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Abstract
The diameter of a graph is one of the most basic and fundamental attributes of a
graph. It is defined as the distance between the pair of vertices that is the farthest
apart. The diameter of a graph is a meaningful parameter for many applications
such as distributed computation and social networks. We seek fast algorithms for
computing the diameter of a graph. This is one of the central problems in the area
of fine-grained complexity.

The naive algorithm for computing the diameter of a graph is to find the distance
between all pairs of vertices and return the largest one. Interestingly, no better
algorithm is known. Furthermore, there is evidence from fine-grained complexity,
that no subquadratic time algorithm exists for computing the diameter of a graph
exactly. In particular, such an algorithm would falsify the Strong Exponential Time
Hypothesis (SETH). For applications with very large graphs, even quadratic time
can be prohibitively slow. Thus, we turn to approximation algorithms with faster
running times. Prior work establishes a hierarchy of algorithms that trade-off time
and accuracy, as well as a single lower bound conditioned on SETH.

Our first main contribution is the development of a hierarchy of conditional lower
bounds under SETH for approximating the diameter of a graph, establishing a time
vs. accuracy trade-off. These lower bounds show that several of the known algorithms
on the trade-off curve are conditionally tight.

Second, we study the approximability of the diameter of a graph in a variety of
natural settings, such as when the graph is changing over time, or when we only
care about the distances between particular subsets of vertices, or when we only care
about one-way distances in a directed graph. For these variants, we develop both
approximation algorithms and conditional lower bounds that are often tight.

Thesis Supervisor: Virginia Vassilevska Williams
Title: Steven and Renee Finn Career Development Associate Professor
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Chapter 1

Introduction

1.1 Background and Motivation
One of the most basic questions one can ask about a graph is “what is the distance
between the pair of vertices that is the farthest apart?” This quantity is known as
the diameter of the graph. The diameter of a graph is a fundamental and meaningful
parameter for many applications.

For example, the diameter of a distributed network measures how quickly infor-
mation can spread across the entire network, so low diameter distributed networks
are desired in practice (see e.g. [KMX+04]). In particular, if 𝐷 is the diameter of
the network, then in 𝐷 rounds of communication, every vertex can receive informa-
tion from every other vertex in the graph. In fact, the complexity of algorithms for
distributed networks is often expressed in terms of the diameter.

Relatedly, hop-constrained network design seeks to compute low-cost low-diameter
sub-structures of graphs that connect all terminals (see e.g. [HHZ21]). The low-
diameter condition facilitates faster and more reliable communication.

In addition to distributed algorithms, there are a number of other models of com-
putation where solving distance-based graph problems is easier when the diameter is
small, for example in parallel algorithms, streaming algorithms, and dynamic algo-
rithms. In these settings, algorithms for distance-based problems often proceed by
adding a set of edges called a hopset that decreases the diameter of the graph without
distorting the distances too much (see e.g. the survey [EN+20]).

Another example of the applicability of diameter is for social networks, where the
diameter measures the maximum number of degrees of separation between any two
people. There has been great popular and academic interest in the idea of the “small
world phenomenon” or “six degrees of separation” which hypothesizes that the global
friendship network has diameter 6. This line of inquiry has expanded towards asking
whether other types of graphs besides social networks also exhibit a “small world”
structure, for instance linguistic networks [VSPB19, CM09], road networks [MC11],
and the graph of the internet [AJB99].

As a consequence of the applicability of diameter, there are a number of pa-
pers that develop algorithms and heuristics for computing the diameter of real-world
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graphs [CPPU16, BCH+15, LWCW16, MLH09, TK11, CGLM12, CPPU20].

1.1.1 Fine-Grained Complexity
Computing the diameter of a graph is one of the central questions in the area of
fine-grained complexity. In contrast to the standard theory of NP-hardness, where
the goal is to distinguish between problems that are solvable in polynomial time and
those that are likely not, fine-grained complexity seeks to distinguish between different
running times at a more fine-grained level. Oftentimes, these running times fall within
polynomial time, such as distinguishing linear time versus quadratic time versus cubic
time. These distinctions are especially important for modern applications with very
large amounts of data where, for example, even an algorithm that runs in quadratic
time could be infeasible.

In the standard theory of NP-hardness, proofs of hardness are based on the as-
sumption that P ̸= NP. In contrast, in fine-grained complexity we wish to prove much
stronger hardness results, so the hardness assumptions that we use are stronger than
P ̸= NP. Several different assumptions have been used in fine-grained complexity, but
the most standard assumptions are based on hardness of the following three prob-
lems: 3-SUM, CNF-SAT, and All-Pairs Shortest Paths (APSP). In this dissertation,
we will obtain hardness proofs conditioned on the hardness of CNF-SAT; specifically
we will assume the Strong Exponential Time Hypothesis (SETH), which is defined
in Chapter 2.

Since the above hardness assumptions are plausible, but less established than
P ̸= NP, the goal of fine-grained complexity can be rephrased as understanding why
we are stuck on long-standing problems, that is, asking whether we can blame any of
the above three problems for the fact that we are stuck. By reducing from the above
three problems to many problems of interest, fine-grained complexity has shown that
we are stuck on many seemingly very different problems for the same reason.

Among the problems that fine-grained complexity has shown hardness for are some
of the most basic problems in P such as string problems like Edit Distance, geometric
problems like Colinearity Testing, and of course, distance problems like computing the
diameter of a graph. Each of these problems can be solved using standard approaches
such as a greedy algorithm or dynamic programming, but no better algorithm has
been discovered despite many efforts. Fine-grained complexity has shown that, under
appropriate assumptions, there do not exist significantly better algorithms than these
basic standard approaches, for any of these problems [BI15, GO95, RV13].

1.1.2 Computing the Diameter of a Graph
We let “Diameter” denote the problem of computing the diameter of a graph. When
faced with this problem, the naive approach is to simply compute the distance between
all pairs of vertices and output the largest one. One might expect there to exist a
faster algorithm for Diameter using some clever trick — after all, the diameter is
only a single number, whereas the distance between all pairs of vertices consists of 𝑛2
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numbers. However, amazingly, the fastest known algorithm for Diameter is the naive
algorithm!

Moreover, there is evidence from fine-grained complexity suggesting that there
does not exist a faster algorithm [RV13] for sparse graphs. In particular, All-Pairs
Shortest Paths (APSP) on a sparse graph with �̃�(𝑛) edges takes time �̃�(𝑛2), and
SETH implies that there is no significantly faster algorithm. For dense graphs with
Ω(𝑛2) edges, computing APSP takes time �̃�(𝑛3) and it is a major open problem to
determine whether or not there is a barrier from fine-grained complexity to preclude
a faster algorithm.

Most real-world graphs of practical interest are very large sparse graphs. For such
graphs, an algorithm that runs in quadratic time may be prohibitively slow. That
is, computing the diameter of such graphs may be infeasible. However, we would
still like to obtain meaningful information about the diameter of a graph using only
subquadratic time computation. To do so, we need to relax the requirement that our
algorithm solves Diameter exactly. This motivates the following question:

For sparse graphs, is there a subquadratic-time algorithm that produces an
approximation for Diameter?

The answer to this question is “yes”. For example, a very simple folklore algo-
rithm gives a multiplicative 2-approximation for Diameter in near-linear time. The
algorithm simply picks an arbitrary vertex 𝑣, runs Dijkstra’s algorithm from 𝑣 (in
both directions if the graph is directed), and returns the largest distance found. By
the triangle inequality, the value returned is at least half of the true diameter. More
involved techniques provide a series of algorithms that provide a time vs. accuracy
trade-off. These results raise the following question:

Does there exist a single algorithm for Diameter that achieves the best possible
running time and approximation factor simultaneously? Or is there an inherent

time vs. accuracy trade-off?
The answer to this question is that a time vs. accuracy trade-off is inherent,

assuming SETH. A central focus of this dissertation is to precisely understand this
time vs. accuracy trade-off.

Another central focus of this dissertation is to address the approximability of
Diameter in a variety of natural settings, such as when the graph is changing over
time, or when we only care about the distances between particular subsets of vertices,
or when we only care about one-way distances in a directed graph.

1.2 Summary of Results
In this dissertation, we provide both algorithms and conditional lower bounds for
approximating Diameter in a variety of different settings. Part I focuses obtaining
conditional lower bounds that establish the aforementioned time vs. accuracy trade-
off for approximating Diameter in the standard setting. Part II introduces a number
of different natural settings to study Diameter, and contains both algorithms and
conditional lower bounds for approximating Diameter in these settings.
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Part I: Hardness of Approximating Diameter
In Chapter 2, we give a detailed survey of prior work on the problem of approximating
Diameter.

Diameter exhibits a time vs. accuracy trade-off. In Chapter 3, we present
the first time vs. accuracy trade-off conditional lower bounds for approximating Di-
ameter (for directed/undirected and weighted/unweighted graphs). Our conditional
lower bounds are based on SETH. Prior work established a time vs. accuracy trade-
off of upper bounds [ACIM99, RV13, CLR+14, CGR16] as well as a single lower
bound [RV13], and together with this work, our results show that under SETH, the
existence of a time vs. accuracy trade-off is inherent. We note that our results do not
give a tight characterization of the entire trade-off; this question is further addressed
in Chapter 4. However, our results do show tightness for a particular approximation
algorithm on the trade-off curve.

As a starting point, we use a construction of a conditional lower bound from
[BRS+18] for a variant of Diameter, called 𝑆𝑇 -Diameter, for which approximation
is potentially much harder than Diameter. In 𝑆𝑇 -Diameter, 𝑆 and 𝑇 are subsets of
vertices and the goal is to find the largest distance between a vertex in 𝑆 and a vertex
in 𝑇 . That paper proves a hierarchy of time vs. accuracy trade-off conditional lower
bounds for 𝑆𝑇 -Diameter.

To give some context relevant to several chapters of this dissertation, we briefly
outline the ideas from the 𝑆𝑇 -Diameter conditional lower bound of [BRS+18]. Many
conditional lower bounds based on SETH (including ours) use an intermediate prob-
lem, called the orthogonal vectors (OV) problem, where we are given a set of binary
vectors and the goal is to determine whether there exists a pair of vectors that are
orthogonal. It is known that SETH implies hardness for OV, as well as hardness for a
generalization of OV called 𝑘-OV, where the goal is to find a set of 𝑘 orthogonal vec-
tors. The key approach towards getting time vs. accuracy trade-off conditional lower
bounds for 𝑆𝑇 -Diameter is to construct a reduction from 𝑘-OV to 𝑆𝑇 -Diameter,
rather than just a reduction from 𝑂𝑉 . Each value of 𝑘 produces a different value
on time vs. accuracy trade-off. In particular, increasing 𝑘 corresponds to algorithms
with better running times but worse approximation factors.

The obstacle in extending these conditional lower bounds for 𝑆𝑇 -Diameter to
conditional lower bounds for Diameter is that we need to ensure that, if the 𝑘-OV
instance has no solution, then all pairs of vertices have small enough distance. For
𝑆𝑇 -Diameter, it sufficed for only the pairs 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 have small distance. In
particular, in the construction for 𝑆𝑇 -Diameter, pairs of vertices 𝑠, 𝑠′ ∈ 𝑆 can be
very far from one another. The challenge is to add extra gadgetry to make such pairs
close when the 𝑘-OV instance has no solution while maintaining that the diameter is
large when the 𝑘-OV instance has a solution.

Chapter 3 is based on the previously published paper “Towards Tight Approxima-
tion Bounds for Graph Diameter and Eccentricities” [BRS+18] with Arturs Backurs,
Liam Roditty, Gilad Segal, and Virginia Vassilevska Williams, which appeared in
STOC 2018 and SICOMP.
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Tightening the time vs. accuracy trade-off for Diameter in directed graphs.
In Chapter 4, we build upon the conditional lower bounds from Chapter 3. In Chap-
ter 3, we only established one step of the time vs. accuracy trade-off of conditional
lower bounds for Diameter (though we established an infinite collection of bounds
for 𝑆𝑇 -Diameter). Another step of the time vs. accuracy trade-off was established
in [Bon21b] for directed weighted graphs, and in Chapter 4 we establish an infinite
collection of time vs. accuracy trade-off conditional lower bounds for Diameter for
directed unweighted graphs. This work answers a question that was posed as Open
Question 2.2 in the survey [RV19] by Rubinstein and Vassilevska W., and has also
been explicitly asked in several other works [BRS+18, Bon21b]. Our work addresses
the directed case, and the undirected case has recently been addressed in subsequent
work [Bon21a, DLV21].

Our collection of conditional lower bounds is tight with all three of the known
algorithms for directed graphs. Known results for this problem are discussed in more
detail in Chapter 2 and depicted in Figure 2-1. In particular, our result shows that
a very simple folklore algorithm that gives a 2-approximation for Diameter in near-
linear time is tight for directed graphs. That is, one cannot achieve a better-than-2-
approximation in near-linear time for directed graphs, assuming SETH. This folklore
algorithm consists of simply performing a single-source shortest paths algorithm both
into and out of an arbitrary vertex and returning the largest distance found. A
simple application of the triangle inequality shows that this algorithm gives a 2-
approximation for Diameter. It is interesting to know that such a simple algorithm
is conditionally optimal.

We achieve this result by refining the aforementioned reduction from 𝑘-OV to
𝑆𝑇 -Diameter from [BRS+18] by adding extra gadgetry to have more precise control
over the distances in the constructed graph.

Chapter 4 is based on the previously published paper “Tight Conditional Lower
Bounds for Approximating Diameter in Directed Graphs” [DW21] with Mina Dalir-
rooyfard, which appeared in STOC 2021. Concurrent and independent work by Ray
Li [Li21] proved the same result which also appeared in STOC 2021.

Part II: Approximating the Diameter of a Graph in Various
Settings
Bichromatic Diameter, 𝑆𝑇 -Diameter, and Subset Diameter. In Chapter 5,
we study several variants of Diameter where we only care about distances between
specified vertices. One such problem is 𝑆𝑇 -Diameter, which was introduced above.
Another problem is Bichromatic Diameter, which is the variant of 𝑆𝑇 -Diameter where
every vertex belongs to exactly one of 𝑆 or 𝑇 . A third related problem is Subset
Diameter, which is the variant of 𝑆𝑇 -Diameter where 𝑆 = 𝑇 . There are many natural
ways to interpret these variants of Diameter. For example, for Bichromatic Diameter,
each vertex could represent either a school or a child’s home, and the Bichromatic
Diameter of the graph is the maximum distance that a child needs to travel to get to
school.
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All three of these variants exhibit the same phenomenon as Diameter where solv-
ing APSP solves these problems exactly, but SETH implies that there is no truly
subquadratic time algorithm to solve them exactly, so we seek subquadratic time
approximation algorithms.

We provide a comprehensive study of the approximability of 𝑆𝑇 -Diameter, Bichro-
matic Diameter, and Subset Diameter for directed/undirected, weighted/unweighted
graphs. We give algorithms and conditional lower bounds under SETH and all of
them are tight except for one.

For undirected graphs, Bichromatic Diameter exhibits a similar time vs. accuracy
trade-off as Diameter and 𝑆𝑇 -Diameter, but interestingly, the optimal approximation
factor is inherently different for each problem. For example, in �̃�(𝑚3/2) time, Diame-
ter admits a 3/2-approximation, Bichromatic Diameter admits a 5/3-approximation,
and 𝑆𝑇 -Diameter admits a 2-approximation, and all of these approximation factors
are tight under SETH.

For directed graphs however, the picture is completely different. For 𝑆𝑇 -Diameter
in directed graphs, under SETH one cannot achieve any finite approximation in sub-
quadratic time. On the other hand, for Bichromatic Diameter in directed graphs,
there is a subquadratic-time approximation algorithm. Bichromatic Diameter in di-
rected graphs is the only variant where our results are not completely tight: we
provide an algorithm for with tight approximation factor but the running time is not
tight.

Subset Diameter behaves completely differently from any of the other variants: it
does not exhibit a time vs. accuracy trade-off and instead exhibits a sharp threshold
behavior for both directed and undirected graphs: there exists a near-linear time 2-
approximation algorithm, but SETH implies that getting any approximation factor
better than 2 requires quadratic time.

We also obtain parameterized approximation algorithms and conditional lower
bounds for Bichromatic Diameter, parameterized by the size of the boundary between
𝑆 and 𝑇 .

Chapter 5 is based on the previously published paper “Tight Approximation Al-
gorithms for Bichromatic Graph Diameter and Related Problems” [DVVW19] with
Mina Dalirrooyfard, Virginia Vassilevska Williams, and Nikhil Vyas, which appeared
in ICALP 2019. This chapter also contains some content from the previously pub-
lished paper “Towards Tight Approximation Bounds for Graph Diameter and Eccen-
tricities” [BRS+18] with Arturs Backurs, Liam Roditty, Gilad Segal, and Virginia
Vassilevska Williams, which appeared in STOC 2018 and SICOMP.

Min-Diameter. In Chapter 6, we study a variant of Diameter where the graph
is directed and we only care about one-way distances. Specifically, given a directed
graph, the min-distance between a pair of vertices 𝑢, 𝑣 is defined as minimum between
the 𝑢 → 𝑣 distance and the 𝑣 → 𝑢 distance. Min-distances are appropriate for
situations where it suffices to traverse a path in either direction. For example, suppose
two parties wish to share a secret and it suffices for either party 𝐴 to communicate
to party 𝐵 or vice versa, or suppose a person needs health services and either they
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can go to the doctor or the doctor can come to them.
Given the notion of min-distances, the min-diameter is accordingly defined as

the maximum over all min-distances in the graph. Min-Diameter exhibits the same
phenomenon as Diameter where solving APSP computes the min-diameter exactly,
but SETH implies that there is no truly subquadratic time exact algorithm for Min-
Diameter, so we seek subquadratic time approximation algorithms.

A constant-factor approximation algorithm for Min-Diameter was previously known
only for DAGs [AVW16]. We obtain the first constant-factor approximation for Min-
Diameter for general (weighted) graphs. We also obtain a hierarchy of algorithms
that give a time vs. accuracy trade-off (which is not tight with the known conditional
lower bounds).

The most intriguing technical aspect of min-distances as compared to standard
distance measures, is that min-distances do not obey the triangle inequality. For
example, consider a vertex 𝑣 with directed edges to a vertex 𝑢 and a vertex 𝑤. See
Figure 1.2.

Figure 1-1: Min-distances do not obey the triangle inequality.

The min-distance between 𝑣 and both 𝑢 and 𝑤 is 1, but there is no directed path
between 𝑢 and 𝑤, so the min-distance between them is infinite. Not being able to
apply the triangle inequality is a significant barrier to developing approximation al-
gorithms for Min-Diameter. For every other variant of Diameter, including all of the
Bichromatic, 𝑆𝑇 , and Subset variants from Chapter 5, as well as the standard variant
on directed/undirected weighted/unweighted graphs, all known approximation algo-
rithms rely heavily on the triangle inequality. For example, as mentioned previously,
the folklore 2-approximation algorithm for the standard Diameter problem simply
returns the largest distance from an arbitrary vertex, and the analysis follows from
a single application of the triangle inequality. For Min-Diameter, there is no algo-
rithm analogous to this folklore algorithm, and it was previously completely unclear
whether there exists any algorithm that provides a constant-factor approximation.

One of the key ideas in our approximation algorithm for Min-Diameter is as fol-
lows. Because there already exists an algorithm for Min-Diameter on DAGs, it would
be ideal to get a direct reduction from Min-Diameter on general graphs to Min-
Diameter on DAGs, however it is unclear how to do this. Instead, we recognize that
it suffices to define a DAG-like structure on general graphs. In particular, we define
an ordering of the vertices that shares some key properties with the topological order-
ing of a DAG. In particular, we pick a vertex 𝑣 and partition the rest of the vertices
as follows: vertices whose distance to 𝑣 is smaller than its distance from 𝑣 are placed
before 𝑣 in the ordering, and the rest are placed after 𝑣. Applying this partition
recursively gives an ordering over all of the vertices. This ordering provides enough
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information to allow us to wisely choose which distances in the graph to compute
exactly so that we can approximate Min-Diameter within a constant factor.

Chapter 6 is based on the previously published paper “Approximation Algorithms
for Min-Distance Problems” [DVV+19] with Mina Dalirrooyfard, Virginia Vassilevska
Williams, Nikhil Vyas, Yinzhan Xu, and Yuancheng Yu, which appeared in ICALP
2019.

Dynamic Diameter. In Chapter 7, we study the dynamic variant of Diameter
where the graph is changing over time. In general, dynamic graph algorithms are
specified as follows. At each time step an adversary either inserts an edge into the
graph or deletes an edge from the graph, and after every edge insertion/deletion the
algorithm must output the quantity of interest. The naive solution is to recompute
the output from scratch after every edge insertion/deletion. Accordingly, the goal of
dynamic algorithms is to store a data structure that allows the output to be updated
faster than recomputation from scratch.

There are two main settings for dynamic algorithms. A fully dynamic algorithm
supports an intermingled sequence of edge insertions and deletions, while a partially
dynamic algorithm supports either only edge insertions or only edge deletions. The
ideal of a partially dynamic algorithm is that its total running time matches the
running time of the best static (non-dynamic) algorithm for the problem.

We study the problem of approximating Diameter in both the partially and fully
dynamic settings, providing both algorithms and conditional lower bounds. For the
partially dynamic setting, we obtain a 3/2-approximation algorithm for Diameter
whose total running time matches the best-known static algorithm (which is optimal
under SETH). For the fully dynamic setting, the picture is completely different. We
show that under SETH, there is no such fully dynamic algorithm, and in particular
there is no algorithm that is significantly better than recomputing the answer from
scratch after every insertion/deletion or maintaining dynamic APSP.

Chapter 7 is based on the previously published paper “Algorithms and Hardness
for Diameter in Dynamic Graphs” [AHR+19] with Bertie Ancona, Monika Henzinger,
Liam Roditty, and Virginia Vassilevska Williams, which appeared in ICALP 2019.

Open Problems. Lastly, in Chapter 8 we provide a list of open problems pertaining
to all chapters of this dissertation.

1.3 Related Problems
Most of the previously published papers whose content is included in this dissertation
also study two graph parameters that are strongly related to the diameter: radius
and eccentricities. The eccentricity of a vertex 𝑣 is defined as the largest distance
from 𝑣 to another vertex. The diameter and radius are the extremal eccentricities —
the diameter is the largest eccentricity and the radius is the smallest eccentricity. (To
clarify the computational problems implicit in these parameters, the output of the
eccentricities problem is the eccentricity of all 𝑛 vertices, while the output of Diameter
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and Radius are only a single distance.) Many of the techniques for both algorithms
and conditional lower bounds for Diameter also apply to Radius and Eccentricities,
and vice versa. In this dissertation, we focus only on Diameter, in the interest of
including a wider breadth of different settings where one can study these problems.

1.4 Preliminaries
Notation

Let 𝐺 = (𝑉, 𝐸) be a weighted or unweighted, directed or undirected graph, where
|𝑉 | = 𝑛 and |𝐸| = 𝑚. For every 𝑢, 𝑣 ∈ 𝑉 let 𝑑𝐺(𝑢, 𝑣) be the length of the shortest
path from 𝑢 to 𝑣. When the graph 𝐺 is clear from the context we omit the subscript
𝐺. A distance 𝑑(𝑢, 𝑣) is considered to be ∞ if 𝑣 is not reachable from 𝑢.

The diameter 𝐷 of a graph is defined as max𝑢,𝑣∈𝑉 𝑑(𝑢, 𝑣). Given 𝑆, 𝑇 ⊆ 𝑉 , the
𝑆𝑇 -diameter 𝐷𝑆𝑇 of a graph is defined as max𝑠∈𝑆,𝑡∈𝑇 𝑑(𝑠, 𝑡). If 𝑆 ∪ 𝑇 = 𝑉 and
𝑆 ∩ 𝑇 = ∅, then the 𝑆𝑇 -diameter is called the bichromatic diameter. If 𝑆 = 𝑇 , then
the 𝑆𝑇 -diameter is called the subset diameter. For vertices 𝑢, 𝑣, their min-distance
𝑑𝑚𝑖𝑛(𝑢, 𝑣) is defined as min{𝑑(𝑢, 𝑣), 𝑑(𝑣, 𝑢)}. The min-diameter 𝐷𝑚𝑖𝑛 of a graph is
defined as max𝑢,𝑣∈𝑉 𝑑𝑚𝑖𝑛(𝑢, 𝑣).

For 𝛼 ≥ 1, an 𝛼-approximation algorithm for the diameter 𝐷 of a graph is defined
as an algorithm that returns a value 𝐷′ such that 𝐷/𝛼 ≤ 𝐷′ ≤ 𝐷. We note that all
of our approximation algorithms also return a witness, that is, a pair of vertices of
distance at least 𝐷′.

For an algorithm with input size 𝑛 we use with high probability to denote the
probability > 1 − 1/𝑛𝑐 for all constants 𝑐. We say some quantity is 𝑝𝑜𝑙𝑦(𝑛) to mean
it is 𝑂(𝑛𝑐) for some fixed constant 𝑐. We use �̃� notation to hide polylogarithmic
factors.

SETH and 𝑘-Orthogonal Vectors

Let 𝑘 ≥ 2. The 𝑘-Orthogonal Vectors Problem (𝑘-OV) is as follows: Given a set 𝑆
of 𝑛 vectors in {0, 1}𝑑, determine whether there exist 𝑣1, . . . , 𝑣𝑘 ∈ 𝑆 so that their
generalized inner product is 0, i.e. ∑︀𝑑

𝑖=1
∏︀𝑘

𝑗=1 𝑣𝑗[𝑖] = 0, where 𝑣𝑗[𝑖] is the 𝑖th bit of
the vector 𝑣𝑗. If 𝑘 = 2, we simply say OV instead of 2-OV.

Our conditional lower bounds are based on the 𝑘-OV Hypothesis, defined as fol-
lows:

Hypothesis 1 (𝑘-OV Hypothesis). For all constants 𝑘 ≥ 2 and all 𝜖 > 0, there exists
𝑐𝑘 > 0 such that 𝑘-OV on 𝑑 = 𝑐𝑘 log 𝑛 bit vectors requires 𝑛𝑘−𝜖 time on a word-RAM
with 𝑂(log 𝑛) bit words.

Williams [Wil05] showed that if the 𝑘-OV Hypothesis is false, then CNF-SAT on
formulas with 𝑁 variables and 𝑚 clauses can be solved in 2𝑁(1−𝜀/𝑘)poly (𝑚) time.
In particular, such an algorithm would contradict the Strong Exponential Time Hy-
pothesis (SETH) of Impagliazzo, Paturi, and Zane [IPZ01] (the name SETH was
introduced by Calabro, Impagliazzo, and Paturi[CIP09]) which is the following: For
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every 𝜀 > 0 there is a 𝐾 such that 𝐾-SAT on 𝑁 variables cannot be solved in
2(1−𝜀)𝑁poly (𝑁) time (say, on a word-RAM with 𝑂(log 𝑁) bit words). This means
that SETH implies the 𝑘-OV Hypothesis.

A main motivation behind SETH is that despite decades of research, the best
upper bounds for 𝐾-SAT on 𝑁 ′ variables and 𝑀 clauses remain of the form
2𝑁 ′(1−𝑐/𝐾)poly (𝑀) for constant 𝑐 (see e.g. [Hir98, PPSZ05, Sch99]). The best algo-
rithms for the 𝑘-OV problem for any constant 𝑘 ≥ 2 on 𝑁 vectors and dimension
𝑐 log 𝑁 run in time 𝑁𝑘−1/𝑂(log 𝑐) (Abboud, Williams, and Yu [AWY15] and Chan and
Williams [CW16]).
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Part I

Hardness of Approximating the
Diameter of a Graph
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Chapter 2

Prior Work on Approximating the
Diameter of a Graph

The fastest known algorithms [Wil18, PR05, Pet04] for Diameter in 𝑛-vertex 𝑚-edge
graphs are only slightly faster (by 𝑛𝑜(1) factors) than the simple �̃�(𝑚𝑛) time algorithm
of running Dijkstra’s algorithm from every vertex and then taking the largest distance.
For dense graphs with small integer weights there are improved algorithms [Sei95,
Zwi02, CGS15] using fast matrix multiplication, but these algorithms are not faster
than 𝑚𝑛 for sparser graphs or graphs with large weights. Furthermore, under the
Strong Exponential Time Hypothesis (SETH), there is no 𝑂(𝑚2−𝜀) time algorithm
for any constant 𝜀 > 0 for Diameter even in unweighted, undirected graphs [RV13].
Since quadratic time can be prohibitively slow on very large graphs, finding efficient
approximation algorithms for Diameter is desirable.

The following approximation and hardness of approximation results are shown in
Figure 2-1.

A folklore �̃�(𝑚) time algorithm gives a 2-approximation for Diameter in directed
weighted graphs. The first non-trivial approximation algorithm for Diameter was
by Aingworth, Chekuri, Indyk, and Motwani [ACIM99], who presented an almost-
3/2-approximation1 algorithm for Diameter in unweighted directed graphs running in
�̃�(𝑛2 + 𝑚

√
𝑛) time. Roditty and Vassilevska W. [RV13] then improved the running

time to �̃�(𝑚
√

𝑛) in expectation. This was extended in [CLR+14] to obtain a (genuine)
3/2-approximation algorithm for Diameter in weighted directed graphs running in
�̃�(min{𝑚3/2, 𝑚𝑛2/3}) time. Cairo, Grossi, and Rizzi [CGR16] generalized the above
results for undirected graphs with small weights and obtained a time-accuracy trade-
off: for every 𝑘 ≥ 1 they obtained an �̃�(𝑚𝑛1/(𝑘+1)) time algorithm that achieves an
almost-2 − 1/2𝑘-approximation.

The above 3/2-approximation algorithm in �̃�(𝑚3/2) time is conditionally tight for
sparse graphs in terms of both its approximation factor and its running time [RV13,
BRS+18]. In particular, Roditty and Vassilevska W. [RV13] proved that the approx-
imation factor is tight under SETH by showing that any (3/2 − 𝜀)-approximation
algorithm (for 𝜀 > 0) in undirected unweighted graphs requires 𝑚2−𝑜(1) time2. Later,

1An almost-𝑐-approximation of 𝑋 is an estimate 𝑋 ′ so that 𝑋/𝑐 − 𝑂(1) ≤ 𝑋 ′ ≤ 𝑋.
2All of the conditional lower bounds are expressed in terms of 𝑚 and hold for sparse graphs where
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Figure 2-1: Running time exponent versus approximation factor for Diameter. Al-
gorithms are represented by points and conditional lower bounds (under SETH) are
represented by shaded boxes. All conditional lower bounds hold for undirected un-
weighted graphs, and all algorithms hold for weighted directed graphs, unless other-
wise specified. Lists of citations often mean that the result was first proved only for
graphs with a particular combination of directed/undirected, weighted/unweighted.

Backurs, Roditty, Segal, Vassilevska W., and Wein [BRS+18] proved that the run-
ning time is tight under SETH by showing that any (8/5 − 𝜀)-approximation al-
gorithm in undirected unweighted graphs, or any (5/3 − 𝜀)-approximation in undi-
rected weighted graphs requires 𝑚3/2−𝑜(1) time, and for directed unweighted graphs
any (5𝑘−7

3𝑘−4 − 𝜀)-approximation requires Ω(𝑛1+1/(𝑘−1)−𝑜(1)) time. (The proofs of these
bounds are included in Chapter 3.) Later, Li [Li21] (in a earlier version of his paper)
improved the unweighted undirected construction of [BRS+18] to match the weighted
undirected construction of [BRS+18]. That is, he showed that under SETH, any
(5/3 − 𝜀)-approximation algorithm for Diameter in undirected unweighted graphs
requires 𝑚3/2−𝑜(1) time.

Recently, Bonnet [Bon21b] surpassed this 5/3 barrier for directed weighted graphs,
showing another step of the time vs. accuracy trade-off, by showing that under SETH,
any (7/4−𝜀)-approximation algorithm requires 𝑚4/3−𝑜(1) time. Then, concurrent and
independent work by Dalirrooyfard and Wein [DW21] and Li [Li21] extended this
time vs. accuracy trade-off to a hierarchy of infinitely many bounds for directed
unweighted graphs. In particular they showed that for any fixed integer 𝑘 ≥ 2, SETH
implies that any (2𝑘−1

𝑘
− 𝜀)-approximation algorithm requires 𝑚

𝑘
𝑘−1 −𝑜(1) time, for

unweighted directed graphs. (The proof of these bounds are included in Chapter 4.)
These bounds show in particular that the folklore near-linear time 2-approximation
algorithm is tight under SETH. Li [Li21] additionally showed limitations on getting a

𝑚 = �̃�(𝑛).
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better deterministic SETH-based reduction assuming some nondeterministic versions
of SETH.

Very recently, the above bounds for directed graphs were extended to undirected
graphs. Bonnet [Bon21a] showed that under SETH, any (7/4−𝜀)-approximation algo-
rithm requires 𝑚4/3−𝑜(1) time for undirected unweighted graphs. Then, Dalirrooyfard,
Li, and Vassilevska W. [DLV21] showed that SETH implies that any (2𝑘−1

𝑘
− 𝜀)-

approximation algorithm requires 𝑚
𝑘

𝑘−1 −𝑜(1) time for undirected unweighted graphs.

2.0.1 Techniques from Prior Work
All of our time vs. accuracy conditional lower bounds for Diameter use as a starting
point the time vs. accuracy conditional lower bounds for 𝑆𝑇 -Diameter of Buckers,
Roditty, Segal, Vassilevska W., and Wein [BRS+18]. This work, in turn, uses as a
starting point the result of Roditty and Vassilevska W. [RV13] that any (3/2 − 𝜀)-
approximation algorithm (for 𝜀 > 0) in undirected unweighted graphs requires 𝑚2−𝑜(1)

time under SETH. The latter result is a reduction from OV to Diameter, and the
former result is a reduction from 𝑘-OV to 𝑆𝑇 -Diameter. Here, we will describe the
reduction from OV to Diameter as well as the reduction from 3-OV to 𝑆𝑇 -Diameter.
These reductions will give intuition for our constructions, especially our reduction
from 𝑘-OV to Diameter in directed graphs in Chapter 4.

Reduction from OV to Diameter

The construction of [RV13] is for the standard Diameter problem on undirected un-
weighted graphs, but it implicitly gives a construction for the 𝑆𝑇 -Diameter problem
with approximation factor 2 instead of 3/2. Here, we will describe their construction
for 𝑆𝑇 -Diameter, and then note how it can be extended to Diameter. The construc-
tion for 𝑆𝑇 -Diameter is shown in Figure 2-2.

We reduce from the OV problem to 𝑆𝑇 -Diameter. We are given an OV instance
consisting of sets 𝑊0, 𝑊1 ⊆ {0, 1}𝑑, each of size 𝑁 . Our goal is to construct a graph
on �̃�(𝑁) vertices and edges so that if the OV instance is a NO instance then the
𝑆𝑇 -diameter is 2, and if the OV instance is a YES instance then the 𝑆𝑇 -diameter is
at least 4.

We construct a layered graph 𝐺 on three layers 𝐿0, 𝐿1, 𝐿2 where edges only go
between adjacent layers. We set 𝑆 = 𝐿0 and 𝑇 = 𝐿2 for the 𝑆𝑇 -Diameter instance.
𝐿0 consists of one vertex for each vector 𝑎 ∈ 𝑊0, and 𝐿2 consists of one vertex for
each vector 𝑏 ∈ 𝑊1. 𝐿1 consists of one vertex for each coordinate in [𝑑].

There is an edge between 𝑎 ∈ 𝐿0 and 𝑥 ∈ 𝐿1 if and only if 𝑎 is 1 in coordinate
𝑥. There is an edge between 𝑏 ∈ 𝐿2 and 𝑥 ∈ 𝐿1 if and only if 𝑏 is 1 in coordinate 𝑥.
This completes the description of the construction.

If the OV instance is a NO instance, then by definition, for every pair 𝑎 ∈ 𝑊0,
𝑏 ∈ 𝑊1, there exists a coordinate 𝑥 that is 1 for both 𝑎 and 𝑏. Thus, there is a path
of length 2 in 𝐺 from 𝑎 ∈ 𝐿0 to 𝑏 ∈ 𝐿2 through 𝑥 ∈ 𝐿1. On the other hand, if the OV
instance is a YES instance with orthogonal pair 𝑎 ∈ 𝑊0, 𝑏 ∈ 𝑊1, then by definition
there is no coordinate such that 𝑎 and 𝑏 are both 1. Therefore, the distance between
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𝑎 ∈ 𝐿0 and 𝑏 ∈ 𝐿2 is more than 2, and it must be at least 4 due to the layered
structure of the graph.

L0 L1 L2

a x

b

a[x] = 1

b[x] = 1

Figure 2-2: Reduction from OV to 𝑆𝑇 -Diameter. 𝑆 = 𝐿0 and 𝑇 = 𝐿2.

To extend this construction to the standard Diameter problem with approximation
factor 3/2, additional vertices 𝑢 and 𝑣 are added along with the edge (𝑢, 𝑣), such that
𝑢 is adjacent to every vertex in 𝐿0, 𝑣 is adjacent to every vertex in 𝐿2, and both 𝑢
and 𝑣 are adjacent to every vertex in 𝐿1.

Reduction from 3-OV to 𝑆𝑇 -Diameter

The input is a 3-OV instance consisting of sets 𝑊0, 𝑊1, 𝑊2 ⊆ {0, 1}𝑑, each of size 𝑁 .
The goal is to construct a graph on �̃�(𝑁2) vertices and edges so that if the 3-OV
instances is a NO instance, the 𝑆𝑇 -diameter is 3, and if the 3-OV instance is a YES
instance, the 𝑆𝑇 -diameter is at least 7. The construction is shown in Figure 2-3.

Construct a layered graph 𝐺 on four layers 𝐿0, 𝐿1, 𝐿2, 𝐿3 where the edges go only
between adjacent layers. Set 𝑆 = 𝐿0 and 𝑇 = 𝐿3 for the 𝑆𝑇 -Diameter instance. 𝐿0
consists of one vertex for each pair of vectors 𝑎0 ∈ 𝑊0, 𝑎1 ∈ 𝑊1, and 𝐿3 consists of
one vertex for each pair of vectors 𝑏1 ∈ 𝑊1, 𝑏2 ∈ 𝑊2.

Now, the goal is to define 𝐿1, 𝐿2, and the edges so that the 𝑆𝑇 -diameter is 3 if
and only if the 3-OV instance is a NO instance. To provide some intuition, fix a pair
of vertices (𝑎0, 𝑎1) ∈ 𝑆, (𝑏1, 𝑏2) ∈ 𝑇 and ask the question: what can we say about
the vectors 𝑎0, 𝑎1, 𝑏1, and 𝑏2 in a NO instance? By definition, in a NO instance the
vectors 𝑎0, 𝑎1, and 𝑏2 are all 1 at some coordinate 𝑥0. Similarly, the vectors 𝑎0, 𝑏1,
and 𝑏2 are all 1 at some coordinate 𝑥1. Because the 𝑆 side of the graph concerns the
vectors 𝑎0 and 𝑎1 and the 𝑇 side of the graph concerns the vectors 𝑏1 and 𝑏2, the
conditions on 𝑎0, 𝑎1, 𝑏1, and 𝑏2 are separate according to each side of the graph. For
the 𝑆 side, it holds that 𝑎0[𝑥0] = 𝑎1[𝑥0] = 𝑎0[𝑥1] = 1. For the 𝑇 side, it holds that
𝑏1[𝑥1] = 𝑏2[𝑥1] = 𝑏2[𝑥0] = 1.

This motivates a first attempt for how to define the rest of the graph. Suppose 𝐿1
and 𝐿2 both consist of one vertex for every pair of coordinates 𝑥0, 𝑥1 ∈ [𝑑]. Add an
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edge from (𝑎0, 𝑎1) ∈ 𝐿0 to (𝑥0, 𝑥1) ∈ 𝐿1 if 𝑎0[𝑥0] = 𝑎1[𝑥0] = 𝑎0[𝑥1] = 1. Add an edge
from (𝑏1, 𝑏2) ∈ 𝐿3 to (𝑥0, 𝑥1) ∈ 𝐿2 if 𝑏1[𝑥1] = 𝑏2[𝑥1] = 𝑏2[𝑥0] = 1. Finally, add an edge
from (𝑥0, 𝑥1) ∈ 𝐿1 to (𝑥′

0, 𝑥′
1) ∈ 𝐿2 if 𝑥0 = 𝑥′

0 and 𝑥1 = 𝑥′
1. While this construction

has 𝑆𝑇 -diameter 3 for a NO instance of 3-OV, it does not have 𝑆𝑇 -diameter 7 for a
YES instance, as is desired. In particular, suppose 𝑎0 ∈ 𝑊0, 𝑎1 ∈ 𝑊1, 𝑎2 ∈ 𝑊2 is an
orthogonal triple. We would like the distance between (𝑎0, 𝑎1) ∈ 𝐿0 and (𝑎1, 𝑎2) ∈ 𝐿3
to be at least 7, however, with the current construction, there could be a path of
length 5 from (𝑎0, 𝑎1) ∈ 𝐿0 to some (𝑥0, 𝑥1) ∈ 𝐿1, to some (𝑎′

0, 𝑎1) ∈ 𝐿0, to some
(𝑥′

0, 𝑥′
1) ∈ 𝐿1, to (𝑥′

0, 𝑥′
1) ∈ 𝐿2, to (𝑎1, 𝑎2) ∈ 𝐿3. The issue is that from (𝑎0, 𝑎1) ∈ 𝐿0

we can reach (𝑎′
0, 𝑎1) ∈ 𝐿0 with a path of length 2 for some convenient choice of 𝑎′

0.
To overcome this issue, they also include the vector 𝑎0 in the representation of

vertices in 𝐿1; that is, 𝐿1 consists of one vertex for every triple (𝑎0 ∈ 𝑊0, 𝑥0 ∈
[𝑑], 𝑥1 ∈ [𝑑]). There is an edge from (𝑎0, 𝑎1) ∈ 𝐿0 to (𝑎′

0, 𝑥0, 𝑥1) ∈ 𝐿1 if and only if
𝑎 = 𝑎′ and 𝑎0[𝑥0] = 𝑎1[𝑥0] = 𝑎0[𝑥1] = 1. Symmetrically, 𝐿2 consists of one vertex
for every triple (𝑏2 ∈ 𝑊2, 𝑥0 ∈ [𝑑], 𝑥1 ∈ [𝑑]) and there is an edge from (𝑏1, 𝑏2) ∈ 𝐿3
to (𝑏′

2, 𝑥0, 𝑥1) ∈ 𝐿2 if and only if 𝑏2 = 𝑏′
2 and 𝑏1[𝑥1] = 𝑏2[𝑥1] = 𝑏2[𝑥0] = 1. Lastly,

there is an edge between (𝑎0, 𝑥0, 𝑥1) ∈ 𝐿1 and (𝑏2, 𝑥′
0, 𝑥′

1) ∈ 𝐿2 if and only if 𝑥0 = 𝑥′
0

and 𝑥1 = 𝑥′
1. This completes the description of the construction. One can verify that

this construction indeed satisfies the property that the 𝑆𝑇 -diameter is 3 for a NO
instance of 3-OV, and the 𝑆𝑇 -diameter is 7 for a YES instance of 3-OV.

L0 L1 L2 L3

a0a1 a0x0x1

b2x
0
0x

0
1 b1b2

a0[x0] = 1
a1[x0] = 1
a0[x1] = 1

b1[x
0
1] = 1

b2[x
0
1] = 1

b2[x
0
0] = 1

x0 = x0
0

x1 = x0
1

Figure 2-3: Reduction from 3-OV to 𝑆𝑇 -Diameter. 𝑆 = 𝐿0 and 𝑇 = 𝐿3.
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Chapter 3

Diameter Exhibits a Time
vs. Accuracy Trade-off

3.1 Results
In this chapter we will prove the following conditional lower bounds for approximating
Diameter inunweighted/weighted undirected/directed graphs.

