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Abstract

Simultaneous Localization and Mapping (SLAM) is the capability to estimate a
robot’s trajectory in an initially unknown environment while reconstructing the geom-
etry of the environment. In order to bound the accumulation of localization error in
SLAM, it is crucial to recognize previously seen locations, a process called "loop clo-
sure." This allows the robot to make corrections to its localization and map estimates.
This project evaluates ORB feature extraction and matching, a state-of-the-art tech-
nique to detect loop closures, against recently developed learning-based approaches.
In particular, our first contribution is to benchmark established techniques based on
hand-crafted descriptor matching against novel learning-based approaches based on
neural networks (i.e., SuperPoint and SuperGlue). As a second contribution, we in-
tegrate a learning-based loop closure detection method as part of Kimera, a SLAM
system, and demonstrate its performance in both simulated and real benchmarking
datasets. Finally, we collect data on long trajectories using a Jackal robot to compare
the different approaches on real-world situations beyond available datasets. Our eval-
uation shows that, while learning-based approaches detect many more loop closures
across wider baselines, when integrated in a SLAM system, they do not lead to sub-
stantial performance improvements compared to standard ORB feature matching.

Thesis Supervisor: Luca Carlone
Title: Leonardo Career Development Associate Professor
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Chapter 1

Introduction

Mapping and 3D reconstruction are foundational problems and have attracted interest

across multiple research communities, including computer vision, robotics, and ma-

chine learning. Geometric reconstruction is critical for a robot’s understanding and

navigation of its environment. A simultaneous localization and mapping (SLAM)

system allows a robot to create a global map of an initially unknown environment

while maintaining an estimate of its position within it. When we combine maps of an

environment that are built by two or more robots that are simultaneously exploring

and communicating with each other, we obtain a multi-robot SLAM system.

Over time, any SLAM system mapping an unknown environment inevitably accumu-

lates error on its estimated trajectory. Loop closures provide the ability to recognize a

previously seen location in the internal map, then use the robot’s current position and

its position at the time the location was previously seen to make corrections to the

accumulated error in the estimated trajectory. For this reason, loop closure detection

constitutes one of the key components to ensure that the localization and mapping

errors remain bounded. One common method to reduce the error accumulation is to

have a robust place recognition module that detects loop closures, and a pose graph

optimization method that corrects the entire trajectory using loop closure inliers [4].

In the absence of loop closures, the localization and mapping results would diverge

over time. This is why improvements to the loop closure capabilities could realize
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significant improvements to the entire SLAM system.

Place recognition has its own challenges, such as occlusions, differences in illumi-

nation, and perceptual aliasing between similar looking locations. Progress has made

it possible to develop the state-of-the-art algorithms that we currently rely on, such

as ORB for feature extraction and feature matching [5], and Bag-of-Words to quickly

consider candidates for place recognition [6]. But recent developments in machine

learning approaches have produced bold new methods that promise to outperform

the classical ones. In this thesis, we evaluate the use of learning-based approaches

in loop closure detection. In particular, we benchmark the current state-of-the-art

and novel learning-based approaches including SuperPoint [1] and SuperGlue [2]. We

integrate such approaches in a SLAM system and demonstrate its performance in

simulated and benchmarking datasets. Finally, we evaluate the performance of both

approaches on new data collected on a Jackal robot. The data collected on the Jackal

was also used to test a multi-robot architecture, called Kimera-Multi [7].

This thesis begins with a literature review of all the systems we integrated and worked

with, including Kimera, Kimera-Multi, SuperPoint, SuperGlue, ORB, and Graduated

Non-Convexity [8] for outlier rejection. The rest of the thesis contains 3 experimen-

tal chapters describing the series of experiments we did, as well as evaluations and

limitations of the tested approaches. The experimental evaluation is organized as

follows:

1. Chapter 3 presents an overview of the learning-based approach, expanding on

the literature review in Chapter 2. We describe the difference between the

classical methods, such as ORB, and the learning-based approach. We then

evaluate the results from both methods on benchmarking and simulated data.

To be specific, we focus on measuring the diversity of the loop closures these

methods can detect, as well as the error of each loop on the trajectories when

comparing against the group truth. Our results in this chapter show improve-

ments in the overall number of loop closures that the learning-based approaches

14



are able to find.

2. Chapter 4 expands on the previous results by comparing the same metrics post

outlier rejection. The overall SLAM system must be robust to outliers while

being accurate. We must accept correct loop closures that will decrease the

drift while rejecting the ones that would increase our absolute trajectory error.

To that end, we tested the effects of the Graduated Non-Convexity approach

(GNC) [8] for robust fitting, which has proven to be robust to high ratios of

outliers. In this chapter, we also compare the absolute trajectory errors for

our simulated and benchmarking datasets while using both ORB and learning-

based approaches for loop closure detection. Surprisingly, these results do not

suggest that replacing the classical methods with the learning-based approaches

produces significantly better results.

3. Chapter 5 is about real robot data collected on a Jackal at MIT and at the

Medfield Hospital in Massachusetts. We did 6 different long runs on 2 locations

(3 runs on each) and returned the robot to its original position. To measure

accumulated error, in the absence of ground truth, we calculate the end-to-end

drift. Furthermore, we visualize the trajectories overlaid on a satellite map as

well as the corresponding mesh reconstructions. This chapter focuses on how

the approaches perform on real data. While these results do not change the

conclusions from Chapter 4, the experiments did provide an opportunity to

exercise a multi-robot system, Kimera-Multi [7]. These experiments led to a

joint paper, whose preprint can be found at [9].

We conclude the thesis with a brief discussion on the current limitations of the

learning-based approaches. We also describe future work that could improve the

performance of such approaches in SLAM systems. Our evaluation shows that, while

SuperPoint and SuperGlue detect many more loop closures with wider baselines,

when integrated in a SLAM system, they do not lead to substantial performance

improvements compared to ORB-based methods.
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Chapter 2

Related Work

A major contribution of this thesis is the testing and evaluation of learning-based

and classical approaches for feature extraction and feature matching for loop closure

detection in a SLAM system. In particular, we test ORB [5] against SuperPoint [1]

and SuperGlue [2] using Kimera [3] as a SLAM pipeline. We will go into detail on

all these techniques in this chapter. We also mention the outlier rejection technique

used for experiments in the later chapters. We will also give a brief overview of

Kimera-Multi [7], the recently-developed multi-robot version of Kimera.

