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Abstract

Designing robots with extreme performance in a given task has long been an exciting
research problem drawing attention from researchers in robotics, graphics, and artifi-
cial intelligence. As a robot is a combination of its hardware and software, an optimal
robot requires both an excellent implementation of its hardware (e.g., morphological,
topological, and geometrical designs) and an outstanding design of its software (e.g.,
perception, planning, and control algorithms). While we have seen promising break-
throughs for automating a robot’s software design with the surge of deep learning in
the past decade, exploration of optimal hardware design is much less automated and
is still mainly driven by human experts, a process that is both labor-intensive and
error-prone. Furthermore, experts typically optimize a robot’s hardware and software
separately, which may miss optimal designs that can only be revealed by optimizing
its hardware and software simultaneously.

This thesis argues that it is time to rethink robot design as a holistic process where
a robot’s body and brain should be co-optimized jointly and automatically. In this
thesis, we present a computational robot design pipeline with differentiable simula-
tion as a key player. We first introduce the concept of computational robot design on
a real-world copter whose geometry and controller are co-optimized with a differen-
tiable simulator, resulting in a custom copter that outperforms designs suggested by
human experts by a substantial margin. Next, we push the boundary of differentiable
simulation by developing advanced differentiable simulators for soft-body and fluid
dynamics. Contrary to traditional belief, we show that deriving gradients for such
intricate, high-dimensional physics systems can be both science and art. Finally, we
discuss challenges in transferring computational designs discovered in simulation to
real-world hardware platforms. We present a solution to this simulation-to-reality
transfer problem using our differentiable simulator on an example of modeling and
controlling a real-world soft underwater robot. We conclude this thesis by discussing
open research directions in differentiable simulation and envisioning a fully automated
computational design pipeline for real-world robots in the future.

Thesis Supervisor: Wojciech Matusik
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Designing a robot with optimal performance for a given task has long been an ex-
citing research problem in robotics, graphics, and embodied intelligence. Finding an
optimal robot requires a deep understanding of its body and brain, i.e., a good robot
design must consist of both good hardware and good software. Many traditional
computational methods focus on exploring the software space only, e.g., via mathe-
matical tools and numerical algorithms developed for perception, sensing, planning,
and control. However, these methods typically overlook the need to design the ge-
ometry, morphology, or topology of robotic agents computationally: Today, it is still
common to ask an experienced mechanical engineer instead of a computational design
algorithm to drive a robot’s hardware design manually, which is often labor-intensive
and error-prone.

In this thesis, we argue that this human-guided design process suffers from two sig-
nificant drawbacks: First, the robot’s hardware and software are optimized separately,
which may miss optimal designs that can only be discovered by joint optimization of
both. Second, and more importantly, as engineers drive the whole design process, its
quality relies heavily on one’s domain-specific knowledge or prior design experience.
Can computational methods outperform human experts in designing a robot? This is
the core question we ask and attempt to answer in this thesis.

1.1 Traditional Robot Design

We first review the basic idea behind a traditional robot design process before dis-
cussing the core techniques we developed in this thesis. Consider designing an
aerial robot that aims to carry as much payload as possible (Fig. 1-1). We start
by parametrizing the design of a robot using discrete and continuous parameters. For
example, discrete parameters may include the number of actuators, the topological
structure, and the control hierarchy, and continuous parameters can include the geo-
metrical size of a component, the material properties, and coefficients in a controller.
Traditionally, an engineer first proposes an educated guess of the continuous and
discrete parameters that determine an initial hardware and software prototype. She
may then evaluate the proposed design in simulation, analyze its results, and make
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adjustments to both discrete and continuous design parameters. For example, with
the goal of maximizing the payload in mind, she may propose using lighter and wider
foam wings based on her domain-specific knowledge or past design experience. Once
she is content with the simulation results, she builds a hardware prototype, collects
data from real-world experiments, and makes further adjustments to the design pa-
rameters as well as the simulation model based on feedback from both simulation and
experiments. This process typically iterates multiple times before converging to an
optimal design. As can be seen from the description above, the whole procedure is
mainly driven by the engineer’s experience and expertise.

Figure 1-1: An example of designing a real-world multicopter. Human experts (red blocks)
play a central role in iterating the design.

1.2 Thesis Overview
This thesis argues that it is now the right time to revolutionize this human-in-the-
loop design process by making computational methods a first-class citizen. With
the recent development of more powerful computing platforms and more advanced
simulation, optimization, and learning algorithms, this thesis focuses on automating
a subset of the design process in Fig. 1-1 with the following simplification: First,
we skip the exploration of discrete parameters and focus on optimizing continuous
design parameters. Throughout the thesis, we will assume all discrete parameters
are given and fixed by a user. Second, we limit the scope of hardware and software
optimization to continuous shape and control parameters only. Other hardware or
software components like sensors, actuators, or perception algorithms are beyond
the scope of this thesis. We provide an overview of the computational robot design
pipeline with the simplifications described above in Fig. 1-2, and we will briefly discuss
our other research work that can help to remove these simplifications at the end of
this thesis.

The core technique in this thesis is the development and usage of differentiable
simulation, a recent simulation methodology that we believe can be a crucial player in
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Figure 1-2: A computational robot design pipeline covered in this thesis. Compared with
Fig. 1-1, we skip the discrete design parameters and focus on optimizing shape and control
designs. Also, note the central role of differentiable simulation in the pipeline.

realizing a computational robot design pipeline. Unlike traditional simulation tools
that only evaluate a robot’s performance passively, a differentiable simulator connects
a robot to its performance by backpropagating the gradient of a performance metric
to the continuous shape and control parameters. Such gradient information unlocks
continuous optimization algorithms for the continuous shape and control design space.
In the first part of this thesis (Chpt. 3), we will demonstrate this computational de-
sign pipeline and motivate the usage of a differentiable simulator using a case study
on real-world multicopters [43]: In this work, we build a differentiable rigid-body
simulator and leverage its shape and control gradients to explore various geometric
designs of functional copters effectively. The new copter design discovered by our
computational pipeline is then evaluated in real-world flight tests, in which we ob-
serve substantial improvement (e.g., 30% increase in its maximum payload) in its
performance compared with a manual design created by human engineers.

The success in multicopter design shows the power and potential of a compu-
tational pipeline equipped with a differentiable simulator in real-world robot agent
design problems. To extend this pipeline to supporting more complex robots, we intro-
duce two advanced differentiable simulators for more intricate and higher-dimensional
physics systems. In the second part of this thesis (Chpt. 4), we present a differentiable
soft-body simulator [44] and a differentiable fluid simulator [45] with tens of thou-
sands of degrees of freedom. Contrary to the common belief that adding gradients to
a physics simulator requires merely a procedural application of existing mathematical
tools (e.g., the chain rule, the adjoint method, and sensitivity analysis), we use these
two advanced differentiable simulators to show that deriving gradients can be both a
science and an art. Specifically, by identifying the numerical pattern in the govern-
ing equations of these systems, we show that we can obtain substantial speedup and
simplicity from carefully crafted numerical solvers. Furthermore, the speedup paves
the way for us to extend our pipeline [43] to soft and underwater robots because
simulation and gradient computation in these robots are the typical computational
bottleneck.
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The more powerful soft-body and fluid differentiable simulators we have developed
unlock exciting soft and underwater robotics applications. Moreover, these physics-
based simulation tools pave the way for transferring design results in simulation to
reality, known as the simulation-to-reality (sim-to-real) task. In the last part of this
thesis (Chpt. 5), we will present a solution to the sim-to-real task and demonstrate
it on a real-world soft underwater robot modeling and control problem [41] that
we manage to solve with the help of our advanced differentiable simulator [44]. In
particular, we present a Starfish robot and show that we can use our differentiable
simulator to jointly identify its system parameters and propose effective open-loop
control signals.

1.3 Contributions
This thesis contributes the following:

• A computational co-design and co-optimization pipeline that jointly optimizes a
rigid robot’s shape and control with a demonstration on real-world multicopter
design problems [43];

• A physics-based, efficient, robust soft-body differentiable simulator [44] and its
applications in system identification, trajectory optimization, and closed-loop
control;

• A physics-based, differentiable Stokes-flow fluid simulator [45] and its applica-
tion in designing functional fluidic devices;

• A computational, differentiable-simulation-based method for narrowing sim-to-
real gaps and its application in modeling and controlling a real-world soft un-
derwater robot [41].

1.4 Thesis Impact
We believe that the computational methods developed in this thesis and their future
directions can fundamentally change the way engineers build robots in the future. The
traditional robot design, optimization, and fabrication processes are mainly manual,
with computational methods playing a secondary role. The computational robot
design pipeline presented in this thesis provides a digital solution that is faster and
less error-prone than the traditional, human-guided design process. We demonstrate
in this thesis the efficacy of this computational design pipeline in co-designing and
co-optimizing multicopters, and we believe that designing other types of rigid robots
like quadrupeds or manipulators can also benefit from our pipeline.

A second positive impact that our thesis brings is the development of advanced
differentiable simulation methodology. Without a fast and robust differentiable sim-
ulator, it would not be possible to apply the computational robot design pipeline
to more sophisticated robotic systems with high DoFs, e.g., soft manipulators or
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soft underwater robots. The efficient differentiable simulators developed in this the-
sis tackle this exact problem, unlocking the full power of computational methods in
downstream applications relevant to designing soft robots, e.g., system identification,
motion planning, and controller design.

Lastly, this thesis provides a new, differentiable-simulation-based method for nar-
rowing the sim-to-real gap when transferring computationally designed robots in sim-
ulation to their hardware platforms. In particular, the efficient differentiable simulator
developed in this thesis makes it tractable to identify the system parameters and nar-
row the reality gap of a soft underwater robot, bringing new opportunities in soft
robot design, control, optimization, and fabrication.

We hope that the differentiable simulators developed in this thesis [43, 44, 45],
along with the proposed computational design pipeline [43] and the discussion on
sim-to-real transfer [41], will push the frontier of robot design in multi-physics envi-
ronments and unlock new opportunities in upstream and downstream applications,
including shape representation and analysis in computer-aided design (CAD) [42],
morphological design of soft robots [99], robotic planning and control [44], and multi-
objective design and optimization [98].

23



24



Chapter 2

Related Work

This chapter reviews previous papers from the three most relevant topics to our thesis:
computational robot design (Chpt. 3), physics simulation (Chpt. 4), and sim-to-real
transfer (Chpt. 5).

2.1 Computational Robot Design

As we discussed in the previous chapter, our computational robot design pipeline
focuses on jointly optimizing a robot’s shape and controller design. Here, we review
previous papers on computational robot design and classify them into three categories:
shape design, controller design, and co-design of both shape and control.

2.1.1 Shape Design

Related work on the computational design of a robot’s shape can be traced back
to early papers about the computational fabrication of static and dynamic objects
without controllers, e.g., designing plush toys [109], furniture [122, 146, 83, 127],
clothes [147], inflatable structures [133], wire meshes [54], mechanical objects [79,
166, 31], and masonry structures [158, 151]. Previous papers have also discussed the
computational design of objects with more dynamic motions [8].

Designing a robot’s shape is typically much more complex than the papers above
because of the existence of control signals over a long time horizon. Therefore, pre-
vious papers about shape optimization typically apply their methods to passive dy-
namical systems. For example, Umetani et al. [148] present a system that allows
the user to design the shape of free-form hand-ranching gliders. Martin et al. [102]
present a data-driven approach to capture parameters of an omnidirectional aerody-
namics model, which is then used to design three-dimensional kites. Bharaj et al. [17]
present a method that leverages physical simulation and evolutionary optimization
to refine the mechanical designs of automata such that the resulting toys can walk.

Compared with designing a rigid robot’s shape, designing the shape of a soft robot
is even more challenging because of its large degrees of freedom (DoFs), and related
work is much sparser. One common strategy is to run genetic algorithms to evolve
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a voxel-based soft robot design in simulation [66], leading to computer-designed soft
robots that can walk, swim, and grow [29, 32, 20]. The strategy in this thesis is quite
different from these works in that we rely on differentiable simulation and gradient-
based optimization methods to design a robot, which is typically much more sampling
efficient.

2.1.2 Controller Design

Compared with shape design, designing a robot’s controller is more automatic and
can enjoy many well-developed tools and techniques. Previous papers have pro-
posed many computational methods for designing, editing, and optimizing control
signals in systems like walking robots [152, 30], mechanical characters [31], swimming
characters [88, 141], birds [160, 76], and gliders [148]. Particularly, for the sake of
efficiently generating artist-desired animations, a large variety of optimization algo-
rithms have been developed in the effort to edit and control the dynamics of rigid
bodies [118, 145, 74, 140, 88]. Apart from optimization-based methods, it is also
worth mentioning the success of (reinforcement-)learning-based controller design in
many real-world robots [162, 163, 72]. Optimizing a soft robot’s controller is also cov-
ered in previous papers. e.g., controlling soft swimmers [107] or soft quadrupeds [15].
However, it is still an under-explored area because of the computational bottleneck
from simulating and optimizing many DoFs in a soft robot.

2.1.3 Co-Design and Co-Optimization

Jointly optimizing a robot’s shape and control is a challenging problem due to their
intricate coupling. Therefore, perhaps not surprisingly, research on co-design and
co-optimization of a robot is sparse and starts to draw people’s attention only in
recent years. Besides our work in Chpt. 3 and its related work, there are also a few
other co-design and co-optimization strategies from the literature: Deimel et al. [37]
present a method for co-designing a soft hand’s morphology and control signals based
on fast forward simulation. In addition, Wang et al. [156] represent robot designs
as graph networks and co-optimizes a robot’s topology and controller. Compared
with their methods, this thesis takes a fundamentally different approach based on
gradient-based optimization in a continuous domain of design parameters.

2.2 Physics Simulation

Simulation is a critical ingredient in our computational robot design pipeline. In
Chpt. 4, we introduce differentiable soft-body and fluid simulators, which we build
upon previous work on soft-body simulation, fluid simulation, and more recent devel-
opment of differentiable physics simulation.
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2.2.1 Soft-Body Simulation

Soft-body simulation is an extensively studied topic in computer graphics and me-
chanical engineering. The differentiable soft-body simulator we develop in Chpt. 4
is most relevant to Projective Dynamics (PD), a fast and implicit soft-body sim-
ulation methodology with specific assumptions on material models [22]. Existing
works have extended standard PD algorithm to support rigid bodies [89], conserve
kinetic energy [39, 40], and a wide range of hyperelastic materials [96]. Furthermore,
previous papers have also proposed more advanced acceleration strategies, includ-
ing semi-iterative Chebyshev solvers [153, 154], parallel Gauss-Seidel methods with
randomized graph coloring [53], precomputed reduced subspace methods for the re-
quired constraint projections [24], and multigrid solvers [161]. Furthermore, Macklin
et al. [100] introduce a preconditioned descent-based method of Projective Dynamics
on GPU with a penalty-based contact model. Our differentiable simulation in Chpt. 4
inherits the standard PD setup. However, it is quite different from these works above
in that we study how to leverage PD simulation techniques to speed up gradient
computation, which is one of the unique contributions in this thesis.

Another central topic in soft-body simulation is collision handling. There ex-
ists a diverse set of collision handling algorithms with different design considera-
tions: physical plausibility, time cost, and implementation complexity. Only a few
of them [90, 28, 69, 100] take differentiability of a contact model into account. The
most widespread strategy in PD-based simulation is to treat contact as soft con-
straints by either directly projecting colliding vertices onto collision surfaces at the
end of each simulation step [153, 154, 40, 39] or imposing a fictitious collision en-
ergy [96, 89, 22]. Such methods introduce an artificial stiffness coefficient, which is
task-dependent and requires careful tuning. Alternatively, Ly et al. [97] propose to
combine the more physically plausible Signorini-Coulomb contact model with PD in
forward simulation. However, using such a model creates an additional challenge
during backpropagation as solving the contact forces requires nontrivial iterative op-
timizers, which either fail to maintain differentiability or no longer enjoy the speedup
from PD. Our differentiable simulation in Chpt. 4 considers both penalty-based and
complementarity-based contact models by drawing inspirations from sparse Cholesky
updates [65] and low-rank matrix updates [75].

2.2.2 Fluid Simulation

Simulation of fluid flows has been a staple of physics-based animation, relying pre-
dominantly on the Navier-Stokes equations to capture the dynamics of motion in
media such as smoke [137, 49] and water [48]. Several such methods are based
on finite-difference discretizations on regular Cartesian grids, often with a staggered
placement of state variables. Level-set methods [112] have been used widely to solve
interface problems on a Cartesian grid, in conjunction with the numerical schemes to
treat the boundary such as the Ghost Fluid Method [50] and variational interpola-
tion [10]. Explicit boundary discretizations, such as embedded surface meshes, show
their unique merits in modeling the sub-cell geometry and enforcing precise bound-
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ary conditions [125, 7]. These embedded discretizations of the variational type are
focused on handling Dirichlet boundaries [168, 64], which inspired our discretization
scheme in the differentiable fluid simulator presented in Chpt. 4. These discretiza-
tions can conveniently accommodate adaptive resolution [4] and flows in containers
with deforming geometry [51]. Accommodation of changing geometry of the fluid con-
tainer is also addressed in grid-based techniques that draw inspiration from Arbitrary
Lagrangian-Eulerian (ALE) techniques [73].

Notably, most such works targeting evolving fluid domains focus on dynamic sim-
ulation rather than stationary flows. Steady-state flows, and especially Stokes fluids,
have received occasional attention within the graphics literature, in applications re-
lated to fluid control [18], simulation of highly viscous media such as paint [11], or as
a complement to an unsteady-flow solver for viscous liquids [82]. Our differentiable
fluid simulator presented in Chpt. 4 falls in the category of steady-state Stokes flow.

Besides prior efforts on Stokes flow, our work in Chpt. 4 is also related to methods
on simulating nonlinear compressible flows [81] and viscoplastic materials [138] but
is different from them: Instead of solving the Navier-Stokes equations with explicit
pressure terms, we exploit the analogy between Stokes flows and linear elasticity to
simulate differentiable, quasi-incompressible Stokes flow without the need for solving
the pressure term explicitly. The idea of drawing the analogy between fluids and
elastic solids for fluid simulation can also be found in Ferst et al. [52], which simu-
lates fluids on an adaptive octree grid using a hexahedral finite element discretization.
Although both Ferst et al. [52] and our method leverages finite element discretization
and elastic solvers for fluid simulation, their approach focuses on forward simula-
tion only. Meanwhile, we develop differentiable flow simulation with comprehensive
discussions on gradient derivation.

2.2.3 Differentiable Simulation

Many recent advances in differentiable physics facilitate applying gradient-based meth-
ods in robotics learning, control, and design tasks. Several differentiable simulators
have been developed for rigid-body dynamics [117, 35, 143, 36, 100], soft-body dy-
namics [69, 68, 62, 56], cloth [93, 119], and fluid dynamics [144, 105, 159, 123, 67].
This thesis is most relevant to differentiable soft-body simulation methods (Chpt. 4),
which we briefly discuss below.

ChainQueen [69] and its follow-up work DiffTaichi [68] introduce differentiable
physics-based soft-body simulators using the material point method (MPM), which
uses particles to keep track of the entire states of the dynamical system and solves the
momentum equations as well as collisions on a background Eulerian grid. However,
the explicit time integration in their methods requires small time steps to preserve
numerical stability, leading to significant memory consumption during backpropaga-
tion. To resolve this issue, ChainQueen proposes to cache checkpoint steps in memory
and reconstruct the states by rerunning forward simulation during backpropagation,
which increases implementation complexity and introduces extra time cost. Further,
solving collisions on an Eulerian grid may introduce artifacts depending on the reso-
lution of the grid [63]. Another particle-based strategy using explicit time integration
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is to approximate soft-body dynamics with graph neural networks [92, 121], which
is naturally equipped with differentiability but may result in physically implausible
behaviors.

Unlike those above differentiable soft-body simulators using explicit time integra-
tion, the differentiable simulation introduced in Chpt. 4 employs fully implicit time
integration. Therefore, our differentiable simulator in Chpt. 4 is more similar to Hahn
et al. [62] and Geilinger et al. [56]. Compared with their work and other soft-body
differentiable simulators [93, 119] that systematically apply a combination of the ad-
joint method and sensitivity analysis to derive gradients, we put a special focus on a
more strategic backpropagation scheme that leverages the unique numerical proper-
ties in a physics system’s governing equation, leading to empirically faster gradient
computation.

2.3 Sim-to-Real Transfer
The sim-to-real transfer is crucial for any computational methods developed in simu-
lation, and our computational robot design pipeline is not an exception. The solution
presented in Chpt. 5 draws inspiration from previous papers on narrowing sim-to-real
gaps [27, 142, 116, 162, 38]. Additionally, Chpt. 5 shares similarities with model-based
deep reinforcement learning methods in [38] or [27], but we leverage full gradient in-
formation from an analytic dynamic model in simulation. Another commonly used
strategy for closing the sim-to-real gap is domain randomization, which trains the
controller with randomized models in simulation [142, 116]. Essentially, domain ran-
domization attempts to absorb modeling errors by training a robust but conservative
controller. Our method is different from this family of methods in that we attempt
to reduce modeling errors by improving the model parameter estimation directly.
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Chapter 3

Computational Robot Design

In this chapter, we introduce the basic idea behind a computational robot design
pipeline [43]. We present the pipeline using a case study of designing a multicopter,
a rigid robot with many industrial applications. The technical method discussed in
this chapter covers a subset of the complete computational design pipeline in Fig. 1-2,
which we highlight in Fig. 3-1 below. Specifically, this chapter focuses on compu-
tational methods that automatically optimize a multicopter’s shape and controller
designs in simulation. We then directly transfer the resultant designs to hardware
platforms without further modification or discussions on the potential performance
discrepancy due to sim-to-real gaps, which we will elaborate on in detail in Chpt. 5.

Figure 3-1: The computational multicopter design method discussed in this chapter. Note
that methods for narrowing the sim-to-real gap are not covered here and will be discussed
in later chapters.

3.1 Motivation

Multicopters are aerial vehicles that are becoming more and more popular. They are
mechanically simple and can be controlled manually or automatically to have a stable
and accurate motion. For this reason, these vehicles are increasingly being used in
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many settings, including photography, disaster response, search and rescue operations,
hazard mitigation, and geographical 3D mappings. Most current multicopter designs
are fairly standard (e.g., symmetric quadcopters or hexacopters). Designing a non-
standard multicopter that is optimized for a specific application is challenging since
it requires expert knowledge in aerodynamics and control theory.

In this chapter, we propose a design process that allows non-expert users to build
custom multicopters that are optimized for specific design goals. Our system allows
users to concentrate on high-level design while computation handles all the neces-
sary elements to ensure the correct function of the resulting physical models. Our
intuitive composition tool enables users to express their creativity and to explore
trade-offs between different objectives in order to develop machines well suited for
specific applications.

Our system also allows us to expand the design space of multicopters. Typical
space encompasses a small set of standard designs with a symmetric distribution of
rotors and all propellers oriented upright. In this design space, forces and torques
induced by propellers are easily balanced and controllers can be easily adjusted. How-
ever, this does not allow the design of nonsymmetric multicopters that are more op-
timal for some specific tasks. For example, the field view of a camera in a hexacopter
could be obstructed by the motors, so one might prefer removing a motor in front of
the camera. Another example could be a multicopter carrying an irregularly shaped
object like a wide-band antenna. In this case, an asymmetric design gives more free-
dom to specify mass distribution for better flying stability. Finally, a nonstandard
design with extra motors can increase the payload and improve fault tolerance, which
are key factors for product delivery. Our computational design employs parametric
representations that capture variably in the general shape, rotor positions and ori-
entations, and performs optimizations based on user-specified metrics. This enables
users to explore the shape space and discover functional vehicles that significantly
differ and outperform the standard models.

An immediate challenge after we expand the design space is to find a good con-
troller for non-standard multicopter designs. Due to its uneven distribution of mass
and inertia tensor as well as its random rotor position and orientation, applying a
traditional controller from classic multicopters directly requires nontrivial and tedious
parameter adjustments. Moreover, during flight, the performance of a multicopter is
jointly influenced by its dynamics and control signals and therefore optimization has
to include both shape variables and controller parameters. Finally, there is a tradeoff
between allowing users to freely express metrics and still keeping the optimization
problem tractable. In our system, we use Linear-Quadratic-Regulator (LQR), an
optimal control method for nonstandard multicopter designs, and the controller is
automatically determined to avoid tedious parameter adjustments. We formulate an
optimization problem which includes both shape and control variables and propose an
algorithm to effectively find the optimal shape as well as the control parameters for a
given design. We specify the user metrics as a bi-convex function, which is expressive
enough to represent many useful metrics.

To summarize, our main contributions in this chapter include:
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• Providing a complete pipeline that allows users to design, optimize, and fabri-
cate multicopters.

• Formulating an optimization problem that can jointly optimize the shape and
control parameters according to different design metrics.

• Providing an efficient numerical scheme to solve the multicopter optimization
problem and show its efficacy by optimizing various types of non-standard mul-
ticopter designs.

3.2 Geometry Design
Our interactive design tool allows users to compose new models from parts in a
database, which contains standard parts like propellers, motors, carbon fiber rods,
and a variety of free-form body frames. Though the database is relatively small, users
can create a widely diverse set of designs by manipulating and composing them.

3.2.1 Part Database

Following the ideas in Schulz et al. [127], both functional parts and free-form body
frames in the database are parametric, represented by a feasible parameter set and
a linear mapping function that returns different geometries for different parameter
configurations. The use of parametric shapes allows geometric variations while guar-
anteeing that all shape manipulations preserve structure and manufacturability. In
our model, all parameter configurations in the feasible set are guaranteed to be manu-
facturable geometries. Linear maps were chosen because they speed up computation
without compromising too much on expressiveness. In this linear representation,
geometries are represented as meshes where each vertex is a linear function of the
parameters.

Each part in the database is annotated with connecting patches that indicate re-
gions where parts can be attached to each other. Since every part is parametric, the
position of each patch is also a function of the parameters. We define different patch
types for different composition methods. For example, carbon tubes are annotated
with circular patches while the bottom of a rotor has a flat patch (see Fig. 3-2). Each
patch type includes a parametric representation of its center and additional informa-
tion for alignment (for example, circular patches include the radius and main axis
and flat patches include the normal). Our collection was designed and parametrized
by mechanical engineers.

3.2.2 Composition

After the user drags in a new part and calls the connecting operation, the system aligns
the parts with respect to the working model and adds the appropriate connecting
components. The two closest patches are used to create a connection between the
components.
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Figure 3-2: Example of composition. Left: parts with highlighted patches (circular patch
with an annotated main axis and a diameter in blue and flat patch with an annotated normal
in orange). Right: composed design.

We define a list of rules that designate appropriate connecting parts for each type
of patch pair. Connecting parts are selected from a small list of standard components,
e.g., patches of carbon fiber rods need circular adapters and plates need mounts with
screws.

Next, we position parts and appropriate connectors relative to each other. Our
goal is to preserve the parametric representation in the composed designs so that
users can continue to manipulate the geometry at every step in a structure-preserving
fashion. In the composed model the parameter set is the union of the parameters
of the containing parts and the feasible set is the intersection of the feasible sets.
Therefore, the alignment step must define constraints on part positions so that parts
are correctly placed relative to each other in all feasible configurations. This is done
in two steps: First, the patch information is used to appropriately rotate the models
relative to each other (in the example in Fig. 3-2, the normal of the flat patch is made
perpendicular to the main axis of the circular patch). Rotations are dealt with first
because these are not linear operations and therefore cannot be represented by our
linear parameter mapping. Since the position of each patch is represented as function
of the parameters, alignment translations involve constraining these two functions to
be equal. Therefore parts are aligned by adding constraints to the feasible set of the
composed parametric design and solving for the closest feasible solution.

The parameters of the composed design are not only useful for allowing users
to better explore the design space, but they also describe the possible variations
for automatic design optimization. Since both parts and composition schemes are
defined using linear models, linearity is preserved in the resulting composed designs,
which include a set of equality and inequality constraints. Equality constraints can be
removed by replacing the original shape parameters with free variables in the affine
space defined by the linear equations. As a result, we will use s to denote the new
shape parameters and Aineqs ≤ bineq to represent these constraints in later sections.
The linear parameter variations allow parts of the copters to scale and move relative
to each other but do not define local rotations. We therefore augment the feasible set
by defining additional variables, d, that represent the orientation of the propellers.
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These are used in the optimization algorithm, as will be discussed next.

3.3 Controller Design

3.3.1 Multicopter Dynamics

In this section, we provide background information about multicopter dynamics. We
first introduce the motor and propeller model then describe the multicopter dynamics
based on Newton’s law and Euler’s equations.

Motor and Propeller

Our motor and propeller model is based on measuring multiple properties (such as
thrust, torque, voltage, and current) then fitting them with analytical functions.

Thrust and torque We use 𝑢 and 𝜏 to denote the magnitude of thrust and spinning
torque induced by the propeller. The torque is known to be proportional to the
thrust [87]:

𝜏 = 𝜆𝑢, (3.1)

where 𝜆 is a constant ratio determined by the blade geometry, and is acquired by
fitting the thrust and torque measurement.

