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Abstract

Time-energy entanglement is a quintessential resource for emerging quantum tech-
nologies. In this thesis, we harness this resource for applications such as quantum
communication and quantum networking. In the first part of this thesis, we demon-
strate an indistinguishable heralded single-photon source, featuring time-energy en-
tanglement elimination in the spontaneous parametric down-conversion (SPDC) pro-
cess through custom engineering of phase-matching conditions. The heralded single-
photon source is useful in measurement-based quantum applications, where indistin-
guishable single photons are required to ensure high-visibility photon-photon inter-
ference.

The second part of this thesis studies the time-domain characterization of time-
energy entangled photon pairs. We present here the first experimental demonstration
of the conjugate-Franson interferometer (CFI). We show that the CFI visibility can
certify time-energy entanglement and detect the biphoton spectral phase, which Fran-
son interferometry and Hong-Ou-Mandel interferometry are incapable of.

In the final part of this thesis, we show an experimental demonstration of high-
dimensional quantum key distribtuion (QKD) protocol with frequency-bin encoding
using time-energy entangled photon pairs. We used programmable frequency filters
to obtain 16 frequency bins for key generation within a 640 GHz flat spectrum in the
telecommunication wavelength band. The security of the protocol was safeguarded
by the CFI visibility being measured at the same time of the key generation process.
Over a 137-meter fiber link, we measured a secure photon information efficiency (PIE)
of 0.6 bit/coincidence, corresponding to a secret key rate (SKR) of 42.6 kbits/s.

Thesis Supervisor: Franco N. C. Wong
Title: Senior Research Scientist, Research Laboratory of Electronics
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Chapter 1

Introduction

Advancements in quantum technology provide new opportunities in the fields of com-

puting [1, 2, 3], communication [4], and sensing [5]. In classical secure communication,

two distant parties, Alice and Bob, share a set of encryption and decryption keys and

establish information exchange in a public channel. The secure communication be-

tween Alice and Bob relies on the encryption or decryption keys that are not known

to the adversarial eavesdropper Eve. For instance, the secure message exchange be-

tween Alice and Bob is usually handled using RSA public-key cryptography. RSA

public-key cryptography is based on a computational complexity assumption that de-

ciphering the encrypted message is exponentially hard if one does not have the private

key. Breaking RSA public-key encryption security requires factoring the product of

two large prime numbers, which does not have an efficient classical algorithm yet.

Nevertheless, this type of encryption scheme is theoretically breakable and not un-

conditionally secure. In 1994, an efficient quantum algorithm for factoring a large

number was discovered by Peter Shor [6] that renders the RSA encryption insecure.

Therefore, an unconditionally secure communication protocol is needed for encrypt-

ing sensitive information to counter the soon-to-be-realized Shor’s algorithm and any

future advancements in decryption technology.

Quantum key distribution (QKD) provides unconditionally secure communication

between two parties vouchsafed by the law of physics. In QKD, randomized keys en-

coded on quantum states are exchanged between Alice and Bob. Because an unknown

19



quantum state cannot be perfectly copied, any alteration attempts by Eve therefore

introduce measurable communication error in the system [7, 8]. If Eve tries to eaves-

drop on the communication channel, Alice and Bob can detect the disturbance caused

by Eve, abort the communication, and discard the exchanged key. Because there is

no actual information being exchanged during key distribution sessions, exchanged

key gained by Eve does not reveal any real information. Alice and Bob can postpone

their communication until they establish a set of secure keys that are not known to

Eve. Messages can then be encoded using one-time-pad encryption with the estab-

lished secure keys and sent over a classical public channel. We should note here that

the encryption keys should have the same length as that of the message and are not

re-used to ensure absolute secrecy [9]. There are different QKD protocols that have

been proposed and demonstrated, some of which are briefly discussed below.

1.1 Prepare-and-measure protocol

In the prepare-and-measure protocol, Alice prepares the encoded pulses or photons

and sends them to Bob, who receives and decodes the message. One of the best

known prepare-and-measure QKD protocols is the Bennet-Brassard 1984 (BB84)

protocol [10, 11]. In BB84, each bit value of the key is randomly encoded on the

polarization state of a single photon, and the sequence of single photons is transmit-

ted via a quantum channel. The common polarization states used for encoding are

the rectilinear basis of vertical (V) and horizontal (H) and the diagonal basis of 45∘

and 135∘. Nevertheless, any two mutually unbiased bases can be used for encoding.

Alice randomly chooses one of the mutually-unbiased bases and prepares the photon

in one of the two orthogonally-polarized states, denoting it bit 0 or 1, and sends it to

Bob. After Bob has received the photon, he randomly selects a basis to measure the

photon’s polarization, and records the bit-value result. After a series of detections

has been made, Bob announces his basis choice for each of his received photons on

an authenticated public channel, and Alice indicates the cases in which they used the

same basis. Alice and Bob only keep the results in which the same basis was used for

20



the measurement. The data they keep become the sifted key. A portion of the sifted

key is used to determine the quantum bit error rate (QBER). A high QBER indicates

Eve’s presence and shows that the communication link is not secure. If the QBER is

satisfactory, Alice and Bob can perform error correction and privacy amplification to

obtain the secret keys.

A simple strategy for Eve to attack the quantum channel is the intercept-and-

resend attack [10]. In this attack, Eve randomly chooses a basis and performs the

polarization measurement. She then sends Bob a new photon encoded according

to her chosen basis and measurement result. The probability of Eve selecting the

correct basis is 50%. If the correct basis is chosen, Eve introduces no additional error.

Otherwise, the photon Bob received has a random polarization compared to Alice’s

encoded polarization. In this case, Eve presents a minimum of 25% QBER when she

performs intercept-and-resend attack. This simple example shows that Eve cannot

eavesdrop on Alice and Bob’s key distribution without introducing noticeable errors

in the quantum communication channel.

The BB84 protocol calls for using single photons in the key exchange, but, in

practice, it is usually implemented with an attenuated laser source. The attenuated

laser source is not a true single-photon source. The emission of two or more photons

gives Eve the opportunity to split off one of the photons and perform a measurement

without degrading the QBER. This hacking strategy is known as the photon-number-

splitting (PNS) attack [12, 13]. The decoy-state method was proposed to fend off the

PNS attack [14, 15]. The decoy-state method uses weak coherent pulses of several

different intensity levels instead of one intensity level for encoding. Alice and Bob

can then actively monitor the quantum channel by distinguishing between the signal

and decoy states. Eve’s channel interference inevitably changes the detection rates

for signal and decoy states differently, thus revealing her presence. The decoy-state

QKD dramatically improves the performance and has become a common practice in

implementing today’s QKD systems.

The BB84 protocol is a discrete-variable (DV) protocol because it encodes infor-

mation in a discrete variable space. Other DV protocols, such as coherent one-way [16]
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and differential-phase-shift [17], encode information on photon arrival time and rel-

ative phase between adjacent weak coherent pulses. Keys can also be encoded in a

continuous variable (CV) space, such as the quadratures of the coherent state [18].

1.2 Entanglement-based protocol

An alternative to the prepare-and-measure protocol is the entanglement-based pro-

tocol that utilizes entangled photon pairs as the photon source. Alice and Bob can

obtain correlated measurement results from the shared entangled photon pairs. Fur-

thermore, Alice does not need to prepare the photon in a specific quantum state

before sending it over the quantum channel, which is different from what is done in

the prepare-and-measure protocol. The secret key is extracted from the correlated

measurement results of the entangled photon pairs’ states, whether the measurements

are carried out before or after the entangled pairs are distributed. An example of the

entanglement-based protocol is the Ekert91 protocol [19]. In Ekert91, polarization-

entangled photon pairs are generated and distributed to Alice and Bob. The entangled

photon pairs can be provided by Alice, Bob, a trusted or untrusted third party, or

even Eve. Alice and Bob then measure the photons’ polarization. After a series of

measurements, Alice and Bob use their results to extract secret keys and check for

communication security.

The security of the Ekert91 protocol relies on the quality of the entanglement.

Alice and Bob use part of their measurement results to compute the S value in the

Clauser-Horne-Shimony-Holt (CHSH) inequality [20]. The CHSH inequality is a gen-

eralization of Bell’s theorem [21]. When the photon pairs are maximally entangled, the

CHSH S value has a maximum value of 2
√

2. If Eve eavesdrops on the communication

link, she will unavoidably degrade the entanglement quality that results in a lower S

value. As a result, Eve’s presence can be determined by actively monitoring the CHSH

inequality S value. Many experiments have demonstrated a substantial violation of

the CHSH inequality with results close to the maximum S value [22, 23, 24, 25, 26].

Therefore, Alice and Bob can detect any slight decrease in CHSH value, providing
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a sensitive and accurate method to safeguard the communication link. An essential

advantage of an entanglement-based protocol is that the randomness of the photon’s

bit value (such as polarization) can be characterized by the entanglement source’s

CHSH S parameter value.

Nevertheless, the entanglement-based QKD system’s key rate is typically on the

order of kbits/s, which is not enough to satisfy today’s data demand. For example,

a live video feed requires Mbits/s of bandwidth to function. The low key rate limits

the possible applications and usefulness of entanglement-based QKD. The bottleneck

of the limited key rate is mainly due to the quantum light source’s low flux. When

operating in a higher flux regime, multiple entangled pairs or fluorescence can be

emitted simultaneously, significantly decreasing the entanglement’s quality and the

achievable communication security key rate. Consequently, the entanglement-based

QKD system has to operate in the low-flux regime such that the probability of more

than one photon pair emitted within a bit duration is small.

1.3 High-dimensional quantum key distribution

One option to achieve a higher secure key rate is to expand the dimensions of the

encoding space. Instead of polarization encoding used in BB84 and Ekert91, one can

use orbital angular momentum (OAM) of light to encode information. Theoretically,

OAM and its mutually unbiased basis, azimuthal angle (ANG) basis, have infinite

dimensions. Nevertheless, the achievable dimension is limited by the aperture of the

optical system. Free space OAM encoding QKD experiments have been demonstrated

using an attenuated laser source or an entangled photon source [27, 28], showing a

seven-dimensional alphabet encoding. Nevertheless, the generation rate of arbitrary

OAM modes is limited, which constrains the achievable key rate in the OAM-QKD

system. OAM is typically generated using spatial light modulators that have a 60

Hz refresh rate. High OAM generation rate at 4 kHz has been demonstrated using a

digital micro-mirror device (DMD) [29]. Another drawback of OAM mode is that it is

susceptible to turbulence and cannot be transmitted in standard single-mode optical
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fiber. Therefore, using OAM for high rate QKD has some practical challenges that

need to be overcome.

Time-energy entanglement is continuous-variable (CV) in nature and can pro-

vide sufficient dimensions for time or frequency encoding [30]. Furthermore, time-

energy entangled photons can be reliably transferred through standard single-mode

fiber, utilizing existing telecommunication networks. Dispersive-optics (DO) QKD

has been proposed and experimentally demonstrated as a scheme to boost the secret

key rate [31, 32]. In DO-QKD, the entangled photon pairs are distributed between

Alice and Bob, and they detect the photons in the time basis or frequency basis. In

the time basis it is to detect the photons’ arrival times, and in the frequency basis the

photons’ frequency contents are measured. The frequency measurement is achieved by

introducing normal dispersion and anomalous dispersion to the photons, converting

their frequency information to arrival times. Signal and idler photons remain corre-

lated if Alice and Bob choose the same basis for measurement. A dimension of 64 was

achieved in the DO-QKD setup, resulting in Alice and Bob’s Shannon information of

2.82 bits per coincidence detection [31]. The security of DO-QKD is based on nonlo-

cal dispersion cancellation between the entangled photons. Eve’s Holevo information

can be bounded using the time-frequency covariance matrix (TFCM). Elements of the

TFCM can be estimated from time basis and frequency basis measurements, limited

by detector jitter and the amount of applied dispersion [32].

A different approach to utilizing time-energy entanglement is to encode in the

photons’ arrival times and perform the security check through Franson interferome-

try [33, 34]. Using low jitter single-photon detectors and high precision time taggers,

Zhong et al. were able to achieve a dimension of 1024, yielding a secret key capacity of

6.9 bits per photon coincidence after 20 km fiber transmission. Eve’s Holevo informa-

tion is bounded using the TFCM, similar to what is done in the DO-QKD protocol.

The TFCM is estimated using a Franson interferometer, assuming that the detector

jitter limits the system’s timing variation. The Franson interferometer is a direct

test of time-energy entanglement, equivalent to the CHSH inequality measurement

in polarization-entangled photons. Furthermore, the Franson interferometer probes
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the frequency correlation, providing information on the conjugate of the encoding

basis [35]. However, a 30% constant bit error rate is observed in time-bin encoding

due to detector timing jitter [33]. Although the high QBER is largely corrected using

a layered LDPC code, it constrains the key rate’s further optimization.

1.4 Status of quantum key distribution deployment

Although QKD systems have been demonstrated successfully in laboratory settings,

solutions for a practical commercial system are still under active research and devel-

opment. A major shortcoming barring the QKD system from practical usage today is

the limited secret key rates. QKD systems transfer secret keys used for one-time-pad

encryption, which requires the key to be as long as the message. This requirement

puts significant constraints on the QKD communication rate. Presently, the clas-

sical optical communication rates are on the order of Tbit/s. On the other hand,

today’s high-rate QKD systems can only deliver Mbit/s speeds, which is insufficient

for large-scale network deployment [36].

It is also difficult to extend the communication range of QKD systems. Typically,

QKD systems operate in photon starved condition, which is sensitive to channel loss.

For example, in BB84 no bit information is transmitted if the photon carrier is lost

en route. Improvement on fiber channel loss is difficult as it is limited by the light

scattering inside the fiber core. As a result, besides developing better sources and

detectors to tolerate higher transmission loss, the development of a quantum repeater

is essential to scale up the communication distance of QKD systems.

Another important issue is the cost and robustness of QKD systems. For example,

most QKD protocols require detectors to have high efficiency and low noise at the

single-photon level. Such detectors are expensive to deploy in large quantities because

of the tight technical requirements. Photonic integration of the QKD system can

deliver compact QKD transceivers at low cost and hence can be a solution to this

problem. The major platforms for integration are silicon (Si), indium phosphide

(InP), lithium niobate (LiNbO3), and glass waveguide [36]. Although the research on
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integrated quantum photonics is still in its early stage, it holds a promising future for

practical QKD systems.

Despite many technical challenges in realizing large-scale commercial QKD sys-

tems, experimental QKD networks have been established worldwide. For example,

the DARPA quantum network, set up in 2004 in Massachusetts, USA, had 10 nodes

linking MIT and Harvard [37]. Similar networks have been set up in Europe, Japan,

and China [38, 39, 40]. Recently, a satellite-based QKD network has also been estab-

lished that provides kHz communication rates over a distance of up to 1,200 km [41].

Twin-field QKD has also been demonstrated over 511 km of optical fiber [42].

1.5 Thesis overview

In this dissertation, we tackle some of the aforementioned problems by engineering the

time-frequency correlation of entangled photon pairs. First, we investigate and de-

velop a new source of single photons in a single spatiotemporal mode for long-distance

entanglement distribution using the DLCZ protocol [43]. In the DLCZ protocol, two

photons that interact at a beam splitter need to be completely indistinguishable to

achieve a high success rate. This can only be done if the two interacting photons

have the same spatiotemporal mode. Here, we propose and demonstrate a heralded

single-photon source that can produce indistinguishable single photons that are in a

single spatiotemporal mode for entanglement generation and distribution and other

quantum network tasks.

Next, we study the fundamental property of time-energy entanglement through

newly developed nonlocal conjugate-Franson interferometry. Understanding and char-

acterizing time-energy entanglement is a fundamental building block for entanglement-

based, high-dimensional quantum information processing using biphotons. The con-

ventional method for characterizing such time-energy entanglement is nonlocal Fran-

son interferometry. Franson interference can certify that a biphoton state is entangled,

but it cannot fully characterize that state. This drawback is due to Franson interfer-

ometry’s fringe visibility being determined by the biphoton’s joint spectral intensity
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(JSI), which falls short of full state characterization as it lacks the spectral phase infor-

mation needed to determine the state’s joint spectral amplitude (JSA). Measurement

of the biphoton’s joint temporal intensity (JTI) would complete state characteriza-

tion made with Franson interferometry, because spectral phase can be retrieved from

knowledge of the JSI and JTI. Previous experiments that measure a biphoton’s JTI,

however, have been limited to time-resolved local interference with nearly-degenerate

photon pairs or have required femtosecond pulse gating and phase-sensitive detection

with a stable and well-characterized classical field. In contrast, the conjugate-Franson

interferometer (CFI), first proposed in Phys. Rev. Lett. 112, 120506 (2014) [35], pro-

vides a much more powerful and convenient route to JTI determination for monochro-

matic pumped spontaneous parametric down-conversion (SPDC). In particular, the

conjugate-Franson interferometer is a nonlocal measurement that can work with non-

degenerate photon pairs generated by pulse-pumped or continuous-wave sources, and

it does not require ultrafast pulse gating. Overall, the conjugate-Franson interferom-

eter provides a new and convenient method for quantifying the temporal-correlation

behavior of time-energy entangled photons. In conjunction with a JSI measurement

obtained using a Franson interferometer, our conjugate-Franson interferometer’s JTI

measurement completely characterizes a biphoton’s state. As a result, this work has

the potential to significantly expand the current quantum-measurement toolbox.

Finally, we explore a frequency domain protocol for a high-dimensional QKD

(HDQKD) system. We expect to obtain an improved QBER rate better than the

30% seen in time-bin encoding by adopting frequency-bin encoding. Furthermore,

frequency-bin encoding also has a greater potential of achieving a larger encoding

dimension as it can utilize the photon pairs’ few THz bandwidth ranges. In the

previously discussed time-bin encoding protocol, increasing the encoding alphabet

extends the required time frame for single entangled pair emission, limiting photon

flux. This flux-dimension trade-off does not apply to the frequency-bin encoding

scheme because increasing the frequency bin number does not affect the measurement

time frame, providing a more promising outlook for high rate operation.

The thesis is organized as follows:
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• Chapter 2 summarizes the theory of generating factorable biphotons and de-

scribes the relevant experiment and its key results. Using a KTiOPO4 (PPKTP)

crystal with a tailored Gaussian phase-matching function, we demonstrate high

Hong-Ou-Mandel interference (HOMI) visibility between independent heralded

photons. We also investigate the effects of pump spectral shape on the HOMI

visibility.

• Chapter 3 presents a frequency shifter that utilizes a commercially available

quadrature phase-shift keying modulator. We demonstrate the performance of

this modulator by shifting the frequency of classical monochromatic laser light

and broadband single photons. We further show that the frequency shifter only

acts on the frequency mode and does not affect other input properties.

• Chapter 4 introduces and discusses conjugate-Franson interferometry. In this

chapter, we review the theory of the CFI and show the link between CFI visi-

bility and the input’s JTI. We present the first experimental demonstration of

the CFI and show that the visibility decreases by up to 21% when a spectral

phase is introduced in the input biphoton state.

• Chapter 5 presents the frequency domain high-dimensional quantum key dis-

tribution (QKD) protocol. In this chapter, we discuss the frequency encoding

scheme and the calculation of communication key rate. We also show how to

secure the protocol against Eve’s collective attack using conjugate-Franson in-

terferometry. Finally, we present the first proof-of-concept demonstration of

high-dimensional QKD with frequency encoding.

• Chapter 6 summaries the major results and gives future research outlooks.

28



Chapter 2

Indistinguishable single-mode photons

from spectrally engineered biphotons

Measurement-based quantum applications require strong photon-photon interference

to improve their success rates. Specifically, deterministic and highly indistinguish-

able single-photon sources are the key for scalable implementation in photonics-based

quantum simulation or long-distance quantum entanglement distribution. Because of

the presence of photon loss, it is not easy to have a genuinely deterministic source. An

alternative approach is to use photon pairs generated from pulsed spontaneous para-

metric down-conversion (SPDC). A successful heralding detection of the idler photon

indicates the presence of the signal photon. The SPDC process is robust, operational

at room temperature, and scalable using the lithium niobate thin-film platform [44].

Although this process is probabilistic in nature, multiple photon sources can be multi-

plexed to effectively guarantee that a photon is generated within one clock cycle [45].

The heralded single photons are in a spectrally mixed state because of the en-

tanglement between signal and idler photons. This spectrally mixed state decreases

interference between different photons and is not desirable for the aforementioned

measurement-based quantum applications. The frequency entanglement between

SPDC signal and idler has to be eliminated to solve this issue. Methods to eliminate

frequency entanglement are beyond the scope of this thesis and are not discussed in

this chapter. For more information on this topic, please see our previous publication,
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Opt. Express 25, 7300-7312 (2017) [46] and discussion in my Master’s thesis [47]. In

this chapter, we focus on the experimental verification of the heralded photons’ indis-

tinguishability. We first review the indistinguishable heralded single-photon source

in periodically poled KTiOPO4 (PPKTP) with phase-matching function engineer-

ing. Next, we discuss the theory of factorable photon pairs and present experimental

verification of the indistinguishability between the independently generated heralded

photons.

Materials presented in this chapter have been published in Opt. Express 27, 11626-

11634 (2019) [48].

2.1 Introduction

In a prototypical quantum network with multiple quantum nodes, single photons in a

well-defined single-spatiotemporal mode are highly desirable for implementing qubit

measurement-based quantum information processing and networking applications.

High-purity single-mode photons are especially important for complex tasks that may

involve multiple quantum interference measurements, such as quantum computation

and simulation [49, 50], or realization of a scalable quantum network [43, 51]. It is

quite simple to herald single photons from biphotons generated in pulsed SPDC. In

general, however, SPDC biphotons are frequency entangled, as can be seen from their

predicted joint spectral amplitude (JSA), or shown by analyzing their factorability

using the Schmidt decomposition [52, 53]. Under such conditions, heralding a signal

photon by detecting its idler companion results in the signal photon being left in a

spectrally mixed state [54] that does not yield high visibility in quantum interference

measurements.

Recent works in this area focus on spectrally engineered SPDC sources to create

factorable biphotons for generating pure-state heralded single photons. One approach

is to create an elongated JSA oriented along the idler (or signal) frequency axis with

rectangular symmetry [55, 56], as demonstrated in [56], which showed 94.4% visibil-

ity in Hong-Ou-Mandel interference (HOMI) [57] between two independent heralded
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photons at 830 nm that was observed without spectral filters. The other approach, as

employed in this work, is to create a circularly symmetric JSA at a more convenient

telecommunication wavelength in PPKTP.

In a low-flux, perturbative treatment of SPDC, the biphoton output has the

frequency-domain representation [58]

|𝜓⟩𝑠𝑖 ∝
∫︁
𝑑𝜔𝑠

2𝜋

∫︁
𝑑𝜔𝑖

2𝜋
𝜀𝑝(𝜔𝑠 + 𝜔𝑖)Φ(𝜔𝑠, 𝜔𝑖) |𝜔𝑠⟩𝑠 |𝜔𝑖⟩𝑖 , (2.1)

where the integrand is the JSA, whose squared magnitude is the readily-measured

joint spectral intensity (JSI). In Eq. (2.1), 𝜀𝑝(𝜔) is the pump field, Φ(𝜔𝑠, 𝜔𝑖) is the

crystal’s phase-matching function, and |𝜔𝑠(𝑖)⟩𝑠(𝑖) is the single-photon signal (idler)

state at frequency 𝜔𝑠(𝑖). Under extended phase-matching conditions [55, 58, 59], Φ is

oriented diagonally (positively correlated) in signal-idler frequency space, whereas 𝜀𝑝

is anti-diagonally oriented in that space. Therefore 𝜀𝑝 and Φ are orthogonal in signal-

idler frequency space and serve as two independent control parameters to shape the

JSA to be circularly symmetric.

