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Abstract 
Performance-based planning (PBP) is an efficient way to improve pavement networks. It is the 
practice of using data from pavement management systems (PMSs) to support analyses on the 
predicted network performance based on available budgets, treatment strategies and management 
policies. PBP involves the collection and analyses of PMS data, pavement deterioration prediction, 
budget allocation, the selection of treatment strategies, and the promotion of appropriate pavement 
management policies.  

This dissertation provides a comprehensive framework for PBP. First, it focuses on the 
development of a pavement deterioration prediction model and a budget allocation model. A 
weighted-output neural network model is proposed, which can predict multiple pavement 
condition metrics simultaneously and incorporate their correlations into the prediction process. 
During model training, each condition metric is assigned a weight to reflect its relative importance. 
When the weights equal to those in the formula for a multi-condition metric pavement condition 
index (PCI), the prediction performance for PCI is optimal (13% lower mean squared error than 
optimal, single-output models). In terms of the budget allocation model, a probabilistic treatment 
path dependence (PTPD) model has been proposed. This model incorporates uncertainties of both 
treatment cost and pavement deterioration, and evaluates a treatment by considering benefits of 
both the evaluated treatment and its following actions. Compared to a conventional benefit cost 
ratio model, PTPD can deliver equivalent pavement network performance with an annual budget 
that is 10% less.  

Most existing research on PBP focuses on improving allocation decisions through changes in the 
allocation algorithm without considering the consequences of how optimization analyses are 
framed. In this thesis, both the environmental and economic performance of a pavement network 
are evaluated for different framings of the problem. Specifically, framings in the form of different 
treatment strategies that consist of treatment materials, treatment types, and evaluation period are 
considered. Results show that the proposed strategy that uses multiple materials (both concrete 
and asphalt), an increased number of treatment types, and a long evaluation period could both 
reduce greenhouse gas emissions and improve pavement network performance. Finally, this thesis 
explores the potential impact of different federal or state policies regarding PBP. Three pavement 
management policies are proposed, including flexible decision-making, long-term planning, and 
market diversification. Model results suggest that incorporating these policies for the whole U.S. 
pavement network (compared to a business-as-usual scenario), could reduce total excess vehicle 
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fuel expenditures from 2017 to 2050 due to poor road conditions by 28% or about 62 billion dollars. 
All states can benefit from the proposed management policies.  

These research findings can help transportation agencies improve their performance-based 
planning for pavement networks within a limited budget. In addition, this thesis also provides 
insights for federal or state agencies regarding the value of key policies to improve pavement 
networks and to reduce greenhouse gas emissions due to poor road conditions.  

 

Thesis Supervisor: Franz-Josef Ulm, Ph.D. 
Title: Professor of Civil and Environmental Engineering 
 
Thesis Co-supervisor: Jeremy Gregory, Ph.D. 
Title: Research Scientist, Civil and Environmental Engineering 
 
Thesis Co-supervisor: Randolph Kirchain, Ph.D. 
Title: Principal Research Scientist, Materials Research Laboratory 
 
  



 5 

 

 

 

 

 

 

 

 

 

In memory of Grandpa Enfu Li. 

& 

In honor of Grandma Derong Li. 

 

  



 6 

 

  



 7 

Acknowledgments 

I would like to express my deepest gratitude to my thesis advisors – Professor Franz-Josef Ulm, 

Dr. Jeremy Gregory, and Dr. Randolph Kirchain. Franz, thank you so much for offering me this 

opportunity to study at MIT and I really appreciate your guidance and help during my PhD. Jeremy 

and Randy, I feel so lucky and grateful to have you as my mentors and friends. It was very difficult 

for me when I started my journey at MIT due to new environment and communication hurdles. 

But you never showed any dissatisfaction or disappointment. Instead, you have always encouraged 

me to grow from “FD” to “BFD”, which means a lot to me. I would like to thank Professor Herbert 

Einstein and Professor Saurabh Amin for your insightful comments to this dissertation work during 

each committee meeting, which motivated me to think deeper about my research work. I also 

would like to thank Professor Yong Yuan from Tongji University and Professor Herbert Mang 

from Vienna University of Technology, for their patient and inspiring guidance during my master’s 

study and continuous care along my PhD journey. 

The life at MIT has not been easy sometimes, but I feel so grateful for all the kind help and support 

from my current and previous colleagues from both MSL and CSHub. I would like to thank 

Hessam Azarijafari, Mehdi Akbarian, and Omar Swei for their research insights and guidance 

about pavement life cycle assessment and pavement management. I really appreciate all the words 

of encouragement and comfort from Di Wu, Xin Xu, Jasmina Burek, Joshua Hester, and Bensu 

Manav when I was feeling down. I extend my thanks to Terra Cholfin, Andrew Logan, Melody 

Abedinejad, Kiley Clapper, Max Martelli, Sarah Smith, Donna Hudson, Jeanette Marchocki, for 

their hard work and helpful assistance. 

I would like to thank our industry partners and sponsors from Portland Cement Association and 

the Ready Mixed Concrete Research and Education Foundation, for giving me this opportunity to 

carry out my thesis research and for providing me with constructive feedback on my research. I 

would like to give my special thanks to Jim Mack for his kind help and expert insights about 

pavement engineering. 

I feel so fortunate to have joined the ABSK bible study group incidentally, where I learned how to 

grow spiritually from Pastor Joseph Han and built brotherly fellowship with Ce Liu, Wenjie Lu, 



 8 

and Wengong Jin. Thank you so much for all the celebrations for my birthdays and thesis defense, 

for all your cares and prays for both my MIT and spiritual life. 

A number of close friends from both MIT and China have been instrumental in my journey to 

graduation. Special thanks to Xingang Zhao, Meilin Zhan, Qing Zhang, Hejin Huang, Weiyue 

Zhou, Yifeng Che, and Xiaofan Xu for all the fun time we spent together and all the support and 

encouragement you have given to me over the past five years at MIT. I also would like to 

acknowledge my life-long friends Yang Cui, Bingbing Liu, Heng Wang, and Tianqi Yu for their 

endless care and accompany. 

I will be the first PhD in my whole family, and I know this could not have been achieved without 

my family’s support and encouragement. I feel greatly indebted to my grandparents, Enfu Li and 

Derong Li, for bringing me up with their unconditional love. I extend my sincere gratitude to my 

parents, Xuejun Guo and Guijie Li, who have always believed in my potential and given me the 

strength and hope to overcome all the obstacles in my life. I feel so grateful that they are always 

there for me whatever happens. I also would like to thank my aunts, uncles and cousins, for their 

endless support and love. 

Last but not least, thank you God for bringing me to MIT and giving me more than I ever imagined. 

May your grace abound in me along many more journeys ahead. 

 

 

  



 9 

Table of Contents 

Abstract ........................................................................................................................................... 3	

Acknowledgments ........................................................................................................................... 7	

Table of Contents ............................................................................................................................ 9	

List of Figures ............................................................................................................................... 12	

List of Tables ................................................................................................................................ 15	

Acronyms ...................................................................................................................................... 17	

CHAPTER 1  INTRODUCTION ................................................................................................. 21	

1.1 Background ............................................................................................................................. 21	
1.2 Literature Review and Gap Analysis ...................................................................................... 25	
1.3 Research Objectives ................................................................................................................ 30	
1.4 Research Questions ................................................................................................................. 30	
1.5 Research Methodology ........................................................................................................... 31	
1.6 Intellectual Contribution of the Dissertation ........................................................................... 32	
1.7 Outline of Dissertation ............................................................................................................ 33	

CHAPTER 2  A WEIGHTED MULTI-OUTPUT NEURAL NETWORK MODEL FOR THE 

PREDICTION OF RIGID PAVEMENT DETERIORATION ..................................................... 36	

2.1 Introduction ............................................................................................................................. 36	
2.2 Literature Review .................................................................................................................... 37	
2.3 Data Preparation ...................................................................................................................... 41	
2.4 Weighted Multi-Output Neural Network Model .................................................................... 48	
2.5 Results and Discussions .......................................................................................................... 55	
2.6 Conclusions and Future Work ................................................................................................ 60	
2.7 Other Related Works by the Author ....................................................................................... 61	

CHAPTER 3  INCORPORATING COST UNCERTAINTY AND PATH DEPENDENCE INTO 

TREATMENT SELECTION ........................................................................................................ 63	

3.1 Introduction ............................................................................................................................. 63	



 10 

3.2 Literature Review .................................................................................................................... 64	
3.3 Methodology ........................................................................................................................... 67	
3.4 Case Study .............................................................................................................................. 80	
3.5 Conclusions and Discussions .................................................................................................. 89	

CHAPTER 4  ENVIRONMENTAL AND ECONOMIC EVALUATIONS OF TREATMENT 

STRATEGIES FOR PAVEMENT NETWORK PERFORMANCE-BASED PLANNING ....... 92	

4.1 Introduction ............................................................................................................................. 92	
4.2 Literature Review .................................................................................................................... 94	
4.3 Methodology ........................................................................................................................... 97	
4.4 Case Study ............................................................................................................................ 102	
4.5 Conclusions ........................................................................................................................... 112	

CHAPTER 5  IMPROVING PAVEMENT NETWORKS THROUGH PERFORMANCE-

BASED PLANNING WITH OPTIMAL MANAGEMENT POLICIES ................................... 114	

5.1 Introduction ........................................................................................................................... 114	
5.2 Literature Review .................................................................................................................. 116	
5.3 Methodology ......................................................................................................................... 118	
5.4 Case Study ............................................................................................................................ 127	
5.5 Conclusions ........................................................................................................................... 140	

CHAPTER 6 CONCLUDING REMARKS AND FUTURE WORK ........................................ 141	

6.1 Summary and Conclusions ................................................................................................... 141	
6.2 Limitations and Future Work ................................................................................................ 144	

Bibliography ............................................................................................................................... 148	

Appendix A: Backtrack-Search Algorithm ................................................................................. 160	

Appendix B: Supplementary Materials for Chapter 3 ................................................................ 162	

Appendix C: Supplementary Materials for Chapter 4 ................................................................ 165	

C.1. Methodology ....................................................................................................................... 165	
C.2. Case Study ........................................................................................................................... 173	
C.3. Importance to consider multiple condition metrics ............................................................. 182	
C.3. Sensitivity analysis for discount rates ................................................................................. 183	



 11 

Appendix D: Supplementary Materials for Chapter 5 ................................................................ 186	

D.1 Pavement management system (PMS) data ......................................................................... 186	
D.2 Pavement treatment cost ...................................................................................................... 188	
D.3 Pavement treatment actions ................................................................................................. 189	
D.4 Pavement deterioration model ............................................................................................. 191	
D.5 Performance jump model ..................................................................................................... 192	
 
 

  



 12 

List of Figures 

Figure 1-1. Flowchart of performance-based planning ................................................................. 22	

Figure 2-1. Heatmap for variables’ correlations (green color represents positive correlation, blue 

represents negative correlation, and grey color represents weak correlation)................................49 

Figure 2-2. Comparison between true PCI and predicted PCI based on out-of-sample data when 

weights are [10, 5, 4, 6] (NN1 model). ......................................................................................... 58	

Figure 2-3. Comparison between true and predicted values based on out-of-sample data for (a). 

IRI (NN3 model); (b). FAULT (NN5 model); (c). LCRACK (NN7 model); (d). TCRACK (NN9 

model) ........................................................................................................................................... 60	

Figure 3-1. Flowchart of PTPD model (Oval represents the start of the model, rectangle indicates 

a computation or a process, parallelogram is the input or output of a computation.) ....................68 

Figure 3-2 Total cost distributions for different treatment actions ............................................... 82	

Figure 3-3. Network-level performance under different risk-aversion coefficients for PTPD model 

(PTPD-0.5 and PTPD-1.5 curves lie between PTPD-1 and PTPD-2 curves but are not shown to 

improve clarity). ............................................................................................................................ 84	

Figure 3-4. Pavement type distributions at year=0 and year=20 for different risk-aversion 

coefficients (0, 1, and 2) ............................................................................................................... 85	

Figure 3-5. Representation of benefits in the B/C model ............................................................. 86	

Figure 3-6. Network-level performance for B/C and PTPD-1 models ......................................... 87	

Figure 3-7. Ratios of treated segments by different treatment types for B/C and PTPD-1 models

....................................................................................................................................................... 89	

Figure 4-1. Initial (a). PCI and (b). AADT distributions for Iowa U.S. route network on the county 

level based on Iowa PMS 2017 (counties in hatch don’t have U.S route pavements).................105 

Figure 4-2. Comparisons of different treatment material strategies. (a) is annual mean TWPCI, (b) 

is the distributions for cumulative life-cycle GHG emissions for 30 years. ............................... 106	

Figure 4-3. Comparisons of different treatment type strategies. (a) is annual mean TWPCI, (b) is 

the distributions for cumulative life-cycle GHG emissions for 30 years. ................................... 108	



 13 

Figure 4-4. Comparisons of different segment analysis periods. (a) is annual mean TWPCI, (b) is 

the distributions for cumulative life-cycle GHG emissions for 30 years. ................................... 109	

Figure 4-5. Comparisons of 5-year AC only strategy and the proposed strategy. (a) is the TWPCI 

at year 30 (the green dot represents the critical budget for the proposed strategy, and the blue dot 

represents the budget level at which the 5-year AC only strategy has a similar network performance 

as the proposed strategy), (b) is Pareto frontier: minimal GHG emissions under budget constraints, 

(c) is GHG emission distributions for the 5-year only strategy under different budgets, (d) is GHG 

emission distributions for the proposed strategy under different budgets. ................................. 111	

Figure 5-1. Treatment decision tree.............................................................................................119 

Figure 5-2. Average IRI over the network analysis period for the BAU scenario ..................... 129	

Figure 5-3. Total excess vehicle fuel costs for different scenarios from 2017 to 2050 across the 

U.S excluding Alaska and Hawaii .............................................................................................. 129	

Figure 5-4. (a) Total excess vehicle fuel cost and (b) excess vehicle fuel cost ratios compared to 

the BAU scenario for different systems scenarios of BAU and dLCCA mkt. ........................... 130	

Figure 5-5. Pavement type distribution for (a) high traffic roads and (b) low traffic roads. ...... 131	

Figure 5-6. State-level annual cost saving due to decision-making flexibility policy: (a) total saving, 

(b) unit saving per lane mile. ...................................................................................................... 133	

Figure 5-7. State-level annual cost saving due to long-term planning policy: (a). total saving, (b). 

unit saving per lane mile. ............................................................................................................ 135	

Figure 5-8. State-level annual cost saving per lane mile due to the awareness of market 

concentration. .............................................................................................................................. 136	

Figure 5-9. Optimal objectives to decrease the asphalt market share for each state. ................. 137	

Figure 5-10. State-level annual cost saving due to the proactive increase of market diversification: 

(a). total saving, (b). unit saving per lane mile. .......................................................................... 138	

Figure 5-11. State-level total annual cost saving: (a). total saving, (b). unit saving per lane mile.

..................................................................................................................................................... 139	

Figure B-1. CDF of average TWIRI over 20 years under different discount rates......................164 



 14 

Figure C-1. Initial (a). IRI and (b). PVI-induced GHG distributions for Iowa U.S. route network 

on the county level based on Iowa PMS 2017; (c). PCI, (d) GHG emissions due to PVI and (e). 

IRI variations for each county after 30 years based on the proposed strategy under the critical 

budget (counties in hatch don’t have U.S route pavements)........................................................176 

Figure C-2. Comparisons of different treatment material strategies. (a) is annual mean TWIRI 

index under the critical budget ($132.5M), (b) is the pavement type distribution at the beginning 

of analysis period (year=0) and the end of analysis period for each material strategy, (c) is the 

mean TWIRI index at year 30, (d) is the mean TWPCI at year 30 and (e) is the cumulative life-

cycle GHG emissions for 30 years under different budgets. ...................................................... 178	

Figure C-3. Comparisons of different treatment type strategies. (a) is annual mean TWIRI index 

under the critical budget ($132.5M), (b) is the pavement type distribution at the beginning of 

analysis period (year=0) and the end of analysis period for each treatment type strategy, (c) is the 

mean TWIRI index at year 30, (d) is the mean TWPCI at year 30, and (e) is cumulative life-cycle 

GHG emissions for 30 years under different budgets. ................................................................ 180	

Figure C-4. Comparisons of different segment analysis periods. (a) is annual mean TWIRI index 

under the critical budget ($132.5M), (b) is the pavement type distribution at the beginning of 

analysis period (year=0) and the end of analysis period for each segment analysis period, (c) is the 

mean TWIRI index at year 30, (d) is the mean TWPCI at year 30, and (e) is the cumulative life-

cycle GHG emissions for 30 years under different budgets. ...................................................... 182	

Figure C-5. Comparisons of different discount rates under the critical budget ($132.5M). (a) is 

annual mean TWPCI, (b) is the distributions for cumulative life-cycle GHG emissions for 30 years, 

(c) is the annual TWIRI index, (d) is the pavement type distribution at the beginning of analysis 

period (year=0) and the end of analysis period for each discount rate. ...................................... 184	

Figure C-6. Comparisons between the proposed strategy and 5-year AC only strategy under 

discount rates 1.5% and 5%. (a) is the annual mean TWPCI, (b) is the cumulative life-cycle GHG 

emissions for 30 years under the critical budget ($132.5M) ...................................................... 185	

Figure D-1. Climate zones in the U.S. suggested by LTPP.........................................................188 

Figure D-2. Examples of deterioration curves for (a) asphalt and (b) concrete in terms of different 

climate zones ............................................................................................................................... 192	



 15 

List of Tables 

Table 2-1. Iowa PMS data groups ................................................................................................. 42	

Table 2-2. Description of selected parameters. ............................................................................. 43	

Table 2-3. Thresholds for condition metrics ................................................................................. 45	

Table 2-4. Cracking sub-index weights ........................................................................................ 45	

Table 2-5. Maintenance history for a rigid pavement segment .................................................... 46	

Table 2-6. Structure information for a rigid pavement segment ................................................... 46	

Table 2-7. Outlier threshold for condition metrics ....................................................................... 48	

Table 2-8. Statistical summary for input variables ....................................................................... 50	

Table 2-9. Optimal single-output model structure and prediction performance (first four rows) and 

Optimal multi-output model structure and prediction performance (last 10 rows) ...................... 56	

Table 3-1. Definitions of all variables in the segment-level optimization process........................71 

Table 3-2. Definitions of all variables in the network-level optimization process ....................... 78	

Table 3-3. Example segment attributes. (These values represent one segment in the system. 

Detailed analysis of this segment is described.) ........................................................................... 81	

Table 3-4. Characteristics of available treatment actions used in the case study. Cost information 

is based on analysis of one year of publically available bid data [20], [53]. ................................ 81	

Table 3-5. Optimal treatment alternatives .................................................................................... 82	

Table 3-6. Average and standard deviation of network performance for five risk-aversion 

coefficients (0, 0.5, 1, 1.5, and 2). VAR10 is 10% value at risk. Bold values are discussed in the 

text. ................................................................................................................................................ 85	

Table 4-1. Treatment actions........................................................................................................103 

Table 5-1. Definitions of all variables in the segment-level optimization process......................122 

Table 5-2. Definitions of all variables in the network-level optimization process ..................... 124	

Table 5-3. Scenarios to evaluate pavement management policies .............................................. 127	



 16 

Table 5-4. Evaluation objectives for different comparisons among scenarios ........................... 127	

Table A-1. Number of visited steps.............................................................................................161 

Table B-1. Optimal treatment alternatives for different discount rates and risk-aversion coefficients 

when the analysis period is 5 years..............................................................................................163 

Table B-2. Optimal treatment alternatives for different discount rates and risk-aversion coefficients 

when the analysis period is 10 years. .......................................................................................... 163	

Table C-1. Definitions of all variables in the segment-level optimization process.....................166 

Table C-2. Concrete and asphalt input data for embodied impact calculation ........................... 170	

Table C-3. Sample asphalt overlay composite pavement in Iowa .............................................. 182	

Table D-1. Data source from FHWA road statistics....................................................................187 

Table D-2. Miles by AADT for rural interstate system in Massachusetts .................................. 187	

Table D-3. Treatment actions for asphalt-surfaced pavements .................................................. 190	

Table D-4. Treatment actions for concrete-surfaced pavements ................................................ 190	

  



 17 

Acronyms 

AADTT/TRUCKS average annual daily truck traffic 

AC asphalt concrete 

ACRACK alligator crack 

ADT/AADT average annual daily traffic 

AGECON construction age 

AGERES resurface age 

AOC asphalt overlay composite 

ASCE American Society of Civil Engineers 

BASTHK base thickness 

BASTYP base type 

BAU business as usual 

B/C benefit cost ratio 

CAPDAT crack & patch collected by vender test year 

CART classification and regression tree 

CCI combined condition index 

COC concrete overlay composite 

CONYR year of construction or reconstruction 

DG diamond grinding 

DP dynamic programming 

ESAL equivalent single axle load 

EV electrical vehicle 

FHWA Federal Highway Administration 

FREEZE freeze index 

GHG greenhouse gas emission 

ICEV internal combustion engines vehicle 

IRI international roughness index 

IRIDAT IRI test year 

LAYR layer year 



 18 

LCA life-cycle assessment 

LCC  life-cycle cost 

LCCA  life-cycle cost analysis 

LCRACK longitudinal cracking 

LTPP long-term pavement performance 

LWCRACK longitudinal wheelpath crack 

MARS multivariate adaptive regression splines 

MEPDG Mechanistic-Empirical Pavement Design Guide 

MF mil & fill 

MRRNUM number of treatment actions 

MSE mean squared error 

NCHRP National Cooperative Highway Research Program 

NN neural network 

OLS ordinary least squares 

ORIGKEY original smart key  

PAVTYP pavement type 

PBP performance-based planning 

PCC Portland cement concrete 

PCCTHK sublayer concrete thickness 

PCI pavement condition index 

PMS pavement management system 

PMISYR pavement management year 

POR preservation, overlay, and reconstruction 

PRECIP precipitation 

PSR pavement surface rating 

PTPD probabilistic treatment path dependence 

PVI pavement vehicle interaction 

RESYR year of last resurfacing 

RMVTHK removal thickness 



 19 

RMVTYP removal type 

RNN recurrent neural network 

SN structural number 

SO simulation-optimization 

SUBTHK subbase thickness 

SUBTYP subbase type 

SURTHK surface thickness 

SURTYP surface type 

TCRACK transverse cracking 

TEMP temperature 

TOTTHK total thickness 

TSBU two-stage bottom-up 

TWIRI traffic-length weighted IRI 
 

Equation Chapter (Next) Section 1 

 

  



 20 

 

   

 

  



 21 

CHAPTER 1  INTRODUCTION 

1.1 Background  

Inadequate funding to improve infrastructure system is a pervasive problem in the U.S. Since 1998, 

the American Society of Civil Engineers (ASCE) has published The Report Card for America’s 

Infrastructure every four years, which grades each type of infrastructure from A through F (A is 

the highest score), and also provides the overall grade for all infrastructures in the U.S. The overall 

condition grade stayed as a D from 1998 to 2017 [1]. The Report Card for 2021 shows that the 

overall grade has been improved to a C- [2]. Poor road conditions lead to the increase of travel 

time and travel safety problems. An aging electricity grid and inadequate water distribution make 

utilities unreliable. All these problems induced by infrastructure in bad condition have a huge 

economic influence on the whole society. According to the report Failure to act: Economic 

impacts of status quo investment across infrastructure systems by ASCE, if there were no action, 

the U.S. is forecasted to lose $10.3 trillion in GDP, $2.4 trillion in exports, and 3 million jobs from 

2020-2039 [1].  

Even though a small improvement occurred in 2021 for the overall infrastructure condition, the 

grade for the road system has remained a D since 1998. Over 40% of the system is in poor or 

mediocre condition. However, transportation agencies are always underfunded to repair existing 

roads. The backlog in repairing existing roads has increased from $420 billion in 2017 [3] to $435 

billion in 2021 [2]. To address current backlogs, a 29% growth of annual budget should be 

provided. However, the Highway Trust Fund, which provides the federal investment in roads, has 

been on the edge of insolvency due to limited funding.  

To improve the pavement network condition, the enactment of the Moving Ahead for Progress in 

the 21st Century (MAP-21) Act compels transportation agencies to develop efficient pavement 

management systems (PMS) to improve the national highway system. PMSs are broadly concerned 

with the evaluation of current conditions, the prediction of future conditions, and the planning of 

various treatments, including preservation, overlay, and reconstruction (POR) for a segment or a 

pavement network [4] . Performance-based planning (PBP) is the practice of using data from PMSs 

to support analyses on the predicted network performance based on available budgets, treatment 

strategies, and management policies [5].  
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Figure 1-1. Flowchart of performance-based planning 

PBP usually consists of three key components: data collection, pavement context prediction, 

budget allocation, and implication, as shown in Figure 1-1. Required data for PBP usually includes 

PMS data and pavement treatment cost data. PMS data includes pavement performance condition, 

traffic volume, pavement structure, maintenance history, and weather information. Two widely 

used national-level PMS data are the American Association of State Highway Officials (AASHO) 

road test [6] and Long-Term Pavement Performance (LTPP) program by the Federal Highway 

Administration [7]. LTPP covers more than over 2,500 segments in North America. Some states 

also collect their own PMS data, such as Nevada [8], Connecticut [9], Kansas [10], Florida [11], 

Minnesota [12], [13], Ohio [14], and Texas [15]. Even though there exist many data sources, not 

all of them are accessible, especially the state PMS data. In addition, the amount of available data 

is also very limited due to the high cost for data collection. To overcome these gaps, researchers 

have started to collect telematics data and use them to analyze road conditions, which can 

significantly cut off collection cost and speed up the collection process [16]–[19]. For example, 

the Carbin app developed by CSHub researchers at MIT can effectively detect road roughness 

condition and evaluate the environmental influence induced by roads in bad condition [17], [18].  

The pavement treatment cost is usually obtained from the Oman systems [20], which provides the 

details for each pay item including material usage, cost and bid items.   

The collected PMS data can be used to project future pavement conditions. As discussed in [21], 

deterioration modelling can be divided into two categories, Markov chains and regression models. 

For models based on Markov chains, pavement conditions are discretized into several states, and 

models mainly focus on the probability prediction from one state to another state. Different from 

Markov chains, regression models build relationships between independent variables (or features) 

and dependent variable (or target). The output of a regression model can be road condition, such 

as roughness, cracks, rutting, and faulting. Hence, there is no need to discretize pavement 
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performance conditions. Common regression models include linear regression models [14], [22], 

non-linear models which are described by the sum of several nonlinear variables or by the 

exponential form [15], [23]–[25], neural network models [9]–[11], [26]–[32], tree-based models 

[11], [33], and fuzzy regression [34].  

The projected future pavement condition can be applied to evaluate different pavement segments 

(or projects) and make pavement treatment schedules for a pavement network. Life-cycle cost 

analysis (LCCA) [35]–[38] and life cycle assessment (LCA) [39]–[42] are two common 

approaches to evaluate different pavement alternatives from the economic and environmental 

effects, respectively. The life-cycle phases usually include material extraction and production, 

construction, use, maintenance and end-of-life. By calculating the total life-cycle cost or 

greenhouse gas emissions (GHGs), it can help us decide which pavement design should be applied 

for a new pavement segment. Given a pavement network, a budget allocation model is usually 

applied to make treatment schedules for each pavement segment in the network [25], [43]–[46]. 

Essentially, a budget allocation model is an optimization algorithm, which maximizes pavement 

network condition with the budget constraint or minimizes the total budget with the constraint of 

performance threshold or even incorporates multi objectives. The budget allocation process for 

pavement network is a large-scale optimization problem. Suppose there are I segments and N 

available treatments, and the planning horizon is T years. The number of total possible treatment 

schedules is (𝑁 + 1)!∗# (number 1 represents that there is no treatment.). For a small pavement 

network with 100 segments, if the number of available treatments is 2, and the analysis period is 

5 years, the total number of possible schedules can be as large as 3$%% ≈ 3 × 10&'(. To overcome 

this large-scale issue, two approaches have been proposed, including top-down and bottom-up 

frameworks. The top-down approach divides the whole network into several groups and assume 

the pavement segments in the same group will use the same treatments [4], [43], [47]–[49]. This 

approach has a faster processing speed with the sacrifice of ignoring the heterogeneity of different 

segments. By contrast, the bottom-up approach incorporates the heterogeneity of different 

segments [50]–[55]. It finds optimal treatment alternative(s) for each segment and then decides 

which segments receive the treatment with the consideration of different constraints. Its processing 

speed is slower than the top-down approach. However, with the increasing of computational 

capacity, the bottom-up framework has become the focus of current research.  
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In addition to the data collection, modeling of pavement deterioration prediction, and budget 

allocation algorithms discussed above, how the budget allocation process is implemented is also 

very important, which involves treatment strategies and management policies. A treatment action 

is a specific technology (e.g., diamond grinding, asphalt overlay), and a treatment strategy is the 

use of a portfolio of treatment actions (e.g., preservation treatments, asphalt treatments). The 

determination of treatment strategies can be based on past experiences, and sometimes may be 

influenced by many other factors, such as policy, budget, and material availability, etc. From the 

perspective of optimization, the treatment strategy influences the solution space. An appropriate 

treatment strategy can contribute to the improvement of pavement network condition. The 

management policies are mainly concerned with potential approaches that should be taken by 

transportation agencies to improve pavement network condition from a long-term perspective. For 

example, the promotion of market diversification can lead to the decrease of unit prices for both 

materials.  

To summarize, the current bad road condition in the U.S urgently requires transportation agencies 

and stakeholders to take effective PBP to make pavement treatment schedules. On one hand, it is 

necessary to improve data collection, increase projection performance for pavement condition, and 

optimize budget allocation models. On the other hand, different treatment strategies should be 

evaluated and compared before putting into real-world applications. Transportation agencies 

should also develop appropriate management policies that can improve pavement networks.   
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1.2 Literature Review and Gap Analysis 

This section reviews existing research about performance-based planning. Even though the data 

collection process is a very important component in PBP, it is currently not the focus of my 

dissertation. Hence, the literature review about data collection is ignored in this section. The main 

topics for the literature review include pavement deterioration models, budget allocation models, 

treatment strategies, and management policies.  

Pavement deterioration models 

Pavement deterioration models predict future pavement condition without any treatment. Given 

the complex physical and chemical processes involved in the deterioration, most existing 

deterioration models are data-driven using statistical methods including linear regression [14], [22], 

non-linear models which are described by the sum of several nonlinear variables or by the 

exponential form [15], [23]–[25], neural network [9]–[11], [26]–[32], and decision trees [11], [33]. 

Common condition metrics used for PBP include pavement roughness (e.g., the international 

roughness index, IRI), rutting, faulting, and various forms of cracking [7], [24], [56]. Existing 

models mainly focus on the prediction of a single condition metric – a single overall metric like 

pavement condition index (PCI), or a specific metric like IRI. This type of single-output models 

lacks the consideration of correlations among different condition metrics, and potentially increase 

the computational cost compared to a multi-output model when generating multi specific metrics.  

Common predictor (input) variables include traffic volumes/loads, pavement structure (e.g., 

pavement type, thickness), pavement age, pavement conditions and environmental factors (e.g., 

temperature, precipitation). Existing models are inherently limited to the variables described in 

available data, limiting their ability to incorporate the influence of maintenance history on 

pavement deterioration. For example, many models use total pavement thickness as an input 

variable. However, two pavement segments with the same total thickness are very likely to have 

different deterioration rates: one asphalt segment has an original 12-inch (304.8 mm) thickness 

and does not have an overlay, the other one has an original 8-inch (203.2 mm) thickness and also 

has a 4-inch (101.6 mm) asphalt overlay. 
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Before building a data-driven deterioration model, the PMS data should be “cleaned” first. One 

common problem for existing PMS data is the data quality, i.e., many outliers exist in the dataset. 

For example, when there are no treatment actions, the pavement condition should get worse due 

to the traffic and environmental factors. However, in much real-world PMS data, like LTPP, 

overall pavement condition is sometimes recorded as getting better from one measurement to the 

next. Some potential reasons include measurement error or missing treatment records. Given the 

same raw dataset, with different cleaning criteria, different training datasets are obtained. When 

datasets differ, even the same training method can generate different models with different 

evaluation performance. This makes it challenging to compare different methods when cleaning 

methods are not reproducible. Most existing papers in the deterioration modeling have an obscure 

description of the data cleaning process.  

To summarize, there are several gaps for existing pavement deterioration models described in the 

literature. The first gap is about the correlations among condition metrics. Current models are 

single-output ones that focus on either an overall or a specific condition metric. They lack the 

consideration of correlations among different condition metrics. The second gap is about input 

variable selection. Variables in most existing models may not reflect the maintenance history of a 

pavement segment. The last gap is the unclear description about the data cleaning process, leading 

to the difficulty of comparing different models.  

Budget allocation model 

Optimal pavement POR actions for a pavement network can be selected by past practice or expert 

opinion [25], but here I focus on the use of budget allocation models to support that selection. Yeo 

et al. grouped such models into two methodological categories: top-down and bottom-up [57]. The 

bottom-up approach can incorporate the heterogeneities of each segment in the pavement network. 

With the increase of computational capacity, it has become the focus of current research. In current 

implementations, bottom-up allocation models most commonly comprise two key elements: a 

method to identify the best treatment for each segment (segment-optimal decision) and a method 

to select the best set of treatments for the network (network-optimal decision or system-optimal 

decision). In a so-called two-stage bottom-up (TSBU) model, first, one or several optimal 

treatment alternatives are chosen for each segment through a range of methods, such as decision 
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trees [50], [58], agency cost [59], and benefit-cost analysis [51]–[53], [60]–[63] – including multi-

objective definitions of benefit [64], utility analysis [65], or total cost (agency plus user) evaluated 

over some planning horizon [37], [54], [57], [66]–[68]. These segment-optimal decisions are then 

evaluated at the network level. The final treatment selection for each segment is generally 

determined by optimization methods. For this, some studies apply formal mathematical 

optimization methods such as linear programming [43], [69], non-linear programming [70], integer 

programming [71]–[73]. Another group of studies apply near-optimal heuristics such as genetic 

algorithms to allocate budget at the network level [57], [59], [66], [68], [74].  

A key methodological challenge for budget allocation models is the explicit consideration of 

uncertainty – a pervasive issue in many aspects of real world allocation problems [75]. The most 

common aspects of uncertainty that have been considered to date are uncertain rates of 

deterioration [44], [57], [60], [66], [76]–[78], measurement error [8], [12], [79], [80], and budget 

[60], [76]. When deterioration or budget is uncertain, optimal treatment timing becomes uncertain. 

