
Rethinking Algorithm Design for Modern Challenges in
Data Science

by

Sitan Chen

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 27, 2021

Certified by. .
Ankur Moitra

Norbert Wiener Professor of Mathematics
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Rethinking Algorithm Design for Modern Challenges in Data

Science

by

Sitan Chen

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Heuristics centered around gradient descent and function approximation by neural networks
have proven wildly successful for a number of fundamental data science tasks, so much so
that it is easy to lose sight of how far we are from understanding why they work so well.

Can we design learning algorithms with rigorous guarantees to either match, outperform,
or augment these heuristics? In the first part of this thesis, we present new provable al-
gorithms for learning rich function classes like neural networks in natural learning settings
where gradient-based methods provably fail. Our algorithms are based on a new general
recipe that we call filtered PCA for dimensionality reduction in multi-index models.

Asking for rigorous guarantees not only helps uncover general mechanisms that make
learning tractable, but also lets us be certain that our algorithms are resilient to the demands
of modern data. In the second part of this thesis, we study challenging settings where even
a constant fraction of data may have been corrupted and develop new iterative reweighing
schemes for mitigating corruptions in the context of distribution estimation, linear regression,
and online learning. A distinctive feature of many of our results here is that they make
minimal assumptions on the data-generating process.

In certain situations however, data may be difficult to work with not because it has been
corrupted, but because it comes from a number of heterogeneous sources. In the third part
of this thesis, we give improved algorithms for two popular models of heterogeneity, mixtures
of product distributions and mixtures of linear regressions, by developing novel ways of using
Fourier approximation, the method of moments, and combinations thereof to extract latent
structure in the data.

In the final part of this thesis, we ask whether these and related ideas in data science can
help shed light on problems in the sciences. We give two such applications, one to rigorously
pinning down the much-debated diffraction limit in classical optics, and the other to showing
memory-sample tradeoffs for quantum state certification.

Thesis Supervisor: Ankur Moitra
Title: Norbert Wiener Professor of Mathematics

3

4

Acknowledgments

First, I’d like to thank Ankur for being such a fantastic advisor over the last five years. On

top of being an endless source of technical wisdom, he’s also been so helpful with his incisive

big-picture advice and quick to tailor his advising style to suit his students’ needs. Having

gone into grad school with zero background in ML or statistics, I couldn’t have asked for a

more patient and encouraging advisor to help me make the jump into learning theory.

I’m also indebted to the incredible guidance I’ve received outside of MIT. In the summer

of 2018 and much of the subsequent academic year, I was fortunate to be hosted by Prasad

Raghavendra who graciously taught me all about SDP extension complexity and with whom

I very much look forward to collaborating again in my postdoc. This foray into lower bounds

also introduced me to Raghu Meka, from whom I’ve learned many tricks of the trade thanks

to his excellent mentorship and our collaborations over the last three years, and whose leaps

of insight during research meetings and mathematical aesthetic remain a continual source

of inspiration. Working with Raghu in turn introduced me to Adam Klivans, who has been

so generous with his ideas and time as a mentor and close collaborator over the last year,

whose perspectives on learning have heavily influenced my own research direction, and who

gave a ton of helpful feedback on an earlier draft of this thesis. I also want to thank Jerry

Li for hosting me during my internship at MSR Redmond in the summer of 2019, teaching

me the ropes of robust statistics and answering all my dumb questions about matrix SoS,

taking the plunge with me into the world of quantum, and being one of my most frequent

collaborators ever since.

I’ve been so fortunate to be able to work with so many absurdly talented and inspiring

coauthors over the last five years. Apart from the ones already mentioned above, this includes

Sebastien Bubeck, Jordan Cotler, Michelle Delcourt, Hsin-Yuan Huang, Frederic Koehler,

Xiaoxiao Li, Ryan O’Donnell, Guillem Perarnau, Luke Postle, Zhao Song, Runzhou Tao,

Morris Yau, Ruizhe Zhang, and Danyang Zhuo.

Going further back, the idea of studying TCS in grad school might never have entered my

mind had I not been lucky enough to spend two wonderful summers in undergrad working

under the amazing guidance of Thomas Steinke, Salil Vadhan, and Les Valiant. Going even

5

further back, I owe the mentorship of Jesse Geneson and Tanya Khovanova at the Research

Science Institute for convincing me to pursue a career in research.

Outside of research, playing the piano has been a huge part of my life at MIT. I want

to thank David Deveau, Eileen Huang, Natalie Lin Douglas, and Marcus Thompson for an

incredible job running the Emerson Fellows seminar. I especially want to thank David; our

weekly lessons have been a consistent source of joy and fulfillment throughout my last decade

in Cambridge.

A big factor in my decision to go to MIT was its famously tight-knit theory group, and

I’m so grateful to have been a part of such a warm and vibrant community. Thank you to

Debbie, Joanne, and Rebecca for always making ToC a fun group to be a part of and for

organizing so many great social events for the group even in pandemic times. And to all my

friends at MIT and elsewhere, thanks for making the last five years so enjoyable. I’ll miss

the notsogitcs Asian food trips, the always entertaining and opinionated conversations with

the G5 lunch crowd, crossword puzzles every Friday, ping pong matches and tennis outings,

and hangouts around the G6 espresso machine. I hope we can all stay in touch.

Lastly, I want to thank all the loved ones who have supported me along this journey:

To Chunsheng Chen and Bingbing Yuan, thank you for all the holiday meals over the

last nine years and for always making me feel at home in Cambridge.

To Heeyoon, my lodestar, I imagine dating an academic can be a pretty rough deal at

times, and yet by some miracle you take the whole ordeal in stride. You fill my heart to the

brim with light and I am so stupidly blessed to have you in my life.

Finally, to my beloved parents and grandmother, I don’t know what I did in my previous

life to deserve you, but thank you for sacrificing everything to raise me and giving me every

opportunity to be the best version of myself. 谁言寸草心，报得三春晖.

6

Contents

1 Introduction 21

1.1 Algorithmic Opportunities in Data Science 21

1.1.1 Learning Rich Function Classes . 24

1.1.2 Learning From Untrustworthy Data 26

1.1.3 Data Science and the Sciences? . 28

1.2 Our Contributions . 30

1.2.1 Filtered PCA . 32

1.2.2 New Iterative Reweighing Schemes 39

1.2.3 Heterogeneity, Moments, and the Fourier Transform 50

1.2.4 Quantum State Certification and the Chain Rule 63

1.3 Preliminaries . 71

1.3.1 Miscellaneous Notation . 71

1.3.2 Linear Algebra Basics . 72

1.3.3 Probability Basics . 77

1.3.4 Fourier Transform . 77

1.3.5 Concentration . 77

1.3.6 Hermite Polynomials . 85

1.3.7 Stability of Linear Threshold Functions 85

1.3.8 Sum-of-Squares Programming . 87

1.3.9 Quantum Basics . 91

7

I Learning Rich Function Classes 94

2 Low-Rank Polynomials 95

2.1 Introduction . 95

2.1.1 Main Result . 99

2.1.2 Related Work . 101

2.2 Outline of Algorithm and Analysis . 102

2.2.1 Getting a Warm Start . 103

2.2.2 Boosting via Geodesic-Based Riemannian Gradient Descent 106

2.3 Technical Preliminaries . 112

2.3.1 Non-degeneracy . 113

2.3.2 Other Concentration Inequalities . 114

2.3.3 Hermite Polynomials and Gradients 115

2.3.4 More Subspace Distance Inequalities 118

2.4 Warm Start via Filtered PCA . 118

2.4.1 Proof of Lemma 2.4.1 . 120

2.5 Boosting via Stochastic Riemannian Optimization 124

2.5.1 Preliminaries . 125

2.5.2 Gradient Updates: Vanilla and Geodesic 126

2.6 Guarantees for RealignPolynomial . 127

2.6.1 Local Smoothness . 133

2.6.2 Local Curvature . 134

2.7 Guarantees for SubspaceDescent . 138

2.7.1 Local Smoothness . 140

2.7.2 Local Curvature . 143

2.8 Putting Everything Together for GeoSGD 149

2.9 Appendix: Martingale Concentration Inequalities 151

2.9.1 Proof of Lemma 2.3.3 . 151

2.9.2 Proof of Lemma 2.3.4 . 152

2.10 Appendix: Deferred Proofs from Section 2.6 153

8

2.10.1 Proof of Lemma 2.6.5 . 153

2.10.2 Proof of Lemma 2.6.10 . 153

2.10.3 Proof of Proposition 2.6.13 . 154

2.10.4 Proof of Lemma 2.6.15 . 154

2.10.5 Proof of Lemma 2.6.16 . 157

2.11 Appendix: Deferred Proofs from Section 2.7 159

2.11.1 Proof of Lemma 2.5.4 . 159

2.11.2 Proof of Lemma 2.7.7 . 161

2.11.3 Proof of Lemma 2.7.10 . 162

2.11.4 Proof of Lemma 2.7.11 . 163

2.11.5 Proof of Lemma 2.7.15 . 164

2.11.6 Proof of Lemma 2.7.16 . 165

2.11.7 Proof of Lemma 2.7.17 . 166

2.11.8 Proof of Lemma 2.7.18 . 167

3 Deep ReLU Networks 175

3.1 Introduction . 175

3.1.1 Prior Work on Provably Learning Neural Networks 178

3.1.2 Other Related Work and Discussion 180

3.2 Proof Overview . 182

3.3 Technical Preliminaries . 190

3.3.1 Miscellaneous Tools . 190

3.3.2 Continuous Piecewise-Linear Functions and Lattice Polynomials . . . 191

3.4 Filtered PCA . 198

3.4.1 Anti-Concentration of Piecewise Linear Functions 200

3.4.2 An Idealized Calculation . 201

3.4.3 Stability of Piecewise Linear Threshold Functions 203

3.4.4 Netting Over Piecewise Linear Functions 205

3.4.5 Netting Over Neural Networks . 207

3.4.6 Perturbation Bounds . 211

9

3.4.7 Putting Everything Together . 215

3.5 Appendix: Deferred Proofs . 219

3.5.1 Concentration for Piecewise Linear Functions 219

3.5.2 Representing Boolean Functions as ReLU Networks 220

II Learning from Adversarially Corrupted Data 222

4 Learning From Untrusted Batches With Sum-of-Squares 223

4.1 Introduction . 223

4.1.1 Our Results– Sum of Squares . 225

4.1.2 Our Techniques . 227

4.1.3 Related Work . 228

4.1.4 Organization . 229

4.2 High-Level Argument . 230

4.2.1 Robust Mean Estimation . 230

4.2.2 Searching for a Moment-Bounded Subset 231

4.2.3 Quantifying over {±1}𝑛 via Matrix SoS 232

4.2.4 VC Meets Sum-of-Squares . 234

4.2.5 Quantifying over 𝒱𝑛𝐾 . 235

4.3 Technical Preliminaries . 239

4.3.1 Miscellaneous Notation . 239

4.3.2 The Generative Model . 239

4.3.3 Certifiably Bounded Distributions . 240

4.4 Efficiently Learning from Untrusted Batches 242

4.4.1 An SoS Relaxation . 242

4.4.2 Deterministic Conditions . 244

4.4.3 Identifiability . 246

4.4.4 Rounding . 250

4.5 Improved Sample Complexity Under Shape Constraints 251

4.5.1 𝒜𝐾 Norms and VC Complexity . 252

10

4.5.2 Another SoS Relaxation . 253

4.5.3 Deterministic Conditions and Identifiability 254

4.5.4 Rounding . 256

4.6 Encoding Moment Constraints . 257

4.6.1 Matrix SoS Proofs . 257

4.6.2 Moment Constraints for Program 𝒫 258

4.6.3 Moment Constraints for Program 𝒫 ′ 261

4.7 Appendix: Proof of Lemma 4.6.13 . 272

5 Learning From Untrusted Batches With Alternating Minimization 279

5.1 Introduction . 279

5.1.1 High-Level Argument . 280

5.1.2 Concurrent and Subsequent Work . 284

5.2 Technical Preliminaries . 284

5.2.1 Weights, Means, and Covariances . 284

5.2.2 Some Elementary Facts . 285

5.2.3 Haar Wavelets Revisited . 287

5.3 SDP for Finding the Direction of Largest Variance 288

5.4 Filtering Algorithm and Analysis . 289

5.4.1 Univariate Filter . 290

5.4.2 Algorithm Specification . 291

5.4.3 Deterministic Condition . 291

5.4.4 Key Geometric Lemma . 294

5.4.5 Analyzing the Filter With Spectral Signatures 299

5.5 Numerical Experiments . 304

5.5.1 Experimental Design . 307

5.5.2 Implementation Details . 309

5.6 Appendix: Concentration . 310

5.6.1 Technical Ingredients . 310

5.6.2 Proof of Lemma 5.4.6 . 311

11

5.7 Appendix: Netting Over 𝒦 . 316

5.8 Appendix: Sub-Exponential Tail Bounds From Section 5.6 319

5.8.1 Proof of Fact 5.8.1 . 322

6 Huber-Contaminated Regression and Contextual Bandits 325

6.1 Introduction . 325

6.1.1 Our Results . 327

6.1.2 Roadmap . 332

6.2 Technical Overview . 333

6.2.1 Huber-Contaminated Fixed-Design Regression 333

6.2.2 Online-to-Offline Reduction . 337

6.2.3 Lower Bound for Convex Losses . 338

6.3 Related Work . 339

6.4 Preliminaries . 342

6.4.1 Formal Description of Models . 342

6.4.2 Technical Preliminaries . 349

6.5 Alternating Minimization for Offline Regression 350

6.5.1 Setup and Main Result . 350

6.5.2 Algorithm Specification . 353

6.5.3 Optimization Analysis . 355

6.5.4 All Stationary Points are Good . 357

6.5.5 Stochastic Setting and Generalization Bounds 372

6.5.6 Heavy-Tailed Setting Using Geometric Median 375

6.6 Optimal Breakdown Point via Sum of Squares Programming 379

6.6.1 SoS Algorithm and Analysis . 379

6.7 Online Regression . 389

6.7.1 Cutting Plane Algorithm . 389

6.7.2 Gradient Descent Algorithm . 393

6.8 Putting Everything Together . 395

6.9 Lower Bound Against Convex Surrogates . 397

12

6.10 Appendix: Reduction from Contextual Bandits to Online Regression 400

6.11 Appendix: Proof of Theorem 1.3.23 . 403

III Learning from Heterogeneous Data 405

7 Mixtures of Product Distributions 407

7.1 Introduction . 407

7.1.1 Our Results and Techniques . 409

7.1.2 Applications . 411

7.1.3 More Results . 413

7.1.4 Organization . 415

7.2 Preliminaries . 416

7.2.1 Notation and Definitions . 416

7.2.2 Rank of the Moment Matrix and Conditioning 418

7.2.3 Linear Algebraic Relations between M and C 419

7.2.4 Technical Overview for Learning Mixtures of Subcubes 421

7.2.5 Technical Overview for SQ Lower Bound 426

7.2.6 Technical Overview for Learning Mixtures of Product Distributions . 427

7.3 Learning Mixtures of Subcubes in Quasipolynomial Time 428

7.3.1 Logarithmic Moments Suffice . 428

7.3.2 Local Maximality . 431

7.3.3 Tracking Down an Impostor . 433

7.3.4 Finding a Certified Full Rank and Locally Maximal Set 436

7.3.5 Sampling Noise and Small Mixture Weights 438

7.4 An 𝑛Ω(
√
𝑘) Statistical Query Lower Bound 443

7.4.1 Statistical Query Learning of Distributions 443

7.4.2 Embedding Interesting Coordinates 445

7.4.3 A Moment Matching Example . 448

7.5 Learning Mixtures of Product Distributions in 𝑛𝑂(𝑘2) Time 453

7.5.1 Parameter Closeness Implies Distributional Closeness 454

13

7.5.2 Barycentric Spanners . 455

7.5.3 Gridding the Basis and Learning Coefficients 456

7.5.4 Robust Low-degree Identifiability . 457

7.5.5 Collapsing Ill-conditioned Moment Matrices 462

7.5.6 Comparison to Feldman-O’Donnell-Servedio’s Algorithm 464

7.6 Appendix: Learning via Sampling Trees . 465

7.7 Appendix: Learning Mixtures of Subcubes 470

7.7.1 Robustly Building a Basis . 470

7.7.2 Robustly Tracking Down an Impostor 476

7.7.3 Correctness of N-List . 482

7.8 Appendix: Learning Mixtures of Product Distributions Over {0, 1}𝑛 486

7.8.1 NonDegenerateLearn and Its Guarantees 486

7.8.2 Making Progress When M|ℛ†
𝑘(𝐽∪{𝑖})

is Ill-Conditioned 491

7.8.3 Correctness of N-List . 492

7.9 Appendix: Application to Learning Stochastic Decision Trees 494

8 Mixed Linear Regression 497

8.1 Introduction . 497

8.1.1 Our Contributions . 499

8.1.2 Related Work . 501

8.2 Preliminaries . 503

8.2.1 Probabilistic Models . 504

8.2.2 Miscellaneous Notation . 505

8.3 Overview of Techniques . 505

8.3.1 Fourier Moment Descent . 505

8.3.2 Learning With Regression Noise . 510

8.3.3 Learning Mixtures of Hyperplanes . 513

8.4 Roadmap . 514

8.5 Warm Start via Fourier Moment Descent . 515

8.5.1 Estimating Minimum Variance . 515

14

8.5.2 Moment Descent . 524

8.6 Learning All Components Under Zero Noise 532

8.7 Learning All Components Under Noise . 534

8.7.1 Staying on the Same Component . 535

8.7.2 Initializing With a Gap . 549

8.7.3 Algorithm Specification . 555

8.7.4 Proof of Correctness . 556

8.7.5 Tolerating More Regression Noise . 562

8.8 Learning Mixtures of Hyperplanes . 563

8.8.1 Moment Descent for Hyperplanes . 564

8.8.2 Algorithm Specification– Single Component 571

8.8.3 Proof of Correctness . 571

8.8.4 Boosting for Mixtures of Hyperplanes 576

8.8.5 Learning All Hyperplanes . 580

8.9 Boosting Down the Cosine Integral . 581

8.9.1 Background: Gravitational Allocation 582

8.9.2 Boosting via the Cosine Integral . 582

8.10 Appendix: Failure of Low-Degree Identifiability 591

8.11 Appendix: Integrating Against Fourier Transforms of Piecewise Polynomials 594

8.12 Appendix: Deferred Proofs . 596

8.12.1 Proof of Lemma 8.3.1 . 596

8.12.2 Proof of Fact 8.2.3 . 600

8.12.3 Proof of Corollary 1.3.19 . 601

8.12.4 Proof of Corollary 1.3.20 . 601

8.12.5 Proof of Lemma 8.5.10 . 604

8.12.6 Proof of Lemma 8.5.17 . 605

8.12.7 Proof of Lemma 8.8.12 . 606

15

IV Data Science and the Sciences 608

9 Mixture Models and the Diffraction Limit 609

9.1 Introduction . 609

9.1.1 Overview of Results . 613

9.1.2 Related Work . 617

9.1.3 Visualizing the Diffraction Limit . 618

9.1.4 Roadmap . 620

9.2 Lower Bound Preview . 620

9.3 Preliminaries . 625

9.4 Learning Superpositions of Airy Disks . 627

9.4.1 Reduction to 2D Superresolution . 628

9.4.2 Learning via the Optical Transfer Function 630

9.4.3 Learning Airy Disks Above the Diffraction Limit 641

9.4.4 Approximating the Optical Transfer Function 646

9.5 Information Theoretic Lower Bound . 648

9.6 Conclusion and Open Problems . 653

9.7 Appendix: Related Work In the Sciences . 654

9.7.1 Previous Approaches in Optics . 654

9.7.2 Comparison with Our Approach . 656

9.7.3 Super-Resolution and the Practical Need to Understand Diffraction

Limits . 657

9.8 Appendix: Physical Basis for Our Model . 658

9.8.1 A Review of Fraunhofer Diffraction 659

9.8.2 Photon Statistics and Our Model . 660

9.8.3 Comparison to Semiclassical Detection Model 662

9.8.4 A Menagerie of Diffraction Limits . 663

9.9 Appendix: Debate Over the Diffraction Limit: A Historical Overview 666

9.9.1 Identifying a Criterion . 666

9.9.2 The Importance of Noise . 669

16

9.10 Appendix: Proof of Lemma 9.4.15 . 672

9.11 Appendix: Generating Figure 9-3 . 676

10 Quantum Memory-Sample Tradeoffs for Mixedness Testing 679

10.1 Introduction . 679

10.1.1 Overview of our techniques . 681

10.1.2 Related Work . 684

10.2 Lower Bound Strategies . 686

10.2.1 Non-Adaptive Lower Bounds . 689

10.2.2 Adaptive Lower Bounds . 691

10.3 Unentangled Measurements and Lower Bound Instance 693

10.3.1 Testing with Unentangled Measurements 693

10.3.2 Lower Bound Instance . 694

10.3.3 Intuition for 𝜑U,U′

ℳ . 695

10.4 Proof of Non-Adaptive Lower Bound . 696

10.5 A Chain Rule Proof of Paninski’s Theorem 698

10.6 An Adaptive Lower Bound for Mixedness Testing 701

10.7 Haar Tail Bounds . 706

10.7.1 Proof of Theorem 10.6.3 . 706

10.7.2 Proof of Theorem 10.4.1 . 711

10.8 Appendix: Chain Rule Proof of Theorem 10.1.3 713

11 Instance-Optimal Quantum State Certification 715

11.1 Introduction . 715

11.1.1 Our Results . 716

11.1.2 Related Work . 718

11.2 Overview of Techniques . 718

11.2.1 Instance-Optimal Lower Bounds for Identity Testing 719

11.2.2 Passing to the Quantum Setting . 721

11.3 Technical Preliminaries . 725

11.3.1 Miscellaneous Technical Facts . 725

17

11.3.2 Instance-Optimal Distribution Testing 727

11.4 Generic Lower Bound Framework . 727

11.4.1 Helpful Conditions on 𝑔U𝒫 (𝑧) . 728

11.4.2 Nonadaptive Lower Bounds . 731

11.4.3 Adaptive Lower Bounds . 731

11.5 Nonadaptive Lower Bound for State Certification 732

11.5.1 Bucketing and Mass Removal . 733

11.5.2 Lower Bound Instance I: General Quantum Paninski 735

11.5.3 Lower Bound Instance II: Perturbing Off-Diagonals 744

11.5.4 Lower Bound Instance III: Corner Case 747

11.5.5 Putting Everything Together . 750

11.6 State Certification Algorithm . 754

11.6.1 Generic Certification . 754

11.6.2 Bucketing and Mass Removal . 757

11.6.3 Instance-Near-Optimal Certification 759

11.7 Appendix: Adaptive Lower Bound . 763

11.7.1 Bucketing and Mass Removal . 763

11.7.2 Analyzing Lower Bound II . 765

11.7.3 Putting Everything Together . 766

11.8 Appendix: Deferred Proofs . 767

11.8.1 Proof of Theorem 11.4.10 . 767

11.8.2 Proof of Fact 11.5.16 . 771

18

List of Figures

1-1 Datasets with equal contamination rates but different levels of noise 𝜎. The

corruptions are located in the upper left and bottom right parts of both figures.

The goal in robust regression is to achieve low square loss on the uncorrupted

points. We depict in orange the ordinary least squares estimator and in green

the range of linear predictors that would perform comparably to what our

algorithms can achieve. 42

5-1 Experimental results for learning arbitrary distributions 305

5-2 Experimental results for learning structured distributions 306

8-1 Cosine integral function Ci(𝑥) = −
∫︀∞
𝑥

cos(𝑡)
𝑡

d𝑡 512

9-1 Fraunhofer diffraction of incoherent illumination from point source through

aperture onto observation plane . 610

9-2 With enough samples, one can distinguish which of two superpositions the

data comes from, even below the diffraction limit: In each plot, a histogram

of 𝑥-axis positions of photons sampled from a superposition of two equal-

intensity Airy disks (red) centered on the 𝑥-axis with separation a tenth of

the Abbe limit is overlaid with a histogram of 𝑥-axis positions of photons

sampled from a single Airy disk at the origin (gray). As number of samples

increases (left to right), minute differences between the two intensity profiles

become clear. 618

19

9-3 The Abbe limit as a statistical phase transition: For any level of separa-

tion Δ and number of disks 𝑘, we carefully construct a pair of hypotheses

𝒟0(Δ, 𝑘),𝒟1(Δ, 𝑘) which are each superpositions of 𝑘/2 Airy disks where the

separation among its components is at least Δ. The left figure plots total

variation distance 𝑑TV(𝒟0(Δ, 𝑘),𝒟1(Δ, 𝑘)) between the two distributions as a

function of Δ, for various choices of 𝑘, with the Abbe limit highlighted in red.

The right figure plots total variation distance on a log-scale. 619

9-4 The squares correspond to periods of 𝐾𝑟
ℓ , while the ellipses have major and

minor axes of length 𝛾(1− 𝜀) and 2(1− 𝜀). The figure is centered around the

origin, and the bottom-left ellipse 𝐾 is the set of points
(︁
𝑥1
𝑚
− 1

2
, 𝑥2

√
3

𝑚
− 1

2

)︁
as

(𝑥1, 𝑥2) ranges over the origin-centered 𝐿2 ball of norm 1/𝜋𝜎. By appropriately

translating the four quadrants of this ellipse by distances in Z2, we obtain

overlapping regions whose union is given by 𝑅∖𝑆, where 𝑅 = [−1/2, 1/2] ×

[−1/2, 1/2] is given by the central square (green) and 𝑆 is the multi-colored

set in the middle given by tranlates of the four connected components of

([−1, 0]× [−1, 0])∖𝐾. 622

9-5 Locations of centers of Airy disks for the two mixtures in the lower bound

instance of Theorem 9.5.1 when 𝑘 = 25. Black (resp. white) points correspond

to centers for 𝜌 (resp. 𝜌′). The separation between any adjacent pair of

identically colored points is 2/𝑚 = Δ, and the points of any particular color

form a triangular lattice. 624

20

Chapter 1

Introduction

1.1 Algorithmic Opportunities in Data Science

Given data generated from some unknown process, what can we learn about that process?

This question lies at the heart of modern data science, and the techniques that machine

learning practitioners have developed over the last decade to answer it have had and will

continue to have a profound impact on almost every facet of society. Given the astounding

empirical successes of these techniques however, it is easy to lose sight of the fact that we

don’t actually understand why they work so well. What is more, the sobering truth is that

these techniques are largely centered around a small toolbox of decades-old heuristics, and

the overwhelming majority are variations on a theme– run gradient descent on a nonconvex

objective and hope for the best.

In this thesis we take the opposite tack and ask: by limiting ourselves to this algorithmic

toolbox, are we leaving something on the table? After all, algorithmic creativity has been the

workhorse behind success stories in so many other areas of computer science: Reed-Solomon

decoding for digital storage and communication, interior point methods for convex optimiza-

tion, shortest path algorithms for network routing protocols, Cooley-Tukey for digital signal

processing, and the list goes on. What if we seriously considered the possibility there might

be new and better algorithms for tackling modern challenges in data science?

In the coming chapters, we will see the following picture emerge from asking this ques-

tion. For a wide range of tasks that involve discerning complex structure from data, from

21

a practical standpoint there might be an “obvious” or “popular” choice of heuristic that one

might expect to do the job. But as it turns out, these heuristics can fail horribly in very

natural settings. Our main contribution will be to devise genuinely new algorithmic primi-

tives that outperform existing techniques by circumventing these failure modes and provably

solving the task at hand. To name two notable examples:

• Deep neural networks: In practice, the algorithm of choice for training a neural net-

work on data to get good out-of-sample performance would be to run gradient descent.

Surprisingly however, there are no-go theorems showing this can fail even if there exists

a network that achieves zero test error and the input vectors are sampled from a benign

distribution like a Gaussian [GGJ+20,DKKZ20]! In Chapter 3, we give a new algorithm

to provably learn deep neural networks in this setting (see Theorem 3.4.2). Not only is

this the first provable guarantee of its kind to handle arbitrary depth, but it also identifies

the first example of a neural network class which is efficiently learnable, but provably not

via gradient descent.

• Robust regression: One of the go-to algorithms for performing regression on a cor-

rupted dataset is to minimize a loss function, e.g. the Huber loss, which is less sensitive

to outliers than the square loss. As we show in Chapter 6, such an approach is provably

suboptimal even in the well-studied Huber contamination model for linear regression (see

Theorem 6.9.1). Instead, we devise the first algorithm for this problem to run in poly-

nomial time and essentially achieve the information-theoretically optimal error guarantee

(see Theorem 6.1.1). In contrast to practically all recent works in robust statistics, our

algorithm makes no assumptions on the distribution generating the data.

What do we learn from these results? Apart from providing new recipes for solving these

particular problems, results like these offer general prescriptions for how to reason about

when these and related tasks are tractable and in particular which approaches can or cannot

work.

For instance, our neural network result teaches us that there are sophisticated wrappers

we can build on top of tried and tested subroutines in data science that allow us to solve a

much wider family of supervised learning problems than previously believed, and the only

22

way to arrive at these wrappers was by stress-testing existing techniques from practice and

asking for provable end-to-end guarantees. Our techniques ultimately provide a way around a

recurring bottleneck in supervised learning by suggesting a new answer to a basic question:

apart from gradient queries, are there more powerful statistics we can leverage about the

dataset to extract rich structure?

Similarly, stress-testing algorithms even for age-old questions like linear regression on

which many more complex learning systems are built teaches us new ways to be robust

in challenging settings where even the uncontaminated parts of the data are misbehaved.

Indeed, while a number of algorithms like Huber regression and more modern robust statistics

approaches work quite well when the data is evenly spread, this turns out not to be the right

assumption to work with in many realistic settings. For example, one can imagine kernelized

settings where infinite-dimensional data gets passed through a complicated feature map or

online settings where data arrives in a dynamic fashion. In these cases, our approaches based

on fundamentally new ways of reweighing the data to mitigate outliers are not only helpful

but, as we will see, even necessary.

Finally, another benefit of honing in on new algorithms for data science is that the tools

we end up developing can also teach us about problems in other fields. In this thesis, we

also give a number of applications to inverse problems in the sciences. Here, algorithmic

and statistical thinking are important not only in supplying concrete approaches, but even

in suggesting the right ways to rigorously frame problems in the first place. After all, much

of scientific discovery revolves around extracting signal from data, but if we limit how we

work with and reason about data to heuristics, there’s a real risk that we’re not getting the

full picture.

To name one example from our results in this vein (see Chapters 9 to 11), it turns out

that some of the ideas that go into our new algorithms for learning from heterogeneous data

in Chapters 7 and 8 help shed new light on an old debate from optics dating back to work

of 19th century physicists like Lord Rayleigh and Ernst Abbe:

• Diffraction limit in optical systems: In classical optical systems like telescopes, the

physics of diffraction makes point sources of light appear blurred. It has been a subject of

fierce debate (see Section 9.9) whether this imposes fundamental limits on how well one

23

can resolve closely spaced point sources. Nowadays, introductory optics textbooks [Hec15,

Ken08] commonly cite the so-called Abbe limit as the critical level of separation below

which resolution becomes impossible. In Chapter 9, we frame this question in the language

of learning mixture models and rigorously prove for the first time that the Abbe limit is

actually not the right limit ! We complement this with various algorithms above and below

the true diffraction limit.

This is a case in point that statistical thinking has the potential to clarify even well-

established scientific debates, and new algorithms for learning have the potential to make

new discoveries.

We now describe the contributions of this thesis in greater detail. In Sections 1.1.1 to

1.1.3, we survey the general themes and motivations for the data science tasks we consider,

and in Section 1.2 we informally overview the results proved in this thesis.

1.1.1 Learning Rich Function Classes

In this section we focus on the well-studied setting of supervised learning. Here, we get

access to samples from a distribution 𝒟 which generates pairs (𝑥, 𝑦), where 𝑥 is some feature

vector sampled from a distribution 𝒟x, the label 𝑦 is a (possibly noisy) function of 𝑥, and the

goal is to output a function ̂︀𝑓 approximating the conditional expectation E[𝑦|𝑥] under some

metric. For instance, 𝑥 might be a picture of a traffic sign, 𝑦 might be 0 or 1 depending on

whether or not 𝑥 depicts a stop sign, and the figure of merit might be the misclassification

error, i.e. the probability that ̂︀𝑓(𝑥) ̸= 𝑦 for 𝑥 sampled from 𝒟x.

In practice, the algorithm of choice for this problem would be to run stochastic gradient

descent to train a large and deep neural network on enough examples and take ̂︀𝑓 to be the

resulting network. This heuristic has proven capable of achieving superhuman performance

on a host of image classification benchmarks [HZRS15,THK+21].

These empirical results suggest that 1) there exist neural networks which can closely

approximate E[𝑦|𝑥] for real-world supervised learning tasks, and 2) gradient descent can

efficiently find these networks. How might we try to rigorously justify this phenomenon?

For starters, we could adopt 1) as a hypothesis and attempt to prove 2) as a consequence.

24

In fact, we could make life even easier and assume that E[𝑦|𝑥] is closely approximated by

an extremely simple neural network, say, a linear separator. That is, we might assume that

there exists a vector 𝑤* such that

Pr
(𝑥,𝑦)∼𝒟

[𝑦 ̸= sgn(⟨𝑤*, 𝑥⟩)] = 0.00001%. (1.1)

In the absence of further assumptions however, one can design distributions 𝒟 over (𝑥, 𝑦)

for which gradient descent fails to find a good classifier. In fact the situation is far worse:

for such distributions, no efficient algorithm can find any classifier, even a highly nonlinear

one, that achieves better than 50.00001% accuracy [Dan16]!1 In learning-theoretic parlance,

it is hard to agnostically learn halfspaces, even improperly.

The reader might rightfully wonder whether such hardness results stem from the fact that

we aren’t assuming anything about the “missing 0.00001%,” i.e. about the specific structural

reasons why the data is not perfectly captured by a linear separator. So what if we made

our lives even easier and strengthened the assumption (1.1) by assuming that there exists a

vector 𝑤* that achieves zero misclassification error? This is the so-called realizable case, as

the data is perfectly realized by a linear separator. In the realizable case, it has been known

for some time that gradient descent with respect to a a suitable convex surrogate loss more

or less suffices [Ros58,Byl94,BFKV98].

But what about more sophisticated functions than linear separators, e.g. deep neural

networks? Practice would suggest this is a problem perfectly suited for training a neural

network via gradient descent. After all, in the realizable case, we are literally promised that

there exists a neural network achieving zero train and test error, and all we have to do is

find it! Yet without making further assumptions on distribution 𝒟x over feature vectors,

learning neural networks even in the realizable case is known to be NP-hard [BR89,Vu06].

This begs the following question which will be the focus of the first part of this thesis:

Question 1: Are there natural settings where one can prove that rich classes of

functions, e.g. neural networks, are learnable in the realizable case?

1This holds under a plausible complexity-theoretic conjecture regarding random constraint satisfaction
problems.

25

As mentioned above, and as we will describe in Section 1.2.1 and subsequently in greater

detail in Chapters 2 and 3, the main contribution of the first part of this thesis will be to

give the first natural setting where efficiently learning neural networks and related function

classes in the realizable case is possible, but provably not via gradient descent.

1.1.2 Learning From Untrustworthy Data

As the discussion in Section 1.1.1 suggests, asking for provable guarantees helps shed light on

the mechanisms that make efficient learning possible which in turn leads to the development

of new algorithmic primitives. In this section we turn to another motivation for targeting

provable guarantees: without a principled understanding for how practical heuristics seem

to work so well, there is a genuine danger in deploying them without discretion. Here we

highlight common pitfalls that motivate the algorithms we develop in the next part of this

thesis:

Adversarial corruptions From a security standpoint, it is well-known that neural net-

works are susceptible to data poisoning attacks in which small adversarial corruptions to the

training data can dramatically skew the behavior of the resulting classifier [SKL17,CLL+17].

The threat these attacks pose is particularly salient in the context of learning from data ob-

tained in a decentralized fashion. For instance, data labels obtained from crowdsourcing

platforms are notoriously dubious in quality [KCB+20, CK20], making such platforms an

easy target for data poisoning [TXSS20]. Similar vulnerabilities apply to federated learn-

ing [BEMGS17] and crowd sensing [MLX+18] where data is distributed across many users

or servers, some fraction of which might be compromised.

Even in settings where there might not be an explicit attacker, there are myriad other

challenges posed by datasets in the wild; below, we discuss the ones most pertinent to this

thesis.

Heavy-tailed behavior The distributions generating real-world data are often heavy-

tailed; in supervised learning contexts, this applies both to the distribution over features

𝒟x and to the conditional distribution of 𝑦 given 𝑥. As examples of the former, in standard

26

scene recognition benchmarks, there are many object classes which appear in a very small

fraction of images [ZAR14, WRH17], and a similar phenomenon applies to frequencies of

different alleles and haplotypes in population genetics [SLG+15]. As examples of the latter,

in financial markets, sharp price fluctuations are much more likely to occur than a Gaussian

model would suggest [BT03, Rac03], and in microarray data, gene expression intensities

typically follow a power law behavior [PH05].

Dynamic, non-i.i.d. data In some situations like bandit or reinforcement learning, data

may even be generated in an online fashion, rather than i.i.d. from some fixed distribution,

further compounding the problems introduced by corrupted and highly noisy data. For

example, corruptions due to intermittent loss of power or Internet are a known issue in

mobile health deployments of algorithms for contextual bandits [HATC+19, PPG18], one

of the prototypical models for sequential decision-making. Corruptions due to fraudulent

clicks pose a similar problem for deployments of these algorithms for ad recommendations

[IJMT05,DGZ12].

In light of these challenges, the second part of this thesis will focus on designing algorithms

to answer the following question:

Question 2: How do we mitigate the effect of noisy and untrustworthy data,

especially in settings where even the “clean” parts of the data are heavy-tailed,

dynamically generated, or otherwise misbehaved?

Related questions have been studied for some time in the robust statistics literature, and

in Chapters 4 to 6, we give a detailed overview of known results and clarify the ways in

which they come up short. In this part of the thesis, we study Question 2 in the context of

distribution estimation, linear regression, and contextual bandits, giving the first algorithms

to obtain near-optimal statistical guarantees in the presence of corrupted data for these

problems. We overview the relevant models and our results in Section 1.2.2 and provide the

technical details in Chapters 4 to 6.

In the third part of the thesis, we ask how the algorithmic landscape for such prob-

lems changes if we assume additional structure on the noise inherent in real-world data.

Specifically, we focus on structure that arises from heterogeneity.

27

Heterogeneity In many settings, fluctuations in the data primarily stem from the fact

that the data comes from a number of heterogeneous sources. Returning to the example

of microarray data above, a notorious confounding factor is the presence of so-called batch

effects : it can be difficult to extract biological signals from data simply because it is often

aggregated from experiments that were performed at different times, in different labs, or

even on different microarray platforms [JLR07,CGB+11]. Similarly in association studies,

as mentioned at the outset, heterogeneity can stem from population stratification, i.e. the

presence of multiple genetic subpopulations in the data [CHRZ07,SAT96]. For these reasons,

we ask:

Question 3: What are the most powerful algorithmic primitives for discerning

subpopulation structure from heterogeneous data?

In the third part of this thesis we answer Question 3 by giving faster algorithms for

two well-studied mixture models (stylized models of data with subpopulation structure).

Importantly, as we describe in Section 1.2.3 and subsequently in greater detail in Chapters 7

and 8, the algorithmic primitives we design help shed new light on the connections between

two powerful techniques in learning theory for handling such problems: Fourier analysis and

the method of moments.

1.1.3 Data Science and the Sciences?

In the final part of this thesis, we explore whether these ideas can say anything in other

domains beyond learning theory. We give two such applications.

Heterogeneity and Optics If one points a telescope at the night sky, under ideal con-

ditions one will discern bright, blurred disks in place of stars. Rather than some artifact

of atmospheric turbulence or imperfections in the lens, these patterns, so-called Airy disks,

emerge naturally from the physics of diffraction. Ever since the pioneering work of 19th

century physicists like Lord Rayleigh, Ernst Abbe, and Sir George Biddell Airy, it has been

widely believed that this blurring introduced by these disks imposes a fundamental limit on

how well one can resolve nearby light sources [Air35,Ray79,Abb73]. Despite a century and a

28

half of persistent debate (see Section 9.9) and numerous attempts to pin down the diffraction

limit, many of which are covered in standard introductory texts on optics [Hec15, Ken08],

a rigorous definition has remained elusive. That said, the consensus has largely been that

it occurs at the Abbe limit. In fact, the press release for the 2014 Nobel Prize in Chem-

istry, awarded for the development of new optical systems that can resolve at much smaller

distances, singled the Abbe limit out as the barrier being shattered [Nob14].

From the perspective of learning from heterogeneous data however, the diffraction limit

has a natural interpretation. An image consisting of several Airy disks simply arises from a

collection of photons, each sampled from one of a number of sources, striking the observation

plane. By casting the problem of resolution as one of learning a mixture model and leveraging

Fourier-analytic tools reminiscent of those we used to give algorithms for learning from

heterogeneous data, we are able to rigorously pinpoint the diffraction limit as a statistical

phase transition in the sample complexity for this problem. We give further details in

Section 1.2.3 and defer the technical details to Chapter 9.

Dynamic Data and Quantum Learning With noisy intermediate-scale quantum com-

puting looming on the horizon, it is timely to explore what ideas in machine learning on

classical computers are transferable to the quantum setting, where analogues of even the

most basic classical learning problems remain open. Take for instance the following popular

spin on the guiding question we asked at the outset of this chapter: given samples from

a distribution, what can we say about the distribution? Classically, one of the most ele-

mentary instantiations of this is uniformity testing : given i.i.d. samples from an unknown

distribution over 𝑑 elements, is the distribution uniform or far from being uniform? The

quantum analogue of this, mixedness testing, is just as natural: given the ability to measure

many copies of an unknown quantum state in 𝑑 dimensions, is it the maximally mixed state

or far from being maximally mixed? Whereas by now we have a deep understanding of the

former question and practically any variant of it one could try to ask, the precise answer to

the latter largely remains a mystery. This gap is all the more pressing given that certifying

whether a state one has prepared satisfies certain properties seems to be a basic prerequisite

for a variety of quantum data science tasks in the lab [dSLCP11,WGFC14,AGKE15].

29

There are a number of subtleties that arise in the quantum setting. For instance, whereas

in uniformity testing we can only interact with the distribution by receiving samples, in

mixedness testing we can choose the kinds of measurements we conduct, and in particular

our choices of measurements can depend adaptively on previous measurement outcomes.

This should be reminiscent of the discussion above on learning from dynamic, non-i.i.d.

data like in bandit settings, and indeed, as we will see in Section 1.2.4 and Chapters 10 and

11, techniques for proving bandit lower bounds will be key to shedding light on the sample

complexity of mixedness testing and related tasks like quantum state certification.

1.2 Our Contributions

In this section we elaborate on the specific models we study and our contributions:

1. In Section 1.2.1, we answer Question 1 by giving a new algorithmic primitive, filtered PCA,

for learning rich function classes in high dimensions, notably in settings where standard

approaches like gradient descent provably fail. This is the subject of Chapters 2 and 3,

based on the following two works:

• S. Chen, R. Meka. Learning Polynomials of Few Relevant Dimensions. Proceedings

of the 33rd Annual Conference on Learning Theory (COLT 2020).

• S. Chen, A.R. Klivans, R. Meka. Learning Deep ReLU Networks Is Fixed-Parameter

Tractable. Proceedings of the 62nd Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2021).

2. In Section 1.2.2 we answer Question 2 by describing new approaches based on novel ways

of iteratively reweighting the data that obtain the first near-optimal recovery guarantees

for a number of basic statistical questions like distribution estimation, regression, and

contextual bandits in the presence of corruptions and heavy-tailed noise. This is the

subject of Chapters 4 to 6, based on the following three works:

• S. Chen, J. Li, A. Moitra. Efficiently Learning Structured Distributions from Un-

trusted Batches. Proceedings of the 52nd Annual ACM Symposium on Theory of

Computing (STOC 2020).

30

• S. Chen, J. Li, A. Moitra. Learning Structured Distributions from Untrusted Batches:

Faster and Simpler. Advances in Neural Information Processing Systems (NeurIPS

2020).

• S. Chen, F. Koehler, A. Moitra, M. Yau. Online and Distribution-Free Robustness:

Regression and Contextual Bandits with Huber Contamination. Proceedings of the

62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2021).

3. In Section 1.2.3 we answer Question 3 by giving improved algorithms for learning two

popular mixture models, mixtures of product distributions and mixtures of linear regres-

sions. Notably, our techniques give new ways to exploit the Fourier transform and the

method of moments, in some cases simultaneously, in distribution learning. This is the

subject of Chapters 7 and 8, based on the following two works:

• S. Chen, A. Moitra. Beyond the Low-Degree Algorithm: Mixtures of Subcubes and

Their Applications. Proceedings of the 51st Annual ACM Symposium on Theory of

Computing (STOC 2019).

• S. Chen, J. Li, Z. Song. Learning Mixtures of Linear Regressions in Subexponential

Time via Fourier Moments. Proceedings of the 52nd Annual ACM Symposium on

Theory of Computing (STOC 2020).

As our first application to the sciences, we apply related ideas to give a rigorous inter-

pretation for the diffraction limit in classical optics; surprisingly, we prove that this limit

does not occur at the widely accepted Abbe limit. This is the subject of Chapter 9, based

on the following work:

• S. Chen, A. Moitra. Algorithmic Foundations for the Diffraction Limit. Proceedings

of the 53rd Annual ACM Symposium on Theory of Computing (STOC 2021).

4. In Section 1.2.4, motivated by parallels between quantum and online learning tasks, we

give a general framework for proving information-theoretic lower bounds for quantum

testing problems. Using this, we give the first memory-sample tradeoffs for mixedness

testing, as well as nearly instance-optimal bounds on the sample complexity of quantum

31

state certification. This is the subject of Chapter 10 and 11, based on the following two

works:

• S. Bubeck, S. Chen, J. Li. Entanglement is Necessary for Optimal Quantum Prop-

erty Testing. Proceedings of the 61st Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2020).

• S. Chen, J. Li, R. O’Donnell. Towards Instance-Optimal Quantum State Certifica-

tion With Independent Measurements. arxiv:2102.13098

1.2.1 Filtered PCA

In this part of the thesis, we describe a new algorithmic primitive for learning rich function

classes in high dimensions.

Models and Assumptions We begin by clarifying the specific generative models we will

study in this part of the thesis. We will consider the following standard setup for supervised

learning:

Definition 1.2.1 (Distribution-specific PAC learning). Let ℱ be some known class of func-

tions 𝐹 : R𝑑 → R, and let 𝒟x be some known distribution over R𝑑. Given error parameter

𝜀 > 0, we will say that an algorithm (properly) PAC learns ℱ over 𝒟x in time 𝑇 and sample

complexity 𝑁 if the following holds: given samples (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁) for some unknown

𝐹 ∈ ℱ , where 𝑥1, . . . , 𝑥𝑁 are i.i.d. samples from 𝒟x and 𝑦𝑖 = 𝐹 (𝑥𝑖), the algorithm runs in

time 𝑇 and outputs ̂︀𝐹 ∈ ℱ for which

E
𝑥∼𝒟x

[︁
(𝐹 (𝑥)− ̂︀𝐹 (𝑥))2]︁ ≤ 𝜀2

with high probability over the randomness of the samples and the algorithm. We will some-

times refer to the distribution over (𝑥, 𝑦) samples as 𝒟.

Motivated by the question of learning rich function classes like neural networks, we will

focus on function classes ℱ consisting of functions of the following form:

Definition 1.2.2 (Multi-index model). Let 𝑘, 𝑑 ∈ N be parameters satisfying 𝑘 ≤ 𝑑 (typically

32

we think of 𝑘 as much smaller than 𝑑). Given a matrix 𝑉 ∈ R𝑘×𝑑 and a function ℎ : R𝑘 → R,

the function 𝐹 : R𝑑 → R given by

𝐹 (𝑥) = ℎ(𝑉 𝑥)

is a multi-index model with link function ℎ and relevant subspace given by the row span of

𝑉 .

Multi-index models have had a long history of study in statistics [DH18,PVY17,NWL16,

Bri12,Li92,PV16,YBL17,BB+18,Li91,HJS01,HJP+01,DJS08]. From our perspective, they

represent an expressive testbed for developing algorithmic and analytic tools for PAC learn-

ing. For one, because multi-index models depend on a low-dimensional projection of the

input (that is, we typically think of 𝑘 as much smaller than 𝑑), they represent an appealing

class of functions for which one could hope to avoid the curse of dimensionality. Additionally,

they capture the following two classes of rich function families which will be the focus of the

algorithms we develop (we refer to Section 2.1.2 for a discussion of other commonly studied

function classes that can be realized as multi-index models).

Definition 1.2.3 (Low-rank polynomials). Fix parameters 𝑚, 𝑘, 𝑑 ∈ N with 𝑘 < 𝑑. Consider

the class of link functions consisting of all polynomials 𝑝 : R𝑘 → R of degree 𝑚. We refer

to multiple-index models whose link function is of this form as rank-𝑘 polynomials of degree

𝑚 in 𝑑 dimensions, or low-rank polynomials for short when the parameters are clear from

context.

This is a significant generalization of the phase retrieval problem (where the underlying

function is given by 𝐹 (𝑥) , ⟨𝑣, 𝑥⟩2 for some 𝑣 ∈ R𝑑), which has been the subject of a long

line of work in the signal processing and machine learning communities, see e.g. [CSV13,

CLS15,CEHV15,NJS13,NWL16] and the references therein. Over inputs from the Boolean

hypercube {±1}𝑑, rank-𝑘 polynomials of degree 𝑘 can also encode arbitrary 𝑘-juntas, i.e.

Boolean functions which only depend on 𝑘 bits of their output [MOS03]. Furthermore, as

we discuss immediately preceding Section 2.1.1, PAC learning low-rank polynomials can also

be thought of as a variant of tensor decomposition.

Note that if the goal were simply to output any degree-𝑚 polynomial (rather than a

low-rank one) that approximates 𝐹 , one trivial baseline would simply be to run polynomial

33

regression. But this would take 𝑂(𝑑𝑚) time and samples, whereas information-theoretically

the sample complexity for this problem should only need to scale linearly in the ambient

dimension 𝑑 when 𝑘 is bounded.

We now turn to the second class of functions we will work with:

Definition 1.2.4 (Neural networks). Given weight matrices

W0 ∈ R𝑘0×𝑑,W1 ∈ R𝑘1×𝑘0 , . . . ,W𝐿 ∈ R𝑘𝐿×𝑘𝐿−1 ,W𝐿+1 ∈ R1×𝑘𝐿 ,

consider the function

𝐹 (𝑥) , W𝐿+1𝜎 (W𝐿𝜎 (· · ·𝜎(W0𝑥) · · ·)) ,

where 𝜎 : R → R is some activation applied entrywise. In this work, we focus on 𝜎(𝑧) =

ReLU(𝑧) , max(0, 𝑧). We say that 𝐹 is computed by a (feedforward) ReLU network with

depth 𝐿 + 2 and size 𝑆 ,
∑︀𝐿

𝑖=0 𝑘𝑖. Note that 𝐹 is a multiple-index model with relevant

subspace of dimension equal to the rank of W0.

As we discuss in Section 3.1.1, the problem of PAC learning neural networks has been

the subject of intense study in the learning theory literature. In the last few years alone

there have been many papers giving provable results for learning restricted classes of neu-

ral networks under various settings [JSA15, ZLJ16, ZSJ+17, BG17, GKKT17, LY17, ZPS17,

Tia17,GKM18,DLT18,GLM17,GKLW18,MR18,BJW18,GK19,AZLL19,VW19,ZYWG19,

DGK+20, GMOV18, LMZ20, DK20], though in the learning setting we consider, all rele-

vant prior work only pertains to neural networks of depth 2, that is, functions of the form

𝐹 (𝑥) = W1𝜑(W0𝑥).

Similar to low-rank polynomials, neural networks when restricted to inputs from {±1}𝑑

can implement arbitrary 𝑘-juntas, where 𝑘 is the dimension of the relevant subspace (see

Appendix 3.5.2). As it is widely conjectured to be impossible to PAC learn general 𝑘-juntas

in time better than 𝑂(𝑑𝑘) when 𝒟x is the uniform distribution over {±1}𝑑, it is necessary

for us to restrict our attention to more “benign” choices of 𝒟x. In this part of the thesis, we

therefore work with the following standard distributional assumption:

34

Assumption 1 (PAC learning under Gaussian inputs– Chapters 2 and 3). In Defini-

tion 1.2.1, we will take 𝒟x to be the standard Gaussian distribution in 𝑑 dimensions, which

we will denote by 𝒩 (0, Id).

We note that the vast majority of the aforementioned works on phase retrieval and

PAC learning neural networks use this assumption, in some sense the most “benign” high-

dimensional distributional assumption one could hope to give provable guarantees for. We

also note that it is straightforward to extend to the case where 𝒟x is Gaussian with non-

identity covariance: simply estimate its covariance and “whiten” the dataset to simulate

samples from 𝒩 (0, Id) instead.

Existing Approaches In this section we survey existing approaches for PAC learning

multi-index models and highlight their shortcomings. The starting point for all of these

approaches is to note that because a multi-index model by definition only depends on the

projection of its input to the relevant subspace, the main challenge is to approximately

recover this subspace. Upon recovering this subspace, one can reduce the dimensionality of

the problem to that of the relevant subspace by projecting, thereby avoiding runtime that

scales prohibitively in the ambient dimension 𝑑 which is often much larger than 𝑘. A natural

way to exploit Assumption 1 to do this would be to consider the statistic

E
(𝑥,𝑦)∼𝒟

[𝑦 · (𝑥𝑥⊤ − Id)]. (1.2)

The motivation for this is the following basic result:

Fact 1.2.5. Suppose 𝐹 : R𝑑 → R is a multi-index model with relevant subspace 𝑉 and for

which E𝒟[𝑦] is finite. Then under Assumption 1, if 𝑣 ∈ R𝑑 is orthogonal to 𝑉 , then it lies

in the kernel of E𝒟[𝑦 · (𝑥𝑥⊤ − Id)].

Proof. Without loss of generality suppose ‖𝑣‖ = 1. Because 𝒟x is standard Gaussian in 𝑑

dimensions, the random variable 𝑦 is independent of ⟨𝑣, 𝑥⟩ if 𝑣 is orthogonal to 𝑉 . Therefore

𝑣⊤ E[𝑦 · (𝑥𝑥⊤ − Id)]𝑣 = E[𝑦 · (⟨𝑣, 𝑥⟩2 − 1)] = E[𝑦] · E[⟨𝑣, 𝑥⟩2 − 1] = 0,

35

where in the last step we used that ⟨𝑣, 𝑥⟩ is distributed as a standard univariate Gaussian.

Fact 1.2.5 suggests a simple algorithm for recovering the relevant subspace: estimate

the matrix (1.2) from samples and output the span of all eigenvectors with non-negligible

eigenvalue. Indeed, this is a standard approach in the multi-index model literature [PVY17,

Bri12,Li92,PV16,YBL17,DKKZ20] and is also a standard preprocessing step in algorithms

for phase retrieval [NJS13,CLS15,NWL16]. It can also be extended to higher-order statistics

of the form E[𝑦 · 𝑇 (𝑥)] for appropriate choices of tensor-valued function 𝑇 (𝑥), which forms

the basis for a number of provable algorithms for PAC learning depth-2 neural networks

[JSA15,ZSJ+17,BJW18,DK20].

The key drawback of this technique is that the converse of Fact 1.2.5 need not hold! That

is, the nontrivial part of the spectrum of E[𝑦 · (𝑥𝑥⊤ − Id)] may not reveal the full relevant

subspace. For instance, what if E[𝑦·(𝑥𝑥⊤−Id)] or any of its tensor-valued analogues E[𝑦·𝑇 (𝑥)]

were simply zero? In fact, it was shown in [GGJ+20,DKKZ20] that there exist networks for

which this is the case and that this poses a fundamental roadblock towards learning general

depth-2 neural networks. In particular, they constructed families of neural networks for

which any correlational statistical query (CSQ) algorithm, namely any algorithm that only

looks at statistics of the form E[𝑦 · 𝑔(𝑥)] for arbitrary functions 𝑔, must essentially run in

time 𝑑Ω(𝑆), where 𝑆 is the size of the network.

Notably, the popular heuristic of simply training a (possibly overparametrized) student

network by running noisy gradient descent to minimize the square loss is another prominent

example of a CSQ algorithm and thus cannot be used to efficiently PAC learn ReLU net-

works under Assumption 1! On the one hand, this suggests that real-world data is fairly

non-Gaussian. But from an algorithm designer’s point of view, this also presents an excit-

ing opportunity to design genuinely new algorithms that provably outperform ones used in

practice, under a natural distributional assumption.

Our Results and Techniques We now turn to a rough overview of the new approach we

develop for learning multi-index models, before informally stating the main theorems of this

section. We will defer more detailed technical overviews and proofs to Chapters 2 and 3.

The idea to circumvent the impossibility result of [GGJ+20,DKKZ20] is to instead look

36

at statistics of the form E[𝜑(𝑦) · (𝑥𝑥⊤ − Id)] for an appropriate choice of 𝜑 : R → R. It is

easy to see that the proof of Fact 1.2.5 generalizes to matrices of this form, so the hope is

still to recover some part of the relevant subspace by looking at the eigendecomposition of

this matrix, and the main difficulty is how to select 𝜑 to ensure that the matrix E[𝜑(𝑦) ·

(𝑥𝑥⊤ − Id)] is actually nonzero. While it is tempting to consider analytic functions like a

polynomial, exponential, or trigonometric function for 𝜑, these turn out to be quite difficult

to analyze. Instead, our key idea is to look at 𝜑 given by a step function. Specifically, for

some appropriately chosen 𝜏 , we will work with

𝜑(𝑧) ,

⎧⎪⎨⎪⎩1 |𝑧| ≥ 𝜏

0 |𝑧| < 𝜏.

To show that E[𝜑(𝑦) · (𝑥𝑥⊤ − Id)] is nonzero, it suffices to show that its trace E[𝜑(𝑦) ·

(‖Π𝑥‖2 − 𝑘)] is nonzero, where Π is the projection to the relevant subspace. We can ensure

this by selecting 𝜏 large enough that 𝜑(𝑦) = 1 only if ‖𝑥‖2 > 𝑘; this choice of 𝜏 is problem-

dependent. One can interpret this algorithm as projecting to the nontrivial eigenvectors of

the covariance of the conditional distribution on 𝑥 after filtering out all data points (𝑥, 𝑦)

for which |𝑦| is small. For this reason, we refer to this approach as filtered PCA, which we

summarize informally in the pseudocode below:

Algorithm 1: FilteredPCA({(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)}, 𝜏)
1 Throw out all points (𝑥𝑖, 𝑦𝑖) for which |𝑦𝑖| < 𝜏 .
2 Using all remaining points, form M =

∑︀
𝑖 𝑥𝑖𝑥

⊤
𝑖 .

3 return top principal components of M

This is our general recipe for recovering at least one vector from the relevant subspace.

It remains to show how to recover the rest of the subspace, and this turns out to be much

more complicated and problem-dependent. At a high level, the idea will be to filter out data

points (𝑥, 𝑦) for which some other function of 𝑦 is small, where this function is defined in

terms of vectors in the relevant subspace that have been found so far.

Using this approach, we are able to prove the following guarantees for PAC learning low-

rank polynomials and ReLU networks which, by the lower bounds of [GGJ+20, DKKZ20],

37

provably cannot be obtained by gradient descent.

Theorem 1.2.6 (Informal, see Theorem 2.1.3). Under Assumption 1, there is an algorithm

for PAC learning non-degenerate2 rank-𝑘 polynomials of degree 𝑚 in 𝑑 dimensions to error

𝜀 with sample complexity 𝑁 = 𝑂𝑘,𝑚

(︀
𝑑 log(𝑑)𝑂(𝑚) log2(1/𝜀)

)︀
and runtime 𝑇 = ̃︀𝑂𝑘,𝑚(𝑁𝑑).3

Note that when the degree and rank of the polynomial are constants, the sample complex-

ity and runtime of our algorithm specialize to 𝑁 = ̃︀𝑂(𝑑 log2(1/𝜀)) and 𝑇 = ̃︀𝑂(𝑑2 log2(1/𝜀)).
In particular, our dependence on the ambient dimension is near-optimal. We stress that this

is in sharp contrast to the junta setting mentioned above, i.e. where 𝒟x is uniform over

the hypercube. There, while information-theoretically it also suffices to take a number of

samples that scales linearly in 𝑑, computationally it is conjectured that no algorithm can

run in time better than the “polynomial regression baseline” of 𝑑𝑂(𝑚).

We also remark that the reason we are able to obtain a logarithmic rather than polynomial

dependence on 1/𝜀 is that we additionally give a gradient-based algorithm for refining an

initial estimate that is suitably close to the ground truth (we obtain this initial estimate

using the above filtered PCA approach). The gradient-based algorithm implements geodesic

stochastic gradient on a suitable Riemannian manifold; the analysis is quite technical and

we defer the overview and details to Chapter 2.

Finally, we turn to our guarantees for learning neural networks:

Theorem 1.2.7 (Informal, see Theorem 3.4.2). Under Assumption 1, there is an algorithm

for PAC learning ReLU networks of size 𝑆 of size 𝑆 to error 𝜀 with sample complexity

𝑁 = 𝑂(𝑑) · exp (poly(𝑆/𝜀)) and runtime ̃︀𝑂(𝑑2) · exp (poly(𝑆/𝜀)).
Similar to Theorem 1.2.6, our guarantee scales near-optimally in the ambient dimension

𝑑. Note that for some absolute constant 𝑐 > 0, this algorithm runs in time polynomial in 𝑑

provided 𝑆/𝜀 = 𝑂(log𝑐 𝑑). As we discuss in Chapter 3, such a result was not even known

for general depth-2 networks, and to date this is the only known result for PAC learning

neural networks of depth greater than 2 over Gaussian inputs. And to reiterate, thanks

2See Definition 2.3.1 for a precise definition of this condition, and the discussion preceding Definition 2.3.1
for an explanation of why such an assumption is needed.

3In this thesis, we use ̃︀𝑂(𝑓) and ̃︀Ω(𝑓) to denote 𝑂(𝑓 log𝑐(𝑓)) and Ω(𝑓/ log𝑐(𝑓)) for an absolute constant
𝑐 > 0. A subscript indicates that the hidden constant factor may depend arbitrarily on the quantities in the
subscript.

38

to aforementioned lower bounds of [GGJ+20,DKKZ20], Theorem 1.2.7 provably cannot be

achieved by noisy gradient descent.

1.2.2 New Iterative Reweighing Schemes

In this part of the thesis, we turn to the question of designing provable algorithms for

learning under the additional constraint that the data may be untrustworthy. We begin by

introducing the models we will study in this part of the thesis.

Model 1: Learning from Untrusted Batches The first, originally introduced in [QV17],

is motivated by the discussion at the beginning of Section 1.1.2 about the effect of adversarial

contaminations on data that was collected in a decentralized fashion, e.g. via a crowdsourcing

platform or via users in a federated learning or crowdsensing setup. Suppose we aggregate a

bunch of samples from users, each a draw from some unknown distribution 𝒟. As a concrete

example, perhaps we are interested in building a mobile spellcheck feature and would like

to learn the distribution over misspellings of a particular word. It is reasonable to imagine

that some small fraction of users supply faulty data, either because of device issues or for

malicious reasons. How well can we learn 𝒟 in this case?

There has been an explosion of progress in recent years on robust distribution learning,

yielding the first algorithms for efficiently learning Gaussians [DKK+19a,LRV16], mixtures of

Gaussians [BK20,Kan20,DHKK20,BDJ+20,LM21b,LM21a], and graphical models [DKSS21,

PSBR20,CDKS18] from corrupted samples. Here, we instead focus on arbitrary distributions

𝒟 over discrete domains.

The first thing to ask is how well one can learn such a distribution from a dataset of

𝑁 i.i.d. samples, where some 𝜂𝑁 of them have been arbitrarily corrupted. Unfortunately,

regardless of how big 𝑁 is, it is information-theoretically impossible to estimate 𝒟 to error

better than 𝑂(𝜂)– the corruptions can be chosen in such a way that the dataset could equally

plausibly be 𝑁 uncorrupted i.i.d. samples from an arbitrary 𝜂-perturbation of 𝒟 in total

variation.

One useful feature of the above decentralized learning applications however is that the

samples collected from users typically come in batches : rather than see a single independent

39

sample from each compliant or malicious user, we might see several! This turns out to enable

much better learning guarantees. First, let us formalize the setting just described:

Definition 1.2.8 (Learning from untrusted batches [QV17]). Let 𝒟 be an unknown dis-

tribution over {1, . . . , 𝑛}. We are given 𝑚 batches, each consisting of 𝑘 samples. Each

uncorrupted batch 𝑖 ∈ {1, . . . ,𝑚} has the property that its samples were drawn i.i.d. from

some unknown distribution 𝒟𝑖 that is 𝜔-close in total variation distance to 𝒟. Moreover

(1− 𝜂)𝑚 of the batches are uncorrupted, though the indexes of these batches are not known

to the learner. The remaining 𝜂𝑚 batches are arbitrarily corrupted. In fact, an adversary is

allowed to choose the contents of the corrupted batches after observing all of the uncorrupted

batches.

[QV17] proposed an exponential-time algorithm for learning 𝒟 to within 𝑂(𝜔 + 𝜂/
√
𝑘)

error in total variation distance. They also showed a matching information-theoretic lower

bound showing that achieving 𝑜(𝜔 + 𝜂/
√
𝑘) error is impossible in general, leaving as an

open question whether one can match this lower bound with an efficient algorithm. As we

describe below, we will answer this in the affirmative.

Beyond giving an efficient algorithm for learning general discrete distributions from un-

trusted batches though, one can also ask for more refined guarantees that take into account

additional structure in 𝒟. There is a long line of work in statistics on getting minimax rates

for learning various classes of structured distributions from samples (see Section 4.1.3 for

references). As we will show, our techniques can be extended to obtain guarantees of this

nature even in the untrusted batches setting. We defer a formal definition of the class of

structured distributions we consider to Definition 4.5.3 but note that they capture a wide

array of examples including monotone, multi-modal, log-concave, and monotone hazard rate

distributions, as well as mixtures thereof.

Model 2: Robust Regression We now turn our attention back to supervised learning,

specifically the basic task of linear regression, and ask the same question as above: can we

design algorithms that can tolerate a constant fraction of the data being corrupted?

Of course, this is by no means a new question. It has long been known that ordinary

least-squares is highly sensitive to the presence of even a small number of outliers, and

40

traditionally the fix, dating back to work of Huber [Hub64,Hub73] and even as far back as the

1700s [Bos57], is to minimize a loss function that is less sensitive than the square loss, e.g. the

Huber loss or the absolute value loss [Chi20,L+17,ZJS20,DT19]. One other classical approach

originally proposed by Legendre [LS59] is that of least trimmed squares : run ordinary least

squares, throw out points with large residual, and repeat on the remaining data [BJKK17,

BJK15, SBRJ19]. Recent progress in high-dimensional robust statistics has also led to a

number of new provable algorithms for robust regression in a variety of challenging settings

[KKM18,BP20,ZJS20,CAT+20].

The following model of robust regression is studied in many of these works (we discuss

how it compares to other commonly studied models in Section 6.3):

Definition 1.2.9 (Huber-contaminated linear regression, informal– see Chapter 6). Fix

noise parameter 𝜎 > 0 and dynamic range parameter 𝑅 > 0. Let 𝒟x be a distribution over

the unit ball, and let 𝜃* ∈ R𝑑 be an unknown vector satisfying ‖𝜃*‖ ≤ 𝑅. The learner receives

a collection of samples (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁) generated via the following experiment:

1. Sample 𝑥1, . . . , 𝑥𝑁 ∈ R𝑑 independently from 𝒟x.

2. Nature selects a random, unknown subset 𝑆 ⊂ {1, . . . , 𝑁} of size 𝜂 ·𝑁 .

3. For every 𝑖 ̸∈ 𝑆, define 𝑦𝑖 , ⟨𝜃*, 𝑥𝑖⟩+ 𝜉𝑖 for 𝜉𝑖 ∼ 𝒩 (0, 𝜎2).

4. For every 𝑖 ∈ 𝑆, an all-powerful adversary chooses the value of 𝑦𝑖.

The goal of the learner is to produce a vector 𝜃 for which the clean mean squared error

E𝑥∼𝒟x [⟨𝜃* − 𝜃, 𝑥⟩2] is small.4

Note that simply running ordinary least squares on the dataset already achieves clean

mean squared error 𝑂(𝜂𝑅2). On the other hand, by a simple reduction from one-dimensional

robust mean estimation (see Example 6.4.3), no algorithm can achieve clean mean squared

error better than 𝑂(𝜂2𝜎2). In particular, when 𝜎2 is comparable to 𝑅2, it is very easy to

achieve the information-theoretically optimal level of error, but this is because not that much

4As will become clear in the analysis, it will be straightforward to extend our techniques to handle the
non-realizable case where the dataset is not given by a linear ground truth, and we simply want to compete
with the optimal linear predictor on the uncorrupted data.

41

(a) When 𝜎2 is comparable to 𝑅2, many lines
(range depicted in green), including the one
found by ordinary least squares (orange), fit the
data equally well (although the fit is not that
good to begin with).

(b) When 𝜎2 is much smaller than 𝑅2, then ordi-
nary least squares (orange) fails, but in principle
it should be possible to do much better even in
high-dimensions.

Figure 1-1: Datasets with equal contamination rates but different levels of noise 𝜎. The corruptions are
located in the upper left and bottom right parts of both figures. The goal in robust regression is to achieve
low square loss on the uncorrupted points. We depict in orange the ordinary least squares estimator and in
green the range of linear predictors that would perform comparably to what our algorithms can achieve.

can be learned about 𝜃* in the first place (see the left panel of Figure 1-1 for an illustration).

In contrast, we will be interested in the natural setting where 𝜎 is much smaller than 𝑅.

Unfortunately, as we discuss at length throughout Sections 6.1 and 6.3, one drawback of

existing alternatives to ordinary least squares is that they make strong assumptions on the

distribution 𝒟x over the covariates, ruling out the possibility of applying these guarantees to

the settings discussed in Section 1.1.2 where the covariates can be heavy-tailed or dynamically

generated.

As we describe below, in this thesis we give the first algorithms for Huber-contaminated

linear regression that work for arbitrary distributions 𝒟x and obtain near-optimal clean mean

squared error. In fact, our techniques are general enough to apply to fixed-design and online

settings where the covariates can even depend on previous data and actions of the learner.

We defer the specifics of these settings to Section 6.5.1 and Definition 6.4.1 respectively. We

also remark that our techniques extend naturally to settings where 𝒟x is supported over an

infinite-dimensional space and the 𝑥𝑖’s are implicitly represented by a feature map, e.g. in

kernel ridge regression.

42

Sum-of-Squares and Alternating Minimization Many of the recent algorithms for

robust statistics are based on searching for a subset of the data which satisfies similar struc-

tural properties as the set of uncorrupted data. For instance, to robustly estimate the mean

of a spherical Gaussian 𝒩 (𝜃, Id), [DKK+19a] give algorithms that exploit the fact that any

large subset of the samples whose covariance is not too “spiky” in any one direction must

have empirical mean close to the true mean of the distribution.

Implicit in many of these works is the following generic recipe for mitigating the effect

of corruptions. First, let 𝒜 : 𝒮 → Θ be a “non-robust” algorithm for solving a particular

statistical task, where 𝒮 is the universe of all possible datasets and Θ is the set of possible

underlying parameters for the problem. For instance, if the task is estimating the mean of

𝒩 (𝜃, Id), Θ is the set R𝑑 of all possible means, and given a dataset, 𝒜 might simply compute

its empirical mean.

Now comes the difficult and highly problem-dependent part. Given a corrupted dataset

𝒵 = {𝑧1, . . . , 𝑧𝑁}, we need to design a penalty function ℓ : 2[𝑁] × Θ → R≥0 that takes a

subset 𝑆 ⊆ [𝑁] and an estimate 𝜃 ∈ Θ and outputs a proxy for how “wrong” we would be if

we guessed that the points in 𝑆 were the uncorrupted points and took 𝜃 to be our estimate

for the ground truth parameter. For one, we want completeness : when 𝑆 is the true set of

uncorrupted points and 𝜃 is the result of applying 𝒜 to 𝑆, ℓ(𝑆, 𝜃) should be small. Crucially,

we also want soundness : when ℓ(𝑆, 𝜃) is small and 𝑆 is as big as the set of uncorrupted

points, then 𝜃 is close to the ground truth.

Example 1.2.10. For estimating the mean of a spherical Gaussian when an 𝜂-fraction of

samples have been corrupted, [DKK+19a] takes ℓ(𝑆, 𝜃) to be⃦⃦⃦⃦
⃦ 1

|𝑆|
∑︁
𝑖∈𝑆

(𝑧𝑖 − 𝜃)(𝑧𝑖 − 𝜃)⊤ − Id

⃦⃦⃦⃦
⃦
2

. (1.3)

If 𝑆 were truly the set of uncorrupted samples and 𝜃 were their empirical mean, then (1.3)

would be close to zero by standard concentration, so completeness holds. The key structural

result shown in [DKK+19a] is that if ℓ(𝑆, 𝜃) is small and |𝑆| ≥ (1 − 𝜂)𝑁 then 𝜃 is close to

the true mean, so soundness also holds.

Given 𝒜, dataset 𝒵 of which an 𝜂-fraction has been corrupted, and ℓ, the generic recipe

43

is then simply to solve

min
𝑆⊆[𝑁]:

|𝑆|≥(1−𝜂)𝑁

ℓ(𝑆,𝒜({𝑧𝑖}𝑖∈𝑆)). (1.4)

While there is no reason a priori for this to be efficiently solvable, in certain situations it is

possible to relax (1.4) into a tractable optimization problem.

One existing approach is to form a convex relaxation via sum-of-squares programming.

This forms the basis for some of the algorithms in this part of the thesis, but because the

setup for this approach is rather technical, we defer the details to Chapter 4.

We now describe another common approach for relaxing (1.4) based on alternating min-

imization. First, note that we can relax the minimization over 𝑆 in (1.4) to a minimiza-

tion over a collection of weights 𝑎 = {𝑎1, . . . , 𝑎𝑁} for which 0 ≤ 𝑎𝑖 ≤ 1 for all 𝑖 and∑︀𝑁
𝑖=1 𝑎𝑖 = (1 − 𝜂)𝑁 . In particular, one valid choice of weights would be to take 𝑎𝑖 = 1 if

sample 𝑧𝑖 is uncorrupted and 𝑎𝑖 = 0 otherwise; more generally, 𝑎𝑖 can be thought of as a

score for how confident we are that 𝑧𝑖 is uncorrupted.

Letting Δ𝑁,𝜂 denote the set of such weights 𝑎, we can consider more general types of

penalty functions ℓ over Δ𝑁,𝜂 × Θ instead of 2[𝑁] × Θ. Likewise, we can consider more

general types of non-robust algorithms 𝒜 over Δ𝑁,𝜂 × 𝒮 instead of 𝒮 (for instance, in mean

estimation, we could take 𝒜(𝑎,𝒵) to be the weighted empirical mean 1
(1−𝜂)𝑁

∑︀
𝑖 𝑎𝑖𝑧𝑖).

We then arrive at the following new optimization problem:

min
𝑎∈Δ𝑁,𝜂

ℓ(𝑎,𝒜(𝑎,𝒵)).

While this is a bilevel optimization problem and thus potentially still intractable, there is a

natural heuristic for solving such a problem, alternating minimization:

Algorithm 2: AltMin(𝜂,𝒵,𝒜, ℓ)
1 Initialize 𝑎 arbitrarily.
2 for 1 ≤ 𝑡 ≤ 𝑇 do
3 𝜃 ← 𝒜(𝑎,𝒵).
4 𝑎← min𝑎∈Δ𝑁,𝜂

ℓ(𝑎, 𝜃). // alternatively, take a gradient/MW step

5 return 𝜃

As the value of 𝑎 is repeatedly updated by solving min𝑎 ℓ(𝑎, 𝜃), taking a gradient step, or

44

performing a multiplicative weight update, we can think of AltMin as iteratively reweighing

the dataset to gradually dampen the influence of the corrupted data points on 𝒜.

We remark that this idea has been used extensively in the literature on robust mean

estimation, where there are by now a number of proofs that variants of AltMin converge

to a good estimate for the mean [DKK+19a,ZJS20,CDGS20,HLZ20].

Our Results and Techniques– Learning From Untrusted Batches As we mentioned

above, the specific details of how to implement AltMin (e.g. how to design ℓ) and how to

analyze it are highly problem-dependent, and the main contribution in this part of the

thesis will be to extend this framework to other natural statistical tasks, namely learning

from untrusted batches and Huber-contaminated regression. We begin with our results for

learning from untrusted batches, as they are closest in spirit to the ideas that go into robust

mean estimation.

The starting point is to note that learning from untrusted batches amounts to robustly

learning multinomial distributions. Given a batch of 𝑘 i.i.d. draws from a distribution 𝒟

over {1, . . . 𝑛}, consider the 𝑘-dimensional vector 𝑧 of frequencies with which each element

of the domain appears in the batch. This is by definition distributed as a sample from the

multinomial distribution Mul𝑘(𝒟) given by 𝑘 draws from 𝒟. Furthermore, as a distribution

over R𝑛, Mul𝑘(𝒟) has mean 𝜃* · 𝑘, where 𝜃* is the vector whose 𝑖-th entry is the probability

mass 𝒟 assigns to element 𝑖 of the domain.

As a result, learning from untrusted batches is equivalent to estimating the mean of a

multinomial distribution in 𝐿1 norm from corrupted samples. In light of this connection to

robust mean estimation, it is natural to try to adapt (1.3) as follows. As the norm under

which we need our estimate 𝜃 to be close to 𝜃* is 𝐿1 instead of 𝐿2, by the dual formulation

of 𝐿𝑝 norms we would like max𝑣∈{±1}𝑛|⟨𝜃 − 𝜃*, 𝑣⟩| to be small. Consequently it would make

sense to modify (1.3) by considering

ℓ(𝑎, 𝜃) , max
𝑣:{±1}𝑛

∑︁
𝑖

𝑎𝑖⟨𝑧𝑖 − 𝜃, 𝑣⟩2.

Actually, it turns out that to obtain near-optimal bounds with this approach, one should

45

use higher-degree information by instead considering

ℓ(𝑎, 𝜃) , max
𝑣:{±1}𝑛

∑︁
𝑖

𝑎𝑖⟨𝑧𝑖 − 𝜃, 𝑣⟩𝑡 (1.5)

for sufficiently large 𝑡. Incorporating this into a sum-of-squares relaxation, we are able to

obtain the following warmup result:

Theorem 1.2.11 (Informal, see Theorem 4.4.1). Let 𝒟, 𝑘, 𝑛, 𝜂, 𝜔 be as in Definition 1.2.8.

There is an (𝑛𝑘/𝜂)polylog(1/𝜂)-time algorithm for learning from untrusted batches that estimates

𝒟 to within 𝑂
(︁

𝜂√
𝑘

√︀
log 1/𝜂 + 𝜔

)︁
in total variation distance.

Note that this matches the information-theoretic lower bound of Θ(𝜔 + 𝜂/
√
𝑘) up to a√︀

log(1/𝜂) factor.

We then turn to the more challenging question of obtaining refined sample complexity

guarantees when 𝒟 is structured. Using a result of [ADLS17], it suffices to estimate 𝒟

relative to a different norm than 𝐿1, namely

‖·‖𝒜ℓ
, max

𝑣∈{±1}𝑛 with
≤2ℓ sign changes

|⟨·, 𝑣⟩|,

where the maximization is over bitstrings which, when read from left to right, change in sign

at most 2ℓ times (see Section 4.5.1). The natural way to adapt (1.5) would be to constraint

the maximization over 𝑣 ∈ {±1}ℓ to vectors with bounded sign changes, but the key difficulty

is that this is much harder to capture in an efficient way using a sum-of-squares relaxation.

We show how to do so in Section 4.5 and 4.6 via a novel relaxation based on Haar wavelets.

It turns out however that by using an alternating minimization approach instead, we can

achieve even better runtime and sample complexity. Specifically, we consider the following

penalty function:

ℓ(𝑎, 𝜃) , min
𝑣∈{±1}𝑛 with

≤2ℓ sign changes

{︂
⟨𝑣𝑣⊤,Σ𝑎,𝜃⟩ −

1

𝑘
(⟨𝑣, 𝜇𝑎⟩ − ⟨𝑣, 𝜇𝑎⟩2)

}︂
, (1.6)

where Σ𝑎,𝜃 , 1
(1−𝜂)𝑁

∑︀𝑁
𝑖=1 𝑎𝑖(𝑧𝑖 − 𝜃)(𝑧𝑖 − 𝜃)⊤ and 𝜇𝑎 , 1

(1−𝜂)𝑁
∑︀𝑁

𝑖=1 𝑎𝑖𝑧𝑖. More precisely, we

consider a semidefinite relaxation of this penalty function, inspired by the aforementioned

46

sum-of-squares relaxation based on Haar wavelets. The details are quite technically involved,

and we defer a discussion of where (1.6) comes from and how to analyze it, as well as relevant

prior and concurrent work, to Chapter 5.

Plugging this choice of penalty function into AltMin, we obtain a polynomial-time

algorithm for learning structured distributions from untrusted batches to error that also

matches the information-theoretic lower bound up to a log factor:

Theorem 1.2.12 (Informal, see Theorem 5.4.1). Let 𝒟, 𝑘, 𝑛, 𝜂, 𝜔 be as in Definition 1.2.8.

Suppose 𝒟 is approximated by an 𝑠-part piecewise polynomial function with degree at most

𝑑. There is a polynomial-time algorithm for learning from untrusted batches that estimates

𝒟 to within 𝑂
(︁

𝜂√
𝑘

√︀
log(1/𝜂) + 𝜔

)︁
in total variation distance using ̃︀𝑂 (︀(𝑠2𝑑2/𝜀2) · log3(𝑛))︀

batches.

Our Results and Techniques– Huber-Contaminated Regression We conclude this

section by describing our contributions for regression in the presence of corruptions. To

motivate our choice of penalty function ℓ(𝑎, 𝜃), we first ask what distinguishing structural

properties the uncorrupted part of the data satisfies. For instance, if the distribution 𝒟x

over covariates were, say, isotropic sub-Gaussian, then any univariate projection of the uncor-

rupted 𝑥’s in the dataset would have bounded higher moments. Indeed, this idea is the basis

for essentially all recent works on robust regression, e.g. [KKM18, BP20, ZJS20, CAT+20].

The main issue of course is that in our setting we make no such assumptions about 𝒟x.

Instead, our choice of ℓ(𝑎, 𝜃) will arise from the following toy calculation. Recall from

Definition 1.2.9 that the figure of merit in Huber-contaminated regression is the clean mean-

squared error E[⟨𝜃* − 𝜃, 𝑥⟩2], which is well-approximated by

1

𝑁

𝑁∑︁
𝑖=1

⟨𝜃* − 𝜃, 𝑥𝑖⟩2

For convenience, define the weighting 𝑎* ∈ Δ𝑁,𝜂 by 𝑎*𝑖 = 1 if 𝑖 is uncorrupted and 𝑎*𝑖 = 0

otherwise.

First observe that because the uncorrupted points are a random (1 − 𝜂)-fraction of the

dataset, the total squared error over the uncorrupted points subsamples the total squared

47

error over all points, so

1

𝑁

𝑁∑︁
𝑖=1

𝑎*𝑖 ⟨𝜃* − 𝜃, 𝑥𝑖⟩2 ≈
1− 𝜂
𝑁

𝑁∑︁
𝑖=1

⟨𝜃* − 𝜃, 𝑥𝑖⟩2. (1.7)

Now given any other weighting 𝑎 ∈ Δ𝑁,𝜂, we can write 𝑎*𝑖 = 𝑎*𝑖 𝑎𝑖+𝑎
*
𝑖 (1−𝑎𝑖) ≤ 𝑎*𝑖 𝑎𝑖+(1−𝑎𝑖).

Substituting this into (1.7), we conclude that

1

𝑁

𝑁∑︁
𝑖=1

𝑎*𝑖 𝑎𝑖⟨𝜃* − 𝜃, 𝑥𝑖⟩2 +
1

𝑁

𝑁∑︁
𝑖=1

(1− 𝑎𝑖)⟨𝜃* − 𝜃, 𝑥𝑖⟩2 &
1− 𝜂
𝑁

𝑁∑︁
𝑖=1

⟨𝜃* − 𝜃, 𝑥𝑖⟩2. (1.8)

The first term corresponds to the contribution from uncorrupted points that the weighting

𝑎 correctly identifies as uncorrupted, and the second comes from points that the weighting

𝑎 identifies as corrupted. Here is the main idea: even though 𝑎 need not behave like the

indicator of a random (1 − 𝜂)-fraction of the data, let us pretend that it does. If so, then

using the same subsampling idea from above, we would have that

1

𝑁

𝑁∑︁
𝑖=1

(1− 𝑎𝑖)⟨𝜃* − 𝜃, 𝑥𝑖⟩2 ≈
𝜂

𝑁

𝑁∑︁
𝑖=1

⟨𝜃* − 𝜃, 𝑥𝑖⟩2. (1.9)

The punch line is that if we substitute (1.9) into (1.8) and rearranged, we would obtain

1

(1− 2𝜂)𝑁

𝑁∑︁
𝑖=1

𝑎*𝑖 𝑎𝑖⟨𝜃* − 𝜃, 𝑥𝑖⟩2 &
1

𝑁

𝑁∑︁
𝑖=1

⟨𝜃* − 𝜃, 𝑥𝑖⟩2.

In other words, as long as 𝜂 is bounded away from 1/2,5 we can upper bound the clean mean

squared error (right-hand side) in terms of the error of 𝜃 on uncorrupted points correctly

identified by 𝑎 (left-hand side). At this point we are done: it turns out that if we incorporate

into the penalty function the term
∑︀𝑁

𝑖=1 𝑎𝑖(𝑦𝑖 − ⟨𝜃, 𝑥𝑖⟩)2, one can control this term without

too much difficulty (see Section 6.5 for details).

The key step in this argument was the ansatz (1.9). How do we ensure this holds for

the (𝑎, 𝜃) that our algorithm finds? We would like to enforce that (1.9) holds, but it de-

5If 𝜂 ≥ 1/2, note that the problem is information-theoretically impossible: the corrupted labels might
come from another linear model, in which case it is impossible to discern which linear model is the ground
truth

48

pends on 𝜃*. The workaround is simply to enforce that 1
𝑁

∑︀𝑁
𝑖=1(1− 𝑎𝑖)⟨𝑣, 𝑥𝑖⟩2 approximates

𝜂
𝑁

∑︀𝑁
𝑖=1⟨𝑣, 𝑥𝑖⟩2 for all 𝑣 ∈ R𝑑. This is simply a spectral constraint, namely that the covari-

ance of the dataset under the weighting 𝑎 subsamples that of the full dataset. We could either

impose this as a hard constraint or, in the framework of AltMin, define ℓ(𝑎, 𝜃) to include a

regularizer corresponding to this subsampling constraint:

ℓ(𝑎, 𝜃) =
𝑁∑︁
𝑖=1

𝑎𝑖(𝑦𝑖 − ⟨𝜃, 𝑥𝑖⟩)2 + 𝜆

⃦⃦⃦⃦
⃦ 1

𝑁

𝑁∑︁
𝑖=1

(1− 𝑎𝑖 − 𝜂)𝑥𝑖𝑥⊤𝑖

⃦⃦⃦⃦
⃦
2

.

Incorporating this into AltMin, we obtain the following near-optimal guarantee for Huber-

contaminated regression:

Theorem 1.2.13 (Informal, see Theorem 6.1.1). Suppose that 𝜂 < 0.4999. There is a

polynomial-time algorithm for Huber-contaminated regression achieving clean mean-squared

error 𝑂(𝜂2𝜎2 log(1/𝜂)) with high probability.

We refer to Chapter 6 for explicit sample complexity bounds, noting that they specialize

to minimax rates for ordinary least squares when 𝜂 = 0. We also emphasize that the clean

mean squared error that our algorithm achieves matches the aforementioned information-

theoretic lower bound of Ω(𝜂2𝜎2) up to a log factor. And as discussed in the footnote above,

our algorithm works for 𝜂 all the way up to the information-theoretic limit of 1/2; in robust

statistics jargon, our estimator achieves optimal breakdown point.

As alluded to above, we can also extend Theorem 1.2.13 to handle a variety of other

settings where the process generating the samples is non-stochastic (i.e. fixed-design) or

even adaptive based on the data that has been generated so far. In fact, our techniques

can handle more challenging settings where, instead of minimizing clean mean squared error

which is intrinsically an offline guarantee, we minimize a suitable notion of regret for various

online problems. Specifically, we show

Theorem 1.2.14 (Informal, see Theorems 6.7.2 and 6.7.4). Suppose that 𝜂 < 0.4999.

There is a polynomial-time algorithm for Huber-contaminated online regression (see Defi-

nition 6.4.1) achieving clean square loss regret 𝑂 (𝜎2𝜂2 log(1/𝜂))𝑇 +poly(𝑅, 𝜎, 𝜂) · 𝑜(𝑇) with

high probability.

49

Theorem 1.2.15 (Informal, see Theorems 6.8.1 and 6.8.2). Suppose that 𝜂 < 0.4999. There

is a polynomial-time algorithm for Huber-contaminated linear contextual bandits with action

space of size 𝐾 (see Definition 6.4.4) that achieves clean square loss regret 𝑂
(︁
𝜎𝜂
√︀
𝐾 log(1/𝜂)

)︁
·

𝑇 + poly(𝑅,𝐾, 𝜂, 𝜎) · 𝑜(𝑇).

We note that the leading-order term in both of these bounds is optimal up to log factors.

It may appear surprising that our algorithms for dealing with Huber contamination do

not use an established approach like minimizing the Huber or 𝐿1 loss. This is because there

are fundamental reasons that neither of these approaches can match our strong guarantees

in the distribution-free setting. In fact, we prove a lower bound showing the failure of any

𝑀 -estimator based on minimizing a convex loss function:

Theorem 1.2.16 (Lower bound against convex 𝑀 -estimators, informal version of Theo-

rem 6.9.1). There is an instance of Huber-contaminated linear regression for which no vector

𝜃 obtained by minimizing a convex loss with respect to the Huber-contaminated distribution

over (𝑥, 𝑦)’s can achieve clean mean squared error better than Ω(𝜂3𝑅𝜎).

1.2.3 Heterogeneity, Moments, and the Fourier Transform

In this part of the thesis, we study the related question of learning from heterogeneous

data. We begin by describing the three models we focus on; these will all be examples of

mixture models, a prototypical way to model heterogeneous distributions by expressing them

as convex combinations of simpler distributions. After defining the models, we will describe

our techniques and results, a common theme being new recipes for exploiting the moments

and Fourier transform of the underlying distribution.

Definition 1.2.17 (Mixture models). Let 𝒞 be some known class of distributions over a

domain 𝐷. Given 𝑘 ∈ N, mixing weights 𝜆1, . . . , 𝜆𝑘 ∈ [0, 1] encoding a distribution 𝜆 over

{1, . . . , 𝑘}, and distributions 𝒟1, . . . ,𝒟𝑘 ∈ 𝒞, the corresponding mixture of 𝑘 distributions

from 𝒞 is the following distribution over 𝐷. To sample once from this distribution, sample

𝑖 ∈ {1, . . . , 𝑘} from 𝜆 and then sample from 𝒟𝑖.

One of the most famous families of mixture models is mixtures of Gaussians, where 𝒞 is

taken to be the class of all Gaussian distributions in 𝑑 dimensions. The question of learning

50

mixtures of Gaussians from samples has been the subject of intensive study in the theoretical

computer science literature in recent years [Das99,DS00,AK01,VW02,AM05,BV08,KMV10,

MV10,BS15,HP15,HK13,GHK15,RV17,HL18,KS17,DKS18b], and while we do not focus

on them in this thesis, they will serve as a source of motivation for some of the questions we

consider.

Model 1: Mixtures of Product Distributions We begin by considering the following

mixture model over the Boolean hypercube.

Definition 1.2.18 (Mixtures of product distributions). Given 𝑛 ∈ N, a product distribution

over {0, 1}𝑛 is any product of 𝑛 Bernoulli random variables. We refer to the vector in [0, 1]𝑛

consisting of the means of these Bernoullis as the center of the product distribution. A

mixture of product distributions is then defined according to Definition 1.2.17.

This is an incredibly rich family of discrete distributions and has been studied in a number

of contexts where one would like to learn from heterogeneous data. It captures the Dawid-

Skene model in crowdsourcing [DS79] where one would like to estimate the competencies

of a population of workers from noisy observations, population stratification in genetics

[SRH07,CHRZ07] where one would like to control for the fact that there are many genetically

differentiated subpopulations represented in the data, and user profiling in recommendation

systems [TM+14] where one would like to use user ratings to produce vectors encoding the

tastes of every user. Outside of learning contexts, mixtures of product distributions also

abound in the theory of nonlinear large deviations, where there are a number of structural

results showing that certain “low-complexity” Gibbs measures on product spaces are well-

approximated in Wasserstein distance by mixtures of product distributions [EG18, Aus19,

Aus20].

We will be especially interested in the following class of mixtures of product distributions:

Definition 1.2.19 (Mixtures of subcubes). Given 𝑛 ∈ N and a string 𝑠 ∈ {0, 1, ⋆}𝑛, the

subcube associated to 𝑠 is the set of all strings in {0, 1}𝑛 that agree with 𝑠 in all {0, 1}-

valued coordinates. We refer to any mixture of uniform distributions over such subcubes as a

mixture of subcubes. Equivalently, a mixture of subcubes is a mixture of product distributions

whose centers all lie in {0, 1/2, 1}𝑛.

51

Mixtures of subcubes capture a variety of natural distributions that arise in the context of

PAC learning Boolean functions. For instance, given a junta, a decision tree, or an instance

of sparse parity with noise, the uniform distribution over positively labeled bitstrings is

a mixture of subcubes. A more interesting example is the following class of probabilistic

functions, which should be thought of as decision trees with some number of nodes given by

stochastic transitions.

Definition 1.2.20 (Stochastic decision trees). A stochastic decision tree 𝑇 on 𝑛 bits is a

tree with leaves labeled by 0 or 1 and with internal nodes of two types: decision nodes and

stochastic nodes. Each decision node is labeled with some 𝑖 ∈ [𝑛] and has two outgoing edges,

one labeled with 0 and the other with 1. Each stochastic node 𝑢 has some number of outgoing

edges 𝑢𝑣 each labeled with a probability 𝑝𝑢𝑣 such that
∑︀

𝑣 𝑝𝑢𝑣 = 1.

𝑇 defines a joint probability distribution 𝐷𝑇 on {0, 1}𝑛×{0, 1} as follows. The 𝑥 ∈ {0, 1}𝑛

is sampled uniformly at random. Then given 𝑥, the conditional distribution can be sampled

from by walking down the tree as follows. At a decision node labeled with 𝑖, traverse along

the edge labeled by 𝑥𝑖. At a stochastic node 𝑢 with outgoing edges labeled 𝑝𝑢𝑣, pick edge 𝑢𝑣

with probability 𝑝𝑢𝑣 and traverse along that edge. When we reach a leaf node, output its value

𝑏. In this case we say that 𝑥 evaluates to 𝑏 along this path.

It turns out that the distribution over 𝑥 randomly sampled from {0, 1}𝑛 conditioned on

𝑥 evaluating to 1 under a 𝑘-leaf stochastic decision tree is a mixture of 𝑘 subcubes. As a

result, algorithms for learning mixtures of subcubes from samples automatically give rise to

algorithms for learning stochastic decision trees (see Section 7.9).

Lastly, we clarify what we mean by “learning” a mixture of product distributions or

subcubes. Note that in general, the parameters of the mixture may not be “identifiable,”

that is, it may not be information-theoretically possible to recover the centers of such a

mixture. As an extreme example, note that the uniform distribution over {0, 1}𝑛 can be

realized both as a mixture of a single subcube (the entire hypercube) and as a mixture of

2𝑛 subcubes (one for every vertex of the hypercube). Instead, our learning goal will be the

following:

Definition 1.2.21 (Density Estimation). Given independent samples from a distribution

52

𝒟, we say that 𝒜 is an algorithm for density estimation achieving error 𝜀 in total variation

distance if it outputs the description of a distribution 𝒟′ for which 𝑑TV(𝒟,𝒟′) ≤ 𝜀 with high

probability over the randomness of the samples and the algorithm.

Model 2: Mixtures of Linear Regressions Next, we study the following heterogeneous

variant of linear regression.

Definition 1.2.22 (Mixtures of Linear Regressions). Fix 𝑑 ∈ N, noise parameter 𝜎 > 0,

and a distribution 𝒟x over covariates. Given a vector 𝑣 ∈ R𝑑, consider the distribution over

(𝑥, 𝑦) where 𝑥 is sampled from 𝒟x and 𝑦 = ⟨𝑣, 𝑥⟩ + 𝜉 where 𝜉 ∼ 𝒩 (0, 𝜎2). A mixture of

linear regressions (MLR) is a mixture of such distributions in the sense of Definition 1.2.17.

If {𝑣1, . . . , 𝑣𝑘} are the vectors for the components of the mixture, we say that the mixture is

Δ-separated if ‖𝑣𝑖 − 𝑣𝑗‖ ≥ Δ for all 𝑖 ̸= 𝑗.

This model has applications to problems ranging from trajectory clustering [GS99] to

phase retrieval [BCE06,CSV13,NJS13] and has received significant attention in the learning

theory literature as a natural non-linear generative model for supervised data [FS10,CYC13,

CL13,YCS14,YCS16,ZJD16,SJA16,KYB17,BWY17,KQC+18,LL18,KC19].

Note that our Theorem 1.2.13 for Huber-contaminated regression already implies that

we can learn MLRs where one of the components comprises more than half the data, i.e.

has mixing weight exceeding 1/2. The reason is that in this case, we can view the samples

coming from the remaining components as “corruptions.”

In general if no component strictly comprises the majority however, the difficulty of the

problem increases dramatically. In fact, without further assumptions on 𝒟x, it becomes

NP-hard: even mixtures of two linear regressions with equal mixing weights can encode

SubsetSum [YCS14]. As in Section 1.2.1, a natural starting point would be to understand

how hard this problem becomes after making the following assumption:

Assumption 2 (Learning MLRs under Gaussian inputs– Chapter 8). In Definition 1.2.22,

we will take 𝒟x to be the standard Gaussian distribution in 𝑑 dimensions.

We note that all algorithmic results on learning mixtures of more than two linear regres-

sions work with Assumption 2.6 Indeed, another motivation for studying MLRs is that under
6The sole exception is the work of [LL18] which works in a more challenging setting where every component

53

Assumption 2, MLRs are a special case of mixtures of Gaussians. As we will see however,

whereas there is mounting evidence that general mixtures of Gaussians are computation-

ally hard to learn, MLRs represent a particularly natural sub-class where one can hope to

circumvent these hardness results.

Finally, we must specify what the learning goal for MLRs is. In this work, we will focus

on the following objective:

Definition 1.2.23 (Parameter Estimation for MLRs). Given independent samples from an

unknown mixture of linear regressions with vectors {𝑣1, . . . , 𝑣𝑘}, we say that 𝒜 is an algorithm

for parameter estimation achieving error 𝜀 if it outputs a list of vectors {̂︀𝑣1, . . . , ̂︀𝑣𝑘} for which

there is some permutation 𝜋 under which ‖𝑣𝑖 − ̂︀𝑣𝜋(𝑖)‖ ≤ 𝜀 for all 𝑖.

Definition 1.2.23 justifies our definition of Δ-separation: if two of the underlying vectors

𝑣𝑖, 𝑣𝑗 were infinitesimally close to each other, it would be impossible for an algorithm for

parameter estimation to discern whether their components comprise two distinct components

or a single one.

Model 3: Superpositions of Airy Disks The last mixture model we study will also be

our first foray into applications of ideas from data science to the scienes. As we described

in the first half of Section 1.1.3, a basic question in optics is to quantify the extent to which

diffraction imposes limits on how well we can resolve point sources of light through a classical

imaging system like a telescope.

The Airy disk pattern that a point source of light makes when light waves emanating

from it pass through the (circular) aperture of a telescope and hit the imaging plane is easy

enough to describe. The pattern is radially symmetric, and the intensity of the pattern at

distance 𝑟 from its center is proportional to

(︂
𝐽1(𝑟/𝜎)

𝑟/𝜎

)︂2

, (1.10)

where 𝐽1 is the Bessel function of the first kind of order 1 and 𝜎 is a “spread parameter” that

is proportional to the wavelength of the light being imaged and inversely proportional to the

of the mixture is distributed according to a different Gaussian.

54

radius of the aperture. The quantity inside the square in (1.10) comes from the fact that

the amplitude of the electric field on the imaging plane is essentially given by the Fourier

transform of the indicator function of the disk corresponding to the aperture.

In a sense that can be made rigorous with Feynman’s path integral formalism, we can

regard the intensity (1.10), suitably normalized, as specifying the infinitesimal probability

that a photon is detected at a particular point 𝑟 away from the center of the point source

projected onto the imaging plane. As a result, we can interpret an image arising from several

point sources as merely a collection of samples from the following mixture model:

Definition 1.2.24 (Superpositions of Airy disks). Fix a parameter 𝜎 > 0. Given vector

𝜇 ∈ R2, the Airy disk centered at 𝜇 with spread parameter 𝜎 is the distribution over R2 with

density function given by

𝐴𝜎(𝑧) ∝
(︂
𝐽1(‖𝑧 − 𝜇‖/𝜎)
‖𝑧 − 𝜇‖/𝜎

)︂2

,

A superposition of Airy disks is then a mixture of Airy disks defined according to Defini-

tion 1.2.17. Similar to Definition 1.2.22, we say that a superposition of Airy disks centered

at 𝜇1, . . . , 𝜇𝑘 is Δ-separated if ‖𝜇𝑖 − 𝜇𝑗‖ ≥ Δ for all 𝑖 ̸= 𝑗.

At first blush, this just looks like a two-dimensional mixture of Gaussians but where

Gaussians have been replaced by the pdf for an Airy disk. The first important difference is

that whereas the method of moments is a key ingredient for algorithms for learning mixtures

of Gaussians, superpositions of Airy disks lack even finite second moments, necessitating the

use of fundamentally different algorithmic techniques. Another key difference is that because

we are focusing on a low-dimensional problem, the kinds of phase transitions we are after

will be quite different. We explain all of this in greater detail in Chapter 9.

In any case, under Definition 1.2.24 it is clear what it means to be able to resolve nearby

point sources: that we are able to estimate the centers of the Airy disks in the mixture from

samples. In other words, resolution in optical systems is equivalent to parameter estimation,

defined analogously to Definition 1.2.23. While our work is not the first to take this viewpoint

(see Section 9.7 for detailed comparison to prior work), we are the first to leverage modern

tools for learning mixture models to give nontrivial upper and lower bounds for the location

of the diffraction limit, which in the language of Definition 1.2.24 can be formulated as

55

follows:

Definition 1.2.25 (Diffraction Limit). Without loss of generality, suppose the spread pa-

rameter 𝜎 = 1. The diffraction limit is the smallest Δ for which there exists an algorithm

that for any 𝑘, 𝜀 runs in time poly(𝑘, 1/𝜀) and, given poly(𝑘, 1/𝜀) samples from a mixture of

𝑘 Δ-separated Airy disks, estimates the centers of the mixture to within 𝐿2 norm 𝜀.

Fourier Analysis and Method of Moments Our techniques for handling the three

mixture models above will involve Fourier-analytic and moment-based approaches and com-

binations thereof. To convey how our uses of these tools differ from conventional approaches,

we begin by briefly sketching two common algorithmic recipes.

The first is the paradigm of Fourier approximation, sometimes called the low-degree algo-

rithm, which was introduced in the seminal work of [LMN93] that brought Fourier analysis

of Boolean functions into the realm of learning theory. The low-degree algorithm gives a

general framework for learning certain kinds of Boolean functions 𝐹 from random examples

(𝑥, 𝑦), where 𝑥 is a uniformly random bitstring from {±1}𝑛 and 𝑦 = 𝐹 (𝑥). The starting

point is to consider the Fourier expansion of 𝐹 , given by 𝐹 (𝑥) =
∑︀

𝑆
̂︀𝐹 [𝑆]𝑥𝑆 where 𝑆 ranges

over subsets of {1, . . . , 𝑛} and 𝑥𝑆 ,
∏︀

𝑖∈𝑆 𝑥𝑖. For certain interesting function classes like

bounded-depth circuits, 𝐹 exhibits Fourier decay in the sense that the magnitude of ̂︀𝐹 [𝑆]
is rapidly decaying in the size of 𝑆, in which case 𝐹 is well-approximated by the low-degree

truncation
∑︀

𝑆:|𝑆|≤𝜏
̂︀𝐹 [𝑆]𝑥𝑆 for some 𝜏 < 𝑛. This suggests the following simple algorithm

for learning such 𝐹 from samples: empirically estimate every low-degree Fourier coefficient̂︀𝐹 [𝑆] = E[𝐹 (𝑥) · 𝑥𝑆] from samples, and output the resulting estimate for the low-degree

truncation of 𝐹 .

This approach naturally extends to learning stochastic functions like stochastic decision

trees, for which [AM91] gave an 𝑛𝑂(log(𝑘/𝜀))-time algorithm to learn to error 𝜀 by showing that

stochastic decision trees are well-approximated by their degree-𝑂(log(𝑘/𝜀)) truncation. We

emphasize that the 𝜀 dependence in the exponent is a common artifact of this approach, sim-

ply because unless the function to be learned is exactly a low-degree polynomial, the degree

𝜏 to which one truncates its Fourier expansion must depend on the level of approximation

one hopes to achieve.

56

As we will show however, this kind of dependence can sometimes be avoided if one uses

estimates for the Fourier coefficients in a more sophisticated way.

The second recipe is the method of moments, originally introduced in a prescient paper of

Karl Pearson [Pea94] to study populations of crabs. In its modern incarnation the technique

goes as follows. Given a family of distributions 𝒟𝜃 over R𝑑, each indexed by some parameter

𝜃 ∈ Θ, and given independent samples from some 𝒟𝜃, one can form estimates of the low-

degree moments 𝑀 𝜃
𝛼 , E𝒟[𝑥

𝛼1
1 · · ·𝑥

𝛼𝑑
𝑑] for any tuple 𝛼 = (𝛼1, . . . , 𝛼𝑑). Now if one is able to

argue that there is some degree 𝜏 ∈ N such that for any distinct 𝜃1, 𝜃2 ∈ Θ, there exists a

moment 𝛼 of total degree at most 𝜏 for which 𝑀 𝜃1
𝛼 and 𝑀 𝜃2

𝛼 differ noticably, then at least

information-theoretically, this gives a way to recover 𝜃 from samples of 𝒟𝜃.

Computationally efficient versions of this general recipe have led to significant progress

in recent years on a number of basic statistical tasks, one notable example being learning

mixtures of Gaussians [MV10,HL18,KSS18,DKS18b,LM21b,Kan20,BDJ+20]. The method

of moments is so pervasive that in some contexts, the existence of a collection of instances

of a learning problem whose low-degree moments all match is considered strong evidence for

the computational hardness of that problem [Hop18,KWB19,DKS17].

As we will see below though, there are intriguing settings where moment-matching need

not give rise to computational hardness, and in fact one way to get algorithms without

just exploiting moments is to access the (continuous) Fourier transform of the underlying

distribution!

Result 1: Beating Fourier Approximation with Method of Moments At a high

level, our first result on learning mixture models gives a way of circumventing the shortcom-

ings of Fourier approximation using a delicate implementation of the method of moments,

instantiated in the setting of mixtures of subcubes and product distributions.

We first describe some of the subtleties to tailoring the method of moments to this context.

The first is the issue discussed in the leadup to Definition 1.2.21: it is generally impossible

to recover the actual centers of a mixture of product distributions because many different

collections of product distributions may not only give rise to the same low-order moments,

but even realize the same distribution. This is in stark contrast with other applications of

57

the method of moments to problems like learning mixtures of Gaussians, where it is at least

information-theoretically possible to uniquely identify the underlying parameters. A second,

more technical subtlety is that because the distribution is over the Boolean hypercube, the

only kinds of moments we can exploit are multilinear ones, i.e. statistics of the form E[𝑥𝑆].

We overcome these issues by showing that low-degree multilinear moments of the underly-

ing distribution 𝒟 can be used to identify the distribution, even if identifying the parameters

is possible. For instance, we show that any two mixtures of subcubes that are far in total

variation distance must differ noticably on a moment of degree 𝑂(log 𝑘). We also give ways

of using multilinear moments to back out properties that any collection of product distri-

butions realizing 𝒟 would satisfy, e.g. the minimum number of product distributions that

could realize 𝒟. Ultimately, we obtain the following algorithmic guarantee:

Theorem 1.2.26 (Informal, see Theorem 7.1.1). Given 𝜀 > 0, there is an algorithm that,

given independent samples from an unknown mixture of 𝑘 subcubes 𝒟 over {0, 1}𝑛, runs in

time 𝑂𝑘(𝑛
𝑂(log 𝑘)poly(1/𝜀)) and outputs a distribution 𝒟′ for which 𝑑TV(𝒟,𝒟′) ≤ 𝜀 with high

probability.

Note that our 𝑛𝑂(log 𝑘) dependence is unavoidable: an 𝑛𝑜(log 𝑘)-time algorithm for learning

mixtures of subcubes would imply an 𝑛𝑜(log 𝑘)-time algorithm for PAC learning 𝑘-leaf (de-

terministic) decision trees, an 𝑛𝑜(𝑠)-time algorithm for learning 𝑠-sparse parities from noisy

examples, and an 𝑛𝑜(𝑠)-time algorithm for PAC learning 𝑠-juntas, all of which are widely

conjectured to be impossible.

As a consequence of the connection between stochastic decision trees and mixtures of

subcubes, we immediately obtain the following application:

Corollary 1.2.27 (Informal, see Theorem 7.1.3). Given 𝜀 > 0, there is an algorithm that,

given random length-𝑛 bitstrings labeled according to an unknown decision tree 𝑇 with 𝑘

leaves, runs in time 𝑂𝑘(𝑛
𝑂(log 𝑘)poly(1/𝜀)) and outputs a classifier whose error is within 𝜀 of

the Bayes optimal classifier.

It is instructive to contrast this with the 𝑛𝑂(log(𝑘/𝜀))-time algorithm of [AM91] for learning

stochastic decision trees using the low-degree algorithm. Note that because the Fourier basis

functions over the hypercube are given by monomials, one can regard the Fourier coefficients

58

̂︀𝐹 [𝑆] of a stochastic decision tree as low-degree moments of the joint distribution over (𝑥, 𝑦)

pairs. As a result, the Fourier-analytic approach of the low-degree algorithm is nothing more

than a particular instantiation of the method of moments. Recall however that the main

drawback of the low-degree algorithm is that one needs to look at Fourier coefficients of

higher and higher degree if one wants to obtain better and better error guarantees. The

upshot of our results is that in some cases, like for stochastic decision trees and mixtures of

subcubes, there are more clever ways of exploiting just the degree-𝑂(log 𝑘) moments to get

arbitrarily small error!

Our techniques can also be extended to more general mixtures of product distributions:

Theorem 1.2.28 (Informal, see Theorem 7.1.6). Given 𝜀 > 0, there is an algorithm that,

given independent samples from an unknown mixture of 𝑘 product distributions 𝒟 over

{0, 1}𝑛, runs in time 𝑂𝑘((𝑛/𝜀)
𝑂(𝑘2)) and outputs a distribution 𝒟′ for which 𝑑TV(𝒟,𝒟′) ≤ 𝜀

with high probability.

This is the first algorithmic improvement since the work of [FOS05], which obtained

a runtime of 𝑂((𝑛/𝜀)𝑂(𝑘3)). That said, the theorem above does appear to be significantly

weaker than our result for mixtures of subcubes, which only incurred a dependence of𝑂(log 𝑘)

in the exponent. As we show, however, exponential dependence on 𝑘Θ(1) is computationally

necessary for general mixtures of product distributions:

Theorem 1.2.29 (Informal, see Theorem 7.4.1). Any algorithm given Ω(𝑛−
√
𝑘/3)-accurate

statistical query access (see Definition 7.4.2) to a mixture 𝒟 of 𝑘 product distributions over

{0, 1}𝑛 that outputs a distribution 𝒟′ satisfying 𝑑𝑇𝑉 (𝒟,𝒟′) ≤ 𝜀 for 𝜀 ≤ 𝑘−𝑐
√
𝑘 must make at

least 𝑛𝑐′
√
𝑘 queries.

All known algorithms for learning mixtures of product distributions, and the overwhelm-

ing majority of provable algorithms in learning theory, can be implemented as statistical

query algorithms, and informally, the above theorem suggests that a runtime of 𝑛poly(𝑘) is

unavoidable for learning mixtures of 𝑘 product distributions.

Result 2: Blending Method of Moments with Fourier Analysis Our second result

on learning mixture models is in some sense a rejoinder to the first: for learning problems

over continuous domains, the Fourier transform of the underlying distribution can sometimes

59

give us access to information that straightforward applications of the method of moments

cannnot. We explore this viewpoint in the context of learning MLRs.

Prior to this work, the best-known algorithms for learning mixtures of 𝑘 linear regres-

sions under Assumption 2 ran in time roughly 𝑂(𝑘𝑂(𝑘)poly(𝑑)) [LL18, ZJD16], and it was

conjectured [LL18] that perhaps this kind of dependence on 𝑘 was necessary given that there

exist computational hardness results for learning general mixtures of Gaussians that scale

exponentially in 𝑘 [DKS17,BRST21].

Another reason to believe this is that one can in fact show that degree-𝑘 moments are

not sufficient to distinguish between different mixtures of linear regressions. In particular,

one can show the following:

Lemma 1.2.30 (Informal, see Appendix 8.10). For any 𝑘 ∈ N, there exist infinitely many

pairs of mixtures of 𝑘 linear regressions whose parameters differ noticably but whose moments

up to degree 𝑘 match.

This is consistent with previous approaches for learning MLRs. For instance, in the 𝜎 = 0

case, [LL18] implemented a guided random walk to learn components of the mixture one at

a time, and as we will elaborate upon in Section 8.3.1, a key subroutine in their algorithm

was, given a candidate vector 𝑣 ∈ R𝑑, to estimate the distance between 𝑣 and the closest

vector 𝑣𝑖 in the mixture. To get this subroutine, they observed that for (𝑥, 𝑦) sampled from

the mixture, the distribution over the residual 𝑦−⟨𝑣, 𝑥⟩ is distributed as a mixture of mean-

zero Gaussians with variances {‖𝑣− 𝑣1‖2, . . . , ‖𝑣− 𝑣𝑘‖2}. In particular the squared distance

between 𝑣 and the closest vector 𝑣𝑖 is simply the minimum variance of any component in this

mixture of 1D Gaussians. They then used the algorithm of [MV10] for learning mixtures of

1D Gaussians to obtain an estimate of min𝑖‖𝑣 − 𝑣𝑖‖.

The exp(Ω(𝑘)) dependence in the runtime of [LL18] comes from the fact that [MV10] is

a classic application of method of moments: [MV10] prove that no two distinct mixtures of 𝑘

one-dimensional Gaussians can match on more than Ω(𝑘) moments, so then one can simply

search over an exp(Ω(𝑘))-sized grid of possible parameters for the mixture and output the

one in the grid whose moments are closest to those of the underlying mixture. In light of

Lemma 1.2.30, an approach like that of [LL18] is doomed to incur exp(Ω(𝑘)) dependence for

learning MLR’s.

60

To circumvent this issue, we note that there is a way to estimate the minimum variance

of any component in a mixture of 1D Gaussians without invoking the method of moments:

because the Fourier transform of the mixture is a mixture of 1D Gaussians whose variances

are reciprocals of the original variances, it suffices to estimate the maximum variance of the

Fourier transform, and the latter can be done by computing a high enough moment of the

Fourier transform. This insight is the workhorse behind our main results on MLRs, which

give the first sub-exponential time algorithms for this problem. Here we informally state one

result representative of the guarantees we show in Chapter 8:

Theorem 1.2.31 (Informal, see Theorem 8.6.2). Suppose 𝜎 = 0 in Definition 1.2.22. Given

an unknown mixture 𝒟 of 𝑘 Δ-separated linear regressions in R𝑑, there is an algorithm that

takes 𝑁 = ̃︀𝑂(𝑑 log(1/𝜀)) · exp(̃︀𝑂(√𝑘)) samples from 𝒟, runs in time ̃︀𝑂(𝑁 ·𝑑), and estimates

the parameters of 𝒟 to error 𝜀.

Our techniques also extend to give a sub-exponential time algorithm for larger 𝜎 (see

Theorem 8.7.1) as well as for a related mixture model relevant to subspace clustering (see

Theorem 8.8.1).

We note that following the publication of this result, a follow-up work [DK20] gave a

different algorithm that achieved a runtime scaling only quasipolynomially in 𝑘. Interestingly,

their algorithm is based purely on method of moments, but the reason it does not contradict

Lemma 1.2.30 is that they argue that there cannot be too many different mixtures which all

simultaneously match each other on low-degree moments. This allows them to implement a

sophisticated covering construction over which they can brute-force search for the parameters

of the mixture.

Result 3: Fourier Analysis for the Diffraction Limit Finally, we describe how

Fourier-analytic approaches to learning over continuous domains can be applied to pin down

the diffraction limit in classical optical systems.

Recall from the discussion proceeding Definition 1.2.24 that one cannot hope to use the

method of moments to learn superpositions of Airy disks because even the second moments

of such a distribution are unbounded. Given that the density function (1.10) of an Airy

disk is based on the Fourier transform of the indicator function of a disk, it is natural to

61

try to exploit the Fourier transform of the distribution instead. In particular, one can check

that the Fourier transform of the density of a superposition of Airy disks 𝒟 with spread

parameter 𝜎 and centers 𝜇1, . . . , 𝜇𝑘 at frequency 𝜔 ∈ R2 is given by the pointwise product of

𝑘∑︁
𝑗=1

𝜆𝑖𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩ (1.11)

with the (two-dimensional) Fourier transform of (1.10). The latter is a known function ̂︀𝐴𝜎
supported on a disk of radius 1

𝜋𝜎
, so for any frequency 𝜔 in its support, we can estimate

(1.11) by estimating E𝑥∼𝒟[𝑒
−2𝜋𝑖⟨𝜔,𝑥⟩] from samples and dividing by the value of ̂︀𝐴𝜎 at 𝜔.

Thus, we can reduce the question of learning superpositions of Airy disks from samples to

the question of estimating the locations of 𝜇1, . . . , 𝜇𝑘 given noisy, band-limited access to the

function (1.11). This problem is known as super-resolution [Don92], and from a technical

perspective, our primary contributions can be interpreted as giving new upper and lower

bounds for this problem in the two-dimensional case.

Our first result is to show that if 𝑘 is bounded by a constant, then there is no notion

of a diffraction limit and one can in fact resolve superpositions of Airy disks in polynomial

time/samples regardless of their level of separation:

Theorem 1.2.32 (Informal, see Theorem 9.4.1). If 𝒟 is an unknown Δ-separated super-

position of 𝑘 Airy disks, then there is an algorithm that draws 𝑁 = poly
(︁
(𝑘𝜎/Δ)𝑘

2
, 1/𝜀

)︁
independent samples from 𝒟, runs in time 𝑂(𝑁), and estimates the centers of 𝒟 to error 𝜀

with high probability.

Our algorithm is based on projecting the data onto different lines, estimating the pro-

jections of the centers along these lines using the matrix pencil method [Moi15], and then

piecing these estimates together by solving an appropriate linear system. While this tech-

nique is fairly standard in the mixture model learning literature [KMV10,MV10], the result

demonstrates that even off-the-shelf tools in learning theory can have useful implications in

other domains, in this case clarifying why in some domains like astronomy where there are

only ever a few tightly spaced point sources, there is evidently no diffraction limit.

We now turn to our main results on the diffraction limit. For unbounded 𝑘, we first show

62

that above a certain level of separation, there is a learning algorithm whose runtime and

sample complexity scale polynomially in 𝑘:

Theorem 1.2.33 (Informal, see Theorem 9.4.2). Define the absolute constant 𝛾 = 2𝑗0,1
𝜋

=

1.530 . . ., where 𝑗0,1 is the first positive zero of the Bessel function 𝐽0. If 𝒟 is an unknown

Δ-separated superposition of 𝑘 Airy disks, where Δ ≥ 𝛾𝜋𝜎, then there is an algorithm with

time and sample complexity poly (𝑘, 1/Δ, 1/𝜀) that estimates the centers of 𝒟 to error 𝜀 with

high probability.

The algorithm is based on a tensor decomposition approach introduced by [HK15].

Whereas the analysis in that work was tailored to high-dimensional settings, we refine their

analysis to handle the two-dimensional case by using certain extremal functions [Gon18,

HV+96,CCLM17] arising in the study of de Branges spaces. To our knowledge, this is the

first use of such functions in a learning theory setting. We defer the details to Section 9.4.3.

As our main result in this part of the thesis, we give a surprising lower bound:

Theorem 1.2.34 (Informal, see Theorem 9.5.1). Let 𝛾 ,
√︀

4/3 ≈ 1.155. For Δ < 𝛾𝜋𝜎,

any algorithm for learning general Δ-separated superpositions of Airy disks requires sample

complexity exponential in
√
𝑘 in the worst case.

We emphasize that the most striking aspect of this result is that it contradicts the

conventional wisdom that the diffraction limit for classical optical systems occurs at the

Abbe limit, which in our language is given by Δ = 𝜋𝜎. We prove our lower bound by

exhibiting a pair of superpositions whose parameters are noticably different but which are

close in total variation distance. At the heart of this construction as well as the upper bound

above is a certain fundamental question about cancellations of exponential sums which we

believe to be of independent interest (see Questions 6 and 7).

1.2.4 Quantum State Certification and the Chain Rule

The last set of results that this thesis will cover is a bit further afield from the preceding

results from a technical standpoint. From a conceptual standpoint however, we regard them

as very much in the spirit not only of asking what ideas from learning theory can say about

problems in the sciences, but also of understanding the algorithmic landscape for learning

63

from data that arrives in a dynamic fashion.

The latter point requires a bit of unpacking, so we begin by formulating the algorithmic

questions we consider.

Models and Existing Results We will be interested in quantum learning, specifically

learning from quantum data. We consider a setting where the learner gets access to copies

of an unknown quantum state 𝜌 (see Section 1.3.9 for an overview of quantum basics) and

would like to learn something about 𝜌 by measuring these copies. For instance, the most

basic question one could ask is to learn a single bit of information about the underlying

state:

Definition 1.2.35 (Quantum distinguishing task). Let 𝒞0 and 𝒞1 be two known sets of

quantum states, and let 𝜌 be an unknown state that is promised to be in either 𝒞0 or 𝒞1.

Given a collection of copies of 𝜌 and the ability to measure them, the goal of the learner is to

distinguish with high probability between whether 𝜌 ∈ 𝒞0 or 𝜌 ∈ 𝒞1. We refer to such a task

as a distinguishing task. The minimum number of copies of 𝜌 needed by any given algorithm

for this task is called the copy complexity of the task.

This is the natural quantum analogue of distribution testing (see e.g. the survey of

[Can20]). In this thesis, we will focus on the following distinguishing task, which can be

thought of as the quantum version of the classic question of testing goodness-of-fit : given a

known distribution 𝑝 and samples from an unknown distribution 𝑞, determine whether 𝑝 = 𝑞

or 𝑑TV(𝑝, 𝑞) > 𝜀.

Definition 1.2.36 (Quantum state certification). Fix error parameter 𝜀 > 0 and let 𝜎 be a

known quantum state. Given a collection of copies of an unknown state 𝜌 and the ability to

measure them, the task of quantum state certification is to distinguish with high probability

between whether 𝜎 = 𝜌 or ‖𝜌 − 𝜎‖tr > 𝜀. In the notation of Definition 1.2.35, this task is

given by 𝒞0 = {𝜎} and 𝒞1 = {𝜌 : ‖𝜌− 𝜎‖tr > 𝜀}.

Just as goodness-of-fit is a foundational question in statistical hypothesis testing that has

been studied ever since Pearson developed his eponymous chi-squared test [Pea00], quantum

state certification addresses a basic need to verify that the states prepared in a laboratory

setup are what we intended them to be.

64

A particularly illuminating example of Definition 1.2.36 is the following quantum ana-

logue of the well-studied question of uniformity testing (given samples from an unknown

distribution, determine whether it is the uniform distribution or far from being the uniform

distribution):

Definition 1.2.37 (Mixedness testing). Mixedness testing is the special case of state certi-

fication where, in the notation of Definition 1.2.36, 𝜎 is the maximally mixed state 1
𝑑
Id.

Thus far, we have been intentionally vague about the meaning of an algorithm that

makes measurements on a collection of copies of a quantum state. The reason is that there

are a number of different ways of formalizing the precise model for this, and this is the key

technical distinction between proving copy complexity bounds for quantum distinguishing

tasks and proving sample complexity bounds for classical distribution testing tasks.

Definition 1.2.38 (Quantum measurements). Suppose the learner gets access to 𝑁 copies

of an unknown state 𝜌 ∈ C𝑑×𝑑. The following are three different ways in which the learner

could interact with these copies:

1. Fully entangled measurement: the learner applies a single POVM over (C𝑑)⊗𝑁 (see

Definition 1.3.47) to the tensor product 𝜌⊗𝑁 and decides based on the outcome of this

measurement.

2. Adaptive unentangled/incoherent measurements: the learner applies a POVM to the

first copy of 𝜌, observes the outcome, chooses a POVM based on this outcome and

applies it to next copy of 𝜌, etc. Afterwards, she decides based on the outcome of all

𝑁 measurements.

3. Nonadaptive unentangled/incoherent measurements: the learner selects 𝑁 POVMs in

advance, applies the 𝑖-th POVM to the 𝑖-th copy of 𝜌 for 𝑖 = 1, . . . , 𝑁 . Afterwards, she

decides based on the outcome of all 𝑁 measurements.

Note that the list in Definition 1.2.38 is in decreasing order of generality, that is, a

fully entangled measurement can implement any strategy based on adaptive unentangled

measurements, and obviously adaptive strategies are at least as powerful as nonadaptive

ones. [OW15] studied algorithms for quantum distinguishing tasks where the learner can

65

make a fully entangled measurement and proved that the copy complexity of mixedness test-

ing is Θ(𝑑/𝜀2) in this setting. [BOW19] later extended this result by giving an algorithm for

general state certification which makes fully entangled measurements and also achieves copy

complexity 𝑂(𝑑/𝜀2). In direct analogy with classical distribution testing bounds, this is sig-

nificantly less than the copy complexity for learning 𝜌 using a fully entangled measurement,

which is known to be Θ(𝑑2/𝜀2) [HHJ+17,OW16].

Unfortunately, fully entangled measurements are well outside the scope of what is practi-

cally feasible, as they require the learner to maintain a quantum memory that is exponential

in the number of copies of 𝜌. It is therefore natural to ask whether one can hope to match

these bounds with an algorithm that simply makes adaptive unentangled measurements– in

the context of mixedness testing, this was explicitly asked by Wright in [Wri16].

It turns out that one can already achieve a nontrivial bound for mixedness testing with

a very simple algorithm that uses nonadaptive unentangled measurements: pick a random

basis, repeatedly measure in this basis, and test whether the resulting outcomes are samples

from the uniform distribution over 𝑑 elements. We analyze this in Section 11.6.1 and show

how to extend it to state certification in Section 11.6.3. For mixedness testing, the copy

complexity of this algorithm turns out to be 𝑂(𝑑3/2/𝜀2). One can then ask: can we do

better, or is this algorithm optimal for unentangled measurements?

Taming Adaptivity via Entropy As we will show, one cannot hope to match the per-

formance of fully entangled measurements using adaptive, unentangled measurements. The

challenge with showing such a lower bound however is that, unlike distribution testing where

we simply interact with the underlying distribution through random samples, for quantum

tasks there is the extra dimension of complexity coming from adaptivity.

To handle this, we take inspiration from lower bound techniques in the adversarial ban-

dits literature. While the following discussion about bandit lower bounds is not needed to

understand our proof technique, we believe it is instructive to highlight the parallels between

the adaptivity inherent in quantum measurements and the adaptivity inherent in strategies

for bandit problems. We begin with a definition for the latter:

Definition 1.2.39 (Adversarial multi-armed bandits). Fix parameter 𝐾 ∈ N, corresponding

66

to the number of arms that the player can choose from, and a time horizon 𝑇 ∈ N. The

player interacts with an adversary over 𝑇 rounds of the following game. In each round 𝑡:

1. The player chooses an arm 𝐼𝑡 ∈ {1, . . . , 𝑘}.

2. The adversary chooses a vector of rewards (𝑟1,𝑡, . . . , 𝑟𝐾,𝑡).

3. The player observes only the reward 𝑟𝐼𝑡,𝑡.

We note that the player’s and the adversary’s moves can be randomized and adaptive, that

is, the player can choose the arm in round 𝑡 based on her previous actions and the rewards

she has observed in the previous rounds, and the adversary can choose the vector of rewards

in round 𝑡 based on everything that has happened up to that point.

The goal of the player is to compete with the best fixed action in hindsight, that is, to

minimize the regret

max
1≤𝑗≤𝐾

∑︁
𝑡

𝑥𝑗,𝑡 −
∑︁
𝑡

𝑥𝐼𝑡,𝑡,

either in expectation or with high probability.

The classic paper of [ACBFS02] showed how to achieve ̃︀𝑂(√𝐾𝑇) expected regret and

also gave a matching lower bound (up to log factors):

Theorem 1.2.40 ([ACBFS02], Theorem 5.1). For any 𝐾 ≥ 2 and any time horizon 𝑇 ,

there exists a (non-adaptive, randomized) strategy for the adversary such that any player

strategy incurs Ω(
√
𝐾𝑇 ∧ 𝑇) expected regret.

We are primarily interested in the analogy with their lower bound. The basic proof idea

for this result is to argue that over a bounded time horizon, the player cannot distinguish

between the following two scenarios:

1. Null hypothesis: the rewards for all the arms are distributed as unbiased Bernoullis

in every round

2. Mixture of alternatives: at the outset, an index 𝑖 is sampled at random from

{1, . . . , 𝐾}, and then subsequently in every round, the rewards for arms not equal to

𝑖 are distributed as unbiased Bernoullis, and the reward for arm 𝑖 is Bernoulli with a

bias of
√︀
𝐾/𝑇

67

To make this rigorous, one must argue that regardless of the player strategy, the total

variation distance between the distribution over the transcript of rewards observed by the

player under the null hypothesis and the distribution under the mixture of alternatives is

small.

Given a player strategy, let 𝒟≤𝑡
0 denote the distribution over the first 𝑡 rewards under

the null hypothesis, and let 𝒟≤𝑡
1 denote the same under the mixture of alternatives. If 𝒟≤𝑡

1,𝑖

denotes the distribution 𝒟≤𝑡
1 conditioned on arm 𝑖 having the bias, then we ultimately want

to show that

𝑑TV

(︂
𝒟≤𝑇

0 ,E
𝑖

[︀
𝒟≤𝑇

1,𝑖

]︀)︂
= 𝑜(1). (1.12)

We note that this general setup of bounding the total variation between a null hypothesis and

a mixture of alternatives closely follows the usual framework for showing sample complexity

lower bounds for distribution testing tasks. The challenge unique to the bandits setup

however is that because the player is adaptive, 𝒟≤𝑇
1,𝑖 is not a product distribution, precluding

many of the techniques commonly used in the testing literature, see e.g. [IS12]. The key

insight in [ACBFS02] is that one can nevertheless control the left-hand side of (1.12) by

passing from total variation to KL divergence and then applying the chain rule! We refer

the reader to [ACBFS02,BCB12] for the details of this calculation.

Our Results Inspired by the entropic approach of [ACBFS02], which has also found use

in other non-bandit contexts like proving phase transitions related to Gaussian matrix en-

sembles [BG18], we exploit similar ideas to understand the copy complexity of quantum

distinguishing tasks under adaptive, unentangled measurements.

Our lower bound construction follows a similar recipe: argue that under any adaptive

measurement strategy, the distribution 𝒟0 over measurement outcomes under a null hy-

pothesis is indistinguishable from the distribution 𝒟1 under a mixture of alternatives. For

mixedness testing, the null hypothesis is simply that the underlying state is maximally mixed,

while the mixture of alternatives is a certain ensemble of states which are 𝜀-far in trace dis-

tance from the maximally mixed state. Specifically, we consider the mixture consisting of

states

𝜌U ,
1

𝑑

(︀
Id+𝜀 ·UZU†)︀ ,

68

where Z , diag(1, 1, ...,−1,−1, ...) and U is a Haar-random unitary matrix. For readers

familiar with Paninski’s proof of the Ω(
√
𝑑/𝜀2) sample complexity lower bound for uniformity

testing [Pan08], this is the natural quantum analogue of his construction and has appeared

previously, e.g. in the lower bound of [OW15] for mixedness testing with a fully entangled

measurement.

Letting 𝒟1,U denote the distribution over measurement outcomes under a particular un-

entangled measurement strategy when the underlying state is 𝜌U, we would like to show that

𝑑TV

(︀
𝒟≤𝑇

0 ,EU

[︀
𝒟≤𝑇

1,U

]︀)︀
= 𝑜(1), in direct analogy with (1.12). When the strategy is nonadap-

tive, we can leverage existing techniques in the distribution testing literature, specifically

the so-called Ingster-Suslina method [IS12], to show a tight lower bound:

Theorem 1.2.41 (Informal, see Theorem 10.1.1). Fix error parameter 0 < 𝜀 < 1/2. The

copy complexity of mixedness testing to error 𝜀 using unentangled, nonadaptive measurements

is Θ(𝑑3/2/𝜀2) copies.

By using the chain rule for KL divergence, we are able to show the following slightly

weaker lower bound for adaptive measurements:

Theorem 1.2.42 (Informal, see Theorem 10.1.2). Fix error parameter 𝜀 > 0. Any algorithm

for mixedness testing to error 𝜀 that only uses unentangled, adaptive measurements must use

at least Ω(𝑑4/3/𝜀2) copies.

Contrasting this with the 𝑂(𝑑/𝜀2) upper bound using fully entangled measurements

[OW15], we see that this gives the first known separation in quantum learning between

algorithms that can make fully entangled measurements and algorithms that make general

unentangled, adaptive measurements. We defer the technical details to Chapter 10, noting

that although the general trick of using the chain rule is inspired by the aforementioned

bandit lower bounds, we need to leverage a number of tools specific to the quantum setting,

like concentration of measure for Haar-random unitaries, to get our results.

It turns out that the tools we develop are quite flexible and allow us to tackle the more

general problem of quantum state certification. While the theorems above immediately imply

lower bounds for quantum state certification for worst-case choices of reference state 𝜎, it is

conceivable that one could get better copy complexity bounds for 𝜎 that are more structured

69

than the maximally mixed state. For instance, if 𝜎 were maximally mixed over a known

𝑂(1)-dimensional subspace, it is straightforward to modify the nonadaptive strategy based

on measuring in a random basis to get a copy complexity upper bound of 𝑂(1/𝜀2).

This motivates the question of obtaining instance-optimal copy complexity bounds: is

there some simple functional 𝑓(𝜎) for which quantum state certification relative to 𝜎 has

copy complexity Θ(𝑓(𝜎)/𝜀2)? After all, from the perspective of a researcher trying to test

whether a state prepared in the lab satisfies certain properties, 𝜎 is given to us, and we

would like to use as few samples as possible by exploiting our knowledge of 𝜎.

This kind of question has previously been studied in the context of classical distribution

estimation and testing [ADJ+11,ADJ+12,VV17,VV16]. In the final part of this thesis, by

designing more sophisticated mixtures of alternatives than for mixedness testing, we give the

first instance-optimal (up to log factors) bounds on the copy complexity of state certification

with unentangled, nonadaptive measurements:

Theorem 1.2.43 (Informal, see Theorems 11.5.1 and 11.6.1). Given a known quantum state

𝜎, the copy complexity of state certification with unentangled, nonadaptive measurements is

up to log factors given by ̃︀Θ(︃𝑑 · 𝑑1/2eff

𝜀2
· 𝐹𝜎

)︃
,

where 𝑑eff is the “effective dimension” of 𝜌 and 𝐹𝜎 is essentially the fidelity between 𝜎 and

the maximally mixed state (see Theorem 11.5.1 for formal definitions).

By taking 𝜎 = 1
𝑑
Id above, we recover Theorem 1.2.41. We can also prove a lower bound

in the adaptive setting which simply replaces 𝑑1/2eff with 𝑑1/3eff (see Theorem 11.7.1), recovering

Theorem 1.2.42. That said, the latter is not “instance-optimal” as we are not yet able to

prove a tight lower bound even for mixedness testing.

We note that Theorem 1.2.43 is qualitatively quite different from its analogue in the

classical setting, proven in [VV16]. In that work, it was shown that the sample complexity

for testing whether a distribution is equal to a known distribution 𝑝 or 𝜀-far from it in total

variation distance is essentially given by Θ(‖𝑝‖2/3/𝜀2) (see Theorem 11.3.6). In particular, the

instance-optimal sample complexity is dimension-free in the sense that it scales as Θ(1/𝜀2)

for 𝑝 whose 2/3-quasinorm is 𝑂(1). In contrast, our bound– in addition to having a more

70

natural interpretation in terms of quantum fidelity– shows that state certification cannot

escape the curse of dimensionality. As we discuss in Example 11.1.2, even when 𝜎 = diag(1−

1/𝑑, 1/𝑑2, . . . , 1/𝑑2), Theorem 1.2.43 tells us that the copy complexity for state certification

relative to 𝜎 scales as
√
𝑑/𝜀2 for sufficiently small 𝜀, even though 𝜎 looks for all intents and

purposes like a rank-1 state! Very roughly, the idea is that in the quantum setting, there

is more “room” for building mixtures of alternatives than simply perturbing the eigenvalues

and conjugating by a Haar-random unitary.

1.3 Preliminaries

Here we record various technical ingredients that are needed throughout this thesis.

1.3.1 Miscellaneous Notation

• Given positive integer 𝑛, we use [𝑛] to denote the set {1, . . . , 𝑛}.

• We will use ∨ and ∧ to denote max and min respectively, though when convenient we

will also use min(·) and max(·).

• Let 1𝑛 ∈ R𝑛 denote the all-ones vector. We omit the subscript when the context is

clear. For a vector 𝑢 ∈ R𝑑 and index ℓ ∈ [𝑑], 𝑢ℓ denotes the ℓ-th entry of 𝑢. For indices

𝑎, 𝑏 ∈ [𝑑], 𝑢𝑎:𝑏 ∈ R𝑏−𝑎+1 denotes the 𝑎-th through 𝑏-th entries of 𝑢.

• Given a metric space Ω equipped with a metric 𝑑, and given a function 𝑓 : Ω → R,

we say that 𝑓 is Λ-Lipschitz with respect to 𝑑 if |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑑(𝑥, 𝑦). When Ω is

Euclidean space, we will simply say that 𝑓 is Λ-Lipschitz unless otherwise specified.

• Given a matrix 𝑀 ∈ C𝑑×𝑑, we use 𝑀⊤ to denote its transpose and 𝑀 † to denote its

conjugate transpose. We denote by 𝑀 𝑗
𝑖 the entry of 𝑀 in row 𝑖 and column 𝑗.

• We will occasionally use notation like 𝑥 = [𝑐1, 𝑐2]·𝑦 and 𝑥 = 1±𝛿 to mean 𝑐1𝑦 ≤ 𝑥 ≤ 𝑐2𝑦

and 1− 𝛿 ≤ 𝑥 ≤ 1 + 𝛿 respectively.

• Let 𝒮ℓ denote the symmetric group on ℓ elements.

71

• Given two strings 𝑠 and 𝑡, let 𝑠 ∘ 𝑡 denote their concatenation. Given 𝑡 > 1 and a

sequence 𝑥1, ..., 𝑥𝑡−1, define 𝑥<𝑡 , (𝑥1, ..., 𝑥𝑡−1). We will also sometimes refer to this as

𝑥≤𝑡−1. Also, let 𝑥<1 , ∅.

• In addition to big-O notation, we sometimes find it more convenient to use 𝑓 . 𝑔 and

𝑓 & 𝑔 to denote 𝑓 = 𝑂(𝑔) and 𝑓 = Ω(𝑔) respectively.

1.3.2 Linear Algebra Basics

Norms

Given vector 𝑣 ∈ R𝑑, let ‖𝑣‖𝑝 denote its 𝐿𝑝 norm. When the context is clear, we let ‖·‖

denote the 𝐿2 norm.

Given matrix 𝑀 ∈ R𝑚×𝑛, let ‖𝑀‖𝐹 denote its Frobenius norm, ‖𝑀‖2 its operator norm,

and ‖𝑀‖tr its trace norm. Let ‖𝑀‖max denote the maximum absolute value of any entry in

𝑀 . When the context is clear, we let ‖·‖ denote the operator norm.

For 𝑟 > 0, let ℬ𝑑𝑟 ⊂ R𝑑 denote the 𝐿2 ball of radius 𝑟 centered at the origin. When the

context is clear, we will suppress the superscript 𝑑.

We will often also work in the following function space. Consider the Banach space of

functions 𝑓 : R→ R which are 𝑝-th power integrable with respect to the standard Gaussian

measure 𝛾, that is for which

‖𝑓‖𝑝 ,
∫︁
R
|𝑓(𝑥)|𝑝𝑑𝛾(𝑥) <∞.

We refer to this space as 𝐿𝑝(R, 𝛾). When 𝑝 = 2, this is a Hilbert space with the inner product

⟨𝑓, 𝑔⟩ =
∫︁ ∞

∞
𝑓(𝑧)𝑔(𝑧)𝑑𝛾(𝑧).

Using the standard 𝑑-dimensional Gaussian measure, we can analogously define 𝐿𝑝(R𝑑, 𝛾)

analogously for functions R𝑑 → R. When 𝑝 = 2, we will use the shorthand ‖·‖ to refer to

‖·‖2.

72

Orthogonal Projectors

Given vector spaces 𝑈 ⊂ 𝑉 , 𝑉 ∖𝑈 = 𝑉 ∩ 𝑈⊥ denotes the orthogonal complement of 𝑈 in 𝑉 .

Let S𝑉 ⊂ R𝑑 denote the set of vectors in 𝑉 of unit 𝐿2 norm.

Given a vector space 𝑈 ⊂ R𝑑, let Π𝑈 denote the orthogonal projection operator onto 𝑈 ,

and when the ambient space is clear from context, let 𝑈⊥ denote the orthogonal complement

of 𝑈 .

We will overload notation for this in various places. For instance, we will often use 𝑈

to refer to a set of column vectors {𝑢1, . . . , 𝑢ℓ}, in which case span(𝑈) denotes the span of

these vectors, Π𝑈 denotes Πspan(𝑈), and Π𝑈⊥ denotes Πspan(𝑈)⊥ . Given 𝑣 ∈ S𝑑−1, we will

use Π𝑣 , 𝑣𝑣⊤ and Π⊥
𝑣 , Id−𝑣𝑣𝑡𝑜𝑝 to denote projection to the span of 𝑣 and its orthogonal

complement, respectively. More generally, given 𝑉 ∈ R𝑛×𝑟 whose columns are orthonormal,

we will use Π𝑉 , 𝑉 𝑉 ⊤ and Π⊥
𝑉 , Id−𝑉 𝑉 ⊤ to denote projection to the span of the columns

of 𝑉 and its orthogonal complement, respectively.

Frames

Let St𝑑ℓ denote the Stiefel manifold of 𝑛 × ℓ matrices with orthonormal columns, and let

G(𝑑, ℓ) denote the Grassmannian of ℓ-dimension subspaces of R𝑑. G(𝑑, ℓ) can be regarded as

the quotient of St𝑑ℓ under the natural action of the orthogonal group 𝑂(ℓ), that is, given any

subspace 𝑈 ∈ G(𝑑, ℓ) and any 𝑉 ∈ St𝑑ℓ whose columns form a basis for 𝑈 , we can associate

𝑈 to the equivalence class [𝑉] , {𝑉 ·𝑂 : 𝑂 ∈ 𝑂(ℓ)}.

We will often refer to elements of the Stiefel manifold as frames :

Definition 1.3.1 (Frames). A set of orthonormal vectors ̃︀𝑤1, ..., ̃︀𝑤ℓ is a frame. Given sub-

space 𝑉 ⊂ R𝑑, we say that this frame is 𝜈-nearly within 𝑉 if ‖Π𝑉 ̃︀𝑤𝑖‖ ≥ 1− 𝜈 for all 𝑖. We

will sometimes refer to their span ̃︁𝑊 as a frame 𝜈-nearly within to 𝑉 , when the choice of

orthonormal basis for ̃︁𝑊 is clear from context.

Subspace Distances

In various places we will need to quantify the distance between different subspaces, in par-

ticular in Chapters 2 and 3. There are a number of ways of doing this

73

Definition 1.3.2. Given 𝑉, 𝑉 ′ ∈ St𝑛𝑟 , the Procrustes distance 𝑑𝑃 (𝑉, 𝑉 ′) is given by

𝑑𝑃 (𝑉, 𝑉
′) , min

𝑂∈𝑂(𝑟)
‖𝑉 − 𝑉 ′𝑂‖𝐹 .

Let 0 ≤ 𝜃1 ≤ · · · ≤ 𝜃𝑟 ≤ 𝜋/2 be the principal angles between 𝑉 and 𝑉 ′. Then we also have

that

𝑑𝑃 (𝑉, 𝑉
′) = 2

(︃
𝑟∑︁
𝑖=1

sin2(𝜃𝑖/2)

)︃1/2

.

Definition 1.3.3. Given 𝑉, 𝑉 ′ ∈ St𝑛𝑟 , the chordal distance 𝑑𝐶(𝑉, 𝑉 ′) is given by

𝑑𝐶(𝑉, 𝑉
′) , (𝑑− ‖𝑉 ⊤𝑉 ′‖2𝐹)1/2

Let 0 ≤ 𝜃1 ≤ · · · ≤ 𝜃𝑟 ≤ 𝜋/2 be the principal angles between 𝑉 and 𝑉 ′. Then we also have

that

𝑑𝐶(𝑉, 𝑉
′) =

(︃
𝑟∑︁
𝑖=1

sin2 𝜃𝑖

)︃1/2

.

We collect some basic facts about these distances.

Fact 1.3.4 (Triangle inequality for Procrustes). Given any 𝑉1, 𝑉2, 𝑉3 ∈ St𝑛𝑟 ,

𝑑𝑃 (𝑉1, 𝑉2) + 𝑑𝑃 (𝑉2, 𝑉3) ≥ 𝑑𝑃 (𝑉1, 𝑉3).

Lemma 1.3.5. 𝑑𝑃 (𝑉, 𝑉 ′)2/2 ≤ 𝑑𝐶(𝑉, 𝑉
′)2 ≤ 𝑑𝑃 (𝑉, 𝑉

′)2.

Proof. This follows immediately from the elementary inequality 2 sin2(𝜃/2) ≤ sin2(𝜃) ≤

4 sin2(𝜃/2) for 𝜃 ∈ [0, 𝜋/2].

Power Method and Perturbation Bounds

Our spectral algorithms require the following well-known tool:

Fact 1.3.6 (Power method, see [RST09]). Let M ∈ R𝑑×𝑑, let 𝑘 ≤ 𝑑 be a non-negative integer,

and let 𝜎1 ≥ 𝜎2 ≥ . . . 𝜎𝑑 be the nonzero singular values of M. For any 𝑘 = 1, . . . , 𝑑 −

1, let gap𝑘 = 𝜎𝑘/𝜎𝑘+1. Suppose there is a matrix-vector oracle which runs in time 𝑅,

and which, given 𝑣 ∈ R𝑑, outputs M𝑣. Then, for any 𝜂, 𝛿 > 0, there is an algorithm

74

ApproxBlockSVD(M, 𝜂, 𝛿) which runs in time ̃︀𝑂(𝑘𝑅 log 1
𝜂·𝛿·gap𝑘

), and with probability at

least 1 − 𝛿 outputs a matrix U ∈ 𝑅𝑑×𝑘 with orthonormal columns so that ‖U −U𝑘‖2 < 𝜂,

where U𝑘 is the matrix whose columns are the top 𝑘 right singular vectors of M.

The following eigenvalue stability result will be important in our analysis of filtered PCA.

Lemma 1.3.7 (Gap-free Wedin theorem, see e.g. Lemma B.3 in [AZL16]). Let 𝜀, 𝛾, 𝜇 > 0.

For psd matrices A, Â ∈ R𝑑×𝑑 for which ‖A − Â‖2 ≤ 𝜀, if 𝑈 is the matrix whose columns

consist of the eigenvectors of A with eigenvalue at least 𝜇, and �̂� is the matrix whose columns

consist of the eigenvectors of Â with eigenvalue at most 𝜇− 𝛾, then ‖U⊤Û‖2 ≤ 𝜀/𝛾.

In particular, we get the following straightforward consequence of Lemma 1.3.7:

Corollary 1.3.8. Let 𝜆 ≥ 2𝜀 > 0. For symmetric matrices A, ̂︀A ∈ R𝑑×𝑑 for which ‖A −̂︀A‖2 ≤ 𝜀 and ‖̂︀A‖2 ≥ 𝜆− 𝜀, if 𝑤 ∈ S𝑑−1 is the top singular vector of ̂︀A, and 𝑉 ⊂ R𝑑 is the

orthogonal complement of the kernel of A, then ‖Π𝑉𝑤‖2 ≥ 1− 4𝜀2/𝜆2.

Proof. If we take 𝜉 = 𝜇 = ‖̂︀A‖ in Lemma 1.3.7, then the columns of U (resp. ̂︀U) in

Lemma 1.3.7 consist of an orthonormal basis 𝐵 ∈ R𝑑×𝑘 for the kernel of A (resp. 𝑤 and

other singular vectors of A, if any, with the same singular value), where 𝑘 is the dimension

of ker(A). We have that

‖Π𝑉 ⊥𝑤‖ ≤ ‖̂︀U⊤U‖2 ≤ 𝜀/‖̂︀A‖2 ≤ 𝜀

𝜆− 𝜀
,

from which we conclude that

‖Π𝑉𝑤‖ ≥

(︃
1−

(︂
𝜀

𝜆− 𝜀

)︂2
)︃1/2

≥ 1− 4𝜀2/𝜆2

as claimed.

The following says that if a set of 𝑟 orthogonal unit vectors all have large component in

𝑈*, then their span is close to the true subspace in the sense of either of the distances above.

Lemma 1.3.9. Let Π denote orthogonal projection to a subspace 𝑈1 ∈ G(𝑛, ℓ). Let 𝑣1, ..., 𝑣ℓ ∈

S𝑛−1 be orthogonal and satisfy ‖Π𝑣𝑖‖2 ≥ 1 − 𝜀 for all 𝑖 ∈ [𝑟]. Let 𝑈2 , span({𝑣𝑖}). Then

𝑑𝐶(𝑈1, 𝑈2) ≤
√
2𝜀 · ℓ and 𝑑𝑃 (𝑈1, 𝑈2) ≤ 2

√
𝜀ℓ.

75

Proof. Let 𝑉1 ∈ St𝑛ℓ be any frame with columns forming a basis for 𝑈1, and let 𝑉2 ∈ St𝑛ℓ be

the frame with columns given by {𝑣𝑖}𝑖∈[ℓ]. Observe that

𝑑𝐶(𝑈1, 𝑈2)
2 = ℓ− ‖𝑉 ⊤

1 𝑉2‖2𝐹 = ℓ− Tr
(︀
𝑉 ⊤
2 Π𝑉2

)︀
≥ ℓ−

ℓ∑︁
𝑖=1

‖Π𝑣𝑖‖22 = 2𝜀 · ℓ.

as claimed.

We can use Lemma 1.3.9 to obtain the following:

Lemma 1.3.10. Let 𝑈* ∈ G(𝑛, 𝑟), 𝑉 ∈ St𝑛𝑟 , and 𝜀 > 0. Suppose the columns 𝑣𝑖 of 𝑉 satisfy

‖Π𝑈𝑣𝑖‖2 ≥ 1−𝜀 for every 𝑖 ∈ [ℓ]. Then there exist orthogonal vectors 𝑣*1, ..., 𝑣*ℓ ∈ 𝑈 for which

⟨𝑣𝑖, 𝑣*𝑖 ⟩ ≥ 1− 2𝜀ℓ for every 𝑖 ∈ [ℓ].

Proof. Let 𝑈 , span({𝑣𝑖}). By Lemma 1.3.9, 𝑑𝑃 (𝑈,𝑈*) ≤ 2
√
𝜀 · ℓ, so there exists a frame

𝑉 * ∈ St𝑛𝑟 for 𝑈* such that ‖𝑉 −𝑉 *‖𝐹 ≤ 2
√
𝜀 · ℓ. Note that ‖𝑉 −𝑉 *‖2𝐹 = 2ℓ−2Tr(𝑉 ⊤𝑉 *) =

2
∑︀ℓ

𝑖=1(1−⟨𝑣𝑖, 𝑣*𝑖 ⟩). As 𝑣𝑖, 𝑣*𝑖 are unit vectors 1−⟨𝑣𝑖, 𝑣*𝑖 ⟩ ≥ 0 for every 𝑖 ∈ [ℓ], so we conclude

that ⟨𝑣𝑖, 𝑣*𝑖 ⟩ ≥ 1− 2𝜀ℓ for each 𝑖 ∈ [ℓ].

The following claim says that swapping out orthogonal projectors to a subspace with

orthogonal projectors to a nearby subspace incurs small error.

Claim 1.3.11. For any 𝑀 ∈ R𝑛×𝑛 and projectors Π1,Π2 ∈ R𝑛×𝑛 to subspaces 𝑈1, 𝑈2 ∈

G(𝑛, ℓ), ‖Π⊤
1𝑀Π1 − Π⊤

2𝑀Π2‖2 ≤
√
2 · ‖𝑀‖2 · 𝑑𝐶(𝑈1, 𝑈2)).

Proof. We bound ‖(Π1 −Π2)
⊤𝑀Π1‖2 and ‖Π⊤

2𝑀(Π1 −Π2)‖2 and apply triangle inequality.

By sub-multiplicativity of the operator norm and the fact that projections have spectral

norm 1, ‖(Π1 − Π2)
⊤𝑀Π1‖2 ≤ ‖Π1 − Π2‖2 · ‖𝑀‖2. Finally, note that

‖Π1 − Π2‖2 ≤ ‖Π1 − Π2‖𝐹 =
√
2 · 𝑑𝐶(𝑈1, 𝑈2),

from which the claim follows.

76

1.3.3 Probability Basics

Given a probability distribution 𝒟, we use 𝑥 ∼ 𝒟 to denote an independent sample from 𝒟.

Given a finite set 𝑆, we will use 𝑥 ∼𝑢 𝑆 to denote 𝑥 sampled uniformly at random from 𝑆.

Given distributions 𝑃,𝑄, the total variation distance between 𝑃 and 𝑄 is 𝑑TV(𝑃,𝑄) ,

1
2
‖𝑃 −𝑄‖1.

If 𝑃 is absolutely continuous with respect to 𝑄, let d𝑃
d𝑄

(·) denote the Radon-Nikodym

derivative. The KL-divergence between 𝑃 and 𝑄 is KL (𝑃‖𝑄) , E𝑥∼𝑄[d𝑃d𝑄(𝑥) log
d𝑃
d𝑄

(𝑥)].

The chi-squared divergence between 𝑃 and 𝑄 is 𝜒2 (𝑃‖𝑄) , E𝑥∼𝑄[
(︁

d𝑃
d𝑄

(𝑥)− 1
)︁2
].

Let Δ𝑛 ⊂ R𝑛 be the simplex of nonnegative vectors whose coordinates sum to 1. Any

𝑝 ∈ Δ𝑛 naturally corresponds to a probability distribution over [𝑛].

We note that throughout this thesis, we will freely abuse notation and use the same

symbols to denote probability distributions, their laws, and their density functions.

1.3.4 Fourier Transform

We will use the following convention in defining the continuous Fourier transform. Given

square-integrable 𝑓 : R𝑑 → R, define

̂︀𝑓(𝜔) , ∫︁
R𝑑

𝑓(𝑥) · 𝑒−2𝜋𝑖⟨𝜔,𝑥⟩ 𝑑𝑥. (1.13)

The following fact about Fourier transforms of Gaussian pdfs is standard.

Fact 1.3.12.

𝒩 (0, 𝜎2)[𝜔] = 𝑒−2𝜋2𝜔2𝜎2

=
1√
2𝜋𝜎
𝒩
(︂
0,

1

4𝜋2𝜎2
;𝜔

)︂

1.3.5 Concentration

Gaussians

Given 𝑥 ∈ R, let 𝒩 (0, 1, 𝑥) denote the standard Gaussian density’s value at 𝑥. Let 𝜒2
𝑚

denote the chi-squared distribution with 𝑚 degrees of freedom.

77

We will need the following elementary estimates for Gaussian tails and correlated Gaus-

sians. Define erf(𝛽) , Prℎ∼N(0,1)[|ℎ| ≤ 𝛽] and erfc(𝛽) , 1− erf(𝛽) (note we eschew the usual

normalization). It is an elementary fact that under this normalization, for all 𝑧 > 0 we have

that erfc(𝑧) ≤ 𝑒−𝑧
2/2. We sometimes use the following estimates:

Fact 1.3.13 (See e.g. Proposition 2.1.2 in [Ver18]).(︂
1

𝑡
− 1

𝑡3

)︂
· 1√

2𝜋
𝑒−𝑡

2/2 ≤ erfc(𝑡) ≤ 1

𝑡
· 1√

2𝜋
𝑒−𝑡

2/2.

Fact 1.3.14. The function 𝑓 : R≥0 → R given by 𝑓(𝑧) = erfc(1/
√
𝑧) · 𝑧 is convex over R≥0.

Proof. We can explicitly compute

𝑓 ′′(𝑧) =
𝑒−1/2𝑧(1 + 𝑧)

2𝑧5/2
√
2𝜋

,

which is clearly nonnegative for any 𝑧 ≥ 0.

We will use the following fundamental fact about moments of Gaussian polynomials

repeatedly:

Fact 1.3.15 (Gaussian hypercontractivity, see e.g. Theorem 11.23 of [O’D14]). For a poly-

nomial 𝑓 : R𝑟 → R of degree 𝑑, and integer 𝑞 ≥ 2,

E[𝑓(𝑔)𝑞]1/𝑞 ≤ (𝑞 − 1)𝑑/2E[𝑓(𝑔)2]1/2,

where the expectation is over 𝑔 ∼ N(0, 1).

An immediate consequence of this is the following tail bound for Gaussian polynomials:

Lemma 1.3.16. Let 𝑍1, ..., 𝑍𝑇 be iid scalar random variables which are each given by poly-

nomials of degree 𝑑 in Gaussian variables 𝜁1, ..., 𝜁𝑇 ∼ 𝒩 (0, 1) respectively. If V[𝑍] ≤ 𝜎2 for

each 𝑖 ∈ [𝑇], then then for any 𝑡 > 0,

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑇

𝑇∑︁
𝑖=1

(𝑍𝑖 − E[𝑍𝑖])

⃒⃒⃒⃒
⃒ ≥ 1√

𝑇
·𝑂(log(1/𝛿))𝑑/2 · 𝜎

]︃
≤ 𝛿.

We will also occasionally use the following consequence of hypercontractivity:

78

Corollary 1.3.17. For any integer 𝑞 ≥ 2, E𝑔∼𝒩 (0,Id𝑚)[‖𝑔‖2𝑞2]1/𝑞 ≤ (𝑞 − 1) · (𝑚+ 1).

Proof. By Fact 1.3.15 applied to 𝑓(𝑔) , ‖𝑔‖22 and 𝑑 = 2, we have that E[‖𝑔‖2𝑞2]1/𝑞 ≤

E[‖𝑔‖42]1/2. But it is straightforward to compute E[‖𝑔‖42] = 𝑚2 + 2𝑚, from which the claim

follows.

We also have the following concentration inequality for the norm of a Gaussian vector:

Fact 1.3.18. Let 𝑔 ∼ 𝒩 (0, Id𝑑). There is a universal constant 𝑐shell > 0 such that for all

𝑡 > 0,

Pr
𝑔

[︁⃒⃒⃒
‖𝑔‖2 −

√
𝑑
⃒⃒⃒
≥ 𝑡
]︁
≤ 2𝑒−𝑐shell𝑡

2

Facts 1.3.13 and 1.3.18 imply the following pair of inequalities about the correlation between

a Gaussian vector and a given unit vector.

Corollary 1.3.19. Let 𝑤 ∈ S𝑑−1, 𝑔 ∼ 𝒩 (0, Id𝑑), and 𝑣 = 𝑔/‖𝑔‖2. Then for any constant

0 < 𝛾 < 1/2, the following holds.

There exist increasing functions 𝑓
𝛾
, 𝑓𝛾, 𝐷 : R>0 → R>0 such that for any absolute con-

stants 0 < 𝛼 ≤ 𝛼, we have that for 𝑑 ≥ 𝐷(𝛼),

Pr[⟨𝑣, 𝑤⟩ ≥ 𝛼 · 𝑑−𝛾] ≥ 𝑒−𝛽𝑑
1−2𝛾

and

Pr
[︀
⟨𝑣, 𝑤⟩ ≤ 𝛼𝑑−𝛾

]︀
≥ 1− 𝑒−𝛽𝑑1−2𝛾

for 𝛽 = 𝑓(𝛼) and 𝛽 = 𝑓(𝛼).

We defer the proof of this to Section 8.12.3

It will also be useful to obtain a similar bounds for the probability that the inner products

of a random vector with two orthogonal directions are simultaneously in a particular range.

Corollary 1.3.20. Let 𝑤1, 𝑤2 ∈ S𝑑−1 be orthogonal, 𝑔 ∼ 𝒩 (0, Id𝑑), and 𝑣 = 𝑔/‖𝑔‖2.

For any 𝛼1, 𝛼2 > 0, we have that for sufficiently large 𝑑,

Pr
[︀(︀
⟨𝑣, 𝑤1⟩ ≥ 𝛼1 · 𝑑−1/4

)︀
∧
(︀
⟨𝑣, 𝑤2⟩ ≤ 𝛼2 · 𝑑−1/2

)︀]︀
≥ 1

poly(𝑑)
Pr[⟨𝑣, 𝑤1⟩ ≥ 𝛼1 ·𝑑−1/4]. (1.14)

79

We defer the proof of this to Section 8.12.4

Standard Inequalities

Here we use standard martingale terminology, see e.g. [Dur19]; in particular, we say that

a sequence of random variables 𝑋1, . . . , 𝑋𝑡 adapted to a filtration ℱ𝑡 form a martingale

difference sequence if E[𝑋𝑡|ℱ𝑡−1] = 0 for all 𝑡.

We say a mean-zero random variable 𝑋 is 𝜎2-subgaussian if logE[𝑒𝜆𝑋] ≤ 𝜆2𝜎2/2 for all

𝜆 ∈ R; recall that if |𝑋| ≤ 𝐾 then 𝑋 is 𝑂(𝐾2)-subgaussian [Ver18].

Fact 1.3.21 (Azuma-Hoeffding inequality). Suppose that 𝑋1, . . . , 𝑋𝑛 is a martingale differ-

ence sequence and |𝑋𝑖| ≤𝑀𝑖 almost surely. Then

Pr

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 ≥ 𝑡

]︃
≤ exp

(︂
−Ω

(︂
𝑛𝑡2

1
𝑛

∑︀
𝑖𝑀

2
𝑖

)︂)︂

Fact 1.3.22 (Bernstein’s inequality). For 𝑋1, ..., 𝑋𝑛 independent and mean-zero, if |𝑋𝑖| ≤𝑀

for all 𝑖, then for all 𝑡 > 0,

Pr

[︃
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 ≥ 𝑡

]︃
≤ exp

(︂
−Ω

(︂
𝑛𝑡2

1
𝑛

∑︀
E[𝑋2

𝑖] +𝑀𝑡

)︂)︂

We will use the following general version of the Azuma-Hoeffding inequality, which ap-

plies to martingales in Euclidean space of arbitrary dimension with subgaussian step sizes.

(Note: this result is false if we consider martingales with steps that are general subgaussian

vectors, which can make steps of size
√
𝑑 in dimension 𝑑.) This result follows from the same

proof as Equation 5.18 in [KS91], with some small differences: there they consider bounded

variation processes instead of discrete-time martingales. In the bounded step size case, op-

timal constants were obtained in [Pin94]. For completeness, we prove Theorem 1.3.23 in the

Appendix.

Theorem 1.3.23 (Subgaussian-step vector Azuma-Hoeffding, cf. Equation 5.18 in [KS91]).

Suppose that 𝑋1, . . . , 𝑋𝑛 are random vectors in Euclidean space with ‖𝑋𝑡‖ ≤ 1 almost surely

for all 𝑡, and 𝜉1, . . . , 𝜉𝑛 are random variables such that almost surely, the law of 𝜉𝑡 conditional

80

on 𝑋1, . . . , 𝑋𝑡, 𝜉1, . . . , 𝜉𝑡−1 is mean-zero and 𝜎2-subgaussian. Then

Pr

[︃⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜉𝑖𝑋𝑖

⃦⃦⃦⃦
⃦ ≥ 𝑢

]︃
≤ 2 exp

(︂
−Ω

(︂
𝑛𝑢2

𝜎2

)︂)︂
.

Sub-Exponential Random Variables

Here we define the sub-exponential norm of a random variable 𝑋 to be sup𝑝≥1
1
𝑝 E[|𝑋|

𝑝]1/𝑝.

Sub-exponential random variables, that is, ones with bounded sub-exponential norm, enjoy

the following tail bound:

Fact 1.3.24 (Sub-exponential tail bounds, see e.g. [Ver10], Proposition 5.16). If 𝑋1, ..., 𝑋𝑁

are i.i.d. random variables with mean zero and sub-exponential norm 𝐾, then

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

𝑋𝑖

⃒⃒⃒⃒
⃒ ≥ 𝑡

]︃
≤ 2 exp

(︂
−Ω

(︂
𝑁𝑡2

𝐾2
∧ 𝑁𝑡
𝐾

)︂)︂
. (1.15)

In particular, for any 𝛿 > 0, if we take 𝑁 = Θ
(︁
𝐾2

𝑡2
∨ 𝐾

𝑡

)︁
· log 1/𝛿, then (1.15) is at most 𝛿.

We also use the following fact about moment bounds for sums of sub-exponential random

variables.

Lemma 1.3.25. Fix any 𝑡 ∈ N. Given a collection of independent mean-zero random

variables 𝑍1, . . . , 𝑍𝑚 whose odd moments vanish and such that for every 𝑖 ∈ [𝑚] and 1 ≤ ℓ ≤

𝑡, E[|𝑍𝑖|ℓ]1/ℓ ≤ ℓ · 𝜎𝑖, we have that for every integer 1 ≤ ℓ ≤ 𝑡

E[(𝑍1 + · · ·+ 𝑍𝑚)
ℓ]1/ℓ ≤ ℓ(𝜎2

1 + · · ·+ 𝜎2
𝑚)

1/2

Proof. Using the sub-exponential moment bound, we can expand E[(𝑍1 + · · · + 𝑍𝑚)
ℓ] and

use the fact that the 𝑍𝑖’s are independent to get

E[(𝑍1+· · ·+𝑍𝑚)ℓ] =
∑︁
𝛼

∏︁
𝑖

E[𝑍𝛼𝑖
𝑖] ≤

∑︁
𝛼

∏︁
𝑖

𝛼𝛼𝑖
𝑖 𝜎

𝛼𝑖
𝑖 ≤ ℓℓ

∑︁
𝛼

∏︁
𝑖

(𝜎2
𝑖)
𝛼𝑖/2 = ℓℓ(𝜎2

1+· · ·+𝜎2
𝑚)

ℓ/2

where 𝛼 ranges over even monomials of total degree ℓ.

81

Matrix Concentration

A key ingredient in our arguments in Chapter 6 is concentration for matrix martingales. See

[Tro12,Tro11] for background on matrix concentration; for infinite dimensional settings we

use a version of matrix concentration which depends on effective dimension [HKZ+12,Min17].

To briefly recall, a matrix martingale Y1, . . . ,Y𝑛 adapted to a filtration ℱ𝑡 with difference

sequence X𝑡 is an ℱ𝑡-adapted process satisfying Y𝑡 =
∑︀𝑡

𝑠=1 X𝑠 and E[X𝑡|ℱ𝑡−1] = 0. We

also recall that for a function 𝑓 : R→ R and symmetric matrix 𝑀 with eigendecomposition

𝑀 =
∑︀

𝑖 𝜆𝑖𝜌𝑖𝜌
𝑇
𝑖 , the notation 𝑓(𝑀) corresponds to applying 𝑓 to the spectrum, i.e. 𝑓(𝑀) =∑︀

𝑖 𝑓(𝜆𝑖)𝜌𝑖𝜌
𝑇
𝑖 .

Theorem 1.3.26 (Matrix Freedman Inequality, [Min17]). Suppose Y1, ...,Y𝑛 ∈ R𝑑×𝑑 is a

symmetric matrix martingale adapted to filtration ℱ𝑡, whose associated difference sequence

{X𝑡} satisfies ‖X𝑡‖ ≤ 1 almost surely for all 𝑡. Let W =
∑︀

𝑡 E[X2
𝑡 |ℱ𝑡−1], then for any

𝑡 ≥ 1
6
(1 +

√︀
1 + 36𝜎2

𝑛)

Pr[‖Y𝑛‖ ≥ 𝑡 and ‖W‖ ≤ 𝜎2
𝑛] ≤ 50𝑑1(𝑡) · exp

(︂
−𝑡2/2
𝜎2
𝑛 + 𝑡/3

)︂

where

𝑑1(𝑡) = Tr 𝑓(𝑡E[W]/𝜎2
𝑛)

and 𝑓(𝑥) = min(1, 𝑥).

Corollary 1.3.27. In the same setting as Theorem 1.3.26, suppose that for some 𝜎 ≤ 1,

E[X2
𝑡 |ℱ𝑡−1] ⪯ 𝜎2 almost surely. Then for any 𝑢 ≥ 1/18𝑛+ 𝜎

√︀
1/𝑛

Pr[‖(1/𝑛) ·Y𝑛‖ ≥ 𝑢] ≤ 50𝑑2(𝑢) · exp
(︂
−𝑛𝑢2/2
𝜎2 + 𝑢/3

)︂

where

𝑑2(𝑢) = Tr 𝑓(𝑢E[W]/𝜎2)

and 𝑓(𝑥) = min(1, 𝑥) as in Theorem 1.3.26.

Proof. Apply Theorem 1.3.26 with 𝑡 = 𝑛𝑢 and 𝜎2
𝑛 = 𝑛𝜎2, noting that 𝑑2(𝑢) = 𝑑1(𝑛𝑢); in this

82

statement, we only strengthened the assumed lower bound on 𝑡.

Nets

Fact 1.3.28 (e.g. [Ver18], Corollary 4.2.13). For any 𝜀 > 0, there is an 𝜀-net (in 𝐿2 norm)

of size (1 + 2/𝜀)𝑚 for the unit 𝐿2 ball in 𝑚 dimensions.

Corollary 1.3.29. For any 𝜀, 𝛽 > 0, there is an 𝜀-net (in operator norm) for the set of

𝑚1 ×𝑚2 matrices of operator norm at most 𝛽 of size at most (1 + 2𝛽/𝜀)𝑚1𝑚2.

Proof. As operator norm is upper bounded by Frobenius norm, an 𝜀-net in Frobenius norm

for the set of 𝑚1 × 𝑚2 matrices of Frobenius norm at most 𝛽 would contain the claimed

𝜀-net. The former can be obtained from scaling an 𝜀/𝛽-net in Frobenius norm for the set of

𝑚1×𝑚2 matrices of unit Frobenius norm, and such a net with size (1+ 2𝛽/𝜀)𝑚1𝑚2 exists by

Fact 1.3.28.

Integration by Parts

The following fact can be used to translate tail bounds into bounds on expectation values of

functionals.

Fact 1.3.30 (Integration by parts). Let 𝑎, 𝑏 ∈ R. Let 𝑍 be a nonnegative random variable

satisfying 𝑍 ≤ 𝑏 and such that for all 𝑥 ≥ 𝑎, Pr[𝑍 > 𝑥] ≤ 𝜏(𝑥). Let 𝑓 : [0, 𝑏] → R≥0 be

nondecreasing and differentiable. Then

E[𝑓(𝑍)] ≤ 𝑓(𝑎)(1 + 𝜏(𝑎)) +

∫︁ 𝑏

𝑎

𝜏(𝑥)𝑓 ′(𝑥) d𝑥.

Proof. Let 𝑔 : [0, 𝑏]→ [0, 1] denote the CDF of 𝑍, so that for 𝑥 ≥ 𝑎, 1− 𝑔(𝑥) ≤ 𝜏(𝑥). Then

E[𝑍𝑛] =

∫︁ 𝑏

0

𝑓(𝑍) d 𝑔 ≤ 𝑓(𝑎) +

∫︁ 𝑏

𝑎

𝑓(𝑍) d 𝑔

= 𝑓(𝑎) + 𝑓(𝑏)𝑔(𝑏)− 𝑓(𝑎)𝑔(𝑎)−
∫︁ 𝑏

𝑎

𝑔(𝑥)𝑓 ′(𝑥) d𝑥

= 𝑓(𝑎)(1− 𝑔(𝑎)) + 𝑓(𝑏)− (𝑓(𝑏)− 𝑓(𝑎)) +
∫︁ 𝑏

𝑎

(1− 𝑔(𝑥))𝑓 ′(𝑥) d𝑥

≤ 𝑓(𝑎)(1 + 𝜏(𝑎)) +

∫︁ 𝑏

𝑎

𝜏(𝑥)𝑓 ′(𝑥) d 𝑥,

83

where the first integral is the Riemann-Stieltjes integral, the third step is integration by parts,

the fourth step follows because 𝑔(𝑏) = 1, and the last follows because 1 − 𝑔(𝑥) ≤ 𝜏(𝑥) ≤ 1

for 𝑥 ≥ 𝑎.

Anti-Concentration

We will sometimes need to show that a certain random variable is not too small too often.

The following basic estimate will suffice for our purposes.

Fact 1.3.31 (Elementary anticoncentration). If 𝑍 is a random variable for which |𝑍| ≤𝑀

almost surely, and E[𝑍2] ≥ 𝜎2, then Pr[|𝑍| ≥ 𝑡] ≥ 1
𝑀2 (𝜎

2 − 𝑡2).

Proof. We have

𝜎2 ≤ E
[︀
𝑍2
]︀
= E

[︀
𝑍2 | |𝑍| ≥ 𝑡

]︀
· Pr[|𝑍| ≥ 𝑡] + E

[︀
𝑍2 | |𝑍| < 𝑡

]︀
· Pr[|𝑍| < 𝑡]

≤𝑀2 · Pr[|𝑍| ≥ 𝑡] + 𝑡2,

from which the claimed bound follows upon rearranging.

Other Tail Bounds

We will need the following standard concentration inequality in our analysis of filtered PCA.

Lemma 1.3.32 ([Ver10]). Let 𝜑 : R → [0, 1] be any function. Let 𝑀 = E𝑥∼𝒩 (0,Id𝑛)[𝜑(𝑥) ·

(𝑥𝑥⊤ − Id)]. If 𝑥1, ..., 𝑥𝑁 ∼ 𝒩 (0, Id𝑛) for 𝑁 = Ω({𝑛 ∨ log(1/𝛿)}/𝜀2), then

Pr

[︃⃦⃦⃦⃦
⃦M− 1

𝑁

𝑁∑︁
𝑖=1

𝜑(𝑥𝑖) · (𝑥𝑖𝑥⊤𝑖 − Id)

⃦⃦⃦⃦
⃦
2

≥ 𝜀

]︃
≤ 𝛿.

Proof. This follows from standard sub-Gaussian concentration; see e.g. Remark 5.40 in

[Ver10].

We will occasionally also use the following concentration inequality for sums of random

variables which only satisfy one-sided bounds. This is a specialization of the martingale

concentration result of [Ben03] to the iid case, though we also need that result in its full

generality for Lemma 2.3.4 below.

84

Lemma 1.3.33 (Special case of [Ben03]). Let 𝑍1, ..., 𝑍𝑇 be iid, mean-zero random variables.

Let 𝑐, 𝑠 > 0 be deterministic constants for which 𝑍𝑖 ≤ 𝑐 with probability one and V[𝑍𝑖] ≤ 𝑠2

for all 𝑖 ∈ [𝑇]. Let 𝜎 = 𝑐 ∨ 𝑠. Then for any 𝛿 > 0,

Pr

[︃
1

𝑇

𝑇∑︁
𝑖=1

𝑍𝑖 ≥
1√
𝑇
·
√
2 log(1/𝛿) · 𝜎

]︃
≤ 𝛿.

1.3.6 Hermite Polynomials

Let Heℓ denote the degree-ℓ probabilist’s Hermite polynomial. It will be convenient to scale

these to form the normalized Hermite polynomials

𝜑ℓ(𝑧) =
1

(ℓ!)1/2
He
ℓ
(𝑧)

for ℓ ∈ Z≥0. This scaling is chosen so that {𝜑ℓ} forms an orthonormal basis for 𝐿2(R, 𝛾).

The following identity will be useful:

Fact 1.3.34 (See e.g. Proposition 11.31 in [O’D14]). For any 𝑣, 𝑣′ ∈ S𝑛−1 and ℓ, ℓ′ ∈ Z≥0,

E𝑔∼N(0,Id𝑛) [𝜑ℓ(⟨𝑣, 𝑔⟩ · 𝜑ℓ′(⟨𝑣′, 𝑔⟩)] = 1[ℓ = ℓ′] · ⟨𝑣, 𝑣′⟩ℓ.

From the normalized Hermite polynomials one can construct an orthonormal basis for

𝐿2(R𝑑, 𝛾) by defining for any multiset 𝐼 consisting of elements of [𝑑] the tensored normalized

Hermite polynomial

𝜑𝐼(𝑧) ,
𝑑∏︁
𝑖=1

𝜑ℓ𝑖(𝑧𝑖),

where ℓ𝑖 denotes the number of occurrences of 𝑖 in the multiset 𝐼.

1.3.7 Stability of Linear Threshold Functions

The following lemma is a crucial ingredient in our analysis of filtered PCA in Chapters 2

and 3.

85

Lemma 1.3.35. For 𝜏 > 0 and vectors 𝑣, 𝑣′ ∈ R𝑑,

Pr
𝑥∼𝒩 (0,Id)

[⟨𝑣, 𝑥⟩ > 𝜏 ∧ ⟨𝑣′, 𝑥⟩ ≤ 𝜏] ≤ 𝑂

(︂
‖𝑣 − 𝑣′‖

𝜏

)︂
(1.16)

While the result is fairly elementary, we are not aware of such a result appearing in

previous works and therefore give a self-contained proof.

Proof. First note that without loss of generality, we may assume that ‖𝑣‖ ≥ ‖𝑣′‖; if not,

then the random variable 1[⟨𝑣, 𝑥⟩ > 𝜏 ∧⟨𝑣′, 𝑥⟩ ≤ 𝜏] is stochastically dominated by 1[⟨𝑣, 𝑥⟩ >

𝜏 ∧ ⟨𝜁𝑣′, 𝑥⟩ ≤ 𝜏] for 𝜁 = ‖𝑣‖/‖𝑣′‖, and furthermore ‖𝑣− 𝜁𝑣′‖ ≤ ‖𝑣− 𝑣′‖ by the Pythagorean

theorem.

Also note that we may assume ‖𝑣′‖ > ‖𝑣−𝑣′‖. Otherwise, we would have ‖𝑣‖ ≤ 2‖𝑣−𝑣′‖.

But then we could upper bound the left-hand side of (1.16) by

Pr[⟨𝑣, 𝑥⟩ > 𝜏] ≤ 𝑒−𝜏
2/2‖𝑣‖2 ≤ 𝑒

− 𝜏2

8‖𝑣−𝑣′‖2 ≤ 2‖𝑣 − 𝑣′‖/𝜏.

Now define ̂︀𝑣 = 𝑣/‖𝑣‖ and ̂︀𝑣′ = 𝑣′/‖𝑣′‖ so that (1.16) equals Pr[⟨̂︀𝑣, 𝑥⟩ > ̂︀𝜏 ∧ ⟨̂︀𝑣′, 𝑥⟩ ≤ ̂︀𝜏 ′]
for ̂︀𝜏 , 𝜏/‖𝑣‖ and ̂︀𝜏 ′ , 𝜏/‖𝑣′‖. Write ̂︀𝑣′ = 𝛼̂︀𝑣 + √1− 𝛼2𝑣⊥ for 𝑣⊥ orthogonal to ̂︀𝑣, and

denote the random variables ⟨̂︀𝑣, 𝑥⟩ and ⟨̂︀𝑣′, 𝑥⟩ by 𝛾 and 𝛾′ respectively (these are 𝛼-correlated

standard Gaussians).

Note that by the assumption that ‖𝑣‖ ≥ ‖𝑣′‖ ≥ ‖𝑣 − 𝑣′‖, the angle between 𝑣 and 𝑣′ is

at most 𝜋/3, so 𝛼 ≥ 1/2.

We are now ready to upper bound (1.16). We will split into two cases, either 𝛾 > ̂︀𝜏 ′/𝛼
or ̂︀𝜏 ≤ 𝛾 ≤ ̂︀𝜏 ′, and upper bound the contribution of either case to the probability in (1.16)

by 𝑂(‖𝑣 − 𝑣′‖/𝜏), from which the lemma will follow.

Case 1: 𝛾 > ̂︀𝜏 ′/𝛼.

The density of 𝛾′ relative to 𝛾 is given by

∫︁ ̂︀𝜏 ′−𝛼𝛾√
1−𝛼2

−∞
𝒩 (0, 1, 𝑥)𝑑𝑥 =

1

2
erfc

(︂
𝛼𝛾 − ̂︀𝜏 ′√
1− 𝛼2

)︂
≤ 1

2
exp

(︂
−(𝛼𝛾 − ̂︀𝜏 ′)2

2(1− 𝛼2)

)︂
.

86

We have that

E
𝛾

[︂
1

2
exp

(︂
−(𝛼𝛾 − ̂︀𝜏 ′)2

2(1− 𝛼2)

)︂
· 1[𝛾 > ̂︀𝜏 ′]]︂ = 1

4

√
1− 𝛼2 · exp(−̂︀𝜏 ′2/2) · erfc(̂︀𝜏 ′√1− 𝛼2/𝛼)

≤ 1

4

√
1− 𝛼2 · exp(−̂︀𝜏 ′2/2𝛼2)

≤ ‖𝑣 − 𝑣
′‖

4
√
2‖𝑣′‖

· |𝛼|
√
2̂︀𝜏 ′ ≤ ‖𝑣 − 𝑣

′‖
4𝜏

,

where the first step is standard Gaussian integration, the second step uses the inequality

erfc(𝑧) ≤ 𝑒−𝑧
2/2 for all 𝑧 ≥ 0, and the third step uses the fact that exp(−𝑥) ≤ 1/𝑥 for all

𝑥 > 0 and the fact that
√
1− 𝛼2 = 1√

2
‖̂︀𝑣 − ̂︀𝑣′‖ ≤ ‖𝑣−𝑣′‖√

2‖𝑣′‖ .

Case 2: ̂︀𝜏 < 𝛾 ≤ ̂︀𝜏 ′/𝛼.

We can naively upper bound the probability ̂︀𝜏 < 𝛾 ≤ ̂︀𝜏 ′/𝛼 and 𝛾′ ≤ ̂︀𝜏 ′ by the probabilitŷ︀𝜏 < 𝛾 ≤ ̂︀𝜏 ′/𝛼, which is at most 𝑒−̂︀𝜏2/2 · (̂︀𝜏 ′/𝛼− ̂︀𝜏). Note that

̂︀𝜏 ′/𝛼−̂︀𝜏 ≤ 𝜏 ·
(︂
1/𝛼

‖𝑣′‖
− 1

‖𝑣‖′ + ‖𝑣 − 𝑣′‖

)︂
≤ 𝜏

𝛼
· (1− 𝛼)‖𝑣

′‖+ ‖𝑣 − 𝑣′‖
‖𝑣′‖2

≤ 3𝜏‖𝑣 − 𝑣′‖
2𝛼‖𝑣′‖2

, (1.17)

where in the last step we have used that 1− 𝛼 = 1
2
‖̂︀𝑣 − ̂︀𝑣′‖ ≤ ‖𝑣−𝑣′‖

2‖𝑣′‖ .

Suppose to the contrary that 𝑒−̂︀𝜏2/2 · (̂︀𝜏 ′/𝛼− ̂︀𝜏) > 9‖𝑣−𝑣′‖
𝜏

so that by (1.17),

𝑒̂︀𝜏2/2 < 𝜏 2

6𝛼‖𝑣′‖2
. (1.18)

Recall that we may assume that ‖𝑣′‖ ≥ ‖𝑣 − 𝑣′‖, so ̂︀𝜏 ≥ 𝜏
2‖𝑣′‖ , and that 𝛼 ≥ 1/2. From

this, (1.18) would imply that 𝑒
𝜏2

8‖𝑣′‖2 < 𝜏2

3‖𝑣′‖2 , and such an inequality cannot hold.

1.3.8 Sum-of-Squares Programming

For a thorough treatment on the SoS proof system, we refer the reader to [OZ13, BS14].

In this section we review essential components that are needed in Chapter 4 and parts of

Chapter 6.

Let 𝑥1, ..., 𝑥𝑛 be formal variables, and let Program 𝒫 be a set of polynomial equations

and inequalities {𝑝1(𝑥) ≥ 0, ..., 𝑝𝑚(𝑥) ≥ 0, 𝑞1(𝑥) = 0, ..., 𝑞𝑚(𝑥) = 0}.

87

We say that the inequality 𝑝(𝑥) ≥ 0 has a degree-𝑑 SoS proof using 𝒫 if there exists a

polynomial 𝑞(𝑥) in the ideal generated by 𝑞1(𝑥), ..., 𝑞𝑚(𝑥) at degree 𝑑, together with sum-of-

squares polynomials {𝑟𝑆(𝑥)}𝑆⊆[𝑚] (where the index 𝑆 is a multiset), such that

𝑝(𝑥) = 𝑞(𝑥) +
∑︁
𝑆⊆[𝑚]

𝑟𝑆(𝑥) ·
∏︁
𝑖∈𝑆

𝑝𝑖(𝑥),

and such that deg(𝑟𝑆(𝑥) ·
∏︀

𝑖∈𝑆 𝑝𝑖(𝑥)) ≤ 𝑑 for each multiset 𝑆 ⊆ [𝑚]. We denote this by the

notation

𝒫 ⊢𝑑 𝑝(𝑥) ≥ 0

When 𝒫 = {1}, we will denote this by ⊢𝑑 𝑝(𝑥) ≥ 0.

A fact we will use throughout without comment is that SoS proofs compose well:

Fact 1.3.36. If 𝒫 ⊢𝑑 𝑝(𝑥) ≥ 0 and ℬ ⊢𝑑′ 𝑞(𝑥) ≥ 0, then 𝒫 ∪ℬ ⊢max(𝑑,𝑑′) 𝑝(𝑥)+ 𝑞(𝑥) ≥ 0 and

𝒫 ∪ ℬ ⊢𝑑𝑑′ 𝑝(𝑥)𝑞(𝑥) ≥ 0.

It is useful to consider the objects dual to SoS proofs, namely pseudodistributions. A

degree-𝑑 pseudodistribution is a linear functional Ẽ : R[𝑥]≤𝑑 → R satisfying the following

properties:

1. Normalization: Ẽ[1] = 1

2. Positivity: Ẽ[𝑝(𝑥)2] for every 𝑝 of degree at most 𝑑/2.

We will use the terms “pseudodistribution” and “pseudoexpectation” interchangeably.

A degree-𝑑 pseudodistribution Ẽ satisfies Program 𝒫 = {𝑝1(𝑥) ≥ 0, ..., 𝑝𝑚(𝑥) ≥ 0, 𝑞1(𝑥) =

0, ..., 𝑞𝑚(𝑥) = 0} if for every multiset 𝑆 ⊆ [𝑚] and sum-of-squares polynomial 𝑟(𝑥) for which

deg(𝑟(𝑥) ·
∏︀

𝑖∈𝑆 𝑝𝑖(𝑥)) ≤ 𝑑, we have Ẽ[𝑟(𝑥) ·
∏︀

𝑖∈𝑆 𝑝𝑖(𝑥)] ≥ 0, and for every 𝑞(𝑥) in the ideal

generated by 𝑞1, ..., 𝑞𝑚 at degree 𝑑, we have Ẽ[𝑞(𝑥)] = 0.

For any fixed ℓ ∈ N, given such a program 𝒫 , one can efficiently compute a degree ℓ

pseudodistribution satisfying 𝒫 in polynomial time:

Fact 1.3.37. ([Nes00], [Par00], [Las01], [Sho87]). For any 𝑛, ℓ ∈ Z+, let ̃︀E𝜁 be degree ℓ

pseudodistribution satisfying a polynomial system 𝒫. Then the following set has a 𝑛𝑂(ℓ)-time

88

weak separation oracle (in the sense of [GLS81]):

{̃︀E𝜁(1, 𝑥1, 𝑥2, ..., 𝑥𝑛)⊗ℓ| degree ℓ pseudoexpectations ̃︀E𝜁 satisfying 𝒫}

Using this separation oracle, the ellipsoid algorithm finds a degree ℓ pseudoexpectation in

time 𝑛𝑂(ℓ), which we call the degree ℓ sum-of-squares algorithm.

The following fundamental fact is a consequence of SDP duality:

Fact 1.3.38. If 𝒫 ⊢𝑑 𝑝(𝑥) ≥ 0 and Ẽ is a degree-𝑑 pseudodistribution satisfying 𝒫, then Ẽ

satisfies 𝒫 ∪ {𝑝 ≥ 0}.

We collect some basic inequalities that are captured by the SoS proof system, the proofs

of which can be found, e.g., in Appendix A of [HL18] and [MSS16].

Fact 1.3.39 (SoS Cauchy-Schwarz). Let 𝑥1, ..., 𝑥𝑛, 𝑦1, ..., 𝑦𝑛 be formal variables. Then

⊢4

(︃
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖

)︃2

≤

(︃
𝑛∑︁
𝑖=1

𝑥2𝑖

)︃
·

(︃
𝑛∑︁
𝑖=1

𝑦2𝑖

)︃

Fact 1.3.40 (SoS Holder’s). Let 𝑤1, ..., 𝑤𝑛, 𝑥1, ..., 𝑥𝑛 be formal variables. Then for any 𝑡 ∈ N

a power of 2, we have

{𝑤2
𝑖 = 𝑤𝑖 ∀𝑖 ∈ [𝑛]} ⊢𝑂(𝑡)

(︃
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖

)︃𝑡

≤

(︃
𝑛∑︁
𝑖=1

𝑤𝑖

)︃𝑡−1

·
𝑛∑︁
𝑖=1

𝑥𝑡𝑖

and

{𝑤2
𝑖 = 𝑤𝑖 ∀𝑖 ∈ [𝑛]} ⊢𝑂(𝑡)

(︃
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖

)︃𝑡

≤

(︃
𝑛∑︁
𝑖=1

𝑤𝑖

)︃𝑡−1

·
𝑛∑︁
𝑖=1

𝑤𝑖𝑥
𝑞
𝑖 .

We will also use the following consequence of scalar Holder’s inequality.

Fact 1.3.41. Let ℓ(𝑥) be a linear form in the formal variables 𝑥1..., 𝑥𝑛. Then if Ẽ is a

degree-𝑡 pseudodistribution, then

Ẽ[ℓ(𝑥)]𝑡 ≤ Ẽ[ℓ(𝑥)𝑡].

Proof. Because Ẽ is a degree-𝑡 pseudodistribution, there exists a pseudo-density 𝐻(·) such

89

that Ẽ[𝑝(𝑥)] =
∑︀

𝑥𝐻(𝑥) ·𝑝(𝑥) for any degree-𝑡 polynomial 𝑝. So by scalar Holder’s inequality

we get that

Ẽ[ℓ(𝑥)]𝑡 =

(︃∑︁
𝑥

𝐻(𝑥)ℓ(𝑥)

)︃𝑡

≤

(︃∑︁
𝑥

𝐻(𝑥)

)︃𝑡−1

·

(︃∑︁
𝑥

𝐻(𝑥)ℓ(𝑥)𝑡

)︃
= Ẽ[1]𝑡−1·Ẽ[ℓ(𝑥)𝑡] = Ẽ[ℓ(𝑥)𝑡]

as claimed.

Fact 1.3.42. (Pseudoexpectation Cauchy Schwarz). Let 𝑓(𝑥) and 𝑔(𝑥) be degree at most

ℓ ≤ 𝐷
2

polynomial in indeterminate 𝑥, then

̃︀E[𝑓(𝑥)𝑔(𝑥)]2 ≤ ̃︀E[𝑓(𝑥)2]̃︀E[𝑔(𝑥)2].
We make extensive use of the following to analyze certain roundings of pseudodistribu-

tions:

Lemma 1.3.43. For any psd matrix Σ which induces a norm ‖·‖Σ, any vector 𝑤*, and any

degree-2 pseudoexpectation ̃︀E[·] over R𝑑-valued variable 𝑤, we have that

‖̃︀E[𝑤]− 𝑤*‖2Σ ≤ ̃︀E[‖𝑤 − 𝑤*‖2Σ]. (1.19)

Proof. By the dual definition of 𝐿2 norm, the left-hand side of (1.19) can be written as

sup
𝑣∈S𝑑−1

⟨Σ𝑣, ̃︀E[𝑤]− 𝑤*⟩2.

For any 𝑣 ∈ S𝑑−1,

⟨︀
Σ𝑣, ̃︀E[𝑤]− 𝑤*⟩︀2 = (︀̃︀E[⟨Σ𝑣, 𝑤 − 𝑤*⟩]

)︀2 ≤ ̃︀E[⟨Σ𝑣, 𝑤 − 𝑤*⟩2] ≤ ̃︀E[‖𝑤 − 𝑤*‖2Σ],

where the first inequality follows by the pseudoexpectation version of SoS Cauchy-Schwarz

(see e.g. Lemma A.5 of [BKS14]). Therefore, taking the maximum over all 𝑣 ∈ 𝑆𝑑−1 proves

the inequality.

The following elementary inequality will also be useful.

90

Fact 1.3.44. {𝑥2 = 1} ⊢2 −1 ≤ 𝑥 ≤ 1.

Proof. Noting that

1− 𝑥 =
1

2
(1− 𝑥2 + (𝑥− 1)2) and 1 + 𝑥 =

1

2
(1− 𝑥2 + (𝑥+ 1)2), (1.20)

the claim follows.

Finally, we note that SoS can also be used to prove spectral upper and lower bounds:

Fact 1.3.45. (Spectral Bounds) Let 𝐴 ∈ R𝑑×𝑑 be a positive semidefinite matrix with 𝜆𝑚𝑎𝑥 and

𝜆𝑚𝑖𝑛 being the largest and smallest eigenvalues of 𝐴 respectively. Let ̃︀E be a pseudoexpectation

with degree greater than or equal to 2 over indeterminates 𝑣 = (𝑣1, ..., 𝑣𝑑). Then we have

⊢2 ⟨𝐴, 𝑣𝑣𝑇 ⟩ ≤ 𝜆𝑚𝑎𝑥‖𝑣‖2 and ⊢2 ⟨𝐴, 𝑣𝑣𝑇 ⟩ ≥ 𝜆𝑚𝑖𝑛‖𝑣‖2.

1.3.9 Quantum Basics

Definition 1.3.46 (States). A 𝑑-dimensional quantum state is specified by a density matrix

𝜌 ∈ C𝑑×𝑑, i.e. a psd matrix that satisfies Tr(𝜌) = 1.

In Chapters 10 and 11, given a density matrix 𝑀 , we will use ̂︁𝑀 to denote 𝑀/Tr(𝑀).

Let 𝜌mm , 1
𝑑
Id denote the maximally mixed state.

We now formally define the notion of a POVM with possibly infinite outcome set.

Definition 1.3.47 (POVMs). Given space Ω with Borel 𝜎-algebra ℬ(Ω), let 𝜇 be a regular

positive real-valued measure 𝜇 on ℬ(Ω), and let 𝑀 : Ω → C𝑑×𝑑 be a measurable function

taking values in the set of psd Hermitian matrices. We will denote the image of 𝑥 ∈ Ω under

𝑀 by 𝑀𝑥.

We say that the pair (𝜇,𝑀) specifies a POVMℳ if
∫︀
Ω
𝑀 d𝜇 = Id𝑑×𝑑 and, for any 𝑑× 𝑑

density matrix 𝜌, the map 𝐵 ↦→
∫︀
𝐵
⟨𝑀𝑥, 𝜌⟩ d𝜇 for 𝐵 ∈ ℬ(Ω) specifies a probability measure

over Ω. We call the distribution given by this measure the distribution over outcomes from

measuring 𝜌 withℳ.7

7This definition looks diferent from standard ones because we are implicitly invoking the Radon-Nikodym
theorem for POVMs on finite-dimensional Hilbert spaces, see e.g. Theorem 3 from [MHC13] or Lemma 11
from [CDS10].

91

Given a POVM ℳ, we will refer to the space of measurement outcomes as Ω(ℳ).

With no meaningful loss in understanding, the reader may simply imagine that all

POVMs mentioned henceforth have finitely many outcomes so that a POVM is simply

the data of some finite set of positive semidefinite Hermitian matrices {𝑀𝑥}𝑥∈Ω for which∑︀
𝑥𝑀𝑥 = Id𝑑×𝑑, though our arguments extend to the full generality of Definition 1.3.47.

Haar-Random Unitary Matrices

In this section we recall some standard facts about Haar-unitary integrals. Given a permu-

tation 𝜋 ∈ 𝒮ℓ, let Wg(𝜋, 𝑑) denote the Weingarten function. Given a matrix 𝑀 ∈ C𝑑×𝑑 and

permutation 𝜋 ∈ 𝒮ℓ, let ⟨𝑀⟩𝜋 ,
∏︀

𝐶∈𝜋 Tr(𝑀 |𝐶|), where 𝐶 ranges over the cycles of 𝜋 and

|𝐶| denotes the length of 𝐶. Equivalently, if 𝑃𝜋 is the permutation operator associated to 𝜋,

then ⟨𝑀⟩𝜋 = Tr(𝑃𝜋𝑀⊗ℓ).

Fact 1.3.48. Given matrix X,Y ∈ C𝑑×𝑑, for Haar-random U ∈ 𝑈(𝑑), EU[U
†XUY] =

1
𝑑
Tr(X)Tr(Y).

Lemma 1.3.49. For 𝑑 ≥ 2, ℓ ∈ N, and any A,B ∈ C𝑑×𝑑, we have that

E
U
[Tr(AU†BU)ℓ] =

∑︁
𝜎,𝜏∈𝒮ℓ

⟨A⟩𝜎⟨B⟩𝜏 Wg(𝜎𝜏−1, 𝑑) .

Lemma 1.3.50 ([Mon13]). For ℓ ≤ 𝑑2/3 and 𝜋 ∈ 𝒮ℓ, Wg(𝜋, 𝑑) ≤ 𝑂(𝑑𝜅(𝜋)−2ℓ).

Lemma 1.3.51. For any ℓ ≤ 𝑑2/3,
∑︀

𝜋∈𝒮ℓ
|Wg(𝜋, 𝑑)| ≤ Ω(𝑑)−ℓ.

Proof. Recalling Lemma 1.3.50, we see that

∑︁
𝜋∈𝒮ℓ

|Wg(𝜋, 𝑑)| = 1

𝑑2ℓ
·
∑︁
𝜋

𝑂(𝑑)𝜅(𝜋) =
𝑂(𝑑)(𝑂(𝑑) + 1) · · · (𝑂(𝑑) + ℓ− 1)

𝑑2ℓ
≤ Ω(𝑑)−ℓ

as claimed.

Concentration of measure for Haar-random unitary matrices will also be crucial to our

analysis:

92

Theorem 1.3.52 ([MM13], Corollary 17, see also [AGZ10], Corollary 4.4.28). Equip 𝑀 ,

𝑈(𝑑)𝑘 with the 𝐿2-sum of Frobenius metrics. If 𝐹 : 𝑀 → R is 𝐿-Lipschitz, then for any

𝑡 > 0:

Pr
(U1,...,U𝑘)∈𝑀

[|𝐹 (U1, ...,U𝑘)− E[𝐹 (U1, ...,U𝑘)]| ≥ 𝑡] ≤ 𝑒−𝑑𝑡
2/12𝐿2

,

where U1, ...,U𝑘 are independent unitary matrices drawn from the Haar measure.

93

Part I

Learning Rich Function Classes

94

Chapter 2

Low-Rank Polynomials

2.1 Introduction

Consider the classical polynomial regression problem in learning and statistics. In its most

basic form, we receive samples of the form (𝑥, 𝑦) with 𝑥 ∈ R𝑛 coming from some distribution

and 𝑦 is 𝑃 (𝑥) for a degree at most 𝑑 polynomial in 𝑥. Our goal is to learn the polynomial

𝑃 . Here learning could either mean learning the coefficients of 𝑃 or even finding some other

function that gets small prediction error (as in find 𝑄 with 𝐸[(𝑄(𝑥)− 𝑃 (𝑥))2]≪ 𝑉 𝑎𝑟(𝑦)).

Polynomial regression of course is one of the most basic primitives in statistics and

machine learning especially in the more general non-realizable case. For example, it is crucial

in many kernalization applications, and it gives the best known PAC learning algorithms for

various central complexity classes such as constant-depth circuits [LMN93], intersection of

halfspaces [KOS04], DNFs [KS04], convex sets [KOS08, Vem10a], the last of which even

exploits intrinsic dimension as we do but for a different problem.

The basic bound for polynomial regression is that one can achieve good error with sample

complexity and run-time that are 𝑂(𝑛𝑑). This dependence is also necessary (the space of

degree 𝑑 polynomials is of dimension ≈ 𝑛𝑑) even when 𝑦 = 𝑃 (𝑥). But often, such high

complexity either in run-time or sample requirements is not feasible for many applications.

This begs the question: can we formulate natural and useful scenarios where one can beat

𝑛𝑑 complexity? One such example is the work of [APVZ14] who study sparse polynomials

and achieve complexity that is 𝑓(𝑑)poly(𝑛, 𝑠) where 𝑠 is sparsity (in a suitable basis).

95

Motivated by the rich body of work on phase retrieval (see, e.g., [CSV13,CLS15,CEHV15,

NJS13] and references therein), work on multi-index models in learning (see Section 2.1.2

below) and the above broad question, we study the question of learning polynomials that

depend on few relevant dimensions. We call such polynomials low-rank polynomials. We

begin by restating their definition, as introduced in Definition 1.2.3, in slightly different

notation:

Definition 2.1.1. A degree 𝑑 polynomial 𝑃 : R𝑛 → R is of rank 𝑟 if there exists a degree 𝑑

polynomial 𝑝 : R𝑟 → R and vectors 𝑢*1, . . . , 𝑢*𝑟 ∈ R𝑛 such that

𝑃 (𝑥) = 𝑝(⟨𝑢*1, 𝑥⟩, ⟨𝑢*2, 𝑥⟩, . . . , ⟨𝑢*𝑟, 𝑥⟩).

We will refer to 𝑝 as the link polynomial and 𝑈* , span(𝑢*1, . . . , 𝑢
*
𝑟) as the hidden subspace.

In other words, even though the ambient dimension of the polynomial 𝑃 is 𝑛, its intrinsic

dimension is only 𝑟. If we knew the subspace spanned by 𝑢*1, . . . , 𝑢
*
𝑟, then we could learn

𝑃 with sample-complexity that does not depend on 𝑛 at all and run-time that is linear in

𝑛 (and not 𝑛𝑑). Here, there are many natural notions of learning 𝑃 one could consider.

Arguably the two most important goals are 1) to recover the hidden subspace 𝑈* spanned

by 𝑢*1, . . . , 𝑢*𝑟, and 2) to find a polynomial 𝑞 that is close to 𝑃 .

Concretely, we are given samples (𝑥, 𝑦) where 𝑦 = 𝑃 (𝑥) and 𝑃 is a low-rank polynomial.

For most natural distributions 𝑦, one can show it is information-theoretically possible to

learn 𝑃 with sample-complexity that is only 𝑂𝑑,𝑟(𝑛). That is, the dependence on the ambient

dimension is only linear. Can we achieve this goal efficiently? Henceforth, by efficient we

mean that the sample-complexity and run-time are at most some fixed polynomial in 𝑛 that

is of the form 𝑂(𝑓(𝑟, 𝑑)𝑛𝑐) for universal constant 𝑐.

As desirable as the above goal is, it might be too good to be true for general distributions.

For example, as mentioned in Section 1.2.1, if 𝑥 is uniform on the hypercube {1,−1}𝑛, then

the above question can encode the problem of learning 𝑘-juntas. There, we are given samples

(𝑥, 𝑓(𝑥)) where 𝑥 ∈𝑢 {±1}𝑛 and 𝑓 is a function of at most 𝑘 variables, and the goal is to

recover the indices of the relevant variables. Despite much attention, the best algorithms

run in time 𝑛Ω(𝑘), and achieving 𝑓(𝑘)poly(𝑛) sample complexity is an outstanding challenge

96

conjectured to be computationally hard [MOS03]. The connection to rank is that any 𝑘-junta

is a polynomial of rank and degree at most 𝑘.

Nevertheless, it makes sense to ask the question for other natural distributions. The most

basic question in this vein (as we will further motivate later) is the case when 𝑥 is Gaussian:

Q1. Given samples (𝑥, 𝑦 = 𝑃 (𝑥)) where 𝑥 ∼ 𝒩 (0, Id𝑛), and 𝑃 is an unknown degree-𝑑,

rank-𝑟 polynomial, can one approximately recover the subspace defining 𝑃 efficiently? Can

we efficiently approximate 𝑃? Further, what is the dependence on the error 𝜀?

Note that while we ask the question for isotropic Gaussian covariates, our guarantees imme-

diately carry over to general Gaussians, because the space of low-rank polynomials is affine

invariant. Before stating our results, we first briefly discuss different ways of looking at the

above question.

Learning Multi-Index Models While we motivated the above problem from the context

of polynomial regression, an equally valid way to introduce it is from the perspective of

learning multi-index models in Gaussian space.

Recall from Definition 1.2.2 that here, we are given samples from a distribution (𝑥, 𝑦)

where 𝑥 ∼ 𝒩 (0, Id𝑛) and

𝑦 = 𝑔(⟨𝑢*1, 𝑥⟩, ⟨𝑢*2, 𝑥⟩, . . . , ⟨𝑢*𝑟, 𝑥⟩),

where 𝑔 : R𝑟 → R is some unknown link function and 𝑢*1, 𝑢*2, . . . , 𝑢*𝑟 are unknown orthonormal

vectors, and the goal is to learn the subspace 𝑈* spanned by 𝑢*1, . . . , 𝑢*𝑟.

The main question we study is the case where the unknown link function 𝑔 is a low-

degree polynomial. Most relevant to the present work is the recent work of [DH18] which we

discuss next. There is a tremendous amount of work on learning multi-index models, and

we refer to [DH18] for a detailed overview of previous work. [DH18] address the case where

𝑔 is smooth in a Lipschitz sense quantified by a parameter 𝑅. They show:

1. For single-index models (i.e. when 𝑟 = 1): an algorithm that takes �̃�(𝑛𝑂(𝑅2)) + 𝑛/𝜀2)

samples and computes a direction 𝑢 that is 𝜀-close to the hidden direction.

2. For multi-index models : an algorithm that takes �̃�(𝑛𝑂(𝑟𝑅2)) + 𝑛/𝜀2) samples and com-

97

putes a direction 𝑢 that has at least 1 − 𝜀 of its ℓ2-mass in the span of the unknown

𝑢*1, 𝑢
*
2, . . . , 𝑢

*
𝑟.

Firstly, note that while most works on learning multi-index models assume some sort of

Lipschitz-smoothness of the link function, polynomials are a natural class of link functions

that do not satisfy such smoothness. More importanty, unlike existing works on multi-index

models, our main goal is to achieve near-linear sample complexity, run-time scaling with 𝑛𝑐

for 𝑐 independent of 𝑟, 𝑑, and polylogarithmic dependence on the error 𝜀.

Generalizing Phase Retrieval Further impetus for the above problem comes from the

vast literature on phase retrieval. Here, one is given samples of the form (𝑥, ⟨𝑤, 𝑥⟩2) where

𝑥 is typically Gaussian for most provable guarantees [CSV13,CLS15,CEHV15,NJS13], and

the goal is to learn 𝑤. Besides being natural by itself, the problem is extremely important in

practice: as is explained in the references above, in certain physical devices one only observes

the amplitudes of linear measurements (corresponding to ⟨𝑤, 𝑥⟩2) and not the phase. In this

setting, the signal and the inputs are taken to be complex but the question is often studied

over the reals as well.

Note that the low-rank polynomial in question here is rank 1 and degree 2; moreover the

link polynomial 𝑝(𝑧) = 𝑧2 is even known a priori. In this sense, the problem we consider in

this chapter is a substantial generalization, the study of which could potentially lead to new

insights for phase retrieval, especially over more general covariate distributions.

Connections to Tensor Decompositions Our work also broadly fits in the category of

tensor decompositions. A 𝑘-ary tensor in 𝑛-dimensions is a multi-dimensional array 𝑇 ∈ R[𝑛]𝑘 .

More relevant to the present work, one can also view a tensor 𝑇 as a multi-linear map

from 𝑇 : (R𝑛)𝑘 → R as 𝑇 (𝑥1, 𝑥2, . . . , 𝑥𝑘) =
∑︀

1≤𝑖1≤𝑖2≤···≤𝑖𝑘≤𝑛 𝑇 [𝑖1, 𝑖2, . . . , 𝑖𝑘]𝑥
1
𝑖1
𝑥2𝑖2 . . . 𝑥

𝑘
𝑖𝑘

. For

tensors, the term “rank” has a different meaning: a rank 1 tensor is a tensor of the form

𝑣1 ⊗ · · · ⊗ 𝑣𝑘, and in general, the rank of a tensor 𝑇 is the least number of rank one tensors

whose sum is 𝑇 .

The basic problem in tensor decomposition is to find a low-rank decomposition of a given

tensor. Tensor decomposition algorithms have received a lot of attention recently [AGJ14,

98

AGJ15, GM15, HSS15, HSSS16, SS17, MSS16] with various works studying many different

aspects. The connection to our polynomial learning problem comes from the fact that a

degree 𝑑 polynomial can be viewed as a 𝑑-ary tensor. Moreover, if a polynomial has rank 𝑟,

then the corresponding 𝑑-ary tensor has rank roughly 𝑂(𝑟𝑑).

However, our goals and setting are quite different from those studied in the literature.

For one, we are not given access to the tensor directly but only implicitly in the form of

evaluations of the symmetric multi-linear form of the tensor on random inputs. Secondly,

the central goal for us is to exploit the implicit representation to run in time that is much less

than the time to even store the corresponding 𝑑-ary tensor. As far as we can tell, existing

methods for tensor decompositions do not have these properties, at least provably. It is an

intriguing question to find further scenarios where one could find tensor decompositions with

much better run-time, for instance for constant-rank tensors, when the tensor has a succinct

implicit representation.

2.1.1 Main Result

Our main result is that we can indeed efficiently learn low-rank polynomials in Gaussian

space. To the best of our knowledge, no such results were known even for the rank-1 case.

Before stating our result formally, we have to introduce a definition to deal with degeneracy

in the notion of low-rank.

To understand the issue, consider the example where the link polynomial 𝑝(𝑧1, 𝑧2) =

𝑧1 + 𝑧2. Then, if we look at 𝑃 (𝑥) = 𝑝(⟨𝑤*
1, 𝑥⟩, ⟨𝑤*

2, 𝑥⟩), even though the polynomial is

represented as a rank two polynomial, it is really only of rank one and we cannot hope to

recover the span of 𝑤*
1, 𝑤

*
2 but only the span of 𝑤*

1 + 𝑤*
2. The following is necessary to

overcome such non-identifiability issues:

Definition 2.1.2. (Informal; see Definition 2.3.1) A polynomial 𝑃 is 𝛼-non-degenerate rank

𝑟 if 𝑃 is of rank 𝑟 and for any (𝑟 − 1)-dimensional subspace 𝐻, the conditional variance of

𝑃 (𝑥) given the projection of 𝑥 onto 𝐻 is at least 𝛼 · 𝑉 𝑎𝑟(𝑝).

Intuitively, there should not be a (𝑟 − 1)-dimensional space that captures all of the

variance of 𝑃 . We give an equivalent analytic definition in Section 2.3. Note that any rank-1

99

polynomial satisfies the condition with 𝛼 = 1.

Theorem 2.1.3. There exists a universal constant 𝑐0 and for all 𝑟, 𝑑, 𝛼, there exists 𝐶0(𝑟, 𝑑, 𝛼)

such that the following holds. For all 𝛿 > 0 and 𝜀 ∈ (0, 1), there is an efficient algorithm that

takes 𝑁 = 𝐶0(𝑟, 𝑑, 𝛼)(log(𝑛/𝛿))
𝑐0𝑑 · 𝑛 log2(1/𝜀) samples (𝑥, 𝑃 (𝑥)), where 𝑥 ∼ 𝒩 (0, Id𝑛) and

𝑃 is an unknown 𝛼-non-degenerate rank 𝑟, degree-𝑑 polynomial defined by hidden subspace

𝑈*, and outputs

1. Orthonormal 𝑢1, . . . , 𝑢𝑟 ∈ S𝑛−1 such that 𝑑𝑃 (span(𝑢1, . . . , 𝑢𝑟), 𝑈*) ≤ 𝜀

2. Degree 𝑑, 𝑟-variate polynomial 𝑔 such that E[(𝑦− 𝑔(⟨𝑢1, 𝑥⟩, . . . , ⟨𝑢𝑟, 𝑥⟩)2] ≤ 𝜀 · 𝑉 𝑎𝑟(𝑦).

The run-time of the algorithm is at most ̃︀𝑂(𝑟𝑐0𝑑𝑁 · 𝑛).
This will follow from Theorem 2.2.2 and Theorem 2.5.1 later in the paper. Here, 𝑑𝑃 (𝑈,𝑈*)

denotes the Procrustes distance which is one of the standard measures for quantifying dis-

tances between subspaces. See Definition 1.3.2 for the exact definition.

Note that the run-time of the algorithm is essentially 𝑂𝑟,𝑑(𝑛
2(log 𝑛)𝑂(𝑑)) — a fixed poly-

nomial in 𝑛 as desired. The sample complexity is also essentially linear in the ambient

dimension 𝑛 and poly-logarithmic in 1/𝜀. No such result was known even for the rank 1

case.

Remark 2.1.4. A word about the constant 𝐶0(𝑟, 𝑑, 𝛼) in the theorem. Our proof involves a

compactness argument and as a result does not give an explicit upper bound on this quantity.

Bounding this comes down to an extremal problem for low-degree polynomials in 𝑟 variables.

For instance for 𝑟 = 1, 𝐶0(1, 𝑑, 1) is essentially the inverse of

sup
𝜏

inf
ℎ
(E[1(|𝑝(𝑔)| > 𝜏)(𝑔2 − 1)]),

where 𝑔 ∼ 𝒩 (0, 1) and the infimum is over degree 𝑑 polynomials of variance 1. We believe that

this quantity is at least 2−𝐶𝑑2 (as achieved by a suitably scaled degree 𝑑 Chebyshev polynomial).

In general, our arguments can potentially yield a bound of 𝐶(𝑟, 𝑑, 𝛼) ≈ 2𝑂(𝑟𝑑)2)/𝛼Θ(1).

Also, we study the noiseless case where 𝑌 = 𝑃 (𝑋). It is possible to modify the first

part of our argument (Theorem 2.2.2) to get a version tolerant to some noise in 𝑌 , but we

do not focus on this here. In any case, one of our main technical emphases is on getting

100

run-time and sample complexity scaling with poly(log(1/𝜀)), which would not be possible in

the presence of noise.

2.1.2 Related Work

Filtering Data by Thresholding Our algorithm for obtaining a warm start (see Theo-

rem 2.2.2) relies on filtering the data via some form of thresholding. This general paradigm

has been used in other, unrelated contexts like robustness, see [SS19,SS18,DKK+19a,Li18b,

DKK+19b,DKK+17] and the references therein, though typically the points which are bigger

than some threshold are removed, whereas our algorithm, FilteredPCAv1, is an intriguing

case where the opposite kind of filter is applied.

Riemannian Optimization It is beyond the scope of this paper to reliably survey the

vast literature on Riemannian optimization methods, and we refer the reader to the stan-

dard references on the subject [Udr94,AMS09] which mostly provide asymptotic convergence

guarantees, as well as the thesis of Boumal [Bou14] and the references therein. Some notable

lines of work include optimization with respect to orthogonality constraints [EAS98], ap-

plications to low-rank matrix and tensor completion [MMBS13,Van13, IAVHDL11,KSV14],

dictionary learning [SQW16], independent component analysis [SJG09], canonical correla-

tion analysis [LWW15], matrix equation solving [VV10], complexity theory and operator

scaling [AZGL+18], subspace tracking [BNR10,ZB16], and building a theory of geodesically

convex optimization [ZS16,HS15,ZRS16].

We remark that the update rule we use in our boosting algorithm is very similar to

that of [BNR10,ZB16], as their and our work are based on geodesics on the Grassmannian

manifold. That said, they solve a very different problem from ours, and the analysis is quite

different.

Single/Multi-Index Models and Other Link Functions As mentioned above, the

problem of learning low-rank polynomial is a special case of that of learning a multi-index

model, for which there is also a large literature which we cannot hope to cover here. In

addition to [DH18] other works include those based on a connection to Stein’s lemma [PVY17,

101

NWL16,Bri12,Li92,PV16,YBL17], sliced inverse regression [BB+18] as introduced in [Li91],

and gradient-based estimators [HJS01,HJP+01,DJS08]. Other works consider specific link

functions or families of link functions:

• 𝑧 ↦→ sgn(𝑧), i.e. one-bit compressed sensing [PV13,ALPV12,GNJN13].

• 𝑧 ↦→ |𝑧|2, i.e. phase retrieval [CSV13,CLS15,CEHV15,NJS13].

• 𝑧 ↦→ 𝐹 (𝑧) where 𝐹 : R𝑟 → R is computable by a constant-layer neural network

[GLM17,BJW18,JSA15,GKLW18,GKKT17,GK19].

• 𝑧 ↦→ 1[𝜀𝑖 · sgn(𝑧𝑖) ∀ 𝑖 ∈ [𝑟]] for signs 𝜀 ∈ {±1}𝑟, i.e. intersections of halfspaces

[Vem10b,KLT09,KOS04,KS08,Vem10a,DKS18a].

• 𝑧 ↦→ 𝐹 (𝑧) for some function 𝐹 : R𝑟 → {0, 1}, i.e. subspace juntas [VX11,DMN19].

That said, none of the above seem to imply the guarantees for learning low-rank polyno-

mials that we want, namely a run-time that is a fixed polynomial in 𝑛 and poly-logarithmic

in 1/𝜀.

2.2 Outline of Algorithm and Analysis

A natural first step is to try to adapt the various techniques from the phase retrieval literature

or existing works on multi-index models to the problem. But this seems challenging even for

rank 1. For example, the phase retrieval problem corresponds to the polynomial 𝑝(𝑧) = 𝑧2,

which is rather special (see below), and if we don’t even know the polynomial, then there are

further difficulties. The works on multi-index models such as [DH18] also seem to be difficult

to apply off the shelf. For one, they require smoothness of the link function. While it may be

possible to circumvent the strict smoothness condition, it seems hard to find useful notions

where the smoothness would not grow with the degree, leading to inefficient algorithms.

We present a different line of attack, inspired by ideas of [DH18], [CLS15], [BNR10]. Let

𝑃 (𝑥) = 𝑝(⟨𝑢*1, 𝑥⟩, ⟨𝑢*2, 𝑥⟩, . . . , ⟨𝑢*𝑟, 𝑥⟩) be the unknown 𝛼-non-degenerate rank 𝑟 polynomial.

For the remainder of the paper, let 𝒟 denote the distribution (𝑥, 𝑦) where 𝑥 ∼ 𝒩 (0, Id𝑛) and

102

𝑦 = 𝑃 (𝑥). Let 𝑈* = span(𝑢*1, . . . , 𝑢
*
𝑟) be the hidden subspace. Without loss of generality

assume V(𝑦) = 1.1

Our approach has two modular steps:

1. Warm start: Obtain a “good” approximation to the true subspace 𝑈* by a modified

PCA.

2. Boost accuracy: Use the subspace computed above as a starting point to boost the

accuracy by Riemannian stochastic gradient descent.

We next explain the steps at a high-level. The methods to carry out each of the steps

could potentially be useful elsewhere especially for problems dealing with subspace recovery.

2.2.1 Getting a Warm Start

The first step is to find a good subspace 𝑉 of dimension 𝑟 that 𝜀-close to 𝑈* (i.e., 𝑑𝑃 (𝑉, 𝑈*) ≤

𝜀) in 𝑂𝑟,𝑑(𝑛/𝜀
2) samples. Note that identifying the subspace 𝑈* is the best we can do as the

individual directions are not uniquely identifiable.

Rank-One Case: To motivate the algorithm, let us first focus on the rank 1 or single-

index case. Here 𝑃 (𝑥) = 𝑝(⟨𝑢*, 𝑥⟩) where 𝑢* ∈ S𝑛−1 and our goal is to find some 𝑢 ∈ S𝑛−1

close to 𝑢*.

To do so, we propose a modified PCA by estimating a matrix of the form 𝑀𝜑 ≡

𝐸[𝜑(𝑦)𝑥𝑥𝑇] − 𝐸[𝜑(𝑦)]𝐸[𝑥𝑥𝑇] where 𝜑 : R → R is a suitable “filtering” function. The in-

tuition behind looking at 𝑀𝜑 is that the matrix has kernel of dimension 𝑛−1 corresponding

to directions orthogonal to 𝑢*. Thus, the non-zero eigenvalue of 𝑀𝜑, if any, could help us

approximate or even identify 𝑢*.

But what should the function 𝜑 be? For example, for phase retrieval where 𝑃 (𝑥) =

⟨𝑢*, 𝑥⟩2, taking 𝜑(𝑧) = 𝑧2 suffices. The key issue is that this choice of 𝜑 does not work for

general link polynomials. For example, if the link polynomial 𝑝 is 𝑝(𝑧) = 𝑧2 − 3, the matrix

𝑀𝜑 for this particular choice of 𝜑 is identically zero.
1We can do so as our algorithms only need a good lower and upper bound on the variance 𝑦 which can

be obtained easily.

103

We propose overcoming this by instead applying a simple thresholding filter for 𝜑. Specif-

ically, for a parameter 𝜏 > 0 to be chosen later, let

𝑀 𝜏 , E[1(|𝑦| > 𝜏)(𝑥𝑥𝑇 − 𝐼)].

We show that for all 𝑑 there exists 𝜏 ≡ 𝜏(𝑑) that only depends on 𝑑 such that 𝑀 𝜏 is a

non-zero matrix. Note that this by itself is not enough for our purposes: if the least non-zero

eigenvalue of 𝑀 𝜏 were extremely small, then this would affect our sample complexity in

estimating 𝑀 𝜏 . We show there exists 𝜏 such that 𝑀 𝜏 has an eigenvalue with magnitude at

least 𝜆𝑑 > 0 for some constant depending on 𝑑 only. As argued before, the corresponding

eigenvector is 𝑢*. The intuition behind the proof is that conditioning on |𝑦| > 𝜏 makes 𝑥

more likely to be large in the relevant direction.

The above structural statement is enough to get a warm start for 𝑢* by looking at the

empirical approximation of 𝑀 𝜏 : for 𝑁 samples, let

̂︁𝑀 𝜏 ,
1

𝑁

𝑁∑︁
𝑖=1

1(|𝑦𝑖| > 𝜏)(𝑥𝑖𝑥
𝑇
𝑖 − 𝐼).

We can now use standard matrix concentration inequalities to argue that for 𝑁 =

𝑂𝑑(𝑛/𝜀
2) samples, the top eigenvector �̂� of ̂︁𝑀 𝜏 satisfies ‖𝑢* − �̂�‖ ≤ 𝜀.

Remark 2.2.1 (Relation to Sliced Inverse Regression). The trick of conditioning only on

(𝑥, 𝑦) for which |𝑦| is sufficiently large is reminiscent of the technique of slicing originally

introduced by [Li91] in the context of learning multi-index models. The high-level idea of

slicing is that for any fixed value of 𝑦, the conditional law of 𝑥|𝐹 (𝑥) = 𝑦 is likely to be

non-Gaussian in most directions 𝑣 ∈ 𝑉 , so in particular, E[𝑥𝑥⊤ − Id |𝐹 (𝑥) = 𝑦] should be

nonzero, and its singular vectors will lie in 𝑉 . This can be thought of as filtered PCA with

the choice of function 𝜓(𝑧) = 1[𝑧 = 𝑦]. The first issue with using such an approach to get

an actual learning algorithm is that Pr𝑥[𝐹 (𝑥) = 𝑦] = 0 for any 𝑦, and the workaround in

non-asymptotic analyses of sliced inverse regression [BB+18] is to estimate something like

E𝑦[E[𝑥𝑥⊤−Id |𝐹 (𝑥) = 𝑦]] instead. While finite sample estimators for such objects are known,

the conditions under which this approach can provably recover the relevant subspace are quite

104

strong and not applicable to our setting.

Higher-Rank Case: Extending the above to higher ranks seems much more challenging.

A natural attempt would be to look at a matrix 𝑀 𝜏 as above for a suitable 𝜏 . It is once

again easy to argue that 𝑀 𝜏 has 𝑛 − 𝑟 vectors in its kernel corresponding to the vectors

orthogonal to 𝑈*. We would now like to say that for some suitable 𝜏 ≡ 𝜏(𝑟, 𝑑), the top 𝑟

eigenvalues of 𝑀 𝜏 are at least 𝜆𝑟,𝑑. If so, we can proceed as before to get an approximation

to 𝑈* (the non-zero eigenvectors are in 𝑈*). While we can currently show that there is at

least one such eigenvalue, we do not know if the matrix 𝑀 𝜏 has rank at least 𝑟 and it seems

considerably more challenging to prove. The difficulty is that unlike the rank 1 case, while

conditioning on |𝑦| > 𝜏 should intuitively bias 𝑥 to have large norm in the relevant directions,

it is not clear if it does so in every relevant direction.

Instead, we follow an iterative strategy where we identify one direction at a time in 𝑈*.

This is similar in spirit to the standard technique of computing the eigenvalues of a matrix

by first computing the top eigenvector, projecting it out, and then iterating.

Concretely, suppose we have identified orthonormal vectors 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣ℓ} for ℓ < 𝑟

that individually have most of their mass in 𝑈*. Let Π𝑉 ⊥ be the projection operator onto

the space orthogonal to 𝑣1, . . . , 𝑣ℓ. Then, to compute the next direction we look at the top

eigenvector of

𝑀 ℓ,𝜏 , Π𝑉 ⊥E[1(|𝑦| > 𝜏)1(|⟨𝑣𝑖, 𝑥⟩| ≤ 1, ∀𝑖 ≤ ℓ)(𝑥𝑥𝑇 − 𝐼)]Π𝑉 ⊥ .

As before, we argue that the top eigenvector of the above matrix will have most of its

mass in 𝑈* and this gives us our next vector 𝑣ℓ+1. While the sequence of matrices we look

at are a bit more complicated, standard random matrix concentration inequalities still allow

us to identify the new directions with sample complexity 𝑂𝑟,𝑑(𝑛).

In summary, we get the following:

Theorem 2.2.2. For all 𝑟, 𝑑, 𝛼, there exists 𝐶(𝑟, 𝑑, 𝛼) such that the following holds. For all

𝛿 > 0 and 𝜀 ∈ (0, 1), there is an efficient algorithm that takes 𝑁 = 𝐶(𝑟, 𝑑, 𝛼)𝑛 log(1/𝛿)/𝜀2

samples (𝑥, 𝑃 (𝑥)) for 𝑥 ∼ 𝒩 (0, Id𝑛) and unknown 𝑃 which is 𝛼-non-degenerate of rank 𝑟,

105

and outputs a subspace 𝑈 such that with probability at least 1 − 𝛿, 𝑑𝑃 (𝑈,𝑈*) < 𝜀. The

algorithm runs in time 𝑂(𝑟(𝑁𝑛2 + 𝑛3)).

2.2.2 Boosting via Geodesic-Based Riemannian Gradient Descent

The results from the previous section give us a way to find a subspace 𝑈 that is 𝜀-close to

the true subspace 𝑈* with sample complexity 𝑂𝑟,𝑑(𝑛/𝜀
2).

However, the dependence on 𝜀 above is problematic and quite far from what is achievable,

e.g., for the special case of phase retrieval. There, results starting with work of [CLS15] show

that one can get exact recovery of the unknown direction with sample complexity �̃�(𝑛); in

this case, while the sample complexity is �̃�(𝑛), the run-time to get within error 𝜀 scales

with log(1/𝜀)). In a similar vein, the result of [NJS13] shows that one can find a vector 𝑤

that is 𝜀-close to the unknown vector with sample-complexity �̃�(𝑛 log(1/𝜀)) and a similar

run-time. We address this issue next and give an algorithm that achieves error 𝜀 with sample-

complexity �̃�𝑟,𝑑(𝑛 log
2(1/𝜀)) and run-time �̃�𝑟,𝑑(𝑛

2 log2(1/𝜀)). In the proceeding discussion,

we will use some basic terminology from differential geometry in motivating our algorithm,

though we emphasize that the algorithm itself is stated solely in terms of matrices, and its

proof only involves, e.g., linear algebra and concentration of measure.

First, it is important to understand what fundamentally changes when going from phase

retrieval to the more general problem of learning an unknown, low-rank polynomial. At a

high level, there are two closely related challenges:

1. Unknown 𝑟-variate polynomial: Unlike in phase retrieval where we know that the

link polynomial is ℎ(𝑧) = 𝑧2 a priori, in our setting we are not given the coefficients

of the true polynomial. The natural workaround is to simply run gradient descent

jointly on the space of coefficients and the space of 𝑛 × 𝑟 matrices 𝑉 . As we will see

in Section 2.2.2 next, this poses novel difficulties even in the rank-1 case.

2. Identifiability only up to rotation: A more fundamental issue is the number of

inherent symmetries in the problem, which explodes as 𝑟 increases. Indeed, there is an

infinitely large orbit of parameters Θ* = (c*, 𝑉 *) which give rise to the same underlying

low-rank polynomial 𝑃 , parametrized by the group of all rotations of the underlying

106

subspace. Whereas for 𝑟 = 1 it is easy to quotient out most of the symmetries by simply

running projected gradient descent on the unit sphere, as we will see in Section 2.2.2, to

define the right quotient geometry we will need to run gradient descent on a manifold for

which the corresponding optimization landscape is far less straightforward. In addition,

as we will see in Section 2.2.2, these symmetries also pose problems for defining and

analyzing a suitable progress measure.

In light of 2), it will be good to give a name to the set of parameters Θ* = (c*, 𝑉 *) which

correspond to the underlying low-rank polynomial.

Definition 2.2.3. For a collection of coefficients c* of a degree-𝑑 𝑟-variate polynomial, and

a column-orthonormal matrix 𝑉 * ∈ R𝑛×𝑟, we say that the parameters Θ* = (c*, 𝑉 *) are

a realization of 𝒟 if the polynomial 𝑝*(𝑧) ,
∑︀

𝐼 𝑐
*
𝐼𝜑𝐼(𝑧) satisfies 𝑃 (𝑥) = 𝑝*(𝑉

*⊤𝑥) for all

𝑥 ∈ R𝑛, where {𝜑𝐼} are the (normalized) tensor-product Hermite polynomials of degree at

most 𝑑 over 𝑟 variables (see Section 2.3.3).

Not Knowing the Polynomial: A Toy Calculation

The issue of not knowing 𝑝 manifests even in the 𝑟 = 1 case. Below, we examine at a high

level where the calculations for analyzing gradient descent for phase retrieval break down for

us.

Let us try to imitate the approach of [CLS15]. Let Θ* = (c*, 𝑣*) be one of the two possible

realizations of𝒟 for which 𝑣* ∈ S𝑛−1, and suppose we already have a warm start of Θ = (c, 𝑣),

where the coefficients c and c* define the univariate degree-𝑑 polynomials 𝑝(𝑧) ,
∑︀𝑑

𝑖=1 𝑐𝑖𝜑𝑖(𝑧)

and 𝑝*(𝑧) ,
∑︀𝑑

𝑖=1 𝑐
*
𝑖𝜑𝑖(𝑧) respectively. Given samples (𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁) ∼ 𝒟, a natural

approach would be to analyze vanilla gradient descent over R𝑑+1 ×R𝑛 for the empirical risk

𝐿(Θ) ,
1

𝑁

𝑁∑︁
𝑖=1

(𝐹𝑥𝑖(Θ)− 𝑦𝑖)2 for 𝐹𝑥(Θ) , 𝑝(𝑉 ⊤𝑥).

To show that this converges linearly from a warm start, the first thing to show would be

that the negative gradient at Θ is correlated with the direction in which we would like

to move, a property that sometimes goes under the name local curvature. Noting that

107

1
2
∇𝐿(Θ) = 1

𝑁

∑︀𝑁
𝑖=1(𝐹𝑥𝑖(Θ) − 𝐹𝑥𝑖(Θ

*)) · ∇𝐹 (𝑥𝑖)(Θ), using the fact that we initialize at a

warm start in order to linearly approximate 𝐹𝑥(Θ) − 𝐹𝑥(Θ*) by ∇𝐹𝑥(Θ*) · ⟨Θ − Θ*⟩, and

explicitly computing the gradient of 𝐹𝑥 (see Proposition 2.5.3), one can check that

⟨
1

2
∇𝐿(Θ),Θ−Θ*

⟩
≈ 1

𝑁

𝑁∑︁
𝑖=1

⟨∇𝐹𝑥𝑖(Θ*),Θ−Θ*⟩2

=
1

𝑁

𝑁∑︁
𝑖=1

[︀
⟨𝑣 − 𝑣*, 𝑥𝑖⟩ · 𝑝′*(⟨𝑣*, 𝑥𝑖⟩) + (𝑝− 𝑝*)(⟨𝑣*, 𝑥𝑖⟩)

]︀2
.

The expectation of this quantity is

𝜇 , E𝑔
[︁
(⟨𝑣 − 𝑣*, 𝑔⟩ · 𝑝′*(⟨𝑣*, 𝑔⟩) + (𝑝− 𝑝*)(⟨𝑣*, 𝑔⟩))2

]︁
Write 𝑣−𝑣* = 𝛼·𝑣*+𝛽 ·𝑣⊥ for 𝑣⊥ ∈ S𝑛−1 orthogonal to 𝑣*, where 𝛼 = ⟨𝑣, 𝑣*⟩−1 ≈ −‖𝑣−𝑣*‖22.

By some elementary calculations which we omit here, one can show that

𝜇 = 𝛽2 · E[𝑝′*(𝑥)2] +
𝑑∑︁
ℓ=0

(︁
(𝛼ℓ+ 1) · 𝑐ℓ + 𝑎

√︀
(ℓ+ 1)(ℓ+ 2) · 𝑐ℓ+2 − 𝑐*ℓ

)︁2
. (2.1)

In the case of phase retrieval, 𝑝(𝑧) = 𝑝*(𝑧) = 𝑧2 =
√
2 +
√
2 · 𝜑2(𝑧), so c = c* = (

√
2, 0,
√
2)

and we simply get that

𝜇 = 12𝛼2 + 4𝛽2 ≥ 4‖𝑣 − 𝑣*‖22.

In other words, the correlation between the negative gradient and the residual direction 𝑣*−𝑣

in which we would like to go is positive and scales with the squared norm of the residual.

This simple calculation lies at the heart of the proof that vanilla gradient descent converges

linearly to 𝑣* from a warm start for phrase retrieval.

More generally, if c* = c, then the quantity in (2.1) will enjoy this positive scaling with

‖𝑣* − 𝑣‖22, and one can also show linear convergence of vanilla gradient descent. But it is

apparent that when c* ̸= c, 𝜇 can be arbitrarily close to zero, e.g. by taking 𝛽 to be much

smaller than 𝛼. So when c* ̸= c, we may get stuck at spurious infinitesimal-curvature points

of the optimization landscape and fail to make sufficient progress in a single step.

The basic underlying issue is simply that vanilla gradient steps can move us in unhelpful

108

directions, e.g. we might end up moving mostly in the direction of 𝑣 when we should be

moving in directions orthogonal to 𝑣. And whereas this evidently does not pose an issue

when c = c*, which corresponds to the case where we know the underlying polynomial and

only need to run gradient descent to learn the hidden direction, in the case where c ̸= c*

and we must run gradient descent jointly on 𝑣 and c, the usual analysis of vanilla gradient

descent fails.

Non-Identifiability: Which Space to Run SGD In?

The workaround for the issue posed in Section 2.2.2 is clear at least in the rank-1 case: to

avoid moving in the wasteful directions which are orthogonal to the current iterate 𝑣, simply

compute the vanilla gradient and project to the orthogonal complement of 𝑣. We would also

like to ensure that our iterates themselves are unit vectors like 𝑣*, so the following two-step

update rule would suffice: 1) walk against the projected gradient and then 2) project back

to S𝑛−1. In fact, one can show that this algorithm actually achieves linear convergence for

learning arbitrary unknown rank-1 polynomials.

It turns out there is a principled way to extend this approach to higher rank. Indeed, the

above mentioned projected gradient scheme is nothing more than (retraction-based) gradient

descent on the Riemannian manifold S𝑛−1: the orthogonal complement of 𝑣 is precisely the

tangent space of S𝑛−1 at 𝑣, and the projection back to S𝑛−1 is a special instance of a retraction,

roughly speaking a continuous mapping from the tangent spaces of a manifold back onto the

manifold itself. We do not attempt to define these notions formally, referring the reader to,

e.g. [AMS09].

The rank-𝑟 analogue of S𝑛−1 is the Grassmannian G(𝑛, 𝑟) of 𝑟-dimensional subspaces

of R𝑛. However, while various retraction operations, e.g. via QR decomposition, can be

constructed, retraction-based Riemannian optimization is somewhat more difficult to analyze

in our setting. Instead, we appeal to an alternative formulation of Riemannian gradient

descent via geodesics.

Roughly, geodesics are acceleration-free curves on a manifold determined solely by their

initial position on the manifold, initial velocity, and length. Gradient descent on a Rieman-

nian manifold ℳ via geodesics is then very simple to formulate: at an iterate 𝑝 ∈ ℳ, 1)

109

compute the gradient ∇ after projecting to the tangent space at 𝑝, 2) walk along the geodesic

that starts at 𝑝 and has initial velocity ∇ and length 𝜂, where 𝜂 is the learning rate.

We now see what this would yield in our setting. Let Θ = (c, 𝑉) be an iterate. For now,

we will keep c fixed and describe how to update 𝑉 , regarded as a column-orthonormal 𝑛× 𝑟

matrix of basis vectors for the subspace 𝑉 , by following the appropriate geodesic on G(𝑛, 𝑟).

Given a single sample (𝑥, 𝑦), define the single-sample empirical risk 𝐿c
𝑥(𝑉) = (𝐹𝑥(Θ) − 𝑦)2.

Let∇𝐿c
𝑥(𝑉) ∈ R𝑛×𝑟 be the vanilla gradient, where 𝐿c

𝑥(𝑉) , 𝐿𝑥(Θ). It turns out its projection

to the tangent space at 𝑉 is simply ∇ , Π⊥
𝑉 · ∇𝐿c

𝑥(𝑉) ∈ R𝑛×𝑟, where Π⊥
𝑉 denotes projection

to the orthogonal complement of 𝑉 (note that this is a natural generalization of the tangent

spaces for S𝑛−1).

The geodesic Γ with initial point 𝑉 and velocity ∇, and length 𝜂 has a simple closed

form in terms of the SVD of ∇, which is made even simpler by the fact that in our setting,

∇ turns out to be rank-1. We defer the details of the exact update, which can be computed

in time 𝑂(𝑛), to Section 2.5.

Tracking Progress in both c and V

In the previous section we sketched our approach for updating our estimate 𝑉 for the sub-

space given an estimate c for the coefficients of the polynomial, but did not explain how to

update c. As c just lives in Euclidean space, we can simply update c to some c′ via vanilla

gradient descent on 𝐿𝑉 , where 𝐿𝑉 (c) , 𝐿(Θ), and this is the approach we take.

To analyze such an approach, one would want to show that each step (c, 𝑉) ↦→ (c′, 𝑉 ′)

contracts some suitably defined progress measure. Indeed, the natural progress measure one

could try analyzing is

inf
(c*,𝑉 *) realizing 𝒟

‖c− c*‖22 + ‖𝑉 − 𝑉 *‖2𝐹 . (2.2)

The key difficulty here is that the minimizing realization (c*, 𝑉 *) could change with each

new iterate, and tracking how this changes is tricky as there is no clean non-variational proxy

for (2.2).

Our workaround is to have our boosting algorithm alternate between two phases. For an

iterate 𝑉 ∈ R𝑛×𝑟, we run the following algorithm, GeoSGD, which alternates between two

110

phases: 1) recomputing a good c, and 2) updating 𝑉 using that c. An informal specification

of this algorithm is given in Algorithm 3.

Algorithm 3: GeoSGD (informal)
Input: Sample access to 𝒟, warm start 𝑉 (0) ∈ R𝑛×𝑑, target error 𝜀, failure

probability 𝛿
Output: Estimate (c(𝑇), 𝑉 (𝑇)) which is 𝜀-close to a realization of 𝒟

1 for 0 ≤ 𝑡 < 𝑇 do
2 Run RealignPolynomial using 𝑉 (𝑡). That is, draw samples and run vanilla

gradient descent with respect to empirical risk 𝐿𝑉 (𝑡) over those samples to
produce c(𝑡) which approximates the “best” choice of c given fixed 𝑉 (𝑡).

3 Run SubspaceDescent initialized to 𝑉 (𝑡) and using c(𝑡). That is, draw samples
and, starting from 𝑉 (𝑡), run a small step of geodesic gradient descent with
respect to empirical risk 𝐿c

𝑥 for each of those samples 𝑥. Call the result 𝑉 (𝑡+1)

4 return 𝑉 (𝑇).

We will defer an exact specification of GeoSGD and the subroutines RealignPolyno-

mial and SubspaceDescent until Section 2.5.

To analyze this scheme, rather than track progress in (2.2) we can simply track progress

in 𝑑𝑃 (𝑉, 𝑉 *) = inf𝑉 *‖𝑉 −𝑉 *‖2𝐹 , where 𝑉 * ranges over 𝑛×𝑟 matrices whose columns form an

orthonormal basis for the true subspace. This progress measure is, up to constants, simply

the Procrustes distance between our current subspace 𝑉 and the true subspace 𝑉 *, and can

be approximated by the chordal distance which has a simple closed-form expression amenable

to analysis.

Roughly, we will show the following:

Theorem 2.2.4 (Informal, see Theorem 2.6.1). If 𝑉 is sufficiently close to the true subspace

in Procustes distance, then running RealignPolynomial using 𝑉 will yield c such that

for the realization (c*, 𝑉 *) of 𝒟 where 𝑑𝑃 (𝑉, 𝑉 *) = ‖𝑉 − 𝑉 *‖𝐹 , ‖c− c*‖2 ≈ 𝑑𝑃 (𝑉 − 𝑉 *).

Theorem 2.2.5 (Informal, see Theorem 2.7.1). If 𝑉 is sufficiently close to the true subspace

in Procustes distance, If 𝑉 and c are such that ‖c − c*‖2 ≈ 𝑑𝑃 (𝑉 − 𝑉 *)for the realization

(c*, 𝑉 *) of 𝒟 where where 𝑑𝑃 (𝑉, 𝑉 *) = ‖𝑉 − 𝑉 *‖𝐹 , then running SubspaceDescent ini-

tialized to 𝑉 and using c will yield 𝑉 ′ so that the progress measure 𝑑𝑃 (𝑉, 𝑉 *) contracts by a

factor of 1− �̃�𝑟,𝑑(1/𝑛).

111

Having defined the “right” gradient descent subroutines, the proofs of Theorems 2.2.4 and

2.2.5 will be based on showing the same kind of estimates alluded to in Section 2.2.2. That is,

for instance we must show that the steps in both subroutines have good correlation with the

direction in which we want to go. Showing this holds with high probability will then entail

exhibiting the appropriate second moment bounds. In the case of Theorem 2.2.4, we can then

invoke standard hypercontractivity-based tail bounds to show concentration. In the case of

Theorem 2.2.5, concentration will be more delicate as each small step of SubspaceDescent

will be a geodesic gradient step with respect to a single-sample empirical risk 𝐿c
𝑥. For the

analysis to be doable, it is crucial that these risks be single-sample so that the geodesic steps

are rank-one updates. But then, to show concentration over a sequence of small geodesic

steps, we must invoke non-standard martingale concentration inequalities, see Section 2.3.2.

Intuitively, if we take the sizes of these small steps to scale with 𝑂(1/𝑇), the corresponding

martingale does not move away from its starting point by too much, and the sum of the

martingale differences ends up behaving more or less like a sum of iid random variables (see

the beginning of Section 2.7.2). We refer the reader to Sections 2.6 and 2.7 for the complete

proofs of Theorems 2.2.4 and 2.2.5 respectively.

Roadmap In Section 2.3 we introduce notation and miscellaneous technical facts that we

will use in our proofs. In Section 2.4, we give our algorithm FilteredPCAv1 for obtaining

a warm start. In Section 2.5, we give the formal specification for our boosting algorithm

GeoSGD, and in Sections 2.6 and 2.7 we prove guarantees for its key subroutines. We

complete the proof of correctness for GeoSGD in Section 2.8. In Appendix 2.9 we give the

martingale concentration inequalities we will need, and in Appendix 2.10 and Appendix 2.11

we complete proofs deferred from the body of the paper.

2.3 Technical Preliminaries

Notation Throughout this chapter of the thesis, 𝑛 will denote the ambient dimension, 𝑟

the rank of the polynomial, and 𝑑 the degree.

For polynomial 𝑝 : R𝑟 → R, define V[𝑝] = E[(𝑝 − E[𝑝])2]. Given indices j , (𝑗1, ..., 𝑗ℓ) ∈

112

[𝑟]ℓ, and 𝑧 ∈ R𝑟 we will use the shorthand

Dj 𝑝(𝑧) ,
𝜕

𝜕𝑧𝑗1 · · · 𝜕𝑧𝑗ℓ
𝑝(𝑧). (2.3)

Similarly, for 𝐹 : R𝑛×𝑟 → R, indices i ∈ [𝑛]ℓ and j ∈ [𝑟]ℓ, and 𝑉 ∈ R𝑛×𝑟, we will use the

shorthand

Di,j 𝐹 (𝑉) ,
𝜕

𝜕𝑉𝑖1,𝑗1 · · · 𝜕𝑉𝑖ℓ,𝑗ℓ
𝐹 (𝑉). (2.4)

2.3.1 Non-degeneracy

Recall the notion of 𝛼-non-degenrate rank 𝑟 polynomials introduced in Definition 2.1.2.

While that notion is intuitive, it is less amenable to analysis. It turns out that the notion

is essentially equivalent (up to scaling 𝛼 by 𝑑) to the following and we will use this going

forward.

Definition 2.3.1. A polynomial ℎ : R𝑟 → R is 𝛼 non-degenerate if 𝑀 = E𝑔∼𝒩 (0,Id𝑟)
[︀
∇ℎ(𝑔)∇ℎ(𝑔)⊤

]︀
satisfies 𝑀 ⪰ 𝛼 · ‖𝑀‖2 Id𝑟.

We say a rank 𝑟 polynomial 𝑃 : R𝑛 → R is 𝛼 non-degenerate if 𝑃 is non-degenerate in the

𝑟-dimensional space corresponding to the relevant directions. That is, there exist orthonormal

vectors 𝑢1, . . . , 𝑢𝑟 such that 𝑃 (𝑥) = ℎ(⟨𝑢1, 𝑥⟩, . . . , ⟨𝑢𝑟, 𝑥⟩) and ℎ is 𝛼 non-degenerate.

While it is not clear immediately from the definition, the notion above does not depend on

the specific basis chosen. Henceforth, fix constant 𝜈cond > 0. we will let 𝒫𝜈cond𝑛,𝑟,𝑑 denote the set

of all 𝜈cond non-degenerate rank 𝑟 polynomials 𝑃 of degree at most 𝑑 in 𝑛 variables that satisfy

the normalization conditions E𝑋∼𝒩 (0,Id𝑛)[𝑃 (𝑋)] = 0 and E𝑔∼𝒩 (0,Id𝑟)

[︀
∇ℎ(𝑔)∇ℎ(𝑔)⊤

]︀
⪯ Id𝑛.

We write 𝒫𝜈cond𝑟,𝑑 for 𝒫𝜈cond𝑟,𝑟,𝑑 .

Finally, we will use the following elementary property of non-degeneracy.

Fact 2.3.2. If 𝑃 ∈ 𝒫𝜈cond𝑛,𝑟,𝑑, then 𝜈cond/𝑑 ≤ V[𝑃 (𝑋)] ≤ 𝑟.

Proof. It suffices to consider 𝑛 = 𝑟. For the upper bound, we have V[𝑃] ≤ E𝑔 [‖∇𝑝*(𝑔)‖22] ≤ 𝑟

by taking traces in the definition of non-degeneracy and invoking Lemma 2.3.9 below.

For the lower bound, we have V[𝑃] ≥ E𝑔 [‖∇𝑝*(𝑔)‖22] /𝑟𝑑 ≥ 𝜈cond/𝑑 by taking traces and

invoking Lemma 2.3.8 below.

113

2.3.2 Other Concentration Inequalities

Martingale Concentration Here we will generalize two concentration inequalities from

Section 1.3 to the martingale setting. Let 𝜁1, ..., 𝜁𝑇 be independent atom variables which

each take values in Euclidean space. Let 𝑌 (𝜁1, ..., 𝜁𝑇) be a real-valued random variable

depending on the atom variables 𝜁1, ..., 𝜁𝑇 which each take values in Euclidean space. Define

the martingale differences 𝑍𝑖(𝜁) , E[𝑌 |𝜁1, ..., 𝜁𝑖]−E[𝑌 |𝜁1, ..., 𝜁𝑖−1]. When the context is clear,

we will suppress the parenthetical 𝜁. For brevity, we will use the acronym MDS throughout

to refer to martingale difference sequences.

The first lemma is the martingale analogue of Lemma 1.3.16, with the slight twist that

we only have high-probability moment bounds for the increments. The bounds are slightly

weaker than those of Lemma 1.3.16 but will suffice for our applications.

Lemma 2.3.3. There is a constant 𝑐1 > 0 for which the following holds. Let 𝜎 > 0, and

suppose the atom variables 𝜁1, ..., 𝜁𝑇 are standard 𝑛-dimensional Gaussians, and suppose

the martingale differences {𝑍𝑖} are such that for any realization of 𝜁1, ..., 𝜁𝑖−1, 𝑍𝑖(𝜁) is a

polynomial of degree at most 𝑑 in 𝜁𝑖, and moreover Pr [E[𝑍2
𝑖 |𝜁1, ..., 𝜁𝑖−1] ≤ 𝜎2] ≥ 1 − 𝛽 for

each 𝑖 ∈ [𝑇]. Then for any 𝑡 > 0,

Pr

[︃
max
ℓ∈[𝑇]

⃒⃒⃒⃒
⃒
ℓ∑︁
𝑖=1

𝑍𝑖

⃒⃒⃒⃒
⃒ ≥ (2 log(1/𝛿) · 𝑑)𝑐1𝑑 ·

√
𝑇 · 𝜎

]︃
≤ 𝛿 + 𝑇 · 𝛽.

The second lemma is the martingale analogue of Lemma 1.3.33, again with the twist that

the bounds on the differences only hold with high probability.

Lemma 2.3.4. Let {𝑐𝑖}𝑖∈[𝑇] and {𝑠𝑖}𝑖∈[𝑇] be collections of positive constants, and let ℰ𝑖 be

the event that 𝑍𝑖 ≤ 𝑐𝑖 and E[𝑍2
𝑖 |𝜁1, ..., 𝜁𝑖−1] ≤ 𝑠2𝑖 . Let 𝜎𝑖 = 𝑐𝑖 ∨ 𝑠𝑖, and define 𝜎2 =

∑︀
𝑖 𝜎

2
𝑖 .

Then if Pr[ℰ𝑖|𝜁1, ..., 𝜁𝑖−1] ≥ 1− 𝛽 for each 𝑖 ∈ [𝑇], then for any 𝛿 > 0,

Pr

[︃
𝑇∑︁
𝑖=1

𝑍𝑖 ≥
√
2 log(1/𝛿) · 𝜎

]︃
≤ 𝛿 + 𝑇 · 𝛽.

114

2.3.3 Hermite Polynomials and Gradients

Recall the definition of the normalized Hermite polynomials in Section 1.3.6. We will need

the following identities. Here we record some additional identities that they satisfy.

Fact 2.3.5 (Linearization Coefficients). For any 𝑎, 𝑏, 𝑐 ∈ Z≥0 such that 𝑎+ 𝑏 ≥ 𝑐, 𝑎+ 𝑐 ≥ 𝑏,

𝑏+ 𝑐 ≥ 𝑎, and 𝑎+ 𝑏+ 𝑐 is even.

E𝑔∼𝒩 (0,1) [𝜑𝑎(𝑔)𝜑𝑏(𝑔)𝜑𝑐(𝑔)] =

√
𝑎! · 𝑏! · 𝑐!(︀

𝑎+𝑏−𝑐
2

)︀
! ·
(︀
𝑎−𝑏+𝑐

2

)︀
! ·
(︀−𝑎+𝑏+𝑐

2

)︀
!

For all other 𝑎, 𝑏, 𝑐, this quantity is zero.

Corollary 2.3.6. For any 0 ≤ 𝑎 ≤ 𝑏,

E𝑔∼𝒩 (0,1)[𝑔 · 𝜑𝑎(𝑔)𝜑𝑏(𝑔)] = 1[𝑏 = 𝑎+ 1] ·
√
𝑎+ 1

E𝑔∼𝒩 (0,1)[𝜑2(𝑔)𝜑𝑎(𝑔)𝜑𝑏(𝑔)] = 1[𝑏 = 𝑎+ 2] ·
√︂

(𝑎+ 1)(𝑎+ 2)

2
+ 1[𝑏 = 𝑎] · 𝑎

√
2

We also record some basic facts about gradients and moments of polynomials in Gaus-

sians, the first of which is a corollary of Gaussian hypercontractivity (Fact 1.3.15):

Corollary 2.3.7. For any polynomial 𝑝 ∈ R𝑑[𝑥1, ..., 𝑥𝑟], j = (𝑗1, ..., 𝑗ℓ) ∈ [𝑟]ℓ, and integer

𝑞 ≥ 2,

E𝑔[(Dj 𝑝(𝑔))
𝑞]1/𝑞 ≤ (𝑞 − 1)𝑑/2 · 𝑑ℓ/2 · V[𝑝]1/2

Proof. By Fact 1.3.15,

E𝑔[(Dj 𝑝(𝑔))
𝑞]1/𝑞 ≤ (𝑞 − 1)𝑑/2E𝑔[(Dj 𝑝(𝑔))

2]1/2

Write Dj 𝑝 as 𝜕ℓ

𝜕𝑥
𝑎1
1 ···𝜕𝑥𝑎𝑟𝑟

𝑝, where 𝑎𝑖 is the number of entries of j equal to 𝑖, and write 𝑝 in the

tensored Hermite basis 𝑝 =
∑︀

𝐼 𝑐𝐼𝜑𝐼 . By Fact 2.5.3,

Dj 𝑝(𝑥) =
𝜕ℓ

𝜕𝑥𝑎11 · · · 𝜕𝑥𝑎𝑟𝑟
𝑝(𝑥) =

∑︁
𝐼

𝑐𝐼

⎛⎝∏︁
𝑖∈[𝑟]

𝜑
[𝑎𝑖]
𝐼𝑖

(𝑥𝑖)

⎞⎠ =
∑︁
𝐼

𝑐𝐼

⎛⎝∏︁
𝑖∈[𝑟]

√︃
𝐼𝑖!

(𝐼𝑖 − 𝑎𝑖)!
𝜑𝐼𝑖−𝑎𝑖(𝑥𝑖)

⎞⎠ ,

115

so by orthogonality and the fact that 𝑎1 + · · ·+ 𝑎𝑟 = ℓ, we see that

E𝑔[(Dj 𝑝(𝑔))
2] =

∑︁
𝐼

𝑐2𝐼 ·
∏︁
𝑖∈[𝑟]

𝐼𝑖!

(𝐼𝑖 − 𝑎𝑖)!
≤
∑︁
𝐼 ̸=∅

𝑐2𝐼 ·
∏︁
𝑖∈[𝑟]

𝑑𝑎𝑖 = 𝑑ℓ · V[𝑝],

from which the claim follows.

We can use Corollary 2.3.7 to bound the moments of ‖∇𝑝(𝑔)‖22.

Lemma 2.3.8. For any polynomial 𝑝 ∈ R𝑑[𝑥1, ..., 𝑥𝑟] and any integer 𝑞 ≥ 2,

E[‖∇𝑝(𝑔)‖2𝑞2]1/𝑞 ≤ 𝑟𝑑 · (2𝑞 − 1)𝑑 · V[𝑝]

Proof. We have

E[‖∇𝑝(𝑔)‖2𝑞2] ≤ 𝑟𝑞−1 ·E[‖∇𝑝(𝑔)‖2𝑞2𝑞] = 𝑟𝑞−1 ·
𝑟∑︁
𝑖=1

E

[︃(︂
𝜕

𝜕𝑥𝑖
𝑝(𝑔)

)︂2𝑞
]︃
≤ 𝑟𝑞 ·(2𝑞−1)𝑑𝑞 ·𝑑𝑞 ·V[𝑝]𝑞,

where the first inequality follows by Holder’s, and the last step follows by Corollary 2.3.7.

It will be useful to give a corresponding lower bound for E[‖∇𝑝(𝑔)‖22]:

Lemma 2.3.9. For any polynomial 𝑝 ∈ R𝑑[𝑥1, ..., 𝑥𝑟], E𝑔[‖∇𝑝(𝑔)‖22] ≥ V[𝑝].

Proof. Again, write 𝑝 in the tensored Hermite basis 𝑝 =
∑︀

𝐼 𝑐𝐼𝜑𝐼 . We know that

∑︁
𝑖

E

[︃(︂
𝜕

𝜕𝑥𝑖
𝑝(𝑔)

)︂2
]︃
=
∑︁
𝐼

𝑐2𝐼 ·
∑︁
𝑖

𝐼𝑖 ≥
∑︁
𝐼 ̸=∅

𝑐2𝐼 = V[𝑝],

from which the claim follows.

The following more careful estimate gives something better than what Cauchy-Schwarz,

Corollary 1.3.17, and Lemma 2.3.8 imply.

Lemma 2.3.10. For any 𝑝 ∈ R𝑑[𝑥1, ..., 𝑥𝑟], E𝑔 [‖𝑔‖2 · ‖∇𝑝(𝑔)‖22]
1/2 ≤ 𝑂(𝑟𝑑) · V[𝑝]1/2.

Proof. Take any 𝑖, 𝑗 ∈ [𝑟]. Let 𝑞𝑖,𝑗𝐼 denote the polynomial
∏︀

ℓ∈[|𝐼|]:ℓ̸=𝑖,𝑗 𝜑𝐼ℓ(𝑥ℓ). If 𝑖 = 𝑗, then

E

[︃
𝑔2𝑖 ·

(︂
𝜕

𝜕𝑥𝑗
𝑝(𝑔)

)︂2
]︃

116

= E

⎡⎣(︃∑︁
𝐼

𝑐𝐼 · 𝑞𝑖,𝑖𝐼 (𝑔) ·
√︀
𝐼𝑖 · 𝑔𝑖 · 𝜑𝐼𝑖−1(𝑥𝑖)

)︃2
⎤⎦

= E

⎡⎣(︃∑︁
𝐼

𝑐𝐼 · 𝑞𝑖,𝑖𝐼 (𝑔) ·
√︀
𝐼𝑖 ·
(︁√︀

𝐼𝑖 · 𝜑𝐼𝑖(𝑔𝑖) +
√︀
𝐼𝑖 − 1 · 𝜑𝐼𝑖−2(𝑔𝑖)

)︁)︃2
⎤⎦

≤ 2
∑︁
𝐼

𝑐2𝐼 · 𝐼2𝑖 + 2
∑︁
𝐼

𝑐2𝐼 · 𝐼𝑖(𝐼𝑖 − 1) ≤ 4𝑑2V[𝑝],

where the second step follows by Corollary 2.3.5, and the third step follows by the elementary

inequality (𝑎+ 𝑏)2 ≤ 2𝑎2 + 2𝑏2. Likewise, if 𝑖 ̸= 𝑗, then we have that

E

[︃
𝑔2𝑖 ·

(︂
𝜕

𝜕𝑥𝑗
𝑝(𝑔)

)︂2
]︃

= E

⎡⎣(︃∑︁
𝐼

𝑐𝐼 · 𝑞𝑖,𝑗𝐼 (𝑔) · 𝑔𝑖 · 𝜑𝐼𝑖(𝑔𝑖) ·
√︀
𝐼𝑗 · 𝜑𝐼𝑗−1(𝑔𝑗)

)︃2
⎤⎦

= E

⎡⎣(︃∑︁
𝐼

𝑐𝐼 · 𝑞𝑖,𝑗𝐼 (𝑔) ·
(︁√︀

𝐼𝑖 + 1 · 𝜑𝐼𝑖+1(𝑔𝑖) +
√︀
𝐼𝑖 · 𝜑𝐼𝑖−1(𝑔𝑖)

)︁
·
√︀
𝐼𝑗 · 𝜑𝐼𝑗−1(𝑔𝑗)

)︃2
⎤⎦

≤ 2

(︃∑︁
𝐼

𝑐2𝐼 · (𝐼𝑖 + 1)𝐼𝑗 +
∑︁
𝐼

𝑐2𝐼 · 𝐼𝑖𝐼𝑗

)︃
≤ 4𝑑(𝑑+ 1)V[𝑝] ≤ 5𝑑2V[𝑝].

The lemma follows upon summing over 𝑖, 𝑗 ∈ [𝑟].

The following basic inequality will also be useful.

Lemma 2.3.11. Let 𝒮 denote the collection of all multisets 𝐼 of size at most 𝑑 consisting

of elements of [𝑟]. Then E
[︁
(
∑︀

𝐼 𝜑𝐼(𝑔)
2)

2
]︁
≤ 𝑂(𝑟)2𝑑.

Proof. We have that

E

⎡⎣(︃∑︁
𝐼

𝜑𝐼(𝑔)
2

)︃2
⎤⎦ ≤ |𝒮| · E[︃∑︁

𝐼

𝜑𝐼(𝑔)
4

]︃
= |𝒮| · 9𝑑

∑︁
𝐼

E
[︀
𝜑𝐼(𝑔)

2
]︀
= |𝒮|2 · 9𝑑 = 𝑂(𝑟)2𝑑,

where the first step follows by Cauchy-Schwarz, the second by Fact 1.3.15, the third by

orthonormality of {𝜑𝐼}, and the last by the fact that |𝒮| = 𝑂(𝑟)𝑑.

117

2.3.4 More Subspace Distance Inequalities

We first give a more refined estimate for 𝑑𝑃 (𝑉, 𝑉 ′)2 − 𝑑𝐶(𝑉, 𝑉
′)2 than what Lemma 1.3.5

tells us:

Lemma 2.3.12. 𝑑𝑃 (𝑉, 𝑉 ′)2 − 𝑑𝐶(𝑉, 𝑉 ′)2 ≤ 𝑑𝑃 (𝑉, 𝑉
′)4.

Proof. From the elementary inequality 4 sin2(𝜃/2)− sin2(𝜃) ≤ sin4(𝜃) for 𝜃 ∈ [0, 𝜋/2], we see

that

𝑑𝑃 (𝑉, 𝑉
′)2 − 𝑑𝐶(𝑉, 𝑉 ′)2 =

(︃
𝑟∑︁
𝑖=1

sin4 𝜃𝑖

)︃2

≤

(︃
𝑟∑︁
𝑖=1

sin2 𝜃𝑖

)︃2

= 𝑑𝐶(𝑉, 𝑉
′)4 ≤ 𝑑𝑃 (𝑉, 𝑉

′)4

as claimed.

The following consequence of Lemma 2.3.12 will be useful in our analysis of GeoSGD.

Lemma 2.3.13. For 𝑉, 𝑉 * ∈ St𝑛𝑟 , we have that ‖Id−𝑉 ⊤𝑉 *‖2 ≤ ‖𝑉 − 𝑉 *
𝐹 ‖. If 𝑉, 𝑉 * addi-

tionally satisfy that ‖𝑉 − 𝑉 *‖𝐹 = 𝑑𝑃 (𝑉, 𝑉
*), then we have that ‖Id−𝑉 ⊤𝑉 *‖2 ≤ 𝑑𝑃 (𝑉, 𝑉

*)2.

Proof. It suffices to upper bound ‖Id−𝑉 ⊤𝑉 *‖𝐹 . Note that

‖Id−𝑉 ⊤𝑉 *‖2𝐹 = 𝑑− 2Tr(𝑉 ⊤𝑉 *) + ‖𝑉 ⊤𝑉 *‖2𝐹

= ‖𝑉 − 𝑉 *‖2𝐹 − 𝑑𝐶(𝑉, 𝑉 *)2 ≤ ‖𝑉, 𝑉 *‖2𝐹 ,

from which the first part of the lemma follows.

For the second bound, note that

‖𝑉 − 𝑉 *‖2𝐹 − 𝑑𝐶(𝑉, 𝑉 *)2 = 𝑑𝑃 (𝑉, 𝑉
*)2 − 𝑑𝐶(𝑉, 𝑉 *)2 ≤ 𝑑𝑃 (𝑉, 𝑉

*)4,

where the final step follows by Lemma 2.3.12.

2.4 Warm Start via Filtered PCA

The main result of this section is the proof of Theorem 2.2.2. Let 𝒟 denote the distribution

(𝑋, 𝑌) where 𝑌 = 𝑃 (𝑋) is a 𝛼 non-degerate polynomial of rank 𝑟 and degree at most 𝑑

118

as in the hypothesis of the theorem. Let 𝑈* be the true hidden subspace defining 𝑃 . The

proof follows the outline described in the introduction closely. To this end, for a threshold

parameter 𝜏 > 0 and a collection of unit vectors 𝑉 = {𝑣1, . . . , 𝑣ℓ}, define the matrix

M𝜏
𝑉 , Π𝑉 ⊥ ·

(︀
E(𝑥,𝑦)∼𝒟

[︀
1[{|𝑦| > 𝜏} ∧ {|⟨𝑣𝑖, 𝑥⟩| ≤ 1, ∀ 𝑖 ∈ [ℓ]}] · (𝑥𝑥⊤ − Id)

]︀)︀
· Π𝑉 ⊥ .

Algorithm 4: FilteredPCAv1(𝒟, 𝜀, 𝛿)
Input: Sample access to 𝒟, target error 𝜀, failure probability 𝛿
Output: Frame for a subspace 𝑈 with 𝑑𝑃 (𝑈,𝑈*) ≤ 𝜀, with probability at least 1− 𝛿

1 𝑉0 ← ∅.
2 𝜏 ← 𝜏(𝑟, 𝑑, 𝛼) // Lemma 2.4.1
3 for 0 ≤ ℓ ≤ 𝑟 − 1 do
4 Draw 𝑁 = 𝑂𝑟,𝑑,𝜀(𝑛) samples (𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁) // Theorem 2.2.2
5 Compute an empirical approximation ̂︁Mℓ to M𝜏

𝑉ℓ
by drawing 𝑁 = 𝑂𝑟,𝑑,𝜀(𝑛)

samples from the distribution 𝒟.
6 Let 𝑣ℓ+1 be the eigenvector with the largest eigenvalue of ̂︁Mℓ.
7 𝑉ℓ+1 ← 𝑉ℓ ∪ {𝑣ℓ+1}.
8 return 𝑉𝑟.

We will show that the above algorithm satisfies the guarantees of Theorem 2.2.2. The

core of its analysis will be the following main inductive lemma.

Lemma 2.4.1. There exists 𝜏 = 𝜏(𝑟, 𝑑, 𝛼), a constant 𝐶 = 𝐶(𝑟, 𝑑, 𝛼) such that the following

holds. Let 𝑉 = {𝑣1, . . . , 𝑣ℓ} for ℓ < 𝑟 be orthonormal vectors such that ‖Π𝑈*𝑣𝑖‖ ≥ 1 − 𝜌,

and M a matrix such that ‖M −M𝜏
𝑉 ‖ ≤ 𝜌. Then, the largest eigenvector 𝑣 of M satisfies

‖Π𝑈*𝑣‖ ≥ 1− 𝐶𝜌1−1/𝑟.

Before proving the lemma, we first show how the main theorem follows from the above.

Proof of Theorem 2.2.2. Let 𝐶, 𝜏 be as in the above lemma. For a 𝜌0 to be chosen later, let

𝜌ℓ+1 = 𝐶𝜌
1−1/𝑟
ℓ for ℓ ≥ 0. Let 𝑁 = 𝑂(𝑛 log(𝑟/𝛿)/𝜌20).

We will show by induction that ‖Π𝑈*𝑣ℓ‖ ≥ 1 − 𝜌ℓ. Suppose we have the statement for

𝑣1, . . . , 𝑣ℓ computed by the algorithm. Then, in the next iteration, by Lemma 1.3.32, with

probability at least 1 − 𝛿/𝑟, we will have ‖̂︁Mℓ −M𝜏
𝑉ℓ
‖ ≤ 𝜌ℓ. In this case, by Lemma 2.4.1,

the top eigenvector 𝑣ℓ+1 of ̂︁Mℓ satisfies ‖Π𝑈*𝑣ℓ+1‖ ≥ 1− 𝐶𝜌1−1/𝑟
ℓ = 1− 𝜌ℓ+1.

119

By a union bound over the 𝑟 events, we get that with probability at least 1− 𝛿, we would

have computed orthonormal vectors 𝑣1, . . . , 𝑣𝑟 such that ‖Π𝑈*𝑣𝑖‖ ≥ 1− 𝜌𝑟. Now, by Lemma

1.3.9, 𝑑𝑃 (span(𝑣1, . . . , 𝑣𝑟), 𝑈*) ≤ 𝑂(
√
𝜌𝑟𝑟).

As 𝜌𝑟 ≤ 𝐶𝑟𝜌
(1−1/𝑟)𝑟

0 ≤ 𝐶𝑟𝜌
Θ(1)
0 , the lemma follows by setting 𝜌0 = poly(𝜀)/𝐶𝑟. The

overall sample complexity will be 𝑁 = 𝑂(𝑟 ·𝑛 log(𝑟/𝛿)/𝜌20 = 𝐶(𝑟, 𝑑, 𝛼)𝑛 log(𝑟/𝛿)/𝜀2 as stated

in the theorem. The runtime then follows by applying Fact 1.3.6.

2.4.1 Proof of Lemma 2.4.1

We next prove the Lemma 2.4.1 which allows us to identify one direction at a time. The

proof proceeds as follows:

1. We first show a lower bound on the largest eigenvalue of the matrix M𝜏
𝑉 when the

vectors 𝑣1, . . . , 𝑣ℓ lie in the subspace 𝑈*. This is the heart of the proof and follows from

a compactness argument. This essentially gives a proof of the lemma when 𝑉 ⊆ 𝑈*

(and M approximates M𝜏
𝑉). See Lemmas 2.4.2, 1.3.8.

2. The second step is to reduce to the above case. Given 𝑉 as in the lemma, we find

orthonormal vectors 𝑉 * = {𝑣*1, . . . , 𝑣*ℓ} ∈ 𝑈* such that ‖𝑣𝑖 − 𝑣*𝑖 ‖ ≤ 𝑂(ℓ𝜌). We then do

a perturbation analysis (using elementary linear algebra) to argue that perturbing the

vectors 𝑉 slightly will only incur a small error in the matrix M𝜏
𝑉 . Specifically, we will

show that ‖M𝜏
𝑉 −M𝜏

𝑉 *‖ ≤ 𝑂(poly(𝑟)𝜌1/2−1/2𝑟). See Lemma 2.4.3.

For brevity, in the remainder of this section let Π* denote orthogonal projection to the true

subspace 𝑈* ⊂ R𝑛.

First, we show that if the vectors in 𝑉 * = {𝑣*1, ..., 𝑣*ℓ} were vectors in the true subspace,

then the top eigenvector of M𝜏
𝑉 * will be a new vector in the subspace orthogonal to the

preceding ones.

Lemma 2.4.2. There are absolute constants 𝜏 = 𝜏𝑟,𝑑,𝜈cond > 0 and 𝜆 = 𝜆𝑟,𝑑,𝜈cond > 0 for which

the following holds. Suppose 𝑉 * = {𝑣*1, ..., 𝑣*ℓ} ⊂ S𝑛−1 are orthogonal and is in 𝑈*. Then

1. The kernel of M𝜏
𝑉 * contains span(𝑣*1, ..., 𝑣

*
ℓ) as well as the orthogonal complement of

𝑈*.

120

2. The top eigenvalue of M𝜏
𝑉 * is at least 𝜆 and corresponds to a vector in 𝑈*∖span(𝑉 *).

Note that Lemma 2.4.2 already gives a nontrivial algorithmic guarantee for ℓ = 0: given

exact access to M𝜏
∅, we can recover a vector inside the true subspace by taking its top

eigenvector.

Proof. Extend {𝑣*𝑖 }𝑖∈[ℓ] to an orthonormal basis {𝑣*𝑖 }𝑖∈[𝑟] of 𝑈*, and let 𝑝*((𝑉 *)⊤𝑥) be a

realization of the true low-rank polynomial, where the frame 𝑉 * ∈ St𝑛𝑟 consists of these basis

elements.

(Proof of 1) Certainly span({𝑣*𝑖 }𝑖∈[ℓ]) lies in the kernel of M𝜏
𝑉 * by definition. Moreover for

any 𝑣 ∈ S𝑛−1 orthogonal to 𝑈*, because ⟨𝑣*𝑖 , 𝑥⟩, ..., ⟨𝑣*𝑟 , 𝑥⟩, ⟨𝑣, 𝑥⟩ are independent Gaussians,

call them 𝑔1, ..., 𝑔𝑟, 𝑔⊥ ∼ 𝒩 (0, 1), we have that

𝑣⊤M𝜏
𝑉 *𝑣 = E

[︀
1[{|𝑝*(𝑔1, ..., 𝑔𝑟)| > 𝜏} ∧ {|𝑔𝑖| ≤ 1 ∀ 𝑖 ∈ [ℓ]}] · (𝑔2⊥ − 1)

]︀
= E [1[{|𝑝*(𝑔1, ..., 𝑔𝑟)| > 𝜏} ∧ {|𝑔𝑖| ≤ 1 ∀ 𝑖 ∈ [ℓ]}]] · E

[︀
(𝑔2⊥ − 1)

]︀
= 0.

(Proof of 2) The fact that the top eigenvector lies in 𝑈*∖span({𝑣*𝑖 }𝑖∈[ℓ]) follows immedi-

ately from the fact that it must be orthogonal to both span({𝑣*𝑖 }𝑖∈[ℓ] and the orthogonal

complement of 𝑈*.

To get a bound on the top eigenvalue, define the quantities 𝑍𝑖 , 𝑣*⊤𝑖 M
𝜏
𝑉 *𝑣*𝑖 for ℓ < 𝑖 ≤ 𝑟.

Again using the fact that ⟨𝑣*1, 𝑥⟩, ..., ⟨𝑣*𝑟 , 𝑥⟩ are independent Gaussians 𝑔1, ..., 𝑔𝑟, we have

𝑟∑︁
𝑖=ℓ+1

𝑍𝑖 = E

[︃
1[{|𝑝*(𝑔1, ..., 𝑔𝑟)| > 𝜏} ∧ {|𝑔𝑖| ≤ 1 ∀ 𝑖 ∈ [ℓ]}] ·

(︃∑︁
𝑖>ℓ

𝑔2𝑖 − (𝑟 − ℓ)

)︃]︃
.

We would like to lower bound this quantity, at which point by averaging over 𝑖 we conclude

the proof of the lemma.

Let 𝐾 ⊂ R𝑟 denote the set of all points 𝑥 for which |𝑥𝑖| ≤ 1 for all 1 ≤ 𝑖 ≤ ℓ and

for which
∑︀𝑟

𝑖=ℓ+1 𝑥
2
𝑖 ≤ 2(𝑟 − ℓ). For any 𝑝 ∈ 𝒫𝜈cond𝑟,𝑑 , define ‖𝑝‖𝐾 , sup𝑥∈𝐾 |𝑝(𝑥)|. By

compactness of 𝐾, ‖𝑝‖𝐾 < ∞ for all 𝑝, and furthermore ‖𝑝‖𝐾 is a continuous function of

𝑝. If we take 𝜏 = 𝜏(𝜈cond, 𝑟, 𝑑, ℓ) , sup𝑝∈𝒫𝜈cond
𝑟,𝑑
‖𝑝‖𝐾 , then by compactness of 𝒫𝜈cond𝑟,𝑑 , is some

121

finite quantity depending only on 𝜈cond, 𝑟, 𝑑, and ℓ. For this choice of 𝜏 , we conclude that if

a point (𝑔1, ..., 𝑔𝑟) ∈ R𝑟 satisfies |𝑝*(𝑔1, ..., 𝑔𝑟)| > 𝜏 and |𝑔𝑖| ≤ 1 for all 𝑖 ∈ [ℓ], then it must

lie outside 𝐾. We conclude that

𝑟∑︁
𝑖=ℓ+1

𝑍𝑖 ≥ (𝑟 − ℓ) · Pr [{|𝑝*(𝑔1, ..., 𝑔𝑟)| > 𝜏} ∧ {𝑔 ̸∈ 𝐾}] .

In particular, there exists some 𝑖 > ℓ for which 𝑍𝑖 ≥ Pr [{|𝑝*(𝑔1, ..., 𝑔𝑟)| > 𝜏} ∧ {𝑔 ̸∈ 𝐾}].

The right-hand side is a continuous function in 𝑝, call it 𝐴𝑝. For any 𝑝, there must exist

some point 𝑥 ̸∈ 𝐾 for which 𝑝*(𝑥) > 𝜏 , so again by compactness of 𝒫𝜈cond𝑟,𝑑 , we see that 𝑍𝑖 ≥ 𝜆

for some strictly positive constant 𝜆 depending only on 𝜈cond, 𝑟, 𝑑, ℓ.

Henceforth, for brevity, we will denote the constants 𝜏𝑟,𝑑,𝜈cond and 𝜆𝑟,𝑑,𝜈cond from Lemma 2.4.2

by 𝜏 and 𝜆 respectively.

Note that by Corollary 1.3.8, the above lemma implies Lemma 2.4.1 for the case when

𝑉 ⊆ 𝑈*.

