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Abstract

High Frequency (HF) radios have been used since the early 20th century for long-
distance communication. HF communication systems primarily utilize skywave prop-
agation in which the ionosphere is used to reflect radiowaves back to Earth. The
performance of HF communication links is directly tied to the ionospheric propaga-
tion medium. The ionosphere is a highly variable and irregular environment that
creates many challenges in the design of robust HF communication networks. Iono-
spheric characteristics vary temporally and will be spatially correlated. As a result,
link failures within an HF network may also be correlated. In this thesis we develop
a novel model for probabilistic link failures that captures the correlation expected
in HF communication networks. We focus on two problems related to the design of
robust HF networks- 1.) The Network Reliability Problem, which seeks to compute
the probability a network is operational in the presence of random link failures, and
2.) the Most Reliable Path Problem, which seeks to identify the most reliable path
between two nodes in a network.
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Chapter 1

Introduction

High Frequency (HF) communication is a wireless communication paradigm that

allows users to communicate over long-distances without without the use of satellites

or terrestrial relays. The dominant mode of operation is Skywave propagation in which

radio signals in the HF frequency band (3-30 MHz) are directed at an angle towards

the sky. Upon reaching the ionosphere, the signals undergo a process of refraction

and are eventually reflected back to Earth. The ionosphere is an ionized region of

Earth’s atmosphere and acts a natural reflector for HF radio wave signals. This

ionospheric reflection capability coupled with HF signals’ low free-space attenuation

allows for HF radio signals to be received up to 10,000km from their transmitting

location. This ionospheric propagation mechanism provides a unique opportunity for

global connectivity using very minimal infrastructure.

Ever since the advent of satellites, the use of HF communications has declined

due to to its limited data rate and frequency management problems. Nonetheless, it

offers advantages over satellite communication (SATCOM) which make HF a worthy

alternative or backup to SATCOM for beyond line-of-sight communications. From

a national security perspective, satellites are more vulnerable to destruction whereas

the ionosphere is permanent fixture of Earth’s atmosphere. For example, an elec-

tromagnetic pulse (EMP) may disrupt ionospheric propagation in the short-term,

however the same EMP may permanently destroy a SATCOM system [21, Chapter

1]. Another major benefit of HF over SATCOM is the relatively low costs and com-
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plexity of deployment of HF radios compared to satellites. Although HF antennas

may be large, they are relatively simple and more cost effective compared to deploying

a satellite with the same coverage. This relative simplicity and low costs makes its

valuable for civilian use in applications where large coverage is needed without the

use of intermediate relays. Examples include disaster relief operations where exist-

ing communication infrastructure may be compromised, communicating with ships

at sea or large aircraft where line-of-sight of sight methods are unavailable, or even

communicating with remote areas of the globe [25].

There are however challenges to HF radio communications that are not encoun-

tered in traditional line-of-sight wireless communications. The performance of HF

communication systems are heavily tied to the behavior of the ionosphere which is a

dynamic and inhomogeneous propagation medium. The structure and characteristics

of the ionosphere results from a complex interaction of solar radiation with Earth’s

atmosphere. Ionospheric characteristics that influence HF signal propagation such as

free-electron density and layer height vary in time and space. These variations have

been well-studied and modeled on a global scale, however the exact channel character-

istics for an HF links can only be known via real-time sounding. Additionally, regions

of the ionosphere may be in a "disturbed" state due to naturally occurring impulsive

events such as solar flares and geomagnetic storms which may have adverse effects on

communication links in the affected areas. Networked HF systems have to be able

to account for these natural and sometimes impulsive variations of the propagation

medium.

The non-uniformity of the ionosphere creates a unique quality of radio HF net-

works compared to most line-of-sight wireless networks. In traditional line-of-sight

wireless networks, the channel properties of different links are assumed to be station-

ary as well as statistically independent. Due to the regional correlation of ionospheric

variability, we know this independence assumption is not valid for all links within an

HF network. The ionosphere may be constantly changing with time, however these

variations are not purely stochastic in nature and may show high degrees of spatial

correlation. For example, Figure 1-1 displays the predicted received power all over the

14



Figure 1-1: Map of received power for omnidirectional 14.1 MHz transmission from
Washington, DC at 19:00 UTC in the month of August. Produced using VOACAP
online propagation predictor: https://www.voacap.com/hf/

globe from an omnidirectional 14.1 MHz transmission originating Washington, DC.

Overlayed on the receive power map are three possible receiver locations in Spain,

West Africa, and California. Since the received power between the Spanish and West

African link are similar, we can assume the ionospheric characteristics about the re-

gions in which their respective signals propagate are also similar. In contrast, the

ionospheric characteristics for the link to California would not be as statistically cor-

related as the two other links. From a network design perspective, the correlation

of link performance in an HF network must be taken into account. Links with a

high degree of correlation are prone to simultaneous failures which may have serious

implications for a large networks that rely on multiple HF radio links to establish full

network connectivity.