However, the uncertainty of treatment cost is often ignored in literature [81]. For example, if the 

price of material A rises faster than material B, rational decision-makers will switch away from 

some plans to use A and instead use B. This dependence of the optimal decision on the prevailing 

future context (i.e., future path) is called treatment path dependence. It is worth noting that cost 

uncertainty can have a different impact than budget uncertainty alone for a TSBU framework. 

When the budget is more constraining, it may force the use of more suboptimal treatments, but 

does not change the rank preference for treatments at the segment level. In contrast, when costs 

are uncertain, there is a chance that for any given segment the preferred future treatment actions 

are different than any plan based on today’s costs. 

Among the evaluation methods that have been proposed in the literature, dynamic programming 

(DP)-based models [57], [66], [77], [78] and simulation-based genetic algorithms [76] can 

incorporate the influence of treatment path dependence. Existing DP-based models allow for 

uncertain pavement performance but do not consider uncertainty of future treatment cost.  

Generally, the computational resources required by dynamic programming tend to grow rapidly 

with problem scale [82]. To overcome the limitations of a Markov decision process, Durango-

Cohen and co-workers have developed a quadratic programming formulation to address 

infrastructure management problems by using continuous decision variables [83]–[86].  
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Finally, it is important to recognize an issue pointed out by Sinha et al. (2013). The introduction 

of uncertainty to an optimization immediately creates a multi-objective problem where tradeoffs 

must be made between the expected value of the solution and its uncertainty (or risk). To the best 

of the author’s knowledge, most papers in the current literature evaluate this tradeoff through some 

a priori statement of risk preference [46]. For example, several models include explicit risk 

analysis on the network level by using chance constraints [47], [72], [87]. DP considers uncertainty 

by a state transition probability matrix, but the evaluation criterion is generally based on expected 

values without risk analysis. It would be valuable to evaluate treatment actions for different risk 

levels at both the segment and network levels. 

To summarize, there are three key gaps: consideration of future cost uncertainty and therefore 

consideration of possible future treatment paths that differ in both timing and type of treatment 

and explicit risk evaluation for different treatment strategies – rather than considering only 

expected values – at both the segment and network levels.  

Treatment strategies 

Performance-based planning (PBP) is the practice of using data from PMSs to support POR 

decisions. As discussed in the previous section, a significant body of research has emerged on 

mathematical budget allocation algorithms. By focusing on the algorithm, these studies do not 

explore the influence of how the budget allocation problem is framed on those same metrics of 

performance. In particular, analyses are usually constrained to a single treatment strategy, which 

consists of a limited, fixed portfolio of treatment actions. For example, a set of available treatment 

actions that only use asphalt materials might be called an asphalt-only strategy. Framing the 

analysis around a single treatment strategy limits the possible solution space and may preclude the 

discovery of optimal treatment plans. There are few studies that explore the influence of including 

different treatment strategies within the problem framing on pavement network condition and / or 

cost of maintaining the network.  

Additionally, existing research reported in the literature focuses on the economic aspects of 

pavement treatment decisions. To date, analyses that consider the associated environmental 

impacts (specifically GHG emissions), have not accounted for the growing influence of EVs or 

deflection-induced excess GHG emissions. Also, PBP models described in the literature are 
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usually based on a single condition metric, such as the international roughness index (IRI), 

pavement condition index (PCI), pavement surface rating (PSR), or combined condition index 

(CCI), to evaluate network performance. However, real-world decisions are made based on the 

consideration of several condition metrics, such as IRI, various cracks, rutting, or faulting. Hence, 

treatment decision-making should incorporate multiple metrics. 

To summarize, the main gaps include: (1) lacking the exploration of the influence of problem 

framing, especially on the scope of available solution space. (2) Most pavement network analyses 

focus on economic effects, and for analyses involving environmental effects, they have not 

incorporated the growing influence of EVs or deflection-induced excess GHG emissions. (3) 

Pavement treatment decisions are usually based on a single condition metric.  

Management policies 

The research gap analyses above mainly focus on the budget allocation process – the allocation 

algorithm plus the framework of the allocation problem. However, only an efficient budget 

allocation process is inadequate to improve the current road system considering the lack of funding. 

It is also necessary to apply the budget allocation process under the right policies. As suggested in 

The Report Card for America’s Infrastructure 2021 [2], both the state and local transportation 

asset management plans should consider the long-term planning and incorporate life-cycle cost 

analysis, which implicitly refers to two potential management policies, the long-term planning and 

decision-making flexibility. Essentially, the first policy focuses on a treatment’s long-term benefit 

when it is evaluated. The second policy aims to relax the constraint for treatment selection, such 

as asphalt pavements can only be maintained by asphalt overlays. Under the policy of decision-

making flexibility, the selection of treatments is based on the life cycle cost analysis and the 

treatment alternatives include both asphalt and concrete materials.  

The next potential policy is to increase the market diversification, which can reduce the unit prices 

for both asphalt and concrete materials [88]. For most states in the U.S., asphalt is dominant in the 

paving material. Hence, by proactively increasing the concrete market share, i.e., the market 

diversification, the unit prices for both materials are expected to decrease, and more pavements 

are expected to be maintained.   
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Hence, the main gap is that the influence of potential management policies under which the budget 

allocation process happens is seldomly evaluated, including decision-making flexibility, long-term 

planning and market diversification.  

1.3 Research Objectives 

This thesis attempts to solve the gaps in the literature review and ultimately provide insights to 

improve current performance-based planning for pavement networks. The objective of this 

research is to develop an advanced analysis framework for PBP, including an accurate pavement 

deterioration model, a robust budget allocation model, and the approaches to evaluate different 

treatment strategies and management policies. In addition, the proposed analysis framework 

should be efficient and scalable for the analysis of a large pavement network, such as U.S pavement 

networks.  

Based on the proposed PBP framework, research findings from this thesis are expected to help 

transportation agencies from different levels of pavement networks to improve pavement networks.  

1.4 Research Questions 

To achieve research objectives discussed above, several research questions concerning 

performance-based planning are framed as follows: 

Pavement deterioration model 

• There exist correlations among different pavement condition metrics. Do these correlations 

have an impact on the prediction performance of pavement conditions?  

• Multi-output deterioration models can predict several condition metrics simultaneously. 

During the training process for a multi-output model, each output can be assigned a weight. 

How will these weights influence the model prediction performance and how to choose 

these weights?   

Budget allocation model 

• What’s the influence of uncertainties and treatment path dependence on the treatment 

selection for a pavement segment? 
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• What’s the benefit of incorporating uncertainties and treatment path dependence on the 

pavement networks?  

• What’s the influence of decision-maker’s risk preference on treatment selections and 

pavement network conditions?  

Pavement treatment strategies 

• Asphalt materials are dominant for pavement projects in the U.S. due to their cheap cost 

and quick time from paving to using. Is this asphalt-only strategy always appropriate for 

the maintenance of existing pavement networks? 

• For non-interstate pavement networks, perseveration (e.g., cracking sealing and diamond 

grinding) is widely used due to its cheap cost. However, the effectiveness of preservation 

is very short and cannot last long. Long-term treatments like overlays and reconstructions 

can last long but more expensive. Will the increase of long-term treatments improve current 

pavement networks?  

• The benefit of a treatment is usually evaluated over an analysis period. How does the length 

of evaluation period influence the treatment selection and pavement network conditions?  

• Existing research work concerning the budget allocation usually only focuses on the 

algorithm. What is the influence of the framework for the budget allocation problem? 

Pavement management policies 

• An efficient budget allocation process is not enough to improve current pavement networks. 

What are the potential management policies that can be beneficial to improve pavement 

networks?  

• How much excess vehicle fuel cost can be saved by applying appropriate pavement 

management policies?  

1.5 Research Methodology 

To answer these research questions and achieve research objectives, models concerning 

performance-based planning are proposed, and different treatment strategies and management 

policies are evaluated:  
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• A weighted multi-output neural network model is proposed to predict pavement 

deterioration processes. This model is able to incorporate the correlations among different 

condition metrics during the training process. By modifying the weights for each output, 

the influence of weights can be discovered, and it provides insights about how to choose 

them appropriately.  

• A probabilistic treatment path dependence (PTPD) model is proposed based on the TSBU 

framework. On the segment level, different treatments are evaluated based on their 

distributions of total cost given an analysis period. The total cost is determined based on 

an optimal treatment path by minimizing the total cost. On the network level, an integer 

programing is applied to determine which segments should be maintained with the 

consideration of budget constraint and decision-maker’s risk preference.  

• By using the multi-output deterioration model and the PTPD model, the environmental and 

economic influences of different treatment strategies are evaluated based on the Iowa U.S 

route network. Explored strategies are concerned with treatment materials, treatment types 

and treatment evaluation period.  

• Three management policies are explored, including decision-making flexibility, the long-

term planning and the promotion of market diversification for paving materials. These 

policies are evaluated for all states in the U.S. excluding Hawaii and Alaska.  

1.6 Intellectual Contribution of the Dissertation 

This thesis fills in the gaps in the literature of performance-based planning for pavement 

engineering. It has the following contributions:  

• A weighted multi-output neural network model is proposed for pavement deterioration 

prediction.   

• The incorporation of correlations among different condition metrics can improve the 

prediction performance for a single condition metric.  

• This multi-output model provides the convenience to make treatment decisions based on 

multiple condition metrics.  

• A probabilistic treatment path dependence model is proposed to select treatments with the 

consideration of uncertainties and treatment path dependence.  
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• A simulation-optimization approach is proposed to evaluate different treatments given one 

segment based on Monte Carlo simulation. Given one future scenario, a backtrack 

algorithm is proposed to find the optimal treatment path with the smallest total cost given 

an analysis period.  

• Different treatment strategies are evaluated and compared from both economic and 

environmental perspectives. When the budget level is moderate, it is suggested to apply 

both asphalt and concrete materials, both short-term and long-term treatments, and a long 

evaluation period.  

• Three management policies are provided and evaluated, including decision-making 

flexibility, long-term planning and market diversification. Compared to the business-as-

usual scenario, after incorporating these policies, the pavement network conditions can be 

improved significantly.  

1.7 Outline of Dissertation 

There are 6 chapters in this thesis. The first chapter starts with the background information for 

current pavement network condition in the U.S and the historical development of performance-

based planning. Then current research gaps are presented after the literature review. The objective 

of this thesis work is to fill in research gaps, improve current analysis framework for performance-

based planning, and provide treatment insights for transportation agencies. Next, research 

questions are proposed, and corresponding methodologies are introduced.  

Chapter 2 presents a novel weighted multi-output neural network to predict pavement deterioration 

for the rigid pavements. This model simultaneously predicts IRI, faulting (FAULT), longitudinal 

cracking (LCRACK) and transverse cracking (TCRACK) for concrete pavements, providing 

convenience for pavement management systems whose treatment decisions are based on 

composite, multi-condition metrics such as the pavement condition index (PCI). First, the process 

of data collection and cleaning are described in detail. Next, the weighted multi-output neural 

network model is introduced, including the selection and generation of input parameters, the 

normalization of training data, and the selection of hyperparameters in the neural network model 

based on the cross validation. Then the results about the comparison among single-output models 

and multi-output models with different weights are discussed. Results show that the multi-output 
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model can improve prediction performance in cases where correlation exists. Furthermore, 

variable weighting is important to achieve the optimal balance of prediction performance among 

the various metrics. 

Chapter 3 introduces a budget allocation model called probabilistic treatment path dependence 

(PTPD) model. This model is based on the two-stage bottom-up framework. On the segment level, 

both deterioration and treatment cost uncertainties are considered. Different treatment actions are 

evaluated based on their distributions of total cost. The total cost is based on the optimal future 

treatment path by minimizing total cost given an analysis period. This optimization problem is 

solved by a backtrack algorithm. This model evaluates treatments based on both its own immediate 

benefit and also the expected benefits of its possible subsequent treatments. On the network level, 

the goal is to minimize the total cost for all segments within the budget constraint. An integer 

programming is proposed to formulate the optimization problem. In addition, explicit risk trade-

offs are incorporated during the optimization process for both segment and network analyses. 

Compared to conventional benefit cost ratio approach, PTPD model improves network condition 

significantly. To achieve a similar performance level, the conventional model requires a 10.4% 

higher annual budget for the given case study.  

Chapter 4 evaluates different treatment strategies that consist of treatment materials, treatment 

types, and evaluation period for treatments. It aims to explore how optimization analyses are 

framed in budget allocation models impacts on the pavement network condition and greenhouse 

gas (GHG) emissions. Both environmental and economic comparisons of different treatment 

strategies are presented based on the Iowa U.S. route network. Considering the rapid market 

growth of electrical vehicles (EVs), their environmental effect is also incorporated in the analyses. 

Results show that the proposed strategy that uses both concrete and asphalt, different treatment 

types, and a moderate evaluation period could improve the pavement network condition. 

Compared to the 5-year asphalt-only strategy, the proposed strategy can save about 32% of the 

annual budget and reduces associated GHG emissions by 21%.  

Chapter 5 explores the benefits of three management policies that can help improve pavement 

networks, including decision-making flexibility, long-term planning and market diversification. 

The evaluation of these three policies is based on the U.S pavement networks, including interstate, 
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arterial, collector and local road systems. The evaluation metric is the cost of excess vehicle fuels 

due to pavement vehicle interaction. Considering the rapid market growth of electrical vehicles 

(EVs), their electricity cost is also incorporated in the analyses. Comparing the business-as-usual 

scenario, after incorporating all three management policies, the total vehicle fuel cost can be saved 

by 28%, about 62 billion dollars for the whole U.S. pavement networks from 2017 to 2050. All 

states can benefit from the proposed management policies. States in the wet freeze climate zone, 

California, and Washington have larger benefits than other states. 

Chapter 6 summarizes the findings about how to improve current models concerning performance-

based planning and insights about treatment strategies and management policies. It also provides 

suggestions for future work at the end.  

 

Equation Chapter (Next) Section 1 
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CHAPTER 2  A WEIGHTED MULTI-OUTPUT NEURAL NETWORK MODEL FOR 

THE PREDICTION OF RIGID PAVEMENT DETERIORATION 

This chapter introduces a novel weighted multi-output neural network (NN) model for the 

prediction of rigid pavement deterioration based on Iowa Pavement Management System data. 

This first-of-a-kind model simultaneously predicts four pavement condition metrics concerning 

rigid pavements, including IRI, faulting, longitudinal crack and transverse crack. Compared to 

traditional single-output NN models, this multi-output model is capable of incorporating 

correlations among different condition metrics. The proposed model can also be applied for 

flexible pavements.  

 

2.1 Introduction 

Performance-based planning (PBP) is an important tool to mitigate the pervasive problem of 

inadequate budget faced by transportation agencies [5]. A key element for implementing PBP is 

efficient prediction of future pavement conditions. This depends on a robust deterioration 

prediction model. Over the last decades, many deterioration models have been described in the 

literature. Given the complex physical and chemical processes involved in pavement deterioration, 

most existing deterioration models are data-driven using many statistical methods including 

Markov chains [89], [90], linear/nonlinear regression [22], [91], neural network [92], [93], and 

decision trees [11].  

In practice, PBP-based decisions are based on multiple metrics of pavement condition. These can 

include metrics of pavement roughness (e.g., the international roughness index (IRI)), rutting, 

faulting, and various forms of cracking [7], [24], [56]. To date, deterioration models described in 

the literature predict single metrics (there are papers that describe multiple models for multiple 

metrics, but each metric is projected using a distinct single model). As will be shown in this chapter, 

by examining panel data from the Iowa Pavement Management System (PMS) (which will be 

discussed in Section 2.3), it has been observed that several of these metrics evolve in a coordinated 

manner. Failure to account for this correlation may lead to misestimation of future pavement 

condition, particularly in a stochastic context.  
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In making PBP-based decisions, transportation agencies may also use an overall condition metric 

– that is a weighted composite metric – to evaluate pavement performance. For example, the state 

of Iowa uses the pavement condition index (PCI), which is a weighted function of IRI, faulting, 

longitudinal and transverse cracking for rigid pavements [56]. The nature of this weighting should 

be considered in the development of a correlation-aware prediction model.  

In this chapter, a new weighted multi-output neural network model for rigid pavements is proposed 

and evaluated using empirical data from the Iowa Pavement Management System. Considering the 

importance of data cleaning for the training of a data-driven model, a detailed description for the 

data cleaning process is presented. This model simultaneously predicts four individual metrics of 

pavement condition and a composite PCI. Different from multiple single-output models, this multi-

output model can and does incorporate correlations among different condition metrics. Results 

show that after incorporating correlations among different condition metrics based on the weighed 

multi-output model, the prediction performance of the overall condition metric has been improved. 

In addition, the prediction performances of individual condition metrics are equal to or better than 

the performance of single-output models. Finally, by adding weights for each condition metric 

during the model training process, their importance levels can be tailored to the specific decision-

making context. 

2.2 Literature Review 

For data-driven models, the first methodological consideration is selection of the model form and 

the method to estimate model parameters in the deterioration model. As suggested in [21], 

deterioration modeling methods can be divided into two categories, Markov chains and regression 

models. Models based on Markov chains focus on the probability that pavement condition evolves 

from one condition state to another [89], [90], [94], [95]. This type of models usually assumes the 

variation of pavement deterioration to be aleatory. Since the Markov property assumes that future 

deterioration rates only depend on the current pavement condition (i.e., pavement state), historical 

dependence is ignored during the prediction process. 

There are several types of regression models, among which the most commonly applied in the 

deterioration literature is linear regression (including both explicitly linear forms [22] and linear 
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forms by transformationa [21], [91], [96]). These models can be readily solved by ordinary least 

squares (OLS). In order to consider the heterogeneity of individual pavements in the same 

pavement group, Zhang et al. proposed a clusterwise linear regression model [97], while Yu et al. 

proposed linear mixed effects models [14]. When the prediction is concerned with classification 

or the probability of performance failure occurrence, logistic regression can be applied. Heidari et 

al. applied a logistic regression to predict the subclasses of pothole, rutting and protrusion for forest 

roads [98]. Chen et al. evaluated the failure probability of asphalt preventive treatments by both 

logistic and Bayesian logistic models [99].  

The second type of regression models are non-linear models which are described by the sum of 

several nonlinear variables or by the exponential form. AASHTO models are examples of this type 

that were once widely applied and cited. These models were estimated from the AASHO road test 

data and updated for several versions [6], [23]. Based on the first version of the AASHTO model, 

Ben-Akiva et al. developed a latent model for pavement deterioration, which assumed that the 

pavement performance condition is a latent variable [8]. Abaza et al. proposed a deterministic 

prediction model based on the AASHTO serviceability concept and an incremental solution of the 

AASHTO basic design equation [100]. Following the AASHTO model form, Hong et al. 

developed a nonlinear model that incorporated heterogeneity using Bayesian analysis [13], [101].  

The Mechanistic-Empirical Pavement Design Guide (MEPDG) is a collection of models that were 

developed as an update to AASHTO through the National Cooperative Highway Research 

Program (NCHRP) Project 1-37A [24]. Considering the fact that the input parameters in the 

MEPDG model could be estimated by separate models and thus cause bias, Aguiar-Moya et al. 

introduced instrumental variables to update the MEPDG model [102]. Other nonlinear models 

include the exponential form [15], [25] and multivariate adaptive regression splines [103].  

Another class of regression models that have been applied to predict pavement performance are 

neural networks. A neural network model is an example of machine learning where a prediction 

 

a  Models like  can be transformed into explicitly linear models by log-transformation:  

.   
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algorithm is developed through iterations among a training set of values. The ultimate prediction 

algorithm combines both linear and non-linear elements weighted to produce a best prediction. 

Recent years have witnessed rapid expansion in the application of neural network models due to 

their efficiency to describe nonlinear relationships in many phenomena including pavements’ 

deterioration [9]–[11], [26]–[31]. Neural network models usually consist of input layer, hidden 

layer and output layer. With the increase in model complexity, such as the increase of hidden layers 

and the increase of the neurons in each hidden layer, the neural network could fit the training data 

perfectly but may lack the capacity to predict the future deterioration at the same time. This 

phenomenon is called ‘overfitting’. There are several ways to detect and prevent it, such as out-

of-sample prediction, cross-validation, regularization, and early-stopping, etc. However, some 

exiting models may lack the analysis to check if the neural network model is overfitting or not [9], 

[10], [30], [31]. These models focus more on the fitting process. Attoh-Okine [31] and Roberts 

and Attoh-Okine [10] mainly use the training error as the evaluation criteria for model performance, 

Owusu-Ababio [9] and Mazari and Rodriguez [30]  just use 1-fold validation instead of multi folds 

(i.e. cross validation).  

There are also some other types of regression models. Inkoom et al. proposed a classification and 

regression tree (CART) model to predict crack condition [11]. Pan et al. used fuzzy regression to 

predict present serviceability index by considering visual inspection data as fuzzy data [34]. 

Bianchini et al. proposed a neuro-fuzzy model with the consideration of IF-THEN fuzzy rules 

[104].  

Existing models mainly focus on the prediction of a single condition metric – a single overall 

metric like PCI, or a specific metric like IRI. This type of single-output models lacks the 

consideration of correlations among different condition metrics. They could also potentially 

increase the computational cost when generating multi specific metrics to obtain an overall metric, 

and lead to some inconvenience for a pavement management system whose treatment decisions 

are based on multi metrics. 

The second methodological consideration is the selection of predictor (input) variables for 

deterioration models, which is strongly related with the available parameters in the PMS dataset 

available to the model developer. Common input variables include traffic volumes/loads, 
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pavement structure (pavement type, thickness), pavement age, pavement conditions, and 

maintenance history. Environmental factors can also have a significant influence on the pavement 

deterioration, such as ambient temperature, precipitation, freeze-thaw cycles, and freeze index. 

Incorporating all parameters in regression models, on one hand could increase the model 

complexity and lead to overfitting, on the other hand it prevents us from understanding the role of 

each parameter. Several studies have conducted sensitivity analysis to explore the significance of 

input variables [92], [93], [105]–[107].  

Models are inherently limited to the variables described in available data. Unfortunately, several 

current PMS datasets do not fully describe the maintenance history of a pavement segment, 

limiting the ability to model this effect. For example, many models use total pavement thickness 

as an input variable. However, two pavement segments with the same total thickness are very 

probable to have different deterioration rates: one asphalt segment has an original 12-inch (304.8 

mm) thickness and does not have an overlay, the other one has an original 8-inch (203.2 mm) 

thickness and also has a 4-inch (101.6 mm) asphalt overlay. 

Another important methodological consideration is the data “cleaning” process, which usually 

takes data scientists about 60% of the total time for a project [108]. One common problem is the 

identification and processing of outliers in the dataset. For example, when there are no treatment 

actions, the pavement condition should get worse due to the traffic and environmental influence. 

However, in much real-world PMS data, like LTPP, overall pavement condition is sometimes 

recorded as getting better from one measurement to the next. There are several reasons for the 

existence of outliers, such as measurement error or missing treatment records. Given the same raw 

dataset, with different cleaning criteria, different training datasets are obtained. When datasets 

differ, even the same training method can generate different models with different evaluation 

performance. This makes it challenging to compare different methods when cleaning methods are 

not reproducible. Most existing papers in the deterioration modeling literature have an obscure 

description about the data cleaning process.  

To summarize, there are several gaps for existing pavement deterioration models described in the 

literature. The first gap is about the correlations among condition metrics. Current models are 

single-output ones that focus on either an overall or a specific condition metric. They lack the 
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consideration of correlations among different condition metrics. The second gap is about input 

variable selection. Variables in most existing models may not reflect the maintenance history of a 

pavement segment. The last gap is the unclear description about the data cleaning process, leading 

to the difficulty of comparing different models.  

To bridge current gaps in pavement deterioration models, an innovative weighted multi-output 

neural network model is proposed. Most existing models only focus on flexible pavements. 

According to the FHWA road statistics [109], rigid pavements account for over 25% in terms of 

interstate system. This chapter uses rigid pavements as an example to illustrate this new multi-

output neural network model. A detailed description of data cleaning process is presented. This 

new model incorporates correlations among different condition metrics during the model training 

process. Considering the fact that different metrics may have different importance levels for 

transportation agencies, each output condition metric is assigned a weight number instead of being 

uniformly weighted during the training process. Model evaluation results show that after 

incorporating correlations among different condition metrics, the prediction of the overall 

condition metric could be improved. In addition, the prediction performance of a single condition 

metric is better or equal to the performance of single-output models. 

2.3 Data Preparation 

The proposed deterioration model is trained on data from the Iowa PMS database and climate data 

from LTPP. In the following section, a detailed description is presented for the data preparation, 

which is concerned with data extraction, transformation and cleaning in terms of input and output 

variables. At the end of this section, the selection of input variables is discussed based on a 

correlation analysis. 

Iowa PMS data 

The Iowa PMS database contains detailed records for around 4,000 pavement segments on 26 

years of pavement condition for the years 1992 to 2017. It covers three systems: 1,566 miles (2,520 

km) for interstate system, 4,626 miles (7,445 km) for U.S route system, and 4,891 miles (7,871 

km) for Iowa route system. Approximately, 15.6% of total miles are asphalt pavements, 32.9% are 

concrete pavements, and 51.5% are composite pavements. 
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This data can be divided into three groups based on the units used and the presence of crack 

information as shown in Table 2-1. Because the early period of data (Group 1) contains different 

information about the state of cracking, it is not considered in this analysis. In the dataset, there 

are two variables called ‘IRIDAT’ and ‘CAPDAT’ which record the dates of measurement for the 

IRI and crack information, respectively. For each segment in the network, the performance data is 

collected biennially. For the dataset of year 2013, ‘CAPDAT’ is missing, and for the dataset of 

year 2016 and 2017, ‘IRIDAT’ is missing. Therefore, the PMS data that is used for training the 

deterioration model is based on year 2000-2012, year 2014 and 2015. 

Table 2-1. Iowa PMS data groups 
Group Period Units Crack info 
1 1992-1999 1992-1995: English, 

1996-1999: Metric 
DCRACK, HCRACK, LCRACK, TCRACK 

2 2000-2012 Metric ACRACK, LCRACK, LWCRACK, TCRACK 
3 2013-2017 English ACRACK, LCRACK, LWCRACK, TCRACK 

Note: ACRACK=alligator crack, DCRACK=durability crack, HCRACK=half-crack, LCRACK=longitudinal 
crack, LWCRACK=longitudinal wheel-path crack, TCRACK=transverse crack 
 

The detailed information for parameters in the selected PMS data can be found in [110]. Based on 

suggestions from engineering experts, four types of parameters have been selected in this analysis 

as listed in Table 2-2. Parameters in the Basic Info group include the segment name (ORIGKEY), 

the year for the database (PMISYR), system type (SYSTEM, including interstate, U.S. route, and 

Iowa route), the construction year (CONSYR) and the year for last resurfacing (RESYR). Group 

Traffic includes two types of traffic statistics, ADT and TRUCKS. Different kinds of condition 

metrics and corresponding measurement dates are in group Distress. The last group Maintenance 

History records treatment information for each layer. 
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Table 2-2. Description of selected parameters.  
Data type Name Description 

Basic Info 

ORIGKEY Original smart key 
PMISYR Pavement management year 
SYSTEM Roadway system 
PAVTYP Pavement type 
CONYR Year of construction or reconstruction 
RESYR Year of last resurfacing 

Traffic 
ADT Average annual daily traffic  
TRUCKS Average annual daily truck traffic 

Distress 

IRI International roughness index 
RUT Rut depth 
FAULT Average faulting only on faulted joints in a segment 
ACARCKH, 
ACRACKM, 
ACRACKL 

High/moderate/low severity alligator cracks 

LCARCKH, 
LCRACKM, 
LCRACKL 

High/moderate/low severity longitudinal cracks 

LWCARCKH, 
LWCRACKM, 
LWCRACKL 

High/moderate/low severity longitudinal wheel-path cracks 

TCARCKH, 
TCRACKM, 
TCRACKL 

High/moderate/low severity transverse cracks 

IRIDAT IRI test year 
CAPDAT Crack & patch collected by vender test year 

Maintenance 
History 

TREATMENT Surface treatment type 
LAYR (1-8) Layer year # (1-8) 
SURTYP (1-8) Surface type # (1-8) 
SURTHK (1-8) Surface thickness # (1-8) 
BASTYP (1-8) Base type # (1-8) 
BASTHK (1-8) Base thickness # (1-8) 
SUBTYP (1-8) Subbase type # (1-8) 
SUBTHK (1-8) Subbase thickness # (1-8) 
RMVTYP (1-8) Removal type # (1-8) 
RMVTHK (1-8) Removal thickness # (1-8) 
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As for Basic Info parameters, based on ‘PMISYR’, ‘CONYR’ and ‘RESYR’, two new variables 

‘AGECON’ and ‘AGERES’ were generated by equation (2.1) and (2.2). These two variables were 

used to describe the period since construction/reconstruction and last resurfacing, respectively.  

 (2.1) 

 (2.2) 

Distress parameters in year 2014 and 2015 were transformed into metric units. Each type of crack 

distress is described by three sub-categories, which can be converted to a single crack distress 

metric by equation (2.3) [56]. Using this, four new variables can be obtained, namely: ‘ACRACK’, 

‘LCRACK’, ‘LWCRACK’ and ‘TCRACK’.  

 (2.3) 

According to the Iowa Department of Transportation, overall pavement condition is not evaluated 

directly from condition metric (e.g., IRI). Instead, condition metrics are transformed into indexes 

including the cracking index, riding index (IRI), and faulting index [56]. Table 2-3 lists the 

threshold values for the calculation of indexes for rigid pavements. Each metric has two threshold 

values. When the metric  is less than or equal to the small threshold value , the index equals 

100; When the metric is larger than or equal to the large threshold value , then the index equals 

0. Other index values can be obtained by linear interpolation. Following this, for any metric , 

the corresponding index, , is defined formally as: 

 (2.4) 

An integrated cracking index was obtained as a weighted sum of indexes of LCRACK and 

TCRACK with the corresponding weights listed in Table 2-4. 
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Table 2-3. Thresholds for condition metrics 
 IRI (m/km) FAULT (mm) LCRACK (m/km) TCRACK (count/km) 
threshold  0.5&4 0&12 0&250 0&150 

 
Table 2-4. Cracking sub-index weights 

sub-index LCRACK TCRACK 
weights  0.4 0.6 

Based on these indexes, an overall condition metric called PCI was obtained by equation (2.5) for 

rigid pavements. PCI ranges from 0 to 100, and 100 represents that pavement is in perfect condition. 

In this expression, each of the condition indexes have different coefficients which may represent 

the significance of that index in the eyes of the Iowa transportation agency.  

 (2.5) 

The last group of parameters describe the maintenance history for each segment, from which 

historical structure information could be generated, including construction year, resurface year, 

thickness and pavement type. Table 2-5 presents an example for the maintenance history for a rigid 

pavement segment. Its ORIGKEY is “08012183 67192 8279”. This segment was constructed in 

1964 and maintained with an overlay of Portland cement concrete (PCC) in 1984. Based on Table 

2-5, structure information could be obtained as shown in Table 2-6. From year 1964 to year 1983, 

the segment structure stayed the same, AGECON (equation (2.1)) changes each year and AGERES 

remained 0. After year 1984, due to the overlay action, the segment structure was changed. The 

new surface thickness SURTHK is 102mm, and previous surface PCC thickness become PCCTHK. 

TOTTHK is the total thickness, which is equal to the sum of SURTHK and PCCTHK (RMVTHK 

should be considered when it exists). MRRNUM is the number of treatment actions. In this case, 

MRRNUM became 1 since 1984. Instead of a single total thickness value as shown in the original 

PMS dataset, the introduction of SURTHK, PCCTHCK and MRRNUM could reflect the 

maintenance history of a pavement segment. (If the pavement type is asphalt or composite 

pavements, a variable called ‘HMATHK’ is introduced similar to PCCTHK.)  

 

 

0.4 0.4 0.2Crack Ride FaultPCI I I I= + +
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Table 2-5. Maintenance history for a rigid pavement segment 
LAYR SURTYP SURTHK BASTYP BASTHK 

1964 PCC 254 GSB 102 
1984 PCC 102 - - 

Note: LAYR=layer year, SURTYP=surface type, BASTYP=base type, BASTHK=base thickness, 
PCC=Portland cement concrete, GSB=granular subbase  
 
Table 2-6. Structure information for a rigid pavement segment  

PMISYR CONYR RESYR PAVTYP TOTTHK SURTHK PCCTHK MRRNUM 

1964~1983 1964 - PCC 254 254 0 0 

>=1984 1964 1984 PCC 356 102 254 1 

Note: PMISYR=pavement management year, CONYR=Year of construction or reconstruction, 
PAVTYP=pavement type, TOTTHK=total thickness, SURTHK=surface thickness, PCCTHK=sublayer 
concrete thickness, MRRNUM= number of treatment actions, PCC=Portland cement concrete. 
 

After generating parameters for model training, the total dataset is filtered based on ‘PAVTYP’ to 

obtain the data for rigid pavements. Next, input and output variables are determined with the 

consideration of time series analysis and treatment actions. In terms of the time series analysis, 

time lag = 1 is suggested in [21], [111], which means that the condition prediction at year t+1 is 

only related with the information at year t. Since the condition metrics are collected every two 

years in Iowa, time lag is selected as 2 years here. For example, the information at year 2000 can 

be considered as inputs and the condition metrics at year 2002 are outputs.  

During the process of paring input and output variables, attention should be paid to pavement 

treatments. If there is a treatment action at year 2000, then it is not appropriate to use year 2000 as 

input and 2002 as output. This kind of pairing data should be excluded from the training dataset. 

In the dataset, the improvement of pavement condition may be postponed after a treatment. For 

example, there is a treatment at year 2002, but the condition improvement is reflected at year 2004. 

Therefore, during the pairing process, when there exists a treatment action, its adjacent years are 

checked to decide which year should be considered as the treatment year.  

After this step, input variables include: 1). Basic info: AGECON, AGERES; 2). Traffic: ADT and 

TRUCKS; 3). Distress: , , , ; 4). Maintenance history: 

TOTTHK, SURTHK, PCCTHK, MRRNUM. Output variables include , , 

IRIt FAULTt LCRACK t TCRACK t

IRIt+2 FAULTt+2
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, . The subscription t and t+2 represent measurement years of condition 

metrics.  

Iowa PMS data cleaning 

After generating the initial input and output variables, the next step is to deal with data outliers. 

