
Constructing Low Resource Approaches to Improve
Speech-to-text Translation from Modern Standard

Arabic to English
by

Rami Manna
S.B., Computer Science and Engineering

Massachusetts Institute of Technology, 2019
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2021

c○ Massachusetts Institute of Technology 2021. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 6, 2021
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

James R. Glass
Senior Research Scientist

Thesis Supervisor
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yonatan Belinkov
Senior Lecturer

Thesis Supervisor
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Katrina LaCurts
Chair, Master of Engineering Thesis Committee



2



Constructing Low Resource Approaches to Improve

Speech-to-text Translation from Modern Standard Arabic to

English

by

Rami Manna

Submitted to the Department of Electrical Engineering and Computer Science
on August 6, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis explores novel approaches to the Arabic-English speech-to-text translation
task. First, we construct a novel Modern Standard Arabic speech and English text
parallel dataset. Second, we propose a novel framework for leveraging unsupervised
machine translation to improve speech-to-text translation, and apply this framework
to the task of Arabic-English speech-to-text translation. In particular, we propose
a 3-step cascade approach to speech-to-text translation. In step 1, we use a speech
recognition model to transcribe the Arabic speech into Arabic text. In step 2, we
leverage unsupervised machine translation to learn a mapping between the output
of the speech recognition model (transcribed Arabic) and Modern Standard Arabic
(formal written Arabic). In step 3, we use an Arabic-English machine translation
model to translate the output of the unsupervised model to English. Our third
contribution is an exploration of approaches to low-resource end-to-end speech-to-text
translation. We present and compare two approaches for synthesizing parallel training
data. Finally, we compare the end-to-end approach with the cascaded approach. We
found that the 3-step cascaded speech-to-text did not perform as well as the 2-step
cascaded speech-to-text baseline. We show that with the end-to-end approach trained
with synthetic English text, we are able to achieve similar performance to the 2-step
cascaded speech-to-text baseline.
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Chapter 1

Introduction

1.1 Context and Motivation

With the advent of internet globalization, international travel and collaboration,

cross-lingual communication has become essential. The impacts of language barri-

ers range from misunderstandings in conversations to differences in access to quality

healthcare [1].

The vast majority of research in natural language processing (NLP) has studied

the English language. As the official language of 22 countries, Arabic has over 400

million speakers worldwide [2], making it among the 6 most widely spoken languages.

Work on Arabic-English translation has the potential to break down the language

barrier between the Arabic speaking world and the English speaking world of over

1.1 billion speakers.

The task of translating from Arabic is one that has attracted a lot of attention

from the scientific community due to the difficulty of the Arabic language. Together

with the fundamental differences between the Arabic and English languages, this

makes advances in computationally producing high quality Arabic-English transla-

tions imperative for extending the capabilities of computational linguistics.

Studying Arabic speech in particular, is interesting because of the amount of

variation in how Arabic is spoken. Spread across 22 Arabic speaking countries, Arabic

has a rich and diverse range of spoken dialects. Unlike the minor differences between
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spoken English in major English speaking countries, the large dialectal variation in

Arabic means that only some of the Arabic dialects are mutually intelligible (e.g.

Lebanese and Egyptian), while many are not (e.g. Moroccan and Palestinian).

In addition to colloquial Arabic dialects, which are informal in nature, Arabic

also has a formal dialect, referred to as Modern Standard Arabic (MSA). MSA is

used across the entire Arabic speaking world for written Arabic, news broadcasting,

and formal communications. It is also an enabler of spoken communication between

Arabic speakers of mutually unintelligible Arabic dialects.

Despite the richness of spoken Arabic, most Arabic NLP research has focused

on Arabic text. Similarly, most machine translation research involving Arabic has

focused on translation to and from Arabic text. Additionally, the focus has largely

been on MSA, which is not a spoken language. This is largely because MSA has large

amounts of data available to support research.

While Arabic Automatic Speech Recognition (ASR), the automatic transcription

of Arabic speech into Arabic text, has seen substantial improvements in recent years,

not much research has been done on translation from Arabic speech to other lan-

guages.

1.2 Arabic-English Speech-to-text Translation

In this thesis, we focus on translation from MSA speech to English text. Beyond

the decision to focus on speech translation, this involves two significant decisions: 1)

studying MSA instead of dialectal Arabic, and 2) focusing on translating from Arabic

to English, as opposed to English to Arabic. We explain our rationale for making

these decisions in the two subsections below.

1.2.1 Rationale for Studying Modern Standard Arabic

Dialectal Arabic is by far the dominant form of spoken Arabic. Therefore, our long-

term goal is to architect speech translation systems that are capable of translating

dialectal Arabic speech. However, the translation of dialectal Arabic speech is chal-
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lenging because there is very little data to support research. In particular, since there

is a large variety of Arabic dialects, and many of these dialects are mutually unintel-

ligible, we would need a significant amount of data for each individual dialect. Most

individual dialects have relatively a small number of speakers, and therefore have very

little data available for research.

Due to the low availability of resources for dialectal Arabic speech translation, we

instead focus our effort on MSA-English speech-to-text translation, for which enough

data is available for research. However, MSA-English speech-to-text translation is

still a low-resource task, and we devote considerable effort researching methods for

overcoming data scarcity throughout this thesis.

1.2.2 Rationale for Arabic to English Translation Direction

We choose to investigate the Arabic to English direction of translation primarily due

to the difficulty of translating in the reverse direction, from English to Arabic. This

difficulty stems from the fact that Arabic is much more morphologically rich than

English. For example, generating a single translated word might involve choosing both

the correct stem and inflection. While translating to morphologically rich languages

poses interesting challenges, we choose to focus on the challenges of speech-to-text

translation instead.

1.3 Challenges of Translating Arabic

Translating Arabic gained attention early on as one of the major challenges for ma-

chine translation. Arabic differs from many other languages mainly due to its complex

morphology and diacritization [3]. The rich set of differences between Arabic and En-

glish makes translating between Arabic and English particularly challenging. Below

is a summary of the main differences between the two languages:

∙ Unlike English, Arabic is a Morphologically Rich Language (MRL) [4], which

means that significant information about syntactic relations is often embedded

17



at the word level (as opposed to the sentence level). For example, èñ Ê J.
�
®

�
J �@

(gloss: istaqbaluhu) translates to "they welcomed him" in Arabic. This is a

case where the subject, verb and object of the sentence are all parts of the same

word.

∙ Because of the complex morphology, one word in Arabic often translates into

multiple words in English. For example, é
�
JÊ¿


@ (gloss: akaltuha) translates into

three English words, "I ate it", while @ñºm�
	
� (gloss: dahaku) translates into two

words, "they laughed". This makes translation more difficult because learning

a one-to-one mapping between words no longer suffices. One effective approach

for alleviating this difficulty is preprocessing Arabic text by dividing words into

meaningful sub-word units.

∙ Affixation is found in both English and Arabic, but is substantially more com-

plex in Arabic. Affixes in English can only involve the addition of the affix to

a word stem. Affixation in Arabic can involve insertions, deletions or substitu-

tions. Infixes, which involve insertions directly into a word stem, are common

in Arabic but rare in English [5].

∙ Inflections are a lot more common in Arabic than in English [5]

∙ In Arabic, there is a large space of morphological forms for a given lemma.

