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ABSTRACT 

Climate change risks are considered one of the major global concerns that face humankind in the 21st 
century. Heatwaves have been identified as one of the deadliest climate hazards, especially in urban areas. 
Also, extreme heat events have been growing in intensity, duration, and frequency; more risks are 
expected to affect the urban population. Heat vulnerability assessment in the built environment is a 
complex process with multiple dynamics and components of human-natural systems and their interaction 
with the surrounding built environment. These dynamics include social, demographics, urban growth, 
environmental changes, access to public services, and policy impacts. Yet, there are considerable gaps in 
the literature on the effect of heat exposure and the built environment as a protective factor from 
potential vulnerability and risk perspectives.  

This dissertation addresses this need by developing a multifaceted and multi-scalar framework for heat 
vulnerability assessment. The framework is designed to inform decision-makers on the local dimension 
and the distribution of vulnerable populations by answering two key questions: where and what are the 
impacts of heat exposure in an urban setting? Who are the most susceptible populations to heat 
exposure? The dissertation explores vulnerability at multiple levels starting with a detailed assessment of 
the built environment by integrating the impacts of the physical characteristics of the existing building 
stock, available urban resources for long-term adaptation, and individuals’ adaptive capacity and potential 
health impacts under varying indoor exposure. Next, a methodology for rapid vulnerability analytics using 
novel technology such as aerial thermography coupled with Computer Vision (CV) and Machine Learning 
(ML) techniques to assess the thermal performance of building envelopes to provide actionable data for 
adaptation strategies at both the building and district levels. Finally, an evaluation framework to assess 
policy impact on the vulnerability of the urban system during heat events and how delays in the public 
policy response can increase risk levels.  
 

Thesis Advisor: John E. Fernandez 
Title: Professor of Building Technology 

 

 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In The Name of Allah the Most Gracious the Most Merciful 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Acknowledgments 

This dissertation would not have been possible without the help, support, and encouragement 
of my advisor, prof. John E. Fernandez- thanks for giving me the chance to follow and pursue my 
passion and helping me fulfill my research aspirations; and am excited for whatever comes next. 
I will always be grateful for his support and for being an exemplary mentor. I have learned a lot 
from him and hope that I can pay it forward by trying my best to be as great of an adviser to my 
prospective students as he was to me. 
 
I extend my gratitude to the members of my thesis committee. Professor Leslie Norford, for his 
insights in heat vulnerability framework development has been invaluable, and his editorial 
guidance was indispensable to my work on heat exposure analysis. Dr. Tarek Rakha's experience 
with UAVs and aerial thermography made the rapid analytics efforts possible. 
 
I further would like to thank my colleagues at the Environmental Solutions Initiative, Juan Camilo 
and Marcela Angel, for their support and assistance in the work in the Bronx; I am forever 
thankful for believing in this work and supporting me all the way. I want to thank my colleagues 
in the AIRBEM project, Burak, Yasser, and Eleanna, for their support; it has been a great 
experience contributing to this project. 
 
I am grateful to the Building Technology program for providing a friendly and inspiring work 
environment, to the BT faculty and my colleagues for the intellectual support and feedback that 
helped shape this research and the SA+P staff, Cynthia and Renee, who were always there to 
help. 
 
I would thank my Egyptian family here at MIT, the MIT Egyptian Students Associations, my friends 
Randa Azab, Islam Hussein, and Mohamed Ibrahim for their support throughout my journey.  I 
am also thankful to my UROP Mohanned El Kholy for his assistance in developing machine 
learning models and the work in Cairo, and Ali Ghazal for his valuable help in the development of 
the MENA heatwave platform. To my friends at Anjunabeats, thank you for believing in me so 
much and pushing me musically while supporting my academic journey; it has been a true 
blessing.  
 
Lastly, but most importantly, absolutely none of this would have been possible without my 
mother’s support. Thank you for always believing in me, I see your pride, and I appreciate it. 
Thank you for always working hard to ensure I can chase my dream. To my dad and brother, may 
your souls rest in peace; I would not be who I am, where I am, or how I am without you. I doubt 
I will ever feel as I did when you both were alive, and I know you are taking care of each other 
until we all unite again; thanks for all you’ve all done to get me here to this day.  
 

 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 

To my brother, Tamer and my father 
May your souls rest in peace 

And May Almighty Allah dwell you in Jannatul Firdaus 
 

To my Mother 
My inspiration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 

Table of Contents 
I. INTRODUCTION .................................................................................................................................... 14 

1.1 Motivation ............................................................................................................................. 15 
1.1.1 Climate Change Risks and Global Heatwaves ................................................................ 16 
1.1.2 Urban Population and Heat Vulnerability ...................................................................... 17 
1.1.3 Built Environment Impacts on Heat Risks ....................................................................... 18 

1.2 State of The Art: Heat Vulnerability Assessment ..................................................................... 19 
1.2.1 Heat as a Climate Hazard ............................................................................................... 20 
1.2.2 Indoor Heat Exposure ..................................................................................................... 21 
1.2.3 Urban Heat Stress ........................................................................................................... 22 
1.2.4 Human Adaptive Capacity .............................................................................................. 23 

1.3 Research Opportunities .......................................................................................................... 24 
1.3.1 Research Goal ................................................................................................................. 24 
1.3.2 Hypotheses ..................................................................................................................... 25 
1.3.3 Dissertation Overview .................................................................................................... 25 

 

II. BUILT ENVIRONMENT HEAT VULNERABILITY ........................................................................ 28 

2.1 Heat Vulnerability .................................................................................................................. 29 
2.1.1 Components of Heat Vulnerability ................................................................................. 31 

2.2.  Dynamics of Heat Vulnerability ............................................................................................ 42 

2.3 System Dynamics as an approach for Heat Vulnerability Quantification ................................. 44 
2.3.1 Model Structure .............................................................................................................. 45 
2.3.2 Case Study ...................................................................................................................... 51 

2.4 Results ................................................................................................................................... 52 

2.5 Discussion .............................................................................................................................. 57 

2.6 Urban Heat Vulnerability Assessment Framework .................................................................. 58 
2.6.1 Preliminary Assessment of Heat Vulnerability ............................................................... 59 
2.6.2 Detailed Assessment of Indoor Heat Exposure ............................................................... 61 
2.6.3 Urban Intervention and Policy Development for Heat Adaptation ................................ 62 

2.7 Summary ............................................................................................................................... 63 



III. DETAILED ASSESSMENT OF HEAT VULNERABILITY .............................................................................. 65 

3.1 Indoor Overheating Assessment ............................................................................................. 66 

3.2 Human Health and Heat Exposure .......................................................................................... 67 
3.2.1 Indoor Microclimate, Thermal comfort, and Human Health .......................................... 69 

 

3.3.   Methods .............................................................................................................................. 71 
3.3.1   The case of Al Darb Al Ahmar in Cairo .......................................................................... 74 
3.3.2 Building Archetypes ........................................................................................................ 75 
3.3.3 Urban Typologies ............................................................................................................ 77 
3.3.4 Human Adaptive Capacity .............................................................................................. 80 
3.3.5 Heat Exposure Threshold ................................................................................................ 81 

3.4 Results ................................................................................................................................... 83 
3.4.1 Indoor Overheating Assessment ..................................................................................... 83 
3.4.2 Heatwave Impacts and Future Climate Scenarios .......................................................... 88 
3.4.3 Human Adaptive Capacity .............................................................................................. 92 
3.4.4 Heat Exposure Range and Human Risk Threshold .......................................................... 95 

3.5 Discussion .............................................................................................................................. 97 

3.6.  District Level Heat Vulnerability Assessment ........................................................................ 99 

3.7 Machine Learning and Building Science ................................................................................ 100 
3.7.1 Motivation: ML and Indoor Environment Prediction .................................................... 101 
3.7.2 Artificial Neural Networks (A.N.N.) .............................................................................. 101 

3.8 Methods .............................................................................................................................. 103 
3.8.1 Modelling Parameters .................................................................................................. 103 
3.8.2 Simulation Workflow .................................................................................................... 105 
3.8.3 ANN Model Architecture .............................................................................................. 106 
3.8.4 Model Learning, Testing, and Evaluation ..................................................................... 107 
3.8.5 Model Performance and Validation ............................................................................. 108 

3.9 District Level Prediction ........................................................................................................ 110 
3.9.1 Heat Vulnerability & Adaptive Capacity ....................................................................... 112 

3.10 Results ............................................................................................................................... 114 

3.11 Discussion .......................................................................................................................... 118 

3.12 Summary ............................................................................................................................ 119 

 

 

 



IV. AERIAL THERMOGRAPHY FOR RAPID VULNERABILITY ASSESSMENT ............................................... 121 

4.1 Introduction ......................................................................................................................... 122 

4.2 Background .......................................................................................................................... 122 
4.2.1 Infrared Thermography: Measurement and Analysis Schemes .................................... 123 
4.2.2 Aerial Thermography .................................................................................................... 126 
4.2.3 U-Value Assessment ..................................................................................................... 128 

4.3 Methods .............................................................................................................................. 129 
4.3.1 Case Study .................................................................................................................... 130 
4.3.2 Aerial Thermography Workflow ................................................................................... 131 
4.3.3 U-Value Calculation and Validation ............................................................................. 132 

4.4 Results ........................................................................................................................... 133 

4.5 Discussion ............................................................................................................................ 137 

4.6 Rapid Heat Vulnerability Analytics Using UAVs .............................................................. 138 
4.6.1 Flight Planning .............................................................................................................. 139 
4.6.2 Data Collection ............................................................................................................. 140 
4.6.3 Data Processing ............................................................................................................ 141 
4.6.4 Envelope Object Detection ........................................................................................... 144 
4.6.5 Thermal Anomaly Processing & Categorization ........................................................... 149 

4.7 The Case of the Bronx, NYC: Analysis Framework ................................................................. 151 
4.7.1 Data collection and Community Engagement .............................................................. 153 

4.8 Results ................................................................................................................................. 154 
4.8.1 Rapid Assessment of Urban Adaptive Capacity & Heat Adaptation Interventions ...... 156 

4.9 Discussion ............................................................................................................................ 159 

4.10 Summary ............................................................................................................................ 159 

 

V. URBAN INTERVENTION AND POLICY DEVELOPMENT ......................................................................... 161 

5.1 Building Scale: Improving Coping Capacity ........................................................................... 162 
5.1.1 Strategies to Limit Heat Gain ....................................................................................... 164 
5.1.2 Strategies to Improve Heat Rejection ........................................................................... 165 
5.1.3 Passive & Active Cooling Strategies .............................................................................. 166 
5.1.4 Occupant Behavior Strategies ...................................................................................... 167 

5.2 Urban Scale: Adaptive Capacity and Heat Adaptation Amenities .......................................... 167 
5.2.1 Strategies to combat UHI Effect ................................................................................... 168 
5.2.2 Urban Design Strategies ............................................................................................... 168 
5.2.3 Strategies to Decrease Population Vulnerability .......................................................... 169 

5.3 Human Scale: Impacts of Community and Social Capital ....................................................... 170 



5.4 Policy Role in Heat Adaptation Strategies ............................................................................ 171 
5.4.1 The Case of Chicago Heatwave 1995 ........................................................................... 172 
5.4.2 Methods: Time Delay and Heat Vulnerability ............................................................... 177 

5.5. Results ................................................................................................................................ 181 

5.6 Discussion ............................................................................................................................ 184 

VI. CONCLUSIONS ..................................................................................................................................... 187 

6.1 Comprehension of Vulnerability ........................................................................................... 188 

6.2 Indoor Heat Exposure & Adaptive Capacity Limits ................................................................ 188 

6.3 Rapid vulnerability analytics ................................................................................................ 189 

6.4 Heat adaptation and Policy Impacts ..................................................................................... 189 

6.5 Research Outlook ................................................................................................................. 190 
6.5.1 Policy Planning and Heat Vulnerability ........................................................................ 190 
6.5.2 UAVs in Climate Change Risk Assessment .................................................................... 190 
6.5.3 ML-based Approaches for Building Analytics ............................................................... 191 

6.6 Concluding Remarks ............................................................................................................. 191 

REFERENCES .............................................................................................................................................. 193 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

  

 

 



14 | C H A P T E R  1  
 

 

 

 

 

 

 

 

 

I. INTRODUCTION 
Climate change risks are considered one of the major global concerns that face humankind in the 21st 
century. One of the most direct health-related risks arising from climate change is the increased exposure 
to high ambient temperature (Daniela D’Ippoliti et al., 2010; Antonio Gasparrini & Armstrong, 2011; Guo 
et al., 2017; J. Y. Lee et al., 2019). Heatwaves have been identified as one of the deadliest climate hazards, 
especially in urban areas that accommodate populations with specific physical and socioeconomic 
characteristics (Patz et al., 2001; Pengelly et al., 2007). Heat-related morbidity is primarily extensive in 
areas with a population with pre-existing medical conditions such as cardiovascular problems and mental 
disorders (Kovats & Hajat, 2008; Shen, Howe, Alo, & Moolenaar, 1998). The elderly, socially isolated, 
uneducated, and people living in low-income housing have been highly vulnerable to extreme heat 
exposure (Balbus & Malina, 2009; Vandentorren et al., 2006). Historical evidence can be found in the 
Chicago heatwave in 1995 that killed more than 700 persons (Klinenberg, 2003b), and the famous 
European heatwave in 2003 took more than 22,080 lives (Fouillet et al., 2006, Stone, 2012).  

Extreme heat events or heatwaves are defined as an extended period of high temperature that can alter 
daily lifestyle and have adverse health impacts on affected populations(Ramamurthy, González, Ortiz, 
Arend, & Moshary, 2017). Heatwaveshave been growing in intensity, duration, and frequency; more risks 
are expected to affect the urban population. Over the past 15 years, the number of urban communities 
exposed to extreme heat events has increased to reach around 125 million people by 2016. In 2015 alone, 
approximately 175 million people worldwide were exposed to excessive heat (Roaf & Nicol, 2017). With 
the growing concerns of future heat exposure, numerous studies in the literature have developed heat 
vulnerability indices based on determinants that have heat-related impacts. Most heat vulnerability 
determinants are found in epidemiological literature, expert interviews, and socioeconomic 
characteristics utilized as indicators for the high concentration of vulnerable populations. Policymakers 
rely on vulnerability indices in heat-related adaptation policies (Klein Rosenthal, Kinney, & Metzger, 2014).  
However, quantitative evaluation of heat vulnerability can provide more insights into the physical and 
spatial distribution of heat-related risks (Chow, Chuang, & Gober, 2012, Maragno, Fontana, & Musco, 
2020).   
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1.1 Motivation 
Increased heat exposure has a detrimental impact on human health, causing an increase in morbidity and 
mortality (Brooke Anderson & Bell, 2011; Martiello & Giacchi, 2010; Zeng, Li, Cui, Jiang, & Pan, 2016). The 
effects of extreme heat events have been evident over the past years by several extreme heat events 
worldwide (Mbokodo, Bopape, Chikoore, Engelbrecht, & Nethengwe, 2020). The 2003 European 
heatwave and the 2010 Russian heatwave have caused thousands of deaths from heat exposure 
(Barriopedro, Fischer, Luterbacher, Trigo, & García-Herrera, 2011; Fouillet et al., 2006). In the United 
States context, the heatwave in California in 2006 took over 600 lives and caused over 16,000 hospital 
emergency visits from heat (Basu, Pearson, Malig, Broadwin, & Green, 2012). Future projections indicate 
an increase in heat events' frequency and intensity in the next 20 years (Figure 1-1), posing greater threats 
to human lives. In cities, health risks from heat exposure are more complicated as heat stress results from 
numerous factors related to the built environment's physical characteristics that influence urban 
communities' health and safety. Also, heat-related risks are distributed disproportionately depending on 
the urban space's physical and socioeconomic factors (Reid et al., 2009).  Despite the rising threats from 
heat exposure, they can be preventable with suitable analysis and warning methods. Since climate change 
plays a significant role in increasing the frequency of extreme heat events (Field et al., 2012), an improved 
understanding of areas under potential risks is urgently needed. This would require a better analysis and 
knowledge of the possible full impacts and the influence of the built environment's physical 
characteristics.  

 
Figure 1-1: Number of days above 95F/32C between 2020-2040 under Business As Usual (RCP 8.5-BAU). (Source: 

Climate Impact Map).  

This dissertation sets out a multi-scalar approach for heat-related vulnerability in cities, emphasizing the 
impacts of the surrounding built environment's physical characteristics and population adaptive capacity. 
The remainder of this chapter presents previous efforts from the literature in heat-vulnerability 
assessment and outlines needs and opportunities to develop a comprehensive framework for heat 
vulnerability analytics described in the following chapters. 
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1.1.1 Climate Change Risks and Global Heatwaves 
Global warming over the past decades has drastically changed our climate (Perkins-Kirkpatrick & Gibson, 
2017). It has been widely established that climate change is considered “the biggest global health threat 
of the 21st century”, posing risks to human lives and the global population’s well-being at an escalated 
rate (Costello et al., 2009). One of the major climate threats is extreme heat events, as they pose 
significant risks to public health that are well documented in the epidemiologic literature (Baldwin, Dessy, 
Vecchi, & Oppenheimer, 2019). As a result of climate change, studies have shown that there is a rising 
trend in the global mean surface air temperature in the past 100 years (Intergovernmental Panel on 
Climate Change (IPCC), 2013). Consequently, the frequency and intensity of extreme heat events have 
witnessed a significant increase in the past ten years (Perkins, Alexander, & Nairn, 2012). Furthermore, 
the World Health Organization (WHO) has identified rising negative impacts from heat exposure in the 
next 30 years (World Health Organization (WHO), 2018), mainly in locations with poor infrastructure and 
limited adaptation capacity, as shown in Figure 1-2 below.  

 
Figure 1-2: Projected deadly heatwaves by 2050 under Business As Usual (BAU) scenario. (Source:(Mora et al., 

2017a)).  

Regional and multi-country studies have demonstrated that heatwaves have elevated morbidity and 
mortality (Anderson & Bell, 2009a; Daniela D’Ippoliti et al., 2010; Deschênes & Greenstone, 2011; A. 
Gasparrini, Guo, & Hashizume, 2015; Merte, 2017). In addition to risks to human health, heatwaves can 
cause power supply disruption resulting in loss of air conditioning access (Aivalioti, 2015; van der Wiel et 
al., 2016). Also, prolonged heat exposure associated with heatwaves was found to affect crop production 
and the efficiency of livestock (Battisti & Naylor, 2009; Lobell, Schlenker, & Costa-Roberts, 2011; Meerburg 
et al., 2009). Despite these significant impacts, heatwaves do not often get enough media attention as 
their consequences are not visually vivid. On a city level, most heatwave impacts usually occur in low-
income neighborhoods with limited access to air conditioning or areas that accommodate a large portion 
of the elderly, socially isolated, or racially marginalized populations (Baldwin et al., 2019; Fouillet et al., 
2008).  
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1.1.2 Urban Population and Heat Vulnerability 
The projected increase in extreme heat events has raised concerns about potential health risks in cities. 
Recent literature on heat-related mortality has defined risk as a function of vulnerability (sum of exposure 
and susceptibility) minus adaptive capacity (Intergovernmental Panel on Climate Change (IPCC), 2013). In 
climate change science, vulnerability is defined as “the degree to which a system or system component is 
likely to experience harm due to exposure to a hazard, either perturbation or stress” (B. L. Turner et al., 
2003) or “the characteristics of a person or group and their situation that influence their capacity to 
anticipate, cope with, resist, and recover from the impact of a natural hazard” (Bankoff, Hillorst, & Frerks, 
2004). Currently, around 200 million people who live in over 350 cities at an average maximum 
temperature above 35oC are considered highly vulnerable to future extreme heat exposure (Hoegh-
Guldberg et al., 2018). Future climate projections show that by 2050 the number of cities exposed to 
extreme heat events will increase dramatically (Figure 1-3) (United Nations, 2018).  

 
Figure 1-3: Cities with a three consecutive month period where average maximum temperatures exceed 35°C that 

are projected to extreme heat by the 2050s. (Source: C40 Cities, For cities the heat on). 

As a greater proportion of the urban population will be exposed to heat events in the next 30 years, there 
are speculations on the effectiveness of aggressive heat strategies to lessen or reverse the overall rising 
trends of increased heat risks in cities (Arbuthnott, Hajat, Heaviside, & Vardoulakis, 2016). These doubts 
are driven by the immense costs associated with adaptation strategies in cities, primarily based on large-
scale quantitative information that doesn’t fully capture the complexity of urban conditions or vulnerable 
populations (Baldwin et al., 2019). Moreover, minimizing the adverse effects of heat events on the 
vulnerable urban population through targeted strategies is a complicated process that would require 
highly detailed data on the spatial distribution of highly vulnerable urban populations.  Although social 
factors have been identified in many studies as a primary driver for heat vulnerability, building and urban 
physical characteristics play a role that has not been thoroughly examined in the literature (Baniassadi et 
al., 2020). Therefore, there is a need for a vulnerability assessment framework that is based on 
quantifiable data on the performance of the built environment under heat exposure and thus produces 
reliable guidelines on where heat adaptation strategies can be prioritized and over what time scale.  



18 | C H A P T E R  1  
 

1.1.3 Built Environment Impacts on Heat Risks 
In the context of extreme heat vulnerability, there has been an interest in heat-related health impacts in 
urban areas. Complications from extreme heat exposure are experienced at a greater level in cities (Figure 
1-4). This is due to the urban heat island (UHI) effect phenomenon, where urban areas are usually warmer 
than rural surroundings by 1-3oC during the daytime and up to 12oC during the nighttime (Environmental 
Protection Agency (EPA), 2011; Hondula et al., 2012). This causes urban centers to be more susceptible to 
heat exposure, leading to greater human health risks, especially in vulnerable populations. In the 
literature, several studies have examined the city as a whole unit of analysis to compare different cities 
(Briley, Brown, & Kalafatis, 2015; Lapola, Braga, Di Giulio, Torres, & Vasconcellos, 2019a). Other studies 
have conducted a more detailed analysis at the city level to examine spatial variability in heat risk across 
the same city (Apotsos, 2019; de Sherbinin, Schiller, & Pulsipher, 2007). Brown and Walker (2008) have 
proposed a more detailed framework to examine heat stress as a function of reduced capacity to cope 
with heat exposure due to surrounding contextual and social factors.  

 
Figure 1-4: Dynamic relationship between heat exposure, urbanization, UHI, and related health impacts.  

Housing characteristics have also been linked to potential heat-related health risks (Maller & Strengers, 
2011). Building characteristics play a significant role in indoor heat exposure, especially in low-prevalence 
air-conditioning neighborhoods (Ramamurthy et al., 2017). During heatwaves, indoor air temperature can 
often exceed outdoor air temperature depending on buildings’ thermal inertia (Pyrgou, Castaldo, Pisello, 
Cotana, & Santamouris, 2017). Heat events can also drive a sharp increase in health service capacity and 
cooling demand, disrupting cities’ health service and power supply similar to what happened in South 
Korea in 2013 and Germany in 2010 (Aivalioti, 2015). Besides power disruption, heat exposure can 
influence human productivity, which also comes with great economic losses. The Intergovernmental Panel 
on Climate Change (IPCC) has identified that reducing human productivity during heatwaves can cause 
global economic costs of 2 trillion dollars by 2030 (UNDP, 2016). There is currently limited adequate 
information on how to utilize the physical environment's performance to cope with extreme heat 
exposure in adaptation planning (Arbuthnott et al., 2016). Thus, to facilitate heat adaptation strategies, 
there is a necessity for a framework that quantifies the potential heat-related impact with respect to the 
built environment's performance. This dissertation proposes and tests a vulnerability assessment 
framework to meet this need.  
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1.2 State of The Art: Heat Vulnerability Assessment 
The IPCC Fourth Assessment Report (AR4) has defined a framework to evaluate climate change 
vulnerability assessment (IPCC, 2014a; Oppenheimer et al., 2014). The methodology developed by IPCC 
involves the interaction between exposure (driver of hazard), the susceptibility of a system to a hazard, 
and adaptive capacity as the sum of vulnerability stimuli. The majority of heat vulnerability studies have 
utilized the IPCC definition of vulnerability components incorporating: susceptibility, exposure, and 
adaptive capacity as the sum of vulnerability to a climate hazard (Oppenheimer et al., 2014). There has 
been a growing interest in examining the relationship between heat vulnerability in urban areas, as 
illustrated in Figure 1-5 (Hajat & Kosatky, 2010; Vardoulakis et al., 2015). Most of the literature work 
focused on heat vulnerability assessment from an epidemiological approach to examine how temperature 
can influence human mortality  (Curriero et al., 2002; W. Ma, Chen, & Kan, 2014; McMichael et al., 2008). 
Other studies have examined heat vulnerability on the spatial level in cities to help policymakers account 
for spatial variation in climate adaptation planning (Cai, Tang, Chen, & Han, 2019; Hondula, Davis, Saha, 
Wegner, & Veazey, 2015; Johnson, Stanforth, Lulla, & Luber, 2012).  

 
Figure 1-5: Locations of heat-related deaths (orange) and studies on heat vulnerability (yellow) from 2003-2018.  

Studies on heat vulnerability assessment have relied significantly on large-scale quantitative information 
that doesn’t fully capture the complexity of urban conditions or vulnerable populations (Brown & Walker, 
2008). Romero et al. (2012) have identified 13 factors in the relationship between urban vulnerability and 
temperature exposure. The study included human-related factors including population density, age, 
income level, race, education, medical condition, social support, heat acclimatization, adaptation-related 
parameters such as access to cooling amenities and air conditioning units, and exposure magnitude 
represented as temperature level. However, there has been limited research on the empirical relationship 
between urban population susceptibility and heat exposure magnitude from the surrounding physical 
environment (Arbuthnott et al., 2016). This section presents an overview of existing literature in the field 
of heat exposure and human vulnerability in urban areas, discusses recent developments of a heat 
vulnerability assessment framework in cities that are significant for this research, and outlines gaps that 
this dissertation aims to fulfill.  
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1.2.1 Heat as a Climate Hazard 
A heatwave is denoted as a period, primarily several consecutive days, where the air temperature is 
significantly higher than the average (Ramamurthy et al., 2017). As previously discussed, heatwaves are 
one of the significant climate threats to human lives. However, there is still a limited understanding of 
how we can apply suitable policies to mitigate or lessen heat’s impacts on human lives. Climate change 
plays a significant role in driving heat exposure and its effects on human health. In cities, humans depend 
mainly on air conditioning to mitigate heat exposure, as there around 1.6 billion units are in operation 
worldwide (A. Barreca, Clay, Deschenes, Greenstone, & Shapiro, 2016; IEA, 2018). Although air 
conditioning lessens heat exposure, there is still a potentially high risk in case of power failure from 
increased demand during extreme heat events (Yu et al., 2012). Although low-income neighborhoods 
have a high magnitude of heat exposure, these areas tend to have limited air conditioning access. The 
current increase in heat-related mortality is caused by escalated health risks and limited heat recovery 
during mega-blackouts (Mora et al., 2017a). 

 
Figure 1-6: Heat-related risks as a function of heat exposure and vulnerability under the scope of climate risk 

assessment. 

In the field of climate risk assessment, health risks are expressed as a function of exposure, hazard, and 
vulnerability (Figure 1-6).  The literature on climate hazard assessment has distinguished between risk 
resources (climate hazard) and changes in the human system due to risk-shifts over time (Baniassadi, 
2019). Vulnerability assessment has been proposed as an indicator that captures the human system's 
underlying socioeconomic characteristics to evaluate populations’ susceptibility to climate hazards and 
adaptive capacity to cope with heat exposure (Bankoff et al., 2004). In this dissertation, heat is described 
as a climate hazard characterized by prolonged periods of high temperature with two key drivers: global 
climate variability and urban development in a changing climate. There are two key components for 
exposure: outdoor exposure induced from the built environment's characteristics and indoor heat 
exposure that responds to outdoor heat and is regulated by buildings’ physical characteristics and 
availability of cooling means. Finally, vulnerability represents a framework to examine and analyze how 
the urban systems' components from the physical built environment and the human system’s response 
can lessen or mitigate heat-related health risks. 
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1.2.2 Indoor Heat Exposure 
It is well documented in the literature that there is a relationship between increased outdoor temperature 
and human mortality, where mortality increases when the temperature exceeds a specific threshold 
(Auliciems & Skinner, 1989; Nicholls, Skinner, Loughnan, & Tapper, 2008; Saez, Sunyer, Castellsagué, 
Murillo, & Antó, 1995). However, indoor temperature can vary significantly compared to measured 
outdoor temperature during extreme heat events that can substantially affect this relationship in addition 
to human behavioral adjustments to cope with the heat, as illustrated in Figure 1-7 (Mavrogianni, Davies, 
Wilkinson, & Pathan, 2010b; Sakka, Santamouris, Livada, Nicol, & Wilson, 2012; White-Newsome et al., 
2012; Wright, Young, & Natarajan, 2005). For instance, during summertime, the outdoor temperature at 
night typically decreases below daytime levels, while indoor temperature usually stays elevated 
depending on the building’s physical and thermal properties (Sakka et al., 2012). Also, indoor air 
temperature, humidity levels, and airspeed can significantly expose occupants to high levels of heat stress 
(Pyrgou et al., 2017). Thus, continuous heat exposure can lead to elevated heat-related health risks. Such 
risks can be lethal to populations with no access to adequate protective measures such as (mechanical 
ventilation, air conditioning) or those who lack knowledge on suitable behavioral strategies to mitigate 
heat exposure similar to previous heat events back in 1995 and 2003 (Semenza, 1996; Semenza, 
McCullough, Flanders, McGeehin, & Lumpkin, 1999; Wright et al., 2005). In addition, recent studies 
showed that health costs associated with heat events have been increasing drastically and are expected 
to place an insurmountable burden on the health service system worldwide in the three two decades 
(Knowlton, Rotkin-Ellman, Geballe, Max, & Solomon, 2011).  

 
Figure 1-7: Excess heat exposure and related health risks. 

There has been a vast literature on the relationship between indoor and outdoor temperature; some 
studies indicate a linear relationship in naturally ventilated buildings, raising higher risks for the low-
income population (Audrey Smargiassi, Fournier, Griot, Baudouin, & Kosatsky, 2008). Rising future 
temperatures imply that the urban population is expected to experience a prolonged heat exposure 
period, especially when average people spend around 90% of their time indoors (Klepeis et al., 2001; 
Leech et al., 2002). Heat stress in buildings is inevitable, driving the urgency to identify a suitable adaptive 
measure to reduce the health consequences of future heat events.  
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1.2.3 Urban Heat Stress 
The relationship between ambient outdoor temperature and human health is represented as a U-curve 
shape where heat-related health risks increase exponentially when the temperature exceeds a specific 
threshold, as shown in Figure 1-8 below (Kenny, Flouris, Yagouti, & Notley, 2019; A. Smargiassi et al., 
2009). Numerous studies have investigated the attributable relationship between the urban thermal 
environment and human mortality during extreme heat events to understand outdoor heat exposure's 
health effect over time (Curriero et al., 2002; McMichael et al., 2008). Findings from the literature 
identified several factors that contribute to heat-related health risks in urban areas (Keatinge et al., 2000; 
Medina-Ramón & Schwartz, 2007; Semenza, 1996), such as climate, location, urban density, seasonal 
variation, the arrangement of the neighborhoods within the city and time of the year when the heatwave 
happens, as illustrated in Figure 1-8. Also, urban planning and transportation policies can impact city size 
and shape and, as a result, influence the magnitude of heat-related risks (Costello et al., 2009; Kenny et 
al., 2019). Previous studies on mapping heat stress have found an association between urban temperature 
and mortality during extreme heat events (Kenny et al., 2019; Maller & Strengers, 2011; Stapleton et al., 
2014).  
 

 
 

Figure 1-8: Left: Temperature and mortality relative risk function for cities in the U.S. (based on (Curriero et al., 2002)  
Right: Factors affecting heat exposure and human response in the urban context. (Based on (Kenny et al., 2019).  

Scientific communities have applied different assessment frameworks to examine the association 
between heat exposure in the city and health risks (Jänicke et al., 2019). One of the most common tools 
is the heat index, which aggregates scores for multiple indicators linked to heat vulnerability into a single 
score representing vulnerability. Although there is a vast body of literature on UHI and health risks, there 
is still a limitation in understanding policy impact in reducing heat vulnerabilities (Ketterer & Matzarakis, 
2014). Policy planning at the city's scale may affect adaptation strategies and consequently lessen or 
improve heat-related health impacts. However, evaluating such policy is challenging to examine due to 
the intricate interaction of multiple physical scales in the city. This includes the physical scale of the built 
environment and its relationship with the human system and associated socioeconomic variables that can 
induce a change in inhabitants' behavior during heat exposure and need to be included in heat 
vulnerability assessment. 
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1.2.4 Human Adaptive Capacity 
Adaptive capacity is one of the heat vulnerability components that significantly influence potential health 
impacts associated with heat exposure. In climate change science, adaptive capacity or coping capacity is 
defined as “ the ability of people, organizations and systems, using available skills and resources to face 
and manage adverse conditions, emergencies or disasters” that can “contribute to the reduction of 
disaster risks.” (Intergovernmental Panel on Climate Change (IPCC), 2013). The IPCC fourth assessment 
report states that that “adaptive capacity is the ability of a system to adjust to climate change [including 
climate variability and extremes], to moderate potential damages, to take advantage of opportunities or 
to cope with the consequences.” (IPCC, 2014a). In that sense, adaptive capacity is linked to the physical 
system and the human system's ability to mitigate climate hazard risks, denoted as heat exposure in the 
dissertation. In urban physical space, adaptive capacity can be categorized into two levels: coping capacity 
can be determined by the potential to adjust to heat exposure in the long term, whether on the building 
level through air conditioning or other means of mechanical cooling. In comparison, adaptive capacity is 
defined by adapting to heat risk in the long term (Maragno, Fontana, & Musco, 2020).  

 
Figure 1-9: Different levels of adaptive capacity within the framework of heat vulnerability assessment in cities.  

On the other hand, human systems’ adaptive capacity is determined on two levels (Figure 1-9), first an 
individual adaptive capacity moderated by the socioeconomic, physiological, and psychological 
characteristics (Brown & Walker, 2008; Lapola et al., 2019a). Second, the surrounding urban community's 
adaptive capacity is linked to social support and accessibility to health services. Numerous studies have 
examined multiple strategies to improve urban adaptive capacity under heat exposure, such as green 
infrastructure utilization, enhancing accessibility to cooling shelters (Sampson et al., 2013). However, 
there is a limited understanding of how policymakers can better evaluate and improve coping and 
adaptive capacity with an adequate and targeted plan addressing both the physical and human systems. 
With climate change is likely exacerbating heat-related health impacts, cities need to prepare better, 
respond, and avoid heat-induced health risks.  
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1.3 Research Opportunities 
There is an alarming need to respond to health risks associated with extreme heat events (Fuhrmann, 
Sugg, Konrad, & Waller, 2016). The previous section presented the significant work that has been done in 
the field of heat-related mortality and vulnerability assessment in cities, especially as it is related to heat-
related risks in urban areas and factors driving vulnerability to heat exposure. Previous studies on heat 
vulnerability assessment established a framework that explored heat risk association with UHI 
(Ramamurthy et al., 2017; Tomlinson, Chapman, Thornes, & Baker, 2011) and health-risks from indoor 
overheating and mapping heat vulnerability populations using socioeconomic characteristics (Maller & 
Strengers, 2011; Pyrgou et al., 2017). However, the most recent findings from the literature report a 
limited knowledge of the effects of heat exposure on vulnerable populations (Kenny et al., 2019; Lancet, 
2015). This limits policymakers' ability to identify suitable adaptation strategies for heat protection and 
prevention policies to alleviate thermal risks during extreme heat events. Also, the absence of proper 
adaptation and coping measures to heat would drive higher risks to human mortality and quality of life 
due to extreme heat exposure that will increase in the absence of climate change. 
Furthermore, research findings suggest that even under AC's presence, specific groups of vulnerable 
populations such as the elderly might be at significant risk from heat stress (Dufour & Candas, 2007). 
Finally, a lack of quantifiable data corresponds to the intricate relationship between heat exposure due 
to urban settings' physical characteristics and human adaptive and behavioral response, whether through 
physiological adaptation or surrounding amenities, to mitigate and lessen health impacts from prolonged 
heat exposure (Kenny et al., 2019; Lindemann et al., 2017). Gaps in the existing literature on heat 
vulnerability assessment can be summarized as follows: 

• There are considerable gaps in the literature on the effect of heat exposure and buildings as a 
protective factor from vulnerability and exposure perspectives; 

• Existing heat vulnerability frameworks are decoupled from the effects of the physical 
characteristics of the surrounding built environment; 

• Lack of empirical evidence that demonstrates the relationships between heat exposure and health 
outcomes, especially for vulnerable populations with limited access to adaptation mechanisms;  

• Potentials of aerial technology in urban heat vulnerability assessment are not explored in the 
existing vulnerability frameworks; 

• Limited understanding of policy role in heat adaptation planning and how it can lessen or 
exacerbate potential heat risks.  
 

1.3.1 Research Goal  
To address the limitations above, the goal of this research is to develop a multifaceted and multi-scalar 
framework for the assessment of heat vulnerability that is tailored to integrate the impacts of the physical 
characteristics of the built environment on the urban level and building level, the available urban 
resources for long term adaptation, and individual adaptive capacity. This framework is designed to inform 
decision-makers of the distribution of vulnerable populations, answering two key questions: where and 
what are the impacts of heat exposure in an urban setting? Who are the susceptible populations? Through 
analyzing and assessing the relationship between heat exposure, built environment, and social 
characteristics, we can identify factors that make a given population more vulnerable to heat hazards or 
prolonged heat exposure.  
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1.3.2 Hypotheses 
The research presented in this dissertation is developed around the premise that there is a need for a 
multivalent framework to assess heat vulnerability in the urban setting and is based on the following 
hypotheses, which are revisited in the concluding chapter: 

• Comprehension of Vulnerability: Including built environment impacts in the vulnerability 
assessment framework can provide reliable information in adaptation planning; 

• Heat exposure and adaptive capacity limits: Health impacts from heat exposure vary based on 
individual physiological factors and the coping and adaptation capacity of the surrounding built 
environment that needs to be included in heat vulnerability assessment; 

• Rapid vulnerability analytics: Utilizing aerial technology will help assess heat vulnerability and 
identify high-risk urban areas and their distribution.   

• Heat adaptation and policy impacts: Policies and institutional capacities can create conditions 
associated with increased vulnerability.  

1.3.3 Dissertation Overview 
This dissertation includes three main parts that examine the components of heat vulnerability 
assessment, as summarized in Figure 1-10 below: 1) built environment heat vulnerability assessment, 2) 
rapid vulnerability analytics, and 3) heat adaptation planning.  
Chapter 1: Introduction includes research background, literature overview, and research opportunities 
considered in this dissertation.  
Part I. Built Environment heat vulnerability assessment focuses on developing a framework for heat 
vulnerability assessment in urban settings.  
  Chapter 2: Built Environment heat vulnerability focuses on two main key outputs: 1) developing 
a heat vulnerability assessment framework for three levels: urban vulnerability preliminary assessment; 
detailed analysis; and risk identification, and intervention evaluation and adaptation policy design.  
2) Heat vulnerability quantification in urban settings. 

Chapter 3: Detailed Assessment of Heat Vulnerability in Low-Income Communities, expands the 
central framework of heat vulnerability assessment using a case study in Cairo, Egypt, to examine three 
main topics:  

A. Indoor overheating assessment: examines how indoor overheating is modified by the building’s 
physical characteristics and the resulting exposure range.  

B. Heat exposure and human adaptive capacity: analyzes heat exposure threshold associated with 
increased health risks in vulnerable populations.  

C. District level heat exposure assessment in Low-Income communities:  develops a computational 
framework for district-level vulnerability assessment and exposure quantification. 

Part II.  Rapid Vulnerability analytics – Chapter 4: focuses on the applicability of using Unmanned Aerial 
Vehicles in the larger framework of heat vulnerability assessment on the building scale and urban scale.  
Part III.  Urban Intervention and Policy Design – Chapter 5: examines how different adaptation measures 
can influence vulnerability level and identify policy's role in long-term adaptation planning.  
Chapter 6. Conclusion: summarizes the dissertation’s contribution, potential impacts of the proposed 
vulnerability framework, and future research directions.  
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Figure 1-10: Synthesis of the dissertation structure and the links between research phases, chapters, goals, gaps, 

employed methods, and outcomes.
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II. BUILT ENVIRONMENT HEAT VULNERABILITY 
There has been limited guidance on heat vulnerability assessment that accounts for the impacts of the 
built environment. This chapter focuses on developing the framework for heat vulnerability assessment 
in urban areas, based on integrating three levels of the physical urban space: the urban level, the building 
level, and human adaptation to heat. Also considered is system dynamics (SD) modeling as an approach 
for heat vulnerability quantification in urban areas. Therefore, the chapter outlines the dynamics 
relationship between heat vulnerability components, namely, Susceptibility (S), Coping Capacity (CC), and 
Adaptive Capacity (AC). Then, a detailed description of the indicators related to each component is 
presented. The section concludes with an applied case study in Cairo, Egypt, to assess the applicability of 
using the SD approach in assessing heat vulnerability in urban settings. The second half of the chapter 
presents a heat vulnerability assessment framework with respect to the physical characteristics of the 
surrounding urban environment. The framework's central focus is on examining how the physical built 
environment can influence heat exposure by developing different levels of vulnerability assessment that 
correspond to heat adaptation needs. For this purpose, heat vulnerability is presented as the causal 
mechanism between available adaptation amenities in the urban space, the building's performance in 
mitigating heat, and how occupants cope with heat. The proposed framework has two main objectives: 
a) explore and identify methods and data to be used in heat vulnerability assessment in urban areas and 
related health outcomes, b) outline how policymakers can better identify heat adaptation strategies by 
understanding potential impacts from the built environment. The framework's structure consists of three 
primary levels of assessment: 1) rapid assessment of heat vulnerability, 2) detailed assessment of indoor 
heat exposure, and 3) urban intervention and policy development for heat adaptation. Each of the three 
levels is presented throughout the dissertation with an applied case study. The second part of this chapter 
discusses the main components of heat vulnerability in the urban context. Finally, the chapter ends with 
system dynamics as a modeling approach to quantify heat vulnerability using a low-income residential 
building in Cairo, Egypt, as a case study.  
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2.1 Heat Vulnerability 
The IPCC Working Group II Assessment report outlined the first synthesis of vulnerability as a function of 
susceptibility, exposure, and adaptive capacity (Hans Martin Füssel & Klein, 2006). Between 2007 and 
2014, the perspective on vulnerability has altered to define exposure as a spatial concept tied to the 
surrounding physical space (Jurgilevich et al., 2017). In climate change science, vulnerability is used to 
indicate the impact of a climate hazard on the rate and magnitude, duration of exposure, the system's 
susceptibility, and adaptive capacity (C.Clark, Jager, & Corell, 2000). Accordingly, studies have attempted 
to develop a framework for vulnerability assessment that considered vulnerability as a function of 
Susceptibility (S), Exposure (E), and adaptive capacity (AC). These three components are assessed and 
combined to capture the vulnerability of a climate hazard (UNFCCC, 2016). In this research context, 
vulnerability is considered a function of an urban area's susceptibility to heat exposure and its adaptive 
capacity, where vulnerability is calculated using equation (1) as follows:   

𝑉𝑉 = �𝐸𝐸
𝑛𝑛

+ 𝑆𝑆
𝑛𝑛
� − �𝐴𝐴𝐴𝐴

𝑛𝑛
�        (1) 

V represents vulnerability, S is the susceptibility, and AC is the adaptative capacity, n is the number of 
indicators used where all values are normalized between zero and one. This notion of vulnerability is 
consistent with the Third National Climate Assessment of vulnerability as “Vulnerability is a function of 
the character, magnitude, and rate of climate variations to which a system is exposed, its sensitivity and 
adaptive capacity” (Groffman et al., 2014). In the urban context, vulnerability is denoted as context-
specific, determined by the urban system's physical characteristics, and determined by an individual’s 
behavior to adapt to heat exposure. Based on this definition, vulnerability is an endogenous characteristic 
of the urban systems and is determined by its adaptive capacity and susceptibility. The relationship 
between exposure, susceptibility, and adaptive capacity that determine vulnerability is illustrated in 
Figure 2-1.  

 
Figure 2-1: Relationship between exposure, susceptibility, and adaptive capacity in the formulation of vulnerability.  

The hazard encompasses the potential occurrence of natural or human-induced climate events or trends 
or impacts that may cause damage to the system, loss of life, loss of property, infrastructure, and provision 
of essential services (Intergovernmental Panel on Climate Change (IPCC), 2013). In this dissertation 
context, heatwave event refers to the climate-related hazard affecting the urban system. Exposure 
represents the presence of urban population, infrastructure, economic activities, or physical assets in 
settings that can be adversely affected by heat exposure (J. Sharma et al., 2016).  
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Susceptibility depicts two main components: a) the urban system's physical ability to withstand exposure 
and related impacts, including access to adaptation means that can influence an individual’s ability to 
cope with heat exposure, and b) physiological and socioeconomic characteristics of the urban population 
that increase individuals’ risk under heat exposure (Kuras et al., 2017). Susceptibility highlights the urban 
system's specific properties that need to be considered during the development of adaptation strategies.  

Adaptive capacity and coping capacity generally include both long-term and short-term capacity to cope 
and adapt to heat exposure. Coping capacity is defined as “ the ability of people, organizations, and 
systems, using available skills and resources to face and manage adverse conditions, emergencies or 
disasters which can contribute to the reduction of disaster risks.” (UNISDR, 2009). On the other hand, 
adaptive capacity is “the ability of a system to adjust to climate change to moderate potential damages, 
to take advantage of opportunities or to cope with the consequences.” (Intergovernmental Panel on 
Climate Change (IPCC), 2013).  In this sense, an urban area's adaptive capacity is determined by the ability 
to adjust to heat exposure in the long term. In contrast, coping capacity is represented by the available 
urban services (at the building scale or the urban scale) that enable populations to manage and overcome 
extreme conditions in the short-term range.  This implies that after heat exposure brings changes to the 
urban system in the form of susceptibility, it will try to adjust to such changes to reduce potential damage 
using available resources represented as the adaptive capacity. Adaptive capacity is similar to 
susceptibility as it’s a characteristic feature of the urban system. For instance, availability of heat-relief 
amenities, health services, and availability of open space depict the urban system’s adaptive capacity.  

Risk represents the potential consequences of heat events where human lives, urban physical value is at 
stake, and the outcomes are uncertain. According to the literature in climate change science, risk is 
defined as the probability of hazardous events multiplied by impacts if these events occur (Hallegatte & 
Corfee-Morlot, 2011; J. Sharma et al., 2016). In that sense, risk will result from the interaction between 
vulnerability and exposure. In the heat vulnerability scope in an urban setting, risk is estimated by 
summing vulnerability and potential impact considering the probability of heatwave to occur. In this 
sense, adaptation measures have no control on heatwave hazard since it is linked to the global climate 
variability; however, they can significantly modify exposure and vulnerability at the local urban scale. Risk 
to heat vulnerability can be estimated using equation (2) as follows: 

𝑅𝑅 = 𝑉𝑉 ∗ �𝑃𝑃𝑃𝑃
𝑛𝑛
�        (2) 

Where R is a risk, V is vulnerability, E is exposure, and n is the number of exposure indicators used. This 
chapter reviews components of heat vulnerability and their indicators in an urban setting. The first 
sections of this chapter will describe the main indicators for susceptibility and adaptive capacity and 
develop a system dynamics model to estimate heat vulnerability. The second half focuses on developing 
a general assessment framework for heat vulnerability that will set the basis for the following three 
chapters. The objective is to identify potential approaches for mapping heat vulnerability in urban settings 
and related health impacts and limitations to the implementation of adaptation measures.   
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2.1.1 Components of Heat Vulnerability 
Temperature conditions under which heat stress conditions can become risky to human health vary 
between locations depending on the climate, the physical built environment, and population groups. 
Defining heat vulnerability requires capturing different conditions and dynamic relationships between 
climatic conditions, population, and physical urban space to develop and implement an effective heat 
management strategy (M. Loughnan, Nicholls, & Tapper, 2010). 

 As discussed above, vulnerability is a function of exposure, susceptibility, and adaptive capacity. These 
three factors are generally used to identify locations and populations disproportionately at risk from 
extreme heat events. Numerous studies have identified a set of indicators to quantify the cumulative 
vulnerability (C.Clark et al., 2000; Lapola, Braga, Di Giulio, Torres, & Vasconcellos, 2019b; Romero-Lankao, 
Qin, & Dickinson, 2012). This section outlines indicators of susceptibility, exposure, and adaptive capacity 
under extreme heat exposure in the urban context. Figure 2-2 below describes the three main 
components of heat vulnerability, namely Exposure (E), Susceptibility (S), and Adaptive Capacity (AC), and 
list related indicators at the building scale, urban scale, and human scale that will be examined throughout 
the dissertation context.  