Theorem 3.1.1 (unweighted undirected). Assuming SETH, for all 𝛿 > 0, any (8/5−
𝛿)-approximation algorithm for Diameter in an unweighted undirected graph on 𝑚
edges requires 𝑚3/2−𝑜(1) time.

Theorem 3.1.2 (weighted undirected). Assuming SETH, for all 𝛿 > 0, any (5/3−𝛿)-
approximation algorithm for Diameter in a weighted undirected graph on 𝑚 edges
requires 𝑚3/2−𝑜(1) time.

Theorem 3.1.3 (unweighted directed). Let 𝑘 ≥ 2 be a fixed integer. Assuming
SETH, for all 𝛿 > 0, any (5𝑘−7

3𝑘−4 − 𝛿)-approximation algorithm for Diameter in an
unweighted directed graph on 𝑚 edges requires 𝑚

𝑘
𝑘−1 −𝑜(1) time.

We note that subsequent work [Li21] builds upon our work by obtaining a simpler
construction showing that Theorem 3.1.2 also holds for unweighted undirected graphs
(which subsumes Theorems 3.1.1 and 3.1.3).

3.2 Techniques
To prove our conditional lower bounds for Diameter, we use conditional lower bounds
for 𝑆𝑇 -Diameter from [BRS+18] as a starting point. That paper obtains a hierarchy of
conditional lower bounds that establish a time vs. accuracy trade-off for 𝑆𝑇 -Diameter:

Theorem 3.2.1 ([BRS+18]). Let 𝑘 ≥ 2 be a fixed integer. Assuming SETH, for all
𝛿 > 0, any (3𝑘−2

𝑘
− 𝛿)-approximation algorithm for 𝑆𝑇 -Diameter in an unweighted

undirected graph on 𝑚 edges requires 𝑚
𝑘

𝑘−1 −𝑜(1) time.
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Theorem 3.2.1 for 𝑘 = 3 is used as a basis for the proofs of Theorems 3.1.1
and 3.1.2. Theorem 3.2.1 for general 𝑘 is used as the basis for Theorem 3.1.3, our
conditional lower bounds for Diameter in Chapter 4, our conditional lower bounds
for Bichromatic Diameter in Chapter 5, and all subsequent work by other authors on
conditional lower bounds for Diameter.

We will now state a more detailed version of Theorem 3.2.1, which will be useful
for our conditional lower bounds for Diameter as well as our conditional lower bounds
for Bichromatic Diameter in Chapter 5.

Theorem 3.2.2 ([BRS+18]). Given a 𝑘-OV instance consisting of 𝑘 ≥ 2 sets
𝑊0, 𝑊1, . . . , 𝑊𝑘−1 ⊆ {0, 1}𝑑, each of size 𝑁 , we can in 𝑂(𝑘𝑁𝑘−1𝑑𝑘−1) time construct
an unweighted, undirected graph with 𝑂(𝑁𝑘−1+𝑘𝑁𝑘−2𝑑𝑘−1) vertices and 𝑂(𝑘𝑁𝑘−1𝑑𝑘−1)
edges that satisfies the following properties.

1. The graph consists of 𝑘 + 1 layers of vertices 𝑆 = 𝐿0, 𝐿1, 𝐿2, . . . , 𝐿𝑘 = 𝑇 . The
number of vertices in the sets is |𝑆| = |𝑇 | = 𝑁𝑘−1 and |𝐿1|, |𝐿2|, . . . , |𝐿𝑘−1| ≤
𝑁𝑘−2𝑑𝑘−1.

2. 𝑆 consists of all tuples (𝑎0, 𝑎1, . . . , 𝑎𝑘−2) where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖. Similarly,
𝑇 consists of all tuples (𝑏1, 𝑏2, . . . , 𝑏𝑘−1) where for each 𝑖, 𝑏𝑖 ∈ 𝑊𝑖.

3. If the 𝑘-OV instance has no solution, then 𝑑(𝑢, 𝑣) = 𝑘 for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇 .

4. If the 𝑘-OV instance has a solution 𝑎0, 𝑎1, . . . , 𝑎𝑘−1 where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖

then if 𝛼 = (𝑎0, . . . 𝑎𝑘−2) ∈ 𝑆 and 𝛽 = (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑇 , then 𝑑(𝛼, 𝛽) ≥ 3𝑘 −2.

5. If the 𝑘-OV instance has a solution 𝑎0, 𝑎1, . . . , 𝑎𝑘−1 where for each 𝑖, 𝑎𝑖 ∈
𝑊𝑖 then for any tuple (𝑏1, . . . , 𝑏𝑘−2), if 𝛼 = (𝑎0, 𝑏1, . . . , 𝑏𝑘−2) ∈ 𝑆 and 𝛽 =
(𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑇 , then 𝑑(𝛼, 𝛽) ≥ 𝑘+2. Symmetrically, if 𝛼 = (𝑎0, 𝑎1, . . . , 𝑎𝑘−2) ∈
𝑆 and 𝛽 = (𝑏1, . . . , 𝑏𝑘−2, 𝑎𝑘−1) ∈ 𝑇 , then 𝑑(𝛼, 𝛽) ≥ 𝑘 + 2.

6. For all 𝑖 from 1 to 𝑘 − 1, for all 𝑣 ∈ 𝐿𝑖 there exists a vertex in 𝐿𝑖−1 adjacent to
𝑣 and a vertex in 𝐿𝑖+1 adjacent to 𝑣. We can assume that this property holds
because we can remove all vertices that do not satisfy this property from the
graph and the resulting graph will still satisfy the previous three properties.

We now state the special case of Theorem 3.2.2 where 𝑘 = 3, which is used for
Theorems 3.1.1 and 3.1.2

Theorem 3.2.3 ([BRS+18]). Given a 3-OV instance consisting of three sets 𝐴, 𝐵, 𝐶 ⊆
{0, 1}𝑑, |𝐴| = |𝐵| = |𝐶| = 𝑁 , we can in 𝑂(𝑁2𝑑2) time construct an unweighted, undi-
rected graph with 𝑂(𝑁2 +𝑁𝑑2) vertices and 𝑂(𝑁2𝑑2) edges that satisfies the following
properties.

1. The graph consists of 4 layers of vertices 𝑆, 𝐿1, 𝐿2, 𝑇 . The number of vertices
in the sets is |𝑆| = |𝑇 | = 𝑁2 and |𝐿1|, |𝐿2| ≤ 𝑁𝑑2.

2. 𝑆 consists of all tuples (𝑎, 𝑏) of vertices 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Similarly, 𝑇 consists
of all tuples (𝑏, 𝑐) of vertices 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶.
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3. If the 3-OV instance has no solution, then 𝑑(𝑢, 𝑣) = 3 for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇 .

4. If the 3-OV instance has a solution 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 with 𝑎, 𝑏, 𝑐 orthogonal,
then 𝑑((𝑎, 𝑏) ∈ 𝑆, (𝑏, 𝑐) ∈ 𝑇 ) ≥ 7.

5. If the 3-OV instance has a solution 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 with 𝑎, 𝑏, 𝑐 orthogonal,
then for any 𝑏′ ∈ 𝐵 we have 𝑑((𝑎, 𝑏) ∈ 𝑆, (𝑏′, 𝑐) ∈ 𝑇 ) ≥ 5 and 𝑑((𝑎, 𝑏′) ∈
𝑆, (𝑏, 𝑐) ∈ 𝑇 ) ≥ 5.

6. For any vertex 𝑢 ∈ 𝐿1 there exists a vertex 𝑠 ∈ 𝑆 that is adjacent to 𝑢. Similarly,
for any vertex 𝑣 ∈ 𝐿2 there exists a vertex 𝑡 ∈ 𝑇 that is adjacent to 𝑣. We can
assume that this property holds because we can remove all vertices that do not
satisfy this property from the graph and the resulting graph will still satisfy the
other properties.

3.2.1 Overview
For all of our constructions we begin with the 𝑆𝑇 -Diameter lower bound construction
from Theorem 3.2.2. Here, we will provide intuition for extending the reduction from
3-OV to 𝑆𝑇 -Diameter from Theorem 3.2.3 to get a reudction from 3-OV to Diameter.
In this description we treat the reduction from 3-OV to 𝑆𝑇 -Diameter as a black box.

In the 𝑆𝑇 -Diameter construction from 3-OV, if the 3-OV instance has no solution,
𝐷𝑆,𝑇 = 3 and if the instance has a solution 𝐷𝑆,𝑇 ≥ 7. To adapt this construction to
Diameter, we need to ensure that if the OV instance has no solution then all pairs
of vertices have small enough distance. We begin by augmenting the 𝑆𝑇 -Diameter
construction by adding a matching between 𝑆 and a new set 𝑆 ′ as well as a matching
between 𝑇 and a new set 𝑇 ′. Without any further modifications, pairs of vertices
𝑢, 𝑣 ∈ 𝑆 ∪𝑆 ′ (or 𝑢, 𝑣 ∈ 𝑇 ∪𝑇 ′) could be far from one another. The challenge is to add
extra gadgetry to make these pairs close for NO instances while maintaining that in
YES instances the distance between the diameter endpoints 𝑠′ ∈ 𝑆 ′, 𝑡′ ∈ 𝑇 ′ is large.
That is, for YES instances, we want a shortest path between the diameter endpoints
𝑠′ and 𝑡′ to contain the vertex 𝑠 ∈ 𝑆 matched to 𝑠′ and the vertex 𝑡 ∈ 𝑇 matched to 𝑡′

so that we can use use the fact that 𝑑(𝑠, 𝑡) ≥ 7. In other words, we do not want there
to be a shortcut from 𝑠′ to some vertex in 𝑆 that allows us to use a path of length 3
from 𝑆 to 𝑇 . For example, we cannot simply create a vertex 𝑥 and connect it to all
vertices in 𝑆 ∪ 𝑆 ′ because this would introduce shortcuts from 𝑆 ′ to 𝑆.

To achieve these goals, we augment the graph as follows. Recall that 𝑠′ ∈ 𝑆 ′, 𝑡′ ∈ 𝑇 ′

are the endpoints of the diameter and let 𝑡 be the vertex matched to 𝑡′. To solve the
problem outlined in the above paragraph, we observe that in the YES case there are
three types of vertices 𝑠 ∈ 𝑆:

1. close: 𝑑(𝑠, 𝑡) = 3 (property 3 of Theorem 3.2.3),

2. far: 𝑑(𝑠, 𝑡) ≥ 7 (property 4 of Theorem 3.2.3), and

3. intermediate: 𝑑(𝑠, 𝑡) ≥ 5 (property 5 of Theorem 3.2.3).
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For close 𝑠, we need 𝑑(𝑠′, 𝑠) to be large so that there is no shortcut from 𝑠′ to 𝑡′

through 𝑠. For far 𝑠, it is acceptable if 𝑑(𝑠′, 𝑠) is small because 𝑑(𝑠, 𝑡) is large enough
to ensure that paths from 𝑠′ to 𝑡′ through 𝑠 are still long enough. For intermediate 𝑠,
𝑑(𝑠′, 𝑠) cannot be small, but it also need not be large. To fulfill these specifications,
we add a small clique (the graph is still sparse) and connect each of its vertices to
only some of the vertices in 𝑆 and/or 𝑆 ′ according to the implications of property 5
of Theorem 3.2.2. When 𝑠 is close, we ensure that 𝑑(𝑠′, 𝑠) is large by requiring that a
shortest path from 𝑠′ to 𝑠 goes from 𝑠′ to the clique, uses an edge inside of the clique,
and then goes from the clique to 𝑠. When 𝑠 is intermediate, we ensure that 𝑑(𝑠′, 𝑠) is
not too small by requiring that a shortest path from 𝑠′ to 𝑠 goes from 𝑠′ to the clique
and then from the clique to 𝑠 (without using an edge inside of the clique). These
intermediate 𝑠 are important as they allow every vertex in the clique to have an edge
to some vertex in 𝑆 and thus be close enough to the 𝑇 side of the graph in the NO
case.

3.2.2 5 vs 8 unweighted undirected construction
In this section we will prove Theorem 3.1.1.

In particular, we will use Theorem 3.2.3 to prove the following result, which implies
Theorem 3.1.1.

Theorem 3.2.4. Given a 3-OV instance, we can in 𝑂(𝑁2𝑑2) time construct an
unweighted, undirected graph with 𝑂(𝑁2 + 𝑁𝑑2) vertices and 𝑂(𝑁2𝑑2) edges that
satisfies the following two properties.

1. If the 3-OV instance has no solution, then for all pairs of vertices 𝑢 and 𝑣 we
have 𝑑(𝑢, 𝑣) ≤ 5.

2. If the 3-OV instance has a solution, then there exists a pair of vertices 𝑢 and 𝑣
such that 𝑑(𝑢, 𝑣) ≥ 8.

Construction of the graph. We construct a graph with the required properties
by starting with the graph from Thereom 3.2.3 and adding more vertices and edges.
Figure 3-1 illustrates the construction of the graph. We start by adding a set 𝑆 ′ of 𝑁2

vertices. 𝑆 ′ consists of all tuples (𝑎, 𝑏) of vertices 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. We connect every
(𝑎, 𝑏) ∈ 𝑆 ′ to its counterpart (𝑎, 𝑏) ∈ 𝑆. Thus, there is a matching between the sets of
vertices 𝑆 and 𝑆 ′. We also add another set 𝑆 ′′ of 𝑁 vertices. 𝑆 ′′ contains one vertex
𝑎 for every 𝑎 ∈ 𝐴. For every pair of vertices from 𝑆 ′′ we add an edge between the
vertices. Thus, the 𝑁 vertices form a clique. Furthermore, for every vertex 𝑎 ∈ 𝑆 ′′

we add an edge to (𝑎, 𝑏) ∈ 𝑆 for all 𝑏 ∈ 𝐵. In total we added 𝑁2 + 𝑁 = 𝑂(𝑁2)
vertices and

(︁
𝑁
2

)︁
+ 2𝑁2 = 𝑂(𝑁2) edges. We do a similar construction for the set 𝑇 of

vertices. We add a set 𝑇 ′ of 𝑁2 vertices - one vertex for every tuple (𝑏, 𝑐) of vertices
𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶. We connect every (𝑏, 𝑐) ∈ 𝑇 ′ to (𝑏, 𝑐) ∈ 𝑇 . Finally, we add a set
𝑇 ′′ of 𝑁 vertices. 𝑇 ′′ contains one vertex for every vector 𝑐 ∈ 𝐶. For every pair of
vertices from 𝑇 ′′ we add an edge between the vertices. We connect every 𝑐 ∈ 𝑇 ′′ to
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Figure 3-1: The illustration for the 5 vs 8 construction. The edges between sets
𝑆, 𝐿1, 𝐿2 and 𝑇 are not depicted. The edges between vertices in 𝑆 ′ and 𝑆 (𝑇 and 𝑇 ′)
form a matching. Vertices in 𝑆 ′′ (𝑇 ′′) form a clique.

(𝑏, 𝑐) ∈ 𝑇 for all 𝑏 ∈ 𝐵. This finishes the construction of the graph. In the rest of the
section we show that the construction satisfies the promised two properties.

Correctness of the construction. We need to consider two cases.

Case 1: the 3-OV instance has no solution. In this case we want to show that
for all pairs of vertices 𝑢 and 𝑣 we have 𝑑(𝑢, 𝑣) ≤ 5. We consider three subcases.

Case 1.1: 𝑢 ∈ 𝑆 ∪ 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝐿1 and 𝑣 ∈ 𝑇 ∪ 𝑇 ′ ∪ 𝑇 ′′ ∪ 𝐿2. We observe that
there exists 𝑠 ∈ 𝑆 with 𝑑(𝑢, 𝑠) ≤ 1. Indeed, if 𝑢 ∈ 𝑆, then 𝑠 = 𝑢 works. If
𝑢 ∈ 𝑆 ′ ∪ 𝑆 ′′, then we are done by the construction. On the other hand, if 𝑢 ∈ 𝐿1,
then there exists such an 𝑠 ∈ 𝑆 by property 6 from Theorem 3.2.3. Similarly we
can show that there exists 𝑡 ∈ 𝑇 such that 𝑑(𝑣, 𝑡) ≤ 1. Finally, by property 3 we
have that 𝑑(𝑠, 𝑡) = 3. Thus, we can upper bound the distance between 𝑢 and 𝑣 by
𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑣) ≤ 1 + 3 + 1 = 5 as required.

Case 1.2: 𝑢, 𝑣 ∈ 𝑆 ∪ 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝐿1. From the previous case we know that there
are two vertices 𝑠1, 𝑠2 ∈ 𝑆 such that 𝑑(𝑢, 𝑠1) ≤ 1 and 𝑑(𝑠2, 𝑣) ≤ 1. To show that
𝑑(𝑢, 𝑣) ≤ 5 it is sufficient to show that 𝑑(𝑠1, 𝑠2) ≤ 3. This is indeed true since both
vertices 𝑠1 and 𝑠2 are connected to some two vertices in 𝑆 ′′ and every two vertices in
𝑆 ′′ are at distance at most 1 from each other.
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Case 1.3: 𝑢, 𝑣 ∈ 𝑇 ∪ 𝑇 ′ ∪ 𝑇 ′′ ∪ 𝐿2. The case is analogous to the previous case.

Case 2: the 3-OV instance has a solution. In this case we want to show that
there is a pair of vertices 𝑢, 𝑣 with 𝑑(𝑢, 𝑣) ≥ 8. Let 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 be a
solution to the 3-OV instance. We claim that 𝑑((𝑎, 𝑏) ∈ 𝑆 ′, (𝑏, 𝑐) ∈ 𝑇 ′) ≥ 8. Let 𝑃
be an optimal path between 𝑢 = ((𝑎, 𝑏) ∈ 𝑆 ′) and 𝑣 = ((𝑏, 𝑐) ∈ 𝑇 ′) that achieves the
smallest distance. We want to show that 𝑃 uses at least 8 edges. Let 𝑡 ∈ 𝑇 be the
first vertex from the set 𝑇 that is on path 𝑃 . Let 𝑠 ∈ 𝑆 be the last vertex on path 𝑃
that belongs to 𝑆 and precedes 𝑡 in 𝑃 . We can easily check that, if 𝑠 ̸= ((𝑎, 𝑏) ∈ 𝑆),
then 𝑑(𝑢, 𝑠) ≥ 3 and, similarly, if 𝑡 ̸= ((𝑏, 𝑐) ∈ 𝑇 ), then 𝑑(𝑡, 𝑣) ≥ 3. We consider three
subcases.

Case 2.1: 𝑠 ̸= ((𝑎, 𝑏) ∈ 𝑆) and 𝑡 ̸= ((𝑏, 𝑐) ∈ 𝑇 ). Since 𝑠 and 𝑡 are separated by
two layers of vertices, we must have 𝑑(𝑠, 𝑡) ≥ 3. Thus we get lower bound 𝑑(𝑢, 𝑣) ≥
𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑣) ≥ 3 + 3 + 3 = 9 > 8 as required.

Case 2.2: 𝑠 = ((𝑎, 𝑏) ∈ 𝑆) and 𝑡 = ((𝑏, 𝑐) ∈ 𝑇 ). In this case we use property 4
and conclude 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑣) = 1 + 𝑑((𝑎, 𝑏) ∈ 𝑆, (𝑏, 𝑐) ∈ 𝑇 ) + 1 ≥
1 + 7 + 1 = 9 > 8 as required.

Case 2.3: either 𝑠 = ((𝑎, 𝑏) ∈ 𝑆) or 𝑡 = ((𝑏, 𝑐) ∈ 𝑇 ) holds but not both.
W.l.o.g. 𝑠 ̸= ((𝑎, 𝑏) ∈ 𝑆) and 𝑡 = ((𝑏, 𝑐) ∈ 𝑇 ). If the path uses an edge in the clique
on 𝑆 ′′ before arriving at 𝑠, then 𝑑(𝑢, 𝑠) ≥ 4 and we get that 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠) +
𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑣) ≥ 4 + 3 + 1 = 8. On the other hand, if the path does not use any
edge of the clique, then 𝑠 = ((𝑎, 𝑏′) ∈ 𝑆) for some 𝑏′ ∈ 𝐵. By property 5 we have
𝑑(𝑠, 𝑡) = 𝑑((𝑎, 𝑏′) ∈ 𝑆, (𝑏, 𝑐) ∈ 𝑇 ) ≥ 5. We conclude that 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑡) +
𝑑(𝑡, 𝑣) ≥ 3 + 5 + 1 = 9 > 8 as required.

3.2.3 6 vs 10 weighted undirected construction
In this section we will prove Theorem 3.1.2, which is implied by the following theorem.

Theorem 3.2.5. Given a 3-OV instance, we can in 𝑂(𝑁2𝑑2) time construct a weighted,
undirected graph with 𝑂(𝑛𝑁2 + 𝑛𝑁𝑑2) vertices and 𝑂(𝑛𝑁2𝑑2) edges that satisfies the
following two properties.

1. If the 3-OV instance has no solution, then for all pairs of vertices 𝑢 and 𝑣 we
have 𝑑(𝑢, 𝑣) ≤ 6.

2. If the 3-OV instance has a solution, then there exists a pair of vertices 𝑢 and 𝑣
such that 𝑑(𝑢, 𝑣) ≥ 10.

Each edge of the graph has weight either 1 or 2.
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Construction of the graph. The construction of the graph is the same as in
Theorem 3.2.5 except all edges connecting vertices between sets 𝐿1 and 𝐿2 have
weight 2 and all edges inside the cliques on vertices 𝑆 ′′ and 𝑇 ′′ have weight 2. All the
remaining edges have weight 1.

Correctness of the construction. The correctness proof is essentially the same
as for Theorem 3.2.4. As before we consider two cases.

Case 1: the 3-OV instance has no solution. In this case we want to show that
for all pairs of vertices 𝑢 and 𝑣 we have 𝑑(𝑢, 𝑣) ≤ 6. In the analysis of Case 1 in
Theorem 3.2.4 we show a path between 𝑢 and 𝑣 such that the path involves at most
one edge from the cliques or between sets 𝐿1 and 𝐿2. Since we added weight 2 to the
latter edges, the length of the path increased by at most 1 as a result. So we have
upper bound 𝑑(𝑢, 𝑣) ≤ 6 for all pairs 𝑢 and 𝑣 of vertices.

Case 2: the 3-OV instance has a solution. In this case we want to show
that there is a pair of vertices 𝑢, 𝑣 with 𝑑(𝑢, 𝑣) ≥ 10. Similarly to Theorem 3.2.4
we will show that 𝑑((𝑎, 𝑏) ∈ 𝑆 ′, (𝑏, 𝑐) ∈ 𝑇 ′) ≥ 10, where 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶
is a solution to the 3-OV instance. The analysis of the subcases is essentially the
same as in Theorem 3.2.4. For cases 2.1 and 2.2 in the proof of Theorem 3.2.4 we
had 𝑑((𝑎, 𝑏) ∈ 𝑆 ′, (𝑏, 𝑐) ∈ 𝑇 ′) ≥ 9. Since we increased edge weights between 𝐿1
and 𝐿2 to 2 and every path from (𝑎, 𝑏) ∈ 𝑆 ′ to (𝑏, 𝑐) ∈ 𝑇 ′ must cross the layer
between 𝐿1 and 𝐿2, we also increased the lower bound of the length of the path
from 9 to 10 for cases 2.1 and 2.2. It remains to consider Case 2.3. As in the
proof of Theorem 3.2.4, w.l.o.g. 𝑠 ̸= ((𝑎, 𝑏) ∈ 𝑆) and 𝑡 = ((𝑏, 𝑐) ∈ 𝑇 ). If the path
uses an edge in the clique on 𝑆 ′′ before arriving at 𝑠, then 𝑑(𝑢, 𝑠) ≥ 5 and we get
lower bound 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑣) ≥ 5 + 4 + 1 = 10. On the other
hand, if the path does not use any edge of the clique, then 𝑠 = ((𝑎, 𝑏′) ∈ 𝑆) for
some 𝑏′ ∈ 𝐵. By property 5 and because we increased edge weights between 𝐿1
and 𝐿2 to 2, we have 𝑑(𝑠, 𝑡) = 𝑑((𝑎, 𝑏′) ∈ 𝑆, (𝑏, 𝑐) ∈ 𝑇 ) ≥ 6. We conclude that
𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑣) ≥ 3 + 6 + 1 = 10 as required.

3.2.4 3𝑘 − 4 vs 5𝑘 − 7 unweighted directed construction
In this section, we will prove Theorem 3.1.3.

In particular, we will use Theorem 3.2.2 to prove the following result, which implies
Theorem 3.1.3.

Theorem 3.2.6. Given a 𝑘-OV instance, we can in 𝑂(𝑘𝑁𝑘−1𝑑𝑘−1) time construct an
unweighted, directed graph with 𝑂(𝑘𝑁𝑘−1 + 𝑘𝑁𝑘−2𝑑𝑘−1) vertices and 𝑂(𝑘𝑁𝑘−1𝑑𝑘−1)
edges that satisfies the following two properties.

1. If the 𝑘-OV instance has no solution, then for all pairs of vertices 𝑢 and 𝑣 we
have 𝑑(𝑢, 𝑣) ≤ 3𝑘 − 4.
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2. If the 𝑘-OV instance has a solution, then there exists a pair of vertices 𝑢 and 𝑣
such that 𝑑(𝑢, 𝑣) ≥ 5𝑘 − 7.

Construction of the graph. We construct a graph with the required properties by
starting with the graph from Thereom 3.2.2 and adding more vertices and edges. First
we will construct a weighted graph and then we will make it unweighted. Figure 3-2
illustrates the construction of the graph for the special case 𝑘 = 4.

S ′ S L1 L3 T T ′

a0a1a2a0a1a2

S ′′ a0

same a0

clique

a1a2a3a1a2a3

T ′′ a3

same a3

clique

matching matching

L2

same a0
same a3

Figure 3-2: The 3𝑘 − 4 vs 5𝑘 − 7 construction for the special case 𝑘 = 4. The edges
between sets 𝑆, 𝐿1, 𝐿2, 𝐿3 and 𝑇 are not depicted. The matching between sets 𝑆 and
𝑆 ′ consists of unweighted paths of length 𝑘 − 2 = 2. The edges between sets 𝑆 and
𝑆 ′′ consists of unweighted paths of length 𝑘 − 2 = 2. Similarly for the right side.

We start by adding a set 𝑆 ′ of 𝑁𝑘−1 vertices. 𝑆 ′ consists of all tuples (𝑎0, 𝑎1, . . . , 𝑎𝑘−2)
where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖. We connect every (𝑎0, 𝑎1, . . . , 𝑎𝑘−2) ∈ 𝑆 ′ to its counterpart
(𝑎0, 𝑎1, . . . , 𝑎𝑘−2) ∈ 𝑆 with an undirected edge of weight 𝑘 − 2 to form a match-
ing. We also add another set 𝑆 ′′ of 𝑁 vertices. 𝑆 ′′ contains one vertex 𝑎0 for every
𝑎0 ∈ 𝑊0. For every pair of vertices in 𝑆 ′′ we add an undirected edge of weight 1
between the vertices. Thus, the 𝑁 vertices form a clique. Furthermore, for every
vertex 𝑎0 ∈ 𝑆 ′′ we add an undirected edge of weight 𝑘 − 2 to (𝑎0, 𝑏1, . . . , 𝑏𝑘−2) ∈ 𝑆
for all 𝑏1, . . . , 𝑏𝑘−2. Finally for every vertex 𝑎0 ∈ 𝑆 ′′ we add a directed edge of weight
1 towards (𝑎0, 𝑏1, . . . , 𝑏𝑘−2) ∈ 𝑆 for all 𝑏1, . . . , 𝑏𝑘−2. Some of the edges that we added
have weight 𝑘 − 2. We make those unweighted by subdividing them into edges of
weight 1. Let 𝑆 ′′′ be the set of newly added vertices. In total we added 𝑂(𝑘𝑁𝑘−1)
vertices and 𝑂(𝑘𝑁𝑘−1) edges.

We do a similar construction for the set 𝑇 of vertices. We add a set 𝑇 ′ of 𝑁𝑘−1

vertices — one vertex for every tuple (𝑎1, . . . , 𝑎𝑘−1) where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖. We
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connect every (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑇 ′ to (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑇 by an undirected edge of
weight 𝑘 − 2. Finally, we add a set 𝑇 ′′ of 𝑛 vertices. 𝑇 ′′ contains one vertex for
every vector 𝑎𝑘−1 ∈ 𝑊𝑘−1. We connect every pair of vertices in 𝑇 ′′ by an undirected
edge of weight 1. We connect every vertex 𝑎𝑘−1 ∈ 𝑇 ′′ to (𝑏1, . . . , 𝑏𝑘−2, 𝑎𝑘−1) ∈ 𝑇
by an undirected edge of weight 𝑘 − 2 for all 𝑏1, . . . , 𝑏𝑘−2. Also, for every vertex
𝑎𝑘−1 ∈ 𝑇 ′′ we add a directed edge of weight 1 from (𝑏1, . . . , 𝑏𝑘−2, 𝑎𝑘−1) ∈ 𝑇 ′ to 𝑎𝑘−1 for
all 𝑏1, . . . , 𝑏𝑘−2. Some of the edges that we just added have weight 𝑘 − 2. We make
those unweighted by subdividing them into edges of weight 1. Let 𝑇 ′′′ be the set of
newly added vertices. This finishes the construction of the graph. In the rest of the
section we show that the construction satisfies the promised two properties stated in
Theorem 3.2.6.

Correctness of the construction. We need to consider two cases.

Case 1: the 𝑘-OV instance has no solution. In this case we want to show that
for all pairs of vertices 𝑢 and 𝑣 we have 𝑑(𝑢, 𝑣) ≤ 3𝑘 − 4. We consider subcases.

Case 1.1: 𝑢 ∈ 𝑆 ∪ 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝑆 ′′′ ∪ 𝐿𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 2 and 𝑣 ∈ 𝑇 ∪ 𝑇 ′ ∪ 𝑇 ′′ ∪ 𝑇 ′′′ ∪ 𝐿𝑗

for 2 ≤ 𝑗 ≤ 𝑘 − 1. We observe that there exists 𝑠 ∈ 𝑆 that has 𝑑(𝑢, 𝑠) ≤ 𝑘 − 2.
Similarly, there exists 𝑡 ∈ 𝑇 with 𝑑(𝑡, 𝑣) ≤ 𝑘−2. By property 3 from Theorem 3.2.2 we
have that 𝑑(𝑠, 𝑡) ≤ 𝑘. This gives us upper bound 𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑣) ≤
(𝑘 − 2) + 𝑘 + (𝑘 − 2) = 3𝑘 − 4 as required. The proof when the sets for 𝑢 and 𝑣 are
swapped is identical since we only use paths on unweighted edges.

Case 1.2: 𝑢, 𝑣 ∈ 𝑆 ∪ 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝑆 ′′′ ∪ 𝐿1. We note that there is some vertex 𝑠 ∈ 𝑆 ′′

with 𝑑(𝑢, 𝑠) ≤ 2(𝑘 − 2) (via undirected edges). Also, there is some vertex 𝑠′ ∈ 𝑆 ′′

with 𝑑(𝑠′, 𝑣) ≤ 𝑘 − 1 (possibly using directed edges). 𝑆 ′′ is a clique so 𝑑(𝑠, 𝑠′) ≤ 1.
Thus, 𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑠′) + 𝑑(𝑠′, 𝑣) ≤ 2(𝑘 − 2) + 1 + (𝑘 − 1) = 3𝑘 − 4.

Case 1.3: 𝑢, 𝑣 ∈ 𝑇 ∪ 𝑇 ′ ∪ 𝑇 ′′ ∪ 𝑇 ′′′ ∪ 𝐿𝑘−1. This case is similar to the previous case.
We note that there is some vertex 𝑡 ∈ 𝑇 ′′ with 𝑑(𝑡, 𝑣) ≤ 2(𝑘−2) (via undirected edges).
Also, there is some vertex 𝑡′ ∈ 𝑇 ′′ with 𝑑(𝑢, 𝑡′) ≤ 𝑘 − 1 (possibly using directed
edges). 𝑆 ′′ is a clique so 𝑑(𝑡′, 𝑡) ≤ 1. Thus, 𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑡′) + 𝑑(𝑡′, 𝑡) + 𝑑(𝑡, 𝑣) ≤
(𝑘 − 1) + 1 + 2(𝑘 − 2) = 3𝑘 − 4.

Case 2: the 𝑘-OV instance has a solution. In this case we want to show
that there is a pair of vertices 𝑢, 𝑣 with 𝑑(𝑢, 𝑣) ≥ 5𝑘 − 7. Let (𝑎0, 𝑎1, . . . , 𝑎𝑘−1)
be a solution to the 𝑘-OV instance where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖. We claim that
𝑑((𝑎0, . . . , 𝑎𝑘−2) ∈ 𝑆 ′, (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑇 ′) ≥ 5𝑘 − 7. Let 𝑃 be an shortest path
between 𝑢 = ((𝑎0, . . . , 𝑎𝑘−2) ∈ 𝑆 ′) and 𝑣 = ((𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑇 ′). We want to show
that 𝑃 uses at least 5𝑘 − 7 edges. Let 𝑠 ∈ 𝑆 be the first vertex on path 𝑃 that
belongs to 𝑆 and let 𝑡 ∈ 𝑇 be the last vertex from the set 𝑇 that is on path 𝑃 . We
observe that due to the directionality of the edges, 𝑠 and 𝑡 must be the counterparts
of 𝑢 and 𝑣 respectively; that is, 𝑠 = ((𝑎0, . . . , 𝑎𝑘−2) ∈ 𝑆) and 𝑡 = ((𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑇 ).
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Note that these definitions of 𝑠 and 𝑡 differ from the definitions of 𝑠 and 𝑡 in previous
proofs. We consider three subcases.

Case 2.1: A vertex in 𝑆 ′ ∪𝑆 ′′ ∪𝑆 ′′′ appears after 𝑠 on the path 𝑃 . We observe
that if 𝑠1, 𝑠2 ∈ 𝑆 is a pair of vertices on the path 𝑃 such that no vertex in 𝑆 appears
between them on 𝑃 , then the portion of 𝑃 between 𝑠1 and 𝑠2 either contains only
vertices in 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝑆 ′′′ or contains no vertices in 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝑆 ′′′. Let 𝑠1, 𝑠2 ∈ 𝑆 be
such that the portion of 𝑃 between them contains only vertices in 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝑆 ′′′. Such
𝑠1, 𝑠2 exist by the specification of this case. If 𝑠1 = 𝑠2 then 𝑃 is not a shortest path.
Otherwise, the portion of 𝑃 between 𝑠1 and 𝑠2 must include a vertex in 𝑆 ′′. Thus,
𝑑(𝑠1, 𝑠2) ≥ 2(𝑘 − 2). We consider three subcases.

∙ 𝑠1 ̸= 𝑠. The distance between any pair of vertices in 𝑆 is at least 2 so 𝑑(𝑠, 𝑠1) ≥ 2.
Then, 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑠1) + 𝑑(𝑠1, 𝑠2) + 𝑑(𝑠2, 𝑡) + 𝑑(𝑡, 𝑣) ≥ (𝑘 − 2) + 2 +
2(𝑘 − 2) + 𝑘 + (𝑘 − 2) = 5𝑘 − 6.

∙ 𝑠1 = 𝑠 and 𝑠2 = ((𝑎0, 𝑏1, . . . , 𝑏𝑘−2) ∈ 𝑆) for some 𝑏1, . . . , 𝑏𝑘−2. In this case,
by property 5 we have 𝑑(𝑠2, 𝑡) ≥ 𝑘 + 2. Thus, 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠1) + 𝑑(𝑠1, 𝑠2) +
𝑑(𝑠2, 𝑡) + 𝑑(𝑡, 𝑣) ≥ (𝑘 − 2) + 2(𝑘 − 2) + (𝑘 + 2) + (𝑘 − 2) = 5𝑘 − 6.

∙ 𝑠1 = 𝑠 and 𝑠2 = ((𝑏0, . . . , 𝑏𝑘−2 ∈ 𝑆) for some with 𝑏0 ̸= 𝑎0. In this case, the
path from 𝑠1 to 𝑠2 must include an edge in the clique 𝑆 ′′ since these are the only
edges among vertices in 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝑆 ′′′ for which adjacent tuples can differ with
respect to their first element. Thus, 𝑑(𝑠1, 𝑠2) ≥ 2(𝑘−2)+1 ≥ 2𝑘−3. Therefore,
𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠1)+𝑑(𝑠1, 𝑠2)+𝑑(𝑠2, 𝑡)+𝑑(𝑡, 𝑣) ≥ (𝑘−2)+(2𝑘−3)+𝑘+(𝑘−2) =
5𝑘 − 7.

Case 2.2: A vertex in 𝑇 ′ ∪ 𝑇 ′′ ∪ 𝑇 ′′′ appears before 𝑡 on the path 𝑃 . This
case is analogous to the previous case.

Case 2.3: The portion of the path 𝑃 between 𝑠 and 𝑡 contains no ver-
tices in 𝑆 ′ ∪ 𝑆 ′′ ∪ 𝑆 ′′′ ∪ 𝑇 ′ ∪ 𝑇 ′′ ∪ 𝑇 ′′′. By property 4, 𝑑(𝑠, 𝑡) ≥ 3𝑘 − 2. Thus,
𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑣) ≥ (𝑘 − 2) + (3𝑘 − 2) + (𝑘 − 2) = 5𝑘 − 6.
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Chapter 4

Tightening the Time vs. Accuracy
Trade-off for Diameter in Directed
Graphs

4.1 Result
In this chapter, we prove the following result.

Theorem 4.1.1. Let 𝑘 ≥ 2 be a fixed integer. Assuming SETH, for all 𝛿 > 0, any
(2𝑘−1

𝑘
− 𝛿)-approximation algorithm for Diameter in an unweighted directed graph on

𝑚 edges requires 𝑚
𝑘

𝑘−1 −𝑜(1) time.

Theorem 4.1.1 was previously known for 𝑘 = 2 [RV13] and 𝑘 = 3 [Li21], so we
need to prove it for 𝑘 ≥ 4.

Theorem 4.1.1 was proved independently and concurrently by Ray Li [Li21] with
a simpler proof.

4.2 Techniques
We use the graph of Theorem 3.2.2 as a starting point. This construction does not
directly work for Diameter since in the NO case the diameter of the graph might be
as big as 2𝑘, as two vertices in 𝑆 can be far from each other. So, to get a construction
for Diameter, the challenge is to add more vertices and edges to make these 𝑆-𝑆
distances smaller in the NO case, while not decreasing the 𝑆-𝑇 distances in the YES
case.

To address this challenge for the case of 𝑘 = 4, Bonnet [Bon21b] uses the following
key idea. He copies one of the middle layers, where edges between this layer and its
copy allow you to change the vectors of a node (𝑣1, 𝑣2, 𝑥). These extra edges allow
for shorter paths in the NO case exclusively.

A natural way to generalize Bonnet’s construction to larger values of 𝑘 is to make
a copy of each of the internal layers. However, it is not clear which of the vectors
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we should allow to change on an edge from a layer to its copy. If we allow certain
vectors to change at the wrong layer, this shrinks the diameter too much in the YES
case, while if we don’t allow enough flexibility, this does not adequately decrease the
distances in the NO case. A key insight for our construction is that changing different
sets of vectors should have different costs.

These costs are encoded in our construction through an intricate system of “back
edges”. These back edges allow for paths that go from some layer to some previous
layer while changing either some prefix or some suffix of the vector tuple. The size
of the prefix or suffix that is permitted to change depends on which pair of layers
these back edges are connecting. By carefully balancing the number of vectors we are
permitted to change for which pairs of levels, we keep all the distances at most 𝑘 in
the NO case, and ensure that the diameter is at least 2𝑘 − 1 in the YES case.

4.3 Construction
In this section we suppose that 𝑘 ≥ 5 and we prove Theorem 4.1.1 by reduction from
𝑘-OV.

Although our construction is based on that of Theorem 3.2.2, it is different enough
that we will describe it from scratch.

We are given a 𝑘-OV instance 𝑆 where each vector in 𝑆 is of length 𝑑 = 𝑐𝑘 log 𝑛,
where 𝑐𝑘 is the constant defined in Hypothesis 1. We will create a graph 𝐺 = (𝑉, 𝐸)
with 𝑂(𝑛𝑘−1 + 𝑛𝑘−2𝑑𝑘−1) vertices and 𝑂(𝑛𝑘−1𝑑2𝑘−2) edges, such that if the 𝑘-OV
instance is a YES instance then 𝐺 has diameter 2𝑘 − 1, and if it is a NO instance
then 𝐺 has diameter 𝑘.

Before presenting the construction of 𝐺, we note that the above conditions on
𝐺 suffice to prove Theorem 4.1.1: suppose for contradiction that there exist 𝛿 > 0
and 𝜀 > 0, such that there is a (2𝑘−1

𝑘
− 𝛿)-approximation algorithm 𝒜 for Diameter

in directed graphs with 𝑀 edges that runs in 𝑂(𝑀
𝑘

𝑘−1 −𝜀) time. That is, 𝒜 can
distinguish whether 𝐺 has diameter 𝑘 or 2𝑘 − 1 in 𝑂(|𝐸|

𝑘
𝑘−1 −𝜀) = �̃�(𝑛𝑘−(𝑘−1)𝜀) time,

where the last equality comes from the fact that |𝐸| = �̃�(𝑛𝑘−1), since 𝑘 is constant
and 𝑑 = 𝑂(log 𝑛). Then, the reduction from 𝑘-OV to Diameter on the graph 𝐺 tells
us that we can solve the 𝑘-OV instance in �̃�(𝑛𝑘−(𝑘−1)𝜀) time, which contradicts the
𝑘-OV Hypothesis.

4.3.1 Vertex set
Given our 𝑘-OV instance, we first augment 𝑆 with the all 1s vector. Note that this
does not change the output of the 𝑘-OV instance. Then, we make 𝑘 copies of 𝑆 and
call them 𝑆1, . . . , 𝑆𝑘. We let a coordinate be an element of [𝑑], that will represent a
position in some vector in 𝑆1, . . . , 𝑆𝑘.

We start with 𝑘 + 1 layers of vertices 𝐿1, . . . , 𝐿𝑘+1. Vertices of 𝐿1 are 𝑘 − 1 tuples
(𝑎1, . . . , 𝑎𝑘−1), with 𝑎𝑖 ∈ 𝑆𝑖. Vertices of 𝐿𝑘+1 are 𝑘 − 1 tuples (𝑏2, . . . , 𝑏𝑘), where
𝑏𝑖 ∈ 𝑆𝑖. For 𝑖 = 2, . . . , 𝑘, the vertices of 𝐿𝑖 are (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥), where
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𝑎𝑗, 𝑏𝑗 ∈ 𝑆𝑗 for each 𝑗 and 𝑥 = (𝑥1, . . . , 𝑥𝑘−1) is an array of coordinates that satisfies
the following two conditions:

1. For each 1 ≤ 𝑗 ≤ 𝑘 − 𝑖, 𝑎𝑗[𝑥ℓ] = 1 for all 1 ≤ ℓ ≤ 𝑘 − 𝑗, and

2. For each 𝑘 − 𝑖 + 3 ≤ 𝑗 ≤ 𝑘, 𝑏𝑗[𝑥ℓ] = 1 for all 𝑘 − 𝑗 + 1 ≤ ℓ ≤ 𝑘 − 1.
See table 4.1.

𝑥1 𝑥2 . . . 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 . . . 𝑥𝑘−2 𝑥𝑘−1
𝑎1 1 1 . . . 1 1 1 . . . 1 1
𝑎2 1 1 . . . 1 1 1 . . . 1
. . . . . . . . . . . . . . . . . . . . . . . .