For example, “I walked”, “they walked”, “she walked”, and “he walked” are all

different forms in Arabic, whereas the same form, “walked”, is used in English

for all of these cases.

∙ Arabic has diacritics, which are small marks placed directly above or below

individual characters. Their purpose is to describe what sound to make between

18



the current and next character. The most common diacritics represent shorter

versions of vowels. In addition to guiding pronunciation, these diacritics are

sometimes responsible for resolving ambiguities. For example, a diacritic might

signal the gender of a subject or object. These diacritics are often left out of

Arabic text, creating syntactic and morphological ambiguities, that can make

translation more difficult [3]. In practice, these ambiguities are resolved by

Arabic readers based on context.

In addition to the general challenges of translating Arabic, speech-to-text transla-

tion introduces additional unique challenges relative to MT tasks. In particular, MT

is text-based, and therefore deals with grammatical, punctuated text, and generally

has large resources available. Meanwhile, speech is agrammatical, and does not con-

tain punctuation. This mismatch between how language is structured in speech and

text adds a layer of complexity for speech-to-text translation. In the case of Arabic,

even more complexity is introduced because the common written form, MSA, is not

spoken in general.

1.4 Thesis Contributions

Our first main contribution is the construction of a novel Modern Standard Ara-

bic speech and English text parallel dataset. Our second contribution is a novel

framework for leveraging unsupervised machine translation to improve Arabic-English

speech-to-text translation. As our third contribution, we explore approaches to low-

resource end-to-end speech-to-text translation via synthesizing parallel data. We find

that synthesizing English text from speech recognition datasets to create pseudo-

parallel data works best, achieving similar translation quality to that of the 2-step

cascaded ST approach. We also explore an extension of this end-to-end approach by

filtering the synthetic pseudo-parallel data by quality.
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1.5 Thesis Overview

In Chapter 2, we give a background of related work. In Chapter 3, we describe a

novel Arabic-English speech-to-text translation dataset. In Chapter 4, we propose

a 3-step approach to cascaded speech-to-text translation. In Chapter 5, we explore

approaches to low-resource end-to-end speech-to-text translation. In Chapter 6, we

summarize our contributions and point to future work.
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Chapter 2

Background

In this chapter, we give a background on the state-of-the-art methods for machine

translation using neural networks. We discuss the challenges of machine translation

and speech-to-text translation that arise when translating from Arabic to English in

particular.

2.1 Machine Translation

Machine Translation (MT) involves writing computer programs that are able to trans-

late sentences from a source language to a target language. MT research has predom-

inantly focused on settings where both the source and target are natural languages.

Additionally, most MT research has focused on translating text, as opposed to other

language mediums such as speech. For example, an MT system might attempt to

translate an English text sentence into French text.

2.1.1 Neural Machine Translation

In recent years, the field of machine translation has seen large breakthroughs owing

to successes in the use of neural networks for natural language processing (NLP).

In the case of machine translation, these neural machine translation (NMT) models

are sequence-to-sequence models; that is, their input and output are both sequences.
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These models are generally supervised, meaning that they depend on labeled data

to be trained. In particular, the models require training data in the form of pairs of

parallel sentences: a sentence in the source language, and its corresponding translation

in the target language. Generally, models with more training data produce better

translations. The amounts of parallel training data available may vary for different

language pairs, making training a translation model for lower-resource language pairs

more difficult than for those with plentiful training data available.

Until recently, recurrent neural network (RNN) architectures such as the Long-

Short Term Memory (LSTM) architecture, were the state-of-the-art sequence-to-

sequence models for most NLP tasks. However, following the introduction of the

attention mechanism [6], the transformer architecture [7] has largely replaced recur-

rent models as the state-of-the-art across NLP tasks, including MT. The transformer

architecture is composed of an encoder, which translates the source sentence into an

intermediate representation, and a decoder, which produces the translated sentence

form the intermediate representation. One of the main distinguishing features of the

transformer model is that it uses an attention mechanism to allow the decoder to se-

lectively attend to the parts of the encoder output that are most useful for generating

its translations.

2.1.2 Consequences for Speech-to-text Translation

Neural networks in the context of speech recognition systems were first introduced

in the 1990s [8, 9, 10]. The fact that they have now been shown to also drastically

improve machine translation is quite profound, especially in the context of translating

speech from one language into text in another, as it implies that there is a learnable

underlying structure between languages.

Furthermore, it is interesting that the same computational model, the neural

network, is able to achieve state-of-the-art performance on language tasks involving

both speech and text representations of language. This shows potential for neural

networks to be used for developing a single end-to-end neural model that spans both

text and speech representations of language.
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2.2 Arabic-English Machine Translation

2.2.1 MSA vs. Dialectal Arabic Research

The majority of work on Arabic-English machine translation has been text-based, and

therefore focused on MSA [11]. This is because MSA is the primary form of written

Arabic, whereas dialectal Arabic is almost exclusively spoken, and rarely written [12],

which makes research on dialectal Arabic MT difficult because of the lack of written

dialectal Arabic text corpora. With increased internet usage, written dialectal Arabic

has become more common in recent years, enabling some research in dialectal Arabic

MT, but the majority of research and data available is still in MSA.

Modern transformer-based approaches to Arabic-English MT achieve Bilingual

Evaluation Understudy (BLEU) scores, the currently prevalent metric, of 31.1 [13].

2.2.2 Word Segmentation

Word segmentation is the process of segmenting words into smaller parts, or “sub-

words”. Since Arabic is morphologically rich, word segmentation plays a critical role in

Arabic NLP. As a result, a lot of emphasis on developing morphological segmentation

tools such as MADAMIRA [14] and Farasa [15]. These segmenters are specifically

designed for MSA, and have been shown to perform significantly less well on dialectal

Arabic [16]. Recently, Sajjad et al. showed that using a Byte-Pair Encoding (BPE)

[17] for Arabic-English MT results in similar performance to state-of-the-art language-

dependent segmenters [13].

2.2.3 Dataset Availability

Sajjad et al. aggregated MSA-English parallel datasets, resulting in a combined

41 million parallel sentences [13]. This is much more parallel data relative to that

available for individual Arabic dialects.
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2.3 Arabic-English Speech-to-text Translation

In contrast, Arabic speech translation has been scarcely researched. We are aware of

only a few such efforts. The first is a submission to the Arabic-English speech-to-text

translation task of the IWSLT (International Conference on Spoken Language Trans-

lation) 2007 challenge [18, 19]. The authors use a Statistical Machine Translation

(SMT) approach, and re-rank their translations with additional models. The second

is a study of Iraqi-Arabic to English speech translation [20]. This is different from

our setting because it focuses on dialectal Arabic speech rather than MSA speech.

As these papers are over a decade old, we were unable to directly compare our work

to theirs. Both papers use SMT, an approach that has since become outdated due to

the successes of neural approaches. We are not aware of any follow-up Arabic-English

speech-to-text translation research using modern (neural) approaches.

2.3.1 Dataset Availability

The largest Arabic-English speech-to-text translation dataset we are aware of is the

Egyptian CALLHOME dataset [21]. It is comprised of pairs of Egyptian Arabic

Speech utterances and their corresponding translations into English text. The train-

ing data comprises of 20 thousand utterances, and the development and test sets

make up another 15 thousand utterances. Importantly, the speech in this dataset is

dialectal Arabic speech, which differs significantly from MSA speech.

