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Abstract

In standard supervised learning, we assume that we are trying to learn some target
variable 𝑌 from some data 𝑋. However, many learning problems can be framed
as supervised learning with an auxiliary objective, often associated with an auxil-
iary variable 𝐷 which defines this objective. Applying the principles of Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation analysis reveals new insights as to how
to formulate these learning problems with auxiliary objectives. We examine the use
of the HGR in feature selection for multi-source transfer learning learning in the few-
shot setting. We then apply HGR to the problem of feature suppression via enforcing
marginal and conditional independence criteria with respect to a sensitive attribute,
and illustrate the effectiveness of our methods to problems of fairness, privacy, and
transfer learning. Finally, we explore the use of HGR in extracting features for outlier
detection.
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Chapter 1

Introduction

We are living in an age of unprecedented growth in artificial intelligence research.

The rapid increase in the number of peer-reviewed AI papers has been noted

by many in the field [77, 11, 117], and is illustrated in Figure 1-1. However, more

than the raw number of papers, new applications for AI are being encountered at an

unprecedented rate.

The breadth of problems that machine learning is expected to be able to solve is

growing with each passing day, and it is becoming increasingly important to tackle

them in a timely fashion. Thus, more than ever, there is a great need to unify as

many of the myriad forms that machine learning problems can take under as few

paradigms as possible in order to facilitate faster formulation of solutions and allow

insights from different fields to diffuse through the learning community.

1.1 Endless Forms Most Beautiful

The standard bivariate supervised learning framework has existed in some form or

another for as long as the ideas of decision-making and estimation have been around

[17]. In its most general form, it asks us to predict some value 𝑌 from some data

𝑋, with some cost 𝐶 associated with the prediction that is generally higher the more

wrong we are about the prediction. To aid in this process, we are also given some

information about the relationship between 𝑋 and 𝑌 , usually in the form of samples

15



Figure 1-1: Number of peer-reviewed AI publications released each year. Source:
[134].

drawn from the joint distribution 𝑃𝑋,𝑌 between the two variables.

This framework covers everything from linear regression (which dates back to the

early 1800s [72]) to modern image classification with deep neural networks [71]. The

applications of these techniques are too numerous to list, and yet, they do not span

the range of all possible learning problems we face today.

In particular, as our applications grow more complex, we often run into the prob-

lem of multiple competing objectives. This can come in the form of additional con-

straints on learning 𝑌 , such as requiring that a predictive system also be able to

identify outliers in a system.

Often times, we also have additional variables that affect our learning objective,

possibly introducing new constraints. For example, in fair machine learning, we have

an auxiliary variable such as gender or race that we wish our predictions to be fair

with respect to. In cases such as these, we also encounter the phenomenon whereby

our objectives may conflict with one another, e.g., a classifier that is more fair may

perform worse on the main task of predicting 𝑌 .

Further complicating this situation is the ever-shifting landscape of machine learn-

16



ing. Not only are new problems uncovered over the course of technological evolution,

but societal perspectives and needs with regards to existing problems shift as well.

For example, our notion of what constitutes a fair and unbiased decision system may

change, from requiring one set of fairness conditions on one group to requiring a

different set of conditions on another group. The advent of very large datasets and

distributed learning has also placed a greater importance on faster algorithms that

require less interconnection between components to function.

In some cases, finding a solution to these problems is also very time-critical. While

a gap between conception of a problem and formulation of a solution might only result

in a delay for a product going to market, if an existing system is found to be biased

towards certain protected groups, that system might still continue to be used in the

absence of any solutions to correct the bias. For example, the COMPAS recidivism

score, designed to predict whether or not a convicted criminal would reoffend [91],

was found to be biased against black individuals [3]. Yet, the system continued to

be used in determining criminal sentencing [128]. Thus, being able to quickly find

effective and easily-implementable solutions is also of utmost importance to ensure

that such injustices are stopped sooner rather than later.

Given the wide variety of secondary learning objectives, designing bespoke, ad-

hoc solutions from scratch for every single one of them is impractical at best, and

impossible at worst given the time frames allowed for development. It would thus be

beneficial to have some central perspective for looking at them in a way that translates

into easily being able to derive algorithms for learning under these objectives.

In addition, for this perspective to be truly universal, it must be applicable to

data and problems of any modality. Sometimes, our data 𝑋 might be discrete or

categorical (e.g., census and other demographic data, text) and other times, they

may be continuous (e.g., images, audio). In addition, our target 𝑌 might be discrete

(classification) or continuous (regression). We would like to be able to handle all of

these cases as they arise.
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1.2 Feature Extraction, Selection, and Suppression

A good starting point for studying this problem of modelling is to look deeper into

the concepts of feature extraction and selection. Learning useful representations of

data is a central principle in machine learning, and thus, by integrating our secondary

objectives into the process of learning features of the data, we can control the balance

between these objectives.

Loosely speaking, we can view feature extraction as the process by which we learn

some function Θ(𝑋) from the data, the outputs of which are our features [14], and

are denoted as 𝑈 = Θ(𝑋). Feature selection, on the other hand, assumes that we

already have access to Θ(𝑋), but only wish to use a subset of them for prediction

(alternatively, we may be interested in "soft" feature selection whereby we reweight

the features in order to modulate their importance in making the final prediction)

[67]. This can arise because we are using them for a separate task and wish to find

the features that are most relevant for the new task [98, 115]. Alternatively, we may

wish to select features that obey some secondary constraint, such as fairness [47], or

to select the most effective features for the same task but with a bottleneck constraint

on the number of features that we can keep (for example, if they are being sent to

another device for further processing) [101].

In the process of both feature extraction and selection, we can also attempt to

suppress certain features. For example, we may desire that information extracted

from a user’s travel history in a contact-tracing app be decoupled from their identity

in order to preserve privacy, and thus any uniquely identifying features should not be

represented in the features [12].

Under all of these views, we can see that secondary objectives alter the normal

flow of these processes by introducing some new constraint or penalty defined by some

dependence between variables.
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1.3 Measures of Dependencies

Thus, we need a way to quantify the dependency between random variables. For

the sake of practicality, this measure must be easily computable and allow for the

derivation of feature learning algorithms that can be implemented, tested, and applied

to real datasets. However, it must also be rich and able to capture a wide range of

dependencies.

Basic linear measures of dependence, such as correlation E [𝑋𝑌 ] or covariance

E [(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌 )] satisfy the practicality conditions, as computations of their

estimates require only a single pass through the data. Their simplicity also makes

them easy to interpret. However, while they may work well for Gaussian data, they are

very weak in their ability to capture the full range of nonlinear dependencies between

variables, and are generally not relevant when the random variables are categorical.

On the other end, mutual information is a popular measure of dependence between

two variables that is incredibly rich in its ability to capture the relationship between

variables. The mutual information between random variables 𝑋 and 𝑌 is defined as

𝐼(𝑋;𝑌 ) = E𝑃𝑋,𝑌

[︁
log

𝑃𝑋,𝑌 (𝑋,𝑌 )

𝑃𝑋(𝑋)𝑃𝑌 (𝑌 )

]︁
[30].

However, mutual information has practical drawbacks that can make it difficult

to use. It is simple enough to estimate and optimize for in the discrete case, but in

the continuous case, estimating the mutual information for continuous data in a way

that allows for optimization requires either binning the data into discrete bins, which

introduces quantization issues and reduces universality, in addition to not scaling well

when the number of dimensions is large, or requires some kind of parametric estimate

for 𝑃𝑋,𝑌 (e.g., variational methods). In the latter case, many of these methods for

estimating the probability (such as variational autoencoders) suffer from problems of

instability [110, 75].

Mutual information also suffers from an interpretability issue, where even if one

has a good estimate of the mutual information, this is not necessarily indicative of

how 𝑋 and 𝑌 depend on one another.

Ideally, we would like a method that is simple, yet powerful, able to capture all
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possible dependencies between variables, but still computable and interpretable.

A solution to this dilemma comes to us through the Hirschfeld-Gebelein-Rényi

(HGR) maximal correlation, a nonlinear measure of dependence that also yields a

set of feature functions, which provide interpretability, and can be computed using

a simple algorithm. Furthermore, in certain cases where the dependence between

the random variables are weak, one can also draw connections to other measures of

dependence.

This measure also provides a powerful paradigm for viewing learning problems

and devising solutions to them, allowing us to adapt to new settings more quickly. In

the following sections, we will illustrate the breadth of problems that can be solved

with the HGR, and the effectiveness of the solutions derived.
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Chapter 2

The Hirschfeld-Gebelein-Rényi

Maximal Correlation

As stated in the previous chapter, one of the measures of dependency that contains

the properties we desire is the HGR maximal correlation. In this chapter, we will

present a brief overview of this measure, including the properties we will make use of

and the methods for computing this quantity and those related to it.

We also note here that this chapter mostly summarizes results from [59], which

contains a much more thorough treatment of the properties of the HGR.

2.1 Definition

We begin by defining the HGR maximal correlation [56, 40, 103]:

Definition 1 (Hirschfeld-Gebelein-Rényi Maximal Correlation). Let 𝑋 ∈ X, 𝑌 ∈ Y

be jointly distributed random variables. Then

HGR(𝑋;𝑌 ) = sup
𝑓 :X→R,𝑔:Y→R

E[𝑓(𝑋)]=E[𝑔(𝑌 )]=0
E[𝑓2(𝑋)]=E[𝑔2(𝑌 )]=1

E[𝑓(𝑋)𝑔(𝑌 )] (2.1)

is the HGR maximal correlation between 𝑋 and 𝑌 , and 𝑓, 𝑔 the associated max-

imal correlation functions.
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Some of the useful basic properties of the HGR maximal correlation are:

• 0 ≤ HGR(𝑋;𝑌 ) ≤ 1.

• HGR(𝑋;𝑌 ) = 0 if and only if 𝑋 and 𝑌 are independent.

• HGR(𝑋;𝑌 ) = 1 if and only if there exists 𝑓 and 𝑔 such that 𝑓(𝑋) = 𝑔(𝑌 ) with

probability 1.

Thus, it is immediately obvious that the HGR can be used as a way of measuring

the nonlinear dependence between two random variables, and is very conveniently

bounded between 0 and 1, with higher values indicating a greater degree of depen-

dence.

2.2 The Divergence Transfer Matrix

When 𝑋 and 𝑌 are both discrete, we can take a linear algebraic view of the HGR

by analyzing an equivalent representation of the joint distribution 𝑃𝑋,𝑌 known as the

divergence transfer matrix (DTM) [61].

Definition 2 (Divergence Transfer Matrix). The (𝑦, 𝑥)th entry of the DTM B𝑋,𝑌 ∈

R|Y|×|X| associated with joint distribution 𝑃𝑋,𝑌 is given by B𝑋,𝑌 (𝑥, 𝑦) , 𝑃𝑌,𝑋(𝑦,𝑥)√
𝑃𝑌 (𝑦)
√

𝑃𝑋(𝑥)
.

The DTM can always be computed from 𝑃𝑋,𝑌 , and possesses some useful proper-

ties related to the HGR [69].

In particular, the first singular value 𝜎0 of the DTM B𝑋,𝑌 is 1, and its correspond-

ing right and left singular vectors are given by 𝜑0(𝑥) =
√︀
𝑃𝑋(𝑥) and 𝜓0(𝑦) =

√︀
𝑃𝑌 (𝑦),

respectively. Furthermore, the second-largest singular value is equal to the HGR, and

the associated associated right and left singular vectors 𝜑1(𝑥), 𝜓1(𝑦) are related to the

maximal correlation functions 𝑓(𝑥), 𝑔(𝑦) by

𝑓(𝑥) =
𝜑1(𝑥)√︀
𝑃𝑋(𝑥)

, 𝑔(𝑦) =
𝜓1(𝑦)√︀
𝑃𝑋(𝑦)

. (2.2)

Thus, computing the HGR and the corresponding maximal correlation functions

reduces to performing a singular value decomposition (SVD) of the DTM [58].

22



2.3 The 𝑘-Mode HGR Maximal Correlation

Using a DTM-based approach to the HGR, we can now extend its definition to en-

capsulate the additional singular values beyond the top two.

Definition 3 (𝑘-mode HGR). Given 1 ≤ 𝑘 ≤ 𝐾 − 1 with 𝐾 = min{|X|, |Y|}, the

𝑘-mode maximal correlation problem for random variables 𝑋 ∈ X and 𝑌 ∈ Y is

(f*,g*) , arg max
f : X→R𝑘, g : Y→R𝑘

E[f(𝑋)]=E[g(𝑌 )]=0,

E[f(𝑋)fT(𝑋)]=E[g(𝑌 )gT(𝑌 )]=I

E
[︀
fT(𝑋)g(𝑌 )

]︀
, (2.3)

where expectations are with respect to joint distribution 𝑃𝑋,𝑌 . We refer to f* and g*

as the maximal correlation functions. With f* = (𝑓 *
1 , . . . , 𝑓

*
𝑘 )T and g = (𝑔*1, . . . , 𝑔

*
𝑘)T,

we further define the associated maximal correlations 𝜎𝑖 = E [𝑓 *
𝑖 (𝑋) 𝑔*𝑖 (𝑌 )] for 𝑖 =

1, . . . , 𝑘.

This approach to feature extraction provides us with a hierarchy of orthogonal

features sorted by the amount of dependence they capture between 𝑋 and 𝑌 . The

solution to this problem is also given to us via SVD of the DTM [58].

Theorem 1. [103, 69] The first singular value of the DTM B𝑋,𝑌 is 1, and its

corresponding right and left singular vectors are given by 𝜑0(𝑥) =
√︀
𝑃𝑋(𝑥) and

𝜓0(𝑦) =
√︀
𝑃𝑌 (𝑦), respectively. Furthermore, the next 𝑘 largest singular values are

the 𝑘 maximal correlations associated with the 𝑘-mode HGR problem, and the asso-

ciated associated right and left singular vectors 𝜑𝑖(𝑥), 𝜓𝑖(𝑦) for the 𝑖th singular value

are related to the 𝑖th maximal correlation functions 𝑓 *
𝑖 (𝑥), 𝑔*𝑖 (𝑦) by

𝑓 *
𝑖 (𝑥) =

𝜑𝑖(𝑥)√︀
𝑃𝑋(𝑥)

, 𝑔*𝑖 (𝑦) =
𝜓𝑖(𝑦)√︀
𝑃𝑋(𝑦)

. (2.4)

In addition, this SVD characterization induces the following modal decomposition
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of the joint distribution:

𝑃𝑋,𝑌 (𝑥, 𝑦) = 𝑃𝑋(𝑥)𝑃𝑌 (𝑦)

[︃
1 +

𝐾−1∑︁
𝑖=1

𝜎𝑖 𝑓
*
𝑖 (𝑥) 𝑔*𝑖 (𝑦)

]︃
, (2.5)

via which predictions are made according to

𝑃𝑌 |𝑋(𝑦|𝑥) = 𝑃𝑌 (𝑦)

(︃
1 +

𝐾−1∑︁
𝑖=1

𝜎𝑖𝑓
*
𝑖 (𝑥)𝑔*𝑖 (𝑦)

)︃
. (2.6)

Thus, f* can be viewed as a sufficient statistic for 𝑌 from 𝑋 (and vice versa for g*).

2.4 Local Approximations

For another useful interpretation of the HGR, we first introduce the concept of 𝜖-

neighbourhoods and 𝜖-dependence [58].

Definition 4 (𝜖-neighbourhood). For a given 𝜖 > 0, the 𝜖-neighbourhood of a distri-

bution 𝑃 ∈ relint(PX) is defined as

NZ
𝜖 (𝑃 ) , {𝑃 ′ ∈ PX|𝐷𝜒2(𝑃 ′||𝑃 ) ≤ 𝜖2} (2.7)

where, for 𝑃 ∈ PX and 𝑄 ∈ relint(PX),

𝐷𝜒2(𝑃 ||𝑄) ,
∑︁
𝑥∈X

(𝑄(𝑥)− 𝑃 (𝑥))2

𝑄(𝑥)
, (2.8)

and PX is the space of probability distribution over finite alphabet X and relint(P) is

the relative interior of P.

Definition 5 (𝜖-dependence). Let 𝑋 ∈ X and 𝑌 ∈ Y be random variables with joint

distribution 𝑃𝑋,𝑌 ∈ PX×Y, where we restrict PX×Y to contain all valid joint distribu-

tions with strictly positive marginals (which we denote with 𝑃𝑋 and 𝑃𝑌 , respectively).

Then, 𝑋 and 𝑌 are 𝜖-dependent if there exists 𝜖 > 0 such that 𝑃𝑋,𝑌 ∈ NX×Y
𝜖 (𝑃𝑋𝑃𝑌 ).
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Then, we have the following result that is particularly useful when 𝑋 and 𝑌 are

weakly dependent (i.e., 𝜖 is small) [59].

Lemma 2. Let 𝑋 and 𝑌 be 𝜖-dependent random variables. Then:

𝐼(𝑋;𝑌 ) =
1

2
||B𝑋,𝑌 ||2𝐹 −

1

2
+ 𝑜(𝜖2) =

1

2

𝐾−1∑︁
𝑖=1

𝜎2
𝑖 −

1

2
+ 𝑜(𝜖2) (2.9)

where ||A||𝐹 denotes the Frobenius norm of matrix A.

Thus, we can draw connections between the HGR and mutual information, which

can allow for certain approximations to be derived, as well as provide another jus-

tification for why one might wish to use the HGR to measure and modulate the

relationship between random variables.

An additional useful extension of Lemma 2 is that, for 1 < 𝑘 < 𝐾 − 1, for

sufficiently small 𝜖, we can construct a 𝑘-mode estimate for the joint distribution

between 𝑋 and 𝑌 as follows:

𝑃
(𝑘)
𝑋,𝑌 (𝑥, 𝑦) , 𝑃𝑋(𝑥)𝑃𝑌 (𝑦)

[︃
1 +

𝑘∑︁
𝑖=1

𝜎𝑖 𝑓
*
𝑖 (𝑥) 𝑔*𝑖 (𝑦)

]︃
, (2.10)

If we denote 𝑋(𝑘) and 𝑌 (𝑘) as the variables induced by 𝑃 (𝑘)
𝑋,𝑌 , then we also have that:

𝐼(𝑋(𝑘);𝑌 (𝑘)) =
1

2

𝑘∑︁
𝑖=1

𝜎2
𝑖 −

1

2
+ 𝑜(𝜖2) (2.11)

The immediate consequence of this is that the 𝑘th feature pair contributes 1
2
𝜎2
𝑘 +

𝑜(𝜖2) to the overall mutual information, which gives us a useful way to sort these

features. By arranging them in order of the magnitude of 𝜎𝑘, we are implicitly sorting

by how much information they capture between 𝑋 and 𝑌 .

