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ABSTRACT 

The segregation of solute atoms at grain boundaries (GBs) can profoundly impact the structural 

properties of metallic alloys, and induce effects that range from strengthening to embrittlement. 

And, as such, the control of solute segregation is emerging as an alloy design tool, uses of which 

include the stabilization of nanocrystalline alloys. To date, the standard approach to predict the 

extent of solute segregation at GBs uses a simplified representation that treats the GB network as 

a single entity, and thus, uses a single “average” segregation energy to characterize solute GB 

segregation in an alloy. This simplification, however, fails to capture the highly disordered and 

anisotropic nature of GBs in polycrystals, which results in a spectrum of solute segregation 

tendencies (energies). In this thesis, we aim to address and remove this simplification; the thesis 

has five major contributions. First, we elucidate computationally the nature of this spectrum for an 

Mg solute in an Al polycrystal; the distribution is found to be captured accurately with a skew-

normal function. Second, we outline a thermodynamic segregation isotherm that incorporates this 

spectrum, and employ it to study the effect of such a spectrum on predictions of the equilibrium 

GB segregation state. Third, we develop a machine learning framework that can accurately predict 

the segregation tendency of solute atoms at GB sites in polycrystals, based solely on the 

undecorated (pre-segregation) local atomic environment of such sites. We proceed to use the 

learning framework to scan across the alloy space, and build an extensive database of segregation 

energy spectra for more than 250 metal-based binary alloys. Fourth, we outline more formally 

correct thermodynamic criteria to screen for thermodynamic stability of polycrystalline structures, 
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accounting for the spectral nature of GBs. And, we proceed to apply the developed criteria to 

screen over 200 alloy combinations. Among its benefits, this spectral approach enables strict 

enforcement of the third law of thermodynamics, where an average segregation energy does not. 

Fifth, we take the first step to extend the developed framework to handle solute segregation beyond 

the dilute limit, by outlining a thermodynamic segregation isotherm that accounts for both the 

spectrality of grain boundary sites, and solute-solute interactions; we also develop a computational 

framework to extract, and delineate both effects. Finally, we hope that the developed spectral 

thermodynamic framework, machine learning models, and solute segregation database in this 

thesis would help unlock the full potential of GB segregation as an alloy design tool, and enable 

the design of microstructures that maximize the useful impacts of segregation. 
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1. INTRODUCTION 

In polycrystalline metal alloys, solute segregation often occurs at grain boundaries (GBs), 

where the disorder in the local atomic environment provides solute atoms with an array of 

favorable sites over the host solvent lattice. GB segregation has a multitude of effects on alloy 

properties, as it induces structural effects [1,2] that include strengthening [3–5], embrittlement 

[6,7], corrosion resistance [8,9], and GB phase transitions [10,11]. And as such, controlling GB 

segregation is a handle for alloy design and optimization, and an essential tool for many 

engineering applications [12]. A prominent example of its utility is the use of segregants at the GB 

to kinetically [13–17] and thermodynamically [18–29] stabilize nano-grained alloys against grain 

growth. However, quantitative design of alloys with GB segregation in mind requires the ability 

to correctly predict the magnitude of such segregation in a given alloy system.  

The first isotherm to predict the equilibrium solute segregation at GBs was proposed by McLean 

in 1957 [30]. In this model, the polycrystal is partitioned into two site-types, bulk (intra-grain) and 

GB sites. The extent of segregation of solute atoms is calculated using the following relationship:  

 
𝑋𝑔𝑏

1 − 𝑋𝑔𝑏
=

𝑋𝑐

1 − 𝑋𝑐
exp [−

Δ𝐻𝑠𝑒𝑔

𝑘𝑇
] (1) 

where 𝑋𝑐, 𝑋𝑔𝑏 are the atomic solute concentrations at the bulk and GB regions, respectively, k is 

Boltzmann’s constant, T  is temperature and Δ𝐻𝑠𝑒𝑔  is the GB segregation enthalpy, which is 

defined as the enthalpy difference between a solute atom occupying a GB site (𝐻𝑠𝑜𝑙𝑢𝑡𝑒
𝑔𝑏

) versus a 

bulk site (𝐻𝑠𝑜𝑙𝑢𝑡𝑒
𝑐 ): 

 Δ𝐻𝑠𝑒𝑔 = 𝐻𝑠𝑜𝑙𝑢𝑡𝑒
𝑔𝑏

  −  𝐻𝑠𝑜𝑙𝑢𝑡𝑒
𝑐  (2) 

In Mclean’s treatment, three tacit assumptions are made about the segregation enthalpy, namely 

that it can be used to characterize all GBs regardless of their specific crystallographic character, at 

any temperature and for any solute-solute interaction condition at the GB. Following McLean’s 

isotherm, several other segregation isotherms have been proposed using different assumptions for 

solid solution behavior and different analytical relationships to calculate Δ𝐸𝑠𝑒𝑔 . Prominent 

examples include those of Fowler-Guggenheim [31], Guttmann [32], and Wynblatt and Chatain 

[33]; for a detailed review of these and other models, we refer the reader to Refs. [1,2,33]. 
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Nevertheless, all these thermodynamic models carry one critical assumption that we address in 

more detail in this thesis, namely that only one site-type exists at the GB, and consequently all GB 

sites have the same value of Δ𝐻𝑠𝑒𝑔.  

 

Figure 1: An illustration of the “averaged” McLean’s approach to GB solute segregation. In this treatment, a 

solute atom can only occupy two site-types (or local atomic environments), the bulk and the GB. And thus, this 

simplification ignores the variety of site-types that should exist at the GB, as a result of its disordered nature. 

The assumption of a single value of Δ𝐻𝑠𝑒𝑔 for all GB sites is rather a significant simplification 

and is invalid for even the simplest types of GBs [34,35], as it takes into account neither the variety 

of types of GBs in a polycrystal, nor the variation of sites within each individual GB. In a 

polycrystal, the GB network has a variety of site-types that can either promote or inhibit 

segregation to different degrees, depending on their unique local atomic environments. This 

spectral nature is experimentally validated through observed variation of solute segregation across 

the GB network, as shown in Figure 2, for example, for Fe(c), and Pt(Au). The nature of the site 

spectrum will determine the equilibrium solute concentration at individual GBs and the overall 

average concentration across all GBs [35,36]. It can be handled by introducing a density of sites 

as proposed by White and Stein [37] and Kirchheim [38,39], with 𝐹𝑖
𝑔𝑏

(Δ𝐻𝑖
𝑠𝑒𝑔

) the distribution 

function of GB segregation enthalpies over all site-types (i). The average global solute 

concentration across all GBs, 𝑋̅𝑔𝑏, can then be obtained by integrating solute concentration over 

all possible site-types [40]: 

 

Δ𝐻𝑠𝑒𝑔 

Two site-types: Bulk & GB 

𝐻𝑠𝑜𝑙𝑢𝑡𝑒
𝑔𝑏

 

Δ𝐻𝑠𝑒𝑔 

𝐻𝑠𝑜𝑙𝑢𝑡𝑒
𝑐  

 

McLean’s Segregation Isotherm 
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 𝑋̅𝑔𝑏 = ∫ 𝑋𝑖
𝑔𝑏

(Δ𝐻𝑖
𝑠𝑒𝑔

)

∞

−∞

 .   𝐹𝑖
𝑔𝑏

(Δ𝐻𝑖
𝑠𝑒𝑔

)  dΔ𝐻𝑖
𝑠𝑒𝑔

 (3) 

where 𝑋𝑖
𝑔𝑏

(Δ𝐻𝑖
𝑠𝑒𝑔

) is the concentration of segregants at site-type (𝑖). 

A key component to this multiple site-type treatment is the nature of this spectrum 

𝐹𝑖
𝑔𝑏

(Δ𝐻𝑖
𝑠𝑒𝑔

), studies of which fall into three categories. First, analytical modeling of the GB has 

been conducted by Ashby et al. [41] using a polyhedral model, and by White and Coghlan [42] 

using a dislocation model. Second, model fitting to experimental data; this includes using an 

assumed Gaussian distribution of segregation energies at the GB to explain experimental data, as 

done by White and Stein [37], Kirchheim [38,39] and Suzuki [40]. Finally, atomistic simulations, 

which have been used extensively to typically study individual coincidence site lattice (CSL) GBs, 

such as the work by Udler and Seidman [43]; we refer the reader to Lejček et al. [44] for an 

extensive compilation of such atomistic calculations. 

 

Figure 2: An illustration of experimentally observed variation of solute segregation across the GB space in 

polycrystals. (a-d) Scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy mapping 

of Au solute segregation in Pt thin films [45]. Panels (a-d) adapted with permission from reference [45]; copyright 

2019 Elsevier.  

b 

c d 
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Nevertheless, a general shortcoming of these multiple-site studies is that its findings are 

typically limited to the specific systems analyzed, whether it is a single CSL GB or experimental 

data of averaged solute concentrations at the GB. These models are difficult to generalize to other 

polycrystalline systems, which is what is generally required for alloy design purposes. Certainly 

one could approach the problem by sampling a large set of boundaries and analyzing its collective 

distribution and behavior [46,47]. However, this approach is still hindered by the limitation of just 

using simplified structural representations or CSL GBs, which may not be generally reflective of 

the GB energies and populations in a full polycrystal [48]. Another approach is to study segregation 

in a representative polycrystal, prior implementations of which have only focused on exploring the 

equilibrium segregation state, without elucidating the GB segregation spectrum [49–55]. 

1.1. RESEARCH OBJECTIVES AND OUTLINE OF THESIS 

 

Figure 3: The proposed spectral framework to treat GB solute segregation in polycrystals. In contrast to the 

“averaged” approach outlined in Figure 1, this treatment incorporates the spectrum of local atomic environments, or 

site-types at the GB network.  

To reiterate, most thermodynamics models for GB segregation use the simple assumption of a 

single type of GB site having a constant enthalpy of segregation Δ𝐻𝑠𝑒𝑔. As a result, these models 

use a regular solution model where the solutes are distributed randomly with no site preference. 

This assumption is invalid, even for the simplest type of grain boundary [34]. The impact of this 

simplification should be investigated and quantified. Solute ordering or site preference should be 

expected and is observed experimentally [12,26,56]. And thus, a proper model should be able to 

handle the expected spectrum of segregation energies in a polycrystals, as shown in Figure 3. In 

addition to the limitation imposed by the current thermodynamic models, there is a very limited 

Multiple site-types at the GB 

𝐻𝑐 

𝐻𝑖
𝑔𝑏

 

∆𝐻𝑖
𝑠𝑒𝑔
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understanding of the spectral nature of GB segregation in polycrystals [57] – though most 

technically relevant alloys are used in a polycrystalline form – and a general lack of databases of 

segregation information relevant to them. In this thesis, we aim to address this gap in the GB 

segregation literature, by developing a thermodynamic and computational framework to handle, 

and elucidate the variation of solute segregation tendencies across the multidimensional GB space 

in polycrystals. We aim to answer the following questions: 

• What is the nature of site distribution at GBs in a polycrystal? Could it be simplified 

and approximated for general systems?  

• What is the impact of this distribution on the predictions of equilibrium solute 

segregation at GBs, in comparison to the classical “averaged” models? 

• What are the implications of the distribution, and the expected solute ordering at GBs 

to alloy design?  

• What is the effect of solute-solute interactions beyond the dilute-limit at the GB? How 

to account for it?   

The thesis will use a combination of analytical methods and computational tools to answer these 

questions, and is structured as follows: 

CHAPTER 2  

We first begin by outlining the proper thermodynamic and computational framework for GB 

segregation in a polycrystalline binary alloy, and then explore the nature of the site-type spectrum 

at the GB in detail. We also provide useful simplifications and approximations that should facilitate 

generalization to many other alloy systems.  

CHAPTER 3  

We develop a machine learning framework that can accurately predict the segregation tendency, 

as quantified by the segregation enthalpy spectrum, for solute atoms at GB sites in polycrystals, 

based solely on the undecorated (pre-segregation) local atomic environment of such sites. We 

proceed to use the learning framework to scan across the alloy space, and build an extensive 

database of segregation energy spectra for more than 250 metal-based binary alloys. 
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CHAPTER 4 

To highlight the implications of the findings of Chapters 2 and 3 to alloy design, we apply the 

acquired knowledge (and data) to the problem of designing and screening for nanocrystalline 

stability. We outline a more formally correct thermodynamic criteria to screen for thermodynamic 

stability of polycrystalline structures, accounting for the spectral nature of GBs. And, we proceed 

to apply the developed criteria to screen over 200 alloy combinations based on the computed 

segregation spectra from Chapter 3.  

CHAPTER 5  

In Chapters 1-4, the developed models and analysis assumed a dilute-limit solute regime. And 

thus, an important future direction for improvement is to extend the current models to handle solute 

concentrations beyond the dilute limit, where the extent of solute GB segregation is known to be 

concentration dependent. In this chapter, we take the first step in that direction, and decouple the 

two contributions to this composition dependence: (i) spectrality of atomic environments at the 

boundary and (ii) solute-solute interactions. Although only contribution (ii) is typically considered 

in the literature, we argue that both contributions are equally important to understand concentration 

dependence and correctly quantify GB solute segregation in a binary alloy. 

CHAPTER 6  

We discuss opportunities for future work to further improve our understanding of GB solute 

segregation, and help unlock its full potential as an alloy design tool.  
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2. SPECTRUM OF GRAIN BOUNDARY SEGREGATION ENERGIES IN A POLYCRYSTAL  

As elaborated in Chapter 1, to predict the equilibrium segregation state in a given alloy, most 

thermodynamic models treat the full network of GBs as a single “entity”, and thus use an 

“effective” segregation energy to describe it. This simplification ignores the spectral nature of 

available GB segregation energies in a polycrystal. In this chapter, we elucidate the nature of this 

spectrum computationally for a Mg solute in an Al polycrystal. We also outline a thermodynamic 

segregation isotherm that incorporates this spectrum, and employ the isotherm to study the effect 

of such a spectrum on predictions of the equilibrium GB segregation state. 

2.1. THERMODYNAMIC MODEL FOR GB SEGREGATION WITH MULTIPLE SITE-TYPES 

A polycrystalline system can be divided into two atomic site fractions, the crystalline (𝑓𝑐) and 

GB (𝑓𝑔𝑏) fractions, where: 

 𝑓𝑐 + 𝑓𝑔𝑏 = 1  (4) 

In a closed system, for a prescribed global solute concentration 𝑋𝑡𝑜𝑡, the following relationship 

must be obeyed: 

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏𝑋̅𝑔𝑏 (5) 

Whereas it is a reasonable assumption to have only a single site-type in the crystalline regions, the 

GB has a spectrum of site-types (𝑖), which each occupies an atomic site fraction 𝐹𝑖
𝑔𝑏

of the GB, 

thus:  

 ∑ 𝐹𝑖
𝑔𝑏

𝑖

= 1 (6) 

The average GB solute concentration is then a weighted summation of the solute concentration at 

each site-type(𝑖):  

 𝑋̅𝑔𝑏 = ∑ 𝐹𝑖
𝑔𝑏

𝑋𝑖
𝑔𝑏

𝑖

 (7) 

The solute concentration at each site-type 𝑋𝑖
𝑔𝑏

 is derived by White and Stein [37] as: 
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 𝑋𝑖
𝑔𝑏

= [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

𝑘𝑇
)]

−1

 (8) 

which is the same form as McLean’s relationship Eq. (1), but in terms of site-type (i). Combining 

Eqs. (8), (7) and (5), we obtain: 

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏 ∑ 𝐹𝑖
𝑔𝑏

 [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

𝑘𝑇
)]

𝑖

−1

 (9) 

Eq. (9) provides the thermodynamic framework for a closed system that has multiple site-types 

at the GB. For a given set of inputs – 𝐹𝑖
𝑔𝑏

, 𝑋𝑡𝑜𝑡, 𝑓𝑔𝑏 and 𝑇– we can solve for the value of 𝑋𝑐 that 

satisfies Eq. (9). Consequently, we obtain all the information about the system; solute 

concentration at each site-type and overall GB concentration can be obtained from Eqs. (8) and 

(7), respectively. This framework is valid for all solutes in the dilute limit, and beyond for weakly-

interacting solutes; at higher solute concentrations, we expect solute-solute interactions at the GB 

to alter the nature of the spectrum, and consequently affect the equilibrium segregation state. 

We note that although Eq. (9) is conceptually straightforward to derive, it has apparently been 

neither stated nor used previously in the literature. Instead, only Eqs. (7) and (8) are usually solved, 

which amounts to employing the assumption that 𝑋𝑐 = 𝑋𝑡𝑜𝑡 . In most cases this is an invalid 

assumption, which is only valid in the limit of very large grain sizes:  

 𝑋𝑐 = lim
𝑓𝑔𝑏→0

 𝑋𝑡𝑜𝑡 (10) 

Therefore, Eq. (9) is the proper, generalized framework to solve, as it explicitly accounts for the 

fact that 𝑋𝑐 ≠ 𝑋𝑡𝑜𝑡 in a closed polycrystalline system.   

Finally, we note that Eq. (9) is closely analogous to Kirchheim’s model – though derived 

differently – for multiple site-types at the GB [38,39], which he expressed in terms of a Fermi-

level energy (𝐸𝐹):  

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏) [1 +  exp (
−𝐸𝐹

𝑘𝑇
)]

−1

+ 𝑓𝑔𝑏 ∑ 𝐹𝑖
𝑔𝑏

 [1 + exp (
Δ𝐸𝑖

𝑠𝑒𝑔
− 𝐸𝐹

𝑘𝑇
)]

𝑖

−1

 (11) 

To arrive at Eq. (11), Kirchheim [38,39] directly applied Fermi-Dirac statistics [58,59] to solve 

for solute distribution at the GB, since the partitioning of solute atoms between different energy 

levels with a maximum of one solute atom occupying a given site should result in a Fermi-like 
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distribution [58–60]. Indeed, Mclean's model, Eq. (1), and White and Stein's model, Eq. (8), are 

both degenerate of Fermi-Dirac statistics [61–65]. This similarity means that we can recover Eq. 

(9) from Eq. (11) by setting:  

 𝐸𝐹 = 𝑘𝑇 ln (
𝑋𝑐

1 − 𝑋𝑐
) (12) 

Therefore, Eq. (9) provides a general thermodynamic framework for GB segregation that obeys 

Fermi-Dirac statistics, where we directly solve numerically for 𝑋𝑐  instead of Kirchheim’s “Fermi 

energy” (𝐸𝐹), which lacks a simple interpretable physical meaning in this context.  

To map back results from this framework into Mclean’s relationship, Eq. (1), the concept of an 

effective average segregation energy Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

 is introduced, which is useful for comparison with 

Mclean’s isotherm, and to understand experimental measurements of GB segregation in which 

typically only segregation averages can be measured. The effective McLean segregation energy 

was derived by Steigerwald and Wynblatt [46] as: 

 Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

=
1

𝑋̅𝑔𝑏(1 − 𝑋̅𝑔𝑏)
∑ 𝐹𝑖

𝑔𝑏
Δ𝐸𝑖

𝑠𝑒𝑔
𝑋𝑖

𝑔𝑏
(1 − 𝑋𝑖

𝑔𝑏
)

𝑖

 (13) 

Now that the thermodynamic framework is established, a key component is the spectrum of 

segregation energies in the GB, 𝐹𝑖
𝑔𝑏

(Δ𝐸𝑖
𝑠𝑒𝑔

). To elucidate its nature, we use molecular dynamics 

and statics simulations to directly compute such a distribution in a polycrystal. 

2.2.  SIMULATION METHODOLOGY 

The molecular dynamics simulator LAMMPS [66] is used for all molecular dynamics and 

statics simulations, with the choice of a model binary system being guided by the quality of 

available interatomic potentials. We choose Al-Mg, as its embedded atom method potential – 

developed by Mendelev et al. [67] – gave GB segregation energies comparable to those from 

density functional theory simulations [68]. Nevertheless, the computational framework detailed 

here is extensible to any binary alloy system for which interatomic potentials are available. To 

obtain a representative polycrystal, we start by filling a cube with 36 nm edge length with 96 

randomly oriented grains, constructed using Voronoi tessellations, using the toolkit Atomsk [69]; 

the initial simulation cell has 2,818,993 atoms. The polycrystal is then structurally relaxed using 

conjugate gradient energy minimization, followed by thermal annealing under an isothermal-
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isobaric ensemble with a Nose-Hoover thermostat/barostat set at 700 K (~0.7 𝑇𝑚𝑒𝑙𝑡) and zero 

pressure. The sample is thermally annealed for 500 ps, using an integration time step of 1 fs. It is 

then slowly cooled with a cooling rate of 3 K/ps down to 0 K, which is finally followed by a 

conjugate gradient energy minimization.  

To identify the number of distinct grains in the thermally annealed sample from atomic 

positions, we use a grain identification algorithm similar to that in Refs. [70,71]. We start by 

calculating the per-atom orientation using the polyhedral template matching method [72]. A new 

grain is initiated with a random unassigned seed atom, then nearest neighbor atoms are assigned 

to the grain if the misorientation is less than 1◦; this loop is repeated until there are no more 

neighbor atoms to add. If a grain is less the 200 atoms, the grain is removed and its atoms are 

marked as unassigned again. The aggregation process is repeated until all possible grains in the 

system are identified. This procedure provides a good estimate of the number of distinct grains in 

the sample without being computationally prohibitive, and is executed using the open visualization 

tool OVITO [73] python scripting capabilities. Structural identification and visualization of atomic 

configurations are also carried out using OVITO throughout the chapter. To identify GB sites, we 

use the adaptive-common neighbor analysis method [74] to identify non-FCC regions, which are 

all assumed to be GB sites. We use the per-atom orientation, obtained using the polyhedral 

template matching, to calculate grain orientations, GB disorientations and to perform texture 

analysis with the toolbox MTEX [75]. Finally, the thermally annealed polycrystal has 72 grains 

with an average grain size of ~11 nm, a near-random texture index of 1.53, 488 GBs, and 414,538 

GB atoms, which corresponds to an atomic site fraction of 14.7%.  

Figure 4(a) and (b) show the polycrystal’s unique grains and GB atoms, respectively, and Figure 

5 shows the disorientation distribution for its 488 GBs. Between the near random crystallographic 

orientations and near-uniform sampling of GB disorientation space, this single sample is 

considered a good model for a general polycrystalline sample without strong selection biases in 

the GB distribution; this is a base case for understanding the GB segregation energy spectrum in 

its full breadth. 
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Figure 4: The thermally annealed (36 nm)3 aluminum polycrystal; (a) 72 distinct grains and (b) 414,538 GB atoms 

used for computing the distribution of segregation energies in the polycrystal. 

 

 

Figure 5: Disorientation distribution of the 488 GBs in the annealed (36 nm)3 Al polycrystal, represented in sections 

of constant misorientation angle where each section is the standard stereographic triangle of the 432 cubic group 

[76]; points that apparently lie outside the fundamental zone arise due to the binning in disorientation angle amongst 

sections.  
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We calculate the dilute-limit segregation energy at each GB site (i) using molecular statics at 0 K, 

as follows: 

 ΔEi
seg

= E𝑔𝑏,i
solute − Ec

solute (14) 

where E𝑔𝑏,i
solute is the total energy of the system with a solute atom – Mg – at site (i) and Ec

solute is 

the total energy of the system with a solute at a reference bulk site, which is chosen such that it is 

at the center of a 6 nm sphere of FCC atoms, in order to avoid elastic interaction effects with the 

GBs.  Both energies are obtained after structurally relaxing the system using conjugate gradient 

energy minimization with an energy tolerance of 10−25 eV and a force tolerance of 10−25 eV/𝐴̇. We 

only consider substitutional GB segregation in this chapter, for which Eq. (14) is valid, and the 

convention chosen here is that segregation will occur if  ΔEi
seg

 is negative i.e. the solute will be at 

a lower energy state at the GB; note that this convention is opposite of that sometimes used in the 

GB segregation literature in which positive energies denote segregation preference. The 

calculation in Eq. (14) is performed for all 414,538 GB sites in the polycrystal.   