For this case, outliers are defined as values or pairs of values that indicate physically unreasonable 

pavement condition values. In terms of the overall pavement condition (i.e. PCI in this analysis), 

it should decrease when there is no treatment action due to running traffic and environmental 

effects [24]. But for other single performance metrics (IRI, faulting and cracks), their performances 

may improve due to some negative correlations. Differences for all performance metrics between 

input and output are calculated,  

 (2.6) 

 (2.7) 

 (2.8) 

 (2.9) 

 (2.10) 

When  is larger than 0, the data point is considered as an outlier and is deleted from the 

training dataset. In terms of other single performance metrics, interquartile range (IRQ) is applied, 

which can be calculated by equation (2.11),  

 (2.11) 

Where  and  represent values of 25th and 75th percentiles, respectively. Usually, if a data 

point is below  or above , it is considered as an outlier [112]. In this 

case, all lower quartile boundaries are negative values, indicating unexplained performance 

improvement. These lower bounds have been used to identify outliers. There is less theoretical 

support to suggest that pavements could not deteriorate rapidly. Therefore, an upper bound of one 

LCRACK t+2 TCRACK t+2

ΔPCI = PCIt+2 − PCIt

IRI_diff = IRIt+2 − IRIt

FAULT_diff = FAULTt+2 − FAULTt

LCRACK_diff = LCRACK t+2 − LCRACK t

TCRACK_diff = TCRACK t+2 − TCRACK t

ΔPCI

IQR = Q3 −Q1

Q1 Q3

Q1 −1.5⋅ IQR Q3 +1.5⋅ IQR
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half of the threshold values has been adopted for use in Table 2-3, namely 2 for IRI. Table 2-7 

shows the outlier threshold for condition metrics based on IQR and the half of index approach. 

Values outside the lower and upper bound were eliminated from the training dataset.  

Table 2-7. Outlier threshold for condition metrics 
 IRI_diff FAULT_diff LCRACK_diff TCRACK_diff 
𝑸𝟏 − 𝟏. 𝟓 ∙ 𝑰𝑸𝑹 -0.3 -4.9 -23.0 -13.5 
𝑸𝟑 + 𝟏. 𝟓 ∙ 𝑰𝑸𝑹 0.4 6.0 34.4 18.5 
Half of index threshold 2.0 6.0 125.0 75.0 

 

Climate Data 

Climate data was primarily extracted from LTPP, including annual average temperature (TEMP), 

precipitation (PRECIP), and freeze index (FREEZE). For a given year, there are several records 

for each climate variable. Annual averages of these were used. Climate data was matched to the 

other training data by condition metric measurement year, IRIDAT and CAPDAT.  

2.4 Weighted Multi-Output Neural Network Model 

2.4.1 Selection of input parameters 

Based on the previous analysis, a candidate set of input variables were generated. However, some 

variables may not contribute to the pavement deterioration process to an extent that is observable 

in the current data. To select the most relevant input parameters, a correlation analysis was 

conducted. This approach is similar to the linear regression analysis described by [107]. 

Figure 2-1 shows the heatmap for the correlations among input and output variables. The output 

variables are the variations of condition metrics, including IRI_diff, FAULT_diff, LCRACK_diff, 

and TCRACK_diff (equations (2.7)-(2.10)). All other listed variables are candidate inputs. In this 

analysis, an input variable would be excluded if either the absolute value of the correlation 

coefficient is less than 0.05 for all four outputs or if it is less than 0.05 for three outputs and less 

than 0.1 for the fourth. Using these criteria for this dataset, AGERES, PCCTHK, MRRNUM and 

TEMP were excluded. One main reason that output response is not correlated with AGERES, 

PCCTHK, MRRNUM is that for most rigid pavements in Iowa the historical overlay number is 



 49 

zero across the dataset. When overlay number is zero, AGERES, PCCTHK, MRRNUM are all 

equal to zero, and TOTTHK is equal to SURTHK for most rigid pavements. To simply the problem, 

AGERES, PCCTHK, and MRRNUM are deleted from the set of input variables. But to be noted 

that, for asphalt and composite pavements, MRRNUM is usually larger than 0, these variables 

should be considered. ADT is insignificant for both variations of IRI (IRI_diff) and longitudinal 

crack (LCRACK_diff). In addition, it is also strongly correlated with TRUCKS. Hence, ADT is 

also deleted. 

 

Figure 2-1. Heatmap for variables’ correlations (green color represents positive correlation, blue 

represents negative correlation, and grey color represents weak correlation) 

Among the four outputs, several interesting correlation trends can be observed. First, the variation 

of IRI (IRI_diff) is positively correlated with both the level of IRI (collection coefficient, ρ = 0.13) 
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and the level of transverse cracking (TCRACK, ρ = 0.08).  For this modeling, a positive correlation 

suggests that IRI increases more rapidly when values for IRI or TCRACK are higher. Additionally, 

it has been noticed that the variation of FAULT (FAULT_diff) is strongly negatively corelated 

with the level of faulting (FAULT, ρ = -0.36) and longitudinal cracking (LCRACK, ρ = -0.12). 

This suggests that faulting grows more slowly when faulting or longitudinal cracking is more 

severe. The variation of LCRACK (LCRACK_diff) and TCRACK (TCRACK_diff) are both 

strongly positively correlated with IRI, LCRACK and TCRACK. From this correlation analysis, 

it can be concluded that the deterioration of each single condition metric is statistically dependent 

on at least some of the other condition metrics. This observation implies that it’s better to 

incorporate the state of all condition metrics during the prediction of single condition metric.  

Table 2-8 summarizes the distribution of input variables for the neural network model. As for four 

condition metrics, when their standard deviation and mean values are compared, IRI has the 

smallest ratio between standard deviation and mean value, representing the IRI distribution is more 

centralized. TCRACK has the largest ratio, and its distribution is the sparsest, which might be 

caused by the measurement quality.  

Table 2-8. Statistical summary for input variables 
 AGECON TOTTHK TRUCKS IRI FAULT LCRACK TCRACK PRECIP FREEZE 

mean 22.2 248.8 1660 2.2 4.6 19.6 13.4 820.8 286.8 

std 14.9 32.5 2559.7 0.8 2.6 37.8 26.8 112.2 156.6 

min 0 150 1 0.7 0 0 0 650.5 317.8 

max 71 559 14293 5 12 350 240.5 1077.2 840.8 
Note: std=standard deviation 
 

2.4.2 Normalization of training data 

As listed in Table 2-8, each variable has a different magnitude. To avoid fitting problems due to 

this, all input and output variables are normalized. Considering that both input and output variables 

have condition metrics but for different years, all condition metrics are normalized together. 

Suppose X is the input matrix with the dimension is ,  is the number of input variables, 

and n is the number of data points. is the output matrix. Its dimension is , and  is the 

number of output variables. The normalization process is shown as follows:   

dx × n dx

Y dy × n dy
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 (2.12) 

 (2.13) 

 (2.14) 

Where  and  are normalized input and output values, where i represents the index of data 

point, j is the input variable index and k is the output variable index.  and  are mean values 

for jth input and kth output.  and  are standard deviations for jth input and kth output.  

2.4.3 Model framework 

In recent years, feed-forward neural network (NN) models have been widely applied for pavement 

deterioration prediction due to their superior performance when dealing with strongly nonlinear 

relationships [11], [30], [93], [98], [105], [106]. A NN model usually consists of an input layer, 

one or several hidden layers, and an output layer. Each layer has several neurons. Hidden layers 

are usually used to describe the nonlinear relationships via activation functions (also known as 

transfer functions). The connection between two layers is usually through a linear mapping. A NN 

model can be mathematically described as equation (2.15)  

 (2.15) 

where represents the prediction values.   is the linear transformation matrix, 

and  is the activation function. Common nonlinear activation functions include 

ReLU, sigmoid, and Tanh. Their ouptut sets are ,  and . ReLU is often used for 

regression problems while the other two are more commonly applied for classification problems 

x j ,i =
X j ,i − X j ,

σ X j ,

j ∉ IRI,FAULT,LCRACK,TCRACK{ }( )

x j ,i =
X j ,i −Yj ,
σ Yj ,

j ∈ IRI,FAULT,LCRACK,TCRACK{ }( )

yk ,i =
Yk ,i −Yk ,
σ Yk ,

k ∈ IRI,FAULT,LCRACK,TCRACK{ }( )

x j ,i yk ,i

X j , Yk ,

σ X j ,
σ Yk ,
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[113]. In terms of the current regression problem, ReLU (equation (2.16)) is applied for the hidden 

layers  and a linear function is applied for the output layer.  

 (2.16) 

The goal of training a NN model is to determine an optimal structure that can minimize the loss 

funcion. A loss function is used to describe the relationship between the predicted value  and 

the true value . In this regression analysis, mean squared error is chosen as the loss function 

(equation (2.17)), where  is the weight value for each output variable.   

 (2.17) 

After normalization process introduced in the previous sub-section, the training problem for a NN 

model (equation (2.15) and (2.17)) can be reformulated as,  

 (2.18) 

 (2.19) 

In this case, the prediction value is , which is in the normalization space. Equation (2.20) is 

applied to obtain the prediction value with a real magnitude.  

, and  (2.20) 

When the dimension of the output variable  is equal to 1, the NN is a single-output model, which 

is very common in existing literatures. When  is larger than 1, and  for all output variables, 

then this is a uniformly weighted multi-output model. When  is larger than 1, and  are 
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different for all output variables, it is a weighted multi-output NN model, which is the focus of this 

analysis.  

In order to incorporate weights for each output variable, insert equation (2.14) to equation (2.19), 

then,  

 (2.21) 

By changing the standard deviaiton during the normalization process, weights in the loss function 

can be incorporated.  

2.4.4 Weighted multi-output NN model for rigid pavements 

In terms of the NN model structure for rigid pavement deterioration, the number of hidden layers 

can be determined first. As mentioned by Heaton [114], one hidden layer can approximate any 

function that contains a continuous mapping from one finite space to another. With the increase of 

hidden layers, the NN model could have an excellent fitting performance, but it may decrease the 

prediction capacity due to overfitting. Since the dataset applied in this work contains only around 

2,500 training data points, one hidden layer should work well enough and minimize the risk of 

overfitting [113]. In this case, the training problem (equation (2.18)) can be rewritten as,  

 (2.22) 

Where, the activation function for the output layer  and hidden layer  is chosen as a linear 

function and ReLU, respectively.  

The determination of weight matrixes is usually based on a back-propagation algorithm.  In terms 

of equation (2.22), the partial derivative for the loss function L to  can be expressed as,  
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 (2.23) 

, where  (2.24) 

where and  is the number of neurons in the hidden layer.  

When  , namely, the model has a single output, each value in the linear transition matrix  

is only influenced by the single output. However, when ,  are influenced by all outputs. 

Therefore, the correlations among different output variables could be incorporated during the 

training process. 

2.4.5 Model training 

In addition to the number of hidden layers, there are three other main parameters concerning the 

training of NN models: 1). The number of neurons M in the hidden layer; 2). The epoch number: 

one epoch represents one forward pass and one backward pass of all the training examples; 3). 

Batch size: the number of training examples in one forward/backward pass.  

As suggested by [114], the number of hidden neurons should be 2/3 the size of the input layer, plus 

the size of the output layer, which equals to 10 in this analysis. But in reality, considering that each 

dataset has different characteristics, 6 neuron numbers are selected as candidates including 10, 16, 

32, 48, 64 and 80. As for the epoch number, when it is small, the NN model may not be well 

trained. When it is large, the NN model has the potential to be over-trained. Here, three epoch 

numbers are considered, 50, 100, and 150. In addition, early-stopping is incorporated in order to 

avoid overfitting. Batch size determines the number of data points that can be trained for each time. 

When it is small, the NN model has the potential to be over-trained. Here, three batch sizes (8, 32 

and 64) are considered.  

The optimal combination of these three parameters is determined by grid search based on a 5-fold 

cross-validation. For each fold, all training data are randomly divided into three groups, including 

70% training data, 20% validation data, and 10% test data. The training data and validation data 
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are used to train the model and the test data is used to check the out-of-sample performance of the 

NN model. Theoretically, the dataset should be divided so that the three partitions – training, 

validation, and test – are large enough that we have a reasonable expectation that they are all 

representative of the same distribution. Practically, the ratio selection is mainly based on the data 

amount. For example, when the number of total data points is very large, 50% of the total data can 

be selected as the test data. When the number of data points is very small, there is only train and 

validation data, and no test data at all. Because, in this case, it is better to use as many training data 

as possible to fully train the model. As for Iowa dataset, the number of total data points for rigid 

pavements is around 2,500, so 10% of the test data is selected to make sure the model can be fully 

trained. By using the 5-fold cross-validation, the model can be tested by 5 different sets of test 

data. 

The mean squared error (MSE) of the test data is chosen as the model performance metric, which 

is the same as the loss function (equation (2.19)) for the training process. After a 5-fold cross-

validation, the average MSE is considered to compare NN models with different structure 

parameters. The model with the lowest average MSE was selected as the representative NN model.  

2.5 Results and Discussions 

In order to explore the influence of incorporating multi-output variables, and various weights for 

each output variable on the model prediction performance, four single-output models were trained 

for each variable (i.e., IRI, FAULT, LCRACK and TCRACK) along with ten multi-output models 

with different sets of weights. The first multi-output model (listed as NN0 in Table 2-9) uses a set 

of weights that are uniform, [1, 1, 1, 1]. The second model (NN1) uses a set of weights equal to 

those used in the Iowa DOT PCI equation (equation (2.5)), i.e., [10, 5, 4, 6]. The other eight weight 

sets (for the other eight models, NN2 – NN10) are shown in Table 2-9 and explore how disparity 

of weighing among the four variables impacts model results.  

The training speed for single-output and multi-output models is related with the training 

parameters, including the number of neurons, and the epoch number and the batch number. When 

both types of models use the same parameters: Neuron=64, Epoch=50, Batch=32, the training time 

for single-output and multi-output models are 26.3s and 29.8s, respectively (the training time is 
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based on 5-fold cross-validation). The difference between these two models in terms of training 

speed is not large. 

Table 2-9 lists the optimal set of model parameters and the smallest MSEs found during the grid 

search for these 4 single-output and 10 multi-output models, respectively. For the multi-output 

models, the optimal NN structure is selected based on average MSE of PCI prediction across a 5-

fold cross-validation. Three things are immediately notable from this table. First, the multi-output 

models have better prediction performances (smallest MSEs) for IRI, FAULT, and TCRACK (see 

values with an asterisk in Table 2-9) compared to the corresponding single variable models. Both 

types of models have similar prediction performance for LCRACK. The improvement in 

prediction performance is particularly notable for the prediction of FAULT (single variable model 

MSE = 1.069, model NN1 MSE for FAULT=0.778, a 27% reduction) and for the highly influential 

prediction of IRI (single variable model MSE = 0.044, NN1 MSE for IRI = 0.033, a 25% reduction). 

Table 2-9. Optimal single-output model structure and prediction performance (first four rows) and 
Optimal multi-output model structure and prediction performance (last 10 rows) 

 NN structure Mean Squared Error (MSE) 
Name  Neuron Epoch Batch PCI IRI FAULT LCRACK TCRACK 
IRI 32 150 32 

11.78 

0.044    
FAULT 80 150 8  1.069   
LCRACK 80 50 64   468.9  
TCRACK 32 50 8    137.9 

Name Weights Neuron Epoch Batch PCI IRI FAULT LCRACK TCRACK 
NN0 [1, 1, 1, 1] 48 150 36 10.25* 0.034 0.764 482.3 133.1 

NN1 [10, 5, 4, 6] 64 50 32 
10.24* 
(0.035) 

0.033* 
(2e-5) 

0.778 
(4e-4) 

491.3 
(0.3) 

132.4* 
(0.04) 

NN2 [10, 1, 1, 1] 80 100 8 10.37 0.033* 0.800 489.2 141.4 
NN3 [50, 1, 1, 1] 48 150 8 10.53 0.033* 0.859 511.6 153.6 
NN4 [1, 10, 1, 1] 80 50 8 11.09 0.038 0.703 501.0 140.1 
NN5 [1, 50, 1, 1] 64 150 8 12.72 0.051 0.690* 519.1 151.7 
NN6 [1, 1, 10, 1] 48 100 8 11.03 0.038 0.827 468.1* 136.4 
NN7 [1, 1, 50, 1] 80 150 8 12.62 0.047 0.926 470.2* 158.1 
NN8 [1, 1, 1, 10] 48 50 8 10.68 0.039 0.835 500.8 132.1* 
NN9 [1, 1, 1, 50] 80 100 8 12.04 0.052 0.947 540.5 132.3* 

Note: Smallest observed MSE for that variable 
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Secondly, and more importantly, from Table 2-9 it is clear that the PCI prediction performance 

associated with either multi-output model NN0 or NN1 (MSE = 10.24) is better for than for the 

PCI prediction derived from the four optimal single output models (MSE = 11.78). As mentioned 

in Section 2.4.4, the training process for multi-output models incorporates the correlations among 

variables. This correlation could improve the prediction performance for a single variable and 

should improve the prediction of a multi-variable metric like PCI.    

Finally, although the multi-output models can outperform single metric models in predicting PCI, 

because PCI is a composite performance metric, when it is optimal, it does not mean all other 

single performance metrics are optimal.  

Due to the existence of uncertainty in a multi-fold validation, the values listed in Table 2-9 could 

change if the same model was regenerated. In order to compare different models statistically, a 

bootstrap analysis was conducted to estimate the standard deviation for the average MSE obtained 

by 5-fold cross-validation. Because this uncertainty in MSE derives solely from the random 

partitioning of training and validation data, all 10 multi-output models have the same source of 

uncertainty. Therefore, a bootstrap analysis was conducted only for the NN1 model. The bootstrap 

sample size was 100. The standard deviation in MSE for each variable is listed in Table 2-9 (i.e., 

values in parentheses). Using these standard deviation values, statistically significant differences 

among the lowest observed MSE values was tested using a two-sample t-test assuming equal 

variance and a confidence level of 95%. The MSE values highlighted in Table 2-9 (asterisk) for 

PCI, IRI, FAULT, LCRACK and TCRACK are the lowest values. When multiple values in a given 

column have an asterisk, they are not statistically different.  

In terms of PCI prediction, normally, the NN1 model would be expected to have the best prediction 

performance since its weights resemble the PCI formula. However, both NN0 and NN1 models 

have the smallest MSE. This is because in the current PCI formula, the coefficients (weightings) 

for all four variables are similar in magnitude. Figure 2-2 shows the comparison between true PCI 

and predicted PCI based on out-of-sample data for NN1 model, which presents a good prediction 

performance. 
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Figure 2-2. Comparison between true PCI and predicted PCI based on out-of-sample data when 

weights are [10, 5, 4, 6] (NN1 model). 

The models NN2 to NN9 have two larger weights (10x or 50x) for IRI, FAULT, LCRACK, 

TCRACK, respectively. For each of these models, the prediction performance of the variable with 

the largest weight (highlighted in bold) and the PCI prediction performance are emphasized. 

Generally, when an output is more heavily weighted, the training process emphasizes this output. 

As shown in equation (2.21), when the output  is heavily weighted, the minimization process 

will concentrate more on improving the prediction performance on  to minimize the total 

weighted loss value. When this occurs, prediction performance for that focal output would be 

expected to be higher than for an NN model with a smaller weight on that same output. It is 

important to note that models NN2 to NN9 are not expected to or intended to improve on the 

prediction of PCI compared to NN1. Instead, the role of these models is to see how the multi-

output model algorithm behaves as weighting shifts. In this case, where correlation is present, these 

also serve to demonstrate both the ability of a multi-output model to outperform single-output 

models and the fact that as weights become more disparate there may be an important tradeoff 

between performance in predicting the composite metric (PCI) and the individual metrics. 

As for IRI, when its weight is 2 times larger than other variables (NN1), its MSE value is already 

the smallest. With an increase of IRI weight (models NN2 and NN3), IRI prediction performance 

stays almost the same while MSE for PCI prediction increases very slightly. The behavior of 

Yk

Yk
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TCRACK prediction is similar to IRI. The NN1 model has a low MSE for TCRACK that is not 

statistically resolvable from models NN9 and NN10. However, TCRACK is influential in the 

prediction of PCI (only IRI is more influential). Therefore, as the TCRACK weight grows relative 

to the other variables (NN9 and NN10), PCI prediction performance deteriorates. For both FAULT 

and LCRACK, when they have larger weights (i.e., 10 and 50), their prediction performances are 

better than NN0 and NN1. Hence, with the increase of the weight for a single variable, its own 

prediction performance could be improved. However, other variables’ prediction performances 

would decrease, as well as the PCI prediction performance. To this last point, it can be seen that 

the difference in model performance between a uniformly trained option and a weighted option 

increases as the heterogeneity of the weights grows. Figure 2-3 presents the comparison between 

true and predicted values for IRI, FAULT, LCRACK, and TCRACK. Generally, all four plots 

demonstrate good model performance without significant systematic deviations in correspondence 

between the predicted and actual values. Both LCRACK’s and TCRACK’s plots show a small 

number of low range values (~50 to 100 m/km LCRACK and ~50 to 100 count/km TCRACK) 

that are underestimated by the model. It is believed that this occurs for two reasons: (1). Data 

quality for these two variables is poor with standard deviations roughly two times the mean for the 

samples of both; (2). Some crack-related maintenance records may be missing. The record number 

of surface treatment (e.g., crack sealing) is extremely small. Hence, some input and output parings 

may not be appropriate when there exists a surface treatment but without a record. Underestimates 

at these low values should not cause significant problems at these are well below current treatment 

threshold triggers. 

  
(a). IRI (b). FAULT 
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(c). LCRACK (d). TCRACK 

Figure 2-3. Comparison between true and predicted values based on out-of-sample data for (a). 

IRI (NN3 model); (b). FAULT (NN5 model); (c). LCRACK (NN7 model); (d). TCRACK (NN9 

model) 

2.6 Conclusions and Future Work 

A new weighted multi-output neutral network model for the deterioration of rigid pavements has 

been proposed based on the Iowa Pavement Management System database. This new model 

simultaneously predicts IRI, faulting (FAULT), longitudinal cracking (LCRACK) and transverse 

cracking (TCRACK) for pavements, providing convenience for pavement management systems 

whose treatment decisions are based on composite, multi-condition metrics such as the pavement 

condition index (PCI). Considering the fact that different condition metrics may have different 

importance levels, each metric to be predicted is given a weight during the model training process.  

Compared to single-output models, an appropriately weighted, multi-output model (NN1) 

performs better at estimating PCI (13% lower MSE) than an estimate derived from four optimal, 

single-output models. Furthermore, the multi-output model generates better estimates than 

corresponding single-output models for three of the four individual metrics considered – IRI (25% 

lower MSE), FAULT (27% lower) and TCRACK (4% lower). For the fourth metric, LCRACK, 

the multi-output model has a 5% higher MSE than the single-output model. The observed 

improvements derive directly from incorporating correlation relationships among different 

variables within the multi-output model. The deterioration in LCRACK prediction performance 

demonstrates the tradeoff that is made when simultaneously estimating correlated metrics.  
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The results presented in this chapter make it clear, that multi-output models can improve prediction 

performance in cases where correlation exists. Furthermore, variable weighting is important to 

achieve the optimal balance of prediction performance among the various metrics. Analysis of 

extremely weighted models (NN2 to NN9) suggests that the relevance of understanding the nature 

of this tradeoff will grow as weights become more heterogeneous.  

As for the future work to improve the prediction performance for pavement deterioration, one 

aspect is to improve data quality, which is a common problem for data-driven deterioration models. 

The Iowa PMS provides one of the best pavement databases that are available. However, there still 

exist some problems, such as large measurement errors, missing maintenance history, and data 

entry errors. On one hand, these problems increase the difficulty to generate the data for training 

the model, on the other hand, a large ratio of data points has to be removed. To improve the model 

performance, it is necessary to obtain data with a good quality. Another aspect is about the time 

series analysis. Currently, it is assumed that the time step is just two years due to limited data. 

With the increase of available records, it is necessary to test different time steps. As for the model 

structure, one potential drawback for neural network model is its ‘black box’ feature, which means 

that the relationship between input and output variables are not clear. In some research fields such 

as choice models in transportation, some attempts have been made to integrate theoretical model 

and data-driven models. In the future, this idea could also be applied in pavement deterioration 

analysis. 

2.7 Other Related Works by the Author 

In addition to this weighted multi-output neural network model, several other deterioration models 

are also proposed by the author. But in order to make this dissertation concise, corresponding 

descriptions are ignored here and they are submitted for journal publications.  

Recurrent Neural Network (RNN) Model 

RNN models are developed to explore the influence of overweight vehicles on pavement 

performance. Overweight vehicles are known to accelerate the pavement deterioration process. 

Many states in the U.S. implement permitting fees to be compensated for this additional damage. 

In this analysis, the influences of traffic weights on pavement performance have been evaluated 
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for both asphalt and concrete pavements using data from the LTPP database. A qualitative 

evaluation is conducted through linear regression, which shows that roughness (measured as IRI), 

rutting, and alligator cracking are sensitive to traffic weights for asphalt pavements. By contrast, 

concrete pavement conditions appear to be insensitive to traffic weights. In order to predict the 

influence of traffic weights on pavement deterioration, three RNN models have been developed 

for asphalt pavement IRI, rutting, and alligator cracking. For a given pavement segment, when the 

overweight vehicle ratio doubles, results show that the pavement deterioration rates increase by 

7%, 35%, and 18% for IRI, rutting, and alligator cracking, respectively. To explore the economic 

loss brought by the overweight vehicles, life-cycle cost analysis is conducted for pavement 

networks in states with wet-freeze climates under two types of traffic weight scenarios. When the 

overweight vehicle ratio doubles, the total annual average additional life-cycle cost can be $64.8M, 

and the unit cost is $0.006/(ESAL∙mile). When the transported weights increase by 2%, the total 

annual average additional life-cycle cost can be $35M, and the unit cost is $0.002/(ESAL∙mile). 

Results show that the growth of the overweight vehicle ratio is more problematic than the growth 

of transported weights. Results can provide policy-makers insights about the economic losses 

caused by overweight vehicles and aid in setting permitting fee level. 

Performance Jump Model 

Both weighted multi-output neural network and recurrent neural network models are applicable 

for the prediction of pavement condition without any treatment during the prediction period. In 

addition to deterioration models mentioned above, a model that describes the pavement condition 

improvement after a treatment action is also needed, which is usually called performance jump 

model. The reason why to use ‘performance jump’ is mainly related with the performance 

condition metrics. After a treatment action, the performance condition metrics will jump to a 

smaller value, i.e., the pavement condition is improved. Based on the LTPP database, three sets of 

performance jump models are proposed based on the linear regression. Corresponding treatment 

actions include preservation for asphalt and concrete pavements, and asphalt overlays. Different 

from existing performance jump models, the measurement interval is considered as a variable 

during the model training process. The proposed the performance jump models are applied for the 

national analysis in Chapter 5.  

Equation Chapter (Next) Section 1 
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CHAPTER 3  INCORPORATING COST UNCERTAINTY AND PATH DEPENDENCE 

INTO TREATMENT SELECTION 

This chapter introduces a budget allocation model called probabilistic treatment path dependence 

(PTPD) model. During the evaluation of treatment alternatives for a segment in a pavement 

network, this model considers benefits of both the evaluated treatment and its following actions. 

It also incorporates the influence of treatment cost and deterioration uncertainties. Treatments are 

selected for each segment in the pavement network using a risk-based optimization model. The 

results presented here suggest that elements of this model – notably consideration of uncertainty 

in deterioration and cost, treatment path dependency, and explicit risk trade-offs – could be 

incorporated into asset management tools to improve the cost-effectiveness of pavement network 

planning.  

 

3.1 Introduction 

Inadequate funding is a pervasive problem faced by departments of transportation in the U.S. 

According to the 2017 Infrastructure Report Card by ASCE, the backlog in repairing existing roads 

is about 420 billion dollars [3]. The backlog has increased to $435 billion in the 2021 Infrastructure 

Report Card [2]. To improve pavement network performance with insufficient funding, it is 

important to select and time preservation, overlay, and reconstruction (POR) actions effectively. 

As noted by [25], these selection decisions have often relied on past practice and expert opinion. 

To improve the effectiveness of these decisions, a significant body of research has emerged on 

mathematical budget allocation models that would support POR decision-making.  

Most of these models assess the benefits, or more generally utility, and costs of various POR 

treatments for each segment in a network and then identify the set of segment actions that are 

expected to yield the best outcome (typically some balance of benefit and cost) for a given budget. 

Of the models described to date, the majority evaluate benefit and cost for an individual, current-

year treatment or a fixed sequence of follow-on treatments. For example, when evaluating a new 

12-inch asphalt pavement, most models assume that it will always be maintained by applying two 

mill & fill actions over its lifetime. Real-world experience likely differs. The real future is almost 
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always different than what a model might predict. Sometimes an asphalt pavement is treated using 

an asphalt overlay and sometimes a concrete overlay. The actual treatment sequence, or path, is 

uncertain – dependent on the decisions made now and the evolution of uncertain factors such as 

the price of materials and the rate of pavement deterioration.  

In several studies [45], [68], [77], [78], [115], Madanat et al. apply variations of dynamic 

programming-based (DP-based) models to explicitly consider uncertainty in future treatment path 

and its dependence on current decisions. Considering the computational limitations of traditional 

discrete DP models, Durango-Cohen et al propose a model based on quadratic programming [85], 

[86], [116]. Specifically, they address this challenge for cases where deterioration is uncertain. 

When deterioration is uncertain, optimal treatment timing becomes uncertain. In this chapter, the 

extension of this to cases where future costs are also uncertain is explored. This extension does not 

simply introduce another dimension to the state space. When cost is uncertain, both optimal 

treatment timing and type (that is the specific POR treatment strategy used) become uncertain. 

This makes the number of potential future treatment paths much larger.   

To solve this problem, a combination of simulation is applied – to identify probable future 

treatment paths – and optimization – to identify the best combination of treatments. This approach 

preserves an estimate of the distribution of modeled outcomes and, therefore, allows decision-

makers posteriori consideration of both expected future benefits as well as the risk associated with 

achieving those.  

Based on applying this model in a small case study, this new approach identifies POR plans that 

lead to a better average network performance compared to the plans from a benefit-cost ratio 

approach. In fact, to achieve a similar performance level using the benefit-cost ratio approach 

would require an annual budget nearly 10% higher. After considering both future treatment paths 

and corresponding risks, the new approach chooses more overlays and reconstructions for the first 

few years and then shifts to preservations.   

3.2 Literature Review 

Optimal pavement POR actions for a pavement network can be selected by past practice or expert 

opinion [25], but here only the use of budget allocation models is discussed. Yeo et al. grouped 
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such models into two methodological categories: top-down and bottom-up [57]. Top-down 

approaches usually divide the whole pavement network into several groups and pavements in the 

same group have the same characteristics. While computationally attractive, top-down approaches 

do not provide results at the segment level [4], [43], [47]–[49]. Bottom-up approaches consider 

each segment individually, can accommodate heterogeneity across the network, and provide 

segment (sometimes referred to as facility) level recommendations, so they have become the focus 

of current research.  

In current implementations, bottom-up allocation models commonly comprise two key elements: 

a method to identify the best treatment for each segment (segment-optimal decision) and a method 

to select the best set of treatments for the network (network-optimal decision or system-optimal 

decision). In a so-called two-stage bottom-up (TSBU) model, first, one or several optimal 

treatment alternatives are chosen for each segment through a range of methods, such as decision 

trees [50], [58], agency cost [59], benefit-cost analysis [51]–[53], [60]–[63] – including multi-

objective definitions of benefit [64], utility analysis [65], or total cost (agency plus user) evaluated 

over some planning horizon [37], [54], [57], [66]–[68]. These segment-optimal decisions are then 

evaluated at the network level. The final treatment selection for each segment is generally 

determined by optimization methods. For this, some studies apply formal mathematical 

optimization methods such as linear programming [43], [69], non-linear programming [70], integer 

programming [71]–[73]. Another group of studies apply near-optimal heuristics such as genetic 

algorithms to allocate budget at the network level [57], [59], [66], [68], [74].  

There is a subset of the bottom-up modeling literature that presents models that simultaneously 

select both the optimal segment-level treatment and optimal allocation of budget across the 

network [35], [71], [73], [76]–[78], [117]. This simultaneous approach is attractive but can 

introduce added computational complexity. As the goal here involves significantly expanding the 

uncertain solution space, a TSBU framework is selected. Future work should explore the potential 

to also include simultaneous segment and network decision-making. 

A key methodological challenge for budget allocation models is the explicit consideration of 

uncertainty – a pervasive issue in many aspects of real world allocation problems [75]. The most 

common aspects of uncertainty that have been considered to date are uncertain rates of 

deterioration [44], [57], [60], [66], [76]–[78], measurement error [8], [12], [79], [80], and budget 
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[60], [76]. When deterioration or budget is uncertain, optimal treatment timing becomes uncertain. 

In this chapter, the extension of this to cases where future costs are also uncertain is explored. If 

the price of material A rises faster than material B, rational decision-makers will switch away from 

some plans to use A and instead use B. This dependence of the optimal decision on the prevailing 

future context (i.e., future path) is referred as treatment path dependence. It is worth noting that 

cost uncertainty can have a different impact than budget uncertainty alone for a TSBU framework. 

When a budget is uncertain, it can be more or less constraining. When the budget is more 

constraining, it may force the use of more suboptimal treatments, but does not change the rank 

preference for treatments at the segment level. In contrast, when costs are uncertain, there is a 

chance that for any given segment the preferred future treatment actions are different than any plan 

based on today’s costs. 

Among the evaluation methods that have been proposed in the literature, DP-based models [57], 

[66], [77], [78], simulation-based genetic algorithms [76] and reinforcement learning [118], [119] 

can incorporate the influence of treatment path dependence. DP-based method is often associated 

with the Markov decision process. As an example, Yeo et al. applied a DP to an allocation problem 

involving 2000 segments for a case where deterioration was uncertain [57]. The DP identified the 

future treatment schedule with the smallest expected cost given an analysis period. This model 

allowed for uncertain pavement performance but did not consider uncertainty of future treatment 

cost. Generally, the computational resources required by dynamic programming tend to grow 

rapidly with problem scale [82]. To overcome the limitations of a Markov decision process, 

Durango-Cohen and co-workers have developed a quadratic programming formulation to address 

infrastructure management problems by using continuous decision variables [83]–[86]. Such 

formulations assume that the maintenance cost function is quadratic in form, but in doing so 

provide both computational efficiency and the ability to capture functional, stochastic, and 

economic interdependency across facilities within the network problem. Here the computational 

performances of different models are not tested, but instead a simulation-optimization (SO) 

framework is applied, which relies on a backtrack-search algorithm for optimization. This 

framework provides for maximum flexibility in the forms of the system performance function and 

cost function. In fact, a goal of this research is to eventually use this framework to explore the 

implications of cost and performance functions that do not follow a Markovian process. (For 

example, see [120]–[122] for non-Markovian models of future cost and [11], [26] for models of 
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performance evolution.) For the problem considered here, the SO formulation proved sufficiently 

fast to explore the implication of cost uncertainty.  

