 3.2). To test the versatility of our ap-

proach, we now shift our attention to real-world applications of machine learning

models, where similar generalization might be desirable.

Tackling new environments: Vehicles on snow. Our first use-case is adapting

pre-trained classifiers to image subpopulations that are under-represented in the

training data. Specifically, we will focus on the task of recognizing vehicles un-

der heavy snow conditions—a setting that could be pertinent to self-driving cars.

To study this problem, we collect a set of real photographs from road-related Im-

ageNet classes using Flickr (details in Appendix E.1.5). To improve model per-
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formance under these conditions, we rewrite its prediction rules: to map “snowy

roads” to “road”. To do so, we first create a single synthetic exemplar: by manually

annotating the concept “road” in an ImageNet image from a different class (here,

“police van”), and transforming it using a snow image obtained from Flickr. We

then apply our editing methodology (cf. Section 6.2), using this single snow-to-

road exemplar—see Figure 6-1.

In Figure 6-10a, we measure the error rate of the model on the new test set

(vehicles in snow) before and after performing the rewrite. We find that our edits

significantly improve the model’s error rate on these images, despite the fact that

we did not use any real “snowy road” photographs to edit the model. In contrast,

fine-tuning the model under the same setup does not improve its performance.

tea pot mug flower pot toilet paper vase wine bottle

tea pot mug flower pot toilet paper vase wine bottle

ipod ipod ipod ipod ipod ipod

Figure 6-11: Typographic attacks on CLIP: We reproduce the results of Goh et al.
[Goh+21] by taking photographs of household objects with a paper containing
handwritten text “iPod” attached to them (third row). We see that these attacks
consistently fool the zero-shot CLIP classifier (ResNet50)—compare the predic-
tions (shown in the title) for the first and third row. In contrast, if we instead
use a blank piece of paper (second row), the model predicts correctly.

Ignoring a spurious feature: Typographic attacks. Our second real-world set-

ting involves modifying a model to ignore a spurious feature. We focus on the
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Figure 6-12: Effectiveness of different modification procedures in preventing ty-
pographic attacks. (a) Model predictions after the rewrite—local fine-tuning often
fails to prevent such attacks, while global fine-tuning causes the model to associate
“iPod” with the target class used for fine-tuning (“teapot”). (b) Accuracy on the
test set and specifically on clean samples from class “ipod” before and after the
rewrite. While global fine-tuning is fairly effective at mitigating these attacks, it
disproportionately reduces model accuracy on clean images from this class.

recently-discovered typographic attacks from Goh et al. [Goh+21]: simply attach-

ing a piece of paper with the text “iPod” on it is enough to make a zero-shot

CLIP [Rad+21] classifier predict an assortment of other objects to be iPods. We

start by reproducing these attacks—see Figure 6-11 for an illustration. We now

rewrite the model’s prediction rules: to map the text “iPod” to “blank” (as the

latter does not cause misclassifications). For the choice of our transformed exem-
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plar x′, we consider two variants: either a real photograph of a “teapot” with the

typographic attack ( Figure 6-11); or an ImageNet image from of a “can opener”

(randomly-chosen) with the typed text “iPod” programatically pasted on it (Fig-

ure 6-1). The original image x for our approach is then obtained by replacing the

handwritten/typed text with a white mask—cf. Figure 6-1. We then use this single

training exemplar to perform the network modification.

In both cases, we find that editing is able to fix all the errors caused by the ty-

pographic attacks, see Figure 6-10b. Interestingly, global fine-tuning also helps to

correct many of these errors (potentially by adjusting class biases), albeit less reli-

ably (for specific hyperparameters). However, unlike editing, fine-tuning also ends

up damaging the model behavior in other scenarios—causing it to now spuriously

associate the text “iPod” with the target class used for training or significantly re-

ducing the accuracy on normal “iPod” images from the test set (Figure 6-12).

6.4 Further Related Work

We now discuss previous research in interpretability, robustness, and domain adap-

tation that our work builds upon.

Ignoring spurious features. Prior work on preventing models from relying on

spurious correlations is based on constraining model predictions to satisfy cer-

tain invariances. This can be done by: creating counterfactuals that add or re-

move objects from scenes [SFS18; SSF19; ASF20], learning representations that

are simultaneously optimal across domains [Arj+19], ensuring comparable per-

formance across data subpopulations [Sag+20], or enforcing consistency in predic-

tions across inputs that depict the same physical entity [HM17]. In this work, we

take an alternative approach that does not rely on collecting new inputs or anno-

tations, and instead directly rewrites the model’s prediction rules.

Model interventions. Direct manipulations of latent representations inside gen-

erative models have been used to create human-understandable changes in syn-
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thesized images [Bau+19a; JCI19; Goe+19; She+20; Här+20; WLS20]. Our work

is inspired by that line of work as well as a recent finding that parameters of a

generative model can be directly changed to alter generalized behavior [Bau+20a].

Unlike previous work, we edit classification models, changing rules that govern

predictions rather than image synthesis.

Previous work on direct interventions within a deep network has mostly fo-

cused on activating or deactivating neurons for a single stimulus at a time. Ob-

jects can be added or removed to image generators [Bau+19a]; predictions can be

changed in image classifiers [Bau+20b]; and state and biases can be altered in NLP

models [Bau+18; Vig+20] by raising or lowering the values of neurons that repre-

sent high-level concepts. Unlike this work, we ask how the parameters of a model

can be changed to modify the high-level rules of a classifier.

Model robustness. A long line of work has been devoted to discovering and cor-

recting failure modes of models. These studies focus on simulating variations in

testing conditions that can arise during deployment, including: adversarial or nat-

ural input corruptions [Sze+14; FF15; FMF16; Eng+19c; For+19; HD19; Kan+19],

changes in the data collection process [Sae+10; TE11; Kho+12; TT14; Rec+19b], or

variations in the data subpopulations present [BVP18; Ore+19; Sag+20; STM21;

Koh+20]. Typical approaches for improving robustness in these contexts include

robust optimization [Mad+18; Yin+19; Sag+20] and additional data augmenta-

tion [Lop+19; Hen+19a; Zha+21]. Our rule-editing pipeline can be viewed as com-

plementary to this work as they allows us to preemptively adjust the model’s pre-

diction rules in anticipation of deployment conditions.

Domain adaptation. The goal of domain adaptation is to adapt a model to a spe-

cific deployment environment using (potentially unlabeled) samples from it. This

is typically achieved by either fine-tuning the model on the new domain [Don+14;

Sha+14; KML20], by learning the correspondence between the source and target

domain, often in a latent representation space [Ben+07; Sae+10; GL15; Cou+16;
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Gon+16], or by updating the model’s batch normalization statistics [Li+16b; BS21].

These approaches all require a non-trivial amount of data from the target domain.

The question of adaptation from a handful of samples has been explored [Mot+17],

but in a setting that requires samples across all target classes. In contrast, our

method allows for generalization to new (potentially unknown) classes with even

a single example.

6.5 Broader Implications: Human-in-the-loop Model Correction

We conclude by discussing more broadly how our model editing toolkit fits in

within the ML pipeline. We have seen consistently that current deep networks are

hard to interact with and probe. Thus, the dominant approach in ML today is to

specify model behavior implicitly via data. But, aside from being expensive, pre-

cise data collection can be bias-ridden or even infeasible. The editing approach

developed in this chapter offers an alternative path forward: wherein model de-

signers can directly modify, and in a targeted manner, the behavior of their models.

As we saw through various examples, these edits they can be guided by as few as

a single (synthetically-created) exemplar. In a sense, such targeted model editing

can offer the best of both worlds: it still leverages the fact that deep networks can

automatically extract powerful features from complex datasets, while at the same

time allowing developers to use their prior knowledge and preferences to manipu-

late these features. We believe that this primitive opens up new avenues to interact

with and correct our models before or during deployment.
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Appendix A

Details for Chapter 2

A.1 Experimental Setup

A.1.1 Datasets

For our experimental analysis, we use the CIFAR-10 [Kri09] and (restricted) Im-

ageNet [Rus+15] datasets. Attaining robust models for the complete ImageNet

dataset is known to be a challenging problem, both due to the hardness of the

learning problem itself, as well as the computational complexity. We thus restrict

our focus to a subset of the dataset which we denote as restricted ImageNet. To this

end, we group together semantically similar classes from ImageNet into 9 super-

classes shown in Table A.1. We train and evaluate only on examples corresponding

to these classes.

A.1.2 Models

We use the ResNet-50 architecture for our baseline standard and adversarially

trained classifiers on CIFAR-10 and restricted ImageNet. For each model, we grid

search over three learning rates (0.1, 0.01, 0.05), two batch sizes (128, 256) includ-

ing/not including a learning rate drop (a single order of magnitude) and data aug-

mentation. We use the standard training parameters for the remaining parameters.

The hyperparameters used for each model are given in Tables A.2 and A.3.
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Class Corresponding ImageNet Classes

“Dog” 151 to 268
“Cat” 281 to 285
“Frog” 30 to 32

“Turtle” 33 to 37
“Bird” 80 to 100

“Primate” 365 to 382
“Fish” 389 to 397
“Crab” 118 to 121
“Insect” 300 to 319

Table A.1: Classes used in the Restricted ImageNet model. The class ranges are
inclusive.

Dataset LR Batch Size LR Drop Data Aug. Momentum Weight Decay

𝒟̂R 0.1 128 Yes Yes 0.9 5 · 10−4

𝒟̂NR 0.1 128 Yes Yes 0.9 5 · 10−4

𝒟̂rand 0.01 128 Yes Yes 0.9 5 · 10−4

𝒟̂det 0.1 128 Yes No 0.9 5 · 10−4

Table A.2: Hyperparameters for the models trained on the CIFAR dataset. All
hyperparameters were obtained through a grid search.

Dataset LR Batch Size LR Drop Data Aug. Momentum Weight Decay

𝒟̂R 0.01 128 No Yes 0.9 5 · 10−4

𝒟̂rand 0.01 256 No No 0.9 5 · 10−4

𝒟̂det 0.05 256 No No 0.9 5 · 10−4

Table A.3: Hyperparameters for the models trained on the Restricted ImageNet
dataset. All hyperparameters were obtained through a grid search.
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A.1.3 Adversarial training

To obtain robust classifiers, we employ the adversarial training methodology pro-

posed in [Mad+18]. Specifically, we train against a projected gradient descent

(PGD) adversary constrained in `2-norm starting from the original image. Fol-

lowing Madry et al. [Mad+18] we normalize the gradient at each step of PGD to

ensure that we move a fixed distance in `2-norm per step. Unless otherwise spec-

ified, we use the values of ε provided in Table A.4 to train/evaluate our models.

We used 7 steps of PGD with a step size of ε/5.

Adversary CIFAR-10 Restricted Imagenet

`2 0.5 3

Table A.4: Value of ε used for `2 adversarial training/evaluation of each dataset.

A.1.4 Constructing a Robust Dataset

In Section 2.4.1, we describe a procedure to construct a dataset that contains fea-

tures relevant only to a given (standard/robust) model. To do so, we optimize the

training objective in (2.7). Unless otherwise specified, we initialize xr as a different

randomly chosen sample from the training set. (For the sake of completeness, we

also try initializing with a Gaussian noise instead as shown in Table A.7.) We then

perform normalized gradient descent (`2-norm of gradient is fixed to be constant

at each step). At each step we clip the input xr to in the [0, 1] range so as to en-

sure that it is a valid image. Details on the optimization procedure are shown in

Table A.5. We provide the pseudocode for the construction in Figure A-1.

CIFAR-10 Restricted Imagenet

step size 0.1 1
iterations 1000 2000

Table A.5: Parameters used for optimization procedure to construct dataset in Sec-
tion 2.4.1.
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GETROBUSTDATASET(D)

1. CR ← ADVERSARIALTRAINING(D)
gR ← mapping learned by CR from the input to the representation
layer

2. DR ← {}

3. For (x, y) ∈ D

x′ ∼ D

xR ← arg minz∈[0,1]d ‖gR(z) − gR(x)‖2

# Solved using `2-PGD starting from x′

DR ← DR
⋃ {(xR, y)}

4. Return DR

Figure A-1: Algorithm to construct a “robust” dataset, by restricting to features
used by a robust model.
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A.1.5 Non-robust features suffice for standard classification

To construct the dataset as described in Section 2.4.2, we use the standard projected

gradient descent (PGD) procedure described in [Mad+18] to construct an adversar-

ial example for a given input from the dataset (2.8). Perturbations are constrained

in `2-norm while each PGD step is normalized to a fixed step size. The details for

our PGD setup are described in Table A.6. We provide pseudocode in Figure A-2.

GETNONROBUSTDATASET(D, ε)

1. DNR ← {}

2. C ← STANDARDTRAINING(D)

3. For (x, y) ∈ D

t uar∼ [C] # or t← (y + 1) mod C

xNR ← min||x′−x||≤ε LC(x′, t) # Solved using `2 PGD

DNR ← DNR
⋃ {(xNR, t)}

4. Return DNR

Figure A-2: Algorithm to construct a dataset where input-label association is based
entirely on non-robust features.

Attack Parameters CIFAR-10 Restricted Imagenet

ε 0.5 3
step size 0.1 0.1
iterations 100 100

Table A.6: Projected gradient descent parameters used to construct constrained
adversarial examples in Section 2.4.2.
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A.2 Omitted Experiments and Figures

A.2.1 Detailed evaluation of models trained on “robust” dataset

In Section 2.4.1, we generate a “robust” training set by restricting the dataset to

only contain features relevant to a robust model (robust dataset) or a standard

model (non-robust dataset). This is performed by choosing either a random input

from the training set or random noise1 and then performing the optimization pro-

cedure described in (2.7). The performance of these classifiers along with various

baselines is shown in Table A.7. We observe that while the robust dataset con-

structed from noise resembles the original, the corresponding non-robust does not

(Figure A-3). This also leads to suboptimal performance of classifiers trained on

this dataset (only 46% standard accuracy) potentially due to a distributional shift.

Robust Accuracy
Model Accuracy ε = 0.25 ε = 0.5

Standard Training 95.25 % 4.49% 0.0%
Robust Training 90.83% 82.48% 70.90%

Trained on non-robust dataset (constructed
from images)

87.68% 0.82% 0.0%

Trained on non-robust dataset (constructed
from noise)

45.60% 1.50% 0.0%

Trained on robust dataset (constructed
from images)

85.40% 48.20 % 21.85%

Trained on robust dataset (constructed
from noise)

84.10% 48.27 % 29.40%

Table A.7: Standard and robust classification performance on the CIFAR-10 test set
of: an (i) ERM classifier; (ii) ERM classifier trained on a dataset obtained by dis-
tilling features relevant to ERM classifier in (i); (iii) adversarially trained classifier
(ε = 0.5); (iv) ERM classifier trained on dataset obtained by distilling features used
by robust classifier in (iii). Simply restricting the set of available features during
ERM to features used by a standard model yields non-trivial robust accuracy.

1We use 10k steps to construct the dataset from noise, instead to using 1k steps done when the
input is a different training set image (cf. Table A.5).
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Figure A-3: Robust and non-robust datasets for CIFAR-10 when the process starts
from noise (as opposed to random images as in Figure 2-2a).

A.2.2 Performance of “robust” training and test set

In Section 2.4.1, we observe that an ERM classifier trained on a “robust” training

dataset 𝒟̂R (obtained by restricting features to those relevant to a robust model)

attains non-trivial robustness (cf. Figure 2-1 and Table A.7). In Table A.8, we eval-

uate the adversarial accuracy of the model on the corresponding robust training

set (the samples which the classifier was trained on) and test set (unseen samples

from 𝒟̂R, based on the test set). We find that the drop in robustness comes from a

combination of generalization gap (the robustness on the 𝒟̂R test set is worse than

it is on the robust training set) and distributional shift (the model performs better

on the robust test set consisting of unseen samples from 𝒟̂R than on the standard

test set containing unseen samples from 𝒟).