2.1 Loop Closure Detection

The core of this thesis lays on the experimental evaluation of learning-based methods

for loop closure detection. We evaluate such methods against ORB, a hand-crafted,

heuristic-based approach that is currently considered state-of-the-art. We review

these two approaches in this section.

2.1.1 Classical Methods

ORB was introduced in 2011 as an alternative to other commonly-used feature de-

scriptors, such as SIFT [10] and SURF [11]. SIFT is considered very successful for

feature detection with descriptors, and is still widely used in many computer vision
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problems. However, SIFT is costly in terms of computation and not an ideal solu-

tion for real-time applications like SLAM systems [5]. SURF is an alternative with

lower computation cost. ORB, however, produces better results than SURF, and it

performs as well as SIFT while being capable of running in real-time [5].

ORB uses FAST keypoint detector [12] and BRIEF for descriptors [13]. Hence the

name ORB (Oriented FAST, Rotated BRIEF). It is worth noting that BRIEF lacks

rotational invariance, but the addition of a nearest-neighbor technique and a learning

step yields rotational invariance results for ORB [5]. ORB works by first detecting

FAST keypoints in a image. The only input to FAST is a threshold between the

central pixel and those in a ring around it [12]. ORB orders these keypoints by using

Harris corner measures [14]. These two ideas work together as follows: ORB takes

as input a target of N keypoints for a given image. The FAST threshold is then set

to be low enough such that FAST produces more than N keypoints. Then ORB uses

the Harris corner measures to select the top N points that ORB will return as the

N desired keypoints [5]. As for the descriptors, ORB builds an additional step on

BRIEF [13] in which ORB discretizes rotation angles every 12 degrees and uses a

lookup table with BRIEF patterns that were previously computed. This table allows

ORB to create a consistent descriptor for a given keypoint, invariant of rotation, as

long as the computed patch orientation is consistent from different angles looking at

the point [5].

2.1.2 SuperPoint

SuperPoint is a pretrained convolutional neural network for keypoint detection and

their corresponding descriptors [1]. The model takes a full 2D image frame as an

input and produces a set of keypoints and descriptors. As shown in Figure 2-1, it does

this by compressing and encoding the image, and running the encoded version on two

separate neural networks. One uses the pretrained weights to identify keypoints on the

image, while ignoring extreme illumination limitations that other techniques usually

have. The second neural network is responsible for generating vectors of descriptors
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Figure 2-1: SuperPoint architecture (figure courtesy of [1])

for interest points. SuperPoint claims to perform better that classical methods like

SIFT or ORB, identifying more keypoints and providing richer descriptors.

2.1.3 SuperGlue

SuperGlue is a deep neural network that performs feature matching [2]. The classical

pipeline used for place recognition, given two images as inputs, includes an initial

detection of keypoints and descriptors, the feature-matching step, and an outlier fil-

ter followed by the pose estimation. The extraction of keypoints is often performed

with a classical method such as SIFT or ORB. Then, the feature matching step is

performed using a nearest neighbor approach between the descriptors. Finally, the

filtering step takes into account heuristics such as a ratio test and mutual check.

The pose is then estimated using a geometric verification method such as RANSAC

[15]. In contrast, SuperGlue combines the description, feature matching, and outlier

filtering. It does so by performing a context aggregation technique, followed by an

optimization layer that produces a partial assignment. SuperGlue claims to obtain

best results when used with SuperPoint.

Figure 2-2 shows the two main components of SuperGlue. It takes local keypoints be-

tween two images, as well as their corresponding descriptors, and performs attention

aggregation on its pretrained graph neural network. This step allows SuperGlue to
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Figure 2-2: SuperGlue Architecture (figure courtesy of [2])

compare keypoints and their descriptors within an image (self-attention aggregation),

which allows the neural net to take into consideration similarities and locality of the

image. Then, it does a similar comparison between the two images (cross-attention

aggregation) while keeping the knowledge of the self-attention step. The output of

this first component is a score matrix of matching, which gets passed to an optimiza-

tion layer. There, SuperGlue uses optimal transport and an outlier filtering algorithm

that takes into consideration possible occlusion and visibility in order to produce a

partial assignment that only matches each keypoint to at most one keypoint on the

other image.

2.2 SLAM Systems

Advances in robotics and computer vision have made it possible to develop robust

SLAM systems [16, 17]. Similarly, there have been drastic progress in methods to

generate semantic labeling of 3D reconstructions of entire environments [18, 19, 20,

21, 22, 23, 24]. These two subfields, however, have seen much of their respective

improvements develop in isolation. Kimera is one of the first open-source libraries

to offer real-time Metric-Semantic SLAM on CPU [3]. This combination allows for

reconstruction of the geometry of the environment, simultaneous localization, and the

construction of semantically annotated meshes that accurately label objects for easy

human understanding of the environment. We use the SLAM modules in Kimera
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as the baseline system for this thesis work, and conduct experiments testing the

integration of new algorithms to Kimera.

2.2.1 Kimera

Figure 2-3: Kimera Modules and Architecture (figure courtesy of [3])

As shown in Figure 2-3, there are 4 modules that are part of Kimera: visual-

inertial odometry (VIO) for a fast and accurate state estimation; a robust pose graph

optimizer (RPGO) for global trajectory estimation; a lightweight 3D mesher for fast

mesh reconstruction; and a dense 3D metric-semantic mapper for a global metric-

semantic mesh reconstruction. This modularity makes it possible to run Kimera as

a state-of-the-art VIO or a full SLAM system with or without semantic mesh recon-

struction. Taking a closer look at the role of loop closure detection in Kimera-RPGO

loop closure detection, we can better understand how place recognition works and

how it affects the overall system. Kimera-RPGO detects loop closures by comparing

the current frame against past keyframes for which we stored keypoints and descrip-

tors using ORB. Then, it computes a pose estimation (possibly up to scale) between

the two images. Finally it executes pose graph optimization to obtain an optimal

trajectory estimate. In order to detect loop closures, Kimera relies on Bag of Words

(DBoW2) [6]. DBoW2 can quickly extract candidate keyframes for loop closures.
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Then, the feature matching algorithm is performed, and a geometric verification is

used to reject outliers. In Chapter 3, we will give a more detailed overview of Kimera-

VIO. Then, in Chapter 4, we will go over Kimera-RPGO, as well as how the loop

closure components integrate into the system.