2.5 Variational Characterizations

The maximal correlation functions can also be obtained via a variational characteri-

zation of the SVD, which in turns provides an alternative optimization for the HGR

that will be used later.
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In particular, for a DTM B𝑋,𝑌 , the following optimization yields the singular vec-

tors of B𝑋,𝑌 [58], along with the approximation for the mutual information 𝐼(𝑋;𝑌 ):

𝐼(𝑋;𝑌 ) ≈
𝑘∑︁

𝑖=0

𝜎2
𝑖 = max

ΦT
𝑋Φ𝑋=I

‖B𝑋,𝑌Φ𝑋‖2F. (2.12)

Using the property that ‖A‖2F = tr(AA𝑇 ), where tr(A) denotes the trace of

matrix A, this optimization problem can be rewritten as

𝑘∑︁
𝑖=0

𝜎2
𝑖 = max

ΦT
𝑋Φ𝑋=I

tr(ΦT
𝑋B

T
𝑋,𝑌B𝑋,𝑌Φ𝑋), (2.13)

which can be solved via an eigendecomposition of 𝐵T
𝑋,𝑌𝐵𝑋,𝑌 .

If we rewrite this optimization instead using 𝑃𝑋,𝑌 and f(𝑥), we obtain the following

expression instead:

𝑘∑︁
𝑖=0

𝜎2
𝑖 = max

f : X→R𝑘

E[f(𝑋)]=0

E[f(𝑋)fT(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁
(2.14)

where ‖f‖ denotes the 𝐿2 norm of f .

2.6 Computing the Maximal Correlation

As we have seen, the HGR is a useful tool for measuring the dependence between two

variables, providing both interpretable features and a connection to another popular

measure of dependence (mutual information). However, its computation requires

finding the optimal maximal correlation functions.

In the case where 𝑋 and 𝑌 are discrete, this can be done by finding the singular

values and singular vectors of the DTM. In the continuous case, we can use neural

networks to approximate the maximal correlation functions instead.

We also note here that in general, we will not have access to 𝑃𝑋,𝑌 directly, but

rather an empirical distribution 𝑃𝑋,𝑌 estimated from samples drawn from 𝑃𝑋,𝑌 . How-

ever, estimating the modes of the HGR is sample efficient (error exponent grows
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linearly with number of modes) as long as the number of modes is small [58, 60, 84].

2.6.1 The Alternating Conditional Expectation Algorithm

The power method and its most direct generalization, orthogonal iteration, is one of

the oldest methods for computing the singular value decomposition of a matrix [116].

When applied to the DTM, we derive the following expressions relating the maximal

correlation functions 𝑓 and 𝑔 [58]:

E𝑝𝑋|𝑌 (·|𝑦) [𝑓 *
𝑖 (𝑋)] = 𝜎𝑖 𝑔

*
𝑖 (𝑦) and E𝑝𝑌 |𝑋(·|𝑥) [𝑔*𝑖 (𝑌 )] = 𝜎𝑖 𝑓

*
𝑖 (𝑥),

This leads us to the alternating conditional expectations (ACE) algorithm of Breiman

and Friedman [16] for computing these functions. Indeed, for a given f , the correlation

maximizing g has components

𝑔*𝑖 (𝑦) ∝ E𝑝𝑋|𝑌 (·|𝑦) [𝑓 *
𝑖 (𝑋)] , 𝑖 = 1, . . . , 𝑘. (2.15)

and vice-versa. The ACE algorithm is described in Algorithm 1.

2.6.2 The Soft-HGR

However, although the ACE algorithm can be applied to continuous 𝑋 and 𝑌 , the

immediate problem that arises is defining the space of functions to search for the

maximal correlation functions 𝑓 * and 𝑔*.

We can use deep neural networks to define this search space and therefore ap-

proximate the maximal correlation functions, exploiting their universality [57]. This

is especially practical as most machine learning systems that operate on highly non-

linear data use such networks for inference already.

Secondly, we come to the problem of learning these functions. The ACE algo-

rithm performs poorly in the continuous case as computing the conditional expecta-

tion updates on samples requires some type of smoothing algorithm, which may be

challenging to implement with particularly high-dimensional data (e.g., the space of
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Algorithm 1 The Alternating Conditional Expectation (ACE) Algorithm for multi-
ple mode extraction
Data: Joint distribution 𝑃𝑋,𝑌 (or empirical 𝑃𝑋,𝑌 estimated from samples) and num-

ber of modes to extract 𝑘.
Result: Associated maximal correlations 𝜎* = {𝜎1, ..., 𝜎𝑘} and correlation functions

f*(𝑥) = {𝑓1(𝑥), ..., 𝑓𝑘(𝑥)},g*(𝑦) = {𝑔1(𝑦), ..., 𝑔𝑘(𝑦)}
Initialize g*(𝑦) with random values.
repeat
∀𝑥 : f*(𝑥)← E [g*(𝑌 )|𝑋 = 𝑥]
∀𝑥 : f*(𝑥)← f*(𝑥)− E [f*(𝑥)] // center
Factor using QR Decomposition: f*

√
PX = QR

Orthogonalize: f* ← f*R
∀𝑦 : g*(𝑦)← E [f*(𝑋)|𝑌 = 𝑦]
∀𝑦 : g*(𝑦)← g*(𝑦)− E [g*(𝑦)] // center
Factor using QR Decomposition: g*√PY = QR
Orthogonalize: g* ← g*R
∀𝑛 = 1, ..., 𝑘 : 𝜎𝑛 ← E [𝑓𝑛(𝑋)𝑔𝑛(𝑌 )]

until 𝜎* stops increasing ;
return f*(𝑥),g*(𝑦), 𝜎*

images), and constrains the search space according to the smoothing used.

In this case, we can directly learn the functions by optimizing the maximal corre-

lation objective:

(f*,g*) = arg max
f : X→R𝑘, g : Y→R𝑘

E[f(𝑋)]=E[g(𝑌 )]=0,

E[f(𝑋)fT(𝑋)]=E[g(𝑌 )gT(𝑌 )]=I

E
[︀
fT(𝑋)g(𝑌 )

]︀
. (2.16)

However, the orthogonality constraint is difficult to implement, usually requiring

a whitening process that, in the continuous case for high-dimensional data, has high

complexity and stability issues. Our solution here is to instead use a variational

approximation of the HGR, known as the soft-HGR [119]. The soft-HGR relaxes the

orthogonality constraint using an alternative approach to solving the SVD by finding

a low-rank approximation of the DTM B𝑋,𝑌 :
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HGRsoft(𝑋;𝑌 ) , max
E[f(𝑋)]=0
E[g(𝑌 )]=0

E
[︀
fT(𝑋)g(𝑌 )

]︀
− 1

2
tr(cov(f(𝑋)) cov(g(𝑌 ))). (2.17)

This formulation also has the advantage of being easily differentiable for use in systems

that learn via gradient descent (e.g., neural networks).

2.7 Concluding Remarks

In this chapter, we have introduced a measure of dependence between variables that

is interpretable, adaptable to both discrete and continuous settings, and computable

using simple objectives or algorithms. In addition, it can approximate the mutual

information in the weakly dependent case, and also allows for the derivation of a modal

decomposition of the joint probability distribution that can be used for prediction in

all cases.

In the upcoming chapters, we will explore the various ways in which the HGR

formulations can be used to model different learning objectives to solve a wide variety

of problems, and examine the performance of these solutions on a wide range of

applications.
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Chapter 3

Multi-Source Transfer Learning

Equipped with the HGR maximal correlation, we now examine the myriad problems

it can be used to solve. To begin, we consider a problem in transfer learning that

illustrates how an HGR-based approach can be used to develop an algorithm for fea-

ture selection. In particular, we examine the multi-source transfer learning problem,

and develop a method to use the HGR to select and evaluate existing features for

transfer.

Recently, the development of efficient algorithms for training deep neural networks

on diverse platforms with limited interaction has created both opportunities and

challenges for deep learning. An emerging example involves training networks on

mobile devices [51, 94, 70]. In such cases, while each user’s device may be training

on a different set of data with a different classification objective, multi-task learning

techniques can be used to leverage these separate datasets in order to transfer to new

tasks for which we observe few samples.

However, most existing methods require some aspect of control over the training

on the source datasets. Either all the datasets must be located on the same device

for training based on some joint optimization criterion, or the overall architecture

requires some level of control over the training for each individual source dataset. In

the case of, e.g., object classification in images collected by users, sending this data

to a central location for processing may be impractical, or even a violation of privacy

rights. Alternatively, it is possible that one might wish to use older, pre-trained
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classifiers for which the original training data is no longer available, and to transfer

them for use in a new task. In either case, it could be acceptable to transmit the

neural network features learned by the device in an anonymized fashion, and to then

combine the features learned by multiple users in order to classify novel images.

This would be an example of a multi-task learning problem in which we have not

only multiple source datasets, but access to only pre-trained networks (whose learning

objective we cannot control) from those datasets, not the underlying training data

used, and we wish to train a classifier for some new target label set given only a few

target samples.

Fine-tuning methods can be used when the source network is frozen to transfer to

a target domain, but these methods tend not to work very well in a few-shot setting

when there are multiple networks due to the number of parameters necessary for

fine-tuning, especially in an environment where features cannot be learned with the

intention of transfer [36]. In addition, we may also wish to select only a subset of

the features to fine-tune on, if we are limited in the number of features that can be

queried.

3.1 Problem Setup

Consider a multi-task learning setup in which we have 𝑁 different source classification

tasks {T𝑠
1, . . . ,T

𝑠
𝑁}, for which we have labeled data {(𝑥𝑠𝑛1 , 𝑦𝑠𝑛1 ), . . . , (𝑥𝑠𝑛𝑘𝑛 , 𝑦

𝑠𝑛
𝑘𝑛

)} for task

T𝑠
𝑛, 𝑛 ∈ {1, . . . , 𝑁}. We also have a single target task T𝑡, with associated labeled

data {(𝑥𝑡1, 𝑦𝑡1), . . . , (𝑥𝑡𝑘, 𝑦𝑡𝑘)}.

For this problem we assume that 𝑥𝑠𝑛𝑖 ∈ X for all 𝑛 and 𝑖, and 𝑥𝑡𝑖 ∈ X for all 𝑖,

that is, the data for the target and each source task are drawn from some common

alphabet (e.g., all data are natural images). We do not assume any overlap between

labels for any pair of datasets (i.e., 𝑦𝑠𝑛𝑖 ∈ Y𝑠𝑛 for all 𝑛 and 𝑖, and 𝑦𝑡𝑖 ∈ Y𝑡 for all 𝑖,

where Y𝑡 ̸= Y𝑠1 ̸= . . . ̸= Y𝑠𝑁 ).

For each source task T𝑠
𝑛, we have access to a pre-trained neural network that we

assume to have been trained to classify 𝑦𝑠𝑛 from 𝑥𝑠𝑛 . We assume that the network has
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some number of layers corresponding to the extraction of features from 𝑥𝑠𝑛 , followed

by a final classification layer that maps the features to a predicted class label 𝑦𝑠𝑛 . We

denote the output of the penultimate layer as f 𝑠𝑛 : X→ R𝑙𝑛 , of which the 𝑖th feature

is 𝑓 𝑠𝑛
𝑖 : X → R, where 𝑙𝑛 is the number of features output by this layer. We denote

the final layer as ℎ𝑠𝑛 : R𝑙𝑛 → Y𝑠𝑛 , so that the entire neural network classifier can be

written as 𝑦 = ℎ𝑠𝑛(f 𝑠𝑛(𝑥)).

We seek to train a classifier on the target task given training samples {(𝑥𝑡1, 𝑦𝑡1), . . . ,

(𝑥𝑡𝑘, 𝑦
𝑡
𝑘)}, with access to ℎ𝑠𝑛 and f 𝑠𝑛 for each source dataset, but without any access

to the underlying source training samples {(𝑥𝑠𝑛1 , 𝑦𝑠𝑛1 ), . . . , (𝑥𝑠𝑛𝑘𝑛 , 𝑦
𝑠𝑛
𝑘𝑛

)}.

As an example context, this reflects a situation in which there are many devices

collecting and analyzing data, but where the target learner is not allowed to access

the data, either because the devices have limited bandwidth and cannot transmit

everything they have collected, the data is personal (i.e., pictures taken by users of

a mobile app) and cannot be transmitted for privacy purposes, or the original data

is otherwise lost (if the data was collected a long time ago). However, in these cases,

it may still be possible to query the classifier trained on each device to get their

intermediate features, which would require less information to be transmitted.

3.1.1 Prior Work

Multi-task learning is a well-studied problem, with several variations and formula-

tions. One standard approach is to learn a common feature function 𝑓(·) across all

tasks that optimize some joint objective, followed by a final classification layer for

each task [81, 95]. This is a technique that has some theoretical guarantees as given

by Ben-David et al. [10]. While effective, this method requires joint training, which

our problem formulation precludes.

Gupta and Ratinov [50] propose a method of combining the outputs of multiple

pre-trained classifiers by training on their raw predictions, but this method is designed

for pre-trained classifiers specially selected to work well in combination with the target

task, with an emphasis on cases where the number of possible class labels (i.e., the

value of each |Y𝑠𝑛|) is large, which we do not assume in our problem formulation.
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Other methods involve some kind of sequential learning [105] or shared memory

unit [78], which could decentralize data storage, but which still require joint control

over the training [76].

Meta-learning algorithms have also gained popularity in recent years [87, 90].

These algorithms attempt to learn a suitably general learning rule or model from a

set of source tasks that can be fine-tuned with data from a target task [36]. While

these methods allow for the combining of multiple source datasets, they are still bound

by the need for centralized training.

Finally, the notion of transferring from a single pre-trained network onto a new

target task has also been studied before. Yosinski et al. explore the transferability of

different layers of a neural net to other tasks in the context of learning general features

[129], while Bao et al. propose a score for measuring transferability of features across

tasks [7].

3.2 Multi-Source Transfer Learning via Maximal

Correlations

In order to perform well on the target task, we seek to model the target 𝑃𝑇 (𝑦|𝑥) using

an exponential family using the 𝑓𝑖’s, for maximal generalizability:

𝑃𝑇 (𝑦|𝑥) = 𝑃𝑌 (𝑦) exp

(︃∑︁
𝑖

𝜎𝑖𝑓𝑖(𝑥) 𝑔𝑖(𝑦)

)︃
.

We have from Proposition 56 of [59] that the 𝑔𝑖(𝑦)’s that achieve the maximal infor-

mation 𝐼(𝑈, 𝑌 ) (where 𝑈 are the features learned by f on 𝑋) are given by:

g*(𝑦) = cov(f(𝑋))−1(E𝑝𝑋|𝑌 (·|𝑦) [f(𝑋)]− E𝑝𝑋 [f(𝑋)]),

𝜎 = E𝑝𝑋,𝑌

[︀
fT(𝑋)g(𝑦)

]︀
.

In this section, we will use these functions to perform soft feature selection and
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thus determine how best to combine these features to perform well on a new task

given few training samples.

3.2.1 Combining Maximal Correlation Functions

Given a fixed set of feature functions {f 𝑠1 , . . . , f 𝑠𝑁}, we seek to maximize the total

maximal correlation

L = E𝑃 𝑡
𝑋,𝑌

[︀
fT(𝑋)g(𝑌 )

]︀
(3.1)

with respect to g, where f = (f 𝑠1 , . . . , f 𝑠𝑁 )T and g = (g𝑠1 , . . . ,g𝑠𝑁 )T, and where

the optimization is over all valid (zero-mean and unit-variance with respect to the

empirical distribution of the target class labels) g for fixed f . 𝑃 𝑡
𝑋,𝑌 is the empirical

joint target distribution of 𝑋 and 𝑌 . We relax the orthogonality constraint here in

order to simplify the expression and decouple the 𝑔𝑖(𝑦)’s.

Expanding (3.1) as

L =
∑︁
𝑖,𝑛

E𝑃 𝑡
𝑋,𝑌

[𝑓 𝑠𝑛
𝑖 (𝑋) 𝑔𝑠𝑛𝑖 (𝑌 )] , (3.2)

we can then maximize each term separately, yielding

𝑔𝑠𝑛𝑖 (𝑦) = arg max
𝑔𝑠𝑛𝑖

L = arg max
𝑔𝑠𝑛𝑖

E𝑃 𝑡
𝑋,𝑌

[𝑓 𝑠𝑛
𝑖 (𝑋)𝑔𝑠𝑛𝑖 (𝑌 )] . (3.3)

Then, for each 𝑔𝑠𝑛𝑖 (𝑦), for a fixed 𝑓 𝑠𝑛
𝑖 , we have from (2.15) that the optimal 𝑔𝑠𝑛𝑖 is

given by the conditional expectation

𝑔𝑠𝑛𝑖 (𝑦) = E𝑃 𝑡
𝑋|𝑌 (·|𝑦) [𝑓 𝑠𝑛

𝑖 (𝑋)] , (3.4)

which can easily be computed from the target samples.

In turn, we compute the corresponding maximized correlation for each pair of

functions 𝑓 𝑠𝑛
𝑖 and 𝑔𝑠𝑛𝑖 via

𝜎𝑛,𝑖 = E𝑃 𝑡
𝑋,𝑌

[𝑓 𝑠𝑛
𝑖 (𝑋) 𝑔𝑠𝑛𝑖 (𝑌 )] . (3.5)
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Algorithm 2 Extracting maximal correlation parameters
Data: Zero-mean, unit-variance feature functions {𝑓 𝑠𝑛

𝑖 } from source tasks and target
task samples {(𝑥𝑡1, 𝑦𝑡1), . . . , (𝑥𝑡𝑘, 𝑦𝑡𝑘)}

Result: Associated maximal correlations {𝜎𝑛,𝑖} and correlation functions {𝑔𝑠𝑛𝑖 }
for 𝑛 = 1, . . . , 𝑁 do // Iterate over all source tasks

for 𝑖 = 1, . . . , 𝑙𝑛 do // Iterate over features in each network
for 𝑦 ∈ Y𝑡 do // Iterate over all target class labels

𝑔𝑠𝑛𝑖 (𝑦) ← E𝑃 𝑡
𝑋|𝑌 (·|𝑦) [𝑓 𝑠𝑛

𝑖 (𝑋)] // Compute feature and label-specific

weight
end
𝜎𝑛,𝑖 ← E𝑃 𝑡

𝑋,𝑌
[𝑓 𝑠𝑛

𝑖 (𝑋) 𝑔𝑠𝑛𝑖 (𝑌 )] // Compute feature-specific weight

end
end
return {𝑔𝑠𝑛𝑖 }, {𝜎𝑛,𝑖}

3.2.2 The Maximal Correlation Weighting (MCW) Algorithm

Using the combining weights thus derived, a predictor for the target labels is formed

in accordance with (2.6), specifically,

𝑃𝑌 |𝑋(𝑦|𝑥) = 𝑃 𝑡
𝑌 (𝑦)

(︃
1 +

∑︁
𝑛,𝑖

𝜎𝑛,𝑖𝑓
𝑠𝑛
𝑖 (𝑥)𝑔𝑠𝑛𝑖 (𝑦)

)︃
, (3.6)

from which the prediction 𝑦 for a given test sample 𝑥 is

𝑦 = arg max
𝑦

𝑃𝑌 |𝑋(𝑦|𝑥) = arg max
𝑦

𝑃 𝑡
𝑌 (𝑦)

(︃
1 +

∑︁
𝑛,𝑖

𝜎𝑛,𝑖𝑓
𝑠𝑛
𝑖 (𝑥)𝑔𝑠𝑛𝑖 (𝑦)

)︃
, (3.7)

where 𝑃 𝑡
𝑌 is an estimate of the target label distribution. The resulting algorithms for

learning the MCW parameters and computing the MCW predictions are summarized

in Algorithm 2 and Algorithm 3, respectively.