Dataset Robust Accuracy

Robust training set 77.33%
Robust test set 62.49%
Standard test set 48.27%

Table A.8: Performance of model trained on the robust dataset on the robust training
and test sets as well as the standard CIFAR-10 test set. We observe that the drop in
robust accuracy stems from a combination of generalization gap and distributional
shift. The adversary is constrained to ε = 0.25 in `2-norm.
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A.2.3 Classification based on non-robust features

Figure A-4 shows sample images from 𝒟, 𝒟̂rand and 𝒟̂det constructed using a stan-

dard (non-robust) ERM classifier, and an adversarially trained (robust) classifier.
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Figure A-4: Random samples from datasets where the input-label correlation is
entirely based on non-robust features. Samples are generated by performing small
adversarial perturbations using either random (𝒟̂rand) or deterministic (𝒟̂det) label-
target mappings for every sample in the training set. Each image shows: top: orig-
inal; middle: adversarial perturbations using a standard ERM-trained classifier;
bottom: adversarial perturbations using a robust classifier (adversarially trained
against ε = 0.5).

In Table A.9, we repeat the experiments in Table 2.1 based on datasets con-

structed using a robust model. Note that using a robust model to generate the 𝒟̂det

and 𝒟̂rand datasets will not result in non-robust features that are strongly predic-

tive of t (since the prediction of the classifier will not change). Thus, training a

model on these datasets leads to poor accuracy on the standard test set from 𝒟.

Model used
to construct dataset

Dataset used in training

𝒟 𝒟̂rand 𝒟̂det

Robust 95.3% 25.2 % 5.8%
Standard 95.3% 63.3 % 43.7%

Table A.9: Repeating the experiments of Table 2.1 using a robust model to construct
the datasets 𝒟, 𝒟̂rand and 𝒟̂det. Results in Table 2.1 are reiterated for comparison.
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A.2.4 Performance of ERM classifiers on relabeled test set

In Table A.10), we evaluate the performance of classifiers trained on 𝒟̂det on both

the original test set drawn from 𝒟, and the test set relabelled using t(y) = (y + 1)

mod C. Observe that the classifier trained on 𝒟̂det constructed using a robust

model actually ends up learning permuted labels based on robust features (in-

dicated by high test accuracy on the relabelled test set).

Model used to construct
training dataset for 𝒟̂det

Dataset used in testing

𝒟 relabelled-𝒟
Standard 43.7% 16.2%
Robust 5.8% 65.5%

Table A.10: Performance of classifiers trained using 𝒟̂det training set constructed
using either standard or robust models. The classifiers are evaluated both on the
standard test set from 𝒟 and the test set relabeled using t(y) = (y + 1) mod C.
We observe that using a robust model for the construction results in a model that
largely predicts the permutation of labels, indicating that the dataset does not have
strongly predictive non-robust features.

A.2.5 Generalization to CIFAR-10.1

Recht et al. [Rec+19a] have constructed an unseen but distribution-shifted test set

for CIFAR-10. They show that for many previously proposed models, accuracy on

the CIFAR-10.1 test set can be predicted as a linear function of performance on the

CIFAR-10 test set.

As a sanity check (and a safeguard against any potential adaptive overfitting

to the test set via hyperparameters, historical test set reuse, etc.) we note that the

classifiers trained on 𝒟̂det and 𝒟̂rand achieve 44% and 55% generalization on the

CIFAR-10.1 test set, respectively. This demonstrates non-trivial generalization, and

actually perform better than the linear fit would predict (given their accuracies on

the CIFAR-10 test set).
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A.2.6 Omitted Results for Restricted ImageNet
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Figure A-5: Repeating the experiments shown in Figure 2-2 for the Restricted Ima-
geNet dataset. Sample images from the resulting dataset.
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Figure A-6: Repeating the experiments shown in Figure 2-2 for the Restricted Ima-
geNet dataset. Standard and robust accuracy of models trained on these datasets.

A.2.7 Robustness vs. Accuracy

A.3 Gaussian MLE under Adversarial Perturbation

In this section, we develop a framework for studying non-robust features by study-

ing the problem of maximum likelihood classification between two Gaussian distribu-

tions. We first recall the setup of the problem, then present the main theorems from

Section 2.5. First we build the techniques necessary for their proofs.
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Figure A-7: An example where adversarial vulnerability can arise from ERM train-
ing on any standard loss function due to non-robust features (the green line shows
the ERM-learned decision boundary). There exists, however, a classifier that is
both perfectly robust and accurate, resulting from robust training, which forces the
classifier to ignore the x2 feature despite its predictiveness.

A.3.1 Setup

We consider the setup where a learner receives labeled samples from two distribu-

tions, 𝒩 (µ*, Σ*), and 𝒩 (−µ*, Σ*). The learner’s goal is to be able to classify new

samples as being drawn from 𝒟1 or 𝒟2 according to a maximum likelihood (MLE)

rule.

A simple coupling argument demonstrates that this problem can actually be

reduced to learning the parameters µ̂, Σ̂ of a single Gaussian𝒩 (−µ*, Σ*), and then

employing a linear classifier with weight Σ̂−1µ̂. In the standard setting, maximum

likelihoods estimation learns the true parameters, µ* and Σ*, and thus the learned

classification rule is C(x) = 1{x⊤Σ−1µ > 0}.
In this work, we consider the problem of adversarially robust maximum likeli-

hood estimation. In particular, rather than simply being asked to classify samples,

the learner will be asked to classify adversarially perturbed samples x + δ, where

δ ∈ ∆ is chosen to maximize the loss of the learner. Our goal is to derive the param-

eters µ, Σ corresponding to an adversarially robust maximum likelihood estimate

of the parameters of 𝒩 (µ*, Σ*). Note that since we have access to Σ* (indeed, the

learner can just run non-robust MLE to get access), we work in the space where Σ*

is a diagonal matrix, and we restrict the learned covariance Σ to the set of diagonal

matrices.
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Notation. We denote the parameters of the sampled Gaussian by µ* ∈ Rd, and

Σ* ∈ {diag(u)|u ∈ Rd}. We use σmin(X) to represent the smallest eigenvalue of a

square matrix X, and `(·; x) to represent the Gaussian negative log-likelihood for a

single sample x. For convenience, we often use v = x− µ, and R = ‖µ*‖. We also

define the � operator to represent the vectorization of the diagonal of a matrix. In

particular, for a matrix X ∈ Rd×d, we have that X� = v ∈ Rd if vi = Xii.

A.3.2 Outline and Key Results

We focus on the case where ∆ = ℬ2(ε) for some ε > 0, i.e. the `2 ball, correspond-

ing to the following minimax problem:

min
µ,Σ

Ex∼𝒩 (µ*,Σ*)

[
max

δ:‖δ‖=ε
`(µ, Σ; x + δ)

]
(A.1)

We first derive the optimal adversarial perturbation for this setting (Section A.3.3),

and prove Theorem 1 (Section A.3.3). We then propose an alternate problem, in

which the adversary picks a linear operator to be applied to a fixed vector, rather

than picking a specific perturbation vector (Section A.3.3). We argue via Gaussian

concentration that the alternate problem is indeed reflective of the original model

(and in particular, the two become equivalent as d→ ∞). In particular, we propose

studying the following in place of (A.1):

min
µ,Σ

max
M∈ℳ

Ex∼𝒩 (µ*,Σ*) [`(µ, Σ; x + M(x− µ))] (A.2)

whereℳ =
{

M ∈ Rd×d : Mij = 0 ∀ i ̸= j, Ex∼𝒩 (µ*,Σ*)

[
‖Mv‖2

2

]
= ε2

}
.

Our goal is to characterize the behavior of the robustly learned covariance Σ in

terms of the true covariance matrix Σ* and the perturbation budget ε. The proof

is through Danskin’s Theorem, which allows us to use any maximizer of the in-

ner problem M* in computing the subgradient of the inner minimization. After

showing the applicability of Danskin’s Theorem (Section A.3.3) and then applying

it (Section A.3.3) to prove our main results (Section A.3.3). Our three main results,
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which we prove in the following section, are presented below.

First, we consider a simplified version of (A.1), in which the adversary solves

a maximization with a fixed Lagrangian penalty, rather than a hard `2 constraint.

In this setting, we show that the loss contributed by the adversary corresponds to

a misalignment between the data metric (the Mahalanobis distance, induced by

Σ−1), and the `2 metric:

Theorem 1 (Adversarial vulnerability from misalignment). Consider an adversary

whose perturbation is determined by the “Lagrangian penalty” form of (2.13), i.e.

max
δ

`(x + δ; y · µ, Σ)− C · ‖δ‖2,

where C ≥ 1
σmin(Σ*)

is a constant trading off NLL minimization and the adversarial con-

straint2. Then, the adversarial loss ℒadv incurred by the non-robustly learned (µ, Σ) is

given by:

ℒadv(Θ)−ℒ(Θ) = tr
[(

I + (C · Σ* − I)−1
)2
]
− d,

and, for a fixed tr(Σ*) = k the above is minimized by Σ* = k
d I.

We then return to studying (A.2), where we provide upper and lower bounds on

the learned robust covariance matrix Σ:

Theorem 2 (Robustly Learned Parameters). Just as in the non-robust case, µr = µ*,

i.e. the true mean is learned. For the robust covariance Σr, there exists an ε0 > 0, such

that for any ε ∈ [0, ε0),

Σr =
1
2 Σ* + 1

λ · I +
√

1
λ · Σ* + 1

4 Σ2*,

where Ω
(

1+ε1/2

ε1/2+ε3/2

)
≤ λ ≤ O

(
1+ε1/2

ε1/2

)
.

Finally, we show that in the worst case over mean vectors µ*, the gradient of the

adversarial robust classifier aligns more with the inter-class vector:

2The constraint on C is to ensure the problem is concave.
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Theorem 3 (Gradient alignment). Let f (x) and fr(x) be monotonic classifiers based on

the linear separator induced by standard and `2-robust maximum likelihood classification,

respectively. The maximum angle formed between the gradient of the classifier (wrt input)

and the vector connecting the classes can be smaller for the robust model:

min
µ

⟨µ,∇x fr(x)⟩
‖µ‖ · ‖∇x fr(x)‖ > min

µ

⟨µ,∇x f (x)⟩
‖µ‖ · ‖∇x f (x)‖ .

A.3.3 Proofs

In the first section, we have shown that the classification between two Gaussian

distributions with identical covariance matrices centered at µ* and −µ* can in fact

be reduced to learning the parameters of a single one of these distributions.

Thus, in the standard setting, our goal is to solve the following problem:

min
µ,Σ

Ex∼𝒩 (µ*,Σ*) [`(µ, Σ; x)] := min
µ,Σ

Ex∼𝒩 (µ*,Σ*) [− log (𝒩 (µ, Σ; x))] .

Note that in this setting, one can simply find differentiate ` with respect to

both µ and Σ, and obtain closed forms for both (indeed, these closed forms are,

unsurprisingly, µ* and Σ*). Here, we consider the existence of a malicious adversary

who is allowed to perturb each sample point x by some δ. The goal of the adversary

is to maximize the same loss that the learner is minimizing.

Motivating example: `2-constrained adversary

We first consider, as a motivating example, an `2-constrained adversary. That is,

the adversary is allowed to perturb each sampled point by δ : ‖δ‖2 = ε. In this

case, the minimax problem being solved is the following:

min
µ,Σ

Ex∼𝒩 (µ*,Σ*)

[
max
‖δ‖=ε

`(µ, Σ; x + δ)

]
. (A.3)

The following Lemma captures the optimal behaviour of the adversary:

184



Lemma 1. In the minimax problem captured in (A.3) (and earlier in (A.1)), the optimal

adversarial perturbation δ* is given by

δ* =
(

λI − Σ−1
)−1

Σ−1v = (λΣ− I)−1 v, (A.4)

where v = x− µ, and λ is set such that ‖δ*‖2 = ε.

Proof. In this context, we can solve the inner maximization problem with Lagrange

multipliers. In the following we write ∆ = ℬ2(ε) for brevity, and discard terms not

containing δ as well as constant factors freely:

arg max
δ∈∆

`(µ, Σ; x + δ)− = arg max
δ∈∆

(x + δ− µ)⊤ Σ−1 (x + δ− µ)

= arg max
δ∈∆

(x− µ)⊤Σ−1(x− µ) + 2δ⊤Σ−1(x− µ) + δ⊤Σ−1δ

= arg max
δ∈∆

δ⊤Σ−1(x− µ) +
1
2

δ⊤Σ−1δ. (A.5)

Now we can solve (A.5) using the aforementioned Lagrange multipliers. In partic-

ular, note that the maximum of (A.5) is attained at the boundary of the `2 ball ∆.

Thus, we can solve the following system of two equations to find δ, rewriting the

norm constraint as 1
2‖δ‖2

2 = 1
2 ε2:




∇δ

(
δ⊤Σ−1(x− µ) + 1

2 δ⊤Σ−1δ
)
= λ∇δ

(
‖δ‖2

2 − ε2) =⇒ Σ−1(x− µ) + Σ−1δ = λδ

‖δ‖2
2 = ε2.

(A.6)

For clarity, we write v = x− µ: then, combining the above, we have that

δ* =
(

λI − Σ−1
)−1

Σ−1v = (λΣ− I)−1 v, (A.7)

our final result for the maximizer of the inner problem, where λ is set according to

the norm constraint.
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Variant with Fixed Lagrangian (Theorem 1)

To simplify the analysis of Theorem 1, we consider a version of (A.3) with a fixed

Lagrangian penalty, rather than a norm constraint:

max `(x + δ; y · µ, Σ)− C · ‖δ‖2.

Note then, that by Lemma 1, the optimal perturbation δ* is given by

δ* = (CΣ− I)−1 .

We now proceed to the proof of Theorem 1.

Theorem 1 (Adversarial vulnerability from misalignment). Consider an adversary

whose perturbation is determined by the “Lagrangian penalty” form of (2.13), i.e.

max
δ

`(x + δ; y · µ, Σ)− C · ‖δ‖2,

where C ≥ 1
σmin(Σ*)

is a constant trading off NLL minimization and the adversarial con-

straint3. Then, the adversarial loss ℒadv incurred by the non-robustly learned (µ, Σ) is

given by:

ℒadv(Θ)−ℒ(Θ) = tr
[(

I + (C · Σ* − I)−1
)2
]
− d,

and, for a fixed tr(Σ*) = k the above is minimized by Σ* = k
d I.

Proof. We begin by expanding the Gaussian negative log-likelihood for the relaxed

3The constraint on C is to ensure the problem is concave.
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problem:

ℒadv(Θ)−ℒ(Θ) = Ex∼𝒩 (µ*,Σ*)

[
2 · v⊤ (C · Σ− I)−⊤ Σ−1v

+ v⊤ (C · Σ− I)−⊤ Σ−1 (C · Σ− I)−1 v
]

= Ex∼𝒩 (µ*,Σ*)

[
2 · v⊤ (C · ΣΣ− Σ)−1 v

+ v⊤ (C · Σ− I)−⊤ Σ−1 (C · Σ− I)−1 v
]

Recall that we are considering the vulnerability at the MLE parameters µ* and Σ*:

ℒadv(Θ)−ℒ(Θ) = Ev∼𝒩 (0,I)

[
2 · v⊤Σ1/2

*
(

C · Σ2
* − Σ*

)−1
Σ1/2
* v

+ v⊤Σ1/2
* (C · Σ* − I)−⊤ Σ−1

* (C · Σ* − I)−1
Σ1/2
* v

]

= Ev∼𝒩 (0,I)

[
2 · v⊤ (C · Σ* − I)−1 v

+ v⊤Σ1/2
*
(

C2Σ3
* − 2C · Σ2

* + Σ*
)−1

Σ1/2
* v

]

= Ev∼𝒩 (0,I)

[
2 · v⊤ (C · Σ* − I)−1 v + v⊤ (C · Σ* − I)−2 v

]

= Ev∼𝒩 (0,I)

[
−‖v‖2

2 + v⊤Iv + 2 · v⊤ (C · Σ* − I)−1 v

+ v⊤ (C · Σ* − I)−2 v
]

= Ev∼𝒩 (0,I)

[
−‖v‖2

2 + v⊤
(

I + (C · Σ* − I)−1
)2

v
]

= tr
[(

I + (C · Σ* − I)−1
)2
]
− d

This shows the first part of the theorem. It remains to show that for a fixed k =

tr(Σ*), the adversarial risk is minimized by Σ* = k
d I:

min
Σ*
ℒadv(Θ)−ℒ(Θ) = min

Σ*
tr
[(

I + (C · Σ* − I)−1
)2
]

= min
{σi}

d

∑
i=1

(
1 +

1
C · σi − 1

)2

,

where {σi} are the eigenvalues of Σ*. Now, we have that ∑ σi = k by assumption,

so by optimality conditions, we have that Σ* minimizes the above if ∇{σi} ∝~1, i.e.
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if ∇σi = ∇σj for all i, j. Now,

∇σi = −2 ·
(

1 +
1

C · σi − 1

)
· C

(C · σi − 1)2

= −2 · C2 · σi

(C · σi − 1)3 .