𝑎𝑘−𝑖 1 1 . . . 1 1 1
𝑏𝑘−𝑖+3 1 1 1 . . . 1 1

. . . . . . . . . . . . . . . . . . . . . . . .
𝑏𝑘−1 1 . . . 1 1 1 . . . 1 1
𝑏𝑘 1 1 . . . 1 1 1 . . . 1 1

Table 4.1: The relationship between the vector array 𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘 and
the coordinate array 𝑥 of a node (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥) in layer 𝐿𝑖.

For each 𝑖 = 3, . . . , 𝑘 − 1, we add a set 𝐿′
𝑖 of vertices. Vertices of 𝐿′

𝑖 are
(𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥) where 𝑎𝑗, 𝑏𝑗 ∈ 𝑆𝑗 and 𝑥 = (𝑥1, . . . , 𝑥𝑘−1) is any co-
ordinate array.

For 𝑖 = 4, . . . , 𝑘 − 1, we have a set 𝐴𝑖, where each node 𝛼 ∈ 𝐴𝑖 is a 𝑘 − 𝑖 tuple of
vectors (𝑎1, . . . , 𝑎𝑘−𝑖), with 𝑎ℓ ∈ 𝑆ℓ for each ℓ ∈ {1, . . . , 𝑘 − 𝑖}. For 𝑖 = 3, . . . , 𝑘 − 2,
we have a set 𝐵𝑖, where each node 𝛼 ∈ 𝐵𝑖 is an 𝑖 − 2-tuple of vectors (𝑏𝑘−𝑖+3, . . . , 𝑏𝑘),
with 𝑏ℓ ∈ 𝑆ℓ for each ℓ ∈ {𝑘 − 𝑖 + 3, . . . , 𝑘}. Note that these nodes do not have a
coordinate array.

Let 𝐴 = ∪𝑖𝐴𝑖, let 𝐵 = ∪𝑖𝐵𝑖, let 𝐿 = ∪𝑖𝐿𝑖, and let 𝐿′ = ∪𝑖𝐿
′
𝑖. For all 𝑖, let level 𝑖

denote 𝐿𝑖 ∪ 𝐿′
𝑖 ∪ 𝐴𝑖 ∪ 𝐵𝑖 (or the union of these sets that exist for that 𝑖). In contrast,

we use the word layer to refer to an individual set 𝐿𝑖 or 𝐿′
𝑖.

Finally we have 2 additional vertices, 𝑢 and 𝑣. This completes the definition of
the vertex set of 𝐺. See Figure 4-2. Figure 4-2 does not capture the case of 𝑘 = 5
since in this case 𝐿𝑘−2 comes before 𝐿4, so we also include Figure 4-3 to depict the
𝑘 = 5 case.

Number of nodes: The number of nodes of layers 𝐿1 and 𝐿𝑘+1 is 𝑛𝑘−1, and the
number of nodes in each layer 𝐿𝑖 and 𝐿′

𝑖 for 1 < 𝑖 < 𝑘 + 1 is at most 𝑛𝑘−2𝑑𝑘−1. The
number of nodes in each 𝐴𝑖 and 𝐵𝑖 is at most 𝑛𝑘−2 and the number of fixed nodes is
constant, so the graph has 𝑂(𝑛𝑘−1 + 𝑛𝑘−2𝑑𝑘−1) nodes.

4.3.2 Edge set
All edges are undirected unless otherwise specified. We have five types of edges: fixed
edges, coordinate-change edges, vector-change edges, swap edges and back edges.
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∙ A fixed edge has 𝑢 or 𝑣 as one endpoint and is directed.

∙ A coordinate-change edge is between two nodes having the same sequence of
vectors and different coordinate arrays and is undirected.

∙ A vector-change edge is between two nodes with the same coordinate array and
the same vector array except for at most one entry, where a vector in some 𝑆𝑖

is changed for another vector in 𝑆𝑖. A vector-change edge is undirected.

∙ A swap edge is between two nodes with the same coordinate array and the same
vector array except for one entry, where a vector in 𝑆𝑖 is changed for a vector
in 𝑆𝑖+2, or vice versa. A swap edge can also be between 𝐿1 and 𝐿2 or between
𝐿𝑘 and 𝐿𝑘+1, in which case a vector is changed for a coordinate array, or vice
versa. A swap edge is undirected.

∙ A back edge is an edge with at least one endpoint in 𝐴 or 𝐵, and is directed. A
back edge incident to one vertex in 𝐵 and one vertex in 𝐴 is called a 𝑏𝑎-type
back edge. Otherwise, a back edge is called an 𝑎-type back edge if it is incident
to a vertex in 𝐴, and a 𝑏-type back edge if it is incident to a vertex in 𝐵.

Now we specify each of these edges in the graph.

Swap edges: For each 𝑖 = 2, . . . , 𝑘 − 1, there are swap edges between
(𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑖 and (𝑎1, . . . , 𝑎𝑘−𝑖−1, 𝑏𝑘−𝑖+2, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑖+1. There
are also swap edges between (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿1 and (𝑎1, . . . , 𝑎𝑘−2, 𝑥) ∈ 𝐿2, as well as
between (𝑏2, . . . , 𝑏𝑘) ∈ 𝐿𝑘+1 and (𝑏3, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑘.

Vector-change edges: For each 𝑖 = 3, . . . , 𝑘 − 1, there are vector-change edges
between 𝐿𝑖 and 𝐿′

𝑖. These edges are between 𝛼 = (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑖

and 𝛽 ∈ 𝐿′
𝑖, where 𝛽 has coordinate array equal to 𝑥, and the same vectors as 𝛼,

except for at most one of 𝑎𝑘−𝑖 or 𝑏𝑘−𝑖+3.

Coordinate-change edges: For each 𝑖 = 3, . . . , 𝑘 − 1, there are coordinate-change
edges within each 𝐿′

𝑖, and between 𝐿′
𝑖 and 𝐿𝑖. We also have coordinate-change edges

within 𝐿2 and 𝐿𝑘.

Back edges: For 𝑖 = 4, . . . , 𝑘−1, and for every 𝛼 = (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥) ∈
𝐿𝑖 ∪ 𝐿′

𝑖, we add an 𝑎-type back edge from 𝛼 to 𝛽 = (𝑎1, . . . , 𝑎𝑘−𝑖) ∈ 𝐴𝑖. For every
node 𝛽 = (𝑎1, . . . , 𝑎𝑘−𝑖) ∈ 𝐴𝑖, we add an 𝑎-type back edge from 𝛽 to any vertex
(𝑐1, . . . , 𝑐𝑘−4, 𝑐𝑘−1, 𝑐𝑘, 𝑥) ∈ 𝐿′

4, if 𝑐𝑗 = 𝑎𝑗 for all 𝑗 = 1, . . . , 𝑘 − 𝑖. For 𝑖 = 3, . . . , 𝑘 − 2
and every node 𝛼 = (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑖 ∪ 𝐿′

𝑖, we add a 𝑏-type back
edge from 𝛽 = (𝑏𝑘−𝑖+3, . . . , 𝑏𝑘) ∈ 𝐵𝑖 to 𝛼. We add a 𝑏-type back edge from every
node (𝑐1, 𝑐2, 𝑐5, . . . , 𝑐𝑘, 𝑥) ∈ 𝐿′

𝑘−2 to 𝛽 = (𝑏𝑘−𝑖+3, . . . , 𝑏𝑘) ∈ 𝐵𝑖 if 𝑐𝑗 = 𝑏𝑗 for every
𝑗 = 𝑘 − 𝑖 + 3, . . . , 𝑘. See Figure 4-1.

Additionally, for any 𝑖 = 3, . . . , 𝑘−2, we add a 𝑏-type back edge from (𝑎𝑘−𝑖+3, . . . , 𝑎𝑘)
∈ 𝐵𝑖 to (𝑎𝑘) ∈ 𝐵3. For any 𝑖 = 4, . . . , 𝑘 − 1, we add an 𝑎-type back edge from
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(𝑎1) ∈ 𝐴𝑘−1 to (𝑎1, . . . , 𝑎𝑘−𝑖) ∈ 𝐴𝑖. Also, for any 𝑖 = 4, . . . , 𝑘 − 2, we add a 𝑏𝑎-type
back edge from every node in 𝐵𝑖 to every node in 𝐴𝑖. Note that for 𝑘 = 5, we don’t
have any 𝑏𝑎 type back edges since 𝐴 = 𝐴4 and 𝐵 = 𝐵3. See Figure 4-1.

Li+1Li

L′i

(a1, . . . , ak−i, bk−i+3, . . . , bk, x)

(a1, . . . , a
′
k−i, bk−i+3, . . . , bk, x)

(a1, . . . , ak−i−1, bk−i+2, . . . , bk, x)swap

vector-change

(a1, . . . , ak−i, bk−i+3, . . . , bk, y)

coordinate-change

(a1, . . . , ak−i+1, bk−i+4, . . . , bk, x)

Li−1

(a1, . . . , ak−i) (bk−i+3, . . . , bk)

Ai Bi

swap

a-type back b-type back
ba-type back

Figure 4-1: Edges attached to a node in 𝐿𝑖, for 𝑖 = 4, . . . , 𝑘 − 2. Purple edges are
back edges.

Fixed edges: Now we specify fixed edges. There is a directed edge from each vertex
of 𝐿′

𝑘−2 to 𝑣 and a directed edge from 𝑣 to each vertex of 𝐿1 ∪ 𝐿2. There is a directed
edge from each vertex of 𝐿𝑘 ∪ 𝐿𝑘+1 to 𝑢 and a directed edge from 𝑢 to each vertex of
𝐿′

4. See Figure 4-2.
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Bk−2

Ak−2

B3

Ak−1

Figure 4-2: Vertex set of 𝐺 and its directed edges. The purple edges show fixed edges
and they are attached to all nodes in a set they are pointing to/from.

This finishes the definition of the graph 𝐺.

Number of edges: Coordinate-change edges and vector-change edges are only in-
cident to vertices in 𝐿′ ∪ 𝐿2 ∪ · · · ∪ 𝐿𝑘, of which there are 𝑂(𝑛𝑘−2𝑑𝑘−1). Each such
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Figure 4-3: The construction when 𝑘 = 5.

vertex has at most 𝑑𝑘−1 incident coordinate-change edges, since this is the total num-
ber of possible coordinate arrays. Each such vertex has at most 𝑛 incident vector-
change edges, since each vector-change edge only changes one vector. Thus, there are
𝑂(𝑛𝑘−1𝑑2𝑘−2) coordinate-change and vector-change edges.

Swap edges are only incident to vertices in 𝐿. Each of the 𝑂(𝑛𝑘−1) vertices in
𝐿1 ∪ 𝐿𝑘+1 is incident to at most 𝑑𝑘−1 swap edges since swap edges from 𝐿1 to 𝐿2 and
from 𝐿𝑘+1 to 𝐿𝑘 change a vector for a coordinate. Each of the 𝑂(𝑛𝑘−2𝑑𝑘−1) vertices
in 𝐿2 ∪ · · · ∪ 𝐿𝑘 is incident to at most 𝑛 swap edges since these edges change a vector
or coordinate for a vector. Thus, there are 𝑂(𝑛𝑘−1𝑑𝑘−1) swap edges.

Each vertex is incident to 𝑂(𝑘) 𝑎-type or 𝑏-type back edges since each vertex has
at most one edge to and from each 𝐴𝑖 and 𝐵𝑖. The number of 𝑏𝑎-type back edges
between each pair 𝐵𝑖, 𝐴𝑖 is 𝑂(𝑛𝑘−2), since 𝐵𝑖 has at most 𝑛𝑘−𝑖−2 nodes and 𝐴𝑖 has at
most 𝑛𝑖 nodes.

Finally, each vertex is incident to at most two fixed edges.
Thus, we have shown that the total number of edges is 𝑂(𝑛𝑘−1𝑑2𝑘−2).

4.4 NO instance of 𝑘-OV implies diameter ≤ 𝑘

In a NO instance, for every set 𝐹 of at most 𝑘 vectors, there exists a coordinate that
is 1 for every vector in 𝐹 . Given a set 𝐹 of at most 𝑘 vectors, we let 𝐶(𝐹 ) denote a
coordinate that is 1 for every vector in 𝐹 . For any vertex 𝛼, let 𝐶(𝛼) be a coordinate
that is 1 for every vector in 𝛼.

4.4.1 Fixed paths
First, we will calculate the distance between pairs of vertices whose distance does not
depend on the answer to the 𝑘-OV instance. Note that regardless of the answer to the
𝑘-OV instance, we can assume that no set 𝐹 of at most 𝑘 − 1 vectors is orthogonal.
That is, 𝐶(𝐹 ) and 𝐶(𝛼) are well-defined for any |𝐹 | ≤ 𝑘 − 1 and any 𝛼.

Claim 1. For each vertex 𝛼 ∈ 𝑉 :
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1. There exists a vertex 𝛽1 ∈ 𝐿′
𝑘−2 so that 𝑑(𝛼, 𝛽1) ≤ 𝑘 − 2,

2. There exists a vertex 𝛽2 ∈ 𝐿′
4 so that 𝑑(𝛽2, 𝛼) ≤ 𝑘 − 2,

3. There exists a vertex 𝛽3 ∈ 𝐿𝑘 so that 𝑑(𝛼, 𝛽3) ≤ 𝑘 − 1, and

4. There exists a vertex 𝛽4 ∈ 𝐿2 so that 𝑑(𝛽4, 𝛼) ≤ 𝑘 − 1.

Proof. We prove 1 and 3. Then, 2 and 4 follow due to symmetry. Starting from 𝛼, we
can proceed towards the appropriate layer (𝐿′

𝑘−2 or 𝐿𝑘) as follows. First, by taking
at most two edges we can go to a vertex in 𝐿2 ∪ · · · ∪ 𝐿𝑘 as follows. If 𝛼 ∈ 𝐴 ∪ 𝐵, the
first edge is a back edge to a vertex in 𝐿′

𝑗 for some 𝑗; note that such a vertex exists
because the new vectors can all be the all 1s vector, and the coordinate array can be
𝑘 − 1 copies of 𝐶(𝛼). The second edge is a coordinate-change edge to 𝐿𝑗 that does
not actually change the coordinate. If 𝛼 is in an 𝐿′

𝑖 set, we only take one edge which
is a coordinate-change edge, where the new coordinate array is 𝑘 − 1 copies of 𝐶(𝛼).
If 𝛼 = 𝑢, we take a fixed edge to 𝐿′

4 and then an edge to 𝐿4. If 𝛼 = 𝑣, we take a
fixed edge to 𝐿2. If 𝛼 ∈ 𝐿1 ∪ 𝐿𝑘+1, then we take an edge to 𝐿2 or 𝐿𝑘 (respectively)
by adding the coordinate array that is 𝑘 − 1 copies of 𝐶(𝛼).

Then we proceed to the 𝐿𝑘−2 by taking swap edges that change some vector to the
all 1s vector. Then we take a vector-change edge to 𝐿′

𝑘−2 or two swap edges to 𝐿𝑘.
The vector-change edge need not actually change any vectors. It is straightforward
to see that these paths are of the appropriate lengths.

Due to the fixed edges in the graph, the consequences of Claim 1 are respectively
that

1. For each vertex 𝛼 ∈ 𝑉 and for any vertex 𝛽 ∈ 𝐿1 ∪ 𝐿2 ∪ {𝑣}, 𝑑(𝛼, 𝛽) ≤ 𝑘.

2. For each vertex 𝛼 ∈ 𝑉 and for any vertex 𝛽 ∈ 𝐿𝑘 ∪ 𝐿𝑘+1 ∪ {𝑢}, 𝑑(𝛽, 𝛼) ≤ 𝑘.

3. For each vertex 𝛼 ∈ 𝑉 , 𝑑(𝛼, 𝑢) ≤ 𝑘.

4. For each vertex 𝛼 ∈ 𝑉 , 𝑑(𝑣, 𝛼) ≤ 𝑘.

4.4.2 Variable paths
The distances that we did not bound in Section 4.4.1 are those from a vertex 𝛼 to
a vertex 𝛽 in the following cases. Cases 1 through 3 demonstrate paths with both
endpoints in 𝐿 ∪ 𝐿′. Cases 4 through 7 demonstrate paths with one endpoint in 𝐴 or
𝐵. For each case we show that the corresponding paths have length at most 𝑘.

1. 𝛼 ∈ 𝐿1 ∪ 𝐿2 and 𝛽 ∈ 𝐿′ ∪ 𝐿 ∖ (𝐿1 ∪ 𝐿2).

2. 𝛼 ∈ 𝐿′ ∪ 𝐿 ∖ (𝐿𝑘 ∪ 𝐿𝑘+1) and 𝛽 ∈ 𝐿𝑘 ∪ 𝐿𝑘+1.

3. 𝛼, 𝛽 ∈ 𝐿3 ∪ · · · ∪ 𝐿𝑘−1 ∪ 𝐿′
3 ∪ · · · ∪ 𝐿′

𝑘−1.

4. 𝛼 ∈ 𝑉 ∖ {𝑢, 𝑣} and 𝛽 ∈ 𝐵.
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5. 𝛼 ∈ 𝐵 and 𝛽 ∈ 𝑉 ∖ {𝑢, 𝑣}.

6. 𝛼 ∈ 𝑉 ∖ {𝑢, 𝑣} and 𝛽 ∈ 𝐴.

7. 𝛼 ∈ 𝐴 and 𝛽 ∈ 𝑉 ∖ {𝑢, 𝑣}.

Cases 1 and 2 are completely symmetric, as are cases 4 and 7 as well as cases 5
and 6. Hence we only analyze cases 1, 3, 4, and 5.

Case 1: 𝛼 ∈ 𝐿1 ∪ 𝐿2 and 𝛽 ∈ 𝐿′ ∪ 𝐿 ∖ (𝐿1 ∪ 𝐿2). If 𝛼 ∈ 𝐿1 let 𝛼 = (𝑎1, . . . , 𝑎𝑘−1)
and if 𝛼 ∈ 𝐿2 let 𝛼 = (𝑎1, . . . , 𝑎𝑘−2, 𝑥𝛼) where we let 𝑎𝑘−1 be the all 1s vector. We
condition on which set 𝛽 is in.

Case 1a: 𝛽 ∈ 𝐿𝑘 ∪ 𝐿𝑘+1. If 𝛽 ∈ 𝐿𝑘+1 let 𝛽 = (𝑏2, . . . , 𝑏𝑘), and if 𝛽 ∈ 𝐿𝑘 let
𝛽 = (𝑏3, . . . , 𝑏𝑘, 𝑥𝛽) where we let 𝑏2 be the all 1s vector.

We will use the coordinate array 𝑥 = (𝑥1, . . . , 𝑥𝑘−1) defined as follows: for all
1 ≤ ℓ ≤ 𝑘 − 1, 𝑥𝑘−ℓ = 𝐶(𝑎1, . . . , 𝑎ℓ, 𝑏ℓ+1, . . . , 𝑏𝑘). See Table 4.2(a).

(a) Cases 1a and 4

𝑥1 . . . 𝑥ℓ . . . 𝑥𝑘−1
𝑎1 1 . . . 1 . . . 1
. . . . . . . . . . . . . . .

𝑎𝑘−ℓ 1 . . . 1
. . . . . . . . .

𝑎𝑘−1 1
𝑏2 1
. . . . . . . . .

𝑏𝑘−ℓ+1 1 . . . 1
. . . . . . . . . . . . . . .
𝑏𝑘 1 . . . 1 . . . 1

(b) Cases 1b and 1c

𝑥1 . . . 𝑥ℓ . . . 𝑥𝑘−2 𝑥𝑘−1
𝑎1 1 . . . 1 . . . 1 1
𝑎2 1 . . . 1 . . . 1 1
. . . . . . . . . . . . . . .

𝑎𝑘−ℓ 1 . . . 1
. . . . . . . . .

𝑎𝑘−1 1
𝑐1 1 1
. . . . . . . . . . . .

𝑐𝑘−ℓ−1 1 . . . 1 1
. . . . . . . . . . . . . . . . . .

𝑐𝑘−2 1 . . . 1 . . . 1 1

Table 4.2: Coordinate arrays used in the 𝛼𝛽 path.

We now describe a path of length 𝑘 from 𝛼 to 𝛽. All of the internal vertices along
the path use the coordinate 𝑥, and the existence of these vertices follows from the
definition of 𝑥.

We begin by taking an edge from 𝛼 to (𝑎1, . . . , 𝑎𝑘−2, 𝑥) ∈ 𝐿2 either by taking a swap
edge or a coordinate-change edge (depending on whether 𝛼 is in 𝐿1 or 𝐿2). We then
use swap edges to go from 𝐿2 to 𝐿𝑘, where to go from 𝐿𝑟 to 𝐿𝑟+1 we change the vector
𝑎𝑘−𝑟 to the vector 𝑏𝑘−𝑟+2. After traversing these edges, we end at (𝑏3, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑘.
Finally, we take an edge to 𝛽 (which is a swap edge or a coordinate-change edge
depending on whether 𝛽 is in 𝐿𝑘+1 or 𝐿𝑘). This path is shown with black (solid and
dashed lines) and blue edges in Figure 4-4.
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Figure 4-4: 𝛼𝛽 path in Case 1. Different cases of 𝛽 are shown with different colors.
The path between 𝐿2 and 𝐿𝑘−2 is shown with black dashed lines. Solid lines indicate
edges. A node in a dashed box containing two sets means that the node is in either
set.

Case 1b: 𝛽 ∈ 𝐿𝑘−1 ∪ 𝐿′
𝑘−1. Let 𝛽 = (𝑎′

1, 𝑏4, . . . , 𝑏𝑘, 𝑥𝛽) = (𝑐1, . . . , 𝑐𝑘−2, 𝑥𝛽) ∈
𝐿𝑘−1 ∪ 𝐿′

𝑘−1. We will use the coordinate array 𝑥 = (𝑥1, . . . , 𝑥𝑘−1) defined as follows:
for all 1 ≤ ℓ ≤ 𝑘 − 2, 𝑥ℓ = 𝐶(𝑎1, . . . , 𝑎𝑘−ℓ, 𝑐𝑘−ℓ−1, . . . , 𝑐𝑘−2), and we set 𝑥𝑘−1 = 𝑥𝑘−2.
See Table 4.2(b). We begin by taking an edge from 𝛼 to (𝑎1, . . . , 𝑎𝑘−2, 𝑥) ∈ 𝐿2 either
by taking a swap edge or a coordinate-change edge (depending on whether 𝛼 is in 𝐿1
or 𝐿2). We then use swap edges to go from 𝐿2 to 𝐿𝑘−1, where to go from 𝐿𝑟 to 𝐿𝑟+1
we change the vector 𝑎𝑘−𝑟 to the vector 𝑏𝑘−𝑟+2. So we are at (𝑎1, 𝑏4, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑘−1.
We then take a vector-change edge to (𝑎′

1, 𝑏4, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿′
𝑘−1, and then take a

coordinate-change edge to 𝛽. This path is shown with black (solid and dashed lines)
and red edges in Figure 4-4.

Case 1c: 𝛽 ∈ 𝐿3 ∪ · · · ∪ 𝐿𝑘−2 ∪ 𝐿′
3 ∪ · · · ∪ 𝐿′

𝑘−2. Suppose 𝛽 ∈ 𝐿𝑖 ∪ 𝐿′
𝑖 and let 𝛽 =

(𝑎′
1, . . . , 𝑎′

𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥𝛽) = (𝑐1, . . . , 𝑐𝑘−2, 𝑥𝛽).
We will use the coordinate array 𝑥 = (𝑥1, . . . , 𝑥𝑘−1) defined as follows: for all

1 ≤ ℓ ≤ 𝑘 − 2, 𝑥ℓ = 𝐶(𝑎1, . . . , 𝑎𝑘−ℓ, 𝑐𝑘−ℓ−1, . . . , 𝑐𝑘−2), and we set 𝑥𝑘−1 = 𝑥𝑘−2. See
Table 4.2(b).

We begin by taking an edge from 𝛼 to (𝑎1, . . . , 𝑎𝑘−2, 𝑥) ∈ 𝐿2 either by taking a
swap edge or a coordinate-change edge (depending on whether 𝛼 is in 𝐿1 or 𝐿2). We
then use swap edges to go from 𝐿2 to 𝐿𝑘−2, where to go from 𝐿𝑟 to 𝐿𝑟+1 we change
the vector 𝑎𝑘−𝑟 to the vector 𝑏𝑘−𝑟+2, where 𝑏𝑘−𝑟+2 has been defined as part of 𝛽 if
𝑟 ≤ 𝑖 − 1, and otherwise we define 𝑏𝑘−𝑟+2 as the all 1s vector. After traversing these
edges, we end at (𝑎1, 𝑎2, 𝑏5, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑘−2.

Then, we take a coordinate-change edge to arrive at (𝑎1, 𝑎2, 𝑏5, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿′
𝑘−2

(without actually changing any coordinates). This vertex exists by option 2 of the
specification of vertices in 𝐿′

𝑘−2. So far, the path is of length 𝑘 − 2.
Then, we use a 𝑏-type back edge to go to 𝛾 = (𝑏𝑘−𝑖+3, . . . , 𝑏𝑘) ∈ 𝐵𝑖, and then use

another 𝑏-type back edge to go from 𝛾 to 𝛽. The full path is of length 𝑘. This path
is shown with black (solid and dashed lines) and purple edges in Figure 4-4.
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Case 3: 𝛼, 𝛽 ∈ 𝐿3 ∪ · · · ∪ 𝐿𝑘−1 ∪ 𝐿′
3 ∪ · · · ∪ 𝐿′

𝑘−1. Suppose 𝛼 ∈ 𝐿𝑖 ∪ 𝐿′
𝑖 and

𝛽 ∈ 𝐿𝑗 ∪ 𝐿′
𝑗. Let 𝛼 = (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏𝑘−𝑖+3, . . . , 𝑏𝑘, 𝑥𝛼) = (𝑐1, . . . , 𝑐𝑘−2, 𝑥𝛼) and let

𝛽 = (𝑎′
1, . . . , 𝑎′

𝑘−𝑗, 𝑏′
𝑘−𝑗+3, . . . , 𝑏′

𝑘, 𝑥𝛽) = (𝑐′
1, . . . , 𝑐′

𝑘−2, 𝑥𝛽).
We will use the coordinate array 𝑥 = (𝑥1, . . . , 𝑥𝑘−1) defined as follows: for all 2 ≤

ℓ ≤ 𝑘 − 2, 𝑥ℓ = 𝐶(𝑐1, . . . , 𝑐𝑘−ℓ, 𝑐′
𝑘−ℓ−1, . . . , 𝑐′

𝑘−2), and we set 𝑥1 = 𝑥2 and 𝑥𝑘−1 = 𝑥𝑘−2.
See Table 4.3.

𝑥1 𝑥2 . . . 𝑥ℓ . . . 𝑥𝑘−2 𝑥𝑘−1
𝑐1 1 1 . . . 1 . . . 1 1
𝑐2 1 1 . . . 1 . . . 1 1
. . . . . . . . . . . . . . . . . .
𝑐𝑘−ℓ 1 1 . . . 1
. . . . . . . . . . . .

𝑐𝑘−2 1 1
𝑐′

1 1 1
. . . . . . . . . . . .

𝑐′
𝑘−ℓ−1 1 . . . 1 1
. . . . . . . . . . . . . . . . . .

𝑐′
𝑘−3 1 1 . . . 1 . . . 1 1

𝑐′
𝑘−2 1 1 . . . 1 . . . 1 1

Table 4.3: Case 2 coordinate array used in the 𝛼𝛽 path.

We now describe a path of length 𝑘 from 𝛼 to 𝛽. Follow Figure 4-5 for an illus-
tration of the path. All of the internal vertices along the path use the coordinate 𝑥,
and the existence of these vertices follows from the definition of 𝑥.

We first show a path of length 3 from 𝛼 to 𝛾 = (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑎𝑘−𝑖+1, . . . , 𝑎𝑘−4, 𝑏′
𝑘−1,

𝑏′
𝑘, 𝑥) ∈ 𝐿4, where 𝑎ℓ is the all 1 vector for all ℓ > 𝑘 − 𝑖 and if 𝑗 = 3, 𝑏′

𝑘−1 is the all 1
vector (otherwise 𝑏′

𝑘−1 is defined for 𝛽).
If 𝑖 > 3, using an 𝑎-type back edge we go from 𝛼 to (𝑎1, . . . , 𝑎𝑘−𝑖) ∈ 𝐴𝑖, and using

another 𝑎-type back edge we go to (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑎𝑘−𝑖+1, . . . , 𝑎𝑘−4, 𝑏′
𝑘−1, 𝑏′

𝑘, 𝑥) ∈ 𝐿′
4.

Now using a coordinate-change edge we go to 𝛾 ∈ 𝐿4, without actually changing any
coordinates. This corresponds to the green path in Figure 4-5.

If 𝑖 = 3, we first take a coordinate-change edge to (𝑎1, . . . , 𝑎𝑘−3, 𝑏𝑘, 𝑥) ∈ 𝐿′
3, then

take a vector-change edge to change 𝑏𝑘 to 𝑏′
𝑘 and arrive at (𝑎1, . . . , 𝑎𝑘−3, 𝑏′

𝑘, 𝑥) ∈ 𝐿3,
and then use a swap edge to go to 𝛾 ∈ 𝐿4. This corresponds to the purple path in
Figure 4-5.

Next, we show a path of length 3 from 𝛾′ = (𝑎1, 𝑎2, 𝑏′
5, . . . , 𝑏′

𝑘, 𝑥) ∈ 𝐿𝑘−4 to 𝛽,
where 𝑏′

ℓ is the all 1s vector for ℓ < 𝑘 − 𝑗 + 3 and 𝑎2 is the all 1s vector if 𝑗 = 𝑘 − 1.
Then we show that we can go from 𝛾 to 𝛾′ in 𝑘 − 6 when 𝑘 ≥ 6. We handle 𝑘 = 5 in
the last paragraph of Case 2. For now, we assume that 𝑘 > 5.

Now, we use swap edges to go from 𝛾 ∈ 𝐿4 to 𝐿𝑘−2 where for all 4 ≤ 𝑟 < 𝑘 − 2 to
go from 𝐿𝑟 to 𝐿𝑟+1 we change the vector 𝑎𝑘−𝑟 to the vector 𝑏′

𝑘−𝑟+2, where 𝑏′
𝑘−𝑟+2 has

already been defined as part of 𝛽 if 𝑟 ≤ 𝑗 −1, and otherwise we define 𝑏′
𝑘−𝑟+2 as the all

1s vector. This path of swap edges is of length 𝑘 − 6, so the path is thus far of length
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𝑘 − 3. After traversing these edges, we end at 𝛾′ = (𝑎1, 𝑎2, 𝑏′
5, . . . , 𝑏′

𝑘, 𝑥) ∈ 𝐿𝑘−2.
The 𝛾𝛾′ path is shown with black dashed lines in Figure 4-5. If 𝑗 < 𝑘 − 1, then
using a coordinate-change edge we go to (𝑎1, 𝑎2, 𝑏′

5, . . . , 𝑏′
𝑘, 𝑥) ∈ 𝐿′

𝑘−2 without actually
changing any coordinates. Then we take a 𝑏-type back edge to go to (𝑏′

𝑘−𝑗+3, . . . , 𝑏′
𝑘) ∈

𝐵𝑗, and using another 𝑏-type back edge we go to 𝛽. This corresponds to the orange
path in Figure 4-5.

If 𝑗 = 𝑘 − 1, we use a swap edge to go to (𝑎1, 𝑏′
4, . . . , 𝑏′

𝑘, 𝑥) ∈ 𝐿𝑘−1, then use a
vector-change edge to change 𝑎1 to 𝑎′

1 and arrive at 𝐿′
𝑘−1, and then use a coordinate-

change edge to 𝛽. This corresponds to the red path in Figure 4-5. The total length
of the path is hence 𝑘.

This concludes Case 2 when 𝑘 > 5. Now suppose that 𝑘 = 5. We have already
shown that there is a path of length 3 from 𝛼 to 𝛾 = (𝑎1, 𝑏′

4, 𝑏′
5, 𝑥) ∈ 𝐿4. If 𝑗 = 4, we

get to 𝛽 from 𝛾 using a vector-change edge to (𝑎′
1, 𝑏′

4, 𝑏′
5, 𝑥) ∈ 𝐿′

4, and then coordinate-
change edge. So suppose that 𝑗 = 3. Then there is a path of length 3 from 𝛾′′ =
(𝑎1, 𝑎2, 𝑏5, 𝑥) ∈ 𝐿3 to 𝛽 as follows: take a vector-change edge to (𝑎1, 𝑎2, 𝑏′

5, 𝑥) ∈ 𝐿′
3,

then a back edge to (𝑏′
5) ∈ 𝐵3, and then another back edge to 𝛽. Now to go from 𝛼

to 𝛾′′ in at most 2, we do the following: If 𝑖 = 3, we take a coordinate-change edge
from 𝛼 to 𝛾′′. If 𝑖 = 4, we first take a coordinate-change edge to (𝑎1, 𝑏4, 𝑏5, 𝑥) ∈ 𝐿4,
and then a swap edge to 𝛾′′.
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Figure 4-5: 𝛼𝛽 path in Case 3. Different cases of 𝛼 and 𝛽 are shown with different
colors. The path between 𝛾 ∈ 𝐿4 and 𝛾′ ∈ 𝐿𝑘−2 is shown with black dashed lines.
Solid lines indicate edges. A node in a dashed box containing two sets means that
the node is in either set.

Case 4: 𝛼 ∈ 𝑉 ∖ {𝑢, 𝑣} and 𝛽 ∈ 𝐵: For the majority of this case, we assume that
𝑘 > 5, and then at the end of this case we include a paragraph to handle 𝑘 = 5. Let
𝛽 ∈ 𝐵𝑗 and 𝛽 = (𝑏𝑘−𝑗+3, . . . , 𝑏𝑘).

An intermediate node on the path from 𝛼 to 𝛽 will be some 𝛾 ∈ 𝐿4 of the form
(𝑎1, . . . , 𝑎𝑘−4, 𝑏𝑘−1, 𝑏𝑘, 𝑥), where 𝑏𝑘 has already been defined, 𝑏𝑘−1 has been defined
unless 𝑗 = 3 in which case 𝑏𝑘−1 is the all 1s vector, each 𝑎1, . . . , 𝑎𝑘−4 is some vector
from the appropriate set 𝑆1, . . . , 𝑆𝑘−4, and 𝑥 is a coordinate array satisfying the
following conditions: For ℓ = 4, . . . , 𝑘 − 4, 𝑥ℓ = 𝐶(𝑎1, . . . , 𝑎𝑘−ℓ, 𝑏𝑘−ℓ+1, . . . , 𝑏𝑘), where
for 𝑟 < 𝑘 − 𝑗 + 3, 𝑏𝑟 is the all 1s vector, and for 𝑟 > 𝑘 − 4, 𝑎𝑟 is the all 1s vector. See
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Table 4.2. Each vertex in the path from 𝛼 to 𝛽 that we will specify exists due to the
definition of 𝑥.

First, we show that for all 𝛾 of the above form, there is a path of length at most
𝑘−3 from 𝛾 to 𝛽. Using swap edges we go from 𝛾 to 𝛾′ = (𝑎1, 𝑎2, 𝑏5, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿𝑘−2,
where 𝑏𝑠 has already been defined for 𝑠 ≥ 𝑘 − 𝑗 + 3, and 𝑏𝑠 is the all 1s vector for
𝑠 < 𝑘 − 𝑗 + 3. To construct this path from 𝛾 to 𝛾′, for all 𝑟 = 4, . . . , 𝑘 − 2, to go from
𝐿𝑟 to 𝐿𝑟+1 we change the vector 𝑎𝑘−𝑟 to the vector 𝑏𝑘−𝑟+2. Then from 𝛾′ we take
an edge to (𝑎1, 𝑎2, 𝑏5, . . . , 𝑏𝑘, 𝑥) ∈ 𝐿′

𝑘−2 and then take a 𝑏-type back edge to 𝛽. The
𝛾𝛽 path is specified with dashed black lines representing subpaths and black edges in
Figure 4-6.

To complete the path from 𝛼 to 𝛽, we will show a path of length at most 3 from
𝛼 to some 𝛾 of the above form. We divide into cases based on where 𝛼 is. Because
𝑎1, . . . , 𝑎𝑘−4 are unspecified in the definition of 𝛾, we have the freedom to specify these
vectors in the following cases.

Case 4a: 𝛼 ∈ 𝐿𝑘 ∪ 𝐿𝑘+1. From 𝛼 we take a fixed edge to 𝑢 and then from
𝑢 we take a fixed edge to (𝑎1, . . . , 𝑎𝑘−4, 𝑏𝑘−1, 𝑏𝑘, 𝑥) ∈ 𝐿′

4, where we define 𝑎𝑖 for 𝑖 =
1, . . . , 𝑘 − 4 as the all 1s vector. Using a coordinate-change edge we go to 𝛾 =
(𝑎1, . . . , 𝑎𝑘−4, 𝑏𝑘−1, 𝑏𝑘, 𝑥) ∈ 𝐿4 without actually changing any coordinates. This path
is illustrated in purple in Figure 4-6.

Case 4b: 𝛼 ∈ 𝐿1 ∪ 𝐿2. If 𝛼 ∈ 𝐿1 then let 𝛼 = (𝑎1, . . . , 𝑎𝑘−1), and if 𝛼 ∈ 𝐿2
then let 𝛼 = (𝑎1, . . . , 𝑎𝑘−2𝑥𝛼), in which case 𝑎𝑘−1 is the all 1s vector. We begin by
taking an edge from 𝛼 to (𝑎1, . . . , 𝑎𝑘−2, 𝑥) ∈ 𝐿2 either by taking a swap edge or a
coordinate-change edge (depending on whether 𝛼 is in 𝐿1 or 𝐿2). We then use two
swap edges to go from 𝐿2 to 𝐿4, where to go from 𝐿𝑟 to 𝐿𝑟+1 we change the vector
𝑎𝑘−𝑟 to the vector 𝑏𝑘−𝑟+2. So we arrive at 𝛾 = (𝑎1, . . . , 𝑎𝑘−4, 𝑏𝑘−1, 𝑏𝑘, 𝑥). This path is
illustrated in green in Figure 4-6.

Case 4c: 𝛼 ∈ 𝐿3 ∪ 𝐿′
3 ∪ 𝐵3. Let 𝛼 = (𝑎1, . . . , 𝑎𝑘−3, 𝑏′

𝑘, 𝑥𝛼) = (𝑐1, . . . , 𝑐𝑘−2, 𝑥𝛼)
if 𝛼 ∈ 𝐿3 ∪ 𝐿′

3, and let 𝛼 = (𝑏′
𝑘) = (𝑐𝑘−2) if 𝛼 ∈ 𝐵3, in which case 𝑎ℓ is the all 1s

vector for ℓ = 1, . . . , 𝑘 − 3. From 𝛼, we take a back edge or a coordinate-change
edge to (𝑎1, . . . , 𝑎𝑘−3, 𝑏′

𝑘, 𝑥) ∈ 𝐿′
3. Then take a vector-change edge to change 𝑏′

𝑘 to
𝑏𝑘 and arrive at (𝑎1, . . . , 𝑎𝑘−3, 𝑏𝑘, 𝑥) ∈ 𝐿3. Then using a swap edge we proceed to
𝛾 = (𝑎1, . . . , 𝑎𝑘−4, 𝑏𝑘−1, 𝑏𝑘, 𝑥) ∈ 𝐿4. This path is illustrated in red in Figure 4-6.

Case 4d: 𝛼 ∈ 𝐿𝑖 ∪ 𝐿′
𝑖 ∪ 𝐵𝑖 ∪ 𝐴𝑖 for 𝑖 = 4, . . . , 𝑘 − 1. First if 𝛼 /∈ 𝐴𝑖, we show

how to get to a node in 𝐴𝑖. Then we show how to go to 𝛾 from any node in 𝐴𝑖 using
a path of length 2. Suppose that 𝛼 = (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑏′

𝑘−𝑖+3, . . . , 𝑏′
𝑘, 𝑥𝛼) if 𝛼 ∈ 𝐿𝑖 ∪ 𝐿′

𝑖,
and suppose that 𝛼 = (𝑏′

𝑘−𝑖+3, . . . , 𝑏′
𝑘) if 𝛼 ∈ 𝐵𝑖, in which case we assume that 𝑎ℓ

is the all 1s vector for ℓ = 1, . . . , 𝑘 − 𝑖. Take an 𝑎-type or 𝑏𝑎-type back edge to
(𝑎1, . . . , 𝑎𝑘−𝑖) ∈ 𝐴𝑖. Now we show how to proceed from this vertex to 𝛾.

We take an 𝑎-type back edge to (𝑎1, . . . , 𝑎𝑘−4, 𝑏𝑘−1, 𝑏𝑘, 𝑥) ∈ 𝐿′
4, and then take a
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coordinate-change edge to 𝛾 = (𝑎1, . . . , 𝑎𝑘−4, 𝑏𝑘−1, 𝑏𝑘, 𝑥) ∈ 𝐿4 without actually chang-
ing any coordinates. This path is illustrated in orange in Figure 4-6.
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Figure 4-6: 𝛼𝛽 path in Case 4. Different cases of 𝛼 are shown with different colors.
The path between 𝛾 ∈ 𝐿4 and 𝛾′ ∈ 𝐿𝑘−2 is shown with black dashed lines. Solid lines
indicate edges. A node in a dashed box containing two sets means that the node is
in either set.

This completes Case 4 when 𝑘 > 5. Now we let 𝑘 = 5 and specify a path of length
at most 5 from 𝛼 to 𝛽. Since 𝑘 = 5, we have that 𝐵 = 𝐵3 so let 𝛽 = (𝑏𝑘) ∈ 𝐵3.
Regardless of its location in the graph, 𝛼 has at most 4 vectors in its representation.
Let 𝑎1, 𝑎2, 𝑎3, 𝑎4 be a set consisting of all of the vectors in the representation of 𝛼 plus
some all 1s vectors if 𝛼 has fewer than 4 vectors in its representation. Let 𝑥 be the
coordinate array consisting of 4 copies of the coordinate 𝐶(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏𝑘). From 𝛼
we can go to 𝛾 = (𝑎1, 𝑎2, 𝑏′

5, 𝑥) ∈ 𝐿3 using a path of length 3. To do this, we either
take a coordinate-change edge or a back edge to a vertex in 𝐿2 ∪ . . . ∪ 𝐿4 ∪ 𝐿′, and
then take swap or coordinate-change edges to 𝛾. Then from 𝛾, we take a vector-change
edge to (𝑎1, 𝑎2, 𝑏5, 𝑥) ∈ 𝐿′

3, and then a back edge to 𝛽.

Case 5: 𝛼 ∈ 𝐵 and 𝛽 ∈ 𝑉 ∖ {𝑢, 𝑣}. Suppose that 𝛼 ∈ 𝐵𝑖. First suppose that 𝑖 > 3.
We know that by Claim 1, there is a 𝛽′ ∈ 𝐿′

4 such that 𝑑(𝛽′, 𝛽) ≤ 𝑘 −2. We show that
there is a path of length 2 from 𝛼 to 𝛽′. Suppose that 𝛽′ = (𝑎1, . . . , 𝑎𝑘−4, 𝑏′

𝑘−1, 𝑏′
𝑘, 𝑥𝛽′).

From 𝛼, take a 𝑏𝑎-type back edge to (𝑎1, . . . , 𝑎𝑘−𝑖) ∈ 𝐴𝑖, and then take an 𝑎-type
back edge to 𝛽′.