Computing the empirical conditional expected value requires a single pass through

the data, and so has linear time complexity in the number of target samples. We also

need to compute one conditional expectation for each feature function. Thus, the

time complexity of the fine-tuning is 𝑂(𝐶 + 𝑁𝐾𝑘), where 𝐶 is the time needed to
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Algorithm 3 Prediction with the maximal correlation weighting method
Data: Maximal correlation functions {𝑓 𝑠𝑛

𝑖 } and {𝑔𝑠𝑛𝑖 } with associated correlations
{𝜎𝑛,𝑖}, empirical class label distribution 𝑃 𝑡

𝑌 , and target task sample 𝑥𝑡
Result: Class label prediction 𝑦𝑡 given 𝑥𝑡
Initialize 𝑃 𝑡

𝑌 |𝑋(𝑦|𝑥𝑡) = 𝑃 𝑡
𝑌 (𝑦) ∀𝑦 ∈ Y𝑡

for 𝑛 = 1, . . . , 𝑁 do // Iterate over all source tasks
for 𝑖 = 1, . . . , 𝑙𝑛 do // Iterate over features in each network

for 𝑦 ∈ Y𝑡 do // Iterate over all target class labels
𝑃 𝑡
𝑌 |𝑋(𝑦|𝑥𝑡) = 𝑃 𝑡

𝑌 |𝑋(𝑦|𝑥𝑡)+𝑃 𝑡
𝑌 (𝑦)𝜎𝑛,𝑖𝑓

𝑠𝑛
𝑖 (𝑥𝑡)𝑔𝑠𝑛𝑖 (𝑦)// Apply Equation (9)

end
end

end
return arg max𝑦 𝑃

𝑡
𝑌 |𝑋(𝑦|𝑥)

extract features from all the pre-trained networks, 𝑁 is the number of networks, 𝐾 is

the maximum number of features per network, and 𝑘 is the number of target training

samples. The number of parameters grows as 𝑂(𝑁𝐾|Y𝑡|), which is the number of

entries needed to store all the 𝑔 functions. |Y𝑡| is the number of target class labels.

To compute a prediction from one target test sample, the time complexity is

𝑂(𝐶 + 𝑁𝐾|Y𝑡|). This arises from the fact that we must compute the quantity∑︀
𝑛,𝑖 𝜎𝑛,𝑖𝑓

𝑠𝑛
𝑖 (𝑥)𝑔𝑠𝑛𝑖 (𝑦) for each possible class label.

3.3 Experimental Results

In order to illustrate the effectiveness of the MCW method, we perform experiments

on three different image classification datasets: CIFAR-100, Stanford Dogs, and Tiny

ImageNet. Example images from each dataset can be found in Figure 3-1.1

For each dataset, we divide the classes into a set of mutually exclusive subsets,

select one subset as our target task, and several others as the source datasets. We use

the LeNet architecture [71] as our neural network for each source dataset, and train

a different network for each source dataset. We implemented the network in PyTorch

1Code for these experiments can be found at https://github.com/jklee-mit/maximal_
correlation_weighting.
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Figure 3-1: Example images from the (a) CIFAR-100, (b) Stanford Dogs, and (c)
Tiny ImageNet datasets.

[96], and trained it for 100 epochs.

We remove the means and normalize to unit variance all of the feature functions

with respect to the target samples, and then compute the maximal correlations and

associated functions for each output in the penultimate layer using the target data

according to Algorithm 2. We then use them to compute predictions on the test

set for the target task according to Algorithm 3. The overall system is visualized in

Figure 3-2.

We compare the classification accuracies on the test set with that of a support

vector machine (SVM) trained on the penultimate layers with the same target training

data (similar to the setup in [50]), as well as the best results from the MCW method

and SVM method using only one source dataset/neural network. We also include

the "upper bound" baseline performance on the dataset by a LeNet neural network

trained on a number of target training samples equal to the number of training samples

provided for each source dataset. The reported results are over 20 runs using the same

set of tasks for each run.

3.3.1 CIFAR-100 Dataset

The CIFAR-100 dataset2 [66] is a collection of color images of size 32x32 drawn from

100 different categories of real-world subjects. Because of the low resolution of the

2https://www.cs.toronto.edu/∼kriz/cifar.html
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Figure 3-2: Block diagram illustrating the multiple source networks that are fed into
the MCW algorithm to produce the final prediction.

images, CIFAR-100 is generally seen as a difficult classification problem. For our

experiment, we construct a series of binary classification tasks from the classes. We

randomly selected "apple" vs. "fish" as our target binary classification task, and

randomly selected 10 other pairs of non-overlapping categories for the source tasks.

For each source task, we extracted 500 source samples per class for training, and we

used 1, 5, 10, and 20 target samples per class to compute the maximal correlation

functions in the target task. We used the training/test splits included with the

dataset, and report results over all test samples with the target labels.

Table 3.1 shows the test accuracies of our algorithm as applied to the CIFAR-

100 dataset. We can see that the MCW method performs significantly better than

an SVM when there are few samples, likely due to its ability to work with fewer

target data points in learning, but that this performance gap closes as more target

training samples are added, likely due to the fact that the models that require joint

training over the features begin to have enough target samples to properly learn

their parameters. In addition, we can see that combining multiple networks provides

performance that is better than any one network can achieve with the same methods,
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Table 3.1: Experimental results for the CIFAR-100 dataset. Accuracies are reported
with 95% confidence intervals.

Method 1-Shot Acc. 5-Shot Acc. 10-Shot Acc. 20-Shot Acc.

Best 1-Source SVM 56.9 ± 2.5 67.0 ± 3.0 70.4 ± 1.9 70.9 ± 1.2
Best 1-Source MCW 59.2 ± 2.1 69.0 ± 3.0 67.0 ± 2.4 70.4 ± 1.5
Multi-Source SVM 64.7 ± 3.0 72.8 ± 2.7 76.2 ± 1.8 81.5 ± 0.6
Multi-Source MCW 69.0 ± 3.0 78.1 ± 0.8 80.1 ± 0.8 81.7 ± 0.6
Baseline (All Target
Samples)

90.7 ± 0.1

once again suggesting that our algorithm is taking in contributions from multiple

sources instead of just one.

In order to investigate the functioning of the MCW method for feature selection,

we plot the sum of correlations for each of the 10 tasks for the 5-shot case in Figure

2. We can see a significant variation among tasks, which provides a clear indication

of which tasks are being preferred and which do not contribute as much to the overall

performance. To verify this, we run two additional experiments in which we first

remove the source task with the lowest total correlation ("camel" vs. "can") and see

how well the MCW method performs with the remaining 9 source datasets, and then

remove the task with the highest total correlation ("dolphin" vs. "elephant") while

keeping the other 9 sources in and run the same test.

Without the least-favoured task, the classification accuracy drops to 76.8 ± 1.0,

which is not a significant difference from using all 10 source tasks. However, when we

remove the most-favoured task, the accuracy plummets to 73.0 ± 1.3, which indicates

that "dolphin" vs. "elephant" had a significant impact on the quality of the classifier,

but that the MCW method still takes the input of the other tasks into account in

order to construct a good classifier on the target set.
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Figure 3-3: Average values of
∑︀

𝑖 𝜎𝑛,𝑖 for each source task 𝑠𝑛 for the 5-shot transfer
learning task on the CIFAR-100 dataset, with the target task of "apple vs. fish."
Points are plotted with 95% confidence intervals.

3.3.2 Stanford Dogs Dataset

The Stanford Dogs dataset3 [63] is a subset of the ImageNet dataset designed for

fine-grained image classification. It consists of 22,000 images of varying sizes covering

120 classes of dog breeds. For this task we construct a random 5-way target clas-

sification task (differentiating between "Chihuahua", "Japanese Spaniel", "Maltese

Dog", "Pekinese", and "Shih-Tzu") and 10 other random 5-way source classification

tasks with no overlapping classes. For the target set, we take 5 samples per class for

training and use the rest for testing. For the source sets, we take 100 samples per

class for training. All images were resized to size 144x144.

Table 3.2 shows the test accuracies of our algorithm as applied to the Stanford

Dogs dataset. This time, we observe a loose hierarchy whereby the MCW method

outperforms the SVM, which in turn outperforms any single source transfer. We can

thus conclude that the MCW method is effective in the case of 𝑚-way learning for

𝑚 > 2, and that we can still leverage multiple networks to get a gain in cases where

3http://vision.stanford.edu/aditya86/ImageNetDogs/
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Table 3.2: Experimental results for the Stanford Dogs dataset. Accuracies are
reported with 95% confidence intervals.

Method 5-Shot Accuracy

Best Single Source SVM 35.8 ± 0.8
Best Single Source MCW 38.2 ± 0.6
Multi-Source SVM 38.9 ± 0.3
Multi-Source MCW 41.6 ± 0.5
Baseline (All Target Samples) 55.2 ± 0.1

the classes are very similar.

3.3.3 Tiny ImageNet Dataset

The Tiny ImageNet dataset4 [74] is another subset of the ImageNet dataset, consisting

of images of size 64x64 drawn from 200 categories, with 500 images provided for each

category. The categories cover a much wider range than the Stanford Dogs dataset,

including animals, natural and man-made objects, and even abstract concepts (e.g.,

"elongation"). As with the Stanford Dogs dataset, we constructed 11 random 5-way

classification tasks, and selected one as the target task ("Lighthouse" vs. "Rocking

Chair" vs. "Bannister" vs. "Jellyfish" vs. "Chain") and the others as source tasks.

We used 5 training samples per class for the target task (with 250 samples per class

for testing) and all 500 samples per class for the source training samples. For the

baseline, we only trained with the 250 samples per class in the target dataset that

were not in the test split.

Table 3.3 shows the test accuracies of the MCW method as applied to the Tiny

ImageNet dataset. Compared to the Stanford Dogs dataset, we see a larger gain from

leveraging multiple sources compared to a single source, which suggests that if the

source classes are much more dissimilar than the target classes, then integrating more

networks (and thus leveraging a wider range of features) will have a greater effect on

target task accuracy, likely due to the ability of different source tasks to "cover" the

feature set needed for the target task, as opposed to the Dogs setup where the classes

4https://tiny-imagenet.herokuapp.com/
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Table 3.3: Experimental results for the Tiny ImageNet dataset. Accuracies are
reported with 95% confidence intervals.

Method 5-Shot Accuracy

Best Single Source SVM 31.4 ± 0.9
Best Single Source MCW 33.9 ± 1.0
Multi-Source SVM 42.5 ± 1.4
Multi-Source MCW 47.4 ± 1.1
Baseline (All Target Samples) 53.8 ± 0.1

were highly similar.

3.4 Concluding Remarks

In this chapter, we showed that the HGR can also be used to perform feature selection,

in both a soft manner (weighting) as well as a hard manner (removing unimportant

features entirely). Furthermore, we see in this multi-source problem the interpretive

power of the HGR, as the maximal correlations can be used to evaluate the extent to

which each feature is used to make the final prediction, and thus decide which subset

of features would be most useful to keep if there are limitations as to how many can

be used.

A less-decoupled perspective may prove useful for better evaluating the effective-

ness of subsets of features, allowing for more effective feature selection in the future.

In addition, the privacy implications of our setup could be considered, as it is possi-

ble to reconstruct training data from the learned features [38], which means that our

method as-is does not erase all privacy concerns. These methods can be countered

with differential privacy measures [85], such as adding noise to the feature functions,

but their effect on transfer quality is as-of-yet unknown.
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Chapter 4

Sensitivity-Aware Learning

Algorithms

In Chapter 3, we illustrated the use of the HGR in feature selection. In this chap-

ter, we will consider the problem of feature suppression instead. In particular, we

will look at problems involving enforcing sensitivity criteria in learning. These prob-

lems are widely applicable to multiple fields, including fair machine learning, privacy,

and transfer learning (specifically, domain generalization), and thus having a single

paradigm to solve them provides an opportunity to glimpse the range and ease of

adaptability of our method. As well, this is a good illustration of both the power as

well as the limitations of an HGR-based approach to solving these problems.

In general, these problems assume a primary learning objective defined by pre-

dicting a target 𝑌 from data 𝑋, such as classification or regression, measured using

some loss function 𝐿(𝑌 , 𝑌 ) (e.g., cross-entropy E𝑃𝑌

[︁
log𝑃𝑌 (𝑌 )

]︁
for classification and

mean-squared error E
[︁
(𝑌 − 𝑌 )2

]︁
for regression). They also assume the existence of

a third variable, 𝐷 ∈ D, which defines a secondary objective.

In these cases, we have access to samples {(𝑥1, 𝑦1, 𝑑1), . . . , (𝑥𝑛, 𝑦𝑛, 𝑑𝑛)} from which

to learn the model. While we assume in this case that we always have access to all

three variables during training, in some cases, our model may only be allowed to make

inferences using 𝑋 during test time, rather than on both 𝑋 and 𝐷.

The secondary objectives we are interested in are independence-based sensitivity
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criteria, which demand some kind of marginal or conditional independence between

the learned features Θ(𝑋) or predictions 𝑌 and the variables 𝐷 and/or 𝑌 . These

criteria can be used to model a wide range of real-world problems, from fair machine

learning to privacy to domain generalization.

4.1 Independence, Separation, and Sufficiency

We look at three sensitivity criteria, which cover the set of possible non-trivial

marginal and conditional independence criteria one could have between the variables

in question. Since all three of these criteria are used in fair machine learning, we will

be using the terms from this field to refer to them.

The first criterion is known as independence, and states that any prediction we

make must be (marginally) independent of the sensitive attribute, that is,1 𝑌 ⊥ 𝐷.

The purpose of this criterion is very simple; it is used to suppress any information

about 𝐷 from the prediction alone. For example, if 𝐷 represents information that one

wishes to remain private, then independence can be used to ensure that the predictions

do not leak this private information [18]. In fair machine learning, this criterion can

also be used enforce equal treatment or allocation of resources among individuals with

a shared identity, such as race or sex, also known as enforcing demographic parity [8].

In some cases, such equal allocation via independence between the prediction and

the sensitive attribute is not the goal. Instead, we may desire to have equal levels of

performance across subsets of the population, for example, equal accuracy 𝑃 (𝑌 = 𝑌 )

or equal recall 𝑃 (𝑌 = 𝑌 |𝑌 = 𝑘) across all relevant subsets. The second criterion

we introduce is separation, which enforces this behaviour. Separation states that any

prediction we make must be independent of the sensitive attribute, conditioned on the

true label, that is, 𝑌 ⊥ 𝐷|𝑌 . In fair machine learning, this allows us to enforce the

condition of equalized opportunities, which requires that the same recall are achieved

among all relevant subsets of the population [8].

Our final criterion is sufficiency, which states that our prediction must contain all

1We note here that ⊥ is used exclusively to denote independence of random variables.
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Table 4.1: Types of sensitivity criteria.

Independence Separation Sufficiency
𝑌 ⊥ 𝐷 𝑌 ⊥ 𝐷|𝑌 𝑌 ⊥ 𝐷|𝑌

the information about the sensitive attribute needed to predict the target, that is, 𝑌 ⊥

𝐷|𝑌 . This criterion is useful for ensuring positive and negative predictive parity (e.g.,

equal precision 𝑃 (𝑌 = 𝑌 |𝑌 = 𝑘) across all groups) [8], and has applications in both

domain generalization [5] and fair selective classification [62]. Table 4.1 summarizes

the three criteria.

At this point, we make a few remarks about these criteria. First of all, these

criteria are largely mutually exclusive outside of some trivial cases. Specifically, we

have the following results:

Proposition 1. If 𝑌 and 𝐷 are not independent, then sufficiency and independence

cannot both hold. [8]

Proposition 2. If 𝑌 and 𝐷 are not independent, and if all events in the joint distri-

bution of (𝑋, 𝑌,𝐷) have positive probability, then sufficiency and separation cannot

both hold. [8, 122]

Proposition 3. If 𝑌 and 𝐷 are not independent, 𝑌 and 𝐷 are not independent, and

𝑌 is binary, then separation and independence cannot both hold. [8]

In addition, in many applications, we do not require that these criteria be perfectly

satisfied, and instead formulate measures of violation to quantify deviations from

perfect satisfaction of the criteria. Then, we can evaluate algorithms by looking at

the tradeoff between severity of violation and overall performance on the primary

objective.

4.2 Enforcing Sensitivity Criteria: Discrete Case

When 𝑋, 𝑌 , and 𝐷 are all discrete, we look to the matrix-based representations of the

probability distributions in order to derive features that balance the primary learning
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objective with the sensitivity criteria.

In all cases, we assume that we wish to learn a feature mapping f ∈ R|X|×𝑘 from

𝑋 with respect to 𝑌 that maximizes the maximal correlation under the variational

characterization given in Section 2.5.

4.2.1 Independence

When we apply the independence criterion, we obtain the following constrained op-

timization problem:
max

f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁

s.t. 𝑈 ⊥ 𝐷,

(4.1)

where 𝑈 denotes the features produced by f on 𝑋. We can relax this constraint to

produce
max

f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁

s.t. E𝑃𝐷

[︁
‖E𝑃𝑋|𝐷 [f(𝑋)] ‖2

]︁
= 0.