Motor control The motor spinning rate is controlled by sending desired power-
width modulation (PWM) signals to its electric speed controller (ESC). PWM signals
control the power supplied to the motor, and therefore its spinning rate, which further
influences the thrust and torque induced by the motor. We measure the mapping
between PWM values, battery voltage and thrust, then use its inverse mapping to
convert the output thrust from the controller to PWM values sent to each motor.

Power consumption When a motor loaded with a propeller is powered on, the
spinning motor converts electronic power 𝑃ele, the product of voltage and current 𝐼,
into mechanic power which rotates the propeller, which then pushes surrounding air
to generate thrusts 𝑢. We directly measure 𝑢-𝑃ele and 𝑢-𝐼 curves, which can be well
approximated by power functions, and use them to guide our optimization on flight
time and max amperage.

3.3.2 Equations of Motion

We use north-east-down (NED) coordinates as our world frame to determine the
position and orientation of the copter. Our body frame is fixed at the center of
the copter, and initially its three axis are parallel to the axis of world frame. To
use propellers efficiently, we require all propellers to thrust upwards, not downwards.
This can be guaranteed by matching the propeller type and motor spin direction.
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The thrust and torque produced by the 𝑖-th motor are 𝑢𝑖d𝑖 and 𝑏𝑖𝜆𝑖𝑢𝑖d𝑖, where
𝑏𝑖 ∈ {−1, 1} indicates counterclockwise or clockwise spinning direction and d𝑖 is a
unit vector representing the motor’s orientation in the body frame. From Newton’s
second law and Euler’s equation the dynamics are:

𝑚p̈ = 𝑚g + R
𝑛∑︁

𝑖=1

𝑢𝑖d𝑖,

J�̇� + 𝜔 × J𝜔 =
𝑛∑︁

𝑖=1

(𝑏𝑖𝜆𝑖𝑢𝑖d𝑖 + r𝑖 × 𝑢𝑖d𝑖).

(3.2)

(3.3)

Since the net thrust and torque on the right side are linear on 𝑢𝑖, we introduce
matrices M𝑓 and M𝑡 for compact representation:

𝑚p̈ = 𝑚g + RM𝑓u,

J�̇� + 𝜔 × J𝜔 = M𝑡u.

(3.4)
(3.5)

Since the motor positions {r𝑖} can be computed from the shape parameter s by
r𝑖 = 𝐴𝑖s+b𝑖, where all A𝑖 and b𝑖 are constant matrices and vectors from parametric
shape representation, we will omit {r𝑖} and only use s in later sections.

3.3.3 Controller Design

In this section, we introduce the controller used in our multicopters. We start from
reformulating the equations of motion into the state-space model, then we use its
linear approximation at a fixed point to design an LQR controller.

State-Space Model

To design a controller, we rewrite the equations of motion into the following nonlinear
form, known as the state-space representation:

ẋ = f(x,u), (3.6)

where f is a nonlinear function determined by multicopter dynamics. Intuitively,
the state-space representation describes the fact that given the current state and the
actuator output, we can predict how the state will change in the future.

Designing a controller for a nonlinear system is not an easy task, so we linearize
the state-space model at a fixed point (x*,u*) and find a controller for the linear
model approximation. A fixed point satisfies f(x*,u*) = 0, which can be explained
as a combination of state and thrust such that the copter can stay in this state forever,
as long as the thrust does not change. Define x̄ = x− x*, ū = u− u*, 𝒜 = 𝜕f

𝜕x

⃒⃒⃒
x*,u*

and ℬ = 𝜕f
𝜕u

⃒⃒⃒
x*,u*

, we can get the linear time-invariant (LTI) approximation of the
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state space model around (x*,u*):

˙̄x ≈ 𝒜x̄ + ℬū. (3.7)

Linear Quadratic Regulator

The state-space model is different from the actual dynamics model because it is a
linear approximation, and it assumes the state is in the neighborhood of the fixed
point. As a result, we choose to use LQR because it is a robust controller with a
phase margin of at least 60 degrees and an infinite gain margin [6], which means it
can remain stable even if the dynamics model deviates a lot from our expectation.
Given equation (3.7), LQR generates the control policy ū = −𝒦x̄ by minimizing the
cost function

∫︀∞
0

(x̄⊤𝒬x̄+ū⊤ℛū)𝑑𝑡, where𝒬 andℛ are user-specified weight matrices
which are usually positive diagonal. The first quadratic term tries to shrink x̄ to 0, so
it penalizes the deviation from stable states. Similarly, the second term discourages
actuators from saturation. The matrix 𝒦 is found by solving the continuous-time
algebraic riccati equation (CARE) once 𝒜, ℬ, 𝒬 and ℛ are given, which has been
well-studied and implemented in many linear algebra packages [84, 103, 128].

Given multicopter dynamics, designing an LQR controller consists of two steps:
selecting a fixed point for linearization, and solving CARE. For traditional quad-
copters the first step is not a problem because it has a unique fixed point, i.e, each
motor provides thrust equal to 1/4 of the gravity and the quadcopter stays completely
level. However, we notice that general multicopter designs often have nonunique fixed
points, and the performance of a flying multicopter is influenced by the choice of fixed
points so arbitrarily picking a fixed point does not yield good results. To address this
issue, we select the fixed point by including it in an optimization problem, which we
will describe in the next section.

3.4 Co-Optimization

Optimizing a multicopter is a challenging problem because the performance of a
multicopter relies on both its geometry and controller, which are usually coupled
with each other. For example, to make sure a multicopter can hover, one needs
to find reasonable motor positions and orientations, as well as good output thrusts
suggested by the controller. Another challenge comes from the metrics that users
want to optimize. For example, it could be a nonconvex function with multiple local
minimals, or a nonsmooth function so a gradient-based solver is not applicable.

In this section we introduce our solution to the two challenges above. We provide
an algorithm to decouple geometry and control variables during optimization. The
geometry variables are motor spin directions {𝑏𝑖}, motor orientations {d𝑖} and shape
parameter s. The control variables are the fixed point (x*,u*) and the control matrix
𝒦, as explained in Section 3.3. As x* can be easily determined once u* and geometry
variables are given, and 𝒦 can be determined after geometry and fixed point are
known, the optimization algorithm only focuses on finding the optimal u* and we
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leave the derivation of x* in supplemental materials. For the metrics, we formulate
an objective function including bi-convex user-defined metrics, and we demonstrate
that many useful metrics can be represented as bi-convex functions.

The pseudocode for the complete optimization process is provided in Alg. 1. Our
optimization starts from searching the discrete variables {𝑏𝑖} and selecting the com-
bination that is most controllable, then in the main loop we solve three subproblems
to optimize the control variable {u*}, shape parameter s and motor orientations {d𝑖}
in every iteration. After that, we use the geometry variables to build the multicopter
and control variables to implement the controller.

Algorithm 1: Optimization algorithm pseudocode.
Input : Initial geometry variables, acquired from user design: {d𝑖}, {r𝑖}, s

User-specified LQR weight matrices 𝒬, ℛ
Output: Optimized geometry variables: {𝑏𝑖}, {d𝑖}, {r𝑖}, s;

Optimized control variables(fixed point): x*, u*;
control matrix 𝒦

// Preprocessing
bestCondNumber ← +∞
foreach b ∈ {all 2𝑛 assignments to {𝑏𝑖} } do

Compute 𝒜, ℬ, 𝒞;
if cond(𝒞) ≤ bestCondNumber then

bestCondNumber = cond(𝒞);
{𝑏𝑖} ← b;

// Main loop
while not converge do

Optimize u* by solving a convex subproblem;
Optimize s by solving a convex subproblem;
Optimize {d𝑖} from QCQP relaxation;
// Check controllability.
Compute 𝒜, ℬ and 𝒞;
if 𝒞 is singular then

Revert all variables to their values in the last iteration;
break;

// Postprocessing
Compute x* from u*;
Compute 𝒜, ℬ from (x*,u*);
Compute 𝒦 from 𝒜, ℬ, 𝒬 and ℛ;

3.4.1 Preprocessing

We first determine the spinning directions {𝑏𝑖} for each motor by checking the con-
trollability matrix of the dynamics system. A system is controllable if for any initial
state x0 and final state x1 there exists a control signal such that the system can steer
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from x0 to x1 in finite time [6]. An LTI system is controllable if the correspond-
ing controllability matrix defined on the state-space model has full row rank. For
equation (3.7), the controllability matrix 𝒞 is defined as:

𝒞 =
[︀
ℬ 𝒜ℬ 𝒜2ℬ · · · 𝒜11ℬ

]︀
, (3.8)

where the maximal exponent is 11 because x̄ consists of 12 variables. We check all
2𝑛 possible combinations to determine the best {𝑏𝑖}: for each assignment to {𝑏𝑖} we
do linear approximation at its fixed point (if multiple fixed points exist we use the
one with minimal L2 norm) then pick the assignment with the smallest condition
number. Since 𝑛 is up to 6 in our case, this straightforward method does not cause
any performance issue.

Once {𝑏𝑖} is determined we keep them fixed during the optimization. Our algo-
rithm in later sections checks at the end of each iteration whether the multicopter is
still controllable, and it terminates with the best solution so far if controllability is
violated. However, in our experiments this check rarely fails and the controllability
property is preserved most of the time.

3.4.2 Problem Formulation

Here we give the formal definition of the optimization problem:

min
s,d𝑖,u*

𝐸(u*, s) + 𝜂‖M𝑓u
* + 𝑚g‖22 + 𝜇‖M𝑡u

*‖22.

𝑠.𝑡. Aineqs ≤ bineq,

d⊤
𝑖 d𝑖 = 1,

0 ≤ u* ≤ umax.

(3.9)

(3.10)
(3.11)
(3.12)

where 𝐸 is the user-selected metrics, which we will describe in the next section. We
require that 𝐸 rely on the shape parameters s and thrust u* only, and be bi-convex.
The second and third terms model soft constraints required by the fixed point with
user specified weights 𝜂 and 𝜇: By definition, at a fixed point the net thrust should
try to balance the gravity, and the net torque should be zero. Compared with the
equations of motion the rotational matrix R is removed to reduce the complexity,
and to indicate that it is preferable for the copter to maintain its original attitude as
much as possible, i.e., R is equal to an identity matrix, which makes the copter easier
to take off. Note that M𝑓 relies on d𝑖 and M𝑡 depends on d𝑖 and s.

The first constraint gives the feasible set of the shape parameter. Constraints on
d𝑖 require that each d𝑖 should be a unit vector. The last constraint requires that no
motor saturation should occur.

3.4.3 Metrics

Although we limit the energy function to be bi-convex, we demonstrate that a lot of
metrics can fit into this representation either directly or after reasonable reformula-

39



iteration

0 20 40 60 80 100 120 140 160 180 200

e
n

e
rg

y

0.4

0.45

0.5

0.55

0.6

0.65

our method

interior point

sqp

active set

iteration

0 50 100 150 200 250 300 350 400

e
n

e
rg

y

2.91

2.92

2.93

2.94

2.95

2.96

2.97

2.98

our method

interior point

sqp

active set

iteration

0 20 40 60 80 100 120

e
n

e
rg

y

24.8

25

25.2

25.4

25.6

25.8

26

our method

interior point

sqp

active set

iteration

0 2 4 6 8 10 12 14

e
n

e
rg

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

our method

interior point

sqp

active set

Figure 3-3: Comparing our method in multiple copter examples with interior point, se-
quential quadratic programming and active set methods, all implemented in MATLAB’s
fmincon command. All examples have 𝜂 = 0.3 and 𝜇 = 0.7, and all methods share the same
initial guess and termination conditions. The horizontal axis shows the iterations (note that
it does not reflect the true running time as the time an iteration takes varies in different
methods) and the vertical axis is the value of the objective function in Eqn. (3.9) after each
iteration. Left: pentacopter with payload metric. Middle left: bunny with mixed metrics
of payload and amperage. Middle right: pentacopter with mixed metrics of max amperage
and cost. Right: quadcopter with size metric.

tion. Here we list some:

Payload We define the payload to be the maximal weight the copter can take at its
mass center while hovering. Maximizing the payload directly results in a non-convex
formulation with all variables closely coupled with each other. Instead, we minimize
the following indirect metric:

𝐸payload = max(
𝑢*
1

𝑢max
1

,
𝑢*
2

𝑢max
2

, · · · , 𝑢*
𝑛

𝑢max
𝑛

), (3.13)

where 𝐸 can be explained as searching all the motors and finding the one that is most
likely to become saturated. If a copter can hover with thrust equal to u, scaling u
uniformly allows a copter with same geometry but heavier weight to stay in the air.
As a result, smaller 𝐸 indicates possibly larger payload.

Max amperage The relation between thrust and current supplied to the motor
can be well approximated by a power function 𝐼 = 𝑎𝑢𝛼. Since the power module unit
in hardware platform distributes the current from the battery to all motors, for safety
reasons we are interested in minimizing the total current so that we do not exceed
the maximal amperage of the power module cable:

𝐸amp_sum =
𝑛∑︁
𝑖

𝑎𝑖𝑢
*𝛼𝑖
𝑖 , (3.14)

where 𝑎𝑖𝑢
*𝛼𝑖
𝑖 represents the current supplied to 𝑖-th motor. Alternatively, we can

minimize the max current supplied to a single motor so that it does not exceed the
maximum amperage of the electric speed controller of each motor:

𝐸amp_max = max(𝑎1𝑢
*𝛼1
1 , 𝑎2𝑢

*𝛼2
2 , · · · , 𝑎𝑛𝑢*𝛼𝑛

𝑛 ). (3.15)
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Size and flight time To minimize the copter size, we choose to minimize the total
length of rods used in the copter, which is linear on the shape parameter s:

𝐸size = c⊤rods + 𝑑rod. (3.16)

We can also relate the copter size to its flight time. From our measurement we notice
that larger propellers are more efficient than smaller ones with the motors we use. As
a result, we can increase the flight time by maximizing the copter size so that it has
enough space to install larger propellers:

𝐸time = −𝐸size = −(c⊤rods + 𝑑rod). (3.17)

The negative sign comes from the fact that we minimize the objective function. It
should be pointed out that this energy function is based on the observation that larger
propellers are more efficient than smaller ones with our motor, which is not always
true for all combinations of motors and propellers. Careful measurement needs to be
taken before applying this metric.

Cost For a multicopter without a free-form body frame the cost is fully determined
by the shape parameter s in a linear form:

𝐸cost = c⊤costs + 𝑑cost. (3.18)

where ccost represents the linear cost like carbon fiber rods, and 𝑑cost is the constant
cost from components such as battery, controlling board and motors.

Mass For a multicopter without a free-form body frame the mass is linear on the
shape parameter s

𝐸mass = c⊤masss + 𝑑mass. (3.19)

When applying this metric, 𝑚 in the objective function is replaced with 𝑚(s) = 𝐸mass.
However, this modification won’t break our proposed algorithm as the mass is linear
on the shape parameters, so it should not break the convexity of the subproblem.

Multi-objective metric Since a non-negative weighted sum preserves convexity,
any nonnegative weighted combination of the metrics above meets our bi-convexity
requirement. For examples, users may choose to define a metric mixed with both
payload and mass, and use weights to express the tradeoff between them. Also note
that although all metrics above are defined solely on u* or s, a mixed metric can
include both of them.

3.4.4 Algorithm

Directly optimizing the objective function proposed in the previous section is chal-
lenging due to the fact that the product between M𝑓 , M𝑡, and u* couples all variables
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together, and it may contain non-smooth energy functions like the payload or max
amperage. However, if we focus on u* or s only, it reduces to a simple convex problem.
This motivates us to propose our algorithm which alternatively optimizes the thrust,
shape parameters and motor directions, as described in Alg. 1. It terminates when
the energy converges within a given threshold (1e-6 in our setting) or it breaks the
controllability. With the assumption that user metrics are bi-convex functions, the
problem is convex when restricted to optimizing either u* or s, which can be efficiently
solved in CVX [60, 59], a package for specifying and solving convex programs.

Optimizing {d𝑖} is more subtle and bears some discussion. The objective function
is quadratic and convex on {d𝑖} due to the fact that both M𝑓 and M𝑡 are linear on
{d𝑖}, but the unit-length constraints on {d𝑖} breaks the convexity. Because of its
quadratic form in the objective function, we choose Sequential Quadratic Program-
ming (SQP) [110] to solve {d𝑖}. The initial guess is acquired from relaxing the unit
length constraints to d⊤

𝑖 d𝑖 ≤ 1, and then solving the convex Quadratic Constrained
Quadratic Programming (QCQP) problem [23].

We demonstrate that our algorithm is more suitable than three other general
solvers for our optimization problem in Fig. 3-3. In most of the time our algorithm
manages to find a better solution, but with the cost of longer time. However, this is
not a big issue as our solver usually terminates within a few seconds.

In the first two examples, we run our method on two different multicopter designs
with single and mixed metrics. For both examples our algorithm quickly finds a
better solution after the first few iterations, while the other solvers either fail to make
progress or get trapped into a worse local minimal solution. There exist some cases
where our algorithm ends up with similar optimal values, in which case it is still
acceptable to call our solver as the system is not sensitive to its running time.

Finally, as a sanity check we provide an example where the global minimizer is
known. In this example a standard quadcopter is optimized to have minimal size.
Without other constraints the copter shrinks to a single point and the energy function
becomes zero. In this case all solvers agree on the global minimizer in the end.

3.5 Simulation
We provide a real-time physics simulator to help users verify the shape and controller
design suggested by the optimization. Users can interactively change the input from
a virtual RC transmitter and see the flight performance of the copter. Random noises
are added to the sensor data to simulate real world environment. If the optimized
shape and controller are not satisfactory, users can either manually tweak control
parameters in simulation, or go back to the interactive design tool to change the
shape representation.

3.6 Fabrication
Once the shape parameter and motor orientations are determined, we generate a
fabrication plan by computing rod lengths, motor angles, and geometry meshes if it
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Figure 3-4: Some multicopter components used in fabrication. Left: 3D printed connectors
that support various motor orientations. Right: propellers, carbon fiber rods and motors.

contains a free-form body frame (Fig. 3-4). We use 3D printing to fabricate connectors
and the body frame. Specifically, we design parametric compound angle clip pieces
so that the connectors can support tilted motors.

Our hardware platform consists of a ground station laptop and a multicopter flight
controller. The ground station subscribes the Vicon motion tracking system and sends
out real-time position and orientation data to the copter. The flight controller runs
our modified version of the open source software ArduPilot [5] on a Pixhawk [106]
flight computer hardware.

3.7 Results

Figure 3-5: Classic designs. Left: a quadcopter with a free-form body frame. Right: a
hexacopter with coaxial propellers.

In this section we show multiple examples to demonstrate the effectiveness of our
design system, physical simulator, control loop and optimization method. We start
from two classic multicopters: an X-frame quadcopter and a Y6 hexacopter. We pro-
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Figure 3-6: Bunny copter (left) and its top-down view (right). Note that the positions of
motors are not symmetric, their propeller sizes are different and are at various heights.

vide a bunny example to show the expressiveness of our design tool. A pentacopter
demonstrates the correctness of our controller and its ability to handle nonstandard
copters with odd number of motors. A more challenging pentacopter with tilted mo-
tors, which is optimized for the payload metric, shows the efficacy of our optimization
method. Finally, we provide a rectangular quadcopter optimized for longer flight time
and compare it with a standard quadcopter.

Quadcopter We design a simple quadcopter with a 3D-printed red body frame,
shown in Fig. 3-5. The red frame is a parametric shape, so users can change its size
by specifying different shape parameters in the interactive design tool. For simplicity,
the default quadcopter PID controller in ArduPilot is used here, so Vicon is not
needed and no modification to ArduPilot firmware is required.

Figure 3-7: Pentacopter pairs. Left: original pentacopter design. Right: optimized penta-
copter for larger payload.
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Figure 3-8: Optimizing a quadcopter with flight time metric and geometry constraints.
Left: a standard quadcopter. Right: optimized rectangular quadcopter.

Hexacopter We design and fabricate a classic Y6 hexacopter with three pairs of
coaxial propellers (Fig. 3-5). As in the previous example, the default Y6 PID con-
troller in ArduPilot is applied and no additional hardware is needed. The hexacopter
can change its heading, stabilize itself and fly to a target during the flight.

Bunny A bunny copter is designed and fabricated using our system (Fig. 3-6). The
bunny copter is challenging to fly as the four propellers have different sizes, their
positions are not symmetric and they are placed at different heights. Based on its
dynamics we compute an LQR controller to control its position in the air. The bunny
copter can take off, hover, fly to a target and land.

Unoptimized pentacopter Fig. 3-7 shows a multicopter with five rotors all point-
ing upright. Flying a multicopter with odd number of rotors, even if it is symmetric,
is challenging because there is no straightforward way to distribute thrust so that all
motor torques can be balanced easily. However, with the LQR controller suggested
by our system this pentacopter can reliably take off, land, hover, and carry over 1kg
payload to the destination.

Fig. 3-9 shows the real-time output of all the 5 motors when this pentacopter car-
ries maximal payload from one place to another. Although by default the motor does
not saturate until PWM reaches 2000, in this example and its optimized counterpart
we clamp PWM at 1800 for safety reasons.

Pentacopter optimized for payload Given the initial unoptimized pentacopter,
our optimization improves its payload by changing its geometry and tilting motors
to balance thrust from all motors. Fig. 3-9 shows the PWM values from all 5 motors
when the optimized pentacopter carries its maximal payload, and Table 3.1 compares
the specifications of two pentacopters. Our optimization result predicts the new
pentacopter is able to take off with a 15.8% increase in the overall weight. Note
that in theory the maximal possible increase in the overall weight is less than 25%
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Figure 3-9: Left: motor outputs of the unoptimized pentacopter with 1047g payload.
Motor 1 and 3 reach saturation point (PWM=1800) at 23s. Increasing the payload will
cause them to saturate constantly and therefore fail to balance the torques from other
motors. Note that motor 5 is not fully exploited in this copter. Right: motor outputs of
the optimized pentacopter with 1392g payload. Motor 2 and 4 reach saturation during the
flight. Compared with the unoptimized pentacopter, all five motors are now well balanced,
making it possible to take over 30% more payload.

Table 3.1: Pentacopter specifications. Motor angle is the angle between motor orientation
and up direction.

Unoptimized Optimized

Size (mm×mm×mm) 750×420×210 650×670×210
Weight (g) 2322 2353

Max payload (g) 1047 1392
Max overall weight (g) 3369 3745

Max motor angle (degree) 0 10.6

because even the unoptimized pentacopter outperforms a quadcopter whose maximal
overall weight is 4𝑢max, and the maximal possible overall weight of a pentacopter
is not greater than 5𝑢max. Table 3.1 shows that we get 11.1% actual gain in our
experiments. The main reason for this loss is that we did not take into account the
interference between propellers, which we leave as future work.

Quadcopter optimized for flight time Fig. 3-8 shows a standard quadcopter
and its optimized version which has longer flight time. Our optimization tries to
increase the total length of rods so that it makes room for larger propellers. In this
example we add an upper bound constraint on the copter width so it only scales in
the other direction, allowing us to replace the propellers in the longer rod with larger
ones. This geometry constraint is useful when a quadcopter is designed to fly into a
tunnel. Both copters are controlled by LQR controllers computed with our system.
In our experiments we let both copters hover for 5 minutes and record the battery
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Figure 3-10: Battery change when a quadcopter hovers. Left: battery voltage. Given
the same amount of time the optimized quadcopter ends up having a larger voltage; Right:
battery current. In steady state the optimized copter requires less current.

voltage and current, shown in Fig. 3-10.

3.8 Conclusion

In this work, we propose a new pipeline for users to efficiently design, optimize,
and fabricate multicopters. Users can easily design a multicopter by interactively
assembling components in a user interface. We propose a new optimization algorithm
that can jointly optimize the geometry and controller to improve the performance of a
given multicopter design under different metrics, such as payload and battery usage,
and can be further verified in a real-time simulator. We demonstrate the ability of our
system by designing, fabricating, and flying multicopters with nonstandard designs
including asymmetric motor configurations and free-form body frames.

Although not formally defined, the key ingredient in our computational pipeline is
to compute the gradients for the shape and controller parameters, which allows us to
run gradient-based continuous optimization algorithms. In the next chapter, we will
formalize this idea as a differentiable simulator and elaborate on its technical details.

One limitation in our pipeline is that the system responds passively to user inputs
for design, optimization and simulation. A potential extension in the future is to
have a system that can actively give design suggestions in this case, for example by
suggesting to place additional motors and propellers, so the whole design process
can be accelerated. In particular, our system fails when the initial geometric design
is uncontrollable. For example, a quadcopter initialized with 4 rotors in a line is
obviously not fully controllable. In this case, our algorithm gets trapped in assigning
spinning directions (Sec. 3.4), and therefore fails to find a controllable solution, which
clearly exists for a quadcopter.

In terms of design, our assembly based approach depends on the library of parts
and is therefore limited by its size. In the future it would be nice to define ways
to easily grow the database. In additional, the parametrization is constrained to be
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linear which restricts geometry variability.
In terms of the optimization, the metrics we propose are limited to functions

defined on the fixed points, i.e., the steady states of the copter. While this simplifies
the optimization by decoupling the geometry and control variables, it would be useful
to extend the optimization so that dynamic metrics can be included and optimized,
for example the responsive time to a control signal, or the maneuverability of the
copter.

Another limitation is that our real-time physics simulation does not model aero-
dynamic effects. While a rigid-body simulation provides reasonable results for cases
with slow velocity, aerodynamic effects such as interferences between propellers and
ground effects need to be modeled to simulate a high speed copter correctly.
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Chapter 4

Differentiable Physics Simulation

In the last chapter, we have presented a computational pipeline for designing cus-
tomized multicopters. The computational method manages to discover novel penta-
copter designs that easily outperform a design suggested by experienced mechanical
engineers by a large margin. The most critical component in the proposed pipeline
is computing gradients for continuous shape and control parameters. In this chapter,
we will re-introduce this idea as differentiable physics simulation and explain how to
equip a physics simulator with gradients by presenting two advanced differentiable
simulators for soft bodies [44] and fluids [45]. We show in Fig. 4-1 the position of this
chapter in the entire computational robot design pipeline.

Figure 4-1: This chapter presents in depth the technical details of two differentiable sim-
ulators we develop in this thesis. As shown in the pipeline, a differentiable simulator plays
a central role that connects the upstream and downstream applications.

4.1 Differentiable Soft Body Simulation

4.1.1 Motivation

The recent surge of differentiable physics witnessed the emergence of differentiable
simulators as well as their success in various inverse problems that have simulation
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inside an optimization loop. With additional knowledge of gradients, a differentiable
simulator provides more guidance on the evolution of a physics system. This ex-
tra information, when properly combined with mature gradient-based optimization
techniques, facilitates the quantitative study of various downstream applications, e.g.,
system identification or parameter estimation, motion planning, controller design and
optimization, and inverse design problems.

In this section, we focus on the problem of developing a differentiable simula-
tor for soft-body dynamics. Despite its potential in many applications, research on
differentiable soft-body simulators is still in its infancy due to the large number of
degrees of freedom (DoFs) in soft-body dynamics. One learning-based approach is to
approximate the true, soft-body dynamics by way of a neural network for fast, auto-
matic differentiation [92, 121]. For these methods, the simulation process is no longer
physics-based, but purely based on a neural network, which might lead to physically
implausible and uninterpretable results and typically do not generalize well.

Another line of research, which is more physics-based, is to differentiate the gov-
erning equations of soft-body dynamics directly [69, 56, 68, 62]. We classify these
simulators into explicit and implicit simulators based on their time-stepping schemes.
Explicit differentiable simulators implement explicit time integration in forward sim-
ulation and directly apply the chain rule to derive any gradients involved. While ex-
plicit differentiable simulation is fast to compute and straightforward to implement,
its explicit nature requires a tiny time step to avoid numerical instability. More-
over, when deriving the gradients, an output value (typically a reward or an error
metric) needs to be backpropagated through all time steps. Such a process requires
the state at every time step to be stored in memory regardless of the time-stepping
scheme. Therefore, explicit differentiable simulators typically consume orders of mag-
nitude more memory than their implicit counterparts and sophisticated schemes like
checkpoints are needed to alleviate the memory issue [69].

Unlike explicit differentiable simulators, implicit simulation enables a much larger
time step. It is more robust numerically and much more memory-efficient during
backpropagation. However, an implicit differentiable simulator typically implements
Newton’s method in forward simulation and the adjoint method during backprop-
agation [62, 56], both of which require the expensive linearization of the soft-body
dynamics. Even though techniques for expediting the forward soft-body simulation
with an implicit time-stepping scheme have been developed extensively, the backprop-
agation process remains a bottleneck for downstream applications in inverse problems.

In this section, we present DiffPD, a efficient differentiable soft-body simulator
that implements the finite element method (FEM) and an implicit time-stepping
scheme with certain assumptions on the material and contact model. We draw inspi-
ration from Projective Dynamics (PD) [22], a fast and stable algorithm that can be
used for solving implicit time integration with FEM when the elastic energy of the
material model has a specific quadratic form. The key observation we share with PD
is that the computation bottleneck in both forward simulation and backpropagation
is due to the nonlinearity of soft-body dynamics. By decoupling nonlinearity in the
system dynamics, PD proposes a global-local solver where the global step solves a
prefactorized linear system of equations and the local step resolves the nonlinearities
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in the physics and can be massively parallelized. Previous work in PD has demon-
strated its efficacy in forward simulation and has reported significant speedup over
the classical Newton’s method. Our core contribution is to establish that with proper
linear algebraic reformulation, the same idea of nonlinearity decomposition from PD
can be fully extended to backpropagation as well.

