
Sampling-based Algorithms for Fast and Deployable
AI

by

Cenk Baykal

B.S., University of North Carolina at Chapel Hill (2015)
S.M., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2021

Certified by. .
Daniela Rus

Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and
Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Sampling-based Algorithms for Fast and Deployable AI

by

Cenk Baykal

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

We present sampling-based algorithms with provable guarantees to alleviate the
increasingly prohibitive costs of training and deploying modern AI systems. At the
core of this thesis lies importance sampling, which we use to construct representative
subsets of inputs and compress machine learning models to enable fast and deployable
systems. We provide theoretical guarantees on the representativeness of the generated
subsamples for a variety of objectives, ranging from eliminating data redundancy for
efficient training of ML models to compressing large neural networks for real-time
inference. In contrast to prior work that has predominantly focused on heuristics,
the algorithms presented in this thesis can be widely applied to varying scenarios to
obtain provably competitive results. We conduct empirical evaluations on real-world
scenarios and data sets that demonstrate the practicality and effectiveness of the
presented work.

Thesis Supervisor: Daniela Rus
Title: Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and
Computer Science

3

4

This doctoral thesis has been examined by a Committee of the
Department of Electrical Engineering and Computer Science:

Daniela Rus .
Chairperson, Thesis Supervisor

Professor of Electrical Engineering and Computer Science

Piotr Indyk .
Member, Thesis Committee

Professor of Electrical Engineering and Computer Science

Aleksander Mądry .
Member, Thesis Committee

Professor of Electrical Engineering and Computer Science

6

Acknowledgments

I am deeply grateful for all of the people who have supported me in every step of the

way during my graduate studies. They have helped me push through thick-and-thin

and have truly made this work possible.

First and foremost, I would like to thank my advisor, Prof. Daniela Rus. Daniela

has always supported me and fostered my interests – even those that were outside of

robotics. She has given me invaluable guidance in every challenge and the freedom to

explore topics that interested me over the years. I always think about how I came to

MIT fully intending to be a hands-on roboticist; it was only thanks to the generous

encouragement and technical guidance of Daniela that I was able to discover and

nurture my passion for algorithms and scalable AI. I am grateful for Daniela’s vast

expertise and ability to maneuver through difficult research obstacles. Her dexterity in

focusing on the big picture and guidance in conducting integral research were crucially

helpful for me. She has taught me a lot over the years and helped me grow both as a

researcher and person. I will miss having her as an advisor and being a part of the

Distributed Robotics Lab.

I am likewise grateful for my committee members, Prof. Piotr Indyk, and Prof.

Aleksander Mądry, for their generous help and feedback on this thesis. Many of the

ideas in this thesis built on their courses and work. This includes Sketching Algorithms

for Big Data, where Piotr introduced me to sketching algorithms and helped me gain a

deeper understanding of coresets, and the Science of Deep Learning, where Aleksander

covered modern problems and approaches to ML, which ultimately motivated our work

on network compression. I am additionally thankful to Piotr for providing helpful and

comforting guidance over the years as my academic advisor. Thank you, Piotr and

Aleksander!

I am indebted to my undergraduate advisors at the University of North Carolina at

Chapel Hill, Prof. Ron Alterovitz, Prof. Gary Bishop, and Prof. Ming Lin, who

provided nurturing opportunities and encouraged my pursuit of a PhD in the first

7

place. I would not have even considered graduate school as an option without their

support and the rewarding research experiences they enabled. Thank you for taking a

chance on me when I was only a sophomore without any true understanding of what

research entailed and for helping me grow as a researcher.

I feel especially lucky to have been part of the Distributed Robotics Lab during

my time at MIT. I will miss the camaraderie and the lab members who helped

make my time at MIT so memorable: Aaron Ray, Alexander Amini, Alyssa Pierson,

Andy Spielberg, Annan Zhang, Brandon Araki, Daniel Wrafter, Hunter Hansen, Igor

Gilitschenski, James Bern, Jeff Lipton, John Romanishin, Johnson Wang, Joseph

DelPreto, Joshie Hughes, Lillian Chin, Lucas Liebenwein, Murad Abu-Khalaf, Noam

Buckman, Paul Tylkin, Ramin Hasani, Ryan Truby, Teddy Ort, Tim Seyde, Veevee

Cai, Wilko Schwarting, Xiao Li, and Yutong Ban. Thank you for your warm friendship

and all that you have taught me over the years. I would also like to thank Mieke

Moran for ensuring that we always had whatever resources we needed and for her

warm assistance.

I will particularly miss working alongside my dear friend and long-time collaborator,

Lucas Liebenwein. He has been the best PhD companion I could have asked for. Many

of the ideas in this thesis would not have been possible without his vast capabilities

spanning both theory and practice. Lucas was always there for me both in and out of

the lab, and would generously stop whatever he would be doing to help me the best

he could. I will miss his warm personality and ability to work hard and play hard at

the right moments, the many interesting courses we took together, the exciting and

animated conversations we had about all aspects of research and life, our brainstorming

sessions over ping-pong, and many more.

I am likewise grateful for my close friends Brandon Araki, Igor Gilitschenski, and

Wilko Schwarting. Brandon, you were my first friend at MIT and I feel very fortunate

to have met you. You helped me get through many rough patches over the years

with your consistent support, level-headed advice, and witty humor — your in-depth

8

knowledge about ancient civilizations will be missed. Igor, you were my mentor and

big brother figure for many years and I have learned so much from you. I will miss our

deep conversations, your "humbling" in ping-pong, and above all, your great company.

Wilko, thank you for your warm friendship and all that you have done for me over the

years. I will cherish the good times we had taking courses, frequent dinners, and the

candid conversations we had in and out of work; you have been deeply missed around

the lab since you graduated last year.

Beyond MIT, I would like to thank Murad Tukan, Dan Feldman, and Stephanie

Gil. Murad, I will miss our banter and deep conversations as we worked on proofs.

Danny, thank you for introducing me to coresets. Stephanie, thank you for the fruitful

collaboration and helpful advice you provided when I first stepped foot into the lab as

a PhD student.

Outside of academia, I am deeply grateful for my partner Reem, for her love and

encouragement over the years. She has helped me find balance in life and has taught

me that there is a beauty to life outside of research as well. I feel the luckiest to have

met you and cannot wait to create more memories with you.

Lastly, I am very grateful for my loving parents and brother. Thank you to my mom

Bengi, my dad Cengiz, and my brother Cem for encouraging me in every endeavour

and for your unending support. As someone who was born and raised in a foreign

country, I realize that this may be cliche to say, but it is the truth: I would not be

where I am without the sacrifices that my parents have made for me. It is solely

thanks to my parents’ selflessness and unconditional love that I have had the privilege

and the means to pursue a PhD in the first place. Thank you for being the best

parents I could have asked for and all that you have done for me.

9

10

Contents

1 Introduction 25

1.1 Motivation . 26

1.2 Challenges & Vision . 28

1.3 Thesis Overview & Contributions . 30

1.3.1 Reachability Analysis . 30

1.3.2 Streaming Coresets for Support Vector Machines 32

1.3.3 Pruning Neural Networks for Fast and Deployable AI 34

1.3.4 Active Learning for Label-Efficient Deep Learning 36

1.4 Thesis Contributions . 37

1.5 Thesis Outline . 39

1.6 Relevant Publications . 40

1.7 Other Relevant Results . 42

2 Background and Related Work 43

2.1 Importance Sampling for Approximate Queries 43

2.2 Reachability Analysis . 45

2.3 Coresets . 47

2.4 Accelerating Support Vector Machines 48

2.5 Pruning Neural Networks for Fast and Scalable AI 49

2.6 Active Learning for Label-Efficient Deep Learning 51

3 Importance Sampling in the Context of Reachability Analysis 53

11

3.1 Overview . 53

3.2 The Reachability Problem . 55

3.3 Method . 56

3.3.1 Overview . 56

3.3.2 Approximately-optimal Algorithm 57

3.3.3 Anytime, Asymptotically-optimal Algorithm 57

3.4 Theoretical Guarantees . 57

3.4.1 Preliminaries . 59

3.4.2 Analysis of Algorithms 2 and 3 61

3.4.3 Simultaneous under and over approximations 66

3.5 Results . 68

3.5.1 Experimental Setup . 69

3.5.2 Evaluation of Computed Reachable Sets 71

3.6 Proofs . 72

3.6.1 Proof of Lemma 3 . 72

3.6.2 Proof of Theorem 7 . 73

3.6.3 Proof of Corollary 9 . 74

3.6.4 Proof of Proposition 11 . 75

3.7 Discussion and Future Work . 76

4 Streaming Coresets for Support Vector Machines 77

4.1 Overview . 77

4.2 Setting & Objective . 78

4.2.1 Setting . 78

4.2.2 Coresets . 79

4.3 Our Approach . 81

4.3.1 Computational Complexity . 82

4.4 Analysis . 83

4.4.1 Preliminaries . 83

4.4.2 Lower bound for Sensitivity 84

12

4.4.3 Sensitivity Upper Bound . 84

4.5 Intuition for 𝑘-means Clustering . 86

4.5.1 Automating the Search for the (Approximately) Optimal 𝑘 . . 88

4.6 Empirical Evaluations . 90

4.7 Extension to Streaming Settings . 93

4.8 Proofs of the Analytical Results in Section 4.4 96

4.8.1 Proof of Lemma 16 . 96

4.8.2 Proof of Lemma 17 . 98

4.8.3 Proof of Lemma 18 . 106

4.8.4 Proof of Theorem 19 . 108

4.9 Experimental Details . 109

4.10 Discussion . 110

5 Provable Weight Pruning of Neural Networks 113

5.1 Overview . 113

5.2 Background . 114

5.2.1 Network Notation . 114

5.2.2 Problem Definition . 116

5.3 SiPP . 117

5.3.1 OptAlloc . 118

5.3.2 EmpiricalSensitivity . 119

5.3.3 Sparsify . 120

5.4 Analysis . 120

5.4.1 Empirical sensitivity . 121

5.4.2 Error guarantees for SiPPDet 122

5.4.3 Error guarantees for SiPPRand 122

5.4.4 Discussion of error bounds and SiPPHybrid 123

5.4.5 Generalization to all weights 124

5.4.6 Network compression bounds 124

5.4.7 Computation time . 125

13

5.4.8 Classification Error . 126

5.5 Experiments . 129

5.5.1 Setup . 129

5.5.2 Experiments with baseline comparisons 130

5.5.3 Benchmark comparisons . 133

5.5.4 Empirical computation time of SiPP 136

5.5.5 Discussion . 137

5.6 Method Pseudocode . 137

5.6.1 Overview . 137

5.6.2 Details regarding OptAlloc 138

5.6.3 Details regarding EmpiricalSensitivity 139

5.6.4 Details regarding Sparsify 139

5.6.5 Simple SiPP . 140

5.7 Proofs and Technical Details . 141

5.7.1 Outline . 141

5.7.2 Empirical Sensitivity . 141

5.7.3 Error Guarantees for positive weights and activations 144

5.7.4 Generalization to all weights and activations 150

5.7.5 Network compression bounds 153

5.8 Experimental details . 161

5.8.1 Setup and Hyperparameters 161

5.8.2 Additional results for CIFAR10 (iterative prune+retrain) . . . 161

5.8.3 Additional results for ImageNet (iterative prune+retrain) . . . 162

5.8.4 Sensitivity to the validation set size 163

5.9 Discussion and Future Work . 165

6 Structured Pruning & The Next Pruning Frontier 167

6.1 Overview . 167

6.2 Structured Pruning . 168

6.3 Provable Filter Pruning . 169

14

6.3.1 Extending SiPP . 169

6.3.2 Method and Analysis Overview 171

6.4 Experiments . 174

6.5 The Next Pruning Frontier . 175

6.5.1 What is Lost in Pruning? . 175

6.5.2 Discussion and Future Work 177

7 Active Learning for Deep Learning 179

7.1 Overview . 179

7.2 Active Learning . 180

7.2.1 Background & Greedy Selection 180

7.2.2 Active Learning as Prediction with Expert Advice 182

7.3 A Low-Regret Approach . 183

7.3.1 Background . 184

7.3.2 AdaProd+ . 184

7.3.3 Back to Active Learning . 186

7.3.4 Flexibility via Proprietary Loss 186

7.4 Regret Guarantees . 187

7.5 Experiments . 189

7.5.1 Setup . 189

7.5.2 Evaluations on Vision Tasks 190

7.5.3 Robustness Evaluations . 191

7.5.4 Boosting Prior Approaches . 193

7.5.5 Comparison to Existing Expert Algorithms 194

7.6 Proofs and Full Analytical Details . 195

7.6.1 Recovering Optimistic Adapt-ML-Prod Guarantees for Alg. 12 195

7.6.2 Adaptive Regret . 203

7.6.3 AdaProd+ and Dynamic Regret 204

7.7 Implementation Details and Batch Sampling 206

7.8 Experimental Setup & Additional Evaluations 207

15

7.8.1 Setup . 207

7.8.2 Setting for Experiments in Sec. 7.5.5 210

7.8.3 Results on Data-Starved Settings 211

7.8.4 Shifting Architectures . 212

7.8.5 Robustness Evaluations on Shifted Architecture 213

7.9 Limitations and Concluding Remarks 215

8 Conclusion 217

8.1 Thesis Summary . 217

8.2 Lessons Learned . 219

8.2.1 Theory-guided Practice & Practice-guided Theory 219

8.2.2 Toy Examples and Lower Bounds First 220

8.2.3 Importance of Algorithms with Non-worst-case Performance . 221

8.3 Future Work . 222

16

List of Figures

1-1 An example sampled set of initial states 𝒮 (red) from 𝒳 (green) on the

left and the corresponding reachable set 𝐹 (𝒮;𝑇) (red region) relative

to the full reachable set, 𝐹 (𝒳 ;𝑇) (gray) on the right. 32

1-2 An example classification scenario with an SVM where the task is to

compute the maximum-margin separator (hyperpane) that correctly

separates the red input points from the blue ones. Here the points with

the arrows denote those that were on the wrong side of the separation.

In the context of the example scenario depicted above, Chapter 4

considers the question of whether we can compute a similar separator

to the one shown by training on a smaller subset of the displayed data

points, such as only those near the decision boundary. 33

1-3 An example of network pruning. The parameters (edges) of the graph

on the left is removed to generate a compact network (right). The goal

of network pruning is to generate a sparse network whose predictive

capability (e.g., test accuracy) is comparable with that of the original

network. 35

2-1 Evaluations on FashionMNIST and ImageNet with benchmark active

learning algorithms. Existing approaches based on greedy selection are

not robust and may perform significantly worse than uniform sampling. 51

3-1 (1− 𝜀) = 0.2 . 54

3-2 (1− 𝜀) = 0.4 . 54

17

3-3 (1− 𝜀) = 0.6 . 54

3-4 (1− 𝜀) = 0.8 . 54

3-5 (a)-(d): A 0.2, 0.4, 0.6, and 0.8-approximation respectively, of the

reachable set of a unicycle car. The set of initial conditions is taken to

be the unit cube around the origin. 54

3-6 Clockwise: Set of initial conditions and the resulting reachable set for

the unit cube, dumbbell, lollipop, and hedgehog scenarios. We compare

the reachable sets of uniform sampling, our algorithm, and the ground

truth. The visualizations show that uniform sampling initial states

performs poorly when the set of initial states has an uneven distribution

of volume. 68

3-7 Comparisons of the performance of our algorithm with that of uniform

sampling for the unit cube scenario (first column) and the dumbbell

scenario (second column). The corresponding scenarios are depicted in

the first and second column of Fig. 3-6, respectively. 69

3-8 The performance of the evaluated reachability analysis methods for

the lollipop scenario (first column) and the hedgehog scenario (second

column). The evaluated scenarios are shown in the third and fourth

column of Fig. 3-6, respectively. 70

4-1 Understanding the effect of 𝑘-means on the sensitivities of the points. 88

4-2 The relative error of query evaluations with respect uniform and coreset

subsamples for the 6 data sets in the offline setting. Shaded region

corresponds to values within one standard deviation of the mean. . . 91

4-3 The total computational cost of constructing a coreset and training the

SVM model on the coreset, plotted as a function of the size of the coreset. 92

4-4 The relative error of query evaluations with respect uniform and coreset

subsamples for the 6 data sets in the streaming setting. The figure

shows that our method tends to fare even better in the streaming setting

(cf. Fig. 4-2). 92

18

5-1 The overview of our randomized method consisting of 4 parts. We use a

small batch of input points to quantify the relative contribution (impor-

tance) of each edge to the output of each neuron. We then construct an

importance sampling distribution over the incoming edges and sample

a small set of weights for each neuron. The unsampled parameters are

then discarded to obtain the resulting compressed network with fewer

edges. 117

5-2 The delta in test accuracy to the uncompressed network for the gener-

ated pruned models trained on CIFAR10 for various target prune ratios.

The networks were pruned using the iterative prune+retrain pipeline.131

5-3 The accuracy of the generated pruned ResNet18 and ResNet101

models trained on ImageNet for the evaluated pruning schemes for

various target prune ratios. 132

5-4 The delta in test accuracy to the uncompressed network for the gener-

ated pruned models trained on CIFAR10 for various target prune ratios.

The networks were pruned using the random-init+ prune+train

pipeline. 133

5-5 The performance of the SiPP variants and the competing baseline

approaches in pruning FC-net (MNIST). 134

5-6 The performance on the WRN28-2 architecture trained on CIFAR10.

The figure shows that all SiPP variants outperform the competing

methods at all intermediate prune ratios. 136

5-7 The delta in test accuracy to the uncompressed network for the gener-

ated pruned models trained on CIFAR10 for various target prune ratios.

The networks were pruned using the iterative prune+retrain pipeline.162

5-8 The Top-5 accuracy of the generated pruned ResNet18 and ResNet101

models trained on ImageNet for the evaluated pruning schemes for var-

ious target prune ratios. The Top-1 accuracy is shown in Figure 5-3. . 164

19

5-9 Evaluations of the sensitivity of SiPP variants to the size of 𝒮 for the

task of pruning LeNet300-100 trained on MNIST. The plots show the

maximal prune ratio obtained subject to the constraint of being within

∆ ≤ 4% and ∆ ≤ 1% (absolute terms) test accuracy of the original

network’s accuracy, respectively. Overall, we can see that after even a

single retraining step, SiPP remains robust to varying size of 𝒮. . . 164

6-1 An example application of neuron pruning to the original network shown

on the left. The generated pruned network on the right is slimmer, i.e.,

with lower dimensional weight matrices, because entire neurons have

been removed from layers. 169

6-2 Overview of the filter pruning method. The sequence of operations is

almost identical to the one presented in Chapter 5 (see Fig. 5-1). The

only exception is that the definition of sensitivity for a filter accounts for

the maximum impact that it has on any of the outputs in the next layer.

This figure originally appeared in Lucas Liebenwein’s Ph.D. thesis and

is taken from our published work [LBL+20]. 170

6-3 The performance of pruned models generated by our algorithm and

those of benchmark approaches on the CIAR10 data set. The figures

plot the test accuracy as a function of the percentage of the retained

parameters (i.e., lower is better) for the resnet110 (left) and WRN16-8

(right) models. Shaded regions correspond to values within one standard

deviation of the mean. Our results show that our approach generates

more compact and accurate networks than competing approaches. . . 174

6-4 The results of our evaluations of the algorithms in the prune-only

scenario, where the network is iteratively pruned down to a specified

target prune ratio and the fine-tuning step is omitted. The figures

plot the test accuracy as a function of the percentage of the retained

parameters (i.e., lower is better) for resnet50 and resnet101 trained on

the ImageNet dataset. 175

20

6-5 Left: a prune-accuracy curve for the Weight Thresholding (WT) pruning

algorithm under various types of injected noise. Right: the prune-

potential of various pruning algorithms for 𝛿 = 0.5%, i.e., the maximum

sparsity achievable subject to the constraint that the test accuracy

is within 0.5% of the original network, plotted for various pruning

algorithms (including SiPP and PFP) as a function of the injected noise.

For both figures, higher is better in terms of the pruned network’s

performance under noise. 176

7-1 Evaluations on popular computer vision benchmarks trained on convo-

lutional neural networks. Our algorithm consistently achieves higher

performance than uniform sampling and outperforms or matches com-

petitors on all scenarios. This is in contrast to the highly varying

performance of competing methods. Shaded regions correspond to

values within one standard deviation of the mean. 191

7-2 Our evaluations on the FashionMNIST data set with varying data acqui-

sition configurations and Incr and Scratch – (Option, 𝑛start, 𝑏, 𝑛end).

All figures except for (f) depict the test accuracy. The performance of

competing methods varies greatly across configurations even when the

data set is fixed. 192

7-3 The performance of our algorithm when instantiated with informa-

tiveness metrics from prior work compared to that of existing greedy

approaches. Using AdaProd+ off-the-shelf with the corresponding met-

rics took only a few lines of code and lead to strict gains in performance

on all evaluated benchmark data sets. 193

7-4 Comparisons with competing algorithms for learning with prediction

advice on the SVHN (first row) and CIFAR10 (second row) data sets.

In both scenarios, AdaProd* outperforms the compared algorithms,

and significantly improves on its predecessor, Optimistic AMLProd, on

both data sets and all evaluated metrics. 194

21

7-5 Results for the data-starved configuration (Scratch, 5𝑘, 5𝑘, 45𝑘) on

ImageNet (first row) and (Scratch, 50, 10, 500) on FashionMNIST

(second row). Shown from left to right are the results with respect

to test accuracy, top-5 test accuracy, and test loss. Shaded region

corresponds to values within one standard deviation of the mean. . . 209

7-6 Evaluations on the FashionNet and SVHNNet [AZK+19, Ash21] archi-

tectures, which are different convolutional networks than those used in

Sec. 7.5. Despite this architecture shift, our approach remains the over-

all top-performer on the evaluated data sets, even exceeding the relative

performance of our approach on the previously used architectures. . 212

7-7 Evaluations with varying active learning configurations using the alter-

nate FashionNet model trained on the FashionMNIST dataset. . . . 214

22

List of Tables

4.1 The number of input points and measurements of the total sensitivity

computed empirically for each data set in the offline setting. The sum

of sensitivities is significantly less than 𝑛 for virtually all of the data

sets, which, by Thm. 19, ensures the sample-efficiency of our approach

on the evaluated scenarios. 90

4.2 Definition of terms that are stated in Algorithm 4 98

5.1 Results of our evaluations on LeNet300-100 trained on MNIST (upper

part) and VGG16 trained on CIFAR10 (lower part). The value of the

best-performing method that achieves commensurate (within 0.5%) test

accuracy with respect to each objective is shown in bold. Overall, the

table shows that the SiPP variants – notably SiPPDet and SiPPHy-

brid – outperform the competing baselines in obtaining a compact

network with commensurate accuracy on both of the evaluated scenarios.135

5.2 We report the hyperparameters used during training, pruning, and

retraining for various convolutional architectures on CIFAR-10. LR

hereby denotes the learning rate and LR decay denotes the learning rate

decay. During retraining we used the same hyperparameters. {30, . . .}

denotes that the learning rate is decayed every 30 epochs. 162

23

5.3 We report the hyperparameters used during training, pruning, and

retraining for various convolutional architectures on ImageNet. LR

hereby denotes the learning rate and LR decay denotes the learning

rate decay that we deploy after a certain number of epochs. 163

7.1 We report the hyperparameters used during training the convolutional

architectures listed above corresponding to our evaluations on Fashion-

MNIST, SVHN, CIFAR10, and ImageNet. except for the ones indicated

in the lower part of the table. The notation 𝛾@(𝑛1, 𝑛2, . . .) denotes the

learning rate schedule where the learning rate is multiplied by the factor

𝛾 at epochs 𝑛1, 𝑛2, . . . (this corresponds to MultiStepLR in PyTorch). 208

24

Chapter 1

Introduction

Modern Artificial Intelligence (AI) systems, such as deep neural networks, have

been unprecedentedly successful in a wide variety of high-impact applications such

as Autonomous Driving [SAMR18, LSV+17], Computer Vision [FJY+19], health

care [BM20], and Natural Language Processing [BMR+20]. Some are even capa-

ble of superhuman performance in voice and image recognition [Sch15], language

translation [BMR+20], and games beyond Chess [SAH+20] such as Poker [MSB+17],

Go [SHM+16], and Starcarft [VBC+19]. Moreover, state-of-the-art generative models

can produce photorealistic images of faces, melodic songs that include singing, and

creative pieces of fiction [BMR+20, DJP+20, KALL17]. Often times, these artificial

generations are so impressively realistic that humans have a very difficult time telling

them apart from their real-world or human-generated counterparts.

In parallel to their expanding capabilities, these intelligent systems have become

increasingly ingrained in our everyday lives. Examples range from the AI we use in

our smartphones for, e.g., voice assistants (e.g., Siri, Alexa), facial recognition, and

high-quality image capture, to the AI that curates our personalized news, playlist

(e.g., Spotify), and social media feed (e.g., Instagram). The fact that many modern

smartphones and small embedded devices now come equipped with specialized hard-

ware tailored for AI can be seen as a testament to the pervasiveness of these systems

25

in devices of all shapes and sizes. Overall, it is difficult to overstate the ubiquity of AI

in many of the everyday activities and processes that we partake in, whether they be

at work or at home.

1.1 Motivation

Worryingly, however, AI’s successes have come on the back of increasingly large and

complex models trained on massive sets of labeled data. In fact, many contemporary

advances in AI are achieved through sheer scale [PGL+21, BGMMS21]. For example,

GPT-3, a recent language model that has demonstrated unprecedented capabilities,

contains 175 billion parameters and was trained on hundreds of billions of words taken

from sources containing up to petabytes of data such as Common Crawl, WebText2,

and Wikipedia [BMR+20]. For context, training GPT-3 with a single1 Tesla V100,

one of the fastest GPUs on the market as of this writing, would take 355 years and

cost $4, 600, 000 even with the lowest-priced GPU cloud [Li20]. Even OpenAI, the

well-resourced pioneer of GPT-3, concedes that the overall cost of training the model

was so high that, despite a bug found in data filtering, they could not retrain the

model [BMR+20].

The story of GPT-3 is sadly not an isolated one. More generally, the amount of

compute used for the largest AI has doubled every 3.4 months and grown by more

than 300, 000 times since 2012 [Ope19]. For comparison, Moore’s Law has a 2 year

doubling period [M+65]. At the same time, the success of large AI models has led

many to espouse the Bigger is better paradigm [NKB+20] and, for the most part,

write off the consequences as a price to pay for performance [PGL+21, BGMMS21].

However, we are rapidly approaching a point of indisputable [PGL+21] marginal

returns of sheer size, and in turn, experiencing exponential costs in computation

time, energy consumption, data acquisition, and deployment to resource-constrained

1In practice this is not currently possible and a distributed system with many GPUs is required;
the single GPU statistic is based on a hypothetical calculation that abstracts out some of the practical
requirements, e.g., memory constraints [Li20].

26

platforms [TGLM20, GYK+21, BGMMS21].

AI’s voracious appetite for computation also has ramifications for global climate

change and the environment at large. For instance, training GPT-3 produced the

equivalent of 552 metric tons of CO2 – equivalent to the amount corresponding to

driving 120 passenger cars for a year [PGL+21]. Even training BERT, an older model

that is 500x smaller than GPT-3 (345 million parameters), requires as much energy

as a trans-atlantic flight [BGMMS21]. Worse yet, these figures do not account for

the compute and effort required for other components of training, such as (often

brute-force) hyperparameter tuning and data cleansing.

The issues surrounding AI like GPT-3 with billions of parameters do not end at the

training step. The sheer size of the models also leads to computationally-expensive

inference and infeasibility in deployment to resource-constrained platforms, such as

mobile phones, embedded devices, or small-scale robotic platforms [BLG+19a]. [Li20]

reports that just loading GPT-3 into memory would require 350 GB of VRAM,

equivalent to at least 11 32-GB Tesla V100 GPUs. Beyond memory concerns, the

inference-time costs of models this size further hamstring their deployment to a

variety of high-impact applications. For example, end-to-end autonomous driving

applications [APB+18] require an efficient and compact network in order to make

real-time (i.e., fast) decisions. Given the current trend, deploying models of the size

of GPT-3 to low-resource platforms seems out of reach, and even if they could be

deployed, inference would most likely be exceedingly slow for the application at hand.

As these models have grown exponentially in size over the last decade, so have the

size of the labeled data sets used for training. A pertinent saying goes "If there is

one thing statisticians and deep learning practitioners agree on, it is that more data is

always better" [NKB+20]. While labeled data may be relatively straightforward to

come by or annotate when e.g., junk email or images of cats and dogs are in question,

acquiring large sets of labeled data may be extremely costly or infeasible altogether

in other domains like health care. For instance, applying deep networks to the task

27

of cancer detection may require medical images that can only be labeled with the

expertise of health care professionals, and a single accurate annotation may come at

the cost of a biopsy on a patient [SMR+19]. These concerns motivate the question

Can we can train powerful AI using significantly smaller sets of labeled data?

In sum, progress in developing more efficient exact algorithms is far outpaced by the

ever-growing size of state-of-the-art machine learning models and labeled data sets.

Given these diminishing returns — as evidenced by other areas like computational

linear algebra, where the growing size of matrices has even exceeded the capabilities

of algorithms studied for centuries [Mus18] — it is highly unlikely that significantly

faster exact algorithms for training and inference exist. Thus, in this thesis we focus

on efficient approximation algorithms based on importance sampling of the input.

To this end, we develop novel methods to generate compact and representative subsets

on which existing algorithms can be efficiently applied to obtain provably competitive

solutions.

1.2 Challenges & Vision

In this thesis we introduce novel sampling-based algorithms that can render existing

methods significantly more efficient. The key insight is to create subsamples of the input

and model parameters to enable fast and approximate computation. To clearly depict

the challenges involved, we can consider as an example the initial attempt of using

uniform sampling to reduce the number of training data points from potentially billions

to thousands prior to training the model for computational efficiency. More specifically,

given a large data set 𝒫, we first construct a smaller (weighted) subset 𝒞 ⊂ 𝒫 by

sampling elements from 𝒫 uniformly at random. Subsequently, we (efficiently) train

the machine learning model on this much smaller data set 𝒞, with the hope that it is

sufficiently representative of the original set 𝒫 so that we obtain a highly-accurate

model. Although this may sound promising, the downside of this approach is that

there is no guarantee that uniform sampling will lead to a sufficiently rich training

subsample, and we may miss crucial training points by sampling in this way.

28

This shortcoming is especially conspicuous in real-world scenarios that tend to have

inputs that are unbalanced in terms of their labels or outliers that are crucial for

the task at hand. For instance, in the case of an unbalanced data set of 10 images

of cats and 990 images of dogs, the probability that we do not sample a single cat

image among a uniform subsample of 70 points is roughly 0.52. Therefore, if we

sample uniformly at random, approximately half the time the subsample will not

be sufficiently rich to contain even a single image of a cat, which would lead to

training an uninformed model unaware of the existence of cats. Ideally, we would

sample non-uniformly so we obtain at least one image of a cat in the subsample with

exceedingly high probability, and reweigh the selected points accordingly to reflect

their representation. It turns out that this toy example can be generalized, and it has

been shown that uniform sampling can lead to arbitrarily bad performance both in

practice and in theory [MSSW18, MS18, BFL16, BLK17, BTFR20].

Besides uniform sampling, similar heuristic approaches have also been investigated to

reduce other costs as well. This includes existing network pruning algorithms tailored to

remove redundant parameters of neural networks to speed up inference, alleviate energy

consumption, and enable their deployment to resource-constrained platforms such as

mobile phones [LKD+16, HMD15]. On the whole, however, a common shortcoming of

prior attempts is their lack of theoretical guarantees on the generated compact model,

which poses serious challenges for their widespread applicability to real-world machine

learning tasks – especially to those that are safety-critical, e.g., autonomous driving.

Vision Motivated by the issues of contemporary AI and the research gap described

above, the vision of this thesis is to enable efficient and deployable AI systems through

importance sampling with theoretical guarantees. Rather than attempting to develop a

faster or more efficient AI algorithm for each application, we envision using importance

sampling to construct sufficiently representative data and model summaries, among

others. This has the potential to enable efficient applications of existing AI methods

on the compact representation, with provably competitive results relative to using the
2Assuming sampling with replacement, as is common in literature: (1− 10/1000)70 ≈ 0.5.

29

full representation.

1.3 Thesis Overview & Contributions

In this thesis, we develop and analyze a variety of sampling-based algorithms to

enable fast and deployable AI. At the core of this thesis lies importance sampling,

which we use to subsample important elements of a larger collection. Although this

collection may refer to the training set as in the example in the previous section, we

will also consider collections that represent other objects like the parameters of a large

neural network. The premise of our approach is that if we can efficiently identify and

sample important elements from this collection as a pre-processing step, then running

existing algorithms on this subsample will be (i) computationally efficient and (ii)

provably-competitive with the results on the full collection.

More specifically, the overview and contributions of this thesis are outlined as follows.

1.3.1 Reachability Analysis

In Chapter 3, we begin with a motivating and introductory application of importance

sampling for the problem of reachability analysis. Importance sampling is a foun-

dational concept in this thesis and we will use it extensively to accelerate existing

methods or enable new functionalities, such as real-time performance. Here, we

introduce importance sampling in the context of reachability analysis because it is

easy to visualize and conceptualize. At a high level, given a set of initial states that is

infinite in size, we use importance sampling to construct a finite, representative sample

of initial states – among a set of uncountably infinite ones – to efficiently obtain a

provably approximate set of reachable states.

This work is motivated by the fact that highly automated, real-world systems inherently

depend on effectively incorporating rigorous guarantees on the performance and

safety through formal verification and validation methods. For instance, in order to

ensure collision-free paths, advanced driver-assistance systems need to be capable of

30

anticipating all potential actions of the driver without overly conservative assumptions.

This requires performing on-line reachability analysis, i.e., computation of states that

these vehicles can reach within a given time interval. Applications of reachability

analysis include safety, correctness, and controller synthesis problems involving intricate

specifications or robotic systems such as autonomous aircraft and cars, medical robots,

and personal-assistance robots.

Typically the state of a system is not fully observable, e.g., a car might not have

precise knowledge about its position. Thus, conducting accurate reachability analysis

by definition requires reasoning about all possible trajectories from every possible

state. Reasoning about all possible behaviors of a system renders reachability analysis

computationally intractable in practice [AD14]. This computational challenge is

further compounded by the generally large size and high complexity of the system

in consideration, and the practical need to obtain verification results in a reasonably

short time (i.e., seconds or minutes, not days) for the sake of, for example, real-time

motion planning. These computational challenges in conjunction with the need to

obtain provably valid results motivate the development of approximation schemes with

provable guarantees for reachability analysis.

Roughly speaking, given a set of initial states 𝒳 for e.g., an autonomous agent, the

objective of reachability analysis is to compute the set of all possible reachable states

𝐹 (𝒳 ;𝑇) after 𝑇 time steps, where 𝐹 is a highly computationally expensive evaluation

function. Since the set of initial states is uncountably infinite, we cannot use the

reachability function 𝐹 on every initial state 𝑥 ∈ 𝒳 to compute the entirety of the

reachable region. Due to this difficulty and the practical need to perform verification in

a short amount of time (e.g., real-time motion planning), previous work has proposed

methods that impose restrictive assumptions on the geometry of the set of initial states

𝒳 and the reachability function 𝐹 . Moreover, prior methods have also predominantly

focused on over -approximations of the reachable set, which may lead to false-positives

and is consequently not applicable to e.g., checking the feasibility of prospective motion

plans.

31

Figure 1-1: An example sampled set of initial states 𝒮 (red) from 𝒳 (green) on the left
and the corresponding reachable set 𝐹 (𝒮;𝑇) (red region) relative to the full reachable set,
𝐹 (𝒳 ;𝑇) (gray) on the right.

In Chapter 3, we propose a sample-based approach to reachability analysis that

imposes minimal assumptions on the initial set of states 𝒳 and only a mild Lipschitz

assumption on the reachability function 𝐹 . Relative to prior work, our approach

generates under-approximations of the reachable set by only evaluating the reachability

of a small subset of initial states 𝒮 ⊂ 𝒳 (see Fig. 1-1 for an example). We provide

analytical sample complexity bounds that enable the practitioner to trade-off the

approximation accuracy (i.e., volume of coverage of 𝐹 (𝒳 ;𝑇)) and computation time

prior to deployment and prior to even running our algorithm. This property is crucial

in safety-critical tasks such as autonomous driving, where provably accurate verification

of reachability is necessary to plan collision-free paths. We also provide an anytime,

asymptotically-optimal extension of our algorithm that generates increasingly better

solutions as more time is allotted.

1.3.2 Streaming Coresets for Support Vector Machines

Next, in Chapter 4, we consider the problem of downsizing the set of training points

required to train an accurate Support Vector Machine (SVM) model. Unlike the

problem of reachability analysis from the previous subsection involving an uncountably

infinite input space to sample from, here we are given a finite set of training data points

𝒫 ; our goal is to generate a small, weighted subset 𝒮 so that the model found by training

on 𝒮 is provably competitive with the model found by training on 𝒫 . Fig. 1-2 depicts a

toy scenario where a similar separator to the near-optimal one shown could be obtained

32

by only training on a subset of the points near the decision boundary. To achieve this,

we build on prior work in coresets [BHPI02, HPM04, LS10, FL11, MIGR19, Fel19],

which are small summaries that contain the core components of a larger set.

Figure 1-2: An example classification scenario with an SVM where the task is to compute the
maximum-margin separator (hyperpane) that correctly separates the red input points from
the blue ones. Here the points with the arrows denote those that were on the wrong side of
the separation. In the context of the example scenario depicted above, Chapter 4 considers
the question of whether we can compute a similar separator to the one shown by training on
a smaller subset of the displayed data points, such as only those near the decision boundary.

Unlike prior work in accelerating SVM training, including related coresets work like

Core Vector Machines [TKC05], our approach builds on the importance sampling

framework of [BFL16, LS10] that constructs coresets by sampling data points according

to their sensitivities. The sensitivity of a data point is deemed to be the maximum

relative impact of that point on the training loss across all possible queries 𝑤 ∈ 𝒲.

For example, in the case of SVMs, the queries 𝒲 are the possible margins 𝑤 and

biases 𝑏 that describe the set of all possible separating hyperplanes.

We first prove a negative result showing that no coreset of size sublinear in the number

of data points 𝑛 exists for pathological choices of the regularization parameter 𝜆 and

data sets. Notwithstanding, we prove a sharp upper bound on the sensitivity of each

point by bridging the SVM problem with k-means clustering. This leads to analytical

33

sufficient conditions for the existence of small coresets, which turn out to be very mild

in practice. By sampling points in proportion to our sensitivity upper bounds, we

obtain an efficient coreset construction algorithm for SVMs with a sampling complexity

that is sub-linear for a wide range of real-world hyperparameter choices and data sets.

We present empirical results demonstrating our coresets’ effectiveness in both offline

and streaming data settings, where the training points arrive in a stream.

1.3.3 Pruning Neural Networks for Fast and Deployable AI

In the last subsection, we discussed our work on importance sampling of training

points for efficient training of SVMs that appears in Chapter 4. In Chapters 5

and 6, we extend this work to sampling essential parameters of large neural networks

to construct compact and deployable models. The main idea is once again to use

importance sampling, but this time, to select and keep the important parameters

of neural networks and prune the unsampled ones. We show that pruning networks

through our approach generates compact models that are efficient and easy to deploy,

while remaining competitively accurate as the original network. Fig. 1-3 depicts an

example visualization of this process. Network pruning can also be used to reduce

the burden of manually designing a small network by automatically inferring efficient

architectures from larger networks. Principled pruning approaches also have potential

to enable insights into the theoretical and practical properties of neural networks,

including overparameterization and generalization [AGNZ18, LBL+20].

As in our work on SVMs outlined in the previous subsection, we use the notion

of coresets; but, here the challenge is to treat the model parameters as the input

space that we construct a coreset for, rather than the input training points. Hence,

our main approach is to extend importance sampling of input data based on the

sensitivity framework to parameter sampling. One caveat here is that the roles of

the queries (parameters of a model) and the data points swap relative to those in

the sensitivity framework [BFL16, LS10] that we used for SVM coresets in chapter 4.

That is, we are now interested in sampling from weights of a neural network 𝑤 ∈ 𝒲

34

and considering the maximum impact that the weight has on the output across all

input points. It turns out that if we apply the traditional notion of sensitivity here, we

end up with uniform sensitivities across all parameters, which consequently leads to

uniform sampling. By digging deeper, we observe that this is due to the high capacity

of neural networks and the fact that the definition of sensitivity does not consider the

randomness in the queries, i.e., the input data points in the case of network pruning.

Figure 1-3: An example of network pruning. The parameters (edges) of the graph on the
left is removed to generate a compact network (right). The goal of network pruning is to
generate a sparse network whose predictive capability (e.g., test accuracy) is comparable
with that of the original network.

To resolve this shortcoming of the existing coresets framework, we introduce the

notion of empirical sensitivity for pruning the parameters of a machine learning model,

such as those of a deep neural network. The empirical sensitivity differs from the

traditional notion of sensitivity because it explicitly captures the probabilistic nature

of the input training points, and leads to more informed sensitivity (i.e., importance)

assignments to each of the model’s weights. To the best of our knowledge, our

work [BLG+19a, LBL+20, BLG+19b] is the first to extend the sensitivity coreset

framework to pruning the parameters of machine learning models.

We use the empirical sensitivity framework for provably pruning the weights of a

network model (Chapter 5) as well as neurons and filters (Chapter 6). We present

theoretical guarantees on the trade-off between the size of the pruned network and

its predictive accuracy relative to the original model. We also present empirical

results demonstrating the effectiveness of our approach relative to existing pruning

strategies. Relative to existing approaches, the theoretical guarantees of our pruning

35

methods hold regardless of the specific state of the network — i.e., regardless of

whether the given network is untrained, trained, or partially trained — and hence

tends to perform consistently well across diverse pruning pipelines that incorporate

varying amounts of retraining. Our analysis also provides an analytical compression

bound for neural networks with respect to the desired approximation accuracy of the

compressed network, which may have applications to deriving novel generalization

bounds [BLG+19a, AGNZ18, AZLL19, ADH+19, NLB+19, ZVA+18].

We conclude our discussion of network pruning at the end of Chapter 5, where we

discuss the practical ramifications of pruning neural networks beyond test accuracy.

Namely, our recent results [LBC+21] empirically demonstrate that pruned networks are

more brittle to noisy, out-of-distribution, and adversarial inputs [MMS+17, TCBM20,

IST+19, CAP+19]. This calls for pruning algorithms that can consider multiple

objectives rather than solely the test accuracy. We are hopeful that future work in

this realm can build on the framework and techniques described in this thesis to make

this possible.

1.3.4 Active Learning for Label-Efficient Deep Learning

In the last subsection, we discussed pruning large AI models using a sampling-based

approach. For the last chapter (Chapter 7), we consider the use of importance sampling

for label-efficient training of large-scale AI models. This setting resembles that of data

reduction for efficient training of SVMs from Chapter 4, however, the main difference

here is that the set of training points is assumed to be unlabeled. It turns out that this

aspect of the problem precludes the application of the techniques from the previous

chapter. Intuitively, this is because without the inputs’ labels, it is not possible to

accurately capture the relative importance of a point to the neural network training

process.

Motivated by applications such as health care, where large sets of labeled data are

difficult to obtain, we investigate whether we can train highly accurate models by only

requesting the labels of a subset of points that are deemed to be highly informative.

36

This is called Active Learning and it is often conducted in an iterative fashion where

the labels of small batches of inputs are sequentially requested. The objective of

an active learning algorithm is to decide the best (i.e., most informative) batch of

unlabeled data points to label at each time step.

Unsurprisingly, a vast amount of prior work has focused on devising proxies that

can capture the informativeness of each data point without knowledge of its label.

Examples include proxies based on model uncertainty [RXC+20], clustering on the

network embedding [SS17a, AZK+19], and margin proximity [DP18]. Despite their

effectiveness in certain scenarios, virtually all of the existing active learning methods

are based on greedy selection of the points that are ranked as most informative with

respect to the proxy measure. Despite the intuitiveness of this approach, it is known

to be highly sensitive to outliers and to occasionally perform significantly worse than

uniform sampling on even simple scenarios involving the MNIST dataset [EGSD20].

In our work, we deviate from the greedy paradigm and instead propose a low-regret

active learning framework that can be applied with any user-specified notion of

informativeness. We view the problem of active learning as one of prediction with

(sleeping) expert advice, and develop and analyze a regret minimization algorithm,

AdaProd+, tailored to the active learning setting. Our analysis and evaluations

also show that AdaProd+ can be applied off-the-shelf with existing informativeness

measures to robustify and improve upon greedy selection.

1.4 Thesis Contributions

This thesis makes the following contributions:

• A novel sampling algorithm for provable reachability analysis based on a geomet-

ric packing of the input space. We provide bounds on the relative volume of the

ground-truth reachable set we can cover using the finite subsample generated by

our approach. To the best of our knowledge, this work was the first to present

a general approach to reachability analysis with explicit theoretical bounds on

37

the resulting approximation as a function of the sample size. Unlike prior work,

this work was the first to enable the practitioner to control the computation

time vs. accuracy trade-off analytically and above all, prior to deployment to

safety-critical tasks like autonomous driving.

• The first importance sampling approach with an explicit sampling complexity

for constructing coresets for accelerated SVM training in offline, streaming, and

dynamic data settings, where points are frequently inserted and deleted.

• A novel theoretical framework for parameter pruning of machine learning models,

Sensitivity-informed Provable Pruning (SiPP), and a family of neural network

pruning algorithms that are instantiations. Namely, we introduce a family of

deterministic and randomized sampling algorithms for unstructured (weight)

pruning of large-scale neural networks and provide bounds on the performance of

the generated pruned models. We also bridge network pruning and generalization

bounds for neural networks. To the best of our knowledge, this work was the

first to provably generate pruned networks with guarantees on their accuracy

for unforeseen inputs at the time of publication.

• The first algorithm for structured (i.e., neuron and filter) pruning with guarantees

on the performance of the generated model as a function of the model’s size.

Additionally, a fully-automated sample allocation procedure based on our error

bounds to prioritize sampling and retaining components of important layers.

• A novel, low-regret active learning approach for label-efficient training of modern,

large-scale neural network models. Unlike prior work, our method is applicable

with any notion of informativeness and is the first to provide bounds on the

regret of data acquisition for efficient training of deep neural networks.

The main contribution of this thesis relative to prior work is the development of widely-

applicable, practical algorithms with provable guarantees for model pruning and input

(data) compression. This stands in contrast to related work, which has primarily

38

focused on developing heuristics and presented results that were mostly empirical. For

example, as detailed in Chapter 2, virtually all of prior edge pruning methods are

heuristics that do not provide any bounds on the performance of the generated pruned

network. Our approach in Chapter 5 on the other hand, explicitly provides guarantees

on the size and capability of the pruned model. The same can be said for filter and

neuron pruning, where prior approaches consider the norm of the filter or neuron

weights to decide what to prune with the hope that it captures their importance,

but this leads to unreliably pruned networks. Our work in Chapter 6, on the other

hand, introduces an approach that provably ensures that neurons or filters that are

crucial are approximately preserved during pruning. More generally, the theoretical

guarantees of the algorithms presented in this thesis enable the efficient training

and deployment of reliable and capable AI systems for a wide range of applications,

including safety-critical tasks such as autonomous driving where assessing potential

risks prior to deployment is crucial.

1.5 Thesis Outline

The outline of this thesis as follows:

Chapter II: Background and Related Work We cover background material for

the topics covered in this thesis and provide an overview of prior work.

Chapter III: Reachability Analysis We enable real-time and approximately-

optimal reachability analysis by providing a sampling approach to construct and

evaluate a finite and representative subset of initial states among an infinitely large

set.

Chapter IV: Streaming Coresets for Support Vector Machines We present

an efficient sampling approach of large data sets to accelerate SVM training in offline

streaming, and dynamic data settings, and present bounds on the performance of the

model trained on the subsample.

39

Chapter V: Provable Weight Pruning of Neural Networks We introduce

a theoretical framework and a family of importance sampling algorithms to prune

individual parameters of large-scale models and provide bounds on the resulting

compact model’s performance.

Chapter VI: Structured Pruning and The Next Pruning Frontier We ex-

tend the importance sampling framework from the previous chapter to sample and

prune neurons and filters, i.e., structured pruning, to obtain networks capable of

fast and real-time inference. We discuss the next pruning frontier in context of the

limitations of state-of-the-art pruning approaches and present avenues for future

development.

Chapter VII: Active Learning for Label-Efficient Deep Learning We present

a novel, low-regret active learning algorithm for label-efficient deep learning that

alleviates the brittleness of prior greedy approaches and leads to reliable and uniformly

superior performance in practice.

Chapter VIII: Conclusion We summarize the contributions and implications of

the work presented in this thesis, discuss the lessons learned along the way, and outline

avenues for future work.

1.6 Relevant Publications

The core chapters of this thesis are based on the following publications. Here, the

superscript * denotes shared first-authorship (equal contribution).

Chapter III: Reachability Analysis

1. Lucas Liebenwein*, Cenk Baykal*, Igor Gilitschenski, Sertac Karaman, and

Daniela Rus, "Sampling-Based Approximation Algorithms for Reachability

Analysis with Provable Guarantees," in Robotics: Science and Systems (RSS),

2018 [LBG+18].

40

Chapter IV: Streaming Coresets for Support Vector Machines

1. Cenk Baykal*, Murad Tukan*, Dan Feldman, and Daniela Rus, "Coresets for

Support Vector Machines," as special issue invite to Theoretical Computer

Science (TCS), 2021 [BTFR21].

2. Murad Tukan*, Cenk Baykal*, Dan Feldman, and Daniela Rus, "On Coresets for

Support Vector Machines," in Theory and Applications of Models of Computation

(TAMC), 2020 [TBFR20].

Chapter V: Provable Weight Pruning of Neural Networks

1. Cenk Baykal*, Lucas Liebenwein*, Igor Gilitschenski, Dan Feldman, Daniela Rus,

"Data-Dependent Coresets for Compressing Neural Networks with Applications

to Generalization Bounds," in International Conference on Machine Learning

(ICLR), May 2019 [BLG+18].

2. Cenk Baykal*, Lucas Liebenwein*, Igor Gilitschenski, Dan Feldman, and Daniela

Rus, "SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural

Networks," 2021, submitted to SIAM Journal on Mathematics of Data Science

(SIMODS), available on arXiv [BLG+21].

Chapter VI: Structured Pruning and The Next Pruning Frontier

1. Lucas Liebenwein*, Cenk Baykal*, Harry Lang, Dan Feldman, and Daniela

Rus, "Provable Filter Pruning for Efficient Neural Networks," in International

Conference on Machine Learning (ICLR), 2020 [LBL+20].

2. Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus,

"Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy,"

in Conference on Machine Learning and Systems (MLSys), 2021 [LBC+21].

Chapter VII: Active Learning for Label-Efficient Deep Learning

41

https://arxiv.org/abs/1910.05422

1. Cenk Baykal, Lucas Liebenwein, Dan Feldman, Daniela Rus, "Low-Regret Active

Learning," submitted to NeurIPS 2021, available on arXiv [BLFR21].

1.7 Other Relevant Results

This thesis presents a subset of the results obtained as part of the student’s PhD work

for sake of brevity and cohesion. Additional results along the same lines as the ones

presented in this thesis include:

1. Coresets for Sparse PageRank (Harry Lang*, Cenk Baykal*, Najib Abu

Samra, Tony Tannous, Dan Feldman, and Daniela Rus, "Deterministic Coresets

for Stochastic Matrices with Applications to Scalable Sparse PageRank," in

TAMC, 2019) [LBS+19].

2. Algorithms for Resilient Multi-Agent Consensus (Stephanie Gil, Cenk

Baykal, and Daniela Rus, "Resilient Multi-Agent Consensus using Wi-Fi Signals,"

in IEEE Control Systems Letters, 2019) [GBR18].

42

https://arxiv.org/abs/2104.02822

Chapter 2

Background and Related Work

Our work builds on prior work in importance sampling, reachability analysis, coresets,

network pruning, and active learning. In this chapter, we cover background and prior

work pertinent to the material presented in this thesis. In Sec. 2.1, we cover prior

work in importance sampling for approximate machine learning that is related to, but

different than the flavor of sampling we consider in our work. Next, in Sec. 2.2, we

overview prior approaches to approximate reachability analysis. In Sec. 2.3, we describe

and outline relevant work in coresets, a foundational idea that will be commonly

referenced throughout this thesis. Relatedly, we discuss acceleration methods for

Support Vector Machine training in Sec. 2.4, including prior coreset-based methods.

We overview the state-of-the-art in neural network pruning in Sec. 2.5. We conclude

the chapter with a coverage of related approaches and their limitations for active

learning in Sec. 2.6.

2.1 Importance Sampling for Approximate Queries

Here, we cover related work where the objective is to accelerate the core training or

evaluation procedure on the fly by embedding importance sampling into it, rather

than use sampling as a pre-processing step to generate compact representations as we

43

do in this thesis. Stochastic Gradient Descent (SGD) [RM51] is one such example:

it samples a mini batch of data points at each iteration to approximate the gradient

over the entire data set during training. This is different – but complementary –

to the flavor of sampling we cover in this thesis, which aims to generate compact

representations prior to applying existing (including sampling-based) algorithms such

as SGD.

Approaches in this realm include Locality Sensitive Hashing (LSH)-based [GIM+99,

IN07] samplers for efficient and approximate ML applications [SS17c, SS17b]. In [SS17c],

for example, the authors speed up training of neural networks by LSH-based sampling

of nodes with probabilities proportional to their activations [SS17c] during training,

and performing forward and backward propagation on only the sampled nodes. This

is similar to the work on (Adaptive) Dropout [MF14, SHK+14], where the forward

and backpropagation steps are done on adaptively selected subsets of nodes with high

activations. The power of LSH-based sampling lies in its ability to generate (desirably)

correlated samples in sublinear time [SS17c]; hence, it has been successfully applied

to efficient training of large language models [SS17b], importance sampling for SGD

and ADAM [CXS19], and mutual information estimation [SS20]. LSH-based sampling

can be synergistically combined with the approaches outlined in this thesis by, for

example, combining the LSH-based sampler for efficient training with the network

pruning algorithms presented in Chapters 5 and 6.

A similar line of work involves the use of importance sampling for approximate ten-

sor operations in neural network training and inference [ALHS18, PBB+19]. The

main idea is to replace the computationally-expensive tensor operations, e.g., ma-

trix multiplication and tensor convolutions, during the forward (and backward, if

training) passes with faster operations involving tensors made up of sampled rows

and columns [ALHS18]. Related methods include channel gating [HZDS+18], which

attempts to learn a gate (sampling) function at run-time to identify important re-

gions in the input features, and skip the computation on the unimportant parts;

sparsified backpropagation where only a small subset of the full gradient is used to

44

update the model parameters [SRMW17]; and Sub-LInear Deep Learning Engine

(SLIDE) [CMF+19], an approach that blends various randomized (sampling-based)

algorithms to speed up neural network training and inference.

Unlike the work in this thesis, these approaches aim to reduce the runtime by inte-

grating the sampling procedure directly into the original algorithm at run-time, as

opposed to sparsifying the data set or the machine learning model prior to execution.

Their shortcoming lies in the fact that they cannot alleviate the difficulty of deploying

over-parameterized models to resource-constrained platforms or handling dynamic

streams of data in a memory-efficient way. However, our work can be synergistically

combined with these related sampling methods to simultaneously reap the benefits of

both using a compact representation and a sampling approach at run-time for training

and deploying efficient machine learning models.

2.2 Reachability Analysis

A large body of literature has been devoted to formal analysis of reachability for

finite [CGL93], continuous [BF04, CK08], and hybrid systems [ACH+95, MBT05,

ADI06, CSM+15] with applications ranging from ensuring the safety of mobile robots

in human environments to flight maneuver verification [LRH+17, BGM+14, GHH+11,

PLA+15, XD10, Ser95, Imm15, EWR+15, GO05, MBT05]. Accurate reachability

analysis necessitates the computation of the reachable set for every single state in

an uncountable state space, which is computationally intractable in practice [Tab09].

Therefore, a vast collection of prior work has focused on developing approximation

algorithms for the computation of approximate reachable sets.

To this end, an approach using zonotopes is presented in [Alt15] and implemented as

the CORA toolbox. Taylor flow tubes were used in Flow⋆ tool [CÁS13]. Other tools

such as HyTech [HHWT97] and [CK99] consider only linear dynamics. In [FCTS15,

MBT05] reachability is cast as Partial Differential Equations (PDEs) and standard

tools for solving PDEs are used. However, virtually all of these tools compute

45

over-approximations and cast the generally (highly) non-linear system dynamics as

polynomials or even linear functions, which results in potentially unbounded error

terms. Moreover, they are highly sensitive to the dimensionality of the input space

and suffer to a great extent from the curse of dimensionality [MBT05].

To overcome the computational tractability issues, the simplified version of the problem

has been addressed in the context of safety, namely falsification [PKV09, CK08, BF04].

In this case, an invariant set is fixed and the procedure generates some trajectory

that exists in the set. This approach culminated in the development of frameworks

such as counter-example guided abstraction refinement methods [CGJ+00, KDSA14]

for safety verification and synthesis. Another falsification method for continuous and

hybrid systems based on the Rapidly-exploring Random Tree (RRT) algorithm (and its

variants) was proposed in [BF04]. Other approaches to overcome the inherit tractability

issues of verification include decoupling the dynamics of the system [CT15], which,

however, poses a strong assumption on the types of systems that can be considered.

Previous work has also investigated verification for autonomous cars and other agents.

In [AD14], planned driving maneuvers are verified before execution via zonotope-based

approximations of the reachable set. Similarly, [EFG16] considered safe envelopes for

shared steering of a vehicle, however, the approach does not consider vehicle dynamics,

but its performance heavily depends on the geometry of the environment. The work

in [LSV+17] introduces a compositional verification framework for a large array of

driving scenarios to verify planner constraints on a city-level scale. In [AGJT14], the

coupled dynamics of vehicle platooning is investigated and verified offline.

In contrast to prior work, our work in Chapter 3 addresses the problem of generat-

ing accurate under-approximations of reachable sets and closes the research gap in

approximate reachability analysis, which has predominantly focused on computing

over-approximations. Unlike prior approaches that lack theoretical guarantees on per-

formance or impose strong assumptions on the problem, our sampling-based algorithm

is simple-to-implement, imposes minimal assumptions, and is provably-optimal up to

46

any desired approximation accuracy. This enables the practitioner to explicitly make

the trade-off between the computational complexity and approximation accuracy prior

to deployment to safety-critical tasks like autonomous driving.

2.3 Coresets

In this section, we cover prior work in coresets, a fundamental idea that we will revisit

frequently throughout our work. As discussed in Chapter 1, popular machine learning

algorithms are computationally expensive, or worse yet, intractable to train on massive

data sets where the input data set is so large that it may not be possible to process all

the data at one time. A natural approach to achieve scalability when faced with Big

Data is to first conduct a preprocessing step to summarize the input data points by

a significantly smaller, representative set. Off-the-shelf training algorithms can then

be run efficiently on this compressed set of data points. The premise of this two-step

learning procedure is that the model trained on the compressed set will be provably

competitive with the model trained on the original set – as long as the data summary,

i.e., the coreset, can be generated efficiently and is sufficiently representative.

Coresets are small weighted subsets of the training points such that models trained

on the coreset are approximately as good as the ones trained on the original (massive)

data set. Coreset constructions were originally introduced for k-means and k-median

clustering [HPM04] and subsequently generalized for applications to other problems

via an importance sampling-based, sensitivity framework [LS10, BFL16, BLK17].

Coresets have been used successfully to accelerate various machine learning algorithms

such as 𝑘-means clustering [FL11, BFL16], graphical model training [MMK18], and

logistic regression [HCB16] (see the surveys of [BLK17] and [MS18] for a complete

list).

The sensitivity framework provides a popular coreset construction technique, and we

will frequently reference and leverage it in this thesis. The main idea is to perform

importance sampling with respect to the points’ sensitivities, where the sensitivity

47

of each point is defined to be the maximum relative impact of the data point on the

objective (loss) function across all queries. Points with high sensitivities have a large

impact on the objective value and are sampled with correspondingly high probability,

and vice-versa. The main challenge in generating small coresets often lies in evaluating

the importance of each point in a sufficiently accurate and computationally efficient

way.

2.4 Accelerating Support Vector Machines

Training SVMs requires 𝒪(𝑛3) time and 𝒪(𝑛2) space in the offline setting where 𝑛

is the number of training points. Towards the goal of accelerating SVM training

in the offline setting, [TKK07, TKC05] introduced the Core Vector Machine (CVM)

and Ball Vector Machine (BVM) algorithms, which are based on reformulating the

SVM problem as the Minimum Enclosing Ball (MEB) problem and Enclosing Ball

(EB) problem, respectively, and by leveraging existing coreset constructions for each;

see [BC03]. However, CVM’s accuracy and convergence properties have been noted

to be at times inferior relative to those of existing SVM implementations [LC07].