Several attempts to generate a circularly symmetric JSA utilized standard phase

matching that has a sinc function dependence whose side lobes degrade circular sym-

metry [59, 60, 61, 62]. To recover the desired circular symmetry, a nonlinear crystal’s

phase-matching function can be modified to possess a Gaussian shape by engineer-

ing its nonlinearity profile [63], poling pattern [64, 65, 66], or poling periods [67].

Recently, we custom-fabricated a PPKTP crystal with a Gaussian phase-matching

function [67, 46] to generate biphotons with a circularly symmetric JSI, as shown in

Fig. 2-1. The JSI of Fig. 2-1(a) shows residual side lobes that are at least 24 dB lower

than the main lobe, yielding the Gaussian signal and idler spectra of Fig. 2-1(b) by

tracing over the other photon’s spectrum in Fig. 2-1(a). We infer a heralded-state

spectral purity of 99% if we assume the joint distribution of signal and idler ampli-

tudes are transform limited in frequency and time [46]. Because the JSI contains

no phase information, we could not verify that the generated biphotons were indeed

factorable with near-unity heralded-state purity. Moreover, due to the limited spec-
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Figure 2-1: JSI and marginal distribution of biphotons generated from PPKTP with
Gaussian phase matching and 1.0 nm pump bandwidth. (a) JSI, obtained from
dispersion-based spectrometry with 40 km of fiber and 60-min integration time, show-
ing weak residual side lobes. (b) Signal (red) and idler (blue) spectra and the Gaussian
fit (dashed line).

tral resolution and range in the JSI measurement [68], the inferred value can only

serve as an upper bound on the spectral purity. In this work, we first show theo-

retically that, given a circularly symmetric JSI, it is both necessary and sufficient

to use a transform-limited Gaussian pump with an appropriate bandwidth to ob-

tain a factorable biphoton state with transform-limited signal and idler. We then

experimentally verify the heralded-state purity by performing HOMI between two

independent heralded photons, obtaining a HOMI visibility of 93.9 ± 1.8% without

filtering and 98.4± 1.1% with mild filtering of the SPDC output. Without correcting

for accidental coincidences due to multipair events and dark counts, we obtained a

heralded-state purity of 99.2%.

2.2 Theory of factorable biphoton and estimated her-

alded spectral state purity

To fully characterize the biphoton state requires measuring the spectral as well as

the temporal correlations, as demonstrated recently [69, 70]. However, most mea-

surements are performed in the spectral or temporal domain, but not both, rendering

32



these measurements incomplete. We cannot infer from a circularly symmetric JSI the

factorability of the biphoton without assumptions. Given the Gaussian, circularly

symmetric JSI of Fig. 2-1 together with a Gaussian phase-matching function [67, 46],

we derive the necessary and sufficient conditions for a factorable biphoton state. We

take the pump field’s spectrum to be Gaussian

𝜀𝑝(𝜔) = 𝐸𝑝(𝜔𝑝) exp[−(𝜔 − 𝜔𝑝)
2/4𝜎2

𝑝 − 𝑖𝛽(𝜔 − 𝜔𝑝)
2/4], (2.2)

where 𝐸𝑝 is the pump field’s amplitude at its center frequency 𝜔𝑝, 𝜎𝑝 is its root-mean-

square (RMS) bandwidth, and 𝛽 is its second-order dispersion, in units of fs2. We

assume that the PPKTP crystal is phase matched at frequency degeneracy, satis-

fies the extended phase-matching condition [58], and has a Gaussian phase-matching

function [67, 46]. We can then write the phase-matching function as

Φ(𝜔𝑠, 𝜔𝑖) = 𝑒−𝐾Δ𝑘2(𝜔𝑠,𝜔𝑖) ≈ 𝑒−𝐾(𝑘′𝑠−𝑘′𝑖)
2(𝜔𝑠−𝜔𝑖)

2

, (2.3)

where 𝐾 > 0 is a constant proportional to the crystal length, ∆𝑘(𝜔𝑠, 𝜔𝑖) = 𝑘𝑝(𝜔𝑠 +

𝜔𝑖) − 𝑘𝑠(𝜔𝑠) − 𝑘𝑖(𝜔𝑖) is the phase mismatch, 𝑘𝑝(𝑠,𝑖)(𝜔) is the pump (signal, idler)

wavenumber at 𝜔, and 𝑘′𝑠(𝑖) = 𝑑𝑘𝑠(𝑖)/𝑑𝜔|𝜔=𝜔𝑝/2 is the inverse of the signal (idler)

group velocity. The approximation in Eq. (2.3) is obtained by expanding the phase

mismatch to second order at frequency degeneracy while imposing the extended phase-

matching condition [58]. Inserting Eqs. (2.2) and (2.3) into Eq. (2.1), we find that

a circularly symmetric JSI results if and only if the pump bandwidth is given by

1/4𝜎2
𝑝 = 𝐾(𝑘′𝑠 − 𝑘′𝑖)

2, in which case the signal and idler have RMS bandwidths 𝜎𝑠 =

𝜎𝑖 = 𝜎𝑝/
√

2. To have a factorable biphoton state, i.e., a factorable JSA, we must also

require a transform-limited (chirp-free) pump, viz., one whose second-order dispersion

vanishes, 𝛽 = 0. The resulting factorable state then has transform-limited signal and

idler photons:

|𝜓⟩𝑠𝑖 ∝ 𝐸𝑝(𝜔𝑝)

∫︁
𝑑𝜔𝑠

2𝜋
𝑒−(𝜔𝑠−𝜔𝑝/2)2/2𝜎2

𝑝 |𝜔𝑠⟩𝑠
∫︁
𝑑𝜔𝑖

2𝜋
𝑒−(𝜔𝑖−𝜔𝑝/2)2/2𝜎2

𝑝 |𝜔𝑖⟩𝑖 . (2.4)
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Heralded photons from the factorable state in Eq. (2.4) are in a spectrally pure

state with a heralded-state purity 𝑃 = 1. If the Gaussian pump field satisfies the

bandwidth condition for a circularly-symmetric JSI, but is not transform limited

because of 𝛽 ̸= 0, the dispersive term exp[−𝑖𝛽(𝜔 − 𝜔𝑝)
2/4] in Eq. (2.2) introduces a

JSA phase term that is proportional to the product of the signal and idler frequencies,

which decreases their heralded-state purities. The degraded purity can be quantified

by performing a Schmidt decomposition on the SPDC signal (idler) state [71, 72]:

𝑃 = 1/
√︁

1 + 𝛽2𝜎4
𝑠(𝑖). Our theory implies that the heralded-state purity depends

on both the pump’s spectrum and its second-order dispersion, which is consistent

with the theoretical and numerical analysis in [73, 68]. Furthermore, our analysis

shows that measurements of the transform-limited Gaussian pump and the circularly

symmetric JSI are sufficient to ensure a high-purity factorable SPDC output state.

2.3 Hong-Ou-Mandel interference between indepen-

dently generated heralded photons

To verify the high purity of the SPDC output state experimentally, we measured the

HOMI visibility between two heralded signal photons generated by the same SPDC

source at two different times. High HOMI visibility can only occur if the heralded

photons are spectrally pure.

2.3.1 Pump pulse engineering

To generate spectrally pure heralded photons, the pump needs to be Gaussian and

transform-limited. In this section, we examine the effects of the pump in three dif-

ferent cases: (i) transform-limited pump, 𝛽 = 0, with a non-Gaussian profile, (ii)

Gaussian pump with nonzero second-order dispersion 𝛽 ̸= 0, and (iii) transform-

limited Gaussian pump.

Figure 2-2 shows the experimental setup for SPDC biphoton generation and HOMI

measurement of two time-separated heralded signal photons. The SPDC pump was
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derived from an 80-MHz mode-locked Ti:Sapphire laser centered at 791 nm with a

maximum full width at half-maximum (FWHM) bandwidth of 7.8 nm. To modify

the pump bandwidth, we implemented a linear spectral filtering system using a pair

of identical diffraction gratings in a 4𝑓 optical configuration [74, 75]. Two identical

lenses with focal length 𝑓 = 20 cm were placed 2𝑓 apart, and the two diffraction

gratings were located a distance 𝑓 from the lenses, as shown in Fig. 2-2(a). The first

grating spatially dispersed the broadband pump’s spectral components that were then

focused by the first lens at the Fourier plane located at a distance 𝑓 from the lens. We

placed an apodizing mask at the Fourier plane to shape the pump spectrum. The type

of mask and its exact placement determined the pump’s spectrum and second-order

dispersion.

The pump at the input to its spectral filtering setup had a FWHM bandwidth of

6.25 nm as determined by an optical spectrum analyzer. We note that the pump’s

FWHM deviates from its maximum value of 7.8 nm because the laser was driven

at a lower current at the time of this particular measurement. The direct output

of the mode-locked pump laser should have approximately a sech2 pulse shape, and

our aim was to modify its shape to be Gaussian with a transform-limited bandwidth

of ∼1 nm. In order to check if the pump was transform limited we measured the

pulse duration of the pump before and after the 4𝑓 setup without an apodizing

mask. The pulse width measurement was done by autocorrelation based on second

harmonic generation. We obtained a pulse broadening ratio of 1.2 which corresponds

to a second-order dispersion of 𝛽 = 8,578 fs2. The pulse broadening observed can

be caused by aberrations, spatial chirp, or imperfect alignment. This amount of

dispersion is negligible for a pump bandwidth of ∼1 nm that we used to produce the

joint spectral intensity (JSI) in Fig. 2-1.

At the Fourier plane we placed an adjustable slit to reduce the pump bandwidth

to 1.0 nm and to obtain a Gaussian shape. That hard-aperture mask, however, has

a rectangular transmission profile and does not result in a Gaussian spectral profile,

while the pump remained transform limited. By trial and error, we moved the slit

several mm away from the Fourier plane to obtain a Gaussian shape. This maneu-
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ver reduced the filtered pump power and caused the pump to acquire an appreciable

amount of dispersion. In order to have both a Gaussian spectrum and negligible

dispersion, we chose to use a Gaussian transmission mask [76]. We collaborated with

colleagues at the National Institute of Standards and Technology (NIST) who fabri-

cated multiple transmission masks lithographically on a single 2-mm thick chromium

mask. Our Gaussian transmission mask consists of 16 individual strips of 2000 ×

200 opaque squares each measuring 4𝜇m in size. Each strip had a Gaussian spa-

tial distribution of the opaque squares spread over slightly different strip widths that

effectively imposed a pump bandwidth range 0.61–1.15 nm in 0.003 nm increments.

In Sect. 2.3.2, we show the HOMI results for the three mask choices: slit at the

Fourier plane that produces a transform-limited non-Gaussian pump, slit away from

the Fourier plane that produces a non-transform-limited Gaussian pump, and the

Gaussian transmission mask at the Fourier plane that produces a transform-limited

Gaussian pump. The pump beam is then focused onto the crystal with a beam waist

of 110 𝜇m. The generated SPDC photons are collected with a collection beam waist

of ∼ 90𝜇m.

After the pump spectral filter, we loosely focused the pump beam at the center of

the PPKTP crystal that was temperature stabilized at 22.4 ± 0.1∘C for operating at

wavelength degeneracy with signal and idler outputs at 1582 nm. Reference [46] pro-

vides details of the custom PPKTP crystal featuring a Gaussian phase-matching pro-

file under extended phase matching. After propagation through the crystal, the pump

was removed by a long-pass filter with a 1300-nm cutoff wavelength. The orthogonally

polarized signal and idler were coupled into a single-mode polarization-maintaining

(PM) fiber, and then separated by a fiber-based polarization beam splitter (PBS) into

their respective channels. At 1 mW of pump power we detected signal and idler sin-

gles of ∼3,000/s and ∼3,200/s, respectively, and signal-idler coincidences of ∼1,200/s,

which implies a system efficiency of ∼ 38% and a correlated mode coupling efficiency

of ∼ 80% [77].

We configured the setup of Fig. 2-2(b) to measure the HOMI between two heralded

signal photons separated by 8 mode-locked pulses or ∼100.7 ns, chosen to be greater
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Figure 2-2: Experimental setup. (a) Pump and SPDC configuration; (b) heralded-
photon HOMI measurement. Long-path fiber delay consists of 29.95m of dispersion-
shifted fiber and short-path fiber delay uses 9.95m of SMF-28 fiber. DG, diffrac-
tion grating; A, apodizing mask; LF, long-pass filter; PM, polarization-maintaining
fiber; 𝜆/2, 𝜆/4, half-wave and quarter-wave plates; D1–D3, superconducting nanowire
single-photon detectors; PBS, polarization beam splitter; BS, 50:50 beam splitter; PC,
polarization control paddles; AG, air gap.
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than the ∼80-ns detector deadtime of our superconducting nanowire single-photon

detectors (SNSPDs). The performance of SNSPDs is shown in Appendix C. After

the fiber PBS, the idler photons were directed to SNSPD D3 for detection to herald

the presence of the signal photons. The signal photons went through a 50:50 beam

splitter (BS) that randomly sent them to the long-path delay or short-path delay.

Given two idler detection events that are separated by ∼100.7 ns, there is a 25%

chance that the first heralded signal photon went through the long path and the

second heralded signal photon passed along the short path. The path difference was

adjusted to match the time separation of 8 mode-locked pump pulses, so that the

two heralded signal photons would interfere at the second BS before detection at

SNSPDs D1 and D2. A successful HOMI data point is a four-fold coincidence event:

two idler D3 detections separated by 100.7 ns and simultaneous signal detection at

D1 and D2. All detection events were recorded using a time tagger. The long path

was constructed of dispersion-shifted fiber so that the two paths introduced the same

amount of dispersion, and the relative path delay (excluding the 100.7 ns path length

difference) was adjusted using a movable air gap. Although the photon pairs are

generated by different pulses from the same pump laser, the heralded photons have

a random phase relationship because of phase diffusion of the SPDC process [78, 79].

Therefore, our results also apply to heralded photons generated from two independent

sources.

We recorded the 4-fold coincidence events with a 2 ns coincidence gate as we varied

the relative delay between the long and short paths. The zero delay position was

assigned to the location where the two signal photons arrived at the BS at the same

time. We use the standard HOMI visibility definition 𝑉 = (𝑁max−𝑁min)/𝑁max, where

𝑁max(min) represents the maximum (minimum) coincidence counts. For a heralded

state with purity 𝑃 , 𝑁min ≈ 𝑁max(1 − 𝑃 2), implying 𝑉 = 𝑃 2.

2.3.2 HOM interference results

Initial measurements were made with a hard-aperture mask. Adjusting the hard

aperture location lets us optimize the pump’s second-order dispersion or its spectrum,
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Figure 2-3: HOMI measurements using a hard-aperture mask for controlling the
pump properties. (a) Non-Gaussian zero-dispersion pump; (b) Non-transform-limited
Gaussian pump. No spectral filtering of the SPDC output was used. Each data point
represents a 5-min measurement and no background subtraction is applied. Error bars
are one standard deviation due to Poisson noise and the dashed curves are Gaussian
fits.

but not both simultaneously. We obtained 78.1% HOMI visibility for a transform-

limited non-Gaussian pump in Fig. 2-3(a) and 87.3% for a Gaussian pump that was

not transform limited in Fig. 2-3(b), in agreement with our theory that the pump

being Gaussian or transform limited, but not both, is not sufficient for obtaining high

visibility HOMI.

We then used the custom NIST-fabricated Gaussian transmission mask [76] that

shaped the transform-limited pump to have a Gaussian spectrum. A pump with 15

mW of power and 1.0 nm bandwidth produced a mean SPDC photon pair per pulse

𝛼 = 0.002, and we measured HOMI visibility of 𝑉 = 93.9 ± 1.8% without spectral

filtering of the SPDC output, as shown in Fig. 2-4(a). For 𝛼 ≈ 0.003 (at 20 mW of

pump), we obtained a lower visibility 𝑉 = 91.6±1.5% because the higher pump power

produced more multi-pair events and therefore increased accidental coincidences. At

𝛼 = 0.003 we changed the pump bandwidth to 0.97 nm and 1.05 nm and obtained

visibilities of 89.1 ± 2.1% and 90.6 ± 1.9%, respectively, thus confirming that the

pump bandwidth of 1.0 nm was optimal. We note that the reported visibilities are the
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Figure 2-4: HOMI measurements using a Gaussian transmission mask at 𝛼 = 0.002:
(a) without spectral filtering, and (b) with a 10 nm filter. Each data point represents
a 5-min measurement without background subtraction. Error bars are one standard
deviation due to Poisson noise and the dashed curves are Gaussian fits.

Gaussian fitted results along with the fitted uncertainties. Compared with a similar

experiment at 1550 nm with a domain-engineered crystal reporting HOMI visibility of

90.7±0.3% [66], our results show visibility improvements partly because we operated

at the optimal wavelength for PPKTP’s extended phase-matching condition.

In order to reduce the weak residual side lobes in Fig. 2-1’s JSI, we sent the

SPDC output through a 10-nm filter with near-unity transmission for the 6-nm center

portion (compared with 2.62 nm bandwidth of heralded photons) so that the SPDC

flux remained about the same and the Gaussian spectrum was not disturbed (see

Appendix A). With this filter we measured 𝑉 = 98.4 ± 1.1% (96.9 ± 1.2%) for

𝛼 = 0.002 (0.003), as shown in Fig. 2-4(b). The measured HOMI visibility of 98.4%

corresponds to 99.2% heralded-state spectral purity without background corrections,

in agreement with our previous estimate of the heralded-state purity of mildly-filtered

SPDC under the assumption of a transform-limited biphoton state [67].
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2.4 Conclusion

We have generated heralded single photons with high intrinsic spectral purity of 99.2%

by use of a custom Gaussian phase-matching profile in PPKTP and a transform-

limited Gaussian pump. We verified the heralded-state purity by performing a four-

fold coincidence measurement of HOMI between two time-separated heralded pho-

tons, obtaining an interference visibility of 98.4% without correcting for degradation

due to dark counts and multi-pair effects. We also showed, theoretically, that given

a circularly symmetric Gaussian JSI and a Gaussian phase-matching function, it is

necessary and sufficient to achieve a factorable biphoton state if the pump has a

transform-limited Gaussian spectrum. Our technique can be easily replicated and

the generated single-spatiotemporal-mode heralded photons can be utilized in many

measurement-based quantum information processing applications that involve inter-

ference between independent single photons.
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Chapter 3

Frequency shifter based on

quadrature phase-shift keying

modulator

Manipulating single photons in the frequency domain is essential in realizing future

quantum network systems. This chapter will study the method of shifting a sin-

gle photon’s frequency using a commercially available quadrature phase-shift keying

(QPSK) modulator. We demonstrate frequency shifting on single photons and show

that the frequency-shifted photons preserve their original quantum state in other

degrees of freedom through Hong-Ou-Mandel interference (HOMI) measurement.

Part of the material presented in this chapter has been published and is reproduced

from Sci. Rep. 11, 1-7 (2021) [80].

3.1 Introduction

Photons are the carriers of choice for conveying quantum information over long dis-

tances to realize a scalable quantum internet owing to their weak interaction with

the environment and their low-loss propagation in optical fiber [81, 82]. Quantum

information can be encoded in various photonic degrees of freedom, e.g., momen-

tum, spatial mode, polarization, and frequency, which requires that these properties
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be precisely controlled. Although the momentum, spatial, and polarization modes

of single-photon states can be easily manipulated with active or passive photonic

components [83], the control of frequency modes is less simple.

Spectral mode control is of particular interest in quantum networking. For ex-

ample, the choice of optical wavelengths is often dictated by particular tasks such as

low-loss long-distance transmission through optical fibers (telecommunication band

around 1.55 𝜇m) or efficient interaction with atomic, ionic, or superconducting qubits.

Fine frequency adjustments in the radio and microwave frequency ranges are just as

important because fine tuning and matching the frequency spectra of photons from

independent sources is required to ensure they produce high-fidelity quantum inter-

ference. For large frequency shifts on the order of terahertz or tens of terahertz, one

relies heavily on nonlinear optical processes that work only at specific wavelengths

and require strict phase-matching conditions [84, 85, 86, 87]. Of interest in this work

are small frequency shifts in the gigahertz to tens of gigahertz range.

3.1.1 Shifting frequency with electro-optical devices

One method to deterministically shift a single photon’s frequency by 𝜔𝑚 is to apply a

linear phase ramp 𝜑(𝑡) = 𝜔𝑚𝑡 over the entire wave packet of the photon, which can be

realized using a fast electro-optic modulator [88] or optomechanical waveguide [89].

The resulting single-photon frequency will be shifted by 𝜔𝑚 by the Fourier transform’s

frequency shift property. Typically, a single pulse experiences a time-varying linear

phase when passing an electro-optical device driven by sinusoidal radio-frequency

(RF) voltage signal 𝑉 (𝑡) = 𝑉0sin(2𝜋𝑓𝑡+𝜑0), where 𝑉0 is the driving voltage amplitude,

𝑓 is the RF signal frequency, and 𝜑0 is the phase delay between the RF signal and

the optical pulse. The optical pulse and the RF signal have to be in a stable phase

relation, and the optical pulse needs to be much shorter than the RF signal period,

which is defined as 𝑇 = 1/𝑓 . In this case, the rising edge or the falling edge of the

RF signal can be viewed as a linear phase upward or downward ramp. The spectral

44



shift amount can be approximated as [88]:

𝜔𝑚 ≈ ±2𝜋2(𝑉0/𝑉𝜋)𝑓, (3.1)

where 𝑉𝜋 is the voltage required to achieve a 𝜋 phase shift for the electro-optical

device. Using this scheme, a phase shift of ±200 GHz can be achieved. A combination

of parameters optimization, for example, lower 𝑉𝜋, higher RF frequency 𝑓 , and greater

RF amplitude 𝑉0, is needed to achieve a larger frequency shift. However, higher RF

frequency 𝑓 and greater RF amplitude 𝑉0 introduce difficulty in synchronizing the RF

signal and the single-photon pulse. The resulting phase jitter broadens the output

photon’s spectral bandwidth, degrading the shifted photons’ quality. Recently an

ultralow-voltage electro-optical modulator has been fabricated on lithium niobate

thin-film platform that has a 𝑉𝜋 of 2.3 V at 27.5 GHz, comparing to a 7 V 𝑉𝜋 in

commercial bulk lithium niobate modulator. This record-low 𝑉𝜋 is made possible by

lithium niobate thin-film and the configuration that extends the modulation range

by two times. A frequency shift of ±600 GHz has been achieved using this particular

modulator [90].

3.1.2 Shifting frequency with acousto-optic modulator

For smaller frequency shifts, it is also possible to use an acousto-optic modulator

as a frequency shifter [91]. In an acousto-optic modulator, sound waves produce a

refractive index grating in the material that diffracts the incoming single photons.

A typical acousto-optic modulator operates under the Bragg condition, where the

incident light comes at the Bragg angle 𝜃𝐵 [92]:

sin𝜃𝐵 =
𝐾

2𝑘
=

𝜆

2Λ𝑛eff
, (3.2)

where 𝑘 = 2𝜋𝑛eff/𝜆 is the optical wavenumber with 𝑛eff being the optical mode index

and 𝜆 being the optical wavelength. 𝐾 is the acoustic wavenumber given by 2𝜋/Λ

with Λ being the acoustic wavelength. Typical acousto-optic modulators can only
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impose a shift frequency on the order of megahertz, but a recent demonstration has

shown a 3 GHz acousto-optic frequency shifter in thin-film lithium niobate, featuring

a carrier suppression of more than 30 dB [92].

3.1.3 Shifting frequency with quadrature phase-shift modula-

tor

One can obtain frequency shifts based on optical single sideband (OSSB) modula-

tion, which has been demonstrated for cw lasers using electro-optic modulators [93,

94, 95, 96]. More recently, Lo and Takesue used a custom OSSB modulator to impose

frequency shifts on single photons and they demonstrated its effectiveness by obtain-

ing high visibility Hong-Ou-Mandel interference (HOMI) of two initially frequency-

distinguishable SPDC photons [97].

