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Abstract

Isolated optically-active solid-state spins such as the Nitrogen-Vacancy (NV) center 
in diamond have demonstrated good properties as qubits for quantum information 
tasks. However, engineering larger quantum registers around a central NV enables 
more powerful applications. For example, a register of nuclear spins around the NV 
has already demonstrated many quantum protocols such as quantum error correction 
and entanglement distillation. Still, thanks to their stronger coupling to the NV and 
external fields, a  register of e lectronic spins would enable new complementary appli-
cations, such as quantum enhanced sensing and scalable architectures for quantum 
computation.

In this thesis, three critical steps are demonstrated toward the goal of developing 
a small-scale quantum information processor based on electronic spins in diamond.

First, we develop a method to systematically scale up a system of electronic spins 
starting from one qubit – the optically-addressable NV – by characterizing the Hamil-
tonian of nearby optically-dark electron-nuclear spin defects in its microscopic envi-
ronment. The knowledge of the system Hamiltonian, which characterizes spin defects 
in the solid, further enables coherent control over the system.

Second, we characterize the quantum register of electronic spins with respect to 
two important aspects: entanglement and decoherence.

As entanglement is critical to many quantum information tasks, an accurate char-
acterization of entanglement generated by a quantum device is desired. Therefore, to 
improve upon the conventional entanglement witness based on the state fidelity, we 
develop a new metric, called the subspace witness, that is more robust in the pres-
ence of local unitary control errors. The subspace witness, at the cost of additional 
measurements, is insensitive to any combination of single-qubit phase errors accrued 
during the state-preparation-and-measurement of the target entangled state.

Furthermore, as the power of quantum devices is limited by decoherence, a prac-
tical (i.e., classical) and predictive noise model for the device is desired. As the first 
step to characterize the coherence of a multi-qubit register, we demonstrate a method 
to build a self-consistent classical noise model for individual qubits. For the NV qubit,
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well isolated from the bath, it is possible to develop a self-consistent model, which
not only characterizes the bath but can help develop more robust quantum gates and
circuits. However, for a nearby qubit, this is not possible due to a possibly a more
complex and quantum bath for this qubit – which, after future investigation, may
further scale up the size of the quantum register.

Finally, to demonstrate the potential advantage of an electronic spin register, we
implement a quantum information task in sensing of external fields. The electronic
spins serve to enhance the sensitivity not only via entanglement, but also through
a repetitive readout scheme. This result paves the way towards practical quantum
advantage in sensing.

The methods and results presented in this thesis outline a path toward developing
small-scale quantum registers based on electronic spins in diamond and demonstrate
their practical applications to enhance a broad range of tasks in quantum information
processing.

Thesis Supervisor: Paola Cappellaro
Title: Professor of Nuclear Engineering and Professor of Physics

Thesis Reader: William D. Oliver
Title: Professor of Electrical Engineering and Computer Science and Professor of
Physics
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3-1 Demonstration of witness measurements ⟨𝑊𝜓⟩ and ⟨𝑊𝑠⟩ for

𝑑 = 2 target entangled state (Left) We measure the ‘state’ entangle-

ment witness measurement, based on Bell state fidelity, which success-

fully detects entanglement by ⟨𝑊𝜓⟩ = 𝛼 − ⟨Φ+|𝜌|Φ+⟩ = −0.07421(4).

Grey vertical line denotes the optimal measurement gate time that

would yield the desired two-body correlators ⟨𝜎𝑗1𝜎
𝑗
2⟩ in the absence

of decoherence. To account for decoherence, the signal is fit (dot-

ted lines) to exponentially decaying oscillation with characteristic de-

cay time 𝑇 = 25𝜇𝑠. Given the short optimal gate time, we see lit-

tle difference when accounting or not for the decay. The measured

two-body correlations are |⟨𝜎𝑥1𝜎𝑥2 ⟩| = 0.2142(1), |⟨𝜎𝑦1𝜎
𝑦
2⟩| = 0.5857(2),

and |⟨𝜎𝑧1𝜎𝑧2⟩| = 0.4970(0). (Center) Sweeping the control phase 𝜑 re-

veals oscillations between the real and imaginary part of the coherence

𝜌14. By fitting the oscillations (dotted line) we extract the coher-

ence amplitude and calculate the entangled state fidelity maximized

over the Bell subspace, thereby improving entanglement detection by

⟨𝑊𝑠⟩ = 𝛼 − ⟨Φ|𝜌|Φ⟩ = −0.1827(4). (Right) Measuring the spin echo

after preparing the entangled state also yields the subspace witness,

as the coherence 𝜌14 time evolution is equivalent to sweeping a phase

𝜑 ≡ 𝜈𝜏 ; this detection method further estimates the time-scale of (de-

tectable) entanglement. The two electronic spin system in diamond,

after entangled state preparation to 𝜌, decohere under the spin echo

pulse sequence, yielding a characteristic decay time 𝑇2 = 31(3)𝜇𝑠 when

fitted to a Gaussian decay (dotted line). As the population 𝑃 = 0.371 is

constant over the timescale of experiment, as measured independently,

we witness entanglement until 𝜏 * ≤ 𝑇2 ln(𝐶(0)/(𝛼−𝑃 ))1/𝑝 = 33(3)𝜇𝑠.

Adapted from [104]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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3-2 Improved entanglement detection allows improved bound to

entanglement: Given imperfect state initialization step that prepares

𝜌0 with subunit purity, it is possible to improve purity by 𝑁 repetitive

initialization steps. We plot as a function of 𝑁 the following results of

the subspace witness: namely, the Bell state fidelity 𝐹𝑠(𝑁) = 𝑃 (𝑁) +

|⟨00|𝜌(𝑁)|11⟩|, the coherence 2|⟨00|𝜌(𝑁)|11⟩| = 2max𝜑[𝐶(𝜑)] ≤ 𝐹𝑠(𝑁),

and the resulting lower bound to concurrence. With 𝑁 > 1 we observe

the expected improvement in purity, from 𝑃 (𝑁) = (1 + ⟨𝜎𝑧1𝜎𝑧2(𝑁)⟩)/4,

that leads to improved 𝐹𝑠(𝑁). We also verify the increase in double-

quantum coherence generated |⟨00|𝜌(𝑁)|11⟩|, which is of practical im-

portance given that specific applications such as entanglement-enhanced

sensing with GHZ states benefit directly from larger quantum coher-

ence and not directly the fidelity itself. In addition, we note that the

subspace witness ⟨𝑊𝑠⟩ improves bound to entanglement (via concur-

rence) over the typical ‘state’ witness ⟨𝑊𝜓⟩ due to improved Bell state

fidelity. The errorbars are smaller than the dots for all plots. The

applicability of improved bound for specific GME states by ⟨𝑊𝑠⟩ is

discussed in the text. Adapted from [104]. . . . . . . . . . . . . . . . 80

3-3 NV Ramsey. The NV Ramsey experiment 𝑅 is measured (data

points) and fitted to a sinusoidal Gaussian (line). . . . . . . . . . . . 88

3-4 NV Echo. The NV Echo data 𝐸 (data points) is fitted to 𝑒−(𝑇/𝑇2)3

(red), 𝑒−𝑇/𝑇0 (green), and 𝑒−𝑇/𝑇0−(𝑇/𝑇2)3 (yellow line) (see main text for
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3-5 Predicted NV Ramsey and Echo under 𝑆1(𝜔): Single OU and

White Noise Model. We verify the consistentcy of the single-OU +

white noise model 𝑆1(𝜔) given its numerical reproduction (red line) of

the observed decoherence (blue data). The fit of 𝐸 to the combined

decay (yellow line) is shown for reference. . . . . . . . . . . . . . . . . 91
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3-6 NV Noise Spectrum. The NV noise spectrum 𝑆𝐶𝑃 (𝜔𝑚) is measured

and fitted to a multi-Lorentizan function (blue line) motivated by its
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we observe (and fit well to): the zero-mean Lorentzian given by OU

noise 𝑆𝑂𝑈(𝜔), an overall baseline (well above the 𝑆𝐶𝑃0 > 𝑇−1
1 limit),

and additional features (peaks) 𝑆𝑛(𝜔) at specific resonances that should

arise from the microscopic nuclear environment interacting with this

NV. See main text for discussion. The green, purple, and cyan lines

are discussed in a later figure. . . . . . . . . . . . . . . . . . . . . . . 92

3-7 Comparing Proposed Noise Model with Measured Noise Spec-

trum: Single OU + White Noise Though the noise model candi-

date 𝑆1 could reproduce (via 𝜒𝑅,𝐸) the observed decoherence measure-

ments {𝑅,𝐸}, it is not consistent with the larger set of knowledge of

decoherence {𝑅,𝐸, 𝑆𝐶𝑃 (𝜔𝑚)}. The left-hand side (black region) is the

proposed noise model from {𝑅,𝐸}; the right-hand side (blue region)

is the measured spectrum 𝑆𝐶𝑃 (𝜔𝑚) (data points). . . . . . . . . . . . 93

3-8 Comparing Proposed Noise Model with Measured Noise Spec-

trum: Double OU Noise Sources In contrast with candidate model

𝑆1, we find continuity between the double-OU candidate model 𝑆2 (left-

side, black region) and the directly measured noise spectrum 𝑆𝐶𝑃 (𝜔𝑚)

(right-side, blue region). . . . . . . . . . . . . . . . . . . . . . . . . . 94
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3-9 NV Noise Spectrum (Log-log Plot): Testing Consistentcy

with Proposed Noise Model(s) from Decoherence Measure-

ments under Ramsey and Echo. The measured NV noise spectrum

𝑆𝐶𝑃 (𝜔𝑚) (data points) is compared with the proposed double-OU noise

model 𝑆2(𝜔) = 𝑆𝑂𝑈𝑠𝑙𝑜𝑤(𝜔) + 𝑆𝑂𝑈𝑓𝑎𝑠𝑡(𝜔) (cyan line). Surprisingly, we find

a near-perfect match (within experimental uncertainty) between the

double-OU model and the measured spectrum, indicating the accu-

racy of the proposed model over (now) wider frequency, beyond the

working range of CPMG-based 1QNS. Furthermore, piecing out the

individual OU sources (green 𝑆𝑂𝑈𝑠𝑙𝑜𝑤(𝜔) and purple 𝑆𝑂𝑈𝑓𝑎𝑠𝑡(𝜔)), 𝑆𝐶𝑃 (𝜔𝑚)

can be completely obvlious to the most dominant low-frequency noise

(green line) due to its limited working range. . . . . . . . . . . . . . . 94

3-10 Predicted NV Ramsey and Echo: Double OU Noise Model.

We verify the self-consistentcy of double-OU noise model given its nu-

merical reproduction (red line) of the observed decoherence (blue data).

The fit of 𝐸(𝑇 ) to the combined decay (yellow line) is shown for reference. 95

3-11 X Ramsey. The X Ramsey experiment 𝑅(𝑇 ) is measured (data

points) and fitted to a sinusoidal Gaussian (line). . . . . . . . . . . . 97
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3-12 X Echo (Unmodulated Readout Phase). The X Echo experiment

𝐸(𝑇 ) is measured (data points) and fitted to a cubed-exponential decay

(pink line—overlapping with yellow line) and a simple-exponential de-

cay (green line). In contrast with NV decoherence under 𝐸(𝑇 ), X shows

a cubed-exponential decay, and hence dominated by quasi-static OU

noise. Also, in contrast with NV 𝐸(𝑇 ), X 𝐸(𝑇 ) is not well-described

a simple-exponential. Finally, as done for NV 𝐸(𝑇 ), we also fit to

the combined decay of simple- and cubed-exponential (yellow line).

In this (typical) un-modulated 𝐸(𝑇 ) decay envelope, the fit simply

converges to the cubed-exponential. We will see that in the readout-

phase-modulated 𝐸(𝑇 ) data—to introduce artificial phase modulation

in the signal—we are able to find an equally good fit (by RMSE) to

the combined decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3-13 X Echo (Modulated Readout Phase). The X Echo experiment

𝐸(𝑇 ) is measured also with the phase of the readout 𝜋/2-pulse modu-

lated, in order to introduce artificial oscillation. (While the two 𝐸(𝑇 )

experiments are identical, they are measured with(out) readout signal

modulation to increase confidence in the fit result.) Indeed, when fit-

ted to a cubed-exponential (not shown), they independently yield the

same 𝑇2. Regarding the fit to the combined decay (lines)—motivated

by the successful double-OU noise model for NV— while the fit of

unmodulated signal converges to the cubed-exponential (due to likely

best RMSE), the fit of the modulated signal is able to find just as good

fit (by RMSE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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3-14 X Noise Spectrum: At (Relatively) Large Rabi Power Ω0 The

X noise spectrum 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 2.5MHz) is estimated and fitted to

a multi-Lorentizan function (blue line) motivated by its simple noise

model 𝑆𝐶𝑃 (𝜔) = 𝑆𝑂𝑈(𝜔)+𝑆0+𝑆𝑛(𝜔). Similarly with NV, we observe

(and fit well to): the zero-mean Lorentzian given by OU noise 𝑆𝑂𝑈(𝜔),

an overall baseline (well above the 𝑆𝐶𝑃0 > 𝑇−1
1 limit), and additional

features (peaks) 𝑆𝑛(𝜔) at specific resonances that should arise from the

microscopic nuclear environment interacting with this X. However, we

notice the observed noise magnitude is (statistically) significantly larger

with respect to not only the measured NV spectrum but also more

importantly the proposed noise models from X {𝑅,𝐸}. We explore

the cause of this in the main text. . . . . . . . . . . . . . . . . . . . . 100

3-15 X Echo: At (Relatively) Large Rabi Power Ω0. The X Echo

experiment 𝐸(𝑇 |Ω0 = 2.5MHz) is measured (red data points), shown

against the reference 𝐸(𝑇 |Ω0 = 0.25MHz) (green data points). While

we leave quantitative analysis for future work, we observe the larger

Rabi Ω0 introduces small-amplitude oscillations. This supports the

hypothesis of the presence of near-resonand and interacting (NRI-X)

spins for our X spin (see main text for discussion). In other words,

at larger Rabi Ω0, we can no longer perform desired (1-qubit) echo or

cpmg experiments with our X spin, given that we also co-drive (off-

resonantly) these NRI-X spins. . . . . . . . . . . . . . . . . . . . . . . 102
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3-16 X Noise Spectrum: At Weak Rabi Power Ω0 The X noise spec-

trum 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25MHz) (red data) is re-measured at low Rabi

power in its allowed (limited) range, plotted against the previous esti-

mate 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 2.5MHz) (blue data). In support of the hypothesis

of the presence of near-resonant and interacting spins for X (NRI-

X), we observe weaker noise or decay rate at smaller Ω0, despite the

worse control pulse fidelity 𝐹𝜋. Unfortunately, given the worse 𝐹𝜋,

there should be increased contribution from pulse error in the mea-

sured 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25MHz). Therefore, before checking for self-

consistency in our noise models for X, we should estimate and decouple

the pulse error contribution from 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25MHz). . . . . . . 103

3-17 X Control Fidelity: Two-tone 𝜋-pulse Fidelity We characterize

the state fidelity of the calibrated two-tone 𝜋-pulse 𝐹𝜋 used to simul-

taneously drive both hyperfine resonances of the X electronic spin. We

observe a reduced 𝐹𝜋 at reduced Rabi power Ω0, most likely due to

decay during the (weaker and longer) driving pulse. . . . . . . . . . . 104

4-1 Entanglement-enhanced sensing protocol. Quantum circuit (top)

and specific pulse sequence (bottom) of the sensing protocol for the

𝑛 = 2-qubit system composed of a single NV and one nearby X elec-

tronic spin. Adapted from [22]. . . . . . . . . . . . . . . . . . . . . . 115
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4-2 Typical AC magnetometry experiment. The AC magnetome-

try experiment— sweeping the amplitude 𝑏 of externally applied B-

field 𝑏(𝑡) = 𝑏 sin(𝜔𝑎𝑐𝑡), with the spin echo sequence applied to the

sensor qubit(s)—is shown. Fitting both sensor signals 𝑆𝑛=1(𝑏) for

NV (blue data points) and 𝑆𝑛=2(𝑏) for NV-X entangled (purple data

points) to the expected sinusoidal (lines) directly verifies (full) 𝑛 = 2-

enhancement. Furthermore, by extracting the slope
⃒⃒
𝑑𝑆
𝑑𝑏

⃒⃒
(dashed lines)

and the uncertainty 𝜎𝑆 (errorbar) at the optimal working point (𝑏 = 0),

we directly extract the (single-shot) sensitivity 𝜂𝑁=1 of each sensor, and

in turn the (single-shot) gain 𝑔𝑁=1. Adapted from [22]. . . . . . . . . 116

4-3 Gain in sensitivity: Entanglement-enhanced. The (quantum)

gain 𝑔 ≡ 𝜂1/𝜂𝑒 in the sensitivity is shown across the working range 𝜏

of the two sensors, where 𝑔 > 1 means quantum advatange. Adapted

from [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4-4 Decoherence under spin echo of 𝑛 = 2 entangled sensor vs.

𝑛 = 1 single-qubit sensor. The 𝑛 = 2-entangled sensor (of NV and

X spins) under spin echo (purple data points) decoheres exponentially

at approximately twice the rate than that of the 𝑛 = 1-qubit sensor

(NV). Adapted from [22]. . . . . . . . . . . . . . . . . . . . . . . . . 118

4-5 Environment-assisted sensing: Entanglement- and memory-

enhanced. Quantum circuit (a.) and specific pulse sequence (b.) of

the modified sensing protocol for the 𝑛 = 2-qubit system composed of

a single NV and one nearby X electronic spin. It include the optional

‘repetitive readout’ block [57], iterated 𝑚 times. More specifically,

given the sensed information 𝜑 is stored in the X spin population after

the disentangling gate, there is the option to further utilize the X as a

(classical) memory bit, from which additional (classical) SNR gain of
√
𝑚 may be possible Adapted from [22]. . . . . . . . . . . . . . . . . 120
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4-6 Repeated readout of optically dark electronic spin X. Repeat-

ing the AC magnetometry experiment under the modified procotol—

with additional (𝑚− 1) = 8 queries made to the X spin as a classical

memoery bit. We observe the (ideal) SNR scaling
√
𝑚 up to a few 𝑚;

however, given imperfect two-qubit control and non-zero X depolariza-

tion under laser illumination, the maximum SNR saturates by several

𝑚. Adapted from [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4-7 Entanglement- and Memory-enhanced Gain in Sensitivity for

𝑛 = 2-qubit Sensor. Adapted from [22]. . . . . . . . . . . . . . . . 122

4-8 Projected Gain of 𝑛 = 2 Sensor. We show numerically the pro-

jected gain in sensitivity—given observed control fidelity and removed

nuclear spin-1/2 degree of freedom—as a function of the 𝑛 = 2 sys-

tem parameters: coupling strength 𝑑 and relative decoherence rate Γ.

Entanglement-enhanced (only) gain 𝑔 > 1 is shown in dark green re-

gion; entanglement- and memory-enhanced 𝑔′ > 1 is the (larger) light

green region. Purple diamond shows our particular system parameters:

while with entanglement alone 𝑔 < 1, with entanglement and repetitive

readout 𝑔′ > 1. Finally, note the (strong) dependence of 𝑔, 𝑔′ on the

interaction strength 𝑑, which determines the rate of entangling (and

initialization) to reduce idle time of the 𝑛 > 1-entangled sensor. On the

other hand, the relative decoherence of each qubit is motivated by the

fact that even for spatially proximal qubits, the effective bath seen by

each qubit may not be identical (to yield the same 𝑇2 or decay profile).

In this case, the central qubit may further benefit from entangling with

a nearby spin of longer coherence. Adapted from [22]. . . . . . . . . 123
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Chapter 1

Introduction

1.1 Thesis Overview

The objective of this Thesis is to develop a small-scale, general-purpose quantum

information processor based on electronic spins in diamond – starting from a single

Nitrogen-Vacancy (NV) center in diamond.

While a single NV center in diamond has proved a great candidate for quantum

sensing [112, 106, 20] and quantum communication networks [97, 113, 92], a single

NV with a register of (optically) dark spins has enabled more powerful applications.

Predominantly, a nuclear spin register around a central NV qubit has thus far demon-

strated enhanced quantum memory [93, 52], quantum error correction [110, 24], and

multi-qubit quantum information protocols [58, 118].

In this work, we wish to develop a coherent register of dark electronic spins

around the NV. Thanks to stronger coupling to the NV and to external fields, an

electronic spin register would enable novel, complementary applications, e.g., in en-

hanced sensing protocols (e.g., to achieve quantum advantage [22] or increase the

range of nanoscale sensing [106]), quantum error correction, and scalable architec-

tures for quantum computation [123, 122, 90, 100].

We present our work towards this objective in three steps – schematically outlined

in Fig. 1-1 – divided into Chapters 2, 3, and 4.

In Chapter 2, we systematically scale up a system of interacting electronic spins,
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starting from a single NV center in diamond interacting with unknown electron-

nuclear spin defects. To achieve this, we first develop a general method to identify the

interaction Hamiltonian of unknown spins via sweeping an external static magnetic

field. Then, applying this method, we identify the hyperfine interaction Hamiltonian

of two electron-nuclear spin defects (to denote as X spins) interacting with a particular

NV center, as well as the dipolar coupling between the NV and X electronic spins.

The knowledge of the Hamiltonian not only characterizes the electron-nuclear spin

molecule in solid (via hyperfine interaction) and the relative spatial positions (via

dipolar coupling), but also allows coherent control over the quantum register.

In Chapter 3, given a controllable quantum register of electronic spins, we char-

acterize the performance of this quantum register. More specifically, we characterize

the entanglement generated as well as the decoherence (noise) experienced by this

quantum device.

In Chapter 3.1, to characterize entanglement, we develop a novel metric, called

the subspace witness, in order to more accurately detect the entanglement generated

with respect to the conventional entanglement witness based on state fidelity. The

subspace witness, at the cost of additional measurements, becomes insensitive to any

combination of single-qubit phase errors accrued during the quantum circuit preparing

and measuring the target entangled state. Indeed, for two-qubit entanglement, we

theoretically demonstrate – and experimentally verify with NV and X electronic spins

– the advantage of the subspace witness. For genuine multipartite entanglement, the

subspace witness can still be very efficient in the number of measurements required

depending on the target entangled state; furthermore, the subspace witness, beyond

entanglement detection, also facilitates lower bound estimation of entanglement via

the metric called GME concurrence.

In Chapter 3.2, as the first step to characterize the noise affecting a multi-qubit

register, we demonstrate a protocol to build a self-consistent classical noise model for

individual qubits. By performing noise spectroscopy of both NV and X electronic

spins, we report two results. First, for the NV qubit which is well isolated (distin-

guished) from the bath, it is possible to build a noise model that is self-consistent
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or predictive over a varied set of dynamics – indicating an accurate characterization

of the bath. However, for the nearby X qubit, it is not possible – rather, we find

evidence for a more complex and quantum bath for the X qubit that precludes a

self-consistent classical noise model. This bath of X, which may contain a group of

coherently interacting electronic spins, may be of interest for future investigation –

in order to further scale up the electronic spin register.

Finally, in Chapter 4, putting this device to the test we implement a quantum in-

formation task in quantum sensing. Utilizing a two-qubit electronic spin register, we

demonstrate environment-assisted sensing of external classical fields to achieve practi-

cal quantum advantage in two steps. As the first step, we experimentally demonstrate

sensitivity enhancement via entanglement, but find that it is insufficient to overcome

the ‘cost’ of generating and maintaining the entangled state to allow quantum ad-

vantage. Therefore, to make one more step towards quantum advantage, we further

enhance the sensitivity by repurposing the second electronic spin (after entangled

sensing) as a classical memory register. This allows repetitive readout of the sensed

information, enhancing the sensitivity by another factor of SNR. Enhancing the sen-

sitivity by entanglement and memory, the electronic register paves the path towards

practical quantum advantage in sensing.

In order to streamline the presentation and discussion of results in Chapter 2, 3,

and 4, in this Chapter we present the relevant background.

In Section 1.2, we first give a general overview of electronic spins in diamond,

namely that of the NV and dark electronic spins, with which we build our quantum

register.

In Section 1.3, we review the experiments commonly performed with such spins

and as well used throughout the Thesis.

In Section 1.4, we review the metric of interest for sensing, called the sensitivity,

as background for quantum sensing in Chapter 4.

In Section 1.5, we give the background for noise spectroscopy as relevant for the

characterization of noise affecting a nanoscale quantum device composed of electronic

spins in Chapter 3.2.
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3. Quantum Device Characterization

3.1. Entanglement: 

Improved detection of 
entanglement generated 

under noisy control 

WKCS, A. Cooper, P. Cappellaro, 
Phys. Rev. A 101, 012319 (2020).

3.2. Decoherence: 

Noise characterization of 
nanoscale quantum 

devices 

In progress

Outline
2. Build a system of  electronic spins around NV 

A. Cooper, WKCS, J.-C. Jaskula, P. Cappellaro, Phys. Rev. Lett. 124, 083602 (2020).
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Quantum Sensing

4. Quantum advantage:  

Environment-assisted 
sensing 

A. Cooper, WKCS, J.-C. Jaskula, 
P. Cappellaro, Phys. Rev. Applied 

12, 044047 (2019).

Figure 1-1: Thesis Outline Towards the goal of developing a quantum register of
electronic spins around a central NV, three critical steps are demonstrated in this
Thesis. First, we systematically build up a system of dark electronic spins around
a central NV (Chapters 2). We then characterize the performance of the nanoscale
quantum device composed of interacting electronic spins (Chapter 3). Finally, to
demonstrate the advantages of engineering an electronic spin register, we implement
a quantum information task in sensing to achieve practical quantum advantage (Chap-
ter 4).
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1.2 Electronic Spins in Diamond

Given our goal to develop small-scale quantum information processors based on elec-

tronic spins in diamond, in this section we present a limited review of existing elec-

tronic spins in diamond. More specifically, we review the main spin defects of interest,

namely the NV center and the (optically) dark electronic spins in diamond.

In Section 1.2.1, we review the properties of a Nitrogen-Vacancy (NV) center

in diamond that are attractive a building block – qubit – of quantum information

processors.

In Section 1.2.2, we briefly review the existing literature on optically dark elec-

tronic spins in diamond, which could be engineered as a quantum register around a

central NV. While most earlier works studied ensembles of electronic spins in diamond

– and their cause of decoherence for the NV – in more recent years works on electronic

spins isolated (distinguishable) from the bath and interacting with a nearby NV have

been reported – noting their potential to form a coherent register of electronic spins.

However, still much work is required to advance the capabilities of an electronic spin

register, namely in the identification of the various possible electronic spin defects in

a solid (Chapter 2), characterization of such nanoscale quantum devices of electronic

spins (Chapter 3), and development of coherent control for implementation of quan-

tum information tasks of interest (Chapter 4). We will address such steps throughout

the rest of the Thesis.

1.2.1 Nitrogen-Vacancy (NV) centers in diamond

The Nitrogen-Vacancy (NV) center in diamond is a defect in diamond formed by a

substitutional nitrogen and an adjacent vacancy site in diamond (Fig 1-2). To see

why an NV center makes a good qubit, we refer to the DiVincenzo criteria [33] which

outline the requirements of a good building block (qubit) for a quantum information

processor: namely, the qubit should form an isolated two-level system that can be

initialized, coherently manipulated, and readout.

In most literature, the ‘NV center’ refers to the negatively charged state of the NV
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Figure 1-2: Nitrogen-Vacancy (NV) centers in diamond (Top) Schematic of
a nitrogen-vacancy center inside the carbon matrix of diamond. (Bottom) Energy
levels of an NV center. Courtesy of Guoqing Wang.

center that forms an electronic spin 𝑆 = 1 system in its optical ground state (Fig 1-2).