Now suppose that 𝑖 = 3 and 𝛼 = (𝑏𝑘). Suppose 𝛽 is in the 𝑗th level. We represent
𝛽 as follows: If 𝛽 ∈ 𝐿𝑗 ∪ 𝐿′

𝑗 for 𝑗 = 2, . . . , 𝑘, let 𝛽 = (𝑎1, . . . , 𝑎𝑘−𝑗, 𝑏′
𝑘−𝑗+3, . . . , 𝑏′

𝑘, 𝑥𝛽).
If 𝛽 ∈ 𝐿1, let 𝛽 = (𝑎1, . . . , 𝑎𝑘−1), and if 𝛽 ∈ 𝐿𝑘+1 let 𝛽 = (𝑏′

2, . . . , 𝑏′
𝑘). Finally, if

𝛽 ∈ 𝐴𝑗 for some 𝑗 = 4, . . . , 𝑘 − 1, let 𝛽 = (𝑎1, . . . , 𝑎𝑘−𝑗) and if 𝛽 ∈ 𝐵𝑗 for some
𝑗 = 3, . . . , 𝑘 − 2, let 𝛽 = (𝑏𝑘−𝑗+3, . . . , 𝑏𝑘). Define the coordinate array 𝑥 such that
for all ℓ = 1, . . . , 𝑘 − 1, 𝑥ℓ = 𝐶(𝑎1, . . . , 𝑎𝑘−𝑗, 𝑏′

𝑘−𝑗+3, . . . , 𝑏′
𝑘, 𝑏𝑘), where for 𝑗 = 1,

𝑥ℓ = 𝐶(𝑎1, . . . , 𝑎𝑘−1, 𝑏𝑘) and for 𝑗 = 𝑘 + 1, 𝑥ℓ = 𝐶(𝑏′
2, . . . , 𝑏′

𝑘, 𝑏𝑘). We exhibit a path
of length at most 𝑘 to 𝛽: First take a 𝑏-type back edge to (𝑎1, . . . , 𝑎𝑘−3, 𝑏𝑘, 𝑥) ∈ 𝐿′

3,
where 𝑎ℓ is the all 1s vector for ℓ > 𝑘 − 𝑗. Then take a vector-change edge to change
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𝑏𝑘 to 𝑏′
𝑘 and arrive at (𝑎1, . . . , 𝑎𝑘−3, 𝑏′

𝑘, 𝑥) ∈ 𝐿3.
If 𝛽 ∈ 𝐿𝑗 for 𝑗 = 1, 2, 𝑘, 𝑘 + 1, take swap edges to 𝛽. This path is of length

2 + |𝑗 − 3| ≤ 𝑘, and it is shown in Figure 4-7: For 𝑗 = 1, 2 it is shown with black and
green and for 𝑗 = 𝑘, 𝑘 + 1 it is shown with black (solid and dashed) and blue.

If 𝛽 ∈ 𝐿𝑗 ∪ 𝐿′
𝑗 for some 𝑗 = 3, . . . , 𝑘 − 1, take swap edges to get to (𝑎1, . . . , 𝑎𝑘−𝑗,

𝑏′
𝑘−𝑗+3, . . . , 𝑏𝑘−𝑗, 𝑥) ∈ 𝐿𝑗. So far the path is of length 2 + |𝑗 − 3| ≤ 𝑘 − 2. If 𝛽 ∈ 𝐿′

𝑗,
take one coordinate-change edge to 𝛽. Note that the 𝛼𝛽 path in this case is of length
𝑘 − 1. If 𝛽 ∈ 𝐿𝑗, take one coordinate-change edge to the copy of 𝛽 in 𝐿′

𝑗, and then
another edge to 𝛽 ∈ 𝐿𝑗. These paths are shown with black (dashed and solid) and
purple in Figure 4-7.

If 𝛽 ∈ 𝐴 ∪ 𝐵, then there is a 𝛽′ ∈ 𝐿′
𝑗 for some 𝑗, such that 𝑑(𝛽′, 𝛽) = 1. Above,

we showed how to get to any 𝛽′ ∈ 𝐿′
𝑗 with a path of length at most 𝑘 − 1. For 𝛽 ∈ 𝐴𝑗

the path is shown with black and orange in Figure 4-7, and for 𝛽 ∈ 𝐵𝑗 it is shown
with black and red.
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Figure 4-7: 𝛼𝛽 paths in Case 5 when 𝛼 ∈ 𝐵3. Different cases of 𝛽 are shown with
different colors. The path between 𝐿3 and 𝐿𝑘−2 is shown with black dashed lines.
Solid lines indicate edges. A node in a dashed box containing two sets means that
the node is in either sets.

4.5 YES instance of 𝑘-OV implies diameter ≥ 2𝑘−1
Let 𝑎1, 𝑎2, . . . , 𝑎𝑘 ∈ 𝑆 be orthogonal. Let 𝛼 = (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿1 and let 𝛽 =
(𝑎2, . . . , 𝑎𝑘) ∈ 𝐿𝑘+1. We claim that 𝑑(𝛼, 𝛽) ≥ 2𝑘 − 1. Let 𝑃 be a shortest path from
𝛼 to 𝛽.

Recall that level 𝑖 is defined as 𝐿𝑖 ∪ 𝐿′
𝑖 ∪ 𝐴𝑖 ∪ 𝐵𝑖. Recall that a layer refers to an

individual set 𝐿𝑖 or 𝐿′
𝑖.

We begin with two observations.

Observation 4.5.1. The only edges that go from a vertex in some level 𝑖 to a vertex
in a level 𝑗 > 𝑖 are swap edges between 𝐿𝑖 and 𝐿𝑖+1.

The next observation follows directly from Observation 4.5.1.
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Observation 4.5.2. For all 𝑖 < 𝑗, any path from a vertex in level 𝑖 to a vertex in
level 𝑗 uses a vertex in every layer 𝐿𝑖, . . . , 𝐿𝑗.

We claim that if 𝑃 contains either 𝑢 or 𝑣 (or both) then the length of 𝑃 is at least
2𝑘 − 1. If 𝑃 contains 𝑣 then 𝑃 must go from 𝐿1 to 𝐿𝑘−2 to 𝐿′

𝑘−2 to 𝑣 to 𝐿2 to 𝐿𝑘+1,
which costs at least 2𝑘 −1 by Observation 4.5.2. The argument is symmetric for 𝑢: If
𝑃 contains 𝑢 then 𝑃 must go from 𝐿1 to 𝐿𝑘 to 𝑢 to 𝐿′

4 to 𝐿4 to 𝐿𝑘+1, which costs at
least 2𝑘 − 1 by Observation 4.5.2. From now on we assume that 𝑃 does not contain
𝑢 or 𝑣.

Next, we claim that if 𝑃 contains a 𝑏𝑎-type back edge then the length of 𝑃 is at
least 2𝑘 − 1. Since the only edges to 𝐵 are from 𝐿′

𝑘−2, and the only edges from 𝐴 are
to 𝐿′

4, if 𝑃 contains a 𝑏𝑎-type back edge then 𝑃 must go from 𝐿1 to to 𝐿𝑘−2 to 𝐿′
𝑘−2

to 𝐵 to 𝐴 to 𝐿′
4 to 𝐿4 to 𝐿𝑘+1. This costs at least 2𝑘 − 1 by Observation 4.5.2. From

now on we assume that 𝑃 does not contain any 𝑏𝑎-type back edges.
We make one more observation, which follows from Observation 4.5.2 and the

following fact: Ignoring 𝑏𝑎-type edges, all edges from 𝐴 go to 𝐿′
4, all edges to 𝐴 are

from a level that is at least 4, all edges to 𝐵 are from 𝐿′
𝑘−2, and all edges from 𝐵 are

to a level that is at most 𝑘 − 2.

Observation 4.5.3. If 𝑃 visits 𝐴, then 𝑃 visits 𝐿4 both before and after visiting 𝐴.
If 𝑃 visits 𝐵, then 𝑃 visits 𝐿𝑘−2 both before and after visiting 𝐵.

Lemma 4.5.1. Fix 𝑖 = 2, . . . , 𝑘 and let 𝛾1 and 𝛾2 be the first and last vertices in 𝐿𝑖

that 𝑃 visits, respectively. Let 𝑃1 be the subpath of 𝑃 from 𝛼 to 𝛾1 and let 𝑃2 be the
subpath of 𝑃 from 𝛾2 to 𝛽. If 𝑃1 does not visit 𝐵, then 𝛾1 has the prefix (𝑎1, . . . , 𝑎𝑘−𝑖),
and if 𝑃2 does not visit 𝐴, then 𝛾2 has the suffix (𝑎𝑘−𝑖+3, . . . , 𝑎𝑘, 𝑥) for some coordinate
array 𝑥.

Proof. Suppose that 𝑃1 does not visit 𝐵. By Observation 4.5.2, all vertices in 𝑃1
except for 𝛾1 are in levels below 𝑖. Then by construction, all vertices on 𝑃1 contain a
prefix of the form (𝑎′

1, . . . , 𝑎′
𝑘−𝑖) where 𝑎′

𝑖 ∈ 𝑆𝑖. Since 𝑃1 does not visit 𝐵, 𝑢, or 𝑣, all
edges on 𝑃1 do not change any of the vectors (𝑎′

1, . . . , 𝑎′
𝑘−𝑖). Thus, these vectors are

the same for 𝛾1 and 𝛼; that is, 𝛾1 has the prefix (𝑎1, . . . , 𝑎𝑘−𝑖).
Now suppose 𝑃2 does not visit 𝐴. By Observation 4.5.2, all vertices in 𝑃2 except

for 𝛾2 are in levels above 𝑖. Then by construction, all vertices on 𝑃2 contain a suffix
of the form (𝑎′

𝑘−𝑖+3, . . . , 𝑎′
𝑘) where 𝑎′

𝑖 ∈ 𝑆𝑖. Since 𝑃2 does not visit 𝐴, 𝑢, or 𝑣, all edges
on 𝑃2 do not change any of the vectors (𝑎′

𝑘−𝑖+3, . . . , 𝑎′
𝑘). Thus, these vectors are the

same for 𝛾2 and 𝛽; that is, 𝛾2 ends with (𝑎𝑘−𝑖+3, . . . , 𝑎𝑘, 𝑥) for some 𝑥.

To analyze the length of 𝑃 , we will condition on which 𝐿𝑖 are in a loop, which is
defined as follows.

Definition 4.5.1 (loop). For all indices 𝑖, we say that 𝐿𝑖 is in a loop if 𝑃 visits 𝐿𝑖

at least twice.

An outline of the remainder of the proof is as follows. First we will define the
notion of a set 𝐿𝑖 in a loop that covers a set 𝐿𝑗 not in a loop. Then we will prove
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that every 𝐿𝑖 is either in a loop or covered. Then, we will partition 𝐿 where each
piece of the partition is composed of a set of consecutive layers that are all in loops
as well as the layers covered by these layers. Then we will compute the length of the
subpath of 𝑃 in each of these pieces. Finally, we will take the sum over all of these
subpaths and the edges between them.

Definition 4.5.2 (cover). For all 𝑖 = 3, . . . , 𝑘 − 1, we say that 𝐿𝑖 covers 𝐿𝑖−1 if the
following conditions are satisfied:

1. 𝐿𝑖−1 is not in a loop,

2. 𝐿𝑖 is in a loop, and

3. If 𝛾1 = (𝑎′
1, . . . , 𝑎′

𝑘−𝑖, 𝑎′
𝑘−𝑖+3, . . . , 𝑎′

𝑘, 𝑥𝛾1) and 𝛾2 = (𝑎′′
1, . . . , 𝑎′′

𝑘−𝑖, 𝑎′′
𝑘−𝑖+3, . . . , 𝑎′′

𝑘, 𝑥𝛾2)
are the first and last vertices from 𝐿𝑖 that 𝑃 visits, then 𝑎′

𝑘−𝑖+3 ̸= 𝑎′′
𝑘−𝑖+3 and

𝑥𝛾1 ̸= 𝑥𝛾2.

Symmetrically, for all 𝑖 = 3, . . . , 𝑘 − 1, we say that 𝐿𝑖 covers 𝐿𝑖+1 if the following
conditions are satisfied:

1. 𝐿𝑖+1 is not in a loop,

2. 𝐿𝑖 is in a loop, and

3. If 𝛾1 = (𝑎′
1, . . . , 𝑎′

𝑘−𝑖, 𝑎′
𝑘−𝑖+3, . . . , 𝑎′

𝑘, 𝑥𝛾1) and 𝛾2 = (𝑎′′
1, . . . , 𝑎′′

𝑘−𝑖, 𝑎′′
𝑘−𝑖+3, . . . , 𝑎′′

𝑘, 𝑥𝛾2)
are the first and last vertices from 𝐿𝑖 that 𝑃 visits, then 𝑎′

𝑘−𝑖 ̸= 𝑎′′
𝑘−𝑖 and

𝑥𝛾1 ̸= 𝑥𝛾2.

Additionally, we say that 𝐿4 covers both 𝐿3 and 𝐿2 if 𝑃 visits 𝐴. Symmetrically, we
say that 𝐿𝑘−2 covers both 𝐿𝑘−1 and 𝐿𝑘 if 𝑃 visits 𝐵.

Lemma 4.5.2. For all 𝑖 = 2, . . . , 𝑘, 𝐿𝑖 is either in a loop or covered.

Proof. Suppose for contradiction that there exists 𝑖 with 2 ≤ 𝑖 ≤ 𝑘 such that 𝐿𝑖 is
neither in a loop nor covered. Let 𝛾 be the single vertex in 𝐿𝑖 that 𝑃 visits. Let
𝑃1 be the part of 𝑃 from 𝛼 to 𝛾, and let 𝑃2 be the part of 𝑃 from 𝛾 to 𝛽. By
Observation 4.5.1, except for 𝛾, 𝑃1 is entirely contained in levels below 𝑖, and except
for 𝛾, 𝑃2 is entirely contained in levels above 𝑖.

We claim that 𝑃1 does not visit 𝐵. The only edges to 𝐵 from another set are from
𝐿′

𝑘−2, so 𝑃1 can only visit 𝐵 if 𝑖 is either 𝑘 − 1 or 𝑘. In this case 𝐿𝑖 is covered, by the
final part of the definition of cover. Thus 𝑃1 does not visit 𝐵.

Similarly, 𝑃2 does not visit 𝐴 because the only edges from 𝐴 to another set are
to 𝐿′

4, so 𝑃2 can only visit 𝐴 if 𝑖 is either 3 or 2, in which case 𝐿𝑖 is covered, by the
final part of the definition of cover. Since 𝑃1 does not visit 𝐵 and 𝑃2 does not visit
𝐴, Lemma 4.5.1 implies that 𝛾 = (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑎𝑘−𝑖+3, . . . , 𝑎𝑘, 𝑥) for some coordinate
array 𝑥.

Now consider the two edges incident to 𝛾 on the path 𝑃 . Suppose that they are 𝛾1𝛾
and 𝛾𝛾2. Since 𝐿𝑖 is not in a loop, Observation 4.5.2 implies that 𝛾1𝛾 is a swap edge
from 𝐿𝑖−1 to 𝐿𝑖. Hence, if 𝑖 ̸= 2, then 𝛾1 = (𝑎1, . . . , 𝑎𝑘−𝑖, 𝑎′

𝑘−𝑖+1, 𝑎𝑘−𝑖+4, . . . , 𝑎𝑘, 𝑥)
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for some 𝑎′
𝑘−𝑖+1, and if 𝑖 = 2, then 𝛾1 = 𝛼. Symmetrically, Observation 4.5.2

implies that 𝛾𝛾2 is a swap edge from 𝐿𝑖 to 𝐿𝑖+1. Hence, if 𝑖 ̸= 𝑘, then 𝛾2 =
(𝑎1, . . . , 𝑎𝑘−𝑖−1, 𝑎′

𝑘−𝑖+2, 𝑎𝑘−𝑖+3 . . . , 𝑎𝑘, 𝑥) for some 𝑎′
𝑘−𝑖+2, and if 𝑖 = 𝑘, then 𝛾2 = 𝛽.

By Observation 4.5.2, 𝛾1 is the last vertex in 𝐿𝑖−1 that 𝑃 visits and 𝛾2 is the first
vertex in 𝐿𝑖+1 that 𝑃 visits. Suppose 𝑖 ̸= 2 and let 𝛾′

1 be the first vertex in 𝐿𝑖−1
that 𝑃 visits. By condition 3 of the definition of cover, since 𝐿𝑖−1 does not cover
𝐿𝑖, 𝛾′

1 either contains 𝑎′
𝑘−𝑖+1 or 𝑥 in its representation. However, since 𝑃1 does not

visit 𝐵, Lemma 4.5.1 implies that 𝛾′
1 has the prefix (𝑎1, . . . , 𝑎𝑘−𝑖+1). Thus, either

𝑎𝑘−𝑖+1 = 𝑎′
𝑘−𝑖+1 or 𝛾′

1 contains 𝑥 in its representation. If 𝑎𝑘−𝑖+1 = 𝑎′
𝑘−𝑖+1, then 𝛾1 has

the prefix (𝑎1, . . . , 𝑎𝑘−𝑖+1), so for all 𝑗 = 1, . . . , 𝑘 − 𝑖 + 1 we have 𝑎𝑗[𝑥𝑖−1] = 1. If 𝛾′
1

contains 𝑥 in its representation, then since 𝛾′
1 has the prefix (𝑎1, . . . , 𝑎𝑘−𝑖+1), we have

the same conclusion that for all 𝑗 = 1, . . . , 𝑘 − 𝑖 + 1, 𝑎𝑗[𝑥𝑖−1] = 1.
If 𝑖 = 2 then the edge between 𝛼 = 𝛾1 and 𝛾 implies that for all 𝑗 = 1, . . . 𝑘 − 1

we have 𝑎𝑗[𝑥1] = 1. So, regardless of 𝑖, we have that for all 𝑗 = 1, . . . , 𝑘 − 𝑖 + 1,
𝑎𝑗[𝑥𝑖−1] = 1.

Symmetrically, suppose 𝑖 ̸= 𝑘 and let 𝛾′
2 be the last vertex in 𝐿𝑖+1 that 𝑃 vis-

its. Since 𝐿𝑖+1 does not cover 𝐿𝑖, 𝛾′
2 either contains 𝑎′

𝑘−𝑖+2 or 𝑥 in its representa-
tion. However, since 𝑃2 does not visit 𝐴, Lemma 4.5.1 implies that 𝛾′

2 has the suffix
(𝑎𝑘−𝑖+2, . . . , 𝑎𝑘, 𝑦) for some 𝑦. Thus, either 𝑎𝑘−𝑖+2 = 𝑎′

𝑘−𝑖+2 or 𝛾′
2 contains 𝑥 in its

representation. If 𝑎𝑘−𝑖+2 = 𝑎′
𝑘−𝑖+2, then 𝛾2 has the suffix (𝑎𝑘−𝑖+2, . . . , 𝑎𝑘, 𝑥), so for

all 𝑗 = 𝑘 − 𝑖 + 2, . . . , 𝑘 we have 𝑎𝑗[𝑥𝑖−1] = 1. If 𝛾′
2 contains 𝑥 in its representation,

then since 𝛾′
2 has the suffix (𝑎𝑘−𝑖+2, . . . , 𝑎𝑘, 𝑥), we have the same conclusion that for

all 𝑗 = 𝑘 − 𝑖 + 2, . . . , 𝑘 we have 𝑎𝑗[𝑥𝑖−1] = 1.
If 𝑖 = 𝑘 then the edge between 𝛾 and 𝛾2 = 𝛽 implies that for all 𝑗 = 2, . . . 𝑘

we have 𝑎𝑗[𝑥𝑘−1] = 1. So, regardless of 𝑖, we have that for all 𝑗 = 𝑘 − 𝑖 + 2, . . . 𝑘,
𝑎𝑗[𝑥𝑖−1] = 1.

Thus, we have shown that for each 𝑗 = 1, . . . 𝑘, we have 𝑎𝑗[𝑥𝑖−1] = 1. This
contradicts the fact that 𝑎1, . . . , 𝑎𝑘 are orthogonal, completing the proof.

In the next lemma, we bound the length of a subpath of 𝑃 passing from 𝐿𝑖 to 𝐿𝑗

for some 𝑖 < 𝑗 conditioned on the layers being covered or not.

Lemma 4.5.3. Let 𝑖 and 𝑗 be such that 2 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘, neither 𝐿𝑖−1 nor 𝐿𝑗+1 are in
a loop, and for all ℓ = 𝑖, . . . , 𝑗, 𝐿ℓ is in a loop. Let 𝑐 be the total number of layers
that are covered by 𝐿𝑖, . . . , 𝐿𝑗. The subpath 𝑃 ′ of 𝑃 from the first time 𝑃 visits 𝐿𝑖 to
the last time 𝑃 visits 𝐿𝑗 is of length at least 2(𝑗 − 𝑖) + 𝑐 + 1.

Proof. We will show the contrapositive: for any 𝑐′, if 𝑃 ′ is of length at most 2(𝑗−𝑖)+𝑐′,
then 𝐿𝑖, . . . , 𝐿𝑗 cover a total of at most 𝑐′ − 1 layers.

First, we note that since neither 𝐿𝑖−1 nor 𝐿𝑗+1 are in a loop, Observation 4.5.2
implies that 𝑃 ′ is entirely contained in levels 𝑖, . . . , 𝑗, and that no vertex on 𝑃 ∖ 𝑃 ′ is
in a level 𝑖, . . . , 𝑗. Then, since 𝐿ℓ is in a loop for all ℓ = 𝑖, . . . , 𝑗, 𝑃 ′ must contain at
least two vertices from each such 𝐿ℓ. Let 𝑍 be a subset of the vertices of 𝑃 ′ formed
by taking exactly two arbitrary vertices on 𝑃 ′ from each such layer 𝐿ℓ. The size of 𝑍
is exactly 2(𝑗 − 𝑖) + 2.
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By the definition of cover, any layer can only cover the layers at most two above
and below itself, so the layers 𝐿𝑖, . . . , 𝐿𝑗 can only cover a total of at most 4 layers.
Thus, the lemma is trivially true for 𝑐′ ≥ 5. The lemma is also trivially true for
𝑐′ ≤ 1. We will condition on the length of 𝑃 ′; that is, whether 𝑐′ = 2, 3, or 4.

Case 1: 𝑐′ = 2. 𝑃 ′ contains 2(𝑗 −𝑖)+2 edges and 2(𝑗 −𝑖)+3 vertices, so 𝑃 ′ contains
exactly one vertex 𝛾 in addition to 𝑍. Since 𝑍 ⊆ 𝐿 and all paths from 𝐿 to 𝐵 as well
as all paths from 𝐴 to 𝐿 go through 𝐿′, 𝛾 ̸∈ 𝐴 ∪ 𝐵. Thus, the only way that a layer
in 𝐿𝑖, . . . , 𝐿𝑗 can cover another layer is if there exist two vertices on 𝑃 with different
coordinate arrays (by condition 3 in the definition of cover). Every edge with both
endpoints in 𝐿 is a swap edge, which by definition connects two vertices with the
same coordinate array. Thus, 𝛾 ̸∈ 𝐿. We have shown that 𝛾 ̸∈ 𝐴 ∪ 𝐵 ∪ 𝐿, so 𝛾 ∈ 𝐿′.

Let ℓ be such that 𝛾 ∈ 𝐿′
ℓ. Let 𝛾1 and 𝛾2 be the vertices right before and right after

𝛾 on 𝑃 , respectively. Since 𝐿ℓ contains the only vertices in 𝐿 that are adjacent to
some vertex in 𝐿′

ℓ, 𝛾1 and 𝛾2 are both in 𝐿ℓ. Let 𝛾1 = (𝑎′
1, . . . , 𝑎′

𝑘−𝑖, 𝑎′
𝑘−𝑖+3, . . . , 𝑎′

𝑘, 𝑥𝛾1)
and let 𝛾2 = (𝑎′′

1, . . . , 𝑎′′
𝑘−𝑖, 𝑎′′

𝑘−𝑖+3, . . . , 𝑎′′
𝑘, 𝑥𝛾2). Since 𝑃 ′ contains no other vertices in

𝐿ℓ besides 𝛾1 and 𝛾2, and 𝑃 ∖ 𝑃 ′ contains no vertices in 𝐿ℓ, 𝛾1 and 𝛾2 are the first
and last vertices from 𝐿ℓ that 𝑃 visits. Thus, by definition, if 𝐿ℓ covers 𝐿ℓ−1 then
𝑎′

𝑘−𝑖+3 ̸= 𝑎′′
𝑘−𝑖+3 and 𝑥𝛾1 ̸= 𝑥𝛾2 . Similarly, if 𝐿ℓ covers 𝐿ℓ+1 then 𝑎′

𝑘−𝑖 ̸= 𝑎′′
𝑘−𝑖 and

𝑥𝛾1 ̸= 𝑥𝛾2 . Thus, if 𝐿ℓ covers both 𝐿ℓ−1 and 𝐿ℓ+1, then 𝑎′
𝑘−𝑖+3 ̸= 𝑎′′

𝑘−𝑖+3, 𝑎′
𝑘−𝑖 ̸= 𝑎′′

𝑘−𝑖,
and 𝑥𝛾1 ̸= 𝑥𝛾2 . However, there are only two edges on 𝑃 ′ between 𝛾1 and 𝛾2 and each
of them is either a vector-change edge or a coordinate-change edge. This means that
only two out of the three above non-equalities can be true. Thus, 𝐿ℓ can only cover
at most one level. Since the edges on 𝑃 ′ that are not incident to 𝛾 are swap edges and
do not change the coordinate array, no other layer in 𝐿𝑖, . . . , 𝐿𝑗 except for 𝐿ℓ covers
any layer. Thus, we have shown that 𝐿𝑖, . . . , 𝐿𝑗 cover a total of at most one layer, as
desired.

Case 2: 𝑐′ = 3. 𝑃 ′ contains 2(𝑗 − 𝑖) + 3 edges and 2(𝑗 − 𝑖) + 4 vertices, so 𝑃 ′

contains exactly two vertices in addition to 𝑍. We would like to show that 𝐿𝑖, . . . , 𝐿𝑗

cover a total of at most two layers. The only way for 𝐿𝑖, . . . , 𝐿𝑗 to cover more than
two layers is to use the last part of the definition of cover, which allows 𝐿4 or 𝐿𝑘−2
to cover two layers. Thus, we will show that if 𝑖 = 4 and 𝐿4 covers 𝐿3 and 𝐿2, or
if 𝑗 = 𝑘 − 2 and 𝐿𝑘−2 covers 𝐿𝑘−1 and 𝐿𝑘, then no other layers can be covered by
𝐿𝑖, . . . , 𝐿𝑗.

Suppose 𝑖 = 4 and 𝐿4 covers 𝐿3 and 𝐿2. By the definition of cover, 𝑃 visits 𝐴.
Then, since all vertices in 𝑃 ∩ 𝐿4 are on 𝑃 ′, Observation 4.5.3 implies that 𝑃 ′ visits
𝐴. Therefore, the two vertices on 𝑃 ′ in addition to 𝑍 are one vertex in 𝐴 and one
vertex in 𝐿′

4. Thus, the only edges that 𝑃 ′ uses are swap edges with endpoints in
𝐿4 ∪ · · · ∪ 𝐿𝑗, an 𝑎-type back edge from 𝐿4 ∪ · · · ∪ 𝐿𝑗 to 𝐴4 ∪ · · · ∪ 𝐴𝑗, an 𝑎-type back
edge from 𝐴4 ∪ · · · ∪ 𝐴𝑗 to 𝐿′

4, and either a vector-change or coordinate-change edge
from 𝐿′

4 to 𝐿4. It will be important to note that by construction, all of these edges
go from a vertex that contains a vector 𝑎′

𝑘−𝑗 ∈ 𝑆𝑘−𝑗 to another vertex containing the
same vector 𝑎′

𝑘−𝑗 ∈ 𝑆𝑘−𝑗. This is because the only edges that change a vector 𝑆𝑘−𝑗
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to a different vector in 𝑆𝑘−𝑗 are vector-change edges between 𝐿𝑗 and 𝐿′
𝑗 or between

𝐿𝑗+3 and 𝐿′
𝑗+3, which 𝑃 ′ does not use.

Our goal is to show that 𝐿𝑗 does not cover 𝐿𝑗+1. Let 𝛾1 = (𝑎′′
1, . . . , 𝑎′′

𝑘−𝑗, 𝑎′′
𝑘−𝑗+3, . . . ,

𝑎′′
𝑘, 𝑥𝛾1) and 𝛾2 = (𝑎′′′

1 , . . . , 𝑎′′′
𝑘−𝑗, 𝑎′′′

𝑘−𝑗+3, . . . , 𝑎′′′
𝑘 , 𝑥𝛾2) be the two vertices in 𝐿𝑗 that 𝑃 ′

visits. Since 𝑃 ∖ 𝑃 ′ contains no vertices in 𝐿𝑗, 𝛾1 and 𝛾2 are the first and last vertices
from 𝐿𝑗 that 𝑃 visits. Thus, if 𝐿𝑗 covers 𝐿𝑗+1, then 𝑎′′

𝑘−𝑗 ̸= 𝑎′′′
𝑘−𝑗. But we have already

shown that this cannot be the case since every edge on 𝑃 ′ does not change the vector
𝑎′

𝑘−𝑗 ∈ 𝑆𝑘−𝑗.
The 𝑗 = 𝑘 − 2 case is completely symmetric to the 𝑖 = 4 case, but we include it

for completeness. Suppose 𝑗 = 𝑘 − 2 and 𝐿𝑘−2 covers 𝐿𝑘−1 and 𝐿𝑘. This means that
𝑃 visits 𝐵. Then, since all vertices in 𝑃 ∩ 𝐿𝑘−2 are on 𝑃 ′, Observation 4.5.3 implies
that 𝑃 ′ visits 𝐵. Therefore, the two vertices on 𝑃 ′ in addition to 𝑍 are one vertex
in 𝐿′

𝑘−2 and one vertex in 𝐵. Thus, the only edges that 𝑃 ′ uses are swap edges with
endpoints in 𝐿𝑖 ∪ · · · ∪ 𝐿𝑘−2, either a vector-change or coordinate-change edge from
𝐿𝑘−2 to 𝐿′

𝑘−2, a 𝑏-type back edge from 𝐿′
𝑘−2 to 𝐵𝑖 ∪ · · · ∪ 𝐵𝑘−2, and a 𝑏-type back

edge from 𝐵𝑖 ∪ · · · ∪ 𝐵𝑘−2 to 𝐿𝑖 ∪ · · · ∪ 𝐿𝑘−2. It will be important to note that by
construction, all of these edges go from a vertex that contains a vector 𝑎′

𝑘−𝑖+3 ∈ 𝑆𝑘−𝑖+3
to another vertex containing the same vector 𝑎′

𝑘−𝑖+3 ∈ 𝑆𝑘−𝑖+3.
Our goal is to show that 𝐿𝑖 does not cover 𝐿𝑖−1. Let 𝛾1 = (𝑎′′

1, . . . , 𝑎′′
𝑘−𝑖, 𝑎′′

𝑘−𝑖+3, . . . ,
𝑎′′

𝑘, 𝑥𝛾1) and 𝛾2 = (𝑎′′′
1 , . . . , 𝑎′′′

𝑘−𝑖, 𝑎′′′
𝑘−𝑖+3, . . . , 𝑎′′′

𝑘 , 𝑥𝛾2) be the two vertices in 𝐿𝑖 that 𝑃 ′

visits. Since 𝑃 ∖ 𝑃 ′ contains no vertices in 𝐿𝑖, 𝛾1 and 𝛾2 are the first and last vertices
from 𝐿𝑖 that 𝑃 visits. Thus, if 𝐿𝑖 covers 𝐿𝑖−1, then 𝑎′′

𝑘−𝑖+3 ̸= 𝑎′′′
𝑘−𝑖+3. But we have

already shown that this cannot be the case since every edge on 𝑃 ′ does not change
the vector 𝑎′

𝑘−𝑖+3 ∈ 𝑆𝑘−𝑖+3.

Case 3: 𝑐′ = 4. 𝑃 ′ contains 2(𝑗 −𝑖)+4 edges and 2(𝑗 −𝑖)+5 vertices, so 𝑃 ′ contains
exactly three vertices in addition to 𝑍. We would like to show that 𝐿𝑖, . . . , 𝐿𝑗 cover
a total of at most three layers. Suppose for contradiction that 𝐿𝑖, . . . , 𝐿𝑗 cover four
layers. The only way for this to happen is if 𝐿4 = 𝐿𝑖 covers 𝐿3 and 𝐿2, and 𝐿𝑘−2 = 𝐿𝑗

covers 𝐿𝑘−1 and 𝐿𝑘. This means that 𝑃 visits both 𝐴 and 𝐵. Then, since all vertices
in 𝑃 ∩ 𝐿𝑘−2 and all vertices in 𝑃 ∩ 𝐿4 are on 𝑃 ′, Observation 4.5.3 implies that 𝑃 ′

visits both 𝐴 and 𝐵. Since the only edges to 𝐵 from another set are from 𝐿′
𝑘−2 and

the only edges from 𝐴 to another set are to 𝐿′
4, 𝑃 ′ must contain a vertex in each of

𝐴, 𝐵, 𝐿′
𝑘−2, and 𝐿′

4. However, 𝑃 ′ only contains three vertices in addition to 𝑍, a
contradiction.

We will now take the sum over all of the subpaths defined by Lemma 4.5.3. Form
a partition 𝒫 of 2, . . . , 𝑘 where each piece of 𝒫 contains a maximal interval 𝑖, . . . , 𝑗
such that 𝐿𝑖, . . . , 𝐿𝑗 are all in loops, as well as the layers that 𝐿𝑖, . . . , 𝐿𝑗 cover. (The
maximality condition means that either 𝑖 = 2 or 𝐿𝑖−1 is not in a loop, and either
𝑗 = 𝑘 or 𝐿𝑗+1 is not in a loop.) To make this a true partition of 2, . . . , 𝑘, for any ℓ
that has been placed in two pieces of the partition due to being covered by multiple
layers, we remove ℓ from an arbitrary one of these two pieces. Now, by Lemma 4.5.2,
every value 2, . . . , 𝑘 is in exactly one piece of 𝒫 .
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Consider a piece 𝑖, . . . , 𝑗 of 𝒫 , and let 𝑖′ ≥ 𝑖 and 𝑗′ ≤ 𝑗 be such that 𝐿𝑖′ , . . . , 𝐿𝑗′ are
each in a loop and the remaining layers in 𝐿𝑖, . . . , 𝐿𝑗 are covered. Let 𝑐 be the number
of covered layers in 𝐿𝑖, . . . , 𝐿𝑗. That is, 𝑗′ − 𝑖′ + 𝑐 = 𝑗 − 𝑖. By Observation 4.5.2 and
the maximality condition of 𝒫 , any path with both endpoints in 𝐿′

𝑖, . . . , 𝐿′
𝑗 is entirely

contained within levels 𝑖′, . . . , 𝑗′.
Let 𝑃𝑖,𝑗 and 𝑃𝑖′,𝑗′ be the subpaths of 𝑃 in the graph induced by levels 𝑖, . . . , 𝑗 and

levels 𝑖′, . . . , 𝑗′, respectively. By Lemma 4.5.3, 𝑃𝑖′,𝑗′ is of length at least 2(𝑗′−𝑖′)+𝑐+1.
Adding an edge to each of the 𝑐 covered levels, 𝑃𝑖,𝑗 is of length at least 2(𝑗′−𝑖′+𝑐)+1 =
2(𝑗 − 𝑖) + 1.

Let 𝑝 be the number of pieces of 𝒫 . We first calculate the sum over the lengths of
all 𝑃𝑖,𝑗. Since 𝒫 partitions 2, . . . , 𝑘, we have ∑︀(𝑖,...,𝑗)∈𝒫 2(𝑗 − 𝑖)+1 = 2(𝑘 −1−𝑝)+𝑝 =
2𝑘−𝑝−2. In addition to the edges in each 𝑃𝑖,𝑗, 𝑃 also contains at least 𝑝−1 edges such
that each endpoint is in a different piece of 𝒫 , as well as an edge from 𝐿1 to 𝐿2 and an
edge from 𝐿𝑘 to 𝐿𝑘+1. Thus, the length of 𝑃 is at least 2𝑘−𝑝−2+(𝑝−1)+2 = 2𝑘−1.

4.6 The 𝑘 = 4 case
We mainly use the construction of [Bon21b] with a few alterations, to get a reduction
from 4-OV to directed unweighted Diameter. Note that the lower bound of [Bon21b]
is for directed weighted Diameter.

Given a 4-OV instance 𝑆 where each vector in 𝑆 is of length 𝑑, that is, there are
𝑑 coordinates, we create a graph 𝐺 such that if 𝑆 is a NO case then the diameter of
𝐺 is at most 4 and if 𝑆 is a YES case the diameter of 𝐺 is at least 7. See Figure 4-8.

We make 4 copies of 𝑆 and call them 𝑆1, . . . , 𝑆4. The vertex set of our graph is
essentially the same as [Bon21b], and we redefine it for completeness. The graph 𝐺
consists of layers 𝐿𝑖 for 𝑖 = 1, . . . , 5. Vertices of 𝐿1 are 3 tuples of the form (𝑎1, 𝑎2, 𝑎3),
where 𝑎𝑖 ∈ 𝑆𝑖. Vertices of 𝐿5 are 3 tuples of the form (𝑏2, 𝑏3, 𝑏4), where 𝑏𝑖 ∈ 𝑆𝑖.
Vertices of 𝐿2 are of the form (𝑎1, 𝑎2, 𝑥), vertices of 𝐿3 are of the form (𝑎1, 𝑏4, 𝑥) and
vertices of 𝐿4 are of the form (𝑏3, 𝑏4, 𝑥), where 𝑎𝑖, 𝑏𝑖 ∈ 𝑆𝑖 and 𝑥 is a coordinate array
of length 3 satisfying the conditions of Table 4.1. We have an additional layer 𝐿′

3
with vertices of the form (𝑎1, 𝑏4, 𝑥) for every coordinate array of length 3, where at
least 5 out of the 6 following conditions hold: 𝑎1[𝑥ℓ] = 1 for each ℓ and 𝑏4[𝑥ℓ] = 1 for
each ℓ.1 Finally, we have two vertices 𝑣 and 𝑢.

We have swap edges between 𝐿𝑖 and 𝐿𝑖+1 for 𝑖 = 1, . . . , 4. We have vector-change
edges between 𝐿3 and 𝐿′

3, between (𝑎1, 𝑏4, 𝑥) ∈ 𝐿3 and (𝑎′
1, 𝑏′

4, 𝑥) ∈ 𝐿′
3 where either

𝑎1 = 𝑎′
1 or 𝑏4 = 𝑏′

4. We have coordinate-change edges between 𝐿3 and 𝐿′
3, and within

𝐿′
3, 𝐿2 and 𝐿4. Finally we have fixed edges connected to 𝑢 and 𝑣 as follows. Every

node in 𝐿4 ∪ 𝐿5 has a directed edge to 𝑢, and every node in 𝐿3 has a directed edge
from 𝑢. Similarly, every node in 𝐿1 ∪ 𝐿2 has an edge from 𝑣, and every node in 𝐿3
has an edge to 𝑣.

1In fact, this last constraint is not necessary and we can instead define 𝐿′
3 to be all vertices of

the form (𝑎1, 𝑏4, 𝑥). We include this last constraint to be consistent with [Bon21b], so that we can
use the correctness of their construction as a black box to argue the correctness of our construction.
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L1(ABC) L2(AB) L3(ADY ) L4(DC) L5(DCB)

L′
3(ADX)

u v

Figure 4-8: 𝑘 = 4 construction. The names in parentheses are from the construction
of [Bon21b] and are put here for ease of comparison. The purple edges are the fixed
edges.

Note that the only difference between our construction and the construction of
[Bon21b] is the coordinate-change edges inside 𝐿′

3, and the fixed edges.

4.6.1 NO instance of 4-OV implies diameter at most 4
Using fixed edges

Case 1: 𝑣 to 𝛽 ∈ 𝑉 ∖ {𝑣}. If 𝛽 ∈ 𝐿1 ∪ 𝐿2, there is a direct edge from 𝑣 to 𝛽.
Now note that for any 𝑖, any node in 𝐿𝑖 has a swap edge to a node in 𝐿𝑖+1 and 𝐿𝑖−1
changing one of its vectors to all 1s vector. So there is an undirected path of length
at most 3 between 𝛽 ∈ 𝐿3 ∪ 𝐿4 ∪ 𝐿5 and some node 𝛽′ in 𝐿2. There is a direct edge
from 𝑣 to 𝛽′, so 𝑑(𝑣, 𝛽) ≤ 4. If 𝛽 ∈ 𝐿′

3, there is path of length 2 from a node 𝛽′ ∈ 𝐿2,
using a swap edge and a coordinate-change edge (without changing the coordinate),
and hence 𝑑(𝑣, 𝛽) ≤ 3. Finally if 𝛽 = 𝑢, then from 𝑣 we take a fixed edge to some
node in 𝐿2, then we take two swap edges to some node in 𝐿4, and then we take a
fixed edge to 𝑢.

Case 2: 𝛼 ∈ 𝑉 ∖ {𝑣} to 𝑣. We need to show that there is a path of length at most
3 from 𝛼 to some node 𝛼′ ∈ 𝐿3. Then since 𝑑(𝛼′, 𝑣) = 1, we have a path of length 4
from 𝛼 to 𝑣. Again note that for any 𝑖, any node in 𝐿𝑖 has a swap edge to a node in
𝐿𝑖+1 and 𝐿𝑖−1 changing one of its vectors to all 1s vector. So for 𝛼 ∈ 𝐿1, 𝐿2, 𝐿4, 𝐿5,
there is a path of length 2 from 𝛼 to some node in 𝐿3. If 𝛼 = (𝑎1, 𝑏4, 𝑥) ∈ 𝐿′

3, then we
can take a coordinate change to (𝑎1, 𝑏4, 𝑥′) ∈ 𝐿3 where 𝑥′[𝑖] = 𝐶(𝑎1, 𝑏4) for 𝑖 = 1, 2, 3.
Finally if 𝛼 = 𝑢, there is a direct edge from 𝑢 to all nodes in 𝐿3.

Case 3: 𝑢 to 𝛽 ∈ 𝑉 ∖ {𝑢}. Symmetric to case 2.

Case 4: 𝛼 ∈ 𝑉 ∖ {𝑢} to 𝑢. Symmetric to case 1.

Case 5: 𝛼 ∈ 𝑉 to 𝛽 ∈ 𝐿1 ∪ 𝐿2. From 𝛼 take at most two edges to some node in
𝐿3. The we take a fixed edge to 𝑣, and finally we take another fixed edge to 𝛽.

57



Case 6: 𝛼 ∈ 𝐿4 ∪ 𝐿5 to 𝛽 ∈ 𝑉 . Symmetric to case 5.

Using variable edges

In a NO instance, for every set 𝐹 of at most 4 vectors, there exists a coordinate that
is 1 for every vector in 𝐹 . Given a set 𝐹 of at most 4 vectors, recall that 𝐶(𝐹 ) denotes
a coordinate that is 1 for every vector in 𝐹 .

The only remaining cases that are not covered by fixed edges are the following.