It is important to point out that ideally, it is the free energy of segregation Δ𝐺𝑠𝑒𝑔that should be 

computed. However, it can be approximated by the internal energy Δ𝐸𝑠𝑒𝑔 to a good extent. To 

elaborate, Δ𝐺𝑠𝑒𝑔 in a closed system with fixed E, P, T and N, is expressed as [46]: 

 Δ𝐺𝑠𝑒𝑔 = Δ𝐸𝑠𝑒𝑔 − 𝑃Δ𝑉 − 𝑇Δ𝑆𝑠𝑒𝑔
𝑥𝑠  (15) 

where 𝑃  is the pressure, Δ𝑉  is the change in volume and Δ𝑆𝑠𝑒𝑔
𝑥𝑠  is the excess entropy of 

segregation. As we still maintain Mclean’s assumption of a regular solution model, the excess 

entropy is assumed to vanish [46]. The term 𝑃Δ𝑉 is negligible [77] in solids and thus can also be 

ignored. Therefore, we can approximate Δ𝐺𝑠𝑒𝑔 ≈ Δ𝐸𝑠𝑒𝑔, which can be easily computed at 0 K 

using molecular statics.  

2.3.  THE SPECTRUM OF SEGREGATION ENERGIES 

2.3.1.  Properties of the spectrum 

The calculated spectrum of dilute-limit segregation energies of a Mg solute at all 414,538 GB 

atoms in the (36 nm)3 Al polycrystal is shown in Figure 6. The distribution is normal-like and has 

a slightly negative median of -6.6 kJ/mol and a standard deviation of 15.2 kJ/mol, which suggests 
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that on average GB sites are favorable for Mg solutes in Al, with a most favorable segregation 

energy of −73 kJ/mol. Indeed, roughly two-thirds of the sites in this sample exhibit a GB 

segregation preference and one-third are energetically unfavorable with respect to bulk dissolution. 

In comparison, Huber et al. [78] reported a distribution mean of 6.8 kJ/mol and a standard deviation 

of 19.3 kJ/mol for a set of 38 low and high symmetry GBs, and thus approximately only 40% of 

GB sites were predicted to be favorable for segregation, which signifies that the chosen set of GBs 

are not necessarily representative of a full polycrystal.  

 

Figure 6: The distribution of 414,538 GB dilute -limit segregation energies for an Mg solute in a (36 nm)3 

polycrystalline Al sample.   

It is the extreme left tail of the distribution in Figure 6 that will be the primary target of 

segregation, so it is important to examine whether these sites are confined to a specific region in 

the polycrystal or are widely spread among different GBs; clustering of those sites might indicate 

one or a few unique GBs that dominate the problem. We plot the favorable segregation sites from 

-75 to 0 kJ/mol over three equally spaced intervals in  

Figure 7: Plot of all favorable GB segregation sites in the polycrystal from -75 to 0 kJ/mol 

divided over three equal intervals. The most favorable sites are well spread over the GB network 

with no apparent clustering at a single GB. 

. We also plot the two-point correlation function, Figure 8, for different energy intervals – up 

to the 10th percentile – using the Landy-Szalay estimator [79], which traces the extent of clustering 

by quantifying the excess probability ξ(x) relative to a random distribution of solute atoms at the 

GB. It is clear both qualitatively in Figure 7 and quantitatively in Figure 8 that the favorable sites 
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for GB segregation are not clustered, but are rather well spread over all boundaries of the 

polycrystal. Even for the most extreme selections of the energy spectrum (the most extreme 2%), 

the two-point correlations in the system are essentially random (ξ < 0.1) for distances greater than 

a few nanometers. Thus, any solute additions will also be well spread over the polycrystal GB 

network. Importantly, this signifies that at dilute concentrations, solutes will be able to occupy the 

most favorable sites with no significant solute-solute interaction at the GB.  

 

Figure 7: Plot of all favorable GB segregation sites in the polycrystal from -75 to 0 kJ/mol divided over three equal 

intervals. The most favorable sites are well spread over the GB network with no apparent clustering at a single GB. 

 

Figure 8: Two-point correlation function for five intervals (percentile of the spectrum) of the most favorable 

segregation sites. ξ(x) approaches zero around 3 nm, which signifies that, at this separation distance, the spread of 

favorable sites over the GB network is indistinguishable from a random one.   

To further test whether this spectrum is unique to this specific sample or more generally 

representative of polycrystals, we have repeated this computation numerous times for additional 

structures.  Some typical results for three smaller, thermally annealed, polycrystalline samples – 
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listed in Table 1 – are shown in Figure 9.  Here we plot the segregation energy distribution in a 

cumulative fashion to avoid any bias from binning, and highlight possible differences amongst the 

samples, which are also revealed by the differences between these distributions plotted above the 

figure; these never exceed 0.02 and are mostly well below 1%. The near perfect overlap of the 

distributions suggests a universality of the segregation spectrum, with any one sample being 

representative of all of them. Using any of these distributions will result in robust model 

predictions for the equilibrium segregation. As an example, use of Eq. (13) to render an “effective” 

GB segregation energy for these four spectra gives values of -8.8, -8.5, -8.3 and -8.3 kJ/mol, in 

ascending order of sample size, for 𝑋𝑀𝑔
𝑡𝑜𝑡 = 1% at T = 300 K. Therefore, we suggest that as long 

as a polycrystal has a statistically significant number of GB atoms, it is reasonable to use a single 

distribution function 𝐹𝑖
𝑔𝑏

. Moving forward, we use the computed distribution of the (36 nm)3 

sample – the largest – as the representative spectrum for an Al-Mg alloy. 

Table 1: Comparison of three smaller polycrystalline samples with the (36nm)3 Al polycrystal; Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

 is for 

𝑋𝑀𝑔
𝑡𝑜𝑡=1% at T = 300K. 

Size Grains 𝑑𝑔𝑏 GB atoms Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

 

(15 nm)3 8 9 nm 37,515 -8.8 

(20 nm)3 8 12 nm 60,444 -8.5 

(25 nm)3 20 11 nm 134,518 -8.3 

(36 nm)3 72 11 nm 414,538 -8.3 

 

Next, we apply the thermodynamic model given by Eq. (9) and examine its impact on our 

understanding of the equilibrium segregation state. The Fermi-Dirac distribution of Eq. (9) is the 

thermal equilibrium expected in such a system, and should exactly match the outcome of a Monte 

Carlo sampling directly on the computational ensemble. We have validated this expectation by 

assigning an energy of zero for all bulk lattice sites and the computed ΔEi
seg

 for GB site (i), and 

carrying out a standard Monte Carlo process at a given solute concentration, with an acceptance 

probability that is the minimum of [1, 𝑒𝑥𝑝(−Δ𝐸/𝑘𝑇)]; a similar process is described in, e.g. Ref. 

[80], and we find that 10,000 swaps per atom achieve an equilibrated configuration here.  
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Figure 9: The cumulative fraction of segregation energies for the four different polycrystalline samples listed in 

Table 1, and the residual (ε) of the three smaller samples against the reference (36 nm)3 sample.   

Either direct use of Eq. (9) or the Monte Carlo sampling are found to both give the same 

equilibrium, which can be visually verified in Figure 10(a), which shows the occupation of GB 

segregation states for both of these approaches for just one example state of many that we have 

considered: 𝑋𝑀𝑔
𝑡𝑜𝑡 = 5%  alloy at T = 700 K. The figure also shows how temperature affects the 

equilibrium, spreading the solute distribution to higher energy states up beyond the nominally 

favorable segregation sites to values as high as 10 kJ/mol (unfavorable) at 700 K, and decreasing 

the overall 𝑋̅𝑔𝑏. The net effect of temperature is shown for a variety of compositions in Figure 

10(b), and the magnitude (absolute value) of the effective segregation energy that matches is 

plotted in Figure 10(c).  Two interesting effects can be observed here. First, the impact of the 

temperature; at fixed global composition 𝑋𝑡𝑜𝑡, increasing 𝑇 will cause segregants to entropically 

redistribute to other less favorable sites in the boundary, as well as to partially desegregate from 

the GB into the bulk, which causes 𝑋̅𝑔𝑏 to decrease. The effect on |Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

|, which increases with 

increasing 𝑇, is less intuitive; it is the result of 𝑋̅𝑔𝑏 being less sensitive to 𝑇 than Mclean’s model 

predictions [42]. Therefore, using |Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

| obtained from a lower temperature will underestimate 

𝑋̅𝑔𝑏  at higher temperatures, and thus to compensate for this error, |Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

|  increases with 

increasing temperature. Second, the impact of global composition 𝑋𝑡𝑜𝑡; at fixed 𝑇, increasing 𝑋𝑡𝑜𝑡 

will cause |Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

| to decrease, while 𝑋̅𝑔𝑏 increases as expected. At low 𝑋𝑡𝑜𝑡, the solute atoms 

will occupy the most favorable GB sites and thus have a high value for |Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

|, and as 𝑋𝑡𝑜𝑡  
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increases, segregated atoms begin to occupy less favorable GB sites, which causes the overall 

|Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

| to decrease.  

 

 

Figure 10: (a) The equilibrium segregation state in the (36 nm)3 Al polycrystal with a solute addition of 𝑋𝑀𝑔
𝑡𝑜𝑡 = 5%  

at T = 300, 500, 700 K. The discrete model Eq. (9), skew-normal model Eq. (17) and the Monte Carlo simulation at 

T=700 K, are given by the solid lines, dashed lines, and hatched area, respectively; predictions of all three methods 

match closely. (b)(c) Equilibrium 𝑋̅𝑔𝑏 and |Δ𝐸𝑠𝑒𝑔
𝑒𝑓𝑓

| as a function of 𝑋𝑀𝑔
𝑡𝑜𝑡 and 𝑇, using the full discrete spectrum and 

best-fit skew-normal approximation.   

2.3.2. Approximations of the spectrum 

While we have been using the full spectrum of computed segregation energies thus far, it would 

be very useful to generalize this distribution in a simple analytical manner reasonably 

approximating the full discrete distribution. We can restate the model in a continuous 

representation with Eqs. (7), (9) and (13) expressed, respectively as:  
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 𝑋̅𝑔𝑏 = ∫ 𝑋𝑖
𝑔𝑏

𝐹𝑖
𝑔𝑏

∞

−∞

 𝑑Δ𝐸𝑖
𝑠𝑒𝑔

 (16) 

 

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏 ∫ 𝐹𝑖
𝑔𝑏

 [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

𝑘𝑇
)]

∞

−∞

−1

𝑑Δ𝐸𝑖
𝑠𝑒𝑔

 (17) 

 

 Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

=
1

𝑋̅𝑔𝑏(1 − 𝑋̅𝑔𝑏)
∫ 𝐹𝑖

𝑔𝑏
 Δ𝐸𝑖

𝑠𝑒𝑔
 𝑋𝑖

𝑔𝑏
(1 − 𝑋𝑖

𝑔𝑏
)

∞

−∞

 𝑑Δ𝐸𝑖
𝑠𝑒𝑔

 (18) 

where 𝐹𝑖
𝑔𝑏

,  𝑋𝑖
𝑔𝑏

are now continuous functions of Δ𝐸𝑖
𝑠𝑒𝑔

.  

We had earlier noted the similarity of the distribution in Figure 6 with a normal distribution, 

and for the sake of generalization we adopt a more flexible skew-normal distribution, 𝐹𝑖
𝑔𝑏

 with 

which to fit it:  

 Fi
gb

  =
1

√2π 𝜎
exp [−

(Δ𝐸𝑖
𝑠𝑒𝑔

− μ)
2

2σ2
] erfc [−

𝛼(Δ𝐸𝑖
𝑠𝑒𝑔

− μ)

√2 σ
]   (19) 

where μ, σ and 𝛼 are the fitted location, scale and shape of the distribution, respectively. A best fit 

for the distribution Figure 6 gives μ = 6.11 kJ/mol, σ = 19.82 kJ/mol and 𝛼 = −1.35, shown in 

Figure 10(a). The low magnitude of the skew parameter 𝛼  supports the observation that the 

distribution is relatively near normal in the present case.  

As shown in Figure 10, the skew-normal approximation captures most all of the fine details of 

the solute occupation fractions at different GB site-types. Furthermore, over a wide range of 𝑋𝑡𝑜𝑡 

and 𝑇, the analytical approximation captures the segregation state as shown in Figure 10(b) and 

(c) – dashed line; there is at most a negligible error in 𝑋̅𝑔𝑏 of less than 1% at 700 K. This provides 

a powerful tool to characterize the population of segregation energies for arbitrary binary alloys in 

a simple manner, as only three parameters are needed to describe the whole population, and we 

have reasons to expect this to be generally applicable across polycrystals based on Figure 9. This 

simplification allows us to easily and accurately solve for the equilibrium segregation states – 

using just a single equation and three computed parameters – for different 𝑑𝑔𝑏, 𝑇 and 𝑋𝑡𝑜𝑡. For 
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even further simplification, the normal approximation can be used, which reduces the number of 

fitted parameters to two, albeit with a slight increase in error – in this case, less than 3% error in 

𝑋̅𝑔𝑏 at 700 K (not shown).  

2.3.3.  Comparison with McLean-type models 

So far, we have shown a thermodynamic model that can be used to solve for the equilibrium 

solute segregation state in a polycrystal; the model explicitly accounts for multiple site-types 

across many GBs and can be used in conjunction with a simple skew-normal approximation of the 

distribution. At this point, we would like to elaborate such a spectral approach is necessary, and 

provides more physical outputs as compared with typical isotherms that use Mclean’s single site-

type formalism. For this purpose, we compare the predictions of equilibrium 𝑋̅𝑔𝑏 as a function 

𝑋𝑡𝑜𝑡, with our proposed thermodynamic model – using the full discrete distribution, skew-normal 

and normal approximations – versus just using a single averaged Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

 = -5, -10, -20 kJ/mol; this 

is shown in Figure 11.  

 

Figure 11: Comparison of 𝑋̅𝑔𝑏 predictions of the thermodynamic model using the full spectrum and approximated 

distributions versus using a single averaged Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

 in Mclean’s model. 

It is clear from this presentation that a using a McLean type average can never correctly capture 

the physics of GB solute segregation over any significant range of 𝑋𝑡𝑜𝑡; a single value will only 

correctly predict the segregation extent for a narrow composition range, such as using Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

= -10 

kJ/mol for 𝑋𝑡𝑜𝑡 = 0-5%. This observation is reasonable – it can be deduced simply by looking at  
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Figure 10(c), which shows the variation of |Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

|with composition; the dependency is non-linear 

and cannot be simply replaced with an average value.  Importantly, this nonlinearity has nothing 

to do with solute-solute interactions in the grain boundary, which are frequently attributed with 

decreasing segregation energies at higher concentrations in the Fowler-type view [31].  Rather, the 

nonlinearity in Figure 10(c) and Figure 11 is entirely due to the spectral nature of GB segregation, 

with higher concentrations forcing the occupation of ever-less-energetically favorable sites. 

2.3.4. Implications for experimental results  

Figure 11 highlights the predicament of fitting experimental segregation measurements to 

McLean’s model – something frequently done in the literature – in order to obtain a single 

segregation energy to describe the system; If a measurement of 𝑋̅𝑔𝑏is done at a high 𝑋𝑡𝑜𝑡, the 

calculated Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓  will underestimate the segregation extent at lower 𝑋𝑡𝑜𝑡 ; conversely, fitting 

Δ𝐸̅𝑠𝑒𝑔
𝑒𝑓𝑓

 at low 𝑋𝑡𝑜𝑡  will overestimate the segregation extent at higher 𝑋𝑡𝑜𝑡 .  Therefore, a more 

accurate approach would be to fit experimental data directly to an approximation of the full 

distribution 𝐹𝑖
𝑔𝑏

(Δ𝐸𝑖
𝑠𝑒𝑔

) , using Eq. (16), which correlates the measured 𝑋̅𝑔𝑏  and 𝑋𝑐 . For 

simplicity, we can assume a normal distribution (i.e., take α = 0 in Eq. (19)), which requires fitting 

only two parameters (μ and σ). To do the fitting, we need a minimum of two experimental 

measurements of  𝑋̅𝑔𝑏  versus 𝑋𝑐 , which can be obtained from measurements conducted at 

different 𝑋𝑡𝑜𝑡 and a fixed temperature, or different temperatures and a fixed 𝑋𝑡𝑜𝑡.  

As an example, we have performed this procedure for the weakly segregating Ni-W system in 

its as-electrodeposited condition, for which experimental measurements of 𝑋̅𝑔𝑏  versus 𝑋𝑐  are 

obtained from Detor et al. [81]. The fitted normal distribution for Ni-W gives μ = 3.6 kJ/mol and 

σ = 9.4 kJ/mol. For comparison, we plot the predicted distribution of segregated W atoms among 

available GB sites for one of the experimental measurements in Figure 12(a), for which the model 

correctly predicts the measured 𝑋̅𝑔𝑏 = 17.3% at 𝑋𝑐 = 9.9%; Figure 12(b) shows the predicted 

𝑋̅𝑔𝑏  over a wide range of 𝑋𝑐 . The simplicity of this procedure provides experimentalists a 

powerful tool to compute the spectrum of GB segregation energies for any given binary alloy.  
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Figure 12: Fitting a normal distribution of segregation energies to experimental measurements of 𝑋̅𝑔𝑏 versus 𝑋𝑐 for 

the Ni-W system, which are obtained from Detor et al. [81]: (a) predicted distribution of segregated solute atoms at 

𝑋𝑐 = 9.9% and (b) predicted 𝑋̅𝑔𝑏 as a function 𝑋𝑐.  

2.4. CONCLUSION 

In summary, while GB segregation has long been understood to be a Fermi-Dirac-type situation 

in which favorable sites at GBs are filled with solute in increasing energetic order, almost all work 

on GB segregation has proceeded by ignoring the spectrum of various GB sites and simplifying 

the problem to a single-valued GB segregation energy. While such a view has proven pragmatic 

for a number of simple phenomena, we argue that further progress in alloy design with GB 

segregation in mind will benefit from development of the full, spectral view, especially for 

polycrystals that inevitably sample the spectrum very broadly. We have therefore fully elaborated 

the thermodynamic framework to predict the equilibrium GB segregation state in polycrystalline 

binary alloys analytically and computationally. The spectrum of available GB segregation energies 

was determined for a specific case, Mg in Al, using atomistic simulations. The main findings are:  

• A thermodynamic model –Eq. (9)– is developed to solve for the equilibrium segregation 

state in a polycrystalline binary alloy. To use an approximated (continuous) distribution 

instead of the full spectrum, Eq. (17) is given.   

• We find that the spectrum of segregation energies in a polycrystal is a normal-like 

distribution, which can be very accurately approximated by a skew-normal distribution. 

Therefore, only three fitted parameters are needed to describe this distribution for a 

given binary alloy.  Our result holds for a variety of polycrystals that we have studied 
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computationally, and we expect that such a 3-parameter distribution function will have 

broad applicability for most all polycrystals to a very good approximation.   

• McLean-type models, which assume a single site-type at the GB, do not capture the 

physics of solute segregation at actual GBs, which have multiple site-types. Whereas 

the failure of McLean-type models is well known in cases beyond the dilute limit where 

solutes interact, here the failure of the McLean approach is entirely due to the neglect 

of the segregation spectrum without any solute interactions at all. We propose that in 

future studies of GB segregation two (or three) parameters be tabulated to capture the 

spectrum of sites rather than use any single value, which will not be accurate. 
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3. LEARNING GRAIN BOUNDARY SEGREGATION ENERGY SPECTRA IN 

POLYCRYSTALS 

In chapter 2, we showed that the spectrum of Δ𝐸𝑖
𝑠𝑒𝑔

 (the enthalpic drive for a solute atom to 

segregate to a GB site-type (i)) in a polycrystal will determine the extent of equilibrium GB 

segregation in an alloy [37,39,82]. And, we showed this spectrum to be captured by a skew-normal 

distribution for an Mg solute segregation in an Al polycrystal [82]. However, the computation of 

these segregation spectra is a resource-intensive task. For example, a (50 nm)3 Al polycrystal with 

an average grain size of 10 nm has roughly one million GB sites, which translates to a million 

atomistic calculations, where a solute atom is placed substitutionally at each GB site independently 

and allowed to relax. This makes the task of investigating different microstructures (i.e. multiple 

polycrystalline samples) cost-prohibitive for a given alloy.  

In this chapter, we propose a machine learning (ML) framework that can accurately predict the 

relaxed segregation energy of a solute atom in a GB site, solely based on its undecorated (pre-

segregation) atomic environment. Our approach is tiered and offers two models. The first is a high-

fidelity model that is trained to accurately capture the variation of segregation energy across a 

large swath of the GB space, and thus can be used to study an alloy system in detail and 

instantaneously evaluate segregation for different microstructures. The second is an accelerated 

model that uses dimensionality reduction to reproduce the high-fidelity model – with a minimal 

loss in accuracy – using three orders of magnitude fewer data-points for training (only 100 sites). 

We use the accelerated approach to scan across the alloy space, and build a first-of-its-kind 

database giving GB segregation spectra for all aluminum, magnesium, and transition metals-based 

binary alloys for which an interatomic potential exists in the Interatomic Potentials Repository 

[83,84] of the National Institute of Standards and Technology (NIST) - a total of 259 binary alloys. 

This database allows us to identify alloys of interest with minimal computational cost, for which 

high-fidelity models can be trained and used. The proposed ML framework and the resulting 

spectral segregation database should provide a general and broadly applicable alloy design toolbox 

relevant to all material properties impacted by solute segregation.  
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3.1. HIGH-FIDELITY ML MODEL FOR GB SEGREGATION  

If a solute atom is substitutionally placed at a GB site and is allowed to relax, its local 

neighboring atoms will be affected (and possibly displaced) by the introduced elastic and chemical 

interactions. Hence it follows that the local atomic environment (LAE) of a GB site will influence 

its favorability for solute segregation, and thus this environment should be accurately captured in 

any learning model that aims to correlate the undecorated (pre-segregation) GB site to its final 

decorated (post-segregation) relaxed state. So far, the state-of-the-art learning models in the 

literature use simple well-known structural features [78,85], such as atomic volume, coordination, 

and Voronoi parameters, which mostly limit the description of the LAE to its first nearest-neighbor 

atoms. Instead, we propose using an atom-centered feature extraction method “descriptor” that 

encodes the local atomic environment around an atom within a cutoff radius [86,87]. Such 

descriptors – also known as “fingerprints” – are developed and widely used to construct ML-based 

interatomic potentials; examples include the atom-centered symmetry functions [88], bispectrum 

components [89,90], and smooth overlap of atomic positions (SOAP) [91]. There are two main 

advantages to using such atom-centered descriptors. The first is that no a priori knowledge or 

selection of what constitutes an important structural feature of the LAE (such as volume, 

coordination, etc.) is required, but rather, by using a complete description of the LAE within a 

cutoff radius, we relegate the decision of learning the most important features to the ML model. 

The second is that the use of a large cutoff radius ensures that the most dominant interactions 

between the solute atom and its LAE are captured. As these descriptors are borrowed from the 

interatomic potential fitting literature, we can think of our approach as fitting a “pseudo interatomic 

potential” for solute segregation at GBs.  
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Figure 13: High-fidelity ML model to learn Mg solute [67] segregation at GBs in an Al polycrystal.  For the (a) 

20x20x20 nm3
 thermally annealed Al polycrystal with 16 grains (colored by the centro-symmetry parameter [92]), 

(b) the LAE of every identified GB atom is transformed into a feature vector, using the SOAP method [91] with 

rcutoff=6Å, to construct a feature matrix for the full GB network (NGB atoms x FSOAP features), which is used as the 

input to the (c) learning algorithm (linear regression) to learn Mg GB segregation energies, using a 50/50 

training/testing split. (d) predictive performance – mean absolute error (MAE) – of the trained ML model across the 

full GB network. 