Additionally, unlike the coreset construction we introduce in Chapter 4, neither the

CVM, nor the BVM algorithm extends naturally to streaming or dynamic settings

where data points are continuously inserted or deleted.

Similar geometric approaches, including extensions of the MEB formulation, those

based on convex hulls and extreme points, among others, were investigated by

[AS10, GJ09, HPRZ07, Joa06, NKT14, RDIV09] Another class of related work in-

cludes the use of canonical optimization algorithms such as the Frank-Wolfe algo-

rithm [Cla10], Gilbert’s algorithm [Cla10, CHW12], and a primal-dual approach

combined with Stochastic Gradient Descent (SGD) [HKS11]. SGD-based approaches,

such as Pegasos [SSSSC11], have been a popular tool of choice in approximately-

optimal SVM training. Pegasos is a stochastic sub-gradient algorithm for obtaining a

(1 + 𝜀)-approximate solution to the SVM problem in ̃︀𝒪(𝑑𝑛𝜆/𝜀) time for a linear kernel,

where 𝜆 is the regularization parameter and 𝑑 is the dimensionality of the input data

48

points. In contrast to the approach presented in Chapter 4, these approaches and

their corresponding theoretical guarantees do not readily extend to dynamic data sets

and/or streaming settings.

There has been prior work in streaming algorithms for SVMs, such as those of [AS10,

HPRZ07, NR14, RDIV09]. However, they generally suffer from poor practical perfor-

mance in comparison to that of approximately optimal SVM algorithms in the offline

(batch) setting, high difficulty of implementation and application to practical settings,

or lack theoretical guarantees.

2.5 Pruning Neural Networks for Fast and Scalable

AI

Prior pruning work has considered varying techniques ranging from those based on

Singular Value Decomposition (SVD) to regularized (sparsity-aware) training [DSD+13,

DZB+14, JVZ14, KPY+15, TXZ+15, IRS+15, AS17, YLWT17]. Other general method-

ologies include those that exploit the structure of the weight tensors to induce spar-

sity [ZLW+17, SSK15, CYF+15, CCB+16, WWW+16], Bayesian approaches [ZZWT19,

LUW17], and those based on dynamic reparameterization where certain weights are

pruned and others grown back iteratively throughout the training process [MW19,

CPI18, BKML17, GYC16]; see [GEH19, BGOFG20, YLLW18] for a more extensive

overview. In contrast to these approaches, we consider pruning a given network

independent of how it was trained, and we specifically take into the account the input

data distribution in order to make more informed pruning decisions.

Existing network pruning algorithms are predominantly based on data oblivious [RFC20,

HMD15] or data-informed [GKDP20, LGGT19, MMT+19, YLC+18, LAT18] heuristics

that work well in practice as part of a pruning pipeline that incorporates retrain-

ing [LBC+21]. However, they generally lack provable guarantees and thus provide

little insight into the mechanics of the pruning algorithms and consequently into the

49

pruned network.

Weight pruning Weight pruning [LDS90] hinges on the idea that only a few of

dominant weights within a layer, or more generally, the entire network, are required

to approximately preserve the output. Approaches of this flavor were investigated

by [LL16, DCP17], e.g., by embedding sparsity as a constraint [IHM+16, AANR17,

LRLZ17]. A popular weight-based pruning method is that of [HMD15, RFC20], where

weights with absolute values below a threshold are removed. A recent approach

of [LAT18] prunes the parameters of the network by using a mini-batch of data points

to approximate the influence of each parameter on the loss function of a randomly

initialized network. Other data-informed techniques include [GKDP20, LSB+20,

LGGT19, MTK+16, MMT+19, YLC+18, LBL+20]. Despite their favorable empirical

performance, these approaches generally lack rigorous theoretical analysis of the effect

that the discarded weights can have on the model’s performance. Approaches based on

Alternating Direction Method of Multipliers (ADMM) have also been investigated for

weight [MCL+19, ZYZ+18] and filter [LJL+19] pruning. However, these methods tend

to be more computationally-intensive as they require running an iterative algorithm

(ADMM) for the pruning step itself, and do not provide an explicit theoretical guarantee

for or trade-off between the performance and size of the compressed network.

Provable pruning In the recent years, [AGNZ18] introduced a compression method

based on random projections and proved norm-based bounds on the compressed

network – however, this bound only applies to points from the training set only.

In contrast, our work provides approximation guarantees on the network’s output

that hold even for points outside the training set. The work of [AAR20] formulates

the pruning problem as a convex optimization problem at each layer and provides

bounds depending on the convex program. However, this approach requires solving

an optimization program iteratively (via ADMM) to prune each layer and does not

provide an explicit control or theoretical trade-off between the size and accuracy of

the compressed network.

50

We close this research gap in Chapters 5 and 6 by introducing sensitivity-informed

pruning, a family of network pruning algorithms that provably prunes parameters

and filters of a given network in a data-informed manner. Building and improving

on state-of-the-art pruning methods, the presented approaches are simultaneously

provably accurate, data-informed, and applicable to various architectures including

fully-connected (FNNs), convolutional (CNNs), and recurrent neural networks (RNNs).

2.6 Active Learning for Label-Efficient Deep Learn-

ing

As we saw in Chapter 1, the successes of large-scale AI have come on the back of

training large models on massive labeled data sets, which may be costly or even

infeasible to obtain in other applications like Healthcare [BM20]. Active learning

focuses on alleviating the high label-cost of learning by only querying the labels of

points that are deemed to be the most informative. The notion of informativeness is

not concrete and may be defined in a task-specific way. Unsurprisingly, prior work

in active learning has primarily focused on devising proxy metrics to appropriately

quantify the informativeness of each data point in a tractable way. Examples include

proxies based on model uncertainty [GIG17], clustering [SS17a, AZK+19], and margin

proximity [DP18] (see [RXC+20] for a detailed survey).

500 1000 1500 2000 2500 3000
Sample Size

65

70

75

80

85

Te
st

 A
cc

ur
ac

y
(%

%
)

FashionCNN, FashionMNIST

Ours
Uncertainty
Entropy
Coreset
Uniform

40000 50000 60000 70000 80000 90000 100000
Sample Size

45

50

55

60

65

To
p

5
Te

st
 A

cc
ur

ac
y

(%
)

resnet18, ImageNet
Ours
Uncertainty
Entropy
Uniform

Figure 2-1: Evaluations on FashionMNIST and ImageNet with benchmark active learning
algorithms. Existing approaches based on greedy selection are not robust and may perform
significantly worse than uniform sampling.

51

An overwhelming majority of existing methods are based on greedy selection of

the points that are ranked as most informative with respect to the proxy criterion.

Despite the intuitiveness of this approach, it is known to be highly sensitive to outliers

and to occasionally perform significantly worse than uniform sampling on certain

tasks [EGSD20] – as Fig. 2-1 also depicts. In fact, this shortcoming manifests itself

even on reportedly redundant data sets, such as MNIST, where existing approaches can

lead to models with up to 15% (absolute terms) higher test error [Mut19] than those

obtained with uniform sampling. In sum, the general lack of robustness and reliability

guarantees of prior (greedy) approaches impedes their widespread applicability to

high-impact deep learning tasks.

In Chapter 7, we propose a low-regret active learning framework that can be applied

with any user-specified notion of informativeness. Our approach deviates from the

standard greedy paradigm and instead formulates the active learning problem as that

of learning with expert advice in an adversarial environment. We develop and analyze

a regret minimization algorithm tailored to the active learning setting. In this regard,

our work aims to advance the development of effective and robust active learning

strategies that can be widely applied to modern deep learning tasks.

52

Chapter 3

Importance Sampling in the Context

of Reachability Analysis

3.1 Overview

We begin our exposition on sampling-based algorithms with a motivating application

to the problem of reachability analysis, i.e., the computation of states that can be

reached by a safe trajectory from any of the specified initial states. Given that the set

of states we have to consider is infinite in size, we have to settle for approximations.

Here, we propose a principled approach for generating such an approximation based on

set packing from computational geometry. By constructing an appropriate packing for

the set of initial states, we enable computational efficiency and real-time performance

by only requiring the evaluation of a finite set of states, at the cost of small, bounded

approximation error.

Above all, this application highlights the effectiveness of sampling-based approaches

in AI; with sampling, we solve the exact same problem as before except on a finite set

of states whose reachability can be computed efficiently. Moreover, unlike prior work

that is based on complex geometrical assumptions and methods, sampling serves as a

highly general approach that imposes minimal assumptions and is capable of handling

53

Figure 3-1: (1− 𝜀) = 0.2 Figure 3-2: (1− 𝜀) = 0.4

Figure 3-3: (1− 𝜀) = 0.6 Figure 3-4: (1− 𝜀) = 0.8

Figure 3-5: (a)-(d): A 0.2, 0.4, 0.6, and 0.8-approximation respectively, of the reachable set
of a unicycle car. The set of initial conditions is taken to be the unit cube around the origin.

nonlinear dynamics as well as arbitrarily non-convex regions of states. This work is

based on [LBG+18] and contributes the following:

1. A unified problem formulation that imposes minimal system-specific assumptions,

for the provable under-approximation of the reachable set of a continuous set,

2. A simple-to-implement, sampling-based algorithm to sample sufficiently diverse

initial states in order to generate a provably-accurate approximation of the target

reachable set, up to any desired accuracy. Additionally, an anytime variant of

our approximation algorithm that is asymptotically optimal,

3. An analysis of the proposed algorithms and their theoretical properties, including

approximation accuracy and computational complexity, as a function of the

desired approximation error 𝜀 and system-specific variables,

54

4. Empirical results demonstrating the broad applicability and practical effective-

ness of our algorithm on a set of real-world inspired, simulated scenarios.

3.2 The Reachability Problem

Consider a robot described by the dynamic system: 𝑥̇ = ℎ(𝑥, 𝑢), where 𝑥 ∈ R𝑑 is the

state, 𝑢 ∈ 𝒰 is the control signal, the set of controls 𝒰 ⊂ R𝑚 is a compact set, and ℎ

is a continuously differentiable function. Let x(𝑥0, 𝑡, 𝑢(·)) denote the robot’s state at

time 𝑡 starting from the initial state 𝑥0 and evolving under input control signal 𝑢(𝑡).

Denote the set 𝐻(𝑥0, 𝑇) = {x(𝑥0, 𝑇, 𝑢(·)) | 𝑢(𝑡) ∈ 𝒰 ,∀𝑡 ∈ [0, 𝑇]}.

Let 𝒳 ⊂ R𝑑 denote the 𝑑-dimensional compact set of initial states and let 𝒴 denote

the 𝑑-dimensional compact set of all reachable states. The reachability function

𝑓 : R𝑑 → 2𝒴 maps each state 𝑥 ∈ 𝒳 to a compact set of reachable states, 𝑓(𝑥) ⊆ 2𝒴 .

Let 𝑇 > 0 be the terminal time, the reachability function is 𝑓(𝑥) = 𝐻(𝑥, 𝑇). The

domain of 𝑓 is defined to be the entire 𝑑-dimensional space for convenience in our

analysis, however, without loss of generality we assume that 𝑓(𝑧) = ∅ ∀𝑧 /∈ 𝒳 . For

any subset 𝒳 ′ ⊆ 𝒳 , define the function that represents the union of all reachable sets

in 𝒳 ′, 𝐹 (𝒳 ′) = ∪𝑥∈𝒳 ′𝑓(𝑥) for notational brevity. Note that 𝐹 is monotonous, i.e., for

any subset 𝒳 ′ ⊆ 𝒳 , 𝐹 (𝒳 ′) ⊆ 𝐹 (𝒳) and that the ground truth reachable set is 𝐹 (𝒳).

We assume that both the state space, 𝒳 , and the ground truth reachable set, 𝐹 (𝒳),

are compact.

Our objective is to generate an approximation to 𝐹 (𝒳) via the union of the reachable

sets of a finite set 𝒮 ⊂ 𝒳 such that |𝒮| = 𝑛 ∈ N+. That is, our goal is to judiciously

construct a finite set 𝒮 ⊂ 𝒳 such that 𝐹 (𝒮) ≈ 𝐹 (𝒳). We will quantify the accuracy of

our approximation by comparing the volume of 𝐹 (𝒮) to that of 𝐹 (𝒳). More formally,

let 𝜇(·) denote the Lebesgue measure, i.e., volume, of any measurable set and let

𝜇(𝐹 (𝒳)) denote the volume of the ground truth reachable set.

We formalize the reachability problem as follows.

55

Problem 1 (Approximate Reachability Problem). For any given 𝜀 ∈ (0, 1), generate

a finite subset 𝒮 ⊂ 𝒳 such that

(1− 𝜀)𝜇(𝐹 (𝒳)) ≤ 𝜇(𝐹 (𝒮)) ≤ 𝜇(𝐹 (𝒳)). (3.1)

3.3 Method

In this section, we present our algorithm for generating reachable sets that are provably

competitive with the ground-truth reachable set to any desired accuracy. We show

that our main method (Alg. 2) can easily be used as a sub-procedure to obtain an

anytime, asymptotically-optimal algorithm (Alg. 3) for reachability analysis.

3.3.1 Overview

Accurate construction of the ground-truth reachable set 𝐹 (𝒳) requires the evaluation

of the reachable set 𝑓(𝑥) for all initial states 𝑥 ∈ 𝒳 in the worst case. However, the set

of initial states 𝒳 is uncountably infinite, which renders straightforward evaluation of

𝐹 (𝒳) computationally intractable. To address this challenge, we take a sampling-based

approach to reachability analysis.

Our method is based on the premise that evaluating the reachability of a carefully

constructed finite subset 𝒮 ⊂ 𝒳 of the initial states can serve as an accurate approxi-

mation of the ground-truth reachable set. The crux of our approach lies in generating

a set 𝒮 containing points that are sufficiently diverse, i.e., far-apart from one another,

to ensure that that the union of the reachable sets 𝐹 (𝒮) covers as much of 𝐹 (𝒳)

as possible. To this end, we use the GreedyPack [Wu16] algorithm (Alg. 1) to

construct a 𝛿-packing for 𝒳 , i.e., a subset 𝒮 ⊂ 𝒳 such that the minimum pairwise

distances between the points in 𝒮 is greater than 𝛿 (see Sec. 3.4), for an appropriate

𝛿 > 0.

56

Algorithm 1 GreedyPack
Input: 𝒳 ⊂ R𝑑: 𝑑-dimensional set of input states,
𝛿 ∈ R+: packing precision
Output: 𝒮: a 𝛿-packing for 𝒳
1: 𝒮 ← Random point chosen from 𝒳 ;
2: while ∃𝑥 ∈ 𝒳 : ∀𝑦 ∈ 𝒮, ‖𝑥− 𝑦‖ ≥ 𝛿 do
3: 𝒮 ← 𝒮 ∪ {𝑥};
4: return 𝒮;

3.3.2 Approximately-optimal Algorithm

Our algorithm for approximately-optimal reachability analysis is shown as Approx-

imateReachability (Alg. 2). We give an overview of our method, which follows

directly from the constructive proofs presented in Sec. 3.4. In particular, for any

desired approximation accuracy 𝜀 ∈ (0, 1), our analysis establishes an appropriate

value of 𝛿 to be used in constructing the 𝛿-packing for 𝒳 . Lines 1-4 of Alg. 2 generate

upper bounds on the system-specific constraints, which are then used, along with 𝜀,

to set the appropriate 𝛿 parameter for the packing (Line 6). The 𝛿-packing, 𝒮, is then

constructed (Line 7) and the reachability of 𝒮 is computed and returned (Lines 8-12).

3.3.3 Anytime, Asymptotically-optimal Algorithm

Our anytime, asymptotically-optimal algorithm is shown as AnytimeApproxi-

mateReachability (Alg. 3). The main idea behind our algorithm is that if Alg. 2

is iteratively invoked with increasingly small values of 𝜀 as input, then the gener-

ated reachable sets will converge to the ground-truth reachable set as the number of

iterations 𝑖 tends to infinity.

3.4 Theoretical Guarantees

We prove under mild assumptions that for any specified error 𝜀 ∈ (0, 1), Alg. 2

generates an approximately optimal reachable set by computing the reachable sets of

only finitely many initial states. As a corollary, we prove that the anytime variant of

our approximation algorithm, Alg. 3, is asymptotically optimal. For brevity, some of

57

Algorithm 2 ApproximateReachability
Input: 𝒳 ⊂ R𝑑: a 𝑑-dimensional set of input states,
𝜀 ∈ (0, 1): desired approximation accuracy
Output: 𝐹𝒮 : approximate reachable set such that 𝜇(𝐹𝒮) ≥ (1− 𝜀)𝜇(𝐹 (𝒳))

1: 𝛼← UpperSurfAreaToVolume(𝒳);
2: 𝐾 ← UpperLipschitzConstant(𝒳);
3: ◁ Approximate the universal constant from Lemma 3
4: 𝑐← UpperUniversalConstant(𝒳);
5: ◁ Set packing precision as established in Theorem 7
6: 𝛿 ← 𝑑

(︀
(1− 𝜀)−1/𝑑 − 1

)︀
/(𝛼𝐾𝑐);

7: 𝒮 ← GreedyPack(𝒳 , 𝛿); ◁ Generate a 𝛿-packing for 𝒳
8: 𝐹𝒮 ← ∅;
9: for 𝑥 ∈ 𝒮 do ◁ Evaluate the reachable set for each 𝑥 ∈ 𝒮

10: 𝑓(𝑥)← EvaluateReachability(𝑥);
11: 𝐹𝒮 ← 𝐹𝒮 ∪ 𝑓(𝑥);

12: return 𝐹𝒮 ;

Algorithm 3 AnytimeApproximateReachability
Input: 𝒳 ⊂ R𝑑: 𝑑-dimensional set of input states
Output: 𝐹𝒮 : asymptotically-optimal reachable set
1: 𝜀← 1/2; 𝐹𝒮 ← ∅;
2: while allotted time remains do
3: 𝐹𝒮 ← ApproximateReachability(𝒳 , 𝜀);
4: 𝜀← 𝜀/2;
5: return 𝐹𝒮 ;

the proofs have been omitted from this manuscript.

The intuition behind our analysis is as follows. Assuming that the reachability function

is Lipschitz continuous, we expect similar states to map to similar reachable sets.

Therefore, to establish a bound on the quality of our finite set generated by Alg. 1, we

show that the total overlap between the reachable sets of 𝑥 ∈ 𝒮 and the neighboring

states of 𝑥 is high (Lemmas 3, 4). This implies that 𝑓(𝑥) serves as a good approximation

of the reachable sets of all neighboring states. By generalizing and applying this

argument to all points in 𝒮, we establish that 𝐹 (𝒮) serves as a good approximation for

the entire reachable set, given that the points are sampled sufficiently far apart from

58

one another (Lemmas 5, 6). We conclude by establishing sufficient conditions on the

constructed set 𝒮 to ensure a (1− 𝜀)-approximation of the reachable set and analyzing

the computational complexity of our algorithm (Theorems 7, 10). The proofs of the

technical lemmas are deferred to Sec. 3.6 for clarity of exposition.

3.4.1 Preliminaries

For any measurable two sets 𝐴,𝐵, let 𝑑H(𝐴,𝐵) denote the Hausdorff distance [Mun14]

between 𝐴 and 𝐵, i.e.,

𝑑H(𝐴,𝐵) = max
{︀

sup
𝑎∈𝐴

inf
𝑏∈𝐵
‖𝑎− 𝑏‖ , sup

𝑏∈𝐵
inf
𝑎∈𝐴
‖𝑎− 𝑏‖

}︀
,

where ‖·‖ denotes the Euclidean norm. Intuitively, the Hausdorff distance is the

maximum length of the path from a point in one of the sets to the closest point

belonging to the other set. An equivalent way to define the Hausdorff distance between

compact sets 𝐴,𝐵 is via a 𝛿-fattening:

𝑑H(𝐴,𝐵) = inf{𝛿 ≥ 0 : 𝐴 ⊆ 𝐵𝛿 and 𝐵 ⊆ 𝐴𝛿},

where 𝐴𝛿 ⊆ R𝑑 denotes the 𝛿-fattening of the set 𝐴: 𝐴𝛿 = ∪𝑎∈𝐴ℬ𝛿(𝑎), where ℬ𝛿(𝑎)

denotes the closed ball of radius 𝛿 centered at 𝑎 [Mun14].

Assumption 1 (Measure Properties of 𝑓). For all states 𝑥 ∈ 𝒳 , 𝑓(𝑥) is measurable

and has non-zero measure, i.e., ∀𝑥 ∈ 𝒳 𝜇(𝑓(𝑥)) > 0.

Assumption 2 (Lipschitz Continuity of 𝑓). There exists a Lipschitz constant 𝐾 > 0

such that for any two states 𝑥, 𝑦 ∈ 𝒳 , 𝑑H(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐾 ‖𝑥− 𝑦‖.

A reachable set 𝐴 ⊆ 𝒴 is said to be 𝑚-rectifiable if there exists a Lipschitz map

𝑔 : R𝑚 → 𝒴 onto 𝒴 [Fed69, Definition 3.2.14]. Less formally, rectifiability of 𝐴 implies

that 𝐴 enjoys many of the properties shared by smooth manifolds and that 𝐴 is in a

sense a piece-wise smooth set.

59

Assumption 3 (Properties of 𝐹). For all subsets 𝒳 ′ ⊆ 𝒳 ⊆ R𝑑, 𝐹 (𝒳 ′) is compact

and for any 𝛿 ≥ 0, the 𝛿-fattening of 𝐹 (𝒳 ′), 𝐹 (𝒳 ′)𝛿, is a (𝑑− 1)-rectifiable set.

Assumption 1 ensures that 𝑓 maps to reachable sets that have strictly positive volume.

Assumption 2 guarantees that similar initial states have similar reachable sets. Finally,

Assumption 3 rules out pathological problem instances, where the reachable sets may

have arbitrarily large surface areas, e.g., fractals. We note that these assumptions

generally hold in practical settings. In particular, dynamical systems in real-world

scenarios often exhibit these kind of properties.

We will leverage properties of coverings and packings with respect to the Euclidean

norm in our analysis. For 𝛿 > 0, a 𝑑-dimensional space 𝐴 defining the metric space

(𝐴, ‖·‖), a set 𝐶 = {𝑐1, . . . , 𝑐𝑁} ⊂ 𝐵 is said to be a 𝛿-covering of 𝐵 ⊂ 𝐴 if for all 𝑏 ∈ 𝐵,

there exists 𝑐 ∈ 𝐶 such that ‖𝑏− 𝑐‖ ≤ 𝛿. The covering number of 𝐵, 𝑁(𝐵, 𝛿), is defined

as the minimum cardinality of a 𝛿-covering of 𝐵 [Wu16]. Under the same setting as

before, 𝐷 = {𝑑1, . . . , 𝑑𝑀} ⊂ 𝐵 is a 𝛿-packing for 𝐵 if min𝑖,𝑗∈[𝑀]:𝑖 ̸=𝑗 ‖𝑑𝑖 − 𝑑𝑗‖ > 𝛿. The

packing number of 𝐵, 𝑀(𝐵, 𝛿) is defined as the maximum cardinality of a 𝛿-packing of

𝐵 [Wu16]. We present the following standard results in covering and packing numbers

for completeness.

Theorem 1 ([Wu16, Theorem 14.2]). For 𝛿 > 0, 𝒳 ⊂ R𝑑, and 𝐶 = 𝜋𝑑/2

Γ(𝑑/2+1)
the

following holds:

(︂
1

𝛿

)︂𝑑
𝜇(𝒳)

𝐶
≤ 𝑁(𝒳 , 𝛿) ≤𝑀(𝒳 , 𝛿) ≤

(︂
2∆(𝒳)

𝛿
+ 1

)︂𝑑

,

where ∆(𝒳) = max𝑥,𝑦∈𝒳 ‖𝑥− 𝑦‖ and Γ(·) is the Euler gamma function [Dav59].

Note that in order for a 𝛿-packing for the set 𝒳 ⊆ R𝑑 to be non-trivial, i.e., contain at

least 2 points, it must be the case that 𝛿 ≤ ∆(𝒳). Since, if 𝛿 > ∆(𝒳), there cannot

exist more than one point in the packing by definition of ∆(𝒳) = max𝑥,𝑦∈𝒳 ‖𝑥− 𝑦‖.

Therefore, we henceforth will assume that we are interested in generating non-trivial

packings with parameter 𝛿 ∈ (0,∆(𝒳)]. Our first lemma bounds the size of the points

60

generated by GreedyPack (Alg. 1).

Lemma 2. Given a compact set 𝒳 ⊂ R𝑑 and 𝛿 ∈ (0,∆(𝒳)], GreedyPack (Alg. 1)

generates a packing for 𝒳 , 𝒮, such that

(︂
1

𝛿

)︂𝑑
𝜇(𝒳)

𝐶
≤ |𝒮| ≤

(︂
3∆(𝒳)

𝛿

)︂𝑑

,

where ∆(𝒳) and 𝐶 are defined as in Theorem 1.

Proof. By the termination condition of GreedyPack, we have the negation of the

following statement ∃𝑥 ∈ 𝒳 ∀𝑦 ∈ 𝒮 ‖𝑥− 𝑦‖ > 𝛿, which is ∀𝑥 ∈ 𝒳 ∃𝑦 ∈ 𝒮 ‖𝑥− 𝑦‖ ≤

𝛿, which implies that upon termination of the algorithm, 𝒮 is an 𝛿-covering of 𝒳 and

thus |𝒮| ≥ 𝑁(𝒳 , 𝛿). Invoking Theorem 1, we have

|𝒮| ≥ 𝑁(𝒳 , 𝛿) ≥
(︂

1

𝛿

)︂𝑑
𝜇(𝒳)

𝐶
.

The upper bound follows by the upper bound on 𝑀(𝒳 , 𝛿) from Theorem 1 and the

inequality 𝛿 ≤ ∆(𝒳).

3.4.2 Analysis of Algorithms 2 and 3

For a non-empty, compact set 𝐴 ⊆ R𝑑, the Minkowski Content of 𝐴, denoted by

𝜆(𝜕𝐴), is defined by the Minkowski-Steiner formula [Fed69]:

𝜆(𝜕𝐴) = lim inf
𝛿→0

𝜇(𝐴𝛿)− 𝜇(𝐴)

𝛿
. (3.2)

We note that for sufficiently regular sets 𝐴, 𝜆(𝜕𝐴) corresponds to the surface area

of 𝐴 [Fed69]. In the subsequent lemma, we establish a technical inequality that will

later be used to establish the relationship between the volume of 𝛿-fattenings.

Lemma 3. Let 𝐴 ⊂ R𝑑 be a non-empty compact set with finite diameter and let

𝛿 ∈ (0,∆(𝒳)]. If 𝜇(𝐴) > 0 and the 𝛿-fattening of 𝐴, 𝐴𝛿, is (𝑑− 1)-rectifiable for all

61

𝛿 ∈ (0,∆(𝒳)], then there exists a finite universal constant 𝑐 ≥ 1:

𝑐 = max{𝑀/(𝑑𝜇(ℬ1(·))1/𝑑), 1} <∞,

where 𝑀 > 0 is a finite constant independent of 𝛿 and 𝐴, such that

𝜆(𝜕𝐴𝛿)

𝜇(𝐴𝛿)(𝑑−1)/𝑑
≤ 𝑐 𝜆(𝜕𝐴)

𝜇(𝐴)(𝑑−1)/𝑑
,

where 𝑐 is independent of 𝛿 and 𝐴, and 𝜆(𝜕𝐴) is the Minkowski Content as defined in

(3.2).

The following technical Lemma quantifies the relationship between 𝜇(𝐴) and 𝜇(𝐴𝛿)

and will be used later in our main result.

Lemma 4. Consider any finite, strictly positive 𝛿 and a non-empty, compact set

𝐴 ⊂ R𝑑 such that 𝜇(𝐴) > 0 and its 𝛿-fattening, 𝐴𝛿, is a (𝑑− 1)-rectifiable set for all

𝛿 ≥ 0. Then,

𝜇(𝐴𝛿) ≤
(︂

1 +
𝑐 𝛿𝜆(𝜕𝐴)

𝜇(𝐴)𝑑

)︂𝑑

𝜇(𝐴), (3.3)

where 𝑐 ≥ 1 is the universal constant from Lemma 3, and 𝜆(𝜕𝐴) is the Minkowski

Content as defined in (3.2).

Proof. Define the function 𝑔 : R≥0 → R≥0 such that 𝑔(𝑥) = (𝜇(𝐴𝑥)/𝜇(𝐴))1/𝑑, and let

ℎ(𝛿) : R≥0 → R≥0 be the function defining the Minkowski Content ℎ(𝛿) = 𝜇(𝐴𝛿)−𝜇(𝐴)
𝛿

.

Observe that since 𝐴𝛿 is a (𝑑 − 1)-rectifiable set we have that the limit inferior of

the expression in (3.2) is equivalent to its limit superior [Fed69, Theorem 3.2.39], and

thus the traditional limit exists:

𝜆(𝜕𝐴) = lim inf
𝛿→0

𝜇(𝐴𝛿)− 𝜇(𝐴)

𝛿
= lim inf

𝛿→0
ℎ(𝛿)

= lim sup
𝛿→0

ℎ(𝛿) = lim
𝛿→0

ℎ(𝛿).

Let 𝜀 > 0 and define 𝜆′ = 𝜆(𝜕𝐴) + 𝜀 > 𝜆(𝜕𝐴). By definition of lim𝛿→0 ℎ(𝛿) = 𝜆(𝜕𝐴),

62

there exists an open interval defined by a constant (as a function of 𝜀), 𝜉(𝜀) > 0 such

that for all 𝛿′ ∈ (0, 𝜉(𝜀)), |ℎ(𝛿′) − 𝜆(𝜕𝐴)| < 𝜀. This implies that ℎ(𝛿′) < 𝜆(𝜕𝐴) + 𝜀

and thus by definition of ℎ(𝛿′), we have for all 𝛿′ ∈ (0, 𝜉(𝜀))

𝜇(𝐴𝛿′) < 𝜇(𝐴) + 𝛿′ (𝜆(𝜕𝐴) + 𝜀) = 𝜇(𝐴) + 𝛿′ 𝜆′.

Thus, for all 𝛿′ ∈ (0, 𝜉(𝜀)), we have

𝑔(𝛿′) =

(︂
𝜇(𝐴𝛿′)

𝜇(𝐴)

)︂1/𝑑

<

(︂
1 +

𝛿′𝜆′

𝜇(𝐴)

)︂1/𝑑

≤ 1 +
𝛿′𝜆′

𝜇(𝐴)𝑑

≤ 1 +
𝑐𝛿′𝜆′

𝜇(𝐴)𝑑
, (3.4)

where the second to last inequality follows by Bernoulli’s inequality and the last

inequality follows by the fact that 𝑐 ≥ 1. The inequality (3.4) implies that if 𝛿 ∈

(0, 𝜉(𝜀)), then the inequality trivially holds and we are done. Therefore, we next

consider the case where 𝛿 ∈ [𝜉(𝜀),∆(𝒳)].

Differentiating 𝑔(𝛿′) with respect to 𝛿′ yields:

d 𝑔(𝛿′)

d𝛿′
=

1

𝜇(𝐴)1/𝑑
· d𝜇(𝐴𝛿′)

1/𝑑

d𝛿′

=
𝜆(𝜕𝐴𝛿′)

𝜇(𝐴)1/𝑑 𝜇(𝐴𝛿′)(𝑑−1)/𝑑 𝑑
,

where we used the (𝑑− 1)-rectifiability of 𝐴𝛿′ to replace the limit with the Minkowski

Content, since the limit is ensured to exist. Moreover, note that

d

d𝛿′

(︂
1 +

𝑐𝛿′𝜆′

𝜇(𝐴)𝑑

)︂
=

𝑐𝜆′

𝜇(𝐴)𝑑
>

𝑐𝜆(𝜕𝐴)

𝜇(𝐴)𝑑

≥ 1

𝑑𝜇(𝐴)1/𝑑
· 𝜆(𝜕𝐴𝛿′)

𝜇(𝐴𝛿′)(𝑑−1)/𝑑
=

d 𝑔(𝛿′)

d𝛿′
,

where the inequality follows from Lemma 3.

Thus, we have that for all 𝛿′ ∈ (0,∆(𝒳)], 𝑔(𝛿′) grows not faster than does the

expression on the right-hand side of the inequality in (3.4). This observation combined

63

with the fact that the inequality holds for all values of 𝛿′ ∈ (0, 𝜉(𝜀)) implies that for

all 𝛿′ ∈ (0,∆(𝒳)], inequality (3.4) holds and thus we have also have for the originally

specified 𝛿 that 𝑔(𝛿) ≤ 1+ 𝑐𝛿𝜆′

𝜇(𝐴)𝑑
. Finally, taking the limit of both sides of this inequality

yields

𝑔(𝛿) = lim
𝜆′→𝜆(𝜕𝐴)

𝑔(𝛿) ≤ lim
𝜆′→𝜆(𝜕𝐴)

(︂
1 +

𝑐 𝜆(𝜕𝐴)𝛿

𝜇(𝐴)𝑑

)︂
= 1 +

𝑐 𝛿𝜆(𝜕𝐴)

𝜇(𝐴)𝑑
,

and the lemma follows by definition of 𝑔(𝛿).

For our subsequent results, we assume that a 𝛿-packing for 𝒳 , 𝒮 ⊂ 𝒳 , is generated

by GreedyPack (Alg. 1) for a predefined constant 𝛿 ∈ (0,∆(𝒳)]. We now employ

Lemma 4 to establish the amount of overlap.

Lemma 5. For all 𝑥 ∈ 𝒮, it follows that

𝑓(𝑥) ⊆ 𝐹 (ℬ𝛿(𝑥)) ⊆ 𝑓(𝑥)𝛿𝐾 , (3.5)

where 𝑓(𝑥)𝛿𝐾 is the (𝛿𝐾)-fattening of 𝑓(𝑥), 𝛿 > 0 is the constant used to construct 𝒮,

and 𝐾 is the Lipschitz constant from Assumption 2.

Proof. By definition of ℬ𝛿(𝑥) and by Assumption 2, it follows that for all 𝑦 ∈ ℬ𝛿(𝑥),

𝑑H(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐾 ‖𝑥− 𝑦‖ ≤ 𝐾𝛿.

We have that 𝑥 ∈ ℬ𝛿(𝑥), 𝑓(𝑥) ⊆ 𝐹 (ℬ𝛿(𝑥)), and 𝑓(𝑥) is compact. Moreover for all 𝑓(𝑦),

𝑦 ∈ ℬ𝛿(𝑥), 𝑓(𝑦) is also compact. Thus, it follows by definition of Hausdorff distance

that the (𝛿𝐾)-fattening of 𝑓(𝑥), 𝑓(𝑥)𝛿𝐾 fully contains 𝑓(𝑦), i.e., 𝑓(𝑦) ⊆ 𝑓(𝑥)𝛿𝐾 . Since

this holds for all 𝑦 ∈ ℬ𝛿(𝑥), we have by definition of Hausdorff distance

𝑑H(𝑓(𝑥),∪𝑦∈ℬ𝛿(𝑥)𝑓(𝑦)) = 𝑑H(𝑓(𝑥), 𝐹 (ℬ𝛿(𝑥))) ≤ 𝛿𝐾.

64

The lemma then follows by definition of Hausdorff distance in terms of (𝛿𝐾)-fattenings.

Lemma 6. Suppose that the set 𝒮 ⊂ 𝒳 ⊆ R𝑑 is constructed as previously described.

Then, it follows that for all 𝑥 ∈ 𝒮

𝐹 (𝒳) = ∪𝑥∈𝒮𝐹 (ℬ𝛿(𝑥)) ⊆ ∪𝑥∈𝒮𝑓(𝑥)𝛿𝐾 = 𝐹 (𝒮)𝛿𝐾 , (3.6)

where 𝑓(𝑥)𝛿𝐾 is the (𝛿𝐾)-fattening of 𝑓(𝑥), 𝐹 (𝒮)𝛿𝐾 is the (𝛿𝐾)-fattening of 𝐹 (𝒮),

𝛿 > 0 is the constant used to construct 𝒮, and 𝐾 is the Lipschitz constant from

Assumption 2.

Proof. Observe that since 𝒮 is a 𝛿-covering of 𝒳 , it follows that union of |𝒮| balls of

radius 𝛿 centered at each of points of 𝑥 ∈ 𝒮 forms a superset of 𝒳 . Recall by definition

of the reachability function, ∀𝑥 /∈ 𝒳 , 𝑓(𝑥) = ∅. This enables us to conveniently deal

with evaluation of points outside the domain of initial states, 𝒳 .

Now, consider 𝐹 (𝒳) and note that by definition of 𝑓 on input outside the domain of

𝒳 , we have

𝐹 (𝒳) = 𝐹
(︀
∪𝑥∈𝒮 ∪𝑦∈ℬ𝛿(𝑥) 𝑦

)︀
= ∪𝑥∈𝒮𝐹 (ℬ𝛿(𝑥)).

By Lemma 5, it follows that for any arbitrary 𝑥 ∈ 𝒮, 𝐹 (ℬ𝛿(𝑥)) ⊆ 𝑓(𝑥)𝛿𝐾 . Taking the

union over all 𝑥 ∈ 𝒮 on both sides, we obtain ∪𝑥∈𝒮𝐹 (ℬ𝛿(𝑥)) = ∪𝑥∈𝒮𝑓(𝑥)𝛿𝐾 , and the

lemma follows from the fact that ∪𝑥∈𝒮𝑓(𝑥)𝛿𝐾 = 𝐹 (𝒮)𝛿𝐾 .

Theorem 7. Given any 𝜀 ∈ (0, 1) consider the 𝛿-packing of 𝒳 , 𝒮 ⊂ 𝒳 ⊆ R𝑑, generated

by GreedyPack (Alg. 1) with parameter 𝛿 > 0 satisfying

𝛿 ≤ 𝑑((1− 𝜀)−1/𝑑 − 1)

𝛼𝐾𝑐
,

where 𝛼 = sup𝒳 ′⊆𝒳
𝜆(𝜕𝐹 (𝒳 ′))
𝜇(𝐹 (𝒳 ′))

< ∞, and 𝑐 is the universal constant from Lemma 3:

65

𝑐 = max{𝑀/(𝑑𝜇(ℬ1(·))1/𝑑), 1}. Then, 𝒮 solves the approximate reachability problem

defined by (3.1), i.e., (1− 𝜀)𝜇(𝐹 (𝒳)) ≤ 𝜇(𝐹 (𝒮)) ≤ 𝜇(𝐹 (𝒳)).

The following corollary follows immediately from the theorem established above.

Corollary 8. Given a set of initial states 𝒳 ⊆ R𝑑 and 𝜀 ∈ (0, 1), Approx-

imateReachability (Alg. 2) generates a reachable set 𝐹𝒮 such that 𝜇(𝐹𝒮) ≥

(1− 𝜀)𝜇(𝐹 (𝒳)).

Corollary 9. For all 𝜀 ∈ (0, 1), the reachability problem defined by (3.1) can be solved

by a 𝛿-packing, 𝒮 ⊂ 𝒳 of size at most |𝒮| ≤ (3𝛼𝐾∆(𝒳)𝑐/𝜀)𝑑 .

Let 𝒞𝛼, 𝒞𝐾 , and 𝒞𝑐 denote the computational complexity of approximating the system-

specific constants 𝛼 (ratio of surface area to volume), 𝐾 (Lipschitz constant), and 𝑐

(universal constant from Lemma 3) respectively. Also let 𝒞𝒮 and 𝒞𝑓 be upper bounds

on the computational complexity of generating the 𝛿-packing 𝒮 and evaluating 𝑓(𝑥)

for any 𝑥 ∈ 𝒳 , respectively. Application of Corollary 9 yields the following theorem.

Theorem 10. Given a set of initial states 𝒳 ⊆ R𝑑 and 𝜀 ∈ (0, 1), Approx-

imateReachability (Alg. 2) generates a reachable set 𝐹𝒮 such that 𝜇(𝐹𝒮) ≥

(1− 𝜀)𝜇(𝐹 (𝒮)), in 𝒪
(︀
𝒞𝛼 + 𝒞𝐾 + 𝒞𝑐 + 𝒞𝒮 + (𝛼𝐾∆(𝒳)𝑐/𝜀)𝑑 𝒞𝑓

)︀
time.

Define the sequence (ℱ𝑖)𝑖∈N+ such that for each 𝑖 ∈ N+, ℱ𝑖 denotes the approximate

reachable set 𝐹𝒮𝑖
generated at iteration 𝑖 of Alg. 3, i.e., ℱ𝑖 = 𝐹𝒮𝑖

, where, 𝒮𝑖 ⊂ 𝒳 is

the packing generated at iteration 𝑖.

Proposition 11. The AnytimeApproximateReachability algorithm (Alg. 3) is

asymptotically-optimal, i.e., lim𝑖→∞ 𝜇(ℱ𝑖) = lim𝑖→∞ 𝜇(𝐹𝒮𝑖
) = 𝜇(𝐹 (𝒳)).

3.4.3 Simultaneous under and over approximations

Finally, we show that a (𝛿𝐾)-fattening of the reachable set generated by our algorithm

simultaneously produces a bounded over-approximation, and we conclude with a

corollary that combines both aspects of our approach.

66

Theorem 12 (Over-approximation). Given any 𝜀 ∈ (0, 1/2) consider the 𝛿-packing of

𝒳 , 𝒮 ⊂ 𝒳 ⊆ R𝑑, generated by GreedyPack (Alg. 1) with parameter 𝛿 > 0 satisfying

𝛿 ≤ 𝑑((1 + 𝜀)1/𝑑 − 1)

𝛼𝐾𝑐
,

then, the (𝛿𝐾)-fattening of 𝐹 (𝒮), denoted by 𝐹 (𝒮)𝛿𝐾 satisfies

𝐹 (𝒳) ⊆ 𝐹 (𝒮)𝛿𝐾 ,

and

𝜇(𝐹 (𝒳)) ≤ 𝜇(𝐹 (𝒮)𝛿𝑘) ≤ (1 + 𝜀)𝜇(𝐹 (𝒳)).

Proof. Since 𝒮 is a 𝛿-covering of 𝒳 , by Lemma 6, we have 𝐹 (𝒳) ⊆ 𝐹 (𝒮)𝛿𝐾 . Thus,

by monotonicity of measure and by application of Lemma 4 to the (𝛿𝐾)-fattening of

𝐹 (𝒮), we have

𝜇(𝐹 (𝒳)) ≤ 𝜇(𝐹 (𝒮)𝛿𝐾)

≤
(︂

1 +
𝑐 𝛿𝐾𝜆(𝜕𝐹 (𝒮))

𝜇(𝐹 (𝒮))𝑑

)︂𝑑

𝜇(𝐹 (𝒮))

≤
(︂

1 +
𝑐 𝛿𝐾𝛼

𝑑

)︂𝑑

𝜇(𝐹 (𝒮))

≤ (1 + 𝜀)𝜇(𝐹 (𝒮))

≤ (1 + 𝜀)𝜇(𝐹 (𝒳)),

where the second-to-last inequality follows by our choice of 𝛿 and the last inequality

follows by monotonicity of measure.

Corollary 13 (Simultaneous under and over approximations). Given any 𝜀 ∈ (0, 1/2)

consider the 𝛿-packing of 𝒳 , 𝒮 ⊂ 𝒳 ⊆ R𝑑, generated by GreedyPack (Alg. 1) with

parameter 𝛿 > 0 satisfying

𝛿 ≤ 𝑑((1 + 𝜀)1/𝑑 − 1)

𝛼𝐾𝑐
,

67

then, 𝐹 (𝒳) ⊆ 𝐹 (𝒮)𝛿𝐾 and

(1− 𝜀)𝜇(𝐹 (𝒳)) ≤ 𝜇(𝐹 (𝒮)) ≤ 𝜇(𝐹 (𝒮)𝛿𝐾) ≤ (1 + 𝜀)𝜇(𝐹 (𝒳)).

Proof. The proof follows from the fact that for 𝜀 ∈ (0, 1/2), we have

𝛿 ≤ 𝑑((1 + 𝜀)1/𝑑 − 1)

𝛼𝐾𝑐
≤ 𝑑((1− 𝜀)−1/𝑑 − 1)

𝛼𝐾𝑐
,

which means that our choice of 𝛿 is simultaneously less than the value required to

obtain both an under and over approximation.

3.5 Results

Figure 3-6: Clockwise: Set of initial conditions and the resulting reachable set for the
unit cube, dumbbell, lollipop, and hedgehog scenarios. We compare the reachable sets
of uniform sampling, our algorithm, and the ground truth. The visualizations show that
uniform sampling initial states performs poorly when the set of initial states has an uneven
distribution of volume.

We apply our approximation algorithm to simulated scenarios with a diverse set of

initial states (see Fig. 3-6), where the objective is to generate the reachable set of

a unicycle model. We evaluate the performance of our algorithm and compare the

generated reachable sets to the ground truth reachable set, which can be readily

computed for a unicycle model [Dub57]. We show that the theoretical guarantees hold

and compare the performance of our algorithm with that of uniform sampling. We

implemented our reachability algorithm in MATLAB. The simulations were conducted

on a PC with a 2.60 GHz Intel i9-7980XE processor (single core) and 128 GB RAM.

68

3.5.1 Experimental Setup

We consider the reachable set 𝐹 (·) of a mobile robot described by the unicycle dynamics:

d

dt

⎛⎜⎜⎜⎝
𝑥

𝑦

𝜃

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑢𝑣 cos 𝜃

𝑢𝑣 sin 𝜃

𝑢𝜔

⎞⎟⎟⎟⎠ , (3.7)

where 𝑥, 𝑦 ∈ R denote the position of the robot and 𝜃 ∈ R the orientation, and the

control inputs (𝑢𝑣, 𝑢𝜔) ∈ 𝒰 ⊂ R2 of the system are given by the speed and angular

velocity, respectively. We are interested in the reachable set 𝐹 (𝒳), where 𝒳 ∈ R3

denotes the set of initial conditions for which we want to approximate the reachable

set at a given time 𝑇 .

Figure 3-7: Comparisons of the performance of our algorithm with that of uniform sampling
for the unit cube scenario (first column) and the dumbbell scenario (second column). The
corresponding scenarios are depicted in the first and second column of Fig. 3-6, respectively.

We note that the reachable set for a unicycle model with minimal turning radius 𝜌

and velocity 𝑢𝑣 is known [Dub57, PPF03] and that the boundary of the set can be

described by a set of curves consisting of straight segments (S) as well as left turns

(L) and right turns (R) at the maximum turning radius. In particular, the reachable

69

Figure 3-8: The performance of the evaluated reachability analysis methods for the lollipop
scenario (first column) and the hedgehog scenario (second column). The evaluated scenarios
are shown in the third and fourth column of Fig. 3-6, respectively.

set consists of the curves RLR, LRL, RSR, LSL, RSL, and LSR. As an exemplary

parametrization for these curves, we give the parametrization for the curve RSL:⎛⎜⎜⎜⎝
𝑥𝑅𝑆𝐿

𝑦𝑅𝑆𝐿

𝜃𝑅𝑆𝐿

⎞⎟⎟⎟⎠ = 𝜌

⎛⎜⎜⎜⎝
2 sin(𝜃1) + 𝜃2 cos(𝜃1)− sin(𝜃1 − 𝜃3)

−1 + 2 cos(𝜃1)− 𝜃2 sin(𝜃1)− cos(𝜃1 − 𝜃3)

𝜃1/𝜌− 𝜃2/𝜌

⎞⎟⎟⎟⎠ ,

where 𝜃𝑖 = 𝑢𝑣𝑡𝑖
𝜌
,∀𝑖 ∈ {1, 2, 3} and 𝑡1 denotes the time in segment R, 𝑡2 in segment S,

and 𝑡3 in segment L, respectively. Note that 𝑡1 + 𝑡2 + 𝑡3 ≤ 𝑇 , where 𝑇 is the given

time as before, and this solution can be shown to be extended for a range of velocities

𝑢𝑣 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], [PPF03].

Using the unicycle model allows us to compare the algorithm to the ground truth

reachable set in an exact manner.

70

3.5.2 Evaluation of Computed Reachable Sets

We evaluated the performance of our algorithm and uniform sampling against a set of

diverse initial states: (i) unit cube, (ii) dumbbell, (iii) lollipop, and (iv) hedgehog. To

increase the efficiency of our implementation, we replaced the random construction of

a 𝛿-covering by a grid construction. The terminal time 𝑇 was taken to be 1 second.

Fig. 3-6 depicts the projections onto (𝑥, 𝑦) of the four sets of considered initial

conditions, the respective reachable sets computed by uniform sampling and our

algorithm, and the ground truth sets. The visualizations of the computed reachable

sets show that uniform sampling may be a reasonable approximation for convex sets

such as the unit cube, but its performance suffers significantly when non-convex

sets, with non-uniformly distributed volumes are considered, such as the dumbbell

or lollipop. Unlike uniform sampling, our algorithm still generates highly accurate

reachable sets when evaluated against scenarios with non-uniform and/or non-convex

initial states, which underlines the significance of judiciously generating a structured

set of points as is done by our algorithm. Similar scenarios might arise in real-world

situations, where dynamic obstacles are present that constrain the reachable space to

non-convex, irregular regions.

To quantify the quality of the generated reachable sets, we ran our algorithm and

uniform sampling against each scenario and averaged the results over 10 trials. Fig. 3-

7 depicts the performance of uniform sampling and our algorithm in computing

approximate reachable sets for the unit cube and dumbbell scenarios. Our results

indicate that our algorithm is capable of generating higher quality approximations of

the reachable set with a fewer amount of samples when compared to uniform sampling.

Fig. 3-8 shows the results of evaluation against the lollipop and hedgehog scenarios

with respect to volumetric coverage of the reachable set and the computation time.

Since the sets of initial states exhibit highly non-uniform distribution of volume and

are non-convex, we once again observe the significant gap in performance of uniform

sampling when compared to the quality of approximations generated by our algorithm.

71

We note that across all experiments, our theoretical bounds of volumetric coverage

hold and that the computation time required by our algorithm is significantly less

than that required by uniform sampling for the same approximation accuracy. In

particular, we note that the computation time required to generate the reachable

set of the sampled subset (𝛿-packing) is near real-time. Our algorithm’s favorable

performance with respect to both approximation quality and computational efficiency

on a wide variety of scenarios and non-convex initial states highlights its applicability

to real-world motion planning and decision-making problems of autonomous systems.

3.6 Proofs

3.6.1 Proof of Lemma 3

Lemma 3. Let 𝐴 ⊂ R𝑑 be a non-empty compact set with finite diameter and let

𝛿 ∈ (0,∆(𝒳)]. If 𝜇(𝐴) > 0 and the 𝛿-fattening of 𝐴, 𝐴𝛿, is (𝑑− 1)-rectifiable for all

𝛿 ∈ (0,∆(𝒳)], then there exists a finite universal constant 𝑐 ≥ 1:

𝑐 = max{𝑀/(𝑑𝜇(ℬ1(·))1/𝑑), 1},

where 𝑀 > 0 is independent of 𝛿 and 𝐴, such that

𝜆(𝜕𝐴𝛿)

𝜇(𝐴𝛿)(𝑑−1)/𝑑
≤ 𝑐 𝜆(𝜕𝐴)

𝜇(𝐴)(𝑑−1)/𝑑
,

where 𝑐 is independent of 𝛿 and 𝐴, and 𝜆(𝜕𝐴) is the Minkowski Content as defined in

(3.2).

Proof. Fix the finite universal constant 𝑐 > 0, to be determined later. By the

Isoperimetric inequality [Fed69, Theorem 3.2.43], the right hand side of the inequality

is bounded below by a universal constant independent of 𝛿 and 𝐴:

𝑐 𝜆(𝜕𝐴)

𝜇(𝐴)(𝑑−1)/𝑑
≥ 𝑐 𝑑𝜇(ℬ1(·))1/𝑑.

72

Moreover, since 𝐴𝛿 is compact, (𝑑−1)-rectifiable, and 𝜇(𝐴𝛿) > 0, for all 𝛿 ∈ (0,∆(𝒳)],

we have that 𝜆(𝜕𝐴𝛿) is equivalent to the 𝑑 − 1 Hausdorff measure of 𝐴𝛿 [Fed69,

Theorem 3.2.39] which is finite by properties of 𝐴𝛿 [Mor16]. Thus, the left hand side

is bounded above by a universal finite value, i.e., there exists a universal upper bound

𝑀 > 0, independent of 𝐴 and 𝛿, for the left hand side of the inequality such that

𝜆(𝜕𝐴𝛿)

𝜇(𝐴𝛿)(𝑑−1)/𝑑
≤𝑀.

Thus, define the universal constant 𝑐 to be

𝑐 = max{𝑀/(𝑑𝜇(ℬ1(·))1/𝑑), 1},

and note that this choice of 𝑐 yields

𝑐 𝜆(𝜕𝐴)

𝜇(𝐴)(𝑑−1)/𝑑
≥ 𝑐 𝑑𝜇(ℬ1(·))1/𝑑 ≥𝑀 ≥ 𝜆(𝜕𝐴𝛿)

𝜇(𝐴𝛿)(𝑑−1)/𝑑
,

as desired.

3.6.2 Proof of Theorem 7

Theorem 7. Given any 𝜀 ∈ (0, 1) consider the 𝛿-packing of 𝒳 , 𝒮 ⊂ 𝒳 ⊆ R𝑑, generated

by GreedyPack (Alg. 1) with parameter 𝛿 > 0 satisfying

𝛿 ≤ 𝑑((1− 𝜀)−1/𝑑 − 1)

𝛼𝐾𝑐
,

where

𝛼 = sup
𝒳 ′⊆𝒳

𝜆(𝜕𝐹 (𝒳 ′))

𝜇(𝐹 (𝒳 ′))
<∞,

and 𝑐 is the universal constant from Lemma 3, 𝑐 = max{𝑀/(𝑑𝜇(ℬ1(·))1/𝑑), 1}. Then,

𝒮 solves the approximate reachability problem defined by (3.1), i.e., (1− 𝜀)𝜇(𝐹 (𝒳)) ≤

𝜇(𝐹 (𝒮)) ≤ 𝜇(𝐹 (𝒳)).

73

Proof. Fix 𝛿 > 0, to be determined later. Combining Lemmas 4 and 6, it follows that

𝜇(𝐹 (𝒳)) ≤ 𝜇(𝐹 (𝒮)𝛿𝐾) ≤
(︂

1 +
𝛿𝐾𝛼𝑐

𝑑

)︂𝑑

𝜇(𝐹 (𝒮)).

The inequality above yields

𝜇(𝐹 (𝒮)) ≥
(︂

1 +
𝛿𝐾𝛼𝑐

𝑑

)︂−𝑑

𝜇(𝐹 (𝒳)).

Thus, to ensure that 𝜇(𝐹 (𝒮)) is a (1− 𝜀) approximation to 𝜇(𝐹 (𝒳)), we seek to set 𝛿

such that the following inequality holds:

(︂
1 +

𝛿𝐾𝛼𝑐

𝑑

)︂−𝑑

𝜇(𝐹 (𝒳)) ≥ (1− 𝜀)𝜇(𝐹 (𝒳))

⇔
(︂

1 +
𝛿𝐾𝛼𝑐

𝑑

)︂−𝑑

≥ 1− 𝜀.

Solving for 𝛿 satisfying the inequality above yields

𝛿 ≤ 𝑑((1− 𝜀)−1/𝑑 − 1)

𝛼𝐾𝑐
.

The theorem follows from the fact that 𝛼 <∞ since 𝐹 (𝒳 ′) is compact and rectifiable

for all 𝒳 ′ ⊆ 𝒳 [Mor16], 𝑑 ≥ 1, 𝜀 ∈ (0, 1), and 𝛼𝐾𝑐 > 0, thus, the expression on the

right hand-side is strictly positive, which completes the proof.

3.6.3 Proof of Corollary 9

Corollary 9. For all 𝜀 ∈ (0, 1), the reachability problem defined by (3.1) can be solved

by a 𝛿-packing, 𝒮 ⊂ 𝒳 of size at most

|𝒮| ≤ (3𝛼𝐾∆(𝒳)𝑐/𝜀)𝑑 = 𝒪𝛼,𝐾,Δ(𝒳),𝑐(𝜀
−𝑑),

where 𝒪𝛼,𝐾,Δ(𝒳),𝑐(·) notation suppresses 𝛼, 𝐾, 𝑐, and ∆(𝒳) factors.

74

Proof. Plugging in the expression for 𝛿 from Theorem 7 with equality, i.e., 𝛿 =

𝑑(1−𝜀)−1/𝑑−𝑑
𝛼𝐾𝑐

, into the expression from Lemma 2 yields

|𝒮| ≤
(︂

3𝛼𝐾∆(𝒳)𝑐

𝑑((1− 𝜀)−1/𝑑 − 1)

)︂𝑑

.

Now, since 𝜀 ∈ (0, 1) and −1/𝑑 < 0, it follows by Bernoulli’s inequality that (1 −

𝜀)−1/𝑑 ≥ 1 + 𝜀/𝑑. Plugging this lower bound for the denominator in the expression

above establishes the result.

3.6.4 Proof of Proposition 11

Proposition 11. The AnytimeApproximateReachability algorithm (Alg. 3) is

asymptotically-optimal, i.e.,

lim
𝑖→∞

𝜇(ℱ𝑖) = lim
𝑖→∞

𝜇(𝐹𝒮𝑖
) = 𝜇(𝐹 (𝒳)).

Proof. Let 𝜀𝑖 denote the value of 𝜀 at the beginning of the 𝑖th iteration of the algorithm.

Since the value of 𝜀 is halved after each iteration, it follows immediately that 𝜀𝑖 = 2−𝑖

and therefore lim𝑖→∞ 𝜀𝑖 = 0. Thus,

lim
𝑖→∞

𝜇(ℱ𝑖) ≥ lim
𝑖→∞

(1− 𝜀𝑖)𝜇(𝐹 (𝒳)) = 𝜇(𝐹 (𝒳)).

Moreover, by monotonicity of measure 𝜇(ℱ𝑖) ≤ 𝜇(𝐹 (𝒳)) for all 𝑖, thus it must be the

case that lim𝑖→∞ 𝜇(ℱ𝑖) = 𝜇(𝐹 (𝒳)).

75

3.7 Discussion and Future Work

In this chapter, we presented a sampling-based approach to reachability analysis

that imposes minimal assumptions and can be applied to a wide variety of systems.

Our algorithm enables computational efficiency by computing the reachable set of a

carefully constructed finite subset of initial states that provides a covering of the entire

state space. We proved that our algorithm generates an approximation to the ground-

truth reachable set that is approximately optimal up to any desired approximation

accuracy.

Our favorable results in real-world inspired scenarios validate the favorable theoretical

properties of our algorithm and demonstrate its applicability to a diverse set of

reachability problems. We envision that our method can be used to conduct reachability

analysis to facilitate decision-making and trajectory planning for autonomous agents

in a wide variety of application including autonomous driving, parallel autonomy,

and supervision of deep learning-based planning systems. In future work, we plan to

extend our algorithm and analysis to obtain both under- and over-approximations of

reachable sets with provable guarantees.

Acknowledgments

This research was supported in part by the Toyota Research Institute (TRI) and

National Science Foundation award IIS-1723943. This chapter solely reflects the

opinions and conclusions of its authors, and not TRI or any other Toyota entity.

76

Chapter 4

Streaming Coresets for Support

Vector Machines

4.1 Overview

In the previous chapter, we sampled a finite, representative set from an infinite

input space of reachable states for approximate reachability analysis. In this chapter,

we focus on subsampling data points from a finite set of input training points for

efficient machine learning. In particular, we introduce an efficient coreset construction

algorithm to generate compact representations of large data sets to accelerate SVM

training. Unlike our set-coverage-based approach from the previous chapter, here we

leverage the notion of coresets and use importance sampling of data points according

to their sensitivities [BFL16]. In contrast to prior approaches in efficient SVM training,

our approach is both (i) provably efficient and (ii) naturally extends to streaming or

dynamic data settings. Above all, it can be used to enable the applicability of any

off-the-shelf SVM solver – including gradient-based and/or approximate ones, e.g.,

Pegasos [SSSSC11] – to streaming and distributed data settings by exploiting the

composibility and reducibility properties of coresets [Fel19].

This work is based on [BTFR21, TBFR20] and contributes the following:

77

1. A coreset construction algorithm for accelerating SVM training based on an

efficient importance sampling scheme.

2. An analysis proving lower bounds on the number of samples required by any

coreset construction algorithm to approximate the input data set.

3. A corollary to our analysis that provides justification for the widely reported

empirical success of using 𝑘-means clustering as a way to generate data summaries

for large-scale SVM training.

4. Theoretical guarantees on the efficiency and accuracy of our coreset construction

algorithm.

5. Evaluations on synthetic and real-world data sets that demonstrate the effec-

tiveness of our algorithm in both streaming and offline settings.