More recent work in 2020 introduces an MSA-English speech-to-text translation

dataset as part of CoVoST 2, a massively multilingual speech-to-text translation

dataset [22]. This MSA-English dataset is made up of a 2283 sentence training set,

1758 sentence development set and a 1695 sentence test set. The paper reports BLEU

scores evaluated on their test set ranging from 0.1 with a cascaded ST approach, to

4.3 with an end-to-end ST approach. Clearly, the size of the CoVoST 2 training

dataset is too small for training a quality speech-to-text translation system.

We are not aware of other Arabic-English speech-to-text datasets. The datasets

available are not sufficient to support research in MSA-English speech-to-text trans-
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lation. The lack of data is a major challenge that we seek to overcome throughout

this thesis, both by collecting a new dataset and exploring techniques for perfoming

low-resource translation.

2.4 Evaluation Metrics

A key enabler of conducting research in speech-to-text translation is having the ability

to quantitatively evaluate a translation model in an automatic fashion. This allows

researchers to iteratively improve models without the need for continuous manual

inspection of the translations the model produces. Having a standardized automatic

metric for measuring translation quality also enables different researchers to efficiently

collaborate and compare their models in an objective manner.

The current prevalent metric for automatically evaluating machine-generated trans-

lations is the Bilingual Evaluation Understudy (BLEU) metric [23]. The BLEU score

for a given machine-generated translation of a source sentence is calculated based

on its similarity to one or more human-generated translations of the same source

sentence. Machine-generated translations that are similar to the human-generated

translations receive higher BLEU scores. This similarity is computed based on the

number of n-grams (sequences of consecutive words) that the machine and human

generated translations share. BLEU scores range from 0 to 100, with higher scores

representing more accurate translations.

Notably, the calculation of a BLEU score depends on having human-generated

translations for use as a reference. The parallel datasets discussed in the Dataset

Availability sections of this chapter are composed of source sentences and their cor-

responding human-generated reference translations. As we saw in this section, in

addition to their use for training models, datasets are also needed for evaluating

trained models.
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2.5 Chapter Summary

In this chapter, we discussed the current state-of-the-art for MT, which involves the

transformer neural architecture, and its use of attention. We further investigated

Arabic-English machine translation and speech-to-text translation, for which we dis-

cussed the choice of Arabic dialect, evaluation metrics, word segmentation techniques

and the availability of relevant datasets to support research.
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Chapter 3

Novel MSA to English Speech

Translation Dataset

3.1 Motivation

In order to evaluate our speech-to-text translation system, we needed a test set in

the form of parallel pairs of MSA speech utterances and their English text transla-

tions. To the best of our knowledge, no such corpus of significant size exists. The

closest contender to such a corpus is the “The CALLHOME Egyptian Arabic Speech

Translation Corpus” [21], which is comprised of pairs of Egyptian Arabic speech ut-

terances and their corresponding translations into English text. The dataset is made

up of 35,842 utterances, and is partitioned into training, development and test sets.

While the development and test sets of this dataset are sufficiently large for evaluating

speech-to-text translation system, the dataset is not a good fit for our use case be-

cause the Egyptian dialect differs substantially from MSA. Therefore, it is unlikely to

work well for evaluating an MSA to English speech-to-text translation system. With

no dataset consisting of MSA speech utterances and their corresponding English text

translations, it is difficult to make progress on the end-to-end approach, therefore we

decided to collect a test dataset.
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Figure 3-1: Example of Data Collection Prompt

3.2 Dataset Construction

To collect the dataset, we launched a task on Amazon Mechanical Turk (AMT) in

which we asked crowd source workers to record themselves reading Arabic sentences

out loud. Figure 3-1 shows the user-interface presented to crowd source workers,

with an example sentence prompt to be recorded. We chose these Arabic sentences

from our 41 million sentence parallel Arabic-English text dataset, which means that

we automatically have the English translation for each Arabic speech utterance we

collect. Another benefit of this data collection setup is that we are not only getting

Arabic speech to English text parallel pairs, but we also have their corresponding

ground truth Arabic text.

3.2.1 Dataset Size

We collected a total of 26,633 utterances. We collected 19941 of these utterances as

part of a train dataset, and the remaining 6692 utterances as a test dataset.
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3.2.2 Sentence Length

In choosing Arabic sentences to use for the speech data collection task, we limited our

choices to sentences between 5-20 words. This is mainly because reading a sentence

longer than twenty words is an arduous task, and we want to make sure the AMT

task remains manageable.

3.2.3 Data Diversity - Worker Demographics

MSA is spoken throughout the Arabic-speaking world, so in order to make sure our

test dataset is representative of MSA, we opened up the task to workers from all of

the countries in the Arab world, as well as the US because the vast majority of AMT

workers reside in the US [24]. We have recorded utterances from Jordan, Lebanon,

the United States, Bahrain and Palestine. We initially launched the task with the

description and instructions in English, which may have been limiting the number

and/or diversity of workers that we were receiving. Therefore, in order to increase

the volume and diversity of workers, we internationalized the data collection website

to have both a version with an English description and a version with an Arabic

description.

3.2.4 Data Diversity - Audio and Equipment

The speech utterances are recorded through a web interface through the microphones

on the various personal computers of the AMT workers. The recordings are therefore

recorded with a diverse set of computer microphones and in various levels and types

of background noise. However, we do ask the workers to record in a relatively quiet

place so the surrounding noise is minimal in general.

3.2.5 Limitations

The main caveat of the dataset we collected is that the Arabic speech utterances are

read as opposed to naturally spoken. It is possible that the distribution of “read”
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speech differs from that of naturally spoken speech. For example, repetition of a

sentence or visual reading errors may be more prevalent in read speech. On the

other hand, disfluencies may be less common in read speech because a well-formed

grammatical sentence is already provided to the speaker.

3.3 Quality Assurance

Since there is a possibility that some crowd source workers may not read out sentences

properly, we need a way to ensure that the utterances included in the dataset are

high quality so that they can serve as a authoritative ground truth for evaluating our

speech-to-text translation system. Therefore we take the following steps to ensure

the accuracy of crowd sourced utterances:

∙ Length Threshold: Recordings less than 1 second long are discarded.

∙ Real-time Validation: Utterances are transcribed using the Google Speech-

to-Text API, and the word error rates (WER) of the transcriptions are calcu-

lated. Only utterances whose transcripts result in a WER of less than 40% are

kept. We chose this threshold manually by inspecting the quality of the speech

utterances produced. The main goal of this threshold was to ensure that crowd

source workers were in fact reading the sentence presented and not trying to

game the system.

∙ Task Approval Rating: AMT allows the assignment of tasks to be restricted

to crowd source workers that meet a certain approval rating, i.e. a score repre-

senting the percentage of tasks they have performed satisfactorily in the past.

When we started the data collection, we only allowed workers with an ap-

proval rating of 90% or greater to attempt our task. As there are not many

crowd source workers from Arabic speaking countries, this high approval rating

threshold led to a very low rate of data collection. To expedite the data collec-

tion process, we lowered the approval rating threshold to 65% and rely more on

real-time validation of incoming speech utterances to maintain quality.

30



3.4 Chapter Summary

In this chapter, we described the collection of a novel MSA-Arabic speech-to-text

translation dataset. We detailed the dataset construction process, highlighting the

steps we took towards data diversity and quality assurance. The training set we col-

lected contains 40.45 hours of speech, and the test set contains an additional 12.96

hours, resulting in a total of 53.41 hours across the entire dataset. Table 3.1 summa-

rizes the key details of the dataset.