The proposed high-fidelity ML model is summarized in Figure 13, which shows two main steps: 

(a) feature extraction and (b) a learning algorithm. For feature extraction, we use the SOAP method 

[91], as it was recently shown to perform well in describing GB environments (albeit for the 

different problem of predicting GB energies) [93]. The SOAP method produces for a given GB 

site and its LAE within a cutoff radius, a feature vector (descriptor) that is invariant under all 

physical symmetries (permutation, translation, rotation, etc.). The size of the feature vector is 

controlled by the SOAP hyperparameters (detailed in the methods section), which, in essence, 

determines the resolution of the vector and its sensitivity to changes in the LAE. In this work, the 

SOAP feature vector for each GB site has FSOAP=1,015 features. For the cutoff radius, we use 6 Å, 

which is a conservative cutoff used in constructing interatomic potentials, as it captures the most 

dominant atomic interactions for an atom with its LAE [86,94]. We note that, though we opted to 

use the same FSOAP and a radial cutoff of 6Å for all binary alloys (as optimal parameters that require 

minimal input from the user), this procedure is flexible, and one could, by further optimizing the 

SOAP hyperparameters to the specific alloy of interest, improve the accuracy of the ML model. 
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(For example, a solute atom that has a large size mismatch with solvent atoms could benefit from 

a larger radial cutoff.)  

 

Figure 14: The mean absolute error of the high-fidelity model for the Al(Mg) system as a function of number of 

training datapoints per SOAP features (N x FSOAP). The shaded region is the standard deviation for 50 repetitions of 

the 50/50 train/test holdout method used to train the high-fidelity model. The plot validates the 10 points per 

predictor rule of thumb, as it shows the learning model to converge to a low variance and low bias model with 

10xFSOAP
 datapoints. 

The product of the first step of the ML framework, feature extraction, is a feature matrix of size 

(NGB atoms x FSOAP features), which is used as the input to the second step, the learning algorithm, 

which learns to map the input SOAP features to the target property (segregation energy). For the 

learning algorithm, we use linear regression for three reasons: first, it is a simple inexpensive 

model to train and use for predictions; second, it can be automated as it does not require any 

hyperparameter optimization; and third, it inherently ensures regularization (i.e. is less prone to 

overfitting) – by simply using a sample size of >10xFSOAP GB sites (following the “one in ten” 

rule of thumb [95], which we further validate in Figure 14) to fit the F+1 coefficients of the model 

(F coefficients + intercept), we guard against model overfitting, and selection bias towards a small 

subset of the population (randomly sampling as few as ~400 points from an infinite population 

gives a 95% confidence level and 5% margin of error [96]). We note that although more elaborate 

learning algorithms could be used, such as support vector machines [93], Gaussian process 

regression [89] or neural networks [94], our proposed ML framework prioritizes simplicity and 

minimal input from the user, so that other researchers can adopt it easily. We use this approach to 
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showcase the utility of using atom-centered descriptors for learning GB site segregation energies, 

without getting lost in the intricate details of fine-tuning more advanced learning algorithms. We 

note that though the proposed learning framework focuses on segregation spectra in substitutional 

alloys, it is extensible in principle to interstitial alloys by defining interstitial sites [97] at the GB 

and bulk regions.  

 

Figure 15: Validation of the high-fidelity ML framework across the alloy space. The predictive performance – mean 

absolute error (MAE) –of trained ML models, as outlined in Figure 13, for solute segregation in six 20x20x20 nm3 

polycrystalline alloys: a-f Ag(Ni) [98], Cu(Zr) [99], Fe(Al) [100], Ni(Cu) [101], Pt(Au) [49], and Zr(Ni) [102]. 

Using the high-fidelity approach, we train a model, in Figure 13(c), for Mg solute [67] 

segregation in a thermally annealed 20x20x20 nm3 Al polycrystal that has 16 grains and ~105 GB 

sites, using a randomized 50/50 split for training/testing. This simple holdout method is easy/cheap 

to train and use, and its conservative test ratio will guard against a high variance model in most 

cases. The trained model is highly accurate, with a mean absolute error (MAE) of 2.4(2.5) kJ/mol 

for the train(test) datasets, respectively, and a root-mean-square error of RMSE=3.8(4.1) kJ/mol. 

The model faithfully reproduces the distribution of segregation enthalpies in the polycrystal and 
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has a well-behaved error with normally distributed residuals. This result compares favorably with 

a more sophisticated ML model by Huber et al. [78], which used 19 structural features (volume, 

coordination, Voronoi analysis parameters, and Steinhardt bond-order parameters) with gradient 

boosted decision trees, had a 9-fold cross-validation RMSE=7.7 kJ/mol for Mg solute segregation 

in a database of 38 low and high-symmetry boundaries in Al. The comparison is not direct, of 

course, since that work focused on bi-crystals whereas we use polycrystals, but it is also 

encouraging that the present error is also much lower than the reported error of the interatomic 

potential as compared to DFT GB segregation energies, which has an RMSE of 8.7 kJ/mol [85].  

Table 2: Predictive performance of the high-fidelity model using a) 50/50 training/testing split and b) 5-fold cross 

validation. The reported errors for the two methods are comparable, which indicates that a simple 50/50 split is 

sufficient for the model. Also, the low standard deviation (stdv) of error across the 5 folds shows the ability of high-

fidelity model to extrapolate well across the GB population. 

Solvent(Solute) 
50/50 Training/Testing 

train(test) error [kJ/mol] 

5-fold Cross-Validation 

mean(stdv) error [kJ/mol] 

Ag(Ni) 3.38 (3.49) 3.36 (0.09) 

Al(Mg) 2.38 (2.46) 2.45 (0.04) 

Cu(Zr) 5.46 (5.62) 5.57 (0.10) 

Fe(Al) 1.41 (1.42) 1.29 (0.07) 

Ni(Cu) 0.81 (0.82) 0.86 (0.07) 

Pt(Au) 0.67 (0.68) 0.69 (0.02) 

Zr(Ni) 12.62 (12.96) 12.86 (0.15) 

 

We further validate the efficacy of the high-fidelity ML model for GB solute segregation across 

the alloy space by training to six more 20x20x20 nm3 polycrystalline volumes for different alloys: 

Ag(Ni) [98], Cu(Zr) [99], Fe(Al) [100], Ni(Cu) [101], Pt(Au) [49], and Zr(Ni) [102]. As shown in 

Figure 15, the ML model accurately reproduces the segregation spectra for the six binary alloys, 

and has a low MAE typically below ~6 kJ/mol and often below 1 kJ/mol. Alloys with higher 

absolute values (wider distribution) for the segregation energy will correspondingly have a higher 

MAE, and the worst of these seen here is MAE = 12.8 kJ/mol for the Zr(Ni) system, but here the 

segregation spectrum spans about 250 kJ/mol; as a fraction of the total spread of the segregation 

spectrum, the MAE is uniformly below about 5%. To test the extrapolability of the high-fidelity 
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framework, we report the mean (and standard deviation) absolute errors using 5-fold cross-

validation in Table 2, which shows that the fitted models are able to generalize well to the unseen 

folds of the dataset (with similar errors as reported in Table 2 for the 50/50 holdout method, and 

low standard deviation across the folds). We note that although most of the surveyed base-metals 

have fcc lattice structure, the ML framework seems to be insensitive to the lattice structure, as it 

similarly performs well for bcc (Fe), and hcp (Zr) metals. Therefore, we conclude that the high-

fidelity ML model can be used to accurately model GB segregation across the GB and alloy spaces.  

3.2. ACCELERATED ML MODEL FOR GB SEGREGATION 

 

Figure 16: Accelerated ML model for GB segregation. For the Al(Mg) alloy, shown in Figure 13, (a) Principal 

component analysis is used to reduce the dimensionality of the feature matrix by projecting the FSOAP features into 

P=10 components that capture >99% of the variance. (b) k-means clustering is then used to divide the 10-d 

transformed feature space into Px10=100 similar clusters; the closest GB sites to the cluster centers (shortest 

Euclidean distance) are used as training data-points for the learning algorithm (linear regression). (c) Predictive 

performance – mean absolute error (MAE) – of the accelerated model across the full Al GB network. 

In alloy design, it is of interest to be able to quickly scan across the alloy space for interesting 

combinations. In the context of GB segregation, for example, significant efforts have been 

conducted to screen for nanocrystalline stabilizing elemental combinations [19,22], complexion 

forming combinations [103], or GB embrittling solute additions [44,104,105]. Though the high-
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fidelity ML model is highly accurate, it still requires ~104 data points for training and fitting its 

~103 coefficients (features). To reduce the training cost and permit a broader scan across the full 

alloy space, it is appropriate to reduce the dimensions of the input features. We propose the use of 

unsupervised dimensionality reduction algorithms, which map a high dimensional feature vector 

into a low-dimensional embedding that captures its main characteristics; “unsupervised” signifies 

that such mapping is done without a priori knowledge the of the target value (segregation energies). 

As an illustration, we adopt the simplest of these algorithms, namely principal component 

analysis[106], which we use to transform the FSOAP=1,015 into 10 principal components (PSOAP) 

that maximize the captured variance of the feature space. We can think of this process as 

compressing the 1,015 features into 10 components; such compression captures >99% of the 

variance of the SOAP feature matrix of the Al polycrystal, as shown in Figure 16.   

For an accelerated option of the ML framework, we propose using the 10 principal components 

obtained from PCA as the input for the linear regression algorithm[107,108]. As the problem is 

now reduced to fitting PSOAP+1 coefficients (instead of FSOAP + 1), we conservatively only need 

~Px10=100 data-points for training; 100 molecular statics computations involving the substitution 

of a single solute atom at a grain boundary site in a polycrystal give insight on the entire 

segregation spectrum. As for the selection of the 100 training data points, though random selection 

can be used, this could be a biased approach due to the low number of points accessing only a 

prevalent subset of the GB feature space in a given polycrystalline structure. Instead, we propose 

using k-means clustering[109,110] to partition the reduced feature space into k=100 clusters that 

minimize within-cluster variances. The density of cluster centroids aligns with the density of the 

GB datapoints i.e. more clusters at denser areas of the GB space, as shown in Figure 17(a). We 

then use the cluster centroids to identify optimal training data-points (i.e., shortest Euclidean 

distance to the centroids), as shown in Figure 16, for which GB segregation is computed, and use 

it to train the accelerated model.  Such an approach is computationally inexpensive and ensures 

the full coverage of the feature space in our training dataset.  

Similar to the high-fidelity model, the accelerated one can be fully automated and requires 

minimal input from the user. To compare the performance of both approaches, an accelerated 

model for Al(Mg), trained with only 100 GB sites, results in an MAE of 4.2 kJ/mol for predictions 

of the full ~105 GB sites, compared to an MAE of 2.5 kJ/mol from the high-fidelity model trained 

with 50% of GB sites. The error from accelerated model is well behaved across the GB space, as 
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shown in Figure 17(b), where the model extrapolates well to the extreme points in PC space; this 

indicates the k-means based sampling does a good job of datapoint selection here. The reduction 

(two orders of magnitude) in the required training data points, with minimal loss of accuracy, is 

significant, and showcases the power of the accelerated model to quickly, and accurately, predict 

the segregation spectra in binary alloys. It also signifies that the full GB space could possibly be 

reduced to a small number of key GB environments – also known as GB “building blocks” [93] – 

that decipher the features of the full space. We expect this to be a significant direction of future 

work in the context of grain boundary segregation.  

 

Figure 17: An overview of the accelerated model, outlined in Figure 16, for the Al(Mg) alloy. (a) k-means centers 

plotted over a density-plot of the GB population in PCA space, and (b) a hexbin plot of the MAE across the PCA 

space. 

Using the accelerated approach, we build ML models to predict solute segregation spectra in 

polycrystals for every aluminum, and magnesium, and transition metal-based binary alloys 

(Supplementary Figs. 2-20) that have interatomic potentials in the NIST Interatomic Potentials 

Repository – a total of 259 alloys (see Supplementary Fig. 1). This segregation database not only 

allows us to screen the alloy space for segregation “hot-spots” or regions of interest, but also to 

compare the variation of the spectrum with different interatomic potentials (for alloys where more 

than one potential exists). To illustrate the utility of the database, we plot in Figure 18 all solute 

segregation spectra in a nickel-based alloy; Ni(Ag) [98] is predicted to be highly segregating, and 

the opposite for Ni(Al) [111].  

a b 
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Figure 18: GB segregation spectra in Ni-based alloys. Using the accelerated ML model outlined in Figure 16, we 

compute GB segregation energy spectra for 18 solutes [98,101,102,111–119]  in a 20x20x20 nm3 Ni polycrystal of 

grain size 10 nm; the anti-segregation region (Δ𝐸𝑖
𝑠𝑒𝑔

> 0) is shaded. The spectra are fitted to the skew-normal 

function Eq. (19)(solid line), and the value of the characteristic energy 𝜇 (kJ/mol), width 𝜎 (kJ/mol), and shape 𝛼 of 

the function are listed. Also, the spectra are compared to the “average” segregation energy (dashed vertical line) 

used to charecterize these alloys in the database of Murdoch and Schuh [120]. 

3.3. SPECTRAL SEGREGATION DATABASE  

There are three key findings to the spectral segregation database (Figure 18 and Supplementary 

Figs. 2-20). The first is that all segregation spectra in all binary alloys surveyed, as hypothesized 

earlier in our study of the Al(Mg) system [82], are captured well by a skew-normal function (the 

fitted probability density function has an R2 > 0.95 in all but one alloy with an R2=0.80; see 

Supplementary Figs. 2-20). This function involves three parameters – the characteristic energy 𝜇, 

width 𝜎 and shape 𝛼 of the distribution: 

 𝐹𝑖
𝑔𝑏

(𝛥𝐸𝑖
𝑠𝑒𝑔

)  =
1

√2𝜋 𝜎
exp [−

(𝛥𝐸𝑖
𝑠𝑒𝑔

− 𝜇)
2

2𝜎2
] erfc [−

𝛼(𝛥𝐸𝑖
𝑠𝑒𝑔

− 𝜇)

√2 𝜎
]   (20) 

These parameters are provided in the corresponding figure for each alloy considered. The second 

key finding is that using a McLean “average” [30] segregation energy to characterize a binary 
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alloy, which is the segregation literature norm [36,120], misses key information about the 

accessible segregation states at the GB network. For example, the Ni(Ag) system that has a 

reported “average” segregation energy of -50 kJ/mol [120], has approximately 15% of its GB 

network with segregation energies more than twice that, below -100 kJ/mol, as shown in the first 

panel of Figure 18. GB segregation occurs first in the lowest energy states, and before a grain 

boundary in Ni(Ag) would experience the McLean average segregation energy, it would lie at an 

extremely high composition of approximately 50 at% Ag. The knowledge of the full spectrum is 

thus essential to enable the design of microstructures [121] that maximize the desired tail of the 

segregation spectrum (i.e. either promote or inhibit segregation). The third key finding is that, for 

alloys with more than one available interatomic potential, the computed segregation spectra can 

be sensitive to the choice of the potential. For example, potentials for the Al(Ni) system produce 

completely different segregation spectra, as shown in Supplementary Fig. 3, which range from 

having almost all GB sites being unfavorable to segregation [118] to the complete opposite[122]; 

such variation can result in an order of magnitude difference in predictions for GB solute 

concentration even at low total solute concentrations in the system (see Supplementary Fig. 23). 

Further work is needed in the future to quantify the accuracy of such potentials for GB segregation 

studies [123], and as always with atomistic models, it is important to remember that the present 

framework will only return physically reasonable results if the potential is specifically suitable for 

the problem at hand. For now, we report all of them, and leave the selection step to the judgment 

of the user.    

Though the analysis in Figs 1-3 shows that the ML models faithfully reproduce most of the 

details of the GB segregation spectrum, this is not the most critical test for their practical viability; 

these models are only useful to the extent that they correctly capture GB segregation in some 

realistic situation. Thus, the most important metric is the prediction for the equilibrium GB 

segregation state (i.e. extent of segregation). For a spectrum of segregation energies at the GB 

network, the equilibrium solute distribution among the different sites follows Fermi-Dirac 

statistics [37,39,82]. In a closed system with finite grain sizes, the total solute concentration Xtot 

is fixed and shared by the bulk (intra-grain) and GB solute concentrations, 𝑋𝑐  and 𝑋̅𝑔𝑏 , 

respectively, according to the GB site fraction 𝑓𝑔𝑏:  

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏𝑋̅𝑔𝑏 (21) 
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The equilibrium 𝑋𝑐  and 𝑋̅𝑔𝑏  are a function of the temperature 𝑇 , the distribution of GB 

segregation energies 𝐹𝑖
𝑔𝑏

(Δ𝐸𝑖
𝑠𝑒𝑔

), and are obtained by numerically solving for 𝑋𝑐 that satisfies the 

expanded form of Eq. (21) [82]:  

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏 ∑ 𝐹𝑖
𝑔𝑏

 [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

𝑘𝑇
)]

𝑖

−1

 (22) 

 

In Figure 19, we compare the equilibrium GB segregation state obtained using the true 

computed spectrum versus the ML predicted ones with both high-fidelity and accelerated models, 

for all seven alloys from Figure 13 and Figure 15, in a polycrystal of average grain size 15 nm 

(𝑓𝑔𝑏 ≈10%) at T = 600 K. The predictions of the ML models closely match those of the true 

spectrum, indicating that the ML models capture the necessary information to correctly predict the 

equilibrium segregation state. Also, as briefly discussed earlier, though the value of the MAE 

differs from one system to another, a higher MAE does not necessarily translate to a worse result, 

when one normalizes to the scale of the segregation energy distribution, e.g. the Zr(Ni) system in 

Figure 19.  Finally, we note that the difference (deviation) in predictions of the equilibrium 

segregation state could be even less of an issue if the skew-normal approximation Eq. (19) is used, 

instead of the full discrete spectra, to quantify GB segregation using the continuous form of the 

segregation isotherm Eq. (9) [82]: 

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏 ∫ 𝐹𝑖
𝑔𝑏

[1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

𝛥𝐸𝑖
𝑠𝑒𝑔

𝑘𝑇
)]

−1

𝑑𝛥𝐸𝑖
𝑠𝑒𝑔

∞

−∞

 (23) 

as the three fitted parameters (𝜇, 𝜎, and 𝛼) of the skew-normal function for the true and ML 

predicted spectra should closely match, even for systems with high MAE, as the residuals are well-

behaved and normally distributed (with a zero mean, as shown in Figure 13 and Figure 16).  
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Figure 19: Predictions of the equilibrium segregation state. Predictions of equilibrium 𝑋̅𝑔𝑏 using the true, and 

predicted (from both high-fidelity and accelerated ML models) segregation spectra for seven polycrystalline alloys 

with an average grain size of 15nm at T= 600 K. 

To motivate further analysis of the spectral segregation database, and visually summarize the 

segregation tendency across the alloy space, we plot a two-dimensional Pettifor [124] map in 

Figure 20 (for most alloys in the database)  using the 25th percentile value (energy) for the 

segregation spectra (i.e. 25% of GB sites have lower segregation energies). As the lower tail is the 

most enthalpically favorable, it will disproportionately influence the segregation tendency in any 

given alloy, especially at low or dilute solute concentration. The choice of the Pettifor chemical 

scale (which preserves the Mendeleev-type features of the elements [124]) is based on its success 

in pattern clustering (separation) for miscibility [125], ordering tendency [126,127], and crystal 

structures of intermetallics [124] in binary alloys. Though Figure 20 shows some clustering, it is 

not enough to draw concrete conclusions on the segregation tendency across the alloy space; the 

same finding applies to another two routinely used parameters to characterize the chemical and 

physical nature of the elements – electronegativity [128], and metallic radius [129] – (see 

Supplementary Figs. 24-27). It is evident that more effort is needed to formulate (or extract from 

ML) simple phenomenological parameters (preferably derived from atomic features e.g. Miedema-
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style parameters [130]) that better explain these trends. We hope that this preliminary exploration 

of the data will promote further work on this front.  

 

Figure 20: Visual summary of the predicted segregation tendency across the alloy space. The value of the first 

quartile of the segregation spectra (i.e. 25% of GB sites have lower segregation energies) as predicted using the 

accelerated model for 225 alloys (we removed columns with empty entries for compact viewing); the elements are 

arranged by their order on the Pettifor chemical scale [124]. For alloys with multiple interatomic potentials (see 

Supplementary Fig. 1), we report the least segregating spectra as a conservative choice (see Supplementary Fig. 25 

for an alternative version of the figure with the most segregating spectra). 

3.4. COMPUTATIONAL METHODS  

3.4.1.  GB segregation enthalpies  

The atomistic simulation package LAMMPS [66,131] is used for all molecular statics and 

dynamics simulations; OVITO [73] is used for visualization and identification of atomic structures.  

To generate the base-metal polycrystal, we fill a 20x20x20 nm3 volume with 16 randomly 

oriented grains using Voronoi tessellations with Atomsk [69]. The polycrystal is thermally 

annealed at 0.3-0.5 of the melting temperature under a Nose-Hoover thermostat/barostat for 250 

ps using a time step of 1 fs, which relaxes the grain structure and boundaries without permitting 

exaggerated grain growth; this is followed by slow cooling to 0 K at a cooling rate of 3 K/ps, and 

a final conjugate gradient energy minimization.  
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To compute the spectrum of segregation enthalpies in a binary alloy, we follow the procedure 

in Ref. [82]. We first relax the base-metal polycrystal using the interatomic potential of that alloy, 

by applying an external pressure of zero in a conjugate gradient minimization, followed by a 

second conjugate gradient minimization (with no applied pressure). This is necessary to scale the 

cell, and correct for minor differences in the equilibrium lattice parameter of the base-metal across 

the different interatomic potentials (for example, the Ni polycrystal is thermally annealed using an 

interatomic potential [102] that is fitted to Ni lattice parameter of 3.518 Å, but the Ni(Al) [111] is 

fitted to 3.520 Å). Then, every GB site in the annealed polycrystal is identified using adaptive-

common neighbor analysis method [74]; all atoms that have a different atomic structure than the 

base metal are assumed to be GB atoms. For every GB site (i), its Δ𝐸𝑖
𝑠𝑒𝑔

 is calculated as the relaxed 

energy difference between the solute atom occupying the GB site, versus a bulk (intra-grain) site: 

Δ𝐸𝑖
𝑠𝑒𝑔

= 𝐸𝑔𝑏,𝑖
𝑠𝑜𝑙𝑢𝑡𝑒   −  𝐸𝑐

𝑠𝑜𝑙𝑢𝑡𝑒;  the relaxation of each state is achieved using a conjugate gradient 

minimization, and the reference bulk site for 𝐸𝑐
𝑠𝑜𝑙𝑢𝑡𝑒 is chosen as the center of a 6 nm sphere of 

the pure solvent (in the polycrystal), to avoid any long-range interactions with GB atoms. All 

calculations are at 0 K, isolating the enthalpic portion of the segregation energy for each site. 

3.4.2.  Machine Learning  

For feature extraction, the LAE of every GB site within a cutoff radius of 6 Å is described using 

the SOAP method, as implemented in the QUIP/GAP software package [89,91]. SOAP fits a set 

of radial basis functions and spherical harmonics to Gaussian particle density functions placed 

over all neighboring atoms in the LAE. The maximum number of radial basis functions (nmax), 

degree of spherical harmonics (lmax), and the width of Gaussian functions (σat) control the size and 

resolution of the SOAP feature vector. We use nmax = lmax = 12 and σat = 1 Å for all alloys, which 

gives a SOAP vector with 1,015 features. As for the other components of the ML framework: 

linear regression, principal component analysis, and k-means clustering are used as implemented 

in the Scikit-learn [132] python package.  