2.2.2 Kimera-Multi

Recent work expanding the capabilities of Kimera to a multi-agent system led to

Kimera-Multi, the first fully distributed system for multi-robot metric-semantic SLAM

[7]. Kimera-Multi combines the previous Kimera modules with a multi-robot, dis-

tributed architecture for simultaneous reconstructions of an environment from multi-

ple vehicles. Kimera-Multi depends on the loop closures obtained across the system,

and more specifically, across different robots in the environment. To achieve this,

robots exchange their DBoW2 vectors in order to find loop closure candidates across

all vectors from all robots, and in doing so, Kimera-Multi can accept loop closures be-

tween different robots. Those are then sent to a distributed pose graph solver, which

also takes the trajectories and optimizes the global trajectories of the robots on the

global map. This pipeline can then inform the robots of the resulting trajectory esti-

mate so they can perform local mesh optimizations, which deforms the local meshes

in order to achieve global consistency. Because Kimera-Multi global consistency relies

on loop closure detection, improvements to Kimera loop closure detection algorithms

would benefit not only the single-robot system, but the entire multi-robot stack.

2.3 Outlier Rejection

A full SLAM system with a loop closure module requires the capability of optimizing

the trajectory given the detected loop closures, while also rejecting incorrect and in-

consistent loops. To that end, the final section of this chapter is dedicated to outlier

rejection, with a particular emphasis on the methods used by Kimera. The pose graph

optimization problem has also seen a number of approaches and advances to achieve

the robustness and accuracy we have today. Early methods were based on a standard
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least square formulation, RANSAC [15], branch and bound [25], and M-estimation

[26]. Since then, many methods have been developed to improve the capabilities of

outlier rejection and improve on the PGO problem [27, 28, 28, 29, 30, 31, 32, 33, 34,

35].

Kimera-RPGO is implemented with significant use of GTSAM [36]. On the first

release of Kimera, RPGO relied on the Incremental Consistent Measurement Set

Maximization approach (PCM) [37] for outlier rejection. However, with the recent

development of Graduated Non-Convexity (GNC) for robust spatial perception [8],

our team also integrated GNC into Kimera and already saw improvements in perfor-

mance. For the work presented in this thesis, we decided to show results using GNC

as outlier rejection method.
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Chapter 3

Loop Closure Improvements

3.1 Introduction

In this chapter, we present our initial results from the experimental work done for

this thesis. Our work centers around one initial question about our loop closure tech-

niques: Can learning-based methods improve loop closure detection? We begin by

comparing ORB [5] against SuperPoint [1] and SuperGlue [2] reviewing results in the

literature, and presenting our own experimental results. We describe our integration

with Kimera [3], the system used for our experimental evaluations. Finally, we show

extensive results from our experiments on benchmarking and simulated datasets in

which we see promising improvements for loop closures using the learning-based ap-

proaches. For this chapter, we only focus on the quality of the relative pose of each

loop closure in isolation.

3.2 Background

Loop closures are essential to reduce accumulated drift on SLAM systems. Kimera

is a real-time, modular SLAM system [3], and as such, we desire to have real-time

feature extraction, place recognition, and feature matching. These techniques, as al-

ready stressed, are needed for an efficient loop closure module. The Kimera Robust

Post Graph Optimization module currently relies on ORB, a state-of-the-art feature
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Figure 3-1: ORB and SuperPoint/SuperGlue visual comparison

extraction and feature matching technique that has proven to be rotation invariant

and resistant to noise. ORB is two orders of magnitude faster than other feature

matching techniques like SIFT, providing a real-time solution for a SLAM system [5].

SuperPoint and SuperGlue are recently-developed, learning-based approaches for fea-

ture extraction and feature matching, respectively. SuperPoint offers a pretrained

neural network that overcomes some of the difficult challenges of feature extraction,

like extreme illumination and darkness [1]. SuperGlue is trained on extensive real-

world situations, which allows the neural network to correctly match complicated

geometric transformations and, in some situations, overcome occlusion [2].

These promising aspects from the learning-based approaches incentivize us to compare

them against the classical method we currently use for Kimera. Figure 4-1 shows a vi-

sual comparison of a feature match between ORB and SuperPoint/SuperGlue. These

images were taken from Vicon Room 2, one of the sequences in EuRoc [38] – our

benchmarking dataset. SuperPoint/SuperGlue produce correct matches with wider

baselines, as the one shown in 4-1. ORB cannot replicate this match. On this rosbag

from the dataset, SuperPoint/SuperGlue detects approximately three times as many
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feature matches. We will provide a more extensive, quantitative comparison in our

evaluation section.

3.3 System Overview and Experimental Setup

As previously stated, Kimera [3] is the base system for the work done for this thesis.

Although Kimera has four different modules, our work focuses on only two: Kimera

Visual-Inertial Odometry (Kimera-VIO) and Kimera Robust Post Graph Optimiza-

tion (Kimera-RPGO). Kimera-VIO uses monocular and stereo keyframes, and the

maximuma-posteriori visual-inertial estimator introduced in [39]. The front-end of

Kimera-VIO processes the raw sensor data from the cameras and IMU. The back-end

fuses the results to produce the estimate output. The loop closure detection is part

of Kimera-RPGO, which compares the current keyframe with past keyframes. This

module also computes global consistent keyframe poses. For the work presented in

this thesis, we will mostly focus on the loop closure detection of Kimera-RPGO. In

the next chapter, we go into further detail about outlier rejection.

For this chapter, we will focus on how ORB and SuperPoint/SuperGlue detect loop

closures in Kimera. We isolate metrics of the loop closures by themselves to evalu-

ate the improvements and errors that the learning-based approach would introduce.