Then, by solving analytically, we find that

−2 · C2 · σi

(C · σi − 1)3 = −2 · C2 · σj

(C · σj − 1)3

admits only one real solution, σi = σj. Thus, Σ* ∝ I. Scaling to satisfy the trace

constraint yields Σ* = k
d I, which concludes the proof.

Real objective

Our motivating example (Section A.3.3) demonstrates that the optimal perturba-

tion for the adversary in the `2-constrained case is actually a linear function of v,

and in particular, that the optimal perturbation can be expressed as Dv for a di-

agonal matrix D. Note, however, that the problem posed in (A.3) is not actually a

minimax problem, due to the presence of the expectation between the outer mini-

mization and the inner maximization. Motivated by this and (A.7), we define the

following robust problem:

min
µ,Σ

max
M∈ℳ

Ex∼𝒩 (µ*,Σ*) [`(µ, Σ; x + Mv)] , (A.8)

whereℳ =
{

M ∈ Rd×d : Mij = 0 ∀ i ̸= j, Ex∼𝒩 (µ*,Σ*)

[
‖Mv‖2

2

]
= ε2

}
.

First, note that this objective is slightly different from that of (A.3). In the motivat-

ing example, δ is constrained to always have ε-norm, and thus is normalizer on a

per-sample basis inside of the expectation. In contrast, here the classifier is con-

cerned with being robust to perturbations that are linear in v, and of ε2 squared

norm in expectation.
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Note, however, that via the result of Laurent and Massart [LM00] showing strong

concentration for the norms of Gaussian random variables, in high dimensions this

bound on expectation has a corresponding high-probability bound on the norm.

In particular, this implies that as d → ∞, ‖Mv‖2 = ε almost surely, and thus the

problem becomes identical to that of (A.3). We now derive the optimal M for a

given (µ, Σ):

Lemma 2. Consider the minimax problem described by (A.8), i.e.

min
µ,Σ

max
M∈ℳ

Ex∼𝒩 (µ*,Σ*) [`(µ, Σ; x + Mv)] .

Then, the optimal action M* of the inner maximization problem is given by

M = (λΣ− I)−1 , (A.9)

where again λ is set so that M ∈ ℳ.

Proof. We accomplish this in a similar fashion to what was done for δ*, using La-

grange multipliers:

∇MEx∼𝒩 (µ*,Σ*)

[
v⊤MΣ−1v +

1
2

v⊤MΣ−1Mv
]
= λ∇MEx∼𝒩 (µ*,Σ*)

[
‖Mv‖2

2 − ε2
]

Ex∼𝒩 (µ*,Σ*)

[
Σ−1vv⊤ + Σ−1Mvv⊤

]
= Ex∼𝒩 (µ*,Σ*)

[
λMvv⊤

]

Σ−1Σ* + Σ−1MΣ* = λMΣ*

M = (λΣ− I)−1 ,

where λ is a constant depending on Σ and µ enforcing the expected squared-norm

constraint.

Indeed, note that the optimal M for the adversary takes a near-identical form to

the optimal δ (A.7), with the exception that λ is not sample-dependent but rather

varies only with the parameters.
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Danskin’s Theorem

The main tool in proving our key results is Danskin’s Theorem [Dan67], a powerful

theorem from minimax optimization which contains the following key result:

Theorem 4 (Danskin’s Theorem). Suppose φ(x, z) : R × Z → R is a continuous

function of two arguments, where Z ⊂ Rm is compact. Define f (x) = maxz∈Z φ(x, z).

Then, if for every z ∈ Z, φ(x, z) is convex and differentiable in x, and ∂φ
∂x is continuous:

The subdifferential of f (x) is given by

∂ f (x) = conv
{

∂φ(x, z)
∂x

: z ∈ Z0(x)
}

,

where conv(·) represents the convex hull operation, and Z0 is the set of maximizers defined

as

Z0(x) =
{

z : φ(x, z) = max
z∈Z

φ(x, z)
}

.

In short, given a minimax problem of the form minx maxy∈C f (x, y) where C

is a compact set, if f (·, y) is convex for all values of y, then rather than compute

the gradient of g(x) := maxy∈C f (x, y), we can simply find a maximizer y* for the

current parameter x; Theorem 4 ensures that ∇x f (x, y*) ∈ ∂xg(x). Note that ℳ
is trivially compact (by the Heine-Borel theorem), and differentiability/continuity

follow rather straightforwardly from our reparameterization (c.f. (A.10)), and so it

remains to show that the outer minimization is convex for any fixed M.

Convexity of the outer minimization. Note that even in the standard case (i.e.

non-adversarial), the Gaussian negative log-likelihood is not convex with respect

to (µ, Σ). Thus, rather than proving convexity of this function directly, we em-

ploy the parameterization used by [Das+19]: in particular, we write the problem

in terms of T = Σ−1 and m = Σ−1µ. Under this parameterization, we show that

the robust problem is convex for any fixed M.

Lemma 3. Under the aforementioned parameterization of T = Σ−1 and m = Σ−1µ, the
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following “Gaussian robust negative log-likelihood” is convex:

Ex∼𝒩 (µ*,Σ*) [`(m, T ; x + Mv)] .

Proof. To prove this, we show that the likelihood is convex even with respect to a

single sample x; the result follows, since a convex combination of convex functions

remains convex. We begin by looking at the likelihood of a single sample x ∼
𝒩 (µ*, Σ*):

ℒ(µ, Σ; x + M(x− µ)) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)⊤(I + M)2Σ−1(x− µ)

)

=

1√
(2π)k|Σ|

exp
(
−1

2(x− µ)⊤(I + M)2Σ−1(x− µ)
)

∫
1√

(2π)k|(I+M)−2Σ|
exp

(
−1

2(x− µ)⊤(I + M)2Σ−1(x− µ)
)

=
|I + M|−1 exp

(
−1

2 x⊤(I + M)2Σ−1x + µ⊤(I + M)2Σ−1x
)

∫
exp

(
−1

2 x⊤(I + M)2Σ−1x + µ⊤(I + M)2Σ−1x
)

In terms of the aforementioned T and m, and for convenience defining A = (I +

M)2:

`(x) = |A|−1/2 +

(
1
2

x⊤ATx−m⊤Ax
)
− log

(∫
exp

(
1
2

x⊤ATx−m⊤Ax
))

∇`(x) =




1
2(Axx⊤)�

−Ax


−

∫



1
2(Axx⊤)�

−Ax


 exp

(
1
2 x⊤ATx−m⊤Ax

)

∫
exp

(
1
2 x⊤ATx−m⊤Ax

)

=




1
2(Axx⊤)�

−Ax


−Ez∼𝒩 (T−1m,(AT)−1)




1
2(Azz⊤)�

−Az


 . (A.10)

From here, following an identical argument to [Das+19] Equation (3.7), we find
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that

H` = Covz∼𝒩 (T−1m,(AT)−1)





(
−1

2 AzzT
)
�

z


 ,



(
−1

2 AzzT
)
�

z




 < 0,

i.e. that the log-likelihood is indeed convex with respect to


T

m


, as desired.

Applying Danskin’s Theorem

The previous two parts show that we can indeed apply Danskin’s theorem to the

outer minimization, and in particular that the gradient of f at M = M* is in the

subdifferential of the outer minimization problem. We proceed by writing out this

gradient explicitly, and then setting it to zero (note that since we have shown f is

convex for all choices of perturbation, we can use the fact that a convex function is

globally minimized ⇐⇒ its subgradient contains zero). We continue from above,

plugging in (A.9) for M and using (A.10) to write the gradients of ` with respect to

T and m.

0 = ∇


T

m




` = Ex∼𝒩 (µ*,Σ*)






1
2(Axx⊤)�

−Ax


−Ez∼𝒩 (T−1m,(AT)−1)




1
2(Azz⊤)�

−Az






= Ex∼𝒩 (µ*,Σ*)




1
2(Axx⊤)�

−Ax


−Ez∼𝒩 (T−1m,(AT)−1)




1
2(Azz⊤)�

−Az




=




1
2(AΣ*)�

−Aµ*


−Ez∼𝒩 (T−1m,(AT)−1)




1
2(A(AT)−1)�

−AT−1m




=




1
2 AΣ*

−Aµ*


−




1
2 A(AT)−1

−AT−1m




=




1
2 AΣ* − 1

2 T−1

AT−1m− Aµ*


 (A.11)

Using this fact, we derive an implicit expression for the robust covariance matrix
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Σ. Note that for the sake of brevity, we now use M to denote the optimal adver-

sarial perturbation (previously defined as M* in (A.9)). This implicit formulation

forms the foundation of the bounds given by our main results.

Lemma 4. The minimax problem discussed throughout this work admits the following

(implicit) form of solution:

Σ =
1
λ

I +
1
2

Σ* +

√
1
λ

Σ* +
1
4

Σ2*,

where λ is such that M ∈ ℳ, and is thus dependent on Σ.

Proof. Rewriting (A.11) in the standard parameterization (with respect to µ, Σ) and

re-expanding A = (I + M)2 yields:

0 = ∇


T

m




` =




1
2(I + M)2Σ* − 1

2 Σ

(I + M)2µ− (I + M)2µ*




Now, note that the equations involving µ and Σ are completely independent,

and thus can be solved separately. In terms of µ, the relevant system of equations

is Aµ− Aµ* = 0, where multiplying by the inverse A gives that

µ = µ*. (A.12)

This tells us that the mean learned via `2-robust maximum likelihood estimation

is precisely the true mean of the distribution.

Now, in the same way, we set out to find Σ by solving the relevant system of

equations:

Σ−1
* = Σ−1(M + I)2. (A.13)

Now, we make use of the Woodbury Matrix Identity in order to write (I + M)
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as

I + (λΣ− I)−1 = I +

(
−I −

(
1
λ

Σ−1 − I
)−1

)
= −

(
1
λ

Σ−1 − I
)−1

.

Thus, we can revisit (A.13) as follows:

Σ−1
* = Σ−1

(
1
λ

Σ−1 − I
)−2

1
λ2 Σ−1

* Σ−2 −
(

2
λ

Σ−1
* + I

)
Σ−1 + Σ−1

* = 0

1
λ2 Σ−1

* −
(

2
λ

Σ−1
* + I

)
Σ + Σ−1

* Σ2 = 0

We now apply the quadratic formula to get an implicit expression for Σ (im-

plicit since technically λ depends on Σ):

Σ =

(
2
λ

Σ−1
* + I ±

√
4
λ

Σ−1* + I

)
1
2

Σ*

=
1
λ

I +
1
2

Σ* +

√
1
λ

Σ* +
1
4

Σ2*. (A.14)

This concludes the proof.

Bounding λ

We now attempt to characterize the shape of λ as a function of ε. First, we use the

fact that E[‖Xv‖2] = tr(X2) for standard normally-drawn v. Thus, λ is set such

that tr(Σ*M2) = ε, i.e:

∑
i=0

Σ*ii
(λΣii − 1)2 = ε (A.15)

Now, consider ε2 as a function of λ. Observe that for λ ≥ 1
σmin(Σ)

, we have that M

must be positive semi-definite, and thus ε2 decays smoothly from ∞ (at λ = 1
σmin

) to

zero (at λ = ∞). Similarly, for λ ≤ 1
σmax(Σ)

, ε decays smoothly as λ decreases. Note,

however, that such values of λ would necessarily make M negative semi-definite,

which would actually help the log-likelihood. Thus, we can exclude this case; in

particular, for the remainder of the proofs, we can assume λ ≥ 1
σmax(Σ)

.
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Also observe that the zeros of ε in terms of λ are only at λ = ±∞. Using this, we

can show that there exists some ε0 for which, for all ε < ε0, the only corresponding

possible valid value of λ is where λ ≥ 1
σmin

. This idea is formalized in the following

Lemma.

Lemma 5. For every Σ*, there exists some ε0 > 0 for which, for all ε ∈ [0, ε0) the only

admissible value of λ is such that λ ≥ 1
σmin(Σ)

, and thus such that M is positive semi-

definite.

Proof. We prove the existence of such an ε0 by lower bounding ε (in terms of λ)

for any finite λ > 0 that does not make M PSD. Providing such a lower bound

shows that for small enough ε (in particular, less than this lower bound), the only

corresponding values of λ are as desired in the statement4.

In particular, if M is not PSD, then there must exist at least one index k such that

λΣkk < 1, and thus (λΣkk − 1)2 ≤ 1 for all λ > 0. We can thus lower bound (A.15)

as:

ε = ∑
i=0

Σ*ii
(λΣii − 1)2 ≥

Σ*kk
(λΣkk − 1)2 ≥ Σ*kk ≥ σmin(Σ

*) > 0 (A.16)

By contradiction, it follows that for any ε < σmin(Σ*)2, the only admissible λ is

such that M is PSD, i.e. according to the statement of the Lemma.

In the regime ε ∈ [0, ε0), note that λ is inversely proportional to ε (i.e. as ε

grows, λ decreases). This allows us to get a qualitative view of (A.14): as the al-

lowed perturbation value increases, the robust covariance Σ resembles the identity

matrix more and more, and thus assigns more and more variance on initially low-

variance features. The
√

Σ* term indicates that the robust model also adds uncer-

tainty proportional to the square root of the initial variance—thus, low-variance

features will have (relatively) more uncertainty in the robust case. Indeed, our

main result actually follows as a (somewhat loose) formalization of this intuition.

4Since our only goal is existence, we lose many factors from the analysis that would give a
tighter bound on ε0.
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Proof of main theorems

First, we give a proof of Theorem 2, providing lower and upper bounds on the

learned robust covariance Σ in the regime ε ∈ [0, ε0).

Theorem 2 (Robustly Learned Parameters). Just as in the non-robust case, µr = µ*,

i.e. the true mean is learned. For the robust covariance Σr, there exists an ε0 > 0, such

that for any ε ∈ [0, ε0),

Σr =
1
2 Σ* + 1

λ · I +
√

1
λ · Σ* + 1

4 Σ2*,

where Ω
(

1+ε1/2

ε1/2+ε3/2

)
≤ λ ≤ O

(
1+ε1/2

ε1/2

)
.

Proof. We have already shown that µ = µ* in the robust case (c.f. (A.12)). We

choose ε0 to be as described, i.e. the largest ε for which the set {λ : tr(Σ2
*M) =

ε, λ ≥ 1/σmax(Σ)} has only one element λ (which, as we argued, must not be less

than 1/σmin(Σ)). We have argued that such an ε0 must exist.

We prove the result by combining our early derivation (in particular, (A.13)

and (A.14)) with upper and lower bound on λ, which we can compute based on

properties of the trace operator. We begin by deriving a lower bound on λ. By lin-

ear algebraic manipulation (given in Appendix A.3.3), we get the following bound:

λ ≥ d
tr(Σ)

(
1 +

√
d · σmin(Σ*)

ε

)
(A.17)

Now, we can use (A.13) in order to remove the dependency of λ on Σ:

Σ = Σ*(M + I)2

tr(Σ) = tr
[
(Σ1/2
* M + Σ1/2

* )2
]

≤ 2 · tr
[
(Σ1/2
* M)2 + (Σ1/2

* )2
]

≤ 2 · (ε + tr(Σ*)) .
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Applying this to (A.17) yields:

λ ≥ d/2
ε + tr(Σ*)

(
1 +

√
d · σmin(Σ*)

ε

)
.

Note that we can simplify this bound significantly by writing ε = d · σmin(Σ*)ε′ ≤
tr(Σ*)ε′, which does not affect the result (beyond rescaling the valid regime (0, ε0)),

and gives:

λ ≥ d/2
(1 + ε′)tr(Σ*)

(
1 +

1√
ε′

)
≥ d · (1 +

√
ε′)

2
√

ε′(1 + ε′)tr(Σ*)

Next, we follow a similar methodology (Appendix A.3.3) in order to upper bound

λ:

λ ≤ 1
σmin(Σ)

(√
‖Σ*‖F · d

ε
+ 1

)
.