In this chapter, we report implementing the same OSSB approach of Lo and Take-

sue [97] and achieving similar HOMI-visibility results by repurposing a commercially

available quadrature phase-shift keying (QPSK) modulator as an OSSB frequency

shifter. The availability of well-packaged commercial components allows for simpler

and faster setup and typically offers better specifications than devices custom made

for quantum photonics research. We characterized a commercial QPSK modulator

for frequency shifting of single photons and compared spectra before and after the

shift to show we realized a carrier-to-sideband ratio (CSR) of 30 dB. The frequency

shifting technique also works well on a broadband source, showing high CSRs of > 20

dB over its 2.4-THz spectrum. We observe significant improvement in HOMI visibil-

ity when we applied an appropriate frequency shift to one of two interfering SPDC

photons whose initial frequency spectra overlapped only partially. Our frequency

shifter based on a commercial QPSK modulator is thus a convenient and useful de-

vice for many quantum communication applications such as providing unconditional

security for high-dimensional quantum key distribution system [35, 33, 98, 99] and

making fine frequency adjustment to single photons for quantum information storage

in solid-state quantum memories [100]. With additional intensity and phase control,
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Figure 3-1: (a) Schematic of QPSK modulator with two radio-frequency (RF) phase
modulators and three static phase shifters. All beam splitters and combiners are 50/50
coupled. (b) Shifted signal intensity (solid blue curve) and minimum extinction ratio
(dashed red curve) as a function of driving amplitude 𝐴𝑚. The intensity of the shifted
signal is normalized to the theoretical maximum value.

the frequency shifter can also be used as a quantum pulse shaper for precise temporal

and spectral mode tuning in a dense frequency-multiplexed quantum communication

network [101].

3.2 Mathematical model of QPSK modulator

The QPSK modulator shown in Fig. 3-1(a) consists of two independent Mach-Zehnder

interferometers embedded in a Mach-Zehnder interferometer superstructure. Opti-

cal inputs to the modulator must be linearly polarized with alignment along the

𝑧-axis of the modulator’s lithium niobate waveguide. The radio-frequency (RF) mod-
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ulators in the top and bottom interferometers are driven by orthogonal RF signals

Ψ𝐴 = 𝐴𝑚 sin𝜔𝑚𝑡 and Ψ𝐵 = 𝐴𝑚 cos𝜔𝑚𝑡, respectively, in a push-pull (±Ψ𝐴 and ±Ψ𝐵)

configuration, where 𝐴𝑚 is the RF signal amplitude and 𝜔𝑚 is the RF signal fre-

quency. Using the Jacobi-Anger expansion, we can express these phase modulations

as

𝑒𝑖𝐴𝑚 sin𝜔𝑚𝑡 =
∞∑︁

𝑘=−∞

𝐽𝑘(𝐴𝑚)𝑒𝑖𝑘𝜔𝑚𝑡, 𝑒𝑖𝐴𝑚 cos𝜔𝑚𝑡 =
∞∑︁

𝑘=−∞

𝑖𝑘𝐽𝑘(𝐴𝑚)𝑒𝑖𝑘𝜔𝑚𝑡, (3.3)

where 𝐽𝑘(𝐴𝑚) is 𝑘-th Bessel function of the first kind. For an input field with ampli-

tude 𝐸0 and center frequency 𝜔0, 𝐸𝑖𝑛(𝑡) = 𝐸0𝑒
𝑖𝜔0𝑡, the output field from the QPSK

modulator can be written in harmonics of the RF signal frequency 𝜔𝑚 as

𝐸𝑜𝑢𝑡(𝑡) =
𝐸0

4
𝑒𝑖𝜔0𝑡

∞∑︁
𝑘=−∞

𝐽𝑘(𝐴𝑚)𝑒𝑖𝑘𝜔𝑚𝑡
[︁
1 + (−1)𝑘𝑒𝑖𝜑1 +

(︀
1 + (−1)𝑘𝑒𝑖𝜑2

)︀
𝑖𝑘𝑒𝑖𝜑3

]︁
, (3.4)

where 𝜑1, 𝜑2, and 𝜑3 are constant phase shifts imposed at the QPSK modulator, as

indicated in Fig. 3-1(a). To operate the QPSK modulator as a frequency shifter, we

set 𝜑1 = 𝜑2 = 𝜋 and 𝜑3 = −𝜋/2 (𝜋/2) for frequency blue (red) shift. For blue-shift

operation, Eq. (3.4) simplifies to

𝐸𝑜𝑢𝑡(𝑡) =
𝐸0

4
𝑒𝑖𝜔0𝑡

∞∑︁
𝑘=−∞

𝐽𝑘(𝐴𝑚)𝑒𝑖𝑘𝜔𝑚𝑡
(︀
1 + (−1)𝑘+1

)︀ (︀
1 − 𝑖𝑘+1

)︀
= 𝐸𝑖𝑛(𝑡)

[︁
. . .+ 𝐽−3(𝐴𝑚)𝑒−𝑖3𝜔𝑚𝑡 + 𝐽1(𝐴𝑚)𝑒𝑖𝜔𝑚𝑡 + 𝐽5(𝐴𝑚)𝑒𝑖5𝜔𝑚𝑡 + . . .

]︁
,(3.5)

the latter showing the three lowest non-zero harmonics. Eq. (3.5) shows that the

output carrier is frequency shifted from 𝜔0 to 𝜔0 + 𝜔𝑚 with amplitude 𝐽1(𝐴𝑚), and

that the two nearest sidebands have frequencies 𝜔0−3𝜔𝑚 and 𝜔0+5𝜔𝑚 with amplitudes

𝐽−3(𝐴𝑚) and 𝐽5(𝐴𝑚), respectively. We define the CSR for a specific sideband to be

CSR𝑘 = |𝐽1(𝐴𝑚)/𝐽𝑘(𝐴𝑚)|2 for 𝑘 ̸= 1. In Fig. 3-1(b) we plot the intensity of the

frequency-shifted signal |𝐽1(𝐴𝑚)|2 (solid blue curve) and the minimum extinction

ratio (dashed red curve), given by min𝑘 ̸=1 CSR𝑘, versus the RF signal amplitude 𝐴𝑚.

Figure 3-1(b) shows clearly the competing effects of maximizing the frequency-shifted
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carrier signal and suppressing the sidebands as a function of RF signal strength 𝐴𝑚.

At 𝐴𝑚 = 1.8, the frequency-shifted signal reaches its theoretical maximum and is 4.7

dB below the input intensity, if we exclude the system’s insertion and coupling losses.

However, under this driving condition, the minimum extinction ratio is only 15 dB,

which may not be sufficient for certain quantum applications as these sidebands act

as noise sources that degrade quantum measurements. In order to further suppress

the sidebands at undesirable frequencies, one needs to operate the modulator at lower

RF amplitudes resulting in lower frequency-shifted signal strengths. For example, at

𝐴𝑚 = 0.85, the shifted signal decreases to 44% of the theoretical maximum but the

minimum extinction ratio increases to 30 dB.

3.3 Measurements of shifted spectra of cw laser light,

frequency comb, and single photons

The QPSK modulator we used was a Fujitsu model FTM7961EX, with a 3 dB RF

bandwidth of 22 GHz and a 𝑉𝜋 of less than 3.5 V. Its specified operational optical-

wavelength range is from 1530 to 1610 nm, and we measured an optical insertion loss

of 5.2 dB. The modulator can only transmit a linearly-polarized input aligned to the

designed polarization for modulation in the lithium niobate waveguide. The 15.65

GHz RF signal was derived from an RF frequency synthesizer, amplified and split

by a 0∘-phase 50/50 power splitter to serve as inputs to the QPSK modulator’s top

and bottom interferometers. The two cables connecting the two splitter outputs to

the modulator had a 10.96 cm length difference, corresponding to a 𝜋/2 phase shift,

that was chosen to ensure orthogonality of the two driving RF signals, Ψ𝐴 and Ψ𝐵,

as indicated in Fig. 3-1(a). We also set the static phase shifts to 𝜑1 = 𝜑2 = 𝜋 and

𝜑3 = −𝜋/2 for a blue frequency shift.

To characterize the performance of the QPSK modulator as a frequency shifter

we first used a cw laser with sub-MHz linewidth at 𝜔0/2𝜋 = 192.1 THz (1560 nm

wavelength) as its optical input. The RF modulation signal was set to perform an
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Figure 3-2: Input and output spectra for different input optical sources to the QPSK-
modulator frequency shifter. (a) Spectra of the cw laser before and after the frequency
shift. (b) Spectra of the frequency comb before and after the frequency shift, normal-
ized to the maximum intensity. (c) Spectra of the idler photon before and after the
frequency shift, normalized to the maximum detected signal-idler coincidence counts.
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𝜔𝑚/2𝜋 = 15.65 GHz blue shift. Figure 3-2(a) shows the input and output spectra

of the cw laser source for an RF amplitude 𝐴𝑚 = 0.57, clearly showing the shift in

frequency that we measured to be 16 GHz, limited by the 2-GHz resolution of our

optical spectrum analyzer. The frequency shifted output power was measured to be

16.4 dB lower than the input power, a value that is accounted for by the expected

drop in power, |𝐽1(0.57)|2 = −11.2 dB, and the QPSK modulator’s 5.2 dB insertion

loss. The choice of 𝐴𝑚 = 0.57 allows us to evaluate the CSRs. Figure 3-2(a) shows

that there are 4 residual sidebands at −3𝜔𝑚, −𝜔𝑚, 0, and 3𝜔𝑚. The −3𝜔𝑚 sideband

is expected to have the largest amplitude according to Eq. (3.5) with CSR−3 = 37 dB

for 𝐴𝑚 = 0.57 that matches the measured value. However, Eq. (3.5) also predicts that

the sidebands at −𝜔𝑚, 0, and 3𝜔𝑚 should have zero amplitude, whereas their non-zero

peaks in Fig. 3-2(a) yield CSRs of ∼32 dB, which is the minimum extinction ratio of

this measurement. The appearance of these three residual sidebands was likely caused

by a slight difference in the splitting ratios of the 50/50 couplers within the QPSK

modulator so that these sidebands did not completely cancel through destructive

interference at the modulator’s output. Another nonideality of the QPSK modulator

is that the static phase shifts 𝜑1, 𝜑2, and 𝜑3 may drift due to thermal fluctuations in

the phase shifters and cause the frequency shifting operation to degrade. In a separate

measurement to check the stability of the QPSK modulator, we found the minimum

extinction ratio decreased from 32 dB to 18 dB over 110 min due to phase drifts, and

that the extinction ratio could be restored to 32 dB by adjusting the voltages of the

phase shifters at the end of the 110-min duration.

Next we examined the frequency shifting operation for a broadband optical input

to the QPSK modulator. From a broadband amplified spontaneous emission source

we used a programmable intensity filter in the frequency domain to carve out a

frequency comb spanning a ∼2.4 THz bandwidth. The programmable intensity filter

was a Finisar model 1000S waveshaper. This waveshaper provides control of the

transmitted intensity from 0 dB to 50 dB attenuation at 1 GHz resolution over the

entire telecommunication C band. The minimum optical bandwidth of the waveshaper

was measured to be 12 GHz, limited by the point-spread function of the waveshaper’s
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Figure 3-3: Schematic of the HOMI experiment. PPKTP: periodically-poled potas-
sium titanyl phosphate crystal; LPF: long pass filter; PBS: polarizing beam splitter;
QPSK: quadrature phase-shift keying modulator; PC: polarization control; 50/50 BS:
50/50 beam splitter; SNSPD: superconducting nanowire single-photon detector.

optics, and we measured its insertion loss to be 5 dB. The frequency comb consisted

of 20-GHz-wide comb teeth spaced at 300 GHz intervals. The RF driving conditions

of the QPSK modulator were the same as those used for the cw laser input, and

we optimized the setting to yield the highest minimum extinction ratio at optical

frequency 193.4 THz (1550 nm wavelength). The spectra of the frequency comb before

and after the QPSK-modulator frequency shifter are displayed in Fig. 3-2(b), showing

clearly that the entire spectrum was shifted by ∼16 GHz. We found that the minimum

extinction ratio, optimized at 193.4 THz to yield 32 dB, decreased at frequencies

lower than 193.4 THz, with the residual sideband peaks clearly visible in the lowest

three comb lines at 191.9, 192.2, and 192.5 THz. The minimum extinction ratio for

the 191.9 THz comb line was 22 dB. For the rest of the comb lines spanning more

than 1.5 THz, the minimum extinction ratio of at least 30 dB was maintained. The

measurements indicate that the QPSK modulator works well as a broadband optical

frequency shifter but the extinction ratios can be uneven over a large bandwidth.

Additionally, we further examined the performance of the QPSK-modulator fre-

quency shifter with heralded single photons as its optical input. From a type-II phase-
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matched periodically-poled potassium titanyl phosphate (PPKTP) waveguide [102]

SPDC source we generated signal and idler photon pairs whose center wavelength

was ∼1560 nm. The signal and idler were partially overlapping in frequency and

had a spectral full-width at half maximum bandwidth of 320 GHz. The signal and

idler wave packets were time coincident within 2 ps. After the pump was filtered out

by a long-pass filter (Semrock BLP02-1319R-25), the orthogonally-polarized signal

and idler were coupled into a polarization-maintaining (PM) fiber. The orthogonally-

polarized photons were separated by a polarizing beam splitter and sent to separate

superconducting nanowire single-photon detectors (SNSPDs) with their arrival times

recorded by a time tagger. Signal-photon detections were used to herald the pres-

ence of their idler-photon companions. We used the programmable intensity filter

to implement a 50 GHz flat-top spectral filter on the signal photons that, by virtue

of frequency entanglement, projected the corresponding idler photons to also have

a 50 GHz spectrum centered at 192.014 THz. We sent the idler photons through

a fiber Bragg-grating dispersion module for spectral analysis via time-to-frequency

conversion [46]. The fiber Bragg grating based dispersion module was manufactured

by Proximion and imposes a dispersion amount of 10 ns/nm for inputs from 1558.58

nm to 1562.23 nm. Due to the imposed dispersion, the idler’s different spectral com-

ponents propagated at different speeds resulting in different arrival times relative to

the signal photon. Hence the idler spectrum can be obtained from the arrival time

relative to that of the signal. In this particular measurement, we achieved a spectral

resolution of 1.8 GHz, set by the Bragg-grating module’s spatial dispersion and the

SNSPD’s timing jitter. We used the arrival times of idler photons at 1562.23 nm as a

reference to convert the photons’ arrival times to frequencies. Figure 3-2(c) shows the

measured spectra of heralded idler photons before and after the frequency shift. The

measured data are normalized to the maximum detected coincidence counts to remove

the influence of the different transmission losses before and after measurements. The

15.65 GHz frequency shift of the single photon spectrum is clearly observed. The

original spectrum is suppressed by 30 dB and is consistent with our measurement

using the cw laser source as input in Fig. 3-2(a). Our results demonstrate the abil-
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ity to deterministically modify the spectral components of nonclassical light using a

commercial QPSK modulator configured as a frequency shifter.

3.4 Hong-Ou-Mandel interference of photon pairs

Hong-Ou-Mandel interference [57], which measures the indistinguishability of two

single photons, is an essential measurement tool in quantum photonics making the

ability to fine tune the frequency of single photons to best match their spectra highly

desirable. Figure 3-3 is the schematic of our HOMI measurement that utilized cor-

rective frequency shifting to recover HOMI visibility by making the two interfering

photons spectrally indistinguishable. The photon pairs were generated by the same

cw SPDC source used for Fig. 3-2(c)’s single-photon frequency-shifting measurements.

After the orthogonally-polarized signal and idler were separated, the signal photon

was shaped by the programmable intensity filter to have a 50-GHz flat-top spectrum

with a tunable center frequency. The corresponding idler, which also possessed a

50-GHz spectrum, went through the QPSK-modulator frequency shifter before re-

combining with the signal photon for HOMI coincidence measurements detected with

two SNSPDs and then time tagged. Our niobium nitride (NbN) SNSPDs have 60%

system efficiency, 150 ps timing jitter, <400/s dark counts per detector, and 100 ns

recovery time. The operational temperature for the SNSPDs was ∼0.8 K. The typical

coincidence count in HOMI measurements was ∼200/s.

We first established the baseline visibility without frequency shifting, which de-

notes the maximum visibility achievable with our SPDC source. We tuned the center

frequency of the signal spectral filter so that the filtered signal and the projected

idler were frequency degenerate with overlapping spectra and therefore frequency in-

distinguishable. We measured the signal-idler coincidences as we varied the relative

arrival-time delay between the signal and idler using an adjustable air gap in the

signal path, as shown in Fig. 3-3. The HOMI measurement result without frequency

shifting is shown in Fig. 3-4(a) (blue markers), fitted with a sinc function (red curve),

from which we obtained a 92.6±0.3% background-subtracted interference visibility.
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(a)

(b)

V=92.6 ± 0.3%
V=62.7 ± 1.0%

V=89.1 ± 1.2%

Figure 3-4: Hong-Ou-Mandel interference measurement results. (a) Normalized coin-
cidence counts when the signal and idler had the same center frequency and matched
spectra (blue) and when the signal and the blue-shifted idler spectra were offset by
15.65 GHz (green). The fitted functions for the matched and frequency-offset spectra
are shown in red and black, respectively. (b) Normalized coincidence counts when
the signal frequency was increased by 8 GHz so that it and the blue-shifted idler
had nearly identical center frequencies. In both (a) and (b) the error bars mark the
±1 standard deviations of the detected coincidences’ Poisson noise and the maxi-
mum coincidence rates of the fitted functions are normalized to one. The background
coincidence counts were measured and subtracted for each of the three measurements.
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Details of the fitting function and the background subtraction are discussed in Ap-

pendix B. The HOMI visibility is defined as (𝑁max −𝑁min)/𝑁max, where 𝑁max(min) is

the maximum (minimum) detected coincidence count, and the uncertainty is calcu-

lated assuming Poisson noise. We calculated the background coincidence counts from

accidental coincidences measured when the signal path but not the idler path to the

50/50 beam splitter was blocked, and vice versa. The background coincidence counts

were primarily due to polarization leakage of the fiber polarization beam splitter.

We then blue shifted the idler by 15.65 GHz while the signal frequency remained

unchanged, so that their center frequencies were now separated by the applied fre-

quency shift. Because the signal and idler spectra were no longer entirely overlap-

ping, the background-subtracted HOMI visibility decreased to 62.7±1.0%, as shown

in Fig. 3-4(a) (green markers with black fitted curve, ∆𝜔/2𝜋 = 15.65 GHz). To re-

cover the HOMI visibility, the spectra of the filtered signal and the blue-shifted idler

need to have the same center frequencies. We tuned the intensity filter to increase

the signal’s center frequency by 8 GHz, which is about half of the applied frequency

shift of 15.65 GHz. By energy conservation the sum frequency of the SPDC signal

and idler equals the cw pump frequency. As a result, the 8 GHz increase in signal

frequency reduced the idler frequency by 8 GHz so that their center frequencies be-

came nearly identical. Note that we could not blue shift the signal by the exact 7.825

GHz amount (half of the RF frequency) owing to the programmable intensity filter’s

minimum frequency-tuning step being too large. However, the 0.35 GHz difference in

their center frequencies is relatively small compared with their 50 GHz bandwidth,

thus any resultant degradation to HOMI is expected to be small. We remeasured

the HOMI visibility, as shown in Fig. 3-4(b) (blue markers with red fitted curve),

yielding a measured background-subtracted visibility of 89.1 ± 1.2%, close to the

baseline visibility. We can interpret this measurement as starting with initial signal

and idler center frequencies being separated by 16 GHz and a corrective frequency

shift being applied to recover the frequency indistinguishability that is required for

obtaining high HOMI visibility. We should remark that high HOMI visibility re-

quires all degrees of freedom to match well between the two photons, suggesting that
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the QPSK-modulator frequency shifter did not materially affect other photonic de-

grees of freedom in this measurement. We note that the frequency shifter requires a

linearly-polarized input with an output of the same polarization.

3.4.1 Role of spectral phase in Hong-Ou-Mandel interference

In this section, we study the effect of the spectral phase on HOMI. Using the setup

shown in Fig. 3-3, we can impose an arbitrary spectral phase on one of the photons

using the waveshaper. Specifically, we imposed a constant 𝜋 phase, linear phase,

quadratic phase, and randomized phase on the signal photons and measured the

HOMI curve for each case. The measurement results are shown in Fig. 3-5.

We first establish a baseline visibility with zero added phase, as shown in Fig. 3-5

(a). In the zero phase case, we measured a fitted visibility of 89.97%, as shown in

Fig. 3-5 (b). If only a constant flat phase is present (Fig. 3-5 (c)), we measured

visibility of 90.01% (Fig. 3-5 (d)), similar to that with the zero-phase baseline. A

linear phase ramp in the spectral-domain (Fig. 3-5 (e)) corresponds to a linear shift

in the time domain. As a result, a shifted HOMI pattern was observed, as shown

in Fig. 3-5 (f). Next, we studied the effect of quadratic phase, shown in Fig. 3-5

(g) and (h). We observed that the quadratic phase term does not affect the width

of the HOMI dip, but it slightly degraded the measured visibility. This observation

result is consistent with [103], showing that HOMI is immune to dispersion. We

implemented a random phase profile on the signal photons (Fig. 3-5 (i)), and the

observed interference pattern shown in Fig. 3-5 (j) departs greatly from the expected

sinc shape. The randomized phase distorts the single photon’s time-domain shape

and degrades the HOMI visibility.

Overall, we show that HOMI is insensitive to the constant and quadratic spectral

phase. A linear phase in the spectral domain corresponds to the translation shift of

the HOMI pattern in the time domain. Random phase alters the photon’s pulse shape

and degrades the HOMI visibility. We note that this degradation in HOMI visibility

does not indicate that the HOMI is sensitive to spectral phase. This degradation is

a result of mismatch between the signal and idler’s temporal shape.
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V=89.97%

V=90.01%
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Figure 3-5: HOMI results with different input phase profiles. The shown visibility is
fitted with a sinc function except in (j). The reported visibility in (j) is calculated
from the measured maximum and minimum coincidence counts.
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3.5 Discussion

In this chapter, we showed that we can operate a commercially available QPSK mod-

ulator as a frequency shifter. We demonstrated a 15.65 GHz deterministic frequency

shift on narrowband and broadband classical light as well as on single photons. We

showed the trade-off relation between the amplitude of the shifted signal and the

minimum extinction ratio. At a 𝐴𝑚 =0.57 drive amplitude, we measured the noise

sidebands to be at least 30 dB below the frequency-shifted signal. Furthermore, our

measurement suggests that the frequency shift can be applied over a broad spectral

range of >1.5 THz while maintaining a 30 dB extinction ratio. The amount of op-

tical frequency shift is set by the applied RF signal frequency and is limited by the

bandwidth of the QPSK modulator. Both high bandwidth RF sources and QPSK

modulators are commercially available at up to 64 GHz, and they can be used to

increase the frequency shift beyond what we have demonstrated. An even higher

bandwidth electro-optical phase modulator at 100 GHz has also been reported [104],

suggesting future improvements as these devices become commercial. Additionally,

we showed that this frequency shifting process only transforms the input photons in

the frequency domain while preserving their original state in other degrees of free-

dom. We believe that QPSK-modulator frequency shifters will be useful in quantum

communication and quantum network applications where frequency manipulation is

desirable. The waveguide structure of QPSK modulators is compatible with photonic

integration processes for more compact device integration with quantum sources and

detectors.
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Chapter 4

Conjugate-Franson interferometry

Franson interferometry is a well-known quantum measurement technique for probing

photon-pair frequency correlations that is often used to certify time-energy entan-

glement. In this chapter, we demonstrate, for the first time, the complementary

technique in the time basis, called conjugate-Franson interferometry, that measures

photon-pair arrival-time correlations, thus providing a valuable addition to the quan-

tum toolbox. We obtain a conjugate-Franson interference visibility of 96 ± 1% with-

out background subtraction for entangled photon pairs generated by spontaneous

parametric down-conversion. Our measured result surpasses the quantum-classical

threshold by 25 standard deviations and validates the conjugate-Franson interferom-

eter (CFI) as an alternative method for certifying time-energy entanglement. More-

over, the CFI visibility is a function of the biphoton’s joint temporal intensity and

is therefore sensitive to that state’s spectral phase variation, something which is not

the case for Franson interferometry or Hong-Ou-Mandel interferometry. We highlight

the CFI’s utility by measuring its visibilities for two different biphoton states, one

without and the other with spectral phase variation, and observing a 21% reduction

in the CFI visibility for the latter. The CFI is potentially useful for applications in

areas of photonic entanglement, quantum communications, and quantum networking.