To support differentiable contact handling, we revisit contact models used in pre-
vious PD papers, many of which choose to implement a soft contact force based on
a fictitious collision energy [153, 154, 40, 39, 96, 89, 22]. DiffPD naturally supports
such energy-based contact and friction models as they can be seamlessly integrated
into the PD framework. One notable exception is Ly et al. [97], which solves dry fric-
tional contact in the standard PD framework. We have also explored the possibility
of making the dry frictional contact model differentiable in DiffPD. Using the fact
that contact vertices must be on the soft body’s surface, which typically have much
fewer DoFs than the interior vertices, we present a novel solution combining Cholesky
factorization and low-rank matrix update to supporting differentiable static friction
and non-penetration contact.

We demonstrate the efficacy of DiffPD in various 3D applications with up to nearly
30, 000 DoFs. These applications include system identification, initial state optimiza-
tion, motion planning, end-to-end closed-loop control optimization, and estimation
of contact and friction properties from a real-world experiment. We compare DiffPD
to both explicit and implicit differentiable FEM simulations and observe DiffPD’s
forward and backward calculation is 4-19 times faster than Newton’s method when
assumptions in PD hold. Furthermore, we embed DiffPD as a differentiable layer in
a deep learning pipeline for training closed-loop neural network controllers for soft
robots and report a speedup of 9-11 times in wall-clock time compared to deep rein-
forcement learning (RL) algorithms. Finally, we show a reality-to-simulation (real-to-
sim) application that uses our differentiable simulator to reconstruct a collision event
between two tennis balls from a video input, which we hope can inspire follow-up
work to solve simulation-to-reality (sim-to-real) problems in the future.

To summarize, this section contributes the following:

• A PD-based differentiable soft-body simulator that is significantly faster than
differentiable simulators using the standard Newton’s method;

• Differentiable collision handling for penalty-based contact and friction forces or
complementarity-based non-penetration contact and static friction;

• Demonstrations of the efficacy of our method on a wide range of applica-
tions, including system identification, inverse design problems, motion planning,
robotics control, and a real-to-sim experiment, using material models compati-
ble with PD and the simplified contact model stated above.

4.1.2 Governing Equations

In this section, we review the basic concepts of the implicit time-stepping scheme and
PD. Let 𝑛 be the number of 3D nodes in a deformable body after FEM-discretization.
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After time discretization, we use x𝑖 ∈ ℛ3𝑛 and v𝑖 ∈ ℛ3𝑛 to indicate the nodal positions
and velocities at the 𝑖-th time step.

Implicit time integration In this work, we focus on the implicit time integration:

x𝑖+1 = x𝑖 + ℎv𝑖+1,

v𝑖+1 = v𝑖 + ℎM−1[fint(x𝑖+1) + fext],

(4.1)
(4.2)

where ℎ is the time step, M ∈ ℛ3𝑛×3𝑛 is a lumped mass matrix, and fint and fext are
the sum of the internal and external forces, respectively. Substituting v𝑖+1 in x𝑖+1

gives the following nonlinear system of equations:

1

ℎ2
M(x𝑖+1 − y𝑖)− fint(x𝑖+1) = 0, (4.3)

where y𝑖 = x𝑖 + ℎv𝑖 + ℎ2M−1fext is evaluated at the beginning of each time step. We
drop the indices from x and y for simplicity:

1

ℎ2
M(x− y)− fint(x) = 0. (4.4)

At each time step, our goal is to find x satisfying the equation above with the given
y.

As pointed out by Stuart et al. [139] and Martin et al. [101], solving x from Eqn.
(4.4) is equivalent to finding the critical point of the following objective 𝑔:

𝑔(x) =
1

2ℎ2
(x− y)⊤M(x− y) + 𝐸(x), (4.5)

where 𝐸 is the potential energy that induces the internal force: fint = −∇𝐸. It is
easy to check the left-hand side of Eqn. (4.4) is ∇𝑔.

Eqn. (4.4) is typically solved with Newton’s method, which iteratively solves a
series of linear systems of equations. Consider the 𝑘-th iteration in Newton’s method
with x𝑘 being the guess on x so far. Newton’s method computes the next guess on x
as follows:

0 = ∇𝑔(x) = ∇𝑔(x𝑘 + ∆x) ≈∇𝑔(x𝑘) +∇2𝑔(x𝑘)∆x,

∇2𝑔(x𝑘)∆x ≈−∇𝑔(x𝑘).

(4.6)
(4.7)

Therefore, one can let ∆x = −[∇2𝑔(x𝑘)]−1∇𝑔(x𝑘) and update their guess on x at
the next iteration by x𝑘+1 = x𝑘 + ∆x. In practice, Newton’s method typically em-
ploys definiteness fixes or line searches when ∇2𝑔 is indefinite [110]. For large-scale
problems, solving Eqn. (4.7) at each x𝑘 requires expensive linearization and matrix
factorization, which becomes the time bottleneck.

Backpropagation with implicit time integration We sketch the main idea
of backpropagation with a loss function 𝐿 defined on x and explain how we can
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compute 𝜕𝐿
𝜕y

from 𝜕𝐿
𝜕x

. Backpropagating through multiple time steps can be done by
backpropagating through every single pair of (x,y) from each time step repeatedly.
As x and y are implicitly constrained by ∇𝑔(x) = 0, we can differentiate it with
respect to y and obtain the following equation:

∇2𝑔(x)
𝜕x

𝜕y
− 1

ℎ2
M = 0. (4.8)

We can solve 𝜕x
𝜕y

from it and use the chain rule to obtain the following (assuming both
𝜕𝐿
𝜕x

and 𝜕𝐿
𝜕y

are row vectors):

𝜕𝐿

𝜕y
=

𝜕𝐿

𝜕x

𝜕x

𝜕y
=

1

ℎ2

𝜕𝐿

𝜕x
[∇2𝑔(x)]−1⏟  ⏞  

z⊤

M. (4.9)

Note that the inverse of ∇2𝑔(x) is intentionally regrouped with 𝜕𝐿
𝜕x

to avoid the ex-
pensive [∇2𝑔(x)]−1M. The adjoint vector z can be solved from the following linear
system of equations:

∇2𝑔(x)z = (
𝜕𝐿

𝜕x
)⊤. (4.10)

Note that we drop the transpose of ∇2𝑔(x) because it is symmetric.
Putting them together, we have shown that backpropagation within one time step

can be done by Eqns. (4.9) and (4.10). It is now clear that ∇2𝑔(x) plays a crucial role
in both forward simulation and backpropagation, and we write its definition explicitly
below:

∇2𝑔(x) =
1

ℎ2
M +∇2𝐸(x). (4.11)

Similar to Newton’s method in forward simulation, a direct implementation of Eqn.
(4.10) is computationally expensive because ∇2𝑔(x) needs to be reconstructed and
refactorized at every time step. This motivates us to propose the novel PD-based
backpropagation method in Sec. 4.1.3.

Projective Dynamics PD considers a specific family of quadratic potential ener-
gies that decouple the nonlinearity in material models [22]. Specifically, PD assumes
the energy 𝐸 is the sum of quadratic energies taking the following form:

𝐸𝑐(x) = min
p𝑐∈ℳ𝑐

𝑤𝑐

2
‖G𝑐x− p𝑐‖22⏟  ⏞  

�̃�𝑐(x,p𝑐)

,

𝐸(x) =
∑︁
𝑐

𝐸𝑐(x),

(4.12)

(4.13)

where G𝑐 is a discrete differential operator in the form of a constant sparse matrix, 𝑤𝑐

is a scalar that determines the stiffness of the energy, andℳ𝑐 is a constraint manifold.
For example, if one wants to formulate a volume-preserving elastic energy, ℳ𝑐 can
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Algorithm 2: PD forward simulation in one time step
Input: y;
Output: x that satisfies Eqn. (4.4);
Initialize x = y;
while x not converged do

p𝑐 = argminp𝑐∈ℳ𝑐 �̃�𝑐(x,p𝑐); // Local step;
b = 1

ℎ2My +
∑︀

𝑐𝑤𝑐G
⊤
𝑐 p𝑐;

x = A−1b; // Global step;

be the set of all 3× 3 matrices whose determinant is 1. 𝐸𝑐 is defined as the distance
from G𝑐x to ℳ𝑐. Following the prevalent practice in previous work [22, 96, 107],
we assume 𝐸𝑐 is defined on each finite element with G𝑐 mapping x to the local
deformation gradients F [130].

With the definition of 𝐸 at hand, PD obtains the critical point of 𝑔 by alternating
between a local step and a global step, which essentially minimizes the following
surrogate objective 𝑔(x,p):

𝑔(x,p) =
1

2ℎ2
(x− y)⊤M(x− y) +

∑︁
𝑐

�̃�𝑐(x,p𝑐), (4.14)

where p stacks up all p𝑐 from each 𝐸𝑐. The local and global steps in PD can be
interpreted as running coordinate descent optimization on 𝑔. The local step fixes the
current x and projects G𝑐x ontoℳ𝑐 to obtain p𝑐 in each 𝐸𝑐, which can be massively
parallelizable across all 𝐸𝑐. The global step fixes p and minimize 𝑔 over x, which turns
out to be a quadratic function with an analytical solution solved from the following
linear system of equations:

(
1

ℎ2
M +

∑︁
𝑐

𝑤𝑐G
⊤
𝑐 G𝑐)⏟  ⏞  

A

x =
1

ℎ2
My +

∑︁
𝑐

𝑤𝑐G
⊤
𝑐 p𝑐. (4.15)

It is easy to see that each local and global step ensures 𝑔 is non-increasing. Since 𝑔 is
bounded below by 0, PD guarantees to converge to a local minimum of 𝑔 satisfying the
gradient condition ∇x𝑔 = 0. Interestingly, Liu et al. [96] establishes that ∇x𝑔 = ∇𝑔
upon convergence, confirming that the solution from PD is indeed a critical point of
𝑔 that solves the implicit time integration. We summarize the local-global solver in
Alg. 2, which serves as a basis for our contact handling algorithm to be described in
Sec. 4.1.4.

The source of efficiency in forward PD simulation lies in the fact that A in the
global step is a constant, symmetric positive definite matrix. Therefore, the Cholesky
factorization of A can be precomputed, after which each global step requires back-
substitution only. In the next section, we will show that we can also use A in back-
propagation to obtain significant speedup.
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4.1.3 Backpropagation

We now describe our PD-based backpropagation method. Our key observation is
that the bottleneck in backpropagation lies in the computation of ∇2𝑔(x) in Eqn.
(4.10). Following the same idea as in forward PD simulation, we propose to decouple
∇2𝑔(x) into a global, constant matrix and a local, massively parallelizable nonlinear
component. To see this point, we compute ∇2𝐸 using Eqns. (4.12) and (4.13):

∇𝐸(x) =
∑︁
𝑐

𝑤𝑐G
⊤
𝑐 (G𝑐x− p𝑐),

∇2𝐸(x) =
∑︁
𝑐

𝑤𝑐G
⊤
𝑐 G𝑐 −

∑︁
𝑐

𝑤𝑐G
⊤
𝑐

𝜕p𝑐

𝜕x
.

(4.16)

(4.17)

Note that in Eqn. (4.16), 𝜕p𝑐

𝜕x
can be safely ignored according to the envelope theorem

(see Appendix in [96]). According to Eqn. (4.11), ∇2𝑔(x) now becomes:

∇2𝑔(x) =
1

ℎ2
M +

∑︁
𝑐

𝑤𝑐G
⊤
𝑐 G𝑐 −

∑︁
𝑐

𝑤𝑐G
⊤
𝑐

𝜕p𝑐

𝜕x⏟  ⏞  
ΔA

= A−∆A. (4.18)

It is now clear that ∆A is the source of nonlinearity in ∇2𝑔. The matrix splitting of
∇2𝑔 = A−∆A suggests the following iterative solver for Eqn. (4.10):

Az𝑘+1 = ∆Az𝑘 + (
𝜕𝐿

𝜕x
)⊤, (4.19)

where 𝑘 indicates the iteration number. Therefore, we propose a local-global solver
for Eqn. (4.10): At the 𝑘-th iteration, the local step computes ∆Az𝑘 across all
energies 𝐸𝑐, forming the right-hand vector in Eqn. (4.19). In the global step, we
solve z𝑘+1 by back-substituting A. Note that A is the same constant matrix in
forward PD simulation, so we can reuse the Cholesky factorization of A. The source
of efficiency in this local-global solver is similar to what PD proposes to speed up
forward simulation: Essentially, this local-global solver trades the expensive matrix
assembly and factorization of ∇2𝑔 in Eqn. (4.10) with iterations on a constant,
prefactorized linear system of equations. We summarize our PD backpropagation
algorithm in Alg. 3.

Convergence rate For any iterative algorithm design, the immediate follow-up
questions are whether such an algorithm is guaranteed to converge, and, if so, how
fast the convergence rate is. To answer these questions, we use (𝜕𝐿

𝜕x
)⊤ = Az −∆Az

and Eqn. (4.19) to obtain

A(z𝑘+1 − z) = ∆A(z𝑘 − z), (4.20)
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Algorithm 3: PD backpropagation in one time step
Input: y, x (already computed in forward simulation), and 𝜕𝐿

𝜕x ;
Output: 𝜕𝐿

𝜕y ;
Initialize z = 0;
while z not converged do

b = ΔAz+ (𝜕𝐿𝜕x )
⊤; // Local step parallelizing ΔAz;

z = A−1b; // Global step;
𝜕𝐿
𝜕y = 1

ℎ2 z
⊤M; // Eqn. (4.9);

from which we conclude the error at the 𝑘-th iteration is ‖z𝑘−z‖2 = ‖(A−1∆A)𝑘(z0−
z)‖2. It follows that the iteration in Eqn. (4.19) is guaranteed to converge from any
initial guess z0 if and only if 𝜌(A−1∆A) < 1, where 𝜌(·) indicates the spectral radius of
a matrix. It is challenging to provide more theoretical results on 𝜌(A−1∆A) because it
depends heavily on the specific form of 𝐸𝑐, which we leave as future work. In practice,
we do not observe convergence issues with Eqn. (4.19) in any of our experiments,
which seems to imply 𝜌(A−1∆A) < 1 is likely to be satisfied.

Further acceleration with Quasi-Newton methods Inspired by Liu et al. [96]
which apply the quasi-Newton method to speed up forward PD simulation, we now
show that a similar numerical optimization perspective can also be applied to speed
up our proposed local-global solver in backpropagation. Solving Eqn. (4.10) equals
finding the critical point of the following energy ℎ(z):

ℎ(z) =
1

2
z⊤∇2𝑔(x)z− 𝜕𝐿

𝜕x
z. (4.21)

It is easy to verify that ∇ℎ(z) = 0 is essentially Eqn. (4.10). We stress that in
backpropagation both ∇2𝑔(x) and 𝜕𝐿

𝜕x
are known values computed at x solved from

forward simulation. If we apply Newton’s method to this critical-point problem, the
update rule will be as follows (see Eqns. (4.6) and (4.7) in Sec. 4.1.2):

z𝑘+1 = z𝑘 − [∇2ℎ(z𝑘)]−1∇ℎ(z𝑘). (4.22)

The true Hessian of ℎ is ∇2𝑔(x) = A−∆A from Eqn. (4.18). If we approximate it
with A, we get the following quasi-Newton update rule:

z𝑘+1 = z𝑘 −A−1∇ℎ(z𝑘)

= z𝑘 −A−1[(A−∆A)z𝑘 − (
𝜕𝐿

𝜕x
)⊤]

= A−1∆Az𝑘 + A−1(
𝜕𝐿

𝜕x
)⊤,

(4.23)

which is identical to the iteration in Eqn. (4.19). As a result, the local-global solver
we propose can be reinterpreted as running a simplified quasi-Newton method with
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a constant Hessian approximation A. By applying a full quasi-Newton method, e.g.,
BFGS, we can reuse the Cholesky decomposition of A with little extra overhead of
vector products and achieve a superlinear convergence rate [110]. Moreover, similar to
the previous work [96], we can apply line search techniques to ensure convergence when
𝜌(A−1∆A) ≥ 1, even though we do not experience convergence issues in practice.

4.1.4 Contact Handling

We have described the basic framework of DiffPD in Sec. 4.1.3. In this section, we
propose a novel method to incorporate contact handling and contact gradients into
DiffPD. The challenges in developing such a contact handling algorithm are twofold:
First, it must be compatible with our basic PD framework in both forward simulation
and backpropagation. Second, it must support differentiability. In this section, we
discuss two contact options that DiffPD supports: a penalty-based contact model with
static and dynamic friction and a complementarity-based contact model supporting
non-penetration conditions and static friction. Both options have their advantages
and disadvantages: the penalty-based method is more straightforward to implement
and easier to be integrated into a machine learning framework, e.g., as an explicit
neural network layer in PyTorch. However, we find it typically requires a careful,
scene-by-scene tuning of its parameters. On the other hand, our complementarity-
based method does not rely on scene-dependent parameters, but it is currently limited
to static friction only. Our penalty-based method is more suitable for tasks that favor
speed and simplicity over physical accuracy, and the complementarity-based method
is more useful when non-penetration conditions need to be strictly enforced and sliding
motions are rare, e.g., simulating a wheeled robot.

Penalty-Based Contact

Previous papers on PD simulation typically handle contact forces with a penalty-
based soft contact model [40, 39, 153, 154, 22, 96]. One common way to model
contact forces is to add an additional, fictitious energy 𝐸𝑐 withℳ𝑐 being the contact
surface and its exterior and G𝑐 being a matrix so that G𝑐x selects contact nodes from
x. This way, whenever a node penetrates the contact surface, 𝐸𝑐 exerts a contact force
that attempts to push it back to the contact surface. As such a contact model can
be seamlessly integrated into PD forward simulation, our backpropagation method in
Sec. 4.1.3 naturally supports it.

Handling static and dynamic frictional forces with a penalty-based model in PD is
slightly trickier. Since friction is typically related to nodal velocities instead of nodal
positions x, it is not straightforward to find an 𝐸𝑐 that characterizes it. Therefore,
instead of modeling friction with an additional 𝐸𝑐, we take the penalty-based fric-
tional forces described in Macklin et al. [100] and add them directly to fext. Deriving
gradients with respect to such frictional forces is still straightforward as we can easily
compute 𝜕𝐿

𝜕fext
using the chain rule and the relation 𝜕y

𝜕fext
= ℎ2M−1 after computing

𝜕𝐿
𝜕y

.
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Complementarity-Based Contact

An alternative to penalty-based contact is to model contact and friction using comple-
mentarity constraints [100, 97]. Complementarity-based contact models are suitable
for applications requiring high physical fidelity but typically require extra computa-
tional cost. Ly et al. [97] present a general framework for handling complementarity-
based contact and friction in PD forward simulation. More concretely, Ly et al. [97]
model contact and friction with the Signorini-Coulomb law and focus on applications
in cloth simulation. Our approach is relevant to Ly et al. [97] but has substantial dif-
ference because our focus in this paper is on 3D volumetric deformable bodies, which
typically have a sparse contact set, i.e., the nodes in contact during simulation is
usually a small portion of the full set of nodes. Below we will present a differentiable,
complementarity-based contact model that leverages such sparsity to gain speedup
in both forward simulation and backpropagation. Our contact model ensures non-
penetration conditions and, in exchange for speedup, handles static friction only. We
leave differentiable, complementarity-based dynamic friction model as future work.

Contact model Let 𝜑(·) : ℛ3 → ℛ be the signed-distance function of the contact
surface with 𝜑 < 0 indicating the space occupied by the obstacle. We require the
solution x to the implicit time integration to satisfy the following complementarity
condition for any node indexed by 𝑗:{︃

𝜑(x𝑗) > 0, r𝑗 = 0,

or 𝜑(x𝑗) = 0, r𝑗|𝑁 ≥ 0,

(4.24a)
(4.24b)

where x𝑗 and r𝑗 are 3D vectors indicating the nodal position and contact force of
node 𝑗. The notation r𝑗|𝑁 ∈ ℛ is the normal component of r𝑗 where the normal is
computed from the contact surface 𝜑 at the contact location x𝑗. In other words, for
each node 𝑗, it must be either above the contact surface (𝜑(x𝑗) > 0) with zero contact
force (r𝑗 = 0) or in contact (𝜑(x𝑗) = 0) with a positive contact force along the normal
direction (r𝑗|𝑁 = 0). The implicit time integration in Eqn. (4.4) now becomes:⎧⎨⎩

1

ℎ2
M(x− y)− fint(x) = r,

(x, r) satisfy Eqn. (4.24),

(4.25a)

(4.25b)

where the notation r stacks up all contact force r𝑗 from each node 𝑗.

Remarks on friction Eqn. (4.25) does not fully constrain the solution x because,
for any x𝑗 in contact with 𝜑 = 0, x𝑗 can slide on 𝜑 = 0 and r𝑗 will compensate
any force needed. This can be resolved by imposing additional location constraints
on x𝑗. Some common strategies include 1) in the penalty-based model before, x𝑗 is
chosen as certain projection onto 𝜑 = 0, 2) gluing x𝑗 to its original position at the
beginning of the time step, and 3) setting it to the contact point computed from
collision detection [28], which is usually the intersection between 𝜑 = 0 and the ray

58



x𝑗+𝑡v𝑗, 0 ≤ 𝑡 ≤ ℎ. Any of these strategies are compatible with DiffPD as long as they
can compute a target location x*

𝑗 on 𝜑 = 0 if a collision detection algorithm indicates
x𝑗 is in contact with 𝜑 = 0. In DiffPD, we choose the third strategy mentioned above,
which essentially models a very sticky contact surface that provides infinitely large
static friction once x𝑗 is in contact.

Time integration with contact We first introduce some notations to better ex-
plain our solver to Eqn. (4.25). Let ℐ = {0, 1, 2, · · · , 𝑛 − 1} be the indices of all 𝑛
nodes in the system. We use S to denote the complement of a set S ⊆ ℐ. In other
words, S and S is a two-set partition of ℐ. For any subsets S𝑟,S𝑐 ⊆ ℐ, we use AS𝑟×S𝑐

to indicate the submatrix of A created by keeping entries whose row and column in-
dices are from nodes in S𝑟 and S𝑐, respectively. Similarly, for any vector a, we define
aS as the vector generated by keeping elements whose indices are from nodes in S.
For any vectors a and b ∈ ℛ3|S|, We use aS=b to indicate that a satisfies aS = b.

The high-level idea of our time integrator with the aforementioned contact model
is described in Alg. 4, which modifies Alg. 2 to find x that satisfies Eqn. (4.25).
We start with any collision detection algorithm that can propose a set of candidate
contact nodes 𝒞 and compute a target location x*

𝑗 for any 𝑗 ∈ 𝒞. Next, we use the
proposed 𝒞 to split the complementarity condition in Eqn. (4.25b) and solve Eqn.
(4.25a): For any 𝑗 ∈ 𝒞, we set x𝑗 = x*

𝑗 ; for any 𝑗 /∈ 𝒞, we set r𝑗 = 0. This makes Eqn.
(4.25a) a balanced system with an equal number of equations and variables. Finally,
we use the solved x to computed r𝑗 at each 𝑗 ∈ 𝒞 and check if r𝑗|𝑁 ≥ 0 is satisfied. If
x results in some negative r𝑗|𝑁 , these nodes are removed from 𝒞 and a new iteration
begins with the updated 𝒞. Similarly, if 𝜑(x𝑗) becomes negative, such a node 𝑗 is
added to 𝒞. Essentially, we are running the active-set algorithm on Eqn. (4.25a) with
linear constraints, and more advanced active set schemes can potentially be used to
rebuild 𝒞 more efficiently. Using the notations above, our algorithm attempts to solve
the following reduced system at each iteration:

1

ℎ2
M𝒞×𝒞(x− y)𝒞 − fint(x𝒞=x*)𝒞 = 0, (4.26)

where x* stacks up x*
𝑗 for all 𝑗 ∈ 𝒞. Accordingly, the definition of 𝑔 is updated as

follows, which we rename as 𝑔𝒞:

𝑔𝒞(x𝒞=x*) =
1

2ℎ2
(x− y)⊤𝒞 M𝒞×𝒞(x− y)𝒞 + 𝐸(x𝒞=x*). (4.27)

It is easy to check that the left-hand side of Eqn. (4.26) is identical to ∇x𝒞
𝑔𝒞.

Therefore, solving Eqn. (4.26) is equal to finding the critical point of this modified
𝑔 function, and we can still apply Newton’s method but with a slightly different
definition of ∇2𝑔:

∇2
x𝒞
𝑔𝒞 =

1

ℎ2
M𝒞×𝒞 + (∇2𝐸)𝒞×𝒞 = (∇2𝑔)𝒞×𝒞. (4.28)

In other words, ∇2
x𝒞
𝑔𝒞 is a submatrix of ∇2𝑔 in Eqn. (4.11) created by deleting rows
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Algorithm 4: PD forward simulation with contact
Input: y;
Output: x that satisfies Eqn. (4.25);
Run a collision detection algorithm to get 𝒞 and x*;
while 𝒞 not converged do

Initialize x = y and set x𝒞 = x*;
while x not converged do

p𝑐 = argminp𝑐∈ℳ𝑐 �̃�𝑐(x,p𝑐); // Local step;
b = 1

ℎ2My +
∑︀

𝑐𝑤𝑐G
⊤
𝑐 (p𝑐 −G𝑐x𝒞=x*,𝒞=0);

Run Alg. 5 to solve x𝒞 = (A𝒞×𝒞)
−1b𝒞 ; // Global step;

r = 1
ℎ2M(x− y)− fint(x); // Eqn. (4.25a);

Update 𝒞 based on r𝑗 , 𝜑(x𝑗), and Eqn. (4.24);

and columns from 𝒞.

Implications on forward PD In the PD framework, 𝑔𝒞 also induces a modified
surrogate function 𝑔, which we rename as 𝑔𝒞:

𝑔𝒞(x𝒞=x* ,p) =
1

2ℎ2
(x− y)⊤𝒞 M𝒞×𝒞(x− y)𝒞 +

∑︁
𝑐

�̃�𝑐(x𝒞=x* ,p𝑐). (4.29)

It is still true that the original local-global solver will ensure 𝑔𝒞 is non-increasing and
converge to a critical point of 𝑔𝒞. With the constraint x𝒞 = x*, the local step can
project each G𝑐x to obtain p𝑐 as before. The global step, on the other hand, requires
some modification, as can be best seen after computing ∇x𝒞

𝑔𝒞:

∇x𝒞
𝑔𝒞 =

1

ℎ2
M𝒞×𝒞(x− y)𝒞 +

∑︁
𝑐

𝑤𝑐(G
⊤
𝑐 )𝒞×ℐ(G𝑐x− p𝑐). (4.30)

Setting ∇x𝒞
𝑔𝒞 = 0 and using the fact that x𝒞 = x*, we obtain the new global step

with a linear system modified from Eqn. (4.15):

A𝒞×𝒞x𝒞 = [
1

ℎ2
My +

∑︁
𝑐

𝑤𝑐G
⊤
𝑐 (p𝑐 −G𝑐x𝒞=x*,𝒞=0)]𝒞, (4.31)

where x𝒞=x*,𝒞=0 is a vector satisfying x𝒞 = x* and x𝒞 = 0. Although the right-hand
side seems complicated, it can still be parallelized across all 𝐸𝑐. It is the left-hand side
matrix A𝒞×𝒞 that deserves more attention: Since 𝒞 is a set that changes dynamically
between each time step, A𝒞×𝒞 randomly erases different rows and columns from A,
which means the Cholesky factorization of A no longer applies. Our key observation
is that 𝒞 is usually a small subset of full nodes in 3D volumetric deformable bodies.
This allows us to formulate row and column deletions on A as a low-rank update,
from which we derive efficient solvers that can reuse the Cholesky factorization of A.
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Low-rank update Define a permutation 𝜎 on ℐ with the following property: 𝜎
shuffles ℐ so that indices from 𝒞 come before those in 𝒞 and the internal orders inside
𝒞 and 𝒞 are preserved. Define P as the corresponding permutation matrix: P𝑖𝑗 = 1 if
𝜎(𝑖) = 𝑗 and 0 otherwise. Now AP shuffles all columns of A so that the 𝑖-th column
in A becomes the 𝜎(𝑖)-th column in AP. Similarly, P⊤A shuffles all rows of A in
the same way. We now rewrite P⊤AP as a 2× 2 block matrix:

P⊤AP =

(︂
A𝒞×𝒞 A𝒞×𝒞
A𝒞×𝒞 A𝒞×𝒞

)︂
. (4.32)

Let 𝑐 = |𝒞| and define U ∈ ℛ3𝑛×2𝑐 as follows:

U =
(︀
U𝐿 U𝑅

)︀
=

(︂
I 0
0 A𝒞×𝒞

)︂
, (4.33)

where U𝐿,U𝑅 ∈ ℛ3𝑛×𝑐 represent the left and right half of U and I is the identity
matrix of a proper size. Similarly, we define V ∈ ℛ2𝑐×3𝑛 as follows:

V =

(︂
U⊤

𝑅

U⊤
𝐿

)︂
=

(︂
0 A𝒞×𝒞
I 0

)︂
. (4.34)

It is now easy to verify that the product of UV is the following low-rank matrix:

UV =

(︂
0 A𝒞×𝒞

A𝒞×𝒞 0

)︂
, (4.35)

and subtracting it from P⊤AP results in a block-diagonal matrix:

P⊤AP−UV = P⊤ (A−PUVP⊤)⏟  ⏞  
AP

P =

(︂
A𝒞×𝒞 0
0 A𝒞×𝒞

)︂
. (4.36)

Therefore, we can obtain (A𝒞×𝒞)−1 by inverting P⊤AP −UV. Since inverting P is
trivial (P−1 = P⊤), we focus on explaining how to obtain A−1

P :

A−1
P = A−1 + A−1PU(I−VP⊤A−1PU)−1VP⊤A−1. (4.37)

Since A is prefactorized, operations using A−1 in the matrix identity above can be
executed efficiently. Moreover, with the assumption that 𝑐≪ 𝑛, I−VP⊤A−1PU ∈
ℛ2𝑐×2𝑐 is a small matrix compared to A, and inverting it (solving a linear system whose
left-hand side is this matrix) can be done efficiently. Putting everything together, we
transform the problem of factorizing AP into factorizing a much smaller linear system
of equations.