Finally, it is important to recognize an issue pointed out by Sinha et al. [75]. The introduction of 

uncertainty to an optimization immediately creates a multi-objective problem where tradeoffs must 

be made between the expected value of the solution and its uncertainty (or risk). To the best of the 

author’s knowledge, most existing literature evaluate this tradeoff through some a priori statement 

of risk preference [46]. For example, several models include explicit risk analysis on the network 

level by using chance constraints [47], [72], [87]. For the segment level analysis, Deshpande et al. 

use parametric fragility curves to model pavement reliability [123]. DP considers uncertainty by a 

state transition probability matrix, but the evaluation criterion is generally based on expected 

values without risk analysis. It would be valuable to evaluate treatment actions for different risk 

levels at both the segment and network levels. In this chapter, a problem formulation is described 

and solution that allows for this with either a priori or posteriori evaluation of risk preference is 

presented. 

From the previous review about the current state of budget allocation models, there are three key 

gaps: consideration of future cost uncertainty and therefore consideration of possible future 

treatment paths that differ in both timing and type of treatment and explicit risk evaluation for 

different treatment strategies – rather than considering only expected values – at both the segment 

and network levels.  

3.3 Methodology 

To fill in the current gaps, a new probabilistic treatment path dependence (PTPD) model is 

proposed. It is based on a TSBU approach. Ultimately, the PTPD model comprises four elements. 

The four elements are needed to: 1) project future pavement performance and context; 2) estimate 

the performance distribution for each initial treatment alternative for each segment; 3) select the 

optimal initial treatment for each segment; and 4) select the set of treatments applied across the 

network. The flow of information among these in the PTPD model is shown schematically in 

Figure 3-1. After obtaining input data, such as current pavement condition and treatment cost, the 

PTPD model first conducts analyses on the segment level. Monte Carlo simulations are used to 

generate a range of future scenarios and then, simulation-optimization is applied to evaluate 
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available treatments under each of these scenarios. For each available initial treatment and each 

scenario, one optimal treatment path and its corresponding total cost is identified. After all 

simulations, a distribution of performance can be assigned to each initial treatment option. Based 

on this distribution, two optimal treatment alternatives are identified based on the decision-maker’s 

risk preferences. Next, the PTPD model moves to the network level where integer programing is 

applied with the consideration of several constraints and a risk level to make a final treatment 

decision for each segment in the pavement network. The following sections describe these 

elements of the PTPD model. 

 

Figure 3-1. Flowchart of PTPD model (Oval represents the start of the model, rectangle indicates 

a computation or a process, parallelogram is the input or output of a computation.) 
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3.3.1 Probabilistic prediction models 

During budget allocation, prediction models are used to estimate how pavements and context will 

change over time. Since treatment cost and pavement deterioration could influence the choice and 

timing of treatment actions, probabilistic prediction models of these two factors are incorporated 

in the proposed PTPD model.  

Most allocation models use constant values for treatment cost. However, treatment cost could be 

influenced by many factors, like material and labor costs. Prices of different treatments may have 

different volatilities. A probabilistic treatment cost prediction model in [81] is applied in the PTPD 

model. This model predicts long-run prices of two important paving materials, asphalt and concrete. 

Equations (3.1) and (3.2) describe price predictions of asphalt and concrete, respectively, where P 

represents price, N is a random number that follows a normal distribution and t represents the time 

(in years). These equations provide theoretical uncertainty bounds that represent future price 

volatilities. 

 (3.1) 

 (3.2) 

When the corresponding journal paper for this chapter was published, the weighted multi-output 

model in Chapter 2 was still in the development process. Hence, a model based on a difference-

stationary process in literature was adopted here [21]. Since the difference between the PTPD and 

the conventional benefit cost ratio model is mainly about the budget allocation process, the 

adoption of the deterioration model will not influence the main conclusions for this chapter. The 

adopted model assumes that pavement deterioration follows a random walk with drift and 

uncertainties that have a permanent influence on future deterioration levels, so the variance of 

future pavement performance increases over time. Age, average annual daily truck traffic 

(AADTT), and structural number (SN) / thickness of a pavement are incorporated in the 

deterioration model which are suggested to be influential factors by previous study [124]. The 

random error of the deterioration process is assumed to follow a Gaussian distribution with a 

constant standard deviation. The deterioration process is shown in equation (3.3), in which 𝛼 and 

𝛽 are determined for specific pavement types.  

Pasphalt
t = 1.41Pcrushed stone

t + 0.20Poil
t − 61.6+ N 0, 3.5( )

Pconcrete
t = 0.51Pcrushed stone

t + 0.44Pcement
t _5.3+ N 0,1.6( )
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 (3.3) 

3.3.2 Treatment evaluation on segment level 

Problem formulation 

The goal of the segment-level analysis is to evaluate and identify the best treatment 𝑎),+∗  for each 

segment i at the beginning of segment analysis period (e.g., 𝑡,=1) when there is no budget 

constraint. During the evaluation process, available treatment alternatives 𝑵(.) are related with 

pavement types M (where 𝑚 ∈ 𝑴). Hence, the goal is to evaluate 𝑵(.!), where 𝑚% is initially 

known before the analysis.  

To allow for the impact of a budget constraint in the network level analysis, top two alternatives 

are determined for each segment, namely,	𝑎),+∗ =	 4𝑎),0"1+
∗+ , 𝑎),0"1+

∗& 6. The evaluation is based on the 

long-term benefits of treatment alternatives. The action with a smaller total cost given an analysis 

period is preferable. Available treatment alternatives 𝑵(.!)  are evaluated by simulation-

optimization, which integrates optimization into simulation analysis [125]. Monte Carlo 

simulations are used to generate a range of possible future scenarios. In this case, each scenario 

represents a specific projection for deterioration (random sample from equation (3.3)) and 

treatment cost (random sample from equations (3.1) and (3.2)). For each scenario and for each 

possible treatment in 𝑵(.!), an optimal treatment path and its corresponding total cost TC are 

determined.  

To evaluate action 𝑵(.!)(𝛼), suppose the number of Monte Carlo simulations for the segment-

level analysis is 𝐾,. For the 𝑘,02 simulation, the optimization process is formulated as the following 

mathematical model:  

min:                                                                      (3.4) 

s.t.                                  (3.5) 

ΔIRIt ,i =α Aget−1,i
β1 AADTTt−1,i

β2 Thicknesst−1,i
β3 + N 0, β3( )

TCα
ks

a1 = N
m0( ) α( ) = N1 α( )
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 ,   for                        (3.6) 

    (3.7) 

                                              (3.8) 

    for                                                                      (3.9) 

   for          (3.10) 

   for                (3.11) 

 
  for                      (3.12) 

                   (3.13) 

 
  (3.14) 

   for , and          (3.15) 

 
Table 3-1. Definitions of all variables in the segment-level optimization process 

Variable Meaning 

  Segment level analysis period 

  The total number and the ordinal of Monte Carlo simulations 

  Total cost given the segment level analysis period  

  Pavement material type at time t. When 𝑡 = 0, it represents the initial pavement type 

  Discount rate 

  N is the set of treatment actions, n is the ordinal of the actions in N, i.e. N(n) represents the 
𝑛#$ action a in N, 𝛼 is the ordinal of the evaluated action. 

  
Decision variable. If the  action in  is selected at year ,  . Otherwise, 

. 

xn,ts ≤1n=1

Nts∑ ts = 2,...,Ts

IRIts = IRIts−1 + ΔIRIts( ) ⋅ 1− xn,tsn=1
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  Pavement deterioration without treatment 

  Pavement deterioration after a treatment 

  The performance threshold value for IRI.  

  User cost at year   

  Coefficient to calculate user cost.  

  Agency cost at year   

 

Explanation of the equations in the segment-level optimization 

The goal of the optimization analysis is to evaluate the  treatment action a in  (equation 

(3.5)). For example, {do nothing, surface treatment, asphalt overlay, asphalt reconstruction}, 

then the fourth ( ) treatment action (a) is asphalt reconstruction. The segment-level optimization 

objective is to minimize the total agency cost ac plus user cost uc for a given analysis period   

(equations (3.4) and (3.14)).  is a binary variable, which represents treatment action n is 

selected at year   if  is equal to 1. It is important to point out that agency (ac) and user costs 

(uc) are added together to compute total cost. This implicitly assumes that both are weighted 

equally in the evaluation of alternatives. In terms of the weight ratio between agency and user costs, 

some studies use the weight ratio of 1:1 or the ratio of 1:0.6268 [25], [78], [126]. This chapter 

assumes the weight ratio is 1:1. This ratio can be modified based on the requirements of a 

transportation agency. 

At any year , at most one action could be selected as shown in equation (3.6). Equation (3.7) 

describes roughness (IRI) at the end of year  based on the IRI at year -1 and the treatment 

action at year . A treatment action is applied at the beginning of each year. If a treatment action 

is applied, segment performance is improved and IRI decreases to .  can be obtained 

through a performance jump model, which is usually a function of the IRI values before a treatment 

[51], [61]–[63]. When the corresponding journal paper for this chapter was published, the 

performance jump model was in the development process. Considering that the IRI values before 

ΔIRIts

ΔIRInew
ΔIRIthreshold
ucts ts
β

acts ts

α th N1

N1 =

α th

Ts

xn,ts

ts xn,ts

ts

ts ts

ts

IRInew IRInew
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a treatment are typically very similar (i.e., they are all at or near the threshold) due to the existence 

of a performance threshold, it is assumed that  is the same for different treatment actions. 

Even though  is the same, the deterioration rates for each treatment are different since the 

age, thickness and pavement types could be changed. Together, these phenomena capture some of 

the aspects of performance jump models described in the literature.  

Before calculating ∆𝐼𝑅𝐼 by equation (3.3), age and thickness should be updated first based on the 

treatment type. If the treatment type is reconstruction, then the age is reset to 0 and thickness is set 

to the thickness of the reconstructed pavement. For other treatments, the age is not changed and 

continues to progress as before. If the treatment type is a surface treatment, the thickness is 

assumed to stay the same. If the treatment type is overlay, the new thickness is equal to the old 

thickness plus the overlay thickness and minus the mill thickness. The prediction of future traffic 

level of a single segment should be based on the pavement network and can be influenced by many 

factors [127]. To simplify the analysis, the traffic volume is assumed to remain the same for the 

whole analysis period.  

Equation (3.8) is the performance constraint. Apart from agency cost, user cost is also an important 

component for the life-cycle cost. User cost is related with pavement impacts on fuel consumption 

through pavement-vehicle interaction (PVI), and traffic delay cost by work zone closures. Total 

delay cost is quite small compared to PVI cost given a whole analysis period, so in this analysis 

the user cost only temporarily considers fuel consumption caused by roughness-induced PVI [128]. 

In Chapter 4, the scope of user cost has been extended to incorporate both roughness-induced and 

deflection-induced PVI. Equation (3.9) describes the user cost, which is related with traffic volume, 

segment length and performance condition. Since the analysis focuses on a single segment, user 

cost can be regarded as a linear function of IRI, where 〈𝑥〉 = 𝑥 if 𝑥 > 0, otherwise 〈𝑥〉 = 0. 

Equation (3.10) describes the action 	taken at year . Material type  at year  can be 

decided by material type at year -1 and the treatment taken at year  as shown in equation (3.11), 

and then corresponding treatment alternatives could be decided (equation (3.12)). Equation (3.13) 

describes the agency cost, which equals to the multiplication of unit treatment cost and segment 

area. The unit treatment cost changes with unit concrete and asphalt cost. Due to limited cost 

IRInew

IRInew

ats ts mts ts

ts ts
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information, it is assumed that cost of concrete treatment actions changes at the same rate as the 

cost of the concrete material. Asphalt treatment actions changes at the same rate as the cost of the 

asphalt material. If no material is applied, such as diamond grinding, then treatment actions 

changes at the same rate as the construction cost index (CCI) [129].  

Model solution 

The model as framed in the preceding section is not a typical integer programming problem. 

Segment condition at year  is a function of the year previous ( -1) because the treatment action 

chosen at year -1 (or some earlier year) determines the condition information at year . This 

means that condition variables at year   are a polynomial function of . The degree of 

unknown variables is  -1. This level of non-linearity increases computational expense. 

The most common approach that has applied to the segment-level optimization problem is a 

dynamic programming framework. For the case described here, the state space of the dynamic 

program would be large because each state would need to be described by many factors including 

pavement roughness, thickness, age, material, asphalt cost and concrete cost. A number of 

researchers have pointed out that dynamic programming can become computationally intensive 

when the state space is large due to the curse of dimensionality [115]. To address this challenge, 

several heuristic approaches have been proposed, such as genetic algorithms [37], [54], 

approximate dynamic programming [68], [77], [115], and reinforcement learning [118], [119]. 

While these approaches should be evaluated in the future, the goal of this chapter is to understand 

the implications of considering cost uncertainty and treatment path dependence on the budget 

allocation problem. As such, a simple backtrack-search algorithm is applied to solve this problem. 

For the specific problem, this turned out to be sufficiently fast and efficient.  

As for the problem in the previous section, it is expected to find an optimal treatment schedule 

 from the Cartesian product space , which has the minimal total 

cost (agency plus user) given a period of  years. Let  be the number of treatment actions 

(including ‘do nothing’) in , then the total number of possible schedules is . To 

ts ts

ts ts

Ts xn,tsts=1

Ts=1∏
Ts

a1,a2 ,...,aTs( ) N1 × N2 × ...× NTs

Ts Mi

N i Mtot = Mii=1

Ts∏



 75 

solve this problem, a backtrack-search algorithm is designed to yield the global optimal solution 

as with the brute-force approach but with far fewer trials than  [130].  

The goal of the search is to find the schedule with the smallest cost. Initially, the smallest cost is 

set equal to infinity. Starting from the first action in , at each step, the backtrack-search 

algorithm extends the current partial treatment schedule to a larger partial schedule 

 by selecting one action in . After choosing the treatment , its 

corresponding agency cost and user cost can be determined. During the step of extending treatment 

schedule by one action, the backtrack algorithm tests the partial treatment schedule by comparing 

the total cost of the partial schedule and the smallest total cost that has been found among all 

schedules traversed so far. If the former is larger than the latter, then the algorithm eliminates large 

branches of treatment  from further consideration. If not, the algorithm extends one action in 

the next step. When the algorithm extends to the end of the treatment schedule, if total cost of the 

current schedule is smaller than the existing smallest cost then it updates the smallest cost to the 

newly discovered one.  

The computational efficiency of the backtrack-search algorithm usually depends on when the 

global optimal solution can be found [131]. After the global optimal solution is found, other 

schedules are usually partially cut off during the search process since its total cost is larger than 

the ‘optimal’ schedule. Therefore, the order of the search process is very important. In terms of 

the segment-level optimization problem, the optimal treatment schedule usually has two important 

characteristics: 1) Treatment actions are not applied every year. After a treatment action, there are 

several years for ‘do nothing’ until the next treatment action. After both upper and lower bound 

performance constraints are considered, the number of feasible treatment schedules is much 

smaller than  [132]; 2) The cost differences for surface treatment, overlay, and reconstruction 

are large.  

After considering these two characteristics, the backtrack search process for this problem follows 

three main strategies:  

Mtot

N1

a1,a2 ,...,ai( )
a1,a2 ,...,ai ,ai+1( ) N i+1 ai+1

ai+1

Mtot
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• There are two main constraints: 1) for each year, the pavement condition must satisfy the 

performance constraint; 2) The total cost of the current partial schedule must be less than 

the smallest total cost that has been found.  

• For each step, ‘do nothing’ is always the first action to evaluate. This can help us avoid 

‘useless’ search processes because ‘do nothing’ accounts for a large portion of any optimal 

schedule. If ‘do nothing’ satisfies constraints, there might be no need to search the branches 

of other treatment actions.   

• If ‘do nothing’ does not satisfy constraints, all treatment actions are evaluated according to 

the order of their cost. Namely, expensive treatment cost actions are evaluated first. When 

the analysis period is short, surface treatment actions are usually preferable. In this case, 

the reconstruction or overlay actions usually don’t need follow-up actions. Hence, the 

search process will converge to surface treatments rapidly. When the analysis period is 

long, reconstruction or overlay actions are more beneficial. Since they are evaluated first, 

the search process can also find the optimal schedule quickly.  

Appendix A presents the pseudocode to find the optimal treatment schedule and illustrates its 

computational efficiency in terms of the running time for a small case study. When the analysis 

period is 20 years, for 10,000 random segments, the maximum search step number is less than 103 

while the step number for the full brute-force search process is 6 × 10+4. The running time is less 

than 0.2s in MATLAB on a laptop (3.5 GHz Intel Core i7, RAM 16GB).  

3.3.3 Treatment selection on segment level 

Each simulation in Section 3.3.2 could provide an optimal treatment schedule and its 

corresponding total cost . After all simulations, future cost distributions  for each 

available treatment n in  are obtained. Based on these cost distributions, all treatment 

alternatives are evaluated and ranked by  

min:                                             (3.16) 

 represents the mean value of total cost distribution for treatment action n,  is the standard 

deviation, and 𝜃 is the risk-aversion coefficient that is used to describe the tradeoff between mean 

TCn
ks TCn

ks{ }
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cost and variation. After risk analysis,  could be obtained for each treatment alternative n in 

. Then two optimal (the two lowest z values) treatment alternatives  are 

identified for each segment i. 

The segment-level analysis (Section 3.3.2 and 3.3.3) evaluates the influence of treatment path 

dependence, incorporates that into an assessment of segment performance, and allows the 

decision-maker to make explicit trade-offs between expected and risk-based performance. These 

initial treatment selections on the segment level are passed on to the network level for further 

analysis. 

3.3.4 Network-level analysis 

On the network level, the goal is to make a final treatment decision for each segment using a risk-

based optimization process. For each segment i, the alternatives are to choose one of the two 

selected alternatives  from the segment-level analysis or do nothing. The proposed risk-based 

optimization model makes treatment decisions on a yearly basis. It updates network performance 

based on decisions for the current year. Then it makes decisions for the next year based on the 

updated performance. At year t, the mathematical formulation of the network-level analysis is 

shown as follows:  

min:  (3.17) 

s.t.   for  (3.18) 

  (3.19) 

   

for  
(3.20) 

   

for  
(3.21) 
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     for                                                                                             (3.22) 

Table 3-2. Definitions of all variables in the network-level optimization process 
Variable Meaning 

  Segment number 

  The decrease of mean total cost given a segment analysis period  after a treatment is taken 
for segment i at year t 

  The standard deviation of total cost given a segment analysis period  for segment i at year 
t 

  The decrease of variation of total cost given a segment analysis period  after a treatment is 
taken for segment i at year t 

  Risk-aversion coefficient for the network-level analysis 

  Two optimal treatment alternatives obtained on the segment level analysis 

  
Decision variables. If  is selected, then ; If  is selected, then . If 

neither  or  is selected, then . 

  Available budget at year t 

 

The Markowitz formulation [133] was developed to design portfolios based on a conscious 

tradeoff between average return and risk. In this context, risk is represented by the uncertainty in 

future total cost. A system with a large risk (i.e., large standard deviation (SD) of total cost) has a 

high probability that the system will experience poor pavement network performance. Therefore, 

the optimization objective is to maximize the total decrease of expected total cost for a given period 

 as suggested by [78], [126], and also to minimize the standard deviation of total cost (i.e., risk) 

at the same time, as shown in equation (3.17). Since for a given year t and a segment i,  

and  can be considered as constant values, the objective in equation (3.17) is essentially 

to minimize the average of total cost for a given period  and to minimize the standard deviation 

of total cost.  is the risk-aversion coefficient, which is the same as the one on the segment level. 

A decision-maker can select the emphasis on expected performance and risk-aversion by changing 

the  parameter. 
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Equation (3.18) requires that at most one treatment alternative could be chosen for each segment. 

 and  are binary variables as shown in equation (3.22), which represent treatment action 

 or  is selected at year t if  or  is equal to 1. Equation (3.19) is the budget constraint. 

Equation (3.20) describes the expected decrease of total cost for a period , which considers three 

cases: action  is chosen ( ),  is chosen ( ), or no action ( ). Equation 

(3.21) describes the decrease of standard deviation of total cost.  

The network-level optimization problem is an integer programming problem, which is solved by 

the software GUROBI. By solving the optimization problem at year t, treatment decisions could 

be made for each segment i, namely , and treatment decisions for the whole 

network can be expressed as . 

3.3.5 Model evaluation approach 

In this part, a second set of Monte Carlo simulations are applied to evaluate the PTPD model's 

performance for a multi-year period. These simulations have incorporated future agency cost and 

deterioration uncertainties. Let ac and  represent sets of possible future sequences of agency 

cost and deterioration uncertainty given a period, respectively. Both ac and  are independent 

and identically distributed. 

Suppose the total number of Monte Carlo simulation is K and for each simulation the analysis 

period is . Let  and  be a sequence of independent samples extracted from 

ac and , respectively. Then, input parameters for the model system, , can be 

expressed as a sequence of independent sets based on  and , where 

. For the  simulation, considering the -year analysis period,  can be 

expressed as a sequence of . Similarly, . Assume pavement network 

condition is  at year t-1 for  Monte Carlo simulation. Based on the proposed PTPD model, 
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at year t treatment decisions  could be made, namely, . Then pavement 

network condition at year t could be predicted based on  and , which can be expressed as 

. 

After all simulations, pavement network condition 𝕊  could be obtained, where 𝕊 = {𝑆05:	𝑡 ∈

[0, 𝑇6], 𝑘 ∈ [1, 𝐾]}. Then two forms of distribution curves are used to evaluate 𝕊 - cumulative 

probability curves for the average performance of the analysis period 𝕊+ = {𝔼0[𝑆05|𝑘 = 𝑘′]:	𝑘′ ∈

[1, 𝐾]}, and annual performance distribution curves 𝕊& = {𝔼5[𝑆05|𝑡 = 𝑡′]:	𝑡′ ∈ [1, 𝑇6]}.  

3.4 Case Study 

Three case studies are presented here to illustrate the application and benefits of the PTPD model. 

The first one focuses on the segment-level analysis, and the second one focuses on the network 

level. The influence of the risk-aversion coefficients on the segment-level treatment selections and 

on the network-level performance are explored, respectively. The third case study compares the 

PTPD model with a benefit-cost ratio (B/C) model. It aims to show the benefits of incorporating 

uncertainties and treatment path dependence during treatment selections.  

Across all three sets of analysis, it is assumed that pavement costs evolve according to equations 

(3.1) and (3.2), and that performance deteriorates according to equation (3.3). 

3.4.1 Segment-level decision-making 

This case study is concerned with a common hot mix asphalt (HMA) segment that has the attributes 

listed in Table 3-3. There are seven treatment actions available at  including preservation, 

overlay, and reconstruction (Table 3-4). Estimating treatment costs for planning-related decisions 

is always challenging [134]. For this study, expected cost data are based on an analysis of one year 

of publically available bid data for highway projects [20], [53]. Since the initial pavement type is 

HMA, its available treatments do not include diamond grinding (first row) for the first year. If a 

concrete-related action is taken during the analysis period, diamond grinding could be chosen after 

that. As such, this action is also listed in the table.  

At
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Table 3-3. Example segment attributes. (These values represent one segment in the system. 
Detailed analysis of this segment is described.) 

Pavement Type Age Thickness IRI AADT AADTT Area 
HMA 12 240mm 1.8m/km 6000 3500 1 yard2 

 
Table 3-4. Characteristics of available treatment actions used in the case study. Cost information 
is based on analysis of one year of publically available bid data [20], [53].   

Action Type Name of Action Applicable Sections Expected Cost 
($/yard2) 

Preservation Diamond grinding (DG) Concrete top layer only 6.87 
Preservation 2'' mill & fill (MF) Asphalt top layer only 8.03 
Overlay 4'' asphalt overlay (AC) Concrete or asphalt top layer 12.18 
Overlay 4'' concrete overlay (AC) Concrete or asphalt top layer 16.67 
Reconstruction New 8'' asphalt (AC) Concrete or asphalt top layer 26.10 
Reconstruction New 12'' asphalt (AC) Concrete or asphalt top layer 39.15 
Reconstruction New 8'' JPCP (PCC) Concrete or asphalt top layer 33.33 
Reconstruction New 12'' JPCP (PCC) Concrete or asphalt top layer 50.00 

 

An analysis period  of 5 years is chosen. FHWA recommends that the choice of discount rate 

be based on the OMB rate, which is 1.3 – 1.5% for the calendar year 2019 [135]. The discount rate 

is set at 1.5% in this case study.  

Figure 3-2 shows total cost (agency plus user) distributions, , derived from the 

application of the segment level model for the seven applicable treatment actions for the example 

segment described in Table 3-3. For this case, preservations like 2'' mill & fill (blue dot line) and 

overlays like concrete (orange dash line) and asphalt overlays (blue dash line) have a smaller total 

cost. Due to the existence of uncertainties, only one treatment action is needed when the 

deterioration rate is small, otherwise two actions are required. This explains the step phenomenon 

for cost distributions of preservations and overlays. Among the treatments analyzed, 2'' mill & fill 

is most likely to have two actions.  
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Figure 3-2 Total cost distributions for different treatment actions 

Using the risk model described in equation (3.16), optimal treatment alternatives for different risk-

aversion coefficients are listed in Table 3-5. When the risk-aversion is low (𝜃=0 to 1), 2'' mill & 

fill and 4'' asphalt overlay are preferable since they have relatively low initial costs and have the 

lowest total mean cost. By contrast, when the risk-aversion is high, concrete overlays and concrete 

reconstruction (thin solid blue line) become optimal alternatives. This is due in part to the fact that 

the modeled price volatility of concrete is lower than that of asphalt and that concrete has lower 

user costs.  

Table 3-5. Optimal treatment alternatives  

Risk-aversion 
Optimal Alternatives 

1st 2nd 

𝜽=0 2'' mill & fill 4'' asphalt overlay 

𝜽=1 2'' mill & fill 4'' asphalt overlay 

𝜽=5 4'' concrete overlay 2'' mill and fill 

𝜽=10 4'' concrete overlay New 8'' concrete 

 

From this example, it is found that risk-aversion can influence the preferred treatment. When the 

risk-aversion coefficient is small, treatments with small expected costs are preferable. Otherwise, 

treatments with smaller uncertainty are chosen. A sensitivity analysis of these results to the choice 
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of discount rate was carried out and is presented in the Appendix B. This analysis shows that results 

are not strongly affected by discount rate except in cases where the analysis period is long and the 

risk parameter (𝜃) is low. 

3.4.2 Network-level performance 

The second case study explores the influence of different risk-aversion coefficients on network-

level performance using the PTPD model. The analyzed pavement network consists of 30 

segments, including four pavement types, namely HMA, concrete, asphalt overlay composite 

(AOC), and concrete overlay composite (COC) pavements. Other available information includes 

IRI, age, structure, and traffic volume for each segment at the time of the analysis. Five risk-

aversion coefficients are analyzed, namely, 𝜃 = 0, 0.5, 1, 1.5, and 2. When the coefficient is 0, 

risk is not incorporated, and treatment decisions are only based on expected total cost for a period 

 (segment level). The comparisons of these five coefficients are based on 100 Monte Carlo 

simulations with the consideration of deterioration process and treatment cost uncertainties. The 

network and segment analysis periods are 20 and 10 years, respectively, for all simulations. 

Available treatment actions are listed in Table 3-4.   

As mentioned earlier in Section 3.3.1, IRI is chosen as the pavement condition metric for each 

segment. In terms of pavement network performance, traffic-length weighed IRI (TWIRI) is 

adopted as the performance metric, as shown in equation (3.23), where AADT represents annual 

average daily traffic. TWIRI reflects both the performance condition of each segment and its 

significance in the pavement network as measured by its length and traffic volume.  

 (3.23) 

The comparison results are shown in Figure 3-3. PTPD-1 represents the curve whose risk-aversion 

coefficient is equal to 1. The curves that represent PTPD-0.5 and PTPD-1.5 lie between PTPD-1 

and PTPD-2 curves but are not shown to improve clarity in the figure. Table 3-6 summarizes the 

average (AVG) and standard deviation (STD) of network performance. From these results, there 

is a tradeoff between the mean and variance of performance. With the increase of the risk-aversion 

coefficient the slope of the cumulative probability curve becomes steeper, and the mean value of 

Ts

TWIRIi =
AADTi ⋅ Lengthi
AADTi ⋅ Lengthii=1

I∑
⋅ IRIi
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the curve increases slightly. This phenomenon is strongly correlated with materials chosen to 

maintain pavements. Figure 3-4 shows the ratios of pavement types at the beginning and the end 

of the analysis period for different risk-aversion coefficients. When the risk-aversion coefficient 

increases, the ratios of concrete and concrete overlay composite pavements increase, which means 

concrete is applied more frequently than asphalt. This is because concrete has lower future cost 

uncertainty than asphalt in these simulations. 

  
(a). CDF of average TWIRI over 20 years under different risk-aversion factors  

 

  
(b). Annual average TWIRI distribution under different risk-aversion factors  

Figure 3-3. Network-level performance under different risk-aversion coefficients for PTPD 

model (PTPD-0.5 and PTPD-1.5 curves lie between PTPD-1 and PTPD-2 curves but are not 

shown to improve clarity). 
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Figure 3-4. Pavement type distributions at year=0 and year=20 for different risk-aversion 

coefficients (0, 1, and 2) 

Table 3-6 summarizes key statistical characteristics of the solutions from the PTPD model, 

including the mean (AVG), standard deviation (STD), and 10% value at risk (VAR10). The 

VAR10 value provides indication of elevated high-TWIRI risk – that is higher risk of ending up 

with poor performing networks. From Table 3-6, PTPD-0 has the lowest average result (bold 

value), PTPD-2 has the smallest standard variation, and PTPD 0.5 has the lowest VAR10 result. 

As there is no completely dominating option, a case from the middle of the range tested – the 

PTPD-1 – is selected to compare with a B/C model in the next case study. The PTPD-1 solution 

provides a balance, with nearly optimal average return and nearly optimal high-TWIRI risk 

management.  

Table 3-6. Average and standard deviation of network performance for five risk-aversion 
coefficients (0, 0.5, 1, 1.5, and 2). VAR10 is 10% value at risk. Bold values are discussed in the 
text. 

 
AVG STD VAR10 

PTPD-0 1.241  0.0596 1.296 
PTPD-0.5 1.245  0.0578 1.290 
PTPD-1 1.248 0.0575 1.291 
PTPD-1.5 1.249  0.0571 1.291 
PTPD-2 1.251  0.0562 1.297 
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In general, the risk-aversion coefficient represents the tradeoff between the mean and variance of 

performance. It influences the distribution of pavement types and the pavement network 

performance.  

3.4.3 Comparison with B/C model 

The PTPD model is compared here with a benefit-cost ratio (B/C) model [53], [129]. This B/C 

model is also based on the two-stage bottom-up framework. On the segment level of the B/C model, 

different treatment alternatives are ranked by the benefit-cost ratio. The benefit mainly refers to 

the expected performance difference between the case where there is no treatment action and the 

case where a treatment action n is applied at year t* given a period of T years. Figure 3-5 illustrates 

how to calculate a treatment alternative’s benefit (the light blue shaded area B). On the network 

level, the objective is to maximize the total traffic weighted benefits for the whole pavement 

network.  

 

Figure 3-5. Representation of benefits in the B/C model 

The B/C model only evaluates the analyzed treatment action itself and the evaluation process is 

deterministic. By contrast, the PTPD model tries to evaluate the analyzed treatment by considering 

possible future treatment schedules. By comparing these two models, benefits of incorporating 

cost uncertainties and treatment path dependence could be discovered. Based on the previous case 

study, the risk-aversion coefficient is chosen as 1 and the discount rate is 1.5%. The comparison 
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process is based on 100 Monte Carlo simulations. The cumulative probability of average traffic-

length weighted IRI for the whole pavement network over 20 years and annual traffic-length 

weighted IRI distribution are shown in Figure 3-6.  

 
(a). CDF of average TWIRI over 20 years 

 
(b). Annual TWIRI distribution 

Figure 3-6. Network-level performance for B/C and PTPD-1 models 

It is clear that, in the long run, the PTPD model has a better average performance since it has a 

smaller average and final traffic-length weighted IRI. To explore the value of this performance 

difference, the B/C model is re-executed with a progressively higher budget. To achieve a similar 

mean performance level, the B/C model needs to increase its budget by 10.4%, as shown by 

B/C_budget1 (the black dash line) in Figure 3-6(a).  

Figure 3-6(b) plots the evolution of TWIRI over the analysis period for the PTPD model and the 

B/C model run at two budget levels (same as PTPD = B/C and 16.7% higher = B/C_budget2). The 
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shaded areas in Figure 3-6(b) show the interquartile range (from 25% to 75%) of the modeled 

annual distribution of traffic-length weighted IRI. The solid and dashed lines represent the median 

values of distributions of the three model results. The dashed line (B/C_budget2) in Figure 3-6(b) 

represents the results of a scenario where the budget level was raised until the B/C model would 

achieve a similar performance level at the end of the analysis period (20 years) as the PTPD model. 

This analysis suggests that the B/C model needs to increase its budget by 16.7% to yield a 

performance similar to PTPD at the end of year 20. 

From Figure 3-6(b), the B/C model performs better (i.e., TWIRI is lower) for the first five years, 

while the PTPD model has a faster decreasing rate and has a smaller average traffic-length 

weighted IRI after 6 years. This phenomenon is strongly correlated with the treatment actions that 

both models have chosen. Figure 3-7 shows treatment type distributions for both models. At the 

first year of the analysis period, the ratios of preservations are very high for the B/C model (the 

spike in Figure 3-7(a)). This phenomenon is related with the performance conditions of segments 

in the pavement network. For the current pavement network, many segments need preservations 

in the first year. If the initial performances of segments were changed, the spike phenomenon 

might disappear. Compared to the B/C model, the PTPD model chooses more reconstruction 

actions, especially for the first 10 years. Since these actions are very expensive, the total number 

of segments that can be maintained is smaller than the B/C model for the first 10 years. This 

explains why traffic-length weighted IRI of the PTPD model increases at the beginning of the 

analysis period. However, after the first few years, the long-term benefits of reconstructions are 

felt throughout the network, which enables a shift to preservations and overlays for the last 10 

years. In this case, the PTPD model chooses more reconstructions and less preservations and 

overlays compared to the B/C model.  
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(a). B/C model (b). PTPD-1 model 

Figure 3-7. Ratios of treated segments by different treatment types for B/C and PTPD-1 models 

It is important to note that the magnitude and specifics of these results would certainly shift for 

different cases, under different budget levels, and for different levels of risk preference. A 

sensitivity analysis of these results to the choice of discount rate was carried out and is presented 

in the Appendix B. This analysis shows that results are not strongly affected by discount rate. In 

terms of the given range of discount rates, PTPD model has a better performance than the B/C 

model. Future work should carefully map out other trade-offs that exist across these aspects of the 

pavement management problem. Nevertheless, the results shown here suggest that there is 

promising is in explicit consideration of cost uncertainty in pavement management.  