Parts of the material presented in this chapter are reproduced from arXiv:2104.15084

(2021) [105].
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4.1 Introduction

Time-energy entanglement is the quintessential quantum resource for enabling next-

generation quantum technologies such as one-way quantum computation [106], quantum-

enhanced sensing [107, 108, 109], and quantum-secured communications [33, 31].

Franson interferometry is a well-known technique for measuring the nonlocal timing

coincidence of photon pairs [34]. Because Franson interference visibility resembles the

Clauser-Horne-Shimony-Holt (CHSH) inequality, it is often used to characterize the

quality of a biphoton’s time-energy entanglement [20]. Nevertheless, Franson interfer-

ometry only quantifies the photon pair’s correlation in the frequency domain and does

not provide correlation information in the time domain [35]. Without time-domain

characterization, Franson interferometry by itself cannot reveal a full picture of the

biphoton’s nonclassical correlations. Characterization of entangled photon pairs in

the time domain is challenging because there is no readily available experimental

method to directly measure two-photon timing correlation. One can extract two-

photon time correlation from their joint temporal intensity (JTI) measurements but

they typically require sub-picosecond temporal gating and single-photon nonlinear

conversion that tend to limit measurement efficiencies [59, 110, 69, 111].

The conjugate-Franson interferometer (CFI) was proposed as a quantum measure-

ment technique for probing two-photon correlation in the time domain in contrast to

the Franson interferometer’s frequency-domain probing [35]. The two interferometric

techniques form a complementary quantum-measurement duo for quantifying bipho-

tons’ time-energy entanglement. The Franson interferometer applies a time delay

inside one arm of each of its Mach-Zehnder interferometers (MZIs) and measures

coincidences to reveal frequency-domain correlations. In comparison, the conjugate-

Franson interferometer applies a frequency shift inside one arm of each of its MZIs

and measures frequency coincidences utilizing second-order dispersion to reveal time-

domain correlations. The time-domain characterization enabled by the CFI can sense

spectral phase information and thus improve performance for a wide range of tasks

that utilize high-dimensional entangled states, such as quantum communication [35],
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quantum sensing [112], and quantum computation [113].

The addition of the CFI to the expanding quantum toolbox offers new or improved

measurement capability in quantum photonic studies. Although biphoton spectral

phase information can be obtained using frequency-resolved [114] or time-resolved

[115] two-photon local interference, these techniques require nearly-degenerate pho-

ton pairs. The CFI, however, is a nonlocal two-photon measurement that is suitable

for nondegenerate photon pairs. Other means to probe temporal correlations include

the use of an electro-optic spectral shearing interferometer [116, 70] with femtosecond

pulse gating, and phase-sensitive detection with a stable and well-characterized clas-

sical field [117]. The CFI, on the other hand, does not require a reference field and

can work with photon pairs generated by pulsed or continuous-wave (cw) pumping.

Recent studies on quantum frequency combs have underscored the inability of

Hong-Ou-Mandel interference (HOMI) [57] or Franson interference to distinguish two

frequency combs that differ only in their spectral phase content. Lingaraju et al. made

HOMI measurements on biphoton frequency combs with different spectral phase vari-

ations and found identical HOMI signatures [118]. To understand what properties

of biphoton frequency combs can be extracted by different interferometric measure-

ments, Chang et al. argues that both HOMI and Franson interference are functions

of the biphoton’s joint spectral intensity (JSI), whereas the CFI measures the state’s

JTI [119]. Because spectral phase variation does not affect the JSI, it confirms the

observation in [118] and suggests that the CFI is the appropriate measurement tool to

distinguish combs with spectral phase variations. A classical-optics analog is how lin-

ear dispersion of a transform-limited optical pulse imposes a phase chirp that results

in pulse broadening which is detectable by time-domain but not frequency-domain

measurements.

In this chapter, we report implementing the CFI and obtaining a 96±1% CFI fringe

visibility without background subtraction for time-energy entangled photon pairs gen-

erated by cw pumped SPDC. Our measured visibility surpasses the quantum-classical

threshold by ∼25 standard deviations, thus validating the CFI as a valuable tool for

quantifying a biphoton’s time-energy entanglement. Moreover, we demonstrate the
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CFI’s unique capability by utilizing it to distinguish between two biphoton states that

differ only in their spectral phase content, one having a uniform phase and the other

with a nonuniform phase. Our CFI measurements show a visibility degradation of

21.2% for the biphoton state with a nonuniform spectral phase when compared to the

visibility obtained with a uniform phase (which is transform limited), in agreement

with our theoretical calculation. The visibility degradation indicates a decrease in

timing correlation as the result of the presence of spectral phase, whose information

cannot be obtained using standard tools for analyzing the joint properties of photon

pairs, such as HOMI, Franson interference, and JSI measurements [118, 46, 120]. We

expect that the addition of the CFI to the quantum toolbox provides a simpler way

to characterize time-domain correlation and a new method to monitor spectral phase

information of time-energy entangled photon pairs. Hence we believe the CFI will en-

hance future developments of entanglement systems for computing, communication,

and sensing applications.

4.2 Conjugate-Franson interferometry

The conjugate-Franson interferometer, shown in Fig. 4-1, comprises two Mach-Zehnder

interferometers (MZIs) that are separated in space with each MZI having equal-length

arms. For time-energy entanglement characterization, signal (idler) photons of entan-

gled signal-idler photon pairs are sent to one (the other) MZI, and their coincidence

outputs are monitored to measure the conjugate-Franson interference. An optical fre-

quency shifter is placed in one of the arms within each interferometer, implementing

a ∆Ω frequency shift for the signal photons and a −∆Ω frequency shift for the idler

photons, with ∆Ω large enough to rule out single-photon interference. Light pass-

ing through frequency-shifted and the frequency-unshifted paths interfere at a 50/50

beam splitter and acquire a phase difference of 𝜑𝑆 (𝜑𝐼) within the signal (idler) inter-

ferometer. The outputs from both MZIs are sent to dispersive elements that impose

second-order dispersions with equal magnitudes but opposite signs. The dispersed sig-

nal and idler photons are then detected by superconducting nanowire single-photon
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Figure 4-1: Experimental setup of our conjugate-Franson interferometer. Time-
energy entangled signal-idler photon pairs generated by cw pumped SPDC were cou-
pled into an optical fiber and routed to their respective MZIs. The signal’s frequency
shifter was configured to blue shift its input while the idler’s shifter was configured
to red shift its input. The polarization and the path lengths between the two arms
of each MZI were made to be the same. The fiber-based CFI was placed inside a
custom-built two-stage thermal box for phase stabilization. The MZI outputs were
detected with SNSPDs and their arrival times recorded for coincidence measurements.
LPS: long-pass filter; PBS: polarizing beam splitter; PC: polarization controller; FS:
frequency shifter for ∆Ω (−∆Ω) frequency shift; AG: tunable air gap; BS: 50/50
beam splitter; DCM+(−): dispersion module with normal (anomalous) dispersion.

detectors (SNSPDs) and their timing coincidences are recorded. The second-order

dispersions imposed by the dispersive elements correlates the frequency content of

the inputs to their measured arrival times, thus effectively converting the performed

time-domain measurement result to a frequency-domain measurement. The oppo-

site signs of the two dispersive elements, together with nonlocal dispersion cancel-

lation [31, 121], recover the signal-idler frequency coincidences as signal-idler timing

coincidences and thus distinguish between different signal-idler sum frequencies.

4.2.1 Mathematical description of conjugate-Franson interfer-

ometry

We are interested in single spatial mode signal and idler fields produced by a type-II

or type-0 phase matched spontaneous parametric downconverter. The scalar, photon-

units, positive-frequency field operators for the relevant polarizations of the signal and

idler will be taken to be �̂�(+)
𝑆 (𝑡) and �̂�(+)

𝐼 (𝑡) with the usual 𝛿-function commutators,

[�̂�
(+)
𝐾 (𝑡), �̂�

(+)†
𝐾 (𝑢)] = 𝛿(𝑡− 𝑢), for 𝐾 = 𝑆, 𝐼. (4.1)
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For what will follow it will be valuable to have these operators’ frequency-domain

decompositions,

�̂�
(+)
𝑆 (𝑡) =

∫︁
d𝜔𝑆

2𝜋
ℰ̂𝑆(𝜔𝑆)𝑒−𝑖(𝜔𝑆0

+𝜔𝑆)𝑡 and �̂�
(+)
𝐼 (𝑡) =

∫︁
d𝜔𝐼

2𝜋
ℰ̂𝐼(𝜔𝐼)𝑒

−𝑖(𝜔𝐼0
−𝜔𝐼)𝑡, (4.2)

where 𝜔𝑆0 (𝜔𝐼0) is the center frequency of the signal (idler). The convention we have

chosen here accords opposite signs to the signal and idler detunings such that their

sum, for a biphoton produced by SPDC, is confined to a phase-matching bandwidth

about zero frequency. Throughout this section integrals without limits will be taken

to be from −∞ to ∞.

Our interest will be in biphoton states of these signal and idler, i.e., states of the

form

|𝜓⟩𝑆𝐼 =
1

2𝜋

∫︁
d𝜔𝑆

∫︁
d𝜔𝐼 Ψ𝑆𝐼(𝜔𝑆, 𝜔𝐼)|𝜔𝑆0 + 𝜔𝑆⟩𝑆|𝜔𝐼0 − 𝜔𝐼⟩𝐼 . (4.3)

Here, |𝜔𝑆0 + 𝜔𝑆⟩𝑆 and |𝜔𝐼0 − 𝜔𝐼⟩𝐼 are signal and idler states consisting of single

photons at detunings 𝜔𝑆 and −𝜔𝐼 , respectively, from those fields’ center frequencies.

The preceding states are properly normalized, viz., 𝑆𝐼⟨𝜓|𝜓⟩𝑆𝐼 = 1. Hence, taking

𝑆⟨𝜔𝑆0 + 𝜔𝑆|𝜔𝑆0 + 𝜔′
𝑆⟩𝑆 = 2𝜋 𝛿(𝜔𝑆 − 𝜔′

𝑆) and 𝐼⟨𝜔𝐼0 − 𝜔𝐼 |𝜔𝐼0 − 𝜔′
𝐼⟩𝐼 = 2𝜋 𝛿(𝜔𝐼 − 𝜔′

𝐼),

(4.4)

we find that
∫︀

d𝜔𝑆

∫︀
d𝜔𝐼 |Ψ𝑆𝐼(𝜔𝑆, 𝜔𝐼)|2 = 1. In other words, this biphoton’s JSA is

JSA(𝜔𝑆, 𝜔𝐼) = Ψ𝑆𝐼(𝜔𝑆, 𝜔𝐼), (4.5)

and its JSI is

JSI(𝜔𝑆, 𝜔𝐼) = |Ψ𝑆𝐼(𝜔𝑆, 𝜔𝐼)|2. (4.6)

For a time-domain representation of this biphoton, we introduce signal and idler

states |𝑡𝑆⟩𝑆 and |𝑡𝐼⟩𝐼 consisting of single photons at times 𝑡𝑆 and 𝑡𝐼 , respectively.
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These states are the Fourier duals of |𝜔𝑆0 + 𝜔𝑆⟩𝑆 and |𝜔𝐼0 − 𝜔𝐼⟩𝐼 , i.e., we have

|𝑡𝑆⟩𝑆 =

∫︁
d𝜔𝑆

2𝜋
𝑒𝑖(𝜔𝑆0

+𝜔𝑆)𝑡𝑆 |𝜔𝑆0 + 𝜔𝑆⟩𝑆 and |𝑡𝐼⟩𝐼 =

∫︁
d𝜔𝐼

2𝜋
𝑒𝑖(𝜔𝐼0

−𝜔𝐼)𝑡𝐼 |𝜔𝐼0 − 𝜔𝐼⟩𝐼 ,

(4.7)

and

|𝜔𝑆⟩𝑆 =

∫︁
d𝑡𝑆 𝑒

−𝑖(𝜔𝑆0
+𝜔𝑆)𝑡𝑆 |𝑡𝑆⟩𝑆 and |𝜔𝐼⟩𝐼 =

∫︁
d𝑡𝐼 𝑒

−𝑖(𝜔𝐼0
−𝜔𝐼)𝑡𝐼 |𝑡𝐼⟩𝐼 , (4.8)

from which we get

𝐾⟨𝑡𝐾 |𝑡′𝐾⟩𝐾 = 𝛿(𝑡𝐾 − 𝑡′𝐾), for 𝐾 = 𝑆, 𝐼. (4.9)

Then, direct evaluation using Eqs. (4.3), (4.4), and (4.7) gives

𝑆⟨𝑡𝑆|𝐼⟨𝑡𝐼 |𝜓⟩𝑆𝐼 =
𝑒−𝑖(𝜔𝑆0

𝑡𝑆+𝜔𝐼0
𝑡𝐼)

2𝜋

∫︁
d𝜔𝑆

∫︁
d𝜔𝐼 Ψ𝑆𝐼(𝜔𝑆, 𝜔𝐼)𝑒

−𝑖(𝜔𝑆𝑡𝑆−𝜔𝐼 𝑡𝐼), (4.10)

which implies that

|𝜓⟩𝑆𝐼 =

∫︁
d𝑡𝑆

∫︁
d𝑡𝐼 𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼)|𝑡𝑆⟩𝑆|𝑡𝐼⟩𝐼 , (4.11)

with

𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼) =
𝑒−𝑖(𝜔𝑆0

𝑡𝑆+𝜔𝐼0
𝑡𝐼)

2𝜋

∫︁
d𝜔𝑆

∫︁
d𝜔𝐼 Ψ𝑆𝐼(𝜔𝑆, 𝜔𝐼)𝑒

−𝑖(𝜔𝑆𝑡𝑆−𝜔𝐼 𝑡𝐼) (4.12)

satisfying
∫︀

d𝑡𝑆
∫︀

d𝑡𝐼 |𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼)|2 = 1. It is now easily seen that the biphoton’s JTA

and JTI are

JTA(𝑡𝑆, 𝑡𝐼) = 𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼), (4.13)

and

JTI(𝑡𝑆, 𝑡𝐼) = |𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼)|2. (4.14)
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Later we shall employ the Gaussian biphoton wave functions,

Ψ𝑆𝐼(𝜔𝑆, 𝜔𝐼) =
𝑒−(𝜔𝑆−𝜔𝐼)

2𝜎2
coh 𝑒−(𝜔𝑆+𝜔𝐼)

2𝜎2
cor/4√︀

𝜋/2𝜎coh𝜎cor
, (4.15)

and

𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼) =
𝑒−𝑖(𝜔𝑆0

𝑡𝑆+𝜔𝐼0
𝑡𝐼) 𝑒−(𝑡𝑆+𝑡𝐼)

2/16𝜎2
coh 𝑒−(𝑡𝑆−𝑡𝐼)

2/4𝜎2
cor

√
2𝜋𝜎coh𝜎cor

, (4.16)

where the root-mean-square (rms) coherence time, 𝜎coh, is determined by the down-

converter’s pump linewidth and the rms correlation time, 𝜎cor, is determined by the

downconverter’s phase-matching bandwidth. This biphoton can be realized by engi-

neered phase matching of a periodically-poled nonlinear crystal, see, e.g., [48].

There is a detailed derivation of the CFI’s coincidence-count behavior in [35]’s

Supplemental Material. Thus we can content ourselves with a briefer presentation

that gets at an essential feature of the CFI that was not made explicit in Ref. [35], i.e.,

the CFI’s coincidence behavior is controlled by the biphoton state’s joint temporal in-

tensity (JTI). As such, the CFI complements the conventional Franson interferometer

(FI), whose coincidence behavior is controlled by the biphoton state’s joint spectral

intensity (JSI). The biphoton’s JSI is the squared magnitude of its joint spectral am-

plitude (JSA), which is the biphoton’s properly normalized frequency-domain wave

function. Similarly, the biphoton’s JTI is the squared magnitude of its joint tempo-

ral amplitude (JTA), which is the biphoton’s properly normalized time-domain wave

function. It follows that knowing both the JSI and the JTI will allow the biphoton’s

full state to be determined by applying standard phase-retrieval techniques to recover

the JSA’s missing spectral phase, see, e.g., [122].

To instantiate the CFI configuration shown in Fig. 4-1, let the downconverter’s

signal beam undergo the ∆Ω > 0 frequency shift and normal dispersion, while the

downconverter’s idler beam undergoes the −∆Ω < 0 frequency shift and anoma-

lous dispersion. Taking all the optics to be lossless, we then have that the positive-

frequency field operators illuminating the single-photon detectors in Fig. 1 are

�̂�
(+)
𝑆′ (𝑡) =

1

2

∫︁
d𝜔𝑆

2𝜋
[ℰ̂𝑆(𝜔𝑆) + ℰ̂𝑆(𝜔𝑆 + ∆Ω)𝑒𝑖𝜑𝑆 ]𝑒𝑖𝛽2𝜔2

𝑆/2𝑒−𝑖(𝜔𝑆0
+𝜔𝑆)𝑡 (4.17)
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and

�̂�
(+)
𝐼′ (𝑡) =

1

2

∫︁
d𝜔𝐼

2𝜋
[ℰ̂𝐼(𝜔𝐼) + ℰ̂𝐼(𝜔𝐼 + ∆Ω)𝑒𝑖𝜑𝐼 ]𝑒−𝑖𝛽2𝜔2

𝐼/2𝑒−𝑖(𝜔𝐼0
−𝜔𝐼)𝑡. (4.18)

As shown in Ref. [35], for sufficiently high frequency shifts and a sufficiently high

dispersion coefficient, 𝛽2, there will not be any second-order interference and, in the

absence of dark counts, the probability of registering a coincidence from a biphoton

emitted by the downconverter is

𝑃CFI(𝜑𝑆, 𝜑𝐼) =
𝜂2

8

(︂
1 +

∫︁
d𝜔𝑆

∫︁
d𝜔𝐼 Re[Ψ*

𝑆𝐼(𝜔𝑆, 𝜔𝐼)Ψ𝑆𝐼(𝜔𝑆 + ∆Ω, 𝜔𝐼 + ∆Ω)𝑒𝑖(𝜑𝑆+𝜑𝐼)]

)︂
,

(4.19)

where 𝜂 is the detectors’ quantum efficiency.

To rewrite Eq. (4.19) in terms of 𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼), we first invert Eq. (4.12) to obtain

Ψ𝑆𝐼(𝜔𝑆, 𝜔𝐼) =
1

2𝜋

∫︁
d𝑡𝑆

∫︁
d𝑡𝐼 𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼)𝑒

𝑖[(𝜔𝑆0
+𝜔𝑆)𝑡𝑆+(𝜔𝐼0

−𝜔𝐼)𝑡𝐼 ]. (4.20)

Using this result in Eq. (4.19) gives us the result we are seeking,

𝑃CFI(𝜑𝑆, 𝜑𝐼) =
𝜂2

8

(︂
1 +

∫︁
d𝑡𝑆

∫︁
d𝑡𝐼 |𝜓𝑆𝐼(𝑡𝑆, 𝑡𝐼)|2 cos[∆Ω(𝑡𝑆 − 𝑡𝐼) + (𝜑𝑆 + 𝜑𝐼)]

)︂
(4.21)

=
𝜂2

8

(︂
1 +

∫︁
d𝑡𝑆

∫︁
d𝑡𝐼 JTI(𝑡𝑆, 𝑡𝐼) cos[∆Ω(𝑡𝑆 − 𝑡𝐼) + 𝜑𝑇 ]

)︂
, (4.22)

where 𝜑𝑇 ≡ 𝜑𝑆 + 𝜑𝐼 is the interferometer’s phase sum. As an illustration of the

coincidence probability’s behavior, let us evaluate Eq. (4.22) using 𝜓(𝑡𝑆, 𝑡𝐼) from

Eq. (4.16). The double integral is easily performed if we change to sum and difference

coordinates, i.e., 𝑡+ ≡ (𝑡𝑆 + 𝑡𝐼)/2 and 𝑡− ≡ 𝑡𝑆 − 𝑡𝐼 . The result we obtain is

𝑃CFI(𝜑𝑇 ) =
𝜂2[1 + 𝑒−ΔΩ2𝜎2

cor/2 cos(𝜑𝑇 )]

8
, (4.23)
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which implies an interference fringe visibility

𝑉CFI ≡
max𝜑𝑇

[𝑃CFI(𝜑𝑇 )] − min𝜑𝑇
[𝑃CFI(𝜑𝑇 )]

max𝜑𝑇
[𝑃CFI(𝜑𝑇 )] + min𝜑𝑇

[𝑃CFI(𝜑𝑇 )]
= 𝑒−ΔΩ2𝜎2

cor/2 ≈ 1, for ∆Ω ≪ 1/𝜎cor.

(4.24)

The preceding analysis must be modified to treat the case of ideal continuous-

wave (cw) pumped downconversion. The biphoton such an arrangement generates is

a state

|𝜓⟩𝑆𝐼 ∝
∫︁

d𝜔Ψ𝑆𝐼(𝜔)|𝜔𝑆0 + 𝜔⟩𝑆|𝜔𝐼0 − 𝜔⟩𝐼 (4.25)

that cannot be normalized, i.e., 𝑆𝐼⟨𝜓|𝜓⟩𝑆𝐼 = ∞. Nevertheless, we can normalize

Ψ𝑆𝐼(𝜔) to serve as this biphoton’s JSA for 𝜔𝑆 = −𝜔𝐼 = 𝜔 and |Ψ𝑆𝐼(𝜔)|2 as its JSI for

𝜔𝑆 = −𝜔𝐼 = 𝜔. Furthermore, by neglecting the unimportant—insofar as 𝑃CFI(𝜑𝑇 ) is

concerned—phase factor 𝑒−𝑖(𝜔𝑆0
𝑡𝑆+𝜔𝐼0

𝑡𝐼), we can define

𝜓𝑆𝐼(𝑡−) =
1√
2𝜋

∫︁
d𝜔Ψ𝑆𝐼(𝜔)𝑒−𝑖𝜔𝑡− , (4.26)

so that the unnormalizable |𝜓⟩𝑆𝐼 can be rewritten as

|𝜓⟩𝑆𝐼 ∝
∫︁

d𝑡− 𝜓𝑆𝐼(𝑡−)|𝑡+ + 𝑡−/2⟩𝑆|𝑡+ − 𝑡−/2⟩𝐼 , (4.27)

where, as before, 𝑡+ = (𝑡𝑆 + 𝑡𝐼)/2 and 𝑡− = (𝑡𝑆 − 𝑡𝐼). The JTI for this cw case is then

JTI(𝑡−) = |𝜓𝑆𝐼(𝑡−)|2 and the CFI’s coincidence probability is

𝑃CFI(𝜑𝑇 ) =
𝜂2

8

(︂
1 +

∫︁
d𝑡− JTI(𝑡−) cos(∆Ω𝑡− + 𝜑𝑇 )

)︂
. (4.28)

The resulting visibility is

𝑉CFI =

∫︁
d𝑡− JTI(𝑡−) cos(∆Ω𝑡−). (4.29)

Here, we see that conjugate-Franson interference visibility is a function of the JTI,

which is susceptible to the spectral phase. For long-distance nonlocal interference,

the visibility is affected by the second-order dispersion in fiber during propagation.
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This is different from Franson interference, which is unaffected by the fiber disper-

sion en route. As a result, conducting conjugate-Franson interference measurement

at long distance requires dispersion compensation to achieve high-visibility nonlocal

interference.