Time complexity We now consider a brute-force implementation of Eqn. (4.37)
and analyze its time complexity. The time cost is dominated by computing A−1PU
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which takes 𝒪(𝑛2𝑐) time. While this is still asymptotically smaller than the cost of
factorizing the modified matrix, which generally takes 𝒪(𝑛3) time, the speedup in
practice may not be as much as predicted by the time analysis due to the sparsity of
AP. Therefore, further simplification on Eqn. (4.37) would still be desirable.

Further acceleration To reduce the time cost of computing A−1PU, we notice
that PU shuffles all rows of U with the inverse mapping 𝜎−1. As a result, PU𝐿, the
left part of PU, is effectively Iℐ×𝒞, i.e., a collection of one-hot column vectors e𝑗, 𝑗 ∈ 𝒞,
where the 𝑗-th entry in e𝑗 is 1. This means that we can precompute A−1Iℐ×𝒞 using a
maximum possible 𝒞 (e.g., all surface nodes) before the whole simulation begins and
look up A−1e𝑗, 𝑗 ∈ 𝒞 on the fly.

It turns out that the same idea can also be used for computing A−1PU𝑅, the right
half of the solution, with a slight modification. Notice that PU𝑅 can be obtained
from A by fetching Aℐ×𝒞 and zeroing out corresponding rows in 𝒞:

PU𝑅 = Aℐ×𝒞 − Iℐ×𝒞A𝒞×𝒞. (4.38)

We can, therefore, compute A−1PU𝑅 as follows:

A−1PU𝑅 = A−1Aℐ×𝒞 −A−1Iℐ×𝒞A𝒞×𝒞 = Iℐ×𝒞 −A−1Iℐ×𝒞A𝒞×𝒞. (4.39)

Since A−1Iℐ×𝒞 has been precomputed, the time complexity will be bounded by the
matrix multiplication 𝒪(𝑛𝑐2). Moreover, noting that A−1 is symmetric and V can
be obtained from U by swapping and transposing block matrices U𝐿 and U𝑅, the
results derived here can also be reused to assemble VP⊤A−1.

In conclusion, we have reduced the time complexity of computing A−1PU from
𝒪(𝑛2𝑐) to 𝒪(𝑛𝑐2). Since the remaining operations, excluding solving A−1 in Eqn.
(4.37), are also bounded by 𝒪(𝑛𝑐2), we now have reduced the overhead of applying
Eqn. (4.37) from 𝒪(𝑛2𝑐) to 𝒪(𝑛𝑐2), with the overhead defined as the extra cost
brought by Eqn. (4.37) in addition to one linear solve A−1 with any right-hand side
vector. We present the complete algorithm in pseudocode in Alg. 5, which serves as a
subroutine in Alg. 4. We use B𝑘 and a𝑘 to denote intermediate matrices and vectors
respectively, with the subscript 𝑘 indicating the order of their first occurrence.

Backpropagation With a contact set 𝒞 and the corresponding x*, the backprop-
agation scheme in Sec. 4.1.3 also needs modifications. Backpropagating from 𝜕𝐿

𝜕x
to

𝜕𝐿
𝜕y

now becomes trickier due to the existence of 𝒞 and x* from a collision detection
algorithm, which splits both x and y into two vectors x𝒞, x𝒞, y𝒞, and y𝒞. Here, we
will sketch the core idea by showing how gradients can be backpropagated from 𝜕𝐿

𝜕x𝒞

to 𝜕𝐿
y𝒞

. Backpropagation through other dependencies is easier to derive and therefore
skipped.

From Eqns. (4.26) and (4.27), we see that x𝒞 and y𝒞 are constrained by∇x𝒞
𝑔𝒞 = 0.
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Algorithm 5: Global step in Alg. 4.
Input: 𝒞 ⊆ ℐ, x* ∈ ℛ3|𝒞|, and b ∈ ℛ3𝑛;
Output: x such that x𝒞 = x* and A𝒞×𝒞x𝒞 = b𝒞 ;
Collect B1 = A−1Iℐ×𝒞 from precomputed data;
B2 = Iℐ×𝒞 −B1A𝒞×𝒞 ;
B3 = (B1,B2); // B3 = A−1PU;
// VP⊤ can be fetched from A without permutation;
// No need to compute P;
B4 = I−VP⊤B3;
Solve a1 from Aa1 = b;
a2 = (b⊤B2,b

⊤B1); // Row vector;
Solve a3 from B4a3 = a⊤2 ;
x = a1 +B3a3;
Set x𝒞 = x*;

By differentiating Eqn. (4.26) we obtain:

∇2
x𝒞
𝑔𝒞

𝜕x𝒞
𝜕y𝒞
− 1

ℎ2
M𝒞×𝒞 = 0, (4.40)

which is a reduced version of Eqn. (4.8). The chain rule still applies in a similar way:

𝜕𝐿

𝜕y𝒞
=

𝜕𝐿

𝜕x𝒞

𝜕x𝒞
𝜕y𝒞

=
1

ℎ2

𝜕𝐿

𝜕x𝒞
[(∇2𝑔)𝒞×𝒞]−1⏟  ⏞  

z⊤

M𝒞×𝒞, (4.41)

where a new adjoint vector z is defined. It should now become very clear that z is
obtained from the following linear system of equations:

(∇2𝑔)𝒞×𝒞z = (
𝜕𝐿

𝜕x𝒞
)⊤. (4.42)

Now using Eqn. (4.18), we see the iterative solver in Sec. 4.1.3 becomes:

A𝒞×𝒞z
𝑘+1 = ∆A𝒞×𝒞z

𝑘 + (
𝜕𝐿

𝜕x𝒞
)⊤, (4.43)

from which we see a similar issue we experience in forward simulation: A𝒞×𝒞 changes
dynamically, so the Cholesky factorization of A is not directly applicable. This is
exactly where we can use the same global solver in Alg. 5 to retain the source of
efficiency in our PD backpropagation algorithm. We summarize this new backprop-
agation method in Alg. 6.

Summary In summary, we have presented a differentiable contact handling al-
gorithm that ensures non-penetration conditions and imposes infinitely large static
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Algorithm 6: PD backpropagation with contact
Input: y, x and 𝒞 (from forward simulation), and 𝜕𝐿

𝜕x𝒞
;

Output: 𝜕𝐿
𝜕y𝒞

;
Initialize z = 0;
while z not converged do

b = (ΔA)𝒞×𝒞z+ ( 𝜕𝐿
𝜕x𝒞

)⊤; // Local step;
Run Alg. 5 to solve z = (A𝒞×𝒞)

−1b; // Global step;
𝜕𝐿
𝜕y𝒞

= 1
ℎ2 z

⊤M𝒞×𝒞 ; // Eqn. (4.9);

friction. Moreover, we have also discussed its implementation in forward simula-
tion and backpropagation that can still benefit from the Cholesky factorization of
A. We stress that there exist more physically accurate contact handling algorithms
that satisfy not only non-penetration conditions but also the Coulomb’s law of fric-
tion [28, 97, 90]. However, our contact handling algorithm achieves a good trade-off
between differentiability, physically plausibility, and compatibility with our differen-
tiable PD framework.

4.1.5 Evaluation

In this section, we compare DiffPD with a few baseline differentiable simulation meth-
ods and conduct ablation studies on the acceleration techniques in Sec. 4.1.3 and
Sec. 4.1.4. We start by discussing the difference between implicit and explicit time-
stepping schemes in backpropagation. Next, we compare our simulator with two other
fully implicit simulators implemented with the Newton’s method. We end this section
with a discussion on the two contact models implemented in DiffPD. The end goal
of this section is to evaluate the difference between different time-stepping methods
and understand the source of efficiency in DiffPD. We implement both baseline al-
gorithms and DiffPD in C++ and use Eigen [61] for sparse matrix factorization and
linear solvers. We run all experiments in this section and next section on a virtual
machine instance from Google Cloud Platform with 16 Intel Xeon Scalable Proces-
sors (Cascade Lake) @ 3.1 GHz and 64 GB memory. We use OpenMP for parallel

Figure 4-2: The “Cantilever” and “Rolling sphere” examples in Sec. 4.1.5 designed for
comparing DiffPD to the Newton’s method. The “Cantilever” example starts with a twisted
cantilever (left), oscillates, and bends downwards eventually due to gravity. In the “Rolling
sphere” example, we roll a soft sphere on the ground (right) which constantly breaks and
reestablishes contact.
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computing and 8 threads by default unless otherwise specified.
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Figure 4-3: The relative changes in both the loss (top left) and the magnitude of the
gradient (bottom left) for the explicit method (cyan) and our method (green) for 5 out of
the 16 random directions in the neighborhood of the initial nodal positions x0. Also shown
are the means (solid curves) and standard deviations (shaded) of the percent change in loss
(top right) and the magnitude of the gradient (bottom right) for all 16 random directions.

Comparisons with Explicit Method

Compared with explicit time-stepping methods used in previous papers on differen-
tiable simulation [69, 68, 136], implicit time integration brings two important changes
to a differentiable simulator: First, implicit methods enable a much larger time step
during simulation, resulting in much fewer number of frames. This is particularly
beneficial for solving an inverse problem with a long time horizon as we store fewer
states (nodal positions and velocities) in memory during backpropagation. Second,
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due to implicit damping, we can expect the landscape of the loss function defined on
nodal states and their derived quantities to be smoother.

To demonstrate the memory consumption, we consider a soft cantilever discretized
into 12× 3× 3 hexahedral elements (a low-resolution version of the “Cantilever” ex-
ample in Fig. 4-2 left). We impose Dirichlet boundary conditions on one end of the
cantilever and simulate its vibration after twisting the other end of the cantilever
under gravity for 0.2 seconds. We define a loss function 𝐿 as a randomly generated
weighted average of the final nodal positions and velocities. The implicit time in-
tegration in our simulator allows us to use a time step as large as 10 milliseconds,
while a explicit implementation is only numerically stable in both forward simulation
and backpropagation for time steps of 0.5 milliseconds. Since memory consumption
during backpropagation is proportional to the number of frames, we can expect a
20× increase in memory consumption for the explicit method, requiring additional
techniques like checkpoint states [69, 136] before the problem size can be scaled up.

To demonstrate the influences of time-stepping schemes on the smoothness of the
energy landscape, we visualize in Fig. 4-3 the loss function 𝐿 and its gradient norm
|∇𝐿| sliced along 16 random directions in the neighborhood of the cantilever’s initial
nodal positions. Specifically, let x0 be the initial nodal positions and let r1, r2, . . . , r16
be the random directions. We plot 𝐿(x0+𝛼r𝑖) and |∇𝐿(x0+𝛼r𝑖)| for each r𝑖 (Fig. 4-3
left) with 𝛼 being the step size, which is uniformly sampled between −0.3% and 0.3%
of the cantilever beam length. The standard deviations from 16 random directions
(Fig. 4-3 right) indicate that small perturbations in x0 lead to much smoother loss
and gradients when implicit time integration is applied, which is not surprising due
to numerical damping. From the perspective of differentiable simulation, a smoother
energy landscape can be more favorable as it induces more well-defined gradients to
be used by gradient-based optimization techniques.

Comparisons with Other Implicit Methods

We now compare our simulator with other implicit time-stepping schemes to evaluate
its speedup in both forward and backward modes. We choose Newton’s method with
two standard sparse linear solvers: an iterative solver using preconditioned conjugate
gradient (Newton-PCG) and a direct solver using Cholesky decomposition (Newton-
Cholesky), as our baseline solvers for implicit time integration in Eqn. (4.3). First,
we compare with the Newton’s method in Sec. 4.1.3 without contact. Then, we
benchmark the performance of the contact handling algorithm in Sec. 4.1.4. We
reiterate that just like in the standard PD framework, any resultant speedup from
DiffPD over Newton’s method is under the assumption that the material model has a
quadratic energy function. We extend our discussion to general hyperelastic materials
at the end of paper and leave it as future work.

Simulation without Contact We benchmark our method, Newton-PCG, and
Newton-Cholesky using a cantilever with 32 × 8 × 8 elements, 8019 DoFs, and 243
Dirichlet boundary constraints (“Cantilever” in Fig. 4-2 and Table 4.2). The example
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runs for 25 frames with time steps of 10 milliseconds. We define the loss 𝐿 as a
randomly generated weighted sum of the final nodal positions and velocities.

In terms of the running-time comparison, we report results in Fig. 4-4 from run-
ning all three methods with 2, 4, and 8 threads and a range of convergence threshold
(from 1e-1 to 1e-7) on the relative error in solving Eqn. (4.3). The speedup from
parallel computing is less evident in the Newton’s method because the majority of
their computation time is spent on matrix refactorization – a process that cannot be
trivially parallelized in Eigen. We conclude that our simulator has a clear advantage
over Newton’s method on the time cost of both forward simulation and backpropaga-
tion. For forward simulation, the speedup is well understood and discussed in many
previous PD papers [22, 96]. For moderate tolerances (1e-3 to 1e-5), we observe a
speedup of 9-16 times in forward simulation with 8 threads and note that it becomes
less significant as precision increases. Both of these observations agree with previous
work on PD for forward simulation. In backpropagation, DiffPD method is 6-13 times
faster than Newton’s method for moderate tolerances due to the reuse of the Cholesky
decomposition and the quasi-Newton update. Specifically, we point out that without
the proposed acceleration technique with quasi-Newton methods in Sec. 4.1.3, PD
backpropagation is faster than Newton’s method only for very low precision (orange
in Fig. 4-4 right), confirming the necessity of the quasi-Newton updates.

Since PD is an iterative method whose result is dependent on the convergence
threshold, it is necessary to justify which threshold is the most proper. To analyze
the influence of the choice of thresholds, we use results from Newton-Cholesky as
the oracle because it is a direct solver whose solution is computed with the machine
precision in Eigen. We then compare both our method and Newton-PCG to the
oracle by computing the loss and gradients of the “Cantilever” example with varying
convergence thresholds and analyze when the results from the three methods start to
coincide. This comparison provides quantitative guidance on the choice of convergence
threshold and reveal the range in which our method can be a reliable alternative to
the Newton’s method in optimization tasks. We report our findings in Fig. 4-4. As
Newton-PCG and our method are iterative methods, their accuracy improves when
the convergence threshold becomes tighter. It can be seen from the figure that our
method agrees with the Newton’s method on the numerical losses and gradients when
using a threshold as large as 1e-4. Therefore, we use 1e-4 as our default threshold
in all applications to be discussed below unless otherwise specified. Referring back
to Fig. 4-4, using 8 threads and with a convergence threshold of 1e-4, our method
achieves significant speedup (12-16 times faster in forward simulation and 6.5-9 times
faster in backpropagation) compared with Newton-PCG and Newton-Cholesky.

Simulation with Contact To create a benchmark scene that requires contact
handling constantly, we roll a soft sphere on a horizontal collision plane for 100
frames with a time step of 5 milliseconds (“Rolling sphere” in Fig. 4-2 and Table 4.2).
The sphere is voxelized into 552 elements with 2469 DoFs, and the maximum possible
contact set 𝒞 we consider consists of 72 nodes (216 DoFs) on the surface of the sphere.
Similar to the “Cantilever” example, we define the loss function 𝐿 as a randomly
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generated weighted average of the final nodal positions and velocities. We implement
the contact handling algorithm in Sec. 4.1.4 with Newton-PCG, Newton-Cholesky,
and our method, and we report their time cost as well as their loss and gradients in
Fig. 4-5. It can be seen from Fig. 4-5 that the results from three methods start to
converge when the convergence threshold reaches 1e-6, with which our method is 10
times faster than the Newton’s method in both forward and backward mode (Fig. 4-
5). Such speedup mainly comes from the low-rank update algorithm (Alg. 5) which
avoids the expensive matrix factorization from scratch. Additionally, by comparing
the orange and green curves in Fig. 4-5, we conclude that the acceleration technique
of caching A−1Iℐ×𝒞 further speeds up DiffPD by 25% in forward mode and 44% in
backward mode when measured with 8 threads and a convergence threshold of 1e-6.

Ablation Study

We end this section with an ablation study on multiple components in our algorithm.
We start with an empirical analysis on the iterative solver and the line search algo-
rithm in our backpropagation algorithm (Sec. 4.1.3), followed by an evaluation on the
penalty-based and the complementarity-based contact models.

Spectral radius and line search One key assumption we have made in our back-
propagation solver is that the spectral radius of 𝜌(A−1∆A) < 1, which is also one of
the primary reasons why we have employed the line search algorithm as a safeguard
when the assumption does not hold. Here, we use the “Cantilever” example check if
this assumption holds empirically. We explicitly calculate 𝜌(A−1∆A) we experience
in “Cantilever” and observe a maximum value of 0.996, indicating that we can expect
convergence in the iterative solver, which we further confirm by testing the iterative
solver with 100 randomly generated, artificial right-hand side vector 𝜕𝐿

𝜕x
. We observe

similar results about the convergence of the backpropagation solver in the “Rolling
sphere” example as well as in our applications to be described in Sec. 4.1.6, indicating
that it seems safe to expect the iterative solver to converge in practice despite the
lack of a theoretical guarantee on it.

As employing line searches in our algorithm serves as a safeguard to cases when
𝜌(A−1∆A) > 1, an implication from the observations on the spectral radius is that
we rarely trigger line searches to reduce the step size in practice. In fact, in this
“Cantilever” example, and in almost all applications below, we notice that the default
step size (1 in Newton’s and quasi-Newton methods) almost always allows us to skip
the line search stage. Still, we precautionarily set the maximum number of line search
iterations to be 10 for all examples.

Penalty-based contact We implement the penalty-based contact and frictional
forces from Macklin et al. [100] in DiffPD and analyze them in both forward simula-
tion and backpropagation. First, we use a standard “Slope” test with varying frictional
coefficients in the penalty-based model to understand the expressiveness of this con-
tact model in forward simulation. Second, we use a “Duck” example which optimizes
frictional coefficients using the gradients of this contact model in backpropagation.
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To show the capacity of the penalty-based contact model in forward simulation, we
consider the “Slope” test visualized in Fig. 4-6. We place a squishy rubber duck (16776
DoFs and 24875 tetrahedrons) on four slopes with varying frictional coefficients from
the penalty form in Macklin et al. [100] and let it slide for two seconds under gravity.
We can see from the figure that with decreasing sliding friction from the left slope
to the right slope, the implementation of Macklin et al. [100] in DiffPD generates
different sliding distances that match our expectation qualitatively.

Backpropagating a penalty-based contact model is straightforward because it only
requires a procedural application of chain rules to differentiate the penalty energy. To
show the penalty-based model is fully compatible with DiffPD’s backpropagation and
can be useful in optimization problems, we design a “Duck” example (Fig. 4-7) with
the same rubber duck but on a curved slide with frictional coefficients to be optimized
(3 DoFs in total). The duck slides off the curved surface and aims to land on a target
location (indicated by the white circle). The frictional coefficients affect the stickiness
of the curve surface and control the exiting velocity of the duck when it leaves the
slide, which further determines its movement under gravity afterwards. From the two
motion sequences in Fig. 4-7 before and after gradient-based optimization, we observe
a substantial improvement that eventually leads the duck to the target position. This
confirms the usefulness of gradients computed in DiffPD using the penalty-based
contact method.

Complementarity-based contact For the contact model described in the com-
plementarity form, our backpropagation algorithm assumes the contact set is a small
subset of full DoFs. Specifically, Alg. 5 requires a relatively small size of 𝒞 at each
time step to gain substantial speedup over directly solving the modified linear sys-
tem without leveraging the low-rank update. Given that 𝒞 is a subset of surface
vertices, whose number is much fewer than the number of interior vertices in a typ-
ical 3D volumetric deformable body, such an assumption can be easily satisfied in
many applications. Indeed, in the next section we will present various 3D examples
involving contact, none of which have more than 6% active contact nodes throughout
simulation.

The assumption that |𝒞| is relatively small is much more likely to be violated when
we simulate a co-dimensional object, e.g., a one-dimensional rope or a piece of cloth in
3D, in which case it is entirely possible to have all nodes in 𝒞 at some point. Although
simulating co-dimensional objects is beyond the scope of this work, it can be a good
test to reveal a critical ratio where the speedup from Alg. 5 starts to diminish. To
mimic a co-dimensional object, we engineer a “Napkin” example consisting of one-
layer voxels (Fig. 4-8) falling onto a spherical obstacle with an adjustable solid angle
to control the size of |𝒞|. The relative size of |𝒞| is capped by 50% when all the bottom
nodes are in contact with the spherical obstacle (Fig. 4-8 right column). We vary the
mesh resolution from 25× 25× 1 voxels (4056 DoFs) to 100× 100× 1 voxels (61206
DoFs) and report the running time of Newton’s method and DiffPD in Table 4.1 for
each resolution and contact set size. We can use Table 4.1 to decide between using our
low-rank update method and directly solving the modified matrix in a downstream
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Table 4.1: Average running time per step in the napkin example with various mesh resolu-
tion (“Res.”) and relative contact set size from 6% to 50% (Fig. 4-8 top row). The reported
time is averaged over all steps when the napkin is in contact with the obstacle. All times are
in seconds. For each mesh resolution and each relative contact set, we report the running
time from both Newton’s method and DiffPD with the shorter time in bold.

Res. Method 6% 24% 38% 50%

25× 25× 1 Newton-PCG 0.8 1.6 1.6 1.5
(4056 DoFs) DiffPD 0.1 0.6 1.2 1.4

50× 50× 1 Newton-PCG 5.4 8.4 10.2 8.5
(15606 DoFs) DiffPD 1.2 6.0 11.3 10.5

75× 75× 1 Newton-PCG 14.7 25.1 25.2 22.5
(34656 DoFs) DiffPD 7.1 29.0 42.8 48.1

100× 100× 1 Newton-PCG 44.6 65.0 47.3 48.5
(61206 DoFs) DiffPD 32.0 169.8 158.7 163.4

application. For example, for around 15k DoFs, Table 4.1 suggests that the low-rank
update method is faster until the relative size of 𝒞 reaches around 40%.

4.1.6 Applications

Table 4.2: The basic information of all examples in DiffPD.

Sec. Task name # of elements # of DoFs ℎ (ms) # of steps

4.1.5 Cantilever 2048 8019 10 25
Rolling sphere 552 2469 5 100

4.1.6 Plant 3863 29763 10 200
Bouncing ball 1288 9132 4 125

4.1.6 Bunny 1601 7062 1 100
Routing tendon 512 2475 10 100

4.1.6
Torus 568 3204 4 400
Quadruped 648 3180 10 100
Cow 475 2488 1 600

4.1.6 Starfish 1492 7026 33.3 200
Shark 2256 9921 33.3 200

4.1.6 Tennis balls 640 978 5.6 150

In this section, we show various tasks that can benefit from DiffPD and classify
them into four categories: system identification, inverse design, trajectory optimiza-
tion, and closed-loop control. Although prior efforts on differentiable simulators have
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Table 4.3: The right five columns report whether the example in DiffPD has gravity as an
external force, imposes Dirichlet boundary conditions on nodal positions, handles contact,
requires hydrodynamical forces (“Hydro.”), and has actuators (“Act.”).

Sec. Task name Gravity Dirichlet Contact Hydro. Act.

4.1.5 Cantilever X X X
Rolling sphere X X

4.1.6 Plant X
Bouncing ball X X

4.1.6 Bunny X X
Routing tendon X X X

4.1.6
Torus X X X
Quadruped X X X
Cow X X X

4.1.6 Starfish X X
Shark X X

4.1.6 Tennis balls X X

demonstrated their capabilities on almost all these examples, we highlight that DiffPD
is able to achieve comparable results but reduce the time cost by almost an order of
magnitude. We provide a summary of each example in Table 4.2 and Table 4.3. For
examples with actuators, we implement the contractile fiber model as discussed in
Min et al. [107].

Gradients from a differentiable simulator enable the usage of gradient-based nu-
merical optimization techniques to improve the performance of a certain design. Re-
garding the optimization algorithm, we use L-BFGS in our examples by default unless
otherwise specified. We report the time cost and the final loss after optimization in
Table 4.4. For fair comparisons, we use the same initial guess and termination condi-
tions when running L-BFGS with different simulation methods. When reporting the
loss in Table 4.4, we linearly normalize it so that after shifting and rescaling, a loss
of 1 represents the average performance from 16 randomly sampled solutions and a
loss of 0 maps to a desired solution. For examples using a bounded loss, we map zero
loss to an oracle solution that achieves the lower bound of the loss (typically 0). For
unbounded losses used in the walking and swimming robots (Sec. 4.1.6 and 4.1.6),
we map zero loss to the performance of solutions obtained from DiffPD. We present
more details about the implementation of each example as well as the optimization
progress in our supplemental material.

71



0 100 200
time (s)

10−1

10−2

10−3

10−4

10−5

10−6

10−7co
nv

er
ge

nc
e 

th
re

sh
ol

d
forward + backward

0 100 200
time (s)

forward

0 100 200
time (s)

backward

PCG-2
Cholesky-2
Ours-2
Ours-2 (No BFGS)

PCG-4
Cholesky-4
Ours-4
Ours-4 (No BFGS)

PCG-8
Cholesky-8
Ours-8
Ours-8 (No BFGS)

10−610−410−2

convergence threshold

14

15

16

17

m
ag

ni
tu

de

loss

10−610−410−2

convergence threshold

101

6 × 100

2 × 101

3 × 101
4 × 101

m
ag

ni
tu

de

|grad|

PCG Cholesky Ours

Figure 4-4: Top: the net wall-clock times (left), forward times (middle), and backpropa-
gation times (right) for different convergence thresholds tested on the “Cantilever” example
in Sec. 4.1.5. The results are obtained from simulating this example using each of the three
methods: Newton-PCG (PCG), Newton-Cholesky (Cholesky), and DiffPD (Ours). The
number following the method name denotes the number of threads used. Also shown are
the results from running our method without applying the quasi-Newton method (orange,
right). Bottom: the loss (left) and magnitude of the gradient of the loss (right) for different
convergence thresholds used to terminate iterations in Newton’s method and our simulator.
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Figure 4-5: Top: the net wall-clock times (left), forward times (middle), and backpropaga-
tion times (right) for different convergence thresholds tested on the “Rolling sphere” example
for contact handling. The results are obtained from three methods: Newton-PCG (PCG),
Newton-Cholesky (Cholesky), and DiffPD (Ours). The number following the method name
denotes the number of threads used. Also shown are the results from running our method
without applying the further acceleration technique (Alg. 5) in Sec. 4.1.4 (orange). Bottom:
the loss (left) and magnitude of the gradient of the loss (right) for different convergence
thresholds used to terminate iterations in the Newton’s method and our simulator.
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Figure 4-6: Slope. A rubber duck (16776 DoFs and 24875 tetrahedrons) slides on slopes
with varying frictional coefficients implemented in DiffPD using a penalty-based contact and
friction model [100]. Left: the initial position of the duck. Middle left to right: the final
positions of the duck after two seconds with a decreasing frictional coefficient.

Figure 4-7: Duck. The same rubber duck in Fig. 4-6 now slides on a curved surface with
trainable frictional coefficients. The goal in this test is to optimize the frictional coefficients
so that the duck’s final position after one second of simulation reaches the center of the
white circle as closely as possible. We overlay the intermediate positions of the rubber duck
at 0s, 0.25s, 0.5s, 0.75s, and 1s in simulation with an initial guess of the frictional coefficients
before optimization (left) and the final coefficients after gradient-based optimization (right).
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Figure 4-8: Ablation study on the relative size of the active contact set |𝒞| and its influence
on DiffPD’s speed. We simulate a one-layer “Napkin” with resolutions from 25×25×1 voxels
(middle row) to 100 × 100 × 1 voxels (bottom row) falling onto a spherical obstacle (blue,
top row) with a varying solid angle. We report the relative size of |𝒞| and the degrees of
freedom of the napkin. Please refer to Table 4.1 for the detailed running time and our video
for the full motion of the falling napkin.
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Figure 4-9: System identification Motion sequences of the “Plant” example sampled at
the 1st, 100th, 150th, and 200th (final) frames (left to right). We generated three motion
sequences with a random initial guess of the material parameters (top row), optimized
material parameters (middle row), and the ground truth (bottom row). The colored boxes
highlight the motion differences before and after optimization. The goal is to optimize the
material parameters so that the motion of the plant matches the ground truth.