3.4.3. Data and Code Availability  

The database for segregation spectra of all 250+ binary alloys, in the form of LAMMPS text 

dump files of solvent polycrystals with predicted GB solute segregation energies, and an example 
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Jupyter Notebook with all necessary code to train and use the high-fidelity and accelerated machine 

learning models are available at  https://doi.org/10.5281/zenodo.4107058.  

3.5. CONCLUSION  

In summary, our proposed ML framework, inspired by methods developed for fitting ML-based 

interatomic potentials, aims to fit a “pseudo interatomic potential” for GB segregation energies in 

polycrystalline alloys. The framework is designed to require minimal input from the user, and as 

such, is automatable. As the ML literature is constantly evolving, we look forward to new 

developments and tools that can further improve the framework. We offered two model options. 

The first is a high-fidelity model that uses a large SOAP vector (>103 features), a conservative 

radial cutoff (6Å), and linear regression. The second, is an accelerated model that uses PCA to 

transform the original features into a few (10) principal components (which are then used as input 

features to linear regression); this reduces the dimension of the learning problem to just 100 key 

GB environments, which are selected by k-means clustering to ensure coverage of the GB space. 

The accelerated model is used to build an extensive database for segregation spectra in 259 binary 

alloys, which is included the appendix. We look forward to applications of this database in alloy 

design, and hope it motivates more widespread use of spectral approaches to GB segregation in 

polycrystalline materials. 

  

https://doi.org/10.5281/zenodo.4107058
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4. THERMODYNAMICS AND DESIGN OF NANOCRYSTALLINE ALLOYS USING GRAIN 

BOUNDARY SEGREGATION SPECTRA 

In Chapter 2, we used atomistic simulations to show that, for polycrystals, the spectrum of GB 

site-types and their segregation energies are well captured by a skew-normal distribution function, 

and briefly discussed the implications of such a spectrum upon the stability criteria for a 

nanocrystalline alloy. And, subsequently, in Chapter 3, we used a machine-learning based 

framework to compute the segregation spectra for over 200 binary alloys, which were all similarly 

well captured by a skew-normal distribution function. In this Chapter, we take the next step, and 

showcase the implications of our findings to alloy design. We apply the spectral framework to the 

problem of designing and screening for nanocrystalline alloy stability.  

In pure metals, a nanocrystalline structure, which is generally defined as a polycrystal with a 

grain size of 100 nm or less, can have a multitude of desirable material properties unattainable 

otherwise for structures with larger grain sizes [19,133–137]. However, such structures are 

inherently thermodynamically unstable; a nanocrystalline configuration comes with a large 

volume fraction of high-energy bearing defects (grain boundaries) that introduces a large excess 

of energy in the structure (on the order of ~1-10 kJ/mol depending on grain size). In fact, the 

driving force to reduce its energy can, in some cases, be strong enough to induce grain growth at 

room temperature [138,139] (and hence the loss of nanocrystallinity and its accompanying 

desirable material properties).  

In 1993, Weissmüller outlined a thermodynamic framework to stabilize nanocrystalline 

structures through alloying [18]. The key concept is that, in an alloy, if solute atoms prefer the 

grain boundary (GB) environment over the crystalline bulk (intragranular region), a polycrystalline 

alloy can reduce its energy through solute segregation at the GB. If the energetic benefit from 

solute segregation is equal to (or larger than) the energetic penalty of having the GB network 

(necessary to accommodate the solutes), then a solute-segregated nanocrystalline structure can be 

thermodynamically favorable, and as such, is stable against grain growth. In effect, this translates 

to a thermodynamic stability criterion that can be used to screen binary alloys for nanocrystalline 

stability. Subsequent stability criteria have built on the Weissmüller concept [26,140–144] by 
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incorporating, e.g., energetic competition from phase separation [142] or ordered compound 

formation [26]. 

Unfortunately, all the developed stability criteria (and associated alloy screening efforts) for 

nanocrystalline alloys applied to date have used a simplified representation of GBs, treating the 

entire GB network as a single entity, with a single site-type available for segregation. Screening is 

thus conducted on a scalar such as the “average” GB segregation enthalpy, ∆𝐻̅𝑠𝑒𝑔. However, this 

is a substantial oversimplification that misses key physics of GB segregation; GBs are well known 

to be highly anisotropic [145], and have a variety of site-types (i) that accommodate solute atoms 

to different degrees, which results in a distribution of segregation enthalpies, ∆𝐻𝑖
𝑠𝑒𝑔

 

[34,36,146,37–40,42,78,82,100]. We note that, in solids, the segregation enthalpy is equivalent to 

the segregation internal energy [46], ∆𝐻𝑖
𝑠𝑒𝑔

≈ ∆𝐸𝑖
𝑠𝑒𝑔

, which can be readily calculated using 

atomistic simulations at 0 K; throughout the chapter, we therefore use the terms “energy” and 

“enthalpy” interchangeably.  

In this spectral representation of GB segregation, the enthalpic benefit of segregation is not the 

averaged quantity ∆𝐻̅𝑠𝑒𝑔  anymore, but is the cumulative benefit of solute segregation to all 

favorable GB site-types with ∆𝐻𝑖
𝑠𝑒𝑔

 < 0 (in this notation, a favorable GB site has a negative 

segregation energy, such that the system reduces its energy by ∆𝐻𝑖
𝑠𝑒𝑔

 upon solute segregation). In 

this chapter, we address the limitation of using an “averaged” representation of GBs, and develop 

a thermodynamic framework to screen for nanocrystalline stability, which takes into account the 

spectral nature of GBs. We develop enthalpic stability and metastability criteria for a 

nanocrystalline alloy in the spectral representation, and subsequently use it to screen over 200 

binary alloys for viable candidates that can form stable (and metastable) nanocrystalline structures. 

4.1. SPECTRAL ENTHALPIC STABILITY CRITERIA FOR NANOCRYSTALLINE ALLOYS 

4.1.1. Stability of a polycrystal with respect to a solid solution 

For a polycrystalline alloy with 𝑁𝑔𝑏 GB atomic sites, the dilute-limit segregation energy of a 

solute atom at site-type (i) is:  

 ∆𝐸𝑖
𝑠𝑒𝑔

= 𝐸𝑔𝑏,𝑖
𝑠𝑜𝑙𝑢𝑡𝑒 − 𝐸𝑐(𝑠𝑙𝑛)

𝑠𝑜𝑙𝑢𝑡𝑒 (24) 



54 

where 𝐸𝑔𝑏,𝑖
𝑠𝑜𝑙𝑢𝑡𝑒, 𝐸𝑐(𝑠𝑙𝑛)

𝑠𝑜𝑙𝑢𝑡𝑒 are the relaxed total energy of the polycrystal with a solute atom at GB site-

type (i), and a crystalline bulk site (intragranular), respectively. While this expression incorporates 

the conventional reference state for GB segregation, i.e. the solid solution state (denoted by “sln” 

in the subscript), this state is metastable by nature at 0 K, and is never the ground state 

configuration for a metal alloy with a nonzero heat of mixing; at 0 K, an alloy with a positive 

mixing enthalpy should phase separate (demix), and one with a negative mixing enthalpy should 

form an intermetallic compound. Therefore, the computed ∆𝐸𝑖
𝑠𝑒𝑔

 from Eq. (24) can be used only 

to establish a criterion for nanocrystalline metastability i.e. enthalpic stability with respect to a 

solid solution: 

 ∑ 𝑁𝑖
𝑔𝑏

⋅ 𝛥𝐸𝑖
𝑠𝑒𝑔

0

∆𝐸
𝑖
𝑠𝑒𝑔

= −∞

< − ∑ ∑ 𝛥𝐸𝑖,𝑗
𝑥𝑠

𝑁𝑖
𝑔𝑏

𝑗=0

∞

∆𝐸
𝑖
𝑠𝑒𝑔

= −∞

  (25) 

where 𝑁𝑖
𝑔𝑏

 is the number of GB sites of type (i), and 𝛥𝐸𝑖,𝑗
𝑥𝑠 is the excess energy of GB site (j), type 

(i). We stress here that the subscript “j” denotes a single GB site (j), and that the subscript “i” 

denotes GB site-type (i), which encompasses all GB sites with the same segregation energy 𝛥𝐸𝑖
𝑠𝑒𝑔

. 

Simply, the left-hand side of Eq. (25) is the maximum enthalpic benefit that can come from solute 

segregation to all favorable GB sites (∆𝐸𝑖
𝑠𝑒𝑔

≤ 0), and the right-hand side is the enthalpic benefit 

of removing the GB network (𝑁𝑔𝑏 GB atomic sites with excess energy of 𝛥𝐸𝑗
𝑥𝑠  per site). For 

stability analysis, we are concerned with the total enthalpic cost of the whole GB network, rather 

than the underlying distribution of excess energies 𝛥𝐸𝑖,𝑗
𝑥𝑠  (though a precise treatment should 

capture it). The spectrality of the GB environments is still fully captured by the left-hand side i.e. 

the whole system reduces its energy by 𝛥𝐸𝑖
𝑠𝑒𝑔

 upon solute segregation to site-type (i), regardless 

of the coordinates of the GB site itself (i,j) or its excess energy 𝛥𝐸𝑖,𝑗
𝑥𝑠. We can thus simplify the 

right-hand side of Eq. (25) by evaluating the summations to give 𝑁𝑔𝑏𝑘𝛾𝛾, where 𝛾 is the average 

GB energy of the polycrystal (per unit area, as traditionally defined), and 𝑘𝛾 is a constant to convert 

the GB energy to a per-atom quantity and thus incorporates a grain boundary thickness. In practice, 

we directly compute the full GB energy directly over all sites in a computational structure as 

suggested by the double summation in Eq. (25). Making this substitution and dividing Eq. (25) by 

𝑁𝑔𝑏 to express it in terms of a discrete distribution function, we obtain:  
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 ∑ 𝐹𝑖
𝑔𝑏

⋅ 𝛥𝐸𝑖
𝑠𝑒𝑔

0

∆𝐸
𝑖
𝑠𝑒𝑔

= −∞

<  −𝑘𝛾𝛾 (26) 

where 𝐹𝑖
𝑔𝑏

= 𝑁𝑖
𝐺𝐵/𝑁𝐺𝐵 is the distribution function: the fraction of site-type (i) in the GB network 

(i.e., ∑ 𝐹𝑖
𝑔𝑏

= 1). Recasting Eq. (26) in terms of a continuous distribution function, we have: 

 ∫ 𝐹𝑖
𝑔𝑏

⋅ 𝛥𝐸𝑖
𝑠𝑒𝑔

0

∆𝐸
𝑖
𝑠𝑒𝑔

= −∞

 𝑑(𝛥𝐸𝑖
𝑠𝑒𝑔

) <  −𝑘𝛾𝛾 (27) 

For screening purposes, it is more convenient to express Eq. (27) in terms of a metastability 

score Φ𝑀, with the condition for enthalpic stability against a solid solution being Φ𝑀 ≥ 1:  

 Φ𝑀 =   
1

−𝑘𝛾𝛾
∫ 𝐹𝑖

𝑔𝑏
⋅ 𝛥𝐸𝑖

𝑠𝑒𝑔

0

∆𝐸
𝑖
𝑠𝑒𝑔

= −∞

 𝑑(𝛥𝐸𝑖
𝑠𝑒𝑔

) (28) 

It is important to emphasize again that owing to the reference state in these equations being a solid 

solution, the criterion of Eq. (27) and the ranking metric of Eq. (28) represent only the stability of 

a polycrystalline or nanocrystalline state against the competing solid solution phase. While this is 

exactly the original competition envisioned by Weissmuller [18], it is formally only a metastability 

criterion in the global sense, because the solid solution reference state is not a ground state, but 

gives way at zero Kelvin to more stable configurations (second phases).  

4.1.2.  Stability of a polycrystal with respect to competing ground state phases 

Looking beyond metastability to a hypothetical enthalpic stability condition, we need to 

compare the energy of a solute-segregated nanocrystalline state against that of the most stable 

(bulk) state for the alloy at 0 K, which involves the terminal solute phase and either an intermetallic 

compound or a second terminal phase. In such cases, the enthalpic benefit from segregation to site-

type (i) is not 𝛥𝐸𝑖
𝑠𝑒𝑔

 anymore, as defined by Eq. (24), but should be redefined (∆𝐸𝑖,𝑒𝑞
𝑠𝑒𝑔

) to quantify 

the enthalpic benefit of a solute atom leaving the competing bulk ground state (𝐸𝑐(𝑒𝑞)
𝑠𝑜𝑙𝑢𝑡𝑒at 0 K) to a 

GB site-type (𝑖): 

 ∆𝐸𝑖,𝑒𝑞
𝑠𝑒𝑔

= 𝐸𝑔𝑏,𝑖
𝑠𝑜𝑙𝑢𝑡𝑒 − 𝐸𝑐(𝑒𝑞)

𝑠𝑜𝑙𝑢𝑡𝑒 (29a) 
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 ∆𝐸𝑖,𝑒𝑞
𝑠𝑒𝑔

= 𝛥𝐸𝑖
𝑠𝑒𝑔

− 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒  (29b) 

Eqs. (29a) and (29b) are equivalent, with Eq. (29a) used to present a parallel with the traditional 

definition of segregation energies in Eq. (24), and Eq. (29b) explicitly showing the shift in the 

reference frame in a single quantity 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 . This quantity is the energy difference between 

embedding a solute atom into the new reference state of a bulk equilibrium configuration 𝐸𝑐(𝑒𝑞)
𝑠𝑜𝑙𝑢𝑡𝑒, 

and a solid solution (𝐸𝑐(𝑠𝑙𝑛)
𝑠𝑜𝑙𝑢𝑡𝑒, the reference state for Eq. (24)); this is illustrated in Figure 21, and 

will be discussed in more detail below. We note that in an earlier publication we presented a 

schematic discussion of these ideas in which this shift in reference state was missing [82]. The 

present correction is certainly necessary for thermodynamic consistency when performing 

quantitative calculations as we are about to in what follows.  

Accounting for this energetic shift in the reference state, we derive, in a similar fashion to Eq. 

(27) (and as detailed in Supplementary Section 2 of Ref [147]), the criterion for nanocrystalline 

ground state stability i.e. enthalpic stability with respect to the alloy ground state at 0 K: 

 ∫ 𝐹𝑖
𝑔𝑏

⋅ (𝛥𝐸𝑖
𝑠𝑒𝑔

− 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 )

𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒

∆𝐸
𝑖
𝑠𝑒𝑔

= −∞

 𝑑(𝛥𝐸𝑖
𝑠𝑒𝑔

) <  −𝑘𝛾𝛾 (30) 

We similarly recast Eq. (30), for screening purposes, in terms of a stability score Φ𝑆, with the 

condition for nanocrystalline ground state stability being Φ𝑆 ≥ 1: 

 Φ𝑆 =   
1

−𝑘𝛾𝛾
∫ 𝐹𝑖

𝑔𝑏
∙ (𝛥𝐸𝑖

𝑠𝑒𝑔
− 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛

𝑠𝑜𝑙𝑢𝑡𝑒 )

𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒

∆𝐸
𝑖
𝑠𝑒𝑔

= −∞

 𝑑(𝛥𝐸𝑖
𝑠𝑒𝑔

) (31) 

Eqs. (30) and (31) have the same form as Eqs. (27) and (28), respectively, for stability against 

the solid solution, but instead use the modified segregation energy (𝛥𝐸𝑖
𝑠𝑒𝑔

− 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 ) in the 

integrand, which in turn, changes the upper limit of the integral to 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 ; the upper bound of 

energetically favorable GB sites is now defined by 𝛥𝐸𝑖
𝑠𝑒𝑔

− 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 ≤ 0 , as shown 

schematically in Figure 21. Therefore, the key difference in Eqs. (30) and (31) is the quantity 

𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 , the energy of removing a solute atom from a solid solution, and placing it into a bulk 

equilibrium configuration. Since equilibrium at T = 0 K involves pure phases and line compounds, 
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a new solute addition effectively samples a tie-line between the equilibrium phases, in this case, 

the terminal solvent phase and the nearest second phase. The result for a binary alloy has the 

generalized form (derived in the Supplementary Section 2 of Ref [147]): 

 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 =

1

𝑥𝑠
𝑐 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
− ∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴 (32) 

where ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 is the energy of embedding one solute atom (B) into the equilibrium lattice matrix 

of solvent (A), and, for compound forming alloys, 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

 is the formation energy (at 0 K) of the 

intermetallic compound with the lowest stoichiometry 𝑥𝑠
𝑐; both quantities can be obtained from 

atomistic simulations (at 0 K) as detailed in the following section. Eq. (32) should reduce to 

(−∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴) in non-compound forming systems, which occurs by setting 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
= 0. We note 

that 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒  should be less than zero (𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛

𝑠𝑜𝑙𝑢𝑡𝑒 < 0), as a positive value means that it is more 

enthalpically favorable for a solute atom to exist in a solid solution, over the predicted 0 K ground 

state (lying on a tie-line between the solvent phase and the nearest compound) – this is never the 

case enthalpically.  

 

Figure 21: An illustration of the effect of changing the reference state for the solute ( i.e. in a solid solution versus 

the ground state at T=0K) on the (calculated) energetics of solute segregation at GBs, and subsequently, the 

enthalpic favorability for the different GB site-types. 
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4.1.3. Functional form of the grain boundary segregation energy 

The proposed screening framework (outlined by Eqs. (28) and (31)), being strictly enthalpic, 

enables high-throughput evaluation of alloy candidates using quantities that can be computed from 

atomistic simulations at 0 K. Among these is the spectrum of grain boundary segregation energies, 

which we have addressed in several prior papers [82,146,148]. In those works, we have shown that 

the full distribution 𝐹𝑖
𝑔𝑏

 can be computed rigorously [82] or approximated with regression models 

[148]. More importantly, we have shown that to a very good approximation, an exhaustive list of 

hundreds of thousands of Δ𝐸𝑖
𝑠𝑒𝑔

 values can be condensed into an accurate analytical form 

requiring only three parameters to characterize the distribution. Taking a skew-normal distribution 

function for polycrystals – based on our findings in [82,148] – three fitted parameters are required 

to characterize the distribution function, 𝐹𝑖
𝑔𝑏

 – the characteristic energy 𝜇 , the width 𝜎, and the 

shape 𝛼: 

 𝐹𝑖
𝑔𝑏

=  
1

√2π 𝜎
exp [−

(Δ𝐸𝑖
𝑠𝑒𝑔

− μ)
2

2σ2
] erfc [−

𝛼 ⋅ (Δ𝐸𝑖
𝑠𝑒𝑔

− μ)

√2 σ
] (33) 

This expression, when introduced into Eqs. (28) or (31), completes the framework for screening 

alloys, which are now parameterized by their phase energies along with grain boundary 

segregation parameters 𝜇 , 𝜎 , and 𝛼 . Our approach is similar in spirit to the use of density-

functional theory calculations to screen (and search for) materials and develop 0 K phase diagrams 

[149–152], but is now inclusive of a realistic grain boundary segregation spectrum. Clearly, a 

comprehensive assessment of candidate alloys should include entropic contributions [153] and 

state parameters (such as composition, temperature, and grain size), to identify viable temperature-

composition domains of nanocrystalline stability. Such developments are more rigorously possible 

with the present baseline in place, and since these analyses are more resource-intensive, can be 

reserved for post-screening candidates from the present enthalpic approach. This is the subject of 

some of our future work.  

4.2. ATOMISTIC COMPUTATIONAL METHODS 

We use Eqs. (28) and (31) to calculate the nanocrystalline metastability Φ𝑀 and ground state 

stability Φ𝑆 scores, respectively, for binary alloys of 15 metals: Ag, Al, Au, Co, Cu, Fe, Mg, Mo, 
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Ni, Pd, Pt, Ta, Ti, W, and Zr – a total of 210 alloys. As detailed in Section 4.1, we need five 

parameters for each phase separating pair, and seven parameters for each compound forming pair, 

in order to compute Φ𝑀  and Φ𝑆 . These include the GB segregation skew-normal distribution 

parameters (𝛼, 𝜇, 𝜎), the excess energy per GB atom 𝑘𝛾𝛾, the dilute energy of mixing per solute 

atom ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 , and for compound-forming systems, the formation energy 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
 of the 

competing intermetallic compound and its stoichiometry 𝑥𝑠
𝑐.  

We obtain (𝛼, 𝜇, 𝜎) from our earlier work in Ref [148], in which a machine-learning based 

framework was used to compute the distribution of GB segregation energies in thermally annealed 

20x20x20 nm3 polycrystals of the base metals. That analysis used all available interatomic 

potentials of the embedded atom method (EAM) type [154] and its variants in the interatomic 

repository [83,84] of the National Institute of Standards and Technology. For more details on the 

learning framework, and the simulation methodology, we refer the reader to Ref [148]. To make 

the stability and metastability scores calculations self-consistent, for every set of (𝛼, 𝜇, 𝜎), we use 

the same interatomic potential employed earlier in Ref [148] to also compute 𝑘𝛾𝛾 , ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 , 

and  𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

. The atomistic simulation package LAMMPS [66,131] is used to perform all 

molecular statics and dynamics simulations, and OVITO [73] is used to visualize and identify 

atomic structures.  

For each base metal, we use molecular statics to compute 𝑘𝛾𝛾 for the (20 nm)3 polycrystals 

from Ref [148]:  

 𝑘𝛾𝛾 =
1

𝑓𝑔𝑏
⋅ (Epoly − Eeq)  (34) 

where Epoly  and Eeq  are the energies per atom for the polycrystal, and a perfect crystalline 

supercell of the metal (i.e. cohesive energy), respectively, and 𝑓𝑔𝑏 is the site fraction of GB atoms 

in the polycrystal. The adaptive-common neighbor analysis method [74] is used to compute 𝑓𝑔𝑏; 

all atoms that have a different crystalline structure from the base metal are assumed to be GB 

atoms. We construct a supercell comprising 1,024 atoms spanning 8x8x8, 8x8x8, and 16x4x4 

multiples of the orthorhombic unit cell [69,155] for bcc, fcc, and hcp metals, respectively. This is 

followed with a conjugate gradient energy minimization in LAMMPS to optimize the supercell 

for both the lattice parameter, and atomic positions (for each interatomic potential).  
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To compute ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴, we substitutionally add one solute atom (B) into the 1,024 atom supercell 

of solvent (A), and compute: 

 ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴(per solute atom) =  𝐸(𝐴𝑁−1𝐵)  −  [ (𝑁 − 1) ⋅  𝐸𝐴

𝑒𝑞  + 𝐸𝐵
𝑒𝑞]  (35) 

where 𝐸(𝐴𝑁−1𝐵) is the relaxed total energy of the supercell with one solute atom (B), 𝑁 is the 

number of atoms in the supercell, and 𝐸𝐴
𝑒𝑞

, 𝐸𝐵
𝑒𝑞

 are the energies per atom for both metals A and B, 

respectively, in their perfect crystalline (unalloyed) supercells (i.e. cohesive energies). We note 

that the quantity ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴  is different from the traditional concentration-dependent energy of 

mixing 𝛥𝐸𝑚𝑖𝑥(𝑥), where 𝑥 is the solute concentration; ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 is the derivative of the mixing 

energy at the composition endpoint [156], ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 = [𝜕∆𝐸𝑚𝑖𝑥/𝜕𝑥]𝑥=0. And thus, in the dilute 

limit, we can approximate 𝛥𝐸𝐵 𝑖𝑛 𝐴 ≈ (1/𝑥) ∙ ∆𝐸𝑚𝑖𝑥 [157]; multiplying by (1/𝑥) converts 𝛥𝐸𝑚𝑖𝑥 

from a “per atom” to a “per solute atom” quantity. This is further discussed in Supplementary 

Section 1.2 of Ref [147].   