Case 1: 𝛼 ∈ 𝐿1 ∪ 𝐿2 to 𝛽 ∈ 𝐿4 ∪ 𝐿5. Let 𝛼 = (𝑎1, 𝑎2, 𝑎3) if 𝛼 ∈ 𝐿1 and let
𝛼 = (𝑎1, 𝑎2, 𝑥𝛼) if 𝛼 ∈ 𝐿2, in which case 𝑎3 is the all 1s vector. Let 𝛽 = (𝑏2, 𝑏3, 𝑏4) if
𝛽 ∈ 𝐿5 and let 𝛽 = (𝑏3, 𝑏4, 𝑥𝛽) if 𝛽 ∈ 𝐿4, in which case 𝑏2 is defined to be the all 1s
vector. We will use the coordinate array 𝑥 = (𝑥1, 𝑥2, 𝑥3) where for each 𝑖 = 1, 2, 3,
𝑥𝑖 = 𝐶(𝑎1, . . . , 𝑎4−𝑖, 𝑏5−𝑖, . . . , 𝑏4). From 𝛼, take a swap edge or a coordinate-change
edge to (𝑎1, 𝑎2, 𝑥) ∈ 𝐿2, a swap edge to (𝑎1, 𝑏4, 𝑥) ∈ 𝐿3, a swap edge to (𝑏3, 𝑏4, 𝑥) ∈ 𝐿4,
and then a swap edge or a coordinate-change edge to 𝛽.

Case 2: 𝛼 ∈ 𝐿1 ∪ 𝐿2 to 𝛽 ∈ 𝐿3 ∪ 𝐿′
3. Let 𝛼 = (𝑎1, 𝑎2, 𝑎3) if 𝛼 ∈ 𝐿1 and let 𝛼 =

(𝑎1, 𝑎2, 𝑥𝛼) if 𝛼 ∈ 𝐿2, in which case 𝑎3 is the all 1s vector. Let 𝛽 = (𝑎′
1, 𝑏4, 𝑥𝛽). Con-

sider the following coordinate array 𝑥: 𝑥1 = 𝐶(𝑎1, 𝑎2, 𝑎3, 𝑏4), and 𝑥𝑖 = 𝐶(𝑎1, 𝑎2, 𝑎′
1, 𝑏4)

for 𝑖 = 2, 3. We take the following path: From 𝛼, take a coordinate-change edge
or a swap edge to (𝑎1, 𝑎2, 𝑥) ∈ 𝐿2. Then take a swap edge to (𝑎1, 𝑏4, 𝑥) ∈ 𝐿3, a
vector-change edge to (𝑎′

1, 𝑏4, 𝑥) ∈ 𝐿′
3, and finally a coordinate-change edge to 𝛽.

Case 3: 𝛼 ∈ 𝐿3 ∪ 𝐿′
3 to 𝛽 ∈ 𝐿4 ∪ 𝐿5. Symmetric to Case 3.

Case 4: 𝛼 ∈ 𝐿3 ∪ 𝐿′
3 to 𝛽 ∈ 𝐿3 ∪ 𝐿′

3. Let 𝛼 = (𝑎1, 𝑏4, 𝑥𝛼) and 𝛽 = (𝑎′
1, 𝑏′

4, 𝑥𝛽).
Consider the coordinate array 𝑥 where 𝑥𝑖 = 𝐶(𝑎1, 𝑎′

1, 𝑏4, 𝑏′
4) for 𝑖 = 1, 2, 3. We use

the following path: From 𝛼 take a coordinate-change edge to (𝑎1, 𝑏4, 𝑥) ∈ 𝐿′
3. Then

go to (𝑎′
1, 𝑏4, 𝑥) ∈ 𝐿4 and then to (𝑎′

1, 𝑏′
4, 𝑥) ∈ 𝐿′

4 using two vector-change edges, and
finally take a coordinate-change edge to 𝛽.

4.6.2 YES instance of 4-OV implies diameter at least 7
Suppose that 𝑎1, . . . , 𝑎4 are orthogonal. We will show that the distance from 𝛼 =
(𝑎1, 𝑎2, 𝑎3) to 𝛽 = (𝑎2, 𝑎3, 𝑎4) is at least 7 if it uses one of the following edges: a
coordinate-change edge in 𝐿′

3 or a fixed edge. This is because the rest of the con-
struction is included in the construction of [Bon21b], and if the path does not use any
of these edges, it is included in the construction of [Bon21b] and thus it is of length
at least 7.

First suppose that the path uses a coordinate-change edge inside 𝐿′
3. Then the

path has at least two nodes in 𝐿′
3 and 𝐿3, and at least one node in each 𝐿𝑖 for

𝑖 = 1, 2, 4, 5. So the path is of length at least 7.
Next suppose that the path uses a fixed edge. So the path passes through 𝑢 or 𝑣.

This means that the path has a subpath passing through 𝐿𝑗, then 𝑣 or 𝑢, then 𝐿𝑖,
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where 𝑗 > 𝑖. So 𝐿𝑖 and 𝐿𝑗 have at least two nodes in the path, the path has at least
one node in each 𝐿𝑟 for 𝑟 = 1, . . . , 5, 𝑟 ̸= 𝑖, 𝑗 and it has 𝑢 or 𝑣. So it has at least 8
nodes and hence it is of length at least 7.
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Part II

Approximating the Diameter of a
Graph in Various Settings
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Chapter 5

𝑆𝑇 -Diameter, Bichromatic
Diameter, and Subset Diameter

5.1 Results
In this chapter, we provide a comprehensive study of the approximability of
𝑆𝑇 -Diameter, Bichromatic Diameter, and Subset Diameter in directed/undirected
weighted/unweighted graphs. Our results are summarized in Table 5.1. A more
detailed statement of each result is provided in the appropriate section. We note
that the 𝑆𝑇 -Diameter lower bounds in Table 5.1 are from [BRS+18] and the theorem
proving them was stated in Chapter 3.

5.2 Techniques
Our conditional lower bounds against subquadratic algorithms are modifications of
the reduction from OV to Diameter of Roditty and Vassilevska W. [RV13] described
in Chapter 2. Our time vs. accuraacy trade-off lower bound for undirected Bichro-
matic Diameter is a modification of the reduction from 𝑘-OV to 𝑆𝑇 -Diameter from
[BRS+18]. The near-linear time algorithms are simple modifications of the folklore 2-
approximation algorithm for Diameter, which is to simply return the largest distance
from an arbitrary vertex.

The more technically interesting part of this chapter are the algorithms that run
in time �̃�(𝑚

√
𝑛) (or �̃�(𝑚3/2)). These algorithms use as a starting point the 3/2-

approximation for Diameter of Roditty and Vassilevska W. [RV13]. At a very high
level, this algorithm cleverly chooses a set of �̃�(

√
𝑛) vertices to run Dijkstra’s algo-

rithm from, using a combination of random sampling and deterministic choice, and
returns the largest distance found. In the analysis, shows that the returned distance
is large by showing that the chosen set of vertices hits close to one of the true diameter
end points, and applying the triangle inequality.

We provide an overview of our techniques for 𝑆𝑇 -Diameter and then Bichromatic
Diameter. Let 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 be end-points of an 𝑆𝑇 -diameter path. Our goal is
to run Dijkstra’s algorithm from some 𝑠 ∈ 𝑆 which is close to 𝑠*, and hence far from
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Upper Bounds Lower Bounds
Problem Runtime Approx. Comments Runtime Approx.

Undirected
𝑆𝑇 -Diameter

𝑂(𝑚+𝑛 log 𝑛) 3 weighted,
tight 𝑚1+𝑜(1) 3 − 𝛿

�̃�(𝑚
√

𝑛) almost 2 unweighted,
nearly tight 𝑚

𝑘
𝑘−1 −𝑜(1) 3 − 2/𝑘 − 𝛿

�̃�(𝑚3/2) 2 weighted,
tight ” ”

Directed
𝑆𝑇 -Diameter N/A N/A tight 𝑚2−𝑜(1) any finite

Undirected
Bichromatic
Diameter

𝑂(𝑚+𝑛 log 𝑛) almost 2 unweighted,
tight 𝑚1+𝑜(1) 2 − 𝛿

�̃�(𝑚
√

𝑛) almost 5/3 unweighted,
nearly tight 𝑚

𝑘
𝑘−1 −𝑜(1) 2 − 1

2𝑘−1 − 𝛿

�̃�(𝑚3/2) 5/3 weighted,
tight ” ”

𝑂(𝑚|𝐵|) almost 3/2 unweighted,
tight* 𝑚2−𝑜(1) 3/2 − 𝛿

Directed
Bichromatic
Diameter

�̃�(𝑚3/2) 2 weighted,
tight* 𝑚2−𝑜(1) 2 − 𝛿

𝑂(𝑚|𝐵′|) almost 3/2 unweighted,
tight* 𝑚2−𝑜(1) 3/2 − 𝛿

Subset
Diameter �̃�(𝑚) 2

weighted,
directed,
tight

𝑚2−𝑜(1) 2 − 𝛿

Table 5.1: Results. The ST-Diameter lower bounds are from [BRS+18]. All of our
near-linear time algorithms and parameterized algorithms. The rest are randomized
and work with high probability. Each upper bound is tight with the lower bound in
its row. Our lower bounds are under SETH. All of our lower bounds hold even for
unweighted graphs. The trade-off lower bounds in terms of 𝑘 hold for any fixed integer
𝑘 ≥ 2. 𝛿 is any constant > 0. 𝐵 and 𝐵′ are parameters defined in our parameterized
algorithms that measure the size of the boundary between 𝑆 and 𝑇 . The lower bound
constructions for the parameterized algorithms have |𝐵| = �̃�(1)
* Multiplicative approximation factor is tight, but not runtime.

𝑡*, or from some 𝑡 ∈ 𝑇 which is close to 𝑡* and hence far from 𝑠* (by the triangle
inequality). The known algorithm for the standard Diameter problem finds a vertex
𝑣 that is close to either 𝑠* or 𝑡*, but 𝑣 could be in either 𝑆 or 𝑇 (or neither) so 𝑣 is not
helpful for approximating the 𝑆𝑇 -diameter. To get around this issue where 𝑣 is in
the “wrong” set, whenever we run Dijkstra’s algorithm from a vertex 𝑢, we also run
Dijkstra’s algorithm from the closest vertex to 𝑢 that is in the “right” set. Repeated
applications of the triangle inequality show that this gives a 2-approximation for
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𝑆𝑇 -Diameter.
For undirected Bichromatic Diameter, we need additional ideas to get the approx-

imation factor down to 5/3. To obtain our improvements for Bichromatic Diameter
over the known 𝑆𝑇 -Diameter algorithms, we crucially exploit the basic fact that as
𝑆, 𝑇 partition 𝑉 any path that starts from a vertex 𝑠 ∈ 𝑆 and ends in a vertex 𝑡 ∈ 𝑇
must cross a (𝑢, 𝑣) edge such that 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇 . While this fact is clear, it not at all
obvious how one might try to exploit it.

Our 5/3-approximation algorithms are a combination of two themes:

1. Randomly sample nodes in 𝑆 and nodes in 𝑇 – similarly to prior works, the
sampling works well if there are many nodes of 𝑆 that are close to 𝑠*, or if there
are many nodes of 𝑇 that are close to 𝑡*.

2. If 1 is not good enough, we show that we can find a node 𝑤 ∈ 𝑆 close to 𝑡* for
which we can “catch” an 𝑆 × 𝑇 edge (𝑠, 𝑡) on the shortest 𝑤 → 𝑡* path, such
that 𝑡 is close to 𝑡*.

Theme 2 is our new contribution. Theme 2 makes our algorithm more delicate than
the algorithm for 𝑆𝑇 -Diameter because we are trying to identify a particular 𝑆 ×
𝑇 edge. Because of theme 2, our algorithms are more complicated than the 𝑆𝑇 -
Diameter algorithms, but run in asymptotically the same time, and achieve a better
approximation guarantee.

For directed Bichromatic Diameter, the previously known techniques for approxi-
mating Diameter in directed graphs fail. The main issue is that the prior techniques
were general enough that they also gave algorithms for the related problem of Ra-
dius as a byproduct. In the bichromatic case, however, there is a genuine difference
between Diameter and Radius. It turns out that for Radius there is a conditional
lower bound precluding any finite approximation. Hence, any algorithm for Bichro-
matic Diameter should not extend to Bichromatic Radius. Again, theme 2 from our
undirected Bichromatic Diameter algorithm, combined with edge sampling instead of
vertex sampling, helps us obtain such an algorithm.

5.3 Preliminaries
The following standard lemmas will be useful for our algorithms.

Lemma 5.3.1. Let 𝐺 = (𝑉, 𝐸) be a (possibly directed and weighted graph) and
let 𝑊 ⊆ 𝑉 . Let 𝑔 ≥ Ω(ln 𝑛) be an integer. Let 𝑆 ⊆ 𝑊 be a random subset of
𝑐(|𝑊 |/𝑔) ln 𝑛 vertices for some constant 𝑐 > 1. For every 𝑣 ∈ 𝑉 , let 𝑊 (𝑣) be the
set of vertices 𝑥 ∈ 𝑊 for which 𝑑(𝑣, 𝑥) < 𝑑(𝑣, 𝑆). Then with probability at least
1 − 1/𝑛𝑐−1, for every 𝑣 ∈ 𝑉 , |𝑊 (𝑣)| ≤ 𝑔, and moreover, if one takes the closest 𝑔
vertices of 𝑊 to 𝑣, they will contain 𝑊 (𝑣).

Proof. For each 𝑣 ∈ 𝑉 , imagine sorting the nodes 𝑥 ∈ 𝑊 according to 𝑑(𝑣, 𝑥). Define
𝑄𝑣 to be the first 𝑔 nodes in this sorted order - those are the nodes of 𝑊 closest to 𝑣
(in the 𝑣 → 𝑥 direction).

63



We pick 𝑆 randomly by selecting each vertex of 𝑊 with probability (𝑐 ln 𝑛)/𝑔. The
probability that a particular 𝑞 ∈ 𝑄𝑣 is not in 𝑆 is 1 − (𝑐 ln 𝑛)/𝑔, and the probability
that no 𝑞 ∈ 𝑄𝑣 is in 𝑆 is (1− (𝑐 ln 𝑛)/𝑔)𝑔 ≤ 1/𝑛𝑐. By a union bound, with probability
at least 1 − 1/𝑛𝑐−1, for every 𝑣 ∈ 𝑉 , we have that 𝑄𝑣 ∩ 𝑆 ̸= ∅.

Now, for each particular 𝑣, say that 𝑤(𝑣) is a node in 𝑄𝑣 ∩ 𝑆. Since all nodes
𝑥 ∈ 𝑊 with 𝑑(𝑣, 𝑥) < 𝑑(𝑣, 𝑤(𝑣)) must be in 𝑄𝑣, and since 𝑑(𝑣, 𝑤(𝑣)) ≥ 𝑑(𝑣, 𝑆), we
must have that 𝑊 (𝑣) ⊆ 𝑄𝑣. Hence, with probability at least 1 − 1/𝑛𝑐−1, for every
𝑣 ∈ 𝑉 , |𝑊 (𝑣)| ≤ 𝑔 and 𝑊 (𝑣) ⊆ 𝑄𝑣.

Lemma 5.3.2. Let 𝐺 = (𝑉, 𝐸) be a (possibly directed and weighted) graph. Let
𝑀, 𝑊 ⊆ 𝑉 and let 𝑆 ⊆ 𝑊 be a random subset of 𝑐(𝑛/𝑔) ln 𝑛 vertices for some large
enough constant 𝑐 and some integer 𝑔 ≥ 1.

Then, for any 𝐷 > 0 and for any 𝑤 ∈ 𝑀 with 𝑑(𝑤, 𝑆) > 𝐷, if one takes the
closest 𝑔 vertices of 𝑊 to 𝑤, they will contain all nodes of 𝑊 at distance < 𝐷 from
𝑤, with high probability.

Proof. Let 𝑄 be the closest 𝑔 vertices of 𝑊 to 𝑤. By Lemma 5.3.1, with high proba-
bility 𝑄 contains all nodes of 𝑊 at distance < 𝑑(𝑤, 𝑆) from 𝑤, and hence 𝑄 contains
all nodes of 𝑊 at distance < 𝐷 from 𝑤, with high probability.

We sometimes sample edges instead of vertices, so analogous lemmas to Lem-
mas 5.3.1 and 5.3.2 hold when the sample is from a set of edges. Here is the analogue
of Lemma 5.3.2. The other lemma is similar.

Lemma 5.3.3. Let 𝐺 = (𝑉, 𝐸) be a (possibly directed and weighted graph) and let
𝑀, 𝑊 ⊆ 𝑉 . Let 𝐸 ′ ⊆ 𝐸 be a random subset of 𝑐(|𝐸|/𝑔) ln 𝑛 edges for some large
enough constant 𝑐 and some integer 𝑔 ≥ 1. Let 𝑄 be the endpoints of edges in 𝐸 ′ that
are in 𝑊 .

Then, for any 𝐷 > 0, and for any 𝑤 with 𝑑(𝑤, 𝑆) > 𝐷, if one takes the closest 𝑔
edges of 𝐸 ′ to 𝑤 wrt the distance from their 𝑊 endpoints, they will contain all edges
of 𝐸 ′ whose 𝑊 endpoints are at distance < 𝐷 from 𝑤, with high probability.

5.4 Algorithms

5.4.1 Undirected 𝑆𝑇 -Diameter
Proposition 1. There is an 𝑂(𝑚 + 𝑛) time deterministic algorithm that for any
𝑛 vertex 𝑚 edge unweighted graph 𝐺 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉, 𝑇 ⊆ 𝑉 , computes an
estimate 𝐷′ such that 𝐷𝑆,𝑇 /3 ≤ 𝐷′ ≤ 𝐷𝑆,𝑇 and two vertices 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 such that
𝑑(𝑠, 𝑡) = 𝐷′. In graphs with nonnegative weights, the same estimate can be achieved
in 𝑂(𝑚 + 𝑛 log 𝑛) time.

Proof. The algorithm is extremely simple: pick arbitrary vertices 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 ,
compute BFS(𝑠) and BFS(𝑡) and return max{max𝑡′∈𝑇 𝑑(𝑠, 𝑡′), max𝑠′∈𝑆 𝑑(𝑠′, 𝑡)} (also
returning the two vertices achieving the maximum). For weighted graphs, run Dijk-
stra’s algorithm instead of BFS.
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Let’s see why this algorithm provides the promised guarantee. Suppose that for
every 𝑡′ ∈ 𝑇 , 𝑑(𝑠, 𝑡′) < 𝐷𝑆,𝑇 /3 (otherwise we are done). Then for every 𝑡′, 𝑡′′ ∈ 𝑇 ,
𝑑(𝑡′, 𝑡′′) ≤ 𝑑(𝑡′, 𝑠) + 𝑑(𝑠, 𝑡′′) < 2𝐷𝑆,𝑇 /3. In particular, for all 𝑡′ ∈ 𝑇 , 𝑑(𝑡, 𝑡′) < 2𝐷𝑆,𝑇 /3.
If we also had that for every 𝑠′ ∈ 𝑆, 𝑑(𝑡, 𝑠′) < 𝐷𝑆,𝑇 /3, then we’d get that for all
𝑠′ ∈ 𝑆, 𝑡′ ∈ 𝑇 , 𝑑(𝑠′, 𝑡′) ≤ 𝑑(𝑠′, 𝑡) + 𝑑(𝑡, 𝑡′) < 𝐷𝑆,𝑇 , contradicting the definition of 𝐷𝑆,𝑇 .
Thus, max{max𝑡′∈𝑇 𝑑(𝑠, 𝑡′), max𝑠′∈𝑆 𝑑(𝑠′, 𝑡)} ≥ 𝐷𝑆,𝑇 /3.

We will now show an analogue to the �̃�(𝑚
√

𝑛) time almost-3/2-approximation
for Diameter of Roditty and Vassilevska W. [RV13] for 𝑆𝑇 -Diameter giving a 2-
approximation. Using a trick from Chechik et al. [CLR+14] we also obtain a true 2
approximation algorithm running in �̃�(𝑚3/2).

Algorithm 1 2-Approximation for 𝑆𝑇 -Diameter
1: procedure 2-Approx
2: 𝑋 - random sample of vertices, |𝑋| = Θ(

√
𝑛 log 𝑛)

3: 𝐷1 := 0
4: for every 𝑥 ∈ 𝑋 do
5: Run BFS(𝑥)
6: Let 𝑡𝑥 be the closest vertex to 𝑥 in 𝑇
7: Run BFS(𝑡𝑥)
8: 𝐷1 = max{𝐷1, max𝑠∈𝑆 𝑑(𝑠, 𝑡𝑥)}
9: Let 𝑡 be the furthest vertex of 𝑇 from 𝑋 (computed above)

10: Run BFS(𝑡)
11: 𝐷2 = max𝑠∈𝑆 𝑑(𝑠, 𝑡).
12: Let 𝑌 be the closest

√
𝑛 vertices to 𝑡.

13: for every 𝑦 ∈ 𝑌 do
14: Run BFS(𝑦)
15: Let 𝑠𝑦 be the closest vertex to 𝑦 in 𝑆
16: Run BFS(𝑠𝑦)
17: 𝐷2 = max{𝐷2, max𝑡∈𝑇 𝑑(𝑠𝑦, 𝑡)}

return max{𝐷1, 𝐷2}

We use Algorithm 1 to prove:

Theorem 5.4.1. There is an �̃�(𝑚
√

𝑛) time randomized algorithm that with high
probability outputs an estimate 𝐷′ for the 𝑆𝑇 -diameter 𝐷 of an 𝑚 edge 𝑛 vertex
unweighted undirected graph such that 2⌊𝐷/4⌋ ≤ 𝐷′ ≤ 𝐷.

In �̃�(𝑚3/2) time one can obtain an estimate 𝐷′′ such that 𝐷/2 ≤ 𝐷′′ ≤ 𝐷.

Proof. First we analyze Algorithm 1. Let 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 be a pair of vertices with
𝑑(𝑠*, 𝑡*) = 𝐷. Let 𝑑 = ⌊𝐷/4⌋.

Suppose first that for some 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝑡*) ≤ 𝑑. Then, 𝑑(𝑥, 𝑡𝑥) ≤ 𝑑(𝑥, 𝑡*) ≤ 𝑑
and hence 𝑑(𝑡𝑥, 𝑡*) ≤ 𝑑(𝑡𝑥, 𝑥) + 𝑑(𝑥, 𝑡*) ≤ 2𝑑. However, then 𝑑(𝑡𝑥, 𝑠*) ≥ 𝑑(𝑡*, 𝑠*) −
𝑑(𝑡*, 𝑡𝑥) ≥ 𝐷 − 2𝑑 ≥ 𝐷/2. In this case, 𝐷1 ≥ 𝐷/2 and we are done.
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Thus, if 𝐷1 < 𝐷/2, it must be that for every 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝑡*) ≥ 𝑑 + 1. Hence, for
every 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝑡) ≥ 𝑑(𝑥, 𝑡*) ≥ 𝑑 + 1 by the definition of 𝑡. If 𝑑(𝑡, 𝑠*) ≥ 𝐷/2, then
𝐷2 ≥ 𝐷/2 and we are done, so let us assume that 𝑑(𝑡, 𝑠*) ≤ 𝐷/2.

Now, as 𝑋 is random of size 𝑐
√

𝑛 log 𝑛 for large enough 𝑐, with high probability, 𝑋
hits the

√
𝑛-neighborhoods of all vertices. In particular, 𝑋 ∩ 𝑌 ̸= ∅. However, since

𝑑(𝑥, 𝑡) ≥ 𝑑 + 1 for every 𝑥 ∈ 𝑋, it must be that 𝑌 contains all vertices at distance 𝑑
from 𝑡 as it contains all vertices closer to 𝑡 than 𝑥 ∈ 𝑌 ∩ 𝑋.

If 𝑠* ∈ 𝑌 , then we would have run BFS from 𝑠* and returned 𝐷. Hence 𝑑(𝑡, 𝑠*) > 𝑑.
Let 𝑎 be the vertex on the shortest path between 𝑡 and 𝑠* with 𝑑(𝑡, 𝑎) = 𝑑. We
thus have that 𝑎 ∈ 𝑌 . Also, since 𝑑(𝑡, 𝑠*) ≤ 𝐷/2, 𝑑(𝑎, 𝑠*) ≤ 𝐷/2 − 𝑑 and hence
𝑑(𝑎, 𝑠𝑎) ≤ 𝐷/2 − 𝑑, so that 𝑑(𝑠𝑎, 𝑡*) ≥ 𝐷 − 2(𝐷/2 − 𝑑) ≥ 2𝑑. This finishes the
argument that 2-Approx returns an estimate 𝐷′ with 2⌊𝐷/4⌋ ≤ 𝐷′ ≤ 𝐷.

It is not too hard to see that the only time that we might get an estimate that is
less than 𝐷/2 is in the last part of the argument and only if the diameter is of the
form 4𝑑 + 3. (We will prove the algorithm guarantees formally soon.) The analysis
fails to work in that case because 𝑌 is guaranteed to contain only the vertices at
distance 𝑑 from 𝑡.

In particular, if 𝑌 contains all vertices at distance 𝑑 + 1 from 𝑡 instead of just
those at distance at most 𝑑, we could consider 𝑎 to be the vertex on the shortest
path between 𝑡 and 𝑠* with 𝑑(𝑡, 𝑎) = 𝑑 + 1, and 𝑎 ∈ 𝑌 . Now since 𝑑(𝑡, 𝑠*) ≤ 2𝑑 + 1
(as otherwise we’d be done), 𝑑(𝑎, 𝑠𝑎) ≤ 𝑑(𝑎, 𝑠*) ≤ 2𝑑 + 1 − 𝑑 − 1 = 𝑑, so that
𝑑(𝑠𝑎, 𝑡*) ≥ 2𝑑 + 3. Hence everything would work out.

We handle this issue with a trick from Chechik et al. [CLR+14]. First, we make
graph have constant degree by blowing up the number of vertices and adding 0 weight
edges as follows. Let 𝑣 be an original vertex and suppose it has degree 𝑑(𝑣). Replace
𝑣 with a 𝑑(𝑣)-cycle of 0 weight edges so that each of the cycle vertices is connected
to a one of the neighbors of 𝑣, where each neighbor has a cycle vertex corresponding
to it. This makes every vertex have degree 3 and increases the number of vertices to
𝑂(𝑚).

Now, we run algorithm 2-Approx with two changes. The first is that instead of
BFS we use Dijkstra’s algorithm1 because the edges now have weights. The second
change is that we redefine 𝑌 as follows. Let 𝑍 be the closest

√
𝑚 vertices to 𝑡. Define

𝑌 to be 𝑍, together with all vertices that have a non-zero weight edge to some vertex
of 𝑍.

Since every vertex has degree 3, the number of vertices in 𝑌 is ≤ 4|𝑍| ≤ 𝑂(
√

𝑚)
and hence we can afford to run Dijkstra from each of them and complete the algorithm
in �̃�(𝑚3/2) time.

Let us now formally analyze the guarantees of the algorithm. If some vertex 𝑥 ∈ 𝑋
has 𝑑(𝑥, 𝑡*) ≤ 𝐷/4, we get that 𝑑(𝑡𝑥, 𝑠*) ≥ 𝐷 − 2(𝐷/4) = 𝐷/2. If we are not done,
all vertices of 𝑋 have 𝑑(𝑥, 𝑡) ≥ 𝑑(𝑥, 𝑡*) > 𝐷/4 and 𝑍 contains all vertices at distance
≤ 𝐷/4 from 𝑡. If 𝑠* ∈ 𝑍, we are done so we must have 𝑑(𝑠*, 𝑡) > 𝐷/4. Consider
the last vertex 𝑎′ on the 𝑡 to 𝑠* shortest path (in the direction towards 𝑠*) for which

1We can also use Thorup’s algorithm [Tho99], which runs in linear time and is stated for positive
weight edges but can also handle zero weight edges.
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𝑑(𝑡, 𝑎′) ≤ 𝐷/4. We have that 𝑎′ ∈ 𝑍. Also, the vertex 𝑎 after 𝑎′ on the 𝑡 to 𝑠* shortest
path must be in 𝑌 by definition.

If 𝑑(𝑡, 𝑠*) ≥ 𝐷/2, we are done. If we are not done, then we get that 𝑑(𝑎, 𝑠*) < 𝐷/4
since 𝑑(𝑡, 𝑎) > 𝐷/4. Hence, 𝑑(𝑎, 𝑠𝑎) < 𝐷/4, so 𝑑(𝑠𝑎, 𝑡*) > 𝐷 − 2(𝐷/4) = 𝐷/2.

It is quite straightforward to extend the the 𝑆𝑇 -Diameter algorithms to work for
weighted undirected graphs as well:

Theorem 5.4.2. In �̃�(𝑚
√

𝑛) time one can obtain an estimate 𝐷′ for the 𝑆𝑇 -
diameter 𝐷 of an 𝑚 edge 𝑛 vertex undirected graph with nonnegative edge weights
such that 𝐷/2 − 2𝑤(𝑎, 𝑎′) ≤ 𝐷′ ≤ 𝐷 for some edge (𝑎, 𝑎′).

In �̃�(𝑚3/2) time one can obtain an estimate 𝐷′′ such that 𝐷/2 ≤ 𝐷′′ ≤ 𝐷.

Proof. The �̃�(𝑚
√

𝑛) time algorithm is identical to Algorithm 1, but with BFS re-
placed by Dijkstra’s algorithm. The proof is very similar to that of Theorem 5.4.1.
The main difference concerns the definition of the vertex 𝑎, which is the vertex on
the shortest path between 𝑡 and 𝑠* with 𝑑(𝑡, 𝑎) = 𝑑. Such a vertex 𝑎 may not exist
here since the graph is weighted. Instead, we let 𝑎′ be the last vertex on the 𝑡 to 𝑠*

shortest path that is at distance ≤ 𝐷/4 from 𝑡, and let 𝑎 be the vertex after 𝑎′.
We include the full analysis of correctness here for completeness. Let 𝑠* ∈ 𝑆 and

𝑡* ∈ 𝑇 be the endpoints of the 𝑆𝑇 -diameter path so that 𝑑(𝑠*, 𝑡*) = 𝐷.
If some vertex 𝑥 ∈ 𝑋 has 𝑑(𝑥, 𝑡*) ≤ 𝐷/4, we get that 𝑑(𝑡𝑥, 𝑠*) ≥ 𝐷 − 2(𝐷/4) =

𝐷/2. If we are not done, all vertices of 𝑋 have 𝑑(𝑥, 𝑡) ≥ 𝑑(𝑥, 𝑡*) > 𝐷/4 and 𝑌
contains all vertices at distance ≤ 𝐷/4 from 𝑡. If 𝑠* ∈ 𝑌 , we are done so we must
have 𝑑(𝑠*, 𝑡) > 𝐷/4.

Recall that 𝑎′ is the last vertex on the 𝑡 to 𝑠* shortest path that is at distance
≤ 𝐷/4 from 𝑡, and that 𝑎 is the vertex after 𝑎′. We have that 𝑎′ ∈ 𝑌 . If 𝑑(𝑡, 𝑠*) ≥ 𝐷/2,
we are done. If we are not done, then we get that 𝑑(𝑎, 𝑠*) < 𝐷/4 since 𝑑(𝑡, 𝑎) > 𝐷/4.
Thus, 𝑑(𝑎′, 𝑠*) < 𝐷/4 + 𝑤(𝑎, 𝑎′). Therefore, 𝑑(𝑎′, 𝑠𝑎′) < 𝐷/4 + 𝑤(𝑎, 𝑎′), so 𝑑(𝑠𝑎′ , 𝑡*) <
𝐷 −2(𝐷/4+𝑤(𝑎, 𝑎′)) = 𝐷/2−2𝑤(𝑎, 𝑎′). This completes the analysis of the �̃�(𝑚

√
𝑛)

time algorithm.
For the �̃�(𝑚3/2) time algorithm, we apply precisely the same trick from [CLR+14]

as the proof of Theorem 5.4.1, with identical analysis.

5.4.2 Undirected Bichromatic Diameter
We begin with a simple near-linear time algorithm.

Proposition 2. There is an 𝑂(𝑚 + 𝑛 log 𝑛) time algorithm, that given an undirected
graph 𝐺 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an estimate 𝐷′ such that
𝐷𝑆𝑇 (𝐺)/2 − 𝑊/2 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 , where 𝑊 is the minimum weight of an edge in 𝑆 × 𝑇 .

Proof. Let (𝑠, 𝑡) be a minimum weight edge of 𝐺 with 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . Run Dijkstra’s
algorithm from 𝑠 and from 𝑡. Let 𝐷′ = max{max𝑡′∈𝑇 𝑑(𝑠, 𝑡′), max𝑠′∈𝑆 𝑑(𝑠′, 𝑡)}. Let
𝑠* ∈ 𝑆, 𝑡* ∈ 𝑇 be endpoints of an 𝑆𝑇 -diameter path, i.e. 𝑑(𝑠*, 𝑡*) = 𝐷𝑆𝑇 . Then,
suppose that max𝑡′∈𝑇 𝑑(𝑠, 𝑡′) < 𝐷𝑆𝑇 /2 − 𝑊/2. In particular, 𝑑(𝑠, 𝑡*) < 𝐷𝑆𝑇 /2 − 𝑊/2,
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and hence 𝑑(𝑠, 𝑠*) > 𝐷𝑆𝑇 /2 + 𝑊/2 by the triangle inequality. Also by the triangle
inequality,

𝐷𝑆𝑇 /2 + 𝑊/2 < 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑠*) ≤ 𝑤(𝑠, 𝑡) + max
𝑠′∈𝑆

𝑑(𝑠′, 𝑡).

Hence, 𝐷′ > 𝐷𝑆𝑇 /2−𝑊/2, where 𝑊 is the minimum weight of an edge in 𝑆 ×𝑇 .

Now we turn to our 5/3-approximation algorithms. Our first theorem is for un-
weighted graphs. Later on, we modify the algorithm in this theorem to obtain an
algorithm for weighted graphs as well, and at the same time remove the small additive
error that appears in the theorem below.

Theorem 5.4.3. There is an �̃�(𝑚
√

𝑛) time algorithm, that given an unweighted
undirected graph 𝐺 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an estimate 𝐷′

such that 3𝐷𝑆𝑇 (𝐺)/5 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 (𝐺) if 𝐷𝑆𝑇 (𝐺) is divisible by 5, and otherwise
3𝐷𝑆𝑇 (𝐺)/5 − 6/5 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 (𝐺).

Proof. Let 𝐷 = 𝐷𝑆𝑇 (𝐺) and let us assume that 𝐷 is divisible by 5. If 𝐷 is not
divisible by 5, the estimate we return will have a small additive error. For clarity of
presentation, we omit the analysis of the case where 𝐷 is not divisible by 5.

Suppose the (bichromatic) 𝑆𝑇 -diameter endpoints are 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 and that
the 𝑆𝑇 -diameter is 𝐷. The algorithm does not know 𝐷, but we will use it in the
analysis.

Algorithm Step 1 The algorithm first samples 𝑍 ⊆ 𝑆 of size 𝑐
√

𝑛 ln 𝑛 uniformly
at random. For every 𝑧 ∈ 𝑍, run BFS, and let 𝐷1 = max𝑧∈𝑍,𝑡∈𝑇 𝑑(𝑧, 𝑡).

Analysis Step 1 If for some 𝑠′ ∈ 𝑍 we have that 𝑑(𝑠*, 𝑠′) ≤ 2𝐷/5, then 𝐷1 ≥
𝑑(𝑠′, 𝑡*) ≥ 𝐷 − 𝑑(𝑠*, 𝑠′) ≥ 3𝐷/5.

Algorithm Step 2 Now, sample a set 𝑋 from 𝑇 of size 𝐶
√

𝑛 ln 𝑛 uniformly at
random for large enough constant 𝐶. For every 𝑡 ∈ 𝑋, run BFS and find the closest
node 𝑠(𝑡) of 𝑆 to 𝑡. Run BFS from every 𝑠(𝑡). Let 𝐷2 = max𝑡∈𝑋,𝑡′∈𝑇 𝑑(𝑠(𝑡), 𝑡′).

Analysis Step 2 If 𝑠* is at distance ≤ 𝐷/5 from some node 𝑡 of 𝑋, then
𝑑(𝑠*, 𝑠(𝑡)) ≤ 2𝐷/5 (since 𝑠(𝑡) is closer to 𝑡 than 𝑠*), and so 𝐷2 ≥ 𝑑(𝑠(𝑡), 𝑡*) ≥ 3𝐷/5.

If neither 𝐷1, nor 𝐷2 are good approximations, it must be that 𝑑(𝑠*, 𝑋) > 𝐷/5
and 𝑑(𝑠*, 𝑍) > 2𝐷/5. Consider the nodes 𝑀 of 𝑆 that are at distance > 2𝐷/5 from
𝑍, then the node 𝑤 ∈ 𝑀 that is furthest from 𝑋 among all nodes of 𝑀 . If neither
𝐷1, nor 𝐷2 was a good approximation, 𝑠* ∈ 𝑀 and since 𝑑(𝑠*, 𝑋) > 𝐷/5, we must
have that 𝑑(𝑤, 𝑋) > 𝐷/5 (and also 𝑑(𝑤, 𝑍) > 2𝐷/5). In the next step we will look
for such a 𝑤.

Algorithm Step 3 For each 𝑠 ∈ 𝑆 define 𝐷𝑠 to be the biggest integer which
satisfies 𝑑(𝑠, 𝑋) > 𝐷𝑠/5 and 𝑑(𝑠, 𝑍) > 2𝐷𝑠/5. Let 𝑤 = arg max 𝐷𝑠 and 𝐷′ = max 𝐷𝑠.
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Analysis Step 3 By Lemma 5.3.2 we have that whp, the number of nodes of 𝑇
at distance ≤ 𝐷′/5 from 𝑤 and the number of nodes of 𝑆 at distance ≤ 2𝐷′/5 from
𝑤 are both ≤

√
𝑛. Also if neither 𝐷1, nor 𝐷2 are good approximations, it must be

that 𝑑(𝑠*, 𝑋) > 𝐷/5 and 𝑑(𝑠*, 𝑍) > 2𝐷/5 and hence 𝐷′ ≥ 𝐷.

Algorithm Step 4 Run BFS from 𝑤. Take all nodes of 𝑆 at distance ≤ 2𝐷′/5
from 𝑤, call these 𝑆𝑤, and run BFS from them. Whp, |𝑆𝑤| ≤

√
𝑛, so that this BFS

run takes 𝑂(𝑚
√

𝑛) time. Let 𝐷3 := max𝑠∈𝑆𝑤,𝑡∈𝑇 𝑑(𝑠, 𝑡).
For every 𝑠 ∈ 𝑆𝑤, let 𝑡(𝑠) be the closest node of 𝑇 to 𝑠 (breaking ties arbitrarily).

Run BFS from each 𝑡(𝑠). Let 𝐷4 := max𝑠∈𝑆𝑤,𝑠′∈𝑆 𝑑(𝑠′, 𝑡(𝑠)).

Analysis Step 4 If 𝐷3 ≥ 3𝐷/5 or 𝐷4 ≥ 3𝐷/5, we are done, so let us assume
that 𝐷3, 𝐷4 < 3𝐷/5. Since 𝐷3 < 3𝐷/5, and since 𝐷3 ≥ 𝑑(𝑤, 𝑡*), it must be that
𝑑(𝑤, 𝑡*) < 3𝐷/5. Let 𝑃𝑤𝑡* be the shortest 𝑤 to 𝑡* path. Consider the node 𝑏 on 𝑃𝑤𝑡*

for which 𝑑(𝑤, 𝑏) = 2𝐷/5. If 𝑏 ∈ 𝑆, then since 𝐷′ ≥ 𝐷, 𝑏 ∈ 𝑆𝑤 and hence we ran
BFS from 𝑡(𝑏). But since 𝑑(𝑏, 𝑡*) = 𝑑(𝑤, 𝑡*) − 2𝐷/5 < 𝐷/5, and 𝑑(𝑏, 𝑡(𝑏)) ≤ 𝑑(𝑏, 𝑡*)
we have that 𝑑(𝑡(𝑏), 𝑡*) ≤ 2𝐷/5 and hence 𝐷4 ≥ 𝑑(𝑠*, 𝑡(𝑏)) ≥ 𝐷 − 𝑑(𝑡(𝑏), 𝑡*) ≥ 3𝐷/5.
Thus, if 𝐷4 < 3𝐷/5, it must be that 𝑏 ∈ 𝑇 .

Algorithm Step 5 Take all nodes of 𝑇 at distance ≤ 𝐷′/5 from 𝑤, call these
𝑇𝑤 and run BFS from them. Since 𝑑(𝑤, 𝑋) > 𝐷′/5, whp |𝑇𝑤| ≤

√
𝑛, so this step runs

in 𝑂(𝑚
√

𝑛) time. Let 𝐷5 = max𝑡∈𝑇𝑤,𝑠∈𝑆 𝑑(𝑡, 𝑠).

Analysis Step 5 If 𝐷5 ≥ 3𝐷/5, we would be done, so assume that 𝐷5 <
3𝐷/5. Let 𝑎 be the node on the shortest 𝑤 to 𝑡* path 𝑃𝑤𝑡* with 𝑑(𝑤, 𝑎) = 𝐷/5.
Suppose that 𝑎 ∈ 𝑇 . Since 𝐷′ ≥ 𝐷, 𝑎 ∈ 𝑇𝑤 and we ran BFS from it. However,
also 𝑑(𝑎, 𝑡*) = 𝑑(𝑤, 𝑡*) − 𝑑(𝑤, 𝑎) < 3𝐷/5 − 𝐷/5 = 2𝐷/5, and hence 𝐷5 ≥ 𝑑(𝑎, 𝑠*) ≥
𝑑(𝑡*, 𝑠*) − 𝑑(𝑡*, 𝑎) ≥ 𝐷 − 2𝐷/5 = 3𝐷/5. Since 𝐷5 < 3𝐷/5, it must be that 𝑎 ∈ 𝑆.

Now, since 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝑇 , somewhere on the 𝑎 to 𝑏 shortest path 𝑃𝑎𝑏, there must
be an edge (𝑠′, 𝑡′) with 𝑠′ ∈ 𝑆, 𝑡′ ∈ 𝑇 . Since 𝑠′ is before 𝑏, 𝑑(𝑤, 𝑠′) ≤ 2𝐷/5 ≤ 2𝐷′/5,
and hence 𝑠′ ∈ 𝑆𝑤. Thus we ran BFS from 𝑡(𝑠′). Since 𝑠′ has an edge to 𝑡′ ∈ 𝑇 ,
𝑑(𝑠′, 𝑡(𝑠′)) ≤ 𝑑(𝑠′, 𝑡′) = 1. Also, since 𝑑(𝑤, 𝑠′) ≥ 𝑑(𝑤, 𝑎) = 𝐷/5 and 𝑑(𝑤, 𝑡*) ≤
3𝐷/5 − 1, 𝑑(𝑠′, 𝑡*) ≤ 2𝐷/5 − 1. Thus,

𝐷4 ≥ 𝑑(𝑡(𝑠′), 𝑠*) ≥ 𝑑(𝑠*, 𝑡*) − 𝑑(𝑡(𝑠′), 𝑡*)
≥ 𝐷 − 𝑑(𝑡(𝑠′), 𝑠′) − 𝑑(𝑠′, 𝑡*)
≥ 𝐷 − 1 − 2𝐷/5 + 1
= 3𝐷/5.

Hence if we set 𝐷′′ = max{𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5}, we get that 3𝐷/5 ≤ 𝐷′′ ≤ 𝐷.

We now modify the algorithm for unweighted graphs, both making the algorithm
work for weighted graphs and removing the additive error, at the expense of increasing
the runtime to �̃�(𝑚3/2).
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Theorem 5.4.4. There is an �̃�(𝑚3/2) time algorithm, that given an undirected graph
𝐺 = (𝑉, 𝐸) with nonnegative integer edge weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output
an estimate 𝐷′ such that 3𝐷𝑆𝑇 (𝐺)/5 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 .