4.2.2 Experimental setup

To demonstrate conjugate-Franson interferometry, we built a CFI as shown in the

experimental schematic of Fig. 4-1 with inputs of time-energy entangled photon pairs

generated from SPDC in a type-II phase-matched periodically-poled potassium titanyl

phosphate (PPKTP) waveguide pumped by a 780 nm cw laser. The orthogonally-

polarized signal and idler photons were nondegenerate with ∼200GHz offset between

their center frequencies and each had a full-width at half-maximum (FWHM) band-

width of 320GHz. The photon pairs were separated using a fiber polarizing beam

splitter and sent to their respective MZIs. We repurposed two dual-drive quadrature

phase-shift keying (QPSK) modulators (Fujitsu FTM7961EX) operating in a configu-

ration for single sideband generation as the frequency shifters, as discussed in Chapter

3, and set the frequency shift at ±∆Ω/2𝜋 = ±15.65 GHz [80]. We first characterized

the frequency-shifted outputs from both frequency shifters using a narrowband cw

laser at 1560 nm, as shown in Fig. 4-2(a). Within the desired frequency range from

−∆Ω to ∆Ω, a minimum of 25 dB carrier-to-sideband ratio was achieved for both

blue and red frequency shifters. During operation, the signal’s MZI had an 18.6 dB

insertion loss and the idler’s MZI had a 22.7 dB insertion loss. These high insertion

losses were mainly due to the low conversion efficiencies of the frequency shifters [80].

The different insertion losses of the two MZIs was caused by performance difference

of the two frequency shifters and tunable air gaps. The outputs from the signal and

idler MZIs were sent to fiber Bragg-grating dispersion modules that imposed equal

magnitude but opposite sign dispersions of ±10 ns/nm. These dispersion modules

had 3 dB insertion loss and passband from 1557.85 nm (192.44THz) to 1563.05 nm

(191.80THz). The photons emerging from the dispersion modules were detected us-

ing WSi SNSPDs with ∼80% system efficiency and 120 ps timing jitter. The detected
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(a) (b)(b)

(a) (b)

Figure 4-2: (a) Log-scale display of the frequency shifters’ output spectra, measured
using classical light, that show signal-to-noise ratios of at least 20 dB limited by
higher-order sidebands. Maximum intensities of both spectra normalized to 0 dB. (b)
Measured CFI coincidences vs. the inferred signal-idler frequency sum: central peak
location determines zero detuning of the signal-idler sum frequency. 30-s integration
time for each data point; measurement taken with MZI phase sum 𝜑𝑇 ≈ 𝜋/2.

signal and idler spectral ranges were limited by the dispersion modules’ 640GHz pass-

band. The detection events were time-tagged using a time-tagger (Hydraharp 400)

with 128 ps timing resolution.

Because the SPDC signal-idler photon pairs are time-energy entangled, the im-

posed opposite dispersions cancel and their arrival times remain correlated [31]. Nev-

ertheless, the existence of dispersion reveals the incoming photons’ frequency infor-

mation. The resolution of our frequency-domain measurement is 1.8GHz, which is

determined by the detectors’ timing jitter and the amount of applied dispersion. A

sample signal-idler coincidence measurement from the CFI is shown in Fig. 4-2(b).

The locations of the coincidence peaks correspond to the signal-idler sum frequencies

which in turn indicate the possible paths the signal and idler photon have trav-

eled. There are four possible path configurations as signal and idler photons can

travel along either the frequency-shifted or the frequency-unshifted arms. The two

side peaks correspond to the case in which only one of the signal and idler photons

has been frequency shifted such that the signal-idler frequency sum is detuned by

±∆Ω/2𝜋 = ±15.65 GHz. For the center peak the sum frequency remains unchanged,

requiring that both photons travel along their frequency-unshifted arms or they both
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go through their respective frequency shifters. The two different paths are indistin-

guishable and they interfere as a function of the MZI phase sum 𝜑𝑇 , producing the

CFI’s nonlocal coincidence interference similar to that of the Franson interferometer.

We note that if the dispersion modules were not present, the three peaks could not

be separated and the maximum interference visibility achievable would be limited to

50%.

4.2.3 Interferometer alignment procedure

Alignment of the conjugate-Franson interferometer is critical for achieving high in-

terference visibility. This section will discuss the procedure for matching the path

length and setting the correct polarization.

High interference visibility requires the frequency-shifted path and frequency-

unshifted path within each MZI to have the same polarization. In our experimental

setup shown in Fig. 4-1, the polarization beam splitter (PBS) set the initial po-

larization state for the frequency-shifted and frequency-unshifted paths. After the

PBS, both paths’ polarization are aligned to the slow axis of the PBS’s polarization-

maintaining (PM) fiber. The input and the output fibers of the frequency shifter

are also PM, maintaining the initial polarization state. In the frequency-unshifted

path, the fiber is not polarization-maintaining. We use a polarization paddle to ad-

just the polarization in the frequency-unshifted path to match the polarization of the

frequency-shifted path.

To do so, we first connected the output of the MZI to a polarization paddle followed

by a linear fiber polarizer. We sent laser light through the input PBS of the MZI and

varied the laser polarization so that the laser light was equally distributed between the

frequency-shifted and frequency-unshifted paths. We then blocked the transmission

of the frequency-unshifted path. The power after the linear polarizer was monitored

and maximized by changing the input polarization to the linear polarizer. In this

step, we aligned the polarization of the frequency-shifted path to the linear polarizer.

Next, we unblocked the frequency-unshifted path but blocked the frequency-shifted

path. We adjusted the polarization on the frequency-unshifted path using the in-line
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signal’s (red-shifted) interferometer idler’s (blue-shifted) interferometer

Figure 4-3: Single photon interference visibility as a function of air gap position. The
optimal location for the signal’s (red-shifted) interferometer is 8.82 mm. The optimal
location for the idler’s (blue-shifted) interferometer is 11.42 mm.

polarization paddles so that output power from the linear polarizer was maximized.

The polarization of both paths should be matched at this point. Alternatively, one

can use a polarimeter to observe the polarization and match the polarization of the

two paths.

We used an interferometric method to determine the path-length mismatch be-

tween the frequency-shifted and frequency-unshifted paths. We filtered the broadband

SPDC photon pairs’ spectra generated from a type-0 phase-matched periodically-

poled lithium niobate (PPLN) crystal using a 10 nm flat-top filter centered at 1560

nm. The filtered photons’ polarizations were set such that the input PBS to the

MZI functioned as a 50/50 beam splitter. We set the QPSK modulator to pass its

input without applying a frequency shift. Finally, we observed the single-photon

interference by monitoring the photon count rate from the MZI output. The interfer-

ence’s visibility indicates the two paths’ length mismatch. We used the tunable air

gap to look for the optimal position where the visibility is maximized, showing that

the frequency-shifted path and the frequency-unshifted path have the same lengths.

The measurement results are shown in Fig. 4-3. We adjusted the air gap position to

achieve ≥ 99% interference visibility for the signal (red-shifted) MZI and the idler

(blue-shifted) MZI shown in Fig. 4-1. We note that the optimal location is sensitive

to the ambient room temperature and needs to be optimized regularly. One can also
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Figure 4-4: Left: applied voltage to PZT and the measured MZI power as a function
of time. Right: Calculated induced phase change as a function of the applied voltage
to PZT.

use a broadband ASE light to conduct the path-length matching calibration instead

of using broadband single photons.

4.2.4 Piezoelectric transducer characterization

We used a piezoelectric transducer (PZT) stack to impose a controllable phase change

actively. We fixed the fiber onto the PZT stack. The fiber is stretched as the PZT

stack expands. The PZT was placed in the signal’s MZI (blue-shifted MZI) to change

its phase, while the idler’s MZI (red-shifted MZI) was kept unchanged. The PZT has

input voltage ranges from 0 to 150 V. To characterize the performance of the PZT,

we monitored the MZI output power with a 1560 nm laser input. The MZI power

output changes as a function of the relative phase difference introduced by the PZT.

We varied the PZT voltage and recorded the corresponding applied voltage (V) and

the measured MZI power output. The results are shown in the left plot of Fig. 4-4.

We see that the PZT has a response time in the ms time scale, and the induced

phase change is repeatable and greater than 2𝜋. We calculated the induced phase

change based on MZI’s optical response and plotted the results in the right plot of

Fig. 4-4. The relationship between the voltage applied to the PZT and the induced

phase change is mostly linear. The 𝑉𝜋 of this PZT fiber stretcher is found to be ∼ 64

V.
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Figure 4-5: Normalized output power from MZIs measured at 1s intervals. The red
(blue) curve is the measured power for signal’s (idler’s) MZI. The green curve is the
measured ambient temperature inside CFI’s thermal enclosure.

4.2.5 Conjugate-Franson interferometer phase stability char-

acterization

We placed the CFI setup in a custom-built two-stage thermal enclosure. Both the

outer and inner layers were made from cardboard and thermal-isolation foam. This

passive thermal enclosure reduced and slowed down the ambient thermal fluctuations

and also restricted the inside air current flow so that the phase of the fiber interfer-

ometer was relatively stable for the duration of measurements. During measurement,

the temperature outside the enclosure was kept reasonably stable.

To study the phase drift we simultaneously monitored the power variations in the

signal and idler’s balanced Mach-Zehnder interferometers (MZIs) with a 1560 nm cw

laser. Frequency shift was not employed in this phase-drift measurement. The results

we obtained are shown in Fig. 4-5. From the MZIs’ output powers, we found that the

two MZIs’ phases drift at different rates. The relative phase of the signal MZI changes

at a rate of 0.37 rad/min. The relative phase of the idler MZI changes at a rate of

0.27 rad/min. The temperature inside the box changes at a rate of 0.0004∘C/min.
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(a) (b)(b)

(a) (b)

Figure 4-6: (a) Coincidences (blue) as a function of MZI phase sum 𝜑𝑇 , with calculated
uncertainties assuming Poisson statistics. Least-squares fit (solid red line) to the form
𝐴[1 + 𝑉 cos(𝜑𝑇 )] yields a fitted CFI visibility (𝑉 ) of 93%. No background counts are
subtracted from measured data. (b) Singles count rates for both detectors as functions
of the MZI phase sum 𝜑𝑇 , showing no meaningful variations.

4.2.6 Conjugate-Franson interference results

We observed that the center coincidence peak of Fig. 4-2(b) varied as a function of the

phase sum 𝜑𝑇 . The CFI was thermally insulated but we still observed that the center

coincidence peak changed its magnitude due to residual thermal drift at an estimated

rate of 0.29±0.06 rad/min for 𝜑𝑇 . This number is calculated from the measured

21.6±0.4 minutes it took the interferometer to accumulate a 2𝜋 phase change. We

recorded the signal-idler coincidences and plotted the coincidence counts of the center

peak as a function of the accumulated phase sum 𝜑𝑇 , as shown in Fig. 4-6(a). The

result shows a clear oscillatory signature as a function of the phase drift. To eliminate

the possibility that the change of the coincidence counts was caused by changes of

the photon flux, we also recorded the singles rates of both detectors at the same

time during the coincidence measurement, as shown in Fig. 4-6(b). The measured

singles rates remain constant throughout the thermal drift duration and show that

the oscillatory fringe is not a result of single-photon interference.

To obtain an accurate value for the CFI’s interference visibility, we attached a

PZT stack to the signal MZI’s frequency-unshifted arm as a fiber stretcher to impose

a controllable phase shift on 𝜑𝑆. The PZT has an input voltage range between

77



0 20 40 60 80 100 120 140
Measurement number

0

50

100

150

200

250

300
Co

in
cid

en
ce

 c
ou

nt
s /

 3
0s

0

20

40

60

80

100

120

140

PZ
T 

vo
lta

ge
 (V

)

Figure 4-7: CFI coincidences with controllable phase shift. The abscissa is the number
of sequential measurements. The coincidences are shown by the blue dashed line with
the left ordinate. The PZT voltage associated with each measurement is shown in
red with the right ordinate. The calculated visibilities for these seven measurements
are: 0.961, 0.956, 0.966, 0.958, 0.951, 0.948, 0.978.

0 to 150 V and is capable of applying phase shifts > 2𝜋. We used this PZT to

actively search for the maximum and minimum coincidence counts of the conjugate-

Franson interference by repeatedly scanned 𝜑𝑆 from 0 to 2𝜋 while keeping 𝜑𝐼 constant.

The fringe visibility was calculated based on the observed minimum and maximum

coincidence counts within each phase scan. For each search, we increased the PZT

voltage from 0 to 140 V at variable step sizes. When the coincidence counts are

within 10% of the maximum or minimum value, we set the voltage step size to be 3

V. Otherwise, we set the voltage step size to be 12 V. We show seven search results in

Fig. 4-7 as an example. The PZT voltage is always changed in the ascending direction

to avoid hysteresis. Once the input voltage setting exceeds 140 V, the voltage is reset

to 0 V. The reset points show up as the sudden increase or decrease of the CFI

coincidence, which are visible in Fig. 4-7.

78



We obtain a CFI visibility of 96 ± 1% based on 23 phase-scan measurements and

an uncertainty of 1 standard deviation. We estimate that degradation of our CFI

visibility measurements was due to phase fluctuations of the CFI (1.2%), modulators’

extra sidebands (0.7%), modulator dispersion (0.5%), dark counts and noise back-

ground (0.5%), and SPDC multi-pair events (0.4%). The achieved visibility validates

the quantum nonlocal correlation between our SPDC photon pairs, surpassing the

quantum-classical threshold of 1/
√

2 =70.7% by ∼25 standard deviations. This high

CFI visibility confirms that our photon-pair source indeed produces time-energy en-

tanglement and validates conjugate-Franson interferometry’s being a promising quan-

tum measurement technique for certifying time-energy entanglement. We note that

although our current measurement setup is affected by the post-selection loophole,

it can be modified to match the two side peaks temporally and eliminate the post-

selection loophole [123].

4.3 Spectral phase detection using conjugate-Franson

interference

To show that the CFI brings new capability to the increasingly expanding photonic

quantum toolbox, we demonstrate that the CFI visibility is sensitive to the spectral

phase of a biphoton state, something which cannot be sensed by Franson or Hong-

Ou-Mandel interferometers. First consider a cw pumped SPDC source generating a

time-energy entangled biphoton state with a flat spectrum spanning 320GHz and no

spectral phase variation, i.e., its frequency-domain description is

|𝜓(1)⟩𝑆𝐼∝
∫︁ 𝜔max

−𝜔max

d𝜔Ψ
(1)
𝑆𝐼 (𝜔)|𝜔𝑆0 + 𝜔⟩𝑆|𝜔𝐼0 − 𝜔⟩𝐼 , (4.30)

where Ψ
(1)
𝑆𝐼 (𝜔) = 1/

√
2𝜔max is its joint spectral amplitude (JSA), 𝜔𝑆0 (𝜔𝐼0) is the

signal (idler) center frequency, and 𝜔 is the state’s frequency detuning with a range
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of ±𝜔max where 𝜔max/2𝜋 = 160 GHz. Now consider the state |𝜓(2)⟩𝑆𝐼 whose JSA is

Ψ
(2)
𝑆𝐼 (𝜔) =

⎧⎨⎩ 1/
√

2𝜔max, for |𝜔| ≤ 𝜔1

𝑒𝑖𝜑/
√

2𝜔max, for 𝜔1 < |𝜔| ≤ 𝜔max,
(4.31)

where 𝜔1/2𝜋 = 80 GHz.
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Figure 4-8: JSI calculated for a biphoton with 320-GHz-wide flat-top spectrum. Spec-
tral phase 𝜑 (none, set to 0) applied to blue (red) shaded region outside (within) the
±80 GHz span of signal and idler frequency detuning, showing no 𝜑 dependence.

Although |𝜓(2)⟩𝑆𝐼 differs from |𝜓(1)⟩𝑆𝐼 when 0 < 𝜑 < 2𝜋, these states cannot

be distinguished by Franson or Hong-Ou-Mandel interference because |𝜓(2)⟩𝑆𝐼 and

|𝜓(1)⟩𝑆𝐼 have identical JSIs, as shown in Fig. 4-8, and those interferometers’ interfer-

ence patterns are determined by the JSI. On the other hand, the JTIs of |𝜓(2)⟩𝑆𝐼 and

|𝜓(1)⟩𝑆𝐼 are different, because of JTI’s spectral phase dependence. This difference is

shown in Figs. 4-9, which display the JTIs of |𝜓(2)⟩𝑆𝐼 for 𝜑 = 0 and 𝜋, respectively,

with the former also being the JTI of |𝜓(1)⟩𝑆𝐼 . Eq. (4.29) indicates that the CFI vis-
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ibility is a function of the JTI and thus sensitive to spectral phase. Our theoretical

calculation for the CFI visibility yields 95.1% for |𝜓(1)⟩𝑆𝐼 and 75.5% for |𝜓(2)⟩𝑆𝐼 with

𝜑 = 𝜋. This represents a ∼20% drop in CFI visibility that should be measurable

experimentally.
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Figure 4-9: JTI of same biphoton state with various imposed phase value 𝜑. Maximum
of JTI normalized to 1.

We used a type-0 phase-matched PPLN crystal pumped by a 780 nm continuous-

wave (cw) laser to generate time-energy entangled photon pairs with a flat spectrum

across the telecommunication C band. A 50/50 beam splitter was used to separate

the co-polarized signal and idler photons that incurred a 3 dB loss for postselected

signal-idler coincidence measurements. The signal and idler had flat spectra across

the telecommunication C band. We applied a programmable amplitude and phase
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Figure 4-10: Conjugate-Franson fringe visibility as a function of applied spectral
phase 𝜑 of Eq. (4.3). Measured data points (blue) follow closely the calculated values
(solid red line) obtained from Eq. (4.29) with a rectangular spectrum of 320GHz span
shown in Fig. 4-8.

82



spectral filter (Finisar waveshaper 1000S) to shape the signal and idler spectra to

be rectangular with a 320GHz bandwidth and to impose an adjustable phase 𝑒𝑖𝜑 on

both signal and idler light for frequency detuning |𝜔|/2𝜋 between 80 to 160 GHz,

thus producing the biphoton state |𝜓(2)⟩𝑆𝐼 . We measured the CFI visibility at 𝜑 = 0,

𝜋/2, 𝜋, 3𝜋/2, and 2𝜋 and Fig. 4-10 displays our results along with the theoretically

calculated values. Because 𝜑 = 0 or 2𝜋 makes |𝜓(2)⟩𝑆𝐼 = |𝜓(1)⟩𝑆𝐼 , the 93.2 ± 2.0%

visibility we obtained for 𝜑 = 0 and the 91.4 ± 2.0% we got for 𝜑 = 2𝜋, with the

uncertainty value being the standard deviation of 3 measurements, are consistent with

that equivalence. Figure 4-10 shows that the CFI visibility degrades when spectral

phase variation was introduced, reaching a minimum visibility of 72.0±3.1% for 𝜑 = 𝜋,

in good agreement with our calculation. In this simple example, the substantial

visibility reduction of 21.2% from 𝜑 = 0 to 𝜑 = 𝜋 clearly confirms the ability of

the CFI to distinguish between states with different spectral phase content. Our

experimental results show that conjugate-Franson interferometry can be used not

only for quantifying time-energy entanglement of biphotons but also for detecting

their spectral phase differences, which is helpful in characterizing entangled systems

with high-dimensional encoding [118, 119].

4.4 Conclusion

In summary, we reported experimental realization of the conjugate-Franson interfer-

ometer, which measures the conjugate variables of the Franson interfereometer. We

summarize the differences and similarities between the Franson and conjugate-Fanson

in Table 4.1.

We have demonstrated experimentally a CFI visibility of 96±1% without any back-

ground subtraction for time-energy entangled photon pairs generated by cw pumped

SPDC. The achieved visibility surpasses the quantum-classical threshold of ∼71%

by 25 standard deviations and clearly validates the quantum entanglement feature

between the SPDC signal and idler photons. To illustrate its application potential,

we utilized the CFI as an enabling quantum measurement technique to distinguish
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Franson interferometer Conjugate-Franson inteferometer
unbalanced MZI with ∆𝑇 path
length difference between two paths

balanced MZI with ∆Ω frequency dif-
ference between two paths

measures signal and idler time coin-
cidences

measures signal and idler frequency
coincidences

interference visibility quantifies
biphoton’s frequency correlation

interference visibility quantifies
biphoton’s time correlation

interference visibility relates to the
biphoton’s joint spectral intensity

interference visibility relates to the
biphoton’s joint temporal intensity

interference visibility is sensitive to
temporal phase, not spectral phase

interference visibility is sensitive to
spectral phase, not temporal phase

Table 4.1: Similarities and differences between Franson and conjugate-Franson inter-
ferometers.

between two biphoton states with identical joint spectral intensities but different joint

temporal intensities due to spectral phase variation. By introducing an adjustable

spectral phase shift to a cw pumped SPDC biphoton state, we observed a significant

CFI visibility drop of 21% between the two biphoton states, matching our theoret-

ical calculations. Our results show that conjugate-Franson interferometry quantifies

correlation in the time domain and is complementary to the well-known Franson

interferometry. Overall, we expect that the addition of the CFI to the quantum

toolbox provides a simpler way than prior techniques for characterizing time-domain

correlation and a new method to monitor spectral phase information of time-energy

entangled photon pairs. Hence we believe the CFI will enhance future developments

of entanglement systems for computing, communication, and sensing applications.
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Chapter 5

Frequency domain high-dimensional

quantum key distribution

5.1 Introduction

Quantum communication and quantum cryptography enable the secure transfer of in-

formation between distant parties. The communication security is safeguarded by the

laws of physics. Conventional QKD protocols often encode information using binary

format. For example, BB84 uses horizontal (or, alternatively, left-handed circular)

polarization to represent bit 0 and vertical (right-handed circular) polarization to

represent bit 1. In this encoding scheme, the key capacity, which is also referred to as

the photon information efficiency (PIE), is limited to 1 bit per photon. Furthermore,

QKD systems typically operate in photon-starved conditions, and therefore the max-

imum key rate is capped by the PIE and the photon flux. One solution to increase

the PIE is to encode information in a high-dimensional Hilbert space. Moreover,

encoding in the high-dimensional Hilbert space is more resilient to noise [124].

A few different degrees of freedom have been studied for improving PIE, includ-

ing time [33], orbital angular momentum [125, 27], position momentum [126], and

time-energy [31, 32]. In this chapter, we focus the discussion on a scheme em-

ploying frequency domain encoding. We report an experimental demonstration of

high-dimensional QKD with frequency encoding using time-energy entangled photon
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pairs over a 137-meter fiber link. Its security against a collective Gaussian attack is

quantified through conjugate-Franson interferometry. The conjugate-Franson inter-

ferometer (CFI) was discussed in Chapter 4. The CFI measurement bounds the time

correlation of the entangled photon pairs, which quantifies Eve’s Holevo information.

In the following sections, we start with the discussion of experimental methods to

implement frequency encoding, followed by the formulation to calculate Eve’s Holevo

information. Finally, we report that we have obtained a secure key rate (SKR) of

42 kbit/s through 137 meters of single-mode fiber with a PIE of 0.6 bit per photon

coincidence.