In general, after considering treatment path dependence, segment decisions are based on the 

benefits of both current evaluated treatment action and its following actions, which can adapt to 

uncertainties. By doing so, the proposed model proactively deals with an uncertain future. 

3.5 Conclusions and Discussions 

This chapter proposes a new probabilistic, bottom-up model for the budget allocation process in 

pavement management systems with the consideration of uncertainty in deterioration, cost and 

also treatment path dependence. On the segment level, simulation-optimization is applied to 

evaluate each available treatment. Monte Carlo simulations generate future scenarios with the 

consideration of future deterioration processes and treatment cost uncertainties. For each scenario, 

an optimization model is applied to determine the optimal treatment path given an analysis period. 
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The optimization model is solved by a backtrack-search algorithm. Total cost distributions for each 

evaluated treatment are obtained using the simulation results. The best two treatment alternatives 

are selected for each segment based on a risk model. On the network level, an optimal treatment 

decision is made for each segment after considering several constraints using a risk-based 

optimization model.  

Three case studies are presented to test the PTPD model. The first two are mainly concerned with 

the influence of risk-aversion coefficients on segment-level treatment selections and network-level 

performance. These cases demonstrate that considering risk in the PTPD model influences network 

performance by changing the types of treatments that are selected. The third case study highlights 

the benefits of considering both current evaluated treatment and its following actions, along with 

uncertainty in costs and deterioration. In the case study presented, the PTPD model yields a better 

predicted network performance compared to a B/C model at a constant budget level. To achieve a 

similar performance level, the B/C model requires a 10.4 % higher budget in terms of the average 

performance of the analysis period and a 16.7 % higher budget for the annual performance 

distribution. This is partly due to the selection of different types for treatments. The PTPD model 

tends to use more reconstructions and overlays for the first few years and then shifts to 

preservations.  

As more technologies emerge to measure pavement condition and to create or repair pavements, 

the job of the DOT planner becomes more complex. This dynamic landscape makes the use of 

effective network planning models even more important. Although much work needs to be done 

to adapt the model presented here to all the specifics of real-world pavement asset management, 

the results presented here suggest that this model formulation holds promise to identify budget 

allocation decisions that could improve network performance even when budget levels are 

currently insufficient. Elements of the model presented here – notably the consideration of 

uncertainty in deterioration and cost, treatment path dependence, and explicit risk tradeoffs – could 

be incorporated into the tools being increasingly deployed by departments of transportation to 

support pavement network planning. If implemented with the appropriate supporting data and 

analyses, the model presented here should provide a more complete picture of the long-term value 

of various treatment strategies. This does depend heavily on the development of robust models of 

pavement deterioration, performance jump on treatment, and treatment cost – both present and 
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future. Many in the academic community and beyond, seem to think that such models (and the 

data on which they depend) must be already robust and ubiquitous. Our research team’s experience 

in this space suggests that while there are many agencies that meet this standard, there remain 

many more at various stages along the journey to that reality. Models like the one described here 

are poised to turn this emerging data into information that will allow planners to better leverage 

emerging measurement and paving technologies and to shepherd their pavement networks to a 

better state than has been possible before.    

Despite this potential, much work is needed to improve the model described herein. One important 

topic is to upgrade the adopted deterioration model to better differentiate the impact of region 

including the influence of climate. For some cases, the climate could play a significant role in the 

deterioration process. In addition, the current analysis focuses on only a single performance 

measure – pavement roughness. In practice, there are other metrics to describe pavement 

conditions (e.g., cracking, rutting or faulting). A single metric cannot give a comprehensive 

description of pavement condition. Finally, it is important for future work to incorporate a true 

performance jump model to calculate the condition values after treatment. These gaps will be 

discussed and solved in the Chapter 4.  

Equation Chapter (Next) Section 1 
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CHAPTER 4  ENVIRONMENTAL AND ECONOMIC EVALUATIONS OF 

TREATMENT STRATEGIES FOR PAVEMENT NETWORK PERFORMANCE-BASED 

PLANNING 

This chapter evaluates the role of problem framing in the form of different available treatment 

strategies that consist of treatment materials, treatment types, and evaluation period for treatments. 

The analyses are conducted based on the PTPD model introduced in Chapter 3. Both 

environmental and economic performance is evaluated for different problem framing in the context 

of a case based on the Iowa U.S. route network. Results show that the proposed strategy that uses 

both concrete and asphalt, different treatment types, and a long evaluation period could both 

improve pavement network performance and reduce greenhouse gas (GHG) emissions. Compared 

to a conventional 5-year asphalt-only strategy, the proposed strategy can accomplish this with an 

annual budget that is 32% smaller and reduce associated GHG emissions by 21%. These results 

can provide transportation agencies with insights to achieve a sustainable pavement network.  

 

4.1 Introduction 

Inadequate budgets have been a pervasive problem faced by transportation agencies in the U.S [2]. 

Pavements in poor condition can lead to both a decrease of driving comfort and safety and an 

increase in fuel consumption and GHG emissions. To improve pavement network condition, the 

Moving Ahead for Progress in the 21st Century (MAP-21) Act compels transportation agencies to 

develop efficient pavement management systems (PMS). PMSs are broadly concerned with the 

evaluation of current conditions, the prediction of future conditions, and the planning of various 

treatments, including preservation, overlay, and reconstruction (POR) for a pavement segment or 

a network [4].  

Performance-based planning (PBP) is the practice of using data from PMSs to support POR 

decisions based on the predicted network performance, available budgets, and treatment strategies. 

To improve the effectiveness of these decisions, a significant body of research has emerged on 

mathematical budget allocation algorithms, which improve and evaluate an algorithm in terms of 

reduction in cost or improvement in network conditions. By focusing on the algorithm, these 
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studies do not explore the influence of how the budget allocation problem is framed on those same 

metrics of performance. In particular, analyses are usually constrained to a single treatment 

strategy, which consists of a limited, fixed portfolio of treatment actions. For example, a set of 

available treatment actions that only use asphalt materials might be called an asphalt-only strategy. 

Framing the analysis around a single treatment strategy limits the possible solution space and may 

preclude the discovery of optimal treatment plans. There are few studies that explore the influence 

of including different treatment strategies within the problem framing on pavement network 

condition and / or cost of maintaining the network.  

Additionally, existing research reported in the literature focuses on the economic aspects of 

pavement treatment decisions. To date, analyses that consider the associated environmental 

impacts (specifically GHG emissions), have not accounted for the growing influence of EVs or 

deflection-induced excess GHG emissions. Also, PBP models described in the literature are 

usually based on a single condition metric, such as the international roughness index (IRI), 

pavement condition index (PCI), pavement surface rating (PSR), or combined condition index 

(CCI), to evaluate network performance. However, real-world decisions are made based on the 

consideration of several condition metrics, such as IRI, various cracks, rutting, or faulting. Hence, 

treatment decision-making should incorporate multiple metrics. 

The author is not aware of a previous study to explore the influence of including different treatment 

strategies within the problem framing on expected pavement network condition and environmental 

impact that considers multiple condition metrics within the algorithm. 

To address these gaps, three issues that influence the size of the possible solution space are 

considered. These issues are 1) available pavement materials, 2) available treatment types, and 

3) scope of the evaluation period for treatments. The exploration is based on the PTPD model 

introduced in Chapter 3. This model has been updated to make treatment decisions based on multi-

condition metrics and incorporate environmental effects. The explorations of different treatment 

strategies are based on the Iowa U.S. route network. Results show that the combinations of various 

materials and treatment types, and a long evaluation period could improve the pavement network 

condition and reduce GHG emissions effectively. Compared to a 5-year asphalt-only strategy, the 

proposed strategy leads to the same level of performance with an annual budget that is 32% smaller 
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and reduces associated GHG emissions by 21%. In addition, it is difficult to decrease GHG 

emissions even by increasing the budget when applying the 5-year asphalt-only strategy since any 

slight decrease in GHG emissions due to improved road condition (and therefore reduced excess 

fuel consumption) does not offset the increased embodied emissions needed to achieve this.  

4.2 Literature Review 

Existing studies of PBP approaches focus on the allocation algorithm applied to select optimal 

treatment actions. More specifically, in the majority of papers on the topic, one or more algorithms 

are tested against a fixed set of available treatment actions. These alternative algorithms are 

typically evaluated in terms of their improvement of the objective function either budget required 

to achieve a level of performance or level of performance at a fixed budget. Here, a treatment 

action is defined as a specific technology, and applied at a specified intensity (e.g., two-inch 

asphalt overlay, four-inch asphalt overlay, diamond grinding). A treatment strategy as a portfolio 

of related treatment actions (e.g., preservation treatments, asphalt treatments). The set of available 

treatment strategies may be influenced by many factors, such as policy, budget, material 

availability, and past experience of the decision-makers.  

The distinction between treatment action and treatment strategy is not merely semantic. Adding 

additional available actions to a problem will not deteriorate, and may improve, the solution. For 

such an addition to offer improvement, however, those additions must be Pareto efficient to expand 

the solution space. Generally, different treatment strategies represent such additions in that they 

often offer diverse characteristics. For network budget allocation problems, this mostly manifests 

as alternatives with diverse investments (effecting the budget constraint) and diverse deterioration 

or other in-use behavior (effecting life-cycle costs or impacts). As an example, preservations would 

be expected to require lower investment than reconstruction, but also offer lower life-cycle benefits. 

Although the scope of available treatment strategies may impact the optimal solution, its influence 

is largely ignored in both real-world application and exiting literature.  

As noted previously, most existing research on PBP focuses on the development and evaluation of 

allocation algorithms. As such, most studies consider few alternative treatment actions, only 

describe these actions in general terms (e.g., “preventative maintenance”, “rehabilitation”, 

“reconstruction”), and do not specify the type of pavement material involved [57], [70], [71], [73], 
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[76], [77], [87]. In fact, all the studies in this group consider four or fewer available treatment 

actions. Another set of literature is more specific about the types of treatment actions available 

(e.g., crack sealing, full-depth patch, milling with two-inch overlay). These studies may limit 

available alternatives to asphalt treatments [25], [59], [74] or do not specify the pavement material 

[4], [47], [58], [86]. On average, these studies consider a slightly larger number of treatment 

alternatives, but all still limit the set to six or fewer alternatives. A notable exception is Denysiuk 

et al. that considers 16 specific, asphalt treatment alternatives [136]. In focusing on algorithmic 

improvements, none of these studies explicitly evaluate how problem framing, especially 

expansion or contraction of the alternative set or, more generally, changes to the solution space 

effects the optimal solution.  

Three previous studies have been identified, outside of previous work by the author, which have 

examined the impact of problem framing on the optimal solution. Torres-Machi et al explore the 

impact of the available budget on the alternatives selected from eleven available asphalt treatments 

and four concrete treatments. Results show that a 20% increase in budget can lead to a 21% 

increase in long-term effectiveness and 13% decrease of GHG emissions [137]. Irfan et al [132] 

expressly considered the impact of including five asphalt treatment alternatives – preventative 

maintenance and rehabilitation – and found that incorporating both preventative maintenance and 

rehabilitation is superior to just using preventative maintenance or rehabilitation. Lee et al [115] 

analyzed the influence of including three different treatment alternatives – maintenance, 

resurfacing, and reconstruction – and found the optimal treatment policy is the joint optimization 

of maintenance and reconstruction. Two previous papers by CSHub at MIT, Akbarian et al [138] 

and Guo et al [139], have raised the issue of the role of problem framing, but did not systematically 

analyze this across the full range of characteristics discussed in this chapter and, as detailed 

subsequently, did not apply a state-of-the-art optimization algorithm.  

Looking at the existing literature, no previous study has explicitly evaluated the impact of 

considering a set of treatment strategies that includes both a range of specific treatment strategies 

and multiple pavement material types. This is a notable exception because asphalt and concrete 

solutions typically represent interestingly diverse characteristics including differences in initial 

investment and life-cycle implications. From the perspective of objectives in the budget allocation 

models, most of them focus on economic aspects of the problem by maximizing pavement network 
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condition within a limited budget  [25], [66], [83] or minimizing total cost to satisfy a condition 

requirement [43], [59]. Recent literature has noted that, in addition to economic considerations, it 

is also important to consider environmental impacts during the pavement management process. 

One common approach to evaluate environmental impact is life cycle assessment (LCA), which 

calculates the total GHG emissions of a pavement segment throughout its life cycle – from material 

extraction to end-of-life [39]–[42]. To simultaneously incorporate both the environmental  and 

economic considerations, a life cycle assessment – life cycle cost analysis (LCA-LCCA) 

framework has been proposed [54], [140]–[142]. The analysis scope for both LCA and LCCA 

focuses on a single pavement segment (or project). Several researchers have also incorporated 

environmental assessment for network (or system) level analyses through different allocation 

models such as a benefit cost ratio (B/C) framework [137], dynamic programing [45], [143], 

Lagrangian dual solution methodology[144], and a multi-year optimization framework [145]. 

These studies all consider the GHG emissions associated with materials and construction 

equipment used to complete treatment actions. In this chapter, these emissions are referred as 

embodied emissions. For analyses reported to-date, the environmental impacts of the pavement 

use phase have been limited to roughness-induced excess GHG emissions for conventional internal 

combustion engines vehicles (ICEVs). In recent years, however, the number of electrical vehicles 

(EVs) has gradually increased [146]. Considering their different environmental impacts [147], it 

is necessary to differentiate them during the analysis for pavement-induced GHG emissions. In 

addition, the deflection-induced excess GHG emissions should also be incorporated [148]–[150].  

Most existing PBP allocation models in the literature usually use a single condition metric as the 

decision criteria, such as condition state in Markovian model, IRI, PCI, PSR and CCI, etc. 

However, in reality, treatment decisions are made based on several condition metrics. Although 

some models use an overall condition metric (e.g., PCI, CCI), this alone does not capture all 

important aspects of individual deterioration metrics. For example, when a segment’s PCI is above 

the threshold value (implying there is no need for maintenance), an individual metric, such as 

longitudinal crack, may be below the threshold value (implying a need maintenance). (More details 

can be found in Appendix C.3). Hence, it is necessary to make treatment decisions considering all 

relevant condition metrics instead of a single condition metric. To address this gap, the multi-

output deterioration model introduced in Chapter 2 is applied, which can simultaneously predict 

all condition metrics and incorporate their correlations during the prediction process.    
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To summarize, existing PBP research focuses on the development and performance of allocation 

algorithms and ignores the influence of problem framing, especially on the scope of the available 

solution space. In addition, most pavement network analyses focus on economic effects, and for 

analyses involving environmental effects, they have not incorporated the growing influence of EVs 

or deflection-induced excess GHG emissions. In these analyses, pavement treatment decisions are 

usually based on a single condition metric. Considering current gaps, this chapter applies a 

comprehensive – environmental and economic – analyses to explore the influence of three issues 

that alter the size of the available solution space. These issues are 1) available pavement materials, 

2) available treatment types, and 3) scope of the evaluation period for treatments. These are tested 

in the context of Iowa’s U.S route pavement network using the PTPD allocation model. In this 

model, all metrics are considered within the model constraints, which only IRI directly effects the 

objective function through its impact of excess fuel consumption. The influence of EVs has been 

incorporated as well.  

4.3 Methodology 

To evaluate the impact of problem framing, PTPD model is applied to a specific case under a range 

of different scenarios. The pavement deterioration prediction is based on the weighted multi-output 

model described in Chapter 2. In this section, a modified PTPD model is presented first to fill the 

gaps about pavement maintenance decision-making based on multi condition metrics, and the 

consideration of EVs and PVI-deflection induced excess fuel consumptions. Then, a set of 

performance jump models are proposed to evaluate the effectiveness of different treatment actions. 

At last, evaluation metrics are provided to evaluate pavement network condition and 

environmental impacts.   

4.3.1 Budget allocation model - PTPD 

PTPD model introduced in Chapter 3 only focuses on a single condition metric, i.e., IRI. In order 

to incorporate multi-condition metrics, the segment-level analysis in the PTPD model has been 

modified, which can be found in Appendix C.1.1. 

In the PTPD model, both the segment-level and network-level objectives are to minimize the 

expected total cost (agency cost plus user cost) and to minimize the standard deviation of the total 
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cost as well. The agency cost mainly consists of the cost for treatment actions. The future treatment 

cost is predicted based on a probabilistic model introduced in the Section 3.3.1. The user cost is 

dominated by the excess fuel consumption caused by pavement-vehicle interaction (PVI) [128], 

[151], including both roughness-induced and deflection-induced PVI. Corresponding PVI models 

are introduced in detail in Appendix C.1.2. Although roughness is known to increase vehicle wear 

and tear, Zaabar and Chatti found that roughness-induced vehicle operating costs due to wear-and-

tear are much smaller than the roughness-induced excess fuel cost [152]. As such, operating costs 

due to wear-and-tear are ignored here.  

PVI models described in the literature are based on conventional internal combustion engines 

vehicles (ICEVs), and expressly predict excess fuel consumption measured in gallons of gasoline 

and/or diesel. However, with the increase of electrical vehicles (EVs), it is necessary to adapt these 

models for a more current context. This adaptation is accomplished by considering the relative 

energy intensity per mile for ICEVs and EVs. Using this information, the expected energy 

consumption, in terms of kWh of electricity, are computed for the fraction of vehicles that are 

assumed to EVs (details are in Appendix C.1.3). During the analysis, the average gasoline and 

diesel cost for the state of Iowa are from American Automobile Association (AAA) [153].  

Even though the optimization objective includes only economic terms, when applied to real-world 

cases, it also captures many of the key drivers of environmental impacts. This is true because of a 

strong correlation between dominant costs and dominant drivers of emissions. Within the objective 

function, the user cost term is represented by excess fuel consumption which, in turn, is the 

dominant driver of transportation emissions for the pavement use. The agency cost term is 

dominated by the quantity of treatment actions, which is also the dominant driver for the embodied 

emissions. Because of the correspondence of these two effects, the proposed budget allocation 

model, PTPD, does provide useful insight into the influence of different treatment strategies on 

both the pavement network condition and its environmental effect.  

Essentially, this optimization problem is a multi-objective one, i.e., to minimize the budget 

(reflected by the agency cost) and to minimize the GHG emissions (reflected by the agency cost 

and user cost) at the same time. By assigning different weights to different sub-objectives, different 

optimal results can be obtained, and a corresponding Pareto frontier can be generated. The point 
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on the frontier can be considered as the smallest GHG emissions given a budget constraint level. 

Since the goal of this chapter is to explore the influence of different treatment strategies on 

pavement condition and environmental effects, the analyses of different weights for multi 

objectives are ignored in this chapter. Instead, it focuses on results for a critical budget level; that 

is the budget at which network performance would stay relatively constant. Results for different 

budget constraint levels are provided in Appendix C.2. At the end of the exploration of different 

strategies, the Pareto frontier is provided for a comparison between a proposed strategy and a 5-

year asphalt-only strategy.  

In this framework, treatments are incorporated into the optimum solution either because they play 

a role in optimizing the objective function (lowest total cost) or because their performance falls 

below a critical threshold. Only the condition metric IRI directly influences the optimization 

objective through the extra user cost caused by roughness-induced PVI. Nevertheless, several other 

pavement condition metrics (rutting, faulting, and different cracks) influence the decision-making 

process. Specially, if any condition metric falls below its critical threshold value, the 

corresponding pavement segment is identical to immediately receive a treatment. To summarize, 

the treatment decision of a segment is determined by both threshold value and the cost-oriented 

optimization process. 

4.3.2 Pavement performance jump model 

The deterioration model in Chapter 2 is used to predict pavement condition over time assuming no 

treatment action occurs. In addition to this, it is also necessary to predict the effect of different 

treatment actions on pavement condition. This kind of prediction model is called a performance 

jump model, which is usually a function of the pavement condition before a treatment is applied 

[61]. Because the Iowa PMS dataset contains very limited data points for each treatment action 

type, only a simple polynomial model is trained as suggested in [25]. For a 4” asphalt/concrete 

overlay, the performance jump model can be expressed as:  

 (4.1) 

 (4.2) 

IRInew = IRIold − −0.4517 + 0.3735⋅ IRI + 0.1206 ⋅ IRI 2( )
rutnew = 2
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 (4.3) 

 (4.4) 

Due to the lack of available data for the maintenance of concrete pavements, it is assumed that 

fault becomes 0 after an overlay (equation (4.5)). In addition, it is also assumed that ACRACK 

follows the same performance jump model as TCRACK for asphalt pavements, and LWCRACK 

follows the same model as LCRACK for asphalt pavements (equations (4.6) and (4.7)).  

 (4.5) 

 (4.6) 

 (4.7) 

For overlays with other thicknesses, performance is interpolated linearly between the values found 

for the 4” asphalt/concrete overlay and those for a 13” reconstruction. It is important to note that 

this interpolation likely overstates the performance of overlays larger than 4” overlay. Nevertheless, 

the lack of data precludes more sophisticated modeling. After a 13” reconstruction, values for IRI, 

rut, fault, ACRACK, LCRACK, LWCRACK, and TCRACK are assumed to be 0.5 m/km, 0 mm, 

0 mm, 0 m2/km, 0 m/km, 0 m/km, 0 count/km, respectively.   

Iowa PMS dataset contains limited data on preservation treatment actions. To accommodate this, 

the Long-term Pavement Performance (LTPP) dataset was applied to generate the performance 

jump model for IRI as shown in equation (4.8). The performance jump models for rutting and 

faulting (equation (4.9)) are assumed to be the same as overlay actions. All cracks after a 

preservation are assumed to be reduced by 40% based on the limited data in the Iowa dataset 

(equation (4.10)).  

 (4.8) 

 (4.9) 

 (4.10) 

LCRACKnew = 0.1322 ⋅ LCRACKold

TCRACKnew = 0.1171⋅TCRACKold

faultnew = 0

ACRACKnew = 0.1171⋅ ACRACKold

LWCRACKnew = 0.1322 ⋅ LWCRACKold

IRInew = IRIold − −0.2684− 0.3565⋅ IRI + 0.1592 ⋅ IRI 2( )
rutnew = 2, faultnew = 0

CRACKnew = 0.6 ⋅CRACKold
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4.3.3 Evaluation metrics 

To evaluate different treatment strategies, two main evaluation metrics are proposed. The first one 

is traffic-length weighted PCI (TWPCI), which is used to describe the pavement network condition. 

PCI is the overall condition metric used by the state of Iowa. To reflect the significance of a 

segment i in the network, PCI is weighted by traffic and length of the segment, as shown in 

equation (4.11), where AADT represents annual average daily traffic, I is the total number of 

segments.  

 (4.11) 

The second evaluation metric is cumulative life-cycle GHG emissions, including embodied 

emissions, PVI-induced excess GHG emissions, and global warming potential related to radiative 

forcing. 

The embodied impacts incorporate the life-cycle GHG emissions associated with the realization 

of the segment treatment. Here this includes all activities from resource extraction until the end of 

life of treatment actions, excluding use phase impacts (which are explicitly accounted separately). 

Regional practices of asphalt and concrete production were adopted from the national databases 

[154], [155]. The projection of materials technologies was incorporated in the study to include the 

future changes in the embodied emission during the analysis period. Details of life cycle 

inventories and assumption values and sources for the energy consumptions and mix designs are 

provided in the Appendix C.1.4.  

The PVI-induced excess GHG emissions can be obtained as shown in equation (4.12).  

represents the excess gasoline caused by roughness-induced PVI for cars. Due to their 

comparatively lower mass compared to trucks, deflection-induced PVI is ignored for cars. 

 and   represent excess diesel consumptions for trucks in terms of roughness-

induced and deflection-induced PVI, respectively. GHG emissions associated with fuel 

consumption are based on estimates from U.S. EPA, namely, 8,887 grams CO2/ gallon for gasoline 

( ) and 10,180 grams CO2/ gallon for diesel ( ) [156]. 

TWPCIi =
AADTi ⋅ lengthi
AADTi ⋅ lengthii=1

I∑
⋅PCIi , and TWPCI = TWPCIi

i=1

I

∑

δ IFCR,car

δ IFCR,truck δ IFCD ,truck

α gasoline α diesel
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 (4.12) 

The surface reflectivity of pavements (measured as albedo) can directly contribute to climate 

change by inducing a radiative forcing (RF) at the top of the atmosphere. In this analysis, the RF-

induced global warming potential (GWP) was estimated and included in the life cycle assessment 

according to the calculation steps described in the Appendix C.1.5 and in [157]. Location-specific 

RF impacts due to changes in pavement albedo were estimated as a function of the intensity of 

incoming radiation, atmospheric transmittance, and the change in albedo. Incoming radiation 

estimates were based on the county coordinates. 

In addition to these two metrics, traffic-length weighted IRI (TWIRI) is tracked as a measure of 

overall system performance. Its calculation is described in Appendix C.1.6 and its corresponding 

results are presented in Appendix C.2.   

4.4 Case Study 

The impacts of different treatment strategies that transportation agencies may use in PBP on 

network performance improvement are explored, including 1) the selection of materials (asphalt 

concrete (AC) only, portland cement concrete (PCC) only, or both); 2) the selection of treatment 

types (short-term actions only, long-term actions only, or mix); and 3) segment analysis period 

(SAP), which represents the period to evaluate treatment benefits. Different strategies are 

compared with a proposed strategy, which uses both AC and PCC materials, both short-term and 

long-term treatments, and an SAP of 20 years. These treatment strategies are analyzed and 

compared under a critical budget which is the minimum annual budget to maintain pavement 

network condition under the proposed strategy.  

The explorations of different treatment strategies are based on initial network conditions derived 

from data for Iowa’s U.S. route system for year 2017. This dataset includes, for all 9,550 lane 

miles, information on age, AADT, AADTT, pavement thickness, layer type, construction and 

maintenance history, and different condition metrics, etc. All PMS information can be found on 

the website of Iowa DoT Open Data [110]. During the analysis period, the traffic volume is 

modeled to increase. Due to the limited traffic prediction information for the state of Iowa, the 

GHG =α gasoline ⋅δ IFCR,car +α diesel ⋅ δ IFCR,truck +δ IFCD ,truck( )
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future traffic volumes for conventional ICEV, EV and trucks are based on the national prediction 

for vehicle miles traveled (VMT) from EIA [146].  

Table 4-1 lists the available treatment actions for the U.S. route pavement network suggested by 

pavement engineers, which may not be the same as the ones taken by Iowa DoT. The treatment 

types include preservation (P), overlay (O), and reconstruction (R). Based on the duration of their 

benefits, these actions are divided into two groups: short-term actions (preservation, 4” concrete 

and asphalt overlays), and long-term actions (thick overlays and reconstruction), as shown in the 

column Duration. The Design column represents the pavement type that can be maintained by the 

corresponding treatment action. Expected cost data are based on an analysis of 5 years (2014-2018) 

of publically available bid data for Iowa highway projects [20]. For the actions that are suitable 

for both PCC and AC, two cost values are given, respectively.  

Table 4-1. Treatment actions. 
Name Type Duration Design Expected cost ($/S.Y.) 
Diamond grinding Preservation Short-term PCC 2.77 
Micro-surfacing Preservation Short-term AC 3.03 
4'' asphalt overlay Overlay Short-term AC & PCC 8.97 & 8.97 
4'' concrete overlay Overlay Short-term AC 13.21 
6" asphalt overlay Overlay Long-term AC & PCC 12.97 & 12.97 
6" concrete overlay Overlay Long-term AC & PCC 17.38 & 16.14 
9" asphalt overlay Overlay Long-term AC 19.16 
8.5" concrete overlay Overlay Long-term AC & PCC 22.60 & 21.36 
13” new asphalt Reconstruction Long-term AC & PCC 57.05 
11” new concrete Reconstruction Long-term AC & PCC 53.65 

S.Y.: squared yard 

4.4.1 Proposed strategy 

The proposed strategy is as follows: the network analysis period is 30 years; treatment materials 

include both AC and PCC; treatment types include both short-term and long-term treatments; the 

segment analysis period is 20 years. 

Figure 4-1 shows the distributions for initial PCI (Figure 4-1(a)) and traffic volume (Figure 4-1(b)) 

on the county level for the Iowa U.S. route network. In both sub figures, grey lines represent the 

routes. Counties shown with grey hatches do not contain U.S. route pavements. Adams, Calhoun 
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and Page counties have the best road condition with the highest average PCI. By contrast, 

Winnebago and Louisa have the lowest PCI per lane mile. Polk, Johnson, and Scott have the largest 

traffic volume. These counties exhibit a medium condition level, but due to their large traffic 

volume, they are associated with large excess GHG emissions due to PVI. (See Appendix C.2.1) 

From these plots, it is clear that pavement condition and context vary widely across the state, 

making it challenging to allocate the available budget in an efficient way.  

At year 0, the initial TWPCI for the whole pavement network is 76.3. To maintain the TWPCI 

after 30 years as the same as year 0 for TWPCI, the annual budget must be $132.5M for the 

proposed scenario. This value was found through iterative search. This is referred to as the critical 

budget (i.e., the budget required to maintain network performance over the analysis period for the 

proposed strategy). The actual budget can be much larger than this proposed critical budget since 

some costs are not included in the analysis, such as traffic management, engineering, and striping, 

etc. At year 30, for the proposed strategy, average TWPCI is 76.2. At year 0, the ratios for asphalt, 

asphalt overlay composite and concrete pavements are 6%, 59% and 35%.  

 
(a). Initial PCI distribution  
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(b). Initial AADT distribution 

Figure 4-1. Initial (a). PCI and (b). AADT distributions for Iowa U.S. route network on the 

county level based on Iowa PMS 2017 (counties in hatch don’t have U.S route pavements). 

4.4.2 Influence of treatment materials 

AC and PCC are the two primary materials used for pavement treatments. In this section, three 

treatment strategies concerning material selection are compared, including the proposed strategy 

(both materials used in the network), an AC only strategy, and a PCC only strategy.  

Figure 4-2 presents the comparisons among these three strategies. Figure 4-2(a) shows that 

incorporating both materials in the available treatment options, the proposed strategy, leads to the 

best average pavement network performance. At year 30, the TWPCI for the AC only strategy and 

the PCC only strategy is 11% and 7.6% less than the proposed strategy, respectively.  Figure 4-

2(b) shows the cumulative life-cycle GHG emissions as discussed in Section 4.3.3, including 

embodied emissions, emissions due to PVI and emissions due to radiative forcing. By using both 

AC and PCC, the cumulative GHG emissions are also the lowest. The proposed strategy could 

save around 0.52 Mt (12.2%) of GHG emissions compared to AC only strategy and around 0.69 

Mt (16%) compared to PCC only strategy. 
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Interestingly, among these three alternatives, the AC only strategy has a higher TWPCI for the 

first 10 years than the proposed strategy. However, starting from the 6th year, the pavement 

network performance becomes worse year by year. This phenomenon is mainly due to the 

characteristics of AC materials. Generally, AC pavements require lower upfront investment than 

PCC, but their condition typically deteriorates over a shorter time period. By contrast, since PCC 

treatments can be more expensive to build, the total paved area that can be maintained in a given 

year with the PCC only strategy is smaller compared to the AC only and proposed strategies. As a 

result, for the first few years within AC only strategy conditions can improve more rapidly. 

However, as time passes, the long-term benefits of the PCC treatments start to stand out. In terms 

of TWPCI, the PCC only strategy has a slower decreasing rate than the AC only strategy. Starting 

from 26th year, the PCC only strategy provides a better pavement network performance than the 

AC only strategy.  

The comparisons of treatment material strategies under different budget levels can be found in 

Appendix C.2.2. The proposed strategy always provides the best pavement network performance 

compared to the AC only and PCC only strategies. Results suggests that as budget levels increase 

more PCC solutions should be applied. 

  
(a) (b) 

Figure 4-2. Comparisons of different treatment material strategies. (a) is annual mean TWPCI, 

(b) is the distributions for cumulative life-cycle GHG emissions for 30 years. 
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4.4.3 Influence of treatment types 

Treatment types can be divided into two categories: short-term and long-term treatments. Short-

term treatments include preservation and thin overlays. These treatment actions have a low price 

but a short impact on deterioration development. In addition, being thinner, they have small 

embodied emissions but may not be effective to reduce GHG emissions caused by deflection-

induced PVI. Long-term treatments include thick overlays and reconstructions. They are expensive 

but have a longer impact on pavement condition. They have large embodied emissions but are also 

effective at reducing GHG emissions caused by deflection-induced PVI. In this section, three 

treatment strategies concerning treatment types are explored, including a short-term (only) strategy, 

a long-term (only) strategy, and the proposed strategy (a mixed strategy).  

In Figure 4-3(a), the proposed strategy leads to the best average pavement network performance 

after 30 years, whose TWPCI is 5.1% higher than the short-term strategy and 9.3% higher than the 

long-term strategy. Figure 4-3(b) shows that by using mixed treatment types, the cumulative life-

cycle GHG emission for 30 years is also the smallest. The proposed strategy could save around 

0.82 Mt (19.2%) of GHG emissions compared to the short-term strategy and around 0.83 Mt 

(19.4%) compared to the long-term strategy.  

The short-term strategy only applies inexpensive treatments and hence, it could fix more pavement 

area than the other two strategies. It has the highest TWPCI for the first 10 years. However, even 

though more pavement area is maintained, short-term treatments do not last for a long time. That’s 

the main reason why TWPCI eventually goes down. By contrast, the long-term strategy can only 

fix a small amount of pavement area due to the higher costs. With a limited budget, this leads to 

the worst performance among these three strategies.   

The comparisons of treatment type strategies under different budget levels can be found in 

Appendix C.2.3. Results suggest using more short-term treatments when the budget is low, but 

shifting to more long-term treatments as budget levels increase. 
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(a) (b) 

Figure 4-3. Comparisons of different treatment type strategies. (a) is annual mean TWPCI, (b) is 

the distributions for cumulative life-cycle GHG emissions for 30 years. 

4.4.4 Influence of segment analysis period 

Segment analysis period (SAP) represents the period of time used to evaluate available treatment 

actions based on their total cost (agency plus user cost). When the analysis period is short, agency 

costs account for most of the total cost. In such cases, inexpensive treatments like preservation, 

thin overlays, and asphalt treatments are more likely to be selected. But these treatments usually 

deteriorate more rapidly. On the other hand, when the analysis period is large, user costs related to 

pavement condition accounts for a large fraction of total costs. Since reconstruction, thick overlays, 

and concrete treatments usually provide long-term benefits (in terms of pavement condition and 

lower user costs), they are more likely to be chosen when the analysis period is large. 