(4.2)

Transforming this constraint into a penalty, we obtain

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁
− 𝜆E𝑃𝐷

[︁
‖E𝑃𝑋|𝐷 [f(𝑋)] ‖2

]︁
. (4.3)

where 𝜆 is a regularization parameter. Rewriting this in terms of the DTM yields

max
ΦT

𝑋Φ𝑋=I
tr(ΦT

𝑋

(︀
BT

𝑋,𝑌B𝑋,𝑌 − 𝜆BT
𝑋,𝐷B𝑋,𝐷

)︀
Φ𝑋). (4.4)

Then, solving this optimization is equivalent to finding the eigendecomposition of

BT
𝑋,𝑌B𝑋,𝑌 − 𝜆BT

𝑋,𝐷B𝑋,𝐷 [116]. When we are given samples from 𝑃𝑋,𝑌,𝐷 from which

to learn the features, we can perform the decomposition using the empirical forms of

B𝑋,𝑌 , which we denote as B̂𝑋,𝑌 .
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4.2.2 Separation

The separation criterion leads us to a similar constrained optimization problem as in

independence:
max

f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁

s.t. 𝑈 ⊥ 𝐷|𝑌.

(4.5)

We can replace the constraint with an equivalent one using the mutual information:

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁

s.t. 𝐼(𝑈 ;𝐷|𝑌 ) = 0,

(4.6)

which can be transformed into the relaxed problem

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁
− 𝜆𝐼(𝑈 ;𝐷|𝑌 ). (4.7)

At this point, we can make use of the chain rule of mutual information to obtain:

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁
− 𝜆
(︀
𝐼(𝑈 ; (𝐷, 𝑌 ))− 𝐼(𝑈 ;𝑌 )

)︀
. (4.8)

Since we are minimizing 𝐼(𝑈 ; (𝐷, 𝑌 )), we will be trying to learn features that are

weakly dependent with respect to (𝐷, 𝑌 ), in which case, we can apply the HGR

approximation of the mutual information to obtain

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁

− 𝜆
(︀
E𝑃𝐷,𝑌

[︁
‖E𝑃𝑋|𝐷,𝑌

[f(𝑋)] ‖2
]︁
− E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁ )︀
.

(4.9)
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This simplifies to

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

(1 + 𝜆)E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁
− 𝜆E𝑃𝐷,𝑌

[︁
‖E𝑃𝑋|𝐷,𝑌

[f(𝑋)] ‖2
]︁
, (4.10)

and can thus be solved similarly via the eigendecomposition of (1 + 𝜆)BT
𝑋,𝑌B𝑋,𝑌 −

𝜆BT
𝑋,𝐷×𝑌B𝑋,𝐷×𝑌 , where B𝑋,𝐷×𝑌 denotes the DTM of the joint distribution between

𝑋 and the Cartesian product of 𝐷 and 𝑌 .

4.2.3 Sufficiency

Our final criteria, sufficiency, is more difficult to analyze using the HGR. We can

write the constrained problem as before,

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁

s.t. 𝑌 ⊥ 𝐷|𝑈,

(4.11)

and then apply the mutual information-based relaxation to obtain

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁
− 𝜆𝐼(𝑌 ;𝐷|𝑈). (4.12)

We can apply the chain rule to 𝐼(𝑌 ;𝐷|𝑈) as follows:

𝐼(𝑌 ;𝐷|𝑈)

=𝐼((𝑈,𝐷);𝑌 )− 𝐼(𝑈 ;𝑌 )

=𝐼(𝑈 ;𝑌 |𝐷) + 𝐼(𝑌 ;𝐷)− 𝐼(𝑈 ;𝑌 )

=𝐼(𝑈 ; (𝑌,𝐷))− 𝐼(𝑈 ;𝐷) + 𝐼(𝑌 ;𝐷)− 𝐼(𝑈 ;𝑌 ),

(4.13)

Since 𝐼(𝑌 ;𝐷) is constant for all choices of f , we can ignore it when we plug in the

above expression into the optimization, which yields
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max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁
− 𝜆
(︀
𝐼(𝑈 ; (𝑌,𝐷))− 𝐼(𝑈 ;𝐷)− 𝐼(𝑈 ;𝑌 )

)︀
. (4.14)

If we apply the usual approximation of mutual information using HGR, we can

obtain the following optimization:

max
f : X→R𝑘

E[f(𝑋)]=0

E[fT(𝑋)f(𝑋)]=I

(1 + 𝜆)E𝑃𝑌

[︁
‖E𝑃𝑋|𝑌 [f(𝑋)] ‖2

]︁
− 𝜆
(︀
E𝑃𝐷,𝑌

[︁
‖E𝑃𝑋|𝐷,𝑌

[f(𝑋)] ‖2
]︁

− E𝑃𝐷

[︁
‖E𝑃𝑋|𝐷 [f(𝑋)] ‖2

]︁ )︀
.

(4.15)

Once again, we can then compute the features by solving the eigendecomposition of

(1 + 𝜆)BT
𝑋,𝑌B𝑋,𝑌 − 𝜆

(︀
BT

𝑋,𝐷×𝑌B𝑋,𝐷×𝑌 −BT
𝑋,𝐷B𝑋,𝐷

)︀
.

However, we note that since we are trying to maximize 𝐼(𝑈 ;𝐷), it is unlikely

that we will be in the weakly dependent regime, and thus the approximation is not

guaranteed to be close enough to be useful in this case. This is especially problematic

as we are trying to minimize a difference between two very similar quantities, and

thus the effects of a poor approximation can be exacerbated and result in the wrong

features being learned. Still, intuitively, we would expect this objective to produce

sufficient features by penalizing the dependence between the features and the joint

distribution of 𝑌 and 𝐷 while maximizing the individual dependencies between the

features and each of 𝑌 and 𝐷.

4.3 Enforcing Sensitivity Criteria: Continuous

Case

In the continuous case, we once again assume some primary loss function 𝐿(𝑌 , 𝑌 )

for which we seek a set of features Θ(𝑋) that both satisfy some sensitivity criteria

(or minimize the penalty based on it) while still allowing for a good predictor 𝑌 =

𝑇 (Θ(𝑋)) to be learned that minimizes the primary loss function. For this section, we
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will assume that Θ(𝑋) ∈ R𝑚.

When 𝑋, 𝑌 , and 𝐷 are all continuous and real-valued, however, computing the

HGR maximal correlation becomes much more difficult, since we are searching the

space of functions over real numbers. We thus turn to approximations, and begin by

limiting our scope of learning algorithms to those which train models (e.g., neural

nets) via (stochastic) gradient descent using samples, which encompasses the appli-

cations of interest to us.

It then follows that any approximation of the HGR maximal correlation used

must be differentiable to make it possible to calculate the gradient. We thus restrict

the space of maximal correlation functions to be the family of functions that can be

learned by neural nets, allowing us to compute the gradient while still providing a

rich set of functions to search over.

4.3.1 Independence

In the continuous case, our constrained optimization problem for independence looks

like
min
Φ,𝑇

𝐿(𝑌 , 𝑌 )

s.t. 𝑈 ⊥ 𝐷,

(4.16)

where 𝑈 denotes the features produced by Θ on 𝑋. We can rewrite this using the

HGR as
min
Θ,𝑇

𝐿(𝑌 , 𝑌 )

s.t. HGR(𝑈 ;𝐷) = 0.

(4.17)

The relaxed form of this is

min
Θ: X→R𝑚

𝑇 : R𝑚→Y

𝐿(𝑇 (Θ(𝑋)), 𝑌 ) + 𝜆HGR(𝑈 ;𝐷). (4.18)

Given the difficulty of enforcing the orthogonalization constraint, we use the soft-
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HGR discussed in Section 2.6.2. Then, our learning objective becomes

min
Θ: X→R𝑚

𝑇 : R𝑚→Y

max
f : R𝑚→R𝑘, g : D→R𝑘

E[f(Θ(𝑋))]=E[g(𝐷)]=0

𝐶, (4.19)

where

𝐶 =𝐿(𝑇 (Θ(𝑋)), 𝑌 ) + 𝜆E
[︀
fT(Θ(𝑋))g(𝐷)

]︀
− 𝜆

2
tr
(︀

cov[f(Θ(𝑋))] cov[g(𝐷)]
)︀
.

We solve this by alternating between optimizing Θ, 𝑇 and optimizing f ,g.

4.3.2 Separation

For separation, we use a similar argument as in the discrete case to ensure the con-

ditional independence. Our constrained optimization for continuous separation is:

min
Θ,𝑇

𝐿(𝑌 , 𝑌 )

s.t. 𝑈 ⊥ 𝐷|𝑌,
(4.20)

which we can rewrite using the mutual information as:

min
Θ,𝑇

𝐿(𝑌 , 𝑌 )

s.t. 𝐼(𝑈 ;𝐷|𝑌 ) = 0.

(4.21)

The relaxed form of this is

min
Θ: X→R𝑚

𝑇 : R𝑚→Y

𝐿(𝑇 (Θ(𝑋)), 𝑌 ) + 𝜆𝐼(𝑈 ;𝐷|𝑌 ). (4.22)
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Then, by applying the chain rule and the same HGR approximation of the mutual

information, then converting HGR to soft-HGR, we obtain:

min
Θ: X→R𝑚

𝑇 : R𝑚→Y

𝐿(𝑇 (Θ(𝑋)), 𝑌 )+ (4.23)

𝜆
(︀
HGRsoft(𝑈 ;𝐷 × 𝑌 )− HGRsoft(𝑈 ;𝑌 )

)︀
.

Note that for the first soft-HGR term, we use g,h to denote the maximal correlation

functions, and g′,h′ to denote the functions for the second term. Similar to the

discrete case, the difference term allows us to approximate the conditional mutual

information using two unconditional terms. Once again, we solve this optimization

by alternating between optimizing f , 𝑇 and optimizing g,h,g′,h′.

4.3.3 Sufficiency

For sufficiency, we encounter the same issue as in the discrete case. We have the

constrained optimization
min
Θ,𝑇

𝐿(𝑌 , 𝑌 )

s.t. 𝑌 ⊥ 𝐷|𝑈,
(4.24)

which we can rewrite using the mutual information as

min
Θ,𝑇

𝐿(𝑌 , 𝑌 )

s.t. 𝐼(𝑌 ;𝐷|𝑈)) = 0.

(4.25)

The relaxed form of this is

min
Θ: X→R𝑚

𝑇 : R𝑚→Y

𝐿(𝑇 (Θ(𝑋)), 𝑌 ) + 𝜆𝐼(𝑌 ;𝐷|𝑈). (4.26)
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Using the same chain rule manipulations and HGR substitutions, we can obtain

min
Θ: X→R𝑚

𝑇 : R𝑚→Y

𝐿(𝑇 (Θ(𝑋)), 𝑌 )+ (4.27)

𝜆
(︀
HGRsoft(𝑈 ;𝐷 × 𝑌 )− HGRsoft(𝑈 ;𝑌 )− HGRsoft(𝑈 ;𝐷)

)︀
.

However, once again, we cannot guarantee that we are operating in the weakly-

dependent regime, and thus cannot guarantee that this will be a good approximation

to use for this optimization, though we would expect similar behaviour as in the

discrete case in enforcing sufficiency.

4.4 Concluding Remarks

In this section, we have outlined the methods by which one can enforce sensitivity cri-

teria in different modalities of data. In doing so, we also exposed a possible weakness

of the HGR-based approach to enforcing sufficiency.

Finding a different way to formulate the objective that does not suffer from the

same instability would be a highly beneficial next step. However, it may not be

possible to construct a set of sufficient features from 𝑋 if 𝑌 and 𝐷 are dependent in

some way that does not involve 𝑋 at all. For example, if 𝑌 and 𝐷 are both correlated

with some variable 𝑍 that is completely independent from 𝑋, then sufficiency can

never be achieved by any Θ(𝑋).

In the next chapter, we will explore the space of problems that can be solved

by enforcing sensitivity criteria, to illustrate both the effectiveness of our method

empirically, as well as to provide some insights on the many different ways these

criteria can be used to model and solve real-world problems.
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Chapter 5

Applications of Sensitivity-Aware

Learning

A tool is only as useful as the problems it can solve. Equipped with a suite of

methods for solving machine learning problems with sensitivity criteria, we now look

at a number of different applications for these methods to illustrate the breadth of

problems that can be tackled using this paradigm, and how even some problems that

may not appear to be applicable to this paradigm at first can still be formulated in

such a way to allow us to use our tool effectively.

We will begin with a look at fair machine learning, a field of vital importance that

contains both obvious and non-obvious use cases for sensitivity criteria. We then

turn our attention to privacy, a problem that mirrors the problem of demographic

parity in fair machine learning, and show how this connection between the two al-

lows us to apply our methods with only minor modifications. Finally, we jump far

afield to a problem in transfer learning, where a completely different setting (domain

generalization) turns out to be linked back to previous problems via the sufficiency

criterion.
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5.1 An Overview of Fair Machine Learning

As the scope and diversity of machine learning applications continue to grow, the use

of learning algorithms in many industries have raised a number of ethical and legal

concerns. One especially important concern is that of fairness and bias in predictions

made by automatic systems [109, 9]. With these systems being trusted to aid or make

decisions regarding loan applications, criminal sentencing, and even health care, it is

vital to ensure that unfair biases cannot influence them.

In general, fairness issues arise when a system wishes to make a prediction or

decision based on some set of given attributes, but such decisions should not lead

to a systematic disadvantage in outcomes for groups or individuals based on some

sensitive attribute about which we desire to be "fair". For example, in the criminal

justice system, one might wish to make predictions about the chance of recidivism

of a convicted criminal given factors such as the nature of the crime and the number

of prior arrests, but such predictions should not be determined by race (the sensitive

attribute). This is a known issue with the COMPAS recidivism score, which, despite

not using race as an input to make decisions, still leads to systematic bias towards

members of certain races in the output score [3, 25].

In the case of fair machine learning, all three sensitivity criteria have very clear

interpretations in terms of implementing different types of fairness. Additionally, for

this chapter, when 𝐷 is discrete, we also refer to members sharing the same value of

𝐷 as being part of the same group. For example, this could represent people of the

same gender or the same ethnic background.

5.2 Demographic Parity and Equalized Opportuni-

ties

Demographic parity and equalized opportunities are two very standard definitions of

fairness, each of which have their own advantages and disadvantages.

Demographic parity requires the distribution of predictions/decisions to be inde-
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pendent of the sensitive attribute, that is, 𝑌 ⊥ 𝐷. This is exactly the independence

criterion, and from a fairness perspective, is a very intuitive criterion, as it forces the

same distribution of outcomes between different groups [8].

One classic example of this criterion being used is in affirmative action, which

requires that a company hire the same proportion of candidates from each group

(in this case, 𝐷 is discrete), that is, it requires that 𝑃 (𝑌 |𝐷 = 𝑎) = 𝑃 (𝑌 |𝐷 =

𝑏) ∀𝑎, 𝑏 ∈ D, which can be satisfied by imposing independence/demographic parity.

In this particular case, the US Equal Employment Opportunity Commission [26] also

provides a measure for unfairness known as disparate impact, which is defined as

𝐷(𝑃 (𝑌 |𝐷 = 1);𝑃 (𝑌 |𝐷 = 0)) = 𝑃 (𝑌=1|𝐷=0)

𝑃 (𝑌=1|𝐷=1)
.

Equalized opportunities requires the distribution of predictions/decisions to be

independent of the sensitive attribute, conditioned on the true labels, that is, 𝑌 ⊥

𝐷|𝑌 . This corresponds to the separation criterion, and from a fairness perspective,

ensures parity of predictive power between groups [8].

In particular, we also have that the false negative rates between groups must be

equal, as well as the false positive rates, since equalized opportunities implies that

𝑃 (𝑌 |𝑌,𝐷 = 𝑎) = 𝑃 (𝑌 |𝑌,𝐷 = 𝑏) ∀𝑎, 𝑏 ∈ D. This leads us to a standard measure for

unfairness in the case of equalized opportunities when 𝐷 is binary, known as difference

in equalized opportunities (DEO):

DEO = 𝑃 (𝑌 = 1|𝐷 = 1, 𝑌 = 1)− 𝑃 (𝑌 = 1|𝐷 = 0, 𝑌 = 1) (5.1)

Both measures have their benefits and drawbacks, and unfortunately, are impos-

sible to satisfy at the same time. Demographic parity is very useful in ensuring the

fair allocation of resources [23], but in cases where the marginal distribution of labels

are different for different groups, this same condition results in incorrect allocation of

labels, which may result in the perception that certain groups are favoured unfairly

by the system.

Meanwhile, equalized opportunities ensures that no group is especially penalized

by a poorly-performing classifier, and is especially important in applications such as
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facial recognition, where it has been shown that certain face classifiers perform better

on some racial groups than others [124, 1, 120]. In more unfortunate cases, Twitter’s

smart cropping system has also been accused of selecting certain racial groups over

others when trying to determine what part of an image is "important" [126], and

juries that are presented with forensic evidence may be given incorrect statistics on

its accuracy due to group biases, resulting in an improper weighting of said evidence

[27]. Equalized opportunities also arises when designing systems for loan allocations

[125] and recidivism prediction [3], as we desire these systems to perform equally

well on all groups, as a difference in accuracy could result in one group being seen

as more likely to default on loans or commit crimes due to incorrect decisions being

made [118]. However, this criterion has been criticized for poorly handling the tails

of population distributions [28].

Thus, we desire a framework that is flexible enough to handle different fairness

criteria, and to do it with different modalities of data (e.g., discrete vs. continuous

data). The HGR-based method for enforcing these criteria are thus well-suited for

solving such problems.

This bias mitigation must also be balanced out with the system’s usefulness, and

often one must tune the tradeoff between the fairness (as measured in the particular

context) and performance, which can be a difficult process if the fairness-performance

curve is not smooth. Generating the frontier of possible values can be computationally

infeasible or impossible if the algorithm does not have a regularization parameter to

adjust (see [19, 86]), thus making it difficult to achieve this balance, which makes fast

generation of fair classifiers even more important. Once again, the speed at which we

can compute the HGR serves us well here.

5.2.1 Prior Work

Independence and separation in fairness have been studied in many works. Most

existing approaches fail to provide an efficient solution in both discrete/continuous

settings for both independence and separation.

Zemel et al. [132], Hardt et al. [53], and Calmon et al. [19] require 𝐷 to be discrete,
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and only work on either independence [132, 19] or separation [53]. Calmon et al. [19]

also requires pre-processing the entire dataset, which is computationally expensive.