5.2 Methods of encoding in the frequency domain

Wavelength-division multiplexing (WDM) technology multiplexes a number of op-

tical signals with different wavelengths into a single optical fiber and increases the

classical communication channel capacity. Here we use WDM technology for a dif-

ferent purpose. We divide the frequency spectrum into different frequency bins using

WDM technology and perform projective measurements on the signal and idler’s fre-

quencies. The measurement results, correlated in frequency because of the biphoton’s

time-energy entanglement, can be used to generate correlated keys for communica-

tion. The dimension of the encoding alphabet depends on the available spectrum and

the number of frequency bins. In general, a larger number of bins leads to higher en-

coding alphabet dimensions. In this section, we explore and compare three different

methods to generate frequency bins for frequency encoding.

5.2.1 Dense wavelength division multiplexing

Dense wavelength division multiplexing (DWDM) systems are pervasive in today’s

internet network. DWDM wavelengths are positioned in a fixed optical frequency

grid with 100 GHz (∼ 0.8 nm) spacing and a reference wavelength at 191.10 THz

(1552.52 nm), as defined by the International Telecommunication Union (ITU). A

typical DWDM system utilizes thin-film filters to pass or reflect certain wavelengths
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Figure 5-1: Transmission profile of a commercial 4-channel DWDM module at ITU
channels 20 to 23.

of interest [127]. A bandpass thin-film filter consists of one or more coupled thin-film

Fabry-Perot filters. The filter can be designed to reflect non-resonant wavelength

components and transmit the resonant wavelength components. The transmission

profile of the thin-film filter can be designed to be an approximately square shape.

However, this tends to introduce chromatic dispersion that distorts the input optical

signal. In practice, the squareness of the transmission profile is often modified to

reduce the chromatic dispersion introduced by the filter design. In Fig. 5-1, we show

the measured transmission profile of a commercial four-channel DWDM module that

is designed for ITU channels 20-23. We measured a channel insertion loss of <1.5 dB

and adjacent channel extinction ratio of >10 dB. However, the commercial DWDM

module is only available with 100 GHz channel spacing in the telecommunication

C band. This is not ideal for our QKD system as part of the entangled photons’

spectra is in the telecommunication L band. Furthermore, 100 GHz channel spacing is

relatively large for our applications as it limits the number of frequency bins available.

A DWDM system with 50 GHz channel spacing is available but is more expensive than
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the 100 GHz module. The 50 GHz DWDM system features arrayed waveguide grating

technology instead of thin-film filters that increases the system design complexity. We

note that the DWDM system with smaller channel spacing is also available down to

12.5 GHz using fiber Bragg gratings. However, the small channel spacing systems

(<50 GHz) are often associated with a high manufacturing cost, which prevents them

from large-scale adoption in the telecommunication industry.

5.2.2 Silicon photonics for wavelength multiplexing

A silicon ring resonator transmits certain wavelengths when it is in resonance, making

it a viable candidate for frequency binning and frequency selection [128]. In particular,

we consider an add-drop ring resonator where there is an add port, a drop port, and a

looped optical waveguide. When the optical waves inside the loop accumulate a round

trip phase shift that is a multiple of 2𝜋, the cavity is in resonance, and the optical

waves interfere constructively. One major issue with the add-drop ring resonator is the

coupling loss when light is coupled into and out of the looped waveguide. A large-sized

high Q resonator has low coupling loss, but its free spectral range (FSR) is small that

it cannot be used over a large spectral bandwidth as it transmits multiple wavelengths

over the desired bandwidth. To overcome this issue, Mach-Zehnder interferometers

can be placed before a series of high Q ring resonators to coarsely divide the spectrum.

Recent research shows an integrated system featuring 640 resonators [129] with a 16

GHz (0.13 nm) channel offset. However, the ∼ 33 dB insertion loss of such a system

is too high for most applications. A portion of the insertion loss is due to the poor

fiber-to-chip coupling. The fiber-to-chip coupling loss can be reduced with a custom

inverted taper, which has been shown to feature a 0.8 dB insertion loss per facet [130].

In the future, we believe that the integrated photonics platform is a promising solution

for making scalable frequency filters and other devices for quantum communication.
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5.2.3 Programmable filter with frequency detection

Both the DWDM system and ring resonator system require multiple detectors. This

requirement brings significant experimental overhead in constructing the frequency

domain QKD testbed. Alternatively, we use two programmable filters (Finisar Wave-

shaper 1000S) and two single-photon detectors to emulate a physical multi-channel

DWDM system. The programmable filter consists of a 4𝑓 optical system that trans-

forms the input light into and out of the frequency domain and a spatial light modu-

lator (SLM) system that imposes frequency-resolved phase changes in the frequency

domain. The minimum bandwidth for the programmable frequency filters is 12 GHz.

However, discretization error due to limitation of the filters can be observed when

the filter bandwidth is below 50 GHz. The discretization error leads to uneven inser-

tion loss for different frequency channels. As an alternative, especially for small filter

bandwidths, it is better to use a grating-based optical filter, such as EXFO-XTA-50,

which has a minimum filter bandwidth down to 1 GHz.

Although the commercial DWDM system or the silicon photonics system offer su-

perior performance to the programmable filter system, they do not have the flexibility

to adjust the filter’s center frequency. Adjustments of the filter’s center frequency are

essential to minimize channel crosstalk. This inflexibility is not ideal for testing our

frequency-encoded QKD system because our pump laser’s frequency is not tunable.

For this proof-of-principle experiment, we will investigate the frequency-encoded QKD

performance with a programmable frequency filter system.

5.3 Security analysis based on conjugate-Franson in-

terferometry

We use the Gaussian continuous variable QKD framework to assess protocol security.

The security analysis is based on the optimality of Eve’s Gaussian collective attack

for Alice and Bob’s time-frequency covariance matrix (TFCM) [35, 33, 131]. The
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TFCM for the biphoton state in Eq. (4.16) is

Γ0 =

⎡⎣𝛾0𝑆𝑆 𝛾0𝑆𝐼

𝛾0𝐼𝑆 𝛾0𝐼𝐼

⎤⎦ , (5.1)

where

𝛾0𝑆𝑆 = 𝛾0𝐼𝐼 =

⎡⎣𝜎2
cor/4 + 𝜎2

coh 0

0 1/4𝜎2
cor + 1/16𝜎2

coh

⎤⎦ (5.2)

𝛾0𝑆𝐼 = 𝛾0𝐼𝑆 =

⎡⎣−𝜎2
cor/4 + 𝜎2

coh 0

0 1/4𝜎2
cor − 1/16𝜎2

coh

⎤⎦ . (5.3)

The root-mean-square coherence time, 𝜎coh, is set by the pump pulse’s duration; and

the root-mean square correlation time, 𝜎cor, is set by the reciprocal of the full width at

half-maximum (FWHM) phase-matching bandwidth, 𝐵PM, in Hz. Eve’s disturbance

changes the TFCM to become

𝛾𝑆𝑆 = 𝛾0𝑆𝑆 (5.4)

𝛾𝑆𝐼 = 𝛾𝐼𝑆 =

⎡⎣1 − 𝜂𝑡 0

0 1 − 𝜂𝜔

⎤⎦ 𝛾0𝑆𝐼 (5.5)

𝛾𝐼𝐼 =

⎡⎣1 + 𝜖𝑡 0

0 1 + 𝜖𝜔

⎤⎦ 𝛾0𝐼𝐼 , (5.6)

where 𝜂𝑡, 𝜂𝜔 are the loss, and 𝜖𝑡, 𝜖𝜔 are the excess noise in Bob’s idler photon in the

time and frequency correlations, respectively. 𝜂𝑡 and 𝜖𝑡 are bounded by the conjugate-

Franson interference visibility 𝑉CFI.

It has previously been shown that 𝑉CFI = ⟨cos[(𝑡𝑆−𝑡𝐼)∆Ω]⟩ [35], where 𝑡𝑆(𝐼) is the

arrival-time measurement operator for signal (idler) photons, and ∆Ω is the applied

frequency shift in the CFI. We define 𝑡MSE ≡ (𝑡𝑆0 − 𝑡𝐼0)
2 to be the mean-square

signal-idler timing difference at the source. Taylor expanding the ⟨cos[(𝑡𝑆 − 𝑡𝐼)∆Ω]⟩

term gives:

𝑉 th
CFI = ⟨cos[(𝑡𝑆0 − 𝑡𝐼0)∆Ω]⟩ ≥ 1 − ⟨(𝑡𝑆0 − 𝑡𝐼0)

2⟩∆Ω2

2
(5.7)

90



and

𝑉CFI ≤ 1 − ⟨(𝑡𝑆 − 𝑡𝐼)
2⟩∆Ω2

2
+

⟨(𝑡𝑆 − 𝑡𝐼)
2⟩2 ∆Ω4

8
, (5.8)

where 𝑉 th
CFI is the theoretical maximum conjugate-Franson visibility, and 𝑡𝑆(𝐼)0 is the

undisturbed arrival-time measurement operator determined by the source. Combining

Eq. (5.7) and (5.8), we can write:

0 ≤ −⟨(𝑡𝑆 − 𝑡𝐼)
2⟩∆Ω2

2
+
⟨(𝑡𝑆 − 𝑡𝐼)

2⟩2 ∆Ω4

8
+(𝑉 th

CFI−𝑉CFI+
⟨(𝑡𝑆0 − 𝑡𝐼0)

2⟩∆Ω2

2
), (5.9)

⟨(𝑡𝑆 − 𝑡𝐼)
2⟩2 − 4 ⟨(𝑡𝑆 − 𝑡𝐼)

2⟩
∆Ω2

+
8

∆Ω4
(𝑉 th

CFI − 𝑉CFI +
⟨(𝑡𝑆0 − 𝑡𝐼0)

2⟩∆Ω2

2
) ≥ 0, (5.10)

From the quadratic form of Eq. (5.10) equation, we obtain two roots:

⟨(𝑡𝑆 − 𝑡𝐼)
2⟩ =

2

∆Ω2

(︁
1 +

√︂
1 − 2(𝑉 th

CFI − 𝑉CFI +
⟨(𝑡𝑆0 − 𝑡𝐼0)2⟩∆Ω2

2
)
)︁
, (5.11)

and

⟨(𝑡𝑆 − 𝑡𝐼)
2⟩ =

2

∆Ω2

(︁
1 −

√︂
1 − 2(𝑉 th

CFI − 𝑉CFI +
⟨(𝑡𝑆0 − 𝑡𝐼0)2⟩∆Ω2

2
)
)︁
. (5.12)

The solution in Eq. (5.11) is rejected because its value is orders of magnitude larger

than the experimental value. Therefore, we use the solution of Eq. (5.12) to bound

Eve’s Holevo information. We note that this bound is valid only when 𝑉CFI ≥ 50%.

When 𝑉CFI < 50%, the quadratic inequality does not have a solution. In the security

analysis, we use 𝜉𝑡 to quantify the change of the timing difference 𝑡MSE. The signal-

idler timing difference becomes larger as the entanglement quality degrades, which

can be written as: ⟨(𝑡𝑆 − 𝑡𝐼)
2⟩ = (1 + 𝜉𝑡) ⟨(𝑡𝑆0 − 𝑡𝐼0)

2⟩. Combined with Eq. (5.12),

we can write 𝜉𝑡 as:

𝜉𝑡 =
2

∆Ω2𝑡MSE

[︁
1 −

√︂
1 − 2(𝑉CFI0 − 𝑉CFI +

𝑡MSE∆Ω2

2
)
]︁
− 1, (5.13)

where 𝑡MSE ≡ ⟨(𝑡𝑆0 − 𝑡𝐼0)
2⟩. On the other hand, 𝜂𝜔 and 𝜖𝜔 are bounded by the Franson

interference visibility. However, in frequency encoding QKD, any disturbance caused
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by Eve in the frequency domain increases the error rate of the key generation process

and it is easily detectable. Here, we assume that Eve’s disturbance does not affect

the frequency correlation and has a negligible impact on Eve’s Holevo information.

In the security analysis, we define the mean-square frequency sum at the source to

be ΩMSE ≡ ⟨(Ω𝑆0 + Ω𝐼0)
2⟩. Similarly, the change in frequency sum is ⟨(Ω𝑆 + Ω𝐼)

2⟩ =

(1 + 𝜉Ω)ΩMSE. The experimental frequency sum resolution is determined by the

detector jitter and the dispersion module.

We assume Alice, Bob, and Eve all share a pure Gaussian state because a Gaus-

sian attack maximizes Eve’s Holevo information for a given TFCM. Eve’s Holevo

information for covariance matrix Γ can be written as [35]:

𝜒Γ(𝐴;𝐸) = 𝑆(𝜌𝐸) −
∫︁
𝑑𝑡𝑝(𝑡𝐴)𝑆(𝜌𝐸|𝑇𝐴=𝑡𝐴), (5.14)

where 𝑆(𝜌) = −Tr[𝜌log2(𝜌)] is the von Neumann entropy of the state 𝜌. Because

Alice, Bob, and Eve’s joint quantum state is pure, we can write 𝑆(𝜌𝐸) = 𝑆(𝜌𝐴𝐵).

Conditioned on Alice’s measurement, the quantum state shared by Bob and Eve is

also pure. Thus we can write 𝑆(𝜌𝐸|𝑇𝐴=𝑡𝐴) = 𝑆(𝜌𝐵|𝑇𝐴=𝑡𝐴). Moreover, Bob and Eve’s

conditional quantum state is independent of Alice’s measurement result. We can

simplify Eq. (5.14) to be:

𝜒Γ(𝐴;𝐸) = 𝑆(𝜌𝐴𝐵) − 𝑆(𝜌𝐵|𝑇𝐴
). (5.15)

Eve’s Holevo information can be estimated by the upper bound of Eq. (5.15). For

example:

𝜒UB
𝜖𝑡,𝜖𝜔(𝐴;𝐸) = sup

Γ∈ℳ
𝜒Γ(𝐴;𝐸), (5.16)

where ℳ is the set of physically-allowed TFCMs.
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Figure 5-2: Schematic of frequency domain high-dimensional quantum key distribu-
tion experimental setup.

5.4 Demonstration of frequency bin quantum key

distribution over fiber

Having established a framework to generate raw communication keys and bound Eve’s

Holevo information, we now demonstrate a proof-of-principle experiment on frequency

domain high-dimensional quantum key distribution. Alice used a type-0 periodically-

poled lithium niobate (PPLN) crystal as the entangled photon pair source. Because

the signal and idler photons are co-polarized, she used a 50/50 beam splitter to

passively separate them, incurring a 3 dB loss. Alice kept the idler photon and sent

the signal photon to Bob via a 137-meter fiber channel. Alice and Bob both used

70/30 passive beam splitters to randomly switch the photon between key generation

or security check. If both signal and idler were sent for key generation, they passed

through frequency filters and were detected using superconducting nanowire single-

photon detectors (SNSPDs). If both photons were sent for security check, Alice and

Bob utilized the CFI setup shown in Fig. 4-1 for frequency coincidence measurement.

Otherwise, photon coincidence cannot be registered and such events are discarded. A

schematic of the experimental setup is shown in Fig. 5-2.

In this demonstration, we use Alice and Bob’s 70/30 beam splitters to select
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∼50% (0.72) and ∼10% (0.32) of photon pairs for generating keys and security check,

respectively. For key generation, the effective success probability is less than 1%

because of channel selection (1/16) and insertion losses of the programmable frequency

filters and other components. Similarly, for CFI security check, the success probability

is also low due to insertion losses of the frequency shifters in each of the two MZIs.

As a result, using a different splitting ratio can significantly affect the signal-to-noise

ratio (SNR) ratio of both key generation and CFI measurement that determines the

required measurement time of a QKD session. For example, changing the splitting

ratio to 50/50 will increase the CFI’s SNR, but the key generation SNR will be

decreased. As a result, it will take more time for the key generation measurement to

achieve the same SNR as in the 70/30 case. Low SNR in key generation results in a low

adjacent channel extinction ratio, which leads to an increase of the communication

error rate and ultimately a low raw communication key rate. Here, we chose the

splitting ratio so that enough SNR (maximum coincidence count detected > 3000)

can be achieved for key generation at 1 second integration time. At the same time,

the CFI setup can detect ∼ 130 coincidence counts per 30 seconds.

The spectral range of the QKD system is restricted to 640 GHz centered from

1557.85 nm (192.44THz) to 1563.05 nm (191.80THz) due to passband limitation of

the dispersion modules used in the CFI. The signal and idler spectra are assumed to

be flat. We set the programmable frequency filter’s bandwidth to be 40 GHz with a

tunable center frequency to emulate 16 frequency bins within the 640 GHz range. In

Table 5.1, we list the physical parameters for the frequency domain high-dimensional

QKD experiment. These parameters are also used for calculating the PIE and the

SKR.

5.4.1 Raw key generation and information reconciliation

We used a type-0 PPLN crystal to generate time-energy entangled photon pairs.

The PPLN crystal was designed to have a broadband phase-matching function with

a few THz bandwidth [132]. The PPLN crystal was 4-cm long and operated at

89.4∘C. The crystal was pumped by a 780.2-nm continuous-wave (cw) laser at 12
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Parameters Definitions Values
d𝑡 Detector’s FWHM timing jitter (s) 150 × 10−12

𝐵PM QKD system bandwidth (Hz) 640 × 109

𝛽2 Dispersion module 2nd order dispersion (second/Hz) 8.3×10−20

dΩ/2𝜋 FWHM frequency resolution (Hz) 1.8×109

∆Ω/2𝜋 Conjugate-Franson frequency shift (Hz) 15.65 × 109

𝑉CFI0 Maximum CFI visibility for 640 GHz spectrum 97.5%

Table 5.1: List of parameters for frequency encoding QKD system. The maximum
CFI visibility is calculated using Eq. (4.29) and the 640 GHz spectrum.

mW power. To benchmark the output flux of the PPLN source, we used a coarse

wavelength-division multiplexing (CWDM) module to separate the signal and idler

photons. The CWDM’s two output channels have 20 nm bandwidth and their center

wavelengths are 1551 nm and 1571 nm. At 0.078 mW of pump power, we measured

∼27400 coincidences per second. The singles of both detectors were ∼ 66500 per

second. Therefore, the system efficiency of this source for this particular signal-idler

separation scheme was 41%. We note that this is not how we separate the signal and

idler in all of the experiments discussed in this chapter. This particular measurement

was done to provide information for comparing the source’s system efficiency.

Because the signal and idler have the same polarization, they cannot be separated

by their polarizations. Therefore, we can only measure the combined spectrum of

the signal and idler photons. We used a tunable filter (EXFO-XTA50) with 0.2 nm

passband to measure the output spectrum. The measurement result is shown in Fig.

5-3. We fitted the spectrum with a double Gaussian function and estimated that

the signal (idler) full width at half maximum (FWHM) bandwidth to be 9.5 THz.

In the wavelength range of interest, from 1557.85 nm (192.44 THz) to 1563.05 nm

(191.80THz), the signal-idler spectral power is uniform.

In an ideal situation, we would like the programmable filter to have 16 channels

where each channel is connected to an SNSPD. This 16-channel system is realizable in

principle by having a fan-out system inside the programmable filter. Nevertheless, for

this experiment, we use two single-channel programmable filters and two SNSPDs to

emulate the performance of the 16-channel system. We set the programmable filter to
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Figure 5-3: Left: Spectrum of the output from the PPLN crystal. Rectangular
section is the spectrum of interest. Right: signal and idler’s spectra of interest from
1557.85 nm (192.44THz) to 1563.05 nm (191.80THz). The resolution of this spectrum
measurement is 0.2 nm.

have a 40 GHz passband with a variable center frequency. For the 16-channel system,

there are 256 combinations for Alice and Bob’s frequency measurements. Therefore,

we need to take 256 measurements to emulate the 16-channel system performance.

For each pair of Alice and Bob’s filter settings, we integrated for 1 s with a 2 ns

coincidence window. As a result, one set of key generation measurements would take

256 seconds to complete. The measured coincidences become our raw keys, as shown

in Fig. 5-4.

We measured an average coincidence rate of ∼ 4400 coincidences/s for matched

frequency bins for the programmable filters. Our detected singles count rate was ∼

55, 000/s. As a result, the estimated photon pairs generation rate is (55, 000)2/4400 ≈

687, 500/s. The pair generation probability for the 2 ns coincidence window is calcu-

lated to be 0.0014. One key performance specification is the extinction ratio between

the correct frequency bins and their adjacent channels. Here, we measured the ex-

tinction ratio to be at least 13 dB. This extinction ratio is affected by how well the

center frequencies of the frequency filters were lined up relative to the degenerate fre-

quency (half the pump laser frequency). Optimally, the degenerate frequency should

be exactly at the middle of the two center frequencies. In our experiment, this ex-

tinction ratio is limited by the setting resolution of the programmable filters’ center

frequencies.
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counts/s (linear) counts/s (log)

Figure 5-4: Measurement result of frequency bin coincidences for raw key generation.
Left: measured keys in linear scale. Right: measured keys in log scale. Alice’s and
Bob’s frequencies shown are the starting frequencies of the frequency bins. The center
frequency of the frequency bin is 20 GHz higher than the starting frequency bin.

We consider the coincidence measurements of 256 Alice and Bob’s frequency bin

pairs to constitute one QKD session. As a result, the measurement results shown

in Fig. 5-4 are considered to be from one QKD session and it took 256 seconds to

complete. We performed five QKD sessions and calculated the average probability

of getting a coincidence for each pair of the 256 frequency bin combinations. The

calculated probability mass function (pmf) is shown in Fig. 5-5. We note that the

total probability of all 256 frequency bins is normalized to 1. From this pmf, we

can observe 16 peaks with probabilities around 5%. These peaks are the diagonal

coincidences observed in Fig. 5-4. The variation of the probability is caused by the

discretization effect of the programmable filters, which is discussed in Sect. 5.2.3.

Alice and Bob’s Shannon information, 𝐼𝑎𝑏, can be calculated from the pmf func-

tion. Specifically, the Shannon information is given by

𝐼𝑎𝑏 =
∑︁

binA,binB

𝑝(binA, binB)
𝑝(binA, binB)

𝑝(binA)𝑝(binB)
, (5.17)

where binA and binB are the frequency bin numbers, ranging from 1 to 16, for Al-

ice and Bob, respectively. 𝑝(binA, binB) is the joint probability distribution given
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Figure 5-5: Calculated probability mass function (pmf) of coincidence probability for
256 frequency bins.

by the pmf, and 𝑝(binA(B)) is the marginal coincidence probability distribution for

Alice’s (Bob’s) frequency bin. Based on our measurement, the 𝐼𝑎𝑏 is found to be 3.06

bits/coincidence. This calculated 𝐼𝑎𝑏 is ∼ 24% lower than the theoretical maximum

of 4 bits/coincidence. The 𝐼𝑎𝑏 degradation is mainly caused by channel crosstalk and

system dark counts.

To obtain a set of raw keys, we simulate coincidence events based on the calculated

pmf function. We generate 71, 000 events from the distribution. The 71,000 is the av-

erage number of counts we expect to detect per second for the 16-bin frequency filters.

In the generated raw key data, we observe an error rate of ∼ 12%, consistent with

the pmf function. Error correction on the raw keys is performed using layered low-

density parity-check (LDPC) code that was developed for large-alphabet quantum

key distribution [133]. The layered LDPC code successively applies binary error cor-

rection on all bit layers of the symbols, and can achieve high reconciliation efficiency

𝛽 even when the error rates are high. After error correction with blocks of 20,000

symbols each, Alice and Bob’s shared information is found to be 2.7 bits/coincidence,

representing a reconciliation efficiency 𝛽 of 87%.
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Figure 5-6: Left: frequency domain signal with 640 GHz spectrum bandwidth. Mid-
dle: time domain signal of 640 GHz spectrum. Right: Gaussian fit of the time-domain
signal.