The four main components of our loop closure pipeline are feature extraction, place

recognition, feature matching, and a geometrical verification. For feature extraction,

we use either ORB or SuperPoint to extract features from each keyframe. These

features are used for visual feature tracking in Kimera-VIO and for place recognition.

We rely on bag-of-word representations of the keypoints and use the DBoW2 library

[6] to quickly compare our current keyframe with past keyframes and find potential

matches. Then we perform feature matching using either ORB or SuperPoint – this

produces a result similar to Figure 4-1. Finally, we enforce a geometrical verifica-

tion using both a 5-point monocular RANSAC [40] and a 3-point stereo RANSAC

[41]. Only loop closures that pass the geometric verification are then sent to Kimera-
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RPGO. For the evaluation in this section, we will look at all of these loop closures.

We use multiple datasets for our evaluation. The EuRoc dataset [38] contains 11

different sets of data from 3 different rooms: Machine Hall; Vicon Room 1; Vicon

Room 2. We used these benchmarking datasets in addition to our own simulated

dataset, taken from a photo-realistic Unity simulator. We include data from two dif-

ferent simulated environments: City and Camp. With the exception of Machine Hall,

which contains 5 different sequences, every other location in this dataset has 3 differ-

ent sequences. That is, every location contains 3 different rosbags we run Kimera on,

as well as ground truth trajectories. Figure 3-2 show images of the difference between

the scenarios.

Figure 3-2: Snapshots of the different environments
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3.4 Evaluation

For our evaluation of loop closure improvements, we collected the rotation and trans-

lation of loop closures that passed the geometric verification, using either ORB or

SuperPoint/SuperGlue. We plotted the histograms of the magnitude of the rotations

and translations across loop closures. Larger rotations and translations indicate the

capability of performing loop closures across distant (wide baseline) images. Further-

more, we computed the rotational and translation error of each loop closure with

respect to the ground truth, and plotted those on histograms as well. Each set of

data was run with Kimera a total of 10 times. The Kimera parameter used for all

the experiments can be found at the appendix. The immediate conclusion from these

results is that the learning-based approach produces significantly many more wide-

baseline loop closures, but the distribution of the errors indicates the presence of more

outliers. As for computational time, both approaches run on real-time but SuperGlue

requires GPU.

Machine Hall

Figure 3-3: Machine Hall - Rotation and translation between loop closure poses

Machine Hall shows a small increase of loops detected by SuperGlue, as shown in

Figure 3-3. As for the error when comparing against the ground truth, Figure 3-
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4 shows that, while most loops from both methods have very small error overall,

SuperGlue does have a number of loops with larger errors. This gives us our first

indication that SuperGlue produces more loop closures, with the potential of many

more outliers.

Figure 3-4: Machine Hall - loop closure error against the ground truth

Vicon Room 1

Figure 3-5: Vicon Room 1 - Rotation and translation between loop closure poses

In contrast with Machine Hall, Vicon Room 1 offers a new environment in which

the distinction between ORB and SuperGlue is clear. Figure 3-5 shows a significant
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increase in loop closures detected by SuperGlue. In Figure 3-6 we see very small

errors from the loop closures when comparing against the ground truth. These results

indicate the presence of many more loop closures with little error. In this dataset,

learning-based approaches lead to improved quality for the loop closures.

Figure 3-6: Vicon Room 1 - loop closure error against the ground truth

Vicon Room 2

Figure 3-7: Vicon Room 2 - Rotation and translation between loop closure poses
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Vicon Room 2 preserves the promising results we saw on Vicon Room 1. Just like

Figure 3-5, Figure 3-7 also shows the presence of many more loop closures detected by

SuperGlue. In contrast with 3-6, 3-8 shows slightly greater error on our loop closures,

but it is worth noticing that ORB also have a similar distribution on the error. Thus,

we are still seeing many additional loop closures, with large rotation and translation,

and still showing similar error as ORB.

Figure 3-8: Vicon Room 2 - loop closure error against the ground truth

City Simulator

Figure 3-9: City - Rotation and translation between loop closure poses
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The simulator is a completely different type of dataset, that pictures large outdoor

environments. One major difference we can see from the plots immediately is that

all loops detected here have very small rotation angles. We still see many more loop

closures from SuperGlue when looking at the translation, with the errors being small.

Figure 3-10: City - loop closure error against the ground truth

Camp Simulator

Figure 3-11: Camp - Rotation and translation between loop closure poses
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Camp shows us yet another very different set of results. Notice on Figure 3-11 that

the angle of rotation of the loops with SuperGlue are extremely wide, potentially

suggesting incorrect loops. The errors in this particular location are also clearly,

much higher for SuperGlue alone, from 3-12

Figure 3-12: Camp - loop closure error against the ground truth

3.5 Closing Remarks

There are three observations we can see from the results on these dataset:

1. Learning-based feature extraction and feature matching always produce more

loop closures with similar or greater rotation and translation baselines.

2. The error distribution of the loop closures detected using SuperGlue is similar to

that of ORB. While some cases did show slightly greater errors for SuperGlue,

most of the errors clusters around 0.

3. The performance of SuperGlue seems to be dataset-dependent, with more promis-

ing results in Vicon Rooms and City, and slightly worse performance in Machine

Hall and Camp.

From these results, we conclude that the learning-based approach is indeed capable of

producing many more loop closures. However, these results do not tell how these loop
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closures affect a SLAM system, as we are only looking at loop closures in isolation,

each loop individually. In Chapter 4, we will look at the impact of the loop closures

on the trajectory estimate of a SLAM system. We will also look at the loop closure

again after implementing our outlier rejection step, thus removing all loops that we

ultimately do not use for the final, optimized output from our system.