When the budget level is high enough, it would be expected that an optimization model would 

make use of more long-term treatments when evaluated using a large SAP. However, larger SAPs 

exponentially increases the computational burden [55]. Furthermore, conventional PBP analyses 

usually use SAPs on the order of five years. Hence, only three SAPs are discussed: SAP=5, 

SAP=10 and SAP=20 (i.e., the proposed strategy). 

In Figure 4-4(a), SAP=20 leads to the best average pavement network performance after 30 years, 

which is 5.8% higher than the SAP=5 strategy and 4.1% higher than the SAP=10 strategy. Figure 

4-4(b) shows the SAP=20 strategy also has considerably smaller total GHG emissions. The 
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proposed strategy could save around 0.89 Mt (20.6%) and 0.34 Mt (7.8%) of GHG emissions 

compared to the SAP=5 and SAP=10 strategy, respectively.  

When the SAP is small, treatments with short-term benefits are preferred. These treatments are 

inexpensive, and more pavement areas can be maintained. The SAP=5 strategy leads to a higher 

TWPCI for the first 10 years compared to the SAP=20 strategy. However, as discussed before, 

these treatments do not last long. Hence, after 12 years, the proposed scenario (SAP=20) has a 

higher TWPCI than the SAP=5 strategy.  

The comparisons of treatment evaluation period under different budget levels can be found in 

Appendix C.2.4. The SAP=20 strategy performs better than the SAP=5 and SAP=10 strategy for 

all budget levels.  

  
(a) (b) 

Figure 4-4. Comparisons of different segment analysis periods. (a) is annual mean TWPCI, (b) is 

the distributions for cumulative life-cycle GHG emissions for 30 years. 

4.4.5 Proposed strategy vs. 5-year AC only strategy 

Finally, the proposed strategy is compared with a 5-year, AC only strategy that only considers 

short-term treatments. Based on a national analysis of Oman bid data over the last 10 years, more 

than 40% states spend less than 5% of paving budget on concrete paving projects. In addition, after 

consulting with several state transportation agencies and experienced pavement engineers, one 

common practice is to develop pavement treatment schedules considering only a short analysis 

period, like 5 or 10 years. Hence, the 5-year AC only strategy is selected as the baseline strategy 

to be compared with the proposed strategy. Figure 4-5(a) shows the performance of these two 
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strategies in terms of TWPCI at year 30 across a range of available budgets. Points on any 

horizontal line on this figure represent equal levels of performance. To have a similar network 

condition performance at year 30, the 5-year AC only (SAP=5 years) strategy (blue dot in Figure 

4-5(a)) would require a budget that is 32% larger than required by the proposed strategy (green 

dot in Figure 4-5(a)). For comparison, in Chapter 3, it shows that the improvement of budget 

allocation algorithm can save about 17% of the annual budget. Under the critical budget ($132.5M), 

the propose strategy can reduce GHG emissions by 21% compared to the 5-year only strategy. As 

budget levels increase, the GHG emissions for the 5-year AC only strategy increase all the time. 

But for the proposed strategy, GHG emissions decrease first and then increase. These phenomena 

are strongly due to the trade-off between the embodied emissions and PVI-induced emissions. 

The 5-year AC only strategy only uses asphalt materials and primarily thinner treatments. These 

actions deteriorate more rapidly, leading to larger GHG emissions due to roughness-induced PVI. 

Additionally, these actions have a lower modulus and/or stiffness, and will always create a network 

with a larger deflection-induced PVI compared to one applying longer-term (typically thicker) 

treatments and, in particular, any strategy that incorporates concrete materials. In this case, even 

though more treatment actions are applied as budget levels increase, the slight decrease of 

emissions due to PVI cannot offset the increase of embodied emissions as shown in Figure 4-5(c).  

As for the proposed strategy, when the budget is less than $132.5M, as budget levels increase, the 

decrease of emissions due to PVI can offset the increase of embodied emissions as shown in Figure 

4-5(d). Hence, the total GHG emissions decrease. However, when the budget is larger than the 

$132.5M, the average road condition is already good. In this situation, the marginal decrease of 

emissions due to PVI does not offset the increase of embodied emissions. Hence, the total GHG 

emissions increase. 

These results make it clear that the framing of the network optimization problem, in particular the 

selection of broad range of available treatment strategies and considering a long-time horizon, can 

have at least equal, if not more, importance as the improvement of the budget allocation algorithm. 
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(a) (b) 

 
(c) 

 
(d) 

Figure 4-5. Comparisons of 5-year AC only strategy and the proposed strategy. (a) is the TWPCI 

at year 30 (the green dot represents the critical budget for the proposed strategy, and the blue dot 

represents the budget level at which the 5-year AC only strategy has a similar network 

performance as the proposed strategy), (b) is Pareto frontier: minimal GHG emissions under 

budget constraints, (c) is GHG emission distributions for the 5-year only strategy under different 

budgets, (d) is GHG emission distributions for the proposed strategy under different budgets. 
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4.5 Conclusions 

This chapter has explored the influence of problem framing, in particular framing that can alter the 

size of the available solution space, on the outcome of performance-based planning for a road 

network. Specifically, it examined three issues that influence the size of the possible solution space. 

These issues are 1) available pavement materials, 2) available treatment types, and 3) scope of the 

evaluation period for treatments. 

The impact of these on pavement network condition and GHG emissions was evaluated in a case 

of the Iowa U.S. route network. Results suggest the importance of applying a variety of materials 

and treatment types and using a long evaluation period to improve predicted pavement network 

performance and reduce GHG emissions. Compared to a commonly used 5-year AC only strategy, 

the proposed strategy was shown to deliver the same network performance at a budget that was 

32% lower and reduce GHG emissions by 21%. In addition, due to the use of asphalt material and 

thin overlays, even as budget levels increase, for the 5-year AC only strategy, the increase of 

embodied GHG emissions is not offset by the slight decrease of GHG emissions caused by 

improved road condition (and therefore lower roughness-induced PVI). From the sensitivity 

analysis in Appendix C.2, the ratios of treatment materials and treatment types can be influenced 

by budget levels. Essentially, in optimal solutions, short-term, asphalt treatments are suggested to 

be used more frequently when the budget level is low, and concrete, long-term treatments are 

suggested to used more when the budget level is high. These research findings can provide policy 

insights for transportation agencies in terms of road maintenance.  

All analyses presented here are based on several assumptions as dictated by the availability of data. 

For example, the deterioration model could not be tailored to every class of pavement due to a lack 

of data. The performance jump values for some treatment actions are based on the linear 

interpolation, which likely overstates the performance of overlays larger than 4 inches. As data 

quality improves, more sophisticated modeling should be developed. As for the budget allocation 

model, since existing excess fuel consumption models are only based on IRI, the objective only 

incorporates IRI, which implicitly gives IRI more importance during the optimization process. In 

the future, with the development of the relationship between excess fuel consumption and other 
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condition metrics, those metrics would influence the optimization objective as well. At last, during 

the analyses, the influence of future climate change on pavement deterioration is ignored.  

Future work should aim to solve these current limitations. After obtaining enough data, the 

deterioration model for concrete overlay composite pavements can be developed. In addition, the 

current weighted multi-output model is based on a Markovian assumption. In the future, it is 

necessary to explore the influence of historical dependence on the model prediction performance. 

After solving these limitations, a better set of results is expected to be obtained.  
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CHAPTER 5  IMPROVING PAVEMENT NETWORKS THROUGH PERFORMANCE-

BASED PLANNING WITH OPTIMAL MANAGEMENT POLICIES 

This chapter proposes three pavement management policies that can help improve pavement 

networks, including decision-making flexibility, long-term planning, and market diversification. 

The evaluation of these three policies is based on U.S pavement networks. After incorporating all 

three management policies, the total excess vehicle fuel cost reduction through improved road 

conditions is 28% relative to a business-as-usual scenario, which is about 62 billion dollars saved 

for the whole U.S. pavement network from 2017 to 2050. All states can benefit from the proposed 

management policies. These results can provide transportation agencies and stakeholders with 

insights for pavement management policies to improve pavement networks. 

 

5.1 Introduction 

The U.S. road system has been assigned a grade of D in The Report Card for America’s 

Infrastructure published by American Society of Civil Engineers (ASCE) since 1998. Over 40% 

of the system is in poor or mediocre condition. This is in part because transportation agencies are 

underfunded: the backlog in repairing existing roads has increased to $435 billion [2]. According 

to ASCE’s report Failure to act: Economic impacts of status quo investment across infrastructure 

systems, if no action is taken, the U.S. is forecasted to lose $10.3 trillion in GDP, $2.4 trillion in 

exports, and 3 million jobs from 2020-2039 [1]. 

To improve the pavement network condition, the enactment of the Moving Ahead for Progress in 

the 21st Century (MAP-21) Act compels transportation agencies to develop efficient pavement 

management systems (PMS) to improve current pavement networks. PMSs are broadly concerned 

with the evaluation of current conditions, the prediction of future conditions, and the planning of 

various treatments, including preservation, overlay, and reconstruction (POR) for a segment or a 

pavement network [4]. Performance-based planning (PBP) is the practice of using data from PMSs 

to support analyses on the predicted network performance based on available budgets and 

treatment strategies.  
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Most existing research usually focuses on the development of mathematical algorithms for budget 

allocation in PBP. However, an efficient budget allocation process is inadequate to improve the 

current road system considering the lack of funding. It is also necessary to apply the budget 

allocation process under the right policies. As suggested in the The Report Card for America’s 

Infrastructure 2021 [2], both the state and local transportation asset management plans should 

consider long-term planning and incorporate life-cycle cost analysis (LCCA), which implicitly 

refers to two potential management policies: long-term planning and decision-making flexibility. 

Essentially, the first policy focuses on a treatment’s long-term benefit when it is evaluated. The 

second policy aims to relax constraints for treatment selection, such as a constraint that asphalt 

pavements can only be maintained by asphalt overlays. Under the policy of decision-making 

flexibility, the selection of treatments is based on life cycle cost analysis and the treatment 

alternatives include both asphalt and concrete materials.  

Another potential management policy is to increase market diversification, which can reduce the 

unit prices for both asphalt and concrete materials [88]. For most states in the U.S., asphalt is 

dominant in the paving market. Hence, by proactively increasing the concrete market share, i.e., 

the market diversification, the unit prices for both materials are expected to decrease, and more 

pavements are expected to be maintained.   

In this chapter, these three management policies are evaluated for each state in the U.S., with the 

exception of Alaska and Hawaii due to limited data availability. Their evaluations are based on 

four PBP scenarios with the consideration of different numbers of policies. Under the same budget 

level, the excess vehicle fuel costs due to pavement vehicle interaction (PVI) are calculated for 

five scenarios. After incorporating all three policies, the excess vehicle fuel cost reduction is 28% 

or 62 billion dollars saved compared to the business-as-usual (BAU) scenario from 2017 to 2050. 

All states can benefit from proposed policies. States in the wet freeze climate zone, Washington, 

and California have larger benefits compared to other states. When states have high initial IRI and 

large traffic volume, it is possible for them to have large benefits. On the other hand, when a state 

has a large cost ratio between concrete and asphalt prices, and a large ratio of concrete pavements, 

then it tends to have a small benefit from these policies.  
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5.2 Literature Review 

Existing studies of PBP usually focus on the development of mathematical algorithms for budget 

allocation. Only a few studies have explored the influence of how the allocation problem is framed 

on the pavement network conditions, including the systematic exploration of different treatment 

strategies in Chapter 4. Both the development of mathematical algorithms (Chapter 3) and the 

evaluation of different treatment strategies (Chapter 4) are in the scope of the budget allocation 

process. In addition to an efficient budget allocation process, it is also necessary to have 

appropriate management policies to support the allocation process. However, the discussion and 

evaluation about the influence of different policies on pavement networks are very few in literature 

to date.  

The Report Card for America’s Infrastructure 2021 [2] recommends “develop[ing] state and local 

level comprehensive transportation asset management plans that link asset management efforts to 

long-term transportation planning and incorporate the use of life-cycle cost analysis”, which 

implies two potential management policies: long-term planning and decision-making flexibility. 

For current transportation agencies, especially the local ones, the selection of treatment actions for 

a pavement segment (or project) is usually by prescribed decision-trees, which are built based on 

expert options or past experiences. However, due to the limitations from past experiences or 

existing policies, the selection criteria based on the decision is very constrained. For example, 

pavements can only be maintained by asphalt materials in some states in the New England region 

of the U.S. In order to relax such constraints, both asphalt and concrete materials, and different 

treatment types should be considered. LCCA can be applied to evaluate different treatments as 

suggested by the report card [37], [54], [57], [66]–[68]. The implementation of the above two 

aspects are incorporated into the first policy, decision-making flexibility.  

LCCA involves consideration of initial construction costs, costs of overlay and preservation (i.e., 

agency costs), and in some cases, user costs associated with excess vehicle fuel consumption 

caused by PVI and vehicle operations. The total life-cycle cost (LCC) usually equals the sum of 

initial construction or treatments costs and discounted future agency and user costs. As discussed 

in [38], an efficient way to determine the treatment schedule is based on an optimization process, 

whose objective is to minimize the total LCC, either by genetic algorithm [37], [54], [140], 
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dynamic programming [142] or the backtrack algorithm [38]. For analyses reported to-date, the 

user cost usually ignores the excess vehicle fuel cost due to deflection-induced PVI, which plays 

a significant role in the use phase [148]–[150]. In recent years, considering the number of electric 

vehicles (EVs) has gradually increased [146],  it is necessary to differentiate them during the 

analysis for roughness-induced PVI. In addition, LCCA usually aims for a pavement project. Only 

a very few studies have incorporated LCCA for the segment level analysis in a so-called two-stage 

bottom-up (TSBU) model [55], [57].  

The second implied management policy from the report card is the long-term planning. As 

discussed in Chapter 4, a long evaluation period could lead to a better pavement network condition 

compared to short ones. When using long-term planning, the pavement network tends to use many 

reconstructions and thick overlays for the first few years, and then shift to the thin overlays and 

preservations later. Hence, the pavement network condition is a little worse compared to the 

scenario using the short evaluation period for the first few years, and then it becomes much better 

in the following years since the long-term benefits start to stand out.  

Another potential management policy is to increase market diversification. There usually exists a 

negative and significant correlation between the number of bidders for a project and its cost growth 

[158], [159], which implies that increasing intra-industry competition can lead to the decrease of 

infrastructure cost. Asphalt and concrete are two common paving materials. For all states in the 

U.S., asphalt has the dominant market share in the paving market. There are only about 6 states 

whose concrete market share is larger than 30%. Based on the research by [88], increasing number 

of bidders and the decreasing market concentration can bring down the unit prices for both 

materials. Hence, there exists a big opportunity to fix more pavement areas and improve pavement 

networks by proactively advocating the market diversification policy. However, the author is not 

aware of a previous study to evaluate the benefit of incorporating market diversification for 

pavement networks from the state or national level analysis.  

To summarize, most research focuses on the budget allocation process by improving the allocation 

algorithms, and very few studies work on the exploration of different treatment strategies. 

However, the influence of potential management policies under which the budget allocation 

process happens is seldomly evaluated. To bridge these gaps, the benefits of three management 
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policies are evaluated across the U.S., including decision-making flexibility, long-term planning, 

and market diversification. The benefit is in the form of excess vehicle fuel cost due to PVI. Two 

types of budget allocation models are applied, including one based on the prescribed decision tree, 

and another one based on dynamic LCCA. The word dynamic is chosen to reflect the fact that 

pavement conditions, treatment cost, and traffic volume change every year. Five scenarios based 

on these two allocation models are proposed with the consideration of different number of policies, 

and corresponding excess vehicle fuel costs are obtained for the period from 2017 to 2050. Then 

the benefit for each policy can be expressed as the cost savings between two scenarios for the 

whole nation and each state as well. Finally, potential influential factors for the benefit are explored.  

5.3 Methodology 

In this section, two types of allocation models are presented first, including decision-tree based 

and dynamic LCCA based allocation models. Both models are based on the TSBU framework. 

The models first focus on the segment level to determine the optimal treatment alternative(s), and 

then move to the network level to determine which segments should receive the treatments with 

the consideration of budget and performance constraints. For the business-as-usual (BAU) 

scenario, the decision-tree based allocation model is applied. On the segment level, the optimal 

treatment is determined by a decision tree based on past experiences or expert opinions. Three 

proposed management policies are realized by a dynamic LCCA based allocation model. On the 

segment level, two optimal alternatives are determined by the dynamic LCCA, during which the 

pavement condition, traffic level, and treatment cost change annually.  

Next, a numerical model to describe the influence of market concentration on the unit prices of 

paving materials is introduced. Finally, the benefits of management policies are mainly described 

by the excess vehicle fuel cost, including gasoline and diesel cost for internal combustion engine 

vehicles (ICEVs), and electricity cost for EVs.  

5.3.1 Decision-tree based allocation model 

In terms of the allocation model for the BAU scenario, on the segment level, the optimal treatment 

for each segment is based on decision trees whose decision criteria are pavement condition (IRI) 

and pavement age. Figure 5-1 shows the decision tree used in the analyses. The Federal Highway 
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Administration (FHWA) suggests that when IRI is larger than 2.68 m/km, then the road condition 

is evaluated as having a poor condition. Hence, this value is used for the reconstruction criterion. 

IRIthre is mainly related to the current pavement network condition, which differs for different 

states and different road systems. For example, interstate systems usually have better road 

conditions than the local systems, so the IRIthre for an interstate system (less than 1.6 m/km) is 

usually smaller than a local system (around 2.0 m/km).  

 
Figure 5-1. Treatment decision tree 

After determining the optimal treatment for each segment, the allocation model moves to the 

network level to select which segments should receive treatments under the budget constraint. The 

selection approach is mainly based on the prioritization method [138]. First, the treatment benefit 

for segment i is calculated by the equation (5.1): 

 (5.1) 

where  represents the IRI value if segment i receives its optimal treatment, and  

is the IRI value if segment i chooses to do nothing.  is the annual average daily traffic. By 

multiplying IRI difference and AADT, the benefit can roughly represent the excess vehicle fuel 

consumptions caused by roughness-induced PVI. Given a system in a state, the pavement segment 

length is the same as discussed in Appendix D.1, hence equation (5.1) does not incorporate length.  

Next, the allocation model ranks all segments based on their benefits as shown in the following 

equation, 

benefit i = IRI fixed
i − IRInon− fixed

i( ) ⋅ AADT i

IRI fixed
i IRInon− fixed

i

AADT i
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 (5.2) 

where  is the ranked pavement network, and the segment with the largest benefit ranks first. With 

the consideration of budget constraint, segments that can be maintained are selected by:  

 (5.3) 

 (5.4) 

where S is the set of selected segments,  represents the treatment cost for segment i, and B is 

the available budget.  

In the analyses, the budget allocation process is on an annual basis. Initial pavement condition and 

treatment cost are provided. Then a set of treatment decisions is made for the whole pavement 

network through the allocation model. Then, the pavement segment information is updated, and 

the process moves on to the next year. At the beginning of the next year, the treatment cost is 

updated based on the cost prediction models, which can be found in the Section 3.3.1. Then the 

budget allocation model is applied to make the treatment actions for the whole pavement network. 

The whole process is repeated until the end of the analysis period.  

5.3.2 Dynamic LCCA based allocation model 

On the segment level of the dynamic LCCA allocation model, different treatments are evaluated 

and then two optimal alternatives are selected. On the network level, the goal is to minimize the 

total life cycle cost (LCC) for the whole pavement networks within the budget constraint.  

Segment level analysis 

The goal of the segment-level analysis is to evaluate and identify the best treatment 𝑎),+∗  for each 

segment i at the beginning of segment analysis period (e.g., 𝑡,=1) when there is no budget 

constraint. During the evaluation process, available treatment alternatives 𝑵(.) are related with 

rj = rank benefit j( )

rj

S = argminrj costi − B
S ,i⊆S ,S⊆rj

∑
⎛

⎝
⎜

⎞

⎠
⎟

s.t B − costi ≥ 0
S ,i⊆S
∑

costi
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pavement types M (where 𝑚 ∈ 𝑴). Hence, the goal is to evaluate 𝑵(.!), where 𝑚% is initially 

known before the analysis.  

To allow for the impact of a budget constraint in the network level analysis, the top two alternatives 

are identified for each segment, namely,	𝑎),+∗ =	 4𝑎),0"1+
∗+ , 𝑎),0"1+

∗& 6. The evaluation is based on the 

LCC given an analysis period. The action with a smaller LCC is preferable.  

To evaluate action 𝑵(.!)(𝛼) , its minimal LCC is determined by the following optimization 

process:  

min:                                                                       (5.5) 

s.t.                                   (5.6) 

     for                         (5.7) 

     

for   

(5.8) 

                                               (5.9) 

     for                                                                            (5.10) 

     for           (5.11) 

     for                 (5.12) 

 
    for                      

(5.13) 

                    (5.14) 

LCCα

a1 = N
m0( ) α( ) = N1 α( )

xn,ts ≤1n=1

Nts∑ ts = 2,...,Ts

IRI j ,ts = IRI j ,ts−1 + ΔIRI j ,ts( ) ⋅ 1− xn,tsn=1

Nts∑( )+ IRI j ,new + ΔIRI j ,new( ) ⋅ xn,tsn=1

Nts∑

ts = 1,2,...,Ts

IRI j ,ts ≤ IRI j ,threshold

ucts = fcR,ts + fcD ,ts ts = 1,2,...,Ts

ats = xn,ts ⋅N ts
n( )n=1

Nts∑ ts = 1,2,...,Ts

mts = g mts−1,ats( ) ts = 1,2,...,Ts

N ts
= N

mts−1( ) ts = 1,2,...,Ts

acts = p ac0 ,Pasphalt
t ,Pconcrete

t( ) ⋅area
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(5.15) 

     for , and           (5.16) 

Table 5-1. Definitions of all variables in the segment-level optimization process 
Variable Meaning 

  Segment level analysis period 

  Life cycle cost given the segment level analysis period  

  Pavement material type at time t. When 𝑡 = 0, it represents the initial pavement type 

  Discount rate 

  N is the set of treatment actions, n is the ordinal of the actions in N, i.e. N(n) represents 
the 𝑛#$ action a in N, 𝛼 is the ordinal of the evaluated action. 

  
Decision variable. If the  action in  is selected at year ,  . Otherwise, 

. 

  Pavement deterioration without any treatment 

  Pavement deterioration after a treatment 

  The performance threshold value for condition metric j.  

  User cost at year   

 Excess fuel cost induced by roughness-induced PVI at year  

 Excess fuel cost induced by deflection-induced PVI at year  

  Agency cost at year   

 

The goal of the optimization analysis is to evaluate the  treatment action a in  (equation 

(5.6)). For example, {do nothing, surface treatment, asphalt overlay, asphalt reconstruction}, 

then the fourth ( ) treatment action (a) is asphalt reconstruction. The segment-level optimization 

objective is to minimize the total LCC including agency cost ac plus user cost uc for a given 

analysis period   (equations (5.5) and (5.15)).  is a binary variable, which represents 

LCCα = 1

1+ r( )ts
xn,ts ⋅acts n( )+ uctsn=1

Nts∑( )t=1

Ts∑

xn,ts ∈ 0,1{ } ts = 1,2,...,Ts ∀n

Ts
LCC
mt
r

N ,n,a,α

xn,ts
nth N ts

ts xn,ts = 1

xn,ts = 0

ΔIRI j ,ts
ΔIRI j ,new

ΔIRI j ,threshold

ucts ts

fcR,ts ts

fcD ,ts ts

acts ts

α th N1

N1 =

α th

Ts xn,ts
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treatment action n is selected at year   if  is equal to 1. The weight ratio between agency and 

user costs is assumed to be 1:1. This ratio can be modified based on the requirements of a 

transportation agency. 

At any year , at most one action could be selected as shown in equation (5.7). Equation (5.8) 

describes IRI at the end of year  based on the IRI at year -1 and the treatment action at year . 

A treatment action is applied at the beginning of each year. If a treatment action is applied, segment 

performance is improved and IRI decreases to .  can be obtained through a set of 

performance jump models, which are introduced in Appendix D.5. The calculation of ∆𝐼𝑅𝐼 is 

based on the deterioration models introduced in Appendix D.4. Equation (5.9) describes the 

performance constraints for IRI. Equation (5.10) describes the user cost, including excess fuel 

consumption cost caused by both roughness- and deflection-induced PVI. Corresponding 

equations can be found in Appendix C.1.2.  

Equation (5.11) describes the action 	taken at year . Material type  at year  can be 

decided by material type at year -1 and the treatment taken at year  as shown in equation (5.12), 

and then corresponding treatment alternatives could be decided (equation (5.13)). Equation (5.14) 

describes the agency cost, which equals to the multiplication of unit treatment cost and segment 

area. The unit treatment cost changes with unit concrete and asphalt cost. Due to limited cost 

information, it is assumed that cost of concrete treatment actions changes at the same rate as the 

cost of the concrete material. Asphalt treatment actions change at the same rate as the cost of the 

asphalt material. If no material is applied, such as diamond grinding, then treatment actions change 

at the same rate as the construction cost index (CCI) [129].  

The solution of this optimization model is based on the backtrack algorithm (Appendix A). Two 

optimal treatment alternatives  with the smallest LCC are identified for each 

segment i. 

Network level analysis  

On the network level, the goal is to make a final treatment decision for each segment based on an 

optimization process. For each segment i, the goal is to choose one of the two selected alternatives 

ts xn,ts

ts

ts ts ts

IRInew IRInew

ats ts mts ts

ts ts

ai
* = ai,1

*1,ai,1
*2{ }
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 from the segment-level analysis or do nothing. The proposed optimization model makes 

treatment decisions on an annual basis. It updates network performance based on decisions for the 

current year. Then it makes decisions for the next year based on the updated performance. At year 

t, the mathematical formulation of the network-level analysis is shown as follows:  

max:                                                                                                                  (5.17) 

s.t.      for                              (5.18) 

              (5.19) 

    

for  

(5.20) 

      for                                                                                    (5.21) 

Table 5-2. Definitions of all variables in the network-level optimization process 
Variable Meaning 

  Segment number 

  The decrease of life cycle cost given a segment analysis period  after a treatment is taken 
for segment i at year t 

  Two optimal treatment alternatives obtained on the segment level analysis 

  
Decision variables. If  is selected, then ; If  is selected, then . If 

neither  or  is selected, then . 

  Available budget at year t 

 

The optimization objective is to maximize the total decrease of life cycle cost for a given period 

 as suggested by [78], [126], as shown in equation (5.17). Equation (5.18) requires that at most 

one treatment alternative could be chosen for each segment.  and  are binary variables as 

shown in equation (5.21), which represent treatment action  or  is selected at year t if  

ai
*

ΔLCCi,ti=1

I∑

yi,1 + yi,2 ≤1 i = 1,2,..., I

yi,1 ⋅act ai
*1( )+ yi,2 ⋅act ai*2( )( ) ≤ Bti=1

I∑

ΔLCCi,t = LCCi,t 0( )− LCCi,t ai*1( )( ) ⋅ yi,1 + LCCi,t 0( )− LCCi,t ai*2( )( ) ⋅ yi,2
i = 1,2,..., I

yi,1, yi,2 ∈ 0,1{ } i = 1,2,..., I

I

ΔLCCi,t
Ts

ai
*1,ai

*2

yi,1, yi,2
ai
*1 yi,1 = 1 ai

*2 yi,2 = 1

ai
*1 ai

*2 yi,1 = yi,2 = 0

Bt

Ts

yi,1 yi,2

ai
*1 ai

*2 yi,1
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or  is equal to 1. It should be noted that if the condition metric of a pavement segment is less 

than its performance threshold, then this segment will be guaranteed to receive a treatment by 

setting . Equation (5.19) is the budget constraint. Equation (5.20) describes the 

decrease of total LCC for a period , which considers three cases: action  is chosen ( ), 

 is chosen ( ), or no action ( ).  

The network-level optimization problem is an integer programming problem, which is solved by 

the software GUROBI. By solving the optimization problem at year t, treatment decisions could 

be made for each segment i, namely . 

5.3.3 Market diversification 

As suggested by [88], states with more uniform market shares among pavement materials, namely, 

with a higher market diversification, can pay lower prices for all materials. In order to evaluate the 

relationship between indicators of competition – number of bidders and dominant market share - 

and bid pricing for pavement systems, panel data regression models are developed using the bid 

data for concrete and asphalt related pay items that span 10 years for 47 states in the U.S. These 

models embed several covariates that account for cross-sectional and time-varying heterogeneity. 

The panel data regression model can be expressed as:  

 (5.22) 

Where   is the logarithmic unit-price for asphalt and concrete pay items, which is a function of 

covariates (X) and their associated effects (β) as well as an error term (ε). In the budget allocation 

analysis, due to the limited information about the bidders and other covariates, only the linear 

relationship between the logarithmic unit-price and dominant market share is considered. The 

coefficients of dominant market share for asphalt and concrete materials are 0.34 and 1.39, 

respectively. In this case, with the unit change of dominant market share, the corresponding change 

for the unit price can be inferred for both materials.  

yi,2

yi,1 + yi,2 = 1

Ts ai
*1 yi,1 = 1

ai
*2 yi,2 = 1 yi,1 = yi,2 = 0

ai,t = yi,1 ⋅ai
*1 + yi,2 ⋅ai

*2

Yi,t = β0 + β1 ⋅ Xit ,1 +!β p ⋅ Xit ,p + ε it

Yi,t
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In order to increase the market diversification in the dynamic LCCA based allocation model, on 

the network level, given a year, the spending for both asphalt and concrete materials are calculated 

and the corresponding dominant market share is determined. Then, for the next year, both the 

asphalt and concrete cost are updated based on the cost projection model described in the Section 

3.3.1 and the change of dominant market share (equation (5.22)). On the segment level, if there is 

no proactive policy to reduce the market concentration, then the treatment cost values from the 

network level are used. If there is a proactive policy, for example, reduce the dominant market 

share by 10%, then the treatment cost values for the segment level analysis should be modified. 

Suppose the initial asphalt market share is 90%, and the goal is to reduce it to 80%. At a certain 

year, the asphalt market share is 85%, then during the segment level analysis, it is assumed that 

the asphalt market share will continue to decrease to 80% in the future, and there should be a 

corresponding change for the treatment cost since the dominant market share should decrease by 

another 5%. By doing so, the segment level analysis assumes that the unit prices should decrease 

in the future.  

5.3.4 Excess vehicle fuel cost 

Excess vehicle fuel consumption is mainly caused by PVI and the corresponding PVI models are 

described in Appendix C.1.2. The fuel cost is equal to the unit fuel price multiplied by the quantity 

of excess fuels as shown in equation (5.23).  represents the excess gasoline caused 

by roughness-induced PVI for cars that use internal combustion engines. Due to their light weight 

compared to trucks, deflection-induced PVI is ignored for cars.  represents excess diesel 

consumptions for trucks in terms of roughness-induced PVI. Existing PVI models are based on the 

ICEV. Considering the increasing number of EVs, the adopted PVI model is adjusted based on the 

relative energy intensity per mile for ICEVs and EVs. Using this information, the expected energy 

consumption, in terms of kWh of electricity, are computed for the fraction of vehicles that are 

assumed to EVs (details are in Appendix C.1.3).  represents excess electricity 

consumptions for cars that belong to EV in terms of roughness-induced PVI. In the analysis, the 

deflection-induced PVI is only considered for trucks, and  represents excess diesel 

consumptions for trucks in terms of deflection-induced PVI.  

δ IFCR,ICEV car

δ IFCR,truck

δ IFCR,EV car

δ IFCD
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The initial gasoline and diesel cost are based on [153]. The initial electricity cost for each state is 

based on the state electricity profiles from EIA [160]. The projections of future gasoline, diesel, 

and electricity cost are from the table Energy Prices by Sector and Source provided by [161].  

 (5.23) 

5.4 Case Study 

Three proposed management policies are evaluated for all states across the U.S with the exception 

of Alaska and Hawaii due to a lack of data. Five scenarios are proposed as listed in Table 5-3. 

Their differences mainly lie in three aspects: (1) treatment evaluation approach, which is used to 

select the optimal treatment alternative for a pavement segment; (2) treatment evaluation period, 

which represents the period during which a treatment is evaluated for its benefit; (3) market 

diversification, which shows whether the influence of market concentration is considered and 

whether the policy to increase the market diversification is proactively considered. These three 

aspects are concerned with the proposed management policies, and the scenarios in Table 5-3 can 

be compared to reflect the benefits of policies as shown in Table 5-4.   

Table 5-3. Scenarios to evaluate pavement management policies 
Scenario Evaluation approach Evaluation period Market diversification 
BAU decision tree - No 
dLCCA 5 dynamic LCCA 5 years No 
dLCCA 20 dynamic LCCA 20 years No 
dLCCA mkt0 dynamic LCCA 20 years Yes 
dLCCA mkt dynamic LCCA 20 years proactively consider it  

 

Table 5-4. Evaluation objectives for different comparisons among scenarios 
Scenario comparisons Evaluation objectives 
BAU - dLCCA 5 benefit of the decision-making flexibility policy 
dLCCA 5 - dLCCA 20 benefit of the long-term planning policy 
dLCCA 20 - dLCCA mkt0 influence of the awareness of market concentration 
dLCCA mkt0 - dLCCA mkt benefit of advocating for market diversification  
BAU - dLCCA mkt benefit of incorporating all three policies 

 

Fuel Cost =α gasoline ⋅δ IFCR,ICEV car +α diesel ⋅ δ IFCR,truck +δ IFCD( )+α electricity ⋅δ IFCR,EV car
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For all scenarios, the network analysis period is from 2017 to 2050. The pavement management 

system data are sampled by statistical inference from the FHWA road statistics and LTPP dataset. 

The sampling process for each state can be found in Appendix D.1. The initial unit prices for 

concrete and asphalt paving materials are the 5-year (2016-2020) average cost exacted from the 

Oman data (details can be found in Appendix D.2). Notably, there is almost no concrete pavement 

projects in the past 5 years in several states including Massachusetts, Maine, New Hampshire, New 

Jersey, Rhode Island, Vermont and Mississippi. Hence, for the BAU scenario, these states only 

use asphalt materials. But for dLCCA related scenarios, concrete materials are applied and it is 

assumed that the unit concrete price is equal to the 75th percentile of the distribution for the unit 

concrete prices across the U.S. In addition, for some states, like Montana, have very high concrete 

prices but their neighbor states can have quite low prices. In this case, it may be more economic 

to transport concrete from neighbor states. Here, it is assumed that if the concrete price of a state 

is larger than 75th percentile of the distribution for the unit concrete prices, then its concrete price 

is equal to the average of concrete prices from its neighbor states whose price is lower than the 

75th percentile of the distribution for the unit concrete prices.  