4.2 Setting & Objective

4.2.1 Setting

Let 𝑃 =
{︀

(𝑥, 𝑦) : 𝑥 ∈ R𝑑 × 1, 𝑦 ∈ {±1}
}︀

denote a set of 𝑛 input points. Note that

for each point 𝑝 = (𝑥, 𝑦) ∈ 𝑃 , the last entry 𝑥𝑑+1 = 1 of 𝑥 accounts for the bias

term embedding into the feature space1. To present our results with full generality,

we consider the setting where the input points 𝑃 may have weights associated with

them. Hence, given 𝑃 and a weight function 𝑢 : 𝑃 → R≥0, we let 𝒫 = (𝑃, 𝑢) denote

the weighted set with respect to 𝑃 and 𝑢. The canonical unweighted case can be

represented by the weight function that assigns a uniform weight of 1 to each point,

i.e., 𝑢(𝑝) = 1 for every point 𝑝 ∈ 𝑃 . For every 𝑇 ⊆ 𝑃 , let 𝑈(𝑇) =
∑︀

𝑝∈𝑇 𝑢(𝑝). We

consider the scenario where 𝑛 is much larger than the dimension of the data points,

i.e., 𝑛≫ 𝑑.

For a normal to a separating hyperplane 𝑤 ∈ R𝑑+1, let 𝑤1:𝑑 denote vector which

1We perform this embedding for ease of presentation later on in our analysis.

78

contains the first 𝑑 entries of 𝑤. The last entry of 𝑤 (𝑤𝑑+1) encodes the bias term

𝑏 ∈ R. Under this setting, the hinge loss of any point 𝑝 = (𝑥, 𝑦) ∈ 𝑃 with respect to a

normal to a separating hyperplane, 𝑤 ∈ R𝑑+1, is defined as ℎ(𝑝, 𝑤) = [1− 𝑦⟨𝑥,𝑤⟩]+,

where [·]+ = max{0, ·}. As a prelude to our subsequent analysis of sensitivity-based

sampling, we quantify the contribution of each point 𝑝 = (𝑥, 𝑦) ∈ 𝑃 to the SVM

objective function as

𝑓𝜆(𝑝, 𝑤) =
1

2𝑈(𝑃)
‖𝑤1:𝑑‖22 + 𝜆ℎ(𝑝, 𝑤), (4.1)

where 𝜆 ∈ [0, 1] is the SVM regularization parameter, and ℎ(𝑝, 𝑤) = [1− 𝑦⟨𝑥,𝑤⟩]+ is

the hinge loss with respect to the query 𝑤 ∈ R𝑑+1 and point 𝑝 = (𝑥, 𝑦). Putting it all

together, we formalize the 𝜆-regularized SVM problem as follows.

Definition 12 (𝜆-regularized SVM Problem). For a given weighted set of points

𝒫 = (𝑃, 𝑢) and a regularization parameter 𝜆 ∈ [0, 1], the 𝜆-regularized SVM problem

with respect to 𝒫 is given by

min
𝑤∈R𝑑+1

𝐹𝜆(𝒫 , 𝑤),

where

𝐹𝜆(𝒫 , 𝑤) =
∑︁
𝑝∈𝒫

𝑢(𝑝)𝑓𝜆(𝑝, 𝑤). (4.2)

We let 𝑤* denote the optimal solution to the SVM problem with respect to 𝒫, i.e.,

𝑤* ∈ argmin𝑤∈R𝑑+1 𝐹𝜆(𝒫 , 𝑤). A solution 𝑤̂ ∈ R𝑑+1 is an 𝜉-approximation to the SVM

problem if 𝐹𝜆(𝒫 , 𝑤̂) ≤ 𝐹𝜆(𝒫 , 𝑤*) + 𝜉. Next, we formalize the coreset guarantee that

we will strive for when constructing our data summaries.

4.2.2 Coresets

Here, we formalize the notion of coresets presented in the previous chapters by defining

it specifically for the SVM problem. Recall that a coreset is a compact representation

of the full data set that provably approximates the SVM cost function (4.2) for every

query 𝑤 ∈ R𝑑+1 – including that of the optimal solution 𝑤*. This is fleshed out in the

79

definition below for the SVM problem with objective function 𝐹𝜆(·) as in (4.2).

Definition 13 (𝜀-coreset). Let 𝜀 ∈ (0, 1) and let 𝒫 = (𝑃, 𝑢) be the weighted set of

training points as before. A weighted subset 𝒮 = (𝑆, 𝑣), where 𝑆 ⊂ 𝑃 and 𝑣 : 𝑆 → R≥0

is an 𝜀-coreset for 𝒫 if

∀𝑤 ∈ R𝑑+1 |𝐹𝜆 (𝒫 , 𝑤)− 𝐹𝜆 (𝒮, 𝑤)| ≤ 𝜀𝐹𝜆 (𝒫 , 𝑤) . (4.3)

This strong guarantee implies that the models trained on the coreset 𝒮 with any

off-the-shelf SVM solver will be approximately (and provably) as good as the optimal

solution 𝑤* obtained by training on the entire data set 𝒫. We formalize this in the

lemma below.

Lemma 14. Let 𝒫 be a weighted set, 𝜀 ∈
(︀
0, 1

2

)︀
and let 𝒮 be an 𝜀-coreset with respect

to 𝒫. Let

𝑤*
𝒮 = argmin

𝑤∈R𝑑+1

𝐹𝜆 (𝒮, 𝑤)

be the optimal solution on the set 𝒮 and let

𝑤*
𝒫 = argmin

𝑤∈R𝑑+1

𝐹𝜆 (𝒫 , 𝑤)

be defined similarly as the optimal solution with respect to points 𝒫. Then, the

performance of the solution 𝑤*
𝒮 on the entire set 𝒫 is (1 + 4𝜀)-competitive with that of

the ground-truth optimal solution 𝑤*
𝒫 , i.e.,

𝐹𝜆(𝒫 , 𝑤*
𝒮) ≤ (1 + 4𝜀)𝐹𝜆(𝒫 , 𝑤*

𝒫).

Proof. We have

𝐹𝜆(𝒫 , 𝑤*
𝒮) ≤ 𝐹𝜆(𝒮, 𝑤*

𝒮)

1− 𝜀
≤ 𝐹𝜆(𝒮, 𝑤*

𝒫)

1− 𝜀

≤ 1 + 𝜀

1− 𝜀
𝐹𝜆(𝒫 , 𝑤*

𝒫) ≤ (1 + 4𝜀)𝐹𝜆(𝒫 , 𝑤*
𝒫),

80

where the first and third inequalities follow from (𝑆, 𝑣) being an 𝜀-coreset (see Def-

inition 13), the second inequality holds by definition of 𝑤*
𝒮 , and the last inequality

follows from the assumption that 𝜀 ∈
(︀
0, 1

2

)︀
.

The lemma above implies that, if the size of the coreset 𝒮 is provably small relative to

𝒫 , e.g., logartihmic in 𝑛 (see Sec. 4.4), then an approximately optimal solution can be

obtained much more quickly by training on 𝒮 rather than 𝒫 , leading to computational

gains in practice for both offline and streaming data settings (see Sec. 4.6).

The difficulty in constructing coresets lies in constructing them (i) efficiently, so that

the preprocess-then-train pipeline takes less time than training on the full data set

and (ii) accurately, so that important data points – i.e., those that are imperative to

obtaining accurate models – are not left out of the coreset, and redundant points are

eliminated so that the coreset size is small. In the following sections, we introduce

and analyze our coreset algorithm for the SVM problem.

4.3 Our Approach

Our coreset construction scheme is based on the unified framework of [FL11, LS10]

and is shown in Alg. 4. The crux of our algorithm lies in generating the importance

sampling distribution via efficiently computable upper bounds (proved in Sec. 4.4) on

the importance of each point (Lines 1–10). Sufficiently many points are then sampled

from this distribution and each point is given a weight that is inversely proportional

to its sample probability (Lines 11–12). The number of points required to generate

an 𝜀-coreset with probability at least 1 − 𝛿 is a function of the desired accuracy 𝜀,

failure probability 𝛿, and complexity of the data set (𝑡 from Theorem 19). Under

mild assumptions on the problem at hand (see Sec. 4.8.4), the required sample size is

polylogarithmic in 𝑛.

Our algorithm is an importance sampling procedure that first generates a judicious

sampling distribution based on the structure of the input points and samples sufficiently

81

Algorithm 4 Coreset(𝑃, 𝑢, 𝜆, 𝜉, 𝑘,𝑚)

Inputs: (𝑃, 𝑢, 𝜆, 𝜉, 𝑘,𝑚) – A set of training points 𝑃 ⊆ R𝑑+1 × {−1, 1} containing
𝑛 points, weight function 𝑢 : 𝑃 → R≥0, a regularization parameter 𝜆 ∈ [0, 1], an
approximation factor 𝜉 > 0, a positive integer 𝑘, a sample size 𝑚

Output: A weighted set (𝑆, 𝑣) which satisfies Theorem 19
1: 𝑤̃ ← An 𝜉-approximation for the optimal SVM of (𝑃, 𝑢);
2: ̃︁𝑜𝑝𝑡𝜉 ← 𝐹𝜆(𝒫 , 𝑤̃)− 𝜉;
3: for 𝑦 ∈ {−,+} do
4: 𝑃𝑦 ← all the points in 𝑃 that are associated with the label 𝑦;

5:
(︁
𝑐
(𝑖)
𝑦 , 𝑃

(𝑖)
𝑦

)︁𝑘
𝑖=1
← k-means++(𝒫𝑦, 𝑘); where 𝑐

(𝑖)
𝑦 is the centroid of the 𝑖th

cluster;
6: for every 𝑖 ∈ [𝑘] do

7: 𝛼
(𝑖)
𝑦 ←

𝑈
(︁
𝑃∖𝑃 (𝑖)

𝑦

)︁
2𝜆𝑈(𝑃)𝑈

(︁
𝑃

(𝑖)
𝑦

)︁ ;

8: for every 𝑝 = (𝑥, 𝑦) ∈ 𝑃
(𝑖)
𝑦 do

9: 𝑝Δ ← 𝑦(𝑐
(𝑖)
𝑦 − 𝑥);

10: 𝛾(𝑝)← 𝑢(𝑝)

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ + 9𝜆𝑢(𝑝)
2

max

{︃
4𝛼

(𝑖)
𝑦

9
,

√︂
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2‖𝑝Δ‖22
9̃︁𝑜𝑝𝑡𝜉 − 2𝛼

(𝑖)
𝑦

}︃
;

11: 𝑡←
∑︀

𝑝∈𝑃 𝛾(𝑝);
12: (𝑆, 𝑣)← 𝑚 weighted samples from 𝒫 = (𝑃, 𝑢) where each point 𝑝 ∈ 𝑃 is sampled

with probability 𝑞(𝑝) = 𝛾(𝑝)
𝑡

and, if sampled, has weight 𝑣(𝑝) = 𝑢(𝑝)
𝑚𝑞(𝑝)

;
13: return (𝑆, 𝑣);

many points from the original data set. The resulting weighted set of points 𝒮 =

(𝑆, 𝑣), serves as an unbiased estimator for 𝐹𝜆(𝒫 , 𝑤) for any query 𝑤 ∈ R𝑑+1, i.e.,

E [𝐹𝜆 (𝒮, 𝑤)] = 𝐹𝜆(𝒫 , 𝑤). Although sampling points uniformly with appropriate

weights can also generate such an unbiased estimator, it turns out that the variance

of this estimation is minimized if the points are sampled according to the distribution

defined by the ratio between each point’s sensitivity and the sum of sensitivities, i.e.,

𝛾(𝑝)/𝑡 on Line 12 [BLK17].

4.3.1 Computational Complexity

Coresets are intended to provide efficient and provable approximations to the optimal

SVM solution. However, the very first line of our algorithm entails computing

an (approximately) optimal solution to the SVM problem. This seemingly eerie

82

phenomenon is explained by the merge-and-reduce technique [HPM04] that ensures

that our coreset algorithm is only run against small partitions of the original data set

[BFL16, HPM04, LFKF17]. The merge-and-reduce approach leverages the fact that

coresets are composable and reduces the coreset construction problem for a (large)

set of 𝑛 points into the problem of computing coresets for 𝑛
2|𝑆| points, where 2|𝑆| is

the minimum size of input set that can be reduced to half using Algorithm 4 [BFL16].

Assuming that the sufficient conditions for obtaining polylogarithmic size coresets

implied by Theorem 19 hold, the overall time required is approximately linear in 𝑛.

4.4 Analysis

In this section, we analyze the sample-efficiency and computational complexity of our

algorithm. The outline of this section is as follows: we first formalize the importance

(i.e., sensitivity) of each point and summarize the necessary conditions for the existence

of small coresets. We then present the negative result that, in general, sublinear coresets

do not exist for every data set (Lem. 16). Despite this, we show that we can obtain

accurate approximations for the sensitivity of each point via an approximate 𝑘-means

clustering (Lems. 17 and 18), and present non-vacuous, data-dependent bounds on the

sample complexity (Thm. 19). We defer all proofs to Sec. 4.8 for clarity of exposition.

4.4.1 Preliminaries

We will henceforth state all of our results with respect to the weighted set of training

points 𝒫 = (𝑃, 𝑢), 𝜆 ∈ [0, 1], and SVM cost function 𝐹𝜆 (as in Sec. 4.2). The definition

below rigorously quantifies the relative contribution of each point.

Definition 15 (Sensitivity [BFL16]). The sensitivity of each point 𝑝 ∈ 𝑃 is given by

𝑠(𝑝) = sup
𝑤

𝑢(𝑝)𝑓𝜆(𝑝, 𝑤)

𝐹𝜆(𝒫 , 𝑤)
. (4.4)

Note that in practice, exact computation of the sensitivity is intractable, so we usually

83

settle for (sharp) upper bounds on the sensitivity 𝛾(𝑝) ≥ 𝑠(𝑝) (e.g., as in Alg. 4).

Sensitivity-based importance sampling then boils down to normalizing the sensitivities

by the normalization constant – to obtain an importance sampling distribution – which

in this case is the sum of sensitivities 𝑡 =
∑︀

𝑝∈𝑃 𝑠(𝑝). It turns out that the required

size of the coreset is at least linear in 𝑡 [BFL16], which implies that one immediate

necessary condition for sublinear coresets is 𝑡 ∈ 𝑜(𝑛).

4.4.2 Lower bound for Sensitivity

The next lemma shows that a sublinear-sized coreset cannot be constructed for every

SVM problem instance. The proof of this result is based on demonstrating a hard

point set for which the sum of sensitivities is Ω(𝑛𝜆), ignoring 𝑑 factors, which implies

that sensitivity-based importance sampling roughly boils down to uniform sampling

for this data set. This in turn implies that if the regularization parameter is too large,

e.g., 𝜆 = 𝜃(1), and if 𝑑≪ 𝑛 (as in Big Data applications) then the required number of

samples for property (4.3) to hold is Ω(𝑛).

Lemma 16. For an even integer 𝑑 ≥ 2, there exists a set of weighted points 𝒫 = (𝑃, 𝑢)

such that

𝑠(𝑝) ≥ 𝑛𝜆 + 𝑑2

𝑛 (𝜆 + 𝑑2)
∀𝑝 ∈ 𝑃 and

∑︁
𝑝∈𝑃

𝑠(𝑝) ≥ 𝑛𝜆 + 𝑑2

(𝜆 + 𝑑2)
.

Next, we provide upper bounds on the sensitivity of each data point with respect to

the complexity of the input data. Despite the non-existence results established above,

our upper bounds shed light into the class of problems for which small-sized coresets

are ensured to exist.

4.4.3 Sensitivity Upper Bound

In this subsection we present sharp, data-dependent upper bounds on the sensitivity

of each point. Our approach is based on an approximate solution to the 𝑘-means

84

clustering problem and to the SVM problem itself (as in Alg. 4). To this end, we will

henceforth let 𝑘 be a positive integer, 𝜉 ∈ [0, 𝐹𝜆(𝒫 , 𝑤*)] be the error of the (coarse)

SVM approximation, and let (𝑐
(𝑖)
𝑦 , 𝑃

(𝑖)
𝑦), 𝛼(𝑖)

𝑦 and 𝑝Δ for every 𝑦 ∈ {+,−}, 𝑖 ∈ [𝑘] and

𝑝 ∈ 𝑃 as in Lines 4–9 of Algorithm 4.

The next lemma leverages the clusters found by an approximate k-median solution

and an approximate SVM solution to bound the relative importance, i.e., sensitivity,

of each data point.

Lemma 17. Let 𝑘 be a positive integer, 𝜉 ∈ [0, 𝐹𝜆(𝒫 , 𝑤*)], and let 𝒫 = (𝑃, 𝑢) be a

weighted set. Then for every 𝑖 ∈ [𝑘], 𝑦 ∈ {+,−} and 𝑝 ∈ 𝑃
(𝑖)
𝑦 ,

𝑠(𝑝) ≤ 𝑢(𝑝)

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ +
9𝜆𝑢(𝑝)

2
max

{︃
4𝛼

(𝑖)
𝑦

9
,

√︃
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2 ‖𝑝Δ‖22
9̃︁𝑜𝑝𝑡𝜉 − 2𝛼(𝑖)

𝑦

}︃
= 𝛾(𝑝).

Next, we bound the sum of sensitivities, which is a quantity that appears in the

application of concentration inequalities to our importance sampling scheme and

dictates the sampling complexity of the problem.

Lemma 18. In the context of Lemma 17, the sum of sensitivities is bounded by

∑︁
𝑝∈𝑃

𝑠(𝑝) ≤ 𝑡 = 4𝑘 +
𝑘∑︁

𝑖=1

3𝜆Var(𝑖)+√︁
2̃︁𝑜𝑝𝑡𝜉 +

3𝜆Var(𝑖)−√︁
2̃︁𝑜𝑝𝑡𝜉 ,

where Var(𝑖)𝑦 =
∑︀

𝑝∈𝑃 (𝑖)
𝑦

𝑢(𝑝) ‖𝑝Δ‖2 for all 𝑖 ∈ [𝑘] and 𝑦 ∈ {+,−}.

Having bounded the sum of sensitivities from above, we now apply a seminal result

of [BFL16] to establish the number of samples necessary under our algorithm to

generate an 𝜀-coreset. In the theorem below, we can see that the coreset size scales

linearly in the sum of sensitivities 𝑡 and explains the rationale for our effort in obtaining

sharp sensitivity bounds.

85

Theorem 19. For any 𝜀 ∈ (0, 1/2), 𝛿 ∈ (0, 1), let 𝑚 be an integer satisfying

𝑚 ∈ Θ

(︂
𝑡

𝜀2
(︀
𝑑 log 𝑡 + log(1/𝛿)

)︀)︂
,

where 𝑡 is as in Lem. 18. Invoking Coreset with the inputs defined in this context

yields a 𝜀-coreset 𝒮 = (𝑆, 𝑣) with probability at least 1− 𝛿 in 𝒪 (𝑛𝑑 + 𝑇) time, where

𝑇 represents the computational complexity of obtaining an 𝜉-approximated solution to

SVM and applying 𝑘-means++ on 𝑃+ and 𝑃−.

Sufficient conditions and the effect of 𝑘-means on our sensitivity Theo-

rem 19 immediately implies that, for reasonable 𝜀 and 𝛿, coresets of poly-logarithmic

(in 𝑛) size can be obtained if 𝑑 = 𝒪(polylog(𝑛)), which is usually the case in our

target Big Data applications, and if
∑︀𝑘

𝑖=1

3𝜆Var(𝑖)+√
2̃︁𝑜𝑝𝑡𝜉 +

3𝜆Var(𝑖)−√
2̃︁𝑜𝑝𝑡𝜉 = 𝒪(polylog(𝑛)).

Despite the fact that any 𝑘-partitioning of the data can be applied instead of 𝑘-means

for achieving an upper bound on the sensitivities of the points, it’s important to note

that 𝑘-means actually acts as a trade-off mechanism between the raw contribution

and the actual contribution (the weight term and the max term from Lemma 17,

respectively). Choosing the best 𝑘 can be done via binary search over the values of 𝑘

that minimize the sensitivity.

4.5 Intuition for 𝑘-means Clustering

Recall the bound from Lemma 17, and note that it was achieved by using 𝑘-means++

clustering as depicted at Algorithm 4. Following our analysis from Sec. 4.8.2, we

observe that we can simply use any 𝑘-partitioning of the dataset, instead of applying

𝑘-means clustering. Moreover, we can also simply choose 𝑘 = 1 which translates to

simply taking the mean of the labeled points. Despite all of above, we did choose to

use a clustering algorithm as well as having larger values of 𝑘, and such decisions were

inspired by the following observations:

(i) 𝑘-means clustering aims to optimize the sum of squared distances between the

86

points and their corresponding center, which on some level, helps in lowering

the distance between points and their corresponding centers. Such observation

leads to having tighter bounds for the sensitivity of each point, consequently

leading to lower coreset sizes; See Thm. 19.

(ii) Having larger 𝑘 also helps lowering the distance between a point and its corre-

sponding center.

(iii) 𝑘-means clustering acts as a trade-off mechanism between

∙ the raw contribution of each point, which is translated into the weight of

the point divided by the sum of the weights with respect to the cluster that

each point is assigned to,

∙ and the actual contribution of each point which is translated to the distance

between each point and its corresponding center.

In light of the above, we observe that as 𝑘 goes larger, the sensitivity of each point gets

closer and closer to being simply the raw contribution, which in case of unweighted

data set, is simply applying uniform sampling. Thus, for each weighted (𝑃, 𝑢), we

simply chose 𝑘 = log 𝑛 where 𝑛 denotes the total number of points in a 𝑃 .

This observation helps in understanding how the sensitivities that we are providing

for outliers and misclassified points actually quantifies the importance of such points.

Specifically speaking, as 𝑘 goes larger the outliers would mostly be assigned to the same

cluster and since in general there aren’t much of these points, we end up giving higher

sensitivities for such points (than others) due to the fact that their raw contribution

increases as the size of their corresponding cluster decreases. When 𝑘 isn’t large enough

to separate these points from the rest of the data points, the actual contribution is

used, which then results in shifting the mean of the cluster towards the “middle”

between the outliers and the rest of the points in that cluster. This boosts the actual

contribution of the rest of points inside the same cluster; See Fig. 4-1.

87

(a) At first, an optimal solution for the SVM
problem is found.

(b) We focus on the the positive labeled points
(blue points) and we find a 𝑘-means clustering
using 𝑘-means++, where we set 𝑘 = 3. The
yellow points are the centers found by the
𝑘-means++ algorithm

(c) Points in small clusters have higher sensitivities, which quantifies the importance of outliers and
misclassified points as they will be mostly in small clusters as 𝑘 goes larger.

Figure 4-1: Understanding the effect of 𝑘-means on the sensitivities of the points.

4.5.1 Automating the Search for the (Approximately) Opti-

mal 𝑘

To find the approximately optimal value of 𝑘, observe that the sum of sensitivities

(see Lemma 18) contains two distinct expressions in terms of the number of clusters.

By Lemma 18, they are (roughly) (1) 𝑘 and (2) the sum of distances to the nearest

cluster. Note that term (1) is increasing with 𝑘 while (2) is decreasing with 𝑘. This

means that we can perform a binary search over [1, 𝑛] to find the best 𝑘.

However, a challenge here is that the clusterings are generated by k-means++ in

practice, which is only 𝒪(log 𝑘)-competitive in expectation. Nevertheless, at the

88

additional multiplicative cost of 𝒪(log 1/𝛿+log log 𝑛) time, we can amplify the success

probability by running k-means++ for a clustering size of 𝑘 Θ(log((log 𝑛)/𝛿)) times and

picking the best 𝑘-clustering to obtain a 𝒪(log 𝑘)-competitive solution with probability

at least 1− 𝛿/𝒪(log 𝑛) (by combining Markov’s inequality and amplification). Doing

this for every 𝑘 we pick as we binary search, and accounting for the total log 𝑛 iterations

of binary search leads to a multiplicative factor increase of𝒪 (log 𝑛 (log 1/𝛿 + log log 𝑛))

in the computation time. Using the 𝒪(log 𝑘)-competitiveness of all of the k-means

instances implies that the binary search2 generates a 𝑘-clustering such that the sum

of sensitivities is within Θ(log 𝑛) factor of the minimum (over all 𝑘 ∈ [1, 𝑛]) sum of

sensitivities with respect to the best clustering, with probability3 at least 1− 𝛿/2.

The additional concern here is the run-time of k-means++, which is 𝒪(𝑛𝑑𝑘) for a

clustering of size 𝑘 [AV07]. To alleviate the dependence on 𝑑 in the case of a high

dimensional data set, we can use the (fast) Johnson-Lindenstrauss transform [CEM+15,

IN07] on the input data points as a pre-processing step to reduce the dimensionality 𝑑

to Θ(log 𝑛/𝜀2) at the cost of 𝜀 distortion in the pairwise distances between the points,

while retaining the 𝒪(log 𝑘)-competitiveness of the k-means++ solution [MMR19].

This leads to at most 𝒪(𝑛𝑘 log 𝑛) time per k-means++ invocation. To further reduce

the runtime in the case of large values of 𝑘, we can restrict the end point of our binary

search to e.g., 𝑘 ∈ [1,
√
𝑛] (or even 𝑘 ∈ [1,𝒪(log 𝑛)]), since any 𝑘 ≥

√
𝑛 would yield

a sum of sensitivities that is ≥
√
𝑛, and in turn, a sampling complexity of at least

√
𝑛 – which would imply a higher-than-ideal coreset size in the first place. With these

changes in place, the runtime per invocation of k-means++ reduces to 𝒪(𝑛𝑏 log 𝑛),

where 𝑏 (≤ 𝒪(log 𝑛) for instance) is the end-point of the binary search over 𝑘 ∈ [1, 𝑏],

without compromising its 𝒪(log 𝑘)-competitiveness.

2And keeping track of the best 𝑘 found thus far, including the end points of the binary search
range.

3For an appropriate choice of constants within the asymptotic notation.

89

4.6 Empirical Evaluations

In this section, we present experimental results that demonstrate and compare the

effectiveness of our algorithm on a variety of synthetic and real-world data sets in

offline and streaming data settings [Lic13]. Our empirical evaluations demonstrate the

practicality and wide-spread effectiveness of our approach: our algorithm consistently

generated more compact and representative data summaries, and yet incurred a

negligible increase in computational complexity when compared to uniform sampling.

Measurements
Dataset HTRU Credit Pathol. Skin Cod W1

Number of data-points (𝑛) 17, 898 30, 000 1, 000 245, 057 488, 565 49, 749
Sum of Sensitivities (𝑡) 475.8 1, 013.0 77.6 271.5 2, 889.2 24, 231.6
𝑡/𝑛 (Percentage) 2.7% 3.4% 7.7% 0.1% 0.6% 51.3%

Table 4.1: The number of input points and measurements of the total sensitivity computed
empirically for each data set in the offline setting. The sum of sensitivities is significantly
less than 𝑛 for virtually all of the data sets, which, by Thm. 19, ensures the sample-efficiency
of our approach on the evaluated scenarios.

Evaluation We considered 6 real-world data sets of varying size and complexity

as depicted in Table 4.1. For each data set of size 𝑛, we selected a set of 𝑀 = 15

geometrically-spaced subsample sizes 𝑚1, . . . ,𝑚M ⊂ [log 𝑛, 𝑛4/5]. For each sample size

𝑚, we ran each algorithm (Alg. 4 or uniform sampling) to construct a subset 𝒮 = (𝑆, 𝑣)

of size 𝑚. We then trained the SVM model as per usual on this subset to obtain an

optimal solution with respect to the coreset 𝒮, i.e., 𝑤*
𝒮 = argmin𝑤 𝐹𝜆(𝒮, 𝑤). We then

computed the relative error incurred by the solution computed on the coreset (𝑤*
𝒮)

with respect to the ground-truth optimal solution computed on the entire data set

(𝑤*): |𝐹𝜆(𝑃,𝑤
*
𝒮)−𝐹𝜆(𝑃,𝑤

*)|/𝐹𝜆(𝑃,𝑤
*). The results were averaged across 100 trials.

Figures 4-2 and 4-3 depict the results of our comparisons against uniform sampling in

the offline setting. In Fig. 4-2, we see that the coresets generated by our algorithm are

much more representative and compact than the ones constructed by uniform sampling:

across all data sets and sample sizes, training on our coreset yields significantly better

solutions to SVM problem when compared to those generated by training on a uniform

90

200 400 600 800
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r (
)

HTRU
Uniform Sampling
Our Coreset
All Data

200 400 600 800
Sample Size

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

Er
ro

r (
)

CreditCard
Uniform Sampling
Our Coreset
All Data

200 300 400 500 600 700
Sample Size

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e
E

rr
or

 (
)

Pathological

Uniform Sampling
Our Coreset
All Data

500 1000 1500 2000 2500
Sample Size

0.00

0.05

0.10

0.15

Re
la

tiv
e

Er
ro

r (
)

Skin
Uniform Sampling
Our Coreset
All Data

400 600 800 1000 1200 1400
Sample Size

0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e

Er
ro

r (
)

Cod
Uniform Sampling
Our Coreset
All Data

6000 8000 10000 12000 14000
Sample Size

0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Er
ro

r (
)

W1
Uniform Sampling
Our Coreset
All Data

Figure 4-2: The relative error of query evaluations with respect uniform and coreset subsam-
ples for the 6 data sets in the offline setting. Shaded region corresponds to values within one
standard deviation of the mean.

sample. For certain data sets, such as HTRU, Pathological, and W1, this relative

improvement over uniform sampling is at least an order of magnitude better, especially

for small sample sizes. Fig. 4-2 also shows that, as a consequence of a more informed

sampling scheme, the variance of each model’s performance trained on our coreset is

much lower than that of uniform sampling for all data sets.

Fig. 4-3 shows the total computational time required for constructing the sub-sample

(i.e., coreset) 𝒮 and training the SVM on the subset 𝒮 to obtain 𝑤*
𝒮 . We observe that

our approach takes significantly less time than training on the original model when

considering non-trivial data sets (i.e., 𝑛 ≥ 18, 000), and underscores the efficiency of

our method: we incur a negligible cost in the overall SVM training time due to a more

involved coreset construction procedure, but benefit heavily in terms of the accuracy

of the models generated (Fig. 4-2).

Next, we evaluate our approach in the streaming setting, where data points arrive

one-by-one and the entire data set cannot be kept in memory, for the same 6 data sets.

The results of the streaming setting are shown in Fig. 4-4. Figs. 4-4 portray a similar

trend as the one we observed in our offline evaluations: our approach significantly

91

200 400 600 800
Subsample Size

0

2

4

6

8

To
ta

l R
un

ni
ng

 T
im

e
(s

ec
on

ds
) HTRU

Uniform Sampling
Our Coreset
All Data

200 400 600 800
Subsample Size

0

10

20

30

40

50

60

To
ta

l R
un

ni
ng

 T
im

e
(s

ec
on

ds
) CreditCard

Uniform Sampling
Our Coreset
All Data

200 300 400 500 600 700
Subsample Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ta

l R
un

ni
ng

 T
im

e
(s

ec
on

ds
) Pathological

Uniform Sampling
Our Coreset
All Data

500 1000 1500 2000 2500
Subsample Size

0

50

100

150

200

250

To
ta

l R
un

ni
ng

 T
im

e
(s

ec
on

ds
) Skin

Uniform Sampling
Our Coreset
All Data

400 600 800 1000 1200 1400
Subsample Size

0

500

1000

1500

2000

To
ta

l R
un

ni
ng

 T
im

e
(s

ec
on

ds
) Cod

Uniform Sampling
Our Coreset
All Data

6000 8000 10000 12000 14000
Subsample Size

0

50

100

150

200

To
ta

l R
un

ni
ng

 T
im

e
(s

ec
on

ds
) W1

Uniform Sampling
Our Coreset
All Data

Figure 4-3: The total computational cost of constructing a coreset and training the SVM
model on the coreset, plotted as a function of the size of the coreset.

outperforms uniform sampling for all of the evaluated data sets and sample sizes, with

negligible computational overhead.

200 400 600 800
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
E

rr
or

 (
)

HTRU

Uniform Sampling
Our Coreset
All Data

200 400 600 800
Sample Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
el

at
iv

e
E

rr
or

 (
)

CreditCard

Uniform Sampling
Our Coreset
All Data

200 400 600 800 1000
Sample Size

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e
E

rr
or

 (
)

Pathological

Uniform Sampling
Our Coreset
All Data

200 400 600 800 1000 1200 1400
Sample Size

0.0

0.1

0.2

0.3

R
el

at
iv

e
E

rr
or

 (
)

Skin

Uniform Sampling
Our Coreset
All Data

250 500 750 1000 1250 1500
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
E

rr
or

 (
)

Cod

Uniform Sampling
Our Coreset
All Data

6000 8000 10000 12000 14000
Sample Size

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
E

rr
or

 (
)

W1

Uniform Sampling
Our Coreset
All Data

Figure 4-4: The relative error of query evaluations with respect uniform and coreset subsam-
ples for the 6 data sets in the streaming setting. The figure shows that our method tends to
fare even better in the streaming setting (cf. Fig. 4-2).

In sum, our empirical evaluations demonstrate the practical efficiency of our algorithm

and reaffirm the favorable theoretical guarantees of our approach: the additional

computational complexity of constructing the coreset is negligible relative to that of

92

uniform sampling, and the entire preprocess-then-train pipeline is significantly more

efficient than training on the original massive data set.

4.7 Extension to Streaming Settings

As a corollary to our main method, Alg. 5 extends the capabilities of any SVM solver,

exact or approximate, to the streaming setting, where data points arrive one-by-one.

Alg. 5 is inspired by [FL11, LS10] and constructs a binary tree, termed the merge-

and-reduce tree, starting from the leaves which represent chunks of the data stream

points. For each stream of 𝑙 points, we construct an 𝜀-coreset using Algorithm 4, and

then we add each resulted tuple to 𝐵1, a bucket which is responsible for storing each

of the parent nodes of the leaves (Lines 1-6).

Note that for every 𝑖 > 1, the bucket 𝐵𝑖 will hold every node which is a root of a

subtree of height 𝑖. Then, for every two successive items in each bucket 𝐵𝑖, for every

𝑖 ≥ 1, a parent node is generated by computing a coreset on the union of the coresets,

which is then, added to the bucket 𝐵𝑖+1 (Lines 7-11). This process is done till all the

buckets are emptied other than 𝐵ℎ, that will contain only one tuple (𝑆, 𝑣) which is

set to be the root of the merge-and-reduce tree.

In sum, we obtain a binary tree of height ℎ = Θ(log(𝑛)) for a stream of 𝑛 data points.

Thus, at Lines 3 and 9, we have used error parameter 𝜀′ = 𝜀/(2 log(𝑛)) and failure

parameter 𝛿′ = 𝛿/(2 log(𝑛)) in order to obtain 𝜀-coreset with probability at least 1− 𝛿.

Coreset construction of size poly-logarithmic in 𝑛 In case of the total sensitiv-

ity being sub-linear in 𝑛 where 𝑛 denotes the number of points in 𝑃 , which is obtained

by Lemma 17, we provide the following theorem which constructs a (1 + 𝜀)-coreset of

size poly-logarithmic in 𝑛.

Lemma 20. Let 𝜀 ∈
[︁

1
log𝑛

, 1
2

]︁
, 𝛿 ∈

[︁
1

log𝑛
, 1
)︁
, 𝜆 ∈ (0, 1], a weighted set (𝑃, 𝑢),

𝜉 ∈ [0, 𝐹𝜆(𝒫 , 𝑤*)] where 𝑤* ∈ argmin𝑤∈R𝑑+1 𝐹𝜆(𝒫 , 𝑤). Let 𝑡 denote the total sensitivity

from Lemma 17 and suppose that there exists 𝛽 ∈ (0.1, 0.8) such that 𝑡 ∈ Θ(𝑛𝛽). Let

93

Algorithm 5 Streaming-Coreset(𝑃, 𝑢, ℓ, 𝜆, 𝜉, 𝑘)

Inputs: (𝑃, 𝑢, ℓ, 𝜆, 𝜉, 𝑘) – An input stream 𝑃 in R𝑑+1 × {−1, 1} of 𝑛 points, a leaf
size ℓ > 0, a weight function 𝑢 : 𝑃 → R≥0, a regularization parameter 𝜆 ∈ [0, 1],
a positive integer 𝑘, and an approximation factor 𝜉 > 0.

Output: A weighted set (𝒮, 𝑣).
1: 𝐵𝑖 ← ∅ for every 1 ≤ 𝑖 ≤ ∞; ℎ← 1;
2: for each set 𝑄 of consecutive 2ℓ points from 𝑃 do
3: (𝑇, 𝑣)← Coreset(𝑄, 𝑢, 𝜆, 𝜉, 𝑘, ℓ); 𝑗 ← 1; 𝐵𝑗 ← 𝐵𝑗 ∪ (𝑇, 𝑣);
4: for each 𝑗 ≤ ℎ do
5: while |𝐵𝑗| ≥ 2 do
6: (𝑇1, 𝑢1), (𝑇2, 𝑢2)← top two items in 𝐵𝑗;
7: Set 𝑢̃ : 𝑇1 ∪ 𝑇2 → [0,∞) such that for every 𝑝 ∈ 𝑇1 ∪ 𝑇2,

8: 𝑢̃(𝑝) =

{︃
𝑢1(𝑝) 𝑝 ∈ 𝑇1,

𝑢2(𝑝) otherwise
;

9: (𝑇, 𝑣)← Coreset(𝑇1 ∪ 𝑇2, 𝑢̃, 𝜆, 𝜉, 𝑘, ℓ) ;
10: 𝐵𝑗+1 ← 𝐵𝑗+1 ∪ (𝑇, 𝑣); ℎ← max{ℎ, 𝑗 + 1};
11: Set (𝑆, 𝑣) to be the only item in 𝐵ℎ return (𝑆, 𝑣)

ℓ ≥ max
{︁

2
𝛽

1−𝛽 , 𝑐
(︁

𝑡 log2 (𝑛)
𝜀2

(︀
𝑑 log 𝑡 + log(log 𝑛/𝛿)

)︀)︁}︁
and let (𝑆, 𝑣) be the output of a

call to Streaming-Coreset(𝑃, 𝑢, ℓ, 𝜆, 𝜉,). Then (𝑆, 𝑣) is an 𝜀-coreset of size

|𝑆| ∈ (log 𝑛)𝒪(1) .

Proof. First we note that using Theorem 19 on each node in the merge-and-reduce

tree, would attain that the root of the tree, i.e., (𝑆, 𝑣) attains that for every 𝑤

(1− 𝜀)log𝑛𝐹𝜆(𝒫 , 𝑤) ≤ 𝐹𝜆 ((𝑆, 𝑣), 𝑤) ≤ (1 + 𝜀)log𝑛𝐹𝜆(𝒫 , 𝑤),

with probability at least (1− 𝛿)log𝑛.

We observe by the properties of the natural number 𝑒,

(1 + 𝜀)log𝑛 =

(︂
1 +

𝜀 log 𝑛

log 𝑛

)︂log𝑛

≤ 𝑒𝜀 log𝑛,

which when replacing 𝜀 with 𝜀′ = 𝜀
2 log𝑛

in the above inequality as done at Lines 3

94

and 9 of Algorithm 5, we obtain that

(1 + 𝜀′)log𝑛 ≤ 𝑒
𝜀
2 ≤ 1 + 𝜀, (4.5)

where the inequality holds since 𝜀 ∈ [1
log𝑛

, 1
2
].

As for the lower bound, observe that

(1− 𝜀)log𝑛 ≥ 1− 𝜀 log 𝑛,

where the inequality holds since 𝜀 ∈ [1
log𝑛

, 1
2
].

Hence,

(1− 𝜀′)log𝑛 ≥ 1− 𝜀′ log 𝑛 = 1− 𝜀

2
≥ 1− 𝜀.

Similar arguments holds also for the failure probability 𝛿. What is left for us to do is

setting the leaf size which will attain us an 𝜀-coreset of size poly-logarithmic in 𝑛 (the

number of points in 𝑃).

Let ℓ ∈ (0,∞) be the size of a leaf in the merge-and-reduce tree. We observe that a

coreset of size poly-logarithmic in 𝑛, can be achieved by solving the inequality

2ℓ

2
≥ (2ℓ)𝛽,

which is invoked when ascending from any two leafs and their parent node at the

merge-and-reduce tree.

Rearranging the inequality, we yield that

ℓ1−𝛽 ≥ 2𝛽.

Since ℓ ∈ (0,∞), any ℓ ≥ 1−𝛽
√

2𝛽 would be sufficient for the inequality to hold. What

is left for us to do, is to show that when ascending through the merge-and-reduce tree

95

from the leaves towards the root, each parent node can’t be more than half of the

merge of it’s children (recall that the merge-and-reduce tree is built in a binary tree

fashion, as depicted at Algorithm 5).

Thus, we need to show that,

2

𝑖∑︀
𝑗=1

𝛽𝑗

· ℓ𝛽𝑖 ≤ 2

𝑖−1∑︀
𝑘=0

𝛽𝑘

· ℓ𝛽𝑖−1

2
= 2

𝑖−1∑︀
𝑘=1

𝛽𝑘

· ℓ𝛽𝑖−1

,

holds, for any 𝑖 ∈ [⌈log 𝑛⌉] where log 𝑛 is the height of the tree. Note that the left

most term is the parent node’s size and the right most term represents half the size of

both parent’s children nodes.

In addition, for 𝑖 = 1, the inequality above represents each node which is a parent of

leaves. Thus, we observe that for every 𝑖 ≥ 1, the inequality represents ascending from

node which is a root of a sub-tree of height 𝑖− 1 to it’s parent in the merge-and-reduce

tree.

By simplifying the inequality, we obtain the same inequality which only addressed the

leaves. Hence, by using any ℓ ≥ 2
𝛽

1−𝛽 as a leaf size in the merge and reduce tree, we

obtain an 𝜀-coreset of size poly-logarithmic in 𝑛.

4.8 Proofs of the Analytical Results in Section 4.4

This section includes the full proofs of the technical results given in Sec. 4.4.

4.8.1 Proof of Lemma 16

Lemma 16. For an even integer 𝑑 ≥ 2, there exists a set of weighted points 𝒫 = (𝑃, 𝑢)

such that

𝑠(𝑝) ≥ 𝑛𝜆 + 𝑑2

𝑛 (𝜆 + 𝑑2)
∀𝑝 ∈ 𝑃 and

∑︁
𝑝∈𝑃

𝑠(𝑝) ≥ 𝑛𝜆 + 𝑑2

(𝜆 + 𝑑2)
.

96

Proof. Following [YCRM17], let 𝑛 =
(︀

𝑑
𝑑/2

)︀
and let 𝒫 = (𝑃, 𝑢), where 𝑃 ⊆ R𝑑+1×{±1}

be set of 𝑛 labeled points, and 𝑢 : 𝑃 → 1. For every 𝑝 = (𝑥, 𝑦) ∈ 𝑃 , where 𝑥 ∈ R𝑑×{1}

and 𝑦 ∈ {±1}, among the first 𝑑 entries of 𝑥, exactly 𝑑
2

entries are equivalent to

𝑦

√︂
2

𝑑
,

where the remaining 𝑑
2

entries among the first 𝑑 are set to 0. Hence, for our proof to

hold, we assume that 𝑃 contains all such combinations and at least one point of each

label. For every 𝑝 = (𝑥, 𝑦) ∈ 𝑃 , define the set of non-zero entries of 𝑝 as the set

𝐵𝑝 = {𝑖 ∈ [𝑑 + 1] : 𝑥𝑖 ̸= 0}.

Put 𝑝 ∈ 𝑃 and note that for bounding the sensitivity of point 𝑝, consider 𝑤 with

entries defined as

∀𝑖 ∈ [𝑑 + 1] 𝑤𝑖 =

⎧⎪⎨⎪⎩
0 if 𝑖 ∈ 𝐵𝑝,

1√
2
𝑑

otherwise.

Note that ‖𝑤‖22 = 𝑑
2

(︂
1√
2
𝑑

)︂2

= 𝑑2

4
. We also have that ℎ(𝑝, 𝑤) = 1 since 𝑦⟨𝑥,𝑤⟩ =∑︀

𝑖∈𝐵𝑝
𝑦𝑥𝑖𝑤𝑖 = 𝑑

2
0 = 0. To bound the sum of hinge losses contributed by other points

𝑞 ∈ 𝑃 ∖ {𝑝}, note that 𝐵𝑞 ∖𝐵𝑝 ̸= ∅. Then for every 𝑞 = (𝑥′, 𝑦′) ̸= 𝑝,

𝑦′⟨𝑥′, 𝑤⟩ =
∑︁

𝑖∈𝐵𝑞∖𝐵𝑝

𝑦′𝑥′
𝑖𝑤𝑖 ≥

1√︁
2
𝑑

√︂
2

𝑑
= 1,

which implies that ℎ(𝑞, 𝑤) = 0. Thus,

∑︁
𝑞∈𝑃

ℎ(𝑞, 𝑤) = 1.

97

Putting it all together,

𝑠(𝑝) = sup
𝑤′∈R𝑑+1

𝐹𝜆(𝒫,𝑤′)̸=0

𝑓𝜃[𝑤
′]

𝐹𝜆(𝒫 , 𝑤′)
≥

𝑑2

8𝑛
+ 𝜆ℎ(𝑝, 𝑤)
‖𝑤‖22
2

+ 𝜆
=

𝑑2

8𝑛
+ 𝜆

𝑑2

8
+ 𝜆

.

Since the above holds for every 𝑝 ∈ 𝑃 , summing the above inequality over every 𝑝 ∈ 𝑃 ,

yields that

∑︁
𝑝∈𝑃

𝑠(𝑝) ≥
𝑑2

8
+ 𝑛𝜆

𝑑2

8
+ 𝜆

∈ Ω

(︂
𝑑2 + 𝑛𝜆

𝑑2 + 𝜆

)︂
.

4.8.2 Proof of Lemma 17

In what follows, for simplicity of presentation, we present some of the definitions of

the terms that are used throughout the proof of Lemma 17.

Term Definition
𝑢(𝑝) The weight of 𝑝 ∈ 𝑃
𝒫 The tuple (𝑃, 𝑢) where 𝑢 is weight function
𝑃𝑦 All points in the set 𝑃 that are associated with the label 𝑦 ∈ {+,−}
𝑐
(𝑖)
𝑦

1

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁∑︀
𝑞=(𝑥𝑞 ,𝑦𝑞)∈𝑃 (𝑖)

𝑦
𝑢(𝑞)𝑥𝑞 (i.e., the centroid of cluster 𝑖)

𝑈(𝑃𝑦) The sum of weights of the points in 𝑃𝑦

𝛼
(𝑖)
𝑦

𝑈
(︁
𝑃∖𝑃 (𝑖)

𝑦

)︁
2𝜆𝑈(𝑃)𝑈

(︁
𝑃

(𝑖)
𝑦

)︁
𝑝Δ 𝑦(𝑐

(𝑖)
𝑦 − 𝑥) for every 𝑝 = (𝑥, 𝑦) ∈ 𝑃𝑦, 𝑖 ∈ [𝑘], and 𝑦 ∈ {+,−}

Table 4.2: Definition of terms that are stated in Algorithm 4

Lemma 17. Let 𝑘 be a positive integer, 𝜉 ∈ [0, 𝐹𝜆(𝒫 , 𝑤*)], and let 𝒫 = (𝑃, 𝑢) be a

weighted set. Then for every 𝑖 ∈ [𝑘], 𝑦 ∈ {+,−} and 𝑝 ∈ 𝑃
(𝑖)
𝑦 ,

𝑠(𝑝) ≤ 𝑢(𝑝)

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ +
9𝜆𝑢(𝑝)

2
max

{︃
4𝛼

(𝑖)
𝑦

9
,

√︃
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2 ‖𝑝Δ‖22
9̃︁𝑜𝑝𝑡𝜉 − 2𝛼(𝑖)

𝑦

}︃
= 𝛾(𝑝).

98

Proof. Let 𝑃𝑦 ⊆ 𝑃 denote the set of points with the same label as 𝑝 as in Line 4 of

Algorithm 4. Consider a clustering of the points in 𝑃𝑦 into 𝑘 clusters with centroids

𝒞𝑦 = {𝑐(1)𝑦 , . . . , 𝑐
(𝑘)
𝑦 } ⊆ R𝑑+1 being their mean as in Line 5, and let 𝛼(𝑖)

𝑦 be as defined in

Line 7 for every 𝑖 ∈ [𝑘] and 𝑦 ∈ {+,−}. In addition, let 𝒫 ∖ 𝒫(𝑖)
𝑦 denote the weighted

set
(︁
𝑃 ∖ 𝑃 (𝑖)

𝑦 , 𝑢
)︁

for every 𝑖 ∈ [𝑘] and 𝑦 ∈ {+,−} .

We begin with the following property about the ramp function 𝑥 ↦→ max{0, 𝑥}:

max{0, 𝑎} ≤ max{0, 𝑏}+ max{0, 𝑎− 𝑏}. (4.6)

To see this, note that the inequality is trivial if 𝑎 ≤ 𝑏. On the other hand, for 𝑎 > 𝑏,

we can apply the fact that max{0, 𝑥} is 1-Lipschitz, which gives

|max{0, 𝑎} −max{0, 𝑏}| ≤ |𝑎− 𝑏| = max{0, 𝑎− 𝑏},

where the last equality follows by the fact that 𝑎 > 𝑏.

Next, put 𝑝 = (𝑥, 𝑦) ∈ 𝑃 and let 𝑖 ∈ [𝑘] be the index of the cluster which 𝑝 belongs to,

i.e., 𝑝 ∈ 𝑃
(𝑖)
𝑦 . Recall that the hinge loss of 𝑝 is defined as

ℎ(𝑝, 𝑤) = max{0, 1− 𝑦⟨𝑥,𝑤⟩⏟ ⏞
=𝑎

}.

For another point 𝑞 = (𝑧, 𝑦) of the same label 𝑦 as 𝑝, the hinge loss is similarly

ℎ(𝑞, 𝑤) = max{0, 1− 𝑦⟨𝑧, 𝑤⟩⏟ ⏞
=𝑏

}.

Applying (4.6) with the underlined 𝑎 = 1− 𝑦⟨𝑥,𝑤⟩ and 𝑏 = 1− 𝑦⟨𝑧, 𝑤⟩ implies that

ℎ(𝑝, 𝑤) = max{0, 𝑎} (4.7)

≤ max{0, 𝑏}+ max{0, 𝑎− 𝑏} (4.8)

= ℎ(𝑞, 𝑤) + max{0, 𝑦⟨𝑧 − 𝑥,𝑤⟩}. (4.9)

99

Now let 𝑐
(𝑖)
𝑦 denote the centroid (mean) of the inputs in cluster 𝑃

(𝑖)
𝑦 , i.e.,

𝑐(𝑖)𝑦 =
1

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ ∑︁
𝑞=(𝑥𝑞 ,𝑦𝑞)∈𝑃 (𝑖)

𝑦

𝑢(𝑞)𝑥𝑞,

where 𝑈
(︁
𝑃

(𝑖)
𝑦

)︁
is the total weight of the points in 𝑃

(𝑖)
𝑦

𝑈
(︀
𝑃 (𝑖)
𝑦

)︀
=
∑︁
𝑞∈𝑃 (𝑖)

𝑦

𝑢(𝑞).

Note that 𝑐(𝑖)𝑦 itself is not a point since it is a mean over inputs and consequently does

not have the label information embedded in it. By embedding the label information,

however, we do obtain a point (i.e., (𝑐
(𝑖)
𝑦 , 𝑦)) that we can use as input to functions we

have previously defined.

To this end, using the upper bound of Eq. (4.9) with 𝑞 = (𝑐
(𝑖)
𝑦 , 𝑦) yields

ℎ(𝑝, 𝑤) ≤ ℎ
(︀
(𝑐(𝑖)𝑦 , 𝑦), 𝑤

)︀
+ max{0, 𝑦⟨𝑐(𝑖)𝑦 − 𝑥,𝑤⟩}

= ℎ
(︀
(𝑐(𝑖)𝑦 , 𝑦), 𝑤

)︀
+ max{0, ⟨𝑝Δ, 𝑤⟩},

where

𝑝Δ = 𝑦
(︀
𝑐(𝑖)𝑦 − 𝑥

)︀
.

Observing that the hinge loss is convex in the point, we invoke Jensen’s inequality to

obtain for the point (𝑐
(𝑖)
𝑦 , 𝑦)

𝑓𝜆((𝑐(𝑖)𝑦 , 𝑦), 𝑤) ≤ 1

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ ∑︁
𝑞∈𝑃 (𝑖)

𝑦

𝑢(𝑞)𝑓(𝑞, 𝑤) =
𝐹𝜆(𝒫 , 𝑤)− 𝐹𝜆(𝒫 ∖ 𝒫(𝑖)

𝑦 , 𝑤)

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ .

Applying the two inequalities established above to 𝑠(𝑝)/𝑢(𝑝) yields that

𝑠(𝑝)

𝑢(𝑝)
= sup

𝑤

𝑓𝜆(𝑝, 𝑤)

𝐹𝜆(𝒫 , 𝑤)
(4.10)

100

≤ sup
𝑤

𝑓𝜆((𝑐
(𝑖)
𝑦 , 𝑦), 𝑤) + 𝜆 [⟨𝑤, 𝑝Δ⟩]+

𝐹𝜆(𝒫 , 𝑤)
(4.11)

≤ sup
𝑤

∑︀
𝑞∈𝑃 (𝑖)

𝑦

𝑢(𝑞)𝑓𝜆(𝑞, 𝑤)

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁
𝐹𝜆(𝒫 , 𝑤)

+
𝜆 [⟨𝑤, 𝑝Δ⟩]+
𝐹𝜆(𝒫 , 𝑤)

(4.12)

= sup
𝑤

𝐹𝜆(𝒫 , 𝑤)− 𝐹𝜆(𝒫 ∖ 𝒫(𝑖)
𝑦 , 𝑤)

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁
𝐹𝜆(𝒫 , 𝑤)

+
𝜆 [⟨𝑤, 𝑝Δ⟩]+
𝐹𝜆(𝒫 , 𝑤)

(4.13)

=
1

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ + sup
𝑤

𝜆 [⟨𝑤, 𝑝Δ⟩]+ − 𝐹𝜆(𝑃 ∖ 𝑃 (𝑖)
𝑦 , 𝑤)/𝑈

(︁
𝑃

(𝑖)
𝑦

)︁
𝐹𝜆(𝒫 , 𝑤)

(4.14)

By definition of 𝐹𝜆(𝑃 ∖ 𝑃 (𝑖)
𝑦 , 𝑤), we have

𝐹𝜆(𝑃 ∖ 𝑃 (𝑖)
𝑦 , 𝑤) ≥

‖𝑤1:𝑑‖22 𝑈
(︁
𝑃 ∖ 𝑃 (𝑖)

𝑦

)︁
2𝑈(𝑃)

.

Continuing from above and dividing both sides by 𝜆 yields

𝑠(𝑝)

𝜆𝑢(𝑝)
≤ 1

𝜆𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ + sup
𝑤

[⟨𝑤, 𝑝Δ⟩]+ −
‖𝑤1:𝑑‖2 𝑈

(︁
𝑃∖𝑃 (𝑖)

𝑦

)︁
2𝜆𝑈(𝑃)𝑈

(︁
𝑃

(𝑖)
𝑦

)︁
𝐹𝜆(𝒫 , 𝑤)

≤ 1

𝜆𝑢(𝒞𝑝)
+ sup

𝑤

[⟨𝑤, 𝑝Δ⟩]+ − 𝛼
(𝑖)
𝑦 ‖𝑤1:𝑑‖22

𝐹𝜆(𝒫 , 𝑤)
,

where

𝛼(𝑖)
𝑦 =

𝑈
(︁
𝑃 ∖ 𝑃 (𝑖)

𝑦

)︁
2𝜆𝑈(𝑃)𝑈

(︁
𝑃

(𝑖)
𝑦

)︁ . (4.15)

Let

𝑔(𝑤) =
[⟨𝑤, 𝑝Δ⟩]+ − 𝛼

(𝑖)
𝑦 ‖𝑤1:𝑑‖22

𝐹𝜆(𝒫 , 𝑤)

be the expression on the right hand side of the sensitivity inequality above, and let

𝑤̂ ∈ argmax𝑤 𝑔(𝑤). The rest of the proof will focus on bounding 𝑔(𝑤̂), since an upper

bound on the sensitivity of a point as a whole would follow directly from an upper

bound on 𝑔(𝑤̂).

101

Note that by definition of 𝑝Δ and the embedding of 1 to the (𝑑 + 1)th entry of the

original 𝑑-dimensional point (with respect to 𝑝),

⟨𝑤̂, 𝑝Δ⟩ = ⟨𝑤̂1:𝑑, (𝑝Δ)1:𝑑⟩,

where the equality holds since the (𝑑 + 1)th entry of 𝑝Δ is zero.

We know that ⟨𝑤̂, 𝑝Δ⟩ ≥ 𝛼
(𝑖)
𝑦 ‖𝑤̂1:𝑑‖22 ≥ 0, since otherwise 𝑔(𝑤̂) < 0, which contradicts

the fact that 𝑤̂ is the maximizer of 𝑔(𝑤). This implies that for each entry 𝑗 ∈ [𝑑] of

the sub-gradient of 𝑔(·) evaluated at 𝑤̂, denoted by ∇𝑔(𝑤̂), is given by

∇𝑔(𝑤̂)𝑗 =

(︁
(𝑝Δ)𝑗 − 2𝛼

(𝑖)
𝑦 𝑤̂𝑗

)︁
𝐹𝜆(𝒫 , 𝑤̂)−∇𝐹𝜆(𝒫 , 𝑤̂)𝑗

(︁
⟨𝑤, 𝑝Δ⟩ − 𝛼

(𝑖)
𝑦 ‖𝑤1:𝑑‖22

)︁
𝐹𝜆(𝒫 , 𝑤̂)2

.

(4.16)

Note that since 𝑤̂ is the maximizer of 𝑔 (·), the gradient of 𝑔 at 𝑤̂ is zero. Hence,

we obtain that for ∇𝑔(𝑤̂)𝑑+1 = 0, i.e., either the numerator of 𝑔 is zero or the

∇𝐹𝜆(𝒫 , 𝑤̂)𝑑+1 = 0. If the numerator is zero for 𝑥̂ then the sensitivity of 𝑝 is 1
𝜆𝑢(𝒞𝑝) .

However, since we aim to bound the term from above, we assume that without loss of

generality the numerator of 𝑔 is not zero. This means that ∇𝐹𝜆(𝒫 , 𝑤̂)𝑑+1 = 0.

Letting 𝛾 = ⟨𝑤̂, 𝑝Δ⟩ − 𝛼
(𝑖)
𝑦 ‖𝑤̂1:𝑑‖22 and setting each entry of the gradient ∇𝑔(𝑤̂) to 0,

we solve for 𝑝Δ to obtain

(𝑝Δ)1:𝑑 =
𝛾∇𝐹𝜆(𝒫 , 𝑤̂)1:𝑑

𝐹𝜆(𝒫 , 𝑤̂)
+ 2𝛼(𝑖)

𝑦 𝑤̂1:𝑑.

This implies that

⟨𝑤̂, 𝑝Δ⟩ =
𝛾 ⟨𝑤̂,∇𝐹𝜆(𝒫 , 𝑤̂)⟩

𝐹𝜆(𝒫 , 𝑤̂)
+ 2𝛼(𝑖)

𝑦 ‖𝑤̂1:𝑑‖22

102

Rearranging and using the definition of 𝛾, we obtain

𝛾 =
𝛾 ⟨𝑤̂,∇𝐹𝜆(𝒫 , 𝑤̂)⟩

𝐹𝜆(𝒫 , 𝑤̂)
+ 𝛼(𝑖)

𝑦 ‖𝑤̂1:𝑑‖22 , (4.17)

where Lemma 17 holds by taking 9
2

outside the max term.

By using the same equivalency for 𝑝Δ from above, we also obtain that

‖𝑝Δ‖22 = ⟨𝑝Δ, 𝑝Δ⟩ =

⃦⃦⃦⃦
𝛾∇𝐹𝜆(𝒫 , 𝑤̂)1:𝑑

𝐹𝜆(𝒫 , 𝑤̂)
+ 2𝛼(𝑖)

𝑦 𝑤̂

⃦⃦⃦⃦2
=

𝛾2

𝐹𝜆(𝒫 , 𝑤̂)2
‖∇𝐹𝜆(𝒫 , 𝑤̂)‖22 + 4

(︀
𝛼(𝑖)
𝑦

)︀2 ‖𝑤̂1:𝑑‖22 + 4𝛼(𝑖)
𝑦

𝛾 ⟨𝑤̂,∇𝐹𝜆(𝒫 , 𝑤̂)⟩
𝐹𝜆(𝒫 , 𝑤̂)

,

but 𝛾 ⟨𝑤̂,∇𝐹𝜆(𝒫,𝑤̂)⟩
𝐹𝜆(𝒫,𝑤̂)

= 𝛾 − 𝛼
(𝑖)
𝑦 ‖𝑤̂1:𝑑‖22, and so continuing from above, we have

‖𝑝Δ‖22 =
𝛾2

𝐹𝜆(𝒫 , 𝑤̂)2
‖∇𝐹𝜆(𝒫 , 𝑤̂)‖22 + 4

(︀
𝛼(𝑖)
𝑦

)︀2 ‖𝑤̂1:𝑑‖22 + 4𝛼(𝑖)
𝑦 (𝛾 − 𝛼(𝑖)

𝑦 ‖𝑤̂1:𝑑‖22)

=
𝛾2

𝐹𝜆(𝒫 , 𝑤̂)2
‖∇𝐹𝜆(𝒫 , 𝑤̂)1:𝑑‖22 + 4𝛼(𝑖)

𝑦 𝛾

= 𝛾2𝑥̃ + 4𝛼(𝑖)
𝑦 𝛾,

where 𝑥̃ =
‖∇𝐹𝜆(𝒫,𝑤̂)‖22
𝐹𝜆(𝒫,𝑤̂)2

. Solving for 𝛾 from the above equation yields for 𝑥̃ > 0

𝛾 =

√︂
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+ ‖𝑝Δ‖2 𝑥̃− 2𝛼

(𝑖)
𝑦

𝑥̃
. (4.18)

Now we subdivide the rest of the proof into two cases. The first is the trivial case in

which the sensitivity of the point is sufficiently small enough to be negligible, and the

second case is the involved case in which the point has a high influence on the SVM

cost function and its contribution cannot be captured by the optimal solution 𝑤* or

something close to it.