In fairness to ORB, we must acknowledge that more loop closures could be possi-

ble to obtain by relaxing ORB parameters. Although we do not include histograms

showing these results, we did run experiments with such settings. We ultimately de-

cided against using those as the absolute trajectory errors increased dramatically for

ORB. We will discuss the absolute trajectory errors in the next chapter.
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Chapter 4

SLAM Evaluation

4.1 Introduction

To give a better sense of what a trajectory looks like and how loop closures can

connect different parts of the trajectory and reduce error accumulation, Figure 4-1

provides a visualization using both loop closure detection methods. In this figure, the

green line represents the optimized trajectory output from Kimera. The blue lines

are loop closures detected on this trajectory. As we will discuss in this chapter, many

of those loop closures are ultimately rejected by Kimera-RPGO. The accepted loop

closures are used to make correction on the trajectory and reduce the accumulated

drift. This visualization reaffirms our conclusion from the previous chapter: that

SuperGlue is able to detect many more loop closures with significantly greater angles

between the two poses. In the previous chapter, we talked about how loop closures

detected using SuperPoint and SuperGlue compare to ORB. That chapter isolates

the metrics discussed therein: loop closure rotations, translations, and errors. In this

chapter, we look beyond the isolated loop closure detection. We discuss how Kimera-

RPGO rejects outlier, and plot the same metrics from Chapter 3 after we remove

outlier. Furthermore, we use the ground truth trajectories to obtain the absolute

trajectory error of our optimized, estimated trajectories using Kimera with both loop

closure detection methods. This gives us a full overview of how the methods perform

on the entire pipeline of a SLAM system.
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Figure 4-1: ORB and SuperPoint/SuperGlue trajectory comparison

4.2 Outlier Rejection in Pose Graph Optimization

The previous chapter already explained the system used for our experimental evalua-

tions. The main addition we will discuss in this chapter is outlier rejection. Kimera-

RPGO is in charge of rejecting outliers from our detected loop closures, as well as

keeping global consistency for all poses on the graph. The module is implemented with

significant use of GTSAM [36]. On the first introduction on Kimera, RPGO relied

on the Incremental Consistent Measurement Set Maximization (PCM) [37] for outlier

rejection. However, with the recent development of the Graduated Non-Convexity

(GNC) for robust spatial perception [8], our team also integrated GNC into Kimera

and saw performance improvements. In the integration with Kimera, GNC takes

a probability threshold for filtering outliers and a covariance for each residual. In

the rest of this sections, we will look at the results from an evaluation of different

probabilistic threshold on the EuRoc dataset [38]. We use a fixed isotropic covari-

ance with a standard deviation of roughly 0.1 degrees for rotation and 0.01 meters

for translation. The exact parameters use can be found at the appendix, with the

GNC parameters being at the end of table A.3. To evaluate the performance of the

system, we will rely on the absolute trajectory error (ATE) measured from the RMSE

of 10 iterations for every trajectory. The ATE is the most popular accuracy metric
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Figure 4-2: GNC Probability threshold on Machine Hall

for SLAM. It measures the average deviation from ground truth trajectory per frame

[42]. A small ATE would indicate a better performance.

From these evaluations, we can see that accepting more loop closures reduces the

ATE. However, if the probabilistic threshold for GNC becomes too large, the pipeline

starts accepting a number of incorrect loop closures as inliers, causing the ATE to

increase again. We can see from the plots on figures 4-2, 4-3, and 4-4 that this point

is actually on the high end, so we can use a conservative threshold of around 0.70 for

the rest of the experiments presented in this thesis.

Figure 4-3: GNC Probability threshold on Vicon Room 1
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Figure 4-4: GNC Probability threshold on Vicon Room 2

4.3 Loop Closures Post Outlier Rejection

We will revisit the individual loop closure metrics from the previous chapter, but after

filtering using GNC. For this section, we will also define two types of loop closures.

Those are:

1. Diverse Loop: A loop closure is diverse (i.e., it has a wide baseline) if its

rotation angle is greater than 20 degrees and its translation is greater than 0.5

meters. Diverse loops are desirable since they indicate that the loop closure

detection module is able to match images taken at very different viewpoints.

2. Small Error Loop: A loop closure has small error if its rotation error is less

than 2 degrees and its translation error is less than 0.05 meters.

Given these definitions, we will now analyze the number of diverse and small error

loops we see in these datasets before and after outlier rejection.

ORB SuperGlue
Machine Hall 168 282
Vicon Room 1 235 1176
Vicon Room 2 411 1302

City 96 24
Camp 150 288

Table 4.1: Diverse Loops Detected

ORB SuperGlue
Machine Hall 89 196
Vicon Room 1 25 683
Vicon Room 2 60 349

City 1 0
Camp 0 14

Table 4.2: Diverse Loops Accepted
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ORB SuperGlue
Machine Hall 1567 1959
Vicon Room 1 274 1036
Vicon Room 2 292 592

City 65 446
Camp 346 358

Table 4.3: Small Error Loops Detected

ORB SuperGlue
Machine Hall 1565 1938
Vicon Room 1 271 1035
Vicon Room 2 289 589

City 35 316
Camp 346 353

Table 4.4: Small Error Loops Accepted

From these tables, there are two important conclusions we can make:

1. We do not reject almost any of the small error loop closures. This reinforces the

robustness and accuracy of GNC as outlier rejection method for Kimera-RPGO.

2. There are more diverse loop closures that remain after our outlier rejection step

when we use SuperGlue. This is the case for both absolute and relative numbers.

Thus, we know that SuperGlue is providing loop closures with significantly

larger rotation angles to our optimized trajectory.

In the remaining of this section, we will revisit the histograms from Chapter 3 after we

filter out the rejected loop closures. This allows us to look only at the accepted loop

closures by our SLAM system and make better conclusions about these two methods.