Therefore, the NV center makes a three-level system (qutrit) given the three magnetic

sublevels 𝑚𝑠 = {0,±1}, where the 𝑚𝑠 = ±1 sublevels are degenerate at zero external

magnetic field. However, the NV center also makes a more convenient two-level system

(qubit) in the presence of an external field (which splits the 𝑚𝑠 = ±1 sublevels), given

that an isolated two-level system (e.g., 𝑚𝑠 = {0,−1}) can be identified.

As well, the spin state of the NV center can be readily initialized and readout

optically [99]. By an excitation laser (typically in green at 532 nm), the spin state

of the NV can be initialized to the 𝑚𝑠 = 0 state, preparing a quantum state with

high purity. This optical pumping into the 𝑚𝑠 = 0 state occurs due to an intersystem

crossing in the optical excited state of the NV (Fig 1-2). More specifically, the 𝑚𝑠 =

±1 states in the excited state undergo a non-radiative non-spin-conserving decay,

through the spin singlet state, to the optical ground state – at a higher rate than

that of the 𝑚𝑠 = 0. Therefore, after a finite duration of a green laser pulse, the NV
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electronic spin state is initialized to 𝑚𝑠 = 0. Furthermore, by the same intersystem

crossing, the spin state of the NV center can also be readout: given the preferential

decay of 𝑚𝑠 = ±1 states through the non-radiative (less bright) channel, the rate

of fluorescence measured in a time interval can distinguish between 𝑚𝑠 = 0 and

𝑚𝑠 = ±1.

Finally, the spin state of the NV center can be coherently manipulated by an

external microwave on resonance with the two magnetic sublevels forming the qubit.

Combined with optical and room-temperature stability, as well as a nuclear spin

degree of freedom from the native nitrogen 14(15)𝑁 , the properties of the NV center

make it an attractive qubit platform.

Thus far, the NV center has been utilized to demonstrate state-of-the-art per-

formance in many quantum sensing and communications tasks. The electronic spin

of the NV center, thanks to the dependence of its internal Hamiltonian to external

physical quantities such as magnetic field [112, 20, 106], temperature [81, 65, 119, 71],

electric field [35, 10] and strain [115, 86, 16, 61], has been applied as a versatile sen-

sor. As well, given its optical interface as well as a native nuclear spin register, it has

demonstrated quantum information protocols as required to form practical quantum

communication networks [97, 113, 92].

1.2.2 Dark electronic spins in diamond

While an isolated NV center is a powerful qubit, more powerful and interesting ap-

plications can be achieved with a quantum register around a central NV. With our

focus on developing a register of dark electronic spins, here we give a brief and limited

review of existing literature on dark electronic spins in diamond.

The first and most prominent ensemble of electronic spins encountered for the NV

center is of substitutional nitrogen defects in diamond, called P1 centers [48, 34, 109,

28, 29, 120, 79, 94]. Their ubiquity may be explained by the NV fabrication process.

To create NV centers in diamond, nitrogen ions are introduced into the diamond

(either via ion implantation or during chemical vapor deposition); given that the

typical conversion efficiency of the nitrogen to NV center is below 10% [80, 98, 85],
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the non-NV nitrogens could form the substitutional defects contributing to the larger

electronic spin bath. And this bath has been shown to be the dominant source of

decoherence for the NV centers over a large range of concentration [120, 5, 6]. With

respect to their potential to form coherent registers for the NV, given that an ensemble

of indistinguishable spins makes for a nontrivial system to control, not much progress

has been made in this direction thus far, except a few early works reporting the

discovery of coherent coupling between a single NV and a single N defect [39, 49].

However, in the last year, a pioneering experiment to isolate, coherently control, and

generate entanglement between individual P1 centers from the larger spin bath was

demonstrated [32], confirming the potential to build quantum registers out of a bulk

spin bath.

Aside from the P1 bath, a bath of ‘surface’ spins has been identified due to the

engineering of shallow NV centers given the interest in nanoscale sensing of single

molecules on the surface. In addition to the P1 bath, the surface spin bath acts as

another dominant source of decoherence for shallow NVs [79, 94, 78]. While a bath

of spins is difficult to utilize as a coherent register, nonetheless a potential advantage

of an electronic spin register was demonstrated earlier on with the surface spins.

More specifically, in a pioneering experiment, given a system of NV and a coherently

coupled surface spin, the surface spin acted as a ‘reporter’ spin that extended the

sensing volume of the shallow NV center – and reported the first detected signal

arising from a single proton spin [106].

However, due to the difficulty of working with an ensemble of spins – which tends

towards a spin bath causing decoherence – a system of isolated electronic spins (dis-

tinguishable from the bath) is desired for the goal of developing a coherent register

of electronic spins. To this end, in recent years, there have been increasing interest

in engineering electronic spin defects, either inside diamond or on the surface, and to

subsequently identify and control the (un)known electronic spins coherently coupled

to the NV [63, 100, 95, 91].

Still, much work is required to advance the capabilities of a quantum register

of electronic spins. First, a general method to characterize the (a priori unknown)
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Figure 1-3: Pulse Sequence of Common Single-qubit Experiments (Left) Ram-
sey. (Center) Spin Echo. (Right) CPMG with 𝑁 cycles. Adapted from [112].

electronic spin defect in a solid is desired, not only to increase the library of various

possible electronic spin defects in the solid but also enable coherent control over the

initially unknown spin – this will be the topic of Chapter 2. Then, given a controllable

quantum register of electronic spins, characterization of such quantum devices, as any

other quantum device, is desired – this will be the topic of Chapter 3. Finally, to

demonstrate the advantages of engineering an electronic spin register, implementation

of quantum information tasks is desired – this will be the topic of Chapter 4.

In the next section, we review the most common experiments performed with such

single-qubit (and two-qubit) systems: namely the Ramsey, Spin Echo, and CPMG.

1.3 Most Common NV Experiments

The goal of this section is to introduce the most common single-qubit experiments,

namely the Ramsey, Spin Echo (or Echo for short), and CPMG experiments, that are

also utilized throughout the Thesis. In Chapter 3.2, Ramsey, Echo and CPMG are

used to reveal information about the qubit bath; we discuss how in Section 1.5. In

Chapter 4, the Echo experiment is used to compare the performance of a single-qubit

sensor vs. a two-qubit entangled sensor in order to demonstrate quantum advantage in

sensing. Finally, in Chapter 2, a modified echo – called Spin Echo Double Resonance

(SEDOR) or Double Electron-Electron Resonance (DEER) experiments – is used to

reveal the spectrum of the Hamiltonian of unknown interacting spins.

In this section, we will first discuss the role of each experiment, as intended, for a

single isolated qubit. But given our interest in a coherent register of electronic spins

with a central NV, we will also discuss their role (either in original or modified form)
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given a system of two heterogeneous, interacting electronic spins. To streamline the

discussion of the significance of each experiment, we begin by reviewing the pulse

sequence for each experiment and review the necessary mathematical background to

better understand each experiment.

The pulse sequences of Ramsey, Echo, and CPMG (Fig. 1-3) show they are com-

posed of the same building blocks: namely, the same state preparation (red 𝜋/2-pulse),

free evolution under the Hamiltonian, 𝜋-pulse(s) as appropriate, and a final 𝜋/2-pulse

to readout the remaining qubit coherence. Let us discuss the purpose of each block.

The first 𝜋/2-pulse – i.e., a qubit rotation by 𝜋/2 – exists to prepare a coherent

superposition state, assuming the initial state 𝜌0 = |0⟩⟨0| = (I + 𝜎𝑧)/2. Here I is

the identity operator, and 𝜎𝛼, with 𝛼 = {𝑥, 𝑦, 𝑧}, is the single-qubit Pauli operator.

Therefore, the first 𝜋/2-pulse, defined as the rotation 𝑅𝑦(𝜃=𝜋/2) = 𝑒−𝑖𝜃𝜎
𝑦/2, prepares

the following initial state 𝜌𝑖:

𝜌𝑖 = 𝑅𝑦(𝜋/2)|0⟩⟨0|𝑅†
𝑦(𝜋/2),

= (I+𝑅𝑦(𝜋/2)𝜎
𝑧𝑅†

𝑦(𝜋/2))/2,

= (I+ 𝜎𝑥)/2.

Similarly, the last 𝜋/2-pulse exists to readout the remaining coherence at time 𝑇 ,

assuming the available measurement operator 𝑀 = 𝜎𝑧 reads the population at the

end of the pulse sequence. Thus, with the last 𝜋/2-pulse, the effective measurement

operator becomes:

𝑀 = 𝑅†
𝑦(𝜋/2)𝜎

𝑧𝑅𝑦(𝜋/2) = 𝜎𝑥,

measuring the coherence as desired.

Let us now discuss the free-evolution unitary operator 𝑈𝑛 present in each experi-

ment, for the single-qubit 𝑛 = 1 and two-qubit 𝑛 = 2 case.

For the single qubit, its lab frame Hamiltonian is given by 𝐻𝑙𝑎𝑏 = 𝜔0/2𝜎
𝑧 +

Ω0 cos(𝜔𝑡)𝜎
𝑥, where Ω0 ̸= 0 when a pulse is applied. Then, with the Rotating Wave
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Approximation, the rotating frame Hamiltonian is given by 𝐻 = 𝛿/2𝜎𝑧 + Ω0/2𝜎
𝑥,

where the detuning 𝛿 = (𝜔0 − 𝜔). Thus during free evolution (Ω0 = 0), the relevant

single-qubit unitary 𝑈1 is:

𝑈1(𝑇 ) = 𝑒−𝑖𝐻𝑇 = 𝑒−𝑖(𝛿𝑇/2)𝜎
𝑧

.

Now, for two interacting qubits, its lab frame Hamiltonian is given by 𝐻𝑙𝑎𝑏 =∑︀
𝑘=1,2 𝜔0,𝑘/2𝜎

𝑧
𝑘 +𝐻𝑖𝑛𝑡, where 𝑘 = 1, 2 refers to the 𝑘-th qubit. For convenience, we

drop the 𝑘 label when only discussing single-qubit experiments as shown above (and

below).

For two electronic spin qubits, 𝐻𝑖𝑛𝑡 is given by the dipolar interaction; however,

given a large energy mismatch between the two spins |𝜔0,1 − 𝜔0,2| ≫ ||𝐻𝑖𝑛𝑡||, we can

make the so-called secular approximation, i.e., to keep only the terms in 𝐻𝑖𝑛𝑡 that

commute with the internal Hamiltonian. This secular approximation, allowing 𝐻𝑖𝑛𝑡 ≈

𝑑/2𝜎𝑧1𝜎
𝑧
2, is equivalent to assuming energy conservation during the state evolution.

Now, in the rotating frames at the resonance of each spin, the Hamiltonian is 𝐻 =

𝐻𝑖𝑛𝑡, such that the relevant two-qubit unitary 𝑈2 during free evolution is:

𝑈2(𝑇 ) = 𝑒−𝑖𝐻𝑇 = 𝑒−𝑖(𝑑𝑇/2)𝜎
𝑧𝜎𝑧

.

We are now ready to calculate the resulting signal 𝑆(𝑇 ) ≡ Tr{𝑀𝜌(𝑇 )} measured

after each experiment, beginning with the simplest experiment.

Ramsey Recall that Ramsey (Fig. 1-3), aside from the two 𝜋/2-pulses for state

preparation and measurement, is a free evolution. Therefore, the total unitary under

Ramsey 𝑈𝑅(𝑇 ) = 𝑈1(𝑇 ), which yields the state

𝜌𝑅(𝑇 ) = 𝑈1(𝑇 )𝜌𝑖𝑈
†
1(𝑇 ),

= (I+ 𝑈1(𝑇 )𝜎
𝑥𝑈 †

1(𝑇 ))/2,

= (I+ 𝜎𝑥 cos(𝛿𝑇 ) + 𝜎𝑦 sin(𝛿𝑇 ))/2.
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Therefore, the measured signal after Ramsey is:

𝑆𝑅(𝑇 ) = Tr{𝑀𝜌(𝑇 )},

= Tr{𝜎𝑥𝜌𝑅(𝑇 )},

= cos(𝛿𝑇 ).

In other words, the Ramsey experiment yields information about the qubit detuning

𝛿 = (𝜔0−𝜔) between the qubit resonance 𝜔0 and the applied drive 𝜔. Hence, Ramsey

is typically used to calibrate the frequency of the qubit driving.

Now, in the presence of a non-degenerate qubit interacting with the above driven

qubit, the Ramsey can be used to detect the presence of such a spin. For simplicity, let

us assume a good calibrated driving for the first qubit (𝛿 = 0) and that the unknown

qubit is in thermal equilibrium, such that 𝜌𝑖 = 𝜌𝑖,1⊗𝜌𝑖,2 = |0⟩⟨0|⊗ I/2. The resulting

state after the Ramsey experiment is:

𝜌𝑅(𝑇 ) = 𝑈2(𝑇 )𝜌𝑖𝑈
†
2(𝑇 ),

= (I+ 𝑈2(𝑇 )(𝜎
𝑥
1 ⊗ I)𝑈 †

2(𝑇 ))/4,

= (I+ 𝜎𝑥1 cos(𝑑𝑇 ) + 𝜎𝑦1𝜎
𝑧
2 sin(𝑑𝑇 ))/4.

Therefore, the measured signal after Ramsey is:

𝑆𝑅(𝑇 ) = Tr{𝑀𝜌(𝑇 )},

= Tr{(𝜎𝑥1 ⊗ I)𝜌𝑅(𝑇 )},

= cos(𝑑𝑇 ).

In other words, the Ramsey experiment yields information about the dipolar coupling

strength 𝑑 in the presence of an interacting spin. While the above closed system of two

qubits yields a non-decaying signal, for an open system, the qubit coherence Ramsey

will decay with characteristic decay time 𝑇 *
2 . Thus, in practice, Ramsey can be used

to detect for ‘strongly‘ coupled spin, with (𝑑𝑇 *
2 ) > 1.
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Of course, there may very well exist ‘weakly’ interacting spins, with (𝑑𝑇 *
2 ) < 1,

that will not be detected by Ramsey. We will see how such weakly coupled spins may

be detected at the end of this section.

Here, note that the measurement operator 𝑀 acts only on the first qubit – rep-

resenting the optically-active NV center – while the second qubit – representing a

nearby dark spin – is not measured by the green laser pulse.

Spin Echo The pulse sequence for the Echo (Fig. 1-3), aside from the two 𝜋/2-

pulses for state preparation and measurement, consists of a free evolution with a

𝜋-pulse in the center.

Therefore, the total unitary under (single-qubit) Echo is 𝑈𝐸(𝑇 ) = 𝑈1(𝑇/2)𝜎
𝑥𝑈1(𝑇/2),

which can be simplified to

𝑈𝐸(𝑇 ) = 𝑈1(𝑇/2)𝜎
𝑥𝑈1(𝑇/2),

= I𝑈1(𝑇/2)𝜎
𝑥𝑈1(𝑇/2),

= 𝜎𝑥(𝜎𝑥𝑈1(𝑇/2)𝜎
𝑥)𝑈1(𝑇/2),

= 𝜎𝑥𝑈 ′
1(𝑇/2)𝑈1(𝑇/2),

= 𝜎𝑥𝑈1(−𝑇/2)𝑈1(𝑇/2),

= 𝜎𝑥I.

Here, in the third equality, we used the relation I = 𝜎𝑥𝜎𝑥; in the fourth equality we

defined 𝑈 ′
1(𝑇/2) = 𝜎𝑥𝑈1(𝑇/2)𝜎

𝑥 = 𝑒−𝑖(𝛿𝑇/2)𝜎
𝑥𝜎𝑧𝜎𝑥

= 𝑒+𝑖(𝛿𝑇/2)𝜎
𝑧
= 𝑈1(−𝑇/2).

Therefore, while a non-zero detuning 𝛿 ̸= 0 can occur during free evolution because

of noise from the bath, the Echo cancels out such quasi-static (low frequency) noise

experienced by the qubit – resulting in a unitary evolution independent of 𝛿: 𝑈𝐸(𝑇 ) =

𝜎𝑥. Here, the noise 𝛿 ̸= 0 is quasi-static or low frequency if slowly varying with respect

to the total echo time 𝑇 .
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Therefore, the state after Echo is:

𝜌𝐸(𝑇 ) = 𝑈𝐸(𝑇 )𝜌𝑖𝑈
†
𝐸(𝑇 ),

= 𝜎𝑥𝜌𝑖𝜎
𝑥,

= (I+ 𝜎𝑥𝜎𝑥𝜎𝑥)/2,

= 𝜌𝑖.

This yields a constant signal:

𝑆𝐸(𝑇 ) = Tr{𝑀𝜌(𝑇 )},

= Tr{𝜎𝑥𝜌𝐸(𝑇 )},

= 1.

Because the Echo is insensitive to any quasi-static detuning during the free evo-

lution, its characteristic coherence time 𝑇2 can be significantly longer than 𝑇 *
2 of

Ramsey if the dominant noise is at low frequency. We will see in our system of two

proximal electronic spins, whose dominant noise is at low frequency, 𝑇2 is an order of

magnitude longer than 𝑇 *
2 .

Now, in the presence of a non-degenerate qubit interacting with the above driven

qubit, the Echo will cancel out its interaction – similar to the detuning. The total

unitary under Echo is 𝑈𝐸(𝑇 ) = 𝑈2(𝑇/2)𝜎
𝑥𝑈2(𝑇/2), which can be simplified to

𝑈𝐸(𝑇 ) = 𝑈2(𝑇/2)𝜎
𝑥
1𝑈2(𝑇/2),

= 𝜎𝑥1 (𝜎
𝑥
1𝑈2(𝑇/2)𝜎

𝑥
1 )𝑈2(𝑇/2),

= 𝜎𝑥1𝑈
′
2(𝑇/2)𝑈2(𝑇/2),

= 𝜎𝑥1𝑈2(−𝑇/2)𝑈2(𝑇/2),

= 𝜎𝑥1 I,

where 𝑈 ′
2(𝑇/2) = 𝑒−𝑖(𝑑𝑇/2)𝜎

𝑥
1 (𝜎

𝑧
1𝜎

𝑧
2)𝜎

𝑥
1 = 𝑒+𝑖(𝑑𝑇/2)𝜎

𝑧
1𝜎

𝑧
2 = 𝑈2(−𝑇/2). In other words, even

in the presence of a coherent interacting electronic spin, the Echo cancels out its
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interaction – becoming independent of 𝑑: 𝑈𝐸(𝑇 ) = 𝜎𝑥.

To calculate the state evolution, again for simplicity let us assume a good cali-

brated driving for the first qubit (𝛿 = 0) and that the unknown qubit is in thermal

equilibrium, such that 𝜌𝑖 = 𝜌𝑖,1 ⊗ 𝜌𝑖,2 = |0⟩⟨0| ⊗ I/2. The resulting state after the

Echo experiment is:

𝜌𝐸(𝑇 ) = 𝑈𝐸(𝑇 )𝜌𝑖𝑈
†
𝐸(𝑇 ),

= (I+ 𝜎𝑥1 (𝜎
𝑥
1 ⊗ I)𝜎𝑥1 )/4,

= 𝜌𝑖.

Therefore, the measured signal after Echo is:

𝑆𝐸(𝑇 ) = Tr{𝑀𝜌(𝑇 )},

= Tr{𝜎𝑥𝜌𝐸(𝑇 )},

= 1.

CPMG The pulse sequence of CPMG (Fig. 1-3), aside from the two 𝜋/2-pulses for

state preparation and measurement, consists of the spin echo block repeated 𝑁 times.

Defining the inter-pulse duration as 2𝜏 , the total experiment time 𝑇 = 𝑁(2𝜏 + 𝐿) ≈

𝑁(2𝜏), assuming the 𝜋-pulse length 𝐿≪ 𝜏 .

Therefore, the total unitary under (single-qubit) CPMG, for even 𝑁 , is 𝑈𝐶𝑃 (𝑇 ) =

[𝑈1(𝜏)𝜎
𝑥𝑈1(2𝜏)𝜎

𝑥𝑈1(𝜏)]
𝑁/2, which can be simplified to

𝑈𝐸(𝑇 ) = [𝑈1(𝜏)𝜎
𝑥𝑈1(2𝜏)𝜎

𝑥𝑈1(𝜏)]
𝑁/2,

= [𝑈1(𝜏)𝑈1(−2𝜏)𝑈1(𝜏)]
𝑁/2,

= [I]𝑁/2.
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Therefore, the state after CPMG is:

𝜌𝐶𝑃 (𝑇 ) = 𝑈𝐶𝑃 (𝑇 )𝜌𝑖𝑈
†
𝐶𝑃 (𝑇 ),

= 𝜌𝑖.

This yields a constant signal:

𝑆𝐶𝑃 (𝑇 ) = Tr{𝑀𝜌(𝑇 )},

= Tr{𝜎𝑥𝜌𝐶𝑃 (𝑇 )},

= 1.

Similar to Echo, CPMG also cancels out any quasi-static or low frequency noise

experienced by the qubit, becoming independent of 𝛿: 𝑈𝐶𝑃 (𝑇 ) = I. However, as

will be seen in Section 1.5, the bandwidth of low frequencies canceled out by CPMG

can be made much larger than Echo by decreasing the cycle period (2𝜏). In turn,

by becoming less sensitive to lower frequency noise, the characteristic decay time

𝑇2,𝐶𝑃 > 𝑇2 can be increased than that of Echo.

Finally, also similar to Echo, CPMG also cancels out any coherently interacting

spin by the same math as shown above.

Spin Echo Double Resonance (SEDOR) Finally, we discuss a modified version

of Echo – called Spin Echo Double Resonance (SEDOR) or Double Electron-Electron

Resonance (DEER) experiments – which now drives two spin species. Such SEDOR

or DEER experiments can re-introduce the otherwise canceled interaction between

two electronic spins via the (single-qubit) echo sequence.

The SEDOR pulse sequence is identical to that of Echo except for an additional

𝜋-pulse for the second qubit species, applied at the time of 𝜋-pulse for the first qubit,

as shown in the inset of Fig. 2-2. This simple change now allows recoupling between
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spins, as can be seen by the total unitary under SEDOR 𝑈𝑆(𝑇 ):

𝑈𝑆(𝑇 ) = 𝑈2(𝑇/2)𝜎
𝑥
1𝜎

𝑥
2𝑈2(𝑇/2)

= 𝜎𝑥1𝜎
𝑥
2 (𝜎

𝑥
1𝜎

𝑥
2𝑈2(𝑇/2)𝜎

𝑥
1𝜎

𝑥
2 )𝑈2(𝑇/2),

= 𝜎𝑥1𝜎
𝑥
2𝑈

′
2(𝑇/2)𝑈2(𝑇/2),

= 𝜎𝑥1𝜎
𝑥
2𝑈2(𝑇/2)𝑈2(𝑇/2),

= 𝜎𝑥1𝜎
𝑥
2𝑈2(𝑇 ),

where 𝑈 ′
2(𝑇/2) = 𝑒−𝑖(𝑑𝑇/2)𝜎

𝑥
1𝜎

𝑥
2 (𝜎

𝑧
1𝜎

𝑧
2)𝜎

𝑥
1𝜎

𝑥
2 = 𝑒−𝑖(𝑑𝑇/2)𝜎

𝑧
1𝜎

𝑧
2 = 𝑈2(𝑇/2). In other words, in

the presence of a coherent interacting electronic spin, the SEDOR allows evolution

under such interaction. Note, if no interacting spin exists at the resonance of the

additional 𝜋-pulse, SEDOR simply reverts to (single-qubit) Echo since the additional

𝜋-pulse does nothing.

Therefore, for the closed system of two coupled electron spins, the SEDOR signal

reverts to the Ramsey signal. Again for simplicity, let us assume a good calibrated

driving for the both qubits (𝛿 = 0) and that the unknown qubit is in thermal equi-

librium, such that 𝜌𝑖 = 𝜌𝑖,1 ⊗ 𝜌𝑖,2 = |0⟩⟨0| ⊗ I/2. The resulting state after SEDOR

is:

𝜌𝑆(𝑇 ) = 𝑈𝑆(𝑇 )𝜌𝑖𝑈
†
𝑆(𝑇 ),

= (I+ 𝑈𝑆(𝑇 )(𝜎
𝑥
1 ⊗ I)𝑈 †

𝑆(𝑇 ))/4,

= (I+ 𝜎𝑥1𝜎
𝑥
2 (𝜎

𝑥
1 cos(𝑑𝑇 ) + 𝜎𝑦1𝜎

𝑧
2 sin(𝑑𝑇 ))𝜎

𝑥
1𝜎

𝑥
2 )/4

= (I+ (−𝜎𝑥1 cos(𝑑𝑇 ) + 𝜎𝑦1𝜎
𝑧
2 sin(𝑑𝑇 )))/4.

Therefore, the measured signal after SEDOR is:

𝑆𝑅(𝑇 ) = Tr{𝑀𝜌(𝑇 )},

= Tr{𝜎𝑥𝜌𝑆(𝑇 )},

= − cos(𝑑𝑇 ).
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In other words, for a closed system of two interacting electronic spins, SEDOR

is equivalent to the Ramsey experiment. However, recalling that the coherence time

under Echo can be longer than that of Ramsey (𝑇2 > 𝑇2), SEDOR is able to detect

spins that cannot be detected via Ramsey. More specifically, SEDOR can also reveal

spins with ‘weak’ coupling strength |𝑑|, where (𝑑𝑇2) > 1 > (𝑑𝑇 *
2 ).

In fact, our system of electronic spins will be weakly coupled, so as not to be

detectable under Ramsey, but revealed and controlled via SEDOR. More specifically,

by changing the frequency of the additional 𝜋-pulse, we can measure the resonance

of the unknown system of electronic spins as seen in Fig. 2-2. As well, by sweeping

the interaction time, we can measure the effective dipolar coupling strength 𝑑 as seen

in Fig. 2-4.

In the remaining two sections, we review the relevant background for Chapter 3.2

and Chapter 4.

1.4 AC Magnetomery and Quantum Sensitivity 𝜂

One prominent application of isolated NV centers in diamond has been in quantum

sensing, i.e., the measurement a physical quantity of interest via the use of a quantum

object [31]. Here we review the main metric to characterize the performance of a

quantum sensor: sensitivity 𝜂.

In Chapter 4, our goal will be to demonstrate practical quantum advantage with

an electronic spin register, i.e., to surpass the sensitivity allowed for a single-qubit

sensor by use of an additional spin from the environment. With knowledge of 𝜂, it

will be straight-forward to understand the path towards achieving practical quantum

advantage in sensing.

Metric of Interest: Sensitivity 𝜂

Here we recall the definition of the sensitivity 𝜂 of a sensor:

42



𝜂 ≡ 𝜎𝑆⃒⃒
𝑑𝑆
𝑑𝑏

⃒⃒
𝑚𝑎𝑥

1√
𝑁

(1.1)

Here 𝑆 is the signal yielded by the sensor (whose exact form depends on the

specific sensing protocol), 𝜎𝑆 the uncertainty or noise in the signal 𝑆, 𝑏 the parameter

of interest to be sensed, and 𝑁 the number of repeated measurements.

To better understand this metric, let us first for simplicity consider sensitivity

at 𝑁 = 1, i.e., 𝜂𝑁=1 = 𝜎𝑆

| 𝑑𝑆𝑑𝑏 |𝑚𝑎𝑥

. This quantity compares the optimal rate of change⃒⃒
𝑑𝑆
𝑑𝑏

⃒⃒
𝑚𝑎𝑥

of the sensor signal vs. its uncertainty 𝜎𝑆. Therefore, the smaller this quan-

tity, the more sensitive the sensor is to a change in the parameter of interest.