Finally, we show that for orthonormal vectors 𝑉 = {𝑣1, ..., 𝑣ℓ} which all have large com-

ponent in 𝑈*, the matrix M𝜏
𝑉 is spectrally close to some M𝜏

𝑉 * for 𝑉 * = {𝑣*1, . . . 𝑣*ℓ} in 𝑈*.

Lemma 2.4.3. There is an absolute constant 𝑐2 > 0 for which the following holds. Let

1 ≤ ℓ ≤ 𝑟. Given orthonormal vectors 𝑉 = {𝑣1, ..., 𝑣ℓ} for which ‖Π*𝑣𝑖‖2 ≥ 1 − 𝜀 for some

0 ≤ 𝜀 < 1 for all 𝑖 ∈ [ℓ], there exist orthonormal vectors 𝑉 * = {𝑣*1, . . . , 𝑣*ℓ} ⊂ 𝑈* such that

‖M𝜏
𝑉 −M𝜏

𝑉 *‖2 ≤ 𝑐2(𝜀ℓ)
1/2−1/2𝑟ℓ𝑟.

Proof. Let 𝑉 * = {𝑣*1, . . . , 𝑣*ℓ} be orthonormal vectors in 𝑈* guaranteed by Lemma 1.3.10

such that ⟨𝑣𝑖, 𝑣*𝑖 ⟩ ≥ 1− 2𝜀ℓ.

For each 0 ≤ 𝑎 ≤ ℓ, define the hybrid collections of vectors 𝑉 (𝑎) , {𝑣*1, ..., 𝑣*𝑎−1, 𝑣𝑎, ..., 𝑣ℓ},

and also define the hybrid matrices

M(𝑎) ,
(︀
Π⊥

{𝑣𝑖}
)︀⊤·(︁E(𝑥,𝑦)∼𝒟

[︁
1[{|𝑦| > 𝜏} ∧ {|⟨𝑣(𝑎)𝑖 , 𝑥⟩| ≤ 1 ∀ 𝑖 ∈ [ℓ]}] · (𝑥𝑥⊤ − Id)

]︁)︁
·Π⊥

{𝑣𝑖}.

Note that 𝑉 (0) = 𝑉 and 𝑉 (ℓ) = 𝑉 *, and similarly M(0) = M𝜏
𝑉 .

We will bound ‖M(𝑎+1) −M(𝑎)‖2 for every 0 ≤ 𝑎 < ℓ, and then bound ‖M(ℓ) −M𝜏
𝑉 *‖2.

122

The lemma will then follow by triangle inequality.

Claim 2.4.4. For any 0 ≤ 𝑎 < ℓ, ‖M(𝑎+1) −M(𝑎)‖2 ≤ 𝑂
(︀
(𝜀ℓ)1/2−1/2𝑟 · 𝑟

)︀
.

Proof. We will bound 𝑣⊤(M(𝑎+1) −M(𝑎))𝑣 for any 𝑣 ∈ S𝑛−1; without loss of generality, we

may assume 𝑣 is orthogonal to 𝑣1, ..., 𝑣ℓ.

Let ℰ denote the event that |⟨𝑣𝑎, 𝑥⟩| > 1 and |⟨𝑣*𝑎, 𝑥⟩| ≤ 1 or vice-versa, noting that the

indicator events in the definitions of M(𝑎) and M(𝑎+1) only differ when ℰ occurs. Therefore,

⃒⃒
𝑣⊤(M(𝑎+1) −M(𝑎))𝑣

⃒⃒
≤ Pr[ℰ]1−1/𝑟 · E[(⟨𝑣, 𝑥⟩2 − 1)𝑟]1/𝑟

= Pr[ℰ]1−1/𝑟 ·𝑂(𝑟)

where the last inequality follows by Holder’s and the fact that E𝑔∼𝒩 (0,1)[(𝑔
2 − 1)𝑟]

1/𝑟
= 𝑂(𝑟).

Finally note that by Lemma 1.3.35,

𝑃𝑟[ℰ] ≤ 𝑂
(︁√︀

1− ⟨𝑣𝑖, 𝑣*𝑖 ⟩2
)︁
= 𝑂(

√
𝜀ℓ).

The claim now follows.

To bound ‖M(ℓ) −M𝜏
𝑉 *‖2, we will use Claim 1.3.11. We note that the matrix

E(𝑥,𝑦)∼𝒟
[︀
1[{|𝑦| > 𝜏} ∧ {|⟨𝑣*𝑖 , 𝑥⟩| ≤ 1 ∀ 𝑖 ∈ [ℓ]}] · (𝑥𝑥⊤ − Id)

]︀
has spectral norm at most ‖E[𝑥𝑥⊤]‖2 + 1 = 2. So if 𝑈 , span(𝑣1, ..., 𝑣ℓ) and 𝑈 ′ ,

span(𝑣*1, ..., 𝑣
*
ℓ), then by Claim 1.3.11,

‖M(ℓ) −M𝜏
𝑉 *‖2 ≤ 𝑂(𝑑𝐶(𝑈,𝑈

′)) ≤ 𝑂(
√
𝜀 · ℓ),

where the last step follows by Lemma 1.3.9.

Lemma 2.4.3 follows by applying the above inequality, Claim 2.4.4 for all 0 ≤ 𝑎 < ℓ, and

triangle inequality.

We now put Corollary 1.3.8, 2.4.3 together to prove Lemma 2.4.1.

123

Proof of Lemma 2.4.1. Choose 𝜏 to be as in Lemma 2.4.2. We will choose 𝐶 = 𝑐ℓ3−1/𝑟𝑟2/𝜆2

for 𝜆 = 𝜆𝑟,𝑑,𝜈cond from Lemma 2.4.2 and 𝑐 > 0 a universal constant.

Let 𝑉 * be the set of ℓ orthonormal vectors in 𝑈* as in Lemma 2.4.3 so that

‖M𝜏
𝑉 −M𝜏

𝑉 *‖ ≤ 𝑂((𝜌ℓ)1/2−1/2𝑟ℓ𝑟).

By triangle inequality, ‖M−M𝜏
𝑉 *‖ ≤ 𝑂((𝜌ℓ)1/2−1/2𝑟ℓ𝑟). The lemma now follows by applying

Corollary 1.3.8.

2.5 Boosting via Stochastic Riemannian Optimization

In this section we describe our algorithm for boosting a warm start to arbitrary accuracy

and defer the details of its analysis to Sections 2.7 and 2.6.

Theorem 2.5.1 (Error Guarantee for GeoSGD). There is an absolute constant 𝑐3 > 0 such

that the following holds. Let 𝑈* be the true subspace of 𝒟. Given 𝑉 (0) ∈ St𝑛𝑟 spanning a

subspace 𝑈 for which 𝑑𝑃 (𝑈,𝑈*) ≤ (𝑐3 · 𝑑𝑟3)−𝑑−2, if in the specification of GeoSGD we take

𝑇 =
𝑛

𝜈cond
· log(1/𝜀) · poly(ln(1/𝜈cond), 𝑟, 𝑑, ln(1/𝛿), ln(𝑛))𝑑, (2.5)

then GeoSGD(𝒟, 𝑉 (0), 𝜀, 𝛿) returns (c(𝑇), 𝑉 (𝑇)) for which there exists a realization (c*, 𝑉 *)

of 𝒟 such that 𝑑𝑃 (𝑉 (𝑇), 𝑉 *) ≤ 𝜀 and ‖c(𝑇) − c*‖2 ≤ 𝜀.

Theorem 2.5.2 (Complexity of GeoSGD). Let 𝑇1 , 𝑂(𝑟𝑑4)𝑑+1 · log(1/𝜀), 𝐵 , 𝑂(log(𝑇1 ·

𝑇/𝛿))2𝑑, and 𝑇2 , (𝑟/𝜈cond)
2 ·𝑂(𝑑 · log(𝑇/𝛿))2𝑐1𝑑. Then GeoSGD draws

𝑁 , 𝑇 · (𝐵 · 𝑇1 + 𝑇2) = �̃�

(︂
𝑛 log2(1/𝜀)

𝜈3cond
· poly(ln(1/𝜈cond), 𝑟, 𝑑, ln(1/𝛿), ln(𝑛))𝑑

)︂

samples and runs in time 𝑛 · 𝑟𝑂(𝑑) ·𝑁 time.

124

2.5.1 Preliminaries

Let 𝑀 = 𝑟𝑂(𝑑) be the dimension of the linear space of polynomials of polynomials of degree

𝑑 over 𝑟 variables. For c = {𝑐𝐼} ∈ R𝑀 , where 𝐼 ranges over multisets of size at most 𝑑

consisting of elements of [𝑟], and 𝑉 ∈ St𝑛𝑟 , let parameters Θ = (c, 𝑉) correspond to a rank-

𝑟 polynomial 𝐹𝑥(Θ) ,
∑︀

𝐼 𝑐𝐼𝜑𝐼(𝑉
⊤𝑥) in the variable 𝑥. Given a sample (𝑥, 𝑦) ∼ 𝒟, let

𝐿𝑥(Θ) , (𝐹𝑥(Θ)− 𝑦)2 denote the empirical risk of a single sample.

We will often regard 𝐹𝑥 and 𝐿𝑥 as functions solely in c (resp. 𝑉) for a fixed choice of

𝑉 (resp. c): given a fixed 𝑉 (resp. a fixed c), define 𝐹 𝑉
𝑥 (c) and 𝐿𝑉𝑥 (c) (resp. 𝐹 c

𝑥 (𝑉) and

𝐿c
𝑥(𝑉)) in the obvious way.

Let∇𝐹𝑥(Θ) denote the gradient of 𝐹𝑥 as a function on Euclidean space, and let∇vec𝐹𝑥(Θ) ,

∇𝐹 𝑐
𝑥(𝑉) and ∇coef𝐹𝑥(Θ) , ∇𝐹 𝑉

𝑥 (c) denote its components corresponding to 𝑉 and c re-

spectively. We can compute their gradients, indeed all of their higher derivative tensors,

explicitly:

Proposition 2.5.3. For any 𝑥 ∈ R𝑛, 𝑎, 𝑏 ∈ Z≥0, and Θ = (𝑐, 𝑉),

𝜕𝑎+𝑏

𝜕𝑐𝐼(1) · · · 𝜕𝑐𝐼(𝑎)𝜕𝑉𝑖1,𝑗1 · · · 𝜕𝑉𝑖𝑏,𝑗𝑏
𝐹𝑥(Θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(︁∏︀𝑏
𝜈=1 𝑥𝑖𝜈

)︁
· 𝑝[𝑏](𝑉 ⊤𝑥) if 𝑎 = 0(︁∏︀𝑏

𝜈=1 𝑥𝑖𝜈

)︁
· 𝜑[𝑏]

𝐼 (𝑉
⊤𝑥) if 𝑎 = 1

0 otherwise

From Proposition 2.5.3 we conclude that

∇vec𝐹𝑥(Θ) = 𝑥 · (∇𝑝(𝑉 ⊤𝑥))⊤ and ∇coef𝐹𝑥(Θ) = {𝜑𝐼(𝑉 ⊤𝑥)}𝐼 .

It will be important to consider ∇vec
𝐹𝑥(Θ) , Π⊥

𝑉∇vec𝐹𝑥(Θ) the projection of ∇vec𝐹𝑥(Θ), to

the tangent space of G(𝑛, 𝑟) at the point [𝑉].

Lastly, we record here an elementary estimate which will be used repeatedly in the

proceeding sections and defer its proof to Appendix 2.11.1.

125

Lemma 2.5.4. For any integer 𝑚 ≥ 1 and ℓ = (ℓ1, ..., ℓ𝑚) ∈ [𝑑+ 1]𝑚,⃒⃒⃒⃒
⃒E
[︃
𝑚∏︁
𝜈=1

⟨︀
∇[ℓ𝜈]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ𝜈

⟩︀]︃⃒⃒⃒⃒⃒ ≤ 2𝑚·
(︀
2𝑚𝑑𝑟2

)︀𝑚(𝑑+1)/2·‖𝑉 *−𝑉 ‖
∑︀

𝜈 ℓ𝜈
𝐹 ·

(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂𝑚

2.5.2 Gradient Updates: Vanilla and Geodesic

GeoSGD alternates between one of two phases: updating c or updating 𝑉 . Our updates for c

are straightforward: at iterate Θ = (c, 𝑉) and given a batch of samples (𝑥0, 𝑦0), ..., (𝑥𝐵−1, 𝑦𝐵−1) ∼

𝒟, we fix 𝑉 and take a vanilla gradient descent step using 1
𝐵

∑︀𝐵−1
𝑖=0 𝐿𝑉𝑥𝑖(c). For learning rate

𝜂coef , this leads to the update

𝑐′𝐼 = 𝑐𝐼 − 2𝜂coef ·
1

𝐵

𝐵−1∑︁
𝑖=0

(𝐹𝑥𝑡(Θ)− 𝐹𝑥𝑖(Θ*)) · 𝜑𝐼(𝑉 ⊤𝑥𝑖) , 𝑐𝐼 −
1

𝐵

𝐵−1∑︁
𝑖=0

(︁
ΔΘ,𝑥𝑖

coef

)︁
𝐼
∀ 𝐼. (2.6)

The updates for 𝑉 will be less standard. At iterate Θ = (c, 𝑉), and given a sample (𝑥, 𝑦) ∼

𝒟, consider the geodesic Γ on G(𝑛, 𝑟) with initial point [𝑉] ∈ G(𝑛, 𝑟) and initial velocity

Γ̇(0) , Π⊥
𝑉∇𝐿c

𝑥(𝑉), where 𝐿c
𝑥(𝑉) , 𝐿𝑥(Θ).2

Define the vectors ℎΘ,𝑥 ∈ R𝑛,∇Θ,𝑥 ∈ R𝑟 by

ℎΘ,𝑥 , 2(𝐹𝑥(Θ)− 𝐹𝑥(Θ*)) · Π⊥
𝑉 · 𝑥 and ∇Θ,𝑥 , ∇𝑝(𝑉 ⊤𝑥) (2.7)

so that Γ̇(0) = ℎΘ,𝑥 · (∇Θ,𝑥)⊤. Geodesics on G(𝑛, 𝑟) are determined by the SVD of the initial

velocity Γ̇(0), which is simply given by

Γ̇(0) = 𝜎 · ̂︀ℎΘ,𝑥 · (̂︀∇Θ,𝑥)⊤,

where ̂︀ℎΘ,𝑥 , ℎΘ,𝑥

‖ℎΘ,𝑥‖
̂︀∇Θ,𝑥 ,

∇Θ,𝑥

‖∇Θ,𝑥‖
𝜎Θ,𝑥 , ‖ℎΘ,𝑥‖ · ‖∇Θ,𝑥‖.

2We emphasize that technically this is not well-defined as this velocity depends on the choice of represen-
tative 𝑉 ; indeed, 𝐹 c

𝑥 (𝑉) cannot be regarded as a function on G(𝑛, 𝑟), as c is fixed so that different rotations
of 𝑉 will actually yield different values. But as our goal is simply to produce an update rule, we can freely
ignore this point and see where this line of reasoning leads.

126

Walking along the geodesic with initial velocity Γ̇(0) for time 𝜂vec then yields the following

update rule (for the details, see the derivation of equation (2.65) in [EAS98]),

𝑉 ′ , 𝑉 −
(︀
cos
(︀
𝜎Θ,𝑥𝜂vec

)︀
− 1
)︀
·𝑉 · ̂︀∇Θ,𝑥(̂︀∇Θ,𝑥)⊤−sin (𝜎𝜂vec) ·̂︀ℎΘ,𝑥 (︁̂︀∇Θ,𝑥

)︁⊤
, 𝑉 −ΔΘ,𝑥

vec . (2.8)

One readily checks that the columns of 𝑉 ′ are orthonormal.

In Algorithm 7, we state our boosting algorithm GeoSGD, which is composed of two

alternating phases, SubspaceDescent and RealignPolynomial which execute the up-

dates (2.6) and (2.8) respectively. In the next two sections, we will analyze these two phases.

Algorithm 5: SubspaceDescent(𝒟, 𝑉 (0), c𝛿)
Input: Sample access to 𝒟; frame 𝑉 (0) ∈ St𝑛𝑟 ; coefficients c ∈ R𝑀 , failure

probability 𝛿
Output: 𝑉 (𝑇) ∈ St𝑛𝑟 which is slightly closer to the true subspace than 𝑉 , provided

(c, 𝑉 (0)) satisfies certain conditions (see Theorem 2.7.1 for formal
guarantees)

1 Define iteration count 𝑇 according to (2.22).
2 Define learning rate 𝜂vec according to (2.21).
3 Θ(0) ← (c, 𝑉 (0))
4 for 0 ≤ 𝑡 < 𝑇 do

5 Sample (𝑥𝑡, 𝑦𝑡) ∼ 𝒟 ̂︀ℎ← ℎΘ
(𝑡),𝑥𝑡

‖ℎΘ(𝑡),𝑥𝑡‖
and ̂︀∇ ← ∇Θ(𝑡),𝑥𝑡

‖∇Θ(𝑡),𝑥𝑡‖
// equation (2.7)

6 𝜎 ← ‖ℎΘ(𝑡),𝑥𝑡‖ · ‖∇Θ(𝑡),𝑥𝑡‖.; 𝑉 (𝑡+1) ← 𝑉 (𝑡) −ΔΘ(𝑡),𝑥𝑡

vec // equation (2.8)
7 Θ(𝑡+1) ← (c, 𝑉 (𝑡+1))

8 return 𝑉 (𝑇).

2.6 Guarantees for RealignPolynomial

Before we can describe our main result of this section, we require some setup.

Henceforth, fix a frame 𝑉 ∈ St𝑛𝑟 . The aim of RealignPolynomial is to approximately

find the 𝑟-variate, degree-𝑑 polynomial 𝑝 for which 𝑝(𝑉 ⊤𝑥) is closest to the true low-rank

polynomial. Suppose 𝑉 was 𝛽-far in subspace distance from the true subspace for some

𝛽, or equivalently, that there was some frame 𝑉 * ∈ St𝑛𝑟 for the true subspace for which

‖𝑉 − 𝑉 *‖𝐹 = 𝛽. By working with 𝑉 instead of 𝑉 *, we obviously cannot hope to produce

127

Algorithm 6: RealignPolynomial(𝒟, 𝑉, 𝜀, 𝛿)
Input: Sample access to 𝒟; 𝑉 ∈ St𝑛𝑟 ; target error 𝜀; failure probability 𝛿
Output: c ∈ R𝑀 for which (c(𝑇), 𝑉) is close to a realization of 𝒟 (see Section 2.6

for details)
1 Define batch size 𝐵 according to (2.11).
2 Define iteration count 𝑇 according to (2.10).
3 Define learning rate 𝜂coef according to (2.9).
4 c(0) ← 0.
5 Θ(0) ← (c(0), 𝑉).
6 for 0 ≤ 𝑡 < 𝑇 do
7 Sample (𝑥𝑡1, 𝑦

𝑡
1), ..., (𝑥

𝑡
𝐵, 𝑦

𝑡
𝐵) ∼ 𝒟.

8 For every 𝐼, 𝑐(𝑡+1)
𝐼 ← 𝑐

(𝑡)
𝐼 − 1

𝐵

∑︀𝐵−1
𝑖=0

(︁
Δ

Θ,𝑥𝑡𝑖
coef

)︁
𝐼

// equation (2.6)

9 c(𝑡+1) ←
{︁
𝑐
(𝑡+1)
𝐼

}︁
𝐼

and Θ(𝑡) ← (c(𝑡+1), 𝑉)

10 return c(𝑇).

Algorithm 7: GeoSGD(𝒟, 𝑉 (0), 𝜀, 𝛿)
Input: Sample access to 𝒟, 𝑉 (0) ∈ St𝑛𝑟 , target error 𝜀, failure probability 𝛿
Output: Θ = (c(𝑇), 𝑉 (𝑇)) ∈ℳ for which 𝑑𝑃 (𝑉 (𝑇), 𝑉 *) ≤ 𝜀 and ‖c− c*‖2 ≤ 𝜀 for

some realization (c*, 𝑉 *) of 𝒟
1 Define iteration count 𝑇 according to (2.5)
2 𝛿′ ← 𝛿/(2𝑇 + 1)
3 for 0 ≤ 𝑡 < 𝑇 do
4 c(𝑡) ← RealignPolynomial(𝒟, 𝑉 (𝑡), 𝜀/2, 𝛿′)

5 𝑉 (𝑡+1) ← SubspaceDescent(𝒟, 𝑉 (𝑡), c(𝑡), 𝛿′)

6 c(𝑇) ← RealignPolynomial(𝒟, 𝑉 (𝑇), 𝜀/2, 𝛿′)

7 return Θ , (c(𝑇), 𝑉 (𝑇)).

128

𝑝 for which 𝑝(𝑉 ⊤𝑥) is exactly equal to the true low-rank polynomial 𝑝*(𝑉 *⊤𝑥). But it is

reasonable to hope for a 𝑝 for which the error incurred by 𝑝 is comparable to the inherent

error 𝛽 contributed by the misspecified frame 𝑉 . The main result of this section is to show

that RealignPolynomial can find such a 𝑝 given 𝑉 :

Theorem 2.6.1. There are absolute constants 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8 > 0 such that the following

holds for any 𝜀, 𝛿 > 0. Let 𝑉 ∈ St𝑛𝑟 , and let (c*, 𝑉 *) be the realization of 𝒟 for which

𝑑𝑃 (𝑉, 𝑉
*) = ‖𝑉 − 𝑉 *‖𝐹 . Suppose 𝑑𝑃 (𝑉, 𝑉 *) ≤ (𝑐9 · 𝑑𝑟3)−(𝑑+1)/2.

Define c(𝑇) = RealignPolynomial(𝒟, 𝑉, 𝜀, 𝛿), where in the specification of Realign-

Polynomial we take

𝜂coef ,
(︀
𝑐6𝑟𝑑

4
)︀𝑑+1 (2.9)

𝑇 , 𝑐5 ·
(︀
𝑐6𝑟𝑑

4
)︀𝑑+1 · log(1/𝜀). (2.10)

𝐵 , (𝑐8 · log(𝑇/𝛿))2𝑑. (2.11)

Then with probability at least 1− 𝛿, we have that

‖c(𝑇) − c*‖2 ≤
(︀
1 + 𝑐7 · (𝑐6𝑑𝑟4)−(𝑑+1)/2

)︀
· {𝜀 ∨ 𝑑𝑃 (𝑉, 𝑉 *)}. (2.12)

Furthermore, RealignPolynomial requires sample complexity

𝑁 , 𝑂(𝐵 · 𝑇) = poly (log(1/𝛿), 𝑟, 𝑑, log log(1/𝜀))𝑑 · log(1/𝜀)

and runs in time 𝑛 · 𝑟𝑂(𝑑) ·𝑁 .

Before turning to the proof, we set some conventions. Henceforth, fix any 𝑉, 𝑉 * satis-

fying the hypotheses of Theorem 2.6.1. Given coefficients c corresponding to the 𝑟-variate

polynomial 𝑝, define δc , 𝑝* − 𝑝. In light of (2.12), it will be convenient in our analysis to

quantify, for an iterate c(𝑡), the extent to which ‖c(𝑡) − c*‖2 differs from 𝑑𝑃 (𝑉, 𝑉
*) via the

(unknown) parameter

𝜌c(𝑡) ,
𝑑𝑃 (𝑉, 𝑉

*)

‖c(𝑡) − c*‖2
.

For both δc and 𝜌c, we will sometimes omit the subscript when the context is clear.

Note that we would like the eventual output c(𝑇) of RealignPolynomial to have large

129

𝜌. The proof of Theorem 2.6.1 thus comes in two parts: 1) when 𝜌c(𝑡) is small, the next

𝜌c(𝑡+1) is larger by some margin, 2) when 𝜌c(𝑡) is large, 𝜌c(𝑡+1) may be smaller but will still be

no smaller than the bound we are targeting in (2.12). Formally:

Theorem 2.6.2. Suppose 𝑑𝑃 (𝑉, 𝑉 *) ≤ 𝑂(𝑑𝑟3)−(𝑑+1)/2. For any 𝛿 > 0, let c be an iterate in

the execution of RealignPolynomial, and let c′ be the next iterate, given by

𝑐′ , 𝑐− 1

𝐵

𝐵−1∑︁
𝑖=0

ΔΘ,𝑥𝑖
coef

as defined in (2.6) for iid samples (𝑥0, 𝑦0), ..., (𝑥𝐵−1, 𝑦𝐵−1) ∼ 𝒟. If 𝜂coef , Θ(𝑑𝑟4)−𝑑−1, then

with probability at least 1− 𝛿 over the samples {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝐵],

1. If 𝜌c ≤ 1, then 𝜌c′ ≥ (1 + Ω(𝑑𝑟4)−𝑑−1) · 𝜌c.

2. If 𝜌c ≥ 1 then 𝜌c′ ≥ 1−𝑂(𝑑𝑟4)−(𝑑+1)/2.

We quickly verify that Theorem 2.6.2 implies Theorem 2.6.1.

Proof of Theorem 2.6.1. Take any iterate c(𝑡) in the execution of RealignPolynomial.

Taking 𝛿 to be 1/𝑇 times the error probability in Theorem 2.6.2, we have by a union bound

over all 𝑇 iterations of RealignPolynomial that with probability at least 1− 𝛿,

𝜌c(𝑡+1) ≥
{︀
1−𝑂(𝑑𝑟4)−(𝑑+1)/2

}︀
∧
{︀
𝜌c(𝑡) · (1 + Ω(𝑑𝑟4)−𝑑−1)

}︀
,

for every 0 ≤ 𝑡 < 𝑇 , which can be unrolled to give

𝜌c(𝑇) ≥
{︀
1−𝑂(𝑑𝑟4)−(𝑑+1)/2

}︀
∧
{︀
𝜌c(0) · (1 + Ω(𝑑𝑟4)−𝑑−1)𝑇

}︀
.

We can rewrite this inequality as

‖c(𝑡) − c*‖2 ≤
{︂

𝑑𝑃 (𝑉, 𝑉
*)

1−𝑂(𝑑𝑟4)−(𝑑+1)/2

}︂
∨
{︀
‖c(0) − c*‖2 · (1 + Ω(𝑑𝑟4)−𝑑−1)−𝑇

}︀
.

As we are initializing c(0) = 0, we have that ‖c(0) − c*‖2 = ‖c*‖2 ≤ 𝑟. The theorem

follows from taking 𝑇 = Θ(𝑑𝑟4)𝑑+1 · log(𝑟/𝜀) = Θ(𝑑𝑟4)𝑑+1 · log(1/𝜀).

130

As Theorem 2.6.2 suggests, we just need to analyze RealignPolynomial on a per-

iterate basis. Henceforth, fix an iterate c; we will sometimes refer to the pair (c, 𝑉) as Θ.

Let (𝑥0, 𝑦0), ..., (𝑥𝐵−1, 𝑦𝐵−1) ∼ 𝒟 be the batch of samples drawn for the next iteration of

RealignPolynomial.

We first show that it suffices to prove that with high probability, the step − 1
𝐵

∑︀𝐵−1
𝑖=0 Δ𝑥𝑖

coef

is both 1) correlated with the direction c − c* in which we want to move, and 2) not too

large. 1) and 2) can be interpreted respectively as curvature and smoothness of the gradient

of the empirical risk in a neighborhood of our current iterate. Quantitatively, we claim that

it suffices to show

Lemma 2.6.3 (Local Curvature with High Probability). For any 𝛿 > 0 and 𝛾 > 0, if

𝐵 = Ω(log(1/𝛿))2𝑑 · 𝛾−2, then we have that

1

𝐵

𝐵−1∑︁
𝑖=0

⟨
Δ𝑥𝑡

coef , c− c*
⟩
≥ 𝜐cuc · 𝜂coef · ‖c− c*‖22 (2.13)

for

𝜐cuc , 1− 𝛾𝜌c − ‖c− c*‖2 ·
(︀
𝑂(𝑟3/2𝑑) · 𝜌2c +𝑂(𝑑𝑟3)(𝑑+1)/2 · 𝜌c(1 + 𝜌c)

)︀
with probability at least 1− 𝛿.

Lemma 2.6.4 (Local Smoothness With High Probability). For any 𝛿 > 0, if 𝐵 = Ω(log(1/𝛿))2𝑑,

then we have that⃦⃦⃦⃦
⃦ 1𝐵

𝐵−1∑︁
𝑖=0

Δ𝑥𝑖
coef

⃦⃦⃦⃦
⃦
2

2

≤ 𝜐smc · 𝜂2coef‖c− c*‖22 for 𝜐smc , 𝑂(𝑑𝑟4)𝑑+1 · (1 ∨ 𝜌2c).

with probability at least 1− 𝛿.

We verify that Lemmas 2.6.3 and 2.6.4 are enough to prove Theorem 2.6.2.

Proof of Theorem 2.6.2. (Part 1) By (2.6) we have

‖c′ − c*‖22 − ‖c− c*‖22 =

⃦⃦⃦⃦
⃦ 1𝐵

𝐵−1∑︁
𝑖=0

Δ𝑥𝑖

coef

⃦⃦⃦⃦
⃦
2

2

− 2

⟨
1

𝐵

𝐵−1∑︁
𝑖=0

Δ𝑥𝑖

coef , c− c*

⟩
.

131

If the events of Lemmas 2.6.3 and 2.6.4 occur, then we get that

‖c′ − c*‖22 − ‖c− c*‖22 ≤ ‖c− c*‖22 ·
(︀
𝜂coef𝜐

cu
c − 𝜂2coef𝜐smc

)︀
,

If 𝜌c ≤ 1, then we have that

𝜐cuc ≥ 1− 𝛾 − ‖c− c*‖2 ·𝑂(𝜌c) ·𝑂(𝑑𝑟3)(𝑑+1)/2 = 1− 𝛾 −𝑂(𝑑𝑃 (𝑉, 𝑉 *)) ·𝑂(𝑑𝑟3)(𝑑+1)/2,

so if we take 𝛾 = 1/4 and 𝑑𝑃 (𝑉, 𝑉
*)2 ≤ 𝑂(𝑑𝑟3)−(𝑑+1)/2, then we ensure that 𝜐cuc ≥ 1/2.

Additionally, 𝜌c ≤ 1 implies that 𝜐smc = 𝑂(𝑑𝑟4)𝑑+1. So if we take 𝜂coef = Θ(𝑑𝑟4)−𝑑−1, we

conclude that

‖c′ − c*‖22 ≤ (1− 𝜂coef/3) · ‖c− c*‖22 ⇐⇒ 𝜌c′ ≥ 𝜌c · (1− 𝜂coef/3)−1/2

(Part 2) By triangle inequality,

‖c′ − c*‖2 ≤ ‖c− c*‖2 +

⃦⃦⃦⃦
⃦ 1𝐵

𝐵−1∑︁
𝑖=0

Δ𝑥𝑖

coef

⃦⃦⃦⃦
⃦
2

.

If Lemma 2.6.4 occurs, then we get that

‖c′ − c*‖2 ≤ ‖c− c*‖2 · (1 + 𝜂coef ·
√︀
𝜐smc) = ‖c− c*‖2 ·

(︀
1 + 𝜂coef ·𝑂(𝑑𝑟4)(𝑑+1)/2 · 𝜌c

)︀
,

or equivalently,

𝜌c′ ≥ 𝜌c ·
(︀
1 + 𝜂coef ·𝑂(𝑑𝑟4)(𝑑+1)/2 · 𝜌c

)︀−1
. (2.14)

For our choice of 𝜂coef = Θ(𝑑𝑟4)−𝑑−1, note that the quantity on the right-hand side of (2.14),

as a function of 𝜌c, has minimum value
(︀
1 +𝑂(𝑑𝑟4)−(𝑑+1)/2

)︀−1 over 𝜌c ∈ [1,∞), attained by

𝜌c = 1, from which Part 2 of the theorem follows.

We now proceed to show local curvature and smoothness.

132

2.6.1 Local Smoothness

In this section we show Lemma 2.6.4.

First, by Jensen’s, ⃦⃦⃦⃦
⃦ 1𝐵

𝐵−1∑︁
𝑖=0

Δ𝑥𝑖
coef

⃦⃦⃦⃦
⃦
2

2

≤ 1

𝐵

𝐵−1∑︁
𝑖=0

‖Δ𝑥𝑖

coef‖22,

so to show Lemma 2.6.4 it suffices to bound the expectation and variance of the random

variable ‖Δ𝑥
coef‖22 with respect to 𝑥 ∼ 𝒩 (0, Id𝑛) and invoke Lemma 1.3.16.

We will need the following helper lemma which is a straightforward consequence of

Lemma 2.5.4 and whose proof we defer to Appendix 2.10.1.

Lemma 2.6.5. For any Θ = (c, 𝑉) and Θ* = (c*, 𝑉 *), E[(𝐹𝑥(Θ)−𝐹𝑥(Θ*))4]1/2 ≤ 𝑂(𝑑𝑟3)𝑑+1·

(‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2.

We now use this to bound the expectation and variance of ‖Δ𝑥
coef‖22.

Lemma 2.6.6. E[‖Δ𝑥
coef‖22] ≤ 𝜂2coef ·𝑂(𝑑𝑟4)𝑑+1 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2.

Proof. By Cauchy-Schwarz,

1

4𝜂2coef
E
[︀
‖Δ𝑥

coef‖22
]︀
≤ E

[︀
(𝐹𝑥(Θ)− 𝐹𝑥(Θ*))4

]︀1/2 · E
⎡⎣(︃∑︁

𝐼

𝜑𝐼(𝑉
⊤𝑥)2

)︃2
⎤⎦1/2

≤ 𝑂(𝑑𝑟4)𝑑+1 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2 ,

where the second step follows by Lemma 2.6.5 and Lemma 2.3.11.

Lemma 2.6.7. E[‖Δ𝑥
coef‖42] ≤ 𝜂4coef ·𝑂(𝑑𝑟4)2𝑑+2 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)4.

Proof. Note that (𝐹𝑥(Θ) − 𝐹𝑥(Θ*))2 and
∑︀

𝐼 𝜑𝐼(𝑉
⊤𝑥)2 are degree-2𝑑 polynomials in 𝑥. So

by Cauchy-Schwarz,

1

16𝜂4coef
E
[︀
‖Δ𝑥

coef‖42
]︀
≤ E

[︀
(𝐹𝑥(Θ)− 𝐹𝑥(Θ*))8

]︀1/2 · E
⎡⎣(︃∑︁

𝐼

𝜑𝐼(𝑉
⊤𝑥)2

)︃4
⎤⎦1/2

≤ 34𝑑 · E
[︀
(𝐹𝑥(Θ)− 𝐹𝑥(Θ*))4

]︀
· E

⎡⎣(︃∑︁
𝐼

𝜑𝐼(𝑉
⊤𝑥)2

)︃2
⎤⎦

133

≤ 𝑂(𝑑𝑟4)2𝑑+2 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)4 ,

where the second step follows by Fact 1.3.15, and the third step follows by Lemmas 2.6.5

and 2.3.11.

We are now ready to prove Lemma 2.6.4.

Proof of Lemma 2.6.4. Note that ‖Δ𝑥
coef‖22 is a polynomial of degree 2𝑑 in 𝑥. So by Lemma 1.3.16,

Lemma 2.6.6, and Lemma 2.6.7, we see that

1

𝐵

𝐵−1∑︁
𝑖=0

‖Δ𝑥𝑖‖22 ≤ 𝜂2coef ·𝑂(𝑑𝑟4)𝑑+1 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2 ·
(︂
1 +

1√
𝐵
·𝑂(log(1/𝛿))𝑑

)︂
,

so the lemma follows by recalling that ‖𝑉 − 𝑉 *‖𝐹 = 𝑑𝑃 (𝑉, 𝑉
*) so that

(‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2 ≤ 4‖c− c*‖22 · (1 ∨ 𝜌2c)

and taking 𝐵 = Ω(log(1/𝛿))2𝑑.

We note that this is one of the first of many places where the fact that one cannot obtain

a c whose error is much smaller than the “misspecification error” 𝑑𝑃 (𝑉, 𝑉 *) incurred by the

subspace 𝑉 manifests: here, our bounds on the magnitudes of the gradient steps ‖Δ𝑥
coef‖

inherently depend on 𝑑𝑃 (𝑉, 𝑉
*), yet we require that the gradient steps have norm bounded

by ‖c− c*‖.

2.6.2 Local Curvature

We begin by outlining our argument for proving Lemma 2.6.3. It will be helpful to first

decompose ⟨Δcoef , c− c*⟩ into “dominant” and “non-dominant” terms.

Proposition 2.6.8. For every monomial index 𝐼 and any 𝑥 ∈ R𝑛, let

(Δ′
coef

𝑥
)𝐼 , −2𝜂coef ·⟨∇𝐹𝑥(Θ),Θ*−Θ⟩·𝜑𝐼(𝑉 ⊤𝑥) and (Δ′′

coef
𝑥
)𝐼 , −2𝜂coef ·R𝑥 ·𝜑𝐼(𝑉 ⊤𝑥) ∀ 𝐼.

Then Δ𝑥
coef = Δ′

coef
𝑥 +Δ′′

coef
𝑥.

134

Proof. Δ′
coef

𝑥 and Δ′′
coef

𝑥 correspond to the first-order and higher-order terms in the Taylor

expansion of Δ𝑥
coef . Concretely, recall that

(Δ𝑥
coef)𝐼 = 2𝜂coef · (𝐹𝑥(Θ)− 𝐹𝑥(Θ*)) · 𝜑𝐼(𝑉 ⊤𝑥).

We can decompose Δ𝑥
coef by Taylor expanding the factor 𝐹𝑥(Θ)− 𝐹𝑥(Θ*) around Θ* = Θ to

get

𝐹𝑥(Θ
)− 𝐹𝑥(Θ) = ⟨∇𝐹𝑥(Θ),Θ −Θ⟩+RΘ,𝑥 for RΘ,𝑥 ,

𝑑+1∑︁
ℓ=2

1

ℓ!

⟨︀
∇[ℓ]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ

⟩︀
,

(2.15)

from which the proposition follows.

Motivated by Proposition 2.6.8, for any 𝑥 ∈ R𝑛 define

𝑌 𝑥 , ⟨Δ′
coef

𝑥
, c− c*⟩, and 𝐸𝑥 , ⟨Δ′′

coef
𝑥
, c− c*⟩.

To show Lemma 2.6.3, we will show that the random variables 1
𝐵

∑︀𝐵−1
𝑖=0 𝑌 𝑥𝑖 and 1

𝐵

∑︀𝐵−1
𝑖=0 𝐸𝑥𝑖

are respectively large and negligible with high probability. Eventually we will invoke the

concentration inequalities of Lemmas 1.3.16 and 1.3.33 to control them, so we will compute

the expectations (Section 2.6.2) and variances (Section 2.6.2) of their summands next.

Local Curvature in Expectation

In this section we give bounds for 𝜇𝑌 , E𝑥[𝑌 𝑥] and 𝜇𝐸 , E𝑥[𝐸𝑥] in the following two

lemmas. Throughout this section, we will omit the superscript 𝑥 when the context is clear.

Lemma 2.6.9. 𝜇𝑌 ≥ 2𝜂coef · ‖c− c*‖2 ·
(︀
‖c− c*‖2 −𝑂(𝑟3/2𝑑) · 𝑑𝑃 (𝑉, 𝑉 *)2

)︀
.

Lemma 2.6.10. |𝜇𝐸| ≤ 2𝜂coef ·𝑂(𝑑𝑟3)(𝑑+1)/2 · 𝑑𝑃 (𝑉, 𝑉 *) · ‖c− c*‖2 · (𝑑𝑃 (𝑉, 𝑉 *) + ‖c− c*‖2).

In this section we will give the proof of Lemma 2.6.9; we will defer the proof of Lemma 2.6.10

to Appendix 2.10.2.

135

Proof of Lemma 2.6.9. We have that

⟨Δ′
coef , c− c*⟩ = −2𝜂coef⟨∇𝐹𝑥(Θ),Θ* −Θ⟩ · δ(𝑉 ⊤𝑥) (2.16)

Writing

⟨∇𝐹𝑥(Θ),Θ* −Θ⟩ = ⟨∇vec𝐹𝑥(Θ), 𝑉 * − 𝑉 ⟩+ ⟨∇coef𝐹𝑥(Θ), c* − c⟩

= 𝑥⊤(𝑉 * − 𝑉)∇+ δ(𝑉 ⊤𝑥)

= 𝑥⊤Π⊥
𝑉 (𝑉

* − 𝑉)∇+ 𝑥⊤Π𝑉 (𝑉
* − 𝑉)∇+ δ(𝑉 ⊤𝑥)

= 𝑥⊤Π⊥
𝑉 𝑉

*∇+ 𝑥⊤Π𝑉 · (𝑉 * − 𝑉)∇+ δ(𝑉 ⊤𝑥), (2.17)

we see that (2.16) is given by 2𝜂coef times

(︀
δ(𝑉 ⊤𝑥)

)︀2⏟ ⏞
A

+ δ(𝑉 ⊤𝑥) ·
(︀
𝑥⊤Π𝑉 (𝑉

* − 𝑉)∇
)︀⏟ ⏞

B

+ δ(𝑉 ⊤𝑥) ·
(︀
𝑥⊤Π⊥

𝑉 𝑉
*∇
)︀⏟ ⏞

C

(2.18)

Note that 𝑥⊤Π𝑉 and 𝑥⊤Π⊥
𝑉 are independent Gaussian vectors with mean zero and co-

variances Π𝑉 and Π⊥
𝑉 respectively. So we readily conclude that

Observation 2.6.11. For any 𝑉 , the expectation of C with respect to 𝑥 vanishes.

The following is also immediate:

Observation 2.6.12. E[A] = E𝑔∼𝒩 (0,Id𝑟)[δ(𝑔)
2] = ‖c− c*‖22.

We now turn to bounding E[B]. We will make use of the following helper bound whose

proof we defer to Appendix 2.10.3

Proposition 2.6.13. If ‖𝑉 − 𝑉 *‖ = 𝑑𝑃 (𝑉, 𝑉
*), then

E𝑔
[︁(︀
𝑥⊤Π𝑉 (𝑉

* − 𝑉)∇𝑝(𝑉 ⊤𝑥)
)︀2]︁1/2 ≤ 𝑑𝑃 (𝑉, 𝑉

*)2 ·𝑂(𝑟3/2𝑑).

Lemma 2.6.14. E[B] ≤ 𝑂(𝑟3/2𝑑) · 𝑑𝑃 (𝑉, 𝑉 *)2 · ‖c− c*‖2.

136

Proof. Note that

|E[B]| =
⃒⃒
E
[︀
δ(𝑉 ⊤𝑥) ·

(︀
𝑥⊤Π𝑉 (𝑉

* − 𝑉)∇𝑝(𝑉 ⊤𝑥)
)︀]︀⃒⃒

≤ E𝑔
[︀
δ(𝑔)2

]︀1/2 · E𝑔 [︁(︀𝑔⊤𝑉 ⊤(𝑉 * − 𝑉)∇𝑝(𝑔)
)︀2]︁1/2

≤ ‖c− c*‖2 · 𝑑𝑃 (𝑉, 𝑉 *)2 ·𝑂(𝑟3/2𝑑),

where the second step follows by Cauchy-Schwarz, and the third by Proposition 2.6.13.

Lemma 2.6.9 now follows from (2.18), Observations 2.6.11 and 2.6.12, and Lemma 2.6.14.

Local Curvature with High Probability

In this section, we complete the proof of Lemma 2.6.3 by establishing high-probability bounds

for 𝑌 𝑥 and 𝐸𝑥. That is, we argue that with high probability, the dominant term given by 𝑌

is large and the error from Taylor approximation is small. Specifically, we will show:

Lemma 2.6.15. For any 𝛿 > 0 and 𝛾 > 0, if 𝐵 = Ω(log(1/𝛿))𝑑 ·𝑂(𝛾−2), then

1

𝐵

𝐵−1∑︁
𝑖=1

𝑌 𝑥𝑖 ≥ 𝜂coef
(︀
‖c− c*‖22 −𝑂(𝑟3/2𝑑) · 𝑑𝑃 (𝑉, 𝑉 *)2 · ‖c− c*‖2 − 𝛾 · 𝑑𝑃 (𝑉, 𝑉 *) · ‖c− c*‖2

)︀

Lemma 2.6.16. For any 𝛿 > 0, if 𝐵 = Ω(log(1/𝛿))2𝑑, then

⃒⃒⃒⃒
⃒ 1𝐵

𝐵−1∑︁
𝑖=0

𝐸𝑥𝑖

⃒⃒⃒⃒
⃒ ≤ 𝜂coef ·𝑂(𝑑𝑟3)(𝑑+1)/2 · 𝑑𝑃 (𝑉, 𝑉 *) · ‖c− c*‖2 · (𝑑𝑃 (𝑉, 𝑉 *) + ‖c− c*‖2)

We defer their proofs to Appendices 2.10.4 and 2.10.5 respectively. We can finally deduce

Lemma 2.7.3, completing the proof of Theorem 2.6.2 and thus Theorem 2.6.1.

Proof of Lemma 2.7.3. By Lemmas 2.6.15 and 2.6.16, and the earlier calculation showing

that for any 𝑥, ⟨Δ𝑥
coef , 𝑉 − 𝑉 *⟩ = 𝑌 𝑥 + 𝐸𝑥, we see that under our choice of 𝐵, (2.13) holds

with probability 1 − 3𝛿. By replacing 3𝛿 with 𝛿, and absorbing the constant factors, the

lemma follows.

137

2.7 Guarantees for SubspaceDescent

Henceforth, fix a set of coefficients c ∈ R𝑀 . In contrast with RealignPolynomial, the aim

of SubspaceDescent is to take a frame 𝑉 (0) of a subspace which is somewhat close to the

true subspace and refine it to some 𝑉 (𝑇) which is slightly closer, using only the misspecified

coefficients c. It turns out that if the misspecification error of c is comparable to the subspace

distance from 𝑉 (0) to the true subspace, SubspaceDescent can indeed accomplish this,

and this is the main result of this section.

Theorem 2.7.1. There are absolute constants 𝑐10, 𝑐11 > 0 and 𝑐12 < 1/10 such that the

following holds for any 𝛿 > 0. Let 𝑉 (0) ∈ St𝑛𝑟 , and let (c*, 𝑉 *) be the realization of 𝒟 for

which 𝑑𝑃 (𝑉, 𝑉 *) = ‖𝑉 − 𝑉 *‖𝐹 . Suppose

𝑑𝑃 (𝑉
(0), 𝑉 *) ≤ 𝑐12 · 𝜈cond ·𝑂(𝑑𝑟3)−𝑑−2, (2.19)

Let c be a set of coefficients satisfying

𝑑𝑃 (𝑉
(0), 𝑉 *) ≥ 1

2
‖c− c*‖2 (2.20)

Define 𝑉 (𝑇) = SubspaceDescent(𝒟, 𝑉 (0), c, 𝛿), where in the specification of SubspaceDes-

cent we take

𝜂vec ,
𝜈cond
𝑇 · 𝑛

(︀
𝑐11 · 𝑑𝑟3 ln(𝑇/𝛿)

)︀−𝑑−2 (2.21)

𝑇 ,

(︂
𝑟

𝜈cond

)︂2

· (𝑐10 · 𝑑 · log(1/𝛿))2𝑐1𝑑 . (2.22)

Then with probability at least 1− 𝛿, we have that

1− 𝑑𝑃 (𝑉
(𝑇), 𝑉 *)2

𝑑𝑃 (𝑉 (0), 𝑉 *)2
≥ 𝜈cond

𝑛
· poly(ln(1/𝜈cond), 𝑟, 𝑑, ln(1/𝛿))−𝑑.

Furthermore, SubspaceDescent draws 𝑁 , 𝑂(𝑇) samples and runs in time 𝑛 · 𝑟𝑂(𝑑) ·𝑁 .

Henceforth, let 𝛿, 𝑉 (0), 𝑉 *, c, c*, 𝑇, 𝜂vec satisfy the hypotheses of Theorem 2.7.1.

As discussed in Section 2.2.2, a single execution of SubspaceDescent should be thought

of as a single step of stochastic gradient descent over a batch of size 𝑇 . The only difference

138

lies in the fact that the empirical risk we work with in each iteration of SubspaceDescent

is slightly different, as our subspace estimate 𝑉 (𝑡) continues to update by a small amount. So

just as we analyzed the individual steps of RealignPolynomial in Lemma 2.6.2 via local

curvature and smoothness estimates, we would like to do the same for an entire execution of

SubspaceDescent. That is, we want to show that with high probability, the steps −ΔΘ𝑡,𝑥𝑡

vec

are 1) bounded, and 2) each correlated with the direction 𝑉 * − 𝑉 (𝑡) in which we want to

move. Quantitatively, we claim that it suffices to show

Lemma 2.7.2 (Local Smoothness With High Probability).

‖𝑉 (0) − 𝑉 (𝑇)‖2𝐹 ≤ 𝜂2vec ·𝑂(𝑑𝑟3 ln(𝑇/𝛿))𝑑+2 ·𝑂(𝑛) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2.

with probability at least 1− 𝛿.

Lemma 2.7.3 (Local Curvature with High Probability).
𝑇−1∑︁
𝑡=0

⟨
ΔΘ(𝑡),𝑥𝑡

vec , 𝑉 (𝑡) − 𝑉 *
⟩
≥ 𝑇 · 𝜂vec · (𝜈cond/4) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

with probability at least 1− 𝛿.

We verify that Lemmas 2.7.3 and 2.7.2 are enough to prove Theorem 2.7.1.

Proof of Theorem 2.7.1. For every 0 ≤ 𝑡 < 𝑇 , we have

‖𝑉 (𝑡+1) − 𝑉 *‖2𝐹 − ‖𝑉 (𝑡) − 𝑉 *‖2𝐹 = ‖ΔΘ(𝑡),𝑥𝑡

vec ‖2𝐹 − 2
⟨
ΔΘ(𝑡),𝑥𝑡

vec , 𝑉 (𝑡) − 𝑉 *
⟩
. (2.23)

If the event of Lemma 2.7.3 holds, then

𝑇−1∑︁
𝑡=0

⟨
ΔΘ(𝑡),𝑥𝑡

vec , 𝑉 (𝑡) − 𝑉 *
⟩
≥ 𝑇 · (𝜈cond/4) · 𝜂vec · 𝑑𝑃 (𝑉 (0), 𝑉 *)2.

If the event of Lemma 2.7.2 holds, then

𝑇−1∑︁
𝑡=0

‖ΔΘ(𝑡),𝑥𝑡

vec ‖2𝐹 ≤ 𝑇 · 𝜂2vec ·𝑂(𝑑𝑟3 ln(𝑇/𝛿))𝑑+2 ·𝑂(𝑛) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

≤ 𝑂
(︀
𝜈cond · 𝜂vec · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

)︀
.

139

where the last step follows by the choice of 𝜂vec in (2.21), and the constant factor in the

last expression can be made arbitrarily small. By summing (2.23) over 𝑡, telescoping, and

recalling that ‖𝑉 (0) − 𝑉 *‖2𝐹 = 𝑑𝑃 (𝑉
(0), 𝑉 *)2, we conclude that

‖𝑉 (𝑇) − 𝑉 *‖22 − 𝑑𝑃 (𝑉 (0), 𝑉 *)2 ≤ −𝑇 · (𝜈cond/5) · 𝜂vec · 𝑑𝑃 (𝑉 (0), 𝑉 *)2,

from which we get, because 𝑑𝑃 (𝑉 (𝑇), 𝑉 *) ≤ ‖𝑉 (𝑇) − 𝑉 *‖𝐹 , that

1− 𝑑𝑃 (𝑉
(𝑇), 𝑉 *)2

𝑑𝑃 (𝑉 (0), 𝑉 *)2
≥ 𝑇 · (𝜈cond/5) · 𝜂vec.

The claim follows by substituting the choice of 𝜂vec and 𝑇 in (2.21) and (2.22).

We now proceed to show Lemma 2.7.2 and 2.7.3.

2.7.1 Local Smoothness

In this section we establish Lemma 2.7.2. We also show that 𝑑𝑃 (𝑉 (𝑡), 𝑉 *) does not change

much, both in expectation (Lemma 2.7.7) and with high probability (Lemma 2.7.6), as 𝑡

varies. While we have already seen that Lemma 2.7.2 is needed to prove Theorem 2.7.1,

Lemmas 2.7.6 and 2.7.7 will be crucial to our arguments in later sections, where we argue

that at each step 𝑡 we make progress scaling with the distance 𝑑𝑃 (𝑉 (𝑡), 𝑉 *) and thus need

that this distance is comparable to the initial distance 𝑑𝑃 (𝑉 (0), 𝑉 *).

For a fixed Θ, we will first show a high-probability bound on the norm of ΔΘ,𝑥
vec , that is,

we bound the size of the step made in a single iteration inside SubspaceDescent.

Where the context is clear, we will suppress superscript Θ, 𝑥. Then very naively, using

the inequalities 1− cos(𝑥) ≤ 𝑥 and | sin(𝑥)| ≤ 𝑥 for all 𝑥 ≥ 0, we have

‖Δvec‖𝐹 ≤ (1− cos(𝜎𝜂vec))(2
√
𝑟) + | sin(𝜎𝜂vec)| ≤ 2

√
𝑟 · 𝜎𝜂vec + 𝜎𝜂vec ≤ 3

√
𝑟 · 𝜎𝜂vec. (2.24)

We first bound the moments of 𝜎2.

Lemma 2.7.4. For all integers 𝑞 ≥ 1, E[𝜎2𝑞]1/𝑞 ≤ 𝑂(𝑛𝑟𝑑)·𝑂(𝑞2𝑑𝑟3)𝑑+2·(‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2.

140

Proof. Recall that 𝜎 = 2(𝐹𝑥(Θ)− 𝐹𝑥(Θ*)) · ‖Π⊥
𝑉 𝑥‖2 · ‖∇𝑝(𝑉 ⊤𝑥)‖2. So by Cauchy-Schwarz,

E[𝜎2𝑞]1/𝑞 ≤ 4E[(𝐹𝑥(Θ)− 𝐹𝑥(Θ*))4𝑞]1/2𝑞 · E
[︀
‖Π⊥

𝑉 𝑥‖
4𝑞
2 · ‖∇𝑝(𝑉 ⊤𝑥)‖4𝑞2

]︀1/2𝑞
. (2.25)

The second factor in (2.25) is simply

E𝑔′∼𝒩 (0,Π⊥
𝑉)[‖𝑔′‖

4𝑞
2]1/2𝑞 · E𝑔∼𝒩 (0,𝐼𝑑𝑟)[‖∇𝑝(𝑔)‖

4𝑞
2]1/2𝑞

≤ ((2𝑞 − 1) · (𝑛− 𝑟 + 1)) ·
(︀
𝑟𝑑 · (4𝑞 − 1)𝑑 · V[𝑝]

)︀
≤ 𝑂(𝑛) · 𝑞𝑟𝑑 · (4𝑞)𝑑 · V[𝑝]

≤ 𝑂(𝑛) · 𝑟𝑑 · (4𝑞)𝑑+1,

where in the first step we used Corollary 1.3.17 and Lemma 2.3.8, and in the last step we

used Fact 2.3.2 and triangle inequality to bound V[𝑝] = 𝑂(1).

For the first factor in (2.25), we have that

E
[︀
(𝐹𝑥(Θ)− 𝐹𝑥(Θ*))4𝑞

]︀1/2𝑞 ≤ (2𝑞 − 1)𝑑 · E
[︀
(𝐹𝑥(Θ)− 𝐹𝑥(Θ*))4

]︀1/2
≤ 𝑂(𝑞𝑑𝑟3)𝑑+1 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2

by Fact 1.3.15 and Lemma 2.6.5 respectively, from which the claim follows.

As a result, the random variable 𝜎2 enjoys sub-Weibull-type concentration.

Corollary 2.7.5. For any 0 < 𝛿′ < 1, let 𝜏 = Ω(ln(1/𝛿′))𝑑+2. Then

Pr
[︀
𝜎2 ≥ 𝜏 · Ω(𝑛) · Ω(𝑑𝑟3)𝑑+2 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2

]︀
≤ 𝛿′.

Proof. Let 𝛾 , 𝑛 · 𝑂(𝑟𝑑3)𝑑+2 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c − c*‖2)2. We wish to apply Lemma 1.3.16

to 𝜎2, which is a degree-4𝑑 polynomial in 𝑥. By Lemma 2.7.4 above, E[𝜎2] ≤ 𝑂(𝛾) and

V[𝜎2] ≤ E[𝜎4] ≤ 𝑂(𝛾2). By Lemma 1.3.16 specialized to 𝑇 = 1,

Pr
[︀
𝜎2 ≥ 𝑂(log(1/𝛿′))2𝑑 · 𝛾

]︀
≤ 𝛿′,

141

from which the lemma follows.

From (2.24) we conclude that for any 0 < 𝛿 < 1,

‖Δvec‖𝐹 ≤ 3
√
𝑟 ·𝜂vec ·𝑂(ln(1/𝛿))(𝑑+2)/2 ·𝑂(

√
𝑛)·𝑂(𝑑𝑟3)(𝑑+2)/2 ·(‖𝑉 −𝑉 *‖𝐹+‖c−c*‖2) (2.26)

with probability at least 1− 𝛿.

Now consider the sequence of iterates {Θ(𝑡)}0≤𝑡≤𝑇 in SubspaceDescent. In this sub-

section alone, for convenience define

𝛼 , 3
√
𝑟 · 𝜂vec ·𝑂(ln(1/𝛿))(𝑑+2)/2 ·𝑂(

√
𝑛) ·𝑂(𝑑𝑟3)(𝑑+2)/2

For every 0 ≤ 𝑡 < 𝑇 , let ℰ𝑡 be the event that (2.26) holds for ΔΘ(𝑡),𝑥𝑡

vec , that is, that

‖ΔΘ(𝑡),𝑥𝑡

vec ‖𝐹 ≤ 𝛼(‖𝑉 (𝑡)− 𝑉 *‖𝐹 + ‖c− c*‖2). If ℰ𝑡 held for every 𝑡, then by triangle inequality

and induction, we would have that for every 0 ≤ 𝑡 < 𝑇 ,

‖ΔΘ(𝑡),𝑥𝑡

vec ‖𝐹 ≤ 𝛼

(︃
‖𝑉 (0) − 𝑉 *‖𝐹 + ‖c− c*‖2 +

𝑡−1∑︁
𝑠=0

‖ΔΘ(𝑠),𝑥𝑠

vec ‖𝐹

)︃
≤ 𝛼(1 + 𝛼)𝑡

(︀
‖𝑉 (0) − 𝑉 *‖𝐹 + ‖c− c*‖2

)︀
= 𝛼(1 + 𝛼)𝑡

(︀
𝑑𝑃 (𝑉

(0), 𝑉 *) + ‖c− c*‖2
)︀

≤ 3𝛼(1 + 𝛼)𝑡 · 𝑑𝑃 (𝑉 (0), 𝑉 *),

where the last step follows by (2.20). So

𝑇−1∑︁
𝑡=0

‖ΔΘ(𝑡),𝑥𝑡

vec ‖𝐹 ≤ 3
(︀
(1 + 𝛼)𝑇 − 1

)︀
· 𝑑𝑃 (𝑉 (0), 𝑉 *). (2.27)

Taking 𝛿′ in Corollary 2.7.5 to be 𝛿/𝑇 and applying a union bound, we deduce by mono-

tonicity of 𝐿𝑝 norms that Lemma 2.7.2 holds for our choice of 𝜂vec, 𝑇 . We also deduce the

following crude bound.

Lemma 2.7.6. ‖𝑉 (𝑡) − 𝑉 *‖𝐹 ∈ [0.9, 1.1] · 𝑑𝑃 (𝑉 (0), 𝑉 *) for every 0 ≤ 𝑡 ≤ 𝑇 with probability

at least 1− 𝛿.

142

This modest level of control over how much the distance to the true subspace fluctuates

over the course of SubspaceDescent will be sufficient for our subsequent analysis.

We pause to note that the assumption that the “misspecification error” ‖c−c*‖2 incurred

by the coefficients c must, by (2.20), be small relative to the subspace distance error incurred

by the initial subspace 𝑉 (0) is crucial here. Indeed, our bounds for the moments of 𝜎2, i.e.

the moments of the size of the gradient steps, inherently scale with ‖c − c*‖, yet we need

local smoothness in the sense that the gradient steps have norm comparable to 𝑑𝑃 (𝑉 (0), 𝑉 *).

Lastly, it will be useful to establish bounds on the moments of ‖𝑉 (𝑡) − 𝑉 *‖𝐹 for each 𝑡.

Lemma 2.7.7. For any absolute, integer-valued constant 𝑞 ≥ 1, E
[︀
‖𝑉 (𝑡) − 𝑉 *‖𝑞𝐹

]︀
≤ 1.1 ·

𝑑𝑃 (𝑉
(0), 𝑉 *)𝑞 for every 0 ≤ 𝑡 < 𝑇 , where the expectation is in the randomness of the samples

𝑥0, ..., 𝑥𝑇−1 drawn in SubspaceDescent.

We defer the proof of this to Appendix 2.11.2.

2.7.2 Local Curvature

We begin by outlining our argument for proving Lemma 2.7.3. As with the proof of

Lemma 2.6.3 for RealignPolynomial, it will be helpful to first decompose ⟨Δvec, 𝑉 −𝑉 *⟩

into “dominant” and “non-dominant” terms. Here the “non-dominant” terms will be more

complicated because of the trigonometric corrections associated with geodesic gradient de-

scent.

Proposition 2.7.8. For any Θ, 𝑥, define

Δ′
vec

Θ,𝑥 , −2𝜂vec·⟨∇𝐹𝑥(Θ),Θ*−Θ⟩·Π⊥
𝑉 ·𝑥·(∇Θ,𝑥)⊤ and Δ′′

vec
Θ,𝑥 , −2𝜂vec·RΘ,𝑥·Π⊥

𝑉 ·𝑥·(∇Θ,𝑥)⊤

and also

ℰΘ,𝑥 , ΔΘ,𝑥
vec −Δ′

vec
Θ,𝑥 −Δ′′

vec
Θ,𝑥

=
(︀
cos(𝜎Θ,𝑥𝜂vec)− 1

)︀
𝑉 · ̂︀∇Θ,𝑥(̂︀∇Θ,𝑥)⊤ +

(︀
sin(𝜎Θ,𝑥𝜂vec)− 𝜎Θ,𝑥𝜂vec

)︀̂︀ℎΘ,𝑥(̂︀∇Θ,𝑥)⊤.

Then ΔΘ,𝑥
vec = Δ′

vec
Θ,𝑥 +Δ′′

vec
Θ,𝑥 = ℰΘ,𝑥.

143

Proof. Δ̃Θ,𝑥
vec , Δ′

vec
Θ,𝑥 + Δ′′

vec
Θ,𝑥 is the lowest-order term in the Taylor expansion of ΔΘ,𝑥

vec

around 𝜂vec = 0, given by

Δ̃Θ,𝑥
vec , 𝜂vec · ℎΘ,𝑥(∇Θ,𝑥)⊤.

Recalling the factor 𝐹𝑥(Θ)−𝐹𝑥(Θ*) in the definition of ℎ in (2.7), we Taylor expand around

Θ* = Θ to get (2.15) from Section 2.6 and therefore the decomposition of Δ̃Θ,𝑥
vec into Δ′

vec
Θ,𝑥

and Δ′′
vec

Θ,𝑥.

̂︀Δ′
𝑣 Motivated by Proposition 2.7.8, for any 𝑥 ∈ R𝑛 and Θ = (c, 𝑉) define

𝑋Θ,𝑥 , ⟨(Δ̃′
vec)

Θ,𝑥, 𝑉 − 𝑉 *⟩, 𝐸Θ,𝑥
1 , ⟨(Δ̃′′

vec)
Θ,𝑥, 𝑉 − 𝑉 *⟩, 𝐸Θ,𝑥

2 , ⟨ℰΘ,𝑥, 𝑉 − 𝑉 *⟩.

Consider a sequence of iid samples (𝑥0, 𝑦0), ..., (𝑥𝑇−1, 𝑦𝑇−1) ∼ 𝒟 and iterates Θ(0), ...,Θ(𝑇−1)

in the execution of SubspaceDescent, where each Θ(𝑡) is given by Θ(𝑡) = (c, 𝑉 (𝑡)). To

show Lemma 2.7.3, we will show that the random variable
∑︀𝑇−1

𝑡=0 𝑋
Θ(𝑡),𝑥𝑡 is large with high

probability, while the random variables
∑︀𝑇−1

𝑡=0 𝐸
Θ(𝑡),𝑥𝑡

1 , and
∑︀𝑇−1

𝑡=0 𝐸
Θ(𝑡),𝑥𝑡

2 are negligible with

high probability. Eventually, we will invoke the martingale concentration inequalities of

Lemmas 2.3.3 and 2.3.4 to control them. Before that, we first need to compute their expec-

tations.

Local Curvature in Expectation- Single Step

In this section we give bounds on the expected correlation between the direction in which we

would like to move, and a step taken in a single iteration in SubspaceDescent.

Given an iterate Θ = (c, 𝑉), let 𝜇𝑋(Θ), 𝜇𝐸1(Θ), 𝜇𝐸2(Θ) be the expectations E[𝑋Θ,𝑥],

E[𝐸Θ,𝑥
1], E[𝐸Θ,𝑥

2] with respect to 𝑥 ∼ 𝒩 (0, Id𝑛). In this section we will bound these quantities

in terms of the distance between Θ and (c*, 𝑉 *). As usual, we will omit the superscript Θ, 𝑥

when the context is clear.

Lemma 2.7.9. 𝜇𝑋(Θ) ≥ 2𝜂vec · (𝜈cond/4) · 𝑑𝑃 (𝑉, 𝑉 *)2.

Lemma 2.7.10.

|𝜇𝐸1(Θ)| ≤ 𝑂(𝜂vec) ·𝑂(𝑑𝑟3)(𝑑+1)/2 · ‖𝑉 − 𝑉 *‖𝐹 · 𝑑𝑃 (𝑉, 𝑉 *) · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2) .

144

Lemma 2.7.11. If 𝜂vec ≤ 𝑂(1/𝑛), then

|𝜇𝐸2(Θ)| ≤ 𝑂(𝜂vec) ·𝑂(𝑑𝑟3)𝑑+2 · ‖𝑉 − 𝑉 *‖𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2 .

At this point we pause to emphasize that Lemma 2.7.9 is the key reason why we must work

with G(𝑛, 𝑟) and not simply with the Euclidean space of 𝑛×𝑟 matrices, as Lemma 2.7.9 says

that the local curvature with respect to the empirical risk in a neighborhood of a subspace

𝑉 is dictated solely by its Procrustes distance to 𝑉 * rather than by ‖𝑉 − 𝑉 *‖𝐹 .

Additionally, note that once again, (2.20) is essential here, to ensure that the expecta-

tions from Lemmas 2.7.10 and 2.7.11 of the “non-dominant” terms do not overwhelm the

expectation from Lemma 2.7.18 of the “dominant” term, which only depends on 𝑑𝑃 (𝑉, 𝑉 *) ∼

𝑑𝑃 (𝑉
(0), 𝑉 *).

We now turn to proving Lemma 2.7.9.

Proof of Lemma 2.7.9. Fix a sample (𝑥, 𝑦) ∼ 𝒟. We have that

⟨Δ̃′
vec, 𝑉 − 𝑉 *⟩ = −2𝜂vec⟨∇𝐹𝑥(Θ),Θ* −Θ⟩ · 𝑥⊤Π⊥

𝑉 (𝑉 − 𝑉 *)∇

= 2𝜂vec⟨∇𝐹𝑥(Θ),Θ* −Θ⟩ · 𝑥⊤ · Π⊥
𝑉 𝑉

* · ∇ (2.28)

By (2.17) we see that (2.28) is given by 2𝜂vec times

(︀
𝑥⊤Π⊥

𝑉 𝑉
*∇
)︀2⏟ ⏞

A’

+
(︀
𝑥⊤Π𝑉 (𝑉

* − 𝑉)∇
)︀
·
(︀
𝑥⊤Π⊥

𝑉 𝑉
*∇
)︀⏟ ⏞

B’

+ δ(𝑉 ⊤𝑥) ·
(︀
𝑥⊤Π⊥

𝑉 𝑉
*∇
)︀⏟ ⏞

C’

. (2.29)

As in the proof of Lemma 2.6.9, note that 𝑥⊤Π𝑉 and 𝑥⊤Π⊥
𝑉 are independent Gaussan

random vectors with mean zero and covariances Π𝑉 and Π⊥
𝑉 respectively. So we immediately

conclude that

Observation 2.7.12. For any 𝑉 , the expectations of B’ and C’ with respect to 𝑥 vanish.

We next bound E[A’].

Lemma 2.7.13. (𝜈cond/4) · 𝑑𝑃 (𝑉, 𝑉 *)2 ≤ E[A’] ≤ 4𝑑𝑃 (𝑉, 𝑉
*)2.

145

Proof. Note that

E[A’] = E
[︁(︀
𝑥⊤Π⊥

𝑉 𝑉
*∇
)︀2]︁

= E ℎ∼𝒩 (0,Π𝑉)

ℎ⊥∼𝒩 (0,Π⊥
𝑉)

[︁
∇𝑝(𝑉 ⊤ℎ)⊤𝑉 *⊤ℎ⊥ℎ

⊤
⊥𝑉

*∇𝑝(𝑉 ⊤ℎ)
]︁

= Eℎ∼𝒩 (0,Π𝑉)

[︁
∇𝑝(𝑉 ⊤ℎ)⊤𝑉 *⊤Π⊥

𝑉 𝑉
*∇𝑝(𝑉 ⊤ℎ)

]︁
= E𝑔∼𝒩 (0,Id𝑟)

[︁
∇𝑝(𝑔)⊤ ·

(︁
Id−𝑉 *⊤𝑉 𝑉 ⊤𝑉 *

)︁
· ∇𝑝(𝑔)

]︁
=
⟨
E𝑔
[︀
∇𝑝(𝑔)∇𝑝(𝑔)⊤

]︀
, Id−𝑉 *⊤𝑉 𝑉 ⊤𝑉 *

⟩
(2.30)

where we used independence of ℎ, ℎ⊥ in the third step. We wil need the following bound.

Lemma 2.7.14. If ‖c− c*‖2 ≤ 𝑂(𝑟−3/2𝑑−1), then we have that

(𝜈cond/2) · Id
𝑟
⪯ E𝑔∼𝒩 (0,Id𝑟)

[︀
∇𝑝(𝑔)∇𝑝(𝑔)⊤

]︀
⪯ 2 · Id

𝑟
.

Proof. For convenience, let𝑀 and𝑀* denote E
[︀
∇𝑝(𝑔)∇𝑝(𝑔)⊤

]︀
and E𝑔∼𝒩 (0,Id𝑟)

[︀
∇𝑝*(𝑔)∇𝑝*(𝑔)⊤

]︀
respectively. For any 𝑣 ∈ S𝑟−1, we have that

|𝑣⊤𝑀*𝑣 − 𝑣⊤𝑀𝑣| =
⃒⃒
E
[︀
⟨𝑣,∇𝑝*(𝑔)⟩2 − ⟨𝑣,∇𝑝(𝑔)⟩2

]︀⃒⃒
= |E [⟨𝑣,∇δ(𝑔)⟩ · ⟨𝑣,∇(𝑝+ 𝑝*)(𝑔)⟩]|

≤ E
[︀
‖∇δ(𝑔)‖22

]︀1/2 · (︁E [︀‖∇𝑝(𝑔)‖22]︀1/2 + E
[︀
‖∇𝑝*(𝑔)‖22

]︀1/2)︁
≤ 𝑟𝑑 · V[δ]1/2 · (V[𝑝]1/2 + V[𝑝*]1/2)

< 𝑂(𝑟3/2𝑑 · ‖c− c*‖2),

where in the third step we used Cauchy-Schwarz, in the fourth step we used Lemma 2.3.8,

and in the last step we upper bounded V[𝑝] and V[𝑝*] by 𝑂(𝑟) using Corollary 2.3.2 and the

fact that ‖c− c*‖2 = 𝑂(1).

To conclude the proof of Lemma 2.7.13, we see that

E[A’] ∈ [𝜈cond/2, 2] · Tr(Id−𝑉 *⊤𝑉 𝑉 ⊤𝑉 *)

146

= [𝜈cond/2, 2] · 𝑑𝐶(𝑉, 𝑉 *)2

∈ [𝜈cond/4, 4] · 𝑑𝑃 (𝑉, 𝑉 *)2, (2.31)

where the first step follows by (2.30) and Lemma 2.7.14, the second step follows by the fact

that Tr(Id−𝑉 *⊤𝑉 𝑉 ⊤𝑉 *) = 𝑑− ‖𝑉 *⊤𝑉 ‖2𝐹 , and the last step follows by Lemma 1.3.5.

Lemma 2.7.9 now follows from (2.29), Observation 2.7.12, and Lemma 2.7.13.

We defer the proofs of Lemmas 2.7.10 and 2.7.11, to Appendix 2.11.

Local Curvature in Expectation- All Iterations

In this section we extend the results of the previous section to give bounds on the sum over

all 𝑡 of the expected correlations between the direction in which we would like to move at

time 𝑡, and the step we actually take at time 𝑡.

Specifically, for the sequence of iterates {Θ(𝑡)}0≤𝑡≤𝑇 in SubspaceDescent, we would

like to bound E
[︁∑︀𝑇−1

𝑡=0 𝜇𝑋(Θ
(𝑡))
]︁
,
⃒⃒⃒
E
[︁∑︀𝑇−1

𝑡=0 𝜇𝐸1(Θ
(𝑡))
]︁⃒⃒⃒

, and
⃒⃒⃒
E
[︁∑︀𝑇−1

𝑡=0 𝜇𝐸2(Θ
(𝑡))
]︁⃒⃒⃒

. We em-

phasize that the expectation here is over the randomness of the samples 𝑥0, ..., 𝑥𝑇−1, so e.g.

𝜇𝑋(Θ
(𝑡)) is a random variable depending on 𝑥0, ..., 𝑥𝑡−1 and is itself an expectation over the

next sample 𝑥𝑡.

Intuitively, for our choice (2.21) of small step size 𝜂vec which scales with𝑂(1/𝑇), Lemma 2.7.7

suggests that the expected behavior of the corresponding martingales should not be very dif-

ferent from that of a sum of iid random variables. That is, these expected sums should be

not much different than 𝑇 times the expectation of their first summand, corresponding to

the first iteration which takes a step from Θ(0). In Lemmas 2.7.15, 2.7.16, and 2.7.17, we

show that this is indeed the case:

Lemma 2.7.15. E
[︁∑︀𝑇−1

𝑡=0 𝜇𝑋(Θ
(𝑡))
]︁
≤ 𝑇 · 𝜂vec · (𝜈cond/2.2) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2.

Lemma 2.7.16. E
[︁∑︀𝑇−1

𝑡=0 𝜇𝐸1(Θ
(𝑡))
]︁
≤ 𝑇 ·𝑂(𝜂vec) ·𝑂(𝑑𝑟3)(𝑑+1)/2 · 𝑑𝑃 (𝑉 (0), 𝑉 *)3.

Lemma 2.7.17. E
[︁∑︀𝑇−1

𝑡=0 𝜇𝐸2(Θ
(𝑡))
]︁
≤ 𝑇 ·𝑂(𝜂vec) ·𝑂(𝑑𝑟3)𝑑+2 · 𝑑𝑃 (𝑉 (0), 𝑉 *)3.

We defer their proofs to Appendices 2.11.5, 2.11.6, and 2.11.7 respectively.

147

Local Curvature with High Probability

In this section, we complete the proof of Lemma 2.7.3 by establishing high-probability bounds

for the MDS’s corresponding to 𝑋, 𝐸1, and 𝐸2. That is, we argue that with high probability,

the dominant term given by 𝑋 is large, while the error terms from Taylor approximation

and from the trigonometric corrections are small. Specifically, we show:

Lemma 2.7.18.
𝑇−1∑︁
𝑡=0

𝑋Θ(𝑡),𝑥𝑡 ≥ 𝑇 · 𝜂vec · (𝜈cond/3) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

with probabiliy at least 1− 𝛿.

Lemma 2.7.19. ⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

𝐸Θ(𝑡),𝑥𝑡

1

⃒⃒⃒⃒
⃒ ≤ 𝑇 · 𝜂vec · (𝑐12 · 𝜈cond) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

with probability at least 1− 𝛿.

Lemma 2.7.20. ⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

𝐸Θ(𝑡),𝑥𝑡

2

⃒⃒⃒⃒
⃒ ≤ 𝑇 · 𝜂vec · (𝑐12 · 𝜈cond) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

with probability at least 1− 𝛿.

We defer their proofs to Appendix 2.11.8. The key technical step in all three proofs is

to upper bound the variance of the martingale differences, after which one can invoke the

corresponding expectation bounds from Section 2.7.2 together with the martingale concen-

tration inequalities of Lemma 2.3.4 for Lemma 2.11.8 and Lemma 2.3.3 for Lemmas 2.7.19

and 2.7.20. We emphasize that here we must again crucially use (2.20), this time to ensure

that the variances of the martingale differences, which depend in part on ‖c− c*‖2, do not

swamp the expectation 𝜇𝑋(Θ) of the dominant term.

Also, we remark that it is in the proof of Lemma 2.7.19 and Lemma 2.7.20 that we finally

use the assumption (2.19) that 𝑑𝑃 (𝑉 (0), 𝑉 *) is somewhat small.

Finally, we can deduce Lemma 2.7.3, completing the proof of Theorem 2.7.1.

148

Proof of Lemma 2.7.3. By Lemmas 2.7.18, 2.7.19, and 2.7.20, and the earlier calculation

showing that for any Θ = (c, 𝑉), ⟨ΔΘ,𝑥
vec , 𝑉 − 𝑉 *⟩ = 𝑋Θ,𝑥 + 𝐸Θ,𝑥

1 + 𝐸Θ,𝑥
2 , we see that under

our choice of 𝑇, 𝜂vec,

𝑇−1∑︁
𝑡=0

⟨
ΔΘ(𝑡),𝑥𝑡

vec , 𝑉 (𝑡) − 𝑉 *
⟩
≥ 𝜈cond

(︂
1

3
− 2𝑐12

)︂
· 𝑇 · 𝜂vec · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

with probability 1 − 3𝛿. By replacing 3𝛿 with 𝛿, and absorbing the constant factors, the

lemma follows.

2.8 Putting Everything Together for GeoSGD

In this section we conclude the proof of Theorem 2.5.1 using Theorems 2.6.1 and 2.7.1.

There is one last subtlety we must address. In Theorem 2.6.1 on the distance ‖c −

c*‖ between the coefficients c output by RealignPolynomial and the true coefficients

c*, the upper bound is at best only in terms of the known parameter 𝜀. On the other

hand, in Theorem 2.7.1 on the error 𝑑𝑃 (𝑉 (𝑇), 𝑉 *) incurred by the subspace 𝑉 (𝑇) output by

SubspaceDescent when initialized to 𝑉 (0), the upper bound we can show only applies

when (2.20) holds.

The scenario that these guarantees do not account for is when at some point in the middle

of GeoSGD, we arrive upon a subspace 𝑉 (0) for which 𝑑𝑃 (𝑉
(0), 𝑉 *) ≪ 𝜀/2, in which case

running RealignPolynomial with 𝑉 (0) gives coefficients c for which (2.20) fails to hold.

Intuitively, this should be fine because 𝑑𝑃 (𝑉 (0), 𝑉 *) < 𝜀, so GeoSGD has already produced

a good enough estimate for the true subspace and we could just terminate. Unfortunately, it

is not immediately obvious how to tell when this has happened and terminate accordingly.

Instead, we argue that local smoothness for SubspaceDescent (Lemma 2.7.2), implies

that in this case, running SubspaceDescent initialized to 𝑉 (0) will produce a subspace

𝑉 (𝑇) whose error is still good enough:

Lemma 2.8.1. Suppose all of the assumptions of Theorem 2.7.1 hold except for (2.20). Then

we still have that 𝑑𝑃 (𝑉 (𝑇), 𝑉 *) ≤ ‖c− c*‖2 with probability at least 1− 𝛿.

149

Proof. Suppose the event of Lemma 2.7.2 occurs. We have that

𝑑𝑃 (𝑉
(𝑇), 𝑉 *) ≤ 𝑑𝑃 (𝑉

(0), 𝑉 *) + 𝑑𝑃 (𝑉
(0), 𝑉 (𝑇))

≤ 𝑑𝑃 (𝑉
(0), 𝑉 *) ·

(︀
1 + 𝜂vec ·𝑂(𝑑𝑟3 ln(𝑇/𝛿))(𝑑+2)/2 ·𝑂(

√
𝑛)
)︀

≤ 1

2
‖c− c*‖2 ·

(︀
1 + 𝜂vec ·𝑂(𝑑𝑟3 ln(𝑇/𝛿))(𝑑+2)/2 ·𝑂(

√
𝑛)
)︀

=
1

2
‖c− c*‖ ·

(︂
1 +𝑂

(︂
𝜈cond
𝑇
√
𝑛

)︂)︂
< ‖c− c*‖2,

where the first step follows by triangle inequality for Procrustes distance (Fact 1.3.4), the

second by the assumption that the event of Lemma 2.7.2 holds, the third by the assumption

that (2.20) does not hold, and the fourth by the definition of 𝜂vec in (2.21).

We can now complete the proof of Theorem 2.5.1.

Proof of Theorem 2.5.1. Let c(𝑡) and 𝑉 (𝑡) be the iterates of GeoSGD. Suppose for 0 ≤ 𝑡 < 𝑇

we had 𝑑𝑃 (𝑉 (𝑡), 𝑉 *) ≤ 𝑐12 · 𝜈cond ·𝑂(𝑑𝑟3)−𝑑−2. By Theorem 2.6.1, we have that

‖c(𝑡+1) − c*‖2 < 2 · 𝜀/2 ∨ 𝑑𝑃 (𝑉 (𝑡), 𝑉 *).

If ‖c(𝑡+1)−c*‖2 < 𝜀, then by Lemma 2.8.1, 𝑑𝑃 (𝑉 (𝑡+1), 𝑉 *) < 𝜀. Otherwise, if ‖c(𝑡+1)−c*‖2 ≤

2𝑑𝑃 (𝑉
(𝑡), 𝑉 *), then (2.20) in Theorem 2.7.1 holds and we get that

𝑑𝑃 (𝑉
(𝑡+1), 𝑉 *) ≤ (1− 𝛼) · 𝑑𝑃 (𝑉 (𝑡), 𝑉 *),

where

𝛼 ,
𝜈cond
𝑛
· poly(ln(1/𝜈cond), 𝑟, 𝑑, ln(1/𝛿′))−𝑑

for 𝛿′ = 𝛿/(2𝑇 + 1) as defined in GeoSGD.

In either case, 𝑑𝑃 (𝑉 (𝑡+1), 𝑉 *) ≤ 𝑐12 ·𝜈cond ·𝑂(𝑑𝑟3)−𝑑−2. And furthermore, if we unroll this

recurrence, we conclude that

𝑑𝑃 (𝑉
(𝑇), 𝑉 *) ≤ 𝜀 ∨ (1− 𝛼)𝑇 · 𝑑𝑃 (𝑉 (0), 𝑉 *).

150

So by taking 𝑇 = 𝛼−1 · log(1/𝜀), we get that 𝑑𝑃 (𝑉 (𝑇), 𝑉 *) ≤ 𝜀 as desired. This corresponds

to the choice of 𝑇 in (2.5). Lastly, we get that ‖c(𝑇) − c‖2 ≤ 𝜀 by one last application of

Theorem 2.6.1.

Proof of Theorem 2.5.2. This follows from the runtime and sample complexity guarantees

of Theorems 2.6.1 and 2.7.1.

2.9 Appendix: Martingale Concentration Inequalities

In this section we prove the two martingale concentration inequalities from Section 2.3.2

that are needed for the analysis of the boosting phase of our algorithm.

2.9.1 Proof of Lemma 2.3.3

We first prove the following more general statement.

Lemma 2.9.1. Let 𝜎 > 0 and 0 < 𝛼 ≤ 2 be constants, and let ℰ𝑖 be the event that

E[|𝑍𝑖|𝑞|𝜉1, ..., 𝜉𝑖−1] ≤ 𝜎𝑞 · 𝑞𝑞/𝛼 for all 𝑞 ≥ 1.

If Pr[ℰ𝑖|𝜉1, ..., 𝜉𝑖−1] ≥ 1− 𝛽 for each 𝑖 ∈ [𝑇], then for any 𝑡 > 0,

Pr

[︃
max
ℓ∈[𝑇]

⃒⃒⃒⃒
⃒
ℓ∑︁
𝑖=1

𝑍𝑖

⃒⃒⃒⃒
⃒ ≥ 𝑡 ·

√
𝑇 · 𝜎

]︃
≤ 𝑂

(︀
1 + 𝑡2(1/𝛼)𝑂(1/𝛼)

)︀
· exp

(︁
−
(︀
𝑡2/32

)︀ 𝛼
2+𝛼

)︁
+ 𝑇 · 𝛽. (2.32)

In particular, there is an absolute constant 𝑐1 > 0 such that for any 𝛿 > 0,

Pr

[︃
max
ℓ∈[𝑇]

⃒⃒⃒⃒
⃒
ℓ∑︁
𝑖=1

𝑍𝑖

⃒⃒⃒⃒
⃒ ≥ (log(1/𝛿)/𝛼)2𝑐1/𝛼 ·

√
𝑇 · 𝜎

]︃
≤ 𝛿 + 𝑇 · 𝛽.

We first show that this implies Lemma 2.3.3.

Proof of Lemma 2.3.3. This is an immediate consequence of Lemma 2.9.1 together with

Fact 1.3.15, which implies the requisite moment bounds for Lemma 2.9.1 for 𝛼 = 𝑑/2.

To show Lemma 2.9.1, we require the following theorem on the concentration of martin-

gales with sub-Weibull differences, which is a consequence of the main result of [Li18a].

151

Theorem 2.9.2 ([Li18a]). Let 𝜎 > 0 and 0 < 𝛼 ≤ 2 be constants. Suppose that for every

𝑖 ∈ [𝑇], we have that with probability one, E[|𝑍𝑖|𝑞|𝜉1, ..., 𝜉𝑖−1] ≤ 𝜎𝑞 · 𝑞𝑞/𝛼 holds for all 𝑞 ≥ 1.

Then for any 𝑧 > 0,

Pr

[︃
max
ℓ∈[𝑇]

⃒⃒⃒⃒
⃒
ℓ∑︁
𝑖=1

𝑍𝑖

⃒⃒⃒⃒
⃒ ≥ 𝑡 ·

√
𝑇 · 𝜎

]︃
≤ 𝑂

(︀
1 + 𝑡2(1/𝛼)𝑂(1/𝛼)

)︀
· exp

(︁
−
(︀
𝑡2/32

)︀ 𝛼
2+𝛼

)︁
(2.33)

We use a standard trick, see e.g. Lemma 3.1 of [Vu02], to relax the assumption that the

differences are sub-Weibull almost surely to the assumption that they are sub-Weibull with

high probability. It will also be more convenient for us to state the inequality in terms of

moment bounds rather than Orlicz norm bounds.

Proof of Lemma 2.9.1. Given a realization 𝜉 of the random variables (𝜉1, ..., 𝜉𝑇), let 𝑖𝜉 be

the first index 𝑖, if any, for which ℰ𝑖 does not hold. Define 𝐵𝑖 , {𝜉 : 𝑖𝜉 = 𝑖} and note that

these sets are disjoint for different 𝑖. Let 𝑌 ′(𝜉) be the function which agrees with 𝑌 (𝜉) for

𝜉 ∈ (∪𝐵𝑖)
𝑐 and which is equal to E𝐵𝑖

[𝑌] for 𝜉 ∈ 𝐵𝑖. 𝑌 ′ and 𝑌 have the same mean, so the

lemma follows by union bounding over the events ∪𝐵𝑖 together with the probability that the

martingale 𝑌 ′ fails to concentrate. For the former probabilities, by definition Pr[𝐵𝑖] ≤ 𝛽.

And for the latter, because the martingale differences for 𝑌 ′ satisfy the assumptions of

Theorem 2.9.2, 𝑌 ′ fails to concentrate with probability at most the right-hand side of (2.33).

This yields (2.32).

2.9.2 Proof of Lemma 2.3.4

To show Lemma 2.3.4, we require the following theorem due to [Ben03], which controls the

tails of martingales whose differences are only bounded on one side.

Theorem 2.9.3 ([Ben03]). Let {𝑐𝑖}𝑖∈[𝑇] and {𝑠𝑖}𝑖∈[𝑇] be collections of positive constants

for which 𝑍𝑖 ≤ 𝑐𝑖 and E[𝑍2
𝑖 |𝜉1, ..., 𝜉𝑖−1] ≤ 𝑠2𝑖 with probability one for every 𝑖 ∈ [𝑇]. Let

𝜎𝑖 = 𝑐𝑖 ∨ 𝑠𝑖, and define 𝜎2 =
∑︀

𝑖 𝜎
2
𝑖 . Then

Pr

[︃
𝑇∑︁
𝑖=1

𝑍𝑖 ≥ 𝑡 · 𝜎

]︃
≤ exp(−𝑡2/2).

152

Proof of Lemma 2.3.4. The proof is identical to that of Lemma 2.9.1, except instead of

applying Theorem 2.9.2 to the auxiliary martingale, we apply Theorem 2.9.3 to get that for

any 𝑡 > 0,

Pr

[︃
𝑇∑︁
𝑖=1

𝑍𝑖 ≥ 𝑡 · 𝜎

]︃
≤ exp(−𝑡2/2) + 𝑇 · 𝛽.

The lemma follows by taking 𝑡 =
√
2 log(1/𝛿).

2.10 Appendix: Deferred Proofs from Section 2.6

2.10.1 Proof of Lemma 2.6.5

Proof.

E
[︀
(𝐹𝑥(Θ)− 𝐹𝑥(Θ*))4

]︀
≤

∑︁
ℓ1,...,ℓ4∈[𝑑+1]

1∏︀4
𝜈=1 ℓ𝜈 !

E

[︃
4∏︁

𝜈=1

⟨︀
∇[ℓ𝜈]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ𝜈

⟩︀]︃

≤
∑︁

ℓ1,...,ℓ4∈[𝑑+1]

1∏︀4
𝜈=1 ℓ𝜈 !

· 16 · (8𝑑𝑟2)2(𝑑+1) · ‖𝑉 − 𝑉 *‖
∑︀

𝜈 ℓ𝜈
𝐹 ·

(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂4

≤ 16 · (8𝑑𝑟2)2(𝑑+1)

(︃
𝑑+1∑︁
ℓ=1

1

ℓ!
· ‖𝑉 − 𝑉 *‖ℓ𝐹

)︃4

·
(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂4

≤ 16 · (8𝑑𝑟2)2(𝑑+1) · (𝑒 · (4𝑟)𝑑/2‖𝑉 − 𝑉 *‖𝐹)4 ·
(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂4

≤ (2𝑒)4 · (32𝑑𝑟3)2(𝑑+1) · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)4 ,

where the second step follows by Lemma 2.5.4, the fourth by the fact that ‖𝑉 −𝑉 *‖𝐹 ≤ 2
√
𝑟

and the fact that
∑︀𝑑+1

ℓ=1
1
ℓ!
· 𝑥ℓ ≤ 𝑒 · (4𝑟)𝑑/2 · 𝑥 for 𝑥 ∈ [0, 2

√
𝑟].

2.10.2 Proof of Lemma 2.6.10

Proof. We have that

1

2𝜂coef
|⟨Δ′′

coef , c− c*⟩| =

⃒⃒⃒⃒
⃒E
[︃
𝑑+1∑︁
ℓ=2

1

ℓ!

⟨︀
∇[ℓ]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ

⟩︀
· δ(𝑉 ⊤𝑥)

]︃⃒⃒⃒⃒
⃒

153

≤ E

⎡⎣(︃𝑑+1∑︁
ℓ=2

1

ℓ!

⟨︀
∇[ℓ]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ

⟩︀)︃2
⎤⎦1/2

· E
[︀
δ(𝑉 ⊤𝑥)2

]︀1/2
≤ 𝑂(𝑑𝑟3)(𝑑+1)/2 · ‖𝑉 − 𝑉 *‖𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2) · ‖c− c*‖2

= 𝑂(𝑑𝑟3)(𝑑+1)/2 · 𝑑𝑃 (𝑉, 𝑉 *) · ‖c− c*‖2 · (𝑑𝑃 (𝑉, 𝑉 *) + ‖c− c*‖2),

where the second step follows by Cauchy-Schwarz, the third step follows by Lemma 2.11.1,

and the last step follows by the assumption that ‖𝑉 − 𝑉 *‖𝐹 = 𝑑𝑃 (𝑉, 𝑉
*).

2.10.3 Proof of Proposition 2.6.13

Proof. Note that

E𝑔
[︁(︀
𝑥⊤Π𝑉 (𝑉

* − 𝑉)∇𝑝(𝑉 ⊤𝑥)
)︀2]︁1/2 ≤ ‖Id−𝑉 ⊤𝑉 *‖2 · E𝑔

[︀
‖𝑔‖22 · ‖∇𝑝(𝑔)‖22

]︀1/2
≤ 𝑑𝑃 (𝑉, 𝑉

*)2 ·𝑂(𝑟3/2𝑑),

where the second step follows by the second part of Lemma 2.3.13, Lemma 2.3.10, and the

fact that

V[𝑝]1/2 ≤ ‖c− c*‖2 + V[𝑝*]1/2 ≤ 𝑂(𝑟)

because ‖c− c*‖2 ≤ 1 by assumption and because of Corollary 2.3.2.

2.10.4 Proof of Lemma 2.6.15

We will split up 1
𝐵

∑︀𝐵−1
𝑖=0 𝑌 𝑥𝑖 according to the decomposition (2.18). That is, define

A
𝑥 ,

(︀
δ(𝑉 ⊤𝑥)

)︀2
B
𝑥 , δ(𝑉 ⊤𝑥) ·

(︀
𝑥⊤Π𝑉 (𝑉

* − 𝑉)∇
)︀

C
𝑥 , δ(𝑉 ⊤𝑥) ·

(︀
𝑥⊤Π⊥

𝑉 𝑉
*∇
)︀

so that for any 𝑥,
1

2𝜂coef
𝑌 𝑥 = A

𝑥
+ B

𝑥 + C
𝑥
. (2.34)

154

We will show concentration for these three random variables separately.

Lemma 2.10.1. For any 𝛿 > 0, if 𝐵 = Ω(log(1/𝛿)2 · 9𝑑), then

1

𝐵

𝐵−1∑︁
𝑖=0

A
𝑥𝑖 ≥ 1

2
‖c− c*‖22

with probability at least 1− 𝛿.

Lemma 2.10.2. For any 𝛿 > 0, if 𝐵 = Ω(log(1/𝛿))2𝑑, then

⃒⃒⃒⃒
⃒ 1𝐵

𝐵−1∑︁
𝑖=0

B
𝑥𝑖

⃒⃒⃒⃒
⃒ ≤ 𝑂(𝑟3/2𝑑) · ‖c− c*‖2 · 𝑑𝑃 (𝑉, 𝑉 *)2

with probability at least 1− 𝛿.

Lemma 2.10.3. For any 𝛿 > 0 and 𝛾 > 0, if 𝐵 = Ω(log(1/𝛿))2𝑑 · 𝛾−2, then

⃒⃒⃒⃒
⃒ 1𝐵

𝐵−1∑︁
𝑖=0

C
𝑥𝑖

⃒⃒⃒⃒
⃒ ≤ 𝛾 · 𝑑𝑃 (𝑉, 𝑉 *) · ‖c− c*‖2

with probability at least 1− 𝛿.

We prove these in the subsequent Appendices 2.10.4, 2.10.4, and 2.10.4. Note that

Lemma 2.6.15 immediately follows from these lemmas.

Proof of Lemma 2.6.15. By a union bound over the failure probabilities of Lemmas 2.10.1,

2.10.2, and 2.10.3, we see by triangle inequality and (2.34) that

1

𝐵

𝐵−1∑︁
𝑖=0

𝑌 𝑥𝑖 ≥ 2𝜂coef ·
(︂
1

2
‖c− c*‖22 −𝑂(𝑟3/2𝑑) · ‖c− c*‖2 · 𝑑𝑃 (𝑉, 𝑉 *)2 − 𝛾 · 𝑑𝑃 (𝑉, 𝑉 *) · ‖c− c*‖2

)︂

with probability at least 1 − 3𝛿, provided 𝐵 = Ω(log(1/𝛿))𝑑 · 𝛾−2. The result follows by

replacing 3𝛿 with 𝛿 and absorbing constants.

Proof of Lemma 2.10.1

Proof. Observe that 1
𝐵

∑︀𝐵−1
𝑖=0

(︁
E𝑥[A

𝑥
]− A

𝑥𝑖
)︁

is an average of 𝐵 iid copies of a mean-zero

random variable satisfying one-sided bounds, so we wish to apply Lemma 1.3.33.

155

To do so, we just need to bound the variances of the summands.

Lemma 2.10.4. V𝑥[A
𝑥
] ≤ 9𝑑 · ‖c− c*‖42.

Proof. Clearly V[A
𝑥
] ≤ E[(A

𝑥
)2], so it suffices to bound the latter. By Fact 1.3.15 applied

to the degree-𝑑 polynomial δ,

E[(A
𝑥
)2] = E𝑔∼𝒩 (0,Id𝑟)[δ(𝑔)

4] ≤ 9𝑑 · E[δ(𝑔)2]2 = 9𝑑 · ‖c− c*‖42 (2.35)

as claimed.

We can now complete the proof of Lemma 2.10.1.

By Lemma 1.3.33, Observation 2.6.12, and Lemma 2.10.4,

1

𝐵

𝐵−1∑︁
𝑖=0

A
𝑥𝑖 ≥ ‖c− c*‖22 −

1√
𝐵
·
√
2 log(1/𝛿) · 3𝑑 · ‖c− c*‖2

with probability at least 1− 𝛿. The lemma follows by taking 𝐵 = Ω(log(1/𝛿)2.

Proof of Lemma 2.10.2

Proof. Note that B
𝑥 is a polynomial of degree 2𝑑 in 𝑥, so by Lemma 1.3.16, we just need

to upper bound its variance.

Lemma 2.10.5. V𝑥[B
𝑥] ≤ 9𝑑 ·𝑂(𝑟3/2𝑑) · ‖c− c*‖22 · 𝑑𝑃 (𝑉, 𝑉 *)4.

Proof. We will upper bound E𝑥[(B
𝑥)2] via

E
[︁

B
2
]︁
≤ E

[︀
δ(𝑉 ⊤𝑥)4

]︀1/2 · E [︁(︀𝑥⊤Π𝑉 (𝑉
* − 𝑉)∇

)︀4]︁1/2
≤ E[A

2
] · 3𝑑 · E

[︁(︀
𝑥⊤Π𝑉 (𝑉

* − 𝑉)∇
)︀2]︁

≤ 9𝑑 ·𝑂(𝑟3𝑑2) · ‖c− c*‖22 · 𝑑𝑃 (𝑉, 𝑉 *)4,

where in the first step we used Cauchy-Schwarz, in the second we used Proposition 2.6.13,

and in the third we used (2.35).

We can now complete the proof of Lemma 2.10.1.

156

By Lemma 1.3.16, Lemma 2.6.14, and Lemma 2.10.5,⃒⃒⃒⃒
⃒ 1𝐵

𝐵−1∑︁
𝑖=0

B
𝑥𝑖

⃒⃒⃒⃒
⃒ ≤ 𝑂(𝑟3/2𝑑) · ‖c− c*‖2 · 𝑑𝑃 (𝑉, 𝑉 *)2 ·

(︂
1 +

1√
𝐵
·𝑂(log(1/𝛿))𝑑 · 3𝑑

)︂
,

with probability at least 1− 𝛿. The lemma follows by taking 𝐵 = Ω(log(1/𝛿))2𝑑 ·Ω(9𝑑).

Proof of Lemma 2.10.3

Proof. Note that C
𝑥 is a polynomial of degree 2𝑑 in 𝑥, so by Lemma 1.3.16, we just need

to upper bound its variance.

Lemma 2.10.6. For any Θ, E𝑥[(C
Θ,𝑥

)2] ≤ 𝑑𝑃 (𝑉, 𝑉
)2 · ‖c− c‖22 · exp(𝑂(𝑑)).

Proof. This is shown in Lemma 2.11.9 below. The proof involves calculations which are more

pertinent to the behavior of SubspaceDescent, so we defer the details to there.

We can now complete the proof of Lemma 2.10.3. By Lemma 1.3.16, Observation 2.6.11,

and Lemma 2.10.6,⃒⃒⃒⃒
⃒ 1𝐵

𝐵−1∑︁
𝑖=1

C
𝑥𝑖

⃒⃒⃒⃒
⃒ ≤ 1√

𝐵
·𝑂(log(1/𝛿))𝑑 · 𝑑𝑃 (𝑉, 𝑉 *) · ‖c− c*‖2 · exp(𝑂(𝑑))

with probability at least 1− 𝛿. The lemma follows by taking 𝐵 = Ω(log(1/𝛿))2𝑑 · 𝛾−2.

2.10.5 Proof of Lemma 2.6.16

Proof. Note that 𝐸𝑥 is a polynomial of degree 2𝑑 in 𝑥, so by Lemma 1.3.16, we just need to

upper bound its variance.

To do so, we will need the following helper lemma, which like Lemma 2.6.5 is a straight-

forward consequence of Lemma 2.5.4.

Lemma 2.10.7. E[(RΘ,𝑥)4]1/2 ≤ 𝑂(𝑑𝑟3)𝑑+1 · ‖𝑉 − 𝑉 *‖2𝐹 · (‖c− c*‖2 + ‖𝑉 * − 𝑉 ‖𝐹)2

157

Proof. We have that

E
[︀
(RΘ,𝑥)4

]︀1/2
=

(︃ ∑︁
ℓ1,...,ℓ4>1

1∏︀4
𝜈=1 ℓ𝜈 !

E

[︃
4∏︁

𝜈=1

⟨︀
∇[ℓ𝜈]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ𝜈

⟩︀]︃)︃1/2

≤

(︃ ∑︁
ℓ1,...,ℓ4>1

1∏︀4
𝜈=1 ℓ𝜈 !

16 · (8𝑑𝑟2)2(𝑑+1) · ‖𝑉 * − 𝑉 ‖
∑︀

𝜈 ℓ𝜈
𝐹 ·

(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂4
)︃1/2

= 4(8𝑑𝑟2)𝑑+1

(︃
𝑑+1∑︁
ℓ=2

1

ℓ!
‖𝑉 * − 𝑉 ‖ℓ𝐹

)︃2

·
(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂2

≤ 4(8𝑑𝑟2)𝑑+1 ·
(︀
𝑒2 · (4𝑟)𝑑−1‖𝑉 * − 𝑉 ‖4𝐹

)︀
·
(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂2

= 4𝑒2 · (32𝑑𝑟3)𝑑+1 · ‖𝑉 − 𝑉 *‖2𝐹 · (‖c− c*‖2 + ‖𝑉 * − 𝑉 ‖𝐹)2 ,

where the second step follows by Lemma 2.5.4, and the fourth step follows by the fact that

we always have ‖𝑉 − 𝑉 *‖𝐹 ≤ 2
√
𝑟, and

∑︀𝑑+1
ℓ=2

1
ℓ!
𝑥ℓ < 𝑒 · (4𝑟)(𝑑−1)/2 · 𝑥2 for 𝑥 ∈ [0, 2

√
𝑟].

We can now show the variance bound.

Lemma 2.10.8. E𝑥[(𝐸𝑥)2] ≤ 𝜂2coef ·𝑂(𝑑𝑟3)𝑑+1 ·𝑑𝑃 (𝑉, 𝑉 *)2 ·‖c−c*‖22 ·(𝑑𝑃 (𝑉, 𝑉 *)+‖c−c*‖)2.

Proof. By Cauchy-Schwarz,

1

4𝜂2coef
E
[︀
(𝐸𝑥)2

]︀
≤ E[(RΘ,𝑥)4]1/2 · E[δ(𝑔)4]1/2

≤ 4𝑒2 · (32𝑑𝑟3)𝑑+1 · ‖𝑉 − 𝑉 *‖2𝐹 · (‖c− c*‖2 + ‖𝑉 * − 𝑉 ‖𝐹)2 · 3𝑑 · ‖c− c*‖22

= 𝑂(𝑑𝑟3)𝑑+1 · 𝑑𝑃 (𝑉, 𝑉 *)2 · ‖c− c*‖22 · (𝑑𝑃 (𝑉, 𝑉 *) + ‖c− c*‖)2

where the second step follows by Lemma 2.10.7 and the third step follows by the assumption

that ‖𝑉 − 𝑉 *‖𝐹 = 𝑑𝑃 (𝑉, 𝑉
*).

Finally, by Lemma 1.3.16, Lemma 2.6.10, and Lemma 2.10.8,⃒⃒⃒⃒
⃒ 1𝐵

𝐵−1∑︁
𝑖=0

𝐸𝑥𝑖

⃒⃒⃒⃒
⃒ ≤ 𝑂(𝑑𝑟3)(𝑑+1)/2 𝑑𝑃 (𝑉, 𝑉

) ‖c−c‖2 (𝑑𝑃 (𝑉, 𝑉 *)+‖c−c*‖2)·
(︂
1 +

1√
𝐵
·𝑂(log(1/𝛿))𝑑

)︂
.

158

The lemma follows by taking 𝐵 = 𝑂(log(1/𝛿))2𝑑.

2.11 Appendix: Deferred Proofs from Section 2.7

2.11.1 Proof of Lemma 2.5.4

Proof. We begin by explicitly computing the higher-order terms in the Taylor-expansion of

𝐹𝑥(Θ)− 𝐹𝑥(Θ*). For any ℓ ∈ [𝑑+ 1], recalling the notation of (2.3) and (2.4),

⟨︀
∇[ℓ]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ

⟩︀
=

∑︁
i∈[𝑛]ℓ,j∈[𝑟]ℓ

ℓ∏︁
𝑎=1

(𝑉 *
𝑖𝑎,𝑗𝑎 − 𝑉𝑖𝑎,𝑗𝑎) ·Di,j 𝐹𝑥(Θ) +

∑︁
𝐼,i∈[𝑛]ℓ,j∈[𝑟]ℓ−1

ℓ−1∏︁
𝑎=1

(𝑉 *
𝑖𝑎,𝑗𝑎 − 𝑉𝑖𝑎,𝑗𝑎) · (𝑐

*
𝐼 − 𝑐𝐼) ·Di,j 𝐹𝑥(Θ)

=
∑︁

i∈[𝑛]ℓ,j∈[𝑟]ℓ

ℓ∏︁
𝑎=1

(𝑉 *
𝑖𝑎,𝑗𝑎 − 𝑉𝑖𝑎,𝑗𝑎) · 𝑥𝑖𝑎 ·Dj 𝑝(𝑉

⊤𝑥) +
∑︁

i∈[𝑛]ℓ,j∈[𝑟]ℓ−1

ℓ−1∏︁
𝑎=1

(𝑉 *
𝑖𝑎,𝑗𝑎 − 𝑉𝑖𝑎,𝑗𝑎) · 𝑥𝑖𝑎 ·Dj δ(𝑉

⊤𝑥)

=
∑︁
j∈[𝑟]ℓ

ℓ∏︁
𝑎=1

⟨(𝑉 * − 𝑉)𝑗𝑎 , 𝑥⟩ ·Dj 𝑝(𝑉
⊤𝑥) +

∑︁
j∈[𝑟]ℓ−1

ℓ−1∏︁
𝑎=1

⟨(𝑉 * − 𝑉)𝑗𝑎 , 𝑥⟩ ·Dj δ(𝑉
⊤𝑥) (2.36)

From (2.36), we can rewrite the quantity in the expectation as

∑︁
b∈{0,1}𝑚
{j(𝜈)}𝜈∈[𝑚]

𝑚∏︁
𝜈=1

(︃
ℓ𝜈−𝑏𝜈∏︁
𝑎=1

⟨
(𝑉 * − 𝑉)

𝑗
(𝜈)
𝑎
, 𝑥
⟩)︃(︀

1[𝑏𝜈 = 0] ·Dj(𝜈) 𝑝(𝑉
⊤𝑥) + 1[𝑏𝜈 = 1] ·Dj(𝜈) δ(𝑉

⊤𝑥)
)︀
.

We will bound the expected absolute values of each of these summands individually, so hence-

forth fix an arbitrary b, {j(𝜈)}. For convenience, define 𝐶𝜈 ,
(︀
1[𝑏𝜈 = 0] ·Dj(𝜈) 𝑝(𝑉

⊤𝑥) + 1[𝑏𝜈 = 1] ·Dj(𝜈) δ(𝑉
⊤𝑥)
)︀
.

By AM-GM, we have that

E

[︃(︃
𝑚∏︁
𝜈=1

|𝐶𝜈 |

)︃
·

(︃
𝑚∏︁
𝜈=1

ℓ𝜈−𝑏𝜈∏︁
𝑎=1

⃒⃒⃒⟨
(𝑉 * − 𝑉)

𝑗
(𝜈)
𝑎
, 𝑥
⟩⃒⃒⃒)︃]︃

≤ E

[︃(︃
𝑚∏︁
𝜈=1

𝐶𝜈

)︃
·

(︃
𝑚∏︁
𝜈=1

1

ℓ𝜈 − 𝑏𝜈

ℓ𝜈−𝑏𝜈∑︁
𝑎=1

⃒⃒⃒⟨
(𝑉 * − 𝑉)

𝑗
(𝜈)
𝑎
, 𝑥
⟩⃒⃒⃒ℓ𝜈−𝑏𝜈)︃]︃

159

≤ E

[︃
𝑚∏︁
𝜈=1

𝐶2
𝜈

(ℓ𝜈 − 𝑏𝜈)2

]︃1/2
· E

⎡⎣⎛⎝ ∑︁
a∈

∏︀
𝜈 [ℓ𝜈−𝑏𝜈]

𝑚∏︁
𝜈=1

⃒⃒⃒⟨
(𝑉 * − 𝑉)

𝑗
(𝜈)
𝑎𝜈
, 𝑥
⟩⃒⃒⃒ℓ𝜈−𝑏𝜈⎞⎠2⎤⎦1/2

(2.37)

where the last inequality follows by Cauchy-Schwarz.

Defining 𝑤b =
∑︀

𝜈 ℓ𝜈 − 𝑏𝜈 , we may write the second factor in (2.37) as

E

⎡⎣∑︁
a1,a2

𝑚∏︁
𝜈=1

⃒⃒⃒⃒⟨
(𝑉 * − 𝑉)

𝑗
(𝜈)

𝑎1𝜈

, 𝑥

⟩⃒⃒⃒⃒ℓ𝜈−𝑏𝜈
·
𝑚∏︁
𝜈=1

⃒⃒⃒⃒⟨
(𝑉 * − 𝑉)

𝑗
(𝜈)

𝑎2𝜈

, 𝑥

⟩⃒⃒⃒⃒ℓ𝜈−𝑏𝜈⎤⎦1/2

≤ (2𝑤b)
𝑤b/2‖𝑉 * − 𝑉 ‖𝑤b

𝐹 ·
∏︁
𝜈

(ℓ𝜈 − 𝑏𝜈) ≤ (2𝑚)𝑚/2‖𝑉 * − 𝑉 ‖𝑤b
𝐹 ·

∏︁
𝜈

(ℓ𝜈 − 𝑏𝜈),

where we used the standard bound for moments of a univariate Gaussian, the fact that there

are
∏︀

𝜈(ℓ𝜈 − 𝑏𝜈)2 pairs of summands a1, a2, and the fact that any column of 𝑉 * − 𝑉 has 𝐿2

norm at most ‖𝑉 * − 𝑉 ‖𝐹 .

By Holder’s, we may upper bound the first factor in (2.37) by
∏︀𝑚

𝜈=1
1

ℓ𝜈−𝑏𝜈E [𝐶2𝑚
𝜈]

1/2𝑚.

By Corollary 2.3.7,

E
[︁(︀
Dj(𝜈) δ(𝑉

⊤𝑥)
)︀2𝑚]︁1/2𝑚 ≤ (2𝑚)𝑑/2𝑑(ℓ𝜈−1)/2 · V[δ]1/2 ≤ (2𝑚)𝑑/2𝑑ℓ𝜈/2 · ‖c− c*‖2.

E
[︁(︀
Dj(𝜈) 𝑝(𝑉

⊤𝑥)
)︀2𝑚]︁1/2𝑚 ≤ (2𝑚)𝑑/2𝑑ℓ𝜈/2 · V[𝑝]1/2 ≤ 2 · (2𝑚)𝑑/2𝑑ℓ𝜈/2,

where in the last step we used that V[𝑝]1/2 ≤ V[𝑝*]1/2 + V[δ]1/2 ≤ 2. So the first factor in

(2.37) is at most

(︃
𝑚∏︁
𝜈=1

1

ℓ𝜈 − 𝑏𝜈

)︃
· 2𝑚 · (2𝑚)𝑚𝑑/2𝑑

∑︀
𝜈 ℓ𝜈/2‖c− c*‖

∑︀
𝜈 𝑏𝜈

2 ,

so (2.37) is at most 2𝑚 · (2𝑚)𝑚(𝑑+1)/2𝑑𝑚(𝑑+1)/2 · ‖𝑉 *−𝑉 ‖𝑤b
𝐹 · ‖c− c*‖

∑︀
𝜈 𝑏𝜈

2 . The proof follows

by noting that

∑︁
b

‖𝑉 * − 𝑉 ‖𝑤b
𝐹 · ‖c− c*‖

∑︀
𝜈 𝑏𝜈

2 = ‖𝑉 * − 𝑉 ‖
∑︀

𝜈 ℓ𝜈
𝐹 ·

∑︁
b

(︂
‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂∑︀
𝜈 𝑏𝜈

160

and summing (2.37) over all choices of b and all
∏︀

𝜈 𝑟
ℓ𝜈 ≤ 𝑟𝑚(𝑑+1) choices of {j(𝜈)}.

2.11.2 Proof of Lemma 2.7.7

Proof. Let

𝛼𝑞 , 3
√
𝑟 · 𝜂vec ·𝑂(

√
𝑛) ·𝑂(𝑑𝑟3)(𝑑+2)/2.

(𝑞 = 1). Analogous to the derivation of (2.27), we have that

E
[︀
‖𝑉 (𝑡) − 𝑉 *‖𝐹

]︀
≤ E

[︀
‖𝑉 (𝑡−1) − 𝑉 *‖𝐹

]︀
+ E

[︁
‖ΔΘ(𝑡−1),𝑥𝑡−1

vec ‖𝐹
]︁

≤ E
[︀
‖𝑉 (𝑡−1) − 𝑉 *‖𝐹

]︀
+ 3
√
𝑟 · 𝜂vecE

[︁
(𝜎Θ(𝑡−1),𝑥𝑡−1

)2
]︁1/2

≤ (1 + 𝛼1)E
[︀
‖𝑉 (𝑡−1) − 𝑉 *‖𝐹

]︀
+ 𝛼1 · ‖c− c*‖2

≤ (1 + 𝛼1)
𝑡 · ‖𝑉 (0) − 𝑉 *‖𝐹 +

(︀
(1 + 𝛼1)

𝑡 − 1
)︀
· ‖c− c*‖2

= (1 + 𝛼1)
𝑡 · 𝑑𝑃 (𝑉 (0), 𝑉 *) +

(︀
(1 + 𝛼1)

𝑡 − 1
)︀
· ‖c− c*‖2

where in the second step we used Cauchy-Schwarz and (2.24), in the third step we used

Lemma 2.7.4, in the fourth step we unrolled the recurrence, and in the last step we used the

assumption that ‖𝑉 (0)−𝑉 *‖𝐹 = 𝑑𝑃 (𝑉
(0), 𝑉 *). The proof follows by taking 𝜂vec small enough

that

(1 + 𝛼1)
𝑡 +
(︀
(1 + 𝛼1)

𝑡 − 1
)︀
· ‖c− c*‖2
𝑑𝑃 (𝑉 (0), 𝑉 *)

≤ 1.1.

𝜂vec given by (2.21) will easily satisfy this.

(Larger 𝑞) We have that

E
[︀
‖𝑉 (𝑡) − 𝑉 *‖𝑞𝐹

]︀1/𝑞 ≤ E
[︀
‖𝑉 (𝑡−1) − 𝑉 *‖𝑞𝐹

]︀1/𝑞
+ E

[︁
‖ΔΘ(𝑡−1),𝑥𝑡−1

vec ‖𝑞𝐹
]︁1/𝑞

≤ E
[︀
‖𝑉 (𝑡−1) − 𝑉 *‖𝑞𝐹

]︀1/𝑞
+ E

[︁
‖ΔΘ(𝑡−1),𝑥𝑡−1

vec ‖2𝑞𝐹
]︁1/2𝑞

≤ E
[︀
‖𝑉 (𝑡−1) − 𝑉 *‖𝑞𝐹

]︀1/𝑞
+ 𝛼𝑞 ·

(︀
E
[︀
‖𝑉 (𝑡−1) − 𝑉 *‖𝐹

]︀
+ ‖c− c*‖2

)︀
≤ E

[︀
‖𝑉 (𝑡−1) − 𝑉 *‖2𝐹

]︀1/𝑞
+ 1.1𝛼𝑞 ·

(︀
𝑑𝑃 (𝑉

(0), 𝑉 *) + ·‖c− c*‖2
)︀

≤ 𝑑𝑃 (𝑉
(0), 𝑉 *) + 1.1𝑡 · 𝛼𝑞 ·

(︀
𝑑𝑃 (𝑉

(0), 𝑉 *) + ·‖c− c*‖2
)︀

where the first step follows by triangle inequality, the second by monotonicity of 𝐿𝑝 norms, the

161

third by Lemma 2.7.4, the fourth by Lemma 2.7.7, and the fifth by unrolling the recurrence

and using the assumption that assumption that ‖𝑉 (0) − 𝑉 *‖𝐹 = 𝑑𝑃 (𝑉
(0), 𝑉 *).

The proof follows by taking 𝜂vec small enough that 1.1𝑇 · 𝛼𝑞 · ‖c− c*‖2 ≤ 𝑂(𝛼𝑞 · 𝑇) is a

negligible constant, which is certainly the case if 𝜂vec satisfies (2.21) (with hidden constant

factors there depending on 𝑞).

2.11.3 Proof of Lemma 2.7.10

We first prove the following basic consequence of Lemma 2.5.4:

Lemma 2.11.1.

E

⎡⎣(︃𝑑+1∑︁
ℓ=2

1

ℓ!

⟨︀
∇[ℓ]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ

⟩︀)︃2
⎤⎦1/2

≤ 𝑂(𝑑𝑟3)(𝑑+1)/2 · ‖𝑉 − 𝑉 *‖𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2) (2.38)

Proof. The left-hand side of (2.38) can be rewritten as

(︃ ∑︁
ℓ1,ℓ2>1

1

ℓ1!ℓ2!
E

[︃
2∏︁

𝜈=1

⟨︀
∇[ℓ𝜈]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ𝜈

⟩︀]︃)︃1/2

· E
[︀
(𝑥⊤ · Π⊥

𝑉 𝑉
* ·Δ)2

]︀1/2
≤

(︃ ∑︁
ℓ1,ℓ2>1

1

ℓ1!ℓ2!
4 · (4𝑑𝑟2)𝑑+1 · ‖𝑉 − 𝑉 *‖ℓ1+ℓ2𝐹 ·

(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂2
)︃1/2

= 2(4𝑑𝑟2)(𝑑+1)/2
∑︁
ℓ>1

1

ℓ!
‖𝑉 − 𝑉 *‖ℓ𝐹 ·

(︂
1 +

‖c− c*‖2
‖𝑉 * − 𝑉 ‖𝐹

)︂
≤ 2𝑒(16𝑑𝑟3)(𝑑+1)/2 · ‖𝑉 − 𝑉 *‖𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2) ,

where the first step follows by Lemma 2.5.4, and the last step follows by the fact that

‖𝑉 − 𝑉 *‖𝐹 ≤ 2
√
𝑟 and the fact that

∑︀𝑑+1
ℓ=2

1
ℓ!
𝑥ℓ < 𝑒 · (4𝑟)(𝑑−1)/2 · 𝑥2 for 𝑥 ∈ [0, 2

√
𝑟].

Proof of Lemma 2.7.10. We have that

1

2𝜂vec

⃒⃒⃒
⟨Δ̃′′

𝑉 , 𝑉 − 𝑉 *⟩
⃒⃒⃒

162

=

⃒⃒⃒⃒
⃒E
[︃
𝑑+1∑︁
ℓ=2

1

ℓ!

⟨︀
∇[ℓ]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ

⟩︀
· 𝑥⊤ · Π⊥

𝑉 𝑉
* ·Δ

]︃⃒⃒⃒⃒
⃒

≤ E

⎡⎣(︃𝑑+1∑︁
ℓ=2

1

ℓ!

⟨︀
∇[ℓ]𝐹𝑥(Θ), (Θ* −Θ)⊗ℓ

⟩︀)︃2
⎤⎦1/2

· E
[︀
(𝑥⊤ · Π⊥

𝑉 𝑉
* ·Δ)2

]︀1/2
≤ 𝑂(𝑑𝑟3)(𝑑+1)/2 · ‖𝑉 − 𝑉 *‖𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2) · E[A’]1/2

≤ 𝑂(𝑑𝑟3)(𝑑+1)/2 · ‖𝑉 − 𝑉 *‖𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2) · (2𝑑𝑃 (𝑉, 𝑉 *)),

where the second step follows by Cauchy-Schwarz, the third by Lemma 2.38 and the definition

of A’ , the fourth by the upper bound in (2.31).

2.11.4 Proof of Lemma 2.7.11

By Holder’s,

|E [⟨ℰ , 𝑉 − 𝑉 *⟩]|

≤ E [| cos(𝜎𝜂vec)− 1|] · sup̂︀∇
⃒⃒⃒
⟨𝑉 · ̂︀∇̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒
+ E [| sin(𝜎𝜂vec)− 𝜎𝜂vec|] · sup̂︀ℎ,̂︀∇

⃒⃒⃒
⟨̂︀ℎ̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒

≤ 𝑂(𝜂2vec) · E[𝜎2] ·

(︃
sup̂︀∇

⃒⃒⃒
⟨𝑉 · ̂︀∇̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒
+ sup̂︀ℎ,̂︀∇

⃒⃒⃒
⟨̂︀ℎ̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒)︃
, (2.39)

where in the second step we used that | cos(𝑥) − 1| ≤ 𝑥2/2 and | sin(𝑥) − 𝑥| ≤ 𝑥2/𝜋 for all

𝑥 ≥ 0, and in the third step we invoked Lemmas 2.11.2 and 2.11.3 below.

Lemma 2.11.2. For any ̂︀∇ ∈ S𝑟−1,
⃒⃒⃒
⟨𝑉 · ̂︀∇̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒
≤ ‖𝑉 − 𝑉 *‖𝐹 .

Proof. We may write the quantity on the left-hand side as

̂︀∇⊤ ·
(︀
(𝑉 − 𝑉 *)⊤𝑉

)︀
· ̂︀∇ = ̂︀∇⊤

(︁
Id−𝑉 *⊤𝑉

)︁ ̂︀∇ ≤ ‖Id−𝑉 *⊤𝑉 ‖2 ≤ ‖𝑉 − 𝑉 *‖𝐹 ,

where the last step follows by the first part of Lemma 2.3.13.

Lemma 2.11.3. For any ̂︀∇ ∈ S𝑟−1 and ̂︀ℎ ∈ S𝑛−1 for which ̂︀ℎ lies in the orthogonal comple-

ment of the column span of 𝑉 ,
⃒⃒⃒⟨̂︀ℎ̂︀∇⊤, 𝑉 − 𝑉 *

⟩⃒⃒⃒
≤ 𝑑𝑃 (𝑉, 𝑉

*).

163

Proof. Because Π⊥
𝑉
̂︀ℎ = ̂︀ℎ, The left-hand side can be rewritten as

̂︀ℎ⊤(𝑉 − 𝑉 *)̂︀∇ = ̂︀ℎ⊤Π⊥
𝑉 (𝑉 − 𝑉 *)̂︀∇,

it is upper-bounded by

𝜎max(Π
⊥(𝑉 − 𝑉 *)) ≤ Tr((𝑉 − 𝑉 *)⊤(Id−𝑉 𝑉 ⊤)(𝑉 − 𝑉 *)1/2

= Tr(Id−𝑉 *𝑉 ⊤𝑉 𝑉 *⊤)1/2

= 𝑑𝐶(𝑉, 𝑉
*) ≤ 𝑑𝑃 (𝑉, 𝑉

*),

where the last step follows by Lemma 1.3.5.

Proof of Lemma 2.7.11. We have

|E [⟨ℰ , 𝑉 − 𝑉 *⟩]| ≤ 𝑂(𝜂2vec) ·𝑂(𝑛) ·𝑂(𝑑𝑟3)𝑑+2 · ‖𝑉 − 𝑉 *‖𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2 ,

by (2.39), Lemmas 2.11.2, 2.11.3, and 2.7.4. The lemma follows by taking 𝜂vec ≤ 𝑂(1/𝑛).

2.11.5 Proof of Lemma 2.7.15

Proof. We will bound each E𝑥0,...,𝑥𝑡−1 [𝜇𝑋(Θ
(𝑡)] individually. By Lemma 2.7.9, for any realiza-

tion of 𝑥0, ..., 𝑥𝑡−1 giving rise to iterate Θ(𝑡) = (c, 𝑉 (𝑡)), 𝜇𝑋(Θ(𝑡)) ≥ (𝜈cond/4) · 𝑑𝑃 (𝑉 (𝑡), 𝑉 *)2.

We have that

E
[︀
𝑑𝑃 (𝑉

(𝑡), 𝑉 *)2
]︀

≥ E
[︁(︀
𝑑𝑃 (𝑉

(𝑡−1), 𝑉 *)− 𝑑𝑃 (𝑉 (𝑡), 𝑉 (𝑡−1))
)︀2]︁

≥ E
[︀
𝑑𝑃 (𝑉

(𝑡−1, 𝑉 *)2
]︀
− 2E

[︀
𝑑𝑃 (𝑉

(𝑡−1), 𝑉 *)2
]︀1/2 · E [︀𝑑𝑃 (𝑉 (𝑡), 𝑉 (𝑡−1))2

]︀1/2
≥ E

[︀
𝑑𝑃 (𝑉

(𝑡−1, 𝑉 *)2
]︀
− 2E

[︀
𝑑𝑃 (𝑉

(𝑡−1), 𝑉 *)2
]︀1/2 · E [︁‖ΔΘ(𝑡−1),𝑥𝑡−1

vec ‖2𝐹
]︁1/2

≥ E
[︀
𝑑𝑃 (𝑉

(𝑡−1, 𝑉 *)2
]︀
− 6
√
𝑟 · 𝜂vecE

[︀
𝑑𝑃 (𝑉

(𝑡−1), 𝑉 *)2
]︀1/2 · E [︁(𝜎Θ(𝑡−1),𝑥𝑡−1

)2
]︁1/2

(2.40)

164

where the first step follows by triangle inequality (Fact 1.3.4), the second by Cauchy-Schwarz,

the third by the definition of Procrustes distance, and the fourth by (2.24). By Lemma 2.7.4

and Lemma 2.7.7,

6
√
𝑟 · 𝜂vecE

[︁
(𝜎Θ(𝑡−1),𝑥𝑡−1

)2
]︁1/2

≤ 6
√
𝑟 · 𝜂vec ·𝑂(

√
𝑛) · (𝑑𝑟3)(𝑑+2)/2 ·

(︀
E
[︀
‖𝑉 (𝑡−1) − 𝑉 *‖𝐹

]︀
+ ‖c− c*‖2

)︀
≤ 6
√
𝑟 ·𝑂(

√
𝑛) · (𝑑𝑟3)(𝑑+2)/2 ·

(︀
1.1𝑑𝑃 (𝑉

(0), 𝑉 *) + ‖c− c*‖2
)︀

≤ 1

100𝑇
𝑑𝑃 (𝑉

(0), 𝑉 *),

where the last step follows by our choice of 𝜂vec in (2.21). So by (2.40) we conclude that as

long as E[𝑑𝑃 (𝑉 (𝑠), 𝑉 *)2] > 𝑑𝑃 (𝑉
(0), 𝑉 *)2/1.1 for all 𝑠 < 𝑡,

E
[︀
𝑑𝑃 (𝑉

(𝑡), 𝑉 *)2
]︀
≥

(︃
1−
√
1.1

100𝑇

)︃
E
[︀
𝑑𝑃 (𝑉

(𝑡−1), 𝑉 *)2
]︀

≥

(︃
1−
√
1.1

100𝑇

)︃𝑡

𝑑𝑃 (𝑉
(0), 𝑉 *)2

≥ 𝑑𝑃 (𝑉
(0), 𝑉 *)2/1.1.

By induction, 𝑑𝑃 (𝑉 (𝑡), 𝑉 *)2 ≥ 𝑑𝑃 (𝑉
(0), 𝑉 *)2/1.1 for all 0 ≤ 𝑡 < 𝑇 . Recalling that 𝜇𝑋(Θ(𝑡)) ≥

(𝜈cond/4) · 𝑑𝑃 (𝑉 (𝑡), 𝑉 *)2, we conclude that

E

[︃
𝑇−1∑︁
𝑡=0

𝜇𝑋(Θ
(𝑡))

]︃
≥ 𝑇 · (𝜈cond/4) ·

(︀
𝑑𝑃 (𝑉

(0), 𝑉 *)2/1.1
)︀

as desired.

2.11.6 Proof of Lemma 2.7.16

Proof. We will bound each E𝑥0,...,𝑥𝑡−1 [
⃒⃒
𝜇𝐸1(Θ

(𝑡)
⃒⃒
] individually and apply triangle inequality.

165

By Lemma 2.7.10, for any realization of 𝑥0, ..., 𝑥𝑡−1 giving rise to iterate Θ(𝑡) = (c, 𝑉 (𝑡)),

⃒⃒
𝜇𝐸1(Θ

(𝑡))
⃒⃒
≤ 𝑂(𝜂vec) ·𝑂(𝑑𝑟3)(𝑑+1)/2 · ‖𝑉 (𝑡) − 𝑉 *‖𝐹 · 𝑑𝑃 (𝑉 (𝑡), 𝑉 *) ·

(︀
‖𝑉 (𝑡) − 𝑉 *‖𝐹 + ‖c− c*‖2

)︀
.

≤ 𝑂(𝜂vec) ·𝑂(𝑑𝑟3)(𝑑+1)/2 ·
(︀
‖𝑉 (𝑡) − 𝑉 *‖3𝐹 + ‖𝑉 (𝑡) − 𝑉 *‖2𝐹 · ‖c− c*‖2

)︀
.

By Lemma 2.7.7 and (2.20), we conclude that

E
[︀⃒⃒
𝜇𝐸1(Θ

(𝑡))
⃒⃒]︀
≤ 𝑂(𝜂vec) ·𝑂(𝑑𝑟3)(𝑑+1)/2 ·

(︀
1.1𝑑𝑃 (𝑉

(0), 𝑉 *)3 + 1.1𝑑𝑃 (𝑉
(0), 𝑉 *)2 · ‖c− c*‖2

)︀
≤ 𝑂(𝜂vec) ·𝑂(𝑑𝑟3)(𝑑+1)/2 · 𝑑𝑃 (𝑉 (0), 𝑉 *)3.

The claim follows by summing over 𝑡.

2.11.7 Proof of Lemma 2.7.17

Proof. We will bound each E𝑥0,...,𝑥𝑡−1 [
⃒⃒
𝜇𝐸2(Θ

(𝑡)
⃒⃒
] individually and apply triangle inequality.

By Lemma 2.7.11, for any realization of 𝑥0, ..., 𝑥𝑡−1 giving rise to iterate Θ(𝑡) = (c, 𝑉 (𝑡)),

⃒⃒
𝜇𝐸2(Θ

(𝑡))
⃒⃒

≤ 𝜂vec ·𝑂(𝑑𝑟3)𝑑+2 · ‖𝑉 − 𝑉 *‖𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2 .

≤ 𝜂vec ·𝑂(𝑑𝑟3)𝑑+2 ·
(︀
‖𝑉 (𝑡) − 𝑉 *‖3𝐹 + 2‖𝑉 (𝑡) − 𝑉 *‖2𝐹 · ‖c− c*‖2 + ‖𝑉 (𝑡) − 𝑉 *‖𝐹 · ‖c− c*‖2

)︀
.

By Lemma 2.7.7 and (2.20), we conclude that

E
[︀⃒⃒
𝜇𝐸2(Θ

(𝑡))
⃒⃒]︀
≤ 𝑂(𝜂vec) ·𝑂(𝑑𝑟3)𝑑+2 · 𝑑𝑃 (𝑉 (0), 𝑉 *)3

The claim follows by summing over 𝑡.

166

2.11.8 Proof of Lemma 2.7.18

Analogous to the proof of Lemma 2.6.15 in Appendix 2.10.4, we will prove concentration

by decomposing the MDS {𝜇𝑋(Θ(𝑡))−𝑋Θ(𝑡),𝑥𝑡}0≤𝑡<𝑇 into components corresponding to the

decomposition (2.29). That is, define A’
Θ,𝑥, B’

Θ,𝑥, C’
Θ,𝑥 to be the quantities in (2.29) for an

iterate Θ and sample 𝑥. So by Observation 2.7.12,
{︁

1
2𝜂vec

𝜇𝑋(Θ
(𝑡))− A’

Θ(𝑡),𝑥𝑡
}︁

, { B’
Θ(𝑡),𝑥𝑡},

and { C’
Θ(𝑡),𝑥𝑡} are MDS’s, and for any Θ, 𝑥,

1

2𝜂vec
𝑋Θ,𝑥 = A’

Θ,𝑥
+ B’

Θ,𝑥
+ C’

Θ,𝑥

by (2.29). We will show concentration for these MDS’s separately.

Lemma 2.11.4.
𝑇−1∑︁
𝑡=0

A’
Θ(𝑡),𝑥𝑡 ≥ 𝑇 · (𝜈cond/5) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

with probability at least 1− 𝛿.

Lemma 2.11.5. ⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

B’
Θ(𝑡),𝑥𝑡

⃒⃒⃒⃒
⃒ ≤ 𝑇 · (𝜈cond/60) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

with probability at least 1− 𝛿.

Lemma 2.11.6. ⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

C’
Θ(𝑡),𝑥𝑡

⃒⃒⃒⃒
⃒ ≤ 𝑇 · (𝜈cond/60) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

with probability at least 1− 𝛿.

We prove these in the subsequent Appendices 2.11.8, 2.11.8, and 2.11.8. Note that

Lemma 2.7.18 follows easily from these three lemmas:

Proof of Lemma 2.7.18. The claim follows immediately from Lemmas 2.11.4, 2.11.5, and

2.11.6; triangle inequality; replacing 3𝛿 in the resulting union bound with 𝛿; and absorbing

constant factors.

167

Proof of Lemma 2.11.4

Proof. Observe that
{︁

1
2𝜂vec

𝜇𝑋(Θ
(𝑡))− A’

Θ(𝑡),𝑥𝑡
}︁

is an MDS which satisfies one-sided bounds,

as A’
Θ,𝑥 ≥ 0 with probability one for any Θ, 𝑥, so we wish to apply Lemma 2.3.4. To do so,

we just need to bound the variances of the differences.

Lemma 2.11.7. For any Θ, V𝑥[A’
Θ,𝑥

] ≤ 24𝑑+4 · 𝑑𝑃 (𝑉, 𝑉 *)4.

Proof. We will suppress superscripts Θ, 𝑥 in this proof. V[A’] ≤ E[A’
2
], so it suffices to

bound the latter. But note that 𝑥⊤Π⊥
𝑉 𝑉

*∇𝑝(𝑉 ⊤𝑥) is a polynomial, call it 𝑓(𝑥), of degree 𝑑

in the Gaussians 𝑥1, ..., 𝑥𝑛. By Fact 1.3.15,

E[A’
2
] = E[𝑓(𝑥)4] ≤

(︀
4𝑑/2 · E[𝑓(𝑥)2]1/2

)︀4 ≤ 24𝑑 ·E[𝑓(𝑥)2]2 = 24𝑑 ·E[A’]2 ≤ 24𝑑+4 · 𝑑𝑃 (𝑉, 𝑉 *)4,

(2.41)

where the last step is by Lemma 2.7.13.

We can now complete the proof of Lemma 2.11.4. By Lemma 2.7.6 and Lemma 2.11.7,

if 𝜂vec satisfies (2.21), then with probability 1− 𝛿 we have that for all 0 ≤ 𝑡 < 𝑇 ,

1

2𝜂vec
𝜇𝑋(Θ

(𝑡))− A’
Θ(𝑡),𝑥𝑡 ≤ 1

2𝜂vec
𝜇𝑋(Θ

(𝑡)) ≤ 4𝑑𝑃 (𝑉
(𝑡), 𝑉 *)2 ≤ 4.84𝑑𝑃 (𝑉

(0), 𝑉 *)2.

V
𝑥𝑡
[A’

Θ(𝑡),𝑥𝑡
] ≤ 1.14 · 24𝑑+4 · 𝑑𝑃 (𝑉 (0), 𝑉 *)4

Applying Lemma 2.3.4 with the parameter 𝜎2 taken to be 𝑇 · 1.14 · 24𝑑+4 · 𝑑𝑃 (𝑉 (0), 𝑉 *)4, we

get

Pr

[︃
𝑇−1∑︁
𝑡=0

A’
Θ(𝑡),𝑥𝑡 ≥ 1

2𝜂vec

𝑇−1∑︁
𝑡=0

E
[︀
𝜇𝑋
(︀
Θ(𝑡)

)︀]︀
−𝑂

(︁
4𝑑 log(1/𝛿)

√
𝑇 · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

)︁]︃
≥ 1−2𝛿,

where the expectation in E
[︀
𝑋
(︀
Θ(𝑡)

)︀]︀
is over the randomness of the samples 𝑥0, ..., 𝑥𝑡−1.

By Lemma 2.7.15, we conclude that

𝑇−1∑︁
𝑡=0

A’
Θ(𝑡),𝑥𝑡 ≥ 𝑇 · (𝜈cond/4.4) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2 −𝑂

(︁
4𝑑 log(1/𝛿)

√
𝑇 · 𝑑𝑃 (𝑉 (0), 𝑉 *)2

)︁
(2.42)

with probability at least 1 − 2𝛿. Taking 𝑇 according to (2.22) will certainly ensure the

168

right-hand side of (2.42) is at least 𝑇 · (𝜈cond/5) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2. The proof is completed by

replacing 2𝛿 in the above with 𝛿 and absorbing the resulting constant factors.

Proof of Lemma 2.11.5

Proof. For fixed 𝑥1, ..., 𝑥𝑡−1, the martingale difference B’
Θ(𝑡),𝑥𝑡 is a polynomial of degree 2𝑑

in 𝑥𝑡, so by Lemma 2.3.3 we just need to upper bound the second moments of the differences,

which we do in the following lemma.

Lemma 2.11.8. For any Θ, E𝑥[(B’
Θ,𝑥

)2] ≤ 𝑑𝑃 (𝑉, 𝑉
*)2 · ‖𝑉 − 𝑉 *‖2𝐹 ·𝑂(𝑟2) · exp(𝑂(𝑑)).

Proof. By Cauchy-Schwarz,

E
[︁

B’
2
]︁
≤ E

[︁(︀
𝑥⊤Π𝑉 (𝑉

* − 𝑉)∇
)︀4]︁1/2 · E [︁(︀𝑥⊤Π⊥

𝑉 𝑉
*∇
)︀4]︁1/2

= E𝑔∼𝒩 (0,Id𝑟)

[︁(︀
𝑔⊤𝑉 ⊤(𝑉 * − 𝑉)∇𝑝(𝑔)

)︀4]︁1/2 · E [︁ A’
2
]︁1/2

≤ E𝑔∼𝒩 (0,Id𝑟)

[︁(︀
𝑔⊤(Id−𝑉 ⊤𝑉 *)∇𝑝(𝑔)

)︀4]︁1/2 · 22𝑑+2 · 𝑑𝑃 (𝑉, 𝑉 *)2, (2.43)

where the third step follows by (2.41). It remains to bound the first factor in (2.43). As this

factor is independent of 𝑛, we do not need a particularly sharp bound. We have

E𝑔
[︁(︀
𝑔⊤(Id−𝑉 ⊤𝑉 *)∇𝑝(𝑔)

)︀4]︁1/2 ≤ ‖Id−𝑉 ⊤𝑉 *‖22 · E𝑔[‖𝑔‖42 · ‖∇𝑝(𝑔)‖42]1/2

≤ ‖𝑉 − 𝑉 *‖2𝐹E𝑔[‖𝑔‖82]1/4 · E𝑔[‖∇𝑝(𝑔)‖82]1/4

≤ ‖𝑉 − 𝑉 *‖2𝐹 · 3(𝑟 + 1) · (𝑟𝑑 · 7𝑑 · V[𝑝])

≤ ‖𝑉 − 𝑉 *‖2𝐹 ·𝑂(𝑟2𝑑 · 7𝑑),

where the second step follows by Lemma 2.3.13, the third step follows by Corollary 1.3.17

and Lemma 2.3.8 applied to 𝑞 = 4, and the last step follows by noting that V[𝑝] = 𝑂(1) by

triangle inequality and absorbing constant factors. The claimed bound follows.

We now complete the proof of Lemma 2.11.5. By Lemma 2.7.6, 𝑑𝑃 (𝑉 (𝑡), 𝑉 *) ≤ ‖𝑉 (𝑡) −

𝑉 *‖𝐹 ≤ 1.1 · 𝑑𝑃 (𝑉 (0), 𝑉 *) for every 0 ≤ 𝑡 ≤ 𝑇 with probability at least 1− 𝛿, in which case

169

Lemma 2.11.8 implies that for every 0 ≤ 𝑡 < 𝑇 ,

E
[︂(︁

B’
Θ(𝑡),𝑥𝑡

)︁2 ⃒⃒⃒⃒
𝑥1, ..., 𝑥𝑡−1

]︂
≤ 𝑑𝑃 (𝑉

(0), 𝑉 *)4 ·𝑂(𝑟2) · exp(𝑂(𝑑))

with probability at least 1− 𝛿. So by Lemma 2.3.3,⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

B’
Θ(𝑡),𝑥𝑡

⃒⃒⃒⃒
⃒ ≤ (log(1/𝛿) · 𝑑)𝑐1𝑑 ·

√
𝑇 · 𝑑𝑃 (𝑉 (0), 𝑉 *)2 ·𝑂(𝑟) · exp(𝑂(𝑑))

with probability at least 1 − 2𝛿. By taking 𝑇 according to (2.22), we ensure that this

quantity is upper bounded by a negligible multiple of 𝑇 · (𝜈cond/5) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2 as desired.

The proof is completed by replacing 2𝛿 in the above with 𝛿 and absorbing the resulting

constant factors.

Proof of Lemma 2.11.6

Proof. As in the proof of Lemma 2.11.5, for fixed 𝑥1, ..., 𝑥𝑡−1, the martingale difference

C’
Θ(𝑡),𝑥𝑡 is a polynomial of degree 2𝑑 in 𝑥𝑡, so by Lemma 2.3.3 we just need to upper

bound the second moments of the differences, which we do in the following lemma.

Lemma 2.11.9. For any Θ, E𝑥[(C’
Θ,𝑥

)2] ≤ 𝑑𝑃 (𝑉, 𝑉
)2 · ‖c− c‖22 · exp(𝑂(𝑑)).

Proof. By Cauchy-Schwarz,

E
[︁

C’
2
]︁
≤ E

[︀
(δ(𝑉 ⊤𝑥)4

]︀1/2 · E [︁(︀𝑥⊤Π⊥
𝑉 𝑉

*∇
)︀4]︁1/2

= E𝑔∼𝒩 (0,Id𝑟)

[︀
δ(𝑔)4

]︀1/2 · E [︁ A’
2
]︁1/2

≤
(︀
3𝑑 · ‖c− c*‖22

)︀
·
(︀
22𝑑+2 · 𝑑𝑃 (𝑉, 𝑉 *)2

)︀
,

where the third step follows by Fact 1.3.15 and (2.41).

We now complete the proof of Lemma 2.11.6. By Lemma 2.7.6, 𝑑𝑃 (𝑉 (𝑡), 𝑉 *) ≤ ‖𝑉 (𝑡) −

𝑉 *‖𝐹 ≤ 1.1 · 𝑑𝑃 (𝑉 (0), 𝑉 *) for every 0 ≤ 𝑡 ≤ 𝑇 with probability at least 1− 𝛿, in which case

170

Lemma 2.11.9 implies that for every 0 ≤ 𝑡 < 𝑇 ,

E[(C’
Θ(𝑡),𝑥𝑡

)2|𝑥1, ..., 𝑥𝑡−1] ≤ 𝑑𝑃 (𝑉
(0), 𝑉 *) · ‖c− c*‖2 · exp(𝑂(𝑑))

with probability at least 1− 𝛿. So by Lemma 2.3.3,⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

C’
Θ(𝑡),𝑥𝑡

⃒⃒⃒⃒
⃒ ≤ (log(1/𝛿) · 𝑑)𝑐1𝑑 ·

√
𝑇 · 𝑑𝑃 (𝑉 (0), 𝑉 *) · ‖c− c*‖2 · exp(𝑂(𝑑))

with probability at least 1− 2𝛿. By taking 𝑇 satisfying the bound in the lemma statement

and invoking (2.20), we ensure that this quantity is upper bounded by a negligible multiple of

𝑇 ·(𝜈cond/5)·𝑑𝑃 (𝑉 (0), 𝑉 *)2 as desired. As in the proof of Lemma 2.11.4, the proof is completed

by replacing 2𝛿 in the above with 𝛿 and absorbing the resulting constant factors.

Proof of Lemmas 2.7.19 and 2.7.20

We will apply Lemma 2.3.3 to the MDS’s
{︁
𝐸Θ(𝑡),𝑥𝑡

1 − 𝜇𝐸1(Θ
(𝑡))
}︁

and
{︁
𝐸Θ(𝑡),𝑥𝑡

2 − 𝜇𝐸2(Θ
(𝑡))
}︁

.

As in the analysis of the MDS’s for Lemmas 2.11.5 and 2.11.6, the differences in these MDS’s

are polynomials of degree at most 2𝑑, so we just need to bound the second moments of their

differences. We do so in the following two lemmas.

Lemma 2.11.10. For any Θ,

E𝑥[(𝐸Θ,𝑥
1)2] ≤ 𝑂(𝜂2vec) ·𝑂(𝑑𝑟3)𝑑+1 · ‖𝑉 − 𝑉 *‖2𝐹 · 𝑑𝑃 (𝑉, 𝑉 *)2 · (‖c− c*‖2 + ‖𝑉 * − 𝑉 ‖𝐹)2

Proof. We have that

1

4𝜂2vec
E
[︂(︁
𝐸Θ,𝑥

1

)︁2]︂
= E

[︁
(RΘ,𝑥)2 ·

(︀
𝑥⊤ · Π⊥

𝑉 𝑉
* ·Δ

)︀2]︁
≤ E

[︀
(RΘ,𝑥)4

]︀1/2 · E [︁(︀𝑥⊤ · Π⊥
𝑉 𝑉

* ·Δ
)︀4]︁1/2

= E
[︀
(RΘ,𝑥)4

]︀1/2 · E[A’
2
]1/2

≤ 𝑂(𝑑𝑟3)𝑑+1 · ‖𝑉 − 𝑉 *‖2𝐹 · 𝑑𝑃 (𝑉, 𝑉 *)2 · (‖c− c*‖2 + ‖𝑉 * − 𝑉 ‖𝐹)2 ,

where the second step follows by Cauchy-Schwarz, the third step follows by definition of A’ ,

171

and the fourth step follows by Lemma 2.6.5.

Lemma 2.11.11. For any Θ, if 𝜂vec ≤ 𝑂(1/𝑛), then

E𝑥[(𝐸Θ,𝑥
2)2] ≤ 𝑂(𝜂2vec) · (64𝑑𝑟3)2𝑑+4 · ‖𝑉 − 𝑉 *‖2𝐹 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)4

Proof. By triangle inequality and Jensen’s, E[(𝐸Θ,𝑥
2)2]1/2 = E[⟨ℰ , 𝑉 − 𝑉 *⟩2]1/2 is at most

E
[︁
(cos(𝜎𝜂vec)− 1)2 · ⟨𝑉 · ̂︀∇̂︀∇⊤, 𝑉 − 𝑉 *⟩2

]︁1/2
+E

[︁
(sin(𝜎𝜂vec)− 𝜎𝜂vec)2 · ⟨̂︀ℎ̂︀∇⊤, 𝑉 − 𝑉 *⟩2

]︁1/2
By Holder’s and the fact that | cos(𝑥)− 1| ≤ 𝑥2/2 and | sin(𝑥)− 𝑥| ≤ 𝑥2/𝜋 for all 𝑥 ≥ 0, we

may upper bound the first term by

E
[︀
(cos(𝜎𝜂vec)− 1)2

]︀1/2·max̂︀∇
⃒⃒⃒
⟨𝑉 · ̂︀∇̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒
≤ 𝑂(𝜂2vec)·E[𝜎4]1/2·max̂︀∇

⃒⃒⃒
⟨𝑉 · ̂︀∇̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒

and the second term by

E
[︀
(sin(𝜎𝜂vec)− 𝜎𝜂vec)2

]︀1/2 ·max̂︀ℎ,̂︀∇
⃒⃒⃒
⟨̂︀ℎ̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒
≤ 𝑂(𝜂2vec) ·max̂︀ℎ,̂︀∇

⃒⃒⃒
⟨̂︀ℎ̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒
.

So E[(𝐸Θ,𝑥
2)2]1/2 is at most

𝑂(𝜂2vec) · E[𝜎4]1/2 ·
(︂
max̂︀∇

⃒⃒⃒
⟨𝑉 · ̂︀∇̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒
+max̂︀ℎ,̂︀∇

⃒⃒⃒
⟨̂︀ℎ̂︀∇⊤, 𝑉 − 𝑉 *⟩

⃒⃒⃒)︂
≤ 𝑂(𝜂2vec) ·𝑂(𝑛) · (64𝑑𝑟3)𝑑+2 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2 · ‖𝑉 − 𝑉 *‖𝐹

≤ 𝑂(𝜂vec) · (64𝑑𝑟3)𝑑+2 · (‖𝑉 − 𝑉 *‖𝐹 + ‖c− c*‖2)2 · ‖𝑉 − 𝑉 *‖𝐹 ,

where the first step follows by Lemma 2.7.4, Lemma 2.11.2, and Lemma 2.11.3, and the sixth

follows by the assumption that 𝜂vec ≤ 𝑂(1/𝑛).

We are now ready to complete the proofs of Lemma 2.7.19 and 2.7.20.

Proof of Lemma 2.7.19. By Lemma 2.7.6, 𝑑𝑃 (𝑉 (𝑡), 𝑉 *) ≤ ‖𝑉 (𝑡) − 𝑉 *‖𝐹 ≤ 1.1 · 𝑑𝑃 (𝑉 (0), 𝑉 *)

for every 0 ≤ 𝑡 ≤ 𝑇 with probability at least 1 − 𝛿, in which case Lemma 2.11.10 implies

172

that for every 0 ≤ 𝑡 < 𝑇 ,

E[(𝐸Θ(𝑡),𝑥𝑡

1)2|𝑥1, ..., 𝑥𝑡−1] ≤ 𝑂(𝜂2vec) ·𝑂(𝑑𝑟3)𝑑+1 · 𝑑𝑃 (𝑉 (0), 𝑉 *)4 ·
(︀
‖c− c*‖2 + 𝑑𝑃 (𝑉

(0), 𝑉 *)
)︀2

≤ 𝑂(𝜂2vec) ·𝑂(𝑑𝑟3)𝑑+1 · 𝑑𝑃 (𝑉 (0), 𝑉 *)6

with probability at least 1− 𝛿. So by Lemma 2.3.3,⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

(︁
𝐸Θ(𝑡),𝑥𝑡

1 − E
[︀
𝜇𝐸1(Θ

(𝑡))
]︀)︁⃒⃒⃒⃒⃒

≤ (log(1/𝛿) · 𝑑)𝑐1𝑑 ·
√
𝑇 ·𝑂(𝜂vec) ·𝑂(𝑑𝑟3)(𝑑+1)/2 · 𝑑𝑃 (𝑉 (0), 𝑉 *)3

with probability at least 1− 2𝛿. By Lemma 2.7.16, we conclude that⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

𝐸Θ(𝑡),𝑥𝑡

1

⃒⃒⃒⃒
⃒ ≤ 𝑂(

√
𝑇 · 𝜂vec) ·𝑂(𝑑𝑟3)(𝑑+1)/2 · 𝑑𝑃 (𝑉 (0), 𝑉 *)3 ·

(︁
(log(1/𝛿) · 𝑑)𝑐1𝑑 +

√
𝑇
)︁

By taking 𝑇 according to (2.22) and using the bound (2.19), we ensure that this quantity

is upper bounded by a negligible multiple of 𝑇 · 𝜂vec · (𝜈cond/3) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2 as desired. As

usual, the proof is completed by replacing 2𝛿 in the above with 𝛿 and absorbing the resulting

constant factors.

Proof of Lemma 2.7.20. By Lemma 2.7.6, ‖𝑉 (𝑡) − 𝑉 *‖𝐹 ≤ 1.1 · 𝑑𝑃 (𝑉 (0), 𝑉 *) for every 0 ≤

𝑡 ≤ 𝑇 with probability at least 1 − 𝛿, in which case Lemma 2.11.11 implies that for every

0 ≤ 𝑡 < 𝑇 ,

E[(𝐸Θ(𝑡),𝑥𝑡

2)2|𝑥1, ..., 𝑥𝑡−1] ≤ 𝑂(𝜂2vec) ·𝑂(𝑑𝑟3)2𝑑+4 · 𝑑𝑃 (𝑉 (0), 𝑉 *)2 ·
(︀
‖c− c*‖2 + 𝑑𝑃 (𝑉

(0), 𝑉 *)
)︀4

≤ 𝑂(𝜂2vec) ·𝑂(𝑑𝑟3)2𝑑+4 · 𝑑𝑃 (𝑉 (0), 𝑉 *)6

173

with probability at least 1− 𝛿. So by Lemma 2.3.3,⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

(︃
𝐸Θ(𝑡),𝑥𝑡

2

𝑇−1∑︁
𝑡=0

E
[︀
𝜇𝐸2(Θ

(𝑡))
]︀)︃⃒⃒⃒⃒⃒

≤ (log(1/𝛿) · 𝑑)𝑐1𝑑 ·
√
𝑇 ·𝑂(𝜂vec) ·𝑂(𝑑𝑟3)𝑑+2 · 𝑑𝑃 (𝑉 (0), 𝑉 *)3

with probability at least 1− 2𝛿. By (2.7.17), we conclude that

⃒⃒⃒⃒
⃒
𝑇−1∑︁
𝑡=0

𝐸Θ(𝑡),𝑥𝑡

2

⃒⃒⃒⃒
⃒ ≤ 𝑂(

√
𝑇 · 𝜂vec) ·𝑂(𝑑𝑟3)𝑑+2 · 𝑑𝑃 (𝑉 (0), 𝑉 *)3 ·

(︁
(log(1/𝛿) · 𝑑)𝑐1𝑑 +

√
𝑇
)︁

By taking 𝑇 according to (2.22) and using the bound (2.19), we ensure that this quantity

is upper bounded by a negligible multiple of 𝑇 · 𝜂vec · (𝜈cond/3) · 𝑑𝑃 (𝑉 (0), 𝑉 *)2 as desired. As

usual, the proof is completed by replacing 2𝛿 in the above with 𝛿 and absorbing the resulting

constant factors.

174

Chapter 3

Deep ReLU Networks

3.1 Introduction

In this chapter, we turn from low-rank polynomials to the following class of concepts, origi-

nally introduced in Definition 1.2.4:

Definition 3.1.1 (ReLU Networks). Let 𝒞𝑆 denote the concept class of (feedforward) ReLU

networks over R𝑑 of size 𝑆. Specifically, 𝐹 ∈ 𝒞𝑆 if there exist weight matrices W0 ∈

R𝑘0×𝑑,W1 ∈ R𝑘1×𝑘0 , . . . ,W𝐿 ∈ R𝑘𝐿×𝑘𝐿−1 ,W𝐿+1 ∈ R1×𝑘𝐿 for which

𝐹 (𝑥) , W𝐿+1𝜑 (W𝐿𝜑 (· · ·𝜑(W0𝑥) · · ·)) ,

where 𝜑(𝑧) , max(𝑧, 0) is the ReLU activation applied entrywise, and 𝑘0 + · · · + 𝑘𝐿 = 𝑆.

In this case we say that 𝐹 is computed by a ReLU network with depth 𝐿 + 2. We will refer

to the rank of W0 as 𝑘, to emphasize that the value of 𝐹 only depends on a 𝑘-dimensional

subspace of R𝑑. We will also let 𝑘𝐿+1 = 1.

When the weight matrices of two ReLU networks 𝐹, 𝐹 ′ ∈ 𝒞𝑆 have the same dimensions

(at all layers), then we say that 𝐹 and 𝐹 ′ have the same architecture.

For example, a depth two ReLU network of size 𝑆 in 𝑑-dimensions is a function 𝐹 : R𝑑 →

R of the form

𝐹 (𝑥) =
𝑆∑︁
𝑖=1

𝜆𝑖𝜑(⟨𝑤𝑖, 𝑥⟩),

175

where 𝜆𝑖 ∈ R are scalars and 𝑤𝑖 ∈ R𝑑 are arbitrary vectors.

Note that any Boolean function 𝐹 : {±1}𝑛 → {±1} can be computed by an 𝑛-layer

ReLU network (Lemma 3.5.2). In particular, if 𝐹 is a junta depending only on 𝑘 variables,

then it can be computed by a 𝑘-layer ReLU network with size that depends only on 𝑘.

Learning ReLU Networks The problem of PAC learning an unknown ReLU network

from labeled examples is a central challenge in the theory of machine learning. Given samples

from a distribution of the form (𝑥, 𝑦) ∈ R𝑑 × R where 𝑦 = 𝐹 (𝑥) with 𝐹 an unknown size-

𝑆 ReLU network,1 and 𝑥 is drawn according to a distribution 𝒟, the goal is to output a

function 𝑓 : R𝑑 → R with small test error, i.e., E𝑥,𝑦[(𝑦 − 𝑓(𝑥))2] ≤ 𝜀E[𝑦2]. In this thesis, we

focus on the widely studied case where the input distribution on 𝑥 is Gaussian.

Ideally, we would like an algorithm with sample complexity and running time that is

polynomial in all the relevant parameters. Even for learning arbitrary sums of ReLUs, i.e.

depth two ReLU networks where we additionally assume the W1 has all positive entries,

it remains a major open question to obtain a polynomial-time algorithm (see [DK20] for

the strongest-known result). As a first step, one could ask for an algorithm that at least

depends polynomially on the ambient dimension (it is often easy to obtain brute-force search

algorithms that run in time exponential in the dimension2). In the absence of additional

assumptions however, even this goal has remained elusive: it was not known how to achieve

a subexponential-time algorithm even for learning general depth two ReLU networks, let

alone ReLU networks of higher depth.

In this chapter, we address this gap by giving the first algorithm for learning ReLU

networks whose running time is a fixed polynomial in the dimension, regardless of the depth

of the network. Our algorithm is fixed-parameter tractable: we show that we can properly

learn (i.e., the output hypothesis is also a ReLU network) ReLU networks with sample

complexity and running time that is a fixed polynomial in the dimension and an exponential

function of the network’s parameters.

More precisely, our main result is as follows. We will also make the (as it turns out

1It should not be difficult to extend our techniques to the setting where 𝑦 = 𝐹 (𝑥) + 𝒩 (0, 𝜎2), but we
focus on the noiseless case for simplicity in this thesis.

2Although in our specific case even this type of search turns out to be nontrivial.

176

necessary) assumption that the ReLU network has a bounded Lipschitz constant (recall that

a function 𝑓 : R𝑑 → R is Λ-Lipschitz if |𝑓(𝑥)− 𝑓(𝑥′)| ≤ Λ‖𝑥− 𝑥′‖2 for all 𝑥, 𝑥′).

Theorem 3.1.2 (Main, see Theorem 3.4.2 for formal statement). Let 𝒟 be the distribution

over pairs (𝑥, 𝑦) ∈ R𝑑 × R where 𝑥 ∼ 𝒩 (0, Id) and 𝑦 = 𝐹 (𝑥) for a size-𝑆 ReLU network 𝐹

with depth 𝐿+ 2, Lipschitz constant at most Λ, rank of bottom weight matrix W0 being 𝑘,

and whose weight matrices all have spectral norm at most 𝐵.

There is an algorithm that draws 𝑑 log(1/𝛿) exp (poly(𝑘, 𝑆,Λ/𝜀))𝐵𝑂(𝐿𝑘) samples, runs in

time ̃︀𝑂(𝑑2 log(1/𝛿)) exp (poly(𝑘, 𝑆,Λ/𝜀))𝐵𝑂(𝐿𝑘𝑆2), and outputs a ReLU network ̃︀𝐹 such that

E[(𝑦 − ̃︀𝐹 (𝑥))2] ≤ 𝜀 with probability at least 1− 𝛿.3

Note that the sample complexity is linear while the run-time is quadratic in the ambient

dimension. In particular, in the well-studied special case where the product of the spectral

norms of the weight matrices is a constant (see e.g. [GRS18]), in which case the Lipschitz

constant of the network is also constant, we can obtain the following result as an immediate

consequence of the formal version of the above theorem (Theorem 3.4.2):

Corollary 3.1.3. Let 𝒟 be the distribution over pairs (𝑥, 𝑦) ∈ R𝑑 × R where 𝑥 ∼ 𝒩 (0, Id)

and 𝑦 = 𝐹 (𝑥) for a size-𝑆 ReLU network 𝐹 for which the product of the spectral norms of

its weight matrices is a constant.

Then there is an algorithm that draws 𝑁 = 𝑑 log(1/𝛿) exp(𝑂(𝑘3/𝜀2 + 𝑘𝑆)) samples, runs

in time ̃︀𝑂(𝑑2 log(1/𝛿)) exp(𝑂(𝑘3𝑆2/𝜀2 + 𝑘𝑆3)), and outputs a ReLU network ̃︀𝐹 such that

E[(𝑦 − ̃︀𝐹 (𝑥))2] ≤ 𝜀 with probability at least 1− 𝛿.

As mentioned earlier, no algorithms that were sub-exponential in 𝑑 were known even for

𝑆,𝐵, 𝜀 being constants.

Before going further, we note that a dependence on the Lipschitz constant of the network

is necessary even for learning depth two ReLU networks with respect to Gaussians:

Example 3.1.4. Let Λ > 0. Consider the size-3, depth two ReLU network 𝐹 : R2 → R

given by

𝐹 (𝑥1, 𝑥2) = 𝜑(𝑥1 + Λ𝑥2) + 𝜑(3𝑥1 + Λ𝑥2)− 2𝜑(−𝑥1 + Λ𝑥2).

The Lipschitz constant of 𝐹 is Θ(Λ): 𝐹 (0, 1/Λ) = 1 and 𝐹 (1, 1/Λ) = 2. Furthermore, note

3See Remark 3.4.3 for a discussion of why this guarantee is scale-invariant.

177

that for (𝑥1, 𝑥2) ∈ S1, 𝐹 (𝑥1, 𝑥2) = 0 unless 𝑥2 ∈ [−3/Λ, 3/Λ]. By rotational symmetry, for

(𝑥1, 𝑥2) ∼ 𝒩 (0, Id), 𝐹 (𝑥1, 𝑥2) ̸= 0 with probability at most 𝑂(1/Λ).

Note that for depth two ReLU networks with positive weights, no such dependence on the

Lipschitz constant is necessary intuitively because without cancellations between the hidden

units, one cannot devise “spiky” functions 𝐹 which simultaneously have small variance but

attain a large value at some bounded-norm 𝑥.

Interestingly, our techniques are also general enough to handle the more general family

of all continuous piecewise-linear functions (see Definition 3.3.4 for a formal definition):

Theorem 3.1.5 (See Theorem 3.4.1 for formal statement). Let 𝒟 be the distribution over

pairs (𝑥, 𝑦) ∈ R𝑑 × R where 𝑥 ∼ 𝒩 (0, Id) and 𝑦 = 𝐹 (𝑥) for a continuous piecewise-linear

function 𝐹 which only depends on the projection of 𝑥 to a 𝑘-dimensional subspace 𝑉 , has at

most 𝑀 linear pieces, and is Λ-Lipschitz.

There is an algorithm that draws 𝑑 log(1/𝛿) · poly
(︀
exp (𝑘3Λ2/𝜀2) ,𝑀𝑘

)︀
samples, runs

in time ̃︀𝑂(𝑑2 log(1/𝛿)) · 𝑀𝑀2 · poly
(︁
exp (𝑘4Λ2/𝜀2) ,𝑀𝑘2

)︁
, and outputs a piecewise-linear

function ̃︀𝐹 such that E[(𝑦 − ̃︀𝐹 (𝑥))2] ≤ 𝜀 with probability at least 1− 𝛿.

Note that a size-𝑆 ReLU network is a continuous piecewise-linear function with at most

2𝑆 linear pieces. Specializing Theorem 3.1.5 to ReLU networks gives a guarantee which is

incomparable to Theorem 3.1.2: we obtain an algorithm that depends doubly exponentially

on 𝑆 but has no dependence on the norms of the weight matrices.

3.1.1 Prior Work on Provably Learning Neural Networks

Algorithmic Results Algorithms for learning neural networks (obtaining small test er-

ror) have been intensely studied in the literature. In the last few years alone there have been

many papers giving provable results for learning restricted classes of neural networks under

various settings [JSA15,ZLJ16,ZSJ+17,BG17,GKKT17,LY17,ZPS17,Tia17,GKM18,DLT18,

GLM17,GKLW18,MR18,BJW18,GK19,AZLL19,VW19,ZYWG19,DGK+20,GMOV18,LMZ20,

DK20].

The predominant techniques are spectral or tensor-based dimension reduction [JSA15,

ZSJ+17, BJW18, DKKZ20], kernel methods [ZLJ16, GKKT17, Dan17, MR18, GK19], and

178

gradient-based methods [GLM17, GKLW18, VW19]. All prior work takes distributional

and/or architectural assumptions, the most common one being that the inputs come from a

standard Gaussian. We will also work in this setting.4

As pointed out in [GGJ+20,DGK+20], all existing algorithmic results for Gaussian inputs

hold only for depth two networks and make at least one of two assumptions on the unknown

network 𝐹 in question:

Assumption (1) Weight matrix W0 is well-conditioned and, in particular, full rank.

Assumption (2) The vector at the output layer (W1 when 𝐿 = 0) has all positive entries.

Assumption (1) allows one to use tensor decomposition to recover the parameters of

the network and hence PAC learn, an idea that has inspired a long line of works [JSA15,

ZSJ+17, GLM17, GKLW18, BJW18]. However, the assumption is not necessary for PAC

learning or achieving low-prediction error. For instance, consider a pathological case where

W0 has repeated rows. Here, while parameter recovery is not possible it is still possible to

PAC learn. To our knowledge, the only work that can PAC learn depth two networks over

Gaussian inputs without a condition number bound on W0 is [DKKZ20]. However, their

work still requires assumption (2) (and only holds for depth two networks). Our work shows

that assumption (2) is neither information-theoretically nor computationally necessary.

Limitations of Gradient-Based Methods As discussed in Section 1.2.1, two recent

works [GGJ+20,DKKZ20] showed that a broad family of algorithms, namely correlational

statistical query (CSQ) algorithms, fail to PAC learn even depth two ReLU networks; that

is, functions of the form 𝐹 (𝑥) =
∑︀𝑘

𝑖=1 𝜆𝑖𝜑(⟨𝑣𝑖, 𝑥⟩) with respect to Gaussian inputs in time

polynomial in 𝑑 where 𝑑 is the ambient dimension (in fact, [DKKZ20] rules out running

time 𝑑𝑜(𝑘)). Informally, a CSQ algorithm is limited to using noisy estimates of statistics

of the form E[𝑦 · 𝜎(𝑥)] for arbitrary bounded 𝜎, where the expectation is over examples

(𝑥, 𝑦) and 𝑦 = 𝐹 (𝑥) is computed by the network. The point is that this already rules out

a wide range of algorithmic approaches in theory and practice, including gradient descent

4Other works such as [AZLL19] or kernel-based methods [ZLJ16, GKKT17] require strong norm-based
assumptions on the inputs and weights.

179

on overparameterized networks (i.e., using neural tangent kernels [JGH18] or the mean-field

approximation for gradient dynamics [MMN18]). Note that the algorithms of [DKKZ20] for

learning depth two ReLU networks with positive coefficients are CSQ algorithms as well.

Note that as a consequence of Theorem 3.1.2, for any 𝜀 a function of 𝑘, our algorithm

can learn the lower bound instances in [GGJ+20,DKKZ20] to error 𝜀 in time 𝑔(𝑘) · poly(𝑑)

for some 𝑔 (note that the norm bounds and Lipschitz constants for these instances are upper

bounded by functions of 𝑘), which is impossible for any CSQ algorithm. We explain why

our algorithm is not a CSQ algorithm in Section 3.2.

For the classification version of this problem (i.e., taking a softmax) where we observe

𝑌 ∈ {0, 1} such that E[𝑌 |𝑋] = 𝜎(𝑓(𝑋)) where 𝜎 is say sigmoid and 𝑓(𝑋) is a depth

two ReLU network, Goel et al. [GGJ+20] show that even general SQ algorithms cannot

achieve a runtime with polynomial dependence on the dimension. We also remark there is

an extensive literature of previous work showing various hardness results for learning certain

classes of neural networks [BR89, Vu06, KS09, LSSS14, GKKT17, SVWX17, SSSS17, Sha18,

VW19,GKK19,DV20]. We refer the reader to [GGJ+20] for a discussion of how these prior

works relate to the above CSQ lower bounds.

3.1.2 Other Related Work and Discussion

Multi-Index Models Functions computed by ReLU networks where W0 has fewer rows

than columns are a special case of a multi-index model, that is, a function 𝐹 : R𝑑 → R

given by 𝐹 (𝑥) = 𝑓(W⊤𝑥) for some matrix W ∈ R𝑘×𝑑 and some function 𝑓 : R𝑘 → R.

In the theoretical computer science literature, these are sometimes referred to as subspace

juntas [VX11,DMN19,DMN20].

One result in this line of work which is close in spirit to the setting we consider is that

of [DH18], which gives various conditions on 𝑓 under which one can recover W (under

Gaussian inputs) in the special case where 𝑘 = 1, as well as a vector in the row span of W in

the case of general 𝑘 (although these results do not hold for ReLU). In general, the literature

on multi-index models is vast, and we refer to [DH18] for a comprehensive overview of this

body of work. Many works were inspired by a simple but powerful connection to Stein’s

lemma [Li92, Bri12, PV16], which was also a key ingredient in the above algorithms for

180

learning neural networks using tensor decomposition.

Another relevant line of work in this literature is the series of results on learning inter-

sections of halfspaces (and indicators of convex sets more generally) over structured input

distributions, see e.g. [KLT09,KOS08,BK94,Vem10a,Vem10b]. For Gaussian inputs, when

the number of halfspaces (or more generally the dimension of the convex set’s hidden sub-

space) is bounded, it was shown in [Vem10a] that one can essentially read off the row span

of W from the eigendecomposition of E[𝑦 · (𝑥𝑥⊤ − Id)] where for a given 𝑥, 𝑦 = 0 if 𝑥 lies in

the convex set and 𝑦 = 1 otherwise. By the CSQ lower bounds of [GGJ+20,DKKZ20], such

an algorithm provably cannot learn general ReLU networks.

Alternatively, one could also try generalizing the approach of [Vem10a] to our real-valued

setting by restricting to level sets 𝑆 of the ReLU network and forming the matrix E[1[𝑥 ∈

𝑆](𝑥𝑥⊤ − Id)]. We remark however that the analysis in [Vem10a] for such an approach

crucially uses convexity of the underlying concept and is therefore not applicable to our

setting. Note that this technique is also known as sliced inverse regression [BB+18,Li91] in

the multi-index model literature, and while it is related to the techniques that we employ,

we explain in Remark 2.2.1 why the state of the art here also falls short.

Non-Gaussian Component Analysis As we discuss in Section 3.2, the general approach

we take is to find careful reweightings of the distribution over 𝑥 that will look non-Gaussian

in some important direction, i.e., in the row span of W0. There have been several works on

non-Gaussian component analysis (see, e.g., [TV18,GS19] and the references therein), but

this line of work is not relevant to our result. We also remark that the work [VX11] gives

some moment-based conditions under which it is possible to learn multi-index models over

Gaussian inputs via non-Gaussian component analysis. However, it seems highly nontrivial

to verify whether such conditions hold for ReLU networks, and in addition, their results

seem tailored to {0, 1}-valued functions.

Piecewise-Linear Regression We mention that previous works on segmented regression

(see, e.g., [ADLS16] on the references therein) study regression for piecewise-linear functions

but work with a different notion of piecewise-linearity that is unrelated to our setting.

181

Non-Homogeneous ReLU Networks We leave as an open question whether our result

can be extended to non-homogeneous networks of the form 𝐹 (𝑥) , W𝐿+1𝜑(W𝐿𝜑(· · ·𝜑(W0𝑥+

𝑏0) + 𝑏1) · · · + 𝑏𝐿), where 𝑏0, . . . , 𝑏𝐿 ∈ R are unknown bias parameters. We stress that,

over Gaussian inputs, we are not aware of any positive results even for learning non-

homogeneous networks of depth two. As for negative results, the recent work of [DV21]

rules out polynomial-time algorithms for learning non-homogeneous ReLU networks, even

of depth three, assuming local PRGs with polynomial stretch and constant distinguishing

advantage exist [App12]. While this hardness result does not preclude the existence of a

fixed-parameter tractable algorithm for non-homogeneous ReLU networks, it does give a

compelling explanation for the lack of algorithmic progress in the non-homogeneous case.

3.2 Proof Overview

The conceptual novelty of our work is that we go beyond standard CSQ-based algorithms

like gradient descent on square loss to give a fundamentally new algorithm for learning neural

networks. There are a number of technical novelties to our approach we will describe over

the course of outlining our algorithm and analysis in this section.

Suppose we are given samples (𝑥, 𝑦) where 𝑦 = 𝐹 (𝑥) is computed by a size 𝑆 ReLU

network as in Definition 3.1.1. Let 𝑉 ⊆ R𝑑 denote the span of the rows of W0 and let 𝑘 be

its dimension. We will call 𝑉 the relevant subspace, because the value of 𝐹 only depends

on the projection of 𝑥 to 𝑉 . In particular, we can write 𝑦 = 𝐹 ′(Π𝑉 (𝑥)) for some function

𝐹 ′ : 𝑉 → R that is itself a size 𝑆 ReLU network and Π𝑉 denotes the projection operator

onto 𝑉 . The main focus of our algorithm will be in figuring out the relevant subspace 𝑉

given samples (𝑥, 𝑦). This is the hardest part of the algorithm, because once we learn the

relevant subspace to high enough accuracy, we can grid-search over ReLU networks in this

subspace. Even this grid search turns out to be non-trivial to analyze and entails proving

new stability results for piecewise-linear functions.

Filtered PCA Our algorithm builds upon the filtered PCA approach from the previous

chapter (we explain in Remark 3.4.14 why a straightforward application of the algorithm

182

there cannot work, necessitating a far more involved approach in the present work). For any

𝜓 : R → R, let M𝜓 , E[𝜓(𝑌)(𝑋𝑋𝑇 − Id)]. As in the previous chapter, we would like to

design 𝜓 so that the top principal components of M𝜓 reveal information about the relevant

subspace 𝑉 .

Threshold Filter. Our starting point, as before, is to consider 𝜓 given by a univariate

threshold, that is, 𝜓(𝑧) = 1[|𝑧| > 𝜏] for suitable 𝜏 . For brevity, for 𝜏 ∈ R define M𝜏 =

E𝑥,𝑦[1[|𝑦| > 𝜏](𝑥𝑥𝑇 − Id)]. Then we have that

⟨Π𝑉 ,M𝜏 ⟩ = E
𝑥,𝑦

[︀
1[|𝑦| > 𝜏] · (‖Π𝑉 𝑥‖2 − 𝑘)

]︀
.

In particular, as we discussed in the previous chapter, if one could choose 𝜏 for which

|𝐹 (𝑥)| > 𝜏 only if ‖Π𝑉 𝑥‖2 ≥ 2𝑘 5, then we would conclude that ⟨Π𝑉 ,M𝜏 ⟩ ≥ 𝑘 · Pr[|𝑦| > 𝜏],

so some singular value of M𝜏 is at least Pr[|𝑦| > 𝜏]. If 𝐹 is Λ-Lipschitz, we can simply

choose 𝜏 to be
√
2𝑘 · Λ, and provided Pr[|𝑦| > 𝜏] is reasonably large, then we conclude

that M𝜏 has some reasonably large singular value. Recall that in the previous chapter, our

analysis here depended on a compactness argument, but in this chapter we will obtain more

quantitative bounds. Namely, to lower bound Pr[|𝑦| > 𝜏], we prove an anti-concentration

result for piecewise linear functions over Gaussian space (Lemma 3.4.4).

Unfortunately, all that the above analysis tells us is that the trace of M𝜏 is non-negligible

which in turn helps us guarantee that we identify at least one direction in 𝑉 . It is not at

all clear whether the above threshold approach is enough to identify more than just one

vector in the relevant subspace. Indeed, recovering the full relevant subspace turns out to

be significantly more challenging, and the core technical contribution of the work in this

chapter is to show how to do this.

Learning the Full Subspace: What Doesn’t Work One might hope that a more

refined analysis shows that for a suitable 𝜏 , the spectrum of M𝜏 can identify the entire

subspace 𝑉 . Given that we can already learn some 𝑤 ∈ 𝑉 with the threshold approach

above, a first step would be to try to find a direction in 𝑉 orthogonal to 𝑤, by lower bounding
5The choice of 2𝑘 here is for exposition; any bound noticeably more than 𝑘, e.g., 𝑘 + 1 will do.

183

the contribution to the Frobenius norm of M𝜏 from vectors orthogonal to 𝑤. Concretely,

letting Π𝑉 ∖{𝑤} denote the projector to the orthogonal complement of 𝑤 in 𝑉 , we have that

⟨Π𝑉 ∖{𝑤},M𝜏 ⟩ = E
𝑥,𝑦

[︀
1[|𝑦| > 𝜏] · (‖Π𝑉 ∖{𝑤}𝑥‖2 − (𝑘 − 1))

]︀
. (3.1)

As before, if one could choose 𝜏 for which |𝐹 (𝑥)| > 𝜏 only if ‖Π𝑉 ∖{𝑤}𝑥‖2 ≥ 𝑘, and if we

could lower bound Pr[|𝑦| > 𝜏], then we would conclude that ⟨Π𝑉 ∖{𝑤},M𝜏 ⟩ ≥ Pr[|𝑦| > 𝜏], so

M𝜏 has some other singular vector, orthogonal to 𝑤, with non-negligible singular value. The

issue is that such a 𝜏 typically does not exist! For 𝑥 satisfying ‖Π𝑉 ∖{𝑤}𝑥‖2 ≤ 𝑘, 𝐹 (𝑥) can be

arbitrarily large, because ‖Π𝑤𝑥‖ can be arbitrarily large.

It may be possible to lower bound the quantity in (3.1) using a more refined argument, but

for general deep ReLU networks or piecewise linear functions, this seems very challenging.

At the very least, one must be careful not to prove something too strong, like showing that

𝑣⊤M𝜏𝑣 is non-negligible for any unit vector 𝑣 ∈ 𝑉 . For instance, even when 𝐿 = 0, it could

be that all but one of the rows of W0 lie in a proper subspace 𝑊 (𝑉 , and for the remaining

row 𝑢 of W0, ‖Π𝑉 ∖𝑊𝑢‖/‖𝑢‖ is arbitrarily small. In this case, for 𝑣 in the direction of Π𝑉 ∖𝑊𝑢,

the quadratic form 𝑣⊤M𝜏𝑣 is arbitrarily small, and it would be impossible to recover all of

𝑉 from a reasonable number of samples.

More generally, any proposed algorithm for learning all of 𝑉 had better be consistent

with the fact that it is impossible to recover the full subspace 𝑉 within a reasonable number

of samples if almost all of the variance of 𝐹 is explained by some proper subspace 𝑊 (𝑉 ,

or equivalently, if the “leftover variance” E𝑥[(𝐹 (𝑥)− 𝐹 (Π𝑊𝑥))
2] is negligible. We emphasize

that this is a key subtlety that does not manifest in previous works that consider full-rank,

well-conditioned weight matrices.

Learning the Full Subspace: Our Approach We now explain our approach. At a

high level, we try to learn orthogonal directions inside the relevant subspace in an iterative

fashion. The threshold filter approach above already gives us a single direction in 𝑉 . Suppose

inductively that we’ve learned some orthogonal vectors 𝑤1, ..., 𝑤ℓ ∈ 𝑉 spanning a subspace

𝑊 ⊆ 𝑉 and want to learn another (note that technically we can only guarantee 𝑤1, ..., 𝑤ℓ

184

are approximately within 𝑉 , but let us temporarily ignore this for the sake of exposition).

Motivated by the above consideration regarding “leftover variance,” we proceed by a win-

win argument: either the leftover variance already satisfies E𝑥[(𝐹 (𝑥) − 𝐹 (Π𝑊𝑥))
2] ≤ 𝜀 in

which case we are already done, or we can learn a new direction via the following crucial

modification of the threshold filter.

First, as a thought experiment, consider the following matrix

M𝑊
𝜏 , Π𝑊⊥ E

𝑥,𝑦

[︀
1[|𝑦 − 𝐹 (Π𝑊𝑥)| > 𝜏] · (𝑥𝑥⊤ − Id)

]︀
Π𝑊⊥ .

Note the critical fact that we threshold on 𝑦−𝐹 (Π𝑊𝑥) as opposed to just on 𝑦. As before,

it is not hard to show that if this matrix is nonzero, then its singular vectors with nonzero

singular value must lie in W0 and be orthogonal to 𝑊 ; thus giving us a new direction in

W0. We claim that if the leftover variance is non-negligible, then the above matrix will give

us a new direction in 𝑊 .

The intuition behind the above matrix is as follows. Let 𝑉 ∖𝑊 denote the subspace of 𝑉

orthogonal to𝑊 . We can write 𝐹 (𝑥) = 𝐹 (Π𝑉 𝑥) = 𝐹 (Π𝑊𝑥+Π𝑉 ∖𝑊𝑥). Now, as 𝐹 is Lipschitz,

we can bound 𝐺(𝑥) = 𝑦−𝐹 (Π𝑊𝑥) = 𝐹 (Π𝑊𝑥+Π𝑉 ∖𝑊𝑥)−𝐹 (Π𝑊𝑥) as |𝐺(𝑥)| ≤ Λ‖Π𝑉 ∖𝑊𝑥‖2,

where Λ is the Lipschitz constant of 𝐹 . In other words, 𝐺(𝑥) is bounded over 𝑥 for which

‖Π𝑉 ∖𝑊𝑥‖ is bounded. Recall that the fact that 𝐹 (𝑥) is not bounded over such 𝑥 was the

key obstacle to using the original threshold filter approach to learn the full subspace.

The upshot is that for a suitably large 𝜏 , the only contribution to the matrix M𝑊
𝜏 should

be from inputs 𝑥 that have large projection in 𝑉 ∖𝑊 . We are now in a position to adapt the

analysis lower bounding ⟨Π𝑉 ,M𝜏 ⟩ to lower bounding ⟨Π𝑉 ∖𝑊 ,M
𝑊
𝜏 ⟩. In particular, we can

apply the aforementioned anti-concentration for piecewise linear functions to the function

𝐺 and argue that, provided the leftover variance E𝑥[(𝐹 (𝑥) − 𝐹 (Π𝑊𝑥))
2] = E𝑥[𝐺(𝑥)2] is

non-negligible, the top singular vector of M𝑊
𝜏 will give us a new vector in 𝑉 ∖𝑊 .

That being said, an obvious obstacle in implementing the above is that along with not

knowing the true subspace W0, we also don’t know the true function 𝐹 . This precludes us

from forming the matrix M𝑊
𝜏 as defined above.

To get around this, we will enumerate over a sufficiently fine net of ReLU networks ̃︀𝐹
185

with relevant subspace 𝑊 , one of which will be close to the ReLU network 𝐹 (Π𝑊𝑥). For

each ̃︀𝐹 , we will form the matrix

̃︁M𝑊
𝜏 , Π𝑊⊥ E

𝑥,𝑦

[︁
1[|𝑦 − ̃︀𝐹 (Π𝑊𝑥)| > 𝜏] · (𝑥𝑥⊤ − Id)

]︁
Π𝑊⊥ . (3.2)

and output the top singular vector as our new direction only if it has non-negligible singular

value.

Arguing soundness, i.e. that this procedure doesn’t yield a “false positive” in the form of

an erroneous direction lying far from 𝑉 , is not too hard. However, analyzing complete-

ness, i.e. that this procedure will find some new direction, is surprisingly subtle (see

Lemma 3.4.12). Formally, we need to argue that if we have an approximation ̃︀𝐹 to the

true 𝐹 (under some suitable metric), then the corresponding matrix ̃︁M𝑊
𝜏 is close to the ma-

trix M𝑊
𝜏 . This is further complicated by the fact that ultimately, we will only have access

to a subspace 𝑊 which is approximately in 𝑉 , as every direction we find in our iterative

procedure is only guaranteed to mostly lie within 𝑉 .

Our key step in proving this is showing a new stability property of affine thresholds

of piecewise linear functions and makes an intriguing connection to lattice polynomials in

tropical geometry.

Stability of Piecewise Linear Functions Following the above discussions, to complete

our analysis we need to show stability of affine thresholds of ReLU networks in the following

sense: if 𝐹, 𝐹 : R𝑑 → R are two RELU networks that are close in some structural sense (i.e.,

under some parametrization), then E[1[|𝐹 (𝑥)| > 𝜏](𝑥𝑥𝑇 −𝐼𝑑)] ≈ E[1[|𝐹 (𝑥)| > 𝜏](𝑥𝑥𝑇 −𝐼𝑑)].

A natural way to approach the above is to upper bound Pr[|𝐹 (𝑥)| > 𝜏 ∧| ̃︀𝐹 (𝑥)| ≤ 𝜏]. That is,

affine thresholds of ReLU networks that are structurally close disagree with low probability.

A natural way to parametrize closeness is to require the weight matrices of the two

networks 𝐹, 𝐹 to be close to each other. While such a statement is not too difficult to show

for depth two networks (by a union bound over pairs of ReLUs), proving such a statement for

general ReLU networks using a direct approach seems quite challenging. We instead look at

proving such a statement for a more general class of functions - continuous piecewise-linear

186

functions which allows us to do a certain kind of hybrid argument more naturally.

Concretely, we show that affine thresholds of piecewise-linear functions that are close in

some appropriate structural sense disagree with low probability over Gaussian space. We

will elaborate upon the notion of structural closeness we consider momentarily, but for now

it is helpful to keep in mind that it specializes to 𝐿2 distance for linear functions.

Lemma 3.2.1 (Informal, see Lemma 3.4.6). Let 𝐹, ̃︀𝐹 : R𝑑 → R be piecewise-linear func-

tions, both consisting of at most 𝑚 linear pieces, which are “(𝑚, 𝜂)-structurally-close” (see

Definition 3.3.12). For any 𝜏 > 0,

Pr
𝑥∼𝒩 (0,Id)

[︁
|𝐹 (𝑥)| > 𝜏 ∧ | ̃︀𝐹 (𝑥)| ≤ 𝜏

]︁
≤ 𝑂(𝜂𝑚2/𝜏). (3.3)

To get a sense for this, suppose 𝐹, ̃︀𝐹 were even close in the sense that the polyhedral

regions over which 𝐹 is linear are identical to those over which ̃︀𝐹 is linear, and furthermore

E𝑥[(𝐹 (𝑥)− ̃︀𝐹 (𝑥))2]1/2 ≤ 𝜂. Then if we take for granted that Lemma 3.2.1 holds when 𝑚 = 1,

i.e. when 𝐹, ̃︀𝐹 are linear (see Lemma 1.3.35), it is not hard to show an 𝑂((𝜂𝑚/𝜏)𝑐) upper

bound in (3.3) under this very strong notion of closeness for some 𝑐 < 1. Because 𝐹 and̃︀𝐹 are 𝐿2-close as functions, for any 𝑡 > 0 we have that with probability 1 − 𝑂(𝜂2/𝑡2) the

input 𝑥 ∼ 𝒩 (0, Id) lies in a polyhedral region for which the corresponding linear functions

for 𝐹 and ̃︀𝐹 are 𝑡-close. By the 𝑚 = 1 case of Lemma 3.2.1, over any one of these at most

𝑚 regions, the affine thresholds 1[|𝐹 (𝑥)| > 𝜏] and 1[|𝐹 (𝑥)| > 𝜏] disagree with probability

𝑂(𝑡/𝜏). Union bounding over these regions as well as the event of probability 𝜂2/𝑡2 that 𝑥

does not fall in such a polyhedral region, we can upper-bound the left-hand side of (3.3) by

𝑂(𝜂2/𝑡2 +𝑚𝑡/𝜏), and by taking 𝑡 = (𝜂2𝜏/𝑚)1/3, we get a bound of (𝜂𝑚2/𝜏)2/3.

The issues with this are twofold. First, recall the function ̃︀𝐹 that we want to apply

Lemma 3.4.6 to is obtained from some enumeration over a fine net of ReLU networks. As

such there is no way to guarantee that the polyhedral regions defining 𝐹 and ̃︀𝐹 are exactly

the same, making adapting the above argument far more difficult, especially for general

ReLU networks.

Second, we stress that the linear scaling in 𝑂(𝜂) in (3.2.1) is essential. If one suffered any

polynomial loss in this bound as in the above argument, then upon applying Lemma 3.2.1 𝑘

187

times over the course of our iterative algorithm for recovering 𝑉 , we would incur time and

sample complexity doubly exponential in 𝑘. The reason is as follows.

Recall that in the final argument we can only ensure that the directions 𝑤1, . . . , 𝑤ℓ we

have found so far are approximately within 𝑉 , and the parameter 𝜂 will end up scaling with

an appropriate notion of subspace distance between 𝑊 and the true space 𝑉 . On the other

hand, the bound we can show on how far ̃︁𝑀𝑊
𝜏 deviates from 𝑀𝑊

𝜏 in spectral norm will

essentially scale with the right-hand side of (3.2.1). So if we could only ensure ̃︁𝑀𝑊
𝜏 and

𝑀𝑊
𝜏 are 𝑂(𝜂𝑐)-close in spectral norm for 𝑐 < 1, then if we append the top eigenvector of̃︁𝑀𝑊
𝜏 to the list of directions 𝑤1, ..., 𝑤ℓ we have found so far, the resulting span will only be

𝑂(𝜂𝑐)-close in subspace distance. Iterating, we would conclude that for the final output of

the algorithm to be sufficiently accurate, we would need the error incurred by the very first

direction 𝑤1 found to be doubly exponentially small in 𝑘!

Lattice Polynomials It turns out that there is a clean workaround to both issues: passing

to the lattice polynomial representation for piecewise-linear functions. Specifically, we exploit

the following powerful tool:

Theorem 3.2.2 ([Ovc02], Theorem 4.1; see Theorem 3.3.11 below). If 𝐹 is continuous

piecewise-linear, there exist linear functions {𝑔𝑖}𝑖∈[𝑀] and subsets ℐ1, ..., ℐ𝑚 ⊆ [𝑀] for which

𝐹 (𝑥) = max
𝑗∈[𝑚]

min
𝑖∈ℐ𝑗

𝑔𝑖(𝑥). (3.4)

In fact, our notion of “structural closeness” will be built around this structural result.

Roughly speaking, we say two piecewise linear functions are structurally close if they have

lattice polynomial representations of the form (3.4) with the same set of clauses and whose

corresponding linear functions are pairwise close in 𝐿2 (see Definition 3.3.12).

At a high level, Theorem 3.2.2 will then allow us to implement a hybrid argument in the

proof of Lemma 3.2.1 and carefully track how the affine threshold computed by a piecewise-

linear function changes as we interpolate between 𝐹 and ̃︀𝐹 . In this way, we end up with the

desired linear dependence on 𝜂 in (3.2.1).

With Lemma 3.2.1 in hand, we can argue that even with only access to a subspace 𝑊

188

approximately within 𝑉 and with only a function ̃︀𝐹 that approximates 𝐹 (Π𝑊𝑥), the top

singular vector of (3.2) mostly lies within 𝑉 , and we can make progress.

Finally, we remark that as an added bonus, Theorem 3.2.2 also gives us a way to enu-

merate over general continuous piecewise-linear functions! In this way, we can adapt our

algorithm for learning ReLU networks to learning arbitrary piecewise-linear functions, with

some additional computational overhead (see Theorem 3.4.1).

Enumerating Over Piecewise-Linear Functions and ReLU Networks There is in

fact one more subtlety to implementing the above approach for ReLU networks and getting

singly exponential dependence on 𝑘.

First note that whereas one can always enumerate over functions computed by lattice

polynomials of the form (3.4) in time exp(poly(𝑀)) (see Lemma 3.3.16), for ReLU networks

of size 𝑆 this can be as large as doubly exponential in 𝑆. Instead, we enumerate over

ReLU networks in the naive way, that is, enumerating over the exp(𝑂(𝑆)) many possible

architectures and netting over weight matrices with respect to spectral norm, giving us only

singly exponential dependence on 𝑆.

Here is the subtlety. Obviously two ReLU networks with the same architecture and

whose weight matrices are pairwise close in spectral norm will be close in 𝐿2. But how

do we ensure that the corresponding lattice polynomials guaranteed by Theorem 3.2.2 are

structurally close? In particular, getting anything quantitative would be a nightmare if

the clause structure of these lattice polynomials depended in some sophisticated, possibly

discontinuous fashion on the precise entries of the weight matrices.

Our workaround is to open up the black box of Theorem 3.2.2 and give a proof for the

special case of ReLU networks from scratch. In doing so, we will find out that there are

lattice polynomial representations for ReLU networks which only depend on the architecture

and the signs of the entries of the weight matrices (see Theorem 3.3.17). In this way, we

can guarantee that a moderately fine net will contain a network which is structurally close

to the true network.

189

3.3 Technical Preliminaries

In this section we collect some tools that will be useful specifically for this chapter.

3.3.1 Miscellaneous Tools

Clipping For 𝜂 > 0, let clip𝜂 : R→ R denote the function given by

clip𝜂(𝑧) =

⎧⎪⎨⎪⎩𝑧 if |𝑧| ≤ 𝜂

0 otherwise

Overloading notation, given a vector 𝑣 ∈ R𝑚, we will use clip𝜂(𝑣) to refer to the vector in

R𝑚 obtained by applying clip𝜂 entrywise.

We will use the following basic property of the clipping operation:

Fact 3.3.1. Suppose 𝑣, 𝑣′ ∈ R𝑚 satisfy ‖𝑣 − 𝑣′‖∞ ≤ 𝜂, and define 𝑣′′ , clip𝜂(𝑣
′). Then for

any 𝑖 ∈ [𝑚], 𝑣𝑖𝑣′′𝑖 ≥ 0.

Proof. If 𝑣′′𝑖 > 0, then 𝑣′′𝑖 = 𝑣′𝑖 > 𝜂 and by triangle inequality, 𝑣𝑖 > 0. Similarly, if 𝑣′′𝑖 < 0,

then 𝑣′′𝑖 = 𝑣′𝑖 < −𝜂 and by triangle inequality, 𝑣𝑖 < 0.

Lattice Polynomials Recall our notation for max/min (see the beginning of Section 1.3.

The following class of functions will be useful for us.

Definition 3.3.2. The set of lattice polynomials over the reals is the set of real-valued

functions defined inductively as follows: for any 𝑑 ≥ 1, any constant real-valued function

R𝑑 → R is a lattice polynomial, and any function ℎ : R𝑑 → R which can be written as

ℎ(𝑥) = 𝑓(𝑥) ∨ 𝑔(𝑥) or ℎ(𝑥) = 𝑓(𝑥) ∧ 𝑔(𝑥) for two lattice polynomials 𝑓, 𝑔 : R𝑑 → R is also a

lattice polynomial.

190

3.3.2 Continuous Piecewise-Linear Functions and Lattice Polyno-

mials

In this section, we introduce tools for reasoning about continuous piecewise-linear functions,

culminating in a structural result (Theorem 3.3.17) giving an explicit representation of ar-

bitrary ReLU networks as lattice polynomials (see Definition 3.3.2).

Basic Notions

We will work with functions which only depend on some low-dimensional projection of the

input.

Definition 3.3.3 (Subspace juntas). A function 𝐹 : R𝑑 → R is a subspace junta if there

exist 𝑣1, ..., 𝑣𝑘 ∈ S𝑑−1 and a function ℎ : R𝑘 → R for which 𝐹 (𝑥) = ℎ(⟨𝑣1, 𝑥⟩, ..., ⟨𝑣𝑘, 𝑥⟩) for

all 𝑥 ∈ R𝑑. We will refer to 𝑉 , span(𝑣1, ..., 𝑣𝑘) as the relevant subspace of 𝐹 , to 𝑣1, ..., 𝑣𝑘

as the relevant directions of 𝐹 , and to ℎ as the link function of 𝐹 .

Definition 3.3.4 (Piecewise Linear Functions). Given vector space 𝑊 , a function ℎ : 𝑊 →

R is said to be piecewise-linear (resp. piecewise-affine-linear) if there exist finitely many

linear (resp. affine linear) functions {𝑔𝑖 : 𝑊 → R}𝑖∈[𝑀] and a partition of 𝑊 into finitely

many polyhedral cones {𝑆𝑖}𝑖∈ℐ such that 𝐺(𝑥) =
∑︀

𝑖 1[𝑥 ∈ 𝑆𝑖]𝑔𝑖(𝑥). We will say that ℎ is

realized by 𝑀 pieces {(𝑔𝑖, 𝑆𝑖)} (note that ℎ can have infinitely many realizations). If each 𝑔𝑖

is given by 𝑔𝑖(𝑥) = ⟨𝑢𝑖, 𝑥⟩+ 𝑏𝑖 for some 𝑢𝑖 ∈ 𝑊, 𝑏𝑖 ∈ R, then we will also refer to the pieces

of ℎ by {(⟨𝑢𝑖, ·⟩+ 𝑏𝑖, 𝑆𝑖)}.

We are now ready to define the concept class we will work with in this chapter.

Definition 3.3.5 (“Kickers”). We call a subspace junta 𝐹 with link function ℎ a kicker if

ℎ is continuous piecewise-linear. Note that a kicker is itself a continuous piecewise-linear

function, and for any realization of its link function by 𝑀 pieces, there is a realization of 𝐹

by 𝑀 pieces.

Henceforth, fix a subspace junta 𝐹 : R𝑑 → R with link function ℎ and relevant directions

𝑣1, ..., 𝑣𝑘 spanning relevant subspace 𝑉 ⊂ R𝑑.

Example 3.3.6 (ReLU Networks). Feedforward ReLU networks as defined in Definition 3.1.1

191

are kickers with relevant subspace of dimension at most 𝑘, where 𝑘 is the row span of the

weight matrix W0, the link function is defined by

ℎ(𝑧) = W𝐿+1𝜑(W𝐿𝜑(· · ·W1𝜑(𝑧) · · ·)),

and the pieces in one possible realization of ℎ correspond to the different possible sign patterns

that the activations could take on, that is the different possible values of the vector

{W𝑎𝜑(W𝑎−1𝜑(· · ·W1𝜑(𝑧) · · ·))}0≤𝑎≤𝐿 ∈
𝐿∏︁
𝑎=0

{±1}𝑘𝑎

as 𝑧 ranges over R𝑘.

Lemma 3.3.7. If 𝐹 is a Λ-Lipschitz kicker, then for any realization of its link function ℎ by

pieces {(⟨𝑤𝑖, ·⟩, 𝑆𝑖)}, there is a realization by pieces {(⟨𝑤′
𝑖, ·⟩, 𝑆𝑖)} for which max𝑖‖𝑔𝑖‖ ≤ 𝐿..

Proof. Consider any piece (⟨𝑤𝑖, ·⟩, 𝑆𝑖). If there is some 𝑥 ∈ 𝑆𝑖 for which there exists a ball of

nonzero radius 𝑟 around 𝑥 contained in 𝑆𝑖, then clearly 𝐿 ≥ ‖𝑤𝑖‖: take 𝑥 and 𝑥+ 𝑟 ·𝑤𝑖/‖𝑤𝑖‖

and note that

𝐿 ≥ 𝐹 (𝑥+ 𝑟 · 𝑤𝑖/‖𝑤𝑖‖)− 𝐹 (𝑥)
‖(𝑥+ 𝑟 · 𝑤𝑖/‖𝑤𝑖‖)− 𝑥‖

=
𝑟‖𝑤𝑖‖
𝑟

= ‖𝑤𝑖‖.

If no such 𝑥 and ball exist, then 𝑆𝑖 is not full-dimensional and therefore contained in a

hyperplane𝑊 ⊂ 𝑉 . Then if we replace (⟨𝑤𝑖, ·⟩, 𝑆𝑖) in the realization of ℎ with (⟨Π𝑊𝑤𝑖, ·⟩, 𝑆𝑖),

this is still a realization of ℎ. Again, it would suffice for there to exist a ball, now in the

subspace 𝑊 , of nonzero radius around some point in 𝑆𝑖. If this is not the case, then 𝑆𝑖 is not

a full-dimensional subset of 𝑊 and thus lies in a codimension 1 subspace of 𝑊 . Continuing

thus, we eventually obtain some (possibly zero) vector 𝑤′
𝑖 for which replacing (⟨𝑤𝑖, ·⟩, 𝑆𝑖) in

the realization of ℎ with (⟨𝑤′
𝑖, ·⟩, 𝑆𝑖) still gives a realization of ℎ, and furthermore ‖𝑤′

𝑖‖ ≤

𝐿.

Definition 3.3.8 (Restrictions). Given any nonzero linear subspace 𝑊 ⊆ 𝑉 , let 𝐹 |𝑊 : 𝑊 →

R denote the restriction of 𝐹 to the subspace 𝑊 . By abuse of notation, we will sometimes

also regard 𝐹 |𝑊 as a function over R𝑑 given by 𝐹 |𝑊 (𝑥) = 𝐹 (Π𝑊𝑥).

One of the main properties of kickers that we exploit is positive homogeneity :

192

Fact 3.3.9 (Positive homogeneity). For any 𝜆 ≥ 0 and 𝑥 ∈ R𝑘, 𝐹 (𝜆 · 𝑥) = 𝜆𝐹 (𝑥).

The following property of restrictions of Lipschitz functions will be important.

Lemma 3.3.10. For any nonzero linear subspace 𝑊 ⊆ 𝑉 , and Λ-Lipschitz function 𝐹 :

R𝑑 → R,

sup
𝑥:‖Π𝑉 ∖𝑊 𝑥‖≤1

|𝐹 (𝑥)− 𝐹 (Π𝑊𝑥)| ≤ Λ.

Proof. Because 𝐹 (𝑥) = 𝐹 (Π𝑉 𝑥) and 𝐹 (Π𝑊𝑥) = 𝐹 (Π𝑊Π𝑉 𝑥), we may assume without loss

of generality that 𝑥 ∈ 𝑉 . For any 𝑥 ∈ 𝑉 for which ‖Π𝑉 ∖𝑊𝑥‖ ≤ 1, we have that

|𝐹 (𝑥)− 𝐹 (Π𝑊𝑥)| ≤ Λ‖𝑥− Π𝑊𝑥‖ = Λ‖Π𝑉 ∖𝑊𝑥‖ ≤ Λ,

as claimed.

A Generic Lattice Polynomial Representation

Essential to our analysis is the following structural result from [Ovc02] which says that,

perhaps surprisingly, any piecewise linear function can be expressed as a relatively simple

lattice polynomial.

Theorem 3.3.11 ([Ovc02], Theorem 4.1). If ℎ : R𝑛 → R is a continuous piecewise-linear

function which has a realization by pieces {(𝑔𝑖, 𝑆𝑖)}𝑖∈[𝑀], there exists a collection of clauses

ℐ1, ..., ℐ𝑚 ⊆ [𝑀] for which

ℎ(𝑥) = max
𝑗∈[𝑚]

min
𝑖∈ℐ𝑗

𝑔𝑖(𝑥) (3.5)

We will work with the following notion of approximation for such lattice polynomials:

Definition 3.3.12. Two continuous piecewise-linear functions 𝐺, ̃︀𝐺 : R𝑑 → R are (𝑀, 𝜂)-

structurally-close if there exist linear functions 𝑔1, ..., 𝑔𝑀 and ̃︀𝑔1, ..., ̃︀𝑔𝑀 and subsets ℐ1, ..., ℐ𝑚 ⊆

[𝑀] for which

𝐺(𝑥) = max
𝑗∈[𝑚]

min
𝑖∈ℐ𝑖

𝑔𝑖(𝑥) ̃︀𝐺(𝑥) = max
𝑗∈[𝑚]

min
𝑖∈ℐ𝑖

̃︀𝑔𝑖(𝑥)
and ‖𝑔𝑖 − ̃︀𝑔𝑖‖ ≤ 𝜂 for all 𝑖.

Structural closeness of continuous piecewise-linear functions in the above sense is stronger

than 𝐿2-closeness.

193

Lemma 3.3.13. Take continuous piecewise-linear functions 𝐺, ̃︀𝐺 : R𝑚 → R which are

(𝑀, 𝜂)-structurally-close. Then ‖𝐺 − ̃︀𝐺‖ ≤ 𝜂
√
𝑚. In particular, if 𝐺 is a piecewise-linear

function which is realized by pieces {(⟨𝑢𝑖, ·⟩, 𝑆𝑖)} satisfying ‖𝑢𝑖‖ ≤ 𝜂, then ‖𝐺‖ ≤ 𝜂
√
𝑚.

To show this, we need the following helper lemma:

Lemma 3.3.14. If {𝑔𝑖}𝑖∈[𝑀] and {̃︀𝑔𝑖}𝑖∈[𝑀] are two collections of linear functions, then for

any 𝑥,

|max
𝑗∈[𝑚]

min
𝑖∈ℐ𝑗

𝑔𝑖(𝑥)−max
𝑗∈[𝑚]

min
𝑖∈ℐ𝑗

̃︀𝑔𝑖(𝑥)| ≤ max
𝑖
|𝑔𝑖(𝑥)− ̃︀𝑔𝑖(𝑥)|

Proof. This simply follows by induction using the fact that if 𝑓1, 𝑓2 : R𝑎 → R are both

1-Lipschitz with respect to 𝐿∞, then 𝑓1 ∨ 𝑓2 and 𝑓1 ∧ 𝑓2 are as well.

Proof of Lemma 3.3.13. Let {(⟨𝑢𝑖, ·⟩, 𝑆𝑖)}𝑖∈[𝑀] and {(⟨̃︀𝑢𝑖, ·⟩, 𝑆𝑖)}𝑖∈[𝑀] be the realizations of

𝐺, ̃︀𝐺 for which ‖𝑢𝑖 − ̃︀𝑢𝑖‖ ≤ 𝜂. By Lemma 3.3.14 applied to these pieces, together with

Cauchy-Schwarz, for any 𝑥 we have that |𝐺(𝑥)− ̃︀𝐺(𝑥)| ≤ 𝜂‖𝑥‖. So ‖𝐺− ̃︀𝐺‖ ≤ 𝜂 ·E[‖𝑥‖2]1/2 =

𝜂
√
𝑚.

As discussed in Section 3.2, for our application to learning general kickers, we will lever-

age the lattice polynomial representation in Theorem 3.3.11 to grid over piecewise-linear

functions. Note that a priori, even if we knew exactly the set of linear functions {𝑔𝑖}𝑖∈[𝑀] in

a realization of a piecewise-linear function, enumerating over all lattice polynomials of the

form (3.5) would require time doubly exponential in 𝑀 , as there are 2𝑀 possible clauses ℐ𝑗
and 22

𝑀 possible sets of clauses {ℐ𝑗}.

By being slightly more careful, we can enumerate over piecewise linear functions in time

exp(poly(𝑀)).

Definition 3.3.15. An order type on 𝑛 elements is specified by a function 𝜔 : [𝑛] → [𝑛]

for which every element from 1 to max𝑖 𝜔(𝑖) is present. We say that a set of 𝑛 real numbers

𝑧1, ..., 𝑧𝑛 has order type 𝜔 (denoted {𝑧1, ..., 𝑧𝑛} ⊢ 𝜔 if 𝑧𝑖 = 𝑧𝑗 (resp. 𝑧𝑖 > 𝑧𝑗, 𝑧𝑖 < 𝑧𝑗) if and

only if 𝜔(𝑖) = 𝜔(𝑗) (resp. 𝜔(𝑖) > 𝜔(𝑗), 𝜔(𝑖) < 𝜔(𝑗)). Denote the set of order types on 𝑛

elements by Ω𝑛. Note that any set of real numbers has exactly one order type.

Lemma 3.3.16. If 𝐹 has a realization by pieces {(𝑔𝑖, 𝑆𝑖)}𝑖∈[𝑀], then there is a function

194

𝐴 : Ω𝑀 → [𝑀] such that for any 𝑥,

𝐹 (𝑥) =
∑︁
𝜔∈Ω𝑀

1
[︀
{𝑔𝑖(𝑥)}𝑖∈[𝑀] ⊢ 𝜔

]︀
· 𝑔𝐴(𝜔)(𝑥).

Proof. Let 𝐹 (𝑥) = max𝑗∈[𝑚] min𝑖∈ℐ𝑗 𝑔𝑖(𝑥) be the max-min representation guaranteed by The-

orem 3.3.11. This representation implies that for a fixed order type 𝜔, there is some index

𝑖 ∈ [𝑀] for which 𝐹 (𝑥) = 𝑔𝑖(𝑥) for all 𝑥 satisfying {𝑔𝑖(𝑥)}𝑖∈[𝑀] ⊢ 𝜔. This gives the desired

mapping 𝐴.

Note that the set of functions 𝐴 : Ω𝑀 → [𝑀] is only of size (𝑀 !)𝑀 ≤ 𝑀𝑀2 , so by

Lemma 3.3.16, to enumerate over piecewise-linear functions with 𝑀 pieces we can simply

enumerate over linear functions {𝑔𝑖} together with all possible functions 𝐴 (see Algorithm 8

below).

Lattice Polynomials for ReLU Networks

Here we give an explicit proof of Theorem 3.3.11 in the special case of ReLU networks.

We emphasize that the specific nature of the construction exhibited in this theorem will

be important in the proof of our main result for learning ReLU networks, and that simply

applying Theorem 3.3.11 in a black-box fashion will not suffice for our purposes.

Theorem 3.3.17. If 𝐹 ∈ 𝒞𝑆 is a ReLU network with weight matrices W0 ∈ R𝑘0×𝑑,W1 ∈

R𝑘1×𝑘0 , . . . ,W𝐿 ∈ R𝑘𝐿×𝑘𝐿−1 ,W𝐿+1 ∈ R1×𝑘𝐿, and if 𝐹 ′ is a ReLU network with the same

architecture as 𝐹 , with weight matrices W′
0, ...,W

′
𝐿+1, such that

(W𝑎)𝑖,𝑗 · (W′
𝑎)𝑖,𝑗 ≥ 0 ∀ 0 ≤ 𝑎 ≤ 𝐿+ 1, (𝑖, 𝑗) ∈ [𝑘𝑎]× [𝑘𝑎−1],

then there exist vectors 𝑣1, ..., 𝑣𝑀 , 𝑣′1, ..., 𝑣′𝑀 and clauses ℐ1, ..., ℐ𝑚 ⊆ [𝑀], where 𝑀 = 2𝑆, for

which

𝐹 (𝑥) = max
𝑗∈[𝑚]

min
𝑖∈ℐ𝑗
⟨𝑣𝑖, 𝑥⟩

𝐹 ′(𝑥) = max
𝑗∈[𝑚]

min
𝑖∈ℐ𝑗
⟨𝑣′𝑖, 𝑥⟩.

195

Specifically, 𝑣1, ..., 𝑣𝑀 consist of all vectors of the form W𝐿+1Σ𝐿W𝐿Σ𝐿−1 · · · · · ·Σ0W0 for

diagonal matrices Σ𝑖 ∈ {0, 1}𝑘𝑖×𝑘𝑖, and 𝑣′1, ..., 𝑣′𝑀 are defined analogously.

We prove Theorem 3.3.17 by induction by exhibiting max-min representations for ReLUs,

scalings, and sums of max-min formulas. Let 𝐺 : R𝑑 → R be a piecewise-linear function

given by 𝐺(𝑥) , max𝑗∈[𝑚] min𝑖∈ℐ𝑗⟨𝑢𝑖, 𝑥⟩ for some subsets {ℐ1, ..., ℐ𝑚} of [𝑀] and vectors

{𝑢1, ..., 𝑢𝑀} in R𝑑.

Lemma 3.3.18. Let 𝑢𝑀+1 = 0 and let ℐ𝑚+1 = {𝑀 + 1}. Then for all 𝑥 ∈ R𝑑,

𝜑(𝐺(𝑥)) = max
𝑗∈[𝑚+1]

min
𝑖∈ℐ𝑗
⟨𝑢𝑖, 𝑥⟩.

Proof. This is immediate from the definition of 𝜑.

Lemma 3.3.19. For any 𝜆 ∈ R, there exist subsets {𝒥1, ...,𝒥𝑚′} of [𝑀] such that for all

𝑥 ∈ R𝑑,

𝜆𝐺(𝑥) = max
𝑗∈[𝑚′]

min
𝑖∈𝒥𝑗

⟨𝜆𝑢𝑖, 𝑥⟩.

Furthermore, these subsets only depend on ℐ1,, ℐ𝑚 and the sign of 𝜆.

Proof. For 𝜆 > 0, we have 𝒥𝑗 = ℐ𝑗 for all 𝑗. So it remains to show the claim for 𝜆 = −1.

We can write −𝐺(𝑥) as min𝑗∈[𝑚] max𝑖∈ℐ𝑗⟨𝑢𝑖, 𝑥⟩. This is a lattice polynomial over the reals,

and any lattice polynomial over a distributive lattice can be written in disjunctive normal

form as max𝑗∈[𝑚′] min𝑖∈𝒥𝑗
⟨𝑢𝑖, 𝑥⟩ for some subsets {𝒥𝑗} (see e.g. [Bir40, Section II.5, Lemma

3]), from which the claim follows.

Lemma 3.3.20. For any 𝑘′ ∈ N and 𝑏 ∈ [𝑘′], let 𝐺𝑏(𝑥) = max𝑗∈[𝑚𝑏] min𝑖∈ℐ𝑏
𝑗
⟨𝑢𝑏𝑖 , 𝑥⟩ for some

subsets {ℐ𝑏𝑗} of [𝑀𝑏] and vectors {𝑢𝑏𝑖} in R𝑑. For all 𝑥 ∈ R𝑑,

𝑘′∑︁
𝑏=1

𝐺𝑏(𝑥) = max
(𝑗1,...,𝑗𝑘′)∈[𝑚1]×···×[𝑚𝑘′]

min
(𝑖1,...,𝑖𝑘′)∈ℐ𝑗1×···×ℐ𝑗𝑘′

⟨𝑢1𝑖1 + · · ·+ 𝑢𝑘
′

𝑖𝑘′
, 𝑥⟩. (3.6)

Proof. Take any 𝑥 ∈ R𝑑, and for 𝑏 ∈ [𝑘′] suppose that 𝐺𝑏(𝑥) = ⟨𝑢𝑏𝑖*𝑏 , 𝑥⟩ for some index

196

𝑖*𝑏 ∈ [𝑀]. Note that for any ℐ1𝑗1 , . . . , ℐ
𝑘′
𝑗𝑘′

containing 𝑖*1, . . . , 𝑖*𝑘′ respectively,

min
(𝑖1,...,𝑖𝑘′)∈ℐ1

𝑗1
×···×ℐ𝑘′

𝑗𝑘′

⟨𝑢1𝑖1 + · · ·+ 𝑢𝑘
′

𝑖𝑘′
, 𝑥⟩ = ⟨𝑢𝑘′𝑖*

𝑘′
+ · · ·+ 𝑢𝑘

′

𝑖*
𝑘′
, 𝑥⟩.

This shows that the right-hand side of (3.6) is lower bounded by the left-hand side.

We now show the other direction. For any 𝑖′1, . . . , 𝑖′𝑘′ for which ⟨𝑢1𝑖′1+. . .+𝑢
𝑘′

𝑖′
𝑘′
, 𝑥⟩ > 𝐺1(𝑥)+

· · ·+𝐺𝑘′(𝑥), we must have ⟨𝑢𝑏𝑖′𝑏 , 𝑥⟩ > 𝐺𝑏(𝑥) for some 𝑏 ∈ [𝑘′]. In this case, we know that for

every clause ℐ𝑏𝑗𝑏 in 𝐺𝑏 which contains 𝑖′𝑏, there is some 𝑖 ∈ ℐ𝑏𝑗𝑏 for which ⟨𝑢𝑏𝑖 , 𝑥⟩ < ⟨𝑢𝑏𝑖′𝑏 , 𝑥⟩. So

for any ℐ1𝑗1 , . . . , ℐ
𝑘′
𝑗𝑘′

containing 𝑖′1, . . . , 𝑖′𝑘′ respectively, the corresponding clause on the right-

hand side of (3.6) satisfies min(𝑖1,...,𝑖𝐿′)∈ℐ1
𝑗1
×···×ℐ𝐿′

𝑗𝐿′
⟨𝑢1𝑖1 + · · · + 𝑢𝐿

′
𝑖𝐿′ , 𝑥⟩ < ⟨𝑢1𝑖′1 + · · · + 𝑢𝐿

′

𝑖′
𝐿′
, 𝑥⟩.

This concludes the proof that the left-hand side of (3.6) is upper bounded by the left-hand

side.

We can now prove Theorem 3.3.17:

Proof. The claim is trivially true for 𝐿 = −1. Suppose inductively that for some layer

0 ≤ 𝑎 ≤ 𝐿, we have that for all 𝑏 ∈ [𝑘𝑎], if we denote

𝐹𝑎,𝑏 , W𝑏
𝑎𝜑 (W𝑎−1𝜑 (· · ·𝜑 (W0𝑥)))

𝐹 ′
𝑎,𝑏 , W′𝑏

𝑎 𝜑
(︀
W′

𝑎−1𝜑 (· · ·𝜑 (W′
0𝑥))

)︀
,

where W𝑏
𝑎 denotes the 𝑏-th row of W𝑎, then 𝐹𝑎,𝑏 and 𝐹 ′

𝑎,𝑏 can be expressed as max-

min formulas max𝑗∈[𝑚𝑎,𝑏] min𝑖∈ℐ𝑎,𝑏
𝑗
⟨𝑣𝑎,𝑏𝑖 , ·⟩ and max𝑗∈[𝑚𝑎,𝑏]min𝑖∈ℐ𝑎,𝑏

𝑗
⟨𝑣′𝑎,𝑏𝑖 , ·⟩ for some clauses

{ℐ𝑎,𝑏𝑗 } and vectors 𝑣𝑎,𝑏𝑖 , 𝑣′𝑎,𝑏𝑖 comprised respectively of vectors of the form W𝑏
𝑎Σ𝑎−1 · · ·Σ0W0

and W′𝑏
𝑎Σ𝑎−1 · · ·Σ0W

′
0 for all possible diagonal matrices Σ𝑖 ∈ {0, 1}𝑘𝑖×𝑘𝑖 . Then for any

𝑏 ∈ [𝑘𝑎+1], note that 𝐹𝑎+1,𝑏 = W𝑏
𝑎+1𝜑(𝐹𝑎,1, ..., 𝐹𝑎,𝑘𝑎) and 𝐹 ′

𝑎+1,𝑏 = W′𝑏
𝑎+1𝜑(𝐹

′
𝑎,1, ..., 𝐹

′
𝑎,𝑘𝑎

).

By Lemma 3.3.18 and Lemma 3.3.19, if the entries of W𝑏
𝑎 and W′𝑏

𝑎 are 𝑤1, ..., 𝑤𝑘𝑎+1 and

𝑤′
1, ..., 𝑤

′
𝑘𝑎+1

respectively, then for every 𝑏′ ∈ [𝑘𝑎], if 𝑤𝑏′ · 𝑤′
𝑏′ ≥ 0, then there exist max-min

representations for 𝑤𝑏′𝜑(𝐹𝑎,𝑏′) and 𝑤′
𝑏′𝜑(𝐹𝑎,𝑏′) with the same set of clauses.

Finally, by Lemma 3.3.20, there exist max-min representations for the scalar-valued

functions 𝐹𝑎+1,𝑏 =
∑︀𝑘𝑎

𝑏′=1𝑤𝑏′𝜑(𝐹𝑎,𝑏′) and 𝐹 ′
𝑎+1,𝑏 =

∑︀𝑘𝑎
𝑏′=1𝑤

′
𝑏′𝜑(𝐹

′
𝑎,𝑏′) with the same set of

clauses. And the vectors in this max-min representation consist of all vectors of the form

197

W𝑏
𝑎+1Σ𝑎 · · · · · ·Σ0W0 and W′𝑏

𝑎+1Σ𝑎 · · · · · ·Σ0W
′
0 respectively for Σ𝑖 ∈ {0, 1}𝑘𝑖×𝑘𝑖 . This com-

pletes the inductive step.

3.4 Filtered PCA

In this section we prove our main results on learning kickers and ReLU networks. Through-

out, we will make the following base assumption about the function 𝐹 .

Assumption 3. 𝐹 is a kicker which is Λ-Lipschitz for some Λ ≥ 1 and has at most 𝑀

pieces.

While our techniques are general enough to work under just this assumption, for our main

application to learning ReLU networks (Definition 3.1.1), we can obtain improved runtime

guarantees by making the following additional assumption on 𝐹 .

Assumption 4. 𝐹 is computed by a size-𝑆 ReLU network6 with depth 𝐿 + 2 and weight

matrices W0 ∈ R𝑘0×𝑑, . . .W𝐿 ∈ R𝑘𝐿×𝑘𝐿−1 ,W𝐿+1 ∈ R1×𝑘𝐿 satisfying ‖W𝑖‖2 ≤ 𝐵 for all

0 ≤ 𝑖 ≤ 𝐿+ 1, for some 𝐵 ≥ 1.7

In this section, unless stated otherwise, we will only assume 𝐹 satisfies Assumption 3, but

in certain parts of the proof (e.g. Section 3.4.5), we will get better bounds by additionally

making Assumption 4. Formally, our main results are the following:

Theorem 3.4.1. Given access to samples from the distribution 𝒟 corresponding to kicker

𝐹 satisfying Assumption 3, FilteredPCAv2(𝒟, 𝜀, 𝛿) outputs a kicker ̃︀𝐹 for which E[(𝑦 −̃︀𝐹 (𝑥))2] ≤ 𝜀2 with probability at least 1 − 𝛿. Furthermore, FilteredPCAv2 has sample

complexity

𝑑 log(1/𝛿) · poly
(︀
exp

(︀
𝑘3Λ2/𝜀2

)︀
,𝑀𝑘

)︀
and runtime ̃︀𝑂(𝑑2 log(1/𝛿)) ·𝑀𝑀2 · poly

(︁
exp

(︀
𝑘4Λ2/𝜀2

)︀
,𝑀𝑘2

)︁
.

Theorem 3.4.2. Given access to samples from the distribution 𝒟 corresponding to feedfor-

6Note that this implies 𝑀 ≤ 2𝑆 .
7Recall from Definition 3.1.1 that we will refer to the rank of W0 as 𝑘 to emphasize that 𝐹 is a kicker

with relevant subspace 𝑉 of dimension 𝑘.

198

ward ReLU network 𝐹 satisfying Assumption 4, FilteredPCAv2(𝒟, 𝜀, 𝛿) outputs a ReLU

network ̃︀𝐹 for which E[(𝑦 − ̃︀𝐹 (𝑥))2] ≤ 𝜀2 with probability at least 1 − 𝛿. Furthermore,

FilteredPCAv2 has sample complexity

𝑑 log(1/𝛿)poly
(︁
exp

(︀
𝑘3Λ2/𝜀2

)︀
, 2𝑘𝑆,

(︀
𝐵(𝐿+2)/Λ

)︀𝑘)︁
and runtime

̃︀𝑂(𝑑2 log(1/𝛿)) · poly (︁exp (︀𝑘3𝑆2Λ2/𝜀2
)︀
, 2𝑘𝑆

3

,
(︀
𝐵𝐿+2/Λ

)︀𝑘𝑆2
)︁
.

Remark 3.4.3 (Scale Invariance). Often, guarantees for PAC learning ReLU networks are

stated scale-invariantly in terms of the relative error E[(𝑦 − ̃︀𝐹 (𝑥))2]/E[𝑦2], or equivalently

the absolute error E[(𝑦 − ̃︀𝐹 (𝑥))2] for the true 𝐹 satisfying E[𝑦2] = 1.

In our general setting, recall from Example 3.1.4 that some dependence on the Lipschitz

constant of 𝐹 is needed. One standard way to achieve this is to normalize the weight matrices

of the true underlying network 𝐹 to have operator norm at most 𝐵, in which case the Lipschitz

constant of 𝐹 is at most 𝐵𝐿+2 and, with our techniques, we can obtain guarantees depending

just on 𝐵 by using Theorem 3.4.1. To obtain improved guarantees, we can additionally

assume a better bound of Λ on the Lipschitz constant, and this gives rise to Theorem 3.4.2

above.

Under this normalization in terms of Λ and 𝐵, note that the sample complexity and

runtime in Theorem 3.4.2 are scale invariant as the quantities Λ/𝜀 and 𝐵𝐿+2/Λ are invariant

under arbitrary rescalings of the 𝐿 + 2 weight matrices of 𝐹 . Also note that Λ can be

any upper bound on the actual Lipschitz constant of 𝐹 , that is, the runtime guarantee in

Theorem 3.4.2 does not degrade with the actual Lipschitz constant of 𝐹 .

In Section 3.4.1, we prove an anti-concentration result for piecewise-linear functions. We

use this in Section 3.4.2 to prove that in an idealized scenario where we had exact access

to some ℓ-dimensional 𝑊 ⊂ 𝑉 as well as exact query access to 𝐹 |𝑊 , we would be able

to approximately recover a vector in 𝑉 ∖𝑊 by running one iteration of the main loop of

FilteredPCAv2. In the remaining sections, we show how to pass from this idealized

scenario to the setting we actually care about, in which we only samples (𝑥, 𝐹 (𝑥)). In

199

Section 3.4.3 we show that affine thresholds of piecewise-linear functions are stable under

small perturbations of the function. Then in Section 3.4.4, we show how to grid over the set

of kickers, and in Section 3.4.5 we show how to grid over ReLU networks more efficiently and

formally state our algorithm. In Section 3.4.6 we combine these ingredients to argue that as

long as we have sufficiently good approximate access to 𝑊 and 𝐹 |𝑊 , a single iteration of the

main loop of FilteredPCAv2 will approximately recover a vector from 𝑉 ∖𝑊 . Lastly, in

Section 3.4.7 we conclude the proofs of Theorem 3.4.1 and 3.4.2. At the very end, we discuss

briefly why merely adapting the approach of the previous chapter does not work.

3.4.1 Anti-Concentration of Piecewise Linear Functions

In this section, we show that for any continuous piecewise-linear function with some variance,

the probability that it exceeds any given threshold is non-negligible.

Lemma 3.4.4. If 𝐺 : R𝑚 → R is continuous piecewise-linear and Λ-Lipschitz and E[𝐺2] ≥

𝜎2, then for any 𝑠 ≥ 0,

Pr[|𝐺| > 𝑠] ≥ Ω(exp(−3𝑚𝑠2/𝜎2)) · 𝑠𝜎√
𝑚Λ2

.

Proof. Let {(𝑔𝑖, 𝑆𝑖)} be the pieces of some realization 𝐺, and for every 𝑖 let 𝑢𝑖 ∈ R𝑚 be the

vector for which 𝑔𝑖(·) = ⟨𝑢𝑖, ·⟩. By Lemma 3.3.7, we can assume ‖𝑢𝑖‖ ≤ Λ for all 𝑖.

Take any 𝑖 and define

𝜎2
𝑖 , E

𝑥∼𝒩 (0,Id)
[⟨𝑢𝑖, 𝑥⟩2 | 𝑥 ∈ 𝑆𝑖]

Note that if 𝑖 is chosen with probability Pr[𝑥 ∈ 𝑆𝑖], then E𝑖[𝜎2
𝑖] ≥ 𝜎2. Because each 𝑆𝑖 is

a polyhedral cone, sampling 𝑥 ∼ 𝒩 (0, Id) conditioned on 𝑥 ∈ 𝑆𝑖 is equivalent to sampling

𝑟 ∼ 𝜒2
𝑚, independently sampling ̂︀𝑥 ∼ S𝑚−1 conditioned on ̂︀𝑥 ∈ 𝑆𝑖, and outputting 𝑟1/2 · ̂︀𝑥. It

follows that

𝜎2
𝑖 = E

𝑟∼𝜒2
𝑚,̂︀𝑥∼S𝑚−1

[𝑟·⟨𝑢𝑖, ̂︀𝑥⟩2 | ̂︀𝑥 ∈ 𝑆𝑖] = E
𝑟∼𝜒2

𝑚

[𝑟]· Ê︀𝑥∼S𝑚−1
[⟨𝑢𝑖, ̂︀𝑥⟩2 | ̂︀𝑥 ∈ 𝑆𝑖] = 𝑚· Ê︀𝑥∼S𝑚−1

[⟨𝑢𝑖, ̂︀𝑥⟩2 | ̂︀𝑥 ∈ 𝑆𝑖].
200

By Fact 1.3.31, Pr[|⟨𝑢𝑖, ̂︀𝑥⟩| ≥ 𝜎𝑖/
√
2𝑚 | ̂︀𝑥 ∈ 𝑆𝑖] ≥ 𝜎2

𝑖

2𝑚‖𝑢𝑖‖2 . We conclude that for any 𝑠 > 0,

Pr[|⟨𝑢𝑖, 𝑥⟩| ≥ 𝑠 | 𝑥 ∈ 𝑆𝑖] ≥ Pr
𝑟∼𝜒2

𝑚

[︀
𝑟 > 2𝑚𝑠2/𝜎2

𝑖

]︀
· 𝜎2

𝑖

2𝑚‖𝑢𝑖‖2

≥ erfc(𝑠
√
2𝑚/𝜎𝑖) ·

𝜎2
𝑖

2𝑚Λ2
(3.7)

By Fact 1.3.14, the right-hand side of (3.7) is convex as a function of 𝜎2
𝑖 , so

Pr[|𝐺(𝑥)| > 𝑠] ≥ E
𝑖

[︂
erfc(𝑠

√
2𝑚/𝜎𝑖) ·

𝜎2
𝑖

2𝑚Λ2

]︂
≥ erfc(𝑠

√
2𝑚/E

𝑖
[𝜎2
𝑖]

1/2) · E𝑖[𝜎
2
𝑖]

2𝑚Λ2

≥ erfc(𝑠
√
2𝑚/𝜎) · 𝜎2

2𝑚Λ2

≥
√︀
2/𝜋 · 𝑠

√
2𝑚 · exp(−𝑚𝑠2/𝜎2)

𝜎 · (2𝑚𝑠2/𝜎2 + 1)
· 𝜎2

2𝑚Λ2

≥ Ω(exp(−3𝑚𝑠2/𝜎2)) · 𝑠𝜎√
𝑚Λ2

,

where the second step follows by Jensen’s and the fourth step follows by Fact 1.3.13.

3.4.2 An Idealized Calculation

Suppose we had access to an orthonormal collection of vectors 𝑤1, . . . , 𝑤ℓ that are exactly in

𝑉 . Let 𝑊 denote their span. Suppose further that we had access to the matrix

M𝑊
𝜏 , Π𝑊⊥ E

𝑥,𝑦

[︀
1[|𝑦 − 𝐹 (Π𝑊𝑥)| > 𝜏] · (𝑥𝑥⊤ − Id)

]︀
Π𝑊⊥ .

When the threshold 𝜏 is clear from context, we will just refer to this matrix as M𝑊 .

As we will see, if this matrix is nonzero, then its singular vectors with nonzero singular

value must lie in 𝑉 and be orthogonal to 𝑤1, . . . , 𝑤ℓ. The main challenge will be to show

that this matrix is nonzero. The following proof also applies to the case of ℓ = 0, in which

case 𝐹 (Π𝑊𝑥) specializes to the zero function and (3.8) specializes to

M∅
𝜏 , E

𝑥,𝑦

[︀
1[|𝑦| > 𝜏] · (𝑥𝑥⊤ − Id)

]︀
. (3.8)

201

In particular, (3.8) is a matrix we actually have access to at the beginning of the algorithm,

and one consequence of the warmup argument below is an algorithm for finding a single

vector in 𝑉 .

We first show that for appropriately chosen 𝜏 , either the top singular value of M𝑊
𝜏 is non-

negligible, or E[(𝐹 (𝑥)−𝐹 (Π𝑊𝑥)
2] is small, that is, 𝐹 is already sufficiently well-approximated

by the function 𝐹 |𝑊 .

Lemma 3.4.5. Suppose E𝑥∼𝒩 (0,Id)[(𝐹 (𝑥)−𝐹 (Π𝑊𝑥))
2] ≥ 𝜌2 for some 𝜌 > 0. For any 𝜏 > 0,

if a vector is not in the kernel of M𝑊
𝜏 , then it must lie in 𝑉 ∖𝑊 . For 𝜏 ≥

√︀
2(𝑘 − ℓ) · Λ,

⟨︀
M𝑊

𝜏 ,Π𝑉 ∖𝑊
⟩︀
≥ Ω

(︁
𝑒−3𝑘𝜏2/𝜌2

)︁
· (𝑘 − ℓ)𝜏𝜌√

𝑘Λ2
. (3.9)

In particular, for this choice of 𝜏 , the top singular vector of M𝑊
𝜏 lies in 𝑉 ∖𝑊 and has

singular value at least 𝜆(ℓ)𝜏 , Ω
(︁
𝑒−3𝑘𝜏2/𝜌2

)︁
· 𝜏𝜌√

𝑘Λ2 .

Proof. The first part just follows from the fact that any 𝑢 ∈ Π𝑊 is clearly in the kernel, and

for any 𝑢 ∈ S𝑑−1 orthogonal to 𝑉 , ⟨𝑢, 𝑥⟩ and 𝐹 (𝑥) are independent, so

𝑢⊤M𝑊
𝜏 𝑢 = E

𝑔∼𝒩 (0,1)
[𝑔2 − 1] · E

𝑥
[1[|𝐹 (𝑥)− 𝐹 (Π𝑊𝑣)| > 𝜏]] = 0.

For (3.9), we would like to apply Lemmas 3.3.10 and 3.4.4 to the continuous piecewise-linear

function 𝐺(𝑥) , 𝐹 (𝑥)−𝐹 (Π𝑊𝑥). Pick an orthonormal basis 𝑤ℓ+1, . . . , 𝑤𝑘 for 𝑉 ∖𝑊 . For any

𝑥 for which ‖Π𝑉 ∖𝑊𝑥‖ ≤ 1, Lemma 3.3.10 implies |𝐺(𝑥)| ≤ Λ. So by positive homogeneity

(see Fact 3.3.9) of 𝐺(𝑥) and the definition of 𝜏 , |𝐺(𝑥)| > 𝜏 only if ‖Π𝑉 ∖𝑊𝑥‖2 ≥ 2(𝑘 − ℓ), so

𝑘∑︁
𝑖=ℓ+1

𝑤⊤
𝑖 M

𝑊
𝜏 𝑤𝑖 = E

𝑥

[︀
1[|𝐺(𝑥)| > 𝜏] ·

(︀
‖Π𝑉 ∖𝑊𝑥‖2 − (𝑘 − ℓ)

)︀]︀
≥ (𝑘 − ℓ) · Pr

𝑥
[𝐺(𝑥) > 𝜏].

(3.9) then follows from Lemma 3.4.4 applied to 𝐺.

The final statement in Lemma 3.4.5 follows by averaging.

If 𝜀 is the target 𝐿2 error to which we want to learn 𝐹 , we will only ever work with

202

𝜌 ≥ Ω(𝜀). In the sequel, we will take

𝜏 = 𝑐
√
𝑘 · Λ (3.10)

for sufficiently large absolute constant 𝑐 > 0. As a result, we have that

𝜆(ℓ)𝜏 ≥ Ω
(︁
𝑒−𝑂(𝑘2Λ2/𝜀2)

)︁
· (𝜀/Λ) , 𝜆. (3.11)

3.4.3 Stability of Piecewise Linear Threshold Functions

To get an iterative algorithm for finding all relevant directions of 𝐹 , we need to show an

analogue of Lemma 3.9 in the setting when we only have access to directions ̃︀𝑤1, . . . , ̃︀𝑤ℓ
which are close to the span of 𝑉 , and when we only have access to an approximation of the

function 𝐹 |𝑊 .

In this section, we show the following stability result for affine thresholds of piecewise-

linear functions:

Lemma 3.4.6. Let 𝑓, 𝑔, 𝑔′ : R𝑑 → R be piecewise-linear functions. For any 𝜏 > 0, if 𝑔, 𝑔′

are (𝑚, 𝜂)-structurally-close and 𝑓 has a realization with at most 𝑚 pieces, then

Pr
𝑥∼𝒩 (0,Id)

[|𝑔(𝑥)− 𝑓(𝑥)| > 𝜏 ∧ |𝑔′(𝑥)− 𝑓(𝑥)| ≤ 𝜏] ≤ 9𝜂𝑚2/𝜏 (3.12)

An important building block of the proof is the special case where 𝑓 = 0 and 𝑔, 𝑔′ are

linear, which was shown in Lemma 1.3.35.

Proof of Lemma 3.4.6. The left-hand side of (3.12) is at most

Pr
𝑥∼𝒩 (0,Id)

[𝑔(𝑥)−𝑓(𝑥) > 𝜏 ∧𝑔′(𝑥)−𝑓(𝑥) ≤ 𝜏]+ Pr
𝑥∼𝒩 (0,Id)

[𝑔(𝑥)−𝑓(𝑥) < −𝜏 ∧𝑔′(𝑥)−𝑓(𝑥) ≥ −𝜏],

(3.13)

and by symmetry it suffices to upper bound the former probability on the right-hand side of

(3.13) by 𝑂(𝜂𝑚2/𝜏).

By definition of (𝑚, 𝜂)-structural-closeness, we can express 𝑔 and 𝑔′ as max𝑗 min𝑖∈ℐ𝑗⟨𝑢𝑖, ·⟩

and max𝑗 min𝑖∈ℐ𝑗⟨𝑢′𝑖, ·⟩ respectively, for vectors {𝑢𝑖}𝑖∈[𝑚] and {𝑢′𝑖}𝑖∈[𝑚] for which ‖𝑢𝑖−𝑢′𝑖‖ ≤ 𝜂

203

for all 𝑖.

We proceed via a hybrid argument. Take any 0 ≤ 𝑖 ≤ 𝑚. Let 𝑢(𝑖)1 , . . . , 𝑢
(𝑖)
𝑖−1 be 𝑢1, . . . , 𝑢𝑖−1,

and let 𝑢(𝑖)𝑖 , . . . , 𝑢
(𝑖)
𝑚 be the vectors 𝑢′𝑖, . . . , 𝑢′𝑚. Define the function 𝑔(𝑖) = max𝑎min𝑏∈ℐ𝑎⟨𝑢

(𝑖)
𝑖 , 𝑥⟩

so that 𝑔(0)(𝑥) = max𝑎min𝑏∈ℐ𝑎⟨𝑢′𝑏, 𝑥⟩ and 𝑔(𝑚)(𝑥) = max𝑎min𝑏∈ℐ𝑎⟨𝑢𝑏, 𝑥⟩.

We claim that for any 𝑥, 𝑔(𝑖−1)(𝑥) and 𝑔(𝑖)(𝑥) are sandwiched between ⟨𝑢′𝑖, 𝑥⟩ and ⟨𝑢𝑖, 𝑥⟩,

in the sense that

⟨𝑢′𝑖, 𝑥⟩ ≥ 𝑔(𝑖−1)(𝑥) ≥ 𝑔(𝑖)(𝑥) ≥ ⟨𝑢𝑖, 𝑥⟩ or ⟨𝑢′𝑖, 𝑥⟩ ≤ 𝑔(𝑖−1)(𝑥) ≤ 𝑔(𝑖)(𝑥) ≤ ⟨𝑢𝑖, 𝑥⟩.

(3.14)

This would imply

Pr[𝑔(𝑖)(𝑥)−𝑓(𝑥) > 𝜏∧𝑔(𝑖−1)(𝑥)−𝑓(𝑥) ≤ 𝜏] ≤ Pr[⟨𝑢𝑖, 𝑥⟩−𝑓(𝑥) > 𝜏∧⟨𝑢′𝑖, 𝑥⟩−𝑓(𝑥) ≤ 𝜏] (3.15)

because either the left-hand side of (3.15) is zero, or or the event on the left-hand side

immediately implies the one on the right-hand side.

Denote by {(⟨𝑤𝑖, ·⟩, 𝑆𝑖)}𝑖∈[𝑚] the pieces of some realization of 𝑓 . We would then have

Pr[𝑔(𝑥)− 𝑓(𝑥) > 𝜏 ∧ 𝑔′(𝑥)− 𝑓(𝑥) ≤ 𝜏]

≤
𝑚∑︁
𝑖=1

Pr[⟨𝑢𝑖, 𝑥⟩ − 𝑓(𝑥) > 𝜏 ∧ ⟨𝑢′𝑖, 𝑥⟩ − 𝑓(𝑥) ≤ 𝜏]

=
𝑚∑︁
ℓ=1

𝑚∑︁
𝑖=1

Pr[𝑥 ∈ 𝑆ℓ ∧ ⟨𝑢𝑖 − 𝑤ℓ, 𝑥⟩ > 𝜏 ∧ ⟨𝑢′𝑖 − 𝑤ℓ, 𝑥⟩ ≤ 𝜏]

≤
𝑚∑︁
ℓ=1

𝑚∑︁
𝑖=1

Pr[⟨𝑢𝑖 − 𝑤ℓ, 𝑥⟩ > 𝜏 ∧ ⟨𝑢′𝑖 − 𝑤ℓ, 𝑥⟩ ≤ 𝜏] ≤ 𝑂
(︀
𝜂𝑚2/𝜏

)︀
,

where the first step follows by triangle inequality and (3.15), and the last step follows by

Lemma 1.3.35.

To complete the proof, we now turn to proving that the quantities 𝑔(𝑖)(𝑥) and 𝑔(𝑖−1)(𝑥)

are sandwiched between ⟨𝑢′𝑖, 𝑥⟩ and ⟨𝑢𝑖, 𝑥⟩, which will imply (3.15). Suppose that 𝑔(𝑖−1)(𝑥) =

⟨𝑢(𝑖−1)
𝑗 , 𝑥⟩ for some index 𝑗.

Case 1: ⟨𝑢′𝑖, 𝑥⟩ ≥ ⟨𝑢
(𝑖−1)
𝑗 , 𝑥⟩.

In this case min𝑏∈ℐ𝑎⟨𝑢
(𝑖−1)
𝑏 , 𝑥⟩ ≤ ⟨𝑢′𝑖, 𝑥⟩ for all 𝑎. If ⟨𝑢𝑖, 𝑥⟩ ≥ ⟨𝑢′𝑗, 𝑥⟩, then changing 𝑢′𝑖 to

204

𝑢𝑖 will not change the values of any of the clauses. So suppose ⟨𝑢𝑖, 𝑥⟩ < ⟨𝑢′𝑗, 𝑥⟩, in which case

the value of the function cannot increase. Then if index 𝑖 appears in any clause ℐ𝑎 for which

min𝑏∈ℐ𝑎⟨𝑢
(𝑖−1)
𝑏 , 𝑥⟩ = ⟨𝑢(𝑖−1)

𝑗 , 𝑥⟩, then 𝑔(𝑖)(𝑥) ≥ ⟨𝑢𝑖, 𝑥⟩. Otherwise, the value of the function

stays the same. We conclude that the first inequality in (3.14) holds.

Case 2: ⟨𝑢′𝑖, 𝑥⟩ < ⟨𝑢
(𝑖−1)
𝑗 , 𝑥⟩.

In this case there is some ℐ𝑎 for which ⟨𝑢(𝑖−1)
𝑗 , 𝑥⟩ = min𝑏∈ℐ𝑎⟨𝑢

(𝑖−1)
𝑏 , 𝑥⟩ and in which index

𝑖 does not appear. If ⟨𝑢𝑖, 𝑥⟩ ≤ ⟨𝑢′𝑖, 𝑥⟩, then changing 𝑢′𝑖 to 𝑢𝑖 will not change the value of this

ℐ𝑎 clause, and the values of the other clauses will not increase, so the value of the function

will not change. So suppose ⟨𝑢𝑖, 𝑥⟩ > ⟨𝑢′𝑖, 𝑥⟩. Changing 𝑢′𝑖 to 𝑢𝑖 will not affect any clause ℐ𝑎
not containing 𝑖 or for which min𝑏∈ℐ𝑎⟨𝑢

(𝑖−1)
𝑏 , 𝑥⟩ ≤ 𝑢′𝑖. For all other clauses, their value will

either stay the same or increase to 𝑢𝑖, in which case 𝑔(𝑖)(𝑥) ≤ ⟨𝑢𝑖, 𝑥⟩. We conclude that the

second inequality in (3.14) holds.

3.4.4 Netting Over Piecewise Linear Functions

Suppose we have recovered an ℓ-dimensional subspace ̃︁𝑊 that approximately lies within

𝑉 . In this section we show how to produce a finite list of candidate kickers with relevant

subspace ̃︁𝑊 , one of which is guaranteed to approximate 𝐹 restricted to some ℓ-dimensional

subspace 𝑊 . Ignoring the finiteness of this list for now, we first show that as long as ̃︁𝑊 is

sufficiently close to lying within 𝑉 , there exists some kicker close to some restriction 𝐹 |𝑊 .

Lemma 3.4.7. Let ̃︀𝑤1, . . . , ̃︀𝑤ℓ be a frame 𝜈-nearly within 𝑉 , with span ̃︁𝑊 . There exist an

ℓ-dimensional subspace 𝑊 ⊂ 𝑉 and a Λ-Lipschitz kicker ̃︀𝐹 * with relevant subspace ̃︁𝑊 which

is (𝑀, 2
√
𝜈 · ℓΛ)-structurally-close to 𝐹 |𝑊 .

Proof of Lemma 3.4.7. By Lemma 1.3.10, there exist orthonormal vectors 𝑤1, . . . , 𝑤ℓ for

which ‖𝑤𝑖 − ̃︀𝑤𝑖‖ ≤ 2
√
𝜈ℓ. Let 𝑊 be their span.

The function 𝐹 |𝑊 is a continuous piecewise-linear function with at most 𝑀 pieces,

so by Theorem 3.3.11 and Lemma 3.3.7, there exist vectors 𝑢1, . . . , 𝑢𝑀 ∈ 𝑊 and subsets

ℐ1, . . . , ℐ𝑚 ⊆ [𝑀] for which 𝐹 (𝑥) = max𝑗∈[𝑚] min𝑖∈ℐ𝑗⟨𝑢𝑖, 𝑥⟩ and ‖𝑢𝑖‖ ≤ Λ for all 𝑖. For any

𝑖 ∈ [𝑀], write 𝑢𝑖 =
∑︀

𝑖′∈[ℓ] 𝛼𝑖,𝑖′𝑤𝑖′ . Define ̃︀𝑢*𝑖 ,∑︀𝑖′∈[ℓ] 𝛼𝑖,𝑖′ ̃︀𝑤𝑖′ and define the kicker ̃︀𝐹 * with

relevant subspace ̃︁𝑊 by ̃︀𝐹 *(𝑥) , max𝑗∈[𝑚] min𝑖∈ℐ𝑗⟨̃︀𝑢*𝑖 , 𝑥⟩.
205

Note that for any 𝑖,

‖̃︀𝑢*𝑖 − 𝑢𝑖‖ = ∑︁
𝑖′∈[ℓ]

𝛼𝑖,𝑖′‖ ̃︀𝑤𝑖′ − 𝑤𝑖′‖ ≤ 2
√
𝜈ℓ ·

∑︁
𝑖′

|𝛼𝑖,𝑖′ | ≤ 2
√
𝜈 · ℓ‖𝑢𝑖‖ ≤ 2

√
𝜈 · ℓΛ,

where the penultimate step is by Cauchy-Schwarz, so ̃︀𝐹 * is (𝑀, 2
√
𝜈 · ℓΛ)-structurally-close

to 𝐹 |𝑊 as claimed. Lastly, note that ‖̃︀𝑢*𝑖 ‖ = ‖𝑢𝑖‖ ≤ Λ, so ̃︀𝐹 * is indeed Λ-Lipschitz.

We now show that the existential guarantee of Lemma 3.3.16 implies that if we enumer-

ate over a fine enough net of kickers, then we can recover an approximation to ̃︀𝐹 * from

Lemma 3.4.7 in time singly exponential in poly(𝑀).

Algorithm 8: EnumerateKickers(̃︁𝑊 , 𝜀′)

Input: Subspace ̃︁𝑊 spanned by orthonormal vectors ̃︀𝑤1, . . . , ̃︀𝑤ℓ, granularity 𝜀′ > 0
Output: List of kickers ̃︀𝐹 with relevant subspace ̃︁𝑊

1 ℒ ← ∅.
2 Let 𝒩 be an 𝜀′Λ-net over the set of vectors in ̃︁𝑊 with norm at most Λ.
3 for ̃︀𝑢1, . . . , ̃︀𝑢𝑀 ∈ 𝒩 do
4 for functions 𝐴 : Ω𝑀 → [𝑀] do
5 Let ̃︀𝐹 be the kicker given by ̃︀𝐹 (𝑥) =∑︀𝜔∈Ω𝑀

1
[︀
{⟨̃︀𝑢𝑖, 𝑥⟩}𝑖∈[𝑀] ⊢ 𝜔

]︀
· ⟨̃︀𝑢𝐴(𝜔), 𝑥⟩.

6 Append ̃︀𝐹 to ℒ.

7 return ℒ.

Lemma 3.4.8. Take any 𝜀′ > 0. Given a frame ̃︀𝑤1, . . . , ̃︀𝑤ℓ with span ̃︁𝑊 , for any Λ-

Lipschitz kicker ̃︀𝐹 * with relevant subspace ̃︁𝑊 , there exists a kicker ̃︀𝐹 with relevant subspacẽ︁𝑊 in the output ℒ of EnumerateKickers(̃︁𝑊, 𝜀′) which is (𝑀, 𝜀′Λ)-structurally-close tõ︀𝐹 . Furthermore, |ℒ| ≤𝑀𝑀2 · (1 + 2/𝜀′)ℓ.

In particular, if ̃︀𝑤1, . . . , ̃︀𝑤ℓ is a frame 𝜈-nearly within 𝑉 , then for 𝜀′ = 2
√
𝜈·ℓ, ℒ contains a

kicker ̃︀𝐹 which is (𝑀,𝐶piecewise

√
𝜈)-structurally-close to 𝐹 |𝑊 for some ℓ-dimensional subspace

𝑊 ⊆ 𝑉 , where

𝐶piecewise , 4𝑘Λ.

Furthermore, |ℒ| ≤𝑀𝑀2
𝑂(1/

√
𝜈)ℓ in this case.

Proof. By Lemma 3.3.16, the function ̃︀𝐹 * in the hypothesis can be written in the form

206

̃︀𝐹 *(𝑥) =
∑︀

𝜔∈Ω𝑀
1
[︀
{⟨̃︀𝑢*𝑖 , 𝑥⟩}𝑖∈[𝑀] ⊢ 𝜔

]︀
· ⟨̃︀𝑢*𝐴(𝜔), 𝑥⟩ for some vectors {̃︀𝑢*𝑖 }𝑖∈[𝑀] and function

𝐴 : Ω𝑀 → [𝑀].

Because 𝒩 in Step 2 of EnumerateKickers is an 𝜀′Λ-net over the set of vectors iñ︁𝑊 with norm at most Λ, there exist vectors ̃︀𝑢1, ..., ̃︀𝑢𝑀 ∈ 𝒩 for which ‖̃︀𝑢𝑖 − ̃︀𝑢*𝑖 ‖ ≤ 𝜀′Λ.

If we define ̃︀𝐹 by ̃︀𝐹 (𝑥) =
∑︀

𝜔∈Ω𝑀
1
[︀
{⟨̃︀𝑢𝑖, 𝑥⟩}𝑖∈[𝑀] ⊢ 𝜔

]︀
· ⟨̃︀𝑢𝐴(𝜔), 𝑥⟩, then by design, ̃︀𝐹 is

(𝑀, 𝜀′Λ)-structurally-close to ̃︀𝐹 .

It remains to bound the size of ℒ. For any 𝜀′ > 0 there is an 𝜀′-net 𝒩 ′
𝜀′ for the 𝐿2 unit ball

in ̃︁𝑊 of size at most (1+ 2/𝜀′)ℓ. Define 𝒩 , Λ · 𝒩 ′
𝜀′ . Furthermore, there are |Ω𝑀 |𝑀 ≤𝑀𝑀2

functions 𝐴 : Ω𝑀 → [𝑀]. This yields the desired bound on |ℒ|.

The final part of the lemma follows by invoking Lemma 3.4.7 and noting that the lattice

polynomial representation of ̃︀𝐹 * and that of 𝐹 |𝑊 are identical in the proof of Lemma 3.4.7,

so the structural closeness of ̃︀𝐹 to 𝐹 |𝑊 follows by triangle inequality.

3.4.5 Netting Over Neural Networks

Enumerating over arbitrary kickers with 𝑀 pieces requires runtime scaling exponentially in

poly(𝑀). For ReLU networks of size 𝑆, 𝑀 could be as large as exp(𝑆), so naively using

EnumerateKickers in our application to learning ReLU networks would incur doubly

exponential dependence on 𝑘 in the runtime. In this section we show how to enumerate

over ReLU networks more efficiently. We first prove the analogue of Lemma 3.4.7 for ReLU

networks.

Lemma 3.4.9. Suppose 𝐹 additionally satisfies Assumption 4. Let ̃︀𝑤1, . . . , ̃︀𝑤ℓ be a frame

𝜈-nearly within 𝑉 , with span ̃︁𝑊 . There exist an ℓ-dimensional subspace 𝑊 ⊂ 𝑉 and weight

matrix W*
0 ∈ R𝑘0×𝑑 with rows in ̃︁𝑊 for which

‖W0Π𝑊 −W*
0‖2 ≤ 2

√
𝜈 · ℓ
√
𝑘 ·𝐵 (3.16)

and for which ‖W*
0‖2 ≤ 𝐵.

Proof. As in the proof of Lemma 3.4.7, Lemma 1.3.10 yields orthonormal vectors 𝑤1, . . . , 𝑤ℓ

for which ‖𝑤𝑖 − ̃︀𝑤𝑖‖ ≤ 2
√
𝜈ℓ. Let 𝑊 be their span.

207

If 𝐹 has weight matrices W0 ∈ R𝑘0×𝑑,W1 ∈ R𝑘1×𝑘0 , . . . ,W𝐿+1 ∈ R1×𝑘𝐿 , then 𝐹 |𝑊
is a ReLU network with weight matrices W0Π𝑊 ,W1, . . . ,W𝐿+1. Denoting the rows of

W0Π𝑊 ∈ R𝑘0×𝑑 as 𝑢1, . . . , 𝑢𝑘0 , we may write them as 𝑢𝑖 =
∑︀

𝑖′∈[ℓ] 𝛼𝑖,𝑖′𝑤𝑖′ for 𝑖 ∈ [𝑘0].

Define ̃︀𝑢*𝑖 ,∑︀𝑖′∈[ℓ] 𝛼𝑖,𝑖′ ̃︀𝑤𝑖′ . As in the proof of Lemma 3.4.7, we have that

‖̃︀𝑢*𝑖 − 𝑢𝑖‖ ≤ 2
√
𝜈 · ℓ‖𝑢𝑖‖ ≤ 2

√
𝜈 · ℓ𝐵,

where in the last step we have used the fact that the maximum norm of any row of W0Π𝑊

is at most the maximum norm of any row of W0, which is upper bounded by ‖W0‖2 ≤ 𝐵.

Let ̃︁W*
0 denote the matrix whose rows consist of ̃︀𝑢*1, . . . , ̃︀𝑢*𝑘0 . We have that

‖W0Π𝑊 − ̃︁W*
0‖2 ≤ ‖W0Π𝑊 − ̃︁W*

0‖𝐹 ≤ 2
√
𝜈 · ℓ
√
𝑘 ·𝐵

as claimed. Finally, the bound on ‖W*
0‖2 follows from the fact that W*

0 = W0 ·O · Π𝑊 for

an orthogonal matrix O mapping the frame {𝑤1, ..., 𝑤ℓ} to { ̃︀𝑤1, ..., ̃︀𝑤ℓ}.

Algorithm 9: EnumerateNetworks(̃︁𝑊 , 𝜀′)

Input: Subspace ̃︁𝑊 spanned by orthonormal vectors ̃︀𝑤1, . . . , ̃︀𝑤ℓ, granularity 𝜀′ > 0
Output: List of size-𝑆 ReLU networks ̃︀𝐹 with relevant subspace ̃︁𝑊

1 ℒ ← ∅.
2 for tuples (̃︀𝑘0, ...,̃︀𝑘𝐿+1) ∈ Z𝐿+2

>0 satisfying
∑︀𝐿+1

𝑖=0
̃︀𝑘𝑖 = 𝑆 do

3 For every 0 ≤ 𝑖 ≤ 𝐿+ 1, let 𝒩𝑖 be an 𝜀′-net (in operator norm) over the set of
matrices in R̃︀𝑘𝑖×̃︀𝑘𝑖−1 with operator norm at most 𝐵 + 𝜀′.

4 for ̃︁W0 ∈ 𝒩0, ...,̃︁W𝐿+1 ∈ 𝒩𝐿+1 do
5 Define the ReLU network ̃︀𝐹 with weight matrices clip𝜀′(W0), ..., clip𝜀′(W𝐿+1).
6 Append ̃︀𝐹 to ℒ.

7 return ℒ.

We can now show the analogue of Lemma 3.4.8 for ReLU networks.

Lemma 3.4.10. Take any 0 < 𝜀′ ≤ 𝐵 and any frame ̃︀𝑤1, . . . , ̃︀𝑤ℓ with span ̃︁𝑊 . For any

ReLU network ̃︀𝐹 * of size 𝑆 with relevant subspace ̃︁𝑊 and depth 𝐿+2 whose weight matrices

have operator norm at most 𝐵, there exists a ReLU network ̃︀𝐹 with relevant subspace ̃︁𝑊 in

208

the output ℒ of EnumerateNetworks(̃︁𝑊, 𝜀′) which is (2𝑆, 2𝑂(𝐿)𝐵𝐿+1𝜀′)-structurally-close

(as a piecewise-linear function) to ̃︀𝐹 . Furthermore, |ℒ| ≤ 2𝑂(𝑆) · (1 + 4𝐵/𝜀′)𝑂(𝑆2).

In particular, if ̃︀𝑤1, ..., ̃︀𝑤ℓ is a frame 𝜈-nearly within 𝑉 , then for 𝜀′ = 2
√
𝜈 · ℓ
√
𝑘 · 𝐵,

ℒ contains a ReLU network ̃︀𝐹 which is (𝑀,𝐶network

√
𝜈)-structurally-close to 𝐹 |𝑊 for some

ℓ-dimensional subspace 𝑊 ⊆ 𝑉 , where

𝐶network , 2𝑂(𝐿)𝐵𝐿+2𝑘3/2

Furthermore, |ℒ| ≤ 𝑂(1/
√
𝜈)𝑂(𝑆2) in this case.

Proof. Let W′
0 ∈ R𝑘′0×𝑑, . . . ,W𝐿+1 ∈ R1×𝑘𝐿 denote the weight matrices of ̃︀𝐹 *. Consider the

iteration of the outer loop of EnumerateNetworks in which the architecture of ̃︀𝐹 * is

guessed correctly, that is, for which ̃︀𝑘𝑖 = 𝑘′𝑖 for all 0 ≤ 𝑖 ≤ 𝐿 + 1. By the choice of nets,

there is some iteration of the inner loop of the algorithm for which the weight matrices {̃︁W𝑖}

satisfy

‖W′
𝑖 − ̃︁W𝑖‖2 ≤ 𝜀′ ∀ 0 ≤ 𝑖 ≤ 𝐿+ 1. (3.17)

Define the ReLU network ̃︀𝐹 with relevant subspacẽ︁𝑊 to have weight matrices ̃︁W0,̃︁W1, . . . ,̃︁W𝐿+1.

By the fact that operator norm closeness implies entrywise closeness, together with Fact 3.3.1

and Theorem 3.3.17, there are lattice polynomial representations for ̃︀𝐹 * and ̃︀𝐹 with identi-

cal clauses, and for which the vectors at the leaves consist of W′
𝐿+1Σ𝐿W

′
𝐿 · · ·Σ0W

′
0Π𝑊 and̃︁W𝐿+1Σ𝐿

̃︁W𝐿 · · ·Σ0
̃︁W0 respectively for all possible diagonal matrices Σ𝑖 ∈ {0, 1}𝑘

′
𝑖×𝑘′𝑖 . For

any such choice of matrices {Σ𝑖}, note that

‖W′
𝐿+1Σ𝐿W

′
𝐿 · · ·W′

0 − ̃︁W𝐿+1Σ𝐿
̃︁W𝐿 · · ·̃︁W0‖

≤ ‖(W′
𝐿+1 − ̃︁W𝐿+1)Σ𝐿W

′
𝐿 · · ·W′

0‖+ · · ·+ ‖̃︁W𝐿+1Σ𝐿
̃︁W𝐿 · · · (W′

0 − ̃︁W0)‖

≤ ‖W′
𝐿+1 − ̃︁W𝐿+1‖

𝐿∏︁
𝑖=0

‖W′
𝑖‖2 + · · ·+

𝐿+1∏︁
𝑖=1

‖̃︁W𝑖‖2‖W′
0 − ̃︁W0‖2

≤ (𝐿+ 2) · (𝐵 + 𝜀′)𝐿+1 · 𝜀′

≤ 2𝑂(𝐿)𝐵𝐿+1 · 𝜀′, (3.18)

209

where in the last step we used the assumption that 𝜀′ ≤ 𝐵. This implies the claim about

structural closeness.

We next bound the size of |ℒ|. For any choice of ̃︀𝑘0, ...,̃︀𝑘𝐿+1, note that by Corollary 1.3.29,

⃒⃒⃒
𝒩̃︀𝑘0 × · · · × 𝒩̃︀𝑘𝐿+1

⃒⃒⃒
≤ (1 + 4𝐵/𝜀′)𝐿

̃︀𝑘0+̃︀𝑘0̃︀𝑘1+···+̃︀𝑘𝐿̃︀𝑘𝐿+1+̃︀𝑘𝐿+1

≤ (1 + 4𝐵/𝜀′)𝑂(𝑆2)

where in the penultimate step we used that

𝐿̃︀𝑘0+̃︀𝑘0̃︀𝑘1+· · ·+̃︀𝑘𝐿̃︀𝑘𝐿+1+̃︀𝑘𝐿+1 ≤ (𝐿+̃︀𝑘0+· · ·+̃︀𝑘𝐿+1)(̃︀𝑘0+· · ·+̃︀𝑘𝐿+1+1) = (𝐿+𝑆)(𝑆+1) ≤ 𝑂(𝑆2).

There are
(︀
𝑆+𝐿+1
𝐿+1

)︀
= 2𝑂(𝑆) choices of (̃︀𝑘0, . . . ,̃︀𝑘𝐿+1) in the outer loop of EnumerateNet-

works, so |ℒ| ≤ 2𝑂(𝑆) · (1 + 4𝐵/𝜀′)𝑂(𝑆2) as claimed.

Finally, to obtain the last part of the lemma, we can take ̃︀𝐹 * above to have the same

weight matrices as 𝐹 except for the input layer, which we will take to be W′
0 , ̃︁W*

0 for the

weight matrix guaranteed by Lemma 3.4.9. By (3.16), this choice of W′
0 is close to W0Π𝑊

for some subspace 𝑊 ⊆ 𝑉 . Take 𝜀′ = 2
√
𝜈 · ℓ
√
𝑘 ·𝐵. For {̃︁W𝑖} satisfying (3.17), by triangle

inequality (3.16) we get that

‖W0Π𝑊 − ̃︁W0‖2 ≤ ‖W0Π𝑊 −W′
0‖2 + ‖W′

0 − ̃︁W0‖2 ≤ 2𝜀′.

Using this, by a calculation analogous to the one leading to (3.18), we find that ̃︀𝐹 is

(2𝑆, 2𝑂(𝐿)𝐵𝐿+1𝜀′)-structurally-close to 𝐹 |𝑊 , from which the claim follows by our choice of

𝜀′ = 2
√
𝜈 · ℓ
√
𝑘 ·𝐵. In this case, we get that |ℒ| ≤ 2𝑂(𝑆)(1 + 2/

√
𝜈)𝑂(𝑆2) ≤ 𝑂(1/

√
𝜈)𝑂(𝑆2) as

claimed.

With subroutines for enumerating over ReLU networks and kickers in hand, we can now

formally state our algorithm, FilteredPCAv2 (see Algorithm 10 below). The algorithm as

stated applies to the case where 𝐹 is a neural network satisfying Assumptions 3 and 4, but

we can easily modify the algorithm to work in the case where 𝐹 is only a kicker satisfying As-

sumption 3 by replacing the call to EnumerateNetworks(̃︁𝑊, 2
√
𝜈0·ℓ
√
𝑘·𝐵) in Line 9 with

210

a call to EnumerateKickers(̃︁𝑊, 2
√
𝜈0·ℓ), the call to EnumerateNetworks(̃︁𝑊,𝐵−𝐿−12−Ω(𝐿)·

𝜀/
√
𝑘) in Line 19 with a call to EnumerateKickers(̃︁𝑊, 𝜀/(2

√
𝑘Λ)), and the assignment

𝑁 ′ ← poly(𝐵𝐿+2, 𝑘, 1/𝜀) · log(1/𝛿) in Line 20 with the assignment 𝑁 ′ ← poly(Λ, 𝑘, 1/𝜀) ·

log(1/𝛿)).

3.4.6 Perturbation Bounds

We now show how to leverage Lemma 3.4.6 to show that even with access to a subspace ̃︁𝑊
which is only approximately within 𝑉 as well as the restriction of 𝐹 to that subspace, we

can recover another vector orthogonal to ̃︁𝑊 which mostly lies within 𝑉 .

The first step is to show that in this approximate setting, the analogue of M𝑊 from

Section 3.4.2 is spectrally close to M𝑊 . It is in showing this perturbation bound that we

invoke the stability result of Section 3.4.3.

Lemma 3.4.11. Suppose 𝐹 only satisfies Assumption 3 (resp. both Assumptions 3 and 4).

Let ̃︀𝑤1, . . . , ̃︀𝑤ℓ ∈ S𝑑−1 be a frame 𝜈-nearly within 𝑉 , with spañ︁𝑊 . For * ∈ {piecewise, network},

define

𝜉*(𝜈) , 𝑂

(︃
𝑘

(︂
𝐶*
√
𝜈𝑀2

𝑐
√
𝑘Λ

)︂1−1/𝑘

∨
√
𝜈𝑘

)︃
(3.19)

and suppose 𝑁 ≥ Ω({𝑑 ∨ log(1/𝛿)}/𝜉2*).

Given subspace 𝑊 ⊆ 𝑉 and ̃︀𝐹 for which 𝐹 |𝑊 and ̃︀𝐹 are (𝑀,𝐶piecewise

√
𝜈)-structurally-

close (resp. (𝑀,𝐶network

√
𝜈)-structurally close), then we have that

‖̃︁M̃︁𝑊
emp −M𝑊‖2 ≤ 3𝜉(𝜈)

with probability at least 1− 𝛿.

Proof. For convenience denote ̃︁M̃︁𝑊
emp and M𝑊 by ̃︁Memp and M respectively. Also, depending

on whether 𝐹 only satisfies Assumption 3 or both Assumptions 3 and 4, define 𝐶* , 𝐶piecewise

or 𝐶* , 𝐶network respectively. It will also be convenient to define

M′ , Π𝑊⊥ E
𝑥,𝑦

[︀
1[|𝑦 − 𝐹 |𝑊 (𝑥)| > 𝜏] · (𝑥𝑥⊤ − Id)

]︀
Π𝑊⊥

211

Algorithm 10: FilteredPCAv2(𝒟, 𝜀, 𝛿)
Input: Sample access to 𝒟, target error 𝜀, failure probability 𝛿
Output: Size-𝑆 ReLU network ̃︀𝐹 : R𝑑 → R for which ‖ ̃︀𝐹 − 𝐹‖ ≤ 𝑂(𝜀) with

probability at least 1− 𝛿
1 𝒲 ← ∅.
2 𝜏 ← 𝑐

√
𝑘 · Λ as in (3.10).

3 𝜈0 ← poly(𝑘𝑘, 1/𝜆𝑘,𝑀𝑘,Λ)−1, where 𝜆 is defined in (3.11).

4 𝜉 ← 𝑂
(︁
𝑘
(︀√

𝜈0𝑘 ·𝑀2/𝑐
)︀1−1/𝑘

)︁
as in (3.19).

5 𝑁 ← Ω({𝑑 ∨ log(2𝑘/𝛿)}/𝜉2).
6 for 0 ≤ ℓ ≤ 𝑘 − 1 do
7 Draw samples (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁) ∼ 𝒟.
8 If 𝒲 = { ̃︀𝑤1, . . . , ̃︀𝑤ℓ}, let ̃︁𝑊 denote the span of these vectors.
9 ℒ ←EnumerateNetworks(̃︁𝑊, 2

√
𝜈0 · ℓ

√
𝑘 ·𝐵).

10 for ̃︀𝐹 ∈ ℒ do
11 Form the matrix̃︁M̃︁𝑊

emp , Π̃︁𝑊⊥

(︁∑︀𝑁
𝑖=1 1

[︁
|𝑦𝑖 − ̃︀𝐹 (Π̃︁𝑊𝑥)| > 𝜏

]︁
· (𝑥𝑖𝑥⊤𝑖 − Id)

)︁
Π̃︁𝑊⊥ .

12 Run ApproxBlockSVD(̃︁M̃︁𝑊
emp, 𝜆/1000, 𝛿/(2|ℒ|𝑘)) to obtain approximate

top singular vector ̃︀𝑤ℓ+1.
13 𝜆← (̃︀𝑤ℓ+1)⊤̃︁M̃︁𝑊

emp ̃︀𝑤ℓ+1.
14 if 𝜆 ≥ 9𝜆/16 then
15 Append ̃︀𝑤ℓ+1 to 𝒲 and exit out of this inner loop and increment ℓ.

16 if no ̃︀𝑤ℓ+1 was appended to 𝒲 then
17 break

18 Let ̃︁𝑊 denote the span of the vectors in 𝒲 .
19 ℒ ←EnumerateNetworks(̃︁𝑊,𝐵−𝐿−12−Ω(𝐿) · 𝜀/

√
𝑘).

20 𝑁 ′ ← poly(𝐵𝐿+2, 𝑘, 1/𝜀) · log(1/𝛿).
21 for ̃︀𝐹 ∈ ℒ do
22 Form an empirical estimate 𝜀 for ‖ ̃︀𝐹 − 𝐹‖ by drawing 𝑁 ′ samples.
23 if 𝜀 ≤ 3𝜀 then
24 return ̃︀𝐹 .

212

as well as the population version of ̃︁Memp, that is, ̃︁M , E(𝑥1,𝑦1),...,(𝑥𝑁 ,𝑦𝑁)[̃︁Memp].

We will upper bound

‖̃︁Memp −M‖2 ≤ ‖̃︁Memp −̃︁M‖2 + ‖̃︁M−M′‖2 + ‖M′ −M‖2.

by upper bounding each of the summands on the right-hand side by 𝜉*.

By Lemma 1.3.32 and our choice of 𝑁 , ‖̃︁Memp−̃︁M‖2 ≤ 𝜉* with probability at least 1−𝛿.

To upper bound ‖̃︁M−M′‖2, we can naively upper bound⃦⃦⃦⃦
E
𝑥,𝑦

[︀
1[|𝑦 − 𝐹 |𝑊 (𝑥)| > 𝜏] · (𝑥𝑥⊤ − Id)

]︀⃦⃦⃦⃦
≤ 2,

so by Claim 1.3.11 and Lemma 1.3.9 we have

‖̃︁M−M′‖2 ≤ 2
√
2 · 𝑑𝐶(̃︁𝑊,𝑊) ≤ 4

√
𝜈 · 𝑘 ≤ 𝜉*

Finally, we upper bound ‖M′ −M‖2. For any test vector 𝑣 ∈ S𝑑−1 orthogonal to 𝑊 ,

𝑣⊤(M−M′)𝑣 = E
𝑥

[︁(︁
1[|𝑦 − 𝐹 |𝑊 (𝑥)| > 𝜏]− 1[|𝑦 − ̃︀𝐹 (Π̃︁𝑊𝑥)| > 𝜏]

)︁
· (⟨𝑣, 𝑥⟩2 − 1)

]︁
≤ Pr

𝑥

[︁
sgn(|𝑦 − 𝐹 |𝑊 (𝑥)| − 𝜏) ̸= sgn(|𝑦 − ̃︀𝐹 (Π̃︁𝑊𝑥)| − 𝜏)

]︁1−1/𝑘

·𝑂(𝑘)

≤ 𝑂

(︃
𝑘

(︂
𝐶*
√
𝜈𝑀2

𝜏

)︂1−1/𝑘
)︃

= 𝑂

(︃
𝑘

(︂
𝐶*
√
𝜈𝑀2

𝑐
√
𝑘Λ

)︂1−1/𝑘
)︃
≤ 𝜉*

where the second step follows by Holder’s and the fact that E𝑔∼𝒩 (0,1)[(𝑔
2 − 1)𝑘]1/𝑘 ≤ 𝑂(𝑘),

and the third step follows by Lemma 3.4.6, which we may apply because ̃︀𝐹 and 𝐹 |𝑊 are

(𝑀, 4
√
𝜈 · ℓΛ)-structurally-close.

Finally, we use the above perturbation bound to show that in a single iteration of the

main outer loop of FilteredPCAv2, if there is some variance unexplained by the subspacẽ︁𝑊 found so far (see (3.20)), then we will find another “good” direction orthogonal to ̃︁𝑊
which is also approximately within the span of 𝑉 . Note that this claim has two components:

213

completeness, i.e. in the list of candidate functions we have enumerated, there is some

function for which the top singular vector of ̃︁M̃︁𝑊
emp in Step (11) is a good direction, and

soundness, i.e. whatever direction is ultimately chosen in Step 15 of FilteredPCAv2 is a

good direction.

Lemma 3.4.12. Suppose 𝐹 only satisfies Assumption 3 (resp. both Assumptions 3 and 4).

Suppose 𝜈 ≤ 𝜀2/(4𝑘𝐶2
piecewise) (resp. 𝜈 ≤ 𝜀2/(4𝑘𝐶2

network)). For 0 ≤ ℓ < 𝑘, let ̃︀𝑤1, . . . , ̃︀𝑤ℓ
be a frame 𝜈-nearly within 𝑉 , with span ̃︁𝑊 . Define 𝜉 = 𝜉piecewise(𝜈) (resp. 𝜉 = 𝜉network(𝜈))

according to (3.19), and suppose 𝑁 ≥ Ω({𝑑 ∨ log(1/𝛿)}/𝜉2) and 𝜏 = 𝑐
√
𝑘 · Λ.

Suppose 𝜉 ≤ 𝜆/6, and suppose

E
𝑥∼𝒩 (0,Id)

[(𝐹 (𝑥)− 𝐹 (Π̃︁𝑊𝑥))2] ≥ 𝜀2. (3.20)

Let ℒ be the output of EnumerateKickers(̃︁𝑊, 2
√
𝜈·ℓ) (resp. EnumerateNetworks(̃︁𝑊, 2

√
𝜈·

ℓ
√
𝑘 · 𝐵)). With probability at least 1 − |ℒ| · 𝛿 over the randomness of the 𝑁 samples, the

following hold:

1. Completeness: There exists some ̃︀𝐹 ∈ ℒ such that, if ̃︁M̃︁𝑊
emp is defined according to

Step 11 of FilteredPCAv2, its top singular value is at least 𝜆− 3𝜉.

2. Soundness: For any ̃︀𝐹 ∈ ℒ for which ‖̃︁M̃︁𝑊
emp‖2 ≥ 𝜆 − 3𝜉, the top singular vector 𝑤

satisfies ‖Π𝑉𝑤‖ ≥ 1 − 𝑐′𝜉2/𝜆2 for some absolute constant 𝑐′ > 0 and is orthogonal tõ︁𝑊 .

Proof. When the choice of ̃︀𝐹 is clear from context, for convenience we will denote M𝑊 and̃︁M̃︁𝑊
emp by M and ̃︁Memp respectively.

By Lemma 3.4.8 (resp. Lemma 3.4.10) and our assumed bound on 𝜈, there exists ̃︀𝐹 in

the output of EnumerateKickers (resp. EnumerateNetworks) which is (𝑀, 𝜀/2𝑘)-

structurally-close to 𝐹 |𝑊 for some ℓ-dimensional subspace 𝑊 (𝑉 .

By triangle inequality, Lemma 3.3.13, and (3.20), and our assumed bounds on 𝜈, we have

that ‖𝐹 − 𝐹 |𝑊‖ ≥ 𝜀/2. So by Lemma 3.4.5 and (3.11), we know ‖M‖ ≥ 𝜆.

Because this ̃︀𝐹 is (𝑀,𝐶piecewise

√
𝜈)-structurally-close (resp. (𝑀,𝐶network

√
𝜈)-structurally

close) to 𝐹 |𝑊 , Lemma 3.4.11 implies that with probability 1 − 𝛿, ‖M − ̃︁Memp‖2 ≤ 3𝜉, so

214

̃︁Memp has top singular value at least 𝜆− 3𝜉. This proves completeness.

Now take any ̃︀𝐹 for which ‖̃︁Memp‖2 ≥ 𝜆 − 3𝜉. The fact that the top singular vector

𝑤 is orthogonal to ̃︁𝑊 is immediate. And by Lemma 3.4.11, with probability 1 − 𝛿 over

the samples, ‖M − ̃︁Memp‖2 ≤ 3𝜉. So if we take 𝜆, 𝜀,A, ̂︀A in Corollary 1.3.8 to be 𝜆, 3𝜉,

M, and ̃︁Memp respectively, then because 𝜉 ≤ 𝜆/6, we get that the top singular vector 𝑤 of̃︁Memp satisfies ‖Π𝑉𝑤‖ ≥ 1 − 𝑂(𝜉2/𝜆2). This proves soundness, upon union bounding over

all ̃︀𝐹 ∈ ℒ.

3.4.7 Putting Everything Together

To conclude the proof of Theorems 3.4.1 and 3.4.2, we first show that for the subspace ̃︁𝑊
formed in Step 18, if ̃︁𝑊 is sufficiently close to the true relevant subspace 𝑉 or if (3.20) is

violated, then one can run EnumerateKickers (resp. EnumerateNetworks) one more

time to produce a function with small squared error relative to 𝐹 .

Lemma 3.4.13. Suppose 𝐹 only satisfies Assumption 3 (resp. both Assumptions 3 and 4).