To compute 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

, we use 0 K phase diagrams from the density functional theory (DFT) 

based Open Quantum Materials Database (OQMD) [149,150] to, first, identify if the alloy is 

compound forming, and second, identify the intermetallic compound with the lowest stoichiometry 

𝑥𝑠
𝑐, for which the relaxed 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
 is calculated using molecular statics: 

 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

 = 𝐸𝑜𝑟𝑑 − [ (1 − 𝑥𝑠
𝑐) ⋅  𝐸𝐴

𝑒𝑞  + 𝑥𝑠
𝑐  𝐸𝐵

𝑒𝑞] (36) 

where 𝐸𝑜𝑟𝑑 is the relaxed per atom energy (using the interatomic potential) of the intermetallic 

compound cell (as obtained from OQMD).  

We note that, for some compound-forming alloys, the available interatomic potential does not 

correctly predict compound formation in the alloy (e.g., gives a positive value for 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

). In 

such cases, the DFT value for 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

, obtained from OQMD is used (and is correspondingly 

marked). Although a more conservative approach would be to just discount the offending 

interatomic potential, this leaves us without options to screen for nanocrystalline stability in that 

alloy. Furthermore, it is still possible for an interatomic potential to provide accurate segregation 

energies, but incorrectly predict compound formation (positive 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

) if the potential is not 

well-fitted to intermetallic compounds of the alloy. For example, although the Al(Mg) potential 

by Zhou et al. [118] misses the relevant nearest Al30Mg23 compound, it gives similar segregation 
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energies to the Mendeleev et al. [67] potential, which correctly predicts compound formation (and 

its energetics). Therefore, in absence of other alternatives, we find this approach of using DFT 

values of 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

, when necessary, to still give us the best metrics (and chance) to examine 

nanocrystalline stability in a binary alloy.  

In Figure 22(a), we plot the nanocrystalline ground state stability score Φ𝑆 for 180 alloys, and 

in Figure 22(b), the nanocrystalline metastability score Φ𝑀 for all 210 alloys. We removed 30 

alloys (marked with X) from Figure 22 (a), for which the calculated value of 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 , Eq. (32), 

is incorrectly positive even when the DFT value for 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

 is used; this error indicates that the 

interatomic potential incorrectly computes the mixing and/or the compound formation energies for 

this alloy. In the cases where an alloy has multiple interatomic potentials available (a total of 67 

alloys), we judiciously chose one of the potentials (that we think is most appropriate) to represent 

it in Figure 22. We highlight such choices in the Supplementary Material of Ref [147], but for all 

intents and purposes, this can be deemed an arbitrary choice, as it is not justified by a quantifiable 

metric. For completeness, we provide the calculation outputs for all alternative potentials in the 

Supplementary Data of Ref [147]. 

  

Figure 22: (a) The ground state stability score Φ𝑆 and (b) metastability score Φ𝑀 for the surveyed 210 alloys. 

Entries marked with (X) in (a) are for alloys, where the available interatomic potential gives an incorrect value of 

𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 > 0 in Eq. (32). 
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4.3. NANOCRYSTALLINE ALLOYS VS. ENTHALPIC GROUND STATES 

The ground state stability scores Φ𝑆, in Figure 22 (a), show that a nanocrystalline configuration, 

in almost all surveyed alloys, is not a formally enthalpically favorable state, compared to the 

equilibrium bulk state at 0 K (i.e., a two-phase state). This is established by virtue of their Φ𝑆 

scores being below unity, which by comparison with Eq. (31), means that the bulk phases are more 

stable at 0 K than any polycrystalline structure; the amount of GB segregation that occurs in these 

alloys is not enough to offset the energy cost of having the grain boundary network appear, relative 

to phase separation, based strictly on enthalpy at 0 K. This result aligns with the third law of 

thermodynamics, which permits only pure elements and ordered compounds at 0 K [158,159], as 

we shall discuss in more detail below. It is also consistent with our group’s prior work on the phase 

stability of nanocrystalline alloys which has pointed to the importance of entropy and finite 

temperatures to achieve an equilibrium nanocrystalline state [160,161]. 

However, an interesting set of counterexamples is also present in the data of Figure 22(a): five 

alloys are outliers to the above trend, and have a score of Φ𝑆 > 1: Cu(Ti), Ni(Ti), Ni(Zr), Pt(Ni), 

and Pt(Zr). These points seem to suggest that GB segregated nanocrystalline states in these alloys 

could have a lower enthalpy than the competing bulk ground states at 0 K, with a significant 

fraction of their GB energy states lying in the green regime of Figure 21. However, it is important 

to remember that the present screening uses only a dilute-limit analysis, and neglects the energetics 

of solute-solute interactions. Whereas a naïve filling of the energy levels in the GB energy 

spectrum of Figure 21 achieves a lower enthalpy total than the competing bulk phases, a true 

calculation of system energy for such a non-dilute system must account for the fact that solute 

atoms interact physically at grain boundaries. We have addressed the issue of non-dilute solute 

interactions in our work in Ref. [146] in the context of the spectral segregation energy, and noted 

how the spectrum itself shifts as it is populated with solute. 

For these particular five alloys, we expect that solute interactions at the GBs will oppose further 

segregation. This is because all of these alloys are negative heat of mixing alloys, meaning that 

solutes prefer to be surrounded by solvent atoms rather than by themselves. When segregating to 

a GB, this implies a short-range repulsion between solutes, such that when a favorable GB site is 

filled, neighboring sites should become less favorable. In Figure 21, each green site that becomes 

occupied shifts the distribution upward, leading to fewer green sites for subsequent segregation. 
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Thus, the segregation tendency, while very strong in these alloys, may decline with composition, 

and such decline might be enough to affect the stability proposition. Such a composition-

dependence should shift their scores to Φ𝑆 < 1, similar to all other alloys surveyed.  

To rigorously test this hypothesis for the five alloys with Φ𝑆 > 1, we use a two-stage Monte 

Carlo computation developed earlier in our work in Ref [146]. For this analysis, we use a low finite 

temperature rather than 0 K, to avoid getting locked in metastable states during the Monte Carlo 

routine. The solute interaction effects on the GB segregation spectrum that we seek to analyze are 

present at all temperatures, and thus the present finite temperature calculations remain relevant to 

the discussion at 0 K as well.  

First, for a given solute concentration, we run a Monte Carlo equilibration that is strictly 

energetic, on a full numerical GB segregation energy spectrum that is constant, i.e., does not 

change as it is populated. Solute atoms are first assigned as bulk solutes (∆𝐸𝑖
𝑠𝑒𝑔

= 0), and 

subsequently allowed to swap with solvent atoms; swap attempts are accepted according to the 

Metropolis criterion using dilute-limit segregation energies from the spectrum; the equilibrated 

segregation state from this stage of the computation is the one we expect assuming no solute 

interactions at the GB.  

Second, to account for solute interactions, the output of the first stage is used as the input to a 

fully atomistic hybrid Monte Carlo/Molecular Dynamics simulation; one hybrid step is a Monte 

Carlo run of one swap attempt per solute atom, followed by a molecular dynamics run at finite 

temperatures for relaxation, for 20 steps with a time step of 1 fs. A total of 1000 hybrid steps are 

used to achieve equilibration. As all atoms are allowed to interact in the hybrid simulation, the 

final equilibrated state is the true equilibrium segregation state for the nanocrystalline structure at 

the prescribed solute concentration. The difference between the final segregation states from the 

two stages determines the nature of GB solute interactions for the system; for repulsive 

interactions, the output of the second stage should have less solute content at the GB. 

We applied this procedure to all five alloys, using the (20 nm)3 polycrystals from Section 4.2, 

and a total solute concentration of 10% at 300 K. The procedure results are shown, as an example, 

for Pt(Ni) [114] in Figure 23. For this alloy, filling all GB sites with solute atoms barely crosses 

the threshold of stability with a score of Φ𝑆 = 1.04. But as shown in Figure 23, the repulsive 

nature of solute interactions is strong enough to reduce the equilibrium solute concentration at the 
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GB from 0.48 to 0.27 – more than 40% reduction in occupancy of GB sites; this roughly translates 

to a 40% reduction in the stability score for Pt(Ni). The repulsive solute interactions at the GB 

make it energetically unfavorable to fill all (dilute-limit favorable) GB sites, and thus, will depress 

the score for Pt(Ni) to Φ𝑆 < 1. Similarly, parallel simulations show that the other four alloys listed 

above also have repulsive solute interactions at the GB (as posited earlier) large enough in 

magnitude to reduce their computed dilute-limit score below unity as well. We note that for other 

alloys, the opposite effect is possible, i.e. to raise the Φ𝑆 score, in the case of attractive solute 

interactions at the GB. This is an interesting effect that further motivates the need for a full 

understanding of the nature and magnitude of solute interactions in all surveyed alloys, and will 

be the focus of future work.   

 

 

Figure 23: An illustration of the two-stage procedure developed in Ref [146] to show the impact of solute 

interactions on the equilibrium segregation state for Ni solutes in a Pt polycrystal [114], for a total solute 

concertation, 𝑋𝑡𝑜𝑡 = 10%, and T=300 K. The repulsive solute interactions at the GB reduce the solute concentration 

at the GB from 𝑋̅𝑔𝑏 = 48% to 27%. The shaded red and blue regions show the occupied GB sites (by solute atoms) 

before, and after taking into account solute interactions, respectively. 

This analysis suggests that a full spectral view of GB segregation is needed to enforce the third 

law of thermodynamics, including not only the dilute-limit form of the spectrum, but its evolution 
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with increasing concentration. The third law posits that the entropy of a system (including all its 

subsystems, e.g. configurational, vibrational, etc.) approaches zero, as the temperature approaches 

zero [158,159]. In other words, the ground state must be non-degenerate, whereas grain boundary 

networks are generally highly degenerate. This observation helps clarify thermodynamic 

difficulties associated with the use of a single ‘average’ segregation energy. Often when such a 

single segregation energy value is calculated (for example, in experiments), it represents some 

average over the lowest-energy sites in the full spectrum, as those are the sites that nature actually 

samples. And indeed, those segregation enthalpies, reflective of just the tail of the spectrum, can 

outcompete bulk phases [26]. This situation will be discussed at more length with specific 

examples in Section 6. However, in a fuller statement of the ground state conditions, the entire 

spectrum needs to be considered, including the favorable and the unfavorable sites, the latter of 

which are difficult to measure since they would never be naturally sampled. We note that one 

possible caveat to this discussion would be the formation of highly ordered GB complexions 

[10,11,162–165]. While it is known that some GBs can exhibit phase-like energetics, it is not clear 

whether any complexions might be ground state configurations at 0 K, or whether a full GB 

network could be comprised of such. This poses an interesting question for future work, in which 

details of the GB segregation spectrum would need to be altered to permit specific populations of 

GB types.  

In any event, a critical finding here is that when the full GB segregation spectrum is employed, 

our results suggest that it should be possible to enforce the third law for a rigorous thermodynamic 

analysis. This is important because although GB states are not 0 K ground states, at finite 

temperature they can appear when entropy favors activation out of the ground state [160,161] . At 

finite temperatures, it is only necessary that the GB energies outcompete the equilibrium phases, 

which for low solute contents means solid solutions. Our analysis shows that nanocrystalline alloys 

are often stable against solid solution formation; this is indicated by Figure 22(b) and will be the 

focus of the next section.  

4.4. SCREENING NANOCRYSTALLINE ALLOYS STABLE AGAINST SOLID SOLUTION FORMATION 

In contrast to Φ𝑠, which is relevant at 0 K, the metastability score Φ𝑀, is relevant at finite 

temperatures. Especially for the dilute limit case that we address in this work, a terminal solid 

solution is the correct bulk phase against which the GB segregated state would compete. And as 
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shown in Figure 22 (b), Φ𝑀 has a wider range of stabilization possibilities for nanocrystalline 

alloys. For more than one-third of surveyed alloys, it is possible to eradicate the enthalpic penalty 

of the GB network, and have a nanocrystalline configuration that is at least enthalpically 

comparable ( Φ𝑀 = 1 ) or favorable ( Φ𝑀 > 1 ) to a crystalline random solid solution. This 

observation suggests that, at finite temperatures, a nanocrystalline configuration is the 

thermodynamic equilibrium state in a large number of alloys, in a similar fashion to the 

thermodynamic stability of a solid solution (over a temperature-composition range) in the bulk 

phase diagram. This is the conclusion of prior studies mapping the entropic effects on structural 

equilibria in nanocrystalline alloys as well [26,160], and the rankings in Figure 22(b) provide a 

new quantitative view of this on the basis of a fuller understanding of the GB segregation spectrum.  

Table 3: Calculated Φ𝑆 and Φ𝑀 scores, and the maximum homologous temperature (relative to the alloy solidus) for 

stability for several alloys with experimentally observed nanocrystalline stability/metastability. 

Alloy 
Solute  

Concentration [at. %] 

Maximum  

Temperature [K] 

Homologous 

Temperature Φ𝑆 Φ𝑀 Ref. 

Ag(Ni) 25 673 0.5 0.0 2.0 [166] 

Ag(W) 0.3  473 0.4 0.0 0.1 [167] 

Co(W) 11 873 0.5 0.0 1.3 [168] 

Cu(Ag) 30  573 0.5 0.1 1.4 [169] 

Cu(Ta) 10  1173  0.9 0.0 6.2 [170]  

Cu(W) 14  673 0.5 0.0 2.6 [171] 

Cu(Zr) 3  1223  1.0 0.4 2.0 [172]  

Fe(Ag) 3.2  673  0.5 0.4 1.1 [173] 

Fe(Cu) 5  600  0.3 0.0 0.2 [174] 

Fe(Mg) 10  1036  1.1 0.0 2.7 [175] 

Fe(Ta) 1  873  0.5 0.2 0.5 [22] 

Fe(Zr) 4  1173  0.7 –  0.8 [176] 

Ni(Cu) 30  573  0.4 0.0 0.3 [177] 

Ni(W) 21  773  0.4 0.0 1.1 [24] 

Pt(Au) 10  775  0.4 0.0 0.4 [49] 

Pd(Zr) 19  873  0.5 0.0 1.3 [178] 

Ti(Cu) 10  583  0.3 0.3 0.9 [179] 

W(Ti) 20  1373  0.5 0.0 0.9 [19] 
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The results in Figure 22(b) are immediately applicable to any dilute alloy within its nominal 

solid solution range on the bulk phase diagram. For the alloys in Figure 22(b) with Φ𝑀 > 1, the 

existing bulk phase diagrams require revision in the face of the nanocrystalline, GB-segregated 

alternative state that is not typically considered in phase analysis, because their expected solid 

solutions are of higher energy than the nanocrystalline state. The extent to which such 

considerations reshape the phase diagram and extend into the nominal bulk two-phase fields is a 

topic of some of our future work.  

 

Figure 24: The metastability scores for alloys in Table 3 versus the maximum experimentally observed homologous 

temperature (calculated relative to the alloy solidus) for nanocrystalline stability. We highlight three pairs of alloys 

(of the same base metal) where a higher metastability score translates into observed nanocrystalline stability at 

higher temperatures.   

The score Φ𝑀 appears able to predict the possibility of equilibrium nanocrystalline states in a 

number of experimental systems studied for their stability, including Ag(Ni) [166], Cu(Ta) [170], 

Cu(Zr) [172], Fe(Mg) [175], Ni(W) [24], and Pd(Zr) [178]. In general, the higher the Φ𝑀 score 

for an alloy, the more feasible a nanocrystalline configuration is; for example, a score of Φ𝑀 = 4 

requires solute segregation at only 25% of favorable GB sites (≤ 25% of the GB network), as 

opposed to Φ𝑀 = 1 that requires solute segregation at 100% of favorable GB sites. This effect 

should translate into higher stability temperatures for higher Φ𝑀 scores (for alloys of the same 

base metal). To illustrate, we plot in Figure 24 the values of Φ𝑀 against the maximum homologous 
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temperature (calculated relative to the solidus of the alloy) at which alloys in Table 3 are 

experimentally observed to be stable. And indeed, a positive correlation does exist between Φ𝑀 

and the maximum temperature across all alloys. Perhaps more specifically relevant, we see that 

alloys of the same base metal with higher Φ𝑀 scores tend to be metastable at higher homologous 

temperatures, such as Cu(Ta) [170], Fe(Mg) [175], and Ag(Ni) [166], compared to Cu(Ag) [169], 

Fe(Cu) [174], and Ag(W) [167], respectively. 

As a final comment on this nanocrystalline alloy screening tool, we note that the use of 

interatomic potentials, though a step forward in screening compared to an “averaged” segregation 

energy, has limitations. For example, the computed Φ𝑀 and Φ𝑆 scores are quite sensitive to the 

choice of interatomic potential. For example, the Al(Ni) system had Φ𝑀 scores that varied from 0 

to 3.5 between 5 different potentials [111,118,122,180,181]; this is far more than an issue of 

accuracy, and affects the fundamentals of the thermodynamic equilibrium. Also, for many of the 

present alloys, only one interatomic potential is available, by Zhou et al. [118], which is not fitted 

to intermetallic compounds or alloy solid solutions. And, though one could imagine that errors in 

energetics will mostly self-cancel (i.e. if the segregation, mixing, and compound formation 

energies are all off, their relative errors may cancel out), there is no guarantee to that effect. The 

fact that 30 alloys (marked with X in Figure 22 (a)) have an interatomic potential that fails to 

correctly compute a positive value for 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒  in Eq. (32) suggests that such errors of potential 

are a serious concern for this kind of analysis. This work thus calls for more validation efforts to 

test the reliability of potentials in capturing the energetics of solute segregation at GBs [123], and 

further motivates the need for the evolving field of quantum-accurate machine-learning based 

interatomic potentials [86,87,94].  

4.5. SPECTRAL IMPROVEMENTS OVER THE CLASSIC “AVERAGED” APPROACH TO 

NANOCRYSTALLINE STABILITY  

To compare the findings of the spectral approach to that of a classic “averaged” approach in the 

spirit of Weissmuller’s model, we apply the nanocrystalline stability criteria developed earlier by 

Kalidindi and Schuh [26] to the 210 alloys surveyed here. The Kalidindi-Schuh framework 

employs the same enthalpic approach (outlined here), but with two main distinctions: first, it uses 

an “averaged” segregation energy to represent the whole GB network ∆𝐸̅𝑠𝑒𝑔, and second, uses a 
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Miedema-based approach [120,182] to compute 𝑘𝛾𝛾 , ∆𝐸̅𝑠𝑒𝑔 , ∆𝐸𝐵 𝑖𝑛 𝐴 , and obtains 

𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

directly from OQMD. To directly compare to the spectral Φ𝑀 scores, we reformulate the 

Kalidindi-Schuh criterion, and express it in terms of a non-spectral or “averaged” score Φ𝑎𝑣𝑔
𝑀 , with 

the metastability condition Φ𝑎𝑣𝑔
𝑀 ≥ 1: 

Φ𝑎𝑣𝑔
𝑀 =

1

−𝑘𝛾𝛾
⋅ min{0, ∆𝐸̅𝑠𝑒𝑔} (37) 

where the subscript “avg” is used as a reminder that this criterion is non-spectral and uses a single 

‘average’ grain boundary segregation energy. The “min” function in Eq. (37) sets the minimum 

value to zero, because otherwise, a positive value for ∆𝐸̅𝑠𝑒𝑔 would result in a negative “averaged” 

score. There are alloys which have average GB segregation energies that are in this “anti-

segregating” regime, which is an artifact of not allowing a full spectrum of GB segregation states.  

 

Figure 25: A comparison of the “averaged” metastability score Φ𝑎𝑣𝑔
𝑀 , Eq. (37) with the spectral Φ𝑀, Eq. (28). 

We compute Φ𝑎𝑣𝑔
𝑀  scores for all 210 alloys, and plot it against the spectral metric Φ𝑀 in Figure 

25. First, it is encouraging to see a general correlation between these analyses; the averaged 

approach typically can separate strong from weak segregators. However, the “averaged” score 

Φ𝑎𝑣𝑔
𝑀  is generally higher (as shown in the lower triangle of Figure 25) than the spectral Φ𝑀, with 

~25% of alloys predicted to be stabilized by Φ𝑎𝑣𝑔
𝑀  but not Φ𝑀; in comparison, only ~9% of alloys 
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switch in the other direction, with the spectral approach anticipating metastability when the 

averaged model does not.  

A contributing factor to the discrepancy between the two screening approaches is the different 

method used to compute 𝑘𝛾𝛾 , ∆𝐸𝐵 𝑖𝑛 𝐴  and 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

 (Miedema-based versus atomistic 

simulations). However, the major factor to emphasize is the spectral versus “averaged” 

representation of segregation energies, i.e. 𝐹𝑖
𝑔𝑏

(𝛥𝐸𝑖
𝑠𝑒𝑔

) versus ∆𝐸̅𝑠𝑒𝑔. We explore this in Figure 

26 using Fe(Mg) as an example. This is a system that has been reported to have significant thermal 

stability in nanocrystalline form, and explicit documentation of grain boundary segregation as well 

[175,183]. In Figure 26(a), we show the Kalidindi-Schuh construction of the energetics, which 

compares the grain boundary segregation energetics (y-axis) against the bulk phase energetics (x-

axis). In Figure 26(b), we show a computed grain boundary segregation spectrum [148,184] for 

comparison.  

For this system, both the spectral and “averaged” approaches compute very similar values for 

𝑘𝛾𝛾 ≈ 12  kJ/mol, ∆𝐸𝐵 𝑖𝑛 𝐴 ≈ 72  kJ/mol, and 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

= 0  (non-compound forming). What is 

more, the Miedema-based “averaged” value for dilute segregation, ∆𝐸̅𝑠𝑒𝑔 = −86 kJ/mol, is an 

accurate approximation, as it does fall on the attractive (dilute) tail of the 𝛥𝐸𝑖
𝑠𝑒𝑔

 spectrum 

calculated by the interatomic potential [184], as shown in Figure 26(b). In fact, the Miedema value 

is a reasonable “average” for the first 5% solute added to the GB network, and lies within the green 

“stable” region of Figure 26(a) where the segregation energies are below the competing phase 

energies in this system. However, the classic “averaged” approach takes that single ∆𝐸̅𝑠𝑒𝑔 value 

and assigns it to the whole GB network, when in fact, the majority of the segregation spectrum is 

far less attractive (Figure 26(b)). The “averaged” approach thus misses the need to include many 

unattractive sites in the system in order to create the few most favorable ones; it overpredicts the 

stability of the GB network.  

The spectral approach captures the true fraction of GB sites that have comparable segregation 

energies to the “averaged” value, 𝛥𝐸𝑖
𝑠𝑒𝑔

≤ ∆𝐸̅𝑠𝑒𝑔  (Figure 26(b)), and thus more realistically 

represents the level of stability of this alloy. In this case, it is the spectrality of the GB network 

(independently of other factors) that shifts the stability prediction for Fe(Mg) from enthalpically 

stable according to the “averaged” approach (as ∆𝐸̅𝑠𝑒𝑔 − 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 < −𝑘𝛾𝛾) to a metastable 
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system (with Φ𝑀= 2.65), which matches its experimentally observed limited stability up to 763 °C 

(~0.5 of the liquidus temperature for Fe). 

 

Figure 26: A comparison of the (a) “averaged” and (b) spectral approach to screening Fe(Mg) for nanocrystalline 

stability. As the “averaged” approach assumes a dilute value for ∆𝐸̅𝑠𝑒𝑔 for the whole GB network, the classic 

stability map in (a) predicts the system to be stable. However, by examining the spectrum of segregation energies 

(probability density function (PDF)) in (b), we realize that only a small fraction of GB sites has comparable 

(favorable) segregation energies to ∆𝐸̅𝑠𝑒𝑔 (green shaded area bounded by Φ𝑆), which is not enough to stabilize the 

whole GB network. Instead, the spectral approach predicts the system to be metastable, as a large fraction of GB 

sites (yellow shaded region in (b)) is accessible to Φ𝑀. 