Future material cost is projected by a prediction model introduced in the Section 3.3.1. Due to 

limited information of treatment actions for all states, it is assumed that states in the same climate 

zone have the same set of treatment actions, which are listed in Appendix D.3.  

The determination of treatment schedules is usually based on the future conditions of pavement 

segments. During this process, the pavement deterioration model is used to predict pavement 

condition without any treatments, and the performance jump model is applied to describe the 

pavement condition after a treatment. Corresponding models can be found in Appendix D.4 and 

D.5.  

For all scenarios, due to different importance levels, given a state, each road system (i.e., interstate, 

arterial, collector, and local) is analyzed separately. Each system has its own critical budget, which 

is the minimum annual budget to maintain pavement network condition under the BAU scenario 

over the network analysis period. Figure 5-2 shows the average IRI over the network analysis 

period for the BAU scenario. The high traffic roads include interstate and arterial systems, and the 

low traffic roads include the collector and local systems.  
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Figure 5-2. Average IRI over the network analysis period for the BAU scenario 

5.4.1 Total savings for vehicle fuel cost 

The total excess vehicle fuel costs from 2017 to 2050 across the U.S are calculated for the five 

scenarios in Table 5-3 and presented in Figure 5-3. Generally, the proposed policies reduce the 

vehicle fuel cost significantly. After incorporating all three policies, the total excess vehicle fuel 

cost (e.g., the comparison between BAU and dLCCA mkt) is reduced by 28%, a savings of about 

62 billion dollars.  

 
Figure 5-3. Total excess vehicle fuel costs for different scenarios from 2017 to 2050 across the 

U.S excluding Alaska and Hawaii 

The excess vehicle fuel costs for different systems are shown in Figure 5-4. Figure 5-4(a) shows 

the absolute total cost for different systems, and the arterial system provides the largest saving 

when comparing the BAU and the dLCCA mkt scenarios, which is equal to 40.3 billion dollars. 

Figure 5-4(b) shows the relative total fuel cost compared to the BAU scenario for different systems, 
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and the interstate system provides the largest relative saving, about 52%. The interstate and arterial 

systems provide large savings due to the shift from using asphalt materials to concrete materials, 

as shown in Figure 5-5(a). The ratio of concrete-surfaced pavements (e.g., concrete pavements and 

concrete overlay composite pavements, COC) has increased from 10% to 59% for high traffic 

roads. Concrete pavements usually have a slower deterioration rate and are stiffer than the asphalt 

pavements. For the high traffic roads, concrete-surfaced pavements usually require less treatment 

actions compared to asphalt-surfaced pavements. Hence, the annual average life cycle cost for 

concrete is usually smaller than that for asphalt roads. After incorporating the flexibility in decision 

making (e.g., asphalt pavement can be maintained by concrete overlays), considering the long-

term benefits and unit prices’ reduction due to market diversification, the high traffic roads will 

tend to use more concrete materials. For low traffic loads, the pavement deterioration is usually at 

a slow rate and hence, the number of maintenances is smaller than the high traffic roads. In this 

case, the benefit of concrete material is not eminent compared to asphalt. As shown in Figure 5-

5(b), after incorporating three management policies, most roads are still asphalt-surfaced ones. 

  
(a) (b) 

Figure 5-4. (a) Total excess vehicle fuel cost and (b) excess vehicle fuel cost ratios compared to 

the BAU scenario for different systems scenarios of BAU and dLCCA mkt. 
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(a) (b) 

Figure 5-5. Pavement type distribution for (a) high traffic roads and (b) low traffic roads. 

5.4.2 State-level vehicle fuel cost saving due to decision-making flexibility 

As shown in the Section 5.4.1, the total excess vehicle fuel cost saving due to decision-making 

flexibility is about 23.4 billion dollars from 2017 to 2050 based on the comparison between BAU 

and the dLCCA 5 scenario. For the BAU scenario, the decision-making process is based on a 

prescribed decision tree. For example, asphalt pavements can only be maintained by the asphalt 

materials, and the treatment type is mainly determined by the IRI and age thresholds. Compared 

to the BAU scenario, the dLCCA 5 scenario, which is based on the dynamic LCCA allocation 

model, relaxes the decision-making process so that any type of pavement can be maintained by 

both asphalt and concrete materials, and the optimal treatment action is determined by the LCCA 

process.  

Figure 5-6(a) shows the annual average total savings for each state in the U.S. There are three 

states whose savings are larger than 50 million dollars. Figure 5-6(b) shows the annual average 

savings per lane mile for each state in the U.S. There are 7 states whose savings are larger than 

300 dollars per lane mile. In general, all states can benefit from the decision-making flexibility 

policy, especially for California, Washington, and states near New York. The states in the wet 

nonfreeze climate zone tend to have small cost savings.  

Next, potential factors that influence the magnitude of the savings due to the decision-making 

flexibility policy are explored. Two types of factors are considered for each road system, including 

(1) pavement network condition: the average IRI, the average AADT, the pavement type 

distribution, pavement area ratios for different systems; (2) economic factors: budget level, unit 
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prices for both asphalt and concrete, and cost ratio between concrete and asphalt unit prices. Then, 

the correlation coefficients between each factor and the state-level savings due to the decision-

making flexibility are calculated. If the correlation coefficient of a factor is larger than 0.35 or 

smaller than -0.3, then this factor is considered influential.  

As seen from Figure 5-6(b), New Jersey, Rhode Island, and Massachusetts have the largest unit 

saving per lane mile (more than $1000 per lane mile), and their savings are much larger than other 

states (less than $500 per lane mile). One potential reason is that the pavement networks for these 

states are in very bad condition, especially for arterial, collector, and local systems. Due to their 

huge differences from other states in terms of unit cost saving, these three states are considered 

outliers and are removed from the correlation analysis.  

The positive factors mainly include the average IRI for all systems, the average AADT for 

interstate, arterial and collector systems, and the asphalt price. Notably, the average AADT for the 

local system also has a relatively large correlation coefficient (0.3). When the initial pavement 

network is in bad condition and the traffic level is large, a state has a higher chance to witness a 

big saving due to the decision-making flexibility policy. When the asphalt price is high, the cost 

difference between asphalt overlay and reconstruction becomes large, and the cost difference 

between asphalt and concrete becomes small. In this case, for some extremely bad roads (i.e., IRI 

is larger than 2.68), where the BAU scenario uses the reconstruction, the dLCCA 5 scenario will 

use more asphalt and concrete overlays in order to fix as many as pavement segments as possible.  

The only negative factor is the cost ratio between concrete and asphalt unit prices. When the cost 

ratio is large, only asphalt materials are applied, leading to potentially high excess vehicle fuel cost 

due to deflection-induced PVI.  
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(a) 

 

 
(b) 

Figure 5-6. State-level annual cost saving due to decision-making flexibility policy: (a) total 

saving, (b) unit saving per lane mile. 

5.4.3 State-level cost saving due to long-term planning 

The total excess vehicle fuel cost savings due to long-term planning policy is about 17.4 billion 

dollars from 2017 to 2050, as shown in Figure 5-3. Compared to the dLCCA 5 scenario, the 
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dLCCA 20 scenario evaluates treatments based on their long-term performance. In this case, more 

overlays and reconstructions are expected to be applied.  

Figure 5-7(a) shows the annual average total savings due to the long-term planning policy for each 

state in the U.S. There are 5 states whose total annual benefits are larger than 20 million dollars. 

Figure 5-7(b) shows the annual average unit saving per lane mile for each state in the U.S. There 

are 3 states whose annual benefits are larger than $250 per lane mile, including Maryland, 

California and New Jersey. In general, all states can benefit from the long-term planning policy. 

States in wet-freeze climate zone tend to benefit more from the long-term planning policy.   

Next, potential factors that influence the magnitude of the savings due to the long-term planning 

are explored. Potential factors are the same as those introduced in the Section 5.4.2. Maryland, 

California, and New Jersey are removed from the correlation analysis, whose unit cost savings are 

larger than $250 per lane mile. 

The positive factors mainly include the average IRI for the arterial system, the average AADT for 

arterial and collector systems, the asphalt price, and the budget level for interstate system. When 

the initial pavement network is in bad condition and the traffic level is large, a state has a higher 

chance to witness a big saving due to the long-term planning policy. In this case, long-term 

treatments, i.e., overlays, reconstructions, and concrete materials, are expected to be used more. 

When the budget level is large, long-term treatments can also be used more.  

The only negative factor is the ratio for the concrete pavements in the interstate system. Due to the 

high traffic volume, it is better to use concrete material due to its long-term durability and high 

stiffness. Hence, when the ratio for the concrete pavements in the interstate system is large, there 

is a small improvement by increasing the ratio of concrete pavements, leading to small cost saving 

due to the long-term planning policy.  
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(a) 

 
(b) 

Figure 5-7. State-level annual cost saving due to long-term planning policy: (a). total saving, (b). 

unit saving per lane mile. 

5.4.4 State-level cost saving due to market diversification 

For most existing budget allocation analyses, the influence of market concentration is ignored, 

namely, the prices of treatment materials are not influenced by the market concentration. However, 

as shown in Figure 5-3, after being aware of the market concentration, the total vehicle cost saving 

is about 12.8 billion dollars from year 2017 to 2050. Figure 5-8 shows the annual total cost saving 
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per lane mile for each state. States in the East tend to have large cost savings. The positive factors 

include the budgets for collector system, and the average IRI for the interstate system. The only 

negative factor is the cost ratio between concrete and asphalt prices. These factors influence the 

usage of concrete material, and thus have an impact on the unit prices for both asphalt and concrete 

materials. 

 
Figure 5-8. State-level annual cost saving per lane mile due to the awareness of market 

concentration. 

Next, by proactively diversifying the paving market, another 8.7 billion dollars for vehicle fuel 

cost can be saved from 2017 to 2050 as shown in Figure 5-3. Considering different states have 

different initial conditions and material prices, different states may have different objectives in 

terms of how much asphalt market share should be decreased. For each state, 5 objectives are 

compared, including 0%, 5%, 10%, 15% and 20%. The total excess vehicle fuel costs are obtained 

for each objective, and then the one that provides the smallest excess vehicle fuel cost is considered 

as the optimal objective. Figure 5-9 shows the optimal objective for each state. All states can 

benefit from the proactive market diversification, except for the state of Wyoming due to its high 

concrete price. The main influential factor for the optimal objective is the initial market share for 

asphalt materials. When the initial market share is large, a state tends to have a large optimal 

objective.  
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Figure 5-9. Optimal objectives to decrease the asphalt market share for each state. 

Figure 5-10(a) shows the annual average total savings due to proactive market diversification for 

each state in the U.S. There are 4 states whose total annual benefits are larger than 15 million 

dollars. Figure 5-10(b) shows the annual average savings per lane mile for each state in the U.S. 

There are 11 states whose annual benefits are larger than $100 per lane mile. In general, all states 

except Wyoming can benefit from the proactive market diversification. States in wet freeze climate 

zone tends to benefit more and states in dry nonfreeze climate zone tend to have small savings.   

Next, potential factors that influence the magnitude of the benefits due to the proactive market 

diversification are explored. Potential factors are the same as those introduced in the Section 5.4.2. 

Rhode Island, New Jersey, and Connecticut are removed from the correlation analysis, whose unit 

cost savings are larger than $200 per lane mile. 

The positive factors mainly include the average AADT for interstate, arterial, and collector systems, 

the budget levels for collector system, and the asphalt price. These factors can promote the concrete 

usage and reduce the market concentration for asphalts.  

The negative factor is cost ratio between the concrete and asphalt prices. When this ratio is large, 

concrete becomes less preferable, and asphalt continues to be dominant in the paving market.  
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(a) 

 
(b) 

Figure 5-10. State-level annual cost saving due to the proactive increase of market 

diversification: (a). total saving, (b). unit saving per lane mile. 

5.4.5 State-level total cost saving  

Figure 5-11(a) shows the annual average total savings after incorporating all management policies 

for each state in the U.S. There are 4 states whose total annual benefits are larger than 100 million 

dollars. Figure 5-11(b) shows the annual average savings per lane mile for each state in the U.S. 

There are 8 states whose annual benefits are larger than $700 per lane mile. All states benefit from 
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the proposed management policies. States in the wet freeze climate zone, the state of California, 

and Washington provide larger unit savings compared to other states.  

The influential factors have been discussed in the previous sections. To summarize, positive factors 

mainly include the average IRI, AADT, asphalt price, and budget levels. The negative factors 

mainly include cost ratio between concrete and asphalt prices, and the ratio of concrete pavements 

in the interstate system.  

 
(a) 

 
(b) 

Figure 5-11. State-level total annual cost saving: (a). total saving, (b). unit saving per lane mile. 
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5.5 Conclusions 

This chapter has evaluated the benefits of three management policies across the U.S based on five 

scenarios. Compared to the BAU scenario, after incorporating the policies of decision-making 

flexibility, long-term planning, and market diversification, the total excess vehicle fuel cost due to 

PVI can be reduced by 28%, which is approximately 62 billion dollars, for the period from 2017 

to 2051. The arterial system provides the largest absolute cost saving of about 40 billion dollars, 

and the interstate system provides the largest relative cost saving about 52%. These policies also 

influence the distribution for pavement types. For high-traffic roads (interstate and arterial), the 

ratio of concrete-surfaced pavements increases from 10% to 59%. For low traffic roads, the ratio 

increases from 0% to 6%. The increasing usage for concrete materials can provide long-term 

benefits for the pavement network and decrease the unit prices for both asphalt and concrete 

materials.  

All states can benefit from proposed three management policies. States in the wet freeze climate 

zone, California and Washington, have larger unit saving per lane mile compared to other states. 

The positive influential factors include the average IRI, traffic volume, asphalt price, and budget 

levels. The negative influential factors mainly include the cost ratio between the concrete and 

asphalt, and the ratio of concrete pavements in the interstate system.  

There are several limitations for the analyses. First, the pavement management system data is 

mainly based on the statistical inference from the FHWA road statistics and LTPP database. 

Second, due to limited data, states in the same climate zone assume to have the same deterioration 

rate, and the deterioration model lacks the consideration of the influence of future temperature rise. 

With a high resolution of data in the future, these limitations could be solved, and a better set of 

results is expected to be obtained.  
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CHAPTER 6 CONCLUDING REMARKS AND FUTURE WORK 

Performance-based planning is an efficient way to improve pavement networks. By using a robust 

pavement deterioration model, an efficient budget allocation algorithm, appropriate treatment 

strategies and management policies, current pavement networks can be improved significantly 

even within an already tight budget. This chapter summarizes the main conclusions that derive 

from this thesis as well as its limitations and suggested future work to address those. The answers 

to research question in Section 1.4 are embedded in the dissertation summary and conclusions.  

 

6.1 Summary and Conclusions 

This dissertation presents a comprehensive study of pavement modeling approaches, pavement 

treatment strategies and management policies, with the ultimate objective of improving 

performance-based planning and, therefore, pavement networks.  

Pavement deterioration prediction model 

A new weighted multi-output neutral network model for pavement deterioration prediction has 

been proposed, which can predict multi pavement condition metrics simultaneously. This model 

provides convenience for pavement management systems whose treatment decisions are based on 

composite, multi-condition metrics such as the pavement condition index (PCI). Considering the 

fact that different condition metrics may have different importance levels, each metric to be 

predicted must be assigned a weight during the model training process.  

Compared to single-output models, an appropriately weighted, multi-output model performs better 

at estimating PCI (13% lower MSE) than an estimate derived from multiple, individually 

optimized single-output models. These results make it clear, that multi-output models can improve 

prediction performance in cases where correlation exists. Furthermore, careful variable weighting 

is important to achieve the optimal balance of prediction performance among the various metrics.  
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Budget allocation model 

A new probabilistic, bottom-up model for the budget allocation process in pavement management 

systems has been proposed, which is called the probabilistic treatment path dependence (PTPD) 

model. PTPD modelling incorporates uncertainty in pavement deterioration, treatment cost and 

also treatment path dependence brought by future uncertainties. Different from most existing 

allocation models, the PTPD model evaluates treatments based on both its own immediate benefit 

and also the expected benefits of its possible subsequent treatments. In this thesis, the evaluation 

metric used to frame the objective function is the total system cost for given an analysis period, 

including both agency cost and user cost. In this case, if the price of a treatment action increases, 

then the model will avoid using this treatment, which is actually the benefit of considering 

treatment path dependence.  

This PTPD model provides a decision-maker an opportunity to control the uncertainty of future 

pavement networks through a risk-based optimization process. When the risk-aversion coefficient 

is large, the model tends to choose treatments that provide lower future uncertainties, and the 

predicted future pavement network has a small performance uncertainty.  

Compared to a conventional allocation model based on the benefit-cost ratio (B/C) approach, 

PTPD yields a better predicted network performance. In the presented case study, to achieve a 

similar performance level, the B/C model requires a 10 % higher budget to deliver the same 

average performance over the analysis period and a 17 % higher budget for the end of analysis 

period. This is partly due to the selection of different types for treatments. The PTPD model tends 

to use more reconstructions and overlays for the first few years and then shifts to preservations. 

By doing so, the pavement network can benefit from the long-term treatments and the network 

condition can be improved gradually.   

Pavement treatment strategies 

Pavement modeling itself is not enough to improve pavement networks, it is also necessary to 

consider how the budget allocation problem is framed. In this thesis, the influence of problem 

framing has been evaluated from both environmental and economic perspectives, in particular 

framing that can alter the size of the available solution space, on the outcome of performance-
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based planning for a road network. The problem framing is reflected by different treatment 

strategies, which are concerned with treatment materials, treatment types and evaluation period.  

Results suggest the importance of applying a variety of materials and treatment types and using a 

long evaluation period to improve predicted pavement network performance and reduce GHG 

emissions. Compared to commonly used 5-year AC only strategy, the proposed strategy was 

shown to deliver the same network performance at a budget that was 32% lower and reduce 

associated GHG emissions by 21%. In addition, due to the use of asphalt materials and thin 

overlays, even though more treatment actions are applied as budget levels increase, the slight 

decrease of emissions due to PVI cannot offset the increase of embodied emissions. Based on a 

sensitivity analysis, the proportions of treatment materials and treatment types found in the optimal 

solution are influenced by budget levels. Essentially, in optimal solutions, short-term, asphalt 

treatments are observed to be used more frequently when the budget level is low, and concrete, 

long-term treatments are observed to used more when the budget level is high.  

Pavement management policies 

Performance-based planning cannot deliver on its full potential without appropriate pavement 

management policies. Three management policies were evaluated in this thesis based on the U.S. 

pavement networks, including decision-making flexibility, long-term planning, and market 

diversification. Essentially, these policies try to relax selection criteria for pavement treatments, 

consider long-term performance, and also reduce unit prices for both asphalt and concrete 

materials.  

Compared to the BAU scenario, after incorporating the three proposed policies, the total excess 

vehicle fuel cost can be reduced by 28%, i.e., 62 billion dollars for the period from 2017 to 2051. 

Of this, the arterial system provides the largest absolute cost saving of about 40 billion dollars, and 

the interstate system provides the largest relative cost saving at about 52%. These policies also 

influence the distribution of pavement types. For high-traffic roads (interstate and arterial), the 

ratio of concrete-surfaced pavements increases from 10% to 59%. For low traffic roads, the ratio 

increases from 0% to 6%. The increasing use of concrete materials can provide long-term benefits 

for pavement networks and decrease the unit prices for both asphalt and concrete materials.  
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All states can benefit from the proposed policies explored in this thesis. States in the wet freeze 

climate zone, California, and Washington have larger unit cost savings per lane mile compared to 

other states. The positive influential factors include the average IRI, traffic volume, asphalt price, 

and budget levels. The negative influential factors mainly include the cost ratio between concrete 

and asphalt and the ratio of concrete pavements in the interstate system.  

6.2 Limitations and Future Work 

The proposed framework for PBP is efficient and feasible to improve current pavement networks. 

It provides guidance for transportation agencies regarding how to allocate a limited budget more 

efficiently, and insights for stakeholders as to how to promote appropriate management policies. 

However, due to the limitation of available data and model algorithms, there are still some 

limitations for this dissertation work.  

Pavement deterioration prediction model  

The proposed weighted multi-output neural network model is based on the Markovian assumption, 

which ignores the historical dependence during the prediction process, namely, the prediction at 

year t+1 is only based on the information at t. Even though the proposed variables can reflect the 

treatment history, the prediction algorithm itself cannot incorporate historical dependence.  

In order to solve this limitation, the author has developed several recurrent neural networks for IRI, 

RUT and ACRACK based on the LTPP dataset [162]. These models are all single-output ones. 

Compared to the conventional feed-forward neural network models (i.e., they are built based on 

the Markovian assumption), the recurrent neural network models have better prediction 

performances.  

For future work, it is better to build a multi-output recurrent neural network model, which can both 

incorporate the correlations among different condition metrics, and also consider the historical 

dependence during the prediction process. In addition, telematics data have attracted more and 

more attention in both academia and industry (e.g., Carbin developed at CSHub). In the near future, 

it can be foreseen that there will be prediction models based on telematics-derived data of road 

condition. Considering the convenience of data collection, it may be necessary to develop some 

online models for pavement condition prediction.  
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Budget allocation model 

The proposed PTPD model incorporates uncertainties for pavement treatment cost and pavement 

deterioration. In addition to these two uncertainty sources, there is also budget uncertainty, which 

can be influenced by economic conditions, or federal and state policies. In a TSBU framework, 

the budget uncertainty does not influence the evaluation of treatment actions on the segment level. 

Instead, it influences how many segments can be maintained.  

The consideration of uncertainties increases the computational cost. Even though the proposed 

backtrack algorithm is already very efficient compared to existing algorithms, it is still necessary 

to improve the calculation process for large-scale analyses.  

During the analyses, all segments are assumed to be independent, namely, their relative geographic 

relationships are ignored. However, in the real-world application, there may exist some constraints 

about geographic locations. For example, when road segments are maintained, the algorithm 

should make sure that cars have a reasonable detour route around the roads under repair so that the 

traffic flow will be not influenced dramatically.  

For future work, first, the cost projection model should be updated. The cost projection model 

applied in this thesis is based on data at least before year 2016. It is better to update the cost 

projection model based on an updated dataset. Second, the influence of budget uncertainty should 

be explored. For example, how budget uncertainty influences the selection of treatment materials. 

Next, considering the huge computational cost from the segment-level analyses, it is suggested to 

develop a look-up table or a deep learning model to ‘memorize’ all possible segment-level results. 

The deep learning model has the capacity to memorize all training data when it is complex enough 

(i.e., overfitting). Last but not least, the dependences among segments should be incorporated. On 

the one hand, it would provide insights on treatment feasibility due constraints associated with 

geographic location. On the other hand, this would also allow the model to incorporate the 

consideration of economy scale, i.e., the unit price for pavement treatment decreases with an 

increase in project size.   
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Pavement treatment strategies 

During the evaluation of different treatment strategies, several assumptions are made due to 

limitations of available data and the PTPD algorithm. First, due to limited records in the Iowa PMS 

dataset, it is infeasible to develop a robust performance jump model for overlays with different 

thicknesses, or a model for the preservation. Hence, linear interpolation is applied for overlay 

models, and the preservation model is based on the LTPP dataset. In the future, with the increasing 

resolution of Iowa’s PMS data, a set of robust performance jump models are expected.  

The deterioration model is developed based on the historical PMS data. In the future, with the 

improvement of material properties for both asphalt and concrete materials, it is necessary to 

update the deterioration model as well based on the new data in the future.    

Pavement management policies 

The evaluation of different management policies is based on all states in the U.S. excluding Hawaii 

and Alaska. However, due to the limitation of available data, the PMS data for each state is sampled 

based on FHWA road statistics, and age and thickness are statistically inferred from the LTPP 

dataset. In the future, with the increasing resolution of PMS data for each state, it should be 

possible to use real data for each road segment. For example, the Carbin tool developed at MIT’s 

CSHub is collecting road condition data across the U.S. 

Due to the limited data, in this thesis, only four sets of deterioration models are developed for each 

climate zone. For future work, to increase the robustness for pavement deterioration prediction, it 

is better to develop state-specific pavement deterioration models. In addition, applied deterioration 

models cannot incorporate the influence of climate change, namely, under different climate 

scenarios, two pavement segments would have the same deterioration rates as long as they have 

the same age, thickness and traffic volume. Considering the potential for climate change, it is 

necessary to incorporate temperature and precipitation in the model with the increasing collection 

of PMS data in the future.  
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Finally, the improvement of pavement networks should not only rely on this or other research 

works. It is also necessary and important to communicate research findings with transportation 

agencies and stakeholders. In the future, some research work should also focus on how to better 

communicate the value of changing network management practices to key stakeholders.  
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Appendix A: Backtrack-Search Algorithm 

Pseudocode 

In the pseudocode, a represents the partial schedule which uses integers to represent treatment 

actions. For example, 0 represents ‘do nothing’, and 1 represents the first action in the set of 

available treatments denoted by N. T is the analysis period. The search process can be described 

by a recursive process, i.e., the function called BSA(a). The role of function FIRST(a) is to 

generate the first extension of partial schedule a. The role of function NEXT(a) is to generate the 

next alternative extension of partial schedule a.  

min_cost = inf 

Function BSA(a):  

    global min_cost 

    if TC(a) > min_cost: return None 

    if TC(a) < min_cost & length(a) = T: 

        min_cost = TC(a) 

        return min_cost 

    n ← FIRST(a) 

    while n ≠ None: 

        BSA(a) 

        n ← NEXT(a) 

 
Function FIRST(a): 

    if length(a) = T: return None 

    else: return (a[0], a[1], ..., a[k], 0) 

 
Function NEXT(n):  

k ← length(n) 

    if n[k] = length(N): return None 

    else: return (n[0], n[1], ..., n[k-1], n[k]+1) 

 
Function TC(a):  

    return the total cost for the partial schedule a 
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Computational Performance 

To test the computational performance of the backtrack-search algorithm, four analysis periods are 

analyzed, including 5, 10, 15, and 20 years. For each analysis period, 10,000 segment samples are 

generated. Each of them has different age, thickness, traffic, material type, all of which influence 

the deterioration rate. During the analysis period, uncertainties of treatment cost and deterioration 

are considered to generate future scenarios. During the search process, the future scenario is fixed. 

But the deterioration uncertainty is different for each year. The cost of the same treatment action 

is different for each year. 8 treatment actions are considered, as listed in the Table 3-4 in Section 

3.4.1.  

The computational performance is evaluated by the number of visited steps. Suppose M is the 

number of available treatment actions, and T is the analysis period, then the total number of 

possible treatment schedules is (𝑀 + 1)# and each schedule includes T steps. Hence, the number 

of visited steps for the brute-force approach is 𝑇(𝑀 + 1)#. Table A1 shows the computational 

performance based on the number of visited steps. The analyses are conducted in MATLAB. The 

results show that the real number of visited steps is much smaller than the brute-force approach. 

In addition, even for 20 years, in terms of the maximum number of visited steps, the total running 

time is still less than 0.2s on a laptop (3.5 GHz Intel Core i7, RAM 16GB). 

Table A-1. Number of visited steps 
 mean std min max brute-force 
5 years 153 74 45 684 2.95 × 10% 
10 years 1,237 1,182 90 10,800 1.74 × 10&' 
15 years 7,118 9,066 135 94,653 1.03 × 10&% 
20 years 36,199 60,536 180 745,506 6.08 × 10&( 

Note: (1). The results are based on 10,000 random segments; (2). 1,000,000 steps take about 0.2 second in 
MATLAB 
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Appendix B: Supplementary Materials for Chapter 3 

In Section 3.4.3, the proposed PTPD model is compared with a B/C model. It is important to note 

that the magnitude and specifics of these results would certainly shift for different cases, under 

different budget levels, and for different levels of risk preference. As an example of this, an 

analysis of the sensitivity of model results to the choice of discount rate is presented here. 

Considering that the segment-level decision-making process is mainly based on the total cost 

distributions, the rank preference of different treatment actions could be influenced by the discount 

rate. Here, a sensitivity analysis of the influence of discount rate on both segment- and network-

level result is presented.  

The US Federal Highway Administration (FHWA) recommends using OMB discount rates for the 

life-cycle cost analysis of highway projects a . The United States Government Office and 

Management and Budget (OMB) through circular A-94 "Guidelines and Discount Rates for 

Benefit-Cost Analysis of Federal Programs." suggests a discount rate of 1.3-1.5% for calendar year 

2019 b. FHWA suggested that discount rate use the OMB rate, i.e., 1.3%. Many existing papers 

use a discount rate of 4%. Therefore, the discount rates r for the sensitivity analysis are chosen as 

0, 1.5%, 3%, 4% and 5%. Here are the results:  

Segment-level Analysis 

The segment-level analysis is based on the same segment in Section 3.4.1. Table B-1 and Table 

B-2 show the optimal treatment alternatives for different discount rates (r) and risk-aversion 

coefficients (θ) when the analysis period is 5 and 10 years, respectively.  

 

a Kane, AR, FHWA Policy Memorandums: National Highway System Designation Act; Life-Cycle Cost Analysis 

Requirements, April 19,1996. Retrieved from https://www.fhwa.dot.gov/legsregs/directives/policy/lcca.htm on 

April 17, 2019. 

b https://www.whitehouse.gov/wp-content/uploads/2018/12/M-19-05.pdf  
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When the analysis period is 5 years, the influence of discount rate is insignificant. When the 

analysis period is 10 years and risk-aversion coefficient is small, optimal treatment alternatives 

shift to lower initial-cost actions like mill and fill (MF), and asphalt overlay (4” AC). (See light 

yellow shaded cells.). When the analysis period is 10 years and the risk-aversion coefficient is 

large, two optimal treatment alternatives stay the same but their order may change.  

Table B-1. Optimal treatment alternatives for different discount rates and risk-aversion coefficients 
when the analysis period is 5 years.  

 Optimal Alternatives (analysis period = 5 years) 
r = 0 r = 0.015 r = 0.03 r = 0.04 r = 0.05 
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

𝛉=0 2'' MF 4'' AC 2'' MF 4'' AC 2'' MF 4'' AC 2'' MF 4'' AC 2'' MF 4'' AC 
𝛉=1 2'' MF 4'' AC 2'' MF 4'' AC 2'' MF 4'' AC 2'' MF 4'' AC 2'' MF 4'' AC 
𝛉=5 4'' PCC 2'' MF 4'' PCC 2'' MF 4'' PCC 2'' MF 4'' PCC 2'' MF 4'' PCC 2'' MF 
𝛉=10 4'' PCC 8'' PCC 4'' PCC 8'' PCC 4'' PCC 8'' PCC 4'' PCC 8'' PCC 4'' PCC 8'' PCC 

Note: MF=mill & fill, AC=asphalt, PCC=concrete 

Table B-2. Optimal treatment alternatives for different discount rates and risk-aversion coefficients 
when the analysis period is 10 years.  
 Optimal Alternatives (analysis period = 10 years) 

r = 0 r = 0.015 r = 0.03 r = 0.04 r = 0.05 
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

𝛉=0 4'' AC 4'' PCC 4'' AC 2'' MF 4'' AC 2'' MF 2'' MF 4'' AC 2'' MF 4'' AC 
𝛉=1 4'' PCC 2'' MF 2'' MF 4'' PCC 2'' MF 4'' PCC 2'' MF 4'' AC 2'' MF 4'' AC 
𝛉=5 4'' PCC 2'' MF 4'' PCC 2'' MF 2'' MF 4'' PCC 2'' MF 4'' PCC 2'' MF 4'' PCC 
𝛉=10 4'' PCC 2'' MF 4'' PCC 2'' MF 4'' PCC 2'' MF 2'' MF 4'' PCC 4'' PCC 2'' MF 
Note: MF=mill & fill, AC=asphalt, PCC=concrete 

Network-level Analysis 

For the network-level analysis, the risk-aversion coefficient is chosen as 1. Except for the discount 

rate, all other information is the same as that in Section 3.4.3. The B/C model considers current 

period costs and non-monetary benefits that accrue over time. As such, the discount rate does not 

alter the B/C metric of the B/C model results. 

Figure B-1 shows the cumulative probability curves of average TWIRI over 20 years under 

different discount rates. For all discount rates, the PTPD model performs better than B/C model. 
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The discount rate will influence the segment-level treatment decisions and thus influence 

pavement network performance. With the increase of discount rate, the long-term benefits of 

treatments are diminished. This leads the segment-decision process to select more treatments with 

low upfront costs, but less long-term benefit. In turn, this leads to a network with higher variability 

in performance over the long term.  

 

Figure B-1. CDF of average TWIRI over 20 years under different discount rates 

Summary 

In addition to the discount rate, there are other parameters that could influence the model 

performance, future work should extend current model to sensitivity analysis to explore the 

influence of different parameters. Nevertheless, the results shown here suggest that it is promising 

to explicitly consideration of cost uncertainty in pavement management. 
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Appendix C: Supplementary Materials for Chapter 4 

C.1. Methodology 

C.1.1 Modified PTPD model 

The segment level analysis in the PTPD model is modified to incorporate multi condition metrics. 

The objective is still to minimize both the expectation and standard deviation of total life cycle 

cost. Instead of a single condition threshold for IRI in Chapter 3, each condition metric has its own 

condition threshold. The user cost is only concerned with IRI, so the treatment decision of a 

segment is determined by both threshold value and cost-oriented optimization process 

Segment level analysis 

The goal of the segment-level analysis is to evaluate and identify the best treatment 𝑎),+∗  for each 

segment i at the beginning of segment analysis period (e.g., 𝑡,=1) when there is no budget 

constraint. During the evaluation process, available treatment alternatives 𝑵(.) are related with 

pavement types M (where 𝑚 ∈ 𝑴). Hence, the goal is to evaluate 𝑵(.!), where 𝑚% is initially 

known before the analysis.  

To allow for the impact of a budget constraint in the network level analysis, the top two alternatives 

are identified for each segment, namely,	𝑎),+∗ =	 4𝑎),0"1+
∗+ , 𝑎),0"1+

∗& 6. The evaluation is based on the 

long-term benefits of treatment alternatives. The action with a smaller total cost given an analysis 

period is preferable. Available treatment alternatives 𝑵(.!)  are evaluated by simulation-

optimization, which integrates optimization into simulation analysis [38], [125]. Monte Carlo 

simulations are used to generate a range of possible future scenarios. In this case, each scenario 

represents a specific projection for deterioration and treatment cost. For each scenario and for each 

possible treatment in 𝑵(.!), an optimal treatment path and its corresponding total cost TC are 

determined.  