Machine Hall

After outlier rejection, Machine Hall shows a smaller increase of loops detected for

SuperGlue, as shown in Figure 4-5. The differences between these plots are visually

negligible. As for the error when comparing against the ground truth, Figure 4-6

show that SuperGlue now has a greater number of larger errors for some loops. This

gives us a new indication that SuperGlue and ORB produces similar numbers of loop

closures, with SuperGlue having a few additional loops but higher errors as well.
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Figure 4-5: Machine Hall - Rotation and translation between loop closure poses
restricted to the GNC inliers

Figure 4-6: Machine Hall - Loop closure error against the ground truth restricted to
the GNC inliers
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Vicon Room 1

Figure 4-7: Vicon Room 1 - Rotation and translation between loop closure poses
restricted to the GNC inliers

In contrast with Machine Hall, Vicon Room 1 still offers a different environment where

the distinction between ORB and SuperGlue is easier to see. Figure 4-7 shows a very

significant increase in loop closures detected by SuperGlue. In contrast to Chapter

3, Figure 4-8 shows that the error of the loops produced by SuperGlue is visually

greater than those of ORB. These results indicate the presence of many more loop

closures with larger error. Notice the presence of error of greater than 10 degrees

post-filtering only for SuperGlue.
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Figure 4-8: Vicon Room 1 - Loop closure error against the ground truth restricted to
the GNC inliers

Vicon Room 2

Figure 4-9: Vicon Room 2 - Rotation and translation between loop closure poses
restricted to the GNC inliers

Vicon Room 2, once again, shows similar results as Vicon Room 1. Figure 4-9 shows

the presence of more loop closures detected by SuperGlue, but not as many more as

before outlier rejection. Figure 4-10 shows slightly greater error on our loop closures,

with most of the large error produced by ORB removed post filtering. Thus, we
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still see additional loop closures from SuperGlue, but only SuperGlue loops still have

greater error.

Figure 4-10: Vicon Room 2 - Loop closure error against the ground truth restricted
to the GNC inliers

City Simulator

Figure 4-11: City - Rotation and translation between loop closure poses restricted to
the GNC inliers

For City, 4-11 shows a drastic decrease of loops post filtering. The rotation and

translation are small in general, as is the error in 4-12.
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Figure 4-12: City - Loop closure error against the ground truth restricted to the GNC
inliers

Camp Simulator

Figure 4-13: Camp - Rotation and translation between loop closure poses restricted
to the GNC inliers

Similarly to City, Camp shows a drastic decrease of loops detected in 4-13, while

SuperGlue clearly has some high error loops that survived the filtering step in 4-14.
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Figure 4-14: Camp - Loop closure error against the ground truth restricted to the
GNC inliers

4.4 Evaluation on SLAM System

We introduce the ATE in section 4.2 as a baseline to evaluate the overall performance

of Kimera-VIO and Kimera-RPGO. We used this metric in that section to evaluate

the probability threshold we used for GNC in our experiments. In this section, we do

a close inspection of the ATEs across every single rosbag in our datasets. The goal

of this section is to provide a final, complete evaluation of the performance of ORB

and SuperGlue in a full SLAM system. We also include the results from Kimera-VIO

(without loop closures enabled) as a reference point.

Table 4.5 shows all the ATEs across our datasets. Besides the results from Camp

(where the increase in error when loop closures are enable is likely from aliasing or

from accepting an incorrect loop closure), the results from the other 4 environments

are fairly consistent. Loop closures improve the performance of Kimera-VIO by re-

ducing its absolute trajectory error. When we compare ORB against SuperGlue in

this table, it is important to first notice that the differences between these results of

the two methods are in the order of a few centimeters. In other words, the perfor-

mance is very similar, with almost negligible difference in the improvement we see.
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VIO only ORB SuperGlue
Machine Hall 01 0.54 0.51 0.51
Machine Hall 02 0.13 0.10 0.11
Machine Hall 03 0.15 0.06 0.08
Machine Hall 04 0.19 0.10 0.10
Machine Hall 05 0.14 0.06 0.06
Vicon Room 1 01 0.09 0.05 0.03
Vicon Room 1 02 0.09 0.04 0.03
Vicon Room 1 03 0.20 0.15 0.07
Vicon Room 2 01 0.04 0.03 0.03
Vicon Room 2 02 0.09 0.06 0.06
Vicon Room 2 03 0.20 0.13 0.13

City 01 2.99 2.29 2.19
City 02 5.23 3.46 3.29
City 03 0.86 0.62 0.60

Camp 01 0.32 0.48 1.07
Camp 02 0.33 0.18 1.49
Camp 03 0.42 2.36 13.91

Table 4.5: Absolute Trajectory Error (ATE) - rmse (meter)

It is also important to notice that the performance of Kimera-VIO on its own is al-

ready pretty good with very low ATE across these datasets. City 02 actually shows

the worst performance from VIO, and the one set in which the improvement from

introducing loop closures is significant (about 2 meters). On the other hand, wrong

loop closures on Camp 03 are very likely responsible for a significant increase in what

was a low ATE from Kimera-VIO.

4.5 Closing Remarks

The promising loop closing improvements we first saw from isolating them in Chapter

3 seem to be reduced when we introduce the outlier rejection step. Looking at the

number of diverse and small-error loop closures, it was clear the SuperGlue detects

many more diverse loops that survive filtering, and that the small error loops do not

get removed by robust PGO. When looking at ATE results, the conclusion is that Su-

perGlue, while performing better in a small number of runs, does not perform as well
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in many other runs. Overall, the difference in performance is negligible. One consis-

tency with Chapter 3: the performance of SuperGlue seems to be dataset-dependent,

with more promising results in Vicon Rooms and City, and slightly worse performance

in Machine Hall and Camp.

Despite SuperGlue detecting more loop closures with wide baseline, it does not out-

perform ORB. One possible explanation could be that, because more of these diverse

loop closures survived the filtering step, they introduce a greater risk of outliers with

greater error. That is, consider the outliers with an incorrect wide baseline. Su-

perGlue will detect more of those as well. Thus, the risk of accepting an incorrect

loop closure with wide baseline is higher. This incorrect loop closure would introduce

greater error into the optimized trajectory. Future work can be done to analyze the

large error loops that survive outlier rejection from both methods.
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Chapter 5

Real Robot Experiments

5.1 Experiments

The goal of these real experiments is to demonstrate the performance of Kimera on two

challenging outdoor datasets, collected using a Clearpath Jackal UGV equipped with

a forward-facing RealSense D435i RGBD Camera and IMU. These experiments were

done outdoors, controlling the robot using teleoperation, while exploring large-scale

areas. The first dataset was collected at the Medfield State Hospital, Massachusetts,

USA. Three sets of trajectories were recorded, with the longest trajectory being 860

meters in length. The second dataset was collected around the Ray and Maria Stata

Center at MIT, and also includes three different trajectories, each trajectory over

500 meters in length. Both sets of experiments are challenging and include many

similar-looking scenes that induce spurious loop closures.