 
Figure 2-2: Components of heat vulnerability and related indicators addressed in the dissertation. 

 



32 | C H A P T E R  2  
 

2.1.1.1 Exposure  
Exposure indicators measure the climatic conditions at the building scale and the urban environment to 
put pressure on the urban population's wellbeing. Environmental conditions that pose threats to human 
health can occur both at the building level, indoors, and at the urban scale, outdoors (McGregor & Vanos, 
2018). In indoor settings, environmental conditions are mainly presented by air temperature, humidity, 
and thermal radiation. At the outdoor level, other parameters such as wind, direct solar radiation need to 
be considered. For example, in the absence of ventilation, high temperature and moisture level with direct 
sunlight can generate heat stress that would limit the body’s ability to maintain core temperature within 
the range of healthy physiological performance (Di Napoli, Pappenberger, & Cloke, 2019).  Heat exposure 
can be associated with different health impacts (Wilhelmi, de Sherbinn, & Hayden, 2012), varying at 
threshold temperature indoors and outdoors and exposure duration. For example, studies have shown 
that heat-related mortality can occur at a relatively lower air temperature if the exposure lasted over 
consecutive days (Bell et al., 2008; Egondi et al., 2012; Harlan et al., 2014). Loughan et al. (2010) found a 
significant increase in hospital admission by 38% for a 3-day consecutive average temperature of 27oC 
compared to a daily temperature of 30oC. In this sense, exposure plays a significant role in heat-related 
health impacts that differ between indoor and outdoor conditions. This section examines exposure 
indicators representing climate conditions at the urban scale and building scale under which heat stress 
can occur. 

Numerous indices have been developed in the literature to assess heat stress for outdoor environmental 
factors and the human body (Havenith & Fiala, 2016). One of the most utilized indices is the Universal 
Thermal Climate Index (UTCI). UTCI is a bioclimatic index that describes heat stress conditions to which 
the human body is exposed by accounting for a combination of meteorological factors, physiological 
parameters, and clothing requirements (Jendritzky, de Dear, & Havenith, 2012). It is developed based on 
the UTCI-Fiala model representing the individual’s physiological response to the outdoor environment 
through an energy balance model coupled with a temperature-adaptive clothing model (Fiala, Havenith, 
Bröde, Kampmann, & Jendritzky, 2012). It has also been proven that UTCI to be valid in all seasons and 
climates and on various spatial scales from micro to macro scale (Blazejczyk & Błażejczyk, 2014; 
Kolendowicz, Półrolniczak, Szyga-Pluta, & Bednorz, 2018; Matzarakis, Muthers, & Rutz, 2014; Urban & 
Kyselý, 2014).  

Thus, it has been used extensively in characterizing heat stress and related health impacts across different 
locations in Europe (Bleta, Nastos, & Matzarakis, 2014; Di Napoli, Pappenberger, & Cloke, 2018; Nastos & 
Matzarakis, 2012; Németh, 2011). This research considers UTCI as an indicator of outdoor heat exposure. 
A study by Pappernberger et al. (2019) has found that UTCI has proven helpful in forecasting and detecting 
in advance potential heat stress up to 10 days. UTCI is divided into ten different classes ranging from 
extreme heat stress to extreme cold stress (A. Young, 2021), as shown in Table 2-1 below. Therefore, this 
research considers the number of consecutive hours spent outdoor where UTCI is above the comfort 
range (>32oC) as an indicator of outdoor exposure that can limit an individual’s ability to perform outdoor 
activities or go outside when indoor conditions exceed thermal comfort levels.  
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Table 2-1: Categories of Thermal stress for different ranges of UTCI (A. Young, 2021). 
U

TC
I 

(°
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 above 
+46 

+38 to 
+46 

+32 to 
+38 

+26 to 
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+9 to 
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+9 to 
0 0 to −13 −13 to 
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−27 to 

−40 
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−40 
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extreme 
heat 

stress 

very 
strong 
heat 
stress 

strong 
heat 
stress 

moderate 
heat 
stress 

no 
thermal 
stress 

slight 
cold 
stress 

moderate 
cold 
stress 

strong 
cold 
stress 

very 
strong 
cold 
stress 

extreme 
cold 
stress 

Studies on heat-related health impacts have shown that housing characteristics have been directly linked 
to heat stress conditions (Honda, 1995; McGill, Sharpe, Robertson, Gupta, & Mawditt, 2017). High indoor 
temperature negatively affects an individual’s thermal comfort, wellbeing, and health. However, the 
impacts of indoor conditions on health depend on numerous factors, such as the building’s physical 
characteristics and population group. Heat stress is often related to “overheating”. In the adaptive 
comfort model standard, overheating represents indoor conditions that exceed the “thermal comfort 
zone.” (CIBSE, 2013). Most heat vulnerability and epidemiological studies examined indoor heat exposure 
based on outdoor climate conditions; only a few research studies have monitored personal exposure and 
heat stress (AECOM, 2012). Buildings’ characteristics such as thermal mass, air sealing, and shading direct 
affect overheating, especially when air-conditioning is unavailable (Kenny et al., 2019). Table 2-2 outlines 
findings from the literature for different building characteristics and related-indoor temperatures that 
exceed thermal comfort standards.  
Table 2-2:  Indoor heat studies of homes without air-conditioning (Based on (Holmes, Phillips, & Wilson, 2016b)). 

Location 
No. of 
home

s 

Occupant and 
residential 

characteristics 

Weather 
scenario Measured indoor air temperatures Source 

Detroit, 
Michigan, 

US 
30 

Elderly occupants; 
single-family; 

wood plus vinyl siding 

Two 
summer 

days 

34.9°C; this was 13.8°C higher 
than the average outdoor 

temperature 

(White-
Newsome et 

al., 2012) 

Athens, 
Greece 50 Low income; no air-

conditioning 

Heatwave
s over 
three 

months 

Always exceeded 28°C, and 
exceeded 30°C for 80-85% of the 

time 

(Sakka et al., 
2012) 

Montreal, 
Quebec, 
Canada 

78 Multi-family; no air-
conditioning 

July 
analysis 

Average of 26.7°C and a maximum 
of 34.4°C 

(Audrey 
Smargiassi et 

al., 2008) 

Chicago, 
Illinois, US 1 

Fatality from heat 
stress; single-family 

home 

1995 
heatwave Home thermostat exceeded 32°C (CDC, 1996, 

2013) 

Manchester
, UK 4 Urban homes 

Nine-day 
heatwave 

in 2003 

Average 24.2-26.3°C, with a 
maximum of 36°C 

(Barclay, 
Sharples, Kang, 

& Watkins, 
2012) 

London, UK 5 Urban homes 
Nine-day 
heatwave 

in 2003 

Average 27.4-29.8°C; outdoor 
temperature averages 1-3°C 

higher; maximum 39.2°C 

(Barclay et al., 
2012) 

Seoul, 
South Korea 20 

Elderly occupants; low-
income apartments; no 

air-conditioning 

27 July- 6 
August 
2010 

heatwave 

Afternoon indoor temperatures 
averaged 31.9°C, with a maximum 

of 32.8°C 

(Y.-M. Kim, 
Kim, Cheong, 
Ahn, & Choi, 

2012) 
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The human body experiences complex thermoregulatory processes when exposed to high temperatures. 
Such processes are influenced by extrinsic and intrinsic factors like microclimate, behavioral adjustments, 
and associated heat storage and balance expressed as heat stress or heat strain (Bates & Miller, 2002; 
Epstein & Moran, 2006). Various heat stress indices have been developed to assess heat stress and 
thermal comfort. These indices guide both building design and operation to provide comfort. Auliciems 
and Szokolay (2014) reviewed and evaluated 11 heat indices commonly used to assess heat stress. Over 
the past couple of decades, various indices have been developed based on environmental factors; others 
are based on environmental and human factors (Brake & Bates, 2002). A review by Bethea and Parsons 
(2002) has grouped thermal comfort indices into three main categories: 1) rational indices (heat balance), 
2) empirical indices (physiological), and 3) direct indices (environmental). Figure 2-3 summarizes indices 
included in this study and other studies examined in the literature review to assess heat stress in indoor 
environments. 

 
Figure 2-3:  Indoor heat studies of homes without air-conditioning  (developed by the author based on (Auliciems; 
& Szokolay, 2014; Blazejczyk, Epstein, Jendritzky, Staiger, & Tinz, 2012; Brake & Bates, 2002; Holmes et al., 2016b; 

Sen & Nag, 2019; Urban & Kyselý, 2014). 
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Sen and Nag (2019) have evaluated most heat stress indices developed throughout the literature to 
identify which indices are most suitable to assess heat stress. The study outlines that rational indices such 
as Standard Effective Temperature (SET) and Esk (Evaporation Through skin) are useful indicators for heat 
stress as they account for environmental and behavioral factors. Table 2-3 summarizes the temperature 
threshold for different heat indices examined in Sen and Nag study and other studies from the 
literature(Blazejczyk et al., 2012).  

Table 2-3: Temperature threshold for different heat indices and their classification (Based on (Holmes et al., 2016b; 
Jendritzky et al., 2012; Sen & Nag, 2019). 

Thermal sensation level Index 
HI Humidex ET WBGT WCT SET PET PT PST 

Sweltering (Extreme 
Danger) 

> 54 > 55  > 30    > 38 > 54 

Very Hot (Danger) 41 - 54 45 - 55 > 27 28 - 30  > 37 > 41 32 - 38 44- 54 

Hot (Extreme Caution) 32 - 41 40 - 45 23 - 
27 

24 - 28  34 - 
37 

35 -
41 

26- 32 34-44 

Warm (Caution) 27 - 32 30 – 40 21 - 
23 

18 - 24  30 - 
34 

23 - 
35 

20 - 26 24- 34 

Comfortable  < 30 17 - 
21 

< 18 > -10 17 - 
30 

18 - 
23 

0 - 20 14- 24 

Cool (Moderate Hazard)   9 -
17 

 -27: -
10 

< 17 8 - 18 -13: 0 4 -14 

Cold    1-9  -39: -
28 

 4-8 -26: -
13 

-16: -4 

Very cold    <1  -54: -
40 

 <4 -39: -
26 

-36: -
16 

Frosty (Extreme Hazard)     < -55   < -39 < -36 

 
This research considers SET as an indicator of indoor heat exposure that has been widely used in the 
ASHRAE standard to evaluate the thermal environment. SET has been developed as a metric to identify 
livable temperatures in buildings in case of power loss or limited access to the air-conditioning system 
(Wilson, 2006). SET is also considered a more advanced rational index than the Predicted Mean Vote 
(PMV), as it was developed for more dynamic conditions than the steady-state comfort response (S. Zhang 
& Lin, 2020). In addition, SET can predict the thermal physiological response of the human body to heat 
exposure (B. Li et al., 2018). Given its prominent use as a heat threshold as part of passive survivability 
assessment in buildings, the research considers hours where SET is above 30oC to be an indicator of heat 
exposure indoors as part of heat vulnerability assessment.  

2.1.1.2 Susceptibility  
Susceptibility refers to the characteristics which denote a population’s vulnerability to heat exposure. 
Such factors may vary based on the presence of a population in urban settings or buildings that are highly 
exposed to extreme temperatures or an individual’s medical conditions. The research considers a set of 
indicators of susceptibility that can be divided into three classes: 1) individual factors, 2) health factors, 
and 3) socioeconomic factors that would limit an individual’s ability to cope with heat exposure. This 
section presents indicators related to each of the classes mentioned above.  
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I. Individual Factors  
A. Age 
The literature on the relationship between heat vulnerability and mortality has consistently shown that 
elderly populations are at higher risk than their younger counterparts (Engelland, Hemingway, Tomasco, 
Olivencia-Yurvati, & Romero, 2020; Gover, 1938; Minson, Wladkowski, Cardell, Pawelczyk, & Kenney, 
1998; Schlader, Wilson, & Crandall, 2015). Around 84 studies covering the period between 1970 and 2008 
have consistently reported increased heat-related mortality with age during extreme heat events (Bark, 
1998; Stafoggia et al., 2006).  Recent studies have shown that age plays a significant role in human 
susceptibility to heat exposure (Haines & Ebi, 2019; Mayrhuber et al., 2018; Watts et al., 2019). Early 
evidence was confirmed during the 2003 European heatwave with a toll of around 70,000 heat-related 
deaths. In France, heat-related mortality increased by 40-100% in adults older than 65, compared to 20 
to 30% in middle-aged adults between 35 and 64 years (Fouillet et al., 2006; Robine et al., 2008). Research 
by Kenny et al. (2010) and (2014) has identified that increased heat vulnerability with aging is mainly 
explained by body thermoregulation impairment and failure to maintain stable blood pressure under 
extreme heat exposure. There are also findings of increased death rates and dehydration risks among 
infants during extreme heat exposure (Tourneux et al., 2009; World Health Organization (WHO) 2011). 
This is linked to their immature thermoregulation capacity, small blood volume, and body mass. Children 
under five years have also been more vulnerable to heat exposure; this is mainly due to their cognitive 
and immune-system immaturity compared to adults (American Public Health Association (APHA), 2016). 
In this sense, the research has considered age one of the primary indicators for human susceptibility to 
heat exposure, especially for populations older than 65 or younger than five years. Age susceptibility is 
presented as a normalized range between 0 and one, where 0 indicates not susceptible, and one refers to 
being susceptible based on age.   

B. Gender 
Numerous studies have reported differences between male and female physiological responses under 
heat exposure, driven by differences in sweat rate (Foster, Ellis, Doré, Exton-smtth, & Weiner, 1976; 
Green, Bishop, Muir, & Lomax, 2000). Studies have indicated that females' sweat rates are much larger 
than males under the same temperature conditions (Mehnert, Bröde, & Griefahn, 2002), which means 
more heat gain and potentially greater risk under extreme temperatures. One study that examined the 
relationship between heat vulnerability and gender during the European heatwave found that females of 
age between 65 to 74 had more significant mortality rates compared to males of the same age with 
greater risk in females with respiratory conditions and cardiovascular problems (D D’Ippoliti et al., 2007; 
Glass, Tait, Hanna, & Dear, 2015). Finally, a recent study found that females generally reported a relatively 
higher incidence of heat-related illnesses than males. Also, males reported higher heatstroke occurrences 
under the same temperature conditions (Alele, Malau-Aduli, Malau-Aduli, & Crowe, 2020).  

C. Social Isolation 
In several heat vulnerability studies, social isolation was linked to increased health effects during 
heatwaves (Klinenberg, 2003b). Literature has reported that individuals living alone, single, unmarried or 
widowed, mainly were identified at higher risk under extreme temperature exposure (Bouchama et al., 
2012; Fouillet et al., 2006; Hansen et al., 2011; Mayrhuber et al., 2018). Klinenberg (2003b) has also 
reported increased death among residents living alone during the 2005 Chicago heat. Social isolation is 
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linked to increased heat vulnerability due to the direct effect on cognitive, physical, or mental impairment. 
Also, it affects the individual ability to modify impacts from heat exposure, such as commuting to a cooling 
location and losing access to assistance in case of health consequences from increased temperature 
(Sampson et al., 2013).  

D. Race  
Ethnic identity and race are often linked to increased heat-related vulnerability and morbidity (Ebi, 2004; 
Gosling, Lowe, McGregor, Pelling, & Malamud, 2009; Ye et al., 2012; Zanobetti, O’Neill, Gronlund, & 
Schwartz, 2013). For instance, a study conducted in New York City found that a high concentration of 
population of color is linked to heat vulnerability (Klein Rosenthal et al., 2014). During the Chicago 
heatwave in 1995, Klinenberg (2003b) reported that most heat-related deaths were from people of color. 
Another study has examined the Asian population has found a relatively lower heat vulnerability (Basu et 
al., 2012). On the contrary, other studies have not found a relationship between ethnicity and heat 
vulnerability (Anderson & Bell, 2009a). Other related factors in driving the relationship between ethnicity 
and heat vulnerability, such as community racial composition and neighborhood social structure, are 
reported in other studies as factors associated with heat-related (Uejio et al., 2011). Several studies in the 
United States found that racial differences in heat exposure tolerance were attributable to distal 
characteristics related to income level, poor nutrition, or limited physical health (Hansen, Bi, Saniotis, & 
Nitschke, 2013; N. A. S. Taylor, 2006; Yardley, Sigal, & Kenny, 2011). Other related parameters are also 
associated with the surrounding built environment, such as poor building thermal performance, sparse 
vegetation, or limited access to air conditioning units (Harlan et al. 2006; Ruiz, Steffen, and Smith, 2013). 
Although numerous studies have identified the strong relationship between ethnicity and increased heat-
related vulnerability, race should be considered a proxy for cultural isolation. For example, ethnicity can 
drive reluctance to commute to a cooling community center due to a lack of standard social norms or 
cultural background similarities (Sampson et al., 2013; O’Neill, Zanobetti, and Schwartz 2005).  

E. Heat Acclimatization  
Studies have found a relationship between heat-acclimatization and death rates during extreme heat 
events. For instance, in Sweden, heat-related deaths were lower than those in Athens and London due to 
individual acclimatization to heat due to lack of AC (Baccini et al., 2008). Most of the heat-related death 
events in Europe in 2003 and Russia in 2010 occurred in regions not acclimatized to high temperatures 
(Barriopedro et al., 2011). Other studies have found a difference in heat acclimatization between people 
living in naturally ventilated environments than those residing in air-conditioning (de Dear & Brager, 
1998). One study examined the relationship between heat acclimatization and human thermal capacity 
found that the thermal capacity of people who are used to air-conditioning decreases over time with 
exposure to a stable AC environment (Yu et al., 2012). Such findings correlate with earlier studies on heat-
related morbidity that indicate lower thermal adaptability of people living in cold climates than those 
living in hot environments. Also, people living in warmer climates were found to cope better in extreme 
heat conditions. The temperature threshold for heat-related morbidity was higher than those living in 
colder climates (Henderson, Wan, & Kosatsky, 2013; Medina-Ramón & Schwartz, 2007; Sherwood & 
Huber, 2010). In that sense, heat acclimatization is considered a factor in human susceptibility to heat 
exposure alongside previously mentioned physiological characteristics that affect the human thermal 
capacity to extreme heat exposure.   
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II. Health Factors 
A. Medical Condition  
Several studies have identified there is an association between heat-related morbidity and medical history 
for specific diseases besides heatstroke and dehydration (Basu, 2009; Gosling et al., 2009; Kravchenko, 
Abernethy, Fawzy, & Lyerly, 2013; Oudin Åström, Bertil, & Joacim, 2011; L. R. Turner, Barnett, Connell, & 
Tong, 2012; Yardley, Stapleton, Carter, Sigal, & Kenny, 2013; Ye et al., 2012). It was found that 
cardiovascular problems, diabetes, and respiratory disorders have contributed to the increased risk under 
heat exposure (Bouchama et al., 2012; Nitschke et al., 2013; Tran et al., 2013; Zanobetti et al., 2013; Y. 
Zhang, Nitschke, & Bi, 2013). This implies that there is a greater susceptibility for a population with these 
diseases during heat events. Other studies have also confirmed the relationship between pre-existing 
conditions and hospital visits during extreme heat events (Foroni et al., 2007; Pillai et al., 2014). 
Laboratory studies have identified that susceptibility due to pre-existing medical conditions is driven by 
the physiological impairment to a properly functioning cooling mechanism that is mainly affected by 
health conditions (Crandall & González-Alonso, 2010; Kenney, 2001; Kenny, Yardley, Brown, Sigal, & Jay, 
2010). Therefore, pre-existing medical conditions are accounted as one of the primary human 
susceptibility to heat exposure, including from the literature other different diseases such as renal 
diseases, respiratory diseases, diabetes, cardiovascular problems, and psychiatric disorders (Gronlund, 
2014).  

B. Physical Disability  
Multiple inequalities increase climate change vulnerability in populations with disabilities (Gaskin et al., 
2017). Research findings have shown that people with disabilities experience greater pain and fatigue 
during extreme temperature events (Field et al., 2012). These people are specifically more vulnerable due 
to their limited access to adaptation and mitigation responses, which reduces their resilience to extreme 
heat. Several studies have identified sensory and physical impairment as contributing factors to increase 
vulnerability to heat exposure (Baker, 2002; Maltais, Wilk, Unnithan, & Bar-Or, 2004). One study found 
that physical impairment and specific medications mainly affect the thermoregulation process under high 
temperatures (Kreuzer, Landgrebe, M. Wittmann, M. Schecklmann, Poeppl, & Langguth, 2012). Other 
studies identified schizophrenia (T. W. H. Chong & Castle, 2004) and spinal cord injuries (Dawson, Bridle, 
& Lockwood, 1994; Totel, 1974) to contribute to thermoregulation dysfunction significantly. Concerning 
cognitive disability, studies have shown that people with Alzheimer face additional challenges to adapt to 
climate change risks such as hurricanes and heatwaves. Finally, limited evidence was found that associates 
increased vulnerability in populations with sensory impairments or intellectual disability; however, these 
populations are still considered susceptible compared to healthy individuals in the sense of not 
comprehending surrounding risks or acting to adapt (Christensen, 2013; Gosling et al., 2009; Lazrus, 
Morrow, Morss, & Lazo, 2012).  

C. Drug or Alcohol abuse 
Studies have found a relationship between heat exposure risk and alcohol consumption ((Trang, Rocklöv, 
Giang, Kullgren, & Nilsson, 2016)). The increased use of alcohol was found to affect thermoregulation 
under high temperatures and, consequently, increase heat vulnerability. In another study, it was also 
shown that there is an association between heat-related hospital admissions and drug abuse (Bouchama 
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et al., 2012). Finally, recent studies have shown increased alcohol consumption and drug abuse during 
heatwave events, driving higher susceptibility for people with alcoholism or drug abuse history (Cusack, 
de Crespigny, & Athanasos, 2011; Hansen et al., 2008).  

D. Mental Health 
Excessive exposure to high temperatures may affect the body's thermoregulation threshold due to acute 
reactions such as stress hormone release (Simister & Cooper, 2005). According to a study by Sharma et al. 
(2007), it was found that there is an associated increase in brain temperature following a rise in core 
temperature after exposure to high temperature. Also, numerous epidemiological studies have reported 
that elevated temperature may exacerbate psychiatric conditions and consequently affect general mental 
health (Woodruff, McMichael, Butler, & Hales, 2006). Early studies have found dysfunction in the body’s 
thermoregulation in schizophrenia patients after exposure to high-temperature (Jakovljević et al., 1997). 
A recent study (Xu et al., 2020) reported a strong relationship between mental health and heat 
vulnerability, specifically for people suffering from mental diseases such as stress, depression, anxiety, 
dementia, and schizophrenia. Additionally, people with poor mental health are generally less able to take 
adaptive or protective measures under high temperatures (S. Lee et al., 2018). Also, evidence from other 
studies (Hansen et al., 2008; Nitschke et al., 2013) showed that sensory perception of heat is strongly 
affected by mental conditions, thereby increasing heat vulnerability (Hajat, O’Connor, & Kosatsky, 2010; 
Hansen et al., 2011; Martin-Latry et al., 2007; Martinez, Devenport, Saussy, & Martinez, 2020; Nordon et 
al., 2009).  

III. Socioeconomic Factors  
A. Income level 
Studies on heat risk assessment in the United States have found poverty and income level are related to 
heat-associated risks at the neighborhood level (Madrigano et al., 2013; Klein Rosenthal, Kinney, and 
Metzger 2014; O’Neill, Zanobetti, and Schwartz 2005). another study in China (Anderson & Bell, 2009a) 
has also found a correlation between income level and heat-related morbidity, with similar results 
reported in Japan (E. Y. Y. Chan, Goggins, Kim, & Griffiths, 2012). One study in Italy has also reported a 
relationship between hospital visits during heatwaves and income levels (Stafoggia et al., 2006). The 
association between income level and heat vulnerability is primarily driven by the individual ability to pay 
for high electricity bills due to increased use of AC or transportation cost to go to a cooling shelter 
(Banwell, Dixon, Bambrick, Edwards, & Kjellström, 2012; Hansen et al., 2011; Sampson et al., 2013; 
Sheridan, 2007).  

B. Access to Health Care 
Other related risk drivers can be associated with limited individual access to adequate health care during 
a heatwave event, strongly tied to income level (Bouchama et al., 2012). Previous studies have found a 
relationship between hospital visits during heatwaves and lack of access to private health insurance, 
which would increase vulnerability to heat exposure (Y. Zhang et al., 2013).  

C. Access to Community Support  
During the Chicago heatwave in 1995, access to a community support system was one of the major drivers 
for heat adaptation and reduced heat-related morbidity (Klinenberg, 2003b). Community support is 
critical in promoting coping and adaptation actions such as cooling behaviors, communicating concerns 
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during heatwaves or supporting socially isolated populations. In the United States, several studies in New 
York during the 2008 heatwave have identified social support as an indicator for assessing heat 
vulnerability (Frumkin, McMichael, & Hess, 2008; Metzger, Ito, & Matte, 2010).  

 

D. Education Level 
Studies in the United States (O’Neill et al., 2005) and Europe (Borrell et al., 2006; Michelozzi et al., 2005) 
found a relationship between heat-related morbidity and education. On the contrary, other studies 
reported no association between education and heat-related mortality (W. Ma et al., 2012; O’Neill, 
Zanobetti, & Schwartz, 2003; Stafoggia et al., 2006). This is mainly because many emergency departments 
don’t document educational attainment for heat-related hospital visits. During the 2003 heatwave in 
Europe, it has been found that higher education protected against heat-related risks (Larrieu et al., 2008).  
Like race and ethnicity, education attainment is relatively linked to other heat-related vulnerability drivers 
such as income level and occupation. High-educated populations are more likely to understand the types 
of protective measures needed under extreme heat exposure. In that sense, education level is considered 
an indicator of heat susceptibility.  

2.1.1.3 Coping Capacity 
As mentioned previously, coping capacity denotes the population’s ability to cope, manage and adapt to 
heat risk in the short term. In the urban context, coping capacity can be represented by resources at the 
urban scale and building scale that contribute to an individual's ability to cope with heat exposure and 
overcome potential risks. Air conditioning and ventilation play a significant role in providing comfortable 
environmental conditions under heat exposure; thus, this research focuses on access to mechanical 
cooling and natural ventilation as indicators of urban population coping capacity.  

A. Availability of Natural Ventilation 
During exposure to high temperatures, heat exposure decreases the human ability to regulate heat 
(maintain core temperature at 37°C), leading to fatal risks to human health. In addition to high-
temperature exposure indoors, there is also the problem of high humidity levels, limiting the body’s ability 
to dissipate heat through sweating and perspiration. The American Society of Heating, Refrigeration, and 
Air-conditioning Engineers (ASHRAE) has set established an indoor air temperature of 35°C when relative 
humidity is 50% as a “danger line” for heat stress (ASHRAE, 2017b). Literature studies indicate that cooling 
with natural ventilation can act as a coping mechanism for extreme heat exposure; however, natural 
ventilation is only helpful when the outdoor air temperature is cooler than the inside air. However, 
considering the speed of the wind at the skin and the associated reduction in surface heat transfer 
coefficient, air movement can promote the removal of metabolic heat if the air temperature is less than 
skin temperature. 

Also, ventilation plays a significant role in determining indoor humidity levels, primarily affecting human 
thermal comfort (Maragno et al., 2020). However, despite the large role natural ventilation plays as a 
coping resource for heat exposure, there are several limitations for natural ventilation to act effectively 
against indoor overheating, such as: 

- Wind speed should be sufficient to act as a driving force for natural ventilation. 
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- Natural ventilation cooling mechanism is sufficient for indoor heat gains below 40 W/m2 
- Outdoor noise and pollution levels can significantly influence the coping mechanism with natural 

ventilation (high pollution levels can cause ventilation to affect human health conditions indoors 
negatively). 

- Building depth can affect the complexity of natural ventilation. (In buildings with a depth of more 
than 15m, natural ventilation becomes more challenging (Allard, Ghiaus, & Szucs, 2009; Ficken, 
1978)).  

- Surrounding urban density predominantly affects wind speed as studies have identified that mean 
wind velocity decreases by order of magnitude from the outside urban wind speed (Palme, 
Carrasco, Ángel Gálvez, & Inostroza, 2017).   

The factors above play a significant role in natural ventilation performance as a coping resource for heat 
exposure. This research considers hours available for natural ventilation as a coping resource when the 
outdoor air temperature is cooler than indoor and at suitable wind speed levels to drive ventilation.   

B. Access to Mechanical cooling Measures 
Research on population vulnerability during extreme heat events shows that individuals who lack access 
to appropriate protective measures such as air conditioning and living in highly exposed urban areas are 
more vulnerable to heat exposure (Harlan et al., 2014; Semenza et al., 1996b).  As a result, populations 
with limited access to cooling means have increased heat-related morbidity at a lower temperature 
threshold. Other studies have found heat mortality can be significantly influenced by an individual’s 
physiological adaptation and behavioral adjustments (Anderson & Bell, 2009b; N. A. S. Taylor, 2014).  

C. Access to backup power  
Electricity is a critical driver in the development and growth of urban communities. Heatwaves 
significantly threaten the reliability and stability of power supply systems in cities. Increased temperature 
directly affects electricity demand with the increased use of air conditioners to cope with indoor 
overheating, leading to generation disruption and blackouts at high costs for human health and 
economies (Gotanda et al., 2015; Prezant et al., 2005). During heat exposure, vulnerable adults who rely 
on the power supply are even more challenged beyond just access to air conditioning units. The elderly 
population is more vulnerable to blackouts, especially those who use power for medical needs or those 
with limited mobility (Gamble et al., 2013; Behr and Diaz, 2013). Studies have found that backup power 
availability can positively improve preparedness and coping capacity during extreme weather events such 
as heatwaves (Lin et al., 2011; D. C. Lee et al., 2016). Also, access to a backup power plan can significantly 
reduce vulnerability to high-temperature exposure, especially for those at high risk, consequently 
reducing associated health impacts (Dominianni et al., 2018). In that sense, the research considers access 
to backup power as one of the coping resources. Access to backup power can help maintain access to 
mechanical cooling means such as fans or air conditioning units and limit the risks related to medical 
support for vulnerable elderly residents.  

D. Access to Cooling Shelter  
Heat vulnerability studies have identified that commuting to cooler places such as cooling shelters during 
high-temperature exposure can act as a cooling resource, especially during heatwaves (Bouchama et al., 
2012; Sampson et al. 2013). However, other studies have found that the main limitation with cooling 
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centers is the lack of sustainable funding for these shelters. Thus, cooling shelters can act as a coping 
resource for individuals who lack the means to stay cool indoors, especially for those who can’t afford to 
use air conditioning or for the homeless who don’t have anywhere to go during extreme heat events 
(Gronlund, 2014; Sampson et al., 2013). This research identifies proximity and accessibility to the cooling 
shelter as a coping resource during heat exposure. The research also accounts for the proximity between 
the building and a cooling shelter within walking distance of 500 m that the elderly population can easily 
approach during high-temperature exposure.  

2.1.2.4 Adaptive Capacity 
Adaptation capacity characterizes the population's ability to extreme heat as a function of available 
resources, access to urban services, and other amenities associated with heat risk reduction and 
management in the long term (Wilhelmi & Hayden, 2016). Understanding existing access to resources to 
cope with heat exposure is vital in heat vulnerability assessment and identification of heat adaptation 
strategies. This research considers the availability and access to heat adaptation resources as indicators 
of a population’s adaptive capacity.  

A. Access to Health Services 
Studies on heat vulnerability in the United States reported that the geographical location of health 
services and travel distance of served populations play a significant role in increased heat-related 
morbidity (Anggraini & Oliver, 2019). Other studies found that most emergency room visits during heat 
events were from people living within 12 miles (Loughnan ME, Phan, Lynch, & McInnes, 2013). The 
accessibility of health care services with a suitable travel distance can significantly reduce heat-related 
health risks, especially for vulnerable populations. In this research, proximity to a health care service with 
a distance of 12 miles (1.6 km) is considered as an adaptive capacity indicator.  

B. Access to open space/park  
 Green spaces are considered necessary amenities in heat vulnerability assessment. In an urban context, 
vegetation can help reduce heat-related risks by providing shading and reducing temperature through 
evapotranspiration. Also, green spaces can help people adapt during extreme heat due to their ability to 
reduce the surrounding temperature and provide access to drinking fountains (Maragno et al., 2020; 
Önder & Akay, 2014).  

C. Access to community support 
Community support plays a significant role in promoting cooling behaviors and support socially isolated 
individuals during extreme heat exposure. Klingenberg’s study on Chicago heatwave 1995 (Klinenberg, 
2003b) identified that a social support system is crucial during extreme heat events. Other studies also 
confirmed that social support, whether from family or community groups, could significantly influence 
vulnerable populations' risk levels during heat exposure (Sampson et al., 2013). 

2.2.  Dynamics of Heat Vulnerability 
Exposure to extreme heat poses significant threats to human health and quality of life in cities globally. 
As discussed previously, the urbanization process is strongly linked to extreme temperature exposure in 
cities through the Urban Heat Island (UHI) and other local effects that will intensify with the global 
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increase in mean temperature (Tomlinson et al., 2011). This section addresses the interplay between the 
physical built environment and heat vulnerability as a dynamic feature of the built environment's physical 
characteristics and the human system's socioeconomic factors that differentially place population and 
urban stock at risk from heat exposure. The dynamic relationship between exposure components in the 
built environment and associated vulnerability has received only modest attention in the existing 
literature (Dilling, Daly, Travis, Wilhelmi, & Klein, 2015; Hallegatte & Corfee-Morlot, 2011; Slobodan & 
Simonović, 2012). The relationship between heat vulnerability and urban development manifests 
feedback relationships between heat exposure, available urban resources for adaptation, characteristics 
of the social system, and the surrounding built environment.  Heat exposure is considered a shock 
affecting both the urban and the human systems. When these two systems are under shock, it may trigger 
risks such as heatstroke and morbidity in the human dimension and can immediately put pressure on the 
urban service capacity such as health services and power supply.  

 
Figure 2-4: Causal loop diagram between heat exposure, susceptibility, and adaptive capacity in heat vulnerability 

assessment. 

The mechanism between heat vulnerability, exposure, and adaptive capacity is presented through a causal 
loop diagram shown in Figure 2-4. The causal loop diagram's left side indicates the impact of global climate 
variability on increased heat exposure. The right part represents impacts on the urban system 
vulnerability defined in susceptibility and adaptive capacity. Thus, the upper right part of the diagram 
represents the urban response to heat exposure (urban performance) as the ability of an urban system to 
adapt to extreme heat through the provision of health services, heat-relief amenities, and quality of 
housing stock. The lower right side depicts the human system response to heat exposure as a function of 
population characteristics that drive susceptibility. The urban performance also affects susceptibility, as 
poor infrastructure and an old building stock can increase susceptibility. 
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In contrast, susceptibility can be reduced by improving the urban adaptive capacity through improving 
urban performance. This dynamic relationship between susceptibility and adaptive capacity is governing 
the vulnerability level. Risk arises from the potential impact of future climate hazards, a future heatwave 
in this context.  

2.3 System Dynamics as an approach for Heat Vulnerability 
Quantification 
Despite the vast literature on heat vulnerability in urban areas, the complexity and interaction between 
different vulnerability components described above are not fully explored. The purpose of this section is 
to discuss the dynamic relationship of heat vulnerability components and associated indicators in heat 
vulnerability assessment. System dynamics is used as a modeling approach to examine and outline the 
structure of these governing relationships. System dynamics (SD) is an operative approach utilized 
primarily to reveal relationships of complex systems with respect to their non-linearity, time delay, and 
structure (Bala, Arshad, & Noh, 2018). Forrester (1961, 1990) first developed this approach to investigate 
the structure of industrial processes to improve their organizational form. Since then, SD has been widely 
used as an effective tool for modeling intersectional dynamics and interactions between variables in the 
system to simulate its dynamic evolution and organizational boundaries (Forrester, 1961). SD describes 
both quantitive and qualitative causal relationships between the variables of the system. These 
relationships can either be positive when variables proportionally change or negative when they change 
inversely (Slobodan & Simonović, 2012). SD is used to assess the relationship between exposure, 
susceptibility, and adaptive capacity presented above.  

The evaluation of urban community vulnerability to heat is a multidimensional dynamic problem. The 
model examines this problem by capturing the environmental, social, and behavioral dimensions subject 
to vulnerability induced by heat exposure. The model expands the feedback system between exposure, 
susceptibility, adaptive capacity, and associated vulnerability within the neighborhood as the system’s 
boundary. The purpose of the developed model is to: a) extend the field of system dynamic analysis to 
explore urban and building performance and heat vulnerability by examining the interactions between 
the physical urban system and human behavior in response to heat exposure, and b) demonstrate the 
structural relationship between heat exposure sub-components and their influences on different factors 
of susceptibility in driving or reducing vulnerability within the urban boundary.  

The proposed SD model identifies heat-related vulnerability as the primary variable of interest, developed 
around two main feedback loops: reinforcing loop (+) from susceptibility and exposure, balancing (-) from 
adaptive capacity. As heat exposure increases, pre-existing health conditions can exacerbate due to heat 
stress, leading to increased susceptibility in reinforcing pattering. This relationship is balanced through 
the provision of cooling options represented by the adaptive capacity. The model development is 
comprised of three main phases: 

1- Structuring phase: aims to identify main variables and their sub-components. The objective is to 
understand the vulnerability of who and caused by what; 

2- Scenario analysis: the purpose of scenario analysis is first to examine the validity of the 
hypothesized feedback loops and to identify any critical factors shaping the development of the 
model; 
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3- System perspective: offers a representation of the system dynamic behavior and feedback 
mechanisms exhibited in the scenario analysis. The system perspective phase addresses 
simulation outputs and outlines feedback loops driving the results to clarify knowledge and 
understanding of the system and outline policies that will improve system behavior.  

2.3.1 Model Structure  
As outlined above, there are primary factors that shape the role of exposure, susceptibility, and adaptive 
capacity under the scope of heat vulnerability assessment. This section presents the key variables and 
flow structure that determine the driving relationship between exposure, susceptibility, adaptive 
capacity, and resulting vulnerability. The heat vulnerability SD model will help identify the impacts of 
vulnerability on social and physical factors at the neighborhood level. The proposed model consists of 
various dimensions of vulnerability aggregated under exposure, susceptibility, coping capacity, and 
adaptive capacity. Exposure includes the characteristic profile of the surrounding urban space (building 
and urban block) that can drive heat-related health impacts under high temperatures. Susceptibility 
includes socio-economic profiles of the urban population that can exacerbate health risks under heat 
exposure. Coping capacity and adaptive capacity deal with services or measures to improve the 
population’s ability to cope and adapt to high-temperature exposure. Each component is divided into 
subcomponents that are based on the specificity of vulnerability assessment in urban contexts. The 
multidimensionality of heat vulnerability is quantified using sets of indicators as proxies combined into a 
composite index reflecting the overall vulnerability score. Table 2-4 outlines the main components of 
vulnerability and related sub-components used as inputs for the heat vulnerability model.  

Table 2-4: System variables and their indicators. 
Variable Indicator 

Exposure Indoor exposure No. of consecutive hours where SET is above 30oC 
Outdoor Exposure No. of consecutive hours where UTCI is above 32oC 

Susceptibility Building Susceptibility Limited access to mechanical cooling/backup power 
Urban Susceptibility Availability of Cooling shelters / Open spaces/ parks 
Human Susceptibility Medical Condition – Access to health Insurance – Drug or alcohol 

Abuse- Age- Income level – Social Isolation- Access to Community 
Support  

Coping Capacity Building Coping 
Capacity 

Availability of active cooling/availability of backup power 

Adaptive 
Capacity 

Cooling shelters Cooling shelter available from a walking distance of 200 m 
Outdoor cooling 
potential 

Hours where the outdoor air temperature is cooler than the indoor 
temperature 

Health service Health amenity available from a distance of 1 km  
Potential Impact Increase in indoor heat exposure under future climate scenario 

Increase in outdoor exposure under future climate scenario 
The model's structure is based on integrating two types of data sets as model inputs: 1) primary data from 
households to construct susceptibility and associated sub-components, and 2) hourly simulation for 
indoor and outdoor climatic conditions using energy simulation models. By using energy simulation 
models, the model accounts for the impacts of the physical characteristics of the surrounding urban 
environment that can either increase or lessen the magnitude of potential heat exposure and refrain the 
depending only on climate models that don’t account for exposure at the micro-scale. Vulnerability 
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assessment revolves around four primary dimensions, namely, Exposure (E), Susceptibility (S), Coping 
Capacity (CC), and Adaptive Capacity (AC). These are dynamically interconnected and system-specific as 
follows: 

Vulnerability = Ƒ(Exposure; Susceptibility; Coping Capacity; Adaptive capacity) 
The relationship between all four vulnerability components is governed by the local characteristics 
represented in the urban system (surrounding built environment and urban population) at the 
neighborhood level. Thus, vulnerability is a positive function of the urban system’s exposure and 
susceptibility and a negative function of the system’s coping and adaptive capacity. The indicators of each 
of the four vulnerability components have been identified based on the literature findings on heat 
vulnerability assessment, as presented in section 2.1 above. The details of each element and its direct and 
indirect relationship to overall vulnerability are outlined in Table 2-5.  

Table 2-5: Description of major and sub-components of heat vulnerability Assessment model. 
Category Proxy Variable Proxy For Functional Relationship 

Ex
po

su
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/U
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Bu
ild

in
g 

Le
ve

l 

Indoor exposure (SET > 30 
C) 

Building Thermal 
Performance 

No. of consecutive hours > 30C+ indoor heat 
exposure  

Renovation Date 
Recent Renovation date -  indoor heat 

exposure 
 -  Building Susceptibility 

Construction Date Old Construction -  Building Quality +
Building susceptibility 

Construction Materials Poor construction material - Building 
insulation Performance 

Window-to-wall Ratio 

Heat Gain from Envelope 

Window-to-wall Ratio+ Heat Gain indoors+
Building exposure 

Orientation Building area in alignment to the sun + Heat 
Gain indoors+ Building exposure 

Housing Type 
(Attached/Detached) 

Attached Housing + Heat Gain indoors+
Building susceptibility 

U
rb

an
 

Le
ve

l 

Outdoor Exposure  
(UTCI > 32 C) 

Potential for outdoor heat 
stress exposure 

No. of consecutive hours > 32C+ Exposure 
increases+ Urban Susceptibility 

Vegetation coverage Potential for outdoor heat 
relief Vegetation coverage- Urban Susceptibility 

Su
sc

ep
tib
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ty

 

Hu
m
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 S

us
ce

pt
ib
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ty

  

Age Physiological capacity Age+ Susceptibility 

Gender 

Response to heat 
exposure 

Females are more susceptible to heatstroke than 
males 

Social Isolation Social Isolation + Susceptibility 
Medical Condition Medical Condition + Susceptibility 

Drug / Alcohol Abuse Drug / Alcohol Abuse+ Susceptibility 
Mental Health Mental Health+ Susceptibility 
Income Level Low Income + Susceptibility 

Access to Health Care Access to Health Care - Susceptibility 
Access to Community 

Support 
Access to Community Support- Social 

Isolation - Susceptibility 
Education Level Low Education Level + Susceptibility 

Coping 
Capacity 

Hours for Natural 
Ventilation 

Short-term response to 
heat exposure 

Hours for Natural Ventilation+  Building 
Coping Capacity 

Access to Back up Power Access to Back up Power + Building Coping 
Capacity 

Access to AC/mechanical 
Cooling 

Access to AC/mechanical Cooling+ Building 
Coping Capacity 
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Adaptive 
Capacity 

Proximity to Cooling 
Shelter 

Long-term response to 
heat exposure 

Proximity to Cooling Shelter+ Urban Adaptive 
Capacity 

Proximity to Park- Open 
Space Proximity to Park+ Urban Adaptive Capacity 

Proximity to Hospital  Proximity to Hospital+ Urban Adaptive 
Capacity 

Heat exposure is considered in the model as a function of indoor and outdoor exposure when people go 
outside for a cooling outlet if it gets too warm inside. In assessing exposure, the number of consecutive 
hours is considered based on findings in the literature on how prolonged exposure can drive heat-related 
health impacts (Pyrgou et al., 2017; Kenny et al., 2019). Susceptibility consists of three main components: 
a) building susceptibility, b) urban susceptibility, and c) human susceptibility. Building susceptibility 
represents a building’s physical characteristics impacts on potential heat risks such as limited availability 
of natural ventilation can exacerbate health impacts during heat exposure. To examine how building and 
surrounding urban amenities can influence the individual capacity to mitigate heat risks, vulnerability is 
estimated as a function of susceptibility minus the sum of coping capacity and adaptive capacity to capture 
both long- and short-term impacts. A critical factor in the interrelationship between heat exposure and 
potential health impacts is the individuals’ adaptation response to heat. These actions are classified into 
three main categories, as follows (Kwok & Rajkovich, 2010):  
Physiological Adaptation: linked to the body’s ability to adapt to heat through physiological changes like 
sweating 
Psychological Adaptation: based on the individuals’ perception of thermal comfort and conditions that 
offer a thermally comfortable environment using building control systems. 
Behavioral Adaptation: refers to the individuals’ response to adapt to heat through a series of 
adjustments. These adjustments include personal adjustments like changing clothing level and contextual 
adjustments like opening windows, using air conditioning, and closing window blinds to reduce heat 
stress. 

In the model development, physiological adaptation is included as part of human susceptibility as a 
function of age and gender. Psychological adaptation is represented in indoor exposure based on hours 
when thermal comfort levels are exceeded. Finally, behavioral adaptation is modeled as part of coping 
capacity and adaptive capacity to heat exposure, whether at the building or urban scale. Coping capacity 
indicates the available resources for short-term adaptation to heat. It usually occurs at the building level, 
such as opening windows for ventilation or access to backup power in case of power loss to maintain 
livable conditions indoors through mechanical cooling. Adaptive capacity reflects the available urban 
services that will help individuals adjust to heat exposure, like access to cooling shelters, parks, and 
proximity of health amenities.  
After determining all components and sub-components of heat vulnerability, all the values are normalized 
to a relative position between 0 and 1. It is also assumed that all of the heat vulnerability components 
have equal importance, and thus all indicators are weighted equally. This approach has been extensively 
used in heat vulnerability assessment in the literature, and it has been recommended to help avoid any 
subjectivity in the overall heat analysis (Aubrecht & Özceylan, 2013; Di Napoli et al., 2018; Wolf, 
McGregor, & Analitis, 2014).  
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The vulnerability dimension was assessed on a scale of 0 to 1 with equal weights to all main and sub-
components. Thus, the index of exposure containing both indoor and outdoor exposure is calculated as 
follows:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝐸𝐸) =  𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒+𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜∗ 𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑒𝑒 
𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖+ 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

  (3) 

Where Wind is the weight of indoor exposure, Wout is the weight of outdoor exposure, IndExp is the number 
of consecutive hours where SET is above 30oC, and Outexp is the number of hours where UTCI is above 
32oC.  Susceptibility is calculated using the following equation: 

                                      𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑆𝑆) =  𝑊𝑊𝑊𝑊1∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼1+𝑊𝑊𝑊𝑊2∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼2+𝑊𝑊𝑊𝑊3∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼3+𝑊𝑊𝑊𝑊𝑖𝑖∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 
𝑊𝑊𝑊𝑊1+ 𝑊𝑊𝑊𝑊2+𝑊𝑊𝑊𝑊3+ 𝑊𝑊𝑊𝑊𝑖𝑖

  (4) 

Where Ws is the weight of each indicator, Indicn is the indicator value, and n is the total number of 
susceptibility indicators. Coping capacity and adaptive capacity are calculated following the same 
approach, where coping capacity was calculated using the following equation: 

                                 𝐶𝐶𝐸𝐸𝐸𝐸𝑆𝑆𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝐶𝐶𝐶𝐶) =  𝑊𝑊𝐼𝐼𝐼𝐼1∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼1+𝑊𝑊𝐼𝐼𝐼𝐼2∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼2+𝑊𝑊𝐼𝐼𝐼𝐼3∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼3+𝑊𝑊𝐼𝐼𝐼𝐼𝑖𝑖∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 
𝑊𝑊𝐼𝐼𝐼𝐼1+ 𝑊𝑊𝐼𝐼𝐼𝐼2+𝑊𝑊𝐼𝐼𝐼𝐼3+ 𝑊𝑊𝐼𝐼𝐼𝐼𝑖𝑖

  (5) 

Wcc is the weight of each indicator and Indicn is the indicator value, and n is the total number of coping 
capacity indicators. Adaptive capacity is calculated as follows:  

                                𝐴𝐴𝐴𝐴𝐶𝐶𝐸𝐸𝑆𝑆𝑆𝑆𝐴𝐴𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝐴𝐴𝐶𝐶) =  𝑊𝑊𝑊𝑊𝐼𝐼1∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼1+𝑊𝑊𝑊𝑊𝐼𝐼2∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼2+𝑊𝑊𝑊𝑊𝐼𝐼3∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼3+𝑊𝑊𝑊𝑊𝐼𝐼𝑖𝑖∗ 𝑃𝑃𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 
𝑊𝑊𝑊𝑊𝐼𝐼1+ 𝑊𝑊𝑊𝑊𝐼𝐼2+𝑊𝑊𝑊𝑊𝐼𝐼3+ 𝑊𝑊𝑊𝑊𝐼𝐼𝑖𝑖

  (6) 

Where Wac is the weight of each indicator, and Indicn is the indicator value, and n is the total number of 
adaptive capacity indicators. The structure of model formulation, description of each indicator, and 
quantification approach are described in Table 2-6.  