Other methods can also be limited in their ability to handle all dependencies

between variables. Zafar et al. [131] uses a covariance-based constraint to enforce

fairness, so it likely would not do well on other metrics. Furthermore, it is strictly a

linear penalty rather than our non-linear formulation and penalizes the predictions

of the system rather than the features learned. This limits the relationships between

variables it can capture. Adversarial methods are proposed in [133, 2] to enforce

independence or separation, but requires the training of an adversary to predict the

sensitive attribute, which can introduce issues of convergence and bias, and does not

include a specific treatment for the discrete case.

Recently, Mary et al. [86] propose the use of the HGR maximal correlation as a

regularizer for either the independence or the separation constraint. In contrast to

our approach dealing with the maximal correlation directly, they use a chi-squared

divergence computed over a mesh grid to upper bound the HGR maximal correlation

during the optimization of the classifier (either a linear regressor or a deep neural

net (DNN)). This method applies to cases where 𝑋 is continuous and 𝑌 and 𝐷 are

either continuous or discrete variables, but scales poorly with the bandwidth and

dimensionality of 𝐷, and treats the discrete case in the same way as the continuous

case, resulting in slow performance on discrete datasets.

There are other works that use either an HGR-based or mutual information-based

formulation of fairness, but do not generalize to more than one setting. Grari et al.

[46], Moyer et al. [88], and Baharlouei et al. [6] use correlation-based regularizers, but

only for the independence case, and their methods are not designed for continuous

sensitive attributes. Finally, Cho et al. [24] approximates the mutual information with

a variational formulation, but does not include a formulation for continuous labels.

5.2.2 Experimental Setup: Discrete Case

In order to illustrate the applications of our regularizers for demographic parity and

equalized opportunities, we test them on standard fairness datasets, both those con-
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taining discrete data and those containing continuous data, and look at how the

frontier of possible values for performance vs. fairness compare with other methods.

For the discrete case, we test the proposed DTM-based approach on ProPublica’s

COMPAS recidivism dataset1 and the UCI Adult dataset2, which were chosen as they

contain categorical features and are used in prior works.

For the COMPAS dataset [100], the goal is to predict whether the individual

recidivated (re-offended) 𝑌 using the severity of charge, number of prior crimes, and

age category as the decision variables 𝑋. As discussed in [19], COMPAS scores are

biased against African-Americans, so race is set to be the sensitive attribute 𝐷 and

filtered to contain only Caucasian and African-American individuals. The filtered

dataset contains 6172 samples.

The Adult dataset [65] consists of census data drawn from the 1994 Census

database, with 48,842 samples. The goal is to predict the binary indicator 𝑌 of

whether the income of the individual is more than 50K or not based on the following

decision variables 𝑋: age (quantized to decades) and education (in years), and the

sensitive attribute 𝐷 is the sex of the individual.

For both datasets, we randomly split all data into 80%/20% training/test samples.

We first construct an estimate of the relevant DTMs with the empirical distribution

of the training set, then solve the proposed optimizations in Sections 4.2.1 and 4.2.2

to obtain fair feature mappings f̂(𝑥), ĝ(𝑦). The predictions 𝑌 of the test samples

𝑋 ′ are given by plugging the learned feature mappings f̂(𝑥′), ĝ(𝑦) into the MAP rule

(2.6), where 𝑃𝑌 can be estimated from the empirical distribution 𝑃𝑌 on the training

set. We sweep over values of 𝜆 from 0 to 2.5 in the demographic parity case, and

from 0 to 1 in the equalized opportunities case.

For the demographic parity case, we compare the trade-off between the perfor-

mance and the discrimination achieved by our method with that of the optimized

pre-processing methods proposed in [19]. Note that we adopt the same settings as

the experiments in [19] to do a fair comparison, and the reported results for their

1https://github.com/propublica/compas-analysis
2https://archive.ics.uci.edu/ml/datasets/adult
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method are from their work. We plot the area under receiver operating characteristic

curve (AUC) of 𝑃𝑌 |𝑋′(𝑦|𝑥′) compared to the true test labels 𝑌 ′ against the following

standard discrimination measure derived from legal proceedings [26]:

𝐽 = max
𝑑,𝑑′∈D

⃒⃒
𝑃𝑌 |𝐷(1|𝑑)/𝑃𝑌 |𝐷(1|𝑑′)− 1

⃒⃒
. (5.2)

For the equalized opportunities criterion, use the DEO as our metric. We compare

the AUC and discrimination achieved by our algorithm with that of a method known

as adversarial debiasing [133] (implementation given in [9]), which represents the

current state of the art.

5.2.3 Experimental Results: Discrete Case

Figures 5-1 and 5-2 show the results of our experiments. For both datasets, in the

case of independence, it can be seen that simply dropping the sensitive attribute

𝐷 and applying logistic regression (LR) and random forest (RF) algorithms cannot

ensure independence between 𝑌 and𝐷. However, the proposed DTM-based algorithm

provides a trade-off between performance and discrimination by varying the value of

the regularizer 𝜆 in the optimization (4.19), which outperforms the optimized pre-

processing methods in [19] on the Adult dataset, and achieves similar performance

on the COMPAS dataset. More importantly, the DTM-based algorithm provides a

smooth trade-off curve between the performance and discrimination, so that a desired

level of fairness can be achieved by setting 𝜆 in practice. In addition, since our

method only requires us to perform eigendecomposition, it runs significantly faster

than the optimized pre-processing method, which needs to solve a much more complex

optimization problem. Empirically, we find at least a tenfold speed up in runtime

compared to the existing methods.

For separation, compared to naïve logistic regression, the proposed DTM-based

algorithm dramatically decreases the DEO while maintaining similar AUC perfor-

mance on both datasets, and outperforms the adversarial debiasing method in [133]

on the Adult dataset. We note that the AUC and DEO curve achieved by the pro-
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posed algorithm in the separation setting has a smaller range compared to that in the

independence setting. This is because the value of the regularizer 𝜆 is restricted in the

separation optimization problem to 𝜆 ∈ [0, 1), but only to 𝜆 > 0 for the independence

optimization problem.

5.2.4 Experimental Setup: Continuous Case

In the continuous case, we experiment on the Communities and Crimes (C&C)

dataset3 [33, 102, 92]. The goal is to predict the crime rate 𝑌 of a community given

a set of 121 statistics 𝑋 (distributions of income, age, urban/rural, etc.). The 122-th

statistic (percentage of black people in the community) is used as the sensitive vari-

able 𝐷. All variables in this dataset are real-valued. The dataset was split into 1794

training and 200 test samples. Following Mary et al. [86], we use a neural net with a

50-node hidden layer (which we denote as Θ(𝑥)) and train a predictor 𝑦 = 𝑇 (Θ(𝑥))

with the mean squared error (MSE) loss and the soft-HGR penalty, varying 𝜆. For

soft-HGR, we use two 2-layer NNs with scalar outputs as the two maximal correla-

tion functions g and h, and trained them according to (4.19) (independence) or (4.23)

(separation). We then computed the test MSE and test discrimination metric in each

case.

For demographic parity, our discrimination metric was 𝐼(𝑌 ;𝐷), approximated

using a standard mutual information estimator based on 𝑘 nearest neighbors (𝑘NN )

[39]. For equalized opportunities, we computed 𝐼(𝑌 ;𝐷|𝑌 ) using the same estimator.

We report the results of our experiment as well as that of the chi-squared method

of Mary et al. [86] with the same architecture,4 which we choose as the comparison

method as it is one of the few methods designed to handle continuous 𝐷.
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5.2.5 Experimental Results: Continuous Case

The results of the experiments are presented in Figure 5-3. As expected, we see a

tradeoff between the MSE and discrimination, creating a frontier of possible values.

We also see that the soft-HGR penalty provides modest gains compared to the chi-

squared method for both independence and separation.

Moreover, our method runs significantly faster than the chi-squared method (on

the order of seconds per iteration for our method versus just under a minute per

iteration for the comparison method), as the chi-squared method requires computa-

tion over a mesh grid of a Gaussian kernel density estimation (KDE), which scales

with the product of the number of "bins" (mesh points) and the number of training

samples, while our method only scales with the number of samples (𝑂(𝑛)). For large

bandwidths, the number of bins can become quite large. KDE methods also scale

exponentially with dimensionality (see [121]), and thus if 𝐷 is high-dimensional, the

chi-squared method would run much slower than our method, which can take in an

arbitrarily-sized input and scale linearly with the dimensionality of the input multi-

plied by the number of samples. Empirically, we find that our method runs around

five times faster.

We also run experiments to illustrate how our method’s simplicity allows it to

adapt to the few-shot regime faster than that of the chi-squared method [60]. We

take 10 few-shot samples from the training set, then train a network to predict 𝑌

from 𝑋 without any fairness regularizer using the full training set. Then, we run 5

more iterations of gradient descent on the trained model using the fairness-regularized

objective and the 10 few-shot samples, and compare the results between the soft-HGR

and chi-squared regularizer. The results are shown in Figure 5-4.

Once again, we see the tradeoff curve, and see our method outperform the chi-

squared method, and that it appears to be competitive with the standard case in just

a few iterations, while the chi-squared method is still far from achieving the original

3http://archive.ics.uci.edu/ml/datasets/communities+and+crime
4Code for these experiments can be found at https://github.com/jklee-mit/fair_

independence_separation.
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MSE. We also significantly outperform the baseline (before fairness regularization)

model in reducing discrimination, at the cost of only a small increase in error. Thus,

in situations where, due to ethical/legal issues, only a few samples labeled with the

sensitive attribute can be collected, fairness can still be enforced.

5.2.6 Discussion and Future Directions

The HGR maximal correlation provides us with a powerfully adaptive tool for han-

dling data of different modalities under the two most common fairness criteria, per-

forming competitively with state-of-the-art.

Moving forwards, it would be useful to expand the universality of this approach by

trying to solve related fairness problems such as fair clustering [23], which also requires

demographic parity, but has a primary clustering objective instead of classification or

regression.

It is also important to remember that these measures of discrimination and per-

formance have real-world consequences, and to ensure that these tools are used with

those in mind. Determining the ideal tradeoff between fairness and accuracy requires

a nuanced approach, which takes into account the full impact of both biases as well

as poor performance on a system, and while one could argue that this is a problem

for sociologists and legislators, an approach grounded in the statistics of the harm

caused by biased systems should be considered when developing new policies and

laws. Thus, it is of utmost importance that, for each application, one carefully con-

siders the context in which these fairness algorithms are being employed, to ensure

that they are used to benefit marginalized groups rather than cover up harm, as the

next section illustrates.

5.3 Fair Selective Classification

While fair classification via demographic parity or equalized opportunities are com-

mon settings for fairness, fairness problems can arise in a number of different ap-

plications, and in some cases, can result in insidious situations where the fairness
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properties of a system can change depending on how its predictions are used.

One example sub-setting that exhibits such a phenomena is that of selective clas-

sification. Generally speaking, selective classification is a variant of the classification

problem where a model is allowed to abstain from making a decision. This has ap-

plications in settings where making a mistake can be very costly, but abstentions are

not (e.g., if the abstention results in deferring classification to a human actor).

In selective classification, a predictive system is given the choice of either making

a prediction 𝑌 or abstaining from the decision. The core assumption underlying selec-

tive classification is that there are samples for which a system is more confident about

its prediction, and by only making predictions when it is confident, the performance

will be improved. To enable this, we must have a confidence score 𝜅(𝑥) representing

the model’s certainty about its prediction on a given sample 𝑥 [41]. Then, we thresh-

old on this value to decide whether to make a decision or to abstain. We define the

coverage as the fraction of samples for which we do not abstain on (i.e., the fraction

of samples that we make predictions on).

As is to be expected, when the confidence is a good measure of the probability of

making a correct prediction, then as we increase the minimum confidence threshold

for making the prediction (thus decreasing the coverage), we should see the risk on the

classified samples decrease or the accuracy over the classified samples increase. This

leads us to the accuracy-coverage tradeoff, which is central to selective classification

(though we note here the warning from the previous section about accuracy not telling

the whole story).

Selective classifiers can work a posteriori by taking in an existing classifier and

deriving an uncertainty measure from it for which to threshold on [41], or a selec-

tive classifier can be trained with an objective that is designed to enable selective

classification [29, 127].

One common method of extracting a confidence score from an existing network is

to take the softmax response 𝑠(𝑥) as a measure of confidence. In the case of binary

classifcation, to better visualize the distribution of the scores, we define the confidence
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using a monotonic mapping of 𝑠(𝑥):

𝜅 =
1

2
log

(︂
𝑠(𝑥)

1− 𝑠(𝑥)

)︂
(5.3)

which maps [0.5, 1] to [0,∞] and provides much higher resolution on the values close

to 1.

Finally, to measure the effectiveness of selective classification, we can plot the

accuracy-coverage curve, and then compute the area under this curve to encapsulate

the performance across different coverages [37].

However, Jones et al. [62] have shown that in some cases, when coverage is de-

creased, the difference in recall between groups can sometimes increase, magnifying

disparities between groups and increasing unfairness. In particular, they have shown

that in the case of the CelebA and CivilComments datasets, decreasing the coverage

can also decrease the recall on the worst-case group. This, of course, has some very

serious consequences for systems that require fairness, especially if it appears at first

that predictions are fair enough under full coverage (i.e., when all samples are being

classified).

This phenomenon can be mitigated by applying the sufficiency criterion to the

learned features. The application of this criterion to fair selective classification comes

to us by way of calibration by group. Calibration by group requires that there exists

a score function 𝑅 = 𝑠(𝑥) such that, for all 𝑟 ∈ (0, 1) [25],

𝑃 (𝑌 = 1|𝑅 = 𝑟,𝐷 = 𝑎) = 𝑟 ∀𝑎 ∈ D. (5.4)

The following result from [8] links calibration and sufficiency:

Theorem 3. If a classifier has sufficient features Θ, then there exists a mapping

ℎ(Θ) : R𝑑Θ → [0, 1] such that ℎ(Θ) is calibrated by group.

If we can find sufficient features Θ(𝑋), so that the score function is calibrated by

group based on these features, then we have the following result (the proof can be

found in the Appendices):
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Theorem 4. If a classifier has a score function 𝑅 = 𝑠(𝑥) that is calibrated by group,

and selective classification is performed using confidence 𝜅 as defined in (5.3), then for

all groups 𝑑 ∈ D we have that both 𝐴(𝜏) and PPV(𝜏) are monotonically increasing

with respect to 𝜏 . Furthermore, we also have that 𝐴(0) > 0.5 and PPV(0) > 0.5, where

𝐴(𝜏) is the selective accuracy at threshold 𝜏 and PPV(𝜏) is the selective precision

P(𝑌 = 1|𝑌 = 1) at threshold 𝜏 .

From this, we can guarantee that as we sweep through the threshold, we will never

penalize performance of any one group in service of increasing the overall precision.

Furthermore, in most real-world applications, the precision on the best-performing

groups tends to saturate very quickly to values close to 1 when coverage is reduced,

and thus, if we can guarantee that the precision increases on the worst performing

group as well, then in general, the difference in precision between groups decreases as

coverage decreases.

For a more detailed analysis of fair selective classification using sufficiency, please

see Appendix B.

5.3.1 Experimental Setup

To evaluate our method, we look to see how the tradeoff between coverage and pre-

cision of a selective classifier trained using our regularizer compares to that of other

methods. We test our method on three datasets commonly used in fairness: Adult,

CelebA5, and CivilComments6. In all cases, we use the standard train/val/test splits

packaged with the datasets and implement our code in PyTorch. We set 𝜆 = 0.7 for

all datasets as well, which we chose by sweeping over values of 𝜆 across all datasets.

The code for this method can be found in the UQ360 toolbox [44].

For the Adult dataset [65], we use the full dataset. The data 𝑋 consists of demo-

graphic information about individuals, including age, education, marital status, and

country of origin. Following [9], we one-hot encode categorical variables and desig-

5http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
6https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/

data
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Table 5.1: Summary of datasets.

Dataset Modality Target Attribute

Adult Demographics Income Sex

CelebA Photo Hair Colour Gender

CivilComments Text Toxicity Christianity

nate the binary-quantized income to be the target label 𝑌 and sex to be the sensitive

attribute 𝐷. In order to induce a bias phenomenon in the dataset, we also drop all

but the first 50 samples for which 𝐷 = 0 and 𝑌 = 1. We then use a 2-layer neural

network with 80 nodes in the hidden layer for classification, as in [86], with the first

layer serving as the feature extractor and the second as the classifier, and train the

network for 20 epochs.

The CelebA dataset [80] consists of 202,599 images of 10,177 celebrities, along

with a list of attributes associated with them. As in [62], we use the images as our

data 𝑋 (resized to 224x224), the hair color (blond or not) as the target label 𝑌 ,

and the gender as the sensitive attribute 𝐷, then train a ResNet-50 model [54] (with

initialization using pre-trained ImageNet weights) for 10 epochs on the dataset, with

the penultimate layer as the feature extractor and the final layer as the classifier.

The CivilComments dataset [15] is a text-based dataset consisting of a collection

of online comments, numbering 1,999,514 in total, on various news articles, along

with metadata about the commenter and a label indicating whether the comment

displays toxicity or not. As in [62], we let 𝑋 be the text of the comment, 𝑌 be the

toxicity binary label, and 𝐷 to be mention of Christianity. We preprocess the data

by passing them through a BERT model [31] with Google’s pre-trained parameters

[114], and treat the output features as the pre-processed input into our system. We

then apply a 2-layer neural network to the pre-processed inputs with 80 nodes in

the hidden layer, once again treating the layers as feature extractor and classifier,

respectively. We train the model for 20 epochs.

We compare our results to a baseline where we only optimize the cross-entropy
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loss, as in standard classification. We also compare our method to the group distri-

butionally robust optimization (DRO) method of [106, 112], using the code provided

publicly on Github7, which has been shown to mitigate the disparity in recall rates

between groups in selective classification [62], as well as a mutual information upper-

bound regularizer outlined in Section B.3.

5.3.2 Experimental Results

Figure 5-6 shows the group-specific precisions for the Adult dataset. We observe

that, for the baseline method, the increase in overall performance comes at the cost

of worse performance on the worst-case group. This phenomenon is heavily mitigated

in the case of DRO, but there is still a gap in performance in the mid-coverage

regime. Our HGR method also shows a gap in performance, compared to the mutual

information-based method, which shows the precisions converging to equality very

quickly as coverage decreases. We observe a similar hierarchy of performances in the

other datasets (Figures 5-7 and 5-8).

In order to numerically evaluate the relative performances of the algorithms for all

the datasets, we compute the following quantities: area under the average accuracy-

coverage curve [37] and area under the absolute difference in precision-coverage curve

(or area between the precision-coverage curve for the two groups). Table 5.2 shows

the results for each method and dataset.