In the absence of ground truth on this experiments, we employed the end-to-end

error metric, as in [39], by approximately returning the robot to its original posi-

tion and computing the distance between the first and last estimated positions. This

metric is less reliable than the absolute trajectory error, as the estimated trajectory

could have wrong sections and still give a small end-to-end error particularly if it is

able to find a loop closure between and start and end positions. To account for such

cases, we also visualize the estimated trajectories overlaid on a satellite map of the
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Figure 5-1: Mesh reconstruction at Medfield Hospital

scenarios. The end-to-end error, however, still provides useful information about the

final estimation drift on each trajectory. We also took the opportunity to test the full

Kimera stack on real data. Figure 5-1 shows the mesh reconstruction from one of the

runs at Medfield.

5.2 Results

On the Medfield dataset Kimera-VIO accumulates a drift of approximately 15-25 m

on each trajectory sequence. We note that the drift is mostly in the vertical direction,

hence only partially visible in Figure 5-2. Through loop closures and Kimera-RPGO,

Kimera significantly reduces the error. In comparison, the Stata dataset, shown in

Figure 5-3, is more challenging, partially due to the lack of enough loop closure op-

portunities.
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Length(m) VIO ORB SuperGlue
Stata Blue 610 29.35 10.10 10.19

Stata Orange 570 24.19 15.14 15.47
Stata Red 515 49.02 15.42 0.13

Medfield Blue 728 24.55 0.09 0.15
Medfield Orange 860 14.84 1.77 7.90

Medfield Red 600 18.74 19.82 19.61

Table 5.1: End-to-End Error (meter)

For five of these six trajectories, Kimera-VIO accumulates higher drifts than the op-

timized trajectories with loop closures, as shown in table 5.1. When comparing ORB

and SuperGlue, we get similar performances, with two significant exceptions on the

Medfield Orange set, in which ORB does significantly better than SuperGlue, and on

the Stata Red set, in which SuperGlue does significantly better than ORB. Trajec-

tory estimates are qualitatively correct: the optimized trajectories show better results

than Kimera-VIO alone. There is no significant difference between the two methods.

5.3 Closing Remarks

These real experiments provided a great opportunity to also evaluate our loop closure

modules on single-robot Kimera. Although these results show very impressive results

for our single robot systems, both SuperGlue and ORB provide very similar results.

This does not suggest a benefit in replacing ORB with SuperGlue, confirming the

results shown in Chapter 4.
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Figure 5-2: Medfield Trajectories
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Figure 5-3: Stata Trajectories
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Chapter 6

Conclusion

In this last chapter, we present possible directions for future work in learning-based

loop closure detection. We end with a summary of our work, our results, and the

general conclusions we can learn from them.

6.1 Future Work

The work done in this thesis is an initial evaluation of learning-based approaches for

loop closure detection in a SLAM system. But the applications go beyond SLAM.

Kimera itself is a modular system that could create metric-semantic meshes. These

meshes also benefit from correction on the trajectory estimate and correct the meshes

as well. Another example is Kimera-Multi, which presents a multi robot setup that

would allow us to combine information from multiple agents for multi-robot SLAM

and mesh reconstruction. A multi-robot system like Kimera-Multi requires a robust,

reliable, and accurate inter-robot loop closure module. Any improvements we can

achieve on loop closure detection will not only improve our single-robot trajectory

estimation, but it would also improve the meshes and the entire multi-robot system

too. The potential to improve loop closure detection, and in effect all the systems

that rely on it, will continue to push us and other researchers to try new innovative

methods and ideas. SuperPoint and SuperGlue did show us the ability to detect loops

with wider baseline and small errors. However, our full evaluation in a SLAM system
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did not show the overwhelming results we would have liked to see. One possible,

though speculative, explanation is that the greater amount of these diverse loop clo-

sures presents the possibility of a greater error with just few outliers that survive the

outlier rejection step. Indeed, we see improvements when using very extreme (small)

probabilistic thresholds for GNC.

Future work with SuperPoint and SuperGlue could focus on reducing some of the

matches these methods produce while improving their quality. For instance, Super-

Glue gives a score to every individual match (keypoint to keypoint). We currently

select the medium score of all matches within two keyframe as the threshold to con-

sider the match valid (thus, always selecting the top half of scores as valid SuperGlue

matches). Relaxing this threshold would lead to many more matches, which we ex-

pected GNC to filter. Testing stricter criteria to reject incorrect matches could thus

be a productive line of future research. Additionally, testing SuperPoint and Super-

Glue in other SLAM systems, or testing new learning-based methods on Kimera could

be promising paths to see improvements using learning-based approaches on SLAM

systems.

6.2 Closing Remarks

In this thesis, we presented an evaluation of the loop closures capabilities of both

ORB, a state-of-the-art method for feature extraction and feature matching, and Su-

perPoint with SuperGlue, novel pretrained learning-based approaches for feature ex-

traction and feature matching respectively. In our related work section, we described

the history of these algorithms and how we arrived at ORB as a state-of-the-art ap-

proach that performs well and runs in real-time on CPU. Recently, SuperPoint and

SuperGlue have shown very promising capabilities that can outperform ORB. Our

results from analyzing loop closures in isolation between these two methods confirm

that SuperPoint indeed detects a set of richer key-features while SuperGlue matches

keyframes with wider baselines. However, when integrating these methods in Kimera,
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a full SLAM system, we found no statistically significant evidence that SuperPoint

and SuperGlue can drastically improve the system. Indeed, they perform similarly

to ORB in benchmarking, simulated, and real datasets. In some cases, one method

would do slightly better than the other. However, it is also important to remem-

ber that while ORB provides real-time performance on CPU for Kimera, which also

runs in real-time on CPU, SuperPoint and SuperGlue are neural networks that re-

quire GPU in order to maintain real-time performance. The additional computational

power required for these methods adds to the cost of using them, while the perfor-

mance when looking at the absolute trajectory errors on EuRoc and simulated data,

and end-to-end errors on the real data, do not show any benefits of doing so. Our

evaluation suggests that, while the SuperPoint and SuperGlue detect many more loop

closures with wider baselines, when integrated in a SLAM system, their use does not

lead to substantial performance improvements compared to classical methods, such

as ORB feature matching.
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Appendix A