Dataset # Utterances Ave. Words/Utterance Ave. Duration (seconds)

Train 19,941 11.66 7.30

Test 6,692 11.27 6.97

Table 3.1: Summary of novel Arabic-English speech-to-text translation dataset
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Chapter 4

3-step Cascade Speech-to-text

Translation

In this chapter, we explore a novel approach to performing cascaded speech-to-text

(ST), in which the 2-step cascade ST is augmented with an intermediate step respon-

sible for aligning the output of the ASR step with the input of the MT step.

4.1 Baseline: 2-step Cascade Speech-to-text Trans-

lation

In the absence of sufficient parallel data for training an end-to-end system, the domi-

nant approach to speech-to-text translation is cascaded ST. Speech-to-text translation

systems are often designed as 2-step cascades. Cascaded ST is a system made up of

two consecutive models: an ASR model followed by an MT model . We introduce a

novel Arabic-English 2-step cascade model as our baseline. We construct the system

as follows:

4.1.1 Automatic Speech Recognition Model

We use an in-house Arabic ASR model developed by Sameer Khurana. The model

is trained on the MGB-2 speech recognition dataset using the ESPnet framework.
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Specifically, we use the “Speech-transformer” ASR architecture [25, 26], and train the

model with a hybrid CTC/attention loss function [27]. The architecture consists of

a convolutional pre-encoder, a transformer encoder and transformer decoder. The

encoder has 12 layers and the decoder has 6 layers, each with 2048 hidden units.

Overall, the model has approximately 200 million learnable parameters. The model

is trained on 1200 hours of Arabic speech from the MGB2 dataset, and achieves a

WER of 12.5% on the MGB2 test set.

4.1.2 Machine Translation Model

We use the Arabic-English MT model described by Sajjad et al. [13]. It is a

transformer-based model trained on the concatenated dataset of 41 million Arabic-

English sentence pairs. The trained model achieves an average BLEU score of 31.1

on four IWSLT test datasets.

4.2 Motivation

While both are forms of Arabic text, transcribed Arabic speech and written MSA

are different in many ways. For example, transcribed Arabic speech does not con-

tain punctuation, may have repeated words and is more likely to have grammatical

mistakes or partial sentences. Written Arabic, on the other hand, tends to be more

structured, comprising of full and grammatically correct sentences. We can mitigate

some of these differences by choosing a formal Arabic speech dataset in which the

Arabic speech was the result of an Arabic speaker reading written Arabic. We refer to

this as “read speech”. In particular, we could use audio from Arabic news broadcast

in which the news anchor reads written Arabic off of a teleprompter. Alternatively,

we could use Arabic audiobooks, in which a narrator reads written Arabic text from

a book. However, significant differences between the Arabic speech transcriptions

and Arabic written text are inevitable. Such differences could be due to the lack of

punctuation in the transcribed Arabic, any mispronunciations or mistakes made by

news anchors, or transcription errors made by the ASR system.
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Hence, there is a misalignment between the distributions of the output of the

ASR model (transcribed Arabic) and the input the MT model expects (MSA text).

However, the 2-step cascaded ST system is does not take this misalignment into

account, as the transcribed Arabic output of the ASR model is fed directly as input

for the MT model even though it is not MSA. We hypothesize that reducing this

misalignment should improve the performance of the MT model, and therefore result

in an improvement in the overall system’s speech-to-text translation quality.

4.3 Oracle Experiment

We start by running an oracle experiment to evaluate the potential of correcting

the misalignment between the ASR and MT steps of the cascade ST. To quantify

this potential, we simulate what would happen if we were able to perfectly fix the

misalignment issue. That is, we assume that we were able to perfectly convert the ASR

output into MSA. To achieve this, rather than feeding the imperfect ASR output into

the MT model, we instead feed the ground truth MSA into the MT model. Finally,

we evaluate the BLEU score on our test set. This oracle experiment results in a

BLEU score of 27.5. This shows that improving the alignment of the ASR output

with the MT input has a potential for an improvement of up to 12.8 BLEU points

from the baseline of 14.7 BLEU. This large potential for improvement validates that

the misalignment problem is a significant one that is well worth studying.

4.4 Method

In order to reduce the misalignment, we propose to augment the cascaded ST ap-

proach with an intermediate step between the ASR and MT steps of the cascaded ST

approach. The purpose of this intermediate step is to convert the transcribed Arabic

output of the ASR, into MSA, the written style of Arabic the MT system is trained

on. Our hypothesis is that this resulting improved alignment between the MT input

and the distribution of the MT training data should improve the quality of the MT’s
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final English translations.

We can think of this “style transfer” as a translation between two styles of Arabic

(spoken style Arabic to MSA style Arabic). If we think of the task as a translation,

we could even employ a machine translation algorithm to complete the task.

However, supervised machine translation algorithms are not an option because

we do not have parallel data for this pair of Arabic styles of writing. We can create

parallel transcribed Arabic to MSA training data from the training set of the speech-

to-text translation dataset we collected. In particular, we constructed the dataset by

tasking crowd source workers to read Arabic sentences from a parallel Arabic-English

dataset. This means that for each Arabic speech to English text pair we collected,

we also have the corresponding MSA sentence, resulting in triplets of Arabic speech,

MSA text and English text. We transcribe the Arabic speech using our trained ASR

model to generate transcribed Arabic sentences that correspond to the MSA text.

Since the training set of the speech-to-text translation dataset we collected consisted

of 19,941 utterances, this gives us 19,941 parallel pairs of transcribed Arabic to MSA

text. However, 19,941 parallel sentences is not sufficient for training a supervised MT

model. Therefore, we explore means of performing the translation without parallel

data (unsupervised MT), or with limited parallel data (semi-supervised MT).

Fortunately, due to recent advances in unsupervised machine translation [28, 29,

30, 31], it has become possible to learn translations between two languages in the

absence of parallel data. To compensate for the parallel data, unsupervised MT does

require large monolingual corpora with 2.9 million sentences or more per language

[30].

Lample et al. 2019 [31] achieve a BLEU score of 34.3 on the German-English

WMT’16 translation task, establishing a new state-of-the-art for unsupervised MT.

This result is particularly significant because this was a 9 BLEU point increase relative

to the previous state-of-the-art unsupervised MT model. We use the unsupervised

machine translation model they describe to “translate” the output of the ASR system

into the input the of the MT system. The resulting augmented 3-step cascade consists

of the following:
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1. Transcription: Use an Automatic Speech Recognition system to transcribe

the Arabic speech waveforms into Arabic text.

2. Unsupervised Machine Translation: Translate from transcribed Arabic

into Modern Standard Arabic text using unsupervised MT.

3. Translation: Use an Arabic text to English text Machine Translation system

to convert the Modern Standard Arabic output from step 2 into English text.

A visualization of this pipeline is rendered in Figure 4-1, and a visual comparison of

the considered approaches is rendered in Figure 4-2.

Figure 4-1: 3-step Cascaded ST Overview

4.5 Challenges

Monolingual data is much more common than parallel data, and so for many lan-

guages, sufficiently large monolingual corpora are available. This is the case for MSA,

for which we have a large 41 million sentence MSA dataset. Since transcribed MSA

speech is not a conventional language, no corpora of transcribed Arabic text exist.