Case 𝑔(𝑤̂) ≤ 3𝛼
(𝑖)
𝑦 the bound on the sensitivity follows trivially from the analysis

above.

103

Case 𝑔(𝑤̂) > 3𝛼
(𝑖)
𝑦 note that the assumption of this case implies that 𝑤* cannot be

the maximizer of 𝑔(·), i.e., 𝑤̂ ≠ 𝑤*. This follows by the convexity of the SVM loss

function which implies that the norm of the gradient evaluated at 𝑤* is 0. Thus

by (4.17):

𝛾 = 𝛼(𝑖)
𝑦 ‖𝑤*

1:𝑑‖22 .

Since 𝐹𝜆(𝒫 , 𝑤*) ≥ ‖𝑤*
1:𝑑‖22 /2, we obtain

𝑠(𝑝) ≤ 𝛼
(𝑖)
𝑦 ‖𝑤*

1:𝑑‖22
𝐹𝜆(𝒫 , 𝑤*)

≤ 2𝛼(𝑖)
𝑦 .

Hence, we know that for this case we have ‖∇𝐹𝜆(𝒫 , 𝑤̂)‖2 > 0, 𝐹𝜆(𝒫 , 𝑤̂) > 𝐹𝜆(𝒫 , 𝑤*) ≥

0, and so we obtain 𝑥̃ > 0.

This implies that we can use Eq.(4.18) to upper bound the numerator 𝛾 of the

sensitivity. Note that 𝛾 from (4.18) is decreasing as a function of 𝑥̃, and so it suffices

to obtain a lower bound on 𝑥̃. To do so, lets focus on Eq.(4.17) and let divide both

sides of it by 𝛾, to obtain that

1 =
⟨𝑤̂,∇𝐹𝜆(𝒫 , 𝑤̂)⟩

𝐹𝜆(𝒫 , 𝑤̂)
+

𝛼
(𝑖)
𝑦

𝛾
‖𝑤1:𝑑‖22 .

By rearranging the above equality, we have that

⟨𝑤̂,∇𝐹𝜆(𝒫 , 𝑤̂)⟩
𝐹𝜆(𝒫 , 𝑤̂)

= 1− 𝛼
(𝑖)
𝑦 ‖𝑤1:𝑑‖22

𝛾
. (4.19)

Recall that since the last entry of 𝑝Δ is 0 then it follows from Eq.(4.16) that

∇𝐹𝜆(𝒫 , 𝑤̂)𝑑+1 is also zero, which implies that

⟨𝑤̂,∇𝐹𝜆(𝒫 , 𝑤̂)⟩ = ⟨𝑤̂1:𝑑,∇𝐹𝜆(𝒫 , 𝑤̂)1:𝑑⟩

≤ ‖𝑤̂1:𝑑‖2 ‖∇𝐹𝜆(𝒫 , 𝑤̂)1:𝑑‖2

= ‖𝑤̂1:𝑑‖2 ‖∇𝐹𝜆(𝒫 , 𝑤̂)‖2

(4.20)

104

where the inequality is by Cauchy-Schwarz.

Combining Eq.(4.19) with Eq. (4.20) yields

‖𝑤̂1:𝑑‖2 ‖∇𝐹𝜆(𝒫 , 𝑤̂)‖2
𝐹𝜆(𝒫 , 𝑤̂)

≥ 1− 𝛼
(𝑖)
𝑦 ‖𝑤1:𝑑‖22

𝛾

≥ 1− 𝛼
(𝑖)
𝑦 ‖𝑤̂1:𝑑‖22

3𝛼
(𝑖)
𝑦 𝐹𝜆(𝒫 , 𝑤̂)

≥ 1− 𝛼
(𝑖)
𝑦 2𝐹𝜆(𝒫 , 𝑤̂)

3𝛼
(𝑖)
𝑦 𝐹𝜆(𝒫 , 𝑤̂)

=
1

3
,

where the second inequality holds by the assumption of the case, the third inequality

follows from the fact that ‖𝑤̂1:𝑑‖22 ≤ 2𝐹𝜆(𝒫 , 𝑤̂).

This implies that

‖∇𝐹𝜆(𝒫 , 𝑤̂)‖2
𝐹𝜆(𝒫 , 𝑤̂)

≥ 1

3 ‖𝑤1:𝑑‖2
≥

√
2

3
√︀
𝐹𝜆(𝒫 , 𝑤̂)

.

Hence by definition of 𝑥̃, we have that

𝑥̃ ≥ 2

9𝐹𝜆(𝒫 , 𝑤̂)
(4.21)

Plugging Eq.(4.21) into Eq.(4.18), we obtain that

𝛾

𝐹𝜆(𝒫 , 𝑤̂)
≤ 9

2

⎛⎝√︃4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2 ‖𝑝Δ‖22
9𝐹𝜆(𝒫 , 𝑤̂)

− 2𝛼(𝑖)
𝑦

⎞⎠ .

Recall that

𝐹𝜆(𝒫 , 𝑤̂) ≥ 𝐹𝜆(𝒫 , 𝑤*) ≥ 𝐹𝜆(𝒫 , 𝑤̃)− 𝜉,

105

which implies that

𝛾

𝐹𝜆(𝒫 , 𝑤̂)
≤ 9

2

(︃√︃
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2 ‖𝑝Δ‖22
9̃︁𝑜𝑝𝑡𝜉 − 2𝛼(𝑖)

𝑦

)︃
, (4.22)

where ̃︁𝑜𝑝𝑡𝜉 = 𝐹𝜆(𝒫 , 𝑤̃)− 𝜉.

Combining both cases, yields that

𝑠(𝑝) ≤ 𝑢(𝑝)

𝑈
(︁
𝑃

(𝑖)
𝑦

)︁ + 𝑢(𝑝)𝜆 max

{︃
2𝛼(𝑖)

𝑦 ,
9

2

(︃√︃
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2 ‖𝑝Δ‖22
9̃︁𝑜𝑝𝑡𝜉 − 2𝛼(𝑖)

𝑦

)︃}︃
, (4.23)

where Lemma 17 holds by rearranging Eq. 4.23.

4.8.3 Proof of Lemma 18

Lemma 18. In the context of Lemma 17, the sum of sensitivities is bounded by

∑︁
𝑝∈𝑃

𝑠(𝑝) ≤ 𝑡 = 4𝑘 +
𝑘∑︁

𝑖=1

3𝜆Var(𝑖)+√︁
2̃︁𝑜𝑝𝑡𝜉 +

3𝜆Var(𝑖)−√︁
2̃︁𝑜𝑝𝑡𝜉 ,

where Var(𝑖)𝑦 =
∑︀

𝑝∈𝑃 (𝑖)
𝑦

𝑢(𝑝) ‖𝑝Δ‖2 for all 𝑖 ∈ [𝑘] and 𝑦 ∈ {+,−}.

Proof. We first observe that that

∑︁
𝑝∈𝑃

𝑠(𝑝) =
∑︁
𝑖∈[𝑘]

⎛⎜⎝∑︁
𝑝∈𝑃 (𝑖)

+

𝑠(𝑝) +
∑︁

𝑝∈𝑃 (𝑖)
−

𝑠(𝑝)

⎞⎟⎠ .

Thus we will focus on the summing the sensitivity of the all the points whose label is

positive. We note that

∑︁
𝑖∈[𝑘]

∑︁
𝑝∈𝑃 (𝑖)

+

𝑢(𝑝)

𝑈
(︁
𝑃

(𝑖)
+

)︁ =
𝑘∑︁

𝑖=1

1 = 𝑘. (4.24)

106

In addition, we observe that max {𝑎, 𝑏} ≤ 𝑎 + 𝑏 for every 𝑎, 𝑏 ≥ 0, which implies that

for every 𝑖 ∈ [𝑘] and 𝑝 ∈ 𝑃
(𝑖)
+ ,

max

{︃
2𝛼(𝑖)

𝑦 ,
9

2

(︃√︃
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2 ‖𝑝Δ‖22
9̃︁𝑜𝑝𝑡𝜉 − 2𝛼(𝑖)

𝑦

)︃}︃

≤ 2𝛼(𝑖)
𝑦 +

9

2

(︃√︃
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2 ‖𝑝Δ‖22
9̃︁𝑜𝑝𝑡𝜉 − 2𝛼(𝑖)

𝑦

)︃
.

(4.25)

Since
√
𝑎 + 𝑏 ≤

√
𝑎 +
√
𝑏 for every 𝑎, 𝑏 ≥ 0, we have for every 𝑖 ∈ [𝑘] and 𝑝 ∈ 𝑃

(𝑖)
− ,

√︃
4
(︁
𝛼
(𝑖)
𝑦

)︁2
+

2 ‖𝑝Δ‖22
9̃︁𝑜𝑝𝑡𝜉 − 2𝛼(𝑖)

𝑦

≤ 2𝛼(𝑖)
𝑦 +

√
2 ‖𝑝Δ‖2

3
√︁̃︁𝑜𝑝𝑡𝜉 − 2𝛼(𝑖)

𝑦

=

√
2 ‖𝑝Δ‖2

3
√︁̃︁𝑜𝑝𝑡𝜉 .

(4.26)

Hence by combining Eq.(4.24), Eq.(4.25), and Eq.(4.26), we yield that

∑︁
𝑖∈[𝑘]

∑︁
𝑝∈𝑃 (𝑖)

+

𝑠(𝑝) ≤ 𝑘 +
∑︁
𝑖∈[𝑘]

∑︁
𝑝∈𝑃 (𝑖)

+

2𝜆𝛼
(𝑖)
+ +

9

2
𝜆𝑢(𝑝)

√
2 ‖𝑝Δ‖2

3
√︁̃︁𝑜𝑝𝑡𝜉

= 𝑘 +
∑︁
𝑖∈[𝑘]

∑︁
𝑝∈𝑃 (𝑖)

+

2𝜆𝛼
(𝑖)
+ +

∑︁
𝑖∈[𝑘]

𝜆
3Var(𝑖)+√︁

2̃︁𝑜𝑝𝑡𝜉
≤ 2𝑘 +

∑︁
𝑖∈[𝑘]

𝜆
3Var(𝑖)+√︁

2̃︁𝑜𝑝𝑡𝜉 ,
where the inequality follows from definition of 𝛼(𝑖)

𝑦 for every 𝑖 ∈ [𝑘] and 𝑦 ∈ {+,−} as

defined in Eq.(4.15).

107

Since all of the previous arguments hold similarly for 𝑃−, we obtain that

∑︁
𝑝∈𝑃

𝑠(𝑝) ≤ 4𝑘 +
∑︁
𝑖∈[𝑘]

3Var(𝑖)+√︁
2̃︁𝑜𝑝𝑡𝜉 +

3Var(𝑖)−√︁
2̃︁𝑜𝑝𝑡𝜉 .

4.8.4 Proof of Theorem 19

Theorem 19. For any 𝜀 ∈ (0, 1/2), 𝛿 ∈ (0, 1), let 𝑚 be an integer satisfying

𝑚 ∈ Θ

(︂
𝑡

𝜀2
(︀
𝑑 log 𝑡 + log(1/𝛿)

)︀)︂
,

where 𝑡 is as in Lem. 18. Invoking Coreset with the inputs defined in this context

yields a 𝜀-coreset 𝒮 = (𝑆, 𝑣) with probability at least 1− 𝛿 in 𝒪 (𝑛𝑑 + 𝑇) time, where

𝑇 represents the computational complexity of obtaining an 𝜉-approximated solution to

SVM and applying 𝑘-means++ on 𝑃+ and 𝑃−.

Proof. By Lemma 17 and Theorem 5.5 of [BFL16] we have that the coreset constructed

by our algorithm is an 𝜀-coreset with probability at least 1− 𝛿 if

𝑚 ≥ 𝑐

(︂
𝑡

𝜀2
(︀
𝑑 log 𝑡 + log(1/𝛿)

)︀)︂
,

where we used the fact that the VC dimension of a SVMs in the case of a linear kernel

is bounded dim(ℱ) ≤ 𝑑+ 1 = 𝒪(𝑑) [VV98], and 𝑐 is a sufficiently large constant which

can be determined using similar techniques to that of [LLS01]. Moreover, note that

the computation time of our algorithm is dominated by going over the whole weighted

set 𝒫 which takes 𝒪 (𝑛) and attaining an 𝜉-approximation to the SVM problem at

Line 1 followed by applying 𝑘-means clustering as shown in Algorithm 4 which takes

𝒪 (𝑇) time. This implies that the overall time is 𝒪 (𝑛𝑑 + 𝑇).

108

Sufficient Conditions Theorem 19 immediately implies that, for reasonable 𝜀 and

𝛿, coresets of poly-logarithmic (in 𝑛) size can be obtained if 𝑑 = 𝒪(polylog(𝑛)), which

is usually the case in our target Big Data applications, and if

𝑘∑︁
𝑖=1

3𝜆Var(𝑖)+√︁
2̃︁𝑜𝑝𝑡𝜉 +

3𝜆Var(𝑖)−√︁
2̃︁𝑜𝑝𝑡𝜉 = 𝒪(polylog(𝑛)).

For example, a value of 𝜆 ≤ log𝑛
𝑛

for the regularization parameter 𝜆 satisfies the

sufficient condition for all data sets with points normalized such that they are contained

within the unit ball. Note that the total sensitivity, which dictates how many samples

are necessary to obtain an 𝜀-coreset with probability at least 1 − 𝛿 and in a sense

measures the difficulty of the problem, increases monotonically with the sum of

distances of the points from their label-specific means.

4.9 Experimental Details

Our experiments were implemented in Python and performed on a 3.2GHz i7-6900K

(8 cores total) machine with 64GB RAM. We considered the following datasets in our

evaluations.

1. HTRU — 17, 898 radio emissions, each with 9 features, of the Pulsar star.

2. CreditCard — 30, 000 client entries each consisting of 24 features that include

education, age, and gender among other factors.

3. Pathological — 1, 000 points in two dimensional space describing two clusters

distant from each other of different labels, as well as two points of different labels

which are close to each other.4

4. Skin — 245, 057 random samples of B,G,R from face images consisting of 4

dimensions.

4We note that uniform sampling performs particularly poorly against this data set due to the
presence of outliers.

109

5. Cod(-rna) — 488565 RNA records consisting each of 8 features.5

6. W1 — 49, 749 records of web pages consisting each of 300 features.

Preprocessing step Each data set has gone through a standardization process

which aims to rescale the features so that they will have zero mean and unit standard

deviation. As for the case where a data set is unweighted, we simply give each data

point a weight of 1, i.e., 𝑢 : 𝑃 → 1 where 𝑃 denotes the data set, and the regularization

parameter 𝜆 was set to be 1 throughout all of our experiments.

𝑘-means clustering In our experiments, we set 𝑘 = log 𝑛 where 𝑛 is the number of

points in the dataset (each datasets has different 𝑘 value). As for the clustering itself,

we have applied 𝑘-means++ [AV07] on each of 𝒫+ and 𝒫− as stated in our analysis;

see Sec. 4.4.

Evaluation under streaming setting Under streaming setting, the range for

sample sizes is the same as for running under offline settings (See Figures 4-2 and 4-3).

What differs is the quality of the solver itself, which we use to show the effectiveness

of our coreset compared to uniform sampling, i.e., we have chosen to make the solver

(SVC of Sklearn) more accurate by lowering its optimal tolerance.

4.10 Discussion

We presented an efficient coreset construction algorithm for generating compact

representations of the input data points that are provably competitive with the

original data set in training Support Vector Machine models. Unlike prior approaches,

our method and its theoretical guarantees naturally extend to streaming settings

and scenarios involving dynamic data sets, where points are continuously inserted

and deleted. We established instance-dependent bounds on the number of samples

required to obtain accurate approximations to the SVM problem as a function of input

5This data set was attained by merging the training, validation and testing sets.

110

data complexity and established dataset dependent conditions for the existence of

compact representations. Our experimental results on real-world data sets validate our

theoretical results and demonstrate the practical efficacy of our approach in speeding

up SVM training. We conjecture that our coreset construction can be extended to

accelerate SVM training for other classes of kernels and can be applied to a variety of

Big Data scenarios.

Acknowledgments

This research was supported in part by the U.S. National Science Foundation (NSF)

under Awards 1723943 and 1526815, Office of Naval Research (ONR) Grant N00014-

18-1-2830, Microsoft, and JP Morgan Chase.

111

112

Chapter 5

Provable Weight Pruning of Neural

Networks

5.1 Overview

In the previous chapter, we focused on subsampling the input data for faster SVM

training. Here, we instead focus on using importance sampling to prune neural network

models for efficiency and deployability, as well as to alleviate their exponentially

increasing ramifications for the environment. It turns out that the sensitivity framework

from Chapter 4 leads to uniform sampling due to the the high capacity of neural

networks and the pessimistic nature of the sensitivity definition that does not consider

the randomness over the queries. To overcome this limitation, we extend the sensitivity

framework and introduce empirical sensitivity, a data-informed notion that is effective

in practice and exhibits favorable theoretical properties. We then apply this framework

to prune the weights of large neural networks and provide bounds on its performance.

Our approach can be applicabled to various architectures including fully-connected

(FNNs), convolutional (CNNs), and recurrent neural networks (RNNs), and the

complete codebase for the presented methods is publicly available online [Lie21].

The work presented in this chapter is based on [BLG+21, BLG+18] and contributes

113

the following:

1. A versatile family of pruning algorithms, SiPP, that combines novel sample size

allocation and adaptive sparsification procedures to prune network parameters

without any assumptions on the specific state of the network — i.e., regardless

of whether the given network is untrained, trained, or partially trained.

2. An analysis of the resulting size and accuracy of the compressed network gen-

erated by SiPP that establishes novel compression bounds for a large class of

neural networks.

3. Empirical evaluations on fully-connected and convolutional networks with com-

parisons to baseline pruning approaches that demonstrate the practical effec-

tiveness of SiPP across a set of diverse, real-world pruning tasks with varying

amounts of retraining.

5.2 Background

The set of parameters 𝜃 of a neural network with 𝐿 layers is a tuple of multi-dimensional

weight tensors corresponding to each layer, i.e., 𝜃 = (𝑊 1, . . . ,𝑊𝐿). The set of

parameters 𝜃 defines the mapping 𝑓𝜃 : 𝒳 → 𝒴 from the input space 𝒳 to the output

space 𝒴 . We consider the setting where we have access to independent and identically

distributed (i.i.d.) samples (𝑥, 𝑦) from a joint distribution defined on 𝒳 × 𝒴 from

which we can gather a training, test, and validation data set. To this end, we let 𝒟

denote the marginal distribution over the input space 𝒳 .

5.2.1 Network Notation

Layers For a given input 𝑥 ∼ 𝒟, we denote the pre-activation and activation of

layer ℓ by 𝑍ℓ(𝑥) and 𝐴ℓ(𝑥), respectively. Note that

𝑓𝜃(𝑥) = 𝐴𝐿(𝑥), 𝐴0(𝑥) = 𝑥, and 𝐴ℓ(𝑥) = 𝜑ℓ(𝑍ℓ(𝑥)),

114

where 𝜑ℓ(·) denotes the activation function for layer ℓ. We consider any multi-

dimensional layer that can be described by a linear map with parameter sharing, e.g.

fully-connected layers, convolutional layers, or LSTM cells. Specifically, for a layer ℓ

the pre-activation 𝑍ℓ(𝑥) of layer ℓ is described by the linear mapping of the activation

𝐴ℓ−1(𝑥) with 𝑊 ℓ, i.e.,

𝑍ℓ(𝑥) = 𝑊 ℓ * 𝐴ℓ−1(𝑥),

where * denotes the operator of the linear map, e.g., the convolutional operator.

Parameter groups We denote by 𝑐ℓ the number of parameter groups within a layer

ℓ that do not interact with each other, e.g., individual filters in convolutional layers.

Then, let

𝑍ℓ
𝑖 (𝑥) = 𝑊 ℓ

𝑖 * 𝐴ℓ−1(𝑥), 𝑖 ∈ [𝑐ℓ],

denote the 𝑖th pre-activation channel of layer ℓ produced by parameter group 𝑊 ℓ
𝑖 .

Then the entire pre-activations 𝑍ℓ(𝑥) of a layer ℓ is constructed by appropriately

concatenating the individual pre-activations from individual parameter groups, i.e.,

𝑍ℓ(𝑥) =
[︀
𝑍ℓ

1(𝑥), . . . , 𝑍ℓ
𝑐ℓ(𝑥)

]︀
.

Moreover, we let 𝜂ℓ ∈ N denote the number of scalar values of 𝑍ℓ(·) and let 𝜂 =
∑︀𝐿

ℓ=1 𝜂
ℓ.

Finally, let 𝜌 denote the maximum number of parameters within a parameter group,

i.e., 𝜌 = max𝑖,ℓ ‖𝑊 ℓ
𝑖 ‖0.

Patches Within a parameter group, parameters may be used multiple times, c.f.

parameter sharing, in order to produce the output 𝑍ℓ
𝑖 (𝑥) = 𝑊 ℓ

𝑖 *𝐴ℓ−1(𝑥). For example,

in case of a convolutional layer the filter 𝑊 ℓ
𝑖 gets “slid” across the input 𝐴ℓ−1(𝑥) of

the layer in order to produce one output pixel after another. Hereby, the filter acts

on a distinct patch of the layer input 𝐴ℓ−1(𝑥) in order to produce a specific output

pixel 𝑧(𝑥) ∈ 𝑍ℓ
𝑖 (𝑥), where with slight abuse of notation 𝑧(𝑥) denotes a scalar entry of

𝑍ℓ
𝑖 (𝑥). To precisely specify the associated operation that produces the output 𝑧(𝑥)

we define by 𝒜ℓ
𝑖 the set of patches of the layer input 𝐴ℓ−1(𝑥) that are required to

115

produce the output 𝑍ℓ
𝑖 (𝑥). Specifically, let 𝑎(·) ∈ 𝒜ℓ

𝑖 denote some patch of 𝒜ℓ
𝑖 . Then,

𝑎(·) ⊆ 𝐴ℓ−1(·) is defined such that a dot product between the parameter group 𝑊 ℓ
𝑖

and the patch 𝑎(·) produces the associated output scalar 𝑧(𝑥), i.e.,

𝑧(𝑥) = ⟨𝑊 ℓ
𝑖 , 𝑎(𝑥)⟩ =

∑︁
𝑘∈ℐℓ

𝑖

𝑤𝑘𝑎𝑘(𝑥),

where ℐℓ𝑖 denotes the index set of weights for the parameter group 𝑊 ℓ
𝑖 and 𝑤𝑘, 𝑎𝑘(𝑥)

denote a scalar entry of the parameter group and patch for some input 𝑥 ∼ 𝒟,

respectively. Note that 𝜂ℓ =
∑︀

𝑖∈[𝑐ℓ]

⃒⃒
𝒜ℓ

𝑖

⃒⃒
.

The notation of patch maps 𝒜 lets us conveniently abstract away some of the imple-

mentation details of the linear map * without restricting ourselves to a particular

type of linear map *. For example in the context of convolutional layers, the actual

linear map * can significantly vary depending on the parameter settings such as stride

length, padding, and so forth. It also enables us to consider other layers, such as

recurrent layers, at the same time. In this case, 𝒜 can be generated by considering

each recursive input to the layer as a separate patch.

In the case of two-dimensional convolutions (i.e. for images), we note that our notion

of patch maps corresponds to the Unfold operation in PyTorch [PyT20b], which we

find to be a helpful reference to further contextualize the concept of patch maps.

5.2.2 Problem Definition

We now proceed to formally state the problem definition that motivates the use of

SiPP and subsequent analysis. To this end, let the size of the parameter tuple 𝜃, ‖𝜃‖0,

to be the number of all non-zero entries in the weight tensors 𝑊 1, . . . ,𝑊𝐿.

Problem 2. For given 𝜀, 𝛿 ∈ (0, 1), our overarching goal is to use a pruning algorithm

to generate a sparse reparameterization 𝜃 of 𝜃 such that ‖𝜃‖0 ≪ ‖𝜃‖0 and for 𝑥 ∼ 𝒟

the ℓ2-norm of the reference network output 𝑓𝜃(𝑥) can be approximated by 𝑓𝜃(𝑥) up to

116

1± 𝜀 multiplicative error with probability greater than 1− 𝛿, i.e.,

P𝜃,𝑥 (‖𝑓𝜃(𝑥)− 𝑓𝜃(𝑥)‖ ≤ 𝜀 ‖𝑓𝜃(𝑥)‖) ≥ 1− 𝛿,

where ‖·‖ = ‖·‖2 and P𝜃,𝑥 considers the randomness over both the pruning algorithm

and the network’s input.

5.3 SiPP

Small batch of input points Compute edge sensitivities
for every neuron

Original Pre-trained Network

Importances take into account activations

Original Pre-trained Network

Sparsify the incoming edges
to each neuron

Compressed Network

Sample and reweigh edges;
remove unsampled weights

Importance Sampling

Output compressed network

Figure 5-1: The overview of our randomized method consisting of 4 parts. We use a small
batch of input points to quantify the relative contribution (importance) of each edge to
the output of each neuron. We then construct an importance sampling distribution over
the incoming edges and sample a small set of weights for each neuron. The unsampled
parameters are then discarded to obtain the resulting compressed network with fewer edges.

In this section, we present an overview for our family of pruning algorithms, SiPP:

Sensitivity-informed Provable Pruning (see Figure 5-1 and Algorithm 6). In its core,

SiPP proceeds as follows: (1) optimally allocate a given budget across layers and

parameter groups to minimize the theoretical error bounds resulting from our analysis

(OptAlloc, Line 1); (2) compute the relative importance of individual weights within

each parameter group (EmpiricalSensitivity, Line 5); (3) prune weights within

each parameter group using the desired variant of SiPP according to their relative

importance (Sparsify, Line 6); (4) repeat steps (2) and (3) for each parameter group

and each layer.

117

5.3.1 OptAlloc

In the course of our analysis (see Section 5.4) we establish relative error bounds for

the approximation 𝑍ℓ
𝑖 (𝑥) = 𝑊̂ ℓ

𝑖 * 𝐴ℓ−1(𝑥) of the form 𝑍ℓ
𝑖 (𝑥) ∈

(︀
1± 𝜀ℓ𝑖(𝑚

ℓ
𝑖)
)︀
𝑍ℓ

𝑖 (𝑥) for

individual parameter groups. Roughly speaking, the associated relative error 𝜀ℓ𝑖(𝑚
ℓ
𝑖)

is a (convex) function of the parameter group, the input, and the allocated budget

𝑚ℓ
𝑖 . Thus in order to optimally utilize a desired budget ℬ we aim to minimize the

following objective during the allocation procedure:

min
𝑚ℓ

𝑖∈N ∀𝑖∈[𝑐ℓ], ∀ℓ∈[𝐿]

∑︀
ℓ∈[𝐿], 𝑖∈[𝑐ℓ] 𝜀

ℓ
𝑖(𝑚

ℓ
𝑖) s. t.

∑︀
ℓ∈[𝐿], 𝑖∈[𝑐ℓ] 𝑚

ℓ
𝑖 ≤ ℬ. (5.1)

We note that the integral constraint 𝑚ℓ
𝑖 ∈ N prevents us from efficiently finding a

solution, so we build on techniques from Randomized Rounding [Sri99] to relax the

constraint to 𝑚ℓ
𝑖 ∈ R to find the optimal fractional solution. We can then use the

established rounding technique in [Sri99] to find an approximately optimal integral

solution. Depending on the variant of SiPP, however, this step is not necessary.

Algorithm 6 SiPP (𝜃,ℬ,𝒮)

Input: 𝜃 = (𝑊 1, . . . ,𝑊𝐿): weights of the uncompressed neural network; ℬ ∈ N: sampling
budget; 𝒮: a set of 𝑛 i.i.d. validation points drawn from 𝒟
Output: sparse weights 𝜃 = (𝑊̂ 1, . . . , 𝑊̂𝐿)

1: 𝑚ℓ
𝑖 ← OptAlloc(𝜃,ℬ,𝒮) ∀𝑖 ∈ [𝑐ℓ], ∀ℓ ∈ [𝐿] ◁ optimally allocate budget ℬ across

parameter groups and layers
2: for ℓ ∈ [𝐿] do
3: 𝑊̂ ℓ ← 0; ◁ Initialize a null tensor
4: for 𝑖 ∈ [𝑐ℓ] do
5: 𝑠𝑗 ← EmpiricalSensitivity(𝜃,𝒮, 𝑖, ℓ) ∀𝑤𝑗 ∈𝑊 ℓ

𝑖 ◁ Compute parameter
importance for each weight 𝑤𝑗 in the parameter group

6: 𝑊̂ ℓ
𝑖 ← Sparsify(𝑊 ℓ

𝑖 ,𝑚
ℓ
𝑖 , {𝑠𝑗}𝑗) ◁ prune weights according to SiPPDet,

SiPPRand, or SiPPHybrid such that only 𝑚ℓ
𝑖 weights remain

7: return 𝜃 = (𝑊̂ 1, . . . , 𝑊̂𝐿);

118

5.3.2 EmpiricalSensitivity

To estimate the relative importance of weight 𝑤𝑗 within a parameter group 𝑊 ℓ
𝑖 , we

use and extend the notion of empirical sensitivity (ES) first introduced in [BLG+19a]

for fully-connected layers only. In its essence, ES quantifies the maximum relative

contribution of a weight parameter 𝑤𝑗 to the output (pre-activation) of the layer

compared to other weights in the parameter group. More formally, let the ES 𝑠𝑗 of 𝑤𝑗

in parameter group 𝑊 ℓ
𝑖 be defined as

𝑠𝑗 = max
𝑥∈𝒮

max
𝑎(·)∈𝒜

𝑤𝑗𝑎𝑗(𝑥)∑︀
𝑘 𝑤𝑘𝑎𝑘(𝑥)

, (5.2)

where we assume 𝑊 ℓ
𝑖 ≥ 0, 𝐴ℓ−1(𝑥) ≥ 0 for ease of exposition (see Section 5.7 for the

generalization to all weights and activations). We note that the required size of 𝒮

is given explicitly by our analysis and is a function of the desired failure probability

𝛿. More specifically, in Lemma 26 of Sec. 5.7, we show that the required size of 𝒮

is roughly 𝒪(log(𝜂/𝛿)), where 𝜂 =
∑︀

ℓ∈[𝐿] 𝑐
ℓ is the total number of parameters in the

original network 𝜃. Taking a larger 𝒮 would push this failure probability further down,

however, there is a trade-off: a larger 𝒮 leads to a larger parameter sample-complexity

(Theorem 37). This is because the sample-complexity of each parameter group is

roughly linear in the sum of sensitivities 𝑆, and 𝑆 is non-decreasing with the size of 𝒮

by definition of ES (5.2). Thus, we take the smallest-sized 𝒮 that ensures the desired

failure probability, as explicitly provided in Theorem 37.

We note that the definition of 𝑠𝑗 entails two maxima. The maximum over data points

max𝑥∈𝒮 ensures that ES captures the relative importance of 𝑤𝑗 sufficiently well for

any i.i.d. data point 𝑥 ∼ 𝒟1. The maximum over patches 𝒜, which are generated

from 𝐴ℓ−1(𝑥), ensures that ES approximates the relative importance of 𝑤𝑗 sufficiently

well for all scalars in the output 𝑍ℓ
𝑖 (𝑥) that require 𝑤𝑗 (cf. parameter sharing). To

further contextualize the purpose of patches 𝒜, consider a single parameter group

within a convolutional layer, i.e., a filter. The filter is slid across the input image to

1The maximum is necessary to obtain the high-probability bounds we seek to establish.

119

generate the output image by repeatedly applying the same weights (i.e., convolution

operator). Thus in order to quantify the importance of some weight 𝑤𝑗 we need to

consider its relative importance across all sliding windows, hence culminating in the

max𝑎(·)∈𝒜 operation.

5.3.3 Sparsify

Equipped with the allocated budget (OptAlloc) and a notion of parameter im-

portance (EmpiricalSensitivity), we introduce the three variants of SiPP, whose

analysis can be found in Section 5.4, to prune weights from a parameter group:

1. SiPPDet: we deterministically pick the 𝑚ℓ
𝑖 weights with largest sensitivity and

zero out the rest of the weights to construct 𝑊̂ ℓ
𝑖 .

2. SiPPRand: we construct an importance sampling distribution over weights 𝑤𝑗

using their associated sensitivities 𝑠𝑗, then sample with replacement until we

obtain a set of 𝑚ℓ
𝑖 unique weights to construct 𝑊̂ ℓ

𝑖 .

3. SiPPHybrid: we evaluate the theoretical error guarantees (see Section 5.4)

associated with the two other methods, and prune using the method that incurs

the lower relative error.

We note that while SiPPDet is particularly simple to implement, SiPPHybrid

provides the biggest amount of flexibility and consistently good prune results since it

can adaptively choose for each parameter group whether to prune using SiPPDet or

SiPPRand.

5.4 Analysis

In this section, we outline the theoretical guarantees for SiPP. We start out by

establishing the core lemmas that constitute the relative error guarantees for both

SiPPDet and SiPPRand for the case where 𝑊 ℓ
𝑖 ≥ 0, 𝐴ℓ−1(𝑥) ≥ 0 for ease of

exposition. Specifically, we establish relative error guarantees for each individual

120

output patch that is associated with a parameter group. We then outline the steps

that are required to generalize the analysis to all weights and activations. Finally, we

show — by means of composing together the error guarantees from individual output

patches, parameters groups, and layers — how to derive the analytical compression

bounds for the entire network. For clarity of presentation, we omit technical proofs

from this section and provide the full proofs in Sec. 5.7.

5.4.1 Empirical sensitivity

In the previous section we introduce the notion of ES, see equation 5.2, as a means to

quantify the importance of weight 𝑤𝑗 relative to the other weights within a parameter

group 𝑊 ℓ
𝑖 . Using ES we establish a key inequality that upper bounds the contribution

of 𝑤𝑗𝑎𝑗(𝑥) to its associated output patch 𝑧(𝑥) =
∑︀

𝑘 𝑤𝑘𝑎𝑘(𝑥) for any 𝑥 ∼ 𝒟 with high

probability (w.h.p.) under a mild regularity assumption on the input distribution to

the layer.

Lemma 19 (Informal ES inequality). For weights 𝑤𝑗 from parameter group 𝑊 ℓ
𝑖 and

an arbitrary input patch 𝑎(·) we have w.h.p. for any 𝑥 ∼ 𝒟 that 𝑤𝑗𝑎𝑗(𝑥) ≤ 𝐶𝑠𝑗𝑧(𝑥),

where 𝑧(𝑥) denotes the associated output patch and 𝐶 = 𝒪(1).

The ES inequality is a key ingredient in bounding the error of SiPPDet and SiP-

PRand in terms of sensitivity. Specifically, Lemma 19 puts the individual contribution

of a weight to the output patch in terms of its sensitivity and the output patch itself.

The inequality hereby holds w.h.p. for any data point 𝑥 ∼ 𝒟 which enables us to

bound the quality of the approximation even for previously unseen data points. We

leverage Lemma 19 in the subsequent analysis to quantify the approximation error of

an output patch when the output patch was only approximately computed using a

subset of weights, i.e., with the weights that remain after pruning.

121

5.4.2 Error guarantees for SiPPDet

Recall that SiPPDet prunes weights by keeping the 𝑚ℓ
𝑖 weights of parameter group

𝑊 ℓ
𝑖 with largest ES. Now let ℐ denote the index set of all weights in 𝑊 ℓ

𝑖 and ℐ𝑑𝑒𝑡
the index set of weights with largest sensitivity that are kept after pruning such that

|ℐ𝑑𝑒𝑡| = 𝑚ℓ
𝑖 . We bound the incurred error of the approximation by considering the

difference between the output patch and the approximated output patch, i.e., the

difference between 𝑧(𝑥) =
∑︀

𝑗∈ℐ 𝑤𝑗𝑎𝑗(𝑥) and 𝑧𝑑𝑒𝑡(𝑥) =
∑︀

𝑗∈ℐ𝑑𝑒𝑡 𝑤𝑗𝑎𝑗(𝑥).

Lemma 20 (Informal SiPPDet error bound). For weights 𝑤𝑗 from parameter group

𝑊 ℓ
𝑖 , an arbitrary associated input patch 𝑎(·) ∈ 𝒜, and corresponding output patch

𝑧(·) SiPPDet generates an index set ℐ𝑑𝑒𝑡 of pruned weights such that for any 𝑥 ∼ 𝒟

w.h.p. |𝑧𝑑𝑒𝑡(𝑥)− 𝑧(𝑥)| ≤ 𝜀𝑑𝑒𝑡𝑧(𝑥), where 𝜀𝑑𝑒𝑡 = 𝐶
∑︀

𝑗∈ℐ∖ℐ𝑑𝑒𝑡 𝑠𝑗.

The proof of Lemma 20 follows from the fact that the difference between the approxi-

mate output patch 𝑧𝑑𝑒𝑡(𝑥) and the unpruned output patch 𝑧(𝑥) is exactly the sum over

the contributions from weights that are not in the pruned subset of weights ℐ𝑑𝑒𝑡. Using

Lemma 19 we then bound the error in terms of the sensitivity of the pruned weights.

Intuitively, ES of an individual weight precisely quantifies the relative error incurred

when that weight is pruned. The resulting relative error can thus be described by the

cumulative ES of pruned weights.

5.4.3 Error guarantees for SiPPRand

Here we prune weights from a parameter group by constructing an importance sampling

distribution from the associated ESs. Specifically, some weight 𝑤𝑗 is sampled with

probability 𝑞𝑗 = 𝑠𝑗/
∑︀

𝑘∈ℐ 𝑠𝑘 and we repeatedly sample with replacement until the

corresponding set of sampled weights contains 𝑚ℓ
𝑖 unique weights. Each sampled

weight is then reweighed by the number of times it was sampled divided by the total

number of samples and its sample probability to construct the approximate output

patch, i.e.,

𝑧𝑟𝑎𝑛𝑑(𝑥) =
∑︀

𝑗∈ℐ𝑟𝑎𝑛𝑑
𝑤̂𝑗𝑎𝑗(𝑥) =

∑︀
𝑗∈ℐ𝑟𝑎𝑛𝑑

𝑛𝑗

𝑁𝑞𝑗
𝑤𝑗𝑎𝑗(𝑥),

122

where ℐ𝑟𝑎𝑛𝑑 denotes the index set of weights that were sampled at least once, 𝑛𝑗

denotes the number of times weight 𝑤𝑗 was sampled, and 𝑁 =
∑︀

𝑗∈ℐ𝑟𝑎𝑛𝑑
𝑛𝑗 denotes the

total number of samples. We then bound the incurred error by analyzing the random

difference between the approximated output patch and the original output patch, i.e.,

|𝑧𝑟𝑎𝑛𝑑(𝑥)− 𝑧(𝑥)|, establishing the following error guarantee.

Lemma 21 (Informal SiPPRand error bound). For weights 𝑤𝑗 from parameter group

𝑊 ℓ
𝑖 , an arbitrary associated input patch 𝑎(·) ∈ 𝒜, and corresponding output patch

𝑧(·) SiPPRand generates a set of pruned weights such that for any 𝑥 ∼ 𝒟 w.h.p.

|𝑧𝑟𝑎𝑛𝑑(𝑥)− 𝑧(𝑥)| ≤ 𝜀𝑟𝑎𝑛𝑑𝑧(𝑥), where 𝜀𝑟𝑎𝑛𝑑 = 𝒪(
√︀

𝑆/𝑁) and 𝑆 =
∑︀

𝑘∈ℐ 𝑠𝑘 denote the

relative error and sum of ESs, respectively.

The proof proceeds in two steps. First, we show that the (random) approximation

is an unbiased estimator of the original parameter group, i.e., E [𝑧𝑟𝑎𝑛𝑑(𝑥)] = 𝑧(𝑥),

which follows from the reweighing term of 𝑤̂𝑗. Second, we show that using Bern-

stein’s concentration inequality [Ver16] the sampling distribution exhibits strong

subGaussian [Ver16] concentration around the mean, i.e., the approximate output

patch is 𝜀-close to the original, unpruned output patch w.h.p. Specifically, we leverage

Lemma 19 to bound the variance of the approximate output patch using the cumulative

ES of the parameter group 𝑆 =
∑︀

𝑘∈ℐ 𝑠𝑘.

5.4.4 Discussion of error bounds and SiPPHybrid

Most notably, SiPPRand is an unbiased estimator regardless of the budget, while

SiPPDet is not. On the other hand, if the parameter group is dominated by a few

weights, SiPPDet can directly capture these weights with a small number of samples

whereas the randomness and reweighting of SiPPRand may introduce additional

sources of failure in the approximation. Combining the strengths of both, we introduce

SiPPHybrid, which compares the theoretical error guarantees of each variant before

pruning a parameter group to adaptively choose the better prune strategy.

123

5.4.5 Generalization to all weights

Previously, we have assumed that both the parameter group and input activations are

strictly non-negative, i.e., 𝑊 ℓ
𝑖 ≥ 0 and 𝐴ℓ−1(𝑥) ≥ 0. To handle the general case, we

split the parameter group and input activations each into a positive and negative part

representing the four quadrants such that each quadrant is now strictly non-negative.

We can then incorporate each quadrant into our pruning procedure to ensure that the

error guarantees hold simultaneously for all quadrants. To obtain error bounds for the

actual pre-activation we introduce ∆ℓ, which quantifies the “sign complexity” of the

overall approximation for a particular layer to quantify the additional complexity from

considering the alternating signs of each quadrant. For ease and clarity of exposition,

we defer the full technical details and complete proofs to Sec. 5.7.

5.4.6 Network compression bounds

In the previous section we sketched the error guarantees for individual output patches.

Naturally, since the guarantees hold for all patches within a parameter group and

individual parameter groups within a layer are independent from each other, we can

simultaneously establish norm-based error guarantees for the entire pre-activation of

a layer, i.e.,
⃦⃦⃦
𝑍ℓ(𝑥)− 𝑍ℓ(𝑥)

⃦⃦⃦
≤ 𝜀

⃦⃦
𝑍ℓ(𝑥)

⃦⃦
w.h.p. Moreover, assuming the activation

function is entry-wise and 1-Lipschitz2, the same relative error guarantees hold for

the activation of layer. Note that any common activation function satisfies the above

assumption, including and all others listed in PyTorch’s documentation [PyT20a].

Finally, we consider the effect of pruning multiple layers simultaneously and the

implications of the layer-wise error on the final output 𝑓𝜃(𝑥) = 𝐴𝐿(𝑥) of the network.

Informally speaking, we incur two sources of error from each layer: (1) the error

associated from pruning within layers and (2) the error associated with propagated

the incurred error throughout the network to the output layer. We quantify the error

within layers using our patch-wise guarantees and the sign complexity ∆ℓ of the layers.

We quantify the propagated error across layers by upper bounding the layer condition

2Can be generalized to 𝐿-Lipschitz functions as well, with the error bound depending on 𝐿.

124

number, 𝜅ℓ which quantifies the relative error incurred in the output for some relative

error incurred within the layer. Intuitively, the concept of the layer condition number

is closely related to the Lipschitz constant between some layer and the output of the

network. Below, we informally state the compression bound when pruning the entire

network with SiPPRand.

Theorem 22 (Informal compression bound). For given 𝛿 ∈ (0, 1) and budget ℬ SiPP

(Algorithm 6) generates a set of pruned parameters 𝜃 such that ‖𝜃‖0 ≤ ℬ,

P̂
𝜃,𝑥

(‖𝑓𝜃(𝑥)− 𝑓𝜃(𝑥)‖ ≤ 𝜀 ‖𝑓𝜃(𝑥)‖) ≥ 1− 𝛿,

and 𝜀 = 𝒪(
∑︀𝐿

ℓ=1 𝜅
ℓ∆ℓ max𝑖∈[𝑐ℓ](𝑆

ℓ
𝑖 − 𝑆ℓ

𝑖 (𝑁
ℓ
𝑖))), where 𝑆ℓ

𝑖 and 𝑆ℓ
𝑖 (𝑁

ℓ
𝑖) is the sum over

all and the largest 𝑁 ℓ
𝑖 ESs, respectively, and 𝑁 ℓ

𝑖 is the budget allocated for parameter

group 𝑊 ℓ
𝑖 .

We note that the compression bound is proportional to the sum of cumulative ESs for

each parameter group, a term which arises in numerous applications of coresets [FL11].

Moreover, we see the layer condition number 𝜅ℓ and sign complexity ∆ℓ of each layer

appear in the final bound. Both terms are related to how injecting error simultaneously

in each layer (by pruning the network) affects the overall output of the network and

are related to concepts such as the Lipschitz constant of the network and/or interlayer

cushion as introduced in related work that establishes generalization bounds for neural

networks [AGNZ18, NBS18]. Like other recent work in the field [AGNZ18, SAN20]

our work highlights the intrinsic connection between the compression ability and

generalization ability of neural networks.

5.4.7 Computation time

Note that for all the three variants, we pass |𝒮| data points as input to the original

network 𝜃 in order to compute the activations in all layers corresponding to the

validation set 𝒮 (to compute ESs). If we let 𝒯 denote the time required to compute

the output of a single point (𝑓𝜃(𝑥)) on the original network parameterized by 𝜃, then

125

the total time required by the preprocessing step to compute the empirical sensitivities

is 𝒪(|𝒮|𝒯). For the Rand variant, sampling and reweighting weights takes asymp-

totically linear time in the number of parameters for each parameter group, giving a

total time of 𝒪(𝜂) where 𝜂 =
∑︀

ℓ∈[𝐿] 𝑐
ℓ is the total number of network parameters. For

the hybrid and deterministic approaches, the computational complexity is dominated

by a sort of all of the empirical sensitivities, which takes 𝒪(𝜂 log 𝜂) time. Thus, the

sparsification itself for any variant takes at most 𝒪(𝜂 log 𝜂) time. Finally, the budget

allocation problem in (5.1) is a special type of convex optimization problem known as

the water-filling problem [BV04, Example 5.2] and can be solved in 𝒪(𝜂 log 𝜂) time

by a clever sorting procedure [PF05]. Putting it all together, the total computation

time required of pruning a network with any SiPP variant is at most

𝒪 (max{|𝒮|𝒯 , 𝜂 log 𝜂}) (5.3)

time, where |𝒮| is roughly logarithmic in 1/𝛿 (see Lemma 26 in Sec. 5.7 for details)

and, as before, 𝜂 =
∑︀

ℓ∈[𝐿] 𝑐
ℓ and 𝒯 is the computation time required to compute 𝑓𝜃(𝑥)

for a single input 𝑥.

5.4.8 Classification Error

As a corollary to the norm-based bounds established in Theorem 37, we can also

obtain margin-based bounds for the relative classification error of the pruned net-

work. Without loss of generality, assume for the time being that the output softmax

probabilities 𝜎(𝑓𝜃(𝑥)) ∈ [0, 1]𝐾 of an output 𝑓𝜃(𝑥) are in descending order so that

𝜎(𝑓𝜃(𝑥))0 ≥ 𝜎(𝑓𝜃(𝑥))1 ≥ · · · ≥ 𝜎(𝑓𝜃(𝑥))𝐾
3. For a given network 𝜃, we can define

the margin by considering the worst-case margin across the entire support of the

distribution 𝒟, 𝛾𝜃 = inf𝑥∈supp(𝒟)(𝜎(𝑓𝜃(𝑥))0 − 𝜎(𝑓𝜃(𝑥))1), i.e., the minimum difference

between the softmax output of the predicted label and the second highest probability

label.

3This is only to make the definition of the margin more clear.

126

However, in the spirit of obtaining better than worst-case guarantees (with sufficiently

high probability), we can instead define the less stringent margin that takes into

account the randomness (inspired by [PBD18]) in the input 𝑥 ∼ 𝒟 with respect to

failure probability 𝛿 ∈ (0, 1) and network 𝜃:

𝛾𝜃(𝛿) = inf
{︁
𝛾 > 0 : P

𝑥∼𝒟
(𝜎(𝑓𝜃(𝑥))0 − 𝜎(𝑓𝜃(𝑥))1 > 𝛾) ≥ 1− 𝛿

}︁
.

In words, this definition means that the minimum margin between the top-2 predicted

labels is at least 𝛾𝜃(𝛿) for (1− 𝛿) fraction (more rigorously, relative volume) of the

points in supp(𝒟). Given this margin and an original network 𝜃 with test accuracy

a𝜃, the corollary below provides a sufficient size for the pruned network so that the

test accuracy of the pruned network is at least (1− 𝛿)a𝜃 with high probability.

Corollary 23 (Classification Error Bound). For given 𝛿 ∈ (0, 1), original network

𝜃, and a margin 𝛾𝜃(𝛿/2) as defined above, define the budget ℬ so that the absolute

incurred error (as in Thm. 37) is less than 𝛾𝜃(𝛿/2)/2, i.e.,

ℬ = argmin

{︃
ℬ′ ∈ N : 𝐶

𝐿∑︁
ℓ=1

𝜅ℓ∆ℓ max
𝑖∈[𝑐ℓ]

(𝑆ℓ
𝑖 − 𝑆ℓ

𝑖 (𝑁
ℓ
𝑖 (ℬ′))) <

𝛾𝜃(𝛿/2)

2 ‖𝑓𝜃(𝑥)‖2

}︃

where 𝑁 ℓ
𝑖 (ℬ′) is the budget allocated for parameter group 𝑊 ℓ

𝑖 with respect to budget

ℬ′, and 𝐶 > 0 is a universal constant. Then, invoking algorithm SiPP (Algorithm 6)

with budget ℬ and failure probability 𝛿′ = 𝛿/2 generates a set of pruned parameters 𝜃

such that ‖𝜃‖0 ≤ ℬ and

P̂
𝜃,𝑥

(︃
argmax

𝑖∈[𝑘]
𝑓𝜃(𝑥)𝑖 = argmax

𝑖∈[𝑘]
𝑓𝜃(𝑥)𝑖

)︃
≥ 1− 𝛿.

Proof. Without loss of generality, assume the descending order

𝜎(𝑓𝜃(𝑥))0 ≥ 𝜎(𝑓𝜃(𝑥))1 ≥ · · · ≥ 𝜎(𝑓𝜃(𝑥))𝐾 ,

127

note that by Thm. 37 with

𝜀(ℬ′) < 𝛾𝜃(𝛿/2)/(2 ‖𝑓𝜃(𝑥)‖2),

we have that with probability at least 1− 𝛿/2,

‖𝑓𝜃(𝑥)− 𝑓𝜃(𝑥)‖
2
≤ 𝛾𝜃(𝛿/2)/2.

Now, since the softmax function 𝜎(·) defined by 𝑥 ↦→
(︁

exp(𝑥𝑖)/
∑︀

𝑗∈[𝑘] exp(𝑥𝑗)
)︁
𝑖∈[𝑘]

is

1-Lipschitz [GP17], we have with probability at least 1− 𝛿/2

‖𝜎(𝑓𝜃(𝑥))− 𝜎(𝑓𝜃(𝑥))‖
2
≤ ‖𝑓𝜃(𝑥)− 𝑓𝜃(𝑥)‖

2

<
𝛾𝜃(𝛿/2)

2
.

Using the inequality for norms ‖𝑥‖2 ≥ ‖𝑥‖∞ yields

‖𝜎(𝑓𝜃(𝑥))− 𝜎(𝑓𝜃(𝑥))‖∞ <
𝛾𝜃(𝛿/2)

2
. (5.4)

This error bound implies that for the top-2 highest probability labels 𝑖, 𝑗 ∈ [𝑘] with

respect to output 𝜎(𝑓𝜃(𝑥)), (corresponding to indices 𝑖 = 0 and 𝑗 = 1 if we assume 𝜎

is ordered), we have

𝜎(𝑓𝜃(𝑥))𝑖 − 𝜎(𝑓𝜃(𝑥))𝑗 > (𝜎(𝑓𝜃(𝑥))𝑖 − 𝛾𝜃(𝛿/2)/2)− (𝜎(𝑓𝜃(𝑥))𝑗 + 𝛾𝜃(𝛿/2)/2)

= 𝜎(𝑓𝜃(𝑥))𝑖 − 𝜎(𝑓𝜃(𝑥))𝑗 − 𝛾𝜃(𝛿/2)

> 0,

where the first inequality follows by the error bound (5.4) applied to each term and

the last inequality by the definition of the margin 𝛾𝜃(𝛿/2). The strict inequality

above means that the relative ranking between the top-2 softmax outputs 𝑖 and 𝑗

does not differ for the pruned network 𝜃, and so 𝑖 remains the predicted label, i.e.,

argmax𝑐∈[𝑘] 𝑓𝜃(𝑥)𝑐 = argmax𝑐∈[𝑘] 𝑓𝜃(𝑥)𝑐. Applying the union bound over the two failure

128

events that each occur with probability at most 𝛿/2 yields the corollary.

5.5 Experiments

In this section, we evaluate and compare the performance of our algorithm, SiPP,

on pruning fully-connected, convolutional, and residual networks. We embed our

pruning algorithm into pruning pipelines including retraining to empirically test its

performance and test it for scenarios involving significant amounts of (re)-training as

well as a prune pipeline that utilizes no more training epochs than regular training. We

consider standard retraining pipelines inspired by [LAT18, RFC20] that are network-

agnostic and thus easily adaptable to various benchmarks. Specifically, we consider two

scenarios – iterative prune + retrain and random-init + prune + train – as described

below.

5.5.1 Setup

Architectures and data sets We train and prune networks on MNIST [LBBH98],

CIFAR10 [TFF08], and ImageNet [RDS+15]. We consider a custom fully-connected

architecture according to [AAR20] and LeNet300-100 [LBBH98] on MNIST;

ResNets20/56/110 [HZRS16], WideResNet16-8/28-2 [ZK16], Densenet22 [HLVDMW17],

VGG16 [SZ14a], and CNN5 [NKB+20] on CIFAR10; and ResNet18 and ResNet101 [HZRS16]

for ImageNet.

Training For both training and retraining we deploy the standard sets of hyper-

parameters as described in the respective papers. All hyperparameters are listed in

Sec. 5.8.

Variants of SiPP We consider the following variants of SiPP for our experiments:

• SiPPDet. We prune the entire network deterministically. Note that in this case

(due to the sample size allocation procedure) SiPPDet corresponds to global

thresholding of sensitivity (reminiscent of weight thresholding).

129

• SiPPRand. We prune the entire network using importance sampling.

• SiPPHybrid. We use our combined pruning approach as outlined in Algo-

rithm 6.

Comparison methods We compare SiPP to a diverse set of pruning methods.

Specifically, we consider Weight Thresholding (WT) [HMD15, RFC20] and SNIP [LAT18]

for our baseline experiments in our standardized retraining pipeline. Additionally,

we compare to Net-Trim [AAR20, AANR17], Bayesian Compression (BC) [LUW17],

Dynamic Network Surgery (DNS) [GYC16], Dynamic Sparse Reparameterization

(DSR) [MW19], Deep Rewiring (DeepR) [BKML17], Sparse Evolutionary Training

(SET) [MMS+18], “To prune, or not to prune” (TPNTP) [ZG17], Alternating Direc-

tion Method of Multipliers (ADMM) [ZYZ+18], Unified Approximation Framework

(UAF) [MCL+19], and Learning Compression (LC) [CPI18].

5.5.2 Experiments with baseline comparisons

We provide comparisons to two frequently used pruning heuristics, namely WT [HMD15,

RFC20], which is weight-based, and SNIP [LAT18], which is gradient-based. To high-

light the versatility of SiPP we consider two pruning pipelines that differ in the total

amount of retraining required (iterative retraining and no retraining).

Iterative prune + retrain

Methodology We deploy a network-agnostic iterative prune + retrain scheme

inspired by [RFC20, LBL+20] that proceeds as follows:

1. train network to completion;

2. prune a fixed ratio of parameters from the network;

3. retrain using the same hyperparameters as during training;

4. iteratively repeat steps 2., 3. to obtain smaller prune ratios.

130

We consider SiPPDet as comparison method for WT and SNIP in this setup due to

its simplicity.

Results Figure 5-2 summarizes the results of the iterative prune + retrain procedure

for various CIFAR10 networks. The results were averaged across 3 trained networks.

Our empirical evaluation shows that our algorithm consistently performs comparably

to WT with learning rate rewinding [RFC20]. We note that SNIP’s performance is

much lower is these scenarios. We suspect this is due to the gradients being close

to zero for a fully-trained network (the pruning step is performed after training in

this scenario). In Figure 5-3 we show results for ResNet18 and ResNet101 trained,

pruned, and retrained on ImageNet. As in the case of CIFAR10 networks we observe

that SiPP performs en par with WT. We excluded SNIP from the experiments given

the expensive nature of ImageNet experiments and since WT is the clearly stronger

baseline for this scenario.

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-4.0%
-3.0%
-2.0%
-1.0%
0.0%

+1.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet20, CIFAR10

SiPP
WT

SNIP

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet56, CIFAR10

SiPPDet
WT

SNIP

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-2.0%

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y
resnet110, CIFAR10

SiPPDet
WT

SNIP

60.0% 70.0% 80.0% 90.0%
Pruned Parameters

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

vgg16_bn, CIFAR10

SiPPDet
WT

SNIP

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-6.0%

-4.0%

-2.0%

0.0%

De
lta

 T
es

t A
cc

ur
ac

y

densenet22, CIFAR10

SiPPDet
WT

SNIP

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 T
es

t A
cc

ur
ac

y

wrn16_8, CIFAR10
SiPPDet
WT

SNIP

Figure 5-2: The delta in test accuracy to the uncompressed network for the generated pruned
models trained on CIFAR10 for various target prune ratios. The networks were pruned using
the iterative prune+retrain pipeline.

Random-init + prune + train

Methodology On the other "extreme" of possible pruning pipeline, we consider

the following scenario as described in [LAT18]:

131

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-3.0%

-2.0%

-1.0%

0.0%

+1.0%
De

lta
 T

es
t A

cc
ur

ac
y

resnet18, ImageNet

SiPPDet WT

(a) ResNet18, Top 1

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%
Pruned Parameters

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet101, ImageNet
SiPPDet WT

(b) ResNet101, Top 1

Figure 5-3: The accuracy of the generated pruned ResNet18 and ResNet101 models
trained on ImageNet for the evaluated pruning schemes for various target prune ratios.

1. randomly initialize the network;

2. prune the network to the desired prune ratio;

3. train the network using the regular hyperparameters.

While (due to the limited amount of training) this pipeline does not achieve as high

prune ratios as the above scenario, it is simple and requires much less training epochs

overall. It also serves as a useful experimental platform to understand if pruning

methods are able to unearth important connections inherent in the network.

Results In Figure 5-4 the prune results for various CIFAR10 networks are shown.

We note that for low prune ratios all pruning methods perform uniformly well, which

most likely can be attributed to the overall overparameterization of the tested networks.

For higher prune ratios, we observe vastly different performance. Specifically, WT’s

performance drops to 10% test accuracy (uniformly at random for CIFAR10) for prune

ratios beyond 90%. We suspect that weights do not contain sufficient information

about the importance of the connection before training and thus WT fails. On the

other hand, Snip performs consistently well due to the consideration of data and

the gradients of weights. We note that SiPPHybrid specifically, which adaptively

mixes SiPP and SiPPRand according to the theoretical bounds, performs well across

all tested networks and achieves the same prune performance as Snip. For deeper

132

80.0% 85.0% 90.0% 95.0%
Pruned Parameters

60.0%

70.0%

80.0%

90.0%
Te

st
 A

cc
ur

ac
y

resnet20, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(a) Resnet20

20.0% 40.0% 60.0% 80.0% 100.0%
Pruned Parameters

60.0%

70.0%

80.0%

90.0%

Te
st

 A
cc

ur
ac

y

resnet56, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(b) Resnet56

50.0% 60.0% 70.0% 80.0% 90.0%
Pruned Parameters

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Te
st

 A
cc

ur
ac

y

resnet110, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(c) Resnet110

50.0% 60.0% 70.0% 80.0% 90.0%
Pruned Parameters

20.0%

40.0%

60.0%

80.0%

100.0%

Te
st

 A
cc

ur
ac

y

vgg16_bn, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(d) VGG16

50.0% 60.0% 70.0% 80.0% 90.0%
Pruned Parameters

20.0%

40.0%

60.0%

80.0%

Te
st

 A
cc

ur
ac

y

densenet22, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(e) DenseNet22

50.0% 60.0% 70.0% 80.0% 90.0%
Pruned Parameters

20.0%

40.0%

60.0%

80.0%

100.0%

Te
st

 A
cc

ur
ac

y

wrn16_8, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(f) WRN16-8

Figure 5-4: The delta in test accuracy to the uncompressed network for the generated pruned
models trained on CIFAR10 for various target prune ratios. The networks were pruned using
the random-init+ prune+train pipeline.

networks (ResNet20 and ResNet56) in particular, we observe all SiPP variations

performing well or even outperforming Snip.