Note that by (A.13) and positive semi-definiteness of M, it must be that σmin(Σ) ≥
σmin(Σ*). Thus, we can simplify the previous expression, also substituting ε =

d · σmin(Σ*)ε′:

λ ≤ 1
σmin(Σ*)

(√
‖Σ*‖F

σmin(Σ*)ε′
+ 1

)
=
‖Σ*‖F +

√
ε · σmin(Σ*)

σmin(Σ*)3/2
√

ε

These bounds can be straightforwardly combined with Lemma 4, which concludes

the proof.

Using this theorem, we can now show Theorem 3:

Theorem 3 (Gradient alignment). Let f (x) and fr(x) be monotonic classifiers based on

the linear separator induced by standard and `2-robust maximum likelihood classification,

respectively. The maximum angle formed between the gradient of the classifier (wrt input)

and the vector connecting the classes can be smaller for the robust model:

min
µ

⟨µ,∇x fr(x)⟩
‖µ‖ · ‖∇x fr(x)‖ > min

µ

⟨µ,∇x f (x)⟩
‖µ‖ · ‖∇x f (x)‖ .
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Proof. To prove this, we make use of the following Lemmas:

Lemma 6. For two positive definite matrices A and B with κ(A) > κ(B), we have that

κ(A + B) ≤ max{κ(A), κ(B)}.

Proof. We proceed by contradiction:

κ(A + B) =
λmax(A) + λmax(B)
λmin(A) + λmin(B)

κ(A) =
λmax(A)

λmin(A)

κ(A) ≥ κ(A + B)

⇐⇒ λmax(A) (λmin(A) + λmin(B)) ≥ λmin(A) (λmax(A) + λmax(B))

⇐⇒ λmax(A)λmin(B) ≥ λmin(A)λmax(B)

⇐⇒ λmax(A)

λmin(A)
≥ λmin(A)

λmax(B)
,

which is false by assumption. This concludes the proof.

Lemma 7 (Straightforward). For a positive definite matrix A and k > 0, we have that

κ(A + k · I) < κ(A) κ(A + k ·
√

A) ≤ κ(A).

Lemma 8 (Angle induced by positive definite matrix; folklore). 5 For a positive defi-

nite matrix A ≻ 0 with condition number κ, we have that

min
x

x⊤Ax
‖Ax‖2 · ‖x‖2

=
2
√

κ

1 + κ
. (A.18)

These two results can be combined to prove the theorem. First, we show that

5A proof can be found in https://bit.ly/2L6jdAT
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κ(Σ) ≤ κ(Σ*):

κ(Σ) = κ

(
1
λ

I +
1
2

Σ* +

√
1
λ

Σ* +
1
4

Σ2*

)

< max

{
κ

(
1
λ

I +
1
2

Σ*

)
, κ

(√
1
λ

Σ* +
1
4

Σ2*

)}

< max

{
κ (Σ*) ,

√
κ

(
1
λ

Σ* +
1
4

Σ2*

)}

= max



κ (Σ*) ,

√√√√κ

(
2
λ

√
1
4

Σ2* +
1
4

Σ2*

)


≤ κ (Σ*) .

Finally, note that (A.18) is a strictly decreasing function in κ, and as such, we have

shown the theorem.

Bounds for λ

Lower bound.

ε = tr(Σ*M2)

≥ σmin(Σ*) · tr(M2) by the definition of tr(·)

≥ σmin(Σ*)
d

· tr(M)2 by Cauchy-Schwarz

≥ σmin(Σ*)
d

·
[
tr
(
(λΣ− I)−1

)]2
Expanding M (A.9)

≥ σmin(Σ*)
d

·
[
tr (λΣ− I)−1 · d2

]2
AM-HM inequality

≥ d3 · σmin(Σ*) · [λ · tr(Σ)− d]−2

[λ · tr(Σ)− d]2 ≥ d3 · σmin(Σ*)
ε

λ · tr(Σ)− d ≥ d3/2 ·
√

σmin(Σ*)√
ε

since M is PSD

λ ≥ d
tr(Σ)

(
1 +

√
d · σmin(Σ*)

ε

)
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Upper bound

ε = tr(Σ*M2)

≤ ‖Σ*‖F · d · σmax(M)2

≤ ‖Σ*‖F · d · σmin(M)−2

λ · σmin(Σ)− 1 ≤
√
‖Σ*‖F · d

ε

λ ≤ 1
σmin(Σ)

(√
‖Σ*‖F · d

ε
+ 1

)
.

A.4 Connections to Other Models of Adversarial Examples

Here, we describe other models for adversarial examples and how they relate to

the model presented in this work.

Insufficient data. As discussed in Section 2.6, we note that our model does not

explicitly contradict the main thesis of Schmidt et al. [Sch+18].

Boundary Tilting. Inspired by this hypothesis [TG16] and concurrently to our

work, Kim, Seo, and Jeon [KSJ19] present a simple classification task comprised of

two Gaussian distributions in two dimensions. They experimentally show that the

decision boundary tends to better align with the vector between the two means

for robust models. This is a special case of our theoretical results in Section 2.5.

(Note that this exact statement is not true beyond two dimensions, as discussed in

Section 2.5.)

Test Error in Noise. Fawzi, Moosavi-Dezfooli, and Frossard [FMF16] and Ford

et al. [For+19] argue that the adversarial robustness of a classifier can be directly

connected to its robustness under (appropriately scaled) random noise. While this
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constitutes a natural explanation of adversarial vulnerability given the classifier

robustness to noise, these works do not attempt to justify the source of the latter.

At the same time, recent work [Lec+19; CRK19; For+19] utilizes random noise

during training or testing to construct adversarially robust classifiers. In the con-

text of our framework, we can expect the added noise to disproportionately affect

non-robust features and thus hinder the model’s reliance on them.

Piecewise-linear decision boundaries. Shamir et al. [Sha+19b] prove that the ge-

ometric structure of the classifier’s decision boundaries can lead to sparse adver-

sarial perturbations. However, this result does not take into account the distance to

the decision boundary along these direction or feasibility constraints on the input

domain. As a result, it cannot meaningfully distinguish between classifiers that are

brittle to small adversarial perturbations and classifiers that are moderately robust.

Theoretical constructions which incidentally exploit non-robust features. Bubeck,

Price, and Razenshteyn [BPR19] and Nakkiran [Nak19b] propose theoretical mod-

els where the barrier to learning robust classifiers is, respectively, due to compu-

tational constraints or model complexity. In order to construct distributions that

admit accurate yet non-robust classifiers they (implicitly) utilize the concept of

non-robust features. Namely, they add a low-magnitude signal to each input that

encodes the true label. This allows a classifier to achieve perfect standard accuracy,

but cannot be utilized in an adversarial setting as this signal is susceptible to small

adversarial perturbations.
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Appendix B

Details for Chapter 3

B.1 Post-hoc Debugging Setup & Addition Results

B.1.1 Datasets

We use the ImageNet-1k [Den+09; Rus+15] and Places-365 [Zho+17] datasets which

contain images from 1,000 and 365 categories respectively. In particular, both

prediction-rule discovery is performed on (or using) samples from the standard

test sets to avoid overlap with the training data used to develop the models.

B.1.2 Models

Here, we describe the exact architecture and training process for each model we

use. We utilize two canonical, yet relatively diverse model architectures for our

study: namely, VGG [SZ15] and ResNet [He+16]. We use the standard PyTorch im-

plementation 1 and train the models from scratch on the ImageNet and Places365

datasets. The accuracy of each model on the corresponding test set is provided in

Table B.1.

ImageNet classifiers. We study: (i) a VGG16 variant with batch normalization

and (ii) a ResNet-50. Both models are trained using standard hyperparameters:

SGD for 90 epochs with an initial learning rate of 0.1 that drops by a factor of 10

1https://pytorch.org/vision/stable/models.html
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every 30 epochs. We use a momentum of 0.9, a weight decay of 10−4 and a batch

size of 256 for the VGG16 and 512 for the ResNet-50.

Places365 classifiers. We study: (i) a VGG16 and (ii) a ResNet-18. Both models

are trained for 131072 iterations using SGD with a single-cycle learning rate sched-

ule peaking at 2e-2 and descending to 0 at the end of training. We use a momentum

0.9, a weight decay 5e-4 and a batch size of 256 for both models.

Test Accuracy (%)

Architecture ∖ Dataset ImageNet Places

VGG 73.70 54.02

ResNet 75.77 54.24

Table B.1: Accuracy of each model architecture on the datasets used in our analysis.

B.1.3 Prediction rule discovery

Recall that our pipeline for probing prediction rules consists of two steps: concept

detection and concept transformation. We describe each step below.

We detect concepts using object detectors trained on MS-COCO [Lin+14] and

LVIS [GDG19]. For MS-COCO, we use a model with a ResNet-101 backbone2

which is trained on COCO-Stuff3 annotations and can detect 182 concepts. For

LVIS, we use a pre-trained model from the Detectron [Gir+18] model zoo4, which

can detect 1230 classes. We only consider a prediction as valid for a specific pixel

if the model’s predicted probability is at least 0.80 for the COCO-based model and

0.15 for the LVIS-based model (chosen based on manual inspection). Moreover,

we treat a concept as present in a specific image if it present in at least 100 pixels

(image size is 224×224 for ImageNet and 256×256 for Places).

In order to transform concepts, we utilize the fast style transfer methodology

2https://github.com/kazuto1011/deeplab-pytorch
3https://github.com/nightrome/cocostuff
4https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
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of Ghiasi et al. [Ghi+17] using their pre-trained model5. This allows us to quickly

apply the same style to a large number of images which is ideal for our use-case.

Specifically, we manually choose 14 styles (illustrated in Figure 3-2) and choose

3 images for each. This allows us to perform the concept-level transformation in

several ways and evaluate how sensitive our model is to the exact style used.

All the pre-trained models used are open-sourced and freely available for non-

commercial research.

B.1.4 Discovering Prediction-rules

Here, we expand on our analysis in Section 3.2 so as to characterize the effect of

concept-level transformations on classifiers.

Per concept. In Figure B-1, we visualize the accuracy drop induced by transfor-

mations of a specific concept for classifiers trained on ImageNet and Places-365

(similar to Figure 3-3a). Here, the accuracy drop post-transformation is measured

only on images that contain the concept of interest. We then present the average

drop across transformations, along with 95% confidence intervals. We find that

there is a large variance between: (i) a model’s reliance on different concepts, and

(ii) different model’s reliance on a single concept. For instance, the accuracy of a

ResNet-50 ImageNet classifier drops by more than 30% on the class “three-toed

sloth” when “tree”s in the image are modified, while the accuracy of a VGG16

model drops by less than 5% under the same setup.

Per transformation. In Figure B-2, we illustrate how the model’s sensitivity to

specific concepts varies depending on the applied transformation. Across con-

cepts, we find that models are more sensitive to transformations to textures such

as “grafitti” and “fall colors” than they are to “wooden” or “metallic”.

5https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2
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Per class (prediction-rules). In Figure B-3, we provide additional examples of

class-level prediction rules identified using our methodology. For each class, the

highlighted concepts are those that hurt model accuracy when transformed.
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(a) Concept: “person”; Models: VGG16 (left) and ResNet-50 (right) trained on
ImageNet-1k.
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(b) Concept: “bed”; Models: VGG16 (left) and ResNet-18 (right) trained on Places-
365.
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(c) Concept: “signboard”; Models: VGG16 (left) and ResNet-18 (right) trained on
Places-365.

Figure B-1: Dependence of a classifier on a specific high-level concept: average
accuracy drop (along with 95% confidence intervals obtained via bootstrapping),
over various styles, induced by the transformation of said concept. The classes for
which the concept is most often present are shown.
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(a) VGG16 (left) and ResNet-50 (right) models trained on the ImageNet-1k dataset.
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Figure B-2: Heatmaps illustrating classifier sensitivity to various concept-level
transformations. Here, we measure model sensitivity in terms of the per class
drop in model accuracy induced by the transformation on images of that class
which contain the concept of interest.
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Figure B-3: Per-class prediction rules: high-level concepts, which when trans-
formed, significantly hurt model performance on that class. Here, we visualize
average accuracy drop (along with 95% confidence intervals obtained via boot-
strapping) for a specific concept, over various styles.
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B.2 SAGA-based solver for generalized linear models

In this section, we describe in further detail our solver for learning regularized

GLMs in relation to existing work. Note that many of the components underlying

our solver have been separately studied in prior work. However, we are the first

to effectively combine them in a way that allows for GPU-accelerated fitting of

GLMs at ImageNet-scale. The key algorithmic primitives we leverage to this end

are variance reduced optimization methods and path algorithms for GLMs.

Specifically, our solver uses a mini-batch derivative of the SAGA algorithm

[GGS19], which belongs to a class of a variance reduced proximal gradient meth-

ods. These approaches have several benefits: a) they are easily parallelizable via

GPU, b) they enjoy faster convergence rates than stochastic gradient methods, and

c) they require minimal tuning and can converge with a fixed learning rate.

Algorithm 1 provides a step-by-step description of our solver. Here, the proxi-

mal operator for elastic net regularization is

Proxλ1,λ2(β) =





β−λ1
1+λ2

if β > λ1

β+λ1
1+λ2

if β < λ1

0 otherwise

(B.1)

Table for storing gradients Note that the SAGA algorithm requires saving the

gradients of the model for each individual example. For ImageNet-sized problems,

this requires a prohibitive amount of memory, as both the number of examples (>1

million) and the size of the gradient (of the linear model) are large.

It turns out that for linear models with k outputs, it is actually possible to store

all of the necessary gradient information for a single example in a vector of size

k—as demonstrated by Defazio, Bach, and Lacoste-Julien [DBL14]. The key idea

behind this approach is that rather than storing the full gradient step (xT
i β + β0 −

yi)xi, we can instead just store the scalar ai = (xT
i β + β0 − yi) per output (i.e.,

a vector of length k in the case of multiple outputs). Thus, for a dataset with n
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Algorithm 1 GPU-accelerated solver for the elastic net for a step size γ and regu-
larization parameters λ, α

1: Initialize table of scalars a′i = 0 for i ∈ [n]
2: Initialize average gradient of table gavg = 0 and g0avg = 0
3: for minibatch B ⊂ [n] do
4: for i ∈ B do
5: ai = xT

i β + β0 − yi
6: gi = ai · xi // calculate new gradient information
7: g′i = a′i · xi // calculate stored gradient information
8: end for
9: g = 1

|B| ∑i∈B gi

10: g′ = 1
|B| ∑i∈B g′i

11: g0 = 1
|B| ∑i∈B ai

12: g′0 = 1
|B| ∑i∈B a′i

13: β = β− γ(g− g′ + gavg)
14: β0 = β0 − γ(g0 − g′0 + g0avg)
15: β = Proxγλα,γλ(1−α)(β)
16: for i ∈ B do
17: a′i = ai // update table
18: gavg = gavg +

|B|
n (g− g′) // update average

19: g0avg = g0avg +
|B|
n (g0 − g′0)

20: end for
21: end for

examples, this reduces the memory requirements of the gradient table to O(nk).

For ImageNet, we find that the entire table easily fits within GPU memory limits.

There is one caveat here: in order to use this memory trick, it is necessary to

incorporate the `2 regularization from the elastic net into the proximal operator.

This is precisely why we use the proximal operator of the elastic net, rather than

of the `1 regularization. Unfortunately, this means that the smooth part of the ob-

jective (i.e. the part not used in the proximal operator) is no longer guaranteed

to be strongly convex, and so the theoretical analysis of Gazagnadou, Gower, and

Salmon [GGS19] no longer strictly applies. Nonetheless, we find that these vari-

ance reduced methods can still provide strong practical convergence rates in this

setting without requiring much tuning of batch sizes or learning rates.
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Stopping criterion We implement two simple stopping criteria, which both take

in a tolerance level εtol. The first is a gradient-based stopping criteria, which ter-

minates when: √
‖βi+1 − βi‖2

2 + ‖βi+1
0 − βi

0‖2
2 ≤ εtol

Intuitively, this stops when the change in the estimated coefficients is small. Our

second stopping criteria is more conservative and uses a longer search horizon,

and stops when the training loss has not improved by more than εtol for more than

T epochs for some T, which we call the lookbehind stopping criteria.