Now, given a fixed total experiment time 𝑇 , one can improve the sensitivity by

repeating the sensing protocol 𝑁 = 𝑇/(𝜏 + 𝑡𝑑) times to achieve 𝜂 = 𝜂𝑁=1/
√
𝑁 . Here,

each sensing protocol takes time 𝜏 for sensing while also requiring idle time 𝑡𝑑 to both

initialize and reset the sensor for another iteration.

Signal of Interest: AC Magnetometry 𝑆(𝑏)

The specific sensing task used to compare the performance of the single-qubit vs.

environment-assisted sensor will be spin-echo ac magnetometry [75, 112, 67, 27, 20],

which we briefly review.

The goal of spin-echo ac magnetometry is to estimate the unknown field strength

𝑏 of an external oscillating B-field: 𝑏(𝑡) = 𝑏 sin(𝜔𝑡 + 𝜑). Its protocol, as the name

suggests, is to subject the qubit sensor to a spin-echo sequence of duration 𝜏 in the

presence of 𝑏(𝑡). Then the qubit gains a phase 𝜑 = 𝜑(𝑏) carrying information of the

parameter of interest 𝑏.

More specifically, for a qubit initially in |𝜓⟩ = |0⟩+|1⟩√
2

, the resulting signal is [75,
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112, 67, 27, 20, 22]:

𝑆1(𝜏) = 𝛼1(𝜏) sin(𝜑(𝑏)), (1.2)

𝛼1(𝜏) ≡ 𝛼1(0)𝑒
−𝜒1(𝜏),

𝜑(𝑏) = 𝑏𝛾𝑒𝑓𝜏, (1.3)

where 𝛼1(𝜏) = ⟨0|𝜌(𝜏)|1⟩+ℎ.𝑐. describes the decoherence of 𝑛 = 1-body (single-qubit)

coherence under spin-echo. Due to imperfect control in preparing the sensor state |𝜓⟩,

or due to state-preparation-and-measurement (SPAM) errors, typically |𝛼1(0)| < 1.

Here 𝛾𝑒 is the electronic spin gyromagnetic ratio, and 𝑓 ≤ 2/𝜋 quantifies the overlap

of the sinusoidal 𝑏(𝑡) and the spin-echo sequence, which saturates the equality for

𝜔𝜏 = 2𝜋 [22].

This is generalized for the 𝑛-maximally entangled state, initially in |𝜓⟩ = |00..0⟩+|11..1⟩√
2

,

to yield the signal:

𝑆𝑛(𝜏) = 𝛼𝑛(𝜏) sin(𝑛𝜑(𝑏)), (1.4)

𝛼𝑛(𝜏) ≡ 𝛼𝑛(0)𝑒
−𝜒𝑛(𝜏),

where now 𝛼𝑛(𝜏) = ⟨00..0|𝜌(𝜏)|11..1⟩ + ℎ.𝑐. describes the decoherence of 𝑛-body

coherence under spin-echo.

Before moving on, we make a few remarks on the important parameters affecting

the resulting sensing signal 𝑆𝑛(𝜏) .

Perhaps the most important parameter is 𝑛, which confirms that the 𝑛-maximally

entangled sensor is in principle 𝑛-times more sensitive to 𝑏. In the limit of small 𝑏 (as

is of interest for nanoscale imaging of e.g., single molecules),

sin(𝑛𝜑(𝑏)) ∼ 𝑛𝜑(𝑏) ∝ 𝑛𝑏,⃒⃒⃒⃒
𝑑𝑆

𝑑𝑏

⃒⃒⃒⃒
𝑚𝑎𝑥

∝ 𝑛,

i.e., resulting in 𝑛-fold increase in sensitivity. In Chapter 4, we will experimentally
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verify the 𝑛 = 2 gain with our system over a large range of 𝜏 .

The next parameter of interest is the 𝑛-body coherence remaining after sensing

time 𝜏 : 𝛼𝑛(𝜏) ≡ 𝛼𝑛(0)𝑒
−𝜒𝑛(𝜏). It is instructive to piece out a term independent of the

sensing task (𝛼𝑛(𝜏 = 0)), and one dependent (𝑒−𝜒𝑛(𝜏)).

𝛼𝑛(0) is related to the amount of 𝑛-maximally entangled state generated (more

exactly it is the amount of 𝑛-body coherence generated)—right before the sensing task

𝜏 = 0. In other words, the magnitude of 𝛼𝑛(0) depends on the ‘goodness’ or fidelity of

the quantum circuit required to prepare (and then measure) the desired 𝑛-entangled

state. Any sub-unity 𝛼𝑛(0) ≤ 1, associated with the larger state-preparation-and-

measurement (SPAM) errors for 𝑛-entangled states, will cost in sensivity.

Apart from the control errors, the second term 𝑒−𝜒𝑛(𝜏) ≤ 1 accounts for decoher-

ence during sensing time 𝜏 . Just as 𝑛-maximally entangled state is more sensitive to

the signal of interest than 𝑛 = 1, it is also more sensitive to noise and thus decoheres

faster: 𝜒𝑛(𝜏) > 𝜒𝑛−1(𝜏). Thus a faster-decaying signal for 𝑛-entangled states will also

cost in sensitivity.

Finally, given knowledge of 𝑆𝑛(𝜏), we can calculate 𝜂:

𝜂𝑛 =
𝜎𝑆

𝛼𝑛(𝜏)𝑛𝛾𝑒𝑓𝜏

1√
𝑁
. (1.5)

1.5 Noise Spectroscopy

In this section we review the relevant background for Chapter 3.2, in which our goal

is to characterize the noise of NV and X electronic spins due to their spin bath. More

specifically, in order, we briefly review: the Ornstein-Uhlenbeck (OU) noise model of

a many-body electronic spin bath, single-qubit noise spectroscopy (based on CPMG

𝐶𝑃𝑚 sequences), and Ramsey and Echo experiments under OU noise.
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Noise Model of Electronic Spin Bath: Ornstein-Uhlenbeck (OU) Noise

Process

It is often advantageous to approximate the effects of an unknown, potentially quan-

tum, bath by a classical noise model. In fact, such simplification may be necessary

for practicality, given that to understand the effect of a quantum bath on a quantum

system in its entirety would require a full-fledged quantum simulator [60]. Instead,

reducing the effect of the quantum bath to a physically meaningful noise model would

not only aid understanding, but also the quantitative characterization of the bath by

identification of physically relevant model parameters. Finally, such classical noise

model is known to always exists for a qubit or qutrit under a fixed dynamics [25, 51],

and naturally emerges from single-qubit noise spectroscopy (1QNS).

Here we discuss one specific noise model, the Ornstein-Uhlenbeck (OU) noise

process, which has been proposed and as well experimentally confirmed to describe

well a central electronic spin interacting with an electronic or nuclear spin bath in solid

[60, 34, 28]. The OU noise model 𝑏(𝑡) is completely determined by two parameters

(𝑏, 𝜏𝑐) that define the exponential decay of noise auto-correlation:

⟨𝑏(𝑡)𝑏(0)⟩ = 𝑏2𝑒−𝑡/𝜏𝑐

where 𝑏 represents the characteristic noise strength, and 𝜏𝑐 the correlation time

or memory time of the noise process. The corresponding noise spectrum of the OU

noise, per Eq. 1.7, is given by a zero-mean Lorentzian:

𝑆𝑂𝑈(𝜔|𝑏, 𝜏𝑐) =

∫︁
⟨𝑏(𝑡)𝑏(0)⟩𝑒−𝑖𝜔𝑡𝑑𝑡

=
𝑏2(2𝜏𝑐)

1 + (𝜔𝜏𝑐)2
.

We can ascribe physical meaning to the parameters (𝑏, 𝜏𝑐) for the OU model de-

scribing the noise on a central qubit due to a many-body electronic spin bath. 𝑏 gives
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the characteristic noise or interaction strength between the qubit and its bath, and

𝜏𝑐 gives the (qubit-independent) ‘correlation’ time of the bath, or the timescale of

change in the bath configuration typically via spin flip-flops.

In addition to the absolute value of each parameter, their dimensionless product

(𝑏𝜏𝑐) also characterizes the bath. More specifically, (𝑏𝜏𝑐) ≫ 1 indicates a ‘quasi-static’

bath, or a bath whose internal dynamics is much slower relative to the interaction

rate with the qubit. While this is numerically an extreme limit, over a wide range of

spin concentration, in simulations and in most experimental samples so far it seems

that almost every spin system has (𝑏𝜏𝑐) > 1 [120]. Indeed this may be expected, given

that the spin-flip process not only is limited by the interaction strength (∼ 𝑏), but

additionally requires that the difference of their spin resonances to be smaller than

the interaction strength

Now, this model of a single OU noise source has been used to describe single NV

centers interacting with a ‘bulk’ bath of like/homogeneous electronic spins. Then,

the noise model is fully characterized by two free parameters 𝑆(𝜔) ∼ 𝑆𝑂𝑈(𝜔|𝑏, 𝜏𝑐),

that, in the typical quasi-static limit, can be identified from by Ramsey and Echo

experiments (as will be seen below).

However, in recent studies of shallow/near-surface NV centers in diamond, it was

proposed heuristically that a double OU process should better describe the true noise

by an electronic spin bath [79, 94]. This model was motivated given that a shallow

NV should be sensitive to both ‘surface’ bath spins and ‘bulk’ bath spins — or more

generally, a homogeneous and heterogeneous groups of spins — which should have

sufficiently distinct timescales of dynamics 𝜏𝑐.

We will see in Chapter 3 that we explicitly verify a double OU structure for the

particular NV in our system, suggestive of two effectively distinct groups of electronic

spin baths. Nonetheless, given that our particular NV center has not been verified to

be shallow (as typically done via detection of protons in an oil drop on the diamond

surface [89]), the reason may not be strictly due to ‘surface’ vs. ‘bulk’ spins, but

more simply due to the presence of a homogenous and heterogenous groups of spins,

as arising from our desire to engineer a cluster of strongly coupled electronic spins
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(see Section 2.1).

Single Qubit Noise Spectroscopy (1QNS)

Here we briefly introduce the established method of single-qubit noise spectroscopy

(1QNS), which experimentally reveals the spectrum of noise experienced by an iso-

lated qubit. 1QNS has been successfully applied across many physical platforms to

characterize the effective noise spectrum of the native quantum bath. Given many

existing excellent references on the topic [15, 89, 107], we keep to a minimal and

rather intuitive introduction.

Under a specific set of assumptions (discussed below), the qubit coherence 𝐶(𝑇 )

at time 𝑇 is given by

𝐶(𝑇 ) = ⟨𝑒−𝑖𝜑(𝑇 )⟩ = 𝑒−⟨𝜑2(𝑇 )⟩/2,

⟨𝜑2(𝑇 )⟩ =

∫︁ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)𝐹 (𝜔). (1.6)

In other words, the qubit decoherence is completely determined by the variance of

the qubit phase, ⟨𝜑2(𝑇 )⟩, which in turn is completely determined by two quantities:

the (unknown) spectrum 𝑆(𝜔), which carries information about the noise 𝑏(𝑡), and the

(known) so-called filter function 𝐹 (𝜔), which is given by the particular experimental

sequence applied to the qubit.

Therefore, if 𝑆(𝜔) is known, the qubit decoherence can be calculated.

Here we give the relevant definitions for the above quantites:

𝜑(𝑇 ) =

∫︁ 𝑇

0

𝑏(𝑡)𝑓(𝑡),

𝐹 (𝜔) =

⃒⃒⃒⃒∫︁
𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

⃒⃒⃒⃒2
,

𝑆(𝜔) ≡
∫︁
⟨𝑏(𝑡)𝑏(0)⟩𝑒−𝑖𝜔𝑡𝑑𝑡 (1.7)

The qubit phase 𝜑(𝑇 ) follows the trajectory determined by the random noise 𝑏(𝑡)
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and the time-domain filter 𝑓(𝑡) = {±1}. This filter 𝑓(𝑡) describes the experimental

control sequence applied to the qubit, namely a series of 𝜋-pulses (spin-flips) applied

to the qubit at the time of its sign switch, and also determines its frequency-domain

counterpart 𝐹 (𝜔). Finally, the noise spectrum 𝑆(𝜔) is defined as the Fourier transform

of the noise auto-correlation.

We now review the two main assumptions that were involved to yield Eq. 1.6:

namely that the qubit decoheres by dephasing, and the noise 𝑏(𝑡) is a Gaussian

and classical random number. We will see that, while the dephasing assumption is

strictly required (and can be verified easily experimentally), there has been increasing

evidence that the Gaussianity assumption may not be as strict, given that under

typical dynamical decoupling sequences the noise may be effectively made Gaussian

[107].

The first assumption of 1QNS is that the qubit dominantly decoheres by dephas-

ing. In other words, the interaction Hamiltonian 𝐻int between the qubit and its bath

is proportional to 𝜎𝑧 operating on the qubit: 𝐻int = 𝑧⊗𝐵, where the operator 𝐵 acts

on the bath.

This constraint sets the first equality in Eq. 1.6: 𝐶(𝑇 ) = ⟨𝑒−𝑖𝜑(𝑇 )⟩. More specifi-

cally, for simplicity, consider a classical bath, such that 𝐻int = 𝑧⊗𝐵, where 𝐵 = 𝑏(𝑡)

is a stochastic process. Since the bath can (only) affect the qubit via 𝜎𝑧, the initial

qubit state |𝜓(0)⟩ = (|0⟩ + |1⟩)/
√
2 can only evolve by rotation about z: |𝜓(𝑇 )⟩ =

(|0⟩+ 𝑒−𝑖𝜑(𝑇 )|1⟩)/
√
2. Thus for this single-shot evolution, 𝐶(𝑇 ) ≡ ⟨0|𝜓⟩⟨𝜓|1⟩ = 𝑒−𝑖𝜑.

Given a randomly fluctuating 𝑏(𝑡), the final measurement yields 𝐶(𝑇 ) = ⟨𝑒−𝑖𝜑⟩, av-

eraged over many realizations of 𝑏(𝑡).

The motivation behind the dephasing assumption is two-fold. First, it is required

to allow a simple analytical treatment. More importantly, it does not significantly

limit its applicability, because many physical systems do tend to decohere by de-

phasing, an energy-conserving process. One intuitive justification for this observation

may be that, if an energy-exchanging process (depolarizing) were to be the domi-

nant mode of decoherence, then there must be sufficent noise concentrated close to

the qubit resonance. On the other hand, dephasing is not so constrained, since the
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presence of noise at any frequency will contribute to dephasing. This assumption

can be verified readily in experiments, by measuring the coherence time 𝑇
(*)
2 and

the energy-relaxation time 𝑇1 of the qubit. If 𝑇1 ≫ 𝑇2, the qubit is dominated by

dephasing.

The second assumption made, required for the second equality to strictly hold, is

that the noise strength 𝑏(𝑡) is a classical, Gaussian random number.

First of all, the motivation for assuming a classical Gaussian random process is

that its cumulants higher than second order vanish [64]. Here, the first cumulant,

which is its average ⟨𝑏(𝑡)⟩, can be set to zero without loss of generality. Thus the

only remaining term affecting the qubit coherence is the second-order cumulant, its

variance ⟨𝑏2(𝑡)⟩.

In other words, if the Gaussian assumption is not held, to truly charcterize de-

coherence, one should also characterize the higher-order cumulants. In such a case,

1QNS would only be one step of characterization.

Recall that in general, a classical noise model is always possible to describe the

qubit (or qutrit) decoherence under a particular dynamics [25, 51]; the problem is

that this model may not be predictive or consistent with a different evolution.

It has been shown that, if the noise is instead quantum, 𝑏(𝑡) = 𝑒−𝑖𝐻𝐵𝑡𝐵𝑒𝑖𝐻𝐵𝑡,

but still Gaussian, measured decoherence will be equal to first order decay 𝐶(𝑇 ) =

𝑒−𝜒(𝑇 ) = 1 − 𝜒(𝑇 ) + (𝐵3), where 𝜒(𝑇 ) = ⟨𝜑2(𝑇 )⟩ as defined above [107]. In other

words, for sufficiently weak noise strength 𝑏(𝑡), the method of 1QNS will hold equally

well for either a classical or quantum bath.

Finally, what if the noise is non-Gaussian? Then strictly the equality does not

hold, and so the higher-order cumulants should be characterized. Indeed, it has

been shown both theoretically and experimentally that for highly non-Gaussian noise,

the higher-order spectra improve the predictability of the classical model [83, 105].

Nonetheless, the successful application of 1QNS to characterize various physical plat-

forms seems to suggest that the assumption of Gaussianity of the noise is not very

limiting in practice. While there are various arguments for why or when in general

the Gaussian approximation should be good [107], there is also evidence that certain
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dynamical decoupling sequences, such as CPMG, could effectively average out the

higher-order cumulants, thereby reducing non-Gaussian baths into Gaussian [26].

In the next section, we describe one specific method of 1QNS, based on CPMG

sequences, which will be used to measure the noise spectrum of NV and X.

Method. We are now ready to discuss the method of 1QNS to experimentally

reconstruct the qubit noise spectrum 𝑆(𝜔). The main idea can be seen from Eq. 1.6.

To identify the unknown 𝑆(𝜔), we apply a specific experimental sequence 𝐹 (𝜔) to

the qubit, and observe its decoherence or decay rate ⟨𝜑2(𝑇 )⟩.

While there is no one unique way, one simple method to reconstruct 𝑆(𝜔) is to

create a filter that is a delta function: 𝐹𝑚(𝜔) = 𝛿(𝜔−𝜔𝑚). If this filter can be achieved,

each experiment 𝐹𝑚(𝜔) will reveal one point of the underlying noise spectrum via the

measured decay: ⟨𝜑2
𝑚(𝑇 )⟩ =

∫︀∞
−∞

𝑑𝜔
2𝜋
𝑆(𝜔)𝐹𝑚(𝜔) = 𝑆(𝜔𝑚). This leads to a simple

protocol to reconstruct the noise spectrum: apply 𝐹𝑚(𝜔) at various frequencies 𝜔𝑚

to map out the entire 𝑆(𝜔𝑚).

This protocol is behind the most common method for 1QNS, where an approx-

imate delta function can be obtained from periodic dynamical decoupling (DD) se-

quences. The simplest DD sequence is called CPMG, which a series of periodic

𝜋-pulses applied 𝑁 times with inter-pulse spacing of 2𝜏𝑚 on the qubit. This CP filter,

in the limit of many cycles 𝑁 , approaches a comb of delta functions at odd harmon-

ics of its principal frequency 𝜔𝑚 ∼ (2𝜋)(4𝜏𝑚)
−1, with the delta functions at higher

harmonics strongly attentuated[124, 2]:

𝐹𝑚(𝜔) = 𝛿(𝜔𝑚) +
∞∑︁
𝑗=1

𝛿((2𝑗 + 1)𝜔𝑚)

(2𝑗 + 1)2

This rapid attenuation, whereby the next largest correction is approximately 10

times smaller, allows the approximation of 𝐹𝑚(𝜔) as a single delta function at the

principal frequency. This approximation is especially good given a noise spectrum

decaying with frequency, e.g., as in the OU spectrum or the 1/𝑓 noise spectrum

common in solid-state devices. Nonetheless, in the presence of significant higher-
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frequency noise processes, further improvements should be made beyond the above

approximation, e.g., by taking into account the higher-order terms in the CP filter

[2] or designing filters without higher-order leakage [82].

Utilizing CP sequences, the method of 1QNS is straightforward. We first measure

the decay at specific sequence 𝐶𝑃𝑚:

𝜒𝑚(𝑇 ) ≡ ⟨𝜑2
𝑚(𝑇 )⟩/2 =

∫︁ ∞

−∞
𝑑𝜔𝑆(𝜔)𝐹𝑚(𝜔)

∼ 𝜋2

4
𝑆(𝜔𝑚)𝑇. (1.8)

Then we repeat this for a different inter-pulse spacing 2𝜏𝑚 = 𝜋/𝜔𝑚, so as to

reconstruct the noise spectrum 𝑆(𝜔𝑚).

We end this section by noting the working range of the CPMG-based 1QNS:

1/𝑇2 ≤ 𝜔𝑚 ≪ Ω0, where Ω0 is the pulse Rabi power.

The lower limit, i.e., the minimum noise frequency 𝜔𝑚𝑖𝑛 one could sample, is given

by characteristic decay time 𝑇2 from echo for two reasons. First, the qubit coherence

and hence the signal → 0 by 𝑇2, such that any CPMG experiments with longer

free evolution time 2𝜏𝑚 will provide no information. In addition, an indirect, more

technical reason limiting 2𝜏𝑚 ≤ 𝑇2 is given by our method of approximating 𝑆(𝜔𝑚)

via the observed CPMG decay 𝜒𝐶𝑃 (𝑇 ) (recall Eq. 1.8): the (exact) proportionality

constant is reached only in the limit of 𝑁 → ∞. This is not strictly held for CPMG

with long evolution time, as full coherence decay may occur in just a few 𝑁 . However,

this limit could be improved by deconvolution via sinc transform.

On the other hand, the maximum noise frequency we could sample is limited by

the pulse Rabi power Ω0 with pulse length 𝐿 = (2Ω0)
−1. As 𝜔𝑚 = (2𝜋)(2(2𝜏𝑚 +

𝐿))−1 → Ω0, the time spent under free evolution 𝜏𝑚 → 0. In other words, instead

of sampling the noise 𝑏(𝑡) effected by 𝐻𝑖𝑛𝑡, the qubit spends (more) time under the

control Hamiltonian of strength Ω0 ≫ 𝑏(𝑡). Thus the signal will carry less information

about the true noise of interest to be characterized.
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Ramsey & Echo Decays — under OU Noise

Here we discuss the two simplest experiments as measurements of decoherence: Ram-

sey and Echo (refer to as 𝑅 and 𝐸, respectively, for convenience). We describe them

under the same filter function formalism as in the previous section, and also review

their specific analytical forms under an OU noise.

Ramsey under OU Noise. Ramsey, the simplest experiment, prepares the qubit

in a superposition state (by a 𝜋/2-pulse) at time 𝑇 = 0 and allows a free-evolution for

time 𝑇 – during which the qubit interacts with the bath – after which its coherence

is measured. Hence its time-domain filter function is simply 𝑓𝑅(𝑡) = 1 for 𝑇 ≥ 𝑡 ≥ 0

and zero elsewhere; equivalently, in the frequency-domain, the Ramsey filter function

𝐹 (𝜔) = |𝑓 2
𝑅(𝜔)| is a sinc centered around 𝜔 = 0. In other words, a Ramsey experiment

𝑅 will dominantly sample the low frequencies present in the noise spectrum 𝑆(𝜔).

Thus the expected decay 𝑒−𝜒𝑅(𝑇 ) under a Ramsey experiment for a noise spectrum

𝑆(𝜔) is:

𝜒𝑅(𝑇 ) = 1/2

∫︁ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)|𝑓 2

𝑅(𝜔)|,

|𝑓 2
𝑅(𝜔)| = 𝑇 2 sinc2(𝜔𝑇/2)

Defining the noise power 𝜎2 ≡
∫︀∞
−∞

𝑑𝜔
2𝜋
𝑆(𝜔), one can see that if the underlying

𝑆(𝜔) is sufficiently concentrated at low frequencies (𝑆(𝜔) ∼ 0 for 𝜔 > 1/𝑇 ), s.t.

𝜎2 ∼
∫︀ 1/𝑇

−1/𝑇
𝑑𝜔
2𝜋
𝑆(𝜔), 𝑅 yields a Gaussian decay independent of the exact shape of

𝑆(𝜔) [107]:

𝜒𝑅(𝑇 ) ∼ 𝑇 2/2 sinc2(0)
∫︁ 1/𝑇

−1/𝑇

𝑑𝜔

2𝜋
𝑆(𝜔)

= 𝜎2𝑇 2/2

≡ (𝑇/𝑇 *
2 )

2

In turn, this means that, given strong noise at low frequency, Ramsey will not

provide much information about the shape of the noise spectrum. However, it still
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yields the noise power 𝜎2. In the last equality we have defined the characteristic

coherence time 𝑇 *
2 .

For example, if the noise is given by an OU process (a zero-mean Lorentzian),

𝑆𝑂𝑈(𝜔) = 𝑏2
2𝜏𝑐

1 + (𝜔𝜏𝑐)2
,

Ramsey will yield the characteristic noise strength 𝑏:

𝜒𝑂𝑈𝑅 (𝑇 ) = 𝑇 2/2

∫︁ 1/𝑇

−1/𝑇

𝑑𝜔

2𝜋
𝑆𝑂𝑈(𝜔)

≈ (𝑏𝑇 )2/2.

The low frequency approximation in the last line requires 𝑆𝑂𝑈(𝜔|𝑏, 𝜏𝑐) to be very

narrow with respect to the Ramsey filter |𝑓 2
𝑅(𝜔)|, or equivalently that (𝑏𝜏𝑐) ≫ 1.

This condition is also called the quasi-static regime, where the bath configuration is

relatively slow with respect to the strength of qubit-bath coupling and qubit dynamics.

More generally, without any approximation, the Ramsey under OU noise gives

the following decay [30]:

𝜒𝑂𝑈𝑅 (𝑇 ) = 𝑏2𝜏 2𝑐 (𝑇/𝜏𝑐 + (𝑒−𝑇/𝜏𝑐 − 1))

which, in the long-time limit 𝑇 ≫ 𝜏𝑐, reduces to an exponential decay

𝜒𝑂𝑈𝑅 (𝑇 ) ∼ (𝑏2𝜏𝑐𝑇 )

whereas, in the limit of quasi-static OU noise or low frequency noise 𝑇 ≪ 𝜏𝑐, as

expected reduces to

𝜒𝑂𝑈𝑅 (𝑇 ) ∼ (𝑏𝑇 )2/2.

Given that the most general decay form of 𝑅 under OU noise depends on both

model parameters (𝑏, 𝜏𝑐), we would expect that it should be possible to extract both
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parameters from two 𝑅 experiments at different times 𝑇 . However, in the two limits

above, the decay is proportional to 𝑇 , 𝜒 ∝ 𝑇𝛼, and we can extract only one parameter

or the product (either 𝑏2 or 𝑏2𝜏𝑐). In other words, in such limits, it is no longer possible

to fully characterize the OU noise model from a single type of experiment.

We will see a similar issue in the next section with the Echo decay; however,

equipped with the set of both measurements {𝑅,𝐸}, one can estimate the full model

paramters (𝑏, 𝜏𝑐) if indeed the viable model is a single OU noise source. In addition

to the past literature, we will observe this with the dark spin X.

Echo under OU Noise. After Ramsey, the next simplest experiment to measure

decoherence is the spin echo (𝐸), which prepares the qubit in a superposition (by

a 𝜋/2-pulse) and allows a free-evolution for duration 𝑇 except for a single 𝜋-pulse

applied at time 𝑇/2. Its time-domain filter function is 𝑓𝐸(0 ≤ 𝑡 < 𝑇/2) = 1 and

𝑓𝐸(𝑇/2 ≤ 𝑡 < 𝑇 ) = −1 and zero elsewhere. Thus, in contrast to the constant 𝑓𝑅,

the Echo filter function 𝐹 (𝜔) = |𝑓 2
𝐸(𝜔)| is now shifted away from 𝜔 = 0, with its

(dominant) center frequency proportial to 1/T: 𝜔𝑐 ∝ 𝑇−1.