From this, it is clear that the performance of the HGR method sits in between that

of the DRO method and the mutual information-based method, reflecting the fact

that the HGR specifically optimizes for sufficiency (while the DRO method optimizes

for equalized opportunities), but the mutual information-based method uses a tighter

approximation of the quantities we desire.

7https://github.com/kohpangwei/group_DRO

71



Table 5.2: Area under curve results for all datasets.

Dataset Method Area under ac-
curacy curve

Area between
precision curves

Adult Baseline 0.931 0.220
DRO 0.911 0.116
MI 0.887 0.021
HGR 0.91 0.187

CelebA Baseline 0.852 0.094
DRO 0.965 0.018
MI 0.975 0.013
HGR 0.932 0.014

CivilComments Baseline 0.888 0.026
DRO 0.944 0.013
MI 0.943 0.010
HGR 0.937 0.014

5.3.3 Discussion and Future Directions

While the HGR Maximal Correlation can sometimes perform competitively with

state-of-the-art methods, we also see that it can sometimes be outperformed by other

methods. This application illustrates the weakness in our formulation for enforcing

sufficiency, and shows that a proper bound on the mutual information can be more

effective at times, though in some cases their performances are comparable.

However, beyond the performance, the very existence of this problem of fair se-

lective classification reveals that machine learning systems can have very dangerous

blind spots when deployed in the real world. A minor modification to an existing

system, such as thresholding decisions on a confidence value, can result in biases

and disparities being magnified, which serves as a warning that each new application

must be closely scrutinized, no matter how much it appears to be similar to existing

problems. Failure to do so could result in vital systems failing the most vulnerable

people in our society, which we are sworn to protect, and even worse, can lead to a

false sense of complacency if the wrong fairness measure is applied.

Continual vigilance by humans is, at the moment, the only way to avert these

issues. Perhaps in the future a more universal measure of fairness might be developed,
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which can close these gaps in biases in different settings, but for now, all system

designers have an ethical responsibility to think carefully through the ramifications

of their creations.

5.4 Privacy

As a second application for sensitivity-aware learning, one important consideration

when sending sensitive information is that of privacy. There are many legal and

ethical requirements for the transfer of personal data that requires certain aspects of

the person remain anonymous, and numerous examples exist of cases where data that

was meant to be anonymized was found to contain sensitive information about the

individuals from which the data was collected [93].

A number of different definitions for privacy have arisen in recent years [113, 108,

42, 34], but we will focus on one that is especially suited for our method: the privacy

funnel.

The original form of the privacy funnel problem is as follows [83]:

min
Θ(𝑋)

𝐼(𝐷;𝑈)

s.t. 𝐼(𝑋;𝑈) ≥ 𝑅,

(5.5)

where 𝑈 are the features learned by Θ.

This can be interpreted as finding features of the data 𝑋 that preserve at least

some minimum amount of information about the data while minimizing the infor-

mation that these features "leak" about some variable 𝐷. For example, 𝑋 could be

financial data about an individual, and 𝐷 could be identifying information such as

age, race, gender, etc.

A more directed variant of this problem comes to us through [18]. In this case,

we assume that the features we learn from 𝑋 are to be used to predict some label 𝑌 ,

while still trying to minimize the information that leaks about 𝐷. Then, the learning

problem is:
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min
Θ(𝑋)

𝐼(𝐷;𝑈)

s.t. 𝐼(𝑌 ;𝑈) ≥ 𝑅.

(5.6)

We draw connections between this setup and that of learning under the indepen-

dence constraint. Specifically, by adjusting the value of 𝜆 on the relaxed independence

learning problem

max
Θ: X→R𝑚

𝑇 : R𝑚→Y

HGR(𝑈 ;𝑌 )− 𝜆HGR(𝑈 ;𝐷), (5.7)

we can produce a frontier of possible values for 𝐼(𝐷;𝑈) vs. 𝐼(𝑌 ;𝑈), from which

we can find the optimal value of 𝐼(𝐷;𝑈) for a given constraint on 𝐼(𝑌 ;𝑈).

5.4.1 Experimental Setup

To examine the privacy-utility tradeoff of our independence-based HGR method, we

test on the Adult and COMPAS datasets.

For the Adult dataset [65], we once again use the full dataset, with one-hot encod-

ing of categorical variables. Again, we designate the binary-quantized income to be

the target label 𝑌 and sex to be the sensitive attribute 𝐷. For the COMPAS dataset

[100] we also use the full dataset as given in the AIF360 fairness toolkit [9]. We once

again set the target 𝑌 to be recidivism, while the sensitive attribute 𝐷 is race (we

filter for only Caucasian and African-American individuals). Our data 𝑋 consists of

the remaining variables.

In both cases, we use a two-layers neural network with 80 nodes in the hidden

layer for classification, as in [86], with the first layer serving as the feature extractor

and the second as the classifier, and trained the network for 20 epochs. We apply

the independence regularizer to the feature layer to enforce independence between the

features and the sensitive attributes, then compute the mutual information quantities

𝐼(𝑌 ;𝑈) and 𝐼(𝐷;𝑈).
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5.4.2 Experimental Results

The results of our experiments can be found in Figure 5-9. This time, we can see

a clear gain in privacy for our HGR-based method as compared to the chi-squared

regularizer.

We also see the frontier of possible values once again. The similarities between

this setup and the fairness setup can be seen quite clearly, with our method working

effectively to solve both problems. In this case, we also see a significant (approx-

imately five-fold) decrease in runtime for our method compared to the chi-squared

method.

5.4.3 Discussion and Future Directions

Once again, we see how the independence criterion, along with our HGR formulation

for enforcing it, can be applied to solve an important real-world problem. In this, we

can see that these criteria have multiple uses. Thus, adapting the HGR to be able to

enforce them not only allows us to solve one important problem, but a whole host of

them.

However, the privacy funnel is not the only formulation of privacy. Moving for-

wards, it would be remiss not to consider the concept of differential privacy, which

has become very popular of late [32, 113, 108, 42, 34]. Differential privacy has con-

nections with the privacy funnel [82, 107], but a direct equivalence between the two

has not yet been shown. Being able to draw a stronger connection between these

two quantities could be the key to allowing us to use the HGR to enforce differential

privacy as well.

5.5 Domain Generalization

The sufficiency criterion also has a useful application in the field of transfer learning,

particularly that of domain generalization.

Consider the case where we have 𝑛 domains, which we denote with 𝐷 = 1, ..., 𝑛.
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We also have training samples (𝑥𝑖, 𝑦𝑖, 𝑑𝑖) from these domains labeled with the domain

they were extracted from.

We wish to learn a feature mapping Θ(𝑋) that will do well on some new domain

𝐷 = 𝑛 + 1, and we assume that a mapping that performs well on all 𝑛 training

domains will do well on the (𝑛+ 1)th domain.

For this, we would like to learn a mapping that performs well across all domains,

and which captures the aspect of each class that is independent of the domain, that

is, we wish to learn features that are domain invariant.

This is the principle behind invariant risk minimization (IRM), which seeks to

learn a Θ(𝑋) such that 𝑃 (𝑌 |Θ(𝑋), 𝐷) = 𝑃 (𝑌 |Θ(𝑋)) [88, 5], corresponding to the

sufficiency condition 𝑌 ⊥ 𝐷|𝑈 , where 𝑈 are the features produced by Θ on 𝑋.

5.5.1 Experimental Setup

We test our sufficiency-based regularizer on the RotatedMNIST and ColoredMNIST

datasets, as found in the DomainBed benchmark suite8 [48].

The MNIST dataset9 [71] consists of 60,000 training and 10,000 testing images

of handwritten digits, from 0 to 9. The images are grayscale, and there are between

5,000 and 7,000 training images for each class, as well as between 890 and 1,140

testing images for each class [52]. The RotatedMNIST and ColoredMNIST datasets

are synthetic datasets built from MNIST.

The RotatedMNIST dataset [43] consists of six domains, each corresponding to a

different degree of roll rotation of the original MNIST images: 0°, 15°, 30°, 45°, 60°,

and 75°. Each domain contains the same subset of 1,000 images sampled across all 10

labels, rotated accordingly. The purpose of this dataset is to learn rotation-invariant

representations of the digits. During training, five of these domains are used for

training, with the sixth domain used for testing.

The ColoredMNIST dataset [5] is a binary classification dataset that is generated

as follows: assign an initial label 𝑦′ to each image based on the digit: 0 for digits

8https://github.com/facebookresearch/DomainBed
9http://yann.lecun.com/exdb/mnist/
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Table 5.3: Domain generalization accuracies on the RotatedMNIST dataset for each
test domain. Values are reported with 95% confidence intervals over 5 trials.

Method 0° 15° 30° 45° 60° 75°

ERM 93.8 ± 0.4 98.5 ± 0.3 98.6 ± 0.2 98.8 ± 0.3 98.2 ± 0.2 94.8 ± 0.5
IRM 94.0 ± 0.2 91.7 ± 0.9 93.9 ± 1.6 93.7 ± 0.5 92.8 ± 0.2 91.3 ± 2.3
MI 92.6 ± 0.5 98.0 ± 0.2 98.1 ± 0.3 97.7 ± 0.1 97.7 ± 0.0 92.8 ± 0.9
HGR 93.2 ± 0.2 98.2 ± 0.0 98.6 ± 0.3 98.3 ± 0.5 98.4 ± 0.1 93.9 ± 0.4

0-4, and 1 for digits 5-9. Then, the final label 𝑦 is produced by randomly flipping 𝑦′

with probability 0.25. The environment 𝑒 is obtained by flipping 𝑦 with probability

𝑝𝑑, which is defined by the domain 𝑑. The color of the image is then set to red

if 𝑒 = 1 and green if 𝑒 = 0. The domains used in testing have flip probabilities

𝑝0 = 0.1, 𝑝1 = 0.2, 𝑝2 = 0.9. Thus, in the domain 𝑑 = 2, the colors are mostly flipped

compared to the other two domains, and an invariant predictor should use the shape

of the digit rather than the colour for predicting 𝑦. During training, two of these

domains are used for training, with the third domain used for testing.

For each dataset, we use a 4-layer convolutional neural net as our feature extrac-

tor, and a fully connected 2-layer network as our final classifier, and train for 2000

random batch iterations. We compare our method with IRM, as well as the mutual

information upper-bound found in Section B.3, and a baseline in which we train using

empirical risk minimization (ERM) and ignore domain labels.

5.5.2 Experimental Results

Table 5.3 summarizes our results on the RotatedMNIST dataset. We can see that

all of the algorithms perform approximately on par with one another, with no one

method dominating over the majority of domains.

Table 5.4 summarizes our results on the standard ColoredMNIST dataset. We

can see that in the case where the training domains are 𝑝 = 0.1 and 𝑝 = 0.2, with test

domain 𝑝 = 0.9, IRM fails to generalize and learn the shape of the digits, relying on

the colors for classification. Our HGR method and the mutual information regularizer
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Table 5.4: Domain generalization accuracies on the three-domain ColoredMNIST
dataset for each test domain. Values are reported with 95% confidence intervals over
5 trials.

Method 𝑝 = 0.1 𝑝 = 0.2 𝑝 = 0.9

ERM 70.3 ± 0.3 73.0 ± 0.1 19.0 ± 5.4
IRM 69.6 ± 0.4 72.6 ± 0.5 10.3 ± 0.1
MI 68.7 ± 0.7 60.8 ± 7.7 49.2 ± 0.2
HGR 71.0 ± 0.6 71.7 ± 0.3 50.3 ± 0.5

Table 5.5: Domain generalization accuracies on the four-domain ColoredMNIST
dataset for each test domain. Values are reported with 95% confidence intervals
over 5 trials.

Method 𝑝 = 0.1 𝑝 = 0.2 𝑝 = 0.8 𝑝 = 0.9

ERM 69.8 ± 1.4 69.8 ± 0.1 69.7 ± 0.3 68.2 ± 0.1
IRM 67.8 ± 1.5 69.8 ± 1.3 70.0 ± 0.9 69.8 ± 0.7
MI 69.4 ± 0.8 70.7 ± 0.2 71.4 ± 0.1 66.9 ± 0.4
HGR 68.7 ± 0.6 70.2 ± 0.7 69.7 ± 0.4 67.5 ± 0.6

cannot quite force the system to learn to identify the shapes, but it does recognize

when the color is an environmental factor and thus avoids using it for classification,

resulting in around 50% accuracy. However, our method does perform better on the

other test domains, suggesting that it is less punitive on the overall performance

compared to the mutual information regularizer.

If we add an extra domain that is similar to 𝑝 = 0.9 (namely, 𝑝 = 0.8), we see

in Table 5.5 that all the methods now generalize much better and can perform with

better than 50% accuracy on all domains, suggesting that they are learning shape-

based features as intended. However, the ERM method is also able to do this, which

would imply that domain generalization techniques are not necessary in this case.

5.5.3 Discussion and Future Directions

In this section, we have shown that the HGR maximal correlation performs competi-

tively with other state-of-the-art methods for sufficiency regularization. This suggests
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that there are applications in which the approximation used in the regularizer is close

enough to be effective, likely due to the fact that 𝑌 and 𝐷 are much more cleanly

separated, with a clear definition of what an invariant feature would be in this case

compared to the fairness application.

Moving forwards, testing on more complex domain generalization datasets such

as VLCS [35], PACS [73], DomainNet [97], and WILDS [64] may help illuminate

more connections between the ability of different methods to capture different types

of invariances needed to generalize to different domains. In addition, there is also the

debate as to whether or not invariance is the correct paradigm for domain general-

ization [104], and so some investigation into what properties enable this approach to

work would also be warranted.

Finally, we note that this application also illustrates the potential power in these

regularizers, with their ability to traverse highly disparate fields and find connections

between them.

5.6 Concluding Remarks

In this chapter, different problems from different areas of machine learning have been

shown to break down to the same objectives, suggesting that while the growth of new

machine learning applications continues, some of this flood of new problems will have

strong enough ties to older problems that a framework such as the HGR can be used

to rapidly adapt to them with little difficulty.

In some cases, the HGR is well-suited to solving these problems. In others, it

is competitive, but does not quite perform as well as state-of-the-art. There is an

argument to be made that this slight gap in performance is acceptable given how

quickly the HGR can be adapted to a new problem. After all, a solution in the

present is much more valuable than a potentially better solution in the future.

Moving forward, one might speculate that the diversity of problems solved by

these criteria may indicate that developing some underlying framework to view all

machine learning problems and categorize them across disparate fields may yield a
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useful taxonomy that can help those in the future to more quickly find the space of

possible solutions in which to explore. While some domain expertise will always be

necessary, planting the seeds of looking into such problems with a holistic perspective

may allow for new avenues of cooperation and the ability to leverage new resources

that might not have seemed relevant to the untrained eye.
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Figure 5-1: Regularization results on COMPAS dataset, with AUC plotted against the
discrimination measure for independence (top) and separation (bottom), respectively.
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Figure 5-2: Regularization results on Adult dataset, with AUC plotted against the
discrimination measure for independence (top) and separation (bottom), respectively.
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Figure 5-3: independence (top) and separation (bottom) regularization on the C&C
dataset, with MSE plotted against 𝐼(𝑌 ;𝐷|𝑌 ).
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Figure 5-4: Few-shot independence (top) and separation (bottom) regularization on
the C&C dataset in the settings, with MSE plotted against 𝐼(𝑌 ;𝐷|𝑌 ).

84



Figure 5-5: While selective classification can improve overall
accuracy as coverage decreases, on certain protected groups
the performance can decrease instead.

(a) Baseline (b) DRO

(c) Mutual Information Upper Bound (d) HGR

Figure 5-6: Group-specific precision-coverage curves for Adult dataset for the four
methods.
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(a) Baseline (b) DRO

(c) Mutual Information Upper Bound (d) HGR

Figure 5-7: Group-specific precision-coverage curves for CelebA dataset for the four
methods.
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(a) Baseline (b) DRO

(c) Mutual Information Upper Bound (d) HGR

Figure 5-8: Group-specific precision-coverage curves for CivilComments dataset for
the four methods.

87



Adult

Compas

Figure 5-9: Privacy-utility tradeoff curves on the Adult and COMPAS datasets for
our HGR-based method compared to the Chi-squared regularizer method. Values are
reported with 95% confidence intervals over 5 trials.
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Chapter 6

Outlier Detection

Thus far, we have explored the use of the HGR in solving problems involving feature

selection for transfer learning and feature suppression via sensitivity criteria. How-

ever, the HGR can also be used to solve problems in which we wish to extract features

to perform secondary tasks, in addition to suppressing features that interfere with a

secondary objective or simply selecting a subset of features for another task.

One such example where we desire to extract features with a secondary task

in mind is found in the problem of outlier detection. In some ways, we can view

this problem as the opposite of that of domain generalization; rather than trying

to perform well on new kinds of data by assuming them to be somehow similar to

existing data, we instead label these novel samples as "outliers."

One can imagine that, depending on the application, one approach may be pre-

ferred over another. While a classifier designed to classify types of cars should be able

to operate in different weather "domains", any sort of medical device should imme-

diately raise a red flag if it detects something outside its normal mode of operation.

However, even if we wish to detect outliers, there remains the open problem in

how we define an outlier. We shall see in this section that the HGR can provide some

insights into this question, by taking a self-supervised perspective on the problem.
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6.1 Problem Definition

Very broadly, we can think of the problems of anomaly, outlier, and out-of-distribution

(OOD) detection as follows: given an in-distribution 𝑃 (𝑥) (or samples from which to

learn the in-distribution) and a candidate data point, determine if the data point was

generated by 𝑃 (𝑥) or if it is an "outlier."

Immediately, we see that the definition of an outlier is heavily dependent on the

choice of 𝑃 (𝑥). This, by necessity, must depend on the application in question, as we

can imagine a number of different scenarios involving the same data in which different

groups could be considered the outliers.

As a simple example, consider the case where our input data (both inlier and

outlier) consists of both the SVHN and MNIST datasets in their entirety. The Street

View House Numbers (SVHN) dataset [89] consists of labeled images of the digits 0

to 9 in the real world, obtained from house number images in Google Street View.

Meanwhile, the MNIST dataset, as stated previously, is a dataset of handwritten

digits from 0 to 9 as well.

Given these data, with no other additional information, it is impossible to deter-

mine what is and isn’t an outlier. One could imagine that the digits 1 to 9 are inliers,

and the digit 0 is an outlier. Or we could assume that the handwritten digits are the

inlier set and photos are the outlier set. Or maybe all of the data are inliers and the

outliers are any images that are not of digits. All of these are valid interpretations of

the problem.