Define

𝜀* , 𝜀/(2
√
𝑘Λ) (resp. 𝜀* , 𝐵−𝐿−12−Ω(𝐿) · 𝜀/

√
𝑘)

Let ̃︀𝑤1, ..., ̃︀𝑤ℓ be a frame with span ̃︁𝑊 . If either 1) ℓ = 𝑘 and this frame is 𝜀2/4𝑘𝐶2
piecewise-

nearly (resp. 𝜀2/4𝑘𝐶2
network-nearly) within 𝑉 , or 2) inequality (3.20) is violated. Then the

output ℒ of EnumerateKickers(̃︁𝑊, 𝜀*) (resp. EnumerateNetworks(̃︁𝑊, 𝜀*)) contains

a function ̃︀𝐹 for which ‖𝐹 − ̃︀𝐹‖ ≤ 𝑂(𝜀). Furthermore, |ℒ| ≤ 𝑀𝑀2 · 𝑂(Λ/𝜀)𝑘 (resp. |ℒ| ≤

𝑂(𝐵𝐿+22𝑂(𝐿)/𝜀)𝑂(𝑆2)).

In particular, if 1) or 2) holds for the subspace ̃︁𝑊 at the end of running FilteredP-

CAv2, then the output ̃︀𝐹 of FilteredPCAv2 satisfies ‖𝐹 − ̃︀𝐹‖ ≤ 𝑂(𝜀).

Proof. We first show that if either 1) or 2) holds, then there exists ̃︀𝐹 in ℒ for which ‖ ̃︀𝐹−𝐹‖ ≤
𝑂(𝜀).

Suppose 1) holds. If 𝐹 only satisfies Assumption 3 (resp. Assumptions 3 and 4), then

by the final part of Lemma 3.4.8 (resp. Lemma 3.4.10), there is a function ̃︀𝐹 in ℒ which

is (𝑀, 𝜀/2𝑘)-structurally-close (resp. (2𝑆, 𝜀/2𝑘)-structurally-close) to 𝐹 |𝑊 for ℓ-dimensional

215

subspace 𝑊 ⊆ 𝑉 . Because ℓ = 𝑘 when 1) holds, this subspace must be 𝑉 , so in fact 𝐹 |𝑊 = 𝐹

and therefore ̃︀𝐹 is structurally-close to 𝐹 . By Lemma 3.3.13, we conclude that ‖ ̃︀𝐹 −𝐹‖ ≤ 𝜀.

Suppose 2) holds. If 𝐹 only satisfies Assumption 3 (resp. Assumptions 3 and 4), then

we can take ̃︀𝐹 * in the first part of Lemma 3.4.8 (resp. Lemma 3.4.10) to be the function

𝑥 ↦→ 𝐹 (Π̃︁𝑊𝑥), which is clearly also a Λ-Lipschitz kicker (resp. ReLU network of size 𝑆 whose

weight matrices have operator norm at most 𝐵) with relevant subspace ̃︁𝑊 . It follows that

ℒ contains some function ̃︀𝐹 which is (𝑀, 𝜀/(2
√
𝑘))- (resp. (2𝑆, 𝜀/(2

√
𝑘))-structurally-close

to ̃︀𝐹 *. By Lemma 3.3.13, we conclude that ‖ ̃︀𝐹 − 𝐹‖ ≤ 3𝜀/2.

For the last part of the lemma, note that by Lemma 3.5.1 in Appendix 3.5.1 that for

any function ̃︀𝐹 for which ‖ ̃︀𝐹 − 𝐹‖2 ≤ 𝜇, we can estimate ‖ ̃︀𝐹 − 𝐹‖2 to error 𝑂(𝜀2) from

𝑂((𝜇 + Λ2𝑘) log(1/𝛿)/𝜀4) samples (resp. 𝑂((𝜇 + 𝐵2𝐿+4𝑘) log(1/𝛿)/𝜀2)). Note that for anỹ︀𝐹 ∈ ℒ, by the second part of Lemma 3.3.13 we have that ‖ ̃︀𝐹 − 𝐹‖ ≤ 𝑂(Λ
√
𝑘) (resp.

‖ ̃︀𝐹 − 𝐹‖ ≤ 𝑂(𝐵𝐿+2
√
𝑘)).

We can now conclude the proof of correctness for FilteredPCAv2.

Proof of Theorem 3.4.1. First note that the only randomness in FilteredPCAv2 comes

from calling ApproxBlockSVD and drawing samples, so henceforth we will condition on

the event that the former always succeeds and on the success of Lemma 1.3.32 for every

batch of samples drawn in Step 7 of FilteredPCAv2. By our choice of parameters in

FilteredPCAv2 and a union bound, this event happens with probability at least 1− 𝛿.

If 𝐹 satisfies Assumption 3 only (resp. both Assumptions 3 and 4), let 𝜉(𝜈) = 𝜉piecewise(𝜈)

and 𝐶* = 𝐶piecewise (resp. 𝜉(𝜈) = 𝜉network(𝜈) and 𝐶* = 𝐶network), recalling the definition from

(3.19).

Call 𝜈 ≥ 0 admissible if 𝜈 ≤ 𝜀2/4𝑘𝐶2
* and 𝜉(𝜈) ≤ 𝜆/6. Let 𝜄 : R → R be the function

given by 𝜄(𝜈) = 𝑐′𝜉(𝜈)2/𝜆2, where 𝑐′ is the absolute constant in Lemma 3.4.12. Note that if

we define

𝛽 , (𝑐′/𝜆2) ·𝑂

(︃
𝑘2 ·

(︂
𝐶2

*𝑀
4

𝑐2𝑘Λ2

)︂1−1/𝑘
)︃
,

then 𝜄(𝜈) = (𝛽 · 𝜈1−1/𝑘) ∨ (𝑘𝜈).

Because we are conditioning on every invocation of ApproxBlockSVD succeeding, the

quantity 𝜆 computed in Step 13 is certainly 𝜉(𝜈)/2-close to the true top singular value of

216

̃︁M̃︁𝑊 . So Lemma 3.4.12 tells us that in any iteration ℓ of the main loop in FilteredPCAv2,

if { ̃︀𝑤1, . . . , ̃︀𝑤ℓ} is a frame 𝜈-nearly within 𝑉 for admissible 𝜈, then either 1) we reach Line 15

in the inner loop and append some ̃︀𝑤ℓ+1 for which { ̃︀𝑤1, . . . , ̃︀𝑤ℓ+1} is a frame 𝜄(𝜈)-nearly

within 𝑉 , or 2) (3.20) is violated, in which case condition 2) of Lemma 3.4.13 implies that

FilteredPCAv2 would output a function ̃︀𝐹 for which ‖𝐹 − ̃︀𝐹‖ ≤ 𝑂(𝜀).

So all we need to verify is that there is a choice of 𝜈0 for which the 𝑘 numbers

𝜈0, 𝜄(𝜈0), . . . , 𝜄(𝜄(· · · 𝜄⏟ ⏞
𝑘−1

(𝜈0) · · ·)) (3.21)

are all admissible, after which we can invoke condition 1) of Lemma 3.4.13 to conclude that

FilteredPCAv2 outputs a function ̃︀𝐹 for which ‖𝐹 − ̃︀𝐹‖ ≤ 𝑂(𝜀). It is clear that for 𝜈

sufficiently small, 𝜄 is increasing in 𝜈. So it suffices to choose 𝜈0 sufficiently small that the

last number in the sequence (3.21) is admissible.

Then the last number in (3.21) is at most

(︁
𝛽
∑︀𝑘−1

𝑗=0 (1−1/𝑘)𝑗 · 𝜈(1−1/𝑘)𝑘

0

)︁
∨ (𝑘𝑘𝜈0) ≤

(︁
𝛽𝑘 · 𝜈1/𝑒0

)︁
∨ (𝑘𝑘𝜈0).

If 𝐹 satisfies Assumption 3 only and we take 𝐶* = 𝐶piecewise, then

𝛽𝑘 = (𝑐′/𝜆2)𝑘 ·𝑂
(︀
𝑘2𝑘 · (𝑘𝑀4/𝑐2)𝑘−1

)︀
,

so for

𝜈0 , poly(𝑘𝑘, 1/𝜆𝑘,𝑀𝑘,Λ/𝜀)−1 = poly(𝑒𝑘
3Λ2/𝜀2 ,𝑀𝑘)−1

sufficiently small, we have that (𝛽𝑘 · 𝜈1/𝑒0) ∨ (𝑘𝑘𝜈0) is admissible.

And because in each of the at most 𝑘 iterations of the main loop of FilteredPCAv2,

𝑁 = 𝑂({𝑑 ∨ log(𝑀𝑘/𝛿)}/𝜉(𝜈0)2) ≤ 𝑑 log(1/𝛿)poly(𝑒𝑘
3Λ2/𝜀2 ,𝑀𝑘)

samples are drawn, the final sample complexity is 𝑑 log(1/𝛿)poly(𝑒𝑘3Λ2/𝜀2 ,𝑀𝑘) as claimed.

The runtime is dominated by the at most 𝑀𝑀2
𝑂(1/

√
𝜈0)

ℓ =𝑀𝑀2 · poly(𝑒𝑘4Λ2/𝜀2 ,𝑀𝑘2) calls

217

to ApproxBlockSVD, one for each element of ℒ output by EnumerateKickers, (note

that the runtime and sample complexity cost of running EnumerateKickers at the very

end is of much lower order). As there is a matrix-vector oracle for the matrices on which we

run ApproxBlockSVD which takes time 𝑂(𝑑2), by Fact 1.3.6 each of these calls takes, up

to lower order factors that will be absorbed elsewhere, ̃︀𝑂(𝑑2 log(1/𝛿)) time, so we conclude

that FilteredPCAv2 runs in time

̃︀𝑂(𝑑2 log(1/𝛿)) ·𝑀𝑀2 · poly(𝑒𝑘4Λ2/𝜀2 ,𝑀𝑘2)

as claimed.

If 𝐹 satisfies Assumptions 3 and 4 and we take 𝐶* = 𝐶network, then

𝛽𝑘 = (𝑐′/𝜆2)𝑘 ·𝑂

(︃
𝑘2𝑘
(︂
2𝑂(𝐿)𝐵2𝐿+4𝑘24𝑆

𝑐2Λ2

)︂𝑘−1
)︃
,

where we have used that 𝑀 ≤ 2𝑆 for size-𝑆 ReLU networks. So for

𝜈0 , poly(𝑘𝑘, 1/𝜆𝑘, 2𝑘𝑆, (𝐵𝐿+2/Λ)𝑘,Λ/𝜀)−1 = poly(𝑒𝑘
3Λ2/𝜀2 , 2𝑘𝑆, (𝐵𝐿+2/Λ)𝑘)

sufficiently small, we have that (𝛽𝑘 · 𝜈1/𝑒0) ∨ (𝑘𝑘𝜈0) is admissible.

And because in each of the at most 𝑘 iteration of the main loop of FilteredPCAv2,

𝑁 = 𝑂({𝑑 ∨ log(2𝑆𝑘/𝛿)}/𝜉(𝜈0)2) ≤ 𝑑 log(1/𝛿)poly(𝑒𝑘
3Λ2/𝜀2 , 2𝑘𝑆, 𝐵(𝐿+2)𝑘/Λ𝑘)

samples are drawn, the final sample complexity is 𝑑 log(1/𝛿)poly(𝑒𝑘3Λ2/𝜀2 , 2𝑘𝑆, 𝐵(𝐿+2)𝑘/Λ𝑘) as

claimed. The runtime is dominated by the at most𝑂(1/
√
𝜈0)

𝑂(𝑆2) = poly(𝑒𝑘
3𝑆2Λ2/𝜀2 , 2𝑘𝑆

3
, 𝐵(𝐿+2)𝑘𝑆2

/Λ𝑘𝑆
2
)

calls to ApproxBlockSVD, one for each element of ℒ output by EnumerateNetworks

(note that the runtime and sample complexity cost of running EnumerateNetworks at

the very end is of much lower order). Each of these calls takes, up to lower order factors

that will be absorbed elsewhere, ̃︀𝑂(𝑑2 log(1/𝛿)) time, so we conclude that FilteredPCAv2

runs in time ̃︀𝑂(𝑑2 log(1/𝛿)) · poly(𝑒𝑘3𝑆2Λ2/𝜀2 , 2𝑘𝑆
3

, (𝐵𝐿+2/Λ)𝑘𝑆
2

)

218

as claimed.

Remark 3.4.14 (Comparison to FilteredPCAv2 from the previous chapter). Here we

briefly discuss what goes wrong if one simply tries mimicking the approach of [CM20]. Pro-

vided one has already recovered some (orthonormal) directions 𝑤1, ..., 𝑤ℓ spanning a subspace

𝑊 ⊂ 𝑉 , one would consider the matrix

M𝑊
CM , Π𝑊⊥ E

𝑥,𝑦

[︀
1[|𝑦| > 𝜏 ∧ ‖Π𝑊𝑥‖2 ≤ 𝛼] · (𝑥𝑥⊤ − Id)

]︀
Π𝑊⊥

for some 𝛼, 𝜏 > 0. The motivation for conditioning on ‖Π𝑊𝑥‖2 ≤ 𝛼 is that we now have

⟨Π𝑉 ∖𝑊 ,M
𝑊
CM⟩ = E

𝑥,𝑦

[︀
1[|𝑦| > 𝜏 ∧ ‖Π𝑊𝑥‖2 ≤ 𝛼] · (‖Π𝑉 ∖𝑊𝑥‖2 − (𝑘 − ℓ))

]︀
,

and if one could choose 𝜏 strictly greater than the supremum of |𝐹 (𝑥)| over all 𝑥 for which

‖Π𝑊𝑥‖2 ≤ 𝛼 and ‖Π𝑉 ∖𝑊𝑥‖2 ≤ 2(𝑘 − ℓ), then we would conclude that

⟨Π𝑉 ∖𝑊 ,M
𝑊
CM⟩ ≥ (𝑘 − ℓ) · Pr[|𝑦| > 𝜏 ∧ ‖Π𝑊𝑥‖ ≤ 𝛼] (3.22)

and it would suffice to lower bound the probability on the right-hand side of (3.22). This

is precisely the route taken by [CM20] for learning low-degree polynomials, but in the case

of ReLU networks, it is not hard to devise functions 𝐹 for which the probability on the

right-hand side of (3.22) is zero for such choices of 𝜏 , e.g. if 𝑑 = 𝑘 = 2, ℓ = 1, 𝑣1 = 𝑒1, and

𝐹 (𝑥) , 𝜑(𝑥/𝛼 + 𝑦)− 𝜑(−𝑥/𝛼 + 𝑦).

3.5 Appendix: Deferred Proofs

3.5.1 Concentration for Piecewise Linear Functions

Lemma 3.5.1. For any 𝛿 > 0 and any 𝑡 ≤ Λ2𝑘, the following holds. Let 𝐹 : R𝑑 → R be a

Λ-Lipschitz kicker with relevant subspace 𝑉 of dimension 𝑘. Then for samples 𝑥1, ..., 𝑥𝑁 ∼

𝒩 (0, Id), where 𝑁 = Θ((𝜇+ Λ2𝑘)2 log(1/𝛿)/𝑡2), the empirical estimate ̂︀𝜎2 , 1
𝑁

∑︀
𝑖 𝐹 (𝑥𝑖)

2

219

satisfies ⃒⃒⃒⃒
E

𝑥∼𝒩 (0,Id)
[𝐹 (𝑥)2]− ̂︀𝜎2

⃒⃒⃒⃒
≤ 𝑡

with probability at least 1− 𝛿.

Proof. As 𝐹 is Λ-Lipschitz and continuous piecewise-linear, by Theorem 3.3.11 and Lemma 3.3.7

it has a lattice polynomial representation max𝑗∈[𝑚]min𝑖∈ℐ𝑗⟨𝑢𝑖, ·⟩ for some clauses {ℐ𝑗} and

vectors {𝑢𝑖} for which ‖𝑢𝑖‖ ≤ Λ. In particular, by Cauchy-Schwarz, |𝐹 (𝑥)| ≤ Λ‖𝑥‖ for all 𝑥.

Now define the function 𝐺(𝑥) , 𝐹 (𝑥)2 − 𝜇 where 𝜇 , E𝑥∼𝒩 (0,Id)[𝐹 (𝑥)
2]. We can therefore

naively upper bound the moments of 𝐺 by

E[|𝐺|𝑡]1/𝑡 ≤ 𝜇+ E[𝐹 2𝑡]1/𝑡 ≤ 𝜇+ Λ2 · E
𝑥∼𝒩 (0,Π𝑉)

[‖𝑥‖2𝑡]1/𝑡 ≤ 𝜇+𝑂(Λ2𝑘) · (𝑡− 1)

for all 𝑡 ≥ 2, where the last step follows by Corollary 1.3.17. Furthermore, E[|𝐺|] ≤ 2𝜇.

For 𝑥 ∼ 𝒩 (0, Id), 𝐺(𝑥) is therefore a sub-exponential, mean-zero random variable with sub-

exponential norm 𝐾 , 𝑂(𝜇+Λ2𝑘), so by Fact 1.3.24 and the bound on 𝑡 in the hypothesis,

for 𝑁 = Θ(𝐾2 log(1/𝛿)/𝑡2), the claim follows.

3.5.2 Representing Boolean Functions as ReLU Networks

Lemma 3.5.2. For any function 𝐹 : {±1}𝑛 → {±1}, there exists a set of weight matrices

W0, ...,W𝑛−1 for which 𝐹 (𝑥) = W𝑛−1𝜑(W𝑛−2𝜑(· · ·𝜑(W0𝑥) · · ·)) for all 𝑥 ∈ {±1}𝑛.

Proof. From the Fourier expansion of 𝐹 as 𝐹 (𝑥) =
∑︀

𝑆
̂︀𝐹 [𝑆]∏︀𝑖∈𝑆 𝑥𝑖, we see that it suffices to

show how to represent any Fourier basis function
∏︀

𝑖∈𝑆 𝑥𝑖 with a ReLU network with depth

𝑛. We first show how to represent the function 𝑥1𝑥2. Observe that for any 𝑥1, 𝑥2 ∈ {±1},

we have that

𝑥1 · 𝑥2 = 𝜑(𝑥1 + 𝑥2) + 𝜑(−𝑥1 − 𝑥2)− 𝜑(𝑥2)− 𝜑(−𝑥2), (3.23)

which is a two-layer neural network. Suppose inductively that for some 1 ≤ 𝑚 < 𝑛, there

exist weight matrices W′
0, . . . ,W

′
𝑚−1 for which

∏︀𝑚
𝑖=1 𝑥𝑖 = W′

𝑚−1𝜑(W
′
𝑚−2𝜑(· · ·𝜑(W′

0𝑥) · · ·))

220

for all 𝑥 ∈ {±1}𝑛. Then to compute
∏︀𝑚+1

𝑖=1 𝑥𝑖, we can use (3.23) to conclude that

𝑚+1∏︁
𝑖=1

𝑥𝑖 = 𝜑

(︃
𝑚∏︁
𝑖=1

𝑥𝑖 + 𝑥𝑚+1

)︃
+ 𝜑

(︃
−

𝑚∏︁
𝑖=1

𝑥𝑖 − 𝑥𝑚+1

)︃
− 𝜑(𝑥𝑚+1)− 𝜑(−𝑥𝑚+1).

It is clear that this can be represented as a ReLU network with depth 𝑚+ 1.

221

Part II

Learning from Adversarially Corrupted

Data

222

Chapter 4

Learning From Untrusted Batches With

Sum-of-Squares

4.1 Introduction

In this chapter and the next, we consider the problem of learning from untrusted batches,

originally introduced by Qiao and Valiant [QV17] and summarized in our Definition 1.2.8.

Recall that the problem goes as follows:

(a) We are given 𝑚 batches, consisting of 𝑘 samples each. Furthermore the samples come

from a discrete domain of size 𝑛. Each uncorrupted batch has the property that its

samples were drawn i.i.d. from some distribution 𝜇𝑖 that is 𝜔-close in total variation

distance1 to a distribution 𝜇 that is common to all the batches. Moreover a 1 − 𝜀

fraction of the batches are uncorrupted.

(b) The remaining 𝜀 fraction of the batches are arbitrarily corrupted. In fact, an adversary

is allowed to choose the contents of the corrupted batches after observing all of the

uncorrupted batches.

The basic question is: How well can we estimate 𝜇 in total variation distance? As discussed

in Section 1.2.2, the key features of this problem are designed to model some of the main
1The total variation distance between distributions 𝑝, 𝑞 over a domain 𝐷 is defined to be max𝑆⊆𝐷 𝑝(𝑆)−

𝑞(𝑆)

223

challenges in federated learning. In particular, we get batches of data from different users,

but no batch is large enough by itself to learn an accurate model. In fact, the batches are

generated from heterogenous sources because the ideal model for one user is often different

than the ideal model for another. Additionally some of the batches are arbitrarily corrupted

by an adversary who wishes to game our learning algorithm. In many applications, a non-

trivial fraction of the data is supplied by malicious users. The meta question is: Can we

leverage information across the batches to learn an accurate model?

In fact, the setup of learning with untrusted batches seems to model many other scenarios

of interest. Our main focus will be settings where we have some additional structure or prior

knowledge about the distributions we would like to learn. For example, suppose we want to

estimate the demand curve across heterogenous groups. In particular, let 𝑞1 < 𝑞2 < · · · < 𝑞𝑛

be a collection of increasing prices. Then set 𝜇𝑖,𝑗 to be the probability that a random

individual from group 𝑖 would buy the product when offered a price 𝑞𝑗 but not at the price

𝑞𝑗+1. We may not have enough data from each group to accurately estimate 𝜇𝑖. Nevertheless

we can hope to leverage data across the groups to estimate an aggregate curve 𝜇 that is a

good approximation to each 𝜇𝑖. Interestingly, the goal of being robust to an 𝜀-fraction of

the batches being corrupted now takes on a different meaning in this setting: We are asking

whether we can estimate 𝜇 from data collected across the various groups in such a way that

no 𝜀-fraction of the groups can bias our estimates too much.

Qiao and Valiant [QV17] showed that it is possible to estimate 𝜇 within

𝑂

(︂
𝜀√
𝑘
+ 𝜔

)︂

in total variation distance, from untrusted batches. Moreover they showed that this is the

best possible up to constant factors. The somewhat surprising aspect of their bound is

that it improves with larger 𝑘. This is a consequence of the “tensorization" property of the

total variation distance which roughly says that the total variation distance between two

distributions grows by at least a Ω(
√
𝑘) factor when we take 𝑘 repetitions.

However, Qiao and Valiant [QV17] were only able to give an exponential time algorithm.

Their approach was to estimate 𝜇 by estimating the total probability it assigns to every subset

224

of the domain. Each of these subproblems is again a problem of learning with untrusted

batches, but one on a discrete domain with just two elements. Qiao and Valiant [QV17] gave

another algorithm, but one that requires 𝜔 = 0 – i.e. each of the uncorrupted batches must

be generated from the same underlying distribution. Their second algorithm was based on

low-rank tensor approximation. They wrote down an order 𝑘 tensor whose entries represent

the probability of seeing any particular 𝑘 tuple of samples as a batch, and showed that some

slice of this tensor is an accurate estimate of 𝜇. This algorithm also has the drawback that

in order to estimate the entries of the tensor, you need 𝑛𝑘 samples. In most applications,

it would be infeasible to have so much data that you see essentially every possible batch.

Their work left open the problem of getting efficient algorithms for learning with untrusted

batches.

4.1.1 Our Results– Sum of Squares

In this chapter, we use the sum-of-squares hierarchy to design new algorithms for the problem

of learning from untrusted batches (in the next chapter, we show how to get improved runtime

and sample complexity guarantees using alternating minimization). An important feature

of our approach in this chapter is that it is easy to incorporate additional prior information

about the shape of the distribution into our sum-of-squares framework. But first, as a warm

up, we will study the original learning with untrusted batches problem. We give a sequence of

polynomial time algorithms whose estimation error approaches the information-theoretically

optimal bound:

Theorem 4.1.1 (See Theorem 4.4.1 for formal statement). Fix any integer 𝑡 ≥ 4. There is

a polynomial time algorithm to estimate 𝜇 to within

𝑂

(︃
𝜀1−1/𝑡√︀
𝑘/𝑡

+ 𝜔

)︃

in total variation distance from 𝑚 𝜀-corrupted batches, each of size 𝑘. Moreover the number

of batches we need is polynomial in 𝑛.

This result improves over the 2𝑛 time algorithm of Qiao and Valiant [QV17]. Note that the

225

other algorithm of Qiao and Valiant [QV17] runs in time 𝑛𝑘 but only works in the special case

where 𝜔 = 0 – i.e. all the uncorrupted batches come from the same underlying distribution.

Moreover, in the above result, if we set 𝑡 = log 1/𝜀 then we get within a polylogarithmic

factor of the optimal estimation error, but at the expense of running in quasipolynomial

time:

Corollary 4.1.2. There is an algorithm to estimate 𝜇 to within

𝑂

(︃
𝜀
√︀

log 1/𝜀√
𝑘

+ 𝜔

)︃

in total variation distance from 𝑚 𝜀-corrupted batches, each of size 𝑘. Moreover the running

time and the number of batches we need are polynomial in 𝑛log 1/𝜀.

We note that in independent and concurrent work, [JO19] obtained a better guarantee for

this same problem in that they managed to achieve polynomial rather than quasipolynomial

time and sample complexity using an algorithm based on alternating minimization.

Finally, we come to what we believe to be our main contribution. In many applications,

getting samples is expensive and we might only be able to afford a number of samples that

is sublinear in the size of the domain. In such cases, it is important to utilize additional

information such as prior knowledge about the shape of the distribution. Indeed, this is

the case in the example we discussed earlier, where we often know that the distribution 𝜇

satisfies the monotone hazard rate condition. It is known that such distributions can be

well-approximated by piecewise polynomial functions [CDSS13,CDSS14b,ADLS17].

In fact, the idea of imposing structure on the underlying distribution has a long and

storied history in statistics and machine learning where it leads to better estimation rates

and algorithms that use fewer samples [Bru55,Hil54,Weg70]. We ask: Can prior informa-

tion about the shape of a distribution be leveraged to get better algorithms for learning from

untrusted batches? Our main result is:

Theorem 4.1.3 (See Theorem 4.5.1 for formal statement). Fix any integer 𝑡 ≥ 4. If 𝜇 is

approximated by an 𝑠-part piecewise polynomial function with degree at most 𝑑, there is a

226

polynomial time algorithm to estimate 𝜇 to within

𝑂

(︃
𝜀1−1/𝑡√︀
𝑘/𝑡

+ 𝜔

)︃

in total variation distance from 𝑚 𝜀-corrupted batches, each of size 𝑘. Moreover the number

of batches we need is polylogarithmic in 𝑛 and polynomial in 𝑠 and 𝑑.

While the problem of learning a piecewise polynomial distribution may not seem natural

in applications, previous work of [CDSS13,CDSS14b,ADLS17] has demonstrated that this

can be combined with results from approximation theory [Tim14] to achieve strong density

estimation results for a large class of distribution families such as log-concave distributions,

Gaussians, monotone distributions, monotone hazard rate distributions, Binomial distribu-

tions, Poisson distributions, and mixtures thereof [ADLS17].

In the next subsection, we describe our main techniques at a high level. The main

takeaway is that the sum-of-squares hierarchy gives a seamless way to incorporate prior

information about the structure into the estimation problem, which can lead to much better

algorithms (in our case we are able to get sublinear sample complexity).

4.1.2 Our Techniques

Recently, there has been a flurry of progress in high-dimensional robust estimation [DKK+19a,

LRV16,CSV17,DKK+17]. While the techniques seem to be quite different from each other

– some relying on iterative filtering algorithms to remove outliers, and others relying on

sum-of-squares proofs of identifiability – at their heart, they are about finding ways to re-

weight the empirical distribution on the observed samples in such a way that it has bounded

moments along any one-dimensional projection [HL18,KSS18,DKS18b].

Our main observation is that algorithms for learning from untrusted batches can also be

derived from this framework, but by working with a different family of test functions. When

we consider moments of a one-dimensional projection, we are looking at test functions that

are unit vectors (or tensor powers of them) in the ℓ2-norm. In comparison, the exponential

time algorithm of Qiao and Valiant [QV17] tries all ways of partitioning the domain into two

sets. We can equivalently think about it as choosing a test vector (or tensor power of one)

227

that has unit ℓ∞-norm. In this way, we study the families of distributions for which we can

find a sum-of-squares certificate that they have bounded moments with respect to unit ℓ∞

test functions. We show that the multinomial distribution has this property, and using the

proofs-to-algorithms methodology [HL18,KSS18], this gives our improved algorithm for the

general problem of learning with untrusted batches.

The beauty of this common abstraction is that it flexibly allows us to build in other

problem specific constraints, like shape constraints on 𝜇. Here, classical results from VC

theory [VC74, DL01] say that it suffices to learn the distribution in a weaker norm (see

Definition 4.5.2) than total variation distance, which has fewer degrees of freedom. From

our perspective, the change is that, in this case, instead of allowing all unit ℓ∞ test functions,

we only have to consider those which come from tensor powers of a vector that has a bounded

number of sign changes. However, encoding this constraint in the sum-of-squares hierarchy

is quite non-trivial, as it is not clear how to encode this combinatorial constraint within the

algebraic language of the sum-of-squares proof system. To get around this, we demonstrate

that we can relax the combinatorial constraint into a linear algebraic one, namely, sparsity

in the Haar wavelet basis. We then exploit properties of the Haar wavelet basis to encode

this constraint into our relaxation. The main open question of our work is to push this

philosophy further, and explore what other sorts of provably robust algorithms can be built

out of different choices of test functions.

4.1.3 Related Work

The problem of learning from untrusted batches was introduced by [QV17], and is motivated

by problems in reliable distributed learning such as federated learning [MMR+17,KMY+16].

In the TCS community, the problem of learning from batches has been considered in a

number of settings [LRR13,TKV17], but these results cannot tolerate noise in the data.

More generally, the question of univariate density estimation, and specifically, density

estimation of structured distributions, has a vast literature and we cannot hope to fully

survey it here. See [BBBB72] for a survey of classical results in the area. Many different

natural structural assumptions have been considered in the statistics and learning theory

communities, such as monotonicity [Gre56,Gro85,Bir87a,Bir87b, JW09], monotone hazard

228

rate [CDSS13, CR14, HMR18], unimodality [Rao69, Weg70, Fou97], convexity and concav-

ity [HP76, KM10], log-concavity [BRW09, DR09, Wal09], 𝑘-modality [CT04, BW07, GW09,

BW10], smoothness [Bru58,KP92,DJKP95,KPT96,DJKP96,DJ98], and mixtures of struc-

tured distributions [RW84,TSM85,Lin95,Das99,DS00,AK01,VW02,FOS05,AM05,KMV10,

MV10,DDS12b,DDS12a,DDO+13,DKS16a,DDKT16,DKS16b,DKS16c]. The reader is re-

ferred to [O’B16, Dia16] for a more extensive review of this vast literature. Recently it

has been demonstrated that the classical piecewise polynomial (or spline) methods, see

e.g. [WW83, Sto94, SHKT97, WN07], can be adapted to obtain general estimators for al-

most all of these problems with nearly-optimal sample complexity and runtime [CDSS13,

CDSS14b, CDSS14a, ADH+15, ADLS17]. While these estimators are typically tolerant of

worst-case noise, it is unclear how to adapt them to the batch setting, to obtain improved

statistical rates.

Finally, our work is also related to a recent line of work on robust statistics [DKK+19a,

LRV16, CSV17, DKK+17, HL18, KSS18], a classical problem dating back to the 60s and

70s [Ans60,Tuk60,Hub92,Tuk75]. See [Li18b,Ste18] for a more comprehensive survey of this

line of work. We remark that the majority of this work focuses on estimation in ℓ2-norm or

Frobenius norm, with two notable exceptions: [BDLS17] uses learning in a sparsity-inducing

norm to improve the sample complexity for sparse mean estimation, and [SCV18] gives an

information-theoretic characterization of when mean estimation in general norms is possi-

ble, but they do not give efficient algorithms. Our techniques are most closely related to

the sum-of-squares based algorithms of [HL18,KSS18], and this general technique has also

found application in other robust learning problems such as robust regression [KKM18] and

list-decodable regression [KKK19,RY19].

4.1.4 Organization

In Section 4.2, we provide a high-level overview of our techniques. In Section 4.3, we give

notation, a formal description of the generative model, a recap of the key SoS tools needed,

and show a sum-of-squares proof that multinomial distributions have bounded moments. In

Section 4.4 we give a proof of Theorem 4.4.1. In Section 4.5, we give a proof of Theorem 4.5.1.

The technical heart of this chapter is Section 4.6, where we fill in the details on how to

229

efficiently encode key constraints from our SoS relaxations using matrix SoS. In Appendix 4.7,

we provide proofs deferred from earlier sections.

4.2 High-Level Argument

In this section we give an overview of how we prove Theorems 4.4.1 and 4.5.1. The ideas

required for the latter are a strict subset of those for the former, so we first describe the

aspects common to both proofs before elaborating in Section 4.2.4 and 4.2.5 on techniques

specific to Theorem 4.5.1, which we view as the main contribution of this chapter. As these

latter sections are somewhat technical, readers new to the use of sum-of-squares for robust

mean estimation may feel free to skip them on first reading, as the other sections will be

sufficient for understanding the proof of Theorem 4.4.1.

4.2.1 Robust Mean Estimation

We first recast the problem of learning from untrusted batches as a generalization of the

problem of robustly estimating the mean of a multinomial distribution in 𝐿1 distance.

To the 𝑖-th batch of 𝑘 samples 𝑌𝑖 = (𝑌 1
𝑖 , ..., 𝑌

𝑘
𝑖) from [𝑛] we may associate the vector of

frequencies 𝑋𝑖 ∈ Δ𝑛 (where Δ𝑛 ⊂ R𝑛 is the probability simplex) given by

(𝑋𝑖)𝑗 =
1

𝑘

𝑘∑︁
𝜈=1

1[(𝑌𝑖)𝜈 = 𝑗] ∀𝑗 ∈ [𝑛].

If 𝑌1, ..., 𝑌𝑁 are independent batches of 𝑘 iid draws from 𝜇1, ..., 𝜇𝑁 respectively, then𝑋1, ..., 𝑋𝑁

are independent draws from Mul𝑘(𝜇1), ...,Mul𝑘(𝜇𝑁) respectively, where Mul𝑘(𝜇𝑖) is defined

to be the normalized multinomial distribution given by 𝑘 draws from 𝜇𝑖. We can think of the

learning algorithm as taking in vectors 𝑋1, ..., 𝑋𝑁 ∈ Δ𝑛, such that a (1 − 𝜀)𝑁 -sized subset

of them, indexed by 𝑆𝐺 ⊂ [𝑁], are independent draws from Mul𝑘(𝜇𝑗) for 𝑗 ∈ 𝑆𝐺, and the

remaining points are arbitrary vectors in Δ𝑛. The goal of the learning algorithm is to learn

𝜇 in 𝐿1 distance. Note that when 𝜇𝑖 = 𝜇 for all 𝑖 ∈ 𝑆𝐺, this is precisely the problem of

robustly estimating the mean 𝜇 of a (normalized) multinomial distribution.

For simplicity, we will assume that 𝜔 = 0 for the rest of this subsection, i.e. that

230

𝜇1 = · · · = 𝜇𝑁 . Indeed, one appealing feature of our techniques is the ease with which one

can extend the techniques we describe below to handle the case of nonzero 𝜔.

4.2.2 Searching for a Moment-Bounded Subset

A recurring theme in the robust learning literature [DKK+19a,LRV16,HL18,KSS18,DKS18b]

is that one can detect corruptions in the data by looking for anomalies in the empirical

moments. In our setting, one useful feature of multinomial distributions Mul𝑘(𝜇) is that

their moments up to degree 𝑘 satisfy sub-Gaussian-type bounds.

Theorem 4.2.1 ([Lat97]). For a (normalized) binomial random variable 𝑍 ∼ 1
𝑘
·Bin(𝑘, 𝑝),

E[(𝑍 − 𝑝)𝑡]1/𝑡 .
√︀
𝑡/𝑘

for any even 𝑡 ≤ 𝑘.

Multinomial distributions inherit these same properties:

Lemma 4.2.2. For any discrete distribution 𝜇 and any vector 𝑣 ∈ {±1}𝑛, if 𝑋 ∼ Mul𝑘(𝜇),

then

E[⟨𝑋 − 𝜇, 𝑣⟩𝑡]1/𝑡 .
√︀
𝑡/𝑘

for any even 𝑡 ≤ 𝑘.

At a high level, our algorithms will search for a (1 − 𝜀)𝑁 -sized subset 𝑆 of the samples

whose empirical moments satisfy these bounds, namely

1

|𝑆|
∑︁
𝑖∈𝑆

⟨𝑋𝑖 − �̂�, 𝑣⟩𝑡 ≤ (8𝑡/𝑘)𝑡/2 ∀𝑣 ∈ {±1}𝑛, (4.1)

where �̂� = 1
|𝑆|
∑︀

𝑖∈𝑆 𝑋𝑖 is the empirical mean of 𝑆. This search problem can be reformulated

as solving some system 𝒫 of polynomial equalities and inequalities (see Section 4.4 for a

formal specification). So if we could solve this system and argue that the empirical mean

of any subset 𝑆 ⊂ [𝑁] which satisfies the system is 𝑂(𝜀/
√
𝑘)-close in 𝐿1 to 𝜇, then we’d be

done.

There are two complications to this approach:

231

(A) The problem of solving polynomial systems is NP-hard in general.

(B) Constraint (4.1) is a collection of exponentially many constraints.

By now it is well-understood how to circumvent issues like (A): use the sum-of-squares

(SoS) hierarchy to relax the problem of searching for a single solution to 𝒫 , or even a

distribution over solutions, to the problem of searching for a pseudodistribution over solutions.

We will give formal definitions in Section 1.3.8, but roughly speaking, a pseudodistribution

satisfying 𝒫 is a linear functional that is indistinguishable from a distribution when evaluated

on low-degree polynomials arising from the polynomials in 𝒫 .

The key point then is that if one can write down a “simple” proof that any solution to 𝒫

has empirical mean close to 𝜇, i.e. a proof using only low-degree polynomials arising from

the polynomials in 𝒫 ,2 then the following learning algorithm will succeed:

(1) Solve an SDP to find a pseudodistribution Ẽ satisfying 𝒫 in polynomial time.

(2) Extract from Ẽ an estimate for 𝜇.3

We remark that this methodology of extracting SoS algorithms from simple proofs of identi-

fiability has been used extensively in many recent works; we refer the reader to [RSS18] for

a comprehensive overview.

4.2.3 Quantifying over {±1}𝑛 via Matrix SoS

We now show how to address issue (B) above. The key is to design a smaller system of

polynomial constraints which imply each of the exponentially many constraints in (4.1)

under the SoS proof system, that is to say, we should be able to derive all of the constraints

in (4.1) from the constraints in the smaller system, using only “low-degree” steps like Cauchy-

Schwarz and Holder’s. We remark that although the trick we will describe for doing this

has appeared previously in the literature under the name of “matrix SoS proofs” [HL18],

2Practically speaking, for a proof to be “simple” in the above sense effectively means that the steps in the
proof involve nothing more than applications of Cauchy-Schwarz and Holder’s inequalities and avoid use of
concentration and union bounds.

3We are glossing over this second step, but it turns out that a naive rounding scheme suffices (see
Section 4.4.4).

232

we believe a complete but informal treatment of this technique will help the reader better

appreciate the subtleties in how we extend this approach to obtain Theorem 4.5.1.

To describe the trick, we first abstract out the more problem-specific details of the poly-

nomial systems we will consider. Say we wish to encode the following exponentially large

program with a smaller polynomial system.

Program 𝒬. The variables consist of {𝑍𝛼,𝛽} for all multisets 𝛼, 𝛽 ⊆ [𝑛] of size 𝑡/2, as well

as some other variables 𝑥1, ..., 𝑥𝑀 . The constraints include {𝑝1(𝑥, 𝑍) ≥ 0, ..., 𝑝𝑚(𝑥, 𝑍) ≥

0, 𝑞1(𝑥, 𝑍) = 0, ..., 𝑞𝑚(𝑥, 𝑍) = 0} as well as the constraint

⟨𝑍, 𝑣⊗𝑡/2(𝑣⊗𝑡/2)⟩ ≤ 1 ∀𝑣 ∈ {±1}𝑛. (4.2)

Suppose we know that Program 𝒬 has a satisfying assignment (𝑍*, 𝑥*) to its variables—

in the systems we will actually work with, the existence of a satisfying assignment will be

immediate, e.g. the set of all uncorrupted points is a satisfying assignment to the program

sketched in Section 4.2.2.

Remark 4.2.3. While the meaning of 𝑍 will be irrelevant to the proceeding discussion, the

reader might find it helpful to think of 𝑍*, up to scaling, as the matrix Z[𝑆𝐺] defined by:

Z[𝑆] ,
1

|𝑆|
∑︁
𝑖∈𝑆

[︀
(𝑋𝑖 − 𝜇𝑖)⊗𝑡/2

]︀⊤ [︀
(𝑋𝑖 − 𝜇𝑖)⊗𝑡/2

]︀
− 1

|𝑆|
∑︁
𝑖∈𝑆

E𝑋∼𝒟𝑖

[︀
(𝑋 − 𝜇𝑖)⊗𝑡/2

]︀⊤ [︀
(𝑋 − 𝜇𝑖)⊗𝑡/2

]︀
.

(4.3)

The reason is that via the identity

⟨V[𝑆], 𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤ =
1

|𝑆|
∑︁
𝑖∈𝑆

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡 −
1

|𝑆|
∑︁
𝑖∈𝑆

E𝑋∼𝒟𝑖
⟨𝑋 − 𝜇𝑖, 𝑣⟩𝑡,

Z[𝑆𝐺] gives a succinct way of describing the deviation of the empirical moments of the subset

𝑆 from the true moments.

Returning to the task at hand, we would like to write down an auxiliary program ̂︀𝒬
which satisfies three criteria, namely that ̂︀𝒬

(a) has polynomially many variables and constraints

233

(b) implies Program 𝒬 under the SoS proof system, and

(c) is satisfiable.

In this case, we would be done: we could simply solve an SDP to find a pseudodistribution

Ẽ satisfying ̂︀𝒬 and round it. Because of (𝑐) we know our SDP solver will return something,

because of (𝑎) we know it will do so in polynomial time, and because of (𝑏) Ẽ enjoys all the

same properties that a pseudodistribution satisfying Program 𝒬 would.

To see how to design such an auxiliary program ̂︀𝒬, let us suppose further that the

satisfying assignment (𝑍*, 𝑥*) for Program 𝒬 satisfies the property that (4.2) holds as a

polynomial inequality in 𝑣. Specifically, if we had formal variables 𝑣1, ..., 𝑣𝑛, suppose that one

knew the existence of a proof, starting with just the polynomial equations {𝑣21 = 1, ..., 𝑣2𝑛 = 1}

cutting out the Boolean hypercube, that the inequality ⟨𝑍*, 𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤⟩ ≤ 1 held, where

we now view this inequality as a polynomial equation solely in the variables 𝑣1, ..., 𝑣𝑛, with

coefficients specified by the fixed choice of 𝑍*.

Showing this last assumption holds in the settings we consider will be nontrivial, but

assuming for now that it does, the final idea needed to write down �̂� is the following. Instead

of searching for 𝑍* satisfying the exponentially large collection of constraints (4.2), we can

search for 𝑍* for which the abovementioned SoS proof of ⟨𝑍*, 𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤⟩ ≤ 1 exists. The

key point is that this search problem can be encoded in a much smaller polynomial system.

In particular, as will be evident once we give formal definitions of SoS proofs, the existence

of such an SoS proof is equivalent to satisfiability of some new polynomial constraints in

𝑍* and some auxiliary variables corresponding to the steps of the SoS proof. To form

�̂�, we will introduce these auxiliary variables and replace constraint (4.2) with these new

polynomial constraints. The reason this general approach is called “matrix SoS” is that these

new variables will be matrix-valued, and these new constraints will be inequalities between

matrix-valued polynomials. The full details of this approach are provided in Section 4.6.1.

4.2.4 VC Meets Sum-of-Squares

Next, we describe the ideas that go into proving Theorem 4.5.1. The first is that when 𝜇 is

(𝜂, 𝑠)-piecewise degree-𝑑, to learn 𝜇 in total variation distance, it is enough to learn 𝜇 in a

234

much weaker norm which we will denote by ‖·‖𝒜𝐾
, where 𝐾 is a parameter that depends on 𝑠

and 𝑑. This insight was the workhorse behind state-of-the-art density estimation algorithms

for various structured univariate distribution classes [Dia16,ADLS17,LS17]. In our setting,

the main point is that if we have an estimate �̃� for 𝜇 for which ‖�̃� − 𝜇‖𝒜𝐾
≤ 𝜁, then by a

result of [ADLS17], we can refine �̃� to get an estimate 𝜇* for which 𝑑TV(𝜇, 𝜇
*) ≤ 𝑂(𝜁 + 𝜂)

efficiently. We review the details for this in a self-contained manner in Section 4.5.1.

The algorithm of [ADLS17] will form an important part of the boilerplate for our learning

algorithm, but the key difficulty will be to actually find �̃� which is close to 𝜇 in this weaker

norm. We defer definitions to Section 4.5.1, but informally, ‖𝜇− �̃�‖𝒜𝐾
is small if and only if

⟨𝜇−�̃�, 𝑣⟩ is small for all 𝑣 ∈ 𝒱𝑛𝐾 ⊂ {±1}𝑛, where 𝒱𝑛𝐾 is the set of all 𝑣 ∈ {±1}𝑛 with at most𝐾

sign changes when read as a vector from left to right (for example, (1, 1,−1,−1, 1, 1, 1) ∈ 𝒱7
2).

The natural approach to do this would be to search for a (1− 𝜀)𝑁 -sized subset 𝑆 of the

samples whose empirical moments satisfy

1

|𝑆|
∑︁
𝑖∈𝑆

⟨𝑋𝑖 − �̂�, 𝑣⟩𝑡 ≤ (8𝑡/𝑘)𝑡/2 ∀𝑣 ∈ 𝒱𝑛𝐾 . (4.4)

Roughly, the sample complexity savings would then come from the fact that the empirical

moments will concentrate in much fewer samples because the set of directions we need to

union bound over is much smaller.

Of course, if 𝐾 = 𝑂(1), we could afford to simply write down all poly(𝑛) constraints

in (4.4). For typical applications of piecewise polynomial approximations though, 𝐾 has a

logarithmic dependence on 𝑛, so our main challenge is to obtain runtimes that do not depend

exponentially on 𝐾. In particular, just as we will use matrix SoS to succinctly encode (4.1)

for Theorem 4.4.1, we will use matrix SoS to succinctly encode (4.4) for Theorem 4.5.1.

Next, we discuss some of the subtleties that arise in this encoding.

4.2.5 Quantifying over 𝒱𝑛
𝐾

As in Section 4.2.3, we will abstract out the problem-specific details and focus on finding an

encoding for the following program:

235

Program 𝒬′. The variables consist of {𝑍𝛼,𝛽} for all multisets 𝛼, 𝛽 ⊆ [𝑛] of size 𝑡/2, as

well as some other variables 𝑥1, ..., 𝑥𝑀 . The constraints include {𝑝1(𝑥, 𝑍) ≥ 0, ..., 𝑝𝑚(𝑥, 𝑍) ≥

0, 𝑞1(𝑥, 𝑍) = 0, ..., 𝑞𝑚(𝑥, 𝑍) = 0} as well as the constraint

⟨𝑍, 𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤⟩ ≤ 1 ∀𝑣 ∈ 𝒱𝑛𝐾 .

The primary stumbling block is that, unlike the Boolean hypercube, 𝒱𝑛𝐾 is not cut out by

a small number of polynomial relations. Indeed, conventional wisdom says that the sum-of-

squares hierarchy is ill-suited to capturing combinatorial constraints like the ones defining

𝒱𝑛𝐾 .

The first observation is that there is an alternative orthonormal basis, the Haar wavelet

basis, under which we can express any 𝑣 ∈ 𝒱𝑛𝐾 as a vector with a small number 𝑠 = �̃�(𝐾)

of nonzero entries. One issue with this is that 𝐿0 sparsity cannot be captured by a small

number of polynomial constraints, but we could try relaxing this to 𝐿1 sparsity and attempt

to derive an SoS proof of (4.4) out of the 𝐿1 constraint.

Specifically, one could try to argue that any pseudodistribution Ẽ over the formal variables

𝑣1, ..., 𝑣𝑛,W1, ...,W𝑛 satisfying the inequalities

(a) 𝑣2𝑖 = 1 for all 𝑖 ∈ [𝑛].

(b) −W𝑖 ≤ (𝐻𝑣)𝑖 ≤W𝑖 for all 𝑖 ∈ [𝑛].

(c)
∑︀

𝑖W𝑖 ≤ 𝑠.

must satisfy

Ẽ
[︀⟨︀
𝑍*, 𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤

⟩︀]︀
≤ 1, (4.5)

where 𝑍* is a constant, fixed to a satisfying assignment to𝒬. Note that (4.5) can be rewritten

as ⟨
𝑍*, Ẽ

[︀
𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤

]︀⟩
≤ 1,

and one can check (Lemma 4.7.1) that the set of all 𝑛𝑡/2 × 𝑛𝑡/2 matrices of the form

Ẽ
[︀
𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤

]︀
for Ẽ satisfying the three inequalities above is contained in the convex

236

set 𝒦 of all matrices whose Haar transforms are 𝐿1,1-norm bounded4 by 𝑠𝑡 and Frobenius

norm bounded by 𝑛𝑡/2.

At this point it will be useful to instantiate all of this in the setting of this chapter.

Thinking of 𝑍*, up to scaling, as Z[𝑆𝐺] as defined in (4.3), we need to ensure that its

inner product with any matrix from 𝒦 is at most one. The matrix Z[𝑆𝐺] depends on the

uncorrupted samples 𝑁 , so at this point we are merely tasked with proving some large

deviation bound (where “proof” now is in the literal, non-SoS sense).

We expect this to hold with high probability for 𝑁 sublinear in 𝑛 because the covering

number of 𝒦 should be much smaller than that of the set of all matrices with Frobenius

norm bounded by 𝑛𝑡. As covering number bounds can be quite subtle, we opt instead for

a shelling argument. Specifically, we can show that any element 𝑀 with bounded 𝐿1,1 and

Frobenius norms can be written as a sum of 𝑠𝑡-sparse matrices whose Frobenius norms sum

to at most ‖𝑀‖𝐹 (see Lemma 4.6.8 and its consequences in Section 4.6.3 and Appendix 4.7),

reducing the task of building a net over 𝒦 to building a net 𝒩 over 𝑠𝑡-sparse matrices of

Frobenius norm bounded by 𝑛𝑡/2.

The final and perhaps most important subtlety that arises is that as stated, this argument

cannot achieve sublinear sample complexity because the inverse Haar transform of an 𝑠𝑡-

sparse matrix with Frobenius norm 𝑛𝑡/2 may have large max-norm, which would preclude the

sorts of univariate concentration bounds one would hope to apply on each direction in 𝒩 .

More concretely, the issue is that ultimately, the net 𝒩 over 𝑠𝑡-sparse matrices of bounded

Frobenius norm corresponds to a net 𝒩 ′ over 𝒦 given by the inverse Haar transform of all

elements of 𝒩 . And we would need to show that for any given 𝑀 ∈ 𝒩 ′, ⟨Z[𝑆𝐺],𝑀⟩ is at

most one with high probability. But if we have no control over the scaling of the max-norm

of these 𝑀 ’s, this is evidently impossible.

The workaround for this subtlety requires modifying the three inequalities used above,

as well as the definition of 𝒦, by incorporating properties of the Haar wavelet basis beyond

just the fact that vectors from 𝒱𝑛𝐾 are sparse in this basis. Roughly speaking, the key is to

exploit the inherent multi-scale nature of the Haar wavelet basis.

This is best understood with an example. Instead of matrices, we will work with vectors

4The 𝐿1,1 norm of a matrix is defined to be the sum of the absolute values of its entries.

237

(the reader can think of this as the “𝑡 = 1” case). In the following example, we will first try to

convey 1) that there exist sparse vectors with 𝐿2 norm
√
𝑛 but whose inverse Haar transforms

are as large as
√︀
𝑛/2 in 𝐿∞ norm. To reiterate, this is an issue because any 𝑤 ∈ R𝑛 which

is a Haar transform of some vector 𝑣 ∈ {±1}𝑛 with few sign changes is sparse and has 𝐿2

norm
√
𝑛, yet the inverse Haar transform of 𝑤, i.e. 𝑣 itself, has 𝐿∞ norm 1. In other words,

simply relaxing the set of 𝑣 ∈ {±1}𝑛 to the set of all vectors whose Haar transforms are

sparse introduces problematic new vectors with substantially different properties than the

vectors 𝑣. We will then 2) give a flavor of how we circumvent this crucial subtlety.

Example 4.2.4. Let 𝑛 = 2𝑚. The Haar wavelet basis for R𝑛 contains the vector

𝜓ℓ ,

(︂
1√
2
,− 1√

2
, 0, 0, ..., 0

)︂
.

Say this is the ℓ-th vector in the basis. Then the vector 𝑤 which has ℓ-th entry equal to
√
𝑛

and all other entries 0 is clearly sparse and has 𝐿2 norm
√
𝑛. But its inverse Haar transform

is (︁√︀
𝑛/2,−

√︀
𝑛/2, 0, 0, ..., 0

)︁
,

which has largest entry
√︀
𝑛/2, whereas obviously any 𝑣 ∈ {±1}𝑛 has largest entry 1.

One reason this example is not so bad is that if we express any 𝑣 ∈ {±1}𝑛 as a linear

combination of Haar wavelets, the coefficient for the ℓ-th Haar wavelet, by orthonormality of

the Haar wavelet basis, is ⟨𝑣, 𝜓ℓ⟩ ≤
√
2. That is, the Haar transform of any such 𝑣 has ℓ-th

entry at most
√
2. So if we added to the collection of constraints defining 𝒦 this additional

constraint, we would already get rid of some problematic vectors like 𝑤.

More generally, problematic vectors like 𝑤 in Example 4.2.4 exist at every “level” of the

Haar wavelet basis, and it will be necessary to handle each of these levels appropriately. We

defer the details to Lemma 4.6.6 and its consequences in Sections 4.6.3 and Appendix 4.7.

238

4.3 Technical Preliminaries

4.3.1 Miscellaneous Notation

• Given polynomials 𝑝, 𝑞1, ..., 𝑞𝑚 in formal variables 𝑥1, ..., 𝑥𝑛, we say that 𝑝 is in the ideal

generated by 𝑞1, ..., 𝑞𝑚 at degree 𝑑 if there exist polynomials {𝑠𝑖}𝑖∈[𝑚] for which 𝑞(𝑥) =∑︀𝑚
𝑖=1 𝑠𝑖(𝑥)𝑞𝑖(𝑥) where each 𝑠𝑖(𝑥)𝑞𝑖(𝑥) is of degree at most 𝑑.

• Recall the definition of the flattened tensor from (4.3). For any 𝑆 ⊆ [𝑁],

Z[𝑆] ,
1

|𝑆|
∑︁
𝑖∈𝑆

[︀
(𝑋𝑖 − 𝜇𝑖)⊗𝑡/2

]︀⊤ [︀
(𝑋𝑖 − 𝜇𝑖)⊗𝑡/2

]︀
− 1

|𝑆|
∑︁
𝑖∈𝑆

E𝑋∼𝒟𝑖

[︀
(𝑋 − 𝜇𝑖)⊗𝑡/2

]︀⊤ [︀
(𝑋 − 𝜇𝑖)⊗𝑡/2

]︀
.

• Given matrix M, denote by ‖M‖1,1 the sum of the absolute values of its entries.

• Given 𝑝 ∈ [0, 1], let Bin(𝑘, 𝑝) denote the normalized binomial distribution, which takes

values in {0, 1/𝑘, · · · , 1} rather than {0, 1, · · · , 𝑘}.

• Given 𝜇 ∈ Δ𝑛, let Mul𝑘(𝜇) denote the distribution over Δ𝑛 given by sampling a frequency

vector from the multinomial distribution arising from 𝑘 draws from the distribution over

[𝑛] specified by 𝜇, and dividing by 𝑘. For example, when 𝑛 = 2 and 𝜇 = (𝑝, 1 − 𝑝),

Mul𝑘(𝜇) = Bin(𝑘, 𝑝).

4.3.2 The Generative Model

Throughout the rest of the paper, let 𝜀, 𝜔 > 0, 𝑛, 𝑘,𝑁 ∈ N, and let 𝜇 ∈ Δ𝑛 be some probabil-

ity distribution over [𝑛]. We restate the formal setting for learning from untrusted batches,

originally introduced in Definition 1.2.8, with slightly different notation and terminology.

Definition 4.3.1. We say 𝑌1, ..., 𝑌𝑁 is an 𝜀-corrupted 𝜔-diverse set of 𝑁 batches of size 𝑘

from 𝜇 if they are generated via the following process:

• For every 𝑖 ∈ [(1 − 𝜀)𝑁], 𝑌𝑖 = (𝑌 1
𝑖 , ..., 𝑌

𝑘
𝑖) is a set of 𝑘 iid draws from 𝜇𝑖, where

𝜇𝑖 ∈ Δ𝑛 is some probability distribution over [𝑛] for which 𝑑TV(𝜇, 𝜇𝑖) ≤ 𝜔.

239

• A computationally unbounded adversary inspects 𝑌1, ..., 𝑌(1−𝜀)𝑁 and adds 𝜀𝑁 arbitrarily

chosen tuples 𝑌(1−𝜀)𝑁+1, ..., 𝑌𝑁 ∈ [𝑛]𝑘, and returns the entire collection of tuples in any

arbitrary order as 𝑌1, ..., 𝑌𝑁 .

Let 𝑆𝐺, 𝑆𝐵 ⊂ [𝑁] denote the indices of the uncorrupted (good) and corrupted (bad)

batches.

It turns out that we might as well treat each 𝑌𝑖 as an unordered tuple. That is, for any

𝑌𝑖, define 𝑋𝑖 ∈ Δ𝑛 to be the vector of frequencies whose 𝑎-th entry is 1
𝑘

∑︀𝑘
𝑗=1 1[𝑌

𝑗
𝑖 = 𝑎] for

all 𝑎 ∈ [𝑛]. Then for each, 𝑖 ∈ 𝑆𝐺, 𝑋𝑖 is an independent draw from Mul𝑘(𝜇𝑖). Henceforth,

we will work solely with this frequency vector perspective.

4.3.3 Certifiably Bounded Distributions

Recall from Section 4.2.3 that a prerequisite for the “matrix SoS” approach to work is that

the exponentially large program from Section 4.2.2 must have a satisfying assignment for

which there exists an SoS proof of the requisite empirical moment bounds (4.1) using the

axioms {𝑣2𝑖 = 1 ∀𝑖 ∈ [𝑛]}. A necessary condition for this to hold is for there to be an SoS

proof from these axioms that the true moments of 𝜇 itself satisfy these same bounds. Again,

we emphasize that these bounds should be regarded as polynomial inequalities solely in the

variables 𝑣1, ..., 𝑣𝑛.

Here we formalize what we mean by the existence of such a proof.

Definition 4.3.2. A distribution 𝒟 over R𝑑 with mean 𝜇 is (𝑡,∞)-explicitly bounded with

variance proxy 𝜎 if for every even 2 ≤ 𝑠 ≤ 𝑡:

{𝑣2𝑖 = 1 ∀𝑖 ∈ [𝑛]} ⊢𝑠 E𝑋∼𝒟[⟨𝑋 − 𝜇, 𝑣⟩𝑠] ≤ (𝜎𝑠)𝑠/2 (4.6)

We remark that while a consequence of Theorem 4.2.1, due to [Lat97], is that the moments

of any multinomial distribution satisfy these bounds, the proof in that work uses exponentials

and is thus not an SoS proof without additional modifications to the argument. Here we give

an SoS proof, at the cost of less desirable constants than those of [Lat97]. To our knowledge,

this SoS proof is new.

240

Lemma 4.3.3. Let 𝒟 = Mul𝑘(𝜇) for any 𝜇 ∈ Δ𝑛. Then 𝒟 is (𝑘,∞)-explicitly bounded with

variance proxy 8/𝑘.

Proof. It is enough to show (4.6) for 𝑣 for which ‖𝑣‖∞ = 1. By definition 𝜇 = E𝑋∼𝒟[𝑋], so

we may symmetrize as follows:

⊢𝑠 E𝑋∼𝒟[⟨𝑋 − 𝜇, 𝑣⟩𝑠] = E𝑋∼𝒟[⟨𝑋 − E𝑋′∼𝒟[𝑋
′], 𝑣⟩𝑠]

≤ E𝑋,𝑋′∼𝒟[⟨𝑋 −𝑋 ′, 𝑣⟩𝑠],

where the inequality follows from SoS Cauchy-Schwarz. But note that the random variable

⟨𝑋, 𝑣⟩ is the average of 𝑘 independent copies of the random variable which takes on value

𝑣𝑖 with probability 𝜇𝑖 for every 𝑖 ∈ [𝑛]. So define 𝑍 to be the symmetric random variable

which takes on value (𝑣𝑖 − 𝑣𝑖′) with probability 𝜇𝑖𝜇𝑖′ for every (𝑖, 𝑖′) ∈ [𝑛] × [𝑛]. Then for

𝑍1, ..., 𝑍𝑘 independent copies of 𝑍,

⟨𝑋 −𝑋 ′, 𝑣⟩ 𝑑
=

1

𝑘

∑︁
𝑍𝑖

We conclude that for any 1 ≤ 𝑠 ≤ 𝑘,

⊢𝑠 E𝑋∼𝒟[⟨𝑋 − 𝜇, 𝑣⟩𝑠] ≤
1

𝑘𝑠
E[(𝑍1 + · · ·+ 𝑍𝑘)

𝑠]

=
1

𝑘𝑠

∑︁
𝛽:|𝛽|=𝑠

(︂
𝑠

𝛽1, ..., 𝛽𝑘

)︂
E[𝑍𝛽] (4.7)

=
1

𝑘𝑠

∑︁
𝛽:|𝛽|=𝑠

𝛽𝑖 even ∀1≤𝑖≤𝑘

(︂
𝑠

𝛽1, ..., 𝛽𝑘

)︂
E[𝑍𝛽] (4.8)

≤ 1

𝑘𝑠
(2𝑠𝑘)𝑠/2 ·max

𝛽
E[𝑍𝛽] (4.9)

≤ (2𝑠/𝑘)𝑠/2 ·max
𝛽

𝑘∏︁
𝑖=1

E[𝑍𝛽𝑖
𝑖] (4.10)

≤ (8𝑠/𝑘)𝑠/2, (4.11)

where the sum in (4.7) ranges over all monomials 𝛽 of total degree 𝑠, that is, all tuples 𝛽 ∈ [𝑠]𝑘

for which
∑︀𝑘

𝑖=1 𝛽𝑖 = 𝑠. Equation (4.8) follows from the fact that E[𝑍𝛽] =
∏︀𝑘

𝑖=1 E[𝑍
𝛽𝑖
𝑖] by

241

independence, and E[𝑍𝑑
𝑖] = 0 for any odd 𝑑 because 𝑍 is symmetric. For equation (4.9),

note that by balls-and-bins, there are
(︀
𝑠/2+𝑘−1
𝑠/2

)︀
≤
(︀
3𝑒𝑘
𝑠

)︀𝑠/2 choices of 𝛽, and
(︀

𝑠
𝛽1,...,𝛽𝑘

)︀
≤ 𝑠! ≤

𝑠𝑠+1/2𝑒−𝑠+1, and we may crudely bound the product of these quantities as

(3𝑒𝑘/𝑠)𝑠/2 · 𝑠𝑠+1/2𝑒−𝑠+1 ≤ (2𝑠𝑘)𝑠/2.

Equation (4.10) follows by independence, and for (4.11) we need that for every even 2 ≤ 𝑑 ≤

𝑠, there is a degree-𝑠 SoS proof that E[𝑍𝑑] ≤ 2𝑑. But by Fact 1.3.44, {𝑣2𝑖 = 1 ∀𝑖 ∈ [𝑛]} ⊢2
−2 ≤ 𝑣𝑖 − 𝑣𝑖′ ≤ 2, from which there is a degree-𝑑 proof that (𝑣𝑖 − 𝑣𝑖′)𝑑 ≤ 2𝑑. So

{𝑣2𝑖 = 1 ∀𝑖 ∈ [𝑛]} ⊢𝑑 E[𝑍𝑑] =
∑︁
𝑖,𝑖′

𝑝𝑖𝑝𝑖′(𝑣𝑖 − 𝑣𝑖′)𝑑 ≤ 2𝑑
∑︁
𝑖,𝑖′

𝑝𝑖𝑝𝑖′ = 2𝑑

as claimed.

4.4 Efficiently Learning from Untrusted Batches

In this section we prove our result on the general problem of learning from untrusted batches.

Theorem 4.4.1. Let 𝑡 ≥ 4 be any integer. There is an algorithm that draws an 𝜀-corrupted

set of 𝑁 𝜔-diverse batches of size 𝑘 from 𝜇 for 𝑁 ≥ 𝜔−2𝜀−2𝑛𝑂(𝑡) · 𝑘𝑡/𝑡𝑡−1, runs in time

𝜔−2𝑡𝜀−2𝑡𝑛𝑂(𝑡2) · 𝑘𝑡2/𝑡𝑡(𝑡−1), and with probability 1 − 1/poly(𝑛) outputs a distribution �̂� for

which 𝑑TV(𝜇, �̂�) ≤ 𝑂(𝜔 + 𝜀1−1/𝑡
√︀
𝑡/𝑘).

We will describe our polynomial system and algorithm, list deterministic conditions under

which our algorithm will succeed, give an SoS proof of identifiability, and conclude the proof

of Theorem 4.4.1 by analyzing the rounding step of our algorithm. We will defer technical

details for how to encode some of the constraints of our polynomial system to Section 4.6.

4.4.1 An SoS Relaxation

Let 𝑡 be a power of two, to be chosen later. For 𝜇 ∈ Δ𝑛, let 𝒟 = Mul𝑘(𝜇). Let 𝑋1, ..., 𝑋𝑁 ∈

Δ𝑛 be the set of iid samples from 𝒟1, ...,𝒟𝑁 respectively, where for each 𝑖 ∈ [𝑁] we have

𝒟𝑖 = Mul𝑘(𝜇𝑖) for some 𝜇𝑖 ∈ Δ𝑛 satisfying 𝑑TV(𝜇𝑖, 𝜇) ≤ 𝜔. Let {𝑋𝑖}𝑖∈[𝑁] ∈ Δ𝑛 be those

242

samples after an 𝜀-fraction have been corrupted.

Program 𝒫. The variables are {𝑤𝑖}𝑖∈[𝑁], {�̂�𝑖}𝑖∈[𝑁], and �̂�, and the constraints are

1. 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑁].

2.
∑︀
𝑤𝑖 = (1− 𝜀)𝑁 .

3. For every 𝑣 ∈ {±1}𝑛 and every 𝑖 ∈ [𝑁], ⟨�̂�𝑖 − �̂�, 𝑣⟩ ≤ 5𝜔.

4.
∑︀

𝑖∈[𝑁]𝑤𝑖𝑋𝑖 = �̂�
∑︀

𝑖∈[𝑁]𝑤𝑖.

5. For every 𝑣 ∈ {±1}𝑛

∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 ≤ (8𝑡/𝑘)𝑡/2 ·
∑︁
𝑖∈[𝑁]

𝑤𝑖 (4.12)

6. �̂�𝑖 ≥ 0 for all 𝑖 ∈ [𝑛] and
∑︀

𝑖 �̂�𝑖 = 1.

Note that constraints (3) and (5) are quantified over all 𝑣 ∈ {±1}𝑛, so as stated, Pro-

gram 𝒫 is a system of exponentially many polynomial constraints. In Section 4.6, we will

explain how to encode these constraints as a small system of polynomial constraints. For

now, we state the following without proof.

Lemma 4.4.2. There is a system ̂︀𝒫 of degree-𝑂(𝑡) polynomial equations and inequali-

ties in the variables {𝑤𝑖}, {�̂�𝑖}, �̂�, and 𝑛𝑂(𝑡) other variables, whose coefficients depend on

𝜀, 𝑡,𝑋1, ..., 𝑋𝑛 such that

1. (Satisfiability) With probability at least 1−1/poly(𝑛), ̂︀𝒫 has a solution in which �̂� = 𝜇

and for each 𝑖 ∈ [𝑁], �̂�𝑖 = 𝜇𝑖 and 𝑤𝑖 is the indicator for whether 𝑋𝑖 is an uncorrupted

point.

2. (Encodes Moment Bounds) ̂︀𝒫 ⊢𝑂(𝑡) 𝒫.

3. (Solvability) If Program ̂︀𝒫 is satisfied, then for every integer 𝐶 > 0, there is an 𝑛𝑂(𝐶𝑡)-

time algorithm which outputs a degree-𝐶𝑡 pseudodistribution which satisfies ̂︀𝒫 up to

additive error 2−𝑛.

243

This suggests the following algorithm for learning from untrusted batches: use semidefi-

nite programming to efficiently obtain a pseudodistribution over solutions to Program ̂︀𝒫 , and

round this pseudodistribution to an estimate for 𝜇 by computing the pseudoexpectation of the

�̂� variable. A formal specification of this algorithm, which we call LearnFromUntrusted,

is given in Algorithm 11 below.

Algorithm 11: LearnFromUntrusted(𝜀, 𝜔, 𝑛, 𝑘, {𝑋𝑖}, 𝑡)
Input: Corruption parameter 𝜀, diversity parameter 𝜔, support size 𝑛, batch size 𝑘,

samples {𝑋𝑖}𝑖∈[𝑁], degree 𝑡
Output: Estimate �̂�

1 Run SDP solver to find a pseudodistribution Ẽ of degree 𝑂(𝑡) satisfying the
constraints of Program ̂︀𝒫 .

2 return Ẽ[�̂�].

Remark 4.4.3. Here we clarify some points regarding numerical accuracy of LearnFro-

mUntrusted and the other algorithms presented in this chapter. Formally, the pseudodistri-

bution computed by LearnFromUntrusted satisfies the constraints of Program ̂︀𝒫 to pre-

cision 2−𝑛 in the sense that for any sum-of-squares 𝑞 and constraint polynomials 𝑓1, ..., 𝑓ℓ ∈ ̂︀𝒫
for which deg(𝑞 ·

∏︀
𝑖∈[ℓ] 𝑓𝑖) ≤ 𝑂(𝑡), we have that Ẽ

[︁
𝑞 ·
∏︀

𝑖∈[ℓ] 𝑓𝑖

]︁
≥ −2−𝑛‖𝑞‖2, where ‖𝑞‖2 de-

notes the 𝐿2 norm of the vector of coefficients of 𝑞. On the other hand, in our analysis,

we show that ̂︀𝒫 ⊢𝑂(𝑡) 𝒫 and then argue using the constraints of 𝒫 instead. But because the

coefficients in the SoS proof that ̂︀𝒫 ⊢𝑂(𝑡) 𝒫 are polynomially bounded, the pseudodistribu-

tion computed by LearnFromUntrusted also satisfies the constraints of Program 𝒫 to

precision 2−Ω(𝑛), which will be sufficient for the simple rounding we analyze in Section 4.4.4.

4.4.2 Deterministic Conditions

We will condition on the following deterministic conditions holding simultaneously:

(I) The “Satisfiability” condition of Lemma 4.4.2 holds.

(II) The mean of the uncorrupted points concentrates:

‖ 1
𝑁

∑︁
𝑖∈𝑆𝐺

(𝑋𝑖 − 𝜇𝑖)‖1 ≤ 𝑂(𝜔 + 𝜀1−1/𝑡
√︀
𝑡/𝑘)

244

(III) The empirical 𝑡-th moments concentrate:

{𝑣2𝑖 = 1 ∀𝑖 ∈ [𝑛]} ⊢𝑡
1

𝑁

∑︁
𝑖∈[𝑁]

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡 −
1

𝑁

∑︁
𝑖∈[𝑁]

E𝑋𝑖∼𝒟𝑖
⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡 ≤ (8𝑡/𝑘)𝑡/2

Lemma 4.4.4. Conditions (I), (II), (III) hold simultaneously with probability 1−1/poly(𝑛).

We first need the following elementary concentration inequalities.

Fact 4.4.5. If 𝑋1, ..., 𝑋𝑁 are drawn from Mul𝑘(𝜇1), ...,Mul𝑘(𝜇𝑁) respectively, then

Pr

⎡⎣‖ 1
𝑁

∑︁
𝑖∈[𝑁]

𝑋𝑖 −
1

𝑁

∑︁
𝑖∈[𝑁]

𝜇𝑖‖1 > 𝜀

⎤⎦ ≤ 𝑛 · 𝑒−2𝜀2𝑁/𝑛2

Proof. Note that for each 𝑖 ∈ [𝑁], 𝑗 ∈ [𝑛], (𝑋𝑖)𝑗 is distributed as Ber((𝜇𝑖)𝑗). So by Hoeffd-

ing’s inequality,

Pr

⎡⎣⃒⃒⃒⃒⃒⃒ 1𝑁 ∑︁
𝑖∈[𝑁]

(𝑋𝑖)𝑗 −
1

𝑁

∑︁
𝑖∈[𝑁]

(𝜇𝑖)𝑗

⃒⃒⃒⃒
⃒⃒ ≥ 𝜂

⎤⎦ ≤ 𝑒−2𝑁𝜂2 .

The claim follows by taking 𝜂 = 𝜀/𝑛 and union bounding over 𝑗.

Fact 4.4.6. Let 𝑋1, ..., 𝑋𝑁 be independent samples from 𝒟1, ...,𝒟𝑁 . For every 𝑖 ∈ [𝑁],

define 𝑍𝑖 = 𝑋𝑖 − 𝜇𝑖. If 𝑁 ≥ Ω(𝑡 · (𝑘/8𝑡)𝑡 · 𝑛2𝑡 log2(𝑛)), then with probability 1 − 1/poly(𝑛)

the following holds: for every multi-index 𝜃 ∈ [𝑡]𝑛 for which
∑︀
𝜃𝑖 = 𝑡 we have that⃒⃒⃒⃒

⃒⃒ 1𝑁 ∑︁
𝑖∈[𝑁]

𝑍𝜃
𝑖 −

1

𝑁

∑︁
𝑖∈[𝑁]

E𝑍∼𝒟𝑖−𝜇𝑖 [𝑍
𝜃]

⃒⃒⃒⃒
⃒⃒ ≤ 𝑛−𝑡 · (8𝑡/𝑘)𝑡/2.

Proof. Note that because 𝑋𝑖, 𝜇𝑖 ∈ [0, 1], the random variables 𝑍𝜃
𝑖 only take values within

[−1, 1]. By Hoeffding’s inequality,

Pr

⎡⎣⃒⃒⃒⃒⃒⃒ 1𝑁 ∑︁
𝑖∈[𝑁]

𝑍𝜃
𝑖 −

1

𝑁

∑︁
𝑖∈[𝑁]

E𝑍∼𝒟𝑖−𝜇𝑖 [𝑍
𝜃]

⃒⃒⃒⃒
⃒⃒ ≥ 𝜂

⎤⎦ ≤ 2𝑒−𝑁𝜂
2/2,

so the lemma follows by by taking 𝜂 = 𝑛−𝑡 · (8𝑡/𝑘)𝑡/2 and union-bounding over all 𝑛𝑡 choices

of 𝜃.

245

Proof of Lemma 4.4.4. (I) holds with probability at least 1−1/poly(𝑛) according to Lemma 4.4.2.

Because {𝑋𝑖}𝑖∈𝑆𝐺
are independent draws from {𝜇𝑖}𝑖∈𝑆𝐺

, (II) holds with probability at

least 1− 1/poly(𝑛) provided 𝑁 ≥ Ω((𝑘/𝑡)𝑛2 log2 𝑛 · 𝜔−2𝜀−2), according to Fact 4.4.5.

Finally, we verify (III) holds with high probability. For every 𝑖 ∈ [𝑁] define 𝑍𝑖 = 𝑋𝑖−𝜇𝑖.

The inequality we would like to exhibit an SoS proof for is equivalent to the inequality⃒⃒⃒⃒
⃒⃒ ∑︁
𝜃,𝜃′:|𝜃|=|𝜃′|=𝑡/2

𝑣𝜃𝑣𝜃′

⎛⎝ 1

𝑁

∑︁
𝑖∈[𝑁]

𝑍𝜃
𝑖 𝑍

𝜃′

𝑖 −
1

𝑁

∑︁
𝑖∈[𝑁]

E𝑍∼𝒟𝑖−𝜇𝑖

[︁
𝑍𝜃𝑍𝜃′

]︁⎞⎠⃒⃒⃒⃒⃒⃒ ≤ (8𝑡/𝑘)𝑡/2, (4.13)

where 𝑣𝜃 ,
∏︀

𝑖∈𝜃 𝑣𝑖. Note that

{𝑣2𝑖 = 1 ∀𝑖 ∈ [𝑛]} ⊢𝑡 −1 ≤ 𝑣𝜃𝑣𝜃′ ≤ 1,

If the outcome of Fact 4.4.6 holds for all 𝑛𝑡 monomials of the form 𝜃 ∪ 𝜃′, then there is a

degree-𝑡 proof, using the axioms {𝑣2𝑖 = 1 ∀𝑖 ∈ [𝑛]} ⊢𝑡, that (4.13) holds. We conclude that

(III) holds with probability 1− 1/poly(𝑛).

By a union bound over all events upon which we conditioned, we conclude that (I), (II),

(III) are simultaneously satisfied with probability 1− 1/poly(𝑛).

4.4.3 Identifiability

The key step is to give an SoS proof of identifiability. In other words, we must demonstrate

in the SoS proof system that the constraints of Program 𝒫 imply that �̂� is sufficiently close

to 𝜇. The main claim in this section is the following.

Lemma 4.4.7. Suppose Conditions (I)-(III) hold. Then for any 𝑣 ∈ {±1}𝑛, we have that

𝒫 ⊢𝑂(𝑡) ⟨�̂�− 𝜇, 𝑣⟩𝑡 ≤ 𝑂
(︀
𝜔𝑡 + 𝜀𝑡−1(𝑡/𝑘)𝑡/2

)︀
.

First note that for any 𝑖 ∈ [𝑁],

∑︁
𝑖∈[𝑁]

𝑤𝑖⟨�̂�− 𝜇, 𝑣⟩ =
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨�̂�− 𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝜇𝑖 − 𝜇, 𝑣⟩

246

≤
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨�̂�− 𝜇𝑖, 𝑣⟩+ 2𝑁𝜔, (4.14)

where the inequality follows from the assumption that 𝑑TV(𝜇, 𝜇𝑖) ≤ 𝜔. We bound the former

term in (4.14):

∑︁
𝑖∈[𝑁]

𝑤𝑖⟨�̂�− 𝜇𝑖, 𝑣⟩ =
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

=
∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐺

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

=
∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐺

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩+

∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨�̂�− 𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨�̂�𝑖 − �̂�, 𝑣⟩

≤
∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐺

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩+

∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨�̂�− 𝜇𝑖, 𝑣⟩+ 5𝑁𝜀𝜔 (4.15)

where the inequality follows from Constraint 3 of Program 𝒫 . This rearranges to

∑︁
𝑖∈𝑆𝐺

𝑤𝑖⟨�̂�−𝜇𝑖, 𝑣⟩ ≤ 5𝑁𝜀𝜔+
∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖−𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐺

(𝑤𝑖− 1)⟨𝑋𝑖−𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖− �̂�𝑖, 𝑣⟩.

Taking the 𝑡-th power of both sides of (4.14) and invoking (4.15) and the inequality ⊢𝑡
(𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑒)𝑡 ≤ exp(𝑡)(𝑎𝑡 + 𝑏𝑡 + 𝑐𝑡 + 𝑑𝑡 + 𝑒𝑡), we conclude that

𝒫 ⊢𝑡

(︃∑︁
𝑖∈𝑆𝐺

𝑤𝑖

)︃𝑡

⟨�̂�− 𝜇, 𝑣⟩𝑡 ≤ exp(𝑡)

⎡⎢⎢⎢⎢⎣(𝑁(2 + 5𝜀)𝜔)𝑡 +

(︃∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃𝑡

⏟ ⏞
Lemma 4.4.8

+

(︃∑︁
𝑖∈𝑆𝐺

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃𝑡

⏟ ⏞
Lemma 4.4.10

+

(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩

)︃𝑡

⏟ ⏞
Lemma 4.4.11

⎤⎥⎥⎥⎥⎦ , (4.16)

247

which we bound using Lemmas 4.4.8, 4.4.10, and 4.4.11 below. Intuitively, the term for

Lemma 4.4.8 corresponds to sampling error from uncorrupted samples from 𝒟, the term for

Lemma 4.4.10 corresponds to the possible failure of the subset selected by 𝑤𝑖 to capture

some small fraction of the uncorrupted samples, and the term for Lemma 4.4.11 corresponds

to the error contributed by the adversarially chosen vectors.

Lemma 4.4.8. Suppose Conditions (I)-(III) hold. Then for any 𝑣 ∈ {±1}𝑛, we have that

𝒫 ⊢𝑂(𝑡)

(︃∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃𝑡

≤ 𝑂(𝑁)𝑡 · (𝜔𝑡 + 𝜀𝑡−1 · (𝑡/𝑘)𝑡/2).

Proof. By SoS Holder’s, we have that

𝒫 ⊢𝑂(𝑡)

(︃∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃𝑡

=

⟨∑︁
𝑖∈𝑆𝐺

(𝑋𝑖 − 𝜇𝑖), 𝑣

⟩𝑡

≤ ‖
∑︁
𝑖∈𝑆𝐺

(𝑋𝑖 − 𝜇𝑖)‖𝑡1

≤
(︁
𝑁 ·𝑂(𝜔 + 𝜀1−1/𝑡 ·

√︀
𝑡/𝑘)

)︁𝑡
≤ 𝑂(𝑁)𝑡 · (𝜔𝑡 + 𝜀𝑡−1 · (𝑡/𝑘)𝑡/2)

as claimed, where the penultimate step follows by (II) and the last step follows by (scalar)

Holder’s.

For Lemma 4.4.10, we will use the following helper lemma.

Lemma 4.4.9. Suppose Condition (III) holds. Then for any 𝑣 ∈ {±1}𝑛, we have that

𝒫 ⊢𝑂(𝑡)

∑︁
𝑖∈[𝑁]

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡 ≤ 2𝑁(8𝑡/𝑘)𝑡/2.

Proof. By Lemma 4.4.4 and Lemma 4.3.3, we have that

∑︁
𝑖∈[𝑁]

⟨𝑋𝑖−𝜇𝑖, 𝑣⟩𝑡 ≤ 𝑁 ·(8𝑡/𝑘)𝑡/2+
∑︁
𝑖∈[𝑁]

E𝑋𝑖∼𝒟𝑖

[︀
(𝑋𝑖 − 𝜇𝑖)⊗𝑡/2

]︀ [︀
(𝑋𝑖 − 𝜇𝑖)⊗𝑡/2

]︀⊤ ≤ 2𝑁(8𝑡/𝑘)𝑡/2.

248

Lemma 4.4.10. Suppose Conditions (I)-(III) hold. Then for any 𝑣 ∈ {±1}𝑛, we have that

𝒫 ⊢𝑂(𝑡)

(︃∑︁
𝑖∈𝑆𝐺

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃𝑡

≤ 2𝜀𝑡−1 ·𝑁 𝑡 · (8𝑡/𝑘)𝑡/2.

Proof. By SoS Holder’s, we have that

𝒫 ⊢𝑂(𝑡)

(︃∑︁
𝑖∈𝑆𝐺

(𝑤𝑖 − 1)⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃𝑡

=

(︃∑︁
𝑖∈𝑆𝐺

(1− 𝑤𝑖)⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃𝑡

≤

(︃∑︁
𝑖∈𝑆𝐺

(1− 𝑤𝑖)

)︃𝑡−1(︃∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡
)︃

≤ (𝜀𝑁)𝑡−1 ·
∑︁
𝑖∈[𝑁]

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡

≤ (𝜀𝑁)𝑡−1 · 2𝑁(8𝑡/𝑘)𝑡/2

where the third step follows from the fact that ⊢2
∑︀

𝑖∈𝑆𝐺
(1 − 𝑤𝑖) ≤

∑︀
𝑖∈[𝑁](1 − 𝑤𝑖) = 𝜀𝑁 ,

and the fourth step follows from Lemma 4.4.9.

Lemma 4.4.11. Suppose Conditions (I)-(III) hold. Then for any 𝑣 ∈ {±1}𝑛, we have that

𝒫 ⊢𝑂(𝑡)

(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩

)︃𝑡

≤ 2𝜀𝑡−1𝑁 𝑡(8𝑡/𝑘)𝑡/2.

Proof. We have that

𝒫 ⊢𝑂(𝑡)

(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩

)︃𝑡

=

(︃∑︁
𝑖∈𝑆𝐵

𝑤2
𝑖 ⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩

)︃𝑡

(4.17)

≤

(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖

)︃𝑡−1

·

(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡
)︃

(4.18)

≤

(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖

)︃𝑡−1

·

⎛⎝∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡
⎞⎠ (4.19)

≤ |𝑆𝐵|𝑡−1 · 2(8𝑡/𝑘)𝑡/2
∑︁
𝑖∈[𝑁]

𝑤𝑖 (4.20)

249

= 2(𝜀𝑁)𝑡−1(8𝑡/𝑘)𝑡/2 ·𝑁

= 2𝜀𝑡−1𝑁 𝑡(8𝑡/𝑘)𝑡/2,

where (4.17) follows from the Booleanity constraints, (4.18) follows from SoS Holder’s, (4.19)

follows from even-ness of 𝑡, (4.20) follows from the definition of |𝑆𝐵| and from the moment

bound (4.12).

We can now finish the proof of Lemma 4.4.7.

Proof of Lemma 4.4.7. By (4.16) and Lemmas 4.4.8, 4.4.10, and 4.4.11, we have that

𝒫 ⊢𝑂(𝑡)

(︃∑︁
𝑖∈𝑆𝐺

𝑤𝑖

)︃𝑡

⟨�̂�− 𝜇, 𝑣⟩𝑡 ≤ 𝑂(𝑁)𝑡
(︀
𝜔𝑡 + 𝜀𝑡−1(𝑡/𝑘)𝑡/2

)︀
.

Since 𝒫 ⊢2
∑︀

𝑖∈𝑆𝐺
𝑤𝑖 ≥ (1− 2𝜀)𝑁 , we conclude that

𝒫 ⊢𝑂(𝑡) ⟨�̂�− 𝜇, 𝑣⟩𝑡 ≤ 𝑂
(︀
𝜔𝑡 + 𝜀𝑡−1(𝑡/𝑘)𝑡/2

)︀
as claimed.

4.4.4 Rounding

We are now ready to complete the proof of Theorem 4.4.1 by specifying how to round a

pseudodistribution satisfying Program ̂︀𝒫 .

Lemma 4.4.12. Let Ẽ be a degree-𝑂(𝑡) pseudodistribution satisfying ̂︀𝒫. Then Ẽ[�̂�] ∈ Δ𝑛

and 𝑑TV(Ẽ[�̂�], 𝜇) ≤ 𝑂(𝜔 + 𝜀1−1/𝑡
√︀
𝑡/𝑘).

Proof. The fact that Ẽ[�̂�] follows from the fact that Ẽ satisfies Constraints 6 of Program ̂︀𝒫 .

For the second part of the lemma, note that by the dual characterization of 𝐿1 distance, it

suffices to show that for any 𝑣 ∈ {±1}𝑛,

⟨Ẽ[�̂�]− 𝜇, 𝑣⟩ ≤ 𝑂
(︁
𝜔 + 𝜀1−1/𝑡

√︀
𝑡/𝑘
)︁

250

By Lemma 4.4.2, ̂︀𝒫 ⊢𝑂(𝑡) 𝒫 . Furthermore, by Lemma 4.4.7, for any 𝑣 ∈ {±1}𝑛,

Ẽ[⟨�̂�− 𝜇, 𝑣⟩𝑡] ≤ 𝑂
(︀
𝜔𝑡 + 𝜀𝑡−1(𝑡/𝑘)𝑡/2

)︀
,

so we get that

⟨Ẽ[�̂�]− 𝜇, 𝑣⟩𝑡 ≤ Ẽ
[︀
⟨�̂�− 𝜇, 𝑣⟩𝑡

]︀
≤ 𝑂

(︀
𝜔𝑡 + 𝜀𝑡−1(𝑡/𝑘)𝑡/2

)︀
,

where the first step is a consequence of Fact 1.3.41. Now by the fact that (𝑎+𝑏)1/𝑡 ≤ 𝑎1/𝑡+𝑏1/𝑡

for positive scalars 𝑎, 𝑏, we conclude.

We can now complete the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1. The output of our algorithm will be Round[Ẽ] for Ẽ satisfying Pro-

gram ̂︀𝒫 and therefore Program 𝒫 , so Round produces a hypothesis ℎ for which 𝑑TV(ℎ, 𝜇) ≤

𝑂(𝜔 + 𝜀1−1/𝑡 ·
√︀
𝑡/𝑘), as claimed.

4.5 Improved Sample Complexity Under Shape Constraints

In this section we prove the following, which says that the algorithmic framework of the

preceding sections can be leveraged to learn shape-constrained distributions from untrusted

batches with sample complexity sublinear in the domain size 𝑛.

Theorem 4.5.1. Let 𝑡 ≥ 4 be any integer, and let 𝜂 > 0. If 𝜇 is (𝜂, 𝑠)-piecewise degree-𝑑,

then there is an algorithm that draws an 𝜀-corrupted set of 𝑁 𝜔-diverse batches of size 𝑘 from

𝜇 for 𝑁 = 𝜔−2𝜀−2(𝑠𝑑 log 𝑛)𝑂(𝑡) · 𝑘𝑡/𝑡𝑡−1, runs in time 𝜔−𝑡𝜀−𝑡(𝑠𝑑𝑛)𝑂(𝑡) · 𝑘𝑡2/𝑡𝑡(𝑡−1), and with

probability 1−1/poly(𝑛) outputs a distribution �̂� for which 𝑑TV(𝑝, �̂�) ≤ 𝑂(𝜂+𝜔+𝜀1−1/𝑡
√︀
𝑡/𝑘).

Importantly, by combining this result with known approximation theoretic results, we are

able to obtain sample complexities that are either independent of the domain size or de-

pend at most polylogarithmically on it, for a large class of natrual distributions, such as

251

monotone distributions, monotone hazard rate distributions, log-concave distributions, dis-

crete Guassians, Poisson Binomial distributions, and mixtures thereof, see e.g. [ADLS17]

for more details. After giving the basic ingredients from VC complexity for how to learn

shape-constrained distributions in sublinear sample complexity in a classical sense, we de-

scribe and analyze the polynomial system Program 𝒫 ′, deferring technical details for how to

encode some of the constraints of this program to Section 4.6 and Appendix 4.7.

4.5.1 𝒜𝐾 Norms and VC Complexity

Definition 4.5.2 (𝒜𝐾 norms, see e.g. [DL01]). For positive integers 𝐾 ≤ 𝑛, define 𝒜𝐾 to

be the set of all unions of at most 𝐾 disjoint intervals over [𝑛], where an interval is any

subset of [𝑛] of the form {𝑎, 𝑎 + 1, ..., 𝑏 − 1, 𝑏}. The 𝒜𝐾 distance between two distributions

𝑝, 𝑞 over [𝑛] is

‖𝑝− 𝑞‖𝒜𝐾
= max

𝑆∈𝒜𝐾

|𝑝(𝑆)− 𝑞(𝑆)|.

Equivalently, say that 𝑣 ∈ {±1}𝑛 has 2𝐾 sign changes if there are exactly 2𝐾 indices 𝑖 ∈

[𝑛− 1] for which 𝑣𝑖+1 ̸= 𝑣𝑖. Then if 𝒱𝑛2𝐾 denotes the set of all such 𝑣, we have

‖𝑝− 𝑞‖𝒜𝐾
=

1

2
max
𝑣∈𝒱𝑛

2𝐾

⟨𝑝− 𝑞, 𝑣⟩.

Note that

‖·‖𝒜1 ≤ ‖·‖𝒜2 ≤ · · · ≤ ‖·‖𝒜𝑛/2
= ‖·‖TV.

Definition 4.5.3. We say that a distribution over [𝑛] is (𝜂, 𝑠)-piecewise degree-𝑑 if there

is a partition of [𝑛] into 𝑡 disjoint intervals {[𝑎𝑖, 𝑏𝑖]}1≤𝑖≤𝑠, together with univariate degree-𝑑

polynomials 𝑟1, ..., 𝑟𝑠 and a distribution q on [𝑛], such that 𝑑TV(p,q) ≤ 𝜂 and such that for

all 𝑖 ∈ [𝑠], q(𝑥) = 𝑟𝑖(𝑥) for all 𝑥 ∈ [𝑛] in [𝑎𝑖, 𝑏𝑖].

Lemma 4.5.4. Let 𝐾 = 𝑠(𝑑 + 1). If 𝜇 is (𝜂, 𝑠)-piecewise degree-𝑑 and ‖𝜇 − �̂�‖𝒜𝐾
≤ 𝜁,

then there is an algorithm which, given the vector �̂�, outputs a distribution 𝜇* for which

𝑑TV(𝜇, 𝜇
*) ≤ 2𝜁 + 4𝜂 in time poly(𝑠, 𝑑, 1/𝜀).

Proof. Let 𝜇′ be a (0, 𝑠)-piecewise degree-𝑑 distribution for which 𝑑TV(𝜇, 𝜇
′) = 𝜂. By

252

Theorem 4.5.5 below, one can produce an 𝑠-piecewise degree-𝑑 distribution 𝜇* minimizing

‖�̂�− 𝜇*‖𝒜𝐾
to within additive error 𝜂 in time poly(𝑠, 𝑑, 1/𝜂). We already know by triangle

inequality that

‖𝑣𝑝− 𝜇′‖𝒜𝐾
≤ ‖𝑣𝑝− 𝜇‖𝒜𝐾

+ ‖𝜇− 𝜇′‖𝒜𝐾
≤ 𝜁 + 𝜂,

so by 𝜂-approximate minimality we know ‖�̂� − 𝜇*‖𝒜𝐾
≤ 𝜁 + 2𝜂. By another application of

triangle inequality, we conclude that ‖𝜇′ − 𝜇*‖𝒜𝐾
≤ 2𝜁 + 3𝜂. Because 𝜇′ and 𝜇* are both

𝑠-piecewise degree-𝑑, the vector 𝜇′ − 𝜇* has at most 2𝑠(𝑑 + 1) sign changes. Indeed, the

common refinement of the intervals defining the two piecewise polynomials is at most 2𝑠

intervals, and the difference between two degree-𝑑 polynomials over any of these intervals is

degree-𝑑 (the additional +1 comes from the endpoints of each of the intervals). So we get

that 𝑑TV(�̂� − 𝜇* = ‖�̂� − 𝜇*‖𝒜𝐾
≤ 2𝜁 + 3𝜂, and one final application of triangle inequality

allows us to conclude that 𝑑TV(𝜇− 𝜇*) = 2𝜁 + 4𝜂.

Theorem 4.5.5 ([ADLS17]). There is an algorithm which, given a vector 𝜇 ∈ Δ𝑛, computes

an 𝑠-piecewise degree-𝑑 hypothesis ℎ which minimizes ‖ℎ− 𝜇‖𝒜𝑠(𝑑+1)
to within additive error

𝛾 in time 𝑛 · poly(𝑑, 1/𝛾).

Henceforth, we will focus solely on the problem of learning in 𝒜ℓ norm, where

ℓ = 2𝐾 , 2𝑠(𝑑+ 1). (4.21)

4.5.2 Another SoS Relaxation

To prove Theorem 4.5.1, by Lemma 4.5.4 it suffices to learn 𝜇 in 𝒜 distance, that is, we wish

to produce a hypothesis �̂� for which 1
2
max𝑣∈𝒱𝑛

ℓ
⟨𝜇− �̂�, 𝑣⟩ is small.

Program 𝒫 ′. The variables are {𝑤𝑖}𝑖∈[𝑁], {�̂�𝑖}𝑖∈[𝑁], and �̂�, and the constraints are

1. 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑁].

2.
∑︀
𝑤𝑖 = (1− 𝜀)𝑁 .

3. For every 𝑣 ∈ {±1}𝑛 with at most ℓ sign changes and every 𝑖 ∈ [𝑁], ⟨�̂�𝑖 − �̂�, 𝑣⟩ ≤ 5𝜔.

4.
∑︀

𝑖∈[𝑁]𝑤𝑖𝑋𝑖 = �̂�
∑︀

𝑖∈[𝑁]𝑤𝑖.

253

5. For every 𝑣 ∈ {±1}𝑛 with at most ℓ sign changes,

∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 ≤ (8𝑡/𝑘)𝑡/2 ·
∑︁
𝑖∈[𝑁]

𝑤𝑖.

6. �̂�𝑖 ≥ 0 for all 𝑖 ∈ [𝑛] and
∑︀

𝑖 �̂�𝑖 = 1.

Lemma 4.5.6. There is a system ̂︀𝒫 ′ of degree-𝑂(𝑡) polynomial equations and inequali-

ties in the variables {𝑤𝑖}, {�̂�𝑖}, �̂�, and 𝑛𝑂(𝑡) other variables, whose coefficients depend on

𝜀, 𝑡,𝑋1, ..., 𝑋𝑛 such that

1. (Satisfiability) With probability at least 1 − 1/poly(𝑛), Program ̂︀𝒫 ′ has a solution in

which �̂� = 𝜇 and for each 𝑖 ∈ [𝑁], �̂�𝑖 = 𝜇𝑖 and 𝑤𝑖 is the indicator for whether 𝑋𝑖 is an

uncorrupted point.

2. (Encodes Moment Bounds) ̂︀𝒫 ′ ⊢𝑂(𝑡) 𝒫 ′.

3. (Solvability) If Program ̂︀𝒫 ′ is satisfied, then for every integer 𝐶 > 0, there is an 𝑛𝑂(𝐶𝑡)-

time algorithm which outputs a degree-𝐶𝑡 pseudodistribution which satisfies Program̂︀𝒫 up to additive error 2−𝑛.

Together with Lemma 4.5.4, this suggests the following algorithm for learning from un-

trusted batches when 𝜇 is (𝜂, 𝑠)-piecewise degree-𝑑: use semidefinite programming to effi-

ciently obtain a pseudodistribution over solutions to Program ̂︀𝒫 , round this pseudodistribu-

tion to an estimate for 𝜇 by computing the pseudoexpectation of the �̂� variable, and then

refine this by computing the best piecewise polynomial approximation to this estimate. The

only difference between this algorithm and LearnFromUntrusted is the the third step.

A formal specification of this algorithm, which we call PiecewiseLearn, is given in

Algorithm 12 below.

4.5.3 Deterministic Conditions and Identifiability

We will condition on the following deterministic conditions holding simultaneously:

254

Algorithm 12: PiecewiseLearn(𝜀, 𝜔, 𝑛, 𝑘, {𝑋𝑖}, 𝑡, (𝜂, 𝑠, 𝑑)))
Input: Corruption parameter 𝜀, diversity parameter 𝜔, support size 𝑛, batch size 𝑘,

samples {𝑋𝑖}𝑖∈[𝑁], degree 𝑡, (𝜂, 𝑠, 𝑑) for which 𝜇 is (𝜂, 𝑠)-piecewise degree-𝑑
Output: Estimate 𝜇*

1 Run SDP solver to find a pseudodistribution Ẽ of degree 𝑂(𝑡) satisfying the
constraints of Program ̂︀𝒫 .

2 �̃�← Ẽ[�̂�].
3 𝐾 ← 𝑠(𝑑+ 1).
4 Using the algorithm of [ADLS17], form the 𝑠-piecewise degree-𝑑 distribution 𝜇* that

minimizes ‖�̃�− 𝜇*‖𝒜𝐾
(up to additive error 𝜂).

5 return 𝜇*.

(I) The “Satisfiability” condition of Lemma 4.5.6 holds.

(II) The mean of the uncorrupted points concentrates in 𝒜ℓ norm:

‖ 1
𝑁

∑︁
𝑖∈𝑆𝐺

(𝑋𝑖 − 𝜇𝑖)‖𝒜ℓ
≤ 𝑂(𝜀1−1/𝑡

√︀
𝑡/𝑘)

(III) For every 𝑣 ∈ {±1}𝑛 with at most ℓ sign changes,⃒⃒⃒⃒
⃒⃒ 1𝑁 ∑︁

𝑖∈[𝑁]

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡 −
1

𝑁

∑︁
𝑖∈[𝑁]

E𝑋𝑖∼𝒟𝑖
⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡

⃒⃒⃒⃒
⃒⃒ ≤ (8𝑡/𝑘)𝑡/2

Lemma 4.5.7. Conditions (I), (II), (III) hold simultaneously with probability 1−1/poly(𝑛).

Proof. (I) holds with probability at least 1− 1/poly(𝑛) according to Lemma 4.5.6.

For (II), we will apply Lemma 4.6.12 with 𝒩 taken to be the collection of all 𝑣 ∈ {±1}𝑛

with at most ℓ sign changes. |𝒩 | = 𝑛𝑂(ℓ), so provided |𝑆𝐺| ≥ Ω((𝑘/𝑡)𝜀−2 · ℓ log2 𝑛), we get

that (II) holds with probability 1− 1/poly(𝑛).

For (III), we will apply Lemma 4.7.3 with 𝒩 taken to be the collection of all 𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤

for which 𝑣 ∈ {±1}𝑛 has at most ℓ sign

ges. |𝒩 | = 𝑛𝑂(ℓ), so when 𝑁 ≥ Ω((𝑘/8𝑡)𝑡 ·ℓ log 𝑛), (III) holds with probability 1−1/poly(𝑛).

The SoS proof of identifiability given Program 𝒫 ′ is identical to the proof of identifiability

255

given Program 𝒫 in Section 4.4.3, the only difference being that all intermediate steps in

the proof are quantified over 𝑣 ∈ {±1}𝑛 with at most ℓ sign changes, rather than over all

𝑣 ∈ {±1}𝑛. This yields the following:

Lemma 4.5.8. Suppose Conditions (I)-(III) hold. Then for any 𝑣 ∈ {±1}𝑛 with at most ℓ

sign changes, we have that

𝒫 ′ ⊢𝑂(𝑡) ⟨�̂�− 𝜇, 𝑣⟩𝑡 ≤ 𝑂
(︀
𝜔𝑡 + 𝜀𝑡−1(𝑡/𝑘)𝑡/2

)︀
.

4.5.4 Rounding

Once we have Lemma 4.5.8, the rounding step can be analyzed in essentially the same way

as Lemma 4.4.12. We include a proof for completeness.

Lemma 4.5.9. Let Ẽ be a pseudoexpectation satisfying Program ̂︀𝒫 ′. Then Ẽ[�̂�] ∈ Δ𝑛 and

‖Ẽ[�̂�]− 𝜇‖𝒜ℓ
≤ 𝑂(𝜔 + 𝜀1−1/𝑡 ·

√︀
𝑡/𝑘).

Proof. Ẽ[�̂�] ∈ Δ𝑛 because Ẽ satisfies Constraint 6 of Program 𝒫 ′. For the second part of the

lemma, by definition of 𝒜ℓ distance, it suffices to show that for any 𝑣 ∈ {±1}𝑛 with at most

ℓ sign changes,

⟨Ẽ[�̂�]− 𝜇, 𝑣⟩ ≤ 𝑂
(︁
𝜔 + 𝜀1−1/𝑡

√︀
𝑡/𝑘
)︁
.

By Lemma 4.5.6, ̂︀𝒫 ′ ⊢𝑂(𝑡) 𝒫 ′. Furthermore, by Lemma 4.5.8, for any 𝑣 ∈ {±1}𝑛 with at

most ℓ sign changes,

Ẽ[⟨�̂�− 𝜇, 𝑣⟩𝑡] ≤ 𝑂
(︀
𝜔𝑡 + 𝜀𝑡−1(𝑡/𝑘)𝑡/2

)︀
,

so we get that

⟨Ẽ[�̂�]− 𝜇, 𝑣⟩𝑡 ≤ Ẽ[⟨�̂�− 𝜇, 𝑣⟩𝑡]

≤ 𝑂
(︀
𝜔𝑡 + 𝜀𝑡−1(𝑡/𝑘)𝑡/2

)︀
,

where the first step is a consequence of Fact 1.3.41. Now by the fact that (𝑎+𝑏)1/𝑡 ≤ 𝑎1/𝑡+𝑏1/𝑡

for positive scalars 𝑎, 𝑏, the lemma follows.

We can now complete the proof of Theorem 4.5.1.

256

Proof of Theorem 4.5.1. The output of our algorithm will be Round[Ẽ] for Ẽ satisfying

Program 𝒫 ′. Because Ẽ[�̂�] ∈ Δ𝑛 satisfies ‖Ẽ[�̂�]− 𝜇‖𝒜ℓ
≤ 𝑂(𝜔 + 𝜀1−1/𝑡 ·

√︀
𝑡/𝑘), we conclude

that by Lemma 4.5.4, the assumption that 𝜇 is (𝜂, 𝑠)-piecewise degree-𝑑, and the fact that

ℓ = 2𝑠(𝑑+1), Round produces a hypothesis ℎ for which 𝑑TV(ℎ, 𝜇) ≤ 𝑂(𝜂+𝜔+𝜀1−1/𝑡 ·
√︀
𝑡/𝑘),

as claimed.

4.6 Encoding Moment Constraints

In this section we will prove Lemmas 4.4.2 and 4.5.6. The programs ̂︀𝒫 and ̂︀𝒫 ′ referenced

in those Lemmas will involve systems of inequalities among matrix-valued polynomials. We

begin by giving an overview of how such inequalities fit into the SoS proof system.

4.6.1 Matrix SoS Proofs

Let 𝑥1, ..., 𝑥𝑛 be formal variables. In this subsection we show how the SoS proof system

can reason about constraints of the form 𝑀(𝑥) ⪰ 0, where 𝑀(𝑥) is some symmetric matrix

whose entries are polynomials in 𝑥.

Let 𝑀1(𝑥), ...,𝑀𝑚(𝑥) be symmetric matrix-valued polynomials of 𝑥 of various sizes (1×1

matrix-valued polynomials are simply scalar polynomials), and let 𝑞1(𝑥), ..., 𝑞𝑚(𝑥) be scalar

polynomials. The expression

{𝑀1 ⪰ 0, ...,𝑀𝑚 ⪰ 0, 𝑞1(𝑥) = 0, ..., 𝑞𝑚(𝑥) = 0} ⊢𝑑 𝑝(𝑥) ≥ 0

means that there exists a vector 𝑢, a matrix 𝑄(𝑥) whose entries are polynomials in the

ideal generated by 𝑞1, ..., 𝑞𝑚, and vector-valued polynomials {𝑟𝑗𝑆}𝑗≤𝑁,𝑆⊆[𝑚] (where 𝑆’s are

multisets) for which

𝑝(𝑥) = 𝑄(𝑥) + 𝑢⊤

⎡⎣∑︁
𝑆⊆[𝑚]

(︃∑︁
𝑗

(𝑟𝑗𝑆(𝑥))(𝑟
𝑗
𝑆(𝑥))

⊤

)︃
⊗ [⊗𝑖∈𝑆𝑀𝑖(𝑥)]

⎤⎦𝑢 (4.22)

and 𝑄(𝑥) and the entries of each summand in (4.22) are all polynomials of degree at most 𝑑.

A pseudodistribution Ẽ of degree 2𝑑 is said to satisfy {𝑀1(𝑥) ⪰ 0, ...,𝑀𝑚(𝑥) ⪰ 0} if for

257

every multiset 𝑆 ⊆ [𝑚] and polynomial 𝑝(𝑥) for which the entries of 𝑝(𝑥)2 · (⊗𝑖∈𝑆𝑀𝑖(𝑥)) are

degree at most 2𝑑, we have

Ẽ[𝑝(𝑥)2 · (⊗𝑖∈𝑆𝑀𝑖(𝑥))] ⪰ 0.

Such pseudodistributions can still be found efficiently via semidefinite programming.

Proofs of the following basic lemmas about matrix SoS can be found in [HL18].

Lemma 4.6.1 ([HL18], Lemma 7.1). If Ẽ is a degree-2𝑑 pseudodistribution satisfying {𝑀1 ⪰

0, ...,𝑀𝑚 ⪰ 0} and furthermore

{𝑀1 ⪰ 0, ...,𝑀𝑚 ⪰ 0} ⊢2𝑑 𝑀 ⪰ 0,

then Ẽ also satisfies {𝑀1 ⪰ 0, ...,𝑀𝑚 ⪰ 0,𝑀 ⪰ 0}.

Lemma 4.6.2 ([HL18], Lemma 7.2). If 𝑓(𝑥) is a degree-𝑑 vector-valued polynomial of

dimension 𝑠 and 𝑀(𝑥) is an 𝑠× 𝑠 symmetric matrix-valued polynomial of degree 𝑑′, then

{𝑀 ⪰ 0} ⊢𝑑𝑑′ ⟨𝑓(𝑥),𝑀(𝑥)𝑓(𝑥)⟩ ≥ 0.

4.6.2 Moment Constraints for Program 𝒫

We first show how to encode Constraint 3 of Program 𝒫 , namely that for each 𝑖 ∈ [𝑁]

{𝑣2𝑖 = 1 ∀ 1 ≤ 𝑖 ≤ 𝑛} ⊢2 ⟨�̂�𝑖 − �̂�, 𝑣⟩ ≤ 5𝜔. (4.23)

This would hold if there existed sum-of-squares polynomials 𝑞𝑆(𝑣, 𝑝𝑖, 𝑝) for which 5𝜔−⟨�̂�𝑖−

�̂�, 𝑣⟩ =
∑︀

𝑆

∏︀
𝑖∈𝑆(1 − 𝑣2𝑖) · 𝑞𝑆(𝑣, 𝑝𝑖, 𝑝) such that each summand on the right-hand side is of

degree at most 2. So let 𝑄𝑆 be an 𝑛 × 𝑛 matrix of indeterminates, with entries indexed

by 𝑖, 𝑗 ∈ [𝑛], which will correspond to the matrix of coefficients of 𝑞(𝑣, 𝑝𝑖, 𝑝) as a quadratic

polynomial in 𝑣.

Next we show how to encode Constraint 4.12 of Program 𝒫 . For every 𝑆 ⊂ [𝑛] of size

at most 𝑂(𝑡), let 𝑀𝑆 be an 𝑛𝑡/2 × 𝑛𝑡/2 matrix of indeterminates, one for each pair of multi-

indices 𝛾, 𝜌 over [𝑛] both of degree at most 𝑡/2. We would like to impose constraints on the

258

entries 𝑀𝑆
𝛾,𝜌 so that psd-ness of the matrices in {𝑀𝑆 : 𝑆 ⊆ [𝑛]} encodes the fact that

{𝑣2𝑖 = 1 ∀1 ≤ 𝑖 ≤ 𝑛} ⊢𝑂(𝑡)

∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 ≤ 2 · (8𝑡/𝑘)𝑡/2
∑︁
𝑖∈[𝑁]

𝑤𝑖 (4.24)

Recall that the condition (4.24) means that there exist polynomials 𝑝𝑆 for which

2 · (8𝑡/𝑘)𝑡/2
∑︁
𝑖∈[𝑁]

𝑤𝑖 −
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 =
∑︁

𝑆:|𝑆|≤𝑂(𝑡)

𝑝𝑆(𝑣, {𝑤𝑖}, {�̂�𝑖}, �̂�) ·
∏︁
𝑖∈𝑆

(1− 𝑣2𝑖),

where each 𝑝𝑆 is a sum-of-squares polynomial such that 𝑝𝑆(𝑣, {𝑤𝑖}, {�̂�𝑖}, �̂�) ·
∏︀

𝑖∈𝑆(1 − 𝑣2𝑖)

is degree 𝑂(𝑡). 𝑀𝑆 will correspond to the matrix of coefficients of 𝑝𝑆(𝑣, {𝑤𝑖}, {�̂�𝑖}, �̂�) as a

degree-𝑡 polynomial in 𝑣. Specifically, we will consider the following program.

Program 𝒫. The variables are {𝑤𝑖}𝑖∈[𝑁], �̂�, {�̂�𝑖}𝑖∈[𝑁], {𝑄𝑆
𝑖,𝑗}, and {𝑀𝑆

𝛾,𝜌} and the con-

straints are

1. 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑁].

2.
∑︀
𝑤𝑖 = (1− 𝜀)𝑁 .

3. 5𝜔 − ⟨�̂�𝑖 − �̂�, 𝑣⟩ =
∑︀

𝑆

∏︀
𝑖∈𝑆(1− 𝑣2𝑖) · ⟨𝑣,𝑄𝑆𝑣⟩

4.
∑︀

𝑖∈[𝑁]𝑤𝑖𝑋𝑖 = �̂� ·
∑︀

𝑖∈[𝑁]𝑤𝑖

5.

2 · (8𝑡/𝑘)𝑡/2 − 1

(1− 𝜀)𝑁
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�, 𝑣⟩𝑡 =
∑︁

𝑆:|𝑆|≤𝑂(𝑡)

∏︁
𝑖∈𝑆

(1− 𝑣2𝑖) · ⟨𝑣⊗𝑡/2,𝑀𝑆𝑣⊗𝑡/2⟩

6. 𝑄𝑆 ⪰ 0 for all 𝑆 ⊂ [𝑛] for which |𝑆| ≤ 2

7. 𝑀𝑆 ⪰ 0 for all 𝑆 ⊂ [𝑛] for which |𝑆| ≤ 𝑂(𝑡).

8. �̂�𝑖 ≥ 0 for all 𝑖 ∈ [𝑛] and
∑︀

𝑖 �̂�𝑖 = 1.

Definition 4.6.3. Define the canonical assignment to the variables {𝑤𝑖}𝑖∈[𝑁], �̂�, and {�̂�𝑖}𝑖∈[𝑁]

to be as follows: for each 𝑖 ∈ [𝑁], 𝑤𝑖 = 1[𝑋𝑖 is uncorrupted], �̂�𝑖 = 𝜇𝑖, and �̂� = 1
(1−𝜀)𝑁

∑︀
𝑖𝑤𝑖𝑋𝑖.

259

Proof of Lemma 4.4.2. The fact that ̂︀𝒫 ⊢𝑂(𝑡) 𝒫 follows by Lemma 4.6.2, and solvability fol-

lows from the fact that the problem of outputting a degree-𝑂(𝑡) pseudodistribution satisfying

a system of degree-𝑂(𝑡) polyomial constraints can be encoded as a semidefinite program of

size 𝑛𝑂(𝑡).

It remains to show satisfiability of Program ̂︀𝒫 . Constraints 1, 2, and 4 are clearly satisfied

by the canonical assignment.

For Constraints 3 and 6, we want to show that for each 𝑖 ∈ [𝑁], the SoS proof (4.23)

exists as a polynomial inequality only in the variable 𝑣, with {�̂�𝑖} and �̂� now fixed. Fix any

𝑖 ∈ [𝑁] and for convenience define 𝛼𝑗 = (�̂�𝑖 − �̂�)𝑗. From Fact 1.3.44, we get that

{𝑣2𝑖 = 1 ∀ 1 ≤ 𝑖 ≤ 𝑛} ⊢2 ⟨�̂�𝑖 − �̂�, 𝑣⟩ =
𝑛∑︁
𝑗=1

𝛼𝑗𝑣𝑗 ≤
𝑛∑︁
𝑗=1

|𝛼𝑗| = ‖�̂�𝑖 − �̂�‖1.

By triangle inequality and the fact that 𝑑TV(𝜇𝑖, 𝜇𝑗) ≤ 2𝜔 for all 𝑗 ∈ [𝑁],

‖�̂�𝑖 − �̂�‖1 ≤ ‖
1

(1− 𝜀)𝑁
∑︁

𝑗∈𝑆𝐺:𝑗 ̸=𝑖

(𝜇𝑖 − 𝜇𝑗)‖1 + ‖
1

(1− 𝜀)𝑁
∑︁
𝑗∈𝑆𝐺

(𝑋𝑗 − 𝜇𝑗)‖1

≤ 4𝜔 + ‖ 1

(1− 𝜀)𝑁
∑︁
𝑗∈𝑆𝐺

(𝑋𝑗 − 𝜇𝑗)‖1

By Fact 4.4.5 and the fact that {𝑋𝑗}𝑗∈𝑆𝐺
is a collection of independent draws from {Mul𝑘(𝜇𝑗)}𝑗∈𝑆𝐺

respectively, we know that

‖ 1

(1− 𝜀)𝑁
∑︁
𝑗∈𝑆𝐺

(𝑋𝑗 − 𝜇𝑗)‖1 ≤ 𝜔

with probability at least 1− 𝑛 · 𝑒−2𝜔2𝑁/𝑛2 , from which (4.23) follows.

Finally, for Constraints 5 and 7, suppose the following SoS proof exists:

{𝑣2𝑖 = 1 ∀ 1 ≤ 𝑖 ≤ 𝑛} ⊢𝑂(𝑡)
1

(1− 𝜀)𝑁
∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 ≤ 2 · (8𝑡/𝑘)𝑡/2, (4.25)

where 𝑣 is the only variable and {𝑤𝑖}, {�̂�𝑖}, and 𝜇 have all been fixed. By definition, this

means that there exist sum-of-squares polynomials 𝑝𝑆(𝑣) for every 𝑆 ⊂ [𝑛] of size at most

260

𝑂(𝑡) such that 𝑝𝑆(𝑣) ·
∏︀

𝑖∈𝑆(1− 𝑣2𝑖) is degree 𝑂(𝑡) and

2 · (8𝑡/𝑘)𝑡/2 − 1

(1− 𝜀)𝑁
∑︁
𝑖∈𝑆𝐺

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 =
∑︁

𝑆:|𝑆|≤𝑂(𝑡)

𝑝𝑆(𝑣) ·
∏︁
𝑖∈𝑆

(1− 𝑣2𝑖).

By taking 𝑀𝑆 to be the matrix of coefficients for which ⟨𝑣⊗𝑡/2,𝑀𝑆𝑣⊗𝑡/2⟩ = 𝑝𝑆(𝑣) and noting

that 𝑀𝑆 ⪰ 0 because 𝑝𝑆 is an SoS, we satisfy the remaining Constraints 5 and 7 of Program̂︀𝒫 .

It remains to verify that the SoS proof (4.25) exists with high probability. Because

�̂�𝑖 = 𝜇𝑖, it is enough to show that the SoS proof

{𝑣2𝑖 = 1 ∀1 ≤ 𝑖 ≤ 𝑛} ⊢𝑂(𝑡)
1

(1− 𝜀)𝑁
∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡 ≤ 2 · (8𝑡/𝑘)𝑡/2,

exists. It is enough to bound the quantity

𝑏(𝑣) ,
1

(1− 𝜀)𝑁
∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡 −
1

(1− 𝜀)𝑁
∑︁
𝑖∈𝑆𝐺

E𝑋∼𝒟𝑖
⟨𝑋 − 𝜇𝑖, 𝑣⟩𝑡

by 𝑏(𝑣) ≤ (8𝑡/𝑘)𝑡/2. Together with Lemma 4.3.3, this will conclude the proof. But the desired

bound on 𝑏(𝑣) follows by condition (III) in Lemma 4.4.4, with probability 1−1/poly(𝑛).

4.6.3 Moment Constraints for Program 𝒫 ′

The only changes in going from Program 𝒫 to Program 𝒫 ′ are Constraints 3 and 5. In

this section, we explain how to succinctly quantify over all 𝑣 ∈ {±1}𝑛 with at most ℓ sign

changes. To describe this encoding, we first recall some basic facts about the (discretized)

Haar wavelet basis.

Haar Wavelets

Definition 4.6.4. Let 𝑚 be a positive integer and let 𝑛 = 2𝑚. The Haar wavelet basis is an

orthonormal basis over R𝑛 consisting of the father wavelet 𝜓0father,0 = 𝑛−1/2 · 1, the mother

wavelet 𝜓0mother,0 = 𝑛−1/2 · (1, ..., 1,−1, ...,−1) (where (1, ..., 1,−1, ...,−1) contains 𝑛/2 1’s

and 𝑛/2 -1’s), and for every 𝑖, 𝑗 for which 1 ≤ 𝑖 < 𝑚 and 0 ≤ 𝑗 < 2𝑖, the wavelet 𝜓𝑖,𝑗 whose

261

2𝑚−𝑖 · 𝑗 + 1, ..., 2𝑚−𝑖 · 𝑗 + 2𝑚−𝑖−1-th coordinates are 2−(𝑚−𝑖)/2 and whose 2𝑚−𝑖 · 𝑗 + (2𝑚−𝑖−1 +

1), ..., 2𝑚−𝑖 · 𝑗 + 2𝑚−𝑖-th coordinates are −2−(𝑚−𝑖)/2, and whose remaining coordinates are 0.

Let 𝐻𝑚 denote the 𝑛 × 𝑛 matrix whose rows consist of the vectors of the Haar wavelet

basis for R𝑛. When the context is clear, we will omit the subscript and refer to this matrix

as 𝐻.

Example 4.6.5. The Haar wavelet basis for R8 consists of the vectors

𝜓0father,0 = 2−3/2(1, 1, 1, 1, 1, 1, 1, 1)

𝜓0mother,0 = 2−3/2(1, 1, 1, 1,−1,−1,−1,−1)

𝜓1,0 = 2−1(1, 1,−1,−1, 0, 0, 0, 0)

𝜓1,1 = 2−1(0, 0, 0, 0, 1, 1,−1,−1)

𝜓2,0 = 2−1/2(1,−1, 0, 0, 0, 0, 0, 0)

𝜓2,1 = 2−1/2(0, 0, 1,−1, 0, 0, 0, 0)

𝜓2,2 = 2−1/2(0, 0, 0, 0, 1,−1, 0, 0)

𝜓2,3 = 2−1/2(0, 0, 0, 0, 0, 0, 1,−1)

The key observation is that there is an orthonormal basis under which any 𝑣 ∈ {±1}𝑛

with at most ℓ sign changes has an (ℓ log 𝑛+ 1)-sparse representation.

Define 𝒯 , {0father, 0mother, 1, ...,𝑚−1}. By abuse of notation, we will sometimes identify

the indices 0father and 0mother with their numerical value of 0.

Lemma 4.6.6. Let 𝑣 ∈ {±1}𝑛 have at most ℓ sign changes. Then

∑︁
𝑖∈𝒯

2𝑖−1∑︁
𝑗=0

2−(𝑚−𝑖)/2|⟨𝜓𝑖,𝑗, 𝑣⟩| ≤ ℓ log 𝑛+ 1. (4.26)

Proof. We first show that 𝐻𝑣 has at most ℓ log 𝑛 + 1 nonzero entries. For any 𝜓𝑖,𝑗 with

nonzero entries at indices [𝑎, 𝑏] ⊂ [𝑛] and such that 𝑖 ̸= 0father, if 𝑣 has no sign change in the

interval [𝑎, 𝑏], then ⟨𝜓𝑖,𝑗, 𝑣⟩ = 0. For every index 𝜈 ∈ [𝑛] at which 𝑣 has a sign change, there

are at most 𝑚 = log 𝑛 choices of 𝑖, 𝑗 for which 𝜓𝑖,𝑗 has a nonzero entry at index 𝜈, from

which the claim follows by a union bound over all ℓ choices of 𝜈, together with the fact that

262

⟨𝜓0father,0, 𝑣⟩ may be nonzero.

Now for each (𝑖, 𝑗) for which ⟨𝜓𝑖,𝑗, 𝑣⟩ ≠ 0, note that

2−(𝑚−𝑖)/2 · |⟨𝜓𝑖,𝑗, 𝑣⟩| ≤ 2−(𝑚−𝑖)/2 ·
(︀
2−(𝑚−𝑖)/2 · 2𝑚−𝑖)︀ = 1,

from which (4.26) follows.

For notational simplicity in the arguments below, for 𝜈 ∈ [𝑛], if the 𝜈-th element of the

Haar wavelet basis for R𝑛 is some 𝜓𝑖,𝑗, then let 𝜇(𝜈) denote the weight 2−(𝑚−𝑖)/2. Also, for

any 𝑖 ∈ 𝒯 , let 𝑇𝑖 ⊂ [𝑛] denote the set of all indices 𝜈 for which the 𝜈-th Haar wavelet is of

the form 𝜓𝑖,𝑗 for some 𝑗.

The Matrix SoS Encoding By Lemma 4.6.6, instead of quantifying over all 𝑣 ∈ {±1}𝑛

with at most ℓ sign changes in Constraints 3 and 5 of Program 𝒫 ′, we can quantify over all

𝑣 ∈ R𝑛 with Frobenius norm at most 𝑛 and for which (4.26) is satisfied. Specifically, we can

ask for an SoS proof of

⟨�̂�𝑖 − �̂�, 𝑣⟩ ≤ 5𝜔 (4.27)

using Axioms 1.

Axioms 1 (Axioms for Constraint 3). Let W1, ...,W𝑛 be auxiliary scalar variables.

1. 𝑣2𝑖 = 1 for all 𝑖 ∈ [𝑛]

2. −W𝑖 ≤ (𝐻𝑣)𝑖 ≤W𝑖 for all 𝑖 ∈ [𝑛]

3.
∑︀

𝑖 𝜇
(𝑖) ·W𝑖 ≤ ℓ log 𝑛+ 1,

Likewise, we can ask for an SoS proof of

1

(1− 𝜀)𝑁
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 ≤ 2 · (8𝑡/𝑘)𝑡/2, (4.28)

using Axioms 2.

Axioms 2 (Axioms for Constraint 5). Let {U𝛼}, where 𝛼 ranges over all monomials in the

indices [𝑛] of degree 𝑡/2.

263

1. 𝑣2𝑖 = 1 for all 𝑖 ∈ [𝑛]

2. −U𝛼 ≤ (𝐻⊗𝑡/2𝑣⊗𝑡/2)𝛼 ≤ U𝛼 for all monomials 𝛼 of degree 𝑡/2

3.
∑︀

𝛼 𝜇
(𝛼)U𝛼 ≤ (ℓ log 𝑛+ 1)𝑡/2,

where 𝜇(𝛼) ,
∏︀

𝑖∈𝛼 𝜇
(𝑖).

As in the proof of Lemma 4.4.2, the values of {�̂�𝑖} and {𝑤𝑖} will be given by the canonical

assignment, so the only variables in the SoS proofs of (4.27) and (4.28) will be 𝑣1, ..., 𝑣𝑛 and,

respectively, {W𝑖}𝑖∈[𝑛] and {U𝛼}|𝛼|≤𝑡/2.

By definition, the existence of a degree-𝑑 SoS proof for (4.27) using Axioms 1 is equiv-

alent to the existence of polynomials 𝑓𝐾1,𝐾2

𝐽 (𝑣,W, {�̂�𝑖}, �̂�) and 𝑔𝐾1,𝐾2

𝐽 (𝑣,W, {�̂�𝑖}, �̂�) for

𝐽,𝐾1, 𝐾2 ⊂ [𝑛] for which

5𝜔 − ⟨�̂�𝑖 − �̂�, 𝑣⟩ =∑︁
𝐽,𝐾1,𝐾2

𝑓𝐾1,𝐾2

𝐽 ℎ𝐾1,𝐾2

𝐽 +

⎛⎝ℓ log 𝑛+ 1−
∑︁
𝑖∈[𝑛]

𝜇(𝑖)W𝑖

⎞⎠ ∑︁
𝐽,𝐾1,𝐾2

𝑔𝐾1,𝐾2

𝐽 · ℎ𝐾1,𝐾2

𝐽 ,

where

ℎ𝐾1,𝐾2

𝐽 ,
∏︁
𝑖∈𝐽

(1− 𝑣2𝑖) ·
∏︁
𝑘1∈𝐾1

(W𝑘1 − (𝐻𝑣)𝑘1) ·
∏︁
𝑘2∈𝐾2

(W𝑘2 + (𝐻𝑣)𝑘2),

and where each 𝑓𝐾1,𝐾2

𝐽 and 𝑔𝑇1,𝑇2𝐽 is a sum-of-squares polynomial such that 𝑓𝐾1,𝐾2

𝐽 · ℎ𝐾1,𝐾2

𝐽

and (W𝑗 − (𝐻𝑣)𝑗) · 𝑔𝐾1,𝐾2

𝐽 · ℎ𝐾1,𝐾2

𝐽 is degree 𝑑. We will take this degree to be 𝑑 = 𝑂(1).

Completely analogously, the existence of a degree-𝑑 SoS proof for (4.28) using Axioms 2 is

equivalent to the existence of polynomials 𝑝𝑇1,𝑇2𝑆 (𝑣,U, {𝑤𝑖}, {�̂�𝑖}, �̂�) and 𝑞𝑇1,𝑇2𝑆 (𝑣, 𝑈, {𝑤𝑖}, {�̂�𝑖}, �̂�)

for 𝑆 ⊂ [𝑛], 𝑇1, 𝑇2 ⊆ {𝛼 : |𝛼| ≤ 𝑡/2} for which

2 · (8𝑡/𝑘)𝑡/2
∑︁
𝑖∈[𝑁]

𝑤𝑖 −
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 =

∑︁
𝑆,𝑇1,𝑇2

𝑝𝑇1,𝑇2𝑆 𝑟𝑇1,𝑇2𝑆 +

(︃
(ℓ log 𝑛+ 1)𝑡/2 −

∑︁
𝛼

𝜇(𝛼) ·U𝛼

)︃ ∑︁
𝑆,𝑇1,𝑇2

·𝑞𝑇1,𝑇2𝑆 · 𝑟𝑇1,𝑇2𝑆

264

where

𝑟𝑇1,𝑇2𝑆 ,
∏︁
𝑖∈𝑆

(︀
1− 𝑣2𝑖

)︀
·
∏︁
𝛼∈𝑇1

(︀
U𝛼 − (𝐻⊗𝑡/2𝑣⊗𝑡/2)𝛼

)︀
·
∏︁
𝛽∈𝑇2

(︀
U𝛽 + (𝐻⊗𝑡/2𝑣⊗𝑡/2)𝛽

)︀

and where each 𝑝𝑇1,𝑇2𝑆 and 𝑞𝑇1,𝑇2𝑆 is a sum-of-squares polynomial such that 𝑝𝑇1,𝑇2𝑆 · 𝑟𝑇1,𝑇2𝑆 and(︀
U𝛼 − (𝐻⊗𝑡/2𝑣⊗𝑡/2)𝛼

)︀
· 𝑞𝑇1,𝑇2𝑆 · 𝑟𝑇1,𝑇2𝑆 is degree 𝑑. We will take this degree to be 𝑑 = 𝑂(𝑡).

Let 𝐹𝐾1,𝐾2

𝐽 and𝐺𝐾1,𝐾2

𝐽 respectively denote the matrices of coefficients of 𝑓𝐾1,𝐾2

𝐽 and 𝑔𝐾1,𝐾2

𝐽

as degree-𝑂(1) polynomials solely in the variables {𝑣𝑖} and {W𝑖}, with entries denoted by

(𝐹𝐾1,𝐾2

𝐽)𝛾,𝜌 and (𝐺𝐾1,𝐾2

𝐽)𝛾,𝜌. Likewise, let 𝑃 𝑇1,𝑇2
𝑆 and 𝑄𝑇1,𝑇2

𝑆 respectively denote the matrices

of coefficients of 𝑝𝑇1,𝑇2𝑆 and 𝑞𝑇1,𝑇2𝑆 as degree-𝑂(𝑡) polynomials solely in the variables {𝑣𝑖} and

{U𝛼}, with entries denoted by (𝑃 𝑇1,𝑇2
𝑆)𝛾,𝜌 and (𝑄𝑇1,𝑇2

𝑆)𝛾,𝜌.

Remark 4.6.7. As we will demonstrate in the course of our analysis, we only need consider

𝐾1, 𝐾2 of size at most 1, and 𝑇1, 𝑇2 of size at most 2, so the total number of constraints in

the overall program will only be singly-exponential in 𝑡.

We will consider the following program.

Program 𝒫 ′. The variables are {𝑤𝑖}𝑖∈[𝑁], �̂�, {�̂�𝑖}𝑖∈[𝑁], {𝑄𝑖𝑗}, {(𝑃 𝑇1,𝑇2
𝑆)𝛾,𝜌}, {(𝑄𝑇1,𝑇2

𝑆)𝛾,𝜌},

and the constraints are

1. 𝑤2
𝑖 = 𝑤𝑖 for all 𝑖 ∈ [𝑁]

2. (1− 𝜀)𝑁 ≤
∑︀
𝑤𝑖 ≤ (1− 𝜀)𝑁

3.

5𝜔 − ⟨�̂�𝑖 − �̂�, 𝑣⟩ =
∑︁

𝐽,𝐾1,𝐾2

ℎ𝐾1,𝐾2

𝐽 · ⟨(𝑣,W)⊗𝑡/2, 𝐹 𝐽1,𝐽2
𝐾 (𝑣,W)⊗𝑡/2⟩

+

(︃
ℓ log 𝑛+ 1−

∑︁
𝑖

𝜇(𝑖)W𝑖

)︃ ∑︁
𝐽,𝐾1,𝐾2

ℎ𝐾1,𝐾2

𝐽 · ⟨(𝑣,W)⊗𝑡/2, 𝐺𝐽1,𝐽2
𝐾 (𝑣,W)⊗𝑡/2⟩

4.
∑︀

𝑖∈[𝑁]𝑤𝑖𝑋𝑖 = �̂� ·
∑︀

𝑖∈[𝑁]𝑤𝑖

5.

265

2 · (8𝑡/𝑘)𝑡/2
∑︁
𝑖∈[𝑁]

𝑤𝑖 −
∑︁
𝑖∈[𝑁]

𝑤𝑖⟨𝑋𝑖 − �̂�𝑖, 𝑣⟩𝑡 =
∑︁
𝑆,𝑇1,𝑇2

𝑟𝑇1,𝑇2𝑆 · ⟨(𝑣,U)⊗𝑡/2, 𝑃 𝑇1,𝑇2
𝑆 (𝑣,U)⊗𝑡/2⟩

+

(︃
(ℓ log 𝑛+ 1)𝑡/2 −

∑︁
𝛼

𝜇(𝛼) ·U𝛼

)︃ ∑︁
𝑆,𝑇1,𝑇2

𝑟𝑇1,𝑇2𝑆 · ⟨(𝑣,U)⊗𝑡/2, 𝑄𝑇1,𝑇2
𝑆 (𝑣,U)⊗𝑡/2⟩

6. 𝐹 𝑇1,𝑇2
𝑆 , 𝐺𝑇1,𝑇2

𝑆 ⪰ 0 for all 𝑇1, 𝑇2, 𝑆 ⊂ [𝑛] for which |𝑇1|, |𝑇2|, |𝑆| ≤ 𝑂(𝑡)..

7. 𝑃 𝑇1,𝑇2
𝑆 , 𝑄𝑇1,𝑇2

𝑆 ⪰ 0 for all 𝑇1, 𝑇2, 𝑆 ⊂ [𝑛] for which |𝑇1|, |𝑇2|, |𝑆| ≤ 𝑂(𝑡).

8. �̂�𝑖 ≥ 0 for all 𝑖 ∈ [𝑛] and
∑︀

𝑖 �̂�𝑖 = 1.

Proof of Lemma 4.5.6. As before, solvability follows from the fact that the problem of out-

putting a degree-𝑂(𝑡) pseudodistribution satisfying a system of degree-𝑂(𝑡) polynomial con-

straints can be encoded a a semidefinite program of size 𝑛𝑂(𝑡).

The fact that ̂︀𝒫 ′ ⊢𝑂(𝑡) 𝒫 ′ follows by definition and by Lemma 4.26.

Finally, we verify that under the canonical assignment, with high probability over𝑋1, ..., 𝑋𝑁

there exists a satisfying assignment to the remaining variables of Program ̂︀𝒫 ′. As in the proof

of Lemma 4.4.2, the canonical assignment clearly satisfies Constraints 1, 2, and 4.

We prove that Constraints 3 and 6 are satisfiable with high probability in Lemma 4.6.9,

and we prove that Constraints 5 and 7 are satisfiable with high probability in Lemma 4.6.13.

The following fact will be useful in the proofs of Lemma 4.6.9 and 4.6.13.

Lemma 4.6.8 (“Shelling trick”). If 𝑣 ∈ R𝑚 satisfies ‖𝑣‖2 ≤ 𝐶 and ‖𝑣‖1 = 𝐶 ·
√
𝑘, then

there exist 𝑘-sparse vectors 𝑣1, ..., 𝑣𝑚/𝑘 with disjoint supports for which 𝑣 =
∑︀𝑚/𝑘

𝑖=1 𝑣𝑖 and∑︀𝑚/𝑘
𝑖=1 ‖𝑣𝑖‖2 ≤ 2𝐶.

Proof. We may assume without loss of generality that 𝐶 = 1. Let 𝐵1 ⊂ [𝑚] be the indices

of the 𝑘 largest entries of 𝑣, 𝐵2 be those of the next 𝑘 largest, and so on, so we may write

[𝑚] as the disjoint union 𝐵1 ∪ · · · ∪𝐵𝑚/𝑘. For 𝑖 ∈ [𝑚/𝑘], define 𝑣𝑖 ∈ R𝑚 to be the restriction

of 𝑣 to the coordinates indexed by 𝐵𝑖. For any 𝑖, note that for any 𝑗 ∈ 𝐵𝑖, |𝑣𝑗| ≤ 1
𝑘
‖𝑣𝑗−1‖1,

266

so

‖𝑣𝑖‖22 =
∑︁
𝑗∈𝐵𝑖

𝑣2𝑗 ≤ 𝑘 · 1
𝑘2
· ‖𝑣𝑖−1‖21 =

1

𝑘
‖𝑣𝑖−1‖21.

So ‖𝑣𝑖‖2 ≤ ‖𝑣𝑖−1‖1/
√
𝑘 and thus

𝑚/𝑘∑︁
𝑖=1

‖𝑣𝑖‖2 ≤ ‖𝑣1‖2 +
1√
𝑘
‖𝑣‖1 ≤ 2

as desired.

Lemma 4.6.9. Under the canonical assignment, with high probability there is some choice

of {(𝐹 𝐽1,𝐽2
𝐾)𝛾,𝜌} and {(𝐺𝐽1,𝐽2

𝐾)𝛾,𝜌} for which Constraints 3 and 6 are satisfied.

Proof. We first write

⟨�̂�𝑖 − �̂�, 𝑣⟩ =
1

𝑚

∑︁
𝑗 ̸=𝑖

⟨𝜇𝑖 − 𝜇𝑗, 𝑣⟩+
1

𝑚

∑︁
𝑗∈𝑆𝐺

⟨𝑋𝑗 − 𝜇𝑗, 𝑣⟩.

Note that by Fact 1.3.44,

{𝑣2𝑖 = 1 ∀ 1 ≤ 𝑖 ≤ 𝑛} ⊢2 ⟨𝜇𝑖 − 𝜇𝑗, 𝑣⟩ ≤ ‖𝜇𝑖 − 𝜇𝑗‖1 ≤ ‖𝜇𝑖 − 𝜇‖1 + ‖𝜇𝑗 − 𝜇‖1 ≤ 4𝜔.

It remains to show that with high probability, there is a degree-𝑂(𝑡) proof that Axioms 1

imply 1
𝑚

∑︀
𝑗∈𝑆𝐺
⟨𝑋𝑗 − 𝜇𝑗, 𝑣⟩ ≤ 𝜔.

Equivalently, we must show that for any degree-𝑡 pseudodistribution Ẽ over the variables

𝑣 and U which satisfies Axioms 1, we have that

1

𝑚

∑︁
𝑗∈𝑆𝐺

⟨𝑋𝑗 − 𝜇𝑗, Ẽ[𝑣]⟩ ≤ 𝜔. (4.29)

The set of vectors Ẽ[𝑣] arising from pseudodistributions Ẽ satisfying Axioms 1 is some convex

set 𝒥 ⊂ R𝑛.

Lemma 4.6.10. Let 𝒥 be the convex set of all vectors of the form Ẽ[𝑣] for some degree-𝑡

pseudodistribution Ẽ over the variables 𝑣,W satisfying Axioms 1.

267

Additionally, let 𝒥1,𝒥2 ⊂ R𝑛 consist of all vectors 𝑢 for which
∑︀

𝑖 𝜇
(𝑖)|𝑢𝑖| ≤ ℓ log 𝑛 + 1

and for which ‖𝑢‖2 ≤
√
𝑛 respectively. Then

𝒥 ⊂ 𝐻−1(𝒥1 ∩ 𝒥2)

Proof. Take any 𝑢 ∈ 𝒥 . We first show that 𝑢 ∈ 𝐻−1 · 𝒥1. By linearity of Ẽ, we may write 𝑢

as

𝑢 = 𝐻−1 · Ẽ[𝐻𝑣].

For any 𝑖 ∈ [𝑛], the second of Axioms 1 immediately implies that

−W𝑖 ≤ Ẽ [(𝐻𝑣)𝑖] ≤W𝑖.

We emphasize that this is the only place where we use the second of Axioms 1, and only in

a linear fashion, hence Remark 4.6.7.

So
∑︀

𝑖 𝜇
(𝑖)|(𝐻𝑢)𝑖| ≤ Ẽ[

∑︀
𝑖 𝜇

(𝑖)W𝑖] ≤ ℓ log 𝑛 + 1, where the last inequality follows by the

third of Axioms 1.

Finally, to show that 𝑢 ∈ 𝐻−1 · 𝒥2, note first that by orthonormality of 𝐻, it is enough

to show that 𝑢 ∈ 𝒥2. But this follows immediately from the fact that Ẽ satisfies the first

of Axioms 1, which by (1.20) implies that −1 ≤ Ẽ[𝑣𝑖] ≤ 1 for all 𝑖 ∈ [𝑛], from which we

conclude that ‖𝑢‖22 = 𝑛 and thus 𝑢 ∈ 𝒥2.

Lemma 4.6.11. For every 𝜂 ≤ (ℓ log 𝑛 + 1)−1, there exists a set 𝒩 ⊂ P𝑛−1(R) of size

𝑂(𝑛3/2/𝜂)𝑠 such that for every 𝑢 ∈ 𝐻−1(𝒥1 ∩ 𝒥2), there exists some �̃� =
∑︀

𝜈 𝛼𝜈 · 𝑢*𝜈 for

𝑢*𝜈 ∈ 𝒩 such that 1) ‖𝑢− �̃�‖2 ≤ 𝜂, 2)
∑︀

𝜈 𝛼𝜈 ≤ 1, and 3) ‖𝑢*𝜈‖∞ ≤ 2(ℓ log 𝑛+ 1) for all 𝜈.

Proof. Let 𝑠 = ℓ log 𝑛+1, and let 𝑚 = log 𝑛. Let 𝒩 ′ be an 𝜂
(𝑚+1)

√
𝑛
-net in 𝐿2 norm for all 𝑠2-

sparse vectors in S𝑛−1. Because S𝑠2−1 has an 𝜂
(𝑚+1)

√
𝑛
-net in 𝐿2 norm of size (3(𝑚+1)

√
𝑛/𝜂)𝑠

2 ,

by a union bound we have that |𝒩 ′| ≤
(︀
𝑛
𝑠2

)︀
· (3(𝑚+ 1)

√
𝑛/𝜂)𝑠

2
= 𝑂(𝑛3/2 log 𝑛/𝜂)𝑠

2 .

Take any 𝑢 ∈ 𝐻−1(𝒥1 ∩ 𝒥2) and consider 𝑤 , 𝐻𝑢 ∈ 𝒥1 ∩ 𝒥2. We may write 𝑤 as∑︀
𝑖∈𝒯 𝑤[𝑖], where

𝑤[𝑖] =
∑︁
𝜈∈𝑇𝑖

𝑤𝜈 · 𝑒𝜈

268

for 𝑒𝜈 the 𝜈-th standard basis vector in R𝑛.

As the nonzero entries of 𝑤[𝑖] are just a subset of those of 𝑤, we clearly have ‖𝑤[𝑖]‖2 ≤
√
𝑛

for all 𝑖 ∈ 𝒯 . Moreover, because 𝑤 ∈ 𝒥1, we have that

∑︁
𝑖

2−(𝑚−𝑖)/2|𝑤[𝑖]| ≤ 𝑠, (4.30)

so in particular

‖𝑤[𝑖]‖1 ≤ 2(𝑚−𝑖)/2 · 𝑠 = 2−𝑖/2 · 𝑠
√
𝑛.

We can thus apply Lemma 4.6.8 to conclude that for each 𝑖 ∈ [𝑚], 𝑤[𝑖] =
∑︀

𝑗 𝑤
𝑖,𝑗 for some

vectors {𝑤𝑖,𝑗}𝑗 of sparsity at most ⌈2−𝑖 · 𝑠2⌉ ≤ 𝑠2 and for which

∑︁
𝑗

‖𝑤𝑖,𝑗‖2 ≤
√
𝑛.

For each 𝑤𝑖,𝑗, there is some (𝑤′)𝑖,𝑗 ∈ 𝒩 ′ such that if we define �̃�𝑖,𝑗 , ‖𝑤𝑖,𝑗‖2 · (𝑤′)𝑖,𝑗, then

we have

‖𝑤𝑖,𝑗 − �̃�𝑖,𝑗‖2 ≤
𝜂

(𝑚+ 1)
√
𝑛
· ‖𝑤𝑖,𝑗‖2. (4.31)

Defining �̃�[𝑖] ,
∑︀

𝑗 �̃�
𝑖,𝑗, we get that

‖𝑤[𝑖]− �̃�[𝑖]‖2 ≤
𝜂

(𝑚+ 1)
√
𝑛

∑︁
𝑗

‖𝑤𝑖,𝑗‖2 ≤
𝜂

𝑚+ 1
.

So if we define �̃� ,
∑︀

𝑖∈𝒯 �̃�[𝑖] =
∑︀

𝑖∈𝒯
∑︀

𝑗 �̃�
𝑖,𝑗, we have that ‖𝑤 − �̃�‖2 ≤ 𝜂.

Now let 𝒩 , P (𝐻−1𝒩 ′). As 𝑢 = 𝐻−1𝑤 and 𝐻−1 is an isometry, if we define �̃�𝑖,𝑗 ,

𝐻−1�̃�𝑖,𝑗 and �̃� ,
∑︀

𝑖∈𝒯
∑︀

𝑗 �̃�
𝑖,𝑗, then we likewise get that ‖𝑢− �̃�‖2 ≤ 𝜂, and clearly �̃�𝑖,𝑗 ∈ 𝒩 ,

concluding the proof of part 1) of the lemma.

For each �̃�𝑖,𝑗, define

𝑢𝑖,𝑗* , �̃�𝑖,𝑗/𝛼𝑖,𝑗 for 𝛼𝑖,𝑗 , 𝑠−1 · 2−(𝑚−𝑖)/2‖𝑤𝑖,𝑗‖∞ (4.32)

269

so that

�̃� =
∑︁
𝑖,𝑗

𝛼𝑖,𝑗𝑢
𝑖,𝑗
* .

Note that

∑︁
𝑖,𝑗

𝛼𝑖,𝑗 ≤
1

𝑠

∑︁
𝑖

2−(𝑚−𝑖)/2
∑︁
𝑗

‖𝑤𝑖,𝑗‖∞

≤ 1

𝑠

∑︁
𝑖

2−(𝑚−𝑖)/2‖𝑤[𝑖]‖1

≤ 1

𝑠
· 𝑠 = 1,

where the second inequality follows by the fact that for fixed 𝑖, the supports of the vectors

𝑤𝑖,𝑗 are disjoint for different 𝑗 so that
∑︀

𝑗‖𝑤𝑖,𝑗‖∞ ≤ ‖𝑤[𝑖]‖1, and the third inequality follows

from (4.30). This concludes the proof of part 2) of the lemma.

Finally, we need to bound ‖𝑢𝑖,𝑗* ‖∞. Note first that for any vector 𝑧 supported only on

indices 𝜈 ∈ 𝑇𝑖,

‖𝐻−1𝑧‖∞ ≤ 2−(𝑚−𝑖)/2 · ‖𝑧‖∞ (4.33)

because the Haar wavelets {𝜓𝑖,𝑗}𝑗 have disjoint supports and 𝐿∞ norm 2−(𝑚−𝑖)/2. It follows

that

‖�̃�𝑖,𝑗‖∞ ≤ ‖𝐻−1𝑤𝑖,𝑗‖∞ + ‖𝐻−1(𝑤𝑖,𝑗 − �̃�𝑖,𝑗)‖∞

≤ 2−(𝑚−𝑖)/2 · ‖𝑤𝑖,𝑗‖∞ + 2−(𝑚−𝑖)/2‖𝑤𝑖,𝑗 − �̃�𝑖,𝑗‖∞

≤ 2−(𝑚−𝑖)/2 · ‖𝑤𝑖,𝑗‖∞ + 2−(𝑚−𝑖)/2‖𝑤𝑖,𝑗 − �̃�𝑖,𝑗‖2

≤ 2−(𝑚−𝑖)/2 · ‖𝑤𝑖,𝑗‖∞ + 2−(𝑚−𝑖)/2 · 𝜂

(𝑚+ 1)
√
𝑛
‖𝑤𝑖,𝑗‖2

≤ 2−(𝑚−𝑖)/2 · ‖𝑤𝑖,𝑗‖∞ + 2−(𝑚−𝑖)/2 · 𝜂

(𝑚+ 1)
√
𝑛
‖𝑤𝑖,𝑗‖∞ · 𝑠

= 2−(𝑚−𝑖)/2 · ‖𝑤𝑖,𝑗‖∞
(︂
1 +

𝜂 · 𝑠
(𝑚+ 1)

√
𝑛

)︂
≤ 2 · 2−(𝑚−𝑖)/2 · ‖𝑤𝑖,𝑗‖∞,

where the first inequality is triangle inequality, the second inequality follows by (4.33), the

270

third inequality follows from monotonicity of 𝐿𝑝 norms, the fourth inequality follows from

(4.31), the fifth inequality follows from the fact that 𝑤𝑖,𝑗 is 𝑠2-sparse, and the final inequality

follows from the hypothesis that 𝜂 ≤ 1/𝑠. Recalling (4.32), we conclude that ‖𝑢𝑖,𝑗* ‖∞ ≤ 2𝑠

as claimed.

Next we show that we can control 1
𝑚

∑︀
𝑗∈𝑆𝐺
⟨𝑋𝑗 −𝜇𝑗, 𝑢⟩ for all directions 𝑢 in the net 𝒩 .

Lemma 4.6.12. Let 𝜉 > 0 and let 𝒩 ∈ P𝑛−1(R) be any collection of 𝑀 directions. Then

Pr

[︃
1

𝑚

∑︁
𝑗∈𝑆𝐺

⟨𝑋𝑗 − 𝜇𝑗, 𝑢⟩ > 𝜉 · ‖𝑢‖∞ ∀𝑢 ∈ 𝒩

]︃
< 2𝑀 · 𝑒−2𝑚𝜉2 ,

where the probability is over the samples 𝑋𝑗 for 𝑗 ∈ 𝑆𝐺.

Proof. Without loss of generality, assume that ‖𝑢‖∞ = 1. For any 𝑗 ∈ 𝑆𝐺, note that

‖𝑋𝑗−𝜇𝑗‖1 ≤ 2, so ⟨𝑋𝑗−𝜇𝑗, 𝑢⟩ is a [−2, 2]-valued random variable, call it 𝐴𝑗. By Hoeffding’s

inequality,

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑚 ∑︁

𝑗∈𝑆𝐺

𝐴𝑗 −
1

𝑚

∑︁
𝑗∈𝑆𝐺

E[𝐴𝑗]

⃒⃒⃒⃒
⃒ ≥ 𝜉

]︃
≤ 2𝑒−2𝑚𝜉2 ,

so we are done by a union bound over the 𝑀 directions in 𝒩 .

We may now proceed with the proof of (4.29). For 𝑢 ∈ 𝒥 , by Lemmas 4.6.10 and 4.6.11,

there is some �̃� =
∑︀

𝜈 𝛼𝜈𝑢
*
𝜈 such that 𝑢*𝜈 ∈ 𝒩 and ‖𝑢− �̃�‖2 ≤ 𝜂. We may write

1

𝑚

∑︁
𝑗∈𝑆𝐺

⟨𝑋𝑗 − 𝜇𝑗, 𝑢⟩ ≤
1

𝑚

∑︁
𝑗∈𝑆𝐺

⟨𝑋𝑗 − 𝜇𝑗, �̃�⟩+ ‖
1

𝑚

∑︁
𝑗∈𝑆𝐺

𝑋𝑗‖2 · ‖𝑢− �̃�‖2

≤ 1

𝑚

∑︁
𝑗∈𝑆𝐺

⟨𝑋𝑗 − 𝜇𝑗, �̃�⟩+ 𝜂

=
∑︁
𝜈

𝛼𝜈

(︃
1

𝑚

∑︁
𝑗∈𝑆𝐺

⟨𝑋𝑗 − 𝜇𝑗, 𝑢*𝜈⟩

)︃
+ 𝜂

≤
∑︁
𝜈

𝛼𝜈 · 𝜉 · ‖𝑢*𝜈‖∞ + 𝜂

≤ 2𝜉(ℓ log 𝑛+ 1)(log 𝑛+ 1) + 𝜂,

where the second inequality follows from the fact that 1
𝑚

∑︀
𝑗∈𝑆𝐺

𝑋𝑗 is a vector in Δ𝑛 and

271

thus has 𝐿2 norm at most 1, and the penultimate step holds with probability 2|𝒩 |𝑒−8𝑚𝜉2 .

So if 𝜂 = 𝜔/2 and 𝜉 = 𝜔
4(ℓ log𝑛+1)(log𝑛+1)

, then as long as

𝑚 = Ω(𝜉−2 log |𝒩 |) = Ω

(︂
log(1/𝜔)

𝜔
· ℓ4 log7 𝑛

)︂
,

then with probability at least 1−poly(𝑛), there exists an SoS proof of (4.29) using Axioms 1.

Lemma 4.6.13. Under the canonical assignment, with high probability there is some choice

of {(𝑃 𝑇1,𝑇2
𝑆)𝛾,𝜌} and {(𝑄𝑇1,𝑇2

𝑆)𝛾,𝜌} for which Constraints 5 and 7 are satisfied.

The proof of Lemma 4.6.13 is conceptually very similar to that of Lemma 4.6.9, so we

defer it to Appendix 4.7.

4.7 Appendix: Proof of Lemma 4.6.13

In the arguments that follow, it will be useful to define the notion of projectivization. Given a

set 𝑆 ⊂ R𝑚, let P𝑆 denote its projectivization, namely the quotient of 𝑆 by the equivalence

relation 𝑢 ∼ 𝑣 if 𝑢 = 𝜆𝑣 for some 𝜆 ∈ R. We will denote the projectivization of R𝑚 by

P𝑛−1(R). Occasionally we will abuse notation and implicitly associate 𝑆 ⊂ P𝑛−1(R) with its

fiber under the quotient map R𝑛 → P𝑛−1(R).

Proof of Lemma 4.6.13. As in the proof of Lemma 4.4.2, because of Lemma 4.3.3 it is enough

to show an SoS proof using Axioms 2 that

1

𝑚

∑︁
𝑖∈𝑆𝐺

⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩𝑡 −
1

𝑚

∑︁
𝑖∈𝑆𝐺

E𝑋∼𝒟𝑖
⟨𝑋 − 𝜇𝑖, 𝑣⟩𝑡 ≤ (8𝑡/𝑘)𝑡/2.

Equivalently, we must show that for any degree-𝑡 pseudodistribution Ẽ over the variables 𝑣

and U which satisfies Axioms 2, we have that

⟨
Z, Ẽ

[︀
𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤

]︀⟩
≤ (8𝑡/𝑘)𝑡/2, (4.34)

where Z , Z[𝑆𝐺]. The set of matrices Ẽ[𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤] arising from pseudodistributions Ẽ

272

satisfying Axioms 2 is some convex set 𝒦 in R𝑛𝑡/2×𝑛𝑡/2 .

Lemma 4.7.1. Let 𝒦 ⊂ R𝑛𝑡/2×𝑛𝑡/2 be the convex set of all matrices of the form Ẽ[𝑣⊗𝑡/2(𝑣⊗𝑡/2)⊤]

for some degree-𝑡 pseudodistribution Ẽ over the variables 𝑣,U satisfying Axioms 2.

Additionally, let 𝒦1,𝒦2 ⊂ R𝑛𝑡/2×𝑛𝑡/2 consist of all matrices M for which
∑︀

𝛼,𝛽 𝜇
(𝛼)𝜇(𝛽)|M𝛼,𝛽| ≤

(ℓ log 𝑛+ 1)𝑡 and for which ‖M‖𝐹 ≤ 𝑛𝑡/2 respectively. Then

𝒦 ⊂
[︀
(𝐻−1)⊗𝑡/2

]︀
(𝒦1 ∩ 𝒦2)

[︀
(𝐻−1)⊗𝑡/2

]︀⊤
,

Proof. Take any M ∈ 𝒦. We first show that M ∈
[︀
(𝐻−1)⊗𝑡/2

]︀
𝒦1

[︀
(𝐻−1)⊗𝑡/2

]︀⊤. By linearity

of Ẽ, we may write M as

M = (𝐻−1)⊗𝑡/2 · Ẽ
[︁[︀
𝐻⊗𝑡/2𝑣⊗𝑡/2

]︀
·
[︀
𝐻⊗𝑡/2𝑣⊗𝑡/2

]︀⊤]︁ · ((𝐻−1)⊗𝑡/2)⊤.

For any monomials 𝛼, 𝛽 each of degree 𝑡/2, the second of Axioms 2 immediately implies that

−U𝛼U𝛽 ≤ Ẽ
[︁[︀
𝐻⊗𝑡/2𝑣⊗𝑡/2

]︀
𝛼
·
[︀
𝐻⊗𝑡/2𝑣⊗𝑡/2

]︀
𝛽

]︁
≤ U𝛼U𝛽.

We emphasize that this is the only place where we use the second of Axioms 2, and only in a

degree-2 fashion, hence Remark 4.6.7. So
∑︀

𝛼,𝛽 𝜇
(𝛼)𝜇(𝛽)|M𝛼,𝛽| ≤ Ẽ

[︁∑︀
𝛼,𝛽 𝜇

(𝛼)𝜇(𝛽)U𝛼U𝛽

]︁
≤

(ℓ𝑙𝑜𝑔𝑛+ 1)𝑡, where the last inequality follows by axiom 3.

Finally, to show that M ∈
[︀
(𝐻−1)⊗𝑡/2

]︀
𝒦2

[︀
(𝐻−1)⊗𝑡/2

]︀⊤, note first that by orthonormality

of 𝐻, it is enough to show that M ⊂ 𝒦2. But this follows immediately from the fact that Ẽ

satisfies the first of Axioms 2. Indeed, from Fact 1.3.44 and the fact that Ẽ is degree-𝑂(𝑡)

we get that −1 ≤ Ẽ[𝑣𝛼𝑣𝛽] ≤ 1, so

∑︁
|𝛼|,|𝛽|=𝑡/2

M2
𝛼,𝛽 =

∑︁
𝛼,𝛽

Ẽ[𝑣𝛼𝑣𝛽]2 ≤ 𝑛𝑡

as claimed.

Lemma 4.7.2. For every 𝜂 ≤ (ℓ log 𝑛 + 1)−1, there exists a set 𝒩 ⊂ P(R𝑛𝑡/2×𝑛𝑡/2
) of size

𝑂(𝑛3𝑡/2 log𝑡 𝑛/𝜂)(ℓ log𝑛+1)2𝑡 such that for every M ∈
[︀
(𝐻−1)⊗𝑡/2

]︀
(𝒦1∩𝒦2)

[︀
(𝐻−1)⊗𝑡/2

]︀⊤, there

273

exists some M̃ =
∑︀

𝜈 𝛼𝜈 ·M*
𝜈 for M*

𝜈 ∈ 𝒩 such that 1) ‖M− M̃‖𝐹 ≤ 𝜂, 2)
∑︀

𝜈 𝛼𝜈 ≤ 1, and

3) ‖M*
𝜈‖max ≤ 2(ℓ log 𝑛+ 1)𝑡.

Proof. Let 𝑠 = ℓ log 𝑛+1, and let 𝑚 = log 𝑛. Let 𝒩 ′ be an 𝜂
(𝑚+1)𝑡𝑛𝑡/2 -net in Frobenius norm

for all 𝑠2𝑡-sparse 𝑛𝑡/2×𝑛𝑡/2 matrices of unit Frobenius norm. Because S𝑠2𝑡−1 has an 𝜂
𝑚
√
𝑛
-net

in 𝐿2 norm of size (3(𝑚+ 1)𝑡𝑛𝑡/2/𝜂)𝑠
2𝑡 , by a union bound we have that

|𝒩 ′| ≤
(︂
𝑛𝑡

𝑠2𝑡

)︂
· (3(𝑚+ 1)𝑡𝑛𝑡/2/𝜂)𝑠

2𝑡

= 𝑂(𝑛3𝑡/2 log𝑡 𝑛/𝜂)𝑠
2𝑡

Take any M ∈
[︀
(𝐻−1)⊗𝑡/2

]︀
(𝒦1 ∩ 𝒦2)

[︀
(𝐻−1)⊗𝑡/2

]︀⊤ and consider L , 𝐻⊗𝑡/2M
[︀
𝐻⊗𝑡/2]︀⊤.

Define 𝒯 , {0father, 0mother, 1, ...,𝑚 − 1}. We may write L as
∑︀

𝜎,𝜏 L[𝜎, 𝜏], where 𝜎, 𝜏 are

monomials of degree 𝑡/2 in the indices 𝒯 , and where L[𝜎, 𝜏] the submatrix of L consisting

of all entries from the rows 𝛼 (resp. columns 𝛽) for which 𝛼𝑖 ∈ 𝑇𝜎𝑖 (resp. 𝛽𝑖 ∈ 𝑇𝜏𝑖) for all

1 ≤ 𝑖 ≤ 𝑡/2.

As the nonzero entries of L[𝜎, 𝜏] are just a subset of those of L, we clearly have ‖L[𝜎, 𝜏]‖𝐹 ≤

𝑛𝑡/2 for all 𝜎, 𝜏 . Moreover, because L ∈ 𝒦1, we have that

∑︁
𝜎,𝜏

𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2 ·
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2 · ‖L[𝜎, 𝜏]‖1,1 ≤ 𝑠𝑡

so in particular

‖L[𝜎, 𝜏]‖1,1 ≤
𝑡/2∏︁
𝑖=1

2(𝑚−𝜎𝑖)/2 ·
𝑡/2∏︁
𝑗=1

2(𝑚−𝜏𝑗)/2 · 𝑠𝑡 = 2−(
∑︀

𝑖 𝜎𝑖+
∑︀

𝑗 𝜏𝑗)/2 · 𝑠𝑡 · 𝑛𝑡/2. (4.35)

We can thus apply Lemma 4.6.8 to conclude that for each 𝜎, 𝜏 , L[𝜎, 𝜏] =
∑︀

𝑗 L
𝜎,𝜏 ;𝑗 for some

matrices {L𝜎,𝜏 ;𝑗}𝑗 of sparsity at most ⌈2⌉−
∑︀

𝑖 𝜎𝑖−
∑︀

𝑗 𝜏𝑗 · 𝑠2𝑡 ≤ 𝑠2𝑡 and for which

∑︁
𝑗

‖L𝜎,𝜏 ;𝑗‖𝐹 ≤ 𝑛𝑡/2.

For each L𝜎,𝜏 ;𝑗, there is some (L′)𝜎,𝜏 ;𝑗 ∈ 𝒩 ′ such that if we define L̃𝜎,𝜏 ;𝑗 , ‖L𝜎,𝜏 ;𝑗‖𝐹 · (L′)𝜎,𝜏 ;𝑗,

274

then we have

‖L𝜎,𝜏 ;𝑗 − L̃𝜎,𝜏 ;𝑗‖𝐹 ≤
𝜂

(𝑚+ 1)𝑡𝑛𝑡/2
· ‖L𝜎,𝜏 ;𝑗‖𝐹 . (4.36)

Defining L̃[𝜎, 𝜏] ,
∑︀

𝑗 L̃
𝜎,𝜏 ;𝑗, we get that

‖L[𝜎, 𝜏]− L̃[𝜎, 𝜏]‖𝐹 ≤
𝜂

(𝑚+ 1)𝑡𝑛𝑡/2

∑︁
𝑗

‖L𝜎,𝜏 ;𝑗‖𝐹 ≤
𝜂

(𝑚+ 1)𝑡
.

So if we define L̃ =
∑︀

𝜎,𝜏 L̃[𝜎, 𝜏] =
∑︀

𝜎,𝜏

∑︀
𝑗 L̃

𝜎,𝜏 ;𝑗, we have that ‖L− L̃‖𝐹 ≤ 𝜂.

Now let 𝒩 , (𝐻−1)⊗𝑡/2𝒩 ′ [︀(𝐻−1)⊗𝑡/2
]︀⊤. As M = (𝐻−1)⊗𝑡/2L

[︀
(𝐻−1)⊗𝑡/2

]︀
and (𝐻−1)⊗𝑡/2

is an isometry, if we define M̃𝜎,𝜏 ;𝑗 , (𝐻−1)⊗𝑡/2L̃𝜎,𝜏 ;𝑗
[︀
(𝐻−1)⊗𝑡/2

]︀
and M̃ ,

∑︀
𝜎,𝜏

∑︀
𝑗 M̃

𝜎,𝜏 ;𝑗,

then we likewise get that ‖M − M̃‖𝐹 ≤ 𝜂, and clearly M̃𝜎,𝜏 ;𝑗 ∈ 𝒩 , concluding the proof of

part 1) of the lemma.

For each M̃𝜎,𝜏 ;𝑗, define

M𝜎,𝜏 ;𝑗
* , M̃𝜎,𝜏 ;𝑗/𝛼𝜎,𝜏 ;𝑗 for 𝛼𝜎,𝜏 ;𝑗 , 𝑠−𝑡 ·

𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2 ·
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2‖L𝜎,𝜏 ;𝑗‖max (4.37)

so that

M =
∑︁
𝜎,𝜏,𝑗

𝛼𝜎,𝜏 ;𝑗M
𝜎,𝜏 ;𝑗
* .

Note that

∑︁
𝜎,𝜏,𝑗

𝛼𝜎,𝜏 ;𝑗 ≤
1

𝑠𝑡

∑︁
𝜎,𝜏

𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2 ·
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2
∑︁
𝑗

‖L𝜎,𝜏 ;𝑗‖max

≤ 1

𝑠𝑡

∑︁
𝜎,𝜏

𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2 ·
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2‖L[𝜎, 𝜏]‖1,1

≤ 1

𝑠𝑡
· 𝑠𝑡 = 1,

where the second inequality follows by the fact that for fixed 𝜎, 𝜏 , the supports of the matrices

L𝜎,𝜏 ;𝑗 are disjoint for different 𝑗 so that
∑︀

𝑗‖L𝜎,𝜏 ;𝑗‖max ≤ ‖L[𝜎, 𝜏]‖1,1, and the third inequality

follows from (4.35). This concludes the proof of part 2) of the lemma.

Finally, we need to bound ‖M𝜎,𝜏 ;𝑗
* ‖max. Note first that for any matrix J supported only

275

on the support of some L[𝜎, 𝜏],

‖(𝐻−1)⊗𝑡/2J
[︀
(𝐻−1)⊗𝑡/2

]︀
‖max ≤

𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2 ·
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2 · ‖J‖max (4.38)

because the tensored Haar wavelets {𝜓𝜎1,𝑗1 ⊗ · · · ⊗ 𝜓𝜎𝑡/2,𝑗𝑡/2}𝑗1,...,𝑗𝑡/2 (resp. {𝜓𝜏1,𝑗1 ⊗ · · · ⊗

𝜓𝜏𝑡/2,𝑗𝑡/2}𝑗1,...,𝑗𝑡/2) have disjoint supports and max-norm
∏︀𝑡/2

𝑖=1 2
−(𝑚−𝜎𝑖)/2 (resp.

∏︀𝑡/2
𝑗=1 2

−(𝑚−𝜏𝑗)/2).

It follows that

‖M̃𝜎,𝜏 ;𝑗‖max ≤ ‖(𝐻−1)⊗𝑡/2L𝜎,𝜏 ;𝑗
[︀
(𝐻−1)⊗𝑡/2

]︀⊤‖max + ‖(𝐻−1)⊗𝑡/2
(︁
L𝜎,𝜏 ;𝑗 − L̃𝜎,𝜏 ;𝑗

)︁ [︀
(𝐻−1)⊗𝑡/2

]︀⊤‖max

≤
𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2 ·
(︁
‖L𝜎,𝜏 ;𝑗‖max + ‖L𝜎,𝜏 ;𝑗 − L̃𝜎,𝜏 ;𝑗‖max

)︁

≤
𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2 ·
(︁
‖L𝜎,𝜏 ;𝑗‖max + ‖L𝜎,𝜏 ;𝑗 − L̃𝜎,𝜏 ;𝑗‖𝐹

)︁

≤
𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2 ·
(︂
‖L𝜎,𝜏 ;𝑗‖max +

𝜂

(𝑚+ 1)𝑡𝑛𝑡/2
‖L𝜎,𝜏 ;𝑗‖𝐹

)︂

≤
𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2 ·
(︂
‖L𝜎,𝜏 ;𝑗‖max +

𝜂

(𝑚+ 1)𝑡𝑛𝑡/2
‖L𝜎,𝜏 ;𝑗‖max · 𝑠𝑡

)︂

=

𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2 · ‖L𝜎,𝜏 ;𝑗‖max ·
(︂
1 +

𝜂 · 𝑠𝑡

(𝑚+ 1)𝑡𝑛𝑡/2

)︂

≤ 2 ·
𝑡/2∏︁
𝑖=1

2−(𝑚−𝜎𝑖)/2
𝑡/2∏︁
𝑗=1

2−(𝑚−𝜏𝑗)/2 · ‖L𝜎,𝜏 ;𝑗‖max,

where the first inequality is triangle inequality, the second inequality follows by (4.38),

the third inequality follows from monotonicity of 𝐿𝑝 norms, the fourth inequality follows

from (4.36), the fifth inequality follows from the fact that L𝜎,𝜏 ;𝑗 is 𝑠2𝑡 sparse, and the final

inequality follows from the hypothesis that 𝜂 ≤ 𝑠−𝑡. Recalling (4.37), we conclude that

‖M𝜎,𝜏 ;𝑗
* ‖max ≤ 2𝑠𝑡 as claimed.

Next we show that we can control ⟨Z,M⟩ for all directions in the net 𝒩 .

276

Lemma 4.7.3. Let 𝜉 > 0 and let 𝒩 ∈ P
(︁
R𝑛𝑡/2×𝑛𝑡/2

)︁
be any collection of 𝑀 directions.

Then

Pr[⟨Z,M⟩ > 𝜉 · ‖M‖max ∀ M ∈ 𝒩] < 2𝑀 · 𝑒−8𝑚𝜉2 ,

where the probability is over the samples 𝑋𝑗 for 𝑗 ∈ 𝑆𝐺.

Proof. Without loss of generality, assume that ‖M‖max = 1. For any 𝑗 ∈ 𝑆𝐺, note that

the sum of the absolute values of the entries of the matrix
[︀
(𝑋 − 𝜇𝑖)⊗𝑡/2

]︀ [︀
(𝑋 − 𝜇𝑖)⊗𝑡/2

]︀⊤ is

(
∑︀

𝛼 |(𝑋 − 𝜇𝑖)𝛼|)
2 ≤ (

∑︀
𝛼𝑋𝛼 +

∑︀
𝛼(𝜇𝑖)𝛼)

2 ≤ 4. So for any 𝑗 ∈ 𝑆𝐺 and M ∈ 𝒩 ,

⟨[︀
(𝑋𝑖 − 𝜇𝑖)⊗𝑡/2

]︀ [︀
(𝑋𝑖 − 𝜇𝑖)⊗𝑡/2

]︀⊤
,M
⟩

is a [−4, 4]-valued random variable, call it 𝐴𝑖. By Hoeffding’s inequality,

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑚 ∑︁

𝑖∈𝑆𝐺

𝐴𝑖 −
1

𝑚

∑︁
𝑖∈𝑆𝐺

E[𝐴𝑖]

⃒⃒⃒⃒
⃒ ≥ 𝜉

]︃
≤ 2𝑒−8𝑚𝜉2 ,

so we are done by a union bound over the 𝑀 directions in 𝒩

We may now proceed with the proof of (4.34). For M ∈ 𝒦, by Lemmas 4.7.1 and 4.7.2,

there is some M̃ =
∑︀

𝜈 𝛼𝜈M
*
𝜈 such that M*

𝜈 ∈ 𝒩 and ‖M− M̃‖ ≤ 𝜂. We may write

⟨Z,M⟩ ≤ ⟨Z, M̃⟩+ ‖Z‖𝐹‖M− M̃‖𝐹

≤ ⟨Z, M̃⟩+ 𝜂 · ‖Z‖𝐹

=
∑︁
𝜈

𝛼𝜈⟨Z,M*
𝜈⟩+ 𝜂 · ‖Z‖𝐹

≤
∑︁
𝜈

𝛼𝜈 · 𝜉 · ‖M*
𝜈‖max + 𝜂 · ‖Z‖𝐹

≤ 2𝜉(ℓ log 𝑛+ 1)𝑡 + 𝜂 · ‖Z‖𝐹 .

where the penultimate step holds with probability 2|𝒩 |𝑒−8𝑚𝜉2 . But observe that because

‖𝜇𝑖‖∞ ≤ 1 for all 𝑖 ∈ [𝑁], we have the simple bound that for any 𝑋 ∈ Δ𝑛 and any 𝑖 ∈ [𝑛],

‖
[︀
(𝑋 − 𝜇𝑖)⊗𝑡/2

]︀ [︀
(𝑋 − 𝜇𝑖)⊗𝑡/2

]︀⊤‖𝐹 = ‖𝑋 − 𝜇𝑖‖22 ≤ 2,

277

from which we conclude by triangle inequality that ‖Z‖𝐹 ≤ 4.

We conclude that ⟨Z,M⟩ ≤ 2𝜉(ℓ log 𝑛+ 1)𝑡 + 4𝜂, so if 𝜂 = 1
8
(8𝑡/𝑘)𝑡/2 and 𝜉 = (8𝑡/𝑘)𝑡/2

4(ℓ log𝑛+1)𝑡
,

then as long as

𝑚 = Ω(𝜉−2 log |𝒩 |) = Ω
(︀
ℓ4 log4 𝑛

)︀𝑡 · 𝑘𝑡
𝑡𝑡−1
· log(𝑛𝑘/𝑡),

then with probability at least 1−poly(𝑛), there exists an SoS proof of (4.34) using Axioms 2.

278

Chapter 5

Learning From Untrusted Batches With

Alternating Minimization

5.1 Introduction

We now show how to improve upon the guarantees of the preceding chapter by replacing sum-

of-squares programming with alternating minimization. As we mentioned in Section 4.1.1, in

the case of general, unstructured distributions 𝜇, in a work concurrent with and independent

of ours from the previous chapter, Jain and Orlitsky [JO19] gave a polynomial time algorithm

based on a much simpler semidefinite program that estimates 𝜇 to within the same total

variation distance as our Theorem 4.4.1. Their approach was based on an elegant way to

combine approximation algorithms for the cut-norm [AN04] with the filtering approach for

robust estimation [DKK+19a,SCV18,DKK+17,DKK+19b,DHL19].

An appealing aspect of our relaxation from the previous chapter however was that it

was possible to incorporate shape-constraints into the relaxation, through the Haar wavelet

basis, which allowed us to improve the sample complexity to quasipolynomial in 𝑑 and 𝑠,

respectively the degree and number of parts in the piecewise polynomial approximation, and

quasipolylogarithmic in 𝑛. Unfortunately, while [JO19] achieves better runtime and sample

complexity in the unstructured setting, their techniques do not obviously extend to obtain

a similar sample complexity under structural assumptions.

This raises a natural question: can we build on [JO19] and the tools from the previous

279

chapter, to incorporate shape constraints into a simple semidefinite programming approach,

that can achieve nearly-optimal robustness, in polynomial runtime, and with sample com-

plexity which is sublinear in 𝑛? In this chapter, we answer this question in the affirmative:

Theorem 5.1.1 (Informal, see Theorem 5.4.1). Let 𝜇 be a distribution over [𝑛] that is

approximated by an 𝑠-part piecewise polynomial function with degree at most 𝑑. Then there

is a polynomial-time algorithm which estimates 𝜇 to within

𝑂

(︂
𝜔 +

𝜀√
𝑘

√︀
log 1/𝜀

)︂

in total variation distance after drawing 𝑁 𝜀-corrupted batches, each of size 𝑘, where

𝑁 = ̃︀𝑂 (︀(𝑠2𝑑2/𝜀2) · log3(𝑛))︀
is the number of batches needed.

5.1.1 High-Level Argument

In the discussion in this section, we will specialize to the case of 𝜔 = 0 for the sake of clarity.

Learning via Filtering Recall from Section 4.2 that we can easily view learning from

untrusted batches as robust mean estimation of multinomial distributions in 𝐿1 distance:

given a batch of samples 𝑌𝑖 = (𝑌 1
𝑖 , ..., 𝑌

𝑘
𝑖) from a distribution 𝜇 over [𝑛], the frequency vector

{ 1
𝑘

∑︀𝑘
𝑗=1 1[𝑌

𝑗
𝑖 = 𝑎]}𝑎∈[𝑛] is distributed according to the normalized multinomial distribution

Mul𝑘(𝜇) given by 𝑘 draws from 𝜇. Note that 𝜇 is precisely the mean of Mul𝑘(𝜇), so the

problem of estimating 𝜇 from an 𝜀-corrupted set of 𝑁 frequency vectors is equivalent to that

of robustly estimating the mean of a multinomial distribution.

As such, it is natural to try to adapt the existing algorithms for robust mean estimation

of other distributions; the fastest of these are based on a simple filtering approach which

works as follows. We maintain weights for each point, initialized to uniform. At every step,

we measure the maximum “skew” of the weighted dataset in any direction, and if this skew

280

is still too high, update the weights by

1. Finding the direction 𝑣 in which the corruptions “skew” the dataset the most.

2. Giving a “score” to each point based on how badly it skews the dataset in the direction

𝑣

3. Downweighting or removing points with high scores.

Otherwise, if the skew is low, output the empirical mean of the weighted dataset.

To prove correctness of this procedure, one must show three things for the particular

skewness measure and score function chosen:

• Regularity: For any sufficiently large collection of 𝜀-corrupted samples, a particular

deterministic regularity condition holds (Definition 5.4.3 and Lemma 5.4.6)

• Soundness: Under the regularity condition, if the skew of the weighted dataset is

small, then the empirical mean of the weighted dataset is sufficiently close to the true

mean (Lemma 5.4.7).

• Progress: Under the regularity condition, if the skew of the weighted dataset is large,

then one iteration of the above update scheme will remove more weight from the bad

samples than from the good samples (Lemma 5.4.10).

For isotropic Gaussians, skewness is just given by the maximum variance of the weighted

dataset in any direction, i.e. max𝑣∈S𝑛−1⟨𝑣𝑣⊤, Σ̃⟩ where Σ̃ is the empirical covariance of the

weighted dataset. Given maximizing 𝑣, the “score” of a point𝑋 is then simply its contribution

to the skewness.

To learn in 𝐿1 distance, the right set of test vectors 𝑣 to use is the Hamming cube {0, 1}𝑛,

so a natural attempt at adapting the above skewness measure to robust mean estimation of

multinomials is to consider the quantity max𝑣∈{0,1}𝑛⟨𝑣𝑣⊤, Σ̃⟩. But one of the key challenges

in passing from isotropic Gaussians to multinomial distributions is that this quantity above

is not very informative because we do not have a good handle on the covariance of Mul𝑘(𝜇).

In particular, it could be that for a direction 𝑣, ⟨𝑣𝑣⊤, Σ̃⟩ is high simply because the good

points have high variance to begin with.

281

The Jain-Orlitsky Correction Term The clever workaround of [JO19] was to observe

that we know exactly what the projection of a multinomial distribution Mul𝑘(𝜇) in any

{0, 1}𝑛 direction 𝑣 is, namely Bin(𝑘, ⟨𝑣, 𝜇⟩). And so to discern whether the corrupted points

skew our estimate in a given direction 𝑣, one should measure not the variance in the direction

𝑣, but rather the following corrected quantity : the variance in the direction 𝑣, minus what

the variance would be if the distribution of the projections in the 𝑣 direction were actually

given by Bin(𝑘, ⟨𝑣, �̃�⟩), where �̃� is the empirical mean of the weighted dataset. This new

skewness measure can be written as

max
𝑣∈{0,1}𝑛

{︂
⟨𝑣𝑣⊤, Σ̃⟩ − 1

𝑘
(⟨𝑣, �̃�⟩ − ⟨𝑣, �̃�⟩2)

}︂
. (5.1)

Finding the direction 𝑣 ∈ {0, 1}𝑛 which maximizes this corrected quantity is some Boolean

quadratic programming problem which can be solved approximately by solving the natural

SDP relaxation and rounding to a Boolean vector 𝑣 using the machinery of [AN04]. Using

this approach, [JO19] obtained a polynomial-time algorithm for learning general discrete

distributions from untrusted batches.

Learning Structured Distributions Recall from the previous chapter that it suffices to

be able to learn with respect to the 𝒜𝐾 norm, and the key difficulty we had to address was

that unlike the Hamming cube or S𝑛−1, it is unclear how to optimize over the set of test

vectors dual to the 𝒜𝐾 norm. Our main observation was that vectors with few sign changes

admit sparse representations in the Haar wavelet basis, so instead of working with 𝒱𝑛2𝐾 , one

can simply work with a convex relaxation of this Haar-sparsity constraint. As such, if we let

𝒦 ⊆ R𝑛×𝑛 denote the relaxation of the set of {𝑣𝑣⊤|𝑣 ∈ 𝒱𝑛2𝐾} to all matrices Σ whose Haar

transforms are “analytically sparse” in some appropriate, convex sense (see Section 5.3 for a

formal definition), then as this set of test matrices contains the set of test matrices 𝑣𝑣⊤ for

𝑣 ∈ 𝒱𝑛2𝐾 , it is enough to learn 𝜇 in the norm associated to 𝒦, which is strictly stronger than

the 𝒜𝐾 norm.1

Our goal then is to produce �̂� for which ‖�̂� − 𝜇‖𝒦 , supΣ∈𝒦⟨Σ, (�̂� − 𝜇)⊗2⟩1/2 is small.

1Note that in the previous chapter, because moment bounds beyond degree 2 were used, we also needed
to use higher-order tensor analogues of 𝒦, but in this chapter it will suffice to work with degree 2.

282

And even though ‖·‖𝒦 is a stronger norm, it turns out that the metric entropy of 𝒦 is still

small enough that one can get good sample complexity guarantees. Indeed, showing that

this is the case (see Lemma 5.6.1) was where the bulk of the technical machinery of the

previous chapter went, and as we elaborate on in Appendix 5.7, the analysis there left some

room for tightening. In this chapter, we give a refined analysis of 𝒦 which allows us to get

nearly tight sample complexity bounds.

Putting Everything Together Almost all of the pieces are in place to instantiate the

filtering framework: in lieu of the quantity in (5.1), which can be phrased as the maximization

of some quadratic ⟨𝑣𝑣⊤,𝑀(𝑤)⟩ over {±1}𝑛, where 𝑀(𝑤) ∈ R𝑛×𝑛 depends on the dataset and

the weights 𝑤 on its points,2 we can define our skewness measure as maxΣ∈𝒦⟨Σ,𝑀(𝑤)⟩ =

‖𝑀(𝑤)‖𝒦, and we can define the score for each point in the dataset to be its contribution to

the skewness measure (see Section 5.4.2).

At this point the reader may be wondering why we never round Σ to an actual vector

𝑣 ∈ 𝒱𝑛2𝐾 before computing skewness and scores. As our subsequent analysis will show, it

turns out that rounding is unnecessary, both in our setting and even in the unstructured

distribution setting considered in [JO19]. Indeed, if one examines the three proof ingredients

of regularity, soundness, and progress that we enumerated above, it becomes evident that the

filtering framework for robust mean estimation does not actually require finding a concrete

direction in R𝑛 in which to filter, merely a skewness measure and score functions which are

amenable to showing the above three statements. That said, as we will see, it becomes

more technically challenging to prove these ingredients when Σ is not rounded to an actual

direction (see e.g. the discussion after Lemmas 5.6.2 and 5.6.3 in Appendix 5.6), though

nevertheless possible. We hope that this observation will prove useful in future applications

of filtering

2Note that we have switched to {±1}𝑛 in place of {0, 1}𝑛. We do not belabor this point here, as the
difference turns out to be immaterial, and the former is more convenient for understanding how we handle
𝒱𝑛
2𝐾 , which is a subset of {±1}𝑛.

283

5.1.2 Concurrent and Subsequent Work

Concurrently and independently of the work in this chapter, a newer work of Jain and Orlit-

sky [JO20] obtains very similar results, though our quantitative guarantees are incomparable:

the number of batches 𝑁 they need scales linearly in 𝑠 · 𝑑 and independently of 𝑛, but also

scales with
√
𝑘 and 1/𝜀3. Finally, we remark that in a very recent follow-up to these two

works, Jain and Orlitsky [JO21] managed to answer the remaining open question of achieving

the tight sample complexity scaling as 𝑠 · 𝑑/𝜀2.

Roadmap In Section 5.2, we overview notation and give miscellaneous technical tools.

In Section 5.3, we define the semidefinite program that we use to compute skewness. In

Section 5.4, we give our algorithm LearnWithFilter and prove our main result, Theo-

rem 5.1.1. In Section 5.5, we describe our empirical evaluations of LearnWithFilter on

synthetic data. In Appendices 5.6, 5.7, and 5.8, we complete the proofs of some deferred tech-

nical statements relating to deterministic regularity conditions and metric entropy bounds.

5.2 Technical Preliminaries

5.2.1 Weights, Means, and Covariances

Given samples 𝑋1, · · · , 𝑋𝑁 ∼ Mul𝑘(𝜇) and 𝑈 ⊆ [𝑁], define 𝑤(𝑈) : [𝑁]→ [0, 1/𝑁] to be the

set of weights which assigns 1/𝑁 to all points in 𝑈 and 0 to all other points. Also define

its normalization �̂�(𝑈) , 𝑤(𝑈)/‖𝑤‖1. Let 𝒲𝜀 denote the set of weights 𝑤 : [𝑁]→ [0, 1/𝑁]

which are convex combinations of such weights for |𝑈 | ≥ (1− 𝜀)𝑁 .

Given 𝑤, define 𝜇(𝑤) ,
∑︀𝑁

𝑖=1
𝑤𝑖

‖𝑤‖1𝑋𝑖, and define 𝜇(𝑈) , 𝜇(𝑤(𝑈)), that is, the empirical

mean of the samples indexed by 𝑈 .

Given samples 𝑋1, · · · , 𝑋𝑁 ∼ Mul𝑘(𝜇), weights 𝑤, and 𝜈1, ..., 𝜈𝑁 ∈ Δ𝑛, define the matri-

ces

𝐴(𝑤, {𝜈𝑖}) =
𝑁∑︁
𝑖=1

𝑤𝑖(𝑋𝑖 − 𝜈𝑖)⊗2 and 𝐵({𝜈𝑖}) =
1

𝑁

𝑁∑︁
𝑖=1

E𝑋∼Mul𝑘(𝜈𝑖)[(𝑋 − 𝜈𝑖)
⊗2].

284

When 𝜈1 = · · · = 𝜈𝑁 = 𝜈, denote these matrices by 𝐴(𝑤, 𝜈) and 𝐵(𝜈) and note that

𝐵(𝜈) =
1

𝑘

(︀
diag(𝜈)− 𝜈⊗2

)︀
. (5.2)

Also define 𝑀(𝑤, {𝜈𝑖})) , 𝐴(𝑤, {𝜈𝑖}) − 𝐵({𝜈𝑖}) and 𝑀(𝑤, 𝜈) , 𝐴(𝑤, 𝜈) − 𝐵(𝜈). We will

also denote 𝑀(𝑤, 𝜇(𝑤)) by 𝑀(𝑤) and 𝑀(�̂�(𝑈)) by 𝑀𝑈 .

To get intuition for these definitions, note that any bitstring 𝑣 ∈ {0, 1}𝑛 corresponding

to 𝑆 ⊆ [𝑛] induces the normalized binomial distribution 𝑌 , Bin(𝑛, ⟨𝜇, 𝑣⟩) ∈ [0, 1], and any

sample 𝑋𝑖 ∼ Mul𝑘(𝜇) induces a corresponding sample ⟨𝑋𝑖, 𝑣⟩ from 𝑌 . Then ⟨𝑣𝑣⊤,𝑀𝑈⟩ is the

difference between the empirical variance of 𝑌 and the variance of the binomial distribution

Bin(𝑛, ⟨𝜇(𝑈), 𝑣⟩).

5.2.2 Some Elementary Facts

In this section we collect miscellaneous elementary facts that will be useful in subsequent

sections.

Fact 5.2.1. For 𝑋1, · · · , 𝑋𝑚 ∈ R𝑛, weights 𝑤 : [𝑚]→ R≥0, 𝑣 ∈ R𝑛, 𝜇 ∈ R𝑛, and Σ ∈ R𝑛×𝑛

symmetric,

∑︁
𝑤𝑖
⟨︀
(𝑋𝑖 − 𝜇)⊗2,Σ

⟩︀
=
∑︁

𝑤𝑖
⟨︀
(𝑋𝑖 − 𝜇(𝑤))⊗2,Σ

⟩︀
+ ‖𝑤‖1 ·

⟨︀
(𝜇(𝑤)− 𝜇)⊗2,Σ

⟩︀
. (5.3)

In particular, by taking Σ = 𝑣𝑣⊤ for any 𝑣 ∈ R𝑛,

∑︁
𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑣⟩2 =

∑︁
𝑤𝑖⟨𝑋𝑖 − 𝜇(𝑤), 𝑣⟩2 + ‖𝑤‖1 · ⟨𝜇(𝑤)− 𝜇, 𝑣⟩2.

That is, the function 𝜈 ↦→
∑︀

𝑖𝑤𝑖⟨𝑋𝑖 − 𝜈, 𝑣⟩2 is minimized over 𝜈 ∈ R𝑛 by 𝜈 = 𝜇(𝑤).

Proof. Without loss of generality we may assume ‖𝑤‖1 = 1. Using the fact that ⟨𝑢⊗2,Σ⟩ −

⟨𝑣⊗2,Σ⟩ = (𝑢− 𝑣)⊤Σ(𝑢+ 𝑣) for symmetric Σ, we see that

⟨︀
(𝑋𝑖 − 𝜇⊗2 − (𝑋𝑖 − 𝜇(𝑤))⊗2,Σ

⟩︀
= (𝜇(𝑤)− 𝜇)⊤Σ(2𝑋𝑖 − 𝜇− 𝜇(𝑤)).

285

Because
∑︀
𝑤𝑖𝑋𝑖 = 𝜇(𝑤), we see that

∑︁
𝑤𝑖(𝜇(𝑤)− 𝜇)⊤Σ(2𝑋𝑖 − 𝜇− 𝜇(𝑤)) =

⟨︀
(𝜇(𝑤)− 𝜇)⊗2,Σ

⟩︀
,

from which (5.3) follows. The remaining parts of the claim follow trivially.

Fact 5.2.2. For any 0 < 𝜀 < 1, let weights 𝑤 : [𝑁]→ [0, 1/𝑁] satisfy
∑︀

𝑖∈[𝑁]𝑤𝑖 ≥ 1−𝑂(𝜀).

If 𝑤′ is the set of weights defined by 𝑤′
𝑖 = 𝑤𝑖 for 𝑖 ∈ 𝑆𝐺 and 𝑤′

𝑖 = 0 otherwise, and if

|𝑆𝐺| ≥ (1− 𝜀)𝑁 , then we have that ‖𝜇(𝑤)− 𝜇(𝑤′)‖1 ≤ 𝑂(𝜀).

Proof. We may write

‖𝜇(𝑤)− 𝜇(𝑤′)‖1 ≤ ‖
1

‖𝑤‖1

∑︁
𝑖∈𝑆𝐵

𝑤𝑖𝑋𝑖‖1 +
(︂

1

‖𝑤‖1
− 1

‖𝑤′‖1

)︂
‖
∑︁
𝑖∈𝑆𝐺

𝑤𝑖𝑋𝑖‖1

≤ 𝑂(𝜀) +

(︂
1

‖𝑤‖1
− 1

‖𝑤′‖1

)︂
‖
∑︁
𝑖∈𝑆𝐺

𝑤𝑖𝑋𝑖‖1 ≤ 𝑂(𝜀),

where the first step follows by definition of 𝜇(·) and by triangle inequality, the second step

follows by the fact that |𝑆𝐵| ≤ 𝜀𝑁 , and the third step follows by the fact that |‖𝑤‖1−‖𝑤′‖1| =⃒⃒∑︀
𝑖∈𝑆𝐵

𝑤𝑖
⃒⃒
≤ 𝜀, while ‖

∑︀
𝑖∈𝑆𝐺

𝑤𝑖𝑋𝑖‖1 ≤ 1 as the samples 𝑋𝑖 lie in Δ𝑛.

It will be useful to have a basic bound on the Frobenius norm of 𝑀(𝑤, 𝜈).

Lemma 5.2.3. For any 𝜈 ∈ Δ𝑛 and any weights 𝑤 for which
∑︀
𝑤𝑖 = 1, we have that

‖𝑀(𝑤, 𝜈)‖𝐹 ≤ 3.

Proof. For any sample 𝑋 ∈ Δ𝑛, we have that

‖(𝑋 − 𝜈)(𝑋 − 𝜈)⊤‖𝐹 ≤ ‖𝑋 − 𝜈‖22 ≤ 2

and

‖𝐵(𝜈)‖𝐹 ≤
1

𝑘
‖𝜈‖2 +

1

𝑘
‖𝜈‖22 ≤ 2/𝑘,

from which the lemma follows by triangle inequality and the assumption that
∑︀
𝑤𝑖 = 1.

286

5.2.3 Haar Wavelets Revisited

In the analysis in this chapter, it will be useful to introduce the following notation for the

Haar wavelet basis, previously introduced in Section 4.6.3.

• For 𝜈 ∈ [𝑛], if the 𝜈-th element of the Haar wavelet basis for R𝑛 is some 𝜓𝑖,𝑗, then

define the weight h(𝜈) , 2−(𝑚−𝑖)/2.

• For any index 𝑖 ∈ {0father, 0mother, 1, · · · ,𝑚 − 1}, let 𝑇𝑖 ⊂ [𝑛] denote the set of indices

𝜈 for which the 𝜈-th Haar wavelet is of the form 𝜓𝑖,𝑗 for some 𝑗.

• Given any 𝑝 ≥ 1, define the Haar-weighted 𝐿𝑝 norm ‖·‖𝑝;h on R𝑛 by ‖𝑤‖𝑝;h , ‖𝑤′‖𝑝,

where for every 𝑎 ∈ [𝑛], 𝑤′
𝑎 , h(𝑎)𝑤𝑎. Likewise, given any norm ‖·‖* on R𝑛×𝑛, define the

Haar-weighted *-norm ‖·‖*;h on R𝑛×𝑛 by ‖M‖*;h , ‖M′‖*, where for every 𝑎, 𝑏 ∈ [𝑛],

M′
𝑎,𝑏 , h(𝑎)h(𝑏)M𝑎,𝑏.

In this notation, we obtain the following version of Lemma 4.6.6:

Lemma 5.2.4. Let 𝑣 ∈ {±1}𝑛 have at most ℓ sign changes. Then 𝐻𝑣 has at most ℓ log 𝑛+1

nonzero entries, and furthermore ‖𝐻𝑣‖∞;h ≤ 1. In particular, ‖𝐻𝑣‖22;h, ‖𝐻𝑣‖1;h ≤ ℓ log 𝑛+1.

Proof. We first show that 𝐻𝑣 has at most ℓ log 𝑛 + 1 nonzero entries. For any 𝜓𝑖,𝑗 with

nonzero entries at indices [𝑎, 𝑏] ⊂ [𝑛] and such that 𝑖 ̸= 0father, if 𝑣 has no sign change in the

interval [𝑎, 𝑏], then ⟨𝜓𝑖,𝑗, 𝑣⟩ = 0. For every index 𝜈 ∈ [𝑛] at which 𝑣 has a sign change, there

are at most 𝑚 = log 𝑛 choices of 𝑖, 𝑗 for which 𝜓𝑖,𝑗 has a nonzero entry at index 𝜈, from

which the claim follows by a union bound over all ℓ choices of 𝜈, together with the fact that

⟨𝜓0father,0, 𝑣⟩ may be nonzero.

Now for each (𝑖, 𝑗) for which ⟨𝜓𝑖,𝑗, 𝑣⟩ ≠ 0, note that

2−(𝑚−𝑖)/2 · |⟨𝜓𝑖,𝑗, 𝑣⟩| ≤ 2−(𝑚−𝑖)/2 ·
(︀
2−(𝑚−𝑖)/2 · 2𝑚−𝑖)︀ = 1,

as claimed. The bounds on ‖𝐻𝑣‖1;h, ‖𝐻𝑣‖22;h follow immediately.

287

5.3 SDP for Finding the Direction of Largest Variance

Recall that in [JO19], the authors consider the binary optimization problem max𝑣∈{0,1}𝑛 |𝑣⊤𝑀𝑈𝑣|.

We would like to approximate the optimization problem max𝑣∈𝒱𝑛
ℓ
|𝑣⊤𝑀𝑈𝑣|. Motivated by

the sum-of-squares relaxation from the previous chapter and Lemma 5.2.4, we consider the

following convex relaxation:

Definition 5.3.1. Let ℓ be given by (4.21). Let 𝒦 denote the (convex) set of all matrices

Σ ∈ R𝑛×𝑛 for which

1. ‖Σ‖max ≤ 1.

2. ‖𝐻Σ𝐻⊤‖1,1;h ≤ ℓ log 𝑛+ 1.

3. ‖𝐻Σ𝐻⊤‖2𝐹 ;h ≤ ℓ log 𝑛+ 1.

4. ‖𝐻Σ𝐻⊤‖max;h ≤ 1.

5. Σ ⪰ 0.

Let ‖·‖𝒦 denote the associated norm given by ‖M‖𝒦 , supΣ∈𝒦 |⟨M,Σ⟩|. By abuse of nota-

tion, for vectors 𝑣 ∈ R𝑛 we will also use ‖𝑣‖𝒦 to denote ‖𝑣𝑣⊤‖1/2𝒦 .

Because 𝒦 has an efficient separation oracle, one can compute ‖·‖𝒦 in polynomial time.

Remark 5.3.2. Note that, besides not being a sum-of-squares program like the one considered

in the previous chapter, this relaxation is also slightly different because of Constraints 3 and

4. As we will see in Section 5.7, these additional constraints will be crucial for getting refined

sample complexity bounds.

Note that Lemma 5.2.4 immediately implies that 𝒦 is a relaxation of 𝒱𝑛ℓ :

Corollary 5.3.3 (Corollary of Lemma 5.2.4). 𝑣𝑣⊤ ∈ 𝒦 for any 𝑣 ∈ 𝒱𝑛ℓ .

Note also that Constraint 1 in Definition 5.3.1 ensures that ‖·‖𝒦 is weaker than ‖·‖1 and

more generally that:

Fact 5.3.4. For any 𝑎, 𝑏 ∈ R𝑛 and Σ ∈ 𝒦, 𝑎⊤ · Σ · 𝑏 ≤ ‖𝑎‖1 · ‖𝑏‖1. In particular, for any

𝑣 ∈ R𝑛, ‖𝑣‖𝒦 ≤ ‖𝑣‖1.

As a consequence, we conclude the following useful fact about stability of the 𝐵(·) matrix.

288

Corollary 5.3.5. For any 𝜇, 𝜇′ ∈ Δ𝑛, ‖𝐵(𝜇)−𝐵(𝜇′)‖𝒦 ≤ 3
𝑘
‖𝜇− 𝜇′‖1.

Proof. Take any Σ ∈ 𝒦. By symmetry, it is enough to show that ⟨𝐵(𝜇) − 𝐵(𝜇′),Σ⟩ ≤
3
𝑘
‖𝜇−𝜇′‖1. By Constraint 1, we have that ⟨𝜇−𝜇′, diag(Σ)⟩ ≤ ‖𝜇−𝜇′‖1. On the other hand,

note that

𝜇′⊤Σ𝜇′ − 𝜇⊤Σ𝜇 = (𝜇′ − 𝜇)⊤Σ(𝜇′ + 𝜇) ≤ ‖𝜇′ − 𝜇‖1 · ‖𝜇′ + 𝜇‖1 ≤ 2‖𝜇′ − 𝜇‖1,

where the second step follows from Fact 5.3.4. The corollary now follows.

Note that if the solution to the convex program argmaxΣ∈𝒦⟨𝑀𝑈 ,Σ⟩ were actually integral,

that is, some rank-1 matrix 𝑣𝑣⊤ for 𝑣 ∈ 𝒱𝑛ℓ , it would correspond to the direction 𝑣 in which

the samples in 𝑈 have the largest discrepancy between the empirical variance and the variance

predicted by the empirical mean. Then 𝑣 would correspond to a subset of the domain [𝑠] on

which one could filter out bad points as in [JO19]. In the sequel, we will show that this kind

of analysis applies even if the solution to argmaxΣ∈𝒦⟨𝑀𝑈 ,Σ⟩ is not integral.

5.4 Filtering Algorithm and Analysis

In this section we prove our main theorem, stated formally below:

Theorem 5.4.1. Let 𝜇 be an (𝜂, 𝑠)-piecewise degree-𝑑 distribution over [𝑛]. Then for

any 0 < 𝜀 < 1/2 smaller than some absolute constant, and any 0 < 𝛿 < 1, there is a

poly(𝑛, 𝑘, 1/𝜀, 1/𝛿)-time algorithm LearnWithFilter which, given

𝑁 = ̃︀𝑂 (︀log(1/𝛿)(𝑠2𝑑2/𝜀2) log3(𝑛))︀ ,
𝜀-corrupted, 𝜔-diverse batches of size 𝑘 from 𝜇, outputs an estimate �̂� such that ‖�̂�− 𝜇‖1 ≤

𝑂

(︂
𝜂 + 𝜔 +

𝜀
√

log 1/𝜀
√
𝑘

)︂
with probability at least 1− 𝛿 over the samples.

In Section 5.4.1, we first describe and prove guarantees for a basic but important sub-

routine, 1DFilter, of our algorithm. In Section 5.4.2, we describe our learning algorithm,

LearnWithFilter, in full. In Section 5.4.3 we define the deterministic conditions that

the dataset must satisfy for LearnWithFilter to succeed, deferring the proof that these

289

deterministic conditions hold with high probability (Lemma 5.4.6) to Appendix 5.6. In Sec-

tion 5.4.4 we prove a key geometric lemma (Lemma 5.4.7). Finally, in Section 5.4.5, we

complete the proof of correctness of LearnWithFilter.

5.4.1 Univariate Filter

In this section, we define and analyze a simple deterministic subroutine 1DFilter which

takes as input a set of weights 𝑤 and a set of scores on the batches 𝑋1, · · · , 𝑋𝑁 , and outputs

a new set of weights 𝑤′ such that, if the weighted average of the scores among the bad

batches exceeds that of the scores among the good batches, then 𝑤′ places even less weight

relatively on the bad batches than does 𝑤. This subroutine is given in Algorithm 13 below.

Algorithm 13: 1DFilter(𝜏, 𝑤)
Input: Scores 𝜏 : [𝑁]→ R≥0, weights 𝑤 : [𝑁]→ R≥0

Output: New weights 𝑤′ with even less mass on bad points than good points (see
Lemma 5.4.2)

1 𝜏max ← max𝑖:𝑤𝑖>0 𝜏𝑖

2 𝑤′
𝑖 ←

(︁
1− 𝜏𝑖

𝜏max

)︁
𝑤𝑖 for all 𝑖 ∈ [𝑁]

3 return 𝑤′.

Lemma 5.4.2. Let 𝜏 : [𝑁] → R≥0 be a set of scores, and let 𝑤 : [𝑁] → R≥0 be a weight.

Given a partition [𝑁] = 𝑆𝐺 ⊔ 𝑆𝐵 for which

∑︁
𝑖∈𝑆𝐺

𝑤𝑖𝜏𝑖 <
∑︁
𝑖∈𝑆𝐵

𝑤𝑖𝜏𝑖,

then the output 𝑤′ of 1DFilter(𝜏, 𝑤) satisfies (𝑎) 𝑤′
𝑖 ≤ 𝑤𝑖 for all 𝑖 ∈ [𝑁], (𝑏) the support

of 𝑤′ is a strict subset of the support of 𝑤, and (𝑐)
∑︀

𝑖∈𝑆𝐺
𝑤𝑖 − 𝑤′

𝑖 <
∑︀

𝑖∈𝑆𝐵
𝑤𝑖 − 𝑤′

𝑖.

Proof. (𝑎) and (𝑏) are immediate. For (𝑐), note that

∑︁
𝑖∈𝑆𝐺

𝑤𝑖 − 𝑤′
𝑖 =

1

𝜏max

∑︁
𝑖∈𝑆𝐺

𝜏𝑖𝑤𝑖 <
1

𝜏max

∑︁
𝑖∈𝑆𝐵

𝜏𝑖𝑤𝑖 =
∑︁
𝑖∈𝑆𝐵

𝑤𝑖 − 𝑤′
𝑖,

from which the lemma follows.

290

We note that this kind of downweighting scheme and its analysis are not new, see e.g.

Lemma 4.5 from [CSV17] or Lemma 17 from [SCV18].

5.4.2 Algorithm Specification

We can now describe our algorithm LearnWithFilter. At a high level, we maintain

weights 𝑤 : [𝑁] → R≥0 for each of the batches. In every iteration, we compute Σ ∈ 𝒦

maximizing |⟨𝑀(𝑤),Σ⟩|. If |⟨𝑀(𝑤),Σ⟩| ≤ 𝑂
(︀
𝜀
𝑘
log 1/𝜀

)︀
, then output 𝜇(𝑤). Otherwise,

update the weights as follows: for every batch 𝑋𝑖, compute the score 𝜏𝑖 given by

𝜏𝑖 ,
⟨︀
(𝑋𝑖 − 𝜇(𝑤))⊗2,Σ

⟩︀
, (5.4)

and set the weights to be the output of 1DFilter(𝜏, 𝑤). The pseudocode for LearnWith-

Filter is given in Algorithm 14 below.

Algorithm 14: LearnWithFilter({𝑋𝑖}𝑖∈[𝑁], 𝜀)
Input: Frequency vectors 𝑋1, · · · , 𝑋𝑁 coming from an 𝜀-corrupted, 𝜔-diverse set of

batches from 𝜇, where 𝜇 is (𝜂, 𝑠)-piecewise, degree 𝑑

Output: �̂� such that ‖�̂�− 𝜇‖1 ≤ 𝑂

(︂
𝜂 + 𝜔 +

𝜀
√

log 1/𝜀
√
𝑘

)︂
, provided uncorrupted

samples 𝜀-good
1 𝑤 ← 𝑤([𝑁])
2 while ‖𝑀(𝑤)‖𝒦 ≥ Ω(𝜔 + 𝜀

𝑘
log 1/𝜀) do

3 Σ← argmaxΣ′∈𝒦 |⟨𝑀(𝑤),Σ⟩|
4 Compute scores 𝜏 : [𝑁]→ R≥0 according to (5.4).
5 𝑤 ←1DFilter(𝜏, 𝑤)

6 Using the algorithm of [ADLS17] (see Lemma 4.5.4), form the 𝑠-piecewise, degree-𝑑
distribution �̂� minimizing ‖𝜇(𝑤)− �̂�‖𝑠(𝑑+1) (up to additive error 𝜂).

7 return �̂�.

5.4.3 Deterministic Condition

Definition 5.4.3 (𝜀-goodness). Take a set of points 𝑈 ⊂ [𝑁], and let {𝜇𝑖}𝑖∈𝑈 be a collection

of distributions over [𝑛]. For any 𝑊 ⊆ 𝑈 , define 𝜇𝑊 , 1
|𝑊 |
∑︀

𝑖∈𝑊 𝜇𝑖. Denote 𝜇 , 𝜇𝑈 .

We say 𝑈 is 𝜀-good if it satisfies that for all 𝑊 ⊂ 𝑈 for which |𝑊 | = 𝜀|𝑈 |,

291

(I) (Concentration of mean)

‖𝜇(𝑈)− 𝜇‖𝒦 ≤ 𝑂

(︃
𝜀
√︀

log 1/𝜀√
𝑘

)︃
and ‖𝜇(𝑊)− 𝜇𝑊‖𝒦 ≤ 𝑂

(︃√︀
log 1/𝜀√
𝑘

)︃

(II) (Concentration of covariance)

‖𝑀(�̂�(𝑈), {𝜇𝑖}𝑖∈𝑈)‖𝒦 ≤ 𝑂

(︂
𝜀 log 1/𝜀

𝑘

)︂
and ‖𝐴(�̂�(𝑊), {𝜇𝑖}𝑖∈𝑊‖𝒦 ≤ 𝑂

(︂
log 1/𝜀

𝑘

)︂

(III) (Concentration of variance proxy)

‖𝐵(�̂�(𝑈))−𝐵({𝜇𝑖}𝑖∈𝑈)‖𝒦 ≤ 𝑂(𝜔2/𝑘 + 𝜀/𝑘)

(IV) (Heterogeneity has negligible effect, see Lemma 5.4.4)

sup
Σ∈𝒦

{︃
1

|𝑈 |
∑︁
𝑖∈𝑈

(𝜇𝑖 − 𝜇)⊤ · Σ · (𝑋𝑖 − 𝜇𝑖)

}︃
≤ 𝑂

(︃
𝜔 ·

𝜀
√︀

log 1/𝜀√
𝑘

)︃
.

sup
Σ∈𝒦

{︃
1

|𝑊 |
∑︁
𝑖∈𝑊

(𝜇𝑖 − 𝜇)⊤ · Σ · (𝑋𝑖 − 𝜇𝑖)

}︃
≤ 𝑂

(︃
𝜔 ·
√︀

log 1/𝜀√
𝑘

)︃
.

We first remark that we only need extremely mild concentration in Condition (III), but

it turns out this suffices in the one place where we use it (see Lemma 5.4.9).

Additionally, note that we can completely ignore Condition (IV) when 𝜔 = 0. The

following makes clear why it is useful when 𝜔 > 0.

Lemma 5.4.4. For 𝜀-good 𝑈 , all 𝑊 ⊂ 𝑈 of size 𝜀|𝑈 |, and all Σ ∈ 𝒦,

‖𝐴(�̂�(𝑈), 𝜇)− 𝐴(�̂�(𝑈), {𝜇𝑖})‖𝒦 ≤ 𝑂

(︃
𝜔 +

𝜀
√︀

log 1/𝜀√
𝑘

)︃2

292

‖𝐴(�̂�(𝑊), 𝜇)− 𝐴(�̂�(𝑊), {𝜇𝑖})‖𝒦 ≤ 𝑂

(︃
𝜔 +

√︀
log 1/𝜀√
𝑘

)︃2

.

Proof. For 𝑆 = 𝑈 or 𝑆 = 𝑊 and any Σ ∈ 𝒦,

⟨Σ, 𝐴(�̂�(𝑆), 𝜇)− 𝐴(�̂�(𝑆), {𝜇𝑖})⟩

=
1

|𝑆|
∑︁
𝑖∈𝑆

⟨(𝑋𝑖 − 𝜇)⊗2 − (𝑋𝑖 − 𝜇𝑖)⊗2,Σ⟩

=
1

|𝑆|
∑︁
𝑖∈𝑆

(𝜇𝑖 − 𝜇)⊤ · Σ · (2𝑋𝑖 − 𝜇𝑖 − 𝜇)

=
2

|𝑆|
∑︁
𝑖∈𝑆

(𝜇𝑖 − 𝜇)⊤ · Σ · (𝑋𝑖 − 𝜇𝑖) +
1

|𝑆|
∑︁
𝑖∈𝑆

⟨(𝜇𝑖 − 𝜇)⊗2,Σ⟩. (5.5)

The first (resp. second) part of the lemma follows by taking 𝑆 = 𝑈 (resp. 𝑆 = 𝑊) and

invoking the first (resp. second) part of Condition (IV) of 𝜀-goodness to upper bound the

first term in (5.5), and Fact 5.3.4 and the fact that ‖𝜇𝑖 − 𝜇‖1 ≤ 𝜔 for all 𝑖 to upper bound

the second term in (5.5).

Corollary 5.4.5. If 𝑈 is 𝜀-good and 𝜇 , 1
|𝑈 |
∑︀

𝑖∈𝑈 𝜇𝑖, then

‖𝐴(�̂�(𝑈), 𝜇)−𝐵({𝜇𝑖})‖𝒦 ≤ 𝑂

(︃
𝜔 +

𝜀
√︀
log 1/𝜀√
𝑘

)︃2

.

Proof. This follows immediately from Lemma 5.4.4 and the first part of Condition (II) of

𝜀-goodness.

In Appendix 5.6, we will show that for 𝑁 sufficiently large, the set 𝑆𝐺 of uncorrupted

batches will satisfy the above deterministic condition.

Lemma 5.4.6 (Regularity of good samples). If 𝑈 is a set of ̃︀Ω (︀log(1/𝛿)(ℓ2/𝜀2) · log3(𝑛))︀
independent samples from Mul𝑘(𝜇1), ...,Mul𝑘(𝜇|𝑈 |), then 𝑈 is 𝜀-good with probability at least

1− 𝛿.

293

5.4.4 Key Geometric Lemma

The key property of 𝜀-good sets is the following geometric lemma bounding the accuracy of

an estimate 𝜇(𝑤) given by weights 𝑤 in terms of ‖𝑀(𝑤)‖𝒦.

Lemma 5.4.7 (Spectral signatures). If 𝑆𝐺 is 𝜀-good and |𝑆𝐺| ≥ (1 − 𝜀)𝑁 , then for any

𝑤 ∈ 𝒲𝜀,

‖𝜇(𝑤)− 𝜇‖𝒦 ≤ 𝑂

(︂
𝜀√
𝑘

√︀
log 1/𝜀+ 𝜀 · 𝜔 +

√︂
𝜀
(︁
‖𝑀(𝑤)‖𝒦 + 𝜔2 +

𝜀

𝑘
log 1/𝜀

)︁)︂
.

It turns out the proof ingredients for Lemma 5.4.7 will also be useful in our analysis of

LearnWithFilter later, so we will now prove this lemma in full.

Proof. Take any Σ ∈ 𝒦. Recalling that Σ is psd by Constraint 5 in Definition 5.3.1, we will

sometimes write it as Σ = E𝑣[𝑣𝑣⊤], where the distribution over 𝑣 is defined according to the

eigendecomposition of Σ. We wish to bound E𝑣 [⟨𝜇(𝑤)− 𝜇, 𝑣⟩2]. By splitting 𝑤𝑖 , 1/𝑁 − 𝛿𝑖
for 𝑖 ∈ 𝑆𝐺, we have that

⟨𝜇(𝑤)− 𝜇, 𝑣⟩ =
𝑁∑︁
𝑖=1

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑣⟩

=

⟨
|𝑆𝐺|
𝑁

(𝜇(𝑆𝐺)− 𝜇), 𝑣
⟩
−
∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝑋𝑖 − 𝜇, 𝑣⟩+
∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − 𝜇, 𝑣⟩,

=

⟨
|𝑆𝐺|
𝑁

(𝜇(𝑆𝐺)− 𝜇), 𝑣
⟩
−
∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝑋𝑖 − 𝜇, 𝑣⟩+
∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − 𝜇(𝑤), 𝑣⟩+ ⟨𝜇(𝑤)− 𝜇, 𝑣⟩
∑︁
𝑖∈𝑆𝐵

𝑤𝑖.

We may rewrite this as(︃
1−

∑︁
𝑖∈𝑆𝐵

𝑤𝑖

)︃
⟨𝜇(𝑤)−𝜇, 𝑣⟩ =

⟨
|𝑆𝐺|
𝑁

(𝜇(𝑆𝐺)− 𝜇), 𝑣
⟩
−
∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝑋𝑖−𝜇, 𝑣⟩+
∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖−𝜇(𝑤), 𝑣⟩.

Note further that

∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝑋𝑖 − 𝜇, 𝑣⟩ =
∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩+
∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝜇𝑖 − 𝜇, 𝑣⟩,

294

so in particular,

1

4

(︃
1−

∑︁
𝑖∈𝑆𝐵

𝑤𝑖

)︃2

· E𝑣
[︀
⟨𝜇(𝑤)− 𝜇, 𝑣⟩2

]︀
≤ 1 + 2 + 3 + 4 (5.6)

where

1 ,
|𝑆𝐺|2

𝑁2
E𝑣
[︀
⟨𝜇(𝑆𝐺)− 𝜇, 𝑣⟩2

]︀
2 , E𝑣

⎡⎣(︃∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃2
⎤⎦

3 , E𝑣

⎡⎣(︃∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝜇𝑖 − 𝜇, 𝑣⟩

)︃2
⎤⎦ 4 , E𝑣

⎡⎣(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − 𝜇(𝑤), 𝑣⟩

)︃2
⎤⎦

For 1 , note that

1 ≤ |𝑆𝐺|
2

𝑁2
‖𝜇(𝑆𝐺)− 𝜇‖2𝒦 ≤ 𝑂

(︂
𝜀2 log 1/𝜀

𝑘

)︂
by the first part of Condition (I) of 𝜀-goodness of 𝑆𝐺 and the fact that |𝑆𝐺|/𝑁 ≥ 1− 𝜀.

For 2 , by Cauchy-Schwarz we have that

2 ≤

(︃∑︁
𝑖∈𝑆𝐺

𝛿𝑖

)︃
· E𝑣

[︃∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩2
]︃

≤ 𝜀 ·

⟨∑︁
𝑖∈𝑆𝐺

𝛿𝑖(𝑋𝑖 − 𝜇𝑖)⊗2,E𝑣[𝑣𝑣⊤]

⟩

= 𝜀 ⟨𝐴(𝛿, {𝜇𝑖}),Σ⟩

≤ 𝑂

(︂
𝜀2

𝑘
log 1/𝜀

)︂
, (5.7)

where the last step follows by Lemma 5.4.8 below.

For 3 , again by Cauchy-Schwarz,

3 ≤

(︃∑︁
𝑖∈𝑆𝐺

𝛿𝑖

)︃
· E𝑣

[︃∑︁
𝑖∈𝑆𝐺

𝛿𝑖⟨𝜇𝑖 − 𝜇, 𝑣⟩2
]︃

≤ 𝜀 ·
∑︁
𝑖∈𝑆𝐺

𝛿𝑖‖𝜇𝑖 − 𝜇‖2𝒦

≤ 𝜀2 ·max
𝑖∈𝑆𝐺

‖𝜇𝑖 − 𝜇‖21

≤ 𝜀2 · 𝜔2,

295

where the penultimate step follows by Fact 5.3.4.

Finally, we will relate 4 to ‖𝑀(𝑤)‖𝒦. Let 𝑤′ be the set of weights given by 𝑤′
𝑖 = 𝑤𝑖 for

𝑖 ∈ 𝑆𝐺 and 𝑤′
𝑖 = 0 for 𝑖 ̸∈ 𝑆𝐺. By another application of Cauchy-Schwarz,

4 ≤

(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖

)︃
· E𝑣

[︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖⟨𝑋𝑖 − 𝜇(𝑤), 𝑣⟩2
]︃

≤ 𝜀

(︃
E𝑣

[︃
𝑁∑︁
𝑖=1

𝑤𝑖⟨𝑋𝑖 − 𝜇(𝑤), 𝑣⟩2
]︃
− E𝑣

[︃∑︁
𝑖∈𝑆𝐺

𝑤𝑖⟨𝑋𝑖 − 𝜇(𝑤), 𝑣⟩2
]︃)︃

= 𝜀 ⟨𝐴(𝑤, 𝜇(𝑤))− 𝐴(𝑤′, 𝜇(𝑤)),Σ⟩ (5.8)

≤ 𝜀 ⟨𝐴(𝑤, 𝜇(𝑤))− 𝐴(𝑤′, 𝜇(𝑤′)),Σ⟩ (5.9)

≤ 𝜀

⟨
𝐴(𝑤, 𝜇(𝑤))− 1∑︀

𝑤′
𝑖

𝐵(𝜇(𝑤′)),Σ

⟩
+𝑂

(︂
𝜀 · 𝜔2 +

𝜀2

𝑘
log 1/𝜀

)︂
(5.10)

= 𝜀⟨𝑀(𝑤),Σ⟩+ 𝜀

⟨
𝐵(𝜇(𝑤))− 1∑︀

𝑤′
𝑖

𝐵(𝜇(𝑤′)),Σ

⟩
+𝑂

(︂
𝜀 · 𝜔2 +

𝜀2

𝑘
log 1/𝜀

)︂
≤ 𝜀‖𝑀(𝑤)‖𝒦 + 𝜀‖𝐵(𝜇(𝑤))− 1∑︀

𝑤′
𝑖

𝐵(𝜇(𝑤′))‖𝒦 +𝑂

(︂
𝜀 · 𝜔2 +

𝜀2

𝑘
log 1/𝜀

)︂
(5.11)

where (5.8) follows by the definition of 𝐴(𝑤, 𝜈), (5.9) follows by Fact 5.2.1, (5.10) follows

by Lemma 5.4.9 below. Lastly, by triangle inequality, we may upper bound ‖𝐵(𝜇(𝑤)) −
1∑︀
𝑤′

𝑖
𝐵(𝜇(𝑤′))‖𝒦 by

‖𝐵(𝜇(𝑤))−𝐵(𝜇(𝑤′))‖𝒦+𝑂(𝜀)·‖𝐵(𝜇(𝑤′))‖𝒦 ≤
3

𝑘
‖𝜇(𝑤)−𝜇(𝑤′)‖1+𝑂(𝜀/𝑘) ≤ 𝑂(𝜀/𝑘), (5.12)

where the first inequality follows by Corollary 5.3.5, and the bound on ‖𝜇(𝑤) − 𝜇(𝑤′)‖1 in

the last step follows from Fact 5.2.2. The lemma then follows from (5.6), (5.7), (5.11), and

(5.12).

Next, we show in Lemma 5.4.8 that small subsets of the good samples cannot contribute

too much to the total energy. Lemma 5.4.9, which bounds the norm of 𝑀(𝑤) for any set of

weights 𝑤 which is close to the uniform set of weights over 𝑆𝐺, will follow as a consequence.

Lemma 5.4.8. For any 0 < 𝜀 < 1/2, if 𝑈 is 𝜀-good, and 𝛿 : 𝑈 → [0, 1/|𝑈 |] is a set of

weights satisfying
∑︀

𝑖∈𝑈 𝛿𝑖 ≤ 𝜀, then we have the following bounds:

1. ‖𝐴(𝛿, {𝜇𝑖})‖𝒦 ≤ 𝑂(𝜀
𝑘
log 1/𝜀)

296

2. ‖
∑︀

𝑖∈𝑈 𝛿𝑖(𝑋𝑖 − 𝜇𝑖)‖𝒦 ≤ 𝑂(𝜀√
𝑘

√︀
log 1/𝜀)

3. ‖𝐴(𝛿, 𝜇)‖𝒦 ≤ 𝑂
(︁
𝜀 · 𝜔2 + 𝜀 log 1/𝜀

𝑘

)︁
4. ‖

∑︀
𝑖∈𝑈 𝛿𝑖(𝑋𝑖 − 𝜇)‖𝒦 ≤ 𝑂(𝜀√

𝑘

√︀
log 1/𝜀+ 𝜀 · 𝜔).

Proof. For the first part, we may assume without loss of generality that
∑︀

𝑖∈𝑈 𝛿𝑖 = 𝜀. But

then we may write 𝛿 as 𝜀E𝑊 [�̂�(𝑊)] for some distribution over subsets 𝑊 ⊂ 𝑈 of size 𝜀|𝑈 |.

By Jensen’s inequality and the second part of Condition (II) of 𝜀-goodness of 𝑈 , we conclude

that

𝐴(𝛿, {𝜇𝑖}) ≤ 𝜀 · E𝑊 [‖𝐴(�̂�(𝑊), {𝜇𝑖})‖𝒦] ≤ 𝑂
(︁ 𝜀
𝑘
log 1/𝜀

)︁
,

giving the first part of the lemma.

For the second part, for any Σ ∈ 𝒦 of the form Σ = E[𝑣𝑣⊤],

⟨
Σ,

(︃∑︁
𝑖∈𝑈

𝛿𝑖(𝑋𝑖 − 𝜇𝑖)

)︃⊗2⟩
= E

⎡⎣(︃∑︁
𝑖∈𝑈

𝛿𝑖⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩

)︃2
⎤⎦

≤ E

[︃(︃∑︁
𝑖∈𝑈

𝛿𝑖

)︃
·

(︃∑︁
𝑖∈𝑈

𝛿𝑖⟨𝑋𝑖 − 𝜇𝑖, 𝑣⟩2
)︃]︃

≤ 𝜀‖𝐴(𝛿, {𝜇𝑖})‖ ≤ 𝑂

(︂
𝜀2

𝑘
log 1/𝜀

)︂
,

where the second step follows by Cauchy-Schwarz, the fourth step follows by the first part

of the lemma. As this holds for all Σ ∈ 𝒦, we get the second part of the lemma.

This also implies the fourth part of the lemma because

‖
∑︁
𝑖∈𝑈

𝛿𝑖(𝑋𝑖 − 𝜇)‖𝒦 ≤ ‖
∑︁
𝑖∈𝑈

𝛿𝑖(𝑋𝑖 − 𝜇𝑖)‖𝒦 + ‖
∑︁
𝑖∈𝑈

𝛿𝑖(𝜇𝑖 − 𝜇)‖𝒦

≤ 𝑂

(︂
𝜀√
𝑘

√︀
log 1/𝜀

)︂
+
∑︁
𝑖∈𝑈

𝛿𝑖‖𝜇𝑖 − 𝜇‖1

≤ 𝑂

(︂
𝜀√
𝑘

√︀
log 1/𝜀+ 𝜀 · 𝜔

)︂
,

where the second step follows by the above together with Fact 5.3.4 and triangle inequality.

297

Finally, for the third part of the lemma, upon regarding the weights 𝛿 as 𝜀E𝑊 [�̂�(𝑊)] as

before and applying Jensen’s to the second part of Lemma 5.4.4, we get that

‖𝐴(𝛿, 𝜇)− 𝐴(𝛿, {𝜇𝑖})‖𝒦 ≤ 𝜀 ·𝑂

(︃
𝜔 +

√︀
log 1/𝜀√
𝑘

)︃2

≤ 𝑂

(︂
𝜀 · 𝜔2 +

𝜀 log 1/𝜀

𝑘

)︂
.

The third part of the lemma then follows by the first part, together with triangle inequality.

Lemma 5.4.9. If 𝑆𝐺 is 𝜀-good, and 𝑤 : 𝑆𝐺 → [0, 1] satisfies ‖𝑤 − �̂�(𝑆𝐺)‖1 ≤ 𝜀 and∑︀
𝑖∈𝑆𝐺

𝑤𝑖 = 1, then ‖𝑀(𝑤)‖𝒦 ≤ 𝑂(𝜔2 + 𝜀
𝑘
log 1/𝜀).

Proof. Define 𝛿𝑖 = 1/|𝑆𝐺| − 𝑤𝑖 for all 𝑖 ∈ 𝑆𝐺 and take any Σ ∈ 𝒦.

By Fact 5.2.1 and the assumption that ‖𝑤‖1 = 1,

⟨𝐴(𝑤, 𝜇(𝑤)),Σ⟩ = ⟨𝐴(𝑤, 𝜇),Σ⟩ − ‖𝜇(𝑤)− 𝜇‖2𝒦. (5.13)

For the second term on the right-hand side of (5.13), note that we can write

𝜇(𝑤)− 𝜇 =
∑︁
𝑖∈𝑆𝐺

𝑤𝑖(𝑋𝑖 − 𝜇)

=
∑︁
𝑖∈𝑆𝐺

(1/|𝑆𝐺| − 𝛿𝑖)(𝑋𝑖 − 𝜇)

= (𝜇(𝑆𝐺)− 𝜇)−
∑︁
𝑖∈𝑆𝐺

𝛿𝑖(𝑋𝑖 − 𝜇)

= (𝜇(𝑆𝐺)− 𝜇)−
∑︁
𝑖∈𝑆𝐺

𝛿𝑖(𝑋𝑖 − 𝜇𝑖)−
∑︁
𝑖∈𝑆𝐺

𝛿𝑖(𝜇𝑖 − 𝜇),

where the first step follows by the fact that
∑︀

𝑖∈𝑆𝐺
𝑤𝑖 = 1. So by triangle inequality,

‖𝜇(𝑤)− 𝜇‖𝒦 ≤ ‖𝜇(𝑆𝐺)− 𝜇‖𝒦 + ‖
∑︁
𝑖∈𝑆𝐺

𝛿𝑖(𝑋𝑖 − 𝜇)‖𝒦 ≤ 𝑂

(︂
𝜀√
𝑘

√︀
log 1/𝜀+ 𝜀 · 𝜔

)︂
(5.14)

where the second step follows by the first part of Condition (I) in the definition of 𝜀-goodness

for 𝑆𝐺, together with the second part of Lemma 5.4.8.

298

Next, we bound the first term on the right-hand side of (5.13). We have

|⟨𝐴(𝑤, 𝜇),Σ⟩| ≤ |⟨𝐴(�̂�(𝑆𝐺), 𝜇),Σ⟩|+ |⟨𝐴(𝛿, 𝜇),Σ⟩|

≤ |⟨𝐴(�̂�(𝑆𝐺), 𝜇),Σ⟩|+𝑂
(︁ 𝜀
𝑘
log 1/𝜀+ 𝜀 · 𝜔2

)︁
≤ |⟨𝐵({𝜇𝑖}),Σ⟩|+𝑂

(︂
𝜔2 +

𝜀 log 1/𝜀

𝑘

)︂
≤ |⟨𝐵(�̂�(𝑆𝐺)),Σ⟩|+𝑂

(︂
𝜔2 +

𝜀 log 1/𝜀

𝑘

)︂
, (5.15)

where the second step follows by the third part of Lemma 5.4.8, the third step follows by

Corollary 5.4.5, and the fourth step follows by Condition (III) of 𝜀-goodness.

Additionally, by Corollary 5.3.5, we can bound

|⟨𝐵(𝜇(𝑤)),Σ⟩ − ⟨𝐵(�̂�(𝑆𝐺)),Σ⟩| ≤
3

𝑘
‖𝜇(𝑤)− �̂�(𝑆𝐺)‖1 ≤

3

𝑘
‖𝑤 − �̂�(𝑆𝐺)‖1 ≤ 𝑂(𝜀/𝑘). (5.16)

By (5.15) and (5.16) we conclude that ⟨𝐴(𝑤, 𝜇),Σ⟩ ≤ ⟨𝐵(𝜇(𝑤)),Σ⟩ + 𝑂(𝜀
𝑘
log 1/𝜀), so

this together with (5.13) and (5.14) yields the desired bound.

5.4.5 Analyzing the Filter With Spectral Signatures

We now use Lemma 5.4.7 to show that under the deterministic condition that the uncorrupted

points are 𝜀-good, LearnWithFilter satisfies the guarantees of Theorem 5.4.1.

The main step is to show that as long as we remain in the main loop of LearnWithFil-

ter, and we have so far thrown out more bad weight than good weight, we are guaranteed

to throw out more bad weight than good weight in the next iteration of the main loop:

Lemma 5.4.10. Let 𝑤 and 𝑤′ be the weights at the start and end of a single iteration

of the main loop of LearnWithFilter. There is an absolute constant 𝐶 > 0 such that

if ‖𝑀(𝑤)‖𝒦 > 𝐶 · 𝜀
𝑘
log 1/𝜀 and

∑︀
𝑖∈𝑆𝐺

1
𝑁
− 𝑤𝑖 <

∑︀
𝑖∈𝑆𝐵

1
𝑁
− 𝑤𝑖, then

∑︀
𝑖∈𝑆𝐺

𝑤𝑖 − 𝑤′
𝑖 <∑︀

𝑖∈𝑆𝐵
𝑤𝑖 − 𝑤′

𝑖.

Proof. Suppose the scores 𝜏1, · · · , 𝜏𝑁 in this iteration are sorted in decreasing order, and let

𝑇 denote the smallest index for which
∑︀

𝑖∈[𝑇]𝑤𝑖 ≥ 2𝜀. As Filter does not modify 𝑤𝑖 for

𝑖 > 𝑇 , we just need to show that
∑︀

𝑖∈𝑆𝐺∩[𝑇]𝑤𝑖−𝑤′
𝑖 <

∑︀
𝑖∈𝑆𝐵∩[𝑇]𝑤𝑖−𝑤′

𝑖, and by Lemma 5.4.2

299

it is enough to show that ∑︁
𝑖∈𝑆𝐺∩[𝑇]

𝑤𝑖𝜏𝑖 <
∑︁

𝑖∈𝑆𝐵∩[𝑇]

𝑤𝑖𝜏𝑖. (5.17)

First note that because each weight is at most 𝜀, we may assume that
∑︀

𝑖∈[𝑇]𝑤𝑖 ≤ 3𝜀.

We begin by upper bounding the left-hand side of (5.17).

Lemma 5.4.11.
∑︀

𝑖∈𝑆𝐺∩[𝑇]𝑤𝑖𝜏𝑖 ≤ 𝑂
(︀
𝜀
𝑘
log 1/𝜀+ 𝜀 · 𝜔2 + 𝜀2‖𝑀(𝑤)‖𝒦

)︀
.

Proof. Let 𝑤′′ be the weights given by 𝑤′′
𝑖 for 𝑖 ∈ 𝑆𝐺 ∩ [𝑇] and 𝑤′′

𝑖 = 0 otherwise. Then∑︀
𝑆𝐺∩[𝑇]𝑤𝑖𝜏𝑖 is equal to

∑︁
𝑖∈[𝑁]

𝑤′′
𝑖 𝜏𝑖 =

∑︁
𝑖∈[𝑁]

𝑤′′
𝑖

⟨︀
(𝑋𝑖 − 𝜇(𝑤))⊗2,Σ

⟩︀
=
∑︁
𝑖∈[𝑁]

𝑤′′
𝑖

⟨︀
(𝑋𝑖 − 𝜇(𝑤′′))⊗2,Σ

⟩︀
+ ‖𝑤′′‖1 ·

⟨︀
(𝜇(𝑤′′)− 𝜇(𝑤))⊗2,Σ

⟩︀
(5.18)

≤
∑︁
𝑖∈[𝑁]

𝑤′′
𝑖

⟨︀
(𝑋𝑖 − 𝜇(𝑤′′))⊗2,Σ

⟩︀
+𝑂(𝜀) · ‖𝜇(𝑤′′)− 𝜇(𝑤)‖2𝒦 (5.19)

≤
∑︁
𝑖∈[𝑁]

𝑤′′
𝑖

⟨︀
(𝑋𝑖 − 𝜇)⊗2,Σ

⟩︀
+𝑂(𝜀) · ‖𝜇(𝑤′′)− 𝜇(𝑤)‖2𝒦 (5.20)

≤ 𝑂
(︁
𝜀 · 𝜔2 +

𝜀

𝑘
log 1/𝜀

)︁
+𝑂(𝜀) · ‖𝜇(𝑤′′)− 𝜇(𝑤)‖2𝒦

where (5.18) and (5.20) both follow from Fact 5.2.1, (5.19) follows from the earlier assumption

that
∑︀

𝑖∈[𝑇]𝑤𝑖 ≤ 3𝜀 and the definition of ‖·‖𝒦, and the last step follows by the third part of

Lemma 5.4.8.

Now note that

‖𝜇(𝑤′′)− 𝜇(𝑤)‖𝒦 ≤ ‖𝜇(𝑤′′)− 𝜇‖𝒦 + ‖𝜇(𝑤)− 𝜇‖𝒦

≤ 𝑂

(︃√︀
log 1/𝜀√
𝑘

+ 𝜔

)︃
+ ‖𝜇(𝑤)− 𝜇‖𝒦

≤ 𝑂

(︃√︀
log 1/𝜀√
𝑘

+ 𝜔 +

√︂
𝜀
(︁
‖𝑀(𝑤)‖𝒦 + 𝜔2 +

𝜀

𝑘
log 1/𝜀

)︁)︃
,

where the second step follows by the fourth part of Lemma 5.4.8 and the third step holds

by Lemma 5.4.7. The desired bound follows.

300

One consequence of this is that outside of the tails, the scores among good samples are

small.

Corollary 5.4.12. For all 𝑖 > 𝑇 , 𝜏𝑖 ≤ 𝑂(1
𝑘
log 1/𝜀+ 𝜀‖𝑀(𝑤)‖𝒦 + 𝜔2).

Proof. Note that

∑︁
𝑖∈𝑆𝐺∩[𝑇]

𝑤𝑖 =
∑︁
𝑖∈[𝑇]

𝑤𝑖 −
∑︁

𝑖∈𝑆𝐵∩[𝑇]

𝑤𝑖 ≥ 2𝜀−
∑︁
𝑖∈𝑆𝐵

𝑤𝑖 ≥ 𝜀,

so the claim follows from Lemma 5.4.11 and averaging.

Next, we show that the deviation of the total scores of the good points from their expec-

tation is negligible.

Lemma 5.4.13.
∑︀

𝑖∈𝑆𝐺
𝑤𝑖𝜏𝑖 − ⟨𝐵(𝜇(𝑤)),Σ⟩ ≤ 𝑂

(︀
𝜀
𝑘
log 1/𝜀+ 𝜀 · 𝜔2 + 𝜀 · ‖𝑀(𝑤)‖𝒦

)︀
.

Proof. Let 𝑤′ be the weights given by 𝑤′
𝑖 = 𝑤𝑖 for 𝑖 ∈ 𝑆𝐺 and 𝑤′

𝑖 = 0 otherwise. Then by

Fact 5.2.1,

∑︁
𝑖∈𝑆𝐺

𝑤𝑖𝜏𝑖 =
∑︁
𝑖∈𝑆𝐺

𝑤𝑖⟨(𝑋𝑖 − 𝜇(𝑤′))⊗2,Σ⟩+ ‖𝑤‖1 · ⟨(𝜇(𝑤)− 𝜇(𝑤′))⊗2,Σ⟩

≤ 1∑︀
𝑖∈𝑆𝐺

𝑤𝑖

(︁
⟨𝐵(𝜇(𝑤′)),Σ⟩+𝑂

(︁ 𝜀
𝑘
log 1/𝜀

)︁)︁
+ ‖𝜇(𝑤)− 𝜇(𝑤′)‖2𝒦

where in the second step we used Fact 5.2.1, and in the third step we used Lemma 5.4.9 and

the definition of ‖·‖𝒦. To bound the ‖𝜇(𝑤)− 𝜇(𝑤′)‖2𝒦 term, note that

‖𝜇(𝑤)− 𝜇(𝑤′)‖𝒦 ≤ ‖𝜇(𝑤)− 𝜇‖𝒦 + ‖𝜇(𝑤′)− 𝜇‖𝒦

≤ ‖𝜇(𝑤)− 𝜇‖𝒦 +𝑂

(︃
𝜀
√︀

log 1/𝜀√
𝑘

+ 𝜀 · 𝜔

)︃

≤ 𝑂

(︃
𝜀
√︀

log 1/𝜀√
𝑘

+ 𝜀 · 𝜔 +

√︂
𝜀
(︁
‖𝑀(𝑤)‖𝒦 + 𝜔2 +

𝜀

𝑘
log 1/𝜀

)︁)︃
,

where the second step follows by the fourth part of Lemma 5.4.8, and the third step follows

301

by Lemma 5.4.7. Finally, by Corollary 5.3.5 we have that

⟨𝐵(𝜇(𝑤′)),Σ⟩ ≤ ⟨𝐵(𝜇(𝑤)),Σ⟩+ 3

𝑘
‖𝜇(𝑤′)− 𝜇(𝑤)‖1 ≤ ⟨𝐵(𝜇(𝑤)),Σ⟩+𝑂(𝜀/𝑘),

where the last step follows by Fact 5.2.2. This completes the proof of the claim.

We are now ready to complete the proof of Lemma 5.4.10. In light of Lemma 5.4.11, we

wish to lower bound the right-hand side of (5.17).

Claim 5.4.14. If 𝐶 > 0 in the lower bound ‖𝑀(𝑤)‖𝒦 > 𝐶(𝜀
𝑘
log 1/𝜀 + 𝜔2) is sufficiently

large, then ⟨𝑀(𝑤),Σ*⟩ must be positive.

Proof. Let 𝑤′ denote the weights given by 𝑤′
𝑖 = 𝑤𝑖 for 𝑖 ∈ 𝑆𝐺 and 𝑤′

𝑖 = 0 otherwise. We

have

𝑀(𝑤) =
∑︁
𝑖∈[𝑁]

𝑤𝑖(𝑋𝑖 − 𝜇(𝑤))⊗2 −𝐵(𝜇(𝑤))

⪰
∑︁
𝑖∈𝑆𝐺

𝑤′
𝑖(𝑋𝑖 − 𝜇(𝑤))⊗2 −𝐵(𝜇(𝑤))

⪰
∑︁
𝑖∈𝑆𝐺

𝑤′
𝑖(𝑋𝑖 − 𝜇(𝑤′))⊗2 −𝐵(𝜇(𝑤))

=𝑀(𝑤′) +𝐵(𝜇(𝑤′))−𝐵(𝜇(𝑤)) (5.21)

where the third step follows by Fact 5.2.1. Furthermore,

‖𝐵(𝜇(𝑤′))−𝐵(𝜇(𝑤))‖𝒦 ≤
3

𝑘
· ‖𝜇(𝑤′)− 𝜇(𝑤)‖1 ≤ 𝑂(𝜀/𝑘) (5.22)

by Corollary 5.3.5 and Fact 5.2.2. Lastly, we must bound ‖𝑀(𝑤′)‖𝒦. Letting �̂�′ denote the

normalized version of 𝑤′, we have that

‖𝑀(𝑤′)‖𝒦 ≤ ‖𝑀(�̂�′)‖𝒦 + ‖𝑀(𝑤′)−𝑀(�̂�′)‖𝒦

≤ ‖𝑀(�̂�′)‖𝒦 + ‖𝐴(�̂�′ − 𝑤′, 𝜇)‖𝒦

≤ 𝑂
(︁ 𝜀
𝑘
log 1/𝜀+ 𝜔2

)︁
, (5.23)

302

where the penultimate step follows by Fact 5.2.1 and the definition of the matrix 𝑀(·), and

the last step follows by Lemma 5.4.9 and the third part of Lemma 5.4.8.

We conclude by (5.21), (5.22), and (5.23) that

min
Σ∈𝒦
⟨𝑀(𝑤),Σ⟩ ≥ −𝑂

(︁ 𝜀
𝑘
log 1/𝜀+ 𝜔2

)︁
, (5.24)

so we simply need to take 𝐶 larger than the constant implicit in the right-hand side of (5.24)

to ensure that ⟨𝑀(𝑤),Σ*⟩ > 0.

By Claim 5.4.14 and the definition of the scores,

∑︁
𝑖∈[𝑁]

𝑤𝑖𝜏𝑖 − ⟨𝐵(𝜇(𝑤)),Σ*⟩ = ⟨𝑀(𝑤),Σ*⟩ ≥ ‖𝑀(𝑤)‖𝒦.

This, together with Lemma 5.4.13, yields
∑︀

𝑖∈𝑆𝐵
𝑤𝑖𝜏𝑖 ≥ 𝐶 ′‖𝑀(𝑤)‖𝒦 for some 𝐶 ′ < 𝐶 which

we can take to be arbitrarily large. We want to show that this same sum, over only 𝑆𝐵 ∩ [𝑇],

enjoys essentially the same bound. Indeed,

∑︁
𝑖∈𝑆𝐵∩[𝑇]

𝑤𝑖𝜏𝑖 ≥ 𝐶 ′‖𝑀(𝑤)‖𝒦 −
∑︁

𝑖∈𝑆𝐵∖[𝑇]

𝑤𝑖𝜏𝑖

≥ 𝐶 ′‖𝑀(𝑤)‖𝒦 −

(︃∑︁
𝑖∈𝑆𝐵

𝑤𝑖

)︃
·𝑂
(︂
1

𝑘
log 1/𝜀+ 𝜔2 + 𝜀‖𝑀(𝑤)‖𝒦

)︂
≥ 𝐶 · ‖𝑀(𝑤)‖𝒦,

for some arbitrarily large absolute constant 𝐶, where the second step follows by Corol-

lary 5.4.12, and the last by the assumption that ‖𝑀(𝑤)‖𝒦 > 𝐶 · (𝜀
𝑘
log 1/𝜀 + 𝜔2). On the

other hand, by this same assumption and by Lemma 5.4.11,

∑︁
𝑖∈𝑆𝐺∩[𝑇]

𝑤𝑖𝜏𝑖 ≤ 𝑂
(︁ 𝜀
𝑘
log 1/𝜀+ 𝜀 · 𝜔2 + 𝜀2‖𝑀(𝑤)‖𝒦

)︁
≤ 𝐶 · ‖𝑀(𝑤)‖𝒦,

where 𝐶 can be taken to be smaller than 𝐶. This proves (5.17) and thus Lemma 5.4.10.

We can now combine Lemma 5.4.7 and Lemma 5.4.10 to get a proof of Theorem 5.4.1.

303

Proof of Theorem 5.4.1. Let �̂� be the output of LearnWithFilter. By Lemma 4.5.4, it

suffices to show that �̂� satisfies ‖�̂�−𝜇‖𝒜𝑠(𝑑+1)
≤ 𝑂(𝜔+ 𝜀√

𝑘

√︀
log 1/𝜀), or equivalently that for

all 𝑣 ∈ 𝒱𝑛ℓ , where ℓ , 2𝑠(𝑑+1), we have that ⟨(�̂�− 𝜇)⊗2, 𝑣𝑣⊤⟩1/2 ≤ 𝑂(𝜔+ 𝜀√
𝑘

√︀
log 1/𝜀). By

Corollary 5.3.3, it is enough to show that ‖�̂�− 𝜇‖𝒦 ≤ 𝑂(𝜔+ 𝜀√
𝑘

√︀
log 1/𝜀). By Lemma 5.4.7

together with the termination condition of the main loop of LearnWithFilter, we just

need to show that the algorithm terminates (in polynomial time) and that 𝑤 ∈ 𝒲𝑂(𝜀).

But by induction and Lemma 5.4.10, every iteration of the loop removes more mass from

the bad points than from the good points. Furthermore, by Lemma 5.4.2, the support of 𝑤

goes down by at least one every time 1DFilter is run, so the loops terminates after at most

𝑁 iterations, each of which can be implemented in polynomial time. At the end, at most an

𝜀 fraction of the total mass on 𝑆𝐺 has been removed, so the final weights 𝑤 satisfy 𝑤 ∈ 𝒲2𝜀

as desired.

5.5 Numerical Experiments

In this section we report on empirical evaluations of our algorithm on synthetic data. We

compared our algorithm LearnWithFilter, the naive estimator which simply takes the

empirical mean of all samples, the “oracle” algorithm which computes the empirical mean of

the uncorrupted samples, and the threshold of 𝜀/
√
𝑘 which our theorems show that Learn-

WithFilter achieves, up to constant factors (in Figures 5-1 and 5-2, these are labeled

“filter”, “naive”, “oracle”, and 𝜀/
√
𝑘 respectively). Note that by definition, the oracle domi-

nates the algorithms considered in the previous chapter and [JO19] for the unstructured case,

as those algorithms search for a subset of the data and output the empirical mean of that

subset. But as Theorem 5.4.1 predicts, LearnWithFilter should actually outperform the

oracle in settings where the underlying distribution 𝜇 is structured and there are too few

samples for the empirical mean of the uncorrupted points to concentrate sufficiently. In these

experiments, we confirm this empirically.

304

0 50 100
(i) domain size n

0.000

0.050

0.100

0.150

0.200

A
/2

 d
is

ta
nc

e

/ k
filter
oracle
naive

0 250 500 750 1000
(ii) batch size k

0.000

0.100

0.200

0.300

0.400

A
/2

 d
is

ta
nc

e

/ k
filter
oracle
naive

0.0 0.1 0.2 0.3 0.4
(iii) corruption

0.020

0.040

0.060

0.080

0.100

A
/2

 d
is

ta
nc

e

/ k
filter
oracle
naive

30 40 50
(iv) number of batches

0.020

0.040

0.060

0.080

A
/2

 d
is

ta
nc

e

/ k
filter
oracle
naive

Figure 5-1: Experimental results for learning arbitrary distributions

305

0 50 100
(i) domain size n

0.000

0.025

0.050

0.075

0.100

0.125

L 1
 d

is
ta

nc
e

/ k
filter
oracle
naive

0 250 500 750 1000
(ii) batch size k

0.000

0.200

0.400

0.600

L 1
 d

is
ta

nc
e

/ k
filter
oracle
naive

0.0 0.1 0.2 0.3 0.4
(iii) corruption

0.025

0.050

0.075

0.100

0.125

L 1
 d

is
ta

nc
e

/ k
filter
oracle
naive

30 40 50
(iv) number of batches

0.000

0.025

0.050

0.075

0.100

0.125

L 1
 d

is
ta

nc
e

/ k
filter
oracle
naive

Figure 5-2: Experimental results for learning structured distributions

306

5.5.1 Experimental Design

Our experiments fall under two types: (A) those on learning an arbitrary distribution in

𝒜ℓ/2 norm and B) those on learning a structured distribution in total variation distance.

The purpose of experiments of type (A) will be to convey that LearnWithFilter can

be used to learn from untrusted batches in 𝒜ℓ/2 norm even for distributions which are not

necessarily structured. The purpose of experiments of type (B) will be to demonstrate that

LearnWithFilter can outperform the oracle for structured distributions.

Throughout, 𝜔 = 0 and ℓ = 10. While our algorithm can also be implemented for larger

ℓ (as the size of the SDP we solve does not depend on ℓ), we choose ℓ = 5 because it is

small enough that the sample complexity savings of our algorithm are very pronounced,

yet large enough that for the domain sizes 𝑛 we work with, enumerating over 𝒱𝑛ℓ would be

prohibitively expensive, justifying the need to use an SDP.

For experiments of type (A), we chose the true underlying distribution 𝜇 by sampling

uniformly from [0, 1]𝑛 and normalizing, and for experiments of type B), we chose 𝜇 by

sampling a uniformly random piecewise constant function with ℓ = 5 pieces.

Given 𝜇 and a prescribed parameter 𝛿, the distribution from which the corrupted batches

were drawn was taken to be Mul𝑘(𝜈), where 𝜈 was constructed to satisfy 𝑑TV(𝜇, 𝜈) = 𝛿 by

adding 2𝛿
𝑛

to the smallest entries of 𝜇 and subtracting 2𝛿
𝑛

from the largest. Sometimes this

does not give a probability distribution, in which case we resample 𝜇. When 𝑘, 𝜀,𝑁 are clear

from context and we say that𝑁 𝜀-corrupted batches are drawn from the distribution specified

by (𝜇, 𝜈), we mean that ⌊(1 − 𝜀)𝑁⌋ samples are drawn from Mul𝑘(𝜇) and 𝑁 − ⌊(1 − 𝜀)𝑁⌋

from Mul𝑘(𝜈).

As noted in [JO19], choosing 𝛿 too high makes it too easy to detect the corruptions in

the data, while choosing 𝛿 too low means the naive estimator will already perform quite

well. In light of this and the fact that the above process for generating 𝜈 only ensures that

𝑑TV(𝜇, 𝜈) = 𝛿, whereas ‖𝜇 − 𝜈‖𝒜ℓ
might be much smaller, we chose 𝛿 for our experiments

as follows. For experiments of type (A), we took 𝛿 = 0.5 to ensure that the typical 𝒜ℓ/2
distance between the empirical mean and the truth was still sufficiently large that the the

naive estimator was not competitive. For experiments of type B) where we measure error in

307

terms of total variation distance, we could afford to choose 𝛿 slightly smaller, namely 𝛿 = 0.3.

We first describe the experiments of type (A). We examined the effect of varying one of

the following four parameters at a time: domain size 𝑛, batch size 𝑘, corruption fraction 𝜀,

and total number of batches 𝑁 . Each of the following four experiments was repeated for a

total of ten trials.

(a) Varying domain size 𝑛: We fixed 𝜀 = 0.4, 𝑘 = 1000, and 𝑁 = ⌊ ℓ/𝜀
2

1−𝜀 ⌋ to ensure

⌊ℓ/𝜀2⌋ samples from Mul𝑘(𝜇). We chose such large 𝑘 to ensure the gap between

empirical mean and our algorithm was very noticable. In each trial and for each

𝑛 ∈ [4, 8, 16, 32, 64, 128], we randomly generated (𝜇, 𝜈) via the above procedure, drew

𝑁 𝜀-corrupted samples from distribution specified by (𝜇, 𝜈). Note that while 𝑁 is in-

dependent of 𝑛, the performance of our algorithm is comparable to that of the oracle.3

(b) Varying batch size 𝑘: We fixed 𝜀 = 0.4, 𝑛 = 64, and 𝑁 = ℓ/𝜀2

1−𝜀 ⌋. In each trial,

we randomly generated (𝜇, 𝜈) via the above procedure, and then for each value of

𝑘 ∈ [1, 50, 100, 250, 500, 750, 1000] we drew 𝑁 samples from the distribution specified

by (𝜇, 𝜈). Note that while our algorithm’s error and the oracle’s error decay with 𝑘,

the empirical mean’s error remains fixed.

(c) Varying corruption fraction 𝜀: We fixed 𝜀* = 0.4, 𝑛 = 64, 𝑘 = 1000, and 𝑁 = ⌊ℓ/𝜀*2⌋.

In each trial, we randomly generated (𝜇, 𝜈) via the above procedure and drew 𝑁

samples from Mul(𝑘, 𝜇). Then for each 𝜀 ∈ [0.0, 0.1, 0.2, 0.3, 0.4], we augmented this

with an additional ⌊ 𝜀𝑁
1−𝜀 samples from Mul(𝑘, 𝜈). Note that while our algorithm’s error

remains close to 𝜀*/
√
𝑘, the empirical mean’s error increases linearly in 𝜀.

(d) Varying number of batches 𝑁 : We fixed 𝜀 = 0.4, 𝑛 = 128, and 𝑘 = 500. In each

trial, we randomly generated (𝜇, 𝜈) via the above procedure, and then for each 𝜌 ∈

[0.5, 0.75, 1, 1.25, 1.5], we drew 𝑁 = ⌊𝜌 · ℓ/𝜀2⌋ samples from the distribution specified

by (𝜇, 𝜈). Note that even with such a small number of samples, our algorithm can

compete with the oracle. Also note that our error bottoms out at 𝜀/
√
𝑘 while the

oracle’s error goes beneath this threshold.
3The naive estimator’s error is decreasing in 𝑛 for an unrelated reason: as 𝑛 increases, the above procedure

for sampling (𝜇, 𝜈) appears to skew towards 𝜇 for which the resulting perturbation 𝜈 is close in 𝒜ℓ/2.

308

For type (B), we ran the exact same set of four experiments but over structured 𝜇, with

the key difference that after generating an estimate with LearnWithFilter, we post-

processed it by rounding to a piecewise constant function via a simple dynamic program.

We then compare the error of this piecewise constant estimator in total variation distance to

that of the empirical mean of the whole dataset, and the empirical mean of the uncorrupted

points.

As is evident from Figure 5-2, our algorithm outperforms even the oracle, as predicted

by Theorem 5.4.1.

5.5.2 Implementation Details

The experiments were conducted on a MacBook Pro with 2.6 GHz Dual-Core Intel Core i5

processor and 8 GB of RAM. The experiments of type (A) respectively took 110m36.499s,

73m19.477s, 50m54.655s, and 536m39.212s to run. The experiments of type (B) respectively

took 64m28.346s, 52m7.859s, 39m36.754s, and 362m50.742s to run. The discrepancy in

runtimes between (A) and (B) can be explained by the fact that a number of unrelated

processes were also running at the time of the former. The experiment of varying the number

of batches 𝑁 was the most expensive because we chose domain size 𝑛 = 128 to accentuate

the gap between our algorithm and the oracle. The abovementioned runtimes imply that

over a domain of size 128, LearnWithFilter takes roughly 7-10 minutes.

For the implementation, we used the SCS solver in CVXPY for our semidefinite programs.

In order to achieve reasonable runtimes, we needed to set the feasibility tolerance to 1e− 2,

and as a result the SDP solver would occasionally output matrices Σ which are moderately

far from 𝒦; in particular, one mode of failure that arose was that Σ might be non-PSD and

give rise to negative scores in LearnWithFilter. We chose to address this mode of failure

heuristically by terminating the algorithm whenever this happened and simply outputting

the estimate for 𝜇 at that point in time. Of the 480 total trials that were run across all

experiments, this happened 53 times. Another heuristic that we used was to terminate the

algorithm as soon as ‖Σ‖𝒦 stopped increasing during a run of LearnWithFilter; this

was primarily to have a stopping criterion that avoids the need to tune constant factors.

As demonstrated by Figures 5-1 and 5-2, these heuristic decisions ultimately had negligible

309

effect on the performance of our algorithm.

All code, data, and documentation can be found at https://github.com/secanth/

federated.

5.6 Appendix: Concentration

In this section we prove Lemma 5.4.6, restated here for convenience:

Lemma 5.4.6 (Regularity of good samples). If 𝑈 is a set of ̃︀Ω (︀log(1/𝛿)(ℓ2/𝜀2) · log3(𝑛))︀
independent samples from Mul𝑘(𝜇1), ...,Mul𝑘(𝜇|𝑈 |), then 𝑈 is 𝜀-good with probability at least

1− 𝛿.

5.6.1 Technical Ingredients

The key technical fact we use to get sample complexity that depend quadratically on ℓ is:

Lemma 5.6.1. For every 0 < 𝜂 ≤ 1, there exists a net 𝒩 ⊂ R𝑛×𝑛 of size 𝑂(𝑛3ℓ2 log2 𝑛/𝜂)(ℓ log𝑛+1)2

of matrices such that for every Σ ∈ 𝒦, there exists some Σ̃ =
∑︀

𝜈 Σ
*
𝜈 for Σ*

𝜈 ∈ 𝒩 such that

the following holds: 1) ‖Σ− Σ̃‖𝐹 ≤ 𝜂, 2)
∑︀

𝜈 𝛼𝜈 ≤ 1, and 3) ‖Σ*
𝜈‖max ≤ 𝑂(1).

Note that this is a strengthening of a special case of Lemma 4.7.2 from the previous

chapter. We defer the proof of Lemma 5.6.1 to Appendix 5.7.

For 𝜀-goodness to hold, it will be crucial to establish the following sub-exponential tail

bounds for the empirical covariance of a set of samples 𝑋1, · · · , 𝑋𝑁 ∼ Mul𝑘(𝜇), as well as

for ‖�̂�− 𝜇‖2𝒦, where �̂� is the empirical mean of those samples.

Lemma 5.6.2. Let 𝜉 > 0 and let 𝒩 ⊂ R𝑛×𝑛 be any finite set for which ‖Σ‖max ≤ 𝑂(1)

for all Σ ∈ 𝒩 . Let 𝜇1, ..., 𝜇𝑁 , 𝜇 ∈ Δ𝑛 satisfy 𝜇 , 1
𝑁

∑︀𝑁
𝑖=1 𝜇𝑖. Then for 𝑋𝑖 ∼ Mul𝑘(𝜇𝑖) for

𝑖 ∈ [𝑁],

Pr

[︃⃒⃒⃒⃒
⃒
⟨

1

𝑁

𝑁∑︁
𝑖=1

(𝑋𝑖 − 𝜇𝑖)⊗2 − E𝑋∼Mul𝑘(𝜇𝑖)
[︀
(𝑋 − 𝜇𝑖)⊗2

]︀
,Σ

⟩⃒⃒⃒⃒
⃒ > 𝑡 ∀ Σ ∈ 𝒩

]︃
< 2|𝒩 | exp

(︂
−Ω

(︂
𝑁𝑘2𝑡2

1 + 𝑘𝑡

)︂)︂
,

where the probability is over the samples 𝑋1, · · · , 𝑋𝑁 .

310

https://github.com/secanth/federated
https://github.com/secanth/federated

Lemma 5.6.3. Let 𝜉 > 0 and let 𝒩 ⊂ R𝑛×𝑛 be any finite set for which ‖Σ‖max ≤ 𝑂(1) for

all Σ ∈ 𝒩 . For 𝑋𝑖 ∼ Mul𝑘(𝜇𝑖) for 𝑖 ∈ [𝑁], �̂� , 1
𝑁

∑︀𝑁
𝑖=1𝑋𝑖, and 𝜇 , 1

𝑁

∑︀𝑁
𝑖=1 𝜇𝑖,

Pr
[︀⃒⃒⟨︀

(�̂�− 𝜇)⊗2,Σ
⟩︀
− E

[︀⟨︀
(�̂�− 𝜇)⊗2,Σ

⟩︀]︀⃒⃒
> 𝑡 ∀ Σ ∈ 𝒩

]︀
< 2|𝒩 | exp

(︂
−Ω

(︂
𝑁2𝑘2𝑡2

1 +𝑁𝑘𝑡

)︂)︂
,

where the probability is over the samples 𝑋1, · · · , 𝑋𝑁 .

Lemma 5.6.4. Let 𝜉 > 0 and let 𝒩 ⊂ R𝑛×𝑛 be any finite set for which ‖Σ‖max ≤ 𝑂(1) for

all Σ ∈ 𝒩 . Let 𝜇1, ..., 𝜇𝑁 , 𝜇 ∈ Δ𝑛 satisfy ‖𝜇𝑖 − 𝜇‖1 ≤ 𝜔 for all 𝑖 ∈ [𝑁]. For 𝑋𝑖 ∼ Mul𝑘(𝜇𝑖)

for 𝑖 ∈ [𝑁],

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

(𝜇𝑖 − 𝜇)⊤Σ(𝑋𝑖 − 𝜇𝑖)

⃒⃒⃒⃒
⃒ > 𝜔 · 𝑡 ∀ Σ ∈ 𝒩

]︃
< 2|𝒩 | exp

(︀
−Ω

(︀
𝑘𝑁𝑡2

)︀)︀
,

where the probability is over the samples 𝑋1, · · · , 𝑋𝑁 .

Note that if 𝒩 consisted solely of matrices of the form 𝑣𝑣⊤ for 𝑣 ∈ {±1}𝑛, these lemmas

would follow straightforwardly from standard binomial tail bounds. Instead, we only have

entrywise bounds for the matrices in𝒩 and will therefore need to compute moment estimates

from scratch in order to prove Lemmas 5.6.2 and 5.6.3. We defer the details of this to

Appendix 5.8.

Lastly, we will need the following elementary consequence of Stirling’s formula:

Fact 5.6.5. For any 𝑚 ≥ 1, log
(︀
𝑚
𝜀𝑚

)︀
≤ 2𝑚 · 𝜀 log 1/𝜀.

5.6.2 Proof of Lemma 5.4.6

We are now ready to prove that the four conditions for 𝜀-goodness hold for a set 𝑈 of

independent draws from Mul𝑘(𝜇1), ...,Mul𝑘(𝜇|𝑈 |) respectively, of size

|𝑈 | = ̃︀Ω (︀log(1/𝛿)(ℓ2/𝜀2) · log3(𝑛))︀ . (5.25)

Proof of Lemma 5.4.6. As ‖·‖𝒦 is defined as a supremum over 𝒦, we will reduce controlling

the infinitely many directions in 𝒦 to controlling a finite net of such directions by invoking

Lemma 5.6.1. Specifically, recall that for any Σ ∈ 𝒦, by Lemma 5.6.1, there is some Σ̃ =

311

∑︀
𝜈 𝛼𝜈Σ

*
𝜈 such that Σ*

𝜈 ∈ 𝒩 and ‖Σ− Σ̃‖𝐹 ≤ 𝜂.

(Condition (I)) By Lemma 5.6.3, with probability at least 1− 2|𝒩 | exp
(︁
−Ω(𝑁2𝑘2𝑡2

1+𝑁𝑘𝑡
)
)︁
,

we have that for all Σ ∈ 𝒦,

⟨︀
(𝜇(𝑈)− 𝜇)⊗2,Σ

⟩︀
≤
⟨
(𝜇(𝑈)− 𝜇)⊗2, Σ̃

⟩
+ ‖𝜇(𝑈)− 𝜇‖22 · ‖Σ− Σ̃‖𝐹

≤
⟨
(𝜇(𝑈)− 𝜇)⊗2, Σ̃

⟩
+ 2𝜂

=
∑︁
𝜈

𝛼𝜈
⟨︀
(𝜇(𝑈)− 𝜇)⊗2,Σ*

𝜈

⟩︀
+ 2𝜂

≤ 1

𝑁

𝑁∑︁
𝑖=1

E
[︀⟨︀
(𝑋 − 𝜇𝑖)⊗2,Σ*

𝜈

⟩︀]︀
+
∑︁
𝜈

𝛼𝜈 · 𝑡+ 2𝜂

≤ 𝑂(1/𝑘|𝑈 |) + 𝑡+ 2𝜂, (5.26)

where the first step follows by Cauchy-Schwarz and triangle inequality, the second step

follows by the trivial bound ‖𝜇(𝑈) − 𝜇𝑖‖22 ≤ 2 and the bound on ‖Σ − Σ̃‖𝐹 guaranteed by

Lemma 5.6.1, the fourth step holds with the claimed probability by Lemma 5.6.3 and the

fact that ‖Σ*
𝜈‖max ≤ 𝑂(1) for all 𝜈 by the guarantees of Lemma 5.6.1, and the last step

follows by the bound on
∑︀
𝛼𝜈 by the guarantees of Lemma 5.6.1, as well as the moment

bound in Lemma 5.8.2 applied to 𝑟 = 1.

If |𝑈 | satisfies (5.25) and 𝜂, 𝑡 = 𝑂(𝜀
2

𝑘
log 1/𝜀), the first part of Condition (I) holds.

For the second part, by the steps leading to (5.26), a union bound over the
(︀ |𝑈 |
𝜀|𝑈 |

)︀
subsets

𝑊 and Fact 5.6.5, with probability at least

1− 2 exp(2|𝑈 | · 𝜀 log 1/𝜀) · |𝒩 | exp
(︂
−Ω

(︂
𝜀2|𝑈 |2𝑘2𝑡2

1 + 𝜀|𝑈 |𝑘𝑡

)︂)︂

we have that ‖𝜇(𝑊)−𝜇𝑊‖2𝒦 ≤ 𝑂
(︁

1
𝜀𝑘|𝑈 |

)︁
+𝑡+2𝜂 for all𝑊 . Note that 2 log 1/𝜀 ≤ 𝑂

(︁
𝜀|𝑈 |2𝑘2𝑡2
1+𝜀|𝑈 |𝑘𝑡

)︁
provided 𝑡 = Ω

(︁
log 1/𝜀
𝑘

)︁
, so if |𝑈 | satisfies (5.25) and 𝜂 = 𝑂(log 1/𝜀

𝑘
), the second part of

Condition (I) holds.

(Condition (II)) For the first part, let M̂ ,𝑀(�̂�(𝑈), {𝜇𝑖}𝑖∈𝑈). By Lemma 5.6.2, with

312

probability at least 1− 2|𝒩 | exp
(︁
−Ω

(︁
|𝑈 |𝑘2𝑡2
1+𝑘𝑡

)︁)︁
, we have that for all Σ ∈ 𝒦,

⟨M̂,Σ⟩ ≤ ⟨M̂, Σ̃⟩+ ‖M̂‖𝐹 · ‖Σ− Σ̃‖𝐹

≤ ⟨M̂, Σ̃⟩+ 3𝜂

≤
∑︁
𝜈

𝛼𝜈⟨M̂,Σ*
𝜈⟩+ 3𝜂

≤
∑︁
𝜈

𝛼𝜈 · 𝑡+ 3𝜂

≤ 𝑡+ 3𝜂 (5.27)

where the first step follows by Cauchy-Schwarz and triangle inequality, and the second step

follows by Lemma 5.2.3 and the bound on ‖Σ− Σ̃‖𝐹 guaranteed by Lemma 5.6.1, the fourth

step holds with the claimed probability by Lemma 5.6.2 and the fact that ‖Σ*
𝜈‖max ≤ 𝑂(1)

for all 𝜈 by the guarantees of Lemma 5.6.1, and the last step follows by the bound on
∑︀
𝛼𝜈

by the guarantees of Lemma 5.6.1.

If |𝑈 | satisfies (5.25), 𝜂 = 𝑂
(︀
𝜀
𝑘
log 1/𝜀

)︀
, 𝑡 = 𝑂

(︀
𝜀
𝑘
log 1/𝜀

)︀
, the first part of Condition (II)

holds.

For the second part, first note that it is slightly different from the first part because we

do not subtract out 𝐵(𝜇), the reason being that ‖𝐵(𝜇)‖𝒦 ≤ 𝑂(1/𝑘) = 𝑜(log 1/𝜀
𝑘

), so this term

is negligible. By the steps leading to (5.27), a union bound over the
(︀ |𝑈 |
𝜀|𝑈 |

)︀
subsets 𝑊 , and

Fact 5.6.5, with probability at least

1− 2|𝒩 | exp(2𝜀|𝑈 | log 1/𝜀) · exp
(︂
−Ω

(︂
𝜀|𝑈 |𝑘2𝑡2

1 + 𝑘𝑡

)︂)︂
,

we have that ‖𝑀(�̂�(𝑊), {𝜇𝑖}𝑖∈𝑊)‖𝒦 ≤ 𝑡 + 3𝜂 for all 𝑊 . Note that 2 log 1/𝜀 ≤ 𝑂
(︁
𝑘2𝑡2

1+𝑘𝑡

)︁
provided 𝑡 = Ω

(︁
log 1/𝜀
𝑘

)︁
, so if |𝑈 | satisfies (5.25) and 𝜂 = 𝑂

(︁
log 1/𝜀
𝑘

)︁
, the second part of

Condition (II) holds.

(Condition (III)) First note that

𝐵({𝜇𝑖})−𝐵(𝜇) =
1

|𝑈 |
∑︁
𝑖∈𝑈

1

𝑘

(︀
diag(𝜇𝑖 − 𝜇)− (𝜇⊗2

𝑖 − 𝜇⊗2)
)︀
= − 1

|𝑈 |
∑︁
𝑖∈𝑈

1

𝑘
(𝜇⊗2

𝑖 − 𝜇⊗2).

313

Also note that⟨
Σ,

1

|𝑈 |
∑︁
𝑖∈𝑈

(𝜇⊗2
𝑖 − 𝜇⊗2)

⟩
=

1

|𝑈 |
∑︁
𝑖∈𝑈

⟨︀
(𝜇𝑖 − 𝜇)⊗2,Σ

⟩︀
≤ max

𝑖
‖𝜇𝑖 − 𝜇‖21 ≤ 𝜔2,

where in the last step we used Fact 5.3.4. So ‖𝐵({𝜇𝑖})−𝐵(𝜇)‖𝒦 ≤ 𝜔2/𝑘.

It remains to bound ‖𝐵(�̂�(𝑈)) − 𝐵(𝜇)‖𝒦. As we only need to show extremely mild

concentration here, we will not make an effort to obtain tight bounds. Note that by (5.2),

|⟨Σ, 𝐵(�̂�(𝑈))−𝐵(𝜇)⟩| ≤ 1

𝑘
|⟨diag(�̂�(𝑈)− 𝜇),Σ⟩|+ 1

𝑘

⃒⃒
⟨�̂�(𝑈)⊗2 − 𝜇⊗2,Σ⟩

⃒⃒
. (5.28)

We have

⟨diag(�̂�(𝑈)− 𝜇),Σ⟩ ≤
∑︁
𝜈

𝛼𝜈⟨diag(�̂�(𝑈)− 𝜇),Σ*
𝜈⟩+ ‖Σ− Σ̃‖𝐹 · ‖�̂�(𝑈)− 𝜇‖2

≤
∑︁
𝜈

𝛼𝜈⟨�̂�(𝑈)− 𝜇, diag(Σ*
𝜈)⟩+𝑂(𝜂). (5.29)

Note that for any 𝜈, ⟨�̂�(𝑈)− 𝜇, diag(Σ*
𝜈)⟩ = 1

|𝑈 |
∑︀

𝑖∈𝑈 𝑍
𝜈
𝑖 for 𝑍𝜈

𝑖 , ⟨𝑋𝑖− 𝜇𝑖, diag(Σ*
𝜈). These

are independent, mean-zero, 𝑂(1)-bounded random variables, so by Hoeffding’s, for any fixed

𝜈 we have that |⟨�̂�(𝑈)− 𝜇, diag(Σ*
𝜈)⟩| ≤ 𝑡 with probability at least 1− 2 exp(−Ω(|𝑈 |𝑡2)). If

we union bound over 𝒩 , then by taking 𝜂, 𝑡 = 𝑂(𝜀), and |𝑈 | satisfying (5.25), (5.29) will be

at most 𝑂(𝜀).

We also have that

⃒⃒
⟨�̂�(𝑈)⊗2 − 𝜇⊗2,Σ⟩

⃒⃒
=
⃒⃒
⟨(�̂�(𝑈)− 𝜇)⊗2,Σ⟩ − 2𝜇⊤Σ(�̂�(𝑈)− 𝜇)

⃒⃒
≤ 𝑂

(︂
𝜀2 log 1/𝜀

𝑘

)︂
+ 2

⃒⃒
𝜇⊤Σ(�̂�(𝑈)− 𝜇)

⃒⃒
, (5.30)

where the second step follows by the first part of this lemma. For the other term, we have

𝜇⊤Σ(�̂�(𝑈)− 𝜇) ≤
∑︁
𝜈

𝛼𝜈𝜇
⊤Σ*

𝜈(�̂�(𝑈)− 𝜇) + ‖Σ− Σ̃‖𝐹 · ‖𝜇‖2 · ‖�̂�(𝑈)− 𝜇‖2

≤
∑︁
𝜈

𝛼𝜈𝜇
⊤Σ*

𝜈(�̂�(𝑈)− 𝜇) +𝑂(𝜂). (5.31)

314

For any 𝜈, 𝜇⊤Σ*
𝜈(�̂�(𝑈)−𝜇) = 1

|𝑈 |
∑︀

𝑖∈𝑈 𝑊
𝜈
𝑖 for 𝑊 𝜈

𝑖 , 𝜇⊤Σ*
𝜈(𝑋𝑖−𝜇𝑖). These are independent,

mean-zero, 𝑂(1)-bounded random variables, so by Hoeffding’s, for any fixed 𝜈, we have that

|𝜇⊤Σ(�̂�(𝑈)− 𝜇)| ≤ 𝑡 with probability at least 1− 2 exp(−Ω(|𝑈 |𝑡2)). If we union bound over

𝒩 , then by taking 𝜂, 𝑡 = 𝑂(𝜀) and |𝑈 | satisfying (5.25) again, (5.31) and thus (5.30) will be

at most 𝑂(𝜀).

By (5.28), we thus conclude that ‖𝐵(�̂�(𝑈))−𝐵(𝜇)‖𝒦 ≤ 𝑂(𝜀/𝑘) as claimed.

(Condition (IV)) By Lemma 5.6.4, with probability at least 1−2|𝒩 | exp (−Ω (𝑘|𝑈 |𝑡2)),

we have that for all Σ ∈ 𝒦,

1

|𝑈 |
∑︁
𝑖∈𝑈

(𝜇𝑖 − 𝜇)⊤Σ(𝑋𝑖 − 𝜇𝑖)

≤ 1

|𝑈 |
∑︁
𝑖∈𝑈

(𝜇𝑖 − 𝜇)⊤Σ̃(𝑋𝑖 − 𝜇𝑖) +
1

|𝑈 |
∑︁
𝑖∈𝑈

‖Σ− Σ̃‖𝐹 · ‖𝜇𝑖 − 𝜇‖2 · ‖𝑋𝑖 − 𝜇𝑖‖2

≤
∑︁
𝜈

𝛼𝜈 ·
1

|𝑈 |
∑︁
𝑖∈𝑈

(𝜇𝑖 − 𝜇)⊤Σ*
𝜈(𝑋𝑖 − 𝜇𝑖) + 2𝜔 · 𝜂

≤
∑︁
𝜈

𝛼𝜈 · 𝑡+ 2𝜔 · 𝜂

≤ 𝜔 · 𝑡+ 2𝜔 · 𝜂 (5.32)

where the first step follows by triangle inequality and Cauchy-Schwarz, the second step

follows by the bound on ‖Σ − Σ̃‖𝐹 guaranteed by Lemma 5.6.1 and the assumption that

‖𝜇𝑖−𝜇‖2 ≤ 𝜔, and the third step holds with the claimed probability by Lemma 5.6.4 and the

fact that ‖Σ*
𝜈‖max ≤ 𝑂(1) for all 𝜈 by Lemma 5.6.1, and the last step follows by the bound

on
∑︀
𝛼𝜈 by the guarantees of Lemma 5.6.1. If |𝑈 | satisfies (5.25) and 𝜂, 𝑡 = 𝑂

(︂
𝜀
√

log 1/𝜀
√
𝑘

)︂
,

the first part of Condition (IV) holds.

For the second part, by the steps leading to (5.32), a union bound over 𝑊 , and Fact 5.6.5,

with probability at least

1− 2|𝒩 | exp(2𝜀|𝑈 | log 1/𝜀) · exp
(︀
−Ω

(︀
𝜀𝑘|𝑈 |𝑡2

)︀)︀
,

we have that 1
|𝑊 |
∑︀

𝑖∈𝑊 (𝜇𝑖 − 𝜇)⊤Σ(𝑋𝑖 − 𝜇𝑖) ≤ 𝜔 · 𝑡+ 2𝜔 · 𝜂 for all 𝑊 .

Note that 2 log 1/𝜀 ≤ 𝑂(𝑘𝑡2) provided 𝑡 = Ω

(︂√
log 1/𝜀
√
𝑘

)︂
, so if |𝑈 | satisfies (5.25) and

315

𝜂 = 𝑂

(︂√
log 1/𝜀
√
𝑘

)︂
, the second part of Condition (IV) holds.

5.7 Appendix: Netting Over 𝒦

In this section we prove Lemma 5.6.1, restated here for convenience:

Lemma 5.6.1. For every 0 < 𝜂 ≤ 1, there exists a net 𝒩 ⊂ R𝑛×𝑛 of size 𝑂(𝑛3ℓ2 log2 𝑛/𝜂)(ℓ log𝑛+1)2

of matrices such that for every Σ ∈ 𝒦, there exists some Σ̃ =
∑︀

𝜈 Σ
*
𝜈 for Σ*

𝜈 ∈ 𝒩 such that

the following holds: 1) ‖Σ− Σ̃‖𝐹 ≤ 𝜂, 2)
∑︀

𝜈 𝛼𝜈 ≤ 1, and 3) ‖Σ*
𝜈‖max ≤ 𝑂(1).

As alluded to in Remark 5.3.2 and Appendix 5.6, we will use the extra Constraints 3 and

4 in the definition of 𝒦 to tighten the proof of Lemma 4.7.2 to obtain Lemma 5.6.1 above.

The following well-known trick will be useful.