5.4.2 Measurement of Eve’s Holevo information

To numerically calculate Eve’s Holevo information, we need to estimate 𝑡MSE, which

is the square of the root-mean-square correlation time, 𝜎cor. To find 𝜎cor over the

predefined 640 GHz rectangular spectrum, we first Fourier transform the rectangular

spectrum to get its time domain representation. We fit the time domain signal using

Eq. (4.16) and get a FWHM pulse width of 1.43 ps, which corresponds to a 𝜎cor value

of 1.43/2.355 = 0.608 ps. The pictorial representation of this calculation is shown

in Fig. 5-6. The mean-square Ω𝑆 + Ω𝐼 at the source is ΩMSE = 1/(4𝜎2
coh), where

𝜎2
coh = 2𝜋 × 𝐵pm × 𝛽2/

√︀
8log(2). The correlation degradation in time domain and

frequency domain, 𝜉𝑡 and 𝜉𝜔, can then be calculated using the method described in

Sect. 5.3. Eve’s Holevo information depends on the conjugate-Franson visibility, as

shown in Eq. (5.16). Her information can be tightly bound with a high visibility. Eve’s

Holevo information decreases exponentially when the conjugate-Franson visibility is

greater than 95%. Eve’s Holevo information decreases linearly as visibility decreases

from 90% to 50%. Therefore, a high conjugate-Franson visibility is desirable for

achieving high SKR in frequency domain high-dimensional QKD.

For the five QKD measurement sessions, CFI visibilities were measured at the

same time to probe the protocol’s security. For each measurement, the CFI’s phase

was changed adaptively using the piezo transducer (PZT) stack, which is described

in Sect. 4.2.6. The average CFI visibility is found to be 95.8 ± 1.2%, where the

uncertainty is the standard deviation of five measurements. From the measured vis-

ibility, we calculate Eve’s Holevo information to be 2.1 bits/coincidence. Therefore,
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Figure 5-7: Eve’s Holevo information, 𝐼𝑎𝑒, and PIE as a function of CFI visibility. The
maximum PIE is set to be 2.7 bits/photon coincidence, which is given by 𝐼𝑎𝑏 = 3.06
bits/photon multiplied by 𝛽 = 0.87. All parameters used for calculation are listed in
Table 5.1.

the secret key transmitted per photon coincidence is found to be 2.7 − 2.1 = 0.6

bits/coincidence, which corresponds to an SKR of 0.6 × 71000 = 42600 bits/s. To

visually show the effect of Eve’s Holevo information on the PIE, we plot both the

calculated Eve’s Holevo information and the corresponding PIE as a function of the

CFI visibility in Fig. 5-7. From the calculated result, we see that the CFI visibility

needs to be greater than 93.8% to obtain a non-zero PIE.

The above calculations are done in the asymptotic limit, which assumes Alice

and Bob’s keys and the data subset used for parameter estimation were infinitely

long. To estimate the finite key effect on Eve’s Holevo information, Alice and Bob

need to calculate their normalized time correlation from measured conjugate-Franson

visibilities via Eq. (5.13), which has a 𝜒2 distribution [33]:

(𝑚− 1)
⟨(𝑡𝑆 − 𝑡𝐼)

2⟩
⟨(𝑡𝑆0 − 𝑡𝐼0)2⟩

∼ 𝜒2(1 − 𝜖𝑃𝐸,𝑚− 1), (5.18)

where 𝜖𝑃𝐸 is the probability when security parameter estimation failed, and 𝑚 is the

number of conjugate-Franson visibility measurements within each session. An upper
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bound on ⟨(𝑡𝑆 − 𝑡𝐼)
2⟩ with confidence interval 1 − 𝜖𝑃𝐸 is given by:

⟨𝑡𝑆 − 𝑡𝐼)
2⟩max = ⟨𝑡𝑆0 − 𝑡𝐼0)

2⟩ +
2√
𝑚

erf−1(1 − 𝜖𝑃𝐸) ⟨𝑡𝑆 − 𝑡𝐼)
2⟩ . (5.19)

In each QKD session, we only made one conjugate-Franson visibility measurement.

Therefore, it is difficult to estimate the finite key effect with a tight bound. Typical

estimations choose 𝜖𝑃𝐸 = 10−5 [33, 134]. In this case, the number of measurements

per QKD session needs to be greater than 10 to have a non-zero secret key rate given

our CFI visibility measurement result. The insertion loss of the CFI needs to be

improved by at least 10 dB in order to achieve 10 measurements per QKD session.

In the future, we believe this can be achieved through photonic integration of CFI

components.

5.4.3 Franson time delay and conjugate-Franson frequency shift

In Eq. (5.12), we see that the timing difference is inversely proportional to the square

of the applied frequency shift ∆Ω2. Therefore, a larger ∆Ω indicates a tighter bound

on Eve’s Holevo information, yielding a higher SKR. We note that the calculation of

Eve’s Holevo information is independent of Alice and Bob’s number of frequency bins.

To illustrate this point, we calculate Eve’s information assuming different ∆Ω values,

while keeping all other parameters the same. The results are shown in Fig. 5-8. The

calculation results show that the maximum of Eve’s accessible information reduces

from ∼ 5.2 bits/photon to ∼ 0.7 bits/photon when ∆Ω increases from 3 GHz to 100

GHz, given that the measured visibility is 5% lower than the ideal conjugate-Franson

visibility. We note that the theoretical maximum value of conjugate-Franson inter-

ference visibility decreases as ∆Ω increases, and that Eve’s information is bounded

by the difference between the measured visibility and the maximum visibility.

A similar behavior is expected for the time-bin QKD protocol [33]. In time domain

high-dimensional QKD, the mean-square frequency difference ⟨(𝜔𝑆 − 𝜔𝐼)
2⟩ is bounded

by

⟨(𝜔𝑆 − 𝜔𝐼)
2⟩ ≤ 2(𝑉 th

FI − 𝑉FI)/∆𝑇
2, (5.20)
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Figure 5-8: Eve’s Holevo information as a function of conjugate-Franson visibility at
different frequency shift ∆Ω.

where 𝑉 th
FI is the theoretical Franson visibility, 𝑉FI is the measured Franson visibility,

and ∆𝑇 is the path-length difference within the Franson interferometer. A greater

path-length difference ∆𝑇 decreases the mean-square frequency difference, allowing

a tighter bound on Eve’s Holevo information. This observation is in agreement with

the findings in [135].

For the rest of this section, we compare the effect of ∆𝑇 and ∆Ω on Eve’s Holevo

information. Specifically, given the same level of Franson (conjugate-Franson) in-

terference visibility, we compute the corresponding path-length difference ∆𝑇 (fre-

quency shift ∆Ω). In this calculation, we use the parameters shown in Table. 5.1.

For a Gaussian input state, the ideal Franson interference visibility 𝑉FI0 and the ideal

conjugate-Franson interference visibility 𝑉CFI0 can be expressed as:

𝑉FI0 = 𝑒−ΩMSEΔ𝑇 2/2, (5.21)

and

𝑉CFI0 = 𝑒−𝑡MSEΔΩ2/2. (5.22)
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Therefore, we can rewrite them as ∆𝑇 = ln(−2𝑉FI0/ΩMSE) and ∆Ω = ln(−2𝑉CFI0/𝑡MSE).

Using these two equations, we compute these two values given the same maximum

theoretical visibility and show them in Table 5.2. To achieve the same level of theo-

retical visibility, the amount of frequency shift ∆Ω in GHz is similar to the amount of

path-length difference ∆𝑇 in ns. In CFI, ∆Ω can be easily adjusted by changing the

RF input frequency. However, it is difficult to increase ∆Ω beyond 20 GHz. On the

other hand, ∆𝑇 can be easily increased by adding new fiber. Unfortunately, change of

path-length difference in Franson interferometer requires realignment of the physical

interferometer.

Visibility ∆Ω (GHz) ∆𝑇 (ns)
0.999 11.7095 12.7314
0.998 16.5639 18.0094
0.997 20.2917 22.0624
0.996 23.4367 25.4818
0.995 26.2096 28.4967
0.994 28.7184 31.2244
0.993 31.0272 33.7347
0.992 33.1778 36.073
0.991 35.1993 38.2708
0.99 37.1126 40.3512
0.96 74.796 81.3229
0.91 113.687 123.608
0.86 143.769 156.315
0.81 169.936 184.765
0.76 193.933 210.857
0.71 216.649 235.554
0.66 238.63 259.453
0.61 260.271 282.982
0.56 281.889 306.487
0.51 303.774 330.282

Table 5.2: Conversion table between ∆Ω in frequency domain QKD and ∆𝑇 in time
domain QKD.
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5.5 Conclusion

In this chapter, we presented a proof-of-principle experimental demonstration of the

frequency-encoded high-dimensional quantum key distribution protocol. Within the

640 GHz spectrum centered at ∼192.12 THz (1560.45 nm), we obtained 16 frequency

bins using programmable filters with 40 GHz bandwidth. By adopting frequency-

bin encoding, we obtained a 12% quantum bit error rate, which is better than the

30% reported in the time-bin encoding scheme. The security of this protocol was

guaranteed by the conjugate-Franson interference visibility measured during the key

generation process. Over the 137 meters fiber link, we measured a secure PIE of 0.6

bits/coincidence, corresponding to an SKR of 42600 bits/s.

The performance of this system is limited by the difficulty to tightly bound Eve’s

Holevo information. Current measurements of CFI interference visibility of 95.8%

indicates a 1.7% degradation from the theoretical maximum value. An average

of 97.3% visibility is needed to bound Eve’s Holevo information to be less than 1

bit/coincidence. Alternatively, one can also increase the frequency shift amount in

the CFI to tighten the bound on Eve’s information. CFI has to have a low insertion

loss, large frequency shift range, and good phase stability to achieve this objective.

Photonics integration of the optical components in the CFI offers great potential for

achieving these goals. Furthermore, optical filters with micro rings can be developed

to increase the frequency bin density per unit frequency hence increasing the key

capacity. We believe with better dispersion modules and frequency filters, the op-

erational frequency range can increase from 640 GHz to 1 THz with 20 GHz filter

bandwidth, resulting in a key capacity of log2(50) ≈ 5.6 bits/coincidence. Assuming

an Eve’s Holevo information of 1 bit/coincidence (CFI visibility degradation ≤0.2%)

and a measurement error comparable to our current setup, we expect the PIE can be

increased to 2.6 bits/coincidence. With photon sources that have ∼1 GHz photon pair

rate, we expect the frequency encoding high-dimensional QKD can reach Gigabits/s

SKR, providing sufficient bandwidth for point-to-point secure communication.
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Chapter 6

Summary and outlook

In this thesis, we harnessed time-energy entanglement for applications in quantum

communication. Specifically we generated indistinguishable single photons by elim-

inating time-energy entanglement in the spontaneous parametric down-conversion

(SPDC) process through custom crystal design; we demonstrated a novel method for

entangled photon pairs’ time correlation characterization and biphoton spectral phase

detection; and we conducted a proof-of-principle experiment on high-dimensional

quantum key distribution (QKD) with frequency encoding. In this chapter, we sum-

marize our results and discuss future research directions in these areas.

6.1 Heralded single-photon source

Heralding detection of the signal photon generated from the SPDC process provides

timing information of the idler photon. The precise timing of the idler photon is criti-

cal for measurement-based quantum information. However, the heralded idler photons

are in a spectrally mixed state because of the signal and idler’s time-energy entangle-

ment. We achieved a 99% heralded-state purity with a custom designed periodically

poled KTiOPO4 (PPKTP) crystal that possesses a Gaussian phase-matching function

under extended phase-matching conditions [46, 67]. We further performed Hong-Ou-

Mandel interference (HOMI) between two independently generated heralded photons

and obtained 93.9± 1.8% without filtering and 98.4± 1.1% with mild filtering, which
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is consistent with our expectation.

For future quantum networking tasks or measurement-based quantum simula-

tion experiments, a large number of indistinguishable heralded quantum sources are

required. Nevertheless, the current crystal design is not suitable for large-scale man-

ufacturing. Therefore, a promising future research direction is to apply this crystal

design on an integrated photonics platform. The capability of manufacturing in-

distinguishable sources at scale is beneficial for the development of the multiplexed

single-photon source and large-scale quantum simulation experiments such as Boson

sampling with >100 input modes.

6.2 Conjugate-Franson interferometry

We have demonstrated a conjugate-Franson interferometer (CFI) with quadrature

phase-shift keying (QPSK) modulators and optical fibers and achieved 96 ± 1% in-

terference visibility. We have also shown that the CFI visibility is sensitive to the

biphoton spectral phase. The maximum visibility drop observed in our experiment

due to the spectral phase is 21%.

The performance of our CFI was limited due to its high insertion loss and poor

phase stability. A major portion of the insertion loss comes from the frequency

shifters. A future research direction is to reduce the CFI insertion loss by replacing the

QPSK frequency shifter with a phase modulator that imposes a linear temporal phase

on the optical pulse. The frequency conversion scheme with linear temporal phase

has minimal insertion loss [70]. We can also reduce the frequency shifter’s insertion

loss by applying a RF signal with higher amplitude. In this case, we need to consider

how the noise sidebands affect the interference visibility. Another improvement is to

reduce the CFI’s phase instability. The CFI can be integrated on-chip and the entire

chip can be thermally stabilized to maintain long-term phase stability. A controllable

phase shift within the CFI can be realized through localized heating [136] or the

free-carrier plasma dispersion effect [137].

CFI’s role in biphoton frequency combs can also be investigated. The CFI visibility
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as a function of frequency shift has been shown to exhibit a comb-like revival struc-

ture [119]. Our work has shown that the CFI is affected by spectral phase, indicating

that the CFI could be a useful tool for biphoton frequency comb characterization.

6.3 Quantum key distribution with frequency encod-

ing

We have shown a high-dimensional QKD system with frequency encoding that delivers

a 0.6 bit/coincidence secure photon information efficiency (PIE), or 42.6 kbit/s secure

key rate (SKR), over 137 meters of fiber. For future research, one can improve the

QKD’s performance in the following aspects:

• The current system has a 640 GHz operation bandwidth with 40 GHz frequency

filters. This setting corresponds to 16 frequency bins and a theoretical maximum

of 4 bits/coincidence PIE. Increasing the operating bandwidth and decreasing

the frequency filter’s passband can improve the PIE. One can explore a new

method for photon-frequency detection. On an integrated platform, one can

utilize optical gratings and array single-photon nanowire detectors with spatial

resolution [138]. The grating converts photons’ frequency information to spa-

tial information. The array detector can resolve this spatial information and

hence detect the photons’ frequencies. This scheme is more compact and has

the potential to achieve a higher PIE than the methods discussed in Sect. 5.2.

• Eve’s Holevo information is bounded by the CFI visibility and found to be 2.1

bits/coincidence. The CFI visibility or the frequency shift of the CFI can be

increased to reduce Eve’s Holevo information.

• Another improvement is to extend the transmission distance of the QKD sys-

tem. However, because the CFI is sensitive to spectral phase, dispersion com-

pensation is required for long-distance transmission. The SPDC flux can also
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be increased by optimizing the entangled source design. We expect the photon

pair generation rate can be increased to be > 107 pairs/mW/s [102], improving

the SKR rate by over 20 dB.
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Appendix A

Spectral filter transmission profile

We applied a 10-nm spectral filter to the SPDC output in order to remove the resid-

ual side lobes of the signal-idler JSI that are clearly visible in the Fig. 2-1(a) and

reproduced here in Fig. A-1’s inset. For optimal filtering, it is ideal to have unity

transmission over the central peak and sufficient absorption in the side lobes such that

the SPDC flux remains about the same and the JSI becomes more circularly sym-

metric, thereby improving the heralded-state spectral purity. Figure A-1 shows the

measured transmission profile of the flat-top spectral filter and the signal spectrum

obtained from the marginal distribution of the JSI. We see that the filter transmission

profile fully covers the SPDC spectrum with little attenuation of the central peak,

suggesting that the spectral filter introduces negligible loss to the main lobe of the

SPDC output. The mild spectral filtering allows us to improve the Hong-Ou-Mandel

interference visibility from 93.9% without filtering to 98.4% with filtering as noted in

the main text of Chapter 2.
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Figure A-1: Transmission profile (red) of the spectral filter shows a central flat-top
6-nm region with near-unity transmission compared with the signal spectrum (blue)
with a 2.62 nm bandwidth. The inset shows the JSI with its residual side lobes in
logarithmic scale when mild filtering is not used.
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Appendix B

Mathematical model of

frequency-shifted Hong-Ou-Mandel

interference and background

subtraction

B.1 Mathematical model of Hong-Ou-Mandel inter-

ference

In this section, we model the reported Hong-Ou-Mandel (HOM) experiment discussed

in Chapter 3. We will employ a cw-pumped, type-II quasi-phase-matched, SPDC

source that, after filtering through a waveshaper and idler-beam polarization rota-

tion, supplies flat-fluorescence-spectra, co-polarized signal and idler beams—with the

latter delayed by 𝑇—to the interferometer’s 50/50 beam splitter. The signal (S) and

idler (I) scalar-wave, positive-frequency field operators entering that beam splitter

will be taken to be in identical spatial modes whose
√︀

photons/s positive-frequency

field operators, �̂�𝑆(𝑡) and �̂�𝑆(𝑡), are in a zero-mean, jointly-Gaussian state that is

completely characterized by those operators’ non-zero correlation functions and spec-
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tra [139], viz.,

⟨�̂�†
𝑆(𝑡)�̂�𝑆(𝑡′)⟩ = 𝐾(𝑛)(𝑡− 𝑡′)𝑒𝑖𝜔𝑆(𝑡−𝑡′) =

∫︁ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝑛)(𝜔)𝑒𝑖𝜔(𝑡−𝑡′)𝑒𝑖𝜔𝑆(𝑡−𝑡′), (B.1)

⟨�̂�†
𝐼(𝑡)�̂�𝐼(𝑡

′)⟩ = 𝐾(𝑛)(𝑡− 𝑡′)𝑒𝑖𝜔𝐼(𝑡−𝑡′) =

∫︁ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝑛)(𝜔)𝑒𝑖𝜔(𝑡−𝑡′)𝑒𝑖𝜔𝐼(𝑡−𝑡′), (B.2)

⟨�̂�𝑆(𝑡)�̂�𝐼(𝑡
′)⟩ = 𝐾

(𝑝)
𝑆𝐼 (𝑡− 𝑡′)𝑒−𝑖𝜔𝑆𝑡−𝑖𝜔𝐼 𝑡

′
=

∫︁ ∞

−∞

𝑑𝜔

2𝜋
𝑆(𝑛)(𝜔)𝑒𝑖𝜔(𝑡−𝑡′)𝑒−𝑖𝜔𝑆𝑡−𝑖𝜔𝐼 𝑡

′
, (B.3)

where angle brackets denote ensemble average, and 𝜔𝑆 and 𝜔𝐼 are the center frequen-

cies of the signal and idler beams. The normally-ordered correlation function and its

associated fluorescence spectrum are given by [139]:

𝐾(𝑛)(𝜏) =
|𝜅|2ℓ2∆Ω

2𝜋

sin(∆Ω𝜏/2)

∆Ω𝜏/2
, (B.4)

and

𝑆(𝑛)(𝜔) =

⎧⎪⎨⎪⎩|𝜅|2ℓ2 for |𝜔| ≤ ∆Ω/2,

0 otherwise,
(B.5)

where |𝜅| is the SPDC source’s signal-idler coupling coefficient, ℓ is its crystal length,

and ∆Ω/2𝜋 is its fluorescence bandwidth (in Hz). The phase-sensitive correlation

function and its associated spectrum—suppressing the signal and idler’s differential

group delay—are given by [139]:

𝐾
(𝑝)
𝑆𝐼 (𝜏) =

𝑖𝜅ℓ∆Ω

2𝜋

sin(∆Ω𝜏/2)

∆Ω𝜏/2
, (B.6)

and

𝑆(𝑝)(𝜔) =

⎧⎪⎨⎪⎩𝑖𝜅ℓ for |𝜔| ≤ ∆Ω/2,

0 otherwise,
(B.7)
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The positive-frequency field operators at the outputs of the HOM interferometer’s

50/50 beam splitter are:

�̂�out
𝑆 (𝑡) =

�̂�𝑆(𝑡) + �̂�𝐼(𝑡− 𝑇 )√
2

, (B.8)

�̂�out
𝐼 (𝑡) =

�̂�𝑆(𝑡) − �̂�𝐼(𝑡− 𝑇 )√
2

, (B.9)

and these signal and idler output operators illuminate single-photon detectors, which

are assumed to have insignificant dark counts and quantum efficiencies 𝜂𝑆 and 𝜂𝐼 .

The resulting time-stamped photon-counting records are used to compute the signal-

referenced, product-of-counts-protocol coincidence rate [140],

𝐶(𝑇 ) =
𝜂𝑆𝜂𝐼
𝑇𝑚

∫︁ 𝑇𝑚/2

−𝑇𝑚/2

𝑑𝑡

∫︁ 𝑡+𝑇𝑔/2

𝑡−𝑇𝑔/2

𝑑𝑡′⟨�̂�out†
𝑆 (𝑡)�̂�out†

𝐼 (𝑡′)�̂�out
𝑆 (𝑡)�̂�out

𝐼 (𝑡′)⟩, (B.10)

where the quantum efficiency factors arise from the quantum theory of photodetection,

𝑇𝑚 and 𝑇𝑔 are, respectively, the durations of the data-collection interval and the

coincidence gate, and 𝑇𝑚 ≫ 𝑇𝑔. Gaussian-state moment factoring reduces the 𝐶(𝑇 )

expression from Eq. (B.10) to:

𝐶(𝑇 ) =
𝜂𝑆𝜂𝐼
𝑇𝑚

∫︁ 𝑇𝑚/2

−𝑇𝑚/2

𝑑𝑡

∫︁ 𝑡+𝑇𝑔/2

𝑡−𝑇𝑔/2

𝑑𝑡′⟨�̂�out†
𝑆 (𝑡)�̂�out

𝑆 (𝑡)⟩⟨�̂�out†
𝐼 (𝑡′)�̂�out

𝐼 (𝑡′)⟩

+
𝜂𝑆𝜂𝐼
𝑇𝑚

∫︁ 𝑇𝑚/2

−𝑇𝑚/2

𝑑𝑡

∫︁ 𝑡+𝑇𝑔/2

𝑡−𝑇𝑔/2

𝑑𝑡′| ⟨�̂�out†
𝑆 (𝑡)�̂�out

𝐼 (𝑡′)⟩ |2

+
𝜂𝑆𝜂𝐼
𝑇𝑚

∫︁ 𝑇𝑚/2

−𝑇𝑚/2

𝑑𝑡

∫︁ 𝑡+𝑇𝑔/2

𝑡−𝑇𝑔/2

𝑑𝑡′| ⟨�̂�out
𝑆 (𝑡)�̂�out†

𝐼 (𝑡′)⟩ |2.

(B.11)

Using Eqs. (B.1)-(B.9), assuming that 𝑇𝑔 ≫ 1/∆Ω+|𝑇 |, and defining ∆𝜔 = |𝜔𝑆−𝜔𝐼 |,

we now get:
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𝐶(𝑡) ≈ 2𝜂𝑆𝜂𝐼𝑇𝑔𝐾
(𝑛)2(0)

+
𝜂𝑆𝜂𝐼

4

∫︁ ∞

∞
𝑑𝜏

{︁
|𝐾(𝑝)

𝑆𝐼 (𝜏 + 𝑇 )|2 + |𝐾(𝑝)
𝑆𝐼 (−𝜏 + 𝑇 )|2

− 2Re[𝐾
(𝑝)*
𝑆𝐼 (−𝜏 + 𝑇 )𝐾

(𝑝)
𝑆𝐼 (𝜏 + 𝑇 )𝑒−𝑖(𝜔𝑆−𝜔𝐼)𝜏 ]

}︁ (B.12)

=

⎧⎪⎨⎪⎩2𝜂𝑆𝜂𝐼𝑇𝑔

(︁
|𝜅|2ℓ2ΔΩ

2𝜋

)︁2

+ 𝜂𝑆𝜂𝐼
2

|𝜅|2ℓ2ΔΩ
2𝜋

(︁
1 − sin[ΔΩ−Δ𝜔)𝑇 ]

ΔΩ𝑇

)︁
, for ∆𝜔 ≤ ∆Ω,

2𝜂𝑆𝜂𝐼𝑇𝑔

(︁
|𝜅|2ℓ2ΔΩ

2𝜋

)︁2

, for ∆𝜔 > ∆Ω.