In practice, we find that the gradient-based stopping criteria with εtol = 10−4

is sufficient for most cases (i.e. the solver has converged sufficiently such that the

number of non-zero entries will no longer change). For significantly larger prob-

lems such as ImageNet, where individual batch sizes can have much larger vari-

ability in progressing the training objective, we find that the lookbehind stopping

criteria is sufficient with εtol = 10−4 and T = 5.

Relation of the solver to existing work We now discuss how our solver bor-

rows and differs from existing work. First, note that the original SAGA algorithm

[DBL14] analyzes the regularized form but updates its gradient estimate with one

sample at a time, which is not amenable to GPU parallelism. On the other hand,

Gazagnadou, Gower, and Salmon [GGS19] analyze a minibatch variant of SAGA

but without regularization. In our solver, we use a straightforward adaptation of

minibatch SAGA to its regularized equivalent by including a proximal step for the

elastic net regularization after the gradient step.

To compute the regularization paths, we closely follow the framework of Fried-

man, Hastie, and Tibshirani [FHT10]. Specifically, we compute solutions for a de-

creasing sequence of regularization, using the solution of the previous regulariza-

tion as a warm start for the next. The maximum regularization value which fits

only the bias term is calculated as the fixed point of the coordinate descent itera-
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tion as

λmax = max
j

1
Nα

∣∣∣∣∣
n

∑
i=1

xijyi

∣∣∣∣∣ (B.2)

and scheduled down to λmin = ελmax over a sequence of K values on a log scale, as

done by Friedman, Hastie, and Tibshirani [FHT10]. Typical suggested values are

to take K = 100 and ε = 0.001, which are what we use in all of our experiments.

For extensions to logistic and multinomial regression, we refer the reader to Fried-

man, Hastie, and Tibshirani [FHT10], and note that our approach is the same but

substituting our SAGA-based solver in liue of the coordinate descent-based solver.

B.2.1 Timing Experiments

In this section, we discuss how the runtime of our solver scales with the problem

size. To be able to compare our solver with existing approaches, the experiments

performed here are at a smaller scale than those discussed in Chapter 3.

Problem setting & hyperparameters. The problem we examine is that of fitting

a linear decision layer for the CIFAR-10 dataset using the deep feature representa-

tion of an ImageNet-trained ResNet-50 (2048-dimensional features). We then vary

the number of training examples (from 1k to 50k) and fit an elastic net regular-

ized GLM using various methods. We compare glmnet (state-of-the-art, coordi-

nate descent-based solver) on a 9th generation Intel Core i7 with 6 cores clocked at

2.6Ghz, and our approach glm-saga using a GeForce GTX 1080ti. We note that in

these small-scale experiments, the graphics card remains at around 10-20% utiliza-

tion, indicating that the problem size is too small to fully utilize the GPU.

We fix α = 0.99, ε = 10−4, set aside 10% of the training data for validation,

and calculate regularization paths for k = 100 different values, which are the de-

faults for glmnet. For our approach, we additionally use a mini-batch size of 512,

a learning rate of 0.1, and a tolerance level of 10−4 for the gradient-based stopping

criteria.
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Number of examples
Solver 1k 2k 3k 4k 5k 50k

glmnet 2 7 25 39 58 776
glm-saga 9 13 17 19 22 33

Table B.36: Runtime in minutes for glmnet and glm-saga for fitting a sparse deci-
sion layer on the CIFAR-10 dataset using deep representations (2048D) for a pre-
trained ResNet-50. Here, we assess how the runtime of different solvers scales as
a function of training data points.

Improvements in scalability As expected, on smaller problem instances with a

couple thousand examples, glmnet is faster than our solver—cf. Table B.36. This

is largely due to the increased base running time of our solver—a consequence of

gradient based methods requiring some time to converge. However, as the prob-

lem size grows, the runtime of glmnet increases rapidly, and exceeds the running

time of glm-saga at 3,000 datapoints. For example, it takes almost 40 minutes to

fit 4,000 data points with glmnet, an increase of 20x the running time for 4x the

data relative to the running time for 1,000 data points. In contrast, our solver only

needs 19 minutes to fit 4,000 datapoints, an increase of 2x the running time for 4x

the data. Consequently, while glmnet takes a considerable amount of time to fit

the full CIFAR10 problem size (50,000 datapoints)—nearly 13 hours—our solver

can do the same in only 33 minutes. Notably, our solver can fit the regularization

paths of the decision layer for the full ImageNet dataset (1 million examples with

2048 features) in approximately 6 hours.

Backpropagation libraries One more alternative to fitting linear models at scale

is to use a standard autodifferentiation library such as PyTorch or Tensorflow.

However, typical optimizers used in these libraries do not handle non-smooth

regularizers well (i.e., the `1 penalty of the elastic net). In practice, these types

of approaches must gradually schedule learning rates down to zero in order to

converge, and take too long to compute regularization paths. For example, the

fixed-feature transfer experiments from Salman et al. [Sal+20] takes approximately
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4 hours to fit the same CIFAR10 timing experiment for a single regularization

value. In contrast, the SAGA-based optimizers enables a flexible range of learn-

ing rates that can converge rapidly without needing to tune or decay the learning

rate over time.

B.2.2 Elastic net, `1, and `2 regularization

The elastic net is known to combine the benefits of both `1 and `2 regularization

for linear models. The `1 regularization, often seen in the LASSO, primarily pro-

vides sparsity in the solution. The `2 regularization, often seen as ridge regres-

sion, brings improved performance, a unique solution via strong convexity, and a

grouping effect of similar neurons. Due to this last property of `2 regularization,

highly correlated features will become non-zero at the same time over the regu-

larization path. The elastic net combines all of these strengths, and we refer the

reader to Tibshirani and Wasserman [TW17] for further discussion on the interac-

tion between elastic net, `1, and `2.

B.3 Feature interpretations

We now discuss in depth our procedure for generating feature interpretations for

deep features in the vision and language settings.

B.3.1 Feature visualization

Feature visualization is a popular approach to interpret individual neurons within

a deep network. Here, the objective is to synthesize inputs (via optimization in

pixel space) that highly activate the neuron of interest. Unfortunately, for standard

networks trained via empirical risk minimization, it is well-known that vanilla

feature visualization—using just gradient descent in input space—fails to produce

semantically-meaningful interpretations. In fact, these visualizations frequently

suffer from artifacts and high frequency patterns [OMS17]. One cause for this

could be the reliance of standard models on input features that are imperceptible
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or unintuitive, as has been noted in recent studies [Ily+19].

To mitigate this challenge, there has been a long line of work on defining mod-

ified objectives to produce more meaningful feature visualizations [OMS17]. In

this work, we use the Tensorflow-based Lucid library6 to produce feature visu-

alizations for standard models. Therein, the optimization objective contains ad-

ditional regularizations to penalize high-frequency changes in pixel space and to

encourage transformation robustness. Further, gradient descent is performed in

the Fourier basis to further discourage high-frequency input patterns. We defer

the reader to Olah, Mordvintsev, and Schubert [OMS17] for a more complete pre-

sentation.

In contrast, a different line of work [Tsi+19; Eng+19a] has shown that robust

(adversarially-trained) models tend to have better feature representations than

their standard counterparts. Thus, for robust models, gradient descent in pixel

space is already sufficient to find semantically-meaningful feature visualizations.

B.3.2 LIME

Image superpixels. Traditionally, LIME is used to obtain per-instance explana-

tions. That is, to identify the superpixels in a given test image that are most re-

sponsible for the model’s prediction. However, in our setting, we would like to

obtain a global understanding of deep features, independent of specific test exam-

ples. Thus, we use the following two step-procedure to obtain LIME-based feature

interpretations:

1. Rank test set images based on how strongly they activate the feature of in-

terest. Then select the top-k (or conversely bottom-k) images as the most

prototypical examples for positive (negative) activation of the feature.

2. Run LIME on each of these examples to identify relevant superpixels. At

a high level, this involves performing linear regression to map image su-

perpixels to the (normalized) activation of the deep feature (rather than the

6https://github.com/tensorflow/lucid
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Algorithm 2 Word cloud feature visualization for language models for a vocabu-
lary V, a corpus wij for i, j ∈ [m]× [n] of m sentences with n words

1: for i = 1 . . . m do
2: βi = LIME(wi) // generate LIME explanation for each sentence
3: end for
4: for w ∈ V do
5: Kw = ∑ij:w=wij

1 // count number of occurances of word
6: β̂w = 1

Kw
∑ij:w=wij

βij // calculate average LIME explanation of word
7: end for
8: return Wordcloud(β, V) // generate word cloud for vocabulary V weighted by β

probability of a specific class as is typical).

Due to space constraints, we use k = 1 in all our figures. However, in our anal-

ysis, we found the superpixels identified with k = 1 to be representative of those

obtained with higher values.

Word clouds for language models For language models, off-the-shelf neuron

interpretability tools are somewhat more limited than their vision counterparts.

Of the tools listed above, only LIME is used in the language domain to produce

sentence-specific explanations. Similar to our methodology for vision models, we

apply LIME to a given deep feature representation rather than the output neuron.

However, rather than selecting prototypical images, we instead aggregate LIME

explanations over the entire validation set.

Specifically, for a given feature, we average the LIME weighting for each word

over all of the sentences that the word appears in. This allows us to identify words

that strongly activate/deactivate the given feature globally over the entire valida-

tion set, which we then visualize using word clouds. In practice, since a word

cloud has limited space, we provide the top 30 most highly weighted words to the

word cloud generator. The exact procedure is shown in Algorithm 2, and we use

the word cloud generator from https://github.com/amueller/word_cloud.
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B.4 Datasets and Models

B.4.1 Datasets

We perform our experiments on the following widely-used vision and language

datasets.

∙ ImageNet-1k [Den+09; Rus+15].

∙ Places-10: A subset of Places365 [Zho+17] containing the classes “airport ter-

minal”, “boat deck”, “bridge”, “butcher’s shop”, “church-outdoor”, “hotel

room”, “laundromat”, “river”, “ski slope” and “volcano”.

∙ Stanford Sentiment Treebank (SST) [Soc+13] with labels for “positive” and

“negative” sentiment.

∙ Toxic Comments [WTD17] with labels for “toxic”, “severe toxic”, “obscene”,

“’threat”, “insult”, and ‘identity hate”.

Balancing the comment classification task. The toxic comments classification

task has a highly unbalanced test set, and is largely skewed towards non-toxic

comments. Consequently, the baseline accuracy for simply predicting the non-

toxic label is often upwards of 90% on the unbalanced test set. To get a more

interpretable and usable performance metric, we instead randomly subsample the

test set to be balanced with 50% each of toxic and non-toxic comments from the

corresponding toxicity category. Thus, the baseline accuracy for random chance

for toxic comment classification in our experiments is 50%.

B.4.2 Models

We consider ResNet-50 [He+16] classifiers and BERT [Dev+18] models for vision

and language tasks respectively. In the vision setting, we consider both standard

and robust models [Mad+18].
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Vision. All the models are trained for 90 epochs, weight decay 1e-4 and mo-

mentum 0.9. We used a batch size of 512 for ImageNet and 128 for Places-10.

The initial learning rate is 0.1 and is dropped by a factor of 10 every 30 epochs.

The robust models were obtained using adversarial training with a `2 PGD adver-

sary [Mad+18] with ε = 3, 3 attack steps and attack step size of 2×ε
3 .

Language. The language models are all pretrained and available from the Hug-

gingFace7 library, and use the standard BERT base architecture.

B.5 Evaluating sparse decision layers

Selecting a single sparse model

As discussed in Section 3.3.1, the elastic net yields a sequence of linear models—

with varying accuracy and sparsity—also known as the regularization path. In

practice, performance of these models on a hold-out validation set can be used to

guide model selection based on application-specific criteria. In our experiments,

we set aside 10% of the train set for this purpose.

Our model selection thresholds. For both vision and NLP tasks, we use the val-

idation set to identify the sparsest decision layer, whose accuracy is no more than

5% lower on the validation set, compared to the best performing decision layer. As

discussed in the Chapter 3, these thresholds are meant to be illustrative and can be

varied depending on the specific application. We now visualize the per-class dis-

tribution of deep features for the sparse decision layers selected in Table 3.1. (We

omit the NLP tasks as they entail only two classes.)

7Specifically, the sentiment classification model is from https://huggingface.co/barissayil/
bert-sentiment-analysis-sst and the toxic comment models (both Toxic-BERT and Debiased-
BERT) come from https://huggingface.co/unitary/toxic-bert.
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B.5.1 Additional comparisons of features

In Figure B-4, we visualize additional deep features used by BERT models with

sparse decision layers for the SST sentiment analysis task. Figures B-5- B-7 show

feature interpretations of deep features used by ResNet-50 classifiers with sparse

decision layers trained on ImageNet and Places-10. Due to space constraints, we

limit the feature interpretations for vision models to (at most) five randomly-chosen

deep features used by the dense/sparse decision layer in Figure 3-6b and Fig-

ures B-5- B-7. To allow for a fair comparison between the two decision layers, we

sample these features as follows. Given a target class, we first determine the num-

ber of deep features (k) used by the sparse decision layer to recognize objects of

that class. Then, for both decision layers, we randomly sample five deep features

from the top-k highest weighted ones (for that class).

219



Language models
#6

70
W

=0
.1

50
3

Positive sentiment Negative sentiment

#3
95

W
=-

0.
12

27
#5

52
W

=-
0.

08
45

#1
2

W
=0

.0
75

6
#3

52
W

=-
0.

00
82

(a)

#7
55

W
=0

.1
91

9

Positive sentiment Negative sentiment

#7
11

W
=0

.1
65

4
#2

82
W

=0
.1

50
9

#6
21

W
=0

.1
41

6
#4

13
W

=-
0.

13
94

(b)

Po
sit

iv
e 

se
nt

im
en

t

#535 #364 #5 #590

Ne
ga

tiv
e 

se
nt

im
en

t

(c)

Figure B-4: Additional SST word clouds visualizing the positive and negative ac-
tivations for the top 5 features of the (a) sparse decision layer, (b) dense decision
layer, and (c) additional randomly-selected features (positive or negative weight-
ing is according to the dense decision layer). While the sparse model focuses on
features that have clear positive and negative semantic meaning in their word
clouds, the dense model and the other randomly-selected features are noticeably
more mixed in sentiment.
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Vision models
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Figure B-5: Deep features used by a standard (ε = 0) ResNet-50 with dense (middle)
and sparse decision layers (bottom) for a randomly-chosen ImageNet class. For
each (deep) feature, we show its corresponding linear coefficient in the decision
layer (W), along with feature interpretations in the form of feature visualizations
(FV) and LIME superpixels.
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Figure B-6: Deep features used by a adversarially-trained (ε = 3) ResNet-50 with
dense (middle) and sparse decision layers (bottom) for a randomly-chosen ImageNet
class. For each (deep) feature, we show its corresponding linear coefficient in the
decision layer (W), along with feature interpretations in the form of feature visual-
izations (FV) and LIME superpixels.
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Figure B-7: Deep features used by a adversarially-trained (ε = 3) ResNet-50 with
dense (middle) and sparse decision layers (bottom) for a randomly-chosen Places-
10 class. For each (deep) feature, we show its corresponding linear coefficient in
the decision layer (W), along with feature interpretations in the form of feature
visualizations (FV) and LIME superpixels.
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This HIT is part of an MIT scientific research project conducted by MadryLab. Your decision to complete this HIT is voluntary. There is no way for us to identify you. The
only information we will have, in addition to your responses, is the time at which you completed the survey. The results of the research may be presented at scientific
meetings or published in scientific journals. Clicking on the 'SUBMIT' button on the bottom of this page indicates that you are at least 18 years of age and agree to
complete this HIT voluntarily.

Which image matches the patterns best?

We have trained an AI to recognize objects of one particular type (e.g., "car") in real world images. To detect
objects of this type, our AI looks for five patterns (shown below) in a given image. Your task is to (1) inspect
the patterns and (2) from a given set of images, choose the one that you think is most likely to match the
object that the AI is looking for.