However, we can create a monolingual corpus of Arabic speech by using an ASR model

to transcribe MSA speech. The amount of transcribed MSA text we can acquire in
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Figure 4-2: Summary of Considered Approaches

this way is limited by the amount of MSA speech data we have. By transcribing the

speech from the MGB-2 dataset, we create 375,103 sentences of transcribed MSA.

It is important to note that we are not using unsupervised machine translation

in the typical way. While unsupervised machine translation was created for translat-

ing between completely different languages, such as English and French, our system

translates between closely related forms of Arabic (transcribed Arabic and MSA).

Unsupervised machine translation depends on the assumption that some common-

ality can be found between the languages that at some level they are structurally

similar, so that the learnings from each corpus can be mapped onto each other. We

expect transcribed Arabic and MSA to be more similar than, for example, English

and French. Therefore, despite the relatively low availability of monolingual data

for transcribed Arabic, we are optimistic about applying this approach because we

expect the actual translation task to be easier, and thus require less data.

Another possible challenge might be the increased presence of noise or inaccuracies

in the transcribed Arabic. In particular, erroneous transcriptions may be phonetically

similar but semantically unrelated to the their source utterances. As a result, corpora

of transcribed Arabic may conform less rigidly to expected linguistic rules.
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4.6 Implementation

4.6.1 Preprocessing

Once we have gathered the datasets, the first step is to preprocess the data. Due to the

morphological properties of Arabic, word segmentation is essential for Arabic NLP [32,

33] The most significant component of our preprocessing pipeline is segmenting words

into subword units. We do this using the approach introduced by Sennrich et al. [17],

which performs a word segmentation algorithm based on the byte pair encoding (BPE)

compression algorithm. Since this method has its roots in information theory, it is

completely language agnostic. Applying BPE has been shown to improve performance

on Arabic English machine translation [13]. Therefore, we expect that it will work

well for transcribed Arabic to MSA machine translation.

Figure 4-3 shows the steps we use for preprocessing. We start by tokenizing each

of the Arabic text corpus and the transcribed Arabic text corpus. We then learn BPE

over the concatenation of the Arabic text and transcribed Arabic corpora, and use

those codes to apply BPE onto the tokenized version of each corpus. This produces

tokenized and BPE encoded versions of the corpora, ready to be used as inputs for

the Unsupervised Machine Translation step.

4.6.2 Adapting Unsupervised Machine Translation

for Transcribed Arabic to MSA translation

While we have existing systems for the first and third steps of our pipeline (ASR and

MT respectively), we need to build a system for step 2 of the pipeline: translating

between transcribed Arabic and Modern Standard Arabic. We base our work on [31],

which achieves the current state of the art for Unsupervised MT. In particular, we use

Facebook Research’s XLM code repository (https://github.com/facebookresearch/XLM)

as a starting point.

XLM was designed for languages other than Arabic. This introduces more com-

plexity because Arabic differs significantly from these languages, particularly due to
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Figure 4-3: Preprocessing Overview

its more complex morphology. Therefore, it may be beneficial to use Arabic specific

preprocessing methods to preprocess the data in a way that we know works well for

Arabic text instead of using the preprocessing methods used by default by XLM.

With our preprocessing methods integrated into the XLM code, we then tune the

hyperparameters of the model for our language pair. In particular, since we are deal-

ing with a translation between two styles of Arabic (as opposed to two completely

different languages), the default hyperparameters are unlikely to work for our task.

4.7 Experiments

The first thing we do is test the proposed 3-step cascaded ST approach in its most

basic form, to get baseline results and see if the approach is viable.

The approach is composed of 3 consecutive steps: Arabic ASR, Arabic Transcrip-

tion to MSA Unsupervised MT, and Arabic-English MT. Since we already trained an

ASR and MT model for the 2-step cascaded ST, we only have to train the intermediate

unsupervised MT step to complete the cascade.
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4.7.1 Data

To train the unsupervised MT model, we need a monolingual corpus of Arabic ASR

transcriptions and a monolingual corpus of MSA.

Since Arabic ASR transcriptions are not a language in the conventional sense,

no public corpus of Arabic ASR transcriptions exists. However, since Arabic speech

corpora are available and we have a trained Arabic ASR model, we can create a corpus

of Arabic ASR transcriptions by decoding Arabic speech with the ASR model. We

decode the MGB-2 Al Jazeerah news broadcast speech dataset using the trained ASR

model to obtain 375,103 sentences of Arabic Transcriptions. For later experiments,

we transcribe an additional 308,576 utterances from the GALE dataset to create a

combined Arabic ASR Transcription dataset of 683,681 sentences.

For MSA, we use the 41 million MSA sentences from the combined Arabic-English

parallel text dataset.

Table 4.1 summarizes the datasets used and their respective sizes.

Dataset Size

Arabic-English Parallel Text 41,425,346

MGB-2 Arabic Speech Dataset 375,103

GALE Arabic Speech Dataset 308,576

Table 4.1: Datasets used for 3-step cascaded-ST

4.7.2 Evaluation

Since Arabic ASR transcription is not a conventional language, there wasn’t an exist-

ing parallel dataset of Arabic ASR transcription and MSA sentence pairs that we can

use to quantitatively evaluate the unsupervised MT model. However, we can create

such a dataset by adapting the test set of the newly collected dataset described in

Chapter 3. We do this by transcribing the read speech with the trained ASR model to

produce a test set of parallel sentence pairs of Arabic ASR transcript - MSA sentences.
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With a test set in hand, we evaluate the unsupervised MT model by translating

the Arabic ASR transcripts from the test set and comparing the resulting output to

the corresponding ground truth MSA to computing a BLEU score.

In comparing the ASR output against the ground truth MSA, we compute a score

of 31.35 BLEU. This serves as a baseline for the intermediate step. That is, if the

intermediate step did nothing, this is how similar the ASR output would be to MSA.

This baseline means that the BLEU score of the intermediate step against the ground

truth MSA needs to be greater than 31.35 for the intermediate step to have been

successful in increasing the similarity to MSA.

After running many experiments and tuning hyperparameters, the best BLEU

score we are able to achieve for the intermediate step in a fully unsupervised setting

is 31.99. This increase in 0.64 BLEU points over the baseline indicates that the

intermediate step has been at least partially successful in processing its input to

become more similar to MSA. While evaluating the intermediate step in isolation is

useful during development, the real measure of success is whether the addition of the

intermediate step to the 2-step cascaded ST to form the 3-step cascaded ST results in

an overall improvement in the Arabic-English speech-to-text translation. To do this,

we again use our collected test set, and run the Arabic speech through the cascaded

ST, once without the intermediate step, and once with the intermediate step. For each

of these runs, we measure the BLEU score of the overall speech-to-text translation

into English. The 2-step cascade baseline gives a BLEU score of 14.7, while the 3-step

cascade results in a BLEU score of 14.3. That is, the small 0.54 BLEU improvement

in the intermediate step’s BLEU did not translate to a better overall speech-to-text

translation system. Since 0.54 BLEU is quite a small change, it is possible that the

intermediate step is not making meaningful changes, but is simultaneously making

other changes that corrupt the sentence. Since BLEU operates on a word level and

is agnostic of actual words, it could be that the intermediate step makes a larger

number of improvements in less semantically significant words, such as punctuation

or stop words, and a relatively smaller number of corruptions of more semantically

(or syntactic) significant words such as nouns and verbs. This would result in a small
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increase in BLEU score even though the sentences have largely lost semantic content

or coherence.