Table 2-6: Formulation of model variables and their units. 
A. Exposure 

Indoor Exposure Range Hourly simulation of SET for an extreme hot week Hours 
Consecutive Hours 
above Comfort Range 

Number of consecutive hours where SET is above 300C Hours 

Hours available for 
natural ventilation 

Hourly representation of times where the outdoor air temperature is 
cooler than the indoor temperature 

Hours 

Indoor Cooling Potential Number of consecutive hours where natural ventilation can be utilized Hours 
Indoor Occupation Hourly representation of times when people stay indoors during the 

week 
Hours 

Indoor Occupation 
Hours 

Net hours spent indoors Hours 

Indoor Exposure IF THEN ELSE ((Consecutive Hours above Comfort Range-(Indoor Cooling 
Potential +Hours Available for Active Cooling))>=Indoor Occupation 
Hours, Indoor Occupation Hours,(Consecutive Hours above Comfort 

Range-(Hours Available for Active Cooling +Indoor Cooling Potential))) 

Hours 

Outdoor Occupation Hourly representation of times when people go outside during the week Hours 
Outdoor Occupation 
hours 

Net hours spent indoors Hours 

Outdoor Exposure 
Range 

Hourly simulation of UTCI for an extreme hot week Hours 

Outdoor Discomfort 
Hours 

Number of consecutive hours where UTCI is above 320C Hours 

Outdoor cooling 
potential 

Hourly representation of times where the outdoor air temperature is 
cooler than the indoor temperature 

Hours 
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Hours available for 
outdoor activities 

Number of consecutive hours where the outdoor air temperature is 
cooler 

Hours 

Outdoor Exposure IF THEN ELSE (Outdoor Discomfort Hours-Outdoor Cooling 
Potential>=Outdoor Occupation Hours, Outdoor Occupation Hours, 

(Outdoor Discomfort Hours-Outdoor Cooling Potential)) 

Hours 

B. Susceptibility 
Indoor Susceptibility ((((Indoor Exposure-1) *(1-0))/ (24-1))+(((Indoor Exposure-1)*(1-0))/(24-

1)))/2 
Dimensionless 

Outdoor Susceptibility (((((Outdoor Exposure-1) *(1-0))/ (24-1)) +(((Outdoor Exposure-1) *(1-0))/ 
(24-1)))/2) 

Dimensionless 

Urban Susceptibility Indoor Susceptibility + Outdoor Susceptibility Dimensionless 
Drug or Alcohol Abuse A value between 0 -1 representing if occupants are susceptible due to 

drug and alcohol abuse 
Dimensionless 

Medical Condition A value between 0 -1 representing if occupants are susceptible due to 
pre-existing medical condition 

Dimensionless 

Access to Health 
Insurance 

A value between 0 -1 representing if occupants are susceptible due to 
access to health services 

Dimensionless 

Access to Community 
Support 

A value between 0 -1 representing if occupants are susceptible due to 
access to social support network 

Dimensionless 

Family Size Family size per apartment Persons 
Social Isolation Represented by family size and lack of access to community support 

IF THEN ELSE ((Family Size<2:AND: Access to Community Support=0), 1, 
0) 

Dimensionless 

Household Monthly 
income 

Income level per household  $/month 

Minimum income 
Threshold 

The lowest monthly household income per neighborhood $/month 

Maximum Income 
Threshold 

The highest monthly household income per neighborhood $/month 

Income level 1-(((Occupants' Monthly Income-Minimum Income Threshold) *(1-
0))/(Maximum Income Threshold-Minimum Income Threshold)) 

Dimensionless  

Male life span Life expectancy in males for the examined population Year 
Female life span Life expectancy in females for the examined population Year 
Minimum risk Threshold Age under which is considered risky for heat exposure (Infants) Years 

Age Level  

Represents susceptibility due to age  
(((("F.Occupant 1"-Minimum Risk threshold)*(1-0))/(Female Lifespan 

Threshold-Minimum Risk threshold))+((("F.Occupant 2"-Minimum Risk 
threshold)*(1-0))/(Female Lifespan Threshold-Minimum Risk 

threshold))+((("M.Occupant 1"-Minimum Risk threshold)*(1-0))/(Male 
Lifespan Threshold-Minimum Risk threshold)))/family size 

Dimensionless 

Human Susceptibility 

((0.143*(1-Access to Community Support))+(0.143*(1-Access to health 
Insurance))+(0.143*Age Level)+(0.143*Drug or Alchohol 

Abuse)+(0.143*Income Level)+(0.143*Medical Condition)+(0.143*Social 
Isolation)) 

Dimensionless 

C. Coping Capacity 
Hours available for 
Active Cooling  

Hourly schedule for mechanical cooling (AC/Fans) Hours 

Availability of backup 
Power  

Number of hours that a backup power can support in case of power loss Hours 

Coping with Backup 
Power 

IF THEN ELSE((((((Hours Available for Active Cooling-1)*(1-0))/(24-
1))+(((Hours Available for Active Cooling-1)*(1-0))/(24-1)))/2)<0, 0, 

((((Hours Available for Active Cooling-1)*(1-0))/(24-1))+(((Hours Available 
for Active Cooling-1)*(1-0))/(24-1)))/2) 

Hours 
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Coping with Natural 
Ventilation 

IF THEN ELSE((((((Hours Available for Natural Ventilation-1)*(1-0))/(24-
1))+(((Hours Available for Natural Ventilation-1)*(1-0))/(24-1)))/2)<0, 0, 

((((Hours Available for Natural Ventilation-1)*(1-0))/(24-1))+(((Hours 
Available for Natural Ventilation-1)*(1-0))/(24-1)))/2) 

Hours 

Coping Capacity 0.33*Coping with Natural Ventilation+0.33*Coping with Backup 
Power+0.33*Outdoor Cooling Capacity Dimensionless 

D. Adaptive Capacity 
Cooling Shelter A value between 0 -1 representing adaptive capacity with access to 

cooling shelter  Dimensionless 

Nearby Park A value between 0 -1 representing adaptive capacity with access to a 
nearby park  Dimensionless 

Outdoor Cooling 
Capacity 

IF THEN ELSE((((((Outdoor Cooling Potential-1)*(1-0))/(24-1))+(((Outdoor 
Cooling Potential-1)*(1-0))/(24-1)))/2)<0, 0, ((((Outdoor Cooling 

Potential-1)*(1-0))/(24-1))+(((Outdoor Cooling Potential-1)*(1-0))/(24-
1)))/2) 

Dimensionless 

Adaptive Capacity  0.33*Cooling Shelter+0.33*Nearby Park or Shaded outdoor 
Area+0.33*Outdoor Cooling Capacity 

Dimensionless 

E. Susceptibility 
Susceptibility 0.5*Human Susceptibility+0.5*Urban Susceptibility Dimensionless 

F. Vulnerability 
Vulnerability 0.33*SUSCEPTIBILITY+(0.33*(1-Adaptive Capacity))+(0.33*(1-Coping 

Capacity)) 
Dimensionless 

G. Risk  
Risk Potential impact*Vulnerability Dimensionless 

Figure 2-5 describes the cause-effect relationship and the system structure between the various elements 
of heat vulnerability and related sub-components. The model hypothesis is that an increase in 
susceptibility and exposure will cause an increased vulnerability that can be balanced with improved 
coping capacity at the building scale and adaptive capacity at the urban scale. Through simulation, it is 
examined whether the complementarity among different indicators of coping capacity and adaptive 
capacity could help address increased vulnerability from heat exposure in populations who are highly 
susceptible due to their socio-economic characteristics. Three main scenarios are examined: 1) extreme 
vulnerability (E.V) assuming no access to any of coping and adaptive capacity measure, 2) improvement 
in coping capacity only (C.C), 3) improving in both coping and adaptive capacity (A.C/C.C). These scenarios 
are designed to assess how changes in urban services can influence the magnitude of vulnerability in 
populations that are considered highly susceptible.  

The dynamic hypothesis is that when exposure increases, both urban susceptibility (as a function of its 
physical characteristics) and human susceptibility (as a function of the population’s socio-economic 
factors) will increase vulnerability. These effects can only be balanced by improving coping capacity (either 
reducing exposure from changes in the physical urban space or increasing access to behavioral adaptation 
measures) at the building scale and the urban scale. The proposed SD model will provide a unique 
advantage to assess vulnerability by extending the model boundary to address any additional questions 
or problems as they arise.  The model is based on the following assumptions: 

1- For simplicity, access to backup power has no restrictions; 
2- The relevant time horizon is the typical extreme hot week; 
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3- Changes in coping and adaptive capacity are immediate with no impact from policy delay or 
availability of funding resources. 

 

 

 
Figure 2-5: Structure of heat vulnerability SD model.  

2.3.2 Case Study  
A multi-family building in a low-income neighborhood in Cairo, Egypt, is examined in the SD model 
described above; AlDarb AlAhmar is a low-income neighborhood in Cairo, Egypt. The area has a mix of 
historical buildings from the 1700s through the late 20th century and buildings from 2010 and 2014. The 
total studied area is 2.8 acres, and it was specifically selected for its unique architectural character and 
diversity of building types, and economic challenges. Living standards are primarily considered for low-
income, where air conditioning units are not typical and rarely installed. Ceiling fans and portable fans are 
the most common apparatus used for ventilation. There are three main archetypes identified from the 
site survey. The characteristics of envelopes’ thermal properties vary with construction methods; 
historical buildings from the 1700s to 1800s, modern apartment buildings from the 20th century, and 
informal buildings built after 2010. Historical buildings represent around 72% of the existing building stock 
in Al Darb AlAhmar. Therefore, a multi-family historical building of three floors is chosen as a 
representative model of the building stock in the study area. Characteristics of building envelopes in 
archetype were identified from an on-site survey and summarized in Table 2-7. 
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Table 2-7: Construction material characteristics for historical archetypes in Al Darb AlAhmar. 
Building Type Historical 
Number of floors 2F 3F 4F 
Average Built-up area 150 m2 
WWR 15% - 20% 
Glazing U-Value 6.25 
Wall U-Value (W/m2 K) 0.5 0.5 0.6 
Internal Heat Capacity 75 73 72 
External Heat Capacity 62 60 59 
Roof U-Value (W/m2 K) 1.39 
Solar Heat Gain Coefficient (SHGC) 0.5 

The floor area of the residence examined in the study has an average area of 80 m2. Onset Hobo data 
loggers were installed in three representative archetypes from July 6th to July 12th and August 8th through 
August 15th, 2018. Indoor temperature and relative humidity readings are used to analyze indoor climatic 
conditions and validate simulation results. The accuracy of the temperature loggers used was ± 0.21°C. All 
loggers were placed in the zones with sufficient air movement and away from internal heat sources and 
solar radiation. The outdoor air temperature was collected from the nearest weather station located 4.9 
km from the analysis area. Outdoor temperature readings indicate high temperatures from July 7th until 
July 12th, 2018.  Two simulations were executed for the representative archetype: hourly simulation for 
SET for an extreme hot week in Cairo, Egypt (from August 15th to August 22nd), and UTCI simulation with 
respect to the surrounding urban block within a diameter of 500 meters. The outputs of the simulations 
were then implemented as indicators of exposure in the SD model.  

2.4 Results 
In this section, the simulation model results and outputs of the three scenarios examined in the SD model 
are presented. Figure 2-6 illustrates the simulated indoor air temperature and recorded air 
measurements. Data from buildings’ surveys and questionnaires were used to calibrate the simulation 
model with actual conditions. Simulation’s mean square root error decreased substantially after adding 
questionnaire data. The questionnaire was tailored to address occupancy times, the number of equipment 
owned, adjustments residents use to regulate temperature and ventilation times. All these data were 
arranged by archetype and added to the simulation model explained in detail in chapter 3. 
SD model simulations were performed using a daily time step. The heat vulnerability model presented in 
Figure 2-5 above is implemented in the Vensim software package, allowing for easy modification in the 
system structure and simulations of different scenarios. Information related to human susceptibility was 
collected through in-person interviews of a representative family of three members (female 55 years old, 
female 75 years old, and male 62 years old) and used as input to SD simulations. To validate the model’s 
performance, the model formulation was tested under two scenarios: i) extreme scenario where there is 
no access to coping and adaptation resources, and ii) adaptation scenario that encompasses full access to 
adaptation amenities, cooling shelters and parks, and complete availability of backup power and 
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ventilation at the building level. Figure 2-6 compares results between the two examined scenarios. It can 
be noted that under the extreme scenario, vulnerability is at a maximum value of 1.0, while under the full 
adaptation scenario, vulnerability approached 0.  

  

 
 

Figure 2-6: Top, coping and adaptive capacity and related vulnerability under the extreme scenario. Bottom, 
results of full adaptation scenario. 

Next, the model is tested under the extreme vulnerability scenario, where all factors contributing to social 
vulnerability are assumed to equal 1 to imply an extreme condition of high susceptibility. The extreme 
vulnerability scenario shows that although indoor and outdoor exposure aren’t high throughout the day, 
vulnerability is high due to a lack of access to coping and adaptation measures and socio-economic factors. 
These results imply that even under moderate exposure, a population can still be considered vulnerable 
due to other related socio-economic factors such as age, disability, low income, or medical condition and 
living in an urban setting that is highly susceptible due to lack of coping and adaptation services such as 
cooling spaces, secured power supply and proximity to health service that can drive their vulnerability to 
heat exposure. Figure 2-7 illustrates model output for extreme for the extreme hot week in the examined 
archetype and values for susceptibility, coping capacity, adaptive capacity, and associated vulnerability.  
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Figure 2-7: Results for the extreme vulnerability scenario and indoor and outdoor exposure (no. of consecutive 

hours where exposure is above comfort threshold) from the simulation model.  

Next, simulations were developed for the coping capacity (cc) scenario to examine the effect of improved 
coping mechanisms at the building scale. Here, backup power is introduced for three consecutive hours 
every day as a measure of coping capacity. In the summertime for the past five years, Cairo has been 
experiencing a series of blackouts that can last up to seven consecutive hours during the daytime from 
increased demand for air conditioning. Figure 2-8 graphically visualizes the coping capacity results in the 
reference scenario (extreme vulnerability) and coping capacity scenario (access to backup power). As 
expected, the examined scenario shows lower values for vulnerability under the same socio-economic 
characteristics. Also, improvement in the urban susceptibility profile as a result of reduced susceptibility 
at the building scale. The total susceptibility is considered relatively close due to impacts from 
socioeconomic factors of the population. Results from the CC scenario underline that during heat 
exposure, the magnitude of vulnerability can vary significantly from one household that can substantially 
affect policy planning through understanding which area to prioritize and what sectors of the population.  
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Figure 2-8: Results of Coping Capacity Scenario (access to backup power) compared to reference scenario 
(Extreme Vulnerability). 

For the AC/CC scenario, access to backup power at the building scale and access to a nearby cooling shelter 
are evaluated. Also, access to community groups was changed in human susceptibility to examine how 
eliminating social isolation can influence vulnerability. Results show a significant reduction in vulnerability 
compared to the other two scenarios, as illustrated in Figure 2-9.  Also, potential impacts are modeled as 
an increase in indoor and outdoor exposure by 30% to assess risk levels. There is a reduction in overall 
susceptibility (urban and human) and significant adaptive capacity and coping capacity improvement.  
Finally, the simulated risk profile indicates that risk has been reduced significantly under improved coping 
and adaptive capacity for risk level. This is because the population can be considered vulnerable to heat 
exposure, but the risk can be significantly mitigated with access to coping and adaptation measures. This 
ties back to the dynamic hypotheses of coping and adaptative capacity and reducing vulnerability and risk 
levels. Suppose a population is considered highly vulnerable, but the potential impact in future heat 
exposure is relatively lower. In that case, risk levels will not be as high as vulnerability, as shown in Figure 
2-9 below. These results indicate that the surrounding built environment's physical characteristics play a 
significant role in driving exposure magnitude and the potential impact that defines risk levels. These 
relationships are often not fully explored in heat vulnerability assessment. Most of the focus is on the 



56 | C H A P T E R  2  
 

socioeconomic characteristics alone or large urban scale risk assessment that doesn’t fully capture these 
micro dynamics occurring at the building scale and surrounding urban amenities.  

  

 
 

Figure 2-9: Results of the three examined scenarios for susceptibility, adaptive capacity, vulnerability, and 
related risks. 

Results from the proposed SD model confirm the underlying hypothesis that vulnerability and risk from 
heat exposure are dynamically linked to the coping and adaptive capacity of the surrounding built 
environment with the urban population's socioeconomic characteristics. Findings from the model indicate 
that exposure occurring at both the building and urban levels can significantly influence the project risk 
due to the potential impacts of future overheating. Also, vulnerability assessment requires a more in-
depth examination of socioeconomic characteristics alongside surrounding urban amenities to improve 
or exacerbate potential heat exposure risks. These findings imply that large-scale assessment would need 
to be coupled with a detailed evaluation of heat exposure dynamics at the building scale and how 
individuals interact with the surrounding urban services to assess which areas need to be prioritized in 
adaptation policies.  
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2.5 Discussion  
The first section of this chapter develops a quantification approach for heat vulnerability assessment in 
urban settings using SD modeling. The representative case study results in Cairo, Egypt, show that in highly 
dense urban areas with no air conditioning access, the indoor heat exposure represented around 90% of 
the day was above the thermal comfort range (SET> 30OC).  Building simulation results showed daily 
indoor maximum temperature is generally more than 30oC, which is large enough to drive potential health 
impacts, specifically for highly susceptible populations such as elderly residents and infants. These results 
indicate potential health risks from prolonged exposure, such as an increase in blood pressure (M. Kim, 
Chun, & Han, 2010; Y.-M. Kim et al., 2012), sleeping quality (Muzet, Ehrhart, Candas, Libert, & Vogt, 1983), 
and cognitive behavior (Cedeño Laurent et al., 2018a).  

The urban population's socioeconomic factors are still vital in heat vulnerability assessment; however, 
they need to be coupled with information on the built environment's impacts. Such data can provide a 
more comprehensive evaluation of highly exposed areas, highly vulnerable areas, or areas at risk. Besides, 
social susceptibility indices can provide a sense of which sectors of the population can assist in an extreme 
heatwave. Incorporating building and urban characteristics of the areas that accommodate susceptible 
populations will help facilitate adaptation strategies and preparedness to future heatwaves. The proposed 
analysis of heat vulnerability in low-income urban communities to respond to potential climate risks 
reveals the relative importance of the surrounding built environment in heat risk management. The 
possibility of enhancing social-urban resilience to heat exposure and improving urban capacity is vital to 
understand when thinking about heat adaptation strategies. The study results in the following issues to 
assess heat exposure impacts and adaptation mechanisms of low-income urban communities.  

1- Strategies to address coping capacity impacts: The SD model results suggest that building physical 
characteristics significantly beget exposure and causes the increased vulnerability. Therefore, 
building retrofit can significantly mitigate impacts heat exposure and promote coping capacity at 
the building level. In addition to building retrofit measures, improving coping capacity such as 
access to a backup power supply in the case of blackouts and access to clean water for hydration 
will enhance the individual’s ability to cope with heat exposure, especially in low-income urban 
areas.  

2- Improved urban services to strengthen adaptive capacity: The physical specification of the 
surrounding urban space act as a catalyst and can make communities more vulnerable to heat 
exposure, as was denoted in the extreme vulnerability scenario. Therefore, strategies must be 
evolved to reduce susceptibility created by low urban services. Thus, urban amenities in terms of 
adaptation resources (cooling shelters, parks, health services) may facilitate adequate adaptation 
in highly vulnerable communities in the long term.  
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2.6 Urban Heat Vulnerability Assessment Framework 
Most of the existing heat vulnerability assessment is mainly based on socio-economic factors that rarely 
consider the built environment's spatial and physical parameters, which can exacerbate or lessen heat 
exposure impacts (Jänicke et al., 2019). This chapter aims to fill this gap by developing a framework to 
perform heat vulnerability assessment at the neighborhood scale, taking into account the physical 
properties of the surrounding built environment, human adaptive capacity, and policymakers' role in the 
success of adaptation measures. The framework intends to support the heat adaptation planning process 
by better understanding the local dimension of heat vulnerability distribution that can increase risks 
during extreme heat events. The proposed framework for vulnerability assessment involves analyzing the 
physical parameters of the urban space, indoor exposure at the building level, and occupants' adaptive 
capacity using spatial information, building performance simulations, and in-person surveys. This mix of 
spatial data, simulation models, and occupants' assessment is designed to support policymakers in 
developing adaptation strategies informed by the distribution of high-risk urban areas that accommodate 
highly exposed building stock and vulnerable populations. This framework's intended audience includes 
researchers, policymakers, community planning, concerned and interested citizens in heat risks, and 
stakeholders who wish to understand spatially-based assessment of heat vulnerability. The structure of 
the framework is divided into three primary levels of assessment that each supports the four phases of 
climate adaptation planning, as illustrated in Figure 2-10 below:  

1. Preliminary assessment of heat vulnerability: which supports the primary analysis phase in the 
adaptation planning process 

2. Detailed assessment of indoor heat exposure: results from this assessment can assist in the 
definition of adaptation strategies and prioritization of high-risk urban areas; 

3. Urban intervention and policy development for heat adaptation: supports policymakers in 
implementing and monitoring adaptation measures. 

 
Figure 2-10: The three levels of heat vulnerability assessment framework and their relationship to climate 

adaptation planning. 
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2.6.1 Preliminary Assessment of Heat Vulnerability 
This section describes the methodology and data types related to each level of the proposed framework 
to carry out the heat vulnerability assessment. Exposure to extreme heat is primarily due to urban physical 
conditions. The urban configuration can significantly exacerbate the range and magnitude of heat 
exposure, and by contrast, can mitigate exposure through vegetation and other urban cooling strategies. 
The purpose of the preliminary assessment level is to provide an overview of the general urban condition 
and identification of existing stresses with heat exposure and associated health impacts by examining 
three main components: local climate variability governed by the physical characteristics of the urban 
space, indoor exposure moderated by the building thermal properties, socio-economic susceptibility, and 
individual and household capacity to cope with heat threats. In this sense, a set of vulnerability indicators 
representing exposure, susceptibility, and adaptive capacity are used to identify the spatial distribution of 
the population who are considered at risk from heat-related impacts. Here, a range of indicators, 
analytical techniques, and spatial scales are presented to assess what denotes a cumulative vulnerability 
for a given urban area, as shown in Figure 2-11.  

 
Figure 2-11: Preliminary assessment of heat vulnerability and associated indicators. 

In the proposed methods set, Unmanned Aerial Vehicles (UAVs) equipped with infrared sensors and RGB 
cameras are introduced in the data collection and analytics for heat vulnerability assessment. UAVs have 
been recently explored in the literature as a reliable technology in the overall evaluation of the built 
environment due to the improved accessibility to data, cost reduction, and time efficiency (Jordan et al., 
2018). In the field of climate change assessment, UAVs’ application has expanded rapidly as the 
technology experienced a surge in availability and reliability (Villa et al., 2016).  Recent findings from the 
literature indicate a rapid development in UAVs technology (Grosso et al. 2020) with several promising 
innovations that could provide numerous advances in data accessibility and time efficiency in assessing 
neighborhoods’ conditions. The application of UAVs in heat vulnerability assessment is discussed and 
presented through two applied case studies in chapter 4. 
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The first layer includes building stock assessment; depending on the housing condition, quality of 
construction, and building envelope's thermal properties, a building can either exacerbate or lessen 
exposure during extreme heat events (Kenny et al., 2019; Maller & Strengers, 2011; Wright et al., 2005). 
Thus, construction date, recent retrofit, housing type, and construction materials are proposed as 
indicators of housing susceptibility to heat exposure. Also, such characteristics can be used as an indicator 
of potential indoor exposure. Since air-conditioning and other mechanical cooling means are the 
preferred approaches to coping with the heat (Palmer et al., 2014; D’Ippoliti et al., 2010), access to 
mechanical cooling is used as an indicator of buildings' adaptive capacity.  

At the urban scale, heat exposure magnitude has been extensively studied in the literature (Romero-
Lankao et al., 2012). Some studies in the literature defined the hazard magnitude of heat in an urban area 
using land surface temperature (LST) to reflect temperature conditions (Johnson, Wilson, & Luber, 2009; 
Rinner et al., 2010; Streutker, 2003). In addition to LST, the reflected solar radiation ratio depends 
significantly on the surface albedo and urban geometry, driving heat exposure from UHI (J. Yang, Wang, 
& Kaloush, 2015). Several studies have examined the impacts of road reflectivity on outdoor heat stress 
due to the consequent increase in mean radiant temperature (Salata et al., 2017; Santamouris et al., 2018; 
Wang & Akbari, 2016). Therefore, urban canyon albedo is considered as an indicator of outdoor heat 
exposure. Since LST is mainly tied to geographic location and related climate seasonality, coupling it with 
urban albedo will provide a better understanding of exposure magnitude. These two parameters, LST and 
urban albedo are used to assess an urban area's susceptibility to heat exposure. For instance, an urban 
area with high LST and high albedo is considered highly susceptible to heat exposure and vice versa.  
Vegetation coverage plays a role in regulating high temperature by providing shading and heat absorption 
(F. Li, Chen, Zeng, Zhao, & Wu, 2014). Here, the level of vegetation coverage (vegetation ratio) and the 
availability of heat relief amenities such as cooling shelters and health services are considered indicators 
of the urban adaptive capacity.  

The third component of the preliminary assessment is concerned with urban populations. As outlined 
previously, the socio-economic aspect of heat vulnerability has been extensively discussed in the 
literature. Based on the findings from the literature, five key indicators for human susceptibility are 
identified: age, socioeconomic status, pre-existing health condition, ethnicity, and social isolation 
(Anderson & Bell, 2009a; Baldwin et al., 2019; Curriero et al., 2002). A detailed discussion on the structure 
and description of each of these indicators is presented and discussed thoroughly in the second half of 
this chapter. The urban population's adaptive capacity is defined as responding successfully to heat 
exposure through behavioral and technological adjustment (Chow et al., 2012; Intergovernmental Panel 
on Climate Change (IPCC), 2013). It is well established in the literature that under heat exposure, 
individuals tend to rely mostly on water and power to cope with heat stress, whether through mechanical 
cooling or water for hydration (Costello et al., 2009; IEA, 2018; Maller & Strengers, 2011). Since access to 
mechanical cooling and heat-relief amenities were included as indicators of adaptive capacity, here, stable 
access to power and water supply is considered as an indicator of behavioral adjustments representing 
the household’s adaptive capacity. 
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2.6.2 Detailed Assessment of Indoor Heat Exposure 
Studies on health risks during extreme heat events have reported that most heat-related mortality was 
reported while people were indoors in their own homes (CDC, 2013; Fouillet et al., 2006). It was also found 
that low-income households and socially isolated individuals are at greater risks from heat exposure 
(Fouillet et al., 2006; Kaiser et al., 2007; Semenza; et al., 1996). These findings denote indoor heat 
exposure can impose high risks to human health during extreme heat events. However, most heat-related 
risk studies don’t fully account for indoor temperature and associated health impacts and typically 
examine vulnerability and risk impact among populations as a whole (Kenny et al., 2019). Given that the 
urban population, mainly the elderly, spend between 80 to 90% of their time indoors (Neil E. Klepeis et 
al., 2001), existing heat-vulnerability analyses that don’t account for indoor exposure tend to 
underestimate health impacts resulting in misinformed adaptation policies and intervention measures 
(Kuras et al., 2017).  

 
Figure 2-12: Detailed assessment of indoor heat exposure, indicators, and proposed research methods.  

 
Since indoor exposure primarily depends on the built environment's properties, outdoor conditions, 
occupant’s behavior, and building’s physical characteristics, heat vulnerability assessment needs to 
account for the association between indoor heat exposure and human health. Also, individual or 
household adaptive behavior to use climate control under extreme heat exposure is dominantly 
influenced by the indoor thermal comfort levels (Frey, Destaillats, Cohn, Ahrentzen, & Fraser, 2014; Neil 
E. Klepeis et al., 2017; Kuras et al., 2017). Thus, assessing heat vulnerability from an indoor exposure 
perspective would require a direct assessment of buildings’ thermal performance to understand how 
temperature is moderated, alongside information on occupants' behavior under extreme temperature. 
Thus, the purpose of level 2 is to address these gaps by introducing an indoor heat exposure assessment 
workflow as outlined in Figure 2-12 above. The indoor heat exposure uses building energy simulation 
models to assess indoor exposure combined with in-person interviews to account for human adaptive 
capacity and behavioral measures under high temperatures. Also, community support and proximity to 
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heat-relief amenities are included as indicators of the household’s adaptive capacity and representation 
of how individuals interact with the available urban services during heat exposure.  

2.6.3 Urban Intervention and Policy Development for Heat Adaptation 
As outlined previously, the vulnerability of an urban population to heat is represented by exposure to high 
temperature, population susceptibility, and adaptive capacity to cope or respond to heat events. 
Characterization of the spatial variability of heat vulnerability and related impacts, factoring in exposure, 
susceptibility, and adaptive capacity, can help policymakers and city planners identify agglomeration of 
highly vulnerable populations and develop adaptation scenarios to enhance their resilience (Borden, 
Schmidtlein, Emrich, Piegorsch, & Cutter, 2007; Laska & Morrow, 2006; Reckien, Wildenberg, & 
Bachhofer, 2013). Findings from the literature show that even with adequate heat warning systems and 
access to air conditioning, extreme heat will still represent a significant concern to human health in the 
next 20 years without the proper understanding of how to design and implement suitable adaptation 
measures (Aubrecht & Özceylan, 2013; Wilhelmi et al., 2012).  

 
Figure 2-13: Urban intervention and policy development for heat adaptation and related indicators.  

The impacts of heat vulnerability at the neighborhood level on population health are critical to analyze 
and integrate with adaptation strategies (Romero Lankao & Qin, 2011). The primary purpose of level 3 of 
the framework is to connect adaptation policy development to vulnerability assessment. This will help 
decision-makers frame adaptation measures that can effectively target specific urban locations and 
populations considered high risk from heat exposure. Also, level 3 addresses adaptation strategies at both 
the building scale and the urban scale with a continuous evaluation of the decision-making process as 
drivers for planned strategies' success or failure, as illustrated in Figure 2-13. The three main components 
of this level constitute 1) identification of adaptation measures at the building scale to lessen the impacts 
from indoor heat exposure, 2) improving urban adaptive capacity by increasing population’s access to 
adaption amenities, and 3) the assessment of planned policies with respect to where the areas of high 
risk are located, available funding to support adaptation measures, and time needed to executed planned 
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strategies effectively. Policy assessment will guide policymakers on how planned policies can effectively 
reduce heat vulnerability and detect early on any potential delays that can occur throughout the decision-
making process that can directly affect the success of heat adaptation policies.  

2.7 Summary 
Planning for heat risk management is challenging, especially in areas where the population is susceptible 
to socioeconomic factors or living in deteriorated urban areas.  Meanwhile, analysis results show that 
these characteristics can substantially determine the overall vulnerability to heat exposure. Past research 
has implicated an individual’s socioeconomic factors as a determinant of heat-related health impacts 
during extreme heat events. This chapter has outlined the importance of the physical characteristics of 
the surrounding built environment in vulnerability assessment. From the literature review, numerous gaps 
of existing heat vulnerability frameworks have been identified to account for indoor and outdoor exposure 
coupled with individual behavioral adaptation. This chapter discussed existing gaps in the literature in 
implementing urban-related variables as indicators for vulnerability assessment. A heat vulnerability 
quantification approach using SD modeling is introduced using a set of already established indicators for 
potential health-related impact under heat exposure. The analysis was coupled with an energy simulation 
model to represent the effects of the building’s physical characteristics in exacerbating or mitigating 
indoor exposure and outdoor exposure.  
 
Heat events present a complicated exposure pathway that is compounded by the presence of context-
independent urban and social factors. A literature review of heat vulnerability assessment outlined an 
apparent disconnect between vulnerability assessment and building science. On the other hand, urban 
and building science has the same disconnect of not accounting for socioeconomic and behavioral 
implications of heat exposure. Therefore, this research developed a heat vulnerability framework that 
accounts for the gap between social vulnerability assessment and building and urban science. The 
framework core structure is based on an interdisciplinary overlap between urban, social, and building-
based evaluation that can offer an opportunity to capture missing impacts in heat risk assessment. The 
proposed framework may help integrate social and urban science coupled with policy-related strategies 
into heat vulnerability assessment.  
 
Based on our findings in the analysis presented in this chapter, the heat vulnerability framework should 
account for indoor and outdoor exposure to heat, meaning the impacts of the surrounding built 
environment need to be incorporated with population social vulnerability. The following three chapters 
provide an application of each assessment level outlined in the vulnerability assessment framework. 
Chapter three will examine the detailed assessment level in heat quantification, emphasizing heat-related 
health impacts from prolonged exposure in urban areas with limited access to air conditioning. Chapter 
four will outline the application of UAVs technology in the assessment of the built environment. Finally, 
chapter five will conclude with policy implications and guidelines for heat adaptation planning.  
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III. DETAILED ASSESSMENT OF HEAT VULNERABILITY  
Climate change risks are considered one of the major global concerns that face humankind in the 21st 
century. Climate change effects are expected to exacerbate drastically over the next two decades, 
including increased intensity of weather events, frequent drought periods, and prolonged periods of 
extreme heat events. Scientific evidence indicates that climate change will significantly impact the built 
environment over the next decades (Crump, 2011; Spengler, 2012). Such findings underline that the urban 
population will be challenged with high exposure to climate events that will require cities to be more 
equipped to combat their effect. With rising global temperature, the consequence of climate change is 
now recognized as one of the significant issues facing humans in this century. While there is an extensive 
body of literature on the effect of extreme outdoor air temperature on mortality, there is a significant 
limitation of our understanding of the implications of excessive indoor conditions and human health. 
Furthermore, it is estimated that heat vulnerability is more significant for urban populations as they spend 
around 80% to 90% of their time indoors (N E Klepeis et al., 2001; Leech, Nelson, Burnett, Aaron, & 
Raizenne, 2002b). This infers the need to establish a threshold for indoor temperature above which heat 
stress can occur at a dangerous level to human life. However, numerous factors affect individual thermal 
comfort, depending on environmental and physiological factors. Therefore, it is challenging to establish a 
threshold for indoor conditions that are considered comfortable for everyone. This chapter examines and 
identifies indoor condition thresholds that can cause high health risks under extreme heat exposure—
specifically, urban populations living in an arid climate in low-income neighborhoods. The analysis pays 
attention to the impacts of archetypes' physical characteristics (historical buildings) with no access to air 
conditioning on heat-related health risks and implications from climate change projections. The chapter 
is divided into two main sections. The first section presents an overview of overheating risks indoors and 
the impacts of excessive heat on human health. A case study in AlDarb AlAhmar in Cairo, Egypt, is 
developed to examine potential heat-related health impacts from indoor exposure and associated indoor 
climatic conditions threshold and the role of human’s adaptive capacity under extreme heat exposure. 
Section two presents a computational approach using machine learning to quantify indoor heat exposure 
at the district level using AlDarb AlAhmar district in Cairo as a case study.  
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3.1 Indoor Overheating Assessment 
Recent research findings highlight the growing vulnerability of the urban communities in developing 
regions to heat exposure. Such populations usually reside in building with poor ventilation and limited air-
conditioning access, which increases the risks from extreme heat exposure (Lomas & Porritt, 2017). On 
the other hand, in developed regions or territories where air-conditioning is available, there is a growing 
concern to examine the impacts of heat exposure on human survivability and thermal comfort during 
power supply failure. Currently, around 30% of the global population experiences not less than 20 days of 
excessive heat annually that is considered threatening to human life, and it is projected that by 2100 three 
out of four people will be subject to deadly heat stress (Kenny, Flouris, Yagouti, & Notley, 2018; Mora et 
al., 2017b). Evidence from the 2003 European heatwave underlines the risks associated with prolonged 
exposure to excess heat fatalities that can occur indoors (Valleron & Boumendil, 2004). At least 35,000 
people died due to the 2003 heatwave, with 14,802 deaths recorded in France alone (United Nations 
Environment Programme (UNEP), 2004). In 2015, around 110 people died in Egypt from rising 
temperatures, while 580 people were hospitalized due to heat exhaustion after the temperature reached 
47 °C (AlAhram, 2015; BBC, 2015b).  

The relationship between indoor overheating exposure and health-related risks is examined in this 
chapter through three driving mechanisms. First, building physical characteristics modify indoor 
temperature and consequently affect potential indoor exposure. This includes the role of materials’ 
thermal capacity to modulate heat exposure and regulate indoor temperature levels during extreme heat 
events (Kenny et al., 2018; Mavrogianni, Davies, Wilkinson, & Pathan, 2010a; Phil, 2005; White-
Newsomea et al., 2012). Other parameters such as building orientation, geometry, number of windows, 
and occupancy density are also considered crucial determinants of building capacity to regulate the 
relationship between indoor-outdoor temperature. Surrounding urban context; also plays a role in how 
buildings absorb solar radiation and adjust heat throughout the day (K. J. Lomas & Kane, 2013; Kevin J. 
Lomas & Porritt, 2017). A study by White-Newsome et al. (2012) examined how building-specific 
characteristics can impact indoor microclimate by analyzing three primary parameters: 1) material of 
exterior walls, 2) construction date of the building, and 3) housing type as a metric for occupancy density. 
The study found that older dwellings were built with a relatively lower insulation level that has influenced 
indoor thermal comfort levels and are therefore considered more vulnerable to heat exposure. The study 
has also shown that surrounding vegetation cover plays a critical role in regulating indoor air temperature. 

The second mechanism is occupants’ response to heat exposure. While buildings are exposed to the same 
environmental conditions, occupants’ coping action to compact heat exposure differs significantly. The 
interrelationship between surrounding climatic conditions and the human physiological sensation of heat 
stress is the individuals’ adaptation response to heat exposure, referred to as “Coping Capacity” (Hayden, 
Brenkert-Smith, & Wilhelmi, 2011). Coping capacity refers to the human ability to lessen the impact of 
exposure to extreme heat using a range of actions to reduce heat stress (Hayden et al., 2017b).  As 
discussed in Chapter 2, this behavior is a function of the availability of active adjustments such as 
mechanical cooling, whether it's an air conditioning system, ceiling fans, or passive adjustments by 
opening the windows, changing clothing level, taking a shower, or hydrating.   
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Third, the threshold of indoor microclimate, where the high indoor temperature may increase health-
related risks. While there has been a vast body of literature assessing the indoor condition and thermal 
comfort, there has been a gap in examining the indoor climatic conditions threshold that can help indicate 
potential health risks associated with heat exposure. This raises the question about defining a 
temperature threshold for vulnerable populations living in deteriorated urban settings with limited coping 
capacity. Numerous studies have identified different heat stress indices to examine the impact of heat 
exposure on human health (Epstein & Moran, 2006). Predicted Heat Strain (PHS) and Wet Bulb Globe 
Temperature (WBGT) are the most internationally utilized indices for heat stress and related health 
impacts (Holmes et al., 2016b). However, the duration of heat stress conditions and their effects on 
human health are not thoroughly examined in the literature. Thus, indoor conditions are assessed with 
respect to the duration of exposure to identify overheating thresholds that can be associated with 
potential health risks.  Also, the relationship between outdoor conditions (such as solar radiation, 
humidity, and air temperature) and indoor conditions can directly influence indoor threshold, especially 
in buildings without air conditioning. Lee et al. (2015) have found a strong correlation with a seasonal 
pattern between outdoor air temperature and indoor air temperature in Seoul, Korea, that is high during 
the summer and low during the winter months. The study has also found that dwellings with no AC had a 
higher slope of regression than those with AC, as shown in Figure 3-1.  

 
Figure 3-1: Scatterplot and regression results for the indoor and outdoor relations detached houses with AC (left) 

and no AC (right) (K. Lee & Lee, 2015). 
 

3.2 Human Health and Heat Exposure 
In this section, the relationship between indoor heat exposure and related health impacts is examined. 
Through the literature, the research outlines factors driving heat-related health risks to identify indoor 
conditions linked to higher risks on human health. The chapter reviews relevant studies globally that 
examined heat exposure and temperature ranges related to risk to investigate the indoor overheating 
threshold that drives risks. Exposure to extreme heat situations often results in heat stress, which is also 
associated with overheating. Heat stress is a physiological state when the human body is exposed to 
intense thermal conditions and consequently affects essential body functions (Seth H. Holmes, 2016). 
Human thermal comfort is a function of two main components: i) parameters related to surrounding 
environmental conditions such as air temperature (AT), relative humidity (RH), mean radiant temperature 
(MRT), and wind speed, and ii) factors related to human physiological characteristics such as metabolic 
rate, clothing level, age, and gender (Abdel-Ghany, Al-Helal, & Shady, 2013; Macpherson, 1973). However, 
heat stress is strongly dependent on the human body's thermoregulation resulting from exposure to the 
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aforementioned environmental parameters (Enander & Hygge, 1990). The steady range in which the 
human body maintains constant core temperature is identified as the homeothermy zone, as illustrated 
in Figure 3-2 below. This range includes the thermal comfort range and the threshold of more extreme 
hot and cold conditions (N. Lacetera, U. Bernabucci, H.H. Khalifa, 2003).  The human body’s steady thermal 
state is within a core temperature of 37°C (Ramsey, 1995; Ramsey & Chai, 1983), and above this 
temperature, risk levels start to exacerbate. 

 
Figure 3-2: Homeothermy (adapted from (N. Lacetera, U. Bernabucci, H.H. Khalifa, 2003; Seth H. Holmes, 2016).  

Heat stress occurs when the body fails to maintain heat balance. The three risk ranges presented in Figure 
3-2 above show that by reaching a core temperature of 38°C, physical activity's capacity starts to decrease; 
at 39°C, the potentials of heatstroke and heat exhaustion are expected. When the core temperature 
reaches 40°C, it is considered a life-threatening stage (A. I. Barreca, 2012).  Prolonged exposure to high 
temperatures indoors has significant adverse health effects due to the human body's extreme demand to 
regulate temperature, known as the body's thermoregulatory mechanism. Even though this process is 
highly efficient in regulating body temperature, the human body has difficulty disposing excess heat, 
causing heatstroke under extreme conditions. Most of the literature has concluded that the best approach 
to overcome indoor overheating is deploying air conditioning systems or other mechanical cooling 
systems. The optimum conditions for thermal comfort in hot weather have received less attention when 
it comes to dwellings with no access to air conditioning systems in the context of developing regions. In 
such areas, the provision of suitable indoor conditions is considered public health (M. S. Goromosov, 
Solomonovic, & World Health Organization, 1968; Kenny et al., 2017).  

According to the IPCC report on climate change consequences (Edenhofer et al., 2014), around 30% of the 
global population is exposed to extreme heat for at least 20 days each year. And 2100 projections indicate 
that three out of four people every year will be under the risk of extreme temperatures considered deadly, 
including the most vulnerable populations. With growing risks from heat exposure, there is a need to 
explore how physiological responses to heat exposure can help identify different health risk levels. The 
following section focuses on the relationship between indoor heat exposure, thermal stress, and human 
health.  
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3.2.1 Indoor Microclimate, Thermal comfort, and Human Health  
Climate is a catalyst that drives indoor thermal conditions and the climate-building interplay. Housing 
characteristics play a significant role in mitigating or exacerbating indoor heat exposure levels. Studies 
from the literature have identified building age, floor plan, roof albedo, insulation level, number of floors, 
and material thermal characteristics among the governing factors that drastically affect how buildings 
moderate heat exchange between outdoor and indoor environments (Alam, Sanjayan, Zou, Stewart, & 
Wilson, 2016; Keller, 2013). Also, numerous factors govern the relationship between heat exposure and 
human health in buildings. These factors can be divided into climatic factors (outdoor temperature, wind 
speed, solar radiation), building-related factors (material thermal properties, heat gain, and losses, 
availability of air-conditioning), and individual factors (clothing level, metabolic rate, and medical history) 
(Nicol & Humphreys, 2002). Also, heat stress is significantly affected by the individual preference of the 
surrounding environmental conditions such as humidity, air temperature, and air velocity (Kenny et al., 
2018).  

Another vital factor to consider is human acclimatization to heat, as people who were born and raised in 
regions with high temperature and humidity tend to have a higher tolerance to heat exposure compared 
to those living in colder climates (Tham, Thompson, Landeg, Murray, & Waite, 2020).  The American 
Society of Heating, Refrigeration, and Conditioning Engineers (ASHRAE) standard 55 (2017) has defined 
thermal comfort as “The state of mind that expresses satisfaction with the thermal environment” with a 
thermal comfort range between 23°C to 28°C. Given this global definition of comfort with the assumption 
of specific, a growing number of studies have developed various models to assess the range of thermal 
conditions indoors within which occupants will feel most comfortable (Luo et al., 2016).  These studies 
revealed that building characteristics, including construction materials’ thermal capacity, orientation, 
window properties, and surrounding urban context, play a crucial role in moderating indoor thermal 
conditions. However, fewer studies examined the threshold of indoor thermal conditions above which 
health risks can happen depending on body physiological response. 

One of the early studies that examined the impact of various temperature thresholds on human health 
was conducted between 1951 and 1963 to establish optimum health standards for microclimates in 
dwellings in hot regions (Gromosov, 1963). The study examined the indoor temperature of 2834 air-
conditioned apartments in 13 towns in Kazakhstan, Uzbekistan, and Turkmenistan, recording the 
physiological response of 6000 adults. The study's findings identified a threshold for room temperature 
corresponding to physiological risk levels, summarized in Table 3-1 below. Although this study's results 
are interesting to understand the impact of different temperature ranges on human health, it doesn’t 
capture the relationship between exposure duration to different temperatures and physiological 
reactions.  
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Table 3-1: Human physiological response to various temperatures in an air-conditioned dwelling.  
(Adapted from (M. Goromosov & WHO, 1968)). 

Physiological Response  Initial Levels a 
Indoor temperature range (°C) b 

24-25 26-28 30-31 33-34 
Heart Rate (Beats per minute) 64 64-66 68 72 74 
Mean Skin Temperature (C) 33 33.3 33.6 34.7 35.6 
Respiration Rate (Breaths per 
minute)  16 18 18 20 22 

Thermal Sensation Comfortable Comfortable Warm Hot Hot & 
Oppressive 

a. Initial levels indicate average physiological response in optimum indoor summer conditions early morning with a 
resting activity level. 
b. Average recorded temperature from 106 observations on 27 adults. Average relative humidity 50%, mean outdoor 
temperature 35°C, and air movement ranges between 0.10 – 0.15 m/sec.  

In Europe, Basu and Samet’s study (2002) is one of the few that examines indoor temperature and 
physiological response for elderly residents. The study analyzed skin temperature and heart rate for 42 
elderly adults simultaneously with ambient temperature in Baltimore, Maryland, in the USA, over a 
48hour period. Results from the study revealed that there is a positive correlation between indoor 
ambient temperature and skin temperature. For every 0.56°C increase in ambient temperature, skin 
temperature increased by 0.08°C.  In 2012, Kim et al. (2012) examined the impact of indoor conditions for 
low-income housing in South Korea. They concluded that increased air temperature negatively correlated 
with blood pressure in elderly residents and positively linked to increased body temperature. A recent 
study by Kenny et al.  (2017) showed that elderly adults store 1.8 times more heat than younger 
counterparts at a temperature of 44°C.  