Although all five patterns are used by the AI to detect objects of this type, their relative importance might
vary. The actual importance of each pattern to the AI (on a scale of 0-100) is displayed below the pattern
itself. Note that a higher value indicates greater importance.

Patterns

From the images below, choose the one that according to you is most
likely to match the object the AI is looking for

How confident are you about your selections?

Importance=27 Importance=23 Importance=22 Importance=18 Importance=10

Best match Best match Best match

0 (no confidence) 1 (slightly confident)
2 (moderately

confident)
3 (strongly confident)

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure B-8: Sample MTurk task to assess how amenable models with dense/sparse
decision layers are to human understanding.

B.5.2 Human evaluation

We now detail the setup of our MTurk study from Section 3.4.3. For our analysis,

we use a ResNet-50 that has been adversarially-trained (ε = 3) on the ImageNet

dataset. To obtain a sparse decision layer, we then train a sequence of GLMs via

elastic net (cf. Section 3.3.1) on the deep representation of this network. Based on a

validation set, we choose a single sparse decision layer—with 57.65% test accuracy

and 39.18 deep features/class on average.

Task setup Recall that our objective is to assess how effectively annotators are

able to simulate the predictions of a model when they are exposed to its (dense or
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sparse) decision layer. To this end, we first randomly select 100 ImageNet classes.

Then, for each such ‘target class’ and decision layer (dense/sparse) pair, we created

a task by:

1. Selecting deep features: We randomly-select five deep features utilized by

the decision layer to recognize objects of the target class. To make the com-

parison more fair, we restrict our attention to deep features that are assigned

significant weight (>5% of the maximum) by the corresponding model. We

then present these deep features to annotators via feature visualizations. Also

shown alongside are the (normalized and rescaled) linear coefficients for each

deep feature.

2. Selecting test inputs: We rank all the test set ImageNet images based on the

probability assigned by the corresponding model (i.e., the ResNet-50 with

a dense/sparse decision layer) to the target class. We then randomly select

three images, such that they lie in the following percentile ranges in terms

of target class probability: (90, 95), (98, 99) and (99.99, 100). Note that since

ImageNet has 1000 diverse object categories, the target class probability of

a randomly sampled image from the dataset is likely to be extremely small.

Thus, fixing the percentiles as described above allows us to pick image candi-

dates that are: (i) somewhat relevant to the target class; and (ii) of comparable

difficulty for both types of decision layers.

Finally, annotators are presented with the deep features chosen above—describing

them as patterns used by an AI model to recognize objects of a certain (unspeci-

fied) type. They are then asked to pick one of the image candidates (randomly-

permuted) that best matches the patterns. Annotators are also asked to mark their

confidence on a likert scale. A sample task is shown in Figure B-8.

For each target label-decision layer pair, we obtain 10 tasks by repeating the

random selection process above. This results in a total of 2000 tasks (100 classes x

2 models x 10 tasks/(class, model)). Each task is presented to 5 annotators, com-

pensated at $0.04 per task.
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Quality control For each task, we aggregated results over all the annotators.

While doing so, we eliminated individual instances where a particular annota-

tor made no selections. We also completely eliminated instances corresponding to

annotators who consistently (>80% of the times) left the tasks blank. Finally, while

reporting our results, we only keep tasks for which we have selections from at least

two (of five) annotators. We determine the final selection based on a majority vote

over annotators, weighted by their confidence.

Results In Table B.12, we report annotator accuracy—in terms of their ability

to correctly identify the image with the highest target class probability as per

the model. We also present a break down of the overall accuracy depending on

whether or not the “correct image” is from the target class. We find that sparsity

significantly boosts annotators’ ability to intuit (simulate) the model—by nearly

30%. In fact, their performance on models with dense decision layers is close to

chance (33%). Note also that for models with sparse decision layers, annotators

are able to correctly simulate the predictions even when the correct image belongs

to a different class.

Accuracy (%) Dense Sparse

Overall 35.61 ± 3.09 63.02 ± 3.02
From target class 44.02 ± 5.02 72.22 ± 4.74

From another class 30.64 ± 3.65 57.33 ± 4.00

Table B.12: Accuracy of annotators at simulating the model given explanations
from the dense and sparse classifiers.

B.6 Model biases and spurious correlations

B.6.1 Toxic comments

In this section, we visualize the word clouds for the toxic comment classifiers

which reveal the biases that the model has learned from the data. Note that these

figures are heavily redacted due to the nature of these comments.
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In Figure B-9, we visualize the top five features for the sparse (Figure B-9a) and

dense (Figure B-9b) decision layers of Toxic-Bert. We note that more of the words

in the sparse decision layer refer to identity groups, whereas this is less clear in the

dense decision layer. Even if we expand our interpretation to the top 10 neurons

with the largest weight, only 7.5% of the words refer to identity groups for the

model with a dense decision layer.

In Figure B-10, we perform a similar visualization as for the Toxic-BERT model,

but for the Debiased-BERT model. The word clouds for the sparse decision layer

(Figure B-10a) provide evidence that the Debiased-BERT model no longer uses

identity words as prevalently for identifying toxic comments. However, it is es-

pecially clear from the word clouds for the sparse decision layer that a significant

fraction of the non-toxic word clouds contain identity words. This suggests that the

model now uses these identity words as strong evidence for non-toxicity, which

can be also reflected to a lesser degree in the wordclouds for the dense decision

layer (Figure B-10b).

(a) (b)

Figure B-9: Word cloud visualizations of the top 5 deep features in Toxic-BERT for
the (a) sparse decision layer and (b) dense decision layer
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(a) (b)

Figure B-10: Word cloud visualizations of the top 5 deep features in Debiased-
BERT for the (a) sparse decision layer and (b) dense decision layer

B.6.2 ImageNet

Human study

We now detail the setup of our MTurk study from Section 3.5.1. For our analysis,

we use a standard ResNet-50 trained on the ImageNet dataset—with the default

(dense) decision layer, as well as its sparse counterpart from Figure 3.1.

Task setup. This task is designed to semi-automatically identify learned correla-

tions in classifiers with dense/sparse decision layers. To this end, we randomly-

select 1000 class pairs from each model, such that the classes share a common deep

feature in the decision layer. We only consider features to which the model assigns

a substantial weight for both classes (>5% maximum weight). Then, for each class

(from the pair), we select the three images that maximally activate the deep feature

of interest. Doing so allows us to identify the most prototypical images from each

class for the given deep feature.

We then present annotators on MTurk with the six chosen images, grouped by
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Do you see a common pattern in these images?

You will be shown images belonging to two object categories: "marimba/xylophone" and "ice lolly/lolly".
Your task is to inspect the images, judge whether you can see a prominent common pattern between all
these images, and then answer the questions below.

Inspect the following images

Question 1: In these six images, do you see a prominent common pattern?
An example of such a pattern could be "red color" or "mountains". If you do not see a distinct common pattern between the images,
answer no.

Question 2: How confident are you about your selections in Question 1?

Question 3: Describe the pattern using a word or a short phrase (less than 5 words;
skip if your answer to question 1 was No.)
An example of such a description could be "red color" or "mountains". Skip if your answer to question 1 was no.

Question 4: Is this pattern a part of "marimba/xylophone"s or is it present in the
surroundings? (Skip if your answer to question 1 was No.)
For e.g., the pattern "wheel" is a part of the object "car", whereas the pattern "road" is a part of its surroundings. Similarly, the pattern
"leg" is a part of the object "chair", whereas the pattern "pillow" is part of its surroundings.

Question 5: Is this pattern a part of "ice lolly/lolly"s or is it present in the
surroundings? (Skip if your answer to question 1 was No.)
For e.g., the pattern "wheel" is a part of the object "car", whereas the pattern "road" is a part of its surroundings. Similarly, the pattern
"leg" is a part of the object "chair", whereas the pattern "pillow" is part of its surroundings.

marimba/xylophone ice lolly/lolly

Yes No

0 (no confidence) 1 (slightly confident)
2 (moderately

confident)
3 (strongly confident)

A short sentence or a few keywords

Part of object Part of surroundings

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure B-11: Sample MTurk task to diagnose (spurious) correlations in deep net-
works via their dense/sparse decision layers.

class along with the label. We ask them: (a) whether the images share a common

pattern; (b) how confident they are about this selection on a likert scale; (c) to pro-

vide a short free text description of the pattern; and (d) for each class, to determine

if the pattern is part of the class object or the surrounding. A sample task is shown

in Figure B-11. Each task was presented to 5 annotators, compensated at $0.07 per

task.

Quality control For each task, we aggregated results over all the annotators.

While doing so, we eliminated individual instances where a particular annota-

tor made no selections. We also completely eliminated instances corresponding to

annotators who consistently (>80% of the time) left the task blank. Finally, while

reporting our results, we only keep tasks for which we have selections from at least

three (of five) annotators. We determine the final selection based on a majority vote

over annotators, weighted by their confidence.
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Algorithm 3 Counterfactual generation for a sentence of n words x = (x1, . . . xn),
a deep encoder h : Rn → Rm, and a linear decision layer with coefficients (w, b).

1: z = h(x) // calculate deep features
2: y = arg maxy wyz + by // calculate prediction
3: Z+, Z− = ∅, ∅ // initialize candidate word substitutions
4: for i = 1 . . . m do
5: for j = 1 . . . n do
6: if xj ∈WordCloud+(zi) ∧ wyi > 0 then
7: Z+ = Z+ ∪ {(xj, zi)} // candidate word substitution with positive weight and

positive activation
8: else if xj ∈WordCloud−(zi) ∧ wyi < 0 then
9: Z− = Z− ∪ {(xj, zi)} // candidate word substitution with negative weight

and negative activation
10: end if
11: end for
12: end for
13: if |Z+ ∪ Z−| = 0 then
14: return-1 // No overlapping words found for counterfactual generation
15: end if
16: Randomly select (xj, zi) ∈ Z+ ∪ Z− // select a random word to substitute and its

corresponding feature
17: if (xj, zi) ∈ Z+ then
18: Randomly select x̂j ∈ WordCloud−(zi) // if positive, select a random negative

word
19: else if (xj, zi) ∈ Z− then
20: Randomly select x̂j ∈ WordCloud+(zi) // if negative, select a random positive

word
21: end if
22: x̂ = (x1, . . . , xj−1, x̂j, xj+1, . . . , xn) // perform word substitution
23: return x̂ // return generated counterfactual

B.7 Counterfactual experiments

B.7.1 Language counterfactuals

We describe in detail how to generate counterfactuals from the word cloud inter-

pretations and the linear decision layer. The complete algorithm can be found in

Algorithm 3, which we describe next.

Let x = (x1, . . . , xn) be a sentence with n words, z = f (s) ∈ Rm be the deep

231



encoding of x, and y = arg maxy wyz + by ∈ [k] be the model’s prediction of x for

a given decision layer with coefficients (w, b). Our goal is to generate a counter-

factual that can flip the model’s prediction y to some other class. Furthermore, let

WordCloud+(zi) and WordCloud−(zi) be the LIME-based word clouds represent-

ing the positive and negative activations of ith deep feature, zi. Then, counterfac-

tual generation in the language setting involves the following steps:

1. Find all deep features which use words in x as evidence for the predicted

label y (according to the word clouds). Specifically, calculate Z = Z− ∪ Z+

where

Z+ ={(xj, zi) : ∃j s.t. xj ∈WordCloud+(zi) ∧ wyi > 0} (B.3)

Z− ={(xj, zi) : ∃j s.t. xj ∈WordCloud−(zi) ∧ wyi < 0} (B.4)

2. Randomly select a deep feature (and its word) (xj, zi) ∈ Z

3. If zi ∈ Z+, randomly select a word x̂ ∈ WordCloud−(zi). Otherwise, if

zi ∈ Z−, randomly select a word x̂j ∈WordCloud+(zi).

4. Perform the word substitution xj → x̂j to get the counterfactual sentence,

x̂ = (x0, . . . , xj−1, x̂j, xj+1, . . . , xn).

Note that it is possible for there to be no features that use words in a given

sentence as evidence for its prediction, which results in no candidate word substi-

tutions (i.e. ‖Z‖ = 0). Consequently, it is possible for a sentence to have a counter-

factual generated from the dense decision layer but not in the sparse decision layer

(or vice versa). For our sentiment counterfactual experiments, we restrict our anal-

ysis to sentences which have counterfactuals in both the sparse and dense decision

layers. However, we found that similar results hold if one considers all possible

counterfactuals for each individual model instead.
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B.7.2 ImageNet counterfactuals

In Figure B-12, we illustrate our pipeline for counterfactual image generation. Our

starting point is a particular spurious correlation (between a data pattern and a

target class) identified via the MTurk study in Section 3.5.1. We then select im-

ages from other ImageNet classes to add the spurious pattern to, and annotate the

relevant region where it should be added. We obtain the spurious patterns by au-

tomatically scraping search engines. Finally, we combine the original images with

the retrieved spurious pattern, using the mask as the weighting, to obtain the de-

sired counterfactual images. These images are then supplied to the model, to test

whether the addition of the spurious input pattern indeed fools the model into

perceiving the counterfactuals as belonging to the target class.

combine

Figure B-12: Image counterfactual generation process. We start with a correlation
identified during our MTurk study in Section 3.5.1—for example, the model asso-
ciates “water” with the class “snorkel”. To generate the counterfactuals shown in
Figure 3-9a, we first select images from other ImageNet classes. We then manually
annotate regions in these images to replaces with “water” bacgrounds obtained
via automated image search on the Internet. Finally, we additively combine the
“water” backgrounds and the original images, weighted by the mask, to obtain
the resulting counterfactual inputs.
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B.8 Validating ImageNet misclassifications

B.8.1 Human study

We now detail the setup of our MTurk study from Section 3.4.3. For our analysis,

we use a ResNet-50 that has been adversarially-trained (ε = 3) on the ImageNet

dataset. To obtain a sparse decision layer, we then train a sequence of GLMs via

elastic net (cf. Section 3.3.1) on the deep representation of this network. Based on a

validation set, we choose a single sparse decision layer—with 57.65% test accuracy

and 39.18 deep features/class on average.

Task setup. In this task, our goal is to understand if annotators can identify data

patterns that are responsible for misclassifications. To this end, we start by identi-

fying deep features that are strongly activated for misclassified inputs.

For any misclassified input x with ground truth label l and predicted class p,

we can compute for every deep feature fi(x):

γi = W[p, i] · fi(x)−W[l, i] · fi(x) (B.5)

where W is the weight matrix of the decision layer. Intuitively, this score measures

the extent to which a deep feature contributes to the predicted class, relative to

its contribution to the ground truth class. Then, sorting deep features based on

decreasing/increasing values of this score, gives us a measure of how important

each of them are for the predicted/ground truth label. Let us denote fp as the deep

feature with the highest score γi and fl as the one with the lowest.

We find that for the robust ResNet-50 model with a sparse decision layer, the

single top deep feature based on this score ( fp) alone is responsible for 26% of

the misclassifications (5673 examples in all). That is, for each of these examples,

simply turning fp = 0 flips the model’s prediction from p to l. We henceforth refer

to these deep features (one per misclassified input) as “problematic” features.

For our task, we randomly subsample 1330 of the aforementioned 5673 misclas-
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Identify the patterns that match the given image

Please inspect the image and patterns below, and answer the following
questions.

Task 1: Select all the patterns that match the image shown on the left.
Please select at least one pattern. Select both patterns only in cases where you strongly believe that they
are both visually similar to the image.

Task 2: Which of the two patterns matches the given image better according to you?
(Answer only if you selected both patterns in Task 1)

Task 3: How confident are you about your selections?

Matches image

Matches image

 

Best match

 

Best match

0 (no confidence) 1 (slightly confident)
2 (moderately

confident)
3 (strongly confident)

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure B-13: Sample MTurk task to identify input patterns responsible for the mis-
classifications in deep networks with the help of their (sparse) decision layers.

sified inputs. We then construct MTurk tasks, wherein annotators are presented

with one such input (without any information about the ground truth or predicted

labels), along with the feature visualizations for two deep features. These two fea-
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tures are either (with equal probability):

∙ ( fl, fp): The deep features which (relatively) contribute most to the ground

truth and predicted class respectively.