4.6. CONCLUSION 

In conclusion, we have outlined the thermodynamic framework for screening the 

thermodynamic stability of nanocrystalline alloys, in the presence of a spectrum of solute 

segregation energies at the GB; the framework is strictly enthalpic, and uses easily obtainable 

quantities from atomistic simulations at 0 K. We used the framework to screen for nanocrystalline 

stability and metastability in 210 alloys. The main findings are: 

• Nanocrystalline configurations are not ground states at 0 K: a nanocrystalline 

configuration can be enthalpically comparable to a solid solution, but not the ground 

state at zero Kelvin for an alloy. In just 5 out of 180 cases studied here, alloys were 
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found to exhibit dilute-limit energetics that implied enthalpic stability of segregated 

GBs, but a more detailed analysis including non-dilute (solute interaction) effects 

corrected that interpretation; none of the alloys screened here exhibit energetics such 

that GBs are 0 K ground states.  And thus, similar to solid solutions, the thermodynamic 

stability of nanocrystalline configurations (when they are possible) will also involve 

entropic contributions at finite temperatures. 

• The GB segregation spectrum permits a strict enforcement of the third law of 

thermodynamics: in contrast to the classical “averaged” approach, a full accounting of 

the spectrality of the GB network, and solute-solute interactions, enforces the third law 

of thermodynamics, as it pertains to permissible alloy ground states at zero Kelvin.  

• The “averaged” approach usually overestimates nanocrystalline stability: The 

“averaged” approach in which a single grain boundary segregation energy is used to 

evaluate GB energetics, tends to only sample the attractive (dilute) tail of the GB 

spectrum, and assigns its segregation value to the whole GB network. This fails to 

capture the full energetic penalty of having a GB network, and its less attractive (and 

unattractive) sites; as such, the “averaged” approach tends to overestimate 

nanocrystalline stability.  

• The metastability score 𝛷𝑀 is a good screening metric: the metric Φ𝑀 compares the 

energetics of GB segregation with those of solid solution formation and exhibits good 

predictive power for experimentally observed nanocrystalline stability. A higher Φ𝑀 

score correlates with increased nanocrystalline stability at higher homologous 

temperatures.  

Finally, the findings of this Chapter suggest that entropy plays a significant role in stabilizing 

nanocrystalline alloys. The inclusion of the full free energy (both enthalpic and entropic 

contributions) should be pursued in future studies of nanocrystalline alloys, in order to fully 

understand the prospect of thermodynamic stability at finite temperatures, and map 

“nanocrystalline regions” across the composition-temperature space in phase diagrams.  
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5. GRAIN BOUNDARY SEGREGATION BEYOND THE DILUTE LIMIT 

In Chapters 2-4, we assumed a dilute-limit analysis. However, when GB segregation occurs 

beyond the dilute limit, it collects solutes in close proximity to one another and locally amplifies 

the concentration dramatically, so a critical aspect of the theory of GB segregation is the treatment 

of concentration dependence of GB segregation [25,31,36,185–189]. The most common approach 

to modeling concentration dependence in GB segregation is based on the concept of Fowler and 

Guggenheim [31], who argued that at higher concentrations, the interaction between solutes 

increases, opposing further GB segregation when the interaction is repulsive, or conversely, 

promoting further segregation in the case of attractive interactions; the model uses an average 

solute interaction energy term to account for this effect.  

However, there is a second, independent contribution to the concentration dependence of GB 

segregation that is considerably less studied and understood, namely, the gradual exhaustion of the 

most energetically suitable segregation sites. In Chapter 2, we showed that GBs, with their 

complicated set of atomic environments, present a variety of unique atomic sites for GB 

segregation, and these have a spectrum of energies [34,37–40,42,46]. Many authors have explored 

the range of segregation sites in individual boundaries [44,190–198], and in Chapters 2 and 3, we 

showed that this spectrum is a mildly skewed normal distribution in a polycrystal [82]. Given such 

a distribution, GB segregation occurs first at the most favorable sites, leaving them unavailable for 

the next round of solute atoms, forcing consequent segregation at less desirable GB sites and 

reducing the segregation tendency with increasing solute concentration. 

The solute interaction effect and the site saturation effect are, to first order, independent of each 

other, but there has been no prior study of their relative importance or even any effort to disentangle 

their effects on the concentration dependence of GB segregation. Therefore, in this Chapter, our 

goal is to develop a methodology to separate these two contributions for the first time, and directly 

measure their relative importance to segregation in a binary polycrystalline alloy. This, in turn, 

enables the development of atomistically-informed segregation isotherms that account for both 

contributions. 
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5.1. THERMODYNAMICS OF GRAIN BOUNDARY SEGREGATION 

In this section, we briefly review the thermodynamics of segregation in a binary alloy from two 

perspectives: (i) the classical approach, which uses an average segregation energy, Δ𝐸̅𝑠𝑒𝑔 , and (ii) 

the spectral approach, which uses a distribution of segregation energies at the GB, 𝐹𝑖
𝑔𝑏

(Δ𝐸𝑖
𝑠𝑒𝑔

).  

5.1.1. The classical “average” approach  

This approach – first outlined by McLean [30] – represents the grain boundary network with an 

“average” Δ𝐸̅𝑠𝑒𝑔 , which is the energy difference between a solute atom occupying a GB site, 

𝐸𝑔𝑏 
𝑠𝑜𝑙𝑢𝑡𝑒, and a bulk site, 𝐸𝑐

𝑠𝑜𝑙𝑢𝑡𝑒: 

 Δ𝐸̅𝑠𝑒𝑔 = 𝐸𝑔𝑏 
𝑠𝑜𝑙𝑢𝑡𝑒   −  𝐸𝑐

𝑠𝑜𝑙𝑢𝑡𝑒 (38) 

and assumes that Δ𝐸̅𝑠𝑒𝑔 is independent of GB character, average solute concentration at the GB 

(𝑋̅𝑔𝑏), and temperature (T). These assumptions lead to the classic McLean isotherm [30]:  

 
𝑋̅𝑔𝑏

1 − 𝑋̅𝑔𝑏
=

𝑋𝑐

1 − 𝑋𝑐
exp (−

Δ𝐸̅𝑠𝑒𝑔

𝑘𝑇
) (39) 

where 𝑋𝑐  is the solute concentration in the bulk (intra-grain) regions and k  is Boltzmann’s 

constant. Eq. (1) can be rearranged to solve directly for 𝑋̅𝑔𝑏: 

 𝑋̅𝑔𝑏 = [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸̅𝑠𝑒𝑔

𝑘𝑇
)]

−1

 (40) 

To explain the concentration dependence of GB segregation beyond the dilute-limit, Fowler 

and Guggenheim proposed adding an interaction term, ω, to account for increasing solute-solute 

interactions as a function of 𝑋̅𝑔𝑏; this modification translates into the classic Fowler-Guggenheim 

isotherm [31]: 

 
𝑋̅𝑔𝑏

1 − 𝑋̅𝑔𝑏
=

𝑋𝑐

1 − 𝑋𝑐
exp (−

Δ𝐸̅𝑠𝑒𝑔 + ω𝑋̅𝑔𝑏

𝑘𝑇
)  (41) 

We note that the interaction term ω𝑋̅𝑔𝑏 assumes that solute-solute interactions in the bulk are 

negligible, and it can be generalized to include bulk terms in a variety of ways [36], the simplest 

of which is with an additional correction term (±ω𝑋𝑐).  
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5.1.2. The spectral approach  

On the other hand, the spectral approach argues that grain boundary networks have complex 

environments and a variety of site-types (i) that cannot be represented with a single “average”  

Δ𝐸̅𝑠𝑒𝑔, but with a distribution 𝐹𝑖
𝑔𝑏

 of segregation energies Δ𝐸𝑖
𝑠𝑒𝑔

 [37–39,42]. For each site-type 

(i), its solute concentration, 𝑋𝑖
𝑔𝑏

, is given as an analog of Eq. (2) [37,42]: 

 𝑋𝑖
𝑔𝑏

= [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

𝑘𝑇
)]

−1

 (42) 

and the total concentration of solute at the GB, 𝑋̅𝑔𝑏, is the weighted integral of solute concentration 

at the different site-types (i) [40]:  

 𝑋̅𝑔𝑏 = ∫ 𝐹𝑖
𝑔𝑏

𝑋𝑖
𝑔𝑏

∞

−∞

 𝑑Δ𝐸𝑖
𝑠𝑒𝑔

 (43) 

Combining Eqs. (42) and (43): 

 𝑋̅𝑔𝑏 = ∫ 𝐹𝑖
𝑔𝑏

[1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

𝑘𝑇
)]

−1∞

−∞

 𝑑Δ𝐸𝑖
𝑠𝑒𝑔

 (44) 

Though 𝐹𝑖
𝑔𝑏

can notionally take any form, we have shown that a skew-normal function is 

appropriate for polycrystals [82], which requires three parameters: the characteristic energy μ, 

width σ and shape 𝛼 of the distribution: 

 Fi
gb

  =
1

√2π 𝜎
exp [−

(Δ𝐸𝑖
𝑠𝑒𝑔

− μ)
2

2σ2
] erfc [−

𝛼(Δ𝐸𝑖
𝑠𝑒𝑔

− μ)

√2 σ
]   (45) 

At this point, it is important to note that the classical McLean isotherm, Eq. (40), and the spectral 

isotherm of Eq. (44) both neglect any energetic contribution from solute-solute interactions; they 

are analogs of one another for the two approaches. However, whereas the McLean form, Eq. (40), 

has no concentration dependence of grain boundary segregation, Eq. (44) carries an implicit 

concentration dependence because it includes a site spectrum which would tend to fill with solute 

in increasing order of energetic preference. This form can, therefore, be used to explicitly evaluate 

the spectral contribution to concentration dependence.  



76 

To address the full concentration dependence, though, requires that we further adapt Eq. (44) 

to account for solute-solute interactions. In the spirit of the Fowler-Guggenheim model, we might 

adopt the simplest possible approach and add a linear mean-field interaction term ω𝑋̅𝑔𝑏: 

 𝑋̅𝑔𝑏 = ∫ 𝐹𝑖
𝑔𝑏

[1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖,ω=0
𝑠𝑒𝑔

+ ω𝑋̅𝑔𝑏

𝑘𝑇
)]

−1∞

−∞

 𝑑Δ𝐸𝑖
𝑠𝑒𝑔

 (46) 

We note that the subscript (ω = 0) is added to Δ𝐸𝑖
𝑠𝑒𝑔

 to stress that the GB site energies must be 

computed in the limit where solute-solute interactions are negligible.  

5.1.3. Finite Grain Sizes 

In a closed system with finite grain sizes, the total solute concentration Xtot is fixed, and shared 

by the bulk (intra-grain) and GB site fractions (𝑓𝑐 + 𝑓𝑔𝑏 = 1), according to the mixture rule 

[199]:  

 𝑋𝑡𝑜𝑡 = (1 − 𝑓𝑔𝑏)𝑋𝑐 + 𝑓𝑔𝑏𝑋̅𝑔𝑏 (47) 

The total grain boundary site fraction is typically connected to grain size (𝑑) and thickness (𝑡) 

using 𝑓𝑔𝑏 = 1 − [(𝑑 − 𝑡)/𝑑]3 [141].  

Although it is a common practice in the literature on GB segregation to assume 𝑋𝑐 ≅ 𝑋𝑡𝑜𝑡, this is 

invalid when f gb  is not negligible, e.g., in nanocrystalline alloys or in the limited sampling 

volumes of atomistic simulations. In those cases, the McLean, Eq. (40), Fowler, Eq. (41), and 

spectral, Eq. (44), isotherms should all be recast in terms of the mixture rule, Eq. (47). 

Combining Eqs. (40) and (47) gives us the generalized (mixture rule) form of the McLean 

approach: 

 Xtot = (1 − f gb) Xc + 𝑓𝑔𝑏 [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸̅𝑠𝑒𝑔

𝑘𝑇
)]

−1

 (48) 

Similarly, casting the Fowler model Eq. (41) into the general form of Eq.(47), we obtain:  

 Xtot = (1 − f gb) Xc + 𝑓𝑔𝑏 [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸̅𝑠𝑒𝑔 + ω𝑋̅𝑔𝑏

𝑘𝑇
)]

−1

 (49) 

and substituting for 𝑋̅𝑔𝑏 from Eq. (47):  
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 Xtot = 𝑓𝑐 Xc + 𝑓𝑔𝑏 [1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸̅𝑠𝑒𝑔 + ω [𝑋𝑡𝑜𝑡 − 𝑓𝑐𝑋𝑐]/𝑓𝑔𝑏

𝑘𝑇
)]

−1

 (50) 

Eq. (50) is the generalized form of the Fowler-Guggenheim approach that solves for the 

equilibrium segregation state, which accounts for the concentration dependence of GB segregation 

and finite grain sizes. In the limit of dilute concentrations (𝑋̅𝑔𝑏 → 0) or weak interactions (ω →

0), the McLean form, Eq. (48), is recovered.  

In a similar fashion, we combine Eqs. (44) and (47) to obtain the governing spectral relationship 

for a closed system with multiple site-types at the GB without solute-solute interactions [82]:  

 Xtot = (1 − f gb)Xc + 𝑓𝑔𝑏 ∫ 𝐹𝑖
𝑔𝑏

[1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

𝑘𝑇
)]

−1

dΔ𝐸𝑖
𝑠𝑒𝑔

∞

−∞

 (51) 

and in the case of solute-solute interactions, Eqs. (46) and (47) are combined to give:  

 Xtot = (1 − f gb)Xc + 𝑓𝑔𝑏 ∫ 𝐹𝑖
𝑔𝑏

[1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

+ ω𝑋̅𝑔𝑏

𝑘𝑇
)]

−1

dΔ𝐸𝑖
𝑠𝑒𝑔

∞

−∞

 (52) 

and substituting for 𝑋̅𝑔𝑏  from Eq. (47), we obtain the thermodynamic framework to solve for 

equilibrium segregation in GBs with both multiple site-types and solute-solute interactions: 

Xtot = 𝑓𝑐Xc + 𝑓𝑔𝑏 ∫ 𝐹𝑖
𝑔𝑏

[1 +
1−𝑋𝑐

𝑋𝑐 exp (
Δ𝐸𝑖,ω=0

𝑠𝑒𝑔
+ω(𝑋𝑡𝑜𝑡−𝑓𝑐𝑋𝑐)/𝑓𝑔𝑏 

𝑘𝑇
)]

−1

dΔ𝐸𝑖
𝑠𝑒𝑔∞

−∞
  (53) 

We note that these generalized (mixture rule) forms of the McLean, Eq. (48), Fowler, Eq. (50), 

and spectral isotherms without/with interactions, Eqs. (51) and (53), respectively, are presented 

differently from the literature norm of segregation isotherms in the form of 𝑋̅𝑔𝑏 = 𝑓(𝑋𝑐), such as 

in Eq. (1). In fact, Eqns. (50), (51) and (53) have no closed form solutions, and further 

simplification is not possible. Instead, for a given 𝑋𝑡𝑜𝑡, 𝑓𝑔𝑏, 𝑇 (and 𝐹𝑖
𝑔𝑏

 for the spectral models), 

we must solve numerically for 𝑋𝑐  that satisfies the left-hand side of the equations (prescribed  

𝑋𝑡𝑜𝑡), which solves concurrently for the equilibrium distribution of solute atoms in the bulk 𝑋𝑐 

and GB 𝑋𝑔𝑏. The added complexity of such isotherms is necessary in order to correctly solve for 

the equilibrium solute distribution in the case of finite grain sizes (𝑓𝑔𝑏 ≠ 0), and as such, moving 

forward, these are the isotherms used throughout the chapter, and all the figures are presented in 

the form of  𝑋̅𝑔𝑏 = 𝑓(𝑋𝑡𝑜𝑡) to reinforce the notion that 𝑋𝑡𝑜𝑡 is the fixed prescribed quantity in the 

system (and not 𝑋𝑐, which is a variable quantity that is solved for). 
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5.1.4.  Interpretation of Energies 

It is important to point out that for all the segregation isotherms discussed in Section 5.1, a 

complete thermodynamic treatment should use the free energy of segregation ΔG𝑠𝑒𝑔 [46] in place 

of the internal energy Δ𝐸𝑠𝑒𝑔: 

 Δ𝐺𝑠𝑒𝑔 = Δ𝐸𝑠𝑒𝑔 − 𝑃Δ𝑉 − 𝑇Δ𝑆𝑠𝑒𝑔
𝑥𝑠  (54) 

where 𝑃 is the pressure, Δ𝑉 is the change in volume and Δ𝑆𝑠𝑒𝑔
𝑥𝑠  is the excess non-configurational 

entropy of segregation [200]. In this chapter, we take the approach of limiting our discussion to 

the internal free energy of segregation as represented in Eqs. (1-16), in the following manner. First, 

the term 𝑃Δ𝑉  is negligible in solids [77] and thus can be ignored. Second, while the non-

configurational entropy can be significant at elevated temperatures and should also be spectral, in 

what follows we evaluate the energies of segregated conditions only at 0 K through the use of 

conjugate gradient minimizations, as detailed below. Although configuration space is therefore 

evaluated at finite temperatures, there is no contribution of excess entropy in the segregation 

energies as assessed. Thus, our conditions conform to the forms of the isotherms above with 

Δ𝐺𝑠𝑒𝑔 ≈ Δ𝐸𝑠𝑒𝑔. 

With these measures, comparison of Eqs. (51) and (53) permits direct evaluation of the solute 

interaction effect, where Eq. (51) alone can handle the site spectrality effect, and Eq. (53) 

additionally assesses the interaction term. By comparison with the classical approach, Eq. (50), 

which requires two parameters to characterize a binary alloy, Δ𝐸̅𝑠𝑒𝑔 and  ω, our proposed spectral 

approach that incorporates site spectrality for the first time, Eq. (53), requires four parameters, 

three for the distribution function and a fourth for interaction: μ, σ, 𝛼 and ω.  

5.2. ATOMISTIC COMPUTATIONAL METHODS 

We now turn our attention to the use of Eqs. (51) and (53) with atomistic data to directly 

measure the two contributions to the concentration dependence of GB segregation. We consider 

Mg segregation in an Al polycrystal as a model system, for the quality of its embedded atom 

method potential [67], as reported in GB segregation studies [68]. The atomistic simulation 

package LAMMPS is used to perform all molecular statics and dynamics simulations [66], and 

OVITO is used to visualize and identify atomic structures [73]. A 15x15x15 nm3 Al polycrystal is 
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generated using Voronoi tessellations with the toolkit Atomsk [69], and then thermally annealed 

at 400 K under a Nose-Hoover thermostat/barostat for 250 ps using a time step of 1 fs, followed 

by cooling to 0 K at a cooling rate of 3 K/ps. The thermally annealed sample had 203,854 atoms, 

in 8 grains with an average diameter of 8 nm, as shown in Figure 27(a). GB sites are identified 

using the adaptive-common neighbor analysis method [74], with all non-FCC atoms assumed to 

be GB atoms – a total of 37,515 GB atoms and a GB volume fraction of 18.4%.  

5.2.1.  The Spectrum of Segregation Energies  

To compute the distribution of segregation energies in the Al polycrystal, which is a required 

input for the spectral model (Eqs. (51) and (53)), we use our recently developed procedure [82], 

where we sample every GB site in the specimen exhaustively and compute the energy difference 

between the relaxed system energy at 0 K, with the solute atom at GB-site (i), 𝐸𝑔𝑏,𝑖
𝑠𝑜𝑙𝑢𝑡𝑒, and the 

solute atom at a bulk site, 𝐸𝑐
𝑠𝑜𝑙𝑢𝑡𝑒:  

 Δ𝐸𝑖
𝑠𝑒𝑔

= 𝐸𝑔𝑏,𝑖
𝑠𝑜𝑙𝑢𝑡𝑒   −  𝐸𝑐

𝑠𝑜𝑙𝑢𝑡𝑒 (55) 

with the site for 𝐸𝑐
𝑠𝑜𝑙𝑢𝑡𝑒  chosen as the center of a 6 nm FCC sphere to eliminate long-range 

interactions with GBs. The computed discrete distribution for dilute-limit Mg segregation in the 

Al polycrystal is shown in Figure 27(b), and is fitted to the skew-normal function, Eq. (19), with 

𝛼 = −1.1, μ = 4 kJ/mol, σ = 19 kJ/mol; this distribution matches that of a larger 36x36x36 nm3 

polycrystal [82], and is, therefore, representative of Mg segregation in larger Al polycrystals. 
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Figure 27: (a) The thermally annealed 15x15x15 nm3 Al polycrystal with 8-grains of an average size of 8 nm; the 

37,515 GB sites are only shown after deleting all FCC atoms identified using the adaptive common neighbor 

analysis method. (b) the calculated distribution of dilute-limit segregation energies of an Mg solute at all GB sites, 

and a best-fit of the skew-normal function, Eq. (19), with 𝛼 = −1.1, μ = 4 kJ/mol, σ = 19 kJ/mol.  

5.2.2. GB Segregation States 

We need to ascertain two types of segregation states, namely, that evolved when no solute-

solute interactions are allowed (corresponding to Eq. (51)) and that evolved when they are 

(corresponding to Eq. (53)). For this purpose, we use hybrid Monte-Carlo (MC) at finite 

temperatures and molecular statics (MS) simulations at 0 K to identify the equilibrium segregation 

state for a fixed solute concentration at finite temperatures. The hybrid scheme uses 

transmutational MC to sample the chemical degree of freedom, and MS lattice relaxations to 

sample the structural degree of freedom [201]. The choice to use molecular statics simulations at 

0 K in this hybrid scheme, in lieu of molecular dynamics at finite temperatures [201], is to exclude 

any contributions from the non-configurational entropy (i.e. vibrational contributions) Δ𝑆𝑠𝑒𝑔
𝑥𝑠 , as 

stated in Eq. (54), and thus the approximation Δ𝐺𝑠𝑒𝑔 ≈ Δ𝐸𝑠𝑒𝑔 holds true for our simulations. By 

limiting our simulations to the configurational entropy, we focus on separating the two intertwined 

effects of GB site spectrality and GB solute-solute interactions. Future work that employs 

molecular dynamics in a hybrid MC scheme could be used to separately account and solve for the 

excess non-configurational entropy [202], which we believe to be less than 10 J/(mol K) based on 

(45) 



81 

some preliminary work in this regard.  Finally, our computational procedure is divided into two 

stages, as elaborated below.  

 

   

Figure 28: (a) We obtain the equilibrium segregation state for Xtot = 10%  in two stages: First, we run an MC 

simulation using dilute-limit segregation energies (no-interactions); this state (shaded in red) matches the predictions 

of the spectral model (red dashed line, Eq. (51)) with no interactions (ω = 0). Second, we run hybrid MC/MS for 

1000 swaps/solute atoms (a total of ~2 × 107 swap attempts for Xtot = 10%) to correct for solute-solute 

interactions, and obtain the final equilibrium segregation state (shaded in blue). The equilibrated structures for both 

stages are shown in (b) and (c), respectively, with solute atoms colored. 

(51) 
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In the first stage, we place solute atoms randomly at bulk (intra-grain) sites, so that the 

polycrystal has initially no solute atoms at the GB, and allow solute atoms to swap sites with 

solvent atoms using the Metropolis criterion [203], using the energy difference in the dilute-limit 

Δ𝐸𝑖,ω=0
𝑠𝑒𝑔

 calculated earlier (bulk sites are assigned Δ𝐸𝑖
𝑠𝑒𝑔

= 0). This procedure makes no additional 

use of the interatomic potentials beyond the earlier exhaustive determination of the site energies 

Δ𝐸𝑖,ω=0
𝑠𝑒𝑔

, which are all at zero concentration. Thus, this method yields an atomistic simulation of 

grain boundary segregation in the absence of any solute-solute interactions. A total of 10,000 

swaps per solute atom are performed, leading to an adequate system equilibration. The equilibrium 

segregation state predicted using this procedure matches that of the spectral model, Eq. (51), 

without interactions, as shown in Figure 28(a) for Xtot = 10%, and for many other cases not 

shown. The atomic configuration for this case is shown in Figure 28(b). 