Lemma 5.7.1 (“Shelling”). If 𝑣 ∈ R𝑚 satisfies ‖𝑣‖2 ≤ 𝐶 and ‖𝑣‖1 = 𝐶 ·
√
𝑘, then there

exist 𝑘-sparse vectors 𝑣[1], ..., 𝑣[𝑚/𝑘] with disjoint supports for which 1) 𝑣 =
∑︀𝑚/𝑘

𝑖=1 𝑣[𝑖], 2)∑︀𝑚/𝑘
𝑖=1 ‖𝑣[𝑖]‖2 ≤ 2𝐶, and 3)

∑︀𝑚/𝑘
𝑖=1 ‖𝑣[𝑖]‖∞ ≤

1
𝑘
‖𝑣‖1 + ‖𝑣‖∞.

Proof. Assume without loss of generality that 𝐶 = 1. Letting 𝐵1 ⊂ [𝑚] be the indices of

the 𝑘 largest entries of 𝑣 in absolute value, 𝐵2 those of the next 𝑘 largest, etc., we can write

[𝑚] = 𝐵1 ⊔ · · · ⊔ 𝐵𝑚/𝑘. For 𝑖 ∈ [𝑚/𝑘], define 𝑣[𝑖] ∈ R𝑚 to be the restriction of 𝑣 to the

coordinates indexed by 𝐵𝑖. For any 𝑖 and 𝑗 ∈ 𝐵𝑖, |𝑣𝑗| ≤ 1
𝑘
‖𝑣[𝑖 − 1]‖1. This immediately

implies that
𝑚/𝑘∑︁
𝑖=1

‖𝑣[𝑖]‖∞ ≤ ‖𝑣‖∞ +
1

𝑘

𝑚/𝑘∑︁
𝑖=1

‖𝑣[𝑖]‖1,

yielding 3) above. Likewise, it implies that

‖𝑣[𝑖]‖22 =
∑︁
𝑗∈𝐵𝑖

𝑣2𝑗 ≤ 𝑘 · 1
𝑘2
· ‖𝑣[𝑖− 1]‖21 =

1

𝑘
‖𝑣[𝑖− 1]‖21.

So ‖𝑣[𝑖]‖2 ≤ ‖𝑣[𝑖− 1]‖1/
√
𝑘 and thus

𝑚/𝑘∑︁
𝑖=1

‖𝑣[𝑖]‖2 ≤ ‖𝑣[1]‖2 +
1√
𝑘
‖𝑣‖1 ≤ 2,

316

giving 2) above.

By rescaling the entries of 𝑣 in Lemma 5.7.1, we immediately get the following extension

to Haar-weighted norms:

Corollary 5.7.2. If 𝑣 ∈ R𝑚 satisfies ‖𝑣‖2;h ≤ 𝐶 and ‖𝑣‖1;h = 𝐶 ·
√
𝑘, then there exist 𝑘-

sparse vectors 𝑣1, ..., 𝑣𝑚/𝑘 with disjoint supports for which 1) 𝑣 =
∑︀𝑚/𝑘

𝑖=1 𝑣𝑖, 2)
∑︀𝑚/𝑘

𝑖=1 ‖𝑣𝑖‖2;h ≤

2𝐶, and 3)
∑︀𝑚/𝑘

𝑖=1 ‖𝑣[𝑖]‖∞;h ≤ 1
𝑘
‖𝑣‖1;h + ‖𝑣‖∞;h.

We remark that whereas in the proof of Lemma 4.7.2, shelling was applied to the un-

weighted 𝐿1, 𝐿2 norms, and the only 𝐿2 information used about 𝑣 ∈ 𝒱𝑛ℓ was that ‖𝑣‖22 = 𝑛,

in the sequel we will shell under the Haar-weighted norms and use the refined bounds on

the Haar-weighted norms given by Constraints 3 and 4 from Definition 5.3.1. This will be

crucial to getting a net of size exponential in ℓ2 rather than just poly(ℓ).

We now complete the proof of Lemma 5.6.1.

Proof of Lemma 5.6.1. Let 𝑠 = ℓ log 𝑛 + 1, and let 𝑚 = log 𝑛. Let 𝒩 ′ be an 𝑂
(︀

𝜂
𝑛·𝑠2
)︀
-net in

Frobenius norm for all 𝑠2-sparse 𝑛× 𝑛 matrices of unit Frobenius norm. Because S𝑠2−1 has

an 𝑂
(︀

𝜂
𝑛·𝑠2
)︀
-net in 𝐿2 norm of size 𝑂(𝑛 · 𝑠2/𝜂)𝑠2 , by a union bound we have that

|𝒩 ′| ≤
(︂
𝑛2

𝑠2

)︂
·𝑂(𝑛 · 𝑠2/𝜂)𝑠2 = 𝑂(𝑛3ℓ2 log2 𝑛/𝜂)𝑠

2

Take any Σ ∈ 𝒦 and consider L , 𝐻Σ𝐻⊤. By Constraints 2, 3, 4 in Definition 5.3.1,

‖L‖1,1;h ≤ 𝑠2, ‖L‖2𝐹 ;h ≤ 𝑠2, and ‖L‖max;h ≤ 1. (5.33)

We can use the first two of these and apply Corollary 5.7.2 to the 𝑛2-dimensional vector L

to conclude that L =
∑︀

𝑗 L
𝑗 for some matrices {L𝑗}𝑗 of sparsity at most 𝑠2 and for which∑︀

𝑗‖L𝑗‖𝐹 ;h ≤ 2𝑠2 and
∑︀

𝑗‖L𝑗‖max;h ≤ 1
𝑠2
‖L𝑗‖1,1;h + ‖L𝑗‖max;h.

By definition of the Haar-weighted Frobenius norm, ‖L𝑗‖𝐹 ≤ 𝑛 · ‖L𝑗‖𝐹,𝜇, so

∑︁
𝑗

‖L𝑗‖𝐹 ≤ 𝑂(𝑛 · 𝑠2).

317

For each L𝑗, there is some (L′)𝑗 ∈ 𝒩 ′ such that for L̃𝑗 , ‖L𝑗‖𝐹 · (L′)𝑗,

‖L𝑗 − L̃𝑗‖𝐹 ≤ 𝑂
(︁ 𝜂

𝑛 · 𝑠2
)︁
‖L𝑗‖𝐹 . (5.34)

We conclude that if we define L̃ ,
∑︀

𝑗 L̃
𝑗, then ‖L− L̃‖𝐹 ≤ 𝜂.

Now let 𝒩 , 𝐻−1𝒩−1(𝐻−1)⊤. As Σ = 𝐻−1L(𝐻−1)⊤ and 𝐻−1 is an isometry, if we

define Σ̃𝑗 , 𝐻−1L̃𝑗(𝐻−1)⊤ and Σ̃ ,
∑︀

𝑗 Σ̃
𝑗, then we likewise get that ‖Σ − Σ̃‖𝐹 ≤ 𝜂, and

clearly Σ̃𝑗 ∈ P𝒩 for every 𝑗, concluding the proof of part 1) of the lemma.

For each Σ̃𝑗, define

𝛼𝑗 , ‖L𝑗‖max;h/2 (5.35)

and define Σ𝑗
* , Σ̃𝑗/𝛼𝑗 so that Σ̃ =

∑︀
𝑗,𝜎,𝜏 𝛼𝑗 · Σ𝑗

*. Note that by part 3) of Corollary 5.7.2

and (5.33),

∑︁
𝑗

𝛼𝑗 =
1

2

∑︁
𝑗

‖L𝑗‖max;h

≤ 1

2

1

𝑠2
‖L‖1,1;h + ‖L‖max;h ≤ 1

where in the last step we used the fact that ‖L‖1,1;h ≤ 𝑠2 and ‖L[𝜎, 𝜏]‖max;h ≤ 1. This

concludes the proof of part 2) of the lemma.

Finally, we need to bound ‖Σ𝑗
*‖max. Note first that for any matrix J supported only on

a submatrix consisting of entries of L from the rows 𝑖 (resp. columns 𝑗) for which 𝑖 ∈ 𝑇𝜎
(resp. 𝑗 ∈ 𝑇𝜏), we have that

‖𝐻−1J(𝐻−1)⊤‖max = 2−(𝑚−𝜎)/2 · 2−(𝑚−𝜏)/2 · ‖J‖max =
2(𝜎+𝜏)/2

𝑛
‖J‖max

because the Haar wavelets {𝜓𝜎,𝑗}𝑗 (resp. {𝜓𝜏,𝑗}𝑗) have disjoint supports and 𝐿∞ norm

2−(𝑚−𝜎)/2 (resp. 2−(𝑚−𝜏)/2). For general J, by decomposing J into such submatrices, call

them J[𝜎, 𝜏], we get by triangle inequality that

‖𝐻−1J(𝐻−1)⊤‖max ≤
∑︁
𝜎,𝜏

2(𝜎+𝜏)/2

𝑛
‖J[𝜎, 𝜏]‖max ≤ ‖J‖max. (5.36)

318

By applying this to J = Σ̃𝑗, we get

‖Σ̃𝑗‖max ≤
(︁
‖𝐻−1L𝑗(𝐻−1)⊤‖max + ‖𝐻−1

(︁
L𝑗 − L̃𝑗

)︁
(𝐻−1)⊤‖max

)︁
≤ ‖L𝑗‖max + ‖L𝑗 − L̃𝑗‖max

≤ ‖L𝑗‖max + ‖L𝑗 − L̃𝑗‖𝐹

≤ ‖L𝑗‖max +𝑂
(︁ 𝜂

𝑛 · 𝑠2
)︁
‖L𝑗‖𝐹

≤ ‖L𝑗‖max · (1 +𝑂 (𝜂/𝑛))

≤ 2 · ‖L𝑗‖max,

where the first inequality is triangle inequality, the second inequality follows by (5.36), the

third inequality follows from monotonicity of 𝐿𝑝 norms, the fourth inequality follows from

(5.34), and the fifth inequality follows from the fact that L𝑗 is 𝑠2 sparse.

Recalling (5.35) and the definition of Σ𝜎,𝜏 ;𝑗
* , we conclude that ‖Σ𝜎,𝜏 ;𝑗

* ‖max ≤ 𝑂(1) as

claimed.

5.8 Appendix: Sub-Exponential Tail Bounds From Sec-

tion 5.6

In this section, we provide proofs for Lemmas 5.6.2, 5.6.3, and 5.6.4, restated here for

convenience.

Lemma 5.6.2. Let 𝜉 > 0 and let 𝒩 ⊂ R𝑛×𝑛 be any finite set for which ‖Σ‖max ≤ 𝑂(1)

for all Σ ∈ 𝒩 . Let 𝜇1, ..., 𝜇𝑁 , 𝜇 ∈ Δ𝑛 satisfy 𝜇 , 1
𝑁

∑︀𝑁
𝑖=1 𝜇𝑖. Then for 𝑋𝑖 ∼ Mul𝑘(𝜇𝑖) for

𝑖 ∈ [𝑁],

Pr

[︃⃒⃒⃒⃒
⃒
⟨

1

𝑁

𝑁∑︁
𝑖=1

(𝑋𝑖 − 𝜇𝑖)⊗2 − E𝑋∼Mul𝑘(𝜇𝑖)
[︀
(𝑋 − 𝜇𝑖)⊗2

]︀
,Σ

⟩⃒⃒⃒⃒
⃒ > 𝑡 ∀ Σ ∈ 𝒩

]︃
< 2|𝒩 | exp

(︂
−Ω

(︂
𝑁𝑘2𝑡2

1 + 𝑘𝑡

)︂)︂
,

where the probability is over the samples 𝑋1, · · · , 𝑋𝑁 .

Lemma 5.6.3. Let 𝜉 > 0 and let 𝒩 ⊂ R𝑛×𝑛 be any finite set for which ‖Σ‖max ≤ 𝑂(1) for

319

all Σ ∈ 𝒩 . For 𝑋𝑖 ∼ Mul𝑘(𝜇𝑖) for 𝑖 ∈ [𝑁], �̂� , 1
𝑁

∑︀𝑁
𝑖=1𝑋𝑖, and 𝜇 , 1

𝑁

∑︀𝑁
𝑖=1 𝜇𝑖,

Pr
[︀⃒⃒⟨︀

(�̂�− 𝜇)⊗2,Σ
⟩︀
− E

[︀⟨︀
(�̂�− 𝜇)⊗2,Σ

⟩︀]︀⃒⃒
> 𝑡 ∀ Σ ∈ 𝒩

]︀
< 2|𝒩 | exp

(︂
−Ω

(︂
𝑁2𝑘2𝑡2

1 +𝑁𝑘𝑡

)︂)︂
,

where the probability is over the samples 𝑋1, · · · , 𝑋𝑁 .

Lemma 5.6.4. Let 𝜉 > 0 and let 𝒩 ⊂ R𝑛×𝑛 be any finite set for which ‖Σ‖max ≤ 𝑂(1) for

all Σ ∈ 𝒩 . Let 𝜇1, ..., 𝜇𝑁 , 𝜇 ∈ Δ𝑛 satisfy ‖𝜇𝑖 − 𝜇‖1 ≤ 𝜔 for all 𝑖 ∈ [𝑁]. For 𝑋𝑖 ∼ Mul𝑘(𝜇𝑖)

for 𝑖 ∈ [𝑁],

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

(𝜇𝑖 − 𝜇)⊤Σ(𝑋𝑖 − 𝜇𝑖)

⃒⃒⃒⃒
⃒ > 𝜔 · 𝑡 ∀ Σ ∈ 𝒩

]︃
< 2|𝒩 | exp

(︀
−Ω

(︀
𝑘𝑁𝑡2

)︀)︀
,

where the probability is over the samples 𝑋1, · · · , 𝑋𝑁 .

We remark that if we restricted our attention to test matrices of the form Σ = 𝑣𝑣⊤

for 𝑣 ∈ {±1}𝑛, these lemmas would follow straightforwardly from Bernstein’s and the sub-

Gaussianity of binomial distributions.

We will need the following well-known combinatorial fact, a proof of which we include

for completeness in Section 5.8.1

Fact 5.8.1. For any 𝑚, 𝑟 ∈ Z, there are at most 𝑂(𝑚)𝑟 ·𝑟! tuples (𝑖1, ..., 𝑖2𝑟) ∈ [𝑚]𝑡 for which

every element of [𝑚] occurs an even (possibly zero) number of times.

Central to the proofs of Lemmas 5.6.2 and 5.6.3 is the following sub-exponential moment

bound. We remark that this moment bound would be an immediate consequence of McDi-

armid’s if Σ not only satisfied ‖Σ‖max but was also psd, but because the matrices arising from

shelling need not be psd, it turns out to be unavoidable that we must prove this moment

bound from scratch.

In this section, given 𝜇 ∈ Δ𝑛, let 𝒟𝜇 denote the distribution over standard basis vectors

{𝑒𝑖} of R𝑛 where for any 𝑖 ∈ [𝑛], 𝑒𝑖 has probability mass equal to the 𝑖-th entry of 𝜇.

Lemma 5.8.2. Let Σ ∈ R𝑛×𝑛 have entries bounded in absolute value by 𝑂(1), and for

𝜇1, ..., 𝜇𝑚, 𝜇 ∈ Δ𝑛, let 𝜇 , 1
𝑚

∑︀𝑚
𝑖=1 𝜇𝑖. If 𝑌1, ..., 𝑌𝑚 are independent draws from 𝒟𝜇𝑖 respec-

tively, and �̂� , 1
𝑚

∑︀𝑚
𝑖=1 𝑌𝑖, then for every 𝑟 ≥ 1, E

[︁(︀
(�̂�− 𝜇)⊤Σ(�̂�− 𝜇)

)︀𝑟]︁ ≤ Ω(𝑚)−𝑟 · 𝑟!.

320

Proof. Without loss of generality, suppose Σ has entries bounded in absolute value by 1.

For 𝑖, 𝑖′ ∈ [𝑚], define 𝑍𝑖,𝑖′ , (𝑌𝑖 − 𝜇𝑖)
⊤Σ(𝑌𝑖′ − 𝜇𝑖′). Note that because ‖𝑌𝑖 − 𝜇𝑖‖1 ≤ 2

with probability 1 for all 𝑖 ∈ [𝑚], and the entries of Σ are bounded in absolute value by 1,

|𝑍𝑖,𝑖′| ≤ 4 with probability 1 for all 𝑖, 𝑖′ ∈ [𝑚]. We can write E
[︀(︀
(�̂�− 𝜇)⊤Σ(�̂�− 𝜇)

)︀𝑟]︀ as

1

𝑚2𝑟
E

⎡⎣⎛⎝ ∑︁
𝑖,𝑖′∈[𝑚]

𝑍𝑖,𝑖′

⎞⎠𝑟⎤⎦ =
1

𝑚2𝑟

∑︁
(𝑖1,𝑖′1),...,(𝑖𝑟,𝑖

′
𝑟)

E

[︃
𝑟∏︁
𝑗=1

𝑍𝑖𝑗 ,𝑖′𝑗

]︃
. (5.37)

Now that if there exists some index 𝑖 ∈ [𝑚] which occurs an odd number of times among

𝑖1, 𝑖
′
1, ..., 𝑖𝑟, 𝑖

′
𝑟, then by the fact that the tensor E

[︀
(𝑌𝑖 − 𝜇𝑖)⊗𝑎

]︀
is identically zero for odd 𝑎,

we have that E
[︁∏︀𝑟

𝑗=1 𝑍𝑖𝑗 ,𝑖′𝑗

]︁
. So the nonzero summands on the right-hand side of (5.37)

correspond to indices {(𝑖𝑗, 𝑖′𝑗)}𝑗∈[𝑟] which must satisfy that every index appearing among

𝑖1, 𝑖
′
1, ..., 𝑖𝑟, 𝑖

′
𝑟 appears an even number of times. By Fact 5.8.1, there are 𝑂(𝑚)𝑟 · 𝑟! such

tuples.

Finally, by the fact that |𝑍𝑖,𝑖′| ≤ 4 with probability 1 for all 𝑖, 𝑖′ ∈ [𝑀], each monomial

E
[︁∏︀𝑟

𝑗=1 𝑍𝑖𝑗 ,𝑖′𝑗

]︁
is upper bounded by 4𝑟. We conclude that E

[︀(︀
(�̂�− 𝜇)⊤Σ(�̂�− 𝜇)

)︀𝑟]︀ ≤ 1
𝑚2𝑟 ·

𝑂(𝑚)𝑟 · 𝑟! · 4𝑟, from which the claim follows.

Similarly, a crucial ingredient to the proof of Lemma 5.6.4 is the following moment bound.

Lemma 5.8.3. Let Σ ∈ R𝑛×𝑛 have entries bounded in absolute value by 𝑂(1), and sup-

pose 𝜇1, ..., 𝜇𝑚, 𝜇 ∈ Δ𝑛 satisfy ‖𝜇𝑖 − 𝜇𝑚‖1 ≤ 𝜔 for all 𝑖 ∈ [𝑚]. Then for every 𝑟 ∈ Z,

E
[︀(︀

1
𝑚

∑︀𝑚
𝑖=1(𝜇𝑖 − 𝜇)⊤Σ(𝑌𝑖 − 𝜇𝑖)

)︀𝑟]︀ is 0 if 𝑟 is odd and at most 𝑂(𝑟𝜔2/𝑚)𝑟/2 otherwise.

Proof. It is clear that the 𝑟-th moment is zero when 𝑟 is odd. Henceforth, write 𝑟 as 2𝑟.

Without loss of generality, suppose Σ has entries bounded in absolute value by 1. For 𝑖 ∈ [𝑚],

define 𝑍𝑖 , (𝜇𝑖 − 𝜇)⊤Σ(𝑌𝑖 − 𝜇𝑖). Note that because ‖𝑌𝑖 − 𝜇𝑖‖1 ≤ 2 with probability 1 for all

𝑖 ∈ [𝑚], and the entries of Σ are bounded in absolute value by 1, |𝑍𝑖| ≤ 2𝜔 with probability

1 for all 𝑖 ∈ [𝑚]. We can write E
[︁(︀

1
𝑚

∑︀𝑚
𝑖=1(𝜇𝑖 − 𝜇)⊤Σ(𝑌𝑖 − 𝜇𝑖)

)︀2𝑟]︁ as

1

𝑚𝑟
E

⎡⎣⎛⎝∑︁
𝑖∈[𝑚]

𝑍𝑖

⎞⎠𝑟⎤⎦ =
1

𝑚𝑟

∑︁
𝑖1,....,𝑖2𝑟

E

[︃
2𝑟∏︁
𝑗=1

𝑍𝑖𝑗

]︃
.

321

As in the proof of Lemma 5.8.2, the only nonzero summands correspond to tuples (𝑖1, ..., 𝑖2𝑟)

such that every element of [𝑚] appears an even (possibly zero) number of times. By

Fact 5.8.1, there are at most 𝑂(𝑚)𝑟 ·𝑟! such tuples, from which we can complete the proof.

Lemmas 5.6.2 and 5.6.3 will now follow as consequences of Lemma 5.8.2 and the following

standard tail bound for random variables with sub-exponential moments:

Fact 5.8.4. Let 𝑍1, ..., 𝑍𝑚 be random variables for which there exists a constant 𝜈 > 0 such

that E[𝑍𝑟
𝑖] ≤ 1

2
𝜈𝑟 · 𝑟! for all integers 𝑟 ≥ 1 and 𝑖 ∈ [𝑚]. Then

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑚

𝑚∑︁
𝑖=1

𝑍𝑖 − E[𝑍]

⃒⃒⃒⃒
⃒ > 𝑡

]︃
≤ 2𝑒

−Ω
(︁

𝑚𝑡2

𝜈2+𝜈𝑡

)︁
.

Similarly, Lemma 5.6.4 will follow as a consequence of Lemma 5.8.3 and the following

standard tail bound for random variables with sub-Gaussian moments:

Fact 5.8.5. Let 𝑍1, ..., 𝑍𝑚 be random variables for which there exists a constant 𝜈 > 0 such

that E[𝑍𝑟
𝑖] ≤ (𝑟 · 𝜈2)𝑟/2 for all integers 𝑟 ≥ 1 and 𝑖 ∈ [𝑚]. Then

Pr

[︃⃒⃒⃒⃒
⃒ 1𝑚

𝑚∑︁
𝑖=1

𝑍𝑖 − E[𝑍]

⃒⃒⃒⃒
⃒ > 𝑡

]︃
≤ 2𝑒−Ω(𝑚𝑡2/𝜈2).

Proof of Lemma 5.6.2. This follows by taking 𝑚 = 𝑘 in Lemma 5.8.2 and 𝑚 = 𝑁 in

Fact 5.8.4 and noting that for any Σ ∈ 𝒩 , ‖Σ‖max ≤ 𝑂(1) by Lemma 5.6.1.

Proof of Lemma 5.6.3. This follows by taking 𝑚 = 𝑘𝑁 in Lemma 5.8.2 and 𝑚 = 1 in

Fact 5.8.4 and noting that for any Σ ∈ 𝒩 , ‖Σ‖max ≤ 𝑂(1) by Lemma 5.6.1.

Proof of Lemma 5.6.4. This follows by taking 𝑚 = 𝑘 in Lemma 5.8.3 and 𝑚 = 𝑁 in

Fact 5.8.5 and noting that for any Σ ∈ 𝒩 , ‖Σ‖max ≤ 𝑂(1) by Lemma 5.6.1.

5.8.1 Proof of Fact 5.8.1

Proof. To count the number 𝑁* of such tuples (𝑖1, ..., 𝑖2𝑟), for every 1 ≤ 𝑠 ≤ 𝑟 let 𝑁𝑠

denote the number of tuples 𝛽 ∈ {2, 4..., 2𝑟}𝑠 for which
∑︀𝑠

𝑖=1 𝛽𝑖 = 2𝑟. By balls-and-bins,

𝑁𝑠 =
(︀
𝑟+𝑠−1
𝑟

)︀
≤ (3𝑒𝑠

2𝑟
)𝑟. Now note that to enumerate 𝑁*, we can 1) choose the number

322

1 ≤ 𝑠 ≤ min(𝑚, 𝑟) of unique indices among {𝑖𝑗}, 2) choose a subset 𝑆 of [𝑚] of size 𝑠, 3)

choose one of the 𝑁𝑠 tuples 𝛽, and 4) choose one of the
(︀

2𝑟
𝛽1,...,𝛽𝑠

)︀
ways of assigning index 𝑆1

to 𝛽1 indices in {𝑖𝑗}, 𝑆2 to 𝛽2 indices, etc. For convenience, let 𝑟′ , min(𝑚, 𝑟). We get an

upper bound of

𝑁* ≤
min(𝑚,𝑟)∑︁
𝑠=1

(︂
𝑚

𝑠

)︂
·𝑁𝑠 ·

(︂
2𝑟

𝛽1, ..., 𝛽𝑠

)︂

≤
min(𝑚,𝑟)∑︁
𝑠=1

𝑚𝑠

𝑠!

(︂
3𝑒𝑠

2𝑟

)︂𝑟
· (2𝑠)!

≤ 𝑚𝑟′

(𝑟′)!
· 𝑟′ ·

(︂
3𝑒𝑟′

2𝑟

)︂𝑟
· (2𝑟′)!

≤ 𝑚𝑟

(𝑟)!
· 𝑟 · (3𝑒/2)𝑟 · (2𝑟)!

= 𝑚𝑟 · 𝑟 · (3𝑒/2)𝑟 ·
(︂
2𝑟

𝑟

)︂
· 𝑟!

≤ 𝑂(𝑚)𝑟 · 𝑟!,

where in the second step we used basic bounds on binomial and multinomial coefficients

together with the above bound on 𝑁𝑠, in the third step we used the fact that the summands

are increasing in 𝑠, and in the fourth step we used this fact along with the fact that 𝑟′ ≤ 𝑟

by definition.

323

324

Chapter 6

Huber-Contaminated Regression and

Contextual Bandits

6.1 Introduction

In this chapter, we turn to a classic question in the field of robust statistics, namely robust

regression, as well as a number of robust analogues of related problems in online learning.

While we have recently seen considerable progress in algorithmic robust statistics [DKK+19a,

LRV16,DKK+17,CSV17,KKM18,DKK+19b,HL18,KSS18,BK20,Kan20,DHKK20] that has

yielded a number of exciting further applications to robust regression [KKM18,BP20,ZJS20,

CAT+20] and robust stochastic optimization [DKK+19b], a shortcoming that all these works

share is that they are based on assumptions that the uncorrupted data is somehow evenly

spread out. These assumptions can either come about by explicitly assuming a generative

model, like a Gaussian [DKK+19a] or a mixture of Gaussians [BK20, Kan20, DHKK20],

or through a deterministic condition like hypercontractivity [KKM18] or certifiable sub-

Guassianity [HL18,KSS18].

Still, as we discussed in Section 1.1.2, there is a widespread need for provably robust

learning algorithms even in settings where these types of “evenly spread out” assumptions are

just not appropriate. This is particularly the case in the context of online prediction [CBL06]

which operates in a setting where the input data is ever-changing and potentially even

adversarially chosen. This flexibility allows it to capture challenging dynamic settings, as

325

arise in reinforcement learning, where our learning algorithm interacts with the world around

it and its decisions may in turn influence the next prediction task it is expected to solve. In

this work we take an important first step towards answering a much broader question:

Are there provably robust learning algorithms that can tolerate adversarial corrup-

tions even for challenging high-dimensional and distribution-free online prediction

tasks?

We will work in the Huber contamination model [Hub64]. We will study two classic online

learning problems: online linear regression with squared loss and linear contextual bandits.

In unsupervised learning settings, the Huber contamination model posits that each random

sample we get has an 𝜂 probability of coming from an arbitrary noise distribution chosen by

an adversary instead of from our model. In our setting we will allow the feedback in each

round to be arbitrarily corrupted with 𝜂 probability, and otherwise is subject to the usual

stochastic noise.

As we noted in the discussion immediately proceeding Definition 1.2.9, it turns out that

for our problems the key challenge is to disentangle the effect of the dynamic range of

predictions vs. the effect of the noise level on the overall regret guarantee. In particular,

consider the basic linear regression problem where (𝑥𝑡)
𝑇
𝑡=1 is the input sequence of covariate

vectors1 and our goal is to robustly predict the response 𝑦𝑡. Without adversarial corruptions,

we assume the responses are generated according to the following well-specified model:

𝑦𝑡 = ⟨𝑤*, 𝑥𝑡⟩+ 𝜉𝑡

where 𝑤* is unknown and 𝜉𝑡 is the noise, and our goal is to predict the clean, noiseless response

⟨𝑤*, 𝑥𝑡⟩ accurately. This problem is straightforward to solve with variants of Ordinary Least

Squares [AW01, Vov01] even in the online setting. Now, consider what happens when we

allow a random 𝜂 fraction of the responses 𝑦𝑡 to be adversarially corrupted, and our goal is

to predict the clean/uncorrupted responses ⟨𝑤*, 𝑥𝑡⟩ accurately. Let 𝑅 be the dynamic range

1In this paper, we will study the general case where these vectors are chosen adversarially and adaptively
and the predictions are made online, but the importance of distinguishing dynamic range vs. noise level we
discuss is relevant already in the basic (offline) setting.

326

of the true optimal predictions, so |⟨𝑤*, 𝑥𝑡⟩| ≤ 𝑅, and let 𝜎2 be the variance of 𝜉𝑡. When 𝜎2 is

comparable to 𝑅2, then the problem is relatively easy as there is (information-theoretically)

not much that can be learned about 𝑤* in the first place. See the left panel of Figure 1-1

for an illustration.

In contrast we will be interested in the setting where 𝜎2 is much smaller than 𝑅2 (recall

Figure 1-1). It turns out that existing approaches break down in the sense that they pay

an extra factor of 𝑅 or 𝑅2 in the clean prediction error (resp. clean regret). Moreover

getting around this dependence is a serious obstacle for the usual techniques: we show that

regression using any convex surrogate (including Huber loss and 𝐿1 loss) must pay this price

(see Theorem 6.9.1). Thus our main question is:

Is it algorithmically possible, in the presence of adversarial corruptions, to achieve

average clean prediction error (resp. average clean regret) that is independent of

𝑅?

We answer this question in the affirmative for both online regression with squared loss

and linear contextual bandits. Our algorithms succeed where convex surrogates fail, and

are based on a novel alternating minimization scheme that interleaves OLS with carefully

designed reweighting schemes found through SDPs.

Finally we emphasize that the issue of 𝑅2 vs. 𝜎2 dependence is quite relevant in modern

reinforcement learning. In particular, there are many sequential tasks where at each step the

variance in the losses/rewards is much smaller than the dynamic range. This can happen

naturally when there are some catastrophic states that we must avoid, but at no point is the

outcome of playing an action in a given state all that uncertain – e.g. when manipulating a

robotic arm, some actions can require the application of orders of magnitude more torque.

Thus our work may be viewed as a stepping stone towards achieving stronger and more

meaningful robustness guarantees in reinforcement learning more broadly.

6.1.1 Our Results

In this section, we present our main results for both linear regression and contextual bandits

in the Huber contamination model. We go on to discuss related work (e.g. robust linear

327

regression under distributional assumptions) in Section 6.3 below.

Distribution-free offline linear regression with Huber contamination. We begin

by discussing our results in the simplest setting we consider, which is the classical offline

linear regression model with a Huber contamination adversary. In the clean version of this

model, an arbitrary set of covariates 𝑥1, . . . , 𝑥𝑛 is fixed and clean responses are generated by

𝑦𝑡 = ⟨𝑤*, 𝑥𝑡⟩+ 𝜉𝑡 (6.1)

for some mean zero noise 𝜉𝑡; for example, if 𝜉𝑡 ∼ 𝑁(0, 𝜎2) then 𝑦𝑡 ∼ 𝑁(⟨𝑤*, 𝑥𝑡⟩, 𝜎2). In

the Huber contamination model, we relax the assumptions to a total variation distance

ball around the generative model. In particular, using the coupling interpretation of total

variation distance, this translates into the assumption that with probability 1−𝜂 the response

𝑦𝑡 is generated by (6.1) above, and with probability 𝜂 the response 𝑦𝑡 is sampled from an

adversarially chosen noise distribution, which we allow to depend on all other randomness

in the problem. In this setting, we obtain the following strong result (and for a fairly simple

algorithm, see Technical Overview):

Theorem 6.1.1 (Informal version of Theorem 6.5.13 and Theorem 6.6.1). Suppose that

𝜂 < 0.499 is an upper bound on the contamination level, and suppose for some 𝜎 ≥ 0 that

for all 1 ≤ 𝑡 ≤ 𝑛, ‖𝑥𝑡‖ ≤ 1 and the noise 𝜉𝑡 is conditionally mean-zero and 𝜎2-subgaussian.

Suppose also that ‖𝑤*‖ ≤ 𝑅. Then if 𝜂 = 0 or 𝑛 & log(min(𝑛, 𝑑))/𝜂, there exists a polynomial

time algorithm outputting 𝑤 satisfying the clean squared loss guarantee⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑡=1

⟨𝑤* − 𝑤, 𝑥𝑡⟩2 . 𝜂𝜎
√︀

log(1/𝜂) + 𝜂1/8𝑅1/2𝜎1/2(𝜂
√︀

log(1/𝜂))1/4
8

√︂
log(min(𝑛, 𝑑))

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑))

𝑛
+min

{︁
𝜎
√︀
𝑑/𝑛, (𝑅𝜎)1/2 4

√︀
1/𝑛
}︁

with high probability.

Note that all but the first term are 𝑜(1) as 𝑛→∞. On the other hand, when 𝜂 = 0 only

the last term remains and our result simplifies to standard (minimax optimal) guarantees for

328

Ordinary Least Squares and Ridge regression, see e.g. [Kee10,RH17, SSBD14]. Our result

obtains the optimal dependence on 𝜂 up to the
√︀
log(1/𝜂) factor, because the information-

theoretic lower bound is Ω(𝜂𝜎):

Proposition 6.1.2. For any 0 ≤ 𝜂 < 1/2, any algorithm for Huber-contaminated regression

with Gaussian noise must incur clean square loss 1
𝑛

∑︀𝑛
𝑡=1⟨𝑤* − 𝑤, 𝑥𝑡⟩2 at least Ω(𝜂2𝜎2).

This follows by embedding the 1-dimensional robust mean estimation problem in a

straightforward way — see Example 6.4.3.

We also show the other aspects of the bound (lower bound on 𝑛, and the presence

of additional “middle terms”) are required — see Example 6.5.9. Our results generalize

naturally to the setting with heavy-tailed noise, even without second moments, and achieve

the optimal dependence on 𝜂 in those settings too. We defer the detailed statement of these

variants to Section 6.5.

Impossibility of strengthening the adversary. Before proceeding to the more sophis-

ticated online settings we consider, we emphasize the impossibility of strengthening the

adversary even in the basic model above. First, we consider the version of this problem

where the adversary is allowed to corrupt an arbitrary 𝜂 fraction of responses, as opposed to

corrupting responses in random locations. In this case, the problem is trivially impossible

even in 1-dimension. If 1 − 𝜂 fraction of 𝑥𝑖 are zero and 𝜂 fraction are 1, 𝑤* = ±𝑅, and

the adversary corrupts an arbitrary 𝜂 fraction of responses, it’s information-theoretically

impossible to tell if 𝑤* = 𝑅 or 𝑤* = −𝑅. Thus, we have the following lower bound:

Proposition 6.1.3 (Impossibility with adversarial corruption locations). In the linear re-

gression model where an adversary corrupts an arbitrary 𝜂 fraction of responses 𝑦𝑡, any

algorithm must suffer clean squared loss 1
𝑛

∑︀𝑛
𝑡=1⟨𝑤* − 𝑤, 𝑥𝑡⟩2 at least Ω(𝜂𝑅2).

We note variants of this example have already appeared previously in the literature, see

e.g. Lemma 6.1 in [KKM18] or Theorem D.1 in [CAT+20]. Similarly, we can consider a

strengthened adversary which still corrupts in random locations, but is allowed to change

the covariate 𝑥𝑡 as well as the response 𝑦𝑡. For essentially the same reason (the adversary

can change covariates 𝑥𝑡 from 0 to 1 and label them with negated responses 𝑦𝑡 = ∓𝑅), it

again becomes impossible to tell whether 𝑤* = 𝑅 or 𝑤* = −𝑅 and so we have a strong

329

impossibility result:

Proposition 6.1.4 (Impossibility with corrupted covariates). In the linear regression model

where an adversary corrupts an random 𝜂 fraction of covariate and response pairs (𝑥𝑡, 𝑦𝑡),

any algorithm must suffer clean squared loss 1
𝑛

∑︀𝑛
𝑡=1⟨𝑤* − 𝑤, 𝑥𝑡⟩2 at least Ω(𝜂𝑅2).

Finally, we consider the “breakdown point” assumption 𝜂 < 1/2. (We wrote 𝜂 < 0.499

above only to simplify the statement.) If 𝜂 = 1/2, a special case of our model is a balanced

mixture of linear regressions where half of the responses are generated according to linear

model ⟨𝑤1, 𝑥𝑡⟩ + 𝜉𝑡 and the other half are generated according to a different linear model

⟨𝑤2, 𝑥𝑡⟩+𝜉𝑡. By symmetry, it’s impossible to know which of 𝑤1, 𝑤2 is the ground truth linear

model, so a clean loss guarantee as in Theorem 6.1.1 is information-theoretically impossible.

In fact, in this setting even list recovery, i.e. outputting both 𝑤1 and 𝑤2, is computationally

hard [YCS14] and this holds even if 𝜎 = 0.

Online linear regression with Huber contamination. Next, we consider an online

version of the linear regression model from before. In this case, the algorithm faces two

additional complications compared to before:

1. (Online prediction.) The algorithm is forced to output a prediction 𝑦𝑡 given only 𝑥𝑡 and

the information from previous rounds (𝑥1, 𝑦1), . . . , (𝑥𝑡−1, 𝑦𝑡−1), instead of being able to

predict based on all of the data.

2. (Adaptive covariates.) Instead of having the covariates 𝑥1, . . . , 𝑥𝑇 fixed in advance, i.e.

chosen obliviously, the covariate 𝑥𝑡 is chosen adaptively by the adversary, based on all

information from rounds 1 to 𝑡 − 1. In particular, the algorithm’s choices may affect

the future inputs it receives.

Nevertheless, we are able to give a version of our algorithm which deals with both of these

issues. The statement below is for the finite-dimensional setting, but we also give a version

of the result with no dependence on 𝑑 (Theorem 6.7.4), appropriate for the setting of kernel

regression. As above, it has an optimal dependence on 𝜂 up to the log factor. In all online

settings, we use 𝑇 for the total number of rounds/covariates to distinguish from the offline

setting where we use 𝑛.

330

Theorem 6.1.5 (Robust online regression, informal version of Theorem 6.7.2). In the set-

ting of Huber-Contaminated Online Regression (see Definition 6.4.1) with subgaussian noise,

‖𝑥𝑡‖ ≤ 1 for all 𝑡 and ‖𝑤*‖ ≤ 𝑅, for any fixed 𝜂 < 0.499, there exists an algorithm which

runs in time poly(𝑛, 𝑑) and outputs online predictions 𝑦𝑡 which satisfy the following clean

square loss regret bound with high probability:

RegHSq(𝑇) =
𝑇∑︁
𝑡=1

(⟨𝑤*, 𝑥𝑡⟩ − 𝑦𝑡)2 . 𝜎2𝜂2 log(1/𝜂)𝑇 + poly(𝑅, 𝜎, 𝑑, 𝜂) · 𝑜(𝑇).

Online contextual bandits with Huber contamination. Finally, by combining our

online linear regression result with a recent reduction from the contextual bandits literature

([FR20], see Appendix 6.10), we obtain a result for contextual bandits with adaptive contexts

and Huber-contaminated losses/rewards. We note that other reductions can probably be

applied in the special case of stochastic contexts, e.g. [SLX20], but for simplicity we only

state a result in the more general setting with adaptive contexts. First, we describe the

interaction model for each round 𝑡:

1. Nature chooses context 𝑧𝑡 = (𝑧𝑡𝑎)𝑎∈𝒜, possibly adversarially based on the transcript

from previous rounds. Here 𝒜 with 𝐾 , |𝒜| is the space of possible actions.

2. Learner chooses action 𝑎𝑡 from 𝒜.

3. A Ber(𝜂) coin 𝛾𝑡 is flipped to decide whether this round is corrupted.

4. If 𝛾𝑡 = 0, i.e. the round is not corrupted, the learner sees loss ℓ*𝑡 (𝑎𝑡) , ⟨𝑧𝑡𝑎, 𝑤*⟩ + 𝜉𝑡

where 𝜉𝑡 is mean-zero noise.

5. If 𝛾𝑡 = 1, i.e. the round is corrupted, the learner sees an arbitrary loss ℓ𝑡(𝑎𝑡) chosen

by an adversary based on 𝑧𝑡, 𝑎𝑡, and the transcript from the previous rounds.

In this model, the goal is to minimize the clean regret, that is, to compete with the best

policy 𝜋 in hindsight as measured by the true uncorrupted losses. We obtain the following

guarantee.

331

Theorem 6.1.6 (Robust contextual bandits, informal version of Theorems 6.8.1 and 6.8.2).

In the setting of Huber-Contaminated Contextual Bandits (see Definition 6.4.4) with 𝜎2-

subgussian noise 𝜉𝑡, for any fixed 𝜂 < 0.499, there is an algorithm which runs in polynomial

time and selects actions 𝑎𝑡 which satisfy the following clean regret bound with high probability:

RegHCB(𝑇) = sup
𝜋

E

[︃
𝑇∑︁
𝑡=1

(ℓ*𝑡 (𝑎𝑡)− ℓ*𝑡 (𝜋(𝑧𝑡)))

]︃
.
(︁
𝜎𝜂
√︀
𝐾 log(1/𝜂)

)︁
𝑇 +poly(𝑅,𝐾, 𝜂, 𝜎) ·𝑜(𝑇)

where the supremum ranges over all (non-adaptive) policies 𝜋, see Preliminaries.

An impossibility result: failure of convex 𝑀-estimators. It may appear surprising

that our algorithms for dealing with Huber contamination, even in the simplest linear re-

gression setting, do not use an established approach like Huber regression or 𝐿1/LAD (Least

Absolute Deviation) regression — classical approaches which have been studied for decades,

and in the case of LAD, even as far back as the 1700s [Bos57]. This is because there are

fundamental reasons that neither of these approaches can match our strong guarantees in

the distribution-free setting. In fact, we prove a lower bound showing the failure of any

𝑀 -estimator based on a convex loss function:

Theorem 6.1.7 (Lower bound against convex 𝑀 -estimators, informal version of Theo-

rem 6.9.1). There is an instance of Huber-contaminated linear regression where the covari-

ates 𝑥𝑡 are drawn i.i.d. from a distribution, for which no vector 𝑤 obtained by minimizing

a convex loss with respect to the Huber-contaminated distribution over (𝑥, 𝑦)’s can achieve

square loss better than Ω(𝜂3𝑅𝜎) on the true distribution.

6.1.2 Roadmap

In Section 6.2, we give an overview of the main techniques in our approach. In Section 6.3,

we discuss related work in more detail. In Section 6.4 we record some useful technical facts

we use from the literature and state slightly more general versions of the models which

we consider. In Section 6.5, we give an alternating minimization algorithm for solving the

offline case of Huber-contaminated linear regression. In Section 6.6, we give a sum-of-squares

algorithm to handle the case of high contamination rate; combined with the result of the

332

previous section, we obtain Theorem 6.1.1. In Section 6.7, we give a generic recipe for

converting our fixed-design guarantees into online ones, thereby proving Theorem 6.1.5. In

Section 6.8 we apply the reduction of [FR20] to our regression results to obtain our main

result for contextual bandits, Theorem 6.1.6. Lastly, in Section 6.9, we prove our lower

bound, Theorem 6.1.7. In Appendix 6.10 we verify that the reduction in [FR20] applies to

our Huber-contaminated setting.

6.2 Technical Overview

By a slight modification of the proof of Theorem 5 in [FR20], we can reduce the problem

of achieving low clean regret in the contextual bandits setting of Definition 6.4.4 to that of

producing an oracle for Hubert-contaminated online regression which gets low clean square

loss regret. In this section, we overview the main ingredients for producing such an oracle.

There are two main steps: 1) designing an algorithm for fixed-design Huber-contaminated

regression that achieves low square loss, and 2) a generic online-to-offline reduction based

on cutting plane methods/online gradient descent.

6.2.1 Huber-Contaminated Fixed-Design Regression

We start with the offline/fixed-design setting, where we are given an arbitrary fixed set

of covariates 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 and for the indices 𝑡 for which 𝑦𝑡 was not corrupted, 𝑦𝑡 =

⟨𝑤*, 𝑥𝑡⟩ + 𝜉𝑡 for some independent noise 𝜉𝑡 ∼ 𝒟. The exact assumption on the noise is not

so important for the argument, since our algorithm is robust to Huber contamination: given

an analysis for bounded noise, all the other versions of the results follow more or less by a

straightforward truncation argument, treating heavy-tail events as outliers.

Spectrally Regularized Alternating Minimization. Similar to existing approaches in

the robust statistics literature, our starting point is to formulate an optimization problem

that searches for a regressor 𝑤 and a “structured” subset 𝑆 ⊂ [𝑛] of size (1 − 𝑂(𝜂))𝑛 over

333

which the clean square loss of 𝑤 is minimized, i.e.

𝑤, 𝑆 = argmin
𝑤,𝑆:

𝑆 large and “structured”

1

𝑛

∑︁
𝑡∈𝑆

(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2. (6.2)

The subset 𝑆 should satisfy certain structural properties that the set of uncorrupted points

𝑆* ⊆ [𝑛] would collectively satisfy and that can be used to certify that the regressor we use is

close to 𝑤*. Before we describe how the structural property that we use fundamentally differs

from the ones exploited in prior works on robust regression, we first discuss our approach

to optimizing the nonconvex objective (6.2). What we do is use a version of a standard

heuristic, alternating minimization:

• Given a candidate regressor 𝑤, we consider the optimization problem

min
𝑆

1

𝑛

∑︁
𝑡∈𝑆

(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2.

We relax the set of (1−𝑂(𝜂))𝑛-sized “structured” subsets 𝑆 to the set of [0, 1]-valued

“structured” weights {𝑎𝑡}𝑡∈[𝑛] over the dataset satisfying
∑︀

𝑡 𝑎𝑡 = 1−𝑂(𝜂), and it will

be apparent from our definition of “structured” below that this can be formulated as a

basic SDP.

• Given a candidate set of weights {𝑎𝑡}𝑡∈[𝑛], we solve the convex optimization problem

min
𝑤

1

𝑛

∑︁
𝑡∈𝑆

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2.

By repeatedly alternating between these two steps, we arrive at an approximate first-order

stationary point (𝑤, {𝑎𝑡}): more precisely, one for which {𝑎𝑡} is optimal given 𝑤 and for

which
1

𝑛

∑︁
𝑡∈[𝑛]

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑣 − 𝑤⟩ ≤ 𝑜(1) (6.3)

for all 𝑣 of bounded norm (Lemma 6.5.7). Of course, this stationary point does not have to

be a global optimum of the objective function. Nevertheless, our analysis shows that any

stationary point of our objective has strong statistical guarantees (Section 6.5.4). To show

334

this, we can decompose the left-hand side of (6.3) for the choice 𝑣 = 𝑤* into two quantities:

1) the contribution from the uncorrupted points, indexed by some subset 𝑇 ⊂ [𝑛], and 2)

the contribution from the corrupted ones, indexed by [𝑛]∖𝑇 .

In 1), we can pull out the contribution from the quantity 1
𝑛

∑︀
𝑡∈𝑇 ⟨𝑥𝑡, 𝑤* − 𝑤⟩2, which

corresponds to the clean square loss achieved by the regressor 𝑤 we have found and turns

out to be the dominant term. To upper bound the rest of 1) and 2), the key technical

challenge is respectively to control the error incurred from failing to place nonzero weight

𝑎𝑡 on some of the points 𝑡 ∈ 𝑇 , and from placing nonzero weight 𝑎𝑡 on some of the points

𝑡 ̸∈ 𝑇 . To bound both sources of error, we end up needing to control the quantity

1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)⟨𝑥𝑡, 𝑤* − 𝑤⟩2. (6.4)

The way in which we do so marks the key distinction between our approach and that of

previous works on robust regression.

In prior works (see Section 6.3 below), this is the place where one could insist that the

weights {𝑎𝑡} are structured in the sense that along every univariate projection, the empirical

moments of the dataset reweighted by {𝑎𝑡} are 𝑘-hypercontractive for some 𝑘 ≥ 4, in which

case we could use Holder’s to upper bound (6.4). This is not applicable in the general

case, where 𝑥1, . . . , 𝑥𝑛 are arbitrary bounded vectors, so a reweighting with hypercontractive

empirical moments may not even exist. Instead, our approach is to insist that {𝑎𝑡} must

sub-sample the empirical covariance, i.e. that

1

𝑛

∑︁
𝑡∈[𝑛]

𝑎𝑡𝑥𝑡𝑥
⊤
𝑡 ⪰ (1− 𝜂) 1

𝑛

∑︁
𝑡∈[𝑛]

𝑥𝑡𝑥
⊤
𝑡 − 𝑜(1) · Id (6.5)

The intuition for this constraint is that because the points that get corrupted in the Huber

contamination setting form a random subset of the data, the ideal reweighting {𝑎*𝑡} given

by placing uniform mass on the true set of uncorrupted points would satisfy this constraint

with high probability by standard matrix concentration. So for any {𝑎𝑡} which sub-samples

the empirical covariance, ignoring the low-order term in (6.5), we can thus upper bound the

quantity (6.4) by 𝜂
∑︀

𝑡∈[𝑛]⟨𝑤* − 𝑤, 𝑥𝑡⟩2. This is negligible compared to the aforementioned

335

dominant term, allowing us to complete the proof that (6.3) suffices to ensure that 𝑤 incurs

low clean square loss.

Optimal breakdown point via Sum of Squares. It turns out that the above approach

fails for 𝜂 larger than 1/3. Consider a scenario where 1/3 of the data has been corrupted to

come from a different linear model; in this case, there is a spurious local minima in which

one takes 𝑤 in (6.2) to be the linear model generating the corrupted data and 𝑆 to consist of

the corrupted data and a random half of the uncorrupted data (see Remark 6.5.3 for further

details).

To circumvent this issue, we appeal to a different algorithm when 1/3 ≤ 𝜂 < 1/2. Our

starting point is the observation that another way of circumventing the nonconvexity of (6.2)

is by considering the natural degree-4 sum-of-squares (SoS) relaxation of (6.2). It turns out

that an analysis similar to the one for our alternating minimization algorithm suffices to

show that the pseudoexpectation one gets out of solving this relaxation achieves low clean

square loss. At a high level, the reason is that one can extract from the former analysis a

simple proof in the degree-4 SoS proof system that for 𝑤 and 𝑆 satisfying the constraints

imposed by the SoS program and optimizing the objective of (6.2), 𝑤 achieves low clean

square loss. The key difference that allows us to circumvent the bad loss landscape of (6.2)

when 𝜂 is large is that the SoS relaxation is guaranteed to produce a lower bound on the

original (unrelaxed) problem (6.2), whereas the objective value achieved by an arbitrary

stationary point need not.

Other extensions. Using existing generalization bounds [SST10], we give natural and

fairly sharp versions of our results for the stochastic/random-design setting. The analysis

we outlined works with heavy-tailed noise in 𝐿𝑞 for any 𝑞 > 1 and achieves the optimal

dependence on 𝜂 in this setting. If we only use the estimator described above, the sample

complexity of our estimator with small confidence parameter 𝛿 is not as good with heavy-

tailed noise as with subgaussian noise; we show how to improve the sample complexity

when 𝑞 ≥ 2 by combining our estimator with a simple median-of-means approach from the

heavy-tailed regression literature [HS16,M+15].

336

6.2.2 Online-to-Offline Reduction

We now explain how to use the guarantee of the previous section to get an algorithm for

online regression. At a high level, the idea is to use the fixed-design guarantee above to

design a separation oracle between whatever bad predictor we might be using at a particular

time step, and the small ball ℬ of good predictors 𝑤 around 𝑤*, any of which would incur

sufficiently low regret over any possible sequence of samples. This reduction has a similar

spirit to the “halving” algorithm from online learning [SS+11], and efficient variants for

halfspace learning based on the ellipsoid algorithm [YJY09,TK08].

Concretely, suppose inductively we have seen samples (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) thus far and

have used some vector 𝑤 to predict in the last𝑚 steps where we were given (𝑥𝑛−𝑚+1, 𝑦𝑛−𝑚+1), . . . , (𝑥𝑛, 𝑦𝑛).

Let Σ be the average of 𝑥𝑖𝑥𝑇𝑖 over the last 𝑚 steps. One of two things could be true.

It could be that in these last 𝑚 steps, 𝑤 actually performed well, that is, ‖𝑤 − 𝑤*‖2Σ is

small, either because 𝑤 ∈ ℬ or because 𝑥𝑛−𝑚+1, . . . , 𝑥𝑛 mostly lie in the slab of space where

𝑤 and 𝑤* yield similar predictions. Either way, because the prediction error under 𝑤 has

been small so far, there is no need to update to a new predictor just yet.

Alternatively, if ‖𝑤 − 𝑤*‖2Σ is large, then the gradient of the function 𝑤 ↦→ ‖𝑤 − 𝑤*‖2Σ
would give a separating hyperplane between 𝑤 and ℬ. Of course, the issue with this is that

we don’t know 𝑤*. To get around this, recall from the fixed-design guarantee that if we

ran the alternating minimization algorithm above on the data (𝑥𝑛−𝑚+1, 𝑦𝑛−𝑚+1), . . . , (𝑥𝑛, 𝑦𝑛)

(assuming 𝑚 is large enough that things concentrate sufficiently well), then the resulting

vector ̃︀𝑤 is close to 𝑤* under ‖·‖Σ. So to check whether ‖𝑤 − 𝑤*‖2Σ is large, by triangle

inequality we can simply check whether ‖𝑤− ̃︀𝑤‖2Σ is large! If so, the gradient of 𝑤 ↦→ ‖𝑤− ̃︀𝑤‖2Σ
gives us a separating hyperplane that we can actually compute.

To summarize, the contrapositive of this tells us that if we don’t form a separating

hyperplane in a given step, then we know ‖𝑤−𝑤*‖2Σ is small and we are content to continue

using 𝑤. Conversely, if we do form a separating hyperplane, we know we won’t cut ℬ. This

is because every point in ℬ is, by design, close to 𝑤* under any norm ‖·‖Σ defined by the

empirical covariance Σ of a sequence of samples.

With these two facts in hand, we can safely run a cutting plane algorithm like ellipsoid

337

or Vaidya’s method to update our predictor every time we find a separating hyperplane and

ensure that after a bounded number of updates, we find a predictor that will achieve low

regret on subsequent steps.

Handling the high-dimensional case. The above approach does not work when the

dimension is unbounded, e.g. in kernelized settings, because the guarantees of cutting plane

methods are inherently dimension-dependent. We now describe an alternative approach

based on wrapping online gradient descent around our guarantee for Huber-contaminated

fixed-design regression.

Instead of using Vaidya’s algorithm to update the vector 𝑤 that we predict with whenever

the separation oracle returns ∇𝜙𝑡(𝑤), we can imagine updating 𝑤 by simply stepping in the

direction of −∇𝜙𝑡(𝑤). The key challenge is to bound the number of times 𝑉 we get a

hyperplane from the separation oracle and have to make such a step, because as long as we

don’t receive any new hyperplanes, the predictions we make will incur low square loss. For

this, we can appeal to the the fundamental regret bound for online gradient descent [Zin03].

Specifically, if we receive a sequence of convex losses 𝜙1, . . . , 𝜙𝑉 and play a sequence of inputs

𝑤1, ..., 𝑤𝑉 where 𝑤𝑡+1 is given by taking a gradient step with respect to 𝜙𝑡 from 𝑤𝑡, then

the cumulative loss
∑︀
𝜙𝑡(𝑤𝑡) incurred only exceeds

∑︀
𝜙𝑡(𝑤

) for any single move 𝑤 by an

𝑂(
√
𝑉) term (see Theorem 6.7.3). But because the separation oracle is called only when

𝜙𝑡(𝑤𝑡) ≈ 𝜙𝑡 − 𝜙𝑡(𝑤*) is large, this immediately implies that 𝑉 is bounded.

6.2.3 Lower Bound for Convex Losses

At a high level, the intuition for why convex losses fails is this: in order for the algorithm

to be robust to outliers, the loss needs to look roughly like the 𝐿1 loss (e.g. the Huber loss

looks like the 𝐿1 loss except in a ball near the origin). However, the 𝐿1 loss E[|𝑌 − ⟨𝑤,𝑋⟩|]

is much less sensitive to making errors for 𝑋 lying in rare areas of the space than the usual

𝐿2/squared loss E[(𝑌 − ⟨𝑤,𝑋⟩)2]. In order to take advantage of this, we construct a 1-

dimensional example with 1−Θ(𝜂/𝑅) fraction of the covariate distribution a delta mass at

1/𝑅 and the remainder a delta mass at −1. For simplicity, we take the noise variance 𝜎 = 1.

By having the adversary corrupt the response for the much more common portion of the data

338

at 1/𝑅, the 𝐿1 regression is tricked into making an order 𝜂𝑅 error on the rare portion of the

data, which causes a squared loss of Ω((𝜂/𝑅)𝜂2𝑅2) = Ω(𝜂3𝑅). By appropriately generalizing

this argument, we rule out the success of all convex losses.

6.3 Related Work

Robust regression, when both the covariates and responses are corrupted As

discussed in Section 6.1, our work is closely tied to the long line of recent work on designing

efficient algorithms for robust statistics in high dimensions. We refer to [Li18b,Ste18,DK19]

for comprehensive surveys of this literature and focus here on the results related to regression

[KKM18,BP20,ZJS20,PJL20,DKK+19b,PSB+20,DKS19,CAT+20]. These works are for the

stochastic setting where the covariates are drawn i.i.d. from some distribution 𝒟𝑥 but work in

a corruption model where the adversary can arbitrarily alter any 𝜂 fraction of the responses

and the corresponding covariates. All of these results operate under the assumption that

the underlying distribution 𝒟𝑥 is either Gaussian or at least 4-hypercontractive. This is

not merely an issue of convenience: in the absence of such assumptions, it is impossible to

do anything even in one dimension under this corruption model. We recall the following

example from the Results section above:

Example 6.3.1. Let 𝑑 = 1 and 𝜀 = 0, and suppose 𝑤* = 𝑅. Suppose the distribution over

covariates is 𝐵𝑒𝑟(𝜂), i.e. it has 1 − 𝜂 mass at 0 and 𝜂 mass at 1. Suppose the adversary

corrupts an 𝜂 fraction of the pairs (0, 0) to be (1,−𝑅). Then it is impossible for the learner

to distinguish whether 𝑤* = 𝑅 or 𝑤* = −𝑅.

We note that variants of this example have already appeared previously in the literature,

see e.g. Lemma 6.1 in [KKM18] or Theorem D.1 in [CAT+20]. This does not contradict

prior results which make distributional assumptions, because they consider the case where

𝜂 is small: when 𝜂 = 𝑜(1), 𝐵𝑒𝑟(𝜂) is no longer 𝑂(1)-hypercontractive as its fourth moment

is 𝜂𝑅4 while the square of its second moment is 𝜂2𝑅4. In summary: when there exist rare

features in the data, or when the corruption fraction 𝜂 is large, it is simply not information-

theoretically possible to handle corruption in the covariates.

We also note that the work of [PJL20] shows that, at least in some cases, the covari-

339

ate corruption can be handled separately from the response corruption by first running a

standard filtering method on the covariates, and second running a method robust to re-

sponse outliers (in their case, Huber regression) on the remaining data. This suggests that

handling covariate corruption (when it is possible) and response corruption may be largely

orthogonal problems. Finally, one commonality with our work and much of the previous lit-

erature is the use of Sum of Squares programming (for us, only needed near the breakdown

point 1/2); however, we use a fairly simple degree-4 SoS program, as opposed to prior work

(e.g. [KKM18,BP20]) where the SoS degree and sample complexity need to be large in order

to take advantage of stronger regularity assumptions.

Robust regression, when just the responses are corrupted A milder corruption

model which has received significant attention in the statistics literature is the setting where

a fraction, either randomly or adversarily chosen, of the responses are corrupted, while

the covariates are left intact. One popular approach for regression in this setting is M-

estimation [L+17,ZBFL18], originally introduced by Huber [Hub64], in which one minimizes

a loss function with suitable robustness properties. Common choices of loss function in-

clude the 𝐿1 loss and the Huber loss. In addition to the earlier asymptotic results for this

approach [BJK78, Hub73, Pol91], by now numerous works have obtained non-asymptotic

guarantees for M-estimation under a variety of models for how the responses are corrupted,

but predominantly under the assumption that the design is sub-Gaussian or similarly struc-

tured [KP18, DT19, SF20, dNS20]. Notably, in [DT19, SF20] it was shown that in the set-

ting of sparse linear regression with Huber-contaminated responses, M-estimation with (ℓ1-

regularized) Huber loss is nearly minimax-optimal when the noise distribution 𝒟 and the

covariates are i.i.d. Gaussian.

One exception, and perhaps the result closest in spirit to our results for regression, is

that of [Chi20]. One consequence of the results in this work is that in the random-design

setting of Definition 6.4.1, that is when the covariates are drawn i.i.d. from some distribution

𝒟𝑥, then if the function class (equivalently, covariate distribution) is hypercontractive in the

sense that for any 𝑤 ∈ 𝒲 , E𝒟𝑥 [⟨𝑤−𝑤*, 𝑥⟩𝑝]2/𝑝 ≤ E𝒟𝑥 [⟨𝑤−𝑤*, 𝑥⟩2] for some 𝑝 > 2, and if the

noise distribution 𝒟 satisfies suitable conditions, then M-estimation with Huber loss achieves

340

the information-theoretically optimal error of Θ(𝜎2𝜂2) in squared loss. It is also possible to

modify their proof to show that the same algorithm would yield the information-theoretically

optimal error of Θ(𝜎𝜂) in a different metric, the 𝐿1 loss, without the hypercontractivity

condition. An 𝐿1 guarantee is much weaker than the usual 𝐿2 (i.e. squared loss) guarantee:

for example, it is too weak to give anything interesting for the contextual bandits application.

In fact, as we show in Theorem 6.9.1, M-estimation with Huber loss, and more generally

minimization of any convex surrogate loss, will not achieve squared loss Θ(𝜎2𝜂2) in general

when the function class/covariate distribution fails to satisfy this hypercontractivity condi-

tion. Instead, we show such estimators must pay squared loss at least Ω(𝜎𝑅𝜂3). We also

mention that to our knowledge, the only work that has explicitly considered online regression

with corruptions is [PF20], where they considered Gaussian covariates and a random fraction

of responses are corrupted by an oblivious shift. Additionally, another notable line of work

to mention in the literature on regression with contaminated responses stems from using

hard thresholding [BJK15, BJKK17, SBRJ19], though these works work also make strong

regularity assumptions on the covariates.

Lastly, we mention that in the context of classification, there have been a number of

recent works giving new algorithmic results for corruption models where the binary labels are

corrupted by some process that is halfway between purely stochastic and purely adversarial.

For instance, [DGT19, CKMY20, DKTZ20] focus on the Massart noise model which can

essentially be viewed as a setting where an adversary can only control a random fraction of the

labels, but can change them in an arbitrary way. This can be thought of as the classification

version of the Huber-contaminated regression problem that we consider in the present work,

and the former two results work in the setting without distributional assumptions. We also

note that the recent work of [DKK+20] considers the stronger model of Tsybakov noise and

obtains polynomial-time algorithms under distributional assumptions.

Robustness for bandits There have been a number of notions of robustness proposed in

the bandits literature. A classic notion is that of adversarial bandits, a setting where one

would like to prove regret bounds even when the rewards are chosen adversarially [ACBFS02].

Many papers have worked to identify ways of interpolating between fully adversarial rewards

341

and stochastically generated ones, including the line of work on “best of both worlds” re-

sults [BS12, SS14a,AC16, SL17] as well as an interesting model of bandits with adversarial

corruptions introduced by [LMPL18] and subsequently studied by [GKT19]. The latter is

a setting of multi-armed bandits where rewards are generated stochastically but then per-

turbed by an adaptive adversary with a fixed budget of how much he can move the rewards

in any given sample path. We stress that the setting of adversarial bandits is orthogonal to

the thrust of the present work, where the goal is to get small clean regret. For example, while

the adversarial nature of the rewards makes the former quite challenging, it is still possible

to achieve sublinear regret for adversarial bandits, whereas in our setting, one cannot do

better than Ω(𝜂2𝜎2𝑇).

Other notions of robustness that have been considered include the standard notion of

misspecification (e.g. [FR20, NO20]) as in Definition 6.4.4, as well as the notion of heavy-

tailed reward distributions [BCBL13]. The setting of Huber-contaminated rewards that we

study was previously studied in the multi-armed case by [KPK19, ABM19]. [KPK19] also

studied Huber-contaminated linear contextual bandits when the contexts are Gaussian or

collectively satisfy some RSC-like condition. Even in this distribution-specific setting, their

analysis loses a factor of 𝑅. A recent work [AGKS21] also studied the Gaussian context case

of Huber-contaminated linear contextual bandits and improved over [KPK19]; however their

result also suffers from a dependence on 𝑅. Lastly, we mention the work of [SS14a,ZS19] who

considered a different corruption model for the multi-armed case where the contaminations

cannot reduce the “gap,” i.e. the difference between the reward of the best arm and that of

any other arm, by more than a constant factor in any time step.

6.4 Preliminaries

6.4.1 Formal Description of Models

For technical reasons which will appear naturally in the analysis, it is useful for us to consider

the general misspecified model where 𝜀 ≥ 0 is a misspecification parameter that accommo-

dates deviation between the true prediction rule and the best linear model. However, the

342

reader should feel free to consider the usual well-specified setting 𝜀 = 0 when reading the

results.

Robust Offline Regression. Our analysis in the oblivious setting allows the corruption

adversary to depend arbitrarily on the randomness in the problem, as in e.g. [Chi20]. This is

different from in the online setting, where it’s important that all of the randomness respects

the filtration corresponding to time. To be clear, we define the offline model explicitly here.

1. Covariates 𝑥1, . . . , 𝑥𝑛 are arbitrary fixed vectors in the unit ball of R𝑑, i.e. they are

chosen obliviously.

2. For every 𝑡 from 1 to 𝑛, a 𝐵𝑒𝑟(𝜂) coin is flipped to determine if round 𝑡 is corrupted

or not. Let 𝑎*𝑡 be the indicator for whether round 𝑡 was uncorrupted, i.e. 𝑎*𝑡 = 1 when

the round is not corrupted and this occurs with probability 1− 𝜂.

3. For every uncorrupted round, we observe 𝑦𝑡 given by

𝑦𝑡 = 𝑦*𝑡 + 𝜉𝑡, 𝑦*𝑡 = ⟨𝑤*, 𝑥𝑡⟩+ 𝜀𝑡

where 𝑤* is the true regressor and ‖𝑤*‖ ≤ 𝑅, and 𝜉𝑡 is independently sampled from the

noise distribution 𝒟 and |𝜀𝑡| ≤ 𝜀 is the misspecification. The misspecification 𝜀𝑡 can be

chosen in a completely adversarial fashion: formally, it is a random variable depending

arbitrarily on all other randomness in the setup (e.g. it can depend arbitrarily on the

noise and the coin flips from all rounds).

4. For every corrupted round, 𝑦𝑡 is chosen freely by the adversary. Again, we assume

nothing about 𝑦𝑡 – it can depend arbitrarily on all other randomness in the problem.

Robust Online Regression. We begin by introducing the setup for the online linear

regression problem, which is closely related to the linear contextual bandits problem we

introduce later. Online regression itself is one of the fundamental problems in online learning

that has been extensively studied in the uncontaminated setting, see e.g. [Vov01, AW01,

CBL06].

343

Definition 6.4.1 (Huber-Contaminated Online Regression). Fix Huber contamination rate

𝜂 ∈ (0, 1/2), misspecification bound 𝜀, noise distribution 𝒟, and unknown weight vector 𝑤*.

In each round 𝑡 ∈ [𝑇]:

1. Nature chooses input 𝑥𝑡 ∈ R𝑑, possibly adversarially based on the transcript from pre-

vious rounds.

2. Learner chooses prediction ̂︀𝑦𝑡.
3. A Ber(𝜂) coin is flipped to decide whether this round is corrupted.

4. If the round is not corrupted, sample 𝜉𝑡 independently from 𝒟. The learner sees 𝑦𝑡 ,

𝑦*𝑡 + 𝜉𝑡, where 𝑦*𝑡 , ⟨𝑤*, 𝑥𝑡⟩+ 𝜀𝑡 for some quantity 𝜀𝑡(𝑥𝑡) satisfying |𝜀𝑡(𝑥𝑡)| ≤ 𝜀.

5. If the round is corrupted, the learner sees an arbitrary 𝑦𝑡 chosen by an adversary based

on 𝑥𝑡 and the transcript from the previous rounds.

The goal of the learner, given any 𝑥𝑡 in round 𝑡 (and the transcript from the previous

rounds), is to choose a prediction ̂︀𝑦𝑡 such that with high probability over the choice of Ber(𝜂)

coins, and for any (possibly adaptively chosen) sequence of feature vectors {𝑥1, . . . , 𝑥𝑇} in

the above model, the quantity

RegHSq(𝑇) =
𝑇∑︁
𝑡=1

(̂︀𝑦𝑡 − 𝑦*𝑡)2. (6.6)

is small. We say that 𝐴 achieves clean square loss regret RegHSq(𝑇). Note that RegHSq is

a random variable depending on the randomness of the Ber(𝜂) coins, the randomness of the

noise 𝜉𝑡, any stochasticity in the choice of the inputs 𝑥𝑡, and the randomness of the learner

and adversary. We will establish high-probability bounds on this random variable.

Remark 6.4.2 (Clean vs Dirty Loss). It is very important to note that the goal for robust

statistics is to minimize the clean square loss
∑︀𝑇

𝑡=1(𝑦𝑡 − 𝑦*𝑡)2 and not the “dirty” square loss∑︀𝑇
𝑡=1(𝑦𝑡− 𝑦𝑡)2 where 𝑦𝑡 is potentially corrupted. If our goal was to try to fit the corruptions,

as in agnostic learning, then using Ordinary Least Squares would be a good approach for this

regression problem.

344

On the other hand, there is no importance difference between optimizing the noisy clean

square loss
∑︀𝑇

𝑡=1(𝑦𝑡−(𝑦*𝑡 +𝜉𝑡))2 and the clean square loss as defined above. Because the noise

is by definition independent of 𝑦𝑡, 𝑦*𝑡 , we know that in expectation E[
∑︀𝑇

𝑡=1(𝑦𝑡− (𝑦*𝑡 + 𝜉𝑡))
2] =

E[
∑︀𝑇

𝑡=1(𝑦𝑡 − 𝑦*𝑡)2] + 𝜎2𝑇 and so the additive term coming from the noise doesn’t depend on

the prediction sequence 𝑦𝑡.

Connection to robust mean estimation Note that regression with Huber contamina-

tions is at least as hard as the problem of mean estimation under Huber contaminations,

implying that achieving sublinear regret for Huber-contaminated online regression is impos-

sible:

Example 6.4.3. Let 𝑑 = 1 and 𝜀 = 0, and suppose 𝑤* = 𝑅 and 𝒟 = 𝒩 (0, 𝜎2). Suppose

we only ever see 𝑥𝑡 = 1, so that we always have 𝑦*𝑡 = 𝑅. Then each uncorrupted 𝑦𝑡 is

simply an independent draw from 𝒩 (𝑅, 𝜎2), so the question of producing a good predictor̂︀𝑦 in this special case is equivalent to that of estimating the mean of a univariate Gaussian

with variance 𝜎2 under the Huber contamination model. It is known that one cannot do

this to error better than Ω(𝜂𝜎) (see [DKK+18]). More generally, if we only assume 𝒟 has

hypercontractive moments up to degree 𝑘, one can devise distributions 𝒟 for which one cannot

do better than error Ω(𝜂1−1/𝑘𝜎) (see e.g. Fact 2 from [HL19]).

Robust Contextual Bandits. We study the following robust version of contextual ban-

dits, first introduced in [KPK19]. We first state the general form of the contextual bandits

model (for an abstract regression function 𝑓), then specialize to the linear case.

Definition 6.4.4 (Huber-Contaminated Contextual Bandits). Let 𝒵 be an arbitrary state

space, and let 𝒜 be an action space of size 𝐾. Fix Huber contamination rate 𝜂 ∈ (0, 1/2),

misspecification rate 𝜀, and unknown function 𝑓 : 𝒵 ×𝒜 → R. Ahead of time, an oblivious

adversary chooses distributions Prℓ*𝑡 [·|𝑧𝑡] over loss functions ℓ*𝑡 : 𝒜 → [0, 𝑅] for all possi-

ble contexts 𝑧𝑡 and all time steps 𝑡 ∈ [𝑇]. We assume the conditional means of the loss

distributions are realized up to misspecification 𝜀 by 𝑓 , i.e. for all 𝑡, 𝑧, 𝑎,

E
ℓ*𝑡

[ℓ*𝑡 (𝑎)|𝑧𝑡 = 𝑧] = 𝑓(𝑧, 𝑎) + 𝜀𝑡(𝑧, 𝑎), |𝜀𝑡(𝑧, 𝑎)| ≤ 𝜀. (6.7)

345

Let 𝜉𝑡 be the random variable which, conditioned on 𝑧𝑡 = 𝑧, takes on the value

𝜉𝑡 , ℓ*𝑡 (𝑎)− 𝑓(𝑧, 𝑎)− 𝜀𝑡(𝑧, 𝑎),

and define noise parameter 𝜎 by 𝜎2 , sup𝑧,𝑡 E[𝜉2𝑡 |𝑧𝑡 = 𝑧]. In each round 𝑡 ∈ [𝑇]:

1. Nature chooses 𝑧𝑡, possibly adversarially based on the transcript from previous rounds.

2. Learner chooses action 𝑎𝑡 ∈ 𝒜.

3. A Ber(𝜂) coin 𝛾𝑡 is flipped to decide whether this round is corrupted.

4. If 𝛾𝑡 = 0, i.e. the round is not corrupted, the learner sees loss ℓ*𝑡 (𝑎𝑡), where ℓ*𝑡 is drawn

independently from the distribution Prℓ*𝑡 [·|𝑧𝑡].

5. If 𝛾𝑡 = 1, i.e. the round is corrupted, the learner sees an arbitrary loss ℓ𝑡(𝑎𝑡) chosen

by an adversary based on 𝑧𝑡, 𝑎𝑡, and the transcript from the previous rounds.

The goal of the learner in the adversarial setting is to compete with the best policy in

hindsight as measured by the clean losses ℓ*𝑡 incurred in every round, that is to select a

sequence of actions 𝑎1, . . . , 𝑎𝑇 for which

R̃egHCB(𝑇) = sup
𝜋

E

[︃
𝑇∑︁
𝑡=1

(ℓ*𝑡 (𝑎𝑡)− ℓ*𝑡 (𝜋(𝑧𝑡)))

]︃
, (6.8)

is small, where the supremum ranges over all (non-adaptive) policies 𝜋 : 𝒳 → 𝒜 and the

expectation is over the randomness of the Ber(𝜂) coins, the randomness of the rewards, any

stochasticity in the choice of contexts, and the randomness of the learner. We say that such

a learner achieves clean pseudo-regret R̃egHCB(𝑇).

In the special case where 𝜀 = 0, we will consider the quantity

RegHCB(𝑇) =
𝑇∑︁
𝑡=1

(ℓ*𝑡 (𝑎𝑡)− ℓ*𝑡 (𝜋*(𝑧𝑡)))

where 𝜋*(𝑧) , argmax𝑎 𝑓(𝑧, 𝑎). Note that this is a random variable in the same things

defining the expectation in (6.8). We say that a learner achieves clean regret RegHCB(𝑇).

346

We will establish high-probability bounds on RegHCB.

Definition 6.4.5 (Huber-Contaminated Linear Contextual Bandits). This is the special

case of Definition 6.4.4 where the regression function 𝑓 : 𝒳 × 𝒜 → R is linear in the

following sense. The context space 𝒳 is a Hilbert space and each context is of the form

𝑧𝑡 = (𝑧𝑡1, . . . , 𝑧𝑡𝐾), i.e. there is a separate context vector for each arm. Then we assume that

𝑓(𝑧, 𝑎) = ⟨𝑧𝑡𝑎, 𝑤*⟩

for some vector 𝑤* ∈ R𝑑.

Without adversarial corruptions this is the familiar linear contextual bandits problem,

which has a wide range of applications precisely because in many settings the context is an

important component of the prediction task. For example, in online advertising the choice

of which ad to display ought to depend on information about the webpage that the ad will

be displayed on as well as any information we have about the user we are displaying it to,

which can be encoded as a high-dimensional vector. In healthcare, when we want to choose

between various treatment options again we want to adapt to the relevant context such as

the patient history. For additional applications, see the survey [BR19].

However in many of these settings it is natural to imagine that some of the feedback we

receive departs in arbitrary ways from the model. This could happen in online advertising

due to clickfraud, particularly when malware takes over a user’s account. It could happen

in healthcare in the context of drug trials, particularly ones that measure some real valued

variable, when there are testing errors or confounding variables that are difficult to model.

For all these and many more reasons it is natural to wonder if there could be algorithms for

contextual bandits with stronger robustness guarantees.

Remark 6.4.6. We note that in some papers on contextual bandits, the range of the loss

functions is normalized to [0, 1] for convenience. The scale-invariant quantity which we want

to avoid dependence on is the ratio 𝑅/𝜎.

Remark 6.4.7. As we will rely on a formal connection between contextual bandits and online

regression illuminated in [FR20], it will be helpful to situate our definitions in their context.

In particular, when 𝜂 = 0, Definition 6.4.4 specializes to Assumption 4 of [FR20], and an

347

algorithm for Definition 6.4.1 achieving clean square loss regret at most RegHSq(𝑇) would

satisfy Assumption 2b of [FR20] in the realizable case with 𝜀-misspecification.

Model Assumptions. We adopt the following standard normalization convention for the

covariates and weight vector.

Assumption 5. In the regression setting (Definition 6.4.1), for any round 𝑡, ‖𝑥𝑡‖ ≤ 1 almost

surely, ‖𝑤*‖ ≤ 𝑅. Correspondingly, in the contextual bandits setting (Definition 6.4.5) we

assume ‖𝑧𝑡𝑎‖ ≤ 1 for all 𝑎 and ‖𝑤*‖ ≤ 𝑅.

To simplify the statement of bounds we assume in all statements that 𝜀, 𝜎 = 𝑂(𝑅). The

last assumption can be removed at the cost of longer Theorem statements (e.g. writing 𝑅+𝜎

instead of 𝑅); this scaling captures the interesting setting for the bounds, because if 𝜀≫ 𝑅

then the responses are arbitrary, and if 𝜎 ≫ 𝑅 then no interesting robustness guarantee

is possible, as explained earlier — the trivial guarantee of Ordinary Least Squares in this

setting is already close to optimal.

We now formally describe the (weak) assumptions on the noise under which we can

perform our analysis.

Definition 6.4.8 (Weak 𝐿𝑞 Space). Suppose 𝑋 is a real-valued random variable and 𝑞 ≥ 1.

We define the weak 𝐿𝑞 or 𝐿𝑞,∞ quasinorm of 𝜉 to be

‖𝑋‖𝑞,∞ , sup
𝜆>0

𝜆 ·
⃒⃒
Pr[|𝑋| > 𝜆]1/𝑞

⃒⃒
so that Pr[|𝑋| > 𝜆] ≤ ‖𝑋‖𝑞𝑞,∞/𝜆𝑞. When 𝑞 =∞, we define ‖𝑋‖∞,∞ = inf{𝜆 > 0 : Pr[|𝑋| ≥

𝜆] = 0} to be the same as the 𝐿∞ norm. We say that 𝑋 is in weak 𝐿𝑞 or 𝐿𝑞,∞ space if

‖𝑋‖𝑞,∞ <∞.

From Markov’s inequality, one has that Pr[|𝑋| > 𝜆] ≤ E[|𝑋|𝑞]/𝜆𝑞 which shows that

‖𝑋‖𝑞,∞ ≤ ‖𝑋‖𝑞.

Assumption 2. We assume the noise 𝜉 ∼ 𝒟 is mean zero and that for some 𝑞 > 1,

𝜎𝑞 , ‖𝜉‖𝑞,∞ <∞.

348

6.4.2 Technical Preliminaries

Here we collect miscellaneous technical facts that will be useful in later sections. Throughout

this paper we use standard notation for inequalities up to constants; for example, 𝑎 . 𝑏 and

𝑎 = 𝑂(𝑏) both denote an inequality true up to an absolute constant, and occasionally we use

𝐶 > 0 to denote a universal constant which can change from line to line. Given a matrix

𝑀 , we let ‖𝑀‖ denote the operator norm of 𝑀 . Given a positive semidefinite matrix Σ, we

define the Mahalanobis norm by

‖𝑥‖2Σ := ‖Σ1/2𝑥‖2 = ⟨𝑥,Σ𝑥⟩.

Truncation Lemma. In our algorithm and analysis, we handle heavy-tailed noise using

a truncation argument; this somewhat parallels the use of truncation arguments in large

deviation theory, see e.g. [FN71]. The following Lemma shows that random variables with

tail bounds behave reasonably under truncation, in the sense that their means do not move

drastically.

Lemma 6.4.9. Suppose that 𝑋 is a mean-zero random variable and 𝜎𝑞 , ‖𝑋‖𝑞,∞ < ∞.

Then for any 𝑠 > 0,

|E[𝑋 1[|𝑋| < 𝑠]]| ≤ 𝑞

𝑞 − 1
·
𝜎𝑞𝑞
𝑠𝑘−1

.

Proof. We know

0 = E[𝑋] = E[𝑋 1[|𝑋| < 𝑠]] + E[𝑋 1[|𝑋| ≥ 𝑠]]

so using the identity E[𝑍] =
∫︀∞
0

Pr[𝑍 > 𝑦]𝑑𝑦 for nonnegative random variable 𝑍 (Lemma

1.2.1 of [Ver18]), we have

|E[𝑋 1[|𝑋| < 𝑠]]| = |E[𝑋 1[|𝑋| ≥ 𝑠]]| ≤ E[|𝑋|1[|𝑋| ≥ 𝑠)]]

=

∫︁ ∞

0

Pr[|𝑋|1[|𝑋| ≥ 𝑠] > 𝑦]𝑑𝑦

= 𝑠Pr[|𝑋| ≥ 𝑠] +

∫︁ ∞

𝑠

Pr[|𝑋| > 𝑦]𝑑𝑦

≤
𝜎𝑞𝑞
𝑠𝑞−1

+

∫︁ ∞

𝑠

𝜎𝑞𝑞
𝑦𝑘
𝑑𝑦

349

= 𝜎𝑞𝑞

(︂
1

𝑠𝑞−1
+

1

(𝑞 − 1)𝑠𝑞−1

)︂
=

𝑞

𝑞 − 1
·
𝜎𝑞𝑞
𝑠𝑘−1

where in the last inequality, we used the definition of 𝐿𝑞,∞.

6.5 Alternating Minimization for Offline Regression

In this section, we prove our main results for regression in the usual offline setting. After

giving some setup and stating the main offline result in Section 6.5.1, in Section 6.5.2 we

give a full description of our alternating minimization-based algorithm. In Section 6.5.3 we

show that it converges to an approximate stationary point. In Section 6.5.4 we show that

this suffices to obtain our claimed error guarantees, and also give improved rates in the case

of subgaussian noise. In Section 6.5.5 we show how our fixed-design guarantee can yield

strong results in the stochastic setting often considered in statistical learning. Finally, in

Section 6.5.6, we give improved rates when the noise is in 𝐿𝑞 for 𝑞 ≥ 2 by boosting via a

high-dimensional median.

6.5.1 Setup and Main Result

We will state and prove results for two closely related settings: (1) the usual setting in linear

regression where the covariates 𝑥𝑡 are fixed arbitrary vectors (i.e. chosen obliviously), and (2)

the model which is relevant for our online applications, where the covariates 𝑥𝑡 are generated

sequentially and adaptively, so they can depend on e.g. the realization of the noise in previous

rounds. The second setting is the proper offline version of the Huber-Contaminated Online

Regression Problem as defined in Definition 6.4.1.

We briefly recall some of the relevant notation. Let 𝑎*𝑡 be the indicator for whether

round 𝑡 was uncorrupted, i.e. 𝑎*𝑡 = 1 when the round is not corrupted and this occurs with

probability 1− 𝜂. Recall from (6.6) that for every 𝑡 ∈ [𝑛] corresponding to a round which is

not corrupted, we observe 𝑦𝑡 given by

𝑦𝑡 = 𝑦*𝑡 + 𝜉𝑡, 𝑦*𝑡 = ⟨𝑤*, 𝑥𝑡⟩+ 𝜀𝑡

350

where 𝑤* is the true regressor and ‖𝑤*‖ ≤ 𝑅, and 𝜉𝑡 is independently sampled from the

noise distribution 𝒟, and |𝜀𝑡| ≤ 𝜀 is the misspecification. On the other hand, on corrupted

rounds 𝑦𝑡 is chosen freely by the adversary. For convenience, define

Σ𝑛 ,
1

𝑛

𝑛∑︁
𝑡=1

𝑥𝑡𝑥
⊤
𝑡

Let 𝑢* be the best norm 𝑅 linear predictor of the uncorrupted and unnoised data, that is,

𝑢* , arg min
𝑢:‖𝑢‖≤𝑅

1

𝑛

∑︁
𝑡

(𝑦*𝑡 − ⟨𝑢, 𝑥𝑡⟩)2 (6.9)

and let 𝛿𝑡 , 𝑦*𝑡 − ⟨𝑢*, 𝑥𝑡⟩. By definition of 𝑢*, we have that

1

𝑛

∑︁
𝑡

𝛿2𝑡 ≤
1

𝑛

∑︁
𝑡

𝜀2𝑡 ≤ 𝜀2 (6.10)

almost surely; in fact, the conclusion of (6.10) is all we need about the misspecification model

and 𝑤*, 𝜀𝑡 play no further role in this section.

Our goal will be to output ̂︀𝑤 such that the MSE (Mean Squared Error) with respect to

the true responses is as small as possible; since 𝑢* is the optimal linear predictor, this is the

same (by the Pythagorean Theorem) as asking for ‖ ̂︀𝑤 − 𝑢*‖2Σ𝑛
is small. When there is no

misspecification, this is equivalent to recovering 𝑤* up to small error in Σ𝑛 norm. When there

is misspecification, it is easy to see that if ‖ ̂︀𝑤− 𝑢*‖ is small, then ‖ ̂︀𝑤−𝑤*‖Σ𝑛 is also small,

up to an extra 𝑂(𝜀) term from the triangle inequality. The algorithm achieving our goal is

SCRAM (SpeCtrally Regularized Alternating Minimization, defined in Algorithm 15 and

analyzed in Theorem 6.5.1).

In the following Theorem, the constants in the guarantee must deteriorate slightly as we

approach the breakdown point 𝜂 = 1/3 of this estimator, so we introduce a parameter 𝛽

which tracks the distance to 1/3; as long as we are strictly bounded away from this point,

𝛽 is a Θ(1) quantity and can be ignored. As explained in Remark 6.5.3, this breakdown

point is optimal for SCRAM, but in Section 6.6 we will give a more powerful version of this

estimator based on sum-of-squares programming which achieves optimal breakdown point

351

1/2.

Theorem 6.5.1. Suppose that 𝜂 < 1/3 is an upper bound on the contamination level, define

𝛽 , (1/3− 𝜂)2 (6.11)

and suppose for some 𝑞 ∈ (1,∞], 𝜎𝑞 ≥ 0 and all 𝑡 that

‖𝜉𝑡‖𝑞,∞ ≤ 𝜎𝑞

in the sense of Assumption 2. Then provided

𝜂 · 𝑛 & log(min(𝑛, 𝑑)/𝛿),

we can take 𝛼 = Θ

(︂√︁
𝜂 log(𝑑/𝛿)

𝑛

)︂
and 𝜂 = 𝜂 + Θ(𝜂

√
𝛽) such that the output 𝑤 of SCRAM

with 𝑝𝑜𝑙𝑦(𝑅/𝜎, log(2/𝛿), 𝑑, 𝑛) many steps satisfies for oblivious covariates the bound

𝛽1+1/𝑞‖𝑢* − 𝑤‖Σ𝑛 .
𝑞

𝑞 − 1
𝜂1−1/𝑞𝜎𝑞 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(𝜀+

𝑞

𝑞 − 1
𝜂1/2−1/𝑞𝜎𝑞)

1/2 8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ 𝜂−1/𝑞min

{︃
𝜎

√︂
𝑑+ log(2/𝛿)

𝑛
, (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛

}︃

with probability at least 1 − 𝛿. In the more general case of adaptive covariates, it satisfies

the bound

𝛽1+1/𝑞‖𝑢* − 𝑤‖Σ𝑛 .
𝑞

𝑞 − 1
𝜂1−1/𝑞𝜎𝑞 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(𝜀+

𝑞

𝑞 − 1
𝜂1/2−1/𝑞𝜎𝑞)

1/2 8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ 𝜂−1/𝑞(𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛

i.e. the same bound except the last term was changed.

Remark 6.5.2 (Oracle Inequality Interpretation). As mentioned before, the only guarantee

on the misspecification we need is (6.10). This means that for any 𝜀2 ≥ 1
𝑛

∑︀
𝑡 𝛿

2
𝑡 , i.e. any

352

𝜀 > 0 such that (6.10) is true almost surely, we have

1

𝑛

∑︁
𝑡

(𝑦*𝑡 − ⟨�̂�, 𝑥𝑡⟩)2 . 𝜀2 + ‖𝑢* − �̂�‖2Σ𝑛

which combined with Theorem 6.5.1 makes formal that ⟨�̂�, 𝑥𝑡⟩ is the best linear model of 𝑦*𝑡 up

to a small error term. This kind of bound for an estimator in the presence of misspecification

is known as an oracle inequality [Tsy08], since �̂� competes with the oracle fit 𝑢*.

Remark 6.5.3 (Breakdown point and landscape). The breakdown point of 𝜂 = 1/3 is optimal

for this estimator based on local search. This breakdown point is optimal even if 𝑋 ∼ 𝑁(0, 𝐼)

and the true generative model is a noiseless mixture of two linear regressions 𝑤1 ̸= 𝑤2 with

corresponding weights 1/3, 2/3, so we view 𝑤1 as contamination. In this setting 𝜎𝑞 = 0 so an

estimator achieving the optimal 𝑂(𝜎𝑞) rate gets error 𝑜(1). However, the pair (𝑤1, 𝑎1) is a

bad local minimum where the weight vector 𝑎1 keeps all of the data points from 𝑤1 and keeps

each point labeled by 𝑤2 with probability 1/2. In Section 6.6 we show how to overcome the

bad landscape for 𝜂 ∈ [1/3, 1/2), achieving the optimal 𝑂(𝜎𝑞) error guarantee, using more

powerful optimization tools (the Sum of Squares hierarchy) and a new analysis.

Remark 6.5.4 (Small 𝜂 regime). If the true contamination level is very small, e.g. 𝜂 = 0,

then applying Theorem 6.5.1 with a larger value of 𝜂 will optimize the upper bound.

When the noise is 𝐿𝑞 for 𝑞 ≥ 2, we show how to improve the last term on the right-hand

side of Theorem 6.5.1 to avoid an 𝜂−1/𝑞 dependence in the last term on the right-hand side,

see Theorem 6.5.18.

6.5.2 Algorithm Specification

The algorithm used in Theorem 6.5.1 is based upon finding first-order stationary points of

the following nonconvex problem.

Program 1. Define variables 𝑤, 𝑎1, . . . , 𝑎𝑛 and consider the optimization problem with pa-

353

rameters 𝜂, 𝛼,𝑅 ≥ 0 given by

min
𝑤

min
𝑎1,...,𝑎𝑛

1

𝑛

𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2

s.t. 0 ≤ 𝑎𝑡 ≤ 1 ∀𝑡 ∈ [𝑛]∑︁
𝑡

𝑎𝑡 ≥ (1− 𝜂 − 𝛼)𝑛

1

𝑛

∑︁
𝑡

(1− 𝑎𝑡)𝑥𝑡𝑥⊤𝑡 ⪯ 𝜂Σ𝑛 + 𝛼 · Id

‖𝑤‖ ≤ 𝑅

where ‖𝑤‖ denotes the Euclidean norm of 𝑤.

The overall objective

𝐿(𝑤, 𝑎) :=
1

𝑛

∑︁
𝑡

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2

is biconvex, i.e. convex individually in the variables 𝑎 and the variables 𝑤, but not jointly con-

vex. Since it is a nonconvex problem, we cannot guarantee to find the true global minimum

of this optimization problem. One of the most common heuristics for biconvex problems is to

perform alternating minimization, which will output an approximate first order stationary

point. Fortunately, we prove in our setting that this suffices and all approximate first order

stationary points satisfy the desired statistical guarantee. As one half of the alternating min-

imization procedure, we observe that minimizing 𝑎 for fixed 𝑤 is a simple SDP (semidefinite

program):

Program 2. For fixed vector 𝑤, define variables 𝑎1, . . . , 𝑎𝑛 and define the optimization prob-

lem SDP𝑤 with additional parameters 𝜂, 𝛼 ≥ 0 given by

min
𝑎1,...,𝑎𝑛

1

𝑛

𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2

s.t. 0 ≤ 𝑎𝑡 ≤ 1 ∀𝑡 ∈ [𝑛]∑︁
𝑡

𝑎𝑡 ≥ (1− 𝜂 − 𝛼)𝑛

1

𝑛

∑︁
𝑡

(1− 𝑎𝑡)𝑥𝑡𝑥⊤𝑡 ⪯ 𝜂Σ𝑛 + 𝛼 · Id .

354

Note that this corresponds to Program 1 for a fixed choice of 𝑤.

Algorithm 15: SCRAM(𝐷, 𝜀OPT)
Input: Dataset 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}
Output: Approximate first-order critical point of Program 1 (see Lemma 6.5.7)

1 Let 𝑤(1) = 0.
2 for 𝑠 = 1 to ∞ do
3 Let 𝑎(𝑠) be the minimizer of Program 2 with 𝑤 = 𝑤(𝑠).
4 Let 𝑤(𝑠+1) be the minimizer of 𝐿(𝑤, 𝑎(𝑠)) =

∑︀
𝑡 𝑎

(𝑠)
𝑡 (𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 over all 𝑤 with

‖𝑤‖ ≤ 𝑅.
5 if 𝐿(𝑤(𝑠+1), 𝑎(𝑠)) > 𝐿(𝑤(𝑠), 𝑎(𝑠)) + 𝜀OPT then
6 return 𝑤(𝑠), 𝑎(𝑠).

6.5.3 Optimization Analysis

For the analysis we need the following simple Taylor expansion inequality used to analyze

gradient descent on smooth functions:

Lemma 6.5.5 (Standard, see e.g. [Bub14]). Suppose that 𝑓 : R𝑑 → R is 𝐿-smooth in the

sense that ‖∇2𝑓‖𝑂𝑃 ≤ 2𝐿. Then

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝐿‖𝑦 − 𝑥‖2.

From this we get the following Descent Lemma on the ball:

Lemma 6.5.6. Suppose that 𝑓 is 𝐿-smooth and 𝑥, 𝑦 are vectors in R𝑑 such that ‖𝑥‖, ‖𝑦‖ ≤ 𝑅

and ⟨∇𝑓(𝑥), 𝑥− 𝑦⟩ ≥ Δ > 0. Then there exists a point 𝑧 which is a convex combination of

𝑥, 𝑦 such that

𝑓(𝑧) ≤ 𝑓(𝑥)− Δ2

16𝐿𝑅2
.

Proof. We consider points of the form 𝑧𝜆 := (1 − 𝜆)𝑥 + 𝜆𝑦 which by convexity lie in the

radius 𝑅 ball. Observe by Lemma 6.5.5 that

𝑓(𝑧𝜆) ≤ 𝑓(𝑥)− 𝜆Δ+ 4𝐿𝑅2𝜆2

since ‖𝑥 − 𝑥𝜆‖ ≤ 𝜆‖𝑥‖ + 𝜆‖𝑦‖ ≤ 2𝜆𝑅. The upper bound is optimized by 𝜆 = Δ
8𝐿𝑅2 and

355

plugging in gives the result.

Lemma 6.5.7. SCRAM with 𝜀OPT = 𝜀2𝑔𝑟𝑎𝑑/4𝑅
2 outputs vector 𝑤 and weights 𝑎1, . . . , 𝑎𝑛

satisfying the constraints of Program 1 such that:

1. (Partial optimality) The variables 𝑎 are global minimizers of SDP𝑤 (Program 2).

2. (First order stationarity)

1

𝑛

∑︁
𝑡

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑣 − 𝑤⟩ ≤ 𝜀𝑔𝑟𝑎𝑑 (6.12)

for all 𝑣 with ‖𝑣‖ ≤ 𝑅.

Furthermore, the expected number of iterations in the main loop is at most 𝑂((𝑅2+𝜎2)𝑅2/𝜀2𝑔𝑟𝑎𝑑).

Proof. By definition 𝑎(𝑠) is the minimizer of the SDP𝑤(𝑠) so the first property is satisfied by

construction. We now prove the second property. Observe that the objective 𝐿(𝑤, 𝑎(𝑠)) is

1-smooth in 𝑤 and

∇𝑤𝐿(𝑤, 𝑎
(𝑠)) = − 2

𝑛

∑︁
𝑡

(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)𝑥𝑡. (6.13)

Therefore by Lemma 6.5.6 and the fact that 𝑤(𝑠+1) is the optimizer for fixed 𝑎(𝑠), we know

that if there exists 𝑣 with ⟨∇𝑤𝐿(𝑤
(𝑠), 𝑎(𝑠)), 𝑤(𝑠) − 𝑣⟩ ≥ Δ > 0

𝐿(𝑤(𝑠+1), 𝑎(𝑠)) ≤ 𝐿(𝑤(𝑠), 𝑎(𝑠))− Δ2

16𝑅2
.

By the contrapositive, if the decrease in objective value when moving from 𝑤(𝑠) to 𝑤(𝑠+1) is

less than 𝜀OPT, then it implies that

⟨∇𝑤𝐿(𝑤
(𝑠), 𝑎(𝑠)), 𝑤(𝑠) − 𝑣⟩ ≤ 4𝑅

√
𝜀OPT

for all 𝑣 in the unit ball. Hence by (6.13) taking 𝜀OPT = 𝜀2𝑔𝑟𝑎𝑑/4𝑅
2 gives the stated guarantee.

Finally, we bound the number of iterations needed. Every time the loop is repeated,

the objective value 𝐿(𝑤, 𝑎) decreases by at least 𝜀OPT and clearly 𝐿(𝑤, 𝑎) ≥ 0. Therefore

the total number of iterations can be upper bounded by 𝐿(0, 𝑎(1))/𝜀OPT. By considering the

356

(possibly suboptimal solution) 𝑎𝑡 = 𝑎*𝑡 to the first SDP, we see that the expected value of

𝐿(0, 𝑎(1)) is at most 𝑅2 + 𝜎2. Therefore the expected total number of iterations is at most

(𝑅2 + 𝜎2)/𝜀OPT.

6.5.4 All Stationary Points are Good

It remains to show why condition (6.12) implies the desired error guarantee. To establish

the general guarantee of Theorem 6.5.1, it’s sufficient to reduce to the case where the noise

𝜉𝑡 is bounded, unless we care about the precise sample complexity. For this reason, we start

with this setting (Section 6.5.4), show how to reduce the 𝐿𝑞,∞ setting of Theorem 6.5.1 to

the bounded case, and then discuss how to tailor the analysis to get refined guarantees for

subgaussian noise in Section 6.5.4. Later in Section 6.5.6, we give an improved version of

Theorem 6.5.1 when the noise {𝜉𝑡} is 𝐿𝑞 for 𝑞 ≥ 2, see Theorem 6.5.18.

Bounded Noise Analysis

In the bounded case we establish the following result:

Theorem 6.5.8 (SCRAM Guarantee with Bounded Noise). Suppose that 𝜂 < 1/3, define

𝛽 as in (6.11), and suppose for some 𝜎 ≥ 0 that for all 𝑡,

|𝜉𝑡| ≤ 𝜎 (6.14)

almost surely. Then if 𝜂 = 0 or

𝑛 & log(min(𝑛, 𝑑)/𝛿)/𝜂, (6.15)

taking 𝛼 = Θ

(︂√︁
𝜂 log(min(𝑛,𝑑)/𝛿)

𝑛

)︂
and 𝜂 = 𝜂, the output 𝑤 of SCRAM with 𝑝𝑜𝑙𝑦(𝑅/𝜎, log(2/𝛿), 𝑑, 𝑛)

many steps satisfies for oblivious covariates the bound

𝛽‖𝑢* − 𝑤‖Σ𝑛 . 𝜂𝜎 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(𝜂1/2𝜎 + 𝜀)1/2
8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ 𝜂1/4𝑅

4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+min

{︃
𝜎

√︂
𝑑+ log(2/𝛿)

𝑛
, (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛

}︃

357

with probability at least 1 − 𝛿. In the more general case of adaptive covariates, it satisfies

the bound

𝛽‖𝑢* − 𝑤‖Σ𝑛 . 𝜂𝜎 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(𝜂1/2𝜎 + 𝜀)1/2
8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ 𝜂1/4𝑅

4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+ (𝑅𝜎)1/2
4

√︂
log(2/𝛿)

𝑛
,

i.e. the same bound except the second line was changed.

Example 6.5.9 (Lower bound when 𝜎 = 𝜀 = 0). Consider the special case with 𝜎 = 𝜀 = 0

with oblivious contexts. Observe that when 𝜎 = 𝜀 = 0 the only nonzero term in the upper

bound is 𝜂1/4𝑅 4

√︁
log(𝑛/𝛿)

𝑛
. Now consider the setting where the clean regression model with

𝑑 = 𝑛 is given by 𝑌 * = 𝑤* ∈ R𝑛, and we consider the 𝜂-contaminated version of this model

with 𝛿 = 1/𝑛 and 𝜂 = log(𝑛/𝛿)/𝑛,. The number of contaminated coordinates of 𝑌 will be

close to 𝜂𝑛 = Θ(log(𝑛/𝛿)), and for each of those coordinates 𝑖, the algorithm observes no

information about 𝑤*
𝑖 . Considering letting 𝑤* = ±𝑅𝑒𝑗 for an arbitrary 𝑗 ∈ [𝑛], then the

probability coordinate 𝑗 is missed is Θ(𝜂) = Θ(log(𝑛/𝛿)/𝑛) = 𝜔(𝛿) and on this event the

algorithm must pay a cost in squared loss ‖𝑢* − 𝑤‖2Σ𝑛
of 𝑅2/𝑛 = 1

log(𝑛/𝛿)
𝑅2𝜂1/2

√︁
log(𝑛/𝛿)

𝑛
,

matching the upper bound up to the log factor.

This example also shows the necessity of (6.15) when 𝜂 ̸= 0: without this lower bound,

we could take 𝜂 = 1/𝑛1+𝛾 for some 𝛾 > 0, 𝛿 = 0.1/𝑛1+𝛾 and we would conclude by the same

argument that 𝑅2/𝑛 . 𝑅2𝜂1/2
√︀

log(𝑛/𝛿)/𝑛 = Θ(𝑅2
√︀

log(𝑛)/𝑛1+𝛾/2) which is false.

Given this result, Theorem 6.5.1 follows by slightly increasing the value of 𝜂, so that

heavy tail events are counted as contamination; we have to be slightly careful when the noise

is asymmetric, because truncating can also induce also a small amount of misspecification,

but it does not affect the final bound.

Proof of Theorem 6.5.1. We prove this Theorem by reducing to Theorem 6.5.8. We consider

the effect of treating all clean responses with |𝜉| ≥ 𝑀𝜎𝑞 for some 𝑀 ≥ 1 as contamination,

increasing the effective 𝜂 to 𝜂 = 𝜂+
√
𝛽𝜂/2 and making the noise bounded. Recall from the

definition that

Pr[|𝜉| ≥𝑀𝜎𝑞] ≤
1

𝑀 𝑞

358

so by solving 𝛽1/2𝜂/2 ≥ 1/𝑀 𝑞 we find that setting

𝑀 = (𝛽1/2𝜂)−1/𝑞

ensures the total contamination level is at most 𝜂 +
√
𝛽𝜂/2 = 𝜂 as desired. Applying

Lemma 6.4.9 shows that this reduction this causes an additional misspecification cost of

𝑞𝜎𝑞
(𝑞 − 1)𝑀 𝑞−1

=
𝑞

𝑞 − 1
𝜎(𝛽1/2𝜂)1−1/𝑞.

Now plugging into the conclusion of Theorem 6.5.8 with 𝜎∞ = 𝑀𝜎, 𝜂, and 𝜀′ = 𝜀 +

Θ(𝑞
𝑞−1

𝜎(𝛽1/2𝜂)1−1/𝑞) gives, as long as

𝜂 · 𝑛 & log(min(𝑛, 𝑑)/𝛿)

a bound of the form

𝛽‖𝑢* − 𝑤‖Σ𝑛 . 𝜂𝑀𝜎 + 𝜂1/2𝜀′ + 𝜂1/8𝑅1/2(𝜂1/2𝜎𝑀 + 𝜀′)1/2
8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ 𝜂1/4𝑅

4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+𝑀 min

{︃
𝜎

√︂
𝑑+ log(2/𝛿)

𝑛
, (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛

}︃

where the first term is bounded as

𝜂𝑀𝜎 . 𝛽−1/2𝑞𝜂1−1/𝑞𝜎𝑞

the second term is bounded as

𝜂1/2𝜀′ . 𝜂1/2𝜀+
𝑞

𝑞 − 1
𝛽−1/2𝑞𝜂3/2−1/𝑞𝜎𝑞

and the third term is bounded by observing

𝜂1/2𝜎𝑀 + 𝜀′ . 𝛽−1/2𝑞𝜂1/2−1/𝑞𝜎𝑞 + 𝜀+
𝑞

𝑞 − 1
𝛽−1/2𝑞𝜂1−1/𝑞𝜎𝑞 . 𝜀+

𝑞

𝑞 − 1
𝛽−1/2𝑞𝜂1/2−1/𝑞𝜎𝑞

and the last term is bounded by plugging in𝑀 . Combining these bounds and upper bounding

359

gives

𝛽1+1/𝑞‖𝑢* − 𝑤‖Σ𝑛 .
𝑞

𝑞 − 1
𝜂1−1/𝑞𝜎𝑞 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(𝜀+

𝑞

𝑞 − 1
𝜂1/2−1/𝑞𝜎𝑞)

1/2 8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ 𝜂−1/𝑞min

{︃
𝜎

√︂
𝑑+ log(2/𝛿)

𝑛
, (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛

}︃

which is the result in the oblivious setting. Dropping one of the terms in the min gives the

adaptive setting result.

We will now prove Theorem 6.5.8, so for the remainder of this section we proceed under

assumption (6.14). In Lemma 6.5.11 we establish deterministic regularity conditions which

hold with high probability. First, in Lemma 6.5.10 we prove a version of a standard maximal

inequality used in the analysis of Ordinary Least Squares (see e.g. [RH17]), which shows that

the norm of the noise vector shrinks when projecting onto a lower-dimensional subspace.

Lemma 6.5.10. Suppose that 𝜉1, . . . , 𝜉𝑛 is a martingale difference sequence with |𝜉𝑡| ≤ 𝜎

almost surely for all 𝑡. Suppose that 𝑉 is a subspace of dimension 𝑑, 𝑃𝑉 : 𝑛 × 𝑛 is the

projection map onto 𝑉 , and 𝜉 = (𝜉1, . . . , 𝜉𝑛). Then

‖𝑃𝑉 𝜉‖ . 𝜎
√︀
𝑑+ log(2/𝛿)

with probability at least 1− 𝛿.

Proof. For 𝑣 ∈ 𝑉 with ‖𝑣‖ = 1, define 𝑍𝑣 = ⟨𝑣, 𝜉⟩ =
∑︀

𝑖 𝑣𝑖𝜉𝑖 which is a martingale. Since

|𝑣𝑖𝜉𝑖| ≤ 𝜎𝑀 |𝑣𝑖| almost surely and
∑︀

𝑖 𝑣
2
𝑖 = 1, it follows from Azuma-Hoeffding inequality

(Fact 1.3.21) that

Pr[|𝑍𝑣| ≥ 𝑡] ≤ exp

(︂
−𝐶𝑡

2

𝜎2

)︂
By a well-known chaining argument over the sphere (Exercise 4.4.2 of [Ver18]), we can upper

bound

‖𝑃𝑉 𝜉‖ = max
‖𝑣‖=1

𝑍𝑣 ≤ 2max
𝑣∈𝒩

𝑍𝑣

where 𝒩 is a 1/2-net of the unit sphere in 𝑉 . Standard covering number bounds (e.g.

360

Corollary 4.2.13 of [Ver18]) let us take |𝒩 | ≤ 6𝑑. Therefore by the union bound

Pr

[︂
max
‖𝑣‖=1

𝑍𝑣 ≥ 𝑡

]︂
≤ 6𝑑 exp

(︂
−𝐶𝑡

2

𝜎2

)︂
.

Taking 𝑡 = Θ(𝜎
√︀

(𝑑+ log(2/𝛿)) gives the result.

Lemma 6.5.11. For any 𝛼 ∈ (0, 𝜂), suppose

𝑛 &
𝜂 log(min(𝑛, 𝑑)/𝛿)

𝛼2
(6.16)

For any sequence of 𝑥1, ..., 𝑥𝑛 chosen during the process in Definition 6.4.1, we have that

with probability at least 1− 𝛿 over the randomness of the Ber(𝜂) coins generating 𝑎*1, ..., 𝑎*𝑛,

the following event holds. Let Σ′ , 1
𝑛

∑︀
𝑡 𝑎

*
𝑡𝑥𝑡𝑥

⊤
𝑡 . Then:

1. 1
𝑛

∑︀𝑛
𝑡=1 𝑎

*
𝑡 ≥ 1− 𝜂 − 𝛼.

2.
⃒⃒
1
𝑛

∑︀𝑛
𝑡=1 𝑎

*
𝑡 𝜉𝑡⟨𝑥𝑡, 𝑣⟩

⃒⃒
≤ 𝜎𝜆‖𝑣‖Σ′ + 𝜎𝜆′‖𝑣‖ for all 𝑣 where:

(a) In the special case of obliviously chosen covariates 𝑥𝑡: 𝜆 , Θ

(︂√︁
𝑑+log(2/𝛿)

𝑛

)︂
and

𝜆′ , 0.

(b) In the general case of adaptive chosen covariates 𝑥𝑡: 𝜆 , 0 and 𝜆′ , Θ

(︂√︁
log(2/𝛿)

𝑛

)︂
3. Σ′ ⪰ (1− 𝜂)Σ𝑛 − 𝛼 · Id.

Proof. We start with part 1. We have E[1𝑛
∑︀𝑛

𝑡=1 𝑎
*
𝑡] = 1 − 𝜂 and using that the variance of

𝐵𝑒𝑟(𝑝) is 𝑝(1− 𝑝) we have V[𝑎*𝑡] ≤ 𝜂. Then by Bernstein’s inequality (Fact 1.3.22) we know

that

Pr[
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 ≥ 1− 𝜂 − 𝛼] ≤ exp

(︂
− 𝐶𝑛𝛼2

1
𝑛

∑︀
V[𝑎*𝑡] + 𝛼

)︂
≤ exp

(︂
−𝐶𝑛𝛼

2

𝜂 + 𝛼

)︂
so we find 1

𝑛

∑︀𝑛
𝑡=1 𝑎

′
𝑡 ≥ 1− 𝜂 − 𝛼 with probability 1− 𝛿, provided 𝑛 = Ω

(︀
𝜂
𝛼2 log(1/𝛿)

)︀
.

For part 2 (a), let 𝑇 ⊆ [𝑛] denote the set of indices 𝑡 for which 𝑎*𝑡 = 1; we now treat 𝑥

and 𝑇 as fixed and consider only 𝜉.

1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 𝜉𝑡⟨𝑥𝑡, 𝑣⟩ =
1

𝑛
⟨(𝑋 ′)𝑇 𝜉, 𝑣⟩ = 1

𝑛
⟨𝑃𝑉 𝜉, (𝑋 ′)𝑣⟩ ≤ 1√

𝑛
‖𝑃𝑉 𝜉‖‖𝑣‖Σ′

361

where 𝑋 ′ : 𝑛× 𝑑 has rows 𝑎*1𝑥1, . . . , 𝑎*𝑛𝑥𝑛, 𝑃𝑉 is the projection onto subspace 𝑉 and 𝑉 is the

column span of 𝑋 ′, the last step applies Cauchy-Schwarz and the definition of Σ′. Finally,

the result follows by bounding 𝑃𝑉 𝜉 using Lemma 6.5.10.

For part 2(b), observe by Cauchy-Schwarz

1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 𝜉𝑡⟨𝑥𝑡, 𝑣⟩ =

⟨
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 𝜉𝑡𝑥𝑡, 𝑣

⟩
≤

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 𝜉𝑡𝑥𝑡

⃦⃦⃦⃦
⃦ ‖𝑣‖

and the sum inside the absolute value is a vector-valued martingale with step size at most

𝜎, so the result follows from Theorem 1.3.23.

We now show part 3. We can apply the matrix Freedman inequality in the form of

Corollary 1.3.27 to the matrix martingale difference sequence

(𝑎*1 − (1− 𝜂)) · 𝑥1𝑥⊤1 , (𝑎*2 − (1− 𝜂)) · 𝑥2𝑥⊤2 , . . . , (𝑎*𝑡 − (1− 𝜂)) · 𝑥𝑡𝑥⊤𝑡 ,

which satisfies E[(𝑎*𝑡 − (1− 𝜂))2(𝑥𝑡𝑥𝑇𝑡)2|ℱ𝑡−1] ⪯ 𝜂 to get

Pr

[︃⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 · 𝑥𝑡𝑥⊤𝑡 −
(1− 𝜂)
𝑛

𝑛∑︁
𝑡=1

𝑥𝑡𝑥
⊤
𝑡

⃦⃦⃦⃦
⃦ ≥ 𝛼

]︃
≤ 𝑑2(𝛼) exp

(︂
−𝐶𝑛𝛼2

𝜂 + 𝛼

)︂

where the probability is over the randomness of the martingale, and from Corollary 1.3.27

we recall 𝑓(𝑥) = min(1, 𝑥) hence

𝑑2(𝛼) = Tr 𝑓(𝛼
∑︁
𝑡

E[(𝑎*𝑡 − (1− 𝜂))2(𝑥𝑡𝑥𝑇𝑡)2]/𝜂) ≤ Tr 𝑓(𝛼
∑︁
𝑡

E[𝑥𝑡𝑥𝑇𝑡]) ≤ min{𝑑, 𝛼𝑛}.

Using that 𝛼 < 𝜂 < 1 by assumption, we conclude that as long as 𝑛 = Ω(𝜂 log(min(𝑛,𝑑)/𝛿)
𝛼2),

then
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡𝑥𝑡𝑥
⊤
𝑡 ⪰ (1− 𝜂)Σ𝑛 − 𝛼 · Id,

from which part 3 follows.

We are now ready to prove Theorem 6.5.8. We present the deterministic argument in

Lemma 6.5.12 below, then show how combining it with the previous Lemma establishes the

result.

362

Lemma 6.5.12. Suppose that:

1. 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑, 𝑎*1, . . . , 𝑎*𝑛 ∈ {0, 1}, and for 𝑡 = 1, . . . , 𝑛 we have a sequence 𝑦*𝑡 such

that 𝑢*, 𝛿𝑡 defined by (6.9) satisfies (6.10).

2. 𝑦1, . . . , 𝑦𝑛 ∈ R satisfy

𝑦𝑡 = 𝑦*𝑡 + 𝜉𝑡

whenever 𝑎*𝑡 = 1 and |𝜉𝑡| ≤ 𝜎 as in (6.14).

3. The conclusions of Theorem 6.5.8 are satisfied with parameters 𝜂, 𝜆, 𝜆′, 𝛼. The param-

eter 𝛽 is defined in terms of 𝜂 by (6.11).

4. 𝑤 ∈ R𝑑 and 𝑎1, . . . , 𝑎𝑛 ∈ [0, 1] are feasible for Program 1 and satisfy the conclusion of

Lemma 6.5.7, i.e. partial optimality and 𝜀𝑔𝑟𝑎𝑑-approximate first order stationarity.

Then, the following conclusion holds:

𝛽‖𝑢*−𝑤‖Σ𝑛 . 𝜂𝜎+ 𝜂1/2𝜀+𝜎𝜆+
(︁
𝜀
1/2
𝑔𝑟𝑎𝑑 + (𝑅𝜎𝜆′)1/2 + (𝑅2𝛼)1/4

(︁√︀
𝜂1/2𝜎 + 𝜀+ (𝑅2𝛼)1/4

)︁)︁
.

Proof of Theorem 6.5.8. Let 𝑤 and 𝑎1, . . . , 𝑎𝑛 be given by Lemma 6.5.7. Let 𝑇 denote the

subset of 𝑡 ∈ [𝑛] for which 𝑎*𝑡 = 1, i.e. 𝑇 is the set of rounds which are uncorrupted. We

apply the first order optimality condition (6.12) with 𝑣 = 𝑢* to get that

1

𝑛

∑︁
𝑡

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑢* − 𝑤⟩ ≤ 𝜀𝑔𝑟𝑎𝑑. (6.17)

We will lower bound the left-hand side of (6.17) by considering the contribution from 𝑇

and [𝑛] ∖ 𝑇 .

Contribution from 𝑇 . For the former, we have

1

𝑛

∑︁
𝑡∈𝑇

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑢* − 𝑤⟩

=
1

𝑛

∑︁
𝑡∈𝑇

𝑎𝑡(𝛿𝑡 + 𝜉𝑡 + ⟨𝑢* − 𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑢* − 𝑤⟩

363

=
1

𝑛

∑︁
𝑡∈𝑇

[︀
𝑎𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩2⏟ ⏞

1

+ 𝜉𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩⏟ ⏞
2

− (1− 𝑎𝑡)𝜉𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩⏟ ⏞
3

+ 𝑎𝑡𝛿𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩⏟ ⏞
4

]︀
.(6.18)

We control all four terms separately, 1 being the dominant term. Define Σ′ as in Lemma 6.5.11.

For 1 , we write 𝑎𝑡 = 1− (1− 𝑎𝑡) and use Lemma 6.5.11 to get

1

𝑛

∑︁
𝑡∈𝑇

𝑎𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩2 =
1

𝑛

∑︁
𝑡∈𝑇

⟨𝑥𝑡, 𝑢* − 𝑤⟩2 −
1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)⟨𝑥𝑡, 𝑢* − 𝑤⟩2

= ‖𝑢* − 𝑤‖2Σ′ −
1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)⟨𝑥𝑡, 𝑢* − 𝑤⟩2

≥ (1− 𝜂)‖𝑢* − 𝑤‖2Σ𝑛
− 1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)⟨𝑥𝑡, 𝑢* − 𝑤⟩2 −𝑂(𝛼𝑅2)

≥ (1− 2𝜂)‖𝑢* − 𝑤‖2Σ𝑛
−𝑂(𝛼𝑅2),

where in the last step we expanded the sum from 𝑖 ∈ 𝑇 to 𝑖 ∈ [𝑛] and then used the last

constraint in Program 2.

For 2 , note that

1

𝑛

∑︁
𝑡∈𝑇

𝜉𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩ ≤ 𝑂 (‖𝑢* − 𝑤‖Σ𝑛𝜎𝜆+𝑅𝜎𝜆′)

by Part 2 of Lemma 6.5.11, the fact that Σ′ ⪯ Σ𝑛, and ‖𝑢* − 𝑤‖ ≤ 2𝑅.

For 3 , we have that

1

𝑛

∑︁
𝑡∈𝑇

(1−𝑎𝑡)𝜉𝑡⟨𝑥𝑡, 𝑢*−𝑤⟩ ≤

(︃
1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)⟨𝑥𝑡, 𝑢* − 𝑤⟩2
)︃1/2(︃

1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)𝜉2𝑡

)︃1/2

. (6.19)

By the last constraint in Program 2, we can upper bound the first factor on the right-hand

side by
√︁
𝜂‖𝑢* − 𝑤‖2Σ𝑛

+ 𝛼‖𝑢* − 𝑤‖22 ≤ 𝜂1/2‖𝑢* − 𝑤‖Σ𝑛 +
√
𝛼𝑅. For the second factor, we

can upper bound it by Holder’s inequality as (recalling 𝛼 ≤ 𝜂) we have

(︃
1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)𝜉2𝑡

)︃1/2

≤ √𝜂𝜎 (6.20)

so overall we get a bound on (6.19) of
(︀
𝜂1/2‖𝑢* − 𝑤‖Σ𝑛 +

√
𝛼𝑅
)︀
· 𝜂1/2𝜎.

364

Finally, for 4 , note that first-order optimality of 𝑢* implies that 1
𝑛

∑︀
𝑡 𝛿𝑡⟨𝑥𝑡, 𝑢*−𝑤⟩ = 0.

So we can write

1

𝑛

∑︁
𝑡∈𝑇

𝑎𝑡𝛿𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩

=
1

𝑛

∑︁
𝑡∈[𝑛]

(1− 𝑎𝑡)𝛿𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩ −
1

𝑛

∑︁
�̸�∈𝑇

𝑎𝑡𝛿𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩.

≤

⎛⎝ 1

𝑛

∑︁
𝑡∈[𝑛]

(1− 𝑎𝑡)2⟨𝑥𝑡, 𝑢* − 𝑤⟩2
⎞⎠1/2⎛⎝ 1

𝑛

∑︁
𝑡∈[𝑛]

𝛿2𝑡

⎞⎠1/2

+

(︃
1

𝑛

∑︁
�̸�∈𝑇

𝑎2𝑡 ⟨𝑥𝑡, 𝑢* − 𝑤⟩2
)︃1/2(︃

1

𝑛

∑︁
�̸�∈𝑇

𝛿2𝑡

)︃1/2

≤

⎛⎝ 1

𝑛

∑︁
𝑡∈[𝑛]

𝛿2𝑡

⎞⎠1/2

·
(︁
𝜂1/2‖𝑢* − 𝑤‖Σ𝑛 +

(︀
𝜂‖𝑢* − 𝑤‖2Σ𝑛

+ 𝛼‖𝑢* − 𝑤‖22
)︀1/2)︁

,

where in the last step we used the fact that (1 − 𝑎𝑡)
2 ≤ 1 − 𝑎𝑡 and 𝑎2𝑡 ≤ 1 by the first

constraint in Program 2, as well as the third constraint in Program 2 and Part 3.

Using (6.10) to upper bound the first parenthesized term, we conclude that

1

𝑛

∑︁
𝑡∈𝑇

𝑎𝑡𝛿𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩ ≤ 𝑂(𝜀 · (𝜂1/2‖𝑢* − 𝑤‖Σ𝑛 +
√
𝛼𝑅)).

Having controlled 1 , 2 , 3 , 4 , from (6.18) we can therefore lower bound 1
𝑛

∑︀
𝑡∈𝑇 𝑎𝑡(𝑦𝑡 −

⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑢* − 𝑤⟩ by

(1− 2𝜂)‖𝑢* − 𝑤‖2Σ𝑛

−𝑂

(︃
‖𝑢* − 𝑤‖Σ𝑛

(︀
𝜎𝜆+ 𝜂𝜎 + 𝜀𝜂1/2

)︀
+ 𝛼𝑅2 +𝑅𝜎𝜆′ +

√
𝛼𝑅𝜂1/2𝜎

)︃
. (6.21)

Contribution from [𝑛] ∖ 𝑇 . It remains to control the contribution to the left-hand side

of (6.17) coming from the corrupted summands indexed by [𝑛] ∖ 𝑇 , which we do by upper

365

bounding the term in absolute value. By Cauchy-Schwarz and 𝑎2𝑡 ≤ 𝑎𝑡,

⃒⃒⃒⃒
⃒ 1𝑛∑︁

�̸�∈𝑇

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑢* − 𝑤⟩

⃒⃒⃒⃒
⃒ ≤

(︃
1

𝑛

∑︁
�̸�∈𝑇

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2
)︃1/2(︃

1

𝑛

∑︁
�̸�∈𝑇

𝑎𝑡⟨𝑥𝑡, 𝑢* − 𝑤⟩2
)︃1/2

≤

(︃
1

𝑛

∑︁
�̸�∈𝑇

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2
)︃1/2 (︀

𝜂1/2‖𝑢* − 𝑤‖Σ𝑛 +
√
𝛼𝑅
)︀

(6.22)

where in the second step we used the fact that 𝑎𝑡 ∈ [0, 1] along with Part 3 of Lemma 6.5.11.

As for the first factor on the right-hand side, by the fact that {𝑎𝑡} were chosen in Program 2

to minimize 1
𝑛

∑︀
𝑡∈[𝑛] 𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2, we have that

1

𝑛

∑︁
𝑡∈[𝑛]

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 ≤
1

𝑛

∑︁
𝑡∈[𝑛]

𝑎*𝑡 (𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 =
1

𝑛

∑︁
𝑡∈𝑇

(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2,

hence rearranging gives

1

𝑛

∑︁
�̸�∈𝑇

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2

≤ 1

𝑛

∑︁
𝑡∈𝑇

(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 −
1

𝑛

𝑛∑︁
𝑡∈𝑇

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2

=
1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2

=
1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)(⟨𝑢* − 𝑤, 𝑥𝑡⟩+ 𝛿𝑡 + 𝜉𝑡)
2

≤ 2 + 1/𝛽

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)𝜉2𝑡 +
2 + 1/𝛽

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)𝛿2𝑡 +
1 + 2𝛽

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)⟨𝑢* − 𝑤, 𝑥𝑡⟩2

where in the second-to-last step we used Cauchy-Schwarz to show

(𝑎+ 𝑏+ 𝑐)2 ≤ (2 + 1/𝛽)(𝑎2 + 𝑏2 + 𝑐2𝛽) = (2 + 1/𝛽)(𝑎2 + 𝑏2) + (1 + 2𝛽)𝑐2.

366

We continue and see

1

𝑛

∑︁
�̸�∈𝑇

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 ≤ (1 + 2𝛽)𝜂‖𝑢* − 𝑤‖2Σ𝑛
+𝑂

(︂
1

𝛽
𝜂𝜎2 +

1

𝛽
𝜀2 + 𝛼𝑅2

)︂

where in the last step we used Holder’s inequality and (6.14), (6.10), and the last constraint

in Program 2 with ‖𝑢* − 𝑤‖ ≤ 2𝑅.

So by (6.22) we can upper bound 1
𝑛

∑︀
�̸�∈𝑇 𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑢* − 𝑤⟩ by

(︀
(1 + 2𝛽)1/2𝜂1/2‖𝑢* − 𝑤‖Σ𝑛 +𝑂

(︀
𝛽−1/2𝜂1/2𝜎 + 𝛽−1/2𝜀+ 𝛼1/2𝑅

)︀)︀ (︀
𝜂1/2‖𝑢* − 𝑤‖Σ𝑛 +

√
𝛼𝑅
)︀

= (1 + 2𝛽)1/2𝜂‖𝑢* − 𝑤‖2Σ𝑛
+𝑂(𝛽−1/2𝜂𝜎 + 𝛽−1/2𝜂1/2𝜀+ 𝛼1/2𝜂1/2𝑅)‖𝑢* − 𝑤‖Σ𝑛 + ℰ , (6.23)

where

ℰ ,
√
𝛼𝑅 ·𝑂(𝛽−1/2(𝜂1/2𝜎 + 𝜀) +

√
𝛼𝑅)

captures all the error terms that vanish as 𝛼→ 0.

Combining. Putting the bounds on 1
𝑛

∑︀
𝑡∈𝑇 𝑎𝑡(𝑦𝑡−⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑢*−𝑤⟩ and 1

𝑛

∑︀
�̸�∈𝑇 𝑎𝑡(𝑦𝑡−

⟨𝑤, 𝑥𝑡⟩)⟨𝑥𝑡, 𝑢* − 𝑤⟩ by (6.21) and (6.23) together with (6.12), we conclude that

(1− 3𝜂−
√︀

2𝛽 · 𝜂))‖𝑢*−𝑤‖2Σ𝑛
≤ 𝑂

(︀
𝛽−1/2𝜂𝜎 + 𝛽−1/2𝜂1/2𝜀+ 𝛼1/2𝑅 + 𝜎𝜆

)︀
‖𝑢*−𝑤‖Σ𝑛 +ℰ ′,

where ℰ ′ , 𝜀𝑔𝑟𝑎𝑑 + 𝑅𝜎𝜆′ + 𝑂(ℰ). We do case analysis based on which of the two terms on

the rhs of the above bound dominates:

1. In the first case, the first term is at least as large as ℰ ′. Then the bound simplifies to

(1− 3𝜂 −
√︀

2𝛽 · 𝜂)‖𝑢* − 𝑤‖Σ𝑛 . 𝛽−1/2𝜂𝜎 + 𝛽−1/2𝜂1/2𝜀+ 𝛼1/2𝑅 + 𝜎𝜆

2. Otherwise, ℰ ′ is larger than the first term. Then taking a square root the bound can

be simplified to

(1− 3𝜂 −
√︀

2𝛽 · 𝜂)‖𝑢* − 𝑤‖Σ𝑛 . 𝜀
1/2
𝑔𝑟𝑎𝑑 + (𝑅𝜎𝜆′)1/2 + ℰ1/2.

367

In either case, since 𝛼1/2𝑅 = 𝑂(ℰ1/2) we see the inequality

(1− 3𝜂 −
√︀

2𝛽 · 𝜂)‖𝑢* − 𝑤‖Σ𝑛 . 𝛽−1/2𝜂𝜎 + 𝛽−1/2𝜂1/2𝜀+ 𝜎𝜆+ 𝜀
1/2
𝑔𝑟𝑎𝑑 + (𝑅𝜎𝜆′)1/2 + ℰ1/2

holds. Since 𝛽 = (1/3− 𝜂)2 and 𝜂 < 1/3 we know

(1− 3𝜂 −
√︀
2𝛽𝜂) ≥ 3

√︀
𝛽 −

√︀
2𝛽 = Θ(

√︀
𝛽)

so we get a final bound of

‖𝑢* − 𝑤‖Σ𝑛

. 𝛽−1𝜂𝜎 + 𝛽−1𝜂1/2𝜀+ 𝛽−1/2𝜎𝜆+ 𝛽−1/2(𝜀
1/2
𝑔𝑟𝑎𝑑 + (𝑅𝜎𝜆′)1/2 + ℰ1/2)

. 𝛽−1𝜂𝜎 + 𝛽−1𝜂1/2𝜀+ 𝛽−1/2𝜎𝜆+ 𝛽−1/2(𝜀
1/2
𝑔𝑟𝑎𝑑 + (𝑅𝜎𝜆′)1/2 + (𝑅2𝛼)1/4(𝛽−1/4

√︀
𝜂1/2𝜎 + 𝜀+ (𝑅2𝛼)1/4)).

Using 𝛽 < 1 to upper bound all of the powers of 𝛽 by 𝛽−1 gives the result.

Now combining our claims proves Theorem 6.5.8:

Proof of Theorem 6.5.8. Oblivious covariates. By Lemma 6.5.12 and Lemma 6.5.11 we

know the output 𝑤 of Lemma 6.5.7 with 𝜀𝑔𝑟𝑎𝑑 = 𝑂(𝜎2𝜆2) = 𝑂(𝜎2 𝑑+log(2/𝛿)
𝑛

) satisfies

𝛽‖𝑢* − 𝑤‖Σ𝑛 . 𝜂𝜎 + 𝜂1/2𝜀+ 𝜎

√︂
𝑑+ log(2/𝛿)

𝑛
+ (𝑅2𝛼)1/4(

√︀
𝜂1/2𝜎 + 𝜀+ (𝑅2𝛼)1/4)

with probability at least 1− 𝛿, as long as 𝛼 < 𝜂 and (6.16) holds:

𝑛 &
𝜂 log(min(𝑛, 𝑑)/𝛿)

𝛼2
.

Based on this we take 𝛼 = Θ

(︂√︁
𝜂 log(min(𝑛,𝑑)/𝛿)

𝑛

)︂
and require

𝑛 & log(min(𝑛, 𝑑)/𝛿)/𝜂

368

so that 𝛼 < 𝜂. Then we can write the error bound as

𝛽‖𝑢* − 𝑤‖Σ𝑛 . 𝜂𝜎 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2 8

√︂
(𝜂1/2𝜎 + 𝜀)4 log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ 𝜎

√︂
𝑑+ log(2/𝛿)

𝑛
.

Adaptive covariates. The only change is that the term 𝜎𝜆 disappears and the term

(𝑅𝜎𝜆′)1/2 = (𝑅𝜎)1/2
4

√︂
log(2/𝛿)

𝑛

appears, which gives

𝛽‖𝑢* − 𝑤‖Σ𝑛 . 𝜂𝜎 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2 8

√︂
(𝜂1/2𝜎 + 𝜀)4 log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛
.

Since this bound also applies in the special case of oblivious covariates, we get the stated

result.

Subgaussian noise

In this section we consider the case where the noise is subgaussian. Subgaussian random

variables are in 𝐿𝑞 for every 𝑞, so we could analyze them using our previous result (tak-

ing 𝑞 = log(1/𝜂)), but since subgaussian noise behaves similar to bounded noise, we can

optimize the argument by avoiding truncation. This yields the following result, which in

the uncontaminated 𝜂 = 0 setting with oblivious covariates, recovers the same (minimax

optimal) rate achieved by Ordinary Least Squares/Ridge Regression and gracefully degrades

with increasing 𝜂.

Theorem 6.5.13 (SCRAM Guarantee with Subgaussian Noise). Suppose that 𝜂 < 1/3 is

an upper bound on the contamination level, define 𝛽 as in (6.11), and suppose for some 𝜎 ≥ 0

369

that for all 𝑡 the noise 𝜉𝑡 is 𝜎2-subgaussian. Then if 𝜂 = 0 or

𝑛 & log(min(𝑛, 𝑑)/𝛿)/𝜂,

𝛼 = Θ

(︂√︁
𝜂 log(𝑑/𝛿)

𝑛

)︂
and 𝜂 = 𝜂, the output 𝑤 of SCRAM with 𝑝𝑜𝑙𝑦(𝑅/𝜎, log(2/𝛿), 𝑑, 𝑛)

many steps satisfies for oblivious covariates the bound

𝛽‖𝑢* − 𝑤‖Σ𝑛 . 𝑐𝛿,𝜂,𝑛𝜂𝜎 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(
√
𝑐𝛿,𝜂,𝑛𝜂𝜎 + 𝜀)1/2

8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+min

{︃
𝜎

√︂
𝑑+ log(2/𝛿)

𝑛
, (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛

}︃

with probability at least 1− 𝛿, where

𝑐𝛿,𝜂,𝑛 ,
√︀

log(1/𝜂) exp

(︂
max

(︂
1,

log log(1/𝛿) · log(1/𝜂)
2 log(𝑛)

)︂)︂
(6.24)

captures a logarithmic term which is 𝑂(
√︀
log(1/𝜂)) assuming log 𝑛 ≥ (1/100) log log(1/𝛿) log(1/𝜂).

In the more general case of adaptive covariates, SCRAM satisfies the bound

𝛽‖𝑢* − 𝑤‖Σ𝑛 . 𝑐𝛿,𝜂,𝑛𝜂𝜎 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(
√
𝑐𝛿,𝜂,𝑛𝜂𝜎 + 𝜀)1/2

8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛

i.e. the same bound except the last term was changed.

Proof. The proof is the same as Theorem 6.5.8 with a few modifications which we de-

scribe now. The main difference is in the use of Holder’s inequality to bound terms in-

cluding noise, e.g. (6.20). In this case, since 𝜉𝑡 is no longer bounded we use for 𝑞 =

min(2 log(𝑛)/ log log(1/𝛿), log(1/𝜂)) that by Holder’s inequality

(︃
1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)𝜉2𝑡

)︃1/2

≤

(︃
1

𝑛

∑︁
𝑡∈𝑇

(1− 𝑎𝑡)

)︃1/2𝑝(︃
1

𝑛

∑︁
𝑡∈𝑇

𝜉2𝑞𝑡

)︃1/2𝑞

. 𝜂1/2−1/2𝑞𝜎
√
𝑞

where 1/𝑝 + 1/𝑞 = 1 and we used Lemma 6.5.14 below. Plugging in the value of 𝑞 gives an

370

upper bound of

𝜎𝜂1/2
√︀

log(1/𝜂) · exp
(︂
max

(︂
1,

log log(1/𝛿) · log(1/𝜂)
4 log(𝑛)

)︂)︂
.

The other change is that in Lemma 6.5.11, we can use the subgaussian property to

establish Part 2 without needing boundedness of the noise: we use the generalization of the

vector Azuma-Hoeffding inequality to the subgaussian step size setting, Theorem 1.3.23.

The following Lemma 6.5.14 gives a fairly sharp upper deviation bound for power sums

of subgaussian random variables. This result is not so easy to prove directly, but follows

from the main result of [Lat97].

Lemma 6.5.14. Suppose that 𝑍1, . . . , 𝑍𝑛 are independent 𝜎2-subgaussian random variables.

Then (︃
1

𝑛

∑︁
𝑖

|𝑍𝑖|𝑝
)︃1/𝑝

. 𝜎
√
𝑝

with probability at least 1− 𝛿, provided 𝑛 ≥ log(2/𝛿)𝑝/2.

Proof. We rescale so that 𝜎 = 1. In this proof we use the notation ‖𝑋‖𝑞 = E[|𝑋|𝑞]1/𝑞 for

the function space 𝐿𝑝 norm.

Define 𝑆 =
∑︀

𝑖 |𝑍𝑖|𝑝. By Markov’s inequality, Pr[𝑆 ≥ 𝑡] = Pr[𝑆𝑞 ≥ 𝑡𝑞] ≤ ‖𝑆‖𝑞𝑞
𝑡𝑞

for any

𝑞 ≥ 1. By Theorem 1 and Corollary 1 of [Lat97], for 𝑞 ≤ 𝑛 we have

‖𝑆‖𝑞 . sup
{︁
(𝑞/𝑠)(𝑛/𝑞)1/𝑠max

𝑖
‖𝑍𝑝

𝑖 ‖𝑠 : 1 ≤ 𝑠 ≤ 𝑞
}︁
.

We observe from standard subgaussian moment bounds [RH17,Ver18] that

‖𝑍𝑝
𝑖 ‖𝑠 = ‖𝑍𝑖‖𝑝𝑠𝑝 . (𝑒𝑠𝑝)𝑝/2

so

‖𝑆‖𝑞 . (𝑒𝑝)𝑝/2𝑞 sup
{︀
(𝑛/𝑞)1/𝑠𝑠𝑝/2−1 : 1 ≤ 𝑠 ≤ 𝑞

}︀
= (𝑒𝑝)𝑝/2𝑞 sup {exp((1/𝑠) log(𝑛/𝑞) + (𝑝/2− 1) log(𝑠) : 1 ≤ 𝑠 ≤ 𝑞} .

371

We consider the optimization over 𝑠 inside the exponential. The unique critical point is

when −𝑠−2 log(𝑛/𝑞) + (𝑝/2− 1)/𝑠 = 0, i.e. 𝑠 = log(𝑛/𝑞)/(𝑝/2− 1). Since the function goes

to infinity as 𝑠→ 0 and 𝑠→∞, that critical point must be a minimum. It suffices therefore

to consider the boundary points. This shows

‖𝑆‖𝑞 . (𝑒𝑝)𝑝/2
(︀
𝑛+ 𝑛1/𝑞𝑞𝑝/2−1/𝑞

)︀
. (𝑒𝑝)𝑝/2

(︀
𝑛+ 𝑛1/𝑞𝑞𝑝/2

)︀
using max𝑞≥1 𝑞

−1/𝑞 = 1. Now taking 𝑡 = 𝑒‖𝑆‖𝑞 and 𝑞 = log(1/𝛿) shows

𝑆 ≤ 𝑒‖𝑆‖𝑞 . (𝑒𝑝)𝑝/2𝑛(1 + 𝑛1/ log(1/𝛿)−1 log(1/𝛿)𝑝/2)

with probability at least 1− 𝛿. In particular, if 𝑛 ≥ log(1/𝛿)𝑝/2 then

𝑆 . (𝑒𝑝)𝑝/2𝑛(1 + 𝑒(𝑝/2) log log(1/𝛿)/ log(1/𝛿)) ≤ 𝑒𝑝𝑝𝑝/2𝑛

as claimed.

6.5.5 Stochastic Setting and Generalization Bounds

Finally, we note that while the guarantees in this section so far have been in the usual

fixed design setting, from these guarantees we also obtain strong results in the stochastic (or

random design) setting often considered in statistical learning. We first review the setup.

We assume there exists a joint distribution 𝒟𝑥,𝑦* over clean examples (𝑥, 𝑦*) and clean

training data (𝑥1, 𝑦
*
1), . . . , (𝑥𝑛, 𝑦

*
𝑛) are sampled identically from this distribution. We define

the population loss to be the error of 𝑤 on a fresh clean example (𝑥, 𝑦*) in squared loss,

𝐿(𝑤) = E
𝑥,𝑦∼𝒟𝑥,𝑦*

[(𝑦* − ⟨𝑤, 𝑥⟩)2],

and our goal is to find a near minimizer of the population loss, i.e. compute ̂︀𝑤 from training

data such that ‖ ̂︀𝑤‖ ≤ 𝑅 and the gap in population loss 𝐿(̂︀𝑤)−𝐿(𝑢*) is as small as possible,

where we define

𝑢* , arg min
‖𝑢‖≤𝑅

𝐿(𝑢)

372

to be the optimal predictor of norm at most 𝑅. Concretely, the gap in loss can be rewritten

in a more convenient form in the following way

𝐿(̂︀𝑤)− 𝐿(𝑢*) = E[(𝑦* − ⟨𝑢*, 𝑥⟩+ ⟨𝑢* − 𝑤, 𝑥⟩)2]− E[(⟨𝑢* − 𝑤, 𝑥⟩)2]

= E[⟨ ̂︀𝑤 − 𝑢*, 𝑥⟩2] + 2E[(𝑦* − ⟨𝑢*, 𝑥⟩)⟨𝑢* − 𝑤, 𝑥⟩)]

= ‖ ̂︀𝑤 − 𝑢*‖2Σ* + 2E[(𝑦* − ⟨𝑢*, 𝑥⟩)⟨𝑢* − 𝑤, 𝑥⟩)]

where Σ* = E𝒟𝑥 [𝑥𝑥
𝑇] is the second moment matrix, i.e. covariance matrix if 𝑥 is mean zero,

and the second term on the rhs is 𝑂(𝜀‖𝑢* − 𝑤‖Σ*) under (6.25), showing that as 𝜀 → 0,

the slightly different goals of minimizing ‖𝑢* − 𝑤‖Σ* and minimizing the suboptimality in

population loss become exactly equivalent. As before, we assume that the conditional law

of 𝑦* given 𝑥 is

𝑦* = ⟨𝑤*, 𝑥⟩+ 𝜀𝑥 + 𝜉 (6.25)

where ‖𝑤*‖ ≤ 𝑅, |𝜀𝑥| ≤ 𝜀 is misspecification, and 𝜉 is noise independent of 𝑥, 𝜀𝑥. If 𝜀 = 0 then

we can take 𝑢* = 𝑤*, otherwise we always have ‖𝑢*−𝑤*‖Σ ≤ 2𝜀 since |⟨𝑤*, 𝑥⟩−E[𝑦*|𝑥]| ≤ 𝜀

and 𝑢* is only closer in average squared loss.

We will use the following Lemma to relate the error when measured according to the pop-

ulation second moment matrix Σ* and the random matrix Σ𝑛: this “localized” generalization

bound follows from the main result of [SST10], which builds upon the local Rademacher com-

plexity framework of [BBM+05]; it gives tighter results than e.g. naively applying matrix

concentration because it focuses in on the behavior of the bottom singular value. We note

that the general connection between generalization theory and the bottom singular value

of the empirical covariance matrix is well known and has been used in other contexts, see

e.g. [KM15].

Lemma 6.5.15 (Consequence of Theorem 1 of [SST10]). Suppose 𝑤* is any fixed vector with

‖𝑤*‖ ≤ 𝑅. Suppose that 𝑥1, . . . , 𝑥𝑛 are iid copies of a random variable 𝑥 with Σ* = E[𝑥𝑥𝑇]

and ‖𝑥‖ ≤ 1 almost surely. Uniformly over all 𝑤 with ‖𝑤‖ ≤ 𝑅 and with probability at least

373

1− 𝛿, where Σ𝑛 = 1
𝑛

∑︀𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖 is the empirical second moment matrix, the following holds:

‖𝑤 − 𝑤*‖2Σ* − ‖𝑤 − 𝑤*‖2Σ𝑛
. 𝑅‖𝑤 − 𝑤*‖Σ𝑛

√︃
log3(𝑛) + log(1/𝛿)

𝑛
+
𝑅2(log3(𝑛) + log(1/𝛿))

𝑛

and as a consequence

‖𝑤 − 𝑤*‖Σ* . ‖𝑤 − 𝑤*‖Σ𝑛 +𝑅

√︃
log3(𝑛) + log(1/𝛿)

𝑛
.

Proof. We explain how this follows from Theorem 1 of [SST10], which requires us to interpret

the gap ‖𝑤−𝑤*‖2Σ*−‖𝑤−𝑤*‖2Σ𝑛
as the generalization gap in a statistical learning problem;

we refer the reader there for a detailed explanation of the setup. We now describe the

new learning problem, which is not the same as the one considered outside the proof of

this Lemma, as it has no noise, contamination, or misspecification. In this problem, 𝑥 is

defined as in the theorem statement, and the label 𝑦 = ⟨𝑤*, 𝑥⟩. The population loss is

E[ℓ(𝑦−⟨𝑤, 𝑥⟩)] = ⟨𝑤*−𝑤,Σ(𝑤*−𝑤)⟩ where ℓ(𝑒) = 𝑒2 is the squared loss which is 1-smooth,

and the empirical loss is 1
𝑛

∑︀𝑛
𝑖=1 ℓ(𝑦𝑖−⟨𝑤, 𝑥⟩) = ⟨𝑤*−𝑤,Σ𝑛(𝑤

*−𝑤)⟩. We observe that the

loss ℓ(𝑦𝑖−⟨𝑤, 𝑥⟩) is upper bounded by 4𝑅2 almost surely, and finally we use (see [SST10]) that

the Rademacher complexity 𝑅𝑛 of the function class {𝑥 ↦→ ⟨𝑤, 𝑥⟩ : ‖𝑤‖ ≤ 𝑅} is 𝑂(𝑅
√︀

1/𝑛)

where 𝑛 is the number of samples. Plugging all of this information into Theorem 1 of [SST10]

gives

‖𝑤−𝑤*‖2Σ*−‖𝑤−𝑤*‖2Σ𝑛
. ‖𝑤−𝑤*‖Σ𝑛

(︃
𝑅 log1.5(𝑛)

√︂
1

𝑛
+𝑅

√︂
log(1/𝛿)

𝑛

)︃
+log3(𝑛)

𝑅2

𝑛
+
𝑅2 log(1/𝛿)

𝑛

and up to constants this is equivalent to the first stated bound. The second (weaker) bound

follows by adding ‖𝑤 − 𝑤*‖2Σ𝑛
to the right hand side and taking a square root.

Given this result, we can immediately obtain versions of all of the previous results for the

stochastic setting (e.g. Theorem 6.5.1, Theorem 6.5.13, Theorem 6.5.8). We describe a more

involved application below in Section 6.5.6, where we obtain improved results for learning

in the stochastic setting by using this generalization bound combined with the generalized

median of [M+15].

374

We note that in the case where the contexts are chosen stochastically, [SLX20] recently

showed that a modified version of the reduction from [FR20] can reduce from stochastic

contextual bandits to offline regression with stochastic contexts. It should be possible to

combine this reduction with our results; however, we omit the details since we will give an

algorithm for the more general online setting anyway.

6.5.6 Heavy-Tailed Setting Using Geometric Median

In this section, we focus on the setting where the noise {𝜉𝑡} is in 𝐿𝑞 with 𝑞 ≥ 2 and

obtain improved sample complexity guarantees. In this context, there is a fairly general

way to boost the success probability of algorithms by using the geometric median [M+15]

or a related high-dimensional median of [HS16]; in the context of (uncontaminated) ridge

regression itself, this kind of estimator was considered in [HS16], see Theorem 21 there. To

take advantage of the geometric median, we start by establishing improved guarantees for

our algorithm, but which hold with only a fixed probability of success.

Lemma 6.5.16. Suppose that 𝜂 < 1/3 is an upper bound on the contamination level, define

𝛽 as in (6.11), and suppose for some 𝑞 ∈ [2,∞], 𝜎𝑞 ≥ 0 and all 𝑡 that

‖𝜉𝑡‖𝑞 , E[|𝜉|𝑞]1/𝑞 ≤ 𝜎𝑞.

Then provided 𝜂 = 0 or

𝑛 & log(min(𝑛, 𝑑))/𝜂,

we can take 𝛼 = Θ

(︂√︁
𝜂 log(𝑑)

𝑛

)︂
and 𝜂 = 𝜂 + Θ(𝜂

√
𝛽) such that the output 𝑤 of SCRAM

with 𝑝𝑜𝑙𝑦(𝑅/𝜎, 𝑑, 𝑛) many steps satisfies for oblivious covariates the bound

𝛽1+1/𝑞‖𝑢* − 𝑤‖Σ𝑛 . 𝜂1−1/𝑞𝜎𝑞 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(𝜀+ 𝜂1/2−1/𝑞𝜎𝑞)
1/2 8

√︂
log(min(𝑛, 𝑑))

𝑛
(6.26)

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑))

𝑛
+min

{︃
𝜎

√︂
𝑑

𝑛
, (𝑅𝜎)1/2

4

√︂
1

𝑛

}︃

with probability at least 0.99. In the more general case of adaptive covariates, it satisfies the

375

bound

𝛽1+1/𝑞‖𝑢* − 𝑤‖Σ𝑛 . 𝜂1−1/𝑞𝜎𝑞 + 𝜂1/2𝜀+ 𝜂1/8𝑅1/2(𝜀+ 𝜂1/2−1/𝑞𝜎𝑞)
1/2 8

√︂
log(min(𝑛, 𝑑))

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑))

𝑛
+ (𝑅𝜎)1/2

4

√︂
1

𝑛

i.e. the same bound except the last term was changed.

Proof. The proof is the same as Theorem 6.5.1 except that we change the analysis of Part 2

in Lemma 6.5.11 to improve the final term in our bound. First, we observe that truncating

the noise 𝜉𝑖 and recentering (the first part of the proof of Theorem 6.5.1) can only make the

𝐿𝑞 norm of |𝜉𝑖| larger by a factor of 2 (see the proof of Lemma 2.6.8 in [Ver18]); in what

follows, we let 𝜉𝑖 denote the possibly truncated and recentered noise and use this fact. Now

we consider the application of Theorem 6.5.8 in the proof of Theorem 6.5.1 and show how in

Part 2 of Lema 6.5.11 we can replace the infinity norm of the noise by the smaller quantity

𝜎𝑞. Specifically this occurs in Part 2 of Lemma 6.5.11.

For Part 2 (a), we replace Lemma 6.5.10 by the following argument based on Chebyshev’s

inequality. Let 𝜉 = (𝜉1, . . . , 𝜉𝑛) be the vector of (truncated) noise and observe that
√︀

E[𝜉2𝑖] ≤

E[|𝜉𝑖|𝑞]1/𝑞 = 𝑂(𝜎𝑞) by Jensen to see

Pr[‖𝑃𝑉 𝜉‖ ≥ 𝑠] ≤ E[‖𝑃𝑉 𝜉‖2]
𝑠2

≤
⟨𝑃𝑉 𝑃 𝑇

𝑉 , 𝜎
2
𝑞𝐼⟩

𝑠2
≤

2𝑑𝜎2
𝑞

𝑠2
.

Similarly for Part 2 (b), we use Chebyshev’s inequality and the fact that

E[‖
∑︁
𝑖

𝜉𝑖𝑥𝑖‖2] =
∑︁
𝑖

E[𝜉2𝑖]‖𝑥𝑖‖2 ≤ 2𝑛𝜎2
𝑞 .

to get that ‖ 1
𝑛

∑︀
𝑖 𝜉𝑖𝑥𝑖‖ = 𝑂(𝜎𝑞/

√
𝛿𝑛) with probability at least 1− 𝛿.

Taking the union bound and using these estimates in the analysis, otherwise unchanged

from the proof of Theorem 6.5.1, gives the result.

Given this result, we run the algorithm multiple times, and take the geometric median, as

described in SCRAM-GM. We recall the key guarantee for geometric median from [M+15]

376

in its contrapositive form, which informally says that if a 1 − 𝛼 > 1/2 proportion of points

cluster near each other, then the geometric median will successfully return a point close to

this cluster.

Lemma 6.5.17 (Lemma 2.1 (a) of [M+15]). Suppose 𝑥1, . . . , 𝑥𝑛 are points in a 𝑑-dimensional

Euclidean space with norm ‖ ·‖. Suppose 𝑧 ∈ R𝑑, 𝑟 > 0, 𝛼 ∈ (0, 1/2), let 𝐶𝛼 , (1−𝛼)
√︁

1
1−2𝛼

,

and let

𝑦 = argmin
𝑦

𝑛∑︁
𝑖=1

‖𝑦 − 𝑥𝑖‖,

be the geometric median. If

#{𝑖 : ‖𝑥𝑗 − 𝑧‖ > 𝑟} ≤ 𝛼𝑛

then ‖𝑦 − 𝑧‖ ≤ 𝐶𝛼𝑟.

Algorithm 16: SCRAM-GM(𝑥𝑡, 𝑦𝑡, 𝛿, 𝜂, 𝛼)
Input: Input data (𝑥𝑡, 𝑦𝑡)

𝑛
𝑡=1.

Output: Predictor ̂︀𝑤.
1 Shuffle the data and split into two equal sized groups 𝐶1, 𝐶2 and split 𝐶1 into

𝑘 , Θ(log(1/𝛿)) equal-size buckets 𝐵1, . . . , 𝐵𝑘.
2 Run SCRAM with parameters 𝜂, 𝛼 on each bucket to get predictors 𝑤1, . . . , 𝑤𝑘.
3 Form the geometric median

̂︀𝑤 = argmin
𝑦

𝑘∑︁
𝑖=1

‖𝑦 − 𝑤𝑖‖Σ𝐶2

where Σ𝐶2 ,
1

|𝐶2|
∑︀

𝑡∈𝐶2
𝑥𝑡𝑥

𝑇
𝑡 .

4 return ̂︀𝑤.

Theorem 6.5.18. Suppose that 𝜂 < 1/3 is an upper bound on the contamination level,

define 𝛽 as in (6.11), and suppose for some 𝑞 ∈ [2,∞], 𝜎𝑞 ≥ 0 and all 𝑡 that

‖𝜉𝑡‖𝑞 , E[|𝜉|𝑞]1/𝑞 ≤ 𝜎𝑞.

Then provided 𝜂 = 0 or

𝜂 · 𝑛 & log(min(𝑛, 𝑑)),

377

we can take 𝛼 = Θ

(︂√︁
𝜂 log(𝑑) log(1/𝛿)

𝑛

)︂
and 𝜂 = 𝜂 + Θ(𝜂

√
𝛽) such that the output 𝑤 of

SCRAM-GM satisfies

𝛽1+1/𝑞‖𝑤* − 𝑤‖Σ* . 𝜂1−1/𝑞𝜎𝑞 + 𝜀+ 𝜂1/8𝑅1/2(𝜀+ 𝜂1/2−1/𝑞𝜎𝑞)
1/2 8

√︂
log(min(𝑛, 𝑑)) log(1/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)) log(1/𝛿)

𝑛
+min

{︃
𝜎

√︂
𝑑 log(1/𝛿)

𝑛
, (𝑅𝜎)1/2

4

√︂
log(1/𝛿)

𝑛

}︃

+𝑅

√︃
log3(𝑛) log(1/𝛿)

𝑛

with probability at least 1− 𝛿.

Proof. Combining Lemma 6.5.16 and Lemma 6.5.15 gives

‖𝑤𝑖 − 𝑤*‖Σ* ≤ 𝑟 , 𝐶(𝑟0 +𝑅

√︃
log3(𝑛) log(1/𝛿)

𝑛
)

with probability at least 0.98, where 𝑟0 is the right hand side of (6.26) plus 𝜀 (to replace 𝑢*

by 𝑤*) and 𝐶 is an absolute constant. Hence by applying Lemma 6.5.16, independence, and

Hoeffding’s inequality we see that

#{𝑖 : 𝛽1+1/𝑞‖𝑤𝑖 − 𝑤*‖Σ* ≤ 𝑟} ≥ 0.97𝑘

with probability at least 1−𝛿 where 𝑟 is the right hand side of (6.26), including the constant

factor. We condition on this event in what follows.

Note that by Bernstein’s inequality, for any particular 𝑤

⃒⃒⃒
‖𝑤 − 𝑤*‖2Σ𝐶2

− ‖𝑤 − 𝑤*‖2Σ*

⃒⃒⃒
. ‖𝑤 − 𝑤*‖Σ*𝑅

√︂
log(1/𝛿)

𝑛
+
𝑅2 log(1/𝛿)

𝑛

with probability 1− 𝛿, where we used that E[⟨𝑤−𝑤*, 𝑋⟩4] ≤ 4𝑅2 E[⟨𝑤−𝑤*, 𝑋⟩2] to upper

bound the variance term. Note that 𝑅
√︀

log(1/𝛿)/𝑛 = 𝑂(𝑟). Hence union bounding over

𝑤1, . . . , 𝑤𝑘 we find with probability at least 1− 𝛿

#{𝑖 : 𝛽1+1/𝑞‖𝑤𝑖 − 𝑤*‖Σ𝐶2
= 𝑂(𝑟)} ≥ 0.97𝑘

378

which by Lemma 6.5.17 gives the result in the norm ‖·‖Σ𝐶2
and combined with Lemma 6.5.15

gives the desired result in ‖ · ‖Σ* .

6.6 Optimal Breakdown Point via Sum of Squares Pro-

gramming

As previously explained, the breakdown point for the estimator SCRAM is at 𝜂 = 1/3,

because when 𝜂 ≥ 1/3 the landscape of its objective exhibits bad local minima. Remarkably,

if we instead use the natural degree-4 Sum of Squares relaxation of our original combinatorial

optimization problem, it maintains the same statistical guarantees as SCRAM (including the

optimal 𝜂 dependence) while also managing to escape the bad local minima of the nonconvex

problem and achieve optimal breakdown point 𝜂 = 1/2.

As we will see in the analysis, the fundamental fact we use which is true for the SoS

relaxation (Program 3) and not true for an arbitrary stationary point or local minima of

Program 1 is that the SoS relaxation always computes a lower bound on the original (un-

relaxed) problem (6.2), allowing us to compare objective values with the ground truth pair

(𝑎*, 𝑢*).

6.6.1 SoS Algorithm and Analysis

In this section we state the main guarantee for our algorithm when 𝜂 is large, as well as the

result of combining this guarantee with the ones in Section 6.5 to obtain a guarantee for the

full range of possible 𝜂.

As in Section 6.5, the constants in our result must deteriorate slightly as we approach

the (optimal) breakdown point 𝜂 = 1/2, so we introduce a parameter 𝜌 which tracks the

distance to 1/2; as long as we are strictly bounded away from this point, 𝜌 is upper bounded

by a constant and can be ignored.

We first state a result for bounded noise.

Theorem 6.6.1. Suppose that the contamination rate is 𝜂 ∈ (0.3, 1/2), define 0 < 𝜌 < 1 by

379

𝜂 = 1
2+2𝜌2

, and suppose

𝑛 & log(min(𝑛, 𝑑)/𝛿). (6.27)

If the noise {𝜉𝑡} satisfies |𝜉𝑡| ≤ 𝜎 for all 𝑡 with probability 1, then there is a poly(𝑛, 𝑑)

algorithm which takes as input (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) and, with probability at least 1−𝛿, outputs

a vector ̃︀𝑤 which satisfies

𝜌2‖ ̃︀𝑤−𝑤*‖Σ𝑛 . 𝜎+𝜀+𝜌𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+min

{︃
𝜎

√︂
𝑑+ log(1/𝛿)

𝑛
, (𝑅𝜎)1/2𝜌 · 4

√︂
log(1/𝛿)

𝑛

}︃

for oblivious covariates and

𝜌2‖ ̃︀𝑤 − 𝑤*‖Σ𝑛 . 𝜎 + 𝜀+ 𝜌𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ (𝑅𝜎)1/2𝜌 · 4

√︂
log(1/𝛿)

𝑛

for the more general case of adaptive covariates.

By a simple truncation argument, we can also obtain versions of this result for weakly

𝐿𝑞 and subgaussian noise. For brevity, we only state the latter:

Theorem 6.6.2. Let 𝜂, 𝜌, 𝑛 satisfy the hypotheses of Theorem 6.6.1. If the noise {𝜉𝑡} is

𝜎2-subgaussian, then there is a poly(𝑛, 𝑑) algorithm which takes as input (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)

and outputs a vector ̃︀𝑤 which satisfies

𝜌2‖ ̃︀𝑤 − 𝑤*‖Σ𝑛 . 𝜎
√︀

log(1/𝜌) + 𝜀+ 𝜌𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ 𝜎

√︂
𝑑+ log(1/𝛿)

𝑛

for oblivious covariates and

𝜌2‖ ̃︀𝑤 − 𝑤*‖Σ𝑛 . 𝜎
√︀

log(1/𝜌) + 𝜀+ 𝜌𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ (𝑅𝜎)1/2𝜌 · 4

√︂
log(1/𝛿)

𝑛

for the more general case of adaptive covariates.

Proof. For any 𝛿′, we know that each of the 𝜉𝑡 satisfy |𝜉𝑡| . 𝜎
√︀
log(1/𝛿′) individually with

probability 1 − 𝛿′. If we treat indices 𝑡 for which this does not hold as corruptions and

take 𝛿′ to be 1/4 − 𝜂/2, then we can take the the corruption level in Theorem 6.6.1 to be

380

1/4+ 𝜂/2 and the bound on the noise to be 𝜎
√︂
log
(︁

4
1−2𝜂

)︁
. Note that for 𝜂 ∈ (1/4, 1/4), the

𝜌 corresponding to the new corruption level 1/4 + 𝜂/2 is within a constant factor of 𝜌. Also

note that
√︀
log(1/𝛿′) = 𝑂(log(1/𝜌)). The result then follows by Theorem 6.6.1.

We now state the full guarantee obtained by combining the above with the results of

Section 6.5. For brevity, we will only state the subgaussian case:

Theorem 6.6.3. Let 0 ≤ 𝜂 < 1/2, and define 𝜌 > 0 by 𝜂 = 1
2+2𝜌2

, and suppose 𝑛 satisfies

𝑛 & log(min(𝑛, 𝑑)/𝛿). If the noise {𝜉𝑡} is 𝜎2-subgaussian, then there is a poly(𝑛, 𝑑) algorithm

which takes as input (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) and, with probability at least 1−𝛿, outputs a vector

𝑤 which satisfies

min(1, 𝜌2)‖𝑢* − 𝑤‖Σ𝑛 . 𝑐𝛿,𝜂,𝑛𝜂𝜎 + 𝜂1/2𝜌2𝜀+ 𝜂1/8𝑅1/2(
√
𝑐𝛿,𝜂,𝑛𝜂𝜎 + 𝜀)1/2

8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+min

{︃
𝜎

√︂
𝑑+ log(2/𝛿)

𝑛
, (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛

}︃

for oblivious covariates, where 𝑐𝛿,𝜂,𝑛 is defined in (6.24). In the more general case of adaptive

covariates, 𝑤 satisfies

min(1, 𝜌2) · ‖𝑢* − 𝑤‖Σ𝑛 . 𝑐𝛿,𝜂,𝑛𝜂𝜎 + 𝜂1/2𝜌2𝜀+ 𝜂1/8𝑅1/2(
√
𝑐𝛿,𝜂,𝑛𝜂𝜎 + 𝜀)1/2

8

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛

+ 𝜂1/4𝑅
4

√︂
log(min(𝑛, 𝑑)/𝛿)

𝑛
+ (𝑅𝜎)1/2

4

√︂
log(2/𝛿)

𝑛
, (6.28)

i.e. the same bound except the last term was changed. Recall that 𝑢* here is the best norm-𝑅

linear predictor of the uncorrupted and unnoised data, that is,

𝑢* , arg min
𝑢:‖𝑢‖≤𝑅

1

𝑛

∑︁
𝑡

(𝑦*𝑡 − ⟨𝑢, 𝑥𝑡⟩)2.

Proof. If 0 ≤ 𝜂 < 0.3, apply Theorem 6.5.13, noting that the parameter 𝛽 in that theorem

is an absolute constant for this range of 𝜂. Otherwise, apply Theorem 6.6.2, noting that

381

𝜂 = Θ(1) in this case, and that ‖𝑢* − 𝑤‖Σ𝑛 and ‖𝑤* − 𝑤‖Σ𝑛 differ by 𝑂(𝜀).

Sum-of-Squares Program and Feasibility

Algorithm 17: SoSRegression(𝐷)
Input: Dataset 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}
Output: Vector ̃︀𝑤 for which ‖ ̃︀𝑤 − 𝑤*‖Σ𝑛 is small (see Theorem 6.6.1)

1 Let ̃︀E[·] be the pseudoexpectation optimizing Program 6.2.
2 return ̃︀E[𝑤].

We will condition on the events of Lemma 6.5.11. Now consider the following set of polyno-

mial constraints.

Program 3. Let 𝛼 > 0 be a parameters to be tuned later. The program variables are {𝑎𝑡}𝑡∈[𝑛]
and 𝑤, and the constraints are

1. (Norm bound)
∑︀𝑑

𝑖=1𝑤
2
𝑖 ≤ 𝑅2.

2. (Booleanity) 𝑎2𝑡 = 𝑎𝑡 for all 𝑡 ∈ [𝑛].

3. (Large fraction of inliers) 1
𝑛

∑︀𝑛
𝑡=1 𝑎𝑡 ≥ 1− 𝜂 − 𝛼.

4. (Outliers sub-sample the empirical covariance2)

1

𝑛

𝑛∑︁
𝑡=1

(1− 𝑎𝑡)𝑥𝑡𝑥⊤𝑡 ⪯ 𝜂Σ𝑛 + 𝛼 · Id .

The program objective is to minimize

min ̃︀E[︃ 𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2
]︃

over degree-4 SoS-pseudoexpectations satisfying the above constraints.

We first show that conditioned on the events of Lemma 6.5.11 holding, there always exists

a feasible solution to the above polynomial system.

2One can use matrix inequalities in SoS: see e.g. Section 7.1 in [HL18].

382

Lemma 6.6.4 (Satisfiability). For any 𝛿 > 0, if 𝑛 satisfies the bound in (6.27), then for

any sequence of 𝑥1, ..., 𝑥𝑛 chosen during the process in Definition 6.4.1, we have that with

probability at least 1 − 𝛿 over the randomness of the Ber(𝜂) coins generating 𝑎*1, ..., 𝑎*𝑛 and

over the randomness of 𝜉1, ..., 𝜉𝑛, the choice of 𝑎𝑡 = 𝑎*𝑡 and

𝑣 = arg min
‖𝑣‖≤𝑅

𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑣, 𝑥𝑡⟩)2 (6.29)

is a feasible solution to Program 3. As a consequence, for any ‖𝑣‖ ≤ 𝑅 the objective value

of Program 3 is at most
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (𝑦𝑡 − ⟨𝑣, 𝑥𝑡⟩)2.

Proof. Clearly Constraints 1 and 2 are satisfied. Part 1 of Lemma 6.5.11 implies that Con-

straint 3 is satisfied with probability 1−𝛿/3. Part 3 of Lemma 6.5.11 implies that Constraint 4

is satisfied with probability at least 1− 𝛿/3. Finally, the first-order stationarity condition is

satisfied because 𝑣 is the optimizer of (6.29).

To get the consequence, we use that such an upper bound holds with 𝑣 the minimizer

of (6.29) by feasibility of (𝑎*, 𝑣), and then use the fact that it is the minimizer to extend to

conclusion to all (not necessarily first-order stationary) 𝑣.

Bounding Clean Square Loss

We now proceed to the sum-of-squares proof that the constraints of Program 3 imply a

bound on the clean square loss achieved by 𝑤, under the degree-4 SoS proof system.

Let 𝑣* be defined as

𝑣* , arg min
𝑣:‖𝑣‖≤𝑅

1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (𝑦
*
𝑡 − ⟨𝑣, 𝑥𝑡⟩)2. (6.30)

The following Lemma is needed only for the misspecified setting: if 𝜀 = 0 we will trivially

have 𝑣* = 𝑤*. In the misspecified setting 𝑣* will naturally appear in the analysis, instead

of 𝑤*, because it gives the optimal bounded norm linear function approximating the true

regression function 𝑥𝑡 ↦→ ⟨𝑤*, 𝑥𝑡⟩+ 𝜀𝑡. We define Σ′
𝑛 , 1

𝑛

∑︀
𝑎*𝑡 · 𝑥𝑡𝑥⊤𝑡 .

383

Lemma 6.6.5. For 𝑣* as defined above, we have ‖𝑣*−𝑤*‖2Σ′
𝑛
= 𝑂(𝜀2) and also, if we define

𝜀′𝑡 , 𝑦*𝑡 − ⟨𝑣*, 𝑥𝑡⟩,

then for all 𝑤 with ‖𝑤‖ ≤ 𝑅 we have:

𝑛∑︁
𝑡=1

𝑎*𝑡 𝜀
′
𝑡⟨𝑤 − 𝑣*, 𝑥𝑡⟩ ≤ 0 (6.31)

Proof. Since ∇𝑣(𝑦
*
𝑡 − ⟨𝑣*, 𝑥𝑡⟩)2 = −2(𝑦*𝑡 − ⟨𝑣*, 𝑥𝑡⟩)𝑥𝑡, we see that the first order optimality

condition for (6.30) implies for any 𝑤 with ‖𝑤‖ ≤ 𝑅 we have

−2
𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 𝜀
′
𝑡⟨𝑤 − 𝑣*, 𝑥𝑡⟩ ≥ 0

which gives (6.31).

It remains to upper bound ‖𝑣* − 𝑤*‖2Σ′ . By writing it out, we see

‖𝑣*−𝑤*‖2Σ*
𝑡
=

1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 ⟨𝑣*−𝑤*, 𝑥𝑡⟩2 =
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (𝑦
*
𝑡−𝜀𝑡−⟨𝑣*, 𝑥𝑡⟩)2 ≤

2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (𝜀
2
𝑡+(𝜀′𝑡)

2) ≤ 2𝜀2

where in the second-to-last step we used (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2 and in the last step we used

that 𝑣* minimizes (6.30).

We can now prove Theorem 6.6.1.

Proof of Theorem 6.6.1. Let ̃︀E[·] be the pseudo-expectation optimizing the objective in Pro-

gram 3, and define ̃︀𝑤 , ̃︀E[𝑤]. By part 3 of Lemma 6.5.11 and Constraint 1, we have that

(1− 𝜂)‖ ̃︀𝑤 − 𝑤*‖2Σ𝑛
≤ ‖ ̃︀𝑤 − 𝑤*‖2Σ′

𝑛
+ 𝛼‖ ̃︀𝑤 − 𝑤*‖2 ≤ ̃︀E[‖𝑤 − 𝑣*‖2Σ′

𝑛
] + 𝛼𝑅2 + 2𝜀2,

where Σ′
𝑛 , 1

𝑛

∑︀
𝑎*𝑡 · 𝑥𝑡𝑥⊤𝑡 and ‖·‖Σ′

𝑛
is the induced norm, and in the last step we used the

first part of Lemma 6.6.5, Lemma 1.3.43, and Constraint 1.

384

We can further bound

̃︀E[‖𝑤 − 𝑣*‖2Σ′
𝑛
]

=
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 ̃︀E[⟨𝑤 − 𝑣*, 𝑥𝑡⟩2]
=

1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 ̃︀E[︀(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)− (𝑦𝑡 − ⟨𝑣*, 𝑥𝑡⟩)2
]︀

=
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡
[︀̃︀E[︀(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2]︀− (𝑦𝑡 − ⟨𝑣*, 𝑥𝑡⟩)2

]︀
+

2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (𝑦𝑡 − ⟨𝑣*, 𝑥𝑡⟩) ·
⟨︀̃︀E[𝑤]− 𝑣*, 𝑥𝑡⟩︀

=
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡
[︀̃︀E[︀(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2]︀− (𝑦𝑡 − ⟨𝑣*, 𝑥𝑡⟩)2

]︀
⏟ ⏞

1

+

⟨̃︀E[𝑤]− 𝑣*, 2
𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (𝜉𝑡 + 𝜀′𝑡)𝑥𝑡

⟩
⏟ ⏞

2

where in the fourth step we used the identity (𝑎 − 𝑏)2 = 𝑎2 − 𝑏2 − 2𝑏(𝑎 − 𝑏) and 𝜀′𝑡 :=

𝑦𝑡 − 𝜉𝑡 − ⟨𝑣*, 𝑥𝑡⟩ as defined in Lemma 6.6.5.

Because of Lemma 6.6.5 and ‖̃︀E[𝑤]‖2 ≤ 𝑅2 from Constraint 1 we know that

⟨̃︀E[𝑤]− 𝑣*, 2
𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 𝜀
′
𝑡𝑥𝑡⟩ ≤ 0

so we can drop this term from 2 . Then by part 2 of Lemma 6.5.11, together with Cauchy-

Schwarz,

2 ≤ 2𝜎
(︁
𝜆
⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦Σ′

𝑛
+ 𝜆′

⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦)︁ ≤ 𝑂
(︁⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦Σ′

𝑛
𝜎𝜆+𝑅𝜎𝜆′

)︁
.

It remains to upper bound 1 , and this is the bulk of the analysis. Concretely, we need

to show that the constraints of the program SoS-imply an upper bound on the quantity
1
𝑛

∑︀𝑛
𝑡=1 𝑎

*
𝑡 (𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 − 1

𝑛

∑︀𝑛
𝑡=1 𝑎

*
𝑡 (𝑦𝑡 − ⟨𝑤*, 𝑥𝑡⟩2) of 𝑐‖𝑤 − 𝑣*‖2Σ′

𝑛
+𝑂(·) with 𝑐 ∈ [0, 1), so

that we can solve for an upper bound on ‖𝑤 − 𝑣*‖2Σ′
𝑛
. We do so in Lemma 6.6.6 below and

385

get 𝑐 = (1+𝜌2)𝜂
1−𝜂 . Choosing 𝜌 to be the solution to 𝜂 = 1

2+2𝜌2
and observing that

1

1− 𝑐
=

1− 𝜂
1− (2 + 𝜌2)𝜂

=
1 + 2𝜌2

𝜌2
= 2 + 1/𝜌2,

we get that ⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦2Σ′
𝑛
≤ 𝑂(1/𝜌2) ·

(︁⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦Σ′
𝑛
𝜎𝜆+ ℰ

)︁
for ℰ , 𝑅𝜎𝜆′ + 𝜎2+𝜀2

𝜌2
+ 𝛼𝑅2. We do case analysis based on which of the two terms on the

right-hand side dominates:

1. If the former dominates, then the bound simplifies to

⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦Σ′
𝑛
. 𝜎𝜆/𝜌2

2. Otherwise, if ℰ dominates, then after taking a square root, the bound can be rewritten

as ⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦Σ′
𝑛
. 𝜌−1 ·

(︂
(𝑅𝜎𝜆′)1/2 +

𝜎 + 𝜀

𝜌
+ 𝛼1/2𝑅

)︂

In either case, we conclude that

⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦Σ′
𝑛
. 𝜎𝜆/𝜌2 + 𝜌−1 ·

(︂
(𝑅𝜎𝜆′)1/2 +

𝜎 + 𝜀

𝜌
+ 𝛼1/2𝑅

)︂
.

If the covariates are adaptively chosen, we get

⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦Σ′
𝑛
.
𝑅1/2𝜎1/2

𝜌
· 4

√︂
log(1/𝛿)

𝑛
+
𝜎 + 𝜀

𝜌2
+
𝛼1/2𝑅

𝜌
.

If the covariates are obliviously chosen, then we could also obtain

⃦⃦̃︀E[𝑤]− 𝑣*⃦⃦Σ′
𝑛
.

𝜎

𝜌2
·
√︂
𝑑+ log(1/𝛿)

𝑛
+
𝜎 + 𝜀

𝜌2
+
𝛼1/2𝑅

𝜌
.

Plugging in 𝛼 = Θ
(︁√︀

𝜂 log(min(𝑛, 𝑑)/𝛿)𝑛
)︁

as in Section 6.5 completes the proof.

386

Lemma 6.6.6. Conditioned on the four parts of Lemma 6.5.11 holding, we have for any

𝜌 ∈ (0, 1] that

̃︀E[︃ 1
𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2
]︃
≤ 1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (𝑦𝑡 − ⟨𝑣*, 𝑥𝑡⟩)2 +
(1 + 2𝜌2)𝜂

1− 𝜂
‖𝑣* − 𝑤‖2Σ′

𝑛
+

𝑂

(︂
𝜎2 + 𝜀2

𝜌2
+ 𝛼𝑅2

)︂
(6.32)

as long as ̃︀E[·] is a SoS degree-4 pseudoexpectation satisfying the constraints of the program.

Proof. Let * denote the quantity inside the pseudoexpectation on the left-hand side of

(6.32). Then in the SoS degree-4 proof system we can show the following bound

* =
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 +
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2

≤ 1

𝑛

𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 +
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2

=
1

𝑛

𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 +
1

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)(𝑦𝑡 − 𝜀′𝑡 − ⟨𝑣*, 𝑥𝑡⟩+ ⟨𝑣* − 𝑤, 𝑥𝑡⟩+ 𝜀′𝑡)
2

≤ 1

𝑛

𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 +
2 + 1/𝜌2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)(𝑦𝑡 − 𝜀′𝑡 − ⟨𝑣*, 𝑥𝑡⟩)2

+
1 + 2𝜌2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)⟨𝑣* − 𝑤, 𝑥𝑡⟩2 +
2 + 1/𝜌2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)(𝜀′𝑡)2

≤ 1

𝑛

𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 +
2 + 1/𝜌2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)𝜉2𝑡+

1 + 2𝜌2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)⟨𝑣* − 𝑤, 𝑥𝑡⟩2 + (2 + 1/𝜌2)𝜀2

where in the second step we use Constraint 2 to get 𝑎*𝑡𝑎𝑡 ≤ 𝑎𝑡, in the fourth step we

use the SOS Cauchy-Schwartz inequality to show (𝑎 + 𝑏 + 𝑐)2 = (𝜌𝑎/𝜌 + 𝑏 + 𝜌𝑐/𝜌)2 ≤

(1+2𝜌2)(𝑎2/𝜌2+𝑏2+𝑐2/𝜌2), and in the fifth step we used that
∑︀𝑛

𝑡=1 𝑎
*
𝑡 (𝜀

′
𝑡)

2 ≤
∑︀𝑛

𝑡=1 𝑎
*
𝑡 𝜀

2
𝑡 ≤ 𝜀2

by construction (see (6.30)).

387

Therefore, we can upper bound ̃︀E[*] by

̃︀E[︃ 1
𝑛

𝑛∑︁
𝑡=1

𝑎𝑡(𝑦𝑡 − ⟨𝑤, 𝑥𝑡⟩)2
]︃

⏟ ⏞
I

+
2 + 1/𝜌2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− ̃︀E[𝑎𝑡])𝜉2𝑡⏟ ⏞
II

+

̃︀E[︃1 + 2𝜌2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)⟨𝑣* − 𝑤, 𝑥𝑡⟩2
]︃

⏟ ⏞
III

+(2 + 1/𝜌2)𝜀2.

From the last part of Lemma 6.6.4, we know I ≤ 1
𝑛

∑︀𝑛
𝑡=1 𝑎

*
𝑡 (𝑦𝑡 − ⟨𝑣*, 𝑥𝑡⟩)2. And as we are

in the bounded noise setting, we can upper bound II by (2 + 1/𝜌2) · 𝜎2(𝜂 + 𝛼) ≤ 𝑂(𝜎2/𝜌2),

where in the last inequality we used that 𝜂 is upper and lower bounded by absolute constants

by assumption.

Finally, to bound III , we can finally apply Constraint 4. We get that

1 + 2𝜌2

𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 (1− 𝑎𝑡)⟨𝑣* − 𝑤, 𝑥𝑡⟩2 ≤
1 + 2𝜌2

𝑛

𝑛∑︁
𝑡=1

(1− 𝑎𝑡)⟨𝑣* − 𝑤, 𝑥𝑡⟩2

≤ (1 + 2𝜌2)𝜂

𝑛

𝑛∑︁
𝑡=1

⟨𝑣* − 𝑤, 𝑥𝑡⟩2 + 3𝛼‖𝑣* − 𝑤‖22

≤ (1 + 2𝜌2)𝜂

(1− 𝜂)𝑛

𝑛∑︁
𝑡=1

𝑎*𝑡 ⟨𝑣* − 𝑤, 𝑥𝑡⟩2 +
3𝜂𝛼𝑅2

1− 𝜂
+ 3𝛼𝑅2

=
(1 + 2𝜌2)𝜂

(1− 𝜂)
‖𝑣* − 𝑤‖2Σ′

𝑛
+𝑂(𝛼𝑅2),

where the second step follows by Constraint 4 and 𝜌 ≤ 1, the third step follows by part 3

of Lemma 6.5.11 which we are conditioning on in this section, and the fourth step uses the

definition of Σ′
𝑛 together with the assumption that 𝜂 is at least some absolute constant.

388

6.7 Online Regression

6.7.1 Cutting Plane Algorithm

In this section we leverage the guarantees of Section 6.5 to design an efficient algorithm

for Huber-contaminated online regression. For brevity, in this section we restrict our at-

tention to the case of sub-Gaussian noise, though our techniques extend easily to handle

𝑘-hypercontractive noise.

The basic trick we use is to combine the offline regression oracle with a cutting plane

method, so that we can keep efficiently cutting down the space of linear predictors until

we find one near 𝑤*. Essentially, the algorithm collects a large batch of samples, compares

it’s current performance on this batch to the optimal robust regression result in hindsight

(estimated by SCRAM), and if it finds its performance is poor it cuts out a large set of

possible predictors and updates to use a new predictor.

The algorithm, which we will refer to as AMCutter, can be based upon any central

cutting-plane optimization method like ellipsoid or Vaidya’s algorithm; here we use Vaidya’s

algorithm since it is oracle-efficient. More specifically, we recall the following guarantee for

Vaidya’s algorithm:

Theorem 6.7.1 ([Vai89], see e.g. Section 2.3 of [Bub14]). Suppose that 𝒦 is an (unknown)

convex body in R𝑑 which contains a Euclidean ball of radius 𝑟 > 0 and is contained in a

Euclidean ball centered at the origin of radius 𝑅 > 0. There exists an algorithm which, given

access to a separation oracle for 𝒦, finds a point 𝑥 ∈ 𝒦, runs in time 𝑝𝑜𝑙𝑦(log(𝑅/𝑟), 𝑑), and

makes 𝑂(𝑑 log(𝑅𝑑/𝑟)) calls to the separation oracle.

Now we describe the algorithm. 𝐶0 and 𝑁0 are constants to be determined later. Sepa-

rationOracle (see Algorithm 18) implements the separation oracle (which is also where

most of the interaction with Nature occurs). Here the input 𝑤 lies in 𝒲 = {𝑤 : ‖𝑤‖ ≤ 𝑅}

and Nature’s inputs are 𝑥𝑡 with ‖𝑥𝑡‖ ≤ 1. Finally, we note that if SeparationOracle gets

to the final round 𝑇 of the online regression problem, then it may not return to Vaidya’s

algorithm (so step 2 of AMCutter is never reached), but as we will see, even if this happens

the algorithm still achieves the correct regret bound.

389

Algorithm 18: SeparationOracle(𝑤, 𝑥𝑡, 𝐶0, 𝐷)
Input: Vector 𝑤 ∈ 𝒲
Output: Separating hyperplane between 𝑤 and the target region

{𝑤′ : ‖𝑤′ − 𝑤*‖ ≤ 𝑟}, if 𝑤 lies outside
1 𝐷 ← ∅.
2 for each new point 𝑥𝑡 input by Nature do
3 Predict ̂︀𝑦𝑡 = ⟨𝑤, 𝑥𝑡⟩ and observe 𝑦𝑡.
4 Append (𝑥𝑡, 𝑦𝑡) to 𝐷.
5 𝑣𝑡 ← SCRAM(𝐷).
6 Σ𝑡 ← 1

|𝐷|
∑︀

(𝑥𝑡,𝑦𝑡)∈𝐷 𝑥𝑡𝑥
⊤
𝑡 . Define 𝜙𝑡(𝑢) , ‖𝑢− 𝑣𝑡‖2Σ𝑡

.
7 if |𝐷| ≥ 𝑁0 and 𝜙𝑡(𝑤) ≥ 𝐶0 then

// intersect current feasible region with {𝑢 : ⟨𝑢− 𝑤,∇𝜙𝑡(𝑤)⟩ < 0}
8 return separating hyperplane given by ∇𝜙𝑡(𝑤).

Algorithm 19: AMCutter(𝑟, 𝑅,𝑁0, 𝐶0, 𝑇)
Input: Radius 𝑟 of target ball around 𝑤*, parameter 𝑅 from Assumption 5,

parameters 𝑁0, 𝐶0 to be tuned, number of rounds 𝑇
Output: Sequence of predictions ̂︀𝑦1, . . . , ̂︀𝑦𝑇

1 Let 𝑤 be the output of running Vaidya’s algorithm [Vai89] with
SeparationOracle defined above and parameters 𝑟, 𝑅, and let ̂︀𝑦1, ..., ̂︀𝑦𝑡1 be the
predictions made in the course of running SeparationOracle.

2 for 𝑡1 + 1 ≤ 𝑡 ≤ 𝑇 do
3 Given new point 𝑥𝑡 input by Nature, predict ̂︀𝑦𝑡 = ⟨𝑤, 𝑥𝑡⟩.
4 return ̂︀𝑦1, . . . , ̂︀𝑦𝑇 .

390

As far as the choice of constants, based on (6.28) and Theorem 6.6.3 we will leave 𝑁0 to

be optimized later and take

𝐶0 , 4𝑅𝑟 +max(1, 1/𝜌4) ·𝑂

⎛⎝𝑐2𝛿/𝑇,𝜂,𝑁0
𝜂2𝜎2 + 𝜌4𝜀2 + 𝜂1/4𝑅(

√
𝑐𝛿/𝑇,𝜂,𝑁0𝜂𝜎 + 𝜀) 4

√︃
log(𝑇/𝛿)

𝑁0

+𝜂1/2𝑅2

√︃
log(𝑇/𝛿)

𝑁0

+𝑅𝜎

√︃
log(𝑇/𝛿)

𝑁0

⎞⎠ ,

where 𝛿 > 0 is the desired overall probability of success. With this choice of parameters we

can guarantee with probability at least 1− 𝛿:

1. At every step where |𝐷| ≥ 𝑁0 in SeparationOracle, the guarantee (6.28) is satisfied

by the vector 𝑣𝑡 output by SCRAM, by applying Theorem 6.6.3 and the union bound

over all rounds. In particular, by triangle inequality, we have ‖𝑤*− 𝑣𝑡‖2Σ𝑛
≤ 𝐶0− 4𝑅𝑟

2. If 𝑤 lies outside the ball of radius 𝑟 around 𝑤*, the result of SeparationOracle

is a valid separating hyperplane between 𝑤 and the ball. By convexity of 𝜙, to see

that the ball of radius 𝑟 around 𝑤* is never cut, we just need to show that all 𝑤′

with ‖𝑤′ − 𝑤*‖ ≤ 𝑟 satisfy 𝜙𝑡(𝑤
′) ≤ 𝐶0. For 𝑤* we have the stronger guarantee

𝜙𝑡(𝑤
*) . 𝐶0−4𝑅𝑟, just from the guarantee of step 1. For other 𝑤′ in the ball of radius

𝑟, we deduce the claim by triangle inequality from the guarantee for 𝑤*, using that

𝜙𝑡(𝑤
′)−𝜙𝑡(𝑤*) ≤ ⟨∇𝜙𝑡(𝑤′), 𝑤′−𝑤*⟩ = 2⟨Σ𝑡(𝑤

′− 𝑣𝑡), 𝑤′−𝑤*⟩ ≤ 4𝑅‖𝑤′−𝑤*‖ ≤ 4𝑅𝑟

where the first inequality is by convexity, and the second inequality uses that ‖Σ̂𝑡‖ ≤ 1

and that the diameter of 𝒲 is at most 2𝑅.

Recall that the separation oracle can only be called 𝐼 = 𝑂(𝑑 log(𝑅/𝑟)) many times, since

this is the oracle complexity guarantee from Theorem 6.7.1: after this many rounds the

algorithm is guaranteed to return or query a point in the ball of radius 𝑟 around 𝑤*. Let 𝐷𝑖

be the collected dataset 𝐷 built during the 𝑖-th invocation of the oracle. Since we know by

391

the triangle inequality and AM-GM that

‖𝑤 − 𝑤*‖2Σ𝑡
≤ 2‖𝑤 − 𝑣𝑡‖2Σ𝑡

+ 2‖𝑣𝑡 − 𝑤*‖2Σ𝑡

it follows that after |𝐷𝑖| gets to size 𝑁0 and up to the step before returning a hyperplane, we

are guaranteed that ‖𝑤 − 𝑤*‖2Σ𝑡
≤ 4𝐶0. For all of the steps before |𝐷𝑖| gets to size 𝑁0, the

error incurred per step is trivially upper bounded by 4𝑅2. It follows that the regret incurred

per call of the separation is upper bounded by max{4𝑁0𝑅
2, 4|𝐷𝑖|𝐶0+4𝑅2}. Hence, the total

regret incurred in step 1 of AMCutter is upper bounded by

𝐼∑︁
𝑖=1

(4𝑁0𝑅
2 + 4|𝐷𝑖|𝐶0) ≤ 4𝑁0𝐼𝑅

2 + 4𝐶0𝑇 = 𝑂
(︀
𝑁0𝑑𝑅

2 log(𝑅/𝑟) + 𝐶0𝑇
)︀

(6.33)

using that the total number of oracle calls is 𝐼 = 𝑂(𝑑 log(𝑅/𝑟)), and
∑︀

𝑖 |𝐷𝑖| ≤ 𝑇 . If 𝑡1 is the

time step at which the algorithm enters step 2, then the total regret in step 2 of AMCutter

is upper bounded by

𝑇∑︁
𝑡=𝑡1

(⟨𝑤*, 𝑥𝑡⟩+ 𝜀𝑡 − ⟨𝑤, 𝑥𝑡⟩)2 ≤
𝑇∑︁
𝑡=𝑡1

(𝑟 + |𝜀𝑡|)2 ≤ 2𝑇 (𝑟2 + 𝜀2) (6.34)

where in the last step we used the basic inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2. In particular, the

leading term in the regret is 𝑂(𝑘𝜎2𝜂2−2/𝑘𝑇) as expected. We formalize this in the following

Theorem.

Theorem 6.7.2. For the Huber-Contaminated Online Regression problem with 𝜂 ≤ 𝜂 < 1/2

and 𝜂 = 1
2+2𝜌2

, Algorithm AMCutter with parameters 𝑅 and 𝑟 , 1/𝑇 satisfies the following

regret guarantee:

𝑇∑︁
𝑡=1

(𝑦*𝑡−𝑦𝑡)2 .
(︀
𝜂2 log(1/𝜂)𝜎2𝜌−4 + 𝜀2

)︀
𝑇+𝜂1/4𝑅𝜌−4

(︁
𝜂1/2 4

√︀
log(1/𝜂) · 𝜎 + 𝜀

)︁
4
√︀
log 𝑇 ·𝑑1/6𝑇 5/6

+
(︀
𝜂1/2𝑅2 +𝑅𝜎

)︀
· 𝜌−4𝑑1/3𝑇 2/3

√︀
log 𝑇 + 𝑑1/3𝑅2 log(𝑅𝑇)𝑇 2/3 (6.35)

with probability 1 − 1/poly(𝑇) over the randomness of the coin flips. In particular, for

392

sufficiently large 𝑇 , this quantity is dominated by (𝜂2 log(1/𝜂)𝜎2𝜌−4 + 𝜀2)𝑇 .

Proof. From the above (6.33) and (6.34), we see that the total regret is upper bounded by

𝑂
(︀
𝑁0𝑑𝑅

2 log(𝑅/𝑟) + 𝐶0𝑇
)︀
+ 2𝑇 (𝑟2 + 𝜀2).

so by taking 𝑁0 = 𝑑−2/3𝑇 2/3 and 𝑟 = 1/𝑇 , we get the claimed regret bound upon noting

that 𝑐1/10𝑇,𝜂,𝑑−2/3𝑇 2/3 = 𝑂(
√︀

log(1/𝜂)).

6.7.2 Gradient Descent Algorithm

For the high-dimensional setting, cutting planes don’t work because their guarantees are

dimension-dependent. Fortunately, we can fix this by using gradient descent instead, see

Algorithm 20. We recall the following guarantee for online gradient descent from [Zin03].

Algorithm 20: AM-GD(𝑅,𝑁0, 𝐶1, 𝛾, 𝑇)
Input: Parameter 𝑅 from Assumption 5, number of rounds 𝑇 , parameters

𝑟,𝑁0, 𝐶1, 𝛾 to be tuned
Output: Sequence of predictions ̂︀𝑦1, . . . , ̂︀𝑦𝑇 (via interaction with Nature)

1 Let 𝑤1 = 0.
2 while there are more inputs do
3 Let 𝑔𝑠 be the output of SeparationOracle run with parameters 𝑟 , 0, 𝑅, 𝐶1

and input 𝑤𝑠
4 Let 𝑤𝑠+1 = 𝑤𝑠 − 𝛾√

𝑇
𝑔𝑠.

5 Set 𝑠← 𝑠+ 1.

Theorem 6.7.3 ([Zin03,Haz19]). Suppose that 𝑓1, . . . , 𝑓𝑇 is a sequence of convex functions

such that ‖∇𝑓𝑡(𝑤)‖ ≤ 𝐺 for any 𝑤 with ‖𝑤‖ ≤ 𝑅. Let 𝑤1 = 0 and suppose that

𝑤𝑡+1 , Π𝑅

(︂
𝑤𝑡 −

2𝑅

𝐺
√
𝑇
∇𝑓𝑡(𝑤𝑡)

)︂

where Π𝑅(𝑥) , 𝑥
max(𝑅,‖𝑥‖) is the projection onto the Euclidean ball of norm 𝑅. Then for any

𝑤* with ‖𝑤*‖ ≤ 𝑅,

𝑇∑︁
𝑡=1

𝑓𝑡(𝑤𝑡)−
𝑇∑︁
𝑡=1

𝑓𝑡(𝑤
*) ≤

𝑇∑︁
𝑡=1

⟨∇𝑓𝑡(𝑤𝑡), 𝑤𝑡 − 𝑤*⟩ ≤ 3𝑅𝐺
√
𝑇 .

393

We now discuss parameter selection: we define

𝐶0 , max(1, 1/𝜌4) ·𝑂

⎛⎝𝑐2𝛿/𝑇,𝜂,𝑁0
𝜂2𝜎2 + 𝜂𝜌4𝜀2 + 𝜂1/4𝑅(

√
𝑐𝛿/𝑇,𝜂,𝑁0𝜂𝜎 + 𝜀) 4

√︃
log(𝑁0𝑇/𝛿)

𝑁0

+𝜂1/2𝑅2

√︃
log(𝑁0𝑇/𝛿)

𝑁0

+𝑅𝜎

√︃
log(2𝑇/𝛿)

𝑁0

⎞⎠
where 𝛿 > 0 is the overall acceptable probability of failure, based upon the right-hand side

of (6.28) and take 𝐶1 , 2𝐶0.

Theorem 6.7.4. For the Huber-Contaminated Online Regression problem with 𝜂 ≤ 𝜂 < 1/2

and 𝜂 = 1
2+2𝜌2

, Algorithm AM-GD with parameters 𝑅 and 𝛾 = Θ(1) satisfies the following

regret guarantee:

𝑇∑︁
𝑡=1

(𝑦*𝑡−𝑦𝑡)2 .
(︀
𝜂2 log(1/𝜂)𝜎2𝜌−4 + 𝜀2

)︀
𝑇+𝜂1/4𝑅𝜌−4

(︁
𝜂1/2 4

√︀
log(1/𝜂) · 𝜎 + 𝜀

)︁
4
√︀
log 𝑇 ·𝑇 9/10

+
(︁
𝜂1/2𝑅2𝜌−4

√︀
log 𝑇 +𝑅𝜌−4𝜎

√︀
log 𝑇 +𝑅2/𝜂

)︁
· 𝑇 4/5 (6.36)

with probability 1 − 1/poly(𝑇) over the randomness of the coin flips. In particular, for

sufficiently large 𝑇 , this quantity is dominated by (𝜂𝜀2 + 𝑘𝜎2𝜂2−2/𝑘)𝑇 .

Note that in (6.36) there is a term 𝑅2𝑇 4/5/𝜂 which increases as 𝜂 → 0. As discussed

previously, for very small contamination rate 𝜂 one can simply apply the above Theorem

with slightly larger 𝜂 to get meaningful bounds.

Proof. As in the proof of Theorem 6.7.2, we first bound the regret incurred in a single call

of SeparationOracle by 4𝑁0𝑅
2 + 8|𝐷𝑖|𝐶0 where 𝐷𝑖 is the dataset 𝐷 collected in call 𝑖.

It follows then that if 𝑉 is the total number of calls made to SeparationOracle then the

total clean regret is upper bounded by 𝑂(𝑁0𝑅
2𝑉 + 𝑇𝐶0) where we used that

∑︀
𝑖 |𝐷𝑖| ≤ 𝑇 .

On the other hand, we know from Theorem 6.7.3 that if we define 𝜙𝑖 to be the function

whose gradient is returned at the end of Algorithm SeparationOracle, then

𝐶0𝑉 = (𝐶1 − 𝐶0)𝑉 ≤
𝑉∑︁
𝑠=1

(𝜙𝑖(𝑤𝑠)− 𝜙𝑖(𝑤*)) ≤ 6𝑅2
√
𝑉

394

since ‖∇𝜙𝑖(𝑤′)‖ ≤ ‖Σ𝑡(𝑤
′ − 𝑣𝑡)‖ ≤ 2𝑅 and using the corresponding choice of 𝛾. Therefore

𝑉 = 𝑂(𝑅4/𝐶2
0). Hence the clean regret is upper bounded by 𝑂(𝑁0𝑅

6/𝐶2
0 + 𝑇𝐶0).

Finally, it remains to choose 𝑁0. At this point the optimal choice for 𝑁0 is given by

equalizing 𝑁0 and the terms involving 𝑁0 but not 𝜂 in 𝐶3
0𝑇/𝑅

6. Since the leading order

term in 𝐶0 of this kind is of order 𝑁−1/2
0 we can roughly minimize by taking 𝑁0 = 𝑇 2/5. In

this case,

𝑁0𝑅
6

𝐶2
0

.
𝑁0𝑅

6

max(1, 1/𝜌4) · 𝜂𝑅4 log(𝑇)/𝑁0

≤ max(1, 1/𝜌4) · (𝑅2/𝜂) · 𝑇 4/5,

so the claimed bound follows.

6.8 Putting Everything Together

In this section we record consequences of applying our results on Huber-contaminated online

regression to the reduction of [FR20] (see Appendix 6.10).

The first consequence is the following pseudo-regret/regret bound for Huber-contaminated

contextual bandits in the finite-dimensional case.

Theorem 6.8.1 (Main, formal version of Theorem 6.1.6). For the Huber-Contaminated Con-

textual Bandits problem with contamination rate 0 ≤ 𝜂 < 1/2 and corresponding parameter

𝜌 given by 𝜂 = 1
2+2𝜌2

, 𝜎2-subgaussian noise {𝜉𝑡}, misspecification rate 𝜀, range parameter

𝑅, noise parameter 𝜎, action space of size 𝐾, and 𝑑-dimensional contexts, then there is a

poly(𝑛, 𝑑)-time algorithm which achieves clean pseudo-regret R̃egHCB(𝑇) at most

𝑂(
√
𝐾)
(︁
(𝜂
√︀

log(1/𝜂)𝜎𝜌−2 + 𝜀)𝑇 + 𝜂1/8𝑅1/2𝜌−2
(︁
𝜂1/4 8

√︀
log(1/𝜂) · 𝜎1/2 + 𝜀1/2

)︁
8
√︀
log 𝑇 · 𝑑1/12𝑇 11/12

+
(︀
𝜂1/4𝑅 +𝑅1/2𝜎1/2

)︀
· 𝜌−2𝑑1/6𝑇 5/6

√︀
log 𝑇 + 𝑑1/6𝑅

√︀
log(𝑅𝑇)𝑇 5/6

)︁
.

In particular, for sufficiently large 𝑇 , this quantity is dominated by
(︁
𝜂
√︀
log(1/𝜂)𝜎𝜌−2 + 𝜀

)︁√
𝐾𝑇 .

In the special case where 𝜀 = 0, there is a poly(𝑛, 𝑑)-time algorithm which achieves clean

regret RegHCB(𝑇) at most

395

𝑂(
√
𝐾)
(︁
𝜂
√︀
log(1/𝜂)𝜎𝜌−2𝑇 + 𝜂1/8𝑅1/2𝜌−2

(︁
𝜂1/4 8

√︀
log(1/𝜂) · 𝜎1/2

)︁
8
√︀
log 𝑇 · 𝑑1/12𝑇 11/12

+
(︀
𝜂1/4𝑅 +𝑅1/2𝜎1/2

)︀
· 𝜌−2𝑑1/6𝑇 5/6

√︀
log 𝑇 + 𝑑1/6𝑅

√︀
log(𝑅𝑇)𝑇 5/6

)︁
.

with probability 1−1/poly(𝑇). For sufficiently large 𝑇 , this is dominated by 𝜂
√︀

log(1/𝜂)𝜎𝜌−2
√
𝐾𝑇 .

Proof. For the first part of the theorem, we can apply Theorem 6.7.2 with failure probability

𝑇−1/3 to get that the clean square loss regret incurred by AMCutter is given by (6.35)

with probability at least 1− 𝑇 and is otherwise upper bounded by 𝑅2𝑇 . So the expectation

of this quantity is at most the quantity in (6.35) plus 𝑅2𝑇 1/3, which is dominated by the

𝑑1/3𝑅2 log(𝑅𝑇)𝑇 2/3 term in (6.35). The result then follows from applying the clean pseudo-

regret bound of Theorem 6.10.1 and using the elementary fact that for positive numbers

{𝑎𝑖}𝑖∈[𝑠], (
∑︀𝑠

𝑖=1 𝑎𝑖)
1/2 ≤

∑︀𝑠
𝑖=1

√
𝑎𝑖.

For the second part of the theorem, we can directly apply the high-probability guarantee

Theorem 6.7.2 together with the high-probability guarantee of Theorem 6.10.3 and a union

bound.

Theorem 6.8.2 (High-dimensional variant of Theorem 6.8.1). Let 𝜂, 𝜌, 𝜀, 𝑅, 𝜎,𝐾 be the same

as in Theorem 6.8.1, but now we make no assumptions on the dimension of the context space

𝒳 . There exists an algorithm which runs in polynomial time and achieves clean pseudo-regret

R̃egHCB(𝑇) at most

𝑂(
√
𝐾)·
(︁(︁
𝜂
√︀

log(1/𝜂)𝜎𝜌−2 + 𝜀
)︁
𝑇 + 𝜂1/8𝑅1/2𝜌−2

(︁
𝜂1/4 8

√︀
log(1/𝜂) · 𝜎1/2 + 𝜀1/2

)︁
8
√︀
log 𝑇 · 𝑇 19/20

+
(︁
𝜂1/4𝑅𝜌−2 4

√︀
log 𝑇 +𝑅1/2𝜌−2𝜎1/2 4

√︀
log 𝑇 +𝑅/

√
𝜂
)︁
· 𝑇 9/10

)︁
.

In particular, for sufficiently large 𝑇 , this quantity is dominated by
(︁
𝜂
√︀

log(1/𝜂)𝜎𝜌−2 + 𝜀
)︁√

𝐾𝑇 .

When 𝜀 = 0, we can similarly achieve a bound on the clean regret RegHCB(𝑇) with high prob-

ability.

Proof. The proof is identical to Theorem 6.8.1, except that we replaced the use of Theo-

rem 6.7.2 by Theorem 6.7.4 and AMCutter by AM-GD.

396

6.9 Lower Bound Against Convex Surrogates

We exhibit an Ω(𝜂3𝜎𝑅) lower bound against regression using convex losses. This lower

bound captures natural approaches like Huber regression, 𝐿1/LAD regression, and OLS. By

rescaling, we can assume 𝜎 = 1 without loss of generality, which we do in the statement

of the result below; also, just for this example we scale (without loss of generality) so that

‖𝑤*‖ ≤ 1 and ‖𝑥𝑡‖ ≤ 𝑅, because this makes the equations slightly cleaner.

Theorem 6.9.1. For any convex loss ℎ(·), there exists a distribution over covariates 𝑥 ∼ 𝒟𝑥
with support in [−𝑅,𝑅] and true regressor ℓ ∈ [−1, 1] such that the following is true. Let

𝑦 ∼ ℓ · 𝑥 + 𝜁 with noise 𝜁 ∼ 𝒩 (0, 1), and let 𝒞 denote the joint distribution over (𝑥, 𝑦).

Furthermore, let ̂︀𝑦 denote the Huber contaminated labels drawn 𝑦 ∼ (1 − 𝜂)(ℓ · 𝑥 + 𝜁) + 𝜂𝒬

where 𝒬 is an arbitrary distribution with support in [−𝑅,𝑅] for 𝑅 ≥ 1
𝜂

and 𝜂 ∈ [0, 1
2
).

Let ℋ be the joint distribution of the contaminated data (𝑥, ̂︀𝑦). For any 𝑏 ∈ [0, 1], let

𝑤 := argminℓ∈[−𝑏,𝑏] E(𝑥,̂︀𝑦)∼ℋ[ℎ(𝑦 − ℓ · 𝑥)] be the minimizer of the loss on contaminated data.

Then the clean square loss of 𝑤 is lower bounded as E(𝑥,𝑦)∼𝒞[(𝑦−𝑤·𝑥)2] ≥ min
(︁
𝜂3𝑅
40
, (1−𝑏)

2𝑅2

2

)︁
.

Proof. First, we consider the case where the constraint parameter 𝑏 is less than 1. In this

case, we can just consider a simple clean example, e.g. the covariate distribution 𝑥 = 0 with

probability 1/2 and 𝑥 = 𝑅 with probability 1/2, and take ℓ = 1. If 𝑏 < 1 then the best

predictor in [−𝑏, 𝑏] makes squared loss at least (1− 𝑏)2𝑅2/2, which proves the second lower

bound.

We now consider the more interesting case where 𝑏 = 1. Our hard instance is constructed

as follows. Let 𝒟𝑥 , 𝑚1𝛿(1)+(1−𝑚1)𝛿(−𝑅) where 𝛿(·) is the dirac delta and 𝑚1 = 1− 𝜂
10𝑅

.

Let the true regressor ℓ = 0 so that the uncorrupted 𝑦 ∼ 𝒩 (0, 1) for all 𝑥 ∈ [−𝑅,𝑅]. Let

the corrupted labels be ̂︀𝑦 defined as follows

̂︀𝑦 =

⎧⎪⎨⎪⎩(1− 𝜂)𝒩 (0, 1) + 𝜂𝛿(𝑅 + 1) 𝑥 = 1

𝒩 (0, 1) 𝑥 = −𝑅

Let ℎ′(·) be the right derivative of ℎ(·), which is well defined because every convex function

on an open convex domain is semi-differentiable. Let 𝑔(𝑣) , −E𝑦∼𝒩 (0,1)[ℎ
′(𝑦 − 𝑣)]. By

397

convexity of ℎ(·) we have the right derivative evaluated at 𝑤 is greater than or equal to zero.

lim
𝜀→0

E(𝑥,𝑦)∼ℋ[ℎ(𝑦 − (𝑣 + 𝜀) · 𝑥)]− E(𝑥,𝑦)∼ℋ[ℎ(𝑦 − 𝑣 · 𝑥)]
𝜀

⃒⃒⃒
𝑣=𝑤

= (1− 𝜂)𝑚1 · 𝑔(𝑤)− ℎ′(𝑅 + 1− 𝑤)𝜂 ·𝑚1 + (1−𝑚1)𝑅𝑔(−𝑅𝑤) ≥ 0

Rearranging we obtain

𝑔(𝑤) ≥ ℎ′(𝑅 + 1− 𝑤)𝜂 ·𝑚1 − (1−𝑚1)𝑅𝑔(−𝑅𝑤)
(1− 𝜂)𝑚1

(6.37)

Let 𝑔−1(·) denote the left inverse of 𝑔(·). Note that ℎ(·) is convex implies −ℎ′(·) is mono-

tonically decreasing implies 𝑔(·) is monotonically increasing implies 𝑔−1(·) is monotonically

increasing. Thus, applying 𝑔−1(·) to both sides of (6.37) we obtain

𝑤 ≥ 𝑔−1
(︀ℎ′(𝑅 + 1− 𝑤)𝜂 ·𝑚1 − (1−𝑚1)𝑅𝑔(−𝑅𝑤)

(1− 𝜂)𝑚1

)︀
(6.38)

To lower bound 𝑤 it suffices to lower bound the argument of 𝑔−1(·). We obtain,

ℎ′(𝑅 + 1− 𝑤)𝜂 ·𝑚1 − (1−𝑚1)𝑅 · 𝑔(−𝑅𝑤)
(1− 𝜂)𝑚1

≥ ℎ′(𝑅)𝜂 ·𝑚1 + ℎ′(𝑅)𝑅(1−𝑚1)

(1− 𝜂)𝑚1

Where we lower bounded the first term in the numerator using the fact that ℎ′(·) is monoton-

ically increasing and 𝑤 ∈ [−1, 1] to conclude ℎ′(𝑅+ 1− 𝑤) ≥ ℎ′(𝑅). We lower bounded the

second term in the numerator using the fact that 𝑔(·) is monotonically increasing and that

ℎ′(𝑅) ≥ max[−𝑅,𝑅] |ℎ′(𝑥)| (monotonicity of ℎ′(·)) to conclude 𝑔(−𝑅𝑤) ≥ 𝑔(−𝑅) ≥ −ℎ′(𝑅).

Further lower bounding, we obtain

=
ℎ′(𝑅)(𝜂𝑚1 − (1−𝑚1)𝑅)

(1− 𝜂)𝑚1

=
ℎ′(𝑅)(𝜂(1− 𝜂

10𝑅
)− 𝜂

10
)

(1− 𝜂)𝑚1

≥ ℎ′(𝑅)𝜂

2(1− 𝜂)𝑚1

≥ ℎ′(𝑅)𝜂

2

Where in the first inequality we use that 𝑅 ≥ 1
𝜂
. Substituting this lower bound into (6.38)

we obtain 𝑤 ≥ 𝑔−1
(︀ℎ′(𝑅)𝜂

2

)︀
. Once again using the fact that ℎ′(𝑅) ≥ max[−𝑅,𝑅] |ℎ′(𝑥)| we

398

observe that

𝑔(𝜌)− 𝑔(𝑔−1(0)) ≤ (𝜌− 𝑔−1(0))ℎ′(𝑅)√
2𝜋

for any 𝜌 ≥ 𝑔−1(0). This follows by the definition of 𝑔(·) and the fact that the mode of the

standard gaussian is 1√
2𝜋

. Setting 𝜌 = 𝑔−1(ℎ
′(𝑅)𝜂
2

) we obtain

ℎ′(𝑅)𝜂

2
= 𝑔(𝑔−1(

ℎ′(𝑅)𝜂

2
))− 𝑔(𝑔−1(0)) ≤

(𝑔−1(ℎ
′(𝑅)𝜂
2

)− 𝑔−1(0))ℎ′(𝑅)
√
2𝜋

which implies

𝑤 ≥ 𝑔−1(
ℎ′(𝑅)𝜂

2
) ≥ 𝜂 + 𝑔−1(0) (6.39)

We then have two possibilities.

Case 1: Either 𝑔−1(0) ≥ −𝜂
2

in which case the loss is lower bounded by

E(𝑥,𝑦)∼𝒞[(𝑦 − 𝑤 · 𝑥)2] ≥ E(𝑥,𝑦)∼𝒞[(𝑦 − 𝑤 · 𝑥)2|𝑥 = −𝑅]P𝒟𝑥(𝑥 = −𝑅) = (1−𝑚1)𝑅
2(𝑤)2

≥ (1−𝑚1)𝑅
2(𝜂 + 𝑔−1(0))2 ≥ 𝜂3𝑅

40

Where in the first inequality we use the law of total expectation, and in the second inequality

we used (6.39) and 𝑔−1(0) ≥ −𝜂
2

. This is the desired lower bound.

Case 2: In the other case we have 𝑔−1(0) ≤ −𝜂
2

. Then we flip the sign of the corruptions

placed by the adversary. Let the corrupted distribution be

̂︀𝑦 =

⎧⎪⎨⎪⎩(1− 𝜂)𝒩 (0, 1) + 𝜂𝛿(−𝑅− 1) 𝑥 = 1

𝒩 (0, 1) 𝑥 = −𝑅

Then working through the same calculations flipping signs at the right places we obtain

𝑤 ≤ 𝑔−1
(︀
− ℎ′(𝑅)𝜂

2

)︀
. Once again, using that

𝑔(𝜌)− 𝑔(𝑔−1(0)) ≥ (𝜌− 𝑔−1(0))ℎ′(𝑅)√
2𝜋

399

for any 𝜌 ≤ 𝑔−1(0), and setting 𝜌 = 𝑔−1
(︀
− ℎ′(𝑅)𝜂

2

)︀
we obtain

−ℎ
′(𝑅)𝜂

2
= 𝑔(𝑔−1(−ℎ

′(𝑅)𝜂

2
))− 𝑔(𝑔−1(0)) ≥

(𝑔−1
(︀
− ℎ′(𝑅)𝜂

2

)︀
− 𝑔−1(0))ℎ′(𝑅)

√
2𝜋

Rearranging we obtain

𝑤 ≤ 𝑔−1
(︀
− ℎ′(𝑅)𝜂

2

)︀
≤ 𝑔−1(0)− 𝜂 ≤ −3𝜂

2

Where the last inequality follows by 𝑔−1(0) ≤ −𝜂
2

. The loss is then lower bounded by

E(𝑥,𝑦)∼𝒞[(𝑦−𝑤 ·𝑥)2] ≥ E(𝑥,𝑦)∼𝒞[(𝑦−𝑤 ·𝑥)2|𝑥 = −𝑅]P𝒟𝑥(𝑥 = −𝑅) ≥ (1−𝑚1)𝑅
2(𝑤)2 ≥ 9𝜂3𝑅

40

where in the last inequality we use 𝑤 ≤ −3𝜂
2

. This is our desired lower bound.

6.10 Appendix: Reduction from Contextual Bandits to

Online Regression

In this section we verify that the reduction given in [FR20], specifically the proof of Theorem

5 in their paper, also applies to our Huber-contaminated setting as well. Formally, we show

the following:

Theorem 6.10.1 (Bandits to Regression Reduction). Given any oracle 𝒪 for Huber-contaminated

online regression achieving clean square loss regret RegHSq(𝑇) in the sense of Definition 6.4.1,

we can produce a learner for Huber-contaminated contextual bandits in the sense of Defini-

tion 6.4.4 that achieves clean pseudo-regret 𝑂
(︁√︁

𝐾𝑇 · RegHSq(𝑇) + 𝜀
√
𝐾𝑇

)︁
.

We will use the SquareCB algorithm from [FR20], which draws upon ideas from [AL99],

and which we repeat here for completeness (see Algorithm 21).

Proof of Theorem 6.10.1. Fix any policy 𝜋 : 𝒳 → 𝒜 and consider the learner given by

SquareCB (Algorithm 21) above for a regression oracle 𝒪 achieving square loss RegHSq(𝑇),

which is some random variable depending on the interactions with Nature. Recall that for

400

Algorithm 21: SquareCB(𝐴, 𝛾, 𝜇)
1 .

Input: Online regression oracle 𝒪, learning rate 𝛾 > 0, exploration parameter 𝜇 > 0
Output: Sequence of actions, in the setting of Definition 6.4.4

2 for 𝑡 ∈ [𝑇] do
3 Get context 𝑧𝑡 from Nature.
4 For every 𝑎 ∈ 𝒜, use regression oracle 𝒪 to compute prediction ̂︀𝑦𝑡,𝑎 , ̂︀𝑦𝑡(𝑧𝑡, 𝑎).
5 Define 𝑏𝑡 , argmin𝑎∈𝒜 ̂︀𝑦𝑡,𝑎.
6 For 𝑎 ̸= 𝑏𝑡, define 𝑝𝑡,𝑎 = 1

𝜇+𝛾(̂︀𝑦𝑡,𝑎−̂︀𝑦𝑡,𝑏𝑡) and let 𝑝𝑡,𝑏𝑡 = 1−
∑︀

�̸�=𝑏𝑡
𝑝𝑡,𝑎. The numbers

{𝑝𝑡,𝑎}𝑎 define a distribution 𝑝𝑡 over actions.
7 Sample 𝑎𝑡 from 𝑝𝑡 and observe loss ℓ, and update 𝒪 with example ((𝑥𝑡, 𝑎𝑡), ℓ).

this choice of learner, RegHCB(𝑇) is the supremum of

E

[︃
𝑇∑︁
𝑡=1

(ℓ*𝑡 (𝑎𝑡)− ℓ*𝑡 (𝜋(𝑧𝑡)))

]︃

over all such 𝜋. Define the filtration

F𝑡−1 , 𝜎((𝑧1, 𝑎1, ℓ
*
1(𝑎1), ℓ1(𝑎1), 𝛾1), . . . , (𝑧𝑡−1, 𝑎𝑡−1, ℓ

*
𝑡−1(𝑎𝑡−1), ℓ𝑡−1(𝑎𝑡−1), 𝛾𝑡−1), (𝑧𝑡, 𝛾𝑡)).

We can write the sum of conditional expectations of immediate regrets incurred by 𝜋 as

𝑇∑︁
𝑡=1

E[(ℓ*𝑡 (𝑎𝑡)− ℓ*𝑡 (𝜋(𝑧𝑡))) | F𝑡−1] ≤
𝑇∑︁
𝑡=1

E[(𝑓(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝜋(𝑧𝑡))) | F𝑡−1] + 2𝜀𝑇

≤
𝑇∑︁
𝑡=1

E[(𝑓(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝜋𝑓 (𝑧𝑡))) | F𝑡−1] + 2𝜀𝑇

=
𝑇∑︁
𝑡=1

∑︁
𝑎∈𝒜

𝑝𝑡,𝑎(𝑓(𝑧𝑡, 𝑎)− 𝑓(𝑧𝑡, 𝜋𝑓 (𝑧𝑡))) + 2𝜀𝑇. (6.40)

where recall from Definition 6.4.4 that 𝜋𝑓 (𝑧) , argmax𝑎 𝑓(𝑧, 𝑎), and 𝑝𝑡,𝑎 is defined in Step 6

of SquareCB

The following lemma is a key ingredient in the reduction of [FR20]:

Lemma 6.10.2 (Lemma 3, [FR20]). For any collection of numbers {̂︀𝑦𝑎}𝑎∈𝒜 ∈ [−𝑅,𝑅]𝐾,

let 𝑝 be the corresponding probability distribution computed in Step 6. For any collection of

401

numbers {𝑓𝑎}𝑎∈𝒜 ∈ {−𝑅,𝑅}𝐾, if we define 𝑎* , argmax𝑎 𝑓𝑎, we have that

∑︁
𝑎∈𝒜

𝑝𝑎

[︁
(𝑓𝑎 − 𝑓𝑎*)−

𝛾

4
(̂︀𝑦𝑎 − 𝑓𝑎)2]︁ ≤ 2𝐾

𝛾

Applying Lemma 6.10.2, we can upper bound (6.40) by

𝛾

4

𝑇∑︁
𝑡=1

E[(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡))2 | F𝑡−1] +
2𝐾𝑇

𝛾
+ 2𝜀𝑇.

By this and law of total expectation, the pseudo-regret incurred by policy 𝜋 can be upper

bounded by
𝛾

4
E
[︀
(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡))2]︀+ 2𝐾𝑇

𝛾
+ 2𝜀𝑇. (6.41)

To bound the prediction error in (6.41), using the identity 𝑏2 ≤ (𝑎+ 𝑏)2− 2𝑎𝑏, we can upper

bound (̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡))2 by

(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− ℓ*𝑡 (𝑎𝑡))2 − 2(𝑓(𝑧𝑡, 𝑎𝑡)− ℓ*𝑡 (𝑎𝑡))(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡)). (6.42)

Recall from (6.7) that the misspecification adversary is oblivious, that is, conditioned on

F𝑡−1, 𝑓(𝑧𝑡, 𝑎𝑡)− ℓ*𝑡 (𝑎𝑡) is equal to −𝜀𝑡(𝑧𝑡, 𝑎𝑡). Putting this and (6.42) together and applying

law of total expectation, we can bound the expectation of the prediction error in (6.41) by

E
[︀
(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡))2]︀
≤ E[RegHSq(𝑇)] + 2E

[︃
𝑇∑︁
𝑡=1

E[𝜀𝑡(𝑧𝑡, 𝑎𝑡)(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡)) | F𝑡−1]

]︃

≤ E[RegHSq(𝑇)] + 2E

[︃
𝑇∑︁
𝑡=1

𝜀2𝑡 (𝑧𝑡, 𝑎𝑡) +
1

4

𝑇∑︁
𝑡=1

E[(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡))2 | F𝑡−1]

]︃

≤ E[RegHSq(𝑇)] + 2𝜀2𝑇 +
1

2

𝑇∑︁
𝑡=1

E[(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡))2],
which upon rearranging gives

E
[︀
(̂︀𝑦𝑡(𝑧𝑡, 𝑎𝑡)− 𝑓(𝑧𝑡, 𝑎𝑡))2]︀ ≤ 2E[RegHSq(𝑇)] + 4𝜀2𝑇.

402

Substituting this into (6.41), and taking 𝛾 = 2
√︁
𝐾𝑇/(E[RegHSq(𝑇)] + 2𝜀2𝑇) and 𝜇 = 𝐾, we

conclude that the pseudo-regret incurred by 𝜋 is upper bounded by

𝛾

2
(E[RegHSq(𝑇)] + 2𝜀2𝑇) +

2𝐾𝑇

𝛾
+ 2𝜀𝑇 ≤ 2

√︁
𝐾𝑇 · E[RegHSq(𝑇)] + 5𝜀

√
𝐾𝑇

as desired.

In the special case where 𝜀 = 0, [FR20] also gives a high-probability bound on the regret

(see their Theorem 1). By adapting their argument, we can show an analogous statement in

this setting:

Theorem 6.10.3 (Bandits to Regression Reduction). Fix any 𝛿 > 0. Given any oracle

𝒪 for Huber-contaminated online regression achieving clean square loss regret RegHSq(𝑇) in

the sense of Definition 6.4.1 with 𝜀 = 0, we can produce a learner for Huber-contaminated

contextual bandits in the sense of Definition 6.4.4 that with probability at least 1− 𝛿 achieves

achieves clean regret at most 4
√︁
𝐾𝑇 · RegHSq(𝑇) + 8

√︀
𝐾𝑇 log(2/𝛿).

6.11 Appendix: Proof of Theorem 1.3.23

In this section we give a self-contained proof of Theorem 1.3.23, largely following the proof

of Equation 5.18 in [KS91].

First, we recall the statement. Suppose that 𝑋1, . . . , 𝑋𝑛 are random vectors in R𝑑 with

‖𝑋𝑡‖ ≤ 1 for all 𝑡, and 𝜉1, . . . , 𝜉𝑛 are random variables such that almost surely, the law of 𝜉𝑡

conditional on 𝑋1, . . . , 𝑋𝑡, 𝜉1, . . . , 𝜉𝑡−1 is mean-zero and 𝜎2-subgaussian. Then

Pr

[︃⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

𝜉𝑖𝑋𝑖

⃦⃦⃦⃦
⃦ ≥ 𝑠

]︃
≤ 2 exp

(︂
−𝑛𝑠2

2𝜋𝜎2

)︂
.

Proof of Theorem 1.3.23. Without loss of generality, we rescale so that 𝜎 = 1. The key

observation is that for any 𝑎 ∈ R𝑑 and 𝜆 ∈ R,

𝐹𝑎 , E[𝑒𝜆
∑︀

𝑖 𝜉𝑖⟨𝑋𝑖,𝑎⟩−𝜆2
∑︀

𝑖⟨𝑋𝑖,𝑎⟩2/2] ≤ 1. (6.43)

403

The proof of (6.43) follows by an inductive argument. Let ℱ𝑡 be the filtration generated by

𝑋1, . . . , 𝑋𝑡, 𝜉1, . . . , 𝜉𝑡−1. Then the first step of the induction is to observe

E[𝑒𝜆
∑︀𝑛

𝑖=1 𝜉𝑖⟨𝑋𝑖,𝑎⟩−𝜆2
∑︀𝑛

𝑖=1⟨𝑋𝑖,𝑎⟩2/2 | ℱ𝑛] = 𝑒𝜆
∑︀𝑛−1

𝑖=1 𝜉𝑖⟨𝑋𝑖,𝑎⟩−𝜆2
∑︀𝑛−1

𝑖=1 ⟨𝑋𝑖,𝑎⟩2/2 E[𝑒𝜆𝜉𝑛⟨𝑋𝑛,𝑎⟩−𝜆2⟨𝑋𝑛,𝑎⟩2/2 | ℱ𝑛]

≤ 𝑒𝜆
∑︀𝑛−1

𝑖=1 𝜉𝑖⟨𝑋𝑖,𝑎⟩−𝜆2
∑︀𝑛−1

𝑖=1 ⟨𝑋𝑖,𝑎⟩2/2

by the conditional subgaussian assumption on 𝜉𝑛. Iterating this argument shows (6.43).

From here the argument follows [KS91]. We let 𝑍 ∼ 𝑁(0, 𝐼𝑑×𝑑) be a Gaussian vector

independent of everything else, and letting 𝛾 = 𝜆
√︀
𝜋/2 we have

E[𝑒𝜆‖
∑︀𝑛

𝑖=1 𝜉𝑖𝑋𝑖‖] ≤ E[𝑒𝛾 E𝑍 [‖⟨𝑍,
∑︀𝑛

𝑖=1 𝜉𝑖𝑋𝑖⟩|]+[𝛾2/2](𝑛−E𝑍 [
∑︀

𝑖⟨𝑋𝑖,𝑍⟩2]))]

≤ 𝑒𝑛𝛾
2/2 E[𝑒𝛾‖⟨𝑍,

∑︀𝑛
𝑖=1 𝜉𝑖𝑋𝑖⟩|−

∑︀
𝑖⟨𝑋𝑖,𝑍⟩2)]

where in the first inequality we used E[|⟨𝑍, 𝑢⟩|] =
√︀

2/𝜋‖𝑢‖ and E𝑍 [
∑︀

𝑖⟨𝑋𝑖, 𝑍⟩2] =
∑︀

𝑖 ‖𝑋𝑖‖2 ≤

𝑛 almost surely, and the second step is Jensen’s inequality. Using the inequality 𝑒|𝑥| ≤ 𝑒𝑥+𝑒−𝑥

gives

E[𝑒𝛾‖⟨𝑍,
∑︀𝑛

𝑖=1 𝜉𝑖𝑋𝑖⟩|−(𝛾2/2)
∑︀

𝑖⟨𝑋𝑖,𝑍⟩2)] ≤ E
𝑍
[𝐹𝑍 + 𝐹−𝑍] ≤ 2

by (6.43). This shows 𝑒𝜆‖
∑︀𝑛

𝑖=1 𝜉𝑖𝑋𝑖‖ ≤ 2𝑒𝑛𝜆
2𝜋/2 hence

Pr[𝑒𝜆‖
∑︀𝑛

𝑖=1 𝜉𝑖𝑋𝑖‖ ≥ 𝑒𝜆𝑠] ≤ 2𝑒𝑛𝜆
2𝜋/2−𝜆𝑠

and taking 𝜆 = 𝑠/𝑛𝜋 makes the rhs 𝑒−𝑠2/2𝑛𝜋 which is equivalent to the result.

404

Part III

Learning from Heterogeneous Data

405

406

Chapter 7

Mixtures of Product Distributions

7.1 Introduction

In this chapter, we turn to the first of three mixture models that we study in this thesis.

We begin with the following natural problem, originally introduced in Definition 1.2.19 in

slightly different terminology. Recall that a mixture of subcubes is a distribution on the

Boolean hypercube where each sample is drawn as follows:

(1) There are 𝑘 mixing weights 𝜋1, 𝜋2, · · · , 𝜋𝑘 and centers 𝜇1, 𝜇2, · · · , 𝜇𝑘 ∈ {0, 1/2, 1}𝑛.

(2) We choose a center proportional to its mixing weight and then sample a point uniformly

at random from its corresponding subcube. More precisely, if we choose the 𝑖𝑡ℎ center,

each coordinate is independent and the 𝑗𝑡ℎ coordinate has expectation 𝜇𝑗𝑖 .

Our goal here is to give efficient algorithms for estimating the distribution in the PAC-

style model of Kearns et al. [KMR+94]. It is not always possible to learn the parameters

because two mixtures of subcubes1 can give rise to identical distributions. Instead, the goal

is to output a distribution that is close to the true distribution in total variation distance.

As discussed immediately proceeding Definition 1.2.19, the problem of learning mixtures

of subcubes contains various classic problems in computational learning theory as a special

case, and is itself a special case of others. For example, for any 𝑘-leaf decision tree, the

1Even with different numbers of components.

407

uniform distribution on assignments that satisfy it is a mixture of 𝑘 subcubes. Likewise,

for any function that depends on just 𝑗 variables (a 𝑗-junta), the uniform distribution on

assignments that satisfy it is a mixture of 2𝑗-subcubes. And when we allow the centers 𝜇𝑖 to

instead be in the set [0, 1]𝑛 it becomes the problem of learning mixtures of binary product

distributions.

Each of these problems has a long history of study. Ehrenfeucht and Haussler [EH89]

gave an 𝑛𝑂(log 𝑘) time algorithm for learning 𝑘-leaf decision trees. Blum [Blu92] showed that

𝑘-leaf decision trees can be represented as a log 𝑘-width decision list and Rivest [Riv87]

gave an algorithm for learning ℓ-width decision lists in time 𝑛𝑂(ℓ). Mossel, O’Donnell and

Servedio [MOS03] gave an 𝑛𝑗
𝜔

𝜔+1 time algorithm for learning 𝑗-juntas where 𝜔 is the exponent

for fast matrix multiplication. Valiant [Val12] gave an improved algorithm that runs in

𝑛𝑗
𝜔
4 time. Freund and Mansour [FM99] gave the first algorithm for learning mixtures of

two product distributions. Feldman, O’Donnell and Servedio [FOS05] gave an 𝑛𝑂(𝑘3) time

algorithm for learning mixtures of 𝑘 product distributions.

What makes the problem of learning mixtures of subcubes an interesting compromise

between expressive power and structure is that it admits surprisingly efficient learning algo-

rithms. The main result of this chapter is an 𝑛𝑂(log 𝑘) time algorithm for learning mixtures

of subcubes. We also give applications of our algorithm to learning 𝑘-leaf decision trees

with at most 𝑠 stochastic transitions on any root-to-leaf path (which also capture interesting

scenarios where the transitions are deterministic but there are latent variables). Using our

algorithm for learning mixtures of subcubes, we can approximate the error of the Bayes op-

timal classifier within an additive 𝜀 in 𝑛𝑂(𝑠+log 𝑘) · poly(1/𝜀) time with an inverse polynomial

dependence on the accuracy parameter 𝜀. The classic algorithms of [Riv87, Blu92, EH89]

for learning decision trees with zero stochastic transitions achieve this runtime, but because

they are Occam algorithms, they break down in the presence of stochastic transitions. Al-

ternatively, the low-degree algorithm [LMN93] is able to get a constant factor approximation

to the optimal error (again within an additive 𝜀), while running in time 𝑛𝑂(𝑠+log(𝑘/𝜀)). The

quasipolynomial dependence on 1/𝜀 is inherent to the low-degree approach because the de-

gree needs to grow as the target accuracy decreases, which is undesirable when 𝜀 is small as

a function of 𝑘.

408

In contrast, we show that mixtures of 𝑘 subcubes are uniquely identified by their 2 log 𝑘

order moments. Ultimately our algorithm for learning mixtures of subcubes will allow us to

simultaneously match the polynomial dependence on 1/𝜀 of Occam algorithms and achieve

the flexibility of the low-degree algorithm in being able to accommodate stochastic transi-

tions. We emphasize that proving identifiability from 2 log 𝑘 order moments is only a first

step in a much more technical argument: There are many subtleties about how we can

algorithmically exploit the structure of these moments to solve our learning problem.

7.1.1 Our Results and Techniques

Our main result is an 𝑛𝑂(log 𝑘) time algorithm for learning mixtures of subcubes.

Theorem 7.1.1. Let 𝜀, 𝛿 > 0 be given and let 𝒟 be a mixture of 𝑘 subcubes. There is an

algorithm that given samples from 𝒟 runs in time 𝑂𝑘(𝑛
𝑂(log 𝑘)(1/𝜀)𝑂(1) log 1/𝛿) and outputs

a mixture 𝒟′ of 𝑓(𝑘) subcubes that satisfies 𝑑𝑇𝑉 (𝒟,𝒟′) ≤ 𝜀 with probability at least 1 − 𝛿.

Moreover the sample complexity is 𝑂𝑘((log 𝑛/𝜀)
𝑂(1) log 1/𝛿).2

The starting point for our algorithm is the following simple but powerful identifiability

result:

Lemma 7.1.2 (Informal). A mixture of 𝑘 subcubes is uniquely determined by its 2 log 𝑘 order

moments.

In contrast, for many sorts of mixture models with 𝑘 components, typically one needs

Θ(𝑘) moments to establish identifiability [MV10] and this translates to algorithms with

running time at least 𝑛Ω(𝑘) and sometimes even much larger than that. In part, this is

because the notion of identifiability we are aiming for needs to be weaker and as a result is

more subtle. We cannot hope to learn the subcubes and their mixing weights because there

are mixtures of subcubes that can be represented in many different ways, sometimes with

the same number of subcubes. But as distributions, two mixtures of subcubes are the same

if they match on their first 2 log 𝑘 moments. It turns out that proving this is equivalent to

the following basic problem in linear algebra:

2Throughout, the hidden constant depending on 𝑘 will be 𝑂(𝑘𝑘
3

), which we have made no attempt to
optimize.

409

Q2. Given a matrix 𝑀 ∈ {0, 1/2, 1}𝑛×𝑘, what is the minimum 𝑑 for which the set of all

entrywise products of at most 𝑑 rows of 𝑀 spans the set of all entrywise products of rows of

𝑀?

We show that 𝑑 can be at most 2 log 𝑘, which is easily shown to be tight up to constant

factors. We will return to a variant of this question later when we discuss why learning

mixtures of product distributions requires much higher-order moments.

Unsurprisingly, our algorithm for learning mixtures of subcubes is based on the method

of moments. But there is an essential subtlety. For any distribution on the hypercube,

𝑥2𝑖 = 𝑥𝑖. From a technical standpoint, this means that when we compute moments, there is

never any reason to take a power of 𝑥𝑖 larger than one. We call these multilinear moments,

and characterizing the way that the multilinear moments determine the distribution (but

cannot determine its parameters) is the central challenge. Note that multilinearity makes

our problem quite different from typical settings where tensor decompositions can be applied.

Now collect the centers 𝜇1, 𝜇2, · · · , 𝜇𝑘 into a 𝑛× 𝑘 size matrix that we call the marginals

matrix and denote by m. The key step in our algorithm is constructing a basis for the

entrywise products of rows from this matrix. However we cannot afford to simply brute-

force search for this basis among all sets of at most 𝑘 entrywise products of up to 2 log 𝑘

rows of m because the resulting algorithm would run in time 𝑛𝑂(𝑘 log 𝑘). Instead we construct

a basis incrementally.

The first challenge that we need to overcome is that we cannot directly observe the

entrywise product of a set of rows of the marginals matrix. But we can observe its weighted

inner-product with various other vectors. More precisely, if 𝑢, 𝑣 are respectively the entrywise

products of subsets 𝑆 and 𝑇 of rows of some marginals matrix m that realizes the distribution

and 𝜋 is the associated vector of mixing weights, then the relation

𝑘∑︁
𝑖=1

𝜋𝑖𝑢𝑖𝑣𝑖 = E

[︃ ∏︁
𝑖∈𝑆∪𝑇

𝑥𝑖

]︃

holds if 𝑆 and 𝑇 are disjoint. When 𝑆 and 𝑇 intersect, this relation is no longer true because

in order to express the left hand side in terms of the 𝑥𝑖’s we would need to take some

powers to be larger than one, which no longer correspond to multilinear moments that can

410

be estimated from samples.

Now suppose we are given a collection ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑘} of subsets of rows of m and

we want to check if the vectors {𝑣1, 𝑣2, · · · , 𝑣𝑘} (where 𝑣𝑖 is the entrywise product of the

rows in 𝑇𝑖) are linearly independent. Set 𝐽 = ∪𝑖𝑇𝑖. We can define a helper matrix whose

columns are indexed by the 𝑇𝑖’s and whose rows are indexed by subsets of [𝑛]∖𝐽 . The entry

in column 𝑖, row 𝑆 is E[
∏︀

𝑗∈𝑆∪𝑇𝑖 𝑥𝑗] and it is easy to show that if this helper matrix has full

row rank then the vectors {𝑣1, 𝑣2, · · · , 𝑣𝑘} are indeed linearly independent.

The second challenge is that this is an imperfect test. Even if the helper matrix is not

full rank, {𝑣1, 𝑣2, · · · , 𝑣𝑘} might still be linearly independent. Even worse, we can encounter

situations where our current collection ℬ is not yet a basis, and yet for any set we try to

add, we cannot certify that the associated entrywise product of rows is outside the span of

the vectors we have so far. Our algorithm is based on a win-win analysis. We show that

when we get stuck in this way, it is because there is some 𝑆 ⊆ [𝑛] with |𝑆| ≤ 2 log 𝑘 where

the order 2 log 𝑘 entrywise products of subets of rows from [𝑛]∖(𝐽 ∪ 𝑆) do not span the full

𝑘-dimensional space. We show how to identify such an 𝑆 by repeatedly solving systems of

linear equations. Once we identify such an 𝑆 it turns out that for any string 𝑠 ∈ {0, 1}|𝐽∪𝑆|

we can condition on 𝑥𝐽∪𝑆 = 𝑠 and the resulting conditional distribution will be a mixture of

strictly fewer subcubes, which we can then recurse on.

7.1.2 Applications

We demonstrate the power of our 𝑛𝑂(log 𝑘) time algorithm for learning mixtures of subcubes

by applying it to learning decision trees with stochastic transitions. Specifically suppose we

are given a sample 𝑥 that is uniform on the hypercube, but instead of computing its label

based on a 𝑘-leaf decision tree with deterministic transitions, some of the transitions are

stochastic — they read a bit and based on its value proceed down either the left or right

subtree with some unknown probabilities. Such models are popular in medicine [HPS98]

and finance [HS65] when features of the system are partially or completely unobserved and

the transitions that depend on these features appear to an outside observer to be stochastic.

Thus we can also think about decision trees with deterministic transitions but with latent

variables as having stochastic transitions when we marginalize on the observed variables.

411

With stochastic transitions, it is no longer possible to perfectly predict the label even if

you know the stochastic decision tree. This rules out many forms of learning like Occam

algorithms such as [EH89, Blu92, Riv87] that are based on succinctly explaining a large

portion of the observed samples. It turns out that by accurately estimating the distribution

on positive examples — via our algorithm for learning mixtures of subcubes — it is possible

to approach the Bayes optimal classifier in 𝑛𝑂(log 𝑘) time and with only a polylogarithmic

number of samples:

Theorem 7.1.3. Let 𝜀, 𝛿 > 0 be given and let 𝒟 be a distribution on labelled examples

from a stochastic decision tree under the uniform distribution. Suppose further that the

stochastic decision tree has 𝑘 leaves and along any root-to-leaf path there are at most 𝑠

stochastic transitions. There is an algorithm that given samples from 𝒟 runs in time

𝑂𝑘,𝑠(𝑛
𝑂(𝑠+log 𝑘)(1/𝜀)𝑂(1) log 1/𝛿) and with probability at least 1− 𝛿 outputs a classifier whose

probability of error is at most opt + 𝜀 where opt is the error of the Bayes optimal classifier.

Moreover the sample complexity is 𝑂𝑘,𝑠((log 𝑛/𝜀)
𝑂(1) log 1/𝛿).

Recall that the low-degree algorithm [LMN93] is able to learn 𝑘-leaf decision trees in time

𝑛𝑂(log(𝑘/𝜀)) by approximating them by 𝑂(log(𝑘/𝜀)) degree polynomials. These results also

generalize to stochastic settings [AM91]. Recently, Hazan, Klivans and Yuan [HKY17] were

able to improve the sample complexity even in the presence of adversarial noise using the

low-degree Fourier approximation approach together with ideas from compressed sensing for

learning low-degree, sparse Boolean functions [SK12]. Although our algorithm is tailored to

handle stochastic rather than adversarial noise, our algorithm has a much tamer dependence

on 𝜀 which yields much faster algorithms when 𝜀 is small as a function of 𝑘. Moreover we

achieve a considerably stronger (and nearly optimal) error guarantee of opt + 𝜀 rather than

𝑐 · opt + 𝜀 for some constant 𝑐. Our algorithm even works in the natural variations of the

problem [Den98,LDG00,DDS14] where it is only given positive examples.

Lastly, we remark that [DDS14] studied a similar setting where the learner is given sam-

ples from the uniform distribution 𝒟 over satisfying assignments of some Boolean function

𝑓 and the goal is to output a distribution close to 𝒟. Their techniques seem quite different

from ours and also the low-degree algorithm. Among their results, the one most relevant to

ours is the incomparable result that there is an 𝑛𝑂(log(𝑘/𝜀))-time learning algorithm for when

412

𝑓 is a 𝑘-term DNF formula.

7.1.3 More Results

As we discussed earlier, mixtures of subcubes are a special case of mixtures of binary product

distributions. The best known algorithm for learning mixtures of 𝑘 product distributions

is due to Feldman, O’Donnell and Servedio [FOS05] and runs in time 𝑛𝑂(𝑘3). A natural

question which a number of researchers have thought about is whether the dependence on

𝑘 can be improved, perhaps to 𝑛𝑂(log 𝑘). This would match the best known statistical query

(SQ) lower bound for learning mixtures of product distributions, which follows from the fact

that the uniform distribution over inputs accepted by a decision tree is a mixture of product

distributions and therefore from Blum et al.’s 𝑛𝑂(log 𝑘) SQ lower bound [BFJ+94].

As we will show, it turns out that mixtures of product distributions require much higher-

order moments even to distinguish a mixture of 𝑘 product distributions from the uniform

distribution on {0, 1}𝑛. As before, this turns out to be related to a basic problem in linear

algebra:

Q3. For a given 𝑘, what is the largest possible collection of vectors 𝑣1, 𝑣2, · · · , 𝑣𝑚 ∈ R𝑘 for

which (1) the entries in the entrywise product of any 𝑡 < 𝑚 vectors sum to zero and (2) the

entries in the entrywise product of all 𝑚 vectors do not sum to zero?3

We show a rather surprising construction that achieves 𝑚 = 𝑐
√
𝑘. An obvious upper bound

for 𝑚 is 𝑘. It is not clear what the correct answer ought to be. In any case, we show that

this translates to the following negative result:

Lemma 7.1.4 (Informal). There is a family of mixtures of product distributions that are all

different as distributions but which match on all 𝑐
√
𝑘 order moments.

Given a construction for Question 3, the idea for building this family is the same idea

that goes into the 𝑛Ω(𝑠) SQ lower bound for 𝑠-sparse parity [Kea98] and the 𝑛Ω(𝑘) SQ lower

bound for density estimation of mixtures of 𝑘 Gaussians [DKS17], namely that of hiding

a low-dimensional moment-matching example inside a high-dimensional product measure.

We leverage Lemma 7.1.4 to show an SQ lower bound for learning mixtures of product

3In Section 7.2.5 we discuss the relationship between Questions 2 and 3.

413

distributions that holds for small values of 𝜀, which is exactly the scenario we are interested

in, particularly in applications to learning stochastic decision trees.

Theorem 7.1.5 (Informal). Any algorithm given Ω(𝑛−
√
𝑘/3)-accurate statistical query access

to a mixture 𝒟 of 𝑘 binary product distributions that outputs a distribution 𝒟′ satisfying

𝑑𝑇𝑉 (𝒟,𝒟′) ≤ 𝜀 for 𝜀 ≤ 𝑘−𝑐
√
𝑘 must make at least 𝑛𝑐′

√
𝑘 queries.

This improves upon the previously best known SQ lower bound of 𝑛Ω(log 𝑘), although for larger

values of 𝜀 our construction breaks down. In any case, in a natural dimension-independent

range of parameters, mixtures of product distributions are substantially harder to learn using

SQ algorithms than the special case of mixtures of subcubes.

Finally, we leverage the insights we developed for reasoning about higher-order multilinear

moments to give improved algorithms for learning mixtures of binary product distributions:

Theorem 7.1.6. Let 𝜀, 𝛿 > 0 be given and let 𝒟 be a mixture of 𝑘 binary product distribu-

tions. There is an algorithm that given samples from 𝒟 runs in time 𝑂𝑘((𝑛/𝜀)
𝑂(𝑘2) log 1/𝛿)

and outputs a mixture 𝒟′ of 𝑓(𝑘) binary product distributions that satisfies 𝑑𝑇𝑉 (𝒟,𝒟′) ≤ 𝜀

with probability at least 1− 𝛿.

Here we can afford to brute-force search for a basis. However a different issue arises.

In the case of mixtures of subcubes, when a collection of vectors that come from entrywise

products of rows are linearly independent we can also upper bound their condition number,

which allows us to get a handle on the fact that we only have access to the moments of

the distribution up to some sampling noise. But when the centers are allowed to take on

arbitrary values in [0, 1]𝑛 there is no a priori upper bound on the condition number. To

handle sampling noise, instead of finding just any basis, we find a barycentric spanner.4 We

proceed via a similar win-win analysis as for mixtures of subcubes: in the case that condition

number poses an issue for learning the distribution, we argue that after conditioning on the

coordinates of the barycentric spanner, the distribution is close to a mixture of fewer product

distributions. A key step in showing this is to prove the following robust identifiability result

that may be of independent interest:

Lemma 7.1.7 (Informal). Two mixtures of 𝑘 product distributions are 𝜀-far in statistical

4Specifically, we find a barycentric spanner for just the rows of the marginals matrix, rather than for the
set of entrywise products of rows of the marginals matrix.

414

distance if and only if they differ by poly(𝑛, 1/𝜀, 2𝑘)−𝑂(𝑘) on a 2𝑘-order moment.

In fact this is tight in the sense that 𝑜(𝑘)-order moments are insufficient to distinguish

between some mixtures of 𝑘 product distributions (see the discussion in Section 7.2.5). An-

other important point is that in the case of mixtures of subcubes, exact identifiability by

𝑂(log 𝑘)-order moments (Lemma 7.1.2) is non-obvious but, once proven, can be bootstrapped

in a black-box fashion to robust identifiability using the abovementioned condition number

bound. On the other hand, for mixtures of product distributions, exact identifiability by

𝑂(𝑘)-order moments is straightforward, but without a condition number bound, it is much

more challenging to turn this into a result about robust identifiability.

7.1.4 Organization

The rest of this chapter is organized as follows:

• Section 7.2 — we set up basic definitions, notation, and facts about mixtures of product

distributions and provide an overview of our techniques.

• Section 7.3 — we describe our algorithm for learning mixtures of subcubes and give

the main ingredients in the proof of Theorem 7.1.1.

• Section 7.4 — we prove the statistical query lower bound of Theorem 7.1.5.

• Section 7.5 — we describe our algorithm for learning general mixtures of product

distributions, prove a robust low-degree identifiability lemma in Section 7.5.4, give the

main ingredients in the proof of Theorem 7.1.6, and conclude in Section 7.5.6 with a

comparison of our techniques to those of [FOS05].

• Appendix 7.6 — we make precise the sampling tree-based framework that our algo-

rithms follow.

• Appendix 7.7 — we complete the proof of Theorem 7.1.1

• Appendix 7.8 — we complete the proof of Theorem 7.1.6

415

• Appendix 7.9 — we make precise the connection between mixtures of subcubes and

various classical learning theory problems, including stochastic decision trees, juntas,

and sparse parity with noise, and prove Theorem 7.1.3.

7.2 Preliminaries

7.2.1 Notation and Definitions

Given a matrix 𝐴 and a set 𝑆, we denote 𝐴|𝑆 as the restriction of 𝐴 to rows in 𝑆. And

similarly 𝐴|𝑇 is the restriction of 𝐴 to columns in 𝑇 . In this chapter, we will let ‖𝐴‖∞ denote

the induced 𝐿∞ operator norm of 𝐴, that is, the maximum absolute row sum. We will also

make frequent use of entrywise products of vectors and their relation to the multilinear

moments of the mixture model.

Definition 7.2.1. The entrywise product
⨀︀

𝑗∈𝑆 𝑣
𝑗 of a collection of vectors {𝑣𝑗}𝑗∈𝑆 is the

vector whose 𝑖𝑡ℎ coordinate is
∏︀

𝑗∈𝑆 𝑣
𝑗
𝑖 . When 𝑆 = ∅,

⨀︀
𝑗∈𝑆 𝑣𝑖 is the all ones vector.

Given a set 𝐽 , we use 2𝐽 to denote the powerset of 𝐽 . Let 𝑈𝑛 be the uniform distribution

over {0, 1}𝑛. Also let ℛ(𝐽) = 2[𝑛]∖𝐽 for convenience. Let 𝒟(𝑥) denote the density of 𝒟 at 𝑥.

Let 1𝑛 be the all ones string of length 𝑛.

Definition 7.2.2. For 𝑆 ⊆ [𝑛], the 𝑆-moment of 𝒟 is Pr𝒟[𝑥𝑆 = 1|𝑆|]. We will sometimes

use the shorthand E𝒟[𝑥𝑆].

There can be many choices of mixing weights and centers that yield the same mixture of

product distributions 𝒟. We will refer to any valid choice of parameters as a realization of

𝒟.

Definition 7.2.3. A mixture of 𝑘 product distributions 𝒟 is a mixture of 𝑘 subcubes if there

is a realization of 𝒟 with mixing weights 𝜋1, 𝜋2, · · · , 𝜋𝑘 and centers 𝜇1, 𝜇2, · · · , 𝜇𝑘 for which

each center has only {0, 1/2, 1} values.

In this chapter, when referring to mixing weights, our superscript notation is only for

indexing and never for powering.

There are three main matrices we will be concerned with.

416

Definition 7.2.4. The marginals matrix m is a 𝑛× 𝑘 matrix obtained by concatenating the

centers 𝜇1, 𝜇2, · · · , 𝜇𝑘, for some realization. The moment matrix M is a 2𝑛×𝑘 matrix whose

rows are indexed by sets 𝑆 ⊆ [𝑛] and

M𝑆 =
⨀︁
𝑖∈𝑆

m𝑖

Finally the cross-check matrix C is a 2𝑛 × 2𝑛 matrix whose rows and columns are indexed

by sets 𝑆, 𝑇 ⊆ [𝑛] and whose entries are in [0, 1] ∪ {?} where

C𝑇
𝑆 =

⎧⎪⎨⎪⎩E𝒟[𝑥𝑆∪𝑇] if 𝑆 ∩ 𝑇 = ∅

? otherwise

We say that an entry of C is accessible if it is not equal to ?.

It is important to note that m and M depend on the choice of a particular realization

of 𝒟, but that C does not because its entries are defined through the moments of 𝒟. The

starting point for our algorithms is the following observation about the relationship between

M and C:

Observation 7.2.5. For any realization of 𝒟 with mixing weights 𝜋 and centers 𝜇1, 𝜇2, · · · , 𝜇𝑘.

Then

(1) For any set 𝑆 ⊆ [𝑛] we have M𝑆 · 𝜋 = E𝒟[𝑥𝑆]

(2) For any pair of sets 𝑆, 𝑇 ⊆ [𝑛] with 𝑆 ∩ 𝑇 = ∅ we have

C𝑇
𝑆 =

(︁
M · diag(𝜋) ·M⊤

)︁𝑇
𝑆

The idea behind our algorithms are to find a basis for the rows of M or failing that to find

some coordinates to condition on which result in a mixture of fewer product distributions.

The major complications come from the fact that we can only estimate the accessible entries

of C from samples from our distribution. If we had access to all of them, it would be

straightforward to use the above relationship between M and C to find a set of rows of M

that span the row space.

417

7.2.2 Rank of the Moment Matrix and Conditioning

First we will show that without loss of generality we can assume that the moment matrix

M has full column rank. If it does not, we will be able to find a new realization of 𝒟 as a

mixture of strictly fewer product distributions.

Definition 7.2.6. A realization of 𝒟 is a full rank realization if M has full column rank

and all the mixing weights are nonzero. Furthermore if rank(M) = 𝑘 we will say 𝒟 has rank

𝑘.

Lemma 7.2.7. Fix a realization of 𝒟 with mixing weights 𝜋 and centers 𝜇1, 𝜇2, · · · , 𝜇𝑘 and

let M be the moment matrix. If rank(M) = 𝑟 < 𝑘 then there are new mixing weights 𝜋′ such

that:

(1) 𝜋′ has 𝑟 nonzeros

(2) 𝜋′ and 𝜇1, 𝜇2, · · · , 𝜇𝑘 also realize 𝒟.

Moreover the submatrix M′ consisting of the columns of M with nonzero mixing weight in

𝜋′ has rank 𝑟.

Proof. We will proceed by induction on 𝑟. When 𝑟 = 𝑘 − 1 there is a vector 𝑣 ∈ ker(M).

The sum of the entries in 𝑣 must be zero because the first row of M is the all ones vector.

Now if we take the line 𝜋 + 𝑡𝑣 as we increase 𝑡, there is a first time 𝑡0 when a coordinate

becomes zero. Let 𝜋′ = 𝜋 + 𝑡0𝑣. By construction, 𝜋′ is nonnegative and its entries sum to

one and it has at most 𝑘 − 1 nonzeros. We can continue in this fashion until the columns

corresponding to the support of 𝜋′ in M are linearly independent. Note that as we change

the mixing weights, the moment matrix M stays the same. Also the resulting matrix M′

that we get must have rank 𝑟 because each time we update 𝜋 we are adding a multiple of

a vector in the kernel of M so the columns whose mixing weight is changing are linearly

dependent.

Thus when we fix an (unknown) realization of 𝒟 in our analysis, we may as well assume

that it is a full rank realization. This is true even if we restrict our attention to mixtures

of subcubes where the above lemma shows that if M does not have full column rank, there

418

is a mixture of 𝑟 < 𝑘 subcubes that realizes 𝒟. Next we show that mixtures of product

distributions behave nicely under conditioning:

Lemma 7.2.8. Fix a realization of 𝒟 with mixing weights 𝜋 and centers 𝜇1, 𝜇2, · · · , 𝜇𝑘. Let

𝑆 ⊆ [𝑛] and 𝑠 ∈ {0, 1}|𝑆|. The the conditional distribution 𝒟|𝑥𝑆=𝑠 can be realized as a mixture

of 𝑘 product distributions with mixing weights 𝜋′ and centers

𝜇1|[𝑛]∖𝑆, 𝜇2|[𝑛]∖𝑆, · · · , 𝜇𝑘|[𝑛]∖𝑆

Proof. Using Bayes’ rule we can write out the mixing weights 𝜋′ explicitly as

𝜋′ =
𝜋
⨀︀(︁⨀︀

𝑖∈𝑆 𝛾
𝑖
)︁

Pr𝒟[𝑥𝑆 = 𝑠]

where we have abused notation and used
⨀︀

as an infix operator and where 𝛾𝑖 = 𝜇𝑖 + (1−

𝑠𝑖) · (1− 2𝜇𝑖). This follows because the map 𝑥 ↦→ 𝑥+ (1− 𝑠) · (1− 2𝑥) is the identity when

𝑠 = 1 and 𝑥 ↦→ 1− 𝑥 when 𝑠 = 0

We can straightforwardly combine Lemma 7.2.7 and Lemma 7.2.8 to conclude that if

rank(M|2[𝑛]∖𝑆) = 𝑟 then for any 𝑠 ∈ {0, 1}|𝑆| there is a realization of 𝒟|𝑥𝑆=𝑠 as a mixture of

𝑟 product distributions. Moreover if 𝒟 was a mixture of subcubes then so too would the

realization of 𝒟|𝑥𝑆=𝑠 be.

7.2.3 Linear Algebraic Relations between M and C

Even though not all of the entries of C are accessible (i.e. can be estimated from samples

from 𝒟) we can still use it to deduce linear algebraic properties among the rows of M. All

of the results in this subsection are elementary consequences of Observation 7.2.5.

Lemma 7.2.9. Let 𝑇1, 𝑇2, · · · , 𝑇𝑟 ⊆ [𝑛] and set 𝐽 = ∪𝑖𝑇𝑖. If the columns

C𝑇1 |ℛ(𝐽),C
𝑇2 |ℛ(𝐽), · · · ,C𝑇𝑟 |ℛ(𝐽)

419

are linearly independent then for any realization of 𝒟 the rows M𝑇1 ,M𝑇2 , · · · ,M𝑇𝑟 are also

linearly independent.

Proof. Fix any realization of 𝒟. Using Observation 7.2.5, we can write:

C|𝑇1,...,𝑇𝑟ℛ(𝐽) = M|ℛ(𝐽) · diag(𝜋) ·
(︁
M⊤

)︁
|𝑇1,...,𝑇𝑟

Now suppose for the sake of contradiction that the rows of M|𝑇1,...,𝑇𝑟 are not linearly inde-

pendent. Then there is a nonzero vector 𝑢 so that (M⊤)|𝑇1,...,𝑇𝑟𝑢 = 0 which by the above

equation immediately implies that the columns of C|𝑇1,...,𝑇𝑟ℛ(𝐽) are not linearly independent,

which yields our contradiction.

Next we prove a partial converse to the above lemma:

Lemma 7.2.10. Fix a realization of 𝒟 and let 𝒟 have rank 𝑘. Let 𝑇1, 𝑇2, · · · , 𝑇𝑟 ⊆ [𝑛] and

set 𝐽 = ∪𝑖𝑇𝑖. If rank(M|ℛ(𝐽)) = 𝑘 and there are coefficients 𝛼1, 𝛼2, · · · , 𝛼𝑟 so that

𝑟∑︁
𝑖=1

𝛼𝑖C
𝑇𝑖 |ℛ(𝐽) = 0

then the corresponding rows of M are linearly dependent too — i.e.
∑︀𝑟

𝑖=1 𝛼𝑖M𝑇𝑖 = 0.

Proof. By the assumptions of the lemma, we have that

M|ℛ(𝐽) · diag(𝜋) ·
(︁
M⊤

)︁
|𝑇1,...,𝑇𝑟𝛼 = 0

Now rank(M|ℛ(𝐽)) = 𝑘 and the fact that the mixing weights are nonzero implies that M|ℛ(𝐽) ·

diag(𝜋) is invertible. Hence we conclude that
(︁
M⊤

)︁
|𝑇1,...,𝑇𝑟𝛼 = 0 as desired.

Of course, we don’t actually have exact estimates of the moments of 𝒟, so in Ap-

pendix 7.7 we prove the sampling noise-robust analogues of Lemma 7.2.9 and Lemma 7.2.10

(see Lemma 7.7.1) needed to get an actual learning algorithm.

420

7.2.4 Technical Overview for Learning Mixtures of Subcubes

With these basic linear algebraic relations in hand, we can explain the intuition behind

our algorithms. Our starting point is the observation that if we know a collection of sets

𝑇1, ..., 𝑇𝑘 ⊂ [𝑛] indexing a row basis of M, then we can guess one of the 3𝑘·|𝑇1∪···∪𝑇𝑘| possibil-

ities for the entries of m|𝑇1∪···∪𝑇𝑘 . Using a correct guess, we can solve for the mixing weights

using (1) from Observation 7.2.5. The point is that because 𝑇1, ..., 𝑇𝑘 index a row basis of

M, the system of equations

M𝑇𝑗 · 𝜋 = E𝒟[𝑥𝑇𝑗], 𝑗 = 1, ..., 𝑘 (7.1)

has a unique solution which thus must be the true mixing weights in the realization (𝜋,m).

We can then solve for the remaining rows of m using part 2 of Observation 7.2.5, i.e. for

every 𝑖 ̸∈ 𝑇1 ∪ · · · ∪ 𝑇𝑘 we can solve

M𝑇𝑗 · diag(𝜋) ·m⊤
𝑖 = E𝒟[𝑥𝑇𝑗∪{𝑖}] ∀𝑗 = 1, ..., 𝑘. (7.2)

Again, because the rows M𝑇𝑖 are linearly independent and 𝜋 has no zero entries, we conclude

that the true value of m𝑖 is the unique solution.

There are three main challenges to implementing this strategy:

A Identifiability. How do we know whether a given guess for m|𝑇1∪···∪𝑇𝑘 is correct?

More generally, how do we efficiently test whether a given distribution is close to the

underlying mixture of subcubes?

B Building a Basis. How do we produce a row basis for M without knowing M, let

alone one for which 𝑇1∪· · ·∪𝑇𝑘 is small enough that we can actually try all 3𝑘·|𝑇1∪···∪𝑇𝑘|

possibilities for m|𝑇1∪···∪𝑇𝑘?

C Sampling Noise. Technically we only have approximate access to the moments of

𝒟, so even from a correct guess for m|𝑇1∪···∪𝑇𝑘 we only obtain approximations to 𝜋

and the remaining rows of m. How does sampling noise affect the quality of these

approximations?

421

Identifiability

As our algorithms will be based on the method of moments, an essential first question to

answer is that of identifiability: what is the minimum 𝑑 for which mixtures of 𝑘 subcubes

are uniquely identified by their moments of degree at most 𝑑? As alluded to in Section 7.1.1,

it is enough to answer Question 2, which we can restate in our current notation as:

Q4. Given a matrix m ∈ {0, 1/2, 1}𝑛×𝑘 with associated 2𝑛 × 𝑘 moment matrix M, what is

the minimum 𝑑 for which the rows {M𝑆}|𝑆|≤𝑑 span all rows of M?

Let 𝑑(𝑘) be the largest 𝑑 for Question 4 among all m ∈ {0, 1/2, 1}𝑛×𝑘. Note that 𝑑(𝑘) =

Ω(log 𝑘) just from considering a 𝑂(log 𝑘)-sparse parity with noise instance as a mixture of

𝑘 subcubes. The reason getting upper bounds on 𝑑(𝑘) is directly related to identifiability is

that 𝑘 subcubes are uniquely identified by their moments of degree at most 𝑑(2𝑘). Indeed,

if (𝜋1,m1) and (𝜋2,m2) realize different distributions 𝒟1 and 𝒟2 , then there must exist

𝑆 ⊆ [𝑛] for which

(M1)𝑆 · 𝜋1 = E𝒟1 [𝑥𝑆] ̸= E𝒟2 [𝑥𝑆] = (M2)𝑆 · 𝜋2.

In other words, the vector (𝜋1| − 𝜋2) ∈ R2𝑘 does not lie in the right kernel of the matrix

2𝑛 × 2𝑘 matrix (M1|M2). But because N , (M1|M2) is the moment matrix of the matrix

(m1|m2) ∈ {0, 1/2, 1}𝑛×2𝑘, its rows are spanned by the rows (N𝑆)|𝑆|≤𝑑(2𝑘), so there in fact

exists 𝑆 ′ of size at most 𝑑(2𝑘) for which E𝒟1 [𝑥𝑆′] ̸= E𝒟2 [𝑥𝑆′]. Finally, note also that the

reverse direction of this argument holds, that is, if mixtures of 𝑘 subcubes 𝒟1 and 𝒟2 agree

on all moments of degree at most 𝑑(2𝑘), then they are identical as distributions.

In Section 7.3.1, we show that 𝑑(𝑘) = Θ(log 𝑘). The idea is that there is a natural corre-

spondence between 1) linear relations among the rows of M𝑆 for |𝑆| ≤ 𝑑 and 2) multilinear

polynomials of degree at most 𝑑 which vanish on the rows of m. The bound on 𝑑(𝑘) then

follows from cleverly constructing an appropriate low-degree multilinear polynomial.

Note that the above discussion only pertains to exact identifiability. For the purposes of

our learning algorithm, we want robust identifiability, i.e. there is some 𝑑′(𝑘) such that 𝒟1

and 𝒟2 are far in statistical distance if and only if they differ noticeably on some moment

of degree at most 𝑑′(𝑘). It turns out that it suffices to take 𝑑′(𝑘) to be the same Θ(log 𝑘),

and in Section 7.2.4 below, we sketch how we achieve this.

422

Once we have robust identifiability in hand, we have a way to resolve Challenge A above:

to check whether a given guess for m|𝑇1∪···∪𝑇𝑘 is correct, compute the moments of degree

at most Θ(log 𝑘) of the corresponding candidate mixture of subcubes and compare them to

empirical estimates of the moments of the underlying mixture. If they are close, then the

mixture of subcubes we have learned is close to the true distribution.

As we will see below though, while the bound of 𝑑(𝑘) = Θ(log 𝑘) is a necessary first step

to achieving a quasipolynomial running time for our learning algorithm, there will be many

more steps and subtleties along the way to getting an actual algorithm.

Building a Basis

We now describe how we address Challenge B. The key issue is that we do not have access

to the entries of M (and M itself depends on the choice of a particular realization). Given

the preceding discussion about Question 4, a naive way to circumvent this is simply to guess

a basis from among all combinations of at most 𝑘 rows from {M𝑆}|𝑆|≤𝑑(𝑘), but this would

take time 𝑛Θ(𝑘 log 𝑘).

As we hinted at in Section 7.1.1, we will overcome the issue of not having access to M

by using the accessible entries of C, which we can easily estimate by drawing samples from

𝒟, as a surrogate for M (see Lemmas 7.2.9 and 7.2.10). To this end, one might first try

to use C to find a row basis for M by looking at the submatrix of C consisting of entries

{C𝑇
𝑆}𝑆,𝑇 :|𝑆|,|𝑇 |≤𝑑(𝑘) and simply picking out a column basis {𝑇1, ..., 𝑇𝑟} for this submatrix. Of

course, the crucial issue is that we can only use the accessible entries of C.

Instead, we will incrementally build up a row basis. Suppose at some point we have found

a list of subsets 𝑇1, ..., 𝑇𝑚 indexing linearly independent rows of M for some realization of

𝒟 and are deciding whether to add some set 𝑇 to this list. By Lemmas 7.2.9 and 7.2.10, if

rank(M|ℛ(𝐽)) = 𝑘, where 𝐽 = 𝑇 ∪ (𝑇1 ∪ · · · ∪ 𝑇𝑚), then M𝑇 is linearly independent from

M𝑇1 , ...,M𝑇𝑚 if and only if the column vector C𝑇 |ℛ(𝐽) is linearly independent from column

vectors C𝑇1|ℛ(𝐽), ...,C
𝑇𝑚|ℛ(𝐽).5

If we make the strong assumption that we always have that rank(M|ℛ(𝐽)) = 𝑘 in the

5Note that while the dimension of these column vectors is exponential in 𝑛, the discussion in Section 7.2.4
implies that it suffices to look only at the coordinates of these columns that are indexed by 𝑆 with |𝑆| ≤
𝑑(𝑘) = Θ(log 𝑘).

423

course of running this procedure, the problem of finding a row basis for M reduces to the

following basic question:

Q5. Given 𝑇1, ..., 𝑇𝑚 indexing linearly independent rows of a moment matrix M, as well as

access to an oracle which on input 𝑇 decides whether M𝑇 lies in the span of M𝑇1 , ...,M𝑇𝑚,

how many oracle calls does it take to either find 𝑇 for which M𝑇 lies outside the span of

M𝑇1 , ...,M𝑇𝑚 or successfully conclude that M𝑇1 , ...,M𝑇𝑚 are a row basis for M?

Section 7.2.4 tells us it suffices to look at all remaining subsets of size at most 𝑑(𝑘) which

have not yet been considered, which requires checking at most 𝑛𝑂(log 𝑘) subsets before we

decide whether to add a new subset to our basis.

Later, in Section 7.3.4, we will show the following alternative approach which we call

GrowByOne suffices: simply consider all subsets of the form 𝑇𝑗 ∪ {𝑖} for 1 ≤ 𝑖 ≤ 𝑚 and

𝑖 ̸∈ 𝑇1 ∪ · · · ∪ 𝑇𝑚. If 𝑇1, ..., 𝑇𝑚 have up to this point been constructed in this incremental

fashion, we prove that if no such 𝑇𝑗 ∪ {𝑖} can be added to our list and moreover we have

that rank(M|ℛ(𝐽)) = rank(M|ℛ(𝑇1∪···∪𝑇𝑚∪{𝑖})) = 𝑘 for every 𝑖, then 𝑇1, ..., 𝑇𝑚 indexes a row

basis for M.

The advantages of GrowByOne are that it 1) only requires checking at most 𝑛𝑘 subsets

before we decide whether to add a new subset to our basis, 2) it works even when we assume

M is the moment matrix of a mixture of arbitrary product distributions, and 3) it will simplify

our analysis regarding issues of sampling noise.

Making Progress When Basis-Building Fails

The main subtlety is that the correctness of GrowByOne as outlined in Section 7.2.4 hinges

on the fact that rank(M|ℛ(𝐽)) = 𝑘 at every point in the algorithm. But if this is not the

case and yet C𝑇
ℛ(𝐽) lies in the span of C𝑇1

ℛ(𝐽), ...,C
𝑇𝑚
ℛ(𝐽), we cannot conclude whether M𝑇 lies

in the span of M𝑇1 , ...,M𝑇𝑚 . In particular, suppose we found that C𝑇
ℛ(𝐽) lies in the span

of C𝑇1
ℛ(𝐽), ...,C

𝑇𝑚
ℛ(𝐽) for every candidate subset 𝑇 = 𝑇𝑗 ∪ {𝑖} and therefore decided to add

nothing more to the list 𝑇1, ..., 𝑇𝑚. Then while Lemma 7.2.9 guarantees that the rows of M

corresponding to 𝑇1, ..., 𝑇𝑚 are linearly independent, we can no longer ascertain that they

span all the rows of M.

The key idea is that if this is the case, then there must have been some candidate 𝑇 = 𝑇𝑗∪

424

{𝑖} such that rank(M|ℛ(𝑇1∪···∪𝑇𝑚∪{𝑖})) < 𝑘. We call the set of all such 𝑖 the set of impostors.

By Lemma 7.2.7, if 𝑖 is an impostor, the conditional distribution (𝒟|𝑥𝑇1∪···∪𝑇𝑚∪{𝑖} = 𝑠) can

be realized as a mixture of strictly fewer than 𝑘 subcubes for any bitstring 𝑠. The upshot is

that even if the list 𝑇1, ..., 𝑇𝑚 output by GrowByOne does not correspond to a row basis

of M, we can make progress by conditioning on the coordinates 𝑇1 ∪ · · · ∪ 𝑇𝑚 ∪ {𝑖} for an

impostor 𝑖 and recursively learning mixtures of fewer subcubes.

On the other hand, the issue of actually identifying an impostor 𝑖 ̸∈ 𝑇1∪ · · · ∪𝑇𝑚 is quite

delicate. Because there may be up to 𝑘 levels of recursion, we cannot afford to simply brute

force over all 𝑛 − |𝑇1 ∪ · · · ∪ 𝑇𝑛| possible coordinates. Instead, the idea will be to pretend

that 𝑇1, ..., 𝑇𝑚 actually corresponds to a row basis of M and use this to attempt to learn the

parameters of the mixture. It turns out that either the resulting mixture will be close to 𝒟

on all low-degree moments and robust identifiability will imply we have successfully learned

𝒟, or it will disagree on some low-degree moment, and we show in Section 7.3.3 that this

low-degree moment must contain an impostor 𝑖.

Sampling Noise

Obviously we only have access to empirical estimates of the entries of C, so for instance,

instead of checking whether a column of C lies in the span of other columns of C, we look

at the corresponding 𝐿∞ regression problem. In this setting, the above arguments still carry

over provided that the submatrices of M and C used are well-conditioned. We show in

Section 7.3.5 that the former are well-conditioned by Cramer’s, as they are matrices whose

entries are low-degree powers of 1/2, and this on its own can already be used to show robust

identifiability. By Observation 7.2.5, the submatrices of C used in the above arguments

are also well-conditioned provided that 𝜋 has no small entries. But if 𝜋 has small entries,

intuitively we might as well ignore these entries and only attempt to learn the subcubes of

the mixture which have non-negligible mixing weight.

In Section 7.3.5, we explain in greater detail the subtleties that go into dealing with these

issues of sampling noise.

425

7.2.5 Technical Overview for SQ Lower Bound

To understand the limitations of the method of moments for more general mixtures of product

distributions, we can first ask Question 4 more generally for arbitrary matrices m ∈ R𝑛×𝑘,

but in this case it is not hard to see that the minimum 𝑑 for which the rows {M𝑆}|𝑆|≤𝑑
span all rows of M can be as high as 𝑘 − 1. Simply take m to have identical rows, each of

which consists of 𝑘 distinct entries 𝑧1, ..., 𝑧𝑘 ∈ [0, 1]. Then M𝑆 = (𝑧
|𝑆|
1 , ..., 𝑧

|𝑆|
𝑘), so by usual

properties of Vandermonde matrices, the rows {M𝑆}|𝑆|≤𝑑 will not span the rows of M until

𝑑 ≥ 𝑘 − 1.6

From such an m, we immediately get a pair of mixtures (𝜇1,m1) and (𝜇2,m2) that agree

on all moments of degree at most 𝑘−2 but differ on moments of degree 𝑘−1: let 𝜇1 and −𝜇2

up to scaling be the positive and negative parts of an element in the kernel of {𝑀𝑆}|𝑆|<𝑘−1,

and let m1 and m2 be the corresponding disjoint submatrices of m. But this is not yet

sufficient to establish an SQ lower bound of 𝑛Ω(𝑘).

Instead, we will exhibit a large collection 𝒞 of mixtures of 𝑘 product distributions that

all agree with the uniform distribution over {0, 1}𝑛 on moments up to some degree 𝑑*(𝑘)− 1

but differ on some moment of degree 𝑑*(𝑘). This will be enough to give an SQ lower bound

of 𝑛Ω(𝑑*(𝑘)).

The general approach is to construct a mixture 𝒜 of product distributions over {0, 1}𝑑*(𝑘)

whose top-degree moment differs noticeably from 2−𝑑
*(𝑘) but whose other moments agree with

that of the uniform distribution over {0, 1}𝑑*(𝑘). The collection 𝒞 of mixtures will then consist

of all product measures given by 𝒜 in some 𝑑*(𝑘) coordinates 𝑆 and the uniform distribution

over {0, 1}𝑛−𝑑*(𝑘) in the remaining coordinates [𝑛]∖𝑆. This general strategy of embedding a

low-dimensional moment-matching distribution 𝒜 in some hidden set of coordinates is the

same principle behind SQ lower bounds for learning sparse parity [Kea98], robust estimation

and density estimation of mixtures of Gaussians [DKS17], etc.

The main challenge is to actually construct the mixture 𝒜. We reduce this problem to

Question 3 and give an explicit construction in Section 7.4 with 𝑑*(𝑘) = Θ(
√
𝑘).

6Note that by the connection between linear relations among rows of M𝑆 and multilinear polynomials
vanishing on the rows of m, this example is also tight, i.e. {M𝑆}|𝑆|≤𝑘−1 will span the rows of M for any
𝑚 ∈ R𝑛×𝑘.

426

7.2.6 Technical Overview for Learning Mixtures of Product Distri-

butions

The main difficulty with learning mixtures of general product distributions is that moment

matrices can be arbitrarily ill-conditioned, which makes it far more difficult to handle sam-

pling noise. Indeed, with exact access to the accessible entries of C, one can in fact show

there exists a 𝑛𝑂(𝑑*(𝑘)) algorithm for learning mixtures of general product distributions, where

𝑑*(𝑘) is the answer to Question 3, though we omit the proof of this in this work. In the

presence of sampling noise, it is not immediately clear how to adapt the approach from

Section 7.2.4. The three main challenges are:

A Robust Identifiability. For mixtures of subcubes, robust identifiability essentially

followed from exact identifiability and a condition number bound on M. Now that M

can be arbitrarily ill-conditioned, how do we still show that two mixtures of product

distributions that are far in statistical distance must differ noticeably on some low-

degree moment?

B Using C as a Proxy for M. Without a condition number bound, can approximate

access to C still be useful for deducing (approximate) linear algebraic relations among

the rows of M?

C Guessing Entries of m. Entries of m are arbitrary scalars now, rather than numbers

from {0, 1/2, 1}. We can still try discretizing by guessing integer multiples 0, 𝜂, 2𝜂, ..., 1

of some small scalar 𝜂, but how small must 𝜂 be for this to work?

For Challenge A, we will show that if two mixtures of 𝑘 product distributions are far in sta-

tistical distance, they must differ noticeably on some moment of degree at most 2𝑘. Roughly,

the proof is by induction on the total number of product distributions in the two mixtures,

though the inductive step is rather involved and we defer the details to Section 7.5.4, which

can be read independently of the other parts of the proof of Theorem 7.1.6.

Next, we make Challenges B and C more manageable by shifting our goal: instead of a row

basis for M, we would like a row basis for m that is well-conditioned in an appropriate sense.

Specifically, we want a row basis 𝐽 ⊂ [𝑛] for m such that if we express any other row of m as a

427

linear combination of this basis, the corresponding coefficients are small. This is precisely the

notion of barycentric spanner introduced in [AK08], where it was shown that any collection

of vectors has a barycentric spanner. We can find a barycentric spanner for the rows of m

by simply guessing all
(︀
𝑛
𝑘

)︀
possibilities. We then show that if 𝐽 = {𝑖1, ..., 𝑖𝑟} is a barycentric

spanner and M|ℛ(𝐽∪𝑖𝑗) is well-conditioned in an 𝐿∞ sense for all 1 ≤ 𝑗 ≤ 𝑟, then in analogy

with Lemma 7.2.10, one can learn good approximations to the true coefficients expressing

the remaining rows of m in terms of m𝑖1 , ...,m𝑖𝑟 . Furthermore, these approximations are

good enough that it suffices to pick the discretization parameter in Challenge C to be 𝜂 =

poly(𝜀/𝑛), in which case the 𝑘2 entries of m|𝐽 can be guessed in time (𝑛/𝜀)𝑂(𝑘2).

If instead M|ℛ(𝐽∪{𝑖𝑗}) is ill-conditioned for some “impostor” 1 ≤ 𝑗 ≤ 𝑟, we can afford

now to simply brute-force search for the impostor, but we cannot appeal to Lemma 7.2.7

to argue as before that each of the conditional distributions (𝒟|𝑥𝐽∪{𝑖𝑗} = 𝑠) is a mixture of

fewer than 𝑘 product distributions, because M|ℛ(𝐽∪{𝑖𝑗}) might still have rank 𝑘. Instead, we

show in Section 7.5.5 that robust identifiability implies that these conditional distributions

are close to mixtures of at most 𝑘 − 1 product distributions, and this is enough for us to

make progress and recursively learn.