More formally,

𝜒𝐸(𝑇 ) = 1/2

∫︁ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝜔)|𝑓 2

𝐸(𝜔)|,

|𝑓 2
𝐸(𝜔)| = 16 sin4(𝜔𝑇/4)/𝜔2

The echo under OU noise gives the following decay[30, 79]:

𝜒𝑂𝑈𝐸 (𝑇 ) = 𝑏2𝜏 2𝑐 (𝑇/𝜏𝑐 − 3 + 4𝑒−𝑇/(2𝜏𝑐) − 𝑒𝑇/𝜏𝑐)

which, in the long-time limit 𝑇 ≫ 𝜏𝑐, reduces to an exponential decay

𝜒𝑂𝑈𝐸 (𝑇 ) ∼ (𝑏2𝜏𝑐𝑇 )

whereas in the limit of quasi-static OU noise or low frequency noise 𝑇 ≪ 𝜏𝑐,
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reduces to:

𝜒𝑂𝑈𝐸 (𝑇 ) ∼ (𝑏2𝑇 3/12𝜏𝑐)

≡ (𝑇/𝑇2)
3

Note that the decay in the first limit is the same as that from 𝑅, indicating that

for short correlation noise, the echo is unable to refocus the noise trajectories before

and after the 𝜋-pulse as they are not correlated [30].

On the other hand, if we observe 𝐸 with the latter decay shape (cubic in expo-

nential), we can learn two things. First we verify the noise model is a single OU noise

source in the quasistatic limit 𝑏𝜏𝑐 ≫ 1. In addition, given prior knowledge or estimate

of 𝑏 from 𝑅, we can estimate 𝜏𝑐 from the coherence time 𝑇 3
2 = 12𝜏𝑐/𝑏

2.

As observed for Ramsey, even the decay form of 𝐸 under OU noise reduces to

the product of the model parameters in the limits, such that 𝐸 (even if measured

at different times) cannot fully characterize the model. Nonetheless, in the case

of a (single) quasi-static or slow OU, the set {𝑅,𝐸} is necessary and sufficient to

characterize the noise model: 𝑆(𝜔) = 𝑆𝑂𝑈𝑠𝑙𝑜𝑤(𝜔|𝑏𝑠, 𝜏𝑠).
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Chapter 2

Hamiltonian identification of a

quantum register of electron-nuclear

spin defects in diamond

Recall our goal of developing a quantum register of electronic spins in diamond. In

this Chapter we take the first step towards this goal by systematically scaling up a

system of interacting electronic spins, starting from a single NV center in diamond

interacting with unknown electron-nuclear spin defects.

As the first main result, we develop a general method to identify the interaction

Hamiltonian of unknown spins via sweeping an external static magnetic field. As

the second main result, we apply this method to characterize two unknown electron-

nuclear defects near the NV. More specifically, we first identify the hyperfine inter-

action Hamiltonian of two electron-nuclear spin defects (to denote as X spins) that

characterizes each electron-nuclear spin molecule in the solid. In addition, we charac-

terize the dipolar coupling between the NV and X electronic spins, which also reveals

the relative spatial positions of the spin defects. This method to identify the Hamilto-

nian of unknown spin defects not only allows characterization of unknown spin defects

in the solid via sweeping an external field but also enables coherent control over the

larger spin system.

Before discussing the characterization of the electronic spin register, we first briefly
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discuss how to physically realize such a system in diamond in the next section.

2.1 Creation of Localized Electronic Spin Clusters in

Diamond

In this section, we describe and give an intuitive reasoning for the fabrication steps

designed to realize a system of dark electronic spins around a central NV center in

diamond. The exact fabrication and sample preparation steps are reported in [22].

Recall our target system: a central NV spin in diamond with a coherent register

of dark electronic spin(s). In other words, we want to simultaneously achieve the

three italicized conditions.

First, let us start with the established knowledge of NV center formation. NVs

are formed by ion implantation of the electron-donor N into diamond and subsequent

annealing, but the N-to-NV conversion ratio is typically well below ten percent [80,

98, 85]. In other words, for every NV center successfully created, there can be more

than ten other electronic spins in the vicinity.

However, in order to realize entangling operations before decoherence, we further

require that such spins interact coherently, i.e., the coupling strength |𝑑| between

spins should be larger than the inverse coherence time 𝑇−1
2 , (𝑑𝑇2) > 1. However, this

is difficult to optimize, given that both 𝑑 and 𝑇−1
2 increase with the electronic spin

concentration [34, 120].

Given that it is difficult to achieve (𝑑𝑇2) ≫ 1 via ion implantation alone, the

approach here is to implant through a mask with nano-apertures of varying size to

control the total number of implanted ions in a nanoscale volume. More specifically,

we fix the implantation condition to give an average dipolar coupling strength to

𝑑 ∼ 11 kHz (from SRIM simulations) [22]. At the same time, by limiting the total

number of the electronic spins, we attempt to reach (𝑑𝑇2) > 1 at fixed 𝑑 given there

are fewer spins that contribute to a large, quasi-continuous spin bath background,

which is the dominant cause of decoherence [34, 120]. In addition, aside from the
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Figure 2-1: Sample Preparation via Ion Implantation through Nano-
apertures. Given sub-ten percent conversion efficiency of implanted donor ions N
(blue) into NV centers (red) in diamond, in principle up to several dark electronic spins
nearby a single NV can be expected. Given implantation of electronic spins (forming
the many-body e-spin bath leading to decoherence—the topic of Chapter 3.2), we aim
to minimize decoherence by implanting through a nano-aperture (to limit the total
number of bath spins that can randomly flip-flop) into an isotopically purified 12C
diamond layer (removing the natural abundance of 13C spin bath).

decoherence due to the electronic spin bath (expected to be dominant), we also remove

the next more important noise process due to the naturally abundant 13C spin bath

by utilizing an isotopically purified 12C diamond layer [23].

2.1.1 Our system: NV and nearby electron-nuclear spin de-

fects

Given such a sample, having searched over 150 implanted regions of 𝑥𝑥 nm-diameter,

we identify 3 regions with single NV centers, while typically multiple NVs were found

per implantation spot. Out of the 3 single NVs, one NV showed a nontrivial electronic

spin spectrum as in Fig. 2-2. This is the NV we work with for the rest of the Thesis,

beginning with the characterization of the two unknown electron-nuclear defects in

the next Section giving rise to the observed resonances.
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Figure 2-2: Electronic Spin Resonance (ESR) Spectrum Seen by the NV.
We identify a single NV with a nontrivial electronic spin environment, as shown by
the (non-flat) electronic spin spectrum seen from the NV. More specifically, the dips
indicate presence of electronic spin defect (at that resonance) interacting with the NV.
The center of the four dips is the free electron Zeeman energy at the given external
static magnetic field. Adapted from [23].

2.2 Hamiltonian Identification of Unknown Spins

Having identified a single NV center with interacting electron-nuclear spin defects

(Fig. 2-2), we now present our main results.

In Section 2.2.1, we characterize two electron-nuclear defects—henceforth called

𝑋1 and𝑋2—by identifying their hyperfine tensors𝐴1 and𝐴2 respectively (their molec-

ular fingerprint).

In Section 2.2.2, we characterize the dipolar coupling strengths 𝑑1 and 𝑑2 between

the electronic spin of NV and that of 𝑋1 and 𝑋2 respectively, which also reveal

and constrain the probable spatial location of the defects. As well, this coherent

interaction between the electronic spins will allow the generation and detection of

entangled states—which will be the topic of Chapter 3.

2.2.1 Hyperfine Interaction of X Defects

Here, we present the method to characterize the hyperfine tensor of an electron-

nuclear defect via sweeping an external magnetic field. The external magnetic field

(e.g., from a moveable permanent magnet above the sample) acts as the experimental

handle by which the total Hamiltonian of the spin defect can be transformed non-
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trivially. Then, by measuring the energies as a function of external field 𝐵, we can

constrain the parameters of the hyperfine tensor, to be consistent with all available

measurements.

Intuitively, this method is akin to tomographic reconstruction of 3D objects given a

limited sample of 2D projections or images at various angles. In our case, the object

of interest is the hyperfine tensor, and given a set of hyperfine energies measured

at various field orientations, the goal is to reconstruct the tensor that yields those

measurements.

The Hamiltonian of an electronic spin 𝑆 = 1/2 interacting with a nuclear spin

𝐼 = 1/2 is given by:

ℋ(�⃗�) = ℋ𝑒(�⃗�) +ℋℎ +ℋ𝑛(�⃗�), (2.1)

ℋ𝑒(𝑛) = 𝛾𝑒(𝑛)�⃗� · �⃗�(𝐼), (2.2)

ℋℎ = �⃗� · ^̂
𝐴 · 𝐼, (2.3)

where the last equation describes the hyperfine interaction between the electron and

nuclear spins, characterized by the hyperfine tensor ^̂
𝐴.

At sufficient magnetic field strengths |𝐵|, one can satisfy the condition 𝜔𝑛 ≪

‖𝐴‖ ≪ 𝜔𝑒, where 𝜔𝑒(𝑛) = 𝛾𝑒(𝑛)|𝐵|, due to 𝛾𝑒/𝛾𝑛 > 103. Given this condition, one

can make the so-called secular approximation to simplify the fully general 9-term ℋℎ,

by keeping only the terms in Hamiltonian that commutes with the dominant energy

term (here the electron Zeeman energy ℋ𝑒(�⃗�)). This approximation is equivalent to

assuming energy conservation during the state evolution.

More concretely, for simplicity, let us consider �⃗� = (0, 0, 𝐵𝑧), such that ℋ𝑒(�⃗�) =

𝜔𝑒𝑆𝑧. Then, taking the secular approximation, the hyperfine interaction simplifies to:

ℋℎ = �⃗� · ^̂
𝐴 · 𝐼 (2.4)

≈ 𝑆𝑧𝐴𝑧 · 𝐼 = 𝑆𝑧(𝐴𝑧𝑥𝐼𝑥 + 𝐴𝑧𝑦𝐼𝑦 + 𝐴𝑧𝑧𝐼𝑧), (2.5)

giving rise to an effective hyperfine frequency shift of 𝐶𝑧 =
√︀
𝐴2
𝑧𝑥 + 𝐴2

𝑧𝑦 + 𝐴2
𝑧𝑧.
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Here, the LHS (𝐶𝑧) is the experimentally observed hyperfine splitting (modifying

the free electronic spin resonance to 𝜔𝑒+𝐶𝑧/2) as seen from Fig. 2-2. The analytical

RHS now relates the experimental measurements to a function of (unknown) hyperfine

parameters 𝐴𝛼,𝛽 that we wish to identify.

Then for general �⃗�, we can obtain 𝐶𝑧 via:

𝐶𝑧 =
√︁

Tr{(𝐻𝑒 ⊗ 𝐼𝑥)𝐻ℎ}2 + Tr{(𝐻𝑒 ⊗ 𝐼𝑦)𝐻ℎ}2 + Tr{(𝐻𝑒 ⊗ 𝐼𝑧)𝐻ℎ}2/4𝜔𝑒. (2.6)

Before we present the results, we first summarize the method.

Experimentally, we rotate the external field �⃗�, such that the electronic spin-1/2

Zeeman Hamiltonian rotates relative to the (fixed) hyperfine tensor, ℋℎ ̸= ℋℎ(�⃗�).

Measuring the projection of the hyperfine interaction 𝐶𝑧(�⃗�) at several field orienta-

tions, we can fit for the parameters of interest 𝐴𝛼,𝛽 of the hyperfine tensor, where

𝛼, 𝛽 = {𝑥, 𝑦, 𝑧}.

The number of necessary free parameters can be reduced from nine 𝐴𝛼,𝛽 to a maxi-

mum of six by the following steps. First, the hyperfine tensor is defined in its principal

frame such that it is fully characterized by 3 parameters: 𝐴 = diag(𝐴𝑥, 𝐴𝑦, 𝐴𝑧). Then,

in order to relate this frame to the diamond crystal frame, 3 more parameters for the

Euler angles {𝛼, 𝛽, 𝛾} are required. Then the principal hyperfine parameters can be

rotated to the crystal frame by:

^̂
𝐴 = 𝑅𝑇 · 𝐴 ·𝑅, (2.7)

where 𝑅 is the rotation matrix describing the transformation of the hyperfine matrix

from its principal coordinate frame to the crystal frame,

𝑅 =

⎛⎜⎜⎜⎝
cos(𝛾) cos(𝛽) cos(𝛼)− sin(𝛾) sin(𝛼) cos(𝛾) cos(𝛽) sin(𝛼) + sin(𝛾) cos(𝛼) − cos(𝛾) sin(𝛽)

− sin(𝛾) cos(𝛽) cos(𝛼)− cos(𝛾) sin(𝛼) − sin(𝛾) cos(𝛽) sin(𝛼) + cos(𝛾) cos(𝛼) sin(𝛾) sin(𝛽)

sin(𝛽) cos(𝛼) sin(𝛽) sin(𝛼) cos(𝛽)

⎞⎟⎟⎟⎠ .

(2.8)
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Finally, we introduce the external static field vector

𝐵(𝜃, 𝜑) = 𝐵0(sin(𝜃) cos(𝜑), sin(𝜃) sin(𝜑), cos(𝜃)),

defined with respect to the crystal frame. Prior to the Hamiltonian characterization

experiments, the external field 𝐵(𝜃, 𝜑) at the site of the NV, introduced by a 1-

inch permanent magnet above the sample, is mapped out as a function of ‘magnet

position’ (placed on a 1D-stage following the ⟨110⟩ crystal direction). Additional

details on characterization of the external static field can be found in [23].

We present the analytical results given for the interacting system of electron and

nuclear spins 𝑆, 𝐼 = 1/2.

In the case of an isotropic hyperfine tensor 𝐴𝑥 = 𝐴𝑦 = 𝐴𝑧, we have

𝐶 iso
𝑧 = 𝐴𝑧, (2.9)

whereas in the case of an axially symmetric tensor 𝐴𝑥 = 𝐴𝑦, we have

𝐶ax
𝑧 = 1

2
√
2

[︀
5𝐴2

𝑥 + 3𝐴2
𝑧 −

(︀
𝐴2
𝑥 −𝐴2

𝑧

)︀
×(︀

4 cos(2𝛿) sin2(𝛽) sin2(𝜃) + 4 cos(𝛿) sin(2𝛽) sin(2𝜃) + cos(2𝛽)(3 cos(2𝜃) + 1) + cos(2𝜃)
)︀]︀1/2

,

(2.10)

where 𝛿 = 𝛼− 𝜑.

In the general case of an arbitrary tensor, we can also obtain an explicit expression,

which is given by

𝐶𝑧 =
1

4

[︀
5
(︀
𝐴2
𝑥 + 𝐴2

𝑦

)︀
+ 6𝐴2

𝑧 + 8
(︀
𝐴2
𝑥 − 𝐴2

𝑦

)︀
sin(2𝛾)

(︀
cos(𝛽) sin(2𝛿) sin2(𝜃)− sin(𝛽) sin(𝛿) sin(2𝜃)

)︀
+
(︀
𝐴2
𝑥 − 𝐴2

𝑦

)︀
cos(2𝛾)

(︀
2(cos(2𝛽) + 3) cos(2𝛿) sin2(𝜃)− 4 sin(2𝛽) cos(𝛿) sin(2𝜃) + 2 sin2(𝛽)(3 cos(2𝜃) + 1)

)︀
+
(︀
2𝐴2

𝑧 − 𝐴2
𝑥 − 𝐴2

𝑦

)︀ (︀
4 sin2(𝛽) cos(2𝛿) sin2(𝜃) + 4 sin(2𝛽) cos(𝛿) sin(2𝜃) + cos(2𝛽)(3 cos(2𝜃) + 1) + cos(2𝜃)

)︀]︀1/2
.

(2.11)

Finally, we present the characterized hyperfine parameters of the two electron-

nuclear defects nearby the NV in Fig. 2-3. From simultaneous fitting both sets of

data (sweeping the field orientiations along 𝜃 or 𝜑 as shown inf Fig. 2-3) to the

axially symmetric equation above, we obtain 𝐴⊥ = 17.2(3), 𝐴‖ = 29.4(2), 𝛼𝑋 = 0(2),
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Figure 2-3: Characterizing the hyperfine tensors of two spin defects in
diamond. (Left) Measured hyperfine strengths for various polar angles (𝜃) of the
external applied magnetic field, plotted with respect to the polar angle of the NV
center (𝜃𝑁𝑉 ) in the azimuthal plane 𝜑 = 0∘. (Right) Measured hyperfine strengths
for various azimuthal angles of the static magnetic field (𝜑) in the polar plane 𝜃 = 90∘.
The solid lines are the best least-square fit of both sets of data to the eigenvalues of
an axially-symmetric hyperfine tensor with four free parameters. Adapted from [23].

𝛽𝑋 = 87(2) for 𝑋1 and 𝐴⊥ = 1.6(3), 𝐴‖ = 11.2(2), 𝛼𝑋 = 45(2), 𝛽𝑋 = 66(2) for 𝑋2.

We note that the axially symmetric model yielded a slightly better fit than the fully

general model.

We remark that the observed hyperfine parameters were not found in the fol-

lowing literature [73, 56, 116, 37, 70, 3, 42], suggesting that they may never have

been detected using conventional spectroscopy methods. These defects are possibly

nitrogen- or silicon-related centers resulting from nitrogen-ion implantation through

a 10-nm amorphous SiO2 layer introduced to mitigate ion channeling [114]. Further

triple-resonance measurements on the X nuclear spins should enable unambiguous

identification of the nuclear spin species [23].

2.2.2 Dipolar Interaction between NV and X Electronic Spins

We now present the characterization of interaction between the electronic spins of the

NV and the two characterized X spins, given by the dipolar Hamiltonian:

ℋNV−X = −𝜇0

4𝜋

𝛾NV𝛾X~2

𝑟3
(3(𝑆NV · 𝑟)(𝑆X · 𝑟)− (𝑆NV · 𝑆X)), (2.12)
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where 𝑟 = (sin (𝜁) cos (𝜉), sin (𝜁) sin (𝜉), cos (𝜁)) is the interatomic vector of norm 1

that join the NV center and X spin defect, parameterized by the distance 𝑟 between

the two centers and the polar and azimuthal angles (𝜁, 𝜉) defined with respect to the

NV molecular axis.

First, let us note that the NV is a spin-1 system 𝑆𝑁𝑉 = 1, in contrast to 𝑆𝑋 = 1/2,

and thus has a zero-field splitting Δ = 2𝜋 ·2870 MHz quantized along its ⟨111⟩ molec-

ular axis. Therefore, at sufficiently weak static magnetic field strength 𝛾𝑒𝐵0 ≪ Δ,

the NV electronic spin quantization axis is only slightly tilted away from its molecular

axis while the X electronic spin is predominantly quantized along the external field.

This behavior leads to a non-trivial transformation of the dipolar interaction tensor

under rotation of the field.

Given 𝜔𝑁𝑉 > 𝜔𝑋 ≫ ||ℋNV−X||, the dipolar Hamiltonian acts as a weak perturba-

tion to both the internal Hamiltonian of NV and X, ℋNV,ℋX. Then, via the secular

approximation, the remaining terms of ℋNV−X must commute with both ℋNV and ℋX.

In other words, given a general �⃗� orientation (which the NV spin follows only slightly

whilst X almost completely), we first diagonalize the interal Hamiltonian ℋNV(X) by a

unitary rotation 𝑈NV(X), such that the commutator [𝑈NV(X)ℋNV(X)𝑈
−1
NV(X), 𝑆

𝑧
NV(X)] =

0.

Then we accordingly rotate the dipolar Hamiltonian

ℋ̃ = 𝑈−1
X 𝑈−1

NVℋNV−X𝑈NV𝑈X, (2.13)

and via secular approximation keep the only commuting (energy-conserving) term

∝ 𝑆𝑧NV𝑆
𝑧
X.

By projecting the NV electron spin 𝑆 = 1 onto an effective two-level system

(by keeping only the 𝑚𝑠 = {0,−1} manifold and eliminating the never-populated

state 𝑚𝑠 = 1), we can analytically evaluate the secular dipolar strength. In this
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Figure 2-4: Characterizing the dipolar doupling between electronic spins in
diamond. Measured dipolar coupling strengths between the NV electron spin and the
X1 (blue) and X2 (green) electron spins for various magnet positions. The solid line
is the best least-square fit to the eigenvalues of the interacting spin Hamiltonian with
three free parameters (𝑟, 𝜁, 𝜉, see Eq. 2.14), which parametrize the relative position
of the two X spins with respect to the NV center. Adapted from [23].

approximation, valid when the 𝑚𝑠 = +1 level is energetically isolated, we obtain:

𝑑 =
𝑑𝑐
𝑟3
𝐴+𝐵 + 𝐶

𝐷
, (2.14)

𝐴 = 3 sin(2𝜁) cos(𝜉) sin(𝜃′)[Δ− 3𝛾𝑒𝐵0 cos(𝜃
′)],

𝐵 = −6𝛾𝑒𝐵0 sin
2(𝜁) cos(2𝜉) sin2(𝜃′),

𝐶 = (3 cos(2𝜁) + 1)(Δ cos(𝜃′)− 𝛾𝑒𝐵0 cos(2𝜃
′)),

𝐷 = 4
√︀
2(𝛾𝑒𝐵0 sin(𝜃′))2 + (Δ− 𝛾𝑒𝐵0 cos(𝜃′))2,

where 𝑑𝑐 = 2𝜋 · 52.041 MHz is the dipolar constant for two electronic spins at a

distance of 1 nm and 𝜃′ = 𝜃 − 𝜃NV is the angle between the static magnetic field and

the NV molecular axis in the yNV = 0 plane.

Similarly to previous case, the effective dipolar strength 𝑑 is the experimentally

observed value, while the RHS of Eq. 2.14 relates the measured 𝑑 to the parameters

(𝑟, 𝜁, 𝜉) describing the relative position of the X electronic spin with respect to a

central NV.

Finally, we present the experimental results in Fig. 2-4. Given the set of measured

dipolar strengths at various field orientations, we compare it to the expected (calcu-

lated) dipolar strengths. By calculating the least-square error, we can produce a
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Figure 2-5: Locating two spin defects in diamond. Probability distribution
maps of the location of the X1 (top) and X2 (bottom) spins defined with respect to
the coordinate frame of the NV center placed at the origin. The darker color indicates
a higher probability of finding the X spin at this specific location. Adapted from [23].

relative probability distribution map of spatial location of 𝑋1,2 with respect to a cen-

tral NV as shown in Fig. 2-5. At the most probable location, we find 𝑟1 = 9.23(3) nm

and 𝑟2 = 6.58(3) nm for X1 and X2 respectively.

Conclusion Having developed a general method to identify the interaction Hamil-

tonian of unknown electron-nuclear defects via the sweep of an external field, we

characterized a system of two electron-nuclear spin defects around the NV, forming

a quantum register of electronic spins. Given this controllable system of NV and X

electronic spins, we characterize the performance of this quantum device in the next

Chapter.
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Chapter 3

Characterize performance of a

quantum register: Entanglement

detection and noise spectroscopy

In the previous Chapter, we characterized a system of electronic-nuclear spin de-

fects around the central qubit (NV), thus identifying a controllable register of dark

electronic spins around the NV. In this Chapter, we characterize the performance

of this quantum device with respect to two aspects: the entanglement generated (in

Chapter 3.1) and the noise experienced (in Chapter 3.2) by this device.

In Chapter 3.1, we develop a novel metric, called the subspace witness, to improve

upon the conventional entanglement witness based on state fidelity. Given that entan-

glement is critical for many quantum information tasks, an accurate characterization

of entanglement generated by a device is desired, not only to verify its non-classical

nature but also to validate its use for the quantum information task of interest. As

the main result, the subspace witness, at the cost of additional measurements, is more

robust against local unitary control errors – more specifically, it is insensitive to any

combination of single-qubit phase errors accrued during the quantum circuit prepar-

ing and measuring the target entangled state. Indeed, for two-qubit entanglement, we

theoretically demonstrate – and verify experimentally with NV and X electronic spins

– the advantage of the subspace witness. For genuine multipartite entanglement, we
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first show that, depending on the target entangled state, the subspace witness can still

be very efficient in the number of measurements required; furthermore, the subspace

witness, beyond entanglement detection, also facilitates lower bound estimation of

entanglement via the metric called GME concurrence.

In Chapter 3.2, as the first step to characterize the noise affecting a multi-qubit

register, we demonstrate a protocol to build a self-consistent classical noise model

for individual qubits. Given that the lifetime of quantum devices is limited by deco-

herence, a practical (classical) and predictive model of the noise is desired not only

to better characterize the unknown, potentially quantum, bath but also to develop

more robust quantum devices. By performing noise spectroscopy of both NV and X

electronic spins, we find two results. First, for the NV qubit which is well isolated (dis-

tinguished) from the bath, it is possible to build a noise model that is self-consistent

or predictive over a varied set of dynamics – indicating an accurate characterization

of the bath. However, for the nearby X qubit, it is not possible – rather, we find

evidence for a more complex and quantum bath for the X qubit that precludes a

self-consistent classical noise model. As we note at the end, this bath of X, which

may contain a group of coherently interacting electronic spins, may be of interest for

future investigation, in order to further scale up the electronic spin register.

We start by discussing our work on more robust entanglement detection in the

presence of local unitary errors.

3.1 Improved Entanglement Detection under Local

Unitary Errors

In this section, we exploit universal control of our system of electronic spins to gen-

erate and verify 𝑛 = 2 entanglement between NV and X spins. More generally, we

develop a novel method, called entanglement subspace witness, to detect entangle-

ment more accurately and robustly in the presence of local unitary (i.e., single-qubit)

errors, improving upon the existing conventional method based on state fidelity.
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Background: Entanglement Witness Entanglement, while critical for many

quantum applications, is difficult to characterize both theoretically and even more so

experimentally. The most direct way is via quantum state tomography (QST), whose

goal is to identify the density operator 𝜌 describing the (true) state; then, given

knowledge of 𝜌, use one of several proposed metrics of quantifying entanglement in

𝜌. Unfortunately, QST has a measurement cost scaling exponentially with the qubit

number 𝑛, such that QST quickly becomes intractable for moderate 𝑛. Even for

small 𝑛 systems, errors in state preparation and measurement (SPAM) compound

the difficulty in identifying 𝜌 with high accuracy [103, 76, 11, 4].

Instead of quantifying entanglement, when the goal is more simply to detect

whether entanglement is present or not, an attractive alternative is to utilize the so-

called entanglement witnesses 𝑊 [88, 53]. The witness operator 𝑊 is designed to ‘wit-

ness’ or detect a specific entangled state |𝜓⟩: its expectation value ⟨𝑊𝜓⟩ = tr(𝜌𝑊𝜓)

is designed to be negative for specific entangled states, while positive for all separa-

ble states. And given that one measures an operator 𝑊 , instead of the state 𝜌, the

number of measurements for a witness scales much more favorably with respect to 𝑛

in contrast to QST.

While designing a witness for an arbitrary entangled state is nontrivial [45, 46,

55, 40], for NPT entangled states |𝜓⟩ (states that have negative eigenvalues under

positive partial transpose) [9], such as the well-known Bell, GHZ, W, and Dicke

states, the witness is based on the state fidelity measurement ⟨𝐹𝜓⟩ ≡ ⟨𝜓|𝜌|𝜓⟩, or

more specifically:

𝑊𝜓 = 𝛼− |𝜓⟩⟨𝜓|. (3.1)

Here 𝛼 is the squared maximum overlap of |𝜓⟩ with all possible separable states [13]

so as to conservatively detect entanglement.

Limitations of the ‘state’ entanglement witness 𝑊𝜓 One problem with this

entanglement witness (that we call ‘state’ witness 𝑊𝜓) is that it can severely under-

71



estimate the amount of entanglement present in 𝜌 in the presence of local unitary

(i.e., single-qubit) errors. Recall that local unitaries do not change the amount of

entanglement—but still can rotate the true 𝜌 away from ideal target |𝜓⟩⟨𝜓|. There-

fore, in general, the presence of local unitary errors leads to a smaller overlap ⟨𝐹𝜓⟩

and hence under-estimation of entanglement.