Since we do have 19,941 sentences of training data, we also train a semi-supervised

MT model that relies on the same monolingual corpora as the unsupervised model,

but also makes use of parallel training data.

4.8 Analysis

The baseline experiments in the previous section showed that while the intermediate

step can lead to a 0.54 point improvement in the BLEU score of the Arabic ASR

transcription computed against the ground truth MSA, the overall speech-to-text

translation BLEU score does not improve. We hypothesize that mistakes made in the

intermediate step’s translations are more linguistically significant than the successful

corrections, which results in a misleading small increase in BLEU score instead of a

decrease.

Additionally, we expected the semi-supervised model should perform better than

an unsupervised model because it has access to a direct mapping between sentences of

the two languages. However, with 25,000 parallel sentence pairs, the semi-supervised

MT falls short of the unsupervised MT with a BLEU score of 31.49. This is possibly

due to the parallel dataset of 25,000 not being large enough. However, we do not

know for certain why the semi-supervised model underperforms the fully unsupervised

model.

A major limitation of our system is that the size of our monolingual Arabic ASR

transcription dataset is much smaller than the size of our monolingual MSA dataset,

and an order of magnitude smaller than the sizes of the monolingual datasets used in

the literature [29].
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4.9 Synthetic Parallel Data Augmentation Experi-

ments

To make up for the limitations in dataset size outlined in the previous section, we

build on the baseline semi-supervised model of the previous section via parallel data

augmentations. In general, the purpose of these data augmentations is to simulate

pairs of parallel sentences where in each pair, one sentence resembles Arabic ASR

transcriptions, and the other sentence resembles MSA. We explore 3 approaches to

these parallel data augmentations and compare their results.

In the previous section, one of the major limitations identified was that we lack

a sufficient amount of parallel data for our task. Collecting large amounts of quality

Arabic speech data is costly and time consuming, so we proposed to address this lim-

itation via synthetic data augmentation. To address the lack of parallel sentences, we

analyze the ASR output data and identify opportunities for synthetic data creation.

We define and compare several data augmentation / synthetic parallel data creation

techniques:

4.9.1 Identity Parallel Data Augmentation

Our setting differs substantially from what is described in unsupervised translation

literature, in the sense that the source and target are both variants of the same

language in our case. Thus, we augmented the model with parallel sentences mapping

to themselves. While some of these showed minor increases in BLEU scores for the

unsupervised MT step, the improvements did not carry over to the overall pipeline.

To identify why unsupervised MT was not performing well for our use case, we

compare our setting with the successful setting used in the unsupervised MT literature

and identify two key differences: 1. The original paper used much larger monolingual

datasets 2. The original paper focused on translating between two completely different

languages, whereas our goal is to translate between two forms of Arabic. Specifically,

the unsupervised MT model as described in the original paper does not have a prior
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that its source and target languages are variants of the same language, and is therefore

not learning to copy sentences that were already well formed. To introduce this source-

target language similarity prior, we augment the unsupervised MT model with parallel

sentences mapping MSA sentences to themselves.

4.9.2 Punctuation-based Parallel Data Augmentation

Since Arabic ASR transcription does not contain any punctuation, we create syn-

thetic parallel sentences by stripping the punctuation from MSA sentences to form

corresponding synthetic ASR transcriptions.

4.9.3 Corruption-based Parallel Data Augmentation

To understand the nature of the parallel data required for our task, we analyzed the

ASR output and ground-truth Arabic and quantified the differences between the ASR

output and MSA. We identified two key patterns:

1. Erroneous words are often off by one or two characters and occur in consecutive

chunks

2. Character differences are often phonologically similar

3. Words are often repeated

4. Consecutive sequences of words are often dropped, and such drops are more

common at the beginning or end of a sentence

Based off of these observations, we designed corruption based synthetic parallel data

augmentation techniques. To synthesize these parallel data, we start with MSA sen-

tences from our Arabic-English parallel text dataset, and corrupt them in ways that

correspond to the above observations, and then use the corrupted sentence and origi-

nal MSA sentence as a parallel pair. For example, for the observation that sequences

of words are often dropped, we might delete the first few words of an MSA sentence

to form the corresponding synthetic ASR Arabic transcription sentence.
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As a second example, based on the observation of single character differences be-

tween words in the Arabic ASR transcription and MSA, and leveraging our knowledge

of Arabic — that its orthography and phonology are similar, we employ edit-distance

as a metric for corruption. Specifically, we synthesize parallel data by starting with

MSA sentences from our Arabic-English parallel text dataset, and randomly select

and replace a small number of words in each sentence with a word that has an edit

distance of 1 or 2 from the original word. This creates the corrupted version of a given

sentence, which represents the ASR Arabic transcription, which is paired with the

original MSA sentence to create a parallel pair. Upon further inspection, we noticed

that there are few key differences between Arabic orthography and phonology, and

decided to modify our approach by using a phonologically-weighted edit distance to

account for these differences.

4.9.4 Results

Among the synthetic parallel data augmentations, the best intermediate MSA BLEU

score was 33.50 with the 1 million synthetic parallel sentence pairs, yielding an im-

provement of 1.51 BLEU points over the best unsupervised model for the conversion

to MSA style text. However, this improvement in the intermediate step did not

translate to a better overall speech-to-text translation quality, at a BLEU score of

14.1.

4.10 Chapter Summary

In this chapter, we proposed a novel approach to augmenting cascaded ST with an

unsupervised MT intermediate step to align the output of the ASR model with the

input of the MT model. Additionally, we explored novel approaches of augmenting

the intermediate-step model with synthetic parallel data and improved its BLEU

score by 1.5 points. Overall, we found that despite the increase in BLEU score of the

intermediate-step, the 2-step cascaded ST still performed best.

Table 4.2 summarizes the results for all experiments in this chapter.
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Experiment Description ASR output to Arabic BLEU English BLEU

Baseline: 2 step pipeline 31.35 14.7

Oracle: Perfect XLM step 100 27.5

Unsupervised XLM 31.99 14.3

Semi-Supervised XLM 31.49 14.1

Synth Para Data XLM 33.5 14.1

Table 4.2: Cascade ST experiment results
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Chapter 5

End-to-End Speech-to-text

Translation

5.1 Motivation for End-to-End Approach

One of our main insights from the cascaded ST experiments was that the Arabic ASR

transcription acts as an information bottleneck between the ASR and MT steps, and

this is only exacerbated by the addition of the unsupervised MT step in the 3-step

cascaded ST, causing the BLEU score to decrease from 14.7 to 14.3.

One way to get around this information bottleneck is to use a single end-to-

end neural model instead of a cascaded approach. This would involve translating

from Arabic speech to English text by learning the English text directly from the

Arabic speech waveforms. Since the same computational model, the neural network,

has achieved state-of-the-art performance for both major parts of the speech-to-text

translation task (ASR and MT), it may be possible to learn speech-to-text translation

end-to-end. However, a major challenge is that there is limited supervised data for

training an end-to-end model, which requires a large parallel corpus of Arabic Speech

to English text sentence pairs.