7.3 Learning Mixtures of Subcubes in Quasipolynomial

Time

7.3.1 Logarithmic Moments Suffice

Recall that a mixture of 𝑘 subcubes can represent the distribution on positive examples

from an 𝑠-sparse parity with noise when 𝑘 = 2𝑠−1 + 1. It is well known that every 𝑠 − 1

moments of such a distribution are indistinguishable from the uniform distribution. Here we

prove a converse and show that for mixtures of 𝑘 subcubes all of the relevant information is

contained within the 𝑂(log 𝑘) moments. More precisely we show:

Lemma 7.3.1. Let 𝒟 be a mixture of 𝑘 subcubes and fix a realization where the centers are

428

{0, 1/2, 1}-valued. Let M be the corresponding moment matrix. Then

{︁
M𝑇

⃒⃒⃒
|𝑇 | < 2 log 𝑘

}︁
span the rows of M.

Proof. Fix any set 𝑆 ⊆ [𝑛] of size 𝑚 = 2 log 𝑘. Without loss of generality suppose that

𝑆 = {1, 2, · · · ,𝑚}. We want to show that M𝑆 lies in the span of M𝑇 for all 𝑇 (𝑆. Our

goal is to show that there are coefficients 𝛼𝑇 so that

∑︁
𝑇⊆𝑆

𝛼𝑇M𝑇 = 0

and that 𝛼𝑆 is nonzero. If we can do this, then we will be done. First we construct a

multilinear polynomial

𝑝(𝑥) =
𝑚∏︁
𝑖=1

(︁
𝑥𝑖 − 𝜆𝑖

)︁
where each 𝜆𝑖 ∈ {0, 1/2, 1} and with the property that for any 𝑗, 𝑝(m𝑗|𝑆) = 0. If we had

such a polynomial, we could expand

𝑝(𝑥) =
∑︁
𝑇⊆𝑆

𝛼𝑇
∏︁
𝑖∈𝑇

𝑥𝑖

By construction 𝛼𝑆 = 1. And now for any 𝑗 we can see that the 𝑗𝑡ℎ coordinate of
∑︀

𝑇⊆𝑆 𝛼𝑇M𝑇

is exactly 𝑝(m𝑗|𝑆), which yields the desired linear dependence.

All that remains is to construct the polynomial 𝑝. We will do this by induction. Suppose

we have constructed a polynomial 𝑝𝑡(𝑥) =
∏︀𝑡

𝑖=1(𝑥𝑖 − 𝜆𝑖) and let

𝑅𝑡 =
{︁
𝑗
⃒⃒⃒
𝑝𝑡(m

𝑗|𝑆) ̸= 0
}︁

In particular 𝑅𝑡 ⊆ [𝑘] is the set of surviving columns. By the pigeonhole principle we can

choose 𝜆𝑡+1 ∈ {0, 1/2, 1} so that |𝑅𝑡+1| ≤ ⌊(2/3)|𝑅𝑡|⌋. For some ℓ ≤ 𝑚 we have that 𝑅ℓ = ∅

429

at which point we can choose

𝑝(𝑥) =
(︁ ℓ∏︁
𝑖=1

(𝑥𝑖 − 𝜆𝑖)
)︁
·

𝑚∏︁
𝑖=ℓ+1

𝑥𝑖

which completes the proof.

Recall that ℛ(𝐽) = 2[𝑛]∖𝐽 . Now Lemma 7.3.1 implies that

rank(M|ℛ(𝐽)) = rank(M|ℛ′(𝐽))

where ℛ′(𝐽) is the set of all subsets 𝑇 ⊆ [𝑛]∖𝐽 with |𝑇 | < 2 log 𝑘. Thus we can certify

whether a basis M𝑇1 ,M𝑇2 , · · · ,M𝑇𝑘 is a basis by, instead of computing the entire vector

C𝑇𝑖 |ℛ(𝐽), working with the much smaller vector C𝑇𝑖 |ℛ′(𝐽), where as usual 𝐽 = ∪𝑖𝑇𝑖.

We remark that if 𝒟 were not a mixture of subcubes, but a general mixture of product

distributions, then we would need to look at M𝑇 for |𝑇 | ≤ 𝑘 − 1 in order to span the rows

of M. First this is necessary because we could set 𝑣 to be a length 𝑘 vector with 𝑘 distinct

entries in the range [0, 1]. Now set each row of m to be 𝑣. In this example, the entrywise

product of 𝑣 with itself 𝑘− 1 times is linearly independent of the vectors we get from taking

the entrywise product between zero and 𝑘 − 2 times. On the other hand, this is tight:

Lemma 7.3.2. Let 𝒟 be a mixture of 𝑘 product distributions and fix a realization. Let M

be the corresponding moment matrix. Then

{︁
M𝑇

⃒⃒⃒
|𝑇 | < 𝑘

}︁
span the rows of M.

Proof. The proof is almost identical to the proof of Lemma 7.3.1. The only difference is that

we allow 𝜆𝑖 ∈ [0, 1] and instead of reducing the size of 𝑅𝑡 geometrically each time, we could

reduce it by one.

430

7.3.2 Local Maximality

In the following three subsections, we explain in greater detail how to produce a row basis

for M, as outlined in Sections 7.2.4 and 7.2.4. Recall that Lemma 7.2.9 and Lemma 7.2.10

give us a way to certify that the sets we are adding to ℬ correspond to rows of M that are

linearly independent of the ones we have selected so far. Motivated by these lemmas, we

introduce the following key definitions:

Definition 7.3.3. Given a collection ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟} of subsets we say that ℬ is cer-

tified full rank if C|𝑇1,𝑇2,··· ,𝑇𝑟ℛ′(𝐽) has full column rank, where 𝐽 = ∪𝑖𝑇𝑖.

Note here we have used ℛ′(𝐽) = {𝑇 ⊆ [𝑛]∖𝐽 : |𝑇 | < 2 log 𝑘} with Lemma 7.3.1 in mind.

Definition 7.3.4. Let ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟} be certified full column rank. Let 𝐽 = ∪𝑖𝑇𝑖.

Suppose there is no

(1) 𝑇 ′ ⊆ 𝐽 or

(2) 𝑇 ′ = 𝑇𝑖 ∪ {𝑗} for 𝑗 /∈ 𝐽

for which C|𝑇1,𝑇2,··· ,𝑇𝑟,𝑇
′

ℛ′(𝐽 ′) has full column rank, where 𝐽 ′ = 𝐽 ∪ 𝑇 ′. Then we say that ℬ is

locally maximal.

We are working towards showing that any certified full rank and locally maximal ℬ spans

a particular subset of the rows of M. First we will show the following helper lemma:

Lemma 7.3.5. Let ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟} and 𝐽 = ∪𝑖𝑇𝑖 as usual. Suppose that

(1) the rows of M|ℬ are a basis for the rows of M|2𝐽 and

(2) for any 𝑇𝑖 and any 𝑗 /∈ 𝐽 , the row M𝑇𝑖∪{𝑗} is in the row span of M|ℬ

Then the rows of M|ℬ are a basis for the rows of M.

Proof. We will proceed by induction. Suppose that the rows of M|ℬ are a basis for the rows

of M|2𝐽′ for some 𝐽 ′ ⊇ 𝐽 . Consider any 𝑗 /∈ 𝐽 ′. Then the rows

M𝑇1 ,M𝑇2 , · · · ,M𝑇𝑟 and M𝑇1∪{𝑗},M𝑇2∪{𝑗}, · · · ,M𝑇𝑟∪{𝑗}

431

are a basis for the rows of M|2𝐽′∪{𝑗} . But by assumption each row M𝑇𝑖∪{𝑗} is in the row span

of M|ℬ. Thus the rows of M|ℬ are also a basis for the rows of M|2𝐽′∪{𝑗} , as desired.

Now we are ready to prove the main lemma in this subsection:

Lemma 7.3.6. Let 𝒟 have rank 𝑘 and fix a full rank realization of 𝒟. Let ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟}

be certified full rank and locally maximal. Let 𝐽 = ∪𝑖𝑇𝑖 and

𝐾 =
{︁
𝑖
⃒⃒⃒
𝑖 /∈ 𝐽 and rank(M|ℛ′(𝐽∪{𝑖})) = 𝑘

}︁
If 𝐾 ̸= ∅ then the rows of M|ℬ are a basis for the rows of M|2𝐽∪𝐾 .

Proof. Our strategy is to apply Lemma 7.3.5 to the set 𝐽 ∪ 𝐾 which will give the desired

conclusion. To do this we just need to verify that the conditions in Lemma 7.3.5 hold. We

will need to pay special attention to the distinction between ℛ(𝐽) and ℛ′(𝐽). First take any

𝑖 ∈ 𝐾. Then

𝑘 = rank(M|ℛ′(𝐽∪{𝑖})) = rank(M|ℛ(𝐽∪{𝑖})) = rank(M|ℛ(𝐽))

The first equality follows from how we constructed 𝐾. The second equality follows from

Lemma 7.3.1 when applied to the set [𝑛]∖𝐽 ∪ {𝑖}. The third equality follows because the

rows of M|ℛ(𝐽∪{𝑖}) are a subset of the rows of M|ℛ(𝐽) and M has rank 𝑘.

Now the first condition of local maximality implies that there is no 𝑇 ′ ⊆ 𝐽 where

C|𝑇1,𝑇2,··· ,𝑇𝑟,𝑇
′

ℛ′(𝐽) has full column rank. Lemma 7.3.1 implies that C|𝑇1,𝑇2,··· ,𝑇𝑟,𝑇
′

ℛ(𝐽) also does not

have full column rank because the additional rows of the latter can be obtained as linear

combinations of the rows in the former. Now we can invoke Lemma 7.2.10 which implies

that M𝑇 ′ is in the span of M|ℬ. Thus the rows of M|ℬ are indeed a basis for the rows of

M|2𝐽 , which is the first condition we needed to check.

For the second condition, the chain of reasoning is similar. Consider any 𝑖 ∈ 𝐾 and

any 𝑇𝑖′ ∈ ℬ. Set 𝑇 ′ = 𝑇𝑖′ ∪ {𝑖} and 𝐽 ′ = 𝐽 ∪ {𝑖}. Then rank(M|ℛ′(𝐽 ′)) = 𝑘. Now the

second condition of local maximality implies that C|𝑇1,𝑇2,··· ,𝑇𝑟,𝑇
′

ℛ′(𝐽 ′) does not have full column

rank. Lemma 7.3.1 implies that C|𝑇1,𝑇2,··· ,𝑇𝑟,𝑇
′

ℛ(𝐽 ′) does not have full column rank either. We

432

can once again invoke Lemma 7.2.10 which implies that M𝑇 ′ is in the span of M|ℬ, which is

the second condition we needed to verify. This completes the proof.

See Lemma 7.7.5 in Section 7.7.1 for the sampling noise-robust analogue of this.

7.3.3 Tracking Down an Impostor

First we give a name to a concept that is implicit in Lemma 7.3.6:

Definition 7.3.7. Let 𝒟 have rank 𝑘 and fix a full rank realization of 𝒟. Let ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟}

be certified full rank and locally maximal. Let 𝐽 = ∪𝑖𝑇𝑖 and

𝐼 =
{︁
𝑖
⃒⃒⃒
𝑖 /∈ 𝐽 and rank(M|ℛ′(𝐽∪{𝑖})) < 𝑘

}︁
We call 𝐼 the set of impostors and 𝐾 the set of non-impostors.

We emphasize that the notion of an impostor depends on a particular realization. If there

are no impostors then Lemma 7.3.6 implies that the rows of Mℬ are a basis for the rows

of M and so we can directly use the algorithm outlined at the beginning of Section 7.2.4

to learn the parameters. If instead there is an impostor 𝑖 we can condition on 𝑥𝑆 = 𝑠 for

𝑆 = 𝐽 ∪ {𝑖} and any 𝑠 ∈ {0, 1}|𝑆| and get 𝒟|𝑥𝑆=𝑠 which by Lemma 7.2.7 and Lemma 7.2.8

is a mixture of strictly fewer than 𝑘 subcubes. In particular, we can condition on 𝑥𝑆 = 𝑠

for every 𝑠 ∈ {0, 1}|𝑆|, recursively learn these 2|𝑆| mixtures of strictly fewer than 𝑘 subcubes

in {0, 1}𝑛∖𝑆, estimate Pr𝑥∼𝒟[𝑥𝑆 = 𝑠] for each 𝑠, and combine these mixtures into a single

mixture over {0, 1}𝑛 in the natural way (see Appendix 7.6 for details on this combining

procedure).

But how do we find an impostor? It turns out that regardless of whether there exist

impostors, we can still use the algorithm outlined at the beginning of Section 7.2.4 to learn

a mixture of subcubes 𝒟′ where either

(a) all the moments of 𝒟′ up to size 𝑐 log 𝑘 are close to the true moments or

(b) there is a size at most 𝑐 log 𝑘 moment which is different, which in turn identifies a set

𝑆 that is guaranteed to contain an impostor

433

And thus we will be able to make progress one way or the other. With this roadmap in

hand, we can prove the main lemma in this subsection.

Lemma 7.3.8. Let 𝒟 have rank 𝑘 and fix a full rank realization of 𝒟. Let ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟}

be certified full rank and locally maximal. Let 𝐽 = ∪𝑖𝑇𝑖. Let 𝐼 be the set of impostors and 𝐾

be the set of non-impostors.

There is a guess m′|𝐽 ∈ {0, 1/2, 1}|𝐽 |×𝑟 so that if we solve (7.1) and solve (7.2) for each

𝑖 ∈ 𝐾 we get parameters that generate a mixture of subcubes 𝒟′ on 𝐽 ∪ 𝐾 that satisfy

E𝒟′ [𝑥𝑆] = E𝒟[𝑥𝑆] for all 𝑆 ⊆ 𝐽 ∪𝐾.

Proof. For any 𝑖 ∈ 𝐾 we have rank(M|ℛ′(𝐽∪{𝑖})) = 𝑘. By Lemma 7.3.6 we know that Mℬ is

a row basis for M2𝐽∪𝐾 . In particular rank(M2𝐽∪𝐾) = 𝑟. Thus using Lemma 7.2.7 there is a

mixture of 𝑟 subcubes with mixing weights 𝜋′ and marginals matrix m′ ∈ {0, 1/2, 1}|𝐽∪𝐾|×𝑟

that realizes the same distribution as projecting 𝒟 onto coordinates in 𝐽 ∪𝐾 (i.e. without

conditioning on any coordinates outside of this set).

Let M′ be the corresponding moment matrix. Then by construction M′ consists of a

subset of the columns of M2𝐽∪𝐾 . Thus the rows of M′
ℬ still span the rows of M′. Also by

construction M′ has rank 𝑟 and hence the rows of M′
ℬ are linearly independent. Now if

we take our guess to be m′|𝐽 where m′ is as above, (7.1) has a unique solution, namely 𝜋′.

Also for each 𝑖 ∈ 𝐾, (7.2) has a unique solution namely m′
𝑖. Now if we take our learned

parameters we get a mixture of subcubes 𝒟′ on 𝐽 ∪ 𝐾 that satisfies E𝒟′ [𝑥𝑆] = E𝒟[𝑥𝑆] for

all 𝑆 ⊆ 𝐽 ∪ 𝐾 because 𝒟′ and projecting 𝒟 onto coordinates in 𝐽 ∪ 𝐾 realize the same

distribution. This completes the proof.

See Lemma 7.7.6 in Section 7.7.2 for the sampling noise-robust analogue of this.

To connect this lemma to the discussion above, we will guess m′|𝐽 ∈ {0, 1/2, 1}|𝐽 |×𝑟 and

solve (7.1) and solve (7.2) for each 𝑖 ∈ [𝑛]∖𝐽 (because we do not know the set of impostors).

We can then check whether the parameters we get generate a mixture of subcubes 𝒟′ that

satisfies

E𝒟′ [𝑥𝑆] = E𝒟[𝑥𝑆]

for all 𝑆 with |𝑆| ≤ 𝑐 log 𝑘. If it does, then 𝒟′ = 𝒟 and we are done. But if there is an 𝑆

where the equation above is violated (and our guess was correct) then 𝑆 cannot be a subset

434

of 𝐽 ∪ 𝐾 which means that it contains an impostor. Thus the fact that we can check the

equation above only up to logarithmic sized moments gives us a way to trace an impostor

down to a logarithmic sized set, so that we can condition on 𝑆∪𝐽 and make progress without

needing to fix too many coordinates.

Algorithm 22: N-List(𝒟, 𝑘)
Input: Mixture of subcubes 𝒟, counter 𝑘
Output: Mixture of subcubes close to 𝒟, or FAIL

1 if 𝑘 ≤ 0 then
2 return FAIL.

3 Run GrowByOne, which outputs either a certified full rank and locally maximal
ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟}, or FAIL and a set 𝐽 ⊆ [𝑛].

4 if GrowByOne outputs FAIL and 𝐽 then
5 Condition on 𝐽 by running N-List(𝒟|𝑥𝐽=𝑠, 𝑘 − 1) for all choices of 𝑠 ∈ {0, 1}|𝐽 |.
6 return the resulting distribution.

7 else
8 𝐽 ← ∪𝑖𝑇𝑖.
9 Initialize an empty list 𝐿 of candidate mixtures.

10 for m′|𝐽 ⊆ {0, 1/2, 1}|𝐽 |×𝑟 do
11 Solve (7.1) for 𝜋′ ∈ Δ𝑟.
12 For each 𝑖 ̸∈ 𝐽 , solve (7.2) for m′

𝑖 ∈ {0, 1/2, 1}𝑟. If no such solution exists, skip
to the next guess m′|𝐽 .

13 If M′
𝑆 · 𝜋′ ̸= E𝒟[𝑥𝑆] for some |𝑆| ≤ 2 log(2𝑘), then condition on 𝐽 ∪ 𝑆.

Specifically, run N-List(𝒟|𝑥𝐽∪𝑆=𝑠, 𝑘 − 1) for all choices of 𝑠 ∈ {0, 1}|𝐽∪𝑆|,
estimate Pr𝑥∼𝒟[𝑥𝑆 = 𝑠] for all 𝑠, and combine the resulting mixtures into a
single mixture over {0, 1}𝑛. Add this mixture to 𝐿.

14 Run hypothesis selection on 𝐿 to find a distribution close to 𝒟.
15 if distribution close to 𝒟 exists then
16 return this distribution.

17 else
/* Every 𝑖 ̸∈ 𝐽 is an impostor */

18 Select an arbitrary 𝑖 ̸∈ 𝐽 and condition on 𝐽 ∪ {𝑖} by running
N-List(𝒟|𝑥𝐽∪{𝑖}=𝑠, 𝑘 − 1) for all choices of 𝑠 ∈ {0, 1}|𝐽∪{𝑖}|.

Again, we stress that while the algorithm as stated assumes access to the exact moments

of 𝒟, we show in the appendices how to lift this assumption entirely. Our final algorithm

for learning mixtures of subcubes is actually Algorithm 24 (see Appendix 7.6) which invokes

Algorithm 26 (see Appendix 7.7) as a subroutine.

435

As a final observation, if all of our guesses are correct, we would need to condition and

recurse at most 𝑘 times (because each time the number of components strictly decreases).

So if ever we have too many recursive calls, we can simply terminate because we know that

at least some guess along the way was incorrect. Algorithm 22 collects together all of these

ideas into pseudocode and frames it as a non-deterministic algorithm for listing not too many

candidate hypotheses, at least one of which will be close to a projection of 𝒟. What remains

is to implement GrowByOne to construct a certified full rank and locally maximal basis.

Then we will move on to giving variants of our algorithm that work when we only have

estimates of the moments (from random samples) and analyzing how the errors compound

to give our full algorithm for learning mixtures of subcubes.

7.3.4 Finding a Certified Full Rank and Locally Maximal Set

It remains to implement Step 3 of N-List. C has 2𝑛 columns, so it is not immediately

clear how to efficiently find a set ℬ of columns that is locally maximal certified full rank.

We prove that it is always possible to greedily pick out an ℬ such that either ℬ is locally

maximal certified full rank or rank(M|ℛ(𝐽)) < 𝑘 for some rank-𝑘 realization of 𝒟. If the

latter happens and Step 10 of N-List fails, then Step 18 will succeed. Our greedy procedure

GrowByOne is given in Algorithm 23.

When we assume exact access to the accessible entries of C, the subroutine InSpan in

GrowByOne is basic linear algebra. In the appendix, we show how to implement InSpan

even if we only have estimates of the accessible entries of C up to some additive sampling

error (see Algorithm 25 in Appendix 7.7).

Lemma 7.3.9. If GrowByOne outputs FAIL and some set 𝐽*, then rank(M|ℛ′(𝐽*)) < 𝑘

for some rank-𝑘 realization of 𝒟. Otherwise, GrowByOne outputs ℬ* = {𝑇1, · · · , 𝑇𝑟}, and

ℬ* is certified full rank and locally maximal.

Proof. Set 𝐽* either to be the output of GrowByOne if it outputs FAIL, or if it outputs

ℬ* then set 𝐽* = ∪𝑖𝑇𝑖. Now fix any rank-𝑘 realization of 𝒟 and let M be the corresponding

moment matrix. Whenever the algorithm reaches Step 5 for some 𝑖 ∈ 𝐽*, ℬ = {𝑇1, · · · , 𝑇𝑟},

there are two possibilities. If rank(M|ℛ′(𝐽∪{𝑖})) < 𝑘, then rank(M|ℛ′(𝐽*)) < 𝑘 because 𝐽*

436

Algorithm 23: GrowByOne(𝒟)
Input: Mixture of subcubes 𝒟
Output: Either ℬ = {𝑇1, · · · , 𝑇𝑟} such that ℬ is certified full rank and locally

maximal, or FAIL and some set 𝐽 , in which case there is a rank-𝑘
realization of 𝒟 for which rank(M|ℛ(𝐽)) < 𝑘.

1 ℬ ← {∅}.
2 𝐽 ← ∅.
3 while True do
4 for 𝑖 ̸∈ 𝐽 do
5 ℬ′ ← ℬ.
6 for 𝑇 ∈ ℬ do
7 Run InSpan(𝒟,ℬ′, 𝑇 ∪ {𝑖}) to check if C|𝑇∪{𝑖}ℛ′(𝐽∪{𝑖}) lies in the span of

C|ℬ′

ℛ′(𝐽∪{𝑖}).
8 If so, add 𝑇 ∪ {𝑖} to ℬ′.

9 ℬ ← ℬ′ and update 𝐽 to be the union of all elements of ℬ.

10 If after trying all 𝑖 ̸∈ 𝐽 , ℬ remains unchanged, exit the loop.

11 for 𝑆 ⊆ 𝐽 for which 𝑆 ̸∈ ℬ do
12 Run InSpan(𝒟,ℬ, 𝑆) to check if C|𝑆ℛ′(𝐽) lies in the span of C|ℬℛ′(𝐽).
13 if exists 𝑆 for which this is not the case then
14 return FAIL.

15 else
16 return ℬ.

437

obviously contains 𝐽∪{𝑖}. Otherwise, inductively we know that C|ℬℛ′(𝐽∪{𝑖}) is a column basis

for C2𝐽

ℛ′(𝐽∪{𝑖}), so by Lemma 7.2.9 and Lemma 7.2.10, M|ℬ is a row basis for M|2𝐽 . So rows

𝑇1, · · · , 𝑇𝑟, 𝑇1 ∪ {𝑖}, · · · , 𝑇𝑟 ∪ {𝑖}

of M span the rows of M|2𝐽∪{𝑖} . By Lemma 7.2.9, columns

𝑇1, · · · , 𝑇𝑟, 𝑇1 ∪ {𝑖}, · · · , 𝑇𝑟 ∪ {𝑖}

of C|ℛ′(𝐽∪{𝑖}) thus span the columns of C|2𝐽∪{𝑖}

ℛ′(𝐽∪{𝑖}). Step 8 of GrowByOne simply finds a

basis for these columns.

Thus when we exit the loop, either (𝑎) ℬ* indexes a column basis for C|2𝐽
*

ℛ′(𝐽*) or (𝑏) at

some iteration of Step 3 𝐽 satisfies rank(M|ℛ′(𝐽)) < 𝑘 and thus rank(M|ℛ′(𝐽*)) < 𝑘.

If (𝑎) holds GrowByOne will reach Step 16 and output ℬ*. The fact that ℬ* is a

column basis implies that ℬ* is certified full rank and, together with the exit condition in

Step 10, that it is also locally maximal. On the other hand, if GrowByOne terminates at

Step 13, we know that (𝑏) holds, so it successfully outputs FAIL together with 𝐽* satisfying

rank(M|ℛ(𝐽*)) < 𝑘.

See Lemma 7.7.4 in Section 7.7.1 for the sampling noise-robust analogue of this.

7.3.5 Sampling Noise and Small Mixture Weights

It remains to show that N-List works even when it only has access to the entries of C up

to sampling noise 𝜀samp. We defer most of the details to the appendix but present here the

crucial ingredients that ensure sampling noise-robust analogues of the above lemmas still

hold.

We first need to show that M and C|ℬℛ′(𝐽) are well-conditioned. Because the entries

of these matrices are [0, 1]-valued and thus have bounded Frobenius norm, it’s enough to

bound their minimal singular values. For our purposes, it will be more convenient to bound

𝜎∞
min(𝐴) , min𝑥‖𝐴𝑥‖∞/‖𝑥‖∞ for 𝐴 = M,C|ℬℛ′(𝐽).

438

Lemma 7.3.10. Take any realization of 𝒟 with moment matrix M such that M is full-

rank and rank(M) = 𝑘. For 𝑑 ≥ 2 log 𝑘, let 𝑀 be any subset of the rows of M with

full column rank and which are all entrywise products of fewer than 𝑑 rows of m. Then

𝜎∞
min(𝑀) ≥ 2−𝑂(𝑑𝑘) · 𝑘−𝑂(𝑘).

In particular, for 𝑑 = 2 log 𝑘, there exists an absolute constant 𝑐13 > 0 for which

𝜎∞
min(𝑀) ≥ 𝑘−𝑐13𝑘. For 𝑑 = 𝑘, there exists an absolute constant 𝑐14 > 0 for which 𝜎∞

min(𝑀) ≥

2−𝑐14𝑘
2.

Proof. Because adding rows will simply increase 𝜎∞
min, assume without loss of generality that

𝑀 is 𝑘 × 𝑘. We show that the largest entry of 𝑀−1 is at most 2𝑂(𝑑𝑘) · 𝑘𝑂(𝑘).

Note that the entries of𝑀 take values among {0, 1, 1/2, 1/4, ..., 1/2𝑑−1}. The determinant

of any (𝑘 − 1) × (𝑘 − 1) minor is at most (𝑘 − 1)! ∼ 𝑘𝑂(𝑘), while det(𝑀) is some nonzero

integral multiple of 1/2(𝑑−1)𝑘, so by Cramer’s we obtain the desired bound on the largest

entry of 𝑀−1.

Lemma 7.3.10 allows us to prove the following robust low-degree identifiability lemma,

which says that mixtures of subcubes which agree on all 𝑂(log 𝑘)-degree moments are close

in total variation distance.

Lemma 7.3.11. Let 𝒟1,𝒟2 be mixtures of 𝑘 subcubes in {0, 1}𝑛 with mixing weights 𝜋1 and

𝜋2 and moment matrices M1 and M2 respectively. If 𝑑TV(𝒟1,𝒟2) > 𝜀, there is some 𝑆

for which |𝑆| < 2 log(𝑘1 + 𝑘2) and |E𝒟1 [𝑥𝑆] − E𝒟2 [𝑥𝑆]| > 𝜀 · 𝑘−𝑐15𝑘 for an absolute constant

𝑐15 > 0.

For convenience, define 𝑘 = 𝑘1 + 𝑘2 and 𝑑 = 2 log 𝑘. First observe that the largest

moment discrepancies max𝑆:|𝑆|<𝑑 |E𝒟1 [𝑥𝑆]− E𝒟2 [𝑥𝑆]| can be interpreted as follows. Denote

the moment matrices of 𝒟1 and 𝒟2 by M1 and M2. Define N to be the 2(
𝑛
𝑑) × (𝑘) matrix(︁

(M1)<𝑑‖(M2)<𝑑

)︁
where (M𝑖)<𝑑 denotes rows of M𝑖 each given by entrywise products of

fewer than 𝑑 rows of m. Define 𝜋 ∈ R𝑘 to be (𝜋1‖−𝜋2). Note that because 𝑑TV(𝒟1,𝒟2) > 0,

Lemma 7.3.1 implies that their degree 𝑑-moments cannot all be identical, i.e. 𝜋 ̸∈ ker(N).

Denote the 2𝑛 × 𝑘 concatenation of the distribution matrices of 𝒟1 and 𝒟2 by D and

observe that we have chosen 𝑑 so that the rows of N span those of D by the proof of

439

Lemma 7.3.1. Then it is easy to check that

max
𝑆:|𝑆|<𝑑

|E𝒟1 [𝑥𝑆]− E𝒟2 [𝑥𝑆]| = ‖N𝜋‖∞.

Lemma 7.3.12. For any 𝑣 ∈ ker(N), ‖𝜋 + 𝑣‖∞ > 𝜀/𝑘.

Proof. Suppose to the contrary there existed a 𝑣 ∈ ker(N) for which ‖𝜋+𝑣‖∞ ≤ 𝜀/𝑘. Denote

𝜋 + 𝑣 by 𝜋′ and the 2𝑛 × 𝑘 concatenation of the distribution matrices of 𝒟1 and 𝒟2 by D

again. We have that

𝑑TV(𝒟1,𝒟2) = ‖D𝜋‖1 = ‖D(𝑣 − 𝜋′)‖1 ≤ ‖D𝑣‖1 + ‖D𝜋′‖1.

But note that because the row spans of N and D agree, 𝑣 ∈ ker(D), so ‖D𝑣‖1 = 0. Moreover,

‖D𝜋′‖1 ≤
𝑘∑︁
𝑗=1

‖𝜋′
𝑗D

𝑗‖1 = ‖𝜋′‖1 ≤ 𝜀,

where the equality follows from the fact that each column of D sums to 1 because D is a

distribution matrix. Contradiction!

Proof of Lemma 7.3.11. Suppose N is of rank 𝑟, and columns 𝑖1, ..., 𝑖𝑟 form a basis for its

column space. Pick 𝑣 ∈ ker(N) for which 𝜋 + 𝑣 is supported only on coordinates 𝑖1, .., 𝑖𝑟 so

that N𝜋 = N{𝑖1,...,𝑖𝑟}(𝜋 + 𝑣). Then

‖N𝜋‖∞ ≥ 𝜎∞
𝑚𝑖𝑛(N

{𝑖1,...,𝑖𝑟}) · ‖𝜋 + 𝑣‖∞ >
𝜀

𝑘
· 𝜎∞

𝑚𝑖𝑛(N
{𝑖1,...,𝑖𝑟}). (7.3)

Observe that 𝜎∞
𝑚𝑖𝑛(N

{𝑖1,...,𝑖𝑟}) = 𝜎∞
𝑚𝑖𝑛(𝑀) where 𝑀 is the submatrix of (M1‖M2) given by

columns 𝑖1, ..., 𝑖𝑟. But 𝑀 is a full-rank moment matrix of a mixture of at most 𝑘 {0, 1/2, 1}-

product distributions, so by (7.3) and Lemma 7.3.10, we have

‖N𝜋‖∞ ≥
𝜀

𝑘
· 𝑘−𝑐13𝑘 ≥ 𝜀 · 𝑘−𝑐15𝑘

as desired.

440

For example, Lemma 7.3.11 tells us that in step 3a) of N-List, if ℬ indexes a basis for the

rows of M but we only have E𝒟[𝑥𝑆] up to 𝜀samp sampling noise for every 𝑆 ∈ ℬ, it’s enough

to run an 𝐿∞ regression on the system (7.1) to get good approximations to the mixture

weights 𝜋, as long as 𝜀samp ≤ 2−𝑐13𝑘
2 · 𝜀.

The condition number bound on C|ℬℛ′(𝐽) is a bit more subtle. By Observation 7.2.5,

C|ℬℛ′(𝐼) = M|ℛ′(𝐼) · diag(𝜋) · (M|ℬ)⊤

for any mixing weights 𝜋 and moment matrix M realizing 𝒟, so if 𝜋 contains small entries,

the condition number bound we want doesn’t hold a priori. This is unsurprising: if a

mixture 𝒟 has a subcube with negligible mixture weight, our algorithm shouldn’t be able to

distinguish between𝒟 and the mixture obtained by removing that subcube and renormalizing

the remaining mixture weights.

The upshot, it would seem, is that if C is badly conditioned because of small mixture

weights, we might as well pretend we never see samples from the corresponding subcubes.

Unfortunately, to get the desired level of precision in our learning algorithm, we will end

up taking enough samples that we will see samples from those rarely occurring product

distributions.

The key insight is that if there exist mixture weights small enough that omitting the cor-

responding subcubes and renormalizing the remaining mixture weights yields a distribution

𝒟′ for which 𝑑TV(𝒟,𝒟′) ≤ 𝑂(𝜀), then C morally behaves as if it had rank equal not to 𝑘,

but to rank(M′) where M′ is the moment matrix for some realization of 𝒟′. We then just

need that all other mixing weights are not too small in order for C̃𝒟′ to be well-conditioned.

Definition 7.3.13. Mixing weights 𝜋 and marginals matrix m constitute a [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔]-

avoiding realization of 𝒟 if 𝜋𝑖 ̸∈ [𝛼, 𝛽] for all 𝑖.

By a standard windowing argument, it will be enough to consider𝒟 which have [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔]-

avoiding realizations for some thresholds 0 < 𝜏𝑠𝑚𝑎𝑙𝑙 < 𝜏𝑏𝑖𝑔 < 1. Let 𝜏𝑠𝑚𝑎𝑙𝑙 = 𝜌 · 𝜏𝑏𝑖𝑔 where

𝜌 , 𝑘−𝑐16𝑘
2 for some large absolute constant 𝑐16 > 0 to be specified later.

Below, given a moment matrix M with corresponding mixture weights 𝜋, we will denote

by M′ the subset of columns 𝑖 of M for which 𝜋𝑖 > 𝜏𝑏𝑖𝑔.

441

Lemma 7.3.14. Let 𝜋 and M be the mixing weights and moment matrix of a [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔]-

avoiding rank-𝑘 realization of 𝒟, and denote the number of columns of M′ by 𝑘′. Let ℬ be

any collection of 𝑟 ≤ 𝑘′ columns of C for which the corresponding 𝑟 rows of M′|ℬ are linearly

independent, 𝐽 = ∪𝑇∈ℬ𝑇 satisfies |𝐽 | ≤ 𝑘′, and rank(M′|ℛ′(𝐽)) = 𝑘′. Then 𝜎∞
min(C|ℬℛ′(𝐽)) ≥

𝑘−𝑐17𝑘
2
𝜏𝑏𝑖𝑔 for some sufficiently large constant 𝑐17.

In particular, for any �̃� for which ‖�̃� − C|ℬℛ′(𝐽)‖max ≤ 1
2
· 𝑘−𝑐17𝑘2−1𝜏𝑏𝑖𝑔, we have that

𝜎∞
min(�̃�) ≥ 1

2
· 𝑘−𝑐17𝑘2𝜏𝑏𝑖𝑔.

Proof. Because M is full-rank, M′ is full-rank. Pick out a collection ℛ* ⊆ ℛ′(𝐽) of 𝑘′ row

indices for which M′|ℛ* is still of rank 𝑘′. Obviously 𝜎∞
min(C|ℬℛ′(𝐽)) ≥ 𝜎∞

min(C|ℬℛ*).

Note that we have the decomposition

C|ℬℛ* = M|ℛ* · diag(𝜋) · (Mℬ)
⊤

= M′|ℛ* · diag(𝜋1, ..., 𝜋𝑘
′
) · (M′|ℬ)⊤ +M|{𝑘

′+1,...,𝑘}
ℛ* · diag(𝜋𝑘

′+1, ..., 𝜋𝑘) · (M|{𝑘
′+1,...,𝑘}

ℬ)⊤.

We know diag(𝜋𝑘′+1, ..., 𝜋𝑘) ≤ 𝜏𝑠𝑚𝑎𝑙𝑙 by assumption.

We already know M′|ℛ* is full-rank, and (M′|ℬ)⊤ has linearly independent columns by as-

sumption. So by Lemma 7.3.10, 𝜎min(M
′|ℛ*) ≥ 𝑘−𝑐13𝑘, 𝜎min((M

′|ℬ)⊤) ≥ 2−𝑐14𝑘
2 , and because

𝜎∞
min is super-multiplicative,

𝜎∞
min

(︁
M′|ℛ* · diag(𝜋1, ..., 𝜋𝑘

′
) · (M′|ℬ)⊤

)︁
≥ 2−𝑐18𝑘

2

𝜋𝑘
′

for some constant 𝑐18 > 0. On the other hand,

‖M|{𝑘
′+1,...,𝑘}

ℛ* · diag(𝜋𝑘
′+1, ..., 𝜋𝑘) · (M|{𝑘

′+1,...,𝑘}
ℬ)⊤‖∞ ≤ (𝑘 − 𝑘′)2 · 𝜋𝑘′+1

by super-mutiplicativity of the 𝐿∞ norm. So we conclude that

𝜎∞
min(𝑁) ≥ 2−2𝑐18𝑘2𝜋𝑘

′ − (𝑘 − 𝑘′)2 · 𝜋𝑘′+1 ≥ 𝑘−𝑐17𝑘
2

𝜏𝑏𝑖𝑔

for some 𝑐17 > 𝑐18, where the second inequality follows from the fact that 𝜋𝑘′+1 ≤ 𝜏𝑠𝑚𝑎𝑙𝑙 <

𝑘−𝑐16𝑘
2 · 𝜏𝑏𝑖𝑔 ≤ 𝑘−𝑐16𝑘

2
𝜋𝑘

′ for sufficiently large 𝑐16 > 0.

442

The last part of the lemma just follows by the triangle inequality.

In Appendix 7.7, we use Lemmas 7.3.10 and 7.3.14 to prove analogues of the key lemmas

in the preceding sections when we drop the assumption of zero sampling noise.

7.4 An 𝑛Ω(
√
𝑘) Statistical Query Lower Bound

In this section we prove the following unconditional lower bound for statistical query learning

mixtures of product distributions.

Theorem 7.4.1. Let 𝜀 < (2𝑘)−
√
𝑘/4. Any SQ algorithm with SQ access to a mixture of 𝑘

product distributions 𝒟 in {0, 1}𝑛 and which outputs a distribution 𝒟 with 𝑑TV(𝒟,𝒟) ≤ 𝜀

requires at least Ω(𝑛/𝑘)
√
𝑘 calls to STAT(Ω(𝑛−

√
𝑘/3)) or VSTAT(𝑂(𝑛

√
𝑘/3)).

7.4.1 Statistical Query Learning of Distributions

In this subsection we review basic notions about statistical query (SQ) learning. Introduced

in [Kea98], SQ learning is a restriction of PAC learning [Val84] to the setting where the

learner has access to an oracle that answers statistical queries about the data, instead of

access to the data itself. In [FGR+17], this model was extended to learning of distributions,

where for our purposes of learning distributions over {0, 1}𝑛 the relevant SQ oracles are

defined as follows:

Definition 7.4.2. Fix a distribution 𝒟 over {0, 1}𝑛. For tolerance parameter 𝜏 > 0, the

STAT(𝜏) oracle answers any query ℎ : {0, 1}𝑛 → [−1, 1] with a value 𝑣 such that

|E𝑥∼𝒟[ℎ(𝑥)]− 𝑣| ≤ 𝜏.

For sample size parameter 𝑡 > 0, the VSTAT(𝑡) oracle answers any query ℎ : {0, 1}𝑛 →

[0, 1] with a value 𝑣 for which

|E𝑥∼𝒟[ℎ(𝑥)]− 𝑣| ≤ max

{︃
1

𝑡
,

√︂
V𝑥∼𝒟[ℎ(𝑥)]

𝑡

}︃

443

The prototypical approach to proving unconditional SQ lower bounds is by bounding the

SQ dimension of the concept class, defined in [BFJ+94] for learning Boolean functions and

extended in [FGR+17] to learning distributions.

Definition 7.4.3. Let 𝒟 be a class of distributions over {0, 1}𝑛 and ℱ be a set of solution

distributions over {0, 1}𝑛. For any map 𝒵 : 𝒟 → 2ℱ , the distributional search problem 𝒵

over 𝒟 and ℱ is to find some 𝑓 ∈ 𝒵(𝒟) given some form of access to 𝒟 ∈ 𝒟.

Definition 7.4.4. Let 𝑈 be a distribution over {0, 1}𝑛 whose support 𝑆 contains the support

of distributions 𝒟1,𝒟2. Then

𝜒𝑈(𝒟1,𝒟2) , −1 +
∑︁
𝑥∈𝑆

𝒟1(𝑥)𝒟2(𝑥)

𝑈(𝑥)

is the pairwise correlation of 𝒟1,𝒟2 with respect to 𝑈 . When 𝒟1 = 𝒟2, the pairwise

correlation is merely the 𝜒2-divergence between 𝒟1 and 𝑈 , denoted 𝜒2(𝒟1, 𝑈) = −1 +∑︀
𝑥∈𝑆 𝒟1(𝑥)

2/𝑈(𝑥).

Definition 7.4.5. A set of distributions 𝒟1, ...,𝒟𝑚 over {0, 1}𝑛 is (𝛾, 𝛽)-correlated relative

to distribution 𝑈 over {0, 1}𝑛 if

|𝜒𝑈(𝒟𝑖,𝒟𝑗)| ≤

⎧⎪⎨⎪⎩𝛾, 𝑖 ̸= 𝑗

𝛽, 𝑖 = 𝑗.

Definition 7.4.6. For 𝛽, 𝛾 > 0 and a distributional search problem 𝒵 over 𝒟 and ℱ , the

SQ dimension SD(𝒵, 𝛾, 𝛽) is the maximum 𝑑 for which there exists a reference distribution

𝑈 over {0, 1}𝑛 and distributions 𝒟1, ...,𝒟𝑚 ∈ 𝒟 such that for any 𝒟 ∈ ℱ , the set 𝒟𝑓 of 𝒟𝑖
outside of 𝒵−1(𝒟) is of size at least 𝑑 and is (𝛾, 𝛽)-correlated relative to 𝑈 .

Lemma 7.4.7 (Corollary 3.12 in [FGR+17]). For 𝛾′ > 0 and 𝒵 a distributional search

problem 𝒵 over 𝒟 and ℱ , any SQ algorithm for 𝒵 requires at least SD(𝒵, 𝛾, 𝛽) · 𝛾′/(𝛽 − 𝛾)

queries to STAT(
√
𝛾 + 𝛾′) or VSTAT(1/3(𝛾 + 𝛾′)).

In our setting, 𝒟 is the set of mixtures of product distributions over {0, 1}𝑛, ℱ is the set

of all distributions over {0, 1}𝑛, and 𝒵 sends any mixture 𝒟 to the set of all distributions over

444

{0, 1}𝑛 which are 𝜀-close to 𝒟 in total variation distance, and distributional search problem

is to recover any such distribution given sample access to 𝒟. Our approach will thus be to

bound the SQ dimension of 𝒵 for appropriately chosen 𝛽, 𝛾.

7.4.2 Embedding Interesting Coordinates

The SQ lower bound instance for mixtures of subcubes given in [FOS05] is the class of all

𝑘-leaf decision trees over {0, 1}𝑛. The SQ lower bound for learning 𝑘-leaf decision trees stems

from the SQ lower bound for learning log 𝑘-sparse parities, for which the idea is that 𝑈𝑛 and

the uniform distribution over positive examples of log 𝑘-sparse parity agree on all moments

of degree less than log 𝑘 and differ on exactly one moment of degree log 𝑘+1, corresponding

to the coordinates of the parity. The observation that leads to our SQ lower bound is that

for general mixtures of 𝑘 product distributions, we can come up with much harder instances

which agree with 𝑈𝑛 even on moments of degree at most 𝑂(
√
𝑘).

We begin with a mixture 𝐴 of 𝑘 product distributions in {0, 1}𝑚, for appropriately chosen

𝑚 < 𝑛, whose moments of degree at most 𝑚− 1 are exactly equal to those of 𝑈𝑚, but whose

𝑚-th moment differs (we construct such an 𝐴 in the next section). We then pick a subset

of “interesting coordinates” 𝐼 ⊆ [𝑛] of size 𝑚 and embed 𝐴 into 𝑈𝑛 on those coordinates

in the same way we would embed a sparse parity into 𝑈𝑛. Formally, we have the following

construction, which is reminiscent of the blueprint for proving SQ lower bounds for learning

sparse parities [Kea98] and mixtures of Gaussians [DKS17]:

Definition 7.4.8 (High-dimensional hidden interesting coordinates distribution). Let 𝐴 be

a mixture of 𝑘 product distributions with mixing weights 𝜋 ∈ R𝑘 and marginals matrix m ∈

[0, 1]𝑚×𝑘. For 𝐼 ⊆ [𝑛], define 𝒟𝐼 to be the mixture of 𝑘 product distributions in {0, 1}𝑚

with mixing weights 𝜋 and marginals matrix m* ∈ [0, 1]𝑛×𝑘 defined by m*|𝐼 = m|𝐼 and

(m*)𝑗𝑖 = 1/2 for all 𝑖 ̸∈ 𝐼 and 𝑗 ∈ [𝑘]. In other words, 𝒟𝐼 is the product distribution

𝐴× 𝑈[𝑛]∖𝐼 where 𝑈[𝑛]∖𝐼 is the uniform distribution over coordinates [𝑛]∖𝐼.

Remark 7.4.9. In fact, we have much more flexibility in our lower bound construction. We

can construct a mixture 𝐴 matching moments with any single product distribution and embed

it in any single product distribution over {0, 1}𝑛 whose marginals in coordinates 𝐼 agree with

445

those of 𝐴, but for transparency we will focus on 𝑈𝑛.

Let 𝛿(𝐴) = 𝐴(1𝑚) − 1/2𝑚. 𝐴 and 𝑈𝑚 only disagree on their top-degree moment, and

𝛿(𝐴) is simply the extent to which they differ on this moment. The following simple fact

will be useful in proving correlation bounds.

Observation 7.4.10. If 𝐴 and 𝑈𝑚 agree on all moments of degree less than 𝑚, then 𝐴(𝑥) =

1/2𝑚 + (−1)𝑧(𝑥)𝛿(𝐴), where 𝑧(𝑥) is the number of zero bits in 𝑥.

The main result of this section is

Proposition 7.4.11. Fix 𝑛. Suppose there exists an 𝑚 ∈ Z+ and distribution 𝐴 on {0, 1}𝑚

such that 𝐴and 𝑈𝑚 agree on all moments of degree less than 𝑚, and consider the set of

distributions {𝒟𝐼}𝐼⊆[𝑛],|𝐼|=𝑚. Let 𝜀 < 𝛿(𝐴) · 2𝑚−2. Any SQ algorithm which, given an SQ

oracle for some 𝒟𝐼 , outputs a distribution 𝒟 for which 𝑑TV(𝒟,𝒟𝐼) ≤ 𝜀 requires at least

Ω(𝑛)𝑚/3/𝛿(𝐴)2 queries to STAT(Ω(𝑛−𝑚/3) or VSTAT(𝑂(𝑛𝑚/3)).

To invoke Lemma 7.4.7 to prove Proposition 7.4.11, we need to prove correlation bounds

on the set of distributions {𝒟𝐼}𝐼⊆[𝑛],|𝐼|=𝑚.

Lemma 7.4.12. Suppose 𝐴 and 𝑈𝑚 agree on all moments of degree less than 𝑚. For distinct

𝐼, 𝐽 ⊆ [𝑛] of size 𝑚, 𝜒𝑈𝑛(𝒟𝐼 ,𝒟𝐽) = 0.

Proof. Let 𝑆 = 𝐼 ∩ 𝐽 , 𝑇 = [𝑛]∖(𝐼 ∪ 𝐽), 𝐼 ′ = 𝐼∖𝑆, and 𝐽 ′ = 𝐽∖𝑆. Decompose any 𝑥 ∈ {0, 1}𝑛

as 𝑥𝑇 ∘ 𝑥𝑆 ∘ 𝑥𝐼′ ∘ 𝑥𝐽 ′ in the natural way. We can write

1 + 𝜒𝑈𝑛(𝒟𝐼 ,𝒟𝐽) = 2𝑛 ·
∑︁

𝑥∈{0,1}𝑛

𝐴(𝑥𝐼)

2𝑛−𝑚
· 𝐴(𝑥𝐽)
2𝑛−𝑚

= 2|𝑆| ·
∑︁

𝑥𝑆 ,𝑥𝐼′ ,𝑥𝐽′

𝐴(𝑥𝐼′∪𝑆) · 𝐴(𝑥𝐽 ′∪𝑆) (7.4)

For fixed 𝑥𝑆 it is easy to see that

∑︁
𝑥𝐼′ ,𝑥𝐽′

𝐴(𝑥𝐼′∪𝑆) · 𝐴(𝑥𝐽 ′∪𝑆) = 22𝑚−2|𝑆|−2

(︂
1

2𝑚
+ 𝛿(𝐴) +

1

2𝑚
− 𝛿(𝐴)

)︂2

= 2−2|𝑆|,

so (7.4) reduces to 1 and the claim follows.

446

Lemma 7.4.13. Suppose 𝐴 and 𝑈𝑚 agree on all moments of degree less than 𝑚. Then

𝜒2(𝒟𝐼 , 𝑈𝑛) = 𝛿(𝐴)2 · 4𝑚.

Proof. Decompose any 𝑥 ∈ {0, 1}𝑛 as 𝑥𝐼𝑐 ∘ 𝑥𝐼 . Then

1 + 𝜒2(𝒟𝐼 , 𝑈𝑛) = 2𝑛
∑︁

𝑥∈{0,1}𝑛

𝐴(𝑥𝐼)
2

22𝑛−2𝑚

= 2𝑚
∑︁

𝑥𝐼∈{0,1}𝑚
𝐴(𝑥𝐼)

2

= 2𝑚

⎛⎝ ∑︁
𝑥𝐼 :𝑧(𝑥𝐼) even

(︂
1

2𝑚
+ 𝛿(𝐴)

)︂2

+
∑︁

𝑥𝐼 :𝑧(𝑥𝐼) odd

(︂
1

2𝑚
− 𝛿(𝐴)

)︂2
⎞⎠

= 2𝑚 · 2𝑚−1 ·
(︂

1

22𝑚−1
+ 2𝛿(𝐴)2

)︂
= 1 + 𝛿(𝐴)2 · 4𝑚,

and the claim follows.

Lemma 7.4.14. Suppose 𝐴 and 𝑈𝑚 agree on all moments of degree less than 𝑚. For distinct

𝐼, 𝐽 ⊆ [𝑛] of size 𝑚, 𝑑TV(𝒟𝐼 ,𝒟𝐽) = 𝛿(𝐴) · 2𝑚−1.

Proof. For any 𝑥 ∈ {0, 1}𝑛, 𝒟𝐼(𝑥) = 1
2𝑛−𝑚 ·𝐴(𝑥𝐼) = 1

2𝑛
+ 1

2𝑛−𝑚 (−1)𝑧(𝑥𝐼)𝛿 by Observation 7.4.10.

So |𝒟𝐼(𝑥)−𝒟𝐽(𝑥)| is zero if 𝑧(𝑥𝐼) and 𝑧(𝑥𝐽) are the same parity, and 𝛿(𝐴)/2𝑛−𝑚−1 otherwise.

When 𝐼 and 𝐽 are distinct, the probability that 𝑧(𝑥𝐼) and 𝑧(𝐽) are of different parities for

𝑥 ∼ 𝑈𝑛 is 1/2, so

𝑑TV(𝒟𝐼 ,𝒟𝐽) =
1

2

∑︁
𝑥∈{0,1}𝑛

|𝒟𝐼(𝑥)−𝒟𝐽(𝑥)| =
1

2
· 𝛿(𝐴)

2𝑛−𝑚−1
· 2𝑛−1 = 𝛿(𝐴) · 2𝑚−1

as desired.

Proof of Proposition 7.4.11. Given unknown 𝒟𝐼 , the distributional search problem 𝒵 : 𝒟 →

2ℱ is to find any distribution 𝒟 ∈ ℱ for which 𝑑TV(𝒟,𝒟𝐼) ≤ 𝜀, where 𝒟 = {𝒟𝐼}𝐼⊆[𝑛],|𝐼|=𝑚

and ℱ is the set of all distributions over {0, 1}𝑛. Because we assume in Proposition 7.4.11

that 𝜀 < 𝛿(𝐴) · 2𝑚−2 and we know by Lemma 7.4.14 that 𝑑TV(𝒟𝐼 ,𝒟𝐽) = 𝛿(𝐴) · 2𝑚−1 > 2𝜀

for any 𝐽 ̸= 𝐼, we see that for any 𝒟 ∈ ℱ , 𝒵−1(𝒟) is just 𝒟𝐼 . So in the language of

Definition 7.4.6, 𝒟𝑓 consists of all 𝒟𝐽 for 𝐽 ̸= 𝐼. Moreover, by Lemmas 7.4.12 and 7.4.13,

447

𝒟𝑓 is (0, 𝛿(𝐴)2 · 4𝑚)-correlated. So SD(𝒵, 0, 𝛿(𝐴)2 · 4𝑚) =
(︀
𝑛
𝑚

)︀
− 1. Applying Lemma 7.4.7,

we conclude that for any 𝛾′ > 0, the number of queries to STAT(
√
𝛾′) or VSTAT(1/3𝛾′) to

solve 𝒵 is at least
(
(︀
𝑛
𝑚

)︀
− 1) · 𝛾′

𝛿(𝐴)2 · 4𝑚
=

Ω(𝑛)𝑚 · 𝛾′

𝛿(𝐴)2
.

We’re done when we take 𝛾′ = 1/𝑂(𝑛)−2𝑚/3.

7.4.3 A Moment Matching Example

It remains to construct for some 𝑚 ∈ Z+ a distribution 𝐴 over {0, 1}𝑚 for which 𝐴 and 𝑈𝑚

agree only on moments of degree less than 𝑚 and obtain bounds on 𝛿(𝐴).

Definition 7.4.15. Given 𝜋 ∈ Δ𝑘, a collection of vectors 𝑣1, ..., 𝑣𝑚 ∈ R𝑘 is 𝑑-wise super-

orthogonal with respect to 𝜋 if for any 𝑆 ⊆ [𝑚] of size at most 𝑑, ⟨
⨀︀

𝑖∈𝑆 𝑣𝑖, 𝜋⟩ = 0. Note

that if 𝜋 = 1
𝑘
· 1 and 𝑑 = 2, this is just the usual notion of orthogonality.

Lemma 7.4.16. Let 𝑑 ≤ 𝑚 and suppose 𝐴 is a mixture of product distributions with mixing

weights 𝜋 and marginals matrix m. Then 𝐴 and 𝑈𝑚 agree on moments of degree at most 𝑑

if and only if the rows of m − 1
2
· J𝑚×𝑘 are 𝑑-wise superorthogonal with respect to 𝜋, where

J𝑚×𝑘 is the 𝑚× 𝑘 all-ones matrix.

Proof. For any 𝑆 ⊆ [𝑚] of size at most 𝑑,

⟨⨀︁
𝑖∈𝑆

(︂
m𝑖 −

1

2
· 1
)︂
, 𝜋

⟩
=
∑︁
𝑇⊆𝑆

(−1/2)|𝑆|−|𝑇 |⟨M𝑇 , 𝜋⟩. (7.5)

So if 𝐴 and 𝑈𝑚 agree on moments of degree at most 𝑑 so that ⟨M𝑇 , 𝜋⟩ = 1/2|𝑇 | for all

|𝑇 | ≤ 𝑑, this is equal to (1/2)|𝑆| ·
∑︀

𝑇⊆𝑆(−1)|𝑆|−|𝑇 | = 0. Conversely, if the rows of m− 1
2
·J𝑚×𝑘

are indeed 𝑑-wise superorthogonal with respect to 𝜋, then by induction on degree, the fact

that (7.5) vanishes forces ⟨M𝑆, 𝜋⟩ to be 2|𝑆|.

Because we insist that 𝐴 and 𝑈𝑚 agree on their moments of degree less than 𝑚 and

differ on their 𝑚-th moment, Lemma 7.4.16 reduces the task of constructing 𝐴 to that of

constructing a collection of vectors that is (𝑚−1)-wise but not 𝑚-wise superorthogonal with

respect to 𝜋.

448

Definition 7.4.17. A collection of vectors 𝑣1, ..., 𝑣ℓ ∈ R𝑘 is non-top-degree-vanishing if

𝑣1 ⊙ · · · ⊙ 𝑣ℓ does not lie in the span of {⊙𝑖∈𝑆𝑣𝑖}𝑆([ℓ].

Observation 7.4.18. Suppose 𝑣1, ..., 𝑣𝑚−1 ∈ R𝑘 are (𝑚−1)-wise superorthogonal with respect

to 𝜋 and non-top-degree-vanishing. Denote the span of {⊙𝑖∈𝑆𝑣𝑖}𝑆([𝑚−1] by 𝑉 . If 𝑣𝑚 ∈ R𝑘

satisfies

𝑣𝑚 · diag(𝜋) · 𝑣⊤ = 0 ∀ 𝑣 ∈ 𝑉 (7.6)

𝑣𝑚 · diag(𝜋) · (𝑣1 ⊙ · · · ⊙ 𝑣𝑚−1)
⊤ ̸= 0, (7.7)

then 𝑣1, ..., 𝑣𝑚 are (𝑚− 1)- but not 𝑚-wise superorthogonal with respect to 𝜋.

Note that any collection of vectors that are (𝑚−1)-wise but not 𝑚-wise superorthogonal

with respect to 𝜋 must arise in this way. By Observation 7.4.18, we can focus on finding

the largest ℓ for which there exist vectors 𝑣1, ..., 𝑣ℓ which are ℓ-wise superorthogonal and

non-top-degree-vanishing.

Construction 1. Let 𝑘 = (ℓ+ 1)2 and 𝜋 = 1
𝑘
1, and fix any distinct scalars 𝑥1, ..., 𝑥ℓ+1 ∈ R.

Define matrices

a =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥1 𝑥2 · · · 𝑥ℓ+1

𝑥1 𝑥2 · · · 𝑥ℓ+1

...
...

𝑥1 𝑥2 · · · 𝑥ℓ+1

⎞⎟⎟⎟⎟⎟⎟⎠ bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑥𝑖 0 0 · · · 0

𝑥𝑖 −2𝑥𝑖 0 · · · 0

𝑥𝑖 𝑥𝑖 −3𝑥𝑖 · · · 0
...

...
...

𝑥𝑖 𝑥𝑖 𝑥𝑖 · · · −ℓ𝑥𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with ℓ rows each. Define the ℓ× 𝑘 matrix

ℰ(𝑥1, ..., 𝑥ℓ+1) , (a‖b1‖ · · · ‖bℓ+1).

Remark 7.4.19. In fact there are more efficient constructions that save constant factors

on 𝑘 as a function of ℓ, but we choose not to discuss these to maximize transparency of the

proof.

Lemma 7.4.20. The rows of ℰ(𝑥1, ..., 𝑥ℓ+1) are ℓ-wise superorthogonal and non-top-degree-

449

vanishing.

Proof. Denote the matrices whose rows consist of entrywise products of rows of a and rows

of bi respectively by A and Bi. Superorthogonality just follows from the fact that the entries

of any row (Bi)𝑆 sum to −𝑥|𝑆|𝑖 , while the entries of any row (A)𝑆 sum to
∑︀ℓ+1

𝑖=1 𝑥
|𝑆|
𝑖 .

To show that the rows of ℰ(𝑥1, ..., 𝑥ℓ+1) are non-top-degree-vanishing, it’s enough to show

that the rows of a are non-top-degree-vanishing. The latter is true because the rows of 𝐴

are copies of rows of an (ℓ+1)× (ℓ+1) Vandermonde matrix, and A[ℓ] is the unique row of

A equal to (𝑥ℓ1 · · · 𝑥ℓℓ+1).

Henceforth let 𝑚 = ℓ + 1. To pass from ℰ(𝑥1, ..., 𝑥𝑚) to the desired mixture of product

distributions 𝐴 with mixing weights 𝜋 = 1
𝑘
· 1: solve (7.6) and (7.7) in 𝑣𝑚, append this as

a row to ℰ(𝑥1, ..., 𝑥𝑚), scale all rows so that the entries all lie in [−1/2, 1/2], and add the

resulting matrix to 1
2
· J𝑚×𝑘 to get the marginals matrix for 𝐴.

It remains to choose 𝑥1, ..., 𝑥𝑚 so that 𝛿(𝐴) is reasonably large (we make no effort to

optimize this choice). It turns out that simply choosing 𝑥1, ..., 𝑥𝑚 to be an appropriately

scaled arithmetic progression works, and the remainder of the section is just for verifying

this.

We first collect some standard facts about Vandermonde matrices. Define

𝑉𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥1 · · · 𝑥𝑚

𝑥21 · · · 𝑥2𝑚
...

𝑥𝑚−1
1 · · · 𝑥𝑚−1

𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ .

Lemma 7.4.21. For distinct 𝑥1, ..., 𝑥𝑚, the right kernel of 𝑉𝑚 is the line through 𝑢 ∈ R𝑚

given by

𝑢𝑖 = (−1)𝑖+1

(︃∏︁
𝑗 ̸=𝑖

𝑥𝑗

)︃
·
∏︁

𝑗<𝑘:𝑗,𝑘 ̸=𝑖

(𝑥𝑗 − 𝑥𝑘)

for each 𝑖 ∈ [𝑚].

450

Proof. For any row index 1 ≤ 𝑑 ≤ 𝑚− 1, observe that

⟨(𝑉𝑚)𝑑, 𝑢⟩ =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

𝑥1 · · · 𝑥𝑚

𝑥21 · · · 𝑥2𝑚
...

𝑥𝑚−1
1 · · · 𝑥𝑚−1

𝑚

𝑥𝑑1 · · · 𝑥𝑑𝑚

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
= 0.

Corollary 7.4.22. If (𝑥1, 𝑥2, ..., 𝑥𝑚) = (𝜆, 2𝜆, ...,𝑚𝜆), then the right kernel of 𝑉𝑚 is the line

through 𝑣 ∈ R𝑚 given by 𝑣𝑖 = (−1)𝑖
(︀
𝑚
𝑖

)︀
.

Proof. Let 𝑢 ∈ R𝑚 be a point on the line corresponding to the right kernel of 𝑉𝑚. Define

𝑣 = 𝑢/𝑍 where 𝑍 = (−1)𝑚𝑚!
∏︀𝑚

𝑗=1 𝑥𝑗 ·
∏︀

1≤𝑗<𝑘≤𝑚(𝑥𝑗 − 𝑥𝑘), giving

𝑣𝑖 =
(−1)𝑚+𝑖+1𝑚!

𝑥𝑖 · (𝑥1 − 𝑥𝑖) · · · (𝑥𝑖−1 − 𝑥𝑖) · (𝑥𝑖+1 − 𝑥𝑖) · · · (𝑥𝑖 − 𝑥𝑚)

=
(−1)𝑚+𝑖+1𝑚!

(−1)𝑚−1 · 𝜆𝑚𝑖(𝑖− 1)!(𝑚− 𝑖)!

= (−1)𝑖
(︂
𝑚

𝑖

)︂

as desired.

Observation 7.4.23. Let 𝑉 be the span of all entrywise products of rows of ℰ(𝑥1, ..., 𝑥𝑚).

For 1 ≤ 𝑖, 𝑑 ≤ 𝑚− 1 let 𝑣(𝑑, 𝑖) ∈ R𝑘 be the vector defined by

𝑣(𝑑, 𝑖)𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥𝑑𝑗 , 𝑗 ≤ 𝑚

𝑥𝑑𝑠, 𝑗 = 1 + 𝑖+ (𝑚− 1)𝑠 for 𝑠 ∈ [𝑚]

0, otherwise

.

The set {𝑣(𝑑, 𝑖)}1≤𝑑≤𝑚−1,𝑖+𝑑≤𝑚 together with 1 form a basis for 𝑉 .

Proof. This just follows by elementary row operations applied to entrywise products of 𝑑

rows of ℰ(𝑥1, ..., 𝑥𝑚) for each 𝑑 ∈ [𝑚− 1].

451

Corollary 7.4.24. Let 𝑣𝑖 = (−1)𝑖
(︀
𝑚
𝑖

)︀
. The space of solutions to (7.6) contains the space of

vectors parametrized by

(𝑎1, ...𝑎𝑚, 𝑎1+𝜆1𝑣1, ..., 𝑎1+𝜆𝑚−1𝑣1, 𝑎2+𝜆1𝑣2, ..., 𝑎2+𝜆𝑚−1𝑣2, ..., 𝑎𝑚+𝜆1𝑣𝑚, ..., 𝑎𝑚+𝜆𝑚−1𝑣𝑚)

(7.8)

for 𝑎1, ..., 𝑎𝑚, 𝜆1, ..., 𝜆𝑚−1 ∈ R satisfying

𝑚(𝑎1 + · · ·+ 𝑎𝑚) = 𝜆1 + · · ·+ 𝜆𝑚−1. (7.9)

Proof. The space of vectors parametrized by (7.8) is precisely those which are orthogonal to

the span of {𝑣(𝑑, 𝑖)}1≤𝑖,𝑑≤𝑚−1. This span together with 1 has orthogonal complement which

is a strict subspace of the space of solutions to (7.6). The sum of the entries in (7.8) is

𝑚(𝑎1 + · · ·+ 𝑎𝑚) + (𝜆1 + · · ·+ 𝜆𝑚−1)(𝑣1 + · · ·+ 𝑣𝑚) = 𝑚(𝑎1 + · · ·+ 𝑎𝑚)− (𝜆1 + · · ·+ 𝜆𝑚−1)

because
∑︀𝑚

𝑖=1 𝑣𝑖 = −1, so (7.9) is just the constraint that any solution to (7.6) is orthogonal

to 1.

Lemma 7.4.25. Let 𝜋 = 1
𝑘
· 1 and let 𝐴′ be the 𝑚 × 𝑘 matrix obtained by concatenating

ℰ(𝑥1, ..., 𝑥𝑚) with a row vector of the form (7.8), where 𝑥𝑖 = 𝑖/2𝑚2 for all 𝑖 ∈ [𝑚], 𝜆2 =

−𝜆1 = −2𝑚, 𝜆3 = · · · = 𝜆𝑚−1 = 0, and 𝑎1 = · · · = 𝑎𝑚 = 0. Define 𝐴 = 𝐴′ + 1
2
· J𝑚×𝑘. Then

if 𝑚+ 1 is a prime, |𝛿(𝐴)| ≥ (2𝑚)−2𝑚.

Proof. One can check that

𝛿(𝐴) = −𝜆1(𝑣1𝑥𝑚1 + · · ·+ 𝑣𝑚𝑥
𝑚
𝑚). (7.10)

By selecting 𝜆2 = −𝜆1, 𝜆3 = · · · = 𝜆𝑚−1 = 0, and 𝑎1 = · · · = 𝑎𝑚 = 0, we satisfy (7.9).

Furthermore, the only nonzero entries of (7.8) are ±𝜆1𝑣𝑖 for all 𝑖 ∈ [𝑚]. In particular by

taking, e.g., 𝜆1 = 2𝑚, we ensure that all entries of (7.8) are in [−1/2, 1/2]. If we then take

452

𝑥𝑖 = 𝑖/2𝑚2 for all 𝑖 ∈ [𝑚], we get from (7.10) that

𝛿(𝐴) = − 1

2𝑚

𝑚∑︁
𝑖=1

(−1)𝑖
(︂
𝑚

𝑖

)︂(︂
𝑖

2𝑚2

)︂𝑚
= − 1

(2𝑚)2𝑚

𝑚∑︁
𝑖=1

(−1)𝑖
(︂
𝑚

𝑖

)︂
𝑖𝑚.

∑︀𝑚
𝑖=1(−1)𝑖

(︀
𝑚
𝑖

)︀
is an integer, so it’s enough to show that it’s nonzero to get that |𝛿(𝐴)| ≥

1
(2𝑚)2𝑚

. Without loss of generality suppose 𝑚+ 1 is a prime, in which case

𝑚∑︁
𝑖=1

(−1)𝑖
(︂
𝑚

𝑖

)︂
𝑖𝑚 ≡

𝑚∑︁
𝑖=1

(−1)𝑖
(︂
𝑚

𝑖

)︂
≡ 1 (mod 𝑚+ 1)

by Fermat’s little theorem.

Theorem 7.4.1 then follows from Proposition 7.4.11 by taking 𝑚 =
√
𝑘.

7.5 Learning Mixtures of Product Distributions in 𝑛𝑂(𝑘
2)

Time

We now use ideas similar to those of Section 7.3 to prove Theorem 7.1.6. Specifically, we give

an algorithm that outputs a list of at most (𝑛/𝜀)𝑂(𝑘2) candidate distributions, at least one of

which is 𝑂(𝜀)-close in total variation distance to 𝒟. By standard results about hypothesis

selection, e.g. Scheffe’s tournament method [DL01], we can then pick out a distribution from

this list which is 𝑂(𝜀)-close to 𝒟 in time and samples polynomial in the size of the list.

Unlike in the case of learning mixtures of subcubes where we insisted on running in time

𝑛𝑂(log 𝑘), here we can afford to simply brute-force search for a basis for M for any realization

of 𝒟. In fact our strategy will be: 1) brute-force search for a row basis 𝐽 = {𝑖1, ..., 𝑖𝑟} for

m, 2) use C together with Lemma 7.2.10 to find coefficients expressing the remaining rows

of m as linear combinations of the basis elements, and 3) brute-force search for the mixing

weights and entries of m in rows 𝑖1, ..., 𝑖𝑟. Each attempt in our brute-force procedure will

correspond to a candidate distribution in the list on which our algorithm ultimately runs

hypothesis selection. We outline this general approach in the first three subsections.

While the task of obtaining a basis for the rows of M is simpler here than in learning

453

mixtures of subcubes, the issue of ill-conditioned matrices is much more subtle. Whereas for

mixtures of subcubes, Lemma 7.3.10 guarantees that the matrices we deal with are all either

well-conditioned or not full rank, for general mixtures of product distributions the matrices

we deal with can be arbitrarily badly conditioned. This already makes it much trickier to

prove robust low-degree identifiability, which we do in Section 7.5.4.

Once we have robust low-degree identifiability, we can adapt the ideas of Section 7.3 for

handling M|ℛ′(𝐽) not being full rank to handle M|ℛ′(𝐽) being ill-conditioned.7 Analogous

to arguing that 𝒟|𝑥𝐽 = 𝑠 can be realized as a mixture of fewer product distributions when

M|ℛ′(𝐽) is not full rank, we argue that 𝒟|𝑥𝐽 = 𝑠 is close to a mixture of fewer product

distributions when M|ℛ′(𝐽) is ill-conditioned.

After describing our algorithm in greater detail, we summarize in Section 7.5.6 how our

algorithm manages to improve upon that of [FOS05].

7.5.1 Parameter Closeness Implies Distributional Closeness

We first clarify what we mean by brute-force searching for the underlying parameters of 𝒟.

In a general mixture 𝒟 of product distributions realized by mixing weights 𝜋 and marginals

matrix m, the entries of 𝜋 and m can take on any values in [0, 1]. The following lemmas

show that it’s enough to recover 𝜋 and m to within some small entrywise error 𝜀′. So for

instance, instead of searching over all choices {0, 1/2, 1}𝑛×𝑘 for m as in the subcubes setting,

we can search over all choices {0, 𝜀′, 2𝜀′, ..., ⌊1/𝜀′⌋𝜀}𝑛×𝑘.

Lemma 7.5.1. If 𝒟 and 𝒟 are mixtures of at most 𝑘 product distributions over {0, 1}𝑛

with the same mixing weights 𝜋 and marginals matrices m and m respectively such that

|m𝑖
𝑗 −m𝑖

𝑗| ≤ 𝜀/2𝑘𝑛 for all 𝑖, 𝑗 ∈ [𝑘]× [𝑛], then 𝑑TV(𝒟,𝒟) ≤ 𝜀.

Proof. Consider 𝒟 and 𝒟 whose marginals matrices are equal except in the (𝑖, 𝑗)-th entry

7Here, recall that ℛ(𝐽) = 2[𝑛]∖𝐽 . Lemma 7.3.2 implies that

rank(M|ℛ(𝐽)) = rank(M|ℛ′(𝐽))

where in our discussion of general mixtures of product distributions ℛ′(𝐽) is the set of all subsets 𝑇 ⊆ [𝑛]∖𝐽
with |𝑇 | = 𝑘. In fact, for technical reasons that we defer to Appendix 7.8, we will actually need to use
subsets of size up to 𝑂(𝑘2). This will not affect our runtime, but for the discussion in this section it is fine
to ignore this detail.

454

where they differ by ≤ 𝜀/2𝑘𝑛. Then it is clear that 𝑑TV(𝒟,𝒟) ≤ 𝜀/𝑘𝑛. So by a union bound,

if 𝒟 and 𝒟 have marginals matrices differing entrywise by ≤ 𝜀/2𝑘𝑛, then 𝑑TV(𝒟,𝒟) ≤ 𝜀

Lemma 7.5.2. If 𝒟 and 𝒟 are mixtures of at most 𝑘 product distributions over {0, 1}𝑛 with

the same marginal matrices m and mixing weights 𝜋 and 𝜋 respectively such that |𝜋𝑖−𝜋𝑖| ≤

2𝜀/𝑘 for all 𝑖 ∈ [𝑘], then 𝑑TV(𝒟,𝒟) ≤ 𝜀.

Proof. Denote the probability that the 𝑖-th center of either 𝒟 or 𝒟 takes on the value 𝑠 by

𝑝𝑖. For any 𝑠 ∈ {0, 1}𝑛,

|Pr
𝒟
[𝑠]− Pr

𝒟
[𝑠]| = |⟨(𝑝1 · · · 𝑝𝑘), 𝜋 − 𝜋⟩| ≤ 𝑘 · (2𝜀/𝑘) = 2𝜀,

We conclude that 𝑑TV(𝒟,𝒟) ≤ 𝜀 as desired.

The next lemma says that we can get away with not recovering product distributions in

the mixture that have sufficiently small mixing weights.

Lemma 7.5.3. Let 𝒟 be a mixture of 𝑘 product distributions over {0, 1}𝑛 with mixing weights

𝜋 and marginals matrix m. Denote by 𝑆 ⊆ [𝑘] the coordinates 𝑖 of 𝜋 for which 𝜋𝑖 ≥ 𝜀/𝑘,

and let 𝑍 =
∑︀

𝑖∈𝑆 𝜋
𝑖. Then the mixture 𝒟 of |𝑆| product distributions over {0, 1}𝑛 realized

by (1
𝑍
𝜋|𝑆,m|𝑆) satisfies 𝑑TV(𝒟,𝒟) ≤ 𝜀.

Proof. We can regard 𝒟 as a distribution which with probability 𝑍 samples from one of the

centers of 𝒟 indexed by 𝑖 ∈ 𝑆 with probability proportional to 𝜋, and with probability 1−𝑍

samples from some other distribution. We can regard 𝒟 in the same way. Then their total

variation distance is bounded above by 1− 𝑍 ≤ 𝜀/𝑘 · 𝑘 = 𝜀.

7.5.2 Barycentric Spanners

To control the effect that sampling noise in our estimates for moments of 𝒟 has on the

approximation guarantees of our learning algorithm, it is not enough simply to find a row

basis for m for any realization of 𝒟, but rather one for which the coefficients expressing the

remaining rows of m in terms of this basis are small. The following, introduced in [AK08],

precisely captures this notion.

455

Definition 7.5.4. Given a collection of vectors 𝑉 = {𝑣1, ..., 𝑣𝑛} in R𝑘, 𝑆 ⊆ 𝑉 is a barycen-

tric spanner if every element of 𝑉 can be expressed as a linear combination of elements of 𝑆

using coefficients in [−1, 1].

Lemma 7.5.5 (Proposition 2.2 in [AK08]). Every finite collection of vectors 𝑉 = {𝑣1, ..., 𝑣𝑛} ⊆

R𝑘 has a barycentric spanner.

Proof. Without loss of generality suppose that 𝑉 spans all of R𝑘. Pick 𝑣𝑖1 , ..., 𝑣𝑖𝑘 for which

| det(𝑣𝑖1 , ..., 𝑣𝑖𝑘)| is maximized. Take any 𝑣 ∈ 𝑉 and write it as
∑︀

𝑗 𝛼𝑗𝑣𝑖𝑗 . Then for any

𝑗 ∈ [𝑛], | det(𝑣𝑖1 , ..., 𝑣𝑖𝑗−1
, 𝑣, 𝑣𝑖𝑗+1

, ..., 𝑣𝑖𝑘)| = |𝛼𝑗| · | det(𝑣𝑖1 , ..., 𝑣𝑖𝑘)|. By maximality, |𝛼𝑗| ≤ 1,

so 𝑣𝑖1 , ..., 𝑣𝑖𝑘 is a barycentric spanner.

7.5.3 Gridding the Basis and Learning Coefficients

In time 𝑛𝑂(𝑘) we can brute-force find a barycentric spanner 𝐽 = {𝑖1, ..., 𝑖𝑟} for the rows

of m. We can then 𝜀
4𝑘2𝑛

-grid the entries of m|𝐽 in time (𝑛/𝜀)𝑘
2 to get an entrywise 𝜀

4𝑘2𝑛
-

approximation m|𝐽 of m. Now suppose for the moment that we had exact access to the

entries of C. We can try solving

C|{𝑖1},...,{𝑖𝑟}ℛ′(𝐽∪{𝑖}) 𝛼𝑖 = C|{𝑖}ℛ′(𝐽∪{𝑖}) (7.11)

in 𝛼𝑖 ∈ R𝑟 for every 𝑖 ̸∈ 𝐽 .

If rank(M|ℛ′(𝐽∪{𝑖})) = 𝑘 for all 𝑖 ̸∈ 𝐽 and realizations of 𝒟, then by Lemma 7.2.10, the

coefficient vectors 𝛼𝑖 also satisfy 𝛼𝑖 ·m|𝐽 = m𝑖. Because 𝐽 is a barycentric spanner so that

𝛼𝑖 ∈ [−1, 1]𝑟, if we define m𝑖 by

m𝑖 = 𝛼𝑖 ·m|𝐽 , (7.12)

then m is an entrywise 𝜀
4𝑘2𝑛
· 𝑘 = 𝜀

4𝑘𝑛
-approximation of m. We can then 𝜀

2𝑘
-grid mixture

weights 𝜋, and by Lemmas 7.5.1, 7.5.2, and 7.5.3 we have learned a mixture of product

distributions 𝒟 for which 𝑑TV(𝒟,𝒟) ≤ 𝜀.

As usual, the complication is that it may be that rank(M|ℛ′(𝐽∪{𝑖})) < 𝑘 for some realiza-

tion of 𝒟, but as in our algorithm for learning mixtures of subcubes, we can handle this by

conditioning on 𝐽 ∪ {𝑖} and recursing.

456

As we alluded to at the beginning of the section, a more problematic issue that comes

up here but not in the subcube setting is that M|ℛ′(𝐽∪{𝑖}) might be full rank but very badly

conditioned. Indeed, in reality we only have 𝜀samp-close estimates C̃ to the accessible entries

of C, so instead of solving (7.11), we solve the analogous 𝐿∞ regression

�̃�𝑖 , argmin
𝛼∈[−1,1]𝑟

‖C̃|{𝑖1},...,{𝑖𝑟}ℛ′(𝐽∪{𝑖}) 𝛼− C̃|{𝑖}ℛ′(𝐽∪{𝑖})‖∞. (7.13)

If 𝜎∞
min(M|ℛ′(𝐽∪{𝑖}) is badly conditioned, then we cannot ensure that the resulting �̃�𝑖 lead to

m𝑖 = �̃�𝑖 ·m|𝐽 in (7.12) which are close to the true m𝑖.

We show in the next subsections that this issue is not so different from when rank(M|ℛ′(𝐽∪{𝑖})) <

𝑘 for some realization of 𝒟, and we can effectively treat ill-conditioned moment matrices as

degenerate-rank moment matrices. As we will see, the technical crux underlying this is

the fact that mixtures of product distributions are robustly identified by their 𝑂(𝑘)-degree

moments.

7.5.4 Robust Low-degree Identifiability

Lemma 7.3.2 is effectively an exact identifiability result that implies that if a mixture of

𝑘1 product distributions exactly agrees with a mixture of 𝑘2 product distributions on all

moments of degree at most 𝑘1 + 𝑘2, then they are identical as distributions. The following

is a robust identifiability lemma saying that if instead the two mixtures are only close on

moments of degree at most 𝑘1+𝑘2, then they are close in total variation distance. Recall that

we showed a similar lemma for mixtures of subcubes, but there it was much easier to extend

exact identifiability to robust identifiability because full rank moment matrices are always

well-conditioned, something that does not always hold for mixtures of product distributions.

Lemma 7.5.6. Let 𝒟1,𝒟2 respectively be mixtures of 𝑘1 and 𝑘2 product distributions in

{0, 1}𝑛 for 𝑘1, 𝑘2. If 𝑑TV(𝒟1,𝒟2) > 𝜀, there is some 𝑆 for which |𝑆| < 𝑘1+𝑘2 and |E𝒟1 [𝑥𝑆]−

E𝒟2 [𝑥𝑆]| > 𝜂 for some 𝜂 = exp(−𝑂(𝑘1 + 𝑘2)
2) · poly(𝑘1 + 𝑘2, 𝑛, 𝜀)

−𝑘1−𝑘2.

We will prove the contrapositive by induction on 𝑘1+𝑘2. Suppose |E𝒟1 [𝑥𝑆]−E𝒟2 [𝑥𝑆]| ≤ 𝜂

for all 𝑆 ⊆ [𝑛] with |𝑆| < 𝑘1 + 𝑘2. Define 𝛿 = 𝜀/2𝑘𝑛. Henceforth suppose 𝒟1 and 𝒟2 are

realized by (𝜋1,m1) and (𝜋2,m2) respectively for 𝜋1
1 ≥ · · · ≥ 𝜋𝑘11 and 𝜋1

2 ≥ · · · ≥ 𝜋𝑘22 . For

457

𝑖 ∈ [𝑛] let 𝑢𝑖, ℓ𝑖 denote the largest and smallest value in row 𝑖 of either m1 or m2.

The following simple observation, similar in spirit to Lemma 7.2.8, drives our induction:

Observation 7.5.7. For any 𝑖 ∈ [𝑛] and each 𝑗 = 1, 2, there exists a mixture of product

distributions 𝒟ℓ𝑗 over {0, 1}𝑛−1 such that for any 𝑆 ⊆ [𝑛]∖{𝑖},

E𝒟1 [(𝑥𝑖 − ℓ𝑖) · 𝑥𝑆] = E𝒟1 [𝑥𝑖 − ℓ𝑖] · E𝒟ℓ
1
[𝑥𝑆]. (7.14)

If ℓ𝑖 is an entry of (m1)𝑖, then 𝒟ℓ1 and 𝒟ℓ2 are mixtures of at most 𝑘1 − 1 and 𝑘2 product

distributions respectively. If we replace (𝑥𝑖− ℓ𝑖) with (𝑢𝑖−𝑥𝑖), the analogous statement holds

for mixtures 𝒟𝑢1 ,𝒟𝑢2 .

Proof. For each 𝑗, 𝒟ℓ𝑗 is obviously realized by

(︂
1

𝑍𝑗
𝜋1 ⊙ ((m𝑗)𝑖 − ℓ𝑖 · 1), (m𝑗)|[𝑛]∖{𝑖}

)︂
,

where 𝑍𝑗 = E𝒟𝑗
[𝑥𝑖 − ℓ𝑖]. But for 𝑗 = 1, 𝜋1 ⊙ ((m1)𝑖 − ℓ𝑖 · 1) has a zero in the entry

corresponding to where ℓ𝑖 is in (m1)𝑖. So 𝒟ℓ1 is in fact realized by the mixture weight vector

consisting of all nonzero entries of 𝜋1 ⊙ ((m1)𝑖 − ℓ𝑖 · 1) together with the corresponding at

most 𝑘1 − 1 columns of (m1)[𝑛]∖{𝑖}.

One subtlety is that we need to pick a row 𝑖 such that E𝒟𝑗
[(𝑥𝑖 − ℓ𝑖)] and E𝒟𝑗

[(𝑢𝑖 − 𝑥𝑖)]

is sufficiently large that when we induct on the pairs of mixtures 𝒟ℓ1,𝒟ℓ2 and 𝒟𝑢1 ,𝒟𝑢2 , the

assumption that the pair of mixtures 𝒟1,𝒟2 is close on low-degree moments carries over to

these pairs. In the following lemma we argue that if no such row 𝑖 exists, then 𝒟1 and 𝒟2

are both close to a single product distribution and therefore close in total variation distance

to each other.

Lemma 7.5.8. If there exists no 𝑖 ∈ [𝑛] for which E𝒟1 [𝑥𝑖 − ℓ𝑖] ≥ 𝛿𝜀/4𝑘 and E𝒟1 [𝑢𝑖 − 𝑥𝑖] ≥

𝛿𝜀/4𝑘, then 𝑑TV(𝒟1,Π) ≤ 𝜀, where Π is the single product distribution with 𝑖-th marginal ℓ𝑖

if E𝒟1 [𝑥𝑖− ℓ𝑖] ≤ 𝛿𝜀/4𝑘 and 𝑢𝑖 if E𝒟1 [𝑢𝑖−𝑥𝑖] ≥ 𝛿𝜀/4𝑘. In particular, if there exists no 𝑖 ∈ [𝑛]

for which E𝒟1 [𝑥𝑖 − ℓ𝑖] ≥ 𝛿𝜀/9𝑘 and E𝒟1 [𝑢𝑖 − 𝑥𝑖] ≥ 𝛿𝜀/9𝑘, then 𝑑TV(𝒟1,𝒟2) ≤ 𝜀.

Proof. Let 𝑘′1 ≤ 𝑘1 be the largest index for which 𝜋
𝑘′1
1 ≥ 𝜀/2𝑘. If there exists no 𝑖 ∈ [𝑛] for

458

which E𝒟1 [𝑥𝑖 − ℓ𝑖] ≥ 𝛿𝜀/4𝑘 and E𝒟1 [𝑢𝑖 − 𝑥𝑖] ≥ 𝛿𝜀/4𝑘, then for every 𝑖 ∈ [𝑛] and 1 ≤ 𝑗 ≤ 𝑘′1,

m𝑗
𝑖 ∈ [ℓ𝑖, ℓ𝑖 + 𝛿/2] ∪ [𝑢𝑖 − 𝛿/2, 𝑢𝑖], so by Lemmas 7.5.1 and Lemma 7.5.3, 𝑑TV(𝒟1,Π) ≤ 𝜀.

For the second statement in the lemma, note that the argument above obviously also

holds if 𝒟1 is replaced with 𝒟2. If E𝒟1 [𝑥𝑖 − ℓ𝑖] ≥ 𝛿𝜀/9𝑘, then by the assumption that

𝒟1 and 𝒟2 are 𝜂-close on all low-order moments, E𝒟2 [𝑥𝑖 − ℓ𝑖] ≤ 𝛿𝜀/9𝑘 + 𝜂 ≤ 𝛿𝜀/8𝑘 and

we conclude by invoking the first part of the lemma on both 𝒟1 and 𝒟2 to conclude that

𝑑TV(𝒟1,𝒟2) ≤ 𝑑TV(𝒟1,Π) + 𝑑TV(𝒟2,Π) ≤ 𝜀.

Finally, before we proceed with the details of the inductive step, we check the base case

when at least one of 𝑘1, 𝑘2 is 1.

Lemma 7.5.9. Let 𝒟1 be a single product distribution over {0, 1}𝑛 and 𝒟2 a mixture of 𝑘

product distributions over {0, 1}𝑛. If 𝑑TV(𝒟1,𝒟2) > 𝜀, there is some 𝑆 for which |𝑆| ≤ 𝑘+1

and |E𝒟1 [𝑥𝑆]− E𝒟2 [𝑥𝑆]| > 𝜂 for 𝜂 = 𝜀3

648·2𝑘𝑛2 .

Proof. Let 𝑝1, ..., 𝑝𝑛 be the marginals of 𝒟1 and let 𝜋 and m be mixing weights and marginals

matrix realizing 𝒟2. For each 𝑖 ∈ [𝑛] define 𝑣𝑖 = m𝑖 − 𝑝𝑖 · 1. For 𝑖 ̸= 𝑗, observe that

⟨𝜋, 𝑣𝑖 ⊙ 𝑣𝑗⟩| = |⟨𝜋,m𝑖 ⊙m𝑗 + 𝑝𝑖 · 𝑝𝑗 · 1− 𝑝𝑖 ·m𝑗 − 𝑝𝑗 ·m𝑖⟩|

=
⃒⃒
E𝒟2 [𝑥{𝑖,𝑗}] + E𝒟1 [𝑥{𝑖,𝑗}]− (E𝒟1 [𝑥{𝑖,𝑗}]± 𝜂)− (E𝒟1 [𝑥{𝑖,𝑗}]± 𝜂)

⃒⃒
≤ 3𝜂.

Pick out a barycentric spanner 𝐽 ⊆ [𝑛] for {𝑣1, ..., 𝑣𝑛} so that for all 𝑖 ̸∈ 𝐽 , there exist

coefficients 𝜆𝑖𝑗 ∈ [−1, 1] for which 𝑣𝑖 =
∑︀

𝑗∈𝐽 𝜆𝑗𝑣𝑗. From this we get

⟨𝜋, 𝑣𝑖 ⊙ 𝑣𝑖⟩ = |⟨𝜋, 𝑣𝑖 ⊙ 𝑣𝑖⟩| ≤
∑︁
𝑗∈𝐽

|𝜆𝑗| · |⟨𝜋, 𝑣𝑖 ⊙ 𝑣𝑗⟩| ≤ 3𝜂𝑘.

All entries of 𝑣𝑖 ⊙ 𝑣𝑖 are obviously nonnegative, so for 𝜏 = 𝜀/6𝑘 to be chosen later, we find

that |𝑣ℓ𝑖 | ≤
√︀

3𝜂𝑘/𝜏 ≤ 𝜀/6𝑛𝑘 for all ℓ ∈ [𝑘] for which 𝜋ℓ > 𝜏 . Denote the set of such ℓ by

𝑆 ⊆ [𝑘].

By restricting to entries of 𝜋 in 𝑆, normalizing, and restricting the columns of m to 𝑆,

we get a new mixture of product distributions 𝒟′ with marginals matrix (𝜋′,m|𝑆) which is

𝜏𝑘 = 𝜀/6-close to 𝒟2. For all 𝑖 ̸∈ 𝐽 and ℓ ∈ 𝑆, because |𝑣ℓ𝑖 | ≤ 𝜀/6𝑛𝑘, if we replace every such

459

(𝑖, ℓ)-th entry of m|𝑆 by 𝑝𝑖 to get m′, then the mixture of product distributions 𝒟′′ realized

by (𝜋′,m′) is 𝜀/6-close to 𝒟′.

For a distribution 𝐷 let 𝐷|𝐽 denote its restriction to coordinates 𝐽 . Total variation

distance is nonincreasing under this restriction operation, so 𝑑TV(𝒟2|𝐽 ,𝒟′′|𝐽) ≤ 𝑑TV(𝒟2,𝒟′′).

Furthermore, note that 𝑑TV(𝒟1|𝐽 ,𝒟2|𝐽) ≤ 22𝑘𝜂 < 𝜀/3, because |𝐽 | ≤ 𝑘 and any event on

{0, 1}𝑘 can obviously be expressed in terms of at most 22𝑘 moments of 𝒟1|𝐽 and 𝒟2|𝐽 . By

the triangle inequality, 𝑑TV(𝒟1|𝐽 ,𝒟′′|𝐽) ≤ 2𝜀/3.

Finally, define Π to be the product distribution over {0, 1}𝑛−|𝐽 | with marginals {𝑝𝑖}𝑖 ̸∈𝐽 .

By design, 𝒟1 = 𝒟1|𝐽 × Π and 𝒟′′ = 𝒟′′|𝐽 × Π. Because Π is a single product distri-

bution, 𝑑TV(𝒟1,𝒟′′) = 𝑑TV(𝒟1|𝐽 ,𝒟′′|𝐽) ≤ 2𝜀/3. By the triangle inequality, we get that

𝑑TV(𝒟1,𝒟2) ≤ 𝜀.

We are now ready to complete the inductive step in the proof of Lemma 7.5.6.

Proof of Lemma 7.5.6. Pick 𝜂 = 5−2(𝑘1+𝑘2)2 ·
(︁

(𝛿𝜀/𝑘)2

162

)︁𝑘1+𝑘2
. For 𝑘1 = 1 or 𝑘2 = 1, we certainly

have 𝜂 < 𝜀3

648·2𝑘𝑛2 , so the base case follows by Lemma 7.5.9.

Now consider the case where 𝑘1, 𝑘2 > 1. Suppose

|E𝒟1 [𝑥𝑆]− E𝒟2 [𝑥𝑆]| ≤ 𝜂 (7.15)

for all |𝑆| < 𝑘1 + 𝑘2. By Lemma 7.5.8 we may assume that there exists an 𝑖 for which

E𝒟1 [𝑥𝑖 − ℓ𝑖] ≥ 𝛿𝜀/9𝑘 and E𝒟1 [𝑢𝑖 − 𝑥𝑖] ≥ 𝛿𝜀/9𝑘. Because Lemma 7.5.8 also holds for 𝒟2, we

may assume without loss of generality that ℓ𝑖 is an entry of (m1)𝑖. Take any 𝑇 ⊆ [𝑛]∖{𝑖} for

|𝑇 | < 𝑘1 + 𝑘2 − 1. By (7.15) we have that

⃒⃒
E𝒟1 [(𝑥𝑖 − ℓ𝑖) · 𝑥𝑇∪{𝑖}]− E𝒟1 [(𝑥𝑖 − ℓ𝑖) · 𝑥𝑇∪{𝑖}]

⃒⃒
≤ 2𝜂.

By (7.14) we have that

⃒⃒⃒
E𝒟ℓ

1
[𝑥𝑇]− E𝒟ℓ

2
[𝑥𝑇]

⃒⃒⃒
=

⃒⃒⃒⃒
E𝒟1 [(𝑥𝑖 − ℓ𝑖) · 𝑥𝑇∪{𝑖}]

E𝒟1 [𝑥𝑖 − ℓ𝑖]
−

E𝒟2 [(𝑥𝑖 − ℓ𝑖) · 𝑥𝑇∪{𝑖}]
E𝒟2 [𝑥𝑖 − ℓ𝑖]

⃒⃒⃒⃒
=

⃒⃒⃒⃒
±𝜂 · E𝒟1 [(𝑥𝑖 − ℓ𝑖) · 𝑥𝑇∪{𝑖}]± 2𝜂 · E𝒟1 [𝑥𝑖 − ℓ𝑖]

E𝒟1 [𝑥𝑖 − ℓ𝑖] · E𝒟2 [𝑥𝑖 − ℓ𝑖]

⃒⃒⃒⃒
460

≤ 2𝜂

𝛿𝜀/9𝑘
+

𝜂

(𝛿𝜀/9𝑘)2
≤ 2𝜂

(𝛿𝜀/9𝑘)2
≤ 5−2(𝑘1+𝑘2−1)2

(︂
(𝛿𝜀/5𝑘)2

162

)︂𝑘1+𝑘2−1

Because 𝒟ℓ1 is a mixture of fewer than 𝑘1 product distributions and 𝒟ℓ2 is a mixture of

at most 𝑘2 product distributions, we inductively have that 𝑑TV(𝒟ℓ1,𝒟ℓ2) ≤ 𝜀/5. In the exact

same way we can show that we inductively have that 𝑑TV(𝒟𝑢1 ,𝒟𝑢2) ≤ 𝜀/5.

Now consider any event 𝒮 ⊆ {0, 1}𝑛. We wish to bound⃒⃒⃒⃒
⃒∑︁
𝑠∈𝒮

(Pr
𝒟1

[𝑠]− Pr
𝒟2

[𝑠])

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒ ∑︁
𝑠∈𝒮:𝑠𝑖=0

(Pr
𝒟1

[𝑠]− Pr
𝒟2

[𝑠])

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒ ∑︁
𝑠∈𝒮:𝑠𝑖=1

(Pr
𝒟1

[𝑠]− Pr
𝒟2

[𝑠])

⃒⃒⃒⃒
⃒ (7.16)

Because 𝑥 = 𝛼1,𝑖(𝑥 − ℓ𝑖) + 𝛽1,𝑖(𝑢𝑖 − 𝑥) for 𝛼1,𝑖 = 𝑢𝑖
𝑢𝑖−ℓ𝑖 and 𝛽1,𝑖 = ℓ𝑖

𝑢𝑖−ℓ𝑖 , and 1 − 𝑥 =

𝛼0,𝑖(𝑥− ℓ𝑖)+𝛽0,𝑖(𝑢𝑖−𝑥) for 𝛼0,𝑖 =
1−𝑢𝑖
𝑢𝑖−ℓ𝑖 and 𝛽0,𝑖 = 1−ℓ𝑖

𝑢𝑖−ℓ𝑖 . For 𝑏 = 0, 1, we can thus use (7.14)

to express Pr𝒟𝑗
[𝑠] for 𝑠𝑖 = 𝑏 as

Pr
𝒟𝑗

[𝑠] = 𝛼𝑏,𝑖 · E𝒟𝑗
[𝑥𝑖] · Pr

𝒟ℓ
𝑗

[𝑠′] + 𝛽𝑏,𝑖 · E𝒟𝑗
[𝑥𝑖] · Pr

𝒟𝑢
𝑗

[𝑠′]

where 𝑠′ denotes the substring of 𝑠 outside of coordinate 𝑖. From this we see that

Pr
𝒟1

[𝑠]− Pr
𝒟2

[𝑠] = 𝛼𝑏,𝑖

(︂
E𝒟1 [𝑥𝑖]Pr

𝒟ℓ
1

[𝑠′]− E𝒟2 [𝑥𝑖]Pr
𝒟ℓ

2

[𝑠′]

)︂
+ 𝛽𝑏,𝑖

(︂
E𝒟1 [𝑥𝑖]Pr

𝒟𝑢
1

[𝑠′]− E𝒟2 [𝑥𝑖]Pr
𝒟𝑢

2

[𝑠′]

)︂
= 𝛼𝑏,𝑖 · E𝒟1 [𝑥𝑖]

(︂
Pr
𝒟ℓ

1

[𝑠′]− Pr
𝒟ℓ

2

[𝑠′]

)︂
+ 𝛽𝑏,𝑖 · E𝒟1 [𝑥𝑖]

(︂
Pr
𝒟𝑢

1

[𝑠′]− Pr
𝒟𝑢

2

[𝑠′]

)︂
± 𝛼𝑏,𝑖𝜂 Pr

𝒟ℓ
2

[𝑠′]± 𝛽𝑏,𝑖𝜂 Pr
𝒟𝑢

2

[𝑠′].

Note that

𝛼𝑏,𝑖 · E𝒟1 [𝑥𝑖], 𝛽𝑏,𝑖 · E𝒟1 [𝑥𝑖] ≤ 1

because 𝑢𝑖 − ℓ𝑖 is an obvious upper bound on E𝒟1 [𝑥𝑖]. We can thus bound (7.16) by

2𝑑TV(𝒟ℓ1,𝒟ℓ2) + 2𝑑TV(𝒟𝑢1 ,𝒟𝑢2) + 𝜂(𝛼0,𝑖 + 𝛼1,𝑖 + 𝛽0,𝑖 + 𝛽1,𝑖) ≤ 4𝜀/5 +
4𝜂

𝛿𝜀/9𝑘
≤ 𝜀,

thus completing the induction.

Henceforth fix 𝜂(𝑛, 𝑘1 + 𝑘2, 𝜀) to be the 𝜂 in Lemma 7.5.6.

461

7.5.5 Collapsing Ill-conditioned Moment Matrices

Lastly, we illustrate how to use Lemma 7.5.6 to implement the same recursive conditioning

strategy that we used in N-List to learn mixtures of subcubes, deferring the details to

Appendix 7.8. Just as we showed in Lemma 7.2.7 that we can collapse mixtures of 𝑘 product

distributions to mixtures of fewer product distributions provided their moment matrices are

of rank less than 𝑘, here we show that we can do the same if their moment matrices are

ill-conditioned.

Lemma 7.5.10. The following holds for any 𝜂 > 0. Let 𝒟 be a mixture of 𝑘 product

distributions realized by mixing weights 𝜋 and marginals matrix m such that

𝜎∞
min(M) ≤ 𝜂 ·

√
2

3𝑘2
.

Then there exists 𝒟′ a mixture of at most 𝑘 − 1 product distributions realized by mixing

weights 𝜋′ and marginals matrix m′ such that |E𝒟[𝑥𝑆]− E𝒟′ [𝑥𝑆]| ≤ 𝜂 for all |𝑆| ≤ 𝑘. In

particular, if we take 𝜂 = 𝜂(𝑛, 2𝑘, 𝜀), then by Lemma 7.5.6, 𝑑TV(𝒟,𝒟′) ≤ 𝜀.

To prove this, we require the following basic fact similar in spirit to the proof of Lemma 7.2.7.

Lemma 7.5.11. For any 𝑣 ∈ R𝑘, there exists 𝑡 ∈ R with |𝑡| ≤
√
𝑘/‖𝑣‖2 for which 𝜋 − 𝑡 · 𝑣

has a zero entry and lies in [0, 1]𝑘.

Proof. If 𝜋 already has a zero entry, then we are done. Otherwise 𝜋 lies in the interior of

the box [0, 1]𝑘. Consider the line through 𝜋 given by {𝜋 − 𝑡 · 𝑣}𝑡∈R. This will intersect the

boundary of the box in two points, which correspond to values 𝑡 for which 𝜋 − 𝑡 · 𝑣 has a

zero entry. The bound on |𝑡| follows from the fact that the diameter of [0, 1]𝑘 is
√
𝑘.

We will move 𝜋 in the direction of the minimal singular vector corresponding to 𝜎∞
𝑚𝑖𝑛(M)

and argue by Lemma 7.5.6 that the resulting mixture of at most 𝑘− 1 product distributions

is close to 𝒟.

Proof of Lemma 7.5.10. Let 𝜎∞
min(M) = 𝜏 . Let 𝑣 ∈ R𝑘 be the vector for which ‖M ·𝑣‖∞ = 𝜏

and ‖𝑣‖∞ = 1. Denote by 𝑆+, 𝑆− ⊆ [𝑘] the coordinates on which 𝑣 is positive or negative

respectively, and let 𝑖 ∈ [𝑘] be the coordinate for which 𝑣𝑖 = 1, without loss of generality.

462

Let 𝑍+ =
∑︀

𝑗∈𝑆+
𝑣𝑗 and 𝑍− = −

∑︀
𝑗∈𝑆−

𝑣𝑗 and note that |𝑍+ − 𝑍−| ≤ 𝜏 because 1 is a row

of M and 1 ≤ |𝑍+| ≤ 𝑘 because 𝑣𝑖 = 1.

Define 𝜋+ = 𝑣𝑆+/𝑍+, 𝜋− = −𝑣𝑆−/𝑍−,m+ = m|𝑆+ ,m− = m|𝑆− and let 𝒟+ and 𝒟− be

the mixtures of |𝑆+| and |𝑆−| product distributions realized by (𝜋+,m+) and (𝜋−,m−).

We claim that it suffices to show that

⃒⃒
E𝒟+ [𝑥𝑆]− E𝒟− [𝑥𝑆]

⃒⃒
≤ 𝜂 ·

√
2/𝑘 (7.17)

for all |𝑆| ≤ 𝑘. Indeed, define 𝑣* to be the rescaling of 𝑣 by 𝑍+ in coordinates 𝑆+ and by 𝑍−

in coordinates 𝑆− (i.e. the appropriate concatenation of 𝜋1 and −𝜋2). By Cauchy-Schwarz,

‖𝑣*‖ ≤
√
2𝑘, so by Lemma 7.5.11 there exists a 𝑡 ∈ R with |𝑡| ≤

√
𝑘/‖𝑣*‖2 ≤ 𝑘/

√
2 for

which 𝜋 − 𝑡 · 𝑣* has at most 𝑘 − 1 nonzero coordinates. Moreover, because the sum of the

entries in 𝑣* is zero by design, 𝜋 − 𝑡 · 𝑣* ∈ Δ𝑘. Let 𝜋′ ∈ R𝑘−1 be the nonzero part of 𝜋 and

m′ be the corresponding columns of m, and let 𝒟′ be the mixture of at most 𝑘 − 1 product

distributions realized by (𝜋′,m′). It is clear that

|E𝒟[𝑥𝑆]− E𝒟′ [𝑥𝑆]| = 𝑡 ·
⃒⃒
E𝒟+ [𝑥𝑆]− E𝒟− [𝑥𝑆]

⃒⃒
, (7.18)

so if (7.17) held, then by (7.18) and Lemma 7.5.6, 𝑑TV(𝒟,𝒟′) ≤ 𝜀 as desired.

It remains to show (7.17). We know that ‖M · 𝑣‖∞ ≤ 𝜏 , and

⃒⃒
E𝒟+ [𝑥𝑆]− E𝒟− [𝑥𝑆]

⃒⃒
=

⃒⃒⃒⃒
1

𝑍+

(M+)𝑆𝑣𝑆+ +
1

𝑍−
(M−)𝑆𝑣𝑆−

⃒⃒⃒⃒
=

⃒⃒⃒⃒
1

𝑍+

M𝑆𝑣 +

(︂
1

𝑍−
− 1

𝑍+

)︂
(M−)𝑆𝑣𝑆+

⃒⃒⃒⃒
≤ 𝜏 + 2𝜏𝑘 ≤ 3𝜏𝑘,

so (7.17) holds as long as 𝜏 ≤ 𝜂·
√
2

3𝑘2
.

In Appendix 7.8 we show how to put all of these ingredients together to learn a mixture

of product distributions given arbitrary 𝜀samp-close estimates of its low-degree moments (not

just estimates obtained by sampling), so in particular if the gridding procedure described

in Section 7.5.3 fails because 𝜎∞
min(M|ℛ′(𝐽∪{𝑖})) is small for some 𝑖 ̸∈ 𝐽 , where 𝐽 indexes

463

a barycentric spanner for the rows of m, then Lemma 7.5.10 tells us that we can learn

𝒟|𝑥𝐽∪{𝑖} = 𝑠 for each 𝑠 ∈ {0, 1}|𝐽∪{𝑖}| by instead recursively learning distributions 𝒟𝑠 which

are mixtures of at most 𝑘−1 product distributions that are 𝜀samp-close in low-degree moments

to 𝒟|𝑥𝐽∪{𝑖} = 𝑠 and 𝜀-close in total variation distance.

7.5.6 Comparison to Feldman-O’Donnell-Servedio’s Algorithm

The algorithm of Feldman, O’Donnell and Servedio [FOS05] also uses brute-force search to

find a basis for the rows of m. However instead of constructing a barycentric spanner they

construct a basis that is approximately as well-conditioned as m. Their algorithm proceeds

by gridding the entries m|𝐽 . The key difference between their approach and ours is that

their gridding requires granularity 𝑂((𝜀/𝑛)𝑘) while ours requires only 𝑂(𝜀/𝑛). The reason

is that they try to solve for the other rows of m in the same way that we do in (7.2) when

learning mixtures of subcubes, that is, by solving a system of equations for each 𝑖 ̸∈ 𝐽 with

coefficients given by row m𝑖. They require granularity 𝑂((𝜀/𝑛)𝑘) to account for m being ill-

conditioned. Just as we showed we could assume in our algorithm for mixtures of subcubes

that the mixture weights had a gap of 𝜌 = 2−𝑂(𝑘2), [FOS05] showed they can assume that

m has a spectral gap of 𝑂(𝜀/𝑛) by brute-forcing singular vectors of m and appending them

to m to make it better conditioned. Such a spectral gap corresponds in the worst case to

an m that is 𝑂((𝜀/𝑛)𝑘)-well-conditioned, which in turn ends up as the granularity in their

gridding procedure. As a result, the bottleneck in the algorithm of [FOS05] is the (𝑛/𝜀)𝑂(𝑘3)

time spent just to grid the entries of m|𝐽 .

In comparison, we save a factor of 𝑘 in the exponent of the running time by only 𝑂(𝜀/𝑛)-

gridding the entries of m|𝐽 . The reason is that we solve for the remaining rows of m not by

solving systems of equations with coefficients in the rows m𝑖 for 𝑖 ̸∈ 𝐽 , but by expressing

these rows m𝑖 as linear combinations of the rows of m|𝐽 , where the linear combinations

have bounded coefficients. This leverages higher order multilinear moments to make the

linear system better conditioned. We estimate these coefficients by solving the regression

problem (7.13), and the coefficients are accurate so long as the sampling error is 𝑂(𝜀/𝑛) times

the condition number of M|ℛ′(𝐽∪{𝑖}) for 𝐽 the barycentric spanner of the rows of m and any

𝑖 ̸∈ 𝐽 . So in our algorithm, the bottlenecks leading to a 𝑘2 dependence in the exponent are

464

(1) 𝑂(𝜀/𝑛)-gridding all 𝑂(𝑘2) entries of m|𝐽 , (2) brute-forcing 𝑂(𝑘) coordinates to condition

in every one of the ≤ 𝑘 recursive steps, (3) using degree-𝑂(𝑘2) subsets in ℛ′(𝐽 ∪ {𝑖}) to

ensure that when we condition on each of at most 𝑘 subsequent subsets 𝐽 ∪{𝑖}, the resulting

mixtures are all close in low-order moments to mixtures of fewer components.

7.6 Appendix: Learning via Sampling Trees

Recall that our algorithms for learning mixtures of subcubes and general mixtures of product

distributions over {0, 1}𝑛 both work by first running an initial subroutine that will success-

fully learn the distribution if certain non-degeneracy conditions are met (e.g. rank(M|ℛ′(𝐽∪{𝑖})) =

𝑘 or 𝜎∞
min(M|ℛ(𝐽∪{𝑖})) is sufficiently large for all 𝑖 ̸∈ 𝐽 and all realizations of 𝒟). If this ini-

tial subroutine fails, some non-degeneracy condition is not met, so we can condition on all

assignments to a small set of coordinates and recursively learn the resulting conditional dis-

tributions which are guaranteed to be simpler. Before analyzing these algorithms in detail,

we make this recursive procedure precise.

Definition 7.6.1. A sampling tree 𝒯 is a tree whose vertices 𝑣𝑆,𝑠 correspond to tuples (𝑆, 𝑠)

for 𝑆 ⊆ [𝑛] and 𝑠 ∈ {0, 1}|𝑆|, with the root being 𝑣∅,∅. For every node 𝑣𝑆,𝑠, either 𝑣𝑆,𝑠 is a

leaf corresponding to a distribution 𝒟𝑆,𝑠 over {0, 1}𝑛−|𝑆|, or there is a 𝑊 ⊆ [𝑛]∖𝑆 for which

𝑣𝑆,𝑠 is connected to children 𝑣𝑆∪𝑊,𝑠⊕𝑡 for all 𝑡 ∈ {0, 1}|𝑊 | via edges of weight 𝑤𝑆,𝑊,𝑠,𝑡. For

any non-leaf vertex 𝑣𝑆,𝑠,
∑︀

𝑊,𝑡𝑤𝑆,𝑊,𝑠,𝑡 = 1.

𝒯 gives an obvious procedure for sampling from {0, 1}𝑛: randomly walk down the tree

according to the edge weights, and sample from the distribution corresponding to the leaf

you end up at. We call the resulting distribution the distribution associated to 𝒯 . We can

analogously define the distributions associated to (subtrees rooted at) vertices of 𝒯 .

Given a mixture of product distributions 𝒟, our learning algorithm will output a sampling

tree 𝒯 where for each 𝑆 ⊆ [𝑛] and 𝑠 ∈ {0, 1}|𝑆|, the subtree rooted at 𝑣𝑆,𝑠 corresponds to

the distribution the algorithm recursively learns to approximate the posterior distribution

(𝒟|𝑥𝑆 = 𝑠). If 𝑣𝑆,𝑠 is any vertex of 𝒯 , we can learn the subtree rooted at 𝑣𝑆,𝑠 as follows. First

use rejection sampling on 𝒟 to get enough samples of 𝒟|𝑥𝑆 = 𝑠 that all moment estimates

are 𝜀samp-close to their true values. We can then run our initial subroutine for learning

465

non-degenerate mixtures.

It either outputs both a list ℳ of candidate mixtures for (𝒟|𝑥𝑆 = 𝑠) and a list 𝒰

of subsets of coordinates 𝑊 ⊆ [𝑛]∖𝑆 to condition on, or it outputs FAIL if we’ve already

recursed 𝑟 times and yet (𝒟|𝑥𝑆 = 𝑠) is not close to or exactly realizable by a mixture of at

most 𝑘 − 𝑟 product distributions.

If the output is not FAIL, the guarantee is that either some mixture from ℳ is 𝑂(𝜀)-

close to (𝒟|𝑥𝑆 = 𝑠), or some 𝑊 ∈ 𝒰 satisfies that (𝒟|𝑥𝑆∪𝑊 = 𝑠 ∘ 𝑡) is “simpler” for every

𝑡 ∈ {0, 1}|𝑊 | (i.e. close to or exactly realizable as a mixture of fewer product distributions). In

the latter case, the algorithm guesses 𝑊 and tries to recursively learn each (𝒟|𝑥𝑆∪𝑊 = 𝑠∘ 𝑡).

For every guess 𝑊 , the algorithm gets candidate sampling trees 𝒟𝑣𝑆∪𝑊 ,𝑠∘𝑡 to connect to 𝑣𝑆,𝑠.

Moreover, by guarantees we prove about the initial subroutine for learning non-degenerate

mixtures, we do not need to recurse more than 𝑘 more times from the root 𝑣∅,∅.

If the output is FAIL, this means we incorrectly guessed 𝑊 at some earlier recursive step.

So in total we get a pool of |ℳ|+ |𝒰| candidate distributions, one of which is guaranteed

to be 𝑂(𝜀)-close to (𝒟|𝑥𝑆 = 𝑠). It then remains to pick out a candidate which is 𝑂(𝜀)-close,

which can be done via the following well-known fact.

Lemma 7.6.2 (Scheffé tournament, see e.g. [DL01]). Given sample access to a distribution

𝒟, and given a list ℒ of distributions 𝒟′ at least one of which satisfies 𝑑TV(𝒟,𝒟′) ≤ 𝜀, there

is an algorithm Select(ℒ,𝒟) which outputs a distribution 𝒟′′ ∈ ℒ satisfying 𝑑TV(𝒟,𝒟′′) ≤

9.1𝜀 using 𝑂(𝜀−2 log |ℒ|) samples from 𝒟 and in time 𝑂(𝜀−2|ℒ|2 log |ℒ|𝑇), where 𝑇 is the

time to evaluate the pdf of any distribution in ℒ on a given point.

Remark 7.6.3. For mixtures of subcubes, our initial subroutine for learning non-degenerate

mixtures has stronger guarantees: it outputs a single mixture which is guaranteed to be close

to (𝒟|𝑥𝑆 = 𝑠), a collection 𝒰 of subsets 𝑊 , or FAIL.

One minor subtlety is that for certain 𝑆, 𝑠, Pr𝒟[𝑥𝑆 = 𝑠] may be so small that rejection

sampling will not give us enough samples from (𝒟|𝑥𝑆 = 𝑠), and the subtree rooted at 𝑣𝑆,𝑠

will end up looking very different from (𝒟|𝑥𝑆 = 𝑠). But this is fine because in sampling from

𝒯 , we will reach 𝑣𝑆,𝑠 so rarely that if 𝒟* is the distribution associated to 𝒯 , 𝑑TV(𝒟*,𝒟) is

still very small.

466

The above discussion is summarized in Algorithm 24 below, where NonDegenerate-

Learn is the abovementioned initial subroutine for learning non-degenerate mixtures. For-

mally, it outputs a list ℳ of candidate mixtures as well as a list 𝒰 of subsets 𝑊 ⊆ [𝑛]∖𝑆

to be conditioned on. The list might contain a distribution close to 𝒟, but if not, 𝒰 will

contain some 𝑊 such that conditioning on 𝑥𝑊 = 𝑠 for any 𝑠 ∈ {0, 1}|𝑊 | will yield a “simpler”

distribution.

Algorithm 24: N-List(𝒟, 𝑆, 𝑠, 𝑘)
Input: Mixture of subcubes/product distributions 𝒟, 𝑆 ⊆ [𝑛], 𝑠 ∈ {0, 1}|𝑆|, counter

𝑘
Output: List of sampling trees rooted at node 𝑣𝑆,𝑠, one of which is guaranteed to

be close to (𝒟|𝑥𝑆 = 𝑠)
1 𝒮 ← ∅.
2 Draw 2𝑁/𝜏𝑡𝑟𝑢𝑛𝑐 samples 𝑦 from 𝒟 and keep those for which 𝑦𝑆 = 𝑠 as samples from

(𝒟|𝑥𝑆 = 𝑠).
3 Run NonDegenerateLearn(𝒟|𝑥𝑆 = 𝑠, 𝑘).
4 if output is FAIL then
5 return FAIL.

6 else
/* output is list ℳ of candidate mixtures and/or list 𝒰 of

candidate subsets 𝑊 ⊆ [𝑛]∖𝑆 to condition on */
7 for each mixture in ℳ do
8 Add to 𝒮 the sampling tree given by the single node 𝑣𝑆,𝑠 with distribution

equal to this mixture.

9 if 𝑘 > 1 then
10 for 𝑊 ∈ 𝒰 do
11 for 𝑡 ∈ {0, 1}|𝑊 | do
12 Run N-List(𝒟, 𝑆 ∪𝑊, 𝑠 ∘ 𝑡, 𝑘− 1) to get some list of sampling trees 𝒯𝑡

or FAIL.
13 If we get FAIL for any 𝑡, skip to the next 𝑊 .

14 Empirically estimate E𝑦∈𝒟[𝑦𝑊 = 𝑡|𝑦𝑆 = 𝑠] to within 𝛿𝑒𝑑𝑔𝑒 using the
samples from (𝒟|𝑥𝑆 = 𝑠).

15 For each 𝒯𝑡: connect 𝑣𝑆,𝑠 to the root 𝑣𝑆∪𝑊,𝑠∘𝑡 of 𝒯𝑡 with edge weight
𝑤𝑆,𝑊,𝑠,𝑡 for every 𝑡 ∈ {0, 1}|𝑊 | and add this sampling tree to 𝒮.

16 return Select(𝒮,𝒟, 𝜀𝑠𝑒𝑙𝑒𝑐𝑡).

Our implementations of NonDegenerateLearn will interact solely with estimates of

moments of the input distribution, so in our analysis it will be convenient to assume that

467

these estimates are accurate.

Definition 7.6.4. Let 𝜀samp(·) : Z+ → [0, 1] be a decreasing function. We say a run of

NonDegenerateLearn on some counter 𝑘 and some (𝒟|𝑥𝑆 = 𝑠) is 𝜀samp(𝑘)-sample-rich

if enough samples are drawn from 𝒟 that all moment estimates used are 𝜀samp(𝑘)-close to

their true values.

For 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐 > 0, we say a run of N-List on distribution 𝒟 is (𝜀samp(·), 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐)-

sample-rich if enough samples are drawn from 𝒟 that every invocation of NonDegener-

ateLearn on counter 𝑘 and (𝒟|𝑥𝑆 = 𝑠) for which Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐 is 𝜀samp(𝑘)-sample

rich, and such that every transition probability computed in an iteration of Step 14 is esti-

mated to within 𝛿𝑒𝑑𝑔𝑒 error.

Because the runtimes of our algorithms for learning mixtures of subcubes and mixtures of

product distributions are rather different, the kinds of guarantees we need for NonDegen-

erateLearn are somewhat different. We therefore defer proofs of correctness of N-List for

mixtures of subcubes and general mixtures to Appendix 7.7 and Appendix 7.8 respectively.

We can however give a generic runtime analysis for N-List now. We will use the following

basic facts.

Fact 7.6.5. Suppose E𝒟[𝑥𝑆 = 𝑠] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐. Then if 2𝑁/𝜏𝑡𝑟𝑢𝑛𝑐 samples are drawn from 𝒟,

with probability 1− 𝑒−𝑁/4 at least 𝑁 samples 𝑥 will satisfy 𝑥𝑆 = 𝑠.

Fact 7.6.6. Fix 𝑆 ⊆ [𝑚]. If (3/𝜀2) ln(2/𝜌) samples are taken from a distribution 𝒟 over

{0, 1}𝑚, then
⃒⃒⃒̃︀E𝒟[𝑥𝑆]− E𝒟[𝑥𝑆]

⃒⃒⃒
> 𝜀 with probability at most 𝜌.

Lemma 7.6.7. Suppose NonDegenerateLearn on any input distribution and counter

𝑘 always uses at most 𝑍 different moments, returns ℳ of size at most 𝑀 and 𝒰 of size

at most 𝑈 and consisting of subsets of size at most 𝑆, and takes time at most 𝑇 (𝑟). If

𝛿𝑒𝑑𝑔𝑒 ≤ 𝜀samp(𝑘), then achieving an (𝜀samp(·), 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐)-sample-rich run of N-List on a

given distribution and counter 𝑘 with probability 1− 𝛿 requires

𝑂(𝜀𝑠𝑎𝑚𝑝(𝑘)
−2 ln(1/𝛿) ln(𝑍)+𝜀−2

𝑠𝑒𝑙𝑒𝑐𝑡·poly(𝑛, 𝑘) log(𝑀+𝑈))·(2𝑆𝑘𝑈𝑘)1+𝑜(1)/𝜏𝑡𝑟𝑢𝑛𝑐+𝑇 (𝑘)·2𝑆𝑘𝑈𝑘

468

time and

𝑂(𝜀𝑠𝑎𝑚𝑝(𝑘)
−2 ln(1/𝛿) ln(𝑍) + 𝜀−2

𝑠𝑒𝑙𝑒𝑐𝑡 log(𝑀 + 𝑈)) · (2𝑆𝑘𝑈𝑘)1+𝑜(1)/𝜏𝑡𝑟𝑢𝑛𝑐

samples.

Proof. The only places where we need to take samples are to estimate 𝑁 moments in each in-

vocation of NonDegenerateLearn, to estimate transition probabilities Pr𝑦∼𝒟[𝑦𝑗 = 𝑡|𝑥𝑆 =

𝑠] in each iteration of Step 14, and to run Select. Denote by 𝑁1(𝑘), 𝑁2(𝑘), 𝑁3(𝑘) the max-

imum possible number of invocations of NonDegenerateLearn, estimations of transition

probabilities, and the number of invocations of Select in a run of N-List on a distribution

and a counter 𝑘. Then 𝑁1(𝑘) ≤ 1 +𝑁1(𝑘 − 1) · 𝑈 · 2𝑆, 𝑁2(𝑘) ≤ 𝑈 · 2𝑆 +𝑁2(𝑘 − 1) · 𝑈 · 2𝑆,

and 𝑁3(𝑘) ≤ 1 +𝑁3(𝑘 − 1) · 𝑈 · 2𝑆. But 𝑁1(1), 𝑁3(1) = 1 and 𝑁2(1) = 0, so unwinding the

recurrences and noting that 2𝑆 · 𝑈 ≥ 2, we get that 𝑁1(𝑘), 𝑁2(𝑘), 𝑁3(𝑘) ≤ 2𝑆𝑘 · 𝑈𝑘.

For NonDegenerateLearn and the transition probabilities, we need to estimate at

most 𝑍 moments of some (𝒟|𝑥𝑆 = 𝑠) in each invocation of NonDegenerateLearn and

𝑁2(𝑘) statistics of the form Pr𝑦∼(𝒟|𝑥𝑆=𝑠)[𝑦𝑇 = 𝑡], and we require that for 𝑆, 𝑠 such that

Pr𝒟[𝑥𝑆 = 𝑠] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐, our estimates are 𝜀samp(𝑘)-close. For such 𝑆, 𝑠, by Fact 7.6.5 we can

simulate 𝑁 draws from (𝒟|𝑥𝑆 = 𝑠) using 2𝑁/𝜏𝑡𝑟𝑢𝑛𝑐 draws from 𝒟 with probability at least

1 − 𝑒−𝑁/4. By Fact 7.6.6, if we set 𝑁 = (3/𝜀samp(𝑘)
2) ln(2/𝜌) for some 𝜌 > 0, then we

can estimate some Pr𝑦∼(𝒟|𝑥𝑆=𝑠)[𝑦𝑇 = 𝑡] to within error 𝜀samp(𝑘) with probability at least

1− 𝜌. In this case, 𝑁 > 4 ln(1/𝜌), so the probability that we fail to estimate this statistic to

within error 𝜀samp(𝑘) is at most 2𝜌. By a union bound over all 𝑍 ·𝑁1(𝑘) +𝑁2(𝑘) statistics,

the probability we fail to get an (𝜀samp(·), 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐)-sample-rich run of N-List is at most

2𝜌(𝑍 ·𝑁1(𝑘) +𝑁2(𝑘)) ≤ 2𝜌 · (𝑍 + 1)2𝑆𝑘𝑈𝑘, so by taking 𝜌 = 𝛿/(4(𝑍 + 1)2𝑆𝑘𝑈𝑘), we ensure

the run is (𝜀samp(·), 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐)-rich with probability at least 1− 𝛿/2. In total, this requires

(2𝑁/𝜏𝑡𝑟𝑢𝑛𝑐) · (𝑁1(𝑘) +𝑁2(𝑘)) = 𝑂((1/𝜀samp(𝑘)
2) · (2𝑆𝑘𝑈𝑘)1+𝑜(1) · ln(𝑍) ln(1/𝛿)/𝜏𝑡𝑟𝑢𝑛𝑐)

samples. In addition to drawing samples for NonDegenerateLearn and the transition

probabilities, we also need time at most 𝑇 (𝑘) for each invocation of NonDegenerate-

469

Learn, for a total of 𝑇 (𝑘) · 2𝑆𝑘𝑈𝑘 time.

For Select, we need to use Lemma 7.6.2 𝑁3(𝑘) times. Note that the list of candidates is

always at most 𝑀 +𝑈 , so for each invocation of Select on (𝒟|𝑥𝑆 = 𝑠) for which Pr𝒟[𝑥𝑆 =

𝑠] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐, we require𝑂(𝜀−2
𝑠𝑒𝑙𝑒𝑐𝑡 log(𝑀+𝑈)) samples from (𝒟|𝑥𝑆 = 𝑠), which can be done using

𝑂(𝜀−2
𝑠𝑒𝑙𝑒𝑐𝑡 log(𝑀 +𝑈)/𝜏𝑡𝑟𝑢𝑛𝑐) samples from 𝒟. In total, this requires 𝑁3(𝑘) ·𝑂(𝜀−2

𝑠𝑒𝑙𝑒𝑐𝑡 log(𝑀 +

𝑈)/𝜏𝑡𝑟𝑢𝑛𝑐) = 𝑂(𝜀−2
𝑠𝑒𝑙𝑒𝑐𝑡2

𝑆𝑘𝑈𝑘 log(𝑀 + 𝑈)/𝜏𝑡𝑟𝑢𝑛𝑐) samples. The time to evaluate the pdf of a

sampling tree is obviously poly(𝑛, 𝑘), so 𝑁3(𝑘) invocations of Select requires time at most

𝑂(𝜀−2
𝑠𝑒𝑙𝑒𝑐𝑡) · (2𝑆𝑘𝑈𝑘+2 log(𝑀 + 𝑈)) · poly(𝑛, 𝑘).

Putting this all together gives the desired time and sample complexity.

7.7 Appendix: Learning Mixtures of Subcubes

N-List and GrowByOne in Section 7.3 were described under the assumption that we had

exact access to the accessible entries of C, when in reality we only have access to them up

to some sampling noise 𝜀samp > 0 (we fix this parameter 𝜀samp later). In this section, we

show how to remove the assumption of zero sampling noise and thereby give a complete

description of the algorithm for learning mixtures of subcubes.

Throughout this section, we fix a [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔]-avoiding rank-𝑘 realization of 𝒟 by mixing

weights 𝜋 and marginals matrix m such that M′ has 𝑘′ columns. Here, recall that M′

denotes the submatrix of M of columns corresponding to mixing weights that are at least

𝜏𝑏𝑖𝑔. We will use ̃︀E[𝑥𝑆] to denote any 𝜀samp-close estimate of E𝑥𝑆] and C̃ to denote a matrix

consisting of 𝜀samp-close estimates of the accessible entries of C. Note that we only ever use

particular submatrices of C̃ of reasonable size in our algorithm, so at no point will we need

to instantiate all entries of C̃.

7.7.1 Robustly Building a Basis

Here we describe and prove guarantees for a sampling noise-robust implementation of Grow-

ByOne. Recall that every time we reach step 8 of GrowByOne, we are appending to

the basis ℬ = {𝑇1, ..., 𝑇𝑟} a subset of {𝑇1 ∪ {𝑖}, ..., 𝑇𝑟 ∪ {𝑖}} so that the corresponding

columns in C|ℛ′(𝐽∪{𝑖}) form a basis for columns 𝑇1, ..., 𝑇𝑟, 𝑇1∪{𝑖}, ..., 𝑇𝑟∪{𝑖}, where as usual

470

𝐽 = 𝑇1 ∪ · · · ∪ 𝑇𝑟.

One way to pick out the appropriate columns to add is to solve at most 𝑟 linear systems

of the following form. Suppose we have already added some indices to ℬ so that the cor-

responding columns of C|ℛ′(𝐽∪{𝑖}) span columns 𝑇1, ..., 𝑇𝑟, 𝑇1 ∪ {𝑖}, ..., 𝑇𝑚−1 ∪ {𝑖} for some

𝑚 ≤ 𝑟.

To check whether to add some 𝑇 ′ ⊆ [𝑛] to ℬ, we could simply check whether there exists

𝛼𝑇
′ ∈ R|ℬ| for which

C|ℬℛ′(𝐽∪𝑇 ′)𝛼
𝑇 ′

= C|𝑇 ′

ℛ′(𝐽∪𝑇 ′). (7.19)

In reality however, we only have access to C̃, so instead of solving (7.19), we will solve the

regression problem

�̃�𝑇
′
, argmin

𝛼∈R|ℬ|
‖C̃|ℬℛ′(𝐽∪𝑇 ′)𝛼− C̃|𝑇 ′

ℛ′(𝐽∪𝑇 ′)‖∞. (7.20)

Denote by 𝜀(�̃�, 𝑇 ′,ℬ) the corresponding 𝐿∞ error of the optimal solution; where the context

is clear, we will refer to this as 𝜀𝑒𝑟𝑟.

We can now give the following robust version of Lemma 7.2.9 and Lemma 7.2.10.

Lemma 7.7.1 (Robust version of Lemma 7.2.9 and Lemma 7.2.10). There exist large enough

constants 𝑐19, 𝑐16 > 0 for which the following holds. Fix a [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔]-avoiding rank-𝑘 real-

ization of 𝒟, and let 𝜀samp < 𝑘−𝑐19𝑘
2
𝜏𝑏𝑖𝑔 and 𝜌 = 𝑘−𝑐16𝑘

2. Let ℬ = {𝑇1, ..., 𝑇𝑟} be such that

the rows of M′|ℬ are linearly independent, and fix 𝑇 ′ ⊆ [𝑛] for which |𝐽 ∪ 𝑇 ′| ≤ 𝑘′, where

𝑘′ is the number of columns of M′ and 𝐽 = 𝑇1 ∪ · · · ∪ 𝑇𝑟. Let 𝐶2|ℬℛ′(𝐽∪𝑇 ′) be any matrix of

moment estimates satisfying ‖C̃|ℬℛ′(𝐽∪𝑇 ′) −C|ℬℛ′(𝐽∪𝑇 ′)‖max ≤ 𝜀samp.

• If rank(M′|ℛ′(𝐽∪𝑇 ′)) = 𝑘′ and M′
𝑇 ′ is not in the span of {M′

𝑇 ′}𝑇∈ℬ, then 𝜀𝑒𝑟𝑟 ≥
1
2
𝑘−𝑐17𝑘

2
𝜏𝑏𝑖𝑔.

• If M′
𝑇 ′ is in the span of {M′

𝑇}𝑇∈ℬ so that there exists 𝛼𝑇 ′ ∈ R|ℬ| for which

M′
𝑇 ′ =

∑︁
𝑇∈ℬ

𝛼𝑇
′

𝑇 M′
𝑇 , (7.21)

then 𝜀𝑒𝑟𝑟 < 𝑘−𝑐20𝑘
2
𝜏𝑏𝑖𝑔 for some 𝑐20 > 𝑐17.

471

Proof. First suppose that rank(M′|ℛ′(𝐽∪𝑇 ′)) = 𝑘′ and that there exists no coefficients 𝛼𝑇 ′ for

which (7.21) holds, so 𝐹 , (C|ℬℛ′(𝐽∪𝑇 ′)‖C|𝑇
′

ℛ′(𝐽∪𝑇 ′)) satisfies the hypotheses of Lemma 7.3.14.

Also define 𝐹 , (C̃|ℬℛ′(𝐽∪𝑇 ′)‖C̃|𝑇
′

ℛ′(𝐽∪𝑇 ′)) and �̃�′𝑇 ′
= (�̃�𝑇

′‖ − 1) so that 𝜀𝑒𝑟𝑟 = ‖𝐹�̃�′𝑇 ′‖∞.

Applying Lemma 7.3.14 to 𝐹 , we get 𝜎∞
min(𝐹) ≥ 1

2
𝑘−𝑐17𝑘

2 ·𝜏𝑏𝑖𝑔 provided 𝜀samp ≤ 1
2
𝑘−𝑐17𝑘

2−1𝜏𝑏𝑖𝑔.

So we can ensure that

𝜀𝑒𝑟𝑟 = ‖𝐹�̃�′𝑇 ′‖∞ ≥ 𝜎∞
min(𝐹)‖�̃�′𝑇 ′‖∞ ≥

1

2
𝑘−𝑐17𝑘

2 · 𝜏𝑏𝑖𝑔. (7.22)

Now suppose instead that there do exist coefficients 𝛼𝑇 ′ for which (7.21) holds. We claim

that 𝜀𝑒𝑟𝑟 will not exceed the lower bound computed in (7.22). Indeed, note that

‖C|ℬℛ′(𝐽∪𝑇 ′)𝛼
𝑇 ′ −C|𝑇 ′

ℛ′(𝐽∪𝑇 ′)‖∞ = ‖
𝑘∑︁

ℓ=𝑘′+1

𝜋ℓ ·M|ℓℛ′(𝐽∪𝑇 ′)

(︁
(M|ℓℬ)⊤𝛼𝑇

′ − (M|ℓ𝑇 ′)⊤
)︁
‖∞. (7.23)

But for any 𝑘′ + 1 ≤ ℓ ≤ 𝑘 and 𝑇 ⊆ 𝐽 ∪ 𝑇 ′,

‖𝜋ℓ ·M|ℓℛ′(𝐽∪𝑇 ′)(M
ℓ
𝑇)

⊤‖∞ ≤ 𝜏𝑠𝑚𝑎𝑙𝑙.

So by triangle inequality we can bound the right-hand side of (7.23) by

𝑘∑︁
ℓ=𝑘′+1

(︁
𝜏𝑠𝑚𝑎𝑙𝑙 · |ℬ| · ‖𝛼𝑇

′‖∞ + 𝜏𝑠𝑚𝑎𝑙𝑙

)︁
≤ 2𝑘2𝜏𝑠𝑚𝑎𝑙𝑙‖𝛼𝑇

′‖∞.

So we have that

𝜀𝑒𝑟𝑟 ≤ ‖C|ℬℛ′(𝐽∪𝑇 ′)𝛼
𝑇 ′ −C|𝑇 ′

ℛ′(𝐽∪𝑇 ′)‖∞ + ‖Δ|ℬ𝛼𝑇 ′‖∞ + ‖Δ𝑇 ′‖∞

≤ 2𝑘2𝜏𝑠𝑚𝑎𝑙𝑙‖𝛼𝑇
′‖∞ + 𝑘𝜀samp‖𝛼𝑇

′‖∞ + 𝜀samp

≤ (2𝑘2𝜏𝑠𝑚𝑎𝑙𝑙 + 𝑘𝜀samp) · 𝑘𝑐21𝑘
2

for some 𝑐21 > 0, where in the last step we have bounded ‖𝛼𝑇 ′‖∞ using Lemma 7.3.10:

‖𝛼𝑇 ′‖∞ ≤ ‖(M′|ℬ)⊤𝛼𝑇
′‖∞/𝜎∞

min((M
′|ℬ)⊤) ≤ ‖M′

𝑇 ′‖∞𝑘𝑐13𝑘
2 ≤ 𝑘𝑐13𝑘

2

.

472

We conclude that by picking 𝜌 = 𝑘−𝑐16𝑘
2 and 𝜀samp = 𝑘−𝑐19𝑘

2
𝜏𝑏𝑖𝑔 small enough, then we will

have 𝜀𝑒𝑟𝑟 < 𝑘−𝑐20𝑘
2
𝜏𝑏𝑖𝑔 for some 𝑐20 > 𝑐17.

Now we have a way to adapt GrowByOne to handle sampling noise as summarized in

Algorithm 25. We do not know a priori the window [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔] used in the above analysis,

so we include this as part of the input in GrowByOne and InSpan.

Algorithm 25: InSpan(𝒟,ℬ, 𝑇 ′, 𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔)
Input: Mixture of subcubes 𝒟, certified full rank ℬ, 𝑇 ′ ⊆ [𝑛], [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔]
Output: If rank(M′|ℛ′(𝐽∪𝑇 ′)) = 𝑘′ for some realization of 𝒟, the output is True if

M′
𝑇 ′ lies in the row span of M′|ℬ, and False otherwise.

1 Construct matrix �̃� with entries consisting of 𝜀samp-close empirical estimates of the
entries of 𝐸 , C|ℛ′(𝐽∪𝑇 ′).

2 Solve (7.20) and denote the corresponding 𝜀(�̃�, 𝑇 ′,ℬ) by 𝜀𝑒𝑟𝑟.
3 if 𝜀𝑒𝑟𝑟 ≥ 1

2
𝑘−𝑐17𝑘

2
𝜏𝑏𝑖𝑔 then

4 return False.

5 else
6 return True.

To put this in the context of the discussion in Section 7.2.3 and Section 7.3.2 note

that the second statement in Lemma 7.7.1 — just like Lemma 7.2.9 — does not require

rank(M′|ℛ′(𝐽∪{𝑖})) = 𝑘′. Thus if we use 𝜀𝑒𝑟𝑟 to decide whether to add to ℬ, we will only ever

add sets corresponding to rows of M′ that are linearly independent. This is the sampling

noise-robust analogue of being certified full rank. Furthermore, when we implement InSpan

as above, the condition for termination in Step 10 of GrowByOne together with the con-

dition for not returning FAIL in Step 13 constitute the sampling noise-robust analogue of

being locally maximal.

Definition 7.7.2. Given a collection ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟} of subsets we say that ℬ is ro-

bustly certified full rank if InSpan(𝒟, {𝑇1, ..., 𝑇𝑖}, 𝑇𝑖+1) returns True for all 𝑖 = 1, ..., 𝑟 − 1.

Definition 7.7.3. Let ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟} be robustly certified full column rank. Let 𝐽 =

∪𝑖𝑇𝑖. Suppose there is no

(1) 𝑇 ′ ⊆ 𝐽 or

(2) 𝑇 ′ = 𝑇𝑖 ∪ {𝑗} for 𝑗 /∈ 𝐽

473

for which InSpan(𝒟,ℬ, 𝑇 ′) returns False. Then we say that ℬ is robustly locally maximal.

If GrowByOne with the above implementation of InSpan outputs some ℬ* with 𝐽* =

∪𝑇∈ℬ*𝑇 , then Lemma 7.7.1 implies that as long as rank(M′|ℛ′(𝐽*∪{𝑖})) = 𝑘′ for all 𝑖 ̸∈ 𝐽*,

ℬ* is both certified full rank and robustly certified full rank, as well as locally maximal and

robustly locally maximal. Roughly this says that in non-degenerate mixtures, the robust

and non-robust definitions coincide.

However, when rank(M′|ℛ′(𝐽*∪𝑇 ′)) < 𝑘′ for some 𝑇 ′ ⊆ [𝑛] and InSpan(𝒟,ℬ*, 𝑇 ′) returns

True, Lemma 7.7.1 tells us nothing about whether C|𝑇𝑚∪{𝑖}
ℛ′(𝐽*∪𝑇 ′) lies inside the column span of

C|ℬ*

ℛ′(𝐽*∪𝑇 ′). So the output of GrowByOne under the above implementation of InSpan will

not necessarily be certified full rank and locally maximal in the sense of Section 7.3. Still, it

is not hard to modify the proofs of Lemmas 7.3.9 and 7.3.6 to obtain the following sampling

noise-robust analogues.

Lemma 7.7.4 (Robust version of Lemma 7.3.9). Suppose GrowByOne has InSpan im-

plemented as Algorithm 25 and has access to 𝜀samp-close estimates of any moment of 𝒟 for

𝜀samp < 𝑘−𝑐19𝑘
2
𝜏𝑏𝑖𝑔 and 𝜌 = 𝑘−𝑐16𝑘

2. If GrowByOne outputs FAIL and some set 𝐽*, then

rank(M′|ℛ′(𝐽*)) < 𝑘′ for some rank-𝑘 realization of 𝒟. Otherwise, GrowByOne outputs

ℬ* = {𝑇1, ..., 𝑇𝑟}, and ℬ* is robustly certified full rank and robustly locally maximal.

Proof. The proof of the lemma follows many of the steps in Lemma 7.3.9 but uses InSpan.

Set 𝐽* either to be the output of GrowByOne if it outputs FAIL, or if it outputs ℬ* then

set 𝐽* = ∪𝑖𝑇𝑖. Now fix any rank-𝑘 realization of 𝒟 and let M′ be the corresponding moment

matrix. Whenever the algorithm reaches Step 5 for 𝑖 ∈ 𝐽*, ℬ = {𝑇1, · · · , 𝑇𝑟}, there are two

possibilities. If rank(M′|ℛ′(𝐽∪{𝑖})) < 𝑘, then rank(M′|𝐽*) < 𝑘 because 𝐽* obviously contains

𝐽 ∪ {𝑖}. Otherwise, inductively we know that by Lemma 7.7.1 that M′|ℬ is a row basis for

M′|2𝐽 . So rows

𝑇1, · · · , 𝑇𝑟, 𝑇1 ∪ {𝑖}, · · · , 𝑇𝑟 ∪ {𝑖}

of M′ span the rows of M′|2𝐽∪{𝑖} . If ℬ′ indexes a basis among these rows

𝑇1, · · · , 𝑇𝑟, 𝑇1 ∪ {𝑖}, · · · , 𝑇𝑟 ∪ {𝑖}

474

then by the second part of Lemma 7.7.1, InSpan(𝒟,ℬ′, 𝑇 ′) outputs True for every 𝑇 ′ ⊆

𝐽 ∪ {𝑖}. Step 8 of GrowByOne simply finds such a ℬ′.

Therefore, when we exit the loop, either (𝑎) the ℬ* we end up with at the end of Grow-

ByOne is such that InSpan(𝒟,ℬ*, 𝑇 ′) outputs True for every 𝑇 ′ ⊆ 𝐽* or (𝑏) at some

iteration of Step 3 𝐽 satisfies rank(M′|ℛ′(𝐽)) < 𝑘 and thusrank(M′|ℛ′(𝐽*)) < 𝑘.

If (𝑎) holds, GrowByOne will reach Step 16 and output ℬ* which is by definition ro-

bustly certified full rank and robustly locally maximal. On the other hand, if GrowByOne

ever terminates at Step 13, we know that (𝑏) holds, so it successfully outputs FAIL together

with 𝐽* satisfying rank(M′|ℛ(𝐽*)) < 𝑘.

Lemma 7.7.5 (Robust version of Lemma 7.3.6). Fix a full rank realization of 𝒟 and suppose

rank(M′) = 𝑘′. Let ℬ = {𝑇1, 𝑇2, · · · , 𝑇𝑟} be robustly certified full rank and robustly locally

maximal. Let 𝐽 = ∪𝑖𝑇𝑖 and

𝐾 =
{︁
𝑖
⃒⃒⃒
𝑖 /∈ 𝐽 and rank(M′|ℛ′(𝐽∪{𝑖})) = 𝑘′

}︁
If 𝐾 ̸= ∅ then the rows of M|ℬ are a basis for the rows of M|2𝐽∪𝐾 .

Proof. Our strategy is to apply Lemma 7.3.5 to M′ and the set 𝐽 ∪𝐾 which will give the

desired conclusion. We need to verify that the two conditions of Lemma 7.3.5 are met.

The first condition of robust local maximality implies that there is no 𝑇 ′ ⊆ 𝐽 for which

InSpan(𝒟,ℬ, 𝑇 ′) returns False. Now we can invoke the first part of Lemma 7.7.1 which

implies that M′
𝑇 ′ is in the span of M′|ℬ. This and the fact that ℬ is robustly certified full

rank imply that the rows of M′|ℬ are indeed a basis for the rows of M′|2𝐽 , which is the first

condition we needed to check in Lemma 7.3.5.

For the second condition, the chain of reasoning is similar. Consider any 𝑖 ∈ 𝐾 and any

𝑇𝑖′ ∈ ℬ. Set 𝑇 ′ = 𝑇𝑖′ ∪ {𝑖} and 𝐽 ′ = 𝐽 ∪ {𝑖}. Then rank(M′|ℛ′(𝐽 ′)) = 𝑘. Now the second

condition of robust local maximality implies that InSpan(𝒟,ℬ, 𝑇 ′) returns True. We can

once again invoke the first part of Lemma 7.7.1 to conclude that M𝑇 ′ is in the span of M|ℬ,

which is the second condition we needed to verify. This completes the proof.

475

7.7.2 Robustly Tracking Down an Impostor

The bulk of adapting N-List to be sampling noise-robust rests on adapting Step 10 and

proving a sampling noise-robust analogue of Lemma 7.3.8. Let ℬ = 𝑇1, ..., 𝑇𝑟 be the output

of Algorithm 25. Instead of solving (7.1), we can solve the regression problem

�̃� , argmin
𝜋∈[0,1]𝑟

‖M|ℬ · 𝜋⊤ − C̃|∅ℬ‖∞. (7.24)

We could then try solving an analogous regression problem for (7.2). The issue is that

�̃� could have arbitrarily small entries (e.g. if 𝑟 < 𝑘, in which case the assumption that 𝒟 is

[𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔]-avoiding tells us nothing). We handle this in the same way that we handle the

possibility of 𝜋 having small entries: sort the entries of �̃� as �̃�1 ≥ �̃�2 ≥ · · · �̃�𝑟, pick out the

smallest 1 ≤ 𝑟′ < 𝑟 for which

�̃�𝑟
′
/�̃�𝑟

′+1 > 2𝑐22𝑘
2

and �̃�𝑟
′+1 < 𝜐

for sufficiently large 𝑐22 > 0 and 𝜐 to be chosen later — if no such 𝑟′ exists, then set 𝑟′ = 𝑟

— and show it is possible to at least learn the first 𝑟′ columns of m. Note that

�̃�𝑟
′ ≥ 2−𝑐22𝑘

3

𝜐. (7.25)

For every 𝑖 ̸∈ 𝐽 , we can solve the regression problem

m̃𝑖 , argmin
𝑥∈[0,1]𝑟′

‖M|[𝑟
′]

ℬ · diag(�̃�[𝑟′]) · 𝑥− C̃|{𝑖}ℬ ‖∞. (7.26)

We will show that for non-impostors 𝑖, these m̃𝑖 can be rounded to the true values m
′[𝑟′]
𝑖 .

Lemma 7.7.6 (Robust version of Lemma 7.3.8). There exist constants 𝑐22, 𝑐24, 𝑐23 > 0

for which the following is true. Let 𝜐 ≤ 𝜀 · 𝑘−𝑐15𝑘−1/18, 𝜀samp ≤ min(2−𝑐24𝑘
3
𝜐, 𝑘−𝑐19𝑘

2
𝜏𝑏𝑖𝑔),

𝜏𝑠𝑚𝑎𝑙𝑙 ≤ min(2−𝑐23𝑘
3
𝜐, 𝜌𝜏𝑏𝑖𝑔). Suppose GrowByOne has access to 𝜀samp-close estimates of

any moment of 𝒟. Let ℬ = {𝑇1, ..., 𝑇𝑟} be the output of GrowByOne, and let 𝐾 ⊆ [𝑛] be

the corresponding set of non-impostors, and suppose rank(M′|ℛ′(𝐽)) = 𝑘′.

If 𝐾 ̸= ∅, then there exists a guess m|𝐽 ∈ {0, 1/2, 1}|𝐽 |×𝑟 for which the following holds:

476

Let �̃� ∈ R𝑟 and m̃𝑖 ∈ R𝑟′ for 𝑖 ∈ 𝐾 be solutions to (7.24) and (7.26). Assume without loss

of generality that the entries of �̃� are sorted in nondecreasing order. For each 𝑖 ∈ 𝐾, round

m̃𝑖 entrywise to the nearest m𝑖 ∈ {0, 1/2, 1}𝑟
′, and define 𝜋 ∈ Δ𝑟′ to be the normalization

of �̃�[𝑟′]. Define m ∈ {0, 1/2, 1}|𝐽∪𝐾|×𝑟′ to be the concatenation of m[𝑟′]
𝐽 and m𝑖 for all 𝑖 ∈ 𝐾.

Then the mixture 𝒟 of subcubes in {0, 1}|𝐽∪𝐾| with mixing weights 𝜋 and marginals matrix

m satisfies

|E𝒟[𝑥𝑆]− E𝒟[𝑥𝑆]| <
1

2
𝜀 · 𝑘−𝑐15𝑘

for all 𝑆 ⊆ 𝐽 ∪𝐾 of size at most 2 log(2𝑘).

Note that Lemma 7.7.6 is obviously true when M′ has a single column: GrowByOne

outputs the empty set, 𝜋 has a single entry, 1, and m is the column of marginals of the single

product distribution corresponding to the single column of M′.

In general, we will show Lemma 7.7.6 holds when m|𝐽 = m′|𝐽 . Because rank(M′|ℛ′(𝐽∪{𝑖})) =

𝑘′ for all 𝑖 ∈ 𝐾, Lemma 7.7.5 tells us that M′|ℬ is a row basis for M′|2𝐽∪𝐾 . In particular,

rank(M′|2𝐽∪𝐾) = 𝑟, so by Lemma 7.2.7, there exists 𝑟 columns m† of m𝐽∪𝐾 and 𝜋† ∈ [0, 1]𝑟

for which M† · 𝜋† = M′|2𝐽∪𝐾 · 𝜋′.

Here is a simple perturbation bound.

Fact 7.7.7. Pick any 𝑆 ⊆ R𝑛. Let 𝐴 ∈ R𝑚×𝑛, 𝑥 ∈ 𝑆, and 𝑏 ∈ 𝑅𝑚. If

𝑥* , argmin
𝑦∈𝑆

‖𝐴𝑦 − 𝑏‖∞,

then ‖𝑥* − 𝑥‖∞ ≤ 2‖𝐴𝑥− 𝑏‖∞/𝜎∞
min(𝐴).

Proof. We have that

‖𝐴𝑥* − 𝑏‖∞ ≤ ‖𝐴𝑥− 𝑏‖∞,

so by the triangle inequality ‖𝐴(𝑥*−𝑥)‖∞ ≤ 2‖𝐴𝑥− 𝑏‖∞, from which the result follows.

Corollary 7.7.8. ‖�̃� − 𝜋†‖∞ ≤ 2𝜀samp · 2𝑐14𝑘
2.

Proof. We know that

‖M†|ℬ · (𝜋†)⊤ − ̃︀E[𝑥𝑆]‖∞ ≤ ‖M|ℬ · 𝜋⊤ − ̃︀E[𝑥𝑆]‖∞ + 𝑘𝜏𝑠𝑚𝑎𝑙𝑙 ≤ 𝜀samp + 𝑘𝜏𝑠𝑚𝑎𝑙𝑙, (7.27)

477

and 𝜎∞
min(M

†|ℬ) ≥ 2−𝑐14𝑘
2 , so we can apply Fact 7.7.7 to get the desired bound on ‖�̃� −

𝜋†‖∞.

To show Lemma 7.7.6, we will bound the objective value of (7.26) when 𝑥 is chosen to

be m
[𝑟′]
𝑖 . Fact 7.7.7 will then let us conclude that the solution to (7.26) cannot be entrywise

1/4-far from m
[𝑟′]
𝑖 .

Lemma 7.7.9. Let 𝑖 ̸∈ 𝐽 be a non-impostor. Then

‖M†|[𝑟
′]

ℬ · diag(�̃�
[𝑟′]) ·m†|[𝑟

′]
𝑖 − C̃|{𝑖}ℬ ‖∞ ≤ (𝑘 + 1)(𝜀samp + 𝑘𝜏𝑠𝑚𝑎𝑙𝑙) + 𝑘 · �̃�𝑟′+1,

where we take �̃�𝑟′+1 to be zero if 𝑟′ = 𝑟.

Proof. We have that

‖M†|ℬ · diag(�̃�) ·m†
𝑖 − C̃|{𝑖}ℬ ‖∞ ≤ ‖M

†|ℬ · diag(𝜋†) ·m†
𝑖 − C̃|{𝑖}ℬ ‖∞ + 𝑘(𝜀samp + 𝑘𝜏𝑠𝑚𝑎𝑙𝑙)

≤ (𝑘 + 1)(𝜀samp + 𝑘𝜏𝑠𝑚𝑎𝑙𝑙),

where in the second step we used the fact that

M†|ℬ · diag(𝜋†) ·m†
𝑖 = M†|{𝑆∪{𝑖}:𝑆∈ℬ} · diag(𝜋†) = M′|{𝑆∪{𝑖}:𝑆∈ℬ} · diag(𝜋′).

For 𝑟′ < 𝑟,

‖M†|[𝑟
′]

ℬ · diag(�̃�[𝑟′]) ·m†|[𝑟
′]

𝑖 −M†|ℬ · diag(�̃�) ·m†
𝑖‖∞ ≤ 𝑘 · �̃�𝑟′+1,

so by the triangle inequality the claim follows.

Corollary 7.7.10. There exists some 𝑐23 > 0 for which the following holds. Let 𝑖 ̸∈ 𝐽 be a

non-impostor. If 𝜀samp, 𝜏𝑠𝑚𝑎𝑙𝑙 < 2−𝑐23𝑘
3
𝜐, then ‖m̃𝑖 −m†|[𝑟

′]
𝑖 ‖∞ < 1/4.

Proof. By Fact 7.7.7,

|m̃𝑖 −m†|[𝑟
′]

𝑖 | ≤
2(𝑘 + 1)(𝜀samp + 𝑘𝜏𝑠𝑚𝑎𝑙𝑙) + 2�̃�𝑟

′+1

𝜎∞
min(M

†|[𝑟
′]

ℬ) · �̃�𝑟′

478

< 2𝑐14𝑘
2 ·
(︂
2(𝑘 + 1)(𝜀samp + 𝑘𝜏𝑠𝑚𝑎𝑙𝑙)

2−𝑐22𝑘3𝜐
+ 2−𝑐22𝑘

2+1

)︂
.

where the second step follows from Lemma 7.3.10 and (7.25) We conclude that as long as

𝜀samp, 𝜏𝑠𝑚𝑎𝑙𝑙 ≤ 2−𝑐23𝑘
3
𝜐 for sufficiently large 𝑐23 > 0, and 𝑐22 is large enough relative to 𝑐14,

we have that |m̃𝑖 −m†|[𝑟
′]

𝑖 | < 1/4.

In other words, Corollary 7.7.10 tells us that for every non-impostor 𝑖, if we round each

entry of m̃𝑖 to the nearest element of {0, 1/2, 1}, we will recover m†|[𝑟
′]

𝑖 . We can now finish

the proof of Lemma 7.7.6.

Proof of Lemma 7.7.6. We have already shown that m defined in the statement of the lemma

is equal to m†|[𝑟
′]

𝐽∪𝐾 . By Corollary 7.7.8, ‖�̃� − 𝜋†‖∞ ≤ 2𝜀samp · 2𝑐14𝑘
2 , so

‖M · (�̃�[𝑟′])⊤ − C̃∅
2𝐽∪𝐾‖∞ ≤ ‖M† · (𝜋†)⊤ − C̃∅

2𝐽∪𝐾‖+ 𝑘 · (2𝜀samp · 2𝑐14𝑘
2

+ 𝜐)

= ‖M′
2𝐽∪𝐾 · (𝜋′)⊤ − C̃∅

2𝐽∪𝐾‖∞ + 𝑘 · (2𝜀samp · 2𝑐14𝑘
2

+ 𝜐)

= 𝜀samp + 𝑘 · 𝜏𝑠𝑚𝑎𝑙𝑙 + 𝑘 · (2𝜀samp · 2𝑐14𝑘
2

+ 𝜐) (7.28)

It remains to show that we don’t lose much if we take 𝜋 to be the normalization of �̃�[𝑟′].

First note that
∑︀𝑟

𝑖=1 pi
†
𝑖 = M†

∅ · (𝜋†)⊤. But ∅ ∈ ℬ and

‖M†|ℬ · (𝜋†)⊤ − ̃︀E[𝑥𝑆]‖∞ ≤ ‖M†|ℬ · (�̃�)⊤ − ̃︀E[𝑥𝑆]‖∞ ≤ 𝜀samp + 𝑘𝜏𝑠𝑚𝑎𝑙𝑙

by (7.27) and the definition of �̃�. So we get that

𝑟∑︁
𝑖=1

�̃�𝑖 ≥
𝑟∑︁
𝑖=1

𝜋†
𝑖 − 𝜀samp − 𝑘𝜏𝑠𝑚𝑎𝑙𝑙 =

𝑟∑︁
𝑖=1

𝜋′𝑖 − 𝜀samp − 𝑘𝜏𝑠𝑚𝑎𝑙𝑙 ≥ 1− 𝜀samp − 2𝑘𝜏𝑠𝑚𝑎𝑙𝑙,

where the equality follows from Lemma 7.2.7. We conclude that

1/𝑍 ,

(︃
𝑟′∑︁
𝑖=1

�̃�𝑖

)︃−1

≤ (1− 𝜀samp − 2𝑘𝜏𝑠𝑚𝑎𝑙𝑙 − 𝑘𝜐)−1 ≤ 1 + 2𝜀samp + 4𝑘𝜏𝑠𝑚𝑎𝑙𝑙 + 2𝑘𝜐

479

for 𝜀samp, 𝜏𝑠𝑚𝑎𝑙𝑙, 𝜐 small enough. So

‖M · (�̃�[𝑟′])⊤ − 1

𝑍
M · (�̃�[𝑟′])⊤‖∞ ≤ 2𝜀samp + 4𝑘𝜏𝑠𝑚𝑎𝑙𝑙 + 2𝑘𝜐.

This together with (7.28) give us the lemma provided the bounds on 𝜏𝑠𝑚𝑎𝑙𝑙, 𝜀samp from the

statement of Corollary 7.7.10 hold and provided 𝜏𝑠𝑚𝑎𝑙𝑙 ≤ 𝜀 · 𝑘−𝑐15𝑘−1/30, 𝜐 ≤ 𝜀 · 𝑘−𝑐15𝑘−1/18,

and 𝜀samp ≤ 2−𝑐24𝑘
3 · 𝜀 for sufficiently large 𝑐24 > 0.

All of this gives us the subroutine NonDegenerateLearn specified by Algorithm 26.

Given 𝒟, 𝑆, 𝑠 for which Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] is sufficiently large and enough samples from 𝒟,

NonDegenerateLearn either successfully learns (𝒟|𝑥𝑆 = 𝑠) if there are no impostors or

outputs a list of subsets of size 2 log(2𝑘), of which at least one must contain an impostor,

and such that the size of the list does not depend on 𝑛.

We don’t a priori know the interval [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔], so we instead consider 𝑘 + 1 windows

[𝜏𝜌, 𝜏], [𝜏𝜌2, 𝜏𝜌], ..., [𝜏𝜌𝑘+1, 𝜏𝜌𝑘].

The mixing weights of our [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔]-avoiding rank-𝑘 realization of 𝒟 avoid at least one of

these windows, so NonDegenerateLearn will simply try each of them.

As we note in the fact below, the purpose of Step 4 is to ignore 𝑆, 𝑠 for which Pr𝑦∼𝒟[𝑦𝑆 = 𝑠]

is too small for one to reliably simulate samples from (𝒟|𝑥𝑆 = 𝑠).

Fact 7.7.11. The following holds for any 𝛿 > 0. Let 𝑅 = 𝜏−1
𝑡𝑟𝑢𝑛𝑐 · ln(1/𝛿), and let 𝒟 be a

mixture of 𝑘 subcubes, 𝑆 ⊆ [𝑛], and 𝑠 ∈ {0, 1}|𝑆|. If Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] ≤ 𝜏𝑡𝑟𝑢𝑛𝑐𝛿/ ln(1/𝛿), then

with probability at least 1−𝛿, NonDegenerateLearn terminates at Step 4. If Pr𝑦∼𝒟[𝑦𝑆 =

𝑠] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐, then with probability at most 𝛿, NonDegenerateLearn terminates at Step 4.

Below, we summarize the guarantees for NonDegenerateLearn, which simply follow

from Lemma 7.2.8 and the contrapositive of Lemma 7.7.6 applied to (𝒟|𝑥𝑆 = 𝑠) instead of

𝒟.

Lemma 7.7.12. There exist 𝜀samp = 𝑘−𝑂(𝑘3)𝜀, 𝜏 = 𝑘−𝑂(𝑘3)𝜀, and 𝜌 = 𝑘−𝑂(𝑘2) for which

the following holds. Let 𝒟 be a mixture of 𝑘 subcubes, 𝑆 ⊆ [𝑛], and 𝑠 ∈ {0, 1}|𝑆|. Suppose

480

Algorithm 26: NonDegenerateLearn((𝒟|𝑥𝑆 = 𝑠), 𝑘) — for mixtures of sub-
cubes
Input: Mixture of subcubes (𝒟|𝑥𝑆 = 𝑠), counter 𝑘
Output: Either a mixture of subcubes with mixing weights 𝜋 and marginals matrix

m realizing 𝒟′ for which 𝑑TV(𝒟′,𝒟|𝑥𝑆 = 𝑠) ≤ 𝜀, or a set 𝒰 of at most 3𝑘
2

subsets 𝑊 , each of size at most 𝑘 + 2 log(2𝑘) and for which
rank(M′|ℛ′(𝑇)) < 𝑘′ for at least one 𝑇

1 𝜀samp ← 𝑘−𝑂(𝑘3)𝜀.
2 𝜏 ← 2−𝑂(𝑘3)𝜀.
3 𝜌← 𝑘−𝑂(𝑘2).
4 Take 𝑅 samples 𝑦 from 𝒟. If none of them are such that 𝑦𝑆 = 𝑠, then return the

distribution supported solely on 1𝑛.
5 𝒰 ← ∅.
6 for [𝜏𝑠𝑚𝑎𝑙𝑙, 𝜏𝑏𝑖𝑔] ∈ {[𝜌𝜏, 𝜏], [𝜌2𝜏, 𝜌𝜏], ..., [𝜌𝑘+1𝜏, 𝜌𝑘𝜏]} do
7 Run GrowByOne to obtain ℬ = {𝑇1, ..., 𝑇𝑟}.
8 𝐽 ← 𝑇1 ∪ · · · ∪ 𝑇𝑟.
9 for m|𝐽 ⊆ {0, 1/2, 1}|𝐽 |×𝑟 do

10 Form estimates C̃|∅ℬ and solve (7.24) for �̃� ∈ Δ𝑟. Sort the entries of �̃� so that
�̃�1 ≥ · · · ≥ �̃�𝑟.

11 Pick the largest 1 ≤ 𝑟′ < 𝑟 for which �̃�𝑟′/�̃�𝑟′+1 ≥ 2𝑐22𝑘
2 and define �̃�[𝑟′] to be

the first 𝑟′ entries of �̃� and M[𝑟′] to be the first 𝑟′ columns of M. If no such
𝑟′ exists, pick 𝑟′ = 𝑟.

12 For each 𝑖 ̸∈ 𝐽 , form estimates C̃|{𝑖}ℬ , solve (7.26), and round entrywise to the
nearest m𝑖 ∈ {0, 1/2, 1}𝑟.

13 Normalize �̃�[𝑟′] to 𝜋 ∈ Δ𝑟′ .
14 Define m ∈ {0, 1/2, 1}𝑛×𝑟′ to be the concatenation of m[𝑟′] and m𝑖 for all

𝑖 ̸∈ 𝐽 .
15 for 𝑇 ⊆ [𝑛] of size at most 2 log(2𝑘) do
16 Compute estimate ̃︀E𝒟[𝑥𝑇] of E𝒟[𝑥𝑇] to within 1

2
𝜀 · 𝑘−𝑐15𝑘.

17 if |M𝑇 · 𝜋⊤ − ̃︀E𝒟[𝑥𝑇]| > 1
2
𝜀 · 𝑘−𝑐15𝑘 for some |𝑇 | ≤ 2 log(2𝑘) then

18 Add 𝐽 ∪ 𝑇 to 𝒰 and return to line 6.

19 else
20 return mixture of subcubes with mixing weights 𝜋 and marginals

matrix m.

21 if 𝑘 = 1 then
22 return FAIL.

23 else
24 return 𝒰 .

481

(𝒟|𝑥𝑆 = 𝑠) has a rank-𝑟 realization. An 𝜀samp-sample-rich invocation of NonDegenerate-

Learn on 𝒟|𝑥𝑆 = 𝑠 that does not terminate at Step 4 outputs either a mixture of subcubes

𝒟 for which 𝑑TV(𝒟,𝒟) ≤ 𝜀, or a collection 𝒰 of at most 3𝑘2 subsets 𝑊 ⊆ [𝑛]∖𝑆 containing

some 𝑊 for which (𝒟|𝑥𝑆∪𝑊 = 𝑠 ∘ 𝑡) has a rank-(𝑟 − 1) realization for every 𝑡 ∈ {0, 1}|𝑊 |.

7.7.3 Correctness of N-List

We complete the proof of Theorem 7.1.1 by verifying that the conditions of Lemma 7.7.14

are satisfied by the output of a (𝜀samp(·), 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐)-sample-rich run of N-List on 𝒟 and

counter 𝑘.

Theorem 7.7.13. There exists 𝜀samp = 𝜀 · 𝑘−𝑂(𝑘3) and absolute constant 𝑐25 > 0 such that

the following holds for any 𝛿 > 0. Let 𝒟 be a mixture of 𝑘 subcubes. If a run of N-List is

(𝜀samp, 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐)-sample-rich on input 𝒟 and counter 𝑘, then with probability 1−3𝑐25𝑘3 ·𝑘𝑘·𝛿,

the output is a sampling tree such that all leaves 𝑣𝑇,𝑡 for which Pr𝑦∼𝒟[𝑥𝑇 = 𝑡] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐

correspond to distributions 𝜀-close to (𝒟|𝑥𝑇 = 𝑡).

Proof. By the proof of Lemma 7.6.7 with 𝑆 = 𝑘+2 log(2𝑘) and 𝑈 = 𝑘 ·3𝑘2 , the total number

of invocations of NonDegenerateLearn is at most 2𝑆𝑘𝑈𝑘 ≤ 3𝑐25𝑘
3 ·𝑘𝑘. By Fact 7.7.11 and

a union bound over these invocations, with probability at least 1−3𝑐25𝑘
3
𝑘𝑘𝛿 every invocation

of NonDegenerateLearn on (𝒟|𝑥𝑆 = 𝑠) for which Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] < 𝜏𝑡𝑟𝑢𝑛𝑐𝛿/ ln(1/𝛿) (resp.

Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐) does (resp. does not) terminate on Step 4. Henceforth suppose this

is the case.

We call a sampling tree good if its leaves 𝑣𝑇,𝑡 all satisfy that either Pr𝑦∼𝒟[𝑦𝑇 = 𝑡] < 𝜏𝑡𝑟𝑢𝑛𝑐

or they are 𝜀-close to (𝒟|𝑥𝑇 = 𝑡).

It suffices to show by induction on 𝑟 that if (𝒟|𝑥𝑆 = 𝑠) has a rank-𝑟 realization then N-

List(𝒟, 𝑆, 𝑠, 𝑟) returns a good sampling tree. This is certainly true for 𝑟 = 1, in which case

N-List returns the sampling tree given by a single node with distribution that’s actually

equal to (𝒟|𝑥𝑇 = 𝑡).

Consider 𝑟 > 1. There are three possibilities:

1. If Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] < 𝜏𝑡𝑟𝑢𝑛𝑐𝛿/ ln(1/𝛿), then NonDegenerateLearn terminates on

482

Step 4 instead of potentially returning FAIL, and the inductive step is vaculously com-

plete.

2. If Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐, then NonDegenerateLearn does not terminate at Step 4.

3. If 𝜏𝑡𝑟𝑢𝑛𝑐𝛿/ ln(1/𝛿) ≤ Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] < 𝜏𝑡𝑟𝑢𝑛𝑐, then either NonDegenerateLearn

terminates on Step 4 and the inductive step is vacuously complete, or NonDegener-

ateLearn does not terminate at Step 4.

In cases 2) and 3) above where NonDegenerateLearn does not terminate, the invoca-

tion of NonDegenerateLearn is 𝜀samp-sample-rich because N-List is (𝜀samp, 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐)-

sample-rich by assumption, so by Lemma 7.7.12, either NonDegenerateLearn outputs a

mixture with mixing weights 𝜋 and marginals matrix m which is 𝜀-close to (𝒟|𝑥𝑆 = 𝑠) and

we’re done, or it outputs some collection 𝒰 .

We claim it’s enough to show there is some guess 𝑊 ∈ 𝒰 for which N-List(𝒟, 𝑆 ∪𝑊, 𝑠 ∘

𝑡, 𝑟 − 1) does not return FAIL. Suppose we instead get some sampling tree 𝒯 . For any leaf

node 𝑣𝑇,𝑡 of 𝒯 for which Pr𝑦∼𝒟[𝑦𝑇 = 𝑡] ≥ 𝜏𝑡𝑟𝑢𝑛𝑐, the corresponding distribution is 𝜀-close to

(𝒟|𝑥𝑇 = 𝑡) by Lemma 7.7.12. So any such 𝒯 would be good, and Select would simply pick

one of these.

Finally, to show the existence of such a guess 𝑊 , we appeal once more to Lemma 7.7.12,

which implies that 𝒰 must contain some 𝑊 for which (𝒟|𝑥𝑆∪𝑊 = 𝑠 ∘ 𝑡) has a rank-(𝑟 − 1)

realization for every 𝑡 ∈ {0, 1}|𝑊 |, and we’re done by induction.

To complete the proof of Theorem 7.1.1, we use the following simple fact about sampling

trees, which says that in a sampling tree 𝒯 , if all internal transition probabilities out of

nodes 𝑣𝑆,𝑠 for which Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] is sufficiently large are accurate, and if all distributions

associated to leaves 𝑣𝑆,𝑠 for which Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] is sufficiently large are accurate, then the

distribution associated to 𝒯 is close to 𝒟.

Lemma 7.7.14. Let 𝒯 be a sampling tree with depth 𝑘, maximal fan-out 𝑑, and 𝑀 , 𝑑Θ(𝑘)

nodes corresponding to a distribution 𝒟*. Denote by 𝑉𝑡𝑟𝑢𝑛𝑐 the set of 𝑆, 𝑠 indexing nodes 𝑣𝑆,𝑠

of 𝒯 for which Pr𝑦∼𝒟[𝑦𝑆 = 𝑠] ≤ 𝜏𝑡𝑟𝑢𝑛𝑐 , 𝜀/𝑀 . Suppose |𝑤𝑆,𝑊,𝑠,𝑡 − Pr𝑦∼𝒟[𝑦𝑊 = 𝑡|𝑦𝑆 = 𝑠]| ≤

483

𝜂 , 𝜀
2𝑘𝑀

for all 𝑆, 𝑠 ̸∈ 𝑉𝑡𝑟𝑢𝑛𝑐, and suppose that 𝑑TV(𝒟𝑇,𝑡,𝒟|𝑥𝑇 = 𝑡) ≤ 𝜀 for any leaf 𝑣𝑆,𝑠 with

𝑆, 𝑠 ∈ 𝑉𝑡𝑟𝑢𝑛𝑐. Then 𝑑TV(𝒟∅,∅,𝒟) ≤ 𝑂(𝜀).

Proof. Denote by 𝒰𝑆,𝑠𝑡𝑟𝑢𝑛𝑐 the set of all 𝑥 ∈ {0, 1}𝑛−|𝑆| for which there exist 𝑊 ⊆ [𝑛], 𝑡 ∈

{0, 1}|𝑊 | such that 𝑥𝑊 = 𝑡, 𝑣𝑆⊕𝑊,𝑠⊕𝑡 is a node of 𝒯 (not necessarily the direct descendent

of 𝑣𝑆,𝑠) and Pr𝒟[𝑥𝑆∪𝑊 = 𝑠⊕ 𝑡] ≤ 𝜏𝑡𝑟𝑢𝑛𝑐. In other words, 𝒰𝑆,𝑠𝑡𝑟𝑢𝑛𝑐 corresponds to strings 𝑡 over

the coordinates 𝑊 such that further conditioning on 𝑥𝑊 = 𝑡 leads to a vertex of 𝒯 which

occurs rarely enough that it doesn’t matter how well we learn the posterior distribution

𝒟|𝑥𝑆∪𝑊 = 𝑠⊕ 𝑡.

For any node 𝑣𝑆,𝑠 associated to distribution 𝒟𝑆,𝑠, define

err𝑡𝑟𝑢𝑛𝑐(𝑣𝑆,𝑠) ,
∑︁

𝑦 ̸∈𝒰𝑆,𝑠
𝑡𝑟𝑢𝑛𝑐

⃒⃒⃒⃒
Pr
𝒟𝑆,𝑠

[𝑦]− Pr
𝒟|𝑥𝑆=𝑠

[𝑦]

⃒⃒⃒⃒
.

In particular, if 𝒰𝑆,𝑠𝑡𝑟𝑢𝑛𝑐 were empty, err𝑡𝑟𝑢𝑛𝑐(𝑣𝑆,𝑠) would just be 2𝑑TV(𝒟𝑆,𝑠,𝒟|𝑥𝑆 = 𝑠).

First observe that it is enough to show that

err𝑡𝑟𝑢𝑛𝑐(𝑣∅,∅) ≤ 𝑂(𝜀). (7.29)

To show this, first note that
∑︀

𝑥∈𝒰∅,∅
𝑡𝑟𝑢𝑛𝑐

Pr𝒟[𝑥] ≤𝑀𝜏𝑡𝑟𝑢𝑛𝑐 = 𝜀. Furthermore, for any 𝑦 ∈ 𝒰∅,∅
𝑡𝑟𝑢𝑛𝑐,

if 𝑣𝑊,𝑡 is the closest node to the root for which 𝑦𝑊 = 𝑡 and Pr𝒟[𝑥𝑊 = 𝑡] ≤ 𝜏𝑡𝑟𝑢𝑛𝑐, then because

the weights on the edges of 𝒯 are additively 𝜂-close to the true values and 𝑣𝑊,𝑡 is distance

at most 𝑘 from the root,

|Pr
𝒟*
[𝑥𝑊 = 𝑡]− Pr

𝒟
[𝑥𝑊 = 𝑡]| ≤ 2𝑘𝜂.

So ∑︁
𝑥∈𝒰∅,∅

𝑡𝑟𝑢𝑛𝑐

Pr
𝒟*
[𝑥] ≤

∑︁
𝑥∈𝒰∅,∅

𝑡𝑟𝑢𝑛𝑐

Pr
𝒟
[𝑥] + 2𝑘 ·𝑀 · 𝜂 ≤𝑀𝜏𝑡𝑟𝑢𝑛𝑐 + 2𝑘 ·𝑀 · 𝜂.

By triangle inequality we would then be able to conclude that

2𝑑TV(𝒟*,𝒟) ≤ 𝑂(𝜀) +
∑︁

𝑥∈𝒰∅,∅
𝑡𝑟𝑢𝑛𝑐

(Pr
𝒟
[𝑥] + Pr

𝒟*
[𝑥]) ≤ 𝑂(𝜀) + 2𝑀𝜏𝑡𝑟𝑢𝑛𝑐 + 2𝑘 ·𝑀 · 𝜂,

484

and by picking 𝜏𝑡𝑟𝑢𝑛𝑐 ≤ 𝜀/𝑀 and 𝜂 ≤ 𝜀/2𝑘𝑀 , this would tell us that 𝑑TV(𝒟*,𝒟) ≤ 𝑂(𝜀).

To show (7.29), we show by induction that err𝑡𝑟𝑢𝑛𝑐(𝑣𝑆,𝑠) ≤ 𝑂(𝜀) ∀ vertices 𝑣𝑆,𝑠 of 𝒯 . This

is vacuously true if Pr𝒟[𝑥𝑆 = 𝑠] ≤ 𝜏𝑡𝑟𝑢𝑛𝑐, so suppose otherwise.

If 𝑣𝑆,𝑠 is a leaf, then we’re done by assumption. Otherwise, by induction we know

err𝑡𝑟𝑢𝑛𝑐(𝑣𝑆∪𝑊,𝑠⊕𝑡) ≤ 𝜀′ (7.30)

for some 𝜀′ > 0 for all immediate descendants of 𝑣𝑆,𝑠. Decompose [𝑛]∖𝑆 as 𝑊 ∪𝑊 ′. The

true probability of drawing some string 𝑡 ⊕ 𝑢 ∈ {0, 1}𝑛−|𝑆| from (𝒟|𝑥𝑆 = 𝑠) can be written

as

P𝒟|𝑥𝑆=𝑠[𝑡⊕ 𝑢] = P𝑦∼𝒟|𝑥𝑆=𝑠[𝑦𝑊 = 𝑡] · P𝒟|𝑥𝑆∪𝑊=𝑠⊕𝑡[𝑢] , 𝑤𝑡 · 𝑝𝑢.

Let Pr𝒟𝑆∪𝑊,𝑠⊕𝑡
[𝑢] = 𝑝𝑢 + 𝛿𝑢 for some 𝛿𝑢 > 0 for all 𝑢 ̸∈ 𝒰𝑆∪𝑊,𝑠⊕𝑡𝑡𝑟𝑢𝑛𝑐 . By inductive assumption

(7.30), ∑︁
�̸�∈𝒰𝑆∪𝑊,𝑠⊕𝑡

𝑡𝑟𝑢𝑛𝑐

|𝛿𝑢| = err𝑡𝑟𝑢𝑛𝑐(𝑣𝑆∪𝑊,𝑠⊕𝑡) ≤ 𝜀′

for all 𝑡 ∈ {0, 1}|𝑊 |. Then

err𝑡𝑟𝑢𝑛𝑐(𝑣𝑆∪𝑊,𝑠⊕𝑡) ≤
∑︁

𝑡∈{0,1}|𝑊 |

∑︁
�̸�∈𝒰𝑆∪𝑊,𝑠⊕𝑡

𝑡𝑟𝑢𝑛𝑐

⃒⃒
P𝒟𝑆,𝑠

[𝑡⊕ 𝑢]− P𝒟|𝑥𝑆=𝑠[𝑡⊕ 𝑢]
⃒⃒

≤
∑︁

𝑡∈{0,1}|𝑊 |

∑︁
�̸�∈𝒰𝑆∪𝑊,𝑠⊕𝑡

𝑡𝑟𝑢𝑛𝑐

𝑤𝑡 · |𝛿𝑢|+
∑︁

𝑡∈{0,1}|𝑊 |

(𝜂 + 𝜂𝜀′)

≤ (2|𝑊 |𝜂 + 1)𝜀′ + 2|𝑊 |𝜂 ≤ (𝑑𝜂 + 1)𝜀′ + 𝑑𝜂.

Unrolling the resulting recurrence tells us that

err𝑡𝑟𝑢𝑛𝑐(𝑣∅,∅) ≤ (𝑑𝜂 + 1)𝑘𝜀+ (𝑑𝜂 + 1)𝑘+1 − 1,

so as long as 𝜂 ≤ 𝜀
𝑑𝑘2

, we have err𝑡𝑟𝑢𝑛𝑐(𝑣∅,∅) ≤ 3𝜀. Because we are assuming 𝜂 ≤ 𝜀/2𝑘𝑀 and

𝑀 = 𝑑Θ(𝑘), we certainly have that 𝜂 ≤ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛
𝑑𝑘2

, completing the proof of (7.29).

Proof of Theorem 7.1.1. Let 𝛼 = 𝛿/(3𝑐25𝑘
3
𝑘𝑘). Apply Lemma 7.6.7 with 𝜏𝑡𝑟𝑢𝑛𝑐 = 𝜀/2𝑘

2 , 𝑍 =

𝑛𝑂(log 𝑘), 𝑀 = 1, 𝑈 = 3𝑘
2 , 𝑆 = 𝑘+2 log(2𝑘), 𝑇 (𝑟) = 𝑛𝑂(log 𝑘)+𝜏−1

𝑡𝑟𝑢𝑛𝑐 ln(1/𝛼), 𝜀samp = 𝑘−𝑂(𝑘3)𝜀,

485

and 𝜀𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑂(𝜀) to get that achieving a (𝜀samp, 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐𝛼/ ln(1/𝛼))-sample-rich run of

N-List on 𝒟 with counter 𝑘 with probability 1 − 𝛿 requires 𝑂(𝑘𝑂(𝑘3)𝜀−3 ln(1/𝛿)𝑛𝑂(log 𝑘))

time and 𝑂(𝑘𝑂(𝑘3)𝜀−2 log(𝑛) log(1/𝛿)) samples. By taking 𝛿𝑒𝑑𝑔𝑒 = 𝜀/2𝑘+𝑘
2 , we conclude by

Theorem 7.7.13 and Lemma 7.7.14 with 𝑑 = 2𝑘 that the output of N-List is 2𝜀-close to

𝒟.

7.8 Appendix: Learning Mixtures of Product Distribu-

tions Over {0, 1}𝑛

In Section 7.5 we described our algorithm for learning general mixtures of product distribu-

tions over {0, 1}𝑛 under the assumption that we had exact access to the accessible entries of

C, when in reality we only have access to them up to some sampling noise 𝜀samp > 0. In this

section, we show how to remove the assumption of zero sampling noise and thereby give a

complete description of the algorithm for learning mixtures of product distributions.

It will be convenient to define the following:

Definition 7.8.1. Two distributions 𝒟 and 𝒟′ over {0, 1}𝑛 are (𝜀, 𝑑)-moment-close if |E𝒟′ [𝑥𝑆]−

E𝒟[𝑥𝑆]| ≤ 𝜀 for all 𝑆 ⊆ [𝑛] such that |𝑆| ≤ 𝑑. We say mixing weights 𝜋 and marginals ma-

trix m constitute an (𝜀, 𝑑)-moment-close realization of 𝒟 if the distribution they realize is

(𝜀, 𝑑)-moment close to 𝒟.

Let 𝒟 be a mixture of 𝑘 product distributions over {0, 1}𝑛. As in Section 7.7, we will

use ̃︀E[𝑥𝑆] to denote any 𝜀samp-close estimate of E𝑥𝑆] and C̃ to denote a matrix consisting of

𝜀samp-close estimates of the accessible entries of C.

7.8.1 NonDegenerateLearn and Its Guarantees

Let 𝑠(𝑘) = 2𝑘 + 1 + (1 + 2 + · · ·+ (𝑘 − 1)). We will define ℛ†
𝑘(𝐽) to be all subsets of [𝑛]∖𝐽

of size at most 𝑠(𝑘 − 1). The main properties we need about 𝑠 are that 𝑠(0) = 1 and that

𝑠(𝑘) = 𝑘 + 1 + 𝑠(𝑘 − 1)𝑚 (7.31)

486

Note that 𝑠(𝑘) = Θ(𝑘2) even though we showed in Lemma 7.5.6 that degree-𝑂(𝑘) moments

are enough to robustly identify any mixture of 𝑘 product distributions. Roughly, the reason

for doing so is that whereas we can always perfectly collapse matrices that are not full rank

as in Lemma 7.2.7 for learning mixtures of subcubes, collapsing matrices that are merely

ill-conditioned as in Lemma 7.5.10 for learning mixtures of product distributions necessarily

incurs some loss every time. We must ensure after collapsing ill-conditioned matrices 𝑘′ times

from recursively conditioning 𝒟 𝑘′ times for any 𝑘′ ≤ 𝑘 that these losses do not compound

so that the resulting moment matrix of the conditional distribution is still close to a mixture

of at most 𝑘 − 𝑘′ product distributions. In particular, (7.31) will prove crucial in the proof

of Lemma 7.8.4 in the next subsection.

We now recall the algorithm outlined in Section 7.5: 1) exhaustively search for a barycen-

tric spanner 𝐽 ⊆ [𝑛] for the rows of m which may be any size 𝑟 ≤ 𝑘, 2) express the remaining

rows of m as linear combinations of rows 𝐽 by solving

�̃�𝑖 , argmin
𝛼∈[−1,1]𝑟

‖C̃|{𝑖1},...,{𝑖𝑟}
ℛ†

𝑟(𝐽∪{𝑖})
𝛼− C̃|{𝑖}

ℛ†
𝑟(𝐽∪{𝑖})

‖∞. (7.32)

for each 𝑖 ̸∈ 𝐽 , and 3) grid the mixing weights and entries of rows 𝐽 . The details of this are

given in Algorithm 27 below.

The main technical lemma of this section, Lemma 7.8.2 below, tells us that as long as

the gridding in Step 7 of Algorithm 27 below is done with poly(𝜀, 1/𝑘, 1/𝑛) granularity and

𝒟 obeys a suitable non-degeneracy condition, the above algorithm will produce a list of

mixtures containing a mixture which is close in parameter distance to 𝒟. In fact it says

more: for any 𝑘, if 𝒟 has any moment-close rank-𝑘 realization by mixing weights 𝜋 and

marginals matrix m, the output list of NonDegenerateLearn with 𝒟 and counter 𝑘 as

inputs will contain a mixture with mixing weights close to 𝜋 and marginals matrix close to

m.

By Lemma 7.5.6, moment-closeness implies closeness in total variation distance, and by

Lemmas 7.5.1, 7.5.2, and 7.5.3, parameter closeness also implies closeness in total variation

distance. The upshot of all of this is that for any 𝑘 for which 𝒟 has a moment-close rank-

𝑘 realization, applying hypothesis selection to the output list of NonDegenerateLearn

487

with 𝒟 and counter 𝑘 as inputs will yield a distribution close to 𝒟. This will allow us to

leverage our insights from Section 7.5.5 about collapsing ill-conditioned moment matrices to

give a full proof of correctness of N-List in later subsections.

Algorithm 27: NonDegenerateLearn(𝒟, 𝑘) — for mixtures of general product
distributions
Input: Mixture of product distributions 𝒟, counter 𝑘
Output: List of mixtures of product distributions containing one that is 𝜀-close to

𝒟, and/or the set 𝒰 of all subsets 𝑊 of size at most 𝑘 + 1

1 𝜎𝑐𝑜𝑛𝑑(𝑘)←
(︁

𝜀2

𝑐27𝑛𝑘22𝑘

)︁𝑘
.

2 𝜀samp(𝑘)← 𝜎𝑐𝑜𝑛𝑑(𝑘) · 𝑐26𝜀
2

𝑘3𝑛
.

3 𝛼← 2𝜀/3𝑘2.
4 𝛿 ← 𝜀

8𝑘2𝑛
.

5 ℳ← ∅.
6 for all guesses of coordinates 𝐽 = 𝑖1, ..., 𝑖𝑟 ⊆ [𝑛] where 𝑟 ≤ 𝑘 and all guesses of

mixture weights 𝜋1, ..., 𝜋𝑘−1 ∈ {0, 𝛼, 2𝛼, ..., ⌊1/𝛼⌋𝛼}𝑘 do
7 𝜋𝑘−1 ← 1− 𝜋1 − · · · − 𝜋𝑘−1.
8 for 𝑖 ̸∈ 𝐽 do
9 Compute an entrywise 𝜀samp(𝑘)-close estimate �̃� for the entries of C|{𝑖1},...,{𝑖𝑟}

ℛ†
𝑟(𝐽∪{𝑖})

.

10 Compute an entrywise 𝜀samp(𝑘)-close estimate �̃� for the entries of C|{𝑖}
ℛ†

𝑟(𝐽∪{𝑖})
.

11 Solve for �̃�𝑖 in (7.32).

12 for m|𝐽 ⊆ {0, 𝛿, 2𝛿, ..., 1}𝑟 do
13 For every 𝑖 ̸∈ 𝐽 define m𝑖 = m|𝐽 · 𝛼𝑖.
14 Append the mixture with mixing weights 𝜋 and marginals matrix m toℳ.

15 returnℳ. If 𝑘 > 1, also output the set of all 𝑊 ⊆ [𝑛] of size at most 𝑘 + 1.

Lemma 7.8.2. For some small absolute constant 0 < 𝑐26 < 1, the following holds for any

𝜎𝑐𝑜𝑛𝑑(𝑘) > 0. Suppose 𝜀samp(𝑘) = 𝜎𝑐𝑜𝑛𝑑(𝑘) · 𝑐26𝜀
2

𝑘3𝑛
. Let mixing weights 𝜋 and marginals matrix

m constitute any (𝜀samp(𝑘), 𝑠(𝑘))-moment-close realization of 𝒟. If 𝐽 = {𝑖1, ..., 𝑖𝑟} ⊆ [𝑛] is

a barycentric spanner for the rows of m for some 𝑟 ≤ 𝑘 and 𝜎∞
min(M|ℛ†

𝑘(𝐽∪{𝑖})
) ≥ 𝜎𝑐𝑜𝑛𝑑(𝑘)

for all 𝑖 ̸∈ 𝐽 , then for any m|𝐽 ∈ [0, 1]𝑟×𝑘 for which m|𝐽 and m are entrywise 𝛿-close for

𝛿 = 𝜀
8𝑘2𝑛

, we have that |�̃�⊤
𝑖 ·m|

𝑗
𝐽 −m𝑗

𝑖 | ≤ 𝜀/4𝑘𝑛 for all 𝑖 ̸∈ 𝐽 and 𝑗 for which 𝜋𝑗 ≥ 𝜀/6𝑘,

where �̃�𝑖 ∈ [−1, 1]𝑟 is defined in (7.32).

Proof. Let C be the expectations matrix of the distribution realized by mixing weights 𝜋 and

marginals matrix m, and let C̃ be the empirical expectations matrix of𝒟 which approximates

488

the expectations matrix of 𝒟 to entrywise error 𝜀samp(𝑘). Denote C|{𝑖1},...,{𝑖𝑟}
ℛ†

𝑘(𝐽∪{𝑖})
and C̃|{𝑖1},...,{𝑖𝑟}

ℛ†
𝑘(𝐽∪{𝑖})

by 𝐸, �̃� ∈ [0, 1]𝑛
𝑂(𝑘)×𝑟 respectively. Because the entries of 𝐸 and �̃� correspond to moments

of degree at most 𝑠(𝑘−1)+1 ≤ 𝑠(𝑘), by triangle inequality and moment-closeness of 𝒟 to the

mixture given by 𝜋 and m, we have that �̃� = 𝐸 +Δ𝐸 for ‖Δ𝐸‖max ≤ 2𝜀samp(𝑘). Likewise,

denote C̃|{𝑖}
ℛ†

𝑘(𝐽∪{𝑖})
and C̃|{𝑖}

ℛ†
𝑘(𝐽∪{𝑖})

by 𝑏, �̃� ∈ [0, 1]𝑛
𝑂(𝑘) respectively so that �̃� = 𝑏 + Δ𝑏 for

‖Δ𝑏‖∞ ≤ 2𝜀samp(𝑘). Also define 𝐷 = diag(𝜋1, ..., 𝜋𝑘) and 𝑃 = M|ℛ†
𝑘(𝐽∪{𝑖})

. As in the proof

of Lemma 7.3.14, we have the decompositions

𝐸 = 𝑃𝐷(m|𝐽)⊤, 𝑏 = 𝑃𝐷(m𝑖)
⊤ (7.33)

Because 𝐽 is a barycentric spanner for the rows of m, there exists 𝛼𝑖 ∈ [−1, 1]𝑟 for which

(m|𝐽)⊤𝛼𝑖 − (m𝑖)
⊤ = 0. We conclude that for �̃�𝑖 defined by (7.32),

‖�̃��̃�𝑖 − �̃�‖∞ ≤ ‖�̃�𝛼𝑖 − �̃�‖∞ ≤ ‖𝐸𝛼𝑖 − 𝑏‖+ ‖Δ𝐸𝛼𝑖‖+ ‖Δ𝑏‖ ≤ 2(𝑟 + 1)𝜀samp(𝑘). (7.34)

By (7.33) we can express

�̃��̃�𝑖 − �̃� = 𝑃𝐷(�̃�⊤
𝑖 m|𝐽 −m𝑖)

⊤ +Δ𝐸�̃�𝑖 −Δ𝑏�̃�𝑖.

Because �̃�𝑖 ∈ [−1, 1]𝑟, ‖Δ𝐸�̃�𝑖 −Δ𝑏‖∞ ≤ 2(𝑟 + 1)𝜀samp(𝑘) as in (7.34). It follows that

‖𝑃𝐷(�̃�⊤
𝑖 m|𝐽 −m𝑖)

⊤‖∞ ≤ 4(𝑟 + 1)𝜀samp(𝑘).

Because 𝜎∞
min(𝑃) ≥ 𝜎𝑐𝑜𝑛𝑑(𝑘), we get that

|�̃�⊤
𝑖 m|

𝑗
𝐽 −m𝑗

𝑖)| ≤
4(𝑟 + 1)𝜀samp(𝑘)

𝜎𝑐𝑜𝑛𝑑(𝑘) · 𝜋𝑗

for all 𝑗 ∈ [𝑘]. Lastly, because �̃�𝑖 ∈ [−1, 1]𝑟, it follows that ‖�̃�⊤
𝑖 (m|𝐽 −m|𝐽)‖∞ ≤ 𝑟𝛿 for any

m𝐽 which is entrywise 𝛿-close to m|𝐽 , and we conclude that

‖�̃�⊤
𝑖 m|𝐽 −m𝑖‖∞ ≤

4(𝑟 + 1)𝜀samp(𝑘)

𝜎𝑐𝑜𝑛𝑑(𝑘) · 𝜋𝑗
+ 𝑟𝛿.

489

Obviously 𝑟 ≤ 𝑘, so by picking 𝜀samp(𝑘) = 𝜎𝑐𝑜𝑛𝑑(𝑘) · 𝜀
192(𝑘+1)2𝑘𝑛

, and 𝛿 = 𝜀
8𝑘2𝑛

, we obtain the

desired bound of |�̃�⊤
𝑖 m|

𝑗
𝐽 −m𝑗

𝑖 | ≤ 𝜀/4𝑘𝑛 for all 𝑗 such that 𝜋𝑗 ≥ 𝜀/6𝑘.

We conclude this subsection by deducing that when𝒟 obeys the non-degeneracy condition

in the statement of Lemma 7.8.2, the mixture that is output by NonDegenerateLearn

is not just close in parameter distance to a moment-close realization of 𝒟, but close in total

variation distance to 𝒟 itself. This is the only place in our analysis where we need the robust

low-degree identifiability machinery developed in Section 7.5.4, but as it will form the base

case for our inductive proof of the correctness of N-List in later subsections, this corollary

is essential.

Corollary 7.8.3 (Corollary of Lemma 7.8.2). The following holds for any 𝜎𝑐𝑜𝑛𝑑(𝑘) > 0.

Suppose that 𝜀samp(𝑘) = 𝜎𝑐𝑜𝑛𝑑(𝑘) · 𝑐26𝜀
2

𝑘3𝑛
and that 𝜀samp(𝑘) ≤ 𝜂(𝑛, 2𝑘, 𝜀). If there exists an

(𝜀samp(𝑘), 𝑠(𝑘))-moment-close rank-𝑘 realization of 𝒟 by mixing weights 𝜋 and marginals

matrix m and 𝜎∞
min(M|ℛ†

𝑘(𝑊) ≥ 𝜎𝑐𝑜𝑛𝑑(𝑘) for all 𝑊 ⊆ [𝑛] of size at most 𝑘+1, then an 𝜀samp-

sample-rich run of NonDegenerateLearn on input 𝒟 outputs a list of mixtures among

which is a mixture 𝒟 for which 𝑑TV(𝒟,𝒟) ≤ 2𝜀.

Proof. Lemma 7.8.3 certifies that under these assumptions, there is at least one mixture close

to 𝒟 among the candidate mixtures compiled by NonDegenerateLearn. Specifically,

consider the following marginals matrix m. Let 𝐽 ⊆ [𝑛] be a barycentric spanner for the

rows of m. Round the entries of m|𝐽 to the nearest multiples of 𝜀
8𝑘2𝑛

to get m𝐽 ∈ [0, 1]𝑟×𝑘

satisfying the assumptions of Lemma 7.8.2. By Lemma 7.8.3 then implies that if we define

m𝑖 = m|𝐽 · 𝛼𝑖 for 𝑖 ̸∈ 𝐽 as in NonDegenerateLearn, then |m𝑗
𝑖 −m𝑗

𝑖 | ≤ 𝜀/4𝑘𝑛 for all

𝑖 ̸∈ 𝐽 and 𝑗 for which 𝜋𝑗 ≥ 𝜀/6𝑘. By restricting to those entries of 𝜋 and normalizing to

obtain some �̃�, and restricting m to the corresponding columns, we get by Lemmas 7.5.1

and 7.5.3 that the mixture (�̃�,m) is 2𝜀/3-close to the mixture (𝜋,m). We can round every

entry of �̃� except the last one to the nearest multiple of 2𝜀/3𝑘2 and replace the last entry

by 1 minus these rounded entries. The resulting vector 𝜋 is entrywise 2𝜀/3𝑘-close to �̃�,

so by Lemma 7.5.2, (𝜋,m) is 2𝜀/3 + 𝜀/3 = 𝜀-close to (𝜋,m), which is 𝜀-close to 𝒟 by

Lemma 7.5.6.

490

7.8.2 Making Progress When M|ℛ†
𝑘(𝐽∪{𝑖})

is Ill-Conditioned

NonDegenerateLearn will successfully output a mixture close to 𝒟 provided 𝜀samp is

sufficiently small relative to 𝜎∞
min(M|ℛ†

𝑘(𝐽∪{𝑖})
), i.e. provided M|ℛ†

𝑘(𝐽∪{𝑖})
is sufficiently well-

conditioned. In this subsection, we argue that when this is not the case and NonDegen-

erateLearn fails, we can condition on some set of coordinates and recursively learn the

resulting conditional distributions.

Specifically, we show that Lemma 7.5.10 and the contrapositive of Lemma 7.8.2 imply

that if NonDegenerateLearn fails to output a mixture of 𝑟 product distributions close

to 𝒟, one of the subsets 𝑊 that NonDegenerateLearn outputs satisfies that (𝒟|𝑥𝑊 = 𝑠)

for all 𝑠 ∈ {0, 1}|𝑊 | is moment-close to some mixture 𝒟′ of fewer than 𝑟 product distributions.

Lemma 7.8.4. The following holds for any 𝜏𝑡𝑟𝑢𝑛𝑐 > 0 for which 𝜀samp(𝑟) ≤ 𝜏𝑡𝑟𝑢𝑛𝑐/2 holds

for all 𝑟 > 1. If there exists an (𝜀samp(𝑟), 𝑠(𝑟))-moment-close rank-𝑟 realization of 𝒟 by

mixing weights 𝜋 and marginals matrix m but none of the mixtures 𝒟 output by an 𝜀samp-

sample-rich run of NonDegenerateLearn on input 𝒟 satisfies 𝑑TV(𝒟,𝒟) ≤ 2𝜀, then in

the set of subsets 𝒰 in the output there exists some 𝑊 such that for all 𝑠 ∈ {0, 1}|𝑊 |, either

Pr𝑦∼𝒟[𝑦𝑊 = 𝑠] ≤ 𝜏𝑡𝑟𝑢𝑛𝑐 or there is a (𝛿, 𝑠(𝑟 − 1))-moment-close rank-𝑟′ realization 𝒟′ of

(𝒟|𝑥𝑊 = 𝑠), where 𝛿 , 3𝜎𝑐𝑜𝑛𝑑(𝑟)𝑘
2/
√
2 + 2𝑟+3𝜀samp(𝑟)/𝜏𝑡𝑟𝑢𝑛𝑐 and 𝑟′ < 𝑟.

Proof. Let �̃� denote the mixture realized by mixing weights 𝜋 and marginals matrix m.

Because NonDegenerateLearn fails to output a mixture of 𝑟 product distributions, by

the contrapositive of Lemma 7.8.2 we know that 𝜎∞
min(M|ℛ†

𝑘(𝐽∪{𝑖})
) ≤ 𝜎𝑐𝑜𝑛𝑑(𝑟). Let 𝑊 =

𝐽 ∪ {𝑖}. By Lemma 7.5.10, for any 𝑠 ∈ {0, 1}|𝑊 | there exists a mixture of at most 𝑟 − 1

product distributions 𝒟′ such that (�̃�|𝑥𝑊 = 𝑠) and 𝒟′ are (𝜎𝑐𝑜𝑛𝑑(𝑟) · 3𝑘2/
√
2, 𝑠(𝑟 − 1))-

moment-close. And because |𝑊 | ≤ 𝑟 + 1, 𝑊 ∈ 𝒰 .

It remains to show that (�̃�|𝑥𝑊 = 𝑠) and (𝒟|𝑥𝑊 = 𝑠) are moment-close. Take any

𝑇 ⊆ [𝑛]∖𝑊 of size at most 𝑠(𝑟 − 1). By Bayes’ we have

⃒⃒⃒
E𝒟|𝑥𝑊=𝑠[𝑥𝑇]− E�̃�|𝑥𝑊=𝑠[𝑥𝑇]

⃒⃒⃒
=

⃒⃒⃒⃒
⃒Pr𝑦∼𝒟[𝑦𝑊 = 𝑠 ∧ 𝑦𝑇 = 1|𝑇 |]

Pr𝑦∼𝒟[𝑦𝑊 = 𝑠]
−

Pr𝑦∼�̃�[𝑦𝑊 = 𝑠 ∧ 𝑦𝑇 = 1|𝑇 |]

Pr𝑦∼�̃�[𝑦𝑊 = 𝑠]

⃒⃒⃒⃒
⃒

≤
𝜀samp(𝑟) · 2|𝑊 | (︀Pr𝑦∼𝒟[𝑦𝑊 = 𝑠 ∧ 𝑦𝑇 = 1|𝑇 |] + Pr𝑦∼�̃�[𝑦𝑊 = 𝑠 ∧ 𝑦𝑇 = 1|𝑇 |]

)︀
Pr𝑦∼𝒟[𝑦𝑊 = 𝑠] · (Pr𝑦∼𝒟[𝑦𝑊 = 𝑠]− 𝜀samp(𝑟))

491

≤ 2|𝑊 |+2 · 𝜀samp(𝑟)/𝜏
2
𝑡𝑟𝑢𝑛𝑐 ≤ 2𝑟+3 · 𝜀samp(𝑟)/𝜏

2
𝑡𝑟𝑢𝑛𝑐,

The first inequality follows from 1) the fact that the probability that 𝑦𝑊 = 𝑠 and 𝑦𝑇 = 1|𝑇 |

may be written as a linear combination (with ±1 coefficients) of at most 2|𝑊 | moments of

degree at most

|𝑊 |+ |𝑇 | ≤ 𝑟 + 1 + 𝑠(𝑟 − 1) ≤ 𝑠(𝑟),

where the last inequality follows from (7.31), and 2) the fact that𝒟 and �̃� are (𝜀samp(𝑟), 𝑠(𝑟))-

close. The second inequality follows from the fact that the probabilities in the numerator

are both bounded above by 1, while the probabilities in the denominator are bounded below

by 𝜏𝑡𝑟𝑢𝑛𝑐 and 𝜏𝑡𝑟𝑢𝑛𝑐 − 𝜀samp(𝑟) ≥ 𝜏𝑡𝑟𝑢𝑛𝑐/2 respectively.

By the triangle inequality, we conclude that 𝒟′ and (𝒟|𝑥𝑊 = 𝑠) are (𝛿, 𝑠(𝑟−1))-moment-

close, where 𝛿 is as defined above.

7.8.3 Correctness of N-List

Finally, we are ready to prove Theorem 7.1.6. We will prove the following stronger statement

which is more amenable to induction.

Theorem 7.8.5. There is an absolute constant 𝑐27 > 0 for which the following holds. Let

𝜎𝑐𝑜𝑛𝑑(𝑟) =

(︂
𝑐27min(𝜏𝑡𝑟𝑢𝑛𝑐, 𝜀

2)

2𝑘𝑛

)︂𝑟
, 𝜀samp(𝑟) = 𝜎𝑐𝑜𝑛𝑑(𝑟) ·

𝑐26𝜀
2

𝑘3𝑛
, 𝜏𝑡𝑟𝑢𝑛𝑐, 𝛿𝑒𝑑𝑔𝑒 ≤

2𝜀

2𝑟+1 · 5
.

If there is an (𝜀samp(𝑟), 𝑠(𝑟))-moment-close rank-𝑟 realization of 𝒟 by mixing weights 𝜋 and

marginals matrix m, then an (𝜀samp(𝑟), 𝛿𝑒𝑑𝑔𝑒, 𝜏
𝑟
𝑡𝑟𝑢𝑛𝑐)-sample-rich run of N-List on 𝒟 will

output a distribution 𝒟 for which 𝑑TV(𝒟,𝒟) ≤ 10𝑟𝜀.

To prove this, we first record a simple fact about sampling trees, similar in spirit to

Lemma 7.7.14.

Lemma 7.8.6. Let 𝒯 be a sampling tree such that for each of the immediate descendants 𝑣𝑊,𝑠

of the root, either 𝑑TV(𝒟𝑊,𝑠,𝒟|𝑥𝑊 = 𝑠) ≤ 𝜀′, or Pr𝑦∼𝒟[𝑦𝑊 = 𝑠] ≤ 𝜏 for 𝜏 = 2𝜀
2|𝑊 |·5 . Suppose

further that all weights 𝑤∅,𝑊,∅,𝑠 satisfy |𝑤∅,𝑊,∅,𝑠 − Pr𝑦∼𝒟[𝑦𝑊 = 𝑠]| ≤ 𝛿𝑒𝑑𝑔𝑒 for 𝛿𝑒𝑑𝑔𝑒 = 2𝜀
2|𝑊 |·5 .

Then 𝑑TV(𝒟*,𝒟) ≤ 𝜀′ + 𝜀, where 𝒟* is the distribution associated to 𝒯 .

492

Proof. We wish to bound
∑︀

𝑥∈{0,1}𝑛 |Pr𝒟* [𝑥]−Pr𝒟[𝑥]| = 2𝑑TV(𝒟*,𝒟). Denote by 𝒰𝑡𝑟𝑢𝑛𝑐 the

set of all 𝑥 ∈ {0, 1}𝑛 for which 𝑥𝑊 = 𝑠 and Pr𝑦∼𝒟[𝑦𝑊 = 𝑠] ≤ 𝜏 . Also, let 𝑀 be the number

of 𝑠 ∈ {0, 1}|𝑊 | for which Pr𝑦∼𝒟[𝑦𝑊 = 𝑠] ≤ 𝜏 . Then

∑︁
𝑥∈𝒰𝑡𝑟𝑢𝑛𝑐

Pr
𝒟*
[𝑥] ≤

∑︁
𝑥∈𝒰𝑡𝑟𝑢𝑛𝑐

Pr
𝒟
[𝑥] +𝑀𝛿𝑒𝑑𝑔𝑒 ≤𝑀(𝜏 + 𝛿𝑒𝑑𝑔𝑒),

so by triangle inequality we have that
∑︀

𝑥∈𝒰𝑡𝑟𝑢𝑛𝑐
|Pr𝒟* [𝑥] − Pr𝒟[𝑥]| ≤ 2|𝑊 |(2𝜏 + 𝛿𝑒𝑑𝑔𝑒). For

𝑥 ̸∈ 𝒰𝑡𝑟𝑢𝑛𝑐, decompose 𝑥 as 𝑠 ∘ 𝑡 for 𝑠 ∈ {0, 1}|𝑊 | and 𝑡 ∈ {0, 1}𝑛−|𝑊 |. By Bayes’ we have

Pr𝒟* [𝑥] = 𝑤∅,𝑊,∅,𝑠 · Pr𝒟𝑊,𝑠
[𝑡] and Pr𝒟[𝑥] = Pr𝑦∼𝒟[𝑦𝑊 = 𝑠] · Pr𝒟|𝑥𝑊=𝑠[𝑡] , 𝑤𝑠 · 𝑝𝑡. For all

𝑡 ∈ {0, 1}𝑛−|𝑊 |, let Pr𝒟𝑊,𝑠
[𝑡] = 𝑝𝑡 + 𝛿𝑡 for some 𝛿𝑡 > 0. Because 𝑑TV(𝒟𝑊,𝑠,𝒟|𝑥𝑊 = 𝑠) ≤ 𝜀′,

we have that
∑︀

𝑡 |𝛿𝑡| ≤ 2𝜀′ for all immediate descendants 𝑣𝑊,𝑠 of the root of 𝒯 . Moreover,

by assumption we have that |𝑤𝑠 − 𝑤∅,𝑊,∅,𝑠| ≤ 𝛿𝑒𝑑𝑔𝑒. We conclude that

∑︁
𝑥 ̸∈𝒰𝑡𝑟𝑢𝑛𝑐

|Pr
𝒟*
[𝑥]− Pr

𝒟
[𝑥]| =

∑︁
𝑠∈{0,1}|𝑊 |:

𝑑TV(𝒟𝑊,𝑠,𝒟|𝑥𝑊=𝑠)≤𝜀′

𝑤𝑠 ·

⎛⎝𝛿𝑒𝑑𝑔𝑒 + 2𝛿𝑒𝑑𝑔𝑒𝜀
′ +

∑︁
𝑡∈{0,1}𝑛−|𝑊 |

|𝛿𝑡|

⎞⎠
≤ 2𝜀′ + (2|𝑊 | −𝑀)(𝛿𝑒𝑑𝑔𝑒𝜀

′ + 𝛿𝑒𝑑𝑔𝑒).

When 𝛿𝑒𝑑𝑔𝑒, 𝜏 ≤ 2𝜀
2|𝑊 |·5 , we conclude that 𝑑TV(𝒟*,𝒟) ≤ 𝜀′ + 𝜀.

Remark 7.8.7. Lemma 7.8.6 is weaker than Lemma 7.7.14 in that it can be used to give an

inductive proof of Lemma 7.7.14 with far worse guarantees. Specifically, we would need 𝜏𝑡𝑟𝑢𝑛𝑐

in the statement of Lemma 7.7.14 to be 𝑂(𝜀𝑑) instead of 𝑂(𝜀), where 𝑑 ≤ 𝑘 is the depth of

the sampling tree.

However, using Lemma 7.8.6 instead of Lemma 7.7.14 here greatly simplifies our inductive

analysis of N-List. And the need to grid the entries of m in NonDegenerateLearn

already makes our algorithm run in time (𝑛/𝜀)Ω(𝑘2) to begin with, so we can afford the cost

of this simplification.

Proof of Theorem 7.8.5. We induct on 𝑟. If 𝑟 = 1 so that 𝜋 and m realize a single product

distribution, then for any 𝑊 ⊆ [𝑛], M|ℛ†
𝑟(𝑊) is a single column whose entries contain 1

(corresponding to the empty set), so 𝜎∞
min(M|ℛ†

𝑟(𝑊)) ≥ 1 > 𝜎𝑐𝑜𝑛𝑑(1). The base case then

493

follows by Corollary 7.8.3.

Suppose 𝑟 > 1 and let ℳ, 𝒰 be the output of NonDegenerateLearn on 𝒟 and

counter 𝑟. For each 𝑊 ∈ 𝒰 , we are recursively calling N-List on (𝒟|𝑥𝑊 = 𝑠) for each

𝑠 ∈ {0, 1}|𝑊 | and connecting the resulting sampling trees to 𝑣∅,∅ to obtain some sampling

tree rooted at 𝑣∅,∅. Call this collection of sampling trees ℳ′. We are done by Lemma 7.6.2

if we can show that 𝒮 =ℳ∪ℳ′ contains a distribution close to 𝒟.

Supposeℳ contains no distribution 𝒟 for which 𝑑TV(𝒟,𝒟) ≤ 2𝜀. Then by Lemma 7.8.4,

there is some 𝑊 ∈ 𝒰 such that (𝒟|𝑥𝑊 = 𝑠) is (𝛿, 𝑠(𝑟 − 1))-moment-close to a mixture of

at most 𝑟 − 1 product distributions 𝒟′ for every 𝑠 for which Pr𝑦∼𝒟[𝑦𝑊 = 𝑠] > 𝜏𝑡𝑟𝑢𝑛𝑐, where

𝛿 = 3𝜎𝑐𝑜𝑛𝑑𝑘
2/
√
2 + 2𝑟+3𝜀samp(𝑟)/𝜏𝑡𝑟𝑢𝑛𝑐. One can check that for the above choice of 𝜀samp(·)

and 𝜎𝑐𝑜𝑛𝑑(·), 𝛿 < 𝜀samp(𝑟 − 1). By induction on 𝑟, the distribution output by N-List on

input (𝒟|𝑥𝑊 = 𝑠) is 10𝑟−1𝜀-close to (𝒟|𝑥𝑊 = 𝑠) for each 𝑠 such that Pr𝑦∼𝒟[𝑦𝑊 = 𝑠] >

𝜏𝑡𝑟𝑢𝑛𝑐. By Lemma 7.8.6 we conclude that in ℳ′, there is some distribution 𝒟 for which

𝑑TV(𝒟,𝒟) ≤ 10𝑟−1 + 𝜀, so by Lemma 7.6.2, Select(𝒮,𝒟) outputs a distribution at most

9.1(10𝑟−1𝜀+ 𝜀) ≤ 10𝑟𝜀-close to 𝒟.

Proof of Theorem 7.1.6. Apply Lemma 7.6.7 with 𝜏𝑡𝑟𝑢𝑛𝑐 = 2𝜀
2𝑘+1·5 , 𝑍 = 𝑛𝑂(𝑘2), 𝑀 = 𝑛𝑂(𝑘) ·2𝑘2 ,

𝑈 = 𝑛𝑂(𝑘), 𝑆 = 𝑘 + 1, 𝑇 (𝑟) = (𝑛𝑘2/𝜀)𝑂(𝑘2), 𝜀samp(·) as defined in Theorem 7.8.5, and

𝜀𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑂(𝜀) to get that achieving a (𝜀samp, 𝛿𝑒𝑑𝑔𝑒, 𝜏𝑡𝑟𝑢𝑛𝑐)-sample-rich run of N-List on 𝒟 with

counter 𝑘 with probability 1−𝛿 requires poly(𝑛, 𝑘, 1/𝜀)𝑘2 ln(1/𝛿) time and 𝑛𝑂(𝑘2)𝜀𝑂(𝑘) ln(1/𝛿)

samples. By taking 𝛿𝑒𝑑𝑔𝑒 = 2𝜀
2𝑘+1·5 , we conclude by Theorem 7.8.5 that the output of N-List

is 10𝑘𝜀-close to 𝒟. Replace 𝜀 by 𝜀/10𝑘 and the result follows.

7.9 Appendix: Application to Learning Stochastic Deci-

sion Trees

In this section, we prove Theorem 7.1.3. We begin with a warmup:

Example 7.9.1 (Parity and juntas). The uniform distribution 𝒟 over the positive examples

of a 𝑘-junta 𝑓 : {0, 1}𝑛 → {0, 1} is a mixture of at most 2𝑘 subcubes in {0, 1}𝑛. Let 𝐼 ⊆ [𝑛] be

the 𝑘 coordinates that 𝑓 depends. Every 𝑠 ∈ {0, 1}|𝐼| for which 𝑓(𝑥) = 1 for all 𝑥 satisfying

494

𝑥𝐼 = 𝑠 corresponds to a subcube with mixture weight 1/𝑁 , where 𝑁 ≤ 2𝑘 is the number of

such 𝑠 (e.g. when 𝑓 is a parity, 𝑁 = 2𝑘−1). In the same way we can show that the uniform

distribution over the negative examples is also a mixture of at most 2𝑘 subcubes.

So given access to examples (𝑥, 𝑓(𝑥)) where 𝑥 is uniformly distributed over {0, 1}𝑛, we

can learn 𝑓 as follows. With high probability, we can determine 𝑏* ∈ {0, 1} for which 𝑓

outputs 𝑏* on at least 1/3 of the inputs. As we have shown in this chapter, our algorithm can

then learn some 𝒟′ that is 𝜀-close to the uniform distribution over {𝑥 : 𝑓(𝑥) = 𝑏*}. We then

output the hypothesis 𝑔 given by 𝑔(𝑥) = 𝑏* if 𝒟′(𝑥) ≤ 1/2𝑛+1 and 𝑔(𝑥) = 1− 𝑏* otherwise. It

is easy to see that 𝑔 is 𝜀-accurate.

This approach can handle mild random classification noise 𝛾: if we take the distribution

over examples (𝑥, 𝑏) where 𝑥 is drawn from the uniform distribution over {0, 1}𝑛 and 𝑏 is

labeled by 𝑓(𝑥) with probability 1 − 𝛾 and 1 − 𝑓(𝑥) with probability 𝛾, and we condition on

𝑏 = 1, the resulting distribution is still a mixture of subcubes: every 𝑠 for which 𝑓(𝑥) = 1

for all 𝑥𝐼 = 𝑠 corresponds to a subcube of weight (1 − 𝛾)/𝑁 , and every other 𝑠 corresponds

to a subcube of weight 𝛾/𝑁 . This mixture is 𝑂(𝛾)-far from the uniform distribution over

{𝑥 : 𝑓(𝑥) = 1}, so in the above analysis, our algorithm would give an (𝜀 + 𝑂(𝛾))-accurate

hypothesis.

Finally, note that if mixing weights 𝜋 and marginals matrix m realize 𝒟, then m𝑖 ∈

{0, 1}𝑘 if 𝑓 depends on coordinate 𝑘, and m𝑖 = (1/2, ..., 1/2) otherwise, meaning the rows

of M are spanned by all entrywise products of degree less than log2(𝑁) ≤ 𝑘, rather than

2 log(𝑁) as is required in general by N-List. So the algorithm we described above has the

same performance as the brute-force algorithm.

The above example serves simply to suggest the naturality of the problem of learning

mixtures of subcubes, but because there are strong SQ lower bounds against learning sparse

noisy parity [BFJ+94], it’s inevitable that our algorithm gives no new improvements over

such problems. We now describe an application of N-List which does achieve a new result

on a classical learning theory problem. First recall the definition of stochastic decision trees

from Definition 1.2.20.

Lemma 7.9.2. For any 𝑘-leaf stochastic decision tree 𝑇 on 𝑛 bits, the distribution of (𝑥, 𝑏) ∼

𝐷𝑇 conditioned on 𝑏 = 1 is a mixture of 𝑘 subcubes.

495

Proof. Consider any path 𝑝 in 𝑇 from the root to a leaf labeled with 1. If along this path

there are 𝑚 decision nodes corresponding to some variables 𝑖1, ..., 𝑖𝑚 ∈ [𝑛] and with outgoing

edges 𝑏1, ..., 𝑏𝑚, then any 𝑥 ∈ {0, 1}𝑛 from the subcube corresponding to the conjunction

(𝑥𝑖1 = 𝑏1) ∧ · · · ∧ (𝑥𝑖𝑚 = 𝑏𝑚) evaluates to 1 along this path with probability equal to the

product 𝜇𝑝 of the edge weights along this path which emanate from stochastic nodes. So the

distribution of (𝑥, 𝑏) ∼ 𝐷𝑇 conditioned on 𝑏 = 1 is a mixture of 𝑘 such subcubes, where the

𝑝-th subcube has mixture weight proportional to 𝜇𝑝/2𝑑𝑝 , where 𝑑𝑝 is the number of decision

nodes along path 𝑝.

The following immediately implies Theorem 7.1.3.

Lemma 7.9.3. Let 𝑇 be any 𝑘-leaf stochastic decision tree corresponding to a joint probabil-

ity distribution 𝐷𝑇 on {0, 1}𝑛×{0, 1}. Given access to samples from 𝐷𝑇 , 𝐷𝑇 can be learned to

within total variation distance 𝜀 with probability at least 1−𝛿 in time 𝑂𝑘,𝑠(𝑛
𝑂(𝑠+log 𝑘)(1/𝜀)𝑂(1) log 1/𝛿)

and with sample complexity 𝑂𝑘,𝑠((log 𝑛/𝜀)
𝑂(1) log 1/𝛿)

Proof. Denote by 𝐴 our algorithm for learning mixtures of subcubes, given by Theorem 7.1.1.

To learn 𝐷𝑇 , we can first estimate 𝜋(𝑏) , Pr(𝑥,𝑏′)∼𝐷𝑇
[𝑏′ = 𝑏] ≥ 1/3 for each 𝑏 ∈ {0, 1}

to within accuracy 𝜀 and confidence 1 − 𝛼/3 by drawing 𝑂((1/𝜀)2 log(1/𝛼)) samples, by

Fact 7.6.6. We pick 𝑏* ∈ {0, 1} for which Pr(𝑥,𝑏)∼𝐷𝑇
[𝑏 = 𝑏*] ≥ 1/3 and denote our estimate

for 𝜋(𝑏*) by 𝜋′(𝑏*).

By Lemma 7.9.2, 𝒟 is a mixture of 𝑘 subcubes, so we can run 𝐴 with error parameter

𝜀/2 and confidence parameter 𝛼/3 on 𝒟 and get a distribution 𝒟′ for which 𝑑TV(𝒟,𝒟′) ≤

𝜀/4. Our algorithm outputs the distribution 𝐷′ given by 𝐷′(𝑥, 𝑏*) = 𝜋′(𝑏*) · 𝒟(𝑥) and

𝐷′(𝑥, 1− 𝑏*) = 1− 𝜋′(𝑏*) · 𝒟(𝑥).

Now because 𝐷𝑇 (𝑥, 𝑏
) = 𝜋𝑏 · 𝒟(𝑥), we have that

∑︁
𝑥∈{0,1}𝑛

|𝐷𝑇 (𝑥, 𝑏
)−𝐷′(𝑥, 𝑏)| ≤ 𝜀

2
·
∑︁

𝑥∈{0,1}𝑛
𝒟(𝑥)+𝜋′(𝑏*)·

∑︁
𝑥∈{0,1}𝑛

|𝒟(𝑥)−𝒟′(𝑥)| ≤ 𝜀

2
+2· 𝜀

4
= 𝜀.

We thus also get that
∑︀

𝑥∈{0,1}𝑛 |𝐷𝑇 (𝑥, 1 − 𝑏*) − 𝐷′(𝑥, 1 − 𝑏*)| =
∑︀

𝑥∈{0,1}𝑛 |𝐷𝑇 (𝑥, 𝑏
*) −

𝐷′(𝑥, 𝑏*)| ≤ 𝜀, so 𝑑TV(𝐷𝑇 , 𝐷
′) ≤ 𝜀 as desired.

496

Chapter 8

Mixed Linear Regression

8.1 Introduction

The second mixture model we study in this thesis, mixtures of linear regressions (or MLRs for

short), is a popular generative model that has been studied extensively in machine learning

and theoretical computer science. We recall the setup from Definition 1.2.22 in slightly

different notation: we have 𝑘 unknown mixing weights 𝑝1, . . . , 𝑝𝑘 which are non-negative and

sum to 1, 𝑘 unknown regressors 𝑤1, . . . , 𝑤𝑘 ∈ R𝑑, and a noise rate 𝜍 ≥ 0. A sample from the

MLR is drawn as follows: we first select 𝑖 ∈ [𝑘] with probability 𝑝𝑖, then we receive (𝑥, 𝑦)

where 𝑥 ∈ R𝑑 is distributed as 𝒩 (0, Id) and

𝑦 = ⟨𝑤𝑖, 𝑥⟩+ 𝜂,

where 𝜂 ∼ 𝒩 (0, 𝜍2). As mentioned in Section 1.2.3, this model has applications to problems

ranging from trajectory clustering [GS99] to phase retrieval [BCE06, CSV13, NJS13] and

is also widely studied as a natural non-linear generative model for supervised data [FS10,

CYC13,CL13,YCS14,YCS16,ZJD16,SJA16,KYB17,BWY17,KQC+18,LL18,KC19].

The basic learning question for MLRs is as follows: given i.i.d. samples (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) ∈

R𝑑 × R from an unknown MLR, can we learn the parameters of the underlying MLR? To

ensure that the parameters are identifiable, it is also typically assumed that the regressors

are separated in some way, e.g. there is some Δ > 0 so that ‖𝑤𝑖 − 𝑤𝑗‖2 ≥ Δ for all 𝑖 ̸= 𝑗.

497

Despite the apparent simplicity of the problem, efficiently learning MLRs given samples

has proven to be a surprisingly challenging task. Even in the special case where 𝜍 = 0, that

is, we assume that there is no noise on the samples, the fastest algorithms for this problem

run in time depending on 𝑘Ω(𝑘) [LL18,ZJD16]. It turns out that there are good reasons for

this barrier.

Previous algorithms for this problem with end-to-end provable guarantees—and indeed,

the vast majority of statistical learning algorithms in general—build in some form or another

on the method of moments paradigm. At a high level, these methods require that there exists

some statistic which depends only on low degree moments of the unknown distribution, so

that a sufficiently good estimate of this statistic will uniquely identify the parameters of the

distribution. This includes widely-used techniques based on tensor decomposition [CL13,

YCS16, ZJD16, SJA16], and SDP hierarchies such as the Sum-of-Squares meta-algorithm

[KKK19, RY19]. If degree 𝑡 moments are necessary to devise such a statistic, then these

methods require exp(Ω(𝑡)) sample and computational complexity.

Unfortunately, for MLRs, it is not hard to demonstrate pairs of mixtures some of whose

parameters are far apart from each other, where all moments of degree at most 2𝑘− 1 of the

two mixtures agree exactly (see Appendix 8.10 for more details). As a result, any moment-

based estimator would need to use moments of degree at least Ω(𝑘), and hence require a

runtime of exp(Ω(𝑘)). This imposes a natural bottleneck: any algorithm that hopes to

achieve sub-exponential time must somehow incorporate additional information about the

geometry of the underlying learning problem.

A related problem, which shares a similar bottleneck, is the problem of learning mixtures

of Gaussians under the assumption of angular separation. A concrete instantiation of this

problem is a model we call learning mixtures of hyperplanes. A mixture of hyperplanes

is parameterized by mixing weights 𝑝1, . . . , 𝑝𝑘, a separation parameter Δ > 0, and 𝑘 unit

vectors 𝑣1, . . . , 𝑣𝑘 satisfying ‖𝑣𝑖±𝑣𝑗‖2 ≥ Δ for all 𝑖 ̸= 𝑗 (note that the reason for the ± is that

the directions of a mixture of hyperplanes are only identifiable up to sign). To draw a sample,

we first draw 𝑖 ∈ [𝑘] with probability 𝑝𝑖, and then draw a sample from 𝒩 (0, Id−𝑣𝑖𝑣⊤𝑖).

As before, the corresponding learning question is the following: given samples from an

unknown mixture of hyperplanes, can one recover the underlying parameters? This problem

498

can be thought of as a particularly hard case of the well-studied problem of subspace recovery,

where current techniques would require time which is exponential in 𝑘.

In this paper, we give algorithms which are able to achieve strong recovery guarantees for

the problems of learning MLRs and learning mixtures of hyperplanes, and which run in time

which is sub-exponential in 𝑘. To the best of our knowledge, this is the first algorithm for

the basic problem of learning MLRs which achieves sub-exponential runtime without placing

strong additional assumptions on the model. At a high level, our key insight is that while low

degree moments of the MLR are unable to robustly identify the instance, low degree moments

of suitable projections of the Fourier transform of the MLR can be utilized to extract non-

trivial information about the regressors. We then give efficient algorithms for computing such

“Fourier moments” by leveraging algorithms for univariate density estimation [CDSS14b,

ADLS17]. This allows us to dramatically improve the runtime and sample complexity of the

moment descent algorithm of [LL18], and allows us to obtain our desired sub-exponential

runtime. We believe that this sort of algorithmic application of the continuous Fourier

transform and of univariate density estimation to a high dimensional learning problem is

novel, and may be of independent interest.

8.1.1 Our Contributions

Here, we describe our contributions in more detail. For simplicity of exposition, in this

section we will assume that the mixing weights are uniform, i.e. 𝑝𝑖 = 1/𝑘 for all 𝑖 ∈ [𝑘],

although as we show, our algorithms can handle non-uniform mixing weights.

Our main results for learning MLRs are twofold. Throughout the paper we let ̃︀𝑂(𝑓) =
𝑂(𝑓 log𝑐(𝑓)) for some universal constant 𝑐. First, in the well-studied case where there is no

regression noise, we show:

Theorem 8.1.1 (Informal, see Theorem 8.6.2). Assume that the noise rate 𝜍 = 0. Let

𝑤1, . . . , 𝑤𝑘 ∈ R𝑑 be the parameters of an unknown MLR 𝒟 with separation Δ. Then, there

is an algorithm which takes 𝑁 = ̃︀𝑂(𝑑) · exp(̃︀𝑂(√𝑘)) samples from 𝒟, runs in time ̃︀𝑂(𝑁 · 𝑑),
and outputs ̃︀𝑤1, . . . , ̃︀𝑤𝑘 ∈ R𝑑 so that with high probability, there exists some permutation

499

𝜋 : [𝑘]→ [𝑘] satisfying ⃦⃦
𝑤𝑖 − ̃︀𝑤𝜋(𝑖)⃦⃦2 ≤ Δ

𝑘100
,∀𝑖 ∈ [𝑘].

By combining this “warm start” with the boosting result of [LL18], we can also obtain

arbitrarily good accuracy with minimal overhead in both the sample complexity and runtime.

See Section 8.6 for more details.

Secondly, in the case when the noise rate 𝜍 is large, we can also obtain a similar result,

though with an additional exponential dependence on Δ:

Theorem 8.1.2 (Informal, see Theorem 8.7.1). Let 𝑤1, . . . , 𝑤𝑘 ∈ R𝑑 be the parameters of

an unknown MLR 𝒟 with separation Δ, and noise rate 𝜍 > 0. Then, there is an algorithm

which takes 𝑁 = ̃︀𝑂(𝑑) · exp(̃︀𝑂(√𝑘/Δ2)) samples from 𝒟, runs in time ̃︀𝑂(𝑁 ·𝑑), and outputŝ︀𝑤1, . . . , ̂︀𝑤𝑘 ∈ R𝑑 so that with high probability, there exists some permutation 𝜋 : [𝑘] → [𝑘]

satisfying ⃦⃦
𝑤𝑖 − ̂︀𝑤𝜋(𝑖)⃦⃦2 ≤ Δ

𝑘100
+𝑂(𝜍) ,∀𝑖 ∈ [𝑘].

In particular, if Δ = Ω(1), we again attain runtime which is sub-exponential in 𝑘. In the

special case when the mixing weights are all known, and assuming that 𝜍 = 𝑂(Δ
𝑘2polylog(𝑘)

), by

combining this result with the local convergence result of [KC19], we can again attain arbi-

trarily good accuracy by slightly increasing the runtime; see Section 8.7.5 and Theorem 8.7.33

for details.

Finally, for the problem of learning mixtures of hyperplanes, we are able to obtain qual-

itatively similar results. Again, for simplicity of exposition, we assume the mixing weights

are uniform just in the current section. We obtain:

Theorem 8.1.3 (Informal, see Theorem 8.8.1). Let 𝜀 > 0, and let 𝑣1, . . . , 𝑣𝑘 ∈ R𝑑 be the

parameters of a mixture of hyperplanes 𝒟 with separation Δ > 0. Then, there is an algorithm

which takes 𝑁 = ̃︀𝑂(𝑑)·exp(̃︀𝑂(𝑘0.6)) samples from 𝒟, runs in time ̃︀𝑂(𝑁 ·𝑑), and which outputŝ︀𝑣1, . . . , ̂︀𝑣𝑘 ∈ R𝑑 so that with high probability, there is a permutation 𝜋 : [𝑘]→ [𝑘] so that

⃦⃦
𝑣𝑖 − ̂︀𝑣𝜋(𝑖)⃦⃦2 ≤ Δ

𝑘100
,∀𝑖 ∈ [𝑘].

500

8.1.2 Related Work

Mixtures of linear regressions were introduced in [DV89], and later by [JJ94], under the

name of hierarchical mixtures of experts, and have been studied extensively in the theory

and ML communities ever since. Previous work on the problem with provable guarantees

can roughly speaking be divided into three groups. Some of the previous work focuses on

special cases of the problem, in particular, when the number of components is small [CYC13,

KYB17,BWY17,KQC+18]. In contrast, we focus on the setting where 𝑘 is quite large, which

is the setting which is typically true in applications, but is also much more algorithmically

complicated.

Another line of work has focused on demonstrating local convergence guarantees for

non-convex methods such as expectation maximization or alternating minimization [FS10,

YCS14,YCS16, ZJD16,KYB17,BWY17,KQC+18, LL18,KC19]. These papers demonstrate

that given a sufficiently good warm start, non-convex methods are able to boost this warm

start to arbitrarily good accuracy. These results should be viewed as largely complementary

to our results, as our main result is a method which is able to provably achieve a good warm

start. That said, we also demonstrate new algorithms for learning given a warm start that

work under a weaker initialization and can tolerate more regression noise than was previously

known in the literature.

The final class of results use moment-based methods to learn MLRs. Here, the litera-

ture has focused largely on the case of 𝜍 = 0 and spherical covariates, that is, covariates

all drawn from 𝒩 (0, Id).1 A line of work has studied tensor decomposition-based meth-

ods [CL13, YCS16, ZJD16, SJA16]. However, these require additional non-degeneracy con-

ditions on the MLR instance beyond separation. Indeed, as we argued in the Introduction,

and more formally in Appendix 8.10, moment based methods cannot obtain runtime which

is sub-exponential in 𝑘. The work that is closest to ours, and that we build off of, is that

of [LL18], which demonstrates an algorithm which runs in 2
̃︀𝑂(𝑘) for learning a MLR under

separation conditions. However, as their warm start algorithm is ultimately moment based,

1To the best of our knowledge, the primary exception to this is [LL18], which considered noise-less MLRs
whose components’ covariates are drawn from arbitrary unknown Gaussians satisfying some condition number
bounds and obtained a 𝑑 · exp(𝑘2) algorithm in this setting.

501

since it interacts through the samples through the moment-based univariate GMM learning

algorithm of [MV10], it cannot achieve runtime sub-exponential in 𝑘.

List-Decodable Regression A related problem to—indeed, a generalization of—the prob-

lem of learning MLRs is that of list-decodable regression [CSV17,KKK19,RY19]. Here, we

assume that we are given a set of data points (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), where an 𝛼-fraction of

them come from an unknown linear regression 𝑦𝑖 = ⟨𝑤, 𝑥𝑖⟩ + 𝜂, where 𝑥𝑖 is Gaussian, 𝜂

is Gaussian noise, and 𝛼 < 1/2. The goal is then to recover a list of 𝑂(1/𝛼) possible

𝑤1, . . . , 𝑤𝑂(1/𝛼) ∈ R𝑑 so that ‖𝑤𝑖 − 𝑤‖2 is small for at least one element in the list.

It is not hard to see that given a uniform MLR instance, if we feed it into an algorithm

for list-decodable regression, the list must contain something which is close to each of the

regressors in the MLR instance, as each mixture component is an equally valid solution

to the list-decodable regression problem. Thus one could hope that these algorithms for

list-decodable regression could yield improved algorithms for learning MLRs as well.

Unfortunately, all known techniques, including the state of the art [KKK19,RY19], either

are too weak to be applied to our setting, or use the Sum-of-Squares SDP hierarchy and

again interact through the data via estimating high-degree moments of the distribution. As

a result, these latter algorithms still suffer runtimes which are exponential in 𝑘.

Subspace Clustering The mixtures of hyperplanes problem we consider in this paper can

be thought of as a special case of the subspace clustering or hyperplane clustering problem,

where data is thought of as being drawn from a union of linear subspaces. In our problem,

we additionally assume that the data is Gaussian within each subspace. The literature

on subspace clusterings is vast and we cannot do it justice here; see [PHL04,Vid11,EV13]

and references therein for a more complete treatment. On the one hand, the mixture of

hyperplanes problem arises naturally in practical contexts of projective motion segmentation

[VH07] and hybrid system identification [Bak11]. On the other, it also corresponds to a

challenging setting of the problem due to the low codimensionality of the subspaces. Indeed,

essentially all algorithms for subspace clustering with provable guarantees either run in time

exponential in the dimension of the subspaces (e.g. RANSAC [FB81], algebraic subspace

502

clustering [VMS05], spectral curvature clustering [LLY+12]) or require the codimension to be

at least some small but constant fraction of the ambient dimension [EV13,CSV13,LMZ+12,

TV15]. To our knowledge the only work which addresses the codimension 1 case is [TV17],

though their setting and guarantees are quite different from ours.

The Fourier Transform in Distribution Learning One of our main algorithmic tools

will be the univariate (continuous) Fourier transform, as a way to estimate Fourier mo-

ments of our distribution. In recent years, the question of learning the Fourier transform

of a function has attracted a considerable amount of interest in theoretical computer sci-

ence [HIKP12,IK14,Moi15,PS15,Kap16,CKPS16,Kap17,NSW19]. Our application is some-

what different in that we have explicit access to the function we will take the Fourier trans-

form of.

In the context of distribution learning, the discrete Fourier transform has been used to

learn families of distributions such as sums of independent integer random variables [DKS16b],

Poisson Binomial distributions [DKS16c], and Poisson multinomial distributions [DKS16b,

DKS16a]. These algorithms typically work by exploiting Fourier sparsity of the underlying

distribution. However, the way we use the Fourier transform is quite different: we only use it

to compute different statistics of the data, namely, the Fourier moments of our distribution.

Univariate Density Estimation Another important algorithmic primitive we use is uni-

variate density estimation and specifically, the piecewise polynomial-based estimators given

in [CDSS14b,ADLS17]. Univariate density estimation has a long history in statistics, ML,

and theoretical computer science, and a full literature review of the field is out of the scope of

this paper; see e.g. [Dia16] for a more comprehensive overview of the literature. However, to

the best of our knowledge, there are few previous cases where univariate density estimation

has been used as a key tool for a high dimensional learning task.

8.2 Preliminaries

In this section, we give some basic technical preliminaries.

503

8.2.1 Probabilistic Models

In this section, we formally define the models we consider throughout this paper, namely,

mixtures of linear regression and hyperplanes, and some important parameters for these

models:

Mixtures of Linear Regressions We start by restating the setup for MLRs, originally

introduced in Definition 1.2.22, in slightly different notation:

Definition 8.2.1 (Mixtures of Linear Regressions). Given mixing weights 𝑝 ∈ [0, 1]𝑘 with∑︀𝑘
𝑖=1 𝑝𝑖 = 1, regressors 𝑤1, · · · , 𝑤𝑘 ∈ R𝑑, and noise rate 𝜍 ≥ 0, the corresponding mixture of

spherical linear regressions (or simply mixture of linear regressions) is the distribution over

pairs (𝑥, 𝑦) ∈ R𝑑×R where 𝑥 ∼ 𝒩 (0, Id) and 𝑦 = ⟨𝑤𝑖, 𝑥⟩+ 𝑔 for 𝑤𝑖 sampled with probability

𝑝𝑖 and 𝑔 ∼ 𝒩 (0, 𝜍2).

When 𝜍 = 0, we say that the MLR is noiseless.

In this paper, we will study the parameter learning problem for mixtures of linear re-

gressions, that is, we wish to recover the parameters of the mixture. To this end, we will

need some assumptions to ensure that the regressors are uniquely identifiable. These as-

sumptions are standard throughout the literature. Given a mixture of linear regressions 𝒟,

let Δ = min𝑖 ̸=𝑗 ‖𝑤𝑖 − 𝑤𝑗‖2 be the minimum 𝐿2 separation among all 𝑤𝑖 in the mixture, and

we let 𝑝min = min𝑖∈[𝑘] 𝑝𝑖. To normalize the instance, we will also assume that ‖𝑤𝑖‖2 ≤ 1 for

all 𝑖 = 1, . . . , 𝑘. However, more generally, our algorithms will have a mild polynomial depen-

dence on the maximum 𝐿2 norm of any 𝑤𝑖. We omit this case for simplicity of exposition.

Mixtures of Hyperplanes We now turn our attention to mixtures of hyperplanes. For-

mally:

Definition 8.2.2. Given mixing weights 𝑝 ∈ [0, 1]𝑘 with
∑︀𝑘

𝑖=1 𝑝𝑖 = 1 and unit vectors

𝑣1, · · · , 𝑣𝑘 ∈ S𝑑−1, the corresponding mixture of hyperplanes is the distribution with law

given by
∑︀𝑘

𝑖=1 𝑝𝑖𝒩 (0,Π𝑖) where Π𝑖 , Id−𝑣𝑖𝑣⊤𝑖 ∈ R𝑑×𝑑.

As before, we need some assumptions on the parameters to ensure identifiability. Like before,

let 𝑝min = min𝑖∈[𝑘] 𝑝𝑖. Because 𝑣𝑖 are now only identifiable up to sign, we define Δ to be the

minimum quantity such that or all 𝑖 ̸= 𝑗 and 𝜀𝑖, 𝜀𝑗 ∈ {±1}, ‖𝜀𝑖𝑣𝑖 − 𝜀𝑗𝑣𝑗‖2 ≥ Δ.

504

8.2.2 Miscellaneous Notation

We collect some notation and terminology specific to this chapter. For real-valued functions

ℱ : R→ R and 𝑝 ∈ N, we will useℳ𝑝(ℱ) to denote
∫︀∞
−∞ 𝑥𝑝 · ℱ(𝑥) d𝑥.

Given 𝑣 ∈ R𝑑+1, define Σ𝜂(𝑣) ,

⎛⎝Id𝑑 𝑣

𝑣⊤ ‖𝑣‖2 + 𝜂2

⎞⎠ . Note that this is the covariance

matrix of a single spherical linear regression with noise variance 𝜂2. When 𝜂 = 0, we will

denote this matrix by Σ(𝑣).

We will sometimes refer to a univariate mixture ℱ of zero-mean Gaussians with mixing

weights 𝑝 ∈ Δ𝑘 and variances 𝜎2
1, ..., 𝜎

2
𝑘 as a mixture of 𝑘 univariate zero-mean Gaussians

“with parameters ({𝑝𝑖}𝑖∈[𝑘], {𝜎𝑖}𝑖∈[𝑘]).” We will define 𝜎min(ℱ) , min𝑖∈[𝑘] 𝜎𝑖 and 𝜎max(ℱ) ,

max𝑖∈[𝑘] 𝜎𝑖 and refer to 𝜎min(ℱ)2 and 𝜎max(ℱ)2 as the minimum and maximum variance of

ℱ , respectively.

Finally, we will need the following monotonicity property of moments of Gaussians, re-

stricted to the tails of the Gaussian:

Fact 8.2.3. Let 𝜎* > 0 and 𝜏 > 𝜎*, and let 𝑝 ∈ N be even. Then

∫︁
[−𝜏,𝜏]𝑐

𝒩 (0, 𝜎2;𝑥) · 𝑥𝑝 d𝑥 <
∫︁
[−𝜏,𝜏]𝑐

𝒩 (0, (𝜎*)2;𝑥) · 𝑥𝑝 d𝑥

for all 0 < 𝜎 < 𝜎*.

We defer the proof of this fact to Section 8.12.2.

8.3 Overview of Techniques

In this section, we give a high-level overview of how our algorithms work. For clarity of

exposition, in this subsection we will assume 𝑝min = 1/𝑘 and Δ = Θ(1).

8.3.1 Fourier Moment Descent

We first describe our techniques that achieve Theorem 8.1.1, before describing how to adapt

these techniques to achieve Theorems 8.1.2 and 8.1.3.

505

We begin by briefly recapping the moment descent algorithm of [LL18]. Moment descent

is an iterative algorithm which attempts to find the parameters of one component at a time

as follows. Let 𝑤1, . . . , 𝑤𝑘 ∈ R𝑑 be the parameters of a MLR 𝒟 with separation Δ > 0 and

noise rate 𝜍 = 0, and again for simplicity let us assume that the mixing weights are uniform.

To learn a single regressor, the idea is to maintain a guess 𝑎𝑡 ∈ R𝑑 for one of the regressors

at each time step 𝑡, and iteratively refine it by making random steps and checking progress.

The measure of progress they consider is simply

𝜎2
𝑡 , min

𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22 .

Concretely, the algorithm proceeds as follows. First, by a straightforward PCA step, we

can essentially assume that 𝑑 ≤ 𝑘. Then, given a guess 𝑎𝑡, the moment descent procedure

updates by sampling a random unit vector 𝑧 ∈ S𝑑−1, defining 𝑎′𝑡+1 , 𝑎𝑡− 𝜂𝑡 · 𝑧 ∈ R𝑑 for some

learning rate 𝜂𝑡, and letting

(𝜎′
𝑡)

2 , min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22 .

In general, for 𝑎 ∈ R𝑑, the univariate distribution of the residual 𝑦 − ⟨𝑎, 𝑥⟩, where (𝑥, 𝑦) ∈

R𝑑 × R is sampled from 𝒟, is distributed as

1

𝑘

𝑘∑︁
𝑖=1

𝒩 (𝜇, ‖𝑤𝑖 − 𝑎‖22) ,

that is, it is distributed as a mixture of univariate Gaussians with mixing weights which are

the same as those of 𝒟, and variances which are equal to the squared 𝐿2 distances between

the regressors and 𝑎. In particular, to estimate min𝑖∈[𝑘]‖𝑤𝑖−𝑎𝑡‖22, one can learn the univariate

mixture sufficiently well via [MV10], and simply read off the minimum variance. By doing

so, they can check if 𝜎′
𝑡 < 𝜎𝑡. If so, they set 𝑎𝑡+1 = 𝑎′𝑡+1 ∈ R𝑑, and repeat.

The main bottleneck in this routine is the univariate learning step. Specifically, the algo-

rithm of [MV10] relies on the method of moments to learn the parameters of the univariate

mixture of Gaussians, and as a result, takes 𝑘𝑂(𝑘) samples and time. In fact, this is in-

herent: [MV10] demonstrates that 𝑘Ω(𝑘) samples are necessary to learn the parameters of a

mixture of Gaussians, precisely by leveraging moment matching instances.

506

However, all we need is an estimate of the minimum variance of the mixture of Gaussians.

One can first observe that it is possible to estimate the maximum variance of a component

in a univariate mixture of Gaussians based on a sufficiently high degree moment. This is

because the 𝑝-th moment of a uniform mixture of Gaussians ℱ with variances 𝑠21, . . . , 𝑠2𝑘 has

the following form, for 𝑝 even:

E𝑍∼ℱ [𝑍
𝑝] =

𝑘∑︁
𝑖=1

1

𝑘
· 𝑠𝑝𝑖 · (𝑝− 1)!! = [𝑐/𝑘, 1] · 𝜎max(ℱ)𝑝 · 𝑝𝑝/2 , (8.1)

for 𝜎max(ℱ) , max𝑖∈[𝑘] 𝑠𝑖 and some universal constant 𝑐 > 0. Therefore, for any 𝜅 > 0, if we

set 𝑝 = Θ(log 𝑘/ log(1 + 𝜅)) = Θ(𝜅−1 log 𝑘), we have that

𝑝−1/2E𝑍∼ℱ [𝑍
𝑝]1/𝑝 ∈ [1−Θ(𝜅) , 1] · 𝜎max(ℱ)

which yields a (1+𝜅) approximation to the maximum variance approximation to the largest

variance of ℱ . Moreover, we can estimate the left-hand side in 𝑝𝑂(𝑝) = 2
̃︀𝑂(𝜅−1 log 𝑘) samples:

Lemma 8.3.1 (Concentration of empirical moments). Let 𝑝 ∈ N be even and 𝑡 ∈ N, and let

𝛿, 𝛽 > 0. Then for

𝑁 = 𝑘−2 · 𝛽−2 · 𝑝Θ(𝑝) · ln(1/𝛿)Θ(𝑝) · 𝜎max(ℱ)Θ(𝑝),

we have that

Pr
𝑍1,··· ,𝑍𝑁∼ℱ

[︃
1

𝑁

𝑁∑︁
𝑖=1

𝑍𝑝
𝑖 = (1± 𝛽) · E𝑍∼ℱ [𝑍

𝑝]

]︃
≥ 1− 𝛿.

For clarity of exposition, we defer the proof of this lemma to Section 8.12.1.

Unfortunately, a priori this argument says nothing about estimating the minimum vari-

ance. It is easy to see that two mixtures of univariate zero-mean Gaussians 𝐷1, 𝐷2 can have

very similar 𝑝-th moments but wildly different minimum variances (e.g. take 𝐷1 to be a

single Gaussian 𝒩 (0, 𝑘100), and take 𝐷2 to be a uniform mixture of 𝒩 (0, 𝑘100) and 𝒩 (0, 1)).

The key insight is that while higher-degree moments of a mixture 𝐷 of zero-mean Gaus-

sians tell us nothing about the minimum variance, those of its Fourier transform do. The

reason is because of the following observation:

507

Observation 8.3.2. If the components of 𝐷 have variances 𝑠21, ..., 𝑠2𝑘 and mixing weights

𝑝1, ..., 𝑝𝑘, the Fourier transform of the density of 𝐷 is a new (unnormalized) mixture of Gaus-

sians with variances Θ(𝑠−2
1), · · · , Θ(𝑠−2

𝑘) and mixing weights proportional to 𝑝1/𝑠1, ..., 𝑝𝑘/𝑠1

(see Fact 1.3.12).

In particular, if we have a sufficiently good estimate of the maximum variance of any

component in the Fourier transform of 𝐷, then by inverting this estimate, we can estimate

the minimum variance of any component in 𝐷. So if we had access to the Fourier transform

of 𝐷, we could then use the moments of this distribution to estimate the maximum variance

of any component of the Fourier transform, which would allow us to learn the minimum

variance of 𝐷.

What remains is to estimate moments of the Fourier transform of 𝐷 using solely sam-

ples from 𝐷. Here we use existing primitives for univariate density estimation [CDSS14b,

ADLS17] to obtain an explicit approximation ̃︀𝐷 to the density of 𝐷, after which we can

explicitly compute moments of the Fourier transform of ̃︀𝐷. We defer the technical details

of how to argue that its moments are close to those of the Fourier transform of 𝐷 to Sec-

tion 8.5.1, as they are rather involved. In short, this allows us to achieve the same sorts

of guarantees for estimating min-variance as for estimating max-variance: for any 𝜅 > 0,

we can learn the minimum variance of the mixture to multiplicative error 1 + 𝑂(𝜅) with

2
̃︀𝑂(𝜅−1 log 𝑘) samples and time.

However, there is an important subtlety here. Namely, the quality of the approximation

to the minimum variance we can obtain strongly depends on the degree of the Fourier moment

we use. The degree in turn dictates the sample complexity of the algorithm: the higher the

Fourier degree we need, the better the univariate density estimate must be, and therefore,

the more samples we need in order to adequately perform the density estimate. Therefore,

if the difference between 𝜎𝑡 and 𝜎′
𝑡 is too small, we cannot reliably check if we’ve made

progress without taking too many samples. Unfortunately, the difference between these two

quantities is typically quite small. Since 𝑎′𝑡+1 is a random perturbation of 𝑎𝑡, we have that

with probability 1/poly(𝑘), it holds that

𝜎′
𝑡 ≤

(︂
1− Ω

(︁1
𝑘

)︁)︂
𝜎𝑡 ,

508

and moreover, this is tight. In particular, this says that we would need to take 𝜅 = Ω(1/𝑘)

in the discussion above, which would result in a 2Θ(𝑘) runtime, which we wish to avoid.

However, we show that with subexponentially large probability, the difference is suffi-

ciently large so that we can detect this difference using subexponentially many samples. In

particular, observe that for any constant 0 < 𝑐 < 1/2, if 𝑧 is a random unit vector in the

span of {𝑤𝑖 − 𝑎𝑡}, then with probability exp(−𝑘1−2𝑐) we have that

⟨
𝑧,

𝑤𝑖 − 𝑎𝑡
‖𝑤𝑖 − 𝑎𝑡‖2

⟩
≥ Ω(𝑘−𝑐), (8.2)

in which case if we define 𝑎′(𝑡+1) as previously, we get that with probability exp(−𝑘1−2𝑐),

𝜎′
𝑡 ≤

(︂
1− Ω

(︁ 1

𝑘2𝑐

)︁)︂
𝜎𝑡 .

So by trying super-polynomially many random directions 𝑧 at every step, we ensure with

high probability that one of those directions will make 1−Ω(𝑘−2𝑐) progress, for some 𝑐 < 1.

By combining this with our certification procedure as described above, we show that we can

make non-trivial progress in the algorithm after only sub-exponentially many samples.

By iteratively applying this update, we are able to obtain an 𝑎𝑇 so that

‖𝑎𝑇 − 𝑤𝑖‖2 ≤
Δ

𝑘100
,

in subexponential time. We call this subroutine Fourier moment descent, and it allows us

to learn a single regressor to good accuracy. For technical reasons, the complexity of this

approach grows as we get closer to 𝑤𝑖, however, it allows us to obtain a very good “warm

start”. In the noiseless case, this can be combined with the boosting procedure from [LL18]

to obtain arbitrarily high accuracy.

This technology now allows us to learn a single regressor to very high accuracy. In

the noiseless setting, this allows us to “peel off” the samples from this component almost

completely, and we can now repeat this process on the sub-mixture with this component

removed to learn another component, and iterate to eventually learn all of the regressors.

That said, as we shall see, this is much trickier in the presence of noise.

509

8.3.2 Learning With Regression Noise

What changes when we assume that there is a significant amount of noise 𝜍? From the

perspective of our Fourier moment descent algorithm, it turns out not much does, at least to

a certain extent: in fact, essentially the same argument goes through and allows us to learn

a single component to error at most

‖𝑎𝑇 − 𝑤𝑖‖2 ≤
Δ

𝑘100
+𝑂(𝜍) ,

where 𝜍 is the standard deviation of the white noise.

However, learning all components becomes substantially more difficult. In particular,

the peeling process no longer works: the fact that there is regression noise does not allow

us to perfectly remove the influence of a component that we have learned from the rest of

the mixture. As a result, it is no longer clear how to go from an algorithm that can learn a

single component to one that can learn all components.

To avoid this, we circumvent the need for peeling altogether. By a delicate analysis, we

will show that with decent probability, we can control the dynamics of the Fourier moment

descent algorithm, so that it will converge to the regressor that it was initially closest to. This

is the key technical ingredient behind getting Fourier moment descent to handle regression

noise.

We sketch its proof below. Let 𝑎𝑡 be the current iterate of Fourier moment descent, and

suppose that 𝑖* = argmin𝑖∈[𝑘] ‖𝑤𝑖 − 𝑎𝑡‖2. Then, one can show that if 𝑎′𝑡+1 ∈ R𝑑 is a random

perturbation of 𝑎𝑡, then with probability at least exp(−Ω(1/Δ2))/poly(𝑘), we have that 𝑖* is

still the closest component to 𝑎′𝑡+1. Moreover, this bound is tight up to polynomial factors, if

all we assume about the 𝑤𝑖 is that they are Δ-separated. One could hope that by using this

sort of argument, we could argue that with at least subexponentially large probability, we

always stay closest to 𝑤𝑖* . However, this argument runs into a couple of difficulties, which

we address one at a time.

The first difficulty is that while this happens with decent probability for any individual

𝑎′𝑡+1 ∈ R𝑑, our algorithm will typically need to try sub-exponentially many perturbations be-

fore we find one that makes progress. Thus the naive union bound over all sub-exponentially

510

many 𝑎′𝑡+1 ∈ R𝑑 would be far too loose to say anything here. To get around this, we in-

stead demonstrate that conditioning on the event that 𝜎′
𝑡 < 𝜎𝑡, we remain closest to 𝑖* with

non-trivial probability.

However, even this is insufficient, as we only have a multiplicative estimate of 𝜎𝑡 and 𝜎′
𝑡.

To get around this, we make a stronger assumption: we assume that not only is our iterate

the closest to 𝑤𝑖* ∈ R𝑑, but we also assume that its distance to the other 𝑤𝑖 ∈ R𝑑 for 𝑖 ̸= 𝑖*

is at least some multiplicative factor larger than its distance to 𝑤𝑖* ∈ R𝑑. Specifically, we

assume that

‖𝑤𝑖 − 𝑎𝑡‖2 ≥
(︂
1 + 𝑐

Δ2

√
𝑘

)︂
‖𝑤𝑖* − 𝑎𝑡‖2 , (8.3)

for all 𝑖 ̸= 𝑖*, and some constant 𝑐 > 0. By making this stronger assumption, we are able

to demonstrate that with probability at least 1/poly(𝑘), this gap is maintained for the 𝑎′𝑡+1

which Fourier moment descent chooses as the next iterate.

Our overall algorithm then will be to demonstrate an initialization scheme for 𝑎0 so that

for any 𝑖* ∈ [𝑘], (8.3) holds for 𝑎0 and that 𝑖* with probability at least exp(− ̃︀𝑂(√𝑘/Δ2)). If

we can do so, then if we run Fourier moment descent starting from these random initializa-

tions enough times, then eventually with high probability we will output multiple estimates

for each 𝑤𝑖 for 𝑖 = 1, . . . , 𝑘, and then we can simply run a basic clustering algorithm to

recover all of the regressors. Furthermore, because each run of moment descent only needs

to go on for ̃︀𝑂(√𝑘/Δ2) iterations, and at each iteration we stay closest to the same com-

ponent that the previous iterate was closest to with 1/poly(𝑘) probability, it suffices to try

exp(̃︀𝑂(√𝑘/Δ2)) random initializations for all this to work.

Lastly, it turns out this initialization scheme is also quite delicate. For instance, if we

simply chose random initializations over the unit ball, then these will, with overwhelming

probability, favor being close to 𝑤𝑖 with small norm. If we have regressors with different

norms, we will thus likely never be close to a 𝑤𝑖 ∈ R𝑑 with large norm in our initializations,

and as a result, cannot argue that our Fourier moment descent algorithm will ever recover

this regressor. To get around this, we demonstrate a gridding scheme, where we initialize

randomly over spheres of up to radius 𝑟, for 𝑟 on a fine grid between 0 and 𝑂(𝑘1/4).

We emphasize that this is quite counterintuitive: when we start at radius 𝑂(𝑘1/4), we

511

are exceedingly far away from every 𝑤𝑖 ∈ R𝑑, as they are assumed to have norm at most 1.

However, our analysis of Fourier moment descent works fine in this setting, and by having

such large radius, we are able to ensure that for each 𝑖* ∈ [𝑘], (8.3) holds for 𝑎0 and 𝑖* with

at least the desired probability. The details of this are quite technically involved, and we

defer them to Section 8.7.

More Noise-Robust Boosting As mentioned previously, in the noiseless setting, the

boosting algorithm of [LL18] allows us to bootstrap our warm start, obtained via Fourier

moment descent, to arbitrarily high accuracy. It turns out that in the noisy setting, their

boosting algorithm also allows one to go slightly below 𝑂(𝜍). Interestingly, motivated again

by the connection to Fourier analysis, we demonstrate an improved boosting algorithm that

is able to tolerate substantially more noise as well as a much weaker warm start.

The boosting algorithm of [LL18] is based on stochastic gradient descent on a regularized

form of gravitational potential, which was notably used in [HPZ18]. While this objective is

concave, they demonstrate that in a small neighborhood around the true regressors, SGD

updates based on this objective contract in expectation, and hence they make progress.

Figure 8-1: Cosine integral function
Ci(𝑥) = −

∫︀∞
𝑥

cos(𝑡)
𝑡 d𝑡

In contrast, we propose an update based on a reg-

ularized form of the cosine integral objective (see Fig-

ure 8-1 for a plot of the cosine integral — the objective

function we use is a regularized version of the objec-

tive 𝑔(𝑣) , E(𝑥,𝑦)∼𝒟Ci(|⟨𝑣, 𝑥⟩ − 𝑦|)). This objective

looks much worse behaved: it is neither convex nor

concave—indeed, it is not even monotone! However,

the key technical fact which makes this objective more

noise tolerant is precisely Observation 8.3.2. This al-

lows us to argue that the contribution to the gradient of the objective from the “good”

component, which we are close to, dominates the contribution of the gradient from the other

“bad” components. At a high level, ignoring many technical issues for the time being, this

is because if 𝑣 is the current iterate, a main part of the contribution to the gradient from

component 𝑖 is E𝑔∼𝒩 (0,𝛽2
𝑖)
[cos(𝑔)], where 𝛽𝑖 is a monotone function of ‖𝑤𝑖 − 𝑣‖2. This is

512

exactly the real part of the Fourier transform of 𝒩 (0, 𝛽2
𝑖), and the fact that this decreases

as exp(𝑂(𝛽−2
𝑖)) follows precisely from Observation 8.3.2. This allows us to have much finer

control over the contribution from the “bad” components, which allows us to tolerate signif-

icantly more noise and a substantially weaker warm start. For the quantitative details, see

Section 8.9.

8.3.3 Learning Mixtures of Hyperplanes

As we will see, mixtures of hyperplanes share enough qualitative features with MLRs that

an appropriate instantiation of our techniques also suffices for this problem.

It is not hard to show that vanilla moment descent can be modified as follows to get ã︀𝑂(𝑑 · exp(̃︀𝑂(𝑘)))-time algorithm for mixtures of hyperplanes. First it is not hard to see that

as with spherical MLRs, here we can still effectively reduce the dimension of the problem

from 𝑑 to 𝑘. At time 𝑡 we still maintain an estimate 𝑎𝑡 for one of the components, and in lieu

of the usual progress measure min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖2 to which we no longer have access, we can

use the modified progress measure 𝜎𝑡 , min𝑖∈[𝑘]‖Π𝑖𝑎𝑡‖2. (See Definition 8.2.2 for definition

of Π𝑖 ∈ R𝑑×𝑑) We can estimate 𝜎𝑡 in exp(̃︀𝑂(𝑘)) time by simply projecting in the direction of

𝑎𝑡 itself to get a mixture of univariate Gaussians with variances {‖Π𝑖𝑎𝑡‖22}𝑖∈[𝑘] and learning

that mixture via [MV10]. This leads to the following straightforward modification of moment

descent: repeatedly update 𝑎𝑡 ∈ R𝑑 by sampling many random steps {𝜂𝑡 · 𝑧𝑗} for step size

𝜂𝑡 and 𝑧𝑗 ∈ S𝑑−1 and taking one of them to get to 𝑎𝑡+1 ∈ R𝑑 if it contracts the progress

measure.

One immediate issue with this approach, even for achieving ̃︀𝑂(𝑑) · exp(̃︀𝑂(𝑘)) runtime, is

that if we don’t control ‖𝑎𝑡‖2, then for all we know 𝜎2
𝑡 contracts simply because our random

steps are taking us closer and closer to 0. The natural workaround is to insist 𝑎𝑡 ∈ S𝑑−1 for

all 𝑡 by projecting onto S𝑑−1 after every step. That is, in every iteration of moment descent,

given a random collection of candidate steps {𝜂 · 𝑧𝑗}𝑗, choose one for which, if we define

𝑎𝑡+1 =
𝑎𝑡 + 𝜂 · 𝑧𝑗
‖𝑎𝑡 + 𝜂 · 𝑧𝑗‖2

,

then the progress measure contracts. One can show this already suffices to get a ̃︀𝑂(𝑑) ·
513

exp(̃︀𝑂(𝑘))-time algorithm for learning mixtures of hyperplanes.

The extra projection onto S𝑑−1 at every step introduces a variety of technical challenges

for trying to implement the strategy of Section 8.3.1 to achieve sub-exponential runtime.

Specifically, in order to carry out the balancing of parameters from Section 8.3.1, one needs

to be careful in choosing the right events, analogous to the event in (8.2), such that 1)

conditioned on those events 𝜎𝑡 contracts by at least a factor of 1 − Ω(𝑘−𝑎) for some 𝑎 > 0,

and 2) these events all occur with probability exp(−𝑘1−𝑎′) for some 𝑎′ > 0.

If for instance 𝑎𝑡 is positively correlated with some 𝑣𝑖* ∈ R𝑑, it turns out the right events

to choose are that the random step is both 𝑘−1/5-positively correlated with Π𝑖*𝑎𝑡
‖Π𝑖*𝑎𝑡‖2

and at

least 𝑘−1/5-negatively correlated with 𝑣𝑖* ∈ R𝑑, and because these directions are orthogonal,

if 𝑧𝑗 is a random vector in the span of 𝑣1, ..., 𝑣𝑘 then we could lower bound the probability

of both events occurring by the product of the probabilities they individually occur, which

is exp(−𝑘3/5), and get 2) for 𝑎′ = 2/5. The analysis for showing 1) (for 𝑎 = 3/5) is involved,

so we defer it to Section 8.8.1. These together yield a ̃︀𝑂(𝑑) · exp(𝑘3/5)-time algorithm to

learning one component of a mixture of hyperplanes.

To learn all components, we would like to implement some kind of boosting procedure.

Our approach here is to regard 𝒟 in a certain way as a non-spherical MLR with well-

conditioned covariances, at which point we can invoke, e.g., the boosting algorithm of [LL18].

We defer these details to Section 8.8.4. Once we are able to refine an estimate for a direction

of 𝒟 to arbitrary precision, we can carry out the “peeling” procedure outlined at the end of

Section 8.3.1 to learn all components.

8.4 Roadmap

Here we give a brief overview of the organization of the rest of the paper. In Section 8.5 we

present our Fourier moment descent algorithm for learning a single component. In Section 8.6

we show how to use this to learn all the components, when there is no regression noise. In

Section 8.7 we demonstrate a modification of our algorithm to learn all the components in

the presence of regression noise. In Section 8.8 we demonstrate our subexponential time

algorithm for learning a mixture of hyperplanes. Finally, in Section 8.9 we demonstrate our

514

improved boosting algorithm based on the cosine integral objective. Deferred proofs appear

in the Appendix, as well as our moment-matching example.

8.5 Warm Start via Fourier Moment Descent

Here we propose a technique for moment descent based on approximating the minimum

variance of a component in a mixture of univariate zero-mean Gaussians. The main result

of this section is an algorithm, which we call FourierMomentDescent, for learning a

single component of a mixture of 𝑘 linear regressions in time and sample complexity sub-

exponential in 𝑘:

Theorem 8.5.1 (Fourier moment descent). Given 𝛿, 𝜀 > 0 and a mixture of spherical linear

regressions 𝒟 with separation Δ and noise rate 𝜍 = 𝑂(𝜀), there is an algorithm (Fourier-

MomentDesc ent(𝒟, 𝛿, 𝜀) inAlgorithm 31) that outputs a vector 𝑣 ∈ R𝑑 such that with

probability 1 − 𝛿, we have ‖𝑤𝑖 − 𝑣‖2 ≤ 𝑂(𝜀) for some 𝑖 ∈ [𝑘]. Furthermore, FourierMo-

mentDescent requires sample complexity

𝑁 = ̃︀𝑂 (︁𝑑𝜀−2 ln(1/𝛿)𝑝−4
min · poly (𝑘, ln(1/𝑝min), ln(1/𝜀))

𝑂(
√
𝑘 ln(1/𝑝min))

)︁
and time complexity 𝑁𝑑 · poly log(𝑘, 𝑑, 1/Δ, 1/𝑝min, 1/𝜀).

In Section 8.5.1 we give an algorithm for estimating the minimum variance of a mixture

of univariate, zero-mean Gaussians via its Fourier transform. In Section 8.5.2 we show how

to leverage this technology to obtain our algorithm FourierMomentDescent and then

give a proof of Theorem 8.5.1.

8.5.1 Estimating Minimum Variance

Here we give the key primitive underlying all of the algorithmic results of this chapter: an

algorithm for estimating the minimum variance of a mixture of zero-mean Gaussians. This

requires some setup regarding existing technology for density estimation.

515

Density Estimation in 𝐿2

Our main density estimation tool will be to use piecewise polynomials. We favor them

because there are clean algorithms for density estimation via piecewise polynomials, and

moreover, the form of the estimator will be useful for us later on. Formally:

Definition 8.5.2. An 𝑠-piecewise degree-𝑑 polynomial 𝑝 : R→ R is specified by a collection

of intervals 𝐼1 = [−∞, 𝑎1], 𝐼2 = [𝑎1, 𝑎2], 𝐼3 = [𝑎2, 𝑎3], ..., 𝐼𝑠−1 = [𝑎𝑠−2, 𝑎𝑠−1], 𝐼𝑠 = [𝑎𝑠−1,+∞]

and 𝑠 degree-𝑑 polynomials 𝑝1, ..., 𝑝𝑠 such that for any 𝑖 ∈ [𝑠] and 𝑥 ∈ 𝐼𝑠, 𝑝(𝑥) = 𝑝𝑖(𝑥). We

refer to 𝑎1, ..., 𝑎𝑠−1 as the nodes of 𝑝.

We will use the following algorithm as a black box:

Theorem 8.5.3 (Theorem 43 in [ADLS17]). For any 𝜂 > 0, there is an algorithm that,

given sample access to a mixture ℱ of 𝑘 univariate Gaussians, outputs a 𝑂(𝑘)-piecewise

degree-𝑂(log 1/𝜂) polynomial hypothesis distribution ℱ ′ for which 𝑑TV(ℱ ,ℱ ′) ≤ 𝜂, using

𝑁 = 𝑂 ((𝑘/𝜂2) ln(1/𝜂) ln(1/𝛿)) samples and running in time ̃︀𝑂(𝑁).

Algorithm 28: L2Estimate(ℱ , 𝜎, 𝜂, 𝛿)
Input: Sample access to univariate 𝑘-GMM ℱ , a number 𝜎 for which 𝜎 ≤ 𝜎min(ℱ),

precision parameter 𝜂 > 0, failure probability 𝛿 > 0
Output: Piecewise polynomial function 𝒢 for which ‖ℱ − 𝒢‖22 ≤ 𝜂

1 𝑁 ← Θ
(︁

𝑘
2𝜋𝜎2𝜂2

log
(︁

1√
2𝜋𝜎𝜂

)︁)︁
.

2 Draw 𝑁 samples from ℱ and run the algorithm from Theorem 8.5.3 to obtain an
estimate ℱ ′ for which 𝑑TV(ℱ ,ℱ ′) ≤

√
2𝜋𝜎 · 𝜂.

3 For each 𝑥 ∈ R, define 𝒢(𝑥) = min
{︁
max{ℱ ′(𝑥), 0}, 1√

2𝜋𝜎

}︁
.

4 return 𝒢.

Corollary 8.5.4 (Guarantee for L2Estimate). For any 0 < 𝜂, 𝛿 < 1, mixture of 𝑘 uni-

variate Gaussians ℱ , and 𝜎 > 0 for which 𝜎 ≤ 𝜎min(ℱ), with probability at least 1 − 𝛿

L2Estimate(ℱ , 𝜎, 𝜂, 𝛿) (Algorithm 28) outputs a 𝑂(𝑘 log(1/(𝜂𝜎)))-piece degree-𝑂(log(1/(𝜂𝜎))

polynomial hypothesis distribution 𝒢 : R → R≥0 for which ‖ℱ − 𝒢‖22 ≤ 𝜂, using 𝑁 =

𝑂 ((𝑘/𝜂2) log(1/(𝜂𝜎)) log(1/𝛿)) samples and running in time ̃︀𝑂(𝑁).

Proof. Because ℱ has range in
[︁
0, 1√

2𝜋𝜎min(ℱ)

]︁
, by construction we have that 𝑑TV(ℱ ,𝒢) ≤

𝑑TV(ℱ ,ℱ ′). By Holder’s, it suffices to show ‖ℱ − 𝒢‖∞ ≤ 1√
2𝜋·𝜎 . But because 𝒢(𝑥) ≤ ℱ(𝑥)

516

for all 𝑥 ∈ R, it is enough to show ‖ℱ‖∞ ≤ 1√
2𝜋·𝜎 , which just follows from the fact that ℱ is a

convex combination of Gaussians of variance at least 𝜎min(ℱ) ≥ 𝜎. Note that 𝒢 is a piecewise

polynomial because we can refine the intervals defining ℱ ′ to incorporate the intersections of

ℱ ′ with the lines 𝑦 = 1√
2𝜋𝜎

and 𝑦 = 0. Since each individual component can intersect with

these lines at most 𝑂(log(1/(𝜂𝜎))) times since they have degree at most 𝑂(log(1/(𝜂𝜎))),

this yields the desired bound on the number of pieces of the resulting piecewise polynomial

estimate.

Minimum Variance Via Fourier Transform Moments

We now show how to use an 𝐿2-close estimator for the density of a mixture ℱ of zero-mean

univariate Gaussians to approximate 𝜎min(ℱ). As a first step, we show how to use an 𝐿2-close

estimator to estimate high moments of ℱ :

Lemma 8.5.5. For any even integer 𝑝 ∈ N and 𝜉 > 0 the following holds. Let ℱ : R → R

be an mixture of 𝑘 Gaussians given by

ℱ(𝑥) =
𝑘∑︁
𝑖=1

𝑝𝑖 · 𝒩 (0, 𝜎2
𝑖 ;𝑥),

and define 𝐿 ,
∑︀𝑘

𝑖=1 𝑝𝑖. Let 𝜎 > 0 be any number for which 𝜎 ≥ max𝑖∈[𝑘] 𝜎𝑖.

Let 𝜏 = 8𝜎2 · max(𝑝, ln(4𝐿/𝜉)) and 𝜂 = 𝜉2𝑝
8𝜏2𝑝+1 . Then if function 𝒢 : R → R≥0 satisfies

‖ℱ − 𝒢‖22 ≤ 𝜂, then 𝒢 ′ defined by 𝒢 ′(𝑥) = 1[𝑥 ∈ [−𝜏, 𝜏]] · 𝒢(𝑥) for all 𝑥 ∈ R satisfies

|ℳ𝑝(ℱ)−ℳ𝑝(𝒢 ′)| ≤ 𝜉. (8.4)

Proof. For simplicity, we define

𝜎max = 𝜎max(ℱ).

We would like to pick the truncation threshold 𝜏 so that

∫︁
[−𝜏,𝜏]𝑐

𝑥𝑝 · ℱ(𝑥) d𝑥 ≤ 𝜉/2. (8.5)

517

For this, it suffices to take 𝜏 for which

𝑥𝑝 ≤ 𝑒𝑥
2/(4𝜎2

max) · 𝜉
4𝐿
, ∀𝑥 ̸∈ [−𝜏, 𝜏], (8.6)

in which case

∫︁
[−𝜏,𝜏]𝑐

𝑥𝑝 · ℱ(𝑥) d𝑥 =
𝑘∑︁
𝑖=1

𝑝𝑖

∫︁
[−𝜏,𝜏]𝑐

𝑥𝑝 · 1√
2𝜋𝜎𝑖

· 𝑒−𝑥2/(2𝜎2
𝑖) d𝑥

≤ 𝐿 ·
∫︁
[−𝜏,𝜏]𝑐

𝑥𝑝 · 1√
2𝜋𝜎max

· 𝑒−𝑥2/(2𝜎2
max) d𝑥

≤ 𝐿 ·
∫︁
[−𝜏,𝜏]𝑐

1√
2𝜋𝜎max

· 𝑒−𝑥2/(4𝜎2
max) · 𝜉

4𝐿
d𝑥

≤ 𝜉/2

where the first step follows from definition of ℱ(𝑥), the second step follows from Fact 8.2.3,

and the third step follows from Eq. (8.6).

To reach (8.6), we want

𝑝 ln𝑥 ≤ 𝑥2

4𝜎2
max

− ln(4𝐿/𝜉), ∀𝑥 ̸∈ [−𝜏, 𝜏], (8.7)

For 𝑥 ≥ 8𝜎2
max ln(4𝐿/𝜉), we get that

𝑥2

4𝜎2
max

− ln(4𝐿/𝜉) ≥ 𝑥2

8𝜎2
max

,

and for 𝑥 ≥ 8𝑝𝜎2
max, we have that

𝑝 ln𝑥 ≤ 𝑥2

8𝜎2
max

.

We conclude that for 𝜏 = 8𝜎2 ·max{𝑝, ln(4𝐿/𝜉)}, Eq. (8.7) holds.

We can now complete the proof of (8.4). We may write |ℳ𝑝(ℱ)−ℳ𝑝(𝒢 ′)| as

|ℳ𝑝(ℱ)−ℳ𝑝(𝒢 ′)| =
⃒⃒⃒⃒∫︁ ∞

−∞
𝑥𝑝 · ℱ(𝑥) d𝑥−

∫︁ 𝜏

−𝜏
𝑥𝑝 · 𝒢(𝑥) d𝑥

⃒⃒⃒⃒
518

≤
⃒⃒⃒⃒∫︁

[−𝜏,𝜏]𝑐
𝑥𝑝 · ℱ(𝑥) d𝑥

⃒⃒⃒⃒
+

⃒⃒⃒⃒∫︁ 𝜏

−𝜏
𝑥𝑝 · (ℱ − 𝒢)(𝑥) d𝑥

⃒⃒⃒⃒
≤ 𝜉/2 +

(︂∫︁ 𝜏

−𝜏
𝑥2𝑝 d𝑥

)︂1/2

· ‖ℱ − 𝒢‖2

= 𝜉/2 +

(︂
2𝜏 2𝑝+1

2𝑝+ 1
𝜂

)︂1/2

≤ 𝜉,

where the second step follows from triangle inequality, the third step follows by (8.5) and

the last step follows if we take 𝜂 = 𝜉2𝑝
8𝜏2𝑝+1 .

This is useful as good estimates of high moments of the mixture allow us to approximate

the maximum variance of any component well, as components with large variance contribute

significantly more to the high moments than do the components with small variance. How-

ever, we wish to estimate the minimum variance of our mixture. We now show that we can

do so by taking high moments of the Fourier transform of our 𝐿2-close estimator. As an

important subroutine, we show that it is efficient to compute the Fourier moments of our

density estimate, by using the fact that it is piecewise polynomial. Specifically:

Lemma 8.5.6. Given the description of a 𝑠-piece degree-𝑑 polynomial 𝑝 : R → R, and any

𝜏 > 0 and nonnegative integer ℓ > 0, there is an algorithm which runs in time 𝑂(𝑠ℓ𝑑3) and

which outputs ∫︁ 𝜏

−𝜏
̂︀𝑝[𝜔]𝜔ℓd𝜔 .

We defer the description of this algorithm as well as the proof of correctness to Appendix 8.11.

With this primitive, we can now show:

Algorithm 29: EstimateMinVariance(ℱ , 𝜎, 𝜎, 𝑝, 𝛿)
Input: Sample access to mixture of 𝑘 univariate Gaussians ℱ , numbers 𝜎, 𝜎 for

which 𝜎 ≥ 𝜎max(ℱ) and 𝜎 ≤ 𝜎min(ℱ), degree 𝑝 ∈ N, failure probability 𝛿 > 0
Output: Estimate 𝜎* for which (8.8) holds

1 𝜉 ← (2𝜋)−𝑝−1/2𝑝𝑝/2𝑝min𝜎
−𝑝−1.