(B.13)

The first term in both regions is the rate of accidental coincidences, while the

second term is the rate of true coincidences. If we suppress the accidentals in Eq.

B.13’s coincidence rates we find that the normalized true coincidence rate for our

idealized experiment is:

𝐶(𝑇 )

𝐶(∞)
=

⎧⎪⎨⎪⎩1 − sin[(ΔΩ−Δ𝜔)𝑇 ]
ΔΩ𝑇

, for ∆𝜔 ≤ ∆Ω,

0, for ∆𝜔 > ∆Ω.

(B.14)

B.2 Background estimation in HOM measurements

High background accidentals were observed in our HOM measurements because of the

disproportional loss between the frequency-shifted path and the frequency-unshifted

path. In this section, we calculate singles and coincidences for HOM measurements in

various configurations and estimate the proper background subtraction that should

be applied to experimental data taken using the setup shown in Fig. 3-3 [141]. The

definitions of parameters used in this procedure are given in Table B.1
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𝑇𝑔 coincidence window (was set to 2 ns in the experiment)
𝑃0 mean number of SPDC pair in signal and idler paths within 𝑇𝑔
𝑃1𝑠 mean number of SPDC signal in signal path without the conjugate

idler in idler path within 𝑇𝑔
𝑃1𝑖 mean number of SPDC idler in idler path without the conjugate signal

in signal path within 𝑇𝑔
𝑃2𝑠 mean number of pairs in signal path within 𝑇𝑔
𝑃2𝑖 mean number of pairs in idler path within 𝑇𝑔
𝜂𝑠 system efficiency for signal path
𝜂𝑖 system efficiency for idler path
𝑁𝑠 signal singles per second when idler path is blocked
𝑁𝑖 idler singles per second when signal path is blocked

𝐶𝑠(𝑡 = 0) signal coincidences per second within same 𝑇𝑔 when idler path is
blocked

𝐶𝑖(𝑡 = 0) idler coincidences per second within same 𝑇𝑔 when signal path is
blocked

𝐶𝑠(𝑡 ̸= 0) signal coincidences per second within two different 𝑇𝑔 when idler path
is blocked

𝐶𝑖(𝑡 ̸= 0) idler coincidences per second within two different 𝑇𝑔 when signal path
is blocked

𝐶𝑠𝑖(𝑡 = 0) HOM coincidences per second within the same 𝑇𝑔 window
𝐶𝑠𝑖(𝑡 ̸= 0) HOM coincidences per second between two different 𝑇𝑔 windows

Table B.1: Parameter definitions in estimating HOM background.

We note that 𝑃2𝑠 and 𝑃2𝑖 account for pairs that could be due to inadequate extinction

ratio for the fiber PBS or accidental phase matching that generates co-polarized signal

and idler pairs. The distinction for 𝑃0 and 𝑃1𝑠 (or 𝑃1𝑖) is that the case with 𝑃0 can lead

to signal-idler coincidence but the cases with 𝑃1 cannot. 𝑃1𝑠 and 𝑃1𝑖 may represent,

for example, fluorescence background singles.

We analyze the background statistics based on the following configuration. The

orthogonal signal and idler photons are generated from a type-II phase-matched PP-

KTP waveguide and the photon pairs are coupled into an optical fiber. The signal and

idler are separated using a fiber polarization beam splitter. The signal goes through

a waveshaper that reduces the signal’s bandwidth. The idler goes through the fre-

quency shifter. The co-polarized signal and idler are then combined at a fiber 50/50

beam splitter that outputs to two SNSPD detectors D1 and D2 with presumably
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the same quantum efficiencies. The signal path can be varied through a free-space

adjustable gap.

For coincidence measurements, we assume that if one photon triggers D1 and

the other D2 within the same 𝑇𝑔 window, a coincidence count is registered on the

Hydraharp setup (with a small physical delay from 50/50 BS to D2). For two different

𝑇𝑔 windows, D1 must be triggered first before D2 is triggered in order to obtain a

coincidence. Effectively, when D1 is triggered, it waits for D2 to trigger and that falls

into the appropriate time bin histogram. We should note that the longer it waits,

the more likely that another photon triggers D1 again, thus resetting the reference

time. Hence, we should see that the background coincidence counts fall slowly as the

time delay exceeds the dead time. We note that we assume no dead time in order to

simplify the calculations.

We make a few simplifying assumptions that match the experimental setup. The

various mean numbers per 𝑇𝑔 gate are assumed to be much smaller than 1, and they

all obey Poisson statistics. We assume that 𝑃0, 𝑃1𝑠, 𝑃1𝑖 are comparable, and 𝑃2𝑠, 𝑃2𝑖

≪ 𝑃0, 𝑃1𝑠, 𝑃1𝑖. Hence, we retain terms up to the square of 𝑃0, 𝑃1𝑠, 𝑃1𝑖 and linearly

for 𝑃2𝑠, 𝑃2𝑖. In particular, terms such as 𝑃2𝑥𝑃0, 𝑃2𝑥𝑃1𝑦 are ignored, where 𝑥, 𝑦 are 𝑠

or 𝑖.

If two photons arrive at the same detector with efficiency 𝜂, the probability that

it does not get triggered is given by (1−𝜂)2 so that the triggering probability is given

by 1 − (1 − 𝜂)2 = 𝜂(2 − 𝜂). If the same two photons (from a single path) arrive at

the 50/50 BS, then half of the time, they go to the same detector, so that probability

is 1/2 * 𝜂(2 − 𝜂) = 𝜂(1 − 𝜂/2), while the other half of the time, they go to separate

detectors so that probability of singles is 1/2*2𝜂 = 𝜂, for a total probability of singles

is given by 2𝜂(1 − 𝜂/4).

Single path, two detectors, and Poisson statistics

In Poisson statistics with mean 𝑃 , the probability of no photons is given by Pr(0)

= 𝑒−𝑃 ≈ 1 − 𝑃 + 𝑃 2/2, up to order of 𝑃 2. For exactly 1 photon, the probability is

Pr(1) = 𝑃𝑒−𝑃 ≈ 𝑃 − 𝑃 2. For exactly two photons, the probability is given by Pr(2)

116



attenuated laser 

BS
D1

D2

Figure B-1: Test setup for testing the coincidence detection system. BS: 50/50 beam
splitter; D1, D2: detector 1 and 2.

= (1/2)𝑃 2𝑒−𝑃 ≈ 𝑃 2/2. We will use these probabilities when we calculate singles

and coincidences. First, we will verify our detection system with an attenuated laser

source that it obeys Poisson statistics. We used the setup shown in Fig. B-1 to perform

the statistics test. An attenuated photon stream from a 1550 nm laser was coupled

into an optical fiber and arrived at a 50/50 beam splitter that went to two identical

detectors D1 and D2. The photon detections were recorded using the Hydraharp.

The singles rate 𝑁 and coincidence rates 𝐶(𝑡 = 0) and 𝐶(𝑡 ̸= 0) can be modeled as:

𝑁 = [Pr(1)𝜂 + Pr(2)2𝜂(1 − 𝜂

4
)]/𝑇𝑔 = (1 − 1

4
𝑃𝜂)𝑃𝜂/𝑇𝑔, (B.15)

𝐶(𝑡 = 0) = Pr(2)
1

2
𝜂2/𝑇𝑔 =

1

4
𝑃 2𝜂2/𝑇𝑔, (B.16)

𝐶(𝑡 ̸= 0) = Pr(1)2
1

4
𝜂2/𝑇𝑔 =

1

4
𝑃 2𝜂2/𝑇𝑔 = 𝐶(𝑡 = 0). (B.17)

We note that for 𝐶(𝑡 ̸= 0) with 𝑡 larger 𝑇𝑔, detector D1 must be triggered first,

with probability 𝜂/2 for the first photon, and detector D2 is triggered by the second

photon with probability 𝜂/2.

In the following table, we show the measured coincidence and singles count rates

and the calculated coincidence rates coincidencecal based on Poisson statistics at var-

ious laser attenuations.
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laser attenuation (dB) D1(/s) D2(/s) coincidence(/s) coincidencecal(/s)
86 29627 28576 1.2 1.7
84 45580 47120 4.1 4.3
82 69230 74480 11.4 10.3
80 112230 115900 26.5 26.0
78 178880 183540 66.6 65.7
76 279500 285000 167.5 159.3
74 438600 444600 412.3 390.0
72 679400 695400 1021.8 945.0
70 1044900 1079200 2417.6 2255.9
68 1599600 1622600 5572 5191.3

Table B.2: Measured singles and coincidence rates at different laser attenuation.

Signal only, idler-path blocked

In the following sections, we estimate the background counts for the setup shown in

Fig. 3-3. For singles, if we assume only the presence of pairs with probability 𝑃2𝑠

but without 𝑃0 or 𝑃1𝑠, we should, in principle, write it as 𝑃2𝑠(1 − 𝑃0)(1 − 𝑃1𝑠), but

because of the way we retain various terms mentioned above, it can be simplified to

just 𝑃2𝑠. The singles rate 𝑁𝑠 and coincidence rates 𝐶𝑠(𝑡 = 0) and 𝐶𝑠(𝑡 ̸= 0) can be

written as:

𝑁𝑠 =
[︁
(𝑃0 + 𝑃1𝑠)[1 − 𝜂𝑠

4
(𝑃0 + 𝑃1𝑠)] + 2𝑃2𝑠(1 − 𝜂𝑠

4
)
]︁
𝜂𝑠/𝑇𝑔, (B.18)

𝐶𝑠(𝑡 = 0) =
[︁1

2
𝑃2𝑠 +

1

4
(𝑃0 + 𝑃1𝑠)

2
]︁
𝜂2𝑠/𝑇𝑔, (B.19)

𝐶𝑠(𝑡 ̸= 0) =
1

4
(𝑃0 + 𝑃1𝑠)

2𝜂2𝑠/𝑇𝑔. (B.20)

Here, the singles rate 𝑁𝑠 is the total singles rate, which is the singles rate sum of

signal’s and idler’s detectors. In 𝑁𝑠, the term (𝑃0 + 𝑃1𝑠)[1 − 𝜂𝑠
4

(𝑃0 + 𝑃1𝑠)]𝜂𝑠/𝑇𝑔

is the contribution from the signal photons calculated using Eq. (B.15). The term

2𝑃2𝑠(1 − 𝜂𝑠
4

)𝜂𝑠/𝑇𝑔 is the total probability of singles from the 𝑃2𝑠 case in which the

lowest nonzero term has two photons in the signal path.
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Idler only, signal-path blocked

For singles, if we assume only the presence of pairs with probability 𝑃2𝑖 but without

𝑃0 or 𝑃1𝑖, we should, in principle, write it as 𝑃2𝑖(1 − 𝑃0)(1 − 𝑃1𝑖), but because of the

way we retain various terms mentioned above, it can be simplified to just 𝑃2𝑖. The

singles rate 𝑁𝑖 and coincidence rates 𝐶𝑖(𝑡 = 0) and 𝐶𝑖(𝑡 ̸= 0) can be written as:

𝑁𝑖 =
[︁
(𝑃0 + 𝑃1𝑖)[1 − 𝜂𝑖

4
(𝑃0 + 𝑃1𝑖)] + 2𝑃2𝑖(1 − 𝜂𝑖

4
)
]︁
𝜂𝑖/𝑇𝑔, (B.21)

𝐶𝑖(𝑡 = 0) =
[︁1

2
𝑃2𝑖 +

1

4
(𝑃0 + 𝑃1𝑖)

2
]︁
𝜂2𝑖 /𝑇𝑔, (B.22)

𝐶𝑖(𝑡 ̸= 0) =
1

4
(𝑃0 + 𝑃1𝑖)

2𝜂2𝑖 /𝑇𝑔. (B.23)

Two SPDC pairs within 𝑇𝑔

In this subsection, we consider the case of there being two pairs of SPDC photons

within the same 𝑇𝑔 window, which occurs with probability 𝑃 2
0 /2. Because we assume

multimode SPDC output and that the photon pulse width is much smaller than the

coincidence window 𝑇𝑔, the two pairs of photons are not in the same mode. That is,

we have one pair of one mode and another pair of another mode.

At the HOM dip center, when each pair arrives at the BS at the same time, there

is no coincidence. However, because we have two pairs, half of the time one pair

goes to one detector and the other pair goes to the other detector and a coincidence

is detected. The probability of a coincidence count at the dip center is therefore

(1/2)(𝜂𝑠 + 𝜂𝑖)
2. Here we assume (only for this two-pair case) the system efficiencies

𝜂𝑠 and 𝜂𝑖 are low such that the probability of registering a click by a detector for a

pair of signal and idler photons is simply 𝜂𝑠 + 𝜂𝑖.

Away from the HOM dip center, we consider that there are 16 possibilities of

how the four photons are distributed between the two detectors. Two cases have all

photons going to one detector resulting in no coincidence. Eight cases have 3 photons

going to one detector, and six cases have 2 photons going to each detector. For the

eight cases of 3 photons going to one detector, the total probability of a coincidence

is [4𝜂𝑠(𝜂𝑠 + 2𝜂𝑖) + 4𝜂𝑖(𝜂𝑖 + 2𝜂𝑠)]/16 = (𝜂2𝑠 + 𝜂2𝑖 + 4𝜂𝑠𝜂𝑖)/4. For the six cases of two
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photons per detector, we have the total probability of [2(2𝜂𝑠)(2𝜂𝑖) + 4(𝜂𝑠 + 𝜂𝑖)
2]/16 =

(𝜂2𝑠 + 𝜂2𝑖 + 4𝜂𝑠𝜂𝑖)/4. Hence the total probability of a coincidence count away from the

dip center is (𝜂2𝑠 + 𝜂2𝑖 + 4𝜂𝑠𝜂𝑖)/2. Therefore, we can write the total probability as:

1

2
𝑃 2
0

[︁1

2
(𝜂𝑠 + 𝜂𝑖)

2 + 𝛼𝜂𝑠𝜂𝑖

]︁
=

1

2
𝑃 2
0 𝜂𝑠𝜂𝑖

[︁
1 + 𝛼 +

1

2

(︁𝜂𝑠
𝜂𝑖

+
𝜂𝑖
𝜂𝑠

)︁]︁
, (B.24)

where 𝛼 = 0 at the dip center and 𝛼 = 1 away from the dip center. 𝛼 can also

be nonzero at the center of the dip if the signal and idler photons are not perfectly

matched spectrally. We note that the probability of one pair at time 0 and another

pair at time 𝑡 is 𝑃 2
0 for 𝑡 ̸= 0.

There is an alternative way to arrive at the same formula that may be easier to

understand and calculate. Again, we assume that the system efficiencies are much

less than unity such that we can ignore the cases in which more than two photons

arrive at the 50/50 BS. For example, if we consider 𝜂 ∼ 10%, the chance of having

4 photons at the BS is 10−4, 3 photons would be 4 × 10−3, and 2 photons would be

6 × 10−2, so that ignoring the 3-photon and 4-photon cases would make very little

difference.

There are 6 different combinations for the two photons at the BS. Two cases involve

conjugate signal and idler of the same pair, so they interfere to yield no coincidence

at the dip center (𝛼 = 0) or the coincidence probability is 𝜂𝑠𝜂𝑖/2 far away from the

dip center (𝛼 = 1). Two cases involve signal-signal and idler-idler, so they have

coincidence probabilities of 𝜂2𝑠/2 and 𝜂2𝑖 /2, respectively. The other two cases involve

signal and idler from different modes, so they do not interfere and the coincidence

probability is 𝜂𝑠𝜂𝑖/2. The total coincidence probability is then given by:

1

2
𝑃 2
0

[︁
2× 1

2
𝛼𝜂𝑠𝜂𝑖 +

1

2
(𝜂2𝑠 + 𝜂2𝑖 ) + 2× 1

2
𝜂𝑠𝜂𝑖

]︁
=

1

2
𝑃 2
0 𝜂𝑠𝜂𝑖

[︁
1 +𝛼+

1

2

(︁𝜂𝑠
𝜂𝑖

+
𝜂𝑖
𝜂𝑠

)︁]︁
, (B.25)

which is exactly the same as Eq. (B.24).
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HOM measurements and background subtraction

First we calculate the coincidence rate 𝐶𝑠𝑖(𝑡 = 0), then the background coincidence

rate 𝐶𝑠𝑖(𝑡 ̸= 0), and make allowance for the proper background subtraction to get

the background-subtracted coincidence rate. Note that it is not valid to remove the

term proportional to 𝑃 2
0 because that contribution is due to multipair events when

pumping the SPDC too hard.

𝐶𝑠𝑖(𝑡 = 0) = 𝐶𝑠(𝑡 = 0) + 𝐶𝑖(𝑡 = 0)

+
1

2

[︁
𝛼𝑃0 + 𝑃0𝑃1𝑠 + 𝑃0𝑃1𝑖 + 𝑃1𝑠𝑃1𝑖 + 𝑃 2

0

[︁
1 + 𝛼 +

1

2

(︁𝜂𝑠
𝜂𝑖

+
𝜂𝑖
𝜂𝑠

)︁]︁]︁
𝜂𝑠𝜂𝑖/𝑇𝑔.

(B.26)

𝐶𝑠𝑖(𝑡 ̸= 0) = 𝐶𝑠(𝑡 ̸= 0) + 𝐶𝑖(𝑡 ̸= 0) +
1

2
(𝑃0 + 𝑃1𝑠)(𝑃0 + 𝑃1𝑖)𝜂𝑠𝜂𝑖/𝑇𝑔. (B.27)

The background coincidences that we would like to subtract from 𝐶𝑠𝑖(𝑡 = 0) are

the first two terms of Eq. (B.26), 𝐶𝑠(𝑡 = 0) and 𝐶𝑖(𝑡 = 0), and the triple sum of

the middle term inside the square bracket, or (𝑃0𝑃1𝑠 +𝑃0𝑃1𝑖 +𝑃1𝑠𝑃1𝑖)𝜂𝑠𝜂𝑖/(2𝑇𝑔). We

note that 𝐶𝑠(𝑡 = 0) and 𝐶𝑖(𝑡 = 0) contain terms with 𝑃0 in them that we should not

subtract. However, because the two terms are dominated by the presence of pairs, 𝑃2𝑠

and 𝑃2𝑖, 𝑃0 contribution is minimal. These two terms are easy to subtract because

they are measured in the experiment, so it is straightforward.

The third term is not easy to subtract. The closest one can get is:

𝐶 ′
𝑠𝑖(𝑡 ̸= 0) = 𝐶𝑠𝑖(𝑡 ̸= 0)−𝐶𝑠(𝑡 ̸= 0)−𝐶𝑖(𝑡 ̸= 0) =

1

2
(𝑃0+𝑃1𝑠)(𝑃0+𝑃1𝑖)𝜂𝑠𝜂𝑖/𝑇𝑔. (B.28)

In this case, 𝐶 ′
𝑠𝑖(𝑡 ̸= 0) subtracts the extra term 𝑃 2

0 𝜂𝑠𝜂𝑖/(2𝑇𝑔) that should be added

back to the corrected coincidences. As we see later, one way to deal with this is to

somehow approximate the size of the 𝑃 2
0 term, as follows. The background subtracted

coincidence rate is given by:

𝐶 ′
𝑠𝑖(𝑡 = 0) = 𝐶𝑠𝑖(𝑡 = 0) − 𝐶𝑠(𝑡 = 0) − 𝐶𝑖(𝑡 = 0) − 𝑟𝐶 ′

𝑠𝑖(𝑡 ̸= 0), (B.29)
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where the ratio 𝑟 ranges from 0 to 1. That is, we try to subtract only a fraction of

𝐶 ′
𝑠𝑖(𝑡 ̸= 0). For example, if 𝑃0 is much larger than 𝑃1𝑠 and 𝑃1𝑖, then 𝑃 2

0 dominates

and we should subtract very little of it by setting 𝑟 ≈ 0. On the other hand, if 𝑃0 is

small relative to 𝑃1𝑠 and 𝑃1𝑖, then 𝑟 ≈ 1. There is not an easy way to deduce these

ratios and we have to make guesses.

The signal path includes the waveshaper that sets a signal bandwidth of 50 GHz,

whereas the idler path has the full bandwidth of 320 GHz, so we expect the ratio

of 𝑃1𝑖/𝑃1𝑠 to be ∼ 320/50 = 6.4. Based on Zhong’s Optics Express paper on the

waveguide source [102], we estimated the heralding efficiency to be 80% (probably the

highest obtainable in that setup). That means 𝑃0/(𝑃0 + 𝑃1𝑠) = 0.8, or 𝑃1𝑠 = 0.25𝑃0.

With these assumptions, we should use 𝑟 = 0.69. If the heralding efficiency is a little

worse, say 70%, then we should use r = 0.81. As it turns out, the term 𝑟𝐶 ′
𝑠𝑖(𝑡 ̸= 0) is

relatively small and much less than 𝐶𝑠𝑖(𝑡 = 0) and has limited effect in the background

calculation.
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Appendix C

Performance characterization of

superconducting nanowire

single-photon detectors

In this appendix, we document the performance of and the characterization proce-

dure for our superconducting nanowire single-photon detectors. We summarize the

measured efficiency, dark count rate, and the maximum count rate for each detector

channel in Table C.1. These measurements were done on Aug. 26, 2019.

detector
number

label efficiency dark count/s timing jitter
(ps)

maximum
count rate/s

1 C3 0.728 483 230 960,000
2 C4 0.802 369 230 8,500,000
3 D1 0.625 410 271 5,160,000
4 D2 0.745 427 227 8,500,000
7 A1 0.599 790 149 9,600,000
8 A2 0.617 462 156 10,700,000
9 A3 0.572 348 168 11,410,000
10 A4 0.834 527 172 8,400,000
11 B1 0.767 312 160 3,220,000
12 B2 0.775 344 172 4,570,000
13 B3 0.832 536 165 5,100,000
14 B4 0.791 492 172 4,210,000

Table C.1: Performance summary of superconducting nanowire single-photon detec-
tors.
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We note that there are 16 detectors in the fridge. NIST manufactured detectors

1-6 in 2013. Photonspot manufactured detectors 7-9 in 2018. NIST manufactured

detectors 10-14 in 2018. Detectors 5 and 6 are not functional. A detector label

indicates the corresponding amplification electronics for that detector.

The efficiency of the detectors is measured using an attenuated laser source. The

laser output power and the applied attenuation are calibrated in reference to an Agi-

lent power meter HP 81634A. The detector count rate is monitored using a Hydraharp

time tagger. Detector dark count rate and detector efficiency are measured at differ-

ent bias currents. The reported value is the optimal current set point. We note that

the Hydraharp requires negative input pulses that correspond to negative detector

bias currents.

The detector timing jitter is measured with a nonclassical photon pairs source.

The photon pairs have a correlation time of less than a few picoseconds and are

negligible compared to the detector jitters, which are on the order of hundreds of

picoseconds. Similarly, the Hydraharp time tagger has a timing jitter of 12 ps. This

contribution is also neglected in our calculation. The signal and idler photons are

separated and sent to two different detectors. The recorded coincidence peak indicates

the timing jitter of two detectors. We first measured the timing jitter of detectors

1 and 2. Assuming detector 1 and 2 have the same jitters, the timing jitter can be

written as: 𝛿𝑡𝐷1 = 𝛿𝑡𝐷2 = 𝛿𝑡coincidence12/
√

2. The timing jitters of detectors 3-14 are

calculated using this information. For example, we used detectors 1 and 3 to measure

the coincidence jitter 𝛿𝑡coincidence13. Detector 3’s timing jitter is then approximated to

be 𝛿𝑡3 =
√︀
𝑡2coincidence13 − 𝛿𝑡21.
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