For concreteness, let us demonstrate this explicitly for the simplest entangled state

between 𝑛 = 2 qubits. For a two-qubit system, there are four canonical maximally

entangled states, the Bell states [7, 19, 8]. The Bell states {|Φ±⟩, |Ψ±⟩} form an

orthogonal basis, thus any state (and in particular entangled states) can be written

in terms of their superpositions. Choosing the computational basis to describe the

energy eigenbasis, we can explicitly write a Bell state as |Φ±(Ψ±)⟩ = (|𝑘⟩ ± |𝑘⟩)/
√
2,

with |𝑘⟩ = |00⟩(|01⟩) and |𝑘⟩ the corresponding spin-flipped states. Each pair of Bell

states, |Φ±⟩ and |Ψ±⟩, span a subspace with constant energy. For many applications,

such as entanglement-enhanced quantum sensing [12, 77, 21] or decoherence-protected

subspaces [87, 69, 66, 38, 17, 18], states inside this subspace are equally beneficial.

In particular, we can identify the family of maximally entangled states inside such

subspaces, parametrized by a phase 𝜑,

|Φ(𝜑)⟩ = cos(𝜑/2)|Φ+⟩+ 𝑖 sin(𝜑/2)|Φ−⟩, (3.2)

and similarly for |Ψ±⟩. Here 𝜑 describes the phase degree of freedom that leaves

unchanged the state desired properties (e.g., for enhanced sensing or decoherence-

protected memory respectively).

Fixing 𝜑, we can build a canonical ‘state’ witness as in Eq. 3.1 (with 𝛼 = 1/2).

This is a good witness to detect the presence of two-qubit entanglement in any state

𝜌, given that all two-qubit entangled states are NPT. The expectation value of the

witness depends on the state fidelity, 𝑊𝜓 = 1/2 − 𝐹𝜓, where the state fidelity is a

function of 𝜑:

⟨𝐹𝜓⟩ = ⟨𝜓(𝜑)|𝜌|𝜓(𝜑)⟩ = 𝑃 + 𝐶(𝜑) ≤ 𝑃 + |𝜌𝑘𝑘|. (3.3)
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Using the notation 𝜌𝑗𝑘 = ⟨𝑗|𝜌|𝑘⟩, here 𝑃 = 1/2(𝜌𝑘𝑘 + 𝜌𝑘𝑘) is the sum of populations

in the |𝑘⟩, |𝑘⟩ subspace and

𝐶(𝜑) = Re(𝜌𝑘𝑘) cos(𝜑) + Im(𝜌𝑘𝑘) sin(𝜑)

= |𝜌𝑘𝑘| cos(𝜑+ 𝜃𝑘𝑘)
(3.4)

are the relevant coherences, with tan(𝜃𝑘𝑘) = Im(𝜌𝑘𝑘)/Re(𝜌𝑘𝑘).

Recalling that the family of entangled states |Φ(𝜑)⟩ (whose state fidelity is being

measured) is maximally entanlged, ideally the witness should (i) successfully detect

the entanglement, and (ii) detect it at the maximum possible violation, i.e., minimum

⟨𝑊𝜓⟩ = 1/2− ⟨𝐹𝜓⟩ = −1/2.

However, we see instead the coherence 𝐶(𝜑) is maximum only for 𝜃𝑘𝑘 = −𝜑.

Unfortunately, 𝜃𝑘𝑘 might be unknown due to the unitary component of SPAM er-

rors. Then, while 𝑃 < 1/2 always reflects a suboptimal (or absent) entanglement,

𝐶(𝜑) might even be negative, leading to the false conclusion that the state is not

entangled—although the state is maximally entangled.

Main Results In order to improve upon the state witness 𝑊𝜓, we develop a novel

witness measurement called ‘subspace’ witness ⟨𝑊𝑠⟩, which at the cost of additional

measurements, becomes robust against a specific type of local unitaries, namely (any

combination of) single-qubit phase errors 𝜑:

⟨𝑊𝑠⟩ = min
𝜑

⟨𝑊𝜓⟩ = 𝛼−max
𝜑

⟨𝜓(𝜑)|𝜌|𝜓(𝜑)⟩. (3.5)

We call this a ‘subspace’ witness because it successfully detects any entangled

state |𝜓(𝜑)⟩ inside the subspace spanned by the relevant entangled-state basis (e.g.,

the space spanned by either |Φ±⟩ or |Ψ±⟩ as was seen above). In other words, with

respect to the state witness which is designed for a specific 𝜑, the subspace witness

detects a larger family of entangled states |𝜓(𝜑)⟩ for all 𝜑—and always at maximum

possible violation (i.e., most negative) ⟨𝑊𝑠⟩ = min𝜑⟨𝑊𝜓⟩. Note this is equivalent to

the statement that the subspace witness can successfully detect the entangled state
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in the presence of unknown local phase errors 𝜑 over the 𝑛 qubits—and always at the

maximum possible violation.

With respect to the existing characterizations of entanglement, namely the entan-

glement witness (for detection) and an entanglement measure (for quantification), we

see qualitatively that the subspace witness is an intermediate metric between them.

More specifically, while the entanglement measure is optimized over all possible local

unitaries and the witness over none, the subspace witness is optimized over local uni-

taries (only) along the z-direction (to be invariant under relative phase). In fact, we

find a more quantitative link between the three methods, as that the subspace wit-

ness (beyond detection) also facilitates lower-bound quantification of entanglement

via generalized concurrences.

In the following section, we first discuss the case of 𝑛 = 2-qubit entanglement,

for which the subspace witness can be directly shown to outperform the conventional

state witness both theoretically (since for 𝑛 = 2 an analytical quantification of en-

tanglement is known) and experimentally (with our two-qubit system of NV and X).

Then in the last section, we discuss the extension to 𝑛 > 2, i.e., genuine multipartite

entanglement (GME).

3.1.1 Two-qubit Entanglement

In this section, we demonstrate the advantage of the proposed subspace witness ⟨𝑊𝑠⟩

over the conventional state witness ⟨𝑊𝜓⟩ in three parts. The first two parts will be

the theoretical and experimental comparisons of the two methods of entanglement

detection. Afterwards, we will discuss their relation to (lower bound) quantification

of entanglement.

Theory: Example for Bell States Here we give an example for the two qubit

case, given that an analytical expression of the entanglement measure called concur-

rence 𝐶2 (not to be confused with coherence 𝐶 below) can be obtained. In this section

we will explicitly see the subspace entanglement witness ⟨𝑊𝑠⟩ detects a larger share

of entangled states than does a typical state witness ⟨𝑊𝜓⟩, and does so with a strictly
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larger violation.

Consider a generic state in the subspace spanned by one pair of Bell states (e.g.,

|Φ±⟩), which can be written as

𝜌Φ =
IΦ
2

+
𝜖

2
(sin𝜑0 cos 𝜃Φ𝑥 + sin𝜑0 sin 𝜃Φ𝑦 + cos𝜑0Φ𝑧),

where Φ𝛼 are Pauli matrices in the (sub)space, e.g., Φ𝑥 = |Φ+⟩⟨Φ−|+ |Φ−⟩⟨Φ+| and IΦ
is the identity in the subspace. 𝜌Φ(𝜖, 𝜃, 𝜑0) is uniquely defined in the following range:

𝜖 ≥ 0, 𝜃 ∈ [0, 2𝜋), and 𝜑0 ∈ [0, 𝜋], where 𝜖 = 0 indicates a classical mixture.

In order to gain insight into this generic state, first let us inspect the double-

quantum coherence 𝐶 (necessarily nonzero for entanglement):

𝐶 = ⟨00|𝜌Φ(𝜖, 𝜃, 𝜑0)|11⟩ =(𝜖/2)(cos𝜑0 + 𝑖 sin𝜑0 sin 𝜃). (3.6)

This shows that maximum entanglement of 𝜌Φ—i.e., when |𝐶| = 𝜖/2—occurs either

when sin2 𝜑0 = 0 or sin2 𝜃 = 1. The former indicates a state with fully real coherence

𝐶 = 𝜖/2, and the latter case refers to a more general complex coherence 𝐶 = 𝑒𝑖𝜑0𝜖/2.

Now, to determine when 𝜌Φ is entangled, we can calculate the concurrence 𝐶2

for this generic state. In fact, 𝐶2 reveals that in general 𝜌Φ(𝜖> 0, 𝜃, 𝜑0) is entangled

(except at the special point at 𝜃 = 0, 𝜑0 = 𝜋/2). More explicitly:

𝐶2 =
√︀
𝑎+ 𝑏|𝜖| −

√︀
𝑎− 𝑏|𝜖|,

𝑎 =(1− 𝜖2 sin2 𝜑0(1 + cos 2𝜃))/4;

𝑏 =
√︀
𝑏1𝑏2/2,

𝑏1 =2− sin2 𝜑0(1 + cos 2𝜃) ≥ 0,

𝑏2 =2− sin2 𝜑0(1 + cos 2𝜃)𝜖2 ≥ 0.

(3.7)

Recall that 𝐶2 > 0 indicates entanglement. Given that 𝐶2 > 0 ⇒ 2𝑏|𝜖| > 0, due to

positivity of 𝑏, in general 𝜌Φ(𝜖>0, 𝜃, 𝜑0) is entangled.

Returning to our goal of comparing the witnesses, this means that an ideal entan-

glement witness, when applied to 𝜌Φ(𝜖>0, 𝜃, 𝜑0), should always detect entanglement
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(except at the special point). Let us now compare the performance of the two wit-

nesses of interest.

Let us first examine the state witness ⟨𝑊𝜓⟩—and identify the ‘range’ of states

it can detect as well as its magnitude of violation. Here the target state is either

|𝜓⟩ = |Φ±⟩; we choose |Φ+⟩ as it makes no difference in the detectable range or the

degree of violation. More specifically, we see that

⟨𝑊𝜓⟩ =
1

2
− ⟨Φ+|𝜌Φ|Φ+⟩

=− 𝜖

2
cos𝜑0

=− Re(⟨00|𝜌Φ(𝜖, 𝜃, 𝜑0)|11⟩) = −Re(𝐶).

(3.8)

In other words, the range of detectable states for ⟨𝑊𝜓⟩ is limited to 𝜑0 ∈ [0, 𝜋/2)—

even though all of 𝜑0 ∈ [0, 𝜋] are entangled. Furthermore, ⟨𝑊𝜓⟩, being oblivious to

𝜃, either underestimates or completely misses all the entanglement in the imaginary

part of the coherence.

Finally, we show that the subspace witness ⟨𝑊𝑠⟩ captures a larger share of en-

tangled states, i.e., all the entangled states in the subspace, and also with a larger

violation. The subspace witness yields

⟨𝑊𝑠⟩ =
1

2
−max

𝜑
⟨Φ(𝜑)|𝜌Φ|Φ(𝜑)⟩

=− 𝜖

2
max
𝜑

{sin 𝜃 sin𝜑0 sin𝜑+ cos𝜑0 cos𝜑}

=− 𝜖

2
(sin2 𝜃 sin2 𝜑0 + cos2 𝜑0)

1/2max
𝜑

{cos(𝜑− 𝜃′)}

=− |⟨00|𝜌Φ(𝜖, 𝜃, 𝜑0)|11⟩|max
𝜑

{cos(𝜑− 𝜃′)}

=− |⟨00|𝜌Φ(𝜖, 𝜃, 𝜑0)|11⟩| = −|𝐶|.

(3.9)

In other words, the subspace witness detects—with maximum violation |𝐶|—all of

𝜌Φ(𝜖>0, 𝜃, 𝜑0) except at the special (unentangled) point mentioned above.

Experiment: Generating and Detecting NV-X Entanglement Here we present

the experimental results of the detection via the two witnesses of interest of entan-
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Figure 3-1: Demonstration of witness measurements ⟨𝑊𝜓⟩ and ⟨𝑊𝑠⟩ for
𝑑 = 2 target entangled state (Left) We measure the ‘state’ entanglement witness
measurement, based on Bell state fidelity, which successfully detects entanglement by
⟨𝑊𝜓⟩ = 𝛼 − ⟨Φ+|𝜌|Φ+⟩ = −0.07421(4). Grey vertical line denotes the optimal mea-
surement gate time that would yield the desired two-body correlators ⟨𝜎𝑗1𝜎

𝑗
2⟩ in the

absence of decoherence. To account for decoherence, the signal is fit (dotted lines) to
exponentially decaying oscillation with characteristic decay time 𝑇 = 25𝜇𝑠. Given the
short optimal gate time, we see little difference when accounting or not for the decay.
The measured two-body correlations are |⟨𝜎𝑥1𝜎𝑥2 ⟩| = 0.2142(1), |⟨𝜎𝑦1𝜎

𝑦
2⟩| = 0.5857(2),

and |⟨𝜎𝑧1𝜎𝑧2⟩| = 0.4970(0). (Center) Sweeping the control phase 𝜑 reveals oscillations
between the real and imaginary part of the coherence 𝜌14. By fitting the oscillations
(dotted line) we extract the coherence amplitude and calculate the entangled state
fidelity maximized over the Bell subspace, thereby improving entanglement detec-
tion by ⟨𝑊𝑠⟩ = 𝛼 − ⟨Φ|𝜌|Φ⟩ = −0.1827(4). (Right) Measuring the spin echo after
preparing the entangled state also yields the subspace witness, as the coherence 𝜌14
time evolution is equivalent to sweeping a phase 𝜑 ≡ 𝜈𝜏 ; this detection method fur-
ther estimates the time-scale of (detectable) entanglement. The two electronic spin
system in diamond, after entangled state preparation to 𝜌, decohere under the spin
echo pulse sequence, yielding a characteristic decay time 𝑇2 = 31(3)𝜇𝑠 when fitted
to a Gaussian decay (dotted line). As the population 𝑃 = 0.371 is constant over the
timescale of experiment, as measured independently, we witness entanglement until
𝜏 * ≤ 𝑇2 ln(𝐶(0)/(𝛼− 𝑃 ))1/𝑝 = 33(3)𝜇𝑠. Adapted from [104].

glement generated between the electronic spins NV and X. Experimental details of

entanglement generation we leave in the paper [104].

We now discuss the measurement results of the (true) generated state 𝜌, with the

attempt to create the (target) Bell state |Φ+⟩.

First, we measure the state witness ⟨𝑊Φ(𝜑 = 0)⟩ which requires the measurement

of the Bell state fidelity 𝑀 = |Φ+⟩⟨Φ+|, to yield the signal 𝑆 = tr(𝜌𝑀) = ⟨Φ+|𝜌|Φ+⟩.

Or equivalently, given ⟨Φ+|𝜌|Φ+⟩ = 1
4
(1+ ⟨𝜎𝑧1𝜎𝑧2⟩+ ⟨𝜎𝑥1𝜎𝑥2 ⟩−⟨𝜎𝑦1𝜎

𝑦
2⟩), one can measure

the three correlators, ⟨𝜎𝛼1 𝜎𝛼2 ⟩ with 𝛼 = {𝑥, 𝑦, 𝑧}. From the 3 measurements shown in
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Fig. 3-1, we obtain 𝐹Φ+ = 1/4(1+0.497+0.2142+0.5857) = 0.57421(4) > 1/2. From

this fidelity we have ⟨𝑊Φ⟩ = −0.07 which successfully detects entanglement.

Still, this measurement might underestimate the amount of entanglement in the

presence of coherent local errors. We thus measure the subspace witness ⟨𝑊𝑠⟩, to

extract the coherence |𝜌𝑘𝑘| = |⟨00|𝜌|11⟩|. More specifically, in contrast to the (fixed)

Bell state fidelity operator 𝑀 = |Φ+⟩⟨Φ+|, we can modulate the measurement op-

erator to 𝑀(𝜑) = |Φ(𝜑)⟩⟨Φ(𝜑)| = 𝑅𝑧(𝜑)|Φ+⟩⟨Φ+|𝑅†
𝑧(𝜑), where 𝑅†

𝑧(𝜑) is single-qubit

phase modulation about z on one of the two qubits. Then one can find a resulting

signal up to a constant (see Fig. 3-1:

𝑆(𝜑) = tr(𝜌𝑀(𝜑))

=
⟨𝜎𝑥1𝜎𝑥2 − 𝜎𝑦1𝜎

𝑦
2⟩

2
cos(𝜑)− ⟨𝜎𝑥1𝜎

𝑦
2 + 𝜎𝑥1𝜎

𝑦
2⟩

2
sin(𝜑)

= 2Re(𝜌14) cos(𝜑)− 2Im(𝜌14) sin(𝜑)

= 2𝐶(𝜑),

(3.10)

where 𝜌14 = ⟨00|𝜌|11⟩ is the coherence of interest, and the (undersired) constant is the

part invariant under 𝑅𝑧: 𝑃 = (1 + ⟨𝜎𝑧1𝜎𝑧2⟩)/4. (Note that while the exact 𝑀(𝜑) used

in our experiment is not the same as 𝑅𝑧(𝜑)|Φ+⟩⟨Φ+|𝑅†
𝑧(𝜑) [104]—the signal is only

different in the (undesired) constant, and hence signal amplitude in Fig. 3-1 still yields

the coherence of interest) We thus obtain a maximum fidelity of ⟨Φ|𝜌|Φ⟩ = 0.6827(4),

corresponding to ⟨𝑊𝑠⟩ = −0.1827(4), having optimized over the |Φ⟩ subspace. This

indicates that we have indeed coherent errors affecting our state preparation and

measurement process.

As an aside, we note that the subspace witness can also help determine the entan-

glement coherence time. The (entangled) prepared state 𝜌(𝜏=0) will evolve under the

environment influence and the natural (or engineered) Hamiltonian. By measuring

the subspace witness after a time 𝜏 , one can then detect whether entanglement is still

present, at the net of local, unitary evolution. By setting max𝜑[𝐹𝜓(𝜏 *)] = 𝛼 we can

further define a threshold time 𝜏 * after which entanglement in 𝜌(𝜏 ≥ 𝜏 *) is no longer

witnessed.
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In estimating such entanglement coherence time, to simplify the measurement of

the subspace witness, we can apply the phase 𝜑 rotation at each time point measured,

such that 𝜑 = 𝜈𝜏 . Then, from the decay of the oscillations in 𝐶 one can directly ex-

tract 𝑊𝑠 at 𝜏 = 0 and the characteristic time 𝜏 *. We note that in general both

coherences 𝐶 and population 𝑃 will decay for open quantum systems, but only ex-

tracting the coherences at various 𝜑 is needed to reconstruct 𝑊𝑠. In our experiments

(see Fig. 3-1), we thus measure the phase-modulated decay of the coherence. As the

main decoherence source is dephasing, which leaves populations intact, we simply

verify that 𝑃 (𝜏) is constant. In experiments, we compare 𝑃 (𝜏) = (1 + ⟨𝜎𝑧1𝜎𝑧2(𝜏)⟩)/4

at 𝜏 = 0𝜇s and 𝜏 = 40𝜇s and, as expected, observe no decay in ⟨𝜎𝑧1𝜎𝑧2(𝜏)⟩. We

then study the entanglement decay under a spin echo [47, 21] of varying duration 𝜏 .

The prepared entangled state 𝜌 evolves under ℋint (which would not affect the ideal

state |Φ⟩) and decoherence. We then apply the measurement modulated at 𝜑 = 𝜈𝜏

with 𝜈 = 15 kHz. A simple Gaussian decay fit yields a characteristic decoherence

time 𝑇2 = 31(3)𝜇𝑠 of the double-quantum coherence |⟨00|𝜌|11⟩|, such that taking a

constant 𝑃 = 0.374(1), we obtain the time 𝜏 * = 33(3)𝜇𝑠 until which entanglement

can be detected.

Finally, while we have shown that we can create entanglement in our system, the

state fidelity is far from optimal. To improve the quality of entanglement in our

hybrid system and investigate the source of non-ideality, we probe the entanglement

as a function of repetitive state initialization steps. In this way, we can distinguish

between initialization 𝐼 and control errors in 𝑈 (Fig. 3-2).

We repeat the HHCP plus laser polarization block 𝑁 = {1, 3, 5} times (as de-

scribed in [22, 104]) to create 𝜌0(𝑁), then prepare the entangled state 𝜌(𝑁) and

measure the witness ⟨𝑊𝑠(𝑁)⟩ with fixed control operations. The result is shown in

Fig. 3-2. With increasing 𝑁 we observe an increase in the overall fidelity 𝐹𝑠(𝑁),

due to an increase in both the population difference (inferred from 𝑃 (𝑁)) as well as

the double-quantum coherence 𝐶(𝑁). We note that explicitly verifying an increase

in coherence is of practical importance, because specific applications, e.g., classical

field sensing with GHZ states — the topic of the Chapter 4 — depend strictly on the
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Figure 3-2: Improved entanglement detection allows improved bound to
entanglement: Given imperfect state initialization step that prepares 𝜌0 with sub-
unit purity, it is possible to improve purity by 𝑁 repetitive initialization steps. We
plot as a function of 𝑁 the following results of the subspace witness: namely, the
Bell state fidelity 𝐹𝑠(𝑁) = 𝑃 (𝑁) + |⟨00|𝜌(𝑁)|11⟩|, the coherence 2|⟨00|𝜌(𝑁)|11⟩| =
2max𝜑[𝐶(𝜑)] ≤ 𝐹𝑠(𝑁), and the resulting lower bound to concurrence. With 𝑁 > 1
we observe the expected improvement in purity, from 𝑃 (𝑁) = (1+⟨𝜎𝑧1𝜎𝑧2(𝑁)⟩)/4, that
leads to improved 𝐹𝑠(𝑁). We also verify the increase in double-quantum coherence
generated |⟨00|𝜌(𝑁)|11⟩|, which is of practical importance given that specific applica-
tions such as entanglement-enhanced sensing with GHZ states benefit directly from
larger quantum coherence and not directly the fidelity itself. In addition, we note that
the subspace witness ⟨𝑊𝑠⟩ improves bound to entanglement (via concurrence) over
the typical ‘state’ witness ⟨𝑊𝜓⟩ due to improved Bell state fidelity. The errorbars are
smaller than the dots for all plots. The applicability of improved bound for specific
GME states by ⟨𝑊𝑠⟩ is discussed in the text. Adapted from [104].

amount of coherence (not necessarily fidelity) of the entangled state.

Lower-bound to Entanglement Finally, we conclude the Section remarking on

the connection to entanglement quantification. As may be expected, the subspace

witness, which yields a larger violation, gives a tighter bound on the amount of

entanglement generated (Fig. 3-2). While such a (quantitative) relation might seem

intuitive (and expected), a ‘general’ way to relate entanglement detection to entangle-

ment quantifiers is not known. However, for the two-qubit case, it has been shown [8]

that one can relate Bell fidelities 𝐹𝜓 to the entanglement of formation, and thereby
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to any other related metrics such as the well-known concurrence. More specifically,

the lower-bound to the two-qubit concurrence is 𝐶2(𝜌) ≥ max(0,−2𝑊𝜓), with 𝐶2 = 1

for maximally entangled states. This relation makes it clear that to obtain an entan-

glement measure one should optimize over all state witnesses. While the subspace

witness only optimizes over a restricted set of states, it still provides a stricter bound

than the state witness, 𝐶2 ≥ −2𝑊𝑠 ≥ −2𝑊𝜓.

3.1.2 Genuine Multipartite Entanglement (GME)

Finally, we discuss the case for 𝑛 > 2, i.e., detection of genuine multipartite entan-

glement (GME) via the subspace witness. More specifically, we address the three

main aspects of interest: its applicability, its limit (due to measurement cost), and

lower-bounding entanglement (beyond detection).

Applicability Recall that the state witness 𝑊𝜓 detects the class of NPT states,

including but not limited to the famous GME states: GHZ, W, and Dicke states.

Given that the subspace witness ⟨𝑊𝑠⟩ = min ⟨𝑊𝜓⟩ detects the same states witnessed

by 𝑊𝜓, it also detects all NPT entangled states.

However, this improved detection comes at an increased measurement cost that

we now discuss.

Measurement Cost We first define the measurement cost: whereas 𝑊𝜓 requires

a single fidelity measurement 𝑁 = 1, ⟨𝑊𝑠⟩ requires 𝑁 = 𝑑(𝑑− 1) + 1 measurements,

where 𝑑 is the dimension of the subspace spanned by the relevant entangled-state

basis. We show this explicitly below.

To this end, we first parameterize a multipartite entangled state |𝜓(�⃗�)⟩ in the

computational basis |𝑘⟩ as:

|𝜓(�⃗�)⟩ =
𝑑−1∑︁
𝑘=0

𝑎𝑘𝑒
−𝑖𝜑𝑘 |⃗𝑘⟩, (3.11)

where 𝑎𝑘 is the probability amplitude, 𝜑𝑘 = �⃗� · �⃗� is the |⃗𝑘⟩-dependent phase given a
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preset 𝑛-length vector of phases �⃗� = {𝜑𝑗}𝑛 for every 𝑗-th qubit, and 𝑑 is the dimension

of the subspace spanned by the set {|𝑘⟩} specifying |𝜓⟩.

While such expression could describe any pure state of 𝑛 qubits, we are interested

in NPT entangled states |𝜓⟩ for which state witnesses 𝑊𝜓 are valid, such as GHZ,

W, or Dicke states. For instance, for a general 𝑛-qubit GHZ state |𝜓𝑘⟩ = (|𝑘⟩ +

𝑒−𝑖𝜑|𝑘⟩)/
√
2, we have 𝑎𝑘 = 1/

√
2 and the subspace of interest is spanned by {|𝑘⟩, |𝑘⟩}

of dimension 𝑑 = 2. For a W state |𝑊 (𝑛)⟩ =
∑︀𝑛

𝑘=1 𝑒
−𝑖𝜑𝑘 |𝑘⟩/

√
𝑛, we have 𝑎𝑘 = 1/

√
𝑛

with the subspace of dimension 𝑑 = 𝑛 spanned by states {|𝑘⟩} in the one-excitation

manifold.

Given this parameterization, the fidelity 𝐹𝜓 again reduces to a simple expression

𝐹𝜓(�⃗�) = 𝑃 + 𝐶(�⃗�) with �⃗� = {𝜑𝑘} for 𝑘 = 1, . . . , 𝑑. Here, 𝑃 =
∑︀𝑑−1

𝑘=0 𝑎
2
𝑘𝜌𝑘𝑘 and 𝐶(�⃗�)

is just a sum similar to Eq. 3.4 extended to all many-body coherences 𝜌𝑗𝑘 of interest:

𝐶(�⃗�) = 2
𝑑−2∑︁
𝑗=0

𝑑−1∑︁
𝑘>𝑗

𝑎𝑗𝑎𝑘�⃗�𝑗𝑘 · �⃗�𝑘𝑗, (3.12)

where �⃗�𝑗𝑘 = (Re(𝜌𝑗𝑘), Im(𝜌𝑗𝑘)) and �⃗�𝑘𝑗 = (cos𝜑𝑘𝑗, sin𝜑𝑘𝑗) with 𝜑𝑘𝑗 = 𝜑𝑘 − 𝜑𝑗.

Thus to extract the ‘subspace’ witness ⟨𝑊𝑠⟩ (as was done in 𝑛 = 2 case above) we

must identify all 𝑑(𝑑−1)/2 many-body coherences 𝜌𝑗𝑘 by again solving the set of linear

equations given by multiple measurements 𝐹𝜓(�⃗�), containing a total of 𝑑(𝑑 − 1) + 1

unknowns. (An explicit example to measure the subspace witness with multiple

coherence terms in W state is given in the Appendix of [104].)

Therefore the subspace dimension 𝑑, and its scaling with the number of qubits

𝑛, sets the limit of which entangled states we can tackle, given that we want to be

efficient with respect to QST.