2 𝐿←
√
2𝜋 · 𝜎−1 𝜏 ← 8𝜎2 ·max(𝑝, ln(2𝐿

√
2/𝜉)) .

3 𝜂 ← 𝜉2𝑝
8𝜏2𝑝+1 .

4 𝒢 ← L2Estimate(ℱ , 𝜎, 𝜂, 𝛿). // Algorithm 28, Corollary 8.5.4
5 Explicitly computeℳ𝑝(̂︀𝒢) using Lemma 8.5.6.

6 return 𝜎* ,
(︁

ℳ𝑝(̂︀𝒢)
(2𝜋)−𝑝−1/2𝑝𝑝/2

)︁−1/(𝑝−1)

.

519

Algorithm 30: CompareMinVariances(ℱ1,ℱ2, 𝜎, 𝜎, 𝜅1, 𝜅2, 𝛿)
Input: Sample access to two mixtures of 𝑘 univariate Gaussians ℱ1,ℱ2, numbers

𝜎, 𝜎 for which 𝜎 ≥ max(𝜎max(ℱ1), 𝜎max(ℱ2)) and
𝜎 ≤ min(𝜎min(ℱ1), 𝜎min(ℱ2)), tolerance parameters 𝜅1 < 𝜅2, failure
probability 𝛿 > 0

Output: If the output is True, then 𝜎min(ℱ1) ≥ (1 + 𝜅1)𝜎min(ℱ2), otherwise
𝜎min(ℱ1) ≤ (1 + 𝜅2)𝜎min(ℱ2)

1 𝑝← Ω
(︁

ln(1/𝑝min)
𝜅2−𝜅1

)︁
.

2 𝜎*
𝑗 ← EstimateMinVariance(ℱ𝑗, 𝜎, 𝜎, 𝑝, 𝛿) for 𝑗 = 1, 2. // Algorithm 29,
Lemma 8.5.7

3 if ℳ𝑝(̂︀𝒢1)

ℳ𝑝(̂︀𝒢2)
> 1

2
𝑝min(1 + 𝜅2)

𝑝−1 then
4 return True.

5 else
6 return False.

Lemma 8.5.7 (Guarantee for EstimateMinVariance). Let ℱ be a mixture of 𝑘 univariate

zero-mean Gaussians with parameters ({𝑝𝑖}𝑖∈[𝑘], {𝜎𝑖}𝑖∈[𝑘]). Let 𝜎 ≥ 𝜎max(ℱ), 𝜎 ≤ 𝜎min(ℱ).

Then with probability at least 1 − 𝛿, EstimateMinVariance(𝑝,ℱ , 𝜎, 𝜎, 𝛿) (Algorithm 29)

takes

𝑁 = 𝑝−4
min𝑘 ln(1/𝛿) · poly (𝜎, 𝑝, ln(1/𝑝min), ln(1/𝜎))

𝑂(𝑝)

samples, runs in time ̃︀𝑂(𝑁), and outputs a number 𝜎* for which

(︂
3

4

)︂1/(𝑝−1)

· 𝜎min(ℱ) ≤ 𝜎* ≤
(︂

3

2𝑝min

)︂1/(𝑝−1)

· 𝜎min(ℱ). (8.8)

Proof. Note that in the pseudocode our choice of 𝜂 is given by

𝜂 ,
𝜉2𝑝

8
(︁
8𝜎2max

(︁
𝑝, ln

(︁
4
√
𝜋

𝜎𝜉

)︁)︁)︁2𝑝+1 , 𝜉 , (2𝜋)−𝑝−1/2𝑝𝑝/2𝑝min𝜎
−𝑝−1 . (8.9)

Consequently, the runtime and sample complexity bounds for general 𝑝 just follow from the

fact that these quantities are dominated by the cost of running L2Estimate(ℱ , 𝜎, 𝜂, 𝛿) for

𝜂 as defined in (8.9). By Corollary 8.5.4, if we run L2Estimate(ℱ , 𝜎, 𝜂, 𝛿) and produce the

piecewise polynomial 𝒢, we know that ‖ℱ − 𝒢‖22 ≤ 𝜂. By Plancherel’s, ‖ ̂︀ℱ − ̂︀𝒢‖22 ≤ 𝜂. To

520

apply Lemma 8.5.5, first note that by Fact 1.3.12,

̂︀ℱ(𝜔) = 𝑘∑︁
𝑖=1

𝑝𝑖
1√
2𝜋𝜎𝑖

𝒩
(︂
0,

1

4𝜋2𝜎2
𝑖

, 𝜔

)︂
.

So ̂︀ℱ is an affine linear combination of Gaussian densities, and its coefficients sum to

𝑘∑︁
𝑖=1

𝑝𝑖 ·
1√
2𝜋𝜎𝑖

≤ 1√
2𝜋𝜎min(ℱ)

≤ 𝐿,

where the last step follows by our choice of 𝐿 in EstimateMinVariance.

So by Lemma 8.5.5, if we define ̂︀𝒢 ′ by

̂︀𝒢 ′(𝑥) = 1[𝑥 ∈ [−𝜏, 𝜏]] · ̂︀𝒢(𝑥),
then we get that

|ℳ𝑝(̂︀ℱ)−ℳ𝑝(̂︀𝒢 ′)| ≤ 𝜉. (8.10)

Furthermore, note that

ℳ𝑝(̂︀𝐹) ≤ 𝑘∑︁
𝑖=1

𝑝𝑖 ·
1√
2𝜋𝜎𝑖

· 𝑝𝑝/2 ·
(︂

1

4𝜋2(𝜎𝑖)2

)︂𝑝/2
= (2𝜋)−𝑝−1/2𝑝𝑝/2

𝑘∑︁
𝑖=1

𝑝𝑖 (𝜎𝑖)
−𝑝−1 . (8.11)

If we had 𝜉 = (2𝜋)−𝑝−1/2𝑝𝑝/2𝜉′ for some 𝜉′ > 0, then we get by (8.10) and (8.11) that

ℳ𝑝(̂︀𝒢) = (2𝜋)−𝑝−1/2𝑝𝑝/2

[︃
𝑘∑︁
𝑖=1

𝑝𝑖 (𝜎𝑖)
−𝑝−1 ± 𝜉′

]︃
.

If we take 𝜉′ , 1
3
𝑝min𝜎

−𝑝−1, then observe that because

𝑝min · 𝜎min(ℱ)−𝑝−1 ≤
𝑘∑︁
𝑖=1

𝑝𝑖(𝜎𝑖)
−𝑝−1 ≤ 𝜎min(ℱ)−𝑝−1,

521

we have

𝜎min(ℱ) ≤

(︃
𝑘∑︁
𝑖=1

𝑝𝑖(𝜎𝑖)
−𝑝−1

)︃−1/(𝑝−1)

≤ 𝑝
−1/(𝑝−1)
min · 𝜎min(ℱ),

so 𝜎* ,
(︁

ℳ𝑝(̂︀𝒢)
(2𝜋)−𝑝−1/2𝑝𝑝/2

)︁−1/(𝑝−1)

satisfies (8.8).

For the last part of the lemma, take 𝑝 = 20 ln
(︁

3
2𝑝min

)︁
+ 1 ≥ 4. It is straightforward

to check the sample and time complexity bounds for this choice of 𝑝, and the bound on 𝜎*

follows from the fact that (3/4)1/(𝑝−1) ≥ 0.9 for 𝑝 ≥ 4 and

(︂
3

2𝑝min

)︂(︁
20 ln

(︁
3

2𝑝min

)︁)︁−1

= 𝑒1/20 ≤ 1.1.

We now identify two specific parameter settings for this algorithm which will be useful later

on. First, if we take the degree 𝑝 to be relatively small, we are able to get a constant

approximation to the minimum variance very efficiently:

Corollary 8.5.8. Let 𝑝 = Θ(ln(1/𝑝min)). Then, the algorithm EstimateMinVariance(𝑝,ℱ , 𝜎, 𝜎, 𝛿)

has sample and time complexity

̃︀𝑂 (︁𝑝−4
min𝑘 ln(1/𝛿) · poly (𝜎, 𝑝, ln(1/𝑝min), ln(1/𝜎))

𝑂(𝑝)
)︁
,

and the output 𝜎* satisfies

0.9 · 𝜎min(ℱ) ≤ 𝜎* ≤ 1.1 · 𝜎min(ℱ).

We also have:

Corollary 8.5.9 (Guarantee for CompareMinVariances). Let 0 < 𝜅1 < 𝜅2 ≤ 1, and let

ℱ1 and ℱ2 be two mixtures of 𝑘 univariate zero-mean Gaussians with parameters ({𝑝𝑖}, {𝜎(1)
𝑖 })

and ({𝑝𝑖}, {𝜎(2)
𝑖 }) respectively. Let 𝜎 ≥ max(𝜎max(ℱ1), 𝜎max(ℱ2)), 𝜎 ≤ min(𝜎min(ℱ1), 𝜎min(ℱ2)).

Then, with probability 1− 𝛿, the algorithm

CompareMinVariances(ℱ1,ℱ2, 𝜎, 𝜎, 𝜅1, 𝜅2, 𝛿) (Algorithm 30) satisfies:

522

• If 𝜎min(ℱ1) ≥ (1 + 𝜅2)𝜎min(ℱ2), then it outputs True.

• If 𝜎min(ℱ1) ≤ (1 + 𝜅1)𝜎min(ℱ2), then it outputs False.

Moreover, this algorithm takes

𝑁 = 𝑝−4
min𝑘 ln(1/𝛿) · poly

(︀
𝜎, (𝜅2 − 𝜅1)−1, ln(1/𝑝min), ln(1/𝜎)

)︀𝑂((𝜅2−𝜅1)−1 ln(1/𝑝min))

samples and runs in time ̃︀𝑂(𝑁).

Proof. Let 𝜎*
𝑗 be the estimate produced by

EstimateMinVariance(𝑝,ℱ𝑗, 𝜎, 𝜎, 𝛿), ∀𝑗 = 1, 2.

By Lemma 8.5.7, we have that

1

2
· 𝑝min ·

(︂
𝜎min(ℱ1)

𝜎min(ℱ2)

)︂𝑝−1

≤
(︂
𝜎*
1

𝜎*
2

)︂𝑝−1

≤ 2 · 𝑝−1
min ·

(︂
𝜎min(ℱ1)

𝜎min(ℱ2)

)︂𝑝−1

. (8.12)

Now for the first part of the lemma, by hypothesis 𝜎min(ℱ1)
𝜎min(ℱ2)

≥ 1 + 𝜅2, so by the lower bound

in (8.12) we conclude that

(︂
𝜎*
1

𝜎*
2

)︂𝑝−1

≥ 1

2
𝑝min (1 + 𝜅2)

𝑝−1 .

For the second part of the lemma, by hypothesis 𝜎min(ℱ1)
𝜎min(ℱ2)

≤ 1 + 𝜅1, so by the upper bound

in (8.12) we conclude that

(︂
𝜎*
1

𝜎*
2

)︂𝑝−1

≤ 2𝑝−1
min (1 + 𝜅1)

𝑝−1 .

The content of this lemma is that the right-hand side of (6) is strictly greater than the

right-hand side of (6). Indeed, we need to check that

(︂
1 + 𝜅2
1 + 𝜅1

)︂𝑝−1

≥ 4𝑝−2
min.

523

But if we take 𝑝− 1 =
2 log2(4/𝑝

2
min)

𝜅2−𝜅1 , then by the fact that 1 + 𝜅1 ≤ 2 and 𝜅2−𝜅1
1+𝜅1

≤ 1, and by

the elementary inequality (1 + 1/𝑥)𝑥 ≥ 2 for 𝑥 ≥ 1, we conclude that

(︂
1 + 𝜅2
1 + 𝜅1

)︂𝑝−1

=

(︂
1 +

𝜅2 − 𝜅1
1 + 𝜅1

)︂𝑝−1

≥ 8𝑝−1
min

as desired.

8.5.2 Moment Descent

In this section we will show how to obtain a warm start using the CompareMinVariances

subroutine of the previous section.

The first ingredient we need is a subroutine to estimate span({𝑤𝑖 − 𝑎}𝑖∈[𝑘]), where 𝑎 is

our current guess for a direction. For any 𝑥, 𝑦, 𝑎 ∈ R𝑑, define the matrix

M𝑥,𝑦
𝑎 ,

1

2

[︀
(𝑦 − ⟨𝑎, 𝑥⟩)2𝑥𝑥⊤ − (𝑦 − ⟨𝑎, 𝑥⟩)2 · Id

]︀
∈ R𝑑×𝑑 (8.13)

and let ̂︁M(𝑁)
𝑎 ,

1

𝑁

𝑁∑︁
𝑖=1

M𝑥𝑖,𝑦𝑖
𝑎 (8.14)

for (𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁) i.i.d. samples from 𝒟. Notice there is a matrix-vector oracle for̂︁M(𝑁)
𝑎 which runs in time 𝑂(𝑁𝑑).

We then have:

Lemma 8.5.10 (̂︁M(𝑁)
𝑎 approximates span({𝑤𝑖 − 𝑎𝑡})). Let 𝒟 be a mixture of 𝑘 spherical

linear regressions. Then for any 𝑎 ∈ R𝑑, we have that

E(𝑥,𝑦)∼𝒟 [M𝑥,𝑦
𝑎] =

𝑘∑︁
𝑖=1

𝑝𝑖(𝑤𝑖 − 𝑎)(𝑤𝑖 − 𝑎)⊤.

Furthermore, for any 𝛽, 𝛿 > 0 and

𝑁 = ̃︀Ω(︂max
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎‖22 · 𝑝−1

min · 𝛽−2 · 𝑑 · ln(𝑘/𝛿))
)︂
,

524

we have that

Pr
[︁
‖̂︁M(𝑁)

𝑎 − E(𝑥,𝑦)∼𝒟 [M𝑥,𝑦
𝑎]‖2 ≥ 𝛽

]︁
≤ 𝛿

We emphasize that E[M𝑥,𝑦
𝑎] is the same regardless of 𝜂, but the value of 𝜂 will slightly

affect concentration, though not in the regimes in which we will apply Lemma 8.5.10. We

defer the proof of this lemma to Appendix 8.12.5. Combining this with Fact 1.3.6 allows us

to quantify the effectiveness of approximate 𝑘-SVD of an empirical estimate for E[M𝑥,𝑦
𝑎] for

capturing the span of the 𝑤𝑖:

Lemma 8.5.11 (Correlation of the top principal subspace). Let

𝑁 = ̃︀Ω(︂max𝑖∈[𝑘] ‖𝑤𝑖 − 𝑎‖22
min𝑖∈[𝑘] ‖𝑤𝑖 − 𝑎‖22

· 𝑝−2
min · 𝑘2 · 𝑑 · ln(𝑘/𝛿)

)︂
.

Then ApproxBlockSVD (̂︁M(𝑁), 1/10, 𝛿/2) runs in time ̃︀𝑂 (𝑘 ·𝑁 · 𝑑) and outputs a matrix

U so that with probability at least 1− 𝛿,

1

2
≤ ‖U

⊤(𝑤𝑖 − 𝑎)‖2
‖𝑤𝑖 − 𝑎‖2

≤ 1. (8.15)

Proof. The upper bound is trivial. We now prove the lower bound. We first observe that

Lemma 8.5.10 implies that gap𝑘(̂︁M(𝑁)
𝑎)−1 ≥ poly(1/𝑝min, 1/min𝑖∈[𝑘] ‖𝑤𝑖− 𝑎‖22), which proves

the runtime claim. The lower bound follows by taking 𝛽 in Lemma 8.5.10 to be 𝛽 =

1
8𝑘
· 𝑝1/2min · min𝑖∈[𝑘] ‖𝑤𝑖 − 𝑎‖2 and applying Fact 1.3.6. Finally, to demonstrate the runtime,

observe that there is a matrix-vector oracle for ̂︁M(𝑁)
𝑎 which runs in time 𝑂(𝑁𝑑).

We are now ready to analyze the amount of progress each step of moment descent makes.

Lemma 8.5.12 (Progress of moment descent per step). For any 𝛿 > exp(−
√
𝑘), the fol-

lowing holds. Let 𝜎2
𝑡 , min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖2. Denote the minimizing index 𝑖 by 𝑖*. For

𝑀 , 𝑒
√
𝑘 ln(2/𝛿) and 𝑔1, ..., 𝑔𝑀 ∼ 𝒩 (0, Id𝑘), let 𝑣𝑗 = U𝑔𝑖

‖U𝑔𝑖‖2 ∈ S𝑑−1 for 𝑗 ∈ [𝑀]. Let 𝜎* be a

number for which 0.9𝜎𝑡 ≤ 𝜎* ≤ 1.1𝜎𝑡. Let 𝜂 = 1
2
𝑘−1/4𝜎*.

Then we have that with probability at least 1− 𝛿,

1. There exists at least one 𝑗 ∈ [𝑀] for which ‖𝑤𝑖* − 𝑎𝑡 − 𝜂 · 𝑣𝑗‖22 ≤
(︁
1− 1

5
√
𝑘

)︁
𝜎2
𝑡 .

2. For all 𝑗 ∈ [𝑀] and 𝑖 ∈ [𝑘], ‖𝑤𝑖 − 𝑎𝑡 − 𝜂 · 𝑣𝑗‖22 ≥
(︁
1− 9√

𝑘

)︁
𝜎2
𝑡 .

525

Proof. For any 𝑖 ∈ [𝑘], we may write

‖𝑤𝑖 − 𝑎𝑡 − 𝜂𝑣𝑗‖22 = ‖𝑤𝑖 − 𝑎𝑡‖22 + 𝜂2‖𝑣𝑗‖22 − 2𝜂⟨𝑤𝑖 − 𝑎𝑡, 𝑣𝑗⟩

= ‖𝑤𝑖 − 𝑎𝑡‖22 + 𝜂2 − 2𝜂⟨𝑤𝑖 − 𝑎𝑡, 𝑣𝑗⟩. (8.16)

Define ̃︀𝑤𝑖 , 𝑤𝑖−𝑎𝑡
‖𝑤𝑖−𝑎𝑡‖2 . For every 𝑗 ∈ [𝑀], let 𝐴𝑗 be the event that ⟨𝑣𝑗, ̃︀𝑤𝑖*⟩ ≥ 1

2
𝑘−1/4. For

every 𝑗 ∈ [𝑀] and 𝑖 ∈ [𝑘], let 𝐵𝑗[𝑖] be the event that ⟨𝑣𝑗, ̃︀𝑤𝑖⟩ ≤ 3𝑘−1/4. We would like to

condition on the event that ℰ ,
(︁⋁︀

𝑗∈[𝑀]𝐴𝑗

)︁
∧
(︁⋀︀

𝑖∈[𝑘],𝑗∈[𝑀]𝐵𝑗[𝑖]
)︁
.

We first verify that conditioned on ℰ , 1) and 2) of the lemma hold. We get that there is

at least one 𝑗 ∈ [𝑀] for which

‖𝑤𝑖* − 𝑎𝑡 − 𝜂𝑣𝑗‖22 ≤ ‖𝑤𝑖* − 𝑎𝑡‖22 + 𝜂2 − 𝜂𝜎𝑡 · 𝑘−1/4

≤

(︃
1 +

1

4

(︃(︂
𝜎*

𝜎𝑡

)︂2

− 2

(︂
𝜎*

𝜎𝑡

)︂)︃
𝑘−1/2

)︃
𝜎2
𝑡

≤
(︂
1− 1− 0.12

4
√
𝑘

)︂
𝜎2
𝑡 ≤

(︂
1− 1

5
√
𝑘

)︂
𝜎2
𝑡 .

where the first step follows from the fact that we have conditioned on𝐴𝑗 and also ‖𝑤𝑖*−𝑎𝑡‖2 =

𝜎𝑡 by definition, and the third step follows from 𝜎*/𝜎𝑡 ∈ [0.9, 1.1].

For every 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑀] we have that

‖𝑤𝑖 − 𝑎𝑡 − 𝜂𝑣𝑗‖22 ≥ ‖𝑤𝑖 − 𝑎𝑡‖2 + 𝜂2 − 6𝜂𝜎𝑡 · 𝑘−1/4 ≥
(︂
1− 9√

𝑘

)︂
𝜎2
𝑡 ,

where the first step follows from the fact that we have conditioned on 𝐵𝑗[𝑖] and also ‖𝑤𝑖 −

𝑎𝑡‖2 ≤ 𝜎𝑡 by definition.

Finally, we show that Pr[ℰ] ≥ 1 − 𝛿. For any 𝑗 ∈ [𝑀] and 𝑖 ∈ [𝑘], by Corollary 1.3.19,

with probability at least 𝑒−
√
𝑘 we have that

⟨
𝑔𝑗
‖𝑔𝑗‖2

,
U⊤(𝑤𝑖 − 𝑎𝑡)
‖U⊤(𝑤𝑖 − 𝑎𝑡)‖2

⟩
≥ 𝑘−1/4. (8.17)

Because

⟨𝑔𝑗,U⊤(𝑤𝑖 − 𝑎𝑡)⟩ = ⟨U𝑔𝑗, 𝑤𝑖 − 𝑎𝑡⟩,

526

and ‖U𝑔𝑗‖2 = ‖𝑔𝑗‖2 by orthonormality of the columns of U, we can rewrite the left-hand

side of (8.17) as
⟨𝑣𝑗, 𝑤𝑖 − 𝑎𝑡⟩
‖U⊤(𝑤𝑖 − 𝑎𝑡)‖2

≤ 2⟨𝑣𝑗, ̃︀𝑤𝑖⟩,
where the inequality follows by the lower bound in (8.15). So by taking 𝑖 = 𝑖*, we conclude

that Pr[𝐴𝑗] ≥ 𝑒−
√
𝑘. The probability that

⋁︀
𝑗∈[𝑀]𝐴𝑗 does not occur is thus

Pr

⎡⎣ ⋀︁
𝑗∈[𝑀]

𝐴𝑗

⎤⎦ ≤ (︁1− 𝑒−√
𝑘
)︁𝑀

.

On the other hand, by the same analysis, this time invoking the second part of Corol-

lary 1.3.19 and the upper bound in (8.15), we see that Pr[𝐵𝑗[𝑖]] ≥ 𝑒−3
√
𝑘, so the probability

that
⋀︀
𝐵𝑗[𝑖] does not occur is

Pr

⎡⎣ ⋁︁
𝑖∈[𝑘],𝑗∈[𝑀]

𝐵𝑗[𝑖]

⎤⎦ ≤ 𝑘𝑀 · 𝑒−3
√
𝑘.

So by taking 𝑀 = 𝑒
√
𝑘 ln(2/𝛿) and noting that for this choice of 𝑀 , 𝑘𝑀𝑒−3

√
𝑘 < 𝛿/2 because

𝛿 > 𝑒−
√
𝑘, we get that Pr[ℰ] ≥ 1− 𝛿 as claimed.

Lemma 8.5.13. There is an absolute constant 𝐶 > 0 for which the following holds. Let

𝒟 be a mixture of spherical linear regressions with mixing weights {𝑝𝑖}, directions {𝑤𝑖},

and noise rate 𝜍. For any 𝜀, 𝛿 > 0 and 𝜍2 ≤ 𝜀2/10, with probability at least 1 − 𝛿,

FourierMomentDescent(𝒟, 𝛿, 𝜀) (Algorithm 31) outputs direction 𝑎𝑇 ∈ R𝑑 for which

min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑇‖2 ≤ 𝜀.

Proof. Let 𝜎𝑡 , min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖2. Because 𝑎0 = 0, we have that 𝜎0 ≤ max𝑖∈[𝑘]‖𝑤𝑖‖2 ≤ 1.

By a simple union bound, we first upper bound the probability that the steps of moment

descent in the 𝑡-th iteration of the outer loop in FourierMomentDescent all succeed.

Claim 8.5.14. Let 𝑖 ∈ [𝑆]. With probability at least 1 − 𝛿, the randomized components of

the 𝑡-th iteration of the outer loop in FourierMomentDescent all succeed.

Proof. Each 𝑡-th iteration of the outer loop in FourierMomentDescent (Algorithm 31)

527

has the following randomized components: computing ̂︁M(𝑁1)
𝑎𝑡 , running EstimateMinVari-

ance (Algorithm 29), trying the Gaussian vectors 𝑔 in the inner loop over 𝑗 ∈ [𝑀], running

ApproxBlockSVD, and running CompareMinVariances (Algorithm 30) in this inner

loop.

Because the failure probability 𝛿′ for the first four of these tasks was chosen to be 𝛿
5𝑇

, and

the failure probability 𝛿′′ for the last task was chosen to be 𝛿
5𝑀𝑇

, we can bound the overall

failure probability by 𝛿.

Call the event in Claim 8.5.14 ℰ . Next, we show that provided ℰ occurs, 𝜎𝑡 can be naively

bounded by a constant.

Claim 8.5.15. Let 0 ≤ 𝑡 < 𝑇 and condition on ℰ. Then 𝜎𝑡 ≤ 4.

Proof. At the start of the 𝑡-th step, our initial estimate 𝑎𝑡−1 is at distance at most 1 from

some 𝑤𝑖* (this is a very loose bound). After the 𝑡-th step, the new estimate 𝑎𝑡 satisfies

‖𝑤𝑖** − 𝑎𝑡‖2 ≤ ‖𝑤𝑖* − 𝑎𝑡−1‖2 ≤ 1 for some 𝑖** ∈ [𝑘]. So we have that ‖𝑤𝑖 − 𝑎𝑡‖2 ≤

‖𝑤𝑖** − 𝑤𝑖‖2 + ‖𝑤𝑖** − 𝑎𝑡‖2 ≤ 3. Recalling that 𝜎2
𝑡 = min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖22 + 𝜍2 and noting

that 𝜍 < 1, we conclude that 𝜎 = 4 is a valid upper bound on the standard deviation of any

component of any univariate mixture of Gaussians ℱ𝑡 or ℱ ′(𝑗)
𝑡 encountered during the course

of FourierMomentDescent.

Next, we show that provided ℰ occurs, then we can bound the extent to which every

iteration of the outer loop in FourierMomentDescent contracts 𝜎2
𝑡 .

Claim 8.5.16. Let 0 ≤ 𝑡 < 𝑇 and condition on ℰ. Suppose 𝜍2 ≤ 1
5
‖𝑤𝑖−𝑎𝑡‖22 for any 𝑖 ∈ [𝑘].

Then

1. (Completeness) Either ‖𝑤𝑖−𝑎𝑡‖2 ≤ 𝜀 already, or there exists some 𝑗 ∈ [𝑀] for which

CompareMinVariances(ℱ𝑡,ℱ ′(𝑗)
𝑡 , 𝜎, 𝜎, 𝜅, 2𝜅, 𝛿′′) outputs True for 𝜅 = 1

24
√
𝑘
.

2. (Soundness) For any such 𝑗 ∈ [𝑀] for which CompareMinVariances outputs True,

(︂
1− 9√

𝑘

)︂
𝜎2
𝑡 ≤ 𝜎2

𝑡+1 ≤
(︂
1− 1

48
√
𝑘

)︂
𝜎2
𝑡 . (8.18)

528

Proof. We first show completeness. Suppose ‖𝑤𝑖 − 𝑎𝑡‖2 ≥ 𝜀 for all 𝑖 ∈ [𝑘]. By the first part

of Lemma 8.5.12, there exists some 𝑗 ∈ [𝑀] for which

min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎′(𝑗)𝑡 ‖22 ≤

(︂
1− 1

5
√
𝑘

)︂
min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22

and therefore

𝜍2 +min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎′(𝑗)𝑡 ‖22 ≤ 𝜍2 +

(︂
1− 1

5
√
𝑘

)︂
min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22

≤
(︂
1− 1

6
√
𝑘

)︂(︂
𝜍2 +min

𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22

)︂
,

where in the last step we used the assumption that 𝜍2 ≤ 1
5
‖𝑤𝑖 − 𝑎𝑡‖22 for any 𝑖 ∈ [𝑘].

We conclude that 𝜎(𝑗)
𝑡 , min𝑖∈[𝑘]

{︁
𝜍2 + ‖𝑤𝑖 − 𝑎′(𝑗)𝑡 ‖2

}︁
satisfies (𝜎

(𝑗)
𝑡)2 ≤

(︁
1− 1

6
√
𝑘

)︁
(𝜎𝑡)

2,

and because 1− 1
6
√
𝑘
≤
(︀

1
1+2𝜅

)︀2 for 𝜅 = 1
24

√
𝑘
, CompareMinVariances(ℱ𝑡,ℱ ′(𝑗)

𝑡 , 𝜎, 𝜎, 𝜅, 2𝜅, 𝛿′′)

would return True, completing the proof of completeness.

For soundness, if CompareMinVariances(ℱ𝑡,ℱ ′(𝑗)
𝑡 , 𝜎, 𝜎, 𝜅, 2𝜅, 𝛿′′) returns True for some

𝑗 ∈ [𝑀], by Corollary 8.5.9 this means

(𝜎
(𝑗)
𝑡)2 ≤ (1 + 𝜅)−2 · 𝜎2

𝑡 ≤ (1− 𝜅/2) · 𝜎2
𝑡 ≤

(︁
1− 1

48
√
𝑘

)︁
· 𝜎2

𝑡 ,

where the second step follows from 𝜅 ∈ (0, 1), which gives the upper bound in (8.18).

Finally, for the lower bound in (8.18), note that the second part of Lemma 8.5.12 tells

us that

min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎′(𝑗)𝑡 ‖22 ≥

(︂
1− 9√

𝑘

)︂
‖𝑤𝑖 − 𝑎𝑡‖22

and therefore

𝜍2 +min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎′(𝑗)𝑡 ‖22 ≥ 𝜍2 +

(︂
1− 9√

𝑘

)︂
‖𝑤𝑖 − 𝑎𝑡‖22 ≥

(︂
1− 9√

𝑘

)︂(︀
𝜍2 + ‖𝑤𝑖 − 𝑎𝑡‖22

)︀
.

We are now ready to complete the proof of Lemma 8.5.13. Let 𝜌 = 1.1/0.9 and condition

on ℰ .

529

If there does not exist 0 ≤ 𝑡 < 𝑇 for which we have that

min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22 ≤ 𝜀2/𝜌2 − 𝜍2, (8.19)

then because 𝜍2 ≤ 𝜀2/10, we get that ‖𝑤𝑖 − 𝑎𝑡‖22 ≥ 𝜀2/2. So 𝜍2 ≤ 1
5
‖𝑤𝑖 − 𝑎𝑡‖22, and by

completeness and soundness in Claim 8.5.16, 𝜎2
𝑡 has contracted by at least a factor of (1 −

1/48
√
𝑘) and by at most a factor of (1 − 9/

√
𝑘) at every step. So if we take 𝑇 = Ω(

√
𝑘 ·

ln(1/𝜀)), we are guaranteed that

min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑇‖2 ≤ 𝜎𝑇 ≤ 𝜀.

On the other hand, if (8.19) holds for some 0 ≤ 𝑡 < 𝑇 , then

(𝜎*
𝑡)

2 ≤ 1.21𝜎2
𝑡 ≤ 1.21 ·

(︁
min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22 + 𝜍2

)︁
≤ 0.992𝜀2,

so FourierMomentDescent breaks out at Line 12 and correctly outputs 𝑎𝑡.

Conversely, if FourierMomentDescent breaks out at Line 12 because 𝜎*
𝑡 ≤ 0.99𝜀,

this implies that

min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖2 + 𝜍2 ≤ (𝜎*

𝑡)
2/0.992 ≤ 𝜀2,

so min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖2 ≤ 𝜀.

The last thing to check is that 𝜎 = 𝜀/3 is always a valid lower bound for any 𝜎𝑡. If (8.19)

holds for some 𝑡, 𝑡 is necessarily the first (and last) 𝑡 in FourierMomentDescent for

which (8.19) holds because of Line 12. So it must be that

𝜎2
𝑡−1 ≥ min

𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡−1‖22 > 𝜀2/𝜌2 − 𝜍2 ≥ 𝜀2 ·

(︀
(0.9/1.1)2 − 1/5

)︀
≥ 0.4𝜀2

and thus, by the fact that 𝜎𝑡 ≥ (1 − 9/
√
𝑘)𝜎𝑡−1 ≥ 0.99𝜎𝑡−1, we conclude that 𝜎𝑡 > 𝜀/3 as

desired.

Lastly, we calculate the runtime and sample complexity of FourierMomentDescent.

530

Algorithm 31: FourierMomentDescent(𝒟, 𝛿, 𝜀)
Input: Sample access to mixture of linear regressions 𝒟 with separation Δ and

noise rate 𝜍, failure probability 𝛿, error 𝜀
Output: 𝑎𝑇 ∈ R𝑑 satisfying min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑇‖2 ≤ 𝜀, with probability at least 1− 𝛿

1 𝑎0 ← 0, 𝑇 ← Ω(
√
𝑘 · ln(1/𝜀)).

2 𝛿′ ← 𝛿
5𝑇

.
3 𝑀 ← 𝑒

√
𝑘 ln(2/𝛿′).

4 𝛿′′ ← 𝛿
5𝑀𝑇

.
5 𝜎 ← 4, 𝜎 ← 𝜀/3.
6 for 0 ≤ 𝑡 < 𝑇 do
7 Let ℱ𝑡 be the univariate mixture of Gaussians which can be sampled from by

drawing (𝑥, 𝑦) ∼ 𝒟 and computing 𝑦 − ⟨𝑥, 𝑎𝑡⟩.
8 𝑝← 20 ln

(︁
3

2𝑝min

)︁
+ 1.

9 𝜅← 1
24

√
𝑘
.

10 𝜎*
𝑡 ← EstimateMinVariance(ℱ𝑡, 𝜎, 𝜎, 𝑝, 𝛿′). // Algorithm 29

11 if 𝜎*
𝑡 < 0.99𝜀 then

12 return 𝑎𝑡.

13 𝑁1 ← ̃︀Ω(︁ 𝜎2

(𝜎*
𝑡)

2 · 𝑝−2
min · 𝑘2 · 𝑑 · ln(𝑘/𝛿′)

)︁
.

14 Draw 𝑁1 i.i.d. samples {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑁1] from 𝒟 and form the matrix ̂︁M(𝑁1)
𝑎𝑡 .

15 Let U𝑡 = ApproxBlockSVD (̂︁M(𝑁1)
𝑎𝑡 , 1/10, 𝛿′). // Lemma 8.5.11

16 for 𝑗 ∈ [𝑀] do

17 Sample 𝑔(𝑗)𝑡 ∼ 𝒩 (0, Id𝑘) and define 𝑣(𝑗)𝑡 =
U𝑡𝑔

(𝑗)
𝑡

‖U𝑡𝑔
(𝑗)
𝑡 ‖2
∈ S𝑑−1.

18 𝑎
′(𝑗)
𝑡 ← 𝑎𝑡 + 𝜂𝑡𝑣𝑗 for 𝜂𝑡 , 1

2
𝑘−1/4 · 𝜎*

𝑡 .
19 Let ℱ ′(𝑗)

𝑡 be the univariate mixture of Gaussians which can be sampled from
by drawing (𝑥, 𝑦) ∼ 𝒟 and computing 𝑦 − ⟨𝑥, 𝑎′(𝑗)𝑡 ⟩.

20 if CompareMinVariances(ℱ𝑡,ℱ ′(𝑗)
𝑡 , 𝜎, 𝜎, 𝜅, 2𝜅, 𝛿′′) = True then

21 𝑎𝑡+1 ← 𝑎
′(𝑗)
𝑡 .

22 Break.

531

Lemma 8.5.17 (Running time of FourierMomentDescent). Let

𝑁1 = ̃︀𝑂(𝜀−2𝑝−2
min𝑑𝑘

2 ln(1/𝛿))

𝑁 = 𝑝−4
min𝑘 ln(1/𝛿) · poly

(︁√
𝑘, ln(1/𝑝min), ln(1/𝜀)

)︁𝑂(√𝑘 ln(1/𝑝min))
.

Then FourierMomentDescent (Algorithm 31) requires sample complexity ̃︀𝑂(√𝑘𝑒√𝑘(𝑁1+

𝑁)) and runs in time ̃︀𝑂(√𝑘𝑒√𝑘(𝑑𝑁1 +𝑁)).

We defer the proof of Lemma 8.5.17 to Appendix 8.12.6.

We can now complete the proof of Theorem 8.5.1.

Proof of Theorem 8.5.1. By Lemma 8.5.13, FourierMomentDescent outputs a vector

𝑎𝑇 ∈ R𝑑 for which ‖𝑤𝑖 − 𝑎𝑇‖2 ≤ 𝜀 for some 𝑖 ∈ [𝑘]. The runtime and sample complexity

bounds follow from Lemma 8.5.17.

8.6 Learning All Components Under Zero Noise

In this short section we briefly describe how to use FourierMomentDescent in conjunc-

tion with existing techniques for boosting to learn all components in a mixture of linear

regressions. We remark that the arguments in this section are fairly standard.

We will make use of the following local convergence result of [LL18].

Theorem 8.6.1. Let 𝒟 be a mixture of linear regressions in R𝑑 with regressors {𝑤𝑗}, min-

imum mixing weight 𝑝min, separation Δ, and components whose covariances have eigen-

values all bounded within [1, 𝜎]. Let 𝜁 , Δ · min
(︀

1
2𝜎
, 𝑝min

64

)︀
. There is an algorithm LL-

Boost(𝒟, 𝑣, 𝜀, 𝛿) which, given any 𝜀 > 0 and 𝑣 ∈ R𝑑 for which there exists 𝑗 ∈ [𝑘] with

‖𝑤𝑗 − 𝑣‖2 ≤ 𝜁/𝜎, draws 𝑇 ·𝑀 samples from 𝒟 for

𝑇 = 𝑂(𝑝−2
min𝑑 ln(𝜁/𝜀)) and 𝑀 = poly(1/Δ, 1/𝑝min, 𝜎, log 𝑇) · ln(1/𝛿),

runs in time 𝑇 ·𝑀 · 𝑑, and outputs ̃︀𝑣 ∈ R𝑑 for which ‖𝑤𝑗 − ̃︀𝑣‖2 ≤ 𝜀 with probability at least

1− 𝛿.

532

We give a formal specification of our procedure LearnWithoutNoise for learning all

components of a noise-less mixture of linear regressions in Algorithm 32 below. The basic

approach is to repeatedly invoke FourierMomentDescent to produce an estimate for one

of the regressors of 𝒟 to within 𝑂(Δ𝑝min) error, run LL-Boost to refine it to an estimate

𝑣 with error essentially as small as one would like (because of the exponential convergence

rate of LL-Boost), and then filter out all samples (𝑥, 𝑦) for which the residual |𝑦 − ⟨𝑥, 𝑣⟩|

is sufficiently small.

Algorithm 32: LearnWithoutNoise(𝒟, 𝛿, 𝜀)
Input: Sample access to mixture of linear regressions 𝒟 with separation Δ and zero

noise and regressors {𝑤𝑖}, failure probability 𝛿, error 𝜀
Output: List of vectors ℒ , { ̃︀𝑤1, ..., ̃︀𝑤𝑘} for which there is a permutation

𝜋 : [𝑘]→ [𝑘] for which ‖ ̃︀𝑤𝑖 − 𝑤𝜋(𝑖)‖2 ≤ 𝜀 for all 𝑖 ∈ [𝑘], with probability at
least 1− 𝛿

1 𝛿′ ← 𝛿/2𝑘.
2 𝜀FMD ← Δ𝑝min/64.
3 𝜀boost ← min{𝜀, poly(𝑝min,Δ, 1/𝑘, 1/𝑑)

√
𝑘 ln(1/𝑝min)}.

4 for 𝑖 ∈ [𝑘] do
5 𝑤′

𝑖 ←FourierMomentDescent(𝒟, 𝛿′, 𝜀FMD).
6 ̃︀𝑤𝑖 ←LL-Boost(𝒟, 𝑤′

𝑖, 𝜀boost, 𝛿
′).

7 Henceforth when sampling from 𝒟, ignore all samples (𝑥, 𝑦) for which
|𝑦 − ⟨𝑥, ̃︀𝑤𝑖⟩| ≤ 𝜀boost · poly(log 𝑑).

Theorem 8.6.2. Given 𝛿, 𝜀 > 0 and a mixture of spherical linear regressions 𝒟 with sep-

aration Δ and zero noise, with probability at least 1 − 𝛿, LearnWithoutNoise(𝒟, 𝛿, 𝜀)

(Algorithm 32) returns a list of vectors ℒ , { ̃︀𝑤1, ..., ̃︀𝑤𝑘} for which there is a permutation

𝜋 : [𝑘]→ [𝑘] for which ‖ ̃︀𝑤𝑖−𝑤𝜋(𝑖)‖2 ≤ 𝜀 for all 𝑖 ∈ [𝑘]. Furthermore, LearnWithoutNoise

requires sample complexity

𝑁 = ̃︀𝑂 (︁𝑑 ln(1/𝜀) ln(1/𝛿)𝑝−4
minΔ

−2 · poly (𝑘, ln(1/𝑝min), ln(1/Δ))𝑂(
√
𝑘 ln(1/𝑝min))

)︁
and time complexity 𝑁𝑑 · poly log(𝑘, 𝑑, 1/Δ, 1/𝑝min, 1/𝜀).

Proof. By Theorem 8.5.1, every 𝑤′
𝑖 in LearnWithoutNoise is Δ𝑝min

64
-close to a regressor 𝑤𝑖′

of 𝒟, and by Theorem 8.6.1, LL-Boost improves this to a vector ̃︀𝑤𝑖 for which ‖ ̃︀𝑤𝑖−𝑤𝑖′‖2 ≤
533

𝜀boost, where

𝜀boost min{𝜀, poly(𝑝min,Δ, 1/𝑘, 1/𝑑)
√
𝑘 ln(1/𝑝min)}.

As a result, only a poly(𝑝min,Δ, 1/𝑘, 1/𝑑)
√
𝑘 ln(1/𝑝min) fraction of subsequent samples will be

removed, and the resulting error can be absorbed into the sampling error that goes into subse-

quent calls to L2Estimate and subsequent matrices ̂︁𝑀 (𝑁)
𝑎 that we run ApproxBlockSVD

on, in the remainder of LearnWithoutNoise.

8.7 Learning All Components Under Noise

In this section, we describe how to learn all components under the much more challenging

setting where there is regression noise. We show that, at the extra cost of running in time

exponential in 1/Δ2 in addition to
√
𝑘, there is an algorithm, which we call LearnWith-

Noise, that can learn mixtures of linear regressions to error 𝜀 when 𝜍 = 𝑂(𝜀).

Theorem 8.7.1. Given 𝛿, 𝜀 > 0 and a mixture of spherical linear regressions 𝒟 with re-

gressors {𝑤1, ..., 𝑤𝑘}, separation Δ, and noise rate 𝜍 = 𝑂(𝜀), with probability at least 1− 𝛿,

LearnWithNoise (𝒟, 𝛿, 𝜀) (Algorithm 32) returns a list of vectors ℒ , { ̃︀𝑤1, ..., ̃︀𝑤𝑘} for

which there is a permutation 𝜋 : [𝑘] → [𝑘] for which ‖ ̃︀𝑤𝑖 − 𝑤𝜋(𝑖)‖2 ≤ 𝜀 for all 𝑖 ∈ [𝑘].

Furthermore, LearnWithNoise requires sample complexity

𝑁 = ̃︀𝑂 (︁𝑑𝜀−2 ln(1/𝜀) ln(1/𝛿)𝑝−4
minΔ

−2 · poly (𝑘, 1/𝜀, ln(1/𝑝min))
𝑂(

√
𝑘 ln(1/𝑝min)/Δ

2)
)︁

and time complexity 𝑁𝑑 · poly log(𝑘, 𝑑, 1/Δ, 1/𝑝min, 1/𝜀).

In Section 8.7.1 we prove the key technical ingredient behind our proof of Theorem 8.7.1,

Lemma 8.7.4, which allows us to carefully control the dynamics of Fourier moment descent.

In Section 8.7.2 we describe how to get an initialization which satisfies the hypotheses of

Lemma 8.7.4. In Section 8.7.3 we give the full specification of LearnWithNoise. In

Section 8.7.4 we prove Theorem 8.7.1. Finally, in Section 8.7.5, we briefly describe how to

leverage the local convergence result of [KC19] in conjunction with our algorithm to get

improved noise tolerance in the setting where the mixing weights are a priori known.

534

8.7.1 Staying on the Same Component

The main result of this section and the primary technical component behind Theorem 8.7.1

is Lemma 8.7.4 below. This is a substantially more refined version of Lemma 8.5.12 in which

we control not only the probability we make progress in the 𝑡-th step of moment descent,

but also the probability that the the component 𝑎𝑡+1 is closest to is the same as the one 𝑎𝑡

is closest to.

We first introduce some preliminary notation and facts that we will use in the proof of

Lemma 8.7.4.

For 𝑣 ∈ S𝑑−1, define ℱ and ℱ ′
𝑣 respectively to be the distribution of 𝑦 − ⟨𝑎𝑡, 𝑥⟩ and of

𝑦 − ⟨𝑎𝑡 + 𝜂𝑣, 𝑥⟩, where (𝑥, 𝑦) ∼ 𝒟.

Let 𝜎2
𝑡 , 𝜍2 +min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖2. Denote the minimizing index 𝑖 by 𝑖*.

We record the following application of Lemma 8.5.10 and Fact 1.3.6 which says we have

access to span({𝑤𝑖 − 𝑎𝑡}) up to 1/poly(𝑘) additive error.

Lemma 8.7.2. Let 𝛿samp, 𝛿
′ > 0 and 𝑎𝑡 ∈ R𝑑. If we draw 𝑁1 = ̃︀Ω (︀𝑝−1

min𝛿
−1
samp · 𝑑 · ln(𝑘/𝛿′)

)︀
samples, form̂︁M(𝑁1)

𝑎𝑡 ∈ R𝑑×𝑑 as defined in (8.14), and run ApproxBlockSVD(̂︁M(𝑁1)
𝑎𝑡 , 𝛿samp, 𝛿

′)

to produce a matrix U ∈ R𝑘×𝑑, then with probability 1− 𝛿′ we have that for any 𝑎, 𝑏 ∈ S𝑑−1

in the row span of U,

1. ⟨U𝑎,U𝑏⟩ ≤ ⟨𝑎, 𝑏⟩ − 𝛿samp

2. 1− 𝛿samp ≤ ‖U(𝑤𝑖 − 𝑎𝑡)‖2 ≤ 1− 𝛿samp.

Proof. By Lemma 8.5.10 and Fact 1.3.6, with probability 1− 𝛿′ we can ensure that

‖U⊤ΛU− E𝑥,𝑦[M𝑥,𝑦
𝑎𝑡]‖2 ≤ 𝛿samp · 𝑝min/2,

where Λ ∈ R𝑘 is some diagonal matrix of eigenvectors and M𝑥,𝑦
𝑎𝑡 is defined in (8.13) and

satisfies E𝑥,𝑦[M𝑥,𝑦
𝑎𝑡] =

∑︀𝑘
𝑖=1 𝑝𝑖(𝑤𝑖−𝑎)(𝑤𝑖−𝑎)⊤ by Lemma 8.5.10. Parts 1 and 2 of the lemma

then follow by Lemma 1.3.8.

Lastly, the following elementary fact will be useful:

535

Fact 8.7.3. If 𝑥 ∈ R≥0 satisfies 1
2
(𝑥 + 𝑥−1) ≥ 1 + 𝛽2 for some 0 < 𝛽 ≤ 1, then 1 − 𝛽/2 ≤

𝑥 ≤ 1 + 𝛽/2.

Proof. The solutions to 𝑥+ 𝑥−1 = 2 + 2𝛽2 are

𝑥 = 1 + 𝛽2 ± 𝛽
√︀
2 + 𝛽2.

One can check that 𝛽2 + 𝛽
√︀

2 + 𝛽2 ≥ 𝛽 for all 𝛽 ∈ R, while −𝛽2 + 𝛽
√︀
2 + 𝛽2 ≥ 𝛽/2 for

𝛽 ∈ [0, 1].

We are now in a position to state and prove our main result of this section, Lemma 8.7.4.

This lemma roughly says that if we sample 𝑀 = exp(Ω(
√
𝑘/Δ2)) random steps 𝑣1, ..., 𝑣𝑀

at time 𝑡 of moment descent, then with high probability, if 𝑗* ∈ [𝑀] is the first index on

which CompareMinVariances outputs True, then not only does walking in direction 𝑣𝑗*

contract 𝜎𝑡 by a factor of 1−Ω(Δ/
√
𝑘) with high probability, but additionally, with at least

1/poly(𝑘) probability, it also keeps us closest to the component we were already closest to, in

the following robust sense. Specifically, if we have a (1+Ω(Δ2
√
𝑘)) gap between ‖𝑤𝑖* − 𝑎𝑡‖2

and all other ‖𝑤𝑖 − 𝑎𝑡‖2, then with at least 1/poly(𝑘) probability, after one more iteration

of moment descent, the 𝑖*-th component will still be the closest to our new guess 𝑎𝑡+1 ∈ R𝑑,

and this gap will persist.

Lemma 8.7.4. There exist constants 𝑎LR, 𝑎trials, 𝑎scale, constants 𝛽 > 𝛽, a constant 0 ≤

𝑎noise ≤ 1/5, and a constant 𝜏gap > 0, such that for all 𝑐 < 𝜏gap, the following holds for some

0 < 𝜅1 < 𝜅2 ≤ 1 satisfying 𝜅2 − 𝜅1 = 𝑐Δ2𝑘−1/2.

Let 𝛿 > 0. Suppose that 𝜍2 ≤ 𝑎noise · 𝜀2. Suppose that

‖𝑤𝑖 − 𝑎𝑡‖2 ≤ 𝑎scale · 𝑘1/4 (8.20)

for all 𝑖 ∈ [𝑘]. For 𝑀 , 𝑒𝑎trials
√
𝑘/Δ2

ln(3/𝛿) and 𝑔1, ..., 𝑔𝑀 ∼ 𝒩 (0, Id𝑘), let 𝑣𝑗 =
𝑔𝑗U

‖𝑔𝑗U‖2 ∈ S𝑑−1

for 𝑗 ∈ [𝑀]. Let 𝜎* be a number for which 0.9𝜎𝑡 ≤ 𝜎* ≤ 1.1𝜎𝑡, and let 𝜂 , 𝑎LR ·Δ ·𝜎* ·𝑘−1/4.

Then with probability at least 1− 𝛿 over the randomness of 𝑔1, ..., 𝑔𝑀 as well as over the

behavior of all runs of CompareMinVariances, the following events hold:

536

1. (Progress detected) If min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖22 ≥ 𝜀2/2, then

CompareMinVariances(ℱ ,ℱ ′
𝑣, 𝑎scale · 𝑘−1/4, 𝜎*/1.1, 𝜅1, 𝜅2, 𝛿/3𝑀)

outputs True for at least one 𝑗 ∈ [𝑀].

Let 𝑗* be the smallest such 𝑗, and define

𝑎𝑡+1 , 𝑎𝑡 + 𝜂𝑣𝑗* .

2. (Make at least some amount of progress) If min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖22 ≥ 𝜀2/2, then

𝜎2
𝑡+1 ≤

(︁
1− 𝛽Δ2/

√
𝑘
)︁
𝜎2
𝑡 .

3. (Make at most some amount of progress) Regardless of whether min𝑖∈[𝑘]‖𝑤𝑖 −

𝑎𝑡‖22 ≤ 𝜀2/2,

𝜎2
𝑡+1 ≥

(︁
1− 𝛽Δ2/

√
𝑘
)︁
𝜎2
𝑡 .

If we assume that for all 𝑖 ̸= 𝑖*,

‖𝑤𝑖 − 𝑎𝑡‖2 ≥
(︁
1 + 𝑐Δ2/

√
𝑘
)︁
· ‖𝑤𝑖* − 𝑎𝑡‖2, (8.21)

then crucially, we have that with probability 1/poly(𝑘), the events above hold and addition-

ally:

4. (𝑖* remains closest by same margin) If min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡‖22 ≥ 𝜀2/2, then for all

𝑖 ̸= 𝑖*,

‖𝑤𝑖 − 𝑎𝑡 − 𝜂𝑣𝑗*‖2 ≥
(︁
1 + 𝑐Δ2/

√
𝑘
)︁
· ‖𝑤𝑖* − 𝑎𝑡 − 𝜂𝑣𝑗*‖2.

We emphasize that the main content of Lemma 8.7.4 is part 4.

Proof. Henceforth we will say that “CompareMinVariances succeeds and outputs True/False

537

on direction 𝑣” to mean that a single run of

CompareMinVariances(ℱ ,ℱ ′
𝑣, 𝑎scale · 𝑘−1/4, 𝜎*/1.1, 𝜅1, 𝜅2, 𝛿/3𝑀)

is successful (in the language of Corollary 8.5.9, this happens with probability 1 − 𝛿/3𝑀)

and outputs True/False.

Recall from (8.16) that we have

‖𝑤𝑖 − 𝑎𝑡 − 𝜂𝑣𝑗‖22 = ‖𝑤𝑖 − 𝑎𝑡‖22 + 𝜂2 − 2𝜂⟨𝑤𝑖 − 𝑎𝑡, 𝑣𝑗⟩. (8.22)

Define δ𝑖 , 𝑤𝑖 − 𝑎𝑡 and ̂︀δ𝑖 , 𝑤𝑖−𝑎𝑡
‖𝑤𝑖−𝑎𝑡‖2 . For every 𝑖 ̸= 𝑖*, define δ

⊥
𝑖 , ̂︀δ𝑖 − ⟨̂︀δ𝑖* ,̂︀δ𝑖⟩̂︀δ𝑖* . Finally,

let 𝛾(𝑗)𝑖 = ⟨̂︀δ𝑖, 𝑣𝑗⟩. Where the context is clear, we will omit the superscript (𝑗).

Let 𝜈𝐴, 𝜈𝐵, 𝜈𝐶 > 0 be absolute constants, and suppose 𝜈𝐴 < 𝜈𝐵. For 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑀],

define the following events:

1. Let 𝐴𝑗[𝑖] be the event that 𝛾(𝑗)𝑖* ≥ 𝜈𝐴Δ𝑘
−1/4.

2. Let 𝐵𝑗[𝑖] be the event that 𝛾(𝑗)𝑖 ≤ 𝜈𝐵Δ𝑘
−1/4.

3. Let 𝐶𝑗 be the event that 𝐴𝑗[𝑖*] occurs and also ⟨𝑣𝑗, δ⊥𝑖 ⟩ ≤ 𝜈𝐶Δ
2𝑘−1/2‖δ⊥𝑖 ‖2 for all 𝑖 ̸= 𝑖*.

For 𝑗 ∈ [𝑀], also let 𝐵𝑗 denote the event that 𝐵𝑗[𝑖] occurs for every 𝑖 ∈ [𝑘].

By our assumption on 𝜎* and the definition of 𝜂, we know that 𝜂 = 𝑎′LR · 𝑘−1/4 · ‖δ𝑖‖2,

where 𝑎′LR ∈ [0.9, 1.1]·𝑎LR. It will be useful later in the proof to assume that 𝜈𝐵 < 𝑎′LR < 2𝜈𝐴.

First, we compute the exact distance to 𝑣𝑖* after walking along 𝑣𝑗 and, provided the

events 𝐵𝑗[𝑖] occur, lower bound the distances to all other components 𝑣𝑖.

Claim 8.7.5. Let 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑀], and suppose 𝐵𝑗[𝑖] occurs. Then

‖δ𝑖 − 𝜂𝑣𝑗‖22 ≥ ‖δ𝑖‖22 ·
(︁
1 + 𝑎′2LR𝑘

−1/2 − 2𝑎′LR𝑘
−1/4𝛾

(𝑗)
𝑖

)︁
, (8.23)

with equality when 𝑖 = 𝑖*. Furthermore, when 𝑖 ̸= 𝑖* we get from (8.21) that

‖δ𝑖−𝜂𝑣𝑗‖22 ≥ ‖δ𝑖*‖22·
(︁(︀

1 + 𝑐Δ2𝑘−1/2
)︀2

+ 𝑎′2LRΔ
2𝑘−1/2 − 2𝑎′LRΔ𝑘

−1/4𝛾
(𝑗)
𝑖 − 2𝑐𝑎′LRΔ

3𝑘−3/4𝛾
(𝑗)
𝑖

)︁
.

(8.24)

538

Proof. We may rewrite (8.22) as

‖δ𝑖 − 𝜂𝑣𝑗‖22 = ‖δ𝑖‖22 + 𝑎′2LRΔ
2𝑘−1/2‖δ𝑖*‖22 − 2𝑎′LRΔ𝑘

−1/4‖δ𝑖*‖2‖δ𝑖‖2 · 𝛾(𝑗)𝑖 . (8.25)

The right-hand side of (8.25), as a function of ‖δ𝑖*‖2, is decreasing as long as

‖δ𝑖*‖2 ≤ 𝑎′−1
LRΔ

−1𝑘1/4‖δ𝑖‖2𝛾(𝑗)𝑖 .

But this condition holds because event 𝐵𝑗[𝑖] occurs, 𝜈𝐵 < 𝑎′LR, and ‖δ𝑖*‖2 ≤ ‖δ𝑖‖2. So (8.23)

follows, with equality when 𝑖 = 𝑖*.

When 𝑖 ̸= 𝑖*, we additionally know that ‖δ𝑖‖2 ≥
(︀
1 + 𝑐Δ2𝑘−1/2

)︀
· ‖δ𝑖*‖2. So by the fact

that the right-hand side of (8.25) is decreasing as a function of ‖δ𝑖*‖2 for ‖δ𝑖*‖2 ∈ (−∞, ‖δ𝑖‖2],

we get (8.24).

Using (8.23) of Claim 8.7.5, which is an equality when 𝑖 = 𝑖*, we can upper bound the

distance to 𝑣𝑖* after walking along 𝑣𝑗, provided events 𝐴𝑗[𝑖*] and 𝐵𝑗[𝑖] occur.

Claim 8.7.6. Let 𝑗 ∈ [𝑀], and suppose 𝐴𝑗[𝑖*] and 𝐵𝑗[𝑖
*] occur. Then there is an absolute

constant 𝛽′ > 0 for which

‖δ𝑖* − 𝜂𝑣𝑗‖22 ≤ ‖δ𝑖*‖22 · (1− 𝛽′Δ2𝑘−1/2). (8.26)

Proof. By (8.23) which is an equality when 𝑖 = 𝑖*,

‖δ𝑖* − 𝜂𝑣𝑗‖22 ≤ ‖δ𝑖*‖22 ·
(︀
1− (2𝑎′LR𝜈𝐴 − 𝑎′2LR)Δ2𝑘−1/2

)︀
.

The claim follows by taking 𝛽′ , 2𝑎′LR𝜈𝐴 − 𝑎′2LR, which is positive by the assumption that

𝑎′LR < 2𝜈𝐴.

Next, using (8.24) of Claim 8.7.5, we argue that the only way to make progress towards

a different component 𝑖 ̸= 𝑖* by an amount comparable to that of Claim 8.7.6, is if 𝐴𝑗[𝑖] has

539

occurred. In particular, the following claim is the contrapositive of this.

Claim 8.7.7. Let 𝑖 ̸= 𝑖* and 𝑗 ∈ [𝑀], and suppose 𝐵𝑗[𝑖] occurs and 𝐴𝑗[𝑖] does not occur.

Then

‖δ𝑖 − 𝜂𝑣𝑗‖22 ≥ ‖δ𝑖*‖22 ·
(︀
1− (𝛽′ − 𝑐)Δ2𝑘−1/2

)︀

Proof. Because 𝐴𝑗[𝑖] does not occur, 𝛾(𝑗)𝑖 < 𝜈𝐴𝑘
−1/4. So by (8.24),

‖δ𝑖 − 𝜂𝑣𝑗‖22 ≥ ‖δ𝑖*‖22 ·
(︁(︀

1 + 𝑐Δ2𝑘−1/2
)︀2

+ 𝑎′2LRΔ
2𝑘−1/2 − 2𝜈𝐴𝑎

′
LRΔ

2𝑘−1/2 − 2𝜈𝐴 · 𝑐 · 𝑎′LRΔ4𝑘−1
)︁

= ‖δ𝑖*‖22 ·
(︁(︀

1 + 𝑐Δ2𝑘−1/2
)︀2 − 𝛽′2Δ2𝑘−1/2 − 2𝜈𝐴 · 𝑐 · 𝑎′LRΔ4𝑘−1

)︁
= ‖δ𝑖*‖22 ·

(︀
1− 𝛽′Δ2𝑘−1/2 + 2𝑐Δ2𝑘−1/2 ·

(︀
1− 𝜈𝐴𝑎′LRΔ2𝑘−1/2

)︀
+ 𝑐2Δ4𝑘−1

)︀
≥ ‖δ𝑖*‖22 ·

(︀
1− 𝛽′Δ2𝑘−1/2 + 𝑐Δ2𝑘−1/2

)︀
,

where in the last step we used the fact that 1 − 𝜈𝐴𝑎′LRΔ2𝑘−1/2 ≥ 1/2 for sufficiently large

𝑘.

Henceforth, let 𝜅1 =
(︀
𝛽′ − 3𝑐

2

)︀
Δ2𝑘−1/2 and 𝜅2 =

(︀
𝛽′ − 𝑐

2

)︀
Δ2𝑘−1/2. In Lemma 8.7.4, we

will take 𝛽 , 𝛽′ − 3𝑐
2
.

Claims 8.7.6 and 8.7.7 now imply the following about the behavior of CompareM-

inVariances. The upshot of the following two corollaries is that for any 𝑗 ∈ [𝑀], if 𝐵𝑗[𝑖]

occurs for every 𝑖 and CompareMinVariances succeeds and outputs True on direction 𝑣𝑗,

the conditional probability of 𝐴𝑗[𝑖*] happening is at least the conditional probability of 𝐴𝑗[𝑖]

happening for any 𝑖 ̸= 𝑖*.

Corollary 8.7.8. Let 𝑗 ∈ [𝑀], and suppose 𝐴𝑗[𝑖*] and 𝐵𝑗[𝑖
*] occur. Then CompareM-

inVariances succeeds and outputs True on direction 𝑣𝑗.

Proof. By adding 𝜍2 to both sides of (8.26) in Claim 8.7.6, we see that

𝜎2
𝑡+1 ≤ ‖δ𝑖*−𝜂𝑣𝑗‖22+𝜍2 ≤ ‖δ𝑖*‖22 ·(1−𝛽′Δ2𝑘−1/2)+𝜍2 ≤

(︀
1− (𝛽′ − 𝑐/2)Δ2𝑘−1/2

)︀
(‖δ𝑖*‖22+𝜍2),

540

where in the last step we used the assumptions that 𝜍2 ≤ 𝑎noise · 𝜀2 and ‖𝑤𝑖* − 𝑎𝑡‖22 ≥ 𝜀2/2

for some sufficiently small constant 𝑎noise, which we just need to be at most 𝑐
4𝛽′ here.

Corollary 8.7.9. Let 𝑖 ̸= 𝑖* and 𝑗 ∈ [𝑀], and suppose 𝐵𝑗[𝑖] holds and CompareMinVari-

ances succeeds and outputs True on direction 𝑣𝑗. Then 𝐴𝑗[𝑖] has also occurred.

Proof. By the contrapositive of Claim 8.7.7, if

‖δ𝑖 − 𝜂𝑣𝑗‖22 < ‖δ𝑖*‖22 ·
(︀
1− (𝛽′ − 𝑐)Δ2𝑘−1/2

)︀
, (8.27)

and 𝐵𝑗[𝑖] occurs, then 𝐴𝑗[𝑖] occurs. We would like to show that (8.27) then implies that

CompareMinVariances, if it succeeds, outputs True on direction 𝑣𝑗. Adding 𝜍2 to both

sides of this, we conclude that

𝜎2
𝑡+1 = 𝜍2+‖δ𝑖−𝜂𝑣𝑗‖22 < 𝜍2+‖δ𝑖*‖22 ·

(︀
1− (𝛽′ − 𝑐)Δ2𝑘−1/2

)︀
≤
(︂
1−

(︂
𝛽′ − 3𝑐

2

)︂
Δ2𝑘−1/2

)︂
,

where in the last we used the assumptions that 𝜍2 ≤ 𝑎noise · 𝜀2 and ‖𝑤𝑖* − 𝑎𝑡‖22 ≥ 𝜀2/2 for

some sufficiently small constant 𝑎noise, which we just need to be at most 𝑐
4𝛽′−𝑐 here.

We also give an upper bound to the amount of progress that any 𝑣𝑗 could make in any

direction 𝑖, provided 𝐵𝑗[𝑖] holds.

Claim 8.7.10. Let 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑀], and suppose 𝐵𝑗[𝑖] occurs. Then there is an absolute

constant 𝛽 > 𝛽 for which ‖δ𝑖 − 𝜂𝑣𝑗‖22 ≥ ‖δ𝑖*‖22 · (1− 𝛽Δ2𝑘−1/2).

Proof. By (8.23),

‖δ𝑖 − 𝜂𝑣𝑗‖22 ≥ ‖δ𝑖‖22 ·
(︀
1− (2𝑎′LR𝜈𝐵 − 𝑎′2LR)Δ2𝑘−1/2

)︀
.

The claim follows by taking 𝛽 = 2𝑎′LR𝜈𝐵 − 𝑎′2LR. Note that we have that 𝛽 > 𝛽′ > 𝛽 because

𝜈𝐴 < 𝜈𝐵.

At this point, we could already use Corollary 8.7.8 and Claim 8.7.10, together with

straightforward bounds on the probabilities of the events 𝐴𝑗[𝑖*] and 𝐵𝑗[𝑖] (see Claims 8.7.12

and 8.7.13 below) to show that parts 1), 2), and 3) of the lemma hold with the claimed

541

probability. Note that the proofs of these steps do not use (8.21), so in particular parts 1),

2), and 3) of the lemma hold with the claimed probability without assuming (8.21).

We next lay the foundation for showing part 4) of the lemma holds with at least 1/poly(𝑘)

probability, assuming (8.21). Thus far we have not talked about the events 𝐶𝑗. It is at this

point that we arrive at the main claim of the proof, namely that if event 𝐶𝑗 happens, then

the gap of (8.21) between the 𝑖*-th component and all other components persists in the next

step.

Claim 8.7.11. Let 𝑗 ∈ [𝑀] and suppose 𝐶𝑗 and 𝐵𝑗[𝑖] occur for all 𝑖 ∈ [𝑘]. Then

‖δ𝑖 − 𝜂𝑣𝑗‖2 ≥
(︀
1 + 𝑐Δ2𝑘−1/2

)︀
· ‖δ𝑖* − 𝜂𝑣𝑗‖2

for all 𝑖 ̸= 𝑖*.

Proof. Suppose we could show that

𝛾
(𝑗)
𝑖 ≤ 𝛾

(𝑗)
𝑖* (8.28)

for all 𝑖 ̸= 𝑖*. Then by (8.23), we would conclude that

‖δ𝑖 − 𝜂𝑣𝑗‖22
‖δ𝑖* − 𝜂𝑣𝑗‖22

≥ ‖δ𝑖‖
2

‖δ𝑖*‖22
· 1 + 𝑎′2LR𝑘

−1/2 − 2𝑎′LR𝑘
−1/4𝛾

(𝑗)
𝑖

1 + 𝑎′2LR𝑘
−1/2 − 2𝑎′LR𝑘

−1/4𝛾
(𝑗)
𝑖*

≥
(︀
1 + 𝑐Δ2𝑘−1/2

)︀2 · 1 + 𝑎′2LR𝑘
−1/2 − 2𝑎′LR𝑘

−1/4𝛾
(𝑗)
𝑖

1 + 𝑎′2LR𝑘
−1/2 − 2𝑎′LR𝑘

−1/4𝛾
(𝑗)
𝑖*

≥
(︀
1 + 𝑐Δ2𝑘−1/2

)︀2
as desired.

We now describe the intuition for the remaining argument. (8.28) is not hard to show

when the unit vector ̂︀δ𝑖 is somewhat far from ̂︁δ𝑖* , in which case it is reasonable to imagine

a sizable cone of directions around δ𝑖* such that if 𝑣𝑗 lies in that cone, (8.28) holds. On

the other hand, suppose ̂︀δ𝑖 is close to δ𝑖* . Then (8.28) can actually be false. But because

their non-normalized counterparts δ𝑖 and δ𝑖* are assumed to be Δ-separated, δ𝑖 and δ𝑖* must

therefore be nearly collinear, in which case there must exist a gap between ‖δ𝑖‖2 and ‖δ𝑖*‖2
that’s even bigger than the one assumed in (8.21), and furthermore walking in 𝑣𝑗 cannot

542

reduce this gap to below that of (8.21) in the next step.

We now proceed with the formal details. First note that

𝛾
(𝑗)
𝑖 =

⟨̂︀δ𝑖,̂︀δ𝑖*⟩ · 𝛾(𝑗)𝑖* +
⟨︀
δ
⊥
𝑖 , 𝑣𝑗

⟩︀
. (8.29)

Now if ⟨̂︀δ𝑖,̂︀δ𝑖*⟩ ≤ 0, then by event 𝐶𝑗, 𝛾
(𝑗)
𝑖 ≤ ⟨δ⊥𝑖 , 𝑣𝑗⟩ ≤ 𝜈𝐶Δ

2𝑘−1/2 · ‖δ⊥𝑖 ‖2 < 𝛾
(𝑗)
𝑖* and we’d

be done. On the other hand, if ⟨̂︀δ𝑖,̂︀δ𝑖*⟩ > 0, then we get that

𝛾
(𝑗)
𝑖 ≤

⟨̂︀δ𝑖,̂︀δ𝑖*⟩ · 𝛾(𝑗)𝑖* + 𝜈𝐶Δ
2𝑘−1/2 · ‖δ⊥𝑖 ‖2.

In this case, to show the desired inequality (8.28), it would suffice to show that

𝛾
(𝑗)
𝑖*

(︁
1−

⟨̂︀δ𝑖,̂︀δ𝑖*⟩)︁ ≥ 𝜈𝐶Δ
2𝑘−1/2 · ‖δ⊥𝑖 ‖2.

In particular, because event 𝐴𝑗 holds so that 𝛾(𝑗)𝑖* ≥ 𝜈𝐴Δ𝑘
−1/4, we just need to show that

𝜈𝐴

(︁
1−

⟨̂︀δ𝑖,̂︀δ𝑖*⟩)︁ ≥ 𝜈𝐶Δ𝑘
−1/4 · ‖δ⊥𝑖 ‖2. (8.30)

After squaring both sides of (8.30), making the substitution ‖δ⊥𝑖 ‖22 = 1 −
⟨̂︀δ𝑖,̂︀δ𝑖*⟩2, and

rearranging, (8.30) becomes

𝜈2𝐴

(︁
1−

⟨̂︀δ𝑖,̂︀δ𝑖*⟩)︁2 − 𝜈2𝐶Δ2𝑘−1/2 ·
(︂
1−

⟨̂︀δ𝑖,̂︀δ𝑖*⟩2)︂ ≥ 0. (8.31)

This is merely a univariate inequality for a quadratic polynomial in
⟨̂︀δ𝑖,̂︀δ𝑖*⟩. Let 𝜈𝐶𝐴 ,

𝜈𝐶/𝜈𝐴. One can compute the smaller of the two zeros of the left-hand side of (8.31) and see

that the inequality is satisfied provided that
⟨̂︀δ𝑖,̂︀δ𝑖*⟩ is at most

1− 2𝜈2𝐶𝐴Δ
2𝑘−1/2

1 + 𝜈2𝐶𝐴Δ
2𝑘−1/2

≥ 1− 𝑎Del ·Δ2𝑘−1/2

for absolute constant 𝑎Del ,
2𝜈2𝐶𝐴

1+𝜈2𝐶𝐴Δ2𝑘−1/2 .

It remains to consider the case where
⟨̂︀δ𝑖,̂︀δ𝑖*⟩ ≥ 1− 𝑎Del ·Δ2𝑘−1/2. This is where we use

543

the fact that ‖δ𝑖− δ𝑖*‖2 = ‖𝑤𝑖−𝑤𝑖*‖2 ≥ Δ to argue that, even though (8.31) does not hold

and we cannot obtain (8.28), ‖δ𝑖*‖2 is so much smaller than ‖δ𝑖‖2 that, conditioned on the

event 𝐵𝑗[𝑖] for all 𝑗 ∈ [𝑀], ‖δ𝑖 − 𝜂𝑣𝑗‖2 is far larger than ‖δ𝑖* − 𝜂𝑣𝑗‖2 for any 𝑗.

First note that

Δ2 ≤ ‖δ𝑖 − δ𝑖*‖22 = ‖δ𝑖‖22 + ‖δ𝑖*‖22 − 2
⟨̂︀δ𝑖,̂︀δ𝑖*⟩ ‖δ𝑖‖2‖δ𝑖*‖2,

so

1− 𝑎Del
Δ2

√
𝑘
≤
⟨̂︀δ𝑖,̂︀δ𝑖*⟩

≤ 1

2

(︂
‖δ𝑖‖2
‖δ𝑖*‖2

+
‖δ𝑖*‖2
‖δ𝑖‖2

)︂
− Δ2

2‖δ𝑖‖2‖δ𝑖*‖2

≤ 1

2

(︂
‖δ𝑖‖2
‖δ𝑖*‖2

+
‖δ𝑖*‖2
‖δ𝑖‖2

)︂
− Δ2

𝑎scale
√
𝑘
,

where the second step follows by the original assumption in (8.20) that ‖δ𝑖‖2, ‖δ𝑖*‖2 ≤

𝑎scaleΔ
2/
√
𝑘 for some absolute constant 𝑎scale > 0. Recalling the relation between 𝑎Del and

𝜈2𝐶𝐴, we conclude that if we pick 𝜈2𝐶𝐴 < 1/𝑎scale, then we get that

1

2

(︂
‖δ𝑖‖2
‖δ𝑖*‖2

+
‖δ𝑖*‖2
‖δ𝑖‖2

)︂
≥ 1 + 𝛼

Δ2

√
𝑘

for absolute constant 𝛼 , 1
𝑎scale
−𝑎Del > 0, from which we conclude, by taking 𝛽 = 𝛼1/2Δ𝑘−1/4

in Fact 8.7.3, that

‖δ𝑖‖2 ≥
(︀
1 + 𝛼′Δ𝑘−1/4

)︀
‖δ𝑖*‖2 (8.32)

for 𝛼′ = 𝛼1/2/2 which is increasing in 𝛼 and therefore in 1/𝑎scale. But as we showed in

Claim 8.7.10,

‖δ𝑖 − 𝜂𝑣𝑗‖2 ≥
(︀
1− 𝛽Δ2𝑘−1/2

)︀
· ‖δ𝑖‖2 (8.33)

for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑀] if 𝐵𝑗[𝑖] holds. So by taking 𝑎scale sufficiently small relative to 𝛽, we

get from (8.32) and (8.33) that

‖δ𝑖 − 𝜂𝑣𝑗‖2 ≥
(︀
1− 𝛽Δ2𝑘−1/2

)︀
·
(︀
1 + 𝛼′Δ𝑘−1/4

)︀
‖δ𝑖*‖2 ≫

(︀
1 + 𝑐Δ2𝑘−1/2

)︀
‖δ𝑖*‖.

544

But because event 𝐶𝑗 involves 𝐴𝑗[𝑖*] happening, we certainly have that ‖δ𝑖*‖2 ≤ ‖δ𝑖*−𝜂𝑣𝑗‖22,

so we are done.

We now proceed to bound the probabilities of the events 𝐴𝑗[𝑖], 𝐵𝑗[𝑖], 𝐶𝑗. There are some

minor technical complications from the fact that we don’t have exact access to span({𝑤𝑖−𝑎𝑡})

which we address now.

Define 𝛼(𝑖)
svd , ‖Uδ𝑖‖2

‖δ𝑖‖2 . By the second part of Lemma 8.7.2, 1 − 𝛿samp ≤ 𝛼
(𝑖)
svd ≤ 1. First

note that for any 𝑖 ∈ [𝑘],

𝛾
(𝑗)
𝑖 = ⟨̂︀δ𝑖, 𝑣𝑗⟩ = ⟨𝑔,Uδ𝑖⟩

‖𝑔U‖2 · ‖δ𝑖‖2
=

⟨
𝑔

‖𝑔‖2
,
Uδ𝑖

‖δ𝑖‖2

⟩
= 𝛼

(𝑖)
svd

⟨
𝑔

‖𝑔‖2
,

Uδ𝑖

‖Uδ𝑖‖2

⟩
, (8.34)

where 𝑔 ∼ 𝒩 (0, Id𝑘) and the last step follows by the second part of Lemma 8.7.2. The

random variable
⟨

𝑔
‖𝑔‖2 ,

Uδ𝑖

‖Uδ𝑖‖2

⟩
is merely the correlation of a random unit vector with a fixed

unit vector; call this random variable 𝑋 (clearly it does not depend on the fixed vector).

We can now lower bound the probabilities of 𝐴𝑗[𝑖*] and 𝐵𝑗[𝑖].

Claim 8.7.12. For any 𝑗 ∈ [𝑀], Pr[𝐴𝑗[𝑖*]] ≥ 𝑒−𝑎trials
√
𝑘/Δ2 for some absolute constant

𝑎trials > 0.

Proof. By (8.34), Pr[𝐴𝑗[𝑖*]] ≥ Pr[𝑋 ≥ 𝜈𝐴Δ𝑘
−1/4]. By Corollary 1.3.19, Pr[𝑋 ≥ 𝜈𝐴𝑘

−1/4] ≥

𝑒−𝑎trials
√
𝑘/Δ2 for some 𝑎trials > 0.

Claim 8.7.13. For any 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑀], Pr[𝐵𝑗[𝑖]] ≥ 1− 𝑒−𝑎trials
√
𝑘/Δ2 for some absolute

constant 𝑎trials > 𝑎trials.

Proof. By (8.34), Pr[𝐵𝑗[𝑖
*]] ≥ Pr[𝑋 ≤ 𝜈𝐵Δ𝑘

−1/4]. If we take 𝛿samp = 1/poly(𝑘) sufficiently

small, then because 𝜈𝐵 > 𝜈𝐴, we conclude by Corollary 1.3.19 that Pr[𝑋 ≤ 𝜈𝐵Δ𝑘
−1/4] ≥

1− 𝑒−𝑎trials
√
𝑘/Δ2 for some 𝑎trials > 𝑎trials.

We next lower bound the probability of event 𝐶𝑗 relative to that of 𝐴𝑗[𝑖*]. Equivalently,

provided 𝐴𝑗[𝑖
*] happens, we lower bound the conditional probability that the gap of (8.21)

is preserved. In this proof, we would like to use the fact that δ
⊥
𝑖 is orthogonal to ̂︀δ𝑖* for all

𝑖 ̸= 𝑖* to argue that ⟨𝑔U, δ⊥𝑖 ⟩ and ⟨𝑔U, δ𝑖*⟩ are independent. Again, this is only true if U is

545

exactly the projector to the span of {𝑤𝑖 − 𝑎𝑡}, and we need to argue that it suffices to take

U an approximation to that projector.

Claim 8.7.14. For any 𝑗 ∈ [𝑀], Pr[𝐶𝑗] ≥ 1
poly(𝑘)

Pr[𝐴𝑗[𝑖*]].

Proof. Let 𝑣 = 𝑔/‖𝑔‖2 ∈ R𝑘. Analogous to (8.34), we can define 𝛽(𝑖)
svd , ‖Uδ

⊥
𝑖 ‖2

‖δ⊥𝑖 ‖2
∈ [1−𝛿samp, 1]

and write

1

‖δ⊥𝑖 ‖2
⟨δ⊥𝑖 , 𝑣𝑗⟩ =

⟨𝑔,Uδ
⊥
𝑖 ⟩

‖𝑔U‖2 · ‖δ⊥𝑖 ‖2
=

⟨
𝑔

‖𝑔‖2
,
Uδ

⊥
𝑖

‖δ⊥𝑖 ‖2

⟩
= 𝛽

(𝑖)
svd

⟨
𝑣,

Uδ
⊥
𝑖

‖Uδ
⊥
𝑖 ‖2

⟩
, (8.35)

Define 𝜌 ,
⟨
Uδ

⊥
𝑖 ,

Uδ𝑖*
‖Uδ𝑖*‖2

⟩
. By the first part of Lemma 8.7.2, if we take 𝛿samp < 1/𝑘100, then

|⟨Uδ
⊥
𝑖 ,Uδ𝑖*⟩| ≤ 1/𝑘100‖δ𝑖*‖2‖δ⊥𝑖 ‖2,

so we conclude that

|𝜌| ≤ 1/𝑘100‖δ𝑖*‖2‖δ⊥𝑖 ‖2
‖Uδ𝑖*‖2

≤ 2(1/𝑘100)‖δ⊥𝑖 ‖2. (8.36)

So we may write

Uδ
⊥
𝑖 = 𝜌 · Uδ𝑖*

‖Uδ𝑖*‖2
+ 𝑣′

for 𝑣′ ∈ R𝑘 lying in the row span of U and orthogonal to Uδ𝑖* .

By Corollary 1.3.20, for any absolute constant 𝑎perp > 0, with probability at least

1

poly(𝑘)
Pr
[︂
⟨𝑣,Û︀δ𝑖*⟩ ≥ 𝜈𝐴Δ𝑘

−1/4

(1− 𝛿samp)

]︂
≥ 1

poly(𝑘)
Pr [𝐴𝑗[𝑖*]] ,

we have that ⟨
𝑣,

Û︀δ𝑖*
‖Û︀δ𝑖*‖2

⟩
≥ 𝜈𝐴Δ𝑘

−1/4

(1− 𝛿samp)
and ⟨𝑣, 𝑣′⟩ ≤ 𝑎perpΔ

2𝑘−1/2‖𝑣′‖2. (8.37)

In particular, if this happens, then by (8.34) we get that

⟨𝑣,̂︀δ𝑖*⟩ ≥ 𝛼
(𝑖)
svd

⟨
𝑣,Û︀δ𝑖*⟩ ≥ 𝜈𝐴Δ𝑘

−1/4

546

and by (8.35),

1

‖δ⊥𝑖 ‖2
⟨δ⊥𝑖 , 𝑣𝑗⟩ = 𝛽

(𝑖)
svd

⟨
𝑣,

Uδ
⊥
𝑖

‖Uδ
⊥
𝑖 ‖2

⟩
≤ 𝛽

(𝑖)
svd

‖Uδ
⊥
𝑖 ‖2

(𝜌+ ⟨𝑣, 𝑣′⟩)

≤ 𝛽
(𝑖)
svd

‖Uδ
⊥
𝑖 ‖2

(︀
2(1/𝑘100)‖δ⊥𝑖 ‖2 + 𝑎perpΔ𝑘

−1/4‖δ⊥𝑖 ‖2
)︀

= 2(1/𝑘100) + 𝑎perpΔ𝑘
−1/4 < 2𝑎perpΔ𝑘

−1/4,

where in the third step we used (8.36), the bound on ⟨𝑣, 𝑣′⟩ in the event that (8.37) holds,

and the fact that ‖𝑣′‖2 ≤ ‖Uδ
⊥
𝑖 ‖2 ≤ ‖δ⊥𝑖 ‖2. So by taking 𝑎perp sufficiently small, we con-

clude that event 𝐶𝑗 occurs in the event that (8.37) holds, which is with probability at least
1

poly(𝑘)
Pr[𝐴𝑗[𝑖*]].

Next, we would like to show that for any 𝑗 ∈ [𝑀], if we condition on the events 𝐵𝑗[𝑖]

holding for all 𝑖 ∈ [𝑘], then the conditional probability of 𝐴𝑗[𝑖] is not much more than that of

𝐴𝑗[𝑖
*]. Note that by rotational invariance, these conditional probabilities would be identical

if U were exactly the projector to the span of {𝑤𝑖−𝑎𝑡}, and here it is straightforward to see

that it suffices to take U a sufficiently good approximation to that projector.

Claim 8.7.15. For any 𝑗 ∈ [𝑀] and 𝑖 ̸= 𝑖*, if 𝛿samp = 1/poly(𝑘) is sufficiently small,

Pr[𝐴𝑗[𝑖] ∧𝐵𝑗] ≤ 𝑘 · Pr[𝐴𝑗[𝑖*] ∧𝐵𝑗].

Proof. By (8.34), we conclude that

Pr[𝐴𝑗[𝑖] ∧𝐵𝑗]

Pr[𝐴𝑗[𝑖*] ∧𝐵𝑗]
≤ Pr[𝜈𝐴Δ𝑘−1/4/𝛼

(𝑖)
svd ≤ 𝑋 ≤ 𝜈𝐵Δ𝑘

−1/4/𝛼
(𝑖)
svd]

Pr[𝜈𝐴Δ𝑘−1/4/𝛼
(𝑖*)
svd ≤ 𝑋 ≤ 𝜈𝐵Δ𝑘−1/4/𝛼

(𝑖*)
svd]

.

which can be upper bounded by 𝑘 by taking a sufficiently small 𝛿samp = 1/poly(𝑘).

We can now put all of these probability bounds together to show that if CompareM-

inVariances succeeds and outputs true on some direction 𝑣, the conditional probability

that the gap of (8.21) has been preserved is at least 1/poly(𝑘).

547

Claim 8.7.16. Let 𝐵𝑣 be the event that Pr[⟨̂︀δ𝑖, 𝑣⟩] ≤ 𝜈𝐵Δ𝑘
−1/4 for all 𝑖 ∈ [𝑘]. Let detect− progress𝑣

be the event that 𝐵𝑣 occurs and additionally that CompareMinVariances succeeds and out-

puts True on direction 𝑣. Let gap− preserved𝑣 be the event that 𝐵𝑣 occurs and additionally

‖δ𝑖 − 𝜂𝑣‖2 ≥
(︀
1 + 𝑐Δ2𝑘−1/2

)︀
· ‖δ𝑖* − 𝜂𝑣‖2 for all 𝑖 ̸= 𝑖*. Then

Pr
𝑣
[gap− preserved𝑣 | detect− progress𝑣] ≥

1

poly(𝑘)

Proof. For every 𝑖 ∈ [𝑘], let 𝑆𝑖 denote the set of all 𝑣 for which 𝐵𝑣 occurs, CompareM-

inVariances succeeds and outputs True on direction 𝑣, and ‖δ𝑖′ − 𝜂𝑣‖2 ≥
(︀
1 + 𝑐Δ2𝑘−1/2

)︀
·

‖δ𝑖 − 𝜂𝑣‖2 for all 𝑖′ ̸= 𝑖.

To show the claim, it suffices to lower bound the quantity

Pr𝑣[𝑆𝑖*]

Pr𝑣
[︁⋃︀𝑘

𝑖=1 𝑆𝑖

]︁ ≥ Pr𝑣[𝑆𝑖*]∑︀𝑘
𝑖=1 Pr𝑣[𝑆𝑖]

,

where the probabilities are over 𝑣 distributed as 𝑔U
‖𝑔U‖2 for 𝑔 ∼ 𝒩 (0, Id𝑘), and where the

inequality follows by a union bound. Fix any 𝑗 ∈ [𝑀]. By Corollary 8.7.9, if 𝑣 ∈ 𝑆𝑖, then

it is part of event (𝐴𝑗[𝑖] ∧ 𝐵𝑗). By Corollary 8.7.8 and Lemma 8.7.11, if 𝑣 is part of event

(𝐶𝑗 ∧𝐵𝑗), then 𝑣 ∈ 𝑆𝑖* . We conclude that

Pr𝑣[𝑆𝑖*]

Pr𝑣
[︁⋃︀𝑘

𝑖=1 𝑆𝑖

]︁ ≥ Pr[𝐶𝑗 ∧𝐵𝑗]∑︀𝑘
𝑖=1 Pr[𝐴𝑗[𝑖] ∧𝐵𝑗]

≥
1
2
Pr[𝐴𝑗[𝑖*] ∧𝐵𝑗]∑︀𝑘
𝑖=1 Pr[𝐴𝑗[𝑖] ∧𝐵𝑗]

≥ 1/poly(𝑘)

1 + 𝑘(𝑘 − 1)
=

1

poly(𝑘)
,

where the second step follows from Claim 8.7.14 and the third step follows from Claim 8.7.15.

We are now ready to finish the proof of Lemma 8.7.4. First, condition on the event that all

𝑀 runs of CompareMinVariances are successful, which happens with probability at least

1−𝛿/3. The probability that 𝐵𝑗[𝑖] holds for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑀] is at least 1−𝑘𝑀𝑒−𝑎trials
√
𝑘/Δ2 ,

by Claim 8.7.13. Condition on this happening. The probability that detect− progress𝑣𝑗

occurs for some 𝑗 ∈ [𝑀] is at least the probability that 𝐴𝑗[𝑖*] occurs for some 𝑗 ∈ [𝑀], and

this is at least 1−
(︁
1− 𝑒−𝑎trials

√
𝑘/Δ2

)︁𝑀
≥ 1− 𝑒−𝑀𝑒−𝑎trials

√
𝑘/Δ2

by Claim 8.7.12. So by taking

𝑀 = 𝑒−𝑎trials
√
𝑘/Δ2

ln(3/𝛿), by a union bound we conclude that with probability at least 1−𝛿,

548

every run of CompareMinVariances succeeds, 𝐵𝑗[𝑖] holds for every 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑀], and

furthermore there is some 𝑗 for which detect− progress𝑣𝑗 occurs.

If detect− progress𝑣𝑗 occurs for some 𝑗, then for that particular 𝑗, gap− preserved𝑣𝑗 holds

with probability at least 1/poly(𝑘).

8.7.2 Initializing With a Gap

A key assumption in Lemma 8.7.4 is that there is a gap between ‖𝑤𝑖* − 𝑎𝑡‖2 and all other

‖𝑤𝑖 − 𝑎𝑡‖2. We next show that this assumption can be made to hold when 𝑡 = 0. The

high-level structure of the proof will be very similar to that of Lemma 8.7.11.

Lemma 8.7.17. There is a constant 𝜏 ′gap > 0 such that for all 𝑐′ < 𝜏 ′gap, the following holds

for any sufficiently small 𝜐* = poly(Δ, 1/𝑘).

Fix any 𝑖* ∈ [𝑘] and suppose that ‖𝑤𝑖*‖2 ≥ 𝜎 for some 𝜎 > 0. Let

𝒮 , {𝜎 · 𝑘1/4, 𝜎 · (1 + 𝜐*) · 𝑘1/4, 𝜎 · (1 + 𝜐*)
2 · 𝑘1/4, ..., 𝑘1/4}. (8.38)

Then any 𝑖 ̸= 𝑖* and 𝑣 ∈ R𝑑, let ℰ𝑣[𝑖] denote the event that

‖𝑤𝑖 − 𝑣‖22 ≥
(︂
1 + 𝑐′ · Δ

2

√
𝑘

)︂
· ‖𝑤𝑖* − 𝑣‖22

and define ℰ𝑣 to be the event that ℰ𝑣[𝑖] occurs simultaneously for all 𝑖 ̸= 𝑖*. There exists

𝛼 ∈ 𝒮 for which

Pr
‖𝑣‖2=𝛼

[ℰ𝑣] ≥ exp(−𝑂(
√
𝑘/Δ2)),

where the probability is over 𝑣 a Haar-random vector in R𝑑 with norm 𝛼.

Proof. By design, there must exist an 𝛼 ∈ 𝒮 for which 𝛼 = (1 + 𝜐) · ‖𝑤𝑖*‖2 · 𝑘1/4 for

𝜐 ∈ [−𝜐*, 𝜐*]. Let 𝑣 be a random vector with norm 𝛼.

Define ̂︀𝑤𝑖 = 𝑤𝑖/‖𝑤𝑖‖2. For every 𝑖 ̸= 𝑖*, define 𝑤⊥
𝑖 , ̂︀𝑤𝑖 − ⟨ ̂︀𝑤𝑖* , ̂︀𝑤𝑖⟩ ̂︀𝑤𝑖* . Finally,

repurposing notation from the proof of Lemma 8.7.4, let 𝛾𝑖 = ⟨ ̂︀𝑤𝑖, 𝑣/‖𝑣‖2⟩. Also, let

549

𝜌𝑖 , ‖𝑤𝑖‖2/‖𝑤𝑖*‖2. Under this notation, we see that

‖𝑤𝑖 − 𝑣‖22
‖𝑤𝑖* − 𝑣‖22

=
‖𝑤𝑖‖22 + 𝛼2 − 2𝛼𝛾𝑖‖𝑤𝑖‖2
‖𝑤𝑖*‖22 + 𝛼2 − 2𝛼𝛾𝑖*‖𝑤𝑖*‖2

=
𝜌2𝑖 + (1 + 𝜐)2

√
𝑘 − 2(1 + 𝜐)𝜌𝑖𝑘

1/4𝛾𝑖

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)𝑘1/4𝛾𝑖*

. (8.39)

Using similar terminology as in the proof of Lemma 8.7.4, define the following two types

of events over the random vector 𝑣:

1. Let 𝐵[𝑖] be the event that 𝛾𝑖 ≤ 𝑘−1/4 · (1 + 𝑐Δ2) for some absolute constant 𝑐 > 0.

2. Let 𝐶 be the event that 𝛾𝑖* ≥ 𝑘−1/4 and ⟨𝑣, 𝑤⊥
𝑖 ⟩ ≤ 𝜈perp𝑘

−1/2‖𝑤⊥
𝑖 ‖2 for all 𝑖 ̸= 𝑖*, for

some absolute constant 𝜈perp.

The main step will be to show that these events imply ℰ𝑣.

Claim 8.7.18. Let 𝑖 ̸= 𝑖*. If events 𝐵[𝑖] and 𝐶 occur, then ℰ𝑣[𝑖] occurs.

Proof. Henceforth, condition on 𝐵[𝑖], 𝐵[𝑖*], and 𝐶 occurring.

There are two cases to consider: either ‖𝑤𝑖*‖2 and ‖𝑤𝑖‖2 are quite different, or they are

relatively similar.

It turns out that our choice 𝛼 = (1 + 𝜐) · ‖𝑤𝑖*‖2 · 𝑘1/4 will allow us to handle the former

case quite easily. Indeed, we first show that if ‖𝑤𝑖‖2 is not (1±𝑂(Δ))-close to ‖𝑤𝑖*‖2, then

ℰ𝑣[𝑖] occurs.

Claim 8.7.19. Define the interval

ℐ ,
[︀
1− 2𝑐1/2Δ, 1 + 2𝑐1/2Δ

]︀
.

Then
‖𝑤𝑖 − 𝑣‖22
‖𝑤𝑖* − 𝑣‖22

≥ 1 +
𝑐Δ2

√
𝑘
.

550

Proof. From (8.39) and events 𝐵[𝑖] and 𝐶 we get

‖𝑤𝑖 − 𝑣‖22
‖𝑤𝑖* − 𝑣‖22

≥ 𝜌2𝑖 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)(1 + 𝑐Δ2)𝜌𝑖

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)

. (8.40)

If we define 𝜌′𝑖 = 𝜌𝑖 − 1, we can rewrite (8.40) as

1 +
2𝜌′𝑖 + 𝜌′2𝑖 − 2𝑐Δ2(1 + 𝜐)− 2(1 + 𝜐)(1 + 𝑐Δ2)𝜌′𝑖

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)

= 1 +
𝜌′2𝑖 − 2𝑐Δ2(1 + 𝜐)− 2(𝜐 + 𝑐Δ2 + 𝑐𝜐Δ2)𝜌′𝑖

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)

.

For 𝜐 = poly(Δ, 1/𝑘) sufficiently small, note that if 𝜌′2𝑖 ≥ 4𝑐Δ2, then the numerator is at

least 𝑐Δ2. And for such an 𝜐,

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐) ≤

√
𝑘, (8.41)

completing the proof of the claim.

Next we show that if ‖𝑤𝑖‖2 is (1±𝑂(Δ))-close to ‖𝑤𝑖*‖2 and furthermore 𝑣 is significantly

more correlated with ̂︀𝑤𝑖* than with any other ̂︀𝑤𝑖, then ℰ𝑣[𝑖] occurs.

Claim 8.7.20. Let 𝑖 ̸= 𝑖*. If 𝜌𝑖 ∈ ℐ and

𝛾𝑖 ≤ 𝛾𝑖*(1− 𝜔) (8.42)

for 𝜔 , 2𝑐2Δ4 + 𝑐Δ2, then if events 𝐵[𝑖], 𝐵[𝑖*], 𝐶 all occur, then

‖𝑤𝑖 − 𝑣‖22
‖𝑤𝑖* − 𝑣‖22

≥ 1 +
𝑐Δ2

√
𝑘
.

Proof. From (8.39) and (8.42) we get that

‖𝑤𝑖 − 𝑣‖22
‖𝑤𝑖* − 𝑣‖22

≥ 𝜌2𝑖 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)𝜌𝑖𝑘

1/4𝛾𝑖*(1− 𝜔)
1 + (1 + 𝜐)2

√
𝑘 − 2(1 + 𝜐)𝑘1/4𝛾𝑖*

551

=
𝜌2𝑖 + (1 + 𝜐)2

√
𝑘 − 2(1 + 𝜐)𝜌𝑖𝑘

1/4𝛾𝑖*

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)𝑘1/4𝛾𝑖*

+
2𝜔(1 + 𝜐)𝜌𝑖𝑘

1/4𝛾𝑖*

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)𝑘1/4𝛾𝑖*

.(8.43)

Next, note that the quantity 𝜌2𝑖 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)𝜌𝑖𝑘

1/4𝛾𝑖* , as a function of 𝜌𝑖, is

minimized by 𝜌𝑖 = (1 + 𝜐) · 𝑘1/4𝛾𝑖* , in which case it equals

(1 + 𝜐)2
√
𝑘 · (1− 𝛾2𝑖*).

We conclude that the first of the two terms in (8.43) is at least

(1 + 𝜐)2
√
𝑘 · (1− 𝛾2𝑖*)

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)𝑘1/4𝛾𝑖*

= 1− (1− (1 + 𝜐)𝑘1/4𝛾𝑖*)
2

1 + (1 + 𝜐)2
√
𝑘 − 2(1 + 𝜐)𝑘1/4𝛾𝑖*

.

Recall that because of event 𝐵[𝑖*], we know 𝛾𝑖* ≤ 𝑘−1/4(1 + 𝑐Δ2), so

(1− (1 + 𝜐)𝑘1/4𝛾𝑖*)
2 ≤ (|𝜐|+ 𝑐Δ2 − 𝑐|𝜐|Δ2)2 ≤ 2𝑐2Δ4 (8.44)

for 𝜐 sufficiently small. On the other hand, the numerator of the second of the two terms in

(8.43) is

2𝜔(1 + 𝜐)𝜌𝑖𝑘
1/4𝛾𝑖* ≥ 𝜔, (8.45)

because 𝛾𝑖* ≥ 𝑘−1/4 by event 𝐶, and because (1 + 𝜐)𝜌𝑖 ≥ 1/2 when 𝜐 is sufficiently small

and 𝜌𝑖 ∈ ℐ. We conclude from (8.41), (8.43), (8.44), and (8.45) that

‖𝑤𝑖 − 𝑣‖22
‖𝑤𝑖* − 𝑣‖22

≥ 1 +
𝜔 − 2𝑐2Δ4

√
𝑘

.

In particular, if we took 𝜔 = 2𝑐2Δ4+ 𝑐Δ2, then again we would have ‖𝑤𝑖−𝑣‖22
‖𝑤𝑖*−𝑣‖22

≥ 1+ 𝑐Δ2
√
𝑘
.

Finally, we show that if 𝜌𝑖 ∈ ℐ, then events 𝐵[𝑖] and 𝐶 imply (8.42). We proceed in a

manner similar to the proof of (8.28) in Lemma 8.7.11. As with that proof, the intuition is

that if the normalized vectors ̂︀𝑤𝑖 and ̂︀𝑤𝑖* are somewhat separated on the unit sphere, then

the upper bound on ⟨𝑣, 𝑤⊥
𝑖 ⟩ will ensure the existence of a sizable cone around 𝑤𝑖* for which

any 𝑣 inside that cone is much closer to 𝑤𝑖* than to 𝑤𝑖. And if instead ̂︀𝑤𝑖 and ̂︀𝑤𝑖* are not

separated, the fact that their non-normalized counterparts 𝑤𝑖 and 𝑤𝑖* are separated implies

552

that ̂︀𝑤𝑖 and ̂︀𝑤𝑖* are nearly collinear and thus too separated for 𝜌𝑖 ∈ ℐ to hold.

Claim 8.7.21. Let 𝑖 ̸= 𝑖*. If 𝜌𝑖 ∈ ℐ and events 𝐵[𝑖] and 𝐶 occur, then (8.42) must hold.

Proof. As with (8.29), note that

𝛾𝑖 = ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩+ ⟨︀𝑤⊥
𝑖 , 𝑣
⟩︀
.

Now if ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ ≤ 0, then by event 𝐶, 𝛾𝑖 ≤ ⟨𝑤⊥
𝑖 , 𝑣⟩ ≤ 𝜈perp𝑘

−1/2‖𝑤⊥
𝑖 ‖2 ≪ 𝛾𝑖*(1 − 𝜔), and

we’d be done. On the other hand, if ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ > 0, then we get that

𝛾𝑖 ≤ ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩+ 𝜈perp𝑘
−1/2‖𝑤⊥

𝑖 ‖2.

In this case, to show the desired inequality (8.42), it would suffice to show that

𝛾𝑖* (1− 𝜔 − ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩) ≥ 𝜈perp𝑘
−1/2‖𝑤⊥

𝑖 ‖2.

In particular, because 𝛾𝑖* ≥ 𝑘−1/4, we just need to show that

1− 𝜔 − ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ ≥ 𝜈perp𝑘
−1/4‖𝑤⊥

𝑖 ‖2. (8.46)

After squaring both sides of (8.46), making the substitution ‖𝑤⊥
𝑖 ‖22 = 1 −

⟨︀
𝑤⊥
𝑖 , 𝑤

⊥
𝑖*

⟩︀2, and

rearranging, (8.46) becomes

(1− 𝜔 − ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩)2 − 𝜈2perp𝑘
−1/2 ·

(︁
1−

⟨︀
𝑤⊥
𝑖 , 𝑤

⊥
𝑖*

⟩︀2)︁ ≥ 0 (8.47)

This is merely a univariate inequality for a quadratic polynomial in ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩. The roots of

this polynomial are given by

⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ = 1− 𝜔 ±
√︁

𝜈4perp
𝑘

+
2𝜈2perp𝜔√

𝑘
− 𝜈2perp𝜔

2

√
𝑘

1 + 𝜈2perp/
√
𝑘

.

553

Observe that√︃
𝜈4perp

𝑘
+

2𝜈2perp𝜔√
𝑘
−
𝜈2perp𝜔

2

√
𝑘

= 𝜔 ·

√︃(︂
1 +

𝜈2perp

𝜔
√
𝑘

)︂2

−
(︂
1 +

𝜈2perp√
𝑘

)︂

≤ 𝜔 ·

√︃
2𝜈2perp

𝜔
√
𝑘

+
𝜈4perp

𝜔2𝑘
≤ 2𝜈perp · 𝜔1/2

𝑘1/4
≤ 𝑎arb𝜔,

where the last step holds for any absolute constant 𝑎arb > 0 for sufficiently large 𝑘. We see

that the inequality (8.47) is satisfied provided that ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ lies outside the interval

𝒥 ,

[︃
1− (1 + 𝑎arb)𝜔

1 + 𝜈2perp/
√
𝑘
,
1− (1− 𝑎arb)𝜔

1 + 𝜈2perp/
√
𝑘

]︃
⊂ [1− (1 + 2𝑎arb)𝜔, 1− (1− 2𝑎arb)𝜔] .

It remains to show that under the hypotheses of the claim, we cannot have ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ ∈ 𝒥 .

This is where we will crucially use the fact that ‖𝑤𝑖 − 𝑤𝑖*‖2 ≥ Δ.

Suppose to the contrary that ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ ∈ 𝒥 . In particular, this implies

⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ ≥ 1− (1 + 2𝑎arb)𝜔.

Now note that

Δ2 ≤ ‖𝑤𝑖 − 𝑤𝑖*‖22 = ‖𝑤𝑖‖22 + ‖𝑤𝑖*‖22 − 2⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩‖𝑤𝑖‖2‖𝑤𝑖*‖2,
so

1− (1 + 2𝑎arb)𝜔 ≤ ⟨ ̂︀𝑤𝑖, ̂︀𝑤𝑖*⟩ ≤ 1

2
(𝜌𝑖 + 1/𝜌𝑖)−

Δ2

2‖𝑤𝑖‖2‖𝑤𝑖*‖2
≤ 1

2
(𝜌𝑖 + 1/𝜌𝑖)−Δ2/2.

For 𝑐 sufficiently small, Δ2/2− (1 + 2𝑎arb)𝜔 ≥ Δ2/4, so by taking 𝛽 = Δ/2 in Fact 8.7.3 we

conclude that 𝜌𝑖 ̸∈ [1−Δ/4, 1+Δ/4]. We get a contradiction upon noting that if 2𝑐1/2 < 1/4,

then 𝜌𝑖 ̸∈ ℐ.

The proof of Claim 8.7.18 now follows. Take 𝜏 ′gap = 𝑐 in the statement of Lemma 8.7.17.

Then for every 𝑖 ̸= 𝑖*, either 𝜌𝑖 ∈ ℐ, in which case we are done by Claim 8.7.19. Otherwise,

𝜌𝑖 ̸∈ ℐ, in which case Claim 8.7.21 implies (8.42) holds, and then we are done by Claim 8.7.21.

554

To complete the proof, we must show that the probability that 𝐵[𝑖] and 𝐶 occur simulta-

neously for all 𝑖 ∈ [𝑘] is at least exp(−𝑂(
√
𝑘/Δ2)). The proofs for these facts are essentially

identical to those of Claims 8.7.12, 8.7.13, and 8.7.14 in the proof of Lemma 8.7.4, so we

omit them.

Claim 8.7.22. For any 𝑖 ∈ [𝑘], Pr[𝐵[𝑖]] ≥ 1− 𝑒−𝑎
√
𝑘/Δ2 for some absolute constant 𝑎 > 0.

Claim 8.7.23. For any 𝑖 ∈ [𝑘], Pr[𝐶] ≥ 1
poly(𝑘)

𝑒−𝑎
√
𝑘/Δ2 for some absolute constant 𝑎 > 0

such that 𝑎− 𝑎 is nonnegative and strictly increasing in Δ.

Lemma 8.7.17 now follows by a union bound: the probability that all 𝐵[𝑖] occur is at

least 1− 𝑘 · 𝑒−𝑎
√
𝑘/Δ2 , and the probability that 𝐶 occurs is 1

poly(𝑘)
𝑒−𝑎

√
𝑘/Δ2 , so the probability

all of these events occur is at least 1
poly(𝑘)

𝑒−𝑎
√
𝑘/Δ2 − 𝑘 · 𝑒−𝑎

√
𝑘/Δ2

= exp(−𝑂(
√
𝑘2/Δ)), and

then we are done by Claim 8.7.18.

Lastly, we remark that Lemma 8.7.17 only applies to 𝑤𝑖* for which ‖𝑤𝑖*‖2 ≥ 𝜎. We

could for instance take 𝜎 = 𝜀/4 and this would not affect the asymptotics of our runtime.

Now for regressors 𝑤𝑖 whose norm is less than 𝜀/4, we can simply output an arbitrary vector

𝑎 of norm 𝜀/4 as an 𝜀/2-close estimate, by triangle inequality. We can also easily check

whether there is indeed such a short regressor 𝑤𝑖, e.g. by estimating the minimum variance

of the univariate mixture ℱ given by sampling (𝑥, 𝑦) ∼ 𝒟 and computing 𝑦 − ⟨𝑎, 𝑥⟩ (see

CheckOutcome).

8.7.3 Algorithm Specification

We are now ready to describe our algorithm LearnWithNoise for learning all components

of 𝒟. The key subroutines are:

• OptimisticDescent (Algorithm 33): the pseudocode for this is nearly identical to

that of FourierMomentDescent, except OptimisticDescent additionally takes

as input an initialization, has a different output guarantee, and has slightly different

parameters which are tuned to fit the regime of Lemma 8.7.4.

555

• CheckOutcome (Algorithm 35): CheckOutcome is used to check whether a given

estimate is close to any regressor of 𝒟. This only needs to be used to check whether

there exists a short regressor, as discussed at the end of the previous Section 8.7.2.

8.7.4 Proof of Correctness

We first give a proof of correctness for CheckOutcome.

Lemma 8.7.24. Let 𝑣 ∈ S𝑑−1 and 𝒟 be a mixture of linear regressions with noise rate

𝜍 > Δ𝑝3min, and let 𝜀 > 2𝜍. If there is some component 𝑣𝑖* for which ‖𝑣 − 𝑣𝑖*‖2 ∈ [−𝜀, 𝜀],

then CheckOutcome(𝒟, 𝑣, 𝜀, 𝛿) (Algorithm 37) returns True with probability at least 1− 𝛿.

Otherwise, if ‖𝑣 − 𝑣𝑖‖2 > 2𝜀 for all 𝑖 ∈ [𝑘], then CheckOutcome returns False with

probability at least 1− 𝛿. Furthermore, CheckOutcome has time and sample complexity

̃︀𝑂 (︁𝑘𝑝−4
min ln(1/𝛿) · poly (ln(1/𝑝min), ln(1/Δ))ln(1/𝑝min)

)︁
.

Proof. As usual, ℱ is a mixture of univariate Gaussians with variances {𝜍2+ ‖𝑤𝑖− 𝑣‖22}. By

Corollary 8.5.8,

𝜎* ∈ [0.92, 1.12] · (min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑣‖22 + 𝜍2).

If min𝑖∈[𝑘]‖𝑤𝑖 − 𝑣‖22 ≤ 𝜀2, then we have that

(𝜎*)2 ≤ 1.12
(︀
𝜀2 + 𝜍2

)︀
≤ 1.21 · (1 + 1/4)𝜀2 ≤ 2𝜀2.

If min𝑖∈[𝑘]‖𝑤𝑖 − 𝑣‖22 ≥ 4𝜀2, then we have that

(𝜎*)2 ≥ 0.92
(︀
4𝜀2 + 𝜍2

)︀
≥ 0.92 · 4𝜀2 ≥ 3𝜀2,

which completes the proof.

We can now prove correctness of LearnWithNoise.

Lemma 8.7.25. Let 𝑎noise > 0 be the constant defined in Lemma 8.7.4, and let 𝜀 > 0. Let

𝒟 be a mixture of spherical linear regressions with mixing weights {𝑝𝑖}, directions {𝑤𝑖},

556

Algorithm 33: OptimisticDescent(𝒟, 𝑎0, 𝛿)
Input: Sample access to mixture of linear regressions 𝒟 with noise rate

𝜍2 < 𝑎noise · 𝜀2, initial vector 𝑎0 ∈ R𝑑, 𝛿 > 0
Output: 𝑎𝑇 ∈ R𝑑 such that ‖𝑤𝑖* − 𝑎𝑇‖2 ≤ 𝜀 with probability at least 1− 𝛿 and,

with probability at least exp(− ̃︀𝑂(√𝑘/Δ2)), additionally ℰ𝑎𝑇 [𝑖*] holds with
probability exp(− ̃︀𝑂(√𝑘/Δ2)) provided ℰ𝑎0 [𝑖*] holds for some 𝑖* ∈ [𝑘]

1 𝑇 ← Ω(
√
𝑘 · ln(1/𝜀)).

2 𝛿′ ← 𝛿
4𝑇

.
3 𝑀 ← 𝑒−𝑎trials

√
𝑘/Δ2

ln(3/𝛿).
4 𝛿′′ ← 𝛿

4𝑀𝑇
.

5 𝜎 ← 𝑎scale · 𝑘−1/4.
6 𝜎 ← 𝜀/3.
7 for 𝑡 = 0 to 𝑇 − 1 do
8 Let ℱ𝑡 be the univariate mixture of Gaussians which can be sampled from by

drawing (𝑥, 𝑦) ∼ 𝒟 and computing 𝑦 − ⟨𝑥, 𝑎𝑡⟩.
9 𝑝← 20 ln

(︁
3

2𝑝min

)︁
+ 1.

10 𝜅1 ← (𝛽′ − 3𝑐/2)Δ2𝑘−1/2, 𝜅2 ← (𝛽′ − 𝑐/2)Δ2𝑘1/2

11 𝜎sharp
𝑡 ← EstimateMinVariance(ℱ𝑡, 𝜎, 𝜎, 𝑝, 𝛿′). // Algorithm 29

12 if 𝜎sharp
𝑡 < 0.99𝜀 then

13 return 𝑎𝑡.

14 Draw 𝑁1 , ̃︀Ω(︁ 𝜎2

(𝜎sharp
𝑡)2

· 𝑝−2
min · poly(𝑘) · 𝑑 · ln(𝑘/𝛿′)

)︁
i.i.d. samples {(𝑥𝑖, 𝑦𝑖)}𝑖∈[𝑁]

from 𝒟 and form the matrix ̂︁M(𝑁)
𝑎𝑡 .

15 𝑈𝑡 ← ApproxBlockSVD (̂︁M(𝑁)
𝑎𝑡 , 1/poly(𝑘)) // Lemma 8.5.11

16 for 𝑗 ∈ [𝑀] do

17 Sample 𝑔(𝑗)𝑡 ∼ N(0, Id𝑘) and define 𝑣(𝑗)𝑡 =
𝑈𝑡𝑔

(𝑗)
𝑡

‖𝑈𝑡𝑔
(𝑗)
𝑡 ‖2
∈ S𝑑−1.

18 𝑎′
(𝑗)
𝑡 ← 𝑎𝑡 + 𝜂𝑡𝑣𝑗 for 𝜂𝑡 , 𝑎LR ·Δ · 𝜎sharp

𝑡 · 𝑘−1/4

19 Let ℱ ′(𝑗)
𝑡 be the univariate mixture of Gaussians which can be sampled from

by drawing (𝑥, 𝑦) ∼ 𝒟 and computing 𝑦 − ⟨𝑥, 𝑎′(𝑗)𝑡 ⟩.
20 if CompareMinVariances(ℱ𝑡,ℱ ′(𝑗)

𝑡 , 𝜎, 𝜎, 𝜅1, 𝜅2, 𝛿
′′) = True then

21 𝑎𝑡+1 ← 𝑎′
(𝑗)
𝑡

22 Break

23 return 𝑎𝑇 .

557

Algorithm 34: LearnWithNoise(𝒟, 𝛿, 𝜀)
Input: Sample access to mixture of linear regressions 𝒟 with regressors {𝑤1, ..., 𝑤𝑘}

and separation Δ and noise rate 𝜍, failure probability 𝛿, error 𝜀 < Δ/4
Output: List of vectors ℒ , { ̃︀𝑤1, ..., ̃︀𝑤𝑘} for which there is a permutation

𝜋 : [𝑘]→ [𝑘] for which ‖𝑤𝑖 − 𝑤𝜋(𝑖)‖2 ≤ 𝜀 for all 𝑖 ∈ [𝑘], with probability at
least 1− 𝛿

1 𝜎 ← 𝜀/4.
2 ℒ ← ∅.
3 Set 𝜐* to be a sufficiently small poly(Δ, 1/𝑘) and define the mesh 𝒮 via (8.38)
4 Set 𝑣tiny to be a random vector of norm 𝜀/4
5 if CheckOutcome(𝒟, 𝑣tiny, 𝜎, 𝛿/5) = True then
6 Add 𝑣tiny to ℒ
7 𝑊 ← exp(𝑂(

√
𝑘/Δ2)) · ln(2𝑘/𝛿) 𝛿* ← 𝛿

2|𝒮|𝑊
8 for 𝛼 ∈ 𝒮 do
9 for 0 ≤ 𝑖 < 𝑊 do

10 Let 𝑣 be a Haar-random vector in R𝑑 of norm 𝛼.
11 ̃︀𝑣 ← OptimisticDescent(𝒟, 𝑣, 𝛿*)
12 if ‖̃︀𝑣 − ̃︀𝑤‖2 > 2𝜀 for all ̃︀𝑤 ∈ ℒ then
13 Add ̃︀𝑣 to ℒ

14 return ℒ.

Algorithm 35: CheckOutcome(𝒟, 𝑣, 𝜀, 𝛿)
Input: Sample access to mixture of linear regressions 𝒟 with noise rate 𝜍, vector

𝑣 ∈ R𝑑, threshold 𝜀 > 0, failure probability 𝛿
Output: True if min𝑖∈[𝑘]‖𝑤𝑖 − 𝑣‖2 ≤ 𝜀, False if min𝑖∈[𝑘]‖𝑤𝑖 − 𝑣‖2 ≥ 2𝜀, with

probability at least 1− 𝛿
1 Let ℱ be the univariate mixture of Gaussians which can be sampled from by

drawing (𝑥, 𝑦) ∼ 𝒟 and computing 𝑦 − ⟨𝑣, 𝑥⟩.
2 𝑝← 20 ln

(︁
3

2𝑝min

)︁
+ 1.

3 𝜎* ← EstimateMinVariance(ℱ , 4, 𝜍, 𝑝, 𝛿).
4 if (𝜎*)2 ≤ 2𝜀2 then
5 return True.

6 return False.

558

and noise rate 𝜍. For any 𝜀, 𝛿 > 0 and 𝜍2 ≤ 𝜀2/10, with probability at least 1 − 𝛿,

LearnWithNoise(𝒟, 𝛿, 𝜀) (Algorithm 34) outputs a list of vectors ℒ = {𝑤1, ..., 𝑤𝑘} such

that there exists a permutation 𝜋 : [𝑘]→ [𝑘] for which ‖𝑤𝑖 − 𝑤𝜋(𝑖)‖2 ≤ 𝜀 for all 𝑖 ∈ [𝑘].

Proof. Let 𝑣 ∈ R𝑑, and consider a run of OptimisticDescent(𝒟, 𝑣, 𝛿*). Let 𝑎𝑡 be the

iterate at time 𝑡 in this run. Let 𝜌 = 1.1/0.9.

We first note that if OptimisticDescent breaks out at Line 13, the vector it returns

is close to some component of 𝒟.

Claim 8.7.26. If for some 0 ≤ 𝑡 < 𝑇 , OptimisticDescent (Algorithm 33) breaks out at

Line 13 and outputs 𝑎𝑡, then min𝑖‖𝑤𝑖 − 𝑎𝑡‖2 ≤ 𝜀.

Proof. If OptimisticDescent (Algorithm 33) breaks out at Line 13, it is because 𝜎*
𝑡 ≤

0.99𝜀. This implies that min𝑖‖𝑤𝑖 − 𝑎𝑡‖2 + 𝜍2 ≤ (𝜎*
𝑡)

2/0.992 ≤ 𝜀2, so min𝑖‖𝑤𝑖 − 𝑎𝑡‖2 ≤ 𝜀 as

claimed.

Next, we show that if 𝑎𝑡 is still somewhat far from any component, with high probability

over the next iteration either OptimisticDescent will break out at Line 13, or the progress

measure will contract.

Claim 8.7.27. Let 𝑖* be the index minimizing ‖𝑤𝑖 − 𝑎𝑡‖2. If ‖𝑤𝑖* − 𝑎𝑡‖22 ≥ 𝜀2/2, then with

probability at least 1−𝛿*/𝑇 over the next iteration of OptimisticDescent (Algorithm 33),

either of two things will happen:

1. 𝜀2/16 ≤ min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡+1‖22 ≤ 𝜀2/𝜌2 − 𝜍2.

2. min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡+1‖22 ≥ 𝜀2/2 and

𝜎2
𝑡+1 ≤

(︁
1− 𝛽Δ2/

√
𝑘
)︁
· 𝜎2

𝑡 .

Condition on either of these outcomes happening. Then additionally, if event ℰ𝑎𝑡 [𝑖*] (see

Lemma 8.7.17) holds, then with probability at least 1/poly(𝑘), ℰ𝑎𝑡+1 [𝑖
*] holds.

Proof. Condition on outcomes 1), 2), and 3) of Lemma 8.7.4, which all happen with proba-

bility at least 1− 𝛿*/𝑇 .

559

Now if min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡+1‖22 ≥ 𝜀2/2, then 2) is just a consequence of outcomes 1) and 2)

of Lemma 8.7.4.

If min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎𝑡+1‖22 ≤ 𝜀2/2, then by outcome 3) of Lemma 8.7.4, 𝜎𝑡+1 ≥ (1 −

𝛽Δ2/
√
𝑘)𝜎𝑡 ≥ 0.99𝜎𝑡 ≥ 𝜀2/16.

The last part of the claim is a consequence of outcome 4) of Lemma 8.7.4, which happens

in addition to outcomes 1), 2), and 3) with probability 1/poly(𝑘), provided ℰ𝑎𝑡 [𝑖*] occurs.

Next we show that if at some time 𝑡 there is an 𝑖 ∈ [𝑘] for which ‖𝑤𝑖− 𝑎𝑡‖22 ≤ 𝜀2/𝜌2− 𝜍2,

then OptimisticDescent will break out at Line 13 and correctly output 𝑎𝑡.

Claim 8.7.28. If for some 0 ≤ 𝑡 < 𝑇 we have

𝜀2/16 ≤ min
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22 ≤ 𝜀2/𝜌2 − 𝜍2, (8.48)

then OptimisticDescent (Algorithm 33) breaks out at Line 13 and returns 𝑎𝑡.

Proof. The lower bound in (8.48) implies that the 𝜎 = 𝜀/4 which is passed to EstimateM-

inVariance is a valid lower bound for 𝜎𝑡.

The upper bound in (8.48) implies that

(𝜎*
𝑡)

2 ≤ 1.21𝜎2
𝑡 ≤ 1.21 · (min

𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎𝑡‖22 + 𝜍2) ≤ 0.992𝜀2,

so OptimisticDescent breaks out at Line 13 and outputs 𝑎𝑡. The bound on ‖𝑤𝑖 − 𝑎𝑡+1‖2
immediately follows from (8.48).

Claims 8.7.26, 8.7.27, and 8.7.28 imply that with high probability the output of Opti-

misticDescent (Algorithm 33) is close to some component of 𝒟.

Claim 8.7.29. For any 𝑣 ∈ R𝑑, OptimisticDescent(𝒟, 𝑣, 𝛿*) (Algorithm 33) outputs

some vector ̃︀𝑣 for which min𝑖‖̃︀𝑣 − 𝑤𝑖‖ ≤ 𝜀 with probability at least 1− 𝛿*.

Proof. By Claims 8.7.26 and 8.7.28, it suffices to consider the case where there does not exist

0 ≤ 𝑡 < 𝑇 for which (8.48) holds. Then ⟨𝑤𝑖 − 𝑎𝑡22 ≥ 𝜀2/2 for every 𝑡, so by Claim 8.7.27,

min
𝑖∈[𝑘]
‖̃︀𝑣 − 𝑤𝑖‖22 + 𝜍2 ≤

(︁
1− 𝛽Δ2/

√
𝑘
)︁𝑇 (︂

min
𝑖∈[𝑘]
‖𝑣 − 𝑤𝑖‖22 + 𝜍2

)︂
≤ 𝜀2,

560

where the last inequality follows by taking 𝑇 = 2
√
𝑘

𝛽Δ2 ln(1/𝜀).

For 𝑣 ∈ R𝑑, denote by 𝑍𝑣 the event in Claim 8.7.29.

We next use Lemma 8.7.17 and part 4) of Claim 8.7.27 to lower bound the probability

that 𝑣 chosen in the inner loop of LearnWithNoise ends up being closest to any given

component of 𝒟.

Claim 8.7.30. Take any 𝑖* ∈ [𝑘] for which ‖𝑤𝑖*‖2 ≥ 𝜎. Then there exists some 𝛼 ∈ 𝒮

such that if 𝑣 is a Haar-random vector in R𝑑 of norm 𝛼, then conditioned on ℰ𝑣, the output̃︀𝑣 of OptimisticDescent(𝒟, 𝑣) (Algorithm 33) is closest to 𝑤𝑖* with probability at least

exp(− ̃︀𝑂(√𝑘/Δ2)) over the choice of 𝑣.

Proof. Take any 𝑖* ∈ [𝑘] for which ‖𝑤𝑖*‖2 ≥ 𝜎. Recall the definition of ℰ𝑣[𝑖] from Lemma 8.7.17.

By Lemma 8.7.17, there is some 𝛼 ∈ 𝒮 such that if 𝑣 is a Haar-random vector in R𝑑 of

norm 𝛼, then with probability at least 𝑞1 = exp(−𝑂(
√
𝑘/Δ2)) over 𝑣, ℰ𝑣[𝑖*] holds. Then

by 4) in Lemma 8.7.4, with probability 𝑞2 = exp(−𝑂(
√
𝑘/Δ2)) · poly(𝑘)−𝑇 , ℰ𝑣* [𝑖*] holds

for, where ̃︀𝑣 is the output of OptimisticDescent(𝒟, 𝑣). This completes the proof, as

𝑞1 · 𝑞2 = exp(− ̃︀𝑂(√𝑘/Δ2)).

We can now complete the proof of Lemma 8.7.25. Take 𝛿* = 𝛿
2𝑊 ·|𝒮| so that 𝑍𝑣 holds for

all 𝑣 sampled in LearnWithNoise with probability at least 1 − 𝛿/2, by Claim 8.7.29. In

this case, any ̃︀𝑣 produced in the course of LearnWithNoise must be a 𝜀-close to some

component of 𝒟.

Then by Claim 8.7.30, for any 𝑖* ∈ [𝑘] for which ‖𝑤𝑖*‖2 ≥ 𝜎 = 𝜀/4, the probability that

some ̃︀𝑣 produced in the course of LearnWithNoise is 𝜀-close to 𝑖* is at least 1− (1− 𝑞)𝑊 ,

where 𝑞 , exp(− ̃︀𝑂(√𝑘/Δ2)). By taking 𝑊 = ln(2𝑘/𝛿)/𝑞, we ensure that this happens with

probability at least 𝛿
2𝑘

. We conclude by a union bound over [𝑘] that for every 𝑖* ∈ [𝑘] for

which ‖𝑤𝑖*‖2 ≥ 𝜀/4, there is some ̃︀𝑣 produced in the course of LearnWithNoise which is

𝜀-close to 𝑖*.

Furthermore, by triangle inequality note that we never add vectors ̃︀𝑣 to ℒ which are

𝜀-close to a component which is already 𝜀-close to an existing ̃︀𝑤 ∈ ℒ.

Lastly, for 𝑖* ∈ [𝑘] for which ‖𝑤𝑖*‖2 ≤ 𝜀/4, note that any vector 𝑣tiny of norm 𝜀/4 is

𝜀/2-close to 𝑤𝑖* . This completes the proof of Lemma 8.7.25.

561

Lemma 8.7.31 (Running time of LearnWithNoise). Let

𝑁1 = ̃︀𝑂(𝜀−2𝑝−2
min𝑑𝑘

2 ln(1/𝛿))

𝑁 = 𝑝−4
min𝑘 ln(1/𝛿) · poly

(︁
𝜎,
√
𝑘/Δ2, ln(1/𝑝min), ln(1/𝜎)

)︁𝑂(√𝑘 ln(1/𝑝min)/Δ
2)
.

Then LearnWithNoise (Algorithm 34) requires sample complexity ̃︀𝑂(𝑒 ̃︀𝑂(
√
𝑘/Δ2)(𝑁1 +𝑁))

and runs in time ̃︀𝑂(𝑒 ̃︀𝑂(
√
𝑘/Δ2)(𝑑𝑁1 +𝑁))

Proof. The complexity of the calls to CheckOutcome is dominated by the calls to Op-

timisticDescent, whose time and sample complexity are essentially identical to those

of FourierMomentDescent called with failure probability parameter 𝛿*

2𝑊 ·|𝒮| , except the

complexity of the calls to CompareMinVariances now has exponential dependence oñ︀𝑂(√𝑘 ln(1/𝑝min)/Δ
2) rather than on ̃︀𝑂(√𝑘 ln(1/𝑝min)) because we only make 1 −

√
𝑘/Δ2

multiplicative progress at each step. Note the complexity of FourierMomentDescent

depends only logarithmically on the inverse accuracy, so ln
(︁

𝛿*

2𝑊 ·|𝒮|

)︁
is absorbed into thẽ︀𝑂(·). We conclude by noting that OptimisticDescent is called |𝒮| · 𝑊 times, where

|𝒮| ≤ poly(𝑘) · ln(1/𝜀) and 𝑊 = exp(𝑂(
√
𝑘/Δ2)) · ln(2𝑘/𝛿).

We can now complete the proof of Theorem 8.7.1.

Proof of Theorem 34. By Lemma 8.7.25, LearnWithNoise outputs a list of vectors { ̃︀𝑤1, ..., ̃︀𝑤𝑘}
for which there exists a permutation 𝜋 : [𝑘] → [𝑘] such that ‖𝑤𝑖 − ̃︀𝑤𝑖‖2 ≤ 𝜀 for all 𝑖 ∈ [𝑘].

The runtime and sample complexity bounds follow from Lemma 8.7.31.

8.7.5 Tolerating More Regression Noise

In this subsection we briefly remark that in the case where the mixing weights of 𝒟 are

known, we can combine Theorem 8.7.1 with the local convergence result of [KC19] to drive

error down to 𝜀 even in settings where regression noise greatly exceeds 𝜀.

Theorem 8.7.32 ([KC19], Theorem 3.2). Let 𝜀 > 0. If 𝒟 is a mixture of linear regres-

sions with known mixing weights, separation Δ, and noise rate 𝜍 ≤ 𝑂
(︁

Δ
𝑘2poly log(𝑘)

)︁
, and̃︀𝑤1, ..., ̃︀𝑤𝑘 ∈ R𝑑 is a list of vectors for which there exists a permutation 𝜋 : [𝑘] → [𝑘] for

562

which ‖ ̃︀𝑤𝑖 − 𝑤𝜋(𝑖)‖2 ≤ 𝑂
(︀
Δ
𝑘2

)︀
, then with high probability finite-sample EM on a batch of̃︀𝑂(𝑑) · poly(𝑘, ln(1/𝜀)) samples converges at an exponential rate to ̃︀𝑤*

1, ..., ̃︀𝑤*
𝑘 ∈ R𝑑 for which

there exists a permutation 𝜋′ : [𝑘]→ [𝑘] such that

max
𝑖∈[𝑘]
‖ ̃︀𝑤*

𝑖 − 𝑤𝜋′(𝑖)‖2 ≤ 𝑂(𝜀).

In particular, this implies the following:

Theorem 8.7.33. Given 𝛿, 𝜀 > 0 and a mixture of spherical linear regressions 𝒟 with

regressors {𝑤1, ..., 𝑤𝑘}, separation Δ, noise rate 𝜍 ≤ 𝑂
(︁

Δ
𝑘2poly log(𝑘)

)︁
, and known mixing

weights, there is an algorithm which with high probability outputs a list of vectors ℒ ,

{ ̃︀𝑤1, ..., ̃︀𝑤𝑘} for which there is a permutation 𝜋 : [𝑘]→ [𝑘] for which ‖ ̃︀𝑤𝑖−𝑤𝜋(𝑖)‖2 ≤ 𝜀 for all

𝑖 ∈ [𝑘]. Furthermore, LearnWithNoise requires sample complexity

𝑁 = ̃︀𝑂 (︁𝑑 ln(1/𝛿)𝑝−4
min · poly (𝑘, 1/Δ, ln(1/𝑝min))

𝑂(
√
𝑘 ln(1/𝑝min)/Δ

2)
)︁

and time complexity 𝑁𝑑 · poly log(𝑘, 𝑑, 1/Δ, 1/𝑝min).

Proof. Simply run LearnWithNoise to learn to error 𝜀′ = 𝑂(Δ/𝑘2), which is possible

because 𝜍 = 𝑂 (Δ/(𝑘2poly log(𝑘))) ≪ 𝜀′. Then run finite-sample EM initialized to the

output of LearnWithNoise to learn to error 𝜀.

8.8 Learning Mixtures of Hyperplanes

In this section we show that our techniques extend to give a sub-exponential time algorithm

for learning mixtures of hyperplanes. Formally, we show the following:

Theorem 8.8.1. Given 𝛿, 𝜀 > 0 and a mixture of hyperplanes 𝒟 with directions {𝑣1, ..., 𝑣𝑘},

separation Δ, with probability at least 1 − 𝛿, LearnHyperplanes(𝒟, 𝛿, 𝜀) (Algorithm 38)

returns a list of unit vectors ℒ , {̃︀𝑣1, ..., ̃︀𝑣𝑘} for which there is a permutation 𝜋 : [𝑘] → [𝑘]

and signs 𝜀1, ..., 𝜀𝑘 ∈ {±1} for which ‖̃︀𝑣𝑖 − 𝜀𝑖𝑣𝜋(𝑖)‖2 ≤ 𝜀 for all 𝑖 ∈ [𝑘]. Furthermore,

563

LearnHyperplanes requires sample complexity

𝑁 = ̃︀𝑂 (︁𝑑 ln(1/𝜀) ln(1/𝛿)𝑝−4
minΔ

−2 · poly (𝑘, ln(1/𝑝min), ln(1/Δ))𝑂(𝑘3/5 ln(1/𝑝min))
)︁

and time complexity 𝑁𝑑 · poly log(𝑘, 𝑑, 1/Δ, 1/𝑝min, 1/𝜀).

In Section 8.8.1 we show the key fact that a random step will contract min𝑖‖Π𝑖𝑎𝑡‖2 by

a factor of 1 − Θ(𝑘−3/5) with probability at least exp(−𝑘3/5), provided we use a suitable

initialization. In Section 8.8.2 we give the full specification for HyperplaneMomentDe-

scent which can learn a single component in a mixture of hyperplanes. In Section 8.8.3 we

prove correctness for HyperplaneMomentDescent. In Section 8.8.4 we show that by

properly regarding a mixture of hyperplanes as a mixture of well-conditioned, non-spherical

MLRs, we can invoke the boosting result of [LL18] to amplify a warm start obtained by

HyperplaneMomentDescent to an estimate with arbitrarily small error. Finally, in

Section 8.8.5 we combine all of these primitives to obtain LearnHyperplanes and prove

Theorem 8.8.1.

8.8.1 Moment Descent for Hyperplanes

In this section we give the key technical ingredients for showing that a suitable modifica-

tion of FourierMomentDescent (Algorithm 31) can also be used to learn mixtures of

hyperplanes.

Similar to the case of mixtures of linear regressions, here the first step is to estimate the

span of the directions {𝑣𝑖}. Define the matrix

M , Id−E𝑥∼𝒟[𝑥𝑥
⊤] =

𝑘∑︁
𝑖=1

𝑝𝑖𝑣𝑖𝑣
⊤
𝑖

and let ̂︁M(𝑁) , Id− 1
𝑁

∑︀𝑁
𝑖=1 𝑥𝑖𝑥

⊤
𝑖 for 𝑥1, ..., 𝑥𝑁 i.i.d. samples from 𝒟. When the context is

clear, we will omit the superscript (𝑁).

We will need the following basic concentration inequality, which follows immediately from

e.g. Theorem 4.7.1 of [Ver18].

564

Fact 8.8.2 (Concentration of sample covariance). For any 𝛿samp, 𝛿 > 0, we have that

Pr

[︃
‖M−̂︁M(𝑁)‖2 > Ω(1/𝑝min) ·

(︃√︂
𝑑+ 𝑡

𝑁
+
𝑑+ 𝑡

𝑁

)︃]︃
≤ 2𝑒−𝑡.

Corollary 8.8.3. For any 𝛿samp, 𝛿 > 0, if 𝑁 = ̃︀Ω (︀𝑑 · ln(1/𝛿) · 𝑝−4
min · 𝛿−2

samp

)︀
, then ‖M −̂︁M(𝑁)‖2 ≤ 𝑝min · 𝛿samp/2 with probability at least 1− 𝛿.

Henceforth, let W ∈ R𝑘×𝑑 be the matrix whose rows are the top 𝑘 singular vectors of M,

let U ∈ R𝑘×𝑑 be the matrix whose rows are the first 𝑘 singular vectors of ̂︁M(𝑁) for 𝑁 given

in Corollary 8.8.3.

We will need the following basic bound which follows straightforwardly from Lemma 1.3.8.

Corollary 8.8.4. Let 𝑎𝑡 ∈ S𝑑−1 lie in the row span of U, let 𝑣𝑗 = 𝑥𝑗/‖𝑥𝑗‖2, and let Π𝑗 be

the projector to the orthogonal complement of 𝑣𝑗. Suppose 𝛿samp < 1/𝑘 and ‖𝑥𝑗‖ ≤ 1. Then

‖UΠ𝑗𝑎𝑡‖2 ≥ ‖Π𝑗𝑎𝑡‖2 − 𝛿2samp − 2𝛿samp.

In particular, for any constant 𝑐 > 0, if ‖Π𝑗𝑎𝑡‖2 ≥ 𝜏 for some 𝜏 = poly(𝑘), then for

sufficiently small 𝛿samp = 1/poly(𝑘) we can ensure that ‖UΠ𝑗𝑎𝑡‖2 ≥ (1− 𝑘−𝑐)‖Π𝑗𝑎𝑡‖.

Proof. First note that

⟨U𝑎𝑡,U𝑣𝑗⟩ = ⟨𝑎𝑡, 𝑣𝑗⟩ ± 𝛿samp (8.49)

by the first part of Lemma 1.3.8 and the fact that |⟨𝑎𝑡, 𝑣𝑗⟩| ≤ 1.

We have that

‖UΠ𝑗𝑎𝑡‖22 = ‖U𝑎𝑡‖22 + ⟨𝑎𝑡, 𝑣𝑗⟩2‖U𝑣𝑗‖22 − 2⟨𝑎𝑡, 𝑣𝑗⟩⟨U𝑎𝑡,U𝑣𝑗⟩

= 1 + ⟨𝑎𝑡, 𝑣𝑗⟩2‖U𝑣𝑗‖22 − 2⟨𝑎𝑡, 𝑣𝑗⟩⟨U𝑎𝑡,U𝑣𝑗⟩

≥ 1 + ⟨𝑎𝑡, 𝑣𝑗⟩2 · (1− 𝛿2samp)− 2⟨𝑎𝑡, 𝑣𝑗⟩ · (⟨𝑎𝑡, 𝑣𝑗⟩ − 𝛿samp)

≥ ‖Π𝑗𝑎𝑡‖22 − 𝛿2samp − 2𝛿samp

where the second step follows from the fact that ‖U𝑎𝑡‖22 = ‖𝑎𝑡‖22 = 1 as 𝑎𝑡 ∈ S𝑑−1 lies

in the row span of U, the third step follows from applying Corollary 8.8.4 and the lower

bound of (8.49), and the last step follows from the fact that ‖Π𝑗𝑎𝑡‖22 = 1 − ⟨𝑎𝑡, 𝑣𝑗⟩2 and

|⟨𝑎𝑡, 𝑣𝑗⟩| ≤ 1.

565

With these preliminary tools in hand, we are ready to prove the main result of this

section, the mixture of hyperplanes analogue of Lemma 8.5.12.

Lemma 8.8.5. Let 0 < 𝑐 < 1/2. There are absolute constants 𝛼 > 0, 𝛽 > 1, 𝜈 > 0

such that for any 𝛿 > exp(−𝜈 · 𝑘1−2𝑐), the following holds for 𝑘 sufficiently large. Let

𝜎𝑡 , min𝑖∈[𝑘]‖Π𝑖𝑎𝑡‖2, and suppose 𝛿samp ≤ 𝜎2
𝑡 /9. Denote the minimizing index 𝑖 by 𝑖*. For

𝑀 , 𝑒−𝜈·𝑘
1−2𝑐

ln(2/𝛿) and 𝑔1, ..., 𝑔𝑀 ∼ 𝒩 (0, Id𝑘), let 𝑧𝑗 =
𝑔𝑗U

𝑔𝑗‖U‖2 ∈ S𝑑−1 for 𝑗 ∈ [𝑀]. Let 𝜎*

be a number for which 0.9𝜎𝑡 ≤ 𝜎* ≤ 1.1𝜎𝑡. Let 𝜂 = 𝑘−𝑐𝜎*.

If |⟨𝑎𝑡, 𝑣𝑖*⟩| ≥ 𝑘−𝑐, then we have that with probability at least 1− 𝛿,

1. There exists at least one 𝑗 ∈ [𝑀] for which ‖Π𝑖*(𝑎𝑡 − 𝜂 · 𝑧𝑗)‖22 ≤
(︀
1− 𝛼

𝑘3𝑐

)︀
𝜎2
𝑡 . Denote

any one of these indices by 𝑗*.

2. For all 𝑗 ∈ [𝑀] and 𝑖 ∈ [𝑘],

‖Π𝑖(𝑎𝑡 − 𝜂𝑧𝑗)‖22
𝜎2
𝑡

≥
(︂
‖Π𝑖*(𝑎𝑡 − 𝜂𝑧𝑗*)‖22

𝜎2
𝑡

)︂𝛽
.

Proof. Without loss of generality, suppose ⟨𝑎𝑡, 𝑣𝑖*⟩ ≥ 0. For 𝑗 ∈ [𝑀], let 𝜔𝑗 , −𝜂2 +

2𝜂⟨𝑧𝑗,Π𝑖𝑎𝑡⟩ and 𝑎(𝑗)𝑡+1 = 𝑎𝑗 − 𝜂 · 𝑧𝑗. We know that

‖Π𝑖𝑎
(𝑗)
𝑡+1‖22

‖Π𝑖𝑎𝑡‖22
=

‖Π𝑖(𝑎𝑡 − 𝜂𝑧𝑗)‖22
‖𝑎𝑡 − 𝜂𝑧𝑗‖22 · ‖Π𝑖𝑎𝑡‖22

=
‖Π𝑖𝑎𝑡‖2 + 𝜂2‖Π𝑖𝑧𝑗‖2 − 2𝜂⟨𝑧𝑗,Π𝑖𝑎𝑡⟩

(1 + 𝜂2 − 2𝜂⟨𝑎𝑡, 𝑧𝑗⟩) · ‖Π𝑖𝑎𝑡‖22

=
1 + ‖Π𝑖𝑎𝑡‖−2

2 · (𝜂2‖Π𝑖𝑧𝑗‖2 − 2𝜂⟨𝑧𝑗,Π𝑖𝑎𝑡⟩)
1 + 𝜂2 − 2𝜂⟨𝑎𝑡, 𝑧𝑗⟩

=
1 + ‖Π𝑖𝑎𝑡‖−2

2 · (𝜂2(1− ⟨𝑣𝑖, 𝑧𝑗⟩2)− 2𝜂⟨𝑧𝑗,Π𝑖𝑎𝑡⟩)
1 + 𝜂2 − 2𝜂⟨𝑧𝑗,Π𝑖𝑎𝑡⟩ − 2𝜂⟨𝑎𝑡, 𝑣𝑖⟩⟨𝑧𝑗, 𝑣𝑖⟩

=
1− ‖Π𝑖𝑎𝑡‖−2

2 (𝜔𝑗 + 𝜂2⟨𝑣𝑖, 𝑧𝑗⟩2)
1− 𝜔𝑗 − 2𝜂⟨𝑎𝑡, 𝑣𝑖⟩⟨𝑧𝑗, 𝑣𝑖⟩

.

Define the events

𝐴𝑗 ,
{︀
⟨𝑧𝑗,Π𝑖*𝑎𝑡⟩ ≥ 𝑘−𝑐‖Π𝑖*𝑎𝑡‖2 and ⟨𝑧𝑗, 𝑣𝑖*⟩ ≤ −𝑘−𝑐

}︀
. (8.50)

566

and

𝐵𝑗[𝑖] ,
{︀
|⟨𝑧𝑗,Π𝑖𝑎𝑡⟩| ≤ 𝜉𝑘−𝑐‖Π𝑖𝑎𝑡‖2 and |⟨𝑧𝑗, 𝑣𝑖⟩| ≤ 𝜉𝑘−𝑐

}︀
(8.51)

for some 𝜉 > 1 to be specified later. We show in Claim 8.8.6 below that for any given 𝑗,

there is some absolute constant 𝜈 > 0 such that Pr[𝐴𝑗] ≥ exp(−𝜈 ·𝑘1−2𝑐), and some absolute

constant 𝜉 > 1 such that Pr[𝐵𝑗[𝑖]] ≥ 1− exp(−3𝜈 · 𝑘1−2𝑐).

We will now argue that the event 𝐴𝑗 corresponds to making good progress, while the

event 𝐵𝑗[𝑖] corresponds to not making too much progress.

Suppose 𝐴𝑗 held for some 𝑗 = 𝑗* and 𝐵𝑗[𝑖] held for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑀]. If we took 𝜂 ,

𝑘−𝑐𝜎*, we would conclude from the definition of 𝐴𝑗* and the assumption 0.9𝜎𝑡 ≤ 𝜎* ≤ 1.1𝜎𝑡

that

𝜔𝑗* ≥ ‖Π𝑖*𝑎𝑡‖22𝑘−2𝑐 · (−0.92 + 2 · 0.9) = 0.99‖Π𝑖*𝑎𝑡‖22𝑘−2𝑐.

Likewise from the definition of 𝐵𝑗[𝑖] we would conclude that

𝜔𝑗 ≤ ‖Π𝑖𝑎𝑡‖22𝑘−2𝑐 · (−1.21 + 2.2𝜉).

for all 𝑗 ∈ [𝑀] and 𝑖 ∈ [𝑘]. So we get that

‖Π𝑖𝑎
(𝑗)
𝑡+1‖22

‖Π𝑖𝑎𝑡‖22
≥ 1− (2.2𝜉 − 1.21)𝑘−2𝑐 − (1.21𝜉2𝑘−2𝑐) · (𝑘−2𝑐𝜉2)

1− (2.2𝜉 − 1.21)𝑘−2𝑐‖Π𝑖𝑎𝑡‖22 + 2 · (0.9𝜉𝑘−𝑐) · (𝑘−𝑐) ‖Π𝑖𝑎𝑡‖2⟨𝑎𝑡, 𝑣𝑖⟩
(8.52)

for every 𝑗 ∈ [𝑀] and 𝑖 ∈ [𝑘], and for 𝑖 = 𝑖* and 𝑗 = 𝑗* we additionally have that

‖Π𝑖*𝑎
(𝑗*)
𝑡+1‖22

‖Π𝑖*𝑎𝑡‖22
≤ 1− 0.99𝑘−2𝑐 − (0.81𝑘−2𝑐) · (𝑘−2𝑐)

1− 0.99𝑘−2𝑐‖Π𝑖*𝑎𝑡‖22 + 2 · (1.1𝑘−𝑐) · (𝑘−𝑐) ‖Π𝑖*𝑎𝑡‖2⟨𝑎𝑡, 𝑣𝑖*⟩
. (8.53)

In particular, we get that

1−
‖Π𝑖𝑎

(𝑗)
𝑡+1‖22

‖Π𝑖𝑎𝑡‖22
≤ 1

0.99

(︀
1.21𝜉2𝑘−4𝑐 + (2.2𝜉 − 1.21)𝑘−2𝑐⟨𝑎𝑡, 𝑣𝑖⟩2 + 1.8𝜉𝑘−2𝑐‖Π𝑖𝑎𝑡‖2⟨𝑎𝑡, 𝑣𝑖⟩

)︀
, 𝑔(⟨𝑎𝑡, 𝑣𝑖⟩)

567

for every 𝑗 ∈ [𝑀] and 𝑖 ∈ [𝑘], and for 𝑖 = 𝑖*, 𝑗 = 𝑗*, we additionally have that

1−
‖Π𝑖*𝑎

(𝑗*)
𝑡+1‖22

‖Π𝑖*𝑎𝑡‖22
≥ 1

1.01

(︀
0.81𝑘−4𝑐 + 0.99𝑘−2𝑐⟨𝑎𝑡, 𝑣𝑖*⟩2 + 2.2𝑘−2𝑐‖Π𝑖*𝑎𝑡‖2⟨𝑎𝑡, 𝑣𝑖*⟩

)︀
, 𝑔(⟨𝑎𝑡, 𝑣𝑖*⟩)

where we have used the fact that the denominators of (8.52) and (8.53) are in [0.99, 1.01] for

sufficiently large 𝑘. Also, we emphasize that these quantities can be expressed as functions

𝑔 and 𝑔 solely in ⟨𝑎𝑡, 𝑣𝑖⟩ because for any 𝑖 ∈ [𝑘], ‖Π𝑖𝑎𝑡‖22 = 1− ⟨𝑣𝑖, 𝑎𝑡⟩2.

To control these quantities, note that the function 𝑔(𝑥) is increasing over the interval

[0, 𝜏 *] and decreasing over the interval [𝜏 *, 1] for some constant 𝜏 * ∈ [0.91, 0.92]. When

⟨𝑣𝑖* , 𝑎𝑡⟩ = 1, we get that 𝑔 = Ω(𝑘−2𝑐), because the 0.99𝑘−2𝑐⟨𝑎𝑡, 𝑣𝑖*⟩2 term in the defini-

tion of 𝑔 dominates. And when ⟨𝑣𝑖* , 𝑎𝑡⟩ = 𝑘−𝑐, we get that 𝑔 = Ω(𝑘−3𝑐), because the

2.2𝑘−2𝑐‖Π𝑖*𝑎𝑡‖2⟨𝑎𝑡, 𝑣𝑖*⟩ term in the definition of 𝑔 dominates. So the first part of the lemma

follows.

On the other hand, there is some absolute constant 𝛽′ > 1 such that 𝑔(𝑥) ≤ 𝑔(𝑥) ≤

𝛽′𝑔(𝑥) for all 𝑥 ∈ [0, 1]. There is some constant 𝛽′′ > 1 for which 𝑔(𝑥)/𝑔(𝑦) < 𝛽′′ for all

0 ≤ 𝑥 ≤ 𝑦 ≤ 1. The reason is that 𝑔(𝑥) is increasing over the interval [0, 𝜏 *] and decreasing

over the interval [𝜏 *, 1], and 𝑔(𝑥) = 1− Ω(𝑘−2𝑐) for 𝑥 ∈ [𝜏 *, 1].

It follows that for any 𝑗 ∈ [𝑀], 𝑖 ∈ [𝑘]

1−
‖Π𝑖𝑎

(𝑗)
𝑡+1‖22

‖Π𝑖𝑎𝑡‖22
≤ 𝑔(⟨𝑎𝑡, 𝑣𝑖⟩) ≤ 𝛽′𝑔(⟨𝑎𝑡, 𝑣𝑖⟩) ≤ 𝛽′𝛽′′ · 𝑔(⟨𝑎𝑡, 𝑣𝑖*⟩) ≤ 𝛽′𝛽′′ ·

(︃
1−
‖Π𝑖*𝑎

(𝑗*)
𝑡+1‖22

‖Π𝑖*𝑎𝑡‖22

)︃
,

so by taking 𝛽 in the statement of the lemma to be 𝛽′ · 𝛽′′ and invoking the elementary

inequality 1− 𝑎 · 𝑥 ≤ (1− 𝑥)𝑎 for 𝑎 > 1, we get the second part of the lemma.

We conclude that if event (8.50) held for some 𝑗 ∈ [𝑀] and event (8.51) held for all

𝑗 ∈ [𝑀] and 𝑖 ∈ [𝑘], then parts 1 and 2 of Lemma 8.8.5 would hold.

Furthermore,

Pr

⎡⎣ ⋀︁
𝑗∈[𝑀]

𝐴𝑗

⎤⎦ ≤ (︀1− exp(−𝜈 · 𝑘1−2𝑐)
)︀𝑀

568

and

Pr

⎡⎣ ⋁︁
𝑖∈[𝑘],𝑗∈[𝑀]

𝐵𝑗[𝑖]

⎤⎦ ≤ 𝑘𝑀 · exp(−3𝜈 · 𝑘1−2𝑐),

so by taking𝑀 = exp(𝜈 ·𝑘1−2𝑐) ln(2/𝛿), we get that with probability at least 1−𝛿/2, the event

𝐴𝑗 occurs for some 𝑗 ∈ [𝑀]. And with probability at least 1− 𝑘 exp(−2𝜈 · 𝑘1−2𝑐) ln(2/𝛿) ≥

1− 𝛿/2, the event 𝐵𝑗[𝑖] occurs for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑀], where we have used the fact that

𝛿 > exp(−𝜈 · 𝑘1−2𝑐).

It remains to lower bound the probabilities of events 𝐴𝑗 and 𝐵𝑗[𝑖].

Claim 8.8.6. There are absolute constants 𝜈 > 0, 𝜉 > 1 such that for any 𝑗 ∈ [𝑀], 𝑖 ∈ [𝑘],

Pr[𝐴𝑗] ≥ exp(−𝜈 · 𝑘1−2𝑐) and Pr[𝐵𝑗[𝑖]] ≥ 1− exp(−3𝜈 · 𝑘1−2𝑐).

Proof. While (8.50) is defined with respect to 𝑣𝑖* , the argument below holds for general 𝑖.

Henceforth, fix an arbitrary 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑀]. The key fact we will use is that the two

quantities ⟨𝑧,Π𝑖𝑎𝑡⟩ and ⟨𝑧, 𝑣𝑖⟩ are approximately independent (if 𝑈 consisted of the 𝑘 top

singular vectors of M itself, these random variables would be exactly independent).

Note that

𝜌 ,

⟨
UΠ𝑖𝑎𝑡,

U𝑣𝑗
‖U𝑣𝑗‖2

⟩
=

1

‖U𝑣𝑗‖2
·
[︀
⟨U𝑎𝑡,U𝑣𝑗⟩ − ⟨𝑎𝑡, 𝑣𝑗⟩‖U𝑣𝑗‖22

]︀
≤ 1

(1− 𝛿2samp)
1/2
·
[︀
(⟨𝑎𝑡, 𝑣𝑗⟩+ 𝛿samp)− ⟨𝑎𝑡, 𝑣𝑗⟩ · (1− 𝛿2samp)

]︀
≤

𝛿samp + 𝛿2samp

(1− 𝛿2samp)
1/2
≤ 2𝛿samp.

where the second step follows from the second part of Lemma 1.3.8 and (8.49). Likewise we

have that

𝜌 ≥ (⟨𝑎𝑡, 𝑣𝑗⟩ − 𝛿samp)− ⟨𝑎𝑡, 𝑣𝑗⟩ ≥ −𝛿samp.

So we may write

UΠ𝑖𝑎𝑡 = 𝜌 · U𝑣𝑗
‖U𝑣𝑗‖2

+ 𝑣⊥ (8.54)

569

for 𝑣⊥ lying in the row span of U and orthogonal to U𝑣𝑗, and satisfying

‖𝑣⊥‖2 ≥ ‖UΠ𝑖𝑎𝑡‖2 − 𝜌2 ≥
(︀
‖Π𝑖𝑎𝑡‖22 − 𝛿2samp − 2𝛿samp

)︀
− 4𝛿2samp ≥

1

2
‖Π𝑖𝑎𝑡‖22

by Lemma 8.8.5 and the assumption that ‖Π𝑖𝑎𝑡‖ ≥ 3𝛿
1/2
samp. As ⟨𝑔,U𝑣𝑗⟩ and ⟨𝑔, 𝑣⊥⟩ are

independent Gaussians with variances at least 1 − 𝛿2samp ≥ 1/2 and 1
2
‖Π𝑖𝑎𝑡‖22 respectively,

by the same argument as in Corollary 1.3.20 we can show that
⟨

𝑔
‖𝑔‖2 ,U𝑣𝑗

⟩
≤ −2 · 𝑘−𝑐 and⟨

𝑔
‖𝑔‖2 , 𝑣

⊥
⟩
≥ 2 · 𝑘−𝑐 · ‖Π𝑖𝑎𝑡‖2 with probability at least exp(−𝜈 · 𝑘1−2𝑐) for some absolute

constant 𝜈 > 0. By another application of Corollary 1.3.19, there is some absolute constant

𝜉′ > 0 for which
⃒⃒⃒⟨

𝑔
‖𝑔‖2 ,U𝑣𝑗

⟩⃒⃒⃒
≤ 𝜉′ · 𝑘−𝑐 and

⃒⃒⃒⟨
𝑔

‖𝑔‖2 , 𝑣
⊥
⟩⃒⃒⃒
≤ 𝜉 · 𝑘−𝑐 · ‖Π𝑖𝑎𝑡‖2 with probability

at least 1− exp(−3𝜈 · 𝑘1−2𝑐).

If this is the case, then by (8.54),

⟨
𝑔

‖𝑔‖2
,UΠ𝑖𝑎𝑡

⟩
≥ −4𝛿samp · 𝑘−𝑐

(1− 𝛿2samp)
1/2

+ 2 · 𝑘−𝑐 · ‖Π𝑖𝑎𝑡‖2 ≥
3

2
𝑘−𝑐 · ‖Π𝑖𝑎𝑡‖2 ≥ 𝑘−𝑐 · ‖Π𝑖𝑎𝑡‖2,

where we have used that ‖Π𝑖𝑎𝑡‖ ≥ 3𝛿
1/2
samp ≥ 4 · 4𝛿samp

(1−𝛿2samp)
1/2 for any 𝛿samp smaller than some

absolute constant. We also get that⃒⃒⃒⃒⟨
𝑔

‖𝑔‖2
,UΠ𝑖𝑎𝑡

⟩⃒⃒⃒⃒
≤ 2𝛿samp · 𝜉′ · 𝑘−𝑐 + 𝜉′ · 𝑘−𝑐 · ‖Π𝑖𝑎𝑡‖2 ≤ 19𝜉′ · 𝑘−𝑐 · ‖Π𝑖𝑎𝑡‖2,

where we have used that ‖Π𝑖𝑎𝑡‖ ≥ ‖Π𝑖𝑎𝑡‖2 ≥ 9𝛿samp.

Noting that ‖𝑔U‖2 = ‖𝑔‖ by orthonormality of the columns of U so that

⟨
𝑔

‖𝑔‖2
,U𝑣𝑗

⟩
= ⟨𝑧, 𝑣𝑗⟩ and

⟨
𝑔

‖𝑔‖2
,UΠ𝑖𝑎𝑡

⟩
= ⟨𝑧,Π𝑖𝑎𝑡⟩,

we conclude that with probability at least exp(−𝜈 · 𝑘1−2𝑐), both events in (8.50) hold, and

likewise with probability at least 1 − exp(−3𝜈 · 𝑘1−2𝑐), both events in (8.51) hold for 𝜉 =

𝜉′/19.

570

8.8.2 Algorithm Specification– Single Component

We are now ready to describe our algorithm HyperplaneMomentDescent for learning

a single components of 𝒟. The key subroutines are:

• HyperplaneMomentDescent (Algorithm 33): the pseudocode for this is very sim-

ilar to that of FourierMomentDescent, the key differences being 1) the matrix

on which we run ApproxBlockSVD, 2) the definition of ℱ𝑡, 3) the fact that we

maintain that 𝑎𝑡 are unit vectors, 4) the parameters which are tuned towards detecting

1 − Ω(𝑘−3/5) multiplicative progress instead of 1 − Ω(𝑘−1/2), and most importantly,

5) the outer loop over 𝑖 ∈ [𝑆] which tries many random initializations, runs a full 𝑇

rounds of moment descent on each of them, and checks whether the final estimate in

any of these runs is close to a component of 𝒟.

• CheckOutcomeHyperplanes (Algorithm 35): CheckOutcome is used to check

whether a given estimate is close to any component of 𝒟.

8.8.3 Proof of Correctness

We first give a proof of correctness for CheckOutcomeHyperplanes.

Lemma 8.8.7. Let 𝑣 ∈ S𝑑−1 and 𝒟 be a mixture of hyperplanes, and let 𝜀 > 0. If there is

some component 𝑣𝑖* for which ‖𝑣−𝑣𝑖*‖2 ∈ [−𝜀, 𝜀], then CheckOutcomeHyperplanes(𝒟, 𝑣, 𝜀, 𝛿)

(Algorithm 37) returns True with probability at least 1− 𝛿. Otherwise, if ‖𝑣− 𝑣𝑖‖2 > 2𝜀/𝑝min

for all 𝑖 ∈ [𝑘], then CheckOutcomeHyperplanes returns False with probability at least

1− 𝛿.

Proof. First suppose there is some 𝑖* ∈ [𝑘] for which ‖𝑣− 𝑣𝑖*‖2 ≤ 𝜀. Then ℱ is a mixture of

Gaussians with one of its components having variance at most 𝜀2. So for 𝑥 ∼ ℱ , we get that

Pr[|𝑥| ≤ 𝜀/2] ≥ 𝑝min ·
∫︁ 𝜀/2

−𝜀/2
𝑒−

𝑥2

2𝜀2 d𝑥 ≥ 𝑝min/3.

On the other hand if we had that ‖𝑣 − 𝑣𝑖‖2 > 2𝜀/𝑝min for all 𝑖 ∈ [𝑘], then ℱ is a mixture

of Gaussians whose components have variances exceeding 4𝜀2

𝑝2min
. So for 𝑥 ∼ ℱ , we would get

571

Algorithm 36: HyperplaneMomentDescent(𝒟, 𝛿, 𝜀)
Input: Sample access to mixture of hyperplanes 𝒟, failure probability 𝛿, error 𝜀
Output: 𝑣* ∈ S𝑑−1 satisfying min𝑖∈[𝑘]‖Π𝑖𝑣

*‖2 ≤ 𝜀, with probability at least 1− 𝛿.
1 𝜀′ ← 𝜀 · 𝑝min/2.
2 𝑆 ← exp(−Ω(𝑘1−2𝑐)) · ln(2/𝛿).
3 𝑇 ← Ω(𝑘3/5 · ln(𝜇/𝜀′)).
4 𝛿samp ← 1/poly(𝑘) sufficiently small.
5 𝛿′ ← 𝛿

50𝑇
.

6 𝑀 ← 𝑒−𝜈·𝑘
1−2𝑐

ln(2/𝛿′).
7 𝛿′′ ← 𝛿

50𝑀𝑇
.

8 𝛿* ← 𝛿
2𝑆

.
9 𝜎 ← 2 · (𝜀′/2)𝛽, where 𝛽 > 1 is the constant from Lemma 8.8.5.

10 𝜎 ← 4.
11 𝑁1 ← Ω

(︀
𝑑 · ln(1/𝛿′) · 𝑝−2

min · 𝛿−2
samp

)︀
12 Draw 𝑁1 i.i.d. samples {𝑥𝑖}𝑖∈[𝑁1] from 𝒟 and form the matrix̂︁M(𝑁1) , Id− 1

𝑁1

∑︀𝑁1

𝑖=1 𝑥𝑖𝑥
⊤
𝑖 .

13 U← ApproxBlockSVD(̂︁M(𝑁1), 𝛿samp/2, 1/50)
14 for 0 ≤ 𝑖 < 𝑆 do
15 Sample 𝑔 ∼ N(0, Id𝑘) and let 𝑎0 = 𝑔U

‖𝑔U‖2 .
16 for 0 ≤ 𝑡 < 𝑇 do
17 Let ℱ𝑡 be the univariate mixture of Gaussians which can be sampled from by

drawing 𝑥 ∼ 𝒟 and computing ⟨𝑎𝑡, 𝑥⟩.
18 𝑝← 20 ln

(︁
3

2𝑝min

)︁
.

19 𝜅← Θ(𝑘−3/5) as in the proof of Lemma 8.8.8.
20 𝜎sharp

𝑡 , EstimateMinVariance(ℱ𝑡, 𝜎, 𝜎, 𝑝, 𝛿′). // Algorithm 29
21 for 𝑗 ∈ [𝑀] do

22 Sample 𝑔(𝑗)𝑡 ∼ N(0, Id𝑘) and define 𝑣(𝑗)𝑡 =
𝑔
(𝑗)
𝑡 U

‖𝑔(𝑗)𝑡 U‖2
∈ S𝑑−1.

23 𝑎′
(𝑗)
𝑡 ←

𝑎𝑡−𝜂𝑡𝑣(𝑗)𝑡

‖𝑎𝑡−𝜂𝑡𝑣(𝑗)𝑡 ‖2
for 𝜂𝑡 , 𝑘−1/5 · 𝜎sharp

𝑡 .

24 Let ℱ ′(𝑗)
𝑡 be the univariate mixture of Gaussians which can be sampled

from by drawing 𝑥 ∼ 𝒟 and computing ⟨𝑎𝑡, 𝑥⟩.
25 if CompareMinVariances(ℱ𝑡,ℱ ′(𝑗)

𝑡 , 𝜎, 𝜎, 𝜅, 𝛿′′) = True then
26 Set 𝑎𝑡+1 = 𝑎′

(𝑗)
𝑡

27 Break

28 if CheckOutcomeHyperplanes(𝒟, 𝑎𝑡, 𝜀′, 𝛿*) = True then
29 𝑣* ← 𝑎𝑡.
30 return 𝑣*.

572

Algorithm 37: CheckOutcomeHyperplanes(𝒟, 𝑣, 𝜀, 𝛿)
Input: Sample access to mixture of hyperplanes 𝒟, direction 𝑣 ∈ S𝑑−1, threshold

𝜀 > 0, failure probability 𝛿
Output: True if min𝑖∈[𝑘]‖Π𝑖𝑣‖2 ≤ 𝜀, False if ‖Π𝑖𝑣‖2 ≥ 2𝜀/𝑝min, with probability at

least 1− 𝛿
1 Let ℱ be the univariate mixture of Gaussians which can be sampled from by

drawing 𝑥 ∼ 𝒟 and computing ⟨𝑣, 𝑥⟩.
2 Draw 𝑁2 , 𝑂

(︀
ln(1/𝛿)𝑝−2

min

)︀
samples from ℱ .

3 if ≥ 4𝑝min

15
·𝑁2 samples lie in [−𝜀, 𝜀] then

4 return True

5 return False

that

Pr[|𝑥| ≤ 𝜀/2] ≤
𝑘∑︁
𝑖=1

𝑝𝑖 ·
0.8 · 𝜀/2
2𝜀/𝑝min

= 𝑝min/5,

where in the first step we have used the fact that
∫︀ 𝜏
−𝜏 𝑒

− 𝑥2

2𝜎2 d𝑥 ≤
√︀
2/𝜋 · (𝜏/𝜎) ≤ 0.8𝜏/𝜎 for

any 𝜏, 𝜎 > 0.

We need to take enough samples for our empirical estimate of Pr[|𝑥| ≤ 𝜀] to be 𝑝min/15-

additively close to the true value with probability at least 1− 𝛿, for which it suffices to take

𝑂(ln(1/𝛿)𝑝−2
min) samples.

We can now prove correctness of HyperplaneMomentDescent.

Lemma 8.8.8. Let 𝒟 be a mixture of hyperplanes with mixing weights {𝑝𝑖} and direc-

tions {𝑣𝑖}. With probability at least 1 − 𝛿, HyperplaneMomentDescent(𝒟, 𝛿, 𝜀) (Al-

gorithm 36) outputs direction 𝑎𝑇 ∈ S𝑑−1 for which (𝜀/2)𝐶 ≤ min𝑖∈[𝑘]‖𝑤𝑖− 𝑎𝑇‖2 ≤ 𝜀 for some

absolute constant 𝐶 > 0.

Proof. Henceforth, take 𝑐 in Lemma 8.8.5 to be 𝑐 = 1/5. Let 𝜎𝑡 , min𝑖∈[𝑘]‖𝑤𝑖−𝑎𝑡‖2. Naively

we have that 𝜎𝑡 ≤ 2.

By a simple union bound, we first upper bound the probability that the steps of moment

descent in the 𝑖-th iteration of the outer loop all succeed.

Claim 8.8.9. Let 𝑖 ∈ [𝑆]. With probability at least 9/10, the randomized components of the

inner loop (over 𝑡) of the 𝑖-th iteration of the outer loop of HyperplaneMomentDescent

all succeed.

573

Proof. Each 𝑡-th iteration of the second loop in HyperplaneMomentDescent has the fol-

lowing randomized components: 1) empirically estimating M, 2) running ApproxBlockSVD

on this empirical estimate, 3) running EstimateMinVariance, 4) trying the Gaussian vec-

tors 𝑔 in the innermost loop over 𝑗 ∈ [𝑀], and 5) running CompareMinVariances in this

innermost loop.

Because the failure probability 𝛿′ for 1), 3), 4) were chosen to be 1
50𝑇

, the failure prob-

ability 𝛿′′ for 5) was chosen to be 1
50𝑀𝑇

, and the failure probability for 2) was chosen to be

1/50, we can bound by 1/10 the overall failure probability of these tasks in a single 𝑖-th

iteration of the outer loop of HyperplaneMomentDescent.

Call the event in Claim 8.8.9 ℰ𝑖. Next, we show that provided ℰ𝑖 occurs and the initial

point 𝑎0 for the 𝑖-th iteration of the outer loop is close to some 𝑣𝑗, then we can bound the

extent to which every step of the subsequent inner loop (over 𝑡) contracts 𝜎2
𝑡 .

Claim 8.8.10. Let 𝑖 ∈ [𝑆] and condition on ℰ𝑖. If in the 𝑖-th iteration of HyperplaneMo-

mentDescent, |⟨𝑎0, 𝑣𝑗⟩| ≥ 𝑘−𝑐, then for each 0 ≤ 𝑡 < 𝑇 :

1. (Completeness) There exists some 𝑗 ∈ [𝑀] for which

CompareMinVariances(ℱ𝑡,ℱ ′(𝑗)
𝑡 , 𝜎, 𝜎, 𝜅, 2𝜅, 𝛿′′)

outputs True for some 𝜅 = Θ(𝑘−3𝑐).

2. (Soundness) For any such 𝑗 ∈ [𝑀] for which CompareMinVariances outputs True,

(︂
1− 𝛽

𝑘3𝑐

)︂
𝜎2
𝑡 ≤ 𝜎2

𝑡+1 ≤
(︁
1− 𝛼

𝑘3𝑐

)︁
𝜎2
𝑡 . (8.55)

for some 𝛼 < 𝛼, where 𝛼, 𝛽 are the constants in Lemma 8.8.5.

Proof. Suppose inductively that |⟨𝑎𝑡, 𝑣𝑗⟩| ≥ 𝑘−𝑐 for some 𝑗 ∈ [𝑘]. By the first part of

Lemma 8.8.5, there exists some 𝑗 ∈ [𝑀] for which 𝜎
(𝑗)
𝑡 , min𝑖∈[𝑘]‖𝑤𝑖 − 𝑎

′(𝑗)
𝑡 ‖2 satisfies

(𝜎
(𝑗)
𝑡)2 ≤

(︀
1− 𝛼

𝑘3𝑐

)︀
(𝜎𝑡)

2, and because 1− 𝛼
𝑘3𝑐
≤
(︀

1
1+2𝜅

)︀2 for some 𝜅 = Θ(𝑘−3𝑐),

CompareMinVariances(ℱ𝑡,ℱ ′(𝑗)
𝑡 , 𝜎, 𝜎, 𝜅, 2𝜅, 𝛿′′)

574

would return True, completing the proof of completeness.

For soundness, note that for any such 𝑗, by Corollary 8.5.9 we know that

(𝜎
(𝑗)
𝑡)2 ≤ (1 + 𝜅)−2 · 𝜎2

𝑡 ≤ (1− 𝜅/2) · 𝜎2
𝑡 ≤

(︁
1− 𝛼

𝑘3𝑐

)︁
· 𝜎2

𝑡 ,

which gives the upper bound in (8.55). The lower bound follows from the second part of

Lemma 8.8.5. This completes the proof of soundness as well as the inductive step, as the

upper bound of (8.55) implies that max𝑗∈[𝑘] |⟨𝑎𝑡+1, 𝑣𝑗⟩| ≥ max𝑗∈[𝑘] |⟨𝑎𝑡, 𝑣𝑗⟩| ≥ 𝑘−𝑐.

Lastly, we lower bound the probability that in the 𝑖-th iteration of the outer loop, the

randomly chosen initial point 𝑎0 is sufficiently close to some 𝑣𝑗.

Claim 8.8.11. Let 𝑖 ∈ [𝑆]. With probability at least exp(−Ω(𝑘1−2𝑐)), the following holds. In

the 𝑖-th iteration of the outer loop of HyperplaneMomentDescent, |⟨𝑎0, 𝑣𝑗⟩| ≥ 𝑘−𝑐 for

some 𝑗 ∈ [𝑘], where 𝑎0 is the initial iterate in the inner loop over 𝑡.

Proof. We know by Corollary 1.3.19 that for 𝑔 ∼ 𝒩 (0, Id𝑘) and 𝑎0 , 𝑔U
‖𝑔U‖2 , for any 𝑗 ∈ [𝑘]

we have that Pr𝑔[|⟨𝑎0, 𝑣𝑗⟩| ≥ 𝑘−𝑐] ≥ exp(−Ω(𝑘1−2𝑐)).

We are ready to complete the proof of Lemma 8.8.8. If we take 𝑇 = 𝑘3𝑐 ln(8𝜀−2𝑝−2
min)/𝛼,

then in an iteration 𝑖 ∈ [𝑆] for which ℰ𝑖 holds and |⟨𝑎0, 𝑣⟩| ≥ 𝑘−𝑐, by Claim 8.8.10 we are

guaranteed that

2/(𝜀2𝑝2min/8)
𝐶 ≤ 𝜎2

𝑇 ≤ 𝜀2 · 𝑝2min/4 (8.56)

for some absolute constant 𝐶 > 0. We remark that the lower bound on 𝜎2
𝑇 ensures that

throughout the course of HyperplaneMomentDescent, the parameter 𝜎 passed to Com-

pareMinVariances is a valid lower bound on 𝜎𝑡 for all 0 ≤ 𝑡 ≤ 𝑇 .

Now for 𝑖 ∈ [𝑆], let 𝐴𝑖 be the event that the inner loop breaks out with a direction 𝑎 for

which ‖Π𝑗𝑎‖2 ≤ 𝜀 · 𝑝min/2. Also, let 𝐵𝑖 be the event that CheckOutcomeHyperplanes

runs successfully. Note that 𝐴𝑖 and 𝐵𝑖 are independent. By Claim 8.8.9, Claim 8.8.11, and

(8.56), we know Pr[𝐴𝑖] ≥ 9
10
exp(−Ω(𝑘1−2𝑐)) , 𝑞. By Lemma 8.8.7, we know Pr[𝐵𝑖] ≥ 1−𝛿*.

The probability that 𝐴𝑖 occurs for at least one 𝑖 ∈ [𝑆] is at least 1− (1− 𝑞)𝑆 ≥ 1− 𝑒−𝑞𝑆,

while the probability that 𝐵𝑖 holds for all 𝑖 is at least 1− 𝑆𝛿*. By taking 𝑆 = 𝑞−1 ln(2/𝛿) =

575

exp(−Ω(𝑘1−2𝑐)) · ln(2/𝛿) and 𝛿* = 𝛿
2𝑆

, we conclude that the output of HyperplaneMo-

mentDescent is some 𝑣* for which min𝑖∈[𝑘]‖Π𝑖𝑣
*‖2 ≤ 𝜀.

The analysis for the runtime and sample complexity of HyperplaneMomentDescent

is essentially the same as that of FourierMomentDescent:

Lemma 8.8.12 (Running time of HyperplaneMomentDescent). Let

𝑁1 =
𝑑𝑘2 ln(1/𝛿)

𝜀2𝑝2min

𝑁 = 𝑝−4
min𝑘 ln(1/𝛿) · poly

(︀
𝑘3/5, ln(1/𝑝min), ln(1/𝜀)

)︀𝑂(𝑘3/5 ln(1/𝑝min))

𝑁2 = 𝑂
(︀
𝑝−2
min𝑘

3/5 ln(1/𝛿)
)︀

𝑆 = exp(Ω(𝑘3/5) ln(1/𝛿) .

Then HyperplaneMomentDescent (Algorithm 31) requires sample complexity

̃︀𝑂 (︁𝑁1 + 𝑆 · (𝑘3/5𝑒𝑘3/5𝑁 +𝑁2)
)︁

and runs in time ̃︀𝑂 (︁𝑑𝑁1 + 𝑆 · (𝑘3/5𝑒𝑘3/5𝑁 +𝑁2)
)︁
.

8.8.4 Boosting for Mixtures of Hyperplanes

As with FourierMomentDescent, HyperplaneMomentDescent cannot be used on

its own to obtain an arbitrarily good estimate for a component of the mixture, as the runtime

and sample complexity of the primitives used for estimating minimum variance increase

rapidly as the minimum variance of the univariate projections decreases. So at some point

we need to switch over to a boosting algorithm.

In this section, we describe how to regard mixtures of hyperplanes as mixtures of non-

spherical but fairly well-conditioned linear regressions. With this in place, we can then run

either the boosting algorithm of [LL18] or the one introduced in our work in this chapter

(see Section 8.9), all of which can tolerate the condition numbers of such mixtures.

576

Let 𝑤 ∈ S𝑑−1 be some direction and let Π𝑤 denote the projection to the orthogonal

complement of 𝑤. Given 𝑥 ∼ 𝒟, we may regard this as a sample from a mixture of linear

regressions as follows. Consider the tuple (Π𝑤𝑥, ⟨𝑥,𝑤⟩). By identifying Π𝑤 with R𝑑−1, we

may regard Π𝑤𝑥 as a vector in R𝑑−1 and ⟨𝑥,𝑤⟩ as the response.

Concretely, up to a change of basis we can assume without loss of generality that 𝑤 =

(0, ..., 0, 1), in which case Π𝑤𝑥 is simply identified with the first 𝑑− 1 coordinates of 𝑥, and

the response ⟨𝑥,𝑤⟩ is simply the last coordinate of 𝑥. Then the covariance matrix of the

hyperplane orthogonal to 𝑣𝑗 is merely the upper (𝑑 − 1) × (𝑑 − 1) submatrix of Π𝑗, and

because any 𝑥 sampled from that hyperplane satisfies ⟨𝑣𝑗, 𝑥⟩ = 0, we have that

𝑥𝑑 =

⟨
−(𝑣𝑗)1:𝑑−1

(𝑣𝑗)𝑑
, 𝑥1:𝑑−1

⟩
,

where we use the notation of Section 8.2.2. For simplicity, denote (𝑣𝑗)1:𝑑−1 by 𝑣′𝑗, (𝑣𝑗)𝑑 by

𝑎𝑗. We may further assume without loss of generality that 𝑎𝑗 = ⟨𝑣𝑗, 𝑤⟩ is nonnegative for

every 𝑗, as the directions {𝑣𝑗} for a mixture of hyperplanes are only specified up to sign.

Altogether, this yields the following basic claim.

Lemma 8.8.13. Given a mixture 𝒟 of hyperplanes with mixing weights {𝑝𝑗} and direc-

tions {𝑣𝑗}, let 𝒟′ be the mixture of linear regressions with mixing weights {𝑝𝑗}, components

{𝒩 (0, Id−𝑣′𝑗𝑣′⊤𝑗)}, and regressors {−𝑣′𝑗/𝑎𝑗}. Then 𝒟 and 𝒟′ are identical as distributions

over R𝑑.

We will choose 𝑤 randomly by sampling 𝑔 ∼ 𝒩 (0, Id𝑘) and defining 𝑤 = 𝑔U
‖𝑔U‖2 . We need

a basic estimate on the condition number of the covariances Id−𝑣′𝑗𝑣′⊤𝑗 for a typical such 𝑤,

keeping in mind that 𝑣′𝑗 is defined with respect to an orthonormal basis under which 𝑣′𝑗 is

the 𝑑-th standard basis vector.

Lemma 8.8.14. For 𝑔 ∼ 𝒩 (0, Id𝑘) and 𝑤 = 𝑔U
‖𝑔U‖2 , the eigenvalues of Id−𝑣′𝑗𝑣′⊤𝑗 lie in

[Ω(1/𝑘3), 1] for all 𝑗 ∈ [𝑘] with probability at least 4/5.

Proof. Let ̃︀𝑣𝑗 , 𝑣′𝑗
‖𝑣′𝑗‖2

∈ S𝑑−2. Note that

Id−𝑣′𝑗𝑣′⊤𝑗 = Id−̃︀𝑣𝑗̃︀𝑣⊤𝑗 · ‖𝑣′𝑗‖22 = Id−̃︀𝑣𝑗̃︀𝑣⊤𝑗 · (1− ⟨𝑤, 𝑣𝑗⟩2),
577

so the eigenvalues of Id−𝑣′𝑗𝑣′⊤𝑗 are 1 with multiplicity 𝑑− 2 and ⟨𝑤, 𝑣𝑗⟩2 with multiplicity 1.

Fact 8.8.15 below allows us to conclude that with probability at least 4/5, ⟨𝑤, 𝑣𝑗⟩2 ≥ Ω(1/𝑘3)

for all 𝑗 ∈ [𝑘].

Fact 8.8.15. There is some constant 𝑎anti > 0 such that for the random vector 𝑤 defined in

Lemma 8.8.14,

Pr
[︁
⟨𝑤, 𝑣𝑗⟩2 ≥

𝑎anti
𝑘3
∀ 𝑗 ∈ [𝑘]

]︁
≥ 4/5.

Proof. For any 𝑗 ∈ [𝑘], we have that

⟨𝑤, 𝑣𝑗⟩ =
1

‖𝑔U‖2
⟨𝑔,U𝑣𝑗⟩ =

1

‖𝑔‖2
⟨𝑔,U𝑣𝑗⟩ .

By the second part of Lemma 1.3.8, ‖U𝑣𝑗‖2 ≥ (1 − 𝛿2samp)
1/2 ≥ 1/2, and by Fact 1.3.18,

‖𝑔U‖2 ≤ 1.1
√
𝑘 with probability at least 1 − 𝑒−𝑐shell𝑑/100. ⟨𝑔,U𝑣𝑗⟩ is distributed as a zero-

mean Gaussian with variance at least 1 − 𝛿2samp, so for any 𝜏 > 0, with probability at least

1 − 𝜏
(1−𝛿2samp)

1/2 ≥ 1 − 2𝜏 we have that ⟨𝑔,U𝑣𝑗⟩2 ≥ 𝜏 2. The proof is completed by taking

𝜏 = 1
10𝑘

and 𝑎anti = 1/121.

We can now invoke the boosting result of [LL18] stated in Theorem 8.6.1.

Corollary 8.8.16. Let 𝒟 be a mixture of hyperplanes in R𝑑 with directions {𝑣𝑗}, minimum

mixing weight 𝑝min, and separation Δ. There exist constants 𝑎sep, 𝑎eig > 0 for which the

following holds.

Let 𝜁 , 𝑎sepΔ · 𝑘 · min
(︀𝑎eig
𝑘3
, 𝑝min

64

)︀
. There is an algorithm (𝒟, 𝑣, 𝜀, 𝛿) which, given any

𝜀 > 0, 𝛿 > 0, and 𝑣 ∈ R𝑑 for which there exists 𝑗 ∈ [𝑘] with ‖𝑤𝑗 − 𝑣‖2 ≤ 𝜁
𝑎eig𝑘3

, draws 𝑇 ·𝑀

samples from 𝒟 for

𝑇 = 𝑂
(︀
𝑝−2
min𝑑 ln(𝜁/𝜀)

)︀
and 𝑀 = poly

(︀
Δ−1, 𝑝−1

min, 𝑘, log 𝑇
)︀
· ln(1/𝛿),

runs in time 𝑇 ·𝑀 · 𝑑, and outputs ̃︀𝑣 ∈ R𝑑 for which either ‖𝑣𝑗 − ̃︀𝑣‖2 ≤ 𝜀 or ‖𝑣𝑗 + ̃︀𝑣‖2 ≤ 𝜀

with probability at least 1− 𝛿.

578

Proof. By the same argument as in Fact 8.8.15, we know there exists some 𝑎′anti > 0 for

which Pr [|⟨𝑣, 𝑤⟩| ≥ 𝑎′anti/𝑘
2] ≥ 1/40. For every 𝑖 ̸= 𝑗, we know there exists some 𝑎conc > 0

for which

Pr
[︂
|⟨𝑣𝑖 − 𝑣𝑗, 𝑤⟩| ≤

𝑎conc√
𝑘
‖𝑣𝑖 − 𝑣𝑗‖2

]︂
≥ 1− 1

40𝑘2
.

By a union bound over the former event, the latter event for every 𝑖 ̸= 𝑗, and the event

in Fact 8.8.15, the probability all of these events happen is at least 3/4. Condition on these

events.

Given 𝑣 ∈ S𝑑−1 satisfying ‖𝑣 − 𝑣𝑗‖2 ≤ 𝛿, and 𝑤 = 𝑔U
‖𝑔U‖2 for 𝑔 ∼ 𝒩 (0, Id𝑘), note that

𝑢 , −𝑣′/⟨𝑣, 𝑤⟩ ∈ R𝑑−1 satisfies

‖𝑢− 𝑣′𝑗‖2 ≤ ‖−
𝑣′

⟨𝑣, 𝑤⟩
+

𝑣′𝑗
⟨𝑣, 𝑤⟩

‖2 + ‖−
𝑣′𝑗
⟨𝑣, 𝑤⟩

+
𝑣′𝑗
⟨𝑣𝑗, 𝑤⟩

‖

=
𝛿

|⟨𝑣, 𝑤⟩|
+ ‖𝑣′𝑗‖2 ·

⃒⃒⃒⃒
1

⟨𝑣, 𝑤⟩
− 1

⟨𝑣𝑗, 𝑤⟩

⃒⃒⃒⃒
≤ 𝛿

|⟨𝑣, 𝑤⟩|
+

|⟨𝑣 − 𝑣𝑗, 𝑤⟩|
|⟨𝑣, 𝑤⟩| · |⟨𝑣𝑗, 𝑤⟩|

≤ 𝛿

|⟨𝑣, 𝑤⟩|
+
‖𝑣 − 𝑣𝑗‖2 · ‖𝑤‖2
|⟨𝑣, 𝑤⟩| · |⟨𝑣𝑗, 𝑤⟩|

≤ 𝑂(𝛿 · 𝑘2),

where in the first step we use the triangle inequality, in the fourth step we use Cauchy-

Schwarz, and in the fifth step we use the events we conditioned on. In other words, when

𝒟 is regarded as a mixture of linear regressions 𝒟′ under the direction 𝑤, 𝑣′ is a warm start

close to 𝑣′𝑗.

Next, we check that this mixture of linear regressions 𝒟′ is well-separated. For any 𝑖 ̸= 𝑗,

let 𝑣′′𝑖 , 𝑣′′𝑗 ∈ R𝑑 be the vectors (−𝑣′𝑖, ⟨𝑣𝑖, 𝑤⟩) and (−𝑣′𝑗, ⟨𝑣𝑗, 𝑤⟩) respectively. Then

‖ 𝑣′𝑖
⟨𝑣𝑖, 𝑤⟩

−
𝑣′𝑗
⟨𝑣𝑗, 𝑤⟩

‖22 = ‖
𝑣′′𝑖
⟨𝑣𝑖, 𝑤⟩

−
𝑣′′𝑗
⟨𝑣𝑗, 𝑤⟩

‖22

=
‖𝑣′′𝑖 ‖22
⟨𝑣𝑖, 𝑤⟩2

+
‖𝑣′′𝑗 ‖22
⟨𝑣𝑗, 𝑤⟩2

−
2⟨𝑣′′𝑖 , 𝑣′′𝑗 ⟩
⟨𝑣𝑖, 𝑤⟩⟨𝑣𝑗, 𝑤⟩

579

=
‖𝑣𝑖‖22
⟨𝑣𝑖, 𝑤⟩2

+
‖𝑣𝑗‖22
⟨𝑣𝑗, 𝑤⟩2

− 2⟨𝑣𝑖, 𝑣𝑗⟩
⟨𝑣𝑖, 𝑤⟩⟨𝑣𝑗, 𝑤⟩

=
1

⟨𝑣𝑖, 𝑤⟩2
+

1

⟨𝑣𝑗, 𝑤⟩2
− 2− ‖𝑣𝑖 − 𝑣𝑗‖22
⟨𝑣𝑖, 𝑤⟩⟨𝑣𝑗, 𝑤⟩

≥
(︂

1

⟨𝑣𝑖, 𝑤⟩
− 1

⟨𝑣𝑗, 𝑤⟩

)︂2

+
‖𝑣𝑖 − 𝑣𝑗‖22
⟨𝑣𝑖, 𝑤⟩⟨𝑣𝑗, 𝑤⟩

, (8.57)

where in the third step we used the fact that 𝑣𝑖 and 𝑣𝑗 are the same as 𝑣′′𝑖 and 𝑣′′𝑗 up to a

change of basis and a change of sign of the entry corresponding to the 𝑤 direction. Recall

that we are assuming without loss of generality that ⟨𝑣𝑖, 𝑤⟩ ≥ 0 for all 𝑖 ∈ [𝑘], so (8.57) is at

least ‖𝑣𝑖−𝑣𝑗‖22
⟨𝑣𝑖,𝑤⟩⟨𝑣𝑗 ,𝑤⟩ ≥ Ω(Δ2 · 𝑘2).

Lastly, by Lemma 8.8.14, we have that the covariances of the components of this mixture

of linear regressions 𝒟′ have eigenvalues all lying in [Ω(1/𝑘3), 1]. So that the scaling is

consistent with Theorem 8.6.1, consider the mixture of linear regressions ̃︀𝒟 from which one

can sample by drawing (𝑥, 𝑦) from 𝒟′ and taking (𝑥 · Θ(𝑘3), 𝑦 · Θ(𝑘3)). 𝒟′ has the same

regressors as 𝒟′ and thus the same separation Ω(Δ ·𝑘), but its components’ covariances have

eigenvalues all lying in [1,Θ(𝑘3)]. By Theorem 8.6.1, if we take 𝜁 = Ω(Δ·𝑘)·min
(︁

1
Θ(𝑘3)

, 𝑝min

64

)︁
,

then the algorithm of [LL18] converges to an 𝜀-close estimate for 𝑣′𝑗 provided ‖𝑣′ − 𝑣′𝑗‖2 ≤

𝜁/Θ(𝑘3).

8.8.5 Learning All Hyperplanes

With HyperplaneMomentDescent and HyperplaneBoost in hand, it is now straight-

forward to obtain an algorithm that learns all components of a mixture of hyperplanes, see

Algorithm 38.

We can complete the proof of Theorem 8.8.1.

Proof of Theorem 8.8.1. By Lemma 8.8.8, every 𝑣′𝑖 in LearnHyperplanes is 𝜁
𝑎eig𝑘3

-close

(up to signs) to a direction 𝑣𝑖′ of 𝒟, and by Corollary 8.8.16, HyperplaneBoost improves

this to a vector ̃︀𝑣𝑖 for which ‖̃︀𝑣𝑖 − 𝑣𝑖′‖2 ≤ 𝜀boost, where

𝜀boost = min{𝜀, poly(𝑝min,Δ, 1/𝑘, 1/𝑑)
𝑘3/5 ln(1/𝑝min)}.

580

Algorithm 38: LearnHyperplanes(𝒟, 𝛿, 𝜀)
Input: Sample access to mixture of hyperplanes 𝒟 with separation Δ and

directions {𝑣𝑖}, failure probability 𝛿, error 𝜀
Output: List of vectors ℒ , {̃︀𝑣1, ..., ̃︀𝑣𝑘} for which there is a permutation

𝜋 : [𝑘]→ [𝑘] and signs 𝜀1, ..., 𝜀𝑘 ∈ {±1} for which ‖̃︀𝑣𝑖 − 𝜀𝑖𝑣𝜋(𝑖)‖2 ≤ 𝜀 for all
𝑖 ∈ [𝑘], with probability at least 1− 𝛿.

1 𝛿′ ← 𝛿/2𝑘

2 𝜁 ← 𝑎sepΔ · 𝑘 ·min
(︀𝑎eig
𝑘3
, 𝑝min

64

)︀
3 𝜀HMD ← 𝜁

𝑎eig𝑘3
.

4 𝜀boost ← min{𝜀, poly(𝑝min,Δ, 1/𝑘, 1/𝑑)
𝑘3/5 ln(1/𝑝min)}.

5 for 𝑖 ∈ [𝑘] do
6 𝑣′𝑖 ← HyperplaneMomentDescent(𝒟, 𝛿′, 𝜀FMD)
7 ̃︀𝑣𝑖 ← HyperplaneBoost(𝒟, 𝑣′𝑖, 𝜀boost, 𝛿

′)
8 Henceforth when sampling from 𝒟, ignore all samples 𝑥 ∈ R𝑑 for which

|⟨̃︀𝑣𝑖, 𝑥⟩| ≤ 𝜀boost · poly(log 𝑑).

As a result, only a poly(𝑝min,Δ, 1/𝑘, 1/𝑑)
𝑘3/5 ln(1/𝑝min) fraction of subsequent samples will

be removed, and the resulting error can be absorbed into the sampling error that goes

into subsequent calls to L2Estimate and subsequent matrices ̂︁M(𝑁)
𝑎 ∈ R𝑑×𝑑 that we run

ApproxBlockSVD on, in the remainder of LearnWithoutNoise.

8.9 Boosting Down the Cosine Integral

The main result that we show in this section is the following local convergence guarantee for

Boost.

Theorem 8.9.1. There are absolute constants 𝐶,𝐶 ′ > 0 such that the following holds. Let

𝜀 > 0, and let 𝒟 be any mixture of spherical linear regressions with separation Δ, noise rate

𝜍 ≤ 𝐶 ′ · (𝑝min · 𝜀 ·Δ4)1/5. Suppose ‖𝑣−𝑤𝑖*‖2 ≤ Δ/𝛾 for 𝛾 = 𝐶 · 𝑝1/4min. Then Boost(𝒟, 𝑣, 𝜀, 𝛿)

(Algorithm 39) returns 𝑣* satisfying ‖𝑣*−𝑤𝑖*‖2 ≤ 𝜀. Additionally, it has sample complexity

̃︀𝑂 (︀𝑑 · poly(1/𝜀, 1/Δ) · (ln(1/𝜀) · ln(1/𝑝min))
𝑂(ln(1/𝑝min))

)︀
and runtime ̃︀𝑂 (︀𝑑2 · poly(1/𝜀, 1/Δ) · (ln(1/𝜀) · ln(1/𝑝min))

𝑂(ln(1/𝑝min))
)︀
.

581

Remark 8.9.2. Note that our boosting algorithm can tolerate a warm start at distance

𝑂(Δ𝑝
−1/4
min), whereas that of [LL18] can only tolerate one at distance 𝑂(Δ𝑝min) (see Theo-

rem 8.6.1). Our algorithm can also tolerate regression noise as large as 𝑂(𝑝1/5min𝜀
1/5Δ4/5). In

particular, if 𝜀 = 𝑜(𝑝
1/20
min Δ

1/5), then our algorithm Boost can tolerate noise rate 𝜍 = 𝜔(𝜀).

In Section 8.9.1 we recall the boosting algorithm of [LL18] to motivate the high-level

blueprint for our argument. In Section 8.9.2 we give the full specification of our boosting

algorithm and a proof of Theorem 8.9.1.

8.9.1 Background: Gravitational Allocation

In [LL18], Li and Liang boost a warm start to a fine estimate for one of the 𝑤𝑖’s by performing

stochastic gradient descent on the (regularized) gravitational potential objective

ℎ(𝑣) = E𝑥,𝑦[ln(|⟨𝑥, 𝑣⟩ − 𝑦|+ 𝜉)]

for some 𝜉 > 0 which is introduced to ensure smoothness even when 𝑣 = 𝑤𝑖 for some 𝑖 ∈ [𝑘].

We emphasize that this objective is concave. For any 𝑖* ∈ [𝑘], the inner product between

the expected gradient step and 𝑤𝑖* − 𝑣(𝑡), where 𝑣(𝑡) is the current iterate, is given by

⟨−Δℎ(𝑣(𝑡)), 𝑤𝑖* − 𝑣(𝑡)⟩ = −E𝑥,𝑦
[︂
sgn(⟨𝑥, 𝑣⟩ − 𝑦) · ⟨𝑥,𝑤𝑖* − 𝑣(𝑡)⟩

|⟨𝑥, 𝑣⟩ − 𝑦|+ 𝜉

]︂
=

1

𝑘

𝑘∑︁
𝑖=1

𝑝𝑖 · E𝑥∼𝒩 (0,Id)

[︂
sgn(⟨𝑥,𝑤𝑖 − 𝑣(𝑡)⟩) · ⟨𝑥,𝑤𝑖* − 𝑣(𝑡)⟩

|⟨𝑥,𝑤𝑖 − 𝑣(𝑡)⟩|+ 𝜉

]︂
.

They argue that provided ‖𝑣(0) − 𝑤𝑖*‖2 ≤ 𝑂(Δ/𝑘), the contribution of the 𝑖*-th summand

dominates that of all other summands, so the correlation of the gradient step with 𝑤𝑖* − 𝑣(𝑡)

is sufficiently large that each step contracts the distance to 𝑤𝑖* appreciably.

8.9.2 Boosting via the Cosine Integral

Here we argue that a warm start of ‖𝑣(0)−𝑤𝑖*‖2 ≤ 𝑂(Δ ·𝑝1/4min) is sufficient if we run gradient

descent not on the gravitational potential objective, but on the cosine integral objective.

582

Concretely, we propose Algorithm 39 below for boosting.

Algorithm 39: Boost(𝒟, 𝑣, 𝜀, 𝛿)
Input: Mixture of linear regressions 𝒟 with separation Δ and noise rate

𝜍 ≤ 𝑂((𝑝min · 𝜀 ·Δ4)1/5), warm start 𝑣, accuracy 𝜀, failure probability 𝛿
1 𝛾 ← 𝐶 · 𝑝1/4min.
2 𝑣(0) ← 𝑣, 𝑇 ← 𝑂(𝑑 ·Δ8/𝜀8 · ln(Δ/𝛾𝜀).
3 𝛿′ ← 𝛿

2𝑇
.

4 𝜎 ← 4.
5 for 𝑡 = 0, ..., 𝑇 − 1 do
6 𝜉𝑡 ← EstimateMinVariance(ℱ𝑡, 𝜎, 𝜀/10,Ω(ln(1/𝑝min)), 𝛿

′)/1.1
7 if 𝜉𝑡 · (1.1/0.9) ≤ 𝜀 then
8 break

9 Draw 𝑁 = poly(1/𝜉𝑡, 1/Δ, ln(𝛿
′)) fresh samples from 𝒟, call them

(𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁).
10 Form the empirical gradient

𝛿𝑡 = −
1

𝑁

𝑁∑︁
𝑖=1

1[|⟨𝑥𝑖, 𝑣(𝑡)⟩ − 𝑦𝑖| ≥ 𝜉𝑡] ·
cos(𝜉−1

𝑡 𝜋|⟨𝑥𝑖, 𝑣(𝑡)⟩ − 𝑦𝑖|)
⟨𝑥𝑖, 𝑣(𝑡)⟩ − 𝑦𝑖

· 𝑥𝑖.

11 Set learning rate 𝜂𝑡 ← 𝜉5𝑡
2𝑑Δ4 · ‖𝑤𝑖* − 𝑣(𝑡)‖2 and define

𝑣(𝑡+1) ← 𝑣(𝑡) − 𝜂𝑡𝛿𝑡. (8.58)

12 return 𝑣(𝑇).

Remark 8.9.3. An obvious caveat for our result is the exponential dependence on ln(1/𝑝min),

which comes from the need to compute the regularization parameter 𝜉𝑡 at each step. Similar

to the 𝜉 in the gravitational potential objective of [LL18], the 𝜉𝑡 in Boost is to ensure

smoothness. In our case, we need 𝜉𝑡 to be a lower bound for ‖𝑤𝑖* − 𝑣(𝑡)‖2, and the rate of

contraction decreases as 𝜉𝑡 decreases (see Lemma 8.9.4 below).

To show Theorem 8.9.1, we first show that if 𝜉𝑡 is chosen to be sufficiently small at each

step, ‖𝑤𝑖* − 𝑣(𝑡)‖2 is guaranteed to contract.

Lemma 8.9.4. Let 𝐶,𝐶 ′ > 0 be the constants in Theorem 8.9.1.

For any 𝑡 and 𝛿 > 0, if 𝜀/10 ≤ ‖𝑤𝑖* − 𝑣(𝑡)‖2 ≤ Δ/𝛾 for 𝛾 = 𝐶 · 𝑝1/4min and 𝜉𝑡 satisfies

𝜉𝑡 ≤ ‖𝑤𝑖* − 𝑣(𝑡)‖2, then for 𝑁 = poly(1/𝜉𝑡, 1/Δ, ln(1/𝛿)), we have with probability at least

583

1− 𝛿 over the 𝑁 samples used to form the empirical gradient that

(︂
1− 𝜉4𝑡√

𝑑Δ4

)︂
‖𝑤𝑖* − 𝑣(𝑡)‖22 ≤ ‖𝑤𝑖* − 𝑣(𝑡+1)‖22 ≤

(︂
1− 𝜉8𝑡

4𝑑Δ8

)︂
· ‖𝑤𝑖* − 𝑣(𝑡)‖22.

Proof. The key step is to lower bound the correlation between the negative gradient −E[𝛿𝑡]
and the direction 𝑤𝑖* − 𝑣(𝑡) in which we would like to move. We have that

⟨−E[𝛿𝑡], 𝑤𝑖* − 𝑣(𝑡)⟩

= E𝑥,𝑦

[︃
1[|⟨𝑥, 𝑣(𝑡)⟩ − 𝑦| ≥ 𝜉𝑡] ·

cos
(︀
𝜉−1
𝑡 𝜋|⟨𝑥, 𝑣⟩ − 𝑦|

)︀
· ⟨𝑥,𝑤𝑖* − 𝑣(𝑡)⟩

⟨𝑥, 𝑣(𝑡)⟩ − 𝑦𝑖

]︃

=

𝑘∑︁
𝑖=1

𝑝𝑖E𝑥∼𝒩 (0,Id)
𝑔∼𝒩 (0,𝜍2)

[︃
1[|⟨𝑥,𝑤𝑖 − 𝑣(𝑡)⟩ − 𝑔| ≥ 𝜉𝑡] ·

− cos
(︀
𝜉−1
𝑡 𝜋|⟨𝑥,𝑤𝑖 − 𝑣(𝑡)⟩ − 𝑔|

)︀
· ⟨𝑥,𝑤𝑖* − 𝑣(𝑡)⟩

⟨𝑥,𝑤𝑖 − 𝑣(𝑡)⟩ − 𝑔

]︃
.(8.59)

where the last step follows from the fact that (𝑥, 𝑦) comes from component 𝑖 with probability

𝑝𝑖, in which case ⟨𝑥, 𝑣(𝑡)⟩ − 𝑦𝑖 = −⟨𝑥,𝑤𝑖 − 𝑣(𝑡)⟩.

For every 𝑖 ∈ [𝑘], define

𝛽𝑖 ,
(︀
‖𝑤𝑖 − 𝑣(𝑡)‖22 + 𝜍2

)︀1/2
and 𝜈𝑖 ,

‖𝑤𝑖 − 𝑣(𝑡)‖22
‖𝑤𝑖 − 𝑣(𝑡)‖22 + 𝜍2

.

We have the naive bounds

‖𝑤𝑖 − 𝑣(𝑡)‖2 ≤ 𝛽𝑖 ≤ max
{︀
‖𝑤𝑖 − 𝑣(𝑡)‖2, 𝜍

}︀
·
√
2 (8.60)

and

min

{︂
1

2
,
‖𝑤𝑖 − 𝑣(𝑡)‖22

2𝜍2

}︂
≤ 𝜈𝑖 ≤ 1 (8.61)

for all 𝑖. Then by Lemma 8.9.5 below, we can bound the 𝑖 ̸= 𝑖* and 𝑖 = 𝑖* terms of (8.59) to

get

⟨−E[𝛿𝑡], 𝑤𝑖* − 𝑣(𝑡)⟩ ≥ 𝑝𝑖*
0.22𝜉3𝑡 𝜈𝑖*

𝛽3
𝑖*

−
∑︁
𝑖 ̸=𝑖*

𝑝𝑖
‖𝑤𝑖* − 𝑣(𝑡)‖2
‖𝑤𝑖 − 𝑣(𝑡)‖2

· 0.26𝜉
3
𝑡 𝜈𝑖

𝛽3
𝑖

584

≥ 𝜉3𝑡

[︃
𝑝𝑖* ·

0.22𝜈𝑖*

𝛽3
𝑖*
−
∑︁
𝑖 ̸=𝑖*

𝑝𝑖
0.26‖𝑤𝑖* − 𝑣(𝑡)‖2
‖𝑤𝑖 − 𝑣(𝑡)‖42

]︃

≥ 𝜉3𝑡

[︂
𝑝𝑖* ·

0.22𝜈𝑖*

𝛽3
𝑖*
− 0.26‖𝑤𝑖* − 𝑣(𝑡)‖2

(Δ/2)4

]︂
, (8.62)

where in the second step we invoked the lower and upper bounds of (8.60) and (8.61) re-

spectively, and in the third step we used the fact that for every 𝑖 ̸= 𝑖*,

‖𝑤𝑖 − 𝑣(𝑡)‖2 ≥ ‖𝑤𝑖 − 𝑤𝑖*‖2 − ‖𝑤𝑖* − 𝑣(𝑡)‖2 ≥ Δ/2.

We proceed by casework based on the relation between ‖𝑤𝑖* − 𝑣(𝑡)‖2 and 𝜍.

Case 1. ‖𝑤𝑖* − 𝑣(𝑡)‖2 ≥ 𝜍.

In this case, we know that 𝛽𝑖* ≤
√
2‖𝑤𝑖* − 𝑣(𝑡)‖2 ≤

√
2Δ/𝛾 and 𝜈𝑖* ≥ 1/2 by (8.60) and

(8.61). From (8.62) we get that

⟨−E[𝛿𝑡], 𝑤𝑖* − 𝑣(𝑡)⟩ ≥ 𝜉3𝑡 ‖𝑤𝑖* − 𝑣(𝑡)‖2 ·
[︂
𝑝min ·

0.11 · (2−3/2)

(Δ/𝛾)4
− 0.26

(Δ/2)4

]︂

So there is an absolute constant 𝐶 > 0 such that for 𝛾 = 𝐶 · 𝑝1/4min, we have that

⟨−E[𝛿𝑡], 𝑤𝑖* − 𝑣(𝑡)⟩ ≥ 𝜉3𝑡 ‖𝑤𝑖* − 𝑣(𝑡)‖2 ·Δ−4 (8.63)

Case 2. ‖𝑤𝑖* − 𝑣(𝑡)‖2 ≤ 𝜍.

In this case, we know that 𝛽𝑖* ≤
√
2𝜍 and 𝜈𝑖* ≥ ‖𝑤𝑖*−𝑣(𝑡)‖22

2𝜍2
by (8.60) and (8.61). From

(8.62) we get that

⟨−E[𝛿𝑡], 𝑤𝑖* − 𝑣(𝑡)⟩ ≥ 𝜉3𝑡 ·
[︂
𝑝min ·

0.22

𝜍3 · 23/2
· ‖𝑤𝑖

* − 𝑣(𝑡)‖22
2𝜍2

− 0.26‖𝑤𝑖* − 𝑣(𝑡)‖2
(Δ/2)4

]︂
≥ 𝜉3𝑡 ‖𝑤𝑖* − 𝑣(𝑡)‖2 ·

[︂
𝑝min ·

0.22 · (2−5/2)

𝜍5
· ‖𝑤𝑖* − 𝑣(𝑡)‖2 −

0.26

(Δ/2)4

]︂
≥ 𝜉3𝑡 ‖𝑤𝑖* − 𝑣(𝑡)‖2 ·

[︂
𝑝min ·

0.22 · (2−5/2) · (𝜀/3)
𝜍5

− 0.26

(Δ/2)4

]︂
.

By taking 𝛾 = 𝐶 ·𝑝1/4min as in the previous case, we see that there exists some absolute constant

𝐶 ′ > 0 such that for 𝜍 ≤ 𝐶 ′ · (𝑝min · 𝜀 ·Δ4)1/5, (8.63) still holds.

585

To show moving in the direction opposite the empirical gradient suffices, we need con-

centration. First note that for every sample (𝑥, 𝑦),

‖1[|⟨𝑥, 𝑣(𝑡)⟩ − 𝑦| ≥ 𝜉𝑡] ·
cos(𝜉−1

𝑡 𝜋|⟨𝑥, 𝑣(𝑡)⟩ − 𝑦|)
⟨𝑥, 𝑣(𝑡)⟩ − 𝑦

· 𝑥‖2 ≤
‖𝑥‖
𝜉𝑡
,

and likewise

⃒⃒⃒⃒⟨
1[|⟨𝑥, 𝑣(𝑡)⟩ − 𝑦| ≥ 𝜉𝑡] ·

cos(𝜉−1
𝑡 𝜋|⟨𝑥, 𝑣(𝑡)⟩ − 𝑦|)
⟨𝑥, 𝑣(𝑡)⟩ − 𝑦

· 𝑥, 𝑤𝑖* − 𝑣(𝑡)

‖𝑤𝑖* − 𝑣(𝑡)‖2

⟩⃒⃒⃒⃒
≤

⃒⃒⃒⟨
𝑥, 𝑤𝑖*−𝑣(𝑡)

‖𝑤𝑖*−𝑣(𝑡)‖2

⟩⃒⃒⃒
𝜉𝑡

.

Furthermore, by (8.63), the expected gradient satisfies

⟨
−E[𝛿𝑡],

𝑤𝑖* − 𝑣(𝑡)

‖𝑤𝑖* − 𝑣(𝑡)‖2

⟩
≥ 𝜉3𝑡Δ

−4.

By standard Gaussian concentration, for some 𝑁 ≥ poly(𝜉−1
𝑡 ,Δ−1, ln(1/𝛿)), we get that with

probability at least 1− 𝛿/3,

‖𝛿𝑡‖ ≤
2
√
𝑑

𝜉𝑡
and

⟨
−𝛿𝑡,

𝑤𝑖* − 𝑣(𝑡)

‖𝑤𝑖* − 𝑣(𝑡)‖2

⟩
≥ 1

2
𝜉3𝑡Δ

−4.

By (8.58),

‖𝑤𝑖* − 𝑣(𝑡+1)‖22 = ‖𝑤𝑖* − 𝑣(𝑡)‖22 + 𝜂2𝑡 ‖𝛿𝑡‖22 − 2𝜂𝑡⟨−𝛿𝑡, 𝑤𝑖* − 𝑣(𝑡)⟩,

so by taking learning rate 𝜂𝑡 ,
𝜉5𝑡

2𝑑Δ4 · ‖𝑤𝑖* − 𝑣(𝑡)‖2, we ensure that

‖𝑤𝑖* − 𝑣(𝑡+1)‖22 ≤
(︂
1− 𝜉8𝑡

4𝑑Δ8

)︂
‖𝑤𝑖* − 𝑣(𝑡)‖22.

At the same time, from the naive bounds ‖𝛿𝑡‖22 ≥ 0 and 2𝜂𝑡⟨−𝛿𝑡, 𝑤𝑖*−𝑣(𝑡)⟩ ≤ 𝜉4𝑡√
𝑑Δ4‖𝑤𝑖*−𝑣(𝑡)‖22

which follows by Cauchy-Schwarz, we also have

‖𝑤𝑖* − 𝑣(𝑡+1)‖22 ≥
(︂
1− 𝜉4𝑡√

𝑑Δ4

)︂
‖𝑤𝑖* − 𝑣(𝑡)‖22.

To complete the proof of Lemma 8.9.4, it remains to prove the following lemma which

586

was crucial to establishing (8.62).

Lemma 8.9.5. For any vectors 𝑎, 𝑏 ∈ R𝑑 and 𝜉 ≤ ‖𝑏‖2, we have that⃒⃒⃒⃒
⃒E𝑥∼𝒩 (0,Id)

𝑔∼𝒩 (0,𝜍2)

[︂
1[|⟨𝑏, 𝑥⟩+ 𝑔| ≥ 𝜉] · − cos (𝜉−1𝜋|⟨𝑏, 𝑥⟩+ 𝑔|)

⟨𝑏, 𝑥⟩+ 𝑔
· ⟨𝑎, 𝑥⟩

]︂⃒⃒⃒⃒
⃒ ≤ ‖𝑎‖2‖𝑏‖2

· ‖𝑏‖
2
2

𝜍2 + ‖𝑏‖22
· 0.26𝜉3

(𝜍2 + ‖𝑏‖22)3/2
.

(8.64)

Furthermore, we have that for 𝑎 = 𝑏,

E𝑥∼𝒩 (0,Id)
𝑔∼𝒩 (0,𝜍2)

[︂
1[|⟨𝑏, 𝑥⟩+ 𝑔| ≥ 𝜉] · − cos (𝜉−1𝜋|⟨𝑏, 𝑥⟩+ 𝑔|)

⟨𝑏, 𝑥⟩+ 𝑔
· ⟨𝑏, 𝑥⟩

]︂
=

‖𝑏‖22
𝜍2 + ‖𝑏‖22

· [0.22, 0.26] · 𝜉
3

(𝜍2 + ‖𝑏‖22)3/2
.

Proof. For notational convenience, given 𝑥 ∼ 𝒩 (0, Id), let ℰ𝜉 denote the event that |⟨𝑏, 𝑥⟩+

𝑔| ≥ 𝜉. We may write

𝑎 =
𝜌‖𝑎‖2
‖𝑏‖2

· 𝑏+
√︀

1− 𝜌2 · 𝑏⊥

for 𝜌 = ⟨𝑎,𝑏⟩
‖𝑎‖2‖𝑏‖2 and 𝑏⊥ ∈ S𝑑−1 orthogonal to 𝑏. Then the left-hand side of (8.64) can be

written as

E𝑥∼𝒩 (0,Id)
𝑔∼𝒩 (0,𝜍2)

[︂
1[ℰ𝜉] ·

− cos (𝜉−1𝜋|⟨𝑏, 𝑥⟩+ 𝑔|)
⟨𝑏, 𝑥⟩+ 𝑔

· ⟨𝑎, 𝑥⟩
]︂

= E𝑥∼𝒩 (0,Id)
𝑔∼𝒩 (0,𝜍2)

[︂
1[ℰ𝜉] ·

− cos (𝜉−1𝜋|⟨𝑏, 𝑥⟩+ 𝑔|)
⟨𝑏, 𝑥⟩+ 𝑔

· 𝜌‖𝑎‖2
‖𝑏‖2

· ⟨𝑏, 𝑥⟩
]︂

= − 𝜌‖𝑎‖2
‖𝑏‖2

E𝑥∼𝒩 (0,Id)
𝑔∼𝒩 (0,𝜍2)

[︂
1[ℰ𝜉]

cos (𝜉−1𝜋|⟨𝑏, 𝑥⟩+ 𝑔|)
⟨𝑏, 𝑥⟩+ 𝑔

· ⟨𝑏, 𝑥⟩
]︂

= − 𝜌‖𝑎‖2
‖𝑏‖2

E 𝑔∼𝒩 (0,𝜍2)
𝑔′∼𝒩 (0,‖𝑏‖22)

[︂
1[ℰ𝜉]

cos (𝜉−1𝜋(𝑔 + 𝑔′))

𝑔 + 𝑔′
· 𝑔′
]︂

= − 𝜌‖𝑎‖2
‖𝑏‖2

· ‖𝑏‖22
𝜍2 + ‖𝑏‖22

· E 𝑔∼𝒩 (0,𝜍2)
𝑔′∼𝒩 (0,‖𝑏‖22)

[︀
1[ℰ𝜉] cos

(︀
𝜉−1𝜋(𝑔 + 𝑔′)

)︀]︀
= − 𝜌‖𝑎‖2

‖𝑏‖2
· ‖𝑏‖22
𝜍2 + ‖𝑏‖22

· E𝑔∼𝒩 (0,𝜍2+‖𝑏‖22)
[︀
1[|𝑔| ≥ 𝜉] cos

(︀
𝜉−1𝜋𝑔

)︀]︀
where the first step follows from the fact that ⟨𝑏, 𝑥⟩ and ⟨𝑏⊥, 𝑥⟩ are independent mean-zero

random variables, the third step follows by the fact that cos(·) is even, and the penultimate

587

step follows from the fact that we may decompose 𝑔′ in terms of 𝑔 + 𝑔′ as

𝑔′ =
‖𝑏‖22

𝜍2 + ‖𝑏‖22
(𝑔 + 𝑔′) + ℎ

for Gaussian ℎ independent of 𝑔 + 𝑔′.

We conclude the proof of the first half of the lemma by noting that |𝜌| ≤ 1 and appealing

to the upper bound in Lemma 8.9.6, where we take 𝛽 = (𝜍2 + ‖𝑏‖22)1/2.

Next, the upper bound in the second half of the lemma follows immediately from Lemma 8.9.6.

Finally, for the lower bound in the second half of the lemma, the lower bound in Lemma 8.9.6

gives

E𝑥∼𝒩 (0,Id)
𝑔∼𝒩 (0,𝜍2)

[︂
1[|⟨𝑏, 𝑥⟩+ 𝑔| ≥ 𝜉] · − cos (𝜉−1𝜋|⟨𝑏, 𝑥⟩+ 𝑔|)

⟨𝑏, 𝑥⟩+ 𝑔
· ⟨𝑏, 𝑥⟩

]︂
≥ 0.23𝜉3

(𝜍2 + ‖𝑏‖22)3/2
−exp

(︂
−𝜋

2(𝜍2 + ‖𝑏‖22)
2𝜉2

)︂
,

and we conclude by noting that for 𝜉 ≤ 𝛽, exp(− 𝛽2

2𝜉2
) ≤ exp(−𝜋2/2)/𝛽3 ≤ 0.01/𝛽3.

Lemma 8.9.6. For any 𝛽, 𝜉 > 0 for which 𝜉 ≤ 𝛽, we have that

exp(−𝜋
2𝛽2

2𝜉2
)− E𝑔∼𝒩 (0,𝛽2)

[︀
1[ℰ𝜉] · cos(𝜉−1𝜋|𝑔|)

]︀
∈
[︂
0.23𝜉3

𝛽3
,
0.26𝜉3

𝛽3

]︂
. (8.65)

Proof. We can rewrite the LHS in (8.65) as follows:

LHS = exp(−𝜋
2𝛽2

2𝜉2
)− 1

𝛽
√
2𝜋

∫︁ ∞

−∞
exp

(︂
− 𝑥2

2𝛽2

)︂
cos(𝜋𝑥/𝜉)d𝑥⏟ ⏞

I

+
2

𝛽
√
2𝜋

∫︁ 𝜉

0

exp

(︂
− 𝑥2

2𝛽2

)︂
cos(𝜋𝑥/𝜉)d𝑥⏟ ⏞

II

Using Claim 8.9.7, we can show I = 0. Using Claim 8.9.8, we can upper and lower bound

II .

Claim 8.9.7. We have

1

𝛽
√
2𝜋

∫︁ ∞

−∞
𝑒
− 𝑥2

2𝛽2 cos(𝜋𝑥/𝜉)d𝑥 = exp

(︂
−𝜋

2𝛽2

2𝜉2

)︂
.

Proof. Let 𝜐 = 𝜉2

2𝜋2𝛽2 . Noting that cos(𝑥) = Re(𝑒−i𝑥), one can compute LHS by a standard

588

contour integral.

LHS =
1

𝛽
√
2𝜋
· 𝜉
𝜋

∫︁ ∞

−∞
exp

(︂
− 𝜉2𝑥2

2𝜋2𝛽2

)︂
· cos(𝑥)d𝑥

=
1

𝛽
√
2𝜋
· 𝜉
𝜋

∫︁ ∞

−∞
exp(−𝜐𝑥2) · cos(𝑥)d𝑥

=
1

𝛽
√
2𝜋
· 𝜉
𝜋
· Re

∫︁ ∞

−∞
exp

(︀
−𝜐𝑥2 − i𝑥

)︀
d𝑥

=
1

𝛽
√
2𝜋
· 𝜉
𝜋
· Re

∫︁ ∞

−∞
exp(−𝜐(𝑥+ i/(2𝜐))2 − 1/(4𝜐))d𝑥

=
exp(−1/(4𝜐))

𝛽
√
2𝜋

· 𝜉
𝜋
· Re

∫︁ ∞

−∞
exp(−𝜐(𝑥+ i/(2𝜐))2)d𝑥

=
exp(−1/(4𝜐))

𝛽
√
2𝜋

· 𝜉
𝜋
· Re

∫︁ ∞+i/(2𝜐)

−∞+i/(2𝜐)

exp(−𝜐𝑥2)d𝑥

=
exp(−1/(4𝜐))

𝛽
√
2𝜋

· 𝜉
𝜋
·
√
𝜋√
𝜐

= exp

(︂
−𝜋

2𝛽2

2𝜉2

)︂
,

where the second step follows from definition of 𝑣, the third step follows from cos(𝑥) =

Re(exp(−i𝑥)), the fourth step follows from −𝑣𝑥2 − i𝑥 = −𝑣(𝑥2 + i𝑥/𝑣 − 1/(4𝑣2))− 1/4𝑣 =

−𝜐(𝑥 + i/(2𝜐))2 − 1/(4𝜐), the fifth step follows from pulling the term exp(−1/(4𝑣)) out of

integral, the sixth step follows from shifting the integral range, the seventh step follows from

Cauchy’s theorem2, and the last step follows from definition of 𝑣.

Thus, we complete the proof.

Claim 8.9.8. Let 𝜉 ≤ 𝛽. We have

2

𝛽
√
2𝜋

∫︁ 𝜉

0

exp

(︂
− 𝑥2

2𝛽2

)︂
cos(𝜋𝑥/𝜉)d𝑥 ∈ [0.23𝜉3/𝛽3, 0.26𝜉3/𝛽3].

2By Cauchy’s theorem, the integral around the box in the complex plane with vertices −𝑅, 𝑅, −𝑅+i/(2𝜐),
and 𝑅+ i/(2𝜐) is zero. The sum of the contributions of the edges between −𝑅 and −𝑅+ i/(2𝜐) and between
𝑅 and 𝑅+ i/(2𝜐)is imaginary and thus contributes 0 to the real part. If we take 𝑅→ i𝑛𝑓𝑡𝑦, we see that the
integral we want to compute is the same as the one where you ignore the i/(2𝜐) terms, which is a standard
Gaussian integral.

589

Proof. We will use the bound

1− 𝑥2

2𝛽2
≤ exp

(︂
− 𝑥2

2𝛽2

)︂
≤ 1− 𝑥2

2𝛽2
+

𝑥4

8𝛽4

to obtain upper and lower bounds.

Noting that cos(𝜋𝑥/𝜉) ≥ 0 for 𝑥 ∈ [0, 𝜉/2] and cos(𝜋𝑥/𝜉) ≤ 0 for 𝑥 ∈ [𝜉/2, 𝜉], we get that

LHS ≥ 2

𝛽
√
2𝜋

∫︁ 𝜉/2

0

cos(𝜋𝑥/𝜉) ·
(︂
1− 𝑥2

2𝛽2

)︂
d𝑥+

2

𝛽
√
2𝜋

∫︁ 𝜉

𝜉/2

cos(𝜋𝑥/𝜉) ·
(︂
1− 𝑥2

2𝛽2
+

𝑥4

8𝛽4

)︂
d𝑥

≥ 2

𝛽
√
2𝜋

(︂
𝜉3

𝜋𝛽2
− 0.021 · 𝜉

5

𝛽4

)︂
≥ 0.23𝜉3

𝛽3

and

LHS ≤ 2

𝛽
√
2𝜋

∫︁ 𝜉/2

0

cos(𝜋𝑥/𝜉) ·
(︂
1− 𝑥2

2𝛽2
+

𝑥4

8𝛽4

)︂
d𝑥+

2

𝛽
√
2𝜋

∫︁ 𝜉

𝜉/2

cos(𝜋𝑥/𝜉) ·
(︂
1− 𝑥2

2𝛽2

)︂
d𝑥

≤ 2

𝛽
√
2𝜋

(︂
𝜉3

𝜋𝛽2
+ 0.0002 · 𝜉

5

𝛽4

)︂
≤ 0.26𝜉3

𝛽3
,

where in the last steps we used the fact that 𝜉 ≤ 𝛽.

We can now complete the proof of Theorem 8.9.1.

Proof of Theorem 8.9.1. The only probabilistic components of Boost is the invocation of

EstimateMinVariance and the event of Lemma 8.9.4 holding at each step. For a given

𝑡, with probability 1− 2𝛿′ = 1− 𝛿/𝑇 these two events both hold, so by a union bound over

all 𝑇 iterations, the failure probability of Boost is at most 𝛿 as desired.

We now proceed to show correctness of Boost. Conditioned on making progress in

every step of Boost, note that max𝑖‖𝑤𝑖 − 𝑣(𝑡)‖2 ≤ Δ/𝛾 + ‖𝑤𝑖 − 𝑤𝑖*‖ ≤ Δ/𝛾 + 2 ≤ 4,

so 𝜎 = 4 is always a valid upper bound for the maximum variance of any component of a

univariate mixture of Gaussians ℱ𝑡 encountered over the course of Boost. So we conclude

by Lemma 8.5.7 that 𝜉𝑡 ≤ ‖𝑤𝑖* − 𝑣(𝑡)‖2. Then because of the lower bound of Lemma 8.9.4,

the inequality 𝜉𝑡 · (1.1/0.9) ≥ ‖𝑤𝑖 − 𝑣(𝑡)‖2, and the fact that Boost breaks out of its main

loop if 𝜉𝑡 · (1.1/0.9), we know that at all times in main loop of Boost, ‖𝑤𝑖* − 𝑣(𝑡)‖2 ≥ 𝜀/10.

590

So by the upper bound of Lemma 8.9.4 and the fact that 𝜉𝑡 = Ω(𝜀), we conclude that

after 𝑇 , 𝑂 (𝑑 ·Δ8/𝜀8 · ln(Δ/𝛾𝜀)) iterations, ‖𝑤𝑖* − 𝑣(𝑇)‖2 ≤ 𝜀.

For the time and sample complexity, at every time step 𝑡 we must draw

𝑁 = poly(1/𝜉𝑡, 1/Δ, ln(1/𝛿
′)) ≤ poly(1/𝜀, 1/Δ, ln(𝑇), ln(1/𝛿))

samples to form the empirical gradient in time 𝑑 ·𝑁 . We also know that each invocation of

EstimateMinVariance, by Lemma 8.5.7, requires time and sample complexity

𝑁 ′ , ̃︀𝑂 (︀(𝜇0 · ln(1/𝜀) ln(1/𝑝min))
𝑂(ln(1/𝑝min)) · ln(2𝑇/𝛿)

)︀
.

So Boost requires

𝑇 · (𝑁 +𝑁 ′) = ̃︀𝑂 (︀𝑑 · poly(1/𝜀, 1/Δ) · (ln(1/𝜀) · 𝜇0 · ln(1/𝑝min))
𝑂(ln(1/𝑝min))

)︀
samples and

𝑇 (𝑑 ·𝑁 +𝑁 ′) = ̃︀𝑂 (︀𝑑2 · poly(1/𝜀, 1/Δ) · (ln(1/𝜀) · 𝜇0 · ln(1/𝑝min))
𝑂(ln(1/𝑝min))

)︀
time.

8.10 Appendix: Failure of Low-Degree Identifiability

In this section, we exhibit a pair of mixtures of spherical linear regressions which are far in

parameter distance but which agree on all degree-Ω(𝑘) moments. This demonstrates that

any method which hopes to achieve sample complexity which is subexponential in 𝑘 cannot

rely solely on low order moments of the MLR.

First, we exhibit a pair of non-identical univariate mixtures of zero-mean Gaussians

whose moments match up to degree 2𝑘 − 1 and whose variances and mixing weights satisfy

reasonable bounds. We remark that the proof, in particular the application of Borsak-Ulam,

is largely inspired by that of Lemma 2.9 in [HP15].

591

Lemma 8.10.1. There exist 𝜎1, ..., 𝜎𝑘, 𝜎′
1, ..., 𝜎

′
𝑘 ≥ 0 such that the following holds. Let 𝐷1

(resp. 𝐷2) be the uniform mixture of univariate Gaussians with components 𝒩 (0, 𝜎2
1), ...,𝒩 (0, 𝜎2

𝑘)

(resp. 𝒩 (0, 𝜎′2
1), ...,𝒩 (0, 𝜎′2

𝑘)). Then

1) there is some 𝑖 ∈ [𝑘] for which |𝜎𝑖 − 𝜎′
𝑗| > Ω(1/

√
𝑘) for all 𝑗 ∈ [𝑘],

2) |𝜎𝑖 − 𝜎𝑗|, |𝜎′
𝑖 − 𝜎′

𝑗| > 1/2 for all 𝑖 ̸= 𝑗,

3) 𝜎𝑖, 𝜎′
𝑖 ∈ [1/2, 𝑘 + 1] for all 𝑖 ∈ [𝑘], and

4) 𝐷1 and 𝐷2 match on all moments of degree at most 2𝑘 − 1.

Proof. For each 𝑖 ∈ [𝑘], define 𝜎𝑖(𝑧) = 𝑖+ 𝛼𝑧 for 𝛼 = 1/4 and consider the map 𝑀 : S𝑘−1 →

R𝑘−1 given by

𝑀(𝑧)ℓ =
𝑘∑︁
𝑖=1

𝜎𝑖(𝑧)
2ℓ ℓ = 1, ..., 𝑘 − 1.

𝑀 is clearly continuous, so by Borsak-Ulam, there exists 𝑧 ∈ S𝑘−1 for which 𝑀(𝑧) =𝑀(−𝑧).

For each 𝑖 ∈ [𝑘], define 𝜎𝑖 , 𝜎𝑖(𝑧) and 𝜎′
𝑖 , 𝜎𝑖(−𝑧). Then because 𝛼 = 1/4 and ‖𝑧‖∞ ≤ 1,

𝜎𝑖, 𝜎
′
𝑖 ∈ [𝑖− 1/4, 𝑖+1/4], 2) and 3) are immediately satisfied. Furthermore, this implies that

for any 𝑖 ∈ [𝑘], |𝜎𝑖−𝜎′
𝑗| > 1/2 for all 𝑗 ̸= 𝑖. For 𝑗 = 𝑖, |𝜎𝑖−𝜎′

𝑖| = 2|𝑧𝑖|, and because ‖𝑧‖2 = 1,

there must exist some 𝑖 for which |𝑧𝑖| ≥ 1√
𝑘
, from which 1) follows.

To see that 4) is satisfied, first note that 𝐷1 and 𝐷2 are mixtures of zero-mean Gaussians

and thus both have odd-degree moments equal to zero. Then for any 1 ≤ ℓ ≤ 𝑘 − 1, note

that the the 2ℓ-th moment of 𝐷1 is

1

𝑘

𝑘∑︁
𝑖=1

𝜎2ℓ
𝑖 · (2ℓ− 1)!! =

1

𝑘
(2ℓ− 1)!! ·𝑀(𝑧)ℓ.

Likewise, the 2ℓ-th moment of 𝐷2 is

1

𝑘
(2ℓ− 1)!! ·𝑀(−𝑧)ℓ.

So because 𝑀(𝑧)ℓ =𝑀(−𝑧)ℓ for all ℓ = 1, ..., 𝑘 − 1, we conclude that 4) is satisfied.

We can now exhibit a moment-matching example for mixtures of linear regressions. Let

the parameters 𝜎1, ..., 𝜎𝑘, 𝜎′
1, ..., 𝜎

′
𝑘 be as in Lemma 8.10.1.

592

Lemma 8.10.2. Take any mixture of spherical linear regressions 𝒟 in R𝑑 with mixing weights

𝑝1, ..., 𝑝𝑘 and Ω(1)-separated regressors 𝑣1, ..., 𝑣𝑘 ∈ R𝑑 satisfying ‖𝑣𝑖‖2 ≤ poly(𝑘) for all

𝑖 ∈ [𝑘]. Take any additional direction 𝑣 ∈ S𝑑−1, and any 𝜆 ≥ 0. Let 𝒟1 (resp. 𝒟2) be

the mixture of 3𝑘 linear regressions with regressors 𝑣1, ..., 𝑣𝑘,±𝜎1𝑣, ...,±𝜎𝑘𝑣 (resp. regressors

𝑣1, ..., 𝑣𝑘,±𝜎′
1𝑣, ...,±𝜎′

𝑘𝑣) and mixing weights 𝑝1
𝑍
, ..., 𝑝𝑘

𝑍
, 𝜆/2𝑘

𝑍
, ..., 𝜆/2𝑘

𝑍
, where 𝑍 = 𝜆+ 1.

Then 𝒟1,𝒟2 satisfy the following:

1. Both are mixtures of Ω(1)-separated linear regressions whose regressors are poly(𝑘)-

bounded in 𝐿2 norm

2. They match on all moments of degree at most 2𝑘 − 1

3. 𝑑TV(𝒟1,𝒟2) =
𝜆
𝜆+1

4. There exists a regressor 𝑤 of 𝒟1 such that for any regressor 𝑤′ of 𝒟2, ‖𝑤 − 𝑤′‖2 =

Ω(
√
𝑘).

Proof. 1) follows by 2) and 3) from Lemma 8.10.1. 4) follows by 1) from Lemma 8.10.1.

For 3), note that the components of 𝒟1,𝒟2 in direction 𝑣 all have disjoint support, so

𝑑TV(𝒟1,𝒟2) =
𝜆
𝜆+1

.

It remains to check that 𝒟1,𝒟2 match on moments of degree at most 2𝑘−1. As 𝒟1,𝒟2 are

identical on the components they share with 𝒟, it suffices to show this for the mixtures 𝒟′
1,𝒟′

2

obtained by conditioning out the components appearing in 𝒟, that is, the two mixtures of 2𝑘

spherical linear regressions with uniform mixing weights and directions ±𝜎1𝑣, ...,±𝜎𝑘𝑣 and

directions ±𝜎′
1𝑣, ...,±𝜎′

𝑘𝑣 respectively.

Equivalently, we must show that for any direction (x, 𝑦) ∈ R𝑑+1, where x ∈ R𝑑 and 𝑦 ∈ R,

the univariate Gaussian mixtures 𝐷1, 𝐷2 obtained from projecting 𝒟′
1,𝒟′

2 in the direction

(x, 𝑦) have identical degree-𝑠 moment for any 𝑠 ≤ 2𝑘 − 1. These moments will be zero for

odd 𝑠. For 𝑠 = 2ℓ, noting that for any 𝜎 ≥ 0,

(x, 𝑦)⊤Σ(𝜎𝑣)(x, 𝑦) = ‖𝑥‖22 + 𝜎2𝑦2 + 2𝜎𝑦⟨𝑣, 𝑥⟩.

Without loss of generality, assume ‖𝑥‖2 = 1, and let 𝛾 , ⟨𝑣, 𝑥⟩. We see that the projection

593

𝐷1 has 2ℓ-th moment

1

𝑘
(2ℓ− 1)!! ·

[︃
𝑘∑︁
𝑖=1

(𝜎2
𝑖 𝑦

2 + 1 + 2𝜎𝑖𝛾𝑦)
ℓ + (𝜎2

𝑖 𝑦
2 + 1− 2𝜎𝑖𝛾𝑦)

ℓ

]︃
. (8.66)

Note that there is some degree-ℓ polynomial 𝑝 for which the 𝑖-th summand in (8.66) is 𝑝(𝜎2
𝑖).

In the same way, we can see that the projection 𝐷2 has 2ℓ-th moment 1
𝑘
(2ℓ−1)!!·

∑︀𝑘
𝑖=1 𝑝(𝜎

′2
𝑖).

As the univariate mixtures in Lemma 8.10.1 match on all 2ℓ-th moments for ℓ ≤ 𝑘 − 1, we

know that
∑︀𝑘

𝑖=1 𝑝(𝜎
2
𝑖) =

∑︀𝑘
𝑖=1 𝑝(𝜎

′2
𝑖) for all polynomials 𝑝 of degree at most 𝑘 − 1, so the

projections 𝐷1, 𝐷2 indeed match on all moments up to degree 2𝑘 − 1.

8.11 Appendix: Integrating Against Fourier Transforms

of Piecewise Polynomials

In this section we prove Lemma 8.5.6. Note that there are indeed explicit expressions for

the Fourier moments of piecewise polynomials in terms of hypergeometric functions, but we

avoid explicitly describing these for simplicity.

We will show Lemma 8.5.6 in a couple of steps. First, we show:

Lemma 8.11.1. Let 𝑟 be a nonnegative integer. Then, we have that

∫︁ 1

0

𝑥𝑟 cos(𝑎𝑥)d𝑥 =
𝐴𝑟(𝑎, sin(𝑎), cos(𝑎))

𝑎𝑟
,

∫︁ 1

0

𝑥𝑟 sin(𝑎𝑥)d𝑥 =
𝐵𝑟(𝑎, sin(𝑎), cos(𝑎))

𝑎𝑟
,

where 𝐴𝑟, 𝐵𝑟 are degree-𝑟 polynomials over R3 whose coefficients can be computed in time

𝑂(𝑟2).

Proof. We proceed by induction on 𝑟. The base case is trivial: if 𝑟 = 0, then

∫︁ 1

0

cos(𝑎𝑥)d𝑥 =
sin(𝑎)

𝑎
,

and ∫︁ 1

0

cos(𝑎𝑥)d𝑥 =
1− cos(𝑎)

𝑎
,

594

Now assume 𝑟 > 0, and that the claim holds for 𝑟 − 1. Then by integration by parts,

∫︁ 1

0

𝑥𝑟 cos(𝑎𝑥)d𝑥 =
sin(𝑎)

𝑎
− 𝑟

𝑎

∫︁
𝛼𝑟(𝑥) sin(𝑎𝑥)d𝑥

=
1

𝑎𝑟
(︀
𝑎𝑟−1 sin(𝑎)− 𝑟𝐵𝑟−1(𝑎, sin(𝑎), cos(𝑎))

)︀
,

and similarly

∫︁ 1

0

𝑥𝑟 sin(𝑎𝑥)d𝑥 =
1− cos(𝑎)

𝑎
+
𝑟

𝑎

∫︁
𝛼𝑟(𝑥) cos(𝑎𝑥)d𝑥

=
1

𝑎𝑟
(︀
𝑎𝑟−1(1− cos(𝑎))− 𝑟𝐴𝑟−1(𝑎, sin(𝑎), cos(𝑎))

)︀
.

This establishes that these are of the desired form. Moreover, this recurrence demonstrates

that given the coefficients to 𝐴𝑟−1, 𝐵𝑟−1, one can obviously compute the coefficients to 𝐴𝑟, 𝐵𝑟

using at most 𝑂(𝑟) additional time. This completes the proof.

Note that we must have 𝐴𝑟(𝑎,sin(𝑎),cos(𝑎))
𝑎𝑟

and 𝐵𝑟(sin(𝑎),cos(𝑎))
𝑎𝑟

converge to a finite value as 𝑎→ 0,

as they must both converge to
∫︀ 1

0
𝑥𝑟d𝑥 = 𝑟−1. In particular, they are both analytic functions

over the entire real line, if we take the convention that these functions evaluate to 𝑟 − 1 at

0, which we will. We now show:

Lemma 8.11.2. Let 𝜏 > 0, and let 𝑟, ℓ be non-negative integers. Let 𝛼𝑟(𝑥) = 𝑥𝑟(𝑥) ·1[0,1](𝑥).

There is an algorithm that runs in time 𝑂(𝑟2) and outputs

∫︁ 𝜏

𝜏

̂︁𝛼𝑟[𝜔] · 𝜔ℓd𝜔 .
Proof. By Lemma 8.11.1, we know that there exist 𝐴𝑟−1, 𝐵𝑟−1 which are degree 𝑟 polynomials

whose coefficients we can compute in 𝑂(𝑟2) time so that

̂︁𝛼𝑟[𝑤] = 𝐴𝑟(2𝜋𝜔, sin(2𝜋𝜔), cos(2𝜋𝜔))

(2𝜋𝜔)𝑟
+ i

𝐵𝑟(2𝜋𝜔, sin(2𝜋𝜔), cos(2𝜋𝜔))

(2𝜋𝜔)𝑟
.

Therefore we may evaluate the integral

∫︁ 𝜏

𝜏

𝐴𝑟(2𝜋𝜔, sin(2𝜋𝜔), cos(2𝜋𝜔))

(2𝜋𝜔)𝑟
· 𝜔ℓd𝜔

595

in additional 𝑂(ℓ𝑟2) time by first applying integration by parts 𝑟 − ℓ times to remove the

denominator, and then solving the trigonometric integral. and similarly we can evaluate

∫︁ 𝜏

𝜏

𝐵𝑟(2𝜋𝜔, sin(2𝜋𝜔), cos(2𝜋𝜔))

(2𝜋𝜔)𝑟
· 𝜔ℓd𝜔 .

in time 𝑂(𝑟2). This completes the proof.

We now have all the tools necessary to prove Lemma 8.5.6.

Proof of Lemma 8.5.6. Note that a piecewise polynomial can be written as
∑︀𝑠

𝑖=1 𝑝𝑖(𝑥)1𝐼𝑖(𝑥),

where 𝑝𝑖 is a degree 𝑑 polynomial and 1𝐼𝑖 are indicator variables for intervals. By linearity

of the Fourier transform, it suffices to compute the Fourier moment of 𝛼𝑖(𝑥) = 𝑝𝑖(𝑥)1𝐼𝑖(𝑥)

for each 𝑖 = 1, . . . , 𝑠, and to do so, it suffices to compute 𝑥𝑗1𝐼𝑗(𝑥) for every monomial

𝑗 = 0, . . . , 𝑑. By a change of variables, Lemma 8.11.2 gives an algorithm that runs in time

𝑂(𝑑2) to compute the ℓ-th Fourier moment of 𝑥𝑗1𝐼𝑗(𝑥). Thus we can compute the ℓ-th

Fourier moment of 𝛼𝑖(𝑥) in time 𝑂(𝑑3), and hence of the entire piecewise polynomial in time

𝑂(𝑠𝑑3), as claimed.

8.12 Appendix: Deferred Proofs

8.12.1 Proof of Lemma 8.3.1

We first require the following inequality.

Fact 8.12.1 (Rosenthal Bound, see e.g. Theorems 6.1 and 6.2 of [Pin94]). Let 𝑋1, ..., 𝑋𝑛 be

independent random variables for which E[𝑋𝑖] = 0 and E[|𝑋𝑖|𝑡] < ∞ for some 𝑡 ≥ 2. If we

define 𝑋 = 1
𝑛

∑︀𝑛
𝑖=1𝑋𝑖, then

E[|𝑋|𝑡] ≤ 1

𝑛𝑡
·

⎡⎣𝐶1(𝑡) ·

(︃
𝑛∑︁
𝑖=1

E[|𝑋𝑖|𝑡]

)︃
+ 𝐶2(𝑡) ·

(︃
𝑛∑︁
𝑖=1

E[𝑋2
𝑖]

)︃𝑡/2
⎤⎦ ,

where 𝐶1(𝑡) = (𝑐𝛾)𝑡 and 𝐶2(𝑡) = (𝑐
√
𝛾𝑒𝑡/𝛾)𝑡 for any 𝛾 ∈ [1, 𝑡] and universal constant 𝑐 > 0.

In particular, we can take 𝛾 for which 𝛾 ln 𝛾 = 2𝑡 to get 𝐶1(𝑡) = 𝐶2(𝑡) = (𝑐′𝑡/ ln(𝑡))𝑡 for

596

some other universal constant 𝑐′ > 0.

We can apply this to get a moment bound on the deviation of the empirical 𝑝-th moment

from the true 𝑝-th moment. Define the random variable 𝑋 = 1
𝑁

∑︀𝑁
𝑖=1 𝑍

𝑝
𝑖 −E𝑍∼ℱ [𝑍

𝑝], where

recall that ℱ is a mixture of 𝑘 univariate Gaussians, and 𝑍1, ..., 𝑍𝑁 are 𝑁 draws from ℱ .

Lemma 8.12.2 (Moment bound for empirical deviation of 𝑝-th moment). There is an ab-

solute constant 𝑐′ > 0 for which the following holds for any 𝑝. For all 𝑡 ∈ N we have that

E[𝑋 𝑡] ≤
(︂

𝑐′√
𝑁
· 𝜎max(ℱ)𝑝 · 𝑝𝑝/2 · 𝑡𝑝/2+1

)︂𝑡
.

Then for any 𝑟, 𝛾 > 0, we have that for 𝑁 =
(︁
𝛼
𝛾𝑟

)︁2
,

Pr
𝑍1,··· ,𝑍𝑁

[︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

𝑍𝑝
𝑖 − E𝑍∼ℱ [𝑍

𝑝]

⃒⃒⃒⃒
⃒ > 𝑟

]︃
≤ 𝛾𝑡.

Proof. For simplicity, we define

𝜎max = 𝜎max(ℱ).

For every 𝑖 ∈ [𝑁], define the random variable 𝑋𝑖 , 𝑍𝑝
𝑖 − E[𝑍𝑝

𝑖]. To apply Fact 8.12.1, we

must compute moments of 𝑋𝑖. First note that for any even 𝑑 ∈ N and 𝑍 ∼ ℱ ,

E[𝑍𝑑] =
𝑘∑︁
𝑗=1

𝑝𝑗 · ℳ𝑑(𝒩 (0, 𝜎2
𝑗)) ≤

𝑘∑︁
𝑗=1

𝑝𝑗 · 𝜎𝑑𝑗 · 𝑑𝑑/2.

In particular, we have that E[𝑍𝑑] ≤ 𝜎𝑑max ·𝑑𝑑/2. So for all 𝑖 ∈ [𝑁] and even 𝑡 ∈ N, we get that

E[𝑋 𝑡
𝑖] = E[(𝑍𝑝

𝑖 − E[𝑍𝑝
𝑖])

𝑡]

=
𝑡∑︁

ℓ=0

(−1)ℓ
(︂
𝑡

ℓ

)︂
· E[𝑍𝑝ℓ

𝑖] · E[𝑍𝑝
𝑖]
𝑡−ℓ

≤
∑︁

ℓ∈[𝑡] even

(︂
𝑡

ℓ

)︂
· (𝑝ℓ)𝑝ℓ/2𝜎𝑝ℓmax · 𝑝(𝑝/2)(𝑡−ℓ)𝜎𝑝(𝑡−ℓ)max

597

= 𝑝𝑝𝑡/2𝜎𝑝𝑡max

∑︁
ℓ∈[𝑡] even

(︂
𝑡

ℓ

)︂
ℓ𝑝ℓ/2

≤ (2𝑡𝑝/2 · 𝑝𝑝/2 · 𝜎𝑝max)
𝑡.

where the third step follows from the fact that for any degree 𝑑, E[𝑍𝑑
𝑖] = 0 if 𝑑 is odd, and

E[𝑍𝑑
𝑖] ≤ E𝑔∼𝒩 (0,𝜎max)[𝑔

𝑑] ≤ 𝑑𝑑/2 · 𝜎𝑑max if 𝑑 is even; and the last step follows by naively upper

bounding the terms ℓ𝑝ℓ/2 by 𝑡𝑝𝑡/2.

In particular,
1

𝑁 𝑡

𝑁∑︁
𝑖=1

E[𝑋 𝑡
𝑖] ≤

1

𝑁 𝑡−1
·
(︀
2𝑡𝑝/2 · 𝑝𝑝/2 · 𝜎𝑝max

)︀𝑡
.

For E[𝑋2
𝑖], note that

E[𝑋2
𝑖] = E[𝑍2𝑝

𝑖]− E[𝑍𝑝
𝑖]

2 ≤ E[𝑍2𝑝
𝑖] ≤ 𝜎2𝑝

max · (2𝑝)𝑝,

so
1

𝑁 𝑡

(︃
𝑁∑︁
𝑖=1

E[𝑋2
𝑖]

)︃𝑡/2

=
1

𝑁 𝑡/2
(𝜎𝑝max · (2𝑝)𝑝/2)𝑡.

We conclude by Fact 8.12.1 that the random variable 𝑋 satisfies the following moment

bound:

E[𝑋 𝑡] ≤ (𝑐′𝑡/ ln(𝑡))𝑡

𝑁 𝑡−1
·
(︀
2𝑡𝑝/2 · 𝑝𝑝/2 · 𝜎𝑝max

)︀𝑡
+

(𝑐′𝑡/ ln(𝑡))𝑡

𝑁 𝑡/2
·
(︀
𝜎𝑝max · (2𝑝)𝑝/2

)︀𝑡
= 𝜎𝑝𝑡max · 𝑝𝑝𝑡/2 ·

(︂
(𝑐′𝑡/ ln(𝑡))𝑡

𝑁 𝑡−1
· 2𝑡𝑡𝑝𝑡/2 + (𝑐′𝑡/ ln(𝑡))𝑡

𝑁 𝑡/2
· 2𝑝𝑡/2

)︂
≤ 𝜎𝑝𝑡max · 𝑝𝑝𝑡/2 ·

(︂
(𝑡/ ln 𝑡)𝑡

𝑁 𝑡/2
· 𝑡𝑝𝑡/2

)︂
· (𝑐′)𝑡

≤
(︁
𝑐′ · 𝜎𝑝max · 𝑝𝑝/2 · 𝑡𝑝/2+1/

√
𝑁
)︁𝑡

as claimed, where the third step follows from choosing 𝑐′ > 1 to be sufficiently large constant.

Finally, we need some standard facts about Orlicz norms.

Definition 8.12.3 (Orlicz norms). Let Ψ : R>0 → R>0 be a convex, increasing function

598

satisfying Ψ(0) = 0 and Ψ(𝑥)→∞. We call such a function Ψ a Young function. Let 𝑋 be

a random variable over R>0. The Orlicz norm of 𝑋 with respect to Ψ is defined by

‖𝑋‖Ψ , inf{𝑐 > 0 : E[Ψ(𝑋/𝑐)] ≤ 1}.

Fact 8.12.4 (Sufficient condition for bound). If 𝛼, 𝛽 > 0 satisfies E[Ψ(𝑋/𝛼)] ≤ 𝛽, then

‖𝑋‖Ψ ≤ 𝛼 · 𝛽.

Fact 8.12.5 (Tail bound given Orlicz norm bound). Let 𝑋 be a random variable over R>0.

If 𝜎 = ‖𝑋‖Ψ <∞, then

Pr[𝑋 ≥ 𝛽‖𝑋‖Ψ] ≤ 1/Ψ(𝛽)

Fact 8.12.6 (Approximation of 𝑒𝑥𝛼 by Young function). For any 0 < 𝛼 < 1, the function

Ψ𝛼 given by

Ψ𝛼(𝑥) ,

⎧⎪⎨⎪⎩(𝛼𝑒)1/𝛼 · 𝑥 𝑥 < (1/𝛼)1/𝛼

𝑒𝑥
𝛼

𝑥 ≥ (1/𝛼)1/𝛼

is a Young function satisfying

Ψ𝛼(𝑥) ≤ 𝑒𝑥
𝛼

.

We can now complete the proof of Lemma 8.3.1.

Proof of Lemma 8.3.1. Take 𝛼 = 1
𝑝+2

. Note that

E[Ψ(𝑋/𝑐)] ≤ E[𝑒(𝑋/𝑐)𝛼]

=
∞∑︁
𝑡=0

1

𝑡!
E[(𝑋/𝑐)𝛼𝑡]

≤
∞∑︁
𝑡=0

𝑐−𝛼𝑡

𝑡!
E[𝑋 𝑡]𝛼

≤
∞∑︁
𝑡=0

1

𝑡!
·
(︁
𝑐−1 · 𝑐′ · 𝜎max(ℱ)𝑝 · 𝑝𝑝/2 · 𝑡𝑝/2+1/

√
𝑁
)︁𝛼𝑡

=
∞∑︁
𝑡=0

1

𝑡!
·
(︁
𝑐−1 · 𝑐′ · 𝜎𝑝max · 𝑝𝑝/2/

√
𝑁
)︁𝛼𝑡

𝑡𝑡/2,

where the third step follows by Jensen’s and concavity of 𝑥 ↦→ 𝑥𝛼 when 0 < 𝛼 < 1, the fourth

599

step follows by Lemma 8.12.2, and the last step follows by the fact that 𝛼(𝑝/2 + 1) = 1/2.

So if we take 𝑐 = 𝑐′ ·𝜎𝑝max ·𝑝𝑝/2/
√
𝑁 , then E[Ψ(𝑋/𝑐)] = 𝑂(1), so we conclude by Fact 8.12.4

that

‖𝑋‖Ψ = 𝑐′′ · 𝜎𝑝max · 𝑝𝑝/2/
√
𝑁

for some absolute constant 𝑐′′ > 0. We can now apply Fact 8.12.5 to get that

Pr
[︁
𝑋 ≥ 𝛽 · 𝑐′′ · 𝜎𝑝max · 𝑝𝑝/2/

√
𝑁
]︁
≤ 1/Ψ(𝛽).

If we take 𝛽 = 𝛾
√
𝑁/(𝑐′′ · 𝜎𝑝max · 𝑝𝑝/2), then provided

𝑁 ≥ (𝑐′′)2 · 𝛾−2 · (max{𝑝+ 2, ln(1/𝛿)})2𝑝+4 · 𝑝𝑝 · 𝜎2𝑝
max,

we have that 𝛽 ≥ (𝑝 + 2)𝑝+2 so that 1/Ψ(𝛽) ≤ exp(𝛽1/(𝑝+2)), and 𝛽 ≥ (ln(1/𝛿))𝑝+2 so that

exp(−𝛽1/(𝑝+2)) ≤ 𝛿, so we get that

Pr
𝑍1,...,𝑍𝑁

[︃⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑖=1

𝑍𝑝
𝑖 − E𝑍∼ℱ [𝑍

𝑝]
⃒⃒⃒
≤ 𝛾 · 𝜎𝑝max · 𝑝𝑝/2

]︃
≤ 𝛿.

Finally, we would like to relate the deviation term 𝛾 ·𝜎𝑝max ·𝑝𝑝/2 to 𝛽 ·E𝑍∼ℱ [𝑍
𝑝]. By (8.1),

if we take 𝛾 = 𝛽 · 𝑝min, the lemma follows.

8.12.2 Proof of Fact 8.2.3

Proof. Define the function 𝐹 (𝜎) ,
∫︀
[−𝜏,𝜏]𝑐 𝒩 (0, 𝜎2;𝑥) ·𝑥𝑝 d𝑥. It suffices to show that 𝐹 ′(𝜎) >

0 for all 𝜎 ∈ (0, 𝜎*]. We have that

𝜕

𝜕𝜎
𝐹 (𝜎) =

∫︁
[−𝜏,𝜏]𝑐

𝑒−𝑥
2/(2𝜎2)(𝑥2 − 𝜎2)√

2𝜋𝜎4
· 𝑥𝑝 d𝑥

=
1

𝜎3
·
(︂∫︁

[−𝜏,𝜏]𝑐
𝒩 (0, 𝜎2;𝑥) · (𝑥𝑝+2 − 𝜎2𝑥𝑝) d𝑥

)︂
= ((𝑝+ 1)!!− (𝑝− 1)!!)𝜎𝑝 −

(︂∫︁
[−𝜏,𝜏]

𝒩 (0, 𝜎2;𝑥) · (𝑥𝑝+2 − 𝜎2𝑥𝑝) d𝑥

)︂
.

600

As the above expression tends to zero as 𝜏 →∞, and because 𝒩 (0, 𝜎2;𝑥) · (𝑥𝑝+2 − 𝜎2𝑥𝑝) is

even, it suffices to show that the function 𝐺(𝑡) ,
∫︀ 𝜏
0
𝒩 (0, 𝜎2;𝑥)·(𝑥𝑝+2−𝜎2𝑥𝑝) d𝑥 is increasing

in 𝜏 . By the fundamental theorem of calculus,

𝐺′(𝜏) = 𝒩 (0, 𝜎2, 𝜏) · (𝜏 𝑝+2 − 𝜎2𝜏 𝑝) > 0,

by the assumption that 𝜎 < 𝜎* < 𝜏 .

8.12.3 Proof of Corollary 1.3.19

Proof. Let 𝑐 = 1/2 − 𝛾. Note that ⟨𝑔, 𝑤⟩ ∼ 𝒩 (0, 1), so by Fact 1.3.13 we have that for

sufficiently large 𝑑,

Pr[⟨𝑔, 𝑤⟩ ≥ 1.1𝛼𝑑𝑐] ≥ 1√
2𝜋
· 1

2.2𝛼𝑑𝑐
· 𝑒−1.21𝛼2𝑑2𝑐/2 ≥ 2𝑒−𝛽·𝑑

2𝑐

for 𝛽 = 1.21𝛼2, and

Pr[⟨𝑔, 𝑤⟩ ≤ 0.9𝛼𝑑𝑐] ≥ 1− 1√
2𝜋
· 1

0.9𝛼𝑑𝑐
· 𝑒−0.81𝛼2𝑑2𝑐/2 ≥ 1− 1

2
· 𝑒−𝛽·𝑑2𝑐

for 𝛽 = 0.81𝛼2/2. On the other hand, by Fact 1.3.18, Pr[‖𝑔‖2 ∈ [0.9, 1.1] ·
√
𝑑] ≥ 1 −

2𝑒−𝑐shell𝑑/100. By a union bound, we conclude that

Pr
[︀
⟨𝑣, 𝑤⟩ ≥ 𝑑𝑐−1/2

]︀
≥ 2𝑒−𝛽·𝑑

2𝑐 − 2𝑒−𝑐shell𝑑/100 ≥ 𝑒−𝛽·𝑑
2𝑐

,

and similarly

Pr
[︀
⟨𝑣, 𝑤⟩ ≤ 𝛽 · 𝑑𝑐−1/2

]︀
≥ 1− 2𝑒−𝑐shell𝑑/100 − 1

2
𝑒−𝛽·𝑑

2𝑐 ≥ 1− 𝑒−𝛽·𝑑2𝑐 .

8.12.4 Proof of Corollary 1.3.20

Proof. Note that ⟨𝑔, 𝑤1⟩ and ⟨𝑔, 𝑤2⟩ are independent and distributed as 𝒩 (0, 1).

601

Decompose 𝑔 ∈ R𝑑 as

𝑔 = ⟨𝑔, 𝑤1⟩𝑤1 + ⟨𝑔, 𝑤2⟩𝑤2 + 𝑔⊥,

where 𝑔⊥ ∈ R𝑑 is a standard Gaussian vector in the subspace orthogonal to 𝑤1, 𝑤2 ∈ R𝑑.

We will first lower bound the probability of the event on the left-hand side of (1.14).

By Fact 1.3.18, we have that for some absolute constant 𝑡 > 0,

Pr
[︀
‖𝑔⊥‖22 = 𝑑± 𝑡

]︀
≥ 1/2.

Call this event ℰ . Let ℰ ′ be the event that ⟨𝑔, 𝑤2⟩ ≤
√
𝑑+ 1 ·𝛼2𝑑

−1/2 = 𝑂(1). We know that

Pr[ℰ ∧ ℰ ′] ≥ Ω(1).

Conditioning on ℰ and ℰ ′, first note that ⟨𝑣, 𝑤2⟩ ≤ 1√
𝑑+1
≤ 𝛼2 · 𝑑−1/4. We also have that

⟨𝑣, 𝑤1⟩ ≥
⟨𝑔, 𝑤1⟩√︀

⟨𝑔, 𝑤1⟩2 + 1 + 𝑑+ 𝑡
,

so if we take 𝛼′ > 𝛼1 to be the solution to

𝛼′𝑑1/4√︀
𝛼′2
√
𝑑+ 1 + 𝑑+ 𝑡

= 𝛼1 · 𝑑−1/4, (8.67)

we conclude that

Pr
[︀(︀
⟨𝑣, 𝑤1⟩ ≥ 𝛼1 · 𝑑−1/4

)︀
∧
(︀
⟨𝑣, 𝑤2⟩ ≤ 𝛼2 · 𝑑−1/4

)︀]︀
≥ Ω(1) · Pr

ℎ∼𝒩 (0,1)
[ℎ ≥ 𝛼′𝑑1/4].

Furthermore, squaring both sides of (8.67) and rearranging, we see that

𝛼′2
1 − 𝛼2

1 =
𝛼2
1𝛼

′2
√
𝑑

+
𝛼2
1

𝑑(1 + 𝑡)
= 𝑂(1/

√
𝑑),

so in particular Pr[ℎ ≥ 𝛼′𝑑1/4] ≥ 1
poly(𝑑)

· Pr[ℎ ≥ 𝛼1𝑑
1/4].

We next upper bound the probability of the event on the right-hand side of (1.14).

Write 𝑔 as 𝑔 = ⟨𝑔, 𝑤1⟩𝑤1 + 𝑔′⊥ for 𝑔′⊥ a standard Gaussian vector orthogonal to 𝑤1.

Then the event on the right-hand side of (1.14) is the event that ⟨𝑔, 𝑤1⟩ ≥ 𝛼1𝑑
−1/4‖𝑔‖2, or

602

equivalently, that

⟨𝑔, 𝑤1⟩ ≥
𝛼1𝑑

−1/4√︀
1− 𝛼2

1𝑑
−1/2
‖𝑔′⊥‖2.

Let 𝛼′′ > 𝛼1 be the solution to

𝛼1𝑑
−1/4√︀

1− 𝛼2
1𝑑

−1/2
= 𝛼′′ · 𝑑−1/4. (8.68)

Then the above event has probability given by the integral

∫︁ ∞

0

Pr
ℎ∼𝒩 (0,1)

[ℎ ≥ 𝛼′′𝑑−1/4 · 𝛽1/2] · 𝜇(𝛽) d𝛽, (8.69)

where 𝜇(𝛽) is the density of the random variable ‖𝑔′⊥‖22. By Fact 1.3.13,

Pr
ℎ
[ℎ ≥ 𝛼′′𝑑−1/4 · 𝛽1/2] ≤ 𝑑1/4

𝛼′′𝛽1/2
· 𝑒−

1
2
𝛼′′2𝛽/

√
𝑑.

For 𝛽 ∈ [0.9𝑑, 1.1𝑑], this quantity is at most 1/poly(𝑑) · 𝑒− 1
2
𝛼′′2𝛽/

√
𝑑. So we may write (8.69)

as

∫︁
[0.9𝑑,1.1𝑑]

Pr
ℎ∼𝒩 (0,1)

[ℎ ≥ 𝛼′′𝑑−1/4 · 𝛽1/2] · 𝜇(𝛽) d𝛽

+

∫︁
[0.9𝑑,1.1𝑑]𝑐

Pr
ℎ∼𝒩 (0,1)

[ℎ ≥ 𝛼′′𝑑−1/4 · 𝛽1/2] · 𝜇(𝛽) d𝛽

≤ 1

poly(𝑑)

∫︁ ∞

0

𝑒−
1
2
𝛼′′2𝛽/

√
𝑑 · 𝜇(𝛽) d𝛽

+ exp(−Ω(𝑑))

=
1

poly(𝑑)
· 1

(2𝜋)(𝑑−1)/2

∫︁
𝑒−

𝑔21+···+𝑔2𝑑−1
2

·(1+𝛼′′2/
√
𝑑)d𝑔1 · · · d𝑔𝑑−1

=
1

poly(𝑑)
· (1 + 𝛼′′2/

√
𝑑)−(𝑑−1)/2.

Finally, we observe that

(1 + 𝛼′′2/
√
𝑑)−(𝑑−1)/2 =

(︁
(1 + 𝛼′′2/

√
𝑑)

√
𝑑/𝛼′′2

)︁− 𝑑−1√
𝑑
𝛼′′2/2

≤
(︁
𝑒−𝑂(1/

√
𝑑)
)︁− 𝑑−1√

𝑑
𝛼′′2/2

603

≤ 𝑂(𝑒−
√
𝑑𝛼′′2/2).

We are done by (1.3.13) if we can show that Pr[ℎ ≥ 𝛼′′𝑑1/4] ≤ poly(𝑑)Pr[ℎ ≥ 𝛼𝑑1/4]. But by

squaring both sides of (8.68) and rearranging, we see that

𝛼′′2 − 𝛼2
1 =

𝛼′′2𝛼2
1√

𝑑
= 𝑂(1/

√
𝑑),

so in particular Pr[ℎ ≥ 𝛼′′𝑑1/4] ≤ poly(𝑑) · Pr[ℎ ≥ 𝛼𝑑1/4] as desired.

8.12.5 Proof of Lemma 8.5.10

Proof. Suppose 𝒟 has parameters ({𝑝𝑖}), {𝑤𝑖}). For the first part of the lemma, first assume

that the noise rate 𝜍 = 0 so that with probability 𝑝𝑖, 𝑦 = ⟨𝑤𝑖, 𝑥⟩. For entry (𝑗, 𝑗′) ∈ [𝑑]2, we

may write

2E[M𝑥,𝑦
𝑎]𝑗,𝑗′ =

𝑘∑︁
𝑖=1

𝑝𝑖E𝑥∼𝒩 (0,Id)
[︀
⟨𝑤𝑖 − 𝑎, 𝑥⟩2 · 𝑥𝑗𝑥𝑗′ − 1[𝑗 = 𝑗′] · ⟨𝑤𝑖 − 𝑎, 𝑥⟩2

]︀
=

𝑘∑︁
𝑖=1

𝑝𝑖E𝑥∼𝒩 (0,Id)
[︀
⟨𝑤𝑖 − 𝑎, 𝑥⟩2 · 𝑥𝑗𝑥𝑗′

]︀
− 1[𝑗 = 𝑗′] ·

𝑘∑︁
𝑖=1

𝑝𝑖‖𝑤𝑖 − 𝑎‖22

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑘∑︀
𝑖=1

𝑝𝑖

(︃
(𝑤𝑖 − 𝑎)2𝑗E[𝑥4𝑗] +

∑︀
ℓ̸=𝑗

(𝑤𝑖 − 𝑎)2ℓ′E[𝑥2𝑗𝑥2ℓ]

)︃
−

𝑘∑︀
𝑖=1

𝑝𝑖‖𝑤𝑖 − 𝑎‖22 if 𝑗 = 𝑗′

𝑘∑︀
𝑖=1

𝑝𝑖
(︀
2(𝑤𝑖 − 𝑎)𝑗(𝑤𝑖 − 𝑎)𝑗′E[𝑥2𝑗𝑥2𝑗′]

)︀
if 𝑗 ̸= 𝑗′

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑘∑︀
𝑖=1

𝑝𝑖

(︃
3(𝑤𝑖 − 𝑎)2𝑗 +

∑︀
ℓ̸=𝑗

(𝑤𝑖 − 𝑎)2ℓ′

)︃
−

𝑘∑︀
𝑖=1

𝑝𝑖‖𝑤𝑖 − 𝑎‖22 if 𝑗 = 𝑗′

𝑘∑︀
𝑖=1

𝑝𝑖 (2(𝑤𝑖 − 𝑎)𝑗(𝑤𝑖 − 𝑎)𝑗′) if 𝑗 ̸= 𝑗′

= 2
𝑘∑︁
𝑖=1

𝑝𝑖(𝑤𝑖 − 𝑎)𝑗(𝑤𝑖 − 𝑎)𝑗′ ,

as claimed. Now if the noise rate 𝜍 is nonzero so that with probability 𝑝𝑖, let 𝑦′ be the

random variable which equals ⟨𝑤𝑖, 𝑥⟩ with probability 𝑝𝑖, so that 𝑦 = 𝑦′+ 𝑔 for 𝑔 ∼ 𝒩 (0, 𝜍2),

604

then

2E[M𝑥,𝑦
𝑎] = E

[︀
(𝑦′ − ⟨𝑎, 𝑥⟩+ 𝑔)2𝑥𝑥⊤ − (𝑦′ + 𝑔)2 · Id

]︀
= 2

𝑘∑︁
𝑖=1

𝑝𝑖(𝑤𝑖 − 𝑎)(𝑤𝑖 − 𝑎)⊤ + E[𝑔2 · 𝑥𝑥⊤]− E[𝑔2] · Id

= 2
𝑘∑︁
𝑖=1

𝑝𝑖(𝑤𝑖 − 𝑎)(𝑤𝑖 − 𝑎)⊤,

where the second step follow by the fact that 𝑔 is independent of the random variables 𝑥, 𝑦′.

The second part of the lemma follows from the following fact, which quantifies the extent

to which the matrix M𝑥,𝑦
𝑎 concentrates in spectral norm. This is already proven in the noise-

less case, see e.g. Eq. (34) in [YCS16], and the noisy version follows from a straightforward

modification of that proof using Theorem 4.7.1 in [Ver18].

Fact 8.12.7 (Concentration of Empirical Moments).

Pr

[︃
‖ 1
𝑁

𝑁∑︁
𝑖=1

M𝑥𝑖,𝑦𝑖
𝑎 − E(𝑥,𝑦)∼𝒟 [M𝑥,𝑦

𝑎]‖2 ≥ Ω

(︂
max
𝑖∈[𝑘]
‖𝑤𝑖 − 𝑎‖22 ·

ln (𝑝min𝑁)√
𝑝min𝑁

·
√︀
𝑑 ln(𝑘/𝛿)

)︂]︃
≤ 𝛿.

8.12.6 Proof of Lemma 8.5.17

Proof. We bound the sample complexity and runtime of each of the 𝑂(𝑀𝑇) iterations. In

each iteration, we first sample 𝑁1 points, and perform an approximate 𝑘-SVD on a 𝑁1 × 𝑑

matrix, where 𝑁1 is defined as in Line 14. By Corollary 8.5.8, 𝜎sharp
𝑡 is at most a constant

factor smaller than 𝜎 = Ω(𝜀). Therefore the sample complexity of this step is at most

𝑁1 = ̃︀𝑂(𝜀−2𝑝−2
min𝑑𝑘

2 ln(1/𝛿)) .

and the runtime is at most ̃︀𝑂(𝑁1𝑘𝑑) by Lemma 8.5.11. The other contribution to the sample

complexity and runtime of each iteration (at least in most regimes) is from CompareM-

inVariances. By our choice of parameters and Corollary 8.5.9, the sample complexity of

605

CompareMinVariances is

𝑁 = 𝑝−4
min𝑘 ln(1/𝛿) · poly

(︁√
𝑘, ln(1/𝑝min), ln(1/𝜀)

)︁𝑂(√𝑘 ln(1/𝑝min))
.

and the runtime is bounded by ̃︀𝑂(𝑁). Since we run for 𝑀𝑇 = ̃︀𝑂 (︁√𝑘𝑒√𝑘 ln(1/𝜀))︁ iterations,

this completes the proof.

8.12.7 Proof of Lemma 8.8.12

Proof. Prior to the outer loop, we first sample𝑁1 points, and perform an approximate 𝑘-SVD

on a 𝑁1 × 𝑑 matrix, where 𝑁1 is defined as in Line 14.

Therefore the sample complexity of this step is at most

𝑁1 = ̃︀𝑂 (︀𝑑 · poly(𝑘)/𝑝2min

)︀
.

and the runtime is at most ̃︀𝑂(𝑁1𝑘𝑑) by Lemma 8.5.11.

The bulk of the contribution to the sample complexity and runtime comes from the 𝑆

iterations of the outer loop, each of which consists of 𝑀𝑇 iterations of the inner loop (over

𝑡) and a call to CheckOutcomeHyperplanes. The complexity of these 𝑀𝑇 iterations is

dominated by an invocation of CompareMinVariances. By our choice of parameters and

Corollary 8.5.9, the sample complexity of one run of CompareMinVariances is

𝑁 = 𝑝−4
min𝑘 · poly

(︀
𝑘3/5, ln(1/𝑝min), ln(1/𝜀)

)︀𝑂(𝑘3/5 ln(1/𝑝min))

and the runtime is bounded by ̃︀𝑂(𝑁). Each iteration 𝑖 ∈ [𝑆] involves𝑀 ·𝑇 = ̃︀𝑂 (︁𝑘3/5𝑒𝑘3/5 ln(1/𝜀))︁
such iterations. Additionally, the 𝑖-th iteration runs CheckOutcomeHyperplanes, a run

of which has time and sample complexity

𝑁2 = 𝑂
(︀
𝑝−2
min · ln(2𝑆/𝛿)

)︀
= 𝑂

(︀
𝑝−2
min · 𝑘3/5 ln(2/𝛿)

)︀
.

606

We conclude that HyperplaneMomentDescent requires sample complexity

̃︀𝑂 (︁𝑁1 + 𝑆 ·
(︁
𝑘3/5𝑒𝑘

3/5

𝑁 +𝑁2

)︁)︁
and runs in time

̃︀𝑂 (︁𝑑𝑁1 + 𝑆 ·
(︁
𝑘3/5𝑒𝑘

3/5

𝑁 +𝑁2

)︁)︁
.

607

Part IV

Data Science and the Sciences

608

Chapter 9

Mixture Models and the Diffraction

Limit

9.1 Introduction

The final mixture model that we study in this thesis is inspired by the following classic

question from optics. For more than a century and a half it has been widely believed (but

was never rigorously shown) that the physics of diffraction imposes certain fundamental

limits on the resolution of an optical system. In the standard physical setup, we observe

incoherent illumination from far-away point sources through a perfectly circular aperture

(see Figure 9-1). Each point source produces a two-dimensional image, computed explicitly

by Sir George Biddell Airy in 1835 [Air35] and now called an Airy disk. For a point source of

light whose angular displacement from the optical axis is 𝜇 ∈ R2, recall from our discussion

in Section 1.2.3 that the normalized intensity at a point x on the observation plane is given

by

𝐼(x) =
1

𝜋𝜎2

(︂
2𝐽1(‖x− 𝜇‖2/𝜎)
‖x− 𝜇‖2/𝜎

)︂2

where 𝐽1 is a Bessel function of the first kind. Under Feynman’s path integral formalism, 𝐼(𝑥)

is precisely the pdf of the distribution over where the photon is detected (see Appendix 9.7).

The physical properties of the optical system, namely its numerical aperture and the wave-

length of light being observed, determine 𝜎 which governs the amount by which each point

609

Figure 9-1: Fraunhofer diffraction of incoherent illumination from point source through aperture onto ob-
servation plane

source gets blurred.

Intuitively, when point sources are closer together it seems harder to resolve them. How-

ever, despite considerable interest over the years [Abb73,Ray79,Sch04,Spa16,Hou27,Bux37],

our understanding of what exactly can and cannot be resolved has never risen above heuristic

arguments. In 1879 Lord Rayleigh [Ray79] proposed a criterion for assessing the resolving

power of an optical system, which is still widely-used today, of which he wrote:

“This rule is convenient on account of its simplicity and it is sufficiently accurate

in view of the necessary uncertainty as to what exactly is meant by resolution.”

Over the years, many researchers have proposed alternative criteria and offered arguments

about why some are more appropriate than others. For example, in 1916 Carroll Sparrow

proposed a new criterion [Spa16] that bears his name, which he justified as follows:

“It is obvious that the undulation condition should set an upper limit to the re-

solving power . . . The effect is observable both in positives and in negatives, as

well as by direct vision . . . My own observations on this point have been checked

by a number of my friends and colleagues.”

Even more resolution criteria were proposed, both before and after, by Ernst Abbe [Abb73],

Sir Arthur Schuster [Sch04], William Houston [Hou27], etc. Their popularity varies depend-

ing on the application area and research community. Many researchers have also pushed

back on the idea that there is a fundamental diffraction limit at all. In his 1964 Lectures on

Physics [FLS11, Section 30-4], Richard Feynman writes:

610

“. . . it seems a little pedantic to put such precision into the resolving power for-

mula. This is because Rayleigh’s criterion is a rough idea in the first place. It

tells you where it begins to get very hard to tell whether the image was made by

one or by two stars. Actually, if sufficiently careful measurements of the exact

intensity distribution over the diffracted image spot can be made, the fact that

two sources make the spot can be proved even if 𝜃 is less than 𝜆/𝐿.”

Or as Toraldo di Francia [DF55] puts it:

“Mathematics cannot set any lower limit for the distance of two resolvable points.”

Our goal in this chapter is to remedy this gap in the literature and place the notion

of the diffraction limit on rigorous statistical foundations by drawing new connections to

recent work in theoretical computer science on provably learning mixture models, as we will

describe next. First we remark that the way the diffraction limit is traditionally studied

is in fact a mixture model. In particular we assume that, experimentally, we can measure

photons that are sampled from the true diffracted image. However we only observe a finite

number of them because our experiment has finite exposure time, and indeed as we will see

in some settings the number of samples needed to resolve closely-spaced objects can explode

and be essentially impossible just from statistical considerations. Moreover we may only be

able to record the location of observed photons up to some finite accuracy, which can also

be thought of as being related to sampling error. The main question we will be interested

in is:

How many samples (i.e. photons) are needed to accurately estimate the centers

and relative intensities of a mixture (i.e. superposition) of two or more Airy

disks, as a function of their separation and the parameters of the optical system?

This is a central question in optics. Fortunately, there are many parallels between this

question and the problem of provably learning mixture models that surprisingly seem to

have gone undiscovered. In particular, let us revisit Sparrow’s argument that resolution is

impossible when the density function becomes unimodal. In fact there are already counter-

examples to this claim, albeit not for mixtures of Airy disks. It is known that there are

611

algorithms for learning mixtures of two Gaussians that take a polynomial number of samples

and run in polynomial time. These algorithms work even when the density function is uni-

modal, and require just that the overlap between the components can be bounded away from

one. Moreover when there are 𝑘 components it is known that there is a critical separation

above which it is possible to learn the parameters accurately with a polynomial number of

samples, and below which accurate learning requires a superpolynomial number of samples

information-theoretically [RV17]. Thus a natural way to formulate what the diffraction limit

is, so that it can be studied rigorously, is to ask:

At what critical separation does the sample complexity of learning mixtures of 𝑘

Airy disks go from polynomial to exponential?

In this chapter we will give algorithms whose running time and sample complexity are

polynomial in 𝑘 above some critical separation, and prove that below some other critical

separation the sample complexity is necessarily exponential in 𝑘. These bounds will be

within a universal constant, and thus we approximately locate the true diffraction limit.

There will also be some surprises along the way, such as the fact that the Abbe limit, which

has long been postulated to be the true diffraction limit, is not actually the correct answer!

Before we proceed, we also want to emphasize that there is an important conceptual

message in our work. First, for mixtures of Gaussians the model was only ever supposed

to be an approximation to the true data generating process. For example, Karl Pearson

introduced mixtures of Gaussians in order to model various physical measurements of the

Naples crabs. However mixtures of Gaussians always have some chance of producing samples

with negative values, but Naples crabs certainly do not have negative forehead lengths! In

contrast, for mixtures of Airy disks the model is an extremely accurate approximation to

the observations in many experimental setups because it comes from first principles. It is

particularly accurate in astronomy where for all intents and purposes the lens is spherical

and the star is so far away that it is a point source, and the question itself is highly relevant

because it arises when we want to locate double-stars [Fal67] .

Furthermore we believe that there ought to be many more examples of inverse problems

in science and engineering where tools and ideas from the literature on provably learning

612

mixture models ought to be useful. Indeed both mixtures of Gaussians and mixtures of Airy

disks can be thought of as inverse problems with respect to simple differential equations, for

the heat equation and a modified Bessel equation respectively. While this is a well-studied

topic in applied mathematics, usually one makes some sort of smoothness assumption on the

initial data. What is crucial to both the literature on learning mixtures of Gaussians and

our work is that we have a parametric assumption that there are few components. Thus

we ask: Are there provable algorithms for other inverse problems, coming from differential

equations, under parametric assumptions? Even better: Could techniques inspired by the

method of moments play a key role in such a development?

9.1.1 Overview of Results

It is often the case that heuristic arguments, despite being quite far from a rigorous proof,

predict the correct thresholds for a wide range of statistical problems. However here there

will be a surprise. In a seminal work in 1873, Ernest Abbe formulated what is now called

the Abble limit. Since then it has been widely accepted in the optics literature as the

critical distance below which diffraction makes resolution impossible for classical optical

systems. In the mixture model formalism outlined above, it corresponds to a separation of

𝜋𝜎 between any pair of Airy disk centers 𝜇𝑖, 𝜇𝑗. This distance arises naturally because it

corresponds to the radius of the support of the Fourier transform of the Airy disk kernel

𝐴𝜎 : x ↦→ 1
𝜋𝜎2

(︁
𝐽1(x/𝜎)
x/𝜎

)︁2
(see Appendix 9.8.4 for further discussion).