In the second stage, we take the output of the first stage above as an input, and proceed to run 

hybrid MC/MS simulations as are often undertaken in the GB segregation literature 

[25,53,194,204–208]; this stage makes direct use of the interatomic potential for all energy 

calculations. For one hybrid step, solute/solvent atoms swaps are attempted using the Metropolis 

criterion at a prescribed finite temperature, with a rate of one swap per solute atom, which is 

followed with energy minimization using the conjugate gradient method. A total of 1000 hybrid 

MC/MS steps is carried out for the system to be equilibrated. This final state serves as our true 

equilibrium segregation state, inclusive of all atomistic effects including the site spectrality and 

solute-solute interactions. Figure 28 shows this state for Xtot = 10%; it diverges substantially 

from the predictions of Eq. (51) which includes only site spectrality and no interaction effects. 

Notably, the total amount of segregated solute after equilibration is much lower than expected 

based on site spectrality alone: the blue distribution subsumes considerably less area in Figure 28 

than does the red one. This speaks to repulsive solute-solute interactions favoring a significant 

degree of de-segregation off GBs and back into the bulk. This effect is also directly visible in the 

solute distribution visualized in Figure 28(c), where the total amount of solute present is lower 

than in Figure 28(b) (with no interactions), and furthermore, near-neighbor solute contacts are 

dramatically reduced owing to their repulsive interaction. 
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5.3. CONTRIBUTIONS OF SITE SPECTRALITY AND SOLUTE-SOLUTE INTERACTIONS  

The discussion in this section is focused on Figure 29, where we show the “true” 

thermodynamic segregation state, Xgb, measured using hybrid MC/MS simulation for values of  

Xtot = 0.1% to 10% at 450 K (data points in Figure 29). The shape of these data reflects a typical 

concentration dependence, where the marginal segregation tendency declines with solute content. 

The classical approach used to explain such concentration dependence is to assume all of it as 

being captured by a solute-solute interaction term alone; by fitting with the classical Fowler term 

to capture this effect (Eq. (50), dashed black line in Figure 29) we obtain a representative Δ𝐸̅𝑠𝑒𝑔 =

−29 kJ/mol and ω = 99 kJ/mol for this system.  

We note here that an additional correction term for possible solute-solute interactions in the 

bulk, (±ω𝑋𝑐), as discussed briefly in Section 2.1, though valid in general, is not necessary for our 

simulations. As seen in Figure 29, 𝑋𝑐 is limited to low concentrations (<7%) over the range of 

conditions we have studied. In fact, at lower total concentrations before the GB becomes saturated, 

the bulk concentration is even lower. For all of the simulations discussed in this chapter, we 

estimate the average interaction distance for solutes in the bulk to be no less than 5 Å in any case, 

beyond which solute-solute interactions are negligible for the embedded atom potential [67]. 

Therefore, we limit our discussion in this chapter to the effect of GB solute-solute interactions, 

which are far more relevant due to the elevated concentrations in the grain boundaries.   

As Figure 29 shows, above the dilute limit where the McLean model deviates from the true 

Xgb, the added Fowler “correction” of ω = 99 kJ/mol results in an excellent fit for all solute 

concentrations. And, in the dilute limit where there are no solute-solute interactions (ω = 0), the 

equivalent McLean solution, Eq. (48), correctly predicts  Xgb  for Xtot  < 2% with the same 

segregation energy. This aligns on its face with the classical GB segregation framework, which 

argues that the deviation of the McLean model beyond the dilute limit is solely due to solute-solute 

interaction, and can be corrected by just adding ω. Similarly, prior work that has fitted limited data 

to Fowler-type equations can reproduce the average behavior over the range of conditions where 

it has been fitted. However, we will show in what follows that this is a forced-fit with no relevance 

to other conditions, and no extensibility beyond the fitted range. This is because the underlying 

physical picture of this approach is incorrect; the deviation of segregation behavior at higher 

concentrations is more complex, and is due to two factors, GB site spectrality, and solute-solute 
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interactions. In what follows we develop this notion in more detail, and subsequently return to 

evaluate the failings of the classical approach. 

5.3.1.  Site Spectrality  

If we plot the predictions of the spectral isotherm without any solute-solute interaction term, 

Eq. (51), using the computed dilute limit distribution (μ, σ, 𝛼), rather than directly fitting to 

MC/MS predictions as we did with the classical approach, we obtain the red curve in Figure 29. 

This curve correctly predicts Xgb in the dilute-limit and a bit beyond, up to Xgb = 10% where 

solute-solute interactions seem to be negligible. Beyond that, the spectral ( ω = 0 ) solution 

deviates from the true data, and yet lies well below the McLean linear prediction; the deviation 

between the solid black and red curves in Figure 29 is a direct presentation of the role of site 

spectrality on composition dependent segregation. Whereas an “average” Δ𝐸̅𝑠𝑒𝑔  model, like 

McLean’s, keeps adding solute atoms to the boundary with increasing concentration, the spectral 

model accounts for the gradual exhaustion of favorable segregation sites from the tail of the 

distribution in Figure 27, forcing subsequent solute atoms to compete for energetically less 

favorable sites, and resulting in less segregation as the overall solute concentration increases. At 

Xtot = 10%, the error in a McLean-type prediction of Xgb is 155%; accounting for the spectrality 

of GB sites reduces the error to 52%, and thus gets us more than halfway to the truth. This shows, 

however, that we still need to account for solute-solute interactions to further reduce the error and 

more physically model GB segregation.   
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Figure 29: Comparison of the predictions of the McLean (Eq. (48), Δ𝐸̅𝑠𝑒𝑔 = −29 𝑘𝐽/𝑚𝑜𝑙), Fowler-Guggenheim 

(Eq. (50) Δ𝐸̅𝑠𝑒𝑔 = −29, ω = 99 kJ/mol), spectral without interactions (Eq. (51) with ω = 0) and spectral with 

interactions (Eq. (53) with  ω = 37 kJ/mol) models against MC/MS simulations at 450K; the contribution of 

spectrality to the concentration dependence of segregation is of a comparable magnitude to solute-solute 

interactions. 

5.3.2.  Solute-Solute Interactions 

To extract the proper magnitude of the interaction parameter ω for use with the full spectral 

approach, we fit Eq. (53) to the true thermodynamic state (the MC/MS predictions) at 450 K, and 

obtain ω = 37 kJ/mol. This fit is shown in Figure 29 as a blue solid line, where it accurately 

predicts the true Xgb for all solute concentrations. While the fit of a traditional non-spectral Fowler 

model (dashed black line) to this specific data set is also very good, this is an artifact of taking a 

narrow view on one set of conditions, a point to which we will return shortly.  In any event, Figure 

29 makes clear that it is the addition of the interaction component that allows the spectral model 

to correctly predict equilibrium solute occupancy. This is true not only of the average quantities, 

but in greater detail of the different GB site-types (energy levels) at the GB, as shown in Figure 30 

for different Xtot.  

These results indicate that understanding both site spectrality and solute-solute interactions are 

key to correctly capture the physics of solute segregation to GBs beyond the dilute-limit. It can be 

argued, based on Figure 29, that the spectral contribution is of an equal magnitude/importance to 

(51) 

(53) 

(50) 
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the solute-solute interactions, and therefore, only by delineating both contributions can we 

correctly account for the concentration dependence of solute segregation across the composition 

and temperature space.  This will be illustrated more thoroughly in the next section, where we 

address the ability of these various models to predict GB segregation beyond the regime where 

they have been fitted.  

 

Figure 30: The predicted equilibrium segregation state, obtained using the spectral-with-interactions (Eq. (53), ω =

37 kJ/mol) model, and the true state from hybrid MC/MS simulations for Xtot = 2, 4, and 10%, at 450K.  

5.4. LIMITATIONS OF THE CLASSICAL APPROACH ARE REMEDIED BY THE SPECTRAL APPROACH 

Though we have shown the spectral approach, once augmented with a simple solute-solute 

interaction term, can correctly predict the equilibrium Xgb beyond the dilute limit, one might argue 

that the same could be achieved with the classical Fowler-Guggenheim approach, based on Figure 

29 (dashed black line). Using the simple average (Eq. (50)) approach with Δ𝐸̅𝑠𝑒𝑔 = −29 kJ/mol 

and ω = 99  kJ/mol gives an excellent fit of the true Xgb  obtained from hybrid MC/MS 

simulations. However, as noted briefly above, this “excellent” fit is highly misleading, as the two 

required parameters, Δ𝐸̅𝑠𝑒𝑔  and ω , are dependent on the fitting (MC/MS) temperature and 

concentration range; the true test of these models lies in how well the results extrapolate to other 

conditions not explicitly fitted, which we now consider in fuller detail. 

(53) 
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For a set of MC/MS simulations at T= 300, 450, and 600 K, we obtain three different 

equilibrium GB segregation configurations as shown in Figure 31.  For each of these, we fit the 

classical Fowler isotherm, Eq. (50), giving the best-fit parameters summarized in Table 4. 

Inspection of these fitted values shows the problem clearly: because the “average” Δ𝐸̅𝑠𝑒𝑔 approach 

inherently misses the essential physics of segregation, no single set of Δ𝐸̅𝑠𝑒𝑔 and ω will capture 

the equilibrium the segregation state across the full composition and temperature space, and wildly 

variant values of these parameters (more than a factor of two) are needed to cover just 300 degrees 

of temperature range.  

 

Table 4: Best-fit parameters for the Fowler-Guggenheim model. For each temperature, we fit Eq. (50) to MC/MS 

simulations to obtain representative Δ𝐸̅𝑠𝑒𝑔 and ω.    

T [k] Δ𝐸̅𝑠𝑒𝑔 [kJ/mol] ω [kJ/mol] 

300 -17 46 

450 -29 99 

600 -38 149 

 

To illustrate this concept, Figure 31 shows the lower and upper bounds of the Fowler-

Guggenheim approach using the three sets of best-fit parameters in Table 4, and the errors of using 

any one set of these parameters in other conditions are shown in Figure 32 using the maximum 

error of the three sets of parameters in Table 4 to illustrate the magnitude of the problem. Although 

the Fowler-Guggenheim model is an improvement over using McLean’s model, the errors are still 

high, up to 22%, with an average error of 8% for all data points; we suspect that these errors could 

even get higher at elevated temperatures. The classic Fowler-Guggenheim model is thus only valid 

at the temperature used to fit its parameters, and the physical values of those parameters are highly 

suspect because of these limitations. Unfortunately, a common procedure in the literature is to fit 

a Fowler-Guggenheim type isotherm to isothermal experimental measurements of Xgb  versus 

Xtot [186,202,209–212]. Such results are not expected to extrapolate well to other conditions 

outside the range of composition or temperature to which they were fitted.  
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Figure 31: The predictions of the spectral model (ω = 37 kJ/mol) against MC/MS simulations at three different 

temperatures (300, 450, and 600 K); the shaded areas are the upper and lower bound of the Fowler-Guggenheim 

model, Eq. (50), using the three sets of best-fit parameters in Table 4, obtained by fitting each temperature 

independently. 

By contrast, the spectral model better captures the true physics of GB segregation and therefore 

can extrapolate successfully beyond the conditions where it is calibrated. Figure 31 shows the 

predictions of Eq. (53) using the previously-calibrated fitting parameters ( 𝛼 = −1.1 , μ = 4 

kJ/mol, σ = 19 kJ/mol and ω = 37 kJ/mol) with no recalibration for the two new temperatures 

considered; the fit is good across the full range. And Figure 32 reveals that the spectral model with 

interactions has an average error of less than 4%. We believe, therefore, that the two contributions 

of (i) site spectrality, and (ii) solute-solute interactions, represent the most important controlling 

physics of grain boundary segregation. The remaining errors in this approach are most likely due 

to the assumption of a Fowler-like average interaction term, which is the only component of Eq. 

(53) that does not come directly from a supported physical model.  We briefly discuss this in the 

section that follows.  

(53) 

(50) 
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Figure 32: The maximum error in predictions of Xgb of the spectral and classic approaches with/without interaction, 

as compared to MC/MS simulations at 300, 450, and 600 K. For the classical approach (McLean and Fowler-

Guggenheim), the plotted error is the maximum error using the three different sets of best-fit (Δ𝐸̅𝑠𝑒𝑔 and ω) listed in 

Table 4. The spectral model parameters are the same for any temperature: (𝛼=-1.1, μ=-4 kJ/mol, σ=19 kJ/mol) for 

the distribution, ω = 37 kJ/mol for linear interactions. The Spectral (piecewise linear) is discussed in section 5.5.      

5.5. NONLINEARITY OF SOLUTE-SOLUTE INTERACTIONS 

In developing the spectral model, Eq. (53), we adopted the Fowler-Guggenheim approach of a 

mean-field approximation for solute-solute interactions, and added a linear interaction term, 𝜔Xgb. 

Although a complete thermodynamic treatment should account for the spectrum of possible solute-

solute interactions for all GB sites (~4x105 in our system), in practice, this is computationally 

challenging. Therefore, the linear (mean-field) form is enticing for its simplicity, and indeed, it 

does capture most of the missing physics as compared to using the spectral model alone, as seen 

in Figures 3, 5, and 6. However, interestingly, the spectral model without interactions (𝜔 = 0) 

actually performs better than the spectral model with linear interactions (𝜔 = 36 kJ/mol) for 

Xtot ≤ 2% (approximately Xgb ≤ 10%), according to Figure 32.  This implies that in the dilute 

limit, below about 10% solute concentration in the GB, there is no significant solute interaction, 

and thus adding an interaction term degrades the model. Put another way, the true segregation state 

(51) (48) 

(50) (53) 

(56)-(57) 
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involves a non-linearity in the interaction term. Therefore, in this section, we re-examine the nature 

of the interaction term and more explicitly evaluate its form from our simulations, and whether 

another non-linear form of the mean-field approximation could be used.  

 

Figure 33: We fit Eq. (53) to hybrid MC/MS simulations of each Xtot independently, and obtain the magnitude of 

interaction energy required for the spectral model to have an absolute error of 1% in Xgb; the piecewise linear 

function (solid line), Eq. (57), is fitted to all data points, with ω=62 kJ/mol, and X0=10%.  

We first re-write the spectral model, Eq. (53), assuming no functional form for the interaction 

energy, ∆𝐸𝜔: 

 Xtot = (1 − f gb)Xc + 𝑓𝑔𝑏 ∫ 𝐹𝑖
𝑔𝑏

[1 +
1 − 𝑋𝑐

𝑋𝑐
exp (

Δ𝐸𝑖
𝑠𝑒𝑔

+ ∆𝐸𝜔

𝑘𝑇
)]

−1

dΔ𝐸𝑖
𝑠𝑒𝑔

∞

−∞

 (56) 

By fitting Eq. (53) to our hybrid MC/MS simulations we directly obtain ∆𝐸𝜔 as a function of Xgb 

for each Xtot  independently, as shown in Figure 33. Clearly, a linear Fowler-like form for 

∆𝐸𝜔(Xgb) is invalid. Instead, we observe two regions for solute-solute interactions, discussed in 

turn below. 

First, we identify a non-interaction region for Xgb ≤ 10%, where solute-solute interactions are 

negligible. In this region, the spectral approach (𝜔 = 0) captures all the essential physics of GB 

segregation, as was shown earlier in Figure 29, where the model correctly predicts the equilibrium 

 
(57) 
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segregation state up to Xgb = 10%. Therefore, a threshold of solute content at the GB is required 

before solute atoms can “see” each other and interact – in this case, Xgb = 10%. This speaks to 

the physical spacing amongst the most energetically favorable segregation sites. Intuitively, one 

expects nature to space out the GB defect sites that can most easily accommodate solutes. For 

example, rarefied low-density regions would self-avoid due to their interacting hydrostatic tensile 

strain fields, and spread out in the grain boundary network; by extension, the first solutes to 

segregate would take on a nonrandom spacing to minimize interactions. 

This notion is explored in Figure 34(a) for Xgb = 5%, where we plot the distribution of nearest-

neighbor solute spacings for the true equilibrium configuration, in comparison to a random 

distribution. It is clear that in equilibrium, segregated solute atoms are spaced further apart than 

expected for a random distribution; beyond simply a dilute-limit separation, the system has a built-

in physical preference for solute-solute separations. Many atoms shift from the first peak in Figure 

34(a) to the second, a physical separation increase from ~3 to ~5 Å, over which more than 75% of 

the interaction energy is lost based on the interatomic potential. In fact, the segregated atoms on 

average have no interactions with more than one other solute atom, as shown in Figure 34(b), 

where the average distance to the Nth nearest neighbors is plotted. The second nearest neighbor is 

at more than 6Å, which is beyond the interaction range for the embedded atom potential (~5 Å) 

[67]. Close inspection of Figure 28(c) agrees with this line of reasoning as well; there is a 

significant tendency for solutes to spread out and surround themselves mostly with solvent atoms. 

Such considerations can explain why up to 10% Mg can populate the grain boundary with no need 

to account for solute-solute interactions. Accordingly, in future work, the definition of the dilute 

limit should likely be adjusted based on a better understanding of site spectrality and its physical 

distribution. 

Second, at higher concentrations where solute-solute interactions set on, we observe a roughly 

linear interaction region in Figure 33 (Xgb > 10%). Note that this linear range is quite different 

from the Fowler form because it is offset on the concentration axis from the origin; no Fowler 

approximation would capture this trend without the inclusion of the offset from the origin.  What 

is more, a strictly linear interaction is not expected using an embedded atom potential. The 

apparent simplicity of the average interaction in Figure 33, therefore, suggests that in this 
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composition range there is some solute organization that prevails despite the complexity of the 

segregation site spectrum and solute-solute interactions.  

 

Figure 34: (a) The distribution of the distance to first nearest neighbors for solute atoms segregated at the GB for 

Xtot = 1% (Xgb = 5%) at 450K, compared to a random solute distribution with the same Xgb. (b) The average 

distance to Nth nearest neighbors for the same sample; beyond ~5 Å, the Mg-Mg interactions are negligible for the 

embedded atom potential [67].    

All of the above aspects of solute interaction are worthy of further exploration, and it would 

appear that relatively little literature on such topics yet exists; we leave these studies for future 

research. In any event, it seems clear that in the future the best isotherm for GB segregation will 

certainly involve a more complex interaction model that incorporates some of the above ideas.  In 

the absence of any first-principles motivation for an interaction model, we find that a simple 

piecewise linear form that captures the two regimes above provides an even better functional fit to 

the true segregation state:   

 ∆𝐸𝜔(𝑋𝑔𝑏) = {
0 

ω(𝑋𝑔𝑏 − 𝑋0)
 
 𝑖𝑓 𝑋𝑔𝑏 ≤ 𝑋0

𝑖𝑓 𝑋𝑔𝑏 > 𝑋0
  (57) 

Here 𝑋0 defines the onset of the linear interactions region. A best-fit of Eq. (57) for all data points 

of hybrid MC/MS simulations is shown in Figure 33 (solid line), with ω = 62 kJ/mol, and 𝑋0 =

10%. The piecewise-linear model takes advantage of the predictive ability of the spectral model 
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without interactions below 𝑋𝑔𝑏 = 10%, and gives a better overall fit across the composition-

temperature space, and the lowest errors, of all the models so far (less than 3%) for Xgb predictions 

as shown in Figure 32. We look forward to future developments on the nature of solute-solute 

interactions that can lead to improved and more physically-motivated models to incorporate with 

the spectral model. 

5.6. CONCLUSION 

In conclusion, we have decoupled the effects of both the spectrality of GB sites and solute-

solute interactions on the concentration dependence of solute segregation at GBs in a polycrystal, 

and cast both effects into a simple thermodynamic model, Eq. (53), that correctly predicts the 

equilibrium GB segregation state in a binary alloy across the composition-temperature space. The 

model requires only four fitted parameters, which are easily extractable using atomistic simulations 

– three to represent the skew-normal function of the distribution and one to represent solute-solute 

interactions. We have shown, for the first time, that the failure of McLean-type models beyond the 

dilute limit is due to two factors, first, the spectrality of the GB, and second, solute-solute 

interactions; this is different from the prevalent understanding in the literature, where the failure 

is solely attributed to solute-solute interactions – the Fowler-Guggenheim approach. We propose 

that in the future, researchers should use more than just the two parameters required by “averaged” 

models, to correctly characterize GB segregation in a binary alloy with a spectrum of sites.  
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6. FUTURE WORK DIRECTIONS 

In this thesis, we outlined the proper thermodynamic framework for GB solute segregation in 

polycrystals, which take into account the spectrum of atomic environments at the GB network, and 

the variation in their tendencies to accommodate solute atoms. We elucidated the nature of this 

spectrum for over 250 alloys, using a machine learning framework. Throughout the analysis, we 

encountered many interesting questions that are worthy of future explorations that can further 

improve the current spectral approach to GB solute segregation, which we hope to be widely 

adopted in the future by the research community. These questions include: 

CONTRIBUTIONS OF VIBRATIONAL ENTROPY  

The proposed spectral framework for GB solute segregation accounts for the configurational 

component of entropy, but ignores the vibrational component, and assumes it is negligible. 

However, for some alloys, this assumption might be invalid, especially at elevated temperature. 

This is indicated by previous studies of GB solute segregation in CSL GBs, where, at elevated 

temperatures, the vibrational component was shown to be of a similar magnitude to the 

configurational one. We thus expect a similar effect for polycrystals, and, as the vibrational entropy 

is site-type dependent i.e. the vibrations of a solute atom will be a function of its local atomic 

environment at the GB, we expect a spectrum for the vibrational entropies of solute segregation in 

a polycrystal. Future work: What is the nature of this spectrum? How does it vary across the alloy 

space? and How to efficiently compute it?  

INTERSTITIAL SOLUTE SEGREGATION 

Throughout the thesis, we assumed that solute atoms only substitutionally segregate at the GB. 

However, as the GB environment is disordered in nature, it is possible in principle for solute atoms 

to also favorably segregate interstitially at the boundary. Similar to the substitutional spectrum 

elucidated here, we expect a spectrum for interstitial segregation energies. The nature of this 

spectrum and its correlation with the substitutional spectrum will determine the equilibrium 

segregation at the GB. Future work: How to extend the current models to account for possible 

interstitial solute segregation at the GB? What is the nature of the spectrum of interstitial solute 

segregation at the GB in polycrystal? And how does it vary across the alloy space? 
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VALIDATING INTERATOMIC POTENTIALS 

In Chapter 3, we showed that the computed GB segregation spectra are sensitive to the choice 

of interatomic potential. For the same alloy system, we can get predictions that range from the GB 

network being highly favorable to completely unfavorable to solute segregation. The natural 

question to follow is which one should we trust? Currently, there is no clear answer to that. Future 

work: How to test and validate interatomic potentials for the study of GB solute segregation? The 

end goal should be to develop a quantifiable metric that measures the accuracy of an interatomic 

potential for the problem. 

LEARNING FROM AB-INITIO METHODS  

Aside from the concerns about accuracy, the availability of interatomic potentials is a major 

limiting factor. For example, there are no alloy potentials for the metals Ir, Os, Sc. And, even for 

widely studied metals, such as Al, there are only potentials for 19 solutes – a small subset of metals. 

This effect is illustrated in Supplementary Fig. 1, where much of the alloy space is empty, or 

covered by a single interatomic potential that is not fitted directly to alloy properties. And though, 

an ideal goal is to develop accurate interatomic potentials for more alloys, this is a resource 

intensive task, that is not economical (or even possible in a reasonable time) for the purpose of 

screening, i.e. we expect potential development to be reserved to post-screening efforts in materials 

science generally for years to come. In Chapter 3, we developed a learning framework that can 

faithfully reproduce the segregation spectrum of an alloy, using only 100 GB environments. Future 

work: Can we extend the learning framework to learn directly from ab initio methods e.g. density 

functional theory calculations? And completely bypass the need for interatomic potentials? at least 

for the purpose of screening.  