The World Health Organization (WHO) has defined groups of populations that are more vulnerable to high 
and low temperatures than others (Ormandy & Ezratty, 2012). With such a definition, it has recommended 
an indoor temperature range between 18°C to 24°C that is associated with minimum health risks (M. 
Goromosov & WHO, 1968). However, the extent to which this range applies to the vulnerable population 
with no access to air conditioning systems remains in question. Another study in the Netherlands that 
examined the impact of high indoor temperature and sleep disturbance found an increase of 1°C of indoor 
air temperature in a range between 20.8°C to 29.4°C raised the risk of sleep disturbance at night by 24% 
(Loenhout et al., 2016). Concerning relative humidity, a case-controlled study in New York City in the 
United States reported a significant impact from humidity exposure and indoor air temperature above 
26°C and increased cardiovascular emergency calls (C. K. Uejio et al., 2016). These studies presented a 
wide range of temperature thresholds and their potential impacts; however, the effect of exposure 
duration on human health remains limited.  
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3.3.   Methods 
Previous research on heat-health impacts was mainly founded around using ambient meteorological 
measurements to classify heat exposure. Recent studies have declared that this approach has resulted in 
a misidentification of potential health impacts from heat exposure (Wolkoff, 2018). For instance, 
dependence on meteorological measurements disregards the building’s microclimate, varying 
significantly from municipal measurements. Also, a wide range of human adaptive measures can 
substantially influence the level of heat exposure indoors. As a result, it can either alleviate or exacerbate 
any potential health consequences. A recent study in Detroit, Michigan, has found that human adaptive 
behavior under heat exposure frequently occurs within a temperature range of (23.8 C–26.6 C) and is least 
common when the temperature exceeds 32.2C (White-Newsome et al., 2011). This implies the urgency 
to examine how high temperatures can influence the human body's thermoregulation process during heat 
stress. Also, these issues are crucial for the elderly population who may experience health problems like 
low blood pressure, high core temperature that is detrimentally impacted by dehydration as they usually 
tend to have increased sensitivity to heat exposure (A. A. Williams, Spengler, Catalano, Allen, & Cedeno-
laurent, 2019).  

High indoor temperature negatively affects human thermal comfort and wellbeing. The introduction 
section showed a gap in examining the relationship between indoor conditions and human health, 
especially for vulnerable population groups with limited mechanical cooling access. This section outlines 
the methodology framework for assessing indoor overheating and associated health-related impacts from 
heat exposure. A representative low-income urban area in Cairo, Egypt, is analyzed under current climatic 
conditions and the 2050 future climate scenario. The methodology framework is divided into four main 
components, as presented in Figure 3-3, and carried out through the following steps:  

1. Building Archetypes Classification 
Classification of different building types based on construction methods and envelope thermal 
properties: a series of site surveys were carried out between July and August 2018 to collect information 
on the building stock's physical characteristics, including information on construction methods, building 
age, and average population density. Also, findings from a study by The Aga Khan Trust for Culture 
rehabilitation project were used that covered the period between 2009-2013 (Aga Khan Trust for Culture 
(AKTC), 2005, 2013). There are three main archetypes identified in the study area from the site survey: a) 
historical buildings that date back from the 1700s and early 20th century, b) buildings from the late 20th 
century, and c) new construction.  

2. Indoor Monitoring and Calibration  
Quantification of the impact of increased air temperature on overheating hours indoors: fifteen 
subclasses of the historical buildings’ archetypes, one building from the late 20 century, and one 
representative type from new construction are modeled with respect to the surrounding urban context 
and calibrated for annual overheating simulation. Onset Hobo data loggers were installed in the developed 
archetypes from July 6th to July 12th and August 8th to August 15th. Indoor temperature and relative humidity 
readings are used to analyze indoor climatic conditions and validate simulation results. The accuracy of the 
temperature loggers used was ±0.21°C from 0° to 50°C, Relative Humidity accuracy: ±2% from 20% to 80% 
typical to a maximum of ±4.5%; below 20% and above 80% ±6% typical). All loggers were placed in the 
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zones with sufficient air movement and away from internal heat sources and solar radiation. The outdoor 
air temperature was collected from the nearest weather station, located 4.9 km away from the analysis 
area. Outdoor temperature readings indicated high temperatures from July 7th until July 12th, 2018.  Indoor 
wind speed samples were measured in 20 representative buildings without ceiling fans, indicating a low 
indoor air movement with an average indoor wind speed across the 20 samples of 0.2 m/s and between 
~0.2 – 0.5 m/s at the urban canyon level. Samples were taken at 8 pm to examine if natural ventilation 
would impact indoor cooling potentials. The calibrated archetypes were then used to develop a building 
template inside UMI to quantify the study area's overall indoor overheating. Simulations are carried out in 
Grasshopper Honeybee and EnergyPlus using the Egyptian Typical Meteorological Year weather file (ETMY) 
covering 12 to 21 years and ending in 2003. The temperature threshold is presented as the operative 
temperature above the ASHRAE comfort range of 26.9°C (American Society of Heating & Conditioning 
Engineers (ASHRAE), 2017). All buildings were examined solely on natural ventilation (average Hourly Air 
Change Rate (ACH) 0.5) and no mechanical ventilation system access. 
 
3. Indoor Overheating Assessment  

Quantification of overheating impacts across different archetypes: a simulation model of the study area 
was developed in the Urban Modelling Interface Rhino plugin (UMI) using the building template 
developed in step 2. UMI is an urban performance simulation model developed by the Sustainable Design 
Lab at the Massachusetts Institute of Technology (Reinhart, Dogan, Jakubiec, Rakha, & Sang, 2013). UMI 
is urban energy modeling and simulation engine using Rhinoceros (McNeel, 2021) as the modeling 
interface and EnergyPlus for building by building simulations. It is also linked to Urban Weather Generator 
(UWG) developed by Bueno, Norford, Hidalgo & Pigeon (2013) to account for the hourly urban heat island 
effect. UMI offers an integrated urban simulation capability, including operational energy use, 
overheating, daylighting, embodied carbon emission, and walkability over neighborhood scale. The 
simulation module integrates the EnergyPlus engine and Radiance. A building template containing 
information on construction material thermal properties, glazing ratio, occupancy schedule, equipment 
loads, ventilation schedule, and occupancy density was developed inside UMI for AlDarb Al Ahmar. A total 
area of 2.8 acres was modeled and simulated for hourly indoor operative temperature from January 1st 
to December 31st.  

Examination of Future climate Scenarios: 2050 IPCC A2 scenarios (IPCC, 2014b). Climate Change Weather 
generator tool developed by the sustainable energy research group at Southampton University (Jentsch, 
James, Bourikas, & Bahaj, 2013) is used for morphing 2050 weather files under the A2 scenario. 
 
4. Exposure Threshold Assessment 

Identification of current users’ adaptation strategies under extreme heat exposure:  300 personal 
interviews were carried out to collect information on types of behavioral adaptation adjustments, typical 
clothing levels, ventilation times, equipment types, income level, health conditions, and types of 
environmental control systems. The interviews' data was also used to calibrate the simulation model by 
incorporating a suitable occupancy schedule and equipment load estimation. 

Analyzing the effect of prolonged heat exposure on health risks: To assess potential health impacts, 
Heart Rate (HR) was considered as a physiological indicator for potential risk associated with heat 
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exposure (Zamanian et al., 2017). Other indices that reflect physiological response under heat exposure 
include skin temperature, core temperature, sweat rate, and dehydration risks (Holmes, Phillips, & 
Wilson, 2016a; Parsons & Kenneth, 2011).  Ren et al. (2011) examined the effect of apparent temperature 
and HR variability across the elderly population. The study's findings suggested a strong association 
between high temperature and HR variability that may affect cardiovascular function. Williams et al. 
(2019) have recently examined the impact of high indoor temperature on human health in dwelling in the 
U.S. through examining HR variability with air temperature. The study showed that indoor air temperature 
above the 24oC threshold caused significant decrements in the HR of examined occupants. The study also 
concluded that monitoring maximum hourly indoor climate can be a strong predictor of mean hourly heart 
variability, indicating potential heat-health impacts. This research examines the relationship between 
indoor air temperature and HR through personal monitoring for 12 participants living in AlDarb AlAhmar 
between the 15th and 18th of July. The age structure of the population in AlDarb AlAhmar consists of 19% 
between the age range of 50 to 60 years, 23% > 60 years, 23% 40 to 50 years, 23% 30 to 40 years, 16% 20 
to 30 years, and 3% less than 20 years (Aga Khan Foundation, 2013). The personal monitoring group's age 
distribution represents the population average age in AlDarb AlAhmar, with 50% of the sample between 
40 to > 60 years old.  

 
Figure 3-3: Analysis framework and methods used. 
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3.3.1   The case of Al Darb Al Ahmar in Cairo 
Cairo is the most populated city (metro area population: 9,533,040) in Egypt, with an overall climate 
characterized as hot arid (Köppen classification: BWh) with high solar radiation most of the year (SODA 
SRD, 2020). The mean maximum temperature in Cairo ranges between 25°C to 30°C over the summer 
(from June to August), with a maximum relative humidity of 57% (Robaa, 2013).  Over the past decade, 
Cairo has witnessed a series of heatwave events. The most extreme incidents were reported back in 2015 
when air temperature reached 47°C causing a total death toll of 106 across Egypt (AP, 2015; The Guardian, 
2015b). Most of the heat-related deaths reported were from the elderly population living in low-income 
neighborhoods or informal settlements (BBC, 2015a; The Guardian, 2015a). These populations are most 
affected by extreme heat exposure due to low-income levels and limited access to air-conditioning units. 
An additional factor contributing to increased thermal risk during heat exposure is the loss of power 
supply, especially during summer months, as people may experience power loss for some cases that could 
go above five consecutive hours (Fahim & Thomas, 2014; Reuters, 2014).  

Under these conditions,  Al Darb AlAhmar, a low-income neighborhood in Cairo, was chosen to conduct 
the assessment. Al Darb Al Ahmar is a district in Islamic Old Cairo with a total area of 315 acres (1.3 km2) 
that contains more than 114 historical Islamic monuments (Aga Khan Foundation, 2013). The area 
accommodates low-income families living in deteriorating housing conditions with limited access to 
community facilities and urban services. The area has a mix of unique historical buildings from the 1700s 
and early 20th century (Aga Khan Foundation, 2013). The rich historical context of Al Darb AlAhmar has 
been threatened by the continuous demolition of the historic buildings and the construction of new high-
rise buildings that were recently built between 2010-2014 (Figure 3-4).  

   
Figure 3-4: Left, Aerial view of Al Darb AlAhmar neighborhood, Right, street view for Atfet Assad (Author, 2019). 

The total studied area is 2.8 acres, and it was specially selected for its unique architectural character and 
diversity of building types, and economic challenges. Living standards are primarily considered for low-
income, where air conditioning units are not typical and rarely installed. Ceiling fans and portable fans are 
the most common apparatus used for ventilation.  
 

 



75 | C H A P T E R  3  
 

3.3.2 Building Archetypes 
There are eight main archetypes identified from the site survey. The characteristics of envelopes’ thermal 
properties vary with construction methods into three main categories: historic, late 20th century, and new 
construction built after 2010. Historical buildings represent 73% of the existing stock in the study area, 
the late 20 century archetypes account for 11%, and new construction represents 16%, with a floor 
average area floor area ratio (F.A.R) is 1.0.  Figure 3-5 illustrates the study area with the distribution of 
the three main archetypes identified from the survey and literature.  

 
Figure 3-5:  Archetypes distribution in the study area. 

 
The main construction in a historic building is a mix of buildings that date back to the 17th century to the 
late 19th century. The original structure is a load-bearing stone wall, with the ground floor built of 60 cm 
walls consisting of 20X40 cm limestone and one layer of 6x20 cm red brick. The added story is constructed 
of 25 cm of red brick for the 2-floor building, and the third and fourth floors are recessed from the façade 
usually and built of 20 cm red brick and a wooden roof. Archetypes from the late 20th century and informal 
are mainly reinforced concrete and beam structures, with the external wall of thick red brick without 
insulation with a thickness of 25 cm. In comparison, new construction has a wall thickness of 12.5 cm of 
red brick with no wall insulation (Figure 3-6). 
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Historic Late 20 Century New Construction 

Figure 3-6: Archetypes classification in the study area based on construction method and number of floors. 
(Source: Author). 

The characteristics of building envelopes in each archetype were identified based on-site survey and 
Attia’s database for Egypt’s construction materials (Attia & Wanas, 2012). Table 3-2 below summarizes 
the building envelope's characteristics in each archetype. 

Table 3-2: Envelope thermal properties for the different archetypes. 

Archetype Opaque 
Wall 

Wall Thickness 
(cm) 

Specific Heat (J/kg-
k) 

Thermal Conductivity 
(W/m-k) 

Historic 

One floor 

Limestone 

40  

720 1.5 
Two floors 60  

Three floors 80 
Four floors 120  

Late 20th Century (5 
floors) 

Brick wall 
25  

921 1.31 
New Construction  

(6-10 floors) 12.5  

 

The residence's floor area examined in the study ranged between 30 m2 and 100 m2, with an average area 
of 80 m2. Onset Hobo data loggers were installed in 15 representative archetypes from July 6th to July 12th 
and August 8th to August 15th. Indoor temperature and relative humidity readings are used to analyze 
indoor climatic conditions and validate simulation results. The accuracy of the temperature loggers used 
was ± 0.21°C. All loggers were placed in the zones with sufficient air movement and away from internal 
heat sources and solar radiation. The outdoor air temperature readings were collected from the nearest 
weather station, located 4.9 km away from the analysis area. Outdoor temperature readings indicate high 
temperatures from July 7th until July 12th, 2018.  The three archetypes presented above are used as 
representative models for residential buildings in the study area. The study was limited with accurate 
information on the historic archetypes due to various modifications over the years for glazing. Therefore, 
using findings from the site survey, most windows are single-glazed and assumed to be 0.003 m thickness 
glass pane. The glazing ratio varied across the three types, but the overall window-to-wall rate ranged 
between 15% to 45% of the total wall area. The details of each archetypes’ material characteristics are 
summarized in Table 3-3 below. 
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Table 3-3: Building material characteristics. 
 Historical 

Late 20th Century Informal (after 2010) 
 2F 3F 4F 
Average Built-up area 150 m2 250 350 
WWR 15% 45% 46% 
Glazing U-Value 6.25 6.25 6.25 
Wall U-Value (W/m2 K) 0.5 0.5 0.6 1.7 2.8 
Thermal Admittance 
(W/m2 K) 4.2 4.2  4.2 7.5 9.5 

Internal Heat Capacity 75 73 72 81 82 
External Heat Capacity 62 60 59 113 144 
Roof U-Value (W/m2 K) 1.39 1.5  1.5 
Solar Heat Gain 
Coefficient (SHGC) 0.5 0.5 0.5 

 

3.3.3 Urban Typologies 
AlDarb AlAhmar is part of the old Islamic Cairo urban fabric bounded by multiple historical gates dating 
back to the Ayubid and Fatimid eras. However, the district has been maimed by inappropriate 
development practices, causing irreversible large tracts that lack the original urban fabric definition 
(UNESCO, 2012). The urban fabric in Al Darb AlAhmar exemplifies some original features from the Islamic 
city’s hierarchy of open spaces, yet, the continuous demolition of historic buildings and new construction 
have interrupted the actual urban fabric's unity. However, the unique feature of the urban fabric in Al 
Darb AlAhmar is the small scale of the street spaces and their hierarchy that have maintained their 
toponymy since the late 19th century.  

There are four types of street patterns that exemplify the hierarchy and the physical urban characteristics 
of Al Darb AlAhmar: Darb (pathway which usually has a width between 5-4 m), Hara (Alley with an average 
width of 4-3 m), Atfa (Side alley with an average width of 3-2.5 m), and Zuqaq (dead-end alley with width 
between 2-1.5 m) (Arnaud & Depaule, 2020; UNESCO, 2012). The area is characterized by a very dense, 
compact urban fabric with irregular streets consisting of two- to four-story buildings mostly built on small 
plots (UNESCO, 2012; C. Williams, 2002). Other residential buildings that are not considered monumental 
or traditional buildings from the old Islamic city are five- to ten-story buildings scattered around the area 
and mostly built on large land plots (Elkatsha, 2000).  

The urban development over time in Al Darb AlAhmar has influenced the urban morphology, the texture 
of the built-up fabric, and the compactness level. Three main patterns were identified (Figure 3-7) that 
represent the structure of the urban typology in the study area: i) original historic fabric, which is 
characterized by a high level of compactness and continuity in the urban fabric with building heights 
around two- to four-story buildings and the presence of empty plots and old buildings’ ruins, ii) mixed 
urban fabric between traditional historic buildings and buildings that date back to the early 20th century 
built on large plots with inconsistent architectural style ranging between four- to five-story buildings, and 
iii) new urban fabric dominated with new constructions that have significantly increased since the January 
25th revolution due to lack of limited governmental capacity to monitor property ownership and 
construction guidelines. These buildings are characterized by inadequate construction patterns, poor 
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architectural style ranging from five- to ten-story buildings built on large square plots. Despite the 
variation between the three urban types discussed previously, the urban fabric preserves its original 
character but with widespread physical degradation and inconsistent redevelopment interventions.  

   

   
Original historic fabric (Atfa) Mixed/ modified urban fabric (Darb) New urban fabric (Hara) 

Figure 3-7: Three urban typologies identified in Al Darb AlAhmar and associated street type. (Source: Author). 
 

From the general assessment using studies from the literature and site surveys, 12 urban block typologies 
were identified under the three main urban fabric patterns discussed above in Al Darb AlAhmar.  The 
research considered building type, height, and street width as the primary identifying parameters of each 
typology and an area of 500 meters as the boundary for the urban block typology. Figure 3-8 summarizes 
the urban typologies identified in Al Darb AlAhmar district and associated building type, urban density, 
street width, and urban patterns.  
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Figure 3-8: Urban typologies in Al Darb AlAhmar. (Source: Author). 

In addition to the urban fabric changes, available open space has been reduced significantly, as illustrated 
in Figure 3-9 below. The map from 1930 shows the distribution of historical buildings with courtyards and 
open spaces that have either disappeared or been modified until 2019. The most significant difference is 
Al Azhar Park's addition, which was introduced in 2005 to provide the residents with outdoor cooling 
opportunities to counterbalance the changes in the open space network's original structure. Although Al 
Azhar park can provide Al Darb AlAhmar residents with a significant cooling outlet, the park is only 
accessible for free between 12 pm to 4 pm, limiting the residents' ability to use it as an adaptive capacity 
resource during extreme heat exposure.  
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Figure 3-9: Urban fabric and open spaces development in Al Darb AlAhmar between 1930 and 2019. (Ramírez & El 

Habashi, 2020).  

3.3.4 Human Adaptive Capacity 
To define how do the occupants react to heat exposure, a survey for 300 residents was developed to 
understand types of heat adaption behaviors, both indoor (using ceiling fans, opening windows, or using 
window blinds) and outdoor (going to Al Azhar park, sitting in front of the house, or sitting on top of the 
roof) derived from site observations. Also, demographic information (age, sex), socioeconomic (average 
monthly income), and years living in AlDarb Al Ahmar (Table 3-4). The survey included information about 
average occupancy rates, type of equipment, and occupancy and ventilation schedule.  

Table 3-4: Summary of the survey subjects of residential occupants in the study area.  
Sample size 300  

Gender (% of the sample) 
Male (132) – 44% 
Female (168) - 56% 
Mean Age  48 

Minimum age – Maximum age (21 – 93) 

Average years living in the neighborhood 15 years 

Minimum year lived – Maximum year lived Two years – 60 years 

Average monthly income 50$/month 

Minimum income – Maximum income 5$ - 150$ 

 

The site survey indicated an average occupancy density between 4-6 persons per apartment. Therefore, 
the average occupancy density per apartment was assumed to be five people per apartment. Also, it has 
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been found that 20% of the survey are between 60 and 80 years old, with 42% living alone. In addition, 
most low-income residents for income ranging between 5$ - 50$/m had a high percentage of elderly and 
infants compared to relatively higher income (> 50$/m).  The survey also covered indoor thermal comfort 
response at different periods of the day; early morning 8:00 am to 10:00 am, afternoon 12:00 pm to 2:00 
pm, and evening 6:00 pm to 8:00 pm. Thermal comfort questions were developed using ASHRAE thermal 
sensation vote (TSV) (American Society of Heating & Conditioning Engineers (ASHRAE), 2017) scale of +3 
for (hot) to -3 for (cold) for the total 300 residents, made up of 168 females (56%) and 132 males (44%). 
The sample was chosen to represent the actual population structure in AlDarb Al Ahmar.  The survey 
indicated a significant dependence on fans and ceiling fans for cooling, implying a low airspeed in this 
dense urban fabric, limiting natural ventilation's potentials. Occupancy, ventilation, and lighting load 
information from the survey were used to develop simulation models. Equipment loads and lighting 
density were assumed based on a local study (Attia, Evrard, & Gratia, 2012) that developed a 
representative energy simulation database for building stocks in Egypt. Infiltration rates were equal to 0.5 
air changes per hour (ACH), assuming that most buildings have relatively low airtightness. 

3.3.5 Heat Exposure Threshold 
The research focuses on the potential health impacts of increased temperature to understand the 
expected increase in overheating hours across different archetypes. A group of 18 low-income residents 
who participated in the survey, living in the study area, specifically in three different historic buildings 
with no access to AC units, participated in a personal monitoring assessment experiment to examine the 
impact of elevated indoor air temperature on human health. The first building (Building A) was a three-
story historic building, a four-story historic (B) both from the late 18th century, and 8-floor new 
construction (C). All residents live in a top-floor apartment, and buildings are situated in a historic urban 
fabric with hara as the street type. The assessment took place between July 15 to July 18th, utilizing Onset 
Hobo data loggers to record indoor air temperature and relative humidity levels during the personal 
monitoring. Participants were asked to report times where they went outside to exclude these datasets 
from the analysis. Participants were also asked to record their thermal experience at three times of the 
day: early morning 8:00 am to 10:00 am, afternoon 12:00 pm to 2:00 pm, and evening 6:00 pm to 8:00 
pm using the ASHRAE thermal comfort scale of +3 for (hot) to -3 for (cold). Participants were asked to 
wear a Fitbit Wireless activity tracker watch to monitor HR in beats per minute (bpm) with indoor air 
temperature. Participants were also instructed to wear it at all times except during bathing.  Before 
conducting the assessment, a summary of the study scope and protocol was verbally explained to all 
consented participants through a series of personal meetings at each building. The participant group 
consisted of a balanced mix of age and gender. To examine the effect of limited access to mechanical 
cooling, the selection criteria were based on elderly participants living alone above 55 years old or 
residents and younger residents in the lowest income category. One participant had a pre-health 
condition of a heart problem across the selected sample and was younger than 55 years old. Table 3-5 
summarizes the characteristics of the selected group of participants, including demographic information, 
medical history, and environmental conditions. 
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Table 3-5: Characteristics of the participants and environmental conditions. 
 Building (A) Building (B) Building (C) 

Number of participants 6 6 6 

Sex, n (%) male (3) 50% (3) 50% (3) 50% 

Sex, n (%) female (3) 50% (3) 50% (3) 50% 

Age, n (%) < 55 years old (4) 75% (2) 25% (3) 50% 

Age, n (%) > 55 years old (2) 25% (4) 75% (3) 50% 

Ever smoker, n (%) 0 (2) 25% 0% 

Pre-existing medical diagnosis Heart disease 0 0 25% 

Temperature, mean (SD) 32.18 (0.50) 32.0 (1.51) 32.72 (0.73) 

Relative Humidity (SD) 52.65 (2.90) 51.5 (9.29) 47.14 (6.92) 

A statistical model was developed in Python to examine the relationship between indoor air temperature 
and HR. HR data and indoor air temperature were statistically analyzed through the following steps:  
1- To assess the frequency in which the HR value changes with air temperature, data was cleaned and 

organized by the mean number of readings per hour. Mean hourly readings are calculated by splitting 
the data into subsets; each subset represents an hour. For instance, if one hour has n readings, this 
means that there will be multiple subsets in the form: {0:n}, {1,n+1},…,{i,n+i} where i is an integer 
ranging from 0 to the number of readings. Next, the mean of heart rate and the indoor air temperature 
of each subset is computed, and each subgroup will represent a coordinate point (temperature, HR). 
To reduce noise in data, a savgol filter (Gallagher, 2013) is applied in Python as part of the analysis 
algorithm.  
 

2- The relationship between indoor air temperature and HR was modeled in Python as a Poisson model, 
where mean hourly HR is viewed as a dependent variable and maximum hourly air temperature as an 
independent variable.  The analysis revealed a positive correlation between maximum hourly indoor 
air temperature and mean hourly HR per minute (R2= 0.85, p < 0.001).  
 

3- To identify the indoor air temperature threshold that can potentially pose a risk to human health, a 
threshold of 93 bpm for males and 95 bpm for women was determined as the risk limit (Palatini & 
Julius, 1999; Peer, Lombard, Steyn, & Levitt, 2020). The model objective function was set to output the 
indoor air temperature at which HR exceeds the risk limit referred to as “Risk Threshold” and the 
number of ascending sequences of hourly readings that preceded the risk limit, referred to as 
“Exposure range.”   
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3.4 Results  
This section presents the simulation model results for different archetypes described above; indoor 
overheating, human adaptive capacity during under heat exposure, and potential impacts on human 
health are presented.  

3.4.1 Indoor Overheating Assessment  
Figure 3-10 shows the simulated indoor air temperature and recorded air measurements. Information 
from the site’s surveys was used to calibrate the simulation model with actual conditions. The mean 
square root error decreased substantially after adding survey data. All these data were arranged by 
archetype and added to the simulation model. 

 

 

a. Initial simulation results before integrating data on 
occupancy schedules and lighting and equipment 

loads 

b. Simulation results after calibration with site data and 
personal occupancy survey 

Figure 3-10:  Simulation results for indoor air temperature and recorded summer measurements. 

Overheating simulation results indicate that most overheating hours occur between June and October, 
with a higher frequency between July and August, as presented in Figure 3-11-a below. The daily 
distribution shows that during the summer months from May to September, most of the overheating 
hours occur in the nighttime from 11 pm to 6 am (Figure 3-11-b). The large concentration of overheating 
hours in nighttime poses threats related to potential disruptive sleep from increased temperature. It can 
also be noted that indoor thermal conditions far exceed the overheating criteria set by the Chartered 
Institute of Building Service Engineers (CIBSE), which is no more than 5% of the occupied time (CIBSE, 
2017).  This section examines the differences between the three main archetypes presented above and 
the impact of the surrounding urban fabric by comparing different urban typologies and street types. 
Simulations were developed for the extreme hot week to represent potential high indoor temperature 
under which occupants are exposed, between August 19th to August 25th.  
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a. Annual overheating simulation and monthly 
distribution 

b. Daily distribution of overheating hours. Daytime 
represents the time from 6 am to 11 pm, and 

Nightime represents 11 pm to 6 am. 
Figure 3-11: Overheating monthly and daily simulation results for a representative historic building.  

 
Operative temperature simulations for a typical summer week and an extreme hot week shows that 
higher floors have higher average operative temperature than lower floors. Hourly operative temperature 
simulation for July revealed that during the first three days of the month, temperature exceeds a monthly 
average of 32.8°C, as presented in Figure 3-12-a. 

 

 

a. Hourly Operative temperature for July. The 
highlighted region represents the highest observed 
operative temperature above the monthly average 

from July 1st to July 3rd. 

b. Average hourly operative temperature for an 
extreme hot week (19th to 25th of August). 

Figure 3-12: a. Hourly operative temperature for each floor in July, b. Operative temperature for the extreme hot 
week. 

The three main archetypes discussed above were examined against each other to understand the 
differences in indoor conditions. Figure 3-13 shows indoor air temperature in a roof floor apartment for 
a historical building of four floors, a 20th-century building of four floors, and new construction of eight 
floors located in the historic urban fabric typology with Hara street type during an extreme hot week. Each 
boxplot in this Figure contains each archetype's hourly indoor air temperature (168 points for each), 
indicating a lower range of indoor air temperature in the historical archetype located in the historic fabric 
compared to 20th century and new construction. The survey provided additional insights on indoor 
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conditions range where participants reported thermal discomfort. Around 87% of the participants 
reported an indoor air temperature of 31oC as the threshold where they started to feel thermal 
discomfort. As shown in Figure 3-13 below, the thermal discomfort threshold reported by the participants 
is at the 10th percentile of the hourly simulation in all three archetypes.  

 
Figure 3-13: Indoor air temperature for an extreme hot week. Each boxplot in this figure contains hourly operative 

temperature data for the three archetypes historical building of four floors, 20th century of four floors, and new 
construction of eight floors in historic fabric urban block type and Hara as a street type. The dashed red line 

represents the operative temperature threshold of 26.9oC according to ASHRAE Standards, and the dashed orange 
line represents the reported threshold when they felt thermal discomfort from the survey at 31oC. 

Figure 3-14 shows the cumulative distribution of indoor air temperature in a roof floor apartment for the 
three main archetypes in the same urban block typology (historical urban fabric with Hara type) for an 
extreme hot week. The vertical axis represents the cumulative fraction of hours at or below specific indoor 
air temperature. For instance, the dashed vertical black line represents the thermal discomfort threshold 
reported by the participants from the survey; in the new construction archetype (Figure 3-14-c), the curve 
shows 0.1 at an indoor air temperature of 31oC means that indoor air temperature for this archetype that 
is below 31OC represents 10% of the time.  

   
a. Historic Fabric (Historical 4 floors 

Hara type) 
b. Historic Fabric (20th century four floors 

Hara type) 
c. Historic Fabric (New 8 floors Hara 

type) 
Figure 3-14: Distribution of hourly indoor air temperature in three archetypes: Historical four floors, 20th century 

four floors, and new construction eight floors. The dashed vertical black line shows the threshold temperature 
when occupants reported thermal discomfort at 31 oC. 
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Next, the impacts of surrounding urban typology are examined. The research compares the indoor 
operative temperature for a historical building of four floors in three different urban typologies: historic 
fabric, mixed fabric, and new urban fabric with Zuqaq as the street type. Figure 3-15 shows that mixed 
and new urban fabric has a slightly higher indoor operative temperature range for a roof floor apartment 
than a historic urban fabric. The average operative temperature is 35oC for the historic fabric, 36oC for the 
new urban fabric with a difference by one degree, and the average maximum operative temperature is 
around 40oC. This can be explained by the characteristics of the surrounding buildings as new construction 
buildings’ height range from 6 to10 floors that may influence wind speed at the urban canyon level, 
temperature change, and heat loss from low-rise historical buildings. The clustering of tall buildings in a 
dense urban fabric with narrow streets can also induce heat-trapping and reduce the potential for indoor 
heat to dissipate.   

 
Figure 3-15: Indoor operative temperature for an extreme hot week. Each boxplot in this figure contains hourly 

operative temperature data for a historical building of 4 floors in three different urban typologies. The dashed red 
line represents the operative temperature threshold of 26.9oC. 

To understand the impact of different street widths on indoor conditions, hourly simulations were carried 
out for historical buildings of four floors located in the historic urban block type. The surrounding buildings 
are the same height of four floors based on what was identified from the site survey to represent the 
original historic fabric. The simulation results show that increased street width influences indoor 
conditions, as noted in the increased operative temperature between the Zuqaq type and Hara type 
(Figure 3-16). On the other hand, Darb, a street type with a width between four and five meters, is 
significantly higher than Atfa. These results imply that street width can influence indoor conditions, as 
illustrated in Figure 3-16 below. In Atfa and Hara type, average indoor air temperature increased by 1.0oC 
than Zuqaq type, while Darb showed an indoor air temperature lower by 2.0oC than in Hara and Atfa. This 
is due to urban canyons with wider streets and lower buildings tend to be cooler as it enhances wind 
speed at the canyon level allowing indoor heat to dissipate, similar to findings from other studies found 
in the literature (Chatzidimitriou & Axarli, 2017; Matthews, 2017). 
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Figure 3-16: Indoor air temperature for roof floor apartment in the historical building of four floors across different 

street types. 

The subsequent stage was to use validation for individual archetypes to develop an urban template for 
UMI inputs. An urban area of 1.2 acres is simulated for annual overheating hours above 26.9°C. Simulation 
results highlight that historical buildings have relatively higher overheating hours than archetypes from 
the late 20th century and new construction. The roof floor across all archetypes had higher annual 
overheating hours than other floors in the same building. The average annual overheating in historical 
buildings ranged from 4800 hours to 6300 hours, as shown in Figure 3-17-a. Archetypes from the late 20th 
century and new construction had average annual overheating hours ranging between 3000 and 3500 
hours annually, as presented in Figure 3-17-b.  Urban-level simulation results confirm the finding from the 
individual archetype analysis discussed above.  

 

 

a. Annual overheating results for the 2.8 acres 
study area b. Simulation results across examined archetypes 

Figure 3-17: Overheating simulation for three Archetypes. 
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3.4.2 Heatwave Impacts and Future Climate Scenarios 
Examining building thermal performance under extreme heat events or climate change scenarios has been 
an active research area over the past decade. This research serves as another incentive for previous efforts 
to highlight the impacts of heatwaves on indoor overheating in low-income neighborhoods with limited 
access to adaptation measures such as AC or power supply. This section examines the performance of 
different archetypes during extreme heat exposure to prioritize building types of higher risks. Among the 
efforts to develop a metric for heat vulnerability of buildings during extreme heat exposure, Nahlik et al. 
(2017) simulated buildings under steady-state Dry Bulb Temperature of 44oC and relative humidity 2% for 
one week to assess temperature differences between indoor and outdoor as a representative of a 
heatwave impact on buildings without power supply. The study showed that the indoor air temperature 
of buildings without air conditioning approaches outdoor temperature but never reaches it. Results from 
Nahlik’s research don’t accurately represent indoor conditions of an extreme heatwave, as it assumes 
internal loads to be only coming from envelope conduction.  

Thus, the same approach was applied to the three main archetypes (four floors historical, four floors from 
late 20th century, and eight floors new construction) located in the same urban typology (historic fabric 
with hara as the street type) to examine how indoor air temperature changes. The simulations were 
carried out using a steady outdoor temperature of 44oC and relative humidity of 2%. Figure 3-18 shows a 
similar daily pattern in indoor air temperature in roof floor apartments across the three main archetypes. 
In the absence of AC, the indoor air temperature across the three archetypes doesn’t fall below outdoor 
temperature, as it becomes challenging to lose internal gains to warmer external conditions through 
conductions. The new construction archetype showed the highest increase in indoor air temperature, with 
maximum indoor air temperature reaching around 49.5oC compared to 48.5oC in the historical archetype.  

 

Figure 3-18: Changes in indoor air temperature of the three main archetypes during a constant outdoor 
temperature of 44oC. 
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Next, using the simulation workflow discussed in the methods section, changes in indoor air temperature 
are assessed using the climate records of an actual heatwave that happened in Egypt in 2015. The 
differences in indoor air temperature between the three main archetypes examined above and located in 
historic urban fabric urban typology are compared. The 2015 heatwave happened between the 6th and 9th 
of August, so the meteorological records between August 4th and 12th were used. Figure 3-19 shows 
simulation results with a significant increase in indoor air temperature throughout the heatwave that is 
always higher than the outdoor air temperature with a decline in the difference in all archetypes between 
indoor and outdoor temperature. 

 

Figure 3-19: Changes in indoor air temperature for the three main archetypes in historic fabric typology during the 
2015 heatwave. Indoor air temperature is always warmer than outdoor.  

The diurnal variation of outdoor air temperature during the peak of the 2015 heatwave (between August 
7th and 8th) is 35oC at predawn to warmest around midday, where outdoor air temperature reached 44oC. 
The indoor air temperature with no AC scenario follows the varying outdoor dry bulb temperature with a 
minor time lag from the thermal mass, as illustrated in Figure 3-18. There is a significant heat gain from 
occupancy, equipment loads, and solar gain throughout the three main archetypes that cause the indoor 
air temperature to remain above the outdoor air temperature. In all three archetypes, the largest delta T 
(ΔT) occurs during the nighttime when the outdoor temperature cools down, as shown in Figure 3-20. In 
contrast, the indoor air temperature stays high, causing an increased heat exposure and lower capacity 
to absorb heat the next day. Delta T (ΔT) reduces through envelope conduction; consequently, as the 
outdoor temperature increases with the severity of heatwave, indoor air temperature increases 
significantly, creating uninhabitable indoor conditions for occupants, especially in the absence of 
mechanical cooling means. Across the three archetypes, indoor air temperature starts to cool down and 
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becomes lower than the outdoor air temperature during the early hours of the day between 6 am and 7 
am and starts to increase again till it reaches the outdoor air temperature by midday (between 1 pm and 
2 pm). The 2015 heatwave simulation results indicate potential high risks from overheating due to high 
temperatures, especially at night, that can potentially disrupt sleeping and pose elevated risks to the 
vulnerable populations. It can also be noted that wind speed during the heatwave peak specifically was 
relatively lower, especially at nighttime (12 am to 4 am), as shown in Figure 3-20-b. Findings from the 
nearest hospital records during 2015 indicated that around 158 emergency visits between August 9th and 
10th (Ahmed Maher Teaching Hospital, 2015) could be relatively tied to high indoor heat exposure from 
the previous two days.  

  
a. Delta T between indoor and outdoor temperature b. Dry Bulb temperature and wind speed during 

2015 heatwave 
Figure 3-20: a. Delta-T between interior and outdoor air temperature, b. Wind speed and dry bulb temperature 
during the 2015 heatwave. Indoor air temperature is cooler than outdoor historical and late 20th century at the 

early hours of the day between 7 am, and 11 am and starts to increase until it reaches the outdoor air temperature 
around midday and stays above the outdoor air temperature till the early hours of the morning of the next day. 

Next, the research examines the projected increase in overheating hours across different archetypes 
under the 2050 A2 climate scenarios. The A2 scenario is based on high growth in population to reach 15 
billion by 2100 and slower technological change resulting in a continuous increase in GHG emissions 
(Ogunlade Davidson, 2014). Figure 3-21 shows outdoor dry bulb temperature and relative humidity for 
the 2050 scenario, current weather file, and meteorological data for the 2015 heatwave. The 2050 
scenario doesn’t include heatwave events, and temperature and humidity are relatively lower compared 
to meteorological records from the 2015 heatwave, where dry bulb temperature is higher by an average 
magnitude of 5oC.   
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a. Hourly Outdoor Dry Bulb Temperature B. Hourly Relative Humidity 

Figure 3-21: Outdoor Dry Bulb Temperature (Left) and Relative Humidity (Right) for A2 scenario in 2050, current 
climate file, and meteorological data of 2015 heatwave for the same week. 

By simulating the 2050 scenario, several trends have been identified. Generally, there is a significant 
increase in overheating hours, especially for archetypes from the late 20th century and new construction 
archetypes. Figure 3-22 below presents the increase in overheating hours across all eight archetypes for 
current conditions and 2050 scenarios. Results show that archetypes from the late 20th century and new 
construction had an average increase in overheating by 18% by 2050. Notably, historic buildings had an 
average increase of 6% by 2050. Although historical archetypes have a higher number of overheating 
hours, future scenario simulations how that new construction buildings have a faster increase in the 
indoor operative temperature range in comparison. Also, 2015 heatwave simulation results indicated a 
potential for high indoor heat exposure that may pose significant risks to vulnerable populations under 
future climate projection given the projected increase in overheating potentials from urban simulation 
results.  

  
a. Indoor operative temperature across different 

archetypes 
b. Annual overheating results for the 2.8 acres study 

area for 2050 

Figure 3-22: Annual overheating simulation results for current conditions, 2020 and 2050 scenarios. 
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3.4.3 Human Adaptive Capacity 
Current and future heat risks call for a better understanding of human adaptive capacity under heat 
exposure, and what types of measures are being used to cope with current and potential extreme heat 
events in the future. In this research, a survey was conducted to understand residents’ adaptive capacity 
to heat exposure, including social practices, attitudes, and access to adaptation resources at the urban 
level, and understand the available resources for heat stress adaptation. The survey consisted of a mix of 
closed-ended questions utilized to quantify and identify types of heat adaptation measures and 
occupants’ behavioral adjustments during heat exposure; open-ended questions that were used 
contextualize adaptive capacity from occupants’ individual experiences at a greater depth. The survey was 
presented in Arabic and conducted over the two weeks of August 8th to August 22nd.  The time was chosen 
to get the actual occupants’ thermal experience during a typical summer week and was mainly conducted 
between 10 am to 4 pm.  The survey sampled were divided into 25 sections for data collection to cover 
the entire 12 administrative sectors (Sheiakha) of AlDarb Al Ahmar district, as presented in Figure 3-23.  

 
Figure 3-23: Distribution of surveyed samples (highlighted in black) in AlDarb Al Ahmar District in August 2019. 

a. Demographics 

More than half of the 300 surveyed residents were female (56.6%), most of the respondents reported 
they have lived in AlDarb Al Ahmar for more than 15 years (51.6%), and around 30% had a monthly income 
of less than 30$, while 12% reported having a monthly income more than 50$. The surveyed sample was 
relatively uneducated. Around 45% of the respondents were illiterate, 5% had primary education, 18% 
high school, 24% completed high school, and 8% had a university degree. For employment, 65.4% of the 
respondents were unemployed, and 34.6% were employed. Most of the unemployed sample (males) 
depended on daily jobs that can leave them for weeks without any form of income. The survey included 



93 | C H A P T E R  3  
 

questions about the distribution of the vulnerable population (elderly above 60 years old and infants 
below five years). Around 53% of the surveyed sample had at least one elderly (older than 60 years old) 
in the apartment, and 78% had one infant per apartment, as illustrated in Figure 3-24 below.  

  
a. Number of the elderly per apartment in the surveyed 

sample 
b. number of infants per apartment in the surveyed 

sample 
Figure 3-24: distribution of vulnerable population in the surveyed samples. 

 

b. Experience with heat 

The survey included questions related to heat sources and time of the day to examine their thermal 
experiences. Around 44.5% of the respondents lived in historical archetypes, 23% lived in late 20th century 
buildings, and 32.5% lived in new construction. Approximately 81% of the respondents who lived in 
historical buildings reported experiencing thermal discomfort (indoor conditions are warmer than usual) 
between 7 pm to 11 pm. In comparison, 84.3% of the respondents who lived in new construction reported 
experiencing thermal discomfort between 12 pm to 3 pm. In the survey, thermal discomfort levels were 
also examined, and around 55% of the surveyed sample who lived on the top floor reported a thermal 
sensation vote of 3 (hot).  

In contrast, 50% of the respondents who lived in intermediate floors reported a 1 (slightly warm) thermal 
sensation vote. Also, the research identified that there is a relationship between floor location and 
discomfort response. When respondents reported hot surroundings as the primary source of discomfort, 
they are mainly the top floor residents. On the other hand, people on the ground level reported that high 
humidity level was the primary source of thermal discomfort (Figure 3-25). 

 

31%

53%

13%

3%

0

1

2

3

N
o

. o
f 

E
ld

e
rl

y 
p

e
r 

ap
ar

tm
e

n
t 

16%

78%

5%

0

1

2

N
o

. o
f 

in
fa

n
ts

 p
e

r 
ap

ar
tm

e
n

t



94 | C H A P T E R  3  
 

  
a. Reported thermal sensation vote by floor location b. Sources of heat based on the surveyed sample 

Figure 3-25: Reported thermal sensation votes by floor location (left), sources of thermal discomfort based on the 
survey. 

c. Adaptive capacity 

From the survey, the research has identified that 86% of occupants who work are away from the 
apartment between 11 am - 6 pm, and 43% of the surveyed residents stay at home during the weekend 
(Friday and Saturday). Also, the research found two patterns of coping mechanisms that residents rely on 
during heat exposure; passive such as opening windows, opening the apartment door, using window 
blinds, and active through either using ceiling and portable fans. Table 3-6 below summarizes the main 
coping capacity patterns identified from personal interviews and site surveys for 300 residents.  

Table 3-6: Occupants' coping mechanisms based on personal interviews.  
 Income A (5-20$/m) Income B (20-50$/m)  Income C (50-150$/m) 

Distribution 30% 58% 12% 

Passive Coping Capacity 15% 4% 1% 

Active Coping capacity 85% 96% 99% 

Elderly Percentage 18% 17% 1% 

Infants Percentage 21% 28% 15% 

Access to AC unit 0 4% 50% 

The research identified two types of coping habits that occur during high indoor temperatures; at the 
building level (sleeping on the roof, sitting in balconies, taking a shower), and at the urban level (sitting in 
front of the house, going to the nearest open space, going Al Azhar park). Only 3% of the surveyed sample 
reported going to Al Azhar Park (Figure 3-26). This small fraction is mainly due to: i) some buildings are 
not within walking distance to the park, and ii) access to AlDarb Al Ahmar residents is only free from 12 
pm to 4 pm, which is the time where most of the residents are either doing households chores or working.  
Therefore, this limits the park's capacity to serve as a cooling space for the district’s residents, as 
previously highlighted. Several open spaces called “Midan” are open areas neighboring some of the oldest 
mosques. Around 20% of the surveyed residents reported spending time at the closest Midan when it gets 
warm inside.  
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a. Building level coping behaviors b. Urban level coping behaviors 

Figure 3-26: Reported coping behaviors at the building and the urban level based on residents’ responses. 
 

d. Awareness of heat risks 

The survey included questions related to how aware are the residents of heat exposure risks. The majority 
of surveyed residents (87.6%) reported not being aware of the severe risks of continuous heat exposure 
without proper hydration or ventilation. Of the participants who recalled hearing about heat-related risks, 
the primary source was information from the local tv news (6.8%), internet (4.4%), and newspaper (1.2%). 
When asked if they had received information about heat-related illness prevention, 2.4% mentioned the 
local tv news as the primary source. Around 98.6% didn’t know what measures to be followed during a 
heat event. These results indicate a lack of knowledge in AlDarb Al Ahmar residents on heat-related risks 
and a lack of information/resources on coping with heat exposure.  

3.4.4 Heat Exposure Range and Human Risk Threshold 
Health-related risks from prolonged exposure to high temperatures arise from multiple factors such as 
social isolation, age, income level, and medical condition (Palmer et al., 2014). To examine the effect of 
prolonged exposure to high temperatures, the research monitored a cohort of residents in AlDarb Al 
Ahmar. The target population included people living in historical building archetypes mainly situated in 
historic fabric, representing the study area's most common building and urban pattern. Also, targeted 
residents lived on the top floor apartment, with 25% of the sample lived alone (socially isolated) and 25% 
had an existing medical condition to evaluate impacts of prolonged heat exposure on human health. The 
research assessed the study group's thermal experience during personal monitoring to understand the 
level of thermal stress with respect to indoor air temperature. Statistical analysis showed a relationship 
between indoor air temperature and HR; the physiological indicator measured by heart rate indicated that 
maximum indoor air temperature was a good predictor of mean heart rate (p < 0.001), as illustrated in 
Figure 3-27. Examining the threshold range where the heart rate risk limit is exceeded, it was found that 
across the 18 participants, HR increases above 90 bpm under a Risk Threshold ranged between 31-34 and 
an average Exposure Range of 2.5-3 hours. This threshold was found to vary between elderly residents: 
in female elderly participants, the average exposure range was 2.5 hours, while in males, it was 3 hours. 
Previous studies have identified an indoor air temperature of 26oC as a threshold that can influence 
cognitive performance (Cedeño Laurent et al., 2018b). Also, a recent study (A. A. Williams et al., 2019) has 
identified a threshold of 24oC of indoor air temperature to impact HR and sleep disruption.  
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a. Heart rate and indoor air temperature for one of the 

monitored samples with a heart problem (age 31) 
b. Relationship between maximum indoor air 

temperature and mean hourly heart rate  
Figure 3-27: left- heart rate and indoor air temperature for one of the samples, right- the relationship between 

maximum indoor air temperature and mean hourly heart rate. 

Participants were also asked to report thermal stress levels using TSV and compared their answers to 
average and maximum indoor air temperature and heat index values during these times. Results show 
that around 80% of the monitored samples who lived in historical buildings reported a TSV of 3 between 
6 pm and 12 am at an average indoor air temperature between 33 and 34oC and a heat index of 37oC. For 
the new construction archetype, around 66% of the sample reported a TSV of 3 between 6 pm and 12 am, 
while 50% of the participants reported a TSV of 3 between 12 pm to 2 pm, as shown in Figure 3-28. As 
expected, the number of participants who reported TSV of 3 reported that their apartment was getting 
too hot at these times, which followed an increase in indoor air temperature between 31-33 in historical 
buildings and 32-34 in new construction.  
 
Also, there is a relationship between reported TSV and heat index. The research found that relative 
humidity levels in historical buildings were relatively higher than in new construction, which corresponds 
with the results from the survey that most of the residents mentioned humidity to be the source of 
discomfort lived in historical buildings. Examining survey results with personal monitoring findings, most 
residents who reported high humidity levels lived in historical buildings with Hara and Zuqaq as a street 
type facing new construction archetype (height ranges from 6 to 8 floors). Also, the majority of historical 
buildings had smaller floor areas (50-100 m2) with high occupancy density per apartment (5-6 people/ 
apartment) compared to new construction (150-250 m2) with an occupancy density of 4-5 
people/apartment.  
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a. Thermal sensation vote for the 18 participants b. Average indoor air temperature & heat index 
Figure 3-28: left- thermal sensation vote (TSV) reported by the participants during the experiment, right- 

corresponding average indoor air temperature and heat index. 
 