For GHZ states, 𝑑 = 2 is constant and independent of 𝑛: in other words, for any

𝑛-qubit quantum processor, one can extract the subspace-maximized GHZ witness

with just 3 measurements, a very efficient protocol. Indeed, experimentally such

subspace-optimized fidelity has been observed with ∼ 20 qubits in superconducting

and neutral atom systems [121, 84, 102]. We also note that using a 10-qubit register

in diamond up to a 7-qubit GHZ state was witnessed with state fidelity 0.589(5) [14]
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which could be further optimized with such subspace witness measurement.

For W states, 𝑑 = 𝑛: since this is still polynomial in 𝑛, all subspace-optimized 𝑊𝑠

witnesses will be efficient with respect to QST.

In contrast, for Dicke states, 𝑑 =
(︀
𝑛
𝑘

)︀
=
(︀

𝑛
𝑛−𝑘

)︀
with 𝑘 excitations: therefore, only

for very lowly- (highly-) excited Dicke states will ⟨𝑊𝑠⟩ prove efficient with respect to

QST.

Lower-bound to Entanglement Finally, the role of the subspace witness as an

intermediate metric between entanglement witnesses (detection) and entanglement

measures (quantification) can be made more concrete by noting that it can, beyond

detection, yield a lower-bound to entanglement given knowledge of the population of

𝜌 also for GME states.

More specifically, the lower bound to an entanglement measure called the GME

concurrence 𝐶GME [74], related to the separability criteria [44], can be estimated effi-

ciently from experiments as it requires the knowledge of only specific matrix elements

of 𝜌. Both the lower bound to 𝐶GME and separability criteria take the form of a

difference between the many-body coherences 𝜌𝑗𝑘 within the subspace of interest and

appropriate population terms outside the subspace. Similar to entanglement wit-

nesses, these quantities change sign for separable states, as the difference between

coherences and population terms changes sign.

For instance, for 𝑛 = 3, the lower bound to GME concurrence is given by:

𝐶GME(𝑛 = 3) ≥ 𝜌18 −
∑︁

𝑘,𝑘 ̸=1,8

√
𝜌𝑘𝑘𝜌𝑘𝑘, (3.13)

where the first term is 𝜌18 = ⟨000|𝜌|111⟩, and the second term is the sum of popula-

tions outside the GHZ subspace.

We note that the subspace witness ⟨𝑊𝑠⟩ alone is insufficient in providing the lower

bound to GME concurrence: ⟨𝑊𝑠⟩ can only provide the first term, as it identifies the

true (maximum) coherences of interest. Thus the second term of populations must

be identified from additional measurements, but for systems with individual qubit

83



readout, a single measurement setting (every qubit along 𝑧) suffices to identify all the

population terms.

Conclusion Having developed a novel metric to more accurately detect entangle-

ment in quantum devices in the presence of local unitary errors, we experimentally

demonstrated its advantage over the conventional witness based on the state fidelity

with the two-qubit entangled state generated with NV and X electronic spins.

In the next section, we characterize the noise experienced by our quantum register.

More specifically, as the first step to accurately characterize the noise affecting a multi-

qubit device, we demonstrate a method to build a self-consistent classical noise model

for individual qubits.

3.2 Nanoscale Characterization of Spatio-temporal

Noise Correlation

In this Section, we present our first step towards investigating the spatio-temporal

correlation in the noise experienced by two nearby qubits.

More specifically, given our two nearby electronic spins NV and X (singled out

from the larger spin bath), we characterize the noise experienced by the two qubits,

as the first step to characterize the correlation between them.

For two spatially proximal qubits, it is expected in general that the noise they

experience are correlated, given that they (partially) share the same bath. Aside

from the fundamental interest of understanding the correlation effected by various

(quantum) baths existing in various QIP platforms, verifying and quantifying the

correlated noise across qubits is also of practical interest.

Perhaps one obvious application is in quantum sensing, to reveal also the corre-

lation in the signal arising from a complex (quantum) target of interest, by utilizing

spatially separated sensors. Another application of interest would be in characteri-

zation of a multi-qubit device, to more completely model and understand their de-

coherence, and possibly improve two-qubit operations. Furthermore, correlated noise
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has also implications for quantum error correction (QEC).

More specifically, for QEC to be successful, the physical qubits must have error

probability below a so-called error threshold [101, 62, 59, 1]. Typically, this threshold

for the QEC code of interest is estimated assuming independent noise for each qubit,

that each qubit has its own independent bath. Thus characterizing the noise corre-

lation between qubits will help test the hypothesis of correlated noise. In the case

of non-zero correlation, such characterization could further help either theoretically

better estimate of the threshold given the knowledge of correlated noise, or itera-

tively engineer qubits towards more independent noise should the correlated noise

significantly reduce the threshold.

In fact, practical proposals of noise correlation have been recently proposed and as

well demonstrated in a proof-of-concept experiment with engineered noise [108, 117].

Then, in relation to our system of proximal spin qubits interacting with the native

spin bath, it would be of fundamental interest to understand correlation in the noise

effected by the spin bath between the spatially separated qubits.

To that end, as the first step to characterization of correlation between the noise

experienced by a qubit pair, we set the goal to characterize the noise itself experienced

by the qubit pair.

Goal More specifically, the goal of this Section will be to build a ‘self-consistent’

(classical) noise model for each of the two proximal qubits NV and X.

Here we note a few definitions. First, by a ‘noise model’ 𝑆(𝜔), we mean an effective

classical noise process that can (approximately) reproduce the effect of the (quantum)

bath, i.e., the qubit decoherence. Second, by a ‘self-consistent’ noise model 𝑆(𝜔), we

mean that the fully-characterized noise model (i.e., with its structure and all its

parameters estimated) should be predictive, numerically reproducing at least all the

observed measurements of decoherence.

Should such a self-consistent single-qubit noise model be attainable, it would be

also of both practical and fundamental interest. More practically, prior knowledge of

the noise model can help tailor more robust quantum circuits to minimize decoherence;
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and in the limit of negligible correlated noise, the single-qubit noise model should be

sufficient for a multi-qubit device. More fundamentally, a good noise model not only

provides a physical understanding of the (quantum) bath reduced to a simple classical

noise process, but perhaps more importantly gives quantitative characterization (via

the identified model parameters) of the bath that the probe qubit is interacting with.

In other words, even by probing individual qubits in spatial proximity, one may

gain nontrivial insight into the (quantum) bath of interest. By the end of the Section,

by comparing the noise model of the electronic spin bath extracted from the NV and

X spins, we will gain some (quantitative) insight into the microscopic structure of the

spin bath seen by both qubits.

Potential Problem A priori, there is a potential problem towards our Goal to find

a noise model for our two qubits that is self-consistent across various experiments or

measurements of decoherence.

In principle, for a qubit or a qutrit, it was shown that a classical noise model is

always possible for its evolution under a fixed dynamics (i.e., a fixed ‘experiment’),

whether or not the noise source is quantum [25].

However, this attained noise model may not be predictive under a different con-

trolled dynamics or experiment. If this is the case, such a noise model is neither so

useful in practice nor a ‘good’ characterization of the (quantum) bath itself–which

should be independent of (control on) the qubit.

In fact, this problem of an inconsistent noise model was explicitly demonstrated

for an electronic spin in a nuclear spin bath [51]. More specifically, in the weak system-

bath interaction regime (with respect to internal bath Hamiltonian 𝐻𝐵), a classical

noise model from a particular dynamics could predict decoherence under other dy-

namics; however, there was a ‘phase’ transition at a sufficiently strong interaction

regime (with respect to 𝐻𝐵), when this noise model failed to be predictive.

Main Results In light of this potential problem, we report our Main Results for

the Section.
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For the NV spin, it is possible to devise a protocol to build a self-consistent noise

model that bridges between the various dynamics, namely Ramsey (𝑅), Echo (𝐸),

and CPMG (𝐶𝑃𝑚) experiments.

For the nearby X spin, it is not possible (yet). Here, the reason may be a technical

one, and not in principle, and hence may be reconciled with further work.

Finally, as mentioned above, by comparison of the noise model of the electronic

spin bath from NV and X, we are able to gain, while partial, quantitative insight into

the physical structure of the microscopic spin environment of NV and X.

3.2.1 Self-consistent Noise Model for NV

Before delving into the details below, we first report the main result: for the NV,

we are able to devise a protocol to build a noise model 𝑆𝑁𝑉 (𝜔) that is at least self-

consistent over all observed dynamics, namely {𝑅,𝐸,𝐶𝑃𝑚}. The resulting NV noise

model is:

𝑆𝑁𝑉 (𝜔) =
2∑︁

𝑘=1

𝑆𝑂𝑈𝑘 (𝜔|𝑏𝑘, 𝜏𝑘) + 𝑆0 + 𝑆𝑛(𝜔)

More specifically, first we verify a double-OU structure, indicating the presence of

effectively two distinct electronic spin baths, distinguished by the timescale of their

internal dynamics 𝜏𝑐.

We also observe a noise baseline 𝑆0 > 𝑇−1
1 that is an order of magnitude larger

than the minimum possible (i.e., the qubit energy-relaxation rate 𝑇1) but also not

dominated by our control fidelity (pulse errors) in the explored noise frequency range.

While we leave for future work to quantitatively decouple or bound the control-

induced noise, if the control-induced noise is sufficiently small, this suggests there

may be possibly more (quantum) noise source to the NV bath inside the current 𝑆0

component (as inferred from CPMG).

Finally, we observe at specific frequencies certain ‘resonance’ peaks 𝑆𝑛(𝜔). These

peaks are expected to be due to the microscopic (resolved) nuclear spins interacting
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Figure 3-3: NV Ramsey. The NV Ramsey experiment 𝑅 is measured (data points)
and fitted to a sinusoidal Gaussian (line).

with the NV [111]. While we leave the exploration of the nearby nuclear environment

for future work, e.g., for purpose of building a nuclear spin register, we indeed verify

for one peak a single coherent oscillation as expected from entangling with a single

nuclear spin.

Given: Ramsey 𝑅

We first analyze the (simplest) measurement of decoherence, the Ramsey 𝑅, of the

NV center shown in Fig. 3-3. First, we observe a Gaussian form of decay, suggesting

the NV is dominated by low-frequency noise. If the underlying noise spectrum (and

hence a good model) of this NV is a single OU noise source, 𝑆𝑁𝑉 (𝜔) = 𝑆𝑂𝑈(𝜔|𝑏, 𝜏𝑐),

then as discussed above, 𝑅 provides the estimate of 𝑏 = 0.56 MHz, one of two bath

model parameters.

Before we move on, we remark on the (rather obvious) insufficiency of only having

a subset of knowledge on decoherence (i.e., a subset of {𝑅,𝐸,𝐶𝑃𝑚}).

First, in order to extract any meaningful information—i.e., estimate one of the

two model parameters—we made two assumptions.

The first was that the noise model is dominated by a single noise source at low

frequency, 𝑆𝑁𝑉 (𝜔) = 𝑆𝑂𝑈(𝜔|𝑏, 𝜏𝑐) which may not be true. More specifically, recalling

the filter function of 𝑅 admits zero-frequency noise, there could be other undesired
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noise sources not associated with the spin bath, e.g., due to (classical) static B-field

fluctuations 𝑏𝑐𝑙 from the external magnet. In other words, we naively assume for now

that 𝑏≫ 𝑏𝑐𝑙, such that 𝜎2 = 𝑏2 + 𝑏2𝑐𝑙 ∼ 𝑏2.

The second was that this OU model should satisfy (𝑏𝜏𝑐) ≫ 1, which is not guaran-

teed a priori. Thus to verify this assumption, we need to estimate 𝜏𝑐 of this particular

assumed OU source above.

Finally, we recall our goal of building a self-consistent model. Given that we do

not yet have a fully-characterized noise model 𝑆(𝜔)—i.e., since missing 𝜏𝑐—we cannot

yet check for ‘self-consistency’ of our proposed model. More specifically, we would

check for self-consistency by plugging 𝑆(𝜔) into Eq. 1.9, to to see if our model 𝑆(𝜔)

can independently predict and reproduce the measured NV 𝑅 decay. By the end of

the next section, we will have a few candidate noise models.

Given: Echo 𝐸

We now analyze the NV decay under echo, shown in Fig. 3-4. We will do this in

(iterative) steps, starting with the simplest possible model that could explain the

observed decay 𝐸, and checking for self-consistency with the known measurements

{𝑅,𝐸}.

We start with the observation that 𝐸 can be described well by a simple-exponential

decay: 𝑒−𝑇/𝑇0 , with 𝑇2 = 48(2)𝜇s. Therefore, there are two viable noise models 𝑆(𝜔):

either white noise 𝑆(𝜔) = 𝑆0 = 2𝑇−1
0 or fast OU 𝑆(𝜔) = 𝑆𝑂𝑈(𝜔|(𝑏𝜏𝑐) = (𝑏𝑇0)

−1 ∼ 1).

However, both these models are not consistent with 𝑅: i.e., neither the decay

shape nor timescale of decay is predicted. More specifically, both models predict a

simple-exponential 𝑅 decay, whereas we observe a Gaussian 𝑅. As well, both models

predict that the timescale of decay in 𝑅 should equal 𝐸, i.e., 𝑇 *
2 = 𝑇2, whereas we

see 𝑇 *
2 ≪ 𝑇2.

In conclusion, the noise model is not given by a single source of either OU or white

noise.

Here, we then make the hypothesis that there should exist at least one quasi-static

OU noise source, motivated by the expectation of an electronic spin bath. More
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Figure 3-4: NV Echo. The NV Echo data 𝐸 (data points) is fitted to 𝑒−(𝑇/𝑇2)3 (red),
𝑒−𝑇/𝑇0 (green), and 𝑒−𝑇/𝑇0−(𝑇/𝑇2)3 (yellow line) (see main text for discussion).

practically, we try fitting to the combined (competing) decay form 𝑒−𝑇/𝑇0−(𝑇/𝑇2)3 ,

which in the case of a good fit suggests two viable models: either a double-OU model

or an OU + white model.

Here we find a good fit—and better than the simple-exponential fit by RMSE—as

seen in Fig. 3-4. Therefore, we have two viable models 𝑆1,2 including either 1 or 2

OU sources: 𝑆1(𝜔) = 𝑆𝑂𝑈𝑠𝑙 (𝜔|𝑏, 𝜏𝑐) + 𝑆0 or 𝑆2(𝜔) = 𝑆𝑂𝑈𝑠𝑙 (𝜔|𝑏𝑠, 𝜏𝑠) + 𝑆𝑂𝑈𝑓 (𝜔|𝑏𝑓 , 𝜏𝑓 ).

Now we want to check for self-consistentcy of each proposed model. But note

that while the first model 𝑆1(𝜔) is fully characterized (i.e., all model parameters are

estimated), while the double-OU model is not (yet).

Numerically calculating 𝜒𝑅,𝐸(𝑇 ) under 𝑆1(𝜔), we find it is consistent with the

observed {𝑅,𝐸}, as seen in Fig. 3-5. In other words, it cannot be ruled out (yet).

In contrast, as 𝑆2(𝜔) is not fully characterized, we need more knowledge of de-

coherence. We find in the next section this model will be consistent given more

measurements of decoherence, while the 𝑆1(𝜔) model, while simpler, is no longer

self-consistent with the larger set of knowledge.

Given: CPMG 𝐶𝑃𝑚

Here we analyze the final set of measurements, shown by the noise spectrum recon-

structed via a set of CPMG 𝐶𝑃𝑚 experiments in Fig. 3-6. The measured spectrum
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Figure 3-5: Predicted NV Ramsey and Echo under 𝑆1(𝜔): Single OU and
White Noise Model. We verify the consistentcy of the single-OU + white noise
model 𝑆1(𝜔) given its numerical reproduction (red line) of the observed decoherence
(blue data). The fit of 𝐸 to the combined decay (yellow line) is shown for reference.

can be explained by a minimal model: 𝑆𝐶𝑃 (𝜔) = 𝑆𝑂𝑈(𝜔) + 𝑆0 + 𝑆𝑛(𝜔).

The first term—the (double) OU noise of interest as discussed thus far—is to

account for the observed fall-off in the lower end of the measured spectrum 𝑆𝐶𝑃 (𝜔𝑚)

in Fig. 3-6.

The second term is the white noise to account for observed apparent baseline

𝑆𝐶𝑃 (𝜔𝑚) > 0. Of course, a priori we do not expect zero noise 𝑆𝐶𝑃 (𝜔𝑚) → 0, since

even in presence of zero spin fluctuation we should reach the limit min𝜔[𝑆𝐶𝑃 (𝜔)] ∼

𝑇−1
1 ∼ (3ms)−1 < 1 kHz limit. Here we observe 𝑆𝐶𝑃0 ∼ 6(1) kHz, which is larger

than 𝑇−1
1 , and thus contains more sources of noise. While we do not know the exact

(physical) cause of this larger baseline, we give a short discussion. Recall that every

point on the noise spectrum 𝑆(𝜔𝑚) —including the observed baseline 𝑆𝐶𝑃0 —contains

contributions from both the ‘decohering’ noise (i.e., the noise of interest, due to the

quantum bath) as well as imperfect control-induced noise (from pulse errors, which

is undesired). While it would be ideal to further analyze the contribution due to

control-induced error so as to decouple (i.e., subtract) from the observed 𝑆(𝜔𝑚), for

now we simply note that the dominant component of 𝑆𝐶𝑃0 is not the (undesired) pulse

errors. In the limit of pulse error-dominated CPMG experiments, the ‘baseline’ of

𝑆𝐶𝑃 (𝜔𝑚) should monotonically increase with 𝜔 as 𝜔 = 𝑁/𝑇 , with number of pulses
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Figure 3-6: NV Noise Spectrum. The NV noise spectrum 𝑆𝐶𝑃 (𝜔𝑚) is measured
and fitted to a multi-Lorentizan function (blue line) motivated by its simple noise
model 𝑆𝐶𝑃 (𝜔) = 𝑆𝑂𝑈(𝜔)+𝑆0+𝑆𝑛(𝜔). More specifically, we observe (and fit well to):
the zero-mean Lorentzian given by OU noise 𝑆𝑂𝑈(𝜔), an overall baseline (well above
the 𝑆𝐶𝑃0 > 𝑇−1

1 limit), and additional features (peaks) 𝑆𝑛(𝜔) at specific resonances
that should arise from the microscopic nuclear environment interacting with this NV.
See main text for discussion. The green, purple, and cyan lines are discussed in a
later figure.

𝑁 . Therefore, the observed ‘stable’ baseline (over the sampled frequency range) could

indicate the presence of noise that is not averaged out by CPMG.

Finally, the third term is to account for the (three) ‘features’ (peaks) in the noise

spectra at certain ‘resonance’ frequencies. While we leave further characterization

of these peaks for future work, these likely originate from resolved nuclear spins in

the microscopic environment of the NV. This occurs because CPMG does not cancel

interaction from (anisotropic) coupling to nearby nuclear spins [96]. In fact, the

CPMG experiments done here (via sweeping 𝑁 at fixed 𝜏𝑚) is analogous to the state-

of-the-art method of nuclear spin detection (via sweeping 𝜏𝑚 at fixed 𝑁) [111]. To

gain confidence the peaks should originate from interacting nuclear spin(s), we probe

one of the peaks and observe coherent oscillation—as expected for entangling with a

nuclear spin. While we leave this for future work, characterizing this resolved nuclear

spin(s) will be advantageous to build up a nuclear spin register for the NV for more

powerful QIP applications.

We now return to the main interest of a self-consistent noise model. Minimally, we
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Figure 3-7: Comparing Proposed Noise Model with Measured Noise Spec-
trum: Single OU + White Noise Though the noise model candidate 𝑆1 could
reproduce (via 𝜒𝑅,𝐸) the observed decoherence measurements {𝑅,𝐸}, it is not consis-
tent with the larger set of knowledge of decoherence {𝑅,𝐸, 𝑆𝐶𝑃 (𝜔𝑚)}. The left-hand
side (black region) is the proposed noise model from {𝑅,𝐸}; the right-hand side (blue
region) is the measured spectrum 𝑆𝐶𝑃 (𝜔𝑚) (data points).

want to distinguish between the two proposed models from {𝑅,𝐸}: 𝑆1(𝜔) and 𝑆2(𝜔).

To do so, we will check for continuity between these proposed noise models (i.e.,

the low-frequency noise spectrum informed by {𝑅,𝐸} ) and the measured high(er)-

frequency spectrum 𝑆𝐶𝑃 (𝜔𝑚).

First consider 𝑆1(𝜔), which was already fully characterized. Even though 𝑆1(𝜔)

could reproduce the observed {𝑅,𝐸}, it is not consistent with 𝑆𝐶𝑃 (𝜔𝑚) as seen in

Fig. 3-7. More specifically, it is mismatched in both the magnitude ( 𝑆1(𝜔𝑚)

𝑆𝐶𝑃 (𝜔𝑚)
∼ 2− 4)

as well as the slope/shape of the spectrum near the boundary.

Now consider the double-OU model 𝑆2(𝜔), whose missing parameters we must

first identify. Assuming continuity at the boundary, i.e., 𝑆𝐶𝑃 (𝜔𝑚)−𝑆𝐶𝑃0 = 𝑆2(𝜔), we

can solve for the one unknown given this one equation.

Similarly, given the fully characterized 𝑆2(𝜔), we first check for consistency be-

tween the two sets {𝑅,𝐸} and {𝑆(𝜔𝑚)}, by numerically plotting the model 𝑆2(𝜔)

against the measured OU part of the spectrum 𝑆𝐶𝑃 (𝜔𝑚) − 𝑆𝐶𝑃0 . This is plotted in

Fig. 3-9.

Finally, as a (final) requirement for self-consistency, we check if 𝑆𝑑𝑜𝑢𝑏𝑙𝑒(𝜔) can also
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Figure 3-8: Comparing Proposed Noise Model with Measured Noise Spec-
trum: Double OU Noise Sources In contrast with candidate model 𝑆1, we find
continuity between the double-OU candidate model 𝑆2 (left-side, black region) and
the directly measured noise spectrum 𝑆𝐶𝑃 (𝜔𝑚) (right-side, blue region).
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Figure 3-9: NV Noise Spectrum (Log-log Plot): Testing Consistentcy with
Proposed Noise Model(s) from Decoherence Measurements under Ramsey
and Echo. The measured NV noise spectrum 𝑆𝐶𝑃 (𝜔𝑚) (data points) is compared
with the proposed double-OU noise model 𝑆2(𝜔) = 𝑆𝑂𝑈𝑠𝑙𝑜𝑤(𝜔) + 𝑆𝑂𝑈𝑓𝑎𝑠𝑡(𝜔) (cyan line).
Surprisingly, we find a near-perfect match (within experimental uncertainty) between
the double-OU model and the measured spectrum, indicating the accuracy of the
proposed model over (now) wider frequency, beyond the working range of CPMG-
based 1QNS. Furthermore, piecing out the individual OU sources (green 𝑆𝑂𝑈𝑠𝑙𝑜𝑤(𝜔) and
purple 𝑆𝑂𝑈𝑓𝑎𝑠𝑡(𝜔)), 𝑆𝐶𝑃 (𝜔𝑚) can be completely obvlious to the most dominant low-
frequency noise (green line) due to its limited working range.
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Figure 3-10: Predicted NV Ramsey and Echo: Double OU Noise Model. We
verify the self-consistentcy of double-OU noise model given its numerical reproduction
(red line) of the observed decoherence (blue data). The fit of 𝐸(𝑇 ) to the combined
decay (yellow line) is shown for reference.

reproduce the observed {𝑅,𝐸} in Fig. 3-10. While its total RMSE in 𝜒𝐸(𝑇 ) is slightly

larger than that estimated from 𝑆𝑑𝑜𝑢𝑏𝑙𝑒(𝜔), it still accounts for the dominant part of

the decay. And perhaps more importantly, this is the only model self-consistent with

the larger set of measurements, {𝑅,𝐸, 𝑆(𝜔𝑚)}, over the larger range of frequencies.

For one final remark, the order of analysis (studying {𝑅,𝐸} first) to reach a self-

consistent model is not unique. One could have just as well formed a model from

𝑆𝐶𝑃 (𝜔𝑚) first. In this case, by simply fitting 𝑆𝐶𝑃 (𝜔𝑚) to the 3-term model 𝑆𝐶𝑃 (𝜔𝑚)

above to a multi-Lorentzian function, we independently get the same parameters of

(𝑏𝑓 , 𝜏𝑓 ). This is in principle possible because the ‘slow’ OU spectrum has fully decayed

well before 𝜔𝑚𝑖𝑛—and thus the measured 𝑆𝐶𝑃 (𝜔𝑚) is completely blind to near zero-

frequency noise. The fact of ‘missing’ noise power is highlighted when attempting

to reproduce {𝑅,𝐸} numerically via 𝜒(𝑇 ). The predicted 𝜒(𝑇 ) does not lead to an

appreciable decay, given that the current noise model lacks more than 90% of the

true underlying noise power as stored in the (missing) slow OU source.

To summarize, for the case of an electronic spin qubit interacting with a many-

body e-spin bath, we achieve a self-consistent noise model by combining measurements

of decoherence in the full set {𝑅,𝐸, 𝑆𝐶𝑃 (𝜔𝑚)} that is strictly improved with more

measurements.
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We now apply the same protocol to characterize the bath of another electronic

spin, that is nearby (interacting) with the NV spin we have just analyzed.

3.2.2 Self-consistent Noise Model for X

Before the analysis, we first state our (tentative) result: we could not yet verify a

noise model for the dark spin X that is self-confident with the observed {𝑅,𝐸,𝐶𝑃𝑚}.

However, this may be a technical problem, and not one of principle as in Section 3.2,

and thus may be reconciled with further work. The tentative noise model for X is:

𝑆𝑋(𝜔) = 𝑆𝑂𝑈𝑠𝑙𝑜𝑤(𝜔|𝑏𝑠, 𝜏𝑠) + 𝑆0 + 𝑆𝑛(𝜔)

More specifically, we first verify a (dominant) quasi-static single-OU structure,

indicating that X samples noise from (one) electronic spin bath with slow internal

dynamics 𝜏𝑐. This is in contrast with NV, which was observed to sufficiently sample

noise from another group of spins with faster 𝜏𝑐. We leave the comparison of the

quasi-static spin bath—as observed by either NV or X—for the next section.

We also observe a noise baseline 𝑆0 > 𝑇−1
1 that is an order of magnitude larger

than the minimum possible (i.e., the qubit energy-relaxation rate 𝑇1), as was observed

with the NV. However, this baseline is larger than that of the NV: (𝑆𝑋0 /𝑆𝑁𝑉0 ) ∼ 2-3.

Given that the control fidelity for X has been significantly reduced (whose reason will

be important with respect to our ultimate objective of noise correlation spectroscopy),

we must first identify whether this observed 𝑆𝑋0 is dominantly the ‘true’ noise (i.e.,

due to the bath), and not ‘false’ noise (due to control or pulse error). This missing

technical piece of information is the reason for the yet tentative result. Nonetheless,

if we naively assume that the observed 𝑆𝑋0 is not dominated by control errors, then

the above noise model 𝑆𝑋(𝜔) is self-consistent.

Finally, similarly with the NV, we also observe at certain ‘resonance’ peaks 𝑆𝑛(𝜔),

expected to result from the microscopic (resolved) nuclear spins interacting with X

[96, 111].
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Figure 3-11: X Ramsey. The X Ramsey experiment 𝑅(𝑇 ) is measured (data points)
and fitted to a sinusoidal Gaussian (line).

Given: Ramsey 𝑅

Here, we carry out the same analysis as with the NV, with the same assumption

of dominant quasistatic OU noise and negligible classical field fluctuation. Then,

we estimate that X sees an effective noise strength 𝑏𝑋 = 0.20(2) MHz. This is

approximately 3 times weaker noise strength (and 3 times longer coherence time)

than that of the NV.