5.5.3 Benchmark comparisons

Next, we test our method on additional benchmarks using the prune pipeline outlined

in Section 5.5.2. For each benchmark we compare to available results in the literature

as reported in the respective papers.

Fully-connected network on MNIST

We consider the performance of SiPP on the fully-connected architecture of [AAR20]

(denoted by “FC network” in [AAR20]). Specifically, we compare SiPP to the results

presented in Figure 9a of [AAR20] (Net-Trim) which additionally includes BC and

DNS as comparison methods. Our results are presented in Figure 5-5. We observe

that SiPP can prune more weights with higher accuracy compared to other prune

methods (over 95% pruning with more than 99% accuracy). Similar to Section 5.5.2,

we note that SiPPDet and SiPPHybrid work particularly well when considering

133

70.0% 80.0% 90.0% 100.0%
Pruned Parameters

95.0%

96.0%

97.0%

98.0%

99.0%

To
p1

 T
es

t A
cc

ur
ac

y

fcnet_nettrim, MNIST

SiPPDet
SiPPRand
SiPPHybrid

Net-Trim
BC
DNS

Figure 5-5: The performance of the SiPP variants and the competing baseline approaches in
pruning FC-net (MNIST).

more retraining.

LeNet300-100 on MNIST

Next, we compared the performance of the SiPP variants to the performance of ADMM

and LC algorithms as reported in the respective paper. Our results for pruning the

LeNet300-100 network trained on MNIST are given in the upper part of Table 5.1.

From the results, we can see that all SiPP variants achieve a test accuracy above

98.57% with a prune ratio of at least 94.90%, outperforming both ADMM and LC

overall. For instance, SiPPHybrid achieves roughly the same sparsity as does LC

(slightly over 96%), but yet the pruned network generated by SiPPHybrid is nearly

1% better in absolute test accuracy. Interestingly, even our worst-performing variant

(SiPPRand) achieves a test accuracy higher than 98.65% (+0.25% w.r.t. ADMM

and approximately +0.8% w.r.t. LC), and yet is only slightly worse than ADMM in

terms of the prune ratio (last column of Table 5.1).

VGG16 on CIFAR10

In the previous subsection we compared to the baselines on LeNet300-100, a fully-

connected network with 267,000 parameters, trained on MNIST. Here, we consider a

more challenging pruning scenario where we prune VGG16, a CNN with roughly 138

134

Table 5.1: Results of our evaluations on LeNet300-100 trained on MNIST (upper part)
and VGG16 trained on CIFAR10 (lower part). The value of the best-performing method
that achieves commensurate (within 0.5%) test accuracy with respect to each objective is
shown in bold. Overall, the table shows that the SiPP variants – notably SiPPDet and
SiPPHybrid – outperform the competing baselines in obtaining a compact network with
commensurate accuracy on both of the evaluated scenarios.

Method Accuracy (%) Prune Ratio (%)

LeNet300-100 (MNIST)
Acc: 98.75%

SiPPDet 98.57 96.19
SiPPRand 98.65 94.90
SiPPHybrid 98.65 96.16
ADMM [ZYZ+18] 98.40 95.63
LC [CPI18] 97.79 96.54

VGG16 (CIFAR10)
Acc: 92.78%

SiPPDet 93.73 98.00
UAF [MCL+19] 91.65 77.5

million parameters, on CIFAR10 and compare the performance of SiPPDet to that

of UAF. The results are shown in the lower part of Table 5.1. From the reported test

accuracy and prune ratio, we can see that the network generated by SiPP is not only

over 2% (absolute terms) better in test accuracy, but it also 20% (absolute terms)

more compact than the pruned network generated by UAF.

In sum, the evaluations reported in Table 5.1 suggest that the SiPP variants, and

notably SiPPHybrid and SiPPDet, outperform the competing methods in generating

sparse networks while retaining (or improving) the predictive power (i.e., test accuracy)

of the original network.

WRN28-2 on CIFAR10

In the previous comparisons, we saw that SiPP outperformed baseline approaches

across both fully-connected and convolutional architectures. To conclude our compar-

isons, we consider benchmarking the performance of SiPP variants on WideResNet

(WRN28-2) trained on CIFAR10. In particular, we compare the effectiveness of SiPP

with that of the DSR, DeepR, SET, and TPNTP pruning algorithms as reported in

Figure 1a of [MW19] (DSR). Fig. 5-6 depicts the test accuracies obtained for various

prune ratios. We can see from the figure that all SiPP variants outperform all of the

135

70.0% 75.0% 80.0% 85.0% 90.0% 95.0%
Pruned Parameters

92.0%

93.0%

94.0%

95.0%

To
p1

 T
es

t A
cc

ur
ac

y

wrn28_2, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid
DSR

DeepR
SET
TPNTP

Figure 5-6: The performance on the WRN28-2 architecture trained on CIFAR10. The figure
shows that all SiPP variants outperform the competing methods at all intermediate prune
ratios.

competing approaches across all levels of sparsity. Notably, some of the SiPP variants

such as SiPPDet and SiPPHybrid, outperform the best-performing baseline by over

0.5% (see 90% parameters retained)5. Taken in whole with the results reported in

Table 5.1, we can see that SiPP remains uniformly more effective than the compared

baselines across all evaluated architectures and data sets.

5.5.4 Empirical computation time of SiPP

For small networks and data sets (MNIST), our algorithm took at most 5 seconds total

to sparsify the entire network. For ResNet18 trained on CIFAR10, this computation

was at most 18 seconds. For the largest network and data set (e.g., ImageNet

results), our algorithm took at most 10 minutes total to prune the given network 𝜃.

These timings suggest that the computation time required by SiPP is on-par with or

significantly less than the computation time reported for the same pruning scenarios in

previous work (e.g., [AAR20]). In context of the theoretical computation complexity

(see (5.3)), we also observed that |𝒮|𝒯 > 𝜂 log 𝜂 in practice for the evaluated scenarios,

implying that the asymptotic computational complexity of our algorithm was at most

𝒪(|𝒮|𝒯). Intuitively, since the size of 𝒮 is significantly less than the size of the training
5Values for the baselines above 90% pruned parameters are not shown because they were not

reported in the respective publications of the compared baselines. We chose to show above 90%
sparsity for SiPP in Fig. 5-6 to highlight the relatively favorable curvature (i.e., gradual degradation
of test accuracy) of the SiPP variants even at extreme sparsities.

136

set in practice (by Lemma 26), the computation complexity of any SiPP variant from

start to finish was at least an order of magnitude less than that of executing a single

training epoch.

5.5.5 Discussion

Our results with SiPP on a diverse set of pruning scenarios in terms of the amount of

(re-)training epochs highlight the versatility and robustness of SiPP in performing

well across varying tasks. While traditional pruning methods, such as WT and SNIP,

perform unreliably when used in the context of alternative pruning pipelines we observe

that SiPP serves as a consistent plug-and-play solution to the core pruning method of

a pruning pipeline. Among the SiPP variants, we see that SiPPDet tends to perform

particularly well for small prune ratios (such as in the case of iterative prune+retrain)

while SiPPRand performs the best for extreme prune ratio (such as in the case of

random-init + prune + train). SiPPHybrid usually finds a close-to-optimal mixture

of strategies and thus provides the most versatility among the SiPP variants, which

comes at the cost of increased implementation effort. Notably, unlike other provably

pruning methods, our method readily scales to large-scale networks and datasets

such as ImageNet without further modifications. Our comparisons to a diverse set of

recently-proposed pruning methods on varying pruning scenarios shows that SiPP

can outperform baseline approaches across a wide variety of benchmark data sets and

architectures.

5.6 Method Pseudocode

In this section, we provide additional details for SiPP as introduced in Sec. 5.3.

5.6.1 Overview

Algorithm 7 provides an extended over view of SiPP. Moreover, in Algorithm 8

we present Sparsify, which is the sub-routine to adaptively prune weights from a

137

Algorithm 7 SiPP (𝜃,ℬ, 𝛿)

Input: 𝜃 = (𝑊 1, . . . ,𝑊𝐿): weights of the uncompressed neural network; ℬ ∈ N: sampling
budget; 𝛿 ∈ (0, 1): failure probability;
Output: 𝜃 = (𝑊̂ 1, . . . , 𝑊̂𝐿) : sparse weights

1: 𝒮 ← Uniform sample (without replacement) of 𝐾 log (8 𝜂 𝜌/𝛿)

points from validation set

2: {𝑚ℓ
𝑖}𝑖,ℓ ← OptAlloc(𝜃,ℬ,𝒮) ∀𝑖 ∈ [𝑐ℓ], ∀ℓ ∈ [𝐿] ◁ optimally allocate budget ℬ

applying Lemma 28 to evaluate the resulting relative error guarantees

3: for ℓ ∈ [𝐿] do

4: 𝑊̂ ℓ ← 0; ◁ Initialize a null tensor

5: for 𝑖 ∈ [𝑐ℓ] do

6: {𝑠𝑗}𝑗 ← EmpiricalSensitivity(𝜃,𝒮, 𝑖, ℓ) ∀𝑤𝑗 ∈𝑊 ℓ
𝑖 ◁ Compute parameter

importance for each weight 𝑤𝑗 in the parameter group according to Definitions 25 and 30

7: 𝑊̂ ℓ
𝑖 ← Sparsify(𝑊 ℓ

𝑖 ,𝑚
ℓ
𝑖 , {𝑠𝑗}𝑗) ◁ prune weights according to SiPPDet,

SiPPRand, or SiPPHybrid such that only 𝑚ℓ
𝑖 weights remain in the parameter group

8: return 𝜃 = (𝑊̂ 1, . . . , 𝑊̂𝐿);

parameter group according to either SiPPDet, SiPPRand, or SiPPHybrid.

5.6.2 Details regarding OptAlloc

As mentioned in Section 5.3, OptAlloc proceeds by minimizing the sum of relative

error guarantees associated with each parameter group for a given overall weight

budget ℬ, i.e.,

min
𝑚ℓ

𝑖∈N ∀𝑖∈[𝑐ℓ], ∀ℓ∈[𝐿]

∑︀
ℓ∈[𝐿], 𝑖∈[𝑐ℓ] 𝜀

ℓ
𝑖(𝑚

ℓ
𝑖) s. t.

∑︀
ℓ∈[𝐿], 𝑖∈[𝑐ℓ] 𝑚

ℓ
𝑖 ≤ ℬ. (5.5)

Here, 𝑚ℓ
𝑖 and 𝜀ℓ𝑖(𝑚

ℓ
𝑖) denote the desired number of weights and the associated the-

oretical error in parameter group 𝑊 ℓ
𝑖 after pruning, respectively. We evaluate the

theoretical error according to Lemmas 27 and Lemma 28 when pruning with SiP-

PDet and SiPPHybrid or SiPPRand, respectively. Note that in order to evaluate

Lemma 28 we have to first convert 𝑚ℓ
𝑖 to the expected number of required samples in

order to obtain 𝑚ℓ
𝑖 unique samples, which is also shown in Line 4 of Algorithm 8.

138

Algorithm 8 Sparsify(𝑊 ℓ
𝑖 ,𝑚

ℓ
𝑖 , {𝑠𝑗}𝑗)

Input: 𝑊 ℓ
𝑖 : parameter group to be pruned; 𝑚ℓ

𝑖 : assigned budget; {𝑠𝑗}𝑗 : sensitivities
associated with weights in parameter group
Output: 𝑊̂ ℓ

𝑖 : sparse parameter group

1: 𝑆 ←
∑︀

𝑗∈ℐℓ
𝑖
𝑠𝑗 ◁ Compute sum of sensitivities

2: 𝑆 ← 𝑆𝐶
3 log(16𝜂/𝛿)

3: {𝑞𝑗}𝑗 ← 𝑠𝑗
𝑆 ◁ Compute sample probabilities for SiPPRand

4: 𝑁 ← 𝑁(𝑚ℓ
𝑖 , {𝑞𝑗}𝑗) ◁ Get expected number of required samples to obtain 𝑚ℓ

𝑖 unique

samples

5: ℐ𝑑𝑒𝑡 ← subset of indices from ℐℓ𝑖 corresponding to the largest 𝑚ℓ
𝑖 sensitivities (c.f.

Lemma 27)

6: 𝜀𝑟𝑎𝑛𝑑 ←
𝑆+
√

𝑆(𝑆+6𝑁)
𝑁 ◁ c.f. Lemma 28

7: 𝜀𝑑𝑒𝑡 ← 𝐶
∑︀

𝑗∈(ℐ∖ℐ𝑑𝑒𝑡) 𝑠𝑗 ◁ c.f. Lemma 27

8: if (𝜀𝑟𝑎𝑛𝑑 > 𝜀𝑑𝑒𝑡 or always SiPPDet) and not always SiPPRand then

9: 𝑊̂ ℓ
𝑖 ← prune weights from 𝑊 ℓ

𝑖 , i.e set to 0, that are not in ℐ𝑑𝑒𝑡 and keep the rest

10: else

11: {𝑛𝑗}𝑗 ∼Multinomial({𝑞𝑗}𝑗 , 𝑁) ◁ Sample 𝑁 times and return the counts

12: 𝑊̂ ℓ
𝑖 ← prune weights such that 𝑤̂𝑗 =

𝑛𝑗

𝑁𝑞𝑗
𝑤𝑗 for each weight 𝑤̂𝑗 , 𝑗 ∈ ℐℓ𝑖 in the

parameter group

13: return 𝑊̂ ℓ
𝑖

5.6.3 Details regarding EmpiricalSensitivity

We note that the empirical sensitivity (ES) 𝑠𝑗 of a weight 𝑤𝑗 in the parameter group

𝑊 ℓ
𝑖 is given by Definition 25, where we define ES as the maximum of the relative

parameter importance 𝑔𝑗(𝑥) over a set 𝒮 of i.i.d. data points. To account for both

negative weights and activations, we utilize the generalized parameter importance as

defined in Definition 30 to compute 𝑔𝑗(𝑥) for a particular input 𝑥. To ensure that ES

holds with probability at least 1− 𝛿 for all patches and parameters simultaneously we

have to appropriately choose the size of 𝒮, c.f. Line 1 of Algorithm 7 and Section 5.7.4.

5.6.4 Details regarding Sparsify

In Algorithm 8 we present the pruning strategy for both SiPPDet and SiPPRand as

shown in Line 9 and Lines 11, 12, respectively. Recall that SiPPHybrid adaptively

139

chooses between both strategies according to the associated error guarantees, which

get computed in Lines 7 and 6 for SiPPDet and SiPPRand, respectively. We then

choose the better strategy accordingly, see Line 8. We can also choose to always prune

using SiPPRand or SiPPDet as indicated in Line 8.

5.6.5 Simple SiPP

We can greatly simplify our pruning algorithm if we prune all parameter groups

using SiPPDet. To see this consider the solution to OptAlloc when evaluating

the relative error according to Lemma 27. Since the relative error for a particular

parameter group in this case is the sum over sensitivities that were not included

and the objective of OptAlloc is to minimize the sum over all relative errors the

optimal solution is to globally keep the weights with largest sensitivity. In other words,

pruning with SiPPDet only results in global thresholding of weights according to their

sensitivity. The resulting procedure is shown in Algorithm 9. Note that this procedure

is very reminiscent of simple, global weight thresholding [HMD15, RFC20] but using

sensitivity instead of the magnitude of the weights as prune criterion. In contrast to

weight thresholding, however, SiPPSimple still exhibits the same theoretical error

guarantees as SiPP.

Algorithm 9 SiPPSimple (𝜃,ℬ, 𝛿)

Input: 𝜃 = (𝑊 1, . . . ,𝑊𝐿): weights of the uncompressed neural network; ℬ ∈ N:
sampling budget; 𝛿 ∈ (0, 1): failure probability;
Output: 𝜃 = (𝑊̂ 1, . . . , 𝑊̂𝐿) : sparse weights

1: 𝒮 ← Uniform sample of 𝐾 log (16 𝜂 𝜌/𝛿) points from validation set

2: Compute sensitivity for all weights in the network using 𝒮

3: Prune weights globally by keeping the ℬ weights with largest sensitivity

4: Return 𝜃 = (𝑊̂ 1, . . . , 𝑊̂𝐿)

140

5.7 Proofs and Technical Details

In this section, we establish the theoretical guarantees of SiPP as presented in

Algorithm 7 and state our main compression theorem.

5.7.1 Outline

We begin by considering the sparsification of an arbitrary output patch in an arbitrary

parameter group and layer assuming that both the input to the layer and the weights

are non-negative. To this end, we first establish the empirical sensitivity (ES) inequality

that quantifies the contribution of an individual scalar weight to an output patch

(Section 5.7.2 and informal Lemma 19). We then establish the relative error guarantees

for each variation of SiPP for an arbitrary output patch (Section 5.7.3 and informal

Lemmas 20, 21). Next, we formally generalize the approximation scheme to arbitrary

weights and input activations (Section 5.7.4). Finally, we provide our formal network

compression bounds by composing together the error guarantees from individual layers

and parameter groups. (Section 5.7.5).

5.7.2 Empirical Sensitivity

Recall that an arbitrary parameter group indexed by 𝑖 ∈ [𝑐ℓ] in an arbitrary layer

ℓ ∈ [𝐿], is denoted by 𝑊 ℓ
𝑖 and ℐ denotes its parameter index set. Moreover, let 𝑤𝑗

denote some scalar entry of 𝑊 ℓ
𝑖 for some 𝑗 ∈ ℐ. Also as before, 𝐴ℓ−1(𝑥) denotes

the input activation to layer ℓ and 𝑍ℓ
𝑖 (𝑥) = 𝑊 ℓ

𝑖 * 𝐴ℓ−1(𝑥) denotes the output pre-

activation of parameter group 𝑊 ℓ
𝑖 . Finally, recall that 𝑎(·) ∈ 𝒜ℓ

𝑖 denotes some

patch of 𝒜ℓ
𝑖 and that the patch 𝑎(·) produces the associated output scalar 𝑧(𝑥), i.e.,

𝑧(𝑥) = ⟨𝑊 ℓ
𝑖 , 𝑎(𝑥)⟩ =

∑︀
𝑘∈ℐℓ

𝑖
𝑤𝑘𝑎𝑘(𝑥), We now proceed with the formal definition of

relative parameter importance and empirically sensitivity, which is defined as the

maximum relative parameter importance over multiple data points.

Definition 24 (Relative parameter importance). For a scalar parameter 𝑤𝑗, 𝑗 ∈ ℐℓ𝑖 ,

141

of parameter group 𝑊 ℓ
𝑖 in layer ℓ, its relative importance 𝑔𝑗(𝑥) is given by

𝑔𝑗(𝑥) = max
𝑎(·)∈𝒜ℓ

𝑖

𝑤𝑗 𝑎𝑗(𝑥)∑︀
𝑘∈ℐℓ

𝑖
𝑤𝑘 𝑎𝑘(𝑥)

,

where 𝒜ℓ
𝑖 denotes the set of patches for parameter group 𝑊 ℓ

𝑖 .

Definition 25 (Empirical sensitivity). Let 𝒮 be a set of i.i.d. samples from the

validation data set. Then, the empirical sensitivity 𝑠𝑗(𝑥) of a scalar parameter 𝑤𝑗,

𝑗 ∈ ℐℓ𝑖 , of parameter group 𝑊 ℓ
𝑖 in layer ℓ is given by

𝑠𝑗(𝑥) = max
𝑥∈𝒮

𝑔𝑗(𝑥).

We note that, for ease of notation, we do not explicitly enumerate ES over 𝑖 and ℓ for

parameter groups and layers, respectively.

To ensure that a small batch of points 𝒮 suffices for an accurate approximation

of parameter importance, we impose the following mild regularity assumption on

the Cumulative Distribution Function (CDF) of 𝑔𝑗(𝑥) similar to the assumption

of [BLG+19a].

Assumption 4 (Regularity assumption). There exist universal constants 𝐶,𝐾 > 0

such that for all 𝑗 ∈ ℐℓ𝑖 , the CDF of the random variable 𝑔𝑗(𝑥) ∈ [0, 1] for 𝑥 ∼ 𝒟,

denoted by 𝐹𝑗 (·), satisfies

𝐹𝑗 (1/𝐶) ≤ exp (−1/𝐾) .

Traditional distributions such as the Gaussian, Uniform, and Exponential, among

others, supported on the interval [0, 1] satisfy Assumption 4 with sufficiently small

values of 𝐾 and 𝐾 ′. In other words, Assumption 4 ensures that there are no outliers

of 𝑔𝑗(𝑥) with non-negligible probability that are not within a constant multiplicative

factor of most other values of 𝑔𝑗(𝑥). Capturing outliers that are within a constant

multiplicative factor, on the other hand, can be captured by considering an appropriate

142

scaling factor of ES in the ES inequality (see Lemma 26 below). However, we cannot

capture these non-negligible outliers (unless we significantly increase the cardinality

of 𝒮) when they are not within a constant multiplicative factor.

We now proceed to state the ES inequality as informally stated in Lemma 19. We

note that, intuitively, the ES inequality enables us to quantify, i.e., upper-bound, the

contribution 𝑤𝑗𝑎𝑗(𝑥) coming from an individual weight w.h.p. in terms of the output

patch 𝑧(𝑥) and the sensitivity 𝑠𝑗 of the weight.

Lemma 26 (ES inequality). For 𝛿 ∈ (0, 1), the ES 𝑠𝑗 of the scalar parameter 𝑤𝑗,

𝑗 ∈ ℐℓ𝑖 , of parameter group 𝑊 ℓ
𝑖 computed with a set 𝒮 of i.i.d. data points, |𝒮| =

𝐾 log (𝜌/𝛿), satisfies

P
𝑥

(𝑤𝑗𝑎𝑗(𝑥) ≤ 𝐶𝑠𝑗𝑧(𝑥)) ≥ 1− 𝛿 ∀𝑗 ∈ ℐℓ𝑖 ,

for some input 𝑥 ∼ 𝒟 and some fixed input patch 𝑎(·) ∈ 𝒜ℓ
𝑖, where 𝐶,𝐾 are the

universal constants of Assumption 4 and 𝑧(𝑥) =
∑︀

𝑘∈ℐℓ
𝑖
𝑤𝑘𝑎𝑘(𝑥).

Proof. We consider a fixed weight 𝑤𝑗 from the parameter group and a fixed input

patch 𝑎(·). Note that
𝑤𝑗𝑎𝑗(𝑥)

𝑧(𝑥)
≤ 𝑔𝑗(𝑥) (5.6)

by definition of 𝑔𝑗(𝑥) since the relative parameter importance is the maximum

over patches for a specific input 𝑥. We now consider the probability that 𝑠𝑗(𝒮) =

max𝑥′∈𝒮 𝑔𝑗(𝑥
′) is not an upper bound for 𝑔𝑗(𝑥) when appropriately scaled for random

draws over 𝒮, where we explicitly denote the dependency of 𝑠𝑗(𝒮) on 𝒮 for the purpose

of this proof. By showing this occurs with low probability we can then conclude that

𝑠𝑗 is indeed an upper bound for 𝑔𝑗(𝑥) most of the time. Specifically,

P
𝒮

(𝐶𝑠𝑗(𝒮) ≤ 𝑔𝑗(𝑥)) = P
𝒮

(𝑠𝑗(𝒮) ≤ 𝑔𝑗(𝑥)/𝐶)

≤ P
𝒮

(𝑠𝑗(𝒮) ≤ 1/𝐶) since 𝑔𝑗(𝑥) ≤ 1

143

= P
𝒮

(︂
max
𝑥′∈𝒮

𝑔𝑗(𝑥
′) ≤ 1/𝐶

)︂
by definition of 𝑠𝑗(𝒮)

=
(︁
P
𝑥′

(𝑔𝑗(𝑥
′) ≤ 1/𝐶)

)︁|𝒮|
since 𝒮 is |𝒮| i.i.d. draws from 𝒟

= 𝐹𝑗 (1/𝐶)|𝒮| since 𝐹𝑗(·) is the CDF of 𝑔𝑗(𝑥′)

≤ exp (−|𝒮|/𝐾) by Assumption 4

=
𝛿

𝜌
since |𝒮| = 𝐾 log (𝜌/𝛿) by definition.

Thus, we can conclude that for a fixed weight 𝑤𝑗 and some input 𝑥 ∼ 𝒟 its relative

contribution 𝑔𝑗(𝑥) is upper bound by its sensitivity 𝑠𝑗. Moreover, the inequality also

holds for any weight 𝑤𝑗 by the union bound, i.e.,

P
𝒮

(︀
∃𝑗 ∈ ℐℓ𝑖 |𝐶𝑠𝑗(𝒮) ≤ 𝑔𝑗(𝑥)

)︀
≤
⃒⃒
ℐℓ𝑖
⃒⃒
P
𝒮

(𝐶𝑠𝑗(𝒮) ≤ 𝑔𝑗(𝑥)) by the union bound

≤
⃒⃒
ℐℓ𝑖
⃒⃒ 𝛿
𝜌

by the analysis above

≤ 𝜌
𝛿

𝜌
since 𝜌 = max

𝑖,ℓ

⃒⃒
ℐℓ𝑖
⃒⃒

= 𝛿

We thus have with probability at least 1− 𝛿 over the construction of 𝑠𝑗 that

𝐶𝑠𝑗 ≥ 𝑔𝑗(𝑥) ∀𝑗 ∈ ℐℓ𝑖

and by (5.6) that
𝑤𝑗𝑎𝑗(𝑥)

𝑧(𝑥)
≤ 𝑔𝑗(𝑥) ≤ 𝐶𝑠𝑗,

which concludes the proof since the above inequality holds for any 𝑥 ∼ 𝒟.

5.7.3 Error Guarantees for positive weights and activations

Equipped with Lemma 26 we now proceed to establish the relative error guarantees

for the three variants of SiPP. As before, we consider a fixed output patch for a

fixed parameter group and we assume that both input activations and the weights are

144

non-negative.

Error Guarantee for SiPPDet

We note that SiPPDet prunes weights from a parameter group by keeping only the

weights with largest sensitivity. Let the index set of weights kept be denoted by ℐ𝑑𝑒𝑡.

Below we state the formal error guarantee for a fixed output patch of a parameter

group when we only keep the weights indexed by ℐ𝑑𝑒𝑡. Note that the below error

guarantee holds for any index set ℐ𝑑𝑒𝑡 that we decide to keep. Naturally, however,

it makes sense to keep the weights with largest sensitivity as this minimizes the

associated relative error.

Lemma 27 (SiPPDet error bound). For 𝛿 ∈ (0, 1), pruning parameter group 𝑊 ℓ
𝑖 by

keeping only the weights indexed by ℐ𝑑𝑒𝑡 ⊆ ℐℓ𝑖 generates a pruned parameter group 𝑊̂ ℓ
𝑖

such that for a fixed input patch 𝑎(·) ∈ 𝒜ℓ
𝑖 and 𝑥 ∼ 𝒟

P (|𝑧𝑑𝑒𝑡(𝑥)− 𝑧(𝑥)| ≥ 𝜀𝑑𝑒𝑡𝑧(𝑥)) ≤ 𝛿 with 𝜀𝑑𝑒𝑡 = 𝐶
∑︀

𝑗∈ℐ∖ℐ𝑑𝑒𝑡 𝑠𝑗 ∈ (0, 1),

where

𝑧(𝑥) = ⟨𝑊 ℓ
𝑖 , 𝑎(𝑥)⟩ =

∑︀
𝑗∈ℐℓ

𝑖
𝑤𝑗𝑎𝑗(𝑥) and 𝑧𝑑𝑒𝑡(𝑥) = ⟨𝑊̂ ℓ

𝑖 , 𝑎(𝑥)⟩ =
∑︀

𝑗∈ℐ𝑑𝑒𝑡 𝑤𝑗𝑎𝑗(𝑥)

denote the unpruned and approximate output patch, respectively, associated with the

input patch 𝑎(·). The sensitivities {𝑠𝑗}𝑗∈ℐℓ
𝑖

are hereby computed over a set 𝒮 of

𝐾 log (𝜌/𝛿) i.i.d. data points drawn from 𝒟.

Proof. We proceed by considering the absolute difference |𝑧(𝑥)− 𝑧𝑑𝑒𝑡(𝑥)| and note

that

|𝑧(𝑥)− 𝑧𝑑𝑒𝑡(𝑥)| =
⃒⃒⃒
⟨𝑊 ℓ

𝑖 , 𝑎(𝑥)⟩ − ⟨𝑊̂ ℓ
𝑖 , 𝑎(𝑥)⟩

⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒∑︁
𝑗∈ℐℓ

𝑖

𝑤𝑗𝑎𝑗(𝑥)−
∑︁
𝑗∈ℐ𝑑𝑒𝑡

𝑤𝑗𝑎𝑗(𝑥)

⃒⃒⃒⃒
⃒⃒

145

=
∑︁

𝑗∈ℐℓ
𝑖 ∖ℐ𝑑𝑒𝑡

𝑤𝑗𝑎𝑗(𝑥)

Invoking Lemma 26 we know that with probability at least 1 − 𝛿 each individual

weight term in the above sum is upper bound by its sensitivity, i.e.,

𝑤𝑗𝑎𝑗(𝑥) ≤ 𝐶𝑠𝑗𝑧(𝑥) ∀𝑗 ∈ ℐℓ𝑖 .

We now bound the error in terms of sensitivity as

|𝑧(𝑥)− 𝑧𝑑𝑒𝑡(𝑥)| =
∑︁

𝑗∈ℐℓ
𝑖 ∖ℐ𝑑𝑒𝑡

𝑤𝑗𝑎𝑗(𝑥)

≤
∑︁

𝑗∈ℐℓ
𝑖 ∖ℐ𝑑𝑒𝑡

𝐶𝑠𝑗𝑧(𝑥) using the above inequality

= 𝜀𝑑𝑒𝑡𝑧(𝑥) by definition of 𝜀𝑑𝑒𝑡.

We conclude by mentioning that above error bound holds with probability at least

1− 𝛿 since the associated ES inequalities hold with probability at least 1− 𝛿.

Error Guarantee for SiPPRand

As before, we consider a fixed parameter group 𝑊 ℓ
𝑖 , which has been assigned a budget

of 𝑚ℓ
𝑖 unique weights to be kept. Recall that SiPPRand is a sampling procedure that

proceeds as follows:

1. Assign probabilities 𝑞𝑗 = 𝑠𝑗/∑︀
𝑘∈ℐℓ

𝑖
𝑠𝑘 for all 𝑗 ∈ ℐℓ𝑖 .

2. Compute the expected number of samples, 𝑁 , to obtain 𝑚ℓ
𝑖 unique weights from

the sampling procedure.

3. Sample weights 𝑁 times with replacement from 𝑊 ℓ
𝑖 according to 𝑞𝑗.

4. Reweigh the weights, 𝑤̂𝑗, to obtain the approximate weights such that 𝑤̂𝑗 =

𝑛𝑗

𝑁𝑞𝑗
𝑤𝑗, where 𝑛𝑗 denotes the number of times 𝑤𝑗 was sampled.

146

We note that if a weight has not been sampled, i.e. 𝑛𝑗 = 0, we can drop it since the

resulting weight is 0. We now consider the resulting error bound when sampling 𝑁

times with replacement.

Lemma 28 (SiPPRand error bound). For 𝛿 ∈ (0, 1), pruning parameter group 𝑊 ℓ
𝑖 by

sampling weights 𝑁 = 𝑁(𝑚ℓ
𝑖) times with replacement, such that weight 𝑤𝑗 is sampled

with probability 𝑞𝑗 = 𝑠𝑗/∑︀
𝑘∈ℐℓ

𝑖
𝑠𝑘, generates a pruned parameter group 𝑊̂ ℓ

𝑖 such that for

a fixed input patch 𝑎(·) ∈ 𝒜ℓ
𝑖 and 𝑥 ∼ 𝒟

P (|𝑧𝑟𝑎𝑛𝑑(𝑥)− 𝑧(𝑥)| ≥ 𝜀𝑟𝑎𝑛𝑑𝑧(𝑥)) ≤ 𝛿 and 𝜀𝑟𝑎𝑛𝑑 =

⎛⎝
⎯⎸⎸⎷ 𝑆

𝑁

(︃
𝑆

𝑁
+ 6

)︃
+

𝑆

𝑁

⎞⎠ ∈ (0, 1),

where 𝑧𝑟𝑎𝑛𝑑(𝑥) = ⟨𝑊̂ ℓ
𝑖 , 𝑎(𝑥)⟩ and 𝑧(𝑥) = ⟨𝑊 ℓ

𝑖 , 𝑎(𝑥)⟩ are with respect to patch map 𝑎(·)

as before, 𝑆 = 𝑆𝐶
3

log(4/𝛿), and 𝑆 =
∑︀

𝑗∈ℐℓ
𝑖
𝑠𝑗. The sensitivities {𝑠𝑗}𝑗∈ℐℓ

𝑖
are hereby

computed over a set 𝒮 of 𝐾 log (2 𝜌/𝛿) i.i.d. data points drawn from 𝒟.

Proof. Our proof closely follows the proof of Lemma 1 of [BLG+19a]. The sampling

procedure of sampling 𝑁 with replacement is equivalent to sequentially constructing a

multiset consisting of 𝑁 samples from ℐℓ𝑖 where each 𝑗 ∈ ℐℓ𝑖 is sampled with probability

𝑞𝑗. Now, let 𝒞 = {𝑐1, . . . , 𝑐𝑁} be that multiset of weight indices ℐℓ𝑖 used to construct

𝑊̂ ℓ
𝑖 . Let 𝑎(·) ∈ 𝒜ℓ

𝑖 be arbitrary and fixed, let 𝑥 ∼ 𝒟 be an i.i.d. sample from 𝒟, and

let

𝑧𝑟𝑎𝑛𝑑(𝑥) = ⟨𝑊̂ ℓ
𝑖 , 𝑎(𝑥)⟩ =

∑︁
𝑗∈𝒞

𝑤𝑗

𝑁𝑞𝑗
𝑎𝑗(𝑥)

be the approximate intermediate value corresponding to the sparsified tensor 𝑊̂ ℓ
𝑖 and

let

𝑧(𝑥) =
∑︁
𝑗∈ℐℓ

𝑖

𝑤𝑗𝑎𝑗(𝑥)

as before. Define 𝑁 random variables 𝑇𝑐1 , . . . , 𝑇𝑐𝑁 such that for all 𝑗 ∈ 𝒞

𝑇𝑗 =
𝑤𝑗𝑎𝑗(𝑥)

𝑁𝑞𝑗
=

𝑆𝑤𝑗𝑎𝑗(𝑥)

𝑁𝑠𝑗
. (5.7)

147

For any 𝑗 ∈ 𝒞, we have for the expectation of 𝑇𝑗:

E [𝑇𝑗] =
∑︁
𝑘∈ℐℓ

𝑖

𝑤𝑘𝑎𝑘(𝑥)

𝑁𝑞𝑘
𝑞𝑘 =

𝑧(𝑥)

𝑁
.

Let 𝑇 =
∑︀

𝑗∈𝒞 𝑇𝑗 = 𝑧𝑟𝑎𝑛𝑑(𝑥) denote our approximation and note that by linearity of

expectation,

E [𝑇] =
∑︁
𝑗∈𝒞

E [𝑇𝑗] = 𝑧(𝑥).

Thus, 𝑧𝑟𝑎𝑛𝑑(𝑥) = 𝑇 is an unbiased estimator of 𝑧(𝑥) for any 𝑥 ∼ 𝒟.

For the remainder of the proof we will assume that 𝑧(𝑥) > 0, since otherwise, 𝑧(𝑥) = 0

if and only if 𝑇𝑗 = 0 for all 𝑗 ∈ 𝒞 almost surely, in which case the lemma follows

trivially. We now proceed with the case where 𝑧(𝑥) > 0 and invoke Lemma 26 (ES

inequality) with 𝒮 consisting of 𝐾 log (2 𝜌/𝛿) i.i.d. data points, which implies that

𝑤𝑗𝑎𝑗(𝑥) ≤ 𝐶𝑠𝑗𝑧(𝑥) ∀𝑗 ∈ ℐℓ𝑖 with probability at least 1− 𝛿

2
. (5.8)

Consequently, we can bound the variance of each 𝑇𝑗, 𝑗 ∈ 𝒞 with probability at least

1− 𝛿/2 as follows

Var(𝑇𝑗) ≤ E [𝑇 2
𝑗]

=
∑︁
𝑘∈ℐℓ

𝑖

(𝑤𝑘𝑎𝑘(𝑥))2

(𝑁𝑞𝑘)2
𝑞𝑘

=
𝑆

𝑁2

∑︁
𝑘∈ℐℓ

𝑖

𝑤𝑘𝑎𝑘(𝑥)

𝑠𝑗
𝑤𝑘𝑎𝑘(𝑥)

≤ 𝑆

𝑁2
𝐶𝑧(𝑥)

∑︁
𝑘∈ℐℓ

𝑖

𝑤𝑘𝑎𝑘(𝑥) by the ES inequality as stated in (5.8)

=
𝑆𝐶𝑧(𝑥)2

𝑁2
.

148

Since 𝑇 is a sum of independent random variables, we obtain

Var(𝑇) = 𝑁 Var(𝑇𝑗) ≤
𝑆𝐶𝑧(𝑥)2

𝑁
(5.9)

for the overall variance.

Now, for each 𝑗 ∈ 𝒞 let

𝑇𝑗 = 𝑇𝑗 − E [𝑇𝑗] = 𝑇𝑗 − 𝑧(𝑥),

and let 𝑇 =
∑︀

𝑗∈𝒞 𝑇𝑗 . Note that by the definition of 𝑇𝑗 and the ES inequality (5.8) we

have that

𝑇𝑗 =
𝑆𝑤𝑗𝑎𝑗(𝑥)

𝑁𝑠𝑗
≤ 𝑆𝐶𝑧(𝑥)

𝑁

and consequently for the centered random variable 𝑇𝑗 that

⃒⃒⃒
𝑇𝑗

⃒⃒⃒
=

⃒⃒⃒⃒
𝑇𝑗 −

𝑧(𝑥)

𝑁

⃒⃒⃒⃒
≤ 𝑆𝐶𝑧(𝑥)

𝑁
=: 𝑀, (5.10)

which holds with probability at least 1− 𝛿/2 for any 𝑥 ∼ 𝒟. Also note that Var(𝑇) =

Var(𝑇).

Now conditioned on the ES inequality (5.8) holding, applying Bernstein’s inequality

to both 𝑇 and −𝑇 we have by symmetry and the union bound,

P
(︁⃒⃒⃒
𝑇
⃒⃒⃒
≥ 𝜀𝑟𝑎𝑛𝑑𝑧(𝑥)

)︁
= P (|𝑇 − 𝑧(𝑥)| ≥ 𝜀𝑟𝑎𝑛𝑑𝑧(𝑥))

≤ 2 exp

(︃
− 𝜀2𝑟𝑎𝑛𝑑𝑧(𝑥)2

2 Var(𝑇) + 2𝜀𝑟𝑎𝑛𝑑𝑧(𝑥)𝑀
3

)︃
by Bernstein’s inequality

≤ 2 exp

(︃
− 𝜀2𝑟𝑎𝑛𝑑𝑧(𝑥)2

2𝑆𝐶𝑧(𝑥)2

𝑁
+ 2𝑆𝐶𝜀𝑟𝑎𝑛𝑑𝑧(𝑥)2

3𝑁

)︃
by (5.9) and (5.10)

= 2 exp

(︂
− 3𝜀2𝑟𝑎𝑛𝑑𝑁

𝑆𝐶(6 + 2𝜀𝑟𝑎𝑛𝑑)

)︂
≤ 𝛿

2
by our choice of 𝜀𝑟𝑎𝑛𝑑

Note that the undesired event |𝑇 − 𝑧(𝑥)| ≥ 𝜀𝑟𝑎𝑛𝑑𝑧(𝑥) = |𝑧𝑟𝑎𝑛𝑑(𝑥)− 𝑧(𝑥)| ≥ 𝜀𝑟𝑎𝑛𝑑𝑧(𝑥)

149

occurs with probability at most 𝛿/2, which was conditioned on the ES inequality

holding, which occurs with probability at least 1− 𝛿/2. Thus by the union bound, the

overall failure probability is at most 𝛿, which concludes the proof.

Error Guarantee for SiPPHybrid

We note that the error guarantee for SiPPHybrid follow straightforward from the error

guarantees for SiPPDet and SiPPRand as stated in Lemma 27 and 28, respectively,

since SiPPHybrid chooses the strategy among those two for which the associated

error guarantee is lower. We can therefore state the error guarantee as follows.

Lemma 29 (SiPPHybrid error bound). In the context of Lemmas 27 and 28, for

𝛿 ∈ (0, 1) SiPPHybrid generates a pruned parameter group 𝑊̂ ℓ
𝑖 such that for a fixed

input patch 𝑎(·) ∈ 𝒜ℓ
𝑖, output patch 𝑧(𝑥), and 𝑥 ∼ 𝐷

P (|𝑧ℎ𝑦𝑏𝑟𝑖𝑑(𝑥)− 𝑧(𝑥)| ≥ 𝜀ℎ𝑦𝑏𝑟𝑖𝑑𝑧(𝑥)) ≤ 𝛿 with 𝜀ℎ𝑦𝑏𝑟𝑖𝑑 = min {𝜀𝑑𝑒𝑡, 𝜀𝑟𝑎𝑛𝑑} ∈ (0, 1),

where 𝑧ℎ𝑦𝑏𝑟𝑖𝑑(𝑥) is the associated approximate output patch.

5.7.4 Generalization to all weights and activations

In this section, we generalize our analysis from the previous section to include all

weights and activations. We also adapt the resulting error guarantees to simultaneously

hold for all patches of all parameter groups within a layer instead of a fixed patch.

We handle the general case by splitting both the input activations and the weights

into their respective positive and negative parts representing the four quadrants, i.e.,

𝑧++(𝑥) = ⟨𝑊 ℓ,+
𝑖 , 𝑎(𝑥)+⟩ 𝑧+−(𝑥) = ⟨𝑊 ℓ,+

𝑖 , 𝑎(𝑥)−⟩

𝑧−+(𝑥) = ⟨𝑊 ℓ,−
𝑖 , 𝑎(𝑥)+⟩ 𝑧−−(𝑥) = ⟨𝑊 ℓ,+

𝑖 , 𝑎(𝑥)−⟩,

150

where

𝑊 ℓ
𝑖 = 𝑊 ℓ,+

𝑖 −𝑊 ℓ,−
𝑖 , 𝑊 ℓ,+

𝑖 , 𝑊 ℓ,−
𝑖 ≥ 0,

𝑎(𝑥) = 𝑎(𝑥)+ − 𝑎(𝑥)−, 𝑎(𝑥)+, 𝑎(𝑥)− ≥ 0.

First, consider negative activations for a non-negative parameter group. Specifically,

when computing sensitivities over some set 𝒮 we split the input activations into their

respective positive and negative part, and take an additional maximum over both

parts. Henceforth the ES inequality 26 can be applied to the positive and negative

part of 𝑎(𝑥) at the same time. Similarly, we can split the parameter group into its

positive and negative part when computing sensitivity such that the ES inequality 26

holds for both parts of the parameter group as well.

More formally, the generalized relative parameter importance 𝑔𝑗(𝑥) for some parameter

𝑤𝑗 of parameter group 𝑊 ℓ
𝑖 can be defined as follows.

Definition 30 (Generalized relative parameter importance). For a scalar parameter

𝑤𝑗 = 𝑤+
𝑗 −𝑤−

𝑗 , 𝑤+
𝑗 , 𝑤

−
𝑗 ≥ 0, 𝑗 ∈ ℐℓ𝑖 , of parameter group 𝑊 ℓ

𝑖 in layer ℓ, its generalized

relative importance 𝑔𝑗(𝑥) is given by the maximum over its quadrant-wise relative

importances, i.e.,

𝑔𝑗(𝑥) = max{𝑔++
𝑗 (𝑥), 𝑔+−

𝑗 (𝑥), 𝑔−+
𝑗 (𝑥), 𝑔−−

𝑗 (𝑥)},

where

𝑔++
𝑗 (𝑥) = max

𝑎(·)∈𝒜ℓ
𝑖

𝑤+
𝑗 𝑎

+
𝑗 (𝑥)∑︀

𝑘∈ℐℓ
𝑖
𝑤+

𝑘 𝑎
+
𝑘 (𝑥)

, and so forth,

and where 𝒜ℓ
𝑖 denotes the set of patches for parameter group 𝑊 ℓ

𝑖 and 𝒜ℓ
𝑖 ∋ 𝑎(·) =

𝑎+(·)− 𝑎−(·), 𝑎+(·), 𝑎−(·) ≥ 0.

The definition of generalized ES does not change compared to Definition 25 and

henceforth we do not re-state it explicitly. We proceed by re-deriving the ES inequality

for the generalized parameter importance and any patch of the parameter group.

151

Lemma 31 (Generalized ES inequality). For 𝛿 ∈ (0, 1), the ES 𝑠𝑗 of the scalar

parameter 𝑤𝑗, 𝑗 ∈ ℐℓ𝑖 , of parameter group 𝑊 ℓ
𝑖 computed with a set 𝒮 of i.i.d. data

points, |𝒮| = 𝐾 log (𝜌/𝛿), satisfies for each quadrant

P
𝑥

(︀
𝑤+

𝑗 𝑎
+
𝑗 (𝑥) ≤ 𝐶𝑠𝑗𝑧

++(𝑥)
)︀
≥ 1− 𝛿 ∀𝑗 ∈ ℐℓ𝑖 , and so forth,

for some input 𝑥 ∼ 𝒟 and some fixed input patch 𝑎(·) ∈ 𝒜ℓ
𝑖, where 𝐶,𝐾 are the

universal constants of Assumption 4 and 𝑧++(𝑥) =
∑︀

𝑘∈ℐℓ
𝑖
𝑤+

𝑘 𝑎
+
𝑘 (𝑥), and so forth,

denotes the quadrant-wise output patch.

Proof. The proof follows the steps of Lemma 26 with the exception of Equation (5.6).

To adapt it to the general case note that

𝑤+
𝑗 𝑎

+
𝑗 (𝑥)

𝑧++(𝑥)
≤ 𝑔++

𝑗 (𝑥) ≤ 𝑔𝑗(𝑥),

and so forth, for each quadrant.

Consequently, we can re-derive Lemmas 27-29 such that they hold for each quadrant

of a fixed patch. The derivations are analogues to the derivations in Section 5.7.3.

Finally, we adapt our guarantees to hold quadrant-wise for all patches of all parameter

groups and layers simultaneously. We note that we can achieve this by appropriately

adjusting the failure probability for Lemmas 27-29 such that, by the union bound, the

overall failure probability is bounded 𝛿. Specifically, we can invoke Lemmas 27-29

with 𝛿′ = 𝛿/4𝜂 such that

𝑆 =
𝑆𝐶

3
log(16𝜂/𝛿) and |𝒮| = 𝐾 log (8𝜂 𝜌/𝛿) ,

where 𝜂 denotes the number of total patches across all layers and parameter groups.

The rest of the Lemmas remains unchanged. Therefore, we have that for all quadrant-

wise patches our error guarantees hold. We utilize our patch-wise bounds as outlined

in Section 5.6 to optimally allocate our budget across layers to minimize the relative

152

error within each quadrant of the parameter groups and prune each parameter group

according to the budget and the desired variant of SiPP.

5.7.5 Network compression bounds

Up to this point we have established patch-wise and quadrant-wise error guarantees for

the network, which suffices to prune the network according to Algorithm 7. However,

we can also leverage our theoretical guarantees to establish network-wide compression

bounds of the form

P𝜃,𝑥 (‖𝑓𝜃(𝑥)− 𝑓𝜃(𝑥)‖ ≤ 𝜀 ‖𝑓𝜃(𝑥)‖) ≥ 1− 𝛿,

for given 𝜀, 𝛿 ∈ (0, 1) as described in Problem 2.

We will restrict ourselves to analyzing the general case for SiPPDet but we note that

each step can be applied analogously for SiPPRand and SiPPHybrid. We begin

by generalizing Lemma 27 to establish norm-based bounds for each quadrant of the

pre-activation. To this end, let

𝑍ℓ++(𝑥) = 𝑊 ℓ+ * 𝐴ℓ−1,+(𝑥), 𝑍ℓ++(𝑥) = 𝑊̂ ℓ+ * 𝐴ℓ−1,+(𝑥), and so forth

denote the unpruned and approximate pre-activation quadrants, respectively. More-

over, let 𝑆ℓ
𝑖 denote the sum of ES for parameter group 𝑊 ℓ

𝑖 as before and let 𝑆ℓ
𝑖 (𝑁

ℓ
𝑖)

denote the sum over the 𝑁 ℓ
𝑖 largest ES for parameter group 𝑊 ℓ

𝑖 .

Corollary 32. For 𝛿 ∈ (0, 1), pruning layer ℓ according to SiPPDet generates a

pruned weight tensor 𝑊̂ ℓ such that for a fixed quadrant and 𝑥 ∼ 𝒟

P
(︁⃦⃦⃦

𝑍ℓ++(𝑥)− 𝑍ℓ++(𝑥)
⃦⃦⃦
≥ 𝜀ℓ

⃦⃦
𝑍ℓ++(𝑥)

⃦⃦)︁
≤ 𝛿 with 𝜀ℓ = max

𝑖∈𝑐ℓ
𝐶
(︀
𝑆ℓ
𝑖 − 𝑆ℓ

𝑖 (𝑁
ℓ
𝑖)
)︀
,

where 𝑁 ℓ
𝑖 denotes the number of samples allocated to parameter group 𝑊 ℓ

𝑖 . The ESs

are hereby computed over a set 𝒮 of 𝐾 log
(︀
𝜂ℓ 𝜌/𝛿

)︀
i.i.d. data points drawn from 𝒟.

153

Proof. Let 𝑍ℓ++
𝑖 (𝑥) denote the pre-activation quadrant associated with parameter

group 𝑊 ℓ
𝑖 . Invoking Lemma 27 with a set 𝒮 of 𝐾 log

(︀
𝜂ℓ 𝜌/𝛿

)︀
i.i.d. data points

drawn from 𝒟 and 𝑁 ℓ
𝑖 samples for the respective parameter group implies that any

associated patch, i.e. entry, of 𝑍ℓ++
𝑖 (𝑥) is approximated with relative error at most

𝜀ℓ𝑖 = 𝐶
(︀
𝑆ℓ
𝑖 − 𝑆ℓ

𝑖 (𝑁
ℓ
𝑖)
)︀

with probability at least 1− 𝛿/𝜂ℓ. Consequently,
⃦⃦
𝑍ℓ++

𝑖 (𝑥)
⃦⃦

is

also preserved with relative error 𝜀ℓ𝑖 . Thus we have w.h.p. that

⃦⃦⃦
𝑍ℓ++(𝑥)− 𝑍ℓ++(𝑥)

⃦⃦⃦2
=
∑︁
𝑖∈[𝑐ℓ]

⃦⃦⃦
𝑍ℓ++

𝑖 (𝑥)− 𝑍ℓ++
𝑖 (𝑥)

⃦⃦⃦2
≤
∑︁
𝑖∈[𝑐ℓ]

(𝜀ℓ𝑖)
2
⃦⃦
𝑍ℓ++

𝑖 (𝑥)
⃦⃦2

≤ (𝜀ℓ)2
∑︁
𝑖∈[𝑐ℓ]

⃦⃦
𝑍ℓ++

𝑖 (𝑥)
⃦⃦2 by definition of 𝜀ℓ

= (𝜀ℓ)2
⃦⃦
𝑍ℓ++(𝑥)

⃦⃦2
Taking a union bound over all 𝜂ℓ patches in the pre-activation 𝑍ℓ(𝑥) concludes the

proof.

We note that Corollary 32 is stated for 𝑍ℓ++(𝑥) but naturally extends to the other

quadrants as well.

As a next step, we establish guarantees to approximate 𝑍ℓ(𝑥) by leveraging the

guarantees for each quadrant. To this end, note that 𝑍ℓ(𝑥) = 𝑍ℓ++(𝑥)− 𝑍ℓ+−(𝑥)−

𝑍ℓ−+(𝑥) + 𝑍ℓ−−(𝑥). Further, let ∆ℓ denote the “sign complexity“ of approximating

the overall pre-activation, which is defined as

Definition 33 (Sign complexity). For layer ℓ, its sign complexity ∆ℓ is given by

∆ℓ = max
𝑥∈𝒮

⃦⃦
𝑍ℓ++(𝑥)

⃦⃦
+
⃦⃦
𝑍ℓ+−(𝑥)

⃦⃦
+
⃦⃦
𝑍ℓ−+(𝑥)

⃦⃦
+
⃦⃦
𝑍ℓ−−(𝑥)

⃦⃦
‖𝑍ℓ(𝑥)‖

where 𝒮 denotes a set of i.i.d. data points drawn from 𝒟.

Intuitively, ∆ℓ captures the additional complexity of approximating the layer when

154

considering the actual signs of the quadrants as opposed to treating them separately.

We can now state the error guarantees for SiPP in context of Corollary 32 for the

overall pre-activation.

Lemma 34 (Layer error bound). For given 𝛿 ∈ (0, 1) and sample budget 𝑁 ℓ
𝑖 for each

parameter group, invoking SiPPDet to prune 𝑊 ℓ generates a pruned weight tensor

𝑊̂ ℓ such that for 𝑥 ∼ 𝒟

P
(︁⃦⃦⃦

𝑍ℓ(𝑥)− 𝑍ℓ(𝑥)
⃦⃦⃦
≥ 𝜀ℓ∆ℓ

⃦⃦
𝑍ℓ(𝑥)

⃦⃦)︁
≤ 𝛿 with 𝜀ℓ = max

𝑖∈𝑐ℓ
𝐶
(︀
𝑆ℓ
𝑖 − 𝑆ℓ

𝑖 (𝑁
ℓ
𝑖)
)︀
,

where 𝑁 ℓ
𝑖 denotes the number of samples allocated to parameter group 𝑊 ℓ

𝑖 . The ESs

are hereby computed over a set 𝒮 of 𝐾 log
(︀
5𝜂ℓ 𝜌/𝛿

)︀
i.i.d. data points drawn from 𝒟.

Proof. Consider invoking Corollary 32 with a set 𝒮 of 𝐾 log
(︀
5𝜂ℓ 𝜌/𝛿

)︀
i.i.d. data points

drawn from 𝒟. Then for each quadrant we have w.h.p. that

⃦⃦⃦
𝑍ℓ++(𝑥)− 𝑍ℓ++(𝑥)

⃦⃦⃦
≤ 𝜀ℓ

⃦⃦⃦
𝑍ℓ++(𝑥)

⃦⃦⃦
, and so forth,

for an appropriate notion of high probability specified subsequently. Note that

𝑍ℓ(𝑥) = 𝑍ℓ++(𝑥)− 𝑍ℓ+−(𝑥)− 𝑍ℓ−+(𝑥) + 𝑍ℓ−−(𝑥)

and so w.h.p. we have that

⃦⃦⃦
𝑍ℓ(𝑥)− 𝑍ℓ(𝑥)

⃦⃦⃦
=
⃦⃦⃦
𝑍ℓ++(𝑥)− 𝑍ℓ++(𝑥)− 𝑍ℓ+−(𝑥) + 𝑍ℓ+−(𝑥)

− 𝑍ℓ−+(𝑥) + 𝑍ℓ−+(𝑥) + 𝑍ℓ−−(𝑥)− 𝑍ℓ−−(𝑥)
⃦⃦⃦

≤
⃦⃦⃦
𝑍ℓ++(𝑥)− 𝑍ℓ++(𝑥)

⃦⃦⃦
+
⃦⃦⃦
𝑍ℓ+−(𝑥)− 𝑍ℓ+−(𝑥)

⃦⃦⃦
+
⃦⃦⃦
𝑍ℓ−+(𝑥)− 𝑍ℓ−+(𝑥)

⃦⃦⃦
+
⃦⃦⃦
𝑍ℓ−−(𝑥)− 𝑍ℓ−−(𝑥)

⃦⃦⃦
≤ 𝜀ℓ

(︁⃦⃦⃦
𝑍ℓ++(𝑥)

⃦⃦⃦
+
⃦⃦⃦
𝑍ℓ+−(𝑥)

⃦⃦⃦
+
⃦⃦⃦
𝑍ℓ−+(𝑥)

⃦⃦⃦
+
⃦⃦⃦
𝑍ℓ−−(𝑥)

⃦⃦⃦)︁
= 𝜀ℓ

⃦⃦
𝑍ℓ++(𝑥)

⃦⃦
+
⃦⃦
𝑍ℓ+−(𝑥)

⃦⃦
+
⃦⃦
𝑍ℓ−+(𝑥)

⃦⃦
+
⃦⃦
𝑍ℓ−−(𝑥)

⃦⃦
‖𝑍ℓ(𝑥)‖

⃦⃦
𝑍ℓ(𝑥)

⃦⃦
155

≤ 𝜀ℓ∆ℓ
⃦⃦
𝑍ℓ(𝑥)

⃦⃦
,

where the last step followed from our definition of ∆ℓ. By imposing a regularity

assumption on ∆ℓ similar to that of ES, we can show that ∆ℓ is an upper bound for

any 𝑥 ∼ 𝒟 w.h.p. following the proof of the ES inequality (Lemma 26).

To specify the appropriate notion of high probability, we consider the individual failure

cases and apply the union bound. In particular, for our choice of for the size of 𝒮,

we have that for a particular quadrant the approximation fails with probability at

most 𝛿/5. Thus across all quadrants we have a overall failure probability of at most

4𝛿/5. Finally, we consider the event that ∆ℓ does not upper bound the hardness for

some input 𝑥 ∼ 𝒟, which occurs with probability at most 𝛿/5 by our choice for the

size of 𝒮. Henceforth, our overall failure probability is at most 𝛿, again by the union

bound, which concludes the proof.

We now consider the effect of pruning multiple layers at the same time and analyze

the final resulting error in the output. To this end, consider the activation 𝜑ℓ(·) for

which we assume the following.

Assumption 5. For layer ℓ ∈ [𝐿], the activation function, denoted by 𝜑ℓ(·), is

Lipschitz continuous with Lipschitz constant 𝐾ℓ.

Without loss of generality, we will further assume that the activation function is

1-Lipschitz, which is the case, e.g., for ReLU and Softmax, to avoid introducing

additional notation. We now state a lemma pertaining to the error resulting from

pruning multiple layers simultaneously, which will provide the basis for establishing

error bounds across the entire network.

Lemma 35 (Error propagation). Let 𝐴ℓ(𝑥), ℓ ≤ 𝐿, denote the activation of layer

ℓ when we have pruned layers 1, . . . , ℓ according to Lemma 34. Then the overall

156

approximation in layer ℓ is bounded by

⃦⃦⃦
𝐴ℓ(𝑥)− 𝐴ℓ(𝑥)

⃦⃦⃦
≤

ℓ∑︁
𝑘=1

(︃
ℓ∏︁

𝑘′=𝑘+1

⃦⃦⃦
𝑊 𝑘′

⃦⃦⃦
𝐹

)︃
𝜀𝑘∆𝑘

⃦⃦
𝑍𝑘(𝑥)

⃦⃦
with probability at least 1 − 𝛿. The ESs are hereby computed over a set 𝒮 of

𝐾 log
(︁

5
∑︀

𝑘∈[ℓ] 𝜂
𝑘 𝜌/𝛿

)︁
i.i.d. data points drawn from 𝒟.

Proof. We prove the above statement by induction. For layer ℓ = 1, we have that

⃦⃦⃦
𝐴1(𝑥)− 𝐴1(𝑥)

⃦⃦⃦
=
⃦⃦⃦
𝜑1(𝑊̂ 1 * 𝐴0(𝑥))− 𝜑1(𝑊̂ 1 * 𝐴0(𝑥))

⃦⃦⃦
≤
⃦⃦⃦
𝑊̂ 1 * 𝐴0(𝑥)− 𝑊̂ 1 * 𝐴0(𝑥)

⃦⃦⃦
since the 𝜑1(·) is 1-Lipschitz

=
⃦⃦⃦
𝑊̂ 1 * 𝐴0(𝑥)− 𝑊̂ 1 * 𝐴0(𝑥)

⃦⃦⃦
since 𝐴0(𝑥) = 𝐴0(𝑥) = 𝑥

=
⃦⃦⃦
𝑍1(𝑥)− 𝑍1(𝑥)

⃦⃦⃦
by definition of 𝑍1(𝑥), 𝑍1(𝑥)

≤ 𝜀1∆1
⃦⃦
𝑍1(𝑥)

⃦⃦
by Lemma 34,

which proves that the base case holds.