System Identification

In this section, we discuss two examples that aim to estimate the material parame-
ters (Young’s modulus and Poisson’s ratio) from dynamic motions of soft bodies: the
“Plant” example estimates material parameters from its vibrations, and the “Bounc-
ing ball” example predicts its parameters from its interaction with the ground. We
generate the ground truth using our forward PD simulator with a set of predefined
material parameters.

Plant We first initialize an elastic, 3D house plant model with 3863 hexahedral
elements and 29763 DoFs (Fig. 4-9). We impose Dirichlet boundary conditions at the
root of the plant such that it is fixed to the ground. We apply an initial horizontal
force at the start of simulation, causing the plant to oscillate. Starting from an initial
guess using randomly picked material parameters, we deform a new plant in the same
manner as the ground truth and optimize the logarithm of the Young’s modulus and
Poisson’s ratio of the new plant to match that of the ground truth plant. The loss
at each time step is determined as the squared sum of the element-wise difference in
positions between the new plant and the reference plant.

After optimization, DiffPD, Newton-PCG, and Newton-Cholesky converge to lo-
cal minima with a final Young’s modulus of 1.00 MPa, 0.96 MPa, and 0.96 MPa
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respectively. Regarding the Poisson’s ratio, DiffPD converge to 0.4 while both New-
ton’s methods converged to 0.44. The reference plant is initialized with a Young’s
modulus of 1 MPa and a Poisson’s ratio of 0.4. While the three methods all reach
solutions that are similar to the ground truth, the optimization process is highly ex-
pedited by a factor of 9 for loss and gradient evaluation using our method (Table 4.4).
We observe that DiffPD converged to a solution closer to the ground truth but used
more function evaluations due to the numerical difference between DiffPD and the
Newton’s method. However, if DiffPD terminated after the same number of function
evaluations (10) as the Newton’s method, the optimized Young’s modulus and Pois-
son’s ratio would be almost identical to results from the Newton’s method (0.97 MPa
for Young’s modulus and 0.44 for Poisson’s ratio), implying the 9× speedup indeed
comes from DiffPD’s improvements over the Newton’s method on the simulation side.
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Figure 4-10: System identification Motion sequences of the “Bouncing ball” example
sampled at the 1st frame (left), the 19th frame when collision occurs (middle), and the 125th
(final) frame (right). We generated three motion sequences with a random initial guess of
the material parameters (top row), optimized material parameters (middle row), and the
ground truth (bottom row). The goal is to optimize the material parameters so that the
motion of the ball matches the ground truth.

Bouncing ball In this example, we consider a ball with 1288 hexahedral elements
and 9132 DoFs thrown at the ground from a known initial position (Fig. 4-10).
The ball has three cylindrical holes extruded through the faces in order to produce
more complex deformation behavior than a fully solid ball. This example uses the

78



complementarity-based contact model in Sec. 4.1.4. We can estimate the material
parameters of a bouncing ball by observing its behavior after it collides the ground.
The loss definition is the same as in the parameter estimation of the “Plant” example.
Regarding the optimization process, all three methods converged to a Young’s mod-
ulus of 1.78 MPa and Poisson’s ratio of 0.2. The ground truth values for the Young’s
modulus and Poisson’s ratio are 2 MPa and 0.4 respectively. While the optimized
material parameters are significantly different from the ground truth values, the mo-
tion sequences are very similar as reflected by the final loss in Table 4.4 and Fig. 4-10.
Since the loss function is defined on the motion only, there could exist many material
parameters that result in close-to-zero loss. As in the “Plant” example, our method
enjoys a substantial speedup (12×) in computation time even with the inclusion of
collisions in simulation.

Initial State Optimization

We present two examples demonstrating the power of using gradient information to
optimize the initial configuration of a soft-body task. In the “Bunny” example, we
optimize the initial position and velocity of a soft Stanford bunny so that its bounce
trajectory ends at a target position. In the “Routing tendon” example, we optimize
a constant actuation signals applied to each muscle in a soft cuboid with one face
sticky on the ground so that the corner at the opposite face reaches a target point at
the end of simulation.

Figure 4-11: Inverse design Initial (left) and optimized (right) trajectory of the “Bunny”
example. The red dots indicate the location of the center of mass of the bunny, and the blue
dot is the target location. The goal is to adjust the initial position, velocity, and orientation
of the bunny so that its final center of mass can reach the target location.

Bunny For this example, we optimize the initial pose and velocity of a Stanford
bunny (1601 elements and 7062 DoFs) so that its center of mass (red dots in Fig. 4-
11) reaches a target position (blue dot in Fig. 4-11) when the simulation finishes.
This example uses the complementarity-based contact model, and we add 251 surface
vertices (753 DoFs) to the set of possible contact nodes – approximately 10.7% of
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the 2354 vertices. Fig. 4-11 illustrates the trajectory of the bunny before and after
optimization: the initial guess generates a trajectory almost to the opposite direction
of the target, and the optimized trajectory ends much closer to the target. Note that
none of the three methods solve this task perfectly: the trajectory does not reach
the target even after optimization. This is because the target is chosen arbitrarily
rather than generated from simulating a ground truth bounce trajectory, so it is not
guaranteed to be reachable. According to Table 4.4, the final loss from DiffPD is
larger than from the Newton’s method (the center of mass is at a distance of around
7 times the length of one element from the target position as opposed to roughly 4
times). However, the increase in performance more than makes up for it. Using 8
threads, our method achieves a speedup of 9 times overall with a large set of potential
contact points.

Routing tendon We initialize a soft cuboid with 512 elements and 2475 DoFs and
impose Dirichlet boundary conditions such that its bottom face is stuck to the ground.
We also add actuators to each element and group them into 16 muscle groups. The
level of actuator activation is a scalar between 0 to 1, indicating muscle contraction
and expansion, respectively. The elements within a specific actuation group all share
the same, time-invariant actuation signal to be optimized in order to manipulate the
endpoint (red dot in Fig. 4-12) of the soft body to reach a target point (blue dot
in Fig. 4-12). The normalized losses at the final iteration for each of the methods
(Table 4.4) are all close to zero, indicating that the task is solved almost perfectly.
However, using DiffPD, we observe a 9× speedup over the Newton’s methods.

Figure 4-12: Inverse design The initial and final states of the “Routing tendon” example
before and after optimization. The goal is to let the end effector (red dot) hit a target
position (blue dot) at the end of simulation. Left: the initial configuration of the tendon
with randomly generated actuation signals. The red (muscle expansion) and cyan (muscle
contraction) colors indicate the magnitude of the action. Middle left: final state of the tendon
with random actuation. Middle right: initial configuration of the tendon with optimized
actuation. Right: final state with optimized actuation.
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Trajectory Optimization

In order to demonstrate the applicability of our system’s differentiability to solving
complex trajectory optimization tasks, we apply our simulator to three locomotion
tasks: a “Torus”, a “Quadruped”, and a “Cow”. All three robots are equipped with
muscle fibers whose sequences of actions are to be optimized, and the goal for all three
robots is to walk forward without losing balance or drifting sideways. All examples
use the complementarity-based contact model in Sec. 4.1.4.

Figure 4-13: Trajectory optimization The motion sequence of the “Torus” example
with random actions (top) and after optimizing the action sequences (160 parameters to be
optimized) with DiffPD (bottom). The goal is to maximize the rolling distance of the torus
while maintaining its balance. The red and cyan color indicates the magnitude of the action
signal. In particular, the expansion and contraction pattern (middle left and middle right)
allows the torus to roll forward.

Figure 4-14: Trajectory optimization The motion sequences of the “Quadruped” exam-
ple with sinusoidal control signals whose 3 parameters are to be optimized. The goal is to
maximize the walking distance of the quadruped. Top: the motion sequence with a random
sinusoidal wave of actions. Bottom: the motion sequence after optimization with DiffPD.

Torus In our first trajectory optimization example, a torus is tasked with rolling
forward as far as possible in 1.6 seconds, simulated as 400 steps of 4 milliseconds in
length (Fig. 4-13). To achieve this, we set the objective to be the negation of the
robot’s center of mass in 𝑥 at the final step of its trajectory. Eight muscle tendons
are routed circumferentially along the center of the torus, combined, creating a circle
that can be actuated along any of eight segments. The optimization variables are
the actuation of the each muscle at each of 20 linearly spaced knot points, and the
actual action sequences are generated by linearly interpolating variables at these knot
points. Since there are 8 muscles, this results in 160 decision variables overall. Since
this example requires frequent contacts, we use a convergence threshold of 1e-6 as
indicated by the evaluation experiment in Sec. 4.1.5.
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Figure 4-15: Trajectory optimization The motion sequences of the “Cow” example with
sinusoidal control signals whose 3 parameters are to be optimized. The goal is to maximize
the walking distance of the cow. Top: the motion sequence with a random sinusoidal wave
of actions. Bottom: the motion sequence after optimization with DiffPD.

The major challenge in optimizing the sequence of actions of this rolling torus lies
in the fact that it constantly breaks and reestablishes contact with the ground. When
running L-BFGS on this example, we noticed more local minima than previous exam-
ples and L-BFGS often terminated prematurely without making significant progress.
To alleviate this issue, we randomly sampled 16 initial solutions and selected the best
among them to initialize L-BFGS optimization, which eventually learned a peristaltic
contraction pattern that allows it to start rolling forward and make considerable for-
ward progress (Fig. 4-13); further, DiffPD provides a 6× speedup using 8 threads
compared to the Newton’s method.

Figure 4-16: Control optimization Motion sequences from the optimized closed-loop,
neural network controllers of “Starfish” (first row) and “Shark” (third row), with the cor-
responding muscle fibers plotted in the second and fourth rows. The goal is to optimize
a controller so that the marine creatures can rise (“Starfish”) or swim forward (“Shark”).
The gray and cyan colors on the surface of the muscle fibers indicate the magnitude of the
actuation, with gray being zero actuation and blue the maximum contraction.
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Quadruped For our second trajectory optimization example, a quadruped is tasked
with moving forward as far as possible in 1 second. The same performance objective
is applied here as in the “Torus” example, however in this example a simpler control
scheme is implemented. This robot has eight muscles, routed vertically along the
front and back face of each leg, allowing the legs to bend forward or backward. For
each leg, the front and back muscle groups are paired antagonistically, however they
are allowed a different maximum actuation strength – a parameter to be optimized.
Finally, the entire quadruped is provided a single sinusoidal control signal, whose
frequency is to be optimized, that actuates each leg synchronously. These front and
back actuation strengths, combined with the frequency of the input signal, provide
3 parameters to be optimized. After optimization, the quadruped was able to walk
forward several body lengths (Fig. 4-14). In terms of the speedup, DiffPD accelerates
loss and gradient evaluation by a factor of 4 compared to the Newton’s method.

Cow For our third and final trajectory optimization example, a cow quadruped
based off Spot [33] is tasked with walking forward as far as possible in 0.6 seconds
(Fig. 4-15). This is a particularly difficult task, as Spot’s oversized head makes it
front-heavy, and prone to falling forward. In order to compensate, we regularized
the objective to promote a more upright gait, adding an additional −0.3 times the
center of mass in 𝑧 to regularize the forward objective. Spot uses the same controller
and muscle arrangement as the “Quadruped” example, and a convergence threshold
of 1e-6 is used during optimization. Similar to previous examples, the cow optimizes
to walk forward and DiffPD provides a 5 times speedup compared to the Newton’s
method.

Discussion Locomotion tasks generally involve significant contact, which limits
the speedups (4-6 times in the examples above) DiffPD is able to achieve compared
to contact-free problems. Given the complexity of planning the motion of walking
robots with contacts (optimizing each of the three examples above took hours to
converge with the Newton’s method), a 4-6 times speedup is still favorable. It is also
worth noting that for the “Quadruped” and “Cow” examples, optimization with the
Newton’s method led to solutions significantly different from DiffPD, as indicated by
the final loss reported in Table 4.4. We believe this is mostly due to the algorithmic
difference between the Newton’s method and DiffPD: as discussed in Liu et al. [96]
and Sec. 4.1.3, DiffPD is essentially running the quasi-Newton method (as opposed
to the Newton’s method) to minimize the objective in Eqn. (4.5) which is typically
not convex. Therefore, multiple critical points may exist especially when contacts are
involved. For the three locomotion tasks in this section, it is possible that DiffPD and
two Newton’s methods each explored different critical points individually and led to
different solutions.

Closed-Loop Control

Finally, inspired by Min et al. [107], we consider designing a closed-loop neural net-
work controller for two marine creatures: “Starfish” and “Shark” (Fig. 4-16). For each
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example, we specify muscle fibers as internal actuators similar to Min et al. [107] in
the arms of the starfish and the caudal fin of the shark. We manually place velocity
sensors on the body of each example serving as the input to the neural network con-
troller. The goal of these examples is to optimize a swimming controller so that each
fish can advance without drifting sideways. To achieve this, we define the loss func-
tion as a weighted sum of forward velocities and linear velocities at each time step. In
terms of the neural network design, we choose a 3-layer multilayer perceptron network
with 64 neurons in each layer (30788 parameters in “Starfish” and 22529 parameters
in “Shark”). We use the hyperbolic tangent function as the activation function in
the neural network. Unlike prior examples for which L-BFGS is used for optimiza-
tion, we follow the common practice of using gradient descent with Adam [78] to
optimize the neural network parameters. During optimization, we use a convergence
threshold of 1e-3 in DiffPD and the Newton’s method. Table 4.4 provides the final
loss after optimization, and we observe a speedup of 8-19 times for the two examples
respectively.

Comparisons to reinforcement learning We compare our gradient-based opti-
mization method to PPO [126], a state-of-the-art reinforcement learning algorithm.
In particular, we use the forward simulation of DiffPD as the simulation environ-
ment for PPO. For a fair comparison, we construct and initialize the network for
both DiffPD and PPO with the same random seed. We also implement code-level
optimization techniques as suggested in Engstrom et al. [47] and tune PPO hyperpa-
rameters towards its best performance. Please refer to our supplemental material for
more implementation details.

When comparing the performance of PPO to gradient-based algorithms like Adam
or L-BFGS, we expect gradient-based optimization to be more sampling efficiency
than PPO as gradients expose more information about the soft body dynamics that
are not accessible to PPO. Note that this does not ensure gradient-based methods
are always faster than PPO when measured by their wall-clock time, because each
sample in a gradient-based method requires additional gradient computation time.
Furthermore, the sampling scheme in PPO is massively parallelizable. We report the
optimization progress of PPO and our method in Fig. 4-17. Note that unlike other
examples, we follow the convention in reinforcement learning of maximizing a reward
as opposed to minimizing a loss. In particular, a zero reward indicates the average
performance of randomly selected unoptimized neural networks, and a unit reward is
the result from DiffPD after optimization. We conclude from Fig. 4-17 that Adam
and DiffPD achieves comparable results to PPO but is more sampling efficient by one
or two orders of magnitude. Regarding the wall-clock time, we observe a speedup of
9-11 times for both examples respectively, although each sample in DiffPD is more
expensive due to the gradient computation.

A Real-to-Sim Experiment

We end this section with a real-to-sim experiment “Tennis balls” to highlight the
value of DiffPD in potential real-world applications. In this example, we capture
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Figure 4-17: The optimization progress of Adam plus DiffPD (green) and PPO (orange)
for “Starfish” (left) and “Shark” (right). Note that the axis of time steps spent during training
or optimization is plotted on a logarithmic scale.

a video clip of two colliding tennis balls on a flat terrain, from which we aim to
estimate the camera information, the initial position and velocity of each ball, and
the parameters in the contact model. We model each ball in simulation using a mesh
of sphere with 320 tetrahedrons and 489 DoFs (Table 4.2). We model the ball-ground
contact with the complementarity-based method and use the following penalty-based
model to compute the ball-ball contact: when the two balls are in contact, we add
a restitution force computed as the product of a stiffness parameter to be optimized
and the difference between the ball diameter and the actual distance between the two
ball centers. Essentially, the restitution force can be treated as a spring model with a
rest length equal to the ball diameter. Additionally, we add a frictional force whose
direction is orthogonal to the restitution force and whose magnitude is controlled by
a frictional coefficient to be optimized.

To define a loss function that measures the discrepancy between the simulated and
actual motions of the two balls, we first extract the pixel location of two balls’ centers
in each frame of the video clip. Next, we compute in simulation the position of each
ball and project them to the same image space through a pinhole camera model. We
define the loss function as the difference between the pixel locations of the balls in
simulation and from the video clip. By minimizing this loss, we get our estimation
of the camera information, the initial state of each ball, and the parameters in the
contact model.

We summarize our optimization results in Table 4.4 and Fig. 4-18. We randomly
sample multiple sets of parameters and pick those with the smallest loss as the initial
guess to our optimization (Fig. 4-18 left), which shows motion sequences similar to
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those in the video clip but still with substantial visual differences. The optimization
process refines our estimation of the parameters and manages to further suppress the
loss and mimics the motions in the video more closely (Fig. 4-18 middle), indicating
that the simplified material and contact model can still be useful for real-world ap-
plications. The results can be further improved if we take into account camera lens
distortion or replace the penalty-based collision model between two balls with a more
accurate one, which we leave as future work.

Figure 4-18: A Sim-to-Real Experiment Motion sequences of the “Tennis balls” ex-
ample before (left) and after optimization (middle). The corresponding video clip is shown
on the right. Transparent balls indicate the balls’ intermediate locations. To visualize the
difference between motion sequences in simulation and reality, we use yellow squares in the
rendered images (left and middle) to denote the corresponding pixel locations of the balls’
centers from the video clip.

4.1.7 Discussion and Limitations

Differentiable soft-body simulation with proper contact handling is a challenging prob-
lem due to its large number of DoFs and complexity in resolving contact forces. We
believe one ambitious direction along this line of research is to provide a physically
realistic simulator that can facilitate the design and control optimization of real soft
robots. To close the simulation-to-reality gap, some nontrivial but rewarding en-
hancements need to be integrated into our current implementation. First and fore-
most, similar to other PD papers, a major limitation in DiffPD is its assumption on
the energy function of the material model. Even though technical solutions to sup-
porting general hyperelastic materials in PD exist [96], it turns out that supporting
such materials in DiffPD is not straightforward. This is because the derivation in
Sec. 4.1.3 starts to fall apart from Eqns. (4.16) and (4.17) when hyperelastic material
models are used, forcing DiffPD to reassemble the Hessian matrix ∇2𝐸 in each time
step during backpropagation. Although we can still apply the iterative solver from
Sec. 4.1.3 in this case, we no longer observe a speedup over a direct solver (Fig. 4-
19). Therefore, we switched to the direct solver for backpropagation in DiffPD when
hyperelastic materials are used and leave speeding it up as future work.

Second, our contact methods do not fully resolve differentiable, complementarity-
based contact and friction. Due to the focus of this paper, our choice of the contact
model was intentionally biased towards ensuring differentiability and compatibility
with PD. It would be more accurate and useful to upgrade the contact models for both
static and sliding frictional forces [97] or to apply a more realistic contact model [90]
while maintaining its efficiency and differentiability in PD.
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Figure 4-19: Twisting Armadillo (a 44337-DoF tetrahedral mesh) with the Neohookean
material model for 1 second at 30 frames per second. We use DiffPD (top) and Newton’s
method (bottom) to compute the forward simulation and backpropagation. Left to right:
the intermediate state of Armadillo at 0, 10, 20, and 30 frames. The visually identical
motions from the top and bottom rows confirm the correctness of DiffPD’s implementation
of Neohookean material model. We report the time cost of DiffPD and Newton’s method
at the lower right corner of the images and no longer witness a speedup from DiffPD in
backpropagation over a direct solver in Newton’s method.

A third direction that is worth exploring is to improve the scalability of our algo-
rithm. Currently, the largest example in this paper contains thousands of elements
and tens of thousands of DoFs. It would be desirable to scale problems up by at
least one or two orders of magnitude in order to explore the effects of more complex
geometry. This would obviously be computationally expensive; it would therefore
be interesting to explore possible GPU implementations of DiffPD method to unlock
large-scale applications.

Fourth, although DiffPD is substantially faster than standard Newton’s method
when assumptions in PD hold, the speedup is less significant for locomotion tasks
(4-6 times in our examples). We suspect it is the inclusion of contact that slows down
DiffPD both in forward simulation and in backpropagation. Therefore, a more com-
prehensive analysis on the assumption of sparse contact in Sec. 4.1.4 would possibly
reveal the source of inefficiency. Specifically, removing such an assumption would be
much desired to unlock contact-rich applications, e.g., cloth simulation or manipula-
tion.

Finally, there is room for improving the optimization strategies that can better
leverage the benefits of gradients. In all our examples, we couple gradient information
with gradient-based continuous optimization methods. Being inherently local, such
methods inevitably suffer from terminating at local minima prematurely especially
when the loss function has a non-convex landscape. It is worth exploring the field of
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global optimization methods or even combining ideas from gradient-free strategies,
e.g., genetic algorithms or reinforcement learning, to present a more robust global
optimization algorithm specialized for differentiable simulation.

4.2 Differentiable Fluid Simulation

The last section introduces a differentiable soft-body simulation with an in-depth
discussion on its gradient derivation. Deriving gradients for a soft-body simulation
is much more challenging than deriving gradients for the multicopter simulation in
Chpt. 3, which is essentially a rigid-body simulator. This is because soft bodies have
much more DoFs, and therefore computing gradients requires non-trivial numerical
methods. The last section has shown that leveraging the numerical patterns in the
governing equations of a soft-body system can speed up backpropagation substan-
tially. This section will present another differentiable physics simulator with high
DoFs, a simulator dedicated to Stokes flow simulation. We will show that backprop-
agation in this system is also a non-trivial task, which we will take care of with some
insights from the numerical system.

4.2.1 Motivation

Fluidic devices are key building blocks for a variety of ubiquitous products, including
medical diagnostic devices, filtration systems, bioreactors, internal combustion en-
gines, hydraulic actuators, and even cooling manifolds for GPUs. However, designing
complex fluidic devices is challenging as it requires expert knowledge and typically
many trial-and-error iterations. These challenges promote the importance of find-
ing computational strategies for simulating and designing these structures. Unfortu-
nately, such approaches are challenging. Brute-force, high-resolution, physics-based
simulations of fluidic systems are inherently slow and highly sensitive to geometric
configurations and initial conditions, limiting progress in methods for computationally
designing fluidic devices with high resolution and complex functions. Furthermore,
performance-driven design methods (also often referred to as inverse methods) require
using an expensive fluid simulation within a numerical optimization method. This
effectively makes current approaches for performance-driven optimization impractical.

In this section, we present a first step toward functionally optimizing the design
of fluidic devices, focusing on the more tractable Stokes flow, which is well-suited for
the behaviors of desired fluidic functionality. Stokes flow assumes that fluid veloc-
ities are slow and fluid viscosity is relatively large (the Reynolds number Re≪ 1).
Additionally, in our approach, we use a parametric shape representation of a fluidic
system – fluid-solid boundaries are represented using parametric surfaces. This has
the advantage that the design process is intuitive for the designer (e.g., a designer
specifies an initial shape). At the core of our approach is a differentiable Stokes flow
simulator that efficiently solves not only the fluidic dynamics but also the gradients
of the dynamics with respect to design parameters. This capability allows us to use
this solver as a building block for gradient-based optimization algorithms when per-
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formance objectives (e.g., target fluid flows at inlets or outlets) are specified. Overall,
our framework unlocks fast fluid flow simulation and gradient computation, making
it amenable to continuous optimization.

Our proposed method shares similarities with topology or shape optimization,
the two prominent techniques in engineering practice for functional design of fluidic
devices [2]. The vast majority of prior methods focus on topology optimization for
steady-state laminar flows paired with no-slip boundary conditions only [21, 58, 94,
13]. While topology optimization yields a geometrically expressive design space, this
combination of rasterized and highly frictional boundaries limits both the realism and
the functional expressiveness of the optimized designs. A less prevalent but more re-
cent line of research is shape optimization of fluidic devices [150, 165], which is more
related to our method. However, to our best knowledge, existing demonstrations
from these papers are still coupled with no-slip boundary conditions only, and discus-
sions on extensions to flexible boundary handling in shape optimization are sparse.
Our method is in sharp contrast to prior as it simultaneously accommodates smooth
parametric shape representations and handles explicit, versatile boundaries. We focus
on spline-based parametric boundaries, which naturally yield smooth flows. Further,
such parameterizations are low-dimensional (more tractable), more intuitive to reason
about, and guarantee physically fabricable devices (i.e., no floating components) when
compared with voxel-based parameterizations. Finally, with the careful treatment of
sub-cell discretizations in our method, we support various boundary conditions (e.g.,
no-slip, traction, or no-separation boundary conditions) that allow the emergence of
laminar flows in scenarios where such behavior would be anticipated.

To demonstrate the efficacy of our approach, we run performance-driven optimiza-
tion for the design of complex 3D fluidic systems, including flow averagers, funnels,
superposition gates, twisters, and switches. For each example, an engineer starts by
specifying an initial fluid-solid boundary with splines, which are all easily parame-
terized with fewer than 50 degrees of freedom. The engineer then specifies a fluid
flow at the inlets of the system and target fluid flow to be optimized at the system’s
outlets. For all examples, our approach manages to return an optimized design that
significantly improves the performance of the device within less than 50 optimization
iterations. Furthermore, we demonstrate in our fluidic switch example that our ap-
proach supports multifunctional design optimization over continuously varying input
velocity configurations.

To summarize, this section contributes the following:

• A differentiable Stokes flow simulator with a continuous representation of the
fluid-solid interface that naturally fits within an optimization framework;

• A sub-cell discretization paradigm in Stokes flow simulation that supports flex-
ible boundary conditions, including no-slip, traction, and no-separation bound-
aries;

• An optimization pipeline for computational design of multifunctional fluidic
devices with continuously varying input velocity configurations.
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4.2.2 System Overview

Initial design parameters 
θ = (θ0, θ1, …)
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Figure 4-20: An overview of our system: 1) The design parameter 𝜃 (either explicitly given
or randomly initialized) determines the fluid-solid boundaries in the design problem. 2) For
any given 𝜃, we simulate the Stokes flow in the fluidic domain and enforce different types
of boundary conditions explicitly. 3) We then evaluate the loss function on the resulting
velocity field and test it against the termination condition. 4) If the result is not optimal, we
differentiate the loss with respect to 𝜃 and its gradient is applied in a gradient-based local
optimization method to update the design parameter. 5) The algorithm terminates with an
optimized 𝜃 and the corresponding design.

Our system is visualized in Fig. 4-20. As input, a user supplies a parameterized
level-set geometry, for example, spline curves or NURBS surfaces. These manifolds
separate the solid regions from regions with fluid flow. The user further specifies
inlet flow velocities at some point on the fluid portion of the grid (fixed boundary
conditions) and an objective to optimize. This objective could be, e.g., target flow
velocities at certain designated outlet locations.

During optimization, the following quasi-Newton optimization loop is applied:
the current design, as defined by the current parameter instantiation, is simulated
on a regular grid with explicit handling of different types of boundary conditions.
If the performance of the simulated device does not match the desired objectives of
the user, the objective function is differentiated through the simulation with respect
to the design parameters to produce a gradient, which is then used to improve the
design. Otherwise, the optimization is terminated with a successful design.

4.2.3 Governing Equations

Since our work targets shape optimization of structures that modulate the flow prop-
erties of liquid media, we first present the mathematical model we have adopted for the
governing equations of such fluid flows. Given their ubiquity in computational physics
and computer graphics, established models of fluid flow such as the incompressible
Euler equations for inviscid flows or, more generally, the Navier-Stokes equations for
fluids with nontrivial viscosity [26] would be natural choices. However, given the
difficulty of the continuous optimization in the inverse design problem at hand, we
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consciously restrict our material model to a narrower set of smoother, more well-
behaved fluid behaviors. First, we specifically seek to model steady-state flows in
order to avoid transient effects and avoid time dependencies in our optimization task.
Second, in order to avoid local minima associated with non-unique solutions as well
as boost the speed and conditioning of the optimization scheme, we employ the lin-
earized form of the steady-state Navier-Stokes equations, also known as Stokes flow
[85].

Incompressible Stokes equations We initially review the PDE form of the Stokes
system and describe the boundary value problem that would be typically formulated
for flow scenarios as in our target application. Let Ω ⊂ ℛ𝑑 (𝑑 = 2 or 3) be a domain
bounded by a smooth boundary Γ. In the standard Eulerian perspective, the Stokes
equations yield a velocity field 𝑣 : Ω→ ℛ𝑑 and a pressure field 𝑝 : Ω→ ℛ as solutions
to the PDE system:

−𝜂Δ𝑣(𝑥) +∇𝑝(𝑥) = 𝑓(𝑥) 𝑥 ∈ Ω,

∇ · 𝑣(𝑥) = 0 𝑥 ∈ Ω,

(4.44)
(4.45)

where 𝜂 is the dynamic viscosity and 𝑓(𝑥) an externally applied force field (e.g.
gravity) if applicable. We note that Eqn. (4.44) is derived from the momentum
equation ∇ · 𝑇 (𝑥) + 𝑓(𝑥) = 0 after substituting the linear constitutive law for the
stress tensor 𝑇 :

𝐷 =
1

2
[∇𝑣 + (∇𝑣)𝑇 ],

𝑇 = 2𝜂𝐷 − 𝑝𝐼 = 𝜂[∇𝑣 + (∇𝑣)𝑇 ]− 𝑝𝐼,

(4.46)

(4.47)

and using the incompressibility Eqn. (4.45) to simplify the result; here, ∇𝑣 is the
spatial gradient of 𝑣, 𝐷 the strain rate tensor, and 𝐼 the 𝑑× 𝑑 identity matrix.