3.5 Discussion  
This section reports an in-depth investigation of potential health risks associated with increased indoor 
overheating for vulnerable populations with limited mechanical ventilation access. The goal was to 
investigate the threshold for indoor conditions that could result in health risks, specifically for elderly 
residents. A quantitative analysis using residents’ surveys was designed to develop a representative 
simulation model. Results from the simulation highlighted strong evidence of overheating across 
examined archetypes. Generally, the upper floors showed a higher number of overheating hours, 
especially for historical archetypes. These results can be explained by the wall bearing structure system 
commonly used in a historic building, with a wall thickness of 12.5 cm for a three-story building compared 
to a lower floor of 40 cm thickness.  The second phase of the analysis focused on developing an urban 
simulation model to investigate the potential increase in overheating over a large urban scale. This 
analysis was carried out in UMI using an actual occupancy scenario from the residents’ survey. The 
simulation results revealed a significant increase in overheating across all archetypes, especially in historic 
buildings. This can be directly linked to a small floor area with a high population density per m2 compared 
to newer buildings. As historic archetypes were initially designed to accommodate one family, a change 
of use resulted in higher population density than newer archetypes. On the other hand, the 2050 climate 
scenario results revealed a faster increase in archetypes from the late 20th century and new construction.  

In general, the AlDarb Al Ahmar study results show a significant discrepancy in living conditions, 
specifically between historic buildings and new construction. The change in building use from a small 
building footprint initially designed to accommodate a single-family to a low-rise apartment building to 
accommodate multiple families has altered these buildings' thermal experience. This change in building 
use has created a thermally stressed indoor environment that may pose higher risks in extreme heat 
events. Results from individual archetype simulation and urban typologies have reflected that changes in 
the urban fabric have altered the outdoor environment from how it was initially designed. Changes in 
open spaces network with the population density have also limited residents’ adaptive capacity when it 
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gets warm indoors. These results highlight the urgency to develop policies, information resources, and 
residents’ support programs for these areas to underline types of behavioral measures and resources in 
case of an extreme heat event.  
 Numerous studies have examined the relationship between heat exposure and human health in 
laboratory settings. This research has characterized the individual temperature exposure at low income-
housing with no access to AC using wearable devices. Simultaneously, environmental monitoring and 
behavioral factors were incorporated in the analysis using the survey to identify factors that influence 
individuals' adaptive capacity during high-temperature exposure and potentially affect individual’s 
susceptibility during extreme heat events. Health implications associated with increased overheating 
showed that for historic buildings, there is a threshold of exposure under an indoor air temperature range 
between 31 – 34 °C for an Exposure range between 2 to 3 consecutive hours. The analysis's main limitation 
is focusing on a single building type and the size of the monitored sample with the assumption of 
consistent ventilation scenarios.  The monitored sample in AlDarb Al Ahmar showed that indoor air 
temperature could alter physiology, increasing the heart rate with range markers between 31-24oC. 
Simultaneously, these temperature ranges have not impacted participants' daily activities. Still, they 
reported some disturbance in their sleep as most of the participants reported night time between 6-10 
pm to be the warmest time of the day. Further research should investigate the effects of changing 
ventilation and occupancy schedules alongside a larger sample's monitoring.  

Future work can also examine the impact of passive strategies with other thermal comfort indices such as 
Wet Bulb Global Temperature (WBGT), Predicted Heat Strain (PHS), and Sweat Rate (SR) across varying 
activity levels and occupants’ types. Findings from this research are limited to the examined sample. Still, 
it can be used as a starting point for how the duration of exposure can impact heat-related health impacts. 
Also, the temperature threshold identified in this study is relatively higher than what has been reported 
in previous work in the literature. Therefore, occupants’ acclimatization to these high temperatures 
should be considered a factor when assessing heat-related health risks (D. Chong, Zhu, Luo, & Zhang, 
2019). Results from this research highlight the complexities of heat vulnerability. Residents that were 
examined in AlDarb Al Ahmar were exposed to similar ambient conditions. Still, their buildings and 
surrounding resources have played a role in exacerbating or mitigating heat exposure risks.  
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3.6.  District Level Heat Vulnerability Assessment  
The first section of the chapter illustrated the potential risks of indoor overheating and high-temperature 
exposure at the building level. This section focuses on assessing the vulnerability at the district level under 
potential heatwaves to provide suitable mitigation and adaptation strategies. Previous studies that have 
examined heat vulnerability at the urban level (district, community, sub-district) depended on the spatial 
distribution of vulnerable populations to identify areas of high risk independently from indoor overheating 
at the building level (Dong et al., 2014; Walton, Poudyal, Hepinstall-Cymerman, Johnson Gaither, & Boley, 
2016). In most of these studies, the unit of analysis comprises multiple factors (building densities, open 
spaces, distribution of susceptible population) that are different at the spatial level, and each has a 
significant difference in their spatial distribution that contributes to the overall vulnerability assessment. 
The current gap in large-scale assessment is the limited understanding of which factors form the most 
significant impact on heat vulnerability, whether it is from exposure to heat at the building scale or limited 
accessibility to heat mitigation and adaptation measures at the district level. The main limitation of a 
large-scale vulnerability assessment is that it’s a computationally expensive process to model and simulate 
indoor conditions at the district level. This section provides an approach to district-level vulnerability 
assessment considering indoor thermal conditions at the building level using machine learning models.  

Machine learning (ML) is a powerful technology that stemmed from exploring artificial intelligence science 
(H. Li et al., 2016). Based on the literature, machine learning methods can learn nonlinear relationships 
between independent and target variables and conduct predictions through computational statistics (Y. 
Zhao, Genovese, & Li, 2020). The application of machine learning in building science has focused on 
modeling and predicting commercial building energy consumption (Robinson et al., 2017) and predicting 
indoor thermal conditions (Mateo et al., 2013). Yet, in the domain of indoor environment and overheating 
prediction, machine learning has not been widely utilized. Therefore, this section presents a machine 
learning approach for modeling and predicting overheating risks at the building scale to assess heat 
vulnerability and related risks at the district level. An overview of different machine learning models and 
their application in the built environment are presented to outline models or algorithms used in the 
building science field. Then the research presents the proposed model structure, input variables, and 
accuracy assessment. Finally, the district-level indoor overheating analysis is used to identify exposure 
range, areas of high risks, and potential interventions to improve adaptive capacity under heat exposure. 
AlDarb Al Ahmar district is used as the primary case study expanding on the analysis presented in section 
one of this chapter.  
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3.7 Machine Learning and Building Science  
Machine learning (ML) is an expression used to describe computer algorithms that learn from data to 
conduct predictions. The adaptive learning capability of ML models has enabled ML models to handle 
complex problems effectively, as ML models can improve from subsequent training and pattern 
identification (Arulmozhi et al., 2021). The learning process for these algorithms involves using a 
significant amount of data with a small number of inputs. Various ML methods have been used in building 
performance fields to estimate energy use in buildings and cooling and heat loads under multiple 
scenarios (Seyedzadeh, Rahimian, Glesk, & Roper, 2018).  In modeling and predicting building energy use, 
machine learning models operate as a black box with limited information on building systems. Then, 
algorithms discover the relationship between various input variables and output targets through learning 
from large data sets. 

The accuracy of ML models depends on the amount of training data used to predict targets, though the 
relationship between inputs and outputs is undefined. This approach is known as supervised learning in 
the ML field (Azuatalam, Lee, de Nijs, & Liebman, 2020). In building energy modeling, input/training 
variables are measured or calculated using simulation to estimate target outputs (Figure 3-29). There are 
three widely used supervised learning techniques in the building science field: Artificial Neural Networks 
(ANN), Support Vector Machine (SVM), and Gaussian distribution regression (Chaudhuri, Soh, Li, & Xie, 
2019). The second approach in ML is unsupervised learning, where it is mainly applied to unlabeled data 
to cluster them based on hidden similarities in their underlying features (Robinson et al., 2017). The most 
commonly used methods in unsupervised learning are K-means and hierarchical clustering. This approach 
has been widely used to determine building energy benchmarks and performance; hence, unsupervised 
algorithms provide more precise classification by grouping various buildings with similar baseline than 
traditional methods that mainly depend on building energy use type (Seyedzadeh et al., 2018). In 
unsupervised learning, all input data are used as training samples for classification, and generated clusters 
are considered the learning targets (Figure 3-29).  

 
Figure 3-29: Left- General schematic diagram of supervised learning, Right- Diagram of clustering buildings for 

energy benchmarking. (Based on (Robinson et al., 2017). 
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3.7.1 Motivation: ML and Indoor Environment Prediction  
Early studies in the application of ML to forecast indoor conditions have combined linear models with 
Artificial Neural Networks (ANN) to model and predict indoor daily temperature profiles in buildings 
(Hippert & Pedreira, 2004; Mechaqrane & Zouak, 2004; Thomas & Soleimani-Mohseni, 2007). These 
studies varied in the type of buildings, training data sets, and analysis methods used.  These research 
efforts have shown that neural network models outperform linear models in predicting temperature 
profiles and forecasting indoor air temperature. In recent studies, new techniques have emerged in the 
field of building science and indoor climate forecasts, such as Extreme Learning Machines (ELMs), general 
regression neural networks (GRNN), ANNs with non-linear autoregressive techniques (NARX), and 
Multilayer perception (Seyedzadeh et al., 2018). Cosma and Simha (2019) used a non-invasive ML 
approach to predict indoor thermal comfort for real-time feedback. Wu et al. (2018) examined the 
applicability of using ML models in predicting thermal perception using ANN and SVM over conventional 
statistical indicators.  

Another study by Chaudhuri et al. (2019) developed a framework to predict thermal comfort in buildings 
using two components: a feed-forward neural network model and an optimization algorithm for the 
optimal indoor air temperature to reduce the discrepancy between energy efficiency and indoor comfort.  
As discussed above, ML models have been used to conduct solutions to complex problems such as 
prediction, clustering, and classification. However, there is a knowledge gap in using ML techniques in 
modeling and predicting building microclimate (Mateo et al., 2013). The research tries to evaluate the 
performance of ML models to predict indoor conditions to guide the development of district-level indoor 
heat vulnerability assessment. Research on ML application in indoor overheating assessment and heat 
vulnerability is scarce, and this section aims to fulfill this gap. The proposed model seeks to utilize building 
simulation as inputs to a machine learning model to predict large-scale district indoor overheating, a 
process that is both computationally expensive and time-intensive to conduct using simulation models. 

3.7.2 Artificial Neural Networks (A.N.N.) 
Artificial Neural Networks are a nonlinear machine learning method inspired by how the human brain 
neural network proceeds and processes information, where it copies information propagation in a 
simplified manner (Walker, 1990). Data flow from one neuron (processing element) with weight and is 
sent through a link (axon) to the next neuron. This process is combined with other weighted information 
from other neurons using an activation function (Bourdeau, Zhai, Nefzaoui, Guo, & Chatellier, 2019) and 
repeated until the accuracy error converges to fit the data when the number of iteration is reached. The 
structure of ANN consists of multiple neurons divided into three main layers: an input layer either used 
to train the model or execute the final predictions, a hidden layer that links the input and output layer, an 
output layer to give the final results, and an activation function that forms the relationship between the 
three layers (Figure 3-30).  
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ANN are usually designed based on three criteria: i) learning method that is related to final error 
propagation and how this process affects the weights, ii) the connection between different neurons, how 
many layers and how many neurons are communicating, and iii) the activation function between the 
different layers (Magoulès & Zhao, 2016).  The accuracy of ANN prediction significantly depends on the 
training data and the structure of the model, which can also influence the model’s performance with 
respect to overfitting and underfitting.  

 
Figure 3-30: Schematic of a classical three-layer ANN. (Magoulès & Zhao, 2016).   

The ANN application has expanded significantly in the past couple of years due to its capability to capture 
the non-linear relationship between variable inputs and outputs. Most ANN applications in the building 
science field have focused on energy use prediction, commonly known as the chief ML technique, to learn 
key patterns in building systems (Mateo et al., 2013; Tso & Yau, 2007).  Kalogirou et al. (1997) used ANN 
to predict heating demands in buildings using training data of 225 buildings that varied from small to large 
spaces. ANNs were also used to optimize occupants' behavior for HVAC systems usage. Aydinalp et al. 
(2002) used neural network models to estimate cooling energy demand. The study showed that ANN 
models could be a good estimator of the effects of socioeconomic factors on energy consumption in the 
residential sector.   

Moreover, the recent ANN application in the building science field has proven to be a feasible approach 
for modeling multivariable problems related to a building’s thermal comfort. Mustafaraj et al. (2010) used 
a multilayer neural network to predict indoor air temperature in a building in London. Also, Afroz et al. 
(2018) used ANN as a modeling approach to estimate indoor air temperature for a library building in 
Australia. Qi et al. compared indoor temperature predictions for buildings in China using two methods: 
Back Propagation Neural Network (BPNN) and support vector machine (SVM). Although numerous studies 
have used ANN techniques in thermal comfort and temperature prediction, the application of ANN in 
estimating indoor overheating for heat vulnerability assessment is still limited.  
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3.8 Methods  
This section describes data used in model development and training and machine learning methods used 
in the study. The research expands on AlDarb Al Ahmar case study presented in the first half of this chapter 
using simulation outputs as input data for the proposed ANN model. Next, results from the ANN model 
were incorporated into district-level heat vulnerability assessment using an image augmentation 
technique. Finally, results from the model are compared and evaluated for performance and accuracy. 

3.8.1 Modelling Parameters 
The simulation process investigates various parameters related to archetype physical characteristics 
identified from the site survey discussed in section 3, such as archetype geometry, window-to-wall ratio 
(WWR), envelope construction, and building orientation. Two different plan shapes were modeled to 
represent archetypes’ floor plans in AlDarb Al Ahmar. They included a rectangular floor plan (1 to1.5 width 
to length ratio) and a square (1 to 1.1 width to length ratio). The floor area of each floor plan varied 
according to the archetype and was determined based on the site survey and previous urban analysis 
conducted by Aga Khan Foundation (Aga Khan Foundation, 2013) as follows: historical (60 to 100 m2), late 
20th century (80 to150 m2), and new construction (100 to 250 m2). Each floor plan was divided into thermal 
zones by perimeter and core and orientation, as illustrated in Figure 3-31 below.  

 
Figure 3-31: Plan geometry with thermal zoning for the three main archetypes. 

For the urban context, representative urban typologies identified from the site survey of 500 m2 are 
modeled. The presence of neighboring buildings plays a role in indoor climatic conditions; thus, the 
research models eight cases of all the possible adjacent buildings, including: historical (2 to 4 floors), late 
20th century (4 to 5 floors), and new construction (5 to 8 floors). The research developed 800 urban 
typology base cases for the three main representative archetypes in AlDarb AlAhmar, including all the 
possible scenarios for neighboring buildings type, street width, and urban density, as illustrated in Figure 
3-32. Since the area is considered highly dense, urban density was modeled based on the surrounding 
urban context.  A fixed plot area and Floor Area Ratio (F.A.R) of 1.0 and height limits were kept constant 
and changing the number of building’s sides exposed to the street; ranging from low density (three sides 
overlooking the street), medium density (two sides), and high density (one side).  
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Figure 3-32: Example of different urban typologies and density types in AlDarb Al Ahmar. 

The key model parameters used in the simulation are listed in Table 3-7 below. Equipment load and 
occupancy schedule were based on the site survey discussed in section 4 of this chapter. Since AC units 
are scarce in AlDarb AlAhmar, all the representative cases were modeled with no access to AC to assess 
the health risk impacts from heat exposure independently from AC usage. Simulations were carried out 
for an extreme hot week (August 18th to August 25th) using the Egyptian Typical Meteorological Year 
weather file (ETMY) covering 12 to 21 years and ending in 2003. Next, an IDF is generated for every 
permutation of archetype parameter for a total number of 200 IDF as listed in Table 3-7.  

Table 3-7: Parameters values used for IDFs’ development. 
Parameter Permutation Values 

 
Building Geometry: Square and Rectangle. 

 
Window-to-Wall Ratio: 20%, 40%, 60%. 

 
Orientation: N,S,E,W. 

 

Wall Insulation 
Historical: Limestone wall: 40 cm to 120 cm, sand fill 5 cm, 2.5 cm mortar, 2.2 cm plaster. U-
Value: (0.5-0.6) 
20th Century: Red Brick wall: 25 cm, 2.5 cm mortar, 2.2 cm plaster. U-Value: (4.1) 
New Construction: Red Brick wall: 12.5 cm, 2.5 cm mortar. U-Value: (8.3) 

 

Street Types:  Zuqaq (2.5 m), Atfa (3.0 m), Hara (4.0 m), Darb (5.0 m). 

 

Density: Low, medium, and high. 
Urban Block Typology: Historic, Mixed, New. 
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3.8.2 Simulation Workflow 
The proposed framework for district-level indoor overheating assessment combines building simulation 
output with ML techniques by integrating simulation automation using python scripting language with 
ANN to conduct large-scale overheating predictions. The overheating assessment workflow starts with 
generating a simulation dataset for four main parameters: indoor air temperature, relative humidity, 
standard effective temperature (SET), and operative temperature. Next, simulations were conducted 
using EnergyPlus and Python’s Eppy library for the three main archetypes and urban typology 
configurations. An investigation of building geometry representation, orientation, and the window-to-wall 
ratio is explored by manipulating EnergyPlus IDF using Python’s Geomeppy library. The structure of the 
simulation workflow consists of four main steps: representative cases 3D modeling, IDFs manipulation, 
changing building parameters, and model testing, as presented in Figure 3-33 below.  

 
Figure 3-33: Simulation Workflow Diagram. 
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3.8.3 ANN Model Architecture 
Multilayer perceptron (MLP) is one of the most widely used neural network models in the building science 
field (Fadare, 2009; Guresen, Kayakutlu, & Daim, 2011). MLP models are composed of several layers 
linking inputs to specific outputs (Thomas & Soleimani-Mohseni, 2007). The procedure of MLP is based on 
non-linear mapping for a set of input data to multiple outputs in an adaptive manner which is achieved 
through learning from examples using backpropagation algorithms (Magoulès & Zhao, 2016). In MLP, 
error-correction learning is used to train the ANN, where errors are propagated through the network and 
modified in the hidden layer (Chae, Horesh, Hwang, & Lee, 2016). MLP has also been applied in various 
scientific fields such as medical research (Nasser & Abu-Naser, 2019), environment (Banerjee, Singh, 
Chatttopadhyay, Chandra, & Singh, 2011; Iglesias et al., 2014), and building energy (Chae et al., 2016; Neto 
& Fiorelli, 2008). From the literature, it has been found that MLP can provide the desired accuracy in 
prediction with only a single hidden layer and a sufficient number of neurons. Therefore, in this work, MLP 
can be used to predict indoor thermal conditions for urban stock in AlDarb Al Ahmar district. The structure 
of MLP is fully connected and consists of three layers: input layer to gather model’s input vectors (x), a 
hidden layer (h) that is characterized by non-linear neurons, and output layer to yield output vectors (y) 
(Moradzadeh & Pourhossein, 2019; Seo & Eo, 2019). Figure 3-34 illustrate the schematic non-linear 
mapping between input and output vectors. Each layer contains 64 neurons where each neuron is 
connected through weights, and output is activated with non-linear ReLU Function (rectified linear unit: 
max (0,x)) to help the neural network to stack deeper (Eckle & Schmidt-Hieber, 2019). The MLP is 
formalized using the following equation:  

                     𝑌𝑌 = �𝑆𝑆 + ∑ 𝑤𝑤𝐼𝐼𝐸𝐸𝐼𝐼𝑁𝑁
𝐼𝐼=1 �                (1) 

 
Where: Y is the output signal, f is the nonlinear transfer function, b is the bias, x is the input signal, and w 
is weight vectors a for N (number of inputs). The reasoning behind using MLP is due to their ability to learn 
through training (Thimm & Fiesler, 1997) from a dataset with known input and output vectors. Thus, 
simulation data will be used as input vectors to train the MLP model to forecast indoor conditions.   

 
Figure 3-34: Schematic structure of Multilayer Perceptron (MLP). Based on (Thimm & Fiesler, 1997). 
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3.8.4 Model Learning, Testing, and Evaluation  
There are three primary phases to improve the MLP model’s accuracy in prediction; learning, testing, and 
generalization (Mba, Meukam, & Kemajou, 2016). The learning step involves using a training dataset 
(hourly simulations output) of N inputs and outputs paired in the form of D= {xi, ti}𝐼𝐼=1𝑁𝑁 . The variable x 
represents the samples of each of the input vectors (ny+nu+1), t is the target input variable which 
corresponds to the simulation outputs for indoor air temperature, relative humidity, mean radiant 
temperature, operative temperature, and standard effective temperature. In the learning phase, the 
weight of each input vector (w) is adjusted to minimize an error function J, which represents the sum of 
squares of errors between simulation output ti and model prediction yi= y (xi; w) using the following 
equation: 

𝐽𝐽(𝑤𝑤) =  1
2

 ∑ {𝑆𝑆𝐼𝐼 − 𝑆𝑆𝐼𝐼}2 =  1
2

𝑁𝑁
𝐼𝐼=1  ∑ 𝐸𝐸2𝑁𝑁

𝐼𝐼=1               (2) 

Backpropagation was used as the learning algorithm as it is considered the best convergence to a 
minimum of mean square error (MSE) (Haykin, 1999). Testing and generalization phases involve 
evaluating the MLP model to produce accurate output when tested with data examples not used in the 
learning phase. In this model, there are 12 feature vectors used as inputs and four-vectors as outputs 
representing indoor air temperature, relative humidity, operative temperature, and SET (Figure 3-35).   

 
Figure 3-35: MLP structure with inputs and output vectors. 

The data set consisted of 720,000 simulation points divided into 60% as training/learning data and 40% as 
testing data to validate and evaluate the accuracy of the prediction of each network. The cost function 
MSE (Mean Square Error) was used to assess the prediction error between actual and predicted values in 
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the training process. The primary purpose of the training process is to minimize the cost function that is 
implemented by adjusting the weights iteratively using the following equation:  

𝜔𝜔 − 𝜂𝜂 𝜕𝜕𝐼𝐼(𝜔𝜔,𝑏𝑏)
𝜕𝜕𝜔𝜔

→  𝜔𝜔′, 𝑆𝑆 − 𝜂𝜂 𝜕𝜕𝐼𝐼(𝜔𝜔,𝑏𝑏)
𝜕𝜕𝑏𝑏

 →  𝑆𝑆′     (3) 

Where 𝜂𝜂 is the learning rate that determines how quickly or slowly to update the weights and parameters 
based on the model’s ability to predict actual value. The model training process was relatively fast as it 
took around 620 seconds to train the model using 1,038,240 data points and the prediction time for 
692,160 points took about 242 seconds.  

Numerous statistical indices are used in the literature to evaluate ANN predictive performance (Banerjee 
et al., 2011; Seo & Eo, 2019). These indices include Coefficient of Variation (CV), Root Mean Squared Error 
(RMSE), Mean Squared Percentage error (MSPE), and Mean Absolute Error (MAE), Mean Square Error 
(MSE), and the coefficient of correlation (R). After training and testing each neural network in the MLP 
model, MSE was used to assess the model's accuracy and performance. The specific definition of all the 
performance indices is provided in equations (3-7) below.  

 𝑅𝑅𝐸𝐸𝐸𝐸𝑆𝑆 𝑀𝑀𝐸𝐸𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸) =  �1
𝑁𝑁
∑ (𝐸𝐸𝐼𝐼𝑁𝑁
𝐼𝐼=1 − 𝑆𝑆𝐼𝐼)2                  (4)  

𝑀𝑀𝐸𝐸𝐶𝐶𝐶𝐶 𝐴𝐴𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆 (𝑀𝑀𝐴𝐴𝐸𝐸) = 1
𝑁𝑁
∑ |𝐸𝐸𝐼𝐼 −  𝑆𝑆𝐼𝐼|𝑁𝑁
𝐼𝐼=1                                 (5) 

𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐶𝐶𝑆𝑆 𝐸𝐸𝐶𝐶 𝐷𝐷𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐷𝐷𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝐸𝐸𝐶𝐶 (𝑅𝑅) =  ±�∑ (𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑥𝑥𝑖𝑖−𝑥𝑥−)2𝑁𝑁
𝑖𝑖=1

                       (6) 

𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐶𝐶𝑆𝑆 𝐸𝐸𝐶𝐶 𝑉𝑉𝐶𝐶𝐸𝐸𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆𝐸𝐸𝐶𝐶 (𝐶𝐶𝑉𝑉)  = �
1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑁𝑁

𝑖𝑖=1
𝑦𝑦𝑖𝑖

                                (7) 

𝑀𝑀𝐸𝐸𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑀𝑀𝑆𝑆𝐸𝐸) =  1
𝑁𝑁

 ∑ (𝐸𝐸𝐼𝐼 − 𝑆𝑆𝐼𝐼)2𝑁𝑁
𝐼𝐼=1                                   (8) 

Where: 
xi is the actual value and yi is the predicted value, and N is the total data in the dataset used for prediction 
evaluation. All prediction values are rounded off, and the final prediction value was used to calculate 
Mean Square Error (MSE) and the model’s total accuracy, as discussed above. The MLP model architecture 
and structure were developed in a Python environment using the following libraries: Pytorch, Pandas, 
Numpy, Skilearn, pandas, Keras, and TensorFlow.  
 

3.8.5 Model Performance and Validation 
After training the model using the data described above, the results presented in Figure 3-36 shows the 
variation trend of the error convergence throughout the learning process over training epochs for indoor 
air temperature (IAT). The training data set was divided into 30 epochs, with each epoch contained 34,600 
points. It can be noted that the initial training period and error curve decreased significantly and very 
quickly. Also, the minimum error was reached after nine training epochs and reached a stable value. It can 
be indicated from Figure 3-36 (left) the model achieves 0.25 temperature difference after training on 1100 
data point only, which implies that the model can learn efficiently from a small data sample that covers 
all archetype cases.  
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Figure 3-36: Left, Error Convergence Curve for each training cycle (epoch), Right, MAE during training in oC.   

Figure 3-37 compares model outputs and actual simulation results for SET. The model’s prediction 
accuracy improved significantly after five training epochs. Next, a validation test was conducted for 20 
simulation points for the four predicted parameters to calculate the Mean Square Error (MSE) to make 
the results independent of the selected initial parameters.  

   

   
Before training After 5 epochs After 9 epochs 

Figure 3-37: Predicted SET and Relative Humidity from MLP and actual values for different training epochs.  
Four different testing sets were created to calculate the model’s performance through the training. Set A 
for indoor air temperature, set B for SET, set C for relative humidity, and set D for operative temperature. 
The MSE for set A is 0.42 at the beginning of training for 1000 datapoint and 0.12 for set D, while the 
average mean absolute error for the model is 0.12 after training for 420,000 points. Table 3-8 summarizes 
MAE for training sets for the 4 examined parameters at the beginning of the training at 1000 data points 
and the end of the training at 420,000 data points.  

Table 3-8: MAE for the four testing sets at the beginning and the end of the training.  

 Set A Set B Set C Set D 
MAE (1000 point) 0.42 0.36 0.85 0.13 

MAE (420,000 point)  0.09 0.098 0.197 0.12 
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3.9 District Level Prediction  
As discussed above, an MLP model was developed to help predict indoor exposure and heat vulnerability 
assessment at the district level. As illustrated above, the model has shown a decent accuracy in predicting 
indoor conditions represented in the four tested parameters, namely, indoor air temperature, SET, 
relative humidity, and operative temperature. Next, MLP model prediction outputs are combined with 
classical computer vision methods to model heat vulnerability for AlDarb Al Ahmar district. Here, a 
building stock map for AlDarab Al Ahmar district was used to assist in spatially visualizing the distribution 
of blocks or buildings with higher vulnerability levels and prioritize areas of intervention. The research 
develops an assessment profile as input data to perform district-level prediction for indoor exposure and 
heat vulnerability. The assessment profile carries eight sources of primary information:  archetype, 
building orientation, number of floors, building geometry, apartment location, street type, WWR, and 
urban block typology. These input data are then detected and translated from a 2D image and fed into 
the MLP model to predict indoor conditions at the district level. The district-level assessment workflow is 
based on pixel analysis techniques to detect archetypes class, urban typology, orientation, building 
geometry, and street type from 2D image data.  

a. Detecting Archetype: to differentiate between different archetypes, the research used pixel analysis to 
detect building archetypes based on a survey map that contained color-coded information for all 
archetypes (Figure3-38). Most of the pixel analysis methods are sensitive to any changes in pixel data; 
thus, color distribution was unified for the survey map to analyze the pixel properties in the color space 
and characterized each pixel according to its three trichromatic components, red (R), green (G), and blue 
(B), where all red color derivates in the image have the same value, so the information in all pixels of the 
same color is unified. For this purpose, the research used the KNN algorithm (K-Nearest Neighbor). KNN 
algorithm is an unsupervised algorithm used to classify all pixels’ values by assigning them to the same 
color class (Z. Zhang, 2016). The KNN function uses Euclidean distance to classify pixels of the same color 
using the following equation: 

𝐷𝐷(𝐸𝐸, 𝑆𝑆) =  �(𝐸𝐸1 − 𝑆𝑆1)2 + (𝐸𝐸2 − 𝑆𝑆2)2 + ⋯+ (𝐸𝐸𝑛𝑛 − 𝑆𝑆𝑛𝑛)2     (9) 

 

Where p and q are pixel values compared with n characteristics which is here a tuple of (Red, Green, and 
Blue). Next, graph theory methods are applied to detect all pixels of the same color to detect each 
archetype within the 2D map. Here the research uses Breadth-First Search (BFS) algorithm to detect all 
pixels of the same color value and output them into an archetype class (Figure 3-38).  The BFS algorithm 
is a graph search algorithm applied to find all vertices/pixels from a given vertex or pixel (Silvela & Portillo, 
2001). The BFS workflow starts with an arbitrary pixel, visits all neighboring pixels outwards and in all 
directions level by level, and outputs all pixels of the same value in a queue or boundary, as shown in 
Figure 3-38 below.  
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Figure 3-38: Top, Archetypes and their color classes, Bottom detected archetypes from the BFS algorithm. 

ii. Detecting Building Orientation: Next, pixel analysis methods are applied to detect building orientation 
from the 2D image. For a given archetype detected, the center pixel is calculated using the following 
equation:  

(𝐸𝐸,𝑆𝑆) =  ��
𝐸𝐸𝑚𝑚𝐼𝐼𝑛𝑛 + 𝐸𝐸𝑚𝑚𝑊𝑊𝑥𝑥

2
� , �

𝑆𝑆𝑚𝑚𝐼𝐼𝑛𝑛 + 𝑆𝑆𝑚𝑚𝑊𝑊𝑥𝑥
2

� �        (10) 

Where, (x,y) represents the coordinate of the center pixel, 𝐸𝐸𝑚𝑚𝐼𝐼𝑛𝑛 is the leftmost pixel located the building 
boundary, 𝐸𝐸𝑚𝑚𝑊𝑊𝑥𝑥  is the rightmost pixel, 𝑆𝑆𝑚𝑚𝐼𝐼𝑛𝑛 is the bottommost pixel, and 𝑆𝑆𝑚𝑚𝑊𝑊𝑥𝑥 is the upmost pixel. After 
calculating the center pixel, arrows are expanded in all possible directions (Figure 3-39) to identify the 
orientation. This is determined by how many arrows’ paths will be disconnected with another archetype 
and how many will be disconnected by a street. The building orientation is detected and represented by 
overlooking a street; thus, for those arrows disconnected by streets, the median value is estimated at the 
y axis angle to define the building orientation. The orientation angle is calculated assuming the main north 
orientation on the map is facing upwards.  
 
b. Urban Typology: using the following pixel analysis approach in orientation detection, the research 
applies the same approach to detect urban typology where the archetype of interest is located. Here the 
typology type is estimated based on the density of the urban block (number of surrounding buildings). 
After calculating the center pixel following the above approach, the percentage of arrows disconnected 
by a neighboring archetype is calculated. For example, if ~25% of the arrows were disconnected by an 
adjacent building, it denotes a low-density urban block, ~ 50% represents medium density, and high 
density if ~75% of the arrows were disconnected by a neighboring archetype. Since archetypes are 
detected at the pixel level described above, the urban block typology can then be identified.  For instance, 
if the results represented a low-density urban block and surrounding pixels are historical archetype 
classes, this building is located in historic urban block typology.  
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c. Building Geometry:  next, archetype geometry is determined, whether its square plan or rectangular. 
This process is carried out by estimating the detected archetype pixels ratio using the following equation:  

𝐺𝐺𝑊𝑊 =  
𝐸𝐸𝑚𝑚𝑊𝑊𝑥𝑥 − 𝐸𝐸𝑚𝑚𝐼𝐼𝑛𝑛
𝑆𝑆𝑚𝑚𝑊𝑊𝑥𝑥 −  𝑆𝑆𝑚𝑚𝐼𝐼𝑛𝑛

    (11) 

Where, 𝐺𝐺𝑊𝑊  is the detected archetype geometry,  𝐸𝐸𝑚𝑚𝑊𝑊𝑥𝑥  &  𝐸𝐸𝑚𝑚𝐼𝐼𝑛𝑛 are the maximum and minimum pixel 
values in the x-direction, and 𝑆𝑆𝑚𝑚𝑊𝑊𝑥𝑥  &  𝑆𝑆𝑚𝑚𝐼𝐼𝑛𝑛 are the maximum and minimum pixel values at the y-direction. 
If the ratio between pixels’ value at the x and y direction is close to 1, the archetype’s geometry is a square; 
otherwise, it will be rectangular. Therefore, the ratio threshold for a square geometry is set between 0.9 
and 1.1 and rectangular to be less than 0.9.  

d. Street Width: a pixel analysis algorithm is developed to detect street type (width) that is based on two 
primary steps: 1) identification of border pixels and 2) calculating street width based on vector length. In 
the first step, the pixels group that represents the street boundary is identified. These pixels represent a 
street-side if not located within the boundary of the detected archetype or another adjacent archetype. 
After detecting the pixels group that doesn’t belong to the detected archetype and lies within a street,  
the average vector for every pixel located on the detected street-side is calculated. 
In the second step, the length of every vector passing through the street until an opposite archetype 
disconnects it is calculated, where the average length of all vectors passing through the street will denote 
the total street width.  
After detecting the assessment profile with eight primary inputs for a given archetype in the 2D image, 
the trained MLP model described above is applied to run district-level prediction for the four key 
parameters.   
The MLP will produce 168 hourly simulation values representing each hour of the day for an extreme hot 
week. Thus, each apartment in each of the different archetypes will have a matrix of values (4, 168) where 
four rows correspond to the key examined parameters and their hourly simulations. For optimization and 
fast performance, the model exploits a parallelization technique to compute the values of multiple 
parameters at the same time instead of computing one parameter for each apartment in a sequential 
process using the TensorFlow Python library to compute outputs simultaneously. This parallelization 
allows the model to perform simulations in a time-efficient manner compared to regular simulation 
workflow. The model takes two seconds to compute each of the four parameters for 5000 buildings.  

3.9.1 Heat Vulnerability & Adaptive Capacity 
Adaptive capacity at the district level has been widely explored using large-scale data on population socio-
economic characteristics. However, adaptive capacity at the district level, considering household level 
exposure and surrounding urban amenities, is an understudied area in heat vulnerability assessment (Cai 
et al., 2019). Here, the output from district-level heat vulnerability assessment and distribution of 
surrounding urban amenities is used to examine the overall adaptive capacity that can guide short-term 
interventions against potential extreme heat exposure and long-term adaptation strategies. For heat 
vulnerability assessment, as it was discussed in chapter 2 of this dissertation, vulnerability is a function of 
Susceptibility (S), Exposure (E), and adaptive capacity (AC). vulnerability is considered a function of an 
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urban area's susceptibility to heat exposure and its adaptive capacity, where vulnerability is calculated 
using equation (12) as follows:   

𝑉𝑉 = (𝐸𝐸 + 𝑆𝑆) − 𝐴𝐴𝐶𝐶        (12) 

V represents vulnerability, E is the exposure of an urban area or building, S is the susceptibility, and AC is 
the adaptative capacity. There are many existing methods for heat vulnerability at the district-level, such 
as using GIS data to perform spatial assessment (Inostroza, Palme, & De La Barrera, 2016), principal 
component (Zhu et al., 2014), multi-criteria analysis (Rinner et al., 2010), and equal weight method 
(Weber, Sadoff, Zell, & de Sherbinin, 2015). The research chooses the equal weight method for this work 
as it has been proven to be simple to use and more effective in realizing multi-level evaluation in large-
scale heat vulnerability assessment studies. Using equation 12, heat vulnerability at the district level is 
assessed. The process of district-level heat vulnerability assessment is carried out using the following 
steps:  

Step 1: Calculate exposure at the building level and output buildings where indoor air temperature 
exceeds 34oC based on human monitoring results conducted at the first half of this chapter and SET is 
above 30 oC following LEED passive survivability guidelines (LEED, 2021) for more than four consecutive 
hours of the day during the extreme hot week.  
Step 2: Calculate Susceptibility at the building level based on building age. Here historic buildings with no 
retrofit are considered more susceptible to heat exposure than the new construction archetype. The 
algorithm used to detect archetypes was also utilized to output the distribution of older buildings in 
AlDarb Al Ahmar district.  
Step 3: Calculate adaptive capacity at the urban block level. The research considers 500 meters of walking 
distance proximity to cooling shelters and al Azhar park as an indicator for adaptive capacity at the urban 
block level using the graph search algorithm BFS described in detail in chapter 4. The BFS algorithm was 
used to compute the distance of each pixel or group of pixels from a specific amenity class and identify 
the shortest path from the source (heat adaptation amenity). The reasoning behind this approach is to 
examine heat vulnerability distribution in scenarios where power supply is not available, which is a typical 
case in Cairo during the summertime. Thus, adaptive capacity outside the building level was evaluated to 
account for surrounding urban amenities that can improve occupants' adaptive capacity mechanism 
during extreme heat exposure, using the graph search algorithm described above to calculate the distance 
of each building to Al Azhar Park. Finally, the three vulnerability indicators described above, exposure, 
susceptibility, adaptive capacity, were normalized using an equal weight approach to calculate heat 
vulnerability at the district level (Figure 3-39).  
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Figure 3-39: The three steps used for district-level heat vulnerability assessment. 

3.10 Results 
Figure 3-40 presents the average extreme hot week output at the district level for indoor air temperature 
and SET, where each color represents the weekly average per building. It can be noted that these results 
confirm with results presented in individual archetype simulations where indoor air temperature and SET 
are higher for new construction archetypes that are primarily located in new urban fabric urban typology. 
Results from the model were translated into a web visualization tool (mena-cc.com/heatwaves) where 
the python model runs online and produce hourly simulation results per building and per apartment by 
floor location based on user interaction for the four examined parameters in this research, namely, indoor 
air temperature, relative humidity, SET, and operative temperature. The purpose of the MENA heatwave 
platform is to act as a medium to present these results for interested policymakers at the district level on 
locations with high indoor exposure and strategies to improve district adaptive capacity.  
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Figure 3-40: Left, Average indoor air temperature and Right SET for an extreme hot week at the district level. 

Next, a district-level exposure assessment was used to estimate overall vulnerability following equation 
11. Since the ML-based approach outputs four main indoor climatic parameters, the BFS algorithm was 
used to detect at the pixel level buildings, roads, and available open space to evaluate adaptive capacity 
at the district level. Here the research considers proximity to open spaces/parks as an indicator for 
adaptive capacity. As highlighted earlier, Al Azhar Park is the central open space in AlDarb Al Ahmar district 
that residents use as an outlet when indoor temperature increases, which was also identified from the 
questionnaire. Figure 3-41 represents adaptive capacity at the district level considering proximity for Al 
Azhar Park within walking distance of 200 meters. The assessment of adaptive capacity is then normalized 
and used to calculate vulnerability at the district level.  

 
Figure 3-41: Proximity from existing heat adaptation amenities (Al Azhar Park). 

Following the methodology described in section 3.8.5, heat vulnerability at the district level is calculated, 
as illustrated in Figure 3-42. It can be noted that although historic archetypes had higher indoor 
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conditions, buildings that are within proximity to Al Azhar park had lower vulnerability due to their high 
adaptive capacity. This level of capability to compute heat vulnerability at the district level would assist 
policymakers in identifying areas with limited adaptive capacity and building stocks/archetypes at high 
risk due to either high indoor exposure or limited access to adaptation resources and prioritizing sets of 
adaptation intervention based on vulnerability assessment.  

 
Figure 3-42: Heat Vulnerability at the District level based on existing conditions and adaptive capacity amenities.  

Next, the output from the vulnerability assessment at the district level was used to identify possible 
interventions to reduce vulnerability against potential heat exposure in the face of climate change. As 
discussed above, most residents who don’t have direct access to Al Azhar park go to Midan or use the 
building roof when indoor temperature increases. The research examines changes in heat vulnerability 
through two main urban intervention scenarios; i) increasing access to open spaces/urban parks and ii) 
adding cooling shelter. The research considers available unutilized vacant plots in AlDarb Al Ahmar to be 
transformed into open spaces to provide equitable access to adaptation resources especially given the 
limited time frame to Al Azhar Park. From the site survey and Aga Khan site plan for vacant buildings, 
around 65 unutilized buildings can be retrofit and used as a community center all year round to serve the 
local community and be used as a cooling shelter during the summer months. This will improve residents' 
adaptive capacity against future heatwaves, mainly because around 89% of the surveyed sample didn’t 
have access to AC. Figure 3-43 illustrates heat vulnerability after adding open spaces to improve total 
adaptive capacity.  
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Figure 3-43: Heat Vulnerability after improving adaptive capacity by reutilizing vacant plots as open spaces.   

Figure 3-44 presents heat vulnerability after adding cooling shelters. It can be noted that the average 
vulnerability was reduced by 97% after adding open spaces compared to the base case presented in Figure 
3-42 and by around 93% after adding cooling shelters. These two interventions can significantly reduce 
potential heat risks at AlDarb Al Ahmar district during future heatwaves. Yet, the cost of these 
interventions is a critical parameter while determining the most suitable strategies. Thus, the cost of an 
average park with 300 m2  was compared to retrofitting an existing building with the same area in Cairo. 
It was found that utilizing vacant plots into open spaces would cost around 150,000 L.E  (9500$) compared 
to 450,000 (29,000$) to retrofit an existing building of the same area (AECOM, 2019; Gleeds, 2020). 
Findings from the analysis presented in this section show that adaptive capacity is an important measure 
when conducting a heat vulnerability assessment. The workflow presented here for district-level 
vulnerability assessment will be helpful to identify drivers of vulnerability, whether from indoor heat 
exposure at the building level or limited access to heat adaptation amenities at the urban block level.  This 
will be helpful to identify which strategies can be most effective and urban areas that more attention 
while planning these strategies. Also, occupants' behavior during extreme heat exposure can be used as 
an indicator to identify what set of urban interventions can be utilized to improve adaptive capacity.  
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Figure 3-44: Heat Vulnerability after utilizing vacant houses as cooling shelters. 

3.11 Discussion 
The section presented ML model as an approach for large-scale urban assessment of heat vulnerability 
and indoor exposure at the building scale. Although ML has the advantage of providing valuable 
information for large-scale evaluation in a time-efficient manner, there are some limitations. First, since 
ML models are all data-driven models, they tend not to perform outside the training data, limiting the 
applicability of the developed model to other cases. For instance, the proposed model was trained on 
data for building stock representation in Cairo, and extreme hot week simulation, will not perform outside 
that data set, annual indoor heat exposure. However, this problem can be addressed by extending the 
training dataset to include more extensive data ranges with retraining techniques to ensure that ML 
models can accommodate new datasets effectively.  The second limitation was overfitting when the 
model learned too much from training datasets and reduced prediction accuracy. Yet, this problem can 
be addressed using existing methods with outside training to increase forecasting generality. Also, early 
stopping throughout the training can help reduce overfitting and maintain the model’s accuracy and 
increase generalization in prediction (Singaravel, Suykens, & Geyer, 2018).  

Another limitation is that ML models are black-box models; thus, they cannot understand the underlying 
structure of the parameters’ behavior. To overcome this problem, ML models can be combined with 
physics-based and mathematical models, such as combining simulation models or measured data with ML 
models. Finally, previous research has identified that inadequate parameter selection during model 
development can lead to poor forecasting and affect the overall model’s performance (Wei et al., 2018). 
Numerous methods can assist in selecting model parameters, such as expert knowledge in ANN early 
development and automated architecture selection methods.  
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The proposed workflow described in the second half of this chapter offers an opportunity to replicate this 
framework to other districts with different training datasets to carry out heat vulnerability assessment 
that considers building-building indoor exposure at the district level. The ML model was developed from 
simulation-generated data and later used to estimate district-level exposure and associated heat 
vulnerability. Using simulation data was proven to help highlight the effects of different parameters 
related to building physical characteristics rather than depending only on measured data sets of indoor 
conditions to train the model as explored in other studies.  The main findings in this work's scope indicate 
that the ML-based approach is very accurate in assessing indoor heat exposure at the district level with 
minimum computational needs and in a time-efficient manner compared to traditional methods. The 
proposed ML framework will also be helpful for a neighborhood with vulnerable population characteristics 
that need to perform assessment rapidly and effectively to identify the types of necessary interventions 
to help adapt to future climate conditions.  

3.12 Summary  
Planning for district-level heat vulnerability assessment that accounts for the physical characteristics of 
individual buildings is a challenging task. While it’s a necessary process for policymakers, planners, and 
stakeholders involved in the heat adaptation planning process to identify what types of urban 
interventions are required, developing a district-level simulation model is a computationally expensive 
process. The framework proposed in this chapter overcomes some of these challenges by incorporating 
ML and image processing techniques as a new way to examine heat vulnerability and related risks at the 
district level. The chapter presented an assessment workflow that combines whole building energy 
simulation models and machine learning methods to carry out large-scale heat vulnerability assessments. 
Then the chapter briefly explored how outputs from the assessment can be used to explore simple 
strategies to improve the overall district-level adaptive capacity against future heat risks.  

The framework of detailed heat vulnerability assessment at the building level coupled with occupants’ 
behaviors and their psychological and physiological characteristics is critical to identify areas of high risks 
and estimate the percentage of the population at high risk and distribution of building stocks that are 
more susceptible to increase in temperature in the future. Finally, the hybrid model of simulation-based 
and ML-based methods presented in this chapter provide a replicable framework to identify the impacts 
of urban intervention strategies on the overall heat vulnerability at the district level to assist in the 
decision-making process. 
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IV. AERIAL THERMOGRAPHY FOR RAPID VULNERABILITY 
ASSESSMENT 
The building envelope holds substantial energy efficiency and heat risk mitigation opportunities, 
especially in the residential sector. Around 25% of buildings’ total energy use results from heat gains and 
losses of the building envelopes ((DOE), 2015). As discussed in the previous chapters, building physical 
characteristics play an essential role in mitigating potential health-related risks from heat exposure.  The 
lack of sufficient information on the performance of existing buildings makes it difficult to assess the 
impact of retrofit strategies to face heat exposure risks and, as a result, makes tackling building envelope 
improvements quite challenging. For example, excessive heat gain and associated energy use issues that 
result from damaged or missing insulation are challenging to detect until after the damage cost becomes 
expensive (National Renewable Energy Laboratory (NREL), 2012). Also, problems can occur from improper 
verification of the thermal performance of façade materials of existing buildings under extreme weather 
conditions. In addition, the thermal envelope assembly may deteriorate over time with a resultant 
decrease in performance. This chapter examines the use of Unmanned Aerial Vehicles (UAVs) to assess 
existing building envelope thermal performance as an approach to be utilized for rapid heat vulnerability 
assessment.   The first section of this chapter presents a case study using aerial thermography for building 
envelope assessment in the Boston metropolitan area, Massachusetts. The study examines the 
applicability of using UAVs equipped with an infrared camera to estimate existing building thermal 
transmittance (U-Value) and its implication on detecting an envelope’s thermal anomalies and enhancing 
the accuracy of Building Energy Modelling (BEM). The second half of this chapter expands the use of aerial 
thermography coupled with the evaluation of urban adaptive capacity to rapidly estimate potential areas 
of high vulnerability under extreme heat exposure, using a neighborhood in the Bronx, NYC as the case 
study.  
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4.1 Introduction 
Over the past decade, automated calibration for BEM has been at the forefront of building science 
research. The majority of these techniques use optimization functions by iteratively adjusting the value of 
different parameters to reduce the discrepancy between simulated and measured data. Previous work 
(Nagpal, Mueller, Aijazi, & Reinhart, 2019) found that data-driven methods could deliver sufficiently 
reliable estimates of internal loads when auto-calibrating BEMs. However, these models presented 
discrepancies in estimating climate-dependent characteristics, mostly when envelope parameters were 
unknown. Therefore, it is vital to accurately determine the existing condition of building envelopes for the 
models to estimate retrofit savings reasonably using such methods. Building and site audits are two of the 
most commonly used techniques to reduce envelope-related uncertainty errors in simulation models 
(Coakley, Raftery, & Keane, 2014). The main goal of building inspections is to measure and evaluate energy 
consumption data, examine energy use patterns, and detect energy losses. Generally, there are three 
typical levels for building and site audits (Thumann, P.E., C.E.M. & Younger, C.E.M., 2017):  

1- Walkthrough: energy use data are examined and quantified through a visual inspection of 
building energy systems to evaluate average energy use and establish benchmarks. 