We now proceed with the inductive step. Assuming the inequality is true for layer ℓ,

we have for layer ℓ + 1 that

⃦⃦
𝐴ℓ+1(𝑥)− 𝐴ℓ+1(𝑥)

⃦⃦
=

=
⃦⃦⃦
𝜑ℓ+1(𝑊̂ ℓ+1 * 𝐴ℓ(𝑥))− 𝜑ℓ+1(𝑊 ℓ+1 * 𝐴ℓ(𝑥))

⃦⃦⃦
≤
⃦⃦⃦
𝑊̂ ℓ+1 * 𝐴ℓ(𝑥)−𝑊 ℓ+1 * 𝐴ℓ(𝑥)

⃦⃦⃦
since 𝜑ℓ+1(·) is 1-Lipschitz

=
⃦⃦⃦
𝑊̂ ℓ+1 * 𝐴ℓ(𝑥)− 𝑊̂ ℓ+1 * 𝐴ℓ(𝑥) + 𝑊̂ ℓ+1 * 𝐴ℓ(𝑥)−𝑊 ℓ+1 * 𝐴ℓ(𝑥)

⃦⃦⃦
≤
⃦⃦⃦
𝑊̂ ℓ+1 * (𝐴ℓ(𝑥)− 𝐴ℓ(𝑥))

⃦⃦⃦
+
⃦⃦⃦

(𝑊̂ ℓ+1 −𝑊 ℓ+1) * 𝐴ℓ(𝑥)
⃦⃦⃦

Note that we can bound the first term by

⃦⃦⃦
𝑊̂ ℓ+1 * (𝐴ℓ(𝑥)− 𝐴ℓ(𝑥))

⃦⃦⃦
≤
⃦⃦⃦
𝑊̂ ℓ+1

⃦⃦⃦
𝑜𝑝

⃦⃦⃦
𝐴ℓ(𝑥)− 𝐴ℓ(𝑥)

⃦⃦⃦
157

≤
⃦⃦⃦
𝑊̂ ℓ+1

⃦⃦⃦
𝐹

⃦⃦⃦
𝐴ℓ(𝑥)− 𝐴ℓ(𝑥)

⃦⃦⃦
≤
⃦⃦
𝑊 ℓ+1

⃦⃦
𝐹

⃦⃦⃦
𝐴ℓ(𝑥)− 𝐴ℓ(𝑥)

⃦⃦⃦
where the last inequality followed from the fact that 𝑊̂ ℓ+1 is a subset of 𝑊 ℓ+1 and

‖·‖𝑜𝑝 and ‖·‖𝐹 denote the ℓ2-induced operator norm and Frobenius norm, respectively.

The second term is bounded by Lemma 34, i.e.,

⃦⃦⃦
(𝑊̂ ℓ+1 −𝑊 ℓ+1) * 𝐴ℓ(𝑥)

⃦⃦⃦
=
⃦⃦⃦
𝑍ℓ+1(𝑥)− 𝑍ℓ+1(𝑥)

⃦⃦⃦
≤ 𝜀ℓ+1∆ℓ+1

⃦⃦
𝑍ℓ+1(𝑥)

⃦⃦
.

Putting both terms back together we have that

⃦⃦⃦
𝐴ℓ+1(𝑥)− 𝐴ℓ+1(𝑥)

⃦⃦⃦
≤
⃦⃦
𝑊 ℓ+1

⃦⃦
𝐹

⃦⃦⃦
𝐴ℓ(𝑥)− 𝐴ℓ(𝑥)

⃦⃦⃦
+ 𝜀ℓ+1∆ℓ+1

⃦⃦
𝑍ℓ+1(𝑥)

⃦⃦
≤
⃦⃦
𝑊 ℓ+1

⃦⃦
𝐹

(︃
ℓ∑︁

𝑘=1

(︃
ℓ∏︁

𝑘′=𝑘+1

⃦⃦⃦
𝑊 𝑘′

⃦⃦⃦
𝐹

)︃
𝜀𝑘∆𝑘

⃦⃦
𝑍𝑘(𝑥)

⃦⃦)︃
+ 𝜀ℓ+1∆ℓ+1

⃦⃦
𝑍ℓ+1(𝑥)

⃦⃦
=

ℓ∑︁
𝑘=1

(︃
ℓ+1∏︁

𝑘′=𝑘+1

⃦⃦⃦
𝑊 𝑘′

⃦⃦⃦
𝐹

)︃
𝜀𝑘∆𝑘

⃦⃦
𝑍𝑘(𝑥)

⃦⃦
+ 𝜀ℓ+1∆ℓ+1

⃦⃦
𝑍ℓ+1(𝑥)

⃦⃦
=

ℓ+1∑︁
𝑘=1

(︃
ℓ+1∏︁

𝑘′=𝑘+1

⃦⃦⃦
𝑊 𝑘′

⃦⃦⃦
𝐹

)︃
𝜀𝑘∆𝑘

⃦⃦
𝑍𝑘(𝑥)

⃦⃦
,

where the second inequality followed from our induction hypothesis. Finally, we note

that, by our choice for the size of 𝒮 and the union bound, the overall failure probability

is bounded above by 𝛿.

From the analysis the term
∏︀ℓ

𝑘′=𝑘+1

⃦⃦
𝑊 𝑘′

⃦⃦
𝐹

arises, which is an upper bound for the

Lipschitz constant of the network starting from layer 𝑘 + 1. Moreover, the coefficient

of the propagated error is closely related to the condition number between layer ℓ

and the network’s output. To this end, consider the following upper bound on the

condition number.

158

Definition 36 (Layer condition number). For layer ℓ, the condition number from the

pre-activation of layer ℓ to the output of the network (activation of layer 𝐿) is given

by

𝜅ℓ = max
𝑥∈𝑆

(︃
𝐿∏︁

𝑘=ℓ+1

⃦⃦
𝑊 ℓ
⃦⃦
𝐹

)︃ ⃦⃦
𝑍ℓ(𝑥)

⃦⃦
‖𝐴𝐿(𝑥)‖

,

where 𝒮 denotes a set of i.i.d. data points drawn from 𝒟.

Interestingly, a variant of the layer condition number (roughly, the product of layer

norms, i.e.,
∏︀𝐿

𝑘=1

⃦⃦
𝑊 ℓ
⃦⃦
𝐹
) appears in recent work on generalization bounds for neural

networks [JNM+19]. Moreover, under the link-normalized assumption or the commonly

imposed assumption that the norm of the weights satisfy
⃦⃦
𝑊 ℓ
⃦⃦
𝐹
≤ 1 [AAR20,

AANR17], the condition number is non-increasing with the number of layers 𝐿. As

mentioned in the concluding remarks (Sec. 5.9), obtaining tighter bounds that reflect

the fact that the injected noise attenuates (see Fig. 1 of [AGNZ18]) over the network’s

layers is an avenue for future work.

To see that 𝜅ℓ is indeed an upper bound on the condition number we note that the

condition number is defined as the maximum relative change in the output over the

maximum relative change in the input, i.e.,

max
𝑥,𝑥′∈𝒮

‖𝐴𝐿(𝑥)−𝐴𝐿(𝑥′)‖
‖𝐴𝐿(𝑥)‖

‖𝑍ℓ(𝑥)−𝑍ℓ(𝑥′)‖
‖𝑍ℓ(𝑥)‖

= max
𝑥,𝑥′∈𝒮

⃦⃦
𝐴𝐿(𝑥)− 𝐴𝐿(𝑥′)

⃦⃦
‖𝑍ℓ(𝑥)− 𝑍ℓ(𝑥′)‖

⃦⃦
𝑍ℓ(𝑥)

⃦⃦
‖𝐴𝐿(𝑥)‖

.

The first term can be upper bounded as⃦⃦
𝐴𝐿(𝑥)− 𝐴𝐿(𝑥′)

⃦⃦
‖𝑍ℓ(𝑥)− 𝑍ℓ(𝑥′)‖

≤
⃦⃦
𝑍𝐿(𝑥)− 𝑍𝐿(𝑥′)

⃦⃦
‖𝑍ℓ(𝑥)− 𝑍ℓ(𝑥′)‖

=

⃦⃦
𝑊𝐿 * (𝐴𝐿−1(𝑥)− 𝐴𝐿−1(𝑥′))

⃦⃦
‖𝑍ℓ(𝑥)− 𝑍ℓ(𝑥′)‖

≤
⃦⃦
𝑊𝐿

⃦⃦
𝐹

⃦⃦
(𝐴𝐿−1(𝑥)− 𝐴𝐿−1(𝑥′))

⃦⃦
‖𝑍ℓ(𝑥)− 𝑍ℓ(𝑥′)‖

≤ . . .

159

≤
𝐿∏︁

𝑘=ℓ+1

⃦⃦
𝑊 𝑘
⃦⃦
𝐹

⃦⃦
𝐴ℓ(𝑥)− 𝐴ℓ(𝑥′)

⃦⃦
‖𝑍ℓ(𝑥)− 𝑍ℓ(𝑥′)‖

≤
𝐿∏︁

𝑘=ℓ+1

⃦⃦
𝑊 𝑘
⃦⃦
𝐹
,

which plugged back in above yields the definition of the layer condition number 𝜅ℓ.

Equipped with Lemma 35 and Definition 36 we are now ready to state our main

compression bound over the entire network.

Theorem 37 (Network compression bound). For given 𝛿 ∈ (0, 1), a set of parameters

𝜃 = (𝑊 1, . . . ,𝑊𝐿), and a sample budget ℬ SiPP (Algorithm 7) generates a set of

compressed parameters 𝜃 = (𝑊̂ 1, . . . , 𝑊̂𝐿) such that ‖𝜃‖0 ≤ ℬ, ‖𝑊 ℓ
𝑖 ‖0 ≤ 𝑁 ℓ

𝑖 , ∀𝑖 ∈

[𝑐ℓ], ℓ ∈ [𝐿],

P̂
𝜃,𝑥

(‖𝑓𝜃(𝑥)− 𝑓𝜃(𝑥)‖ ≤ 𝜀 ‖𝑓𝜃(𝑥)‖) ≥ 1− 𝛿 and 𝜀 = 𝐶
𝐿∑︁

ℓ=1

𝜅ℓ∆ℓ max
𝑖∈[𝑐ℓ]

(︀
𝑆ℓ
𝑖 − 𝑆ℓ

𝑖 (𝑁
ℓ
𝑖)
)︀
,

where 𝑆ℓ
𝑖 is the sum of sensitivities for parameter group 𝑊 ℓ

𝑖 computed over a set 𝒮 of

𝐾 log (6𝜂 𝜌/𝛿) i.i.d. data points.

Proof. Invoking Lemma 35 for ℓ = 𝐿 implies with high probability that

⃦⃦⃦
𝐴𝐿(𝑥)− 𝐴𝐿(𝑥)

⃦⃦⃦
≤

𝐿∑︁
ℓ=1

(︃
𝐿∏︁

𝑘=ℓ+1

⃦⃦
𝑊 𝑘
⃦⃦
𝐹

)︃
𝜀ℓ∆ℓ

⃦⃦
𝑍ℓ(𝑥)

⃦⃦
=

𝐿∑︁
ℓ=1

(︃
𝐿∏︁

𝑘=ℓ+1

⃦⃦
𝑊 𝑘
⃦⃦
𝐹

)︃ ⃦⃦
𝑍ℓ(𝑥)

⃦⃦
‖𝐴𝐿(𝑥)‖

∆ℓ𝜀ℓ
⃦⃦
𝐴𝐿(𝑥)

⃦⃦
≤

𝐿∑︁
ℓ=1

𝜅ℓ∆ℓ𝜀ℓ
⃦⃦
𝐴𝐿(𝑥)

⃦⃦
= 𝜀

⃦⃦
𝐴𝐿(𝑥)

⃦⃦
,

where the last inequality followed from our definition of the layer condition number

𝜅ℓ. Moreover, following the analysis of Lemma 26 we can establish that 𝜅ℓ is an upper

160

bound for any 𝑥 ∼ 𝒟 with high probability. Finally, we note that the overall failure

probability is bounded by 𝛿 by our choice for the size of 𝒮 and by a union bound over

the failure probabilities of Lemma 35 and of 𝜅ℓ not being an upper bound for some

𝑥 ∼ 𝒟.

5.8 Experimental details

5.8.1 Setup and Hyperparameters

All hyperparameters for training, retraining, and pruning are outlined in Table 5.2.

For training CIFAR10 networks we used the training hyperparameters outlined in the

respective original papers, i.e., as described by [HZRS16], [SZ14b], [HLVDMW17], and

[ZK16] for ResNets, VGGs, DenseNets, and WideResNets, respectively. For retraining,

we did not change the hyperparameters and repurposed the training hyperparameters.

We added a warmup period in the beginning where we linearly scale up the learning

rate from 0 to the nominal learning rate. Iterative pruning is conducted by repeatedly

removing the same ratio of parameters (denoted by 𝛼 in Table 5.2). The prune

parameter 𝛿 describes the failure probability of SiPP, which also determines the

required size of 𝒮 (usually around a few hundred). We note no other additional

hyperparameters are required to run SiPP.

For ImageNet, we show experimental results for a ResNet18 and a ResNet101. As in

the case of the CIFAR10 networks, we re-purpose the same training hyperparameters

as indicated in the original papers of the competing methods. We also use the same

hyperparameters for retraining. The hyperparameters are summarized in Table 5.3.

5.8.2 Additional results for CIFAR10 (iterative prune+retrain)

In Figure 5-7, we compare the performance of the three variations of our algorithm when

using iterative prune+retrain as outlined in Section 5.5.2. Note that the performance

for all of them is very similar, henceforth we choose SiPPDet for its simplicity when

comparing to other methods for this expensive iterative prune+retrain pipeline.

161

VGG16 Resnet20/56/110 DenseNet22 WRN-16-8

Train

test error 7.19 8.6/7.19/6.43 10.10 4.81
loss cross-entropy cross-entropy cross-entropy cross-entropy

optimizer SGD SGD SGD SGD
epochs 300 182 300 200

warm-up 5 5 5 5
batch size 256 128 64 128

LR 0.05 0.1 0.1 0.1
LR decay 0.5@{30, . . . } 0.1@{91, 136} 0.1@{150, 225} 0.2@{60, . . . }

momentum 0.9 0.9 0.9 0.9
Nesterov No No Yes Yes

weight decay 5.0e-4 1.0e-4 1.0e-4 5.0e-4

Prune 𝛿 1.0e-16 1.0e-16 1.0e-16 1.0e-16
𝛼 0.85 0.85 0.85 0.85

Table 5.2: We report the hyperparameters used during training, pruning, and retraining for
various convolutional architectures on CIFAR-10. LR hereby denotes the learning rate and LR
decay denotes the learning rate decay. During retraining we used the same hyperparameters.
{30, . . .} denotes that the learning rate is decayed every 30 epochs.

5.8.3 Additional results for ImageNet (iterative prune+retrain)

Finally, we show additional results for a ResNet18 and ResNet101 trained on ImageNet,

see Figure 5-8 for Top-5 accuracy after retraining. From the results, we can conclude

that SiPP scales well to larger architectures and datasets, such as ImageNet, and can

perform en par with existing state-of-the-art methods.

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet20, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(a) Resnet20

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-6.0%

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet56, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(b) Resnet56

Figure 5-7: The delta in test accuracy to the uncompressed network for the generated pruned
models trained on CIFAR10 for various target prune ratios. The networks were pruned using
the iterative prune+retrain pipeline.

162

ResNet18/101

Train

top-1 test error 30.26/22.63
top-5 test error 10.93/6.45

loss cross-entropy
optimizer SGD

epochs 90
warm-up 5

batch size 256
LR 0.1

LR decay 0.1@{30, 60, 80}
momentum 0.9

Nesterov No
weight decay 1.0e-4

Prune 𝛿 1.0e-16
𝛼 0.90

Table 5.3: We report the hyperparameters used during training, pruning, and retraining for
various convolutional architectures on ImageNet. LR hereby denotes the learning rate and
LR decay denotes the learning rate decay that we deploy after a certain number of epochs.

5.8.4 Sensitivity to the validation set size

In this subsection, we evaluate the sensitivity of our algorithms to the size of the

validation set 𝒮. For this experiment, we considered various sizes of 𝒮 for pruning the

LeNet300-100 network trained on MNIST. Figure 5-9 depicts the highest prune ratios

obtained with varying size of 𝒮 in the prune-only and fine-tune scenarios subject to the

constraint of being within 4% and 1% (absolute terms) of the original network’s test

accuracy, respectively. One aspect to note is that the largest size of 𝒮 plotted (268)

corresponds to the required size of 𝒮 for an input failure probability 𝛿 = 1× 10−32

(roughly machine precision) in the context of our theory (Theorem 37). Hence, 268

can be considered an upper bound on the size of 𝒮 required by our theory on any

practical application on this network.

As we can see from Fig. 5-9a, there is a sweet spot for the size of 𝒮 (roughly around

175-200 samples) that achieves the highest performance of the SiPP variants. After

this global max, the performance of the algorithms actually decreases as we increase

the size of 𝒮 (see plots after 210 samples in Fig. 5-9a). This trade-off in the size of 𝒮

is predicted by our theory and explicitly stated in the discussion of 𝒮 in Section 5.3.2.

163

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

0.0%

+0.2%

+0.5%

+0.8%

+1.0%
De

lta
 T

op
 5

 T
es

t A
cc

ur
ac

y resnet18, ImageNet
SiPP WT

(a) ResNet18, Top 5

20.0% 40.0% 60.0%
Pruned Parameters

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 T
op

 5
 T

es
t A

cc
ur

ac
y resnet101, ImageNet

SiPPDet WT

(b) ResNet101, Top 5

Figure 5-8: The Top-5 accuracy of the generated pruned ResNet18 and ResNet101 models
trained on ImageNet for the evaluated pruning schemes for various target prune ratios. The
Top-1 accuracy is shown in Figure 5-3.

125 150 175 200 225 250
Size of S

40.0%

50.0%

60.0%

70.0%

Pr
un

e
Ra

tio
,

4.
0%

lenet300_100, MNIST

SiPPDet
SiPPRand

SiPPHybrid

(a) Prune-only

125 150 175 200 225 250
Size of S

40.0%

50.0%

60.0%

70.0%
Pr

un
e

Ra
tio

,
1.

0%

lenet300_100, MNIST

SiPPDet
SiPPRand

SiPPHybrid

(b) Fine-tuning for 1 epoch

Figure 5-9: Evaluations of the sensitivity of SiPP variants to the size of 𝒮 for the task of
pruning LeNet300-100 trained on MNIST. The plots show the maximal prune ratio obtained
subject to the constraint of being within Δ ≤ 4% and Δ ≤ 1% (absolute terms) test accuracy
of the original network’s accuracy, respectively. Overall, we can see that after even a single
retraining step, SiPP remains robust to varying size of 𝒮.

Fig. 5-9b similarly shows the sensitivity to the size of 𝒮 when a single epoch of

retraining is executed after the pruning step. Here, we can see a similar trend to

Fig. 5-9a, where initially the performance of the variants increases as the size of 𝒮

increases, but then tends to plateau (or decay) after a certain size. Interestingly, the

decay in performance after a certain size of 𝒮 is not as apparent in the fine-tune

scenario as it is in the prune-only setting (Fig. 5-9a). We conjecture that this could be

due to the fact that a single step of fine-tuning after pruning may serve as a recovery

step that alleviates the negative impact of a sub-optimal choice for the size of 𝒮.

164

5.9 Discussion and Future Work

In this work, we presented a simultaneously provably and practical family of network

pruning methods, SiPP, that is grounded in a data-informed measure of sensitivity.

Our analysis establishes provable guarantees that quantify the trade-off between the

desired model sparsity and resulting accuracy of the pruned model establishing novel

analytical compression bounds for a large class of neural networks. SiPP’s versatility

in providing strong prune results across a variety of tasks suggests that our method

inherently considers the crucial pathways through the network, and does not merely

operate by considering the properties, e.g., values, of the network parameters alone.

We envision that SiPP can spur further research into provable network pruning and

that future work can build on the work presented here to develop reliable and effective

pruning algorithms. For instance, the analysis provided here aims to minimize the

loss in accuracy due to pruning, which intuitively and empirically [LBC+21, LAT18]

correlates with a better model after retraining – since the initial solution of the

optimization problem is better off. One avenue for future work is to establish rigorous

guarantees on the network’s performance after retraining, by potentially building on

existing tools, e.g., those in [AAR20]. The explicit consideration of retraining may

also lead to more-informed algorithms that optimize the corresponding retrained error,

leading to even more compact networks in practice.

A related research direction of high impact would be to investigate tighter and non

worst-case error propagation bounds that mathematically capture the fact that the

injected noise (layer-wise error) actually attenuates — rather than increases — over

the network’s layers (see [AGNZ18, Fig. 1]). To the best of our knowledge, there

does not exist any prior work that can capture this phenomenon in a mathemati-

cally rigorous way without resorting to additional assumptions and task-dependent

quantities [AGNZ18] whose values are not known prior to pruning. Even with these

assumptions and task-dependent (and a priori unknown) quantities in place, existing

bounds are vacuous in that they only hold for the performance of the compressed

165

network over the training set [AGNZ18], which implies that they do not apply to

inputs from e.g., the test set, and unforeseen data points in practice.

Finally, in future work we plan to improve the empirical sensitivity framework itself

by considering an approach that does not rely on an expression of the form max𝑥∈𝒮

compute the optimal sampling distribution per layer. For example, one idea is to

numerically compute the optimal distribution that minimizes the empirical Bernstein

error layer-wise – or more simply, the empirical sampling variance – over the subset of

points 𝒮 (rather than taking a max over 𝒮). This problem is convex in the sampling

distribution 𝑝 and an approximately-optimal solution can be found via gradient-based

approaches. The general idea of the proof would then be to use generalization bounds

on the empirical Bernstein error minimization problem to quantify the (expected)

layer-wise error of the empirically computed sampling distribution on unforeseen data

points 𝑥 ∼ 𝒟. Our ongoing work suggests that this approach may produce improved

theoretical bounds for the expected error compared to those that we investigated in

this chapter, which hold with probability at least 1− 𝛿. This avenue may also lead to

better-performing algorithms in practice.

Acknowledgments

This research was supported in part by the U.S. National Science Foundation (NSF)

under Awards 1723943 and 1526815, Office of Naval Research (ONR) Grant N00014-

18-1-2830, Microsoft, and JP Morgan Chase.

166

Chapter 6

Structured Pruning & The Next

Pruning Frontier

6.1 Overview

In the previous chapter, we introduced SiPP and its variants for pruning the weights

of neural networks. Here, we build on the Empirical Sensitivity (ES) framework to

prune neurons and filters from modern networks rather than individual weights. This

form of structured pruning leads to slimmer networks with reduced-dimensionality

weight tensors, enabling inference-time speedups with any off-the-shelf hardware and

deep learning library. The flexibility of the framework from the previous chapter leads

to a straightforward extension to neuron and filter pruning with minimal modification

to the method and analysis. In the interest of clarity and conciseness, we will focus

on the main ideas and results of this extension, while making explicit mentions of

the modifications (if any) in the techniques and proofs relative to those of SiPP

(Chapter 5). The full extent of our work is based on [BLG+18, LBL+20].

We conclude the chapter by discussing the next frontier for pruning in the context

of its ramifications. Namely, we investigate other objectives for pruning beyond

test accuracy, such as robustness to adversarial or noisy data. Our recently pub-

167

lished results [LBC+21] suggest that future pruning algorithms would benefit from

incorporating varying objectives such as resilience to out-of-distribution data, rather

than just focusing on test accuracy. These observations motivate the development

of multi-objective pruning strategies, and in conjunction with the ease of flexibility

to filter pruning demonstrated in this chapter, the extension of the ES framework

for this purpose as an avenue for future work. The full extent of this work is based

on [LBC+21].

6.2 Structured Pruning

As we saw in the previous chapter, we can prune a significant portion of the weights

of various benchmark networks (FNNs, CNNs, Resnets, WideResnets) trained on

real-world data sets (e.g., CIFAR, Imagenet) without sacrificing the predictive power

of the neural network. This leads to easier deployment of these models to resource-

constrained platforms and alleviated memory and storage requirements. At the same

time, however, weight pruning leads to irregular sparsity patterns. This means that

if computational speedup is the practitioner’s primary objective, then specialized

libraries pertaining to sparse linear algebra algorithms and specialized hardware are

required to fully leverage the resulting sparsity.

Structured pruning has potential to alleviate these practical concerns. The main idea

is to constrain the pruning procedure so that rather than pruning individuals weights,

we remove entire neurons (and/or filters) and all of the corresponding incoming and

outgoing edges. The outcome of this procedure is a slimmer network where the weight

tensors have lower dimensionality. This is due to the fact that, unlike weight pruning,

neuron pruning corresponds to removing an entire column1 worth of weights. The

same applies to convolutional layers, where removing a filter reduces the dimension of

the weight tensor. Fig. 6-1 depicts an example of the neuron pruning process.

1Or a column (WLOG) depending on the definition of the weight matrices and whether a
transpose is applied.

168

Figure 6-1: An example application of neuron pruning to the original network shown on
the left. The generated pruned network on the right is slimmer, i.e., with lower dimensional
weight matrices, because entire neurons have been removed from layers.

Prior work in filter pruning has focused on extensions of the popular Weight Threshold-

ing (WT) approach for edge pruning as described in the previous chapter. The premise

of these approaches is that filters that are important will have a large weight norm. To

this end, prior methods for filter (and neuron) pruning have considered taking various

ℓ𝑝 (e.g., 𝑝 = 1, 2) norms of the filters [HKD+18, LKD+16] or the path-norms of the

outgoing weights of a neuron [YLC+17]. However, the drawback of these strategies is

that they heavily rely on the Smaller-norm-less-informative assumption [YLLW18],

an assumption that has been challenged in recent work [YLLW18].

Our work, which we term Provable Filter Pruning (PFP) on the other hand, builds

on the theoretical guarantees and the data-informed approach of SiPP. We present a

subset of empirical results in this chapter in the interest of brevity. The full set of

empirical results and theoretical analysis, including additional variants of PFP that

combine randomized and deterministic approaches, can be found in our published

work [LBL+20].

6.3 Provable Filter Pruning

6.3.1 Extending SiPP

PFP builds on the empirical sensitivity framework introduced in the previous chapter

and used by SiPP, and is almost identical algorithmically as shown in Fig. 6-2. The

169

……

Batch 𝒮 1) Compute filter sensitivities 2) Prune filters

1a) Compute 𝑠ℓ𝑗 based on 𝒮 2a) Sample filter 𝑗 with prob. ∝ 𝑠ℓ𝑗

0.00

0.05

0.10

0.15

0.20𝑊 ℓ
1...

𝑊 ℓ
𝑗...

𝑎ℓ1 . . . 𝑎ℓ𝑗 . . . 𝑎
ℓ
𝜂ℓ

𝑧ℓ+1
𝑖

⏞ ⏟ ⏞ ⏟

Figure 6-2: Overview of the filter pruning method. The sequence of operations is almost
identical to the one presented in Chapter 5 (see Fig. 5-1). The only exception is that the
definition of sensitivity for a filter accounts for the maximum impact that it has on any of
the outputs in the next layer. This figure originally appeared in Lucas Liebenwein’s Ph.D.
thesis and is taken from our published work [LBL+20].

only difference is that (i) filters (or neurons) instead of individual weights are sampled

and all of the weights of a sampled filter are reweighted and (ii) the definition of

empirical sensitivity is slightly different, which we focus on describing next. For ease

of exposition we will focus on pruning neurons in a fully-connected network. This can

be extended to CNNs and other architectures by using the same technique as SiPP of

accounting for all the possible patches (see Chapter 5). The full extension and proofs

are in our published work [LBL+20].

Recall that for SiPP in the setting of a fully-connected network, the importance of a

weight was defined as its maximum relative contribution to the pre-activation output

of the layer (over the points in the batch 𝒮). This definition was sufficient to capture

the parameter’s importance since a weight in a fully-connected network only affects

the output of a single neuron in the next layer. However, as we see from Fig. 6-1, for

example, this same logic does exactly apply to neuron pruning because removing a

neuron in layer ℓ affects every output in the next layer ℓ + 1 since all of the incoming

and outgoing edges of that neuron have to be removed. This motivates a definition of

sensitivity that also considers the maximum relative impact that removing a neuron

can have across all of the outputs in the next layer.

170

6.3.2 Method and Analysis Overview

In light of the discussion above, we build on the definition of empirical sensitivity from

SiPP and define the empirical sensitivity of a neuron in a fully-connected network2 as

follows.

Definition 38 (Empirical neuron sensitivity). The empirical sensitivity for a neuron

𝑗 ∈ [𝜂ℓ] is given by

𝑠ℓ𝑗 = max
𝑥∈𝒮

max
𝑖∈[𝜂ℓ+1]

𝑤ℓ+1
𝑖𝑗 𝑎ℓ𝑗(𝑥)∑︀

𝑘∈[𝜂ℓ] 𝑤
ℓ+1
𝑖𝑘 𝑎ℓ𝑘(𝑥)

, (6.1)

where 𝒮 is a batch of i.i.d. random points from the input data distribution 𝒟.

This definition formalizes the intuition above. Here, the numerator 𝑤ℓ+1
𝑖𝑗 𝑎ℓ𝑗(𝑥) denotes

the contribution of neuron 𝑗 ∈ [𝜂ℓ] to the neuron 𝑖 ∈ [𝜂ℓ+1] in the next layer ℓ+ 1, and

to account for the relative contribution, the denominator is the pre-activation output

of neuron 𝑖, i.e., the dot product
∑︀

𝑘∈[𝜂ℓ] 𝑤
ℓ+1
𝑖𝑘 𝑎ℓ𝑘(𝑥). Now, the additional max𝑖∈[𝜂ℓ+1]

relative to SiPP ensures that we consider the maximum impact of neuron 𝑗 over all

outputs in the next layer as discussed, and the maximum over 𝒮 is the same as before

in SiPP. This concludes the extent of the sensitivity modification relative to edge

pruning.

It turns out that by building on the empirical sensitivity framework and the proofs in

the previous chapter, the analysis of PFP is relatively straightforward and requires

minimal modification to the proof techniques. We provide an overview of the main

ideas here and defer to the published work for the details [LBL+20, BLG+18].

As before, the main idea is to sample and reweigh the neurons (and/or filters) in

order to have an unbiased estimate with low variance and magnitude for the pre-

activation outputs. This is requirement is formalized by Bernstein’s concentration

inequality below, which bounds the sample complexity of tight concentration around

the expectation of a sequence of samples in terms of their variance and maximum

2The extension to CNNs and other architectures employs the same strategy as before: additionally
reason about all of the patches (sliding windows of filters) by taking an additional max𝑎∈𝒜 as in
SiPP.

171

magnitude.

Theorem 39 (Bernstein’s inequality [Ver16]). Consider a sequence of 𝑚 i.i.d. random

variables 𝑍1, . . . , 𝑍𝑚 satisfying max𝑘∈[𝑚] |𝑍𝑘 − E [𝑍𝑘]| ≤ 𝑅, and let 𝑍 = 1/𝑚
∑︀𝑚

𝑘=1 𝑍𝑘

be their mean. Then ∀𝜀 > 0, 𝛿 ∈ (0, 1), and

𝑚 ≥ log(2/𝛿)

(𝜀𝐸[𝑍])2

(︂
Var(𝑍1) +

2

3
𝜀E [𝑍]𝑅

)︂
,

we have

P
(︀⃒⃒
𝑍 − E [𝑍]

⃒⃒
≥ 𝜀E [𝑍]

)︀
≤ 𝛿.

Bernstein’s inequality suggests that we should minimize Var(𝑍𝑘) and the maximum

(centered) magnitude 𝑅 in order to have the smallest sampling complexity possible. For

SiPP, our empirical sensitivity definition ensured that the variance and the magnitude

𝑅 were each (roughly) bounded by the sum of sensitivities 𝑆 and the expectation

squared E [𝑍]2. It turns out that almost an identical bound holds for neuron (and filter)

pruning as well under the extended definition of (38). Thus, we arrive at an almost

identical result to the one in SiPP for the case of pruning neurons with non-negative

weights:

Theorem 40. Let 𝜀, 𝛿 ∈ (0, 1), ℓ ∈ [𝐿], and let 𝒮 be a set of Θ(log (𝜂* 𝜌/𝛿)) i.i.d.

samples drawn from 𝒟. Then, for a sample of

𝒪(𝑆ℓ log(𝜂*/𝛿)𝜀−2))

filters from 𝑊 ℓ, with probability3 at least 1 − 𝛿, we have the following entry-wise

guarantee for the output of layer ℓ with respect to input 𝑥 ∼ 𝒟

𝑧ℓ(𝑥) ∈ (1± 𝜀)𝑧ℓ(𝑥),

3As in SiPP, the randomness here is over both the randomness in the importance sampling and
the randomness in the input 𝑥 ∼ 𝒟.

172

where 𝑧ℓ(𝑥) is the ground-truth layer output with respect to input 𝑥 and 𝑧ℓ(𝑥) is the

approximate layer output after pruning the filters in layer ℓ only, and 𝜂* = maxℓ∈[𝐿] 𝜂
ℓ.

As in Chapter 5, we build on and generalize the bound above to hold for all weights

and for all outputs of a single layer ℓ. Subsequently, we conduct an error propagation

analysis across all of the pruned layers analogous to that in Sec. 5.7.5, which culminates

in our final compression theorem before. To demonstrate the flexibility of our proof

techniques, we present the result based on the error propagation analysis of our prior

published work [BLG+18], which provides an entry-wise approximation guarantee

on the outputs of the pruned network, in contrast to the norm-based bound in the

previous chapter4.

Theorem 41. Let 𝜀, 𝛿 ∈ (0, 1) be arbitrary, let 𝒮 ⊂ 𝒳 denote a set of 𝐾 log (4𝜂 𝜌/𝛿)

i.i.d. points drawn from the input data distribution 𝒟, and suppose we are given

a network with parameters 𝜃 = (𝑊 1, . . . ,𝑊𝐿). Consider the set of parameters 𝜃 =

(𝑊̂ 1, . . . , 𝑊̂𝐿) generated by pruning channels of 𝜃 by sampling and reweighting filters

in each layer according to the (normalized) empirical sensitivities as in (6.1) for each

ℓ ∈ [𝐿]. Then, 𝜃 satisfies

P
𝜃, 𝑥∼𝒟

(𝑓𝜃(𝑥) ∈ (1± 𝜀)𝑓𝜃(𝑥)) ≥ 1− 𝛿,

and the number of filters in 𝜃 is bounded by

𝒪

(︃
𝐿∑︁

ℓ=1

𝐿2 (∆ℓ→)2 𝑆ℓ 𝐶 log(𝜂/𝛿)

𝜀2

)︃
,

where 𝑆ℓ is the sum of sensitivities over the filters in layer ℓ, and ∆ℓ is the entry-wise

sign complexity [BLG+18, LBL+20] analogous to (33).

4Although a similar norm-based bound can be proven for PFP, and likewise, an entrywise bound
on the output can be proven for SiPP by applying the error propagation proof in [BLG+18].

173

10 20 30 40 50
Retained Parameters (%)

5

6

7

8

9
Te

st
 E

rro
r (

%
)

resnet110, CIFAR10
Reference Net
Ours
FT
SoftNet

(a) ResNet110

20 40 60
Retained Parameters (%)

4

5

6

7

8

9

Te
st

 E
rro

r (
%

)

wrn16, 8, CIFAR10
Reference Net
Ours
FT
SoftNet

(b) WRN16-8

Figure 6-3: The performance of pruned models generated by our algorithm and those of
benchmark approaches on the CIAR10 data set. The figures plot the test accuracy as a
function of the percentage of the retained parameters (i.e., lower is better) for the resnet110
(left) and WRN16-8 (right) models. Shaded regions correspond to values within one standard
deviation of the mean. Our results show that our approach generates more compact and
accurate networks than competing approaches.

6.4 Experiments

We conclude our exposition of PFP by presenting a small subset of the results published

in [LBL+20]. Overall, our evaluations on benchmark data sets and models, and

comparisons to state-of-the-art filter pruning approaches demonstrate the improved

effectiveness of PFP relative to competing methods in practice.

Fig. 6-3 depicts some of the results on a resnet and wide residual network trained on the

CIFAR10 data set. Here, we can see that PFP can generate much more compact models

with minimal degradation in accuracy. In fact, for resnet110, it can prune over 90%

of the network’s filters while achieving commensurate test accuracy with the original

network. The results are even more encouraging for wide residual networks (WRN16-8

in Fig. 6-3) where PFP truly shines, which we conjecture is due to the increased

number of filters to sample from and the corresponding exponentially-decaying failure

probability (by Bernstein’s inequality).

To demonstrate the scalability of our approach, we also provide pruning results on

the ImageNet data set trained on relatively large resnets (resnet50 and resnet101)

174

in Fig. 6-4. Here, we plot prune-only results without a fine-tuning step following it

unlike the previous results. Nevertheless, the trend remains the same: PFP generates

more compact networks relative to the compared approaches, and arguably, its relative

improvement over the competing methods is even more pronounced with the increasing

scale of the models and data sets used for evaluation.

80 85 90 95
Retained Parameters (%)

20

40

60

80

100

Te
st

 E
rro

r (
%

)

resnet50, ImageNet
Reference Net
Ours
FT
SoftNet

(a) ResNet50

80 85 90 95
Retained Parameters (%)

20

40

60

80

Te
st

 E
rro

r (
%

)

resnet101, ImageNet
Reference Net
Ours
FT
SoftNet

(b) ResNet101

Figure 6-4: The results of our evaluations of the algorithms in the prune-only scenario, where
the network is iteratively pruned down to a specified target prune ratio and the fine-tuning
step is omitted. The figures plot the test accuracy as a function of the percentage of the
retained parameters (i.e., lower is better) for resnet50 and resnet101 trained on the ImageNet
dataset.

6.5 The Next Pruning Frontier

We conclude this chapter and our story on pruning that we started in Chapter 5

by discussing the limitations of network pruning and the next frontier for (provable)

network pruning algorithms. The full set of results presented in this section can be

found in the published work [LBC+21].

6.5.1 What is Lost in Pruning?

In Chapters 5 and 6, we introduced methods for pruning edges, neurons, and filters

from various network architectures. The main objective of our pruning strategy and of

virtually every network pruning algorithm proposed to date has been to mitigate drops

175

in test accuracy of the pruned network. However, there may be other objectives beyond

test accuracy that might be more important to the application at hand. For example,

are pruned networks with commensurate test accuracy as robust to adversarial or

noisy data as the original network as well? Relatedly, answering this question would

give us insights on whether focusing on test accuracy alone in the design of pruning

algorithms is appropriate.

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-7.5%

-5.0%

-2.5%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet20, CIFAR10

CIFAR10 Jpeg Speckle Gauss

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-7.5%

-5.0%

-2.5%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet20, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(a) Prune-test curve (WT)

0.00 0.20 0.40 0.60
Uniform noise level

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pr
un

e
Po

te
nt

ia
l,

=
0.

5%

resnet110, CIFAR10
PFP
SiPP
WT
FT

(b) ResNet110

Figure 6-5: Left: a prune-accuracy curve for the Weight Thresholding (WT) pruning
algorithm under various types of injected noise. Right: the prune-potential of various pruning
algorithms for 𝛿 = 0.5%, i.e., the maximum sparsity achievable subject to the constraint
that the test accuracy is within 0.5% of the original network, plotted for various pruning
algorithms (including SiPP and PFP) as a function of the injected noise. For both figures,
higher is better in terms of the pruned network’s performance under noise.

In Fig. 6-5 we present a small subset of our results published in [LBC+21] that seeks

to answer questions of this nature. In Fig. 6-5a, we show the performance of the

highly-popular weight-pruning algorithm, Weight Thresholding (WT), under various

types of noise injected into the input (CIFAR10) relative to the noise-free input. Here,

we can see that although WT performs well on the original (noiseless) CIFAR10 data

set, injecting Gaussian noise (red curve) leads to an accuracy drop of more than 10%

relative to the test accuracy of the original network evaluated on the very same set

with Gaussian noise5. We observe similar drops in accuracy for the Speckle noise as

well. In sum, Fig. 6-5a suggests the susceptibility of other popularly employed network
5Since the test accuracy would degrade with noisy inputs as it is, our plot shows the test accuracy

of the pruned network on the noisy data relative to the test accuracy of the original network on the
same noisy data.

176

pruning algorithms to noisy, out-of-distribution, and adversarial inputs.

Next, we consider the impact of the magnitude of the injected noise and compare

the performance of various pruning algorithms, including SiPP and PFP. Fig. 6-5b

depicts the pruning results of our evaluations with varying noise levels injected into

the CIFAR10 data sets. Here, we plot the relationship between the noise level and

the prune potential with respect to 𝛿 = 0.5%, i.e., the maximum sparsity achieved

subject to the constraint that the test accuracy of the pruned network is within 0.5%

(absolute terms) of the original network. Here we see an intuitive trend: increasing the

magnitude of the injected noise leads to decreasing performance across all algorithms.

Interestingly, our proposed data-informed algorithms (SiPP and PFP) outperform

weight-based edge and filter-pruning approaches, WT and FT, respectively.

6.5.2 Discussion and Future Work

The empirical results presented in this chapter demonstrate the potential vulnerability

of existing and widely used pruning algorithms to various types and levels of noise

in the input. This is especially worrisome for the deployment of pruned networks to

safety-critical applications such as autonomous driving, where out-of-distribution data

and noisy inputs are commonly encountered in practice [ASSR19].

These observations motivate the development of pruning algorithms that can consider

objectives, for example, robustness to adversarial input, beyond test accuracy alone.

We envision that future work in network pruning can build on the empirical sensitivity

framework that we introduced in this thesis in order to develop pruning algorithms

with this capability. Given the ease of extension of our framework from edge to filter

pruning as demonstrated in this chapter, we are hopeful that similar advances can be

made possible by appropriately building on the notion of empirical sensitivity, as we

did here.

177

Acknowledgments

This research was supported in part by the U.S. National Science Foundation (NSF)

under Awards 1723943 and 1526815, Office of Naval Research (ONR) Grant N00014-

18-1-2830, Microsoft, and JP Morgan Chase.

178

Chapter 7

Active Learning for Deep Learning

7.1 Overview

In the previous two chapters (Chapters 5 and 6), we focused on provably pruning

large neural network models to obtain compact, efficient AI. For the last chapter, we

consider alleviating the other prominent challenge in scalable AI: the need for massive

sets of labeled training data. In particular, we revisit the problem of compressing the

input data set as in Chapter 4 (for SVMs), but this time with a focus on reducing the

label-cost of large-scale neural network training. Due to lack of knowledge about the

labels and the theoretical complexity of neural network training, we cannot readily

apply standard techniques such as the sensitivity framework from the previous chapters.

Hence, we instead formulate the active learning problem as the prediction with sleeping

expert advice problem and introduce a novel low-regret algorithm. Our approach

seeks to remedy the shortcomings of prior work, which has predominantly focused

on greedy heuristics that simply pick the points that are ranked as most informative

according to a proxy measure as discussed in Chapter 2.

The work presented in this chapter is based on [BLFR21] and contributes the following:

1. Formulation of active learning as a prediction with sleeping experts problem and

179

the development of an efficient, predictive algorithm AdaProd+ for low-regret

active learning,

2. Analysis of its regret bounds and demonstration of its ability to broadly improve

and robustify existing greedy approaches off-the-shelf,

3. Empirical evaluations that demonstrate the effectiveness of the presented method

on a diverse set of benchmarks and its uniformly superior performance over

competitors across scenarios involving real-world data sets and modern architec-

tures.

7.2 Active Learning

We consider the setting where we are given a set of 𝑛 unlabeled data points 𝒫 ⊂ 𝒳 𝑛

from the input space 𝒳 ⊂ R𝑑. We assume that there is an oracle Oracle that maps

each point 𝑥 ∈ 𝒫 to one of 𝑘 categories. Given a network architecture and sampling

budget 𝑏 ∈ N+, our goal is to generate a subset of points 𝒮 ⊂ 𝒫 with |𝒮| = 𝑏 such

that training on {(𝑥,Oracle(𝑥))𝑥∈𝒮} leads to the most accurate model 𝜃 among all

other choices for a subset 𝒮 ⊂ 𝒫 of size 𝑏.

The iterative variant of acquisition procedure is shown as Alg. 10, where Acquire

is an active learning algorithm that identifies (by using 𝜃𝑡−1) 𝑏𝑡 unlabeled points to

label at each iteration 𝑡 ∈ [𝑇] and Train trains a model initialized with 𝜃𝑡−1 using

the labeled set of points. We emphasize that prior work has overwhelmingly used the

Scratch option (Line 6, Alg. 10), which entails discarding the model information 𝜃𝑡−1

from the previous iteration and training a randomly initialized model from scratch on

the set of labeled points acquired thus far, 𝒮.

7.2.1 Background & Greedy Selection

Consider an informativeness function 𝑔 : 𝒳 × Θ → [0, 1] that quantifies the infor-

mativeness of each point 𝑥 ∈ 𝒳 with respect to the model 𝜃 ∈ Θ, where Θ is the

180

Algorithm 10 ActiveLearning
Input: Set of points 𝒫 ⊆ R𝑑×𝑛, Acquire: an active learning algorithm for selecting labeled
points
1: 𝒮 ← ∅; 𝜃0 ← Randomly initialized network model;
2: for 𝑡 ∈ [𝑇] = {1, . . . , 𝑇} do
3: 𝒞𝑡 ← Acquire(𝒫 ∖ 𝒮, 𝑏𝑡, 𝜃𝑡−1) ◁ Get new batch of 𝑏𝑡 ∈ N+ points to label using

algorithm Acquire
4: 𝒮 ← 𝒮 ∪ 𝐶𝑡 ◁ Add new points
5: (if Scratch option) 𝜃𝑡−1 ← Randomly initialized network
6: 𝜃𝑡 ← Train(𝜃𝑡−1, {(𝑥,Oracle(𝑥))𝑥∈𝒮}) ◁ Train network on the labeled samples

thus far
7: return 𝜃𝑇

set of all possible parameters for the given architecture. An example of the gain

function is the maximum variation ratio (also called the uncertainty metric) defined as

𝑔(𝑥, 𝜃) = 1−max𝑖∈[𝑘] 𝑓𝜃(𝑥)𝑖, where 𝑓𝜃(𝑥) ∈ R𝑘 is the softmax output of the model 𝜃

given input 𝑥. As examples, the gain 𝑔(𝑥, 𝜃) of point 𝑥 is 0 if the network is absolutely

certain about the label of 𝑥 and 1− 1/𝑘 when the network’s prediction is uniform. In

the context of Alg. 10, prior work on active learning [Mut19, GEY17, GIG17, SS17a]

has generally focused on greedy acquisition strategies (Acquire in Alg. 10) that rank

the remaining unlabeled points by their informativeness 𝑔(𝑥, 𝜃𝑡−1) as a function of the

model 𝜃𝑡−1, and pick the top 𝑏𝑡 points to label.

Why greedy can fail Greedy approaches to data acquisition have shown promise

in certain active learning applications and tasks [GIG17, SS17a]), however, as noted in

Sec. 2.6 – and further evidenced by our empirical results in Sec. 7.5 – these approaches

are highly sensitive to outliers and at times perform significantly worse than naive

uniform sampling. In fact, Fig. 2-1 depicts a scenario where various popular active

learning approaches perform significantly worse than uniform sampling.

To understand why this could be happening, note that at iteration 𝑡 ∈ [𝑇] the greedy

approach makes a judgment about the informativeness of each point using only the

model 𝜃𝑡−1 (Line 4 of Alg. 10). However, in the deep learning setting where stochastic

elements such as random initialization, stochastic optimization, (randomized) data

181

augmentation, and dropout are commonly present, 𝜃𝑡−1 is itself a random variable

with non-negligible variance. This means that, for example, we could get unlucky with

our training and obtain a deceptive model 𝜃𝑡−1 (e.g., training diverged) that assigns

high gains (informativeness) to points that may not truly be helpful towards training

a better model. Nevertheless, Greedy would still base the entirety of the decision

making solely on 𝜃𝑡−1 (not on the entire history 𝜃1, . . . 𝜃𝑡−2) and blindly pick the top-𝑏𝑡

points ranked using 𝜃𝑡−1, leading to a misguided selection. This example also applies

to greedy clustering, e.g., Coreset [SS17a], Badge [AZK+19].

7.2.2 Active Learning as Prediction with Expert Advice

Rather than attempting to model this randomness in the gains observed, we will assume

that the gains can be generated by a non-oblivious adversary that has knowledge of

our actions in the preceding rounds. This formulation leads us to the well-studied

learning with experts problem as we outline in this subsection. We note that at the

expense of formulating a seemingly more difficult problem involving an adversary, we

obtain the benefit of generality and widespread applicability without imposing any

assumptions on how the gains (i.e., informativeness) are defined or generated.

Setting We let 𝑔𝑡,𝑖 denote the gain 𝑔(𝑥𝑖, 𝜃𝑡−1) (see Alg. 10) in round 𝑡 ∈ [𝑇] where 𝑥𝑖

is the 𝑖th point in 𝒫 . For ease of presentation1, assume for the time being that 𝑏𝑡 = 1,

i.e., we select a single new point at each iteration. Rather than picking this point

deterministically, consider selecting sampling this point with respect to a probability

distribution 𝑝 ∈ ∆ where ∆ = {𝑝 ∈ [0, 1]𝑛 :
∑︀𝑛

𝑗=1 𝑝𝑗 = 1} is the probability simplex.

We note that there have been prior attempts to make greedy approaches robust by

sampling in this very same way (rather than deterministic selection), however, it was

observed that this led to worse performance in practice [GSS19].

To map this problem to the canonical learning with experts problem, we consider the

problem of minimizing the sum of losses ℓ𝑡,𝑖 = 1−𝑔𝑡,𝑖 ∈ [0, 1] over the 𝑇 active learning

1See Sec. 7.3.3 and Sec. 7.7 for the extension to the batch setting.

182

iterations. Under this setting a natural first attempt at a formulation of expected

regret is to define the regret as Regret(𝑝1, . . . , 𝑝𝑇) =
∑︀𝑇

𝑡=1⟨𝑝𝑡, 𝑙𝑡⟩−min𝑝∈Δ
∑︀𝑇

𝑡=1⟨𝑝, 𝑙𝑡⟩,

where ⟨𝑝𝑡, 𝑙𝑡⟩ is the expected loss of our random choice 𝑖 ∼ 𝑝𝑡 conditioned on our past

history. However, the previous formulation is ill-equipped for active learning, since (i)

we should not be picking points that have already been labeled in prior active learning

iterations and (ii) it does not make sense to compete with a fixed distribution when

the set of actions, i.e., pool of remaining unlabeled data, is shrinking over time.

Sleeping Experts and Dynamic Regret To resolve these challenges and en-

sure that we only sample from the pool of unlabeled data points, we general-

ize the prior formulation to one with sleeping experts [SGV20, LS15, GSVE14,

KNMS10]. More concretely, let ℐ𝑡,𝑖 ∈ {0, 1} denote whether expert 𝑖 ∈ [𝑛] is

sleeping in round 𝑡. The sleeping expert problem imposes the constraint that

ℐ𝑡,𝑖 = 0 ⇒ 𝑝𝑡,𝑖 = 0. For the data acquisition setting, we define for each 𝑖 ∈ [𝑛]

ℐ𝑡,𝑖 = 1{𝑥𝑖 not picked in any of the preceding rounds}, so that we do not sample

already-labeled points, and formulate the dynamic active learning regret as

Regret(p) =
𝑇∑︁
𝑡=1

⟨𝑝𝑡, 𝑙𝑡 ⊙ ℐ𝑡⟩ −
𝑇∑︁
𝑡=1

min
𝑝∈𝒜𝑡

⟨𝑝, 𝑙𝑡 ⊙ ℐ𝑡⟩ (7.1)

where p = (𝑝1, . . . , 𝑝𝑇) is the sequence of sampling distributions over 𝑇 and 𝒜𝑡 = {𝑝 ∈

∆ : ∀𝑖 ∈ [𝑛] 𝑝𝑖 = 0 if ℐ𝑡,𝑖 = 0} is the constrained probability simplex with respect to

ℐ𝑡 ∈ {0, 1}𝑛.

7.3 A Low-Regret Approach

In this section we motivate and present Alg. 11, an efficient online learning algorithm

with instance-dependent guarantees that performs well on predictable sequences while

remaining resilient to adversarial ones. Additional implementation details are deferred

to Sec. 7.8 for ease of exposition.

183

7.3.1 Background

Algorithms for the prediction with sleeping experts problem have been extensively

studied in literature [GSVE14, LS15, SGV20, KNMS10, SAM19, KVE15]. These

algorithms enjoy strong guarantees in the adversarial setting; however, they suffer from

(i) sub-optimal regret bounds in predictable settings and/or (ii) high computational

complexity. Our approach hinges on the observation that the active learning setting

may not always be adversarial in practice, and if this is the case, we should be

competitive with greedy approaches. For example, we may expect the informativeness

of the points to resemble a predictable sequence plus random noise which models the

random components of the training (see Sec. 7.2) at each time step. This (potential)

predictability in the corresponding losses motivates an algorithm that can leverage

predictions about the loss for the next time step to achieve lower regret by being more

aggressive – akin to Greedy – when the losses do not vary significantly over time.

7.3.2 AdaProd+

To this end, we extend the Optimistic Adapt-ML-Prod algorithm [WHL17] (henceforth,

OAMLProd) to the active learning setting with batched plays where the set of experts

(unlabeled data points) is changing and/or unknown in advance. Optimistic online

learning algorithms are capable of incorporating predictions ℓ̂𝑡+1 for the loss in the

next round ℓ𝑡+1 and guaranteeing regret as a function of the predictions’ accuracy, i.e.,

as a function of
∑︀𝑇

𝑡=1 ||ℓ𝑡 − ℓ̂𝑡||2∞. Although we could have attempted to extend other

optimistic approaches [SL14, Ora19, MY15, RS13], the work of [WHL17] ensures – to

the best of our knowledge – the smallest regret in predictable environments when

compared to related approaches.

Our algorithm AdaProd+ is shown as Alg. 11. Besides its improved computational

efficiency relative to OAMLProd in the active learning setting, AdaProd+ is also

the result of a tightened analysis that leads to significant practical improvements over

OAMLProd as shown in Fig. 7-4 of Sec. 7.5.5. Our insight is that our predictions

can be leveraged to improve practical performance by allowing larger learning rates

184

Algorithm 11 AdaProd+

1: For all 𝑖 ∈ [𝑛], initialize 𝑅1,𝑖 ← 0; 𝐶1,𝑖 ← 0; 𝜂0,(1,𝑖) ←
√

log 𝑛; 𝑤0,(1,𝑖) = 1;
𝑟1,𝑖 = 0;

2: for each round 𝑡 ∈ [𝑇] do
3: 𝒜𝑡 ← {𝑖 ∈ [𝑛] : ℐ𝑡,𝑖 = 1}; ◁ Set of awake experts, i.e., set of unlabeled data

points
4: 𝑝𝑡,𝑖 ←

∑︀
𝑠∈[𝑡] 𝜂𝑡−1,(𝑠,𝑖)𝑤𝑡−1,(𝑠,𝑖) exp(𝜂𝑡−1,(𝑠,𝑖) 𝑟𝑡,𝑖) for each 𝑖 ∈ 𝒜𝑡

5: 𝑝𝑡,𝑖 ← 𝑝𝑡,𝑖/
∑︀

𝑗∈𝒜𝑡
𝑝𝑡,𝑗 for each 𝑖 ∈ 𝒜𝑡 ◁ Normalize

6: Adversary reveals ℓ𝑡 and we suffer loss ℓ̃𝑡 = ⟨ℓ𝑡, 𝑝𝑡⟩
7: For all 𝑖 ∈ 𝒜𝑡, 𝑟𝑡,𝑖 ← ℓ̃𝑡 − ℓ𝑡,𝑖 and 𝐶𝑡,𝑖 ← 0

8: For all 𝑖 ∈ 𝒜𝑡 and 𝑠 ∈ [𝑡], set 𝐶𝑠,𝑖 ← 𝐶𝑠,𝑖 + (𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2

9: Get prediction 𝑟𝑡+1 ∈ [−1, 1]𝑛 for next round (see Sec. 7.3.2)
10: For all 𝑖 ∈ 𝒜𝑡, set 𝑤𝑡−1,(𝑡,𝑖) ← 1, 𝜂𝑡−1,(𝑡,𝑖) ←

√
log 𝑛, and for all 𝑠 ∈ [𝑡], set

𝜂𝑡,(𝑠,𝑖) ← min

{︃
𝜂𝑡−1,(𝑠,𝑖),

2

3(1 + 𝑟𝑡+1,𝑖)
,

√︃
2 log(𝑛)

𝐶𝑠,𝑖

}︃
and

𝑤𝑡,(𝑠,𝑖) ←
(︀
𝑤𝑡−1,(𝑠,𝑖) exp

(︀
𝜂𝑡−1,(𝑠,𝑖) 𝑟𝑡,𝑖 − 𝜂2𝑡−1,(𝑠,𝑖)(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)

2
)︀)︀𝜂𝑡,(𝑠,𝑖)/𝜂𝑡−1,(𝑠,𝑖)

to be used without sacrificing theoretical guarantees (Line 10 of Alg. 11). Empirical

comparisons with Adapt-ML-Prod and other state-of-the-art algorithms can be found

in Sec. 7.5.5.

Generating Predictions Our approach can be used with general predictors ℓ̂𝑡

for the true loss ℓ𝑡 at round 𝑡, however, to obtain bounds in terms of the temporal

variation in the losses, we use the most recently observed loss as our prediction for the

next round, i.e., ℓ̂𝑡 = ℓ𝑡−1. A subtle issue is that our algorithm requires a prediction

𝑟𝑡 ∈ [−1, 1]𝑛 for the instantaneous regret at round 𝑡, i.e., 𝑟𝑡 = ⟨𝑝𝑡, ℓ𝑡⟩− ℓ𝑡, which is not

available since 𝑝𝑡 is a function of 𝑟𝑡. To achieve this, we follow [WHL17] and define

the mapping 𝑟𝑡 : 𝛼 ↦→ (𝛼− ℓ𝑡) ∈ [−1, 1]𝑛 and perform a binary search over the update

rule in Lines 4-5 of Alg. 11 so that 𝛼 ∈ [0, 1] is such that 𝛼 = ⟨𝑝𝑡(𝑟𝑡(𝛼)), ℓ̂𝑡⟩, where

𝑝𝑡(𝑟𝑡(𝛼)) is the distribution obtained when 𝑟𝑡(𝛼) is used as the optimistic prediction

in Lines 4-5. The existence of such an 𝛼 follows by applying the intermediate value

theorem to the continuous update.

185

7.3.3 Back to Active Learning

To unify AdaProd+ with Alg. 10, observe that we can define the Acquire function

to be a procedure that at time step 𝑡 first samples a point by sampling with respect to

probabilities 𝑝𝑡, obtains the (user-specified) losses ℓ𝑡 with respect to the model 𝜃𝑡−1,

and passes them to Alg. 11 as if they were obtained from the adversary (Line 6). This

generates an updated probability distribution 𝑝𝑡+1 and we iterate.

To generalize this approach to sampling a batch of 𝑏𝑡 points, we build on ideas

from [UNK10]. Here, we provide an outline of this procedure; the full details are

provided (Sec. 7.7). At time 𝑡, we apply a capping algorithm [UNK10] to the probability

𝑝𝑡 generated by AdaProd+ – which takes 𝒪(𝑛𝑡 log 𝑛𝑡) time, where 𝑛𝑡 ≤ 𝑛 is the

number of remaining unlabeled points at iteration 𝑡 – to obtain a modified distribution

𝑝𝑡 satisfying max𝑖 𝑝𝑡,𝑖 ≤ 1/𝑏𝑡. This projection to the capped simplex ensures that

the scaled version of 𝑝𝑡, 𝑝𝑡,𝑖 = 𝑏𝑡𝑝𝑡,𝑖, satisfies 𝑝𝑡,𝑖 ∈ [0, 1] and
∑︀

𝑗 𝑝𝑡,𝑗 = 𝑏𝑡. Now the

challenge is to sample exactly 𝑏𝑡 distinct points according to probability 𝑝𝑡. To achieve

this, we use a dependent randomized rounding scheme [GKPS06] (Alg. 13 in 7.7)

that runs in 𝒪(𝑛𝑡) time. The overall computational overhead of batch sampling is

𝒪(𝑛𝑡 log 𝑛𝑡).

7.3.4 Flexibility via Proprietary Loss

We end this section by underscoring the generality of our approach, which can

be applied off-the-shelf with any definition of informativeness measure that defines

the loss ℓ ∈ [0, 1]𝑛, i.e., 1 - informativeness. For example, our framework can be

applied with the uncertainty metric as defined in Sec. 7.2 by defining the losses to be

ℓ𝑡,𝑖 = max𝑗∈[𝑘] 𝑓𝜃𝑡−1(𝑥𝑖)𝑗 . As we show in Sec. 7.5.4, we can also use other popular notions

of informativeness such as Entropy [RXC+20] and the BALD metrics [GIG17] to obtain

improved results relative to greedy selection. This flexibility means that our approach

can always be instantiated with any state-of-the-art notion of informativeness, and

consequently, can scale with future advances in appropriate notions of informativeness

widely studied in literature.