Proof. Suppose as before the (bichromatic) 𝑆𝑇 -diameter endpoints are 𝑠* ∈ 𝑆 and
𝑡* ∈ 𝑇 and that the 𝑆𝑇 -diameter is 𝐷.

Algorithm Modified Step 1 The algorithm here samples 𝐸 ′ ⊆ 𝐸 of size
𝑐
√

𝑚 ln 𝑛 uniformly at random, for large enough 𝑐. Let 𝑍 be the endpoints of edges
in 𝐸 ′ that are in 𝑆. For every 𝑧 ∈ 𝑍, run Dijkstra’s algorithm, and let 𝐷1 =
max𝑧∈𝑍,𝑡∈𝑇 𝑑(𝑧, 𝑡).

Analysis Step 1 If for some 𝑠′ ∈ 𝑍 we have that 𝑑(𝑠*, 𝑠′) ≤ 2𝐷/5, then 𝐷1 ≥
𝑑(𝑠′, 𝑡*) ≥ 𝐷 − 𝑑(𝑠*, 𝑠′) ≥ 3𝐷/5. Let us then assume that 𝑑(𝑠*, 𝑍) > 2𝐷/5.

Algorithm Modified Step 2 Let 𝑋 be the endpoints of edges in 𝐸 ′ that are
in 𝑇 . For every 𝑡 ∈ 𝑋, run Dijkstra’s algorithm and find the closest node 𝑠(𝑡) of 𝑆
to 𝑡. Run Dijkstra’s algorithm from every 𝑠(𝑡). Let 𝐷2 = max𝑡∈𝑋,𝑡′∈𝑇 𝑑(𝑠(𝑡), 𝑡′).

Analysis Step 2 If 𝑠* is at distance ≤ 𝐷/5 from some node 𝑡 of 𝑋, then
𝑑(𝑠*, 𝑠(𝑡)) ≤ 2𝐷/5 (since 𝑠(𝑡) is closer to 𝑡 than 𝑠*), and so 𝐷2 ≥ 𝑑(𝑠(𝑡), 𝑡*) ≥ 3𝐷/5.
Let us then assume that 𝑑(𝑠*, 𝑋) > 𝐷/5.

As before, if we consider the nodes 𝑀 of 𝑆 that are at distance > 2𝐷/5 from 𝑍,
then the node 𝑤 ∈ 𝑀 that is furthest from 𝑋 among all nodes of 𝑀 , would have both
𝑑(𝑤, 𝑍) > 2𝐷/5 and 𝑑(𝑤, 𝑋) > 𝐷/5, as 𝑠* is in 𝑀 and satisfies 𝑑(𝑠*, 𝑋) > 𝐷/5. We
will find a node 𝑤 with these properties in the next step.

Algorithm Unmodified Step 3 Perform exactly the same Step 3 as before,
finding the largest integer 𝐷′ such that there is some node 𝑤 ∈ 𝑆 with 𝑑(𝑤, 𝑍) >
2𝐷′/5 and 𝑑(𝑤, 𝑋) > 𝐷′/5.

Analysis Step 3 Let 𝑤 ∈ 𝑆 be the node we found such that 𝑑(𝑤, 𝑋) >
𝐷′/5, 𝑑(𝑤, 𝑍) > 2𝐷′/5. By Lemma 5.3.3 we have that whp, the number of edges
(𝑠, 𝑔) where 𝑠 ∈ 𝑆, 𝑔 ∈ 𝑉 and 𝑑(𝑤, 𝑠) ≤ 2𝐷′/5 and the number of edges (𝑡, 𝑔′) where
𝑡 ∈ 𝑇, 𝑔′ ∈ 𝑉 and 𝑑(𝑤, 𝑡) ≤ 𝐷′/5 is at most

√
𝑚. Also, if 𝐷1, 𝐷2 < 3𝐷/5, then

𝐷′ ≥ 𝐷, so that we also have that the number of edges (𝑠, 𝑏) where 𝑠 ∈ 𝑆 and
𝑑(𝑤, 𝑠) ≤ 2𝐷/5 and the number of edges (𝑡, 𝑏′) where 𝑡 ∈ 𝑇 and 𝑑(𝑤, 𝑡) ≤ 𝐷/5 is at
most

√
𝑚, whp.

Algorithm Modified Step 4 Run Dijkstra’s algorithm from 𝑤. Take all edges
incident to nodes of 𝑆 at dist ≤ 2𝐷′/5 from 𝑤. Call these edges 𝐸𝑆 and their endpoints
𝑆𝑤. Run Dijkstra’s algorithm from both of their endpoints. Whp, |𝐸𝑆| ≤

√
𝑚

and so |𝑆𝑤| ≤ 2
√

𝑚, so that this Dijkstra run takes �̃�(𝑚3/2) time. Let 𝐷3 :=
max𝑡∈𝑆𝑤∩𝑇,𝑠∈𝑆 𝑑(𝑠, 𝑡).
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For every 𝑠 ∈ 𝑆𝑤 ∩ 𝑆, determine a closest node 𝑡(𝑠) ∈ 𝑇 to 𝑠, and run Di-
jkstra’s algorithm from 𝑡(𝑠) as well. This search also takes 𝑂(𝑚3/2) time. Let
𝐷4 := max𝑠∈𝑆𝑤∩𝑆,𝑠′∈𝑆 𝑑(𝑠′, 𝑡(𝑠)).

Analysis Step 4 If 𝑑(𝑤, 𝑡*) ≥ 3𝐷/5, or 𝐷3 ≥ 3𝐷/5 or 𝐷4 ≥ 3𝐷/5, we are
done, so let us assume that 𝑑(𝑤, 𝑡*), 𝐷3, 𝐷4 < 3𝐷/5.

Now consider the node 𝑏 on the shortest 𝑤 to 𝑡* path 𝑃𝑤𝑡* for which 𝑑(𝑤, 𝑏) ≤
2𝐷/5, but such that the node 𝑏′ after it on 𝑃𝑤𝑡* has 𝑑(𝑤, 𝑏′) > 2𝐷/5.

Suppose that 𝑏 ∈ 𝑆. Then since 𝐷′ ≥ 𝐷, we have 𝑑(𝑤, 𝑏) ≤ 2𝐷′/5 and hence
(𝑏, 𝑏′) ∈ 𝐸𝑆. Let us consider 𝑑(𝑏′, 𝑡*) = 𝑑(𝑤, 𝑡*) − 𝑑(𝑏′, 𝑤). Since 𝑑(𝑤, 𝑡*) < 3𝐷/5 and
𝑑(𝑏′, 𝑤) > 2𝐷/5, 𝑑(𝑏′, 𝑡*) < 𝐷/5. If 𝑏′ ∈ 𝑇 , then since we ran Dijkstra’s algorithm
from 𝑏′, we got 𝐷3 ≥ 𝐷 − 𝐷/5 = 4𝐷/5. If 𝑏′ ∈ 𝑆, then we ran Dijkstra’s algorithm
from 𝑡(𝑏′) and 𝑑(𝑡(𝑏′), 𝑡*) ≤ 𝑑(𝑡(𝑏′), 𝑏′) + 𝑑(𝑏′, 𝑡*) ≤ 2𝑑(𝑏′, 𝑡*) < 2𝐷/5, and hence
𝐷4 ≥ 𝑑(𝑡(𝑏), 𝑠*) ≥ 𝐷 − 2𝐷/5 = 3𝐷/5. Thus if neither 𝑑(𝑤, 𝑡*), 𝐷3, nor 𝐷4 are good
approximations, then 𝑏 ∈ 𝑇 .

Algorithm Modified Step 5 Take all edges incident to nodes of 𝑇 at dist
≤ 𝐷′/5 from 𝑤. Call these edges 𝐸𝑇 and their endpoints that are in 𝑇 , 𝑇𝑤. Run
Dijkstra’s algorithm from all nodes in 𝑇𝑤.

Since 𝑑(𝑤, 𝑋) > 𝐷′/5, whp |𝑇𝑤| ≤ 2
√

𝑚, so this step runs in 𝑂(𝑚3/2) time. Let
𝐷5 = max𝑡∈𝑇𝑤,𝑠∈𝑆 𝑑(𝑡, 𝑠).

Analysis Step 5 If 𝐷5 ≥ 3𝐷/5, we would be done, so assume that 𝐷5 < 3𝐷/5.
Let 𝑎 be the node on 𝑃𝑤𝑡* with 𝑑(𝑤, 𝑎) ≤ 𝐷/5 but so that the node 𝑎′ after 𝑎 on 𝑃𝑤𝑡*

has 𝑑(𝑤, 𝑎′) > 𝐷/5. Suppose that 𝑎′ ∈ 𝑇 . Since 𝐷′ ≥ 𝐷, (𝑎, 𝑎′) ∈ 𝐸𝑇 , 𝑎′ ∈ 𝑇𝑤 and we
ran Dijkstra’s algorithm from 𝑎′. However, also 𝑑(𝑎′, 𝑡*) = 𝑑(𝑤, 𝑡*)−𝑑(𝑤, 𝑎′) < 3𝐷/5−
𝐷/5 = 2𝐷/5, and hence 𝐷5 ≥ 𝑑(𝑎, 𝑠*) ≥ 𝑑(𝑡*, 𝑠*) − 𝑑(𝑡*, 𝑎′) ≥ 𝐷 − 2𝐷/5 = 3𝐷/5.
Since 𝐷5 < 3𝐷/5, it must be that 𝑎′ ∈ 𝑆.

Now, since 𝑎′ ∈ 𝑆 and 𝑏 ∈ 𝑇 , somewhere on the 𝑎′ to 𝑏 shortest path 𝑃𝑎𝑏, there
must be an edge (𝑠′, 𝑡′) with 𝑠′ ∈ 𝑆, 𝑡′ ∈ 𝑇 . However, since 𝑠′ is before 𝑏, we have
that 𝑑(𝑤, 𝑠′) ≤ 𝑑(𝑤, 𝑏) ≤ 2𝐷/5 ≤ 2𝐷′/5. Thus, (𝑠′, 𝑡′) ∈ 𝐸𝑆 and we ran Dijkstra’s
algorithm from 𝑡′. However, 𝑑(𝑡′, 𝑡*) = 𝑑(𝑤, 𝑡*) − 𝑑(𝑤, 𝑡′) ≤ 𝑑(𝑤, 𝑡*) − 𝑑(𝑤, 𝑎′) <
3𝐷/5 − 𝐷/5 = 2𝐷/5, and hence 𝐷3 ≥ 𝑑(𝑡′, 𝑠*) ≥ 𝑑(𝑠*, 𝑡*) − 𝑑(𝑡′, 𝑡*) > 3𝐷/5.

Hence if we set 𝐷′′ = max{𝑑(𝑤, 𝑡*), 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5}, we get that 3𝐷/5 ≤ 𝐷′′ ≤
𝐷.

Undirected parameterized Bichromatic Diameter

Theorem 5.4.5. There is an 𝑂(𝑚|𝐵|) time algorithm, that given an unweighted
undirected graph 𝐺 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, outputs an estimate 𝐷′ such that
2𝐷𝑆𝑇 (𝐺)/3 − 1 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 (𝐺).

We note that our conditional lower bounds for Bichromatic Diameter rule out a
better-than-5/3-approximation algorithm in subquadratic time for Bichromatic Di-
ameter using a construction with boundary size |𝐵| = �̃�(1). The algorithm of Theo-
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rem 5.4.5 achieves the better multiplicative approximation factor of 3/2, however this
does not contradict the lower bound due to the additive error of 1 in the algorithm.

Proof of Theorem 5.4.5.

Algorithm For all 𝑣 ∈ 𝑇 , we let 𝜀𝑆𝑇 (𝑣) = max𝑠∈𝑆 𝑑(𝑠, 𝑣) (𝜀𝑆𝑇 (𝑣) is already
defined for 𝑣 ∈ 𝑆). Suppose without loss of generality that 𝐵 ⊆ 𝑆 (a symmetric
argument works for 𝐵 ⊆ 𝑇 ). For every vertex 𝑣 ∈ 𝐵, run BFS from 𝑣, let 𝑣𝑇 be an
arbitrary neighbor of 𝑣 such that 𝑣𝑇 ∈ 𝑇 , and run BFS from 𝑣𝑇 . Let 𝐷1 be the largest
𝑆 −𝑇 distance found. That is, 𝐷1 = max𝑣∈𝐵 max{𝜀𝑆𝑇 (𝑣), 𝜀𝑆𝑇 (𝑣𝑇 )}. Let 𝑠 ∈ 𝑆 be the
farthest vertex from 𝐵. That is, 𝑠 is the vertex in 𝑆 that maximizes 𝑑(𝑠, 𝐵). Then,
we run BFS from 𝑠 and let 𝐷2 = 𝜀𝑆𝑇 (𝑠). Return 𝐷′ = max{𝐷1, 𝐷2}.

Analysis Let 𝑠* ∈ 𝑆, 𝑡* ∈ 𝑇 be the true endpoints of the bichromatic diameter
and let 𝐷 denote 𝐷𝑆𝑇 (𝐺). If 𝑠* is of distance at most 𝐷/3 + 1 from some vertex
𝑣 ∈ 𝐵 then by the triangle inequality 𝑑(𝑣, 𝑡*) ≥ 2𝐷/3 − 1 so 𝐷1 ≥ 2𝐷/3 − 1 and
we are done. If 𝑡* is of distance at most 𝐷/3 from some vertex 𝑣 ∈ 𝐵 then by the
triangle inequality 𝑑(𝑣𝑇 , 𝑠*) ≥ 2𝐷/3 − 1 so 𝐷1 ≥ 2𝐷/3 − 1 and we are done.

Now, if we are not already done, 𝑠* is of distance at least 𝐷/3+1 from every vertex
in 𝐵, so 𝑠 is also of distance at least 𝐷/3 + 1 from every vertex in 𝐵. Additionally,
𝑡* is of distance at least 𝐷/3 from every vertex in 𝐵. We observe that the shortest
path between 𝑠 and 𝑡* must contain a vertex in 𝐵. Thus, 𝑑(𝑠, 𝑡*) = min𝑣∈𝐵 𝑑(𝑠, 𝑣) +
𝑑(𝑣, 𝑡*) ≤ (𝐷/3+1)+(𝐷/3) = 2𝐷/3+1. Thus, 𝐷2 ≥ 2𝐷/3+1 and we are done.

5.4.3 Directed Bichromatic Diameter
Theorem 5.4.6. There is an �̃�(𝑚3/2) time algorithm, that given a directed graph
𝐺 = (𝑉, 𝐸) with nonnegative integer weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an
estimate 𝐷′ such that 𝐷𝑆𝑇 (𝐺)/2 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 (𝐺).

Proof. Suppose the (bichromatic) 𝑆𝑇 -diameter endpoints are 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 and
that the 𝑆𝑇 -diameter is 𝐷. The algorithm does not know 𝐷, but we will use it in
the analysis.

Algorithm Step 1 The algorithm first samples 𝐸 ′ ⊆ 𝐸 of size 𝑐
√

𝑚 ln 𝑚 for
large enough 𝑐 uniformly at random from the edges which go from 𝑆 to 𝑇 . Let 𝑅 be
the set of 𝑆 nodes incident to these edges. Define 𝐷1 = max𝑢∈𝑅,𝑡∈𝑇 𝑑(𝑢, 𝑡).

Analysis Step 1 If there exists an 𝑠 ∈ 𝑅 with 𝑑(𝑠*, 𝑠) ≤ 𝐷/2 then we are done
as by triangle inequality 𝐷1 ≥ 𝑑(𝑠, 𝑡*) ≥ 𝑑(𝑠*, 𝑡*) − 𝑑(𝑠*, 𝑠) ≥ 𝐷/2.

Algorithm Step 2 Let 𝑤 be the vertex in 𝑆 which maximizes 𝑑(𝑤, 𝑅). Defining
the distance to an edge (𝑢, 𝑣) to be distance to 𝑢 we find the

√
𝑚 closest edges to 𝑤

which cross from 𝑆 to 𝑇 . Let 𝑃 be the set of 𝑇 nodes incident to these edges. Let 𝐷2 =
max𝑠∈𝑆,𝑣∈𝑃 𝑑(𝑠, 𝑣) and 𝐷3 = max𝑡∈𝑇 𝑑(𝑤, 𝑡). Our estimate is 𝐷′ = max(𝐷1, 𝐷2, 𝐷3).
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Analysis Step 2 Note that all 3 estimates are underestimates so we will just
bound 𝐷′ from below. Suppose 𝐷3 ≥ 𝐷/2 then we are already done. So we can
assume that 𝑑(𝑤, 𝑡*) < 𝐷/2. Let (𝑠, 𝑡) be the first edge going from 𝑆 to 𝑇 in the
shortest path from 𝑤 to 𝑡*. If 𝐷1 < 𝐷/2 then by Lemma 5.3.3, this edge is among
the

√
𝑚 closest edges to 𝑤. Hence 𝐷2 ≥ 𝑑(𝑠*, 𝑡) ≥ 𝑑(𝑠*, 𝑡*) − 𝑑(𝑡, 𝑡*) ≥ 𝐷 − 𝑑(𝑡, 𝑡*) ≥

𝐷 − 𝑑(𝑤, 𝑡*) ≥ 𝐷/2

Directed parameterized Bichromatic Diameter

For Bichromatic Diameter in undirected graphs, we assumed that only one of 𝑆 ′ or
𝑇 ′ was small (i.e. we set 𝐵 to be the smaller of the two); however for directed graphs
we impose that both 𝑆 ′ and 𝑇 ′ are small, by defining a new parameter 𝐵′ = 𝑆 ′ ∪ 𝑇 ′.

Theorem 5.4.7. There is an 𝑂(𝑚|𝐵′|) time algorithm that, given an unweighted
directed graph 𝐺 = (𝑉, 𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, returns an estimate 𝐷′ such that
2𝐷𝑆𝑇 (𝐺)/3 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 (𝐺).

Proof.

Algorithm For all 𝑣 ∈ 𝑇 , we let 𝜀𝑆𝑇 (𝑣) denote max𝑠∈𝑆 𝑑(𝑠, 𝑣) (𝜀𝑆𝑇 (𝑣) is already
defined for 𝑣 ∈ 𝑆). Run forward BFS from every vertex in 𝑆 ′ and run backward
BFS from every vertex in 𝑇 ′. Let 𝐷1 be the largest 𝑆 → 𝑇 distance found. That is,
𝐷1 = max𝑣∈𝐵′ 𝜀𝑆𝑇 (𝑣). Let 𝑠 ∈ 𝑆 be the farthest vertex from 𝐵′. That is, 𝑠 is the
vertex in 𝑆 that maximizes 𝑑(𝑠, 𝐵′). Then, we run BFS from 𝑠 and let 𝐷2 = 𝜀𝑆𝑇 (𝑠).
Return max{𝐷1, 𝐷2}.

Analysis Let 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 be the true bichromatic diameter endpoints
and let 𝐷 denote 𝐷𝑆𝑇 (𝐺). If there exists a vertex 𝑠′ ∈ 𝑆 ′ such that 𝑑(𝑠*, 𝑠′) ≤ 𝐷/3,
then by the triangle inequality, 𝑑(𝑠′, 𝑡*) ≥ 2𝐷/3 so 𝐷1 ≥ 2𝐷/3 and we are done.
Similarly, if there exists a vertex 𝑡′ ∈ 𝑇 ′ such that 𝑑(𝑡′, 𝑡*) ≤ 𝐷/3, then by the
triangle inequality, 𝑑(𝑠*, 𝑡′) ≥ 2𝐷/3 so 𝐷1 ≥ 2𝐷/3 and we are done.

Suppose we are not done. Then, for every vertex 𝑠′ ∈ 𝑆 ′, 𝑑(𝑠*, 𝑠′) > 𝐷/3 and for
every vertex 𝑡′ ∈ 𝑇 ′, 𝑑(𝑡′, 𝑡*) > 𝐷/3. By choice of 𝑠, for all 𝑠′ ∈ 𝑆 ′, 𝑑(𝑠, 𝑠′) > 𝐷/3.
We observe that every path from 𝑠 to 𝑡* must contain an edge from a vertex in 𝑆 ′

to a vertex in 𝑇 ′. Let (𝑠′′ ∈ 𝑆 ′, 𝑡′′ ∈ 𝑇 ′) be an edge on the shortest path from 𝑠 to
𝑡*. Then, 𝑑(𝑠, 𝑡*) = 𝑑(𝑠, 𝑠′′) + 𝑑(𝑠′′, 𝑡′′) + 𝑑(𝑡′′, 𝑡*) > 𝐷/3 + 1 + 𝐷/3 = 2𝐷/3 + 1, so
𝐷2 ≥ 2𝐷/3 + 1.

5.4.4 Directed Subset Diameter
Proposition 3. There is an �̃�(𝑚) time algorithm, that given a directed graph 𝐺 =
(𝑉, 𝐸) with nonnegative integer weights and 𝑆 ⊆ 𝑉 , outputs an estimate 𝐷′ such that
𝐷𝑆/2 ≤ 𝐷′ ≤ 𝐷𝑆.

Proof. Run Dijkstra’s algorithm both “forward” and “backward” from 𝑠 to obtain
𝐷1 = max𝑠′∈𝑆 𝑑(𝑠, 𝑠′) and 𝐷2 = max𝑠′∈𝑆 𝑑(𝑠′, 𝑠). Return 𝐷′ = max{𝐷1, 𝐷2}.
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Let 𝑠*, 𝑡* ∈ 𝑆 be the true endpoints of the subset diameter. Then, by the triangle
inequality 𝐷𝑆 ≤ 𝑑(𝑠*, 𝑠) + 𝑑(𝑠, 𝑡*). Then since 𝑑(𝑠*, 𝑠) ≤ 𝐷2 and 𝑑(𝑠, 𝑡*) ≤ 𝐷1,
𝐷𝑆 ≤ 𝐷1 + 𝐷2. Thus, 𝐷𝑆/2 ≤ max{𝐷1, 𝐷2} ≤ 𝐷𝑆.

5.5 Conditional lower bounds

5.5.1 Directed 𝑆𝑇 -Diameter
Proposition 4. Under SETH, any algorithm for 𝑆𝑇 -Diameter that achieves a finite
approximation factor in 𝑚-edge directed graphs requires 𝑚2−𝑜(1) time.

Proof. Given an instance 𝑈, 𝑉 ⊆ {0, 1}𝑑 of OV, let 𝐺(𝑈, 𝑉 ) be its OV-graph. Now,
direct the edges from 𝑈 to 𝐶 and from 𝐶 to 𝑉 and set 𝑆 = 𝑈 , 𝑇 = 𝑉 .

Now, for every 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , if 𝑢 · 𝑣 ̸= 0, 𝑑(𝑢, 𝑣) = 2 and if 𝑢 · 𝑣 = 0, 𝑑(𝑢, 𝑣) = ∞
as there is no path from 𝑢 to 𝑣. Thus, if there is an OV pair, then the 𝑆𝑇 -diameter is
∞, and otherwise it is 2. Any finite approximation for 𝑆𝑇 -Diameter can distinguish
between ∞ and 2, and thus can solve OV. Thus, there can be no 𝑚2−𝜀 time algorithm
for 𝜀 > 0 that achieves a finite approximation factor if SETH holds.

5.5.2 Undirected Bichromatic Diameter
The following theorem implies that our algorithms for undirected Bichromatic Diam-
eter from Theorem 5.4.4 and Proposition 2 are tight under SETH.

Theorem 5.5.1. Under SETH, for every 𝑘 ≥ 2, every algorithm that can distinguish
between bichromatic diameter 2𝑘 − 1 and 4𝑘 − 3 in undirected unweighted graphs
requires 𝑚1+1/(𝑘−1)−𝑜(1) time.

In particular setting 𝑘 = 2 and 3 in Theorem 5.5.1 implies that our 𝑚3/2 time
5/3-approximation algorithm from Theorem 5.4.4 is tight in approximation factor
and runtime, respectively. Furthermore, setting 𝑘 to be arbitrarily large implies that
our �̃�(𝑚) time almost 2-approximation algorithm from Proposition 2 is tight under
SETH.

As a starting point, we use the construction for 𝑆𝑇 -Diameter from Chapter 3. In
particular we start with the 𝑘-OV graph from the following theorem, which is a less
detailed version of Theorem 3.2.2.

Theorem 5.5.2. Let 𝑘 ≥ 2 be a fixed integer. Given a 𝑘-OV instance consisting
of sets 𝑊0, 𝑊1, . . . , 𝑊𝑘−1 ⊆ {0, 1}𝑑, each of size 𝑛, we can in 𝑂(𝑘𝑛𝑘−1𝑑𝑘−1) time
construct an unweighted, undirected graph with 𝑂(𝑛𝑘−1 + 𝑘𝑛𝑘−2𝑑𝑘−1) vertices and
𝑂(𝑘𝑛𝑘−1𝑑𝑘−1) edges that satisfies the following properties.

1. The graph consists of 𝑘 + 1 layers of vertices 𝐿0, 𝐿1, 𝐿2, . . . , 𝐿𝑘. The number of
nodes in the sets is |𝐿0| = |𝐿𝑘| = 𝑛𝑘−1 and |𝐿1|, |𝐿2|, . . . , |𝐿𝑘−1| ≤ 𝑛𝑘−2𝑑𝑘−1.

2. 𝐿0 consists of all tuples (𝑎0, 𝑎1, . . . , 𝑎𝑘−2) where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖. Similarly,
𝐿𝑘 consists of all tuples (𝑏1, 𝑏2, . . . , 𝑏𝑘−1) where for each 𝑖, 𝑏𝑖 ∈ 𝑊𝑖.

74



3. If the 𝑘-OV instance has no solution, then 𝑑(𝑢, 𝑣) = 𝑘 for all 𝑢 ∈ 𝐿0 and 𝑣 ∈ 𝐿𝑘.

4. If the 𝑘-OV instance has a solution 𝑎0, 𝑎1, . . . , 𝑎𝑘−1 where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖

then if 𝛼 = (𝑎0, . . . 𝑎𝑘−2) ∈ 𝐿0 and 𝛽 = (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑘, then 𝑑(𝛼, 𝛽) ≥
3𝑘 − 2.

5. For all 𝑖 from 1 to 𝑘 − 1, for all 𝑣 ∈ 𝐿𝑖 there exists a vertex in 𝐿𝑖−1 adjacent to
𝑣 and a vertex in 𝐿𝑖+1 adjacent to 𝑣.

We will prove the following lemma, which immediately implies Theorem 5.5.1.

Lemma 5.5.1. Let 𝑘 ≥ 2 be any integer. Given a 𝑘-OV instance, we can in
𝑂(𝑘𝑛𝑘−1𝑑𝑘−1) time construct an unweighted, undirected graph with 𝑂(𝑘𝑛𝑘−1+𝑘𝑛𝑘−2𝑑𝑘−1)
vertices and 𝑂(𝑘𝑛𝑘−1𝑑𝑘−1) edges that satisfies the following two properties.

1. If the 𝑘-OV instance has no solution, then for all pairs of vertices 𝑢 ∈ 𝑆 and
𝑣 ∈ 𝑇 we have 𝑑(𝑢, 𝑣) ≤ 2𝑘 − 1.

2. If the 𝑘-OV instance has a solution, then there exists a pair of vertices 𝑢 ∈ 𝑆
and 𝑣 ∈ 𝑇 such that 𝑑(𝑢, 𝑣) ≥ 4𝑘 − 3.

Proof. We first describe the construction and then argue correctness.

Construction. We begin with the 𝑘-OV-graph from Theorem 5.5.2. Additionally,
we add 𝑘 − 1 new layers of vertices 𝐿𝑘+1, . . . , 𝐿2𝑘−1, where each new layer contains
𝑛𝑘−1 vertices and is connected to the previous layer by a matching. That is, each new
layer contains one vertex for every tuple (𝑎1, . . . , 𝑎𝑘−1) where 𝑎𝑖 ∈ 𝑊𝑖 for all 𝑖, and
each (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑗 is connected to its counterpart (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑗−1 by an
edge, for all 𝑗.

We let 𝑆 = 𝐿0 and we let 𝑇 contain the rest of the vertices in the graph.

Correctness. Case 1: The 𝑘-OV instance has no solution. By property 3 of The-
orem 5.5.2 for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐿𝑘, 𝑑(𝑢, 𝑣) = 𝑘. Then, since 𝐿𝑘, . . . , 𝐿2𝑘−1 form a
series of matchings, for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐿𝑘+1 ∪· · ·∪𝐿2𝑘−1, 𝑑(𝑢, 𝑣) ≤ 2𝑘−1. Further-
more, property 5 of Theorem 5.5.2 implies that for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐿1 ∪ · · · ∪ 𝐿𝑘−1,
𝑑(𝑢, 𝑣) ≤ 2𝑘 − 1. Thus, we have shown that for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇 we have
𝑑(𝑢, 𝑣) ≤ 2𝑘 − 1.
Case 2: The 𝑘-OV instance has a solution. Let (𝑎0, 𝑎1, . . . , 𝑎𝑘−1) be a solution
to the 𝑘-OV instance where 𝑎𝑖 ∈ 𝑊𝑖 for all 𝑖. We claim that 𝑑((𝑎0, . . . , 𝑎𝑘−2) ∈
𝑆, (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿2𝑘−1)) ≥ 4𝑘 − 3. Since 𝐿𝑘, . . . , 𝐿2𝑘−1 form a series of match-
ings, every path from (𝑎0, . . . , 𝑎𝑘−2) ∈ 𝑆 to (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿2𝑘−1 contains the
vertex (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑘. By property 4 of Theorem 5.5.2, 𝑑((𝑎0, . . . , 𝑎𝑘−2) ∈
𝑆, (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑘) ≥ 3𝑘−2. Thus, 𝑑((𝑎0, . . . , 𝑎𝑘−2) ∈ 𝑆, (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿2𝑘−1)) ≥
4𝑘 − 3.
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Undirected parameterized Bichromatic Diameter

The following theorem implies that the multiplicative factor in our �̃�(𝑚|𝐵|) time
almost 3/2-approximation algorithm for undirected Bichromatic Diameter from The-
orem 5.4.5 is tight under SETH for |𝐵| = 𝜔(log 𝑛).

Theorem 5.5.3. For any integer ℓ > 0, under SETH any algorithm for Bichromatic
Diameter in undirected unweighted graphs that distinguishes between bichromatic di-
ameter 4ℓ and 6ℓ requires 𝑚2−𝑜(1) time, even for graphs with |𝐵| = 𝑑 = �̃�(1).

Proof. We first describe the construction and then argue correctness.

Construction Given an instance 𝑈, 𝑉 ∈ {0, 1}𝑑 of OV, we begin with the OV-
graph 𝑈 , 𝐶, 𝑉 defined on this instance. We add a new set 𝑈 ′ of 𝑛 vertices, one vertex
for each vector in 𝑈 , and connect each vertex in 𝑈 to its corresponding vertex in 𝑈 ′

to form a matching. Symmetrically, we add a new set 𝑉 ′ of 𝑛 vertices, one vertex for
each vector in 𝑉 , and connect each vertex in 𝑉 to its corresponding vertex in 𝑉 ′ to
form a matching. Then we subdivide each of the edges in the graph into a path of
length ℓ. Let 𝑇 contain 𝐶 ∪ 𝑉 ∪ 𝑉 ′ as well as the vertices on the subdivision paths
from 𝐶 to 𝑉 and from 𝑉 to 𝑉 ′. Let 𝑆 be the remaining vertices, that is, 𝑆 contains
𝑈 , 𝑈 ′, the vertices that subdivide the edges between 𝑈 and 𝑈 ′, and the vertices that
subdivide the edges between 𝑈 and 𝐶.

Analysis We note that 𝑇 ′ = 𝐶 and |𝐶| = 𝑑 so |𝐵| = 𝑑 = �̃�(1).
If the OV instance has no solution then for every pair of vertices 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 ,

𝑑(𝑢, 𝑣) = 2ℓ. Every vertex in 𝑆 is at most distance ℓ from some vertex in 𝑈 and every
vertex in 𝑇 is at most distance ℓ from some vertex in 𝑉 so the bichromatic diameter
is at most 4ℓ.

Suppose the OV instance has a solution 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 . We know that 𝑑(𝑢, 𝑣) ≥ 4ℓ.
Let 𝑢′ be the vertex in 𝑈 ′ that is matched to 𝑢 and let 𝑣′ be the vertex in 𝑉 ′ that is
matched to 𝑣. We claim that 𝑑(𝑢′, 𝑣′) ≥ 6ℓ. Since 𝑈, 𝑈 ′ and 𝑉, 𝑉 ′ form matchings the
only paths between 𝑢′ and 𝑣′ contain 𝑢 and 𝑣. Thus, 𝑑(𝑢′, 𝑣′) = 𝑑(𝑢′, 𝑢) + 𝑑(𝑢, 𝑣) +
𝑑(𝑣, 𝑣′) ≥ 6ℓ.

5.5.3 Directed Bichromatic Diameter
The following theorem implies that our �̃�(𝑚3/2) 2-approximation algorithm for di-
rected Bichromatic Diameter from Theorem 5.4.6 has a tight approximation factor
under SETH.

Theorem 5.5.4. Under SETH, any algorithm for directed Bichromatic Diameter that
achieves a (2 − 𝛿)-approximation factor for 𝛿 > 0 in 𝑚-edge graphs requires 𝑚2−𝑜(1)

time.

Proof. We will show that under SETH, for any positive integer ℓ, distinguishing
between bichromatic diameter ℓ + 1 and 2ℓ + 1 requires 𝑚2−𝑜(1) time.
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Given an instance 𝑈, 𝑉 ⊆ {0, 1}𝑑 of OV, let 𝐺(𝑈, 𝑉 ) be its OV-graph. Create
𝐺′ which has the same vertex set as 𝐺(𝑈, 𝑉 ) except instead of having one vertex for
every 𝑣 ∈ 𝑉 it has ℓ copies 𝑣𝑖 ∈ 𝑉𝑖 for 1 ≤ 𝑖 ≤ ℓ. It also has ℓ − 2 additional vertices:
𝑃 = {𝑝1, 𝑝2, . . . , 𝑝ℓ−2}.

The edges of 𝐺′ are: for 𝑢 ∈ 𝑈, 𝑐 ∈ 𝐶, we add (𝑢, 𝑐) as an edge iff 𝑢[𝑐] = 1, and
for 𝑐 ∈ 𝐶, 𝑣 ∈ 𝑉 , we add (𝑐, 𝑣1) as an edge iff 𝑣[𝑐] = 1. We add a matching going
from 𝑉𝑖 to 𝑉𝑖+1 where edges join the nodes which are copies of each other. For each
𝑐 ∈ 𝐶, we add an edge (𝑐, 𝑝1). We add a path from 𝑝1 to 𝑝ℓ−2. For each 𝑢 ∈ 𝑈 , we
add an edge (𝑝ℓ−2, 𝑢). Set 𝑆 = 𝑈, 𝑇 = 𝐶 ∪ 𝑃 ∪ 𝑉1 ∪ 𝑉2 . . . 𝑉ℓ. The number of edges in
the graph is 𝑂(𝑛𝑑).

Consider any 𝑢 ∈ 𝑈 . By construction, 𝑑(𝑢, 𝑧) ≤ ℓ+1 for 𝑧 ∈ 𝐶 ∪𝑃 . Suppose that
there is no OV solution, then for all 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , 𝑢 ·𝑣 ̸= 0 and hence 𝑑(𝑢, 𝑣𝑖) ≤ ℓ+1.
If there is an OV solution 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , then, 𝑑(𝑢, 𝑣ℓ) ≥ 2ℓ + 1 as the only path is
through 𝑃 .

Directed parameterized Bichromatic Diameter

Recall that for directed graphs, 𝑆 ′ is the set of vertices in 𝑆 with an outgoing edge
to a vertex in 𝑇 , 𝑇 ′ is the set of vertices in 𝑇 with an incoming edge from a vertex
in 𝑆, and 𝐵′ = 𝑆 ′ ∪ 𝑇 ′. We will show that the construction from Theorem 5.5.3 can
be made to have small 𝐵′ (i.e. small 𝑆 ′ and 𝑇 ′), with a slight additive cost to the
diameter values. The construction will remain undirected.

The following proposition implies that the multiplicative factor in our �̃�(𝑚|𝐵′|)
time almost 3/2-approximation algorithm for directed Bichromatic Diameter from
Theorem 5.4.7 is tight under SETH for |𝐵′| = 𝜔(log 𝑛).

Proposition 5. For any integer ℓ > 0, under SETH any algorithm for Bichromatic
Diameter in directed unweighted graphs that distinguishes between bichromatic diam-
eter 4ℓ + 1 and 6ℓ + 1 requires 𝑚2−𝑜(1) time, even for graphs with |𝐵| = 𝑑 = �̃�(1).

Proof. We first describe the construction and then argue correctness.

Construction We begin with the construction from Theorem 5.5.3. We replace
each vertex 𝑐 ∈ 𝐶 by a pair of vertices 𝑐1, 𝑐2 and let (𝑐1, 𝑐2) be an edge. Let 𝐶1 and
𝐶2 be the set of all 𝑐1’s and 𝑐2’s respectively. That is, 𝐶1 and 𝐶2 form a matching.
For every edge originally between 𝑢 ∈ 𝑈 and 𝑐 ∈ 𝐶, we replace it with the undirected
edge (𝑢, 𝑐1) and for every edge originally between 𝑐 ∈ 𝐶 and 𝑣 ∈ 𝑉 , we replace it
with the undirected edge (𝑐2, 𝑣).

Analysis The correctness follows from the analysis of Theorem 5.5.3. Here, we get
4ℓ + 1 and 6ℓ + 1 instead of 4ℓ and 6ℓ due to the addition of the matching between
𝐶1 and 𝐶2.
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5.5.4 Undirected Subset Diameter
The following proposition implies that our �̃�(𝑚) time 2-approximation algorithm for
Subset Diameter from Proposition 3 is tight under SETH.

Proposition 6. Under SETH, any algorithm for Subset Diameter that achieves a
(2 − 𝛿)-approximation for 𝛿 > 0 in 𝑚-edge directed graphs requires 𝑚2−𝑜(1) time.

Proof. Given an instance 𝑈, 𝑉 ∈ {0, 1}𝑑 of OV, we begin with the OV-graph defined
on this instance. We add a vertex 𝑢 adjacent to every vertex in 𝑈 and a vertex 𝑣
adjacent to every vertex in 𝑉 . Let 𝑆 = 𝑈 ∪ 𝑉 .

If there is no OV solution, every pair of vertices 𝑠 ∈ 𝑈 , 𝑠′ ∈ 𝑉 𝑑(𝑠, 𝑠′) = 2. Also,
every pair of vertices 𝑠, 𝑠′ ∈ 𝑈 or 𝑠, 𝑠′ ∈ 𝑉 has 𝑑(𝑠, 𝑠′) = 2 due to the addition of the
vertices 𝑢 and 𝑣.

On the other hand, if there is an OV solution, in the original OV-graph there
exists 𝑠 ∈ 𝑈 , 𝑠′ ∈ 𝑉 such that 𝑑(𝑠, 𝑠′) = 4. We note that the addition of the vertices
𝑢 and 𝑣 does not change this fact.
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Chapter 6

Min-Diameter

6.1 Result
In this chapter, we obtain a subquadratic-time constant-factor approximation algo-
rithm for Min-Diameter. Specifically, we prove the following theorem.

Theorem 6.1.1. For any integer 0 < ℓ ≤ 𝑂(log 𝑛), there is an �̃�(𝑚𝑛1/(ℓ+1)) time
randomized algorithm that, given a directed weighted graph 𝐺 with edge weights non-
negative and polynomial in 𝑛, can output an estimate �̃� such that 𝐷/(4ℓ−1) ≤ �̃� ≤ 𝐷
with high probability, where 𝐷 is the min-diameter of 𝐺.

When we set ℓ = 1, we obtain an �̃�(𝑚
√

𝑛) time 3-approximation algorithm, and
when we set ℓ = ⌈log 𝑛⌉, we get an �̃�(𝑚) time 𝑂(log 𝑛)-approximation.

Our trade-off achieves the first constant factor approximation algorithms for Min-
Diameter in general graphs that run in 𝑂(𝑚𝑛1−𝜀) time for constant 𝜀 > 0. Such
a result was only known for directed acyclic graphs [AVW16], whereas for general
graphs the only known efficient algorithm could achieve an 𝑛𝜀-approximation.

Throughout this chapter, let 𝐷 be the min-diameter, let 𝑠*, 𝑡* the endpoints of the
min-diameter, and for a vertex 𝑣 let the min-eccentricity 𝜖(𝑣) be max𝑢∈𝑉 𝑑𝑚𝑖𝑛(𝑢, 𝑣).

6.2 Techniques
The main difference between Min-Diameter and the other variants of Diameter in
this dissertation is that min-distances do not obey the triangle inequality. All known
algorithms for Diameter and related problems rely heavily on the triangle inequality,
so completely new techniques are necessary for approximating Min-Diameter. The
following outlines several techniques that we use.

Partial search graphs. The idea of partial search graphs is used in the algo-
rithms of [AVW16] for Min-Diameter on DAGs. This algorithms uses the following
high-level framework: perform Dijkstra’s algorithm from some vertices and then per-
form a partial Dijkstra’s algorithm from every vertex. The partial search from a
vertex 𝑣 is with respect to a carefully defined partial search graph 𝐺𝑣 ⊂ 𝐺. The
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crux of the analysis for the algorithms on DAGs is to argue that if the executions
of Dijkstra’s algorithm on the full graph did not find a good estimate for the min-
diameter, then the partial search from some vertex 𝑣 returns a good estimate of the
largest min-distance from 𝑣, which in turn is a good estimate of the min-diameter. In
DAGs it is natural to define the partial search graphs 𝐺𝑣 by considering a topological
ordering of the vertices and letting each 𝐺𝑣 be a particular carefully chosen interval
of the ordering containing 𝑣. For general graphs it is completely unclear how to even
define such intervals since there is no natural notion of an ordering of the vertices, and
thus figuring out what the 𝐺𝑣’s should be is nontrivial. Our approach to overcoming
this hurdle is to define a DAG-like structure in general graphs. Such a structure may
be of independent interest.

Defining a DAG-like structure in general graphs. As a first step, we use
the following idea. Suppose we have performed Dijkstra’s algorithm from a vertex
𝑣. We let 𝑆𝑣 = {𝑢 : 𝑑(𝑢, 𝑣) < 𝑑(𝑣, 𝑢)} and we let 𝑇𝑣 = {𝑢 : 𝑑(𝑢, 𝑣) > 𝑑(𝑣, 𝑢)}1.
Then, we partially order the vertices so that the vertices in 𝑆𝑣 appear before 𝑣 and
those in 𝑇𝑣 appear after 𝑣. We note that this partial ordering is “DAG-like” because
it is consistent with the topological ordering of a DAG; that is, if we apply this
partition into 𝑆𝑣 and 𝑇𝑣 to a DAG then there trivially exists a topological ordering
such that every vertex in 𝑆𝑣 appears before 𝑣 and every vertex in 𝑇𝑣 appears after 𝑣.
After partitioning into 𝑆𝑣 and 𝑇𝑣, we recursively partition each set to create a more
precise partial ordering. Importantly, we show that by recursively sampling vertices
randomly, we can guarantee that our partitioning is approximately balanced which
is crucial for the running time analysis. The obtained partial ordering is the starting
point for our algorithm.