Traditionally, outliers are categorized into three main "flavours":

• Samples drawn from a different domain, usually known as out-of-distribution

samples. For example, for a classification problem involving the classification

of photos, this could include paintings or sketches of the classes. [55, 79]

• Samples drawn from the same domain as the in-distribution, but from a different

class. For example, photographs of fish when the task is to classify mammals.

[68, 55, 79]
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• Samples that represent anomalous behaviour of what the in-distribution models.

For example, an image of a defective product on a manufacturing line, where

the in-distribution is the set of images of non-defective products. [68, 13]

These three types of outliers are illustrated in Figure 6-1. Once again, we could

imagine applications in which some or all of these would not be considered outliers.

In the first case, if our goal is simply to identify "planes", then perhaps a drawing

of a plane would be a reasonable input. For the second, a vehicle classifier would not

consider a car to be an outlier, even if it had only seen planes so far. And as for the

third image, if the expectation is that some images are from a manufacturing plant,

then a part of a plane could also be something to expect.

In any practical application, which set of outliers we wish to detect will be defined

according to the type of consequences one is trying to avoid. For example, if we

are trying to perform automatic screening for defective parts in an assembly line or

disease in humans, then the most dangerous outliers would represent highly irregular

versions of the samples in the inlier dataset that could confuse a classifier. Meanwhile,

a change in domain might be useful for a system that is designed to only operate in

one environment, in order to detect a change in operating conditions (e.g., a vehicle

classifier that accidentally shifted and is now recording pedestrians instead).

Figure 6-1: Different types of outliers may require different methods of detection.

Thus, in order to be adaptable to different situations, we must have some way of
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specifying what defines an outlier, or alternatively, what defines 𝑃 (𝑥). The latter can

be done through samples that are inliers, but if the samples do not cover the entire

space, then parts of the inlier space may be classified as anomalies. An alternative

approach is to provide samples that are representative of the outliers we would expect

to encounter, and ensure that these samples are classified as outliers [55]. This method

shares a similar risk of not properly covering the space of outliers, especially since

we often have few examples of outliers, and no examples of certain types of outliers,

but it can help guide anomaly detectors in learning the common types of outliers to

expect and perform better on identifying them.

In the first case of outliers detailed above, we may also have out-of-distribution

samples drawn from some other domain besides the in-distribution domain, and the

objective will be to learn a detector that generalizes to other domains in testing

(e.g., if the in-distribution is the set of photographs, then one might be given a large

collection of sketches as out-of-distribution samples, with the hopes of generalizing to

detecting paintings as out-of-distribution as well).

In particular, we also assume that outlier detection is an auxiliary objective, and

that we have a primary objective whereby we seek to predict some target 𝑌 from 𝑋,

while identifying outlier samples that are not drawn from 𝑃 (𝑋).

6.1.1 Prior Work

Anomaly detection has a long history, with deep learning methods only recently being

used to solve this problem in fields such as computer vision. Most of these methods

have two components, which may or may not be implicitly integrated into one. The

first is an "anomaly score," which can be computed from a sample, usually using

some features or predictions from a neural network. The second is the network itself,

which may need to be specially chosen to produce the scores, or simply be a modified

version of an existing architecture with an additional regularizer that highlights the

anomalies.

Kwon et al. [68] and Bergmann et al. [13] use auto-encoders to learn latent rep-

resentations of data, then derive an anomaly score related to the reconstruction er-
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ror, with the assumption that outliers, which are more poorly modeled by the auto-

encoder, will thus be more difficult to reconstruct.

Hendrycks et al. [55] and Liu et al. [79] both assume a primary classification task

for which outlier detection is desired as a secondary objective. Both methods modify

the training of a neural net for the classification task with a regularizer that pushes

inlier samples to have more extreme values in the prediction layer, and for outlier

samples to be spread out thinly across the final activation layer. Winkens et al. [123]

does away with the need for OOD samples at training time, by using a contrastive

loss to force the network to learn a better model for the in-distribution.

6.2 Computing Features for Outlier Isolation

In order to compute features which enable outlier detection, we must first consider

more deeply what constitutes an outlier, as well as how inlier and outlier features

should be distributed. We begin by looking at a specific paradigm for thinking about

not only outlier detection but classification in general, and then use this paradigm in

order to develop a method for solving our specific problem of outlier detection using

the HGR.

6.2.1 A Clustered View of the Universe

Ultimately, what defines an outlier comes down to how we define categories of "things".

Inliers are "things we are interested in for this application" and outliers are "things

we are not interested in for this application." Thus, a paradigm that allows us to

consider all possible categories could shed light on how we can solve this problem.

One such paradigm is as follows:

All things exist in clusters in some data space, and categories are defined

as a cluster or group of clusters.

This is a view that comes out of the idea that classification is simply the process of

identifying clusters of interest [4]. Under this paradigm, the purpose of classification in
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machine learning is to learn a representation that divides the clusters in one category

from the clusters in another category in such a way that a decision boundary can

easily be drawn between them.

Neural networks already make a similar assumption, assuming that the classes are

separable and then attempting to learn representations that separate them so that

a decision boundary can be drawn between them [14], and others are more explicit

about the assumption that all data is clustered and learning is about separating out

clusters [45]. If all categories that humans are interested in are clustered, then this

problem reduces to attempting to find a lower-dimensional space where these clusters

are still separated, so that we might draw a decision boundary between them.

6.2.2 Learning Clustered Features

We implement our outlier detector as an external module attached to an existing

classification module. Thus, we seek to learn features Θ(𝑋) from the data that are

both predictive of 𝑌 and can be used to detect outliers.

If all our categories are clusters, then inliers are simply some group of clusters, and

outliers are anything outside of these cluster centers. Indeed, many existing methods

for outlier detection already assume this and leverage this assumption to find samples

outside of the inlier clusters [21].

Our goal, then, is to learn features whereby inlier features are clustered tightly

together, and known outlier features are far away from any cluster centers.

Figure 6-2: The more tightly clustered inlier samples (right) expose the outlier sam-
ples (labeled with red X) more readily than the case where inlier samples are not as
tightly clustered (left).
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We implement this by clustering the features using 𝑘-means clustering [14], assign-

ing soft cluster labels 𝐷 to all the samples, then applying the following optimization:

min
Θ: X→R𝑚

𝑇 : R𝑚→Y

𝐿(𝑇 (Θ(𝑋)), 𝑌 )− (6.1)

𝜆
(︀
HGRsoft(Θ(𝑋𝐼𝐷), 𝐷𝐼𝐷)− HGRsoft(Θ(𝑋𝑂𝑂𝐷), 𝐷𝑂𝑂𝐷)

)︀
.

Where 𝐼𝐷 and 𝑂𝑂𝐷 denote in-distribution (inlier) and out-of-distribution (out-

lier) samples, respectively. The training procedure is described in Algorithm 4.

This optimization has the effect of forcing a stronger correlation between the

features and the clusters assigned to them, thus encouraging all samples in the same

cluster to be located closer to the cluster center in features space. Meanwhile, the

known outliers are pushed away from their nearest cluster center in each iteration.

Thus, outlier samples are located far away from all clusters on inlier samples in feature

space, making them easier to detect.

6.3 Experimental Setup

We test our method on a standard outlier detection image classification setup. Specif-

ically, we train a network to classify one dataset, with a second training dataset used

as the outlier dataset, and a third dataset used as a testing outlier dataset. We then

extract an anomaly score, which we use to compute the AUC of outlier detection.

In this case, our anomaly score is the maximum softmax probability. This follows

from the idea that our classifier will be more confident on samples whose representa-

tion in feature space are closer to that of other inlier samples [55].

In our experiment, we train our model on the training samples of CIFAR-10, with

the validation samples of the LSUN dataset as the outlier training set, and set the

test sets from SVHN and CIFAR-100 to be the test outlier sets. We compare to the

outlier exposure method of Hendrycks et al. [55].1

1Code for these experiments can be found at https://github.com/jklee-mit/outier_hgr.
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Algorithm 4 Learning features that isolate outliers
Data: Inlier samples {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} and outlier samples

{(𝑥𝑜𝑜𝑑,1, 𝑦𝑜𝑜𝑑,1), . . . , (𝑥𝑜𝑜𝑑,𝑚, 𝑦𝑜𝑜𝑑,𝑚)}
Initialize networks 𝑇 , Θ and 𝑓 , for the main task and HGR feature extraction;
while not converge do

Compute penultimate layer of Θ and denote as 𝑧;
Collect 𝑧𝑖 for all training samples 𝑥𝑖;
Cluster 𝑧𝑖 using 𝑘-means and get cluster labels 𝑤;
Compute 𝑔 = 𝐸(𝑓(𝑧)|𝑤) and orthogonalize;
for batch in training set do

Compute 𝑓 loss and backpropagate through 𝑓 :

hgr_loss(𝑧, 𝑤) = −(𝐸(𝑓(𝑧)𝑔(𝑤))− 0.5𝑡𝑟(cov(𝑓) cov(𝑔)))

Compute Θ loss and backpropagate through Θ and 𝑇 :

loss = 𝐿(𝑇 (Θ(𝑋)), 𝑌 ) + hgr_loss(𝑧, 𝑤)− hgr_loss(𝑧𝑜𝑜𝑑, 𝑤𝑜𝑜𝑑)

end
end

The CIFAR-10 and CIFAR-100 datasets2 [66] are collections of color images drawn

from 10 and 100 different categories of real-world subjects, respectively. These sub-

jects consist of animate and inanimate objects, e.g., "ball," "fish," "bottle," "truck."

Each dataset contains 50,000 training images and 10,000 test images, divided evenly

among the classes.

The LSUN dataset3 [130] is a scene recognition dataset that consists of 10 different

environment labels (e.g., "bedroom", "bridge", "dining room"). There are ten million

images in this dataset, and 3,000 in the validation set.

As stated previously, the SVHN dataset4 [89] consists of labeled images of the

digits 0 to 9 in the real world, obtained from house number images in Google Street

View. The dataset contains 73,257 training samples and 26,032 testing samples.

Our network consists of a ResNet-18 model [54] (with initialization using pre-

trained ImageNet weights) as the feature extractor, and we use 2-layer fully-connected

2https://www.cs.toronto.edu/∼kriz/cifar.html
3https://www.yf.io/p/lsun
4http://ufldl.stanford.edu/housenumbers/
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neural nets as our maximal correlation functions as well as our final classifier. We

train the model for 100 epochs. For the clustering step, we use 𝑘-means clustering to

assign cluster labels. We sweep through number of clusters from 𝑘 = 10 to 𝑘 = 500,

eventually selecting 𝑘 = 50 based on performance on the outlier validation sets (we

sample from the training sets of the outlier datasets to form the validation sets).

Inlier Dataset - CIFAR-10 Outlier Training Dataset - LSUN

Outlier Test Dataset - SVHN Outlier Test Dataset -
CIFAR-100

Figure 6-3: Sample images for the outlier detection experiment

6.4 Experimental Results

Table 6.1 summarizes our outlier detection results. We can see that using the HGR-

based method outperforms the outlier exposure method on the SVHN dataset, and
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Table 6.1: Experimental results for outlier detection with AUC for each method in
detecting the outlier samples. Values are reported with 95% confidence intervals over
5 trials.

Method SVHN Detection CIFAR-100 Detection

Baseline 51.6 ± 0.5 70.6 ± 1.2
Outlier Exposure 53.6 ± 0.5 73.8 ± 0.5
HGR 77.4 ± 0.2 72.9 ± 0.4

performs on par on the CIFAR-100 dataset. The CIFAR-100 detection problem is

particularly difficult, as it draws its classes from the same superset of classes as

CIFAR-10, while the SVHN samples represent a completely different type of image

(digits vs. objects). Thus, our method appears to perform on par for difficult prob-

lems, but is also more adaptable to problems where the outliers are somewhat further

away in some semantic sense from the inliers.

6.5 Concluding Remarks

In this chapter, we have introduced a new perspective on using the HGR to solve an

old problem. Outlier detection illustrates a case where we have a secondary objective

in our learning, but where the secondary objective is not necessarily defined by a

tertiary variable provided to the system. In this case, by defining an auxiliary variable

and applying the HGR principles, we can adapt to this setting as well.

Moving forwards, one interesting direction for exploration is to dig deeper into

the very definition of an outlier. We have stated that what constitutes an anomaly

is something that is defined by the system according to both the model and outlier

detector used, as well as any examples of outlier samples. One could imagine that

by modulating our definition of the auxiliary variable, different clusterings could be

forced that include or exclude different inputs as being part of the outlier set. This

flexibility could allow for a far more universal perspective on outlier detection.

There is also room here to explore the space of self-supervised tasks for devising

an appropriate auxiliary variable. While clustering is one form of self-supervision
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[111], other self-supervised tasks exist, each of which can learn a different set of labels

[20, 99]. It follows then that different self-supervised tasks could define different types

of clusterings for the data, which in turn would define new types of outliers. Whether

these new definitions of outliers are useful or not remains to be seen, but with some

careful selection of tasks, one could tune an outlier detector to obtain the separation

desired between what is and is not considered a part of normal operations.

And if this theory of universal clustering holds true, then outlier detection is but

one expression of an approach that could be used to model and solve all possible

classification problems, if only the right way of reducing the size and complexity of

the semantic space of the data can be found. This view of finding representations

that highlight the boundary between categories could lead to novel algorithms for

learning.
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Chapter 7

Closing Thoughts

With the growth of automation and the proliferation of data science into every indus-

try, new machine learning settings and concerns are constantly arising at a rapid pace.

As such, the need to be adaptable and innovative in order to tackle these challenges

is of utmost importance.

Time is also often of the essence in these settings. Not just runtime, which is always

an important consideration, but the pace of development as well. New privacy laws

can be devastating to the operation of existing systems, requiring rapid responses in

order to ensure compliance. Rulings with respect to fairness also exhibit this same

property. But even more concerning is that these systems will continue to be used as

long as no laws prevent them, and thus, if private or fair solution cannot be deployed,

then the system will simply continue to be allowed to harm the most vulnerable

groups in our society.

This growth in machine learning also provides us with a wealth of opportunities,

in addition to dangers, and the ability to rapidly adapt to a new dataset by using

existing models, or to adjust learning in order to tackle secondary tasks such as outlier

detection, can help maintain the momentum of development. Now, more than ever,

the need for some useful grand perspective on learning is needed in order to provide

a framework for this kind of thinking and enable this rapid growth.

The HGR maximal correlation is an important step in this process. By providing

a universal perspective to view feature extraction and nonlinear correlation, it sets up
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a framework that allows us to solve a variety of problems with the right formulations.

With the HGR, we can construct competitive algorithms to solve problems in fairness,

privacy, transfer learning, and outlier detection. While this measure is not the best

solution for every learning problem, it is nevertheless very adaptable and competitive

with the state-of-the-art.

It is also important to reflect on the context of the HGR as well. This measure

is over half a century old, and yet it continues to find use today, becoming more

important as we use it in the context of modern machine learning. Many tools used

in this field have roots reaching far back, and it is possible that by looking into the

past, we may also find more useful ideas for the future.

Looking forward, developing this framework to additional applications is a clear

direction. There are myriad fairness problems available, and while some problems

seem straightforward to adapt to (such as fair clustering, which uses the demographic

parity condition [23]), others, such as fair causal learning [8], may require some addi-

tional innovations to formulate the causal model in such a way that the HGR can be

used to learn it fairly.

There is also a question to be asked here as to whether it is worth attempting

to adapt the HGR to situations where it is not as well-suited (e.g., in the case of

enforcing sufficiency), or whether the HGR simply represents one aspect of a larger

paradigm that might be more generally adaptable.

With the outlier detection work, we have introduced the idea of using the HGR for

an unsupervised task, though one in conjunction with a supervised task. Combining

the problem of outlier detection with invariance learning could also yield methods that

can be adapted to multiple domains [49]. Fully unsupervised learning via the HGR

would be another direction to take to extend universality, as would self-supervised

learning.

The ultimate goal would be to create a single, highly-adaptable framework that

can be used to solve the increasing number of machine learning problems, by encoding

side-information that informs the task at hand. Whether this is even possible on a

grand scale or not remains to be seen, but as we continue to chip away at this problem,
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we will no doubt discover a treasure trove of tools and connections that can aid us in

corralling the explosion in new machine learning tasks.
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Appendix A

Notation and Glossary

R The set of real numbers

𝑥, 𝑦, 𝑑 Scalars or vectors

𝑋, 𝑌,𝐷 Random variables

𝑌 , 𝑦 Prediction of 𝑌 or 𝑦, respectively

X,Y,D Alphabets

|X| Cardinality of X

|𝑥− 𝑦| Absolute value of 𝑥− 𝑦

B Matrix

I Identity matrix

𝑓 : X→ Y Function mapping X to Y

PX Space of probability distributions

over X

||A||𝐹 Frobenius norm of A

𝐷𝜒2(𝑃 ||𝑄) 𝜒2-divergence between 𝑃 and 𝑄

Φ,Ψ,Θ Learned features (vectors or func-

tions that output a vector)

Φ,Ψ,Θ Learned features (matrices or

functions that output a matrix)
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× Cartesian product

⊥ Independence

𝑃 Probability distribution

𝑃 (𝐴) Probability of event A

𝜇 Mean

sup,max,min Supremum, maximum, and mini-

mum

log() Logarithm with base 𝑒

exp() Exponential with base 𝑒

cov() Covariance matrix

E [] Expected value

𝐼(𝑋;𝑌 ) Mutual information between 𝑋

and 𝑌

tr() Matrix trace

relint() Relative interior

HGR Hirschfeld-Gebelein-Rényi maxi-

mal correlation

DEO Difference in Equalized Opportu-

nities

PPV Positive predictive value (preci-

sion)
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Appendix B

Selective Classification

B.1 Margin Distributions

One explanation for the phenomenon of bias in selective classification comes to us

by way of margin distributions. The margin 𝑀 of a classifier is defined as 𝜅(𝑥)

when 𝑦(𝑥) = 𝑦 and −𝜅(𝑥) otherwise. If we let 𝜏 be our threshold, then a selective

classifier makes the correct prediction when 𝑀(𝑥) ≥ 𝜏 and incorrect predictions when

𝑀(𝑥) ≤ −𝜏 . We also denote its probability density function (PDF) and cumulative

density function (CDF) as 𝑓𝑀 and 𝐹𝑀 , respectively. Then, the selective accuracy is

𝐴𝐹 (𝜏) =
1− 𝐹𝑀(𝜏)

𝐹𝑀(−𝜏) + 1− 𝐹𝑀(𝜏)
(B.1)

for a given threshold. We can analogously compute the selective precision by condi-

tioning on 𝑌 = 1,

𝑃𝑃𝑉𝐹 (𝜏) =
1− 𝐹𝑀 |𝑌=1(𝜏)

𝐹𝑀 |𝑌=1(−𝜏) + 1− 𝐹𝑀 |𝑌=1(𝜏)
. (B.2)

We can also analogously define the distributions of the margin for each group using

𝑓𝑀,𝑑 and 𝐹𝑀,𝑑 for group 𝑑 ∈ D.