186

7.4 Regret Guarantees

In this section, we present the theoretical guarantees of our algorithm in the learning

with sleeping experts setting. Our main result is an instance-dependent bound on the

dynamic regret of our approach in the active learning setting. Here, we focus on the

key technical results for clarity of exposition and refer the interested reader to Sec. 7.6

for the full proofs and technical details.

The main idea of our analysis is to show that AdaProd+ (Alg. 11), which builds

on Optimistic Adapt-ML-Prod [WHL17], retains the adaptive regret guarantees of

the time-varying variant of their algorithm without having to know the number of

experts a priori [WHL17]. Inspired by AdaNormalHedge [LS15], we show that our

algorithm can efficiently ensure adaptive regret by keeping track of
∑︀𝑇

𝑡∈1 𝑛𝑡 ≤ 𝑛𝑡

experts at time step 𝑡, where 𝑛𝑡 denotes the number of unlabeled points remaining,

𝑛𝑡 =
∑︀𝑛

𝑖=1 ℐ𝑡,𝑖, rather than 𝑛𝑡 experts as in prior work. This leads to efficient updates

and applicability to the active learning setting where the set of unlabeled points

remaining (experts) significantly shrinks over time.

Our second contribution is an improved learning rate schedule (Line 10 of Alg. 11) that

arises from a tightened analysis that enables us to get away with strictly larger learning

rates without sacrificing any of the theoretical guarantees. For comparison, the learning

rate schedule of [WHL17] would be 𝜂𝑡,(𝑠,𝑖) = min{1/4,
√︀

2 log(𝑛)/(1 + 𝐶𝑠,𝑖)} in the

context of Alg. 11. It turns out that the dampening factor of 1 from the denominator

can be removed, and the upper bound of 1/4 is overly-conservative and can instead

be replaced by min{𝜂𝑡−1,(𝑠,𝑖), 2/ (3(1 + 𝑟𝑡+1,𝑖))}. This means that we can leverage the

predictions at round 𝑡 to set the threshold in a more informed way. Although this

change does not improve (or change) the worst-case regret bound asymptotically,

our results in Sec. 7.5 (see Fig. 7-4) show that it translates to significant practical

improvements in the active learning setting.

In light of the above, we summarize the two main results here in the interest of clarity,

and refer to Sec. 7.6 for the full technical details and complete proofs. The lemma

187

below bounds the adaptive regret of AdaProd+, which concerns the cumulative regret

over a time interval [𝑡1, 𝑡2], with respect to 𝐶𝑡2,(𝑡1,𝑖) =
∑︀𝑡2

𝑡=𝑡1
(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)

2.

Lemma 42 (Adaptive Regret of AdaProd+). For any 𝑡1 ≤ 𝑡2 and 𝑖 ∈ [𝑛], the regret

of Alg. 11 with respect to time interval [𝑡1, 𝑡2] is bounded by

𝑡2∑︁
𝑡=𝑡1

𝑟𝑡,𝑖 ≤ 𝒪̂
(︁

log(𝑛) +
√︁
𝐶𝑡2,(𝑡1,𝑖) log(𝑛)

)︁
,

where 𝒪̂ suppresses log 𝑇 factors, 𝑟𝑡,𝑖 = ⟨ℓ𝑡, 𝑝𝑡⟩ − ℓ𝑡,𝑖 is the instantaneous regret of

𝑖 ∈ [𝑛] at time 𝑡.

It turns out that there is a deep connection between dynamic (see (7.1)) and adaptive

regret, and that an adaptive regret bound implies a dynamic regret bound [LS15].

Hence, we combine the adaptive regret bound from above with Theorem 4 of [LS15]

to conclude the main regret guarantee of our algorithm. We note that the theorem

below is specialized to our setting where we predict the next round’s loss to be the

most recently observed loss, i.e., ℓ̂𝑡 = ℓ𝑡−1. More generally, the bound would roughly

scale with √︂∑︁
𝑡∈[𝑇]
||(ℓ𝑡 − ℓ̂𝑡)⊙ ℐ𝑡||2∞,

where ⊙ is the Hadamard (entry-wise) product, with other choices for ℓ̂𝑡, such as the

mean over the losses seen thus far.

Theorem 43 (Dynamic Regret). AdaProd+ takes at most 𝒪̃(𝑡𝑛𝑡)
2 time for the 𝑡th

update, and its dynamic regret (Eq. 7.1) with batch size 𝑏𝑡 = 1 over 𝑇 steps is bounded

by

Regret(𝑝1, . . . , 𝑝𝑡) ≤ 𝒪̃

(︃√︃(︂
1 +

∑︁
𝑡∈[𝑇]
‖(ℓ𝑡 − ℓ𝑡−1)⊙ ℐ𝑡‖2∞

)︂
𝒱+(𝑢*

1:𝑇)

)︃
,

where ⊙ is the Hadamard (entry-wise) product, 𝑢*
1:𝑇 = (𝑢*

1, . . . , 𝑢
*
𝑇) is such that for

2We use 𝒪̃(·) to suppress log 𝑇 and log 𝑛 factors.

188

each 𝑡,

𝑢*
𝑡 = argmin

𝑢∈𝒜𝑡

⟨𝑢, ℓ𝑡⟩,

and

𝒱+(𝑢*
1:𝑇) =

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

max{0, 𝑢*
𝑡,𝑖 − 𝑢*

𝑡−1,𝑖}

is a measure of the variation in the time-varying optimal distribution.

7.5 Experiments

In this section, we present evaluations of our algorithm and compare the performance

of its variants on common vision tasks. Additional results can be found in 7.8. Our

evaluations across a diverse set of configurations and benchmarks demonstrate the

practical effectiveness and reliability of our method. In particular, they show that our

approach (i) is the only one to significantly improve on the performance of uniform

sampling across all scenarios, (ii) reliably outperforms competing approaches even

with the intuitive Uncertainty metric (Fig. 7-1,7-2), (iii) when instantiated with

other metrics, leads to strict improvements over greedy selection (Fig. 7-3), and (iv)

outperforms modern algorithms for learning with expert advice (Fig. 7-4).

7.5.1 Setup

We compare our active learning algorithm Alg. 11 (labeled Ours) with the uncertainty

loss described in Sec. 7.2; Uncertainty: greedy variant of our algorithm with the same

measure of informativeness; Entropy: greedy approach that defines informativeness

by the entropy of the network’s softmax output; Coreset: clustering-based active

learning algorithm of [SS17a, GEY17]; BatchBALD: approach based on the mutual

information of points and model parameters [KVAG19]; and Uniform sampling. We

implemented the algorithms in Python and used the PyTorch [PGM+19] library for

deep learning.

We consider the following popular vision data sets trained on modern convolutional

189

networks:

1. FashionMNIST[XRV17]: 60, 000 grayscale images of size 28× 28

2. CIFAR10 [KH+09]: 50, 000 color images (32× 32) each belonging to one of 10

classes

3. SVHN [NWC+11]: 73, 257 real-world images (32 × 32) of digits taken from

Google Street View

4. ImageNet [DDS+09]: more than 1.2 million images spanning 1000 classes

We used standard convolutional networks for training FashionMNIST [XRV17] and

SVHN [Che20], the CNN5 architecture [NKB+19] and residual networks (resnets) [HZRS16]

for our evaluations on CIFAR10 and ImageNet. The networks were trained with opti-

mized hyper-parameters from the corresponding reference. All results were averaged

over 10 trials unless otherwise stated. The full set of hyper-parameters and details of

each experimental setup are deferred to Sec. 7.8 for clarity of exposition.

Computation Time Across all data sets, our algorithm took at most 3 minutes

per update step. This was comparable (within a factor of 2) to that required by

Uncertainty and Entropy. However, relative to more sophisticated approaches,

Ours was up to ≈ 12.3x faster than Coreset, due to expensive pairwise distance

computations involved in clustering, and up to ≈ 11x faster than BatchBALD, due

to multiple (≥ 10) forward passes over the entire data on a network with dropout

required for its Bayesian approximation [KVAG19].

7.5.2 Evaluations on Vision Tasks

As our initial experiment, we evaluate and compare the performance of our approach on

benchmark computer vision applications. Fig. 7-1 depicts the results of our experiments

on the data sets evaluated with respect to test accuracy and test loss of the obtained

network. For these experiments, we used the standard methodology [RXC+20, GIG17]

190

40000 50000 60000 70000 80000 90000 100000
Sample Size

45

50

55

60

65
To

p
5

Te
st

 A
cc

ur
ac

y
(%

)

resnet18, ImageNet
Ours
Uncertainty
Entropy
Uniform

2000 3000 4000 5000 6000
Sample Size

75

80

85

90

Te
st

 A
cc

ur
ac

y
(%

)

SVHNCNN, SVHN

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

4000 6000 8000 10000 12000 14000
Sample Size

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Te
st

 A
cc

ur
ac

y
(%

)

cnn5, CIFAR10

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

400 600 800 1000 1200 1400 1600 1800 2000
Sample Size

74

76

78

80

82

84

Te
st

 A
cc

ur
ac

y
(%

)

FashionCNN, FashionMNIST

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

40000 50000 60000 70000 80000 90000 100000
Sample Size

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Te
st

 L
os

s

resnet18, ImageNet
Ours
Uncertainty
Entropy
Uniform

(a) ImageNet

2000 3000 4000 5000 6000
Sample Size

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 L
os

s

SVHNCNN, SVHN
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(b) SVHN

4000 6000 8000 10000 12000 14000
Sample Size

0.7

0.8

0.9

1.0

Te
st

 L
os

s

cnn5, CIFAR10
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(c) CIFAR10

400 600 800 1000 1200 1400 1600 1800 2000
Sample Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 L
os

s

FashionCNN, FashionMNIST
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(d) FashionMNIST

Figure 7-1: Evaluations on popular computer vision benchmarks trained on convolutional
neural networks. Our algorithm consistently achieves higher performance than uniform
sampling and outperforms or matches competitors on all scenarios. This is in contrast to
the highly varying performance of competing methods. Shaded regions correspond to values
within one standard deviation of the mean.

of retraining the network from scratch as the option in Alg. 10.

Note that for all data sets, our algorithm (shown in red) consistently outperforms

uniform sampling, and in fact, also leads to reliable and strict improvements over

existing approaches for all data sets. On ImageNet, we consistently perform better

than competitors when it comes to test accuracy and loss. This difference is especially

notable when we compare to greedy approaches that are outpaced by Uniform by up

to ≈ 5% test accuracy. Our results support the widespread reliability and scalability

of AdaProd+, and show promise for its effectiveness on even larger models and data

sets.

7.5.3 Robustness Evaluations

Next, we investigate the robustness of the considered approaches across varying data

acquisition configurations evaluated on a fixed data set. To this end, we define a

data acquisition configuration as the tuple (option, 𝑛start, 𝑏, 𝑛end) where option is

either Scratch or Incr in the context of Alg. 10, 𝑛start is the number of initial

points at the first step of the active learning iteration, 𝑏 is the fixed label budget

per iteration, and 𝑛end is the number of points at which the active learning process

stops. Intuitively, we expect robust active learning algorithms to be resilient to

191

changes in the data acquisition configuration and to outperform uniform sampling in

a configuration-agnostic way.

100 150 200 250 300 350 400 450
Sample Size

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Te
st

 A
cc

ur
ac

y
(%

)

FashionMNIST

Coreset
Ours
Uniform
Uncertainty
Entropy

(a) (Scratch, 50, 15, 500)

200 400 600 800 1000
Sample Size

72

74

76

78

80

82

84

86

Te
st

 A
cc

ur
ac

y
(%

)

FashionMNIST

Coreset
Ours
Uniform
Uncertainty
Entropy

(b) (Scratch, 150, 50, 1200)

500 1000 1500 2000 2500 3000 3500 4000
Sample Size

70

75

80

85

Te
st

 A
cc

ur
ac

y
(%

%
)

FashionCNN, FashionMNIST

Ours
Uncertainty
Entropy
Coreset
Uniform

(c) (Scratch, 50, 100, 4000)

100 150 200 250 300 350 400 450
Sample Size

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Te
st

 A
cc

ur
ac

y
(%

)

FashionMNIST

Coreset
Ours
Uniform
Uncertainty
Entropy

(d) (Incr, 50, 15, 500)

200 300 400 500 600 700 800 900 1000
Sample Size

72

74

76

78

80

82

84

Te
st

 A
cc

ur
ac

y
(%

)

FashionMNIST

Coreset
Ours
Uniform
Uncertainty
Entropy

(e) (Incr, 150, 64, 1000)

500 1000 1500 2000 2500 3000 3500 4000
Sample Size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

FashionCNN, FashionMNIST
Ours
Uncertainty
Entropy
Coreset
Uniform

(f) (Incr, 50, 100, 4000)

Figure 7-2: Our evaluations on the FashionMNIST data set with varying data acquisition
configurations and Incr and Scratch – (Option, 𝑛start, 𝑏, 𝑛end). All figures except for
(f) depict the test accuracy. The performance of competing methods varies greatly across
configurations even when the data set is fixed.

Fig. 7-2 shows the results of our experiments on FashionMNIST. From the figures, we

can see that our approach performs significantly better than the compared approaches

in terms of both test accuracy and loss in all evaluated configurations. In fact, the

compared methods’ performance fluctuates wildly, supporting our premise about

greedy acquisition. For instance, we can see that the uncertainty metric in Fig. 7-2

fares worse than naive uniform sampling in (a), but outperforms Uniform in settings

(d) and (e); curiously, in (c), it is only better after an interesting cross-over point

towards the end.

This inconsistency and sub-uniform performance is even more pronounced for the

Entropy and Coreset algorithms that tend to perform significantly worse – up to

-7% and -4% (see (a) and (e) in Fig. 7-2) absolute test accuracy when compared to

that of our method and uniform sampling, respectively. We postulate that the poor

performance of these competing approaches predominantly stems from their inherently

greedy acquisition of data points in a setting with significant randomness as a result

192

of stochastic training and data augmentation, among other elements. In contrast, our

approach has provably low-regret with respect to the data acquisition objective, and

we conjecture that this property translates to consistent performance across varying

configurations and data sets.

250 500 750 1000 1250 1500 1750 2000
Sample Size

74

76

78

80

82

84

Te
st

 A
cc

ur
ac

y
(%

)

FashionCNN, FashionMNIST

BatchBALD
Ours (BALD)
Uncertainty

Ours (Uncertainty)
Entropy
Ours (Entropy)

1000 1500 2000 2500 3000 3500 4000
Sample Size

55

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y
(%

)

SVHNCNN, SVHN

BatchBALD
Ours (BALD)
Uncertainty

Ours (Uncertainty)
Entropy
Ours (Entropy)

250 500 750 1000 1250 1500 1750 2000
Sample Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 L
os

s

FashionCNN, FashionMNIST
BatchBALD
Ours (BALD)
Uncertainty

Ours (Uncertainty)
Entropy
Ours (Entropy)

(a) FashionCNN

1000 1500 2000 2500 3000 3500 4000
Sample Size

0.6

0.8

1.0

1.2

Te
st

 L
os

s

SVHNCNN, SVHN
BatchBALD
Ours (BALD)
Uncertainty

Ours (Uncertainty)
Entropy
Ours (Entropy)

(b) SVHN

Figure 7-3: The performance of our algorithm when instantiated with informativeness metrics
from prior work compared to that of existing greedy approaches. Using AdaProd+ off-the-
shelf with the corresponding metrics took only a few lines of code and lead to strict gains in
performance on all evaluated benchmark data sets.

7.5.4 Boosting Prior Approaches

Despite the favorable results presented in the previous subsections, a lingering question

still remains: to what extent is our choice of the loss as the uncertainty metric

responsible for the effectiveness of our approach? More generally, can we expect our

algorithm to perform well off-the-shelf – and even lead to improvements over greedy

acquisition – with other choices for the loss? To investigate, we implement three

variants of our approach, Ours (Uncertainty), Ours (Entropy), and Ours

(BALD) that are instantiated with losses defined in terms of uncertainty, entropy,

BALD metrics respectively, and compare to their corresponding greedy variants

on SVHN and FashionMNIST. We note that the uncertainty loss corresponds to

ℓ𝑡,𝑖 = max𝑗 𝑓𝑡(𝑥𝑖)𝑗 ∈ [0, 1] and readily fits in our framework. For the Entropy and

193

BALD loss, the application is only slightly more nuanced in that we have to be careful

that losses are bounded in the interval [0, 1]. This can be done by scaling the losses

appropriately, e.g., by normalizing the losses for each round to be in [0, 1] or scaling

using a priori knowledge, e.g., the maximum entropy is log(𝑘) for a classification task

with 𝑘 classes.

The performance of the compared algorithms are shown in Fig. 7-3. Note that for

all evaluated data sets and metrics, our approach fares significantly better than its

greedy counterpart. In other words, applying AdaProd+ off-the-shelf with existing

informativeness measures leads to strict improvements compared to their greedy

variants. As seen from Fig. 7-3, our approach has potential to yield up to a 5%

increase in test accuracy, and in all cases, achieves significantly lower test loss.

1500 2000 2500 3000 3500 4000
Sample Size

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Te
st

 A
cc

ur
ac

y
(%

%
)

SVHNCNN, SVHN

Ours
Optimistic AMLProd
AdaNormalHedge
Squint

1500 2000 2500 3000 3500 4000
Sample Size

96.0

96.5

97.0

97.5

98.0

98.5

99.0

To
p

5
Te

st
 A

cc
ur

ac
y

(%
%

)

SVHNCNN, SVHN

Ours
Optimistic AMLProd
AdaNormalHedge
Squint

1500 2000 2500 3000 3500 4000
Sample Size

0.4

0.5

0.6

0.7

0.8

Te
st

 L
os

s

SVHNCNN, SVHN
Ours
Optimistic AMLProd
AdaNormalHedge
Squint

6000 8000 10000 12000 14000 16000 18000 20000
Sample Size

72

74

76

78

80

Te
st

 A
cc

ur
ac

y
(%

%
)

cnn5, CIFAR10

Ours
Optimistic AMLProd
AdaNormalHedge
Squint

6000 8000 10000 12000 14000 16000 18000 20000
Sample Size

97.8

98.0

98.2

98.4

98.6

98.8

99.0

To
p

5
Te

st
 A

cc
ur

ac
y

(%
%

)

cnn5, CIFAR10

Ours
Optimistic AMLProd
AdaNormalHedge
Squint

6000 8000 10000 12000 14000 16000 18000 20000
Sample Size

0.60

0.65

0.70

0.75

0.80

Te
st

 L
os

s

cnn5, CIFAR10
Ours
Optimistic AMLProd
AdaNormalHedge
Squint

Figure 7-4: Comparisons with competing algorithms for learning with prediction advice on the
SVHN (first row) and CIFAR10 (second row) data sets. In both scenarios, AdaProd* out-
performs the compared algorithms, and significantly improves on its predecessor, Optimistic
AMLProd, on both data sets and all evaluated metrics.

7.5.5 Comparison to Existing Expert Algorithms

In this section, we consider the performance of AdaProd+ relative to that of state-

of-the-art algorithms for learning with prediction advice. In particular, compare our

approach to Optimistic AMLProd [WHL17], AdaNormalHedge(.TV) [LS15],

and Squint(.TV) [KVE15] on the SVHN and CIFAR10 data sets. Fig. 7-4 depicts

the results of our evaluations. As the figures show, our approach outperforms the

194

compared approaches across both data sets in terms of all of the metrics considered.

AdaNormalHedge comes closest to our method in terms of performance. Notably,

the improved learning rate schedule (see Sec. 7.4) of AdaProd+ compared to that of

Optimistic AMLProd enables up to 3% improvements on test error on, e.g., SVHN

and 2% on CIFAR10.

7.6 Proofs and Full Analytical Details

In this section, we present the full proofs and technical details of the claims made in

Sec. 7.4. The outline of our analysis as follows. We first consider the base AdaProd+

algorithm (shown as Alg. 12), which is nearly the same algorithm as AdaProd+,

with the exception that it is meant to be a general purpose algorithm for a setting

with 𝐾 experts (𝐾 is not necessarily equal to the number of points 𝑛). We show

that this algorithm retains the original regret guarantees with respect to a stationary

competitor of Adapt-ML-Prod.

We then consider the thought experiment where we use this standard version of our

algorithm with the 𝐾 = 𝑛𝑇 sleeping experts reduction shown in [WHL17, GSVE14] to

obtain guarantees for adaptive regret. This leads us to the insight (as in [LS15, KVE15])

that we do not need to keep track of the full set of 𝐾 experts, and can instead keep

track of a much smaller (but growing) set of experts in an efficient way without

compromising the theoretical guarantees.

7.6.1 Recovering Optimistic Adapt-ML-Prod Guarantees for

Alg. 12

We begin by observing that Alg. 12 builds on the standard Optimistic Adapt-ML-Prod

algorithm [WHL17] by using a different initialization of the variables (Line 1) and

upper bound imposed on the learning rates (as in Alg. 11, and analogously, in Line 10

of Alg. 12). Hence, the proof is has the same structure as [WHL17, GSVE14], and

we prove all of the relevant claims (at times, in slightly different ways) below for

195

Algorithm 12 Base AdaProd+

1: For all 𝑖 ∈ [𝐾], 𝐶𝑖,0 ← 0; 𝜂0,𝑖 ←
√︀

log(𝐾)/2; 𝑤0,𝑖 = 1; 𝑟1,𝑖 = 0;
2: for each round 𝑡 ∈ [𝑇] do
3: 𝑝𝑡,𝑖 ← 𝜂𝑡−1,𝑖𝑤𝑡−1,𝑖 exp(𝜂𝑡−1,𝑖 𝑟𝑡,𝑖) for each 𝑖 ∈ [𝐾]
4: 𝑝𝑡,𝑖 ← 𝑝𝑡,𝑖/

∑︀
𝑗∈[𝐾] 𝑝𝑡,𝑗 for each 𝑖 ∈ [𝐾] ◁ Normalize

5: Adversary reveals ℓ𝑡 and we suffer loss ℓ̃𝑡 = ⟨ℓ𝑡, 𝑝𝑡⟩
6:
7: For all 𝑖 ∈ [𝐾], set 𝑟𝑡,𝑖 ← ℓ̃𝑡 − ℓ𝑡,𝑖
8: For all 𝑖 ∈ [𝐾], set 𝐶𝑡,𝑖 ← 𝐶𝑡−1,𝑖 + (𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)

2

9: Get prediction 𝑟𝑡+1 ∈ [−1, 1]𝐾 for next round (see Sec. 7.3.2)
10: For all 𝑖 ∈ [𝐾], update the learning rate

𝜂𝑡,𝑖 ← min

{︃
𝜂𝑡−1,𝑖,

2

3(1 + 𝑟𝑡+1,𝑖)
,

√︃
log(𝐾)

𝐶𝑡,𝑖

}︃

11: For all 𝑖 ∈ [𝐾], update the weights

𝑤𝑡,𝑖 ←
(︀
𝑤𝑡−1,𝑖 exp

(︀
𝜂𝑡−1,𝑖𝑟𝑡,𝑖 − 𝜂2𝑡−1,𝑖(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)

2
)︀)︀𝜂𝑡,𝑖/𝜂𝑡−1,𝑖

clarity and completeness. We proceed with our key lemma about the properties of the

learning rates.

Lemma 44 (Properties of Learning Rates). Assume that the losses are bounded

ℓ𝑡 ∈ [0, 1]𝐾 and that the learning rates 𝜂𝑡,𝑖 are set according to Line 10 of Alg. 12 for

all 𝑡 ∈ [𝑇] and 𝑖 ∈ [𝐾], i.e.,

𝜂𝑡,𝑖 ← min

{︃
𝜂𝑡−1,𝑖,

2

3(1 + 𝑟𝑡+1,𝑖)
,

√︃
log(𝐾)

𝐶𝑡,𝑖

}︃
.

Then, all of the following hold for all 𝑡 ∈ [𝑇] and 𝑖 ∈ [𝐾]:

1. 𝜂𝑡,𝑖(𝑟𝑡+1,𝑖 − 𝑟𝑡+1,𝑖)− 𝜂2𝑡,𝑖(𝑟𝑡+1,𝑖 − 𝑟𝑡+1,𝑖)
2 ≤ log (1 + 𝜂𝑡,𝑖(𝑟𝑡+1,𝑖 − 𝑟𝑡+1,𝑖)) ,

2. 𝑥 ≤ 𝑥𝜂𝑡,𝑖/𝜂𝑡+1,𝑖 + 1− 𝜂𝑡+1,𝑖

𝜂𝑡,𝑖
∀𝑥 ≥ 0,

3. 𝜂𝑡,𝑖−𝜂𝑡+1,𝑖

𝜂𝑡,𝑖
≤ log(𝜂𝑡,𝑖/𝜂𝑡+1,𝑖) .

196

Proof. For the first claim, observe that the range of admissible values in the original

Prod inequality [CBL06]

∀𝑥 ≥ −1/2 𝑥− 𝑥2 ≤ log(1 + 𝑥)

can be improved3 to ∀𝑥 ≥ −2/3. Now let 𝑥 = 𝜂𝑡,𝑖(𝑟𝑡+1,𝑖 − 𝑟𝑡+1,𝑖), and observe that

since ℓ𝑡 ∈ [0, 1]𝐾 , we have 𝑟𝑡+1,𝑖 = ⟨𝑝𝑡+1, ℓ𝑡+1⟩ − ℓ𝑡+1 ∈ [−1, 1], and so

𝑥 ≥ 𝜂𝑡,𝑖(−1− 𝑟𝑡+1,𝑖) = −𝜂𝑡,𝑖(1 + 𝑟𝑡+1,𝑖)

≥ −2/3,

where in the last inequality we used the upper bound on 𝜂𝑡,𝑖 ≤ 2/(3(1 + 𝑟𝑡+1,𝑖) which

holds by definition of the learning rates.

For the second claim, recall Young’s inequality4 which states that for non-negative

𝑎, 𝑏, and 𝑝 ≥ 1,

𝑎𝑏 ≤ 𝑎𝑝/𝑝 + 𝑏𝑝/(𝑝−1)(1− 1/𝑝).

For our application, we set 𝑎 = 𝑥, 𝑏 = 1, and 𝑝 = 𝜂𝑡,𝑖/𝜂𝑡+1,𝑖. Observe that 𝑝 is indeed

greater than 1 since the learning rates are non-increasing over time (i.e., 𝜂𝑡+1,𝑖 ≤ 𝜂𝑡,𝑖

for all 𝑡 and 𝑖) by definition. Applying Young’s inequality, we obtain

𝑥 ≤ 𝑥𝜂𝑡,𝑖/𝜂𝑡+1,𝑖(𝜂𝑡+1,𝑖/𝜂𝑡,𝑖) +
𝜂𝑡,𝑖 − 𝜂𝑡+1,𝑖

𝜂𝑡,𝑖
,

and the claim follows by the fact that the learning rates are non-increasing.

For the final claim, observe that the derivative of log(𝑥) is 1/𝑥, and so by the mean

value theorem we know that there exists 𝑐 ∈ [𝜂𝑡+1,𝑖, 𝜂𝑡,𝑖] such that

log(𝜂𝑡,𝑖)− log(𝜂𝑡+1,𝑖)

𝜂𝑡,𝑖 − 𝜂𝑡+1,𝑖

=
1

𝑐
.

3By inspection of the root of the function 𝑔(𝑥) = log(1 + 𝑥)− 𝑥+ 𝑥2 closest to 𝑥 = −1/2, which
we know exists since 𝑔(−1/2) > 0 while 𝑔(−1) < 0.

4This follows by taking logarithms and using the concavity of the logarithm function.

197

Rearranging and using 𝑐 ≤ max{𝜂𝑡,𝑖, 𝜂𝑡+1,𝑖} = 𝜂𝑡,𝑖, we obtain

log(𝜂𝑡,𝑖/𝜂𝑡+1,𝑖) =
𝜂𝑡,𝑖 − 𝜂𝑡+1,𝑖

𝑐
≥ 𝜂𝑡,𝑖 − 𝜂𝑡+1,𝑖

𝜂𝑡,𝑖
.

Having established our helper lemma, we now proceed to bound the regret with respect

to a single expert as in [WHL17, GSVE14]. The main statement is given by the lemma

below.

Lemma 45 (Base AdaProd+ Static Regret Bound). The static regret of Alg. 12

with respect to any expert 𝑖 ∈ [𝐾],
∑︀

𝑡 𝑟𝑡,𝑖, is bounded by

𝒪
(︁

log𝐾 + log log 𝑇 + (
√︀

log𝐾 + log log 𝑇)
√︀

𝐶𝑇,𝑖

)︁
,

where 𝐶𝑇,𝑖 =
∑︀

𝑡∈[𝑇](𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2.

Proof. Consider 𝑊𝑡 =
∑︀

𝑖∈[𝐾] 𝑤𝑡,𝑖 to be the sum of potentials at round 𝑡. We will first

show an upper bound on the potentials and then show that this sum is an upper

bound on the regret of any expert (plus some additional terms). Combining the upper

and lower bounds will lead to the statement of the lemma. To this end, we first show

that the sum of potentials does not increase too much from round 𝑡 to 𝑡+ 1. To do so,

we apply (2) from Lemma 44 with 𝑥 = 𝑤𝑡+1,𝑖 to obtain for each 𝑤𝑡+1,𝑖

𝑤𝑡+1,𝑖 ≤ 𝑤
𝜂𝑡,𝑖/𝜂𝑡+1,𝑖

𝑡+1,𝑖 +
𝜂𝑡,𝑖 − 𝜂𝑡+1,𝑖

𝜂𝑡,𝑖
.

Now consider the first term on the right hand side above and note that

𝑤
𝜂𝑡,𝑖/𝜂𝑡+1,𝑖

𝑡+1,𝑖 = 𝑤𝑡,𝑖 exp
(︀
𝜂𝑡,𝑖𝑟𝑡+1,𝑖 − 𝜂2𝑡,𝑖(𝑟𝑡+1,𝑖 − 𝑟𝑡+1,𝑖)

2
)︀

= 𝑤𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖) exp
(︀
𝜂𝑡,𝑖(𝑟𝑡+1,𝑖 − 𝑟𝑡+1,𝑖)− 𝜂2𝑡,𝑖(𝑟𝑡+1,𝑖 − 𝑟𝑡+1,𝑖)

2
)︀

≤ 𝑤𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖) (1 + 𝜂𝑡,𝑖(𝑟𝑡+1,𝑖 − 𝑟𝑡+1,𝑖))

198

= 𝑤𝑡,𝑖𝜂𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖)𝑟𝑡+1,𝑖 + 𝑤𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖) (1− 𝜂𝑡,𝑖𝑟𝑡+1,𝑖)⏟ ⏞
≤exp(−𝜂𝑡,𝑖𝑟𝑡+1,𝑖)

≤ 𝑤𝑡,𝑖𝜂𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖)⏟ ⏞
∝𝑝𝑡+1,𝑖

𝑟𝑡+1,𝑖 + 𝑤𝑡,𝑖,

where we applied (1) of Lemma 44. As the brace above shows, the first part of the

first expression on the right hand side is proportional to 𝑝𝑡+1,𝑖 by construction (see

Line 3 in Alg. 12). Recalling that 𝑟𝑡+1,𝑖 = ⟨𝑝𝑡+1, ℓ𝑡+1⟩ − ℓ𝑡+1,𝑖, we have by dividing and

multiplying by the normalization constant,

∑︁
𝑖∈[𝐾]

𝑤𝑡,𝑖𝜂𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖)𝑟𝑡+1,𝑖 =

⎛⎝∑︁
𝑖∈[𝐾]

𝑤𝑡,𝑖𝜂𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖)

⎞⎠∑︁
𝑖∈[𝐾]

𝑝𝑡+1,𝑖𝑟𝑡+1,𝑖 = 0,

since
∑︀

𝑖∈[𝐾] 𝑝𝑡+1,𝑖𝑟𝑡+1,𝑖 = 0. This shows that
∑︀

𝑖∈[𝐾] 𝑤
𝜂𝑡,𝑖/𝜂𝑡+1,𝑖

𝑡+1,𝑖 ≤
∑︀

𝑖∈[𝐾] 𝑤𝑡,𝑖 = 𝑊𝑡.

Putting it all together and applying (3) from Lemma 44 to bound 𝜂𝑡,𝑖−𝜂𝑡+1,𝑖

𝜂𝑡,𝑖
, we obtain

for the sum of potentials for 𝑡 ∈ [𝑇]:

𝑊𝑡+1 ≤ 𝑊𝑡 +
∑︁
𝑖∈[𝐾]

log(𝜂𝑡,𝑖/𝜂𝑡+1,𝑖).

A subtle issue is that for 𝑡 = 0, we have 𝜂0,𝑖 =
√︀

log(𝐾)/2 for all 𝑖 ∈ [𝑛], which means

that we cannot apply (1) of Lemma 44. So, we have to bound the change in potentials

between 𝑊1 and 𝑊0. Fortunately, since this only occurs at the start, we can use the

rough upper bound exp(𝑥− 𝑥2) = exp(𝑥(1− 𝑥)) ≤ exp(1/4) ≤ 1.285, which holds for

all 𝑥 ∈ R, to obtain for 𝑡 = 0

𝑤
𝜂𝑡,𝑖/𝜂𝑡+1,𝑖

𝑡+1,𝑖 ≤ 𝑤𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖) exp(1/4)

= 𝑤𝑡,𝑖(1− 𝜂𝑡,𝑖𝑟𝑡+1,𝑖 + 𝜂𝑡,𝑖𝑟𝑡+1,𝑖) exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖) exp(1/4)

≤ 𝑤𝑡,𝑖(exp(−𝜂𝑡,𝑖𝑟𝑡+1,𝑖) + 𝜂𝑡,𝑖𝑟𝑡+1,𝑖) exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖) exp(1/4)

= exp(1/4)𝑤𝑡,𝑖 + 𝑟𝑡+1,𝑖 exp(1/4)𝑤𝑡,𝑖𝜂𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖)⏟ ⏞
∝𝑝𝑡+1,𝑖

,

199

where we used 1− 𝑥 ≤ exp(−𝑥). Summing the last expression we obtained across all

𝑖 ∈ [𝐾], we have for 𝑡 = 0

∑︁
𝑖∈[𝐾]

𝑤
𝜂𝑡,𝑖/𝜂𝑡+1,𝑖

𝑡+1,𝑖 ≤
∑︁
𝑖∈[𝐾]

exp(1/4)𝑤𝑡,𝑖,

where we used the fact that
∑︀

𝑖∈[𝐾] 𝑟𝑡+1,𝑖𝑤𝑡,𝑖𝜂𝑡,𝑖 exp(𝜂𝑡,𝑖𝑟𝑡+1,𝑖) = 0 by definition of our

predictions. Putting it all together, we obtain 𝑊1 ≤ exp(1/4)𝑊0 = exp(1/4)𝐾 given

that 𝑊0 = 𝐾.

We can now unroll the recursion in light of the above to obtain

𝑊𝑇 ≤ 𝐾 exp(1/4) +
∑︁
𝑡∈[𝑇]

∑︁
𝑖∈[𝐾]

log(𝜂𝑡,𝑖/𝜂𝑡+1,𝑖)

= 𝐾 exp(1/4) +
∑︁
𝑖∈[𝐾]

∑︁
𝑡∈[𝑇]

log(𝜂𝑡,𝑖/𝜂𝑡+1,𝑖)

= 𝐾 exp(1/4) +
∑︁
𝑖∈[𝐾]

log

⎛⎝ ∏︁
𝑡+1∈[𝑇]

𝜂𝑡,𝑖/𝜂𝑡+1,𝑖

⎞⎠
= 𝐾 exp(1/4) +

∑︁
𝑖∈[𝐾]

log(𝜂0,𝑖/𝜂𝑇,𝑖)

≤ 𝐾

(︂
exp(1/4) + log

(︂
max
𝑖∈[𝐾]

√︀
𝐶𝑇,𝑖

)︂)︂
≤ 𝐾 (exp(1/4) + log(4𝑇)/2) .

Now, we establish a lower bound for 𝑊𝑡 in terms of the regret with respect to any

expert 𝑖 ∈ [𝐾]. Taking the logarithm and using the fact that the potentials are always

non-negative, we can show via a straightforward induction (as in [GSVE14]) that

log(𝑊𝑇) ≥ log(𝑤𝑇,𝑖) ≥ 𝜂𝑇,𝑖
∑︁
𝑡∈[𝑇]

(𝑟𝑡,𝑖 − 𝜂𝑡−1,𝑖(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2).

200

Rearranging, and using the upper bound on 𝑊𝑇 from above, we obtain

∑︁
𝑡∈[𝑇]

𝑟𝑡,𝑖 ≤ 𝜂−1
𝑇,𝑖 log

(︂
𝐾(1 + log(max

𝑖∈[𝐾]

√︀
1 + 𝐶𝑇,𝑖)

)︂
+
∑︁
𝑡∈[𝑇]

𝜂𝑡−1,𝑖(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2. (7.2)

For the first term in (7.2), consider the definition of 𝜂𝑇,𝑖 and note that 𝜂𝑇,𝑖 ≥

min{1/3, 𝜂𝑇−1,𝑖,
√︀

log(𝐾)/(𝐶𝑇,𝑖)} since 𝑟𝑇+1,𝑖 ≤ 1. Now to lower bound 𝜂𝑇,𝑖, con-

sider the claim that 𝜂𝑡,𝑖 ≥ min{1/3,
√︀

log(𝐾)/(𝐶𝑇,𝑖)}. Note that this claim holds

trivially for the base cases where 𝑡 = 0 and 𝑡 = 1 since the learning rates are initialized

to 1 and our optimistic predictions can be at most 1. By induction, we see that if this

claim holds at time step 𝑡, we have for time step 𝑡 + 1

𝜂𝑡+1,𝑖 ≥ min{1/3, 𝜂𝑡,𝑖,
√︁

log(𝐾)/(𝐶𝑡+1,𝑖)} ≥ min{1/3, 𝜂𝑡,𝑖,
√︁

log(𝐾)/(𝐶𝑇,𝑖)}

= min{𝜂𝑡,𝑖,min{1/3,
√︁

log(𝐾)/(𝐶𝑇,𝑖)}}

≥ min

{︂
min{1/3,

√︁
log(𝐾)/(𝐶𝑇,𝑖)},min{1/3,

√︁
log(𝐾)/(𝐶𝑇,𝑖)}

}︂
= min{1/3,

√︁
log(𝐾)/(𝐶𝑇,𝑖)}.

Hence, we obtain 𝜂𝑇,𝑖 ≥ min{1/3, 𝐶𝑇,𝑖}, and this implies that (by the same reasoning

as in [GSVE14]) that

𝜂−1
𝑇,𝑖 log

(︂
𝐾(1 + log(max

𝑖∈[𝐾]

√︀
𝐶𝑇,𝑖)

)︂
≤ 𝒪

(︁
(
√︀

log𝐾 + log log 𝑇)
√︀
𝐶𝑇,𝑖 + log𝐾

)︁
.

Now to bound the second term in (7.2),
∑︀

𝑡∈[𝑇] 𝜂𝑡−1,𝑖(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2, we deviate from the

analysis in [WHL17] in order to show that the improved learning schedule without

the dampening term in the denominator suffices. To this end, we first upper bound

𝜂𝑡−1,𝑖 as follows

𝜂𝑡−1,𝑖 ≤ min

{︃
𝜂0,𝑖,

2

3(1 + 𝑟𝑡,𝑖)
,

√︃
log(𝐾)

𝐶𝑡−1,𝑖

}︃

≤ min

{︃
𝜂0,𝑖,

√︃
log(𝐾)

𝐶𝑡−1,𝑖

}︃

201

= min

{︃
𝜂0,𝑖, 𝜂0,𝑖

√︃
2

𝐶𝑡−1,𝑖

}︃

where first inequality follows from the fact that the learning rates are monotonically

decreasing, the second inequality from the definition of min, the last equality by

definition 𝜂0,𝑖 =
√︀

log(𝐾)/2.

By the fact that the minimum of two positive numbers is less than its harmonic mean5,

we have

𝜂𝑡−1,𝑖 ≤
2
√

2𝜂0,𝑖√
2 +

√︀
𝐶𝑡−1,𝑖

,

and so

(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2𝜂𝑡−1,𝑖 ≤ 𝑐𝑡,𝑖

2
√

2𝜂0,𝑖√
2 +

√︀
𝐶𝑡−1,𝑖

= 8
√

2𝜂0,𝑖
(𝑐𝑡,𝑖/4)√

2 + 2
√︀

𝐶𝑡−1,𝑖/4

≤ 4
√

2𝜂0,𝑖
(𝑐𝑡,𝑖/4)√︀

1/2 + 𝐶𝑡−1,𝑖/4
,

where we used the subadditivity of the square root function in the last step.

Summing over all 𝑡 ∈ [𝑇] and applying Lemma 14 of [GSVE14] on the scaled variables

𝑐𝑡,𝑖/4 ∈ [0, 1], we obtain

∑︁
𝑡∈[𝑇]

𝜂𝑡−1,𝑖(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2 ≤ 4

√
2𝜂0,𝑖

∑︁
𝑡∈[𝑇]

√︀
𝐶𝑇,𝑖

= 4
√︀

𝐶𝑇,𝑖 log𝐾,

where in the last equality we used the definition of 𝜂𝑖,0 and 𝐶𝑇,𝑖 =
∑︀

𝑡∈[𝑇](𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2

as before, and this completes the proof.

5min{𝑎, 𝑏} = min{𝑎−1, 𝑏−1}−1 ≤ (12 (𝑎
−1 + 𝑏−1))−1 = 2/(1/𝑎+ 1/𝑏)

202

7.6.2 Adaptive Regret

We now turn to establishing adaptive regret bounds via the sleeping experts reduction

as in [WHL17, LS15] using the reduction of [GSVE14]. The overarching goal is to

establish an adaptive bound for the regret of every time interval [𝑡1, 𝑡2], 𝑡1, 𝑡2 ∈ [𝑇],

which is a generalization of the static regret which corresponds to the regret over the

interval [1, 𝑇]. To do so, in the setting of 𝑛 experts as in the main document, the

main idea is to run the base algorithm (Alg. 12) on 𝐾 = 𝑛𝑇 sleeping experts instead6.

These experts will be indexed by (𝑡, 𝑖) with 𝑡 ∈ [𝑇] and 𝑖 ∈ [𝑛]. Moreover, at time

step 𝑡, each expert (𝑠, 𝑖) is defined to be awake if 𝑠 ≤ 𝑡, 𝑖 ∈ [𝑛] and ℐ𝑡,𝑖 = 1 (the point

has not yet been sampled, see Sec. 7.2), and the remaining experts will be considered

sleeping. This will generate a probability distribution 𝑝𝑡,(𝑠,𝑖) over the awake experts.

Using this distribution, at round 𝑡 we play

𝑝𝑡,𝑖 = ℐ𝑡,𝑖
∑︁
𝑠∈[𝑡]

𝑝𝑡,(𝑠,𝑖)/𝑍𝑡,

where 𝑍𝑡 =
∑︀

𝑗∈[𝐾] ℐ𝑡,𝑗
∑︀

𝑠′∈[𝑡] 𝑝𝑡,(𝑠′,𝑗).

The main idea is to construct losses to give to the base algorithm so that that at any

point 𝑡 ∈ [𝑇], each expert (𝑠, 𝑖) suffers the interval regret from 𝑠 to 𝑡 (which is defined

to be 0 if 𝑠 > 𝑡), i.e.,
∑︀𝑡

𝜏=1 𝑟𝜏,(𝑠,𝑖) =
∑︀𝑡

𝜏=𝑠 𝑟𝜏,𝑖. To do so, we build on the reduction

of [WHL17] to keep track of both the sleeping experts from the sense of achieving

adaptive regret and also the traditional sleeping experts regret with respect to only

those points that are not yet labeled (as in Sec. 7.2). The idea is to apply the base

algorithm (Alg. 12) with the modified loss vectors ℓ̄𝑡,(𝑠,𝑖) for expert (𝑠, 𝑖) as the original

loss if the expert is awake, i.e., ℓ̄𝑡,(𝑠,𝑖) = ℓ𝑡,𝑖 if 𝑠 ≤ 𝑡 (original reduction in [WHL17])

and ℐ𝑡,𝑖 = 1 (the point has not yet been sampled), and ℓ̄𝑡,(𝑠,𝑖) = ⟨𝑝𝑡,𝑖, ℓ𝑡⟩ otherwise.

The prediction vector is defined similarly: 𝑟𝑡,(𝑠,𝑖) = 𝑟𝑡,𝑖 if 𝑠 ≤ 𝑡, and 0 otherwise.

Note that this construction implies that the regret of the base algorithm with respect

6Note that this notion of sleeping experts is the same as the one we used for dealing with
constructing a distribution over only the unlabeled data points remaining.

203

to the modified losses and predictions, i.e., 𝑟𝜏,(𝑠,𝑖) = ⟨𝑝𝜏,(𝑠,𝑖), ℓ̄𝜏,(𝑠,𝑖)⟩ is equivalent to 𝑟𝜏,𝑖

for rounds 𝜏 > 𝑠 where the expert is awake, and 0 otherwise. Thus,

∑︁
𝜏∈[𝑡]

𝑟𝜏,(𝑠,𝑖) =
𝑡∑︁

𝜏=𝑠

𝑟𝜏,𝑖,

which means that the regret of expert (𝑠, 𝑖) with respect to the base algorithm is

precisely regret of the interval [𝑠, 𝑡]. Applying Lemma 45 to this reduction above

(with 𝐾 = 𝑛𝑇) immediately recovers the adaptive regret guarantee of Optimisic

Adapt-ML-Prod.

Lemma 46 (Adaptive Regret of Base AdaProd+). For any 𝑡1 ≤ 𝑡2 and 𝑖 ∈ [𝑛],

invoking Alg. 12 with the sleeping experts reduction described above ensures that

𝑡2∑︁
𝑡=𝑡1

𝑟𝑡,𝑖 ≤ 𝒪̂
(︁

log(𝐾) +
√︁
𝐶𝑡2,(𝑡1,𝑖) log(𝐾)

)︁
,

where 𝐶𝑡2,(𝑡1,𝑖) =
∑︀𝑡2

𝑡=𝑡1
(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)

2 and 𝒪̂ suppresses log 𝑇 factors.

7.6.3 AdaProd+ and Dynamic Regret

To put it all together, we relax to requirement of having to update and keep track of

𝐾 = 𝑁𝑇 experts and having to know 𝑇 . To do so, observe that log(𝐾) ≤ log(𝑛𝑇) ≤

2 log(𝑛) since 𝑇 ≤ 𝑛/min𝑡∈[𝑇] 𝑏𝑡 ≤ 𝑛, where 𝑏𝑡 ≥ 1 is the number of new points to

label at active learning iteration 𝑡. This removes the requirement of having to know 𝑇

or the future batch sizes beforehand, meaning that we can set the numerator of 𝜂𝑡,(𝑠,𝑖)

to be
√︀

2 log(𝑛) instead of
√︀

log(𝐾) (as in 11 in Sec. 7.3). Next, observe that in the

sleeping experts reduction above, we have

𝑝𝑡,𝑖 = ℐ𝑡,𝑖
∑︁
𝑠∈[𝑡]

𝑝𝑡,(𝑠,𝑖)/𝑍𝑡,

where 𝑍𝑡 =
∑︀

𝑗∈[𝐾] ℐ𝑡,𝑗
∑︀

𝑠′∈[𝑡] 𝑝𝑡,(𝑠′,𝑗). But for 𝑠 ≤ 𝑡 and 𝑗 ∈ [𝑛] satisfying ℐ𝑡,𝑗 = 1,

by definition of 𝑝𝑡,(𝑠,𝑗) and the fact that expert (𝑠, 𝑗) is awake, we have 𝑝𝑡,(𝑠,𝑗) ∝

204

𝜂𝑡−1,(𝑠,𝑗)𝑤𝑡−1,(𝑠,𝑗) exp(𝜂𝑡−1,(𝑠,𝑗)𝑟𝑡,𝑗), and so the normalization constant cancels from the

numerator (from 𝑝𝑡,(𝑠,𝑗)) and the denominator (from the 𝑝𝑡,(𝑠′,𝑗) in 𝑍𝑡 =
∑︀

𝑗∈[𝐾] ℐ𝑡,𝑗
∑︀

𝑠′∈[𝑡] 𝑝𝑡,(𝑠′,𝑗)),

leaving us with

𝑝𝑡,𝑖 =
∑︁
𝑠∈[𝑡]

𝜂𝑡−1,(𝑠′,𝑗)𝑤𝑡−1,(𝑠′,𝑗) exp(𝜂𝑡−1,(𝑠′,𝑗)𝑟𝑡,𝑗)

𝛾𝑡
,

where 𝛾𝑡 =
∑︀

𝑗∈[𝐾]

∑︀
𝑠′∈[𝑡] 𝜂𝑡−1,(𝑠′,𝑗)𝑤𝑡−1,(𝑠′,𝑗) exp(𝜂𝑡−1,(𝑠′,𝑗)𝑟𝑡,𝑗). Note that this corre-

sponds precisely to the probability distribution played by AdaProd+. Further, since

AdaProd+ does not explicitly keep track of the experts that are asleep, and only

updates the potentials 𝑊𝑡,(𝑠,𝑖) of those experts that are awake, AdaProd+ mimics

the updates of the reduction described above7 involving passing of the modified losses

to the base algorithm. Thus, we can conclude that AdaProd+ leads to the same

updates and generated probability distributions as the base algorithm for adaptive

regret. This discussion immediately leads to the following lemma for the adaptive

regret of our algorithm, very similar to the one established above except for log 𝑛

replacing log 𝑇 terms.

Lemma 47 (Adaptive Regret of AdaProd+). For any 𝑡1 ≤ 𝑡2 and 𝑖 ∈ [𝑛], Alg. 11

ensures that

𝑡2∑︁
𝑡=𝑡1

𝑟𝑡,𝑖 ≤ 𝒪
(︁

log 𝑛 + log log 𝑛 + (
√︀

log 𝑛 + log log 𝑛)
√︀
𝐶𝑡2,(𝑡1,𝑖)

)︁
,

where 𝐶𝑡2,(𝑡1,𝑖) =
∑︀𝑡2

𝑡=𝑡1
(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)

2.

Finally, applying the reduction from adaptive to dynamic regret (Theorem 4 of [LS15])

and bounding

(𝑟𝑡,𝑖 − 𝑟𝑡,𝑖)
2 ≤ 2(⟨𝑝𝑡,𝑖, ℓ𝑡,𝑖⟩ − ⟨𝑝𝑡,𝑖, ℓ𝑡−1,𝑖⟩)2 + 2(ℓ𝑡,𝑖 − ℓ𝑡−1,𝑖)

2 ≤ 4 ‖ℓ𝑡 − ℓ𝑡−1‖2∞

by applying Hölder’s inequality twice, we obtain Theorem 43 from Sec. 7.4.

7The only minor change is in the constant in the learning rate schedule of AdaProd+ which has
a
√︀
2 log(𝑛) term instead of

√︀
log(𝑛𝑇) ≤

√︀
2 log(𝑛). This only affects the regret bounds by at most

a factor of
√
2, and the reduction remains valid – it would be analogous to running Alg. 12 on a set

of 𝑛2 ≥ 𝑛𝑇 experts instead.

205

7.7 Implementation Details and Batch Sampling

To sample a batch of 𝑏 points at step 𝑡, we first apply a capping algorithm to the

probability distribution 𝑝𝑡 computed by AdaProd+ to generate 𝑝𝑡. This capping is

more rigorously the information projection (i.e., projection with respect to the KL

Divergence) to the capped simplex constraining the probabilities to be at most 1
𝑏

where 𝑏 is the batch size [WK08]. This projection can be performed by a sort and

iterative capping algorithm as described in [WK08, UNK10] (𝒪(𝑛 log 𝑛) time total).

After obtaining 𝑝𝑡, we compute the scaled probability 𝑝𝑡 = 𝑏𝑝𝑡 satisfying 𝑝𝑡 ∈ [0, 1]𝑛

and
∑︀

𝑗 𝑝𝑡,𝑗 = 𝑏. Now, to sample 𝑏 points according to 𝑝𝑡, we use use the DepRound

algorithm [UNK10] shown as Alg. 13, which takes 𝒪(𝑛) time.

Algorithm 13 DepRound
Inputs: Subset size 𝑚, probabilities 𝑝 ∈ [0, 1]𝑛 such that

∑︀
𝑖 𝑝𝑖 = 𝑚

Output: set of indices 𝒞 ⊂ [𝑛] of size 𝑚

1: while ∃𝑖 ∈ [𝑛] such that 0 < 𝑝𝑖 < 1 do
2: Pick 𝑖, 𝑗 ∈ [𝑛] satisfying 𝑖 ̸= 𝑗, 0 < 𝑝𝑖 < 1, and 0 < 𝑝𝑗 < 1
3: Set 𝛼 = min(1− 𝑝𝑖, 𝑝𝑗) and 𝛽 = min(𝑝𝑖, 1− 𝑝𝑗)
4: Update 𝑝𝑖 and 𝑝𝑗

5: (𝑝𝑖, 𝑝𝑗) =

{︃
(𝑝𝑖 + 𝛼, 𝑝𝑗 − 𝛼) with probability 𝛽

𝛼+𝛽
,

(𝑝𝑖 − 𝛽, 𝑝𝑗 + 𝛽) with probability 1− 𝛽
𝛼+𝛽

.

6: 𝒞 ← {𝑖 ∈ [𝑛] : 𝑝𝑖 = 1}
7: return 𝒞

In all of our empirical evaluations, the original probabilities generated by AdaProd+

were already less than 1/𝑏, so the capping procedure did not get invoked. We conjecture

that this may be a natural consequence of the active learning setting, where we are

attempting to incrementally build up a small set of labeled data among a very large

pool of unlabeled ones, i.e., 𝑏 ≪ 𝑛. This description also aligns with the relatively

small batch sizes widely used in active learning literature as benchmarks [GSS19,

AZK+19, RXC+20, SS17a, Mut19].

The focus of our work is not on the full extension of Adapt-ML-Prod [WHL17] to the

batch setting, however, we summarize some of our ongoing and future work here for

the interested reader. If we assume that the probabilities generated by AdaProd+

206

satisfy 𝑝𝑡,𝑖 ≤ 1/𝑏, which is a mild assumption in the active learning setting as evidenced

by our evaluations, our analysis suggests that the regret bounds we derived in the

previous section scale by a factor of 𝒪̃(
√
𝑏) by Cauchy-Schwarz for the regret defined

with respect to sampling a batch of 𝑏 points at each time step. Our ongoing work

includes relaxing the assumption 𝑝𝑡,𝑖 ≤ 1/𝑏 by building on techniques from prior work,

such as by exploiting the inequalities associated with the Information (KL divergence)

Projection as in [WK08] or capping the weight potential 𝑤𝑖,𝑡 as in [UNK10] as soon

as weights get too large (rather than modifying the probabilities). Based on our

preliminary analysis, we conjecture that the same regret bound as the 𝒪̃(
√
𝑏)-scaled

bound holds asymptotically (ignoring log 𝑛 and log 𝑇 factors) for AdaProd+ in the

batch setting without this assumption. Formalizing this extension rigorously is an

avenue for future work.

7.8 Experimental Setup & Additional Evaluations

In this section we (i) describe the experimental setup and detail hyper-parameters

used for our experiments and (ii) provide additional evaluations and comparisons to

supplement the results presented.

7.8.1 Setup

Table 7.1 depicts the hyperparameters used for training the network architectures used

in our experiments. Given an active learning configuration (Option, 𝑛start, 𝑏, 𝑛end),

these parameters describe the training process for each choice of Option as follows:

Incremental : we start the active learning process by acquiring and labeling

𝑛start points chosen uniformly at random from the 𝑛 unlabeled data points, and we

train with the corresponding number of epochs and learning rate schedule listed in

Table 7.1 under rows epochs and lr decay, respectively, to obtain 𝜃1. We then proceed

as in Alg. 10 to iteratively acquire 𝑏 new labeled points based on the Acquire function

and incrementally train a model starting from the model from the previous iteration,

207

FashionCNN SVHNCNN Resnet18 CNN5 (width=128)
loss cross-entropy cross-entropy cross-entropy cross-entropy

optimizer Adam Adam SGD Adam
epochs 60 60 80 60

epochs incremental 15 15 N/A 15
batch size 128 128 256 128

learning rate (lr) 0.001 0.001 0.1 0.001
lr decay 0.1@(50) 0.1@(50) 0.1@(30, 60) 0.1@(50)

lr decay incremental 0.1@(10) 0.1@(10) N/A 0.1@(10)
momentum N/A N/A 0.9 N/A
Nesterov N/A N/A No N/A

weight decay 0 0 1.0e-4 0

Table 7.1: We report the hyperparameters used during training the convolutional architectures
listed above corresponding to our evaluations on FashionMNIST, SVHN, CIFAR10, and
ImageNet. except for the ones indicated in the lower part of the table. The notation
𝛾@(𝑛1, 𝑛2, . . .) denotes the learning rate schedule where the learning rate is multiplied by
the factor 𝛾 at epochs 𝑛1, 𝑛2, . . . (this corresponds to MultiStepLR in PyTorch).

𝜃𝑡−1. This training is done with respect to the number of corresponding epochs and

learning rate schedule shown in Table 7.1 under epochs incremental and lr decay

incremental, respectively.

Scratch : the only difference relative to the Incremental setting is that rather

than training the model starting from 𝜃𝑡−1, we train a model from a randomly initialized

network at each active learning iteration with respect to the training parameters under

epochs and lr decay in Table 7.1.

Architectures We used the following convolutional networks on the specified data

sets.

1. FashionCNN [Pan18] (for FashionMNIST): a network with 2 convolutional layers

with batch normalization and max pooling, 3 fully connected layers, and one

dropout layer with 𝑝 = 0.25 in [Pan18]. This architecture achieves over 93%

accuracy when trained with the whole data set.

2. SVHNCNN [Che20] (for SVHN): a small scale convolutional model very similar

208

to FashionCNN except there is no dropout layer.

3. Resnet18 [HZRS16] (for ImageNet): an 18 layer residual network with batch

normalization.

4. CNN5 [NKB+19] (for CIFAR10): a 5-layer convolutional neural network with 4

convolutional layers with batch normalization. We used the width=128 setting

in the context of [NKB+19].

10 15 20 25 30 35 40 45
Sample Size (Thousand)

5

10

15

20

25

Te
st

 A
cc

ur
ac

y
(%

)

resnet18, ImageNet
Ours
Uncertainty
Entropy

10 15 20 25 30 35 40 45
Sample Size (Thousand)

10

20

30

40

50
To

p
5

Te
st

 A
cc

ur
ac

y
(%

)
resnet18, ImageNet

Ours
Uncertainty
Entropy

10 15 20 25 30 35 40 45
Sample Size (Thousand)

4

6

8

10

12

14

16

18

Te
st

 L
os

s

resnet18, ImageNet
Ours
Uncertainty
Entropy

100 200 300 400 500
Sample Size

65

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

FashionCNN, FashionMNIST

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(a) Top-1 test accuracy

100 200 300 400 500
Sample Size

95

96

97

98

99

To
p

5
Te

st
 A

cc
ur

ac
y

(%
)

FashionCNN, FashionMNIST

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(b) Top-5 test accuracy

100 200 300 400 500
Sample Size

0.8

1.0

1.2

1.4

1.6

1.8

Te
st

 L
os

s

FashionCNN, FashionMNIST
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(c) Top-5 test accuracy

Figure 7-5: Results for the data-starved configuration (Scratch, 5𝑘, 5𝑘, 45𝑘) on ImageNet
(first row) and (Scratch, 50, 10, 500) on FashionMNIST (second row). Shown from left to
right are the results with respect to test accuracy, top-5 test accuracy, and test loss. Shaded
region corresponds to values within one standard deviation of the mean.

Settings for experiments in Sec. 7.5 Prior to presenting additional results and

evaluations in the next subsections, we specify the experiment configurations used for

the experiments shown in the main document (Sec. 7.5). For the corresponding exper-

iments in Fig. 7-1, we evaluated on the configuration (Scratch, 10𝑘, 20𝑘, 110𝑘) for

ImageNet, (Scratch, 500, 200, 4000) for SVHN, (Scratch, 3𝑘, 1𝑘, 15𝑘) for CIFAR10,

and (Scratch, 100, 300, 3000) for FashionMNIST. For the evaluations in Fig. 7-3, we

used (Scratch, 128, 96, 200) and (Scratch, 128, 64, 2000) for FashionMNIST and

SVHN, respectively. The models were trained with standard data normalization with

respect to the mean and standard deviation of the entire training set. For ImageNet,

209

we used random cropping to 224× 224 and random horizontal flips for data augmen-

tation; for the remaining data sets, we used random cropping to 32× 32 (28× 28 for

FashionMNIST) with 4 pixels of padding and random horizontal flips.

All presented results were averaged over 10 trials with the exception of those for

ImageNet8, where we averaged over 3 trials due to the observed low variance in our

results. We used the uncertainty loss metric as defined in Sec. 7.2 for all of the

experiments presented in this work – with the exception of results related to boosting

prior approaches (Fig. 7-3). The initial set of points and the sequence of random

network initializations (one per sample size for the Scratch option) were fixed across

all algorithms to ensure fairness.