Graph augmentation. The Min-Diameter algorithm on DAGs from [AVW16]
relies heavily on the following key property of DAGs. Consider a topological ordering
and the graphs induced by the first and second halves of the ordering; which are
defined with respect to the middle vertex in the ordering. For all pairs of vertices in
the same half of the ordering, their min-distance in the graph induced by this half
is the same as their min-distance in the full graph. As previously mentioned, if we
sample a vertex 𝑣, we can make sure that 𝑆𝑣 and 𝑇𝑣 are approximately balanced,
so that we can think of 𝑆𝑣 and 𝑇𝑣 as corresponding to the first and second half of
a DAG topological ordering, respectively. However it is unclear how to obtain a
property of 𝑆𝑣 and 𝑇𝑣 analogous to the above key property of DAGs. In particular,
the min-distance between a pair of vertices in the graph induced by 𝑆𝑣 could be wildly
different from their min-distance in the full graph, since paths whose endpoints are
in 𝑆𝑣 can contain vertices outside of 𝑆𝑣. To overcome this hurdle, we augment the
graph induced by 𝑆𝑣 and the graph induced by 𝑇𝑣 by carefully adding edges so that
distances within these augmented graphs approximate the large min-distances in the
original graph (we do not care about preserving the small min-distances in the graph
since we only care about approximating the min-diameter).

1𝑢’s with 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) are added to either 𝑆𝑣 or 𝑇𝑣 as specified in the formal definition later
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6.3 Overview of algorithm
Algorithm for DAGs

We begin by outlining the �̃�(𝑛+𝑚) time 2-approximation algorithm for Min-Diameter
on DAGs from [AVW16]. Consider a topological ordering of the vertices and perform
Dijkstra’s algorithm from the middle vertex 𝑣. Then recurse on the graphs induced
by the vertices in the first half (before 𝑣) and in the second half (after 𝑣). A key
observation in the analysis is that if the true endpoints 𝑠* and 𝑡* of the min-diameter
fall on opposite sides of 𝑣 in the ordering, then the min-eccentricity 𝜀(𝑣) of 𝑣 is a
2-approximation for the min-diameter 𝐷. This is because if 𝜀(𝑣) < 𝐷/2 and 𝑠* and
𝑡* fall on opposite sides of 𝑣 in the ordering, then 𝑑(𝑠*, 𝑣) < 𝐷/2 and 𝑑(𝑣, 𝑡*) < 𝐷/2
so 𝑑(𝑠*, 𝑡*) < 𝐷, a contradiction. So, suppose (without loss of generality) that 𝑠* and
𝑡* both fall before 𝑣 in the ordering. Since the graph is a DAG, every path between
𝑠* and 𝑡* only uses vertices before 𝑣 in the ordering. Thus, the min-distance between
𝑠* and 𝑡* in the graph induced by the first half of the graph is still 𝐷.

Algorithm for general graphs

We now outline a precursor to our Min-Diameter algorithm for general graphs that
mimics the algorithm for DAGs. This �̃�(𝑛 + 𝑚) time algorithm does not achieve a
constant approximation factor, however it provides intuition for our constant-factor
approximation algorithms. We begin by performing Dijkstra’s algorithm from a vertex
𝑣 and constructing 𝑆𝑣 and 𝑇𝑣 as defined in the previous section. Analogously to
the DAG algorithm if the true min-diameter endpoints 𝑠* and 𝑡* fall into different
sets 𝑆𝑣, 𝑇𝑣 then the min-eccentricity 𝜀(𝑣) is a 2-approximation. This is because
if 𝜀(𝑣) < 𝐷/2, 𝑠* ∈ 𝑆𝑣, and 𝑡* ∈ 𝑇𝑣 then 𝑑(𝑠*, 𝑣) < 𝐷/2 and 𝑑(𝑣, 𝑡*) < 𝐷/2
so 𝑑(𝑠*, 𝑡*) < 𝐷, a contradiction. However, unlike the DAG algorithm, we cannot
simply recurse independently on the graphs induced by 𝑆𝑣 and 𝑇𝑣 since the shortest
path between a pair of vertices in 𝑆𝑣 may not be completely contained in 𝑆𝑣 (and
analogously for 𝑇𝑣).

To overcome this hurdle, before recursing we first augment the graphs induced by
𝑆𝑣 and 𝑇𝑣 by carefully adding edges so that distances within these augmented graphs
approximate distances in the original graph. Specifically, for every vertex 𝑢 ∈ 𝑆𝑣, we
add the directed edge (𝑢, 𝑣) with weight 0 and the directed edge (𝑣, 𝑢) with weight
max{0, 𝑑(𝑣, 𝑢) − 𝜀(𝑣)}. This choice of edges allows us to argue that the distances
within the augmented graphs are approximations of the distances in 𝐺 up to an ad-
ditive error of 2𝜀(𝑣). Then, by returning the maximum of 𝜀(𝑣) and the min-diameter
estimates from recursing on the augmented graphs, we get an approximation guaran-
tee, which turns out to be a logarithmic factor. Intuitively, the approximation factor
is not constant because the recursion causes the distance distortion to compound at
each level of recursion.

To reduce the approximation factor to a constant, we would like to decrease the
number of recursion levels. To achieve this, we initially partition the graph into more
than just two parts 𝑆𝑣 and 𝑇𝑣, by sampling more vertices. For our �̃�(𝑚

√
𝑛) time 3-

approximation, we perform a full Dijkstra’s algorithm from �̃�(
√

𝑛) vertices to define
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an ordered partition of the vertices into �̃�(
√

𝑛) parts of �̃�(
√

𝑛) vertices each. Then
we apply the above idea of adding weighted edges within each part, however we must
refine the definition of the graph augmentation to take into account all of the �̃�(

√
𝑛)

vertices we initially perform Dijkstra’s algorithm from, instead of just 𝑣. Finally we
use brute force (without recursion) on each part in the partition by running an exact
all-pairs shortest paths algorithm.

To achieve our time-accuracy trade-off algorithm, we carefully combine ideas from
the logarithmic factor approximation and the 3-approximation algorithms. Specifi-
cally, we initially perform Dijkstra’s algorithm from fewer than

√
𝑛 vertices to define

an ordered partition with larger parts than in the 3-approximation. Then we augment
the graph induced by each part and carry out a constant number of recursion levels
to further partition the graph before applying brute-force.

6.4 Algorithm

6.4.1 Preliminary graph partitioning
In this section we describe a graph partitioning procedure that we use as a first step
in our algorithm. The goal of this partitioning is to define a DAG-like structure in
general directed graphs.

Definition 6.4.1. Assign each vertex a unique ID from [𝑛]. For each vertex 𝑣, let
𝑆𝑣 = {𝑢 ∈ 𝑉 : 𝑑(𝑢, 𝑣) < 𝑑(𝑣, 𝑢) ∨ [𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) ∧ 𝐼𝐷(𝑢) < 𝐼𝐷(𝑣)]}. Let
𝑇𝑣 = 𝑉 ∖ (𝑆𝑣 ∪ {𝑣}).

The running time of our algorithms relies on whether the partition into 𝑆𝑣 and 𝑇𝑣

is balanced. Using the observation that if 𝑢 ∈ 𝑆𝑣, then 𝑣 ∈ 𝑇𝑢, the following lemma
shows that for most vertices, the partition is indeed approximately balanced.

Lemma 6.4.1. For any graph on 𝑛 vertices there are more than 𝑛
2 vertices 𝑣 such

that |𝑆𝑣 |
8 ≤ |𝑇𝑣| ≤ 8|𝑆𝑣|.

More generally, for any 𝑈 ⊆ 𝑉 , there are more than |𝑈 |
2 vertices 𝑣 ∈ 𝑈 such that

|𝑆𝑣∩𝑈 |
8 ≤ |𝑇𝑣 ∩ 𝑈 | ≤ 8|𝑆𝑣 ∩ 𝑈 |.

Proof. Since the first statement is a special case of the second statement with 𝑈 = 𝑉 ,
we prove the more general statement. Let |𝑈 | = 𝑘. Let 𝑀 be a 𝑘 × 𝑘 matrix indexed
by the vertices in 𝑈 where 𝑀𝑢,𝑣 = −1 if 𝑢 ∈ 𝑆𝑣 ∩ 𝑈 , 𝑀𝑢,𝑣 = 1 if 𝑢 ∈ 𝑇𝑣 ∩ 𝑈 , and
𝑀𝑢,𝑢 = 0 for 𝑢 ∈ 𝑈 . Note that 𝑀 is skew-symmetric, i.e., 𝑀𝑢,𝑣 = −𝑀𝑣,𝑢 for all 𝑢, 𝑣.
For any 𝐴, 𝐵 ⊆ 𝑈 , let 𝑀𝐵 be the 𝑘×|𝐵| submatrix consisting of the columns indexed
by 𝐵, and let 𝑀𝐴,𝐵 the |𝐴| × |𝐵| submatrix of 𝑀𝐵 consisting of its rows indexed by
𝐴.

Suppose for contradiction there is a set 𝐶 ⊂ 𝑈 of 𝑘
4 vertices 𝑣 such that |𝑇𝑣 ∩𝑈 | >

8|𝑆𝑣 ∩ 𝑈 |. Then 𝑀𝐶 contains at least 8
9𝑘 · 𝑘

4 = 2
9𝑘2 ones.

The 𝑘
4 × 𝑘

4 submatrix 𝑀𝐶,𝐶 is also skew-symmetric, so at most half of its entries
are ones, i.e., 𝑀𝐶,𝐶 contains at most 𝑘2

32 ones. Letting 𝐶 = 𝑈 ∖ 𝐶, we see that 𝑀𝐶,𝐶
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has 3
4𝑘 × 𝑘

4 = 3
16𝑘2 entries, and hence at most 3

16𝑘2 ones. In total, 𝑀𝐶 contains at
most 7

32𝑘2 < 2
9𝑘2 ones, contradiction.

Therefore the number of vertices 𝑣 ∈ 𝑈 such that |𝑇𝑣 ∩ 𝑈 | > 8|𝑆𝑣 ∩ 𝑈 | is less than
𝑘
4 , and symmetrically the number of vertices 𝑣 ∈ 𝑈 such that |𝑇𝑣 ∩ 𝑈 | < |𝑆𝑣∩𝑈 |

8 is less
than 𝑘

4 . Hence more than half of the vertices 𝑣 ∈ 𝑈 have that

|𝑆𝑣 ∩ 𝑈 |
8 < |𝑇𝑣 ∩ 𝑈 | < 8|𝑆𝑣 ∩ 𝑈 |.

Next, we describe how we use Lemma 6.4.1 to recursively construct a balanced
partition of the vertices into a given number of of sets.

Lemma 6.4.2. Given a graph 𝐺 with 𝑛 vertices and a constant 𝑐 > 0, in �̃�(𝑚𝑛1−𝑐)
time we can partition 𝑉 into disjoint sets 𝑊, 𝑉1, 𝑉2,. . . ,𝑉𝑞+1, where 𝑞 = |𝑊 | = 𝑛1−𝑐,
such that with high probability:

1. for all 𝑖, |𝑉𝑖| = Θ(𝑛
𝑞
);

2. for all 𝑖 ̸= 𝑗, there exists a vertex 𝑤 ∈ 𝑊 such that either 𝑉𝑖 ⊆ 𝑆𝑤,𝑉𝑗 ⊆ 𝑇𝑤, or
𝑉𝑖 ⊆ 𝑇𝑤,𝑉𝑗 ⊆ 𝑆𝑤;

3. for all 𝑈 ⊆ 𝑊 , let 𝑉𝑈 =
(︃ ⋂︁

𝑤∈𝑈

𝑆𝑤

)︃⋂︁⎛⎝ ⋂︁
𝑤∈𝑊 ∖𝑈

𝑇𝑤

⎞⎠, then 𝑉𝑈 ⊆ 𝑉𝑖 for some

𝑖 ∈ [𝑞 + 1].

Proof. We begin with 𝑊 = ∅ and we will iteratively populate 𝑊 with vertices. We
let 𝒱0 = {𝑉 } and for all 𝑖 ∈ [𝑞] when we add the 𝑖𝑡ℎ vertex to 𝑊 , we will construct
𝒱𝑖 from 𝒱𝑖−1 by partitioning the largest set in 𝒱𝑖−1 into two parts. After adding 𝑞
vertices to 𝑊 we will have constructed 𝒱𝑞 = {𝑉1 . . . 𝑉𝑞+1}.

For all 𝑖 ∈ [𝑞], let 𝐴𝑖, 𝐵𝑖 be the largest and smallest sets in 𝒱𝑖, respectively.
We describe how to construct 𝑊 and 𝒱𝑞 inductively. Suppose |𝑊 | = 𝑟 − 1 and we

have constructed 𝒱𝑟−1. By Lemma 6.4.1, if we randomly sample 𝑂(log2 𝑛) vertices
from 𝐴𝑟−1, with probability at least 1 − 2− log2 𝑛 = 1 − 𝑛− log 𝑛 we will sample a vertex
𝑤𝑟 such that 𝐴𝑆 = 𝐴𝑟−1 ∩ 𝑆𝑤𝑟 and 𝐴𝑇 = 𝐴𝑟−1 ∩ 𝑇𝑤𝑟 differ by a factor of at most 8.
We add 𝑤𝑟 to 𝑊 and let 𝒱𝑟 = 𝒱𝑟−1 ∪ {𝐴𝑆, 𝐴𝑇 } ∖ {𝐴𝑟−1}.

By union bound over the 𝑞 = 𝑛1−𝑐 partitionings, we have that with probability at
least 1 − 𝑛1−𝑐−log 𝑛, every partitioning produces two sets that differ in size by a factor
of at most 8.

We prove property 1 by induction on |𝑊 | = 𝑟. Specifically, we will show that for
all 𝑟 ∈ [𝑞], |𝐴𝑟| ≤ 9|𝐵𝑟|. This implies that |𝐴𝑞| = 𝑂(|𝐵𝑞|), and property 1 follows.
Lemma 6.4.1 implies that |𝐴1| ≤ 9|𝐵1|. Assume inductively that |𝐴𝑟−1| ≤ 9|𝐵𝑟−1|.
Since no subset grows in size, |𝐴𝑟| ≤ |𝐴𝑟−1| and |𝐵𝑟| ≤ |𝐵𝑟−1|. If |𝐵𝑟| = |𝐵𝑟−1|, then
|𝐴𝑟| ≤ |𝐴𝑟−1| ≤ 9|𝐵𝑟−1| = 9|𝐵𝑟|. Otherwise, |𝐵𝑟| < |𝐵𝑟−1|, which implies that 𝐵𝑟

is one of the two sets obtained by partitioning 𝐴𝑟−1. In this case |𝐴𝑟−1| ≤ 9|𝐵𝑟| by
Lemma 6.4.1. Hence |𝐴𝑟| ≤ |𝐴𝑟−1| ≤ 9|𝐵𝑟|, completing the induction.

83



Property 2 follows from the partitioning procedure: for any 𝑖 ̸= 𝑗, if for all 𝑤 ∈ 𝑊 ,
𝑉𝑖, 𝑉𝑗 ⊆ 𝑆𝑤 or 𝑉𝑖, 𝑉𝑗 ⊆ 𝑇𝑤 then 𝑉𝑖 ∪ 𝑉𝑗 would never have been partitioned.

Property 3 also follows from the partitioning procedure: observe that for all 𝑤 ∈ 𝑊
and all 𝑈 ⊆ 𝑊 , 𝑉𝑈 ⊆ 𝑆𝑤 or 𝑉𝑈 ⊆ 𝑇𝑤, so 𝑉𝑈 is never partitioned and thus 𝑉𝑈 ⊆ 𝑉𝑖

for some 𝑖 ∈ [𝑞 + 1].
Since we sample 𝑛1−𝑐 log2 𝑛 vertices and for all 𝑣 finding 𝑆𝑣, 𝑇𝑣 takes 𝑂(𝑚) time,

the running time is �̃�(𝑚𝑛1−𝑐).

6.4.2 An �̃�(𝑚
√

𝑛) time 3-approximation
Theorem 6.4.1. (Theorem 6.1.1 with ℓ = 1) There is an �̃�(𝑚

√
𝑛) time randomized

algorithm, that given a directed weighted graph 𝐺 = (𝑉, 𝐸) with edge weights non-
negative and polynomial in 𝑛, can output an estimate �̃� such that 𝐷/3 ≤ �̃� ≤ 𝐷
with high probability, where 𝐷 is the min-diameter of 𝐺.

Algorithm Description

Applying Lemma 6.4.2 with 𝑞 =
√

𝑛 we obtain a partition of the vertices into
𝑊, 𝑉1, 𝑉2, . . . , 𝑉√

𝑛+1.
We perform Dijkstra’s algorithm from every vertex in 𝑊 and let 𝐷′ = max𝑤∈𝑊 𝜀(𝑤).

We will later show that 𝐷′ is a good approximation of the min-diameter when 𝑠* and
𝑡* are not in the same vertex set 𝑉𝑖.

For every 𝑖 ∈ [
√

𝑛 + 1], define 𝑊 𝑆
𝑖 = {𝑤 ∈ 𝑊 : 𝑉𝑖 ⊆ 𝑆𝑤}, and 𝑊 𝑇

𝑖 = {𝑤 ∈ 𝑊 :
𝑉𝑖 ⊆ 𝑇𝑤}. Then, for every 𝑖, we construct two graphs 𝐺𝑆

𝑖 and 𝐺𝑇
𝑖 . The first graph

𝐺𝑆
𝑖 contains all vertices of 𝑉𝑖 and an additional node 𝑤𝑆

𝑖 . It has the following edges:

1. For every directed edge (𝑢, 𝑣) ∈ 𝐸 such that 𝑢, 𝑣 ∈ 𝑉𝑖, add this edge to 𝐺𝑆
𝑖 .

2. Add a directed edge from 𝑤𝑆
𝑖 to every 𝑣 ∈ 𝑉𝑖, with weight

max
{︃

min
𝑤∈𝑊 𝑆

𝑖

𝑑(𝑤, 𝑣) − 𝐷′, 0
}︃

and a directed edge from every 𝑣 ∈ 𝑉𝑖 to 𝑤𝑆
𝑖 with weight 0.

The second graph 𝐺𝑇
𝑖 is symmetric to 𝐺𝑆

𝑖 . It contains all vertices in 𝑉𝑖 and an
additional node 𝑤𝑇

𝑖 . It has the following edges:

1. For every directed edge (𝑢, 𝑣) ∈ 𝐸 such that 𝑢, 𝑣 ∈ 𝑉𝑖, add this edge to 𝐺𝑇
𝑖 .

2. Add a directed edge from every 𝑣 ∈ 𝑉𝑖 to 𝑤𝑇
𝑖 , with weight

max
{︃

min
𝑤∈𝑊 𝑇

𝑖

𝑑(𝑣, 𝑤) − 𝐷′, 0
}︃

and add a directed edge from 𝑤𝑇
𝑖 to every 𝑣 ∈ 𝑉𝑖 with weight 0.
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Figure 6-1: The case where 𝑢, 𝑣 ∈ 𝑆𝑤 and the shortest path from 𝑢 to 𝑣 contains a
node 𝑥 ∈ 𝑇𝑤 ∪ {𝑤}.

For all 𝑖, we run an exact all-pairs shortest paths algorithm on 𝐺𝑆
𝑖 and 𝐺𝑇

𝑖 . This
allows us to compute for all 𝑖 and all 𝑢, 𝑣 ∈ 𝑉𝑖 the quantity min{𝑑𝐺𝑆

𝑖
(𝑢, 𝑣), 𝑑𝐺𝑇

𝑖
(𝑢, 𝑣)},

which we denote by 𝑑′
𝑖(𝑢, 𝑣).

We choose the larger between 𝐷′ and max𝑖∈[
√

𝑛+1],𝑢,𝑣∈𝑉𝑖
min{𝑑′

𝑖(𝑢, 𝑣), 𝑑′
𝑖(𝑣, 𝑢)} as

our final estimate for the min-diameter.

Analysis

The following lemma will be used to show that 𝐷′ is a good estimate for the min-
diameter if 𝑠* and 𝑡* happen to fall into different sets 𝑉𝑖

Lemma 6.4.3. For all vertices 𝑣, if either 𝑠* ∈ 𝑆𝑣, 𝑡* ∈ 𝑇𝑣, or 𝑡* ∈ 𝑆𝑣, 𝑠* ∈ 𝑇𝑣, then
𝜀(𝑣) ≥ 𝐷/2.

Proof. We only consider the case when 𝑠* ∈ 𝑆𝑣 and 𝑡* ∈ 𝑇𝑣 as the other case
is symmetric. By way of contradiction, assume that 𝜀(𝑣) < 𝐷/2, then we have
𝑑min(𝑠*, 𝑣) < 𝐷/2 and 𝑑min(𝑡*, 𝑣) < 𝐷/2. Since 𝑠* ∈ 𝑆𝑣, 𝑑(𝑠*, 𝑣) = 𝑑min(𝑠*, 𝑣) < 𝐷/2;
similarly, since 𝑡* ∈ 𝑇𝑣, 𝑑(𝑣, 𝑡*) = 𝑑𝑚𝑖𝑛(𝑡*, 𝑣) < 𝐷/2. Therefore, by the triangle
inequality, 𝑑(𝑠*, 𝑡*) < 𝐷, a contradiction.

The next two lemmas are used for the case where 𝑠* and 𝑡* fall into the same set
𝑉𝑖.

Lemma 6.4.4. For every 𝑖, and every pair of vertices 𝑢, 𝑣 ∈ 𝑉𝑖, 𝑑′
𝑖(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑣);

that is,
min{𝑑𝐺𝑆

𝑖
(𝑢, 𝑣), 𝑑𝐺𝑇

𝑖
(𝑢, 𝑣)} ≤ 𝑑(𝑢, 𝑣).

Proof. Take any shortest path in the original graph 𝐺 from 𝑢 to 𝑣. If this path does
not leave 𝑉𝑖, then this path also exists in 𝐺𝑆

𝑖 and 𝐺𝑇
𝑖 , and thus the inequality is true.

It remains to prove for the case when the shortest 𝑢, 𝑣 path in the original graph
leaves 𝑉𝑖. Let 𝑥 ̸∈ 𝑉𝑖 be any vertex on a shortest 𝑢, 𝑣 path. By Lemma 6.4.2, property
2, there exists 𝑤 ∈ 𝑊 such that 𝑥 ∈ 𝑆𝑤 ∪ {𝑤} and 𝑉𝑖 ⊆ 𝑇𝑤, or 𝑥 ∈ 𝑇𝑤 ∪ {𝑤} and
𝑉𝑖 ⊆ 𝑆𝑤. We first assume 𝑥 ∈ 𝑇𝑤 ∪ {𝑤} and 𝑉𝑖 ⊆ 𝑆𝑤 as shown in Figure 6-1, and the
other case is symmetric.
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Figure 6-2: A shortest 𝑢, 𝑣 path in 𝐺𝑆
𝑖 that contains 𝑤𝑆

𝑖 . The path goes from 𝑢,
directly to 𝑤𝑆

𝑖 using a weight 0 edge, then directly to a vertex 𝑥, and finally reaches
𝑣.

Since 𝑥 is on the shortest path from 𝑢 to 𝑣, we have 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑥, 𝑣). Also, we
have 𝑑(𝑤, 𝑥) ≤ 𝐷′, by definition of 𝐷′. Therefore,

𝑑(𝑢, 𝑣) ≥ 𝑑(𝑥, 𝑣)
≥ 𝑑(𝑥, 𝑣) + (𝑑(𝑤, 𝑥) − 𝐷′)
≥ 𝑑(𝑤, 𝑣) − 𝐷′

(6.1)

Now consider the path 𝑢 → 𝑤𝑆
𝑖 → 𝑣 in 𝐺𝑆

𝑖 . The first part 𝑢 → 𝑤𝑆
𝑖 costs 0, because

there is an edge from 𝑢 to 𝑤𝑆
𝑖 with weight 0; the second part 𝑤𝑆

𝑖 → 𝑣 costs at most
max{0, 𝑑(𝑤, 𝑣) − 𝐷′}. If 𝑑(𝑤, 𝑣) < 𝐷′, then 𝑑′

𝑖(𝑢, 𝑣) ≤ 𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) = 0 ≤ 𝑑(𝑢, 𝑣);

otherwise, 𝑑′
𝑖(𝑢, 𝑣) ≤ 𝑑𝐺𝑆

𝑖
(𝑢, 𝑣) ≤ 𝑑(𝑤, 𝑣) − 𝐷′ ≤ 𝑑(𝑢, 𝑣), where the last step is

Equation 6.1.
When 𝑥 ∈ 𝑆𝑤 ∪ {𝑤}, and 𝑉𝑖 ⊆ 𝑇𝑤, we have a symmetric argument: 𝑑(𝑢, 𝑣) ≥

𝑑(𝑢, 𝑥) ≥ 𝑑(𝑢, 𝑥) + (𝑑(𝑥, 𝑤) − 𝐷′) ≥ 𝑑(𝑢, 𝑤) − 𝐷′. Consider the path 𝑢 → 𝑤𝑇
𝑖 → 𝑣

in 𝐺𝑇
𝑖 . The second part 𝑤𝑇

𝑖 → 𝑣 costs 0, because there is an edge from 𝑤𝑇
𝑖 to 𝑣 with

weight 0; the first part 𝑢 → 𝑤𝑇
𝑖 costs at most max{0, 𝑑(𝑢, 𝑤) − 𝐷′}. If 𝑑(𝑢, 𝑤) < 𝐷′,

then 𝑑′
𝑖(𝑢, 𝑣) ≤ 𝑑𝐺𝑇

𝑖
(𝑢, 𝑣) = 0 ≤ 𝑑(𝑢, 𝑣); otherwise, 𝑑′

𝑖(𝑢, 𝑣) ≤ 𝑑𝐺𝑇
𝑖
(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑤) −

𝐷′ ≤ 𝑑(𝑢, 𝑣).

Lemma 6.4.5. For every 𝑖, and every pair of vertices 𝑢, 𝑣 ∈ 𝑉𝑖, it holds that
𝑑′

𝑖(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣) − 2𝐷′; that is, it holds that 𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣) − 2𝐷′ and

𝑑𝐺𝑇
𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣) − 2𝐷′.

Proof. We only provide full proof for 𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣) − 2𝐷′. The inequality for

𝐺𝑇
𝑖 can be proved by a symmetrical argument. If the shortest path from 𝑢 to 𝑣 in 𝐺𝑆

𝑖

does not contain 𝑤𝑆
𝑖 , then this path also exists in the original graph 𝐺, and thus the

inequality is true.
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Otherwise, the shortest path from 𝑢 to 𝑣 in 𝐺𝑆
𝑖 contains 𝑤𝑆

𝑖 , as shown in Figure 6-
2. All edges on the shortest path from 𝑤𝑆

𝑖 to 𝑣 exist in the original graph 𝐺 except
for the first edge from 𝑤𝑆

𝑖 to some node 𝑥, since a shortest path cannot use the vertex
𝑤𝑆

𝑖 more than once. That is, 𝑑𝐺𝑆
𝑖
(𝑥, 𝑣) = 𝑑(𝑥, 𝑣).

By the definition of 𝑤𝑆
𝑖 and the edges incident to it, there exists a 𝑤 ∈ 𝑊 𝑆

𝑖 such
that 𝑑(𝑤, 𝑥) ≤ 𝑑𝐺𝑆

𝑖
(𝑤𝑆

𝑖 , 𝑥) + 𝐷′. Thus, we have

𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) = 𝑑𝐺𝑆

𝑖
(𝑢, 𝑤𝑆

𝑖 ) + 𝑑𝐺𝑆
𝑖
(𝑤𝑆

𝑖 , 𝑥) + 𝑑𝐺𝑆
𝑖
(𝑥, 𝑣)

= 𝑑𝐺𝑆
𝑖
(𝑤𝑆

𝑖 , 𝑥) + 𝑑𝐺𝑆
𝑖
(𝑥, 𝑣) since 𝑑𝐺𝑆

𝑖
(𝑢, 𝑤𝑆

𝑖 ) = 0 by construction
= 𝑑𝐺𝑆

𝑖
(𝑤𝑆

𝑖 , 𝑥) + 𝑑(𝑥, 𝑣) from argument above
≥ 𝑑(𝑤, 𝑥) − 𝐷′ + 𝑑(𝑥, 𝑣) by the definition of 𝑤

≥ 𝑑(𝑤, 𝑣) − 𝐷′ by the triangle inequality
≥ (𝑑(𝑤, 𝑣) − 𝐷′) + (𝑑(𝑢, 𝑤) − 𝐷′) since 𝑑(𝑢, 𝑤) ≤ 𝐷′ by definition
≥ 𝑑(𝑢, 𝑣) − 2𝐷′ by the triangle inequality

We are now ready to prove our approximation ratio guarantee: 𝐷/3 ≤ �̃� ≤ 𝐷.
Clearly 𝐷′ ≤ 𝐷 because 𝐷′ is the min-eccentricity of a vertex. By Lemma 6.4.4
max𝑖,𝑢∈𝑉𝑖,𝑣∈𝑉𝑖

min{𝑑′
𝑖(𝑢, 𝑣), 𝑑′

𝑖(𝑣, 𝑢)} ≤ max𝑖,𝑢∈𝑉𝑖,𝑣∈𝑉𝑖
𝑑𝑚𝑖𝑛(𝑢, 𝑣) ≤ 𝐷 . Therefore, we

never over estimate the min-diameter.
If 𝑠* ∈ 𝑊 or 𝑡* ∈ 𝑊 , then since we run Dijkstra from all vertices in 𝑊 we have

𝐷′ = 𝐷. So assuming that 𝑠*, 𝑡* /∈ 𝑊 , we have two cases.
Case 1: 𝑠* and 𝑡* are not in the same vertex set 𝑉𝑖. By Lemma 6.4.2, property 2,
there exists 𝑤 ∈ 𝑊 such that one of 𝑠* and 𝑡* is in 𝑆𝑤 and the other is in 𝑇𝑤, so by
Lemma 6.4.3, 𝜀(𝑤) ≥ 𝐷/2. Since 𝐷′ ≥ 𝜀(𝑤), we have 𝐷′ ≥ 𝐷/2.
Case 2: 𝑠* and 𝑡* are in the same vertex set 𝑉𝑖 for some 𝑖. By Lemma 6.4.5,
min (𝑑′

𝑖(𝑠*, 𝑡*), 𝑑′
𝑖(𝑡*, 𝑠*)) ≥ 𝑑𝑚𝑖𝑛(𝑠*, 𝑡*) − 2𝐷′ = 𝐷 − 2𝐷′. Since max{𝐷 − 2𝐷′, 𝐷′} ≥

𝐷/3, we get a 3-approximation.

Running time analysis. It takes �̃�(𝑚
√

𝑛) time to perform the partitioning from
Lemma 6.4.2 and to perform Dijkstra’s algorithm from all 𝑤 ∈ 𝑊 since |𝑊 | = 𝑂(

√
𝑛).

For all 𝑖, the number of vertices in 𝐺𝑆
𝑖 is |𝑉𝑖| + 1 = 𝑂(

√
𝑛) with high probability

by property 1 of Lemma 6.4.2 and the number of edges is 𝑚𝑖 + 𝑂(
√

𝑛) where 𝑚𝑖

is the number of edges in the graph induced by 𝑉𝑖. Hence we can run an All-Pairs
Shortest Paths algorithm on 𝐺𝑆

𝑖 in time �̃�((𝑚𝑖 +
√

𝑛)
√

𝑛). Summing over all 𝑖 gives
us �̃�(𝑚

√
𝑛). The same analysis also works for 𝐺𝑖

𝑇 .
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6.4.3 Time/accuracy trade-off algorithm
Algorithm Description

We begin by briefly outlining the differences between our trade-off algorithm and our
𝑂(𝑚

√
𝑛) time algorithm. For our trade-off algorithm, instead of applying Lemma

6.4.2 to sample 𝑞 =
√

𝑛 vertices, we will apply Lemma 6.4.2 with a smaller value of
𝑞 to save time. This results in a smaller set 𝑊 and larger sets 𝑉𝑖. In our 𝑂(𝑚

√
𝑛)

time algorithm, we had time to apply brute force (i.e. run all-pairs shortest paths)
on the graphs 𝐺𝑆

𝑖 and 𝐺𝑇
𝑖 , however in our trade-off algorithm we do not. Instead,

we apply recursion. Simply constructing 𝐺𝑆
𝑖 and 𝐺𝑇

𝑖 and recursing on both of them
does not suffice because each recursive call only returns the min-diameter, whereas
we require knowing all distances. To overcome this issue, instead of constructing 𝐺𝑆

𝑖

and 𝐺𝑇
𝑖 separately, we construct a graph 𝐺𝑖 that combines these two graphs. Then,

we show that it suffices to recurse on 𝐺𝑖 to compute only its min-diameter rather
than all distances.

The algorithm is as follows. We apply Lemma 6.4.2 with 𝑞 = 𝑂(𝑛1/(ℓ+1)) to
partition the vertices into 𝑊, 𝑉1, 𝑉2, . . . , 𝑉𝑞+1. We perform Dijkstra’s algorithm from
every vertex in 𝑊 and define 𝐷′ = max𝑤∈𝑊 𝜀(𝑤). For every 𝑖 ∈ [

√
𝑛 + 1], we define

𝑊 𝑆
𝑖 = {𝑤 ∈ 𝑊 : 𝑉𝑖 ⊆ 𝑆𝑤}, and 𝑊 𝑇

𝑖 = {𝑤 ∈ 𝑊 : 𝑉𝑖 ⊆ 𝑇𝑤}. For every 𝑖 ∈ [𝑞 + 1],
we construct the graph 𝐺𝑖 as follows. The vertex set of 𝐺𝑖 is all vertices 𝑉𝑖 and two
additional vertices 𝑤𝑆

𝑖 and 𝑤𝑇
𝑖 . It contains the following edges:

1. For every directed edge (𝑢, 𝑣) ∈ 𝐸 such that 𝑢, 𝑣 ∈ 𝑉𝑖, add this edge to 𝐺𝑖.

2. Add a directed edge from 𝑤𝑆
𝑖 to every 𝑣 ∈ 𝑉𝑖, with weight

max{ min
𝑤∈𝑊 𝑆

𝑖

𝑑(𝑤, 𝑣) − 𝐷′, 0}

and add a directed edge from every 𝑣 to 𝑤𝑆
𝑖 with weight 0.

3. Add a directed edge from every 𝑣 ∈ 𝑉𝑖 to 𝑤𝑇
𝑖 , with weight

max{ min
𝑤∈𝑊 𝑇

𝑖

𝑑(𝑣, 𝑤) − 𝐷′, 0}

and add a directed edge from 𝑤𝑇
𝑖 to every 𝑣 ∈ 𝑉𝑖 with weight 0.

For all 𝑖, we recursively compute a (4ℓ − 5)-approximation for Min-Diameter of
𝐺𝑖 by calling the algorithm for ℓ − 1. We use the ℓ = 1 algorithm from the previous
section as the base case.

We choose the larger between 𝐷′ and the maximum approximated min-diameter
over all 𝐺𝑖 as our final estimate.

Analysis

Before proving the main theorem for Min-Diameter, we need to prove two lemmas
for 𝐺𝑖, which are analogous to Lemma 6.4.4 and Lemma 6.4.5.

88



Lemma 6.4.6. For every 𝑖, and every pair of vertices 𝑢, 𝑣 ∈ 𝑉𝑖, 𝑑(𝑢, 𝑣) ≥ 𝑑𝐺𝑖
(𝑢, 𝑣).

Proof. Since 𝐺𝑆
𝑖 ⊆ 𝐺𝑖 and 𝐺𝑇

𝑖 ⊆ 𝐺𝑖, we have 𝑑𝐺𝑖
(𝑢, 𝑣) ≤ 𝑑𝐺𝑆

𝑖
(𝑢, 𝑣) and 𝑑𝐺𝑖

(𝑢, 𝑣) ≤
𝑑𝐺𝑇

𝑖
(𝑢, 𝑣). Then by Lemma 6.4.4, we have 𝑑(𝑢, 𝑣) ≥ min{𝑑𝐺𝑆

𝑖
(𝑢, 𝑣), 𝑑𝐺𝑇

𝑖
(𝑢, 𝑣)} ≥

𝑑𝐺𝑖
(𝑢, 𝑣).

Lemma 6.4.7. For every 𝑖, and every pair of vertices 𝑢, 𝑣 ∈ 𝑉𝑖, it holds that
𝑑𝐺𝑖

(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣) − 4𝐷′.

Proof. Consider the shortest path from 𝑢 to 𝑣 in 𝐺𝑖. If this path does not contain
both 𝑤𝑆

𝑖 and 𝑤𝑇
𝑖 , then this path exists in 𝐺𝑆

𝑖 or 𝐺𝑇
𝑖 , and thus we can directly apply

Lemma 6.4.5 to get 𝑑𝐺𝑖
(𝑢, 𝑣) ≥ 𝑑𝐺𝑆

𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣) − 2𝐷′ , or 𝑑𝐺𝑖

(𝑢, 𝑣) ≥ 𝑑𝐺𝑇
𝑖
(𝑢, 𝑣) ≥

𝑑(𝑢, 𝑣) − 2𝐷′.
Otherwise, the shortest path from 𝑢 to 𝑣 contain both 𝑤𝑆

𝑖 and 𝑤𝑇
𝑖 . Such path can

only be one of the following two forms:

∙ 𝑢 → 𝑤𝑆
𝑖 → 𝑥 → 𝑤𝑇

𝑖 → 𝑣 for some vertex 𝑥 ∈ 𝑉𝑖. The first half 𝑢 → 𝑤𝑆
𝑖 → 𝑥 is

contained in 𝐺𝑆
𝑖 , so we can apply Lemma 6.4.5 to get 𝑑𝐺𝑖

(𝑢, 𝑥) = 𝑑𝐺𝑆
𝑖
(𝑢, 𝑥) ≥

𝑑(𝑢, 𝑥) − 2𝐷′; similarly, the second half 𝑥 → 𝑤𝑇
𝑖 → 𝑣 is contained in 𝐺𝑇

𝑖 so
𝑑𝐺𝑖

(𝑥, 𝑣) ≥ 𝑑(𝑥, 𝑣) − 2𝐷′. In total, 𝑑𝐺𝑖
(𝑢, 𝑣) = 𝑑𝐺𝑖

(𝑢, 𝑥) + 𝑑𝐺𝑖
(𝑥, 𝑣) ≥ (𝑑(𝑢, 𝑥) −

2𝐷′) + (𝑑(𝑥, 𝑣) − 2𝐷′) ≥ 𝑑(𝑢, 𝑣) − 4𝐷′.

∙ 𝑢 → 𝑤𝑇
𝑖 → 𝑥 → 𝑤𝑆

𝑖 → 𝑣 for some vertex 𝑥 ∈ 𝑉𝑖. We can similarly split this
path to two halves, and apply the same analysis as the previous case to get
𝑑𝐺𝑖

(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣) − 4𝐷′.

We are now ready to prove our approximation ratio: 𝐷/(4ℓ − 1) ≤ �̃� ≤ 𝐷. We
prove the result inductively. When ℓ = 1, it is exactly Theorem 6.4.1. Now assume
it is true for ℓ − 1, and we will prove it for ℓ.

Clearly 𝐷′ ≤ 𝐷 because 𝐷′ is the min-eccentricity of a vertex. By induction,
the (4ℓ − 5)-approximation for the min-diameter of 𝐺𝑖 never exceeds the true min-
diameter of 𝐺𝑖. Then by Lemma 6.4.6, the min-diameter of 𝐺𝑖 does not exceed the
min-diameter of 𝐺. Therefore, we never over estimate the min-diameter.

If 𝑠* ∈ 𝑊 or 𝑡* ∈ 𝑊 , then since we run Dijkstra from all vertices in 𝑊 we have
𝐷′ = 𝐷. So assuming that 𝑠*, 𝑡* /∈ 𝑊 , we have two cases.
Case 1: 𝑠* and 𝑡* are not in the same vertex set 𝑉𝑖. By Lemma 6.4.2, property 2,
there exists 𝑤 ∈ 𝑊 such that one of 𝑠* and 𝑡* is in 𝑆𝑤 and the other is in 𝑇𝑤, so by
Lemma 6.4.3, 𝜀(𝑤) ≥ 𝐷/2. Since 𝐷′ ≥ 𝜀(𝑤), we have 𝐷′ ≥ 𝐷/2.
Case 2: 𝑠* and 𝑡* are in the same vertex set 𝑉𝑖 for some 𝑖. If 𝐷′ ≥ 𝐷/(4ℓ − 1),
𝐷′ is already a good approximation. So assume 𝐷′ < 𝐷/(4ℓ − 1). By Lemma 6.4.7,
min{𝑑𝐺𝑖

(𝑠*, 𝑡*), 𝑑𝐺𝑖
(𝑡*, 𝑠*)} ≥ 𝑑𝑚𝑖𝑛(𝑠*, 𝑡*) − 4𝐷′ = 𝐷 − 4𝐷′. Since we calculate a

(4ℓ − 5)-approximation of 𝐺𝑖’s min-diameter, our estimate is at least

(𝐷 − 4𝐷′)/(4ℓ − 5) ≥ (𝐷 − 4(𝐷/(4ℓ − 1)))/(4ℓ − 5) = 𝐷/(4ℓ − 1)
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Running time analysis. It takes �̃�(𝑚𝑛1/(ℓ+1)) time to perform the partitioning
from Lemma 6.4.2 and to perform Dijkstra’s algorithm from all 𝑤 ∈ 𝑊 since |𝑊 | =
𝑂(𝑛1/(ℓ+1)). For all 𝑖, the number of vertices in 𝐺𝑖 is |𝑉𝑖| + 2 = 𝑂(𝑛ℓ/(ℓ+1)) with high
probability by Lemma 6.4.2, property 1, and the number of edges is 𝑚𝑖 + 𝑂(𝑛ℓ/(ℓ+1))
where 𝑚𝑖 is the number of edges in the graph induced by 𝑉𝑖. By induction, it takes
�̃�
(︂

(𝑚𝑖 + 𝑛ℓ/(ℓ+1))
(︁
𝑛ℓ/(ℓ+1)

)︁1/ℓ
)︂

time to compute a (4ℓ−5)-approximation of the min-
diameter of 𝐺𝑖 for each 𝑖. Summing over all 𝑖 gives us �̃�(𝑚𝑛1/(ℓ+1)).

Note that we apply Lemma 6.4.2 at most 𝑝𝑜𝑙𝑦(𝑛) times in the recursion and this
the only randomization so the whole algorithm works with high probability.
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Chapter 7

Dynamic Diameter

7.1 Results
The best known dynamic algorithms either just use the best known dynamic algo-
rithms for All-Pairs Shortest Paths (APSP), or recompute the parameter estimate
from scratch after each edge update. This leads to the following bounds:

1. Demetrescu and Italiano [DI04] obtained a fully dynamic exact APSP algorithm
with an amortized update time of �̃�(𝑛2) and 𝑂(1) query time; this is the best
exact fully dynamic algorithm for Diameter. Abboud and Vassilevska W. [AV14]
showed that under SETH, any (4/3−𝜀)-approximation fully dynamic algorithm
for Diameter (for 𝜀 > 0) requires 𝑛2−𝑜(1) amortized update or query time even
in sparse graphs. Thus the APSP approach is conditionally optimal for fully
dynamic (4/3 − 𝜀)-approximate Diameter algorithms. It is unclear however
whether a 4/3-approximation with better update time is possible.

2. By recomputing an approximation for Diameter after every update, one can
obtain the various time vs. accuracy trade-off algorithms outlined in Chap-
ter 2. The only related lower bounds here are (a) by Henzinger et al. [HKNS15]
which showed that under the Online Matrix Vector hypothesis (OMv), any fully
dynamic Diameter algorithm that achieves a (2 − 𝜀)-approximation for undi-
rected weighted graphs, or any finite approximation in directed graphs needs
𝑛0.5−𝑜(1) amortized update time and (b) by Henzinger et al. [HLNW17] which
proved under the combinatorial Boolean Matrix Multiplication conjecture any
fully dynamic Diameter algorithm that achieves a (4/3 − 𝜀)-approximation in
undirected unweighted graphs with 𝑛3−𝑜(1) preprocessing time requires 𝑛2−𝑜(1)

update or query time (and the same result for undirected weighted graph using
the APSP conjecture). While these results give some limitation, they are far
from tight.