Given: Echo 𝐸

We now analyze the echo of spin X, where we observe another striking difference in

the effective baths experienced by the nearby e-spins NV and X.

The most apparent difference is in the observed 𝐸 decay shape: it is described

well by a decay that is cubic in exponential (quasi-static OU). In other words, the

dark spin X samples dominantly from the quasi-static spin bath, such that a single

quasistatic OU model is self-consistent with {𝑅,𝐸}. In contrast, the NV sampled

noise sufficiently strongly from another electronic spin bath (with faster 𝜏𝑐), such

that it cannot be described by a single OU.

Via the same fitting procedure as that of NV, the dark spin X echo is fit equally

well (by RMSE) to both {𝑒−(𝑇/𝑇2)3 , 𝑒−𝑇/𝑇0−(𝑇/𝑇2)3}. This suggests there are 3 viable
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T2 = 61(4) s; 
c
 = 1(0) ms (given b = 0.20(3) MHz)

T2 = 63(17) s
T2 = 61(4) s; 

c
 = 1(0) ms (given b = 0.20(3) MHz)

Figure 3-12: X Echo (Unmodulated Readout Phase). The X Echo experiment
𝐸(𝑇 ) is measured (data points) and fitted to a cubed-exponential decay (pink line—
overlapping with yellow line) and a simple-exponential decay (green line). In contrast
with NV decoherence under 𝐸(𝑇 ), X shows a cubed-exponential decay, and hence
dominated by quasi-static OU noise. Also, in contrast with NV 𝐸(𝑇 ), X 𝐸(𝑇 ) is not
well-described a simple-exponential. Finally, as done for NV 𝐸(𝑇 ), we also fit to the
combined decay of simple- and cubed-exponential (yellow line). In this (typical) un-
modulated 𝐸(𝑇 ) decay envelope, the fit simply converges to the cubed-exponential.
We will see that in the readout-phase-modulated 𝐸(𝑇 ) data—to introduce artificial
phase modulation in the signal—we are able to find an equally good fit (by RMSE)
to the combined decay.
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T2 = 61(4) s; 
c
 = 1(0) ms (given b = 0.24(4) MHz)

T2 = 77(16) s; 
c
 = 2(2) ms (given b = 0.24(4) MHz)

Figure 3-13: X Echo (Modulated Readout Phase). The X Echo experiment
𝐸(𝑇 ) is measured also with the phase of the readout 𝜋/2-pulse modulated, in order
to introduce artificial oscillation. (While the two 𝐸(𝑇 ) experiments are identical, they
are measured with(out) readout signal modulation to increase confidence in the fit
result.) Indeed, when fitted to a cubed-exponential (not shown), they independently
yield the same 𝑇2. Regarding the fit to the combined decay (lines)—motivated by the
successful double-OU noise model for NV— while the fit of unmodulated signal con-
verges to the cubed-exponential (due to likely best RMSE), the fit of the modulated
signal is able to find just as good fit (by RMSE).
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Figure 3-14: X Noise Spectrum: At (Relatively) Large Rabi Power Ω0 The X
noise spectrum 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 2.5MHz) is estimated and fitted to a multi-Lorentizan
function (blue line) motivated by its simple noise model 𝑆𝐶𝑃 (𝜔) = 𝑆𝑂𝑈(𝜔) + 𝑆0 +
𝑆𝑛(𝜔). Similarly with NV, we observe (and fit well to): the zero-mean Lorentzian
given by OU noise 𝑆𝑂𝑈(𝜔), an overall baseline (well above the 𝑆𝐶𝑃0 > 𝑇−1

1 limit),
and additional features (peaks) 𝑆𝑛(𝜔) at specific resonances that should arise from
the microscopic nuclear environment interacting with this X. However, we notice the
observed noise magnitude is (statistically) significantly larger with respect to not only
the measured NV spectrum but also more importantly the proposed noise models from
X {𝑅,𝐸}. We explore the cause of this in the main text.

models: 𝑆𝑠𝑙𝑜𝑤 (i.e., a single OU), 𝑆1 (i.e., a single OU + white), and 𝑆2 (double OU).

Again, the first two of the three models are fully characterized and hence can be

numerically checked for self-consistentcy with existing knowledge {𝑅,𝐸}—and they

are. The double-OU model, as before, requires further knowledge to characterize.

Therefore, we turn to 1QNS in attempt to reach the most accurate model.

Given: Noise Spectrum 𝑆(𝜔𝑚|Ω0 = 2.5MHz)

First, we report the reconstructed noise spectrum 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 2.5MHz) of dark

spin X using Rabi power Ω0 = 2.5MHz in Fig 3-14.

While this measured 𝑆𝐶𝑃 (𝜔𝑚) is well-modeled by the same 3-term model used for

the NV spectrum, we see one problem: this measured spectrum is not consistent with

any of the 3 models proposed from {𝑅,𝐸}.

More specifically, the first two out of the three viable models (𝑆𝑠𝑙𝑜𝑤 and 𝑆1) are al-
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ready fully characterized with {𝑅,𝐸} and hence can be numerically compared against

the measured 𝑆𝐶𝑃 (𝜔𝑚 ≥ 𝜔𝑚𝑖𝑛) to check for continuity. Instead, we observe a signifi-

cant mismatch, in both the magnitude and slope/shape for these two models. On the

other hand, the double OU model requires at least one data point 𝑆𝐶𝑃 (𝜔𝑚) which

carries information of a (double) Lorentzian. However, due to the large magnitude of

𝑆𝐶𝑃 (𝜔𝑚), we end with an imaginary estimate of 𝜏𝑐 (given a negative argument under

the square root).

To diagnose the problem, we hypothesize that this inconsistency between the two

sets of decoherence measurements {𝑅,𝐸} and 𝑆𝐶𝑃 (𝜔𝑚) is caused by the presence of

near-resonant and interacting spins (NRI-X) with the dark spin X.

We note this hypothesis is not a priori intuitive from the measurement of 𝑆𝐶𝑃 (𝜔𝑚|Ω0 =

2.5MHz) alone. However, if this is true, this could explain the larger-than-expected

noise magnitude, i.e., decay rate under CPMG. In fact, in the presence of NRI-X,

we would not be performing a true (1-qubit) CPMG; rather, we would be co-driving

(off-resonantly) a group of these near-resonant and interacting spins along with X. In

other words, we would not be measuring the desired 1-qubit CPMG decay of the X

spin, but rather a (faster) multi-qubit (SEDOR) decay [29].

If this hypothesis is true, then ideally we should be able to confirm it from the

simpler experiment of (nominal) echo 𝐸(𝑇 |Ω0 = 2.5MHz) on the X spin. More specif-

ically, in the presence of NRI-X, we expect to observe either a coherent oscillation(s)

(as expected given coupling to just a few spins, resolved within 𝑇𝑋2 ) or instead just a

faster decay (a group of spins, unresolvable within 𝑇𝑋2 ). Indeed, we observe a signal

containing small-amplitude oscillation(s).

Given the confidence that Ω0 = 0.25 MHz should allow (true) 1-qubit control,

we attempt to reconstruct a more accurate 1-qubit noise spectrum 𝑆𝐶𝑃 (𝜔𝑚|Ω0 =

0.25MHz). Recalling the working range of CPMG-based 1QNS, we will only be able

sample a very limited, low-frequency end of the spectrum 𝑆𝐶𝑃 (𝜔𝑚 ≪ Ω0 = 0.25MHz);

however, given a good estimate of OU parameters with a limited sample of the NV

𝑆𝐶𝑃 (𝜔𝑚), we hope to still be able to distinguish between the 3 models even with this

limited range.
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Figure 3-15: X Echo: At (Relatively) Large Rabi Power Ω0. The X Echo exper-
iment 𝐸(𝑇 |Ω0 = 2.5MHz) is measured (red data points), shown against the reference
𝐸(𝑇 |Ω0 = 0.25MHz) (green data points). While we leave quantitative analysis for
future work, we observe the larger Rabi Ω0 introduces small-amplitude oscillations.
This supports the hypothesis of the presence of near-resonand and interacting (NRI-
X) spins for our X spin (see main text for discussion). In other words, at larger Rabi
Ω0, we can no longer perform desired (1-qubit) echo or cpmg experiments with our
X spin, given that we also co-drive (off-resonantly) these NRI-X spins.

Given: Noise Spectrum 𝑆(𝜔𝑚|Ω0 = 0.25MHz)

Thus reconstructing 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25MHz) in Fig. 3-16, we simply observe a flat

line, suggesting a (large) white noise baseline.

Returning to the goal of a self-consistent noise model, in fact, the measured base-

line 𝑆𝐶𝑃0 is equal (within 1 error bar) to 𝑆1, the (single OU and white)-noise model

predicted from {𝑅,𝐸}.

However, there is one technical problem with continuing with analysis: given the

significantly weaker Ω0 (and long pulse length 𝐿 = (2Ω0)
−1), the control or pulse

fidelity 𝐹𝜋|Ω0 = 0.25 MHz is significantly reduced with respect to either 𝐹𝜋|Ω0 = 2.5

MHz (or that of NV) as shown in Fig. 3-17. Recalling that the 𝑆𝐶𝑃 (𝜔𝑚) contains both

the (desired) noise from the bath as well as the (undesired) control-induced decay,

with increased pulse error, we are no longer as confident in 𝑆𝐶𝑃 (𝜔𝑚), at least relative

to our results from {𝑅,𝐸} (which only contain 2-3 pulses). Therefore, we have further

work to ideally decouple the pulse error from the spectrum 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25)—and
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Figure 3-16: X Noise Spectrum: At Weak Rabi Power Ω0 The X noise spectrum
𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25MHz) (red data) is re-measured at low Rabi power in its allowed
(limited) range, plotted against the previous estimate 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 2.5MHz) (blue
data). In support of the hypothesis of the presence of near-resonant and interacting
spins for X (NRI-X), we observe weaker noise or decay rate at smaller Ω0, despite
the worse control pulse fidelity 𝐹𝜋. Unfortunately, given the worse 𝐹𝜋, there should
be increased contribution from pulse error in the measured 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25MHz).
Therefore, before checking for self-consistency in our noise models for X, we should
estimate and decouple the pulse error contribution from 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25MHz).
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Figure 3-17: X Control Fidelity: Two-tone 𝜋-pulse Fidelity We characterize the
state fidelity of the calibrated two-tone 𝜋-pulse 𝐹𝜋 used to simultaneously drive both
hyperfine resonances of the X electronic spin. We observe a reduced 𝐹𝜋 at reduced
Rabi power Ω0, most likely due to decay during the (weaker and longer) driving pulse.

this should the last missing piece to reach a self-consistent, single-qubit noise model

for 2 nearby spins.

Before we end this section, we make one final remark about this observation of

the potential presence of (a group of) NRI-X spins.

Consider first no NRI-X spins, and that we have perfect control fidelity on the dark

spin X 𝐹𝜋 ̸= 𝐹𝜋(Ω0) at any Rabi power Ω0. In such a case, we would recover the true

(1-qubit) 𝑆𝐶𝑃 (𝜔𝑚) at any Ω0: 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 2.5MHz) = 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 0.25MHz).

Now we add in the more realistic condition that 𝐹𝜋(Ω0 = 2.5MHz) > 𝐹𝜋(Ω0 =

0.25MHz). Then, necessarily we should measure 𝑆𝐶𝑃 (𝜔𝑚|Ω0 = 2.5MHz) < 𝑆𝐶𝑃 (𝜔𝑚|Ω0 =

0.25MHz). However, we observe the opposite, as seen in Fig. 3-16.

In other words, this suggests that the noise (i.e., decay rate) at Ω0 = 2.5 MHz

is significantly larger than that at Ω0 = 0.25 MHz—in spite of the smaller control-

induced noise. Thus, the ‘true’ noise contribution (due to the bath) is somehow

being affected at larger Ω0 = 2.5 MHz, i.e., the bath is somehow affected. Then

one consistent picture would be the presence of spins in the bath of X that are

near-resonant with X (so they are co-driven by drive resonant with X) and as well

interacting (so not to be not canceled out by X Echo or CPMG pulses). Furthermore,
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likely there is a group or multiple of such NRI-X spins, leading to the faster decay.

In fact, the presence of NRI-X is prohibitive of our ultimate objective: characteri-

zation of correlations in the noise between spatially proximal qubits. Limited to weak

Rabi Ω0, it significantly limits the working range of the methods recently proposed

for two-qubit noise cross-correlation spectroscopy [108, 117]. While there may be a

possibility to study a weakly driven bath at a compromised Rabi Ω0 > 0.25 MHz, it

will still be against our original intent of characterizing the correlated noise induced

by the natural (unperturbed) electronic spin bath on two spatially nearby spins.

However, the presence of NRI-X may also leave open a possible interesting future

work. More specifically, if these NRI-X spins can be coherently controlled, e.g., are

part of the spin bath with long 𝜏𝑐, we may be able to utilize the X spin to characterize

the smaller, ‘coherent’ part of the bath (instead of characterizing the larger, ‘inco-

herent’ bath per our original intent). If this can be achieved, this would demonstrate

increased scalability of dark electronic spin registers in solid-state QIP systems [32].

3.2.3 Comparison of the Quasi-static Electronic Spin Bath as

Observed from Two Proximal Spins

A priori (before experiments), given that NV and X are two (nearby) electronic spins,

and the noise model describes the effect of the (same) bath they interact with, we

expect qualitatively that they should have the same noise sources or overall structure.

And indeed the (tentative) noise models, consistent with experiments, observe this:

𝑆𝑁𝑉 (𝜔) = 𝑆𝑁𝑉𝑠𝑙𝑜𝑤(𝜔|𝑏𝑠, 𝜏𝑠) + 𝑆𝑁𝑉𝑓𝑎𝑠𝑡(𝜔|𝑏𝑓 , 𝜏𝑓 ) + 𝑆𝑁𝑉0 + 𝑆𝑁𝑉𝑛 (𝜔)

𝑆𝑋(𝜔) ∼ 𝑆𝑋𝑠𝑙𝑜𝑤(𝜔|𝑏𝑠, 𝜏𝑠) + 𝑆𝑋0 + 𝑆𝑋𝑛 (𝜔)

Thus rather what is interesting would be in the (varying) details, where the differ-

ences should arise from differences in the exact microscopic configuration of the bath

centered around each spin.
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Therefore in this section we give a (limited) comparison of the noise models, i.e.,

of only the self-consistent components. Recall from above that, for the case of dark

spin, we have not yet verified which of 𝑆1,2 is self-consistent. More specifically, we do

not know if 𝑆𝑋𝑓𝑎𝑠𝑡(𝜔|𝑏𝑓 , 𝜏𝑓 ) should exist (as may be expected from 𝑆𝑁𝑉 (𝜔)), given that

it may be presently hidden inside 𝑆𝑋0 , which may be over-estimated due to control-

induced error. Therefore, leaving this for future work, we limit the discussion to the

two terms that are (approximately) self-consistent: 𝑆𝑠𝑙𝑜𝑤(𝜔|𝑏𝑠, 𝜏𝑠) and 𝑆𝑛(𝜔).

𝑆𝑛(𝜔): Given Microscopic ‘Nuclear’ Environment

One ‘common’ noise source for both NV and X are the peaks observed at certain

‘resonance’ frequencies under CPMG: 𝑆𝑛(𝜔). These ‘resonances’ are expected to

originate from coherent interaction with (resolved) nuclear spins, in which case the

peak positions should be given by the nuclear Larmor frequency and the hyperfine

interaction strengths [111]. For one resonance peak of NV, we indeed observe a

coherent oscillation as expected from entangling with a single nuclear spin. We note

that further work to identify the (interaction Hamiltonian with) the nuclear spins

would be advantageous to build a nuclear register around the central electronic spin.

For the purpose of comparison, assuming (some of) these peaks are indeed due

to nuclear spins, then we expect that the nuclear ‘resonances’ observed by NV are

not observed by X or vice versa—due to their (most probable) distance of 9nm (with

coupling strength 𝑑 ∼ 60 kHz). For a rough estimate, imagining a nuclear spin in

the center of the two electronic spins, we may expect a dipolar coupling strength of

𝑑′ ∼ (Δ𝑟)3/(𝛾𝑒/𝛾𝑛)𝑑 ∼ 23/103𝑑 ∼ 0.01𝑑, which is too weak to be detected within the

coherence time of either spin (as seen by their measured noise spectrum). If instead

the nuclear spin were brought closer to the NV, then it should have a higher (lower)

chance of being detected by NV (X).

𝑆𝑂𝑈𝑠𝑙𝑜𝑤(𝜔|𝑏, 𝜏𝑐): Given Quasi-static Electronic Spin Bath

Finally, we compare the (model of) the quasi-static electronic spin bath as seen by

either NV and X. More specifically, we compare the model parameters (𝑏, 𝜏𝑐).
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Recall that from Ramsey experiment, we could estimate 𝑏, assuming that any

(true) classical field fluctuation 𝑏𝑐𝑙 ≪ 𝑏 of interst. In this case, we found 𝑏𝑁𝑉 /𝑏𝑋 ∼ 3.

Recall that 𝑏2 =
∑︀

𝑘 𝑏
2
𝑘, where 𝑏𝑘 is the coupling strength between the central qubit

to 𝑘-th spin of the bath [34]. Hence, given that 𝑏 depends on the exact microscopic

spin bath configuration with respect to the central qubit, a priori it is not surprising

they should be different. Furthermore, if this 𝑏 belongs to a quasistatic OU (as was

verified), then there is a (linear) relationship between 𝑏 and e-spin concentration

(averaged over many bath configuration realizations) [120]. Therefore, 𝑏𝑁𝑉 /𝑏𝑋 ∼ 3

also implies that X spin sees a roughly 3-fold more dilute electronic spin configuration

than that of X. While there may be more than one cause, one physical cause may be

due to the (spread of) the ion-implanted nitrogen or electron donors into the diamond,

yielding (approximately) a Gaussian concentration profile.

Aside from the difference in 𝑏, perhaps more interesting, is seen in our estimates

of 𝜏𝑐 for the slow bath: the X experiences a quasi-static bath with 2-4 times faster

dynamics than that seen by the NV (albeit the same order of magnitude). Here we

make some qualitative analysis of this observation.

A priori, this is perhaps more surprising than the difference observed in 𝑏’s, because

𝜏𝑐 is a (qubit-independent) intra-bath parameter. If indeed NV and X were seeing

exactly the same spin bath, we should readily expect different coupling 𝑏 (since this

depends on the relative position between qubit and bath) but the same internal

dynamics 𝜏𝑐. Therefore, the small but statistically significant difference in 𝜏𝑐 suggests

that, while the quasi-static spin bath for NV and X is ‘similar,’ it should not be

exactly the same.

Perhaps what is more surprising is that the X bath dynamics is faster (𝜏𝑁𝑉𝑐 /𝜏𝑋𝑐 >

1)—in spite of it being effectively 3-fold more dilute and weaker intra-bath dipolar

coupling. Therefore, what this observation suggests is this: the microscopic X bath,

while more dilute on average, should be composed of spins closer in resonance, relative

to those comprising the NV bath. This comes from estimation of the spin flip-flop rate

via Fermi’s golden rule[125]: the flip-flop rate should be proportional to the dipolar

coupling strength (squared) of the spin pair but approximately inversely proportional
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to their difference in resonance (squared).

While this inference into the bath composition – i.e., (i) a heterogenous spin bath

seen by NV and X and (ii) relatively closer-in-resonance bath spins for X – will

remain a speculation, we already have some (even if weak) evidence in support of the

speculation. First, we have evidence for the heterogeneity of the electronic spin bath.

This is seen from (every) electronic spin coherently coupled to the NV (see Fig. 2-2):

all of the observed electronic spins have a difference in resonance Δ𝜔 > 1 − 7 MHz

(given by their individual nuclear hyperfine interaction), which is 2 − 4 orders of

magnitude larger than the observed dipolar coupling strengths. Second, the evidence

that the X bath may contain spins closer in resonance (compared to the bath of NV)

may be related to the reason we could not achieve a self-consistent noise model for

X. The presence of near-resonant spins interacting with X acts as the bath of X that,

despite potentially weaker intra-bath coupling, may flip-flop faster due to smaller

off-resonance between the spins.

Conclusion As the first step to characterize the coherence of a multi-qubit register,

we characterized the noise experienced by two spatially proximal qubits – and found

two varied results.

For the NV qubit which is well isolated (distinguishable) from the bath, it was

possible to build a classical noise model that is self-consistent with a varied set of

dynamics – indicating an accurate characterization of the bath. For the X qubit, it

was not possible – rather, we found evidence for a more complex and quantum X

qubit that may involve a group of near-resonant, interacting electronic spins. Hence,

while a self-consistent model allows an accurate characterization of the unknown,

potentially quantum bath, the preclusion of a self-consistent model may instead signal

the presence of an interesting bath to further investigate. For instance, in this specific

case, the presence of a coherently interacting group of electronic spins may help further

scale up the quantum register of electronic spins, beyond the coherence time of the

central NV spin.
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Chapter 4

Demonstrate a quantum information

task: Quantum sensing

Having characterized the quantum register and verified two-qubit entanglement in

the previous Chapter, in this Chapter we put the device to the test to demonstrate

quantum advantage in sensing.

In other words, the first quantum information task of interest for our electronic

spin register is in sensing, given that single-qubit sensors in the solid-state, most

prominently with NV center in diamond, have proved excellent sensors of nanoscale

local fields [75, 112, 67, 27, 20]. (Whereas an ensemble sensor of large 𝑛, with the

advantage of significantly enhanced SNR, would measure averaged fields over a larger

volume.)

Entangled states have been touted to bring quantum advantage to sensing [12],

but given increased complexity to generate and control such states leave open the

question of whether quantum advantage can be achieved in practice [54]. In this

Chapter, we address this question starting from the simplest system of two electronic

spins. In other words, the question we want to answer in this Section is: can the

performance (sensitivity) of this single-qubit sensor be enhanced if given access to a

nearby electronic spin?

As of yet, ‘true’ quantum sensing via entanglement with an electronic spin register,

while proposed, has not been explored experimentally [41, 36, 43, 63, 95]; this will
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the topic of this Chapter.

Goal The goal of this Chapter will be to demonstrate a path towards quantum

advantage in nanoscale sensing, by use of one additional nearby electronic spin.

To this end, we first define a gain in sensitivity 𝑔 ≡ 𝜂1

𝜂𝑒
, in order to compare the

sensitivity of the single-qubit sensor 𝜂1 vs. the two-qubit entangled sensor 𝜂𝑒. By

analyzing the main factors determing 𝑔, we see what conditions will allow quantum

advantage 𝑔 > 1.

Then, we will experimentally demonstrate the path towards quantum advantage

in two steps. More specifically, we first characterize the sensitivity of our single-qubit

(NV) sensor 𝜂1 and that of 𝑛 = 2-entangled (NV and X) sensor 𝜂𝑒.

However, as it will prove difficult to achieve 𝑔 > 1 via entanglement-enhancement

alone, we demonstrate an independent method to further enhance sensitivity, by

utilizing the electronic spin register not only as an entangled sensor but also a memory

after sensing.

Problem The main challenge in achieving quantum advantage for sensing with

entanglement, as we will see below in detail, is the ‘cost’ of entanglement, or the

degraded sensitivity due to generating (and measuring) entangled states.

Recall that an 𝑛-qubit maximally-entangled sensor promises an 𝑛-fold enhance-

ment in sensitivity. (Where maximally-entangled states are the Bell states for 𝑛 = 2

and GHZ states for 𝑛 > 2.) In comparison, an ensemble of 𝑛 uncorrelated qubits—

equivalently a single qubit measured 𝑛 times if not considering time as a resource—

only yields only a
√
𝑛 enhancement in SNR, just as in a classical sensing scheme.

This sensitivity gain of
√
𝑛 is the main motivation for entanglement-enhanced sens-

ing [12, 54].

While the
√
𝑛-scaling gain in sensitivity should promise quantum advantage in the

limit of large 𝑛, for the purpose of sensing with nanoscale resolution, there is a limit

to the sensor size 𝑛. In other words, there is only a finite 𝑛 available for improvement.

In such a case, other factors affecting sensitivity 𝜂—besides the 𝑛 improvement—will
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be significant.

More concretely, working against
√
𝑛-fold enhancement in sensitivity is the accom-

panied cost to generate, maintain, and readout the desired entangled state, which is

strictly larger with respect to (ensemble of) single qubits. As we will see below, there

are 3 main factors that will degrade the sensitivity 𝜂: (i) decreased state-preparation-

and-measurement fidelity for entangled states, (ii) faster decoherence of 𝑛-entangled

states, and (iii) increased idle time required to prepare and measure entangled states,

which instead one could have used on the sensing task to increase SNR. These 3

factors work in concert to decrease the possible amount of entanglement-enhanced

advantage.

Main Results We first state our main results.

As the first step towards the goal, we demonstrate entanglement-enhanced sensing

with our two-qubit system of NV and X electronic spins, by verifying an 𝑛-factor

improvement (where 𝑛 = 2) over the working range or bandwidth 𝜔𝑎𝑐 ≡ (2𝜋)𝜏−1 of

the sensor. However, due to the cost associated with entanglement, our particular

two-qubit device does not achieve 𝑔 > 1.

Given the difficulty of achieving 𝑔 > 1 via entanglement alone, we demonstrate an

independent way to extend the upper bound in sensitivity for the 𝑛 = 2-qubit device

by a factor SNR(M) ≤
√
𝑀 . This, inspired by the repetitive readout of a nearby

nuclear spin [57], is achieved by repurposing the dark electronic spin X as a classical

memory bit after its sensing task. By querying the electronic memory bit 𝑀 times,

the two-qubit device can gain enhanced sensitivity by a factor SNR(M) ≤
√
𝑀 .

4.0.1 Gain in Sensitivity 𝑔

To compare (any) two sensors, one natural metric of interest is to compare their

sensitivities 𝜂 for the same sensing task. Given our Goal to demonstrate quantum

advantage with an 𝑛 = 2-entangled sensor vs. a 𝑛 = 1 sensor, we define as our metric
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of interest the gain 𝑔:

𝑔 ≡ 𝜂1

𝜂𝑒
,

= 𝑔𝑁=1

√︂
𝑁𝑒

𝑁1

,

𝑔𝑁=1 =
𝜂1𝑁=1

𝜂𝑒𝑁=1

.

Just as with sensitivity 𝜂, 𝑔 can be pieced out as the single-shot component 𝑔𝑁=1,

which then can be improved (or degraded) when considering equal experiment time

𝑇 = 𝑁(𝜏 + 𝑡𝑖𝑑𝑙𝑒) for both sensors. More specifically, 𝑔𝑁=1 determines which sensor is

better at a particular sensing task, after a single operation 𝑁 = 1. But this metric

𝑔𝑁=1 does not consider time as a resource. Therefore, setting the (same) total allowed

experiment time for both sensors 𝑇𝑒 = 𝑇1, we can more fairly compare both sensors.

Then, the (relative) repetition rate of the sensor 𝑁𝑒

𝑁1
has the final say in whether 𝑔 > 1

can be achieved.

As is expected, for the same sensing task (i.e., same sensing time 𝜏 ≡ 𝜔−1
𝑎𝑐 ) given

to both sensors, we will strictly observe:√︂
𝑁𝑒

𝑁1

=

√︂
𝜏 + 𝑡1
𝜏 + 𝑡𝑒

< 1.