One of the main results of our work in this chapter is to show that resolution is statistically

hard even above the Abbe limit! Specifically, we show that even for mixtures of Airy disks

whose centers have a pairwise separation that is a constant factor larger than the Abbe

limit, the problem of recovering their locations can require exp(Ω(
√
𝑘)) samples. The main

challenge is that no configuration where the Airy disk centers are all on the same line can

beat the Abbe limit. Instead we construct a new, natural lower bound instance.

Theorem 9.1.1 (Informal, see Theorem 9.5.1). Let 𝛾 ,
√︀

4/3 ≈ 1.155. For any 0 < 𝜀 < 1,

there exist two superpositions of 𝑘 Airy disks 𝜌, 𝜌′ which are both 𝛾 · (1 − 𝜀) · 𝜋𝜎-separated

and such that 1) 𝜌 and 𝜌′ have noticably different sets of centers, and yet 2) it would take at

613

least exp(Ω(𝜀
√
𝑘)) samples to distinguish whether the samples came from 𝜌 or from 𝜌′.

On the other hand, we also show that when the Airy disks have separation that is a

small constant factor larger than this critical distance, there is an algorithm for recovering

the centers that takes a polynomial number of samples and runs in polynomial time.

Theorem 9.1.2 (Informal, see Theorem 9.4.2). Define the absolute constant 𝛾 = 2𝑗0,1
𝜋

=

1.530 . . ., where 𝑗0,1 is the first positive zero of the Bessel function 𝐽0. Let 𝜌 be a 𝛾 · 𝜋𝜎-

separated superposition of 𝑘 Airy disks where every disk has relative intensity at least 𝜆.

Then for any target error 𝜀 > 0, there is an algorithm with time and sample complexity

𝑁 = poly (𝑘, 1/Δ, 1/𝜆, 1/𝜀) which outputs an estimate for the centers and relative intensities

of 𝜌 which incurs error 𝜀 with probability at least 9/10. Furthermore, this holds even when

there is granularity in the photon detector, as long as it is at most some inverse polynomial

in all parameters.

The main open question of our work is to prove matching upper and lower bounds that

pin down the true diffraction limit. However, as we will discuss, this is a challenging problem

in harmonic analysis, despite being connected to areas where there has been considerable

recent progress. Moreover this phase transition for resolution is actually more dramatic than

what happens for mixtures of Gaussians [RV17]. Even ignoring the issue of computational

complexity, for spherical Gaussian mixtures it is known that at separation 𝑜(
√
log 𝑘), super-

polynomially many samples are needed, while at separation Ω(
√
log 𝑘), polynomially many

suffice.

We now say a word about the techniques that go into proving Theorem 9.1.1 and The-

orem 9.1.2. It turns out that both are closely related to proving a modified version of an

Ingham-type estimate [KL05]:

Q6. What is the smallest Δ for which the quantity

∫︁
𝐵

⃒⃒⃒⃒
⃒
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩

⃒⃒⃒⃒
⃒
2

𝑑𝜔 ≥ 1

poly(𝑘)
‖𝜆‖22

for all vectors 𝜆 ∈ R𝑘 and all sets of centers {𝜇𝑗} for which ‖𝜇𝑖 − 𝜇𝑗‖2 > Δ for all 𝑗 ̸= 𝑗′,

where the integration is over the origin-centered unit ball 𝐵 ⊂ R2?

614

In particular, the main technical step for showing Theorem 9.1.2 is to show that the critical

Δ in Question 6 is at most 2𝑗0,1/𝜋. This can be obtained via the following extremal function.

A ball minorant, is a function 𝐹 satisfying the properties that

(1) 𝐹 (𝑥) ≤ 1[𝑥 ∈ 𝐵] and

(2) ̂︀𝐹 is supported on the ball of radius Δ

In [HV+96,CCLM17,Gon18] it was shown that such a ball minorant exists for Δ = 2𝑗0,1/𝜋

(interestingly, this paved the way to some recent progress on Montgomery’s famous pair

correlation conjecture for the Riemann zeta function [CCLM17]). One can use property (1)

to pass from integrating against the function 1[𝑥 ∈ 𝐵] to integrating against 𝐹 . And because

by property (2) 𝐹 is localized in the frequency domain, the latter integral is large. In fact the

one-dimensional analogue of Question 6 was resolved in [Moi15] using the univariate analogue

of 𝐹 , namely the Beurling-Selberg minorant. However the algorithmic approach only made

sense in one-dimension. In our case, we employ the tensor generalization of the matrix pencil

method, originally introduced in [HK15]. We defer the details of this to Section 9.4.3.

For the lower bound in Theorem 9.1.1, we need to answer a variant of Question 6.

Q7. What is the smallest Δ for which

∫︁
𝐵

⃒⃒⃒⃒
⃒
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩ −

𝑘∑︁
𝑗=1

𝜆′𝑗𝑒
−2𝜋𝑖⟨𝜇′𝑗 ,𝜔⟩

⃒⃒⃒⃒
⃒
2

𝑑𝜔 ≥ 1

poly(𝑘)
(9.1)

for all nonnegative 𝜆, 𝜆′ ∈ R𝑘 whose entries sum to one and {𝜇𝑗}, {𝜇′
𝑗} ∈ R2 for which

‖𝜇𝑗−𝜇𝑗′‖2 > Δ and ‖𝜇′
𝑗−𝜇′

𝑗′‖2 > Δ for 𝑗 ̸= 𝑗′, where integration is over the origin-centered

unit ball 𝐵?

The connection to Theorem 9.1.1 is straightforward: By Plancherel’s and smoothness

properties of 𝐴𝜎, one can upper bound the 𝐿1 distance between the mixture of Airy disks

given by parameters {𝜆𝑗}, {𝜇𝑗} and the mixture given by {𝜆′𝑗}, {𝜇′
𝑗} in terms of the left-

hand side of (9.1). So if one can construct a set of Δ-separated centers {𝜇𝑗}, {𝜇′
𝑗} for

which (9.1) fails to hold but for which the collection {𝜇𝑗} is separated from {𝜇′
𝑗} but the

resulting mixtures of Airy disks are 𝑜(1/poly(𝑘))-close in total variation distance it implies

615

that resolution is statistically impossible with a polynomial number of samples. This is the

recipe used in known lower bounds [MV10,HP15,RV17] for learning mixtures of Gaussians.

For our purposes, it turns out that “tensoring" one-dimensional lower bounds does not

work because it would not beat the Abbe limit [Moi15]. Morally, this is because tensoring the

unit interval with itself would give us the unit square, which corresponds to separation in the

𝐿∞ distance rather than the 𝐿2 distance, and the 𝐿2 distance is the right distance in optics

because it is rotationally invariant. The main technical contribution in our lower bound is

to give a more sophisticated construction given by interleaving two triangular lattices and

placing the centers at points on these lattices (see Figure 9-5). The analysis is rather delicate,

and we defer the details to Section 9.2 and Section 9.5.

To complete the picture, we show that there is no diffraction limit when the number of

Airy disks is a constant. In particular we show that for any constant number of Airy disks

there is an algorithm that takes a polynomial number of samples and runs in polynomial

time that learns the parameters to any desired accuracy regardless of the separation.

Theorem 9.1.3 (Informal, see Theorem 9.4.1). Let 𝜌 be a Δ-separated superposition of 𝑘

Airy disks where every disk has relative intensity at least 𝜆. Then for any target error 𝜀 > 0

and failure probability 𝛿 > 0, there is an algorithm which draws 𝑁 = poly
(︁
(𝑘𝜎/Δ)𝑘

2
, 1/𝜆, 1/𝜀, log(1/𝛿)

)︁
samples from 𝜌, runs in time 𝑂(𝑁), and outputs an estimate for the centers and relative

intensities of 𝜌 which incurs error 𝜀 with probability at least 1 − 𝛿. Furthermore, this holds

even when there is granularity in the photon detector, as long as it is at most some inverse

polynomial in 𝑁 .

This result turns out to be simple in retrospect, and comes from assembling a few standard

tools from the literature on provably learning mixture models. Nevertheless it underscores

an important point that existing tools can already have important implications for inverse

problems the sciences. Our approach is to first estimate the Fourier transform ̂︀𝜌 from samples

and then pointwise divide by ̂︀𝐴𝜎. In this way we can simulate noisy access to the Fourier

transform of the mixture of delta functions at 𝜇1, . . . , 𝜇𝑘. However ̂︀𝐴𝜎 has compact support,

so we can only access frequencies with bounded 𝐿2 norm. Now we can reduce to the one-

dimensional case [Moi15] by projecting 𝜌 along two nearby directions, solving each resulting

univariate problem, and then solving an appropriate linear system to recover the centers and

616

relative intensities. This method is reminiscent of [KMV10,MV10], which gives algorithms

for learning high-dimensional mixtures of Gaussians based on reducing to a series of one-

dimensional problems and stitching together these estimates carefully.

9.1.2 Related Work

We have already mentioned that our work is closely related to the vast literature on learning

mixture models and, in particular, on learning mixtures of Gaussians [Das99,DS00,AK01,

VW02,AM05,BV08,KMV10,MV10,BS15,HP15,HK13,GHK15,RV17,HL18,KS17,DKS18b].

Here we mention some other connections to work on recovering spike trains from noisy, band-

limited Fourier measurements.

Superresolution The seminal work of [DS89, Don92] was one of the first to put this

question on rigorous footing. Donoho studied the modulus of continuity for this problem on

a grid as the grid width goes to zero. Later Candes and Fernandez-Granda [CFG14] gave

a practical algorithm based on 𝐿1 minimization over a continuous domain. There has been

a long line of work on this problem which it would also be impossible to survey fully, so

we refer the reader to [CFG13,TBSR13,FG13,Lia15,Moi15,FG16,KPRvdO16,MC16] and

references therein.

We remark that essentially all works on super-resolution in high dimensions focus on

the case where measurements are 𝐿∞-band-limited rather than 𝐿2-band-limited. Given the

prevalence of Airy disks and circular apertures in statistical optics, one upshot of our work is

that, technical issues related to the so-called box (aka 𝐿∞ ball) minorant problem notwith-

standing, the 𝐿2 setting may be the more practically relevant one to consider anyways.

Sparse Fourier Transform There are also connections to the extensive literature on the

sparse Fourier transform, which can be interpreted in some sense as the “agnostic” version of

the super-resolution problem where the goal is to compete with the error of the best 𝑘-sparse

approximation to the discrete Fourier transform, even in the presence of noise, using few

measurements [GGI+02,GMS05,HIKP12,GIIS14, IKP14,Kap16]. When the 𝑘 spikes need

not be at discrete locations and the low-frequency measurements are randomly chosen, this

617

Figure 9-2: With enough samples, one can distinguish which of two superpositions the data comes from,
even below the diffraction limit: In each plot, a histogram of 𝑥-axis positions of photons sampled from a
superposition of two equal-intensity Airy disks (red) centered on the 𝑥-axis with separation a tenth of the
Abbe limit is overlaid with a histogram of 𝑥-axis positions of photons sampled from a single Airy disk at the
origin (gray). As number of samples increases (left to right), minute differences between the two intensity
profiles become clear.

is the problem of compressed sensing off the grid introduced by [TBSR13], for which recovery

is possible with far fewer measurements. This can be thought of as the one-dimensional case

of the setting of [HK15]. To our knowledge, the only work that addresses the continuous,

high-dimensional version of the sparse Fourier transform is the very recent work of [JLS20].

The emphasis in this literature is primarily on obtaining sample complexity near-linear in

𝑘, whereas our guarantees are only polynomial in 𝑘. Consequently the results in the sparse

Fourier transform literature lose log factors in the level of separation they require, whereas in

our setting the emphasis is primarily on the level of separation needed to get polynomial-time

and -sample algorithms.

9.1.3 Visualizing the Diffraction Limit

In this short section we provide some figures to help conceptualize our results. Figure 9-

2 illustrates the basic notion that separation is information-theoretically unnecessary for

parameter learning of superpositions of Airy disks. We compare the discretized empirical

distribution of samples from two diffraction patterns whose components have separation

well below the diffraction limit and thus well below what conventional wisdom in optics

suggests is resolvable. While the differences in the diffraction patterns are minute, they do

indeed become statistically significant with enough samples. Eventually it becomes possible

to conclude that the gray diffraction pattern is generated by one point source and the red

diffraction pattern is generated by two.

Next, we present a striking visual representation of the statistical barrier imposed by

618

Figure 9-3: The Abbe limit as a statistical phase transition: For any level of separation Δ and number of
disks 𝑘, we carefully construct a pair of hypotheses 𝒟0(Δ, 𝑘),𝒟1(Δ, 𝑘) which are each superpositions of 𝑘/2
Airy disks where the separation among its components is at least Δ. The left figure plots total variation
distance 𝑑TV(𝒟0(Δ, 𝑘),𝒟1(Δ, 𝑘)) between the two distributions as a function of Δ, for various choices of 𝑘,
with the Abbe limit highlighted in red. The right figure plots total variation distance on a log-scale.

the diffraction limit when the number of components is large. Recall that the upshot of

Theorems 9.1.1 and 9.1.2 is that 𝑘 plays a leading role in determining when resolution is and

is not feasible: slightly above the Abbe limit, the sample (and computational) complexity

is polynomial in 𝑘, and anywhere beneath the Abbe limit, the sample complexity becomes

exponential in 𝑘. This helps clarify why in some domains like astronomy, where there are

only ever a few tightly spaced point sources, there is evidently no diffraction limit. Yet in

other domains like microscopy where there are a large number of tightly spaced objects, the

diffraction limit is indeed a fundamental barrier, at least in the classical physical setup. This

helps explain why different communities have settled on different beliefs about whether there

is or is not a diffraction limit.

In Figure 9-3 we experimentally investigate this phenomenon and illustrate how the total

variation distance scales as we vary the number of disks and the separation in our earlier

constructions. It is evident from these plots that for any superposition of a few Airy disks,

there is no sharp dividing line between what is and is not possible to resolve. But when the

number of Airy disks becomes large, with any reasonable number of samples, it is feasible to

resolve the superposition if and only if their separation is at least as large as the Abbe limit.

We emphasize that in the instance constructed for Figure 9-3 (as well as the instance

we construct and analyze for Theorem 9.1.1), the centers are plotted on a line. For such

instances, by projecting in the direction of the line and using our deconvolution tech-

619

niques, one can actually reduce to the problem of one-dimensional super-resolution, for

which polynomial-time algorithms exist for any separation strictly greater than the diffrac-

tion limit [Moi15], and by adapting the lower bound in [Moi15] to this specific instance, one

can see that this is tight. In contrast, if the centers can be placed anywhere in R2, there is a

constant factor gap (
√︀

4/3 versus 2𝑗0,1
𝜋

) between the lower bound in Theorem 9.1.1 and the

upper bound in Theorem 9.1.2.

9.1.4 Roadmap

In Section 9.2 we give a preview of our lower bound proof by providing a self-contained

answer to Question 7. In Section 9.3, we give an overview of our probabilistic model, some

notation, and other mathematical preliminaries. In Section 9.4, we prove the algorithmic

results in Theorems 9.1.3 and 9.1.2. In Section 9.5 we complete the proof of our lower bound

from Theorem 9.1.1. In Section 9.6 we conclude with some directions for future work. In

Appendix 9.7, we overview previous attempts in the optics literature to put the diffraction

limit on rigorous footing. In Appendix 9.8, we describe and motivate our model and also

define the various resolution criteria which have appeared in the literature. In Appendix 9.9,

we catalogue quotations from the literature that are representative of the points of view

addressed in the introduction. In Appendix 9.10, we complete some deferred proofs. Lastly,

in Appendix 9.11, we give details on how Figure 9-3 was generated.

9.2 Lower Bound Preview

In this section we give a self-contained proof of one of the main technical ingredients in the

proof of our main result, Theorem 9.1.1. Before proceeding, it will be convenient to introduce

a bit of notation; any outstanding notation we will present Section 9.3, e.g. our convention

for the Fourier transform. Recalling that 𝛾 ,
√︀

4/3, define

𝑚 ,
2

(1− 𝜀)𝛾𝜋𝜎
(9.2)

620

for any small constant 𝜀 > 0 so that the critical level of separation for which Theorem 9.1.1

applies is Δ , 2/𝑚 = 𝛾 · (1− 𝜀) · 𝜋𝜎.1 Additionally, let 𝑘 be an odd square and define

𝜈𝑗1,𝑗2 =
Δ

2
· (𝑗1,

√
3 · 𝑗2), 𝑗1, 𝑗2 ∈ 𝒥 ,

[︃
−
√
𝑘 − 1

2
, . . . ,

√
𝑘 − 1

2

]︃
.

This construction is illustrated in Figure 9-5: there, similarly colored points correspond to

centers in the same mixture, and our choice of {𝜈𝑗1,𝑗2} ensures that the level of separation

between any two points in a particular mixture is Δ, which is slightly less than
√︀

4/3 times

the Abbe limit of 𝜋𝜎. As such, the following tells us that the answer to Question 7 is

surprisingly at least
√︀

4/3, rather than 1 as the Abbe limit would suggest:

Lemma 9.2.1. There exists a vector 𝑢 , (𝑢𝑗1,𝑗2)𝑗1,𝑗2∈𝒥 ∈ R𝑘 for which

⃒⃒⃒⃒
⃒ ∑︁
𝑗1,𝑗2∈𝒥

𝑢𝑗1,𝑗2𝑒
−2𝜋𝑖⟨𝜈𝑗1,𝑗2 ,x⟩

⃒⃒⃒⃒
⃒
2

≤ exp
(︁
−Ω(𝜀

√
𝑘)
)︁

for all ‖𝑥‖ ≤ 1/𝜋𝜎. Furthermore, sgn(𝑢𝑗1,𝑗2) = (−1)𝑗1+𝑗2, and

∑︁
𝑗1+𝑗2 even

|𝑢𝑗1,𝑗2 | =
∑︁

𝑗1+𝑗2 odd

|𝑢𝑗1,𝑗2| = 1. (9.3)

We need the following ingredient from the proof of the one-dimensional lower bound

in [Moi15].

Definition 9.2.2. The Fejer kernel is given by

𝐾ℓ(𝑥) =
1

ℓ2

ℓ∑︁
𝑗=−ℓ

(ℓ− |𝑗|)𝑒(𝑗𝑥) = 1

ℓ2

(︂
sin ℓ𝜋𝑥

sin 𝜋𝑥

)︂2

. (9.4)

We will denote the 𝑟-th power of 𝐾ℓ(·) by 𝐾𝑟
ℓ (·).

Fact 9.2.3. 𝐾ℓ is even and periodic with period 1. For 𝑥 ∈ [−1/2, 1/2], 𝐾ℓ(𝑥) ≤ 1
4ℓ2𝑥2

.

Proof. That 𝐾ℓ is even and periodic follow from the second definition of 𝐾ℓ in (9.4). For
1This 𝜋𝜎 scaling is not important to the result in this section but is the natural choice of scaling for

Airy disks, so it will be convenient to work with this when we apply the results of this section to prove
Theorem 9.1.1.

621

Figure 9-4: The squares correspond to periods of 𝐾𝑟
ℓ , while the ellipses have major and minor axes of length

𝛾(1 − 𝜀) and 2(1 − 𝜀). The figure is centered around the origin, and the bottom-left ellipse 𝐾 is the set of

points
(︁

𝑥1

𝑚 −
1
2 ,

𝑥2

√
3

𝑚 − 1
2

)︁
as (𝑥1, 𝑥2) ranges over the origin-centered 𝐿2 ball of norm 1/𝜋𝜎. By appropriately

translating the four quadrants of this ellipse by distances in Z2, we obtain overlapping regions whose union
is given by 𝑅∖𝑆, where 𝑅 = [−1/2, 1/2] × [−1/2, 1/2] is given by the central square (green) and 𝑆 is the
multi-colored set in the middle given by tranlates of the four connected components of ([−1, 0]× [−1, 0])∖𝐾.

the bound on 𝐾ℓ, we can use the elementary bounds sin 𝜋𝑥 ≥ 2𝑥 for 𝑥 ∈ [0, 1/2] and

(sin ℓ𝜋𝑥)2 ≤ 1.

Proof of Lemma 9.2.1. Let ℓ = 4/𝜀 and 𝑟 = (
√
𝑘 − 1)/2ℓ = Θ(𝜀

√
𝑘), and assume without

loss of generality that ℓ is even. Consider the function 𝐻 : R2 → R given by

𝐻(𝑥1, 𝑥2) = 𝐾𝑟
ℓ

(︂
𝑥1
𝑚
− 1

2

)︂
·𝐾𝑟

ℓ

(︃
𝑥2
√
3

𝑚
− 1

2

)︃
.

We know that ̂︀𝐾ℓ[𝑡] =
1
ℓ2

∑︀ℓ
𝑗=−ℓ(ℓ− |𝑗|)𝛿(𝑡− 𝑗), so ̂︁𝐾𝑟

ℓ [𝑡] =
∑︀

𝑗∈𝒥 𝛼𝑗𝛿(𝑡− 𝑗) for nonnegative

𝛼𝑗 which sum to 1. Assuming without loss of generality suppose that 𝑚 defined by (9.2) is

an odd integer, we conclude that for t = (𝑡1, 𝑡2) ∈ C2,

̂︀𝐻[t] =
∑︁

𝑗1,𝑗2∈𝒥

ℎ𝑗1,𝑗2𝑒
−𝜋𝑖𝑚(𝑡1+𝑡2/

√
3)𝛿(𝑚𝑡1 − 𝑗1) · 𝛿(𝑚𝑡2/

√
3− 𝑗2)

622

=
∑︁

𝑗1,𝑗2∈𝒥

ℎ𝑗1,𝑗2(−1)𝑗1+𝑗2𝛿(t− 𝜈𝑗1,𝑗2),

where ℎ𝑗1,𝑗2 = 𝛼′
𝑗1
𝛼′
𝑗2
≥ 0, where 𝛼′

𝑗 , 𝛼𝑗 · 1[𝑗 = 0] +𝑚𝛼𝑗 · 1[𝑗 ̸= 0]. We will take

𝑢𝑗1,𝑗2 , ℎ𝑗1,𝑗2(−1)𝑗1+𝑗2 ∀𝑗1, 𝑗2 ∈ 𝒥 .

Observe that sgn(𝑢𝑗1,𝑗2) = (−1)𝑗1+𝑗2 as desired.

By taking the inverse Fourier transform of ̂︀𝐻, we get that

𝐻(𝑥1, 𝑥2) =
∑︁
𝑗1,𝑗2

𝑢𝑗1,𝑗2𝑒
2𝜋𝑖⟨𝜈𝑗1,𝑗2 ,x⟩. (9.5)

To complete our proof, it therefore suffices to show that 𝐻(x) ≤ exp(−Ω(𝜀
√
𝑘)) for all

‖𝑥‖ ≤ 1/𝜋𝜎.

Let 𝑅 ⊆ R2 denote the region [−1/2, 1/2]×[−1/2, 1/2]. But as 𝑥 ranges over the 𝐿2 ball of

norm 1/𝜋𝜎,
(︁
𝑥1
𝑚
− 1

2
, 𝑥2

√
3

𝑚
− 1

2

)︁
ranges over the interior of the ellipse centered at (−1/2, 1/2)

with axes of length 𝛾(1− 𝜀) and 2(1− 𝜀). For the subsequent discussion in this paragraph,

we refer the reader to Figure 9-4. By periodicity of 𝐾𝑟
ℓ , the image of this ellipse under

𝐾𝑟
ℓ is identical to the region 𝑇 , 𝑅∖𝑆, where 𝑆 is defined as follows. Denote the interior

of the ellipse by 𝐵1, and denote its translates along the vectors (0, 1), (1, 0), and (1, 1) by

𝐵2, 𝐵3, 𝐵4. Define 𝑆 to be the set of points in 𝑅 that belong to none of 𝐵1, 𝐵2, 𝐵3, 𝐵4.

We claim that 𝑆 contains the origin-centered 𝐿∞ ball of radius 𝜀/2
√
2. Note that 𝑆

is given by translating the four connected components of ([−1, 0] × [−1, 0])∖𝐵1, which is

nonempty because 𝐵1 consists of points (𝑥1, 𝑥2) satisfying

4

𝛾2(1− 𝜀)2
(𝑥1 − 1/2)2 +

1

(1− 𝜀)2
(𝑥2 − 1/2)2 ≤ 1. (9.6)

In particular, for 𝑥1, 𝑥2 ∈ [−1, 0] satisfying |𝑥1 − 1/2|, |𝑥2 − 1/2| > (1 − 𝜀)/2, observe that

the left-hand quantity in (9.6) satisfies

4

𝛾2(1− 𝜀)2
(𝑥1 − 1/2)2 +

1

(1− 𝜀)2
(𝑥2 − 1/2)2 >

(︂
4

𝛾2(1− 𝜀)2
+

1

(1− 𝜀)2

)︂
· (1− 𝜀)

2

4
= 1,

623

Figure 9-5: Locations of centers of Airy disks for the two mixtures in the lower bound instance of Theo-
rem 9.5.1 when 𝑘 = 25. Black (resp. white) points correspond to centers for 𝜌 (resp. 𝜌′). The separation
between any adjacent pair of identically colored points is 2/𝑚 = Δ, and the points of any particular color
form a triangular lattice.

where the last step follows by our choice of 𝛾 =
√︀
4/3. We conclude that 𝑆 contains the

origin-centered 𝐿∞ ball of radius 𝜀/2 as claimed.

Now by Fact 9.2.3, for any (𝑥1, 𝑥2) ∈ 𝑅 we have that 𝐾𝑟
ℓ (𝑥1), 𝐾

𝑟
ℓ (𝑥2) ≤ 1

42𝑟ℓ4𝑟𝑥4𝑟
. So

because 𝑆 contains the origin-centered 𝐿∞ ball of radius 𝜀/2, for (𝑥1, 𝑥2) ∈ 𝑇 we conclude

that 𝐾𝑟
ℓ (𝑥1), 𝐾

𝑟
ℓ (𝑥2) ≤ 1/44𝑟. We conclude that for ‖x‖ ≤ 1/𝜋𝜎, 𝐻(x) ≤ exp(−Ω(𝑟)) =

exp(−Ω(𝜀
√
𝑘)).

The last step is just to scale 𝑢 so that (9.3) holds. First note that by substituting 𝑥 = 0

into (9.5), we have that

∑︁
𝑗1,𝑗2∈𝒥

𝑢𝑗1,𝑗2 = 𝐻(0, 0) = 𝐾2𝑟
ℓ (−1/2) = 1

ℓ4𝑟
sin4𝑟(ℓ𝜋/2).

In particular, because we assumed at the outset that ℓ is even, 𝐻(0, 0) = 0. Together with

the fact that sgn(𝑢𝑗1,𝑗2) = (−1)𝑗1+𝑗2 , we get the first equality in (9.3). Finally, note that∑︀
|𝑢𝑗1,𝑗2| > 1 because

∑︀
𝛼𝑗 = 1 and ℎ𝑗1,𝑗2 ≥ 𝛼𝑗1𝛼𝑗2 for all 𝑗1, 𝑗2. Thus, by multiplying 𝑢 by

a factor of at most 2, we get the second equality in (9.3).

624

9.3 Preliminaries

In this section we explain the terminology and notation that we will adopt in this chapter

and also provide some technical preliminaries that will be useful later.

Generative Model We first restate the family of distributions we study in this chapter,

originally introduced in Definition 1.2.24.

Definition 9.3.1. [Superpositions of Airy Disks] A superposition of 𝑘 Airy disks 𝜌 is a

distribution over R2 specified by relative intensities 𝜆1, ..., 𝜆𝑘 ≥ 0 summing to 1, centers

𝜇1, ..., 𝜇𝑘 ∈ R2, and an a priori known “spread parameter” 𝜎 > 0. Its density is given by

𝜌(x) =
𝑘∑︁
𝑖=1

𝜆𝑖 · 𝐴𝜎 (x− 𝜇𝑖) for 𝐴𝜎(z) =
1

𝜋𝜎2

(︂
𝐽1(‖z‖2/𝜎)
‖z‖2/𝜎

)︂2

.

Note that the factor of 1
𝜋𝜎2 in the definition of 𝐴𝜎 is to ensure that 𝐴𝜎(·) is a probability

density.

Also define

Δ , min
𝑖 ̸=𝑗
‖𝜇𝑖 − 𝜇𝑗‖2 and ℛ , max

𝑖∈[𝑘]
‖𝜇𝑖‖2.

It will be straightforward to extend the above model to take into account error stemming

from the fact that the photon detector itself only has finite precision.

Definition 9.3.2 (Discretization Error). Given discretization parameter 𝜍 > 0, we say x is

a 𝜍-granular sample from 𝜌 if it is produced via the following generative process: 1) a point

x′ is sampled from 𝜌, 2) x is obtained by moving x′ an arbitrary distance of at most 𝜍.

Optical Transfer Function The following is a standard calculation.

Fact 9.3.3. ̂︀𝐴𝜎[𝜔] = 2
𝜋
(arccos(𝜋𝜎‖𝜔‖)− 𝜋𝜎‖𝜔‖

√︀
1− 𝜋2𝜎2‖𝜔‖2.

Proof. It is enough to show this for 𝜎 = 1. Let 𝐺(x) , 𝐽1(‖x‖)/‖x‖. It is a standard

fact that the zeroeth-order Hankel transform of the function 𝑟 ↦→ 𝐽1(𝑟)/𝑟 is the indicator

function of the interval [0, 1]. Using our convention for the Fourier transform (see (1.13)),

this implies that ̂︀𝐺[𝜔] = 2𝜋 · 1[‖𝜔‖ ∈ [0, 1/2𝜋]]. Because 𝐴1 = 𝐺2/𝜋, by the convolution

625

theorem we conclude that ̂︀𝐴1 is 1
𝜋

times the convolution of ̂︀𝐺 with itself, which is just

4𝜋2 times the convolution of the indicator function of the unit disk of radius 1/2𝜋 with

itself. By elementary Euclidean geometry one can compute this latter function to be 𝜔 ↦→
1

2𝜋2 ·
(︁
arccos(𝜋‖𝜔‖)− 𝜋‖𝜔‖

√︀
1− 𝜋2‖𝜔‖2

)︁
, from which the claim follows.

In optics, the two-dimensional Fourier transform of the point-spread function is called

the optical transfer function, a term we will occasionally use in the sequel.

Now note that by Fact 9.3.3, ̂︀𝐴𝜎 is supported only over the disk of radius 1
𝜋𝜎

centered at

the origin in the frequency domain. In the spatial domain, this corresponds to a separation

of 𝜋𝜎; this is the definition of the Abbe limit. We will need the following elementary estimate

for ̂︀𝐴[𝜔]:
Fact 9.3.4. For all ‖𝜔‖2 ≤ 1, ̂︀𝐴[𝜔] ≥ (1− ‖𝜔‖2)2.

Scaling As the algorithms we give will be scale-invariant, we will assume that 𝜎 = 1/𝜋 in

the rest of this chapter and refer to 𝐴1/𝜋 as 𝐴.

Parameter Estimation Accuracy The following terminology formalizes what it means

for an algorithm to return an accurate estimate for the parameters of a superposition of Airy

disks.

Definition 9.3.5.
(︀
{𝜆*𝑖 }𝑖∈[𝑘], {𝜇*

𝑖 }𝑖∈[𝑘]
)︀
is an (𝜀1, 𝜀2)-accurate estimate for the parameters of

a superposition of 𝑘 Airy disks 𝜌 with centers {𝜇𝑖} and relative intensities {𝜆𝑖} if there exists

a permutation 𝜏 for which

‖𝜇𝑖 − ̃︀𝜇𝜏(𝑖)‖2 ≤ 𝜀1 and |𝜆𝑖 − ̃︀𝜆𝜏(𝑖)| ≤ 𝜀2

for all 𝑖 ∈ [𝑘].

Generalized Eigenvalue Problems Given matrices 𝑀,𝑁 , we will denote by (𝑀,𝑁) the

generalized eigenvalue problem 𝑀𝑥 = 𝜆𝑁𝑥. In any solution (𝜆, 𝑥) to this, 𝜆 is called a

generalized eigenvalue and 𝑥 is called a generalized eigenvector.

626

Bessel Function Estimates In Section 9.5, we need the following estimate for 𝐽𝜈(𝑧):

Theorem 9.3.6 ([Lan00]). For some absolute constant 𝑐28 = 0.7857..., we have for all

𝜈 ≥ 0 and 𝑟 ∈ R that |𝐽𝜈(𝑟)| ≤ 𝑐28|𝑟|−1/3.

Matrices, Tensors, and Flattenings In this chapter, given a matrix 𝑀 ∈ C𝑎×𝑏, we will

denote its 𝑖-th row vector by 𝑀𝑖, its 𝑗-th column vector by 𝑀 𝑗, and its (𝑖, 𝑗)-th entry by

𝑀𝑖,𝑗.

Given a tensor T ∈ C𝑚1×𝑚2×𝑚3 and matrices 𝑀1 ∈ C𝑚1×𝑚′
1 , 𝑀2 ∈ C𝑚2×𝑚′

2 , and 𝑀3 ∈

C𝑚3×𝑚′
3 , define the flattening T(𝑀1,𝑀2,𝑀3) ∈ C𝑚′

1×𝑚′
2×𝑚′

3 by

T(𝑀1,𝑀2,𝑀3)𝑖1,𝑖2,𝑖3 =
∑︁

(𝑗1,𝑗2,𝑗3)∈[𝑚1]×[𝑚2]×[𝑚3]

T𝑚1,𝑚2,𝑚3 · (𝑀1)𝑗1,𝑖1(𝑀2)𝑗2,𝑖2(𝑀3)𝑗3,𝑖3

for all (𝑖1, 𝑖2, 𝑖3) ∈ [𝑚′
1]× [𝑚′

2]× [𝑚′
3].

Miscellaneous Notation Let S𝑑−1 denote the Euclidean unit sphere. Given 𝑟 > 0, let

𝐵𝑑(𝑟) denote the Euclidean ball of radius 𝑟 centered at the origin in R𝑑.

9.4 Learning Superpositions of Airy Disks

In this section we present the technical details of our algorithmic results. In Sections 9.4.2

and 9.4.4, we prove the following formal version of Theorem 9.1.3.

Theorem 9.4.1. Let 𝜌 be a Δ-separated superposition of 𝑘 Airy disks with minimum mixing

weight 𝜆min and such that ‖𝜇𝑖‖ ≤ ℛ for all 𝑖 ∈ [𝑘].

For any 𝜀1, 𝜀2 > 0, there is some 𝛼 = poly
(︁
log 1/𝛿, 1/𝜆min, 1/𝜀1, 1/𝜀2,ℛ, (𝑘𝜎/Δ)𝑘

2
)︁−1

for

which there exists an algorithm with time and sample complexity poly(1/𝛼) which, given 𝜍 =

poly(𝛼)-granular sample access to 𝜌, outputs an (𝜀1, 𝜀2)-accurate estimate for the parameters

of 𝜌 with probability at least 1− 𝛿.

Specifically, in Section 9.4.2, we show how one can use the matrix pencil method to

recover the parameters for 𝜌 given oracle access to the optical transfer function, i.e. the

two-dimensional Fourier transform of 𝜌, up to some small additive error. In Section 9.4.4,

627

we show how to implement this approximate oracle.

In Section 9.4.3, we also use the oracle of Section 9.4.4 to prove the following formal

version of Theorem 9.1.2.

Theorem 9.4.2. Let 𝜌 be a Δ-separated superposition of 𝑘 Airy disks with minimum mixing

weight 𝜆min and such that ‖𝜇𝑖‖ ≤ ℛ for all 𝑖 ∈ [𝑘]. Let

𝛾 =
2𝑗0,1
𝜋

= 1.530 . . . , (9.7)

where 𝑗0,1 is the first positive zero of the Bessel function of the first kind 𝐽0. For any

Δ > 𝛾 · 𝜋 · 𝜎, the following holds:

For any 𝜀1, 𝜀2 > 0, there is some 𝛼 = 1/poly (𝑘,ℛ, 𝜎/Δ, 1/𝜆min, 1/𝜀1, 1/𝜀2, 1/(Δ− 𝛾))

for which there exists an algorithm with time and sample complexity poly(1/𝛼) which, given

poly(𝛼)-granular sample access to 𝜌, outputs an (𝜀1, 𝜀2)-accurate estimate for the parameters

of 𝜌 with probability at least 4/5.

9.4.1 Reduction to 2D Superresolution

In this section we reduce the problem of learning superpositions of Airy disks to the problem

of learning a convex combination of Dirac deltas given the ability to make noisy, band-limited

Fourier measurements.

Formally, suppose we had access to the following oracle:

Definition 9.4.3. An 𝑚-query, 𝜂-approximate OTF oracle 𝒪 takes as input a frequency 𝜔 ∈

R2 and, given frequencies 𝜔1, ..., 𝜔𝑚, outputs numbers 𝑢1, ..., 𝑢𝑚 ∈ R for which |𝑢𝑗−̂︀𝜌[𝜔𝑗]| ≤ 𝜂

for all 𝑗 ∈ [𝑚].

Remark 9.4.4. As we will see in Section 9.4.4, 𝒪 will be constructed by sampling some

number of points from 𝜌 and computing empirical averages. The number 𝑚 and accuracy 𝜂

of queries that 𝒪 can answer dictates the sample complexity of this procedure. As we will

see in the proofs of Lemma 9.4.14 and Lemma 9.4.21 below, the 𝑚 that we need to take will

be small, so the reader can ignore 𝑚 and pretend it is unbounded for most of this section.

628

Given 𝜔 ∈ R2, the Fourier transform of 𝜌 evaluated at frequency 𝜔 is given by

̂︀𝜌[𝜔] = 𝑘∑︁
𝑗=1

𝜆𝑗 ̂︀𝐴[𝜔]𝑒−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩, (9.8)

where for 𝜔 = (𝑟 cos 𝜃, 𝑟 sin 𝜃), we have by Fact 9.3.3 that

̂︀𝐴[𝜔] = 2

𝜋
(arccos(𝑟)− 𝑟

√
1− 𝑟2).

In particular, ̂︀𝐴[𝜔] only depends on 𝑟 = ‖𝜔‖ (because 𝐴(·) is radially symmetric), so hence-

forth regard ̂︀𝐴 as a function merely of 𝑟.

Define

𝐹 (𝜔) =
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩.

This is a trigonometric polynomial to which we have noisy pointwise access using 𝒪:

Lemma 9.4.5. Let 0 < 𝑟 < 1. With an 𝜂-approximate OTF oracle 𝒪, on input 𝜔 ∈ 𝐵2(𝑟)

we can produce an estimate of 𝐹 (𝜔) to within 𝜂/ ̂︀𝐴[𝑟] additive error.

Proof. By dividing by ̂︀𝐴[𝜔] on both sides of (9.8), we get that

̂︀𝜌[𝜔]̂︀𝐴[‖𝜔‖] =
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩,

so given that 𝒪, on input 𝜔, outputs 𝑢 ∈ R satisfying |𝑢− ̂︀𝜌[𝜔]| ≤ 𝜂, we have that⃒⃒⃒⃒
⃒ 𝑢̂︀𝐴[‖𝜔‖] − 𝐹 (𝜔)

⃒⃒⃒⃒
⃒ ≤ 𝜂

min0≤𝑟′≤𝑟 ̂︀𝐴[𝑟′] = 𝜂̂︀𝐴[𝑟] ,
where the last step uses the fact that ̂︀𝐴[·] is decreasing on the interval [0, 1].

So concretely, given an 𝜂-approximate OTF oracle, we have reduced the problem of

learning superpositions of Airy disks to that of recovering the locations of {𝜇𝑗} given the

ability to query 𝐹 (𝜔) at arbitrary frequencies 𝜔 for which ‖𝜔‖2 < 1 to witin additive accuracy

𝜂/ ̂︀𝐴[‖𝜔‖2].
629

Lastly, for reasons that will become clear in subsequent sections (see e.g. (9.18)), it will

be convenient to assume that ℛ ≤ 1/3. This is without loss of generality, as otherwise,

we can scale the data down by a factor of 3ℛ so that they are now i.i.d. samples from

the superposition of Airy disks with density 𝜌′(x) ,
∑︀𝑘

𝑗=1 𝜆𝑗 · 𝐴1/ℛ (x− 𝜇𝑗/ℛ). Define the

rescaled centers 𝜇′
𝑗 , 𝜇𝑗/ℛ and note that by assumption, ‖𝜇′

𝑗‖2 ≤ 1/3 for all 𝑗 ∈ [𝑘].

The Fourier transform of 𝜌′ is then given by ̂︀𝜌′(𝜔) = ̂︀𝐴1/ℛ[𝜔]
∑︀𝑘

𝑗=1 𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇′𝑗 ,𝜔⟩, so by

the proof of Lemma 9.4.5 we conclude that with an 𝜂-approximate OTF oracle for 𝜌, for

any 0 < 𝑟 < 1 on input 𝜔 ∈ 𝐵2(𝑟 · ℛ) we can produce an estimate of
∑︀𝑘

𝑗=1 𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇′𝑗 ,𝜔⟩ to

within 𝜂/ ̂︀𝐴[𝑟] additive error. Recovering the centers {𝜇′
𝑗} to within additive error 𝜀 then

translates to recovering the centers {𝜇𝑗} to within additive error 3ℛ𝜀. For this reason, we

will henceforth assume that ℛ ≤ 1/3.

9.4.2 Learning via the Optical Transfer Function

Our basic approach is as follows. To solve the superresolution problem of Section 9.4.1, we

will project in two random, correlated directions 𝜔1, 𝜔2 ∈ R2 and solve the resulting one-

dimensional superresolution problems via matrix pencil method (see ModifiedMPM) to

recover the projections of 𝜇1, ..., 𝜇𝑘 in the directions 𝜔1 and 𝜔2, as well as the relative inten-

sities 𝜆1, ..., 𝜆𝑘. From these projections we can then recover the actual centers for 𝜌 by solving

a linear system (PreConsolidate). Such an approach already achieves constant success

probability, and we can amplify this by repeating and running a simple clustering algorithm

(see Select). The full specification of the algorithm is given as LearnAiryDisks.

Learning in a Random Direction

Fix a unit vector 𝑣 ∈ S1. We first show how to leverage Lemma 9.4.5 and the matrix pencil

method to approximate the projection of 𝜇1, ..., 𝜇𝑘 along 𝑣.

By the discussion at the end of Section 9.4.1, we may assume ‖𝜇𝑖‖2 ≤ 1/2 for all 𝑖 ∈ [𝑘],

so ‖𝜇𝑖 − 𝜇𝑗‖2 ≤ 1 for all 𝑖 ̸= 𝑗. For 𝑗 ∈ [𝑘], let 𝑚𝑗 = ⟨𝜇𝑗, 𝑣⟩ and 𝛼𝑗 = 𝑒2𝜋𝑖·(𝑚𝑗/4𝑘). In this

section we will assume that 𝑚𝑗 ̸= 0 for all 𝑗 ∈ [𝑘]

630

For ℓ ∈ Z≥0, let

𝑣ℓ = 𝐹

(︂
ℓ𝑣

4𝑘

)︂
=

𝑘∑︁
𝑗=1

𝜆𝑗𝛼
ℓ
𝑗.

Note that 𝑣0 = 𝐹 (0) =
∑︀

𝑗 𝜆𝑗 = 1. Also note that we do not have access to 𝛼1, ..., 𝛼𝑘 and

would like to recover 𝑚1,𝑚2 given (noisy) access to {𝑣ℓ}0≤ℓ≤2𝑘−1.

Consider the generalized eigenvalue problem (𝑉 𝐷𝜆𝑉
⊤, 𝑉 𝐷𝜆𝐷𝛼𝑉

⊤) where

𝑉 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 · · · 1

𝛼1 𝛼2 · · · 𝛼𝑘
...

...

𝛼𝑘−1
1 𝛼𝑘−1

2 · · · 𝛼𝑘−1
𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐷𝜆 = diag(𝜆), 𝐷𝛼 = diag(𝛼).

The following standard facts are key to the matrix pencil method:

Observation 9.4.6. The generalized eigenvalues of (𝑉 𝐷𝜆𝑉
⊤, 𝑉 𝐷𝜆𝐷𝛼𝑉

⊤) are exactly 𝛼1, ..., 𝛼𝑘.

Observation 9.4.7.

𝑉 𝐷𝜆𝑉
⊤ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑣0 𝑣1 · · · 𝑣𝑘−1

𝑣1 𝑣2 · · · 𝑣𝑘
...

...

𝑣𝑘−1 𝑣𝑘 · · · 𝑣2𝑘−2

⎞⎟⎟⎟⎟⎟⎟⎠ 𝑉 𝐷𝜆𝐷𝛼𝑉
⊤ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑣1 𝑣2 · · · 𝑣𝑘

𝑣2 𝑣3 · · · 𝑣𝑘+1

...
...

𝑣𝑘 𝑣𝑘+1 · · · 𝑣2𝑘−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

By Lemma 9.4.5, in reality we only have 𝜂′ℓ-approximate access to each 𝑣ℓ, where

𝜂′ℓ ≤
𝜂̂︀𝐴[ℓ/4𝑘] , (9.9)

so we must instead work with the generalized eigenvalue problem (𝑉 𝐷𝜆𝑉
⊤+𝐸, 𝑉 𝐷𝜆𝐷𝛼𝑉

⊤+

𝐹), where the (𝑖, 𝑗)-th entry of 𝐸 (resp. 𝐹) is the noise 𝜂′𝑖+𝑗−2 (resp. 𝜂′𝑖+𝑗−1) in the observation

of 𝑣𝑖+𝑗−2 (resp. 𝑣𝑖+𝑗−1).

If 𝑉 is well-conditioned, one can apply standard perturbation bounds to argue that the so-

lutions to this generalized eigenvalue problem are close to those of the original (𝑉 𝐷𝜆𝑉
⊤, 𝑉 𝐷𝜆𝐷𝛼𝑉

⊤).

Moreover, given approximations ̂︀𝛼1, ..., ̂︀𝛼𝑘 to these generalized eigenvalues, we can find ap-

proximations ̂︀𝜆1, ..., ̂︀𝜆𝑘 to 𝜆1, ..., 𝜆𝑘 by solving the system of equations v = ̂︀𝑉 𝜆, where

631

v = (𝑣0, ..., 𝑣𝑘−1), 𝜆 = (̂︀𝜆1, ..., ̂︀𝜆𝑘), and

̂︀𝑉 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 · · · 1̂︀𝛼1 ̂︀𝛼2 · · · ̂︀𝛼𝑘
...

...̂︀𝛼𝑘−1
1 ̂︀𝛼𝑘−1

2 · · · ̂︀𝛼𝑘−1
𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ .

The formal specification of the matrix pencil method algorithm ModifiedMPM that we

use is given in Algorithm 40.

Algorithm 40: ModifiedMPM(𝜔,𝒪)
Input: 𝜔 ∈ S1, 𝜂-approximate OTF oracle 𝒪
Output: Estimates (̂︀𝜆1, ..., ̂︀𝜆𝑘) for the mixing weights and (̂︀𝑚1, ..., ̂︀𝑚𝑘) for the

centers of 𝜌 projected in direction 𝜔
1 ̂︀𝑣0 ← 1.
2 for 0 ≤ ℓ ≤ 2𝑘 − 1 do
3 Invoke 𝒪 on input ℓ𝜔

4𝑘
to produce 𝑢ℓ ∈ R.

4 ̂︀𝑣ℓ ← 𝑢ℓ̂︀𝐴[ℓ/4𝑘] .
5 Form the matrices

𝑋 ,

⎛⎜⎝ ̂︀𝑣0 · · · ̂︀𝑣𝑘−1
...̂︀𝑣𝑘−1 · · · ̂︀𝑣2𝑘−2

⎞⎟⎠ 𝑌 ,

⎛⎜⎝̂︀𝑣1 · · · ̂︀𝑣𝑘
...̂︀𝑣𝑘 · · · ̂︀𝑣2𝑘−1

⎞⎟⎠

6 Solve the generalized eigenvalue problem (𝑋, 𝑌) to produce generalized eigenvalueŝ︀𝛼1, ̂︀𝛼2.
7 For 𝑖 = 1, 2, let ̂︀𝑚𝑖 be the argument of the projection of ̂︀𝛼𝑖 onto the complex unit

disk.
8 Form the matrix

̂︀𝑉 =

⎛⎜⎜⎜⎝
1 1 · · · 1̂︀𝛼1 ̂︀𝛼2 · · · ̂︀𝛼𝑘
...

...̂︀𝛼𝑘−1
1 ̂︀𝛼𝑘−1

2 · · · ̂︀𝛼𝑘−1
𝑘

⎞⎟⎟⎟⎠ .

9 Solve for ̂︀𝜆 = (̂︀𝜆1, ..., ̂︀𝜆𝑘) such that ̂︀𝑉 ̂︀𝜆 = (̂︀𝑣0, ..., ̂︀𝑣𝑘−1).
10 return {̂︀𝜆𝑖}𝑖∈[𝑘] and {̂︀𝑚𝑖}𝑖∈[𝑘].

The following theorem, implicit in the proof of Theorem 2.8 in [Moi15], makes the above

632

reasoning precise. Henceforth, let 𝜅(Δ′) and 𝜎min(Δ
′) respectively denote the condition

number and minimum singular value of 𝑉 when 𝑚𝑖

4𝑘
,
𝑚𝑗

4𝑘
have minimum separation Δ′ for all

𝑖 ̸= 𝑗, and define 𝜆min = min𝑖 𝜆𝑖, 𝜆max = max𝑖 𝜆𝑖.

Theorem 9.4.8 ([Moi15]). Suppose 𝑚1

4𝑘
, 𝑚2

4𝑘
∈ [−1/4, 1/4] have separation at least Δ′ and

we are given 𝜂′ℓ-close estimates to 𝑣ℓ for 0 ≤ ℓ ≤ 2𝑘 − 1.

Define

𝛾 =
2‖𝜂′‖2
𝜆min

(︂
4𝜅(Δ′)2 · 𝜆max

𝜆min

+
1

𝜎min(Δ′)2

)︂
and 𝜁 = 𝑂

(︂
2𝛾𝜆max + ‖𝜂′‖2
𝜎min(Δ′ − 2𝛾)

)︂

Then if ‖𝐸‖+ ‖𝐹‖ < 𝜎min(Δ
′)2𝜆min and 𝛾 < Δ′/4, ModifiedMPM produces estimates

{̂︀𝜆𝑖} for the mixing weights and estimates {̂︀𝑚𝑖} for the projected centers such that for some

permutation 𝜏 :

|𝑚𝑖 − ̂︀𝑚𝜏(𝑖)| ≤ 8𝛾 and |𝜆𝑖 − ̂︀𝜆𝑖| ≤ 𝜁.

for all 𝑖 ∈ [𝑘].

Note that the guarantees of Theorem 9.4.8 are stated in [Moi15] in terms of wraparound

distance on the interval [−1/2, 1/2], but because 𝑚𝑖

4𝑘
∈ [−1/4, 1/4] for all 𝑗 ∈ [𝑘], 𝑚1

4𝑘
,, 𝑚𝑘

4𝑘

have pairwise separation Δ′ both in absolute and wraparound distance.

In other words, the output of ModifiedMPM converges to the true values for {⟨𝜇1, 𝑣⟩}𝑗∈[𝑘]
and {𝜆𝑗}𝑗∈[𝑘] at a rate polynomial in the noise rate, condition number of 𝑉 , and relative

intensity of the Airy disks, provided 𝜎min(Δ
′) is inverse polynomially large and 𝜅(Δ′) is

polynomially small in those parameters.

To complete the argument, we must establish these bounds on 𝜎min and 𝜅. Henceforth,

let

Δ′ = min
𝑖 ̸=𝑗

𝑚𝑖 −𝑚𝑗

4𝑘
.

Lemma 9.4.9. For any 𝑘 ≥ 2, we have that

𝜎min(Δ
′)2 ≥ (Δ′𝑘/𝑘2)𝑘−1 and 𝜅(Δ′)2 ≤ 𝑘2𝑘−1/Δ′𝑘(𝑘−1)

Proof. First note that 𝜎max(Δ
′)2 ≤ 𝑘2. Indeed because the entries of 𝑉 all have absolute

633

value at most 1, we conclude that for any 𝑣 ∈ S𝑘−1 and any row index 𝑗 ∈ [𝑘],

⟨𝑉𝑗, 𝑣⟩2 ≤

(︃
𝑘∑︁
𝑖=1

|𝑣𝑗|

)︃2

≤ 𝑘.

On the other hand, we also have that

𝑘∏︁
𝑖=1

𝜎𝑖(𝑉) = | det(𝑉)| =
∏︁

1≤𝑖<𝑗≤𝑘

|𝛼𝑖 − 𝛼𝑗| ≤
⃒⃒⃒
𝑒2𝜋𝑖Δ

′ − 1
⃒⃒⃒(𝑘2)

= (2− 2 cos(Δ′))(
𝑘
2)/2 ≥ Δ′𝑘(𝑘−1)/2,

where in the first step we used the standard fact that the absolute value of the determinant of

a square matrix is equal to the product of its singular values, in the second step we used the

standard identity for the determinant of a Vandermonde matrix, in the third step we used

the angular separation of the 𝛼𝑖’s, and in the final step we used the elementary inequality

cos(Δ′) ≤ 1 − Δ′2/2. We may thus naively lower bound 𝜎min(𝑉) by Δ′𝑘(𝑘−1)/2

𝑘𝑘−1 , from which

the lemma follows.

This yields the following consequence for ModifiedMPM.

Corollary 9.4.10. Given 𝜔 ∈ S1 and access to an 𝜂-approximate OTF oracle 𝒪, if the

projected centers 𝑚𝑗 = ⟨𝜇𝑗, 𝑣⟩ satisfy |𝑚𝑖−𝑚𝑗| ≤ 4𝑘 ·Δ′ for all 𝑖 ̸= 𝑗 for some 0 < Δ′ ≤ 1/16,

then there exists a constant 𝑐29 > 0 such that provided that

𝜂 ≤ 𝑐29𝜆
2
minΔ

′𝑘2 · 𝑘−2𝑘−1/2, (9.10)

then ModifiedMPM produces estimates {̂︀𝜆𝑖} for the mixing weights and estimates {̂︀𝑚𝑖}

for the projected centers such that for some permutation 𝜏 :

|𝑚𝑖 − ̂︀𝑚𝜏(𝑖)| ≤ 𝑂

(︂
𝑘2𝑘+1/2 · 𝜂
𝜆2minΔ

′𝑘(𝑘−1)

)︂
and |𝜆𝑖 − ̂︀𝜆𝜏(𝑖)| ≤ 𝑂

(︂
𝑘3𝑘−1/2 · 𝜂

𝜆2minΔ
′3𝑘(𝑘−1)/2

)︂

for all 𝑖 ∈ [𝑘].

Proof. From Lemma 9.4.9, we have that 𝜎min(Δ
′)2 ≥ (Δ′𝑘/𝑘2)𝑘−1. Then because 𝜅(Δ′)2 ≤

634

𝑘2/𝜎min(Δ
′)2, we would like to conclude by Theorem 9.4.8 that |𝑚𝑖 − ̂︀𝑚𝜏(𝑖)| ≤ 8𝛾, where

𝛾 = 𝑂

(︂
‖𝜂′‖2 · 𝑘2

𝜆2min · 𝜎min(Δ′)2

)︂
= 𝑂

(︂
‖𝜂′‖2 · 𝑘2

𝜆2min · (Δ′𝑘/𝑘2)𝑘−1

)︂
= 𝑂

(︂
𝑘2𝑘+1/2 · 𝜂
𝜆2minΔ

′𝑘(𝑘−1)

)︂
,

where in the last step we use that the vector 𝜂′ has length 𝑂(𝑘) and satisfies ‖𝜂′‖∞ ≤ 𝑂(𝜂)

by (9.9). To do so, we just need to verify that ‖𝐸‖ + ‖𝐹‖ < 𝜎min(Δ
′)2𝜆min and 𝛾 < Δ′/4.

The latter clearly follows from the bound (9.10) for sufficiently small 𝑐29. For the former,

note that

‖𝐸‖2 ≤ ‖𝐸‖𝐹 ≤
√
𝑘 ·
√︁
𝜂′21 + · · ·+ 𝜂′22𝑘−1 ≤ 𝜂

√
𝑘 ·

⎯⎸⎸⎷2𝑘−1∑︁
ℓ=1

1̂︀𝐴[ℓ/4𝑘] ≤ 𝑂(𝜂 · 𝑘),

where the last step follows by the fact that ̂︀𝐴[ℓ/4𝑘] ≥ ̂︀𝐴[1/2] ≥ Ω(1). The same bound holds

for ‖𝐹‖2. Recalling that 𝜎min(Δ
′)2 ≥ (Δ′𝑘/𝑘2)𝑘−1, it is enough for 𝜂 ≤ 𝑂(Δ′𝑘/𝑘2)𝑘−1𝜆min/𝑘,

which certainly holds for 𝜂 satisfying (9.10), for 𝑐29 sufficiently small.

Finally, Theorem 9.4.8 also implies that |𝜆𝑖 − ̂︀𝜆𝑖| ≤ 𝜁, where

𝜁 ≤ 𝑂

(︂
𝛾 + 𝑘1/2𝜂

𝜎min(Δ′ − 2𝛾)

)︂
≤ 𝑂

(︂
𝑘2𝑘+1/2 · 𝜂

𝜆2minΔ
′𝑘(𝑘−1) · (Δ′𝑘(𝑘−1)/2/𝑘𝑘−1)

)︂
= 𝑂

(︂
𝑘3𝑘−1/2 · 𝜂

𝜆2minΔ
3𝑘(𝑘−1)/2

)︂

as claimed.

Combining Directions

We can run ModifiedMPM to approximately recover {⟨𝜇𝑗, 𝜔1⟩}𝑗∈[𝑘] and {⟨𝜇𝑗, 𝜔2⟩}𝑗∈[𝑘] for

two randomly chosen directions 𝜔1, 𝜔2 ∈ S1. As these directions are random, with high

probability we can combine these estimates to obtain an accurate estimate of {𝜇𝑗}𝑗∈[𝑘]. One

subtlety is that the estimates {̂︀𝑚𝑗} and {̂︀𝑚′
𝑗} output by ModifiedMPM for the centers

projected in directions 𝜔1 and 𝜔2 respectively need not be aligned, that is we only know that

there exists some permutation 𝜏 for which ̂︀𝑚𝑗 = ̂︀𝑚′
𝜏(𝑗) for 𝑗 ∈ [𝑘].

We first show a “pairing lemma” stating that if 𝜔1 is chosen randomly and 𝜔2 is chosen to

be close to 𝜔1, then if one sorts the centers 𝜇1, ..., 𝜇𝑘, first in terms of their projections in the

𝜔1 direction, and then in terms of their projections in the 𝜔2 direction, the corresponding

635

elements in these two sorted sequences will correspond to the same centers.

We require the following elementary fact.

Lemma 9.4.11. For 𝜇 ∈ R2 a unit vector and 𝜔 ∈ R2 a random unit vector, Pr𝜔[|⟨𝜇, 𝜔⟩| ≤

sin 𝜃] = 2𝜃/𝜋 for all 0 ≤ 𝜃 ≤ 𝜋/2.

Lemma 9.4.12. Fix an arbitrary 0 < 𝜃 ≤ 𝜋/2 and let 𝜐 = Δsin 𝜃
8

. Let 𝜔1 ∈ R2 be a random

unit vector, and let 𝜔2 ∈ R2 be either of the two unit vectors for which ‖𝜔1 − 𝜔2‖2 = 𝜐. For

every 𝑖 ∈ [𝑘], define 𝑚𝑖 , ⟨𝜇𝑖, 𝜔1⟩ and 𝑚′
𝑖 , ⟨𝜇𝑖, 𝜔2⟩, and let ̂︀𝑚𝑖, ̂︀𝑚′

𝑖 ∈ R be any numbers for

which ‖̂︀𝑚𝑖 −𝑚𝑖‖2, ‖̂︀𝑚′
𝑖 −𝑚′

𝑖‖2 ≤ 2𝜐.

Then with probability at least 1− 𝑘(𝑘−1)𝜃
𝜋

, for every 𝑖 ̸= 𝑗 the following are equivalent: I)

𝑚𝑖 > 𝑚𝑗, II) 𝑚′
𝑖 > 𝑚′

𝑗, III) ̂︀𝑚𝑖 > ̂︀𝑚𝑗, and IV) ̂︀𝑚′
𝑖 > ̂︀𝑚′

𝑗.

Proof. By Lemma 9.4.11 and a union bound we have that with probability 1 − 𝑘(𝑘−1)𝜃
𝜋

,

|𝑚𝑖−𝑚𝑗| > Δsin 𝜃 for all 𝑖 ̸= 𝑗. Fix any 𝑖 ̸= 𝑗 and suppose that 𝑚𝑖 > 𝑚𝑗. Then by triangle

inequality and Cauchy-Schwarz, we have that

𝑚′
𝑖 −𝑚′

𝑗 = ⟨𝜇1 − 𝜇2, 𝜔2⟩ = ⟨𝜇1 − 𝜇2, 𝜔1⟩+ ⟨𝜇1 − 𝜇2, 𝜔2 − 𝜔1⟩ ≥ Δsin 𝜃 − 4𝜐 > 0,

where the final inequality follows by the definition of 𝜐. So I) implies II) and by symmetry

we can show II) implies I). We also have that

̂︀𝑚𝑖 − ̂︀𝑚𝑗 ≥ (𝑚𝑖 −𝑚𝑗)− 4𝜐 > 0,

so I) implies III) and by symmetry we can show II) implies IV).

It is enough to show that III) implies I). Suppose ̂︀𝑚𝑖 > ̂︀𝑚𝑗. Then

𝑚𝑖 −𝑚𝑗 ≥ (̂︀𝑚𝑖 − ̂︀𝑚𝑗)− 4𝜐 > −1

2
Δ sin 𝜃 > −Δsin 𝜃,

so it must be the case that 𝑚𝑖 −𝑚𝑗 > 0 given that |𝑚𝑖 −𝑚𝑗| > Δsin 𝜃.

We now show that we can combine these projected center estimates to approximately

recover the two-dimensional centers by solving a linear system. The specification of this

algorithm, which we call PreConsolidate, is given in Algorithm 41.

636

Algorithm 41: PreConsolidate(𝜔1, 𝜔2, {̂︀𝜆𝑖, ̂︀𝜆′𝑖}, {̂︀𝑚𝑖, ̂︀𝑚′
𝑖})

Input: Directions 𝜔1, 𝜔2 ∈ S1 and estimates {̂︀𝜆𝑖}, {̂︀𝑚𝑖} and {̂︀𝜆′𝑖}, {̂︀𝑚′
𝑖} for the

parameters of 𝜌 projected in the directions 𝜔1 and 𝜔2 respectively
Output: An estimate of the form ({̃︀𝜆𝑖}, {̃︀𝜇𝑖}) for the parameters of 𝜌

1 for 𝑖 ∈ [𝑘] do
2 Let ℓ, ℓ′ ∈ [𝑘] be the indices for which ̂︀𝑚ℓ and ̂︀𝑚′

ℓ′ are the 𝑖-th largest in {̂︀𝑚𝑗}𝑗∈[𝑘]
and {̂︀𝑚′

𝑗}𝑗∈[𝑘] respectively.
3 Define a formal vector-valued variable v(𝑖) ∈ R2 and solve the linear system

⟨𝜔1,v
(𝑖)⟩ = ̂︀𝑚ℓ

⟨𝜔2,v
(𝑖)⟩ = ̂︀𝑚′

ℓ′ .

4 return
(︁
{̂︀𝜆𝑖}𝑖∈[𝑘], {v(𝑖)}𝑖∈[𝑘]

)︁
.

Lemma 9.4.13. Let 𝜉 > 0. Let the parameters 𝜃, 𝜐 and the random vectors 𝜔1, 𝜔2 be as in

Lemma 9.4.12. Suppose {̂︀𝑚𝑖}𝑖∈[𝑘] and {̂︀𝑚′
𝑖}𝑖∈[𝑘] are collections of numbers for which there

exist permutations 𝜏1, 𝜏2 ∈ S𝑘 for which

⃒⃒
⟨𝜔1, 𝜇𝑖⟩ − ̂︀𝑚𝜏1(𝑖)

⃒⃒
≤ 𝜉 and

⃒⃒
⟨𝜔2, 𝜇𝑖⟩ − ̂︀𝑚′

𝜏2(𝑖)

⃒⃒
≤ 𝜉

for all 𝑖 ∈ [𝑘].

Then for any estimates {̂︀𝜆𝑖}𝑖∈[𝑘] and {̂︀𝜆′𝑖}𝑖∈[𝑘], with probability at least 1− 𝑘(𝑘−1)𝜃
𝜋

we have

that the output
(︁
{̃︀𝜆𝑖}, {̃︀𝜇𝑖})︁ of PreConsolidate(𝜔1,𝜔2, {̂︀𝜆𝑖}, {̂︀𝑚𝑖}, {̂︀𝜆′𝑖}, {̂︀𝑚′

𝑖}) satisfies

‖𝜇𝑖 − ̃︀𝜇𝜏(𝑖)‖2 ≤ 𝜉

𝜐
√︀
1− 𝜐2/4

for some permutation 𝜏 ∈ S𝑘.

Proof. Condition on the event of Lemma 9.4.12 occurring, which happens with probability

at least 1 − 𝑘(𝑘−1)𝜃
𝜋

. This event implies that there is a permutation 𝜏 ∈ S𝑘 such that for

every 𝑖 ∈ [𝑘] in the loop of PreConsolidate, the indices ℓ, ℓ′ in that iteration are such

that ̂︀𝑚ℓ and ̂︀𝑚′
ℓ′ are 𝜉-close estimates for the projections of 𝜇𝜏(𝑖) in the directions 𝜔1 and 𝜔2

respectively. In other words, 𝜏1(𝜏(𝑖)) = ℓ and 𝜏2(𝜏(𝑖)) = ℓ′.

637

Let 𝐴 ∈ R2×2 be the matrix with rows consisting of 𝜔1 and 𝜔2. We conclude that

‖𝜇𝜏(𝑖) − v(𝑖)‖2 = ‖𝐴−1 ·
(︀
(̂︀𝑚ℓ, ̂︀𝑚′

ℓ′)−
(︀
⟨𝜔1, 𝜇𝜏(𝑖)⟩, ⟨𝜔2, 𝜇𝜏(𝑖)⟩

)︀)︀
‖2 ≤ 𝜎min(𝐴) · 𝜉,

so it remains to bound 𝜎min(𝐴). Without loss of generality we may assume 𝜔1 = (1, 0) and

𝜔2 = (𝑥,
√
1− 𝑥2) for 𝑥 , 1 − 𝜐2/2, in which case 𝜎min(𝐴) = 𝜐

√︀
1− 𝜐2/4, and the claim

follows.

Finally, we show how to boost the success probability via the following naive clustering-

based algorithm Select (Algorithm 42), whose guarantees we establish below.

Algorithm 42: Select(𝜀′1, 𝜀′2,ℒ)
Input: Accuracy parameters 𝜀′1, 𝜀′2, and list ℒ consisting of 𝑇 candidate estimates

for the parameters of 𝜌, each of the form
(︁
{̃︀𝜆𝑡𝑖}𝑖∈[𝑘], {̃︀𝜇𝑡𝑖}𝑖∈[𝑘])︁ for 𝑡 ∈ [𝑇],

such that for at least 1− 1
2𝑘

fraction of all 𝑡 ∈ [𝑇],
(︁
{̃︀𝜆𝑡𝑖}𝑖∈[𝑘], {̃︀𝜇𝑡𝑖}𝑖∈[𝑘])︁ is an

(𝜀′1, 𝜀
′
2)-accurate estimate of the parameters of 𝜌

Output: A (3𝜀′1, 𝜀
′
2)-accurate estimate of the parameters of 𝜌

1 𝒮 ← 𝑇 × [𝑘].
2 Form the graph 𝐺 = (𝑉,𝐸) whose vertices consist of all (𝑡, 𝑖) for which ̃︀𝜇𝑡𝑖 ∈ 𝒮 is

2𝜀′1-close to at least 2𝑇/3 other points in 𝒮, with edges between any (𝑡, 𝑖), (𝑡′, 𝑖′) for
which ‖̃︀𝜇𝑡𝑖 − ̃︀𝜇𝑡′𝑖′‖ > 6𝜀′1.

3 𝐺 is 𝑘-partite. Denote the parts by 𝑉 (1), ..., 𝑉 (𝑘) ⊂ 𝑉 .
4 for 𝑗 ∈ [𝑘] do
5 Form the set {̃︀𝜆𝑡𝑖}(𝑡,𝑖)∈𝑉 (𝑗) and let 𝜆*𝑗 be the median of this set, corresponding to

some (𝑡𝑗, 𝑖𝑗) ∈ 𝒮.
6 𝜇*

𝑗 ← ̃︀𝜇𝑡𝑗𝑖𝑗 .
7 return

(︀
{𝜆*𝑗}𝑗∈[𝑘], {𝜇*

𝑗}𝑗∈[𝑘]
)︀
.

We give the full specification of our algorithm LearnAiryDisks in Algorithm 43.

Lemma 9.4.14. Let 𝜌 be a Δ-separated superposition of 𝑘 Airy disks. For any 𝜀1, 𝜀2, 𝛿 > 0,

let

𝜂 = 𝑂

(︃(︂
Δ

4𝑘

)︂𝑂(𝑘2)

· 𝜆2min

)︃
·min {𝜀1/𝑀, 𝜀2} . (9.11)

Without loss of generality suppose 𝜀1 < 3Δ/8. Then the output (𝜆*1, 𝜆
*
2, 𝜇

*
1, 𝜇

*
2) of Lear-

nAiryDisks, given 𝜀1, 𝜀2, 𝛿 and access to an 𝜂-approximate, 𝑂(log(1/𝛿))-query OTF oracle

638

Algorithm 43: LearnAiryDisks(𝜀1, 𝜀2, 𝛿,𝒪)
Input: Error parameters 𝜀1, 𝜀2, confidence parameter 𝛿, access to 𝜂-approximate,

𝑂(log 1/𝛿)-query OTF oracle 𝒪
Output: With probability at least 1− 𝛿, an (𝜀1, 𝜀2)-accurate estimate ({̃︀𝜆𝑖}, {̃︀𝜇𝑖})

for the parameters of 𝜌.
1 ℒ ← ∅.
2 𝜃 ← 𝜋

3𝑘2(𝑘−1)
.

3 Set 𝜂 according to (9.11).
4 for 𝑇 = 1, ...,Ω(log(1/𝛿)) do
5 Sample a random unit vector 𝜔1 ∈ S1 and let 𝜔2 be either of the two unit vectors

for which ‖𝜔1 − 𝜔2‖2 = Δsin 𝜃/8. // Lemma 9.4.12
6 Run ModifiedMPM(𝜔1,𝒪) and ModifiedMPM(𝜔2,𝒪) to obtain estimates

{̂︀𝜆𝑖}, {̂︀𝑚𝑖} and {̂︀𝜆′𝑖}, {̂︀𝑚′
𝑖} for the parameters of 𝜌 projected in the directions

𝜔1, 𝜔2 respectively.
7 Let {̃︀𝜆𝑡𝑖}, {̃︀𝜇𝑡𝑖} be the estimates output by

PreConsolidate(𝜔1, 𝜔2, {̂︀𝜆𝑖}, {̂︀𝑚𝑖}, {̂︀𝜆′𝑖}, {̂︀𝑚′
𝑖}). Append these to ℒ.

8 return Select(ℒ, 𝜀1/3, 𝜀2)).

𝒪 for 𝜌, satisfies

‖𝜇𝑖 − 𝜇*
𝜏(𝑖)‖2 ≤ 𝜀1 and |𝜆𝑖 − 𝜆𝜏(𝑖)| ≤ 𝜀2

for some permutation 𝜏 with probability at least 1 − 𝛿. Furthermore, the runtime of Lear-

nAiryDisks is dominated by the time it takes to invoke the OTF oracle 𝑂(log(1/𝛿)) times.

Proof. Suppose we are given a valid 𝜂-approximate OTF oracle 𝒪. By taking 𝜃 = 𝜋
3𝑘2(𝑘−1)

and invoking Lemmas 9.4.10 and 9.4.13, we ensure that a single run of PreConsolidate

in an iteration of the loop in Step 4 of LearnAiryDisks will yield, with probability at least

1− 1
3𝑘

, an (𝜀′1, 𝜀
′
2)-accurate estimate, where

𝜀′1 =
8

Δ sin 𝜃
·𝑂

(︃
𝑘2𝑘+1/2 · 𝜂

𝜆2min

(︀
Δsin 𝜃
4𝑘

)︀𝑘(𝑘−1)

)︃
and 𝜀′2 = 𝑂

(︃
𝑘3𝑘−1/2 · 𝜂

𝜆2min

(︀
Δsin 𝜃
4𝑘

)︀3𝑘(𝑘−1)/2

)︃
.

In this case we say that such an iteration of the loop in LearnAiryDisks “succeeds.” Note

that if we take

𝜂 = 𝑂

(︃
min

{︃
𝜀1 ·

Δsin 𝜃

8
·
𝜆2min

(︀
Δsin 𝜃
4𝑘

)︀𝑘(𝑘−1)

𝑘2𝑘+1/2
, 𝜀2 ·

𝜆2min

(︀
Δsin 𝜃
4𝑘

)︀3𝑘(𝑘−1)/2

𝑘3𝑘−1/2

}︃)︃
,

639

then we can ensure that 𝜀′1 = 𝜀1/3 and 𝜀′2 = 𝜀2. The bound in (9.11) then follows from the

elementary inequality sin 𝜃 ≥ 𝜃/2 for 0 ≤ 𝜃 ≤ 1, together with our choice of 𝜃 = 𝜋
3𝑘2(𝑘−1)

.

Each iteration of the loop in Step 4 of LearnAiryDisks individually succeeds with

probability at least 1− 1
3𝑘

. So by a Chernoff bound, by taking 𝑇 = Ω(log(1/𝛿)), we conclude

that with probability at least 1− 𝛿, at least 1− 1
2𝑘

fraction of these iterations will succeed.

So of the 𝑘 · 𝑇 elements in 𝒮, at most 𝑇/2 correspond to failed iterations.

Now note that all (𝑡, 𝑖) for which 𝑡 corresponds to a successful iteration will be 2𝜀′1-close

to at least 𝑘 ·𝑇 −𝑇/2 > 2𝑇/3 points. In particular, any such (𝑡, 𝑖) will be among the vertices

𝑉 of 𝐺 in Algorithm 42. Conversely, for any (𝑡, 𝑖) ∈ 𝑉 , ̃︀𝜇𝑡𝑖 is by definition 2𝜀′1-close to at least

2𝑇/3 points and there are at most 𝑇/2 < 2𝑇/3 points which do not correspond to successful

iterations. In particular, at least one of the points that ̃︀𝜇𝑡𝑖 is close to will correspond to a

successful iteration, so by the triangle inequality ‖̃︀𝜇𝑡𝑖 − 𝜇𝑗‖ ≤ 3𝜀′1 for some choice of 𝑗 ∈ [𝑘].

Observe that 𝐺 is 𝑘-partite because every vertex in 𝑉 is 3𝜀′1-close to some center of 𝜌,

but two vertices which are 3𝜀′1-close to 𝜇𝑖 and 𝜇𝑗 respectively for 𝑖 ̸= 𝑗 must be distance

at least Δ − 6𝜀′1 > 2𝜀′1 apart. We conclude that with high probability, Select will output

3𝜀′1 = 𝜀1-accurate estimates for the centers of 𝜌.

It remains to show that 𝜆*1, 𝜆*2 are 𝜀2-accurate estimates for the mixing weights. We know

the estimates ̃︀𝜆𝑡𝑖 corresponding to successful iterations 𝑡 and center 𝜇𝑖 lie in {̃︀𝜆𝑡𝑖}(𝑡,𝑖)∈𝑉 (ℓ) for

some ℓ. Then {̃︀𝜆𝑡𝑖}(𝑡,𝑖)∈𝑉 (ℓ) contains at least
(︀
1− 1

2𝑘

)︀
𝑇 > 2𝑇/3 values that are 𝜀′2-close to

𝜆1, and at most 𝑇/2 < 2𝑇/3 other values. Call these values “good” and “bad” respectively.

Either the median is good, in which case we are done, or the median is bad, in which case

because there are strictly more good values than bad values, the median must be upper and

lower bounded by good values, in which case we are still done.

Finally, note that in each iteration of the main loop of LearnAiryDisks, 𝒪 is invoked

exactly six times. Furthermore, other than these invocations of 𝒪, the remaining steps of

LearnAiryDisks all require constant time. So the runtime of LearnAiryDisks is indeed

dominated by the 𝑂(log(1/𝛿)) calls to 𝒪.

640

9.4.3 Learning Airy Disks Above the Diffraction Limit

In this subsection we present the proof of Theorem 9.4.2. Recall that we are assuming that

𝜎 = 1/𝜋 and Δ > 𝛾, where 𝛾 is defined in (9.7). Let 𝑐 , 1
2
(Δ + 𝛾) and define 𝑅 , 𝛾

2𝑐
and

𝑟 , 1/2−𝑅.

We will use the following Algorithm 44 that we call TensorResolve. While this is only

a slight modification of the tensor decomposition algorithm of [HK15] for high-dimensional

superresolution, our analysis is novel and obtains sharper results in low dimensions by using

certain extremal functions [Gon18, HV+96, CCLM17] arising in the study of de Branges

spaces (see Theorem 9.4.19.

Algorithm 44: TensorResolve(𝜀1, 𝜀2, 𝛿,𝒪)
Input: Error parameters 𝜀1, 𝜀2, confidence parameter 𝛿, access to 𝜂-approximate,

Θ
(︁
𝑘2 log(𝑘/𝛿)
(Δ−𝛾)∧1

)︁
-query OTF oracle

Output: With probability at least 1− 𝛿, an (𝜀1, 𝜀2)-accurate estimate ({̃︀𝜆𝑖}, {̃︀𝜇𝑖})
for the parameters of 𝜌, provided the separation is sufficiently above the
diffraction limit (see Lemma 9.4.21)

1 𝑅← 𝛾/2𝑐 and 𝑟 ← 1/2−𝑅.
2 Sample 𝜔(1), ..., 𝜔(𝑚) i.i.d. from the uniform distribution over 𝐵2(𝑅). Also define

𝜔(𝑚+1) = (1, 0), 𝜔(𝑚+2) = (0, 1), and 𝜔(𝑚+3) = (0, 0).
3 𝑚′ ← 𝑚+ 3.
4 Sample 𝑣 uniformly from S1 and define 𝑣(1) ← 𝑟 · 𝑣, 𝑣(2) ← 2𝑟 · 𝑣, and 𝑣(3) ← 0.
5 𝜉𝑎,𝑏,𝑖 ← 𝜔(𝑎) + 𝜔(𝑏)) + 𝑣(𝑖) for every 𝑎, 𝑏 ∈ [𝑚′], 𝑖 ∈ [3].
6 Query 𝒪 at {𝜉𝑎,𝑏,𝑖} to obtain numbers {𝑢𝑎,𝑏,𝑖}.
7 Construct the tensor ̃︀T ∈ C𝑚′×𝑚′×3 given by ̃︀T𝑎,𝑏,𝑖 = 𝑢𝑎,𝑏,𝑖/ ̂︀𝐴[𝜉𝑎,𝑏,𝑖].
8 ̂︀𝑉 ∈ R𝑚′×𝑘 ← Jennrich(̃︀T).
9 Divide each column ̂︀𝑉 𝑗 by a factor of ̂︀𝑉𝑚,𝑗.

10 For each 𝑗 ∈ [𝑘], 𝑖 ∈ [2], let ̂︀𝜇𝑗 ∈ R2 have 𝑖-th entry equal to the argument of the
projection of ̂︀𝑉𝑚+𝑖,𝑗 onto the complex disk.

11 Query 𝒪 at frequencies {𝜔(𝑎)}𝑎∈[𝑚′] to get numbers {𝑢′𝑎}𝑎∈[𝑚′] and form the vector̂︀𝑏 ∈ R𝑚′ whose 𝑎-th entry is 𝑢′𝑎/ ̂︀𝐴[𝜔(𝑎)] for every 𝑎 ∈ [𝑚′].
12 ̂︀𝜆← argmin𝜆‖̂︀𝑉 𝜆−̂︀𝑏‖2.
13 return (̂︀𝜆1, ..., ̂︀𝜆𝑘) and (̂︀𝜇1, ..., ̂︀𝜇𝑘).

641

Using the notation of TensorResolve, define the tensor T ∈ C𝑚′×𝑚′×3 given by

T𝑎,𝑏,𝑖 =
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔(𝑎)+𝜔(𝑏)+𝑣(𝑖)⟩

and note that it admits a low-rank decomposition as

T =
𝑘∑︁
𝑗=1

𝑉 𝑗 ⊗ 𝑉 𝑗 ⊗ (𝑊 𝑗𝐷𝜆), (9.12)

where 𝐷𝜆 is the diagonal matrix whose entries consist of the mixing weights {𝜆𝑗} and, for ev-

ery 𝑗 ∈ [𝑘],𝑊 𝑗 = (𝑒−2𝜋𝑖⟨𝜇𝑗 ,𝑣(1)⟩, 𝑒−2𝜋𝑖⟨𝜇𝑗 ,𝑣(2)⟩, 𝑒−2𝜋𝑖⟨𝜇𝑗 ,𝑣(3)⟩) and 𝑉 𝑗 = (𝑒−2𝜋𝑖⟨𝜇𝑗 ,𝜔(1)⟩, · · · , 𝑒−2𝜋𝑖⟨𝜇𝑗 ,𝜔(𝑚′)⟩).

Let 𝑉 ∈ R𝑚′×𝑘 denote the matrix whose 𝑗-th column is 𝑉 𝑗.

Note that by our choice of 𝑟, 𝑅 and triangle inequality, we have that ‖𝜔(𝑎)+𝜔(𝑏)+𝑣(𝑖)‖2 ≤

𝑟+2𝑅 = 1− 𝑐−𝛾
2𝑐

< 1 for any entry index 𝑎, 𝑏, 𝑖. So if {𝑢𝑎,𝑏,𝑖} are the numbers obtained from

an 𝜂-approximate, (𝑚+3)-query OTF oracle as in Algorithm 44, and ̃︀T is constructed as in

Step 7 of TensorResolve, then by Lemma 9.4.5 we have that

|T𝑎,𝑏,𝑖 − ̃︀T𝑎,𝑏,𝑖| ≤
𝜂̂︀𝐴[1− 𝑐−𝛾

2𝑐
]
≤ 𝜂 ·

(︂
𝑐− 𝛾
2𝑐

)︂2

,

where the last step follows by Fact 9.3.4.

The following is a consequence of the stability of Jennrich’s algorithm.

Lemma 9.4.15. [e.g. [HK15], Lemma 3.5] For any 𝜀, 𝛿 > 0, suppose |T𝑎,𝑏,𝑖− ̃︀T𝑎,𝑏,𝑖| ≤ 𝜂′ for

𝜂′ , 𝑂
(︁

(𝑐−𝛾)𝛿Δ𝜆2min

𝑘5/2𝑚3/2𝜅(𝑉)5
· 𝜀
)︁
, and let ̂︀𝑉 = Jennrich(̃︀T) (Algorithm 46). Then with probability

at least 1 − 𝛿 over the randomness of 𝑣(1), there exists permutation matrix Π such that

‖̂︀𝑉 − 𝑉Π‖𝐹 ≤ 𝜀 for all 𝑗 ∈ [𝑘].

The setting of parameters in [HK15] is slightly different from ours, so we provide a self-

contained proof of Lemma 9.4.15 in Appendix 9.10.

We will also need the following basic lemma about the stability of solving for ̂︀𝜆 in Step 12

in TensorResolve.

Lemma 9.4.16. For any 𝜀, 𝜀′ > 0, if 𝜆 ∈ R𝑘 satisfies 𝑉 𝜆 = 𝑏 for some 𝑉 ∈ R𝑚′×𝑘 and 𝑏 ∈

R𝑚′, and furthermore ̂︀𝑉 ,̂︀𝑏 satisfy ‖𝑉 −̂︀𝑉 ‖2 ≤ 𝜀 and ‖𝑏−̂︀𝑏‖2 ≤ 𝜀′, then ̂︀𝜆 , argmin̂︀𝜆‖̂︀𝑉 ̂︀𝜆−̂︀𝑏‖2
642

satisfies ‖𝜆− ̂︀𝜆‖2 ≤ 2𝜀‖𝜆‖2+2𝜀′

𝜎min(𝑉)−𝜀 .

Proof. Note that

‖̂︀𝑉 𝜆−̂︀𝑏‖2 ≤ ‖(̂︀𝑉 − 𝑉)𝜆‖2 + ‖̂︀𝑏− 𝑏‖2 ≤ 𝜀‖𝜆‖2 + 𝜀′.

By triangle inequality and definition of ̂︀𝜆, ‖̂︀𝑉 (̂︀𝜆−𝜆)‖2 ≤ 2𝜀‖𝜆‖2+2𝜀′, so ‖̂︀𝜆−𝜆‖2 ≤ 2𝜀‖𝜆‖2+2𝜀′

𝜎min(̂︀𝑉)
.

The lemma follows because 𝜎min(𝑉
′) ≥ 𝜎min(𝑉)− 𝜀.

It remains to show the following condition number bound.

Lemma 9.4.17. For any 𝛿 > 0, if 𝑚 = Θ
(︁
𝑘2 log(/𝛿)
(Δ−𝛾)∧1

)︁
, then 𝜅(𝑉) ≤ 𝑂

(︁
𝑘 ∨ 𝑘√

Δ−𝛾

)︁
and

𝜎min(𝑉) ≥ Ω (𝑘2 log(/𝛿)) with probability at least 1− 𝛿.

Proof. Let 𝑉 * ∈ R𝑚×𝑘 denote the submatrix given by the first 𝑚 rows of 𝑉 . We will need

the following basic lemma from [HK15] relating the condition number of 𝑉 * to that of 𝑉 :

Lemma 9.4.18 ([HK15], Lemma 3.8). 𝜅(𝑉) ≤
√
2𝑘 · 𝜅(𝑉 *).

The primary technical component of this section is to upper bound 𝜅(𝑉 *). First, note

that given any 𝜆 ∈ C𝑘−1, we have that

𝜆†𝑉 *†𝑉 *𝜆 =
𝑚∑︁
𝑖=1

|⟨𝜆, 𝑉 *
𝑖 ⟩|2 =

𝑚∑︁
𝑖=1

⃒⃒⃒⃒
⃒
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔(𝑖)⟩

⃒⃒⃒⃒
⃒
2

.

As each 𝜔(𝑖) is an independent draw from the uniform distribution over S1, we have that

E𝜔(1),...,𝜔(𝑚) [𝜆†𝑉 *†𝑉 *𝜆] = 𝑚

∫︁
𝐵2(𝑅)

⃒⃒⃒⃒
⃒
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩

⃒⃒⃒⃒
⃒
2

d𝜓(𝜔),

where d𝜓(𝜔) is the uniform measure over 𝐵2(𝑅). Furthermore, for any 𝜔 ∈ 𝐵2(𝑅) and

𝑖 ∈ [𝑚], we have that

0 ≤ |⟨𝜆, 𝑉 *
𝑖 ⟩|2 ≤ ‖𝜆‖21 ≤ 𝑘 · ‖𝜆‖22. (9.13)

So by matrix Hoeffding applied to the random variables 𝑚 · 𝑉 *†
1𝑉

*
1 , ,𝑚 · 𝑉 *†

𝑚𝑉
*
𝑚, each of

643

which is upper bounded in spectral norm by 𝑚 · 𝑘 based on (9.13), we conclude that

Pr
[︁
‖𝑉 *†𝑉 * − E𝜔(1),...,𝜔(𝑚) [𝑉 *†𝑉 *]‖2 >

√
𝑚𝑘𝑡

]︁
≤ 𝑘 · 𝑒−Ω(𝑡2) ∀ 𝑡 > 0. (9.14)

Lemma 9.4.20 below allows us to bound the quadratic form given by the expectation

term evaluated at any 𝜆. Taking 𝑡 = 𝑂(
√︀
log 𝑘/𝛿) and 𝑚 = Θ

(︁
𝑘2 log(𝑘/𝛿)
(Δ−𝛾)∧1

)︁
in (9.14) and

applying Lemma 9.4.20, we conclude that with probability at least 1− 𝛿,

Ω(𝑚) · {(Δ− 𝛾) ∧ 1} · ‖𝜆‖22 ≤ 𝜆†𝑉 *†𝑉 *𝜆 ≤ 𝑂(𝑚) · (𝑘 + {(Δ− 𝛾) ∧ 1}) · ‖𝜆‖22,

from which it follows that with this probability, 𝜅(𝑉 *) ≤ 𝑂
(︁

𝑘
(Δ−𝛾)∧1

)︁1/2
, from which the

lemma follows by Lemma 9.4.18.

It remains to show Lemma 9.4.20 below, the key technical ingredient of this section. We

will require the following special case of a result of [Gon18], which essentially follows from

results of [CCLM17,HV+96]. This can be thought of as the high-dimensional generalization

of the well-known Beurling-Selberg minorant (see, e.g., [Vaa85] for a discussion of the one-

dimensional case).

Theorem 9.4.19 ([Gon18], Theorem 1). For any 𝑑 ∈ N and 𝑗𝑑/2−1,1

𝜋
< 𝑟 <

𝑗𝑑/2,1
𝜋

, there

exists a function 𝑀 ∈ 𝐿1(R𝑑) whose Fourier transform is supported in 𝐵𝑑(𝑟), and which

satisfies 𝑀(𝑥) ≤ 1[𝑥 ∈ 𝐵𝑑(1)] for all 𝑥 ∈ R𝑑 and ̂︁𝑀 [0] = (2/𝑟)𝑑

|S𝑑−1| ·
𝐶(𝑑,𝑟)

1+𝐶(𝑑,𝑟)/𝑑
, where |S𝑑−1|

denotes the surface area of S𝑑−1 and 𝐶(𝑟, 𝑑) , −𝜋𝑟𝐽𝑑/2−1(𝜋𝑟)

𝐽𝑑/2(𝜋𝑟)
> 0.

Lemma 9.4.20.

Ω((Δ− 𝛾) ∧ 1) · ‖𝜆‖22 ≤
∫︁
𝐵2(𝑅)

⃒⃒⃒⃒
⃒
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩

⃒⃒⃒⃒
⃒
2

d𝜓(𝜔) ≤ 𝑘‖𝜆‖22 (9.15)

where d𝜓(𝜔) denotes the uniform probability measure over 𝐵2(𝑅) for 𝑅 = 𝛾
2Δ

.2

Proof. The upper bound follows by (9.13). We now show the lower bound. By Theo-

rem 9.4.19 applied to 𝑑 = 2, for any 𝛾/2 < 𝑟 < 𝑗1,1
𝜋

there is a function 𝑀 which mi-

2In fact, one can improve the upper bound in (9.15) by using a suitable majorant for the indicator of the
ball, but because we are only after polynomial time and sample complexity, this is not needed.

644

norizes the indicator function of 𝐵2(1) and has Fourier transform supported in 𝐵2(𝑟). Take

𝑟 = {Δ𝑅 ∧ 𝛾/2+𝑗1,1/𝜋

2
} which satisfies 𝛾/2 < 𝑟 < 𝑗1,1

𝜋
. This implies that the function

𝑀 ′(𝜔) , 1
𝜋𝑅2 · 1

𝑅
· 𝑀(𝜔/𝑅) minorizes the density 𝜓(𝜔), has Fourier transform supported

in 𝐵2(𝑟) ⊆ 𝐵2(Δ), and satisfies

̂︁𝑀 ′[0] =
1

𝜋𝑅2

(2/𝑟)2

|S1|
· 𝐶(2, 𝑟)

1 + 𝐶(2, 𝑟)/2
=

4𝐶(2, 𝑟)

𝜋2𝑟3𝑅2 · (2 + 𝐶(2, 𝑟))
≥ 𝑟 − 𝛾/2

𝑅2
≥ 4𝑟 − 2𝛾, (9.16)

where in the last step we used that 𝑅 < 1/2. We can lower bound (9.15) by

∫︁ ⃒⃒⃒⃒
⃒
𝑘∑︁
𝑗=1

𝜆𝑗𝑒
−2𝜋𝑖⟨𝜇𝑗 ,𝜔⟩

⃒⃒⃒⃒
⃒
2

·𝑀 ′(𝜔)d𝜔 =
𝑘∑︁

𝑗,𝑗′=1

𝜆𝑗𝜆
†
𝑗′

∫︁
𝑒−2𝜋𝑖⟨𝜇𝑗−𝜇𝑗′ ,𝜔⟩ ·𝑀 ′(𝜔)d𝜔

=
𝑘∑︁

𝑗,𝑗′=1

𝜆𝑗𝜆
†
𝑗′
̂︁𝑀 ′[𝜇𝑗 − 𝜇𝑗′] ≥ (4𝑟 − 2𝛾)‖𝜆‖22,

where the last step follows by (9.16) and the fact that ̂︁𝑀 ′[𝜇𝑗 − 𝜇𝑗′] = 0 for all 𝑗 ̸= 𝑗′. The

lemma follows from noting that 4𝑟− 2𝛾 > {2𝛾(Δ/𝑐− 1)} ∧
{︁

2𝑗1,1
𝜋
− 𝛾
}︁
≥ 𝑂(Δ− 𝛾 ∧ 1).

Putting everything together, we have the following guarantee:

Lemma 9.4.21. Let 𝜌 be a Δ-separated superposition of 𝑘 Airy disks. For any 𝜀1, 𝜀2, 𝛿 > 0,

let

𝑚 = Θ

(︂
𝑘2 log(𝑘/𝛿)

(Δ− 𝛾) ∧ 1

)︂
and 𝜂 = 𝑂

(︂
4Δ3𝛿𝜆2min

(Δ− 𝛾)𝑘5/2𝑚3/2𝜅(𝑉)5
· 𝜀1
)︂
. (9.17)

Without loss of generality suppose 𝜀1 < 1/6. Then the output (𝜆*1, 𝜆
*
2, 𝜇

*
1, 𝜇

*
2) of Tensor-

Resolve, given 𝜀1, 𝜀2, 𝛿 and access to an 𝜂-approximate, 𝑚-query OTF oracle 𝒪 for 𝜌,

satisfies

‖𝜇𝑖 − 𝜇*
𝜏(𝑖)‖2 ≤ 𝜀1 and |𝜆𝑖 − 𝜆𝜏(𝑖)| ≤ 𝜀2

for some permutation 𝜏 with probability at least 1 − 𝛿. Furthermore, the runtime of Lear-

nAiryDisks is polynomial in 𝑘, the number of OTF oracle queries, and the time it takes to

make those queries.

Proof. By Lemma 9.4.15, if we take 𝑚 = Θ
(︁
𝑘2 log(𝑘/𝛿)
(Δ−𝛾)∧1

)︁
and 𝜂′ = 𝑂

(︁
(𝑐−𝛾)𝛿Δ𝜆2min

𝑘5/2𝑚3/2𝜅(𝑉)5
· 𝜀1
)︁
, then

645

the output ̂︀𝑉 of Jennrich(̃︀T) satisfies ‖̂︀𝑉 − 𝑉Π‖𝐹 ≤ 𝜀1 for some permutation matrix Π.

Assume without loss of generality that Π = Id. Then we get that for all 𝑗 ∈ [𝑘] and ℓ ∈ [𝑚′],

|̂︀𝑉ℓ,𝑗 − 𝑉ℓ,𝑗| = ⃒⃒⃒𝑒−2𝜋𝑖⟨̂︀𝜇𝑗−𝜇𝑗 ,𝜔(ℓ)⟩ − 1
⃒⃒⃒
≤ 𝜀1,

and because of the elementary inequality |𝑒−2𝜋𝑖𝑥 − 1| ≥ 2|𝑥| for any |𝑥| ≤ 2/3 and the fact

that

⟨̂︀𝜇𝑗 − 𝜇𝑗, 𝜔(ℓ)⟩ ≤ ‖̂︀𝜇𝑗 − 𝜇𝑗‖2‖𝜔(ℓ)‖2 ≤ 2ℛ ≤ 2/3, (9.18)

we conclude that |⟨̂︀𝜇𝑗 − 𝜇𝑗, 𝜔(ℓ)⟩| ≤ 𝜀1/2 for all 𝑗 ∈ [𝑘], ℓ ∈ [𝑚′]. In particular, this holds

for all ℓ = 𝑚 + 1 and ℓ = 𝑚 + 2, so ‖̂︀𝜇𝑗 − 𝜇𝑗‖∞ ≤ 𝜀1. By dividing 𝜀1 by
√
2 and absorbing

constants, we get that the estimates {̂︀𝜇𝑗} for the centers are 𝜀1-close to the true centers.

To show that the mixing weights are 𝜀2-close to the true mixing weights, we can apply

Lemma 9.4.16 to conclude that

‖𝜆− ̂︀𝜆‖2 ≤ 𝑂

(︂
𝜀1 + 𝜂′

𝑘2 log(1/𝛿)− 𝜀1

)︂
= 𝑂

(︂
𝜀1

𝑘2 log(𝑘/𝛿)

)︂
,

so, possibly by modifying 𝜀1 to be 𝜀2
𝑘2 log(1/𝛿)

, we get that the estimates {̂︀𝜆𝑗} for the mixing

weights are 𝜀2-close to the true mixing weights.

Note that we can also amplify the success probability of TensorResolve by running

Select from Section 9.4.2, but we do not belabor this point here.

9.4.4 Approximating the Optical Transfer Function

In this section, we show that the following algorithm DFT is a valid implementation of an

approximate OTF oracle. We begin by showing that when the samples have granularity

𝜍 = 0, DFT can achieve arbitrarily small error with polynomially many samples.

Lemma 9.4.22. For any 0 < 𝛽 < 1, 𝜂 > 0, and frequencies 𝜔1, ..., 𝜔𝑚 ∈ R2, DFT({𝜔𝑖}𝑖∈[𝑚])

draws 𝑁 = 𝑂(log(𝑚/𝛽)/𝜂2) samples and in time 𝑇 = 𝑂(𝑁 ·𝑚) outputs numbers 𝑢1, ..., 𝑢𝑚

for which |𝑢𝑗 − ̂︀𝜌[𝜔𝑗]| ≤ 𝜂.

Proof. By a union bound, it suffices to show that for any single 𝑗 ∈ [𝑚], |𝑢𝑗 − ̂︀𝜌[𝜔𝑗]| ≤ 𝜂

646

Algorithm 45: DFT(𝜂, 𝜌, 𝛽, {𝜔𝑖})
Input: Error tolerance 𝜂 > 0, sample access to 𝜌, confidence parameter 𝛽 > 0,

frequencies 𝜔1, ..., 𝜔𝑚
Output: With probability at least 1− 𝛽, numbers 𝑢1, ..., 𝑢𝑚 such that for each

𝑗 ∈ [𝑚], |𝑢𝑗 − ̂︀𝜌[𝜔𝑗]| ≤ 𝜂
1 𝑁 ← 𝑂(log(𝑚/𝛽)/𝜂2). Draw samples x1, ...,x𝑁 from 𝜌. For each 𝑗 ∈ [𝑚], compute

the average 𝑢𝑗 ← 1
𝑁

∑︀𝑁
𝑖=1 cos(2𝜋 · ⟨𝜔𝑗,x𝑖⟩). return 𝑢1, ..., 𝑢𝑚.

with probability at least 1− 𝛽/𝑚. Note that

E[𝑢𝑗] = Ex∼𝜌[cos(2𝜋 · ⟨𝜔𝑗,x⟩)] = E [Re ̂︀𝜌[𝜔𝑗]] = ̂︀𝜌[𝜔𝑗],
where the last step follows by the fact that ̂︀𝜌 is real-valued (by circular symmetry of 𝐴).

Furthermore, the summands in
∑︀𝑁

𝑖=1 cos(2𝜋 · ⟨𝜔𝑗,x𝑖⟩) are [−1, 1]-valued, so by Chernoff,

Pr [|𝑢𝑗 − E[𝑢𝑗]| > 𝜂] ≤ exp(−Ω(𝑁𝜂2)),

from which the lemma follows by our choice of 𝑁 .

We now show that for general granularity 𝜍 > 0, the output of DFT still achieves error

𝜂 +𝑂(𝜍).

Corollary 9.4.23. For any 0 < 𝛽 < 1, 𝜂, 𝜍 > 0, and frequencies 𝜔1, ..., 𝜔𝑚 ∈ R2, if

DFT({𝜔𝑖}𝑖∈[𝑚]) draws 𝑁 = 𝑂(log(𝑚/𝛽)/𝜂2) samples of granularity 𝜍, then in time 𝑇 =

𝑂(𝑁 ·𝑚) it outputs numbers 𝑢1, ..., 𝑢𝑚 for which |𝑢𝑗 − ̂︀𝜌[𝜔𝑗]| ≤ 𝜂 +𝑂(𝜍 · ‖𝜔𝑗‖2).

Proof. Note that cos(·) is 𝛼-Lipschitz for some 𝛼 < 3/4. This implies that for any 𝜔 ∈ R2,

the function x ↦→ cos(2𝜋⟨x, 𝜔⟩) is at most 𝑂(‖𝜔‖2)-Lipschitz with respect to ℓ2.

Take any collection of 0-granular samples x′
1, ...,x

′
𝑁 for which the averages 𝑢′1, ..., 𝑢′𝑚

computed by DFT would be 𝜂-accurate. If DFT were instead passed 𝜍-granular samples

x1, ...,x𝑁 for which ‖x′
𝑖−x𝑖‖2 ≤ 𝜍 for each 𝑖 ∈ [𝑁], then by triangle inequality, the averages

𝑢1, ..., 𝑢𝑚 computed by DFT with these samples would satisfy |𝑢𝑗 − 𝑢′𝑗| ≤ 𝜂 + 𝑂(𝜍 · ‖𝜔𝑗‖2)

for each 𝑗 ∈ [𝑚], as claimed.

Finally, with Lemma 9.4.14 and Lemma 9.4.22, we can complete the proof of Theo-

647

rem 9.4.1.

Proof of Theorem 9.4.1. By Lemma 9.4.14, it suffices to produce an 𝜂-approximate, 𝑚-query

OTF oracle for 𝜂 defined in (9.11) and 𝑚 = 𝑂(log 1/𝛿). By Corollary 9.4.23, this can be

done using

log(𝑚/𝛿)/𝜂2 = ̃︀𝑂 (︁log(1/𝛿) · poly(1/𝜆min, 1/𝜀1, 1/𝜀2, (4𝑘/Δ)𝑘
2

)
)︁

samples of granularity 𝜂/2 with probability at least 1− 𝛿. Theorem 9.4.1 then follows by a

union bound over the failure probabilities of LearnAiryDisks and DFT, and replacing 2𝛿

with 𝛿 and absorbing constant factors. Finally, note that the dependence on ℛ follows by

the discussion at the end of Section 9.4.1.

Proof of Theorem 9.4.2. By Lemma 9.4.21, it suffices to produce an 𝜂-approximate, 𝑚-query

OTF oracle for 𝜂 defined in (9.17) and 𝑚 = Θ
(︁

𝑘2

(Δ−𝛾)∧1

)︁
. By Corollary 9.4.23, this can be

done with probability 9/10 using

log(10𝑚)/𝜂2 = ̃︀𝑂 (poly(𝑘, 1/Δ, 1/𝜆min, 1/𝜀1, 1/𝜀2, 𝑘, (Δ− 𝛾) ∧ 1))

samples of granularity 𝜂/2 with probability at least 1− 𝛿. Theorem 9.4.1 then follows by a

union bound over the failure probabilities of TensorResolveCorrect and DFT. As in

the proof of Theorem 9.4.1, the dependence on ℛ follows by the discussion at the end of

Section 9.4.1.

9.5 Information Theoretic Lower Bound

In this section we will exhibit two superpositions of Airy disks, both with minimum separation

below the diffraction limit, which are close in statistical distance. Let 𝜌 and 𝜌′ respectively

have mixing weights {𝜆𝑖} and {𝜆′𝑖}, and centers {𝜇𝑖} and {𝜇′
𝑖}, where for each 𝑖, 𝜇𝑖 , (𝑎𝑖, 𝑏𝑖)

and 𝜇′
𝑖 , (𝑎′𝑖, 𝑏

′
𝑖) for some 𝑎𝑖, 𝑎′𝑖, 𝑏𝑖, 𝑏′𝑖 ∈ R. Concretely,

𝜌(x) =

⌈𝑘/2⌉∑︁
𝑖=1

𝜆𝑖 · 𝐴
(︂
‖x− 𝜇𝑖‖

𝜎

)︂
and 𝜌′(x) =

⌊𝑘/2⌋∑︁
𝑖=1

𝜆′𝑖 · 𝐴
(︂
‖x− 𝜇′

𝑖‖
𝜎

)︂

648

for some 0 < 𝜎 < 1. Note that under this setting of parameters, the Abbe limit corresponds

to separation 𝜋𝜎.

Theorem 9.5.1. Let 𝛾 ,
√︀

4/3. There exists a choice of {𝜇𝑖}, {𝜇′
𝑖}, {𝜆𝑖}, {𝜆′𝑖} such that

the minimum separation among centers of 𝜌 and among centers of 𝜌′ is Δ = (1−𝜀)𝛾𝜋𝜎, and

𝑑TV(𝜌, 𝜌
′) ≤ exp(−Ω(𝜀

√
𝑘)).

We first bound ‖𝜌− 𝜌′‖𝐿2 . By Plancherel’s,

‖𝜌− 𝜌′‖2𝐿2 = ‖̂︀𝜌− ̂︀𝜌′‖2𝐿2

= 𝜎2

∫︁
R2

̂︀𝐴[𝜎𝜔]2 ⃒⃒⃒⃒⃒∑︁
𝑖

𝜆𝑖𝑒
−2𝜋𝑖⟨𝜇𝑖,𝜔⟩ −

∑︁
𝑖

𝜆′𝑖𝑒
−2𝜋𝑖⟨𝜇′𝑖,𝜔⟩

⃒⃒⃒⃒
⃒
2

𝑑𝜔

≤ 𝜎2

∫︁
𝐵1/𝜋𝜎(0)

(1− ‖𝜋𝜎𝜔‖)2 ·

⃒⃒⃒⃒
⃒∑︁

𝑖

𝜆𝑖𝑒
−2𝜋𝑖⟨𝜇𝑖,𝜔⟩ −

∑︁
𝑖

𝜆′𝑖𝑒
−2𝜋𝑖⟨𝜇′𝑖,𝜔⟩

⃒⃒⃒⃒
⃒
2

𝑑𝜔 (9.19)

where the inequality follows by the elementary bound

2

𝜋
(arccos(𝜋𝑟)− 𝜋𝑟

√
1− 𝜋2𝑟2) ≤ 1− 𝜋𝑟.

Recall now the construction in Lemma 9.2.1 (see the beginning of Section 9.2). As the

entries of the vector 𝑢 constructed in Lemma 9.2.1 satisfy sgn(𝑢𝑗1,𝑗2) = (−1)𝑗1,𝑗2 , let 𝐼0 (resp.

𝐼1) denote the elements j = (𝑗1, 𝑗2) ∈ 𝒥 × 𝒥 for which 𝑗1 + 𝑗2 is even (resp. odd), and for

every j ∈ 𝐼0 (resp. j ∈ 𝐼1), define 𝜆j and 𝜇j (resp. 𝜆′j and 𝜇′
j) by 𝑢j and

(︁
𝑗1
𝑚
,
√
3𝑗2
𝑚

)︁
. This

construction is illustrated for 𝑘 = 25 in Figure 9-5. By design, {𝜆j}j∈𝐼0 and {𝜆′j}j∈𝐼1 consist

solely of nonnegative scalars and respectively sum to 1, so 𝜌, 𝜌′ are valid superpositions of

Airy disks. Furthermore, by design,

∑︁
𝑢𝑗1,𝑗2𝑒

−2𝜋𝑖·(𝑗1𝑥1+
√
3𝑗2𝑥2)/𝑚 =

∑︁
j∈𝐼0

𝜆j𝑒
−2𝜋𝑖·⟨𝜇j,𝑥⟩ −

∑︁
j∈𝐼1

𝜆′j𝑒
−2𝜋𝑖·⟨𝜇′j,𝑥⟩,

so we may now bound (9.19) to get the desired 𝐿2 bound

‖𝜌−𝜌′‖2𝐿2 ≤ exp(−Ω(𝜀
√
𝑘))𝜎2

∫︁
𝐵1/𝜋𝜎(0)

(1−‖𝜋𝜎𝜔‖)2 = exp(−Ω(𝜀
√
𝑘))/6𝜋 = exp(−Ω(𝜀

√
𝑘)).

649

We are now ready to show that 𝑑TV(𝜌, 𝜌
′) is small. The following is a generic 𝐿1 bound for

functions whose univariate restrictions have bounded 𝐿2 mass, whose derivatives inside some

region Ω are bounded, and which decay sufficiently quickly outside of Ω.

Lemma 9.5.2. Suppose for an 𝑓 ∈ 𝐿1(R2), there exists some 𝑇 ≥ 0 such that for Ω =

[−𝑇, 𝑇]2 the following are satisfied:

1. For all 𝑦 ∈ [−𝑇, 𝑇], max𝑥∈[−𝑇,𝑇] |𝑓 ′(𝑥, 𝑦)| ≤ 𝐶,

2.
∫︀
Ω𝑐 |𝑓 | ≤ 𝜂,

3. 𝑓(−𝑇, 𝑦) ≤ 𝛿 for all 𝑦 ∈ [−𝑇, 𝑇].

Then we have that

‖𝑓‖𝐿1 ≤ (2𝑇)5/3 · (3𝐶‖𝑓‖2𝐿2 + 2𝑇𝛿3)1/3 + 𝜂.

Proof. By the triangle inequality and condition 3, it is enough to verify that

∫︁
Ω

|𝑓 | ≤ (2𝑇)5/3 · (3𝐶‖𝑓‖2𝐿2 + 2𝑇𝛿3)1/3.

Note that for a fixed 𝑦 ∈ [−𝑇, 𝑇], we have by the fundamental theorem of calculus and

conditions 2 and 3 that for any 𝑥 ∈ [−𝑇, 𝑇],

1

3
|𝑓(𝑥, 𝑦)3| ≤ 1

3
|𝑓(−𝑇, 𝑦)3|+

(︂∫︁ 𝑥

−𝑇
𝑓(𝑡, 𝑦)2𝑑𝑡

)︂
· max
𝑡∈[−𝑇,𝑥]

|𝑓 ′(𝑡, 𝑦)| ≤ 1

3
𝛿3 + 𝐶

∫︁ 𝑇

−𝑇
𝑓(𝑡, 𝑦)2𝑑𝑡.

Define 𝑔(𝑦) ,
∫︀ 𝑇
−𝑇 𝑓(𝑡, 𝑦)

2𝑑𝑡 and note that
∫︀ 𝑇
−𝑇 𝑔(𝑦)𝑑𝑦 ≤ ‖𝑓‖

2
𝐿2 . Then

∫︁
Ω

|𝑓 | =
∫︁ 𝑇

−𝑇

∫︁ 𝑇

−𝑇
|𝑓(𝑥, 𝑦)|𝑑𝑥 𝑑𝑦

≤
∫︁ 𝑇

−𝑇

∫︁ 𝑇

−𝑇
(3𝐶 · 𝑔(𝑦) + 𝛿3)1/3𝑑𝑥 𝑑𝑦

= 2𝑇

∫︁ 𝑇

−𝑇
(3𝐶 · 𝑔(𝑦) + 𝛿3)1/3𝑑𝑦

≤ (2𝑇)2
(︂∫︁ 𝑇

−𝑇

1

2𝑇
(3𝐶 · 𝑔(𝑦) + 𝛿3)𝑑𝑦

)︂1/3

650

= (2𝑇)5/3
(︂∫︁ 𝑇

−𝑇
(3𝐶 · 𝑔(𝑦) + 𝛿3)𝑑𝑦

)︂1/3

≤ (2𝑇)5/3 · (3𝐶‖𝑓‖2𝐿2 + 2𝑇𝛿3)1/3,

where the penultimate inequality follows from the measure-theoretic generalization of Jensen’s

inequality.

We will show that for an appropriate choice of 𝑇 , the function 𝑓 : R2 → R given by

𝑓(x) , 𝜌(x)− 𝜌′(x) =
∑︁
j∈𝐽0

𝜆j · 𝐴
(︂
‖x− 𝜇j‖

𝜎

)︂
−
∑︁
j

𝜆′j · 𝐴
(︂‖x− 𝜇′

j‖
𝜎

)︂
(9.20)

satisfies the conditions of Lemma 9.5.2.

For a = (𝑎1, 𝑎2) ∈ R2, 𝑦 ∈ R, define 𝐴a,𝑦 : R→ R by

𝐴a,𝑦(𝑥) = 𝐴

(︃√︀
(𝑥− 𝑎1)2 + (𝑦 − 𝑎2)2

𝜎

)︃
.

As we will see below, by triangle inequality it will suffice to verify certain properties of 𝐴a,𝑦.

Lemma 9.5.3. For any 𝑦 ∈ R, max𝑥∈R |𝑓 ′(𝑥, 𝑦)| = 𝑂(1/𝜎).

Proof. By triangle inequality, it suffices to show that for any 𝑎, 𝑦 ∈ R, max𝑥∈R

⃒⃒⃒
𝜕𝐴a,𝑦(𝑥)

𝜕𝑥

⃒⃒⃒
=

𝑂(1/𝜎). Of course we may as well assume 𝑎1 = 0, in which case by a change of variable in

𝑥, we have that

max
𝑥∈R

⃒⃒⃒⃒
𝜕𝐴a,𝑦(𝑥)

𝜕𝑥

⃒⃒⃒⃒
=

1

𝜋𝜎
max
𝑥

⃒⃒⃒⃒
⃒ 𝜕𝜕𝑥 𝐽1(

√︀
𝑥2 + ((𝑦 − 𝑎2)/𝜎)2)2

𝑥2 + ((𝑦 − 𝑎2)/𝜎)2

⃒⃒⃒⃒
⃒

=
1

𝜋𝜎
max
𝑥

⃒⃒⃒⃒
⃒2𝑥𝐽1(

√︀
𝑥2 + ((𝑦 − 𝑎2)/𝜎)2) · 𝐽2(

√︀
𝑥2 + ((𝑦 − 𝑎2)/𝜎)2)

(𝑥2 + ((𝑦 − 𝑎2)/𝜎)2)3/2

⃒⃒⃒⃒
⃒

≤ 1

𝜋𝜎
max
𝑥

⃒⃒⃒⃒
⃒2
√︀
𝑥2 + ((𝑦 − 𝑎2)/𝜎)2𝐽1(

√︀
𝑥2 + ((𝑦 − 𝑎2)/𝜎)2) · 𝐽2(

√︀
𝑥2 + ((𝑦 − 𝑎2)/𝜎)2)

(𝑥2 + ((𝑦 − 𝑎2)/𝜎)2)3/2

⃒⃒⃒⃒
⃒

=
1

𝜋𝜎
max
𝑧

⃒⃒⃒⃒
2𝐽1(𝑧)𝐽2(𝑧)

𝑧2

⃒⃒⃒⃒
651

=
1

𝜋𝜎
max
𝑧

⃒⃒⃒⃒
𝜕𝐴(𝑧)

𝜕𝑧

⃒⃒⃒⃒
≤ 𝑂(1/𝜎)

as claimed.

Lemma 9.5.4. For 𝑇 > Δ(
√
𝑘 − 1)/4, we have that 𝑓(−𝑇, 𝑦) ≤ Ω

(︀
(𝑇/𝜎)−8/3

)︀
for all

𝑦 ∈ [−𝑇, 𝑇].

Proof. By linearity, it suffices to show that for any 𝑦 ∈ [−𝑇, 𝑇] and any 𝑗1, 𝑗2 ∈ 𝒥 , the

claimed bound holds for 𝐴𝜈𝑗1,𝑗2 ,𝑦(−𝑇). By Theorem 9.3.6, we know that

𝐴𝜈𝑗1,𝑗2 ,𝑦(−𝑇) ≤
1

𝜋
𝑐228 · |𝑟|−8/3,

where

𝑟 ,
1

𝜎

⎛⎝(︂−𝑇 − 𝑗1
𝑚

)︂2

+

(︃
𝑦 −
√
3𝑗2
𝑚

)︃2
⎞⎠1/2

≥ −𝑇 − 𝑗1/𝑚
𝜎

> −2𝑇/𝜎,

where in the last step we used the fact that 𝑗1/𝑚 ≤ Δ(
√
𝑘 − 1)/4 < 𝑇 .

Lemma 9.5.5. For 𝑇 > Δ(
√
𝑘 − 1)/2, we have that

∫︀
Ω𝑐 |𝑓 | ≤ 𝑂(𝑇−2/3𝜎8/3), where Ω =

[−𝑇, 𝑇]2.

Proof. By linearity and the fact that ‖x − (𝑗1/𝑚,
√
3𝑗2/𝑚)‖2 ≥ 𝑇 − 𝑗1/𝑚 ≥ 𝑇/2 for

every x ̸∈ Ω, it suffices to show that for any 𝑗1, 𝑗2 ∈ 𝒥 , the claimed bound holds for∫︀
𝐵0(𝑇/2)𝑐

|𝐴(𝑥, 𝑦)|𝑑𝑥 𝑑𝑦. Expressing this as a polar integral, we have

∫︁
Ω𝑐

⃒⃒
𝐴𝜈𝑗1,𝑗2 ,𝑦(𝑥)

⃒⃒
𝑑𝑥 𝑑𝑦 =

∫︁ 2𝜋

0

∫︁ ∞

𝑇/2

𝑟 · |𝐴(𝑟/𝜎)|𝑑𝑟 𝑑𝜃

≤ 2 ·
∫︁ ∞

𝑇/2

𝑟 ·
(︀
𝑐228 · (𝑟/𝜎)−8/3

)︀
≤ 𝑂(𝑇−2/3𝜎8/3),

as desired.

652

Proof of Theorem 9.5.1. Take 𝑇 = Θ(‖𝑓‖−1/5

𝐿2) ≥ exp(−Ω(𝜀
√
𝑘)) which we may assume

without loss of generality, by scaling 𝜎,Δ appropriately, is greater than Δ
√
𝑘. By Lemma 9.5.2

and Lemmas 9.5.3, 9.5.4, and 9.5.5, we have that for 𝑓 defined by (9.20),

∫︁
R2

|𝑓 | ≤ (2𝑇)5/3 ·
(︀
𝑂(1/𝜎) · ‖𝑓‖2𝐿2 +𝑂(𝑇 · (𝑇/𝜎)−8)

)︀1/3
+𝑂

(︀
𝑇−2/3𝜎8/3

)︀
≤ 𝑂

(︁
‖𝑓‖2/15𝐿2 𝜎−1/3

)︁
≤ 𝑂

(︁
exp

(︁
−Ω(𝜀

√
𝑘)
)︁
𝜎−1/3

)︁
,

so as soon as 𝑘 ≥ 𝐶 log(1/𝜎)) for sufficiently large 𝐶 > 0, we have that 𝑑TV(𝜌, 𝜌
′) ≤

exp(−Ω(𝜀
√
𝑘)).

9.6 Conclusion and Open Problems

We hope that our work will be a stepping-stone towards developing a rigorous theory of

resolution limits in more sophisticated optical systems. The setting that we study, namely

diffraction through a perfectly circular aperture under incoherent illumination, is arguably

the most basic model one can study in Fourier optics. As a natural next step, one can ask

whether the techniques developed in this chapter can be pushed to answer questions about

the following more challenging setting:

Coherent illumination As described in Appendix 9.8, in the presence of light emanating

from a single point source, the (complex-valud) amplitude of the electric field at a point 𝑃 on

the observation plane is proportional to 𝑒𝑖𝜔 · 𝐽1(𝑧/𝜎)/(𝑧/𝜎), where 𝑒𝑖𝜔 is some phase factor,

𝑧 is the angular displacement of the point 𝑃 from the optical axis, and 𝜎 is the spread

parameter which depends on the wavelength of the light and the radius of the aperture.

This means that the actual probability distribution over where on the observation plane a

photon gets detected is proportional to the squared modulus of this, i.e. 𝐽1(𝑧/𝜎)2/(𝑧/𝜎)2.

Throughout this work, we worked under the assumption that in the presence of many point

sources, the light emanating from the various point sources is incoherent. In other words,

there is no interference introduced by the extra phase factors, and mathematically this

653

translates to a probability distribution given by a nonnegative linear combination of the

probability densities coming from the individual sources of light, and this is what gives rise

to the mixture model we studied.

The coherent setting is quite different. Suppose that for point source 𝑗, the extra phase

factor in the electric field at any given point is 𝑒𝑖𝜔𝑗 for some complex number 𝜔𝑗. Under

coherent illumination from multiple point sources, it is the electric field which is a linear

combination, namely of the electric fields associated to each indivdiual point source. This

gives rise to the following natural probabilistic model:

Definition 9.6.1 (Coherent superpositions of Airy disks). A coherent superposition of 𝑘

Airy disks 𝜌 is a distribution over R2 specified by phases 𝜔1, . . . , 𝜔𝑘 ∈ 𝐶3, relative intensities

𝜆1, . . . , 𝜆𝑘 ≥ 0 summing to 1, centers 𝜇1, . . . , 𝜇𝑘 ∈ R2, and an a priori known “spread

parameter” 𝜎 > 0. Its density at 𝑥 is proportional to

𝜌(x) ∝

⃒⃒⃒⃒
⃒
𝑘∑︁
𝑖=1

𝜆𝑖 · 𝑒𝑖𝜔𝑗 · 𝐽1(‖x− 𝜇𝑖‖/𝜎)
‖x− 𝜇𝑖‖/𝜎

⃒⃒⃒⃒
⃒
2

.

One can ask analogues of all of the questions considered in the present work for this proba-

bilistic model. This seems to be both mathematically natural and a physically well-motivated

setting which now departs from the mixture model setup usually studied within theoretical

computer science.

9.7 Appendix: Related Work In the Sciences

In this section, we survey previous approaches to understanding diffraction limits in the optics

literature, as well as recent practical works on the need and methodologies to rigorously assess

claims of achieving super-resolution.

9.7.1 Previous Approaches in Optics

In this section we will survey the many previous attempts to rigorously understand diffraction

limits in the optics literature. There, the focus has been squarely on the semiclassical

654

detection model (SDM). After describing this line of work, we explain the ways in which it

falls short.

The SDM was originally proposed by [Man59] and has been the de facto generative model

in essentially all subsequent works on the statistical foundations of resolution. We note that

there are some minor differences in the definition of our model and that of the SDM, which

we will discuss formally in Appendix 9.8.3.

Arguably the first significant work to study the SDM was that of Helstrom [Hel64], who

considered it from the perspective of parameter estimation and hypothesis testing, initiating

the study of the following two problems which remarkably have almost exclusively occupied

this line of work. For normalized point spread function 𝐴(·) and separation parameter 𝑑,

define

𝜌0(x) = 𝐴(x), 𝜌1(x) =
1

2
· 𝐴(x− 𝜇) + 1

2
· 𝐴(x+ 𝜇), 𝜇 =

⎧⎪⎨⎪⎩𝑑/2 𝐷 = 1

(0, 𝑑/2) 𝐷 = 2.

(9.21)

Problem 1 (Parameter Estimation). Given samples from 𝜌1, estimate 𝑑.

Problem 2 (Hypothesis Testing). Suppose we know the parameter 𝑑, and we know that

either 𝜌 = 𝜌0 or 𝜌 = 𝜌1. Given samples from 𝜌, decide whether 𝜌 = 𝜌0 or 𝜌 = 𝜌1.

For Problem 1, Helstrom [Hel64,Hel69,Hel70] studied the maximum likelihood estimator

and computed Cramer-Rao lower bounds for a host of point-spread functions including the

Airy PSF, both for the SDM and for progressively more physically sophisticated (though

less practically relevant) models. The conceptual insights and problem formulation of [Hel64]

were refined, or often rediscovered, numerous times [TD79,BVDDD+99,SM04,SM06,RWO06,

Far66,CWO16], and the primary thrust of this line of work has been centered on Cramer-

Rao-style calculations for assorted point-spread functions and, to a lesser extent, analysis of

the optimization landscape of the log-likelihood from the perspective of singularity theory

[VDB01,VdBDD01,BVDDD+99,DD96].

For Problem 2, Helstrom [Hel64] computed the reliability of the likelihood ratio test for

various PSFs, under a CLT appoximation to the log-likelihood ratio. Similar calculations for

the log-likelihood ratio for other PSFs followed in [Har64,AH97,SM04,SM06,Far66].

655

We emphasize that, with the exception of [SM04,SM06], all works giving rigorous guar-

antees have made the assumption implicit in (9.21) that the two point sources defining 𝜌1 are

located at known points 𝜇 and −𝜇 centered about the origin. [SM04,SM06] study Problems 1

and 2 when the locations of the point sources are unknown and study the (locally optimal)

generalized likelihood ratio test.

With regards to applications, Problems 1 and 2 have gained popularity in optical as-

tronomy [Fal67,Zmu03,FB12,Luc92a,Luc92b] as well as fluorescence microscopy [MCSF10,

SS14b,DZM+14,vDSM17]. Cramer-Rao bounds as a “modern” proxy for assessing the limits

of imaging systems have gained such popularity with practicioners that a number of review

articles and surveys on the topic have appeared in the recent single-molecule microscopy lit-

erature [SS14b,DZM+14,CWO16], most of which focus on the related parameter estimation

problem of localization, that is, estimating the location of a single test object given its noisy

image.

One other interesting line of work has focused on the generalizations of Problems 1 and

2 to the quantum setting. Elaborating on this literature would take us too far afield, so we

mention only the comprehensive recent survey [Tsa19] and the references therein.

9.7.2 Comparison with Our Approach

Most crucially, all works on the SDM focus exclusively on two-point resolution. In the context

of hypothesis testing, as we note above, these works even assume the two points lie on the

𝑥-axis at the same known distance 𝑑/2 from the origin, with the exception of [SM04,SM06].

That such a strong assumption is made and such focus is placed on 𝑘 = 2 is evidently not

just for aesthetics. From the standpoint of hypothesis testing, as noted in [SM04,SM06], any

deviation from this idealized model would induce a composite hypothesis testing problem,

for which the (generalized) likelihood ratio test has no global optimality guarantees. In

the context of parameter estimation, because of the focus on 𝑘 = 2, the conclusion in the

literature has repeatedly been that the classical resolution criteria (Abbe, Rayleigh, etc.) are

not meaningful in a statistical sense, and that the only true limitation comes from the number

of samples. We view this as one of the primary reasons that a result like Theorem 9.1.1 has

gone overlooked for so long.

656

Another drawback of the literature is that because of the focus on Cramer-Rao bounds,

which only provide guarantees for the maximum likelihood estimate in the infinite-sample

limit, none of these works actually give non-asymptotic algorithmic guarantees. Additionally,

Cramer-Rao bounds only apply to unbiased estimators, and to the best of our knowledge, the

only paper that addresses biased estimators is [Tsa18], which only derives Bayesian Cramer-

Rao bounds for the already well-studied setting of a mixture of two Gaussians. From a

technical standpoint, another disadvantage of existing works is that they work either with

the Gaussian point-spread function or invoke Taylor approximations of the Airy point-spread

function. And because the log-likelihood here is analytically cumbersome, it is common to

invoke a central limit theorem-style approximation.

One last shortcoming arises from the definition of the SDM itself (see Definition 9.8.2):

it models photon detection as a Poisson process when in reality this need not be the case.

As Goodman (Chapter 9.2 of [Goo15]) notes, “in most problems of real interest, however,

the light wave incident on the photosurface has stochastic attributes . . . For this reason, it is

necessary to regard the Poisson distribution as a conditional probability distribution . . . the

statistics are in general not Poisson when the classical intensity has random fluctuations

of its own.” The increased generality of not assuming Poissonanity allows our model to

smoothly handle such stochastic fluctuations.

9.7.3 Super-Resolution and the Practical Need to Understand Diffrac-

tion Limits

In the past half century, a host of techniques of increasing sophistication have been devel-

oped to shift or fundamentally surpass the diffraction limit. As these techniques change

the underlying physical setup of the imaging system, they are not relevant to the theo-

retical setting we consider, though we believe that placing the classical setting of Fraun-

hofer diffraction on a rigorous statistical footing can pave the way towards better under-

standing notions of resolution in these modern techniques.Here we very briefly describe

some these techniques, deferring to the comprehensive overviews on the matter found in

[HG09,Hel07,Hel09,HBZ10, JSZB08, Lau12, LSM09,MW17,Ric07,WS15]. The earliest at-

657

tempts at going below the diffraction limit involved modifying the aperture, e.g. via apodiza-

tion as pioneered by Toraldo di Francia [DF52]. Among even more elementary approaches,

an annular aperture can be used to distinguish a pair of points sources slightly better than

a circular one, a fact that [MW17] notes was known even to Rayleigh. Other approaches

for circumventing the diffraction limit include near-field optics [AN72,PDL84,Syn28], TIRF

[Axe81, Tem81], confocal microscopy [Min61], two-lens techniques [HS92, HSLC94], struc-

tured illumination [Gus99], UV/X-ray/electron microscopy [BEZ+97,KJH95,Rus34].

Betzig, Hell, and Moerner were awarded the 2014 Nobel Prize in Chemistry for their pio-

neering work on super-resolution microscopy, which now includes technologies such as STED

[HW94,KH99], RESOLFT [HK95,Hel04,BEH07], PALM [BPS+06], STORM [RBZ06], and

FPALM [HGM06]. These fundamentally break the diffraction limit by leveraging the ability

to switch fluorescent markers between a bright and a dark state via photophysical effects like

stimulated emission and ground-state depletion. In light of such advancements, rigorously

characterizing the resolving power of imaging systems remains a challenge of practical as

much as theoretical interest. [DWSD15] revisited what resolution means given these new

technologies technologies and proposed approaches for comparing resolution between differ-

ent super-resolution methods. [HHP+16] pushed back on some claims of super-resolution in

nonfluorescent microscopy, advocating for the Siemens star as an imaging benchmark and

for the adoption of certain standards when documenting such claims. Sheppard [She17] was

similarly motivated to clarify such claims and calculates the images of various test object

geometries and suggests “these results can be used as a reference . . . to determine if super-

resolution has indeed been attained.”

9.8 Appendix: Physical Basis for Our Model

In this paper we focus on the idealized setting of Fraunhofer diffraction of incoherent illu-

mination by a circular aperture, originally studied in the pioneering work of Airy [Air35].

In this section, we first give a brief overview of this setting in Appendix 9.8.1, deferring the

details to any of a number of excellent expository texts on the subject [Ken08,Hec15,Goo05,

Goo15,JW37,Fow89]. Then in Appendix 9.8.2, we demonstrate how our probabilistic model

658

arises naturally from the preceeding setup. Finally, in Appendix 9.8.4, we catalogue the

various resolution criteria that have appeared in the literature and instantiate them in our

framework.

9.8.1 A Review of Fraunhofer Diffraction

Consider a scenario in which plane waves of monochromatic, incoherent light emanate from

a far-away point source in the image plane, pass through a circular aperture, and form a

diffraction pattern on a far-away observation plane. This is the standard setting of Fraunhofer

diffraction. As depicted in Figure 9-1, the far-field assumption on the observation plane is

captured in practice by placing a lens behind the aperture and placing the observation plane

at the focal plane of the lens.

Under the Huygens-Fresnel-Kirchhoff theory, the aperture induces a diffraction pattern,

a so-called Airy disk, on the observation plane because the secondary spherical wavelets

emanating from different points of the aperture are off by phase factors. Concretely, suppose

the plane waves are parallel to the optical axis, and take a point 𝑃 on the observation plane

at angular distance 𝜃 from the optical axis, and a point u on the circular aperture 𝐴, say of

radius 𝑟. Letting v be the unit vector from the center of the aperture to 𝑃 , we see that the

propagation path of the wavelet from the center of the aperture to 𝑃 and that of the wavelet

from u to 𝑃 differ in length by ⟨u,v⟩, corresponding to a phase delay of 2𝜋
𝜆
⟨u,v⟩ where 𝜆

is the wavelength of light. So by integrating over the contributions to the amplitude of the

electric field at 𝑃 by the points u in 𝐴, we conclude that the amplitude at 𝑃 is

𝐸 = 𝐸0

∫︁
𝐴

𝑒2𝜋𝑖·⟨u,v⟩/𝜆𝑑u,

where 𝐸0 is, up to phase factors, a constant capturing the contribution to the field per unit

area of the aperture. In other words, the amplitude at 𝑃 is proportional to the 2D Fourier

transform of the pupil function 𝐹 (u) = 1[u ∈ 𝐴] at frequency v/𝜆. This can be computed

explicitly as

𝐸 = 2𝜋𝑟2𝐸0 ·
𝐽1(𝜅𝑟 sin 𝜃)

𝜅𝑟 sin 𝜃
,

659

where 𝜅 , 2𝜋
𝜆

is the wavenumber of the light. In particular, the intensity 𝐼(𝜃) of the

diffraction pattern at 𝑃 is the squared modulus of 𝐸. We conclude that

𝐼(𝜃) = 𝐼(0) ·
(︂
2𝐽1(𝜅𝑟 sin 𝜃)

𝜅𝑟 sin 𝜃

)︂2

, (9.22)

where 𝐽1(·) is the Bessel function of the first kind. We will typically regard 𝐼(·) as a function

R2 → R≥0 which takes in a point (𝑥, 𝑦) ∈ R2 and outputs 𝐼(𝜃), where 𝜃 is the angular

distance between (𝑥, 𝑦) and the optical axis. The function 𝐼(𝑥, 𝑦) is the so-called Airy point

spread function.

Remark 9.8.1. In general, if the plane waves of the point source travel at an angle 𝜓 to

the optical axis, they will be focused not at the focal point but at some other point on the

observation plane at an angular distance of 𝜓 with respect to the optical axis. In this case

the resulting Airy point spread function will be shifted to be centered at that point.

9.8.2 Photon Statistics and Our Model

First suppose there is a single point source of light. In a sense which can be made rigorous

via Feynman’s path integral formalism (see e.g. Section 4.11 of [Hec15]), the intensity 𝐼(𝑥, 𝑦)

of the diffraction pattern at a point (𝑥, 𝑦) on the observation plane is proportional to the

(infinitesimal) probability of detecting a photon at 𝑃 . That is, the point spread function

𝐼(𝑥, 𝑦) can be identified with a probability density

𝜌(𝑥, 𝑦) ,
1

𝑍
· 𝐼(𝑥, 𝑦), where 𝑍 ,

∫︁
R2

𝐼(𝑥, 𝑦) d𝑥d𝑦

over the two-dimensional observation plane. Concretely, for any measurable subset 𝑆 of the

observation plane, if one were to count photons arriving over time and compute the fraction

that land inside the region 𝑆, this fraction would tend towards
∫︀
𝑆
𝜌(𝑥, 𝑦) d𝑥d𝑦.

In the presence of 𝑘 incoherent point sources of light, the absence of interference means

that the contributions from each point source to the intensities of the resulting diffraction

pattern simply add. In other words, if 𝐼1(·), ..., 𝐼𝑘(·) are the corresponding point spread func-

tions, which by Remark 9.8.1 are merely shifted versions of (9.22), the resulting probability

660

density 𝜌 over the observation plane is simply proportional to
∑︀𝑘

𝑖=1 𝐼𝑖(·).

For every 𝑖 ∈ [𝑘], let 𝑍𝑖 ,
∫︀
R2 𝐼𝑖(𝑥, 𝑦) d𝑥d𝑦 be the normalizing constant for the 𝑖-th

density 𝜌𝑖(·) , 1
𝑍𝑖
𝐼𝑖(·). Let 𝜆𝑖 , 𝑍𝑖∑︀𝑚

𝑗=1 𝑍𝑗
. Then we see that

𝜌(𝑥, 𝑦) =
𝑚∑︁
𝑖=1

𝜆𝑖 · 𝜌𝑖(𝑥, 𝑦).

In the jargon of statistics, this is an example of a mixture model, i.e. a convex combination

of structured distributions, and one can think of sampling from 𝜌 by first sampling an

index 𝑖 ∈ [𝑚] with probability 𝜆𝑖 and then sampling a point (𝑥, 𝑦) in the observation plane

according to the probability density associated to the 𝑖-th point source. This brings us to

the generative model that we study in this work, the definition of which we restate here for

the reader’s convenience.

Definition 9.3.1. [Superpositions of Airy Disks] A superposition of 𝑘 Airy disks 𝜌 is a

distribution over R2 specified by relative intensities 𝜆1, ..., 𝜆𝑘 ≥ 0 summing to 1, centers

𝜇1, ..., 𝜇𝑘 ∈ R2, and an a priori known “spread parameter” 𝜎 > 0. Its density is given by

𝜌(x) =
𝑘∑︁
𝑖=1

𝜆𝑖 · 𝐴𝜎 (x− 𝜇𝑖) for 𝐴𝜎(z) =
1

𝜋𝜎2

(︂
𝐽1(‖z‖2/𝜎)
‖z‖2/𝜎

)︂2

.

Note that the factor of 1
𝜋𝜎2 in the definition of 𝐴𝜎 is to ensure that 𝐴𝜎(·) is a probability

density.

Also define

Δ , min
𝑖 ̸=𝑗
‖𝜇𝑖 − 𝜇𝑗‖2 and ℛ , max

𝑖∈[𝑘]
‖𝜇𝑖‖2.

We now describe briefly how the parameters in Definition 9.3.1 translate to the setting

of Fraunhofer diffraction by a circular aperture that we have outlined thus far. One should

think of the spread parameter 𝜎 as (𝜅𝑟)−1. As 𝜎 in practice depends on known quantities

pertaining to the underlying optical system, we assume henceforth that it is known a priori.

The norm of the argument in 𝐴𝜎(‖x − 𝜇𝑖‖2) corresponds to the quantity sin 𝜃, where 𝜃 is

the angle of displacement between the line from the center of the aperture to the center 𝜇𝑖

of the 𝑖-th Airy disk, and the line between the center of the aperture and the point x on

661

the observation plane. Lastly, by Remark 9.8.1, angular separation of 𝜓 between two point

sources translates to angular separation of 𝜓 between the centers of their Airy disks on the

observation plane. The parameters Δ and ℛ can thus be interpreted respectively as the

minimum angular separation among the point sources, and the maximum angular distance

of any of the point sources to the optical axis.

9.8.3 Comparison to Semiclassical Detection Model

In this section we clarify the distinctions between the model we study and the semiclassical

detection model. We begin by formally defining the latter.

Definition 9.8.2 (Semiclassical Detection Model). For 𝐷 = 1, 2, let 𝑆1, ..., 𝑆𝑚 ⊂ R𝐷 be

disjoint subsets corresponding to different regions of a photon detector, and suppose the

detector receives some number 𝑁 ′ of photons, where 𝑁 ′ ∼ Poi(𝑁). We observe photon

counts 𝑁1, ..., 𝑁𝑚 corresponding to the number of photons that interact with each region of

the detector, where for each 𝑖 ∈ [𝑚],

𝑁𝑖 , 𝑁 ′
𝑖 + 𝛾𝑖, 𝑁 ′

𝑖 ∼ Poi(𝜆𝑖 ·𝑁), 𝛾𝑖 ∼ N(0, 𝜎2),

where 𝑁 ′
1, ..., 𝑁

′
𝑚, 𝛾1, ..., 𝛾𝑚 are independent, 𝛾𝑖 represents white detector noise3, and

𝜆𝑖 ,
∫︁
𝑆𝑖

𝜌(x) d𝑥,

where 𝜌(·), as in our model, is the idealized, normalized intensity profile of the optical signal.

To see how this relates to our model, first consider the idealized case where 𝜎 = 0 and

that the different regions 𝑆𝑖 of the detector form a partition of the entire ambient space.

To get quantitative guarantees, existing works assume that each of these regions 𝑆𝑖 is, e.g.,

a segment or box of fixed length 𝜍. In this case, the semiclassical detection model is a

special case of our model. Indeed, if one samples Poi(𝑁) points from 𝜌 and moves each of

them by distance 𝑂(𝜍) to the center of the region 𝑆𝑖 of the photon detector to which they

3While these white noise terms {𝛾𝑖} were not present in [Man59,Hel64], they are considered in some later
treatments of this model, so we include them here for completeness.

662

respectively belong, this collection of 𝑂(𝜍)-granular samples from 𝜌 is identical in information

and distribution to a sample of photon counts {𝑁𝑖} from the semiclassical detection model.

Our model can also capture the case where the regions 𝑆𝑖 only partition a subset of the

ambient space R𝐷. In this case, we only get access to samples from the density 𝜌trunc(x) ∝

1[x ∈ ∪𝑆𝑖]·𝜌(x), but this has known Fourier transform, given up to a universal multiplicative

factor by the convolution of ̂︀𝜌 with the indicator function of ∪𝑆𝑖. So our techniques still

apply in a straightforward fashion. In addition, by standard estimates on the tails of 𝐽1, for

∪𝑆𝑖 of radius polynomially large in the relevant parameters, with high probability none of

the samples used by our algorithms will fall outside of ∪𝑆𝑖 to begin with. For these reasons,

we will not belabor this point in this work and will assume ∪𝑆𝑖 = R𝐷 throughout.

Lastly, while our model does not incorporate white detector noise 𝜎, we note that our

algorithms can nevertheless handle the semiclassical detection model with 𝜎 > 0: from a

set of photon counts 𝑁1, ..., 𝑁𝑚, we can still estimate the Fourier transform of 𝜌 to accuracy

depending polynomially on 𝑁 and inverse polynomially on 𝜎 and the sizes of the detector

regions, so our techniques based on the matrix pencil method still apply.

9.8.4 A Menagerie of Diffraction Limits

In this section we give a precise characterization of the various limits that have appeared

in the literature as candidates for the threshold at which resolution becomes impossible in

diffraction-limited optical systems.

Abbe Limit The Abbe limit first arose in Abbe’s studies [Abb73] of the following setup

in microscopy: light illuminates an idealized object, namely an diffraction grating consisting

of infinitely many closely spaced slits corresponding to the fine features of the object being

imaged, and passes through the slits, behind which is an aperture stop placed in the back

focal plane of the lens. Abbe observed that the angle at which the light gets diffracted by

the slits increases as the grating gets finer, and he calculated the point at which the angle

is too wide to enter the aperture. This threshold is now called the Abbe limit, and in the

modern language of Fourier optics, the Abbe limit corresponds to the point at which the

Fourier transform of the corresponding point spread function (see Fact 9.3.3) vanishes. In

663

the remainder of this section, we will refer to the Abbe limit as 𝜏 .

Remark 9.8.3 (Scaling and Numerical Aperture). The argument 𝑧 in 𝐴𝜎(𝑧) corresponds to

the more familiar-looking quantity

𝑧 =
2𝜋

𝜆
· 𝑎 sin 𝜃, (9.23)

where 𝜆 is the average wavelength of illumination, 𝑎 is the radius of the aperture, and 𝜃 is

the angle of observation.

As noted above, ̂︀𝐴𝜎[𝜔] is only supported on 𝜔 for which ‖𝜔‖ ≤ 1
𝜋
. Equating this threshold

1
𝜋

with 1/𝑧, where 𝑧 is given by (9.23), and rearranging, we conclude that sin 𝜃 = 𝜆
2𝑎

. We may

write sin 𝜃 as 𝑞/𝑅 for 𝑞 the distance between the observation point and the optical axis and

𝑅 the distance between the observation point and the center of the aperture. It then follows

that 𝑞 = 𝜆𝑅
2𝑎
≈ 𝜆

2NA , where NA is the numerical aperture. This recovers the usual formulation

of the Abbe limit.

In the literature on super-resolution microscopy, the Abbe limit is the definition of diffrac-

tion limit that is usually given. Indeed, Lauterbach notes in his survey [Lau12] that “Abbe

is perhaps the one who is most often cited for the notion that the resolution in microscopes

would always be limited to half the wavelength of blue light.”

Rayleigh Criterion The Rayleigh criterion is the point at which the point spread function

first vanishes. For 𝜎 = 1, this is precisely the smallest positive value of 𝑟 for which 𝐽1(𝑟) = 0,

which can be numerically computed to be 𝑟 ≈ 3.83 ≈ 1.22 · 𝜋. So for general 𝜎, we conclude

that the Rayleigh criterion is ≈ 1.22𝜏 .

This is typically touted in standard references as the most common definition of resolution

limit. Indeed, Weisenburger and Sandoghdar remark in their survey [WS15] that “Although

Abbe’s resolution criterion is more rigorous, a more commonly known formulation...is the

Rayleigh criterion.” Kenyon [Ken08] calls it the “standard definition of the limit of the

resolving power of a lens system.” In his classic text, Hecht [Hec15] refers to it as the “ideal

theoretical angular resolution” Rayleigh himself [Ray79] emphasized however that “This rule

is convenient on account of its simplicity and it is sufficiently accurate in view of the necessary

664

uncertainty as to what exactly is meant by resolution.” We refer to Appendix 9.9 for further

quotations regarding the Rayleigh criterion.

Sparrow Criterion The Sparrow criterion, put forth in [Spa16], is the smallest Δ for

which a superposition of two Δ-separated Airy disks becomes unimodal. Numerically, this

threshold is ≈ 0.94𝜏 .

The Sparrow limit is often cited as the most mathematically rigorous resolution criteria

(in den Dekker and van de Bos’ survey [DDVdB97], they even call it “the natural resolu-

tion limit that is due to diffraction...even a hypothetical perfect measurement instrument

would not be able to detect a central dip in the composite intensity distribution, simply

because there is no such dip anymore.”). It is less relevant in practical settings as it requires

perfect knowledge of the functional form of the point spread function. Again, we refer to

Appendix 9.9 for further quotations regarding the Sparrow criterion.

Houston Criterion The Houston criterion is twice the radius at which the value of the

density is half of its value at zero, i.e. the “full width at half maximum” (FWHM). This

threshold is ≈ 1.03𝜏 .

This measure is one of the most popular in practice where one does not have fine-grained

knowledge of the point spread function, in particular because it can apply even when the point

spread function in question does not fall exactly to zero, either due to noise or aberrations in

the lens. In [DWSD15] where the authors explore alternative means of assessing resolution in

light of new super-resolution microscopy technologies, they remark in their conclusion that

“the best approach to compare between techniques is still to perform the simple and robust

fitting of a Gaussian to a sub-resolution object and then to extract the FWHM.”

Miscellaneous Additional Criteria The Buxton limit is nearly the same as Houtson,

except it is the FWHM for the amplitude rather than the intensity, which yields a threshold

of ≈ 1.46𝜏 [Bux37]. The Schuster criterion is defined to be twice the Rayleigh limit [Sch04],

that is, two Airy disks are separated only when their central bands are disjoint, which yields

a threshold of ≈ 2.44𝜏 . The Dawes limit, which is ≈ 1.02𝜏 , is a threshold proposed by

665

Dawes [Daw67]; its definition is purely empirical, as it was derived by direct observation by

Dawes.

9.9 Appendix: Debate Over the Diffraction Limit: A

Historical Overview

In this section, we catalogue quotations from the literature relevant to the challenge of

identifying the right resolution criterion, as well as to the need to take noise into account

when formulating such definitions.

9.9.1 Identifying a Criterion

Since its introduction, the Rayleigh criterion has repeatedly been both touted as a practically

helpful proxy by which to roughly assess the resolving power of diffraction-limited imaging

systems, and characterized as somewhat arbitrary.

Rayleigh himself in his original 1879 work [Ray79]:

“This rule is convenient on account of its simplicity and it is sufficiently accurate

in view of the necessary uncertainty as to what exactly is meant by resolution.”

Williams [Wil50, p. 79] in 1950:

“Although with the development of registering microphotomers such as the Moll,

dips much smaller than [the one exhibited by a superposition of two Airy disks at

the Rayleigh limit] can be accurately measured, it is convenient for the purpose

of comparison with gratings and echelons to keep to this standard.”

Born and Wolf [BW13, p. 418] in 1960:

“The conventional theory of resolving power...is appropriate to direct visual obser-

vations. With other methods of detection (e.g. photometric) the presence of two

objects of much smaller angular separation than indicated by Rayleigh’s criterion

may often be revealed.”

666

Feynman [FLS11, Section 30-4] in his Lectures on Physics from 1964:

“...it seems a little pedantic to put such precision into the resolving power formula.

This is because Rayleigh’s criterion is a rough idea in the first place. It tells you

where it begins to get very hard to tell whether the image was made by one or

by two stars. Actually, if sufficiently careful measurements of the exact intensity

distribution over the diffracted image spot can be made, the fact that two sources

make the spot can be proved even if 𝜃 is less than 𝜆/𝐿.”

Hecht in his standard text [Hec15, p.431,492] from 1987:

“We can certainly do a bit better than this, but Rayleigh’s criterion, however

arbitrary, has the virtue of being particularly uncomplicated.”

“Lord Rayleigh’s criterion for resolving two equal-irradiance overlapping slit im-

ages is well-accepted, even if somewhat arbitrarily in the present application.”

In fact, as early as 1904, Schuster [Sch04, p. 158] made the same point and on the same

page advocated for an alternative criterion, corresponding to twice the separation posited

by Rayleigh:

“There is something arbitrary in (the Rayleigh criterion) as the dip in intensity

necessary to indicate resolution is a physiological phenomenon, and there are

other forms of spectroscopic investigation besides that of eye observation... It

would therefore have been better not to have called a double line “resolved” until

the two images stand so far apart, that no portion of the centeral band of one

overlaps the central band of the other, as this is a condition which applies equally

to all methods of observation. This would diminish to one half the at present

recognized definition of resolving power.”

Ever since, the question of identifying the “right” notion of a resolution criterion has been

periodically revisited in the literature.

Ramsay et al. [RCK41, p. 26] in 1941, on this problem’s theoretical and practical impor-

tance:

667

“Before the theory itself can be developed in full, and applied to the assignment

of numerical values, it is necessary to consider the persistently vexing problem of

criteria for a limit of resolution.”

Three decades after Ramsay’s work, Thompson [Tho69, p. 171]:

“The specification of the quality of an optical image is still a major problem in

the field of image evaluation and assessment. This statement is true even when

considering purely incoherent image formation.”

The Sparrow criterion is often regarded as the most mathematically rigorous resolution

criterion.

Sparrow [Spa16, p. 80] in 1916 on its mathematical and physiological justification:

“It is obvious that the undulation condition should set an upper limit to the resolv-

ing power. The surprising fact is that this limit is apparently actually attained,

and that the doublet still appears resolved, the effect of contrast so intensifying

the edges that the eye supplies a minimum where none exists. The effect is ob-

servable both in positives and in negatives, as well as by direct vision...My own

observations on this point have been checked by a number of my friends and col-

leagues.”

In the survey of den Dekker and van den Bos [DDVdB97, p. 548] eighty years later:

“Since Rayleigh’s days, technical progress has provided us with more and more re-

fined sensors. Therefore, when visual inspection is replaced by intensity measure-

ment, the natural resolution limit that is due to diffraction would be [the Sparrow

limit]...even a hypothetical perfect measurement instrument would not be able to

detect a central dip in the composite intensity distribution, simply because there

is no such dip anymore.”

In light of advancements in super-resolution microscopy, rigorously characterizing the resolv-

ing power of imaging systems remains as pressing a challenge as ever.

668

In 2017, Demmerle et al. [DWSD15] revisited what resolution means in light of these

new technologies technologies and propose approaches for comparing resolution between

different super-resolution methods. As they note in their introduction [DWSD15, p. 3]:

“The recent introduction of a range of commercial super-resolution instruments

means that resolution has once again become a battleground between different

microscope technologies and rival companies.”

Notably, in the conclusion, they remark that a classical Houston criterion-style approach

is still the best for comparing different methods [DWSD15, p. 9].

“Given the above points, the best approach to compare between techniques is still

to perform the simple and robust fitting of a Gaussian to a sub-resolution object

and then to extract the FWHM.”

9.9.2 The Importance of Noise

An idea that has been repeated one way or another in the literature is that if one has perfect

access to the exact intensity profile of the diffraction image of two point sources, then one

could brute-force search over the space of possible parameters to find a hypothesis that fits

the point spread function arbitrarily well, thereby learning the positions of the point sources

regardless of their separation. As such, for any notion of diffraction limit to have practical

meaning, it must take into account factors like aberrations and measurement noise that

preclude getting perfect access to the intensity profile.

This perspective was distilled emphatically by di Francia [DF55, p. 497] in 1955:

“Moreover it is only too obvious that from the mathematical standpoint, the image

of two points, however close to one another, is different from that of one point.

It is not at all absurd to assume that technical progress may provide us with more

and more refined kinds of receptors, detecting the difference between the image of

a single point and the image of two points located closer and closer to another.

This means that at present there is only a practical limit (if any) and not a

theoretical limit for two-point resolving power.”

669

Contemporaneously, in discussions at the 1955 Meeting of the German Society of Applied

Optics culminating in [Ron61, p. 459], Ronchi made the following distinction:

“Nowadays it seems imperative to differentiate three kinds of images, i.e., (1) the

ethereal image, (2) the calculated image, and (3) the detected image.

The nature of the ethereal image should be physical, but in reality it is only a

hypothesis. It is said that the radiant flux emitted by the object...is concentrated

and distributed in the so-called image by means of a number of processes. But ac-

tually this is only a hypothesis...attempts have been made to give a mathematical

representation of the phenomenon, both geometrically and algebraically...The im-

ages which have been calculated in this way...should therefore be called calculated

images.

If we now consider the field of experience, we find the detected images. They

are the figures either perceived by the eye when looking through the instrument,

or obtained by means of a photosensitive emulsion, or through a photoelectric

device.

den Dekker and van den Bos [DDVdB97, p. 547] in their 1997 survey:

“Since Ronchi’s paper, further research on resolution— concerning detected im-

ages instead of calculated ones— has shown that in the end, resolution is limited

by systematic and random errors resulting in an inadequacy of the description fo

the observations by the mathematical model chosen. This important conclusion

was independently drawn by many researchers who were approaching the concept

of resolution from different points of view.”

den Dekker and van den Bos summarize the state of affairs as follows [DDVdB97, p. 547]:

“If calculated images were to exist, the known two-component model could be

fitted numerically to the observations with respect to the component locations

and amplitudes. Then the solutions for these locations and amplitudes would be

exact, a perfect fit would result, and in spite of diffraction there would be no

670

limit to resolution no matter how closely located the two point sources; this would

mean that no limit to resolution for calculated images would exist. However,

imaging systems constructed without any aberration or irregularity are an ideal

that is never reached in practice....Therefore one should consider the resolution

of detected images instead of calculated images.”

Goodman [Goo15, p. 326-7] in 2000:

“...the question of when two closely spaced point sources are barely resolved is a

complex one and lends itself to a variety of rather subjective answers...An alter-

native definition is the so-called Sparrow criterion...In fact, the ability to resolve

two point sources depends fundamentally on the signal-to-noise ratio associated

with the detected image intensity pattern, and for this reason criteria that do not

take account of noise are subjective.”

Maznev and Wright [MW17, p. 3] in 2016 on the earlier quote by Born and Wolf:

“Indeed, if any number of photons is available for the measurement, there is

no fundamental limit to how well one can resolve two point sources, since it

is possible to make use of curve fitting to arbitrary precision (however, there

are obvious practical limitations related to the finite measurement time and other

factors such as imperfections in the optical system, atmospheric turbulence, etc).”

Demmerle et al. in the work mentioned in the previous section [DWSD15, P. 9]:

“If one, a priori, knows that there are two point sources, then measuring their sep-

aration, and hence calculating the system’s resolution is purely limited by Signal-

to-Noise Ratio.”

A related point that has been made repeatedly in the literature is that the original setting

in which Abbe introduced his diffraction limit should not be conflated with the setting of

resolving two point sources of light.

671

In the work of di Francia cited above [DF55, p. 498], he notes that the classic impossibility

result for resolving a lattice of alternatively dark and bright points with separation below

the Abbe limit says nothing about the impossibility of resolving a pair of points sources:

“[The impossibility result at the Abbe limit] has often been given a wrong in-

terpretation and it has too hastily been extended to the case of two points. The

[Abbe limit] applies only when we want the available information uniformly dis-

tributed over the whole image. Mathematics cannot set any lower limit for the

distance of two resolvable points.”

Indeed, he argues informally, by way of the Nyqist sampling theorem, that when there

is a prior on the number of components in a superposition of Airy disks being upper

bounded by a known constant, then in theory, there is no diffraction limit. Rather, he

posits, it is the entropy of the prior that dictates the limits of resolution [DF55, p. 498]:

“The fundamental question of how many independent data are contained in an

image formed by a given optical instrument. This seems to be the modern substi-

tute for the theory of resolving power.”

Sheppard [She17, p. 597] in 2017, sixty years after di Francia’s work, clarifies again that

the abovementioned impossibility result should not be misinterpreted as saying anything

about the impossibility of resolving two point sources:

“The Abbe resolution limit is a sharp limit to the imaging of a periodic object

such as a grating. Super-resolution refers to overcoming this resolution limit.

The Rayleigh resolution criterion refers to imaging of a two-point object. It is

based on an arbitrary criterion, and does not define a sharp transition between

structures being resolved or not resolved.”

9.10 Appendix: Proof of Lemma 9.4.15

TensorResolve (Algorithm 44) uses the standard subroutine given in Algorithm 46. We

remark that this algorithm appears to be deterministic unlike usual treatments of Jennrich’s

672

algorithm simply because we have absorbed the usual randomness of the choice of flattening

into the construction of the tensor T on which TensorResolve calls Jennrich.

Algorithm 46: Jennrich(̃︀T)

Input: Tensor ̃︀T ∈ C𝑚×𝑚×3 which is close to a rank-𝑘 tensor T of the form (9.12)
Output: ̂︀𝑉 ∈ C𝑚×𝑘 close to 𝑉 up to column permutation (see Lemma 9.4.15)

1 Compute the 𝑘-SVD ̂︀𝑃 ̂︀Λ ̂︀𝑃 † of the flattening ̃︀T(Id, Id, 𝑒1).
2 Define the whitened tensor ̂︀E = ̃︀T(̂︀𝑃 , ̂︀𝑃 , Id) and its flattenings ̂︀𝐸𝑖 , ̂︀E(Id, Id, 𝑒𝑖) for

𝑖 ∈ [2].
3 ̂︁𝑀 ← ̂︀𝐸1

̂︀𝐸−1
2 .

4 Form the matrix ̂︀𝑈 whose columns are equal to the eigenvectors, scaled to have
norm

√
𝑚, for the 𝑘 eigenvalues of ̂︁𝑀 that are largest in absolute value.

5 return ̂︀𝑉 , ̂︀𝑃 ̂︀𝑈 .

We restate Lemma 9.4.15 here for the reader’s convenience:

Lemma 9.4.15. [e.g. [HK15], Lemma 3.5] For any 𝜀, 𝛿 > 0, suppose |T𝑎,𝑏,𝑖− ̃︀T𝑎,𝑏,𝑖| ≤ 𝜂′ for

𝜂′ , 𝑂
(︁

(𝑐−𝛾)𝛿Δ𝜆2min

𝑘5/2𝑚3/2𝜅(𝑉)5
· 𝜀
)︁
, and let ̂︀𝑉 = Jennrich(̃︀T) (Algorithm 46). Then with probability

at least 1 − 𝛿 over the randomness of 𝑣(1), there exists permutation matrix Π such that

‖̂︀𝑉 − 𝑉Π‖𝐹 ≤ 𝜀 for all 𝑗 ∈ [𝑘].

This proof closely follows that of [HBZ10], though we must make some modifications

because the scaling of the frequencies 𝑣(𝑖) for 𝑖 ∈ [3] defined in Step 4 of TensorResolve

is different.

Proof. We first define the noiseless versions of the objects ̂︀𝑃 , ̂︀Λ, ̂︀𝐸, ̂︀𝐸1, ̂︀𝐸2,̂︁𝑀, ̂︀𝑈 introduced

in Jennrich. Note that for 𝑖 ∈ [2],

T(Id, Id, 𝑒𝑖) = 𝑉 𝐷𝑖𝑉
† (9.24)

for 𝐷𝑖 the diagonal matrix whose diagonal entries are given by {𝜆𝑗𝑒−2𝜋𝑖⟨𝜇𝑗 ,𝑣(𝑖)⟩}𝑗∈[𝑘]. Denote

the 𝑘-SVD of T(Id, Id, 𝑒1) by 𝑃Λ𝑃 †. Define the whitened tensor E , T(𝑃, 𝑃, Id) and its

flattenings 𝐸𝑖 = E(Id, Id, 𝑒𝑖) for 𝑖 ∈ [2]. Finally, define 𝑈 , 𝑃 †𝑉 so that

E =
𝑘∑︁
𝑗=1

𝜆𝑗𝑈
𝑗 ⊗ 𝑈 𝑗 ⊗𝑊 𝑗

673

and 𝐸𝑖 = 𝑈𝐷𝑖𝑈
† for 𝑖 ∈ [2]. Note that 𝑈 also satisfies 𝑀 , 𝐸1𝐸

−1
2 = 𝑈𝐷𝑈 † for diagonal

matrix 𝐷 , 𝐷1𝐷
−1
2 , and for every 𝑗 ∈ [𝑘], ‖𝑈 𝑗‖2 = ‖𝑉 𝑗‖2 =

√
𝑚, so 𝑈 is indeed the noiseless

analogue of ̂︀𝑈 .

For any 𝑗 ∈ [𝑘], we have that

𝐷𝑗,𝑗 = 𝑒−2𝜋𝑖⟨𝜇𝑗 ,𝑣(1)−𝑣(2)⟩.

Define Δ𝐷 , min𝑗 ̸=𝑗′ |𝐷𝑗,𝑗 −𝐷𝑗′,𝑗′|.

For every 𝑗, 𝑗′ ∈ [𝑘], by triangle inequality and the fact that 𝑉 𝑗 = 𝑃𝑈 𝑗 and ̂︀𝑉 = ̂︀𝑃 ̂︀𝑈 𝑗, we

have

‖̂︀𝑉 𝑗 − 𝑉 𝑗′‖2 ≤ ‖ ̂︀𝑃 − 𝑃‖2‖̂︀𝑈 𝑗‖2 + ‖𝑃‖2‖̂︀𝑈 𝑗 − 𝑈 𝑗′‖2 ≤
√
𝑚‖ ̂︀𝑃 − 𝑃‖2 + ‖̂︀𝑈 𝑗 − 𝑈 𝑗′‖2. (9.25)

We proceed to upper bound ‖ ̂︀𝑃 − 𝑃‖2 and ‖̂︀𝑈 𝑗 − 𝑈 𝑗′‖2.

Lemma 9.10.1. ‖ ̂︀𝑃 − 𝑃‖2 ≤ 𝜂′
√
𝑚

𝜆min𝜎min(𝑉)2
.

Proof. By Wedin’s theorem,

‖ ̂︀𝑃 − 𝑃‖2 ≤ ‖̃︀T(Id, Id, 𝑒1)−T(Id, Id, 𝑒1)‖2
𝜎min(T(Id, Id, 𝑒1))

.

By (9.24), 𝜎min(T(Id, Id, 𝑒1)) ≥ 𝜆min𝜎min(𝑉)2. Additionally, ‖̃︀T(Id, Id, 𝑒1)−T(Id, Id, 𝑒1)‖𝐹 ≤

𝜂′
√
𝑚, from which the claim follows.

Lemma 9.10.2. If ‖𝑀 − ̂︁𝑀‖2 ≤ Δ𝐷

2
√
𝑘𝜅(𝑈)

, then the eigenvalues of ̂︁𝑀 are distinct, and there

exists a permutation 𝜏 for which

‖̂︀𝑈 𝑗 − 𝑈 𝜏(𝑗)‖2 ≤
3𝑚‖𝑀 − ̂︁𝑀‖2
Δ𝐷𝜎min(𝑈)

∀ 𝑗 ∈ [𝑘].

Proof. Consider the matrix 𝑈−1̂︁𝑀𝑈 = 𝐷 − 𝑈−1(𝑀 − ̂︁𝑀)𝑈 . Because ‖𝑈−1(𝑀 − ̂︁𝑀)𝑈‖2 ≤

Δ𝐷/2
√
𝑘 by assumption, we conclude by Gershgorin’s that the eigenvalues of 𝑈−1̂︁𝑀𝑈 , and

thus of ̂︁𝑀 , are distinct and each lies within Δ𝐷/2 of a unique eigenvalue of 𝑀 . Let 𝜏 be the

674

permutation matching eigenvalues {̂︀𝛽𝑗} of ̂︁𝑀 to eigenvalues {𝛽𝑗} of 𝑀 which are closest,

and without loss of generality let 𝜏 be the identity permutation.

For fixed 𝑗 ∈ [𝑘], let {𝑐𝑗′} be coefficients for which ̂︀𝑈 𝑗 =
∑︀
𝑐𝑗′𝑈

𝑗 and
∑︀

𝑗′ 𝑐
2
𝑗′ = 1. Note

that we have

̂︀𝜆𝑗∑︁
𝑗′

𝑐𝑗′𝑈
𝑗′ = ̂︀𝜆𝑗 ̂︀𝑈 𝑗 = ̂︁𝑀 ̂︀𝑈 𝑗 =

∑︁
𝑗′

𝜆𝑗′𝑐𝑗′𝑈
𝑗′ + (𝑀 − ̂︁𝑀)̂︀𝑈 𝑗,

so {𝑐𝑗′} is the solution to the linear system

∑︁
𝑗′

𝑐𝑗′ · (̂︀𝜆𝑗 − 𝜆𝑗′)𝑈 𝑗′ = (𝑀 − ̂︁𝑀)̂︀𝑈 𝑗.

Recalling that ‖𝑈 𝑗‖2 =
√
𝑚 and that

∑︀
𝑐2𝑗′ = 1, we get that

‖̂︀𝑈 𝑗 − 𝑈 𝑗‖22 =
∑︁
𝑗′ ̸=𝑗

𝑐2𝑗′‖𝑈 𝑗′‖22 + (𝑐𝑗 − 1)2‖𝑈 𝑗‖22 ≤ 2𝑚
∑︁
𝑗′ ̸=𝑗

𝑐2𝑗′

≤ 8𝑚‖𝑈−1(𝑀 − ̂︁𝑀)̂︀𝑈 𝑗‖22
Δ2
𝐷

≤ 8𝑚2‖𝑀 − ̂︁𝑀‖22
Δ2
𝐷𝜎min(𝑈)2

.

Finally, we must estimate ‖𝑀 − ̂︁𝑀‖22 in the bound in Lemma 9.10.2:

Lemma 9.10.3. If 𝜂′ ≤ 𝜆2min𝜎min(𝑉)2

6
√
𝑚𝜅(𝑉)2

, then ‖𝑀 − ̂︁𝑀‖2 ≤ 9𝜂′
√
𝑚𝜅(𝑉)2

𝜆2min𝜎min(𝑉)2
.

Proof. Define 𝑍𝑖 , ̂︀𝐸𝑖 − 𝐸𝑖 for 𝑖 ∈ [2] so by taking Schur complements

𝑀 − ̂︁𝑀 = 𝐸1𝐸
−1
2 − (𝐸1 + 𝑍1)(𝐸2 + 𝑍2)

−1 =𝑀𝑍2(Id+𝐸−1
2 𝑍2)

−1𝐸−1
2 + 𝑍1𝐸

−1
2 ,𝑀𝐻 +𝐺

(9.26)

Note that

𝜎max(𝐻) ≤ ‖𝑍2‖2
𝜎min(𝐸2)− ‖𝑍2‖2

≤ ‖𝑍2‖2
𝜆min𝜎min(𝑈)2 − ‖𝑍2‖2

, 𝜎max(𝐺) ≤
𝜎max(𝑍1)

𝜎min(𝐸2)
≤ ‖𝑍1‖2
𝜆min𝜎min(𝑈)2

675

and furthermore for either 𝑖 ∈ [2], because 𝑍𝑖 = ̂︀𝑃 †̃︀T(Id, Id, 𝑒𝑖) ̂︀𝑃 − 𝑃 †T(Id, Id, 𝑒𝑖)𝑃 ,

‖𝑍𝑖‖2 ≤ ‖𝑃‖2‖T(Id, Id, 𝑒𝑖)‖2‖𝑃 − ̂︀𝑃‖2 + ‖ ̂︀𝑃‖2‖T(Id, Id, 𝑒𝑖)‖2‖ ̂︀𝑃 − 𝑃‖2 + ‖ ̂︀𝑃‖22‖̃︀T(Id, Id, 𝑒𝑖)‖2

≤ 2
𝜂′
√
𝑚

𝜆min𝜎min(𝑉)2
· 𝜆max𝜎max(𝑉)2 + 𝜆max𝜎max(𝑉)2 ≤ 3𝜂′

√
𝑚𝜅(𝑉)2

𝜆min

(9.27)

Because 𝜎min(𝑈)
2 = 𝜎min(𝑉)2, by the bound on 𝜂′ in the hypothesis, 𝜎max(𝐻) ≤ 2‖𝑍2‖2

𝜆min𝜎min(𝑉)2
.

Finally, noting that ‖𝑀‖2 ≤ 𝜎max(𝐷) = 1, we conclude the proof from (9.26) and (9.27).

It remains to bound Δ𝐷.

Lemma 9.10.4. For any 𝛿 > 0, with probability at least 1− 𝛿, Δ𝐷 ≥ 𝑂
(︁

(𝑐−𝛾)𝛿′Δ
𝑘2

)︁
.

Proof. Using the elementary inequality |𝑒−2𝜋𝑖𝑥 − 1| ≤ 2𝜋|𝑥| for any 𝑥 ∈ R, we conclude

that |𝐷𝑗,𝑗 −𝐷𝑗′,𝑗′| ≤ |𝑒−2𝜋𝑖⟨𝜇𝑗−𝜇𝑗′ ,𝑣(1)−𝑣(2)⟩ − 1| ≤ 2𝜋|⟨𝜇𝑗 − 𝜇𝑗′ , 𝑣(1) − 𝑣(2)⟩|. By standard anti-

concentration, for any 𝑗 ̸= 𝑗′ and 𝛿′ > 0 we have that |⟨𝜇𝑗 − 𝜇𝑗′ , 𝑣(1) − 𝑣(2)⟩| ≤ 𝑂(𝛿′‖𝜇𝑗 −

𝜇𝑗′‖2 · ‖𝑣(1) − 𝑣(2)‖2) with probability at most 𝛿′. The proof follows by taking 𝛿′ = 𝛿/𝑘2,

union bounding, and recalling the definition of 𝑣(1), 𝑣(2) in TensorResolve.

Combining (9.25) and Lemmas 9.10.1, 9.10.2, 9.10.3, 9.10.4, there exists a permutation

𝜏 for which

‖̂︀𝑉 𝑗 − 𝑉 𝜏(𝑗)‖2 ≤
𝜂′𝑚

𝜆min𝜎min(𝑉)2
+

27𝜂′𝑚3/2𝜅(𝑉)2

Δ𝐷𝜆2min𝜎min(𝑉)3
≤ 𝑂

(︂
𝑘2𝜂′𝑚3/2𝜅(𝑉)5

(𝑐− 𝛾)𝛿Δ𝜆2min

)︂
∀𝑗 ∈ [𝑘].

We conclude that for the permutation matrix Π corresponding to 𝜏 , ‖̂︀𝑉−𝑉Π‖𝐹 ≤
√
𝑘max𝑗∈[𝑘]‖̂︀𝑉 𝑗−

𝑉 𝜏 (𝑗)‖2 ≤ 𝑂
(︁
𝑘5/2𝜂′𝑚3/2𝜅(𝑉)5

(𝑐−𝛾)𝛿Δ𝜆2min

)︁
as claimed.

9.11 Appendix: Generating Figure 9-3

Here we elaborate on how Figure 9-3 was generated. While Theorem 9.5.1 yields an explicit

construction which rigorously demonstrates the phase transition at the diffraction limit,

empirically we found that this phase transition was even more pronounced when we slightly

modified the construction. Specifically, we empirically evaluated the following instance:

676

for even 𝑘, separation Δ > 0, and 1 ≤ 𝑖 ≤ 𝑘, let 𝜇𝑖 = (𝑎𝑖, 0) and let 𝜇′
𝑖 = (𝑏𝑖, 0) for

𝑎𝑖 , Δ
2
·
(︀
2𝑖− 𝑘+3

2

)︀
and 𝑏𝑖 , Δ

2
·
(︀
2𝑖− 𝑘+1

2

)︀
, and take {𝜆𝑖} and {𝜆′𝑖} to be the unique solution

to the affine system

⌈𝑘/2⌉∑︁
𝑖=1

𝜆𝑖 = 1 and
⌊𝑘/2⌋∑︁
𝑖=1

𝜆′𝑖 = 1

⌈𝑘/2⌉∑︁
𝑖=1

𝜆𝑖𝑎
ℓ
𝑖 =

⌊𝑘/2⌋∑︁
𝑖=1

𝜆′𝑖𝑏
ℓ
𝑖 ∀ 0 ≤ ℓ < 𝑘 − 1.

These are the weights for which the superposition of point masses at {𝜇𝑖} with weights

{𝜆𝑖} matches the superposition of point masses at {𝜇′
𝑖} with weights {𝜆′𝑖} on all moments

of degree at most 𝑘 − 2. While moment-matching does not directly translate to any kind

of statistical lower bound, it is often the starting point for many such lower bounds in the

distribution learning literature [MV10, DKS17, HP15, Kea98]. The “carefully chosen pair

of superpositions” referenced in the caption of Figure 9-3 refers to this moment-matching

construction. Henceforth refer to these two superpositions, both of which are Δ-separated

superpositions of 𝑘/2 Airy disks, as 𝒟0(Δ, 𝑘) and 𝒟1(Δ, 𝑘) respectively. We will omit the

parenthetical Δ, 𝑘 when the context is clear.

Unfortunately, there is no closed form for the expression for 𝑑TV(𝒟0,𝒟1). Instead, we esti-

mated this via numerical integration. Direct evaluation of the integral
∫︀
R2 |𝒟0(x)−𝒟1(x)| 𝑑𝑥

poses issues because of the heavy tails of the Airy point spread function. To tame these

tails, we used a carefully chosen proposal measure 𝜇 in order to rewrite 𝑑TV(𝒟0,𝒟1) as∫︀
R2

⃒⃒⃒
𝒟0(x)
𝜇(x)
− 𝒟1(x)

𝜇(x)

⃒⃒⃒
𝑑𝜇. Because of the heavy tails, we needed to use a similarly heavy-tailed

proposal distribution, so we took 𝜇 to be the convolution of the superposition of point masses

at {𝜇𝑖}∪{𝜇′
𝑖} having weights {𝜆𝑖}∪{𝜆′𝑖} with the following kernel 𝑃 (·). To sample from the

density over R2 correpsonding to 𝑃 , with probability 1/2 sample a radius 𝑟 uniformly from

[0, 1] and output a random vector in R2 of norm 𝑟, and with the remaining probability 1/2,

sample from the Pareto distribution with parameter 2/3 over [1,∞] and output a random

vector of norm 𝑟. The motivation for 𝑃 and in particular for the parameter 2/3 is that it

is a rough approximation to the tail behavior of the radial density 𝐽1(𝑟)2

𝑟
defining the Airy

point spread function, which by Theorem 9.3.6 decays roughly as 𝑟−5/3.

To generate the curves in Figure 9-3, for each 𝑘 ∈ [2, 4, 6, 12, 20, 30, 42, 56, 72, 90] and each

Δ ∈ [−2,−1.92,−1.84, ..., 1.84, 1.92, 2], we simply estimated the corresponding 𝑑TV(𝒟0,𝒟1)

677

by sampling 10 million points x from 𝜇 and computing the empirical mean of the quantity⃒⃒⃒
𝒟0(x)
𝜇(x)
− 𝒟1(x)

𝜇(x)

⃒⃒⃒
.

We have made the code for Figure 9-3 available at https://github.com/secanth/airy/.

678

https://github.com/secanth/airy/

Chapter 10

Quantum Memory-Sample Tradeoffs for

Mixedness Testing

10.1 Introduction

In the last two chapters of this thesis, we study the problem of quantum state certification.

We begin by recalling the setup and motivation. Recall from Definition 1.2.36 that in this

problem, we are given 𝑁 copies of an unknown mixed state 𝜌 ∈ C𝑑×𝑑 and a description of

a known mixed state 𝜎, and our goal is to make measurements on these copies and use the

outcomes of these measurements to distinguish whether 𝜌 = 𝜎, or if it is 𝜀-far from 𝜎 in trace

norm. An important special case of this is when 𝜎 is the maximally mixed state, in which

case the problem is known as quantum mixedness testing.

This problem is motivated by the need to verify the output of quantum computations. In

many applications, a quantum algorithm is designed to prepare some known 𝑑-dimensional

mixed state 𝜎. However, due to the possibility of noise or device defects, it is unclear

whether or not the output state is truly equal to 𝜎. Quantum state certification allows

us to verify the correctness of the quantum algorithm. In addition to this more practical

motivation, quantum state certification can be seen as the natural non-commutative analogue

of identity testing of (classical) probability distributions, a well-studied problem in statistics

and theoretical computer science.

Recently, [OW15] demonstrated that Θ(𝑑/𝜀2) copies are necessary and sufficient to solve

679

quantum mixedness testing with good confidence. Subsequently, [BOW19] demonstrated

that the same copy complexity suffices for quantum state certification. Note that these copy

complexities are sublinear in the number of parameters in 𝜌, and in particular, are less than

the Θ(𝑑2/𝜀2) copies necessary to learn 𝜌 to 𝜀 error in trace norm [OW16,HHJ+17].

To achieve these copy complexities, the algorithms in [OW15, BOW19] heavily rely on

entangled measurements. These powerful measurements allow them to leverage the repre-

sentation theoretic structure of the underlying problem to dramatically decrease the copy

complexity. However, this power comes with some tradeoffs. Entangled measurements re-

quire that all𝑁 copies of 𝜌 are measured simultaneously. Thus, all 𝑁 copies of 𝜌must be kept

in quantum memory without any of them de-cohering. Additionally, the positive-operator

valued measure (POVM) elements that formally define the quantum measurement must all

be of size 𝑑𝑁×𝑑𝑁 ; in particular, the size of the POVM elements scales exponentially with 𝑁 .

Both of these issues are problematic for using any of these algorithms in practice [CW20].

Entangled measurements are also necessary for the only known sample-optimal algorithms

for quantum tomography [OW16,HHJ+17,OW17].

This leads to the question: can these sample complexities be achieved using weaker forms

of measurement? There are two natural classes of such restricted measurements to consider:

• an (unentangled) nonadaptive measurement fixes 𝑁 POVMs ahead of time, measures

each copy of 𝜌 using one of these POVMs, then uses the results to make its decision.

• an (unentangled) adaptive measurement measures each copy of 𝜌 sequentially, and can

potentially choose its next POVM based on the results of the outcomes of the previous

experiments.

It is clear that fully entangled measurements are strictly more general than adaptive mea-

surements, which are in turn strictly more general than nonadaptive ones. However, both

nonadaptive and adaptive measurements have the advantage that the quantum memory they

require is substantially smaller than what is required for a generic entangled measurement.

In particular, only one copy of 𝜌 need be prepared at any given time, as opposed to the 𝑁

copies that must simultaneously be created, if we use general entangled measurements.

Separating the power of entangled vs. nonentangled measurements for such quantum

680

learning and testing tasks was posed as an open problem in [Wri16]. In this paper, we

demonstrate the first such separations for quantum state certification, and to our knowledge,

the first separation between adaptive measurements and entangled measurements without

any additional assumptions on the measurements, for any quantum estimation task.

We first show a sharp characterization of the copy complexity of quantum mixedness

testing with nonadaptive measurements:

Theorem 10.1.1. If only unentangled, nonadaptive measurements are used, Θ(𝑑3/2/𝜀2)

copies are necessary and sufficient to distinguish whether 𝜌 ∈ C𝑑×𝑑 is the maximally mixed

state, or if 𝜌 has trace distance at least 𝜀 from the maximally mixed state, with probability at

least 2/3.

We defer a proof of the upper bound in this theorem to the next chapter (see Lemma 11.6.2).

Second, we show that 𝜔(𝑑) copies are necessary, even with adaptive measurements. We

view this as our main technical contribution. Formally:

Theorem 10.1.2. If only unentangled, possibly adaptive, measurements are used, Ω(𝑑4/3/𝜀2)

copies are necesssary to distinguish whether 𝜌 ∈ C𝑑×𝑑 is the maximally mixed state, or has

trace distance at least 𝜀 from the maximally mixed state, with probability at least 2/3.

As quantum state certification is a strict generalization of mixedness testing, Theorems 10.1.1

and 10.1.2 also immediately imply separations for that problem as well. Note that the

constant 2/3 in the above theorem statements is arbitrary and can be replaced with any

constant greater than 1/2. We also remark that our lower bounds make no assumptions on

the number of outcomes of the POVMs used, which can be infinite (see Definition 1.3.47).

10.1.1 Overview of our techniques

In this section, we give a high-level description of our techniques. We start with the lower

bounds.

“Lifting” classical lower bounds to quantum ones Our lower bound instance can be

thought of as the natural quantum analogue of Paninski’s for (classical) uniformity testing:

Theorem 10.1.3 (Theorem 4, [Pan08]). Ω(
√
𝑑/𝜀2) samples are necessary to distinguish

681

whether a distribution 𝑝 over {1, . . . , 𝑑} is 𝜀-far from the uniform distribution in total vari-

ation distance, with confidence at least 2/3.

At a high level, Paninski demonstrates that it is statistically impossible to distinguish be-

tween the distribution 𝑝≤𝑁0 of 𝑁 independent draws from the uniform distribution, and the

distribution 𝑝≤𝑁1 of 𝑁 independent draws from a random perturbation of the uniform dis-

tribution, where the marginal probability of each element in {1, . . . , 𝑑} has been randomly

perturbed by ±𝜀/𝑑 (see Example 10.2.7).

The hard instance we consider can be viewed as the natural quantum analogue of Panin-

ski’s construction. Roughly speaking, rather than simply perturbing the marginal proba-

bilities of every element in {1, . . . , 𝑑}, which corresponds to randomly perturbing the di-

agonal elements of the mixed state, we also randomly rotate it (see Construction 2). We

note that this hard instance is not novel and has been considered before in similar set-

tings [OW15,Wri16,HHJ+17]. However, our analysis technique is quite different from previ-

ous bounds, especially in the adaptive setting.

The technical crux of Paninski’s lower bound is to upper bound the total variation dis-

tance between 𝑝≤𝑁0 and 𝑝≤𝑁1 in terms of the 𝜒2-divergence between the two. This turns out

to have a simple, explicit form, and can be calculated exactly. This works well because,

conditioned on the choice of the random perturbation in 𝑝≤𝑁1 , both of the distributions 𝑝≤𝑁0

and 𝑝≤𝑁1 have a product structure, as they consist of 𝑁 independent samples.

This product structure still holds true in the quantum case when we restrict to non-

adaptive measurements. This allows us to do a more involved version of Paninski’s calculation

in the quantum case and thus obtain the lower bound in Theorem 10.1.1.

However, this product structure breaks down completely in the adaptive setting, as now

the POVMs, and hence, the measurement outcomes that we observe, for the 𝑡-th copy of 𝜌,

can depend heavily on the previous outcomes. As a result, the 𝜒2-divergence between the

analogous quantities to 𝑝≤𝑁0 and 𝑝≤𝑁1 no longer have a nice, closed form, and it is not clear

how to proceed using Paninski’s style of argument.

Instead, inspired by the literature on bandit lower bounds [ACBFS02,BCB12], we upper

bound the total variation distance between 𝑝≤𝑁0 and 𝑝≤𝑁1 by the KL divergence between

these two quantities. The primary advantage of doing so is that the KL divergence satisfies

682

the chain rule. This allows us to partially disentangle how much information that the 𝑡-th

copy of 𝜌 gives the algorithm, conditioned on the outcomes of the previous experiments.

At present, this chain-rule formulation of Paninski’s lower bound seems to be somewhat

lossy. Even in the classical case, we need additional calculations tailored to Paninski’s

instance to recover the Ω(
√
𝑑/𝜀2) bound for uniformity testing (see Appendix 10.8), without

which our approach can only obtain a lower bound of Ω(𝑑1/3/𝜀2) (see Section 10.5). At a

high level, this appears to be why we do not obtain a lower bound of Ω(𝑑3/2/𝜀2) for adaptive

measurements. We leave the question of closing this gap as an interesting future direction.

“Projecting” quantum upper bounds to classical ones While the lower bound tech-

niques we employ are motivated by the lower bounds for classical testing, they do not directly

use any of those results. In contrast, to obtain our upper bounds, we demonstrate a direct

reduction from non-adaptive mixedness testing to classical uniformity testing. The reduc-

tion is as follows. First, we choose a random orthogonal measurement basis. Measuring 𝜌

in this basis induces some distribution over {1, . . . , 𝑑}. If 𝜌 is maximally mixed, this dis-

tribution is the uniform distribution. Otherwise, if it is far from maximally mixed, then

by similar concentration of measure phenomena as used in the proof of the lower bounds,

with high probability this distribution will be quite far from the uniform distribution in 𝐿2

distance. Thus, to distinguish these two cases, we can simply run a classical 𝐿2 uniformity

tester [CDVV14,DKN14,CDGR18]. See Section 11.6.1 for more details.

Concentration of measure over the unitary group In both our lower bounds and

upper bounds, it will crucial to carefully control the deviations of various functions of Haar

random unitary matrices. In fact, specializations of quantities we encounter have been

extensively studied in the literature on quantum transport in mesoscopic systems, namely the

conductance of a chaotic cavity [BB96,Bee97,BB00,KSS09,AOK09], though the tail bounds

we need are not captured by these works (see Section 10.3.3 for more details). Instead, we

will rely on more general tail bounds [MM13] that follow from log-Sobolev inequalities on

the unitary group 𝑈(𝑑).

683

10.1.2 Related Work

The literature on quantum (and classical) testing and learning is vast and we cannot hope

to do it justice here; for conciseness we only discuss some of the more relevant works below.

Quantum state certification fits into the general framework of quantum state property

testing problems. Here the goal is to infer non-trivial properties of the unknown quantum

state, using fewer copies than are necessary to fully learn the state. See [MdW16] for a more

complete survey on property testing of quantum states. Broadly speaking, there are two

regimes studied here: the asymptotic regime and the non-asymptotic regime.

In the asymptotic regime, the goal is to precisely characterize the exponential convergence

of the error as 𝑛→∞ and 𝑑, 𝜀 are held fixed and relatively small. In this setting, quantum

state certification is commonly referred to as quantum state discrimination. See e.g. [Che00,

ANSV08,BC09] and references within. However, this allows for rates which could depend

arbitrarily badly on the dimension.

In contrast, we work in the non-asymptotic regime, where the goal is to precisely char-

acterize the rate of convergence as a function of 𝑑 and 𝜀. The closest work to ours is

arguably [OW15] and [BOW19]. The former demonstrated that the copy complexity of

quantum mixedness testing is Θ(𝑑/𝜀2), and the latter showed that quantum state certifica-

tion has the same copy complexity. However, as described previously, the algorithms which

achieve these copy complexities heavily rely on entangled measurements.

Another interesting line of work focuses on the case where the measurements are only

allowed to be Pauli matrices [FL11,FGLE12, dSLCP11,AGKE15]. Unfortunately, even for

pure states, these algorithms require Ω(𝑑) copies of 𝜌. We note in particular the paper

of [FGLE12], which gives a Ω(𝑑) lower bound for the copy complexity of the problem, even

when the Pauli measurements are allowed to be adaptively chosen. However, their techniques

do not appear to generalize easily to arbitrary adaptive measurements.

We also mention [Yu19] which gives algorithms for various quantum property testing

problems using local measurements which non-adaptively operate on each individual qubit.

Because this is a more restrictive family of measurements, the sample complexity for these

algorithms suffers some polynomial overhead as a function of 𝑑.

684

A related task is that of quantum tomography, where the goal is to recover 𝜌, typically

to good fidelity or low trace norm error. The paper [HHJ+17] showed that 𝑂(𝑑2 log(𝑑/𝜀)/𝜀2)

copies suffice to obtain 𝜀 trace error, and that Ω(𝑑2/𝜀2) copies are necessary. Indepen-

dently, [OW16] improved their upper bound to𝑂(𝑑2/𝜀2). These papers, in addition to [OW17],

also discuss the case when 𝜌 is low rank, where 𝑜(𝑑2) copy complexity can be achieved.

Notably, all the upper bounds that achieve the tight bound heavily require entanglement.

In [HHJ+17], they demonstrate that Ω(𝑑3/𝜀2) copies are necessary, if the measurements are

nonadaptive. It is a very interesting question to understand the power of adaptive measure-

ments for this problem as well.

Quantum state certification and quantum mixedness testing are the natural quantum

analogues of classical identity testing and uniformity testing, respectively, which both fit

into the general setting of (classical) distribution testing. There is again a vast literature

on this topic; see e.g. [Can20,Gol17] for a more extensive treatment of the topic. Besides

the papers covered previously and in the surveys, we highlight a line of work on testing

with conditional sampling oracles [CRS15,CFGM16,CRS14,ACK14,BC18,KT19], a classical

model of sampling which also allows for adaptive queries. It would be interesting to see if the

techniques we develop here can also be used to obtain stronger lower bounds in this setting.

Adaptivity also plays a major role in property testing of functions [BB16,CWX17a,KS16,

BCP+17, CWX17b, Bel18], although these problems appear to be technically unrelated to

the ones we consider here.

Roadmap The rest of the paper is organized as follows:

• Section 10.2— We describe a generic setup that captures Paninski’s and our settings as

special cases and provide an overview of the techniques needed to show lower bounds

in this setup.

• Section 10.3— We formalize the notion of quantum property testing via adaptive mea-

surements, define our lower bound instance, and perform some preliminary calculations.

• Section 10.4— Proof of the lower bound in Theorem 10.1.1.

• Section 10.5— As a warmup to the proof of Theorem 10.1.2, we prove a weaker version

685

of Paninski’s lower bound using our chain rule approach.

• Section 10.6— Proof of our main result, Theorem 10.1.2.

• Section 10.7— Proof of certain tail bounds for Haar-random unitary matrices which

are crucial to the proofs of Theorems 10.1.1 and 10.1.2.

• Appendix 10.8— A more ad hoc chain rule proof of Paninski’s optimal Ω(
√
𝑑/𝜀2) lower

bound.

10.2 Lower Bound Strategies

The lower bounds we show in this work are lower bounds on the number of observations

needed to distinguish between a simple null hypothesis and a mixture of alternatives. For

instance, in the context of classical uniformity testing, the null hypothesis is that the un-

derlying distribution is the uniform distribution over [𝑑], and the mixture of alternatives

considered in [Pan08] is that the underlying distribution was drawn from a particular dis-

tribution over distributions 𝑝 which are 𝜀-far in total variation distance from the uniform

distribution (see Example 10.2.7). In our setting, the null hypothesis is that the underlying

state is the maximally mixed state 𝜌mm, and the mixture of alternatives will be a particular

distribution over quantum states 𝜌 which are 𝜀-far in trace distance from 𝜌mm (see Construc-

tion 2).

Note that in order to obtain dimension-dependent lower bounds, as in classical uniformity

testing, it is essential that the alternative hypothesis be a mixture. If the task were instead

to distinguish whether the underlying state was 𝜌mm or some specific alternative state 𝜌,

then if we make independent measurements in the eigenbasis of 𝜌, it takes only 𝑂(1/𝜀2) such

measurements to tell apart the two scenarios.

For this reason we will be interested in the following abstraction which contains as special

cases both Paninski’s lower bound instance for uniformity testing [Pan08] and our lower

bound instance for mixedness testing, and which itself is a special case of Le Cam’s two-

point method [LeC73]. We will do this in a few steps. First, we give a general formalism for

what it means to perform possibly adaptive measurements:

686

Definition 10.2.1 (Adaptive measurements). Given an underlying space 𝒮, a natural num-

ber 𝑁 ∈ N, and a (possibly infinite) universe 𝒰 of measurement outcomes, a measurement

schedule 𝐴 using 𝑁 measurements is any (potentially random) algorithm which outputs

𝑀1, . . . ,𝑀𝑁 : 𝒮 → 𝒰 , where each 𝑀𝑖 is a potentially random function. We say that 𝐴

is nonadaptive if the choice of 𝑀𝑖 is independent of the choice of 𝑀𝑗 for all 𝑗 ̸= 𝑖, and we

say 𝐴 is adaptive if the choice of 𝑀𝑡 depends only on the outcomes of 𝑀1, . . . ,𝑀𝑡−1 for all

𝑡 ∈ [𝑁].

To instantiate this for the quantum setting, we let the underlying space 𝒮 be the set of

mixed states, and we restrict the measurement functions to be (possibly adaptively chosen)

POVMs. See Definition 10.3.1 for a formal definition.

Recall the definition of a distinguishing task from Definition 1.2.35, reworded slightly

here:

Definition 10.2.2. A distinguishing task is specified by two disjoint sets 𝒮0,𝒮1 in 𝒮. For

any 𝑁 ∈ N, and any measurement schedule 𝐴, we say that 𝐴 solves the problem if there exists

a (potentially random) post-processing algorithm 𝑓 : 𝒰𝑁 → {0, 1} so that for any 𝛼 ∈ {0, 1},

if 𝐷 ∈ 𝒮𝛼, then

Pr[𝑓 (𝑀1(𝐷) ∘ · · · ∘𝑀𝑁(𝐷)) = 𝛼] ≥ 2/3 ,

where 𝑀1, . . . ,𝑀𝑁 are generated by 𝐴.

For instance, to instantiate the quantum mixedness testing setting, we let 𝒮 be the set of

mixed states, we let 𝒮0 = {𝜌mm} be the set containing only 𝜌mm, the maximally mixed state,

and we let 𝒮1 = {𝜌 : ‖𝜌 − 𝜌mm‖1 > 𝜀}. Note that the choice of 2/3 for the constant is

arbitrary and can be replaced (up to constant factors in 𝑁) with any constant strictly larger

than 1/2. With this, we can now define our lower bound setup:

Definition 10.2.3 (Lower Bound Setup: Simple Null vs. Mixture of Alternatives). In the

setting of Definition 10.2.2, a distinguishing task is specified by a null object 𝐷0 ∈ 𝒮0, a set

of alternate objects {𝐷𝜁} ⊆ 𝒮1 parametrized by 𝜁, and a distribution 𝒟 over 𝜁.

For any measurement schedule 𝐴 which generates measurement functions 𝑀1, . . . ,𝑀𝑁 ,

let 𝑝≤𝑁0 = 𝑝≤𝑁0 (𝐴) and 𝑝≤𝑁1 = 𝑝≤𝑁1 (𝐴) be distributions over strings 𝑥≤𝑁 ∈ 𝒰𝑁 , which we call

transcripts of length 𝑁 . The distribution 𝑝≤𝑁0 corresponds to the distribution of 𝑀1(𝐷0)∘· · ·∘

687

𝑀𝑁(𝐷0). The distribution 𝑝≤𝑁1 corresponds to the distribution of of 𝑀1(𝐷𝜁) ∘ · · · ∘𝑀𝑁(𝐷𝜁),

where 𝜁 ∼ 𝒟.

The following is a standard result which allows us to relate this back to property testing:

Fact 10.2.4. Let 𝒮0,𝒮1 be a property, let 𝑁 ∈ N, and let 𝒜 be a class of measurement

schedules using 𝑁 measurements. Suppose that there exists a distinguishing task so that for

every 𝐴 ∈ 𝒜, we have that 𝑑TV(𝑝
≤𝑁
0 (𝐴), 𝑝≤𝑁1 (𝐴)) ≤ 1/3. Then the distinguishing task cannot

be solved with 𝑁 samples by any algorithm in 𝒜.

For the remainder of the paper, we will usually implicitly fix a measurement schedule 𝐴, and

just write 𝑝≤𝑁0 and 𝑝≤𝑁1 . The properties that we assume (e.g. adaptive or nonadaptive) of

this algorithm should be clear from context, if it is relevant.

We next define some important quantities which repeatedly arise in our calculations:

Definition 10.2.5. In the setting of Definition 10.2.3, for any 𝑡 ∈ [𝑁], define 𝑝𝑡0(·|𝑥<𝑡), 𝑝𝑡1(·|𝑥<𝑡)

to be the respective conditional laws of the 𝑡-th entry, given preceding transcript 𝑥<𝑡. For any

𝜁, let 𝑝≤𝑁1 |𝜁 be the distribution over transcripts from 𝑁 independent observations from 𝐷𝜁.

Assume additionally that 𝑝≤𝑁1 |𝜁 are absolutely continuous with respect to 𝑝≤𝑁0 , for every

𝜁 ∈ supp(𝒟). Then, there will exist functions {𝑔𝜁𝑥<𝑡
(·)}𝑡∈[𝑁],𝑥<𝑡∈𝒰𝑡−1,𝜁∈supp(𝒟), such that for

any 𝜁, 𝑡, 𝑥≤𝑡, the Radon-Nikodym derivative satisfies

d𝑝≤𝑡1 |𝜁
d𝑝≤𝑡0

(𝑥≤𝑡) =
𝑡∏︁
𝑖=1

(︀
1 + 𝑔𝜁𝑥<𝑖

(𝑥𝑖)
)︀
. (10.1)

We refer to the 𝑔𝜁𝑥<𝑡
(·) functions as likelihood ratio factors.

We emphasize that neither 𝑝≤𝑁0 nor any of the alternatives 𝑝≤𝑁1 |𝜁 is necessarily a product

measure. Indeed, this is one of the crucial difficulties of proving lower bounds in the adaptive

setting. In the non-adaptive setting, the picture of Definition 10.2.3 simplifies substantially:

Definition 10.2.6 (Non-adaptive Testing Lower Bound Setup). In this case, in the notation

of Definition 10.2.3, the measurement schedule 𝐴 is nonadaptive, so 𝑝≤𝑁0 and all 𝑝≤𝑁1 |𝜁 are

product measures. Consequently, the functions 𝑔𝜁𝑥<𝑡
will depend only on 𝑡 and not on the

particular transcript 𝑥<𝑡, so we will denote the functions by {𝑔𝜁𝑡 (·)}𝑡∈[𝑁],𝜁∈supp(𝒟).

Paninski’s lower bound for classical uniformity testing [Pan08] is an instance of the non-

688

adaptive setup of Definition 10.2.6:

Example 10.2.7. Let us first recall Paninski’s construction. Here the set 𝒮 is the set of

distributions over [𝑑]. Uniformity testing is the property 𝑆0 = {𝑈}, 𝑆1 = {𝑈 ′ : 𝑑TV(𝑈,𝑈
′) ≥

𝜀}, where 𝑈 is the uniform distribution over [𝑑]. In the classical “sampling oracle” model of

distribution testing, the measurements 𝑀𝑖 simply take a distribution 𝐷 ∈ 𝒮 and output an

independent sample from 𝐷. In particular, 𝒰 = [𝑑].

To form Paninski’s lower bound instance, take 𝒟 to be the uniform distribution over

{±1}𝑑/2. Let the null hypothesis be 𝐷0, and let the set of alternate hypotheses be given by

{𝐷𝑧}𝑧∈{±1}𝑑/2, where 𝐷𝑧 the distribution over [𝑑] whose 𝑥-th marginal is 𝐷𝑧(𝑥) =
1
𝑑
+(−1)𝑥 ·

𝜀
𝑑
· 𝑧⌈𝑥/2⌉ for any 𝑥 ∈ [𝑑]. Clearly 𝐷𝑧 ∈ 𝒮1 for all 𝑧.

There is no obviously no adaptivity in what the tester does after seeing each new sample.

So the family of likelihood ratio factors {𝑔𝑧𝑡 (·)} for which (10.1) holds is given by

𝑔𝑧𝑡 (𝑥) = 𝑔𝑧(𝑥) , 𝜀(−1)𝑥 · 𝑧⌈𝑥/2⌉. (10.2)

The definition of 𝑝≤𝑁0 , 𝑝≤𝑁1 in our proofs will be straightforward (see Construction 2),

and by Fact 10.2.4, the key technical difficulty is to upper bound the total variation distance

between 𝑝≤𝑁0 , 𝑝≤𝑁1 in terms of 𝑁 . In Section 10.2.1, we overview our approach for doing

so in the non-adaptive setting of Definition 10.2.6, and in Section 10.2.2, we describe our

techniques for extending these bounds to the generic, adaptive setting of Definition 10.2.3.

10.2.1 Non-Adaptive Lower Bounds

It is a standard trick to upper bound total variation distance between two distributions in

terms of the 𝜒2-divergence, which is often more amenable to calculations. These calculations

are especially straightforward in the non-adaptive setting of Definition 10.2.6 and is reminis-

cent of the so-called Ingster-Suslina method [IS12] for showing minimax bounds in classical

settings (see Section 11.2).

Lemma 10.2.8. Let 𝑝≤𝑁0 , 𝑝≤𝑁1 ,𝒟, {𝑔𝜁𝑡 (·)}𝑡∈N,𝜁∈supp(𝒟) be defined as in Definition 10.2.6. As

689

𝑝≤𝑁0 is therefore a product measure, for every 𝑡 ∈ [𝑁] denote its 𝑡-th marginal by 𝑝𝑡0. Then

1

2 ln 2
𝑑TV

(︀
𝑝≤𝑁1 , 𝑝≤𝑁0

)︀2 ≤ 𝜒2
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
≤ max

𝑡
E
𝜁,𝜁′

⎡⎣(︃1 + E
𝑥𝑡∼𝑝𝑡0

[︁
𝑔𝜁𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)
]︁)︃𝑁

⎤⎦− 1.

Proof. The first inequality is just Pinsker’s and the fact that chi-squared divergence upper

bounds KL divergence. For the latter inequality, it will be convenient to define

𝑔𝜁𝑆(𝑥𝑆) ,
∏︁
𝑡∈𝑆

𝑔𝜁𝑡 (𝑥𝑡).

Then for any 𝜁, 𝜁 ′, 𝑆, the product structure implies

E
𝑥≤𝑁∼𝑝≤𝑁

0

[︁
𝑔𝜁𝑆(𝑥𝑆)𝑔

𝜁′

𝑆 (𝑥𝑆)
]︁
=
∏︁
𝑡∈𝑆

E
𝑥𝑡∼𝑝𝑡0

[𝑔𝜁𝑡 (𝑥𝑡)𝑔
𝜁′

𝑡 (𝑥𝑡)] (10.3)

We then get that

𝜒2
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
= E

𝑥≤𝑁∼𝑝≤𝑁
0

⎡⎣(︃E
𝜁

[︃
𝑁∏︁
𝑡=1

(1 + 𝑔𝜁𝑡 (𝑥𝑡))

]︃
− 1

)︃2
⎤⎦ = E

𝑥≤𝑁 ,𝜁,𝜁′

⎡⎣ ∑︁
∅≠𝑆,𝑆′⊆[𝑁]

𝑔𝜁𝑆(𝑥𝑆)𝑔
𝜁′

𝑆′(𝑥𝑆′)

⎤⎦

= E
𝑥≤𝑁 ,𝜁,𝜁′

⎡⎣∑︁
𝑆 ̸=∅

𝑔𝜁𝑆(𝑥𝑆)𝑔
𝜁′

𝑆 (𝑥𝑆)

⎤⎦ = E
𝜁,𝜁′

[︃
𝑁∏︁
𝑡=1

(︃
1 + E

𝑥𝑡∼𝑝𝑡0

[︁
𝑔𝜁𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)
]︁)︃]︃

− 1

≤ max
𝑡

E
𝜁,𝜁′

⎡⎣(︃1 + E
𝑥𝑡∼𝑝𝑡0

[︁
𝑔𝜁𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)
]︁)︃𝑁

⎤⎦− 1, (10.4)

where the fourth step follows by (10.3), the last step follows by Holder’s, and the third step

follows by the fact that for 𝑆 ̸= 𝑆 ′ and any 𝜁, 𝜁 ′,

E
𝑥≤𝑁

[𝑔𝜁𝑆(𝑥𝑆)𝑔
𝜁′

𝑆′(𝑥𝑆′)] =
∏︁

𝑡∈𝑆∩𝑆′

E
𝑥𝑡
[𝑔𝜁𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)] ·
∏︁

𝑡∈𝑆∖𝑆′

E
𝑥𝑡
[𝑔𝜁𝑡 (𝑥𝑡)] ·

∏︁
𝑡∈𝑆′∖𝑆

E
𝑥𝑡
[𝑔𝜁

′

𝑡 (𝑥𝑡)] = 0,

The upshot of (10.4) is that the fluctuations of the quantities E𝑥𝑡 [𝑔
𝜁
𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)] with

690

respect to the randomness of 𝜁, 𝜁 ′ dictate how large 𝑁 must be for 𝑝≤𝑁0 and 𝑝≤𝑁1 to be

distinguishable.

Example 10.2.9. Recalling (10.2), the quantities E𝑥𝑡 [𝑔
𝜁
𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)] take a particularly nice

form in Paninski’s setting. There we have

E
𝑥𝑡
[𝑔𝜁𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)] = 𝜀2 · E
𝑥∼[𝑑]

[︀
𝑧⌈𝑥/2⌉ · 𝑧′⌈𝑥/2⌉

]︀
=
𝜀2

𝑑

𝑑∑︁
𝑥=1

1[𝑧⌈𝑥/2⌉ = 𝑧′⌈𝑥/2⌉] =
2𝜀2

𝑑
⟨𝑧, 𝑧′⟩ (10.5)

Because ⟨𝑧, 𝑧′⟩ is distributed as a shifted, rescaled binomial distribution, E𝑥𝑡 [𝑔
𝜁
𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)]

has sub-Gaussian tails and fluctuations of order 𝑂(𝜀2/
√
𝑑), implying that for 𝑁 as large as

𝑜(
√
𝑑/𝜀2), 𝜒2

(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
= 𝑜(1). While this is not exactly how Paninski’s lower bound was

originally proven, concentration of the binomial random variable ⟨𝑧, 𝑧′⟩ lies at the heart of

the lower bound and formalizes the usual intuition for the
√
𝑑 scaling in the lower bound: to

tell whether a distribution is far from uniform, it is necessary to draw Ω(
√
𝑑) samples just

to see some element of [𝑑] appear twice.

In Section 10.4, we will show how to use Lemma 10.2.8 to prove Theorem 10.1.1. As

it turns out, understanding the fluctuations of the random variable E𝑥𝑡 [𝑔
𝜁
𝑡 (𝑥𝑡)𝑔

𝜁′

𝑡 (𝑥𝑡)] that

arises in that setting will be one of the primary technical challenges of this work, both for

our adaptive and non-adaptive lower bounds (see Section 10.7).

10.2.2 Adaptive Lower Bounds

As was discussed previously and is evident from the proof of Lemma 10.2.8, the lack of

product structure for 𝑝≤𝑁0 and 𝑝≤𝑁1 |𝜁 in the adaptive setting of Definition 10.2.3 makes

it infeasible to directly estimate 𝜒2
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
. Inspired by the literature on bandit lower

bounds [ACBFS02,BCB12], we instead upper bound KL
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
, for which we can appeal

to the chain rule to tame the extra power afforded by adaptivity. To handle the mixture

structure of 𝑝≤𝑁1 , we will upper bound each of the resulting conditional KL divergence terms

by their corresponding conditional 𝜒2 divergence.

First, we introduce some notation essential to the calculations in this work.

Definition 10.2.10 (Key Quantities). In the generic setup of Definition 10.2.3, for any

691

𝑥≤𝑡 ∈ 𝒰 𝑡, define

Δ(𝑥≤𝑡) ,
d𝑝≤𝑡1

d𝑝≤𝑡0

(𝑥≤𝑡), 𝜑
𝜁,𝜁′

𝑥≤𝑡
, E

𝑥∼𝑝𝑡0(·|𝑥≤𝑡)

[︁
𝑔𝜁𝑥≤𝑡

(𝑥)𝑔𝜁
′

𝑥≤𝑡
(𝑥)
]︁
, Ψ𝜁,𝜁′

𝑥≤𝑡
,

𝑡∏︁
𝑖=1

(1+𝑔𝜁𝑥<𝑖
(𝑥𝑖))(1+𝑔

𝜁′

𝑥<𝑖
(𝑥𝑖))

(10.6)

The following is a key technical ingredient of this work.

Lemma 10.2.11. Let 𝑝≤𝑁0 , 𝑝≤𝑁1 ,𝒟, {𝑔𝜁𝑥<𝑡
(·)} be defined as in Definition 10.2.3. Then

1

2 ln 2
𝑑TV

(︀
𝑝≤𝑁0 , 𝑝≤𝑁1

)︀2 ≤ KL
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
≤

𝑁∑︁
𝑡=1

E
𝑥<𝑡∼𝑝≤𝑡−1

0

[︂
1

Δ(𝑥<𝑡)
E

𝜁,𝜁′∼𝒟

[︁
𝜑𝜁,𝜁

′

𝑥<𝑡
·Ψ𝜁,𝜁′

𝑥<𝑡

]︁]︂
.

Proof. The first inequality is Pinsker’s. For the second, by the chain rule for KL divergence

and the fact that chi-squared divergence upper bounds KL, KL
(︁
𝑝
≤(𝑁)
1 ‖𝑝≤𝑁0

)︁
can be written

as

𝑁∑︁
𝑡=1

E
𝑥<𝑡∼𝑝≤𝑡−1

1

[︀
KL
(︀
𝑝𝑡1(·|𝑥<𝑡)‖𝑝𝑡0(·|𝑥<𝑡)

)︀]︀
≤

𝑁∑︁
𝑡=1

E
𝑥<𝑡∼𝑝≤𝑡−1

1

[︀
𝜒2
(︀
𝑝𝑡1(·|𝑥<𝑡)‖𝑝𝑡0(·|𝑥<𝑡)

)︀]︀
.

By definition, the conditional densities 𝑝𝑡0(·|𝑥<𝑡), 𝑝𝑡1(·|𝑥<𝑡) satisfy

𝑝𝑡𝑖(𝑥𝑡|𝑥<𝑡) =
𝑝≤𝑡𝑖 (𝑥<𝑡 ∘ 𝑥𝑡)
𝑝≤𝑡−1
𝑖 (𝑥<𝑡)

for 𝑖 = 0, 1. (10.7)

Therefore, we have:

E
𝑥<𝑡∼𝑝≤𝑡−1

1

[︀
𝜒2
(︀
𝑝𝑡1(·|𝑥<𝑡)‖𝑝𝑡0(·|𝑥<𝑡)

)︀]︀
= E

𝑥<𝑡∼𝑝≤𝑡−1
1

[︃
E

𝑥𝑡∼𝑝𝑡0(·|𝑥<𝑡)

[︃(︂
Δ(𝑥<𝑡 ∘ 𝑥𝑡)
Δ(𝑥<𝑡)

− 1

)︂2
]︃]︃

= E
𝑥<𝑡∼𝑝≤𝑡−1

1

[︃
1

Δ(𝑥<𝑡)2
E

𝑥𝑡∼𝑝𝑡0(·|𝑥<𝑡)

[︀
(Δ(𝑥<𝑡 ∘ 𝑥𝑡)−Δ(𝑥<𝑡))

2]︀]︃

= E
𝑥<𝑡∼𝑝≤𝑡−1

0

[︃
1

Δ(𝑥<𝑡)
E

𝑥𝑡∼𝑝𝑡0(·|𝑥<𝑡)

[︀
(Δ(𝑥<𝑡 ∘ 𝑥𝑡)−Δ(𝑥<𝑡))

2]︀]︃
(10.8)

where the first step follows by (10.7) and the third step follows by a change of measure in

692

the outer expectation.

By the assumption (10.1) and the definition of Δ(·),

Δ(𝑥<𝑡) = E
𝜁

[︃
𝑡−1∏︁
𝑖=1

(1 + 𝑔𝜁(𝑥𝑖))

]︃
. (10.9)

This yields

E
𝑥𝑡∼𝑝𝑡0(·|𝑥<𝑡)

[︀
(Δ(𝑥<𝑡 ∘ 𝑥𝑡)−Δ(𝑥<𝑡))

2
]︀
= E

𝑥𝑡∼𝑝𝑡0(·|𝑥<𝑡)

⎡⎣E
𝒟

[︃
𝑡−1∏︁
𝑖=1

(1 + 𝑔𝜁𝑥<𝑖
(𝑥𝑖)) · 𝑔𝜁𝑥<𝑡

(𝑥𝑡)

]︃2⎤⎦
= E

𝜁,𝜁′

[︃
E
𝑥𝑡

[︁
𝑔𝜁𝑥<𝑡

(𝑥𝑡)𝑔
𝜁′

𝑥<𝑡
(𝑥𝑡)

]︁ 𝑡−1∏︁
𝑖=1

(1 + 𝑔𝜁𝑥<𝑖
(𝑥𝑖))(1 + 𝑔𝜁

′

𝑥<𝑖
(𝑥𝑖))

]︃

= E
𝜁,𝜁′

[︁
𝜑𝜁,𝜁

′

𝑥<𝑡
·Ψ𝜁,𝜁′

𝑥<𝑡

]︁
,

from which the lemma follows by (10.8).

10.3 Unentangled Measurements and Lower Bound In-

stance

In this section we provide some preliminary notions and calculations that are essential to

understanding the proofs of Theorem 10.1.1 and 10.1.2. We first formalize the notion of quan-

tum property testing with unentangled, possibly adaptive measurements in Section 10.3.1.

Then in Section 10.3.2, we give our lower bound construction and instantiate it in the generic

setup of Definition 10.2.3. Finally, in Section 10.3.3, we give some intuition for some of the

key quantities that arise.

10.3.1 Testing with Unentangled Measurements

Definition 10.3.1. Let 𝑁 ∈ N. An unentangled, possibly adaptive POVM schedule 𝒮

is a type of measurement schedule specified by a (possibly infinite) collection of POVMs

{ℳ𝑥<𝑡}𝑡∈[𝑁],𝑥<𝑡∈𝒯𝑡 where 𝒯1 , {∅}, and for every 𝑡 > 1, 𝒯𝑡 denotes the set of all possible

693

transcripts of measurement outcomes 𝑥<𝑡 for which 𝑥𝑖 ∈ Ω(ℳ𝑥<𝑖) for all 1 ≤ 𝑖 ≤ 𝑡 − 1

(recall that 𝑥<𝑖 , (𝑥1, ..., 𝑥𝑖−1)). The schedule works in the natural manner: at time 𝑡 for

𝑡 = 1, . . . , 𝑁 , given a transcript 𝑥<𝑡 ∈ 𝒯𝑡, it measures the 𝑡-th copy of 𝜌 using the POVM

ℳ𝑥<𝑡.

If in addition the resulting schedule is also a nonadaptive measurement schedule, we say

it is an ℓ-entangled, nonadaptive POVM schedule and denote it simply by {ℳ𝑡}𝑡∈[𝑁].

10.3.2 Lower Bound Instance

Let 𝒟 be the Haar measure over the unitary group 𝑈(𝑑). In place of 𝜁 from Definition 10.2.3,

we will denote elements from 𝒟 by U. PrU[·] and EU[·] will be with respect to 𝒟 unless

otherwise specified.

Construction 2. Let X ∈ R𝑑×𝑑 denote the diagonal matrix whose first 𝑑/2 diagonal entries

are equal to 𝜀, and whose last 𝑑/2 diagonal entries are equal to −𝜀. Let X′ , 1
𝜀
X. Let

Λ , 1
𝑑
(Id+X).

Our lower bound instance will be the distribution over densities U†ΛU for U ∼ 𝒟. We

remark that this instance, the quantum analogue of Paninski’s lower bound instance [Pan08]

for classial uniformity testing, has appeared in various forms throughout the quantum learning

and testing literature [OW15,Wri16,HHJ+17].

Given 𝑁 ∈ N, define 𝜌≤𝑁
0 , 𝜌⊗𝑁mm and 𝜌≤𝑁

1 , EU∼𝒟[(U
†ΛU)⊗𝑁]. Take any POVM

schedule 𝒮 = {ℳ𝑥<𝑡}𝑡∈[𝑁],𝑥<𝑡∈𝒯𝑡. Given 𝑡 ≤ 𝑁 , define 𝑝≤𝑡0 and 𝑝≤𝑡1 to be the distribution over

the measurement outcomes when the first 𝑡 steps of these POVM schedules are applied to the

first 𝑡 parts of 𝜌≤𝑁
0 and 𝜌≤𝑁

1 respectively. Equivalently, 𝑝≤𝑡1 can be regarded as the distribution

over sequences of 𝑡 measurement outcomes arising from first sampling U according to the

Haar measure 𝒟 and then applying the first 𝑡 steps of POVM schedule 𝒮 to 𝑡 copies of

𝜌 , U†ΛU.

Lemma 10.3.2. For any POVM ℳ, define

𝑔Uℳ(𝑥) , ⟨̂︁𝑀𝑥<𝑡
𝑥 ,U†XU⟩. (10.10)

694

𝑝≤𝑁1 is absolutely continuous with respect to 𝑝≤𝑁0 , and the family of likelihood ratio factors

{𝑔U𝑥<𝑡
(·)} for which (10.1) holds for 𝑝≤𝑁0 and 𝑝≤𝑁1 defined in Construction 2 is given by

𝑔U𝑥<𝑡
(·) , 𝑔Uℳ𝑥<𝑡 .

Proof. By taking a disjoint union over Ω(ℳ𝑥<𝑡) for all 𝑡 ∈ N and transcripts 𝑥<𝑡, we can

assume without loss of generality that there is some space Ω* for which Ω(ℳ𝑥<𝑡) is a subspace

of Ω* for every 𝑡, 𝑥<𝑡. For the product space (Ω*)𝑁 , equip the 𝑡-th factor with the 𝜎-algebra

given by the join of all 𝜎-algebras associated to Ω(ℳ𝑥≤𝑡) for transcripts 𝑥≤𝑡 of length 𝑡.

Then the measures 𝜇 in Definition 1.3.47 for all POVMsℳ𝑥<𝑡 induce a measure 𝜇* over

(Ω*)𝑁 . Moreover, by definition, 𝑝≤𝑁0 and 𝑝≤𝑁1 correspond to probability measures over (Ω*)𝑡

which are absolutely continuous with respect to 𝜇*.

Because ⟨𝑀𝑥, 𝜌mm⟩ > 0 for any nonzero psd Hermitian matrix 𝑀𝑥, absolute continuity of

𝑝≤𝑁1 with respect to 𝑝≤𝑁0 follows immediately.

By the chain rule for Radon-Nikodym derivatives, we conclude that

d𝑝≤𝑡1 |U
d𝑝≤𝑡0

(𝑥≤𝑡) =

∏︀𝑡
𝑖=1⟨𝑀𝑥<𝑖

𝑥𝑖
,U†ΛU⟩∏︀𝑡

𝑖=1
1
𝑑
Tr(𝑀𝑥<𝑖

𝑥𝑖)
=

𝑡∏︁
𝑖=1

⟨̂︁𝑀𝑥<𝑖
𝑥𝑖

,U†(Id+X)U⟩ =
𝑡∏︁
𝑖=1

(1 + 𝑔U𝑥<𝑖
(𝑥𝑖))

as claimed.

For any U,U′ ∈ 𝑈(𝑑), the quantities ΨU,U′
𝑥<𝑡

and 𝜑U,U′
𝑥<𝑡

are given by (10.6). Given a

POVMℳ, also define 𝜑U,U′

ℳ in the obvious way. Lastly, we record the following basic facts:

Fact 10.3.3. For any POVM ℳ,

(I) E𝑥∼𝑝[𝑔Uℳ(𝑥)] = 0 for any U ∈ 𝑈(𝑑).

(II) For any measurement outcome 𝑥 and U,U′ ∈ 𝑈(𝑑), |𝑔Uℳ(𝑥)| ≤ 𝜀 and thus 𝜑U,U′

ℳ ≤ 𝜀2.

10.3.3 Intuition for 𝜑U,U′

ℳ

Recall from Example 10.2.9 that for classical uniformity testing, 𝜑𝑧,𝑧′ = 2𝜀2

𝑑
⟨𝑧, 𝑧′⟩, and by

Lemma 10.2.8, the 𝑂(𝜀2/
√
𝑑) fluctuations of 𝜑𝑧,𝑧′ as a random variable in 𝑧, 𝑧′ precisely

dictate the sample complexity of uniformity testing.

695

One should therefore think of the distribution of the quantity 𝜑U,U′

ℳ as a “quantum ana-

logue” of the binomial distribution whose fluctuations are closely related to the scaling of

the copy complexity of mixedness testing.

As we will show in Theorem 10.4.1, 𝜑U,U′

ℳ has 𝑂(𝜀2/𝑑3/2) fluctuations and concentrates

well, from which it will follow by integration by parts that 𝑁 can be taken as large as

𝑜(𝑑3/2/𝜀2), yielding the lower bound of Theorem 10.1.1.

To get some intuition for where these 𝑂(𝜀2/𝑑3/2) fluctuations come from, suppose ℳ

were the orthogonal POVM given by the standard basis. Then

𝜑U,U′

ℳ =
1

𝑑

𝑑∑︁
𝑖=1

⟨︀
diag(U†XU), diag(U′†XU′)

⟩︀
=

1

𝑑

𝑑∑︁
𝑖=1

𝜀2 · 𝛿(U𝑖) · 𝛿(U′
𝑖),

where

𝛿(𝑣) ,
𝑑/2∑︁
𝑖=1

𝑣2𝑖 −
𝑑∑︁

𝑖=𝑑/2+1

𝑣2𝑖 . (10.11)

For any fixed 𝑖, U𝑖,U
′
𝑖 are independent random unit vectors, and the variance of 𝛿(U𝑖)·𝛿(U′

𝑖)

is 𝑂(1/𝑑2) (see Fact 10.7.2). If U1,U
′
1...,U𝑑,U

′
𝑑 were all independent, then 𝜑U,U′

ℳ would

thus have variance 𝜀4/𝑑3, suggesting 𝑂(𝜀2/𝑑3/2) fluctuations as claimed. Of course we do not

actually have this independence assumption; in addition, the other key technical challenges

we must face to get Theorem 10.4.1 are 1) to go beyond just a second moment bound and

show sufficiently strong concentration of 𝜑U,U′

ℳ , and 2) to show this is the case for all POVMs.

We do this in Section 10.7.

10.4 Proof of Non-Adaptive Lower Bound

In this section we prove Theorem 10.1.1 by applying Lemma 10.2.8; the technical crux of the

proof (and of our proof of Theorem 10.1.2 in the next section) is the following tail bound,

whose proof we defer to Section 10.7:

Theorem 10.4.1. Fix any POVM ℳ. There exists an absolute constant 𝑐′′ > 0 such that

696

for any 𝑡 > Ω(𝜀2/𝑑1.99), we have

Pr
U,U′∼𝒟

[︁⃒⃒⃒
𝜑U,U′

ℳ

⃒⃒⃒
> 𝑡
]︁
≤ exp

(︂
−𝑐′′

{︂
𝑑3𝑡2

𝜀4
∧ 𝑑

2𝑡

𝜀2

}︂)︂

Proof of Theorem 10.1.1. By Fact 10.2.4, it suffices to show that no nonadaptive POVM

schedule can solve the distinguishing task given by Construction 2, unless 𝑁 = Ω(𝑑3/2/𝜀2).

For a non-adaptive POVM schedule 𝒮, let {ℳ1, ...,ℳ𝑁} denote the sequence of POVMs

that are used. Recalling (10.10), the likelihood ratio factors {𝑔U𝑡 (·)}U∈𝑈(𝑑),𝑡∈[𝑁] for which

(10.1) holds in the nonadaptive setting of Definition 10.2.6 are given by 𝑔Uℳ𝑡(·). Similarly,

denote 𝜑U,U′
𝑥<𝑡

by 𝜑U,U′

𝑡 .

By Lemma 10.2.8, we have

1

2 ln 2
𝑑TV

(︀
𝑝≤𝑁1 , 𝑝≤𝑁0

)︀2 ≤ max
𝑡

E
𝜁,𝜁′

[︂(︁
1 + 𝜑U,U′

𝑡

)︁𝑁]︂
− 1.

To finish the proof, we will show that

sup
ℳ

E
U,U′

[︂(︁
1 + 𝜑U,U′

ℳ

)︁𝑁]︂
= 1 + 𝑜(1)

for 𝑁 = 𝑜(𝑑3/2/𝜀2), from which the proof is complete by (10.4).

We would like to apply integration by parts (Fact 1.3.30) to the random variable 𝑍 ,

1 + 𝜑U,U′

ℳ and the function 𝑓(𝑍) , 𝑍𝑁 . By Part (II) of Fact 10.3.3, this random variable is

supported in [1− 𝜀2, 1 + 𝜀2]. We can take the parameters in Fact 1.3.30 as follows: set 𝑎 ,

1 + 𝜀/(𝑁1/2𝑑3/4), 𝑏 , 1 + 𝜀2, and tail bound function 𝜏(𝑥) = exp
(︁
−𝑐′′

{︁
𝑑3(𝑥−1)2

𝜀4
∧ 𝑑2(𝑥−1)

𝜀2

}︁)︁
.

Note that for𝑁 = 𝑜(𝑑3/2/𝜀2), (1+𝜏(𝑎))𝑓(𝑎) = 1+𝑜(1). So by Fact 1.3.30 and Theorem 10.4.1,

E
U,U′

[︂(︁
1 + 𝜑U,U′

ℳ

)︁𝑁]︂
≤ 1 + 𝑜(1) +

∫︁ 1+𝜀2

1+𝜀2/𝑑3/2
𝑁𝑥𝑁−1 · exp

(︂
−𝑐′′

{︂
𝑑3(𝑥− 1)2

𝜀4
∧ 𝑑

2(𝑥− 1)

𝜀2

}︂)︂
d𝑥

≤ 1 + 𝑜(1) +

∫︁ 𝜀2

𝜀2/𝑑3/2
𝑁(1 + 𝑥)𝑁−1

(︂
exp

(︂
−𝑐

′′𝑑3𝑥2

𝜀4

)︂
+ exp

(︂
−𝑐

′′𝑑2𝑥

𝜀2

)︂)︂
d𝑥

≤ 1 + 𝑜(1) +

∫︁ ∞

0

𝑁(1 + 𝑥)𝑁−1

(︂
exp

(︂
−𝑐

′′𝑑3𝑥2

𝜀4

)︂
+ exp

(︂
−𝑐

′′𝑑2𝑥

𝜀2

)︂)︂
d𝑥

697

= 1 + 𝑜(1) + (𝑁/2)!(𝑐′′𝑑3/𝜀4)−𝑁/2 +𝑁 !(𝑐′′𝑑2/𝜀2)𝑁 = 1 + 𝑜(1),

where the final step uses that 𝑁 = 𝑜(𝑑3/2/𝜀2).

10.5 A Chain Rule Proof of Paninski’s Theorem

As discussed previously, the proof of Theorem 10.1.1 completely breaks down when the

POVM schedule 𝒮 is adaptive, so we will instead use the chain rule, via Lemma 10.2.11, to

prove Theorem 10.1.2.

As a warmup, in this section we will show how to use Lemma 10.2.11 to prove a lower

bound for classical uniformity testing. As it turns out, it is possible to recover Paninski’s

optimal Ω(
√
𝑑/𝜀2) lower bound with this approach, the details of which we give in Ap-

pendix 10.8, but in this section we opt to present a proof which achieves a slightly weaker

bound. The reason is that in our proof of Theorem 10.5.1, we will make minimal use of the

kind of precise cancellations that would yield a tight bound but which, unfortunately, are

specific to the product structure of the distribution of random signs 𝑧. As such, these steps

will be general-purpose enough to extend to the quantum setting where the Haar measure

over 𝑈(𝑑) enjoys no such product structure.

Specifically, we will use the chain rule to show the following:

Theorem 10.5.1 (Weaker Paninski Theorem). Ω(𝑑1/3/𝜀2) samples are necessary to test

whether a distribution 𝑝 is 𝜀-far from the uniform distribution.

In this section, let 𝑝≤𝑁0 , 𝑝≤𝑁1 denote the distributions defined in Example 10.2.7. Recalling

the notation from Example 10.2.7 and Definition 10.2.10, as well as the identities (10.2) and

(10.5), we immediately get the following from Lemma 10.2.11:

Lemma 10.5.2.

KL
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
≤

𝑁∑︁
𝑡=1

𝑍𝑡 for 𝑍𝑡 , E
𝑥<𝑡∼𝑈⊗𝑡−1

[︃
1

Δ(𝑥<𝑡)
E

𝑧,𝑧′∼{±1}𝑑/2

[︁
𝜑𝑧,𝑧

′ ·Ψ𝑧,𝑧′

𝑥<𝑡

]︁]︃
. (10.12)

We will also need the following two estimates (see below for their proofs).

698

Lemma 10.5.3. For any transcript 𝑥<𝑡, Δ(𝑥<𝑡) ≥ (1− 𝜀2)(𝑡−1)/2.

Lemma 10.5.4. For any 𝑧, 𝑧′ ∈ {±1}𝑑/2, E𝑥<𝑡∼𝑈⊗𝑡−1 [(Ψ𝑧,𝑧′(𝑥<𝑡))
2] ≤ (1 +𝑂(𝜀2))𝑡−1.

We now describe how to use these to bound the summands 𝑍𝑡 in (10.12). As discussed

in Example 10.2.9, 𝜑𝑧,𝑧′ = 2𝜀2

𝑑
⟨𝑧, 𝑧′⟩ has 𝑂(𝜀2/

√
𝑑) fluctuations. If we pretended 𝜑𝑧,𝑧′ was of

this magnitude with probability one, then

𝑍𝑡 ≈ 𝑂(𝜀2/
√
𝑑) · E

𝑥<𝑡∼𝑈⊗𝑡−1

[︃
1

Δ(𝑥<𝑡)
E

𝑧,𝑧′∼{±1}𝑑/2

[︁
Ψ𝑧,𝑧′

𝑥<𝑡

]︁]︃
= 𝑂(𝜀2/

√
𝑑),

where the last step follows because Δ(𝑥<𝑡)
2 = E𝑧,𝑧′ [Ψ𝑧,𝑧′

𝑥<𝑡
] and the likelihood ratio between

two distributions always integrates to 1. Then by (10.12) we would in fact even recover

Theorem 10.1.3.

Unfortunately, in reality 𝜑𝑧,𝑧′ can be as large as order 𝜀2, albeit with exponentially small

probability, so instead we will partition the space of 𝑧, 𝑧′ ∈ {±1}𝑑/2 into those for which

𝜑𝑧,𝑧
′ is either less than some threshold 𝜏 or greater. When 𝜑𝑧,𝑧′ ≤ 𝜏 , we can bound the total

contribution to 𝑍𝑡 of such 𝑧, 𝑧′ by 𝜏 . When 𝜑𝑧,𝑧
′
> 𝜏 , we will use the pointwise estimates

from Lemmas 10.5.3 and 10.5.4 and argue that because Pr[𝜑𝑧,𝑧
′
> 𝜏] is so small, these 𝑧, 𝑧′

contribute negligibly to 𝑍𝑡. The reason we only get an Ω(𝑑1/3/𝜀2) lower bound in the end is

that we must take 𝜏 slightly larger than the fluctuations of 𝜑𝑧,𝑧′ to balance the low probability

of 𝜑𝑧,𝑧′ exceeding 𝜏 with the pessimistic pointwise estimates of Lemmas 10.5.3 and 10.5.4.

Proof of Theorem 10.5.1. We fill in the details of the strategy outlined above. We will use

Fact 10.2.4 with the construction in Example 10.2.7. Given a transcript 𝑥<𝑡 and 𝑧, 𝑧′ ∈

{±1}𝑑/2, let 1[ℰ𝑧,𝑧′(𝜏)] denote the indicator of whether 𝜑𝑧,𝑧′ > 𝜏 . We have that

E
𝑧,𝑧′

[︁
Ψ𝑧,𝑧′

𝑥<𝑡
· 𝜑𝑧,𝑧′

]︁
= E

𝑧,𝑧′

[︁
Ψ𝑧,𝑧′

𝑥<𝑡
· 𝜑𝑧,𝑧′ ·

(︁
1[ℰ𝑧,𝑧

′
(𝜏)] + 1[ℰ𝑧,𝑧

′
(𝜏)𝑐]

)︁]︁
≤ 𝜀2 · E

𝑧,𝑧′

[︁
Ψ𝑧,𝑧′

𝑥<𝑡
· 1[ℰ𝑧,𝑧

′
(𝜏)]
]︁
+ 𝜏 · E

𝑧,𝑧′

[︁
Ψ𝑧,𝑧′

𝑥<𝑡
· 1[ℰ𝑧,𝑧

′
(𝜏)𝑐]

]︁
≤ 𝜀2 · E

𝑧,𝑧′

[︁
Ψ𝑧,𝑧′

𝑥<𝑡
· 1[ℰ𝑧,𝑧

′
(𝜏)]
]︁

⏟ ⏞
B

𝑥<𝑡

+𝜏 · E
𝑧,𝑧′

[︁
Ψ𝑧,𝑧′

𝑥<𝑡

]︁
⏟ ⏞

G
𝑥<𝑡

,

where in the second step we used Part (II) of Fact 10.3.3. Note that for any transcript 𝑥<𝑡,

699

Δ(𝑥<𝑡)
2 = E𝑧,𝑧′ [Ψ𝑧,𝑧′

𝑥<𝑡
] = G

𝑥<𝑡
, so by this and the fact that the likelihood ratio between two

distributions always integrates to 1,

E
𝑥<𝑡∼𝑈⊗𝑡−1

[︂
1

Δ(𝑥<𝑡)
· G

𝑥<𝑡

]︂
= E

𝑥<𝑡

[Δ(𝑥<𝑡)] = 1. (10.13)

We conclude that

𝑍𝑡 ≤ 𝜀2 · E
𝑥<𝑡∼𝑈⊗𝑡−1

[︂
1

Δ(𝑥<𝑡)
· B 𝑥<𝑡

]︂
+ 𝜏 · E

𝑥<𝑡∼𝑈⊗𝑡−1

[︂
1

Δ(𝑥<𝑡)
· G

𝑥<𝑡

]︂
≤ 𝜀2 · (1 + 𝜀2)(𝑡−1)/2 E

𝑥<𝑡

[B 𝑥<𝑡
] + 𝜏,

where the second step follows by Lemma 10.5.3 and (10.13). It remains to show that 𝜏 is

the dominant quantity above, for appropriately chosen 𝜏 .

Pick 𝜏 = Ω(𝜀2/𝑑1/3). To upper bound E𝑥<𝑡 [B 𝑥<𝑡
], first apply Cauchy-Schwarz to get

E
𝑥<𝑡

[B 𝑥<𝑡
] ≤ E

𝑥<𝑡,𝑧,𝑧′

[︂(︁
Ψ𝑧,𝑧′

𝑥<𝑡

)︁2]︂1/2
· Pr
𝑥<𝑡,𝑧,𝑧′

[︁
𝜑𝑧,𝑧

′
> 𝜏
]︁1/2

≤ (1 +𝑂(𝜀2))(𝑡−1)/2 · exp(−Ω(𝑑1/3)),

where the second step follows by Lemma 10.5.4, (10.5), and standard binomial tail bounds.

For 𝑡 = 𝑜(𝑑1/3/𝜀2), this quantity is indeed negligible, concluding the proof that * ≤

𝑂(𝜀2/𝑑1/3) and, by Lemma 10.5.2, that 𝜒2
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
= 𝑜(1) for 𝑁 = 𝑜(𝑑1/3/𝜀2).

Deferred Proofs

Proof of Lemma 10.5.3. For any 𝑥<𝑡 ∈ [𝑑]𝑡−1, we have that

E
𝑧

[︃
𝑡−1∏︁
𝑖=1

(1 + 𝑔𝑧(𝑥𝑖))

]︃
≥

⎛⎝ ∏︁
𝑧∈{±1}𝑑/2

𝑡−1∏︁
𝑖=1

(1 + 𝑔𝑧(𝑥𝑖))

⎞⎠2−𝑑/2

=

⎛⎝ ∏︁
𝑧∈{±1}𝑑/2

𝑡−1∏︁
𝑖=1

(1 + 𝑔𝑧(𝑥𝑖))
1/2(1 + 𝑔−𝑧(𝑥𝑖))

1/2

⎞⎠2−𝑑/2

= (1− 𝜀2)(𝑡−1)/2,

700

where in the first step we used AM-GM, in the second step we used the fact that if 𝑧

is chosen uniformly at random from {±1}𝑑/2, then −𝑧 is also distributed according to the

uniform distribution over {±1}𝑑/2, and in the third step we used that for any 𝑥, (1+𝑔𝑧(𝑥))(1+

𝑔−𝑧(𝑥)) = 1− 𝜀2.

Proof of Lemma 10.5.4. Note that by both parts of Fact 10.3.3,

E
𝑥∼𝑈

[(1 + 𝑔𝑧(𝑥))2(1 + 𝑔𝑧
′
(𝑥))2] = 1 + E

𝑥
[𝑔𝑧(𝑥)𝑔𝑧

′
(𝑥)] ≤ 1 +𝑂(𝜀2).

Writing

E
𝑥<𝑡

[Ψ𝑧,𝑧′

𝑥<𝑡
] ≤ E

𝑥<𝑡−1

[Ψ𝑧,𝑧′

𝑥<𝑡−1
] · (1 +𝑂(𝜀2)),

we see that the claim follows by induction on 𝑡.

Parallels to Proof of Theorem 10.1.2 Lastly, we comment on how these ingredients

carry over to our proof of Theorem 10.1.2. Lemma 10.5.2 translates verbatim to the quantum

setting (see Lemma 10.6.1), as does the final part of the proof where we partition based on

the value of 𝜑𝑧,𝑧′ .

Lemma 10.6.2 will be the quantum analogue of Lemma 10.5.3, and its proof uses a similar

trick of AM-GM plus averaging with an involution.

Lemma 10.6.4 will be the quantum analogue of Lemma 10.5.4. Unfortunately, as we will

see later in Section 10.6, an analogously naive bound will not suffice in our proof of Theo-

rem 10.1.2. The workaround is somewhat technical, and we defer the details to Lemma 10.6.4

and the discussion preceding it.

Finally, as in Section 10.2.1, the central technical ingredient in the proof of Theorem 10.5.1

is the concentration of 𝜑𝑧,𝑧′ . Analogously, in the proof of Theorem 10.1.2, we will need

sufficiently strong tail bounds for 𝜑U,U′

ℳ , which we show in Theorem 10.4.1.

10.6 An Adaptive Lower Bound for Mixedness Testing

In this section we prove our main result, Theorem 10.1.2.

701

First, recalling the notation from Construction 2 and Definition 10.2.10, as well as the

identity (10.10), we immediately get the following from Lemma 10.2.11:

Lemma 10.6.1.

KL
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
≤

𝑁∑︁
𝑡=1

𝑍𝑡 for 𝑍𝑡 , E
𝑥<𝑡∼𝑝≤𝑡−1

0

[︂
1

Δ(𝑥<𝑡)
E

U,U′

[︁
ΨU,U′

𝑥<𝑡
· 𝜑U,U′

𝑥<𝑡

]︁]︂
(10.14)

Take any 𝑡 ≤ 𝑁 . To bound 𝑍𝑡 in (10.14), we first estimate the likelihood ratio Δ for an

arbitrary transcript, in analogy with Lemma 10.5.3 from Section 10.5 respectively:

Lemma 10.6.2. For any transcript 𝑥<𝑡, Δ(𝑥<𝑡) ≥ (1−𝑂(𝜀2/𝑑))𝑡−1.

Proof. Recall (10.9). By convexity of the exponential function and the fact that 1+𝑔U𝑥<𝑖
(𝑥𝑖) >

0 for all U, 𝑖, 𝑥𝑖,

Δ(𝑥<𝑡) ≥ exp

(︃
E

𝑈∼𝒟

[︃
𝑡−1∑︁
𝑖=1

ln
(︀
1 + 𝑔U𝑥<𝑖

(𝑥𝑖)
)︀]︃)︃

=
𝑡−1∏︁
𝑖=1

exp

(︂
E

U∼𝒟

[︀
ln(1 + 𝑔U𝑥<𝑖

(𝑥𝑖))
]︀)︂

. (10.15)

Define the unitary block matrix T =

⎛⎝ 0 Id𝑑/2

Id𝑑/2 0.

⎞⎠ As 𝒟 is invariant with respect to

left-multiplication by T ∈ 𝑈(𝑑), for all 𝑖 < 𝑡 we have that

exp

(︂
E

U∼𝒟

[︀
ln(1 + 𝑔U𝑥<𝑖

(𝑥𝑖))
]︀)︂

= exp

(︂
1

2
E

U∼𝒟

[︀
ln(1 + 𝑔U𝑥<𝑖

(𝑥𝑖)) + ln(1 + 𝑔TU
𝑥<𝑖

(𝑥𝑖))
]︀)︂

= exp

(︂
1

2
E

U∼𝒟

[︀
ln(1 + 𝑔U𝑥<𝑖

(𝑥𝑖)) + ln(1− 𝑔U𝑥<𝑖
(𝑥𝑖))

]︀)︂
= exp

(︂
1

2
E

U∼𝒟

[︀
ln(1− 𝑔U𝑥<𝑖

(𝑥𝑖)
2)
]︀)︂

≥ 1 +
1

2
E

U∼𝒟

[︀
ln(1− 𝑔U𝑥<𝑖

(𝑥𝑖)
2)
]︀

≥ 1− E
U∼𝒟

[︀
𝑔U𝑥<𝑖

(𝑥𝑖)
2)
]︀

(10.16)

where the second step follows from the fact that T†XT = −X, the fourth step follows by

the elementary inequality exp(𝑥) ≥ 1 + 𝑥 for all 𝑥, and the fifth inequality follows by the

elementary inequality log(1− 𝑥) ≥ −2𝑥 for all 0 ≤ 𝑥 < 1/2.

Finally, note that for any trace-one psd matrix 𝑀 , we may write 𝑀 =
∑︀
𝜆𝑖𝑣𝑖𝑣

†
𝑖 , and for

702

any unit vector 𝑣 ∈ C𝑛, EU[⟨𝑣𝑣†,U†XU⟩2] = 𝑂(𝜀2/𝑑). So

E
𝑈
[⟨𝑀,U†XU⟩2] =

∑︁
𝑖,𝑗

𝜆𝑖𝜆𝑗 E
[︁
⟨𝑣𝑖𝑣†𝑖 ,U†XU⟩⟨𝑣𝑗𝑣†𝑗 ,U†XU⟩

]︁
≤ 𝑂(𝜀2/𝑑)·

(︃∑︁
𝑖

𝜆𝑖

)︃2

= 𝑂(𝜀2/𝑑),

where the second step follows by Cauchy-Schwarz. From this we conclude that EU∼𝒟[𝑔
U
𝑥<𝑖

(𝑥𝑖)
2] ≤

𝑂(𝜀2/𝑑) for all 𝑖, 𝑥<𝑖, 𝑥𝑖, and the lemma follows by (10.15) and (10.16).

Next, in analogy with Lemma 10.5.4, we would like to control the expectation of (ΨU,U′
𝑥<𝑡

)2.

We remark that like in the proof of Lemma 10.5.4, one can obtain a naive estimate of

(1 + 𝑂(𝜀2))𝑡−1 using just Fact 10.3.3, but unlike in the proof of Theorem 10.5.1, such a

bound would not suffice here. Instead, we will need the following important moment bound,

whose proof we defer to Section 10.7:

Theorem 10.6.3. For any POVM ℳ, let 𝑝 denote the distribution over outcomes from

measuring 𝜌mm with ℳ, and let 𝛾 > 0 be an absolute constant. Define the random variable

𝐾U,U′

ℳ , E
𝑥∼𝑝

[︂(︁
𝑔Uℳ(𝑥) + 𝑔U

′

ℳ(𝑥)
)︁2]︂

Then for any 𝑛 = 𝑜(𝑑2/𝜀2), we have that

E
U,U′

[︁(︁
1 + 𝛾 ·𝐾U,U′

ℳ

)︁𝑛]︁
≤ exp(𝑂(𝛾𝑛𝜀2/𝑑)) (10.17)

We will use this and a series of invocations of Holder’s to prove the following sufficiently

strong generalization of Lemma 10.5.4:

Lemma 10.6.4. Suppose 𝑡 = 𝑜(𝑑2/𝜀2). Then E𝑥<𝑡,U,U′ [(ΨU,U′
𝑥<𝑡

)2] ≤ exp(𝑂(𝑡 · 𝜀2/𝑑)).

Proof. Consider any 𝑎, 𝑏 ∈ Z for which 𝑎 ≥ 𝑏 and 𝑎 ≥ 2. For any 𝑥<𝑡−1, let 𝑝 denote the

distribution over measurement outcomes when the POVM ℳ𝑥<𝑡−1 is applied to 𝜌mm. We

have by Part (II) of Fact 10.3.3 that

E
𝑥∼𝑝

[𝑔U𝑥<𝑡−1
(𝑥)𝑎 · 𝑔U′

𝑥<𝑡−1
(𝑥𝑡)

𝑏] ≤ 𝜀 E
𝑥∼𝑝

[𝑔U𝑥<𝑡−1
(𝑥)2].

703

Recalling Part (I) of Fact 10.3.3, we conclude that for any 𝑥<𝑡−1 and constant degree 𝑐 ≥ 2,

E
𝑥∼𝑝

[︁
(1 + 𝑔U𝑥<𝑡−1

(𝑥))𝑐(1 + 𝑔U
′

𝑥<𝑡−1
(𝑥))𝑐

]︁
≤ 1 +𝑂𝑐(E

𝑥∼𝑝
[𝑔U𝑥<𝑡−1

(𝑥)2]) +𝑂𝑐(E
𝑥∼𝑝

[𝑔U
′

𝑥<𝑡−1
(𝑥)2]) +𝑂𝑐(𝜑

U,U′

𝑥<𝑡−1
) , 1 + 𝑍U,U′

𝑥<𝑡−1
(𝑐). (10.18)

By abuse of notation, for POVMℳ, define 𝑍U,U′

ℳ (𝑐) in the obvious way.

For 𝛼𝑖 , 2 ·
(︀
𝑡−1
𝑡−2

)︀𝑖, we have that

E
𝑥<𝑡,U,U′

[︁(︁
ΨU,U′

𝑥<𝑡

)︁𝛼𝑖
]︁

≤ E
𝑥<𝑡−1,U,U′

[︁(︁
ΨU,U′

𝑥<𝑡−1

)︁𝛼𝑖

·
(︁
1 + 𝑍U,U′

𝑥<𝑡−1
(𝛼𝑖)

)︁]︁
(10.19)

≤ E
𝑥<𝑡−1,U,U′

[︂(︁
ΨU,U′

𝑥<𝑡−1

)︁𝛼𝑖(𝑡−1)/(𝑡−2)
]︂(𝑡−2)/(𝑡−1)

· E
𝑥<𝑡−1,U,U′

[︂(︁
1 + 𝑍U,U′

𝑥<𝑡−1
(𝛼𝑖)

)︁𝑡−1
]︂1/(𝑡−1)

(10.20)

≤ E
𝑥<𝑡−1,U,U′

[︂(︁
ΨU,U′

𝑥<𝑡−1

)︁𝛼𝑖+1(𝑡−1)/(𝑡−2)
]︂
· E
𝑥<𝑡−1,U,U′

[︂(︁
1 + 𝑍U,U′

𝑥<𝑡−1
(𝛼𝑖)

)︁𝑡−1
]︂1/(𝑡−1)

.

where (10.19) follows by (10.18), and (10.20) follows by Holder’s. Unrolling this recurrence,

we conclude that

E
𝑥<𝑡,U,U′

[︂(︁
ΨU,U′

𝑥<𝑡

)︁2]︂
≤

𝑡−1∏︁
𝑖=1

E
𝑥<𝑖,U,U′

[︂(︁
1 + 𝑍U,U′

𝑥<𝑖
(𝛼𝑡−1−𝑖)

)︁𝑡−1
]︂1/(𝑡−1)

≤
𝑡−1∏︁
𝑖=1

E
𝑥<𝑖,U,U′

[︂(︁
1 + 𝑍U,U′

𝑥<𝑖
(2𝑒)

)︁𝑡−1
]︂1/(𝑡−1)

, (10.21)

≤ sup
ℳ

E
U,U′

[︂(︁
1 + 𝑍U,U′

ℳ (2𝑒)
)︁𝑡−1

]︂

where (10.21) follows by the fact that for 1 ≤ 𝑖 ≤ 𝑡 − 1, 𝛼𝑡−1−𝑖 ≤ 2
(︀
1 + 1

𝑡−2

)︀𝑡−2 ≤ 2𝑒,

and the supremum in the last step is over all POVMs ℳ. The proof is complete upon

noting that 𝑍U,U′

ℳ is at most a constant multiple of 𝐾U,U′

ℳ defined in (10.17) and invoking

Theorem 10.6.3.

We can now complete the proof of Theorem 10.1.2. Note that the following argument is

very similar to the argument we used to complete the proof of Theorem 10.5.1.

704

Proof of Theorem 10.1.2. Given a transcript 𝑥<𝑡 and U,U′ ∈ 𝑈(𝑑), let 1[ℰU,U′
𝑥<𝑡

(𝜏)] denote

the indicator of whether 𝜑U,U′
𝑥<𝑡

> 𝜏 . We have that

E
U,U′

[︁
ΨU,U′

𝑥<𝑡
· 𝜑U,U′

𝑥<𝑡

]︁
= E

U,U′

[︁
ΨU,U′

𝑥<𝑡
· 𝜑U,U′

𝑥<𝑡
·
(︁
1[ℰU,U

′

𝑥<𝑡
(𝜏)] + 1[ℰU,U

′

𝑥<𝑡
(𝜏)𝑐]

)︁]︁
≤ 𝜀2 · E

U,U′

[︁
ΨU,U′

𝑥<𝑡
· 1[ℰU,U

′

𝑥<𝑡
(𝜏)]
]︁
+ 𝜏 · E

U,U′

[︁
ΨU,U′

𝑥<𝑡
· 1[ℰU,U

′

𝑥<𝑡
(𝜏)𝑐]

]︁
≤ 𝜀2 · E

U,U′

[︁
ΨU,U′

𝑥<𝑡
· 1[ℰU,U

′

𝑥<𝑡
(𝜏)]
]︁

⏟ ⏞
B

𝑥<𝑡

+𝜏 · E
U,U′

[︁
ΨU,U′

𝑥<𝑡

]︁
⏟ ⏞

G
𝑥<𝑡

,

where in the second step we used Part (II) of Fact 10.3.3. Note that for any transcript 𝑥<𝑡,

Δ(𝑥<𝑡)
2 = EU,U′ [ΨU,U′

𝑥<𝑡
] = G

𝑥<𝑡
, so by this and the fact that the likelihood ratio between

two distributions always integrates to 1,

E
𝑥<𝑡∼𝑝≤𝑡−1

0

[︂
1

Δ(𝑡−1)(𝑥<𝑡)
· G

𝑥<𝑡

]︂
= E

𝑥<𝑡∼𝑝≤𝑡−1
0

[Δ(𝑡−1)(𝑥<𝑡)] = 1. (10.22)

We conclude that

𝑍𝑡 ≤ 𝜀2 · E
𝑥<𝑡∼𝑝≤𝑡−1

0

[︂
1

Δ(𝑡−1)(𝑥<𝑡)
· B 𝑥<𝑡

]︂
+ 𝜏 · E

𝑥<𝑡∼𝑝≤𝑡−1
0

[︂
1

Δ(𝑡−1)(𝑥<𝑡)
· G

𝑥<𝑡

]︂
≤ 𝜀2 · (1 +𝑂(𝜀2/𝑑))𝑡−1 E

𝑥<𝑡∼𝑝≤𝑡−1
0

[︁
B 𝑥<𝑡

]︁
+ 𝜏,

where the second step follows by Lemma 10.6.2 and (10.22). So the challenge is to show that

𝜏 is the dominant quantity above, for appropriately chosen 𝜏 .

Pick 𝜏 = 𝜀2/𝑑4/3. To upper bound E𝑥<𝑡∼𝑝≤𝑡−1
0

[B 𝑥<𝑡
], apply Cauchy-Schwarz to get

E
𝑥<𝑡∼𝑝≤𝑡−1

0

[︁
B 𝑥<𝑡

]︁
≤ E

𝑥<𝑡∼𝑝≤𝑡−1
0 ,U,U′

[︂(︁
ΨU,U′

𝑥<𝑡

)︁2]︂1/2
· Pr
𝑥<𝑡∼𝑝≤𝑡−1

0 ,U,U′

[︁
ℰU,U′

𝑥<𝑡
(𝜏)
]︁1/2

≤ E
𝑥<𝑡∼𝑝≤𝑡−1

0 ,U,U′

[︂(︁
ΨU,U′

𝑥<𝑡

)︁2]︂1/2
· exp

(︀
−Ω(𝑑1/3)

)︀
,

where the second step follows by Theorem 10.4.1.

This, together with Lemma 10.6.4, says that E𝑥<𝑡∼𝑝≤𝑡−1
0

[B 𝑥<𝑡
] is indeed negligible for

705

𝑡 = 𝑜(𝑑4/3/𝜀2). For such 𝑡, 𝑍𝑡 = 𝑂(𝜀2/𝑑4/3), so by Lemma 10.6.1, KL
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
= 𝑜(1) as

desired. The desired result follows from Fact 10.2.4.

10.7 Haar Tail Bounds

In this section we complete the proof of the two key estimates, Theorems 10.6.3 and 10.4.1,

which were crucial to our proof of Theorem 10.1.2. The following concentration inequality

is key to our analysis:

Theorem 10.7.1 ([MM13], Corollary 17, see also [AGZ10], Corollary 4.4.28). Equip 𝑀 ,

𝑈(𝑑)𝑘 with the 𝐿2-sum of Frobenius metrics. If 𝐹 : 𝑀 → R is 𝐿-Lipschitz, then for any

𝑡 > 0:

Pr
(U1,...,U𝑘)∈𝑀

[|𝐹 (U1, ...,U𝑘)− E[𝐹 (U1, ...,U𝑘)]| ≥ 𝑡] ≤ 𝑒−𝑑𝑡
2/12𝐿2

,

where U1, ...,U𝑘 are independent unitary matrices drawn from the Haar measure.

10.7.1 Proof of Theorem 10.6.3

For convenience, Theorem 10.6.3 is restated below:

Theorem 10.6.3. For any POVM ℳ, let 𝑝 denote the distribution over outcomes from

measuring 𝜌mm with ℳ, and let 𝛾 > 0 be an absolute constant. Define the random variable

𝐾U,U′

ℳ , E
𝑥∼𝑝

[︂(︁
𝑔Uℳ(𝑥) + 𝑔U

′

ℳ(𝑥)
)︁2]︂

Then for any 𝑛 = 𝑜(𝑑2/𝜀2), we have that

E
U,U′

[︁(︁
1 + 𝛾 ·𝐾U,U′

ℳ

)︁𝑛]︁
≤ exp(𝑂(𝛾𝑛𝜀2/𝑑)) (10.17)

To get intuition for this, consider again the special case whereℳ is an orthogonal POVM

given by an orthonormal basis of C𝑑. Then 𝑝 is uniform over [𝑑] and

𝐾U,U′

ℳ =
𝜀2

𝑑

𝑑∑︁
𝑖=1

(𝛿(U𝑖) + 𝛿(U′
𝑖))

2 ≤ 2𝜀2

𝑑

𝑑∑︁
𝑖=1

(𝛿(U𝑖)
2 + 𝛿(U′

𝑖)
2), (10.23)

706

where 𝛿(·) is defined in (10.11). The following is a standard fact:

Fact 10.7.2. For random unit vector 𝑣 ∈ S𝑑−1, E[𝛿(𝑣)2] = 1
𝑑+1

.

While this follows immediately from moments of random unit vectors, for pedagogical pur-

poses we will give a proof using Weingarten calculus, as it will be a crucial ingredient

later on. Recall that for every 𝑞 ∈ N, there exists a corresponding Weingarten function

Wg(·, 𝑑) : 𝒮𝑞 → R [Wei78,Col03]. In the special case of 𝑞 = 2, the symmetric group 𝒮𝑞 con-

sists of two elements 𝑒, 𝜏 *, namely, the identity and non-identity permutation, respectively,

and we have that Wg(𝑒, 𝑑) = 1
𝑑2−1

and Wg(𝜏 *, 𝑑) = − 1
𝑑(𝑑2−1)

. We then have:

Lemma 10.7.3 (Degree-2 case of [Col03], Lemma 4.3). Let 𝑒, 𝜏 * denote the identity and

non-identity permutation of 𝒮2 respectively. For 𝑑 ≥ 2 and any A,B ∈ C𝑑×𝑑, we have that1

E
U
[Tr((AU†BU)2)] =

∑︁
𝜎,𝜏∈𝒮2

⟨A⟩𝜎⟨B⟩𝜏 Wg(𝜎𝜏−1, 𝑑) .

Proof of Fact 10.7.2. Let Π , 𝑒1𝑒
†
1 and note that 𝛿(𝑣) is identical in distribution to the

quantity Tr(ΠU†X′U). By Lemma 10.7.3,

E
𝑣
[𝛿(𝑣)2] = E

U
[Tr(ΠU†X′U)2] =

∑︁
𝜎,𝜏∈𝒮2

⟨Π⟩𝜎⟨X′⟩𝜏 Wg(𝜎𝜏−1, 𝑑).

Note that ⟨X′⟩𝜏 = 𝑑 · 1[𝜏 = 𝜏 *] and ⟨Π⟩𝜎 = 1 for all 𝜎 ∈ 𝒮2, so

E
𝑣
[𝛿(𝑣)2] = 𝑑

(︂
1

𝑑2 − 1
− 1

𝑑(𝑑2 − 1)

)︂
=

1

𝑑+ 1

as claimed.

Furthermore, it is known that 𝛿(𝑣)2 concentrates around its expectation. So if the columns

of U were actually independent random unit vectors, we would conclude that 𝐾U,U′

ℳ =

𝑂(𝜀2/𝑑) with high probability and obtain (10.17) for the special case whereℳ is orthogonal.

1Note that this looks different from the statement in [Col03] only because they work with normalized
trace tr(·) , 1

𝑑 Tr(·).

707

To circumvent the issue of dependence among the columns of Haar-random U, we will

invoke Theorem 10.7.1. The following is a toy version of the more general result that we

show later in our proof of Theorem 10.6.3 (see Lemma 10.7.6):

Lemma 10.7.4. For any 𝑡 > 0, PrU∼𝒟

[︂(︁∑︀𝑑
𝑖=1 𝛿(U𝑖)

2
)︁1/2
≥ 1 + 𝑡

]︂
≤ exp (−Ω(𝑑𝑡2)).

Proof. By Jensen’s and Fact 10.7.2,

E

⎡⎣(︃ 𝑑∑︁
𝑖=1

𝛿(U𝑖)
2

)︃1/2
⎤⎦ ≤ E

[︃
𝑑∑︁
𝑖=1

𝛿(U𝑖)
2

]︃1/2
=

(︂
𝑑

𝑑+ 1

)︂1/2

≤ 1.

We wish to invoke Theorem 10.7.1, so it suffices to show that 𝐺 : U ↦→ (
∑︀𝑑

𝑖=1 𝛿(U𝑖)
2)1/2 is

𝑂(1)-Lipschitz. Recalling the definition of X′ from Construction 2, note that

(︃
𝑑∑︁
𝑖=1

𝛿(U𝑖)
2

)︃1/2

= ‖diag(U†X′U)‖𝐹 .

Take any U,V ∈ 𝑈(𝑑) and note

𝐺(U)−𝐺(V) ≤

⎯⎸⎸⎷ 𝑑∑︁
𝑖=1

|(U†X′U)𝑖𝑖 − (V†X′V)𝑖𝑖|2

≤ ‖U†X′U−V†X′V‖𝐹

= ‖U†X′(U−V) + (V −U)†X′V‖𝐹

≤ 2‖X′‖2‖U−V‖𝐹 = 2‖U−V‖𝐹 ,

where the first step follows by Cauchy-Schwarz. So 𝐺(U) is 2-Lipschitz as desired.

Eq. (10.23), Fact 10.7.2, and Lemma 10.7.4, together with integration by parts, allow

us to conclude Theorem 10.6.3 in the special case where ℳ is orthogonal. Guided by the

arguments above, we now proceed to our actual proof of Theorem 10.6.3.

Proof of Theorem 10.6.3. Letℳ be an arbitrary POVM. We first show a bound on EU,U′ [𝐾U,U′

ℳ],

generalizing Fact 10.7.2:

Lemma 10.7.5. EU,U′ [𝐾U,U′

ℳ] ≤ 𝜀2

𝑑+1
.

708

Proof. Note that 𝐾U,U′

ℳ = 2E𝑥∼𝑝
[︀
𝑔Uℳ(𝑥)2

]︀
+ 2𝜑U,U′

ℳ . We will suppress the subscripts for

the rest of this proof. Clearly we have that EU,U′ [𝜑U,U′
] = 0, so it remains to bound

E𝑥∼𝑝,U,U′
[︀
𝑔U(𝑥)2

]︀
. Let 𝜏 * ∈ 𝒮2 denote the non-identity permutation. For any fixed 𝑥, by

Lemma 10.7.3,

E
U
[𝑔U(𝑥)2] =

∑︁
𝜎,𝜏∈𝒮2

⟨X⟩𝜏 ⟨̂︁𝑀𝑥⟩𝜎Wg(𝜎𝜏−1, 𝑑)

= ⟨X⟩𝜏*
(︁
Tr(̂︁𝑀2

𝑥) ·Wg(𝑒, 𝑑) + Tr(̂︁𝑀𝑥)
2 ·Wg(𝜏 *, 𝑑)

)︁
= 𝜀2 · 𝑑 ·

(︂
1

𝑑2 − 1
Tr(̂︁𝑀2

𝑥)−
1

𝑑(𝑑2 − 1)

)︂
≤ 𝜀2

𝑑+ 1
, (10.24)

where the second step follows by the fact that ⟨X⟩𝜏 = 𝜀2·𝑑·1[𝜏 = 𝜏 *], and the last step follows

by the fact that Tr(̂︁𝑀2
𝑥) ≤ 1. As (10.24) holds for any outcome 𝑥, E𝑥∼𝑝,U,U′ [𝑔U(𝑥)2] ≤ 𝜀2

𝑑+1

as desired.

We next show the following tail bound generalizing Lemma 10.7.4:

Lemma 10.7.6. There are absolute constants 𝑐, 𝑐′ > 0 such that

Pr
U,U′∼𝒟

[︁
𝐾U,U′

ℳ > 𝑐𝜀2/𝑑+ 𝑡
]︁
≤ exp(−𝑐′𝑡𝑑2/𝜀2))

for any 𝑡 > 𝑐𝜀2/𝑑.

Proof. We wish to apply Theorem 10.7.1. We will show that 𝐹 : (U,U′) ↦→
(︁
𝐾U,U′

ℳ

)︁1/2
is

𝐿-Lipschitz for 𝐿 = 𝑂(𝜀/
√
𝑑). As E[𝐹 (U,U′)] ≤ EU,U′

[︁
𝐾U,U′

ℳ

]︁1/2
≤ 𝜀√

𝑑+1
by Jensen’s and

Lemma 10.7.5, this would imply that for any 𝑠 > 0,

Pr
U∼𝒟

[︂
𝐹 (U,U′) >

𝜀√
𝑑+ 1

+ 𝑠

]︂
≤ 𝑒−𝑑

2𝑠2/12𝜀2 ,

from which the lemma would follow by taking 𝑠 =
√
𝑡.

To show Lipschitz-ness, note that

𝐹 (U,U′) = E
𝑥∼𝑝

[︂(︁
𝑔Uℳ(𝑥) + 𝑔U

′

ℳ(𝑥)
)︁2]︂
≤ E

𝑥∼𝑝

[︀
𝑔Uℳ(𝑥)2

]︀1/2
+ E

𝑥∼𝑝

[︁
𝑔U

′

ℳ(𝑥)2
]︁1/2

,

709

so the proof is complete given Lemma 10.7.7 below.

Lemma 10.7.7. The function 𝐺 : U ↦→ E𝑥∼𝑝
[︀
𝑔Uℳ(𝑥)2

]︀1/2 is 𝑂(𝜀/
√
𝑑)-Lipschitz.

Proof. Take any U,V ∈ 𝑈(𝑑) and note that by triangle inequality,

𝐺(𝑈)−𝐺(𝑉) ≤ E
𝑥∼𝑝

[︁(︀
𝑔Uℳ(𝑥)− 𝑔Vℳ(𝑥)

)︀2]︁1/2
,

so it suffices to show

E
𝑥∼𝑝

[︁(︀
𝑔Uℳ(𝑥)− 𝑔Vℳ(𝑥)

)︀2]︁ ≤ 𝑂(𝜀2/𝑑) · ‖U−V‖2𝐹 . (10.25)

A , U†XU−V†XV is Hermitian, so write its eigendecomposition A = W†ΣW. Then

𝑔Uℳ(𝑥)− 𝑔Vℳ(𝑥) =
⟨̂︁𝑀𝑥,A

⟩
=
⟨
Ŵ︁𝑀𝑥W

†,Σ
⟩
=
⟨
diag(Ŵ︁𝑀𝑥W

†),Σ
⟩
,

so we may assume without loss of generality that A and ̂︁𝑀𝑥 are diagonal, in which case by

Jensen’s,

(︀
𝑔Uℳ(𝑥)− 𝑔Vℳ(𝑥)

)︀2
= ⟨̂︁𝑀𝑥,A⟩2 =

(︃
𝑑∑︁
𝑖=1

(̂︁𝑀𝑥)𝑖𝑖A𝑖𝑖

)︃2

≤
𝑑∑︁
𝑖=1

(̂︁𝑀𝑥)𝑖𝑖A
2
𝑖𝑖.

Recalling the definition of 𝑝 and letting 𝜇 denote the measure over Ω(ℳ) associated to ℳ

(see Definition 10.2.3), we see that the left-hand side of (10.25) becomes

1

𝑑

∫︁
Ω(ℳ)

Tr(𝑀𝑥) · ⟨̂︁𝑀𝑥,A⟩2 d𝜇 =
1

𝑑

∫︁
Ω(ℳ)

∑︁
𝑖∈[𝑑]

Tr(𝑀𝑥) · (̂︁𝑀𝑥)𝑖𝑖A
2
𝑖𝑖 d𝜇 =

1

𝑑

∫︁
Ω(ℳ)

∑︁
𝑖∈[𝑑]

(𝑀𝑥)𝑖𝑖A
2
𝑖𝑖

=
1

𝑑
‖A‖2𝐹 =

1

𝑑
‖U†X(U−V) + (U−V)†XV‖2𝐹 ≤

2𝜀2

𝑑
‖U−V‖2𝐹 ,

where the third step follows from the fact that
∫︀
Ω(ℳ)

𝑀𝑥 d𝜇 = Id, completing the proof of

(10.25).

To complete the proof of Theorem 10.6.3, we would like to apply Fact 1.3.30 to the

random variable 𝑍 , 1 + 𝛾 · 𝐾U,U′

ℳ and the function 𝑓(𝑍) , 𝑍𝑛. Note that this random

710

variable is nonnegative and upper bounded by 1+𝐶 ·𝛾 ·𝜀2 for some absolute constant 𝐶 > 0.

So

E
U,U′

[︁(︁
1 + 𝛾𝐾U,U′

ℳ

)︁𝑛]︁
≤ 2(1 +𝑂(𝛾𝜀2/𝑑))𝑛 +

∫︁ 1+𝐶𝛾𝜀2

1+𝑐𝛾𝜀2/𝑑

𝑛𝑡𝑛−1 · 𝑒−Ω(𝑡·𝑑2/𝜀2) d𝑡

≤ 2(1 +𝑂(𝛾𝜀2/𝑑))𝑛 +

∫︁ ∞

0

𝑛𝑡𝑛−1 · 𝑒−Ω(𝑡·𝑑2/𝜀2) d𝑡

= 2(1 +𝑂(𝛾𝜀2/𝑑))𝑛 + 𝑛! ·𝑂(𝜀2/𝑑2)𝑛

≤ 𝑒𝑂(𝛾𝜀2𝑛/𝑑),

where in the last step we used that 𝑛! ·𝑂(𝜀2/𝑑2)𝑛 is negligible when 𝑛 = 𝑜(𝑑2/𝜀2)

10.7.2 Proof of Theorem 10.4.1

For convenience, Theorem 10.4.1 is restated below. Recall from the discussion in Sec-

tion 10.3.3 that this can be thought of as the “quantum analogue” of binomial tail bounds:

Theorem 10.4.1. Fix any POVM ℳ. There exists an absolute constant 𝑐′′ > 0 such that

for any 𝑡 > Ω(𝜀2/𝑑1.99), we have

Pr
U,U′∼𝒟

[︁⃒⃒⃒
𝜑U,U′

ℳ

⃒⃒⃒
> 𝑡
]︁
≤ exp

(︂
−𝑐′′

{︂
𝑑3𝑡2

𝜀4
∧ 𝑑

2𝑡

𝜀2

}︂)︂

Proof of Theorem 10.4.1. Define𝐺 as in Lemma 10.7.7. Fix any U′ and consider the function

𝐹U′ : U ↦→ 𝜑U,U′

ℳ . First note that

E
U
[𝐹U′(U)] = E

𝑥∼𝑝
[𝑔U

′

ℳ(𝑥) · E
U
[𝑔Uℳ(𝑥)]] = 0

by Part (I) of Fact 10.3.3. Next, note that by Cauchy-Schwarz,

𝐹U′(U)− 𝐹U′(V) ≤ E
𝑥∼𝑝

[︁(︀
𝑔Uℳ(𝑥)− 𝑔Vℳ(𝑥)

)︀2]︁1/2 ·𝐺(U′),

711

which by (10.25) is 𝑂(𝜀/
√
𝑑) ·𝐺(U′)-Lipschitz. So for any fixed U′, Theorem 10.7.1 implies

Pr
U
[|𝐹U′(U)| > 𝑡] ≤ exp

(︂
−𝐶 · 𝑑2𝑡2

𝜀2𝐺(U′)2

)︂
(10.26)

for some absolute constant 𝐶 > 0. We would like to integrate over U′ to get a tail bound

for 𝜑U,U′

ℳ as a function of both U and U′.

To this end, we can apply Fact 1.3.30 to the random variable 𝑌 , 𝐺(U′) ∈ [0, 𝜀]. Recall

from (10.24) and Jensen’s that E[𝑌] ≤ 𝜀/
√
𝑑+ 1. Furthermore, by Lemma 10.7.7 and

Theorem 10.7.1, there is an absolute constant 𝐶 ′ > 0 such that

Pr[𝑌 > 𝜀/
√
𝑑+ 1 + 𝑠] ≤ exp

(︀
−𝐶 ′𝑑2𝑠2/𝜀2

)︀
.

So we can take the parameters in Fact 1.3.30 as follows: set 𝑎 , 2𝜀/
√
𝑑+ 1, tail bound

function 𝜏(𝑥) , exp

(︂
−𝐶 ′ · 𝑑2

𝜀2

(︁
𝑥− 𝜀√

𝑑+1

)︁2)︂
for absolute constant 𝐶 ′ > 0, and 𝑓(𝑌) ,

exp
(︁
−𝐶 · 𝑑2𝑡2

𝜀2𝑌 2

)︁
. By (10.26), PrU,U′

[︁⃒⃒⃒
𝜑U,U′

ℳ

⃒⃒⃒
> 𝑡
]︁
≤ E[𝑓(𝑌)], and by Fact 1.3.30,

E[𝑓(𝑌)] ≤ 2 exp
(︀
−Ω(𝑑3𝑡2/𝜀4)

)︀
+

∫︁ 𝜀

2𝜀/
√
𝑑+1

2𝐶𝑑2𝑡2

𝜀2𝑥3
exp

(︃
−𝑑

2

𝜀2

(︃
𝐶𝑡2

𝑥2
+ 𝐶 ′

(︂
𝑥− 𝜀√

𝑑+ 1

)︂2
)︃)︃

d𝑥.

Note that by AM-GM, for 𝑥 ≥ 2𝜀/
√
𝑑+ 1 we have that

𝐶𝑡2

𝑥2
+ 𝐶 ′

(︂
𝑥− 𝜀√

𝑑+ 1

)︂2

≥ 2𝑡 · (𝐶 · 𝐶 ′)1/2 ·
(︂
1− 𝜀/

√
𝑑+ 1

𝑥

)︂
≥ 𝑡 · (𝐶 · 𝐶 ′)1/2.

We conclude that

Pr
U,U′

[︁⃒⃒⃒
𝜑U,U′

ℳ

⃒⃒⃒
> 𝑡
]︁
≤ 2 exp

(︀
−Ω(𝑑3𝑡2/𝜀4)

)︀
+

2𝐶𝑑3𝑡2

𝜀4
· exp

(︀
−Ω

(︀
𝑑2𝑡/𝜀2

)︀)︀
.

In particular, for 𝑡 ≥ Ω(𝜀2/𝑑1.99), we have that

Pr
U,U′

[︁⃒⃒⃒
𝜑U,U′

ℳ

⃒⃒⃒
> 𝑡
]︁
≥ exp

(︂
−Ω

(︂
𝑑3𝑡2

𝜀4
∧ 𝑑

2𝑡

𝜀2

)︂)︂

as claimed.

712

10.8 Appendix: Chain Rule Proof of Theorem 10.1.3

Here we give a proof of the tight Ω(
√
𝑑/𝜀2) bound from Theorem 10.1.3 using the chain rule.

The only part of the proof of the weaker Theorem 10.5.1 that we need here is Lemma 10.5.2,

which we restate here for convenience.

Lemma 10.5.2.

KL
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
≤

𝑁∑︁
𝑡=1

𝑍𝑡 for 𝑍𝑡 , E
𝑥<𝑡∼𝑈⊗𝑡−1

[︃
1

Δ(𝑥<𝑡)
E

𝑧,𝑧′∼{±1}𝑑/2

[︁
𝜑𝑧,𝑧

′ ·Ψ𝑧,𝑧′

𝑥<𝑡

]︁]︃
. (10.12)

Define 𝜀′ , log 1+𝜀
1−𝜀 and note that for 𝜀 ≤ 1/2, 𝜀′ ≤ 3𝜀. Given 𝑥<𝑡 ∈ [𝑑]𝑡−1, let ℎ(𝑥<𝑡) ∈ [𝑑]𝑑

denote the vector whose 𝑗-th entry is the number of occurrences of element 𝑗 ∈ [𝑑] in 𝑥<𝑡.

For any ℎ1, ℎ2 ∈ N, define

𝐴ℎ1,ℎ2 ,
1

2

(︀
(1− 𝜀)ℎ1(1 + 𝜀)ℎ2 + (1− 𝜀)ℎ2(1 + 𝜀)ℎ1

)︀
𝐵ℎ1,ℎ2 ,

1

2

(︀
(1− 𝜀)ℎ1(1 + 𝜀)ℎ2 − (1− 𝜀)ℎ2(1 + 𝜀)ℎ1

)︀
.

Fact 10.8.1. For any 𝑥<𝑡 ∈ [𝑑]𝑡−1,

Δ(𝑥<𝑡) =

𝑑/2∏︁
𝑎=1

𝐴ℎ(𝑥<𝑡)2𝑎−1,ℎ(𝑥<𝑡)2𝑎

E
𝑧,𝑧′∼{±1}𝑑/2

[︁
⟨𝑧, 𝑧′⟩ ·Ψ𝑧,𝑧′

𝑥<𝑡

]︁
=

𝑑/2∑︁
𝑎=1

(︀
𝐵ℎ(𝑥<𝑡)2𝑎−1,ℎ(𝑥<𝑡)2𝑎

)︀2 ·∏︁
𝑎′ ̸=𝑎

(︀
𝐴ℎ(𝑥<𝑡)2𝑎−1,ℎ(𝑥<𝑡)2𝑎

)︀2
.

We can now complete the proof of Theorem 10.1.3.

Proof of Theorem 10.1.3. We will show that as long as 𝑡 ≤ 𝑂(
√
𝑑/𝜀2), 𝑍𝑡 defined in (10.12)

is no greater than 𝑂(𝜀2/
√
𝑑), from which the theorem follows. Fix any 𝑡 ≤ 𝑁 . Let Mul𝑡(𝑈)

denote the multinomial distribution over 𝑑-tuples h for which
∑︀𝑑

𝑖=1 ℎ𝑖 = 𝑡. By Fact 10.8.1

and (10.5),

𝑍𝑡 =
2𝜀2

𝑑

𝑑/2∑︁
𝑎=1

E
h∼Mul𝑡(𝑈)

[︃
(𝐵ℎ2𝑎−1,ℎ2𝑎)2

𝐴ℎ2𝑎−1,ℎ2𝑎
·
∏︁
𝑎′ ̸=𝑎

𝐴ℎ2𝑎′−1,ℎ2𝑎′

]︃
,

2𝜀2

𝑑

𝑑/2∑︁
𝑎=1

𝐶
(𝑎)
𝑡 . (10.27)

713

Fix any 𝑎 ∈ [𝑑]; without loss of generality suppose 𝑎 = 1. Then

𝐶
(1)
𝑡 =

1

𝑑𝑡

∑︁
𝑡

(︂
h

ℎ1 · · ·ℎ𝑑

)︂
(𝐵ℎ1,ℓ−ℎ1)2

𝐴ℎ1,ℓ−ℎ1
·
∏︁
𝑎′ ̸=1

𝐴ℎ2𝑎′−1,ℎ2𝑎′

=
1

𝑑𝑡

𝑡∑︁
ℓ=0

ℓ∑︁
ℎ1=0

𝑡!

ℎ1!(ℓ− ℎ1)!(𝑡− ℓ)!
(𝐵ℎ1,ℓ−ℎ1)2

𝐴ℎ1,ℓ−ℎ1

∑︁
ℎ3+···+ℎ𝑑=𝑡−ℓ

(︂
𝑡− ℓ

ℎ3 · · ·ℎ𝑑

)︂∏︁
𝑎′ ̸=1

𝐴ℎ2𝑎′−1,ℎ2𝑎′

= E
ℓ∼Bin(𝑡,2/𝑑)

[︂
E

ℎ1∼Bin(ℓ,1/2)

[︂
(𝐵ℎ1,ℓ−ℎ1)2

𝐴ℎ1,ℓ−ℎ1

]︂]︂
. (10.28)

Next, note that for any ℎ1, ℎ2,

(𝐵ℎ1,ℎ2)2

𝐴ℎ1,ℎ2
= 𝐴ℎ1,ℎ2 − 2(︀

1+𝜀
1−𝜀

)︀ℎ1−ℎ2 + (︀1+𝜀
1−𝜀

)︀ℎ2−ℎ1 ≤ 𝐴ℎ1,ℎ2 − exp
(︀
−(ℎ1 − ℎ2)2𝜀′2/2

)︀
.

Clearly Eℎ1∼Bin(ℓ,1/2)[𝐴
ℎ1,ℓ−ℎ1] = 1, so for any 0 ≤ ℓ ≤ 𝑡,

E
ℎ1∼Bin(ℓ,1/2)

[︂
(𝐵ℎ1,ℓ−ℎ1)2

𝐴ℎ1,ℓ−ℎ1

]︂
≤ E

ℎ1∼Bin(ℓ,1/2)

[︀
1− exp

(︀
−(2ℎ1 − ℓ)2𝜀′2/2

)︀]︀
≤ E

ℎ1∼Bin(ℓ,1/2)

[︀
2(ℎ1 − ℓ/2)2𝜀′2

]︀
= 𝜀′2 · ℓ,

where in the last step we used the expression for the variance of a binomial distribution.

Substituting this into (10.28), we conclude that 𝐶(𝑎)
𝑡 ≤ 2𝜀′2𝑡/𝑑 ≤ 18𝜀2𝑡/𝑑 for all 𝑎 ∈ [𝑑], so

for 𝑡 = 𝑂(
√
𝑑/𝜀2), (10.27) is at most 𝑂(𝜀2/

√
𝑑) as desired.