Boundary conditions along the boundary Γ may be chosen from several types,
according to the intended scenario and application. The most straightforward would
be Dirichlet boundary conditions

𝑣(𝑥) = 𝛼(𝑥) 𝑥 ∈ Γ𝐷 (4.48)

on any part of the boundary, denoted as Γ𝐷 where we want to have a prescribed
velocity profile 𝛼(𝑥), as in the inlet to the apparatus depicted in Fig. 4-21 (a). In
those cases where we seek to model a highly viscous contact layer, a no-slip zero-
Dirichlet boundary condition 𝑣(𝑥) = 0 would also be enforced along the surface of
the container wall; this is used in only a minority of our examples, but is certainly an
option within our framework.

The remaining types of boundary conditions encountered in our framework involve
the traction vector 𝜏 (𝑥) = 𝑇 (𝑥) · 𝑛(𝑥), defined on a boundary location 𝑥 ∈ Γ with
outward-pointing normal vector 𝑛(𝑥). A traction condition

𝜏 (𝑥) = 𝛽(𝑥) 𝑥 ∈ Γ𝑇 (4.49)
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would typically be used in outlets of our flow device where, instead of prescribing
a flow profile, we would provide an externally applied force along the associated
boundary (i.e. a cross-section of the fluid container) that intends to either impede
or boost the flow. An example would be a permeable membrane affixed to an outlet
that seeks to impede the flow by applying a resistive force. The specific type of
boundary condition used in all our examples is 𝜏 (𝑥) = 0 (equivalently, 𝛽(𝑥) = 0)
which we would refer to as an open boundary condition and corresponds to the flow
being allowed to transit through the domain boundary freely, without either being
impeded or boosted by any external influence (see Fig. 4-21 (a)).

The final type of boundary condition we optionally employ in our framework is a
no-separation (and, in essence also no-friction) boundary condition along the walls of
the enclosing container. This mixed boundary condition is captured in the following
equations:

𝑣(𝑥) · 𝑛(𝑥) = 0 𝑥 ∈ Γ𝑆,

𝜏𝑡(𝑥) = 0 𝑥 ∈ Γ𝑆,

(4.50)
(4.51)

where the first component is conveyed by the scalar (1D) condition in Eqn. (4.50) and
dictates that the flow should be parallel to the container wall (with 𝑛(𝑥) being the
normal vector at a boundary point 𝑥 ∈ Γ𝑆); this suggests that the flow will neither
separate from the container, nor will it penetrate into it. Eqn. (4.51) dictates that the
tangential component 𝜏𝑡 of the traction vector should be equal to zero; this constraint
has (𝑑 − 1) dimensions as it is projected on the tangential plane at each boundary
location. Intuitively, this condition suggests that the fluid flow is not subject to any
frictional forces that would impede its tangential motion; when combined with the no-
separation condition this yields the same number of 𝑑 equations per boundary point
as in other types of boundary conditions. We employ this type of boundary condition
broadly (albeit, not exclusively) in our examples, as it enables the emergence of the
type of laminar steady-state flows that we would intuitively expect with a friction-free
contact layer.

Relation to linear elasticity Well-known parallels exist between the Stokes prob-
lem and the PDEs of linear elasticity, which are broadly used in shape and topology
optimization applications. We should emphasize that these analogies – stemming
from the fact that both equations emerge from directly congruous conservation laws
– are despite the fact that the underlying state variable has a different physical mean-
ing for fluids versus elastic solids. In fluids, the PDE is defined over a velocity field,
and in elastic media, over a displacement field.

Although we will demonstrate this analogy in its most stark form in the limit of
incompressible linear elastic materials, we will start our review of this relation from
the standard (i.e. compressible) linear elasticity PDE. For an elastic medium whose
shape change is encoded via a deformation map 𝑥(𝑋) : Ω → ℛ𝑑 (where 𝑋 are ma-
terial/undeformed coordinates and 𝑥 the corresponding spatial/deformed locations),
we define the displacement field as 𝑢(𝑋) = 𝑥(𝑋)−𝑋, and subsequently define the
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small-strain tensor 𝜖 and Cauchy stress 𝜎 from a linear stress-strain relationship:

𝜖 =
1

2
[∇𝑢 + (∇𝑢)𝑇 ],

𝜎 = 2𝜇𝜖 + 𝜆 tr(𝜖)𝐼,

(4.52)

(4.53)

where 𝜇, 𝜆 here are the Lamé coefficients of the elastic material. Substituting the
stress tensor 𝜎(𝑥) into the momentum equation ∇ · 𝜎(𝑥) + 𝑓(𝑥) = 0 (where 𝑓(𝑥)
are the external forces, if any) now yields the PDE of linear elasticity [131]:

−𝜇Δ𝑢(𝑥)− (𝜇 + 𝜆)∇[∇ · 𝑢(𝑥)] = 𝑓(𝑥) 𝑥 ∈ Ω. (4.54)

The relation to the Stokes equations will start becoming more apparent if we consider
an almost incompressible material for which the value of 𝜆 is significantly larger than
that of 𝜇; although the solution of the PDE evolves smoothly and continuously as
the parameter 𝜆 asymptotically reaches infinity, the exact form of the PDE in Eqn.
(4.54) would not be the ideal way to express it, due to the unbounded coefficients
involved. Instead, we can derive a better behaved, equivalent system in the spirit
of mixed formulations [25, 167], by introducing a new, auxiliary state variable 𝑟(𝑥)
defined as

𝑟(𝑥) = −(𝜇 + 𝜆)∇ · 𝑢(𝑥). (4.55)

By substituting this expression into Eqn. (4.54) and rearranging terms in Eqn. (4.55),
we arrive at the following equivalent PDE system for compressible linear elasticity:

−𝜇Δ𝑢(𝑥) +∇𝑟(𝑥) = 𝑓(𝑥) 𝑥 ∈ Ω,

∇ · 𝑢(𝑥) +
1

𝜇 + 𝜆
𝑟(𝑥) = 0 𝑥 ∈ Ω.

(4.56)

(4.57)

Once we have arrived at this form, the analogy between the Stokes equations and
the above equations of linear elasticity start becoming more apparent. We highlight
the following observations:

• It should be clarified that any similarities between the two governing laws are
restricted to the form of their PDEs, while the underlying state variables are
semantically distinct. Specifically, 𝜂, 𝑣, and 𝑝 in Eqns. (4.44, 4.45) play the
same role as 𝜇, 𝑢, and 𝑟 in Eqns. (4.56, 4.57), although their physical meanings
are quite different, e.g., in Stokes flow, 𝑣 is a velocity field, where in elasticity
𝑢 refers to a field of elastic displacements. These semantic differences do not
prevent us, however, from exploiting the similarities at the PDE level.

• It is known [25, 111] that the reformulated system in Eqn. (4.56) and (4.57)
is smooth (and also, elliptic) and remains well behaved in the asymptotic limit
𝜆 → ∞ when the coefficient of 𝑟(𝑥) in Eqn. (4.57) will merely vanish. The
solution to the PDE system, itself, will smoothly and uniformly converge to a
limit behavior as we asymptotically approach strict incompressibility.
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• If we specifically consider the asymptotic case of strict incompressibility (𝜆 →
∞), then Eqn. (4.56) and (4.57) reduce exactly to the Stokes equations as stated
in the prior paragraph.

The analogy (and, actually, equivalence) of the linear elasticity and Stokes PDEs
would not be complete if we did not also address the form that the respective boundary
conditions that the two sets of equations might employ. Dirichlet conditions, of course,
are equally applicable to both formulations. Those boundary conditions, however,
that involve the stress tensor 𝑇 in Stokes flow and 𝜎 in linear elasticity require
special attention. Taking the trace of Eqn. (4.52) yields tr(𝜖) = ∇ · 𝑢; using this
equality and the definition of 𝑟 in Eqn. (4.55) allows us to rewrite the stress tensor
from Eqn. (4.53) as

𝜎 = 𝜇[∇𝑢 + (∇𝑢)𝑇 ]− 𝜆

𝜇 + 𝜆
𝑟𝐼

= 𝜇[∇𝑢 + (∇𝑢)𝑇 ]− 2𝜈𝑟𝐼, (4.58)

where 𝜈 = 𝜆
2(𝜇+𝜆)

is the Poisson’s ratio that approaches the value 0.5 in the incom-
pressible limit. Once again, we observe that in the incompressible limit, the stress
tensors in both linear elasticity and Stokes converge to the same limit form; as a
consequence, so would any traction boundary conditions that would derive from this
stress tensor. This demonstrates the asymptotic equivalence of Stokes and linear
elasticity at the near-incompressible limit.
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Figure 4-21: (a) the entire 2D space is discretized into fluid, solid, and mixed cells, with
three types of boundaries as discussed in Sec. 4.2.3. (b) fluid velocities 𝑣𝑖 are stored on
grid nodes. (c) the fluid energy density is evaluated on different quadrature points and
integrated over the entire cell by multiplying by the fluid occupied area at each subcell. (d)
the Dirichlet boundary condition is enforced by integrating the values over the linearized
interface, with the quadrature points obtained from the projection of quadrature points in
(c) onto the interface. (e) all geometric information is defined by design parameters 𝜃 and
linearized within each subcell.

Our model: quasi-incompressible Stokes The aforementioned relation of Stokes
and linear elasticity has previously been leveraged primarily to develop discretization
and solution schemes for incompressible or near-incompressible elasticity that draw
inspiration from established methods for Stokes [55, 168]. However, directly pursuing
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a discretization of the Stokes problem has its own subtleties; due to the incompress-
ibility constraint, the associated discretizations – and especially variational formula-
tions – take the form of saddle point problems, restricting somewhat the options for
associated numerical solvers. Boundary treatment at sub-element precision is rela-
tively nontrivial, especially if certain numerical properties of the discretization (e.g.
symmetry) are to be preserved [167].

We have thus decided, in this initial venture into shape optimization involving fluid
flows, to move in the opposite direction, and use the equations of linear elasticity in
the near-incompressible (e.g. 𝜈 ≈ 0.49) but not strictly incompressible regime. We
choose to use the common form of the linear elastic model in Eqn. (4.54) as opposed
to the pressure-augmented system (Eqns. (4.56,4.57)), and also use the corresponding
expression for the stress tensor, as in Eqn. (4.53) in the formulation of traction or
no-separation/no-friction boundary conditions. The new governing equation for our
quasi-incompressible Stokes flow model can be obtained by replacing 𝜇 and 𝑢 in Eqn.
(4.54) with the dynamic viscosity 𝜂 and the velocity field 𝑣 from Stokes flow:

−𝜂Δ𝑣(𝑥)− 𝜂

1− 2𝜈
∇[∇ · 𝑣(𝑥)] = 𝑓(𝑥) 𝑥 ∈ Ω. (4.59)

Similarly, the traction tensor 𝜏 = 𝑇 · 𝑛 used by the boundary conditions is imple-
mented with the following stress tensor:

𝑇 = 𝜂[∇𝑣 + (∇𝑣)𝑇 ] + 𝜂(
2𝜈

1− 2𝜈
∇ · 𝑣)𝐼. (4.60)

In both equations, the Poisson’s ratio 𝜈 controls the incompressibility. When 𝜈 → 0.5,
these two equations converge back to Eqns. (4.44, 4.45, 4.47). Note that 𝜆 in the
linear elasticity equations has been replaced with 2𝜂𝜈

1−2𝜈
from the relation 𝜈 = 𝜆

2(𝜂+𝜆)
.

While we choose to model quasi-incompressible Stokes with an analogy between
linear elasticity and Stokes, it is worth pointing out that using the saddle point formu-
lation for discretizing the truly incompressible Stokes flow is still a viable technique.
In fact, it would be recommended when paired with an iterative sparse linear solver
like Preconditioned Conjugate Gradient (PCG) or multigrid methods. We stress that
we opt to use the quasi-incompressible formulation due to our reliance on direct
sparse solvers, whose advantages over iterative solvers will become evident in gradi-
ent computation (Sec. 4.2.6). Furthermore, there is a much higher degree of comfort
and experience in standard topology optimization with “stock” linear elasticity, while
Stokes systems are not as widespread.

4.2.4 Discretization

We discretize our governing equations on a Cartesian background grid that embeds
the geometry of the fluid cavity as in Fig. 4-21 (a) (as opposed to using a mesh that
conforms to the boundary of the fluid container). We employ a collocated discretiza-
tion where all components of the velocity field are stored at the same locations, at the
nodes of the Cartesian grid, and since we use Eqn. (4.59) for our quasi-incompressible
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Stokes fluid, there is no need to involve any “pressure” state variables in our for-
mulation. Using a variational approach, we can express boundary conditions at a
sub-grid resolution while only storing variables at regular grid-node locations. Again,
we stress that due to the strong resemblance between Eqn. (4.59) and its linear elas-
ticity counterpart Eqn. (4.54), the numerical discretization paradigm to be discussed
in this section is essentially the commonly used discretization scheme in linear elas-
ticity, allowing practitioners to reuse implementations in topology optimization with
little extra effort.

Variational form and embedded traction boundaries We initially focus on the
quasi-incompressible Stokes problem in a domain Ω ∈ ℛ𝑑, under traction boundary
conditions, stated as follows:

−∇ · 𝑇 = −𝜂Δ𝑣(𝑥)− 𝜂

1− 2𝜈
∇[∇ · 𝑣(𝑥)] = 𝑓(𝑥) 𝑥 ∈ Ω,

𝑇 · 𝑛 = 𝛽(𝑥) 𝑥 ∈ 𝜕Ω,

(4.61)

(4.62)

where the stress tensor 𝑇 is defined as in Eqn. (4.60). It is known [71, 34] that the
associated variational formulation of this problem computes the solution via mini-
mization of an energy functional 𝐸[𝑣] over all functions 𝑣 in an appropriate solution
space. For our purposes, we define the solution space to be all functions defined by
bilinear (2D) or trilinear (3D) interpolation over the cells of the background Cartesian
grid, and the associated energy to be minimized [34, 168] is

𝐸[𝑣] =

∫︁
Ω

Ψ[𝑣(𝑥)]𝑑𝑥−
∫︁
Ω

(𝑣 · 𝑓)𝑑𝑥−
∫︁
𝜕Ω

(𝑣 · 𝛽)𝑑𝑆, (4.63)

where the energy density Ψ[𝑣] is defined as follows:

Ψ[𝑣] = 𝜂‖𝐷[𝑣]‖2𝐹 +
𝜂𝜈

1− 2𝜈
[tr(𝐷[𝑣])]2,

with the strain rate 𝐷 computed from 𝑣 as in Eqn. (4.46). We note that in most
of our examples we do not use any external forces (e.g. gravity), hence 𝑓 = 0, and
only use zero-valued (or open-boundary) traction boundary conditions, thus 𝛽 = 0.
As a consequence, the last two integrals in Eqn. (4.63) are zero for our examples.
Should it be necessary, however, to incorporate non-zero forces or traction conditions
in a different application, these terms can trivially be included in our discretization,
and we later discuss how both volume and boundary integrals can be computed via
quadrature within our solution space.

Sub-cell energy quadrature Using bilinear/trilinear interpolation as shown in
Fig. 4-21 (b), our solution space contains all functions of the form

𝑣(𝑥;𝒱) =
∑︁
𝑖

𝑣𝑖𝒩𝑖(𝑥), (4.64)
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where 𝒩𝑖(𝑥) is the shape function associated with grid node 𝑖, and 𝒱 = {𝑣𝑖} col-
lectively represents all nodal velocities in our grid. Using this interpolation, we can
also express all derivative quantities as functions of the nodal velocities, by proper
manipulation of the shape functions. For example, the entries of the strain rate tensor
�̂�(𝑥;𝒱) = 𝐷[𝑣(𝑥;𝒱)] are evaluated as

�̂�𝑝𝑞 =
1

2

∑︁
𝑖

[︁
𝑣
(𝑝)
𝑖 𝒩𝑖,𝑞(𝑥) + 𝑣

(𝑞)
𝑖 𝒩𝑖,𝑝(𝑥)

]︁
, (4.65)

where superscripts in parentheses for 𝑣 indicate coordinate components, and sub-
scripts in shape functions after commas indicate partial derivatives. We can continue
this substitution to express the energy density and ultimately the integrated energy
in Eqn. (4.63) as a function of the nodal velocity values. Since �̂� is a linear function
of nodal velocities, and the energy density Ψ has a quadratic dependence on 𝐷, the
overall energy 𝐸[𝒱 ] = 𝐸[𝑣] will ultimately reduce to a quadratic convex function
over the nodal velocities, with the coefficients of this polynomial involving integrals
of products of derivatives of the shape functions. All of this is, of course, merely
a restatement of the standard finite element discretization approach in a Cartesian
lattice [71, 115].

The integral in Eqn. (4.63) can be computed on a per-cell basis; using our as-
sumption that 𝑓 = 𝛽 = 0, we can write

𝐸[𝒱 ] =

∫︁
Ω

Ψ[𝑣(𝑥;𝒱)]𝑑𝑥 =
∑︁
𝑘

∫︁
Ω∩𝒞𝑘

Ψ[𝑣(𝑥;𝒱)]𝑑𝑥⏟  ⏞  
𝐸𝑘[𝒱]

, (4.66)

where the summation is taken over all cells {𝒞𝑘} in our background grid. The per-cell
energies 𝐸𝑘 fall in one of two categories. For fully interior cells (for which 𝒞𝑘 ⊂ Ω)
the integral can be computed exactly either via analytic integration (the integrands
are low-degree polynomials), or with a 4-point (8-point in 3D) Gauss quadrature;
this yields the same stencil that is used in several similar methods [14, 1, 95]. For
boundary cells (those that have 𝒞𝑘 ∩ 𝜕Ω ̸= ∅) we must specify a quadrature rule for
the partial-cell domain of integration 𝒞𝑘 ∩ Ω.

We propose a quadrature rule for such boundary cells motivated by the following
design objectives: (a) We seek a rule that is as simple as possible, so as to be easily
adaptable to scenarios where the boundary location is evolving, as in the context
of shape optimization, (b) The rule must give rise to continuous solutions as the
boundary evolves, to ensure differentiability of such solution with respect to design
parameters, and (c) The rule should have at least a rudimentary degree of accuracy
(e.g. exactly integrate constant integrands) and be free of common defects. In light of
these design traits, we propose a quadrature formula that uses four weighted quadra-
ture points (as shown in Fig. 4-21 (c) in 2D), placed at the centers of four equal
quadrants 𝒞(0)𝑘 , . . . , 𝒞(3)𝑘 produced by bisecting the boundary cell along each axis (see
Fig. 4-21 (c)). If we denote by 𝑥0, . . . ,𝑥3 the centers of these quadrants and by
Ω0 := 𝒞(0)𝑘 ∩Ω, . . . ,Ω3 := 𝒞(3)𝑘 ∩Ω the fractions of these quadrants that are interior to
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the fluid domain Ω, the quadrature rule becomes∫︁
Ω∩𝒞𝑘

Ψ[𝑣(𝑥;𝒱)]𝑑𝑥 ≈
3∑︁

𝑗=0

Area(Ω𝑗)Ψ[𝑣(𝑥𝑗;𝒱)]. (4.67)

A similar quadrature rule would naturally be defined in 3D, using eight quadrature
points at the center of the octants that a cell is split by bisecting each axis, weighted
by the corresponding volume fraction of each that falls inside Ω. It is clear that the
quadrature rule integrates constant functions exactly (due to the area factors), and
that it would provide for continuously varying solutions as the boundary evolves (as
the minimizers of a convex quadratic with continuously varying coefficients). The
use of multiple quadrature points (as opposed to a single one, at the centroid of the
cell 𝒞𝑘) is mandated in order to avoid hourglassing instabilities in the discretization
[104]. However, keeping this quadrature rule simple by only having the area factors
dependent on the geometry of Ω greatly simplifies the task of differentiating our flow
solution with respect to the design parameters, as we see in Sec. 4.2.6. We have found
this formulation to be effective and sufficient in our examples, and as we see next it
can be used in conjunction with the other boundary condition types we need in our
application.

Dirichlet boundary conditions The formulation of the preceding paragraph is
sufficient to accommodate pure traction boundary conditions, as the open bound-
ary conditions at the outlet of the fluidic device in Fig. 4-21 (a) in blue. In addi-
tion, we can easily accommodate Dirichlet boundary conditions imposed precisely at
grid nodes, by simply setting them to a constant value while minimizing 𝐸[𝑣]. A
more challenging, but essential scenario to accommodate would be the enforcement
of Dirichlet conditions on an embedded boundary rather than one that is aligned with
the grid faces. Such an example would correspond to the lateral edges of the device
in Fig. 4-21 (a) in brown, should a no-slip Dirichlet condition (𝑣 = 0) have been
imposed.

Enforcement of such embedded Dirichlet conditions is not quite straightforward
with variational formulations, as opposed to traction conditions (analogous to Neu-
mann conditions in the Poisson’s equation) which are naturally incorporated into the
energy 𝐸[𝑣]. Possible options such as a “soft” constraint enforcement [132, 86] have
to contend with ad-hoc constraint stiffnesses, while imposing Dirichlet conditions at
zero crossings between the interface and grid edges is known to be questionable in its
convergence quality or even the existence of a compliant solution [108, 12]. Instead,
we employ a formulation for the enforcement of embedded Dirichlet conditions that
leverages a weak formulation of the constraint using an appropriate approximation
space [64, 168], that has been successfully used with elliptic PDEs in similar contexts.

Let 𝑣(𝑥) = 𝛼(𝑥) be the Dirichlet condition we want enforced in a section of the
boundary Γ𝐷 ⊂ 𝜕Ω that is intersecting grid cells, rather than being aligned with
edge boundaries. Following previous work [12, 168], for each such cell, we enforce the
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Dirichlet condition in an averaged fashion, via the integral constraint∫︁
𝒞𝑘∩Γ𝐷

𝑣(𝑥;𝒱)𝑑𝑥 =

∫︁
𝒞𝑘∩Γ𝐷

𝛼(𝑥)𝑑𝑥

which, given the expansion of 𝑣 using the shape functions, becomes∑︁
𝑖

𝑣𝑖

∫︁
𝒞𝑘∩Γ𝐷

𝒩𝑖(𝑥)𝑑𝑥 =

∫︁
𝒞𝑘∩Γ𝐷

𝛼(𝑥)𝑑𝑥. (4.68)

Eqn. (4.68) is effectively a (𝑑-dimensional) linear equality constraint associated
with each boundary cell. The integral of the shape function on the left-hand side is
computed analytically via a hyperplane approximation to the cell boundary 𝒞𝑘 ∩ Γ𝐷.
We construct a best-fit line in 2D (plane in 3D) to this boundary section based on
the signed distances from grid nodes to the boundary. We use a quadrature rule to
approximate the integral of both the shape function and 𝛼 over 𝒞𝑘 ∩ Γ𝐷 unless the
integral is trivial to compute analytically, e.g., 𝛼(𝑥) is constant. In our application,
only a no-slip, zero-Dirichlet boundary condition 𝛼(𝑥) = 0 is employed, hence the
integral on the right-hand side is trivially zero. We discuss this quadrature rule in
greater detail in Sec. 4.2.5 and our supplemental material.

Aggregating all such constraints from all cells that intersect the Dirichlet boundary
yields a linear system of constraints 𝐶𝑣 = 𝑑 (for simplicity of notation we use here
the symbol 𝑣 for all nodal velocities, in replacement of 𝒱). As mentioned before, for
no-slip boundaries we would have 𝑑 = 0.

No-separation, zero-friction boundaries Although no-slip conditions can be
accommodated as in the previous paragraph, enforcing no-separation boundary con-
ditions combined with a zero tangential component of the traction vector is the norm
in our examples, as encoded in Eqns. (4.50, 4.51). Similar to the previous paragraph,
the projected Dirichlet condition 𝑣 · 𝑛 = 0 is enforced via an integral constraint∫︁

𝒞𝑘∩Γ𝐷

𝑣(𝑥;𝒱) · 𝑛𝑑𝑥 =
∑︁
𝑖

(𝑣𝑖 · 𝑛)

∫︁
𝒞𝑘∩Γ𝐷

𝒩𝑖(𝑥)𝑑𝑥 = 0 (4.69)

which is now just a single scalar constraint (per cell) as shown in Fig. 4-21 (d),
while the zero tangential component of the traction is implicitly enforced from the
energy formulation in Eqn. (4.63). Again, a single constraint system of the form
𝐶𝑣 = 𝑑 can aggregate all boundary conditions other than traction boundaries (which
are incorporated in the energy), including (a) node-aligned Dirichlet constraints, (b)
embedded Dirichlet constraints, and (c) no-separation conditions.

4.2.5 Forward Simulation

Given the discretization described in Sec. 4.2.4, we now provide a means of comput-
ing the fluid velocity field 𝑣 given the boundary shape parameterized by a vector of
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parameters 𝜃. The specific definition of 𝜃 depends on the type of parametric sur-
faces. Additionally, if multiple parametric surfaces exist in the problem domain, their
parameters are aggregated into a single vector 𝜃. As described in Sec. 4.2.4, 𝑣 is
the minimizer of the variational form of the energy in Eqn. (4.63) with boundary
conditions applied. Due to the analogy between Stokes flow and linear elasticity,
the post-discretization variational form of the energy, known to be quadratic in 𝑣,
can be defined as 1

2
𝑣𝑇𝐾𝑣 where 𝐾 has an equivalent role of the stiffness matrix in

linear elasticity. Further, the discretized boundary conditions, already introduced as
𝐶𝑣 = 𝑑, are linear in 𝑣. Combined, these form a convex quadratic programming
(QP) problem, the solution to which describes the fluid velocity

𝑣(𝜃) = arg min
𝑣

1

2
𝑣𝑇𝐾(𝜃)𝑣.

s.t. 𝐶(𝜃)𝑣 = 𝑑(𝜃).

(4.70)

(4.71)

Here, the convexity comes from the positive semi-definiteness of the stiffness ma-
trix 𝐾. The notation 𝑣 is used to emphasize that this is the minimizer of the QP
problem, dependent on the parameter 𝜃. Meanwhile, 𝐾,𝐶, and 𝑑 are written as
functions of 𝜃 as their values are dependent on the location of the solid-fluid interface
boundaries. This should be especially obvious in the case of 𝐾, as in Eqn. (4.67) we
can see that boundary cells contribute to this term by an amount proportional to the
area of their region of overlap with Ω. Again, we point out that the external force 𝑓
and traction condition 𝛽 are ignored for simplicity. Should it be necessary, both of
them could be easily added back to Eqn. (4.70) as a linear term on 𝑣 with its linear
weights dependent on 𝜃.

The remainder of this section is dedicated to describing how 𝐾, 𝐶, and 𝑑 are
computed from 𝜃, concretely describing how to calculate the steady-state flow and
laying the groundwork for the gradient computation. Given a set of design param-
eters 𝜃, the analytic signed distance function of the boundary is computed at each
cell corner, building a signed-distance field on the whole grid. We then compute a
hyperplane of best fit (line in 2D; plane in 3D) to approximate the geometry of the
boundary within each individual cell (where applicable). This hyperplane is used to
compute the stiffness matrix component 𝐾𝑖𝑗 for the cell with indexing (𝑖, 𝑗). Further,
we use it to integrate the shape function 𝒩𝑖 and the boundary condition 𝛼 described
in Sec. 4.2.4 to form the linear constraints 𝐶𝑣 = 𝑑. With the full QP formulated, 𝑣
is obtained by solving the KKT conditions.

Signed-distance functions (SDFs) for parametric shapes Given design pa-
rameters 𝜃 that determine the fluid-solid boundary, we first compute the signed dis-
tance from each cell’s corners to the boundary. With the type of parametric surface
known beforehand, evaluating this distance typically involves nothing more than an-
alyzing the functions describing the level-set of the parametric shape. For example, if
𝜃 parameterizes a circle with 𝜃 = (𝑐, 𝑟) (the center position and radius of the circle),
then the signed distance function can be written compactly as 𝜑(𝑥) = 𝑟 − ‖𝑐 − 𝑥‖2
for any 𝑥. Signed-distance functions of more sophisticated parametric shapes, e.g.,
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Bézier curves, can be found in our supplemental material. Throughout this paper, we
use the convention that 𝜑(𝑥) > 0 refers to the solid region and 𝜑(𝑥) < 0 corresponds
to the fluid region.

Boundary in a cell Once the signed distances from a cell’s corners to the bound-
ary are given, the next step is to fit a hyperplane (line in 2D and plane in 3D) that
approximates the fluid-solid interface in the cell when necessary. Note that this implic-
itly assumes the boundary does not contain delicate structures that are significantly
smaller than the cell size. Depending on the signs at each corner, a cell is classified
into three categories: purely in the interior of the solid region, purely in the interior
of the fluid region, or partially in both regions. Only this final case requires fitting
a hyperplane inside the cell, for which we obtain the hyperplane parameters from a
linear least squares regression on the signed distances at its corners. As techniques
for solving linear least squares are mature, we leave the details in our supplemental
material.