To the best of our knowledge, no such corpus of significant size exists where the

Arabic dialect is Modern Standard Arabic (MSA). The closest contender to such a

corpus is the “The CALLHOME Egyptian Arabic Speech Translation Corpus” [21],
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which is introduced in chapter 2. Based on the amount of data needed for Spanish-

English speech-to-text translation [34], this corpus is too small for training an Arabic-

English speech-to-text translation system. Perhaps more significantly, the dataset is

not a good fit for our use case because the Egyptian dialect differs substantially from

MSA, and is therefore unlikely to work well for MSA. With no dataset consisting

of MSA speech utterances and their corresponding English text translations, it is

difficult to make progress on the end-to-end approach.

We also considered constructing a training dataset. The end-to-end model may

work well if we were to construct a parallel dataset comparable in size to the one

used for Spanish-English speech-to-text translation (on the order of 170 thousand

utterances) [34]. However, there are caveats. The first caveat is that constructing

a high quality speech-to-text translation dataset is time consuming and costly. For

an estimate of the costs of collecting enough parallel data for my task, we studied a

paper that investigates English to Spanish speech-to-text translation [34]. The paper

reported a total cost of $15,665 for creating a parallel dataset with 170 thousand

utterances. We expect that this cost is a lower bound for the cost of constructing an

English-Arabic speech-to-text dataset. Because English and Arabic are less similar

than English and Spanish, the Arabic-English task would require more training data

to achieve similar performance. Also, good crowd source workers may be more costly

since Arabic speakers are less represented on crowd sourcing websites such as Amazon

Mechanical Turk. The United Arab Emirates is the only Arab country among the top

20 most represented countries by number of Amazon Mechanical Turk workers [24].

Additionally, even after creating a training dataset, it is not certain that it would help.

We could only test this after the expenditure of time and effort to create the dataset.

Finally, even if having such a dataset enables improved translations from MSA speech

to English text, the resulting translation method would not be generalizable to other

language pairs.

While we did not collect a training dataset large enough for end-to-end ST, we

did end up collecting a small training dataset with 19,941 parallel utterances, as

described earlier in the Chapter 2. Later, in Chapter 4, we use a modified version of
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this training set to train a semi-supervised transcribed Arabic to MSA model in as

part of a 3-step cascade ST system, but we have not explored its use for end-to-end

ST due to it being an order of magnitude smaller than the amount of data used for

end-to-end Spanish-English translation.

5.2 End-to-End ST with Synthetic Parallel Data Aug-

mentations

In the absence of a large enough supervised dataset for training an end-to-end speech-

to-text translation model, we consider approaches to train an end-to-end model with-

out parallel data. One way to achieve this is by synthesizing parallel data that closely

resembles natural parallel data, and then using this synthetic data to train the end-

to-end model. We explore and compare two main approaches to synthesizing parallel

data: 1) parallel data with synthetic Arabic speech, and 2) parallel data with syn-

thetic English text. A variation of the first approach has been shown to work well for

end-to-end Spanish-English speech-to-speech translation [35].

5.2.1 End-to-End ST with Synthetic Arabic Speech

Method

We use a text-to-speech (TTS) model to synthesize Arabic speech from an Arabic-

English parallel text dataset to create pseudo-parallel data made up of synthetic

speech and its corresponding English text. Specifically, we used the WaveNet TTS

model [36] via Google Cloud Platform’s Text-to-Speech API, and used all three

WaveNet voices that were available for Arabic at the time. Two of these voices

were male, and one female. To maximize the amount of variation in the synthesized

speech, we used each of these three voices an equal number of times, and ran the

TTS model on a random subset of the Arabic sentences from the 41 million pair

Arabic-English parallel text dataset. In total, we synthesized 500,000 utterances of

Arabic speech to form a pseudo-parallel training dataset.
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We then use this pseudo-parallel data to train an end-to-end speech-to-text trans-

lation model. To train the model, we use the ESPNet speech processing toolkit [37].

The model use is an encoder-decoder transformer architecture with a speech encoder

and a translation decoder as described in [38]. In the preprocessing stage, we augment

the training dataset via speed-perturbation of the speech. We perturb the speed of

the speech by multipliers of 0.9, 1.0 (no change), and 1.1. We perform these perturba-

tions on the entire training dataset, resulting in a three-fold increase in its size from

500,000 to 1,500,000 utterances. We initialize the speech encoder with the parameters

of the trained Arabic ASR model. Finally, since we have the MSA sentences which

we used to synthesize Arabic speech, we incorporate these MSA sentences to train

the model with a multi-task learning objective.

This removes the information bottleneck without deviating from the low-resource

setting. In fact, this approach needs the same types of datasets as the 2-step cascaded

ST approach. In particular, the WaveNet TTS model used in this approach requires

an Arabic speech to Arabic text parallel dataset, as does the ASR model in the

cascade ST. This approach also uses a parallel Arabic-English text dataset, which is

also used to train an MT model for the cascade ST.

However, this approach and the cascade ST experiments use a different amount

of training data, making it more difficult to draw a fair comparison between the two

approaches. Specifically, we only used 500,000 sentence pairs from the 41 million

Arabic-English sentence pairs used to train the MT model of the cascaded ST. Simi-

larly, the amount of data used to train the Arabic Wavenet model is undisclosed, and

is likely more than the 375,103 utterances our cascade ST’s ASR model is trained on.

We keep this limitation in mind as we discuss the results in the next section.

Results

Training an end-to-end ST model with 500,000 synthetic parallel sentences caused the

model to overfit to the synthetic speech. This can be seen in the loss curve in Figure

5-1. In an attempt to amend the overfitting, we performed several versions of this

experiment, introducing various forms of regularization. First, we introduced speed-
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perturbations because all of the synthetic speech utterances were generated by the

text-to-speech model with the same speed. Similarly, we used the SpecAugment data

augmentation method [39] to further diversify the speech data. Next, we initialized

the encoder parameters with the parameters of the pretrained Arabic ASR model

used in the cascaded ST chapter. We also attempted to freeze encoder layers to

prevent overfitting to the synthetic speech. However, these attempts did not result

in significant differences in translation quality.

Figure 5-1: End-to-end ST with Synthetic Speech Loss Curve.

5.2.2 End-to-End ST with Synthetic English Text

Motivation

Training an end-to-end ST model with synthetic speech caused the model to overfit

to the synthetic speech and therefore perform poorly on natural speech. One way to

avoid training the model on synthetic speech is to construct pseudo-parallel data with

natural Arabic speech and synthetic English text, instead of using synthetic Arabic

speech and natural English text.
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Method

To create a pseudo-parallel dataset with natural Arabic speech and synthetic English

text, we start with an ASR dataset (parallel Arabic speech and text) and translate the

Arabic Text into English using a pretrained Arabic-English MT model. In particular,

we use the MGB-2 Arabic ASR dataset, which consists of 375,103 Arabic utterances

and transcriptions. Then, to generate the English pseudo-translations, we use the

same Arabic-English MT model used in the cascaded ST approach, which is trained

on 40 million Arabic-English sentence pairs.

A limitation of this approach to creating pseudo-parallel data is that the Arabic-

English MT model was trained on MSA, but applied on ground truth transcripts of

Arabic speech, which differ in style from MSA. This limitation is similar to that of

the 2-step cascaded ST, which uses the same MT model. However, in the cascaded

ST, the MT model is applied on ASR output rather than ground truth transcripts.