2- Energy Audit: this includes a detailed analysis of building energy losses and the characteristics of 
energy systems using site measurements. Also, at this level, the efficiency of building systems and 
energy conservation measures are evaluated.  

3- Investment Grade: energy simulation models are developed and employed to predict annual 
energy use, considering weather conditions, building systems, and occupancy schedules.  

Although building audit provides energy simulation models with vital information on the performance of 
building systems, it sometimes can be imprecise (Shapiro, 2009). Also, it can lead to inexact energy use 
evaluation and misrepresentation of energy savings potential. In addition, building audit is considered a 
time and labor-intensive process that can sometimes be coupled with situations where safety and 
accessibility are challenging (Rakha, Liberty, Gorodetsky, Kakillioglu, & Velipasalar, 2018; Shapiro, 2009). 
This chapter aims at addressing one of the most challenging, labor-intensive, and prone to error aspects 
of energy audits by using Unmanned Aerial Vehicle (UAV) platforms equipped with infrared cameras as a 
method to calibrate energy simulation models and rapid heat vulnerability assessment by estimating 
existing envelope's thermal transmittance. The first section of this chapter consists of three main parts: 
1) background, which provides an overview of thermography applications in the evaluation of buildings’ 
envelope; 2) methodology section, which describes main data collection procedures, and the developed 
simulation model for a case study; 3) results, which summarizes findings from the simulation model 
calibration and provides a conclusion of the study. 

4.2 Background 
In 1800, Sir William Herschel first discovered the infrared range in the electromagnetic spectrum (M. 
Vollmer, 2002). Later in 1840, John Herschel was the first person to record a “thermograph” image using 
evaporation differences of a thin-film directly exposed to a heat source (Kylili, Fokaides, Christou, & 
Kalogirou, 2014). After the 1940s, infrared imaging was mainly for night vision imaging in military 
applications (Barreira, de, Delgado, & Ramos, 2012). By the 1960s, infrared imaging was first 
commercialized and opened up for different applications, including building inspection and agriculture 
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applications (Barreira et al., 2012). Since the late 1970s, Infrared Thermography (IRT) has been widely 
utilized in building inspection, HVAC documentation, and energy audits (FLIR Systems, 2011). With IRT 
technology, it has become possible to quantify radiation emitted from objects’ surfaces and convert them 
into thermographic images (Buzug, Schumann, Pfaffmann, Reinhold, & Ruhlmann, 2006). IRT also captures 
real-time thermal data on the building envelope that provides more accountable data than using standard 
thermometers that are profoundly affected by external weather conditions (Kirimtat & Krejcar, 2018). 
Over the past 25 years, IRT has been successfully implemented in the inspection and deterioration 
assessment for historic buildings and sites (Avdelidis & Moropoulou, 2003). 

As mentioned previously, the most suitable retrofit strategies for a building’s envelope can significantly 
affect the identification of appropriate retrofitting strategies to improve buildings’ adaptive capacity 
under heat exposure. Thus, a comprehensive assessment of the envelope’s performance is vital to 
improve energy efficiency. IRT is considered a suitable method for safer and more efficient evaluation of 
the whole building envelope thermal performance than the typical energy audit process as it enables 
access to building areas that can be considered risky to human lives such as roofs  (Kirimtat & Krejcar, 
2018; Tejedor, Casals, & Gangolells, 2018). However, prior to assessing the buildings’ envelope, it is crucial 
to identify the appropriate assessment methods.  This section provides an overview of the different 
measurement approaches using IRT as well as several analysis methods. 

4.2.1 Infrared Thermography: Measurement and Analysis Schemes 
The process of envelope evaluation using thermography can be classified into three steps: measurement, 
analysis, and documentation, as presented in Figure 4-1. First, the measurement step includes data 
collection and primary assessment of the envelope’s existing condition. Second, the quantification of data 
uses numerical analysis to identify types of thermal abnormalities and their severity. Finally, 
documentation to summarize thermal anomalies detection, class, location, and overall assessment of the 
envelope.   

Generally, most of the envelopes' thermal defects happen in three forms: moisture, air leakage, and 
conduction heat loss (Kirimtat & Krejcar, 2018). Each one has different visual and thermal characteristics 
that are important to identify. Additionally, the envelope's thermal defects are greatly affected by 
external weather conditions such as wind, air temperature, and precipitation (Kirimtat & Krejcar, 2018). 
There are two main approaches to examine thermal anomalies: qualitative and quantitative IRT 
(Schwoegler, 2006). The difference between the two methods is the regulation of measurement 
procedures, which need to be established before launching the analysis. Qualitative IRT is utilized to 
determine the presence of thermal abnormalities using visual evaluation of temperature differences in 
the measured radiation spectrum. 
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Figure 4-1: Classification of IRT in building performance diagnosis. Based on (Fox, Coley, Goodhew, & De Wilde, 

2014; Kirimtat & Krejcar, 2018).  

It should be noted that qualitative measurements only distinguish potential thermal anomalies, and do 
not estimate the severity of defects. Thus, this approach is mainly used when thermal anomalies are easily 
detectable (Fox et al., 2014). Also, thermographers need to have a sufficient level of knowledge to decide 
whether thermal differences imply potential defects or not. Additionally, qualitative IRT is suitable for 
damage identification in historic buildings’ structures and envelopes’ deterioration. Quantitative IRT is 
based on numerical analysis to quantify thermal anomalies (Pearson, 2011). This method is used for 
envelope thermal diagnosis, such as the determination of thermal transmittance. However, the main 
challenge in this method is that external weather conditions may influence the results' accuracy.  
According to the International Organization of Standardization (ISO), EN 13187:1998 (International 
Standards Organization, 1983), thermal irregularities caused by high thermal transmittance are commonly 
examined using qualitative thermography. In contrast, thermal bridges are mainly detected using 
quantitative thermography (Francesco, Giorgio, & Francesco, 2011).  

In the building energy audit field, qualitative and quantitative methods are used at different process 
levels. At the walk-through level, qualitative IRT is used to collect information for the following 
parameters: a) performance of buildings’ envelope; b) identification of air leakage and heat losses; c) 
evaluation of thermal insulation; d) characterization of building energy systems; and e) indoor climatic 
conditions for thermal comfort assessment. Quantitative IRT is used for the development of simulation 
models and quantification of thermal anomalies through the evaluation of the following parameters: a) 
thermal transmittance measurement; b) severity and percentage of thermal defects; c) examination of 
insulation quality; and d) moisture and air leakage determination (Kirimtat & Krejcar, 2018; Kylili et al., 
2014).  Figure 4-2 below summarizes levels of energy audit and types of IRT measurement used in each 
level.  
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Figure 4-2: Measurements methods of IRT and their application in building energy audit. Based on (Kirimtat & 

Krejcar, 2018; Lucchi, 2018).  

Thermography analysis techniques in the literature are classified into two approaches: active 
thermography and passive thermography (Fox et al., 2014; Lucchi, 2018). In the field of envelopes’ thermal 
evaluation, both methods are used to detect the existing condition of façade materials. Passive 
thermography focuses on the whole building envelope to identify energy loss problems by measuring 
temperature differences under normal solar radiation conditions. Fox, Goodhew, and De Wilde (Fox et al., 
2014) proposed eight different applications for passive thermography; 1) walkthrough survey (internal 
and external); 2) aerial thermography; 3) time-lapse; 4) perimeter walk around survey (exterior only); 5) 
automated fly-past survey; 6) street pass-by thermography; 7) repeat survey; and 8) mock target. They 
provided a detailed review and analysis of the potentials and limitations of different thermography 
applications. Aerial thermography was found to be most effective in identifying leakage problems for large 
scale buildings, but it is rarely used, while the automated fly-past survey is considered the most efficient 
in heat leakage from windows and moisture detection in roofs (Lucchi, 2018).  

Walk-through and walk-around surveys are the most frequently used approaches in an energy audit, yet 
they are prone to changing weather conditions (Dall’O’, Sarto, & Panza, 2013; Mateo-Garcia, Ahmed, & 
McGough, 2017). Active thermography concentrates on particular building envelope areas, where they 
are thoroughly examined to identify thermal defects. In this approach, an external energy source 
generates a temperature variation between the outdoor environment and the building’s envelope. This 
approach is classified into a) Pulsed Thermography (PT), b) Lock-in Thermography, and c) Laser Spot 
Thermography (LST) (Lucchi, 2018). The drawback of this approach is that it requires prior knowledge of 
the existence of thermal defects before executing the survey (Haralambopoulos & Paparsenos, 1998; Sun, 
2006). Lucchi et al. (2018) have found that passive thermography is the most common method in thermal 
anomaly detection. Figure 4-3 summarizes the application of thermography analysis methods in building 
audits. 
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Figure 4-3: IRT methods and their application in building energy audit process. 

Given the review presented above, it is essential to identify the primary purpose of the thermography 
survey before deciding what measurement and analysis methods are to be used. Fox et al. (Fox et al., 
2014) have developed a decision-making process for thermography surveys that identifies measurement 
methods and analysis schemes for different building survey applications, as presented in Figure 4-4 below.   

 
Figure 4-4: The decision-making process for infrared thermography surveys in building diagnosis. Based on (Fox et 

al., 2014).  

4.2.2 Aerial Thermography 
Advancements in remote inspection using UAV have provided professionals with valuable data to examine 
and assess built environments accurately and rapidly, at minimum costs and safety risks. The use of drones 
in monitoring construction sites has been investigated (Irizarry, Gheisari, & Walker, 2012), and its 
advancements include integration with Building Information Modeling (BIM) and mixed-reality 
frameworks (Hg et al., 2019). This approach's efficacy increases significantly when coupled with IR 
imaging, multispectral imaging, or time-lapse videography, as UAVs can contribute to a wide variety of 
building surveys (Kylili et al., 2014). The aerial approach provides a safe outlook into remote or 
inaccessible building components (Rakha et al., 2018). And as these improvements continue to grow, a 
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broad spectrum of industry fields will use its application (Corsi, 2010). A comprehensive overview of aerial 
thermography applications in the built environment has been presented in (Rakha & Gorodetsky, 2018a). 
This approach's primary benefit is the non-destructive testing capabilities provided by thermography 
(Stepanić & Lesičar, 2019), which could be extended using possible innovations in the use of manipulators 
for an assessment of inaccessible envelope conditions (Stepanić & Lesičar, 2019). These tools can provide 
valuable insights to energy auditors. Previously surveyed auditors concurred that UAV use combined with 
thermal imaging would improve workflow in their investigations. They believed that IR imaging would also 
aid in client communications (Mauriello, Norooz, & Froehlich, 2015). It should be noted that pre-flight 
planning considerations should be part of the audit procedures to produce reliable results. Firstly, some 
weather conditions should be avoided for stable UAS flights. These include rain, snow, and heavy wind. 
Secondly, solar loading, sunlight exposure, shadows, and self-shading may affect thermal imaging 
outcomes. Therefore, it is recommended to inspect envelopes at close temporal intervals and to collect 
RGB images in tandem to clarify each inspected situation. Thirdly, external surface temperatures may be 
affected by high humidity, wind speed, and precipitation. Therefore, it is recommended to avoid data 
collection during or in an immediate time period following a sudden change in these conditions. 

The main limitation of UAV technology is battery performance, especially on long flights. However, battery 
technology is advancing every day as new companies push the boundaries with drone technologies for 
new alternatives such as solar-powered UAVs. Also, thermal transmittance calculation using UAVs 
requires detailed information on building construction materials and their thermal properties, indoor 
temperature conditions, and history of any previous retrofitting intervention. Other limitations for the 
aerial thermography process include possibly compromising IR and RGB images due to angular deflection. 
When capturing light deflection in reflective materials, such as glass and metal, camera angles are a 
challenge to be addressed. In this research, images are collected at a perpendicular angle to the envelope, 
which is only problematic with highly reflective surfaces, and should be addressed in future work. Also, 
inspection distance calculations rely on the drone operator's expertise and may be fixed for each 
inspection procedure. Distances are a function of the size and geometry of buildings and the camera’s 
Field of Vision (FOV) and should be designed to fit the specifications of each camera accordingly.  

There are three main procedures that need meticulous planning when using UAV combined with IR 
imaging (Rakha & Gorodetsky, 2018a): 1) Site Acquisition, which includes individual building audits, 
building cluster (or neighborhood) surveying, and planning for data obscuring through obstacles (such as 
trees, street furniture, etc.). 2: Flight Path Planning, entailing the identification of survey locations 
(interiors and exteriors), the audit focus, and envelope components (such as windows, doors, etc.), as well 
as considerations for flight path design which focus on distances from targets, bearing angles and drone 
altitudes. 3) Post-Flight Data Analysis Techniques, including data formatting, quantitative and quantitative 
methods, and image processing techniques, with possible 3D photogrammetry integration.   
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4.2.3 U-Value Assessment 
One of the main properties directly linked to the envelope’s thermal performance is thermal 
transmittance (U-value) (O’Grady, Lechowska, & Harte, 2017; Seghier, Lim, Ahmad, & Samuel, 2017). The 
value of thermal transmittance is considered an important metric to quantify the heat transfer of building 
envelopes. However, the envelope’s U-value is not consistent, as it is significantly influenced over time by 
surrounding climatic conditions, level of maintenance post-occupancy, and the façade’s material 
condition. Previous research indicates that U-values are generally reduced over time by 50% post-
occupancy (Foam-Tech, 2015). Thus, this underlines the need for more accuracy in modeling energy use 
for post-occupancy conditions. IRT has been widely applied in assessing the envelope’s thermal 
performance over the past three decades. The IRT application was first deployed to quantify heat flow 
fluxes through a wall, referred to q value (Francesco et al., 2011). Vavilov et al. (E.Grinzatoa, V.Vavilov, & 
T.Kauppinenc, 1998) developed an approach using Heat Flow Meters (HFM) to measure a  reference 
point's temperature on the wall. In this approach, the wall’s thermal resistance is assumed to be constant 
but unknown. The first pilot study to use thermography to quantify facade thermal transmittance dates 
back to 2008 when Madding (Madding, 2008) proposed a numerical approach to assess heat balance in 
buildings’ walls and estimate U-value using equation (1):  

U = 4εσTm3 (TS−Trefl)+hc(TS−Tin)
Tin−Tout

    [ W
m2.K

 ]       (1) 

where             𝑇𝑇𝑚𝑚 =  𝑇𝑇𝑠𝑠+ 𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟
2

      (2) 

The numerator represents the sum of radiative energy for a given wall, expressed as Stephan-Boltzmann 
law and the convection input.  ε  is the emissivity value of the wall surface, 𝑇𝑇𝑚𝑚  is the temperature 
difference between the apparent measured temperature 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and wall surface temperature 𝑇𝑇𝑆𝑆, and σ is 
Stefan-Boltzmann constant. Convection is calculated as the product of the temperature difference 
between internal and external walls and ℎ𝐼𝐼 (the convection coefficient). The denominator represents the 
difference between outdoor and indoor air temperature. Later, Tanner et al. (C. Tanner, B. Lehmann, T. 
Frank, 2011) developed a standardized method for measuring wall U-values with thermography using a 
convective heat coefficient value of 8.7 W/m2.K. Another study by Grinzaton et al. (E., P., G., & Peron, 
2010) developed an IR camera approach to assess existing buildings' conditions by estimating radiative 
flows across the wall. The convective flows were determined using a standard value of 7.69 W/m2.K (F. 
Altmayer, Bauman, Gadgil, & C. Kammerud, 1982). Results showed that this approach effectively 
calculated values close to designed U-values but different from the ones calculated using the traditional 
method of the HFM. Dall’O’ et al. (Dall’O’ et al., 2013) applied IRT in estimating a walls’ thermal 
transmittance using a different heat balance approach. In this study, they assumed that convection heat 
exchange with outdoor air  is equivalent to the heat transfer through the wall excluding radiation at the 
outer surface, as presented in equation (3) as follows: 

U =  hout(Ts−Tout)
Tin−Tout

    [ W
m2.K

 ]       (3) 

𝑇𝑇𝑜𝑜𝑂𝑂𝑂𝑂 is the outdoor air temperature, 𝑇𝑇𝑊𝑊 represents the surface temperature of the exterior wall, and 𝑇𝑇𝐼𝐼𝑛𝑛 
is the indoor air temperature.  In this equation, heat transfer through convection is calculated as a 
function of wind speed, as provided in equation (4). 
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ℎ𝑜𝑜𝑂𝑂𝑂𝑂  = 5.8+ 3.8054ν       (4) 

In 2015, a study by Albatici et al. (Albatici, Tonelli, & Chiogna, 2015) extended previous work in the field 
of IRT and thermal transmittance assessment and proposed the following equation (5): 

U =  ενσ�Ts
4− Tout4 �+3.8054ν(Ts−Tout)

(Tin−Tout)
      [ W

m2.K
 ]  (5) 

where εν represents the wall’s emissivity, 𝑇𝑇𝑊𝑊 is the surface temperature of external walls, 𝑇𝑇𝑜𝑜𝑂𝑂𝑂𝑂  is the 
outdoor air temperature, ν is wind speed, and  𝑇𝑇𝐼𝐼𝑛𝑛 is the indoor air temperature.   

Although IRT is a useful method to evaluate envelopes’ performance, several factors affect the accuracy 
of the assessment. Such factors can be found at (Rakha et al., 2018) and include temperature difference 
(ΔT), humidity, ambient air temperature, wind speed, camera angle, the distance between the IR camera 
and the building façade, external optics temperature, and thermal reflection, among others.  

4.3 Methods 
Over the past decade, UAVs' role in surveillance and building inspection has been gaining tremendous 
interest (Rakha & Gorodetsky, 2018a). Their efficiency stems from their capacity to capture high-
resolution data with significant time efficiency with minimum dependence on human labor (L. Ma, Li, 
Tong, Wang, & Cheng, 2014). The most common application of UAVs in building inspection is through the 
utilization of aerial thermography. This method provides a comprehensive assessment of building 
envelope performance by collecting a series of infrared images over the same timeframe in a fast manner 
that has a considerable advantage compared to walkthrough inspection.   

This chapter proposes a framework to estimate the envelope’s thermal transmittance from aerial 
thermography data to be incorporated in rapid heat vulnerability assessment following four main steps, 
as illustrated in Figure 4-5 below. First, the deployment of UAVs equipped with an IR camera for data 
collection. Information captured from this data will highlight issues such as material deterioration, heat 
losses, and overall performance of building envelope. Next, thermal anomalies identification through 
examining temperature gradient and variation across building envelope. Third, estimating thermal 
transmittance using air temperature difference between outdoor and indoor conditions numerically. The 
final step integrates estimated U-value into A BEM model to better model and calculate heating energy 
use for the winter month.  
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Figure 4-5: Proposed framework and analysis methods.  

4.3.1 Case Study 
A campus building in Boston, MA, was identified to test the proposed analysis framework's efficacy. The 
selected building recently underwent a major renovation. As part of the renovation process, the design 
team developed a detailed energy simulation model to evaluate the energy impact of various envelope 
upgrades. The final recommendations were implemented, and the building envelope was renovated to 
incorporate additional insulation to significantly reduce the envelope’s thermal transmittance and 
improve overall energy efficiency (Figure 4-6).  

  
Figure 4-6: Building images before (left) and after (right) retrofitting (Massachusetts Institute of Technology, 2019).  

Measured heating energy use post-renovation during the wintertime is significantly higher than the 
predicted energy use from the simulation model based on the envelope properties derived from design 
drawings and specifications (Figure 4-7). With internal load and occupant usage parameters relatively well 
known and reasonably accounted for in the model, this discrepancy makes this building an ideal case study 
to assess whether “as-designed” envelope model inputs reasonably represent “as-built” performance; 
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and whether an energy model that incorporates “as-built” instead of “as-designed” inputs predicts the 
post-retrofit energy use more accurately. 

 
Figure 4-7: Comparative assessment of post-renovation metered and modeled wintertime heating energy use. 

4.3.2 Aerial Thermography Workflow 
To determine the “as-built” envelope performance for this study, a DJI  Inspire 1 drone equipped with a 
FLIR Zenmuse XT thermal camera (DJI, n.d.) was used for data collection. Two main factors affect the 
accuracy of the data collection: climatic conditions (such as solar radiation, wind speed, rainfall, cloud 
coverage) and the flying method. In this study, the data was collected on March 31st, 2018, during the 
early hours of the morning (between 6:00 to 8:00 am) before sunrise to avoid any potential distortion 
from sun solar radiation. The outdoor air temperature was eight ºC to ensure temperature differences 
between indoor and outdoor of 10 ºC, according to Snell & Spring's recommendation (2008). A strip 
method is used for flying procedures where the UAV is constantly flying horizontal and vertical 
perpendicular to the façade (Rakha & Gorodetsky, 2018a), as illustrated in Figure 4-8 below. Distance 
between UAV and façade is calculated according to the camera’s focus angle and resolution to achieve a 
90% overlap between each image.  

 
Figure 4-8: Flying procedures used in data collection (grid pattern with 90% overlap). 
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4.3.3 U-Value Calculation and Validation  
A standardized convection coefficient (hc) of 8.7 W/m2K derived from Tanner et al. was used to estimate 
U-value from IR data(C. Tanner, B. Lehmann, T. Frank, 2011). The overall heat transfer coefficient is 
calculated using a modified version of equation (1) as follows: 

𝜀𝜀𝜀𝜀�𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑠𝑠,𝑖𝑖𝑖𝑖�+ ℎ𝑐𝑐 �𝑇𝑇𝑖𝑖𝑖𝑖−𝑇𝑇𝑠𝑠,𝑖𝑖𝑖𝑖�
𝑇𝑇𝑠𝑠,𝑖𝑖𝑖𝑖−𝑇𝑇𝑠𝑠,𝑜𝑜𝑜𝑜𝑜𝑜

     (6) 

Where:  
ε Emissivity  1 
σ Stefan-Boltzmann constant W⋅m-2⋅K-4  
𝑇𝑇𝑚𝑚 temperature difference between 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑇𝑇𝑆𝑆 Kelvin (K) 
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  the apparent measured temperature Kelvin (K) 
𝑇𝑇𝑆𝑆 Exterior wall surface temperature Kelvin (K) 
𝑇𝑇𝑊𝑊,𝐼𝐼𝑛𝑛 Interior wall surface temperature Kelvin (K) 
hc Convection Coefficient W/(m2•K) 
Tin The indoor air temperature Kelvin (K) 

Tout The outdoor air temperature Kelvin (K) 
 

To verify dimensional consistency:  

𝑈𝑈 =
𝑊𝑊.𝐷𝐷−2 .𝐾𝐾−4.𝐾𝐾3. (𝐾𝐾 − 𝐾𝐾) + 𝑊𝑊.𝐷𝐷−2 .𝐾𝐾−1.𝐾𝐾

𝐾𝐾 − 𝐾𝐾
 

=  
𝑊𝑊.𝐷𝐷−2 .𝐾𝐾−4.𝐾𝐾4 + 𝑊𝑊.𝐷𝐷−2 

𝐾𝐾
 

=  
𝑊𝑊.𝐷𝐷−2 + 𝑊𝑊.𝐷𝐷−2 

𝐾𝐾
 

𝑊𝑊
𝐷𝐷−2 .𝐾𝐾

 

Following ASHRAE standards, the convective coefficient used in the study is based on standard wind 
conditions (ASHRAE, 2017a). To estimate the emissivity of the exterior wall, the research followed the 
FLIR user manual (FLIR Systems, 2016, 2019) to estimate an emissivity value using black tape with an 
emissivity value of 0.95.  The reflected temperature was calculated following the procedure of ASTM 
E1862-97 (ASTM International, 2018) by using an aluminum foil method at an emissivity value of 1. The 
same procedures were used in a handheld thermal FLIR camera which was used to measure 𝑇𝑇𝑊𝑊,𝐼𝐼𝑛𝑛 
simultaneously with outdoor surface temperature from the UAVs IR camera for each façade. To calculate 
U-Value, the thermal transmittance is calculated for each façade separately by averaging temperature 
differences from IR data. For areas with different U-values,  the average value is estimated using the 
following equation:  

Uavg = 𝑈𝑈1 ∗  𝐴𝐴1
𝐴𝐴1+𝐴𝐴2

+ 𝑈𝑈2 ∗  𝐴𝐴2
𝐴𝐴1+𝐴𝐴2

    (7) 

Where:  
Uavg: Average U-value of a facade 
U1: U-value for areas with thermal anomalies 
U2: Total façade area U-value simultaneously 
A1: The area of the thermal anomaly 
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A2: The area of non-thermal anomaly  

To examine the usability of aerial thermography in calibrating energy simulation models, the calculated 
U-value was used in an energy simulation model to compare two different scenarios.  First, modeling 
heating energy using design specification and modeling heating energy based on estimated U-value from 
aerial thermography flight. Next, simulation output is compared to metered energy use to examine 
accuracy improvement in heating energy simulation.  

To assess the accuracy of the two simulation scenarios, a goodness of fit (GOF) error was calculated for 
each model. GOF is a statistical index defined by ASHRAE Research Procedure 1051 (Reddy & Maor., 2006) 
as a ranking metric for simulation results accuracy. This metric is a weighted combination of the coefficient 
of variation (CV) of Root Mean Square Error (RMSE) and normalized mean bias error (NMBE). CVRMSE 
quantifies the variability between measured and simulated results monthly, while NMBE measures the 
error percentage between simulated and measured energy use over the year. ASHRAE Guideline 14 
(Gillespie et al., 2002) recommends a 3:1 weight allocated for NMBE compared to CV. The overall GOF is 
calculated using the following equations:  

𝐺𝐺𝐺𝐺𝐺𝐺 =  �𝑤𝑤𝐶𝐶𝐶𝐶
2 .𝐺𝐺𝑂𝑂𝐺𝐺𝐶𝐶𝐶𝐶

2 + 𝑤𝑤𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
2 .𝐺𝐺𝑂𝑂𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

2

𝑤𝑤𝐶𝐶𝐶𝐶
2 +𝑤𝑤𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

2           (8) 

and, 

𝐺𝐺𝐺𝐺𝐺𝐺𝐴𝐴𝐶𝐶 =  �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑖𝑖
𝑖𝑖=1
(𝑛𝑛−1)× 𝑦𝑦�2

 × 100                 (9) 

𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸 =  ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )𝑖𝑖
𝑖𝑖=1
𝑛𝑛 ×𝑦𝑦�

 × 100                (10) 

where, 
𝑤𝑤:   weighting factor 3 for NMBE; 1 for CV 
𝑆𝑆:   month of the year 
𝐶𝐶:   number of months in consideration 
𝑆𝑆𝐼𝐼:   measured energy use for a given month 
𝑆𝑆𝚤𝚤� :   predicted energy use for a given month based on simulation output 
𝑆𝑆�:   the average value of measured monthly energy use 

4.4 Results 
Temperature readings from around 500 images were analyzed using the FLIR analysis tool (FLIR Systems, 
n.d.), as presented in Figure 4-9. The analysis examined temperature differences and variations across 
each façade and output potential areas of thermal anomalies. Next, temperature differences between 
indoors and outdoors are used in the estimation of existing thermal transmittance. For indoor air 
temperature, typical setpoints for different spaces were used as a measure for indoor conditions. The 
indoor surface temperature was determined using a hand-held thermal camera where values were 
recorded simultaneously with outdoor surface temperature from the UAVs IR camera for each facade.  
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Figure 4-9: Sample of thermal imaging analysis.  

The thermal imaging analysis indicated three types of thermal anomalies in the building examined, 
namely, thermal bridge, degradation of façade’s material, and insulation failure. The distinction between 
the three anomaly types was based on two main criteria: the shape of the anomaly and location. For 
thermal bridge was identified as liner vertical or horizontal anomalies mainly located around a building 
corner and between floors. Material deterioration implies a degradation of cladding materials or cracks, 
which was identified as a bulk shape anomaly; finally, the insulation failure represents thermal leakages 
around doors and windows and insulation degradation across the building envelope. This anomaly was 
detected as vertical or horizontal anomalies located around doors and windows or bulk irregularities with 
a temperature difference of three degrees compared to the surrounding envelope.  

Material degradation was common across all facades, specifically in the newly added floors. The southern 
façade had the most significant insulation failure occurrence with a temperature difference range of 8-9 
degrees in the affected areas compared to the rest of the façade. Thermal bridges mainly occurred in the 
building corners, primarily southern and eastern corners and between floors. Around 65% of the windows 
indicated a potential for thermal leakage that needs to be further investigated. Figure 4-10 below outlines 
the types and percentage of occurrences for each class across the four facades.   
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Figure 4-10: Types of thermal anomalies and their distribution across the examined facades. 

As discussed earlier, a whole BEM was developed for the examined building to be used for this analysis. 
Figure 4-11 represents the model generated during the renovation process. Model inputs such as the 
envelope's thermal properties, internal loads, lighting power, operating schedules, and building systems 
were determined according to the design specifications.  

  
Figure 4-11: Left, rendering of the developed energy model; Right, a photograph of the building post-renovation.  

U-values of building facades were calculated using information from the aerial thermography flight 
following the methodology described above. Table 4-1 compares the U-values of exterior walls based on 
design specifications and calculated thermal flight values. Results from the IR flight and U-value estimation 
were validated against the observations of maintenance personnel. The energy model incorporates 
detailed zone-by-zone definitions of lighting and equipment power densities, usage profiles, and HVAC 
parameters. Table 1 also broadly summarizes these other energy model inputs. 
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Table 4-1:  As-designed and calculated U-Values from the UAV flight. 
)℉-2ft-Btu/hrValue (-Exterior Wall U  

Orientation  Designed Opaque Calculated  
Opaque 

Designed 
Fenestration 

WWR 

SE, SW 8” Limestone + 8” Brick + 3” 
Spray Foam Insulation  

U: 0.053 
 

0.282 
0.361 

30% 
W 0.203 97% 
N, NE 0.142 21% 

Building Average lighting Power Density 0.67 W/ft2 
Building Average Equipment Power Density 0.84 W/ft2 

General HVAC Configuration 
Dedicated outside air system supply ventilation air to thermal 
zones with chilled beams and fan coil units. Chilled water and 

steam and supplied by the central campus plant  
 

 

 

 

 

 
Figure 4-12 compares heating energy use for three cases: simulation-based on design specifications, 
calculated U-value from the UAVs flight, and measured heating energy use. Results indicate that model 
error is significantly reduced after incorporating calculated U-values (blue line) compared to previous 
simulations based on design specification (yellow line).  

 
Figure 4-12: Comparison between measured and simulated heating energy use.  

The comparison between the two models is presented in Table 4-2. Results show that the simulation 
models' output with as-built envelope properties is considerably better calibrated, with CVRMSE under 
10% and NMBE lower than 1%, and an overall GOF of about 1%. These results represent a significant 
improvement over the NMBE of 21%, CVRMSE of 25%, and overall GOF error as high as 22% in the previous 
model. ASHRAE Guideline 14 (Gillespie et al., 2002) specifies that for simulation models to be considered 
calibrated, uncertainty criteria of 15% for CVRMSE and 5% for NMBE need to be achieved. Results indicate 
that the previous simulation model failed to meet these criteria; the model results with as-built envelope 
properties fall well within these uncertainty limits. 
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Table 4-2: Goodness of fit results between simulated and modeled with current estimate U-Values. 
Goodness of Fit Errors 

Modeled Envelope Case 𝐺𝐺𝐺𝐺𝐺𝐺𝐴𝐴𝐶𝐶 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸 𝐺𝐺𝐺𝐺𝐺𝐺 

Design Specs 24.8% 21.4% 21.8% 

Current Estimates 8.8% 0.5% 0.9% 

U-value is calculated based on four independent inputs; emissivity, reflected temperature, indoor 
temperature, and convective heat coefficient. Thus, the sensitivity of each input is tested by varying their 
values ± 15% to test how calculated thermal transmittance would vary. Results from the sensitivity 
analysis are summarized in Table 4-3 below. From the sensitivity analysis, the research identified that 
emissivity and reflected temperature didn’t significantly impact the final calculated U-value compared to 
indoor temperature and convective heat coefficient.  

Table 4-3: Sensitivity of calculated U-value for different independent inputs.  

Orientation Calculated 
Opaque 

𝛆𝛆 𝛆𝛆 𝐓𝐓𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝐓𝐓𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 Tin Tin hc hc 
0.8 0.99 17 23 19 25 7.4 10 

SE, SW 0.282 0.283 0.280 0.285 0.279 0.384 0.196 0.209 0.355 

W 0.203 0.202 0.203 0.207 0.200 0.305 0.203 0.203 0.203 
N, NE 0.142 0.144 0.140 0.148 0.140 0.244 0.142 0.140 0.142 

 
4.5 Discussion 
This section presents a framework by which building retrofitting strategies can be better identified and 
informed by improving the assessment process of existing building envelopes. The innovation aims to 
present UAVs to enhance evaluator experience significantly by overcoming physical barriers encountered 
in typical building audit procedures and incorporating this method in heat vulnerability assessment. This 
approach is specifically useful when evaluating various buildings without relying on a single-image 
approach for auditing. This approach's efficacy stems from providing a whole building infrared imager 
data by which designers can better engage with and identify targeted building performance issues. The 
proposed framework has demonstrated a significant reduction in simulation errors, and future work 
would address its applicability to other climates and more complex built environment conditions.   

The proposed framework addresses multiple challenges that are limiting current building energy audits 
processes, such as 1) physical inaccessibility for building components such as roofs that are typically 
challenging to monitor in the typical energy audit procedures, 2) time-efficient compared to regular audit 
activities that are usually prone to human error, 3) overcoming safety and life-threatening settings that 
are common in a detailed inspection by reducing dependency on human labor. Such difficulties in building 
energy audits can significantly affect Whole Building Energy Modelling (BEM) practices and, as a result, 
misinform retrofitting design decisions. Also, manual modeling processes in current retrofit BEM are 
challenged with time-intensive and labor-intensive activities requiring better means to examine buildings 
with more safety, accuracy, and time-efficient manner.  
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The future of integrating such remote sensing techniques as innovative technologies in the built 
environment industry relies on coalescing integrative approaches between such robots and practices 
(Pan, Linner, Pan, Cheng, & Bock, 2020; Y. Yang, Pan, & Pan, 2019). Data collection automation and 
translation into energy models continue to evolve using computer vision as a Machine Learning-based 
approach for BEM (Dino et al., 2020; Rakha et al., 2018). As such techniques evolve, so will the efforts to 
integrate them seamlessly. And that is why there is a need to automate the audit missions beyond data 
collections and analysis. This posits challenges include navigating UAS in various dense and congested 
environments (Goudarzi, Hine, & Richards, 2019) and managing data, possibly through Geographic 
Integration Systems (GIS) (CHO., Leite, Behzadan, & Wang, 2019). The practical use of such approaches 
may face issues such as having an unskilled or aging workforce. This industry is averse to change or having 
the technology perceived as too complex with subpar infrastructures to support it (Davila Delgado et al., 
2019).   

The proposed approach can expand to examine different thermal anomalies and measure heat transfer 
across other components such as roofs, windows, etc. Future work may focus on testing the developed 
framework for various building types (such as residential and office buildings) and different climatic 
conditions to assess its applicability to other settings and various building types.  In conclusion, the work 
discussed in this section presents an opportunity to incorporate aerial thermography in heat vulnerability 
assessment and BEM workflow. The framework can be useful specifically during the development of 
simulation models targeted towards representing existing built environment conditions to assess 
potential heat risks in existing building stocks and quickly identify types of buildings more susceptible to 
heat exposure. Also, aerial thermography can be utilized for neighborhood-level assessment to examine 
and identify the most effective retrofitting scenarios, where time-saving and cost-reduction potentials can 
be achieved when assessing multiple buildings compared to traditional building inspection processes. The 
following section develops and illustrates the applicability of using aerial thermography in urban heat 
vulnerability assessment using a neighborhood in the Bronx, NYC, as the primary case study.  

4.6 Rapid Heat Vulnerability Analytics Using UAVs 
Unmanned Aerial Vehicles (UAVs) have revolutionized numerous industries and sectors of human life by 
providing a wide range of applications and services that were limited before. Over the past decade, there 
has been a growing interest in utilizing UAVs as a fundamental technology in various applications in the 
built environment. Recently, the wide availability of wireless technology has made the deployment of 
UAVs more accessible. The application of UAVs in climate change research has been rapidly expanding to 
become an integral technology for environmental monitoring and climate change risk mapping (Tmušić 
et al., 2020). This section presents a framework for the integration of UAVs technology in heat 
vulnerability assessment. The framework offers a methodology for using UAVs equipped with RGB and IR 
cameras to provide a comprehensive assessment of the building envelope’s thermal performance critical 
to evaluate heat vulnerability potentials at the building level. Figure 4-13 illustrates a detailed workflow 
for building envelope assessment using UAVs to provide accurate data on building thermal performance 
and implications from heat exposure.  Existing studies on heat vulnerability underline the need for a 
citywide approach for buildings’ envelope thermal envelope that can be examined rapidly for various 
archetypes (Nahlik et al., 2017). The purpose of the framework is to provide a rapid evaluation of 
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buildings’ susceptibility under heat exposure based on the identification of thermal envelope 
performance by detecting envelope deterioration, thermal anomalies, and physical defects that can 
influence indoor conditions without using detailed simulation models.  The framework is designed to 
answer three main questions: i) How to characterize buildings’ thermal performance at the neighborhood 
level rapidly and efficiently? ii) what is the relationship between buildings with low thermal performance 
and areas with high-temperature forecasts? iii) Where can building envelope improvements be most 
effective for heat adaptation. 

 
Figure 4-13: Framework for Rapid Heat Vulnerability Assessment using UAVs. 

 

4.6.1 Flight Planning 
The first step of the proposed framework is related to UAVs flight planning to ensure suitable data 
collection of hyperspectral (RGB) and infrared information. The flight planning process entails 4 main 
components, as illustrated in Figure 4-13 above. The first component relates to the assessment process 
and consists of 1) static flight assessment; and 2) dynamic flight assessment (Besada, Campana, Bergesio, 
Bernardos, & De Miguel, 2019). The static flight process includes gathering information related to 
compliance with Federal Aviation Administration (FAA) Regulations (flight altitude, air rules, speed), 
identifying surrounding obstacles, conditions of the surrounding urban traffic, or potential network 
interruption from nearby infrastructure (electricity towers), and surrounding static geofences. Gathering 
this information will be critical for flight path design in step 2.  

Dynamic flight assessment includes assessing environmental conditions (air temperature, wind speed, 
cloud coverage), temperature differences between indoor and outdoor that may significantly influence 
the quality of collected IR data (Rakha et al., 2018), navigation system availability, and urban traffic. 
Gathering information on surrounding climatic conditions can significantly influence the quality of data 
collection. For example, high wind speed can cause images to be blurry, which is an important factor to 
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consider during flight planning.  The second component is related to occupancy privacy during the data 
collection process. It usually involves providing a detailed description of the purpose of the flight and the 
type of data collected to request inspection authorization for the premise to be inspected. This process 
should be prepared in an accurate space-time description of the flight and be operationally consistent 
with the UAV’s operator needs. The third component consists of the design and geo-location of ground 
control points (GCPs) to assist in processing the 3D point cloud in step 3. Lastly, the fourth component 
relates to the calibration of UAVs’ radiometric sensors following the procedures discussed in the first 
section of this chapter to ensure the quality of the collected data.  

4.6.2 Data Collection  
UAV-based data acquisition entails collecting successive waypoints (2D such as RGB and IR or 3D like 
LiDAR). In building inspection missions, the UAV’s operator (pilot) designs a flight plan to acquire both 
hyperspectral and IR data. This process requires knowledge of multiple factors such as distance from the 
building, altitude, and speed. Numerous studies in the literature have examined the optimal offset 
distance from the building during envelope inspection. Rakha et al. (2018b) offered some recommended 
distances (varying between 3m to 25m) during envelope inspections. However, the optimal distance from 
the façade relies heavily on the data needs, camera resolution, image overlap target to generate 3D point 
cloud models, and building height. Before the data collection process, a pre-established flight path is 
developed, considering the distance from each façade side and the ideal route for time efficiency and 
safety.  From the literature, there are two main flight paths for building inspection based on geometric 
approaches: vertical or horizontal strip pattern and orbital pattern (Rakha et al., 2018). Based on previous 
studies, the vertical and horizontal strip has been proven to be the most suitable for building envelope 
anomaly detection using both RGB and IR cameras (Falorca & Lanzinha, 2020; Rakha & Gorodetsky, 
2018b). Another critical parameter in the data collection phase is image overlap to collect sufficient data 
to generate accurate 3D models. From the literature, the recommended overlap should be at least 75%- 
80% for frontal overlap and at least 60%- 70% side overlap (between flying strips) (PIX4D, 2020; Rakha et 
al., 2018). The UAV’S gimble angle should be maintained at 90 degrees during data collection and flying 
at a constant height for each strip (Figure 4-14). Image resolution can significantly affect the accuracy of 
thermal anomaly detection in the IR data and the quality of processing 3d point cloud models from RGB 
images. Since image resolution and target image overlap can influence the quality of image processing, 
the optimal distance from the building façade for vertical strip flights can be calculated using the camera’s 
field of view (FOV) and required overlap as input using the following equations:  

Distance from the façade 𝐷𝐷 =  𝑃𝑃ℎ
tan𝐺𝐺𝑣𝑣

                    (10) 

        Image height 𝐼𝐼ℎ =  
𝐼𝐼𝑖𝑖

(1−𝑇𝑇𝑇𝑇𝑟𝑟𝑇𝑇𝑒𝑒𝑜𝑜 𝑂𝑂𝑣𝑣𝑒𝑒𝑟𝑟𝑟𝑟𝑇𝑇𝑒𝑒)

2
             (11) 

where 𝐼𝐼ℎ  is the image height, 𝐺𝐺𝑣𝑣  is the camera’s vertical field of view, and 𝐼𝐼𝐼𝐼  is the image distance 
calculated in the flight software. Also, camera resolution is a critical determinant of the offset distance 
between the UAV and the building to achieve the required overlap criteria. Current UAV technology comes 
with a high-resolution RGB camera ranging from 12 megapixels to 20 megapixels (Messina, Peña, Vizzari, 
& Modica, 2020). On the other hand, IR cameras generally come with lower resolution ranging from 320 
× 240 to 640 x 512 (Ortiz-Sanz, Gil-Docampo, Arza-García, & Cañas-Guerrero, 2019).  
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Figure 4-14: Left, Flight vertical strip pattern type with schematic measurement/distance reached by the UAV’s 

camera lens. Right, schematic visualization of UAV’s flight horizontal strip path with start point and endpoint and 
maximum allowable altitude. 

4.6.3 Data Processing  
In the proposed framework, there are two types of data processing; each involves a specific output to 
inform heat vulnerability assessment: 3D point cloud from RGB data and thermal anomaly detection using 
IR data. The generation of the 3D point cloud is based on image segmentation, which is carried out based 
on feature similarity between spatially connected pixels in each image captured from the UAV. RGB image 
processing starts with importing all captured images into commercial photogrammetric software 
commonly used for UAV’s data/aerial data. PIX4D is considered one of the most widely used 
photogrammetry software that is based on image segmentation to stitch and connect geospatially 
overlapped images.  
 
The processing phase consists of six main steps (Burdziakowski et al., 2020): photo alignment, ground 
control points (GCPs) localization, 3D point cloud generation, 3D mesh, and texture generation, which can 
be exported in standard format (.obj) and visualized in other modeling platforms such as Revit and Rhino, 
Digital Elevation Model (DEM) production, that carry information of different object heights, and 
Orthomosaic generation (Figure 4-15). GCPs are points with known coordinates used to improve the 
accuracy of the 3D point cloud generation. Literature suggests a minimum of three GCPs is required for 
UAVs data ( in UAV with Real-Time Kinematic (RTK) payload), yet, increasing the number of GCPs will result 
in better accuracy in the final output (Oniga, Breaban, & Statescu, 2018).  
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Figure 4-15: Photogrammetric process using UAV RGB data. 

Generating 3D pointcloud and orthomosaic images helps in gathering information related to the envelope 
conditions and its physical characteristics rapidly, such as roof area, façade’s deterioration condition, and 
window-to-wall ratio (WWR). In the proposed heat vulnerability assessment framework, orthomosaic and 
digital surface model (DSM) are used to calculate façade height and roof area by combining 2D 
information from orthomosaic with 3D information from DSM.  

The second data type is IR data, mainly used for a more in-depth evaluation of building thermal envelope 
performance. In the heat vulnerability framework, IR data are collected to examine how the outdoor 
environment interacts and influences indoor conditions. This relationship is governed by the temperature 
difference between the internal wall and the external wall through conduction. In order to detect thermal 
anomalies accurately using aerial thermography, it is recommended to conduct the flight during the 
winter with a minimum temperature difference of 10oC, at night or early hours of the day, or during a 
cloudy day with low wind speed to minimize any false detection from convective heat losses (Balaras & 
Argiriou, 2002; Ortiz-Sanz et al., 2019). During the IR data collection, there are two types of thermal 
anomalies that are detected: infiltration/exfiltration, and thermal bridge /missing insulation (Figure 4-16). 
Infiltration and exfiltration are detected in IR thermography as a vertical or horizontal area with 
temperature difference around the frame of doors and windows due to air leaking from inside to outside 
or vice versa (Balaras & Argiriou, 2002). A thermal bridge is usually caused by a structural element that 
cuts out the thermal insulation barrier creating a short circuit path for heat flow, causing heat losses 
during the winter and heat gain during the summer (Ortiz-Sanz et al., 2019). In IR thermography, a thermal 
bridge is detected as an area of temperature, usually located at the corner of the buildings or between 
floors (Grey & Wartman, 2017). Physical defects or missing insulation can be detected in IR thermography 
as areas with a temperature difference of 11oC and usually appears as patches with distinct edges that 
outline the non-insulated areas (Balaras & Argiriou, 2002; Chang, 1985; Grey & Wartman, 2017).  
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Figure 4-16: Types of thermal anomalies as they are detected in IR thermography.  

A workflow using machine learning and computer vision techniques is developed to detect thermal 
anomalies that will assist in the general framework of heat vulnerability assessment. The proposed 
workflow is part of an ongoing research collaboration between MIT, Georgia Tech, and Syracuse 
University, and the work is funded by the U.S. Department of Energy (DOE). Thermal anomaly detection 
is based on Computer Vision (CV) algorithm developed by Syracuse University that outputs an IR image 
with detected anomalies without any additional information related to their classification. Here, the 
research presents a Machine Learning (ML) algorithm to classify and quantify detected thermal anomalies 
and their occurrence using detected anomalies as inputs and outputs anomaly classes and their 
probability according to two main categories: infiltration/exfiltration and thermal bridge/missing 
insulation. The proposed algorithm uses three input data types: RGB data for object detection and IR data 
and detected anomalies for anomaly classification. The object detection output from RGB will guide the 
anomaly probability and their classification by linking detected anomaly locations to detected envelope 
components. The structure of the algorithm consists of 6 components as follows: 1) object detection, 2) 
anomaly processing, 3) anomaly categorization, 4) geometric classification,  5) IR data processing and 6) 
thermal anomaly classification (Figure 4-17).  
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Figure 4-17: Thermal anomaly classification algorithm Structure.  

4.6.4 Envelope Object Detection  
Numerous research studies have focused on the extraction and segmentation of buildings’ envelopes 
using photogrammetry and computer vision techniques. In the field of detecting building envelope objects 
from images, numerous models have been developed using deep learning techniques such as Recurrent 
Neural Networks (RNN) (Graves et al., 2008) and Convolution Neural Networks (CNN) (Krizhevsky, 
Sutskever, & Hinton, 2012). These models have been widely used due to their accuracy in detection that 
assisted in numerous fields such as object detection (Girshick, Donahue, Darrell, & Malik, 2016) and image 
clustering and classification (T. H. Chan et al., 2015), yet their detection rate has been slow. Redmon et al. 
(2016) developed a novel model called YOLO (You Only Look Once) that uses the feature map to achieve 
real-time detection with high accuracy. Since then, there has been an incremental upgrade to the YOLO 
model by integrating ResNet50 (He, Zhang, Ren, & Sun, 2016) and Feature Pyramid Network (FPN) (T.-Y. 
Lin et al., 2017) till the YOLO version (5) (Redmon & Farhadi, 2018).  