At the end of this step, we have determined the type of each cell, and, for mixed-
cells, we have provided an analytic means of approximating the boundary with a
hyperplane. Such hyperplanes are crucial in assembling the matrices and vectors in
Eqns. (4.70, 4.71).

Assembling 𝐾 Computing 𝐾 requires reasoning about two different types of cells:
fluid cells and mixed cells. In the former case, the procedure for computing the
contribution to 𝐾 is well-established in the linear elasticity literature [14], as the
integrals involved are evaluated over entire cells, either analytically or via Gauss
quadrature rules. In the latter, mixed-cell case, it can be seen from Eqn. (4.67) that
dependence on 𝜃 only occurs via the area term. This is because the energy density
function is evaluated at the same quadrature locations regardless of the cell type.
The area function describes the ratio of the cell that is fluid and can be computed
compactly with a single, closed-form expression [9] using the hyperplanes computed
before:

Proposition 1. Consider a 𝑑-dimensional halfspace 𝐻 = {𝑥|𝑎 · 𝑥 + 𝑏 ≥ 0} with the
assumption that Π𝑖𝑎𝑖 ̸= 0. The volume of its intersection with a unit hypercube is

|[0, 1]𝑑 ∩𝐻| =
∑︁

𝑞∈𝐹 0∩𝐻

(−1)|𝑞0|(𝑎 · 𝑞 + 𝑏)𝑑

𝑑!Π𝑖𝑎𝑖
(4.72)

where 𝐹 0 = {0, 1}𝑑 is the set of all hypercube corners and |𝑞0| is the number of zeros
in the entries of 𝑞.

Since this solution is closed-form and analytical, gradients can be simply and
easily computed, which is especially beneficial in 3D, where plane-cube intersections
can lead to complex cell fluid geometries.
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Assembling 𝐶 and 𝑑 The remaining step is to compute 𝐶 and 𝑑 as a function
of 𝜃. We do this on a row-wise basis, again focusing on the (nontrivial) mixed cells.
As established in Sec. 4.2.4, computing 𝐶 and 𝑑 requires computing the integral
of the shape function 𝒩𝑖 over the cross-sectional area of the boundary and the cell.
Computing this integral analytically is tedious particularly in 3D because the cross-
sectional area can have anywhere from three to six edges, and the situation would
become even worse when computing the gradients. Thus (and keeping our procedure
general), we design the following quadrature rule to approximate this line or area
integral. Beginning with the quadrature points 𝑥0,𝑥1, . . . ,𝑥2𝑑−1 which are in the
centers of the cell quadrants (octants in 3D), we first project 𝑥𝑖 onto the fluid-solid
boundary approximated by our hyperplanes. In order to integrate a function over the
boundary in the cell, we use these projections as the quadrature points to approximate
the integral in Eqn. (4.68):

∫︁
𝒞𝑘∩Γ𝐷

𝒩𝑖(𝑥)𝑑𝑥 ≈
2𝑑−1∑︁
𝑗=0

Proj(𝑥𝑗;𝜃)Area(𝒞(𝑗)𝑘 ∩ 𝜕Ω), (4.73)

where Proj(·;𝜃) is an operator that projects a point onto the hyperplane and its
reliance on 𝜃 is due to the hyperplane parameters. The area function evaluates the
cross-sectional area of the fluid-solid boundary and the quadrants or octants 𝒞(𝑗)𝑘 . We
calculate this area factor by noticing it is the directional derivative of Area(𝒞(𝑗)𝑘 ∩Ω)
along the hyperplane’s normal:

Area(𝒞(𝑗)𝑘 ∩ 𝜕Ω) =
𝜕Area(𝒞(𝑗)𝑘 ∩ Ω)

𝜕𝑏
‖𝑎‖2, (4.74)

where 𝑎 and 𝑏 are defined as in Prop. 1. Computing this directional derivative requires
nothing more than directly applying the chain rule to Prop 1, and we leave its details
in our supplemental material.

Solving the QP problem Having assembled every piece of Eqns. (4.70, 4.71),
we demonstrate how to compute 𝑣 as a function of 𝜃. Since 𝐾 (analogous to an
elastic stiffness matrix) is positive semi-definite, the quadratic term is guaranteed
to be convex. Thus, a (global) minimum for 𝑣 always exists. We solve this QP by
solving the KKT system:(︂

𝐾(𝜃) 𝐶𝑇 (𝜃)
𝐶(𝜃) 0

)︂(︂
𝑣

�̃�

)︂
=

(︂
0

𝑑(𝜃)

)︂
, (4.75)

where �̃� is a Lagrange multiplier. We choose to solve this KKT system with a direct
factorization method rather than apply an iterative optimization algorithm, as the
pre-factorization of this system can help accelerate the gradient computation in the
next section. Thus, solving 𝑣 reduces to solving a symmetric (possibly indefinite)
linear system depending purely on 𝜃.
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Table 4.5: A summary of our design problems. The “Time (s)/Call” column reports the
average wall-clock time of one function call to compute forward simulation and backpropa-
gation. The time was measured on a single Intel(R) Xeon(R) CPU E7-4830 v4 @ 2.00GHz.
The “Final loss” column reports the loss of our optimized design. The loss functions in all
problems are normalized such that a unit loss refers to the average performance of randomly
sampled designs and zero loss means an oracle design that perfectly matches the desired
target, which may not exist in some problems.

Name Grid resolution # Param. Level set

Amplifier 64× 48 5 Béizer curves
Flow Averager 64× 64× 4 8 Béizer curves

Funnel 64× 64× 16 10 Béizer curves
Superposition Gate 64× 64× 4 5 Béizer curves

Fluidic Twister 64× 64× 32 32 NURBS surface
Fluidic Switch 64× 64× 32 26 NURBS surface

Name Boundary condition Time (s)/Call Final loss

Amplifier No-separation 0.2 1.7e-5
Flow Averager No-separation 5.3 3.1e-2

Funnel No-separation 64.8 2.3e-1
Superposition Gate No-separation 4.9 4.9e-1

Fluidic Twister No-separation/No-slip 56.1 4.9e-2/9.7e-1
Fluidic Switch No-slip 171.1 5.8e-1

4.2.6 Optimization

Given design parameters 𝜃, we have described how to perform forward simulation in
order to compute the steady-state velocity field 𝑣. We now detail how to compute
the backward gradient computation, i.e. computing the derivative of the loss function
with respect to 𝜃. We begin this section by defining loss functions evaluating the flow
generated by simulation. Next, we discuss how gradients are computed via a scheme
that back-propagates through the simulation. We conclude with a description of the
full optimization algorithm.

Loss functions While our method imposes no restrictions on the loss function as
long as its gradients are well defined, we focus on a specific family of loss functions
that penalize the discrepancy between the desired and actual velocity fields 𝑣:

𝐿(𝑣) = ‖𝐹 (𝑣)− 𝐹 (𝑣*)‖𝑝, (4.76)

where 𝑣* is a target velocity field, 𝐹 is a function that extracts features we are
interested in optimizing from a velocity field, and ‖ · ‖𝑝 is the 𝑝-norm. The choice
of 𝐹 is flexible and problem-specific. For example, 𝐹 can be a selector function that
picks velocities at the outlet of the device only, or 𝐹 can be a curl operator for tasks
focusing on optimizing the rotational speed of a velocity field.
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Gradient computation Given a complete description of the forward simulation
scheme, deriving the gradients – at a high level – requires no more than iterative
application of the chain rule. Each step in forward simulation has a corresponding
step in the gradient computation that is then chained together. Most of these steps
require the straightforward computation of the gradient of the output of the forward
simulation (of that step) with respect to the input (of that step). Therefore, we leave
the details of gradient computation in our supplemental material and only highlight
one key step: the gradients of the solution of the QP problem. Specifically, we de-
scribe the computation of 𝜕𝑣/𝜕𝐾, 𝜕𝑣/𝜕𝐶, and 𝜕𝑣/𝜕𝑑. In order to avoid unwieldy,
high-dimensional tensor notation, we describe the gradient derivation in differential
form (sufficient for the purpose of computing the gradients). Concretely, given per-
turbations 𝛿𝐾, 𝛿𝐶, and 𝛿𝑑, we explain how much perturbation 𝛿𝑣 is expected.

Differentiation the KKT system in Eqn. (4.75) results in the following linear sys-
tem with 𝛿𝑣 and 𝛿�̃� as unknowns (we omit the 𝜃 dependence for clarity):(︂

𝐾 𝐶𝑇

𝐶 0

)︂(︂
𝛿𝑣

𝛿�̃�

)︂
=

(︂
0
𝛿𝑑

)︂
−
(︂
𝛿𝐾 𝛿𝐶𝑇

𝛿𝐶 0

)︂(︂
𝑣

�̃�

)︂
. (4.77)

𝛿𝐾, 𝛿𝐶, and 𝛿𝑑 are all known; 𝑣 and �̃� have been computed during the forward
simulation process. Since the linear system of equations here has precisely the same
left-hand side as the KKT system solved in the forward simulation, this matrix can
be pre-factorized once during simulation and reused during gradient computation,
allowing for efficient solving of 𝛿𝑣.

Optimization With a method for computing gradients of the loss backward through
simulation with respect to design parameters in tow, we are able to apply gradient-
based, quasi-Newton methods for efficient optimization. The performance of this
approach primarily depends on two crucial factors: the specific local optimization
method chosen, and the initial guess. Since all of our design problems have nonlin-
ear continuous losses and bound constraints on parameters only, we chose L-BFGS,
a classic quasi-Newton method, as our optimizer. The initial guess was selected by
picking the best design among a number of randomly sampled designs in the design
space. Sampling designs serves two purposes in our method: first, it reduces the risk
of getting trapped into local minima. Second, we can rescale the loss function in
each design problem by setting the average loss from these randomly samples as the
unit loss. After this normalization, the loss functions from different design problems
share the same physical meaning: loss = 0 means an oracle solution that matches the
target perfectly, which is not always possible, and loss = 1 means the solution has an
empirically average performance among all possible designs.

4.2.7 Results and Discussions

In this section, we present six 2D and 3D design problems to evaluate the performance
of our implementation of the differentiable Stokes flow as well as the optimization
pipeline. We start this section by describing the problem statements for each design
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problem, followed by evaluations and discussions on the experimental results. We
ask readers to refer to our supplemental video for a complete demonstration of these
design problems, the evolution of our optimization process, and the animation of our
final results.

Design Problems

We summarize the basic information about these design problems in Table 4.5 and
Fig. 4-25, 4-22, and 4-23. The number of decision variables in these design problems
ranges from 5 to 32, and the cell resolution of the scenes varies from 64× 48 cells in
2D to 64× 64× 32 cells in 3D. Below we discuss the setup of each design problem in
detail:
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Figure 4-22: Three optimization examples: the Flow Averager, the Funnel, and the Super-
position Gate. The left figure of each example shows the specifications of the design problem.
The right eight figures of each example show the comparison between a randomly sampled
design (top row) and the optimized design (bottom row) with three different inputs. In
the Flow Averager, the vertical color bar inside each inset indicates the velocity magnitude
at the cross section of the two outlets, and solutions with two outlets having more similar
colors are better. In the Funnel and the Superposition Gate, the color indicates the angular
error between the local velocity and the target velocity (cooler at the outlet is better).

Amplifier This motivating example in Fig. 4-20 is a 2D design problem that aims to
amplify the velocity of inlet flow by a factor of 3. The design variables are the control
points of the Bézier curves representing the upper and lower solid-fluid boundaries.
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The inlet flow enters the domain from the left with a velocity of (𝑣, 0), and the loss
function is defined as the difference between (3𝑣, 0) and the average speed of the
outlet flow on the right.

Flow Averager The goal of this design problem is to engineer a fluidic load balancer
with two inputs (left) and two outputs (right). Let the two inlet flows enter the domain
with velocities (𝑣𝑖1 , 0, 0) and (𝑣𝑖2 , 0, 0) where 𝑣𝑖1 and 𝑣𝑖2 are arbitrary numbers and
let 𝑣𝑜1 and 𝑣𝑜2 be the average flow velocities at the two outlets. The objective is to
encourage both 𝑣𝑜1 and 𝑣𝑜2 to be as close as possible to ((𝑣𝑖1 + 𝑣𝑖2)/2, 0, 0) (Fig. 4-
22 top). In other words, we expect the design to average the two inputs no matter
what values are given for 𝑣𝑖1 and 𝑣𝑖2 . We optimize a loss function that concurrently
optimizes for these two basis inputs (𝑣𝑖1 , 𝑣𝑖2) = (0, 1) and (1, 0). The design space
consists of four Bézier curves in 2D. The 3D solid-fluid boundaries are formed by
extruding these curves vertically.

Funnel This design problem considers a fluidic domain with two inputs and one
output. The goal is to design the internal boundary of the fluidic domain such that
the direction of the output flow is 45-degrees and input-invariant (Fig. 4-22 middle).
Let (𝑣𝑖1 , 0, 0) and (0, 𝑣𝑖2 , 0) be the two inlet flow velocities; the design is evaluated by
continuously varying the inputs from (𝑣𝑖1 , 𝑣𝑖2) = (1, 0) and (0, 1) and observing the
change in the direction of the outlet flow. Note that while the design space consists
of 2D Béizer curves only, the bumpy bottom plate creates enough vertical variations
to make it our first 3D design problem.

Superposition Gate This design problem shares the similar setting with the Fun-
nel above except that the goal is to obtain an outlet flow with a velocity of (𝑣𝑖1 , 𝑣𝑖2 , 0)
(Fig. 4-22 bottom); thus the name superposition gate. When the inputs (𝑣𝑖1 , 𝑣𝑖2) vary
from (1, 0) to (0, 1), an ideal superposition gate design should generate an outlet flow
that sweeps the first quadrant.

Fluidic Twister This 3D problem considers designing the internal surface of a
tunnel to generate a twisted flow (Fig. 4-23). With a straight inlet flow 𝑣𝑖 = (0, 0,−1)
entering the tunnel from the top, an ideal design needs to generate an outlet velocity
field 𝑣𝑜 = (𝑢𝑜, 𝑣𝑜, 𝑤𝑜) at the bottom such that it has a desired vertical curl 𝜔: ∇ ×
(𝑢𝑜, 𝑣𝑜, 0) = (0, 0, 2𝜔). We discretize the curl operator on our grid and define the loss
function as the difference between ∇× (𝑢𝑜, 𝑣𝑜, 0) and (0, 0, 2𝜔). The internal surface
of the tunnel is represented by a NURBS surface with 32 free control points to be
optimized.

Fluidic Switch In this problem, we consider a fluidic device with a switch that can
kinematically change the fluid-solid boundary in a fluidic domain. By switching on
and off, we expect the outlet flow velocity from the device to transition between two
prescribed velocity profiles (Fig. 4-25). We set up our fluidic domain with one input,
two outputs, and a solid obstacle immersed in the fluidic domain. The solid obstacle is
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Figure 4-23: A comparison between optimizing the Fluidic Twister with no-slip boundaries
(top) and no-separation boundaries (bottom). We show the velocity field at three cross-
sectional areas (middle three columns) of the optimized design (left column) as well as
the target, twisted field (right column) at the outlet (green). With the no-slip boundary,
the resulting velocity field is attenuated significantly. With the no-separation boundary, a
desired helical pattern emerges to facilitate the swirling of the outlet flow.

parameterized by a NURBS surface whose 24 control points are to be optimized, and
it is pinned on the bottom plate so it can rotate along a vertical axis. The two states
of the switch set the rotational angle of the solid obstacle to two different values, and
the loss function equals the sum of the losses from the two states, which is defined
as the difference between the actual output velocity and a prescribed desired velocity
profile (Fig. 4-25 rightmost). Note that the switching angle in this design problem is
also a parameter to be optimized.

0.0

0.4

1.6

1.2

252015105
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Figure 4-24: The evolution of the shape and the loss for the design of the Fluidic Switch
over 25 function calls.
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Design space:
- NURBS control points
- Rotation angle ϕ about z-axis
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Figure 4-25: Our system automates the design of fluidic devices with differentiable stokes
flow. Given a parameterized design in the form of NURBS surfaces or curves (leftmost) that
separate rigid boundaries from fluid flow, we employ a Stokes flow (second from left) that
evaluates the performance of this design. The flow is differentiable and gradients can be
quickly evaluated, enabling gradient-based optimization (center) of the control points, and
thus, the boundary. The optimized design (rightmost) can be specified to operate in one
configuration or several. This example features an optimized fluidic rotational switch that
shifts flow from the top outlet path to the bottom outlet path when turned.

Evaluation

Implementation details We implement our algorithm in C++ on a Linux work-
station with 8 CPU cores and 32G memory. We use PARDISO [124], a parallel
linear system solver for symmetric indefinite matrices, to solve the linear systems
of equations in both forward simulation and gradient computation. To speed up
the computation, during each function call to compute forward simulation, we pref-
actorize the matrix and reused the factorization in gradient computation with new
right-hand sides for gradient computation. For each design problem, we start our
optimization by sampling random designs and picking the best one to initialize the
L-BFGS local optimization algorithm. The actual number of samples depends on the
complexity of the design problem. In our experiments, we use 10 samples for prob-
lems with ≤ 10 parameters and 100 samples for larger problems. Random sampling
does not create a significant time burden for our algorithm because it is easily par-
allelizable and requires forward simulation only. We terminate the optimizer when a
maximum number of function evaluations (50 in our experiments) is reached or the
solution converges into a local minimum. For all examples, we consistently observe
their convergence before the maximum number of function evaluations is reached.

Performance improvement We report the statistics about the optimization pro-
cess in Table 4.5 and the final designs discovered by our algorithm in Figs. 4-25, 4-
20, 4-22, 4-23, and 4-24. Our algorithm improved the initial guess across the board
and the final design performed significantly better than an average design (loss =
1) in all examples, with the actual improvement margin largely depending on the
complexity of each problem.

It is worth mentioning that many of the novel designs revealed by our algorithm
not only are physically plausible but also match the physical intuition behind the
design intent. For example, in the Amplifier problem, the evolution of the boundaries
narrowed the outlet so that the flow jets at a desired, faster speed (Fig. 4-20). In the
Funnel example, a diagonal tunnel was formed near the end of the output in order to
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enforce an outlet flow whose direction is invariant to inputs (Fig. 4-22 middle). The
most notable discovery of the novel design comes from the Fluidic Twister: Although
the internal surface is parameterized by a NURBS surface, the final solution strongly
resembles a helical surface generated by a rotated, descending ellipsoid (Fig. 4-23).
The emergence of a helical surface in this design problem is no coincidence and clearly
reflects the design intent of generating a swirling flow.

Linearity in the fluidic devices The KKT system in Sec. 4.2.5 connects the
velocity field 𝑣, the right-hand side of all boundary conditions, and the design pa-
rameters 𝜃 in a single linear system of equations whose left-hand matrix depends on 𝜃
only. As a result, when we fix 𝜃, the response of the system is a linear function of the
input to the system, which comes naturally from the analogy between Stokes flow and
linear elasticity. Moreover, since by definition Stokes flow is steady-state, the fluidic
system we investigate in this paper is therefore linear time-invariant (LTI). It is well
known that the behavior of an LTI system can be fully analyzed and well understood
by investigating its response to a small number of base inputs, and we made heavy
use of this fact in our experiments to simplify the design problem. For example, when
designing the Funnel, it is sufficient to ensure the outlet flow is diagonal under two
inputs (𝑣𝑖1 , 𝑣𝑖2) = (1, 0) and (0, 1) only, and the outlet flow in response to (0.5, 0.5)
equals the average of the outlet flows from inputs (1, 0) and (0, 1) (Fig. 4-22 middle).

It is worth pointing out that while the fluidic system is LTI with a fixed 𝜃, the
full optimization problem is still highly nonlinear and non-convex. This is because 𝜃
parameterizes the fluid-solid boundary in a nontrivial way, which is embedded in the
left-hand side of the KKT system.

Boundary conditions Our convenient, explicit boundary conditions are flexible,
and are a key ingredient in unlocking many of the demonstrations here. Particu-
larly of note are the Fluidic Twister and the Fluidic Gate examples. No-separation
boundaries are necessary to build up the circumferential “swirling” motion seen in the
Twister example. The no-slip boundary condition, on the other hand, significantly
dampens the velocities along the fluid-solid boundary, inhibiting the vortical flow.
The two boundary conditions led to significantly different optimization results (Ta-
ble 4.5): while a Twister optimized with a no-separation boundary achieves almost
optimal performance (loss ≈ 0), optimization with a no-slip boundary hardly made
any progress and performs no better than a random guess (loss ≈ 1). By contrast,
the Fluidic Switch relies on no-slip boundary conditions to dampen the flow along the
“off” path. If no-separation boundary conditions were to be used here, the rotational
switch would need to be physically translated between configurations to completely
block the “off” branches to achieve zero velocity; otherwise, some non-zero velocity
will persist. We stress that our accommodation of several boundary conditions is a
feature, as an engineer can achieve any of them by selecting appropriate materials
along the boundary interface.
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Figure 4-26: Ablation study on the necessity of global random sampling in two design
problems: Amplifier (left) and Superposition Gate (right). Each blue line indicates the
process of running L-BFGS optimization directly from a random design, and the red line
shows our optimization progress with an initial guess from the best of 10 random designs.
While a particularly good random seed can outperform our method, the flat tails from
multiple random seeds reveal that local minima are common in such design problems.

Local minima Since our gradient-based optimization pipeline is inherently a local
optimization method, it can suffer from getting trapped into local minima (Fig. 4-
26). The distribution of local minima is problem-specific and affected heavily by the
landscape of the loss function. We have partially alleviated this issue by randomly
sampling multiple guesses prior to optimization and picking the best as an initial
guess. While more advanced global search heuristics can be applied to our pipeline, we
found this simple random sampling scheme sufficient to generate reasonably functional
devices in all our design problems.

Solution convergence To prove our simulation converges under refinement and
verify our governing equations approximate the truly incompressible Stokes flow, we
experimented with the 2D amplifier example with an initial resolution of 32 × 24
cells. We then subdivided the domain by a factor of 2, 4, 8, 16, and 32, resulting
in a resolution of 1024 × 768 eventually (Fig. 4-27 top). Additionally, we started
with 32 × 24 cells and increased the Poisson’s ratio from 0.45 until 0.499 (Fig. 4-27
bottom). We observed that in both cases, the velocity fields converged to a limit,
which indicates that our quasi-incompressible Stokes flow model well approximates
the truly incompressible Stokes flow.

4.2.8 Conclusion

The long-term vision of computational fluidics design is ambitious, ultimately aspiring
to the automated design of complex devices such as engines, pumps, and heart valves.
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Figure 4-27: Convergence of our quasi-incompressible Stokes flow tested on the Amplifier
example. Top: we solve the velocity field starting with 32 × 24 cells (middle) and increase
the resolution by a factor of 2, 4, 8, 16, and 32 (right). The relative error (left, measured by
comparing to the solution solved with 32× resolution) decreases as the velocity field is solved
under refinement. Bottom: we solve the velocity field with 𝜈 = 0.45 (middle), 0.47, 0.48,
0.49, 0.495, and 0.499 (right). The relative error (left, measured by comparing to 𝜈 = 0.499)
converges to 0 as 𝜈 converges to 0.5.

Optimizing such machinery, however, is extremely challenging, requiring modeling of
complex fluid dynamics while optimizing over highly complex components. We see
our work as a meaningful first step toward this eventual goal. We took the Stokes
flow as our fluid model, which has been used widely in engineering design and opti-
mization problems over the past decades to model the steady-state, linearized fluidic
transportation problems with a relatively low Reynolds number. Further, Stokes flow
is computationally well-suited to design problems, as it is well-conditioned, linear,
and provides smooth gradients, allowing for a fast inner loop of complex outer design
problems. An interesting future direction to explore is to improve the expressibil-
ity of the fluid simulation method. Particularly interesting would be a steady-state
Navier-Stokes fluid simulator that considers the effect of an advection term. It is also
interesting to consider the effect of deformable boundaries, allowing for the design of
devices with fluid-elastic coupling for applications in, e.g., soft robotics.

The second drawback of our method lies in our choice of parameterized level-sets
as a design space. Such a design space was deliberately chosen as it allows for sub-
grid shape design with smooth, clearly defined boundaries that separate fluid and
solid regions, a common failing of topology optimization, which provides no such
guarantees and only operates on the non-smooth grid cells themselves (thus making
boundary conditions tricky to reason about). Still, this parameterization must be
chosen by a user. A tractable method for searching both over topology while keeping
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boundaries smooth and regular is desired.
Third, although our Stokes solver allows for sub-grid resolution, it does not scale to

arbitrarily large scenes, as it is bottlenecked by the performance of our choice of linear
system solver and the optimizer. A parallel multigrid solver along with application of
the adjoint method in gradient computation would allow our framework to scale to
support larger problems. It would also be interesting to explore other optimizers like
alternating direction method of multipliers (ADMM) [113] in our problem especially
when the objective is separable on variables.

Fourth, although we purposefully kept our simulation physics-based so as to make
our method amenable to real-world manufacturing, we did not fabricate and test
any of our devices. Our parameterization allows engineers to specify boundaries
that are physically manufacturable, without the worry for non-manufacturable parts
(such as disconnected pieces in 3D). It would be interesting to physically fabricate
our optimized devices and benchmark the predictive accuracy of the simulation as
compared to the realized flow.

Finally, despite our initial sampling pre-processing step, whose coarse global search
improves over a random starting point, there is no guarantee that our algorithm will
converge to a global minimum. This is a drawback of all local continuous optimization
methods like the one we employ. While smoothness of our domain helps in that we
rarely find bad local minima, an algorithm for finding more globally optimal solutions
is desired.
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Chapter 5

Simulation-to-Reality Transfer

The last two chapters have presented a computational solution to co-designing and co-
optimizing robots in simulation. While Chpt. 3 has presented a real-world application,
its real-world robot design is obtained by passively executing the computational design
in simulation, omitting the need to analyze and narrow the sim-to-real gap when
transferring the results from simulation to reality. This chapter will fill this missing
piece in the computational robot design pipeline (Fig. 5-1). Specifically, we will
present a solution to the sim-to-real transfer problem using the differentiable simulator
we have developed in the last chapter [44]. We demonstrate this method using an
example of modeling and controlling a real-world soft underwater robot [41], which
we will elaborate on below.

Figure 5-1: This chapter focuses on understanding and narrowing the sim-to-real gap in
transferring computational design results from simulation to reality, filling the last missing
piece in the computational robot design pipeline in Chpt. 1.

5.1 Motivation

Developments in marine robotics provide many advantages for tasks such as under-
water exploration, sample collection, and observation of marine wildlife [19]. Aquatic
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animals demonstrate the advantages of having a soft-body structure for swimming
and navigating aquatic environments, highlighting how compliance and flexibility is a
key component for efficient underwater locomotion [114] and motivating the design of
soft robotic swimmers. Although a wide variety of methods have been developed for
such robots [77, 91, 129], modeling and controlling them is still an open problem due
to the infinite degrees of freedom of soft systems and the problem’s computational
overhead.

There has been a significant body of research focusing on the modeling of soft
underwater systems. This includes modeling soft-body swimmers using discrete elas-
tic rod simulation [70] and applying the Cosserat model to Cephalopod inspired soft
robots [120]. Dynamic models have also been proposed for soft fish by combining
bending beam theory with hydrodynamic and damping models [46], combining beam
theory with fluidic models for modeling a compliant tail [80], and modeling fish bodies
as multiple compliant rigid segments with hydrodynamic forces [155]. This body of
work highlights the complexity of modeling not only the deformation of the compli-
ant robot, but also accounting for the intricate solid-fluid coupling between a robot
and water. The complex dynamics of both soft robots and their interaction with
their aqueous environment typically leads to a significant reality gap between simu-
lation and real experiments. To leverage the power of simulation, such a gap must
be reduced. This will allow for increasingly reliable transfer of robot controllers and
designs to the real world.

In this work, we present a method for modeling and controlling underwater soft
robots with a focus on narrowing the simulation-to-reality gap (Fig. 4-25). Our
core idea is to embed a differentiable simulator into a pipeline that alternates be-
tween simulated and real experiments. With gradient information readily available
from a differentiable simulator, previous papers have demonstrated promising results
in various soft-robot applications, including system identification and controller de-
sign [44, 69, 68, 62, 16]. However, results from existing differentiable simulators are
primarily focused on simulated robots, and demonstrations on real underwater soft
robots have yet to be seen. Our work attempts to fill this gap by coupling differ-
entiable simulation with a differentiable, analytical hydrodynamic model, to enable
improved modeling and optimization of water-based soft systems.