∙ ( fl, fr): The deep feature which (relatively) contributes most to the ground

truth class, along with a randomly-chosen one (out of the 2048 possible deep

features). This is meant to serve as a control.

Annotators are then asked: (a) to select all the patterns (i.e., feature visualiza-

tion of a deep feature) that match the image; (b) to select the one that best matches

the image (if they selected both in (a)); (c) to mark their confidence on a likert scale.

A sample task is shown in Figure B-13. Each task was presented to 5 annotators,

compensated at $0.03 per task.

Note that, in the case where the ground truth label for each image is actually

pertinent to it and that model relies on semantically-meaningful deep features for

every class, we would expect annotators to select fl to match the image 100% of

the time. On the other hand, we would expect that annotators rarely select fr to

match the image.

Quality control For each task, we aggregated results over all the annotators.

While doing so, we eliminated individual instances where a particular annota-

tor made no selections. We also completely eliminated instances corresponding to

annotators who consistently (>80% of the times) left the task blank. Finally, while

reporting our results, we only keep tasks for which we have selections from at least

two (of five) annotators. We determine the final selection based on a majority vote

over annotators, weighted by their confidence.
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Appendix C

Details for Chapter 4

C.1 Experimental setup

C.1.1 Datasets

We perform our analysis on the ImageNet dataset [Rus+15]. A full description of

the data creation process can be found in Deng et al. [Den+09] and Russakovsky et

al. [Rus+15]. For the purposes of our human studies, we use a random subset of the

validation set—10,000 images chosen by sampling 10 random images from each of

the 1,000 classes. (Model performance on this subset closely mirrors overall test

accuracy, as shown in Figure 4-3b.) In our analysis, we refer to the original dataset

labels as “ImageNet labels” or “IN labels”.

C.1.2 Models

We perform our evaluation on various standard ImageNet-trained models—see

Appendix Table C.1 for a full list. We use open-source pre-trained implementa-

tions from github.com/Cadene/pretrained-models.pytorch and/or github.com/

rwightman/pytorch-image-models/tree/master/timm for all architectures.
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Model Top-1 Top-5

alexnet [KSH12] 56.52 79.07
squeezenet1_1 [Ian+16] 57.12 80.13
squeezeNet1_0 [Ian+16] 57.35 79.89
vgg11 [SZ15] 68.72 88.66
vgg13 [SZ15] 69.43 89.03
inception_v3 [Sze+16] 69.54 88.65
googlenet [Sze+15] 69.78 89.53
vgg16 [SZ15] 71.59 90.38
mobilenet_v2 [San+18] 71.88 90.29
vgg19 [SZ15] 72.07 90.74
resnet50 [He+16] 76.13 92.86
efficientnet_b0 [TL19] 76.43 93.05
densenet161 [Hua+17] 77.14 93.56
resnet101 [He+16] 77.37 93.55

Model Top-1 Top-5

efficientnet_b1 [TL19] 78.38 94.04
wide resnet50_2 [ZK16] 78.47 94.09
efficientnet_b2 [TL19] 79.81 94.73
gluon_resnet152_v1d [He+19] 80.49 95.17
inceptionresnetv2 [Sze+17] 80.49 95.27
gluon_resnet152_v1s [He+19] 80.93 95.31
senet154 [HSS18] 81.25 95.30
efficientnet_b3 [TL19] 81.53 95.65
nasnetalarge [Zop+18] 82.54 96.01
pnasnet5large [Liu+18] 82.79 96.16
efficientnet_b4 [TL19] 83.03 96.34
efficientnet_b5 [TL19] 83.78 96.71
efficientnet_b6 [TL19] 84.13 96.96
efficientnet_b7 [TL19] 84.58 97.00

Table C.1: Models used in our analysis with the corresponding ImageNet top-1/5
accuracies.
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C.2 Obtaining Image Annotations

Our goal is to use human annotators to obtain labels for each distinct object in

ImageNet images (provided it corresponds to a valid ImageNet class). To make

this classification task feasible, we first identify a small set of relevant candidate

labels per image to present to annotators.

C.2.1 Obtaining candidate labels

As discussed in Section 4.4.1, we narrow down the candidate labels for each image

by (1) restricting to the predictions of a set of pre-trained ImageNet models, and

then (2) repeating the CONTAINS task on human annotators using the labels from

(1) to identify the most reasonable ones.

Pre-filtering using model predictions

We use the top-5 predictions of models with varying ImageNet (validation) ac-

curacies (10 in total): alexnet, resnet101, densenet161, resnet50, googlenet,

efficientnet_b7 inception_v3, vgg16, mobilenet_v2, wide_resnet50_2 (cf. Ta-

ble C.1) to identify a set of potential labels. Since model predictions tend to overlap,

we end up with ∼ 14 potential labels per image on average (see full histogram in

Figure C-1). We always include the ImageNet label in the set of potential labels,

even if it is absent in all the model predictions.
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Figure C-1: Distribution of labels per image obtained from the predictions of
ImageNet-trained models (plus the ImageNet label). We present these labels (in
separate grids) to annotators via the CONTAINS task (cf. Section 4.4.1)to identify a
small set of relevant candidate labels for the classification task in Section 4.4.2.
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Multi-label validation task

We then use human annotators to go through these potential labels and identify

the most reasonable ones via the CONTAINS task. Recall that in CONTAINS task,

annotators are shown a grid of images and asked to select the ones that contain

an object corresponding to the specified query label. In our case, each image ap-

pears in multiple such grids—one for each potential label. By presenting these

grids to multiple annotators, we can then obtain a selection frequency for every

image-potential label pair, i.e., the number of annotators that perceive the label as

being contained in the image (cf. Figure 4-6). Using these selection frequencies, we

identify the most relevant candidate labels for each image.

Grid setup. The grids used in our study contains 48 images, at least 5 of which

are controls—obtained by randomly sampling from validation set images labeled

as the query class. Along with the images, annotators are provided with a de-

scription of the query label in terms of (a) WordNet synsets and (b) the relevant

Wikipedia link—see Figure C-2 for an example. (Our MTurk interface is based on

a modified version of the code made publicly available by Recht et al. [Rec+19b]1.)

We find that a total of 3, 934 grids suffice to obtain selection frequencies for all 10k

images used in our analysis (w.r.t. all potential labels). Every grid was shown to 9

annotators, compensated $0.20 per task.

Quality control. We filtered low-quality responses on a per-annotator and per-

task basis. First, we completely omitted results from annotators who selected less

than 20% of the control images on half or more of the tasks they completed: a total

of 10 annotators and the corresponding 513 tasks. Then we omitted tasks for which

less than 40% of the controls were selected: at total of 3,104 tasks. Overall, we omit-

ted 3,617 tasks in total out of the total 35,406. As a result, the selection frequency

of some image-label pairs will be computed with fewer than 9 annotators.

1https://github.com/modestyachts/ImageNetV2
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Figure C-2: Sample interface of the CONTAINS task we use for label validation:
annotators are shown a grid of 48 images and asked to select all images that corre-
spond to a specific label (Section 4.4.1).

Final candidate label selection

We then obtain the most relevant candidate labels by selecting the potential labels

with high human selection frequency. To construct this set, we consider (in order):

1. The existing ImageNet label, irrespective of its selection frequency.

2. All the highly selected potential labels: for which annotator selection fre-

quency is at least 0.5.

3. All potential labels with non-zero selection frequency that are semantically

very different from the ImageNet label—so as to include labels that may cor-

respond to different objects. Concretely, we select candidate labels that are

more than 5 nodes away from the ImageNet label in the WordNet graph.
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4. If an image has fewer than 5 candidates, we also consider other potential

labels after sorting them based on their selection frequency (if non-zero).

5. To keep the number of candidates relatively small, we truncate the result-

ing set size to 6 if the excess labels have selection frequencies lower than the

ImageNet label, or the ImageNet label itself has selection frequency ≤ 1/8.

During this truncation, we explicitly ensure that the ImageNet label is re-

tained.

In Figure C-3, we visualize the distribution of number of candidate labels per im-

age, over the set of images.
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Figure C-3: Distribution of the number of candidate labels used per image pre-
sented to annotators during the classification task in Section 4.4.2.

C.2.2 Image classification

The candidate labels are then presented to annotators during the CLASSIFY task (cf.

Section 4.4.2). Specifically, annotators are shown images, and their corresponding

candidate labels and asked to select: a) all valid labels for that image, b) a label

for the main object of the image—see Figure C-4 for a sample task interface. We

instruct annotators to pick multiple labels as valid, only if they correspond to dif-

ferent objects in the image and are not mutually exclusive. In particular, in case of

confusion about a specific object label, we explicitly ask them to pick a single label

making their best guess. Each task was presented to 9 annotators, compensated at

$0.08 per task.
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Figure C-4: Screenshot of a sample image annotation task. (Section 4.4.2). Annota-
tors are presented with an image and multiple candidate labels. They are asked to
select all valid labels (selecting only one of mutually exclusive labels in the case of
confusion) and indicate the main object of the image.

Images included. We only conduct this experiment on images that annotators

identified as having at least one candidate label outside the existing ImageNet la-

bel (based on experiment in Appendix C.2.1). To this end, we omitted images for

which the ImageNet label was clearly the most likely: out of all the labels seen by

6 or more of the 9 annotators, it had more than double the selection frequency of

any other class. Note that since we discard some tasks as part of quality control,

it is possible that for some image-label pairs, we have the results of fewer than 9

annotators. Furthermore, we also omitted images which were not selected by any

annotator as containing their ImageNet label (150 images total)—cf. Appendix Fig-

ure C-8 for examples. These likely corresponds to labeling mistakes in the dataset
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creation process and do not reflect the systemic error we aim to study. The re-

maining 6, 761 images that are part of our follow-up study have at least 1 label, in

addition to the ImageNet label, that annotators think could be valid.

Quality control. Performing stringent quality checks for this task is challenging

since we do not have ground truth annotations to compare against—which was

after all the original task motivation. Thus, we instead perform basic sanity checks

for quality control—we ignore tasks where annotators did not select any valid la-

bels or selected a main label that they did not indicate as valid. In addition, if the

tasks of specific annotators are consistently flagged based on these criteria (more

than a third of the tasks), we ignore all their annotations. Overall, we omitted 1,269

out of the total 59,580 tasks.

The responses of multiple annotators are aggregated as described in Section 4.4.2.

C.3 Additional experimental results

C.3.1 Multi-object Images

We observe that annotators tend to agree on the number of objects present—see

Figure C-5.
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Figure C-5: Annotator agreement for multi-object images. Recall that we deter-
mine the number of objects in an image based on a majority vote over annotators.
Here, we define “confidence” as the fraction of annotators that make up that ma-
jority, relative to the total number of annotators shown the image (cf. Section 4.4.2).
We visualize the distribution of annotator confidence, as a function of the number
of image objects.
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Top-5 accuracy in the multi-label context. The issue of label ambiguity that can

arise in multi-object images was noted by the creators of the ILSVRC challenge [Rus+15].

To tackle this issue, they proposed evaluating models based on top-5 accuracy. Es-

sentially, a model is deemed correct if any of the top 5 predicted labels match the

ImageNet label. We find that model top-5 accuracy is much higher than top-1 (or

even our notion of multi-label) accuracy on multi-object images—see Figure C-6.

However, a priori, it is not obvious whether this increase is actually because of

adjusting for model confusion between distinct objects. In fact, one would expect

that properly accounting for such multi-object confusions should yield numbers

similar to (and not markedly higher than) top-1 accuracy on single-object images.

To get a better understanding of this, we visualize the fraction of top-5 cor-

rections—images for which the ImageNet label was not the top prediction of the

model, but was in the top 5—that correspond to different objects in the image.

Specifically, we only consider images where the top model prediction and Ima-

geNet label were selected by annotators as: (a) present in the image and (b) corre-

sponding to different objects. We observe that the fraction of top-5 corrections that

correspond to multi-object images is relatively small—about 20% for more recent

models. This suggests that top-5 accuracy may be overestimating model perfor-

mance and, in a sense, masking model errors on single objects. Overall, these

findings highlight the need for designing better performance metrics that reflect

the underlying dataset structure.

C.3.2 Bias in label validation

Potential biases in selection frequency estimates. In the course of obtaining

fine-grained image annotations, we collect selection frequencies for several po-

tential image labels (including the ImageNet label) using the CONTAINS task (cf.

Section 4.4.1). Recall however, that during the ImageNet creation process, every

image was already validated w.r.t. the ImageNet label (also via the CONTAINS

task) by a different pool of annotators, and only images with high selection fre-

quency actually made it into the dataset. This fact will result in a bias for our new
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Figure C-6: A closer look at top-5 accuracy: we visualize top-1, top-5 and multi-
label (cf. Section 4.5.1) on multi-object images in ImageNet. We also measure the
fraction of top-5 corrections (ImageNet label is not top model prediction, but is
among top 5) that correspond to multi-object confusions—wherein the ImageNet
label and top prediction belong to distinct image objects as per human annotators.
We see that although top-5 accuracy is much higher than top-1, even for multi-
object images, it may be overestimating model performance. In particular, a rela-
tively small fraction of top-5 corrections actually correspond to the aforementioned
multi-object images.

selection frequency measurements [Eng+20]. At a high level, if we measure a low

selection frequency for the ImageNet label of an image, it is more likely that we

are observing an underestimate, rather than the actual selection frequency being

low. In order to understand whether this bias significantly affects our findings,

we reproduce the relevant plots in Figure C-7 using only a subset of workers (this

should exacerbate the bias allowing us to detect it). We find however, that the dif-

ference is quite small, not changing any of the conclusions. Moreover, since most

of our analysis is based on the per-image annotation task for which this specific

bias does not apply, we can effectively ignore it in our study.

C.3.3 Mislabeled examples

In the course of our human studies in Section 4.4.1, we also identify a set of possibly

mislabeled ImageNet images. Specifically, we find images for which:

∙ Selection frequency for the ImageNet label is 0, i.e., no annotator selected the

label to be contained in the image (cf. Section 4.4.1). We identify 150 (of 10k)

such images— cf. Appendix Figure C-8 for examples.
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Figure C-7: Effect of subsampling annotator population (5 instead of 9 annotators):
(a) Number of labels annotators consider valid determined based on the selection
frequency of a label relative to that of the ImageNet label. Even in this annotator
subpopulation, for >70% of images, another label is still selected at least half as
often as they select the ImageNet label (leftmost). (b) Number of labels that at least
one (of five) annotators selected as valid for an image (cf. Section 4.4.1) versus the
number of objects in the image (cf. Section 4.4.2). (Dot size is proportional to the
number of images in each 2D bin.) Even when annotators consider the image as
containing only a single object, they often select multiple labels as valid.

∙ The ImageNet label was not selected at all (for any object) during the de-

tailed image annotation phase in Section 4.4.2. We identify 119 (of 10k) such

images— cf. Appendix Figure C-9 for examples.

Figure C-8: Possibly mislabeled images: human selection frequency for the Im-
ageNet label is 0 (cf. Section 4.4.1). Also depicted is the label most frequently
selected by the annotators as contained in the image (sel).
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Figure C-9: Possibly mislabeled images: ImageNet label is not selected by any
of the annotators during fine-grained image annotation process described in Sec-
tion 4.4.2. Also shown in the title is label that was most frequently selected by the
annotators as denoting the main object in the image (sel).
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Appendix D

Details for Chapter 5

D.1 Experimental Setup

D.1.1 Datasets

For our experimental analysis, we use the MNIST [LeC98], CIFAR-10 [Kri09], Re-

stricted ImageNet (cf. Appendix A.1.1), and ImageNet-1k [Rus+15] datasets. For

image translation we use the Horse ↔ Zebra, Apple ↔ Orange, and Summer ↔
Winter datasets [Zhu+17].

D.1.2 Models

∙ MNIST: We use the convolution architecture from the TensorFlow tutorial1.

∙ CIFAR-10: We consider a standard ResNet model [He+15a]. It has 4 groups

of residual layers with filter sizes (16, 16, 32, 64) and 5 residual units each2.

∙ Restricted ImageNet (RIN): We use a ResNet-50 [He+15a] architecture using

the code from the tensorpack repository [Wu+16], trained with data aug-

mentation, momentum 0.9 and weight decay 5e−4.