To evaluate action 𝑵(.!)(𝛼), suppose the number of Monte Carlo simulations for the segment-

level analysis is 𝐾,. For the 𝑘,02 simulation, the optimization process is formulated as the following 

mathematical model:  
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min:                                                                      (C.1) 

s.t.                                   (C.2) 

 ,   for                         (C.3) 

     

for   

(C.4) 

                                               (C.5) 

    for                                                                            (C.6) 

   for          (C.7) 

   for                 (C.8) 

 
  for                      (C.9) 

                    (C.10) 

 
   (C.11) 

   for , and           (C.12) 

 

Table C-1. Definitions of all variables in the segment-level optimization process 
Variable Meaning 

  Segment level analysis period 

  The total number and the ordinal of Monte Carlo simulations 

  Total cost given the segment level analysis period  

  Pavement material type at time t. When 𝑡 = 0, it represents the initial pavement type 

  Discount rate 

  N is the set of treatment actions, n is the ordinal of the actions in N, i.e. N(n) represents the 
𝑛#$ action a in N, 𝛼 is the ordinal of the evaluated action. 

  Decision variable. If the  action in  is selected at year ,  . Otherwise, 

TCα
ks
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Nts∑ ts = 2,...,Ts
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ts = 1,2,...,Ts
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1+ r( )ts
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xn,ts ∈ 0,1{ } ts = 1,2,...,Ts ∀n

Ts
Ks ,ks
TC
mt
r

N ,n,a,α

xn,ts nth N ts
ts xn,ts = 1
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. 

 
Condition metric, 

 

  Pavement deterioration for condition metric j without any treatment 

  Pavement deterioration of condition metric j after a treatment 

  The performance threshold value for condition metric j.  

  User cost at year   

 Excess fuel cost induced by PVI roughness at year  

 Excess fuel cost induced by PVI deflection at year  

  Agency cost at year   

 

The explanation for each equation is similar to the one in Section 3.3.2. The solution of this 

optimization model is based on the backtrack algorithm (Detailed information is in Appendix A). 

Then each simulation provides an optimal treatment schedule and its corresponding total cost . 

After all simulations ( ), future cost distributions  for each available treatment 

n in  are obtained. Based on these cost distributions, all treatment alternatives are evaluated 

and ranked by  

min:                                              (C.13) 

 represents the mean value of total cost distribution for treatment action n,  is the standard 

deviation, and 𝜃 is the risk-aversion coefficient that is used to describe the tradeoff between mean 

cost and variation. After risk analysis,  could be obtained for each treatment alternative n in 

. Then two optimal (the two lowest z values) treatment alternatives  are 

identified for each segment i. 

xn,ts = 0

CM j j ∈ IRI ,RUT ,FAULT ,ACRACK ,LCRACK ,LWCRACK ,TCRACK{ }
ΔCM j ,ts

ΔCM j ,new

ΔCM j ,threshold

ucts ts

fcR,ts ts

fcD ,ts ts

acts ts

TCn
ks

Ks = 100 TCn
ks{ }

ks=1

Ks

N m0( )

zn = Εn +θ ⋅SDn

Εn SDn
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N m0( ) ai
* = ai,1

*1,ai,1
*2{ }
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C.1.2 Pavement-vehicle interaction models 

Pavement-vehicle interaction (PVI) has a large impact on the use phase of high traffic volume 

pavements [128], [151]. The rolling resistance caused by PVI can reduce fuel efficiency. 

Considering different mechanisms, PVI can be divided into two types – roughness-induced and 

deflection-induced PVI.   

Road roughness has an impact on excess vehicle fuel consumptions. This can be quantified by the 

Highway Development Management-4 (HDM-4) model [163]. The HDM-4 model uses IRI as the 

metric, and the roughness-induced excess fuel consumption can be calculated by equation (C.14), 

which is a function of IRI, traffic, speed, and pavement segment length [128].  and  are 

related with vehicle type, and V represents the vehicle velocity.   

 (C.14) 

The second type of PVI is related with the dissipation of mechanical work provided by vehicles. 

Weights of moving vehicles can cause viscous deformation within the pavement structure, which 

leads to rolling resistance and causes excess fuel consumptions. To capture the impact of 

deflection-induced PVI, Louhghalam et al. developed a numerical model as shown in equation 

(C.15). The excess dissipated energy  caused by deflection-induced PVI is influenced by 

pavement stiffness E, subgrade stiffness k, temperature T, thickness h, width b, vehicle axle load 

P, speed V, and pavement density, etc. The dissipated energy can be converted to instaneous 

change in fuel consumption (equation (C.16)). Results shows that the excess fuel consumption 

caused by cars is negligible compared to trucks in terms of PVI-deflection [128]. Hence, only 

deflection-induced PVI caused by trucks is considered. The energy emission rate  for diesel is 

about 146.11 MJ/gallon as suggested in the GREET model [164].  

 (C.15) 

 (C.16) 
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C.1.3 Equivalent conversion from gasoline to electricity 

The roughness-induced PVI model provides the excess fuel consumption for a conventional ICEV 

in terms of gasolines. As for EVs, it is necessary to convert gasolines equivalently to electricity 

(kWh). Suppose the excess fuel consumption for ICEV is 1 gallon ( ). Then the 

corresponding miles can be obtained based on the fuel economy for ICEV ( ),  

 (C.17) 

Given the same mile and the equivalent fuel economy for EV ( ), the equivalent 

gasoline consumption for EV is calculated,  

 (C.18) 

By substituting (C.17) into (C.18),  

 (C.19) 

As reported in [165], the energy emitted by 1 gallon of gasoline is equivalent to 33.7 kWh. Then 

the excess fuel consumption for EVs can be obtained by,  

 (C.20) 

The fuel economies for ICEV and EV (i.e.  and ) can be found in [166].  

C.1.4 Embodied GHG emissions 

The assumptions and life cycle inventory data for each material in the foreground system are 

provided in Table C-2. Since the trend for low-carbon construction materials is continuing its 

momentum, various suppliers are striving to lower the carbon footprint of their supply chain while 

keeping their costs in a reasonable range so as not to lose their market share. Hence, several 

fuleICEV

MPGICEV

mileICEV = MPGICEV ⋅ fuleICEV

MPGEV , gas equiv

fuelEV , gas equiv =
mileICEV

MPGEV , gas equiv

fuelEV , gas equiv =
MPGICEV

MPGEV , gas equiv
unit : gallon( )

fuelEV , electricity = fuelEV , gas equiv ⋅33.7kWh / gallon

MPGICEV MPGEV , gas equiv
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technologies have been adopted in different regions. For the concrete procurement, the 

incorporation of alternative binders, such as slag, fly ash, and limestone, up to 50% have been 

applied on a large scale in the field and reported in the environmental product declarations [155]. 

Moreover, according to the Cement Sustainability Initiative projection[167], on average, 25% of 

the cement plants will be equipped with carbon capture technologies by 2050. For the asphalt 

pavements, the warm mix asphalt has completely replaced the hot mix market in certain states, 

such as Tennessee [154]. Also, reclaimed asphalt pavements have been incorporated up to 50%, 

and the trend towards full natural gas in asphalt plants is reported as a goal towards embodied 

impact reduction in the future. These assumptions were linearly implemented from the currently-

implemented level (Table C-2) until 2050 to capture the temporal dynamics in the life cycle 

inventory of GHG emissions. 

Table C-2. Concrete and asphalt input data for embodied impact calculation 
Process  Bill of materials data source Value Allocation factors 
Portland Cement (kg/m3) [155] 341.7 - 
Fly Ash (kg/m3) [155] 39.7 [168]  
Slag Cement (kg/m3) [155] 24.3 [168]  
Mixing Water (kg/m3) [155] 163.7 - 
Crushed Coarse Aggregate (kg/m3) [155] 822.8 - 
Natural Coarse Aggregate (kg/m3) [155] 132.9 - 
Natural Fine Aggregate (kg/m3) [155] 791.9 - 
High Range Water Reducer (% 
cement content) 

[155] 0.2 - 

Accelerator (% cement content) [155] 0.3 - 
Truck (km) [155] 80.0 - 
Rail (km) [155] 65.0 - 
Ocean (km) [155] 56 - 
Barge (km) [155] 10 - 
Electricity Midwest Reliability 
Organization (MRO) (kWh/m3) 

[155] 1.14 - 

Natural Gas (m3/m3) [155] 0.4 - 
Fuel Oil (lit/m3) [155] 0.1 - 
Diesel (lit/m3) [155] 2.2 - 
Concrete technology projection [167]  - - 
Bitumen mass asphalt (% mass) [7]  5% [169] 
Gravel mass asphalt (% mass) [154]  47% - 
Sand mass asphalt (% mass) [154] 47% - 
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Truck (km) [169]  35 - 
Asphalt heating fuel (Btu/ton) [155], Asphalt EPD 2.89E+05 - 
Electricity (kWh/ton) [155], Asphalt EPD, 3.30 - 
Reclaimed asphalt content at the 
beginning of analysis period 

[154] 18%  

Warm mixed asphalt proportion at the 
beginning of analysis period 

[154] 53%  

Note: unit is kg/m3 unless otherwise stated; [155]: NRMCA Industry-wide EPD program, 2020; [167]: CSI/IEA, 
2017; [7]: LTPP; [154]: NAPA Annual report, 2018; [169]: Asphalt Institute, 2019; [168]: Chen et al. 2010 

C.1.5 Radiative forcing 

The road surface albedo can induce a radiative forcing (RF) by perturbing the shortwave radiation 

budget. In fact, RF is the change in net irradiance at the top of the atmosphere (TOA). For 

shortwave forcing agents like surface albedo changes, the instantaneous RF at the TOA is linked 

to surface temperature change and can be used instead of the stratospheric-adjusted RF at the 

tropopause. Therefore, RF at TOA due to pavement albedo change can be calculated as the change 

of shortwave radiation at TOA [157]:  

 (C.21) 

Where 𝑅#78  is downward solar radiation at the TOA and ∆𝛼9  is defined as the variation in 

planetary albedo. Following a procedure widely reported in the literature, changes in planetary 

albedo  ∆𝛼9 can be approximately linearly related to changes in surface albedo ∆𝛼,: 

  (C.22) 

Where 𝑓: is a two-way transmittance factor accounting for the absorption and reflection of solar 

radiation throughout the atmosphere. Combining equations (C.21) and (C.22): 

  (C.23) 

RF at the TOA can also be computed using the solar radiation at the earth’s surface: 

  (C.24) 

RFTOA = −RTOAΔα p

Δα p = faΔα s

RFTOA = −RTOAΔα p = −RTOA faΔα s

RFTOA = −RsTaΔα s
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From these equations, the albedo induced RF is a function of three quantities: the intensity of 

incoming radiation (𝑅#78 or 𝑅,), atmospheric transmittance ( 𝑓: or 𝑇:)  and the change in albedo, 

∆𝛼,. Of these factors, transmittance is particularly challenging to estimate. Generally, ∆𝛼, would 

be known for a given situation of interest. Both 𝑅#78  and 𝑅,  were extracted from NASA 

Atmospheric Science Data Center: Surface meteorology and Solar Energy database. The 

transmittance factor 𝑓:  or 𝑇:  was estimated for each state using research work at MIT CSHub 

[157]. 

The next step is to calculate the absolute global warming potential (AGWP) induced by this RF 

change. By dividing the AGWP of RF change to AGWP of CO2, the RF-induced GWP is 

calculated as: 

 (C.25) 

For the purpose of this analysis, the 9.17E-14 W.yr/m2/kgCO2 is the value corresponding to the 

100-year time horizon for GWP calculation (the denominator) [170]. The average albedo values 

of 0.1 and 0.3 (for asphalt and concrete, respectively) for the state network are assumed constant 

in time according to several city-level analyses of Li et al  [171]. 

C.1.6 Evaluation metrics 

IRI is commonly used to describe the pavement condition in both literature and real-world practice. 

To reflect the significance of a segment i in the network, IRI is weighted by traffic and length of 

the segment, as shown in equation (C.26), where AADT represents annual average daily traffic, I 

is the total number of segments. 

 (C.26) 

To better relate TWPCI and TWIRI, TWIRI is converted into a TWIRI index, which also ranges 

from 0 to 100 as shown in equation (2.4) in Chapter 2.  

GWPRF =
RFTOA dt0

AP

∫
RFCO2 dt0

TH

∫

TWIRIi =
AADTi ⋅ lengthi
AADTi ⋅ lengthii=1

I∑
⋅ IRIi , and TWIRI = TWIRIi

i=1

I

∑
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C.2. Case Study 

C.2.1 Proposed strategy 

Figure C-1(a) and (b) show the distributions for initial IRI and PVI-induced GHG emissions on 

the county level for the Iowa U.S. route network. 11 counties don’t have U.S. route pavements, 

which are shown in hatch. Grey lines represent the routes. Adams, Calhoun and Page counties have 

the best roughness condition with the smallest IRI. By contrast, Winnebago and Obrien have the 

largest average IRI. In terms of environmental effect, Ringgold, Page and Adamas provide the 

smallest PVI-induced GHG emissions since these counties have good pavement condition and 

small traffic volume. By contrast, Polk, Johnson, and Scott have the largest GHG emissions due 

to their large traffic volume.  

Figure C-1(c) shows the average change in PCI per lane mile for each county after 30 years of 

applying the proposed strategy with the critical budget. Using PCI as an example, the value for 

each county equals to average PCI at year 30 minus the average PCI at year 0. The most notable 

feature of this plot is that although the overall system maintains a relatively constant level of 

performance, results within specific counties can vary widely. For example, after 30 years under 

the scenario of the proposed strategy, Adam, Calhoun and Page counties (the three counties with 

the best initial condition) experience a decrease in pavement condition, while pavement conditions 

in Winnebago, Louisa and Obrien improve. Considering the goal of the proposed strategy is to 

maintain the network condition stable after 30 years, the PTPD model tries to improve pavements 

in bad condition at the sacrifice of the pavements in good condition, and make the network 

condition more uniformly distributed. The same phenomenon is also observed in Figure C-1(d) for 

PVI-induced GHG emissions and Figure C-1(e) for IRI.  
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(a). Initial IRI distribution 

 
(b). Initial distribution for PVI-induced GHG emissions 
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(c). PCI variation between year=0 and year=30 

 

 
(d). PVI-induced GHG variation between year=0 and year=30 
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(e). IRI variation between year=0 and year=30 

Figure C-1. Initial (a). IRI and (b). PVI-induced GHG distributions for Iowa U.S. route network 

on the county level based on Iowa PMS 2017; (c). PCI, (d) GHG emissions due to PVI and (e). 

IRI variations for each county after 30 years based on the proposed strategy under the critical 

budget (counties in hatch don’t have U.S route pavements). 

C.2.2 Influence of treatment materials 

Figure C-2 (a) presents the TWIRI comparisons among three treatment material strategies under 

the critical budget. It shows that incorporating both materials leads to the best average pavement 

network performance in terms of TWIRI index. As for the AC only strategy, the TWIRI index 

goes up first and then goes down. As for the PCC only strategy, it takes time to reflect its long-

term benefit. After 18 years, PCC only strategy performs better than AC only strategy in terms of 

TWIRI index. Figure C-2(b) shows the pavement type distribution at the beginning and the end of 

the analysis period. Corresponding explanations can be found in the Section 4.4.2.  

A sensitivity analysis is conducted to compare treatment material strategies under different budget 

levels, as shown in Figure C-2(c)~(e). For all budget levels, the proposed strategy performs the 

best. As budget levels increase, the TWIRI and TWPCI differences between the AC only and PCC 

only strategies increase, and the difference for GHG emissions decreases. It suggests that when 
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the budget level is low, it is better to apply more AC solutions to fix more pavement areas, and 

with the increase of budget levels more PCC solutions should be invested. 

 
(a) 

                       
(b) 

 
(c) 
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(d) (e) 

Figure C-2. Comparisons of different treatment material strategies. (a) is annual mean TWIRI 

index under the critical budget ($132.5M), (b) is the pavement type distribution at the beginning 

of analysis period (year=0) and the end of analysis period for each material strategy, (c) is the 

mean TWIRI index at year 30, (d) is the mean TWPCI at year 30 and (e) is the cumulative life-

cycle GHG emissions for 30 years under different budgets. 

C.2.3 Influence of treatment types  

Figure C-3(a) presents the TWIRI comparisons among three treatment type strategies under the 

critical budget. It shows that incorporating mix treatment types leads to the best average pavement 

network performance in terms of TWIRI index after year 4. The short-term only strategy performs 

the best for the first four years, then its performance drops quickly. The long-term only strategy 

performs the worst for the first 8 years, and then it performs better than the short-term only strategy 

due to its long-term benefits. It becomes the worst after year 24 due to its smallest maintained area. 

Figure C-3(b) shows the pavement type distribution at the beginning and the end of the analysis 

period. Corresponding explanations can be found in the Section 4.4.3.  

A sensitivity analysis is conducted to compare treatment type strategies under different budget 

levels, as shown in Figure C-3(c)~(e). For all budget levels, the proposed strategy (mix strategy) 

always has the best pavement network condition (i.e., TWIRI index and TWPCI) and smallest 

GHG emissions. With the increase of budget levels, the short-term strategy provides very limited 

improvement compared to the proposed and long-term only strategies. The difference between the 

short-term only strategy and the proposed strategy increases as the budget grows. These results 
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suggest using more short-term treatments when the budget is low, and more long-term treatments 

when the budget is high. 

 
(a) 

                      
(b) 

 
(c) 
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(d) (e) 

Figure C-3. Comparisons of different treatment type strategies. (a) is annual mean TWIRI index 

under the critical budget ($132.5M), (b) is the pavement type distribution at the beginning of 

analysis period (year=0) and the end of analysis period for each treatment type strategy, (c) is the 

mean TWIRI index at year 30, (d) is the mean TWPCI at year 30, and (e) is cumulative life-cycle 

GHG emissions for 30 years under different budgets. 

C.2.4 Influence of segment analysis period 

Figure C-4(a) presents the TWIRI comparisons among three segment analysis periods under the 

critical budget. It shows that the differences for these three segment analysis periods are very tiny 

for the first 2 years. After that, the SAP=20 strategy leads to the best average pavement network 

performance in terms of TWIRI index. The second best is the SAP=10 strategy and the SAP=5 

strategy performs the worst. Figure C-4(b) shows the pavement type distribution at the beginning 

and the end of the analysis period. Corresponding explanations can be found in the Section 4.4.4.  

Figure C-4(c)~(e) present the sensitivity analysis for the comparison among three SAP strategies 

under different budget levels. The proposed strategy (SAP=20) always has a better pavement 

network condition (i.e., TWIRI index and TWPCI) and smaller GHG emissions. With the increase 

of budget levels, the difference between the SAP=5 strategy and the proposed strategy increases.  
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(a) 

                    
(b) 

 
(c) 
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(d) (e) 

Figure C-4. Comparisons of different segment analysis periods. (a) is annual mean TWIRI index 

under the critical budget ($132.5M), (b) is the pavement type distribution at the beginning of 

analysis period (year=0) and the end of analysis period for each segment analysis period, (c) is 

the mean TWIRI index at year 30, (d) is the mean TWPCI at year 30, and (e) is the cumulative 

life-cycle GHG emissions for 30 years under different budgets. 

C.3. Importance to consider multiple condition metrics 

Many research papers use a single condition index (e.g., PCI), or condition state in a Markovian 

model as an overall condition description. Such metrics can incorporate multiple metrics, but it is 

different from considering multiple metrics distinctly, possible in concert with the PCI.  As an 

example of the value of this distinction, Table C-3 shows the characteristics of an asphalt overlay 

composite pavement segment in Iowa. This PMS data is from year 2012. The ORIGKEY in the 

table can be considered as the unique name of a segment. For Iowa, PCI ranges from 0 to 100 

where 100 represents the perfect condition. The PCI of this segment is 83. It is in a good condition 

and, based on Iowa standards there is no need to fix it because of overall poor condition. However, 

its level longitudinal cracking (1017 m/km) is more than double the threshold value, which is 

500m/km. Hence, based on this criterion it requires to maintain this segment immediately. 

Table C-3. Sample asphalt overlay composite pavement in Iowa 
Year ORIGKEY IRI 

(m/km) 
RUT 
(mm) 

ACARCK 
(m2/km) 

LCARACK 
(m/km) 

LWCRACK 
(m/km) 

TCRACK 
(m/km) 

PCI 

2012 03512185 
64192 7917 1.1 4.7 0 1017 1.5 48 83 

Note: ACRACK=alligator crack; LCARCK=longitudinal crack, LWCRACK=longitudinal wheelpath crack, 
TCRACK=transverse crack 
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C.3. Sensitivity analysis for discount rates  

It is important to note that the magnitude and specifics of results in Chapter 4 would certainly shift 

for different cases and for different levels of risk preference. As an example of this, an analysis of 

the sensitivity of model results to the choice of discount rate is presented here.  

Federal highway administration (FHWA) recommends that the choice of discount rate be the real 

treasury interest rate as suggested by the OMB [135], which suggest a discount rate of 1.3-1.5% 

for calendar year 2019. For all analyses in Chapter 4 and Appendix C.2, the discount is chosen as 

1.5%. Many existing papers use a discount rate of 4%. Therefore, the discount rates for the 

sensitivity analysis are chosen as 1.5%, 3%, 4% and 5%.  

The sensitivity analysis only focuses on the proposed strategy with the critical budget, i.e., 

$132.5M. Figure C-5(a) and (c) show that with the increase of discount rate, the pavement network 

performance increases first and the decrease, which is mainly due to the slight increase of asphalt 

material usages as shown in Figure C-5(d). As discount rates increase, the cumulative GHG 

emissions also increase as shown in Figure C-5(b).  

Notably, the influence of discount rate is very slight. When the discount rate increases from 1.5% 

to 5%, TWPCI decreases by 1.4%, total GHG emissions and TWIRI grow by 3.4% and 8%, 

respectively.  

  
(a) (b) 
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(c) 

                     
(d) 

Figure C-5. Comparisons of different discount rates under the critical budget ($132.5M). (a) is 

annual mean TWPCI, (b) is the distributions for cumulative life-cycle GHG emissions for 30 

years, (c) is the annual TWIRI index, (d) is the pavement type distribution at the beginning of 

analysis period (year=0) and the end of analysis period for each discount rate. 

Next, the proposed strategy and the 5-year AC only strategy are compared under the critical budget 

in terms of two discount rates 1.5% and 5%. Figure C-6(a) shows that the change of discount rate 

has a very small influence on the comparison between these two strategies. TWPCI difference 

between these two strategies changes from 4.6 to 4.1when discount rate increases from 1.5% to 

5%. Similarly, it also has a small influence on the cumulative life-cycle GHG emissions as shown 

in Figure C-6(b). The corresponding difference for the GHG emissions changes from 0.89Mt to 

0.82Mt. Hence, the selection of different discount rates will not significantly influence the main 

conclusions in both Chapter 4 and Appendix C.2.   
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(a) (b) 

Figure C-6. Comparisons between the proposed strategy and 5-year AC only strategy under 

discount rates 1.5% and 5%. (a) is the annual mean TWPCI, (b) is the cumulative life-cycle 

GHG emissions for 30 years under the critical budget ($132.5M) 
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Appendix D: Supplementary Materials for Chapter 5 

D.1 Pavement management system (PMS) data 

PMS data is one of the key elements for determining treatment schedules. Ideally, it is better to 

use state-specific data for pavement management analyses. However, only a few states provide 

publicly available PMS data. To analyze all states in the U.S. with a reasonable resolution, two 

data sources are applied, including road statistics generated by the federal highway administration 

(FHWA), and the long-term pavement performance (LTPP) database.   

FHWA road statistics 

FHWA provides the road statistics for different road systems, including interstate, arterial, 

collector and local, for both rural and urban roads [109]. At present, statistics for year 2017 and 

2018 are available online. However, when this project was started, only the data for year 2017 

was available, so all analyses are only based on the year 2017 statistics. Even though it is not the 

up-to-date one, it will not influence the final conclusions.  

The FHWA road statistics provide the distributions for international roughness index (IRI), 

annual average daily traffic (AADT), annual average daily truck traffic (AADTT), pavement 

types, pavement length, lane number and lane width in terms of miles for each system and route 

type. Corresponding data source for each variable is listed in Table D-1.  

Given one variable, FHWA statistics divide its distribution into several buckets and provides the 

pavement length (in miles) for each bucket. Table D-2 provides an example for AADT 

distribution for rural interstate system in Massachusetts. For interstate system, it is assumed that 

each segment length is equal to 2.5 miles. For arterial, collector and local systems, segment length 

is assumed to be 10 miles. The segment number given one bucket is equal to the total length 

divided by 2.5 for interstate system, and by 10 for other systems. For example, in the bucket 

(10,000, 19,999), the segment number is equal to 3. Next, for each segment, its AADT value is 

uniformly sampled based on the bucket threshold values. For the same example, for bucket 

(10,000, 19,999), 3 segments’ IRI values are uniformly sample form the range [10,000, 19,999].  
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During the analysis period, IRI values change each year due to the deterioration process and 

treatment selections. AADT and AADTT have annual growth rates as 0.6% and 1.2%, 

respectively [146].  

Table D-1. Data source from FHWA road statistics 
Variable Table number Variable Table number 
IRI HM-64 AADT HM-57 
Pavement length HM-50 Pavement type HM-51 
AADTT/AADT VM-1 Lane number HM-60/HM-20 
Lane width Highway Functional Classification Concepts, Criteria and Procedures 

 

Table D-2. Miles by AADT for rural interstate system in Massachusetts 
State <10,000 10,000~19,999 20,000~34,999 >35,000 
Massachusetts - 6 39 19 

 

LTPP database 

Pavement deterioration prediction is usually based on age, thickness, and traffic levels [124]. 

However, age and thickness are not provided by the FHWA road statistics. To obtain these two 

values, several linear relationships are developed based on the LTPP dataset (equations (D.1) -

(D.3)).  

 (D.1) 

 (D.2) 

 (D.3) 

Where TOTTHK represents the total thickness, and SURTHK represents the surface thickness. 

The reason to differentiate these two types of thicknesses is for the calculation of excess vehicle 

fuel consumption caused by deflection-induced pavement vehicle interaction (PVI).  

It would be ideal to develop a set of inferring relationships for each state. However, the LTPP 

dataset only covers around 2,500 segments in both U.S and Canada. Some states have no data at 

TOTTHK = a1,1 ⋅ IRI + a1,2 ⋅ AADTT

SURTHK = a2,1 ⋅ IRI + a2,2 ⋅ AADTT

AGE = a3,1 ⋅ IRI + a3,2 ⋅ AADTT
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all. Instead of state-specific relationships, four sets of inferring relationships are developed for 

each climate zone. Figure D-1 presents four climate zones for the U.S., as suggested by LTPP 

[172]. 

 
Figure D-1. Climate zones in the U.S. suggested by LTPP. 

D.2 Pavement treatment cost 

Treatment cost for different states are mainly generated based on the available bid data for 

highway projects from 2016 to 2020 [20]. In order to extract the unit prices for both asphalt and 

concrete materials, the original Oman dataset are filtered by the following criteria: (1). focusing 

on the winning bid; (2). the project size should be at least 1 mile; (3). focusing on the overlays 

and reconstructions while surface treatments are ignored. The third criterion is not trivial since 

different states may have different bid names for the same type of pavement projects. Hence, the 

filtering process was with the help of experienced pavement engineers.  

After the filtering process, a set of projects can be obtained with their project size (i.e., the 

quantity of material usage) and corresponding total cost. Then the unit prices for concrete and 

asphalt materials can be generated by equation (D.4).  

 (D.4) unit cost =
quantityi ⋅costi

i=1

I

∑

quantityi
i=1

I

∑
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D.3 Pavement treatment actions 

For treatment actions, it would be great to use the real ones for each state. However, it is difficult 

to collect the treatment information for all states. Instead, the same treatment schedule is used for 

the same type of road systems (e.g., interstate roads) and assume that those states that fell in the 

same climate zone (Figure D-1) follow the same treatment actions that the representative state is 

following. The treatment actions for the representative states were adopted from their life cycle 

cost handbook published by the state department of transportations. Representative states for each 

climate zone are Colorado, Arizona, Iowa and Florida, respectively. Due to the lack of 

representative data for low-volume roads, certain assumptions are applied to different climate 

zones. For all the climate zones, the local and collector treatment actions are considered similar. 

Selected treatments for both asphalt-surfaced and concrete-surfaced pavements are listed in Table 

D-3 and Table D-4, respectively.  
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Table D-3. Treatment actions for asphalt-surfaced pavements 
Climate Zone System Reconstruction Overlay  Preservation 

Dry-Freeze 
(CO) 

interstate 14” new asphalt pavement 6” asphalt overlay 2” mill & fill 
arterial 9” new asphalt pavement 5” asphalt overlay 2” mill & fill 
collector 5.75” new asphalt pavement 0.75” mill & 3.25” fill 0.75” mill & 1.5” fill 
local 5.75” new asphalt pavement 2” asphalt overlay 0.75” mill & 1.5” fill 

Dry-
Nonfreeze 
(AZ) 

interstate 13.5” new asphalt pavement 5” asphalt overlay 0.75” mill & 1.5” fill 
arterial 7.5” new asphalt pavement 5” asphalt overlay 0.75” mill & 1.5” fill 
collector 5.75” new asphalt pavement 0.75” mill & 3.25” fill 0.75” mill & 1.5” fill 
local 5.75” new asphalt pavement 2” asphalt overlay 0.75” mill & 1.5” fill 

Wet-Freeze 
(IA) 

interstate 13” new asphalt pavement 6” asphalt overlay 2” mill & fill 
arterial 7.5” new asphalt pavement 5” asphalt overlay 2” mill & fill 
collector 5.75” new asphalt pavement 0.75” mill & 3.25” fill 0.75” mill & 1.5” fill 
local 5.75” new asphalt pavement 2” asphalt overlay 0.75” mill & 1.5” fill 

Wet-
Nonfreeze 
(FL) 

interstate 12.5” new asphalt pavement 3” mill & 4” fill Crack and seal 
arterial 6” new asphalt pavement 2” mill & 3” fill Crack and seal 
collector 5.75” new asphalt pavement 0.75” mill & 3.25” fill 0.75” mill & 1.5” fill 
local 5.75” new asphalt pavement 2” asphalt overlay 0.75” mill & 1.5” fill 

* The thickness unit is inch.  

Table D-4. Treatment actions for concrete-surfaced pavements 
Climate Zone System Reconstruction Overlay  Preservation 

Dry-Freeze 
(CO) 

interstate 10” new concrete pavement 5” concrete overlay Diamond grinding 
arterial 7.5” new concrete pavement 5” concrete overlay Diamond grinding 
collector 7.5” new concrete pavement 3.25” asphalt overlay Diamond grinding 
local 7.5” new concrete pavement 2” asphalt overlay Diamond grinding 

Dry-
Nonfreeze 
(AZ) 

interstate 11” new concrete pavement 5” concrete overlay Diamond grinding 
arterial 8.5” new concrete pavement 5” concrete overlay Diamond grinding 
collector 7.5” new concrete pavement 3.25” asphalt overlay Diamond grinding 
local 7.5” new concrete pavement 2” asphalt overlay Diamond grinding 

Wet-Freeze 
(IA) 

interstate 11” new concrete pavement 6” concrete overlay Diamond grinding 
arterial 8” new concrete pavement 5” concrete overlay Diamond grinding 
collector 7.5” new concrete pavement 3.25” concrete overlay Diamond grinding 
local 7.5” new concrete pavement 2” asphalt overlay Diamond grinding 

Wet-
Nonfreeze 
(FL) 

interstate 9” new concrete pavement 4” asphalt overlay 3% slab replacement 
arterial 9” new concrete pavement 4” asphalt overlay 3% slab replacement 
collector 7.5” new concrete pavement 3.25” concrete overlay Diamond grinding 
local 7.5” new concrete pavement 2” asphalt overlay Diamond grinding 

* The thickness unit is inch.  
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D.4 Pavement deterioration model 

Prediction models for pavement conditions are used to estimate how pavement condition and 

context will change over time without a treatment action. Considering that environmental factors 

could influence pavement deterioration rates, four sets of deterioration models in terms of asphalt, 

concrete, asphalt overlay composite pavements are developed for four climate zones. Due to 

limited data, it is not possible to build a model for concrete overlay composite pavements. Hence, 

it is assumed that the concrete overlay composite pavements have the same deterioration rate as 

concrete pavements.  

There are several types of pavement condition metrics, such as roughness, cracks, rut/fault, etc. 

Among them, roughness attracts the most attention in both academia and industry, and IRI is 

usually applied to describe road roughness conditions. The adopted pavement deterioration model 

is based on a difference-stationary process and was developed using data from LTPP. It is assumed 

that pavement deterioration follows a random walk with drift and uncertainties that have a 

permanent influence on future deterioration levels, so the variance of future pavement performance 

increases over time [21]. Age, AADTT, and total thickness (TOTTHK) of pavement are 

incorporated in the deterioration model which are suggested to be influential factors by a previous 

study [124]. The expected deterioration process is shown in equation (D.5):  

 (D.5) 

where coefficients  can be obtained through ordinary least squares (OLS). Figure 

D-2 presents examples of deterioration curves for an asphalt pavement segment and a concrete 

pavement segment in different climate zones, respectively. These curves provide similar trends as 

the findings in [173].  

 

ΔIRIt ,i =α ⋅ AGEt−1,i
β1 ⋅ AADTTt−1,i

β2 ⋅TOTTHKt−1,i
β3

α ,βi i = 1,2,3( )
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(a) asphalt (b) concrete 

Figure D-2. Examples of deterioration curves for (a) asphalt and (b) concrete in terms of 

different climate zones 

D.5 Performance jump model 

Performance jump model is used to describe the effectiveness of different treatments, namely, after 

a treatment action, how the pavement condition changes. It is usually a function of the condition 

metric before a treatment is applied [61]. Based on the LTPP dataset, performance jump models 

are developed for asphalt pavement preservation, concrete pavement preservation, and asphalt 

overlay.  

For each type of model, IRI before treatment ( ), age, surface thickness are considered as 

dependent variables, and for asphalt overlay model, the overlay thickness is incorporated as well. 

Then linear regression is applied to find significant variables. Results show that  is the only 

significant variables for both preservation models, and significant variables for the asphalt overlay 

model include , age, and overlay thickness. Next, generalized linear models are applied to 

develop three performance jump models in the form of equation (D.6).  

 (D.6) 

where functions , , and  can be in linear, polynomial, exponential and logarithmic forms 

and they are mainly determined by Pearson correlation coefficient between the dependent variable 

and . Then, OLS is applied to determine coefficients  in the model.  

IRI0

IRI0

IRI0

ΔIRI = a0 + a1 ⋅ f1 IRI0( )+ a2 ⋅ f2 age( )+ a3 ⋅ f3 overlay thickness( )

f1 f2 f3

ΔIRI ai i = 0,1,2,3( )