In YOLO v5, the detection of small objects has been improved significantly, making it suitable for detecting 
semantic objects with repeating structures such as windows and doors in building facades. Hence, the 
research adopts the YOLO v5 model as the main structure algorithm for object detection using UAV’s RGB 
and IR data.  The basic structure of the YOLO model is based on an end-to-end pipeline, where an input 
image is divided into an SxS grid, and each cell is used to predict the object centered in that cell. The 
prediction process is performed by examining the center of the semantic component in each cell. Each 
grid produces B bounding box with a confidence score of χ (Figure 4-18).  
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Figure 4-18: Left, Conceptual structure of YOLO model, Right, parameters of the model (Based on (Redmon et al., 

2016)). 

The confidence score of each predicted class is calculated using the following equation: 
𝛘𝛘 = 𝑃𝑃𝐼𝐼𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊 𝐼𝐼 × 𝑄𝑄𝐼𝐼𝑟𝑟𝑊𝑊𝑊𝑊𝑊𝑊 𝐼𝐼            (12) 

where P is the probability of detected object in a bounding box B with accuracy score  𝑄𝑄 to account for 
the fitness between the predicted box and target object. There is an N bounding box for every image, and 
each bounding box is defined by 4 parameters (Figure 4-17). The dimensions of the bounding box are 
determined by w, h, and x,y represents the coordinates of the upper left corner of each bounding box.   

The structure of the YOLO model is a convolutional neural network that consists of 24 convolution layers 
and 2 fully connected layers, as shown in Figure 4-19 (Redmon & Farhadi, 2018). The convolutional layers 
construct inception modules with 1x1 reduction layers followed by 3 x 3 convolutional layers (Redmon et 
al., 2016; Redmon & Farhadi, 2018). In the YOLO v5 model, a residual network is used as the model 
backbone, improving the detection accuracy significantly (He et al., 2016). Also, YOLO v5 can process 
images in real-time at 78 frames per second (FPS) with fewer false positives in the background (Redmon 
& Farhadi, 2018).  Since doors and windows are considered semantic objects with varying sizes and poses, 
YOLO v5 is most suitable to overcome this problem by incorporating multi-scale fusion (T.-Y. Lin et al., 
2017) to detect objects with good adaptability to changes in objects sizes.  
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Figure 4-19:  Network architecture of YOLO v5 model. (Based on (Redmon & Farhadi, 2018)). 

Around 500 images collected in Boston, MA, were used as training data set with variations of doors and 
windows for residential buildings type. During the training process, the loss function is optimized using 
the following equation:  
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where, in a given cell  𝑆𝑆, the center of the bounding box B is denoted as (𝐸𝐸𝐼𝐼 ,𝑆𝑆𝐼𝐼) to the bounds of the grid 

cell with normalized width 𝑤𝑤𝐼𝐼 and height ℎ𝐼𝐼 relative to the image size. 𝐴𝐴𝐼𝐼
𝑜𝑜𝑏𝑏𝑖𝑖  represents the existence of an 

object, 𝑆𝑆𝐼𝐼  is the confidence of detection and 𝐴𝐴𝐼𝐼𝑖𝑖
𝑜𝑜𝑏𝑏𝑖𝑖  specifies that the jth bounding box performed 

prediction. The loss function penalizes classification errors only if an object is located in that grid cell i. 
Next, a binary variable 𝜖𝜖 [0,1] is assigned to represent the state of the selected attributes in each bounding 
box.  
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Figure 4-20: The learning rates for each of the training epochs. The magnitude of the accuracy increases 

after the first epoch and fluctuates around 94.4%.  

The training data were manually labeled with semantic objects for two classes: doors and windows. The 
YOLO v5 model was then built based on Keras (Gulli & Pal, 2017), and the data were divided into 60% (300 
images) for training and 40% (200 images) for testing. To assess the effectiveness of detected objects, the 
assessment method in (Hu, Wang, Zhang, Ding, & Zhu, 2020; Rahmani & Mayer, 2018) was adopted where 
every classified pixel was accounted as either false positive (FP) or true positive (TP) and the precision 
equals to TP/(TP+FP) and the total calculated precision was 0.93 (Figure 4-20). To assess the precision of 
the object detection, the model was tested with different resolutions and different layout configurations, 
and the model performed well with low-resolution images captured by the FLIR camera. Figure 4-21 shows 
the results of the detected doors and windows using the testing data set. The red frame represents the 
detected windows, and the green frame denotes detected doors.  
 

 
Figure 4-21: Doors and windows detection results from YOLO v5 using the testing data set.  

Since the YOLO model was tested against different resolutions and configurations, its output was used for 
window-to-wall ratio estimation. The process uses generated 3D mesh from UAV RGB data to calculate 
fenestration area and WWR for each façade separated. The process combines façade area segmentation 
and windows detection to calculate fenestration area and WWR. As explained above YOLO model will be 
used to detect windows in each façade side extracted from the 3D mesh. Here the research uses the 
Pyramid Scene Parsing Network (PSPNet) semantic segmentation algorithm proposed by Zhao et al. (2017) 
to estimate the façade area. PSPNet is a Scene parsing algorithm based on a semantic segmentation 
framework for pixel-level detection. The architecture of the algorithm uses a pre-trained ResNet model 
(He et al., 2016) to extract the feature map that is 1/8 of the input image’s size. Then the feature map is 
overlayed by a Pyramid Pooling Module on top to pool the feature map to 4 different levels, each level 
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with a bin size of 1x1, 2x2, 3x3, and 6x6 to reduce dimensionality (Figure 4-22). Next, the pooled feature 
maps are convolved using a 1x1 convolution layer where the output of the convolution layer is 
concatenated to the original feature map. Finally, these outputs are processed by a convolutional layer to 
produce pixel-level detection (Figure 4-22). the PSPNet model was trained using a standard entropy loss 
function as follows: 

𝜁𝜁𝐼𝐼𝑟𝑟 =  
1
𝑁𝑁

 ��𝑆𝑆𝐼𝐼  log𝐸𝐸𝐼𝐼 + (1 − 𝑆𝑆𝐼𝐼) log(1 − 𝐸𝐸𝐼𝐼)�
𝑁𝑁

𝐼𝐼

       (14) 

where i is the pixel index, N is the number of pixels, y is the ground truth of the façade category, and p is 
the probability of the predicted object.  

 
Figure 4-22: PSPNet Model architecture. (Based on (H. Zhao et al., 2017)). 

the eTRIMS database (Korc & Förstner, 2009) and the “Ecole Centrale Paris Facades Database Benchmark 
2011” (Teboul, Simon, Koutsourakis, & Paragios, 2010) were used to train the model. The “Ecole Centrale 
Paris Facades Database Benchmark 2011” contains 104 labeled images of rectified facades with 7 labels 
(doors, windows, sky, balcony, wall, roof, shop). The eTRIMS database contains 60 images with accurate 
annotations of other elements such as vegetation to test model parsing integrity against any possible 
noise. The research implements PSPNet based on Tensorflow and a single Google GTX 1080Ti GPU for 
training. The model's performance is evaluated using two of the most commonly used in image 
segmentation: total accuracy, mean intersection over union (IoU). Figure 4-23 shows the model’s results 
after training using 170 images and testing for 60 images with the total accuracy of 88.27 and mean IoU 
73.9.  

 
Figure 4-23: Results from the PSPNET algorithm with segmented façade elements (walls, windows). 

Next, a ratio to measure the number of pixels per detected bounding box is developed to calculate the 
area of the detected windows. Next, the total number of pixels of the boxes that surround windows (from 
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the YOLO model) was calculated and divided by the total number of pixels of the façade area detected 
from the PSPNet model. An image calibration was performed using the width and height ratio of the actual 
façade from UAV processed data as the reference object to calibrate each representative façade image. 
The pixel per metric (PPM) was used to estimate the ratio between the image and actual façade dimension 
using the following equation: 

𝐸𝐸𝐸𝐸𝐷𝐷 =  𝑁𝑁𝑤𝑤
𝑟𝑟𝑤𝑤

  in pixels     (15) 

Here, Bw is the width of the image, and Fw is the actual façade width measured from the 3D mesh, and by 
using that ratio, the size of all the detected bounding boxes was calculated in each façade image (Figure 
4-24). The total fenestration area per each façade is calculated using the following equation:  

 𝑊𝑊𝑊𝑊𝑅𝑅 = ∑ 𝑁𝑁𝑤𝑤 × 𝑁𝑁ℎ𝑖𝑖
𝑖𝑖=1
𝑟𝑟𝑤𝑤 × 𝑟𝑟ℎ

      (16) 

B is the detected bounding box with dimension (w,h), n is the number of detected bounding boxes in each 
façade image, and F is the captured image with dimensions (w,h).  

 
Figure 4-24: Detected windows on rectified facade images. 

 

4.6.5 Thermal Anomaly Processing & Categorization  
This section discusses the process of thermal anomaly probability estimation and classification using IR 
data and detected thermal anomaly detection as primary data input. The workflow of thermal anomaly 
classification consists of four main components: 1) thermal anomaly processing, 2) anomaly 
categorization, 3) IR data processing, and 4) probabilistic anomaly detection and classification. The first 
step aims to enhance the visual integrity and reduce noise and any unwanted signals that may affect the 
final classification using image processing techniques. Here low pass filtering, known as smoothing, was 
used to remove unwanted signals and spatial noise frequencies in the detected anomaly image data. The 
concept of low pass filtering employs a moving window operator that affects each pixel of the image by 
changing its value (J. Lee, 1980; Shaikh, 2013), eliminating any unwanted noise. A low pass filter that 
consists of 5 x 5 pixels was used , where h is the spatial frequency, and the transfer function was carried 
out using the following equation: 

𝑆𝑆[𝑆𝑆, 𝑗𝑗] =  � � ℎ[𝐷𝐷,𝐶𝐶]  ∙  𝐸𝐸[𝑆𝑆 − 𝐷𝐷, 𝑗𝑗 − 𝐶𝐶]
∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

       (17) 

https://www.sciencedirect.com/topics/engineering/facades
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Y [i.j] represents the new value of each pixel after applying the filter at row i, and column j in the image, 
and h[m,n] is the low pass filter with dimensions m and n. Although the naked eye cannot detect the 
filter's effect, it smooths out the image at the pixel level to merge the pixels of each anomaly detected. 

Since each image can contain more than one anomaly, it will be challenging to assign a probability value 
per image as this may cause a false representation of the anomaly class detected per image. Thus, the 
research uses Breadth-First Search (BFS) algorithm to categorize and separate different anomalies 
detected in each data point (Silvela & Portillo, 2001). The concept of the BFS algorithm is grouping pixels 
of the same color that are connected by a continuous path of neighboring pixels of the same group. Since 
pixels are processed and stored in a queue connected from the low pass convolutional filter, the BFS 
algorithm can return a set of adjacent pixels of the same color, making this well suited to categorizing 
different anomalies detected in the same image. The propagation method in BFS is based on breadth-first 
traversal discussed by (Rayward-Smith, Cormen, Leiserson, & Rivest, 1991), where pixels are explored and 
stored using the function:  

𝐶𝐶(𝐶𝐶�… … . . 𝐶𝐶(𝐸𝐸)�)              

X represents the set of pixels of the same color, and this function is repeated recursively until it covers all 
pixels in the same image. The BFS algorithm was used on every photo to split each image into multiple 
versions of the same input containing only one anomaly class, as presented in Figure 4-25 below. 

 
Figure 4-25: Left, Input segmented anomaly, right, output categorized anomalies after using the BFS algorithm.  

Next, object detection output from the YOLO v5 model is combined with the categorized anomalies from 
the FBS model to estimate the probability of each anomaly detected. The probabilistic anomaly detection 
approach extends conventional object detection and categorized anomalies to quantify each anomaly's 
probability and class type. The process requires two data inputs, i) a presence of an anomaly and ii) a 
detector, to provide the classification for each anomaly detected, which is here a bounding box. The the 
probability distribution P is calculated for all anomaly pixels contained in an image using the following 
equations:  

𝑃𝑃𝐼𝐼𝑛𝑛𝑟𝑟𝐼𝐼𝑟𝑟/𝑟𝑟𝑥𝑥𝑟𝑟𝐼𝐼𝑟𝑟 =  
∑ 𝑁𝑁𝑇𝑇𝑖𝑖𝑜𝑜𝑎𝑎𝑇𝑇𝑟𝑟𝑎𝑎 𝑖𝑖∙𝑁𝑁𝑏𝑏𝑜𝑜𝑒𝑒 𝑖𝑖𝑖𝑖,𝑗𝑗

∑ 𝑁𝑁𝑇𝑇𝑖𝑖𝑜𝑜𝑎𝑎𝑇𝑇𝑟𝑟𝑎𝑎𝑗𝑗𝑖𝑖
         (18) 

𝑃𝑃𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑚𝑚𝑊𝑊𝑟𝑟 𝑁𝑁𝑟𝑟𝐼𝐼𝐼𝐼𝐵𝐵𝑟𝑟 = 1 −  𝑃𝑃𝐼𝐼𝑛𝑛𝑟𝑟𝐼𝐼𝑟𝑟/𝑟𝑟𝑥𝑥𝑟𝑟𝐼𝐼𝑟𝑟      (19) 
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The evaluation process examines the percentage of the anomaly pixels area that overlaps with the 
bounding boxes vector for both doors and windows to detect the class of the detected anomaly. In the 
case of infiltration/exfiltration anomalies, the probability value is assigned based on the spatial 
distribution of the anomaly area and a detector. For instance, if 85% of the anomaly area is located near 
a bounding box, the probability of this anomaly to be an infiltration/exfiltration class is 0.85, as illustrated 
in equation 18. The accuracy of the algorithm ranged between 80% to 85% based on a trained dataset of 
approximately 500 annotated images. The final output is an IR image with the anomaly class and the 
associated probability value, as shown in Figure 4-26 below.  

 
Figure 4-26: Final thermal anomaly classification and related probability. 

4.7 The Case of the Bronx, NYC: Analysis Framework  
This section discusses the application of rapid heat vulnerability assessment using UAV technology 
through a case study in Bronx Community District 6 (CD6) in New York City. The study's primary goal is to 
examine the applicability of the proposed framework in rapidly identifying factors associated with heat 
vulnerability. This is achieved by combining the socio-economic characteristics with the assessment of 
building envelope to identify building stocks and populations exposed to heat exposure and use that 
information to prioritize adaptation intervention to improve CD6 adaptive capacity against extreme 
heatwave events. The research also examines what role can be played through the local community in 
heat vulnerability assessment. The research examines a neighborhood in NYC city due to the rising 
concerns of extreme heat events.  

The New York City Department of Health and Mental Hygiene estimates that there is an average of 13 
deaths from heatstroke every year in New York City (NYC), and around 150 people are hospitalized (New 
York City Department of Health and Mental Hygiene, 2021). Also, in this study, the research works closely 
with a local community group through a research partnership between Pratt Institute and Mothers On The 
Move alongside the Mary Mitchell Family and Youth Center. The Bronx CD6 is a low-income residential district 
located in Northwest Bronx and is considered one of the densest in the United States (NY Start Smart, 2021). The 
total area of CD6 is 1.5 square miles and consists of 6 neighborhoods: Fordham, East Tremont, Bronx Park South, 
Bathgate, West Farms, and Belmont (Figure 4-27).  
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Figure 4-27: Left, The Bronx Community District (CD6) and existing infrastructure. Right, population of color 

distribution in CD6 (US Census Bureau, 2019).  

The total population of CD6 is around 98,823 residents (DATA2GO, 2021), where 64.2% of the population are 
Hispanic, and 27.1% are non-Hispanic black or African American residents with the highest population of color 
density is located close to Bronx Zoo's southwest border (Figure 4-28).  In terms of land use, there are 200 vacant 
lots in CD6, with 81.5% of the available lots are privately owned. There is also a high concentration of 
parking facilities that account for 6.2% of the total area. In comparison, recreation spaces represent 9.4%, 
four times lower than NYC and Bronx, limiting the adaptive capacity of CD6 residents against extreme heat 
exposure indoors (DATA2GO, 2021). The structure of the population in CD6 implies a higher susceptibility 
to heat exposure from the socio-economic perspective. The area is home to a low-income population with 
around 71% below the national poverty line (Figure 4-28). Also, about 37% of the population haven’t 
completed high school, and 24% are college associate degrees (NY Start Smart, 2021). Also, most of the 
population are households (31,482), and the majority are single-parent households (around 10,000 single 
female householders) (NY Start Smart, 2021; US Census Bureau, 2019).  
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Figure 4-28: Left, CD6 population under the poverty line. Right, Average annual PM 2.5 concentration (ug/m3) in 

CD6 (New York City Department of Health and Mental Hygiene, 2021; US Census Bureau, 2019).  

A previous assessment on heat vulnerability in CD6 indicated that the area is highly vulnerable to potential 
heat risks (Ortiz et al., 2018). Another factor to consider is air quality, as the concentration of PM 2,5 is 
relatively high in NYC, where 49% of PM 2.5 emissions are coming from buildings, and 17.5% are coming 
from traffic.  The Bronx is considered one of the highest PM 2.5 concentrations (Figure 4-28), posing higher 
risks for vulnerable populations (Comptroller, Stringer, City, Heights, & Hill, 2018).  

4.7.1 Data collection and Community Engagement 
As discussed above, heat vulnerability in the Bronx is considered among the highest in NYC.  The pilot 
study aims to assess how aerial thermography can provide information to guide building retrofits against 
heat exposure and reduce weatherization. A five-story walk-up archetype built in 1913 was selected since 
it has the same construction type and condition as 4156 buildings in CD6 (Figure 4-29). The building 
accommodates 23 residential apartments with a gross floor area of 19,523 square feet. Also, the building 
is part of the affordable coop housing in the Bronx and is owned and managed by the Housing 
Development Fund Corporation (HDFC) program in NYC. The data collection flight was conducted on April 
8th, 2019, with a temperature difference of 10oC between indoor and outdoor temperatures. A strip 
pattern is selected with 90% frontal overlap and 80% side overlap using Mavic Pro with a dual gimbal 
carrying both RGB and IR simultaneously. The data collection process was carried out in collaboration with 
Pratt Institute and Mothers on the Move to design a community-based planning process to engage Coop 
Boards and residents in the building assessment. The partnership with the local community explores the 
opportunity to develop a pilot academy to train young people in CD6 to become drone pilots and engaged 
in the data collection side, as highlighted in Figure 4-13 above. This will improve the residents' 
employment prospects through high-paying career development, especially for young residents. 
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Figure 4-29: Right, exterior view for the examined building, Left, the distribution of similar archetypes in CD6. 

4.8 Results 
Data was collected using the workflow described above to examine the applicability of the rapid heat vulnerability 
framework to assess the envelope performance compared to the traditional envelope inspection and how such 
information can identify susceptible building stock to potential extreme heat events. From the IR data, the flight’s 
results showed two types of thermal anomalies: infiltration/exfiltration and thermal bridge/missing insulation, with 
varying occurrences across the three inspected facades. Infiltration/exfiltration anomalies represented around 
68.7% of the detected anomalies in both south and east façade (Figure 4-30), mainly around the window frames and 
AC units’ boundaries. Also, thermal bridge/missing insulation is detected more in the upper floor of the west and 
south façade. In-person interviews with residents in different apartments were carried out to assess sources of 
thermal discomfort to confirm findings from thermal anomalies detection. The majority of the residents with 
apartments on the west-facing façade indicated an increased thermal discomfort during the wintertime, reporting 
that window frames are causing temperature fluctuations even when the heating system is on. These results confirm 
the findings from the thermal flight, which can be used as a first step of highlighting susceptible building stock rapidly 
and prioritize types of retrofitting interventions.  
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Figure 4-30: Detected thermal anomalies probabilities and their classes per floor in south and east façade. 

From this analysis, the envelope's overall deterioration level was assessed from aerial thermography data. The 
research proposes Envelope Deterioration Level (EDL) to indicate the building’s ability to regulate high outdoor 
temperature exposure and how susceptible the building is. EDL is calculated based on the percentage of anomalies 
detected over the total façade area using the following equation:  

∑ 𝐴𝐴𝑛𝑛𝑜𝑜𝑚𝑚𝑊𝑊𝑟𝑟𝑦𝑦 𝐴𝐴𝑟𝑟𝑟𝑟𝑊𝑊 (𝐴𝐴𝐴𝐴)𝑖𝑖
𝑖𝑖
𝐺𝐺𝑊𝑊𝐼𝐼𝑊𝑊𝐼𝐼𝑟𝑟 𝐴𝐴𝑟𝑟𝑟𝑟𝑊𝑊 (𝐺𝐺𝐴𝐴)

         (20) 

The overall deterioration level was estimated to be 38.6% of the total façade area, with the highest 
occurrence of anomalies in both south and east facades (Figure 4-31). Findings from the pilot study in CD6 
highlighted the applicability of the proposed workflow in providing rapid assessment of existing building 
stock in a time-efficient manner. The data collection process took around two hours for 3487.5 square 
feet and four hours in processing time for IR data, anomaly detection, and EDL calculation. Output from 
RGB data was used to calculate WWR, visual assessment of material deterioration, and fenestration area 
(Figure 4-31). In addition to the output from the IR data processing, such information can be helpful in a 
further analysis of building performance, such as the development of whole building energy simulation 
models and estimation of thermal transmittance following the methodology discussed in the first section 
of this chapter.   

 
Figure 4-31:  Left, Southern façade segmentation and detected windows.  
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Table 4-4 lists the main data outputs from the pilot study in CD6 in the Bronx. The proposed framework 
for rapid heat vulnerability assessment using UAVs can provide meaningful information that can also be 
applied in building audits, especially for ASHRAE Building Audit procedures 211P (ASHRAE, 2018). Results 
showed window frame replacement could play a significant role in improving the overall thermal 
performance of the envelope, which was evident from the several occurrences of infiltration/exfiltration 
anomalies in the three examined facades. New York City Housing Authority has set a target of retrofitting 
87% of building stock by 2025 (NYCHA, 2018), where building envelopes representing 16% of total energy 
saving potentials and 18% of the total GHG emission reduction potentials. Therefore, identifying types of 
retrofit intervention using the proposed workflow can assist in NYC energy-saving goals from existing 
buildings and improve the existing stock in a time-efficient manner.  
Table 4-4: Outputs from UAV data processing 

Window-Wall-Ratio (WWR) 35% (Average) 
Total Roof Area 3487.5 Square feet 
Envelope Deterioration Level (EDL) 38.6% 
Envelope Thermal Performance 61.4% (1- EDL) 
Infiltration/exfiltration Occurrences 35% (Average) 

 
4.8.1 Rapid Assessment of Urban Adaptive Capacity & Heat Adaptation 
Interventions 
This section examines adaptive capacity at the district level by assessing the proximity of each building to 
surrounding urban amenities. The main goal is to rapidly evaluate how adaptive capacity conditions can 
better inform heat adaptation policies. The research considers available urban amenities to heat 
adaptation include three main categories: cooling shelter, open spaces/parks, and hospitals. To calculate 
proximity for each building to surrounding amenities, all pixels that carry information on the location of 
residential buildings and surrounding urban amenities are annotated. Annotation is divided into five main 
categories: residential buildings, roads, cooling shelters, open spaces/parks, and hospitals. After data 
annotation, BFS algorithm was used as a novel method to calculate proximity to surrounding heat 
adaptation amenities. The purpose of the BFS algorithm is similar to what was discussed previously in 
section 4.6.3.2, where it attempts to find a path by methodically examining all the neighbors of each 
node/pixel it examines. BFS uses a queue to track all neighboring nodes to examine, storing all assessed 
neighboring pixels until the queue is empty (Figure 4-32). Each examined pixel is stored in a set so that it 
is not examined twice and called a closed set, while pixels to be analyzed are stored in a set called open 
set (S. M. Kim, Peña, Moll, Bennett, & Kavraki, 2017). Thus, the BFS algorithm can annotate all road pixels 
from only one annotated pixel and store all groups of pixels that belong to a specific category into a 
separate set.  
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Figure 4-32:  Schematic architecture of Breadth First Search (BFS) algorithm workflow (Silvela & Portillo, 2001). 

All the pixels for all residential buildings are annotated and detected from the BFS algorithm and all the 
pixels for all nearest neighboring roads. The process of calculating the distance between each residential 
building and surrounding urban amenities by getting the pixels of every residential building and then the 
nearest road pixels the corresponds to the nearest point to each building. Then, the BFS algorithm is 
applied to connect the nearest point of each building to surrounding cooling shelters, open spaces/parks, 
and hospitals. The distance between each point and surrounding amenities is stored as a value 
representing the proximity of a given building and shortest path to surrounding heat adaptation 
amenities. This process is repeated for every building until all pixels stored in the building's set are 
covered. Figure 4-33 shows proximity to open spaces/parks and available health amenities in CD6 using 
the workflow described above. The proposed workflow can be expanded to evaluate the adaptive capacity 
for any given neighborhood or district based on the distribution and proximity to heat adaptation 
amenities and identify areas with high priority for urban intervention to improve their adaptive capacity 
under future heat events.  

  
Figure 4-33: Left, proximity to existing open spaces and parks. Right, proximity to health amenities. 
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As it can be noted from the initial adaptive capacity assessment presented in Figure 4-33, there is limited 
availability of open spaces and cooling shelters. Open spaces in CD6 represent only 6.2% of the total area 
excluding Bronx Zoo and Crotona Park compared to 30% in the Bronx and 23% in New York City. Also, 
some areas have little access to open spaces that can be used as a cooling outlet during extreme heat 
exposure indoors and can be directly accessed by the community. Also, the lack of cooling shelters creates 
inequitable access to heat amenities and discourages residents from going outdoors when the indoor 
temperature exceeds thermal comfort limits or during power loss. Yet, there are potentials to improve 
access to open space by using underutilized spaces from vacant plots, curbs, and plazas that can be 
activated and made more accessible to the public.  

Cooling centers can provide a resource to combat heat-related health impacts, especially when indoor air 
temperature at the building level increases. In CD6, there are 6 public facilities currently available for 
public residents to cool off during extreme heat events, including public libraries and senior centers, as 
shown in Figure 4-34. However, the capacity of existing cooling shelters can be improved by utilizing other 
public facilities within CD6 that can be transformed into cooling centers during extreme heat events, 
particularly for elderly and vulnerable residents. There are 539 public facilities in CD6 that can provide 
access to areas with limited access to cooling centers during a heat emergency. In addition, local 
community groups like Mothers on the Move can publicize the locations of these centers to residents who 
don’t have sufficient information on heat adaptation resources during extreme heat events or heat 
emergencies announced by the city.  Figure 4-34 illustrates improved adaptive capacity to areas of limited 
accessibility from the previous assessment after improving access to cooling centers. 

  
Figure 4-34: Left, Existing cooling centers in CD6. Right, improved access to cooling centers after utilizing available 

public buildings. 
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4.9 Discussion  
This section presented a workflow for rapid heat vulnerability assessment using UAVs coupled with 
machine learning and graph theory models.  The process incorporates using automated processing of IR 
and RGB images captured by UAVs to assess the thermal performance of building envelopes and how this 
can be translated to an indicator of buildings’ susceptibility during extreme heat events. The proposed 
framework can provide helpful information in assessing building envelope with respect to anomaly 
classes, location, and spatial distribution across the envelope area. Also, using machine learning methods 
can provide reliable predictions with robustness for envelope deterioration levels that can inform better 
building retrofits and heat adaptation strategies. However, the main limitation of the proposed 
framework is assessing roof areas which can be overcome with training datasets for roof subjects. As part 
of the larger scope of passive survivability and heat vulnerability assessment to extreme heat events, a 
workflow for the adaptive capacity assessment is developed using only satellite imagery and building 
footprint information to understand the wide range of vulnerability disparities and access to heat 
adaptation amenities. The proposed workflow for the adaptive capacity assessment using the graph 
theory method has provided important information about the role of accessibility to heat adaptation 
amenities and access to other resources in heat risk reduction strategies. Findings] from CD6 in the Bronx 
indicate that residents have limited knowledge on the location or distribution of the closest cooling 
centers, which restrict their coping capacity in case of power loss at home or when the indoor temperature 
exceeds comfort levels. Assessing available adaptation resources to improve heat awareness plans can 
significantly assist decision-makers with the data to identify pathways to enhance adaptive capacity and 
residents' knowledge during extreme heat events at the district level.  

4.10 Summary 
This chapter examined the applicability of integrating aerial technology, namely UAVs, coupled with 
machine learning and graph theory methods in the rapid assessment of heat vulnerability at the building 
and district levels. The first section of this chapter proposed a framework for the detailed assessment of 
building thermal envelope performance using data from UAVs equipped with infrared and RGB cameras 
to estimate the envelope’s thermal transmittance. Results from the study have shown a significant 
improvement in simulation models’ prediction after incorporating calculated thermal transmittance. The 
proposed framework can also be helpful to identify types of retrofit strategies such as targeted wall 
insulation replacement, with less time and cost than traditional building inspection processes.  The second 
half of this chapter presented a framework for heat vulnerability assessment at the building level using 
UAVs coupled with machine learning techniques and adaptive capacity evaluation at the district level 
using graph theory methods. The proposed methodology can provide information on the envelope’s 
thermal performance that can impact indoor heat exposure levels. This was illustrated by the results from 
the pilot study in CD6 in the Bronx; by identifying the envelope’s deterioration level, it can be better 
understood how to improve the thermal performance of building stocks that are more susceptible to 
future heatwaves. Also, the community engagement approach in using UAVs for building assessment can 
be a catalyst for the growth of job opportunities for the residents and engagement in the decision-making 
process.  The chapter also explored graph theory and graph traversal techniques such as the BFS algorithm 
in evaluating adaptive capacity at the district level and how such information can assist policymakers in 
heat adaptation planning and heat risk awareness programs. 
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V. URBAN INTERVENTION AND POLICY DEVELOPMENT 
Extreme heat events are increasingly affecting urban areas where the size of exposed vulnerable 
populations and their geographical distribution is constantly shifting due to economic development, 
urbanization, and demographic changes. Previous studies have illustrated that planned adaptation can 
significantly reduce heat-related health burdens during extreme heat events, especially among the most 
vulnerable populations (Liotta et al., 2018). Adaptation to climate change challenges is a complex problem 
encompassing various strategies triggered by extreme weather events and operates differently on spatial 
and temporal levels involving a broad range of actors and decision-makers (Holman, Brown, Carter, 
Harrison, & Rounsevell, 2019). Adaptation strategies for extreme heat events can be classified based on 
three main categories. First, the effect of heat risk that they target; adaptation strategies can tackle 
numerous heat-related effects such as a) reducing heat hazard sources either at the building level or the 
urban block level, b) vulnerability of the urban population through heat-awareness programs, and c) the 
adaptive capacity of the physical urban system such as increasing access to heat adaptation amenities and 
heat early warning systems. Second, the requirement for the implementing strategies, either hard (long 
term goals at the built environment scale) or soft adaptation (socioeconomic and institutional strategies) 
(Boeckmann & Rohn, 2014; Fernandez Milan & Creutzig, 2015; H. M. Füssel, 2007). Third, based on the 
types of actors involved in the decision-making process (Tompkins & Eakin, 2012). However, several 
factors can prevent the implementation and effectiveness of heat adaptation strategies. Most adaptation 
strategies are based on historical research rather than an accurate assessment of sectors of the population 
and their engagement in heat-related mortality prevention programs and are usually triggered by an 
extreme heat event (Heudorf & Schade, 2014; Pascal, Le Tertre, & Saoudi, 2012). In addition, there is a 
need to identify and design adaptation strategies that can be effective at varying levels of exposure at the 
physical urban system boundary and varying levels of vulnerability at the socioeconomic level of the 
population. The first section of this chapter presents an overview of different heat adaptation strategies 
for three scales: building, urban and human, and their impacts in reducing heat-related health risks. The 
second half explores the role of policy actors in the success and effectiveness in adaptation strategies 
referencing the case of 1995 Chicago heatwave using a system dynamic modelling approach.  
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5.1 Building Scale: Improving Coping Capacity 
As mentioned in previous chapters, extreme heat poses significant risks to public health, and climate 
change will likely exacerbate the frequency, duration, and intensity of future heat waves. As highlighted 
in chapters 3 and 4, residential buildings play a vital role in mitigating indoor temperature and heat-related 
health impacts. Yet, heat adaptation strategies and potential climate and health benefits need to be 
thoroughly evaluated. This will assist future research in mapping and identifying the potentials of 
adaptation strategies in reducing heat-related health risks.  It has been established from the literature, 
people spend around 90% of their time indoors (Neil E. Klepeis et al., 2001),. Thus, residential buildings 
play a crucial role in moderating indoor heat exposure during extreme heat events. Several studies have 
identified numerous factors influencing indoor heat, such as insulation level, air conditioning (AC) 
availability, and construction materials, which can significantly impact occupants’ health during extreme 
heat events (Alam et al., 2016; Naughton, Henderson, Mirabelli, Kaiser, Wilhelm, et al., 2002; Quinn et al., 
2014; J. Taylor et al., 2015). Therefore, heat adaptation interventions can significantly influence the 
magnitude of heat-related health impacts.   

In addition to heat-related health impacts, buildings contribute to increased energy usage from cooling 
and heating demands. At the global scale, the building sector accounts for 25% of the global Greenhouse 
Gas (GHG) emissions (Fosas et al., 2018). Thus, improving building thermal performance lies at the heart 
of heat adaptation interventions and energy reduction goals (J. Li & Shui, 2015; Papadopoulos, 2016). To 
date, mechanical cooling is one of the primary heat adaptation strategies at the building level to combat 
heat-related risks during heatwaves. However, the energy cost of using air conditioning in the face of 
more frequent heat events is not a sustainable option. Also, the widespread blackouts during the summer 
months and mainly during heatwaves limit coping capacity to prolonged indoor heat exposure (Sailor, 
Baniassadi, O’Lenick, & Wilhelmi, 2019). 

In addition, as was highlighted in chapter 3, those who are highly vulnerable to heat exposure are low-
income populations who can’t afford AC ownership. Therefore, improving the thermal performance of 
buildings’ envelope has been regarded as a measure that will significantly reduce heat-related impacts on 
human health. Over the past 4 decades, there have been substantial efforts to reduce energy demand 
from the building sector through building energy codes such as ASHRAE 90.1 (ASHRAE, 2016).  Also, the 
energy efficiency from applying these energy codes contributes to building resilience during extreme heat 
by improving indoor thermal comfort due to envelope improvements (Buonocore et al., 2019). This 
section presents an overview of strategies applied to residential buildings that can influence indoor 
exposure levels. Strategies to improve buildings’ coping capacity are categorized into four categories: 1) 
strategies to limit heat gain, 2) strategies to improve heat rejection, 3) passive cooling strategies, and 4) 
occupants’ behavior strategies (Figure 5-1).  
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Figure 5-1: Coping Capacity strategies at the building scale. 

 



164 | C H A P T E R  5  
 

5.1.1 Strategies to Limit Heat Gain 
In situations of prolonged and extreme heat exposure, buildings’ thermal capacity to regulate heat plays 
a significant role in preventing or reducing potential risks to human health. In the U.S., around 40% of 
heat-related morbidity happens indoors and in residential buildings (NWS, 2019). As illustrated in both 
case studies presented in chapters 3 and 4, building envelope thermal performance is a primary factor in 
heat gains during extreme heat events.  Several studies have examined building envelope strategies to 
reduce heat gain in the face of climate change risks. From the literature, these strategies can be 
categorized into three main categories: i) building envelope, ii) material selection, and iii) design 
strategies.  

A. Building Envelope: One of the explored strategies to reduce heat gain from the building envelope level 
is vertical greening and green roofs. Munch et al. (2018) have assessed the effect of green roofs during 
heatwaves. Results from the study show that green roofs generated indoor cooling 0.5oC to 2.0oC and 
contributed to a reduction in annual energy consumption. Another study by Virk et al. (2015) on the 
impacts of retrofitted green roofs on indoor microclimate found that green roofs can reduce near-surface 
air temperature. Another strategy is roof replacement made of highly reflective and light-colored 
materials that are 28oC to 36oC cooler than dark roof materials, and aged white roof materials are 20oC to 
28oC cooler (Global Cool Cities Alliance (GCCA), 2012). Also, using white roofs in buildings with limited 
access to AC can reduce indoor air temperature for the top floor by 1oC to 2oC during extreme heatwaves. 
Numerous studies have investigated the impact of façade thermal insulation on heating prevention and 
indoor climatic conditions. Also, a vast body of literature examined the relationship between outdoor 
conditions and overheat concerns from thermal inertia. Kossecka and Kosny (2002) have conducted a 
whole building simulation analysis for six different climates in the U.S. and found that reduced heating 
and cooling demand from improved wall insulation surpassed 11% for continuously heated buildings. Stazi 
et al. have found that insulated envelopes effectively moderate heat flow to the external environment. 
Also, Stazi’s (2017) study has found inadequate insulation layer thickness can affect heat flow and cause 
more overheating. 

B. Material Selection: cool façade materials can contribute to indoor heat prevention and are considered 
among the straightforward measures to mitigate heat exposure impacts. Zinzi (18) examined the impacts 
of façade active cooling paint on indoor thermal conditions in Italy. The study showed that the average 
indoor operative temperature was reduced by 0.5oC to 1.6oC, and external surface temperature was 
reduced by more than 6oC. Other studies have assessed the effectiveness of using reflective materials on 
building thermal performance. Yang et al. (2015) have reviewed the applicability of reflective materials to 
prevent indoor heat exposure and found that reflective materials capability depends on numerous factors 
that need to be developed on a city-to-city basis. Sajjadian et al. (2015) examined the use of phase-change-
materials (PCM) to mitigate heat impacts on buildings in the UK and identified that PCM could lead to a 
reduction in discomfort hours by 62% to 78%.  

Another measure to mitigate indoor heat exposure and related to building materials is thermal mass. The 
use of thermal mass to improve indoor conditions has two distinct mechanisms: removing heat from air 
through convection when the internal air temperature is at high ranges and radiative heat exchange 
(Saulles, 2009). Thermal mass can be used to stabilize peak indoor air temperature, yet the level of 
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thermal mass exposure to air flows plays a significant role in how effectively it functions. Findings from 
the literature have suggested that for thermal mass to remove built-up heat from exposed thermal mass 
effectively, nighttime ventilation rates should be between 6 to 10 ACH (ZCH, 2016). However, in highly 
dense and deep urban areas, achieving high rates is challenging, especially if opening windows at night is 
impractical due to noise pollution levels and security. These issues need to be carefully addressed to 
improve thermal mass effectiveness in dense urban locations that can be more susceptible to heat 
exposure, as highlighted from the case study in chapter 3.  

C. Design Strategies: One of the most straightforward and unfortunately rarely explored strategies to 
reduce heat gain is rational glazing. Rational glazing area implies simultaneously optimizing glazing area 
to reduce heat gain and energy demand from cooling (Kisilewicz, 2015). However, the glazing area 
depends significantly on multiple factors such as window orientation,  thermal resistance, the layout and 
openness of the building interior, and the thermal capacity of the envelope (Kisilewicz, 2007). This 
problem can be overcome by defining window sizing at the first stage of the building design.  Also, glazing 
type is one of the key measures that can impact heat gains from fenestration. Solar control films are one 
of the appropriate retrofit measures that are applied to existing glass to reduce heat gain at a relatively 
low cost (ZCH, 2016). Another design strategy to moderate solar heat gain through glazing is window 
shading, whether internal or external shading. Internal shading prevents solar radiation from directly 
heating internal surfaces, yet, unreflected solar radiation can get radiated back into space and back into 
the window, causing indoor air to warm. Therefore, the use of reflective internal blinds can be more 
effective than typical curtains or Venetian blinds as they can absorb shortwave radiation transmitted 
through windows and emit longwave radiation that the glass absorbs. External shading can be significantly 
more effective in reducing solar heat gain without the potential of warming indoor air from reradiated 
longwave heat that is absorbed by the warm glass (Stagrum, Andenæs, Kvande, & Lohne, 2020). However, 
the shape and location of external shading can significantly influence their performance. Fixed overhangs, 
for example, are more suitable for southern orientation to limit heat gains and high angel summer sun. 
Yet, for west elevation, where the sun is relatively lower in the summer, external vertical louvers or blinds 
can be more effective (Al-Tamimi & Fadzil, 2011; Zukowska, Ananida, Kolarik, Khanie, & Nielsen, 2019).  

5.1.2 Strategies to Improve Heat Rejection 
The second category of building intervention strategies is related to strategies of replacing indoor air with 
outside air when the outdoor air temperature is lower through natural ventilation. Natural ventilation 
relies mainly on wind speed and direction to achieve sufficient heat gain removal during peak summer 
months. Thus, large ventilation openings are required to provide suitable air flow rates and should be left 
open for long periods, even during the cooler periods of the day. In dense urban areas, leaving windows 
open for long periods is not practical, especially when the external environment is noisy, and there are 
other issues related to privacy and safety. Several studies have examined the effectiveness of natural 
ventilation in the face of future climate projection and during heatwaves. A recent study by Alessandrini 
et al. (2019) examined the use of natural ventilation during heatwaves found that natural ventilation can 
improve thermal comfort during normal weather conditions; however, it is not an effective coping 
strategy during heatwaves. Another study by Heracleous and Michael (2019) found that natural 
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ventilation is a viable option to cope with current heat exposure conditions but not in the future with the 
projected increase in temperature.  

Numerous ventilation strategies can be used to minimize indoor heat exposure, such as i) recirculating 
ventilation, ii) mixing ventilation systems, and iii) displacement ventilation (Lipinski, Ahmad, Serey, & 
Jouhara, 2020). In recirculating ventilation, natural ventilation is coupled with conditioning systems (split-
system air conditioning, ceiling fans, hybrid ventilation systems) used to move indoor air temperature or 
mix it with outdoor air before pumping into the room. This ventilation method generates turbulent air 
flows with stale air recirculated back into the room. In mixing ventilation systems, outdoor air is 
conditioned and supplied to indoor spaces through ducts using ceiling or floor diffusers (Emmerich, Dols, 
& Axley, 2001). Mechanical ventilation with heat recovery (MVHR) systems is used to reduce ventilation-
related heat loss. Finally, displacement ventilation systems are categorized into 1) continuous extract 
ventilation that uses envelope openings to replace indoor air with outdoor air utilizing negative pressure, 
and 2) building-integrated ventilation measures that rely on buoyancy to displace hot air using elements 
such as windows, solar chimney, or passive stacks (Lipinski et al., 2020). 

As discussed above, thermal mass can store heat and reduce peak summer temperature. However, stored 
heat needs to be removed later from exposed surfaces with night ventilation or other forms of active 
cooling. There are alternatives to overcome thermal mass heat storage release during the nighttime, such 
as thermally active systems that use water-based cooling as an alternative to cool down building 
structures. These systems depend on buildings’ thermal capacity to store heat coupled with natural heat 
sinks such as groundwater or reverse cycle heat pumps to reject heat (Stazi, 2017). A roof pond is one 
example that uses large volumes of exposed water to cool down spaces beneath. 

 5.1.3 Passive & Active Cooling Strategies 
One of the passive cooling strategies that can be utilized to reduce or prevent heat-related risks during 
heatwaves is evaporative cooling, classified into passive and active evaporative cooling methods 
(Addante, Iannone, & Rinaldi, 2015). Passive evaporative cooling can be used in buildings where airflow 
through the buildings has a predefined path and a well-established wind pattern. On the other hand, 
active evaporative cooling uses mechanical ventilation methods to pass the air through a wetted medium 
and can be used in any building (ZCH, 2016). There are two types of active evaporative cooling: i) direct 
evaporative cooling, where the air is cooled directly by evaporating water into the air stream, yet, this 
method increases levels of relative humidity in the air pumped into space, and ii) indirect evaporative 
cooling that cools air supply through an air heat exchanger. Indirect evaporative cooling is less effective 
than cooling, but it doesn’t increase relative humidity levels in air supplied to indoor spaces (Addante et 
al., 2015).  

Active cooling strategies that can be used for heat adaptation intervention at the building scale include 
mechanical free cooling, mechanical cooling, and direct cooling. Mechanical free cooling strategies use 
mechanical means to provide cool air into indoor spaces (Zukowski, Sadowska, & Sarosiek, 2011).  Earth 
tube is one of the free cooling strategies that draw air through earth tubes buried in the ground. In the 
summer months, earth tubes are generally cooler than the outdoor air temperature, thus providing a 
potential to reduce incoming air temperature and provide cooler air into indoor spaces (Morley, 2017). 
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The main limitations with earth tubes are the required large land areas and concerns regarding potential 
mold growth in air supply ducts due to condensation. As discussed above, there is a potential for thermal 
mass coupled with natural ventilation to cool air through both convection and radiative heat exchange 
between building mass and indoor spaces. There are two approaches that link thermal mass to mechanical 
cooling systems: 1) passing air through a void on one side of the building’s thermal mass like raised floors 
or false ceiling allowing airspeed to stay high and with a controlled airflow rate, and 2) passing air through 
hollow cores within the thermal mass of the building (Sajjadian et al., 2015; Saulles, 2009). Finally, 
mechanical cooling is one of the most commonly used strategies to reduce indoor heat exposure and 
minimize heat risks during extreme heatwaves. In addition to their energy-intensive profile, mechanical 
cooling has high costs either from ongoing maintenance costs over the operation time of the system or 
running costs affected by the size of the system, how it is used, and outdoor air temperature (Lundgren-
Kownacki, Hornyanszky, Chu, Olsson, & Becker, 2018). In reality, mechanical cooling systems during 
extreme heat events will operate for more extended periods, resulting in higher running costs and 
increased heat rejected to the local urban climate and contributing more to Urban Heat Island (UHI) effect. 
Some studies have also found that air conditioning (AC) negatively influences human heat acclimatization 
ability after continuous exposure to AC for two weeks (Lundgren-Kownacki et al., 2018).  

5.1.4 Occupant Behavior Strategies 
Occupant behavior is considered one of the leading causes of uncertainty in building performance (Hoes, 
Hensen, Loomans, de Vries, & Bourgeois, 2009; J. Kim et al., 2017). During extreme heat events, 
occupants’ knowledge of building design features that can influence heat gain and rejection is crucial to 
the effectiveness of the strategies presented above. Studies from the literature have shown that most 
buildings’ occupants are unaware of heat gain sources, whether from windows or building structures 
(Delzendeh, Wu, Lee, & Zhou, 2017). There are various behavioral strategies that can contribute to heat 
gain reduction at the building level, such as using window blinds or curtains during sunny periods of the 
day or when the sun is directly shining on the windows.  

Another occupant behavior measure that can lead to increased indoor heat exposure is changing window 
covering positions during the day. Studies on occupant behavior and indoor conditions (DOE, 2013) found 
that between 75% and 84% of the window covering of the examined sample remains in the same position 
throughout the day. Also, 56% and 71% of surveyed households didn’t adjust window covering daily or 
throughout the week when the outdoor air temperature increases. The same study showed that most 
building occupants are unaware of how to operate window blinds or open windows to minimize solar heat 
gains indoors. Therefore, heat awareness programs at the building level should be an integral part of 
building strategies to combat heat-related health risks during extreme heat events.  

5.2 Urban Scale: Adaptive Capacity and Heat Adaptation Amenities  
There are numerous strategies to reduce heat risk impacts at the urban level. As discussed in chapter 2, 
urban adaptive capacity denotes resource availability to reduce heat-related health risks at the urban 
level. Strategies to improve urban adaptive capacity can be categorized into three types, 1) strategies to 
combat Urban Heat Island (UHI) effect, 2) urban design strategies, and 3) strategies to decrease 
population vulnerability (Figure 5-2). As was discussed in chapter 2 and 3, urban areas tend to be warmer 
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than rural areas at night, due to the concentration of building, physical infrastructure, and energy use 
(Lapola et al., 2019b).  

5.2.1 Strategies to combat UHI Effect 
At the urban level, strategies to combat UHI are primarily influenced by the physical layout of the built 
environment that affects sun and daylight availability, the degree of shading, and the potentials for natural 
ventilation (Wang & Akbari, 2016). Also, transportation infrastructure can often be a barrier to opening 
windows at the building level due to air pollution or noise. The presence of vegetation and permeable 
paving can also mitigate the UHI effect alongside the availability of open water bodies to cool down air at 
the urban canyon level. The US Environment Protection Agency (EPA) reported that foliage coupled with 
shading could help significantly reduce peak air temperature during the summer. It was also found that 
suburban areas with trees are 2 oC to 3oC cooler than suburbs without trees (US EPA, 2008).  A detailed 
study by Knight et al. (2016) has found that urban greening strategies such as parks or planting trees have 
affected air temperature within the surrounding urban areas. Another study by Doick et al. (2013) has 
identified a minimum area of one hectare (10,000 m2) of green spaces to achieve a cooling effect at 
distances beyond the vegetation site.  