This makes the limitation more severe in the case of the cascaded ST because, in

addition to differing from MSA in style, the ASR output can also be erroneous,

causing additional error propagation. As a result, since this limitation is less severe

for this approach relative to the cascaded ST approach, it is actually an advantage

when comparing the two.

Experiments and Results

We trained the end-to-end ST with synthetic English text in the same way as in the

previous section for end-to-end ST with synthetic speech, but replacing the 500,000

pairs of synthetic speech pseudo-parallel data with the 375,103 pairs of MGB-2 ut-

terances with their corresponding English pseudo-translations. The resulting model

achieves a BLEU score of 14.21 on the test dataset. This is the best performance of

an end-to-end ST approach so far, and comes close to the 14.7 BLEU score achieved

by the 2-step cascaded ST. This comparison of BLEU scores is a fair way to evaluate

the two approaches because both use the exact same training datasets and amounts

of data. This result suggests that with some improvements, this end-to-end ST with
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synthetic English text approach has the potential to outperform the cascaded ST. We

explore a strategy for improving this approach next.

5.2.3 Filtering Pseudo-parallel dataset via Dropout-based

Uncertainty-driven Self-Training

The pseudo-parallel data with synthetic English text differs from conventional parallel

data in that the translations are not guaranteed to be correct. Pseudo-parallel pairs

vary in quality depending on the accuracy of the translation that formed them. If

we are able to quantify the quality of these translations, we can filter out the lowest

quality pseudo-parallel pairs, increasing the average quality of the pseudo-parallel

dataset. However, this does also decrease the size of the training dataset, creating a

trade off between pseudo-translation quality and dataset size.

The standard way of quantifying the quality of a translation is by calculating a

BLEU score against a ground truth translation. However, we do not have such ground

truth translations, as they are precisely what we are attempting to create. We there-

fore need a way to quantify the quality of the translations in the absence of ground

truth translations. Recent work introduces DUST (Dropout-based Uncertainty-driven

Self-Training) [40], providing a method for estimating the confidence of a translation

model on a given translation.

First, we translate the MGB-2 ground truth Arabic transcript to generate a

pseudo-translation for each sentence. For clarity, we will refer to this translation

as the original pseudo-translation. Our goal is to quantitatively evaluate how confi-

dent the MT model is in its original pseudo-translation for each sentence. Next, we

modify the Arabic-English MT model by enabling the dropout layers during decod-

ing. With dropout layers activated, we translate the MGB-2 ground truth Arabic

transcripts to generate three additional pseudo-translations for each sentence. As

dropout adds randomness to the previously deterministic decoding process, these

three dropout pseudo-translations are not necessarily identical to each other, or to

the original pseudo-translation.
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We evaluate as follows. If the dropout pseudo-translations are all similar to the

original pseudo-translation, i.e. if the model repeatedly produces a similar trans-

lation to the original pseudo-translation despite the activation of dropout, then we

can conclude that the model had high confidence in the original pseudo-translation.

To quantify this similarity, we calculate the character-based edit distance between

each of the pseudo-translations and the original pseudo-translation, resulting in three

measures of difference from the original pseudo-translation. Let ℰ be the set of these

three edit distances. Then, 𝑚𝑎𝑥(ℰ) is a measure of the uncertainty (or an inverse

measure of confidence) of the model for the given translation. We then omit sentences

from the training data if their 𝑚𝑎𝑥(ℰ) exceeds an uncertainty threshold. Lower un-

certainty thresholds result in smaller training datasets because more data is filtered

out. This has the effect of omitting training data that the Arabic-English MT model

is less confident about, thus improving the average quality of sentence pairs in the

dataset, but reducing its size.

Experiment Results and Analysis

We ran three experiments with different confidence thresholds, and report the BLEU

scores in Table 5.1. Setting a threshold of 0.7 filtered out a small proportion of the

dataset, so the resulting BLEU score was not changed significantly relative to the

model without DUST filtering. Lowering the threshold to 0.4 caused a decrease in

BLEU score relative to the model without DUST filtering. We expect that this is

because the decrease in performance due to the reduction of the dataset size was

larger than the benefit of improved average sentence pair quality.

Additionally, the authors of the DUST paper [40] recommended a threshold of 0.4.

However, this threshold causes a 43% reduction in the size of our dataset. Therefore

this threshold is too severe for our use case. Our setting differs from the setting

described in the DUST paper. The authors of the DUST paper used the DUST fil-

tering method to create pseudo-parallel data to augment a statically sized supervised

training dataset, so setting such a low threshold and filtering out a large proportion

of the data is acceptable for their use case, as they have enough training data to train
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DUST Threshold Train Dataset Size % of Data Kept BLEU

No DUST filtering (Baseline) 375,103 100% 14.7

0.7 326,235 87% 14.6

0.4 213,193 57% 11.9

Table 5.1: End-to-end ST with DUST filtering experiment results.

the model regardless of how few augmented pseudo-parallel sentences they have.

Therefore, it is possible that if we started with a larger dataset before applying

the DUST filtering, the decrease in dataset size might have been less influential. This

would allow us to use a threshold as low as 0.4.

5.3 Chapter Summary

In this chapter, we proposed two approaches for training end-to-end ST models,

one with synthetic Arabic speech and one with synthetic English text. We showed

that the approach with synthetic English text can achieve a BLEU score of 14.3,

which is comparable to the cascaded ST baseline. Finally, we proposed a method for

improving the end-to-end ST with synthetic English text by filtering the synthetic

pseudo-parallel training data using the DUST method as an unsupervised measure of

its quality.
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Chapter 6

Conclusions

6.1 Summary of Contributions

In this thesis, we conducted research on Arabic-English speech-to-text translation,

focusing on MSA. Our main contributions consist of the following:

∙ We construct a three-way parallel MSA-English speech-to-text translation dataset,

consisting of 19,941 training sentences and 6692 test sentences.

∙ We propose a novel approach to augmenting cascaded ST with an unsupervised

MT intermediate step to align the output of the ASR model with the input

of the MT model. We showed that despite the increase in BLEU score of

the intermediate-step, the 2-step cascaded ST still outperformed the 3-step

approach.

∙ We propose two approaches for training end-to-end ST models, one with syn-

thetic Arabic speech and one with synthetic English text. We show that the

approach with synthetic English text can achieve comparable translation quality

to the cascaded ST approach.

∙ Finally, we propose a method for improving the end-to-end ST with synthetic

English text by filtering the synthetic pseudo-parallel training data using the

DUST method as an unsupervised measure of its quality.
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6.2 Future Work

We hope that our work encourages further work in Arabic-English speech translation,

and more generally, improving translation models for low-resource language pairs. We

see a few possible directions for future work:

∙ We plan to release our Arabic-English speech-to-text translation train and test

datasets to the public, and encourage its use for training and evaluating trans-

lation models

∙ As the end-to-end ST with synthetic English text approach achieved compa-

rable results to the cascaded ST approach, we believe that this is a promising

direction. We encourage work that builds on this approach. For example, we

encourage research on evaluating and improving the quality of synthetic pseudo-

parallel data to improve the resulting ST model it is trained on

∙ While we explored a semi-supervised approach for the 3-step cascade approach,

we did not explore semi-supervised end-to-end ST. This could be an effective

way of building on the end-to-end approach.

∙ We encourage future work that extends ideas in this thesis to speech translation

for dialectal Arabic
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