Our pipeline starts by collecting motion data from a real underwater soft robot
with synthetic control signals (Fig. 4-25, left). A dynamic model of the soft robot,
including its actuators and its hydrodynamic forces, is initialized in simulation. The
initial values of the model parameters are obtained from measurements on the soft
robot and estimation from previous papers. Next, our pipeline compares the collected
data and the motion predicted by the dynamic model in simulation, and gradients
of the model parameters with respect to the error between the model and real world
are automatically computed by the simulator to reduce the modeling error (Fig. 4-25,
lower right). With an improved dynamic model in simulation, the pipeline then runs
trajectory optimization to propose a new open-loop controller (Fig. 4-25, upper right),
which is then executed on the hardware platform to collect more data for the next
iteration (Fig. 4-25, left). The output of our pipeline is a calibrated dynamic model
and an optimized open-loop controller that can be directly used on a real robot.
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Figure 5-2: An overview of the iterative, real-to-sim pipeline. Real-world motion data
is captured from the robot for a given control input (left). This data is transferred to
the differentiable simulator where system identification narrows the gap between reality
(four green spheres bottom right) and simulation (four blue spheres bottom right) after
which trajectory optimization is used to generate a new control sequence. Through iterative
transfer we show trajectory optimization and reduction of the reality gap.

We demonstrate the efficacy of our pipeline on Starfish, a customized underwater
soft robot design made of silicone foam and actuated with four tendons. Like many
other existing soft robot designs, Starfish leverages non-symmetric placement of ten-
dons or wires to achieve bending. Similar approaches have been shown to be effective
in soft jellyfish robots [149, 3], and for undulating fish swimmers [164] including micro
robot swimming fish [157]. Starfish is connected to a rail in a water tank to limit
its motion to horizontal motion only. We find that our pipeline manages to not only
narrow down the simulation to reality gap but also produce an effective open-loop
controller after a few iterations, whose performance is increased significantly when
compared to a handcrafted baseline controller.

5.2 Simulation
We now describe our simulation model for Starfish as well as its implementation
in a differentiable simulator. We choose to base our simulator implementation on
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DiffPD [44] and augment DiffPD by implementing a differentiable actuator and hy-
drodynamic model with trainable parameters in optimization. It is worth mentioning
that our pipeline is agnostic to the choice of differentiable simulators.

5.2.1 Governing Equations

We model the body of Starfish using the finite element method (FEM) with a tetra-
hedral discretization. An implicit Euler time-stepping scheme is used because of its
numerical robustness and large time steps. Let 𝑛 be the number of nodes after dis-
cretization and let x𝑖 ∈ R3𝑛 and v𝑖 ∈ R3𝑛 be the nodal positions and velocities at the
𝑖-th time step. The governing equations can be written as follows:

x𝑖+1 =x𝑖 + ℎv𝑖+1,

v𝑖+1 =v𝑖 +
ℎ

𝑚
[f𝑒(x𝑖+1) + fℎ(x𝑖,v𝑖) + f𝑎(x𝑖+1, a𝑖)].

(5.1)

(5.2)

Here, ℎ is the time step (1/60 second in our simulation), 𝑚 the mass of a node, f𝑒
the elastic force computed from the material model, fℎ the hydrodynamic force, and
f𝑎 the actuation force dependent on the action a𝑖 at this time step. Eqns. (5.1) and
(5.2) contain parameters whose values need to be determined from the real system
to build an accurate dynamic model. These include the material parameters in f𝑒,
the hydrodynamic parameters in fℎ, and the actuator parameters in f𝑎, which are
described in detail in the following three subsections.

5.2.2 Material Model

We use the same material model as described in DiffPD [44] and Min et al. [107],
which is based on the corotated linear material model [130]. The material model has
three parameters that require either a direct measurement or a reliable estimation: its
density, its Young’s modulus, and its Poisson’s ratio. We compare these parameters to
the product specification [134] of the silicon foam used (SomaFoam 25) to identify its
density (400kg/m3) and Poisson’s ratio (0.48) reliably. The Young’s modulus 𝐸 is not
included in the product specification, so we estimate its value based on the reported
shore hardness and the Gent’s relation [57]. Since this is an empirical estimation with
a possibly large uncertainty, we make 𝐸 a trainable parameter in our optimization.

5.2.3 Hydrodynamic Forces

We model hydrodynamic effects as external and explicit forces added to the system.
For the sake of speed and simplicity in gradient computation, we choose to compute
thrust and drag from water with a widely used approximation in aerodynamics [162,
44, 107]:

f𝑑 =
1

2
𝜌𝐴𝐶𝑑(𝛼)‖v𝑟𝑒𝑙‖2v𝑟𝑒𝑙,

f𝑡 =− 1

2
𝜌𝐴𝐶𝑡(𝛼)‖v𝑟𝑒𝑙‖22n.

(5.3)

(5.4)
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Here, f𝑑 and f𝑡 represent the drag and thrust forces evaluated on every triangle on
the surface of Starfish after discretization. We use 𝜌 to represent the density of water
and 𝐴 the area of the triangle. v𝑟𝑒𝑙 ∈ R3 is the relative velocity between Starfish
and the flow of water, and 𝛼 is the angle of attack. 𝐶𝑑 and 𝐶𝑡 are scalar functions
computing the drag and thrust coefficients. For aerodynamic applications, 𝐶𝑑 and 𝐶𝑡

are typically measured by conducting wind tunnel experiments. For our underwater
experiments, however, a direct measurement of 𝐶𝑑 and 𝐶𝑡 is difficult. Therefore,
we represent 𝐶𝑑 and 𝐶𝑡 as B-splines and make their control points trainable in our
optimization. We initialize the B-splines with the curves suggested in Min et al. [107]
and optimize their shapes with the gradients calculated in the differentiable simulator.

5.2.4 Actuators

As we use tendons inside foam to actuate Starfish, we model the actuation with an
anisotropic elastic energy which exerts large forces along the tendon direction [44, 107].
For a tetrahedron through which the tendon passes, the associated anisotropic elastic
energy is defined as follows:

𝐸𝑎 =
𝑤

2
‖(1− 𝑎𝑖)Fm‖22, (5.5)

where 𝑤 is a prespecified stiffness, F is the deformation gradient, m is the direction
of the tendon, and 𝑎𝑖 ∈ [0, 1] is the control signal. Smaller 𝑎𝑖 indicates greater
contraction along the tendon direction. The actuation force f𝑎 for each node is then
computed by aggregating 𝐸𝑎 from its adjacent tetrahedrons and calculating its spatial
gradients. Our actuator model has one trainable parameter 𝑤 in our optimization.

5.3 Optimization
Our ultimate goal is to find an open-loop controller for Starfish that maximizes its
forward velocity. In this section, we describe how we combine the simulation model
and real motion data to achieve this goal. Our core idea is to leverage the gradients
from the differentiable simulator to improve both the dynamic model (i.e., system
identification) and the open-loop control signals via trajectory optimization.

5.3.1 Problem Definition

We abstract the simulation model in Sec. 5.2 as follows:

s𝑖+1 = DiffSim(s𝑖, a𝑖; 𝜃) (5.6)

where s𝑖 = (x𝑖,v𝑖) represents the state of the robot at the 𝑖-th time step, a𝑖 is the
actuation signal as described before, 𝜃 represents model parameters, and DiffSim
can be any black-box differentiable simulator that computes s𝑖+1, the new state of
the system after one time step. The model parameters 𝜃 consists of all trainable
parameters in Sec. 5.2, which we summarize in Table 5.1.
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The decision variables to be optimized in our problem are the model parameters 𝜃
and the sequence of actions a𝑖. For optimizing 𝜃, we consider minimizing the following
objective 𝐿𝜃:

min
𝜃

𝐿𝜃.

𝑠.𝑡. 𝐿𝜃 =
∑︁
𝑖

‖s𝑖 − s*𝑖 ‖2,

s𝑖+1 = DiffSim(s𝑖, a
*
𝑖 ; 𝜃), s0 = s*0,

(5.7)

(5.8)

(5.9)

where s*𝑖 and a*
𝑖 refer to the state and the action signal from the measurement at the

𝑖-th time step. In short, we adjust 𝜃 to match the motion of Starfish in reality to its
counterpart in simulation.

The objective for optimizing a𝑖 is defined as 𝐿a below:

min
a𝑖

𝐿a.

𝑠.𝑡. 𝐿a = 𝐶𝑂𝑀(s𝑁)− 𝐶𝑂𝑀(s0),

s𝑖+1 = DiffSim(s𝑖, a𝑖; 𝜃), s0 = s*0.

(5.10)

(5.11)
(5.12)

where 𝑁 is the index of the last time step considered in this trajectory optimization
problem and 𝐶𝑂𝑀(s) computes the 𝑥 coordinate of the center of mass from state s.
We define the center of mass as the average of all vertices from s. Since the forward
direction of our Starfish is along the negative 𝑥 axis, minimizing 𝐿a will maximize
the traveling distance as desired. Note that 𝜃 is fixed in this optimization problem.

For a standard differentiable soft-body simulator, the procedure of computing the
gradients with respect to 𝜃 and a𝑖 is well documented in previous work [69], which
interested readers can refer to for more details. We use L-BFGS, a gradient-based
quasi-Newton method to solve the two optimization problems above.

5.3.2 Optimization Algorithm

We now present an alternating scheme to improve both the model parameter 𝜃 and
the sequence of actions a𝑖. Our optimization process starts with an initial guess of
𝜃 (Table 5.1) and a𝑖 (a synthetic control signal). We execute a𝑖 on the hardware
and collect the measurement (s*𝑖 , a

*
𝑖 ). Note that a*

𝑖 and a𝑖 differ slightly because the
motor quantizes the real number a𝑖 into integers. We then use a*

𝑖 and s*𝑖 to minimize
Eqn. (5.7) and obtain an improved model parameter 𝜃. Next, with the optimized

Table 5.1: A summary of all trainable model parameters.

Name Definition Initial guess
𝐸 Young’s modulus 0.9MPa, estimated from [134].
𝑤 The actuator’s stiffness 2MPa, from [44].
𝑃𝐶𝑑

Four control points of 𝐶𝑑 From [107], Fig. 2.
𝑃𝐶𝑡 Four control points of 𝐶𝑡 From [107], Fig. 2.
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dynamic model, we run trajectory optimization to update a𝑖. Finally, we test a𝑖 on the
hardware, initiating the next round of experiment and closing the optimization loop
in our pipeline. Alg. 7 summarize the whole optimization algorithm in pseudo-code.

Algorithm 7: Co-optimize model (𝜃) and actions (a𝑖)
Input: Initial 𝜃 and a𝑖;
Output: Optimized 𝜃 and a𝑖;
while experiments do not converge do

// Hardware experiment;
Execute a𝑖 on the hardware to collect s*𝑖 and a*𝑖 ;
// Check convergence;
Use s*𝑁 and s*0 to compute 𝐿a𝑖 ;
if 𝐿a𝑖 is similar to the last iteration then

// Convergence;
break;

// System identification;
Minimize 𝐿𝜃 (Eqn. (5.7)) to update 𝜃;
// Trajectory optimization;
Minimize 𝐿a (Eqn. (5.10)) to update a𝑖;

5.4 Results and Discussions

5.4.1 Hardware Setup

Fabrication The fabrication method has been chosen to allow for transfer from a
3D CAD model to a real-world robot while minimizing the “fabrication gap” between
the real and simulated system. Starfish is fabricated by creating an inverse mould
into which silicone foam (SomaFoam 25, SmoothOn) is cast. Silicone foam, a material
widely used for soft robotic fabrication [135], has been chosen as it allows for rapid
fabrication, shows elastic properties, and has natural buoyancy. The “muscle fibers”
or tendons can then be routed into the soft structure along the bottom of each of
the legs of Starfish. The tendons are inserted using a thin metal tube through which
the tendon fibers (non-extensible fishing line) can be inserted, and the tube removed.
Each tendon is fixed at the end of each leg using adhesive and connected to a servo
motor via an incompressible tube which runs through the center of the body of Starfish
where they are connected to the servo by a pulley. The servo can contract the tendons,
flexing the legs inwards, and then extend the tendons, to flex the legs to their initial
position. The motion is highlighted in Fig. 5-3. It is important that the tendon length
can be set accurately for effective sim-to-real transfer, as such the servo was chosen to
have a torque which is higher than the load. This was validated by performing no-load
and load tests and observing that the servo position is not significantly affected by
the load. The servo position is controlled by a microcontroller which sets the position
via a PWM signal.
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Experimental setup A tank-based experimental setup has been created for testing
the robot. To constrain the robot in an orientation that allows for motion capture,
the tank system has been fitted with horizontal rails constructed from fishing twine.
Starfish has low friction PTFE tubing through the body through which the guide rails
run. The use of low friction materials and the presence of water results in the rails
exhibiting low friction and enabling the robot to move forwards while the orientation
is fixed. The rails do provide some negating frictional force potentially reducing the

Figure 5-3: The fabricated soft robot (top) showing the servo-based mechanism and the
inset figure showing the underside and the tendon routing. The contracted and relaxed pose
of the robot are shown in the bottom pictures.
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forward velocity. However, we expect this to be minimal. The weight of the robot
has been adjusted such that it has approximately neutral buoyancy at the depth the
rails are within the tank. Fig. 5-4 shows the experimental setup.

To capture motion data from the soft robot, a high-speed camera (Logitech BRIO)
has been fixed outside the tank. Four black markers were attached to one side of
Starfish at locations which capture the most dynamic information about the robot.
To capture the 2D motion data from these markers, the video feed was calibrated
using a standard checkerboard and the marker locations extracted by tracking features
corresponding to the makers throughout the video.

In each experiment, the motion of the robot and the control sequence (i.e., the
length of contraction of the tendon) is recorded at 60Hz.

5.4.2 Experimental Verification

To verify the experimental setup and ensure that the interaction between the fluid and
Starfish is the direct cause of any resultant forward motion, we show in Fig. 5-5 the
motion of Starfish when the tank is both full of water and empty with a given cyclic
sequence of actions. The fact that the robot barely moved without water shows the
influence of solid-fluid interaction and the necessity of calibrating the hydrodynamic
model.

In addition to verifying the experimental setup, the repeatability and reliability of

Figure 5-4: Experimental setup showing the tank with the horizontal rails and the robot.
The high-speed camera and markers allow the motion of the robot to be captured.
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the experiments must be demonstrated to show that experiments are representative.
To show this, we ran the robot with a cyclic sequence of actions and observed cyclic
motions were established after the initial transient state of water (Fig. 5-5), indicating
that repeated control signals lead to reproducible motions in our experiments.
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Figure 5-5: Top row: The trajectories of Starfish running the same cyclic control sequence
with water (left) and without water (right). The robot made little progress when water was
not present. Bottom three: A cyclical control input (upper middle) is applied to the robot,
with the outer most markers (marker 1 and marker 4) positions recorded. The tracked
horizontal marker position (lower middle) and vertical marker position (bottom) show that
after some initial transients, repeatable and cyclical movement is achieved.
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5.4.3 Baseline Algorithms

To better evaluate the performance of our algorithm, we propose two baselines for
comparison: bl-ctrl and bl-one-iter. Both baselines provide an open-loop controller
that attempts to maximize the traveling distance of Starfish, which is our ultimate
goal in physical experiments. The bl-ctrl baseline proposes to use a sinusoidal se-
quence of actions with an educated guess on its frequency and amplitude without
further optimization. The role of this baseline is to understand if the problem can
be solved trivially by a carefully chosen handcrafted solution. The bl-one-iter base-
line simply runs our pipeline for 1 iteration and terminates, i.e., it conducts system
identification and optimizes a𝑖 exactly once. Comparing our pipeline to bl-one-iter
will evaluate the necessity of alternating between system identification and trajectory
optimization for multiple iterations. To ensure a fair comparison, we use bl-ctrl as
the initial guess of a𝑖 in both bl-one-iter and our pipeline (Alg. 7).

5.4.4 Optimization Results

We now report the progress of our optimization pipeline and the performance of the
optimized controller both in simulation and in reality. Note that the progress of our
pipeline also covers the performance of the two baselines above. This is because bl-
ctrl and bl-one-iter can be interpreted as terminating our pipeline at the beginning
and after 1 iteration, respectively. We optimize a 3-second-long sequence of action in
simulation and test it on Starfish for 30 seconds by repeating the sequence 10 times.
Table 5.2 summarizes the system identification loss 𝐿𝜃, the trajectory optimization
loss 𝐿a, and the average velocity of the robot in the simulation environments (𝑣𝑠)
and the physical experiments (𝑣𝑟). At each iteration, lower 𝐿𝜃 and 𝐿a and higher 𝑣𝑟
are better. We have also reported the optimized Young’s modulus 𝐸, the actuator
stiffness 𝑤, and the control points of 𝐶𝑑 and 𝐶𝑡 at each iteration in Table 5.2. To
visualize the optimized results, we render the motion of the simulated robot before
and after each iteration’s optimization in Fig. 5-6 and plot the optimized control
signals in Fig. 5-8. Finally, we show the performance of our optimized open-loop
controller in real-world experiments in Fig. 5-9.

5.4.5 Discussion

Comparisons with baselines By comparing the quantitative results between dif-
ferent methods in Table 5.2, we reach the following conclusions: First, the control
signal proposed by bl-ctrl performs poorly without further system identification or
trajectory optimization. The real robot travelled at 0.21𝑐𝑚 𝑠−1, corresponding to
only 6 centimeters during the 30-second-long test time. This shows that finding an
open-loop controller for an underwater soft robot is not a trivial task. Second, and
more importantly, we noticed that the traveling velocity measured in real experiments
increases monotonically with each iteration until the optimization process converges.
After 1 iteration, the traveling velocity from bl-one-iter (0.48𝑐𝑚 𝑠−1) is more than
twice that of bl-ctrl (0.21𝑐𝑚 𝑠−1). This trend continues until the algorithm conver-
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gences after three more iterations with a velocity of 0.75𝑐𝑚 𝑠−1. Such an improvement
after each iteration highlights the value of running Alg. 7 for multiple iterations.

Sim-to-real gap Another metric of success in our experiments is whether the sim-
to-real gap has been narrowed after optimization. The sim-to-real gap measures
the discrepancy between the dynamic model in simulation and the robot in real ex-
periments, which can be understood by answering two questions: First, does the
dynamic model fit the given measurement data well? Second, can the model predict
new behaviors accurately? Such questions can also be motivated from the classic
bias-variance tradeoff in machine learning, which aims to explain the expressiveness
and generalizability of a model.

To answer the first question, we refer readers to the second column of Fig. 5-6. By
definition, the distance between the measured and simulated marker positions (green
and blue spheres respectively) is a direct, quantitative metric of the fitting error of
our model (see also the 𝐿𝜃 column in Table 5.2). By comparing column 1 and 2,
we can see that our system identification step manages to explain the measurement
data well, as indicated by the closer distance between blue and green spheres after
optimization.

To answer the second question, i.e., the generalizability of our dynamic model after
system identification, we compare the simulated and actual motions of the robot

Table 5.2: The optimization progress of Alg. 7

Iter. 𝐿𝜃 𝐿a 𝑣𝑠 (𝑐𝑚 𝑠−1) 𝑣𝑟 (𝑐𝑚 𝑠−1) 𝐸 𝑤
0 (bl-ctrl) 9.2e-2 -1.2e-2 0.01 0.21 9.0e5 2.0e6

1 (bl-one-iter) 2.9e-2 -3.8e-2 0.83 0.48 5.0e5 4.1e6
2 7.7e-2 -3.4e-2 0.68 0.56 1.0e6 1.4e6
3 5.1e-2 -3.5e-2 0.66 0.67 4.3e5 4.8e6
4 5.2e-2 -3.9e-2 0.77 0.75 4.0e5 5.7e6
5 7.5e-2 -3.9e-2 0.75 0.75 3.8e5 5.8e6

Iter. 𝑃 1
𝐶𝑑

𝑃 2
𝐶𝑑

𝑃 3
𝐶𝑑

𝑃 4
𝐶𝑑

0 0.1 0.1 1.9 2.1
1 0.0 0.0 0.5 2.0
2 0.2 0.2 0.7 2.4
3 0.0 0.0 0.9 2.5
4 0.0 0.0 0.8 2.2
5 0.0 0.0 0.8 2.2

Iter. 𝑃 1
𝐶𝑡

𝑃 2
𝐶𝑡

𝑃 3
𝐶𝑡

𝑃 4
𝐶𝑡

0 -0.8 -0.5 0.1 2.5
1 -0.5 0.0 1.0 3.0
2 -0.5 -0.2 0.7 3.0
3 -0.6 -0.5 0.0 3.0
4 -0.6 -0.2 0.5 3.0
5 -0.6 -0.2 0.5 3.0
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Figure 5-6: Left two columns: the motion of our simulated Starfish before (column 1)
and after system identification (column 2) for the 1st to 5th iterations. The blue and
green spheres indicate the 4 marker’s locations in simulation and from real experiments,
respectively. We visualize the motion of the robot at 𝑡 = 0 and 𝑡 = 9 seconds. The goal
of this optimization is to narrow the distance between each pair of blue and green spheres.
Right two columns: the motion before (column 3) and after trajectory optimization (column
4). The goal of this optimization is to push the robot towards its left as much as possible.
Note that we assume the motion to be solved in trajectory optimization is cyclic with a
period of 3 seconds.

with a sequence of action not seen in the training process of the dynamic model.
Such a comparison is reflected in the first column of Fig. 5-6, i.e., the simulated and
actual motions before system identification at each iteration. Note that the simulated
and actual motions in this column execute the same sequence of action, but the
corresponding motion capture data have not been used to train the dynamic model
yet (which is what the algorithm is about to do afterwards). This also serves as a
direct measurement of the reality gap, i.e., if we run the simulated and actual robot
with exactly the same control signal, how different could the motions be? To quantify
the motion difference, we report in Table 5.2 the average velocity from this motion in
simulation (the 𝑣𝑠 column) and the real experiments (the 𝑣𝑟 column). It can be seen
that the difference between 𝑣𝑠 and 𝑣𝑟 becomes significantly smaller as the algorithm
proceeds with more iterations. Specifically, the two velocities become almost identical
after only 3 iterations, indicating our algorithm’s good generalizability as well as its
effort into narrowing the sim-to-real gap. To visualize the motions more thoroughly,
we plot the location of the robot’s center of mass in these two motions obtained at the
last iteration of our algorithm in Fig. 5-7. It can be seen that although the absolute
location of the center of mass still differs from time to time between simulation and
reality, the simulated motion exhibits local, oscillating patterns that are very similar
to its real-world counterpart. The full motion sequences can be found in our video
and in Fig. 5-9.
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Figure 5-7: The motion of the robot’s center of mass in simulation and in the real experi-
ments with the identical control signal. The simulation data is computed with the dynamic
model after our algorithm converges.

Optimized controller To better understand the optimized control sequence, we
plot the intermediate controllers after each iteration in Fig. 5-8. Comparing to the
baseline controller proposed in bl-ctrl, we notice the optimizer made two significant
changes to the control sequence: First, it increased its amplitude by about 16% (from
12mm to 14mm). Second, it injects very high-frequency signals from time to time.
We believe that both changes allow Starfish to leverage hydrodynamic forces more
effectively and lead to the longer traveling distance.

5.5 Conclusion

Computational tools for dynamic modeling and controller development of soft robotics
have the potential to change how we design and control soft robots. However, the
modeling of soft structures and environmental interactions make this challenging. Dif-
ferentiable simulators offer potential advantages as they expose gradient information
and also show computation efficiency. We proposed a pipeline for the development
of an open-loop controller for a swimming soft robot using a differentiable simulator
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Figure 5-8: The optimized control sequences a𝑖, reported as the tendon contraction (𝑑𝑙 in
millimeters) from our method and two baselines.

in which we iteratively loop between the real and simulated worlds. We demonstrate
this approach on a simple four-legged starfish-shaped soft swimming robot. Within
four iterations, we show the forward swimming velocity can be increased by a factor
of 3.6 in comparison with a handcrafted baseline. In addition, we show that the
sim-to-real gap, with the simulation showing realistic dynamic behaviors.

While this approach demonstrates how the simulation-to-reality gap can be qual-
itatively reduced, there still remains a quantitative gap, as can be seen from the
discrepancy between the simulated and actual center-of-mass motions in Fig. 5-7.
We believe this is due to inaccuracies in hydrodynamic force and actuator model-
ing. The pipeline concept we propose can be used interchangeably with alternative
simulators and other robots. This could allow for simulators with alternative hydro-
dynamic models to be explored as a means as further reducing the sim-to-real gap.
However, despite this, we still demonstrate how the performance of the robot can
be improved, showing that despite the existence of a “quantitative reality gap”, by
reducing the “qualitative reality” gap, optimization is still successful and contributes
to the performance improvement observed in real experiments.

In this first demonstration of the iterative use of a differentiable simulation for sys-
tem identification and trajectory optimization, we have considered a relatively simple
robot. Our Starfish has only a single control signal for all four limbs. For robots with
an increased number of actuators, the system identification and control problem be-
comes more challenging. The iterative approach we propose may become increasingly
beneficial as it allows for a wider range of conditions to be experienced which other-
wise may not be observed. This is a trade-off with the additional complexity. Future
work should investigate how the pipeline can be optimized by considering control
sequences not only optimized for forwards locomotion but also system identification.
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Figure 5-9: Overlaid motion sequence showing the progress made by the robot in the fixed
time period (30 seconds) when using the baseline handcrafted control sequence (top), the
bl-one-iter baseline control sequence (upper middle), and control sequences for the second
to fourth iteration.
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Chapter 6

Conclusions, Limitations, and Future
Work

As of today, co-designing the body and brain of a robot in the real world is still a
challenging problem due to the intricate coupling between geometry, control, simula-
tion, and fabrication. The process of discovering the best robot for a given task is still
largely driven by human experts, making this process labor-intensive and error-prone.
While engineers do exploit computational tools, e.g., CAD software and physics sim-
ulators, to assist themselves, we argue in this thesis that these computational tools
have much more potential and deserve more attention today than before. With care-
fully designed computational methods in geometrical design, control, simulation, and
optimization discussed in this thesis, we envision a holistic, fully automatic compu-
tational design process of robots that can reveal novel and extreme designs beyond
the knowledge boundary of human experts.

There are still quite a few limitations in the computational design pipeline and
differentiable simulation methods discussed in this thesis. These limitations lead to
many exciting research problems in designing, controlling, simulating, optimizing, and
fabricating robots. Below, we suggest a few future research directions that we consider
promising based on our preliminary exploration. We believe breakthroughs along
these directions will significantly push the frontier of computational robot design.

Discrete design space One simplification we have made throughout the whole
thesis is that discrete design parameters are omitted and assumed to be given and
fixed by a user. These parameters include a robot’s frame topology or controller’s
architecture, and attempts to optimize them are common in real-world robot design
tasks. As discrete parameters are inherently non-differentiable, our computational
pipeline grounded on differentiable simulation does not apply. Therefore, we must
introduce new techniques for at least two critical components in computational design
with discrete parameters: First, a proper representation of the discrete design space.
Second, and more importantly, an efficient algorithm for exploration and optimization
in such a design space. A possible solution to both of them is to rewrite discrete
designs as programs, e.g., using a concise program to describe the network architecture
of a neural network controller. Following this idea, we can bridge computational
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design and program synthesis techniques to explore discrete design parameters [42].
Other possible solutions like representing discrete designs as graph networks are also
viable, and we leave them as future work.

Multi-objective performance metrics So far in this thesis, we have only dis-
cussed designing a robot with a single performance metric. However, robots in real
life are versatile, general-purpose, and rarely designed for maximizing a single objec-
tive only. Therefore, extending the entire computational design pipeline with multiple
performance metrics would be an exciting direction. It turns out that optimizing with
multiple objectives is generally more challenging than single-objective optimization
because different objectives may correlate, conflict, or even compete with each other.
In this case, one typically expects to explore a set of solutions with tradeoffs, known
as the Pareto set, instead of finding a single solution that maximizes all objectives
simultaneously. Introducing classical numerical methods in multi-objective optimiza-
tion to computational robot design will inspire multi-purpose robot designs, which
we consider a valuable future direction to explore.

Advanced physics simulation Another future direction we would like to explore
is to create high-fidelity, multi-physics differentiable simulation. Despite the success
in multicopters and soft underwater robots, the differentiable simulators presented in
this thesis still have quite a few limitations in physics accuracy, collision handling,
and fluid-solid coupling. Previous papers have provided solutions to simulating much
more sophisticated physics systems than what we present in this thesis. In the future,
we would like to revisit these forward simulation methods but from a perspective
of differentiable simulation. As we have shown in Chpt. 4, augmenting an existing
forward simulator with gradients can be nontrivial and lead to open research problems.

Sim-to-real transfer Lastly, although we have discussed the issue of sim-to-real
gaps in this thesis, the solution we provide is not verified in more general cases other
than the soft underwater robot we have shown in Chpt. 5. One strong assumption
we have in Chpt. 5 is that the first-principle dynamic model has enough capacity to
fit the motion data we gather from real-world experiments. However, a real-world
robot model may contain uncertainties that are challenging to model with analytical
governing equations. Moreover, even if it is possible to model the real-world dy-
namics with known equations, measuring their coefficients may be intractable in an
experiment. One possible solution is to combine first-principle physics models with
data-driven, learning-based approaches to absorb any uncertainties in the dynam-
ics model, which has already drawn attention from researchers in the learning and
robotics communities.

Apart from the directions mentioned above, we reiterate that computational robot
design is a multidisciplinary problem requiring efforts from computer science, electric
engineering, mechanical engineering, and material science, to name a few. The com-
putational methodology presented in this thesis constitutes only a small portion of
the optimal solution to this problem. Still, we believe our expedition in this thesis
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could be beneficial to the general audience interested in this problem, and we hope it
could inspire future collaborations across different research fields including graphics,
robotics, learning, programming language, and many more.
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