∙ ImageNet: We use a ResNet-50 [He+15a] architecture. For standard (not ad-

versarially trained) classifiers on the complete 1k-class ImageNet dataset, we

1https://github.com/MadryLab/mnist_challenge/
2https://github.com/MadryLab/cifar10_challenge/
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use pre-trained models provided in the PyTorch repository3.

Other hyperparameters are provided in Table D.1 The exact procedure used to

train robust models along with the corresponding hyperparameters are described

in Section D.1.3.

Dataset Model Epochs LR Batch Size LR Schedule

RIN standard 110 0.1 256 Drop by 10 at epochs ∈ [30, 60]
RIN robust 110 0.1 256 Drop by 10 at epochs ∈ [30, 60]
ImageNet robust 110 0.1 256 Drop by 10 at epochs ∈ [100]

Table D.1: Standard hyperparameters for model training.

D.1.3 Adversarial training

To obtain robust classifiers, we employ the adversarial training methodology pro-

posed in [Mad+18]. Specifically, we train against a projected gradient descent

(PGD) adversary with a normalized step size, starting from a random initial per-

turbation of the training data. We consider adversarial perturbations in `2-norm.

Unless otherwise specified, we use the values of ε provided in Tables D.2-D.4 to

train/evaluate our models (the images themselves lie in the range [0, 1]).

Adversary Binary MNIST MNIST CIFAR-10 Restricted Imagenet

`∞ 0.2 0.3 4
255 0.005

`2 - 1.5 0.314 1

Table D.2: Value of ε used for adversarial training/evaluation in Figure 5-3.

D.1.4 Model Performance

Standard and adversarial test performance for the models used are presented in

Table D.5 for the Restricted ImageNet dataset and in Table D.6 for the complete

3https://pytorch.org/docs/stable/torchvision/models.html
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Dataset ε # steps Step size

Restricted ImageNet 3.0 7 0.5
ImageNet 3.0 7 0.5

Table D.3: Hyperparameters used for adversarial training in Section 5.3.

Dataset ε # steps Step size

CIFAR-10 0.5 7 0.1
restricted ImageNet 3.5 7 0.1

ImageNet 3 7 0.5
Horse↔ Zebra 5 7 0.9

Apple↔ Orange 5 7 0.9
Summer↔Winter 5 7 0.9

Table D.4: Hyperparameters used for adversarial training in Section 5.4.

ImageNet dataset. Here, adversarial accuracies are computed against a PGD ad-

versary with 20 steps and step size of 0.375. (We also evaluated against a stronger

adversary using more steps (100) of PGD, however this had a marginal effect on

the adversarial accuracy of the models.)

Model Standard Adversarial (eps=3.0)

Standard ResNet-50 98.01% 4.74%
Robust ResNet-50 92.39% 81.91%

Table D.5: Test accuracy for standard/robust models on the Restricted ImageNet
dataset.

Model Standard Adversarial (eps=3.0)

Standard ResNet-50 76.13% 0.13%
Robust ResNet-50 57.90% 35.16%

Table D.6: Test accuracy for standard/robust models on the ImageNet dataset.

251



D.1.5 Hyperparameter setup

Finding representation-feature correspondence

Dataset ε # steps Step size

Restricted ImageNet/ImageNet 1000 200 1

Inverting representations and interpolations

Dataset ε # steps Step size

Restricted ImageNet/ImageNet 1000 10000 1

Targeted Attacks in Figure 5-12

Dataset ε # steps Step size

restricted ImageNet 300 500 1

Generation

In order to compute the class conditional Gaussians for high resolution images

(224×224×3) we downsample the images by a factor of 4 and upsample the result-

ing seed images with nearest neighbor interpolation.

Dataset ε # steps Step size

CIFAR-10 30 60 0.5

restricted ImageNet 40 60 1

ImageNet 40 60 1

Inpainting

To create a corrupted image, we select a patch of a given size at a random location

in the image. We reset all pixel values in the patch to be the average pixel value
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over the entire image (per channel).

Dataset patch size ε # steps Step size

restricted ImageNet 60 21 0.1 720

Image-to-image translation

Dataset ε # steps Step size

ImageNet 60 80 1

Horse↔ Zebra 60 80 0.5

Apple↔ Orange 60 80 0.5

Summer↔Winter 60 80 0.5

Super-resolution

Dataset ↑ factor ε # steps Step size

CIFAR-10 7 15 1 50

restricted ImageNet 8 8 1 40

D.2 Additional Experimental Results

Interpolations for standard models
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Figure D-1: Image interpolation using standard representations. To find the inter-
polation in input space, we construct images that map to linear interpolations of
the endpoints in standard representation space. Concretely, for randomly selected
pairs from the Restricted ImageNet test set, we use (5.3) to find images that match
to the linear interpolates in representation space (5.4). Image space interpolations
from the standard model appear to be significantly less meaningful than their ro-
bust counterparts. They are visibly similar to linear interpolation directly in the
input space, which is in fact used to seed the optimization process.
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Appendix E

Details for Chapter 6

E.1 Experimental Setup

E.1.1 Datasets

Unless otherwise specified, we use the ImageNet-1k [Den+09; Rus+15] and Places-

365 [Zho+17] datasets which contain images from 1,000 and 365 categories respec-

tively for our analysis. In particular, editing is performed on (or using) samples

from the standard test sets to avoid overlap with the training data used to develop

the models.

Since we manually collected all the data necessary for our analysis in Sec-

tion 6.3.3, we were able to filter them for offensive content. Moreover, we made

sure to only collect images that are available under a Creative Commons license

(hence allowing non-commercial use with proper attribution).

For the rest of our analysis, we relied on publicly available datasets that are

commonly used for image classification. Unfortunately, due to their scale, these

datasets have not been thoroughly filtered for offensive content or identifiable

information. In fact, improving these datasets along this axis is an active area

of work1. Nevertheless, since our research did not involve redistributing these

datasets or presenting them to human annotators, we did not perceive any addi-

tional risks that would result from our work.

1https://www.image-net.org/update-mar-11-2021.php
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E.1.2 Models

Here, we describe the exact architecture and training process for each model we

use. For the bulk of our analysis, we utilize two canonical, yet relatively diverse

model architectures for our study: namely, VGG [SZ15] and ResNet [He+16]. We

use the standard PyTorch implementation 2 and train the models from scratch on

the ImageNet and Places365 datasets. The accuracy of each model on the corre-

sponding test set is provided in Table E.1.

ImageNet classifiers. We study: (i) a VGG16 variant with batch normalization

and (ii) a ResNet-50. Both models are trained using standard hyperparameters:

SGD for 90 epochs with an initial learning rate of 0.1 that drops by a factor of 10

every 30 epochs. We use a momentum of 0.9, a weight decay of 10−4 and a batch

size of 256 for the VGG16 and 512 for the ResNet-50.

Places365 classifiers. We study: (i) a VGG16 and (ii) a ResNet-18. Both models

are trained for 131072 iterations using SGD with a single-cycle learning rate sched-

ule peaking at 2e-2 and descending to 0 at the end of training. We use a momentum

0.9, a weight decay 5e-4 and a batch size of 256 for both models.

CLIP. We use the ResNet-50 models trained via CLIP [Rad+21], as provided in

the original model repository.3

Test Accuracy (%)

Architecture ∖ Dataset ImageNet Places

VGG 73.70 54.02

ResNet 75.77 54.24

CLIP-ResNet 59.84 -

Table E.1: Model accuracy on the datasets used in our analysis.

2https://pytorch.org/vision/stable/models.html
3https://github.com/openai/CLIP
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E.1.3 Model rewriting

Here, we describe the training setup of our model editing process, as well as the

fine-tuning baseline. Recall that these rewrites are performed with respect to a

single concept-style pair.

Layers. We consider a layer to be a block of convolution-BatchNorm-ReLU, simi-

lar to Bau et al. [Bau+20a] and rewrite the weights of the convolution. For ResNets

(which were not previously studied), we must also account for skip connections.

In particular, note that the effect of a rewrite to a layer inside any residual block

will be attenuated (or canceled) by the skip connection. To avoid this, we only

rewrite the final layer within each residual block—i.e., focus on the convolution-

BatchNorm-ReLU right before a skip connection, and include the skip connection

in the output of the layer. Unless otherwise specified, we perform rewrites to lay-

ers [8, 10, 11, 12] for VGG models, [4, 6, 7] for ResNet-18, and [8, 10, 14] for ResNet-

50 models. We tried earlier layers in our initial experiments, but found that both

methods perform worse.

Editing

We use the ADAM optimizer with a fixed learning rate to perform the optimiza-

tion in (6.2). We grid over different learning rate-number of step pairs:

[(10−3, 10000), (10−4, 20000), (10−5, 40000), (10−6, 80000), (10−7, 80000)]. The sec-

ond order statistics are computed based on the keys for the entire test set.

Fine-tuning

When fine-tuning a single layer (local fine-tuning), we optimize the weights of

the convolution of that particular layer. Instead, when we fine-tune a suffix of the

model (global fine-tuning), we optimize all the trainable parameters including and

after the chosen layer. In both cases, we use SGD, griding over different learning

rate-number of step pairs:
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[(10−2, 500), (10−3, 500), (10−4, 500), (10−5, 800), (10−6, 800)].

E.1.4 Evaluation: Synthetic concept-level transformations

We now describe the details of our evaluation in Section 6.3.2, namely, how we

chose which concept-style pairs to use for testing and how we chose the hyperpa-

rameters for each method.

Selecting concept-style pairs

Concept selection. Recall that our rule-discovery pipeline from Section 3.2 iden-

tifies concepts which, when transformed in a certain manner hurts model accuracy

on one or more classes. We first filter these concepts (automatically) to identify

ones that are particularly salient in the model’s prediction-making process. In par-

ticular, we focus on concepts which simultaneously: (a) affect at least 3 classes; (b)

are present in at least 20% percent of the test images of each class; and (c) cause a

drop of at least 15% among these images. This selection results in a test bed where

we can meaningfully observe differences in performance between approaches.

At the same time, we need to also ensure that the rewriting task we are solving

is meaningful. For instance, if we replace all instances of “dog” with a stylized

version, then distinguishing between a “terrier” and a “poodle” can become chal-

lenging (or even impossible). Moreover, we cannot expect model performance to

improve on other dog breeds if we modify it to treat a stylized dog as a “terrier”.

To eliminate such test cases, we manually filter the concept-class pairs flagged by

our prediction-rule discovery pipeline. In particular, we removed those where

the detected concept overlapped significantly with the class object itself. In other

words, if the concept detected is essential for correctly recognizing the class of the

image, we exclude it from our analysis. Typical examples of excluded concept-

class pairs on ImageNet include broad animal categories (e.g., “bird” or “dog”) for

classes corresponding to specific breeds (e.g., “parrot”) or the concept “person”

which overlaps with classes corresponding to articles of clothing (e.g., “suit”).
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Style selection. We consider a subset of 8 styles used in our prediction-rule dis-

covery pipeline (cf. Figure 3-2): “black and white”, “floral”, “fall colors”, “furry”,

“graffiti”, “gravel”, “snow” and “wooden”. While performing editing with re-

spect to a single concept-style pair—say “wheel”-“wooden”—we randomly select

one wooden texture to create train exemplars and hold out the other two for testing

(described as held-out styles in the figures).

Hyperparameter selection

As discussed in Appendix E.1.3, for a particular concept-style pair, we grid over

different hyperparameters pertaining to the rewrite (via editing or fine-tuning)—

in particular the layer that is modified, as well as training parameters such as the

learning rate. For our evaluation, we then choose a single set of hyperparameters

(per concept-style pair). At a high level, our objective is to find hyperparameters

that improve model performance on transformed examples, while also ensuring

that the test accuracy of the model does not drop below a certain threshold. To this

end, we create a validation set per concept-style pair with 30% of the examples

containing this concept (and transformed using the same style as the train exem-

plars). We then use the performance on that subset (6.3) to choose the best set of

hyperparameters. If all of the hyperparameters considered cause accuracy to drop

below the specified threshold, we choose to not perform the edit at all. We then

report the performance of the method on the test set (the other 70% of samples

containing this concept).

E.1.5 Evaluation: Real-world data collection

In Section 6.3.3 we study two real-world applications of our model rewriting method-

ology. Below, we outline the data-collection process for each case.

Vehicles on snow. We manually chose a subset of Imagenet classes that frequently

contain “roads”, identified using our prediction-rule discovery pipeline in Sec-

tion 3.2. In particular, we focus on the classes: “racing car”, “army tank”, “fire
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truck”, “car wheel”, “traffic light”, “school bus”, and “motor scooter”. For each

of these classes, we searched Flickr4 using the query “<class name> on snow”

and manually selected the images that clearly depicted the class and actually con-

tained snowy roads. We were able to collect around 20 pictures for each class with

the exception of “traffic light” where we only found 9.

Typographic attacks. We picked six household objects corresponding to Ima-

geNet classes, namely: “teapot”, “mug”, “flower pot”, “toilet tissue”, “vase”, and

“wine bottle”. We used a smartphone camera to photograph each of these objects

against a plain background. Then, we repeated this process but after affixing a

piece of paper with the text “iPod” handwritten on it, as well as when affixing a

blank piece of paper—see Figure 6-11.

E.2 Additional Experiments

Editing synthetic concept-level transformations

In Figures E-1- E-4, we compare the generalization performance of editing and

fine-tuning (and their variants)—for different datasets (ImageNet and Places), ar-

chitectures (VGG16 and ResNets) and number of exemplars (3 and 10). In per-

forming these evaluations, we only consider hyperparameters (for each concept-

style pair) that do not drop the overall (test set) accuracy of the model by over

0.25%. The complete accuracy-performance trade-offs of editing and fine-tuning

(and their variants) are illustrated in Appendix Figures E-5-E-7.

4https://www.flickr.com/
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Figure E-1: Editing vs. fine-tuning: average number of misclassifications corrected
by the method when applied to an ImageNet-trained VGG-16 classifier. Here, the
average is computed over different concept-transformation pairs—with concepts
derived from instance segmentation modules trained on MS-COCO (left) and LVIS
(right); and transformations described in Appendix E.1.3. For both editing and
fine-tuning, the overall drop in model accuracy is less than 0.25%.
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Figure E-2: Appendix Fig. E-1 for an ImageNet-trained ResNet-50 classifier.
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Figure E-3: Appendix Fig. E-1 for a Places365-trained VGG-16 classifier.
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Figure E-4: Appendix Fig. E-1 for a Places365-trained ResNet-18 classifier.
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Figure E-5: Performance vs. drop in overall test set accuracy: Here, we visualize
average number of misclassifications corrected by editing and fine-tuning when
applied to an ImageNet-trained VGG16 classifier—where the average is computed
over different concept-transformation pairs.
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Figure E-6: Appendix Fig. E-5 for an Places365-trained VGG16 classifier.
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Figure E-7: Appendix Fig. E-5 for an Places365-trained ResNet-18 classifier.

265



0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

5

10

15

20

25

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:COCO, arch:vgg16
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

20

40

60

80

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

5

10

15

20

25

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0
%

 E
rro

rs
 c

or
re

ct
ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:LVIS, arch:vgg16
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E-8: Performance vs. drop in overall test set accuracy: Here, we visual-
ize average number of misclassifications corrected by editing variants—based on
whether or not we use a mask and perform a rank-one update—when applied to
an ImageNet-trained VGG16 classifier.
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(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.0 0.2 0.4 0.6 0.8 1.0
Overall accuracy drop (%)

0

10

20

30

40

50

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.0 0.2 0.4 0.6 0.8 1.0
Overall accuracy drop (%)

0

5

10

15

20

25

30

35

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.0 0.2 0.4 0.6 0.8 1.0
Overall accuracy drop (%)

0

5

10

15

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.0 0.2 0.4 0.6 0.8 1.0
Overall accuracy drop (%)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

%
 E

rro
rs

 c
or

re
ct

ed
Other classes + held-out styles

dataset_name:ImageNet, concepts:LVIS, arch:resnet50
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E-9: Appendix Fig. E-8 for an ImageNet-trained ResNet-50 classifier.
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(a) Concepts derived from an instance segmentation model trained on MS-COCO.
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(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E-10: Appendix Fig. E-8 for an Places365-trained ResNet-18 classifier.
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