Surface Albedo: At the local urban level, the solar reflectivity of urban surfaces can largely influence the 
heat absorbed by the urban structure (buildings, pavements, roads) and the release of heat back into the 
local climate. Morini et al. (2016) have identified a potential decrease in air temperature by 2oC and 4oC 
at the local climate by changing the albedo of paving and roofing materials in urban areas. In addition to 
urban surface albedo, there are other strategies such as green roofs (vegetation), white roofs (cooling 
paint), and blue roofs (roof ponds) that can contribute to the reduction of air temperature at the urban 
level. Although green roofs can significantly influence air temperature at the local climate in urban areas, 
installation and maintenance costs should be carefully assessed in heat adaptation planning.  

5.2.2 Urban Design Strategies 
The configuration of the urban form and its physical characteristics can impact the amount of solar heat 
gains and losses. Numerous studies that examined the role of urban form in heat mitigation have found 
that in hot climates, urban areas with narrow streets have lower solar access and more shading potentials 
during the day (Ferwati, Skelhorn, Ferwati, Shandas, & Makido, 2020). However, deep urban canyons can 
negatively influence airflow movement and thus limit the potential for natural ventilation, as illustrated 
in the case study discussed in chapter 3. Also, the ratio between a building’s surface area and volume 
directly impacts heat losses; for example, compact forms reduce envelope heat losses (Y. Li, Schubert, 
Kropp, & Rybski, 2020).  Heat adaptation strategies that target urban layout need to be carefully 
addressed at the planning level, where design decisions at the city scale can have a local influence on 
reducing impacts from future heat risks. Another planning strategy that can significantly influence heat 
risks at the city level is the orientation of buildings. These strategies are specifically important to minimize 
summer and mid-season heat gains while utilizing winter solar gains. Building height is another important 
factor that influences wind speed and potentials for wind-driven ventilation at the building level, as are 
the sizing and area of the windows to allow a suitable airflow rate.  
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5.2.3 Strategies to Decrease Population Vulnerability 
In addition to heat adaptation strategies at the level of the physical urban system, there are other 
strategies in the aspect of heat risk that target improving the population's capacity against heat exposure. 
These strategies aim to improve occupants' awareness of coping with heat exposure, such as heat-related 
social programs (cooling shelters and assistance programs to subsidize electricity bills for low-income 
populations) and social networks at the neighborhood level. These strategies primarily target reducing 
human vulnerability to heat exposure through three main pathways. First, strategies to improve access 
to heat adaptation amenities. These strategies aim to increase access to heat adaptation resources at 
both the building level, such as access to AC at the building level through energy subsidies in collaboration 
with local energy programs, and at the urban level by increasing access to public cooling shelters through 
information campaigns to raise awareness about locations of nearest cooling centers (Hayden et al., 
2017a). Second, strategies to decrease poverty-related vulnerability. These strategies aim to decrease 
socioeconomic inequalities, the number of households below the poverty line, and increase employment 
rates in low-income communities. They also aim to improve urban services for low-income communities, 
such as public transportation, to reduce residential segregation and thus promoting job stability (Rohat et 
al., 2019). Third, strategies to decrease social isolation. Vulnerability due to social isolation is tackled by 
strengthening community social networks such as active monitoring programs that aim to improve social 
relationship networks or neighborhood-based programs to visit and communicate and visit most 
vulnerable populations (elderly, elderly living alone, elderly with medical history) during extreme heat 
events (Fernandez Milan & Creutzig, 2015).   

 
Figure 5-2: Heat Adaptation interventions at the urban level.  
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5.3 Human Scale: Impacts of Community and Social Capital 
Social capital has been identified as a significant contributor to climate change adaptation and positive 
climate-related health outcomes. During extreme weather events, populations struggle to maintain 
behavioral patterns or access to social support that can affect their vulnerability against climate risk,  
similar to what happened during the heatwave in Chicago (Bernier & Meinzen-Dick, 2014; Davies et al., 
2013; Naughton, Henderson, Mirabelli, Kaiser, Wilhelm, et al., 2002). Studies on social capital and climate 
adaptation classified social capital into three main classes. First, bonding social capital is represented in 
the relationship between individuals from the same social identity and characterized by strong ties and 
localized trust. For instance, networks between members of the same family, friends, or neighbors sharing 
the same social or demographic characteristics (Adger, 2003; Pelling, 2011). Second, bridging social capital 
links distinct groups and is characterized by weak ties such as social networks between people with similar 
political views or economic status. Third, linking social capital takes the form of trust networks with 
authority gradients and is characterized by weak ties of reciprocity, for example, social links between 
residents and individuals with political power, such as government officials or policymakers (Woolcock, 
2001).  

In social sciences, human vulnerability to climate hazards is strongly tied to the social capital of the 
population (Cutter, Boruff, & Shirley, 2003). A significant body of literature identified three indicators of 
how social capital can impact community resilience during extreme weather events—first, support 
networks as an indicator of strong social relationships between community members (Forbes & 
Wainwright, 2001). Second, social and economic discrepancies as an indicator of poor health outcomes 
(Wilkinson, 1996). Finally, access to resources for adaptation governs potential health outcomes during 
extreme weather events (Muntaner, Lynch, & Smith, 2007). In this context, social capital plays a crucial 
role in residents' survival during extreme weather events and can positively accelerate the recovery 
process and long-term adaptation plans. Individuals with strong social ties, either with neighbors, friends, 
or a sense of attachment, are more likely to contribute to the support networks during a catastrophe 
(Aldrich & Sawada, 2015).  

Also, strong social capital can seek changes in political regimes or planned policies that can reduce 
potential climate impacts and create more sustainable and resilient societal practices. There are 
numerous approaches to improve social capital, such as community currency to encourage involvement 
and strengthen trust between community members and time banking programs, that have been proven 
to be effective in building social ties (Brune & Bossert, 2009) and improving the community’s collective 
role through engagement in planning and support existing social structure such as engagement of local 
community groups in adaptation planning. Finally, social and communications technologies can 
strengthen coordination between local communities, government, and policy officials (Aldrich, Page-Tan, 
& Paul, 2016).   
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5.4 Policy Role in Heat Adaptation Strategies 
Because extreme heat events are expected to increase worldwide within the next 20 years, there is a need 
to improve adaptation policies and policymakers' responses to potential heat-related impacts on human 
health. Studies on heat adaptation strategies can assist in identifying types of adequate measures based 
on quantifiable assessment, yet, the central part to the success of this process is tied to government 
policies, planning, and the decision-making process. Efforts to adapt to various climate change risks are 
often based on the technical assessment of different climate stressor impacts as the driver of change. 
However, enabling adaptation policies requires navigating political realities and interests and institutional 
incentives to influence governments’ policies in programming.  This section examines the role of 
policymakers in shaping adaptation success or failure and how the delay in policy implementation can 
influence the level and magnitude of risk during extreme weather events. The 1995 Chicago heatwave is 
used as a model to examine how policies can negatively or positively affect the portion of the population 
exposed to climate stress and how adaptation strategies could help mitigate potential risks before, during, 
and after the exposure to an extreme heat event.   

In the United States, around 400 people die from extreme heat events each year, with the risk of 
heatwaves increasing even further due to climate change. Many cities still lack a proper heat response 
plan despite the growing risks of heat-related mortality and morbidity. The root cause of this problem is 
tied to the underestimated attention from public health in the United States to heat-related mortality 
(Changnon, Pielke, Changnon, Sylves, & Pulwarty, 2000; McGeehin & Mirabelli, 2001). There are several 
best practices to improve the built environment and alleviate surrounding conditions during heat 
exposure; however, how can policy play a role in disaster preparedness?  

For natural disasters like hurricanes, the economic damage of expensive properties is so intense that the 
policy action is immediate as it generates strong public attention and media coverage. Yet, heatwaves 
receive little public attention not only because they fail to generate the massive property damage 
produced by other natural disasters like hurricanes and storms, but also most of the heatwave victims are 
primarily lower income individuals, the elderly, social outcasts and isolated individuals. The series of 
deadly heatwaves that the U.S. witnessed in the early 1980s indicated a connection between vulnerability 
to heat, policy, and state retrenchment (Klinenberg, 2003a). Most of the studies that have looked at heat-
related mortality and morbidity examined the link of heat-related deaths to environmental factors with 
little emphasis on the policy role. The notion of policy action delay or delayed impact from a specific policy 
on increased vulnerability is still limited. Thus, the focus of this section is to investigate the implications 
of policy action delays and delayed impacts from specific policies on heat vulnerability and heat-related 
mortality and morbidity. The central hypothesis is that heat-related vulnerability is a function of three 
parameters: people susceptibility, available adaptive capacity, and exposure to heat as a result of the 
surrounding built environment conditions. The research hypothesizes that availability and quality of 
adaptive capacity are driven by policy action, which is triggered with a delay by the number of people at 
risk from heatwave or in the real-world death tolls from heat. Also, susceptibility is a function of the 
population's socioeconomic factors developed over time due to misplaced policies that led to an increase 
in poverty indirectly or gaps in available adaptive capacity with a delayed impact, as illustrated in Figure 
5-3 below. 
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Figure 5-3: Causal Loop Diagram of the hypothesis of policy impacts and heat risk within the city boundary. 

5.4.1 The Case of Chicago Heatwave 1995 
During the summer of 1995, specifically between July and August, the city of Chicago witnessed the tragic 
death of more than 739 people from heat-related causes (Kaiser et al., 2007). The 1995 disaster was 
considered one of the most extreme heat events that the U.S has ever witnessed, yet, such disaster 
wouldn’t have been so deadly without the extreme surrounding conditions of the city’s most residents, 
alongside the state of poverty and inadequacy of the city’s response. Scientific evidence indicated that 
the mortality rates recorded during the 1995 heatwave compared to earlier heatwaves were not only 
attributable to weather (Klinenberg, 2003a). This raises the question of the nature of the surrounding 
conditions that led to such devastating losses in human lives. Eric Klinenberg (2003a) explains that the 
unprecedented death tolls were strongly attributable to some socio-spatial features and political 
structures; however, no scientific studies have attempted to find them.    

Factors associated with vulnerability to heat exposure have been widely studied over the past decade 
(Schwartz, 2005); generally, people at most risk include the elderly, infants, socially isolated urban 
residents, chronically ill patients, and populations with limited access to coping mechanisms such as air 
conditioning (Lapola et al., 2019b). From the environmental perspective, a heatwave is tied to factors such 
as duration, intensity, air temperature, relative humidity, and the extent to which the heatwave is 
different from the climatic norm experienced by the population (Di Napoli et al., 2018; Palmer et al., 2014). 
Although such factors were all present during the 1995 heatwave in Chicago, the geography of mortality 
indicates an urban inequality. The west and south side of the city witnessed the largest concentration of 
deaths, specifically, neighborhoods with primarily black populations and widespread unemployment, 
poverty, institutional abandonment, and depopulation. What allowed the heatwave disaster to happen is 
a more complicated process of social policy and institutional indifference that produced the conditions 
that cause such extreme death tolls during the heatwave. The literal isolation of a growing poor 
population with segregation in services made these two areas most vulnerable to heat exposure. Other 
factors attributable to the excess deaths in Chicago during the 1995 heatwave that are strongly tied to 
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the policy are the deterioration of public services thanks to privatization and the “No-Go” neighborhoods 
that have caused depopulation and business abandonment in the long terms dropping these areas from 
the city safety net.  
System dynamics modeling using causal loop diagrams (CLD) is utilized to assess policy-related causes that 
contributed to increased vulnerability during the 1995 heatwave in Chicago. The research focuses on four 
primary policy and policy delayed impacts mechanisms that have contributed to the conditions around 
the 1995 heatwave as follows:  

1- “No-Go Neighborhood” policy impact  
2- “Funding cuts” for the Department of Aging. 
3- “Market-Model” Strategy for public services. 
4-  “Congress Cuts for the budget of the Low-Income Home Energy Assistance Program (HILEAP).”  

 
“No-Go Neighborhood” Policy Impact 
By the late 1980s, Chicago has declared several neighborhoods on the west and south side of the city as 
no-go zones due to the increased crime rates; simultaneously, these were the same areas that 
accommodate the Black and Hispanic population. This segregation of specific neighborhoods as danger 
zones has caused a massive surge in business abandonment, which as a result, led to an increase in 
unemployment, poverty, and as a result, higher crime rates. The long-term effect of this policy has strongly 
affected the growth in poverty with social isolation, as initial residents started to age with their children 
leaving the neighborhood looking for job opportunities. This mixture of social isolation with poverty was 
one of the main factors that caused the excess number of death tolls during the 1995 heatwave, as 
explained by Eric Klinenberg (2002). Figure 5-4 illustrates the cause-effect dynamics of the “No-Go 
Neighborhood” policy's impact on increased poverty-related vulnerability and social isolation.  

 
Figure 5-4: CLD of the “No-Go Neighborhood” policy impact on heat-related vulnerability. 
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“Funding cuts” for the Department of Aging 
During the heatwave of 1995, most of the death tolls were from elderly urban residents despite that the 
department of the aging program in Chicago was one of the earliest programs in the U.S. By the mid-
1990s, Chicago’s elderly population was exploding, and the department funds were shrinking. This has 
caused the department to turn to private foundations for support, reducing full-time employees with 
more reliance on part-time and temporary employees. This cut in department capacity has caused a gap 
in the service capacity relative to the number of elderly residents that needed assistance at that time 
(Klinenberg, 2003a). The result was neglect of elderly poor who lacked access to support from the city 
system, as illustrated in Figure 5-5 below. 

 
Figure 5-5: CLD of the “Funding Cuts” for the Department of Aging impacts heat-related vulnerability. 

“Market-Model” Strategy for Public Services 

Around the same time of cutting the Aging fund, the city officials adopted an entrepreneurial model to 
provide public services (Whitman et al., 1997), with the idea of empowerment to the residents and 
consumers of the city who cannot act effectively unless they have helpful information. Despite the 
expensive advertisement effort to promote this new model, Chicago’s residents who need public 
assistance were mostly elderly who are isolated and with the lowest level of education that led them to 
be the ones with the weakest ties to the mainstream institutions. This framework, as a result, has caused 
most vulnerable urban residents to become the worst prepared to claim public services such as health 
care to which they are entitled to as the “Market Model” required to seek access to information and 
service providers actively. This strategy has caused stress on these populations, posing more significant 
threats to their survival capacity under extreme weather events. The dynamics of the Market-Model 
strategy and its relationship to increased vulnerability from other policies are illustrated in Figure 5-6.  
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Figure 5-6: CLD of the “Market Model Strategy” and its impacts on heat-related vulnerability. 

Congress Cuts For The Low-Income Home Energy Assistance Program (HILEAP) 

During the 1990s, Congress cut the budget of the Low-Income Home Energy Assistance Program (LIHEAP). 
The program was designed to support energy bills for low-income populations in Chicago (Gilbert, 1996). 
The combination of low-income urban residents living in an energy crisis has placed a lot of pressure on 
using air conditioning units or fans when it gets warm outside. With energy costs rising, fixed income, and 
escalating unemployment, people in pilot programs to provide air conditioners to the poor started to sell 
the units rather than install them. Also, from the interviews conducted by Eric Klinenberg in 1995, he 
noted that seniors kept their light off during the day with minimized used of air conditioning to save on 
their electricity bill. The threat of losing power altogether with rising temperatures has deteriorated 
conditions at the building level made the 1995 heatwave far more extreme. These conditions have limited 
the elderly population's capacity to use air conditioning, alongside high crime rates have caused some of 
the residents not to open windows when indoor temperature increased.  The conditions described here 
are strongly linked to the high death tolls, especially in these neighborhoods. Thus, understanding the 
underlying policies that have generated these conditions is essential in planning heat adaptation 
strategies. Figure 5-7 shows the dynamics of the energy subsidy cut and its impact on increased heat risk.  



176 | C H A P T E R  5  
 

 
Figure 5-7: CLD of the four proposed policy strategy and their effect on heat-related vulnerability.  

The strategies presented above illustrate how population structure and socioeconomic characteristics 
have contributed to an increase in population at risk during the 1995 heatwave. As discussed above, the 
population in the west and south Chicago during the 1930s was less affected by crime rates as they were 
relatively lower. Thus, they were able to leave windows and doors open when the indoor temperature 
increased. Also, most elderly populations during the 1930s lived with families that cared for them, while 
in 1995, more elderly were living alone. The delayed effect between 1936 and 1995 shows how policies 
can indirectly influence the surrounding social and economic environment cause a shift in population 
structure over time to transition from susceptible to vulnerable under heat exposure. After the city 
experienced several deaths during 1995 and 1999 heatwaves (Naughton, Henderson, Mirabelli, Kaiser, & 
Wilhelm, 2002), Chicago’s officials have recognized the importance of community preparedness 
supported by adequate policies to decrease deaths during extreme heat events and improve the city’s 
adaptive capacity to heat risks. Findings from this analysis for the case of the 1995 heatwave in Chicago 
indicate how policies play a significant role in the success of heat adaptation strategies. As it has been 
indicated from Klinenberg's analysis (2003a), delay in policymakers' response, inadequate provision of 
public services have, and lack of an effective system for organizing and coordinating the city’s adaptation 
services contributed to the increase in death tolls in Cook County during the 1995 heatwave. This was 
evident in the city’s failure in coordinating an emergency public health response plan to the heatwave 
despite the severity of the crisis. These findings indicate the need to support decision-making processes 
on the dynamics of heat-related risks at a broader scale and how planned adaptation strategies can 
mitigate future risks, especially for highly vulnerable populations.  Thus, this chapter aims to develop a 
system dynamic model to capture the impact of planned policies on increased or decreased heat-related 
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risks during heatwaves and how government response can accelerate or delay the effectiveness of 
planned strategies over time.  

5.4.2 Methods: Time Delay and Heat Vulnerability  
The system dynamics model is developed to examine policy impact on the vulnerability of the urban 
system during heat events and how delays in the public policy response to extreme heat can increase risk. 
This is explored through three different scenarios for policy’s impacts on heat risks. First, mis-planned 
policies have produced conditions associated with increased susceptibilities, such as increased poverty 
rates, unemployment, depopulation, or a gap in available urban services in the form of adaptive capacity. 
Second, during a heat event, a delay in the policy response might cause more risk to an already vulnerable 
population. Third, after a heat event, delay in planning and execution might lead to an increased risk for 
the following years if the same heatwave event hits again with more vigorous intensity. 

The mechanism of policies’ impact on heat vulnerability is based on three primary components. First, 
susceptibility, which depends on population socio-economic conditions that would increase their 
vulnerability to heat as discussed in chapter 2. Second, adaptive capacity that includes available 
adaptation amenities during heat exposure at the dwelling level (access to fan, air conditioning unit) and 
the urban block-level (access to cooling shelter, and access to health care service). Finally, policy delays, 
which is measure of time-based policies that can either positively or negatively influence the vulnerability 
level of the population and potential risks. Policy delay is modeled based on three potential scenarios: i) 
delay between reported cases and media coverage, ii) the delay between media first response and policy 
initial action to the number of death tolls, and iii) policy delay in planning and execution phase post-
disaster. Vulnerability to heat is expressed as a function of exposure to heat events, susceptibility, and 
available adaptive capacity, while heat risk is vulnerability multiplied by potential impact from an 
increased level of exposure.  

Heat exposure is expressed as the days where the outdoor heat index is above the caution level. For the 
scope of this dissertation, the research focuses on developing the system dynamics model that captures 
delays after the heat event, more significantly, the delay from policy actions and response. The 
effectiveness of policy measures during or after heatwave events must consider the political and 
administrative framework, which profoundly affects the success of the planned strategies. For 
simplification, all regulatory and legislative frameworks are abstracted where the focus is given to the 
dynamics that might result from delayed policy actions. Indicators considered in the system dynamic 
model are listed in Table 5-1 below.  
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Table 5-1: System Variables in the case of a heat event and their indicators. 
Variable Indicator 

Exposure No. of days when the outdoor heat index is above the caution level (> 39oC).  
Susceptibility Age No. of urban residents >60 years old or <5 years old 

Health Condition No. of urban residents who are chronically ill (heart problem or respiratory 
conditions)  

Income No. of urban residents below the poverty line 

Social Isolation No. of urban residents >60 years old and living alone 
Adaptive 
Capacity 

Buildings without 
coping capacity No. of building with poor insulation and AC system 

Cooling Shelters No. of Cooling Shelters available  
Health Care  No. of emergency health care units 

Policy Delays  Risk Impact on 
Policy 

No. of days for a policy to take immediate response 

Policy Impact on 
Planning 

No. of days between policy response and action planning (number of days 
that would be reduced if the risk is high between planning and execution)   

Cooling shelter 
No. of days required to plan a cooling shelter 
No. of days required to construct a cooling shelter 

Building retrofit 
No. of days required to plan for retrofitting / building 
No. of days required to do the actual retrofit 

The key stocks in the model are coping capacity, cooling shelters, the elderly population, and infants. The 
coping capacity and cooling shelters are an annual input to the model, and their value is calculated based 
on the relationship between available funding and the delay between the actual planning and execution. 
The initial coping capacity value is set as an input value corresponding to the number of existing buildings 
with poor insulation and AC systems. Also, the value of cooling shelters is based on the available vacant 
plots for cooling shelter construction. The elderly population stock represents the fraction of the 
population older than 55 years and increased by the aging time to become 60 years or older. Other initial 
variables, such as available funding/investments for retrofitting and cooling shelter construction, is an 
input variable that is set depending on the context and the institutional structure examined. Cooling 
shelter capacity represents the occupancy density per cooling shelter, where the average occupancy 
density is assumed to be 25 people / 100 m2.  Table 5-2 lists the model’s parameters and their formulation.  

Table 5-2:  Formulation of model variables and their units.  
A. Coping capacity: the number of buildings that are well insulated and equipped with air conditioning units 
Coping Capacity Building Retrofit – Building Decay Amenity 
Building Retrofit Coping Gap / Retrofitting Time Amenity/Day 
Coping Gap MAX (0, Desired Coping Capacity-Coping Capacity) Amenity 
Desired Coping 
Capacity 

IF THEN ELSE (Available Coping Investments/Cost of Building 
Retrofit>Initial Stock, Initial Stock, Available Coping 

Investments/Cost of Building Retrofit) 

Amenity 

Initial Stock Total number of existing buildings within a neighborhood Amenity 
Available coping 
investments 

Amount of investment available for building retrofit that is 
allocated according to the city stakeholders 

USD 

Cost of building retrofit The average cost of a simple retrofitting strategy including 
the replacement of the windows' frame and changing ac 

units. 

USD/Amenity 

Retrofitting Time Average retrofitting time* desired coping capacity Day 
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Average retrofitting 
time 

Building retrofitting time + Policy Impact Days/Amenity 

Building Retrofitting 
Time 

No. of days to retrofit a single building 15 Days/Amenity 

Policy Impact  Risk Impact on policy Delay*Retrofitting Planning Delay Days/Amenity 
Retrofitting Planning 
Delay 

the time required to identify buildings that need immediate 
intervention, picking the best practices, and selecting 

contractors 

300 Days 

Buildings without 
coping capacity 

Initial Stock – Coping Capacity Amenity 

B. Cooling Shelters: Number of cooling shelter available for the neighborhood residents 
Cooling Shelters (CS) New Cooling shelters- cooling shelter decay Amenity 
New Cooling Shelter Cooling Shelter gap/ Planning Time Amenity 
Cooling Shelter Gap MAX (0, Desired CS-"Cooling Shelters (CS)") Amenity 
Planning Time Desired CS*Average Construction Time Days 
Average Construction 
Time 

Policy Planning Delay + Policy Impact Days/Amenity 

Policy planning delay The time required to identify the location of the cooling 
shelter and selecting a contractor 

Days/Amenity 

Cooling Shelter Gap MAX (0, Desired CS-"Cooling Shelters (CS)") Amenity  
Desired CS MIN (Vacant Plot for CS, Available Investments for CS/Cost of 

CS) 
Amenity 

Vacant Plot for CS Available land areas for cooling shelters Amenity 
Cost of CS Amount of investment available for cooling shelter provision 

that is allocated according to the city stakeholders 
USD/Amenity 

Available investments 
for CS 

Amount of investment available for cooling shelter provision 
that is allocated according to the city stakeholders 

USD 

CS Capacity "Cooling Shelters (CS)"*CS Density Person 
CS Density Number of people that a cooling shelter can accommodate Person/Amenity 
C. Adaptive capacity: number of people who have access to coping capacity on the building level and the 
urban block level 
Adaptive capacity  Population W CC+CS Capacity Person 
Population with CC Population Density*Coping Capacity Person 
Population Density The average number of people living in a building Person/Amenity 
D. Elderly Population: Number of elderly residents in a neighborhood 
Elderly Population Aging Rate – The death rate Person 
Aging Rate (Population wo CC*"Fraction of Population <55")/Time to age Person/Day 
Time to age Time to become 60 years or older Day 
Death Rate Elderly Population/Life Expectancy Person/Day  
Life Expectancy Time to reach an average age of life expectancy  Day 
E: Susceptibility: number of urban residents with conditions that may cause increased risks under heat 
exposure.  
Susceptibility Infants+(Elderly Population-Population with Chronic Disease) 

+(Elderly Population+ (Population wo CC-Elderly Population-
Population with Chronic Disease)) 

Person  

Population with chronic 
diseases 

Elderly Population*Fraction with Chronic Disease Person 

The fraction with 
Chronic Disease 

Percentage of an elderly population with chronic diseases Dimensionless 
(Dmnl) 

Infants Births- Growing Up Rate Person 
F. Vulnerability: Number of urban residents that are susceptible and lacking adaptive capacity 
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Vulnerability (Exposure+ Susceptibility)-Adaptive Capacity Person 
G. Exposure: days where the heat index is above caution level (normalized based on heat index values above 
90 F 
Risk Vulnerability * Potential Impact Person 

Risk Impact on Policy 

Risk impact on policy response, represented by the number of people at extreme risk 
to alter policymakers to take immediate actions to cut delays in planning and 

execution time 
IF THEN ELSE (Risk>=Total Population, 0.5, 1) Dimensionless 

(Dmnl) 

Figure 5-8 represents the cause-effect relationship and the system structure between the various 
parameters of the proposed system dynamics model. 

 
Figure 5-8: Dynamics of the model in the case of a heatwave shock 

The initial values in the modeling process are based on a conceptual neighborhood of 1500 residents and 
a population density of 15 people/building. Using a conceptual neighborhood, the model examines how 
policy delay can significantly influence people under high-risk conditions away from the complexity of 
political and administrative, and institutional framework in the real world. 

Testing the Model Behavior: The relationship between Policy variables and Heat risk 
The model is examined under two main scenarios. First, the delayed policy response, where the planning 
process is decoupled from the number of people at risk from heat exposure. Second, the immediate policy 
response is represented by less time spent planning as a function of the population at risk exceeding a 
specific threshold. Delay in planning time is modeled as six months, which is the time spent identifying 
best practices, allocating funding resources, and selecting contractors to start construction. In the 
immediate response scenario, this time is reduced by 50% to examine how policy delay may impact the 
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number of urban residents under risk. The model is tested over five years to account for increased 
adaptive capacity over time, aging population, and change in population’s susceptibility. Heat exposure is 
assumed to be constant over the five years, meaning that the neighborhood will experience similar 
heatwave conditions every year without a change in intensity, duration, or frequency.  
 

5.5. Results 
Figure 5-9 shows delayed policy response impact (base simulation) on the number of people accessing 
adaptive capacity resources. As a result, the total population at risk over five years has slowly decreased 
at an annual rate of 1.48% even though decision-makers are acting, and there are investments in place to 
improve adaptive capacity. Over time, the increase in adaptive capacity is influenced by the available 
funding and the total number of required amenities added to the existing adaptive capacity stock. These 
dynamics are vital to understand the impact of planned strategies over time and pinpoint the leading 
causes of delay throughout the planning and execution processes.  The second policy scenario is short-
term and thus oriented to an immediate policy response assuming policies are planned and executed after 
the number of people at risk reaches a specific threshold (triggered policy actions). Here it is assumed that 
policymakers act after the number of urban residents at risk reach 250 persons with a decrease in planning 
time by 50% to represent the sensitivity of the policy planning process to risk levels.  Results from the 
simulation indicate that by cutting delay time in policy response, the number of urban residents at risk 
decreased faster by 5% annually compared to the delayed policy response scenario.  
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Figure 5-9: Simulation results for policy delayed response scenario in planning and execution during a heatwave.  

Figure 5-10 shows the results from immediate policy response. It can be noted that the number of urban 
residents getting access to adaptation resources (represented by adaptive capacity) has increased at a 
faster rate of 109% annually than 60.4% in the delayed policy response scenario.   

  

  
Figure 5-10:  Simulation results for Immediate Policy response scenario in planning and execution during a 

heatwave. 
To test the model behavior in representing policy impacts on increased risks during heatwaves, a scenario 
of an extreme heatwave for one week is modeled to examine the model behavior in mimicking the policy 
delay impact during the 1995 heatwave in Chicago. Here the research is focusing on testing the model 
structure in generating the same trend rather than producing the absolute number of actual death tolls 
in 1995, as this process will be far more complex and will require detailed information on the types of 
available amenities, delay in policy response between the occurrence of the heatwave and reported 
deaths and population access during the heatwave. Thus, a new parameter is added to the model, heat 
warning. This model examines heat warning under two scenarios: 1) heat warning with a delay and heat 
warning under policy preparedness. Under the delay scenario, heat warning is a function of exposure with 
a delay step of two days after the actual temperature peak occurrence, similar to what was experienced 
during the heatwave in Chicago. Findings from other studies that examined the heatwave in Chicago 
reported that most of the deaths reported in the second and third days after the peak temperatures were 
mainly linked to the time when bodies were found, which underline the impact of delayed policy response 
(Semenza et al., 1996a). Finally, exposure is modeled using the heat index record during the 1995 
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heatwave in Chicago (Semenza et al., 1996a).  Figure 5-11 shows the population at risk and normalized 
heat exposure and the actual death tolls trend during the 1995 heatwave in Chicago with the heat warning 
delay (area in red) between exposure peak and risk peak. It can be noted that the model produced a 
similar trend to what was experienced in the 1995 heatwave, where risk peaks two days after peak 
temperatures are reached.  

  
Figure 5-11: Left, the potential population at risk from the SD model, Right heat-related deaths during 1995 

heatwave. 

Next, the impact of changes in heat warning delay is examined by testing the model behavior under the 
scenario of policy preparedness. Heat warning is modeled as a policy trigger for decision-makers to 
execute heat response plans to examine how it can contribute to reduced risk during and after the 
occurrence of a heatwave. A new parameter is added to the model, heat response impact, and modeled 
as a percentage decrease in the population at risk due to increased adaptive capacity when heat warning 
is bigger than 0. Thus, it is assumed that heat response impact will increase adaptive capacity by 50% for 
the population at risk and is triggered by heat warning.   

Figure 5-12 shows the change in risk due to heat response impact. In the immediate policy response 
scenario, activating the preparedness plan has contributed to positive change in the risk trend from the 
delay response scenario discussed above. The total population at risk has decreased by 87.6% compared 
to the delayed response scenario. It should be highlighted that the reduction in the population at risk is 
modeled as a function of the increase in access to the adaptive capacity measures. If this model is to be 
used for policy planning, decision-makers can assess what types of additional measures to be introduced 
to the heat preparedness plan to contribute to a more significant reduction in the population at risks 
ahead of heatwave occurrence. 
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Figure 5-12: Left, the population at risk under heat warning and policy preparedness scenario and increased 

adaptive capacity (right). 

The proposed SD model focused on examining the impact of policy delay on heat-related risks. The results 
indicated that delay in policy action and planning has a significant impact on the success of adaptation 
preparedness plans. Some policy implications can be drawn from this analysis. First, it is fundamental for 
policymakers to have a prompt and effective policy planning framework. Second, allocating and designing 
adaptation strategies doesn’t necessarily mean they will effectively reduce risk; adaptation plans need to 
be tied more to how the institutional framework responds to crisis and allocate suitable investments with 
a proper timeframe.  Third, to improve adaptive capacity during extreme heat events, it is required from 
the policy side to understand the time required to become available and accessible to the vulnerable 
population, with respect to the potential change in the intensity and frequency of future heat events.  

5.6 Discussion 
This chapter examined types of adaptation strategies to reduce heat-related risks during extreme 
heatwaves. The first section of this chapter reviewed sets of adaptation strategies at the building level, 
urban level, and the role of social capital in mitigating heat-related impacts. Through literature, the 
research assessed the potentials of specific adaptation strategies to reduce future heat vulnerability.  The 
adaptation strategies presented in this chapter highlight how heat adaptation planning requires a broad 
range of measures and data to facilitate effective strategies to reduce heat risks at different levels of the 
urban system. Also, the diversity of adaptation measures implies no single approach is considered to be 
most effective in reducing risks. Yet, there is a need for policy flexibility to apply different approaches 
relevant to the socioeconomic complexity of the urban population and the performance of the urban 
system.  Another vital measure in heat adaptation planning is the coping range of existing urban 
conditions where the population becomes vulnerable outside this range. What can be drawn from the 
coping range is the adaptation often arises from extreme exposure that is well beyond the coping range, 
causing more significant health risks to urban populations. Thus, adaptation measures, vulnerability, and 
current coping ranges should be considered jointly during policy planning.  

Most heat adaptation assessments assume that adaptation measures can all be implemented in the short 
term without considering resource constraints. Hence, the second half of this chapter examined the 
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dynamics of vulnerability considering policy and heat adaptation planning and how these dynamics 
challenge the effectiveness of planned strategies. A system dynamics modeling is used to understand how 
the delay in the policy response to heat hazard plays a role in the potential increase in heat-related risks, 
referencing policy impacts during the 1995 heatwave in Chicago. The primary motivation behind this 
assessment is to understand how policy actions that reduce vulnerability to current climate risks can still 
contribute to future changes. As illustrated in the causal loop diagrams, policies can change the context 
for vulnerability and introduce new risks into the system with a delayed effect. Findings from the proposed 
SD model indicated that heat adaptation planning is strongly linked to the institutional capacity to 
measure the extent to which planned adaptation strategies can be effective in heat risk relief and 
stakeholders’ understanding of the complexity of adaptation planning.  
This chapter has summarized the current adaptation strategies to extreme heat events and how policy 
contributes to the success of planned strategies. Lesson learned from the pertinent literature and analysis 
carried out are:  

- Adaption to extreme heat events is context-specific and depends on various factors, including 
environmental, social, economic, urban, and political.  

- There has been a growing advancement in heat adaptation technologies that have emerged in 
the past two decades. 

- Adaptation planning requires close collaboration between policymakers, climate scientists, the 
local community, practitioners, and other stakeholders.  

- Adaptation to heat risks involves a broad range of measures with various levels of complexity that 
should be carefully considered during policy planning and implementation.  

- There is a need to establish a dialogue between policy-makers and climate scientists where heat 
assessment is carried out collaboratively, and intervention strategies are identified with the 
relevant stakeholder.  

- The need for suitable utilization strategies of the city’s resources to implement effective 
adaptation strategies and means for knowledge can be exchanged with the local community 
throughout the planning process. 
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VI. CONCLUSIONS 
Heat vulnerability assessment in the built environment is a complex process with multiple dynamics and 
components of human-natural systems and their interaction with the surrounding built environment. 
These dynamics include social, demographics, urban growth, environmental changes, access to public 
services, and policy impacts. This dissertation examines different methodologies to develop an integrated 
framework for heat vulnerability analytics in the built environment. The work presented in this 
dissertation is developed around the premise that there is a need for a multivalent framework to assess 
heat vulnerability in urban settings. The proposed framework can help broaden the understanding of heat 
vulnerability assessment using various approaches of building assessment coupled with Machine Learning 
(ML) methods to examine heat exposure variation and related vulnerability at the district level. The work 
presented in this dissertation is driven by the need to examine the dynamics of urban heat vulnerability 
and human health impacts at a detailed level which was addressed through the work in Cairo, Egypt. The 
detailed assessment highlighted the need to develop a technological approach for assessing the built 
environment that would lend meaningful information in a rapid way and how community engagement 
can assist in the development of these new approaches examined in the work presented in Chapter four. 
Finally, these sets of analytics were then used to examine how policy can influence the success or failure 
of heat adaptation strategies examined in Chapter five. The proposed sets of assessment methods in this 
dissertation can help identify types of buildings that are more susceptible to heat-related impacts and 
how the distribution of adaptation resources can mitigate potential risks from future extreme heat events. 
Also, the heat vulnerability framework aims to provide vital information in the planning and designing of 
heat adaptation strategies at multiple levels serving different purposes through three distinct levels: i) 
preliminary assessment of heat vulnerability to support the primary analysis phase in the adaptation 
planning process; ii) detailed assessment of heat exposure at the building level to assist in the definition 
of adaptation strategies and prioritization of high-risk urban areas, and iii) urban intervention and policy 
development to support policymakers in implementing and monitoring adaptation measures. Each 
chapter of the dissertation provides detailed procedures and a thorough analysis of the three assessment 
levels and determines the most suitable portfolio of methods at each level. The framework aims to 
capture the complex and dynamic components of heat vulnerability that can influence the formation and 
shift of heat-related health risks and guide adaptation planning processes.   
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6.1 Comprehension of Vulnerability 
The research developed as part of this dissertation started with a review of the current state of the art in 
the nascent field of Heat Vulnerability Assessment in Chapter 2. As a result of the review, the basic 
foundation of the heat vulnerability framework was developed around the assessment of three distinct 
components: Susceptibility (S), Exposure (E), and Adaptive Capacity (AC). These three components are 
examined and combined to capture the vulnerability of an urban population to a climate hazard (UNFCCC, 
2016). In this dissertation’s context, heat vulnerability was assessed as a function of an urban area's 
susceptibility to heat exposure based on the characteristics of the urban population and the surrounding 
built environment and the available resources for coping and adapting during extreme heat exposure.  
The review presented in Chapter 2 assisted in developing the proposed heat vulnerability assessment 
framework and the components of each level. The framework intends to support the heat adaptation 
planning process by better understanding the local dimension of heat vulnerability distribution that can 
increase risks during extreme heat events. The proposed framework for vulnerability assessment involves 
analyzing the physical parameters of the urban space, indoor exposure at the building level, and 
occupants' adaptive capacity using spatial information, building performance simulations, in-person 
surveys, and aerial data coupled with ML methods for building and urban assessment. This mix of spatial 
data, simulation models, and occupants' assessment is designed to support policymakers in developing 
adaptation strategies informed by the distribution of high-risk urban areas that accommodate highly 
exposed building stock to high temperatures and home to vulnerable populations.  
 

6.2 Indoor Heat Exposure & Adaptive Capacity Limits 
Chapter 3 offered a detailed assessment of heat vulnerability at the building level and a thorough analysis 
of simulation results using a case study of a low-income neighborhood in Cairo, Egypt. The work presented 
in chapter 3 addressed a critical area of concern for indoor heat exposure and human health impacts to 
determine indoor conditions threshold that can potentially pose a risk, especially for vulnerable 
populations. The simulation workflow carried out an in-depth investigation of potential health risks 
associated with increased indoor overheating for vulnerable populations with limited mechanical 
ventilation access. The goal was to investigate the threshold for indoor conditions that could result in 
health risks, specifically for elderly residents. Residents examined in AlDarb Al Ahmar were exposed to 
similar ambient conditions. Still, their buildings and surrounding resources have played a role in 
exacerbating or mitigating heat exposure risks. Analysis revealed the complexities of heat vulnerability, 
where numerous direct and indirect factors influence how an individual responds to heat stress. The 
analysis contained within Chapter 3 demonstrates how buildings can significantly modify indoor 
conditions and how physiologic markers like heart rate can be negatively impacted by heat exposure and 
its duration.  These results demonstrated that the available adaptive capacity resources for examined 
residents in AlDarb Al Ahmar were not equally adequate in overcoming high temperatures exposure. Thus, 
Chapter 3 offered an analysis workflow that combines whole building energy simulation models and ML-
based methods to examine the adaptive capacity and related heat vulnerability at the district level. The 
workflow presented in Chapter 3 overcomes challenges of heat vulnerability assessment at the district 
level by incorporating ML and image processing techniques as a novel approach to examine heat 
vulnerability and related risks at the district level. Results from the case study in Cairo demonstrate that 
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improving adaptive capacity in an approach that strategically prioritizes the most vulnerable populations 
and buildings can positively impact vulnerability levels and related risks. The ML-based method is 
significant as it can provide information at the district level to prioritize which buildings are more 
susceptible to future heat exposure, the capacity of available heat adaptation amenities, and types of 
intervention strategies to mitigate heat-related risks.  

6.3 Rapid vulnerability analytics 
Chapter 4 examined the applicability of integrating aerial technology, namely, UAVs coupled with machine 
learning and graph theory methods, in the rapid assessment of heat vulnerability at the building and 
district levels. The work presented in Chapter 4 was devised around two main research components. First, 
developing a methodology for the detailed assessment of building thermal envelope performance using 
data from UAVs equipped with infrared and RGB cameras to estimate the envelope’s thermal 
transmittance using a case study in Cambridge, MA. The analysis showed a significant improvement in 
simulation models’ prediction, which will be helpful to identify types of retrofit strategies such as targeted 
wall insulation replacement, with less time and cost than traditional building inspection processes. The 
second component relates to developing a framework for integrating UAVs’ data coupled with ML and 
graph theory techniques to assess heat vulnerability and associated adaptive capacity at the district level 
using a case study in Bronx, NYC. The proposed methodology can provide information on the envelope’s 
thermal performance that can impact indoor heat exposure levels. The framework includes a community 
engagement approach in using UAVs for building assessment as a catalyst for the growth of job 
opportunities for the residents and engagement in the decision-making process.  Results from the 
adaptive capacity assessment provided helpful information to assist policymakers in heat adaptation 
planning and heat risk awareness programs.  

6.4 Heat adaptation and Policy Impacts 
As climate change poses risks to human health through more intense and more prolonged heatwaves, 
adaptation and mitigation strategies will help urban populations cope with these growing challenges. 
Chapter 5 examines the role of policy in heat adaptation planning and intervention strategies to mitigate 
heat risks. The first section of Chapter 5 presented an overview of heat adaptation interventions at three 
scales: building, urban and human, and their impacts in reducing heat-related health risks. Through 
literature, Chapter 5 assessed the potentials of specific adaptation strategies to reduce future heat 
vulnerability.  Assessment of the various adaptation strategies underlined that heat adaptation planning 
requires a broad range of measures and data to facilitate effective strategies to reduce heat risks at 
different levels of the urban system. Also, it has been identified that most heat adaptation assessments 
assume that adaptation measures can all be implemented in the short term without considering resource 
constraints. Hence, the second half of Chapter 5  examined how policy actions can impact vulnerability to 
current climate risks and contribute to future changes using System Dynamics (SD) modeling. Results from 
the proposed SD approach indicated that heat adaptation planning is strongly linked to the institutional 
capacity to measure the extent to which planned adaptation strategies can be effective in heat risk relief 
and stakeholders’ understanding of the complexity of adaptation planning.  
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6.5 Research Outlook 
Results described in this dissertation provide important contributions to the field of vulnerability 
assessment, especially for low-income neighborhoods with limited access to AC, as well as the field of 
building performance and adaptation planning.  Findings from work presented in chapters 2 through 
chapter 5 contribute important knowledge on how social, urban adaptive capacity, and building-related 
factors jointly influence heat vulnerability.  The workflows and methods presented in this dissertation 
offer opportunities to be integrated in pairwise combinations or solely in heat vulnerability assessment. 
The following section organizes direction for future work into three main categories: policy planning and 
heat vulnerability, UAV technology in climate change risk assessment, and community engagement in 
climate risk planning.   

6.5.1 Policy Planning and Heat Vulnerability 
Findings from this dissertation indicate that cities can take significant steps to improve their adaptive 
capacity and preparedness against heat risks. These steps require communication between policymakers, 
planners, government officials, and other stakeholders involved in the heat-health assessment.  
Implications from work presented in this dissertation can help adaptation planning through three main 
pathways as follows.  

1. Localized heat vulnerability:  methods presented in Chapters 3 and 4 can be expanded to assist 
policy planning in determining place-based indicators associated with local heat vulnerability at 
the neighborhood level and locate areas of high risk. Also, adaptation policies need to account for 
contextual effects and other socioeconomic factors that make neighborhoods more or less 
resilient to heat exposure.  

2. Develop Strategies for Vulnerable Populations: As discussed in Chapters 2 and 5, low-income and 
socially isolated individuals are considered highly vulnerable to heat exposure. Thus, there is a 
need for proactive policies alongside urban adaptation interventions to support vulnerable 
populations, such as funding programs for socially isolated to strengthen social ties and heat 
awareness campaigns to offer knowledge on mitigating and avoiding heat risks. Also, strategies 
to reduce social inequality and provision of equal access to adaptation resources.  

3. Targeted Adaptation Policies: Findings from the heat vulnerability assessment presented in this 
dissertation demonstrates that effective adaptation strategies need to incorporate multiple 
interconnected factors. These factors include: i) socioeconomic characteristics of the 
communities it targets, ii) type and intensity of heat risk that the policy targets and iii) location 
where strategies are implemented.  

6.5.2 UAVs in Climate Change Risk Assessment 
UAVs are an emerging technology with the potential to be utilized in various climate change fields and 
provide a broad range of information. The use of UAVs in this dissertation for heat vulnerability 
assessment has proven the potential of using this technology in other climate risk assessments. Future 
work can expand UAVs technology coupled with additional sources of information such as Open Street 
Maps and satellite data for modeling and assessing large-scale urban areas. The data obtained from UAVs 
can inform numerous building analyses such as building energy modeling and integration with building 
energy audit workflows such as ASHRAE 211P. Also, UAV data can be combined with IoT devices to 
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perform various analytics at the city level, such as transportation system management, air quality 
monitoring, and carbon accounting at the neighborhood level. Within the humanitarian community, UAVs 
have improved the assessment and monitoring of large areas in a time-efficient manner to provide 
information on displaced communities, temporary settlements, and mapping affected areas after climate 
hazard occurrence. UAVs can be utilized in other climate change risk assessments such as landslide 
monitoring, deforestation assessment, glacier analysis, mapping water bodies, and climate modeling.  

6.5.3 ML-based Approaches for Building Analytics 
Chapters 3 and 4 presented the potentials of using ML-based methods in building performance and heat 
vulnerability assessment. ML methods have been proven to be effective in modeling existing conditions 
using simulation data and assessing urban services using 2D image data. Future work can expand on ML 
methods presented in this dissertation to address other fields such as building energy forecast and UHI 
assessment.  The framework of envelope assessment presented in Chapter 4 can be expanded to an 
automated real-time assessment to detect and process key data critical for building performance. Also, 
the object detection model presented in chapter 4 can be coupled with image segmentation models to 
perform rapids documentation of large urban areas and provide information that is useful for district-level 
urban energy modeling.  

6.6 Concluding Remarks  
Extreme heat is considered one of the most growing climate threats to human health. To date, much of 
the existing literature on heat vulnerability has focused on societal and economic risk factors. Yet, the 
physical characteristics of the built environment determine the majority of human’s exposure to heat, 
either exacerbating or mitigating temperature, whether at the building scale or the urban scale. Further, 
most heat adaptation interventions have relied on human usage of AC or improving indoor conditions 
with building control measures which are limited in their equity and resilience under future climate risks 
and energy challenges. UAVs data and machine learning algorithms explored in this dissertation attempt 
to capitalize on research advancement as we look to find ways to assess future climate impacts on our 
existing urban environment. However, the applicability of these new approaches in the developing world 
may be limited by the lack of regulations on how to deploy these technologies in assessing the built 
environment. Finally, the procedures and workflows outlined in this dissertation have helped to set up 
“MENA Heatwave platform” which contains 100 years of heatwave archive documenting historic 
heatwaves since the 1800s till 2019, and Built Environment Heat Vulnerability Analytics, which is an 
online platform of vulnerability analytics to share and visualize research findings and outputs for the two 
case studies presented in this dissertation with the public audience, stakeholders and policymakers in 
these two neighborhoods. Given the multiple levels of details of information produced through the 
proposed heat vulnerability framework, the work can contribute to the planning process on multiple 
fronts: i) adaptation planning preparatory phase by increasing access of information, ii) the development 
of strategies and interventions on where and how to implement the adequate adaptation interventions, 
iii) the implementation phase to assess and adjust adaptation strategies using the proposed SD modeling 
approach, and finally iv) the monitoring phase, considering the proposed ML and UAV technologies to 
update and assess changes over time and perform prediction rapidly to assess the effects of the 
implementation of adaptation measures.  
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