This is because, on top of the (same) time 𝑡1 to initialize and read the central qubit

(NV), the quantum sensor additionally requires initialization time 𝑡𝑖𝑛𝑖𝑡 (to initialize

the additional electronic spin from the environment) and 𝑡𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 + 𝑡𝑑𝑖𝑠𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 (to

generate and then readout the entangled state):

𝑡𝑒 = 𝑡1 + 𝑡𝑎𝑑𝑑,

𝑡𝑎𝑑𝑑 = 𝑡𝑖𝑛𝑖𝑡 + 𝑡𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 + 𝑡𝑑𝑖𝑠𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒.

Therefore, if the quantum sensor is to achieve quantum advantage 𝑔 > 1, it must
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first secure a sufficiently large single-shot gain 𝑔𝑁=1:

𝑔 > 1 ⇒ 𝑔𝑁=1 >

(︃√︂
𝑁𝑒

𝑁1

)︃−1

> 1.

Then, by plugging in the sensitivity calculated above (Eq. 1.5), we can identify

what factors determine 𝑔𝑁=1:

𝑔𝑁=1 = 𝑛

(︂
𝛼𝑛
𝛼1

)︂(︂
𝑒−𝜒𝑛(𝜏)

𝑒−𝜒1(𝜏)

)︂
.

Here, note that the uncertainty in signal 𝜎𝑆 has canceled out, as it is the same for

both sensors given that for both measure through the (same) NV.

We can now more concretely separate the ‘good’ terms (i.e., > 1) vs. the ‘bad’

(< 1)—or equivalently, the entanglement-enhancement vs. its cost.

The first term 𝑛 > 1 is the 𝑛-fold enhancement due to entanglement. This 𝑛 is

independent of 𝜏 (hence any specific sensing task) and enhances 𝑔 for all 𝜏 .

The second term 𝛼𝑛

𝛼1
< 1—as the first cost of entanglement— pertains to the

increased complexity of the quantum circuit required to generate entanglement. More

specifically, it compares how much 𝑛-body coherence of an 𝑛-maximally entangled

state (𝑛 = 2 for Bell states; 𝑛 > 2 for GHZ states) can be prepared and measured

vs. a single qubit: 𝛼𝑛

𝛼1
= (⟨00..0|𝜌|11..1⟩+ℎ.𝑐.)

⟨0|𝜌|1⟩+ℎ.𝑐. . It is strictly below 1 for the same reason

𝑡𝑒 > 𝑡1: in addition to the (same) single-qubit controls, the quantum sensor requires

multi-qubit control to (dis)entangle and to initialize. Given that no gate is perfect,

even a single additional gate leads to a strict sub-unity. Finally, 𝛼𝑛

𝛼1
is also independent

of 𝜏 , because it simply quantifies how good of an 𝑛-maximally entangled state can

be prepared (and meaured) vs. a single qubit—independent of whether or not the

prepared quantum states are then utilized for sensing.

Finally, the third term 𝑒−𝜒𝑛(𝜏)

𝑒−𝜒1(𝜏)
≤ 1—as the second cost of entanglement—pertains

to the faster decoherence of 𝑛-maximally entangled states. As we will see in the next

Chapter, the exact form of decay 𝜒(𝜏) will depend on both the underlying (quantum)

bath and the specific quantum circuit/control applied to the qubits. Nonetheless,
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to build intuition, we recall the simple example of decoherence of an 𝑛-maximally

entangled state under independent Markovian bath: 𝜒𝑛(𝜏) = 𝑛Γ𝜏 , where Γ is the

decoherence rate for a single qubit [54]. Then we have 𝑒−𝜒𝑛(𝜏)

𝑒−𝜒1(𝜏)
= 𝑒−(𝑛−1)Γ𝜏 ≤ 1:

the 𝑛-maximally entangled sensor decoheres exponentially faster, working against the

(polynomial) 𝑛-fold enhancement in sensitivity. Or put another way, recalling that

𝜏 ≡ 𝜔−1
𝑎𝑐 , this exponential decay in 𝜏 will limit the ‘working range’ or bandwith of

the frequencies 𝜔𝑎𝑐 of the AC fields the entangled sensor can sense (with quantum

advantage).

To summarize, the (quantum) gain depends on four factors:

𝑔 = 𝑛

(︂
𝛼𝑛
𝛼1

)︂(︂
𝑒−𝜒𝑛(𝜏)

𝑒−𝜒1(𝜏)

)︂√︂
𝜏 + 𝑡1
𝜏 + 𝑡𝑒

(4.1)

whereby save the 𝑛 > 1 entanglement-enhancement, the relative control infidelity
𝛼𝑛

𝛼1
< 1, the faster decoherence 𝑒−𝜒𝑛(𝜏)

𝑒−𝜒1(𝜏)
< 1, and increased idle time

√︁
𝜏+𝑡1
𝜏+𝑡𝑒

< 1 (not

spent on task of interest: sensing) associated with 𝑛-maximally entangled sensor will

favor 𝑔 < 1.

4.0.2 Entanglement-enhanced Sensing

Here we report our first experimental characterization of our two sensors in order to

extract the (quantum) gain 𝑔(𝜏) over the working range 𝜏 . As for notation regarding

the two sensors of interest, for the rest of the section we may refer to the 𝑛 = 1-

qubit sensor (i.e., the NV) as a ‘classical’ sensor and the 𝑛 = 2-qubit sensor (i.e., the

maximally entangled Bell state of NV and X) as the ‘entangled‘ or ‘quantum’ sensor

The quantum circuit of the entanglement-enhanced sensing protocol is shown in

Fig. 4-1. The 𝜑-block shown in Fig. 4-1a is accounts for the sensing task of interest

(here, spin echo AC magnetometry) of duration 𝜏 ≡ 𝜔−1
𝑎𝑐 . Recalling Eq. 1.4, the

sensing signal yields phase 𝜑 ∝ 𝑛𝑏𝜏 , where 𝑏 is the parameter of interest, and 𝑛 is the

gain in sensing rate due to entanglement. However, in order to perform the sensing

task of interest, the rest of the protocol is required (in order) to initialize the NV and

X spins [50, 68, 72], then entangle to a maximally-entangled Bell state [22, 104], then
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Figure 4-1: Entanglement-enhanced sensing protocol. Quantum circuit (top)
and specific pulse sequence (bottom) of the sensing protocol for the 𝑛 = 2-qubit
system composed of a single NV and one nearby X electronic spin. Adapted from
[22].

disentangle to readout the phase 𝜑. This ‘idle’ time 𝑡𝑞𝑚𝑖𝑑𝑙𝑒 or any time not used for the

task of interest can be significant (with respect to 𝜏) and hence in achieving quantum

advantage.

For our system, in the limit of fast single-qubit driving (i.e., sufficiently large Rabi

Ω0), the 𝑛 = 1 sensor (NV) requires 𝑡𝑐𝑙𝑖𝑑𝑙𝑒 = 2𝐿, where 𝐿 ∼ 2.6𝜇s is the laser pulse

length to initialize and read the NV state. Whereas the 𝑛 = 2 sensor requires

𝑡𝑞𝑚𝑖𝑑𝑙𝑒 = 𝑡𝑐𝑙𝑖𝑑𝑙𝑒 + 𝑡𝑖𝑛𝑖𝑡 + 𝑡𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 + 𝑡𝑑𝑖𝑠𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒,

= 𝑡𝑐𝑙𝑖𝑑𝑙𝑒 + ((2𝑑)−1 + 𝐿) + (4𝑑)−1 + (4𝑑)−1,

= 𝑡𝑐𝑙𝑖𝑑𝑙𝑒 + 𝐿+ 𝑑−1, (4.2)

where 𝑑 ∼ 60 kHz is the coupling strength between NV and X. Given that 𝑑 de-

termines the length of (dis)entangling gates and SWAP gates used for initialization,

the 𝑡𝑞𝑚𝑖𝑑𝑙𝑒 is (almost) inversely proportional to 𝑑 and hence significantly benefits from

stronger coupling.

Having described the sensing protocol, we experimentally execute the protocol to

perform AC magnetometry with both 𝑛 = 1 and 𝑛 = 2 sensors. For experimental

simplicity, all 𝑛 = 2 protocols are performed by addressing only 1 of 2 hyperfine

transitions of the X electronic spin (thereby reducing signal by half, whose effect will

be discussed below).

A typical AC magnetometry experiment, sweeping 𝑏 at fixed 𝜏 , is shown in Fig. 4-

2. By fitting to the expected sinusoidal signal (Eq. 1.4), we directly verify 𝑛 = 2-fold
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Figure 4-2: Typical AC magnetometry experiment. The AC magnetometry
experiment— sweeping the amplitude 𝑏 of externally applied B-field 𝑏(𝑡) = 𝑏 sin(𝜔𝑎𝑐𝑡),
with the spin echo sequence applied to the sensor qubit(s)—is shown. Fitting both
sensor signals 𝑆𝑛=1(𝑏) for NV (blue data points) and 𝑆𝑛=2(𝑏) for NV-X entangled
(purple data points) to the expected sinusoidal (lines) directly verifies (full) 𝑛 =
2-enhancement. Furthermore, by extracting the slope

⃒⃒
𝑑𝑆
𝑑𝑏

⃒⃒
(dashed lines) and the

uncertainty 𝜎𝑆 (errorbar) at the optimal working point (𝑏 = 0), we directly extract
the (single-shot) sensitivity 𝜂𝑁=1 of each sensor, and in turn the (single-shot) gain
𝑔𝑁=1. Adapted from [22].

increase in sensing rate for the entangled sensor.

Now to extract gain 𝑔, we (only) need to measure the single-shot sensitivity 𝜂𝑁=1

of each sensor, as seen by:

𝑔 = 𝑔𝑁=1

√︂
𝜏 + 𝑡1
𝜏 + 𝑡𝑒

,

𝑔𝑁=1 =
𝜂𝑐𝑙𝑁=1

𝜂𝑞𝑚𝑁=1

,

𝜂𝑁=1 =
𝜎𝑆⃒⃒

𝑑𝑆
𝑑𝑏

⃒⃒
𝑚𝑎𝑥

.

Here,
⃒⃒
𝑑𝑆
𝑑𝑏

⃒⃒
𝑚𝑎𝑥

and 𝜎𝑆 are exactly the slope and uncertainty, respectively, at the

optimal working point of the sensor 𝑏 = 0 (Fig. 4-2). Repeating the AC magnetometry

experiment at 𝜏 = 2, 10, 20𝜇s, we report the gain 𝑔(𝜏) in Fig. 4-3, which we will discuss

shortly.

In order to more completely characterize our sensors (in addition to the (direct)

AC magnetometry experiments at 𝜏 = 2, 10, 20𝜇s), we further predict the sensitivity
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Figure 4-3: Gain in sensitivity: Entanglement-enhanced. The (quantum) gain
𝑔 ≡ 𝜂1/𝜂𝑒 in the sensitivity is shown across the working range 𝜏 of the two sensors,
where 𝑔 > 1 means quantum advatange. Adapted from [22].

over the entire working range of 𝜏 , via:

𝑔 ≡ 𝜂1

𝜂𝑒
,

= 𝑛

(︂
𝛼𝑛
𝛼1

)︂(︂
𝑒−𝜒𝑛(𝜏)

𝑒−𝜒1(𝜏)

)︂√︂
𝜏 + 𝑡1
𝜏 + 𝑡𝑒

In other words, the only missing information is 𝛼𝑛(𝜏) ≡ 𝛼𝑛𝑒
−𝜒𝑛(𝜏), which is the 𝑛-

qubit decoherence through the sensing protocol (i.e., spin echo) of length 𝜏 . Therefore,

from the spin-echo experiment in Fig. 4-4, we can extract both parameters.

First, we find the relative signal contrast of:

𝛼𝑛
𝛼1

=
0.78(6)

0.96(3)
∼ 0.81

As expected, the quantum circuit (to prepare the sensor state) for 𝑛 = 1 qubit is nearly

perfect, yielding single-qubit coherence 𝛼1 = 0.96(3). In contrast, the quantum circuit

to prepare 𝑛 = 2-maximally entangled state only achieves 𝛼𝑛=2 = 0.78(6). Given that

the 𝑛 = 2 quantum circuit consists of 4 two-qubit (dis)entangling gates between NV

and X spins (Fig. 4-1), we can crudely approximate that each two-qubit entangling

gate has a ‘fidelity’ of 𝐹𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 ∼ 0.781/4 ∼ 0.94.
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Figure 4-4: Decoherence under spin echo of 𝑛 = 2 entangled sensor vs.
𝑛 = 1 single-qubit sensor. The 𝑛 = 2-entangled sensor (of NV and X spins) under
spin echo (purple data points) decoheres exponentially at approximately twice the
rate than that of the 𝑛 = 1-qubit sensor (NV). Adapted from [22].

Second, we also find as expected an exponentially faster decoherence for the entan-

gled sensor. More specifically, fitting each signal to 𝑆𝑛(𝜏) ≡ 𝑒−(Γ𝜏)𝑝 , we find 𝑝 ∼ 1.6

for both sensors and the decoherence rates:

Γ𝑛=2 ∼ 2Γ𝑛=1

We can now predict the gain 𝑔(𝜏) over all working range 𝜏 , which is plotted in

Fig. 4-3 (solid lines): and the predicted sensitivities reproduce the direct AC magne-

tometry measurements at 𝜏 = 2, 10, 20𝜇s.

We now discuss the results in Fig. 4-3.

For simplicity, first consider the single-shot gain 𝑔𝑁=1(𝜏) (purple), which does

not consider time 𝑇 = 𝑁(𝜏 + 𝑡𝑖𝑑𝑙𝑒) as a resource. Recall that the data points (and

solid line) are from experiments, during which we addressed only one half of the

available nuclear population of X. Therefore, if we could remove the nuclear spin

degree of freedom of X (e.g., via simultaneous driving of both hyperfine transitions or

via polarizing the nuclear spin), then in such a ‘best’ case scenario we could achieve

the (purple) dashed lines (multiplied by a factor of 2). Then we find 𝑔𝑁=1(𝜏) > 1 for

a large range of 𝜏 .

However, we now take time 𝑇 into account by considering the 𝑡𝑖𝑑𝑙𝑒 of each sensor.
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This results in the true gain 𝑔(𝜏) = 𝑔𝑁=1(𝜏)
√︁

𝜏+𝑡1
𝜏+𝑡𝑒

(green). Similarly, while the data

points (and solid line) reflect only half-driven nuclear population, we can project to

the best case scenario (dashed line) by multiplying by 2 to remove the nuclear spin

degree of freedom. However, even in such a case, we find 𝑔(𝜏) < 1 for the entire

working range 𝜏 .

In other words, given our system parameters (𝑑,Γ𝑛) and control parameters (𝐹𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒),

entanglement (alone) is insufficient to allow quantum advantage 𝑔 > 1.

Therefore, in order to improve upon the entanglement-enhancement allowed for

𝑛 > 1 systems, we further demonstrate the use of the second qubit as a memory bit.

4.0.3 Entanglement- & Memory-enhanced Sensing

Given entanglement alone, recall that g upper-bounded by 𝑛:

𝑔 = 𝑛

(︂
𝛼𝑛
𝛼1

)︂(︂
𝑒−𝜒𝑛(𝜏)

𝑒−𝜒1(𝜏)

)︂√︂
𝜏 + 𝑡1
𝜏 + 𝑡𝑒

≤ 𝑔𝑚𝑎𝑥 = 𝑛,

where the equality would be achieved given instantaneous two-qubit gates that are

of the same fidelity as single-qubit gates and the same rate of decoherence for the

𝑛 > 1-maximally entangled sensor—which in principle is not possible. But short

of achieving 𝑔 = 2, it was in practice to realize even 𝑔 > 1 due to the ‘costs’ of

entanglement.

Therefore, in this section, we demonstrate an independent method to extend the

upper-bound:

𝑔𝑚𝑎𝑥 = 𝑛 → 𝑔′𝑚𝑎𝑥 = 𝑛SNR(𝑀)

where SNR(𝑀 ≥ 1) ≤
√
𝑀 is the resulting SNR after 𝑀 number of measurements

made on the 𝑛 = 2 system.

We show that this can be achieved by a modified sensing (+ memory) protocol

as in Fig. 4-5. More specifically, after the sensing and disentangling gate, the sensed
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Figure 4-5: Environment-assisted sensing: Entanglement- and memory-
enhanced. Quantum circuit (a.) and specific pulse sequence (b.) of the modified
sensing protocol for the 𝑛 = 2-qubit system composed of a single NV and one nearby
X electronic spin. It include the optional ‘repetitive readout’ block [57], iterated 𝑚
times. More specifically, given the sensed information 𝜑 is stored in the X spin pop-
ulation after the disentangling gate, there is the option to further utilize the X as
a (classical) memory bit, from which additional (classical) SNR gain of

√
𝑚 may be

possible Adapted from [22].

information 𝜑 is stored in both the NV and the X spin population. Then, whereas

the first (𝑀 = 1) measurement via green laser re-initializes the NV, 𝜑 is still stored

in the X spin population. This allows the possibility to further utilize the X spin as

a (classical) memory bit, from which one could make 𝑀 − 1 more measurements [57].

Then, in the ideal case—of zero depolarization of X under green illumination as

well as a perfect two-qubit entangling gate to readout X population—it would be

possible to infinitely benefit in SNR by
√
𝑀 with increasing 𝑀 . But realistically,

there is partial depolarization of X under green illumination as well as imperfect

two-qubit gates, and hence a limit to maximum achievable 1 ≤ SNR <
√
𝑀 .

To first demonstrate we can extend the upper-bound 𝑔𝑚𝑎𝑥 = 𝑛 → 𝑛𝑆𝑁𝑅(𝑀),

we re-perform the AC magnetometry experiment under the modified protocol with

repeated readout on the X spin. Indeed, on top of the 𝑛 = 2-fold entanglement-

enhancement (seen from the oscillation rate), we demonstrate that one could further

gain SNR <
√
𝑀 as seen in Fig. 4-6. More specifically, we observe SNR(𝑚 = 6) ∼

2 <
√
6 ∼ 2.4.

Thus under the ‘hardware-efficient’ protocol—where the second qubit is re-purposed
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Figure 4-6: Repeated readout of optically dark electronic spin X. Repeating
the AC magnetometry experiment under the modified procotol—with additional (𝑚−
1) = 8 queries made to the X spin as a classical memoery bit. We observe the (ideal)
SNR scaling

√
𝑚 up to a few 𝑚; however, given imperfect two-qubit control and

non-zero X depolarization under laser illumination, the maximum SNR saturates by
several 𝑚. Adapted from [22].

as a memory bit after entangled sensing—we have the (modified) gain:

𝑔′ = 𝑔′𝑁=1

√︃
𝜏 + 𝑡1
𝜏 + 𝑡′𝑒

,

𝑔′𝑁=1 = 𝑔𝑁=1SNR(𝑀),

𝑡′𝑒 = 𝑡𝑒 + (𝑀 − 1)𝑡𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒,

where 𝑡𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒 = (4𝑑)−1. As seen from the last two equations, the enhancement by
𝑔′𝑁=1

𝑔𝑁=1
= SNR(𝑀)—like entanglement—is not free but has a cost: 𝑡′𝑒 − 𝑡𝑒 = (𝑀 −

1)(4𝑑)−1. Given that (approximately) 𝑡𝑒 ∝ 𝑑−1, in the limit of strong coupling,

(𝑑𝜏) ≫ 1, one benefits not only in entanglement-only sensing, but also further with

repeated readout of X.

Now we report the final result of gain 𝑔′ as a function of increasing number of

repeated measurements 𝑚 = 𝑀 − 1 in Fig. 4-7 at 𝜏 = 20𝜇s. As before, the (pur-

ple) green color refers to (single-shot) gain; the filled (empty) data points are the

experimentally measured (projected, multiplied by 2).

First, we observe that the gain 𝑔 monotonically increases with 𝑚 until 𝑚 = 6—
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Figure 4-7: Entanglement- and Memory-enhanced Gain in Sensitivity for
𝑛 = 2-qubit Sensor. Adapted from [22].

due to sufficiently increasing SNR(𝑚). Perhaps more importantly, by 𝑚 = 2, it

is possible to achieve quantum advantage 𝑔′ > 1. Recall from above that, given

our system parameters (𝑑,Γ) and control fidelity (𝐹𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒), entanglement alone was

insufficient to achieve quantum advantage at any 𝜏 over the entire working range.

But by extending the possible gain via re-purposing the second qubit as a memory,

it is possible to achieve quantum advantage 𝑔′ > 1. Finally, we observe that after the

monotonic rise up to 𝑚 = 6, the gain 𝑔 starts to decrease with 𝑚, not only due to

saturating SNR(𝑚) but also with increasing time cost.

Finally, to generalize beyond our specific 𝑛 = 2 spin system, we map the possible

gain 𝑔, 𝑔′ as a function of system parameters (𝑑,Γ) around our own. We observe

the region of 𝑔 > 1 (dark green) increases with increasing 𝑑 (equivalently decreasing

idle time 𝑡𝑞𝑚𝑖𝑑𝑙𝑒 spent to generate and measure entangled states); and furthermore the

region of 𝑔′ > 1 (light green) due to faster memory query time. On the other hand,

the y-axis shows the relative decoherence rate of the two qubits, motivated by the

fact that (even) for two spatially proximal qubits their decoherence is not identical

(which will be further elucidated in the next Chapter). In such a case, depending on

the specific sensing task, the central spin may benefit more from entangling with a
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Figure 4-8: Projected Gain of 𝑛 = 2 Sensor. We show numerically the projected
gain in sensitivity—given observed control fidelity and removed nuclear spin-1/2 de-
gree of freedom—as a function of the 𝑛 = 2 system parameters: coupling strength 𝑑
and relative decoherence rate Γ. Entanglement-enhanced (only) gain 𝑔 > 1 is shown
in dark green region; entanglement- and memory-enhanced 𝑔′ > 1 is the (larger) light
green region. Purple diamond shows our particular system parameters: while with
entanglement alone 𝑔 < 1, with entanglement and repetitive readout 𝑔′ > 1. Finally,
note the (strong) dependence of 𝑔, 𝑔′ on the interaction strength 𝑑, which determines
the rate of entangling (and initialization) to reduce idle time of the 𝑛 > 1-entangled
sensor. On the other hand, the relative decoherence of each qubit is motivated by the
fact that even for spatially proximal qubits, the effective bath seen by each qubit may
not be identical (to yield the same 𝑇2 or decay profile). In this case, the central qubit
may further benefit from entangling with a nearby spin of longer coherence. Adapted
from [22].
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nearby spin of longer coherence time.

Conclusion In this Chapter, we demonstrate environment-assisted sensing with a

two-qubit electronic spin register to achieve quantum advantage in sensing of classi-

cal fields. While entanglement alone may be insufficient to achieve practical quantum

advantage at realistic system parameters (Fig. 4-8), we find the additional enhance-

ment via a repetitive readout scheme can significantly increase the area of quantum

advantage. Therefore, depending on the system parameters of the electronic spin reg-

ister, environment-assisted sensing can significantly enhance the sensitivity of sensing

external fields at the nanoscale.
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Chapter 5

Conclusion and Outlook

In this thesis, we set our goal to develop small-scale quantum information processors

based on electronic spins in diamond. In contrast to the more developed nuclear

spin register around a central NV, an electronic spin register is expected to enable

new applications thanks to its stronger coupling between spins and to external fields,

e.g., as a platform to demonstrate enhanced sensing, develop novel characterization

tools for general quantum devices, and prototype a scalable architecture for quantum

computation. In this thesis, we have taken three critical steps towards our goal to

demonstrate the potential advantages of an electronic spin register. Here, we review

our main results and their significance, and provide an outlook on potential future

steps to build upon the results and developed methods.

As the first step, we developed a general method to systematically scale up a sys-

tem of electronic spins, starting with a central NV center in diamond, by identifying

the Hamiltonian of unknown spins near the NV. As knowledge of the system Hamil-

tonian is required for good coherent control over the system, this is the first step we

take to develop a register of electronic spins. Utilizing this method, we characterized

the Hamiltonian of two unknown electron-nuclear spin defects interacting with the

NV – which have not yet been reported in previous literature based on spectroscopy of

ensemble spins. This result demonstrates that our method to characterize electron-

nuclear spin defects at the single-molecule level can enable further exploration of

electronic spin clusters in various solid-state systems. More specifically, it not only
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enables identification of various possible spin complexes in the host crystal with fur-

ther characterization of the nuclear spin species, but also simultaneously realizes a

controllable quantum register of electronic spins.

Given the controllable quantum register of electronic spins, we characterized this

device with respect to two important aspects: entanglement and decoherence.

First, given that entanglement is critical for many quantum information tasks,

an accurate characterization of the entanglement generated by a quantum device is

desired. To this end, we developed a method to detect entanglement that is more

robust in the presence of local unitary control errors. More specifically, in comparison

to the conventional entanglement witness based on state fidelity, our proposed metric

(the subspace witness) is insensitive to any combination of single-qubit phase errors

accrued during the state-preparation-and-measurement of the target entangled state.

This robustness comes however at the cost of additional measurements, which however

scales favorably for important classes of entangled states. Not only does this metric

yield a more accurate characterization of the entanglement generated by the device,

it also facilitates the estimation of a lower bound for entanglement via the metric

called GME concurrence.

Second, given that the lifetime of quantum devices is limited by decoherence, a

practical (classical) and predictive noise model for the device is desired. Therefore, as

a first step to characterize the noise affecting a multi-qubit device, we demonstrated a

protocol to build a self-consistent classical noise model for individual qubits. Applying

this protocol to two spatially nearby qubits, we reported two results. For the NV qubit

– sufficiently isolated/distinguishable from its bath – it is possible to build a classical

noise model that is self-consistent with a varied set of dynamics (namely, Ramsey,

Echo, and CPMG experiments). However, for the nearby X qubit, this is not possible,

possibly due to a more complex and quantum bath for X. More specifically, we find

evidence for the presence of near-resonant spins interacting with X – such that driving

X at sufficient Rabi power also partially drives the bath of X – giving rise to a noise

model that must be changed as a function of (ideally bath-independent) Rabi power.

The two results offer two potential outlooks. First, given qubits for which a self-
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consistent noise model is possible – suggesting a qubit well isolated from the bath

– their noise model can be used to simultaneously characterize the bath and as well

develop more robust quantum gates and circuits. Second, given qubits for which

a self-consistent noise model is not possible – this may suggest a more complex and

sufficiently quantum bath that could be further explored. In the case of our electronic

spin X, the presence of near-resonant, interacting spins may offer a way to further

scale up our register of electronic spins upon further characterization.

Finally, given our electronic spin register, we demonstrated a quantum information

task in quantum sensing. More specifically, we demonstrated environment-assisted

sensing, utilizing the NV center and one additional electronic spin from the envi-

ronment, to achieve practical quantum advantage. We first verified entanglement-

enhanced sensing with the two-qubit entangled sensor – but find the sensitivity gain

via entanglement is insufficient to overcome the necessary costs of entanglement that

degrade sensitivity. Therefore, to take one step further towards quantum advantage,

we enhanced the sensitivity by utilizing the additional electronic spin as a classical

memory register (after entangled sensing). We find that, as a function of electronic

spin system parameters, the sensitivity enhancement via both entanglement and mem-

ory significantly increases the area of quantum advantage.

The results and general methods developed in this thesis pave the way towards

building multi-qubit quantum information processors based on a register of electronic

spins. Furthermore, going beyond n=2 spins, more interesting applications can be

explored, including but not limited to (hardware-efficient) quantum error correction,

error corrected sensing, three-qubit entangling gates, generation of genuine multi-

partite entangled states, and more. Finally, as a more immediate outlook given our

particular system, it may be possible to further scale up the size of the quantum reg-

ister, building upon the discovery of not only resolved nuclear spin(s) nearby the NV

but also possibly a group of coherently coupled electronic spins around X. This latter

step would allow further scaling of the electronic spin register beyond the coherence

time of the central spin.
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