Kimera Parameters

EuRoc Simulation Jackal
backend_modality 0 0 0

autoInitialize 1 0 1
roundOnAutoInitialize 0 0 0
initialPositionSigma 1e-05 1e-05 1e-05
initialRollPitchSigma 0.174533 0.174533 0.174533

initialYawSigma 0.0017453 0.0017453 0.0017453
initialVelocitySigma 0.001 0.001 0.001
initialAccBiasSigma 0.1 0.1 0.0001
initialGyroBiasSigma 0.01 0.01 0.001

linearizationMode 0 0 0
degeneracyMode 1 1 1
rankTolerance 1 1 1

landmarkDistanceThreshold 10 100 20
outlierRejection 3 3 10

retriangulationThreshold 0.001 0.001 0.001
smartNoiseSigma 3.0 a 3.0
monoNoiseSigma 1.8 1.8 1.8
monoNormType 2 2 2
monoNormParam 4.6851 4.6851 4.6851
stereoNoiseSigma 1.8 1.8 1.8
stereoNormType 2 2 2
stereoNormParam 4.6851 4.6851 4.6851

regularityNoiseSigma 0.03 0.03 0.3
regularityNormType 1 1 1
regularityNormParam 0.04 0.04 0.04

addBetweenStereoFactors 1 1 0
betweenRotationPrecision 0 0 0

betweenTranslationPrecision 100 100 100

Table A.1: Back-End Parameters
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EuRoc Simulation Jackal
klt_win_size 24 24 24
klt_max_iter 30 30 30
klt_max_level 4 4 4

klt_eps 0.1 0.01 0.1
maxFeatureAge 25 60 25

maxFeaturesPerFrame 300 400 400
quality_level 0.001 0.001 0.001
min_distance 20 8 20

block_size 3 3 3
use_harris_detector 0 0 0

k 0.04 0.04 0.4
fast_thresh 10 10 10

equalizeImage 0 0 1
nominalBaseline 0.11 0.6 0.05

toleranceTemplateMatching 0.15 0.15 0.15
templ_cols 101 101 101
templ_rows 11 11 11

stripe_extra_rows 0 0 0
minPointDist 0.5 0.5 0.3
maxPointDist 10 100 10

bidirectionalMatching 0 0 0
enable_non_max_suppression 0 1 1
non_max_suppression_type 4 4 4

enable_subpixel_corner_finder 1 1 1
max_iters 40 40 40

epsilon_error 0.001 0.001 0.001
window_size 10 10 10
zero_zone -1 -1 -1

subpixelRefinementStereo 0 0 0
useSuccessProbabilities 1 1 1

useRANSAC 1 1 1
minNrMonoInliers 10 10 10
minNrStereoInliers 5 5 5

ransac_threshold_mono 1e-06 0.1 1e-06
ransac_threshold_stereo 1 1 0.8

ransac_use_1point_stereo 1 1 0
ransac_use_2point_mono 1 1 0

ransac_max_iterations 100 200 500
ransac_probability 0.995 0.995 0.990
ransac_randomize 0 0 0

intra_keyframe_time 0.2 0.2 0.1
minNumberFeatures 0 0 0
useStereoTracking 1 1 1
disparityThreshold 0.5 0.0 0.5

Table A.2: Front-End Parameters
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EuRoc Simulation Jackal
use_nss 1 0.1 0.1
alpha 0.1 0.1 0.3

min_temporal_matches 3 3 3
recent_frames_window 60 60 90

max_db_results 50 50 50
min_nss_factor 0.05 0.05 0.05

min_matches_per_island 1 1 1
max_intraisland_gap 3 3 3

max_nrFrames_between_islands 3 3 3
max_nrFrames_between_queries 2 2 2

geom_check_id 0 0 0
min_correspondences 12 12 6

max_ransac_iterations_mono 500 500 500
ransac_probability_mono 0.995 0.995 0.995
ransac_threshold_mono 1e-5 1e-5 1e-5
ransac_randomize_mono 1 0 1

ransac_inlier_threshold𝑚𝑜𝑛𝑜 0.01 0.01 0.01
pose_recovery_option_id 0 0 0

max_ransac_iterations_stereo 500 500 500
ransac_probability_stereo 0.995 0.995 0.995
ransac_threshold_stereo 0.3 0.3 0.3
ransac_randomize_stereo 1 0 1

ransac_inlier_threshold_stereo 0.3 0.3 0.3
use_mono_rot 0 0 0

refine_pose 1 1 1
nfeatures 1000 1000 1000

scale_factor 1.2 1.2 1.2
nlevels 8 8 8

edge_threshold 31 31 31
first_level 0 0 0
WTA_K 2 2 2

score_type_id 0 0 0
patch_sze 31 31 31

fast_threshold 20 20 20
betweenRotationPrecision 100000 100000 100000

betweenTranslationPrecision 10000 10000 10000
gnc_alpha 0.7 0.7 0.7

max_lc_cached_before_optimize 10 10 10

Table A.3: Loop Closure Parameters
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EuRoc Simulation Jackal
rate_hz 200 200 400

gyroscope_noise_density 1.6968e-04 1.6968e-04 0.00488
gyroscope_random_walk 1.9393e-05 1.9393e-05 4.88e-04

accelerometer_noise_density 2.0000e-3 2.0000e-3 0.1
accelerometer_random_walk 3.0000e-2 3.0000e-3 0.0147

do_imu_rate_time_alignment 1 1 1
time_alignment_window_size_s 10.0 10.0 10.0

time_alignment_variance_threshold_scaling 30.0 0.0 0.0
imu_integration_sigma 1.0e-8 1.0e-8 1.0e-8

imu_time_shift 0.0 0.0 0.0
n_gravity (z-direction) -9.81 -9.81 -9.81

Table A.4: IMU Parameters
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