714

Chapter 11

Instance-Optimal Quantum State

Certification

11.1 Introduction

In this chapter, we turn to the more general problem of quantum state certification. As

we saw in the previous chapter, even for the special case of mixedness testing, Ω(𝑑4/3/𝜀2)

copies are necessary if the learner can only make unentangled measurements, even if the

measurements can be chosen adaptively as a function of the previous measurement outcomes.

And when the measurements are additionally chosen non-adaptively, we demonstrated that

Ω(𝑑3/2/𝜀2) copies are necessary.

This naturally leads to another important question, namely, for which states 𝜎 can we

perform state certification with lower copy complexity? As discussed in Section 1.2.4, this is

inspired by a line of work in (classical) distribution testing which achieves so-called “instance

optimal” bounds for identity testing. This culminated in a result due to [VV17], which states

that, for any distribution 𝑝 over 𝑑 elements, there is a tester which requires

𝑛 = 𝐶1 ·max

⎛⎜⎝1

𝜀
,

⃦⃦⃦
𝑝−max
−𝜀/16

⃦⃦⃦
2/3

𝜀2

⎞⎟⎠
samples for some universal constant 𝐶1 > 0, and distinguishes with high probability between

715

the case where 𝑞 = 𝑝, or when ‖𝑞 − 𝑝‖1 ≥ 𝜀. Here, ‖ · ‖2/3 is the ℓ2/3-quasinorm, and

𝑝−max
−𝛿 : [𝑑] → R is the function that results after zeroing out the largest entry in the

probability mass function of 𝑝, as well as zeroing out the bottom 𝛿 mass of it. To complement

this bound, they also demonstrate there is a universal constant 𝐶2 > 0 so that no tester can

succeed with good confidence at this task, if the number of samples 𝑁 satisfies

𝑛 ≤ 𝐶2 ·max

(︃
1

𝜀
,

⃦⃦
𝑝−max
−𝜀

⃦⃦
2/3

𝜀2

)︃
.

Together, these two bounds give a striking and more or less tight characterization of the

sample complexity landscape for this problem. Note that when 𝑝 is uniform over 𝑑 elements,

this recovers the well-known sample complexity bound of Θ(
√
𝑑/𝜀2) for uniformity testing

[Pan08].

Given this, it is natural to ask whether we can get similar 𝜎-dependent bounds for state

certification, for every 𝜎. The bounds from the previous chapter are certainly not tight for

all 𝜎: for instance, if 𝜎 is a known pure state, it is not hard to see that 𝑂(1/𝜀2) copies suffice.

One could hope a priori that a simple functional similar to the ℓ2/3 norm could also tightly

characterize the instance optimal copy complexity of state certification.

11.1.1 Our Results

In this work, we present a similar instance-optimal characterization of the copy complexity

of quantum state certification with non-adaptive measurements. Surprisingly, our results

demonstrate that the behavior of quantum state certification is qualitatively quite different

from that of classical identity testing. More formally, our main result is the following:

Theorem 11.1.1 (Informal, see Theorems 11.5.1 and 11.6.1). Given any mixed state 𝜎 ∈

C𝑑×𝑑, there are mixed states 𝜎 and 𝜎 respectively given by zeroing out Θ(𝜀2) and Θ(𝜀) total

mass from 𝜎 and normalizing, such that the following holds.

Let 𝑑eff and 𝑑eff be the number of nonzero entries of 𝜎 and 𝜎 respectively. The optimal

copy complexity 𝑁 of state certification with respect to 𝜎 to trace distance error 𝜀 using

716

nonadaptive, unentangled measurements satisfies1

̃︀Ω(︃𝑑 · 𝑑1/2eff

𝜀2
· 𝐹 (𝜎, 𝜌mm)

)︃
≤ 𝑁 ≤ ̃︀𝑂(︃𝑑 · 𝑑1/2eff

𝜀2
· 𝐹 (𝜎, 𝜌mm)

)︃
.

Here 𝐹 denotes the fidelity between two quantum states. Qualitatively, our result says

that unless 𝜎 puts 1 − poly(𝜀) mass on 𝑜(𝑑) dimensions, the copy complexity of state cer-

tification is equal to the worst-case copy complexity of state certification, times the fidelity

between 𝜎 and the maximally mixed state. Surprisingly, unlike in the classical case, our

bound demonstrates that there is no clean dimension-independent functional which controls

the complexity of quantum state certification. Rather, there is some inherent “curse of di-

mensionality” for this problem. Also note that in the quantum case, unlike in the classical

case, we do not remove the largest element from the spectrum of 𝜎.

Example 11.1.2. To elaborate on this qualitative difference, consider the following example.

Let 𝜎 ∈ C(𝑑+1)×(𝑑+1) be the mixed state given by 𝜎 = diag(1 − 1/𝑑, 1/𝑑2, . . . , 1/𝑑2). The

classical analog of certifying this state is identity testing to the distribution 𝑝 over 𝑑 + 1

elements which has one element with probability 1 − 1/𝑑, and 𝑑 elements with probability

1/𝑑2.

For the classical case, the bound from [VV17] demonstrates that the sample complexity of

identity testing to 𝑝 is Θ
(︀

1
𝑑4/3𝜀2

)︀
for sufficiently small 𝜀. In particular, in this regime the sam-

ple complexity actually decreases as we increase 𝑑. This phenomena is not too surprising—

this distribution is very close to being a point distribution, and the only “interesting” part of

it, namely, the tail, only has total mass 1/𝑑, which vanishes as we increase 𝑑.

In contrast, Theorem 11.1.1 shows that the copy complexity of the quantum version of

this problem using unentangled measurements is ̃︀Θ(𝑑1/2/𝜀2). Here, the copy complexity for

this family of instances always increases as we scale 𝑑. This may be surprising, in light of the

classical sample complexity. At a high level, it is because the unknown state may share the

same diagonal entries with 𝜎 but may not commute with it, and therefore the “interesting”

behavior need not be constrained to the subspace spanned by the small eigenvalues of 𝜎.

Concretely, the issue is that one must ensure that the off-diagonal entries of the first row

1Throughout, we use ̃︀Ω(·) and ̃︀𝑂(·) solely to suppress factors of log(𝑑/𝜀).

717

and column of the unknown state are small. From a lower bounds perspective, this allows

the lower bound instance many more degrees of freedom, which results in a much stronger

resulting bound.

We can also show a lower bound against algorithms that use adaptive, unentangled mea-

surements, generalizing the adaptive lower bound of the previous chapter.

Theorem 11.1.3 (Informal, see Theorem 11.7.1). In the notation of Theorem 11.1.1, the

optimal copy complexity 𝑁 of state certification with respect to 𝜎 to error 𝜀 using adaptive,

unentangled measurements satisfies

𝑁 ≥ ̃︀Ω(︃𝑑 · 𝑑1/3eff

𝜀2
· 𝐹 (𝜎, 𝜌mm)

)︃

Since non-adaptive measurements are a subset of adaptive ones, Theorem 11.6.1 also provides

a per-instance upper bound for this problem, although it does not match the lower bound we

prove here. Obtaining tight bounds in this setting is an interesting open question, though

we reiterate that this is not known even for mixedness testing.

11.1.2 Related Work

Apart from the works on quantum state certification and tomography discussed in Sec-

tion 10.1.2, here we mention some works on instance-optimal distribution testing, the direct

classical analog of the problem we consider in this paper. The works of [ADJ+11,ADJ+12]

consider sample complexity bounds which improve upon the worst case sample complexity

for different choices of probability distributions. The setting that we consider is most di-

rectly inspired by the work of [VV17]. Subsequent work has re-proven and/or derived new

instance-optimal bounds for identity testing and other problems as well, see e.g. [DK16,

BCG19,JHW18].

11.2 Overview of Techniques

As in the previous chapter, our general approach is based on showing hardness for distinguish-

ing between a simple “null hypothesis” and a “mixture of alternatives,” i.e. whether the un-

718

known state 𝜌 that we get copies of is equal to 𝜎 or was randomly sampled at the outset from

some distribution 𝒟 over states 𝜀-far from 𝜎. Recall that when 𝜎 = 1
𝑑
Id, a standard choice

for 𝒟 is the distribution over mixed states of the form 1
𝑑

(︀
Id+𝜀 ·U† diag(𝜀, . . . ,−𝜀, . . .)U

)︀
.

Indeed, our proof builds upon the general framework introduced in the previous chapter (see

Section 11.4 for a distillation of the key insights from the previous chapter) but differs in

crucial ways.

To get a sense for what the right distinguishing task(s) to consider for general 𝜎 are,

it is instructive to see first how to prove instance-optimal bounds for classical distribution

testing.

11.2.1 Instance-Optimal Lower Bounds for Identity Testing

Here we sketch how to prove (a slightly worse version of) the lower bound of [VV17] for

identity testing. Recall this is the setting where one gets access to independent samples from

unknown distribution 𝑝 over 𝑑 elements and would like to test whether 𝑝 = 𝑞 or ‖𝑝− 𝑞‖1 > 𝜀

for a known distribution 𝑞.

When 𝑞 is the uniform distribution over 𝑑 elements, a classical result of [Pan08] demon-

strates that the fundamental bottleneck is distinguishing whether the samples come from

𝑝, or if the samples come from a version of 𝑞 where each marginal has been perturbed by

±𝜀/𝑑. The main conceptual challenge to designing the lower bound for more general 𝑞 is that

there may be marginals of 𝑞 at many different scales, and whatever lower bound instance

one designs must be sensitive to these scales. One could consider the following mixture of

alternatives: for a randomly sampled 𝜁 ∈ {±1}𝑑, define 𝑞𝜁 to be the distribution such that

for every 𝑖 ∈ [𝑑], 𝑞𝜁 places mass 𝑞𝑖 + 𝜁𝑖 · 𝜀𝑖 on element 𝑖, where the perturbations {𝜀𝑖} are

carefully tuned.

Pretending for now that 𝑞𝜁 is a bona fide probability distribution, we need to upper

bound the total variation distance between the distribution over 𝑁 i.i.d. draws from 𝑞 and

the distribution over 𝑁 i.i.d. draws from 𝑞𝜁 where 𝜁 was sampled uniformly at random

from {±1}𝑑 in advance. A common analytical trick for carrying out this bound— and the

approach that [VV17] take— is to first Poissonize, that is, take 𝑁 to be a Poisson random

variable. Unfortunately, Poissonization does not seem to have any straightforward analogue

719

in the quantum setting, where the choice of measurement can vary across copies, so we

eschew this technique in favor of alternative approaches.

A somewhat simpler approach is to “bucket” the marginals, where each given bucket con-

tains all marginals within a fixed multiplicative factor of one another. Within each bucket,

one can use the simple Paninski-style lower bound on the distribution conditioned on the

event that the sample lies within the bucket. Since within each bucket, the conditional dis-

tribution is close to uniform, Paninski’s lower bound construction will give a hard instance

for that conditional distribution. Combining these constructions across buckets after appro-

priately renormalizing them thus gives a natural hard instance for testing against the overall

distribution 𝑞. Indeed, one can show that if one combines this with the same preprocessing

steps done in the [VV17] paper (i.e. removing the largest element and the smallest 𝜀 mass),

one can recover the same bound as [VV17] up to poly-logarithmic factors in 1/𝜀. It is this

approach that we will generalize to the quantum setting.

Ingster-Suslina Method and Moment Bounds Apart from Poissonization, another

way to bound the total variation distance between the above two distributions is to pass to

chi-squared divergence and invoke the Ingster-Suslina method [IS12]. At a high level, this

approach amounts to bounding higher-order moments of the relative chi-squared divergence

𝜑𝜁,𝜁
′
, E

𝑖
[(Δ𝜁(𝑖)− 1)(Δ𝜁′(𝑖)− 1)]

as a random variable in 𝜁, 𝜁 ′. Here, the expectation is over sample 𝑖 ∈ [𝑑] drawn from 𝑞, and

Δ𝜁(𝑖) = 1 + 𝜁𝑖 · 𝜀𝑖/𝑞𝑖

is the likelihood ratio between the probability of drawing 𝑖 when 𝑝 = 𝑞𝜁 versus the probability

of drawing 𝑖 when 𝑝 = 𝑞. Concretely, if one can show that

E
𝜁,𝜁′

[︂(︁
1 + 𝜑𝜁,𝜁

′
)︁𝑡]︂

= 1 + 𝑜(1) (11.1)

for some 𝑡, this implies a sample complexity lower bound of 𝑡 for testing identity to 𝑞.

720

To control the moments of 𝜑𝜁,𝜁′ , note that

𝜑𝜁,𝜁
′
=

𝑑∑︁
𝑖=1

𝜁𝑖 · 𝜁 ′𝑖 · 𝜀2𝑖 /𝑞𝑖.

𝜁𝑖 ·𝜁 ′𝑖 is uniformly random over {±1}, so 𝜑𝜁,𝜁′ has fluctuations of size roughly (
∑︀𝑑

𝑖=1 𝜀
4
𝑖 /𝑞

2
𝑖)

1/2,

and one can show that (11.1) holds for 𝑡 = 𝑜
(︁
(
∑︀𝑑

𝑖=1 𝜀
4
𝑖 /𝑞

2
𝑖)

−1/2
)︁
.

At this point, it remains to optimize {𝜀𝑖} among all perturbations for which 𝑑TV(𝑞, 𝑞
𝜁) ≥ 𝜀

for all 𝜁. For this, one can take 𝜀𝑖 , min(𝑞𝑖, 𝛼𝑞
2/3
𝑖) for 𝛼 satisfying

∑︀
𝜀𝑖 = 𝜀, thus recovering

the instance-optimal lower bound of [VV17]. For instance, for sufficiently small 𝜀, this lower

bound specializes to ‖𝑞‖2/3/𝜀2.

11.2.2 Passing to the Quantum Setting

We now describe how to extend some of these ideas to quantum state certification.

A Generalized Quantum Paninski Instance for General 𝜎 Recall that in the case

where 𝜎 = 𝜌mm, the “mixture of alternatives” we consider is given by perturbing every

eigenvalue of 𝜌mm and then randomly rotating by a Haar-unitary over C𝑑.

For general 𝜎, one cannot afford to use a global rotation. Just as we needed to be

sensitive to the different scales when picking the perturbations 𝜀𝑖 in the classical setting,

in the quantum setting we need to be sensitive to these scales not only in picking the

perturbations to the eigenvalues of 𝜎 but also in picking the ensemble of rotations.

Motivated by the classical construction described above, one way to handle this is to

group the eigenvalues into buckets, where a given bucket contains all eigenvalues within a

fixed multiplicative factor of each other, and consider 𝒟 defined as follows. 𝒟 is a distribution

over mixed states of the form 𝜎 +U†XU, where now U is a block-diagonal unitary matrix

whose blocks are Haar-random and whose block structure corresponds to the buckets, and

X is a direct sum of multiples of Id with dimensions and magnitudes corresponding to the

sizes and relative magnitudes of the buckets.

For instance, if 𝜎 =
(︁

1
2
√
𝑑
Id√

𝑑

)︁
⊕
(︁

1
2(𝑑−

√
𝑑)

Id𝑑−√
𝑑

)︁
, we can take U to be distributed as

U1⊕U2, where U1 ∈ 𝑈(
√
𝑑) and U2 ∈ 𝑈(𝑑−

√
𝑑) are Haar-random, and X =

(︁
𝜀1
2
√
𝑑
Id√

𝑑

)︁
⊕

721

(︁
𝜀2

2(𝑑−
√
𝑑)

Id𝑑−√
𝑑

)︁
for appropriately chosen 𝜀1, 𝜀2 summing to 2.

Our analysis for this instance follows the Ingster-Suslina method in the nonadaptive case

and the general framework of the previous chapter in the adaptive case, both of which reduce

to proving that under any single-copy POVM, the relative chi-squared divergence

𝜑U,V , E
𝑧
[(ΔU(𝑧)− 1)(ΔV(𝑧)− 1)].

concentrates as a random variable in U,V ∼ 𝒟. Analogous to the classical setup described

above, here the expectation is over POVM outcomes 𝑧 if one measures a single copy of the

state 𝜌 = 𝜎, and ΔU(𝑧) is the likelihood ratio between the probability of observing POVM

outcome 𝑧 when 𝜌 = 𝜎+U†XU versus the probability of observing the same outcome when

𝜌 = 𝜎 (see Section 11.4 for formal definitions).

If U,V were Haar-random over U(𝑑), one could invoke standard concentration of mea-

sure for Haar-random unitary matrices [AGZ10,MM13]; this is the approach of our previous

chapter, but for general 𝜎 we need to control the tails of 𝜑U,V when U,V have the above-

mentioned block structure, for which off-the-shelf tail bounds will not suffice. Instead, we

argue that because we can assume without loss of generality that the optimal POVMs to use

to distinguish 𝜌 = 𝜎 from 𝜌 = 𝜎 + U†XU respect the block structure, 𝜑U,V is a weighted

sum of relative chi-squared divergences 𝜑U,V
𝑗 for many independent sub-problems, one for

each “bucket” 𝑗 (see (11.8)). These are independent random variables, each parametrized by

an independent Haar-random unitary matrix in a lower-dimensional space, so we can show

a tail bound for 𝜑U,V by combining the tail bounds for {𝜑U,V
𝑗 } (see Section 11.5.2).

Finally, in Section 11.5.2, we show how to tune the entries of X appropriately to get a

copy complexity lower bound of essentially ‖𝜎‖2/5/𝜀2 (see Lemma 11.5.5).

A Twist: Perturbing the Off-Diagonals The surprising thing is that this is not the

best one can do! It can be shown that ‖𝜎‖2/5/𝜀2 is actually dominated by the lower bound in

Theorem 11.1.1 for sufficiently small 𝜀. For instance, consider the instance in Example 11.1.2.

For sufficiently small 𝜀, the lower bound in Theorem 11.1.1 scales as Ω(
√
𝑑/𝜀2), whereas

‖𝜎‖2/5/𝜀2 scales as Ω(1/𝜀2). Where does the extra dimension factor come from?

722

This is the juncture at which instance-optimal state certification deviates significantly

from its classical analogue: for sufficiently small 𝜀, there is a distinguishing task in the former

setting which is even harder than the generalized Paninski instance described above!

For simplicity, consider a mixed state 𝜎 with exactly two buckets, e.g. 𝜎 = (𝜆1 Id𝑑1) ⊕

(𝜆2 Id𝑑2) where 𝑑1 ≥ 𝑑2. In this case, one can regard the generalized Paninski instance

as a family of perturbations of the two principal submatrices indexed by the coordinates

{1, . . . 𝑑1} in bucket 1 and the coordinates {𝑑1 + 1, . . . , 𝑑} in bucket 2 respectively. But one

could also perturb 𝜎 by considering matrices of the form

𝜎 +

⎛⎝ 0𝑑1 (𝜀/2𝑑2) ·W

(𝜀/2𝑑2) ·W† 0𝑑2

⎞⎠ (11.2)

parametrized by Haar-random W ∈ C𝑑1×𝑑2 consisting of orthonormal columns. One can

show that as long as 𝜀 ≤ 𝑑𝑗1 ·
√
𝜆1𝜆2, then (11.2) is a valid density matrix (Lemma 11.5.18)

and is 𝜀-far in trace distance from 𝜎. In this regime, we show a lower bound of Ω(𝑑1
√
𝑑2/𝜀

2)

for distinguishing whether 𝜌 = 𝜎 or whether 𝜌 is given by a matrix (11.2) where W is

sampled Haar-randomly at the outset.

For general 𝜎, by carefully choosing which pair of buckets to apply this construction to,

we obtain the lower bound of Theorem 11.1.1 for very small 𝜀. For larger 𝜀 we show that if

the lower bound from the generalized Paninski instance were inferior to the lower bound of

Theorem 11.1.1, then we would arrive at a contradiction of the assumption that 𝜀 is large

(see Section 11.5.5).

Finally we remark that the ideas above can also be implemented in the setting where

one can choose unentangled POVMs adaptively (Theorem 11.1.3). The reason the lower

bound we obtain is not instance-optimal is the same technical reason that we were not able

to obtain an optimal lower bound for mixedness testing, namely that there is some lossy

balancing step (see the proof of Theorem 11.4.10 in Appendix 11.8.1).

Handling the Largest Eigenvalue We highlight one more feature of Theorems 11.1.1

and 11.1.3 which is unique to the quantum setting. In the classical setting, the instance-

optimal sample complexity of testing identity to a given distribution 𝑝 is essentially given by

723

1
𝜀
∨ ‖𝑝′‖2/3

𝜀2
, where 𝑝′ is derived from 𝑝 by zeroing out not just the bottom 𝑂(𝜀) mass from 𝑝

but also the largest entry of 𝑝. To see why the latter and the additional 1
𝜀

term are necessary,

consider a discrete distribution 𝑝 which places 1−𝜀/100 mass on some distinguished element

of the domain, call it 𝑥*. The 1
𝜀
∨ ‖𝑝′‖2/3

𝜀2
lower bound would yield Ω(1/𝜀) sample complexity,

and an algorithm matching this bound would simply be to estimate the mass the unknown

distribution places on 𝑥*. The reason is that because 𝑝 places total mass 𝜀/100 on elements

distinct from 𝑥*, any distribution which is 𝜀-far from 𝑝 in ℓ1-distance must place at most

1− 101𝜀/100 mass on 𝑥*, which can be detected in 𝑂(1/𝜀) samples.

In stark contrast, in the quantum setting if 𝜎 had an eigenvalue of 1 − 𝜀/100, then the

copy complexity of state certification with respect to 𝜎 scales with 1/𝜀2. The reason is that

there is “room in the off-diagonal entries” for a state 𝜌 to be 𝜀-far from 𝜎. Indeed, we can

formalize this by considering a lower bound instance similar to (11.2). In fact it is even

simpler, because for mixed states whose largest eigenvalue is particularly large, it suffices to

randomly perturb a single pair of off-diagonal entries! To analyze the resulting distinguishing

task, we eschew the framework of the previous chapter and directly bound the likelihood ratio

between observing any given sequence of POVM outcomes under the alternative hypothesis

versus under the null hypothesis (see Section 11.5.4 and Lemma 11.5.24 in particular).

Upper Bound The algorithm we give for state certification is reminiscent of the instance

near-optimal algorithm for identity testing from [DK16]. As in our lower bound proof, we will

partition the spectrum of 𝜎 into buckets. We will also place all especially small eigenvalues

of 𝜎 in a single bucket of their own.

Our starting point is a basic algorithm for state certification when the eigenvalues of 𝜎

all fall within the same bucket: this algorithm is based on measuring our copies of unknown

state 𝜌 in a Haar-random basis and running a classical identity tester [DK16]. This basic

algorithm yields the upper bound in Theorem 10.1.1 from the previous chapter.

Now for a general mixed state 𝜎, suppose there are 𝑚 buckets in total. At a high

level, if the state 𝜌 to which we get copy access is 𝜀-far in trace distance from 𝜎, then by

triangle inequality at least one of four things can happen. There may be a bucket consisting

of moderately large eigenvalues for which the corresponding principal submatrix of 𝜎 is

724

Ω(𝜀/𝑚2)-far from that of 𝜌, in which case we can run the abovementioned basic algorithm.

Otherwise, there may be two buckets consisting of moderately large eigenvalues for which

the corresponding pair of off-diagonal blocks in 𝜎 are Ω(𝜀/𝑚2)-far from the corresponding

submatrix in 𝜌.

If neither of these two cases happen, then for the single bucket consisting of all especially

small eigenvalues of 𝜎, the corresponding principal submatrix of 𝜎 is Ω(𝜀2)-far from that of

𝜌, in which case we can use a two-element POVM, one element given by the projector to

that submatrix, to estimate the total mass of 𝜌 within that submatrix. In this case, 𝑂(1/𝜀2)

copies suffice. Finally, it could be that the none of the above three cases hold, which would

imply that 𝜌 and 𝜎 differ primarily in the off-diagonal block with rows indexed by the bucket

of small eigenvalues and columns indexed by the complement. But by basic linear algebra

(Fact 11.3.5), this would yield a contradiction!

11.3 Technical Preliminaries

As demonstrated in Chapter 10, our techniques generalize easily to POVMs for which Ω(ℳ)

is infinite, so for simplicity we will simply consider the finite case in this chapter. We retain

the terminology and notation from Section 10.2.

11.3.1 Miscellaneous Technical Facts

The following elementary facts will be useful:

Fact 11.3.1. Let 𝑆 be any set of distinct positive integers. Given a collection of numbers

{𝑑𝑗}𝑗∈𝑆 satisfying
∑︀

𝑗 𝑑𝑗2
−𝑗 ≤ 2, let 𝑝 be the vector with 𝑑𝑗 entries equal to 2−𝑗 for every

𝑗 ∈ 𝑆. Then max𝑗 𝑑
𝑏
𝑗2

−𝑎𝑗 ≥ |𝑆|−𝑏‖𝑝‖−𝑎𝑎/𝑏 for any 𝑎, 𝑏 > 0.

Proof. Let 𝑗* be the index attaining the minimum. By minimality we know 𝑑𝑗*2
−𝑎𝑗/𝑏 ≥

1
|𝑆|
∑︀

𝑗 𝑑𝑗 · 2−𝑎𝑗/𝑏. Raising both sides to the 𝑏-th power and taking reciprocals, we conclude

that 2𝑎𝑗/𝑑𝑏𝑗 ≤ |𝑆|𝑏‖𝑝‖𝑎𝑎/𝑏.

Fact 11.3.2. Let 𝑐 > 1 and 𝑝, 𝑞 > 0. Given a vector 𝑣 with entries 𝑣1 > · · · > 𝑣𝑚 > 0 for

which 𝑣𝑖 ≥ 𝑐 · 𝑣𝑖+1 for every 𝑖, we have that ‖𝑣‖𝑝 ≥ (1− 𝑐−𝑞)1/𝑞 · ‖𝑣‖𝑞.

725

Proof. We have that ‖𝑣‖𝑞𝑞 ≤
∑︀∞

𝑖=1(𝑐 · 𝑣𝑖)𝑞 =
𝑣𝑞1

1−𝑐−𝑞 , so ‖𝑣‖𝑝 ≥ 𝑣1 ≥ ‖𝑣‖𝑞 · (1− 𝑐−𝑞)1/𝑞.

Block Matrices and Tensors Here we record some basic facts about block matrices and

tensors.

Fact 11.3.3. Given matrices 𝐴,𝐵 ∈ C𝑑×𝑑,

𝐴⊗ℓ −𝐵⊗ℓ = sym

(︃
(𝐴−𝐵)⊗

ℓ−1∑︁
𝑖=0

𝐴⊗𝑖 ⊗𝐵⊗ℓ−1−𝑖

)︃
.

Fact 11.3.4 (Schur complements). For a block matrix 𝜌 =

⎛⎝A B

B† C,

⎞⎠ for which A and C

are positive definite, 𝜌 is positive definite if and only if Schur complement C −B†A−1B is

positive definite.

Fact 11.3.5. For psd block matrix 𝜌 =

⎛⎝A B

B† C,

⎞⎠, where A and C are square, we have that

Tr(A)Tr(C) ≥ ‖B‖21. In particular, ‖B‖1 ≤ Tr(𝜌)/2.

Proof. Without loss of generality suppose that A has at least as many rows/columns as C.

First note that we may assume B is actually square. Indeed, consider the matrix 𝜌′ given

by padding 𝜌 with zeros,

𝜌′ =

⎛⎜⎜⎜⎝
A B 0

B† C 0

0 0 0,

⎞⎟⎟⎟⎠

so that A and C′ ,

⎛⎝C 0

0 0

⎞⎠ have the same dimensions. Clearly, ‖
(︁
B 0

)︁
‖1 = ‖B‖1, and

‖C′‖1 = ‖C‖1, so to show Fact 11.3.5 for 𝜌 it suffices to prove it for 𝜌′. So henceforth,

assume B is square.

We will further assume that B is diagonal. To see why this is without loss of generality,

write the singular value decomposition B = U†ΣV and note that⎛⎝U 0

0 V

⎞⎠ 𝜌

⎛⎝U† 0

0 V†

⎞⎠ =

⎛⎝U†AU Σ

Σ V†CV.

⎞⎠
726

If B is diagonal, then for every diagonal entry B𝑖,𝑖, we have that B2
𝑖,𝑖 ≤ A𝑖,𝑖C𝑖,𝑖, so

‖B‖21 =

(︃∑︁
𝑖

B𝑖,𝑖

)︃2

≤

(︃∑︁
𝑖

A
1/2
𝑖,𝑖 B

1/2
𝑖,𝑖

)︃2

≤ Tr(A)Tr(B),

where the last step is by Cauchy-Schwarz.

The second part of the claim follows by AM-GM.

11.3.2 Instance-Optimal Distribution Testing

We recall the precise statement of the instance-optimal lower bound from [VV17].

Theorem 11.3.6 ([VV17], Theorem 1). Given a known distribution 𝑝 and samples from

an unknown distribution 𝑞, any tester that can distinguish between 𝑞 = 𝑝 and ‖𝑝 − 𝑞‖1 ≥ 𝜀

with probability 2/3 must draw at least Ω(1/𝜀 ∨ ‖𝑝−max
−𝜀 ‖2/3/𝜀2) samples.

Note that this immediately implies a lower bound for state certification:

Corollary 11.3.7. Given a known mixed state 𝜌 and copies of an unknown mixed state 𝜎,

any tester that can distinguish between 𝜎 = 𝜌 and ‖𝜌 − 𝜎‖1 ≥ 𝜀 with probability 2/3 using

measurements on the copies of 𝜌 must use at least Ω(‖𝜌−max
−𝜀 ‖2/3/𝜀2) samples.

We will use this corollary in our proof to handle mixed states whose eigenvalues are all

pairwise separated by at least a constant factor. Intuitively, these mixed states are close to

being low-rank, and one would expect that the copy complexity for testing identity to such

a state is ̃︀Θ(1/𝜀2). We show that this is indeed the case (see Lemma 11.5.12).

11.4 Generic Lower Bound Framework

In this section we abstract out some of the analysis from the previous chapter. As before,

all of our lower bounds will be based on analyzing a suitable null vs. mixture distinguishing

problem. Concretely, we will lower bound 𝑁 for which it is possible to distinguish, using an

unentangled POVM schedule 𝒮 (recall Definition 10.2.1), between 𝜌⊗𝑁 and EU∼𝒟[𝜌
⊗𝑁
U] for

some prior distribution 𝒟.

As in the previous chapter, given unentangled POVM schedule 𝒮, let 𝑝≤𝑁0 (resp. 𝑝≤𝑁1)

727

denote the distribution over transcripts given by measuring 𝜌⊗𝑁 (resp. EU[𝜌
⊗𝑁
U] with 𝒮.

A key component of our analysis is to bound how well a single step of 𝒮 can distinguish

between a single copy of 𝜌 and a single copy of 𝜌U for U ∼ 𝒟:

Definition 11.4.1. A single-copy sub-problem 𝒫 = (ℳ, 𝜌, {𝜌U}U∼𝒟) consists of the follow-

ing data: a POVMℳ over C𝑑, a mixed state 𝜌 ∈ C𝑑×𝑑, and a distribution over mixed states

𝜌U ∈ C𝑑×𝑑 where U is drawn from some distribution 𝒟.

Definition 11.4.2. Given a single-copy sub-problem 𝒫 = (ℳ, 𝜌, {𝜌U}U∼𝒟), let 𝑝0(ℳ) de-

note the distribution over outcomes upon measuring 𝜌 using ℳ = {𝑀𝑧}. Given POVM

outcome 𝑧, and U,V ∈ supp(𝒟), define the quantities

𝑔U𝒫 (𝑧) ,
⟨𝑀𝑧, 𝜌U⟩
⟨𝑀𝑧, 𝜌⟩

− 1 𝜑U,V
𝒫 , E

𝑧∼𝑝0(ℳ)

[︀
𝑔U𝒫 (𝑧) · 𝑔V𝒫 (𝑧)

]︀
.

We will omit the subscript 𝒫 when the context is clear.

11.4.1 Helpful Conditions on 𝑔U𝒫 (𝑧)

For all of our lower bounds, we will design {𝜌U} in such a way that the following holds.

Condition 1. For any 𝑧 ∈ Ω(ℳ), EU[𝑔
U
𝒫 (𝑧)] = 0.

One natural choice for 𝒟 is the Haar measure over 𝑈(𝑑). In this case, many of our

lower bounds are derived from showing the following two conditions hold, in addition to

Condition 1.

Condition 2. EU∼𝒟,𝑧∼𝑝0(ℳ)[𝑔
U
𝒫 (𝑧)

2] ≤ 𝜍2.

Condition 3. E𝑧∼𝑝0(ℳ)[(𝑔
U
𝒫 (𝑧)− 𝑔V𝒫 (𝑧))2]1/2 ≤ 𝐿 · ‖U−V‖𝐹 for any U,V ∈ supp(𝒟).

Example 11.4.3. In the previous chapter, we showed that if 𝜌 = 𝜌mm and 𝜌U = 𝜌mm +

U† diag(𝜀
𝑑
, . . . ,− 𝜀

𝑑
, . . .)U, Conditions 1, 2 and 3 hold for 𝜍, 𝐿 = 𝑂(𝜀/

√
𝑑).

Under these conditions, we now collect some useful generic bounds. In the rest of this

subsection, fix arbitrary single-copy subproblem 𝒫 given by POVM ℳ; we will omit sub-

scripts accordingly. For any V ∈ 𝑈(𝑑), define the functions 𝐹V : 𝑈(𝑑) → R and 𝐺(U)

728

by

𝐹V(U) , 𝜑U,V
ℳ 𝐺(U) , E

𝑧∼𝑝0(ℳ)
[𝑔U𝒫 (𝑧)

2]1/2.

Lemma 11.4.4. If Conditions 1 and 3 hold, then for any V ∈ 𝑈(𝑑), 𝐹V is 𝐺(V)·𝐿-Lipschitz

and satisfies EU[𝐹V] = 0.

Proof. For any U,U′ ∈ 𝑈(𝑑), we have that

𝐹V(U)− 𝐹V(U
′) = E

𝑧∼𝑝0(ℳ)
[𝑔V(𝑧) · (𝑔U(𝑧)− 𝑔U′

(𝑧))]

≤ E
𝑧
[𝑔V(𝑧)2]1/2 · E

𝑧
[(𝑔U(𝑧)− 𝑔U′

(𝑧))2]1/2 ≤ 𝐺(V) · 𝐿 · ‖U−U′‖𝐹 ,

where the first inequality is by Cauchy-Schwarz, and the second is by Condition 3.

The second part of the lemma immediately follows from Condition 1.

Lemma 11.4.5. If Conditions 2 and 3 hold, then for any 𝑠 > 0,

Pr
U
[𝐺(U) > 𝜍 + 𝑠] ≤ exp(−Ω(𝑑𝑠2/𝐿2)).

Proof. The function 𝐺 is 𝐿-Lipschitz. To see this, note that for any U,V ∈ 𝑈(𝑑),

𝐺(U)−𝐺(V) ≤ E
𝑧∼𝑝0(ℳ)

[(𝑔U𝒫 (𝑧)− 𝑔V𝒫 (𝑧))2]1/2 ≤ 𝐿 · ‖U−V‖𝐹 ,

where the first step is triangle inequality and the second is by Condition 3.

By Condition 2 and Jensen’s, E[𝐺(U)] ≤ E[𝑔U(𝑧)2]1/2 ≤ 𝜍. The claim then follows by

Theorem 1.3.52 and Condition 2.

Lemma 11.4.6. If Conditions 1, 2, and 3 hold, then for any 𝑠 > 0,

Pr
U,V

[︀
|𝜑U,V| > 𝑠

]︀
≤ exp

(︂
−Ω

(︂
𝑑𝑠2

𝐿2𝜍2
∧ 𝑑𝑠
𝐿2

)︂)︂
.

Proof. By Lemma 11.4.4 and Theorem 1.3.52,

Pr
U
[|𝜑U,V| > 𝑠] ≤ exp

(︂
−Ω

(︂
𝑑𝑠2

𝐿2𝐺(V)2

)︂)︂
. (11.3)

729

We can apply Fact 1.3.30 to the random variable 𝑌 , 𝐺(V) by taking the parameters

as follows. Set 𝑎 , 2𝜍, 𝜏(𝑥) , exp(−𝑐𝑑(𝑥 − 𝜍)2/𝐿2), and 𝑓(𝑥) , exp(−𝑐′𝑑𝑠2/𝐿2𝑥2) for

appropriate constants 𝑐, 𝑐′ > 0. By (11.3), PrU,V[|𝜑U,V| > 𝑠] ≤ E[𝑓(𝑌)], and by Fact 1.3.30

and Lemma 11.4.5,

E[𝑓(𝑌)] ≤ 2 exp

(︂
−𝑐

′𝑑𝑠2

𝐿2𝜍2

)︂
+

∫︁ ∞

2𝜍

2𝑐′𝑑𝑠2

𝐿2𝑥3
· exp

(︂
− 𝑑

𝐿2

(︀
𝑐(𝑥− 𝜍)2 + 𝑐′𝑠2/𝑥2

)︀)︂
d𝑥

Note that for 𝑥 ≥ 2𝜍, by AM-GM,

𝑐(𝑥− 𝜍)2 + 𝑐′𝑠2/𝑥2 ≥ Ω(𝑠(1− 𝜍/𝑥)) ≥ Ω(𝑠),

so we can bound

E[𝑓(𝑌)] ≤ 2 exp

(︂
−𝑐

′𝑑𝑠2

𝐿2𝜍2

)︂
+ Ω

(︂
𝑑𝑠2

𝐿2𝜍2

)︂
· exp(−Ω(𝑑𝑠/𝐿2)) ≤ exp

(︂
−Ω

(︂
𝑑𝑠2

𝐿2𝜍2
∧ 𝑑𝑠
𝐿2

)︂)︂

as claimed.

Corollary 11.4.7. If Conditions 1, 2, and 3 hold, then for any 𝑡 ≥ 1,

E
U,V

[︁(︀
𝜑U,V

)︀𝑡]︁1/𝑡 ≤ 𝑂
(︁
𝜍𝐿
√︀
𝑡/𝑑 ∨ 𝐿2𝑡/𝑑

)︁
≤ 𝑂(𝑡 · 𝐿 · {𝜍 ∨ 𝐿}/

√
𝑑) (11.4)

Proof. Define 𝜑U,V
, 𝜑U,V. We have

E
[︂(︁
𝜑
U,V
)︁𝑡]︂

=

∫︁ ∞

0

Pr
[︁⃒⃒⃒
𝜑
U,V
⃒⃒⃒
> 𝑠1/𝑡

]︁
d𝑠

≤
∫︁ ∞

0

exp

(︂
−Ω

(︂
𝑑𝑠2/𝑡

𝐿2𝜍2

)︂)︂
d𝑠+

∫︁ ∞

0

exp

(︂
−Ω

(︂
𝑑𝑠1/𝑡

𝐿2

)︂)︂
d𝑠

= Γ(1 + 𝑡/2) ·𝑂(𝐿𝜍/
√
𝑑)𝑡 + Γ(1 + 𝑡) ·𝑂(𝐿2/𝑑)𝑡,

from which the claim follows by triangle inequality.

For our nonadaptive bounds, the weaker bound in (11.4) will suffice.

730

11.4.2 Nonadaptive Lower Bounds

Our nonadaptive lower bounds are based on the Ingster-Suslina method [IS12]. In the

previous chapter, the main ingredients of this method are stated in the preceding notation

as follows:

Lemma 11.4.8 (Restatement of Lemma 10.2.8). If the unentangled POVM schedule 𝒮 is

nonadaptive and consists of POVMs ℳ1, ...,ℳ𝑁 , then if 𝒫𝑡 = (ℳ𝑡, 𝜌, {𝜌U}U∼𝒟) denotes

the 𝑡-th single-copy sub-problem for an arbitrary 𝒟, then

𝜒2
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
≤ max

𝑡∈[𝑁]
E

U,V∼𝒟

[︂(︁
1 + 𝜑U,V

𝒫𝑡

)︁𝑁]︂
− 1 (11.5)

Suppose Conditions 2 and 3 both hold. Then Corollary 11.4.7 immediately gives a way

to upper bound the right-hand side of (11.5) and conclude a copy complexity lower bound.

Lemma 11.4.9. Suppose Conditions 1, 2, and 3 hold for single-copy sub-problem 𝒫 =

(ℳ, 𝜌, {𝜌U}U∼𝒟) for any unentangled POVM ℳ and 𝒟 the Haar measure over 𝑈(𝑑).

Then distinguishing 𝜌⊗𝑁 from EU[𝜌
⊗𝑁
U] with probability at least 2/3 using an unentangled,

nonadaptive POVM schedule 𝒮 requires 𝑁 = Ω
(︁√

𝑑𝐿−1 · {𝜍−1 ∧ 𝐿−1}
)︁
.

Proof. For any unentangled POVMℳ, we can expand

E
U,V

[︂(︁
1 + 𝜑U,V

𝒫

)︁𝑁]︂
=

∑︁
2≤𝑡≤𝑁 even

(︂
𝑁

𝑡

)︂
E
[︂(︁
𝜑U,V
𝒫

)︁𝑡]︂

≤
∑︁

2≤𝑡≤𝑁 even

(︂
𝑒 ·𝑁
𝑡

)︂𝑡
·𝑂
(︁
𝑡 · 𝐿 · {𝜍 ∨ 𝐿}/

√
𝑑
)︁𝑡
,

where the first step follows by binomial theorem and the second part of Lemma 11.4.4, and

the second step follows by Corollary 11.4.7. So when 𝑁 = 𝑜(
√
𝑑𝐿−1 · {𝜍−1 ∧ 𝐿−1}), by

Lemma 11.4.8, 𝜒2
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
= 1 + 𝑜(1). The lemma then follows from Pinsker’s.

11.4.3 Adaptive Lower Bounds

For our adaptive lower bounds, we follow the chain rule-based framework introduced in the

last chapter.

731

Fix an unentangled, adaptive POVM schedule 𝒮. Given a transcript of measurement

outcomes 𝑧<𝑡 up to time 𝑡, if ℳ𝑧<𝑡 is the POVM used in time step 𝑡, then for convenience

we will denote 𝑔U𝒫 , 𝜑U,V
𝒫 , and 𝐾U,V

𝒫 by 𝑔U𝑧<𝑡
, 𝜑U,V

𝑧<𝑡
, 𝐾U,V

𝑧<𝑡
.

Let 𝑝≤𝑡0 (resp. 𝑝≤𝑡1) denote the distribution over transcripts 𝑧≤𝑡 of outcomes up to and

including time 𝑡 under measuring 𝜌 (resp. 𝜌U for U ∼ 𝒟) with the first 𝑡 steps of 𝒮, and

define the quantities

Δ(𝑧≤𝑡) ,
d𝑝≤𝑡1

d𝑝≤𝑡0

(𝑧≤𝑡) ΨU,V
𝑧<𝑡

,
𝑡−1∏︁
𝑖=1

(1 + 𝑔U𝑧<𝑖
)(1 + 𝑔V𝑧<𝑖

).

The proofs for all of our adaptive lower bounds will be derived from verifying that, in

addition to Conditions 1, 2, 3 hold, the following holds:

Condition 4. For any 𝑧 ∈ Ω(ℳ), |𝑔U𝒫 (𝑧)| ≤ 1/2 almost surely.

The following is implicit in the chain rule technology built in the previous chapter.

Theorem 11.4.10. Suppose Conditions 1, 2, 3, and 4 hold for single-copy sub-problem

𝒫 = (ℳ, 𝜌, {𝜌U}U∼𝒟) for any entangled POVM ℳ. Then for any 𝜏 > 0 and 𝑁 = 𝑜(𝑑/𝐿2),

KL
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
≤ 𝑁𝜏 +𝑂(𝑁) · exp

(︂
−Ω

(︂{︂
𝑑𝜏 2

𝐿2𝜍2
∧ 𝑑𝜏
𝐿2

}︂
−𝑁 · 𝜍2

)︂)︂
. (11.6)

We give a self-contained proof of this statement in Appendix 11.8.1 for the reader’s

convenience.

Example 11.4.11. In the previous chapter, we showed that if 𝜌 = 𝜌mm and 𝜌U = 𝜌mm +

U† diag(𝜀
𝑑
, . . . ,− 𝜀

𝑑
, . . .)U, then Condition 4 holds. So by taking 𝜏 = 𝜀2/𝑑4/3, one gets that

for 𝑁 = 𝑜(𝑑4/3/𝜀2), the KL divergence in (11.6) is 𝑜(1).

11.5 Nonadaptive Lower Bound for State Certification

In this section we will show our instance-near-optimal lower bounds for state certification

using nonadaptive, unentangled measurements.

Theorem 11.5.1. There is an absolute constant 𝑐 > 0 for which the following holds for any

732

0 < 𝜀 < 𝑐.2 Let 𝜎 ∈ C𝑑×𝑑 be a diagonal density matrix. There is a matrix 𝜎** given by

zeroing out at most 𝑂(𝜀) mass from 𝜎 (see Definition 11.5.2 and Fact 11.5.3 below), such

that the following holds:

Let ̂︀𝜎** , 𝜎**/Tr(𝜎**), and let 𝑑eff denote the number of nonzero entries of 𝜎**. Then any

algorithm for state certification to error 𝜀 with respect to 𝜎 using nonadaptive, unentangled

measurements has copy complexity at least

Ω
(︁
𝑑
√︀
𝑑eff · 𝐹 (̂︀𝜎**, 𝜌mm)/(𝜀

2 polylog(𝑑/𝜀))
)︁
.

In Section 11.5.1, we describe a bucketing scheme that will be essential to the core

of our analysis. In Section 11.5.2 we describe and analyze the first of our two lower bound

instances, a distinguishing problem based on an extension of the standard quantum Paninski

construction. Specifically, in Section 11.5.2, we give a generic copy complexity lower bound

for this problem, and in Section 11.5.2 we show how to tune the relevant parameters to obtain

a copy complexity lower bound based on the Schatten 2/5-quasinorm of 𝜎. In Section 11.5.3,

we describe and analyze the second of our two lower bound instances, a distinguishing

problem based on perturbing the off-diagonal entries of an appropriately chosen principal

submatrix of 𝜎, obtaining for restricted choices of 𝜀 a copy complexity lower bound based on

the effective dimension and Schatten 1/2-quasinorm of 𝜎. In Section 11.5.5, we put together

the analyses of our two lower bound instances to conclude the proof of Theorem 11.5.1.

11.5.1 Bucketing and Mass Removal

We may without loss of generality assume that 𝜎 is some diagonal matrix diag(𝜆1, . . . , 𝜆𝑑).

For 𝑗 ∈ Z≥0, let 𝑆𝑗 denote the set of indices 𝑖 ∈ [𝑑] for which 𝜆𝑖 ∈ [2−𝑗−1, 2−𝑗]; denote

|𝑆𝑗| by 𝑑𝑗. Let 𝒥 denote the set of 𝑗 for which 𝑆𝑗 ̸= ∅. We will refer to 𝑗 ∈ 𝒥 as buckets. It

will be convenient to refer to the index of the bucket containing a particular index 𝑖 ∈ [𝑑] as

𝑗(𝑖). Also let 𝑆sing denote the set of 𝑖 ∈ [𝑑] belonging to a size-1 bucket 𝑆𝑗 for some 𝑗 ∈ 𝒥 ,

and let 𝑆many denote the set of 𝑖 ∈ [𝑑] which lie in a bucket 𝑆𝑗 of size greater than 1 for some

2As presented, our analysis yields 𝑐 within the vicinity of 1/3, but we made no attempt to optimize for
this constant.

733

𝑗 ∈ 𝒥 .

Our bounds are based on the following modification of 𝜎 obtained by zeroing out a small

fraction of its entries:

Definition 11.5.2 (Removing low-probability elements- nonadaptive lower bound). Without

loss of generality, suppose that 𝜆1, . . . , 𝜆𝑑 are sorted in ascending order according to 𝜆𝑖/𝑑2𝑗(𝑖).
3

Let 𝑑′ ≤ 𝑑 denote the largest index for which
∑︀𝑑′

𝑖=1 𝜆𝑖 ≤ 3𝜀. Let 𝑆tail , [𝑑′], and let 𝑆light be

the set of 𝑖 ∈ {𝑑′ + 1, . . . , 𝑑} for which
∑︀

𝑖′∈𝑆𝑗(𝑖)∖𝑆tail
𝜆𝑖′ ≤ 2𝜀/ log(𝑑/𝜀).

Let 𝑖max denote the index of the largest entry of 𝜎. Let 𝜎′ denote the matrix given by

zeroing out the largest entry of 𝜎 and the entries indexed by 𝑆tail, and let 𝜎* denote the

matrix given by zeroing out the entries indexed by 𝑆tail ∪ 𝑆light. Finally, let 𝜎** denote the

matrix given by further zeroing out from 𝜎* as many of the smallest entries as possible without

removing more than 2𝜀 mass.

Lastly, it will be convenient to define 𝒥 ′ (resp. 𝒥 *) to be the set of 𝑗 ∈ 𝒥 for which 𝑆𝑗

has nonempty intersection with (([𝑑]∖{𝑖max}) ∩ 𝑆many)∖𝑆tail (resp. [𝑑]∖(𝑆tail ∪ 𝑆light)). Note

that by design, 𝒥 ′ and 𝒥 * denote the indices of the nonzero diagonal entries of 𝜎′ and 𝜎*

respectively.

We will use the following basic consequence of bucketing:

Fact 11.5.3. There are at most 𝑂(log(𝑑/𝜀)) indices 𝑗 ∈ 𝒥 for which 𝑆𝑗 and 𝑆tail are disjoint.

As a consequence, Tr(𝜎**) ≥ 1−𝑂(𝜀).

Proof. For any 𝑖1 ̸∈ 𝑆tail and 𝑖2 ∈ 𝑆tail, we have that 𝑝𝑖1/𝑑2𝑗(𝑖1) ≥ 𝑝𝑖2/𝑑
2
𝑗(𝑖2)

, so 𝑝𝑖1 ≥ 𝑝𝑖2/𝑑
2.

In particular, summing over 𝑖2 ∈ 𝑆tail, we conclude that 𝑝𝑖1 · |𝑆tail| ≥ 𝜀/𝑑2, so 𝑝𝑖1 ≥ 𝜀/𝑑3. By

construction of the buckets 𝑆𝑗, the first part of the claim follows. For the second part, by

definition we have that
∑︀

𝑖∈[𝑑′] 𝜆𝑖 ≤ 𝑂(𝜀). Furthermore,
∑︀

𝑖∈𝑆light
𝜆𝑖 = 𝑂(𝜀) because of the

first part of the claim. The second part of the claim follows by triangle inequality.

Lastly, we will use the following shorthand: for any 𝑗 ∈ 𝒥 and any matrix A, we will let

A𝑗 ∈ R𝑑×𝑑 denote the matrix which is zero outside of the principal submatrix indexed by 𝑆𝑗

and which agrees with A within this submatrix.

3The only place where we need this particular choice of sorting is in the proof of Corollary 11.5.17 below.

734

11.5.2 Lower Bound Instance I: General Quantum Paninski

We will analyze the following distinguishing problem. We will pick a diagonal matrix ℰ as

follows:

Definition 11.5.4 (Perturbation matrix ℰ). For any 𝑖 ̸∈ 𝑆many, we will take the 𝑖-th diagonal

entry of ℰ to be zero. For any bucket 𝑗 of size at least 2, we will take the nonzero diagonal

entries of ℰ𝑗 to be (𝜀𝑗, · · · ,−𝜀𝑗, · · ·) where there are ⌊𝑑𝑗/2⌋ copies of 𝜀𝑗 and ⌊𝑑𝑗/2⌋ copies

of −𝜀𝑗, for 𝜀𝑗 to be optimized later.

Given U ∈ 𝑈(𝑑), define 𝜎U , 𝜎 +U†ℰU.

Throughout this subsection, let 𝒟 denote the distribution over block-diagonal unitary

matrices U which are zero outside of the principal submatrices indexed by 𝑆𝑗 for some 𝑗 ∈ 𝒥

with 𝑑𝑗 > 1, and which within each each submatrix indexed by such an 𝑆𝑗 is an independent

Haar-random unitary if 𝑑𝑗 is even, and otherwise is an independent Haar-random unitary

in the submatrix consisting of the first 2⌊𝑑𝑗/2⌋ rows/columns. This distinction will not be

particularly important in the sequel, so the reader is encouraged to imagine that 𝑑𝑗 is always

even when 𝑑𝑗 > 1.

The objective of this subsection is to show the following lower bound:

Lemma 11.5.5. Fix 0 < 𝜀 < 𝑐 for sufficiently small absolute constant 𝑐 > 0. Let 𝜎 ∈ C𝑑×𝑑 be

a diagonal density matrix. There is a choice of ℰ in Definition 11.5.4 for which distinguishing

between whether 𝜌 = 𝜎 or whether 𝜌 = 𝜎+U†ℰU for U ∼ 𝒟 using nonadaptive, unentangled

measurements has copy complexity at least Ω(‖𝜎′‖2/5/(𝜀2 log(𝑑/𝜀))).

By definition of 𝒟, 𝜌 is block-diagonal in either scenario, and the block-diagonal structure

depends only on {𝑆𝑗}. In particular, this implies that we can without loss of generality

assume that the POVMs the tester uses respect this block structure. More precisely:

Lemma 11.5.6. Let 𝜌 ∈ C𝑑×𝑑 be any density matrix which is zero outside of the principal

submatrices indexed by the subsets {𝑆𝑗}𝑗∈𝒥 . Given an arbitrary POVM ℳ = {𝑀𝑧}, there

is a corresponding POVM ℳ′ satisfying the following. Let 𝑝, 𝑝′ be the distributions over

measurement outcomes from measuring 𝜌 with ℳ,ℳ′ respectively. Then:

• For every 𝑧 ∈ Ω(ℳ′), there exists 𝑗 ∈ 𝒥 for which 𝑀 ′
𝑧 is zero outside of the principal

submatrix indexed by 𝑆𝑗

735

• There is a function 𝑓 : Ω(ℳ′)→ Ω(ℳ) for which the pushforward of 𝑝′ under 𝑓 is 𝑝.

Proof. For every 𝑧 ∈ Ω(ℳ) and every 𝑗 ∈ 𝒥 , define a POVM element 𝑀𝑗,𝑧 , Π𝑗𝑀𝑧Π𝑗,

where Π𝑗 ∈ C𝑑×𝑑 is the matrix which is equal to the identity in the principal submatrix

indexed by 𝑆𝑗 and is zero elsewhere. Clearly {𝑀𝑗,𝑧}𝑗∈𝒥 ,𝑧∈Ω(ℳ) is still a POVM because∑︀
Π𝑗 = Id; let ℳ′ be this POVM. Let 𝑓 be given by 𝑓((𝑗, 𝑧)) = 𝑧. The pushforward of 𝑝′

under 𝑓 places mass

∑︁
𝑗∈𝒥

⟨𝜌,Π𝑗𝑀𝑧Π𝑗⟩ =

⟨∑︁
𝑗∈𝒥

Π𝑗𝜌Π𝑗,𝑀𝑧

⟩
= ⟨𝜌,𝑀𝑧⟩

on 𝑧 ∈ Ω(ℳ) as claimed, where the penultimate step follows by the assumption that 𝜌 is

zero outside of the principal submatrices indexed by the subsets {𝑆𝑗}.

By Lemma 11.5.6, we will henceforth only work with POVMs like ℳ′. If ℳ𝑡 is the

𝑡-th POVM used by the tester, we may assume without loss of generality that its outcomes

Ω(ℳ𝑡) consist of pairs (𝑗, 𝑧), where the POVM element corresponding to such a pair has

nonzero entries in the principal submatrix indexed by 𝑆𝑗. Henceforth, fix an arbitrary such

POVMℳ (we will drop subscripts accordingly) and denote its elements by {𝑀𝑗,𝑧} for 𝑗 ∈ 𝒥 .

We will denote by Ω𝑗 the set of 𝑧 for which there is an element 𝑀𝑗,𝑧.

Let 𝑝 denote the distribution over 𝒥 induced by measuring 𝜎 withℳ and recording which

bucket the outcome belongs to. Concretely, 𝑝 places mass 𝑝𝑗 ,
∑︀

𝑧∈Ω𝑗
⟨𝑀𝑗,𝑧, 𝜎𝑗⟩ = Tr(𝜎𝑗) on

bucket 𝑗 ∈ 𝒥 . Similarly, define 𝑞𝑗 to be the distribution over Ω𝑗 conditioned on the outcome

falling in bucket 𝑗, that is, 𝑞𝑗 places mass 𝑞𝑗𝑧 ,
1
𝑝𝑗
⟨𝑀𝑗,𝑧, 𝜎𝑗⟩ on 𝑧 ∈ Ω𝑗.

For every 𝑗 ∈ 𝒥 , let 𝒫𝑗 denote the 𝑑𝑗-dimensional sub-problem given by restricting to

the coordinates indexed by 𝑆𝑗 and using the POVM ℳ𝑗 , {(𝑀𝑗,𝑧)𝑗}𝑧∈Ω𝑗
. Formally, 𝒫𝑗 is

specified by the data (ℳ𝑗, ̂︀𝜎𝑗, {(̂︀𝜎U)𝑗}U∼𝒟𝑗
), where 𝒟𝑗 is the Haar measure over 𝑈(𝑑𝑗) if

𝑑𝑗 is even and is otherwise the distribution over 𝑑𝑗 × 𝑑𝑗 matrices which are Haar-random

unitary in the first 2⌊𝑑𝑗/2⌋ rows/columns and zero elsewhere. Note that the density matrix

(̂︀𝜎U)𝑗 can be written as ̂︀𝜎𝑗 +U†ℰ ′
𝑗U for ℰ ′

𝑗 , ℰ𝑗/𝑝𝑗.

736

For any 𝑗 ∈ 𝒥 , 𝑧 ∈ Ω𝑗, it will be convenient to define ̃︁𝑀𝑗,𝑧 , 1
⟨𝑀𝑗,𝑧 ,𝜎𝑗⟩𝑀𝑗,𝑧. We can write

𝑔
U𝑗

𝒫𝑗
(𝑧) =

⟨𝑀𝑗,𝑧,U
†
𝑗ℰ ′

𝑗U𝑗⟩
⟨𝑀𝑗,𝑧, ̂︀𝜎𝑗⟩ =

⟨𝑀𝑗,𝑧,U
†
𝑗ℰ𝑗U𝑗⟩

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩
= ⟨̃︁𝑀𝑗,𝑧,U

†
𝑗ℰ𝑗U𝑗⟩. (11.7)

Because 𝑀𝑗,𝑧 is zero outside of the principal submatrix indexed by 𝑆𝑗, we thus have

𝑔U(𝑧) =
⟨𝑀𝑗,𝑧,U

†ℰU⟩
⟨𝑀𝑗,𝑧, 𝜎⟩

=
⟨𝑀𝑗,𝑧,U

†
𝑗ℰ𝑗U𝑗⟩

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩
= 𝑔

U𝑗

𝒫𝑗
(𝑧)

and

𝜑U,V = E
𝑗,𝑧

[︃
⟨𝑀𝑗,𝑧,U

†
𝑗ℰ𝑗U𝑗⟩⟨𝑀𝑗,𝑧,V

†
𝑗ℰ𝑗V𝑗⟩

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩2

]︃
=
∑︁
𝑗∈𝒥

𝑝𝑗 · 𝜑
U𝑗 ,V𝑗

𝒫𝑗
. (11.8)

We now give a generic lower bound for the distinguishing problem in Lemma 11.5.5 that

depends on the entries of ℰ . After that, we show how to tune the entries of ℰ to complete

the proof of Lemma 11.5.5.

Bound Under General Perturbations

Our goal is first to show the following generic bound:

Lemma 11.5.7. Distinguishing 𝜎⊗𝑁 from EU[𝜎
⊗𝑁
U] with probability at least 2/3 using an

unentangled, adaptive POVM schedule 𝒮 requires

𝑁 = Ω

⎛⎝(︃∑︁
𝑗∈𝒥

22𝑗𝜀4𝑗
𝑑𝑗

)︃−1/2
⎞⎠ (11.9)

By Lemma 11.4.8, it suffices to show that for any POVM ℳ, EU,V

[︂(︁
1 + 𝜑U,V

ℳ

)︁𝑁]︂
=

1 + 𝑜(1) for 𝑁 smaller than the claimed bound. To do this, we will bound the moments of

each 𝜑U,V
𝒫𝑗

individually.

As the relevant matrices (𝑀𝑗,𝑧)𝑗 are zero outside of the principal submatrix indexed by

𝑆𝑗, we will abuse notation and refer to them as 𝑀𝑗,𝑧 in the sequel whenever the context is

clear. Likewise, we will refer to U𝑗 ∼ 𝒟𝑗 as U.

Lemma 11.5.8. For any 𝑧 ∈ Ω𝑗, EU𝑗
[𝑔

U𝑗

𝒫𝑗
(𝑧)] = 0, so Condition 1 holds.

737

Proof. By Fact 1.3.48, EU[𝑔
U
𝒫𝑗
(𝑧)] = Tr(̃︁𝑀𝑗,𝑧) · Tr(ℰ𝑗) = 0.

We will now show that Conditions 2 and 3 hold for appropriate choices of 𝜍 and 𝐿. It

will be convenient to define ̃︁𝑀𝑗,𝑧 , 1
⟨𝑀𝑗,𝑧 ,𝜎𝑗⟩𝑀𝑗,𝑧

Lemma 11.5.9. EU[𝑔
U
𝒫𝑗
(𝑧)2]1/2 ≤ 𝑂(2𝑗𝜀𝑗/

√︀
𝑑𝑗) for any 𝑧 ∈ Ω𝑗.

Proof. Let 𝜏 * ∈ 𝒮2 denote transposition. For any 𝑧 ∈ Ω𝑗, by (11.7) and Lemma 1.3.49,

E
U
[𝑔U𝒫𝑗

(𝑧)2] = E
[︂⟨̃︁𝑀𝑗,𝑧,U

†ℰ𝑗U
⟩2]︂

=
∑︁
𝜋,𝜏∈𝒮2

⟨ℰ𝑗⟩𝜏 ⟨̃︁𝑀𝑗,𝑧⟩𝜋Wg(𝜋𝜏−1, 𝑑𝑗)

= ⟨ℰ𝑗⟩𝜏*
(︁
Tr(̃︁𝑀2

𝑗,𝑧) ·Wg(𝑒, 𝑑𝑗) + Tr(̃︁𝑀𝑗,𝑧)
2 ·Wg(𝜏 *, 𝑑𝑗)

)︁
≤ 𝑑𝑗 · 𝜀2𝑗 ·

Tr(𝑀𝑗,𝑧)
2

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩2

(︂
1

𝑑2𝑗 − 1
Tr(̂︁𝑀2

𝑗,𝑧)−
1

𝑑𝑗(𝑑2𝑗 − 1)
· Tr(̂︁𝑀𝑗,𝑧)

2

)︂
≤

𝜀2𝑗
𝑑𝑗 + 1

· Tr(𝑀𝑗,𝑧)
2

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩2
≤ 2 · 22𝑗𝜀2𝑗/𝑑𝑗,

where in the last step we used the fact that Tr(̂︁𝑀2) ≤ 1 for any matrix ̂︁𝑀 of trace 1.

Lemma 11.5.10. E𝑧∼𝑞𝑗 [(𝑔U𝒫𝑗
(𝑧)− 𝑔V𝒫𝑗

(𝑧))2]1/2 ≤ 𝑂((2𝑗/𝑝𝑗)
1/2𝜀𝑗) · ‖U−V‖𝐹 for any U,V ∈

𝑈(𝑑).

Proof. The matrix A , U†ℰ𝑗U − U′†ℰ𝑗U′ is Hermitian, so write its eigendecomposition

A = W†ΣW. Define 𝑀 ′
𝑗,𝑧 , W𝑀𝑗,𝑧W

† so that
∑︀

𝑧∈Ω𝑗
𝑀 ′

𝑗,𝑧 = Id𝑑𝑗 and

E
𝑧∼𝑞𝑗

[(𝑔U𝒫𝑗
(𝑧)− 𝑔V𝒫𝑗

(𝑧))2] = E
𝑧∼𝑞𝑗

⎡⎣⎛⎝ 1

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩

𝑑𝑗∑︁
𝑖=1

(𝑀 ′
𝑗,𝑧)𝑖𝑖Σ𝑖𝑖

⎞⎠2⎤⎦
≤ E

𝑧∼𝑞𝑗

⎡⎣⎛⎝ 1

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩

𝑑𝑗∑︁
𝑖=1

(𝑀 ′
𝑗,𝑧)𝑖𝑖Σ

2
𝑖𝑖

⎞⎠⎛⎝ 1

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩

𝑑𝑗∑︁
𝑖=1

(𝑀 ′
𝑗,𝑧)𝑖𝑖

⎞⎠⎤⎦
≤ 1

𝑝𝑗

∑︁
𝑧∈Ω𝑗

Tr(𝑀𝑗,𝑧)

⟨𝑀𝑗,𝑧, 𝜎𝑗⟩
·
𝑑𝑗∑︁
𝑖=1

(𝑀 ′
𝑗,𝑧)𝑖𝑖Σ

2
𝑖𝑖

≤ 1

𝑝𝑗
2𝑗+1 ·

𝑑𝑗∑︁
𝑖=1

Σ2
𝑖𝑖

∑︁
𝑧∈Ω𝑗

(𝑀 ′
𝑗,𝑧)𝑖𝑖 =

1

𝑝𝑗
2𝑗+1‖Σ‖2𝐹

738

where in the second step we used Cauchy-Schwarz, in the third step we used that Tr(𝑀 ′
𝑗,𝑧) =

Tr(𝑀𝑗,𝑧), in the fourth step we used the fact that the entries of diagonal matrix 𝜎𝑗 are lower

bounded by 2−𝑗−1, and in the fifth step we used that
∑︀

𝑧 Ω
′
𝑗,𝑧 = Id𝑑𝑗 . To upper bound ‖Σ‖𝐹 ,

note

‖Σ‖𝐹 = ‖U†ℰ𝑗U−U′†ℰ𝑗U′‖𝐹 = ‖U†ℰ𝑗(U−U′) + (U′ −U)†ℰ𝑗U′‖𝐹 ≤ 𝜀𝑗‖U−U′‖𝐹 ,

from which we conclude that E𝑧∼𝑞𝑗 [(𝑔U𝒫𝑗
(𝑧)− 𝑔V𝒫𝑗

(𝑧))2]1/2 ≤ (2𝑗+1/𝑝𝑗)
1/2𝜀𝑗‖U−U′‖𝐹 .

By applying Corollary 11.4.7, we get the following bound:

Lemma 11.5.11. For any odd 𝑡, EU,V∼𝒟𝑗

[︂(︁
𝜑U,V
𝒫𝑗

)︁𝑡]︂
= 0, and for any even 𝑡,

E
U,V∼𝒟𝑗

[︂(︁
𝜑U,V
𝒫𝑗

)︁𝑡]︂1/𝑡
≤ 𝑂

(︂
22𝑗𝜀2𝑗/𝑑𝑗 ·

{︂√︁
𝑡/𝑑𝑗 ∨ 𝑡/𝑑𝑗

}︂)︂
≤ 𝑂

(︁
𝑡 · 22𝑗 · 𝜀2𝑗/𝑑

3/2
𝑗

)︁
.

Proof. By Lemma 11.5.8 and the definition of 𝜑U,V
𝒫𝑗

, E[𝜑U,V
𝒫𝑗

] = 0. By Lemmas 11.5.9

and 11.5.10, we can take 𝜍 = 𝑂(2𝑗𝜀𝑗/
√︀
𝑑𝑗) and 𝐿 = 𝑂((2𝑗/𝑝𝑗)

1/2𝜀𝑗) when invoking Corol-

lary 11.4.7. Note that 𝑝𝑗 ≥ 𝑑𝑗2
−𝑗−1, so 𝐿 ≤ 𝑂(𝜍). The claim follows.

Lemma 11.5.11, Lemma 1.3.25, and (11.8) immediately imply Lemma 11.5.7.

Proof of Lemma 11.5.7. From Lemma 1.3.25, Lemma 11.5.11, and (11.8), we have that

E
U,V∼𝒟

[︁(︀
𝜑U,V

)︀𝑡]︁1/𝑡 ≤ 𝑡

(︃∑︁
𝑗∈𝒥

𝑝2𝑗 ·𝑂
(︂
24𝑗𝜀4𝑗
𝑑3𝑗

)︂)︃1/2

≤ 𝑡

(︃∑︁
𝑗∈𝒥

𝑂

(︂
22𝑗𝜀4𝑗
𝑑𝑗

)︂)︃1/2

where in the second step we used that 𝑝𝑗 ≤ 𝑑𝑗2
−𝑗. We can thus expand

E
[︁(︀
1 + 𝜑U,V

)︀𝑁]︁
=

∑︁
2≤𝑡≤𝑁 even

(︂
𝑁

𝑡

)︂
E[(𝜑U,V)𝑡] ≤

(︂
𝑒 ·𝑁
𝑡

)︂𝑡
·𝑂

(︃
𝑡2
∑︁
𝑗∈𝒥

22𝑗𝜀4𝑗
𝑑𝑗

)︃𝑡/2

,

from which the claim follows by Lemma 11.4.8.

739

Tuning the Perturbations

Before we explain how to tune ℰ𝑗, we address a minor corner case. Recall from Defini-

tion 11.5.4 that ℰ𝑗 is zero for buckets 𝑗 for which |𝑆𝑗| = 1. In the extreme case where all

buckets after removal of 𝑆tail are of this type, then ℰ = 0 and the problem of distinguishing

between 𝜎 and 𝜎 + U†ℰU would be vacuous. Fortunately, we can show that if the Schat-

ten 2/5-quasinorm of 𝜎′ is dominated by such buckets, then the resulting state certification

problem requires many copies because of existing classical lower bounds.

Lemma 11.5.12. If
∑︀

𝑖∈𝑆sing∖𝑆tail
𝜆
2/5
𝑖 ≥ 1

2
‖𝜎′‖2/52/5, then state certification with respect to 𝜎

using nonadaptive, unentangled measurements has copy complexity at least Ω(‖𝜎′‖2/5/𝜀2).

Proof. Intuitively in this case, the spectrum of 𝜎 is dominated by eigenvalues in geometric

progression, and in fact the instance-optimal lower bound for classical identity testing [VV17]

already implies a good enough copy complexity lower bound (even against entangled mea-

surements).

Formally, Corollary 11.3.7 implies a copy complexity lower bound of Ω(1/𝜀∨‖𝜎−max
−𝜀 ‖2/3/𝜀2).

We would like to relate this to⎛⎝ ∑︁
𝑖∈𝑆sing∖𝑆tail

𝜆
2/3
𝑖

⎞⎠3/2

≥ (1− 2−2/5)5/2 ·

⎛⎝ ∑︁
𝑖∈𝑆sing∖𝑆tail

𝜆
2/5
𝑖

⎞⎠5/2

≥ Ω(‖𝜎′‖2/5), (11.10)

where the first step follows by Fact 11.3.2, and the last step follows by the hypothesis of the

lemma.

Suppose that there is some 𝑖 for which 𝑑𝑗(𝑖) = 1 and 𝑖 is not among the indices removed

in the definition of 𝜎−max
−𝜀 . Then we can lower bound ‖𝜎−max

−𝜀 ‖2/3 by 𝜆𝑖, which is at least

(1− 2−2/3)3/2 = Ω(1) times the left-hand side of (11.10).

On the other hand, suppose that all 𝑖 for which 𝑑𝑗(𝑖) = 1 are removed in the definition

of 𝜎−max
−𝜀 . As long as 𝜎−max

−𝜀 has some nonzero entry, call it 𝜆𝑖* , then 𝜆𝑖* ≥ max𝑖∈𝑆sing∖𝑆tail
𝜆𝑖,

so we can similarly guarantee that ‖𝜎−max
−𝜀 ‖2/3 ≥ 𝜆𝑖* is at least (1 − 2−2/3)3/2 = Ω(1) times

the left-hand side of (11.10). Otherwise, we note that 𝜎′ is zero as well, in which case we are

also done.

740

It remains to consider the primary case where the hypothesis of Lemma 11.5.12 does not

hold, and this is where we will use Lemma 11.5.7. The following together with Lemma 11.5.12

will complete the proof of Lemma 11.5.5:

Lemma 11.5.13. If
∑︀

𝑖∈𝑆sing∖𝑆tail
𝜆
2/5
𝑖 < 1

2
‖𝜎′‖2/52/5, then state certification with respect to 𝜎 us-

ing nonadaptive, unentangled measurements has copy complexity at least Ω(‖𝜎′‖2/5/(𝜀2 log(𝑑/𝜀))).

The proof of Lemma 11.5.13 requires some setup. First, obviously the hypothesis of the

lemma can equivalently be stated as

∑︁
𝑖∈𝑆many∖𝑆tail

𝜆
2/5
𝑖 >

1

2
‖𝜎′‖2/52/5. (11.11)

Definition 11.5.14 (Choice of 𝜀𝑗). For every 𝑖 ∈ 𝑆many, for 𝑗 ∈ 𝒥 the index of the bucket

containing 𝑖, define 𝜀𝑗 , 2−𝑗−1 ∧ 𝜁2−2/3(𝑗+1)𝑑
2/3
𝑗 for normalizing quantity 𝜁 satisfying

∑︁
𝑗∈𝒥 :𝑑𝑗>1

2⌊𝑑𝑗/2⌋ ·
{︁
2−𝑗−1 ∧ 𝜁2−2/3(𝑗+1)𝑑

2/3
𝑗

}︁
= 𝜀. (11.12)

Note that by ensuring that 𝜀𝑗 ≤ 2−𝑗−1, we ensure that 𝜎 + U†ℰU has nonnegative

spectrum, while (11.12) 𝜁 ensures that for any U in the support of 𝒟, ‖ℰ‖1 = 𝜀.

The rest of the proof is devoted to showing that for this choice of {𝜀𝑗}, the lower bound in

(11.9) is at least the one in Lemma 11.5.13. The main step is to upper bound the normalizing

quantity 𝜁.

Lemma 11.5.15. For 𝜁 defined in Definition 11.5.14,

𝜁 ≤ 𝑂(𝜀) ·

⎛⎝ ∑︁
𝑗∈𝒥 ′,𝑖∈𝑆𝑗

𝜆
2/3
𝑖 𝑑

5/3
𝑗

⎞⎠−1

. (11.13)

We will need the following elementary fact.

Fact 11.5.16. Let 𝑢1 < · · · < 𝑢𝑚 and 𝑣1 ≤ · · · ≤ 𝑣𝑛 be numbers for which 𝑢𝑖+1 ≥ 2𝑢𝑖 for

all 𝑖. Let 𝑑1, . . . , 𝑑𝑛 > 1 be arbitrary integers. Let 𝑤1 ≤ · · · ≤ 𝑤𝑚+𝑛 be these numbers in

sorted order. For 𝑖 ∈ [𝑚 + 𝑛], define 𝑑*𝑖 to be 1 if 𝑤𝑖 corresponds to some 𝑢𝑗, and 𝑑𝑗 if 𝑤𝑖

corresponds to some 𝑣𝑗.

741

Let 𝑠 be the largest index for which
∑︀𝑠

𝑖=1𝑤𝑖𝑑
*
𝑖 ≤ 3𝜀. Let 𝑎, 𝑏 be the largest indices for

which 𝑢𝑎, 𝑣𝑏 are present among 𝑤1, . . . , 𝑤𝑠 (if none exists, take it to be 0). Then either 𝑏 = 𝑛

or
∑︀𝑏+1

𝑖=1 𝑣𝑖𝑑𝑖 > 𝜀.

This allows us to deduce the following bound for buckets not removed in Definition 11.5.2.

Corollary 11.5.17. Under the hypothesis of Lemma 11.5.13, 𝑆many∖𝑆tail is nonempty, and

there exists an absolute constant 𝑐 > 0 such that for any 𝑖 ∈ 𝑆many∖𝑆tail in some bucket 𝑗,

𝜁 · 2−2/3(𝑗+1)𝑑
2/3
𝑗 ≤ 𝑐 · 2−𝑗−1.

Proof. The first part immediately follows from (11.11). For the second part, take some

constant 𝑐 to be optimized later and suppose to the contrary that for some 𝑖* ∈ 𝑆many∖𝑆tail,

lying in some bucket 𝑗*, we have that 𝑐·2−𝑗*−1 < 𝜁 ·2−2/3(𝑗*+1)𝑑
2/3
𝑗 , or equivalently 2−𝑗

*−1/𝑑2𝑗 <

𝜁3/𝑐3. Because in the definition of 𝑆tail, we sorted by 𝜆𝑖/𝑑𝑗(𝑖)2 , for any 𝑖 ∈ 𝑆tail, and because

𝜆𝑖 ∈ [2−𝑗(𝑖)−1, 2−𝑗(𝑖)], we also have that 2−𝑗(𝑖)−1/𝑑2𝑗(𝑖) < 𝜁3/𝑐3, or equivalently, 𝑐 · 2−𝑗(𝑖)−1 <

𝜁 · 2−2/3(𝑗+1)𝑑
2/3
𝑗(𝑖).

So the sum on the left-hand side of (11.12) is at least

∑︁
𝑗∈𝒥 :𝑗≥𝑗*,𝑑𝑗>1

2⌊𝑑𝑗/2⌋ · (𝑐 · 2−𝑗−1) ≥
∑︁

𝑗∈𝒥 :𝑗≥𝑗*,𝑑𝑗>1

(2𝑑𝑗/3) · (𝑐 · 2−𝑗−1) ≥
∑︁

𝑖∈𝑆many,𝑖≤𝑖*
𝜆𝑖 > 𝜀,

where in the first step we used that for 𝑑𝑗 > 1, 2⌊𝑑𝑗/2⌋ ≥ 2𝑑𝑗/3, in the second step we

took 𝑐 = 3 and used that 𝜆𝑖 ≤ 2−𝑗 for 𝑖 ∈ 𝑆𝑗, and in the third step we used Fact 11.5.16

applied to the numbers {𝑢𝑖} , {𝜆𝑖}𝑖∈𝑆sing
, {𝑣𝑖} , {𝜆𝑖/𝑑2𝑗(𝑖)}𝑖∈𝑆many and {𝑑𝑖} , {𝑑2𝑗(𝑖)}𝑖∈𝑆many .

This contradicts (11.12).

We are finally ready to upper bound 𝜁.

Proof of Lemma 11.5.15. We can now upper bound 𝜁 as follows. We have

𝜀 ≥ Ω(𝜁) ·
∑︁
𝑗∈𝒥 ′

2⌊𝑑𝑗/2⌋ · 2−2/3(𝑗+1)𝑑
2/3
𝑗

≥ Ω(𝜁)
∑︁
𝑗∈𝒥 ′

2−2𝑗/3𝑑
5/3
𝑗

742

where in the first step we used (11.12) and Corollary 11.5.17, and in the second step we

again used the fact that for 𝑑𝑗 > 1, 2⌊𝑑𝑗/2⌋ ≥ 2𝑑𝑗/3. The claimed bound follows.

We are now ready to complete the proof of Lemma 11.5.13:

Proof. Substituting our choice of {𝜀𝑗} in Definition 11.5.14 into the lower bound of Lemma 11.5.7

gives

(︃∑︁
𝑗∈𝒥

22𝑗‖ℰ𝑗‖42/𝑑𝑗

)︃−1/2

≥

⎛⎝ ∑︁
𝑗∈𝒥 :𝑑𝑗>1

{︂
2−2𝑗−4

𝑑𝑗
∧ 𝜁42−2/3𝑗−8/3𝑑

5/3
𝑗

}︂⎞⎠−1/2

≥

⎛⎝ ∑︁
𝑗∈𝒥 :𝑑𝑗>1

{︁
𝜁32−𝑗−3𝑑𝑗 ∧ 𝜁42−2/3𝑗𝑑

5/3
𝑗

}︁⎞⎠−1/2

≥ Ω(𝜁−3/2)

⎛⎝ ∑︁
𝑗∈𝒥 :𝑑𝑗>1

2⌊𝑑𝑗/2⌋
{︁
2−𝑗−1 ∧ 𝜁2−2/3(𝑗+1)𝑑

2/3
𝑗

}︁⎞⎠−1/2

= Ω(𝜁−3/2) · 𝜀−1/2

≥ 𝜀−2 ·

⎛⎝ ∑︁
𝑗∈𝒥 ′,𝑖∈𝑆𝑗

𝜆
2/3
𝑖 𝑑

5/3
𝑗

⎞⎠3/2

≥ max
𝑗∈𝒥 ′,𝑖∈𝑆𝑗

𝜆𝑖𝑑
5/2
𝑗 /𝜀2

≥

⎛⎝ ∑︁
𝑗∈𝒥 ′,𝑖∈𝑆𝑗

𝜆
2/5
𝑖 𝑑𝑗

⎞⎠5/2

· log(𝑑/𝜀)−1

≥ ‖𝜎′‖2/5 · log(𝑑/𝜀)−1,

where in the second step we used that the minimum of two nonnegative numbers increases

if we replace one of them by a weighted geometric mean of the two numbers, in the third

step we use the fact that ⌊𝑑𝑗/2⌋ and 𝑑𝑗 are equivalent up to constant factors if 𝑑𝑗 > 1, in

the fourth step we use (11.12), in the fifth step we use (11.13), in the penultimate step we

used Fact 11.5.3, and in the last step we used (11.11) and the fact that for any 𝑗, there are

at most 𝑑𝑗 indices 𝑖 ∈ 𝑆many∖𝑆tail within bucket 𝑆𝑗.

743

Proof of Lemma 11.5.5. This follows immediately from Lemmas 11.5.12 and 11.5.13.

11.5.3 Lower Bound Instance II: Perturbing Off-Diagonals

In many cases, the following lower bound instance will yield a stronger lower bound than

the preceding argument, at the cost of applying to a limited range of 𝜀. Take any 𝑗, 𝑗′ ∈ 𝒥 *

for which 𝑑𝑗 ≥ 𝑑𝑗′ . As we will explain below, if 𝑑𝑗 > 1, then 𝑗 and 𝑗′ need not be distinct.

If 𝑗 and 𝑗′ are distinct, then given a matrix W𝑑𝑗×𝑑𝑗′ with orthonormal columns, let 𝜎W

be the matrix 𝜎+𝐷W where 𝐷W ∈ C𝑑×𝑑 is the matrix which is zero outside of the principal

submatrix indexed by 𝑆𝑗 ∪ 𝑆𝑗′ and which is equal to the matrix

⎛⎝ 0𝑑𝑗 (𝜀/2𝑑𝑗′) ·W

(𝜀/2𝑑𝑗′) ·W† 0𝑑𝑗′ .

⎞⎠ (11.14)

On the other hand, if 𝑗 = 𝑗′ and 𝑑𝑗 > 1, then partition 𝑆𝑗 into contiguous sets 𝑆1
𝑗 , 𝑆

2
𝑗 of

size ⌈𝑑𝑗/2⌉ and ⌊𝑑𝑗/2⌋, and given a matrix W⌈𝑑𝑗/2⌉×⌊𝑑𝑗/2⌋ with orthonormal columns, define

𝐷W ∈ C𝑑×𝑑 to be the matrix which is zero outside the principal submatrix indexed by 𝑆1
𝑗×𝑆2

𝑗

and which is equal to the matrix⎛⎝ 0⌈𝑑𝑗/2⌉ (𝜀/2⌊𝑑𝑗/2⌋) ·W

(𝜀/2⌊𝑑𝑗/2⌋) ·W† 0𝑑⌊𝑑𝑗/2⌋ .

⎞⎠ (11.15)

In the rest of this subsection, we will consider the case where 𝑗 ̸= 𝑗′, but as will become

evident, all of the following arguments easily extend to the construction for 𝑗 = 𝑗′ when

𝑑𝑗 > 1 by replacing 𝑆𝑗 and 𝑆𝑗′ with 𝑆1
𝑗 and 𝑆2

𝑗 respectively.

Lemma 11.5.18. If 𝜀 ≤ 𝑑𝑗′ · 2−𝑗/2−𝑗
′/2, then ‖𝜎 − 𝜎W‖1 ≥ 𝜀 and 𝜎W is a density matrix.

Proof. For the first part, note that

‖𝜎 − 𝜎W‖1 = ‖𝐷W‖ = 2 · (𝜀/2𝑑𝑗′)‖W‖1 = 𝜀,

where in the second equality we used that 𝐷W is the Hermitian dilation of (𝜀/𝑑𝑗′) ·W, and

in the last equality we used the fact that W consists of 𝑑𝑗′ orthogonal columns.

744

For the second part, first note that regardless of the choice of 𝜀, we have that Tr(𝐷W) = 0,

so Tr(𝜎W) = 1. Finally, to verify that 𝜎W is positive definite, note that the Schur complement

of the principal submatrix of 𝜎W indexed by 𝑆𝑗 ∩ 𝑆𝑗′ is given by

𝜎𝑗′ −
𝜀2

4𝑑2𝑗′
𝜎−1
𝑗 ⪰ 2−𝑗

′−1 Id− 𝜀2

4𝑑2𝑗′
2𝑗+1 Id,

which is positive definite provided that 𝜀 ≤ 𝑑𝑗′ · 2−𝑗/2−𝑗
′/2. It follows by Fact 11.3.4 that 𝜎W

is positive definite as claimed.

The objective of this subsection is to show the following lower bound:

Lemma 11.5.19. Fix any 𝑗, 𝑗′ ∈ 𝒥 * satisfying 𝑑𝑗 ≥ 𝑑𝑗′. If 𝑑𝑗 > 1, then we can optionally

take 𝑗 = 𝑗′. Suppose 𝜀 ≤ 𝑑𝑗′ · 2−𝑗/2−𝑗
′/2. Let 𝜎 ∈ C𝑑×𝑑 be a diagonal density matrix.

Distinguishing between whether 𝜌 = 𝜎 or 𝜌 = 𝜎W for W ∈ C𝑑𝑗×𝑑𝑗′ consisting of Haar-random

orthonormal columns, using nonadaptive unentangled measurements, has copy complexity at

least

Ω

(︃√︀
𝑑𝑗 · 𝑑2𝑗′ · 2−𝑗

′

𝜀2

)︃
.

Note that a random W is equivalent to UΠ for U ∼ 𝒟, where 𝒟 is the Haar measure

over 𝑈(𝑑𝑗), and

Π , (Id
𝑑𝑗′
|0𝑑𝑗−𝑑𝑗′)

⊤,

so we can just as well parametrize {𝜎W} as {𝜎U}, which we will do in the sequel.

Take any single-copy sub-problem 𝒫 = (ℳ, 𝜎, {𝜎U}U∼𝒟) where POVM ℳ consists of

elements {𝑀𝑧}. Analogously to Lemma 11.5.6, we may without loss of generality assume

that one of the POVM elements is the projector to the coordinates outside of 𝑆𝑗 ∪ 𝑆𝑗′ , and

the remaining POVM elements are rank-1 matrices 𝑀𝑧 = 𝜆𝑧𝑣𝑧𝑣
†
𝑧 where the 𝜆𝑧 ≤ 1 satisfy

∑︁
𝜆𝑧 = 𝑑𝑗 + 𝑑𝑗′ < 2𝑑𝑗 (11.16)

and the vectors 𝑣𝑧 are unit vectors supported on 𝑆𝑗 ∩ 𝑆𝑗′ . Let 𝑣𝑗𝑧 and 𝑣𝑗′𝑧 denote the 𝑑𝑗- and

745

𝑑𝑗′-dimensional components of 𝑣𝑧 indexed by 𝑆𝑗 and 𝑆𝑗′ . Note that for these 𝑧,

𝑔U𝒫 (𝑧) =
⟨𝑀𝑧, 𝐷W⟩
⟨𝑀𝑧, 𝜎⟩

=
𝜀

𝑑𝑗′
· Re((𝑣𝑗𝑧)†(UΠ)𝑣𝑗

′
𝑧)

𝑣†𝑧𝜎𝑣𝑧
. (11.17)

while for the index 𝑧 corresponding to the projector to (𝑆𝑗 ∪ 𝑆𝑗′)𝑐, 𝑔U𝒫 (𝑧) = 0.

We now verify that Conditions 1, 2 and 3 hold.

Lemma 11.5.20. For any 𝑧, EU[𝑔
U
𝒫 (𝑧)] = 0.

Proof. Clearly Tr(𝐷W) = 0, so by Fact 1.3.48, EW[𝑔W(𝑧)] = 0.

Lemma 11.5.21. E𝑧,U[𝑔U𝒫 (𝑧)2] ≤ 𝑂

(︂
𝜀2

𝑑2
𝑗′2

−𝑗′

)︂
, where as usual, expectation is with respect to

measurement outcomes when measuring the null hypothesis 𝜎 with ℳ.

Proof. From (11.17) we have that

E
𝑧,U

[︀
𝑔U𝒫 (𝑧)

2
]︀
=
𝜀2

𝑑2𝑗′
E
U

[︃∑︁
𝑧

𝜆𝑧𝑣
†
𝑧𝜎𝑣𝑧

(︂
Re((𝑣𝑗𝑧)†(UΠ)𝑣𝑗

′
𝑧)

𝑣†𝑧𝜎𝑣𝑧

)︂2
]︃

=
𝜀2

𝑑2𝑗′

∑︁
𝑧

𝜆𝑧

𝑣†𝑧𝜎𝑣𝑧
E
U

[︂(︁
Re((𝑣𝑗𝑧)

†(UΠ)𝑣𝑗
′

𝑧)
)︁2]︂

=
𝜀2

𝑑2𝑗′

∑︁
𝑧

𝜆𝑧

𝑣†𝑧𝜎𝑣𝑧
· ‖𝑣

𝑗
𝑧‖2‖𝑣𝑗

′
𝑧 ‖2

𝑑𝑗
, (11.18)

As 𝑣𝑧 is supported on 𝑆𝑗∪𝑆𝑗′ , the supports of 𝑣𝑗𝑧 and 𝑣𝑗′𝑧 are disjoint, and the diagonal entries

of 𝜎 indexed by 𝑆𝑗′ are at least 2−𝑗−1, we have that 𝑣†𝑧𝜎𝑣𝑧 ≥ 2−𝑗
′−1‖𝑣𝑗′𝑧 ‖2 and ‖𝑣𝑗𝑧‖22 ≤ 1, so

we can further bound (11.18) by

=
𝜀22𝑗

′+1

𝑑2𝑗′𝑑𝑗

∑︁
𝑧

𝜆𝑧 ≤ 𝑂

(︃
𝜀2

𝑑2𝑗′2
−𝑗′

)︃
,

where the last step follows by (11.16).

Lemma 11.5.22. E𝑧[(𝑔U1
𝒫 (𝑧)−𝑔U2

𝒫 (𝑧))2] ≤ 𝑂

(︂
𝜀2

𝑑2
𝑗′2

−𝑗

)︂
·‖U1−U2‖2𝐹 for any U1,U2 ∈ 𝑈(𝑑𝑗).

746

Proof. Define the matrix

D =

⎛⎝ 0𝑑𝑗 (𝜀/2𝑑𝑗′) · (U1Π−U2Π)

(𝜀/2𝑑𝑗′) · (U1Π−U2Π)
† 0𝑑𝑗′

⎞⎠
Note that for any POVM element 𝑀𝑧,

⟨𝑀𝑧,D⟩2 =
𝜆2𝑧𝜀

2

𝑑2𝑗′
Re
(︁
(𝑣𝑗𝑧)

†(U1 −U2)Π𝑣
𝑗′

𝑧

)︁2
≤ 𝜆2𝑧𝜀

2

𝑑2𝑗′
· ‖𝑣𝑗𝑧(U1 −U2)‖2 · ‖𝑣𝑗

′

𝑧 ‖22 (11.19)

We can then write

E
𝑧
[(𝑔U𝒫 (𝑧)− 𝑔V𝒫 (𝑧))2] =

∑︁
𝑧

⟨𝑀𝑧,D⟩2

⟨𝑀𝑧, 𝜎⟩

≤ 𝜀2

𝑑2𝑗′

∑︁
𝑧

𝜆𝑧‖𝑣𝑗𝑧(U1 −U2)‖2 · ‖𝑣𝑗
′
𝑧 ‖2

2−𝑗′−1‖𝑣𝑗′𝑧 ‖2

≤ 𝑂

(︃
𝜀22𝑗

′

𝑑2𝑗′

)︃
·
∑︁
𝑧

𝜆𝑧‖𝑣𝑗𝑧(U1 −U2)‖2

= 𝑂

(︃
𝜀22𝑗

′

𝑑2𝑗′

)︃
·

⟨
(U1 −U2)(U1 −U2)

†,
∑︁
𝑧

𝜆𝑧𝑣
𝑗
𝑧(𝑣

𝑗
𝑧)

†

⟩

= 𝑂

(︃
𝜀2

𝑑2𝑗′2
−𝑗′

)︃
· ‖U1 −U2‖2𝐹 ,

where in the second step we used (11.19) and the fact that ⟨𝑀𝑧, 𝜎⟩ = 𝜆𝑧𝑣
†
𝑧𝜎𝑣𝑧 ≥ 𝜆𝑧2

−𝑗′−1‖𝑣𝑗′𝑧 ‖2,

and in the fifth step we used that
∑︀

𝑧 𝜆𝑧𝑣
𝑗
𝑧(𝑣

𝑗
𝑧)

† = Id𝑑𝑗 .

Proof of Lemma 11.5.19. This follows from Lemma 11.4.9 with 𝐿, 𝜍 = 𝑂
(︁

𝜀
𝑑𝑗′2

−𝑗′/2

)︁
.

11.5.4 Lower Bound Instance III: Corner Case

We will also need the a lower bound instance that will yield an Ω(1/𝜀2) lower bound for

state certification with respect to any 𝜎 with maximum entry at least 1/2. We will not use

anything about bucketing in this warmup result.

Let 𝑖1 be the index of the largest entry of 𝜎, and let 𝑖2 be the index of the second-largest

(breaking ties arbitrarily). For any 𝑢 ∈ {±1}, consider the state 𝜎𝑢 which agrees with 𝜎

747

everywhere except in the principal submatrix indexed by {𝑖1, 𝑖2}. Within that submatrix,

define 𝜎𝑢𝑖1,𝑖1 = 𝜎𝑖 − 𝜀2/4, 𝜎𝑢𝑖2,𝑖2 = 𝜎𝑖2 + 𝜀2/4, and 𝜎𝑢𝑖1,𝑖2 = 𝜎𝑢†𝑖2,𝑖1 = (𝜀/2)𝑢.

Lemma 11.5.23. If the maximum entry of 𝜎 is at least 3/4, then for any 𝜀 ≤ 1/2, ‖𝜎 −

𝜎𝑢‖1 ≥ 𝜀 and 𝜎𝑢 is a density matrix.

Proof. Note that for 𝜀 < 1/2,

‖𝜎 − 𝜎𝑢‖1 =

⃦⃦⃦⃦
⃦⃦
⎛⎝ −𝜀2 (𝜀/2)𝑢

(𝜀/2)𝑢 𝜀2

⎞⎠⃦⃦⃦⃦⃦⃦
1

= 2
√︀
𝜀4/16 + 𝜀2/4 ≥ 𝜀.

For the second part of the lemma, clearly Tr(𝜎𝑢) = 1. To verify that 𝜎𝑢 is psd, first note

that because 𝜎𝑖1,𝑖1 ≥ 3/4 and 𝜎𝑖2,𝑖2 ≤ 1/2, and 𝜀2/4 ≤ 1/4, every diagonal entry of 𝜎𝑢 is

nonnegative. On the other hand, the principal submatrix indexed by {𝑖1, 𝑖2} has determinant

(𝜎𝑖1,𝑖1 − 𝜀2)(𝜎𝑖2,𝑖2 + 𝜀2)− 𝜀2/4 ≥ (3/4− 𝜀2)𝜀2 − 𝜀2/4 ≥ 0, so 𝜎𝑢 is psd as claimed.

The objective of this subsection is to show the following lower bound:

Lemma 11.5.24. Let 𝜀 ≤ 1/2. If the maximum entry of 𝜎 is at least 3/4, then distin-

guishing between whether 𝜌 = 𝜎 or 𝜌 = 𝜎𝑢 for 𝑢 ∼ {±1}, using nonadaptive unentangled

measurements, has copy complexity at least Ω(1/𝜀2). In fact, this holds even for adaptive

unentangled measurements.

Because we have no a priori bound on 𝜎𝑖2,𝑖2 , the KL divergence between the distribution

over outcomes from measuring 𝑁 copies of 𝜎𝑢 for random 𝑢 ∈ {±1} and the distribution

from measuring 𝑁 copies of 𝜎 may be arbitrarily large, so we cannot implement the strategy

in Section 11.4. Instead, we will directly upper bound the total variation between these two

distributions using the following basic fact:

Fact 11.5.25. Given distributions 𝑝, 𝑞 over a discrete domain 𝑆, if likelihood ratio 𝑝(𝑥)/𝑞(𝑥) ≥

1− 𝜈, then 𝑑TV(𝑝, 𝑞) ≤ 𝜈.

Proof. We can write

𝑑TV(𝑝, 𝑞) =
∑︁

𝑥:𝑝(𝑥)≤𝑞(𝑥)

|𝑝(𝑥)− 𝑞(𝑥)| =
∑︁

𝑥:𝑝(𝑥)≤𝑞(𝑥)

𝑞(𝑥) · |𝑝(𝑥)/𝑞(𝑥)− 1| ≤ 𝜈

748

as claimed.

Proof of Lemma 11.5.24. Let 𝒟 be the uniform distribution over {±1}, and fix an arbitrary

unentangled POVM schedule 𝒮. Let 𝑝0 denote the distribution over transcripts 𝑧≤𝑡 of out-

comes upon measuring 𝑁 copies of 𝜎 with 𝒮, and let 𝑝1 denote the distribution upon measur-

ing 𝑁 copies of 𝜎𝑢, where 𝑢 ∼ 𝒟. We will lower bound the likelihood ratio 𝑝1(𝑧≤𝑁)/𝑝0(𝑧≤𝑁)

for any transcript 𝑧≤𝑁 . Letℳ(1), . . . ,ℳ(𝑁) denote the (possibly adaptively chosen) POVMs

that were used in the course of generating 𝑧≤𝑁 .

For any 𝑡 ∈ [𝑁], supposeℳ(𝑡) consists of elements {𝑀 (𝑡)
𝑧 }. Analogously to Lemma 11.5.6,

we may without loss of generality assume that one element of ℳ(𝑡) is the projector to

the coordinates outside of {𝑖1, 𝑖2}, and the remaining elements are rank-1 matrices 𝑀 (𝑡)
𝑧 =

𝜆
(𝑡)
𝑧 𝑣

(𝑡)
𝑧 (𝑣

(𝑡)
𝑧)† where the 𝜆

(𝑡)
𝑧 ≤ 1 satisfy

∑︀
𝜆
(𝑡)
𝑧 = 2 and the vectors 𝑣(𝑡)𝑧 are unit vectors

supported on {𝑖1, 𝑖2}. Let 𝑣(𝑡)𝑧𝑡,1 and 𝑣(𝑡)𝑧𝑡,2 denote the coordinates of 𝑣(𝑡)𝑧 indexed by 𝑖1 and 𝑖2.

Note that for any 𝑢 ∈ {±1} and 𝑡 ∈ [𝑁], if 𝑧𝑡 does not correspond to the projector to

the coordinates outside of {𝑖1, 𝑖2}, we can write

Δ𝑢
𝑡 (𝑧𝑡) ,

⟨𝑀 (𝑡)
𝑧𝑡 , 𝜎

𝑢⟩
⟨𝑀 (𝑡)

𝑧𝑡 , 𝜎⟩
= 1 +

𝜀𝑢Re
(︁
𝑣
(𝑡)
𝑧𝑡,1𝑣

(𝑡)
𝑧𝑡,2

)︁
− 𝜀2

(︂⃒⃒⃒
𝑣
(𝑡)
𝑧𝑡,1

⃒⃒⃒2
−
⃒⃒⃒
𝑣
(𝑡)
𝑧𝑡,2

⃒⃒⃒2)︂
𝑣
(𝑡)†
𝑧𝑡 𝜎𝑣

(𝑡)
𝑧𝑡

and if 𝑧𝑡 does correspond to the projector, then Δ𝑢
𝑡 (𝑧𝑡) = 1.

Denoting the 𝑡-th entry of 𝑧≤𝑁 by 𝑧𝑡, we can use AM-GM to bound the likelihood ratio

by

𝑝1(𝑧≤𝑁)

𝑝0(𝑧≤𝑁)
= E

𝑢

[︃
𝑁∏︁
𝑡=1

Δ𝑢
𝑡 (𝑧𝑡)

]︃

≥

(︃
𝑁∏︁
𝑡=1

Δ+1
𝑡 (𝑧𝑡)Δ

−1
𝑡 (𝑧𝑡)

)︃1/2

(11.20)

749

To prove the lemma, we will lower bound this by 1 − 𝑜(1). Because Δ𝑢
𝑡 (𝑧𝑡) = 1 if 𝑧𝑡

corresponds to the projector to the coordinates outside of {𝑖1, 𝑖2}, we may assume without

loss of generality that this is not the case for any 𝑡 ∈ [𝑁]. We can then further bound (11.20)

by

≥
𝑁∏︁
𝑡=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎝1−

𝜀2
(︂⃒⃒⃒
𝑣
(𝑡)
𝑧𝑡,1

⃒⃒⃒2
−
⃒⃒⃒
𝑣
(𝑡)
𝑧𝑡,2

⃒⃒⃒2)︂
𝑣
(𝑡)†
𝑧𝑡 𝜎𝑣

(𝑡)
𝑧𝑡

⎞⎟⎟⎠
2

−
𝜀2Re

(︁
𝑣
(𝑡)
𝑧𝑡,1𝑣

(𝑡)
𝑧𝑡,2

)︁2
(︁
𝑣
(𝑡)†
𝑧𝑡 𝜎𝑣

(𝑡)
𝑧𝑡

)︁2
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/2

. (11.21)

For any 𝑣 ∈ C𝑑 which has entries 𝑣1 and 𝑣2 in coordinates 𝑖1 and 𝑖2 and is zero elsewhere,

we have that

|𝑣1|2 − |𝑣2|2

𝑣†𝜎𝑣
≤ |𝑣1|2

𝜎𝑖1,𝑖1|𝑣1|2
≤ 4/3

Re(𝑣1𝑣2)2

𝑣†𝜎𝑣
≤ Re(𝑣1𝑣2)2

𝜎𝑖1,𝑖1|𝑣1|2
≤ 4/3,

where the last step for both estimates follows by the assumed lower bound on 𝜎𝑖1,𝑖1 . By

(11.21) we have that

𝑝1(𝑧≤𝑁)

𝑝0(𝑧≤𝑁)
≥ ((1− 4𝜀2/3)2 − 4𝜀2/3)𝑁/2 ≥ (1− 32𝜀2/9)𝑁/2.

In particular, for 𝑁 = 𝑜(1/𝜀2), the likelihood ratio is at least 1− 𝑜(1) as desired.

11.5.5 Putting Everything Together

We are now ready to conclude the proof of Theorem 11.5.1.

Proof of Theorem 11.5.1. We proceed by casework depending on whether or not 𝑑𝑗 = 1 for

all 𝑗 ∈ 𝒥 *.

Case 3. 𝑑𝑗 = 1 for all 𝑗 ∈ 𝒥 *.

There are two possibilities. If there is a single bucket 𝑗 = 𝑗(𝑖) for which 𝑖 ̸∈ 𝑆tail ∪ 𝑆light,

then 𝑑eff = 1 and ‖𝜎**‖1/2 = 𝑂(1). For 𝜀 smaller than some absolute constant, we know that

𝜎𝑖,𝑖 ≥ 3/4 and can apply Lemma 11.5.24 to conclude a lower bound of Ω(1/𝜀2) as desired.

Otherwise, let 𝑗′ be the smallest index for which 𝑗′ = 𝑗(𝑖′) for some 𝑖′ ∈ 𝒥 *, and let 𝑗 > 𝑗′

750

be the next smallest index for which 𝑗 = 𝑗(𝑖) for some 𝑖 ∈ 𝒥 *. Consider the lower bound

instance in Section 11.5.3 applied to this choice of 𝑗, 𝑗′. Provided that 𝜀 ≤ 2−𝑗/2−𝑗
′/2, we

would obtain a copy complexity lower bound of Ω(2−𝑗′/𝜀2) ≥ Ω(‖𝜎*‖1/2/(𝜀2 log(𝑑/𝜀))), where

the inequality is by Fact 11.3.1, and we would be done. On the other hand, if 𝜀 ≥ 2−𝑗/2−𝑗
′/2,

then because 2−𝑗
′
> 2−𝑗, we would conclude that 2−𝑗 ≤ 𝜀. In particular, this implies that∑︀

𝑗′′∈𝒥 *,𝑖∈𝑆𝑗′′ :𝑗
′′ ̸=𝑗′ 𝜆𝑖 ≤ 2𝜀, so after removing at most an additional 2𝜀 mass from 𝜎*, we

get a matrix 𝜎** (see Definition 11.5.2) with a single nonzero entry. Again, 𝑑eff = 1 and

‖𝜎**‖1/2 = 𝑂(1), and if 𝜀 is smaller than some absolute constant, we conclude that that

single nonzero entry is at least 3/4 and can apply Lemma 11.5.24 to conclude a lower bound

of Ω(1/𝜀2) as desired.

Case 4. 𝑑𝑗 > 1 for some 𝑗 ∈ 𝒥 *.

Let 𝑗* , argmax𝑗∈𝒥 * 𝑑𝑗 and 𝑗′* , argmax𝑗∈𝒥 * 𝑑2𝑗2
−𝑗. By Lemma 11.5.19, we have a lower

bound of Ω
(︁√︀

𝑑𝑗* · 𝑑2𝑗′* · 2
−𝑗′*/𝜀2

)︁
as long as 𝜀 satisfies the bound

𝜀 ≤ 𝑑𝑗′* · 2
−𝑗*/2−𝑗′*/2. (11.22)

Note that because 𝑑𝑗* > 1 as we are in Case 2, we do not constrain 𝑗*, 𝑗
′
* to be distinct

necessarily. We would now like to argue that this lower bound, up to log factors, holds even

if the bound on 𝜀 in (11.22) does not hold. In the following, assume that (11.22) does not

hold.

To this end, we will also use the lower bound from Lemma 11.5.5 of Ω(‖𝜎′‖2/5/(𝜀2 log(𝑑/𝜀))).

We would first like to relate ‖𝜎′‖2/5 to ‖𝜎*‖2/5.

Lemma 11.5.26. Either ‖𝜎′‖2/5 ≥ Ω(‖𝜎*‖2/5), or the following holds. Let 𝑗∘ be the index

maximizing 𝑑5/2𝑗 2−𝑗. Then 1) 𝑗∘ = min𝑗∈𝒥 * 𝑗, 2) 𝑑𝑗∘ = 1, and 3) 𝑗∘ = 0.

Proof. We will assume that ‖𝜎′‖2/5 = 𝑜(‖𝜎*‖2/5) and show that 1), 2), and 3) must hold.

Let 𝑗∘ be the index maximizing 𝑑5/2𝑗 2−𝑗, and let 𝑖max be the index of the top entry of 𝜎*. Let

𝜎′′ denote the matrix obtained by zeroing out the top entry of 𝜎*. Note that the nonzero

751

entries of 𝜎′ comprise a superset of those of 𝜎′′, so

‖𝜎*‖2/52/5

‖𝜎′‖2/52/5

≤
‖𝜎*‖2/52/5

‖𝜎′′‖2/52/5

=

∑︀
𝑖∈𝒥 * 𝜎

2/5
𝑖∑︀

𝑖∈𝒥 *∖{𝑖max} 𝜎
2/5
𝑖

.

Suppose 1) does not hold. Then

∑︀
𝑖∈𝒥 * 𝜎

2/5
𝑖∑︀

𝑖∈𝒥 *∖{𝑖max} 𝜎
2/5
𝑖

≤
𝜎
2/5
𝑖max

+
∑︀

𝑖∈𝑆𝑗∘
𝜎
2/5
𝑖∑︀

𝑖∈𝑆𝑗∘
𝜎
2/5
𝑖

≤ 2,

where the first inequality follows by the elementary fact that for positive integers 𝑎, 𝑏, 𝑐,
𝑎+𝑐
𝑏+𝑐
≤ 𝑎

𝑏
, and the second inequality follows by the definition of 𝑗∘.

Next, suppose 1) holds but 2) does not hold. Then

∑︀
𝑖∈𝒥 * 𝜆

2/5
𝑖∑︀

𝑖∈𝒥 *∖{𝑖max} 𝜆
2/5
𝑖

≤
∑︀

𝑖∈𝑆𝑗∘
𝜆
2/5
𝑖∑︀

𝑖∈𝑆𝑗∘∖{𝑖max} 𝜆
2/5
𝑖

≤ 𝑂(1),

where the first inequality again uses the above elementary fact, the second inequality follows

by our assumption that 2) does not hold. This yields a contradiction.

Finally suppose 1) and 2) hold, but 3) does not, so that ‖𝜎*‖∞ ≤ 1/2. Let 𝜎′′ denote the

matrix obtained by zeroing out the top entry of 𝜎*. We would have

‖𝜎′′‖2/5 ≥ ‖𝜎′′‖ ≥ 1/2−𝑂(𝜀),

so for 𝜀 smaller than a sufficiently large absolute constant, we would have that ‖𝜎′′‖2/52/5 ≥

Ω(‖𝜎*‖2/5∞) and therefore ‖𝜎′‖2/5 ≥ ‖𝜎′′‖2/5 ≥ Ω(‖𝜎*‖2/5), a contradiction.

Suppose the latter scenario in Lemma 11.5.26 happens but the former does not. In this

case, because 𝑑𝑗∘ = 1, we also have that 𝑗′* = argmax𝑗∈𝒥 * 𝑑2𝑗2
−𝑗, i.e. 𝑗′* = 𝑗∘. In particular,

1 ≥ 𝑑2𝑗′*2
−𝑗′* ≥ 𝑑2𝑗*2

−𝑗* ≥ Ω(𝑑
3/2
𝑗* 𝜀/ log(𝑑/𝜀)), (11.23)

where the last inequality follows by the fact that 𝑑𝑗2−𝑗 ≥ Ω(𝜀/ log(𝑑/𝜀)) for all 𝑗 ∈ 𝒥 *

by design. We conclude that 𝜀 ≤ 𝑂(𝑑
−3/2
𝑗* log(𝑑/𝜀)). But recall that we are assuming that

752

(11.22) is violated, i.e. that

𝜀 > 𝑑𝑗′* · 2
−𝑗*/2−𝑗′*/2 = 2−𝑗*/2−𝑗

′
/2 ≥ Ω(𝜀/(𝑑𝑗 log(𝑑/𝜀)))

1/2, (11.24)

where the last step is by 3) in Lemma 11.5.26 and the fact that 𝑑𝑗2−𝑗 ≥ Ω(𝜀/ log(𝑑/𝜀))

for all 𝑗 ∈ 𝒥 *. Combining (11.23) and (11.24), we get a contradiction of the assumption

that the former scenario in Lemma 11.5.26 does not hold, unless 𝑑𝑗* ≤ polylog(𝑑/𝜀). But

if 𝑑𝑗* ≤ polylog(𝑑/𝜀), then the lower bound claimed in Theorem 11.5.1 still holds as 𝑑eff ≤

𝑂(log(𝑑/𝜀) · 𝑑𝑗*) ≤ polylog(𝑑/𝜀).

Finally, suppose instead that the former scenario in Lemma 11.5.26 happens, so that

Lemma 11.5.5 gives a lower bound of Ω(‖𝜎*‖2/5/(𝜀2 log(𝑑/𝜀))). Let 𝑗∘ still be as defined in

Lemma 11.5.26.

Now we would certainly be done if this lower bound were, up to log factors, larger than

the one guaranteed by Lemma 11.5.19 to begin with. So suppose to the contrary. We would

get that

𝑑
5/2
𝑗* 2−𝑗* ≤ 𝑑

5/2
𝑗∘ 2−𝑗

∘ ≤ 1

log2(𝑑/𝜀)

√︀
𝑑𝑗*𝑑

2
𝑗′*
· 2−𝑗′* ,

implying that

𝑑2𝑗2
−𝑗* ≤ 1

log2(𝑑/𝜀)
𝑑2𝑗′*2

−𝑗′* . (11.25)

If (11.22) does not hold, then

1

log(𝑑/𝜀)
· 𝑑𝑗′* · 2

−𝑗*/2−𝑗′*/2 ≤ 𝜀

log(𝑑/𝜀)
≤ 𝑑𝑗2

−𝑗,

where in the last step we again used the fact that 𝑑𝑗2−𝑗 > 𝜀/ log(𝑑/𝜀) for all 𝑗 ∈ 𝒥 *, yielding

the desired contradiction with (11.25) upon rearranging.

Having lifted the constraint (11.22), we finally note that by Fact 11.3.1,

Ω
(︁√︀

𝑑𝑗* · 𝑑2𝑗′* · 2
−𝑗′*/𝜀2

)︁
≥ Ω

(︁√︀
𝑑eff · ‖𝜎*‖1/2/(𝜀2 polylog(𝑑/𝜀))

)︁
.

The proof is complete upon invoking Fact 11.5.27 below.

Fact 11.5.27. Given psd matrix 𝜎 ∈ C𝑑×𝑑, let ̂︀𝜎 , 𝜎/Tr(𝜎). Then ‖𝜎‖1/2 = 𝑑Tr(𝜎)2 ·

753

𝐹 (̂︀𝜎, 𝜌mm).

Proof. We may assumed without loss of generality that 𝜎 is diagonal. By definition

𝐹 (̂︀𝜎, 𝜌mm) =

(︂
Tr
√︁√̂︀𝜎(Id /𝑑)√̂︀𝜎)︂2

=

(︂
1√

𝑑Tr(𝜎)
· Tr(
√
𝜎)

)︂2

=
1

𝑑Tr(𝜎)2
· ‖𝜎‖1/2,

from which the claim follows.

11.6 State Certification Algorithm

In this section we prove the following upper bound on state certification that nearly matches

the lower bound proven in Section 11.5:

Theorem 11.6.1. Fix 𝜀, 𝛿 > 0. Let 𝜌 ∈ C𝑑×𝑑 be an unknown mixed state, and let 𝜎 ∈ C𝑑×𝑑

be a diagonal density matrix. Let 𝜎′ be the matrix given by zeroing out the bottom 𝑂(𝜀2)

mass in 𝜎 (see Definition 11.6.5 below). Let ̂︀𝜎′ , 𝜎′/Tr(𝜎′) and let 𝑑eff be the number of

nonzero entries of 𝜎′.

Given an explicit description of 𝜎 and copy access to 𝜌, Certify takes

𝑁 = 𝑂(𝑑
√︀
𝑑eff · 𝐹 (̂︀𝜎′, 𝜌mm) polylog(𝑑/𝜀) log(1/𝛿)/𝜀

2)

copies of 𝜌 and, using unentangled nonadaptive measurements, distinguishes between 𝜌 = 𝜎

and ‖𝜌− 𝜎‖1 > 𝜀 with probability at least 1− 𝛿.

First, in Section 11.6.1 we give a generic algorithm for state certification based on mea-

suring in a Haar-random basis and applying classical identity testing. In Section 11.6.2, we

describe a bucketing scheme that will be essential to the core of our analysis in Section 11.6.3,

where we use this tool to obtain the algorithm in Theorem 11.6.1.

11.6.1 Generic Certification

The main result of this section is a basic state certification algorithm that will be invoked

as a subroutine in our instance-near-optimal certification algorithm:

754

Lemma 11.6.2. Fix 𝜀, 𝛿 > 0. Let 𝜌, 𝜎 ∈ C𝑑×𝑑 be two mixed states. Given access to an

explicit description of 𝜎 and copy access to 𝜌, BasicCertify takes 𝑁 = 𝑂(
√
𝑑 log(1/𝛿)/𝜀2)

copies of 𝜌 and, using unentangled nonadaptive measurements, distinguishes between 𝜌 = 𝜎

and ‖𝜌− 𝜎‖𝐹 > 𝜀 with probability at least 1− 𝛿.

Algorithm 47: BasicCertify(𝜌, 𝜎, 𝜀, 𝛿)
Input: Copy access to 𝜌, diagonal density matrix 𝜎, error 𝜀, failure probability 𝛿
Output: YES if 𝜌 = 𝜎, NO if ‖𝜌− 𝜎‖𝐹 > 𝜀, with probability 1− 𝛿

1 𝑁 ← 𝑂(
√
𝑑/𝜀2).

2 for 𝑇 = 1, . . . , 𝑂(log(1/𝛿)) do
3 Sample a Haar-random unitary matrix U.
4 Form the POVMℳ consisting of {|U1⟩ ⟨U1| , . . . , |U𝑑⟩ ⟨U𝑑|}.
5 Measure each copy of 𝜌 withℳ, yielding outcomes 𝑧1, . . . , 𝑧𝑁 .
6 Let 𝑞 ∈ Δ𝑑 denote the distribution over outcomes from measuring 𝜎 withℳ.
7 Draw i.i.d. samples 𝑧′1, . . . , 𝑧′𝑁 from 𝑞.
8 𝑏𝑖 ←L2Tester({𝑧𝑖}, {𝑧′𝑖}).
9 return majority among 𝑏1, . . . , 𝑏𝑇 .

To prove Lemma 11.6.2, we will need the following result from classical distribution

testing.

Lemma 11.6.3 (Lemma 2.3 from [DK16]). Let 𝑝, 𝑞 be two unknown distributions on [𝑑] for

which ‖𝑝‖2 ∧ ‖𝑞‖2 ≤ 𝑏 for some 𝑏 > 0. There exists an algorithm L2Tester that takes

𝑁 = 𝑂(𝑏 log(1/𝛿)/𝜀2) samples from each of 𝑝 and 𝑞 and distinguishes between 𝑝 = 𝑞 and

‖𝑝− 𝑞‖2 > 𝜀 with probability at least 1− 𝛿.4

We will also need the following moment calculations:

Lemma 11.6.4. For any Hermitian M ∈ C𝑑×𝑑 and Haar-random U ∈ 𝑈(𝑑), let 𝑍 denote

the random variable
∑︀𝑑

𝑖=1

(︁
U†
𝑖MU𝑖

)︁2
. Then

E[𝑍] =
1

𝑑+ 1

(︀
Tr(M)2 + ‖M‖2𝐹

)︀
.

4Note that Lemma 2.3 in [DK16] only gives a constant probability guarantee, but the version we state
follows by a standard amplification argument.

755

If in addition we have that Tr(M) = 0, then

E[𝑍2] ≤ 1 + 𝑜(1)

𝑑2
‖M‖4𝐹 .

Proof. By symmetry E[𝑍] = 𝑑E[(U1MU1)
2], and by Lemma 1.3.49, if Π denotes the pro-

jector to the first coordinate,

E[(U1MU1)
2] =

∑︁
𝜋,𝜏∈𝒮2

Wg(𝜋𝜏−1, 𝑑)⟨Π⟩𝜋⟨M⟩𝜏 =
1

𝑑(𝑑+ 1)
(Tr(M)2 + Tr(M2)),

from which the first part of the lemma follows.

For the second part, let 𝒮*
4 ⊂ 𝒮4 denote the set of permutations 𝜋 for which 𝜋(1), 𝜋(2) ∈

{1, 2} and 𝜋(3), 𝜋(4) ∈ {3, 4}. Note that

E[𝑍2] = 𝑑 · E
[︁
(U†

1MU1)
4
]︁
+ (𝑑2 − 𝑑) · E

[︁
(U†

1MU1)
2(U†

2MU2)
2
]︁
. (11.26)

For the first term, by Lemma 1.3.49 we have

E[(U†
1MU1)

4] =
∑︁
𝜋,𝜏∈𝒮4

Wg(𝜋𝜏−1, 𝑑)⟨M⟩𝜏

=
1

𝑑(𝑑+ 1)(𝑑+ 2)(𝑑+ 3)

∑︁
𝜏

⟨M⟩𝜏

=
1

𝑑(𝑑+ 1)(𝑑+ 2)(𝑑+ 3)

∑︁
𝜏 derangement

⟨M⟩𝜏

≤ 𝑂(‖M‖4𝐹)
𝑑(𝑑+ 1)(𝑑+ 2)(𝑑+ 3)

,

where the third step follows by the fact that Tr(M) = 0, and the fourth by the fact that for

any derangement 𝜏 ∈ 𝒮4, either ⟨M⟩𝜏 = Tr(M2)2 = ‖M‖4𝐹 , or ⟨M⟩𝜏 = Tr(M4) ≤ ‖M‖4𝐹 .

Similarly,

E[(U†
1MU1)

2(U†
2MU2)

2] =
∑︁

𝜋∈𝒮*
4 ,𝜏∈𝒮4

Wg(𝜋𝜏−1, 𝑑)⟨M⟩𝜏

=
∑︁
𝜏∈𝒮*

4

Wg(𝑒, 𝑑)⟨M⟩𝜏 +
∑︁

𝜋∈𝒮*
4 ,𝜏∈𝒮4:𝜏 ̸=𝜋

Wg(𝜋𝜏−1, 𝑑)⟨M⟩𝜏

756

= Wg(𝑒, 𝑑)‖M‖4𝐹 +
∑︁

𝜋∈𝒮*
4 ,𝜏∈𝒮4:𝜏 ̸=𝜋

Wg(𝜋𝜏−1, 𝑑)⟨M⟩𝜏

≤ 𝑑4 − 8𝑑2 + 6

𝑑2(𝑑6 − 14𝑑4 + 49𝑑2 − 36)
‖M‖4𝐹 +𝑂(1/𝑑5) · ‖M‖4𝐹

=
1 + 𝑜(1)

𝑑4
‖M‖4𝐹 ,

where in the second step Wg(𝑒, 𝑑) denotes the Weingarten function corresponding to the

identity permutation, in the third step we used the fact that the only 𝜏 ∈ 𝒮*
4 which is a

derangement is the permutation that interchanges 1 with 2, and 3 with 4, and in the fourth

step we used the form of Wg(𝑒, 𝑑), the fact that |Wg(𝜋𝜏−1, 𝑑)| = 𝑂(1/𝑑5) for 𝜋 ̸= 𝜏 , and the

fact that ⟨M⟩𝜏 ≤ ‖M‖4𝐹 . The second part of the lemma follows from (11.26).

We can now complete the proof of Lemma 11.6.2.

Proof of Lemma 11.6.2. Let 𝑝 and 𝑞 be the distribution over 𝑑 outcomes when measuring

𝜌 and 𝜎 respectively using the POVM defined in a single iteration of the main loop of

BasicCertify. Applying both parts of Lemma 11.6.4 to M = 𝜌−𝜎, for which the random

variable 𝑍 is ‖𝑝− 𝑞‖22, we conclude that for some sufficiently small absolute constant 𝑐 > 0,

Pr[‖𝑝 − 𝑞‖2 ≥ 𝑐‖M‖𝐹/
√
𝑑] ≥ 5/6. Applying the first part of Lemma 11.6.4 to M = 𝜌

and M = 𝜎, for which the random variable 𝑍 is ‖𝑝‖22 and ‖𝑞‖22 respectively, we have that

E[‖𝑝‖22],E[‖𝑞‖22] ≤ 2/𝑑, so by Markov’s, for some absolute constant 𝑐′ > 0, ‖𝑝‖, ‖𝑞‖2 ≤ 𝑐′/
√
𝑑

with probability at least 5/6. We can substitute these bounds for ‖𝑝‖2, ‖𝑞‖2, ‖𝑝 − 𝑞‖2 into

Lemma 11.6.3 to conclude that the output of L2Tester is correct with some constant

advantage. Repeating this 𝑂(log(1/𝛿)) times and taking the majority among all the outputs

from L2Tester gives the desired high-probability guarantee.

11.6.2 Bucketing and Mass Removal

We may without loss of generality assume that 𝜎 is the diagonal matrix diag(𝜆1, . . . , 𝜆𝑑),

where 𝜆1 ≤ · · · ≤ 𝜆𝑑.

We will use the bucketing procedure outlined in Section 11.5.1. The way that we re-

move a small amount of mass from the spectrum of 𝜎 slightly differs from that outlined

757

in Definition 11.5.2 for our lower bound. Our bucketing and mass removal procedure is as

follows:

Definition 11.6.5 (Removing low-probability elements- upper bound). Let 𝑑′ ≤ 𝑑 denote

the largest index for which
∑︀𝑑′

𝑖=1 𝜆
′
𝑖 ≤ 𝜀2/20,5 and let 𝑆tail , [𝑑′]. Let 𝜎′ denote the matrix

given by zeroing out the diagonal entries of 𝜎 indexed by 𝑆tail. For 𝑗 ∈ Z≥0, let 𝑆𝑗 denote

the indices 𝑖 ̸∈ 𝑆tail for which 𝜆𝑖 ∈ [2−𝑗−1, 2−𝑗], and denote |𝑆𝑗| by 𝑑𝑗. Let 𝒥 denote the set

of 𝑗 for which 𝑆𝑗 ̸= ∅.

As in the proofs of our lower bounds, we use the following basic consequence of bucketing:

Fact 11.6.6. There are at most log(10𝑑/𝜀2) indices 𝑗 ∈ 𝒥 .

Proof. The largest element among {𝜆𝑖}𝑖∈𝑆tail
is at least 𝜀2/10𝑑, from which the claim follows.

We now introduce some notation. Let 𝑚 , log(10𝑑/𝜀2) denote this upper bound on the

number of buckets in 𝒥 . For 𝑗 ∈ 𝒥 , let 𝜌[𝑗, 𝑗], 𝜎[𝑗, 𝑗] ∈ C𝑑×𝑑 denote the Hermitian matrices

given by zeroing out entries of 𝜌, 𝜎 outside of the principal submatrix indexed by 𝑆𝑗. For

distinct 𝑗, 𝑗′ ∈ 𝒥 , let 𝜌[𝑗, 𝑗′] ∈ C𝑑×𝑑 denote the Hermitian matrix given by zeroing out entries

of 𝜌 outside of the two non-principal submatrices with rows and columns indexed by 𝑆𝑖 and

𝑆𝑗, and by 𝑆𝑗 and 𝑆𝑖. Lastly, let ̂︀𝜌[𝑗, 𝑗], ̂︀𝜎[𝑗, 𝑗], ̂︀𝜌[𝑗, 𝑗′], ̂︀𝜎[𝑗, 𝑗′] denote these same matrices but

with trace normalized to 1.

Let 𝜌diagjunk ∈ C𝑑×𝑑 be the principal submatrix of 𝜌 indexed by 𝑆tail, and let 𝜌offjunk ∈ C𝑑×𝑑 be

the matrix given by zeroing out the principal submatrices indexed by 𝑆tail and by [𝑑]∖𝑆tail.

Lastly, we will need the following basic fact:

Fact 11.6.7. Given two psd matrices 𝜌, 𝜎, if |Tr(𝜌)− Tr(𝜎)| ≤ 𝜀/2 and ‖𝜌− 𝜎‖ ≥ 𝜀, then

‖𝜌/Tr(𝜌)− 𝜎/Tr(𝜎)‖1 ≥ 𝜀/2Tr(𝜌).

Proof. Note that

‖𝜎/Tr(𝜌)− 𝜎/Tr(𝜎)‖1 =
⃒⃒⃒⃒
Tr(𝜎)
Tr(𝜌)

− 1

⃒⃒⃒⃒
≤ 𝜀

2Tr(𝜌)
,

5We made no effort to optimize this constant factor.

758

so by triangle inequality,

‖𝜌/Tr(𝜌)− 𝜎/Tr(𝜎)‖1 ≥
1

Tr(𝜌)
‖𝜌− 𝜎‖1 − ‖𝜎/Tr(𝜌)− 𝜎/Tr(𝜎)‖1 ≥

𝜀

2Tr(𝜌)
.

11.6.3 Instance-Near-Optimal Certification

We are ready to prove Theorem 11.6.1.

Proof of Theorem 11.6.1. We have that

𝜌 =
∑︁
𝑗∈𝒥

𝜌[𝑗, 𝑗] +
∑︁

𝑗∈𝒥 :𝑗 ̸=𝑗′
𝜌[𝑗, 𝑗′] + 𝜌diagjunk + 𝜌offjunk 𝜎′ =

∑︁
𝑗∈𝒥

𝜎[𝑗, 𝑗]

If ‖𝜌− 𝜎‖1 > 𝜀, then by triangle inequality,⃦⃦⃦⃦
⃦∑︁
𝑗∈𝒥

(𝜌[𝑗, 𝑗]− 𝜎[𝑗, 𝑗]) +
∑︁

𝑗,𝑗′∈𝒥 :𝑗 ̸=𝑗′
𝜌[𝑗, 𝑗′] + 𝜌diagjunk + 𝜌offjunk

⃦⃦⃦⃦
⃦
1

= ‖𝜌− 𝜎′‖1 ≥ 𝜀− 𝜀2/20 ≥ 9𝜀/10

and one of four things can happen:

1. ‖𝜌diagjunk‖1 ≥ 𝜀2/8.

2. ‖𝜌offjunk‖1 ≥ 𝜀/2,

3. There exists 𝑗 ∈ 𝒥 for which ‖𝜌[𝑗, 𝑗]− 𝜎[𝑗, 𝑗]‖1 ≥ 𝜀/(10𝑚2)

4. There exist distinct 𝑗, 𝑗′ ∈ 𝒥 for which ‖𝜌[𝑗, 𝑗′]‖1 ≥ 𝜀/(5𝑚2).

Otherwise we would have

‖𝜌− 𝜎′‖1 ≤ 𝑚 · 𝜀

10𝑚2
+

(︂
𝑚

2

)︂
· 𝜀

5𝑚2
+
𝜀2

8
+
𝜀

2
=

𝜀

10𝑚
+
𝜀(𝑚− 1)

10𝑚
+

3𝜀

4
< 9𝜀/10,

a contradiction.

It remains to demonstrate how to test whether we are in any of Scenarios 1 to 4.

759

Lemma 11.6.8. 𝑂(log(1/𝛿)/𝜀2) copies suffice to test whether 𝜌 = 𝜎 or whether Scenario 1

holds, with probability 1−𝑂(𝛿).

Proof. We can use the POVM consisting of the projector Π to the principal submatrix

indexed by 𝑆tail, together with Id−Π, to distinguish between whether Tr(𝜌diagjunk) ≥ 𝜀2/8 or

whether Tr(𝜌diagjunk) ≤ 𝜀2/10, the latter of which holds if 𝜌 = 𝜎 by definition of 𝑆tail. For this

distinguishing task, 𝑂(log(1/𝛿)/𝜀2) copies suffice.

Lemma 11.6.9. If Scenario 1 does not hold, then Scenario 2 cannot hold.

Proof. Suppose Scenario 1 does not hold so that ‖𝜌diagjunk‖1 < 𝜀2/4. Then by the first part of

Fact 11.3.5, ‖𝜌offjunk‖21 < (1− 𝜀2/4) · 𝜀2/4 < 𝜀2/4, a contradiction.

Lemma 11.6.10. 𝑂
(︀
‖𝜎′‖2/5 polylog(𝑑/𝜀) log(𝑚/𝛿)/𝜀2

)︀
copies suffice to test whether 𝜌 = 𝜎

or whether Scenario 3 holds, with probability 1−𝑂(𝛿).

Proof. If Tr(𝜎[𝑗, 𝑗]) < 𝜀/(10𝑚2), then to test whether 𝜌 = 𝜎 or Scenario 3 holds, it suffices to

decide whether Tr(𝜌[𝑗, 𝑗]) ≥ Tr(𝜎[𝑗, 𝑗])+𝜀/(10𝑚2). We can do this by measuring 𝜌 using the

POVM consisting of the projection Π𝑗 to the principal submatrix indexed by 𝑆𝑗, together

with Id−Π𝑗, for which 𝑂(𝑚4 log2(1/𝛿)/𝜀2) copies suffice to determine this with probability

1−𝑂(𝛿).

Suppose now that Tr(𝜎[𝑗, 𝑗]) ≥ 𝜀/(10𝑚2). We can use 𝑂(log4(𝑑/𝜀) · log(1/𝛿)/𝜀2) copies

to approximate Tr(𝜌[𝑗, 𝑗]) to additive error 𝜀/(40𝑚2) with probability 1 − 𝑂(𝛿) using the

same POVM.

If our estimate for Tr(𝜌[𝑗, 𝑗]) is greater than 𝜀/(40𝑚2) away from Tr(𝜎[𝑗, 𝑗]), then 𝜌 ̸= 𝜎.

Otherwise, |Tr(𝜌[𝑗, 𝑗])− Tr(𝜎[𝑗, 𝑗])| ≤ 𝜀/(20𝑚2). Then by Fact 11.6.7, to determine

whether we are in Scenario 3, it suffices to design a tester to distinguish whether the mixed

states ̂︀𝜌[𝑗, 𝑗] and ̂︀𝜎[𝑗, 𝑗] are equal or 𝜀′-far in trace distance for

𝜀′ ,
𝜀

20𝑚2 Tr(𝜎[𝑗, 𝑗])
= Θ

(︂
𝜀

20𝑚2𝑑𝑗2−𝑗

)︂
. (11.27)

Note that if ̂︀𝜌[𝑗, 𝑗] and ̂︀𝜎[𝑗, 𝑗] are 𝜀′-far in trace distance, they are at least 𝜀′/
√︀
𝑑𝑗-far

in Frobenius. We conclude from Lemma 11.6.2 that we can distinguish with probability

760

1 − 𝑂(𝛿) between whether ̂︀𝜌[𝑗, 𝑗] and ̂︀𝜎[𝑗, 𝑗] are equal or 𝜀′-far in trace distance using

𝑂(𝑑
3/2
𝑗 log(1/𝛿)/𝜀′2) = 𝑂(𝑑

7/2
𝑗 2−2𝑗 log4(𝑑/𝜀) log(1/𝛿)/𝜀2) measurements on the conditional

state ̂︀𝜌[𝑗, 𝑗]. Note that Tr(𝜌[𝑗, 𝑗]) ≥ Ω(Tr(𝜎[𝑗, 𝑗])) because Tr(𝜎[𝑗, 𝑗]) ≥ 𝜀/(10𝑚2) by as-

sumption, so Tr(𝜎[𝑗, 𝑗]) ≥ Ω(𝑑𝑗2
−𝑗). As a result, this tester can make the desired number of

measurements on the conditional state by using 𝑂(𝑑5/2𝑗 2−𝑗 log4(𝑑/𝜀) log(1/𝛿)/𝜀2) copies of 𝜌

and rejection sampling.

By a union bound over distinct pairs 𝑗, 𝑗′, it therefore takes 𝑂(log(𝑚/𝛿)) times

∑︁
𝑗∈𝒥

𝑂
(︁
𝑑
5/2
𝑗 2−𝑗 log4(𝑑/𝜀)/𝜀2

)︁
≤
∑︁
𝑗∈𝒥

𝑂
(︁
𝑑
5/2
𝑗 𝜆𝑗 log

4(𝑑/𝜀)/𝜀2
)︁
≤ 𝑂

(︀
‖𝜎′‖2/5 polylog(𝑑/𝜀)/𝜀2)

)︀
,

copies to test whether Scenario 3 holds, where the last step above follows by Fact 11.3.1.

Lemma 11.6.11. If Scenario 3 does not hold, then 𝑂
(︀√

𝑑− 𝑑′‖𝜎′‖1/2 log(𝑚/𝛿) polylog(𝑑/𝜀)/𝜀2
)︀

copies suffice to test whether 𝜌 = 𝜎 or whether Scenario 4 holds, with probability 1−𝑂(𝛿).

Proof. Fix any 𝑗 ̸= 𝑗′ ∈ 𝒥 and suppose without loss of generality that 𝑑𝑗 ≥ 𝑑𝑗′ . Let 𝜌* and

𝜎* denote the matrices obtained by zeroing out all entries of 𝜌 and 𝜎 except those in the

principal submatrix indexed by 𝑆𝑗 ∪ 𝑆𝑗′ . Let ̂︀𝜌*𝑗,𝑗′ and ̂︀𝜎*
𝑗,𝑗′ denote these same matrices with

trace normalized to 1. For brevity, we will freely omit subscripts.

If Tr(𝜎*) < 𝜀/(5𝑚2), then ‖𝜎[𝑗, 𝑗′]‖1 ≤ 𝜀/(10𝑚2) by the second part of Fact 11.3.5. If

Scenario 2 holds, then ‖𝜌[𝑗, 𝑗′]‖1 ≥ 𝜀/(5𝑚2), so by another application of the second part

of Fact 11.3.5, we would get that Tr(𝜌*) ≥ 2𝜀/(5𝑚2), contradicting the fact that Scenario 1

does not hold.

Suppose now that Tr(𝜎*) ≥ 𝜀/(5𝑚2). As in the proof of Lemma 11.6.10, we can use

𝑂(log4(𝑑/𝜀) · log(1/𝛿)/𝜀2) copies to approximate Tr(𝜌*) to within additive error 𝜀/(20𝑚2)

with probability 1−𝑂(𝛿).

If our estimate is greater than 𝜀/(20𝑚2) away from Tr(𝜎[𝑗, 𝑗]) then we know that 𝜌 ̸= 𝜎.

Otherwise, |Tr(𝜌*)− Tr(𝜎*)| ≤ 𝜀/(10𝑚2), and in particular Tr(𝜌*) ≥ Ω(Tr(𝜎*)) as a

result. If Scenario 3 holds but Scenario 4 does not, then ‖𝜌* − 𝜎*‖ ≥ 𝜀/(5𝑚2). So by

Fact 11.6.7, to determine whether we are in Scenario 2, it suffices to design a tester to

761

distinguish whether the mixed states ̂︀𝜌* and ̂︀𝜎* are equal or 𝜀′′-far in trace distance, where

𝜀′′ ,
𝜀

10𝑚2 Tr(𝜎*)
= Θ

(︁ 𝜀

10𝑚2
· (𝑑𝑗2−𝑗 + 𝑑𝑗′2

−𝑗′)−1
)︁

(11.28)

Note that if 𝜌* and 𝜎* are 𝜀′′-far in trace distance, they are at least 𝜀′′/
√︀
𝑑𝑗-far in Frobenius,

by the assumption that 𝑑𝑗 ≥ 𝑑𝑗′ . We conclude from Lemma 11.6.2 that we can distinguish

these two cases using

𝑂(
√︀
𝑑𝑗𝑑𝑗′ log(1/𝛿)/𝜀

′2) = 𝑂
(︁√︀

𝑑𝑗𝑑𝑗′(𝑑𝑗2
−𝑗 + 𝑑𝑗′2

−𝑗′)2 log4(𝑑/𝜀) log(1/𝛿)/𝜀2
)︁

measurements on the conditional state ̂︀𝜌*. Because Tr(𝜌*) ≥ Ω(Tr(𝜎*)) ≥ Ω(𝑑𝑗2
−𝑗+𝑑𝑗′2

−𝑗′),

this tester can make the desired number of measurements on the conditional state by using

𝑂
(︀√︀

𝑑𝑗𝑑𝑗′(𝑑𝑗2
−𝑗 + 𝑑𝑗′2

−𝑗′) log4(𝑑/𝜀) log(1/𝛿)/𝜀2
)︀

copies of 𝜌 and rejection sampling.

Summing over 𝑗 ̸= 𝑗′ ∈ 𝒥 for which 𝑑𝑗 ≥ 𝑑𝑗′ , we conclude that it takes 𝑂(log(1/𝛿)) times

∑︁
𝑗 ̸=𝑗′∈𝒥 :𝑑𝑗≥𝑑𝑗′

√︀
𝑑𝑗𝑑𝑗′(𝑑𝑗2

−𝑗 + 𝑑𝑗′2
−𝑗′) ≤

∑︁
𝑗,𝑗′∈𝒥 :𝑑𝑗≥𝑑𝑗′

𝑑
3/2
𝑗 𝑑𝑗′2

−𝑗 +
∑︁

𝑗,𝑗′∈𝒥 :𝑑𝑗≥𝑑𝑗′

√︀
𝑑𝑗𝑑

2
𝑗′2

−𝑗′

≤ |𝒥 | ·
∑︁
𝑗∈𝒥

𝑑
5/2
𝑗 2−𝑗 +

(︃∑︁
𝑗∈𝒥

√︀
𝑑𝑗

)︃(︃∑︁
𝑗∈𝒥

𝑑2𝑗2
−𝑗

)︃

≤ polylog(𝑑/𝜀) ·
(︁
‖𝜎′‖2/5 +

√
𝑑− 𝑑′ · ‖𝜎′‖1/2

)︁
,

copies to test whether Scenario 4 holds, where the last step above uses Fact 11.3.1.

We claim that the above bound is dominated by 𝑂(log(𝑚/𝛿) polylog(𝑑/𝜀))
√
𝑑− 𝑑′‖𝜎′‖1/2.

Indeed, note that for any vector 𝑣 ∈ R𝑚,

‖𝑣‖2/52/5 =
∑︁
𝑖

𝑣
2/5
𝑖 ≤

(︃∑︁
𝑖

(𝑣
2/5
𝑖)5/4

)︃4/5

·

(︃∑︁
𝑖

15

)︃1/5

≤ ‖𝑣‖2/51/2 ·
√
𝑚

2/5
,

as desired.

Altogether, Lemmas 11.6.8 to 11.6.11 allow us to conclude correctness of the algorithm

Certify whose pseudocode is provided in Algorithm 48 below. The copy complexity guar-

antee follows from these lemmas together with Fact 11.5.27.

762

11.7 Appendix: Adaptive Lower Bound

In this section we prove a lower bound against state certification algorithms that use adaptive,

unentangled measurements.

Theorem 11.7.1. There is an absolute constant 𝑐 > 0 for which the following holds for

any 0 < 𝜀 < 𝑐.6 Let 𝜎 ∈ C𝑑×𝑑 be a diagonal density matrix. There is a matrix 𝜎* given

by zeroing out the largest entry of 𝜎 and at most 𝑂(𝜀 log(𝑑/𝜀)) additional mass from 𝜎 (see

Definition 11.7.2 below), such that the following holds:

Any algorithm for state certification to error 𝜀 with respect to 𝜎 using adaptive, unentan-

gled measurements has copy complexity at least

Ω
(︁
𝑑 · 𝑑1/3eff · 𝐹 (̂︀𝜎*, 𝜌mm)/(𝜀

2 log(𝑑/𝜀))
)︁
.

The outline follows that of Section 11.5. In Section 11.7.1, we describe the procedure

by which we remove mass from 𝜎, which will be more aggressive than the one used for our

nonadaptive lower bound. As a result, it will suffice to analyze the lower bound instance

given Section 11.5.3, which we do in Section 11.7.2. For our analysis, we need to check some

additional conditions hold for the adaptive lower bound framework of Section 11.4.3 to apply.

11.7.1 Bucketing and Mass Removal

Define {𝑆𝑗},𝒥 , 𝑆sing, 𝑆many in the same way as in Section 11.5.1. The way in which we

remove mass from 𝜎 will be more aggressive than in the nonadaptive setting. We will end

up removing up to 𝑂(𝜀 log(𝑑/𝜀)) mass (see Fact 11.7.3) as follows:

Definition 11.7.2 (Removing low-probability elements- adaptive lower bound). Without

loss of generality, suppose that 𝜆1, . . . , 𝜆𝑑 are sorted in ascending order according to 𝜆𝑖. Let

𝑑′ ≤ 𝑑 denote the largest index for which
∑︀𝑑′

𝑖=1 𝜆
′
𝑖 ≤ 4𝜀. Let 𝑆tail , [𝑑′].

Let 𝜎* denote the matrix given by zeroing out the largest entry of 𝜎 and the entries indexed

by 𝑆tail. It will be convenient to define 𝒥 * to be the buckets for the nonzero entries of 𝜎*,

6As presented, our analysis yields 𝑐 within the vicinity of 1/3, but we made no attempt to optimize for
this constant.

763

Algorithm 48: Certify(𝜌, 𝜎, 𝜀, 𝛿)
Input: Copy access to 𝜌, diagonal density matrix 𝜎, error 𝜀, failure probability 𝛿
Output: YES if 𝜌 = 𝜎, NO if ‖𝜌− 𝜎‖𝐹 > 𝜀, with probability 1− 𝛿.

1 𝑚← log(10𝑑/𝜀2).
2 Let Π be the projector to the principal submatrix indexed by 𝑆tail. // Scenario 1
3 ℳ← {Π, Id−Π}.
4 Measure 𝑂(log(1/𝛿)/𝜀2) copies of 𝜌 with the POVMℳ.
5 if ≥ (𝜀2/5) fraction of outcomes observed correspond to Π then
6 return NO.

7 for 𝑗 ∈ 𝒥 do // Scenario 3
8 Let Π𝑗 denote the projection to the principal submatrix indexed by 𝑆𝑗.
9 ℳ𝑗 ← {Π𝑗, Id−Π𝑗}.

10 Measure 𝑂(polylog(𝑑/𝜀) log(1/𝛿)/𝜀2) copies of 𝜌 with the POVMℳ𝑗.
11 if ≥ (Tr(𝜎[𝑗, 𝑗]) + 𝜀/(40𝑚2)) fraction of outcomes observed correspond to Π𝑗

then
12 return NO.

13 else
14 Define 𝜀′ according to (11.27).
15 𝑏𝑗 ←BasicCertify(̂︀𝜌[𝑗, 𝑗], ̂︀𝜎[𝑗, 𝑗], 𝜀′, 𝑂(𝛿/𝑚)).
16 if 𝑏𝑗 = NO then
17 return NO.

18 for 𝑗, 𝑗′ ∈ 𝒥 distinct and satisfying 𝑑𝑗 ≥ 𝑑𝑗′ do // Scenario 4
19 Let Π𝑗,𝑗′ denote the projection to the principal submatrix indexed by 𝑆𝑗 ∪ 𝑆𝑗′ .
20 ℳ𝑗,𝑗′ ← {Π𝑗,𝑗′ , Id−Π𝑗,𝑗′}.
21 Measure 𝑂(polylog(𝑑/𝜀) log(1/𝛿)/𝜀2) copies of 𝜌 with the POVMℳ𝑗,𝑗′ .
22 if ≥ (Tr(𝜎*

𝑗,𝑗′)+ 𝜀/(20𝑚
2)) fraction of outcomes observed correspond to Π𝑗,𝑗′ then

23 return NO.

24 else
25 Define 𝜀′′ according to (11.28).
26 𝑏𝑗,𝑗′ ←BasicCertify(̂︀𝜌*𝑗,𝑗′ , ̂︀𝜎*

𝑗,𝑗, 𝜀
′′, 𝑂(𝛿/𝑚2)).

27 if 𝑏𝑗,𝑗′ = NO then
28 return NO.

29 return YES.

764

i.e. the set of 𝑗 ∈ 𝒥 for which 𝑆𝑗 has nonempty intersection with [𝑑]∖𝑆tail.

Fact 11.7.3. There are at most 𝑂(log(𝑑/𝜀)) indices 𝑗 ∈ 𝒥 *. As a consequence, Tr(𝜎*) ≥

1−𝑂(𝜀 log(𝑑/𝜀)).

Proof. For any 𝑖1 ̸∈ 𝑆tail and 𝑖2 ∈ 𝑆tail, we have that 𝑝𝑖1 > 𝑝𝑖2 . In particular, summing over

𝑖2 ∈ 𝑆tail, we conclude that 𝑝𝑖1 · |𝑆tail| > 4𝜀, so 𝑝𝑖1 > 4𝜀/𝑑. By construction of the buckets

𝑆𝑗, the first part of the claim follows. As in the proof of Fact 11.5.3, the second part of the

claim follows by definition of 𝑆light.

11.7.2 Analyzing Lower Bound II

We will analyze the sub-problem defined in Section 11.5.3 and prove the following lower

bound:

Lemma 11.7.4. Fix any 𝑗, 𝑗′ ∈ 𝒥 * satisfying 𝑑𝑗 ≥ 𝑑𝑗′. If 𝑑𝑗 > 1, then we can optionally

take 𝑗 = 𝑗′. Suppose 𝜀 ≤ 𝑑𝑗′ · 2−𝑗/2−𝑗
′/2−1. Distinguishing between whether 𝜌 = 𝜎 or 𝜌 = 𝜎W

for W ∈ C𝑑𝑗×𝑑𝑗′ consisting of Haar-random orthonormal columns (see (11.14) and (11.15)),

using adaptive unentangled measurements, has copy complexity at least

Ω

(︃
𝑑
1/3
𝑗 · 𝑑2𝑗′ · 2−𝑗

′

𝜀2

)︃
.

Proof. As in Section 11.5.3, we will focus on the case where 𝑗 ̸= 𝑗′, but at the cost of some

factors of two, the following arguments easily extend to the construction for 𝑗 = 𝑗′ when

𝑑𝑗 > 1 by replacing 𝑆𝑗 and 𝑆𝑗′ with 𝑆1
𝑗 , 𝑆

2
𝑗 defined immediately before (11.15).

We have already verified in Section 11.5.3 that Conditions 1, 2, and (3) hold for 𝐿, 𝜍 =

𝑂
(︁

𝜀
𝑑𝑗′2

−𝑗′/2

)︁
.

For Condition 4, recall (11.17). As the diagonal entries of 𝜌 indexed by 𝑆𝑗 (resp. 𝑆𝑗′) are

at least 2−𝑗−1 (resp. 2−𝑗
′−1),

𝑣†𝑧𝜌𝑣𝑧 ≥ 2−𝑗−1‖𝑣𝑗𝑧‖2 + 2−𝑗
′−1‖𝑣𝑗′𝑧 ‖2 ≥ 2−𝑗/2−𝑗

′/2‖𝑣𝑗𝑧‖‖𝑣𝑗
′

𝑧 ‖,

765

so

𝑔U𝒫 (𝑧) ≤
𝜀

𝑑𝑗′
· ‖𝑣𝑗𝑧‖‖𝑣𝑗

′
𝑧 ‖

2−𝑗/2−𝑗′/2‖𝑣𝑗𝑧‖‖𝑣𝑗
′
𝑧 ‖
≤ 𝜀

𝑑𝑗′2−𝑗/2−𝑗
′/2
.

In particular, as long as 𝜀 ≤ 𝑑𝑗′2
−𝑗/2−𝑗′/2−1, Condition 4 holds.

We can now apply Theorem 11.4.10 with 𝜏 = 𝑂

(︂
𝜀2

𝑑
1/3
𝑗 𝑑2

𝑗′2
−𝑗′

)︂
, noting that

exp

(︂
−Ω

(︂{︂
𝑑𝑗𝜏

2

𝐿2𝜍2
∧ 𝑑𝜏
𝐿2

}︂)︂)︂
= exp

(︁
−Ω

(︁
𝑑
1/3
𝑗

)︁)︁
,

to get that for any adaptive unentangled POVM schedule 𝒮, if 𝑝≤𝑁0 is the distribution over

outcomes from measuring 𝑁 copies of 𝜎 with 𝒮 and 𝑝≤𝑁1 is the distribution from measuring

𝑁 copies of 𝜎U, then

KL
(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
≤ 𝑁𝜀2

𝑑
1/3
𝑗 𝑑2𝑗′2

−𝑗′
+𝑂(𝑁) · exp

(︃
−Ω

(︃
𝑑
1/3
𝑗 −

𝑁𝜀2

𝑑2𝑗′2
−𝑗′

)︃)︃
.

In particular, if 𝑁 = 𝑜

(︂
𝑑
1/3
𝑗 𝑑2

𝑗′2
−𝑗′

𝜀2 log(𝑑/𝜀)

)︂
, then KL

(︀
𝑝≤𝑁1 ‖𝑝

≤𝑁
0

)︀
= 𝑜(1) and we get the desired lower

bound.

11.7.3 Putting Everything Together

Proof of Theorem 11.7.1. As in the proof of Theorem 11.5.1, we proceed by casework de-

pending on whether 𝑑𝑗 = 1 for all 𝑗 ∈ 𝒥 *.

Case 1. 𝑑𝑗 = 1 for all 𝑗 ∈ 𝒥 *.

The analysis for this case in the nonadaptive setting completely carries over to this setting,

because the lower bound from Lemma 11.5.24 holds even against adaptive POVM schedules.

There are two possibilities. If there is a single bucket 𝑗 = 𝑗(𝑖) for which 𝑖 ̸∈ 𝑆tail, then 𝑑eff = 1

and ‖𝜎*‖1/2 = 𝑂(1); for 𝜀 smaller than some absolute constant, we have that 𝜎𝑖,𝑖 ≥ 3/4 and

Lemma 11.5.24 gives an Ω(1/𝜀2) lower bound as desired. Otherwise, let 𝑗′ be the smallest

index for which 𝑗′ = 𝑗(𝑖′) for some 𝑖′ ∈ 𝒥 *, and let 𝑗 > 𝑗′ be the next smallest index for

which 𝑗 = 𝑗(𝑖) for some 𝑖 ∈ 𝒥 *. Consider the lower bound instance in Section 11.7.2 applied

to this choice of 𝑗, 𝑗′. Provided that 𝜀 ≤ 2−𝑗/2−𝑗
′/2−1, we would obtain a copy complexity

766

lower bound of Ω(2−𝑗′/𝜀2) ≥ Ω(‖𝜎*‖1/2/(𝜀2 log(𝑑/𝜀))), where the inequality is by Fact 11.3.1,

and we would be done. On the other hand, if 𝜀 ≥ 2−𝑗/2−𝑗
′/2−1, then because 2−𝑗

′
> 2−𝑗,

we would conclude that 2−𝑗 ≤ 2𝜀. In particular, this implies that
∑︀

𝑗′′∈𝒥 *,𝑖∈𝑆𝑗′′ :𝑗
′′ ̸=𝑗′ 𝜆𝑖 ≤ 4𝜀,

contradicting the fact that we have removed all buckets of total mass at most 4𝜀 in defining

𝑆tail.

Case 2. 𝑑𝑗 > 1 for some 𝑗 ∈ 𝒥 *.

Let 𝑗* , argmax𝑗∈𝒥 * 𝑑𝑗 and 𝑗′* , argmax𝑗∈𝒥 * 𝑑2𝑗2
−𝑗. By Lemma 11.5.19, as long as 𝜀

satisfies the bound

𝜀 ≤ 𝑑𝑗′* · 2
−𝑗*/2−𝑗′*/2−1, (11.29)

we have a lower bound of

Ω
(︁
𝑑
1/3
𝑗* · 𝑑

2
𝑗′*
· 2−𝑗′*/𝜀2

)︁
≥ Ω

(︁
𝑑 · 𝑑1/3eff · 𝐹 (𝜎

*, 𝜌mm)/(𝜀
2 log(𝑑/𝜀))

)︁
,

where the second step follows by Fact 11.3.1 and Fact 11.5.27. Note that because 𝑑𝑗* > 1 as

we are in Case 2, we do not constrain 𝑗*, 𝑗′* to be distinct necessarily.

But under our assumptions on 𝑗, 𝑗′ and on 𝒥 *, (11.29) must hold:

𝑑𝑗′2
−𝑗/2−𝑗′/2−1 ≥ 𝑑𝑗2

−𝑗−1 ≥ 𝜀

where the first step follows by the assumption that 𝑗′ , argmax𝑗∈𝒥 * 𝑑2𝑗2
−𝑗, and the second

by the assumption that every bucket indexed by 𝒥 * has total mass at least 4𝜀.

11.8 Appendix: Deferred Proofs

11.8.1 Proof of Theorem 11.4.10

We will need the following helper lemmas:

Lemma 11.8.1 (Implicit in Lemma 10.6.2). Conditions 2 and 4 together imply that for any

transcript 𝑧≤𝑡, Δ(𝑧≤𝑡) ≥ exp(−𝜍2𝑡).

Proof. By convexity of the exponential function and the fact that 1 + 𝑔U𝑧<𝑡
(𝑧𝑡) > 0 for all

767

U, 𝑡, 𝑧𝑡,

Δ(𝑧<𝑡) ≥
𝑡−1∏︁
𝑖=1

exp

(︂
E

U∼𝒟
[ln(1 + 𝑔U𝑧<𝑖

(𝑧𝑖))]

)︂
.

For any 𝑖 < 𝑡 we have that

exp

(︂
E

U∼𝒟
[ln(1 + 𝑔U𝑧<𝑖

(𝑧𝑖))]

)︂
≥ exp

(︂
E
U
[𝑔U𝑧<𝑖

(𝑧𝑖)− 𝑔U𝑧<𝑖
(𝑧𝑖)

2]

)︂
≥ exp

(︀
−𝜍2

)︀
,

where the first step follows by the elementary inequality ln(𝑥) ≥ 𝑥−𝑥2 for all 𝑥 ∈ [−1/2, 1/2],

and the second step follows by Conditions 1 and 2.

Lemma 11.8.2. Conditions 1, 2, 3, and 4 together imply that E𝑧<𝑡,U,V

[︀
(ΨU,V

𝑧<𝑡
)2
]︀
≤ exp(𝑂(𝑡𝜍2)).

To prove this, it will be convenient to define the following for any ℓ-copy sub-problem

corresponding to POVMℳ

𝐾U,V
𝒫 , E

𝑧∼𝑝0(ℳ)

[︁(︀
𝑔U𝒫 (𝑧) + 𝑔V𝒫 (𝑧)

)︀2]︁
and first show the following:

Lemma 11.8.3. Under the hypothesis of Lemma 11.8.2, EU,V

[︂(︁
1 + 𝛾𝐾U,V

𝒫

)︁𝑡]︂
≤ exp(𝑂(𝛾𝑡𝜍2))

for any absolute constant 𝛾 > 0 and any 𝑡 = 𝑜(𝑑/𝐿2).

Proof. By the elementary inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2, we have that 𝐾U,V
𝒫 ≤ 𝐺(U)2 +

𝐺(V)2. By Lemma 11.4.5, we immediately get that PrU
[︁
𝐾U,V

𝒫 > (E[𝐺(U)] + 𝑠)2
]︁
≤ exp(−𝑑𝑠2/𝐿2).

Applying the inequality again allows us to lower bound the left-hand side by PrU

[︁
𝐾U,V

𝒫 > 2E[𝐺(U)]2 + 2𝑠2
]︁
,

so we conclude that

Pr
U

[︁
𝐾U,V

𝒫 > 2E[𝐺(U)]2 + 𝑠
]︁
≤ exp(−𝑑𝑠/2𝐿2).

We can apply Fact 1.3.30 to the random variable 𝑍 , 𝐾U,V
𝒫 and the function 𝑓(𝑍) ,

(1 + 𝛾𝑍)𝑡 to conclude that

E
U,V

[︂(︁
1 + 𝛾 ·𝐾U,V

𝒫

)︁𝑡]︂
≤ 2(1 + 2𝛾 E[𝐺(U)]2)𝑡 +

∫︁ ∞

0

𝛾𝑡(1 + 𝛾𝑥)𝑡−1 · 𝑒−𝑥·𝑑/2𝐿2

d𝑥

768

≤ 2(1 + 2𝛾 E[𝐺(U)]2)𝑡 + 𝛾𝑡

∫︁ ∞

0

𝑒−𝑥(𝑑/2𝐿
2−𝛾(𝑡−1)) d𝑥

≤ 2(1 + 2𝛾 E[𝐺(U)]2)𝑡 +
𝛾𝑡

𝑑/2𝐿2 − 𝛾(𝑡− 1)
≤ exp(𝑂(𝑡𝛾 E[𝐺(U)]2)),

where in the last two steps we used that 𝑡 = 𝑜(𝑑/𝐿2) to ensure that the integral is bounded

and that the second term in the final expression is negligible.

We can now prove Lemma 11.8.2:

Proof of Lemma 11.8.2. By the second part of Condition 4, we know that for any constant

𝑐 ≥ 2,

E
𝑧∼Ω(ℳ𝑧<𝑡−1)

[︀
𝑔U𝑧<𝑡−1

(𝑧)𝑎 · 𝑔V𝑧<𝑡−1
(𝑧𝑡)

𝑏
]︀
≤ 1

4
E
𝑧
[𝑔U𝑧<𝑡−1

(𝑧)2],

so we conclude that

E
𝑧∼𝑝0(ℳ𝑧<𝑡−1)

[︀
(1 + 𝑔U𝑧<𝑡−1

(𝑧))𝑐(1 + 𝑔V𝑧<𝑡−1
(𝑧))𝑐

]︀
≤ 1 +𝑂𝑐

(︂
E
𝑧
[𝑔U𝑧<𝑡−1

(𝑧)2]

)︂
+𝑂𝑐

(︂
E
𝑧
[𝑔V𝑧<𝑡−1

(𝑧)2]

)︂
+𝑂𝑐

(︀
𝜑U,V
𝑧<𝑡−1

)︀
≤ 1 + 𝐶(𝑐) ·𝐾U,V

𝑧<𝑡−1
(11.30)

for some absolute constant 𝐶(𝑐) > 0, where the last step follows by AM-GM. For 𝛼𝑖 ,

2 ·
(︀
𝑡−1
𝑡−2

)︀𝑖, we have that

E
𝑧<𝑡,U,V

[︀(︀
ΨU,V
𝑧<𝑡

)︀𝛼𝑖
]︀

≤ E
𝑧<𝑡−1,U,V

[︀(︀
ΨU,V
𝑧<𝑡−1

)︀𝛼𝑖 ·
(︀
1 + 𝐶(𝛼𝑖) ·𝐾U,V

𝑧<𝑡−1

)︀]︀
(11.31)

≤ E
𝑧<𝑡−1,U,V

[︁(︀
ΨU,V
𝑧<𝑡−1

)︀𝛼𝑖(𝑡−1)/(𝑡−2)
]︁(𝑡−2)/(𝑡−1)

· E
𝑧<𝑡−1,U,V

[︁(︀
1 + 𝐶(𝛼𝑖) ·𝐾U,V

𝑧<𝑡−1

)︀𝑡−1
]︁1/(𝑡−1)

(11.32)

≤ E
𝑧<𝑡−1,U,V

[︁(︀
ΨU,V
𝑧<𝑡−1

)︀𝛼𝑖+1(𝑡−1)/(𝑡−2)
]︁
· E
𝑧<𝑡−1,U,V

[︁(︀
1 + 𝐶(𝛼𝑖) ·𝐾U,V

𝑧<𝑡−1

)︀𝑡−1
]︁1/(𝑡−1)

.

where (11.31) follows by (11.30), and (11.32) follows by Holder’s. Unrolling this recurrence,

we conclude that

E
𝑧<𝑡,U,V

[︁(︀
ΨU,V
𝑧<𝑡

)︀2]︁ ≤ 𝑡−1∏︁
𝑖=1

E
𝑧<𝑖,U,V

[︁(︀
1 + 𝐶(𝛼𝑡−1−𝑖) ·𝐾U,V

𝑧<𝑖

)︀𝑡−1
]︁1/(𝑡−1)

769

≤
𝑡−1∏︁
𝑖=1

E
𝑧<𝑖,U,V

[︁(︀
1 + 𝐶(2𝑒) ·𝐾U,V

𝑧<𝑖

)︀𝑡−1
]︁1/(𝑡−1)

, (11.33)

≤ sup
ℳ

E
U,V

[︂(︁
1 +𝑂(𝐾U,V

ℳ)
)︁𝑡−1

]︂

where (11.33) follows by the fact that for 1 ≤ 𝑖 ≤ 𝑡 − 1, 𝛼𝑡−1−𝑖 ≤ 2
(︀
1 + 1

𝑡−2

)︀𝑡−2 ≤ 2𝑒,

and the supremum in the last step is over all POVMs ℳ. The lemma then follows from

Lemma 11.8.3.

We now have all the ingredients to complete the proof of Theorem 11.4.10.

Proof of Theorem 11.4.10. Given transcript 𝑧<𝑡 and U,V ∼ 𝒟, let 1
[︀
ℰU,V𝑧<𝑡

(𝜏)
]︀

denote the

indicator of whether
⃒⃒
𝜑U,V
𝑧<𝑡

⃒⃒
> 𝜏 ; note that by Lemma 11.4.6, this event happens with

probability at most 𝜉(𝜏), where

𝜉(𝑠) , exp

(︂
−Ω

(︂
𝑑𝑠2

𝐿2𝜍2
∧ 𝑑𝑠
𝐿2

)︂)︂
.

We have that

E
U,V

[︀
ΨU,V
𝑧<𝑡
· 𝜑U,V

𝑧<𝑡

]︀
= E

U,V

[︀
ΨU,V
𝑧<𝑡
· 𝜑U,V

𝑧<𝑡
·
(︀
1[ℰU,V𝑧<𝑡

(𝜏)] + 1[ℰU,V𝑧<𝑡
(𝜏)𝑐]

)︀]︀
≤ 1

4
E

U,V

[︀
ΨU,V
𝑧<𝑡
· 1[ℰU,V𝑧<𝑡

(𝜏)]
]︀
+ 𝜏 · E

U,V

[︀
ΨU,V
𝑧<𝑡
· 1[ℰU,V𝑧<𝑡

(𝜏)𝑐]
]︀

≤ 1

4
· E
U,V

[︀
ΨU,V
𝑧<𝑡
· 1[ℰU,V𝑧<𝑡

(𝜏)]
]︀

⏟ ⏞
B

𝑧<𝑡

+𝜏 · E
U,V

[︀
ΨU,V
𝑧<𝑡

]︀
⏟ ⏞

G
𝑧<𝑡

,

where in the second step we used Condition 4 to conclude that 𝜑U,V
𝑧<𝑡
≤ 1/4. Note that for

any transcript 𝑧<𝑡, Δ(𝑧<𝑡)
2 = EU,V[Ψ

U,V
𝑧<𝑡

] = G
𝑧<𝑡

, so by this and the fact that the likelihood

ratio between two distributions always integrates to 1,

E
𝑧<𝑡∼𝑝≤𝑡−1

0

[︂
1

Δ(𝑡−1)(𝑧<𝑡)
· G

𝑧<𝑡

]︂
= E

𝑧<𝑡∼𝑝≤𝑡−1
0

[Δ(𝑡−1)(𝑧<𝑡)] = 1. (11.34)

770

Recalling the definition of 𝑍𝑡 in Lemma 10.6.1, we conclude that

𝑍𝑡 ≤
1

4
E

𝑧<𝑡∼𝑝≤𝑡−1
0

[︂
1

Δ(𝑡−1)(𝑧<𝑡)
· B 𝑧<𝑡

]︂
+ 𝜏 · E

𝑧<𝑡∼𝑝≤𝑡−1
0

[︂
1

Δ(𝑡−1)(𝑧<𝑡)
· G

𝑧<𝑡

]︂
≤ 1

4
exp(𝑡𝜍2) E

𝑧<𝑡∼𝑝≤𝑡−1
0

[︁
B 𝑧<𝑡

]︁
+ 𝜏,

where the second step follows by Lemma 11.8.1 and (11.34).

To upper bound E𝑧<𝑡∼𝑝≤𝑡−1
0

[B 𝑧<𝑡
], apply Cauchy-Schwarz to get

E
𝑧<𝑡∼𝑝≤𝑡−1

0

[︁
B 𝑧<𝑡

]︁
≤ E

𝑧<𝑡∼𝑝≤𝑡−1
0 ,U,V

[︁(︀
ΨU,V
𝑧<𝑡

)︀2]︁1/2 · Pr
𝑧<𝑡∼𝑝≤𝑡−1

0 ,U,V

[︀
ℰU,V𝑧<𝑡

(𝜏)
]︀1/2

≤ exp(𝑂(𝑡𝜍2)) · 𝜉(𝜏),

where the second step follows by Lemma 11.4.6 and Lemma 11.8.2. Invoking Lemma 10.6.1

concludes the proof.

11.8.2 Proof of Fact 11.5.16

Proof. We may assume 𝑠 < 𝑚+𝑛 (otherwise obviously 𝑏 = 𝑛). Assume to the contrary that∑︀𝑏+1
𝑖=1 𝑣𝑖𝑑𝑖 ≤ 𝜀. We proceed by casework based on whether 𝑤𝑠′+1 = 𝑢𝑎+1 or 𝑤𝑠′+1 = 𝑣𝑏+1.

If 𝑤𝑠′+1 = 𝑢𝑎+1, then

3𝜀 <
𝑠+1∑︁
𝑖=1

𝑤𝑖𝑑
*
𝑖 =

𝑎+1∑︁
𝑖=1

𝑢𝑖 +
𝑏∑︁
𝑖=1

𝑣𝑖𝑑𝑖 ≤
𝑎+1∑︁
𝑖=1

𝑣𝑏+1 · 21−𝑖 +
𝑏∑︁
𝑖=1

𝑣𝑖 ≤ 2𝜀+
𝑏∑︁
𝑖=1

𝑣𝑖𝑑𝑖,

where in the first step we used maximality of 𝑠, in the third step we used that 𝑢𝑎+1 ≤ 𝑣𝑏+1

and that 𝑢𝑖+1 ≥ 2𝑢𝑖 for all 𝑖, and in the last step we used that 𝑣𝑏+1 ≤
∑︀𝑏+1

𝑖=1 𝑣𝑖𝑑𝑖 ≤ 𝜀. From

this we conclude that
∑︀𝑏

𝑖=1 𝑣𝑖𝑑𝑖 > 𝜀, a contradiction.

If 𝑤𝑠′+1 = 𝑣𝑏+1, the argument is nearly identical. We have

3𝜀 <
𝑠+1∑︁
𝑖=1

𝑤𝑖𝑑
*
𝑖 =

𝑎∑︁
𝑖=1

𝑢𝑖 +
𝑏+1∑︁
𝑖=1

𝑣𝑖𝑑𝑖 ≤
𝑎∑︁
𝑖=1

𝑣𝑏+1 · 21−𝑖 +
𝑏+1∑︁
𝑖=1

𝑣𝑖𝑑𝑖 ≤ 2𝜀+
𝑏+1∑︁
𝑖=1

𝑣𝑖,

where in the first step we again used maximality of 𝑠, in the third step we used that 𝑢𝑎 ≤ 𝑣𝑏+1

771

and 𝑢𝑖+1 ≥ 2𝑢𝑖 for all 𝑖, and in the last step we used that 𝑣𝑏+1 ≤
∑︀𝑏+1

𝑖=1 𝑣𝑖𝑑𝑖 ≤ 𝜀. From this

we conclude that
∑︀𝑏

𝑖=1 𝑣𝑖𝑑𝑖 > 𝜀, a contradiction.

772

Bibliography

[Abb73] Ernst Abbe. Beiträge zur theorie des mikroskops und der mikroskopischen
wahrnehmung. Archiv für mikroskopische Anatomie, 9(1):413–418, 1873. 28,
610, 663

[ABM19] Jason Altschuler, Victor-Emmanuel Brunel, and Alan Malek. Best arm iden-
tification for contaminated bandits. J. Mach. Learn. Res., 20(91):1–39, 2019.
342

[AC16] Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-
regret for both stochastic and adversarial bandits. In Conference on Learning
Theory, pages 116–120, 2016. 342

[ACBFS02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The
nonstochastic multiarmed bandit problem. SIAM journal on computing,
32(1):48–77, 2002. 67, 68, 341, 682, 691

[ACK14] Jayadev Acharya, Clément L Canonne, and Gautam Kamath. A chasm be-
tween identity and equivalence testing with conditional queries. arXiv preprint
arXiv:1411.7346, 2014. 685

[ADH+15] J. Acharya, I. Diakonikolas, C. Hegde, J. Li, and L. Schmidt. Fast and
Near-Optimal Algorithms for Approximating Distributions by Histograms.
In PODS, 2015. 229

[ADJ+11] Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, and
Shengjun Pan. Competitive closeness testing. In Proceedings of the 24th
Annual Conference on Learning Theory, pages 47–68. JMLR Workshop and
Conference Proceedings, 2011. 70, 718

[ADJ+12] Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun
Pan, and Ananda Suresh. Competitive classification and closeness testing. In
Conference on Learning Theory, pages 22–1. JMLR Workshop and Conference
Proceedings, 2012. 70, 718

[ADLS16] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Fast
algorithms for segmented regression. In International Conference on Machine
Learning, pages 2878–2886, 2016. 181

773

[ADLS17] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Sample-
optimal density estimation in nearly-linear time. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1278–
1289. SIAM, 2017. 46, 226, 227, 229, 235, 252, 253, 255, 291, 499, 503, 508,
516

[AGJ14] Anima Anandkumar, Rong Ge, and Majid Janzamin. Analyzing tensor power
method dynamics: Applications to learning overcomplete latent variable mod-
els. arXiv preprint arXiv:1411.1488, 2014. 98

[AGJ15] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Learning over-
complete latent variable models through tensor methods. In Conference on
Learning Theory, pages 36–112, 2015. 98

[AGKE15] Leandro Aolita, Christian Gogolin, Martin Kliesch, and Jens Eisert. Reliable
quantum certification of photonic state preparations. Nature communications,
6(1):1–8, 2015. 29, 684

[AGKS21] Pranjal Awasthi, Sreenivas Gollapudi, Kostas Kollias, and Apaar Sadhwani.
Online learning under adversarial corruptions, 2021. 342

[AGZ10] Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to
random matrices, volume 118. Cambridge university press, 2010. 93, 706, 722

[AH97] Carmen O Acuna and Joseph Horowitz. A statistical approach to the res-
olution of point sources. Journal of Applied Statistics, 24(4):421–436, 1997.
655

[Air35] George Biddell Airy. On the diffraction of an object-glass with circular aper-
ture. Transactions of the Cambridge Philosophical Society, 5:283, 1835. 28,
609, 658

[AK01] S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In Pro-
ceedings of the 33rd Symposium on Theory of Computing, pages 247–257,
2001. 51, 229, 617

[AK08] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adap-
tive routing. Journal of Computer and System Sciences, 74(1):97–114, 2008.
428, 455, 456

[AL99] N. Abe and Philip M. Long. Associative reinforcement learning using linear
probabilistic concepts. In ICML, 1999. 400

[ALPV12] Albert Ai, Alex Lapanowski, Yaniv Plan, and Roman Vershynin. One-
bit compressed sensing with non-gaussian measurements. arXiv preprint
arXiv:1208.6279, 2012. 102

774

[AM91] William Aiello and Milena Mihail. Learning the fourier spectrum of prob-
abilistic lists and trees. In Proceedings of the Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’91, page 291?299, USA, 1991.
Society for Industrial and Applied Mathematics. 56, 58, 412

[AM05] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distri-
butions. In Proceedings of the Eighteenth Annual Conference on Learning
Theory (COLT), pages 458–469, 2005. 51, 229, 617

[AMS09] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms
on matrix manifolds. Princeton University Press, 2009. 101, 109

[AN72] EA Ash and G Nicholls. Super-resolution aperture scanning microscope. Na-
ture, 237(5357):510, 1972. 658

[AN04] Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s
inequality. In Proceedings of the thirty-sixth annual ACM symposium on The-
ory of computing, pages 72–80. ACM, 2004. 279, 282

[Ans60] Frank J Anscombe. Rejection of outliers. Technometrics, 2(2):123–146, 1960.
229

[ANSV08] Koenraad MR Audenaert, Michael Nussbaum, Arleta Szkoła, and Frank Ver-
straete. Asymptotic error rates in quantum hypothesis testing. Communica-
tions in Mathematical Physics, 279(1):251–283, 2008. 684

[AOK09] Vladimir Al Osipov and Eugene Kanzieper. Statistics of thermal to shot
noise crossover in chaotic cavities. Journal of Physics A: Mathematical and
Theoretical, 42(47):475101, 2009. 683

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low local-
ity from random local one-way functions. In Proceedings of the Forty-Fourth
Annual ACM Symposium on Theory of Computing, STOC ’12, pages 805–816,
New York, NY, USA, 2012. Association for Computing Machinery. 182

[APVZ14] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning
sparse polynomial functions. In Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms, pages 500–510. SIAM, 2014. 95

[Aus19] Tim Austin. The structure of low-complexity gibbs measures on product
spaces. The Annals of Probability, 47(6):4002–4023, 2019. 51

[Aus20] Tim Austin. Multi-variate correlation and mixtures of product measures.
Kybernetika, 56(3):459–499, 2020. 51

[AW01] Katy S Azoury and Manfred K Warmuth. Relative loss bounds for on-line den-
sity estimation with the exponential family of distributions. Machine Learn-
ing, 43(3):211–246, 2001. 326, 343

775

[Axe81] Daniel Axelrod. Cell-substrate contacts illuminated by total internal reflection
fluorescence. The Journal of Cell Biology, 89(1):141–145, 1981. 658

[AZGL+18] Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Oliveira, and Avi Wigder-
son. Operator scaling via geodesically convex optimization, invariant theory
and polynomial identity testing. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 172–181, 2018. 101

[AZL16] Zeyuan Allen-Zhu and Yuanzhi Li. Lazysvd: Even faster svd decomposition
yet without agonizing pain. In Advances in Neural Information Processing
Systems, pages 974–982, 2016. 75

[AZLL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and general-
ization in overparameterized neural networks, going beyond two layers. In
Advances in neural information processing systems, pages 6158–6169, 2019.
34, 178, 179

[Bak11] Laurent Bako. Identification of switched linear systems via sparse optimiza-
tion. Automatica, 47(4):668–677, 2011. 502

[BB96] PW Brouwer and CWJ Beenakker. Diagrammatic method of integration over
the unitary group, with applications to quantum transport in mesoscopic sys-
tems. Journal of Mathematical Physics, 37(10):4904–4934, 1996. 683

[BB00] Ya M Blanter and Markus Büttiker. Shot noise in mesoscopic conductors.
Physics reports, 336(1-2):1–166, 2000. 683

[BB16] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing
monotonicity. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pages 1021–1032, 2016. 685

[BB+18] Dmitry Babichev, Francis Bach, et al. Slice inverse regression with score
functions. Electronic Journal of Statistics, 12(1):1507–1543, 2018. 33, 102,
104, 181

[BBBB72] Richard E Barlow, David J Bartholomew, James M Bremner, and H Daniel
Brunk. Statistical inference under order restrictions: The theory and appli-
cation of isotonic regression. Technical report, Wiley New York, 1972. 228

[BBM+05] Peter L Bartlett, Olivier Bousquet, Shahar Mendelson, et al. Local
rademacher complexities. The Annals of Statistics, 33(4):1497–1537, 2005.
373

[BC09] Stephen M Barnett and Sarah Croke. Quantum state discrimination. Ad-
vances in Optics and Photonics, 1(2):238–278, 2009. 684

[BC18] Rishiraj Bhattacharyya and Sourav Chakraborty. Property testing of joint
distributions using conditional samples. ACM Transactions on Computation
Theory (TOCT), 10(4):1–20, 2018. 685

776

[BCB12] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends® in
Machine Learning, 5(1):1–122, 2012. 68, 682, 691

[BCBL13] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with
heavy tail. IEEE Transactions on Information Theory, 59(11):7711–7717,
2013. 342

[BCE06] Radu Balan, Pete Casazza, and Dan Edidin. On signal reconstruction without
phase. Applied and Computational Harmonic Analysis, 20(3):345–356, 2006.
53, 497

[BCG19] Eric Blais, Clément L Canonne, and Tom Gur. Distribution testing lower
bounds via reductions from communication complexity. ACM Transactions
on Computation Theory (TOCT), 11(2):1–37, 2019. 718

[BCP+17] Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S Pallavoor,
Sofya Raskhodnikova, and C Seshadhri. Optimal unateness testers for real-
valued functions: Adaptivity helps. arXiv preprint arXiv:1703.05199, 2017.
685

[BDJ+20] Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K.
Kothari, and Santosh S. Vempala. Robustly learning mixtures of k arbitrary
gaussians. CoRR, abs/2012.02119, 2020. 39, 57

[BDLS17] Sivaraman Balakrishnan, Simon S Du, Jerry Li, and Aarti Singh. Computa-
tionally efficient robust sparse estimation in high dimensions. In Conference
on Learning Theory, pages 169–212, 2017. 229

[Bee97] Carlo WJ Beenakker. Random-matrix theory of quantum transport. Reviews
of modern physics, 69(3):731, 1997. 683

[BEH07] Stefan Bretschneider, Christian Eggeling, and Stefan W Hell. Breaking the
diffraction barrier in fluorescence microscopy by optical shelving. Physical
Review Letters, 98(21):218103, 2007. 658

[Bel18] Aleksandrs Belovs. Adaptive lower bound for testing monotonicity on the
line. arXiv preprint arXiv:1801.08709, 2018. 685

[BEMGS17] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
Machine learning with adversaries: Byzantine tolerant gradient descent. In
Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, pages 118–128, 2017. 26

[Ben03] V Bentkus. An inequality for tail probabilities of martingales with differences
bounded from one side. Journal of Theoretical Probability, 16(1):161–173,
2003. 84, 85, 152

777

[BEZ+97] LCEO Brand, C Eggeling, C Zander, KH Drexhage, and CAM Seidel. Single-
molecule identification of coumarin-120 by time-resolved fluorescence detec-
tion: Comparison of one-and two-photon excitation in solution. The Journal
of Physical Chemistry A, 101(24):4313–4321, 1997. 658

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Man-
sour, and Steven Rudich. Weakly learning dnf and characterizing statistical
query learning using fourier analysis. In Proceedings of the twenty-sixth an-
nual ACM symposium on Theory of computing, pages 253–262. ACM, 1994.
413, 444, 495

[BFKV98] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. A polynomial-
time algorithm for learning noisy linear threshold functions. Algorithmica,
22(1):35–52, 1998. 25

[BG17] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for
a convnet with gaussian inputs. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 605–614, 2017. 34, 178

[BG18] Sébastien Bubeck and Shirshendu Ganguly. Entropic clt and phase transition
in high-dimensional wishart matrices. International Mathematics Research
Notices, 2018(2):588–606, 2018. 68

[Bir40] Garrett Birkhoff. Lattice theory, volume 25. American Mathematical Soc.,
1940. 196

[Bir87a] L. Birgé. Estimating a density under order restrictions: Nonasymptotic min-
imax risk. Annals of Statistics, 15(3):995–1012, 1987. 228

[Bir87b] L. Birgé. On the risk of histograms for estimating decreasing densities. Annals
of Statistics, 15(3):1013–1022, 1987. 228

[BJK78] Gilbert Bassett Jr and Roger Koenker. Asymptotic theory of least absolute
error regression. Journal of the American Statistical Association, 73(363):618–
622, 1978. 340

[BJK15] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard
thresholding. In Advances in Neural Information Processing Systems, pages
721–729, 2015. 41, 341

[BJKK17] Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushottam
Kar. Consistent robust regression. In Advances in Neural Information Pro-
cessing Systems, pages 2110–2119, 2017. 41, 341

[BJW18] Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning
two layer rectified neural networks in polynomial time. arXiv preprint
arXiv:1811.01885, 2018. 34, 36, 102, 178, 179

778

[BK94] AL Blum and Ravi Kannan. Learning an intersection of k halfspaces over
a uniform distribution. In Theoretical Advances in Neural Computation and
Learning, pages 337–356. Springer, 1994. 181

[BK20] Ainesh Bakshi and Pravesh Kothari. Outlier-robust clustering of non-spherical
mixtures. arXiv preprint arXiv:2005.02970, 2020. 39, 325

[BKS14] Boaz Barak, Jonathan A Kelner, and David Steurer. Rounding sum-of-squares
relaxations. In Proceedings of the forty-sixth annual ACM symposium on
Theory of computing, pages 31–40, 2014. 90

[Blu92] Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Informa-
tion Processing Letters, 42(4):183–185, 1992. 408, 412

[BNR10] Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification
and tracking of subspaces from highly incomplete information. In 2010 48th
Annual allerton conference on communication, control, and computing (Aller-
ton), pages 704–711. IEEE, 2010. 101, 102

[Bos57] Roger Joseph Boscovich. De litteraria expeditione per pontificiam ditionem,
et synopsis amplioris operis, ac habentur plura ejus ex exemplaria etiam sen-
sorum impessa. Bononiensi Scientiarum et Artum Instuto Atque Academia
Commentarii, 4:353–396, 1757. 41, 332

[Bou14] Nicolas Boumal. Optimization and estimation on manifolds. PhD thesis,
Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2014. 101

[BOW19] Costin Bădescu, Ryan O’Donnell, and John Wright. Quantum state certifica-
tion. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 503–514, 2019. 66, 680, 684

[BP20] Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates
in polynomial time. arXiv preprint arXiv:2007.01394, 2020. 41, 47, 325, 339,
340

[BPS+06] Eric Betzig, George H Patterson, Rachid Sougrat, O Wolf Lindwasser, Scott
Olenych, Juan S Bonifacino, Michael W Davidson, Jennifer Lippincott-
Schwartz, and Harald F Hess. Imaging intracellular fluorescent proteins at
nanometer resolution. Science, 313(5793):1642–1645, 2006. 658

[BR89] Avrim Blum and Ronald L Rivest. Training a 3-node neural network is np-
complete. In Advances in neural information processing systems, pages 494–
501, 1989. 25, 180

[BR19] Djallel Bouneffouf and Irina Rish. A survey on practical applications of multi-
armed and contextual bandits. arXiv preprint arXiv:1904.10040, 2019. 347

779

[Bri12] David R Brillinger. A generalized linear model with “gaussian” regressor vari-
ables. In Selected Works of David Brillinger, pages 589–606. Springer, 2012.
33, 36, 101, 180

[BRST21] Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang. Continuous lwe.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 694–707, 2021. 60

[Bru55] Hugh D Brunk. Maximum likelihood estimates of monotone parameters. The
Annals of Mathematical Statistics, pages 607–616, 1955. 226

[Bru58] H. D. Brunk. On the estimation of parameters restricted by inequalities. The
Annals of Mathematical Statistics, 29(2):pp. 437–454, 1958. 229

[BRW09] F. Balabdaoui, K. Rufibach, and J. A. Wellner. Limit distribution theory
for maximum likelihood estimation of a log-concave density. The Annals of
Statistics, 37(3):pp. 1299–1331, 2009. 229

[BS12] Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochas-
tic and adversarial bandits. In Conference on Learning Theory, pages 42–1,
2012. 342

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward
optimal algorithms. arXiv preprint arXiv:1404.5236, 2014. 87

[BS15] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution fami-
lies. SIAM Journal on Computing, 44(4):889–911, 2015. 51, 617

[BT03] Brendan O Bradley and Murad S Taqqu. Financial risk and heavy tails. In
Handbook of heavy tailed distributions in finance, pages 35–103. Elsevier, 2003.
27

[Bub14] Sébastien Bubeck. Convex optimization: Algorithms and complexity. arXiv
preprint arXiv:1405.4980, 2014. 355, 389

[Bux37] A Buxton. Xli. note on optical resolution. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 23(154):440–442, 1937. 610,
665

[BV08] S Charles Brubaker and Santosh S Vempala. Isotropic pca and affine-invariant
clustering. In Building Bridges, pages 241–281. Springer, 2008. 51, 617

[BVDDD+99] E Bettens, D Van Dyck, AJ Den Dekker, J Sijbers, and A Van den Bos.
Model-based two-object resolution from observations having counting statis-
tics. Ultramicroscopy, 77(1-2):37–48, 1999. 655

[BW07] F. Balabdaoui and J. A. Wellner. Estimation of a 𝑘-monotone density: Limit
distribution theory and the spline connection. The Annals of Statistics,
35(6):pp. 2536–2564, 2007. 229

780

[BW10] F. Balabdaoui and J. A. Wellner. Estimation of a 𝑘-monotone density: char-
acterizations, consistency and minimax lower bounds. Statistica Neerlandica,
64(1):45–70, 2010. 229

[BW13] Max Born and Emil Wolf. Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light. Elsevier, 2013. 666

[BWY17] Sivaraman Balakrishnan, Martin J Wainwright, and Bin Yu. Statistical guar-
antees for the EM algorithm: From population to sample-based analysis. The
Annals of Statistics, 45(1):77–120, 2017. 53, 497, 501

[Byl94] Tom Bylander. Learning linear threshold functions in the presence of classi-
fication noise. In Proceedings of the seventh annual conference on Computa-
tional learning theory, pages 340–347, 1994. 25

[Can20] Clément L Canonne. A survey on distribution testing: Your data is big. but
is it blue? Theory of Computing, pages 1–100, 2020. 64, 685

[CAT+20] Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I Jordan,
Nicolas Flammarion, and Peter L Bartlett. Optimal robust linear regression
in nearly linear time. arXiv preprint arXiv:2007.08137, 2020. 41, 47, 325,
329, 339

[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.
Cambridge university press, 2006. 325, 343

[CCLM17] Emanuel Carneiro, Vorrapan Chandee, Friedrich Littmann, and Micah B Mili-
novich. Hilbert spaces and the pair correlation of zeros of the riemann zeta-
function. Journal für die reine und angewandte Mathematik (Crelles Journal),
2017(725):143–182, 2017. 63, 615, 641, 644

[CDGR18] Clément L Canonne, Ilias Diakonikolas, Themis Gouleakis, and Ronitt Rubin-
feld. Testing shape restrictions of discrete distributions. Theory of Computing
Systems, 62(1):4–62, 2018. 683

[CDGS20] Yu Cheng, Ilias Diakonikolas, Rong Ge, and Mahdi Soltanolkotabi. High-
dimensional robust mean estimation via gradient descent. In International
Conference on Machine Learning, pages 1768–1778. PMLR, 2020. 45

[CDKS18] Yu Cheng, Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Robust
learning of fixed-structure bayesian networks. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 2018. 39

[CDS10] Giulio Chiribella, Giacomo Mauro D’Ariano, and Dirk Schlingemann.
Barycentric decomposition of quantum measurements in finite dimensions.
Journal of mathematical physics, 51(2):022111, 2010. 91

781

[CDSS13] Siu-On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xiaorui Sun. Learn-
ing mixtures of structured distributions over discrete domains. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms,
pages 1380–1394. Society for Industrial and Applied Mathematics, 2013. 226,
227, 229

[CDSS14a] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Near-optimal density
estimation in near-linear time using variable-width histograms. In NIPS, pages
1844–1852, 2014. 229

[CDSS14b] Siu-On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xiaorui Sun. Efficient
density estimation via piecewise polynomial approximation. In Proceedings of
the forty-sixth annual ACM symposium on Theory of computing, pages 604–
613. ACM, 2014. 226, 227, 229, 499, 503, 508

[CDVV14] Siu-On Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal
algorithms for testing closeness of discrete distributions. In Proceedings of
the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1193–1203. SIAM, 2014. 683

[CEHV15] Aldo Conca, Dan Edidin, Milena Hering, and Cynthia Vinzant. An algebraic
characterization of injectivity in phase retrieval. Applied and Computational
Harmonic Analysis, 38(2):346–356, 2015. 33, 96, 98, 102

[CFG13] Emmanuel J Candès and Carlos Fernandez-Granda. Super-resolution from
noisy data. Journal of Fourier Analysis and Applications, 19(6):1229–1254,
2013. 617

[CFG14] Emmanuel J Candès and Carlos Fernandez-Granda. Towards a mathematical
theory of super-resolution. Communications on pure and applied Mathematics,
67(6):906–956, 2014. 617

[CFGM16] Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah.
On the power of conditional samples in distribution testing. SIAM Journal
on Computing, 45(4):1261–1296, 2016. 685

[CGB+11] Chao Chen, Kay Grennan, Judith Badner, Dandan Zhang, Elliot Gershon,
Li Jin, and Chunyu Liu. Removing batch effects in analysis of expression
microarray data: an evaluation of six batch adjustment methods. PloS one,
6(2):e17238, 2011. 28

[Che00] Anthony Chefles. Quantum state discrimination. Contemporary Physics,
41(6):401–424, 2000. 684

[Chi20] Geoffrey Chinot. Erm and rerm are optimal estimators for regression problems
when malicious outliers corrupt the labels, 2020. 41, 340, 343

782

[CHRZ07] Kamalika Chaudhuri, Eran Halperin, Satish Rao, and Shuheng Zhou. A rig-
orous analysis of population stratification with limited data. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1046–1055. Society for Industrial and Applied Mathematics, 2007. 28, 51

[CK20] Michael Chmielewski and Sarah C Kucker. An mturk crisis? shifts in data
quality and the impact on study results. Social Psychological and Personality
Science, 11(4):464–473, 2020. 26

[CKMY20] Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Classification
under misspecification: Halfspaces, generalized linear models, and connections
to evolvability. arXiv preprint arXiv:2006.04787, 2020. 341

[CKPS16] Xue Chen, Daniel M Kane, Eric Price, and Zhao Song. Fourier-sparse interpo-
lation without a frequency gap. In Foundations of Computer Science (FOCS),
2016 IEEE 57th Annual Symposium on, pages 741–750. IEEE, 2016. 503

[CL13] Arun Tejasvi Chaganty and Percy Liang. Spectral experts for estimating mix-
tures of linear regressions. In International Conference on Machine Learning,
pages 1040–1048, 2013. 53, 497, 498, 501

[CLL+17] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv
preprint arXiv:1712.05526, 2017. 26

[CLS15] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval
via wirtinger flow: Theory and algorithms. IEEE Transactions on Information
Theory, 61(4):1985–2007, 2015. 33, 36, 96, 98, 102, 106, 107

[CM20] Sitan Chen and Raghu Meka. Learning polynomials of few relevant dimen-
sions. In Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual
Event [Graz, Austria], pages 1161–1227. PMLR, 2020. 219

[Col03] Benoît Collins. Moments and cumulants of polynomial random variables on
unitarygroups, the itzykson-zuber integral, and free probability. International
Mathematics Research Notices, 2003(17):953–982, 2003. 707

[CR14] Richard Cole and Tim Roughgarden. The sample complexity of revenue maxi-
mization. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing, pages 243–252. ACM, 2014. 229

[CRS14] Clément Canonne, Dana Ron, and Rocco A Servedio. Testing equivalence
between distributions using conditional samples. In Proceedings of the twenty-
fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1174–1192.
SIAM, 2014. 685

[CRS15] Clément L Canonne, Dana Ron, and Rocco A Servedio. Testing probabil-
ity distributions using conditional samples. SIAM Journal on Computing,
44(3):540–616, 2015. 685

783

[CSV13] Emmanuel J Candes, Thomas Strohmer, and Vladislav Voroninski. Phaselift:
Exact and stable signal recovery from magnitude measurements via con-
vex programming. Communications on Pure and Applied Mathematics,
66(8):1241–1274, 2013. 33, 53, 96, 98, 102, 497, 503

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from un-
trusted data. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 47–60. ACM, 2017. 227, 229, 291, 325, 502

[CT04] K.S. Chan and H. Tong. Testing for multimodality with dependent data.
Biometrika, 91(1):113–123, 2004. 229

[CW20] Jordan Cotler and Frank Wilczek. Quantum overlapping tomography. Phys-
ical Review Letters, 124(10):100401, 2020. 680

[CWO16] Jerry Chao, E Sally Ward, and Raimund J Ober. Fisher information theory
for parameter estimation in single molecule microscopy: tutorial. JOSA A,
33(7):B36–B57, 2016. 655, 656

[CWX17a] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: new
lower bounds for testing monotonicity and unateness. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, pages 523–
536, 2017. 685

[CWX17b] Xi Chen, Erik Waingarten, and Jinyu Xie. Boolean unateness testing with̃︀𝑂(𝑛3/4) adaptive queries. In 2017 IEEE 58th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 868–879. IEEE, 2017. 685

[CYC13] Yudong Chen, Xinyang Yi, and Constantine Caramanis. A convex formulation
for mixed regression with two components: Minimax optimal rates. arXiv
preprint arXiv:1312.7006, 2013. 53, 497, 501

[Dan16] Amit Daniely. Complexity theoretic limitations on learning halfspaces. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Com-
puting, pages 105–117, 2016. 25

[Dan17] Amit Daniely. Sgd learns the conjugate kernel class of the network. CoRR,
abs/1702.08503, 2017. 178

[Das99] Sanjoy Dasgupta. Learning mixtures of gaussians. In 40th Annual Symposium
on Foundations of Computer Science, pages 634–644. IEEE, 1999. 51, 229,
617

[Daw67] William Rutter Dawes. Catalogue of micrometrical measurements of double
stars. Royal Astronomical Society, 1867. 666

[DD96] Arnold J Den Dekker. Model-based optical resolution. In Quality Measure-
ment: The Indispensable Bridge between Theory and Reality (No Measure-
ments? No Science!) Joint Conference-1996: IEEE Instrumentation and

784

Measurement Technology Conference and IMEKO Tec, volume 1, pages 441–
446. IEEE, 1996. 655

[DDKT16] Constantinos Daskalakis, Anindya De, Gautam Kamath, and Christos
Tzamos. A size-free clt for poisson multinomials and its applications. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Com-
puting, pages 1074–1086. ACM, 2016. 229

[DDO+13] C. Daskalakis, I. Diakonikolas, R. O’Donnell, R.A. Servedio, and L. Tan.
Learning Sums of Independent Integer Random Variables. In FOCS, pages
217–226, 2013. 229

[DDS12a] C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning 𝑘-modal distri-
butions via testing. In SODA, pages 1371–1385, 2012. 229

[DDS12b] C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning Poisson Binomial
Distributions. In STOC, pages 709–728, 2012. 229

[DDS14] Anindya De, Ilias Diakonikolas, and Rocco A Servedio. Learning from sat-
isfying assignments. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 478–497. SIAM, 2014. 412

[DDVdB97] Arnold Jan Den Dekker and A Van den Bos. Resolution: a survey. JOSA A,
14(3):547–557, 1997. 665, 668, 670

[Den98] François Denis. Pac learning from positive statistical queries. In International
Conference on Algorithmic Learning Theory, pages 112–126. Springer, 1998.
412

[DF52] G Toraldo Di Francia. Super-gain antennas and optical resolving power. Il
Nuovo Cimento (1943-1954), 9:426–438, 1952. 658

[DF55] G Toraldo Di Francia. Resolving power and information. Josa, 45(7):497–501,
1955. 611, 669, 672

[DGK+20] Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and
Mahdi Soltanolkotabi. Approximation schemes for relu regression. In Confer-
ence on Learning Theory, 2020. 34, 178, 179

[DGT19] Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. Distribution-
independent pac learning of halfspaces with massart noise. In Advances in
Neural Information Processing Systems, pages 4749–4760, 2019. 341

[DGZ12] Vacha Dave, Saikat Guha, and Yin Zhang. Measuring and fingerprinting click-
spam in ad networks. In Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer com-
munication, pages 175–186, 2012. 27

785

[DH18] Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian
space. In Conference On Learning Theory, pages 1887–1930, 2018. 33, 97,
101, 102, 180

[DHKK20] Ilias Diakonikolas, Samuel B Hopkins, Daniel Kane, and Sushrut Karmalkar.
Robustly learning any clusterable mixture of gaussians. arXiv preprint
arXiv:2005.06417, 2020. 39, 325

[DHL19] Yihe Dong, Samuel Hopkins, and Jerry Li. Quantum entropy scoring for
fast robust mean estimation and improved outlier detection. In Advances in
Neural Information Processing Systems, pages 6065–6075, 2019. 279

[Dia16] Ilias Diakonikolas. Learning structured distributions. Handbook of Big Data,
267, 2016. 229, 235, 503

[DJ98] D. L. Donoho and I. M. Johnstone. Minimax estimation via wavelet shrinkage.
Ann. Statist., 26(3):879–921, 1998. 229

[DJKP95] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet
shrinkage: asymptopia. Journal of the Royal Statistical Society, Ser. B, pages
371–394, 1995. 229

[DJKP96] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Density
estimation by wavelet thresholding. Ann. Statist., 24(2):508–539, 1996. 229

[DJS08] Arnak S Dalalyan, Anatoly Juditsky, and Vladimir Spokoiny. A new algorithm
for estimating the effective dimension-reduction subspace. Journal of Machine
Learning Research, 9(Aug):1647–1678, 2008. 33, 102

[DK16] Ilias Diakonikolas and Daniel M Kane. A new approach for testing properties
of discrete distributions. In 2016 IEEE 57th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 685–694. IEEE, 2016. 718, 724,
755

[DK19] Ilias Diakonikolas and Daniel M Kane. Recent advances in algorithmic high-
dimensional robust statistics. arXiv preprint arXiv:1911.05911, 2019. 339

[DK20] Ilias Diakonikolas and Daniel M. Kane. Small covers for near-zero sets of
polynomials and learning latent variable models. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 184–195,
2020. 34, 36, 61, 176, 178

[DKK+17] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra,
and Alistair Stewart. Being robust (in high dimensions) can be practical.
In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 999–1008. JMLR. org, 2017. 101, 227, 229, 279, 325

786

[DKK+18] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra,
and Alistair Stewart. Robustly learning a gaussian: Getting optimal error, ef-
ficiently. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2683–2702. SIAM, 2018. 345

[DKK+19a] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra,
and Alistair Stewart. Robust estimators in high-dimensions without the com-
putational intractability. SIAM Journal on Computing, 48(2):742–864, 2019.
39, 43, 45, 101, 227, 229, 231, 279, 325

[DKK+19b] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt,
and Alistair Stewart. Sever: A robust meta-algorithm for stochastic optimiza-
tion. In International Conference on Machine Learning, pages 1596–1606,
2019. 101, 279, 325, 339

[DKK+20] Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, and
Nikos Zarifis. A polynomial time algorithm for learning halfspaces with tsy-
bakov noise. arXiv preprint arXiv:2010.01705, 2020. 341

[DKKZ20] Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis. Algo-
rithms and sq lower bounds for pac learning one-hidden-layer relu networks.
In Conference on Learning Theory, pages 1514–1539, 2020. 22, 36, 37, 39,
178, 179, 180, 181

[DKN14] Ilias Diakonikolas, Daniel M Kane, and Vladimir Nikishkin. Testing identity
of structured distributions. In Proceedings of the twenty-sixth annual ACM-
SIAM symposium on Discrete algorithms, pages 1841–1854. SIAM, 2014. 683

[DKS16a] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. The fourier trans-
form of poisson multinomial distributions and its algorithmic applications. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Com-
puting, pages 1060–1073. ACM, 2016. 229, 503

[DKS16b] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Optimal learning
via the fourier transform for sums of independent integer random variables.
In Conference on Learning Theory, pages 831–849, 2016. 229, 503

[DKS16c] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Properly learning
poisson binomial distributions in almost polynomial time. In Conference on
Learning Theory, pages 850–878, 2016. 229, 503

[DKS17] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query
lower bounds for robust estimation of high-dimensional gaussians and gaussian
mixtures. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 73–84. IEEE, 2017. 57, 60, 413, 426, 445, 677

[DKS18a] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learning geometric
concepts with nasty noise. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1061–1073, 2018. 102

787

[DKS18b] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable ro-
bust mean estimation and learning mixtures of spherical gaussians. In Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1047–1060, 2018. 51, 57, 227, 231, 617

[DKS19] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms
and lower bounds for robust linear regression. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2745–2754.
SIAM, 2019. 339

[DKSS21] Ilias Diakonikolas, Daniel M Kane, Alistair Stewart, and Yuxin Sun. Outlier-
robust learning of ising models under dobrushin’s condition. arXiv preprint
arXiv:2102.02171, 2021. 39

[DKTZ20] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis.
Learning halfspaces with massart noise under structured distributions. arXiv
preprint arXiv:2002.05632, 2020. 341

[DL01] Luc Devroye and Gábor Lugosi. Combinatorial Methods in Density Estima-
tion. Springer Science & Business Media, 2001. 228, 252, 453, 466

[DLT18] Simon S Du, Jason D Lee, and Yuandong Tian. When is a convolutional filter
easy to learn? In 6th International Conference on Learning Representations,
ICLR 2018, 2018. 34, 178

[DMN19] Anindya De, Elchanan Mossel, and Joe Neeman. Is your function low di-
mensional? In Conference on Learning Theory, pages 979–993, 2019. 102,
180

[DMN20] Anindya De, Elchanan Mossel, and Joe Neeman. Robust testing of low-
dimensional functions. arXiv preprint arXiv:2004.11642, 2020. 180

[dNS20] Tommaso d’Orsi, Gleb Novikov, and David Steurer. Regress consistently when
oblivious outliers overwhelm, 2020. 340

[Don92] David L Donoho. Superresolution via sparsity constraints. SIAM journal on
mathematical analysis, 23(5):1309–1331, 1992. 62, 617

[DR09] L. Dumbgen and K. Rufibach. Maximum likelihood estimation of a log-
concave density and its distribution function: Basic properties and uniform
consistency. Bernoulli, 15(1):40–68, 2009. 229

[DS79] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation
of observer error-rates using the em algorithm. Applied statistics, pages 20–28,
1979. 51

[DS89] David L Donoho and Philip B Stark. Uncertainty principles and signal recov-
ery. SIAM Journal on Applied Mathematics, 49(3):906–931, 1989. 617

788

[DS00] S. Dasgupta and L. Schulman. A two-round variant of EM for Gaussian
mixtures. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, pages 143–151, 2000. 51, 229, 617

[dSLCP11] Marcus P da Silva, Olivier Landon-Cardinal, and David Poulin. Practical
characterization of quantum devices without tomography. Physical Review
Letters, 107(21):210404, 2011. 29, 684

[DT19] Arnak Dalalyan and Philip Thompson. Outlier-robust estimation of a sparse
linear model using l1-penalized huber’s m-estimator. In Advances in Neural
Information Processing Systems, pages 13188–13198, 2019. 41, 340

[Dur19] Rick Durrett. Probability: theory and examples, volume 49. Cambridge uni-
versity press, 2019. 80

[DV89] Richard D De Veaux. Mixtures of linear regressions. Computational Statistics
& Data Analysis, 8(3):227–245, 1989. 501

[DV20] Amit Daniely and Gal Vardi. Hardness of learning neural networks with
natural weights. arXiv preprint arXiv:2006.03177, 2020. 180

[DV21] Amit Daniely and Gal Vardi. From local pseudorandom generators to hardness
of learning. arXiv preprint arXiv:2101.08303, 2021. 182

[DWSD15] Justin Demmerle, Eva Wegel, Lothar Schermelleh, and Ian M Dobbie. As-
sessing resolution in super-resolution imaging. Methods, 88:3–10, 2015. 658,
665, 669, 671

[DZM+14] Hendrik Deschout, Francesca Cella Zanacchi, Michael Mlodzianoski, Alberto
Diaspro, Joerg Bewersdorf, Samuel T Hess, and Kevin Braeckmans. Precisely
and accurately localizing single emitters in fluorescence microscopy. Nature
Methods, 11(3):253, 2014. 656

[EAS98] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algo-
rithms with orthogonality constraints. SIAM journal on Matrix Analysis and
Applications, 20(2):303–353, 1998. 101, 127

[EG18] Ronen Eldan and Renan Gross. Decomposition of mean-field gibbs distribu-
tions into product measures. Electronic Journal of Probability, 23:1–24, 2018.
51

[EH89] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from ran-
dom examples. Information and Computation, 82(3):231–246, 1989. 408, 412

[EV13] Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algorithm,
theory, and applications. IEEE transactions on pattern analysis and machine
intelligence, 35(11):2765–2781, 2013. 502, 503

789

[Fal67] Oscar Falconi. Limits to which double lines, double stars, and disks can be
resolved and measured. JOSA, 57(8):987–993, 1967. 612, 656

[Far66] Edward J Farrell. Information content of photoelectric star images. JOSA,
56(5):578–587, 1966. 655

[FB81] Martin A Fischler and Robert C Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395, 1981. 502

[FB12] Eric D Feigelson and G Jogesh Babu. Modern statistical methods for astron-
omy: with R applications. Cambridge University Press, 2012. 656

[FG13] Carlos Fernandez-Granda. Support detection in super-resolution. arXiv
preprint arXiv:1302.3921, 2013. 617

[FG16] Carlos Fernandez-Granda. Super-resolution of point sources via convex pro-
gramming. Information and Inference: A Journal of the IMA, 5(3):251–303,
2016. 617

[FGLE12] Steven T Flammia, David Gross, Yi-Kai Liu, and Jens Eisert. Quantum
tomography via compressed sensing: error bounds, sample complexity and
efficient estimators. New Journal of Physics, 14(9):095022, 2012. 684

[FGR+17] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S Vempala, and Ying
Xiao. Statistical algorithms and a lower bound for detecting planted cliques.
Journal of the ACM (JACM), 64(2):8, 2017. 443, 444

[FL11] Steven T Flammia and Yi-Kai Liu. Direct fidelity estimation from few pauli
measurements. Physical review letters, 106(23):230501, 2011. 684

[FLS11] Richard P Feynman, Robert B Leighton, and Matthew Sands. The Feynman
lectures on physics, Vol. I: The new millennium edition: mainly mechanics,
radiation, and heat, volume 1. Basic books, 2011. 610, 667

[FM99] Yoav Freund and Yishay Mansour. Estimating a mixture of two product dis-
tributions. In Proceedings of the twelfth annual conference on Computational
learning theory, pages 53–62. ACM, 1999. 408

[FN71] D Kh Fuk and Sergey V Nagaev. Probability inequalities for sums of indepen-
dent random variables. Theory of Probability & Its Applications, 16(4):643–
660, 1971. 349

[FOS05] J. Feldman, R. O’Donnell, and R. Servedio. Learning mixtures of product
distributions over discrete domains. In FOCS 2005, pages 501–510, 2005. 59,
229, 408, 413, 415, 445, 454, 464

[Fou97] A.-L. Fougères. Estimation de densités unimodales. Canadian Journal of
Statistics, 25:375–387, 1997. 229

790

[Fow89] Grant R Fowles. Introduction to Modern Optics. Courier Corporation, 1989.
658

[FR20] Dylan J Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient
contextual bandits with regression oracles. arXiv preprint arXiv:2002.04926,
2020. 331, 333, 342, 347, 348, 375, 395, 400, 401, 403

[FS10] Susana Faria and Gilda Soromenho. Fitting mixtures of linear regressions.
Journal of Statistical Computation and Simulation, 80(2):201–225, 2010. 53,
497, 501

[GGI+02] Anna C Gilbert, Sudipto Guha, Piotr Indyk, Shanmugavelayutham Muthukr-
ishnan, and Martin Strauss. Near-optimal sparse fourier representations via
sampling. In Proceedings of the thiry-fourth annual ACM symposium on The-
ory of computing, pages 152–161, 2002. 617

[GGJ+20] Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam
Klivans. Superpolynomial lower bounds for learning one-layer neural networks
using gradient descent. arXiv preprint arXiv:2006.12011, 2020. 22, 36, 37,
39, 179, 180, 181

[GHK15] Rong Ge, Qingqing Huang, and Sham M Kakade. Learning mixtures of gaus-
sians in high dimensions. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 761–770, 2015. 51, 617

[GIIS14] Anna C Gilbert, Piotr Indyk, Mark Iwen, and Ludwig Schmidt. Recent de-
velopments in the sparse fourier transform: A compressed fourier transform
for big data. IEEE Signal Processing Magazine, 31(5):91–100, 2014. 617

[GK19] Surbhi Goel and Adam R Klivans. Learning neural networks with two non-
linear layers in polynomial time. In Conference on Learning Theory, pages
1470–1499, 2019. 34, 102, 178

[GKK19] Surbhi Goel, Sushrut Karmalkar, and Adam Klivans. Time/accuracy tradeoffs
for learning a relu with respect to gaussian marginals. In Advances in Neural
Information Processing Systems, pages 8584–8593, 2019. 180

[GKKT17] Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably
learning the relu in polynomial time. In Conference on Learning Theory,
pages 1004–1042. PMLR, 2017. 34, 102, 178, 179, 180

[GKLW18] Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer
neural networks with symmetric inputs. arXiv preprint arXiv:1810.06793,
2018. 34, 102, 178, 179

[GKM18] Surbhi Goel, Adam R. Klivans, and Raghu Meka. Learning one convolutional
layer with overlapping patches. In Jennifer G. Dy and Andreas Krause 0001,
editors, ICML, volume 80 of Proceedings of Machine Learning Research, pages
1778–1786. PMLR, 2018. 34, 178

791

[GKT19] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for
stochastic bandits with adversarial corruptions. In Conference on Learning
Theory, pages 1562–1578, 2019. 342

[GLM17] Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural
networks with landscape design. arXiv preprint arXiv:1711.00501, 2017. 34,
102, 178, 179

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197,
Jun 1981. 89

[GM15] Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using
sum-of-squares algorithms. In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015. 98

[GMOV18] Weihao Gao, Ashok Vardhan Makkuva, Sewoong Oh, and Pramod Viswanath.
Learning one-hidden-layer neural networks under general input distributions.
CoRR, abs/1810.04133, 2018. 34, 178

[GMS05] Anna C Gilbert, Shan Muthukrishnan, and Martin Strauss. Improved time
bounds for near-optimal sparse fourier representations. In Wavelets XI, vol-
ume 5914, page 59141A. International Society for Optics and Photonics, 2005.
617

[GNJN13] Sivakant Gopi, Praneeth Netrapalli, Prateek Jain, and Aditya Nori. One-bit
compressed sensing: Provable support and vector recovery. In International
Conference on Machine Learning, pages 154–162, 2013. 102

[Gol17] Oded Goldreich. Introduction to property testing. Cambridge University Press,
2017. 685

[Gon18] Felipe Gonçalves. A note on band-limited minorants of an euclidean ball.
Proceedings of the American Mathematical Society, 146(5):2063–2068, 2018.
63, 615, 641, 644

[Goo05] Joseph W Goodman. Introduction to Fourier Optics. Roberts and Company
Publishers, 2005. 658

[Goo15] Joseph W Goodman. Statistical optics. John Wiley & Sons, 2015. 657,
658, 671

[Gre56] U. Grenander. On the theory of mortality measurement. Skand. Aktuarietid-
skr., 39:125–153, 1956. 228

[Gro85] P. Groeneboom. Estimating a monotone density. In Proc. of the Berkeley
Conference in Honor of Jerzy Neyman and Jack Kiefer, pages 539–555, 1985.
228

792

[GRS18] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sam-
ple complexity of neural networks. In Conference On Learning Theory, pages
297–299. PMLR, 2018. 177

[GS99] Scott Gaffney and Padhraic Smyth. Trajectory clustering with mixtures of
regression models. In Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 63–72. ACM, 1999.
53, 497

[GS19] Navin Goyal and Abhishek Shetty. Non-gaussian component analysis using
entropy methods. In Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 840–851, 2019. 181

[Gus99] Mats GL Gustafsson. Extended resolution fluorescence microscopy. Current
opinion in structural biology, 9(5):627–628, 1999. 658

[GW09] F. Gao and J. A. Wellner. On the rate of convergence of the maximum
likelihood estimator of a 𝑘-monotone density. Science in China Series A:
Mathematics, 52:1525–1538, 2009. 229

[Har64] James L Harris. Resolving power and decision theory. JOSA, 54(5):606–611,
1964. 655

[HATC+19] Shivayogi V Hiremath, Amir Mohammad Amiri, Binod Thapa-Chhetry,
Gretchen Snethen, Mary Schmidt-Read, Marlyn Ramos-Lamboy, Donna L
Coffman, and Stephen S Intille. Mobile health-based physical activity inter-
vention for individuals with spinal cord injury in the community: A pilot
study. PloS one, 14(10):e0223762, 2019. 27

[Haz19] Elad Hazan. Introduction to online convex optimization. arXiv preprint
arXiv:1909.05207, 2019. 393

[HBZ10] Bo Huang, Hazen Babcock, and Xiaowei Zhuang. Breaking the diffraction
barrier: super-resolution imaging of cells. Cell, 143(7):1047–1058, 2010. 657,
673

[Hec15] Eugene Hecht. Optics. Pearson, 2015. 24, 29, 658, 660, 664, 667

[Hel64] C Helstrom. The detection and resolution of optical signals. IEEE Transac-
tions on Information Theory, 10(4):275–287, 1964. 655, 662

[Hel69] Carl W Helstrom. Detection and resolution of incoherent objects by a
background-limited optical system. JOSA, 59(2):164–175, 1969. 655

[Hel70] Carl W Helstrom. Resolvability of objects from the standpoint of statistical
parameter estimation. JOSA, 60(5):659–666, 1970. 655

[Hel04] Stefan W Hell. Strategy for far-field optical imaging and writing without
diffraction limit. Physics Letters A, 326(1-2):140–145, 2004. 658

793

[Hel07] Stefan W Hell. Far-field optical nanoscopy. Science, 316(5828):1153–1158,
2007. 657

[Hel09] Stefan W Hell. Microscopy and its focal switch. Nature methods, 6(1):24,
2009. 657

[HG09] Rainer Heintzmann and Mats GL Gustafsson. Subdiffraction resolution in
continuous samples. Nature Photonics, 3(7):362, 2009. 657

[HGM06] Samuel T Hess, Thanu PK Girirajan, and Michael D Mason. Ultra-high
resolution imaging by fluorescence photoactivation localization microscopy.
Biophysical Journal, 91(11):4258–4272, 2006. 658

[HHJ+17] Jeongwan Haah, Aram W Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun
Yu. Sample-optimal tomography of quantum states. IEEE Transactions on
Information Theory, 63(9):5628–5641, 2017. 66, 680, 682, 685, 694

[HHP+16] Roarke Horstmeyer, Rainer Heintzmann, Gabriel Popescu, Laura Waller, and
Changhuei Yang. Standardizing the resolution claims for coherent microscopy.
Nature Photonics, 10(2):68, 2016. 658

[HIKP12] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly opti-
mal sparse fourier transform. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 563–578, 2012. 503, 617

[Hil54] Clifford Hildreth. Point estimates of ordinates of concave functions. Journal
of the American Statistical Association, 49(267):598–619, 1954. 226

[HJP+01] Marian Hristache, Anatoli Juditsky, Jörg Polzehl, Vladimir Spokoiny, et al.
Structure adaptive approach for dimension reduction. The Annals of Statis-
tics, 29(6):1537–1566, 2001. 33, 102

[HJS01] Marian Hristache, Anatoli Juditsky, and Vladimir Spokoiny. Direct estimation
of the index coefficient in a single-index model. Annals of Statistics, pages
595–623, 2001. 33, 102

[HK95] Stefan W Hell and Matthias Kroug. Ground-state-depletion fluorscence mi-
croscopy: A concept for breaking the diffraction resolution limit. Applied
Physics B, 60(5):495–497, 1995. 658

[HK13] Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians:
moment methods and spectral decompositions. In Proceedings of the 4th con-
ference on Innovations in Theoretical Computer Science, pages 11–20, 2013.
51, 617

[HK15] Qingqing Huang and Sham M Kakade. Super-resolution off the grid. In
Advances in Neural Information Processing Systems, pages 2665–2673, 2015.
63, 615, 618, 641, 642, 643, 673

794

[HKY17] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization:
A spectral approach. arXiv preprint arXiv:1706.00764, 2017. 412

[HKZ+12] Daniel Hsu, Sham Kakade, Tong Zhang, et al. A tail inequality for quadratic
forms of subgaussian random vectors. Electronic Communications in Proba-
bility, 17, 2012. 82

[HL18] Samuel B Hopkins and Jerry Li. Mixture models, robustness, and sum of
squares proofs. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1021–1034, 2018. 51, 57, 89, 227, 228, 229,
231, 232, 258, 325, 382, 617

[HL19] Samuel B Hopkins and Jerry Li. How hard is robust mean estimation? In
Conference on Learning Theory, pages 1649–1682, 2019. 345

[HLZ20] Samuel B. Hopkins, Jerry Li, and Fred Zhang. Robust and heavy-tailed
mean estimation made simple, via regret minimization. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. 45

[HMR18] Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. Making the most of
your samples. SIAM Journal on Computing, 47(3):651–674, 2018. 229

[Hop18] Samuel Hopkins. Statistical inference and the sum of squares method. PhD
thesis, Cornell University, 2018. 57

[Hou27] William V Houston. A compound interferometer for fine structure work.
Physical Review, 29(3):478, 1927. 610

[HP76] D. L. Hanson and G. Pledger. Consistency in concave regression. The Annals
of Statistics, 4(6):pp. 1038–1050, 1976. 229

[HP15] Moritz Hardt and Eric Price. Tight bounds for learning a mixture of two
Gaussians. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 753–760. ACM, 2015. 51, 591, 616, 617, 677

[HPS98] Gordon B Hazen, James M Pellissier, and Jayavel Sounderpandian.
Stochastic-tree models in medical decision making. Interfaces, 28(4):64–80,
1998. 411

[HPZ18] Nina Holden, Yuval Peres, and Alex Zhai. Gravitational allocation on the
sphere. Proceedings of the National Academy of Sciences, 115(39):9666–9671,
2018. 512

[HS65] Richard F Hespos and Paul A Strassmann. Stochastic decision trees for the
analysis of investment decisions. Management Science, 11(10):B–244, 1965.
411

795

[HS92] Stefan Hell and Ernst HK Stelzer. Properties of a 4pi confocal fluorescence
microscope. JOSA A, 9(12):2159–2166, 1992. 658

[HS15] Reshad Hosseini and Suvrit Sra. Matrix manifold optimization for gaussian
mixtures. In Advances in Neural Information Processing Systems, pages 910–
918, 2015. 101

[HS16] Daniel Hsu and Sivan Sabato. Loss minimization and parameter estimation
with heavy tails. The Journal of Machine Learning Research, 17(1):543–582,
2016. 336, 375

[HSLC94] Stefan W Hell, Ernst HK Stelzer, Steffen Lindek, and Christoph Cremer.
Confocal microscopy with an increased detection aperture: type-b 4pi confocal
microscopy. Optics Letters, 19(3):222–224, 1994. 658

[HSS15] Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal com-
ponent analysis via sum-of-square proofs. In Conference on Learning Theory,
pages 956–1006, 2015. 98

[HSSS16] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast
spectral algorithms from sum-of-squares proofs: tensor decomposition and
planted sparse vectors. In Proceedings of the forty-eighth annual ACM sym-
posium on Theory of Computing, pages 178–191, 2016. 98

[Hub64] Peter J Huber. Robust estimation of a location parameter. The Annals of
Mathematical Statistics, pages 73–101, 1964. 41, 326, 340

[Hub73] Peter J Huber. Robust regression: Asymptotics, conjectures and monte carlo.
The Annals of Statistics, pages 799–821, 1973. 41, 340

[Hub92] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs
in statistics, pages 492–518. Springer, 1992. 229

[HV+96] Jeffrey J Holt, Jeffrey D Vaaler, et al. The beurling-selberg extremal functions
for a ball in euclidean space. Duke Mathematical Journal, 83(1):203–248, 1996.
63, 615, 641, 644

[HW94] Stefan W Hell and Jan Wichmann. Breaking the diffraction resolution limit by
stimulated emission: stimulated-emission-depletion fluorescence microscopy.
Optics Letters, 19(11):780–782, 1994. 658

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015. 24

[IAVHDL11] Mariya Ishteva, P-A Absil, Sabine Van Huffel, and Lieven De Lathauwer.
Best low multilinear rank approximation of higher-order tensors, based on
the riemannian trust-region scheme. SIAM Journal on Matrix Analysis and
Applications, 32(1):115–135, 2011. 101

796

[IJMT05] Nicole Immorlica, Kamal Jain, Mohammad Mahdian, and Kunal Talwar.
Click fraud resistant methods for learning click-through rates. In Interna-
tional Workshop on Internet and Network Economics, pages 34–45. Springer,
2005. 27

[IK14] Piotr Indyk and Michael Kapralov. Sample-optimal Fourier sampling in any
constant dimension. In Foundations of Computer Science (FOCS), 2014 IEEE
55th Annual Symposium on, pages 514–523. IEEE, 2014. 503

[IKP14] Piotr Indyk, Michael Kapralov, and Eric Price. (nearly) sample-optimal sparse
fourier transform. In Proceedings of the twenty-fifth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 480–499. SIAM, 2014. 617

[IS12] Yuri Ingster and Irina A Suslina. Nonparametric goodness-of-fit testing under
Gaussian models, volume 169. Springer Science & Business Media, 2012. 68,
69, 689, 720, 731

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:
Convergence and generalization in neural networks. In Advances in neural
information processing systems, pages 8571–8580, 2018. 180

[JHW18] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of
the 𝑙_{1} distance. IEEE Transactions on Information Theory, 64(10):6672–
6706, 2018. 718

[JJ94] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and
the em algorithm. Neural computation, 6(2):181–214, 1994. 501

[JLR07] W Evan Johnson, Cheng Li, and Ariel Rabinovic. Adjusting batch effects
in microarray expression data using empirical bayes methods. Biostatistics,
8(1):118–127, 2007. 28

[JLS20] Yaonan Jin, Daogao Liu, and Zhao Song. A robust multi-dimensional sparse
fourier transform in the continuous setting. arXiv preprint arXiv:2005.06156,
2020. 618

[JO19] Ayush Jain and Alon Orlitsky. Robust learning of discrete distributions from
batches. arXiv preprint arXiv:1911.08532, 2019. 226, 279, 282, 283, 288, 289,
304, 307

[JO20] Ayush Jain and Alon Orlitsky. A general method for robust learning from
batches. arXiv preprint arXiv:2002.11099, 2020. 284

[JO21] Ayush Jain and Alon Orlitsky. Robust density estimation from batches: The
best things in life are (nearly) free. In International Conference on Machine
Learning, pages 4698–4708. PMLR, 2021. 284

797

[JSA15] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of
non-convexity: Guaranteed training of neural networks using tensor methods.
arXiv, pages arXiv–1506, 2015. 34, 36, 102, 178, 179

[JSZB08] Na Ji, Hari Shroff, Haining Zhong, and Eric Betzig. Advances in the speed and
resolution of light microscopy. Current opinion in neurobiology, 18(6):605–616,
2008. 657

[JW37] Francis A Jenkins and Harvey E White. Fundamentals of optics. Tata
McGraw-Hill Education, 1937. 658

[JW09] H. K. Jankowski and J. A. Wellner. Estimation of a discrete monotone density.
Electronic Journal of Statistics, 3:1567–1605, 2009. 228

[Kan20] Daniel M. Kane. Robust learning of mixtures of gaussians. arXiv preprint
arXiv:2007.05912, 2020. 39, 57, 325

[Kap16] Michael Kapralov. Sparse fourier transform in any constant dimension with
nearly-optimal sample complexity in sublinear time. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 264–
277, 2016. 503, 617

[Kap17] Michael Kapralov. Sample efficient estimation and recovery in sparse FFT via
isolation on average. In Foundations of Computer Science, 2017. FOCS’17.
IEEE 58th Annual IEEE Symposium on. https://arxiv.org/pdf/1708.
04544, 2017. 503

[KC19] Jeongyeol Kwon and Constantine Caramanis. EM converges for a mixture of
many linear regressions. arXiv preprint arXiv:1905.12106, 2019. 53, 497, 500,
501, 534, 562

[KCB+20] Ryan Kennedy, Scott Clifford, Tyler Burleigh, Philip D Waggoner, Ryan Jew-
ell, and Nicholas JG Winter. The shape of and solutions to the mturk quality
crisis. Political Science Research and Methods, 8(4):614–629, 2020. 26

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Jour-
nal of the ACM (JACM), 45(6):983–1006, 1998. 413, 426, 443, 445, 677

[Kee10] Robert W Keener. Theoretical statistics: Topics for a core course. Springer
Science & Business Media, 2010. 329

[Ken08] Ian R Kenyon. The light fantastic: a modern introduction to classical and
quantum optics. Oxford University Press, USA, 2008. 24, 29, 658, 664

[KH99] Thomas A Klar and Stefan W Hell. Subdiffraction resolution in far-field
fluorescence microscopy. Optics letters, 24(14):954–956, 1999. 658

[KJH95] Janos Kirz, Chris Jacobsen, and Malcolm Howells. Soft x-ray microscopes
and their biological applications. Quarterly reviews of biophysics, 28(1):33–
130, 1995. 658

798

https://arxiv.org/pdf/1708.04544
https://arxiv.org/pdf/1708.04544

[KKK19] Sushrut Karmalkar, Pravesh Kothari, and Adam Klivans. List-decodable lin-
ear regression. In NeurIPS. arXiv preprint arXiv:1905.05679, 2019. 229, 498,
502

[KKM18] Adam Klivans, Pravesh K Kothari, and Raghu Meka. Efficient algorithms
for outlier-robust regression. In Conference On Learning Theory, pages 1420–
1430, 2018. 41, 47, 229, 325, 329, 339, 340

[KL05] Vilmos Komornik and Paola Loreti. Fourier series in control theory. Springer
Science & Business Media, 2005. 614

[KLT09] Adam R Klivans, Philip M Long, and Alex K Tang. Baum’s algorithm learns
intersections of halfspaces with respect to log-concave distributions. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 588–600. Springer, 2009. 102, 181

[KM10] R. Koenker and I. Mizera. Quasi-concave density estimation. Ann. Statist.,
38(5):2998–3027, 2010. 229

[KM15] Vladimir Koltchinskii and Shahar Mendelson. Bounding the smallest singular
value of a random matrix without concentration. International Mathematics
Research Notices, 2015(23):12991–13008, 2015. 373

[KMR+94] Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E
Schapire, and Linda Sellie. On the learnability of discrete distributions. In
Proceedings of the twenty-sixth annual ACM symposium on Theory of com-
puting, pages 273–282. ACM, 1994. 407

[KMV10] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning
mixtures of two gaussians. In Proceedings of the forty-second ACM symposium
on Theory of computing, pages 553–562, 2010. 51, 62, 229, 617

[KMY+16] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016. 228

[KOS04] Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning intersec-
tions and thresholds of halfspaces. Journal of Computer and System Sciences,
68(4):808–840, 2004. 95, 102

[KOS08] Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning geometric
concepts via gaussian surface area. In 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pages 541–550. IEEE, 2008. 95, 181

[KP92] G. Kerkyacharian and D. Picard. Density estimation in Besov spaces. Statis-
tics & Probability Letters, 13(1):15–24, 1992. 229

799

[KP18] Sushrut Karmalkar and Eric Price. Compressed sensing with adversarial
sparse noise via l1 regression. In 2nd Symposium on Simplicity in Algorithms
(SOSA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 340

[KPK19] Sayash Kapoor, Kumar Kshitij Patel, and Purushottam Kar. Corruption-
tolerant bandit learning. Machine Learning, 108(4):687–715, 2019. 342, 345

[KPRvdO16] Stefan Kunis, Thomas Peter, Tim Römer, and Ulrich von der Ohe. A multi-
variate generalization of prony’s method. Linear Algebra and its Applications,
490:31–47, 2016. 617

[KPT96] G. Kerkyacharian, D. Picard, and K. Tribouley. Lp adaptive density estima-
tion. Bernoulli, 2(3):pp. 229–247, 1996. 229

[KQC+18] Jeongyeol Kwon, Wei Qian, Constantine Caramanis, Yudong Chen, and
Damek Davis. Global convergence of EM algorithm for mixtures of two com-
ponent linear regression. arXiv preprint arXiv:1810.05752, 2018. 53, 497,
501

[KS91] Olav Kallenberg and Rafal Sztencel. Some dimension-free features of vector-
valued martingales. Probability Theory and Related Fields, 88(2):215–247,
1991. 80, 403, 404

[KS04] Adam R Klivans and Rocco A Servedio. Learning dnf in time 2o (n1/3).
Journal of Computer and System Sciences, 68(2):303–318, 2004. 95

[KS08] Subhash Khot and Rishi Saket. On hardness of learning intersection of two
halfspaces. In Proceedings of the fortieth annual ACM symposium on Theory
of computing, pages 345–354, 2008. 102

[KS09] Adam R Klivans and Alexander A Sherstov. Cryptographic hardness for
learning intersections of halfspaces. Journal of Computer and System Sciences,
75(1):2–12, 2009. 180

[KS16] Subhash Khot and Igor Shinkar. An ̃︀𝑜(𝑛) queries adaptive tester for unate-
ness. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016. 685

[KS17] Pravesh K Kothari and David Steurer. Outlier-robust moment-estimation via
sum-of-squares. arXiv preprint arXiv:1711.11581, 2017. 51, 617

[KSS09] BA Khoruzhenko, DV Savin, and H-J Sommers. Systematic approach to
statistics of conductance and shot-noise in chaotic cavities. Physical Review
B, 80(12):125301, 2009. 683

[KSS18] Pravesh K Kothari, Jacob Steinhardt, and David Steurer. Robust moment
estimation and improved clustering via sum of squares. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
1035–1046. ACM, 2018. 57, 227, 228, 229, 231, 325

800

[KSV14] Daniel Kressner, Michael Steinlechner, and Bart Vandereycken. Low-rank
tensor completion by riemannian optimization. BIT Numerical Mathematics,
54(2):447–468, 2014. 101

[KT19] Gautam Kamath and Christos Tzamos. Anaconda: A non-adaptive condi-
tional sampling algorithm for distribution testing. In Proceedings of the Thir-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 679–693.
SIAM, 2019. 685

[KWB19] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on com-
putational hardness of hypothesis testing: Predictions using the low-degree
likelihood ratio. arXiv preprint arXiv:1907.11636, 2019. 57

[KYB17] Jason M Klusowski, Dana Yang, and WD Brinda. Estimating the coefficients
of a mixture of two linear regressions by expectation maximization. arXiv
preprint arXiv:1704.08231, 2017. 53, 497, 501

[L+17] Po-Ling Loh et al. Statistical consistency and asymptotic normality for high-
dimensional robust 𝑚-estimators. The Annals of Statistics, 45(2):866–896,
2017. 41, 340

[Lan00] LJ Landau. Bessel functions: monotonicity and bounds. Journal of the Lon-
don Mathematical Society, 61(1):197–215, 2000. 627

[Las01] Jean B. Lasserre. New Positive Semidefinite Relaxations for Nonconvex
Quadratic Programs, pages 319–331. Springer US, Boston, MA, 2001. 88

[Lat97] Rafał Latała. Estimation of moments of sums of independent real random
variables. The Annals of Probability, 25(3):1502–1513, 1997. 231, 240, 371

[Lau12] Marcel A Lauterbach. Finding, defining and breaking the diffraction barrier
in microscopy–a historical perspective. Optical Nanoscopy, 1(1):8, 2012. 657,
664

[LDG00] Fabien Letouzey, François Denis, and Rémi Gilleron. Learning from positive
and unlabeled examples. In International Conference on Algorithmic Learning
Theory, pages 71–85. Springer, 2000. 412

[LeC73] Lucien LeCam. Convergence of estimates under dimensionality restrictions.
The Annals of Statistics, 1(1):38–53, 1973. 686

[Li91] Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the
American Statistical Association, 86(414):316–327, 1991. 33, 102, 104, 181

[Li92] Ker-Chau Li. On principal hessian directions for data visualization and di-
mension reduction: Another application of stein’s lemma. Journal of the
American Statistical Association, 87(420):1025–1039, 1992. 33, 36, 101, 180

801

[Li18a] Chris Junchi Li. A note on concentration inequality for vector-valued mar-
tingales with weak exponential-type tails. arXiv preprint arXiv:1809.02495,
2018. 151, 152

[Li18b] Jerry Zheng Li. Principled approaches to robust machine learning and beyond.
PhD thesis, Massachusetts Institute of Technology, 2018. 101, 229, 339

[Lia15] Wenjing Liao. Music for multidimensional spectral estimation: stability and
super-resolution. IEEE Transactions on Signal Processing, 63(23):6395–6406,
2015. 617

[Lin95] B. Lindsay. Mixture models: theory, geometry and applications. Institute for
Mathematical Statistics, 1995. 229

[LL18] Yuanzhi Li and Yingyu Liang. Learning mixtures of linear regressions with
nearly optimal complexity. In Conference On Learning Theory, pages 1125–
1144, 2018. 53, 60, 497, 498, 499, 500, 501, 506, 509, 512, 514, 532, 564, 576,
578, 580, 582, 583

[LLY+12] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma.
Robust recovery of subspace structures by low-rank representation. IEEE
transactions on pattern analysis and machine intelligence, 35(1):171–184,
2012. 503

[LM21a] Allen Liu and Ankur Moitra. Learning gmms with nearly optimal robustness
guarantees. arXiv preprint arXiv:2104.09665, 2021. 39

[LM21b] Allen Liu and Ankur Moitra. Settling the robust learnability of mixtures of
gaussians. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 518–531, 2021. 39, 57

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,
fourier transform, and learnability. Journal of the ACM (JACM), 40(3):607–
620, 1993. 56, 95, 408, 412

[LMPL18] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic ban-
dits robust to adversarial corruptions. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 114–122, 2018. 342

[LMZ+12] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and
Shuicheng Yan. Robust and efficient subspace segmentation via least squares
regression. In European conference on computer vision, pages 347–360.
Springer, 2012. 503

[LMZ20] Yuanzhi Li, Tengyu Ma, and Hongyang R. Zhang. Learning over-parametrized
two-layer neural networks beyond ntk. In Jacob D. Abernethy and Shiv-
ani Agarwal 0001, editors, Conference on Learning Theory, COLT 2020, 9-12
July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Ma-
chine Learning Research, pages 2613–2682. PMLR, 2020. 34, 178

802

[LRR13] Reut Levi, Dana Ron, and Ronitt Rubinfeld. Testing properties of collections
of distributions. Theory of Computing, 9(1):295–347, 2013. 228

[LRV16] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of
mean and covariance. In 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 665–674. IEEE, 2016. 39, 227, 229, 231,
325

[LS59] Adrien-Marie Legendre and DE Smith. On the method of least squares. A
Source Book in Mathemathics, Ed. DE Smith (originally published in 1805),
pages 576–579, 1959. 41

[LS17] Jerry Li and Ludwig Schmidt. Robust and proper learning for mixtures of
gaussians via systems of polynomial inequalities. In Conference on Learning
Theory, pages 1302–1382, 2017. 235

[LSM09] Jennifer Lippincott-Schwartz and Suliana Manley. Putting super-resolution
fluorescence microscopy to work. Nature Methods, 6(ARTICLE):21–23, 2009.
657

[LSSS14] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational
efficiency of training neural networks. In Advances in neural information
processing systems, pages 855–863, 2014. 180

[Luc92a] Leon B Lucy. Resolution limits for deconvolved images. The Astronomical
Journal, 104:1260–1265, 1992. 656

[Luc92b] Leon B Lucy. Statistical limits to super resolution. Astronomy and Astro-
physics, 261:706, 1992. 656

[LWW15] Xin-Guo Liu, Xue-Feng Wang, and Wei-Guo Wang. Maximization of matrix
trace function of product stiefel manifolds. SIAM Journal on Matrix Analysis
and Applications, 36(4):1489–1506, 2015. 101

[LY17] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks
with relu activation. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 597–607, 2017. 34, 178

[M+15] Stanislav Minsker et al. Geometric median and robust estimation in banach
spaces. Bernoulli, 21(4):2308–2335, 2015. 336, 374, 375, 376, 377

[Man59] Leonard Mandel. Fluctuations of photon beams: the distribution of the photo-
electrons. Proceedings of the Physical Society, 74(3):233, 1959. 655, 662

803

[MC16] Veniamin I Morgenshtern and Emmanuel J Candes. Super-resolution of
positive sources: The discrete setup. SIAM Journal on Imaging Sciences,
9(1):412–444, 2016. 617

[MCSF10] Kim I Mortensen, L Stirling Churchman, James A Spudich, and Henrik Flyvb-
jerg. Optimized localization analysis for single-molecule tracking and super-
resolution microscopy. Nature methods, 7(5):377, 2010. 656

[MdW16] Ashley Montanaro and Ronald de Wolf. A survey of quantum property testing.
Theory of Computing, pages 1–81, 2016. 684

[MHC13] Bill Moran, Stephen Howard, and Doug Cochran. Positive-operator-valued
measures: a general setting for frames. In Excursions in Harmonic Analysis,
Volume 2, pages 49–64. Springer, 2013. 91

[Min61] M Minsky. Microscopy apparatus us patent 3013467. USP Office, Ed. US,
1961. 658

[Min17] Stanislav Minsker. On some extensions of bernstein’s inequality for self-adjoint
operators. Statistics & Probability Letters, 127:111–119, 2017. 82

[MLX+18] Chenglin Miao, Qi Li, Houping Xiao, Wenjun Jiang, Mengdi Huai, and Lu Su.
Towards data poisoning attacks in crowd sensing systems. In Proceedings of
the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, pages 111–120, 2018. 26

[MM13] Elizabeth Meckes and Mark Meckes. Spectral measures of powers of random
matrices. Electronic communications in probability, 18, 2013. 93, 683, 706,
722

[MMBS13] Bamdev Mishra, Gilles Meyer, Francis Bach, and Rodolphe Sepulchre. Low-
rank optimization with trace norm penalty. SIAM Journal on Optimization,
23(4):2124–2149, 2013. 101

[MMN18] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view
of the landscape of two-layer neural networks. Proceedings of the National
Academy of Sciences, 115(33):E7665–E7671, 2018. 180

[MMR+17] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2017. 228

[Moi15] Ankur Moitra. Super-resolution, extremal functions and the condition number
of vandermonde matrices. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 821–830. ACM, 2015. 62, 503,
615, 616, 617, 620, 621, 632, 633

804

[Mon13] Ashley Montanaro. Weak multiplicativity for random quantum channels.
Communications in Mathematical Physics, 319(2):535–555, 2013. 92

[MOS03] Elchanan Mossel, Ryan O’Donnell, and Rocco P Servedio. Learning juntas.
In Proceedings of the thirty-fifth annual ACM symposium on Theory of com-
puting, pages 206–212. ACM, 2003. 33, 97, 408

[MR18] Pasin Manurangsi and Daniel Reichman. The computational complexity of
training relu (s). arXiv preprint arXiv:1810.04207, 2018. 34, 178

[MSS16] Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor de-
compositions with sum-of-squares. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pages 438–446. IEEE, 2016. 89,
98

[MV10] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of
mixtures of gaussians. In 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, pages 93–102. IEEE, 2010. 51, 57, 60, 62, 229, 409, 502,
506, 513, 616, 617, 677

[MW17] AA Maznev and OB Wright. Upholding the diffraction limit in the focusing
of light and sound. Wave Motion, 68:182–189, 2017. 657, 658, 671

[Nes00] Yurii Nesterov. Squared Functional Systems and Optimization Problems,
pages 405–440. Springer US, Boston, MA, 2000. 88

[NJS13] Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval us-
ing alternating minimization. In Advances in Neural Information Processing
Systems, pages 2796–2804, 2013. 33, 36, 53, 96, 98, 102, 106, 497

[NO20] Gergely Neu and Julia Olkhovskaya. Efficient and robust algorithms for ad-
versarial linear contextual bandits. arXiv preprint arXiv:2002.00287, 2020.
342

[Nob14] The nobel prize in chemistry 2014. Oct 2014. 29

[NSW19] Vasileios Nakos, Zhao Song, and Zhengyu Wang. (Nearly) sample-optimal
sparse Fourier transform in any dimension; RIPless and Filterless. In FOCS,
2019. 503

[NWL16] Matey Neykov, Zhaoran Wang, and Han Liu. Agnostic estimation for misspec-
ified phase retrieval models. In Advances in Neural Information Processing
Systems, pages 4089–4097, 2016. 33, 36, 101

[O’B16] Carl M O’Brien. Nonparametric estimation under shape constraints: Estima-
tors, algorithms and asymptotics. International Statistical Review, 84(2):318–
319, 2016. 229

805

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press,
2014. 78, 85

[Ovc02] Sergei Ovchinnikov. Max-min representation of piecewise linear functions.
Contributions to Algebra and Geometry, 43(1):297–302, 2002. 188, 193

[OW15] Ryan O’Donnell and John Wright. Quantum spectrum testing. In Proceedings
of the forty-seventh annual ACM symposium on Theory of computing, pages
529–538, 2015. 65, 69, 679, 680, 682, 684, 694

[OW16] Ryan O’Donnell and John Wright. Efficient quantum tomography. In Pro-
ceedings of the48th Annual ACM symposium on Theory of Computing, pages
899–912, 2016. 66, 680, 685

[OW17] Ryan O’Donnell and John Wright. Efficient quantum tomography ii. In
Proceedings of the 49th Annual ACM Symposium on Theory of Computing,
pages 962–974, 2017. 680, 685

[OZ13] Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In
Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms, pages 1537–1556. Society for Industrial and Applied Mathematics,
2013. 87

[Pan08] Liam Paninski. A coincidence-based test for uniformity given very
sparsely sampled discrete data. IEEE Transactions on Information Theory,
54(10):4750–4755, 2008. 69, 681, 686, 688, 694, 716, 719

[Par00] Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geom-
etry methods in robustness and optimization. Technical report, California
Institute of Technology, 2000. 88

[PDL84] Dieter W Pohl, Winfried Denk, and Mark Lanz. Optical stethoscopy: Image
recording with resolution 𝜆/20. Applied physics letters, 44(7):651–653, 1984.
658

[Pea94] Karl Pearson. Contributions to the mathematical theory of evolution. Philo-
sophical Transactions of the Royal Society of London. A, 185:71–110, 1894.
57

[Pea00] Karl Pearson. X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
50(302):157–175, 1900. 64

[PF20] Scott Pesme and Nicolas Flammarion. Online robust regression via sgd on
the l1 loss. arXiv preprint arXiv:2007.00399, 2020. 341

806

[PH05] Elizabeth Purdom and Susan P Holmes. Error distribution for gene expression
data. Statistical applications in genetics and molecular biology, 4(1), 2005. 27

[PHL04] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for high
dimensional data: a review. Acm Sigkdd Explorations Newsletter, 6(1):90–105,
2004. 502

[Pin94] Iosif Pinelis. Optimum bounds for the distributions of martingales in banach
spaces. The Annals of Probability, pages 1679–1706, 1994. 80, 596

[PJL20] Ankit Pensia, Varun Jog, and Po-Ling Loh. Robust regression with co-
variate filtering: Heavy tails and adversarial contamination. arXiv preprint
arXiv:2009.12976, 2020. 339

[Pol91] David Pollard. Asymptotics for least absolute deviation regression estimators.
Econometric Theory, 7(2):186–199, 1991. 340

[PPG18] I Wayan Pulantara, Bambang Parmanto, and Anne Germain. Development
of a just-in-time adaptive mhealth intervention for insomnia: usability study.
JMIR human factors, 5(2):e8905, 2018. 27

[PS15] Eric Price and Zhao Song. A robust sparse Fourier transform in the contin-
uous setting. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on, pages 583–600. IEEE, 2015. 503

[PSB+20] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, Pradeep Raviku-
mar, et al. Robust estimation via robust gradient estimation. Journal of the
Royal Statistical Society Series B, 82(3):601–627, 2020. 339

[PSBR20] Adarsh Prasad, Vishwak Srinivasan, Sivaraman Balakrishnan, and Pradeep
Ravikumar. On learning ising models under huber’s contamination model.
Advances in neural information processing systems, 33, 2020. 39

[PV13] Yaniv Plan and Roman Vershynin. One-bit compressed sensing by linear pro-
gramming. Communications on Pure and Applied Mathematics, 66(8):1275–
1297, 2013. 102

[PV16] Yaniv Plan and Roman Vershynin. The generalized lasso with non-linear
observations. IEEE Transactions on information theory, 62(3):1528–1537,
2016. 33, 36, 101, 180

[PVY17] Yaniv Plan, Roman Vershynin, and Elena Yudovina. High-dimensional esti-
mation with geometric constraints. Information and Inference: A Journal of
the IMA, 6(1):1–40, 2017. 33, 36, 101

[QV17] Mingda Qiao and Gregory Valiant. Learning discrete distributions from un-
trusted batches. arXiv preprint arXiv:1711.08113, 2017. 39, 40, 223, 224, 225,
226, 227, 228

807

[Rac03] Svetlozar Todorov Rachev. Handbook of Heavy Tailed Distributions in Fi-
nance: Handbooks in Finance, Book 1. Elsevier, 2003. 27

[Rao69] B.L.S. Prakasa Rao. Estimation of a unimodal density. Sankhya Ser. A,
31:23–36, 1969. 229

[Ray79] Lord Rayleigh. Investigations in optics, with special reference to the spec-
troscope. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 8(49):261–274, 1879. 28, 610, 664, 666

[RBZ06] Michael J Rust, Mark Bates, and Xiaowei Zhuang. Sub-diffraction-limit imag-
ing by stochastic optical reconstruction microscopy (storm). Nature methods,
3(10):793, 2006. 658

[RCK41] BP Ramsay, EL Cleveland, and OT Koppius. Criteria and the intensity-epoch
slope. JOSA, 31(1):26–33, 1941. 667

[RH17] Philippe Rigollet and Jan-Christian Hütter. High dimensional statistics. URL
http://www-math. mit. edu/˜ rigollet/PDFs/RigNotes17. pdf, 2017. 329, 360,
371

[Ric07] James H Rice. Beyond the diffraction limit: far-field fluorescence imaging
with ultrahigh resolution. Molecular BioSystems, 3(11):781–793, 2007. 657

[Riv87] Ronald L Rivest. Learning decision lists. Machine learning, 2(3):229–246,
1987. 408, 412

[Ron61] Vasco Ronchi. Resolving power of calculated and detected images. JOSA,
51(4):458_1–460, 1961. 670

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.
25

[RSS18] Prasad Raghavendra, Tselil Schramm, and David Steurer. High-dimensional
estimation via sum-of-squares proofs. arXiv preprint arXiv:1807.11419, 2018.
232

[RST09] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm
for principal component analysis. SIAM Journal on Matrix Analysis and
Applications, 31(3):1100–1124, 2009. 74

[Rus34] Ernst Ruska. Über fortschritte im bau und in der leistung des magnetis-
chen elektronenmikroskops. Zeitschrift für Physik A Hadrons and Nuclei,
87(9):580–602, 1934. 658

[RV17] Oded Regev and Aravindan Vijayaraghavan. On learning mixtures of well-
separated gaussians. In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 85–96. IEEE, 2017. 51, 612, 614, 616,
617

808

[RW84] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and
the EM algorithm. SIAM Review, 26:195–202, 1984. 229

[RWO06] Sripad Ram, E Sally Ward, and Raimund J Ober. Beyond rayleigh’s cri-
terion: a resolution measure with application to single-molecule microscopy.
Proceedings of the National Academy of Sciences, 103(12):4457–4462, 2006.
655

[RY19] Prasad Raghavendra and Morris Yau. List decodable learning via sum of
squares. arXiv preprint arXiv:1905.04660, 2019. 229, 498, 502

[SAT96] Nicholas J Schork, David B Allison, and Bonnie Thiel. Mixture distributions
in human genetics research. Statistical Methods in Medical Research, 5(2):155–
178, 1996. 28

[SBRJ19] Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, and Prateek Jain. Adap-
tive hard thresholding for near-optimal consistent robust regression. In Con-
ference on Learning Theory, pages 2892–2897, 2019. 41, 341

[Sch04] Arthur Schuster. An introduction to the theory of optics. E. Arnold, 1904.
610, 665, 667

[SCV18] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A cri-
terion for learning in the presence of arbitrary outliers. In 9th Innovations
in Theoretical Computer Science Conference (ITCS 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018. 229, 279, 291

[SF20] Takeyuki Sasai and H. Fujisawa. Robust estimation with lasso when outputs
are adversarially contaminated. ArXiv, abs/2004.05990, 2020. 340

[Sha18] Ohad Shamir. Distribution-specific hardness of learning neural networks.
Journal of Machine Learning Research, 19(32):1–29, 2018. 180

[She17] Colin JR Sheppard. Resolution and super-resolution. Microscopy research
and technique, 80(6):590–598, 2017. 658, 672

[SHKT97] C. J. Stone, M. H. Hansen, C. Kooperberg, and Y. K. Truong. Polynomial
splines and their tensor products in extended linear modeling: 1994 wald
memorial lecture. Ann. Statist., 25(4):1371–1470, 1997. 229

[Sho87] N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and
Systems Sciences, 25, 11 1987. 88

[SJA16] Hanie Sedghi, Majid Janzamin, and Anima Anandkumar. Provable tensor
methods for learning mixtures of generalized linear models. In Artificial In-
telligence and Statistics, pages 1223–1231, 2016. 53, 497, 498, 501

[SJG09] Hao Shen, Stefanie Jegelka, and Arthur Gretton. Fast kernel-based in-
dependent component analysis. IEEE Transactions on Signal Processing,
57(9):3498–3511, 2009. 101

809

[SK12] Peter Stobbe and Andreas Krause. Learning fourier sparse set functions. In
Artificial Intelligence and Statistics, pages 1125–1133, 2012. 412

[SKL17] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for
data poisoning attacks. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages 3520–3532, 2017. 26

[SL17] Yevgeny Seldin and Gábor Lugosi. An improved parametrization and analysis
of the exp3++ algorithm for stochastic and adversarial bandits. In Conference
on Learning Theory, pages 1743–1759, 2017. 342

[SLG+15] Noa Slater, Yoram Louzoun, Loren Gragert, Martin Maiers, Ansu Chatter-
jee, and Mark Albrecht. Power laws for heavy-tailed distributions: modeling
allele and haplotype diversity for the national marrow donor program. PLoS
computational biology, 11(4):e1004204, 2015. 27

[SLX20] David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and
simpler optimal algorithm for contextual bandits under realizability. Available
at SSRN, 2020. 331, 375

[SM04] Morteza Shahram and Peyman Milanfar. Imaging below the diffraction limit:
a statistical analysis. IEEE Transactions on image processing, 13(5):677–689,
2004. 655, 656

[SM06] Morteza Shahram and Peyman Milanfar. Statistical and information-theoretic
analysis of resolution in imaging. IEEE Transactions on information Theory,
52(8):3411–3437, 2006. 655, 656

[Spa16] Carroll Mason Sparrow. On spectroscopic resolving power. The Astrophysical
Journal, 44:76, 1916. 610, 665, 668

[SQW16] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the
sphere ii: Recovery by riemannian trust-region method. IEEE Transactions
on Information Theory, 63(2):885–914, 2016. 101

[SRH07] Srinath Sridhar, Satish Rao, and Eran Halperin. An efficient and accurate
graph-based approach to detect population substructure. In Research in Com-
putational Molecular Biology, pages 503–517. Springer, 2007. 51

[SS+11] Shai Shalev-Shwartz et al. Online learning and online convex optimization.
Foundations and trends in Machine Learning, 4(2):107–194, 2011. 337

[SS14a] Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both
stochastic and adversarial bandits. In Proceedings of the 31st International
Conference on International Conference on Machine Learning-Volume 32,
pages II–1287, 2014. 342

[SS14b] Alex Small and Shane Stahlheber. Fluorophore localization algorithms for
super-resolution microscopy. Nature methods, 11(3):267, 2014. 656

810

[SS17] Tselil Schramm and David Steurer. Fast and robust tensor decomposition
with applications to dictionary learning. In Conference on Learning Theory,
pages 1760–1793, 2017. 98

[SS18] Yanyao Shen and Sujay Sanghavi. Learning with bad training data via it-
erative trimmed loss minimization. arXiv preprint arXiv:1810.11874, 2018.
101

[SS19] Yanyao Shen and Sujay Sanghavi. Iterative least trimmed squares for mixed
linear regression. In Advances in Neural Information Processing Systems,
pages 6076–6086, 2019. 101

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014. 329

[SSSS17] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of
gradient-based deep learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 3067–3075, 2017. 180

[SST10] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Optimistic rates for
learning with a smooth loss. arXiv preprint arXiv:1009.3896, 2010. 336, 373,
374

[Ste18] Jacob Steinhardt. Robust Learning: Information Theory and Algorithms. PhD
thesis, Stanford University, 2018. 229, 339

[Sto94] C. J. Stone. The use of polynomial splines and their tensor products in
multivariate function estimation. The Annals of Statistics, 22(1):pp. 118–171,
1994. 229

[SVWX17] Le Song, Santosh Vempala, John Wilmes, and Bo Xie. On the complexity of
learning neural networks. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages 5520–5528, 2017. 180

[Syn28] EdwardH Synge. Xxxviii. a suggested method for extending microscopic reso-
lution into the ultra-microscopic region. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 6(35):356–362, 1928. 658

[TBSR13] Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin Recht.
Compressed sensing off the grid. IEEE transactions on information theory,
59(11):7465–7490, 2013. 617, 618

[TD79] Ming-Jer Tsai and Keh-Ping Dunn. Performance limitations on parameter
estimation of closely spaced optical targets using shot-noise detector model.
Technical report, MASSACHUSETTS INST OF TECH LEXINGTON LIN-
COLN LAB, 1979. 655

[Tem81] Paul A Temple. Total internal reflection microscopy: a surface inspection
technique. Applied optics, 20(15):2656–2664, 1981. 658

811

[THK+21] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua
Zhai, Thomas Unterthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit,
Mario Lucic, et al. Mlp-mixer: An all-mlp architecture for vision. arXiv
preprint arXiv:2105.01601, 2021. 24

[Tho69] Brian J Thompson. Iv image formation with partially coherent light. In
Progress in optics, volume 7, pages 169–230. Elsevier, 1969. 668

[Tia17] Yuandong Tian. An analytical formula of population gradient for two-layered
relu network and its applications in convergence and critical point analy-
sis. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning
Research, pages 3404–3413. PMLR, 2017. 34, 178

[Tim14] Aleksandr Filippovich Timan. Theory of approximation of functions of a real
variable, volume 34. Elsevier, 2014. 227

[TK08] Ambuj Tewari and Sham Kakade. Lectures notes for cmsc 35900: Learning
theory, 2008. 337

[TKV17] Kevin Tian, Weihao Kong, and Gregory Valiant. Learning populations of
parameters. In Advances in Neural Information Processing Systems, pages
5778–5787, 2017. 228

[TM+14] Dan-Cristian Tomozei, Laurent Massoulié, et al. Distributed user profiling
via spectral methods. Stochastic Systems, 4(1):1–43, 2014. 51

[Tro11] Joel A Tropp. User-friendly tail bounds for matrix martingales. Technical
report, CALIFORNIA INST OF TECH PASADENA, 2011. 82

[Tro12] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foun-
dations of computational mathematics, 12(4):389–434, 2012. 82

[Tsa18] Mankei Tsang. Conservative classical and quantum resolution limits for inco-
herent imaging. Journal of Modern Optics, 65(11):1385–1391, 2018. 657

[Tsa19] Mankei Tsang. Resolving starlight: a quantum perspective. arXiv preprint
arXiv:1906.02064, 2019. 656

[TSM85] D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical analysis of
finite mixture distributions. Wiley & Sons, 1985. 229

[Tsy08] Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer
Science & Business Media, 2008. 353

[Tuk60] John W Tukey. A survey of sampling from contaminated distributions. Con-
tributions to probability and statistics, pages 448–485, 1960. 229

812

[Tuk75] John W Tukey. Mathematics and the picturing of data. In Proceedings of the
International Congress of Mathematicians, Vancouver, 1975, volume 2, pages
523–531, 1975. 229

[TV15] Manolis C Tsakiris and René Vidal. Dual principal component pursuit. In
Proceedings of the IEEE International Conference on Computer Vision Work-
shops, pages 10–18, 2015. 503

[TV17] Manolis C Tsakiris and René Vidal. Hyperplane clustering via dual principal
component pursuit. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 3472–3481. JMLR. org, 2017. 503

[TV18] Yan Shuo Tan and Roman Vershynin. Polynomial time and sample complexity
for non-gaussian component analysis: Spectral methods. In Conference On
Learning Theory, pages 498–534, 2018. 181

[TXSS20] Farnaz Tahmasebian, Li Xiong, Mani Sotoodeh, and Vaidy Sunderam. Crowd-
sourcing under data poisoning attacks: A comparative study. In IFIP Annual
Conference on Data and Applications Security and Privacy, pages 310–332.
Springer, 2020. 26

[Udr94] Constantin Udriste. Convex functions and optimization methods on Rieman-
nian manifolds, volume 297. Springer Science & Business Media, 1994. 101

[Vaa85] Jeffrey D Vaaler. Some extremal functions in fourier analysis. Bulletin of the
American Mathematical Society, 12(2):183–216, 1985. 644

[Vai89] Pravin M Vaidya. A new algorithm for minimizing convex functions over
convex sets. In 30th Annual Symposium on Foundations of Computer Science,
pages 338–343. IEEE Computer Society, 1989. 389, 390

[Val84] LG Valiant. A theory of the learnable. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pages 436–445. ACM, 1984. 443

[Val12] Gregory Valiant. Finding correlations in subquadratic time, with applications
to learning parities and juntas. In Foundations of Computer Science (FOCS),
2012 IEEE 53rd Annual Symposium on, pages 11–20. IEEE, 2012. 408

[Van13] Bart Vandereycken. Low-rank matrix completion by riemannian optimization.
SIAM Journal on Optimization, 23(2):1214–1236, 2013. 101

[VC74] Vladimir Vapnik and Alexey Chervonenkis. Theory of pattern recognition,
1974. 228

[VDB01] Adriaan Van Den Bos. Resolution in model-based measurement. In IMTC
2001. Proceedings of the 18th IEEE Instrumentation and Measurement Tech-
nology Conference. Rediscovering Measurement in the Age of Informatics
(Cat. No. 01CH 37188), volume 1, pages 295–302. IEEE, 2001. 655

813

[VdBDD01] A Van den Bos and AJ Den Dekker. Resolution reconsidered—conventional
approaches and an alternative. In Advances in imaging and electron physics,
volume 117, pages 241–360. Elsevier, 2001. 655

[vDSM17] Alex von Diezmann, Yoav Shechtman, and WE Moerner. Three-dimensional
localization of single molecules for super-resolution imaging and single-particle
tracking. Chemical reviews, 117(11):7244–7275, 2017. 656

[Vem10a] Santosh S Vempala. Learning convex concepts from gaussian distributions
with pca. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pages 124–130. IEEE, 2010. 95, 102, 181

[Vem10b] Santosh S Vempala. A random-sampling-based algorithm for learning inter-
sections of halfspaces. Journal of the ACM (JACM), 57(6):1–14, 2010. 102,
181

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random
matrices. arXiv preprint arXiv:1011.3027, 2010. 81, 84

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with appli-
cations in data science, volume 47. Cambridge University Press, 2018. 78, 80,
83, 349, 360, 361, 371, 376, 564, 605

[VH07] Rene Vidal and Richard Hartley. Three-view multibody structure from
motion. IEEE transactions on pattern analysis and machine intelligence,
30(2):214–227, 2007. 502

[Vid11] René Vidal. Subspace clustering. IEEE Signal Processing Magazine, 28(2):52–
68, 2011. 502

[VMS05] Rene Vidal, Yi Ma, and Shankar Sastry. Generalized principal component
analysis (gpca). IEEE transactions on pattern analysis and machine intelli-
gence, 27(12):1945–1959, 2005. 503

[Vov01] Volodya Vovk. Competitive on-line statistics. International Statistical Review,
69(2):213–248, 2001. 326, 343

[Vu02] Van H Vu. Concentration of non-lipschitz functions and applications. Random
Structures & Algorithms, 20(3):262–316, 2002. 152

[Vu06] VH Vu. On the infeasibility of training neural networks with small mean-
squared error. IEEE Transactions on Information Theory, 44(7):2892–2900,
2006. 25, 180

[VV10] Bart Vandereycken and Stefan Vandewalle. A riemannian optimization ap-
proach for computing low-rank solutions of lyapunov equations. SIAM Journal
on Matrix Analysis and Applications, 31(5):2553–2579, 2010. 101

814

[VV16] Gregory Valiant and Paul Valiant. Instance optimal learning of discrete dis-
tributions. In Proceedings of the Forty-Eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, page 142–155, New York, NY, USA, 2016.
Association for Computing Machinery. 70

[VV17] Gregory Valiant and Paul Valiant. An automatic inequality prover and in-
stance optimal identity testing. SIAM Journal on Computing, 46(1):429–455,
2017. 70, 715, 717, 718, 719, 720, 721, 727, 740

[VW02] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of
distributions. In Proceedings of the 43rd Annual Symposium on Foundations
of Computer Science, pages 113–122, 2002. 51, 229, 617

[VW19] Santosh Vempala and John Wilmes. Gradient descent for one-hidden-layer
neural networks: Polynomial convergence and sq lower bounds. In COLT,
volume 99, 2019. 34, 178, 179, 180

[VX11] Santosh S Vempala and Ying Xiao. Structure from local optima: Learning
subspace juntas via higher order pca. arXiv preprint arXiv:1108.3329, 2011.
102, 180, 181

[Wal09] G. Walther. Inference and modeling with log-concave distributions. Statistical
Science, 24(3):319–327, 2009. 229

[Weg70] Edward J Wegman. Maximum likelihood estimation of a unimodal density
function. The Annals of Mathematical Statistics, 41(2):457–471, 1970. 226,
229

[Wei78] Don Weingarten. Asymptotic behavior of group integrals in the limit of infinite
rank. Journal of Mathematical Physics, 19(5):999–1001, 1978. 707

[WGFC14] Nathan Wiebe, Christopher Granade, Christopher Ferrie, and David G Cory.
Hamiltonian learning and certification using quantum resources. Physical
review letters, 112(19):190501, 2014. 29

[Wil50] W.E. Williams. Applications of Interferometry. Methuen’s monographs on
physical subjects. Methuen, 1950. 666

[WN07] R. Willett and R. D. Nowak. Multiscale poisson intensity and density esti-
mation. IEEE Transactions on Information Theory, 53(9):3171–3187, 2007.
229

[WRH17] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the
tail. In Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems, pages 7032–7042, 2017. 27

[Wri16] John Wright. How to learn a quantum state. PhD thesis, Carnegie Mellon
University Pittsburgh, PA, 2016. 66, 681, 682, 694

815

[WS15] Siegfried Weisenburger and Vahid Sandoghdar. Light microscopy: an ongoing
contemporary revolution. Contemporary Physics, 56(2):123–143, 2015. 657,
664

[WW83] E. J. Wegman and I. W. Wright. Splines in statistics. Journal of the American
Statistical Association, 78(382):pp. 351–365, 1983. 229

[YBL17] Zhuoran Yang, Krishnakumar Balasubramanian, and Han Liu. On stein’s
identity and near-optimal estimation in high-dimensional index models. arXiv
preprint arXiv:1709.08795, 2017. 33, 36, 101

[YCS14] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Alternating mini-
mization for mixed linear regression. In International Conference on Machine
Learning, pages 613–621. PMLR, 2014. 53, 330, 497, 501

[YCS16] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture
of many random linear equations by tensor decomposition and alternating
minimization. arXiv preprint arXiv:1608.05749, 2016. 53, 497, 498, 501, 605

[YJY09] Liu Yang, Rong Jin, and Jieping Ye. Online learning by ellipsoid method. In
Proceedings of the 26th Annual International Conference on Machine Learn-
ing, pages 1153–1160, 2009. 337

[Yu19] Nengkun Yu. Quantum closeness testing: A streaming algorithm and appli-
cations, 2019. 684

[ZAR14] Xiangxin Zhu, Dragomir Anguelov, and Deva Ramanan. Capturing long-tail
distributions of object subcategories. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 915–922, 2014. 27

[ZB16] Dejiao Zhang and Laura Balzano. Global convergence of a grassmannian
gradient descent algorithm for subspace estimation. In Artificial Intelligence
and Statistics, pages 1460–1468. PMLR, 2016. 101

[ZBFL18] Wen-Xin Zhou, Koushiki Bose, Jianqing Fan, and Han Liu. A new perspective
on robust m-estimation: Finite sample theory and applications to dependence-
adjusted multiple testing. Annals of statistics, 46(5):1904, 2018. 340

[Zin03] Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th international conference on ma-
chine learning (icml-03), pages 928–936, 2003. 338, 393

[ZJD16] Kai Zhong, Prateek Jain, and Inderjit S Dhillon. Mixed linear regression with
multiple components. In Advances in neural information processing systems,
pages 2190–2198, 2016. 53, 60, 497, 498, 501

[ZJS20] Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Robust estimation via
generalized quasi-gradients. arXiv preprint arXiv:2005.14073, 2020. 41, 45,
47, 325, 339

816

[ZLJ16] Yuchen Zhang, Jason D Lee, and Michael I Jordan. L1-regularized neural
networks are improperly learnable in polynomial time. In 33rd International
Conference on Machine Learning, ICML 2016, pages 1555–1563. International
Machine Learning Society (IMLS), 2016. 34, 178, 179

[Zmu03] Jonas Zmuidzinas. Cramer–rao sensitivity limits for astronomical instruments:
implications for interferometer design. JOSA A, 20(2):218–233, 2003. 656

[ZPS17] Qiuyi Zhang, Rina Panigrahy, and Sushant Sachdeva. Electron-proton dy-
namics in deep learning. CoRR, abs/1702.00458, 2017. 34, 178

[ZRS16] Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian svrg: Fast
stochastic optimization on riemannian manifolds. In Advances in Neural In-
formation Processing Systems, pages 4592–4600, 2016. 101

[ZS16] Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex
optimization. In Conference on Learning Theory, pages 1617–1638, 2016. 101

[ZS19] Julian Zimmert and Yevgeny Seldin. An optimal algorithm for stochastic
and adversarial bandits. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 467–475. PMLR, 2019. 342

[ZSJ+17] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon.
Recovery guarantees for one-hidden-layer neural networks. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages
4140–4149, 2017. 34, 36, 178, 179

[ZYWG19] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-
hidden-layer relu networks via gradient descent. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1524–1534. PMLR,
2019. 34, 178

817

	Introduction
	Algorithmic Opportunities in Data Science
	Learning Rich Function Classes
	Learning From Untrustworthy Data
	Data Science and the Sciences?

	Our Contributions
	Filtered PCA
	New Iterative Reweighing Schemes
	Heterogeneity, Moments, and the Fourier Transform
	Quantum State Certification and the Chain Rule

	Preliminaries
	Miscellaneous Notation
	Linear Algebra Basics
	Probability Basics
	Fourier Transform
	Concentration
	Hermite Polynomials
	Stability of Linear Threshold Functions
	Sum-of-Squares Programming
	Quantum Basics

	I Learning Rich Function Classes
	Low-Rank Polynomials
	Introduction
	Main Result
	Related Work

	Outline of Algorithm and Analysis
	Getting a Warm Start
	Boosting via Geodesic-Based Riemannian Gradient Descent

	Technical Preliminaries
	Non-degeneracy
	Other Concentration Inequalities
	Hermite Polynomials and Gradients
	More Subspace Distance Inequalities

	Warm Start via Filtered PCA
	Proof of Lemma 2.4.1

	Boosting via Stochastic Riemannian Optimization
	Preliminaries
	Gradient Updates: Vanilla and Geodesic

	Guarantees for RealignPolynomial
	Local Smoothness
	Local Curvature

	Guarantees for SubspaceDescent
	Local Smoothness
	Local Curvature

	Putting Everything Together for GeoSGD
	Appendix: Martingale Concentration Inequalities
	Proof of Lemma 2.3.3
	Proof of Lemma 2.3.4

	Appendix: Deferred Proofs from Section 2.6
	Proof of Lemma 2.6.5
	Proof of Lemma 2.6.10
	Proof of Proposition 2.6.13
	Proof of Lemma 2.6.15
	Proof of Lemma 2.6.16

	Appendix: Deferred Proofs from Section 2.7
	Proof of Lemma 2.5.4
	Proof of Lemma 2.7.7
	Proof of Lemma 2.7.10
	Proof of Lemma 2.7.11
	Proof of Lemma 2.7.15
	Proof of Lemma 2.7.16
	Proof of Lemma 2.7.17
	Proof of Lemma 2.7.18

	Deep ReLU Networks
	Introduction
	Prior Work on Provably Learning Neural Networks
	Other Related Work and Discussion

	Proof Overview
	Technical Preliminaries
	Miscellaneous Tools
	Continuous Piecewise-Linear Functions and Lattice Polynomials

	Filtered PCA
	Anti-Concentration of Piecewise Linear Functions
	An Idealized Calculation
	Stability of Piecewise Linear Threshold Functions
	Netting Over Piecewise Linear Functions
	Netting Over Neural Networks
	Perturbation Bounds
	Putting Everything Together

	Appendix: Deferred Proofs
	Concentration for Piecewise Linear Functions
	Representing Boolean Functions as ReLU Networks

	II Learning from Adversarially Corrupted Data
	Learning From Untrusted Batches With Sum-of-Squares
	Introduction
	Our Results– Sum of Squares
	Our Techniques
	Related Work
	Organization

	High-Level Argument
	Robust Mean Estimation
	Searching for a Moment-Bounded Subset
	Quantifying over pm1n via Matrix SoS
	VC Meets Sum-of-Squares
	Quantifying over VnK

	Technical Preliminaries
	Miscellaneous Notation
	The Generative Model
	Certifiably Bounded Distributions

	Efficiently Learning from Untrusted Batches
	An SoS Relaxation
	Deterministic Conditions
	Identifiability
	Rounding

	Improved Sample Complexity Under Shape Constraints
	AK Norms and VC Complexity
	Another SoS Relaxation
	Deterministic Conditions and Identifiability
	Rounding

	Encoding Moment Constraints
	Matrix SoS Proofs
	Moment Constraints for Program P
	Moment Constraints for Program P'

	Appendix: Proof of Lemma 4.6.13

	Learning From Untrusted Batches With Alternating Minimization
	Introduction
	High-Level Argument
	Concurrent and Subsequent Work

	Technical Preliminaries
	Weights, Means, and Covariances
	Some Elementary Facts
	Haar Wavelets Revisited

	SDP for Finding the Direction of Largest Variance
	Filtering Algorithm and Analysis
	Univariate Filter
	Algorithm Specification
	Deterministic Condition
	Key Geometric Lemma
	Analyzing the Filter With Spectral Signatures

	Numerical Experiments
	Experimental Design
	Implementation Details

	Appendix: Concentration
	Technical Ingredients
	Proof of Lemma 5.4.6

	Appendix: Netting Over K
	Appendix: Sub-Exponential Tail Bounds From Section 5.6
	Proof of Fact 5.8.1

	Huber-Contaminated Regression and Contextual Bandits
	Introduction
	Our Results
	Roadmap

	Technical Overview
	Huber-Contaminated Fixed-Design Regression
	Online-to-Offline Reduction
	Lower Bound for Convex Losses

	Related Work
	Preliminaries
	Formal Description of Models
	Technical Preliminaries

	Alternating Minimization for Offline Regression
	Setup and Main Result
	Algorithm Specification
	Optimization Analysis
	All Stationary Points are Good
	Stochastic Setting and Generalization Bounds
	Heavy-Tailed Setting Using Geometric Median

	Optimal Breakdown Point via Sum of Squares Programming
	SoS Algorithm and Analysis

	Online Regression
	Cutting Plane Algorithm
	Gradient Descent Algorithm

	Putting Everything Together
	Lower Bound Against Convex Surrogates
	Appendix: Reduction from Contextual Bandits to Online Regression
	Appendix: Proof of Theorem 1.3.23

	III Learning from Heterogeneous Data
	Mixtures of Product Distributions
	Introduction
	Our Results and Techniques
	Applications
	More Results
	Organization

	Preliminaries
	Notation and Definitions
	Rank of the Moment Matrix and Conditioning
	Linear Algebraic Relations between M and C
	Technical Overview for Learning Mixtures of Subcubes
	Technical Overview for SQ Lower Bound
	Technical Overview for Learning Mixtures of Product Distributions

	Learning Mixtures of Subcubes in Quasipolynomial Time
	Logarithmic Moments Suffice
	Local Maximality
	Tracking Down an Impostor
	Finding a Certified Full Rank and Locally Maximal Set
	Sampling Noise and Small Mixture Weights

	An nsqrtk Statistical Query Lower Bound
	Statistical Query Learning of Distributions
	Embedding Interesting Coordinates
	A Moment Matching Example

	Learning Mixtures of Product Distributions in nk2 Time
	Parameter Closeness Implies Distributional Closeness
	Barycentric Spanners
	Gridding the Basis and Learning Coefficients
	Robust Low-degree Identifiability
	Collapsing Ill-conditioned Moment Matrices
	Comparison to Feldman-O'Donnell-Servedio's Algorithm

	Appendix: Learning via Sampling Trees
	Appendix: Learning Mixtures of Subcubes
	Robustly Building a Basis
	Robustly Tracking Down an Impostor
	Correctness of N-List

	Appendix: Learning Mixtures of Product Distributions Over 01n
	NonDegenerateLearn and Its Guarantees
	Making Progress When Pad is Ill-Conditioned
	Correctness of N-List

	Appendix: Application to Learning Stochastic Decision Trees

	Mixed Linear Regression
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Probabilistic Models
	Miscellaneous Notation

	Overview of Techniques
	Fourier Moment Descent
	Learning With Regression Noise
	Learning Mixtures of Hyperplanes

	Roadmap
	Warm Start via Fourier Moment Descent
	Estimating Minimum Variance
	Moment Descent

	Learning All Components Under Zero Noise
	Learning All Components Under Noise
	Staying on the Same Component
	Initializing With a Gap
	Algorithm Specification
	Proof of Correctness
	Tolerating More Regression Noise

	Learning Mixtures of Hyperplanes
	Moment Descent for Hyperplanes
	Algorithm Specification– Single Component
	Proof of Correctness
	Boosting for Mixtures of Hyperplanes
	Learning All Hyperplanes

	Boosting Down the Cosine Integral
	Background: Gravitational Allocation
	Boosting via the Cosine Integral

	Appendix: Failure of Low-Degree Identifiability
	Appendix: Integrating Against Fourier Transforms of Piecewise Polynomials
	Appendix: Deferred Proofs
	Proof of Lemma 8.3.1
	Proof of Fact 8.2.3
	Proof of Corollary 1.3.19
	Proof of Corollary 1.3.20
	Proof of Lemma 8.5.10
	Proof of Lemma 8.5.17
	Proof of Lemma 8.8.12

	IV Data Science and the Sciences
	Mixture Models and the Diffraction Limit
	Introduction
	Overview of Results
	Related Work
	Visualizing the Diffraction Limit
	Roadmap

	Lower Bound Preview
	Preliminaries
	Learning Superpositions of Airy Disks
	Reduction to 2D Superresolution
	Learning via the Optical Transfer Function
	Learning Airy Disks Above the Diffraction Limit
	Approximating the Optical Transfer Function

	Information Theoretic Lower Bound
	Conclusion and Open Problems
	Appendix: Related Work In the Sciences
	Previous Approaches in Optics
	Comparison with Our Approach
	Super-Resolution and the Practical Need to Understand Diffraction Limits

	Appendix: Physical Basis for Our Model
	A Review of Fraunhofer Diffraction
	Photon Statistics and Our Model
	Comparison to Semiclassical Detection Model
	A Menagerie of Diffraction Limits

	Appendix: Debate Over the Diffraction Limit: A Historical Overview
	Identifying a Criterion
	The Importance of Noise

	Appendix: Proof of Lemma 9.4.15
	Appendix: Generating Figure 9-3

	Quantum Memory-Sample Tradeoffs for Mixedness Testing
	Introduction
	Overview of our techniques
	Related Work

	Lower Bound Strategies
	Non-Adaptive Lower Bounds
	Adaptive Lower Bounds

	Unentangled Measurements and Lower Bound Instance
	Testing with Unentangled Measurements
	Lower Bound Instance
	Intuition for phi

	Proof of Non-Adaptive Lower Bound
	A Chain Rule Proof of Paninski's Theorem
	An Adaptive Lower Bound for Mixedness Testing
	Haar Tail Bounds
	Proof of Theorem 10.6.3
	Proof of Theorem 10.4.1

	Appendix: Chain Rule Proof of Theorem 10.1.3

	Instance-Optimal Quantum State Certification
	Introduction
	Our Results
	Related Work

	Overview of Techniques
	Instance-Optimal Lower Bounds for Identity Testing
	Passing to the Quantum Setting

	Technical Preliminaries
	Miscellaneous Technical Facts
	Instance-Optimal Distribution Testing

	Generic Lower Bound Framework
	Helpful Conditions on gz
	Nonadaptive Lower Bounds
	Adaptive Lower Bounds

	Nonadaptive Lower Bound for State Certification
	Bucketing and Mass Removal
	Lower Bound Instance I: General Quantum Paninski
	Lower Bound Instance II: Perturbing Off-Diagonals
	Lower Bound Instance III: Corner Case
	Putting Everything Together

	State Certification Algorithm
	Generic Certification
	Bucketing and Mass Removal
	Instance-Near-Optimal Certification

	Appendix: Adaptive Lower Bound
	Bucketing and Mass Removal
	Analyzing Lower Bound II
	Putting Everything Together

	Appendix: Deferred Proofs
	Proof of Theorem 11.4.10
	Proof of Fact 11.5.16