7.8.2 Setting for Experiments in Sec. 7.5.5

In this subsection, we describe the setting for the evaluations in Sec. 7.5.5, where we

compared the performance of AdaProd+ to modern algorithms for learning with

prediction advice. Since our approach is intended to compete with time-varying

competitors (see Sec. 7.6), we compare it to existing methods that ensure low regret

with respect to time-varying competitors (via adaptive regret). In particular, we

compare our approach to the following algorithms:

1. Optimistic AMLProd [WHL17]: we implement the (stronger) variant of

Optimistic Adapt-ML-Prod that ensures dynamic regret (outlined at the end

of Sec. 3.3 in [WHL17]). This algorithm uses the sleeping experts reduction

of [GSVE14] and consequently, requires initially creating 𝑛̃ = 𝑛𝑇 sleeping

experts and updating them with similar updates as in our algorithm (except

the cost of the 𝑡th update is 𝒪̃(𝑛𝑇) rather than 𝒪̃(𝑁𝑡𝑡) as in ours). Besides

the computational costs, we emphasize that the only true functional difference

between our algorithm and Optimistic AMLProd lies in the thresholding of the

learning rates (Line 10 in Alg. 11). In our approach, we impose the upper bound

8We were not able to run Coreset or BatchBALD on ImageNet due to resource constraints and
the high computation requirements of these algorithms.

210

min{𝜂𝑡−1,𝑖, 2/(3(1 + 𝑟𝑡+1,𝑖))} for 𝜂𝑡,𝑖 for any 𝑡 ∈ [𝑇], whereas [WHL17] imposes

the (smaller) bound of 1/4.

2. AdaNormalHedge(.TV) [LS15]: we implement the time-varying version of

AdaNormalHedge, AdaNormalHedge.TV as described in Sec. 5.1 of [LS15].

The only slight modification we make in our setting where we already have a

sleeping experts problem is to incorporate the indicator ℐ𝑡,𝑖 in our predictions

(as suggested by [LS15] in their sleeping experts variant). In other words,

we predict9 𝑝𝑡,𝑖 ∝ ℐ𝑡,𝑖
∑︀𝑡

𝜏=1
1
𝜏2
𝑤(𝑅[𝜏,𝑡−1],𝑖, 𝐶[𝜏,𝑡−1]) rather than the original 𝑝𝑡,𝑖 ∝∑︀𝑡

𝜏=1
1
𝜏2
𝑤(𝑅[𝜏,𝑡−1],𝑖, 𝐶[𝜏,𝑡−1]), where 𝑅[𝑡1,𝑡1],𝑖 =

∑︀𝑡2
𝑡=𝑡1

𝑟𝑡,𝑖 and 𝐶[𝑡1,𝑡1],𝑖 =
∑︀𝑡2

𝑡=𝑡1
|𝑟𝑡,𝑖|

(note that the definition of 𝐶 is different than ours).

3. Squint(.TV) [KVE15]: Squint is a parameter-free algorithm like AdaNormal-

Hedge in that it can also be extended to priors over an initially unknown number

of experts. Hence, we use the same idea as in AdaNormalHedge.TV (also

see [Luo17]) and apply the extension of the Squint algorithm for adaptive regret.

We used the (Scratch, 500, 200, 400) and (Scratch, 4000, 1000, 2000) configurations

for the evaluations on the SVHN and CIFAR10 datasets, respectively.

7.8.3 Results on Data-Starved Settings

Figure 7-5 shows the results of our additional evaluations on ImageNet and FashionM-

NIST in the data-starved setting where we begin with a very small (relatively) set of

data points and can only query the labels of a small set of points at each time step.

For both data sets, our approach outperforms competing ones in the various metrics

considered – yielding up to 4% increase in test accuracy compared to the second-best

performing method.

9We also implemented and evaluated the method with uniform prior over time intervals, i.e.,
𝑝𝑡,𝑖 ∝ ℐ𝑡,𝑖

∑︀𝑡
𝜏=1 𝑤(𝑅[𝜏,𝑡−1],𝑖, 𝐶[𝜏,𝑡−1]) (without the prior 1

𝜏2), but found that it performed worse than
with the prior in practice. The same statement holds for the Squint algorithm.

211

250 500 750 1000 1250 1500 1750 2000
Sample Size

65

70

75

80
Te

st
 A

cc
ur

ac
y

(%
)

FashionNet1, FashionMNIST

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

1000 2000 3000 4000 5000 6000
Sample Size

78

80

82

84

86

Te
st

 A
cc

ur
ac

y
(%

)

Net2, SVHN

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

250 500 750 1000 1250 1500 1750 2000
Sample Size

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

FashionNet1, FashionMNIST
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(a) FashionMNIST (Scratch, 128, 64, 2000)

1000 2000 3000 4000 5000 6000
Sample Size

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

Net2, SVHN
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(b) SVHN (Scratch, 500, 200, 6000)

Figure 7-6: Evaluations on the FashionNet and SVHNNet [AZK+19, Ash21] architectures,
which are different convolutional networks than those used in Sec. 7.5. Despite this architec-
ture shift, our approach remains the overall top-performer on the evaluated data sets, even
exceeding the relative performance of our approach on the previously used architectures.

7.8.4 Shifting Architectures

In this section, we consider the performance on FashionMNIST and SVHN when

we change the network architectures from those used in Sec. 7.5. In particular, we

conduct experiments on the FashionNet and SVHNNet architectures10, convolutional

neural networks that were used for benchmark evaluations in recent active learning

work [AZK+19, Ash21]. Our goal is to evaluate whether the performance of our

algorithm degrades significantly when we vary the model we use for active learning.

Fig. 7-6 depicts the results of our evaluations using the same training hyperparameters

as FashionCNN for FashionNet, and similarly, those for SVHNCNN for SVHNNet

(see Table 7.1). For both architectures, our algorithm uniformly outperforms the

competing approaches in virtually all sample sizes and scenarios; our approach achieves

10Publicly available implementation and details of the architectures [AZK+19, Ash21]: https:
//github.com/JordanAsh/badge/blob/master/model.py .

212

https://github.com/JordanAsh/badge/blob/master/model.py
https://github.com/JordanAsh/badge/blob/master/model.py

up to 5% and 2% higher test accuracy than the second best-performing method on

FashionMNIST and SVHN, respectively. The sole exception is the SVHN test loss,

where we come second to Coreset – which performs surprisingly well on the test loss

despite having uniformly lower test accuracy than Ours on SVHN (top right, Fig. 7-6).

Interestingly, the relative performance of our algorithm is even better on the alternate

architectures than on the models used in the main body (compare Fig. 7-6to Fig. 7-1

of Sec. 7.5), where we performed only modestly better than competing approaches in

comparison.

7.8.5 Robustness Evaluations on Shifted Architecture

Having shown that the resiliency of our approach for both data sets for the configuration

shown in Fig. 7-6, we next investigate whether we can also remain robust to varying

active learning configurations on alternate architectures. To this end, we fix the

FashionMNIST dataset, the FashionNet architecture, and the Scratch option and

consider varying the batch sizes and the initial and final number of labeled points.

Most distinctly, we evaluated sample (active learning batch) sizes of 16, 96, and 224

points for varying sample budgets.

We present the results of our evaluations in Fig. 7-7, where each row corresponds to a

differing configuration. For the first row of results corresponding to a batch size of

224, we see that we significantly (i.e., up to 3.5% increased test accuracy) outperform

all compared methods for all sample sizes with respect to both test accuracy and loss.

The same can be said for the second row of results corresponding to a batch size of 96,

where we observe consistent improvements over prior work. For the smallest batch size

16 (last row of Fig. 7-7) and sampling budget (600), Ours still bests the compared

methods, but the relative improvement is more modest (up to ≈ 1.5% improvement

in test accuracy) than it was for larger batch sizes. We conjecture that this is due

to the fact that the sampling budget (600) is significantly lower than in the first two

scenarios (up to 6000); in this data-starved regime, even a small set of uniformly

sampled points from FashionMNIST is likely to help training since the points in the

213

1000 2000 3000 4000 5000 6000
Sample Size

70

75

80

85
Te

st
 A

cc
ur

ac
y

(%
)

FashionNet1, FashionMNIST

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(a) Test accuracy (Scratch, 128, 224, 6000)

1000 2000 3000 4000 5000 6000
Sample Size

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 L
os

s

FashionNet1, FashionMNIST
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(b) Test loss (Scratch, 128, 224, 6000)

500 1000 1500 2000 2500 3000
Sample Size

65

70

75

80

85

Te
st

 A
cc

ur
ac

y
(%

)

FashionNet1, FashionMNIST

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(c) Test accuracy (Scratch, 128, 96, 3000)

500 1000 1500 2000 2500 3000
Sample Size

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

FashionNet1, FashionMNIST
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(d) Test loss (Scratch, 128, 96, 3000)

100 200 300 400 500 600
Sample Size

55

60

65

70

75

Te
st

 A
cc

ur
ac

y
(%

)

FashionNet1, FashionMNIST

Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(e) Test accuracy (Scratch, 64, 16, 600)

100 200 300 400 500 600
Sample Size

0.8

1.0

1.2

Te
st

 L
os

s

FashionNet1, FashionMNIST
Ours
BatchBALD
Uncertainty

Entropy
Coreset
Uniform

(f) Test loss (Scratch, 64, 16, 600)

Figure 7-7: Evaluations with varying active learning configurations using the alternate
FashionNet model trained on the FashionMNIST dataset.

small set of selected points will most likely be sufficiently distinct from one another.

214

7.9 Limitations and Concluding Remarks

In this chapter, we introduced AdaProd+, an optimistic algorithm for prediction

with expert advice that was tailored to the active learning. Our comparisons showed

that AdaProd+ fares better than Greedy and competing algorithms for learning

with prediction advice. Nevertheless, from an online learning lens, AdaProd+ can

itself be improved so that it can be more widely applicable to active learning. For

one, we currently require the losses to be bounded to the interval [0, 1]. This can be

achieved by scaling the losses by their upper bound ℓmax (as we did for the Entropy

metric), however, this quantity ℓmax may not be available beforehand for all loss

metrics. Ideally, we would want a scale-free algorithm that works with any loss to

maximize the applicability of our approach.

In the same vein, in future work we plan to extend the applicability of our framework

to clustering-based active-learning, e.g., Coreset [SS17a] and Badge [AZK+19],

where it is more difficult to quantify what the loss should be for a given clustering.

One idea could be to define the loss of an unlabeled point to be proportional to its

distance – with respect to some metric – to the center of the cluster that the point

belongs to (e.g., ≈ 0 loss for points near a center). However, it is not clear that the

points near the cluster center should be prioritized over others as we may want to

prioritize cluster outliers too. It is also not clear what the distance metric should be,

as the Euclidean distance in the clustering space may be ill-suited. In future work,

we would like to explore these avenues and formulate losses capable of appropriately

reflecting each point’s importance with respect to a given clustering.

Overall, our empirical evaluations on large-scale real-world data sets and architectures

substantiate the reliability of our approach in outperforming naive uniform sampling

and show that it leads to consistent and significant improvements over existing work.

Our analysis and evaluations suggest that AdaProd+ can be applied off-the-shelf

with existing informativeness measures to improve upon greedy selection, and likewise

can scale with future advances in uncertainty or informativeness quantification. In

215

this regard, we hope that this work can contribute to the advancement of reliably

effective active learning approaches that can one day become an ordinary part of every

practitioner’s toolkit, just like Adam and SGD have for stochastic optimization.

Acknowledgments

This research was supported in part by the U.S. National Science Foundation (NSF)

under Awards 1723943 and 1526815, Office of Naval Research (ONR) Grant N00014-

18-1-2830, Microsoft, and JP Morgan Chase.

216

Chapter 8

Conclusion

In this chapter, we summarize the contributions of the work presented in this thesis,

discuss the lessons learned along the way, and outline avenues for future work.

8.1 Thesis Summary

In this thesis, we presented provable, sampling-based algorithms to enable efficient

AI and alleviate its exponentially increasing computational and environmental costs.

The unifying theme of our work is to use representative samples to accelerate existing

algorithms, enable real-time performance, and generally alleviate the high computa-

tional, labeling, and environmental costs of modern AI. Our theoretical guarantees

and empirical evaluations suggest that we can efficiently train and obtain compact

AI models using importance sampling at the cost of a relatively small approximation

error.

We began our exposition with a motivating application of sampling in Chapter 3 in

the context of reachability analysis. The problem was to compute the set of reachable

states of an AI agent, e.g., an autonomous vehicle, by evaluating the initial set of

states using a computationally-expensive reachability function. Given that the set of

initial states was infinite in size, we had to settle for an approximation in the form of

217

evaluating a small, finite subset. This motivated a careful subset selection procedure

that would approximate the evaluation on the entire set. We showed that provably

approximate coverage of reachable states can be efficiently computed using a packing

of 𝒳 with a carefully chosen packing parameter and demonstrated its effectiveness in

practice.

In Chapter 4, we focused on subsampling training points in order to accelerate

SVM training. By bridging k-means clustering with the SVM objective function, we

established tight bounds on the relative importance of each data point that can be

computed efficiently. Combining our analysis with the sensitivity framework led to

compact coresets on real-world data sets.

Next, in Chapter 5, we considered downsizing data sets to compressing large deep

learning models for efficiency and ease of deployment. Here, our attempt to apply the

sensitivity framework proved to be theoretically futile due to the worst-case nature of

the sensitivity definition – which involves a supremum over queries. Our key insight

was that the queries in the setting of model compression are data points drawn from

a distribution and that we can exploit this probabilistic nature by considering the

sensitivity of most likely inputs, rather than a worst-case one across the entire support

of the data distribution. This led to the development of the empirical sensitivity

framework, which we used to prune the edges of large neural network models. We

established bounds on the size of the pruned network as a function of the desired

approximation accuracy. Our bounds also led to an automatic budget allocation

procedure that emphasized the preservation of parameters in important layers over

others that could be pruned more aggressively. We presented evaluations on large-scale

models and data sets and showed that our approach can prune up to 90% of a network’s

parameters without any degradation in test accuracy.

We extended the empirical sensitivity framework for parameter pruning in Chapter 6,

where we considered the problem of pruning entire neurons and filters rather than just

weights of a neural network. Here, we observed that building on the empirical sensitivity

218

definition enabled structured pruning of filters and neurons, leading to efficient models

that can perform fast inference. As a prominent use case, we demonstrated the benefits

of structured pruning on a real-world end-to-end autonomous driving scenario, where

real-time inference was crucial to the safe navigation of the vehicle. We conclude

Chapter 6 with a discussion of the next frontier in network pruning, including the

incorporation of other objectives beyond test accuracy alone, like robustness to noisy

or adversarial data.

We returned the problem of subsampling training data in the context of deep learning

in Chapter 7, this time with the additional constraint that the data is unlabeled. This

reduces to the active learning problem where the goal is to select the smallest, most

informative set of inputs to label. Here, we built on previous work on online learning to

formulate a low-regret approach framework that can be used with any desired notion

of informativeness to robustify and improve upon state-of-the-art greedy methods.

8.2 Lessons Learned

Here, we discuss valuable insights we obtained along the way during our work on

sampling for scalable AI.

8.2.1 Theory-guided Practice & Practice-guided Theory

The algorithms introduced in this thesis were generally based on constructive proofs

that translated to concrete sampling procedures in practice. For example, for reachabil-

ity analysis, the idea of having a diverse set of states (a covering) from the input space

was motivated by the Lipschitz condition. Moreover, the packing distance was entirely

determined by the theory. Similarly, the importance-sampling procedure was entirely

based on the analytical sensitivity upper bounds and corresponding concentration

analysis. Similar statements can be said for the development of the methods for

pruning (Chapters 5 & 6) and for active learning (Chapter 7). However, this is not the

full story. In fact, many of our insights were enabled by our observations in practice

219

which culminated in advancements in theory.

In the work presented here, for example, our analysis on coresets for SVMs was based

on the intuition we gained through practical toy examples. Similarly, the automatic

budget allocation scheme in our pruning work was inspired by the empirical observation

that some layers required more samples to preserve the output than other layers. The

same can be said for the development of our low-regret active learning approach in

Chapter 7, where our observations in typical active learning settings motivated the

development of a low-regret approach that could patch the shortcomings of existing

greedy methods.

8.2.2 Toy Examples and Lower Bounds First

When we first started our work on coresets for Support Vector Machines (Chapter 4),

the sensitivity framework had at the time been shown to be quite effective in obtaining

provably small data summaries for popular methods in machine learning like M-

estimator clustering (e.g., k-means), among others [Fel19, BLK17, BFL16, HCB16].

This was generally enabled by an elegant bound on the sensitivity of each point using

a triangle inequality argument with an approximate (bicriteria) solution. These recent

advances led us to believe that an analogous approach should likewise work for the

SVM problem, or at the very least, to think that compact coresets for SVMs should

exist. So, we began to work towards bounding the sensitivities in a similar way. The

goal was to obtain quantities sharp enough so that their sum would be sublinear in 𝑛

just like in the case of k-means coresets — a necessary condition for sublinear-sized

coresets according to Bernstein’s inequality.

After a significant amount of work, it seemed that no matter what we tried, we could

not achieve bounds that were tight enough. We tried techniques far beyond those used

for k-means coresets, including the use of convex hulls and other geometric methods to

bound the sensitivity, but nothing seemed to suit our needs. The main challenge was

that the SVM objective function did not respect even an approximate version of the

triangle inequality, unlike that of k-means. Only after a lot of work and effort on our

220

attempt did we consider the possibility that sublinear SVM coresets may not exist for

all data sets. We began to think we were too optimistic given the success and ease of

constructing coresets for other problems like clustering. We began to think, could we

instead prove a lower bound on the sensitivities rather than an upper bound? After

some brainstorming for pathological examples, we were able to indeed prove that the

sum of sensitivities is lower bounded by Ω(𝑛) for a particular set of points, implying

that in the worst case, no small coresets exist even for linear SVMs.

This taught us a valuable lesson in the importance of considering toy scenarios and the

existence of small data summaries first. In our case, the pathological example enabling

the lower bound ultimately guided our algorithm design. It led to insights on the

sensitivity upper bound, which enabled small data summaries in practice due to the

structure of real-world data. This also taught us the lesson that despite the worst-case

pathological inputs, data-dependent bounds may enable compact summaries in practice

under real-world conditions. We believe that this lesson will also be relevant for future

work and developments in scalable AI, and would encourage further researchers to

think about the existence of coresets using toy scenarios or lower bounds prior to

diving deep into their construction.

8.2.3 Importance of Algorithms with Non-worst-case Perfor-

mance

Throughout our work, we learned the importance of methods with non-worst-case

guarantees and that two algorithms with the same worst-case guarantees can in

fact perform very differently in practice. This was most prominently made clear

to us during our work on active learning (Chapter 7). Here, our initial attempt to

regret minimization was to use the well-known Hedge algorithm with an instance-

independent1 learning rate of 𝜂 =
√︀

log 𝑛/𝑇 . This tuning of the learning rate leads to

a bound of 𝒪(
√
𝑇 log 𝑛) on the static regret in the classical setting which is only a

1Here instance-independent means that 𝜂 and the regret bound are independent of the actual
losses ℓ1, . . . , ℓ𝑇 that the algorithm receives.

221

logarithmic factor away from a matching minimax lower bound. Given this guarantee

and the popularity of Hedge, we had high expectations for its performance in practice.

However, we quickly found out that the algorithm performed quite poorly: it was

simply too conservative in its plays.

This was because the algorithm was based on a worst-case analysis where the losses

‖ℓ𝑡‖∞ is equal to 1 at every time step 𝑡. To obtain better bounds in practice, we needed

a tightened analysis with the instance-dependent losses in mind. So, we used an adap-

tive version of Hedge with a time-varying learning rate 𝜂𝑡 =
√︁

log 𝑛/
∑︀

𝑡∈[𝑇] ‖ℓ𝑡‖
2
∞

which leads to the bound 𝒪
(︀√︁

log 𝑛
∑︀

𝑡∈[𝑇] ‖ℓ𝑡‖
2
∞
)︀

[Ora19]. Although in the worst-case

this bound matched that of the previous algorithm, it performed substantially better

in practice. Going further, we built on previous methods in online learning to develop

AdaProd+, an approach that removes the pessimistic infinity norm from the losses

and guarantees second-order bounded regret on a per-expert basis. This led to even

further improvements in practical performance, despite the regret bound matching

that of our initial attempt with Hedge in the worst-case. This led to the further

improved results presented in Chapter 7. Overall, we envision that future development

in scalable AI can focus on instance-dependent bounds and algorithms that leverage

the structure inherent in real-world problems.

8.3 Future Work

The work in this thesis paves the way for future research in provable algorithms for

scalable AI. To this end, one avenue for future work is to combine the data and

model compression techniques presented here in a synergistic way. For example,

combining the work in Chapters 6 for model compression and 7 for active learning

would simultaneously enable the use of smaller sets of labeled data and compact

models for fast and label-efficient AI models. This would also have implications for

ease of deployment to resource-constrained platforms and real-time inference. We

plan to investigate this direction in future work. Likewise, we would like to extend

222

Sensitivity-informed Provable Pruning (SiPP) to sparsify the parameters of other

Machine Learning models such as SVMs. At a high level, our vision for future work

is to build on the techniques presented in this thesis so that reliable and efficient

sampling algorithms can one day become a part of the Machine Learning toolkit, just

as Stochastic Gradient Descent and Adam have for deep learning.

223

224

Bibliography

[AANR17] Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg.
Net-trim: Convex pruning of deep neural networks with performance
guarantee. In Advances in Neural Information Processing Systems,
pages 3180–3189, 2017.

[AAR20] Alireza Aghasi, Afshin Abdi, and Justin Romberg. Fast convex pruning
of deep neural networks. SIAM Journal on Mathematics of Data
Science, 2(1):158–188, 2020.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic
Analysis of Hybrid Systems. Theoretical Computer Science, 138(1):3–
34, 1995.

[AD14] M. Althoff and J. M. Dolan. Online Verification of Automated Road
Vehicles Using Reachability Analysis. IEEE Transactions on Robotics,
30(4):903–918, 2014.

[ADH+19] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang.
Fine-grained analysis of optimization and generalization for overpa-
rameterized two-layer neural networks. In International Conference
on Machine Learning, pages 322–332, 2019.

[ADI06] R. Alur, T. Dang, and F. Ivančić. Predicate Abstraction for Reacha-
bility Analysis of Hybrid Systems. ACM Transactions on Embedded
Computing Systems (TECS), 5(1):152–199, 2006.

[AGJT14] A. Alam, A. Gattami, K. H. Johansson, and C. J. Tomlin. Guaranteeing
safety for heavy duty vehicle platooning: Safe set computations and
experimental evaluations. Control Engineering Practice, 24:33–41,
2014.

[AGNZ18] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger
generalization bounds for deep nets via a compression approach. arXiv
preprint arXiv:1802.05296, 2018.

225

[ALHS18] Menachem Adelman, Kfir Y Levy, Ido Hakimi, and Mark Silberstein.
Faster neural network training with approximate tensor operations.
arXiv preprint arXiv:1805.08079, 2018.

[Alt15] M. Althoff. An introduction to CORA 2015. In Workshop on Applied
Verification for Continuous and Hybrid Systems, 2015.

[APB+18] Alexander Amini, Liam Paull, Thomas Balch, Sertac Karaman, and
Daniela Rus. Learning steering bounds for parallel autonomous systems.
In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1–8. IEEE, 2018.

[AS10] Pankaj K Agarwal and R Sharathkumar. Streaming algorithms for
extent problems in high dimensions. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algorithms, pages
1481–1489. Society for Industrial and Applied Mathematics, 2010.

[AS17] Jose M Alvarez and Mathieu Salzmann. Compression-aware training of
deep networks. In Advances in Neural Information Processing Systems,
pages 856–867, 2017.

[Ash21] Jordan Ash. Badge. https://github.com/JordanAsh/badge, 2021.

[ASSR19] Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus.
Deep evidential regression. arXiv preprint arXiv:1910.02600, 2019.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: The advantages
of careful seeding. In Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 1027–1035. Society
for Industrial and Applied Mathematics, 2007.

[AZK+19] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Lang-
ford, and Alekh Agarwal. Deep batch active learning by diverse,
uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671,
2019.

[AZLL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and
generalization in overparameterized neural networks, going beyond
two layers. In Advances in Neural Information Processing Systems 32,
pages 6158–6169. Curran Associates, Inc., 2019.

[BC03] Mihai Badoiu and Kenneth L Clarkson. Smaller core-sets for balls.
In Proceedings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 801–802. Society for Industrial and Applied
Mathematics, 2003.

226

https://github.com/JordanAsh/badge

[BF04] A. Bhatia and E. Frazzoli. Incremental Search Methods for Reachability
Analysis of Continuous and Hybrid Systems. In International Workshop
on Hybrid Systems: Computation and Control, 2004.

[BFL16] Vladimir Braverman, Dan Feldman, and Harry Lang. New frame-
works for offline and streaming coreset constructions. arXiv preprint
arXiv:1612.00889, 2016.

[BGM+14] D. Bresolin, L. Geretti, R. Muradore, P. Fiorini, and T. Villa. Verifica-
tion of Robotic Surgery Tasks by Reachability Analysis: A Comparison
of Tools. In Euromicro Conference on Digital System Design, 2014.

[BGMMS21] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-
garet Shmitchell. On the dangers of stochastic parrots: Can language
models be too big? In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, pages 610–623, 2021.

[BGOFG20] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John
Guttag. What is the state of neural network pruning? In Proceedings
of Machine Learning and Systems 2020, pages 129–146, 2020.

[BHPI02] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clus-
tering via core-sets. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 250–257, 2002.

[BKML17] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Leg-
enstein. Deep rewiring: Training very sparse deep networks. arXiv
preprint arXiv:1711.05136, 2017.

[BLFR21] Cenk Baykal, Lucas Liebenwein, Dan Feldman, and Daniela Rus.
Low-regret active learning. arXiv preprint arXiv:2104.02822, 2021.

[BLG+18] Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman,
and Daniela Rus. Data-dependent coresets for compressing neural
networks with applications to generalization bounds. In International
Conference on Learning Representations, 2018.

[BLG+19a] Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman,
and Daniela Rus. Data-dependent coresets for compressing neural
networks with applications to generalization bounds. In International
Conference on Learning Representations, 2019.

[BLG+19b] Cenk Baykal*, Lucas Liebenwein*, Igor Gilitschenski, Dan Feldman,
and Daniela Rus. Sipping neural networks: Sensitivity-informed prov-
able pruning of neural networks. arXiv preprint arXiv:1910.05422,
2019.

227

[BLG+21] Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and
Daniela Rus. Sipping neural networks: Sensitivity-informed provable
pruning of neural networks. arXiv preprint arXiv:1910.05422, 2021.

[BLK17] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset
constructions for machine learning. arXiv preprint arXiv:1703.06476,
2017.

[BM20] Adam Bohr and Kaveh Memarzadeh. The rise of artificial intelligence
in healthcare applications. In Artificial Intelligence in Healthcare,
pages 25–60. Elsevier, 2020.

[BMR+20] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[BTFR20] Cenk Baykal*, Murad Tukan*, Dan Feldman, and Daniela Rus. On
coresets for support vector machines. In International Conference on
Theory and Applications of Models of Computation, pages 287–299.
Springer, 2020.

[BTFR21] Cenk Baykal, Murad Tukan, Dan Feldman, and Daniela Rus. On core-
sets for support vector machines. In Special Issue Invite to Theoretical
Computer Science (TCS), Under Review, 2021.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[CAP+19] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel,
Jonas Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry,
and Alexey Kurakin. On evaluating adversarial robustness. arXiv
preprint arXiv:1902.06705, 2019.

[CÁS13] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An Ana-
lyzer for Non-Linear Hybrid Systems. In International Conference on
Computer Aided Verification, 2013.

[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and
games. Cambridge university press, 2006.

[CCB+16] Anna Choromanska, Krzysztof Choromanski, Mariusz Bojarski, Tony
Jebara, Sanjiv Kumar, and Yann LeCun. Binary embeddings with
structured hashed projections. In International Conference on Machine
Learning, pages 344–353, 2016.

228

[CEM+15] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco,
and Madalina Persu. Dimensionality reduction for k-means clustering
and low rank approximation. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 163–172. ACM, 2015.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In International Conference on Com-
puter Aided Verification, 2000.

[CGL93] E. Clarke, O. Grumberg, and D. Long. Verification Tools for Finite-
State Concurrent Systems. In Workshop/School/Symposium of the
REX Project (Research and Education in Concurrent Systems), 1993.

[Che20] A. Chen. Pytorch playground. https://github.com/aaron-xichen/
pytorch-playground, 2020.

[CHW12] Kenneth L Clarkson, Elad Hazan, and David P Woodruff. Sublinear
optimization for machine learning. Journal of the ACM (JACM),
59(5):23, 2012.

[CK99] A. Chutinan and B.H. Krogh. Verification of Polyhedral-Invariant
Hybrid Automata Using Polygonal Flow Pipe Approximations. In
International workshop on hybrid systems: computation and control,
1999.

[CK08] P. Cheng and V. Kumar. Sampling-based Falsification and Verification
of Controllers for Continuous Dynamic Systems. The International
Journal of Robotics Research, 27(11-12):1232–1245, 2008.

[Cla10] Kenneth L Clarkson. Coresets, sparse greedy approximation, and the
frank-wolfe algorithm. ACM Transactions on Algorithms (TALG),
6(4):63, 2010.

[CMF+19] Beidi Chen, Tharun Medini, James Farwell, Sameh Gobriel, Charlie
Tai, and Anshumali Shrivastava. Slide: In defense of smart algorithms
over hardware acceleration for large-scale deep learning systems. arXiv
preprint arXiv:1903.03129, 2019.

[CPI18] Miguel A Carreira-Perpinán and Yerlan Idelbayev. “learning-
compression” algorithms for neural net pruning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
8532–8541, 2018.

[CSM+15] X. Chen, S. Schupp, I.B. Makhlouf, E. Ábrahám, G. Frehse, and
S. Kowalewski. A Benchmark Suite for Hybrid Systems Reachability
Analysis. In NASA Formal Methods Symposium, 2015.

229

https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground

[CT15] M. Chen and C. J. Tomlin. Exact and efficient hamilton-jacobi reach-
ability for decoupled systems. In Decision and Control (CDC), 2015
IEEE 54th Annual Conference on, pages 1297–1303. IEEE, 2015.

[CXS19] Beidi Chen, Yingchen Xu, and Anshumali Shrivastava. Fast and
accurate stochastic gradient estimation. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[CYF+15] Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary,
and Shi-Fu Chang. An exploration of parameter redundancy in deep
networks with circulant projections. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2857–2865, 2015.

[Dav59] P.J. Davis. Leonhard Euler’s Integral: A Historical Profile of the
Gamma Function. The American Mathematical Monthly, 66(10):849–
869, 1959.

[DCP17] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep
neural networks via layer-wise optimal brain surgeon. In Advances in
Neural Information Processing Systems, pages 4860–4874, 2017.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[DJP+20] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim,
Alec Radford, and Ilya Sutskever. Jukebox: A generative model for
music. arXiv preprint arXiv:2005.00341, 2020.

[DP18] Melanie Ducoffe and Frederic Precioso. Adversarial active learn-
ing for deep networks: a margin based approach. arXiv preprint
arXiv:1802.09841, 2018.

[DSD+13] Misha Denil, Babak Shakibi, Laurent Dinh, Marc Aurelio Ranzato, and
Nando de Freitas. Predicting parameters in deep learning. In Advances
in Neural Information Processing Systems 26, pages 2148–2156, 2013.

[Dub57] L. E. Dubins. On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents. American Journal of Mathematics, 79(3):497–516, 1957.

[DZB+14] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob
Fergus. Exploiting linear structure within convolutional networks for
efficient evaluation. CoRR, abs/1404.0736, 2014.

230

[EFG16] S. M. Erlien, S. Fujita, and J. C. Gerdes. Shared steering control
using safe envelopes for obstacle avoidance and vehicle stability. IEEE
Transactions on Intelligent Transportation Systems, 17(2):441–451,
2016.

[EGSD20] Sayna Ebrahimi, William Gan, Kamyar Salahi, and Trevor Darrell.
Minimax active learning. arXiv preprint arXiv:2012.10467, 2020.

[EWR+15] K. Edelberg, D. Wai, J. Reid, E. Kulczycki, and P. Backes. Workspace
and Reachability Analysis of a Robotic Arm for Sample Cache Retrieval
from a Mars Rover. In AIAA SPACE Conference and Exposition, 2015.

[FCTS15] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid
problems with time-varying dynamics, targets and constraints. In
Proceedings of the 18th international conference on hybrid systems:
computation and control, pages 11–20. ACM, 2015.

[Fed69] H. Federer. Geometric Measure Theory. Springer, 1969.

[Fel19] Dan Feldman. Core-sets: An updated survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, page e1335, 2019.

[FJY+19] Xin Feng, Youni Jiang, Xuejiao Yang, Ming Du, and Xin Li. Computer
vision algorithms and hardware implementations: A survey. Integration,
69:309–320, 2019.

[FL11] Dan Feldman and Michael Langberg. A unified framework for approx-
imating and clustering data. In Proceedings of the forty-third annual
ACM symposium on Theory of computing, pages 569–578. ACM, 2011.

[GBR18] Stephanie Gil, Cenk Baykal, and Daniela Rus. Resilient multi-agent
consensus using wi-fi signals. IEEE control systems letters, 3(1):126–
131, 2018.

[GEH19] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574, 2019.

[GEY17] Yonatan Geifman and Ran El-Yaniv. Deep active learning over the
long tail. arXiv preprint arXiv:1711.00941, 2017.

[GHH+11] J.H. Gillula, G.M. Hoffmann, H. Huang, M.P. Vitus, and C.J. Tomlin.
Applications of Hybrid Reachability Analysis to Robotic Aerial Vehicles.
The International Journal of Robotics Research, 30(3):335–354, 2011.

[GIG17] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian
active learning with image data. In International Conference on
Machine Learning, pages 1183–1192. PMLR, 2017.

231

[GIM+99] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search
in high dimensions via hashing. In Vldb, 1999.

[GJ09] Bernd Gärtner and Martin Jaggi. Coresets for polytope distance. In
Proceedings of the twenty-fifth annual symposium on Computational
geometry, pages 33–42. ACM, 2009.

[GKDP20] Noah Gamboa, Kais Kudrolli, Anand Dhoot, and Ardavan Pedram.
Campfire: Compressible, regularization-free, structured sparse training
for hardware accelerators. arXiv preprint arXiv:2001.03253, 2020.

[GKPS06] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind
Srinivasan. Dependent rounding and its applications to approximation
algorithms. Journal of the ACM (JACM), 53(3):324–360, 2006.

[GO05] R. Geraerts and M.H. Overmars. Reachability Analysis of Sampling
Based Planners. In Robotics and Automation (ICRA), 2005.

[GP17] Bolin Gao and Lacra Pavel. On the properties of the softmax function
with application in game theory and reinforcement learning. arXiv
preprint arXiv:1704.00805, 2017.

[GSS19] Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning.
arXiv preprint arXiv:1907.06347, 2019.

[GSVE14] Pierre Gaillard, Gilles Stoltz, and Tim Van Erven. A second-order
bound with excess losses. In Conference on Learning Theory, pages
176–196. PMLR, 2014.

[GYC16] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery
for efficient dnns. In Advances In Neural Information Processing
Systems, pages 1379–1387, 2016.

[GYK+21] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael Mahoney, and Kurt
Keutzer. Ai and memory wall. RiseLab Medium Post, 2021.

[HCB16] Jonathan H Huggins, Trevor Campbell, and Tamara Broderick.
Coresets for scalable bayesian logistic regression. arXiv preprint
arXiv:1605.06423, 2016.

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model
Checker for Hybrid Systems. International Journal on Software Tools
for Technology Transfer, 1(1-2):110–122, 1997.

[HKD+18] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft
filter pruning for accelerating deep convolutional neural networks. In
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pages 2234–2240. AAAI Press, 2018.

232

[HKS11] Elad Hazan, Tomer Koren, and Nati Srebro. Beating sgd: Learning
svms in sublinear time. In Advances in Neural Information Processing
Systems, pages 1233–1241, 2011.

[HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[HMD15] Song Han, Huizi Mao, and William J. Dally. Deep compression:
Compressing deep neural network with pruning, trained quantization
and huffman coding. CoRR, abs/1510.00149, 2015.

[HPM04] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and
k-median clustering. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 291–300, 2004.

[HPRZ07] Sariel Har-Peled, Dan Roth, and Dav Zimak. Maximum margin coresets
for active and noise tolerant learning. In IJCAI, pages 836–841, 2007.

[HZDS+18] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and
G Edward Suh. Channel gating neural networks. arXiv preprint
arXiv:1805.12549, 2018.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[IHM+16] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and< 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[Imm15] F. Immler. Verified Reachability Analysis of Continuous Systems. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2015.

[IN07] Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings.
ACM Transactions on Algorithms (TALG), 3(3):31–es, 2007.

[IRS+15] Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla,
and Antonio Criminisi. Training cnns with low-rank filters for efficient
image classification. arXiv preprint arXiv:1511.06744, 2015.

233

[IST+19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry. Adversarial examples are not
bugs, they are features. arXiv preprint arXiv:1905.02175, 2019.

[JNM+19] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan,
and Samy Bengio. Fantastic generalization measures and where to
find them. arXiv preprint arXiv:1912.02178, 2019.

[Joa06] Thorsten Joachims. Training linear svms in linear time. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 217–226. ACM, 2006.

[JVZ14] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding
up convolutional neural networks with low rank expansions. arXiv
preprint arXiv:1405.3866, 2014.

[KALL17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Pro-
gressive growing of gans for improved quality, stability, and variation.
arXiv preprint arXiv:1710.10196, 2017.

[KDSA14] J. Kapinski, J.V. Deshmukh, S. Sankaranarayanan, and N. Arechiga.
Simulation-guided Lyapunov Analysis for Hybrid Dynamical Systems.
In Proceedings of the International Conference on Hybrid Systems:
Computation and Control, 2014.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. Technical Report, 2009.

[KNMS10] Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma.
Regret bounds for sleeping experts and bandits. Machine learning,
80(2):245–272, 2010.

[KPY+15] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang,
and Dongjun Shin. Compression of deep convolutional neural net-
works for fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

[KVAG19] Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald:
Efficient and diverse batch acquisition for deep bayesian active learning.
arXiv preprint arXiv:1906.08158, 2019.

[KVE15] Wouter M Koolen and Tim Van Erven. Second-order quantile methods
for experts and combinatorial games. In Conference on Learning
Theory, pages 1155–1175. PMLR, 2015.

234

[LAT18] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip:
Single-shot network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[LBC+21] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and
Daniela Rus. Lost in pruning: The effects of pruning neural networks
beyond test accuracy. arXiv preprint arXiv:2103.03014, 2021.

[LBG+18] Lucas Liebenwein, Cenk Baykal, Igor Gilitschenski, Sertac Karaman,
and Daniela Rus. Sampling-based approximation algorithms for reach-
ability analysis with provable guarantees. In Proceedings of Robotics:
Science and Systems, Pittsburgh, Pennsylvania, June 2018.

[LBL+20] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and
Daniela Rus. Provable filter pruning for efficient neural networks. In
International Conference on Learning Representations, 2020.

[LBS+19] Harry Lang*, Cenk Baykal*, Najib Abu Samra, Tony Tannous, Dan
Feldman, and Daniela Rus. Deterministic coresets for stochastic
matrices with applications to scalable sparse pagerank. In International
Conference on Theory and Applications of Models of Computation,
pages 410–423. Springer, 2019.

[LC07] GaÃG, lle Loosli and StÃŠphane Canu. Comments on the“core vector
machines: Fast svm training on very large data sets. Journal of
Machine Learning Research, 8(Feb):291–301, 2007.

[LDS90] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage.
In Advances in neural information processing systems, pages 598–605,
1990.

[LFKF17] Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feld-
man. Training mixture models at scale via coresets. arXiv preprint
arXiv:1703.08110, 2017.

[LGGT19] Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning
filter basis for convolutional neural network compression. In Proceedings
of the IEEE International Conference on Computer Vision, pages 5623–
5632, 2019.

[Li20] Chuan Li. Openai’s gpt-3 language model: A technical overview, 2020.

[Lic13] M. Lichman. UCI machine learning repository, 2013.

235

[Lie21] L. Liebenwein. Provable pruning. https://github.com/lucaslie/
provable_pruning, 2021.

[LJL+19] Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong
Li. Toward compact convnets via structure-sparsity regularized filter
pruning. IEEE transactions on neural networks and learning systems,
31(2):574–588, 2019.

[LKD+16] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Pe-
ter Graf. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

[LL16] Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise
brain damage. In Computer Vision and Pattern Recognition (CVPR),
2016 IEEE Conference on, pages 2554–2564. IEEE, 2016.

[LLS01] Yi Li, Philip M Long, and Aravind Srinivasan. Improved bounds on
the sample complexity of learning. Journal of Computer and System
Sciences, 62(3):516–527, 2001.

[LRH+17] S.B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking,
and M. Althoff. Provably Safe Motion of Mobile Robots in Human
Environments. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2017.

[LRLZ17] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural
pruning. In Advances in Neural Information Processing Systems, pages
2178–2188, 2017.

[LS10] Michael Langberg and Leonard J Schulman. Universal 𝜀-approximators
for integrals. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, pages 598–607. SIAM, 2010.

[LS15] Haipeng Luo and Robert E Schapire. Achieving all with no parameters:
Adanormalhedge. In Conference on Learning Theory, pages 1286–1304,
2015.

[LSB+20] Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Mar-
tin Jaggi. Dynamic model pruning with feedback. In International
Conference on Learning Representations, 2020.

[LSV+17] L. Liebenwein, W. Schwarting, C.-I. Vasile, J. DeCastro, J. Alonso-
Mora, S. Karaman, and D. Rus. Compositional and contract-based
verification for autonomous driving on road networks. International
Symposium on Robotics Research (ISRR), 2017.

236

https://github.com/lucaslie/provable_pruning
https://github.com/lucaslie/provable_pruning

[Luo17] Haipeng Luo. Interval Regret. https://haipeng-luo.net/courses/
CSCI699/lecture9.pdf, 2017. [Online; accessed November-2020].

[LUW17] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compres-
sion for deep learning. In Advances in Neural Information Processing
Systems, pages 3290–3300, 2017.

[M+65] Gordon E Moore et al. Cramming more components onto integrated
circuits, 1965.

[MBT05] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A Time-Dependent
Hamilton-Jacobi Formulation of Reachable Sets for Continuous Dy-
namic Games. Transactions on Automatic Control, 50(7):947–957,
2005.

[MCL+19] Yuzhe Ma, Ran Chen, Wei Li, Fanhua Shang, Wenjian Yu, Minsik Cho,
and Bei Yu. A unified approximation framework for compressing and
accelerating deep neural networks. In 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI), pages 376–383.
IEEE, 2019.

[MF14] Alireza Makhzani and Brendan Frey. Winner-take-all autoencoders.
arXiv preprint arXiv:1409.2752, 2014.

[MIGR19] Sepideh Mahabadi, Piotr Indyk, Shayan Oveis Gharan, and Alireza
Rezaei. Composable core-sets for determinant maximization: A simple
near-optimal algorithm. In International Conference on Machine
Learning, pages 4254–4263. PMLR, 2019.

[MMK18] Alejandro Molina, Alexander Munteanu, and Kristian Kersting. Core
dependency networks. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence (AAAI). AAAI Press Google Scholar, 2018.

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn.
Performance of johnson-lindenstrauss transform for k-means and k-
medians clustering. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pages 1027–1038, 2019.

[MMS+17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[MMS+18] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H
Nguyen, Madeleine Gibescu, and Antonio Liotta. Scalable training of
artificial neural networks with adaptive sparse connectivity inspired
by network science. Nature communications, 9(1):1–12, 2018.

237

https://haipeng-luo.net/courses/CSCI699/lecture9.pdf
https://haipeng-luo.net/courses/CSCI699/lecture9.pdf

[MMT+19] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan
Kautz. Importance estimation for neural network pruning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 11264–11272, 2019.

[Mor16] F. Morgan. Geometric Measure Theory: A Beginner’s Guide. Academic
Press, 2016.

[MS18] Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods
and history: A theoreticians design pattern for approximation and
streaming algorithms. KI-Künstliche Intelligenz, 32(1):37–53, 2018.

[MSB+17] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin
Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson,
and Michael Bowling. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508–513, 2017.

[MSSW18] Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and
David P Woodruff. On coresets for logistic regression. arXiv preprint
arXiv:1805.08571, 2018.

[MTK+16] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. Pruning convolutional neural networks for resource efficient
inference. arXiv preprint arXiv:1611.06440, 2016.

[Mun14] J. Munkres. Topology. Pearson Education, 2014.

[Mus18] Christopher Paul Musco. Faster linear algebra for data analysis and
machine learning. PhD thesis, Massachusetts Institute of Technology,
2018.

[Mut19] Hariank Muthakana. Uncertainty and diversity in deep active image
classification. PhD thesis, Carnegie Mellon University Pittsburgh, PA,
2019.

[MW19] Hesham Mostafa and Xin Wang. Parameter efficient training of deep
convolutional neural networks by dynamic sparse reparameterization.
In International Conference on Machine Learning, pages 4646–4655.
PMLR, 2019.

[MY15] Mehryar Mohri and Scott Yang. Accelerating optimization via adaptive
prediction. arXiv preprint arXiv:1509.05760, 2015.

[NBS18] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-
bayesian approach to spectrally-normalized margin bounds for neural
networks. In International Conference on Learning Representations,
2018.

238

[NKB+19] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz
Barak, and Ilya Sutskever. Deep double descent: Where bigger models
and more data hurt. arXiv preprint arXiv:1912.02292, 2019.

[NKB+20] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz
Barak, and Ilya Sutskever. Deep double descent: Where bigger mod-
els and more data hurt. In International Conference on Learning
Representations, 2020.

[NKT14] Manu Nandan, Pramod P Khargonekar, and Sachin S Talathi. Fast
svm training using approximate extreme points. Journal of Machine
Learning Research, 15(1):59–98, 2014.

[NLB+19] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun,
and Nathan Srebro. The role of over-parametrization in generaliza-
tion of neural networks. In International Conference on Learning
Representations, 2019.

[NR14] Vikram Nathan and Sharath Raghvendra. Accurate streaming support
vector machines. arXiv preprint arXiv:1412.2485, 2014.

[NWC+11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y Ng. Reading digits in natural images with unsupervised
feature learning. Google Research, 2011.

[Ope19] OpenAI. Ai and compute. https://openai.com/blog/
ai-and-compute, 2019.

[Ora19] Francesco Orabona. A modern introduction to online learning. arXiv
preprint arXiv:1912.13213, 2019.

[Pan18] Pankajj. Fashion MNIST with PyTorch. https://www.kaggle.com/
pankajj/fashion-mnist-with-pytorch-93-accuracy, 2018. [On-
line; accessed November-2020].

[PBB+19] Brian Plancher, Camelia D Brumar, Iulian Brumar, Lillian Pentecost,
Saketh Rama, and David Brooks. Application of approximate matrix
multiplication to neural networks and distributed slam. In 2019 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–7.
IEEE, 2019.

[PBD18] Anastasia Pentina and Shai Ben-David. Multi-task {K} ernel {L}
earning based on {P} robabilistic {L} ipschitzness. In Algorithmic
Learning Theory, pages 682–701. PMLR, 2018.

239

https://openai.com/blog/ai-and-compute
https://openai.com/blog/ai-and-compute
https://www.kaggle.com/pankajj/fashion-mnist-with-pytorch-93-accuracy
https://www.kaggle.com/pankajj/fashion-mnist-with-pytorch-93-accuracy

[PF05] Daniel Pérez Palomar and Javier Rodríguez Fonollosa. Practical
algorithms for a family of waterfilling solutions. IEEE transactions on
Signal Processing, 53(2):686–695, 2005.

[PGL+21] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean.
Carbon emissions and large neural network training. arXiv preprint
arXiv:2104.10350, 2021.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[PKV09] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Falsification of LTL Safety
Properties in Hybrid Systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 2009.

[PLA+15] O. Porges, R. Lampariello, J. Artigas, A. Wedler, C. Borst, and M. A.
Roa. Reachability and Dexterity: Analysis and Applications for Space
Robotics. In Workshop on Advanced Space Technologies for Robotics
and Automation (ASTRA), 2015.

[PPF03] V. S. Patsko, S. G. Pyatko, and A. A. Fedotov. Three-dimensional
reachability set for a nonlinear control system. Journal of Computer
and Systems Sciences International, 42(3):320–328, 2003.

[PyT20a] PyTorch contributors. Non-linear activations (weighted sum,
nonlinearity). https://pytorch.org/docs/stable/nn.html#
non-linear-activations-weighted-sum-nonlinearity, 2020.
[Online; accessed 4-June-2020].

[PyT20b] PyTorch contributors. Unfold. https://pytorch.org/docs/master/
generated/torch.nn.Unfold.html, 2020. [Online; accessed 9-June-
2020].

[RDIV09] Piyush Rai, Hal Daumé III, and Suresh Venkatasubramanian. Streamed
learning: one-pass svms. arXiv preprint arXiv:0908.0572, 2009.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet

240

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/master/generated/torch.nn.Unfold.html
https://pytorch.org/docs/master/generated/torch.nn.Unfold.html

Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[RFC20] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing fine-
tuning and rewinding in neural network pruning. In International
Conference on Learning Representations, 2020.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400–407, 1951.

[RS13] Alexander Rakhlin and Karthik Sridharan. Online learning with
predictable sequences. In Conference on Learning Theory, pages 993–
1019. PMLR, 2013.

[RXC+20] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li,
Xiaojiang Chen, and Xin Wang. A survey of deep active learning.
arXiv preprint arXiv:2009.00236, 2020.

[SAH+20] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart,
Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588(7839):604–609,
2020.

[SAM19] Hamid Shayestehmanesh, Sajjad Azami, and Nishant A Mehta. Dy-
ing experts: Efficient algorithms with optimal regret bounds. arXiv
preprint arXiv:1910.13521, 2019.

[SAMR18] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and
decision-making for autonomous vehicles. Annual Review of Control,
Robotics, and Autonomous Systems, 2018.

[SAN20] Taiji Suzuki, Hiroshi Abe, and Tomoaki Nishimura. Compression
based bound for non-compressed network: unified generalization error
analysis of large compressible deep neural network. In International
Conference on Learning Representations, 2020.

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[Ser95] H. Seraji. Reachability Analysis for Base Placement in Mobile Manip-
ulators. Journal of Field Robotics, 12(1):29–43, 1995.

[SGV20] Aadirupa Saha, Pierre Gaillard, and Michal Valko. Improved sleeping
bandits with stochastic action sets and adversarial rewards. In Inter-
national Conference on Machine Learning, pages 8357–8366. PMLR,
2020.

241

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[SL14] Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An im-
proved exponentiated gradient algorithm. In International Conference
on Machine Learning, pages 1593–1601. PMLR, 2014.

[SMR+19] Li Shen, Laurie R Margolies, Joseph H Rothstein, Eugene Fluder,
Russell McBride, and Weiva Sieh. Deep learning to improve breast
cancer detection on screening mammography. Scientific reports, 9(1):1–
12, 2019.

[Sri99] Aravind Srinivasan. Improved approximation guarantees for packing
and covering integer programs. SIAM Journal on Computing, 29(2):648–
670, 1999.

[SRMW17] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop:
Sparsified back propagation for accelerated deep learning with reduced
overfitting. In International Conference on Machine Learning, pages
3299–3308. PMLR, 2017.

[SS17a] Ozan Sener and Silvio Savarese. Active learning for convolutional neural
networks: A core-set approach. arXiv preprint arXiv:1708.00489, 2017.

[SS17b] Ryan Spring and Anshumali Shrivastava. A new unbiased and effi-
cient class of lsh-based samplers and estimators for partition function
computation in log-linear models. arXiv preprint arXiv:1703.05160,
2017.

[SS17c] Ryan Spring and Anshumali Shrivastava. Scalable and sustainable
deep learning via randomized hashing. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 445–454, 2017.

[SS20] Ryan Spring and Anshumali Shrivastava. Mutual information estima-
tion using lsh sampling. In IJCAI, pages 2807–2815, 2020.

242

[SSK15] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured trans-
forms for small-footprint deep learning. In Advances in Neural Infor-
mation Processing Systems, pages 3088–3096, 2015.

[SSSSC11] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew
Cotter. Pegasos: Primal estimated sub-gradient solver for svm. Math-
ematical programming, 127(1):3–30, 2011.

[SZ14a] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556,
2014.

[SZ14b] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[Tab09] P. Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009.

[TBFR20] Murad Tukan, Cenk Baykal, Dan Feldman, and Daniela Rus. On
coresets for support vector machines. In International Conference on
Theory and Applications of Models of Computation, pages 287–299.
Springer, 2020.

[TCBM20] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander
Madry. On adaptive attacks to adversarial example defenses. arXiv
preprint arXiv:2002.08347, 2020.

[TFF08] Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny
images: A large data set for nonparametric object and scene recogni-
tion. IEEE transactions on pattern analysis and machine intelligence,
30(11):1958–1970, 2008.

[TGLM20] Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F
Manso. The computational limits of deep learning. arXiv preprint
arXiv:2007.05558, 2020.

[TKC05] Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core vector
machines: Fast svm training on very large data sets. Journal of
Machine Learning Research, 6(Apr):363–392, 2005.

[TKK07] Ivor W Tsang, Andras Kocsor, and James T Kwok. Simpler core vector
machines with enclosing balls. In Proceedings of the 24th international
conference on Machine learning, pages 911–918. ACM, 2007.

243

[TXZ+15] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolu-
tional neural networks with low-rank regularization. arXiv preprint
arXiv:1511.06067, 2015.

[UNK10] Taishi Uchiya, Atsuyoshi Nakamura, and Mineichi Kudo. Algorithms
for adversarial bandit problems with multiple plays. In International
Conference on Algorithmic Learning Theory, pages 375–389. Springer,
2010.

[VBC+19] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell,
Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575(7782):350–354,
2019.

[Ver16] Roman Vershynin. High-dimensional probability. An Introduction with
Applications, 2016.

[VV98] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning
theory, volume 1. Wiley New York, 1998.

[WHL17] Chen-Yu Wei, Yi-Te Hong, and Chi-Jen Lu. Tracking the best
expert in non-stationary stochastic environments. arXiv preprint
arXiv:1712.00578, 2017.

[WK08] Manfred K Warmuth and Dima Kuzmin. Randomized online pca
algorithms with regret bounds that are logarithmic in the dimension.
Journal of Machine Learning Research, 9(Oct):2287–2320, 2008.

[Wu16] Y. Wu. Yale ECE598, Lecture Notes: Information-Theoretic Methods
in High-Dimensional Statistics, March 2016.

[WWW+16] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Learning structured sparsity in deep neural networks. In Advances in
Neural Information Processing Systems, pages 2074–2082, 2016.

[XD10] Z. Xue and R. Dillmann. Efficient Grasp Planning with Reachability
Analysis. In International Conference on Intelligent Robotics and
Applications, 2010.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017.

[YCRM17] Jiyan Yang, Yin-Lam Chow, Christopher Ré, and Michael W Mahoney.
Weighted sgd for ∖ell_p regression with randomized preconditioning.
arXiv preprint arXiv:1502.03571, 2017.

244

[YLC+17] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu,
Xintong Han, Mingfei Gao, Ching-Yung Lin, and Larry S Davis. Nisp:
Pruning networks using neuron importance score propagation. Preprint
at https://arxiv. org/abs/1711.05908, 2017.

[YLC+18] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu,
Xintong Han, Mingfei Gao, Ching-Yung Lin, and Larry S Davis. Nisp:
Pruning networks using neuron importance score propagation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9194–9203, 2018.

[YLLW18] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-
norm-less-informative assumption in channel pruning of convolution
layers. arXiv preprint arXiv:1802.00124, 2018.

[YLWT17] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On
compressing deep models by low rank and sparse decomposition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7370–7379, 2017.

[ZG17] Michael Zhu and Suyog Gupta. To prune, or not to prune: explor-
ing the efficacy of pruning for model compression. arXiv preprint
arXiv:1710.01878, 2017.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

[ZLW+17] Liang Zhao, Siyu Liao, Yanzhi Wang, Jian Tang, and Bo Yuan. The-
oretical properties for neural networks with weight matrices of low
displacement rank. CoRR, abs/1703.00144, 2017.

[ZVA+18] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Pe-
ter Orbanz. Non-vacuous generalization bounds at the imagenet scale:
a pac-bayesian compression approach. In International Conference on
Learning Representations, 2018.

[ZYZ+18] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen,
Makan Fardad, and Yanzhi Wang. A systematic dnn weight pruning
framework using alternating direction method of multipliers. In Pro-
ceedings of the European Conference on Computer Vision (ECCV),
pages 184–199, 2018.

[ZZWT19] Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. Accelerate cnn
via recursive bayesian pruning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3306–3315, 2019.

245

	Introduction
	Motivation
	Challenges & Vision
	Thesis Overview & Contributions
	Reachability Analysis
	Streaming Coresets for Support Vector Machines
	Pruning Neural Networks for Fast and Deployable AI
	Active Learning for Label-Efficient Deep Learning

	Thesis Contributions
	Thesis Outline
	Relevant Publications
	Other Relevant Results

	Background and Related Work
	Importance Sampling for Approximate Queries
	Reachability Analysis
	Coresets
	Accelerating Support Vector Machines
	Pruning Neural Networks for Fast and Scalable AI
	Active Learning for Label-Efficient Deep Learning

	Importance Sampling in the Context of Reachability Analysis
	Overview
	The Reachability Problem
	Method
	Overview
	Approximately-optimal Algorithm
	Anytime, Asymptotically-optimal Algorithm

	Theoretical Guarantees
	Preliminaries
	Analysis of Algorithms 2 and 3
	Simultaneous under and over approximations

	Results
	Experimental Setup
	Evaluation of Computed Reachable Sets

	Proofs
	Proof of Lemma 3
	Proof of Theorem 7
	Proof of Corollary 9
	Proof of Proposition 11

	Discussion and Future Work

	Streaming Coresets for Support Vector Machines
	Overview
	Setting & Objective
	Setting
	Coresets

	Our Approach
	Computational Complexity

	Analysis
	Preliminaries
	Lower bound for Sensitivity
	Sensitivity Upper Bound

	Intuition for k-means Clustering
	Automating the Search for the (Approximately) Optimal k

	Empirical Evaluations
	Extension to Streaming Settings
	Proofs of the Analytical Results in Section 4.4
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18
	Proof of Theorem 19

	Experimental Details
	Discussion

	Provable Weight Pruning of Neural Networks
	Overview
	Background
	Network Notation
	Problem Definition

	SiPP
	OptAlloc
	EmpiricalSensitivity
	Sparsify

	Analysis
	Empirical sensitivity
	Error guarantees for SiPPDet
	Error guarantees for SiPPRand
	Discussion of error bounds and SiPPHybrid
	Generalization to all weights
	Network compression bounds
	Computation time
	Classification Error

	Experiments
	Setup
	Experiments with baseline comparisons
	Benchmark comparisons
	Empirical computation time of SiPP
	Discussion

	Method Pseudocode
	Overview
	Details regarding OptAlloc
	Details regarding EmpiricalSensitivity
	Details regarding Sparsify
	Simple SiPP

	Proofs and Technical Details
	Outline
	Empirical Sensitivity
	Error Guarantees for positive weights and activations
	Generalization to all weights and activations
	Network compression bounds

	Experimental details
	Setup and Hyperparameters
	Additional results for CIFAR10 (iterative prune+retrain)
	Additional results for ImageNet (iterative prune+retrain)
	Sensitivity to the validation set size

	Discussion and Future Work

	Structured Pruning & The Next Pruning Frontier
	Overview
	Structured Pruning
	Provable Filter Pruning
	Extending SiPP
	Method and Analysis Overview

	Experiments
	The Next Pruning Frontier
	What is Lost in Pruning?
	Discussion and Future Work

	Active Learning for Deep Learning
	Overview
	Active Learning
	Background & Greedy Selection
	Active Learning as Prediction with Expert Advice

	A Low-Regret Approach
	Background
	AdaProd+
	Back to Active Learning
	Flexibility via Proprietary Loss

	Regret Guarantees
	Experiments
	Setup
	Evaluations on Vision Tasks
	Robustness Evaluations
	Boosting Prior Approaches
	Comparison to Existing Expert Algorithms

	Proofs and Full Analytical Details
	Recovering Optimistic Adapt-ML-Prod Guarantees for Alg. 12
	Adaptive Regret
	AdaProd+ and Dynamic Regret

	Implementation Details and Batch Sampling
	Experimental Setup & Additional Evaluations
	Setup
	Setting for Experiments in Sec. 7.5.5
	Results on Data-Starved Settings
	Shifting Architectures
	Robustness Evaluations on Shifted Architecture

	Limitations and Concluding Remarks

	Conclusion
	Thesis Summary
	Lessons Learned
	Theory-guided Practice & Practice-guided Theory
	Toy Examples and Lower Bounds First
	Importance of Algorithms with Non-worst-case Performance

	Future Work