TERNARY AND HIGHER ORDER ALLOYS   

In this thesis, we have only examined binary alloys. However, in practice, alloys are rarely 

binary, but rather multinary, as multiple solute additions expand the alloy design space, and gives 

more opportunities for fine tuning the alloy properties. Therefore, a major future direction is to 

extend the current framework to handle ternary, and higher order alloys. Future work: How to 

extend the spectral model to treat ternary alloys? Can we use the current binary segregation spectra 

to design ternary and higher alloys? Is it possible to generate similar segregation spectra database 
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through machine learning for higher order alloys? And finally, what is the nature of solute-solute 

interactions? and, how to account for it? 
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Appendix A: SPECTRAL SEGREGATION DATABASE 

A.1. SEGREGATION SPECTRA 

 

 

Supplementary Fig. 1: All surveyed binary alloys and their existing interatomic potentials – a total of 260 alloys and 

434 combinations of interatomic potentials. We sought to report all interatomic potentials without judging their 

relevance to segregation studies, but we 1) limited solvents to bcc, fcc, and hcp metals, and 2) removed H, C, O, U, 

Xe solutes, and 3) excluded interatomic potentials that do not correctly predict the equilibrium 0 K lattice structure 

for the solvent, e.g. fcc Fe instead of bcc Fe. 

[118] [213] [114] [214] [215] [98] [216] [217] [218] [184] [219] [100] [220] [221] [67] [222] 

[223] [180] [122] [181] [111] [224] [225] [226] [227] [49] [228] [229] [115] [230] [231] [117] 

[116] [232] [233] [234] [101] [235] [236] [237] [238] [99] [239] [240] [241] [242] [119] [243] 

[244] [245] [246] [112] [113] [247] [102] [248] [249] 
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A.1.1. Ag-based alloys 

 

Supplementary Fig. 2: Solute segregation spectra at GBs in Ag-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 

  



99 

A.1.2. Al-based alloys 

 

Supplementary Fig. 3: Solute segregation spectra at GBs in Al-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1.  
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A.1.3. Au-based alloys 

 

Supplementary Fig. 4: Solute segregation spectra at GBs in Au-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.4. Co-based alloys 

 

Supplementary Fig. 5: Solute segregation spectra at GBs in Co-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.5. Cr-based alloys 

 

Supplementary Fig. 6: Solute segregation spectra at GBs in Cr-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.6. Cu-based alloys 

 

Supplementary Fig. 7: Solute segregation spectra at GBs in Cu-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 

  



104 

A.1.7. Fe-based alloys 

 

Supplementary Fig. 8: Solute segregation spectra at GBs in Fe-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.8. Mg-based alloys 

 

Supplementary Fig. 9: Solute segregation spectra at GBs in Mg-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.9. Mo-based alloys 

 

Supplementary Fig. 10: Solute segregation spectra at GBs in Mo-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.10. Nb-based alloys 

 

Supplementary Fig. 11: Solute segregation spectra at GBs in Nb-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.11. Ni-based alloys 

 

Supplementary Fig. 12: Solute segregation spectra at GBs in Ni-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1.   
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A.1.12. Pd-based alloys 

 

Supplementary Fig. 13: Solute segregation spectra at GBs in Pd-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.13. Pt-based alloys 

 

Supplementary Fig. 14: Solute segregation spectra at GBs in Pt-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.14. Re-based alloys 

 

Supplementary Fig. 15: Solute segregation spectra at GBs in Re-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.15. Ta-based alloys 

 

Supplementary Fig. 16: Solute segregation spectra at GBs in Ta-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.16. Ti-based alloys 

 

Supplementary Fig. 17: Solute segregation spectra at GBs in Ti-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.17. V-based alloys 

 

Supplementary Fig. 18: Solute segregation spectra at GBs in V-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.1.18. W-based alloys 

 

Supplementary Fig. 19: Solute segregation spectra at GBs in W-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 

  



116 

A.1.19. Zr-based alloys 

 

Supplementary Fig. 20: Solute segregation spectra at GBs in Zr-based alloys. References for potential identifiers 

(superscript to solute) are in Supplementary Table  1. 
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A.2. SEGREGATION DATA ANALYSIS 

 

Supplementary Fig. 21: Predictions of GB solute segregation for the different Al(Ni)[111,118,122,180,181,224] 

Interatomic potentials in a polycrystal of average grain size 15 nm (𝑓𝑔𝑏 ≈10%) at T = 600 K; even at a low total 

solute concentration of 1%, the predictions for Xgb can widely vary from 0.2% to 10%.  

 

 

Supplementary Fig. 22: Predictions for the segregation tendency (25th percentile value) as a function of the 

difference in Pauling electronegativity (χ) and metallic radii (r).  
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Supplementary Fig. 23: An alternate version of the Pettifor-type map in Fig.6. for the predicted segregation tendency 

across the alloy space, using interatomic potentials that has the most segregating spectra.  

 

Supplementary Fig. 24: Predictions for the segregation tendency (quantified by the 25th percentile value) across the 

alloy space, with elements arranged by increasing metallic radii: Ni (smallest) → Mg (largest); for alloys with 

multiple potentials, we report (a) the least segregating spectra and (b) the most segregating spectra. 

a b 
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Supplementary Fig. 25: Predictions for the segregation tendency (25th percentile value) across the alloy space, with 

elements arranged by increasing Pauling electronegativity: Mg → Au; for alloys with multiple potentials, we report 

(a) the least segregating spectra and (b) the most segregating spectra. 

A.3. IDENTIFIERS FOR INTERATOMIC POTENTIALS  

Supplementary Table  1: References for interatomic potentials used to compute the GB segregation spectra in 

Supplementary Figs. 2-20. The identifier number is the superscript to the solute name in each figure.  

Interatomic Potential Identifier # Reference 

1 [118] 

2 [213]  

3 [114]  

4 [214]  

5 [215]  

6 [98]  

7 [216]  

8 [217]  

9 [218]  

10 [184]  

a b 
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11 [219]  

12 [100]  

13 [220]  

14 [221]  

15 [67]  

16 [222]  

17 [223]  

18 [180]  

19 [122]  

20 [181]  

21 [111]  

22 [224]  

23 [225]  

24 [226]  

25 [227]  

26 [49]  

27 [228]  

28 [229]  

29 [115]  

30 [230]  

31 [231]  

32 [117]  

33 [116]  

34 [232]  

35 [233]  

36 [234]  

37 [101]  

38 [235]  

39 [236]  

40 [237]  

41 [238]  

42 [99]  
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43 [239]  

44 [240]  

45 [241]  

46 [242]  

47 [119]  

48 [243]  

49 [244]  

50 [245]  

51 [246]  

52 [112]  

53 [113]  

54 [247]  

55 [102]  

56 [248]  

57 [249] 
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Appendix B: DERIVATION OF NANOCRYSTALLINE ENTHALPIC STABILITY CRITERIA  

B.1. ENTHALPIES FOR DIFFERENT ALLOY STATES 

A dilute A(B) metal alloy of size 𝑁 atoms, and fixed number of solvent (𝑁𝐴), and solute (𝑁𝐵) 

atoms can exist in the following four different alloy states relevant to our analysis: 

B.1.1.  Phase-separated state  

For a phase-separated state, the total energy is:  

 𝐸𝑡𝑜𝑡
𝑠𝑒𝑝 =  𝑁𝐴𝐸𝐴

𝑒𝑞
+ 𝑁𝐵𝐸𝐵

𝑒𝑞
 (58) 

where: 

𝐸𝐴
𝑒𝑞

,  𝐸𝐵
𝑒𝑞

 = the energy per atom for A, and B, respectively, in their pure crystalline 

equilibrium state (i.e. cohesive energy). 

B.1.2.  Solid solution 

For a solid solution, the total energy is:  

 𝐸𝑡𝑜𝑡
𝑠𝑙𝑛 = 𝑁𝐴𝐸𝐴

𝑒𝑞
+ 𝑁𝐵𝐸𝐵

𝑒𝑞
+  𝑁 ∙ ∆𝐸𝑚𝑖𝑥(𝑥) (59) 

where: 

∆𝐸𝑚𝑖𝑥(𝑥) is the mixing energy at solute concentration 𝑥 = 𝑁𝐵/𝑁.  

∆𝐸𝑚𝑖𝑥(𝑥) can be expressed in terms of the alloy solution energies [156] as: 

 ∆𝐸𝑚𝑖𝑥(𝑥) = ∆𝐸𝑠𝑜𝑙
𝐴 𝑖𝑛 𝐵 ∙ 𝑥2 ∙ (1 − 𝑥) + ∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴 ∙ 𝑥 ∙ (1 − 𝑥)2 (60) 

where:  

∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 = the energy of embedding one solute atom (B) in a large matrix of solvent (A) 

atoms, as defined by Eq. (12), Section 3 of the paper; similarly, ∆𝐸𝑠𝑜𝑙
𝐴 𝑖𝑛 𝐵 is a solute of (A) 

in a matrix of (B).  
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∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴, and ∆𝐸𝑠𝑜𝑙

𝐴 𝑖𝑛 𝐵 are simply the derivatives of the mixing energy at the composition end-

points, 𝑥 = 0 and 𝑥 = 1, respectively, i.e.  ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 = [𝜕∆𝐸𝑚𝑖𝑥/𝜕𝑥]𝑥=0. And thus, at the dilute 

limit (𝑥 → 0), we can approximate ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 [157]: 

 ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 ≈

1

𝑥
∙ ∆𝐸𝑚𝑖𝑥(𝑥) =

𝑁

𝑁𝐵
∙ ∆𝐸𝑚𝑖𝑥(𝑥) (61) 

Substituting in Eq. (59), and rearranging, we get the total energy for a solid solution in the dilute 

limit: 

 𝐸𝑡𝑜𝑡
𝑠𝑙𝑛 ≈ 𝑁𝐴𝐸𝐴

𝑒𝑞
+ 𝑁𝐵 ∙ (𝐸𝐵

𝑒𝑞
+ ∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴) (62) 

B.1.3. Ordered compound  

For a compound forming system, the total energy is defined by the tie-line between the pure 

solvent phase and the ordered compound:  

 𝐸𝑡𝑜𝑡
𝑜𝑟𝑑 = 𝑁𝐴𝐸𝐴

𝑒𝑞
+ 𝑁𝐵 ∙ [𝐸𝐵

𝑒𝑞
+ (1/𝑥𝑠

𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

] (63) 

where: 

𝑥𝑠
𝑐 = stoichiometry of the ordered compound. 

𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

= formation energy of the ordered compound as defined by Eq. (13) Section 3 of 

the paper.  

B.1.4.  Nanocrystalline grain boundary solute-segregated state 

For this state, we assume a spectrum of solute segregation energies at the grain boundary; 

solvent atoms 𝑁𝐴 are divided between the crystal (intra-grain region) 𝑁𝐴
𝑐
 and the grain boundary 

(GB) 𝑁𝐴
𝐺𝐵

; all solute atoms are segregated at the GB 𝑁𝐵
𝐺𝐵 = 𝑁𝐵; GB sites are filled by enthalpic 

preference of the segregation energy. The total energy of the nanocrystalline structure in the dilute 

limit is: 

 

𝐸𝑡𝑜𝑡
𝑛𝑐 = 𝑁𝐴

𝑐 𝐸𝐴
𝑒𝑞

+ 𝑁𝐴
𝐺𝐵 ∙ (𝐸𝐴

𝑒𝑞
+ 𝑘𝛾𝛾)

+ ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝐸𝐵
𝑒𝑞

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 + 𝑘𝛾𝛾 + 𝛥𝐸𝑖

𝑠𝑒𝑔
)

𝑖

 
(64) 
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where: 

𝑘𝛾𝛾 = the GB energy per atom; 𝛾 is the GB energy per area, and 𝑘𝛾 is a conversion factor 

incorporating GB thickness.  

𝑁𝑖
𝐺𝐵

 =  the number of GB atoms of site-type (i). 

𝑋𝑖,𝐵
𝐺𝐵

= the fraction of site-type(i) occupied by solute atoms, B.  

𝛥𝐸𝑖
𝑠𝑒𝑔

= the segregation energy for GB site-type (i) as defined by Eq (1), Section 2.1 of the 

paper.   

We stress that Eq. (64), similar to Eq. (62), is valid in the dilute limit; for non-dilute concentrations, 

Eq. (64) should be redefined to incorporate the concentration dependent ∆𝐸𝑚𝑖𝑥(𝑥), instead of 

∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴.  

B.2. SPECTRAL ENTHALPIC STABILITY CRITERIA FOR NANOCRYSTALLINE ALLOYS 

B.2.1.  Stability against solid solutions 

We compare Eqs. (64) and (62) to define the condition for 𝐸𝑡𝑜𝑡
𝑛𝑐 < 𝐸𝑡𝑜𝑡

𝑠𝑙𝑛
: 

 

𝑁𝐴
𝑐 𝐸𝐴

𝑒𝑞
+ 𝑁𝐴

𝐺𝐵 ∙ (𝐸𝐴
𝑒𝑞

+ 𝑘𝛾𝛾) + ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝐸𝐵
𝑒𝑞

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 + 𝑘𝛾𝛾 + 𝛥𝐸𝑖

𝑠𝑒𝑔
)

𝑖

< 𝑁𝐴𝐸𝐴
𝑒𝑞

+ 𝑁𝐵 ∙ (𝐸𝐵
𝑒𝑞

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴

) 

(65) 

As 𝑁𝐴
𝑐 𝐸𝐴

𝑒𝑞
+ 𝑁𝐴

𝐺𝐵𝐸𝐴
𝑒𝑞

= 𝑁𝐴𝐸𝐴
𝑒𝑞

, and ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝐸𝐵
𝑒𝑞

+ 𝛥𝐸𝐵 𝑖𝑛 𝐴
)𝑖 = 𝑁𝐵 ∙ (𝐸𝐵

𝑒𝑞
+ 𝛥𝐸𝐵 𝑖𝑛 𝐴

) , we 

cancel out these terms, and rearrange to get: 

 𝑘𝛾𝛾 ∙ (𝑁𝐴
𝐺𝐵 + 𝑁𝐵

𝐺𝐵) + ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵  𝛥𝐸𝑖
𝑠𝑒𝑔

𝑖

< 0 (66) 

As 𝑁𝐴
𝐺𝐵 + 𝑁𝐵

𝐺𝐵 =  𝑁𝑡𝑜𝑡
𝐺𝐵

, and the fraction of site-type (i) is 𝐹𝑖
𝐺𝐵 = 𝑁𝑖

𝐺𝐵/ 𝑁𝑡𝑜𝑡
𝐺𝐵

, we divide Eq. (66) by 

𝑁𝑡𝑜𝑡
𝐺𝐵

 to get:  

 ∑ 𝐹𝑖
𝐺𝐵 𝑋𝑖,𝐵

𝐺𝐵𝛥𝐸𝑖
𝑠𝑒𝑔

𝑖

 <  −𝑘𝛾𝛾  (67) 
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To minimize the LHS of Eq. (7), 𝑁𝐵
𝐺𝐵

 should be limited to filling favorable GB site-types 

(𝛥𝐸𝑖
𝑠𝑒𝑔

≤ 0) , which sets the condition for nanocrystalline enthalpic stability against solid 

solutions:  

 ∑ 𝐹𝑖
𝐺𝐵𝛥𝐸𝑖

𝑠𝑒𝑔
 0

𝛥𝐸𝑖
𝑠𝑒𝑔

= −∞

 <  −𝑘𝛾𝛾 (68) 

For a continuous distribution 𝐹𝑖
𝐺𝐵

, Eq. (68) can be expressed as: 

 ∫ 𝐹𝑖
𝐺𝐵𝛥𝐸𝑖

𝑠𝑒𝑔
 d(𝛥𝐸𝑖

𝑠𝑒𝑔
)

0

𝛥𝐸𝑖
𝑠𝑒𝑔

= −∞

< −𝑘𝛾𝛾 (69) 

B.2.2. Stability against phase separation 

We compare Eqs. (64) and (62) to define the condition for 𝐸𝑡𝑜𝑡
𝑛𝑐 < 𝐸𝑡𝑜𝑡

𝑠𝑒𝑝
: 

 

𝑁𝐴
𝑐 𝐸𝐴

𝑒𝑞
+ 𝑁𝐴

𝐺𝐵 ∙ (𝐸𝐴
𝑒𝑞

+ 𝑘𝛾𝛾) + ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝐸𝐵
𝑒𝑞

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 + 𝑘𝛾𝛾 + 𝛥𝐸𝑖

𝑠𝑒𝑔
)

𝑖

< 𝑁𝐴𝐸𝐴
𝑒𝑞

+ 𝑁𝐵𝐸𝐵
𝑒𝑞

 

(70) 

We cancel out 𝑁𝐴
𝑐 𝐸𝐴

𝑒𝑞
+ 𝑁𝐴

𝐺𝐵𝐸𝐴
𝑒𝑞

= 𝑁𝐴𝐸𝐴
𝑒𝑞

, and ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵𝐸𝐵
𝑒𝑞

𝑖 = 𝑁𝐵𝐸𝐵
𝑒𝑞

, and rearrange to get: 

 ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 + 𝛥𝐸𝑖

𝑠𝑒𝑔
)

𝑖

< −𝑘𝛾𝛾 ∙ (𝑁𝐴
𝐺𝐵 + 𝑁𝐵

𝐺𝐵
) (71) 

Dividing by 𝑁𝑡𝑜𝑡
𝐺𝐵  =  𝑁𝐴

𝐺𝐵
+ 𝑁𝐵

𝐺𝐵
: 

 ∑ 𝐹𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝛥𝐸𝑖
𝑠𝑒𝑔

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴)

𝑖

< −𝑘𝛾𝛾 (72) 

To minimize the LHS of Eq. (72), 𝑁𝐵
𝐺𝐵

 should be limited to filling all GB site-types with 

(𝛥𝐸𝑖
𝑠𝑒𝑔

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴) ≤ 0 , or alternatively, 𝛥𝐸𝑖

𝑠𝑒𝑔
≤  −∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴 , which sets the condition for 

nanocrystalline ground state stability against phase separation:  

 ∑ 𝐹𝑖
𝐺𝐵 ∙ (𝛥𝐸𝑖

𝑠𝑒𝑔
+ ∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴)

−∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴

𝛥𝐸𝑖
𝑠𝑒𝑔

= −∞

 <  −𝑘𝛾𝛾 (73) 

For a continuous distribution 𝐹𝑖
𝐺𝐵

, Eq. (73) can be expressed as: 
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 ∫ 𝐹𝑖
𝐺𝐵 ∙ (𝛥𝐸𝑖

𝑠𝑒𝑔
+ ∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴) 𝑑(𝛥𝐸𝑖
𝑠𝑒𝑔

)

−∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴

𝛥𝐸𝑖
𝑠𝑒𝑔

= −∞

< −𝑘𝛾𝛾 (74) 

B.2.3. Stability against compound formation 

We compare Eqs. (64) and (63) to define the condition for 𝐸𝑡𝑜𝑡
𝑛𝑐 < 𝐸𝑡𝑜𝑡

𝑜𝑟𝑑
: 

 

𝑁𝐴
𝑐 𝐸𝐴

𝑒𝑞
+ 𝑁𝐴

𝐺𝐵 ∙ (𝐸𝐴
𝑒𝑞

+ 𝑘𝛾𝛾) + ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝐸𝐵
𝑒𝑞

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 + 𝑘𝛾𝛾 + 𝛥𝐸𝑖

𝑠𝑒𝑔
)

𝑖

< 𝑁𝐴𝐸𝐴
𝑒𝑞

+ 𝑁𝐵 ∙ [𝐸𝐵
𝑒𝑞

+ (1/𝑥𝑠
𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
] 

(75) 

We cancel out 𝑁𝐴
𝑐 𝐸𝐴

𝑒𝑞
+ 𝑁𝐴

𝐺𝐵𝐸𝐴
𝑒𝑞

= 𝑁𝐴𝐸𝐴
𝑒𝑞

, and ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵𝐸𝐵
𝑒𝑞

𝑖 = 𝑁𝐵𝐸𝐵
𝑒𝑞

, and rearrange to get: 

 

∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝛥𝐸𝑖
𝑠𝑒𝑔

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴

)

𝑖

− 𝑁𝐵 ∙ [(1/𝑥𝑠
𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
]

< −𝑘𝛾𝛾 ∙ (𝑁𝐴
𝐺𝐵 + 𝑁𝐵

𝐺𝐵) 

(76) 

As ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵
𝑖 = 𝑁𝐵, we can express 𝑁𝐵 ∙ [(1/𝑥𝑠

𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

]=∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵
𝑖 ∙ (1/𝑥𝑠

𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

 to get: 

 ∑ 𝑁𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝛥𝐸𝑖
𝑠𝑒𝑔

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 − (1/𝑥𝑠

𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

)

𝑖

< −𝑘𝛾𝛾 ∙ (𝑁𝐴
𝐺𝐵 + 𝑁𝐵

𝐺𝐵
) (77) 

Dividing by 𝑁𝑡𝑜𝑡
𝐺𝐵  =  𝑁𝐴

𝐺𝐵
+ 𝑁𝐵

𝐺𝐵
: 

 ∑ 𝐹𝑖
𝐺𝐵𝑋𝑖,𝐵

𝐺𝐵 ∙ (𝛥𝐸𝑖
𝑠𝑒𝑔

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 − (1/𝑥𝑠

𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

)

𝑖

< −𝑘𝛾𝛾 (78) 

To minimize the LHS of Eq. (78), 𝑁𝐵
𝐺𝐵

 should be limited to filling all GB site-types with 

(𝛥𝐸𝑖
𝑠𝑒𝑔

+ ∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴 − (1/𝑥𝑠

𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

) ≤ 0 , or alternatively, 𝛥𝐸𝑖
𝑠𝑒𝑔

≤ (1/𝑥𝑠
𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
−

∆𝐸𝑠𝑜𝑙
𝐵 𝑖𝑛 𝐴, which sets the condition for nanocrystalline ground state stability against compound 

formation: 

 ∑ 𝐹𝑖
𝐺𝐵 ∙ (𝛥𝐸𝑖

𝑠𝑒𝑔
+ ∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴 − (1/𝑥𝑠
𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
)

(1/𝑥𝑠
𝑐)∙𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
−∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴

𝛥𝐸𝑖
𝑠𝑒𝑔

= −∞

 <  −𝑘𝛾𝛾 (79) 

For a continuous distribution 𝐹𝑖
𝐺𝐵

, Eq. (79) can be expressed as: 
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 ∫ 𝐹𝑖
𝐺𝐵 ∙ (𝛥𝐸𝑖

𝑠𝑒𝑔
+ ∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴 − (1/𝑥𝑠
𝑐) ∙ 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
)

(1/𝑥𝑠
𝑐)∙𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
−∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴

𝛥𝐸𝑖
𝑠𝑒𝑔

= −∞

 <  −𝑘𝛾𝛾 (80) 

Finally, if we define 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒  as: 

 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒 =

1

𝑥𝑠
𝑐 𝛥𝐸𝑜𝑟𝑑

𝑓𝑜𝑟𝑚
− ∆𝐸𝑠𝑜𝑙

𝐵 𝑖𝑛 𝐴 (81) 

with 𝛥𝐸𝑜𝑟𝑑
𝑓𝑜𝑟𝑚

= 0  for phase separating systems. Eqs. (74) and (80) that define the enthalpic 

stability criteria against phase separation, and compound formation, respectively, can be 

consolidated into one general equation that defines nanocrystalline stability against the alloy 

ground states (i.e. phases separated, or ordered compound):  

 ∫ 𝐹𝑖
𝐺𝐵 ∙ (𝛥𝐸𝑖

𝑠𝑒𝑔
− 𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛

𝑠𝑜𝑙𝑢𝑡𝑒 )

𝛥𝐸𝑟𝑒𝑓=𝑠𝑙𝑛
𝑠𝑜𝑙𝑢𝑡𝑒

𝛥𝐸𝑖
𝑠𝑒𝑔

= −∞

 <  −𝑘𝛾𝛾 (82) 
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