Jones et al. [62] proposes a number of different situations for which average accu-

racy could increase but worst-group accuracy could decrease based on their relative
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Figure B-1: (Top) When margin distributions are not aligned, (Bottom) then as we
sweep over the threshold 𝜏 , the accuracies for the groups do not necessarily move in
concert with one another.

margin distributions. For example, if 𝐹 is left-log-concave (e.g., Gaussian), then

𝐴𝐹 (𝜏) is monotonically increasing when 𝐴𝐹 (0) ≥ 0.5 and monotonically decreasing

otherwise. Thus, if 𝐴𝐹 (0) > 0.5 but 𝐴𝐹𝑑
(0) < 0.5, then average accuracy may in-

crease as we increase 𝜏 (and thus decrease coverage) but the accuracy on group 𝑑

may decrease, thus resulting in magnified disparity. We can see this phenomenon

illustrated in Figure B-1 This same phenomenon occurs with the precision when we

condition on 𝑌 = 1. In general, when margin distributions are not aligned between

groups, disparity can increase as one sweeps over the threshold 𝜏 .

This margin-based view of selective classification will be important in our proof

of Theorem 4.
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B.2 Proof of Theorem 4

We first show that the accuracy 𝐴𝐹 (𝜏) of a binary selective classification task is an

increasing function if the confidence 𝜅 is constructed from a calibrated score function

𝑅 = 𝑠(𝑥). The monotonicity of the precision 𝑃𝑃𝑉𝐹 (𝜏) can be proved similarly.

The following lemma from [62] characterizes the condition for monotonicity of

selective accuracy.

Lemma 5. 𝐴𝐹 (𝜏) is monotone increasing in 𝜏 if and only if

𝑓𝑀(𝜏)

𝑓𝑀(−𝜏)
≤ 1− 𝐹𝑀(𝜏)

𝐹𝑀(−𝜏)
, (B.3)

for all 𝜏 ≥ 0.

Our proof also relies on the following lemma.

Lemma 6. Suppose the score function 𝑅 is calibrated by group, and that predictions

are given by 𝑌 = arg max𝑦∈{0,1} 𝑃 (𝑌 = 𝑦|𝑅 = 𝑟). Denote the maximum a posteriori

probability 𝑆 = max{𝑅, 1−𝑅}, then

𝑃 (𝑌 = 𝑌 |𝑆 = 𝑠,𝐷 = 𝑑) = 𝑠, (B.4)

for all 𝑑 ∈ D.

Proof. Since 𝑅 is calibrated by group, then ∀𝑎, 𝑏 ∈ D,

𝑃 (𝑌 = 1|𝑅 = 𝑟,𝐷 = 𝑎) = 𝑃 (𝑌 = 1|𝑅 = 𝑟,𝐷 = 𝑏) = 𝑟,
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where 𝑟 ∈ [0, 1]. Thus, for any 𝑠 ∈ [0.5, 1] and 𝑑 ∈ D, we have

𝑃 (𝑌 = 𝑌 |𝑆 = 𝑠,𝐷 = 𝑑)

= 𝑃 (𝑌 = 𝑌 |𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

= 𝑃 (𝑌 = 1, 𝑌 = 1|𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

+ 𝑃 (𝑌 = 0, 𝑌 = 0|𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

=
𝑃 (𝑌 = 1, 𝑌 = 1, 𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

𝑃 (𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

+
𝑃 (𝑌 = 0, 𝑌 = 0, 𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

𝑃 (𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

(𝑎)
=
𝑃 (𝑌 = 1, 𝑌 = 1, 𝑅 = 𝑠,𝐷 = 𝑑)

𝑃 (𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

+
𝑃 (𝑌 = 0, 𝑌 = 0, 𝑅 = 1− 𝑠,𝐷 = 𝑑)

𝑃 (𝑅 ∈ {𝑠, 1− 𝑠}, 𝐷 = 𝑑)

=
𝑃 (𝑌 = 1|𝑅 = 𝑠,𝐷 = 𝑑)𝑃 (𝑅 = 𝑠,𝐷 = 𝑑)

𝑃 (𝑅 = 𝑠,𝐷 = 𝑑) + 𝑃 (𝑅 = 1− 𝑠,𝐷 = 𝑑)

+
𝑃 (𝑌 = 0|𝑅 = 1− 𝑠,𝐷 = 𝑑)𝑃 (𝑅 = 1− 𝑠,𝐷 = 𝑑)

𝑃 (𝑅 = 𝑠,𝐷 = 𝑑) + 𝑃 (𝑅 = 1− 𝑠,𝐷 = 𝑑)
(𝑏)
= 𝑠,

where (a) follows from the fact that 𝑌 = 1 iff 𝑅 ≥ 0.5, and 𝑌 = 0 iff 𝑅 < 0.5, and (b)

is due to the calibration by group assumption 𝑃 (𝑌 = 0|𝑅 = 1− 𝑠,𝐷 = 𝑑) = 𝑠.

By Lemma 6, the accuracy 𝑃 (𝑌 = 𝑌 |𝑆 = 𝑠,𝐷 = 𝑑) is independent of the group

𝐷 given 𝑆 and we can drop the conditioning of the group in the following proof.

In the selective classification problem, we convert the maximum a posteriori prob-

ability 𝑠 into confidence 𝜅 using

𝜅(𝑠) =
1

2
log

(︂
𝑠

1− 𝑠

)︂
, (B.5)

which maps [0.5, 1] to [0,∞]. So for any sample with confidence 𝑧 ∈ R+,

𝑃 (𝑌 = 𝑌 |𝜅 = 𝑧) = 𝑃 (𝑌 = 𝑌 |𝑆 = 𝜅−1(𝑧))

= 𝜅−1(𝑧),
(B.6)
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where 𝜅−1(·) is the inverse function of 𝜅(·). We use 𝑓𝜅(𝑧) to denote the PDF of the

confidence score 𝜅 for 𝑧 ∈ R+, and then the PDF of the margin 𝑓𝑀(𝑡) can be written

as,

𝑓𝑀(𝑡) =
{︁ 𝑃 (𝑌 = 𝑌 |𝜅 = 𝑡)𝑓𝜅(𝑡), for 𝑡 ≥ 0

𝑃 (𝑌 ̸= 𝑌 |𝜅 = −𝑡)𝑓𝜅(−𝑡), for 𝑡 < 0,

or equivalently,

𝑓𝑀(𝑡) =
{︁ 𝜅−1(𝑡)𝑓𝜅(𝑡), for 𝑡 ≥ 0

(1− 𝜅−1(−𝑡))𝑓𝜅(−𝑡), for 𝑡 < 0.
(B.7)

It can be verified that 𝜅−1(𝑧) is a increasing function for 𝑧 ∈ R+, and 𝜅−1(0) = 1
2
.

Thus,
𝑓𝑀(𝑧)

𝑓𝑀(−𝑧)
=

𝜅−1(𝑧)𝑓𝜅(𝑧)

(1− 𝜅−1(𝑧))𝑓𝜅(𝑧)
=

𝜅−1(𝑧)

(1− 𝜅−1(𝑧))
≥ 1. (B.8)

We can conclude that the CDF of the margin 𝐹𝑀(𝑡) satisfies

𝐹𝑀(0) =

∫︁ 0

−∞
𝑓𝑀(𝑡)𝑑𝑡 <

1

2
, (B.9)

which implies that 𝐴𝐹 (0) > 0.5.

To show that 𝐴𝐹 (𝜏) is monotonically increasing with the threshold 𝜏 , we need to

verify the condition in Lemma 5. Note that

1− 𝐹𝑀(𝜏)

𝐹𝑀(−𝜏)
=

∫︀∞
𝜏
𝑓𝑀(𝑡)𝑑𝑡∫︀ −𝜏

−∞ 𝑓𝑀(𝑡)𝑑𝑡

=

∫︀∞
𝜏
𝜅−1(𝑡)𝑓𝜅(𝑡)𝑑𝑡∫︀∞

𝜏
(1− 𝜅−1(𝑡))𝑓𝜅(𝑡)𝑑𝑡

≥
𝜅−1(𝜏)

∫︀∞
𝜏
𝑓𝜅(𝑡)𝑑𝑡

(1− 𝜅−1(𝜏))
∫︀∞
𝜏
𝑓𝜅(𝑡)𝑑𝑡

=
𝑓𝑀(𝜏)

𝑓𝑀(−𝜏)
,

which completes the proof for the selective accuracy.

By replacing the margin distribution 𝑓𝑀(𝑡) with the margin distribution condition
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on 𝑌 = 1, i.e., 𝑓𝑀 |𝑌=1(𝑡), the monotonicity of the precision 𝑃𝑃𝑉𝐹 (𝜏) can be obtained

following similar steps.

Note that the condition for monotonicity of the precision is given by

𝑓𝑀 |𝑌=1(𝜏)

𝑓𝑀 |𝑌=1(−𝜏)
≤

1− 𝐹𝑀 |𝑌=1(𝜏)

𝐹𝑀 |𝑌=1(−𝜏)
, (B.10)

and Lemma 6 is replaced by the following simple fact due to calibration by group

𝑃 (𝑌 = 1|𝑌 = 1, 𝑆 = 𝑠)

= 𝑃 (𝑌 = 1|𝑅 = 𝑠)

= 𝑠.

(B.11)

In our proof, it only requires that the confidence function 𝜅 is a increasing function

that maps [0.5, 1] to [0,∞], so that 𝜅−1(·) is a increasing function and 𝜅−1(0) = 1
2
.

Thus, Theorem 4 also holds for confidence functions satisfying these conditions, which

is not limited to the function in (5.3).

B.3 Mutual Information Upper Bound

In order to compare the HGR method with another method rooted in mutual informa-

tion, we derive an algorithm based on a novel upper bound of the mutual information

which is well-suited for this application. Existing works using mutual information for

fairness are ill-equipped to handle the sufficiency condition, as they assume that it is

not the features that will be conditioned on, but rather that the penalty will be the

mutual information between the sensitive attribute and the features (e.g., penalizing

𝐼(𝑈 ;𝐷) for demographic parity), possibly conditioned on the label (e.g., penalizing

𝐼(𝑈 ;𝐷|𝑌 ) in the case of equalized opportunities). As such, existing methods either

assume that the variable being conditioned on is discrete [19, 53, 132], become un-

stable when the features are placed in the condition [86], or simply do not allow for

conditioning of this type due to their formulation [46, 6].

Thus, in order to approximate the mutual information for our purposes, we must
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first derive an upper bound for the mutual information which is computable in our

applications. Our bound is inspired by the work of [22] and is stated in the following

theorem:

Theorem 7. For random variables 𝑋, 𝑌 and 𝑍, we have

𝐼UB(𝑋;𝑌 |𝑍) ≥ 𝐼(𝑋;𝑌 |𝑍), (B.12)

where equality is achieved if and only if 𝑋 ⊥ 𝑌 | 𝑍, and

𝐼UB(𝑋;𝑌 |𝑍) , E𝑃𝑋,𝑌,𝑍
[log𝑃 (𝑌 |𝑋,𝑍)]

− E𝑃𝑋

[︀
E𝑃𝑌,𝑍

[log𝑃 (𝑌 |𝑋,𝑍)]
]︀
.

(B.13)

Proof. The conditional mutual information can be written as

𝐼(𝑋;𝑌 |𝑍)

= E𝑃𝑋,𝑌,𝑍
[log𝑃 (𝑌 |𝑋,𝑍)]− E𝑃𝑌,𝑍

[log𝑃 (𝑌 |𝑍)] . (B.14)

Thus,

𝐼UB(𝑋;𝑌 |𝑍)− 𝐼(𝑋;𝑌 |𝑍)

= E𝑃𝑌,𝑍
[log𝑃 (𝑌 |𝑍) + E𝑃𝑋

[− log𝑃 (𝑌 |𝑋,𝑍)]] . (B.15)

Note that − log(·) is convex,

E𝑃𝑋
[− log𝑃 (𝑌 |𝑋,𝑍)] ≥ − logE𝑃𝑋

[𝑃 (𝑌 |𝑋,𝑍)]

= − log𝑃 (𝑌 |𝑍), (B.16)

which completes the proof.
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Thus, 𝐼(𝑌 ;𝐷|𝑈) can be upper bounded by 𝐼UB as:

𝐼(𝑌 ;𝐷|𝑈) ≤ E𝑃𝑋,𝑌,𝐷
[log𝑃 (𝑌 |Θ(𝑋), 𝐷)] (B.17)

− E𝑃𝐷

[︀
E𝑃𝑋,𝑌

[log𝑃 (𝑌 |Θ(𝑋), 𝐷)]
]︀
.

Since 𝑃 (𝑦|Θ(𝑥), 𝑑) is unknown in practice, we need to use a variational distribution

𝑞(𝑦|Θ(𝑥), 𝑑; 𝜃) with parameter 𝜃 to approximate it. Here, we adopt a neural net that

predicts 𝑌 based on feature Θ(𝑋) and sensitive attribute 𝐷 as our variational model

𝑞(𝑦|Θ(𝑥), 𝑑; 𝜃).

Algorithm 5 Training with sufficiency-based regularizer
Data: Training samples {(𝑥1, 𝑦1, 𝑑1), . . . , (𝑥𝑛, 𝑦𝑛, 𝑑𝑛)}, {̃︀𝑑1, . . . , ̃︀𝑑𝑛}, which are drawn

i.i.d. from the empirical distribution 𝑃𝐷

Initialize Θ, 𝑇 (parameterized by 𝜃Θ and 𝜃𝑇 , respectively) and 𝜃𝑑 with pre-trained
model, and let 𝑛𝑑 be the number of samples in group 𝑑.

Compute the following losses:
Group-specific losses 𝐿𝑑 = −

∑︀
𝑖: 𝑑𝑖=𝑑 log 𝑞(𝑦𝑖|Θ(𝑥𝑖); 𝜃)

Joint loss 𝐿0 = 1
𝑛

∑︀𝑛
𝑖=1 𝐿

(︀
𝑇 (Θ(𝑥𝑖)), 𝑦𝑖

)︀
Regularizer loss 𝐿𝑅 defined in (B.18) including both Group-specific loss and Group-
agnostic loss

for each training iteration do
for 𝑑 = 1, . . . , |D| do // Fit group-specific models

for 𝑗 = 1, . . . ,𝑀 do // For each batch
𝜃𝑑 ← 𝜃𝑑 − 1

𝑛𝑑
𝜂𝑑∇𝜃𝐿𝑑

end
end
for 𝑗 = 1, . . . , 𝑁 do // For each batch

𝜃Θ ← 𝜃Θ − 1
𝑛
𝜂𝑓∇𝜃Θ(𝐿0 + 𝜆𝐿𝑅) // Update feature extractor

𝜃𝑇 ← 𝜃𝑇 − 1
𝑛
𝜂∇𝜃𝑇𝐿0 // Update joint classifier

end
end

However, in many cases, 𝑋 will be continuous, high-dimensional data (e.g., im-

ages), while 𝐷 will be a discrete, categorical variable (e.g., gender, ethnicity). There-

fore, it would be more convenient to instead formulate the model as 𝑞(𝑦|Θ(𝑥); 𝜃𝑑), i.e.,

to train a group-specific model for each 𝑑 ∈ D to approximate 𝑃 (𝑦|Θ(𝑥), 𝑑), instead

of treating 𝐷 as a single input to the neural net.

Then, we can compute the first term of the upper bound as the negative cross-
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entropy of the training samples using the “correct” classifier for each group (group-

specific loss), and the second term as the cross-entropy of the samples using a ran-

domly selected classifier (group-agnostic loss) drawn according to the marginal dis-

tribution 𝑃𝐷. Thus, by replacing all expectations in (B.17) with empirical averages,

the regularizer is given by

𝐿𝑅 ,
1

𝑛

𝑛∑︁
𝑖=1

(︁
log 𝑞(𝑦𝑖|Θ(𝑥𝑖); 𝜃𝑑𝑖)− log 𝑞(𝑦𝑖|Θ(𝑥𝑖); 𝜃̃︀𝑑𝑖)

)︁
, (B.18)

where ̃︀𝑑𝑖 are drawn i.i.d. from the marginal distribution 𝑃𝐷, and for 𝑑 ∈ D,

𝜃𝑑 = arg max
𝜃

∑︁
𝑖: 𝑑𝑖=𝑑

log 𝑞(𝑦𝑖|Θ(𝑥𝑖); 𝜃). (B.19)

Let 𝑇 denote a joint classifier over all groups which is used to make final predictions,

such that 𝑦 = 𝑇 (Θ(𝑥)), then the overall loss function is

min
𝜃𝑇 ,𝜃Θ

1

𝑛

𝑛∑︁
𝑖=1

(︁
𝐿
(︀
𝑇 (Θ(𝑥𝑖)), 𝑦𝑖

)︀
+ 𝜆 log 𝑞(𝑦𝑖|Θ(𝑥𝑖); 𝜃𝑑𝑖)

− 𝜆 log 𝑞(𝑦𝑖|Θ(𝑥𝑖); 𝜃̃︀𝑑𝑖)
)︁
. (B.20)

In practice, we train our model by alternating between the fitting steps in (B.19)

and feature updating steps in (B.20), and the overall training process is described in

Algorithm 5 and Figure B-2. Intuitively, by trying to minimize the difference between

the log-probability of the output of the correct model and that of the randomly-chosen

one, we are trying to enforce Θ(𝑥) to have the property that all group-specific models

trained on it will be the same; that is:

𝑞(𝑦|Θ(𝑥); 𝜃𝑎) = 𝑞(𝑦|Θ(𝑥); 𝜃𝑏), ∀𝑎, 𝑏 ∈ D. (B.21)

This happens when 𝑃 (𝑌 |Θ(𝑋), 𝐷) = 𝑃 (𝑌 |Θ(𝑋)), which implies the sufficiency con-

dition 𝑌 ⊥ 𝐷|𝑈 .
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Figure B-2: Diagram illustrating the computation of our sufficiency-based loss when
𝐷 is binary.
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