We obtain a conditional lower bound for fully dynamic Diameter approximation.
We strengthen the conditional lower bound of [AV14] by increasing the approximation
ratio from (4/3 − 𝜀) to (3/2 − 𝜀).
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Theorem 7.1.1. Under SETH, every fully dynamic (3/2 − 𝜀)-approximation algo-
rithm for Diameter with polynomial preprocessing time requires 𝑛2−𝑜(1) amortized up-
date or query time in the word-RAM model of computation with 𝑂(log 𝑛) bit words,
even for dynamic undirected unweighted graphs that are always sparse.

These conditional lower bounds imply that the �̃�(𝑚3/2) time static approximation
algorithm that recomputes the diameter from scratch are optimal in the sense that
any improvement of the approximation factor causes the update time to grow to 𝑛2,
and Demetrescu and Italiano’s algorithm achieves �̃�(𝑛2) update time even for the
exact maintenance of APSP.

Our conditional lower bound for the fully dynamic setting also applies to partially
dynamic algorithms that have worst case update and query time guarantees. This
is due to the nature of our reductions: they all produce an initial graph on which
we perform update stages that only insert or only delete (we can choose which) a
small batch of edges, ask a query and undo the changes just made, returning to the
initial graph. An incremental/decremental algorithm can be used to implement such
reductions by performing the deletions/insertions by rolling back the data structure.
Because of this, we have very strong worst case lower bounds, and it makes sense to
focus on amortized algorithms for the partially dynamic setting.

We develop a new partially dynamic algorithm for approximate Diameter. Our
algorithm is actually a very efficient reduction to partially dynamic single source
shortest paths (SSSP) in unweighted directed/undirected graphs, so that any im-
provement over dynamic SSSP would improve our algorithm. We extend the static
3/2-approximation of Roditty and Vassilevska W. [RV13] to the partially dynamic
setting with essentially no loss to the approximation factor and running time guar-
antees, for undirected graphs. Because the static 3/2-approximation is conditionally
tight in terms of both running time and approximation factor (as shown in Chap-
ter 3 and [RV13] respectively), this immediately implies that our dynamic algorithm
is essentially tight. For directed graphs, if partially dynamic algorithms for SSSP
become as efficient as those for undirected graphs, this would imply the same lossless
algorithm for Diameter as we have for undirected graphs.

Let 𝐷0 and 𝐷𝑓 be the initial and final values of the diameter, respectively. Let
𝑇𝑖𝑛𝑐(𝑛, 𝑚, 𝑘, 𝜖) (resp., 𝑇𝑑𝑒𝑐(𝑛, 𝑚, 𝑘, 𝜖)) be the total time of an incremental (decremen-
tal) approximate SSSP algorithm from source 𝑢 that maintains an estimate 𝑑′(𝑢, 𝑣)
for all 𝑣 such that if 𝑑(𝑢, 𝑣) ≤ 𝑘 then (1 − 𝜖)𝑑(𝑢, 𝑣) ≤ 𝑑′(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑣). For directed
graphs we assume that the approximate SSSP algorithm works in directed graphs,
and for undirected graphs, the SSSP algorithm only needs to work in undirected
graphs. Our black-box reductions can be summarized in the theorem below.

The running times of our algorithm is written in terms of 𝑛 and 𝑚, which refer
to an upper bound on the number of vertices and edges, respectively, over the entire
sequence of updates. That is, for incremental algorithms, the running time is written
in terms of the final values of 𝑛 and 𝑚 and for decremental algorithms the running
time written is in terms of the initial values of 𝑛 and 𝑚.

Theorem 7.1.2. There is a Las Vegas randomized algorithm for incremental (resp.,
decremental) Diameter in unweighted, directed graphs against an oblivious (resp.,
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adaptive) adversary that given 𝜀 > 0, runs in total time

�̃�
(︁

max
𝐷𝑓 ≤𝐷′≤𝐷0

{︁
𝑇𝑖𝑛𝑐(𝑛, 𝑚, 𝐷′, 𝜀)

√︁
𝑛/𝐷′

𝜀2

}︁)︁

(︁
resp., �̃�

(︁
max

𝐷0≤𝐷′≤𝐷𝑓

{︁
𝑇𝑑𝑒𝑐(𝑛, 𝑚, 𝐷′, 𝜀)

√︁
𝑛/𝐷′

𝜀2

}︁)︁)︁
with high probability, and maintains an estimate �̂� such that 2(1−𝜀)

3 𝐷 − 2
3 ≤ �̂� ≤ 𝐷

where 𝐷 is the diameter of the current graph.

There is a long line of work on partially dynamic (1 + 𝜖)-approximate SSSP.
Concluding this line of work for undirected graphs in the decremental setting, Bern-
stein, Probst G., and Saranurak [BGS21] obtained a deterministic (1+𝜀)-approximate
decremental algorithm for SSSP in undirected graphs with total expected update time
𝑚1+𝑜(1/𝜀). As an immediate corollary we obtain:

Corollary 7.1.1. There is a Las Vegas randomized algorithm for decremental Di-
ameter in unweighted, undirected graphs against an adaptive adversary that given
𝜀 > 0, runs in total time 𝑚1+𝑜(1/𝜀)√𝑛/𝜀2 in expectation, and maintains an estimate
2(1−𝜀)

3 𝐷 − 2
3 ≤ �̂� ≤ 𝐷, where 𝐷 is the diameter of the current graph.

A precursor to the above SSSP algorithm of [BGS21], was an algorithm by Hen-
zinger, Krinninger, and Nanongkai [HKN14] with the same guarantees but random-
ized against an oblivious adversary 1. Although it is not published, it is likely (based
on personal communication) that this algorithm extends to the incremental setting as
well, in which case Corollary 7.1.1 also holds for the incremental setting but against
an oblivious adversary.

For directed graphs, the best known algorithm for us to apply is the Even Shiloach
Tree data structure [ES81], which deterministically maintains exact SSSP up to any
distance 𝑘 in total time 𝑂(𝑚𝑘). The original result was for undirected graphs, but
Henzinger and King recognized that it can be extended to directed graphs [HK95].
As an immediate corollary we obtain:

Corollary 7.1.2. There is a Las Vegas randomized algorithm for partially dynamic
Diameter in unweighted, directed graphs that given 𝜀 > 0, runs in total time
�̃�(𝑚

√
𝑛𝐷max/𝜀2) with high probability where 𝐷max is the maximum diameter through-

out the algorithm, and maintains an estimate �̂� such that 2(1−𝜀)
3 𝐷−1 ≤ �̂� ≤ 𝐷, where

𝐷 is the diameter of the current graph. The incremental algorithm works against an
oblivious adversary; the decremental algorithm works against an adaptive adversary.

7.2 Techniques
To obtain our conditional lower bound we use the reduction from 3-OV to dynamic
Diameter of Abboud and Vassilevska W. [AV14] as a starting point. We augment their

1The exact expected update time of this algorithm is 𝑚1+𝑂(log5/4((log 𝑛)/𝜖)/ log1/4 𝑛).
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construction by adding some extra vertices and edges that improve the approximation
factor.

We describe our algorithmic techniques in more detail. Our partially dynamic
nearly 3/2-approximation algorithm for Diameter is based on known algorithms in
the static setting [RV13, CLR+14]. This static algorithms work by carefully choosing
a set 𝑈 of vertices, performing SSSP from every vertex in 𝑈 , and showing that at
least one of these SSSP instantiations yields a good estimate for the parameter of
interest. The set 𝑈 is chosen as follows. We pick a random sample 𝑆 of Θ̃(

√
𝑛)

vertices and let 𝑤* be the vertex that is farthest from 𝑆; that is, 𝑤* is the vertex that
maximizes min𝑠∈𝑆 𝑑(𝑤*, 𝑠). Then, letting 𝑁(𝑤,

√
𝑛) be the closest

√
𝑛 vertices to 𝑤,

we set 𝑈 = 𝑆 ∪ {𝑤*} ∪ 𝑁(𝑤*,
√

𝑛).
Adapting these static algorithms to the dynamic setting presents two main chal-

lenges:
Firstly, given a set 𝑆 of vertices, the farthest vertex 𝑤* from 𝑆 can change over

time. We wish to minimize the total number of vertices that we ever run dynamic
SSSP from, as reinitializing dynamic SSSP from a new vertex is expensive. Suppose
we run dynamic SSSP from every vertex in 𝑁(𝑤*,

√
𝑛) at all times. Then, every

time 𝑤* changes, we must reinitialize the dynamic SSSP data structure from
√

𝑛 new
vertices. If 𝑤* changes frequently, this is prohibitively slow. To overcome this issue,
we show that it suffices to choose a vertex 𝑤 that approximates 𝑤* (for a careful
notion of approximation); and furthermore, by doing so we can limit the number of
times we choose a new 𝑤.

Due to inherent differences between the incremental and decremental settings,
we choose 𝑤 in different ways in the different settings. In the decremental setting,
distances can only increase, so our current choice of 𝑤 can only become a poor ap-
proximation for 𝑤* if 𝑑(𝑤*, 𝑆) increases. Then, we use the fact that 𝑑(𝑤*, 𝑆) is
monotonically increasing to bound the number of times we need to choose a new 𝑤.

The incremental setting is more involved. Since distances can only decrease, our
current choice of 𝑤 becomes a poor approximation of 𝑤* if 𝑑(𝑤, 𝑆) decreases. A
challenge arises because unlike 𝑑(𝑤*, 𝑆), the distance 𝑑(𝑤, 𝑆) does not change mono-
tonically. One can imagine a scenario in which whenever we choose a new 𝑤, an
edge is added causing 𝑑(𝑤, 𝑆) to immediately decrease to 1, which mandates that we
choose a new 𝑤. We address this challenge by carefully employing randomness against
an oblivious adversary. We argue that by randomly sampling 𝑤 from a specifically
chosen set of vertices, in expectation it will take a long time for 𝑤 to become a poor
approximation for 𝑤*.

The second main challenge is that we wish to apply a partially dynamic SSSP
algorithm as a subroutine, however the state of such algorithms is much better for
undirected graphs than directed graphs. For instance, for undirected decremental
graphs, there is a randomized (1+𝜖)-approximate SSSP algorithm that runs amortized
𝑚𝑜(1) time [HKN14] (and it is believed, but not published, than a similar result is
possible for incremental graphs), while for incremental/decremental directed graphs
the best known algorithms for SSSP up to distance 𝑘 run in amortized time 𝑂(𝑘)
[ES81]. To address this discrepancy, we carefully exploit the fact that longer paths
are easier to hit by randomly sampling: we augment the algorithm with an additional
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subsampling routine that quadratically decreases the dependence of the running time
on the diameter 𝐷.

7.3 Preliminaries
Our algorithm is written as a reduction to a black-box incremental or decremental
approximation algorithm for truncated SSSP; that is, SSSP which provides a distance
estimate for all nodes whose distance from the source is at most a given value 𝑘.
For generality, our algorithms are written for directed graphs and use directed SSSP
algorithms, however if the graph is undirected one can simply run an undirected SSSP
algorithm instead.

Let out-𝒜𝑖𝑛𝑐(𝑢, 𝑘, 𝛿) (resp., out-𝒜𝑑𝑒𝑐(𝑢, 𝑘, 𝛿)) be an incremental (resp., decremen-
tal) algorithm that maintains for all 𝑣 an estimate 𝑑′(𝑢, 𝑣) such that if 𝑑(𝑢, 𝑣) ≤ 𝑘
then (1 − 𝛿)𝑑(𝑢, 𝑣) ≤ 𝑑′(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑣). Analogously, let in-𝒜𝑖𝑛𝑐(𝑢, 𝑘, 𝛿) (resp., in-
𝒜𝑑𝑒𝑐(𝑢, 𝑘, 𝛿)) be an incremental (decremental) algorithm that maintains an estimate
𝑑′(𝑣, 𝑢) for all 𝑣 such that if 𝑑(𝑢, 𝑣) ≤ 𝑘 then (1 − 𝛿)𝑑(𝑣, 𝑢) ≤ 𝑑′(𝑣, 𝑢) ≤ 𝑑(𝑣, 𝑢). We
assume that after every update, these algorithms output all nodes whose distance
estimate has changed. Let 𝑇𝑖𝑛𝑐(𝑛, 𝑚, 𝑘, 𝛿) (resp., 𝑇𝑑𝑒𝑐(𝑛, 𝑚, 𝑘, 𝛿)) be the total time of
out-𝒜𝑖𝑛𝑐(𝑢, 𝑘, 𝛿) and in-𝒜𝑖𝑛𝑐(𝑢, 𝑘, 𝛿) (resp., out-𝒜𝑖𝑛𝑐(𝑢, 𝑘, 𝛿) and in-𝒜𝑖𝑛𝑐(𝑢, 𝑘, 𝛿)) (or
the corresponding undirected algorithms, depending on the setting).

The running times of our algorithms are written as the maximum of an expression
over all values of the diameter 𝐷 throughout the entire sequence of updates. Although
the maximum value of 𝐷 in a partially dynamic graph either occurs at the beginning
or end of the update sequence, the maximum value of the running time expression
could occur for any value of 𝐷 or 𝑅.

Suppose we run in-𝒜𝑖𝑛𝑐, in-𝒜𝑑𝑒𝑐, out-𝒜𝑖𝑛𝑐, or out-𝒜𝑑𝑒𝑐 from a vertex 𝑣. Then, let
𝐵𝑜𝑢𝑡(𝑣, 𝑟) be the set of vertices 𝑢 with 𝑑′(𝑣, 𝑢) ≤ 𝑟.

For a subset 𝑆 ⊆ 𝑉 of vertices and a vertex 𝑣 ∈ 𝑉 we define 𝑑(𝑆, 𝑣) := min𝑠∈𝑆 𝑑(𝑠, 𝑣).
Similarly, 𝑑(𝑣, 𝑆) := min𝑠∈𝑆 𝑑(𝑣, 𝑠). When the algorithms call for an approximation
𝑑′(𝑆, 𝑣) of 𝑑(𝑆, 𝑣), we add a dummy vertex 𝑥 with an edge to every vertex in 𝑆 and
run out-𝒜𝑖𝑛𝑐 (or out-𝒜𝑑𝑒𝑐) from 𝑥; let 𝑑′(𝑆, 𝑣) = 𝑑′(𝑥, 𝑣) − 1. We define and maintain
𝑑′(𝑣, 𝑆) analogously by adding a dummy vertex with an edge from every vertex in 𝑆.

Claim 2. For all 𝑢 /∈ 𝑆, (1 − 2𝛿)𝑑(𝑢, 𝑆) ≤ 𝑑′(𝑢, 𝑆) ≤ 𝑑(𝑢, 𝑆).

Proof. (1−2𝛿)𝑑(𝑢, 𝑆) = (1−2𝛿)(𝑑(𝑢, 𝑥)−1) = 𝑑(𝑢, 𝑥)−𝛿𝑑(𝑢, 𝑥)−1+𝛿(2−𝑑(𝑢, 𝑥)) ≤
𝑑(𝑢, 𝑥) − 𝛿𝑑(𝑢, 𝑥) − 1 = (1 − 𝛿)𝑑(𝑢, 𝑥) − 1 ≤ 𝑑′(𝑢, 𝑥) − 1 = 𝑑′(𝑢, 𝑆) and 𝑑′(𝑢, 𝑆) =
𝑑′(𝑢, 𝑥) − 1 ≤ 𝑑(𝑢, 𝑥) − 1 = 𝑑(𝑢, 𝑆).

7.4 Partially dynamic algorithm
In this section we will prove Theorem 7.1.2.
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To prove Theorem 7.1.2, we prove the following lemma, which gives an algorithm
with a similar guarantee but takes as input a parameter 𝐷′ that acts as a proxy for
the true diameter 𝐷.

Lemma 7.4.1. There is a Las Vegas randomized algorithm against an oblivious ad-
versary for incremental Diameter in unweighted, directed graphs that given 𝐷′, 𝜀 > 0,
runs in total time �̃�

(︂
𝑇𝑖𝑛𝑐(𝑛, 𝑚, 𝐷′)

√
𝑛/𝐷′

𝜀

)︂
with high probability, and maintains an

estimate �̂� ≤ 𝐷 such that if 𝐷′ ≤ 𝐷 then 2(1−𝜀)
3 𝐷′ − 2

3 ≤ �̂� where 𝐷 is the diameter
of the current graph.

Proof of Theorem 7.1.2 given Lemma 7.4.1. Let 𝜀′ = 𝜀/2. We run the algorithm from
Lemma 7.4.1 with parameters 𝐷′ and 𝜀′, where 𝐷′ is defined as follows. Initially, we
set 𝐷′ so that 𝐷′ ≥ 𝐷0 and 𝐷′ = 𝑂(𝐷0). One simple way to do this is to run BFS
from an arbitrary vertex in the graph, which (by the triangle inequality) provides a 2-
approximation for 𝐷0. Throughout the sequence of updates, whenever the algorithm
returns �̂� < 𝐷′(2(1−𝜀′)

3 ) − 2
3 , we decrease 𝐷′ by multiplying it by 1−𝜀

1−𝜀′ and reinitialize
the algorithm from Lemma 7.4.1. Otherwise, the algorithm returns �̂� ≥ 𝐷′(2(1−𝜀′)

3 )−2
3

and we return �̂� as the estimate for Theorem 7.1.2.
We claim that this rule for updating 𝐷′ implies that at all times the following

inequality holds:
𝐷
(︂ 1 − 𝜀

1 − 𝜀′

)︂
≤ 𝐷′. (7.1)

We note that inequality 7.1 does not imply that 𝐷′, itself, is a good estimate for
𝐷, since 𝐷′ could be larger than 𝐷. However, inequality 7.1 does imply the guar-
antee of Theorem 7.1.2 as follows. Combining inequality 7.1 with the guarantee of
Lemma 7.4.1, we have �̂� ≥ 𝐷′(2(1−𝜀′)

3 ) − 2
3 ≥ 𝐷(2(1−𝜀)

3 ) − 2
3 . Also, Lemma 7.4.1

guarantees that �̂� ≤ 𝐷. Together, these bounds prove the bound in Theorem 7.1.2.
Now, we prove inequality 7.1. Initially it holds since 𝐷′ ≥ 𝐷0. Because the graph

is incremental, 𝐷 cannot increase so inequality 7.1 can only be violated due to an
update of 𝐷′. Lemma 7.4.1 implies that right before 𝐷′ is updated, 𝐷′ > 𝐷. Thus,
right after 𝐷′ is updated, inequality 7.1 holds.

Now, we consider the running time. The total time is �̃�
(︂∑︀

𝐷′ 𝑇𝑖𝑛𝑐(𝑛, 𝑚, 𝐷′)
√

𝑛/𝐷′

𝜀

)︂
with high probability. All values of 𝐷′ are 𝑂(𝐷0) and Ω(𝐷𝑓 ). We update 𝐷′ at most
log(1−𝜀′)/(1−𝜀) 𝑛 = �̃�(1/𝜀) times. Thus, with high probability the running time is

�̃�(max𝐷𝑓 ≤𝐷′≤𝐷0{𝑇𝑖𝑛𝑐(𝑛, 𝑚, 𝐷′)
√

𝑛/𝐷′

𝜀2 }).

Proof of Lemma 7.4.1. First we describe the algorithm and then the analysis.

Algorithm. Let 𝛿 = 2𝜀/11. Throughout the incremental (resp., decremental) algo-
rithm we will run in-𝒜𝑖𝑛𝑐 (in-𝒜𝑑𝑒𝑐) and out-𝒜𝑖𝑛𝑐 (out-𝒜𝑑𝑒𝑐) from carefully chosen sets
of vertices. For ease of notation, we let in-𝒜 denote either in-𝒜𝑖𝑛𝑐 or in-𝒜𝑑𝑒𝑐, depend-
ing on the setting, and similarly we let out-𝒜 denote either out-𝒜𝑖𝑛𝑐 or out-𝒜𝑑𝑒𝑐.
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Initialization. Let 𝛼 be such that 𝐷′ = Θ(𝑛1−2𝛼). We randomly sample a
set 𝑆 of size Θ(𝑛𝛼 log2 𝑛) so that with high probability, for every vertex 𝑣, 𝑆 hits
𝑁𝑜𝑢𝑡(𝑣, 𝑛1−𝛼). For the incremental algorithm, since the adversary is oblivious it is
also true that with high probability, for every vertex 𝑣, after every update, 𝑆 hits
𝑁𝑜𝑢𝑡(𝑣, 𝑛1−𝛼).

Throughout the entire execution of the algorithm, for all 𝑠 ∈ 𝑆 we run in-
𝒜(𝑠, 𝐷′, 𝛿). Additionally, we maintain the approximate distance 𝑑′(𝑣, 𝑆) from every
vertex 𝑣 to 𝑆 as described in the preliminaries. Let 𝑊 be the dynamically changing
set of vertices 𝑣 that satisfy 𝑑′(𝑣, 𝑆) > 𝐷′/3.

Phases. The algorithm runs phases. The first phase begins right after initial-
ization. At the beginning of each phase, we choose a vertex 𝑤 ∈ 𝑊 if 𝑊 ̸= ∅. The
decremental algorithm only has one phase and we let 𝑤 be an arbitrary vertex in 𝑊 .
Note that in the decremental setting distances can only increase so 𝑤 never leaves 𝑊 .

In the incremental setting on the other hand, distances can decrease so vertices
can leave 𝑊 . The incremental algorithm may have many phases, and at the beginning
of each phase, we choose 𝑤 ∈ 𝑊 uniformly at random. The beginning of a new phase
is triggered when 𝑤 leaves the set 𝑊 .

Throughout the phase, we run out-𝒜(𝑤, 𝐷′, 𝛿). Also, we will define a subset
𝑆 ′ ⊆ 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 ) and for all 𝑠′ ∈ 𝑆 ′, we run in-𝒜(𝑠′, 𝐷′, 𝛿). 𝑆 ′ is initially empty and we
independently add each vertex in 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 ) to 𝑆 ′ with probability min{1, log2 𝑛
𝛿𝐷′ }. In

the incremental setting (but not the decremental setting), 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 ) can grow, and
whenever a vertex 𝑢 joins 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 ) we add 𝑢 to 𝑆 ′ with probability min{1, log2 𝑛
𝛿𝐷′ }.

Reinitialization. If at any point during the execution of the algorithm, any of
the following events occur, we reinitialize the entire algorithm:

∙ |𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )| > 𝑛1−𝛼, or

∙ |𝑆 ′| > 𝑛1−𝛼 log4 𝑛
𝛿𝐷′ , or

∙ there is a vertex 𝑣 ∈ 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 ) such that 𝑑′(𝑣, 𝑆 ′) > 𝛿𝐷′.

We will show in the analysis that with high probability we never reinitialize the
algorithm.

Query. Following each update, the return value �̂� is the maximum distance
estimate found over all instantiations of out-𝒜 and in-𝒜. That is,

�̂� = max
{︁

max
𝑣∈𝑉

𝑑′(𝑤, 𝑣), max
𝑣∈𝑉,𝑠∈𝑆∪𝑆′

𝑑′(𝑣, 𝑠)
}︁
.

To maintain this value, we maintain the following heaps. For every vertex 𝑣 that
we run out-𝒜 (resp., out-𝒜) from, we keep a max-heap ℋ(𝑣) that stores for each
other vertex 𝑢 the estimate 𝑑′(𝑣, 𝑢) (resp., 𝑑′(𝑢, 𝑣)). Let 𝑑𝑜𝑢𝑡(𝑣) be the value that
ℋ(𝑣) outputs. Additionally we keep a max-heap ℋ which stores each 𝑑𝑜𝑢𝑡(𝑣).
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Analysis:

Correctness: The return value �̂� is 𝑑′(𝑢, 𝑣) for some 𝑢, 𝑣, so �̂� ≤ 𝐷. It remains
to show that if 𝐷′ ≤ 𝐷, then 2(1−𝜀)

3 𝐷′ − 2
3 ≤ �̂�.

Let 𝑠* and 𝑡* be the true diameter endpoints.
Case 1: 𝑠* ̸∈ 𝑊 . Let 𝑠 ∈ 𝑆 be such that 𝑑′(𝑠*, 𝑠) ≤ 𝐷′

3 . Then 𝑑(𝑠*, 𝑠) ≤ 𝐷′( 1
3(1−𝛿)).

Then by the triangle inequality, 𝑑(𝑠, 𝑡*) ≥ 𝐷 − 𝐷′( 1
3(1−𝛿)) ≥ 𝐷′(1 − 1

3(1−𝛿)). Thus,
�̂� ≥ 𝑑′(𝑠, 𝑡*) ≥ 𝐷′(1 − 𝛿)(1 − 1

3(1−𝛿)) = 𝐷′(2
3 − 𝛿).

Case 2: 𝑠* ∈ 𝑊 . We don’t explicitly use the fact that 𝑠* ∈ 𝑊 ; we just use the fact
that 𝑤 exists. If 𝑑′(𝑤, 𝑡*) ≥ 2𝐷′

3 , then we are done. So suppose otherwise; that is,
suppose 𝑑′(𝑤, 𝑡*) < 2𝐷′

3 so 𝑑(𝑤, 𝑡*) < 𝐷′( 2
3(1−𝛿)).

Consider the shortest path from 𝑤 to 𝑡*. Let 𝑞 be the vertex on this path at
distance ⌊𝐷′

3 ⌋ from 𝑤. So 𝑑(𝑞, 𝑡*) < 𝐷′( 2
3(1−𝛿)) − ⌊𝐷′

3 ⌋ ≤ 𝐷′( 2
3(1−𝛿) − 1

3) + 2
3 . We

know that 𝑞 ∈ 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 ), so 𝑑′(𝑆 ′, 𝑞) ≤ 𝛿𝐷′ or else we would have reinitialized the
algorithm. Thus, by Claim 7.3 from the preliminaries, 𝑑(𝑆 ′, 𝑞) ≤ 𝛿𝐷′

1−2𝛿
. Let 𝑞′ ∈ 𝑆 ′ be

a vertex with 𝑑(𝑞′, 𝑞) ≤ 𝛿𝐷′

1−2𝛿
.

By the triangle inequality, 𝑑(𝑞′, 𝑡*) ≤ 𝑑(𝑞′, 𝑞) + 𝑑(𝑞, 𝑡*) ≤ 𝐷′( 𝛿
1−2𝛿

+ 2
3(1−𝛿) − 1

3) + 2
3 .

By the triangle inequality, 𝑑(𝑠*, 𝑞′) ≥ 𝐷 − 𝐷′( 𝛿
1−2𝛿

+ 2
3(1−𝛿) − 1

3) − 2
3 ≥ 𝐷′(4

3 − 𝛿
1−2𝛿

−
2

3(1−𝛿)) − 2
3 . Thus, �̂� ≥ 𝑑′(𝑠*, 𝑞′) ≥ 𝐷′(1 − 𝛿)(4

3 − 𝛿
1−2𝛿

− 2
3(1−𝛿)) − 2

3) = 𝐷′(4(1−𝛿)
3 −

𝛿(1−𝛿)
1−2𝛿

− 2
3) − 2

3 .
Setting 𝛿 = 2𝜀/11 completes the proof of correctness.

Running time:

Reinitialization. We will argue that with high probability, we never reinitialize
the algorithm. One event that triggers algorithm reinitialization is if |𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )| >
𝑛1−𝛼. Recall that with high probability, for every vertex 𝑣, 𝑆 hits 𝑁𝑜𝑢𝑡(𝑣, 𝑛1−𝛼); this
is true for the decremental algorithm only initially, and for the incremental after ev-
ery update. By the definition of 𝑊 , 𝐷′/3 < 𝑑′(𝑤, 𝑆) ≤ 𝑑(𝑤, 𝑆). Thus, 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )
contains no vertices in 𝑆. So, with high probability 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 ) does not contain
𝑁𝑜𝑢𝑡(𝑣, 𝑛1−𝛼). That is, with high probability, |𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )| < 𝑛1−𝛼. For the decre-
mental algorithm we have shown that this inequality holds only for the initial graph,
however it also holds after every update since |𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )| can only decrease over
time. Thus, for both the incremental and decremental algorithms, with high proba-
bility we never reinitialize the algorithm due to |𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )| > 𝑛1−𝛼.
Another event that triggers reinitialization is if |𝑆 ′| > 𝑛1−𝛼 log2 𝑛

𝛿𝐷′ . |𝑆 ′| is a ran-
dom variable drawn from a binomial distribution with 𝑝 = log2 𝑛

𝛿𝐷′ and expected value
|𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )| log2 𝑛

𝛿𝐷′ . We know that |𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )| ≤ 𝑛1−𝛼 or else we would have reinitialized
the algorithm due to the above event. Thus, |𝑆 ′| ≤ 𝑛1−𝛼 log4 𝑛

𝛿𝐷′ with high probability.
The last event that triggers reinitialization is if there is a vertex 𝑣 ∈ 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 )
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such that 𝑑′(𝑣, 𝑆 ′) > 𝛿𝐷′. The expected size of 𝑆 ′ is |𝐵𝑜𝑢𝑡(𝑤, 𝐷′
3 )| log2 𝑛

𝛿𝐷′ . Thus, with high
probability, for all vertices 𝑣 ∈ 𝐵𝑜𝑢𝑡(𝑤, 𝐷′

3 ), after every update, 𝑆 ′ hits a vertex of
distance at most 𝛿𝐷′ to 𝑣.

We have shown that each of the three events that trigger reinitialization do not
occur with high probability (probability at least 1 − 1/𝑛𝑐 for all constants 𝑐). Thus,
with high probability we never reinitialize the algorithm.

Running in-𝒜 and out-𝒜. We will calculate the total number 𝑎 of vertices
that we ever run in-𝒜 or out-𝒜 from. Then the total time is �̃�(𝑎𝑇𝑖𝑛𝑐(𝑛, 𝑚, 𝐷′, 𝜀));
maintaining the heaps ℋ(𝑣) and ℋ increases the running time only by a factor of
𝑂(log 𝑛).

In the initialization step, we initialize in-𝒜 from all �̃�(𝑛𝛼) vertices in 𝑆 as well
as a dummy vertex. Throughout each phase, we run out-𝒜 from 𝑤 and we run in-𝒜
from all �̃�(𝑛1−𝛼

𝜀𝐷′ ) vertices that are added to 𝑆 ′ during the phase, as well as a dummy
vertex.

The decremental algorithm has only one phase. We calculate the number of phases
in the incremental algorithm. The beginning of a new phase is triggered when 𝑤 leaves
the set 𝑊 . We note that since we are in the incremental setting, no vertices are added
to 𝑊 during a phase. The sequence of updates dictates if and when each vertex is
removed from 𝑊 . Each update may trigger any number of vertices to leave 𝑊 .

Fix a choice of 𝑤 and let 𝑊0 be the set 𝑊 at the point in time that the algorithm
chooses 𝑤. We say that 𝑤 is a success if at most half of the vertices in 𝑊0 leave
𝑊 after 𝑤 leaves 𝑊 . Since 𝑤 is chosen randomly and the adversary is oblivious,
the probability that 𝑤 is a success is at least 1/2. Once log2 𝑛 choices of 𝑤 are
successful, then 𝑊 is empty. Let 𝑌 be a random variable defined as the number of
times the algorithm chooses a new 𝑤 until 𝑊 is empty. 𝑌 is a negative binomial
random variable, which implies the following concentration bound for any constant
𝑐: 𝑃 [𝑌 > 2𝑐 log2 𝑛] ≤ exp(−𝑐(1−1/𝑐)2

2 log2 𝑛). Thus, 𝑌 = �̃�(1) with high probability.
Putting everything together, with high probability, 𝑎 = �̃�(𝑛𝛼+𝑛1−𝛼

𝜀𝐷′ ) = �̃�
(︁√︁

𝑛/𝐷′
)︁
,

so the total time is �̃�
(︂

𝑇𝑖𝑛𝑐(𝑛, 𝑚, 𝐷′, 𝜀)
√

𝑛/𝐷′

𝜀

)︂
.

7.5 Fully dynamic conditional lower bound
In this section we will prove the following theorem, which implies Theorem 7.1.1.

Theorem 7.5.1. Let 𝑡, 𝜀, and 𝜀′ be positive constants. SETH implies that there
exists no fully dynamic algorithm for (3/2 − 𝜀)-approximate Diameter on undirected,
unweighted graphs with 𝑛 vertices and �̃�(𝑛) edges, which has preprocessing time
𝑝(𝑛) = 𝑂(𝑛𝑡), amortized update time 𝑢(𝑛) = 𝑂(𝑛2−𝜀′), and amortized query time
𝑞(𝑛) = 𝑂(𝑛2−𝜀′).

The same result holds for the incremental and decremental settings but for worst-
case update and query times.
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Proof of Theorem 7.5.1. Suppose for contradiction that a dynamic (3/2−𝜀)-approximation
algorithm exists with preprocessing time 𝑛𝑡, amortized update time 𝑛2−𝜀′ and query
time 𝑛2−𝜀′ , for positive numbers 𝜀, 𝜀′, and 𝑡. We define 𝛿 = 1−𝜀′

𝑡
.

Construction: The construction is shown in Figure 7-1 and described as follows.

Initialization. Let 𝑎 = ⌈1−2𝜀
8𝜀

⌉ + 1.
We begin with an instance of 3-OV with vector sets 𝑈 , 𝑉 , and 𝑊 such that |𝑈 | =

|𝑉 | = 𝑁 𝛿 and |𝑊 | = 𝑁1−2𝛿. We first discard degenerate vectors and coordinates:
any coordinates that are 0 for every vector in 𝑈 , every vector in 𝑉 , or every vector in
𝑊 , and any vectors that are all zeroes. Note that removing degenerate coordinates
does not change the correct output value. If there is a degenerate vector in a 3-OV
instance, the correct output value is always “yes”.

For each coordinate 𝑐, create two nodes, and denote one by 𝑐𝑈 and the other by
𝑐𝑉 . We denote the two sets of coordinate nodes by 𝐶𝑈 and 𝐶𝑉 respectively. Next,
create a path of length 𝑎 for each vector 𝑢 ∈ 𝑈 ; denote the start by 𝑢0 and the end
by 𝑢𝑎, and each node at distance 𝑖 from 𝑢0 by 𝑢𝑖. We make a similar path for each
𝑣 ∈ 𝑉 . Then, we encode each vector 𝑢 ∈ 𝑈 in the graph by adding a path of length
𝑎 between 𝑢𝑎 and 𝑐𝑈 if 𝑢[𝑐] = 1, and encode each 𝑣 ∈ 𝑉 by adding a path of length 𝑎
between 𝑐𝑉 and 𝑣0 if 𝑣[𝑐] = 1. Finally, we add two nodes 𝑥 and 𝑦. For each node 𝑢𝑎,
add a path of length 𝑎 between 𝑥 and 𝑢𝑎, and for each node 𝑣0, add a path of length
𝑎 between 𝑦 and 𝑣0.

Stages. We proceed in 𝑁2−𝛿 stages, one for each element 𝑤 ∈ 𝑊 . For the
current 𝑤, for each coordinate 𝑐 where 𝑤[𝑐] = 1, we add an edge between 𝑐𝑈 and
𝑐𝑉 . We then query the diameter of 𝐺. We will show that if there is an orthogonal
triple that includes 𝑤, then the diameter is least 6𝑎 + 1, and otherwise, the diameter
is at most 4𝑎 + 1. A (3/2 − 𝜀)-approximation algorithm for Diameter distinguishes
between these two cases and can thus detect an orthogonal triple that includes 𝑤 if
one exists. If such an orthogonal triple is not detected, we undo the edge additions
for the stage and continue to the next 𝑤.

Analysis:

Approximation factor. If for the current stage, for all 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , 𝑢 ·𝑣 ·𝑤 ̸=
0, then for each 𝑢, 𝑣 there exists a coordinate 𝑐 such that 𝑢[𝑐] = 𝑣[𝑐] = 𝑤[𝑐] = 1. Thus,
for all 𝑢 and 𝑣, 𝑑(𝑢𝑎, 𝑣0) = 2𝑎 + 1. Also, for all 𝑢, 𝑢′ ∈ 𝑈 , 𝑑(𝑢𝑎, 𝑢′𝑎) ≤ 2𝑎. We note
that every vertex in the graph is of distance at most 𝑎 from some vertex 𝑢𝑎 or 𝑣0.
Thus, the diameter is at most 4𝑎 + 1.

Suppose for the current stage there exist 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 such that 𝑢·𝑣 ·𝑤 = 0. Fix 𝑢
and 𝑣. We claim that 𝑑(𝑢0, 𝑣𝑎) ≥ 6𝑎+1. The only paths between 𝑢0 and 𝑣𝑎 go through
𝑢𝑎 and 𝑣0. There does not exist a coordinate such that 𝑢[𝑐] = 𝑣[𝑐] = 𝑤[𝑐] = 1, so
every path between 𝑢𝑎 and 𝑣0 must visit a vertex 𝑢′𝑎 or 𝑣′0 (for 𝑢 ∈ 𝑈 , 𝑢′ ̸= 𝑢, 𝑣′ ∈ 𝑉 ,

100



Figure 7-1: Theorem 7.5.1 Construction. Bold edges represent paths, whose labels
denote their length.

𝑣′ ̸= 𝑣), which are of distance 2𝑎 from 𝑢𝑎 and 𝑣0, respectively. Thus, 𝑑(𝑢𝑎, 𝑣0) ≥ 4𝑎+1
so 𝑑(𝑢0, 𝑣𝑎) ≥ 6𝑎 + 1.

Running time. The preprocessing time of the algorithm for a graph of size
𝑁 𝛿 is (𝑁 𝛿)𝑡 = 𝑁1−𝜀′ . Each update or query takes amortized 𝑂((𝑁 𝛿)2−𝜀′) time,
so after 𝑁1−2𝛿 stages wherein we make �̃�(1) updates and queries, the total amor-
tized time is �̃�(𝑁1−𝛿𝜀′). This gives an algorithm for 3-OV in �̃�(𝑁1−𝜀′ + 𝑁1−𝛿𝜀′) =
𝑂((|𝑈 ||𝑉 ||𝑊 |)1−𝜀′′) for a positive constant 𝜀′′, refuting SETH.
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Chapter 8

Open Problems

The following are 8 open problems related to the content of this dissertation.

Open Problem 1. (Exact Diameter in dense graphs) The most notorious open
problem about Diameter is whether there exists an algorithm that computes the
diameter of an 𝑛-vertex weighted graph exactly that runs in time 𝑂(𝑛3−𝜖) for some
constant 𝜖 > 0, or evidence to suggest that such an algorithm does not exist. (Note
that for unweighted graphs, �̃�(𝑛𝜔) time algorithms exist, where 𝜔 is the matrix
multiplication exponent.)

Open Problem 2. (Lower bounds for other problems) To the best of our
knowledge, Diameter and its variants are the only problems in fine-grained complexity
for which there are known time vs. accuracy trade-off conditional lower bounds. Do
such trade-off lower bounds exist for other problems?

Open Problem 3. (Closing the gap for approximate Diameter) As shown
in Figure 2-1, there is a gap between algorithms and conditional lower bounds for
some parts of the time vs. accuracy trade-off for approximate Diameter. From the
lower bounds side, for any fixed integer 𝑘′ ≥ 2, SETH implies that any (2𝑘′−1

𝑘′ − 𝜀)-
approximation algorithm requires 𝑚

𝑘′
𝑘′−1 −𝑜(1) time, for undirected unweighted graphs

(Chapter 3 and [DW21, Li21, DLV21]). From the algorithms side, there is an
�̃�(𝑚𝑛1/(𝑘+1)) time algorithm that achieves an almost-(2 − 1/2𝑘)-approximation for
any fixed constant 𝑘 ≥ 0 for undirected weighted graphs [CGR16]. This algorithm
is tight with the above conditional lower bound for 𝑘 = 0, 1 and 𝑘 → ∞ (and also
works for directed graphs for these values of 𝑘 [RV13, CLR+14]).

What about intermediate values of 𝑘? Can the algorithms for intermediate values
of 𝑘 be improved to match the conditional lower bounds? Can we get any algorithms
for directed graphs for intermediate values of 𝑘?

There is some evidence from [Li21] under nondeterministic versions of SETH, that
we should expect the improvement to be on the algorithms side rather than the lower
bounds side (although this result only holds for deterministic reductions).

Open Problem 4. (Radius) We proved a hierarchy of conditional lower bounds
for Diameter that trade off time and accuracy Chapters 2 and 3. Such a hierarchy
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does not exist, however, for the very related problem of Radius. Many techniques for
Diameter extend to Radius and vice versa, so we might expect that this hierarchy
of conditional lower bounds extends from Diameter to Radius, but it is unknown
whether or not it does.

There is, however, one known conditional lower bound for Radius [AVW16]. Anal-
ogous to the reduction from OV to Diameter, there is a reduction from a problem
called Hitting Set to Radius. The Hitting Set problem is similar to OV but it has
different quantifiers. To prove the hierarchy of conditional lower bounds for Diameter,
we reduce from 𝑘-OV to Diameter, which raises the question of whether there is an
appropriate definition of “𝑘-Hitting Set” that reduces to Radius.

Open Problem 5. (Roundtrip Diameter) Although we have made progress on
a number of variants of Diameter in this dissertation, there is one curious variant,
Roundtrip Diameter, that we did not make progress on. Given a directed graphs, the
roundtrip distance between a pair of vertices 𝑢 and 𝑣 is defined as 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑢).
The roundtrip diameter is the largest roundtrip distance in the graph.

The only known approximation algorithm for Roundtrip Diameter is a simple 2-
approximation algorithm in near-linear time, by simply running an SSSP algorithm
from an arbitrary vertex and returning the largest roundtrip distance found. From
the conditional lower bounds side, any lower bound for Diameter immediately applies
to Roundtrip Diameter, but we do not know any better lower bounds.

Can we improve the bounds for Roundtrip Diameter, either from the upper or
lower bounds side? Specifically, is there a subqudratic time algorithm that achieves
an approximation factor better than 2, or a conditional lower bound to rule out such
an algorithm?

More information about this problem is provided in Open Problem 2.4 of [RV19].

Open Problem 6. (Directed Bichromatic Diameter) The running time of our
algorithm for Bichromatic Diameter in directed graphs from Theorem 5.4.6 is not
tight. We give a 2-approximation in �̃�(𝑚3/2) time and a conditional lower bound
that any better than 2-approximation requires quadratic time under SETH. Is there
a faster 2-approximation algorithm or a conditional lower bound ruling out such an
algorithm?

Open Problem 7. (Min-Diameter) Our algorithms for Min-Diameter from The-
orem 6.1.1 are not tight with the known conditional lower bounds. The best approx-
imation factor that our algorithms achieve is 3 (in �̃�(𝑚

√
𝑛) time), whereas there is a

conditional lower bound that one cannot achieve a truly subquadratic time algorithm
with an approximation factor better than 2 for weighted graphs, or better than 5/3
for unweighted graphs [AVW16]. Can we get a better algorithm or conditional lower
bound?

Open Problem 8. (Directed partially dynamic approximate SSSP) Is there
a faster algorithm for (1 + 𝜖)-approximate partially dynamic SSSP in directed (un-
weighted) sparse graphs? The best known decremental algorithm runs in time �̃�(𝑚𝑛2/3)
in expectation (against an oblivious adversary) [BGWN20] and the best known incre-
mental algorithm runs in time �̃�(𝑚𝑛1/2 + 𝑚7/5) in expectation (against an adaptive
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adversary) [CZ21]. This is an important problem in the area of dynamic shortest
paths, and improving these bounds would also immediately imply a better algorithm
for partially dynamic Diameter in directed graphs via Theorem 7.1.2.
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