1.1 Network Reliability

Network Reliability is well-studied field that aims to quantify the robustness of a

system in the presence of random component failures. These systems are modeled as

15



Figure 1-2: Bridge graph with four vertices and five edges. For reliability modeling,
each edge would be assigned a probability of failure

graphs G = (V,E), and when applied to communication networks, the vertices/nodes

V = [𝑣1, ..., 𝑣𝑛] represent the communication centers/radios while the edges E =

[𝑒1, ..., 𝑒𝑚] represent the communication links between nodes. Associated with each

link 𝑒𝑖 ∈ E is some probability of operation 𝑝𝑖 ∈ p. The traditional network reliability

model typically uses all or most of the following set of simplifying assumptions to make

the analysis more tractable:

1. All nodes do not fail, thus the network reliability is only depends on edge failures

2. Edges can only be in one of two possible states: operating or failed

3. All edge failure probabilities are statistically independent

The last assumption of statistical independence is central to most works in the

network reliability literature, yet the validity of this assumption is dependent on the

system being modeled. First lets describe what statistical independence means in

the context of communication networks. In general, two random events 𝑋 and 𝑌 are

16



independent if and only if their joint probability of occurrence is the product of their

marginal probabilities [19]:

P(𝑋 occurs AND 𝑌 occurs) = P(𝑋 occurs)P(𝑌 occurs) (1.1)

As a result, the occurrence of 𝑋 does not alter the probability of the occurrence of

𝑌 and vice-versa:

P(𝑌 occurs|𝑋 occurs) = P(𝑌 occurs) (1.2)

From a network reliability perspective, this means the failure of link 𝑒𝑖 does not

affect the probability of failure of any other link within the network. This assumption

may be true when modeling line-of-sight wireless networks, however in HF Networks

we know that link failures may be spatially correlated.

1.2 Research Aims and Objectives

Understanding the reliability of multi-hop HF Networks inspired the development of

our Multivariate Normal (MVN) Model: a novel probabilistic model for analyzing the

reliability of networks with correlated failures. In this model we assume the set of

all signal strengths for the links within the network can be modeled as a correlated

multivariate normal random variable. There are two major benefits to this model

compared to other approaches to capture correlated failures:

1. For a network with𝑚 links, it only requires the specification of
(︀
𝑚+1
2

)︀
correlation

coefficients to model all 2𝑚− 1 possible statistical dependencies between sets of

links.

2. Its a general model that does not require the modeling of the external process

that cause the correlated link failures

The aim of this work was to develop methodologies to solve two commonly tackled

problems in the network reliability literature under the MVN Model:

1. Network Reliability Problem: Compute the probability a network is operational

17



2. Most Reliable Path Problem: Identify the most reliable sequence of edges con-

necting two nodes

In this thesis, we describe these problems and how they differ between the tradi-

tional network reliability model and the MVN model. We also demonstrate how most

methodologies previously developed for solving these problems when link failures are

independent are non-generalizable to the case of correlated failures.

1.3 Prior Correlated Failure Models

Here we present a brief literature review on other approaches to incorporate correlated

failures into network reliability analysis.

Early approaches to capture correlation required the specification of conditional

probabilities and utilized the probabilistic chain rule to compute the overall reliability.

An obvious issue with this approach is that there are 2𝑚− 1 conditional probabilities

that must be specified for a network of 𝑚 links. The q-Ψ model utilizes a Markovian

model where only conditional probabilities of adjacent links are considered [45], [4].

As a result of the Markovian property, the order in which the chain rule expansion is

used changes the joint probability thus this approach lacked a "consistency" property.

The 𝜖-model was introduced to overcome the issue of inconsistency in the q-𝜓 model

and introduces and utilizes a set of inputs 𝜖, that details the perturbations from the

independent model caused by the correlation between link failures [39]. Like other

conditional probability based models, the inputs of the 𝜖-model is exponential in the

number of links.

Lam and Li developed the Event-Based Network Model (EBRM) which is one of

the first works to capture correlation without the specification of conditional prob-

abilities as inputs [29]. The EBRM models each failure causing mechanism using

independent "event elements" which are assigned fixed probabilities and cause fail-

ures of their associated links. This model may also suffer from the exponential growth

of the input parameter space as to capture all possible dependencies for 𝑚 links, it

would require the specification of 2𝑚 − 1 event elements. First introduced in [26],

18



Shared Risk Link Groups framework captures correlation by assigning links into sets

such that a failure of one link in the set causes the failures of all other links within

the same set. This model was inspired by optical WDM Networks where different log-

ical links may share a common physical conduit. Probabilistic Shared Risk Groups

is an extension of the SRLG framework that allows for non-deterministic dependent

failures [30].

Multiple geographic failure models have been proposed which model external pro-

cesses disrupting the physical infrastructure of the network creating spatially corre-

lated failures. These events are modeled as geometric cuts or disks [34] [35], spatial

point processes [41], or even based on physical models such as rain fading in cellular

networks [49]. Geographic failure-based models typically focus on identifying regional

vulnerabilities in the network based on its geographic topology and the specific model

of the external disturbances.

There have been few works that use non-Bernoulli distributions to incorporate

correlation into Network reliability analysis. Nguyen et all extend the idea of prob-

abilistic graphs to uncertain graphs in which edge reliabilities are described using a

boolean expressions of indicator random variables. Multiple link probabilities may

share the same indicator random variable in their associated boolean expression, thus

can be correlated. This approach is a generative model where non-Bernoulli distri-

butions are sampled to eventually generate probabilities of failure for each links [36]

[37]. Botev et al develops a static network reliability model based on a Marshall-Olkin

copula, which models networks of components with time-to-failure distributions. This

approach specifies multivariate lifetime or repair distributions for links in the graph

and the equivalent static reliability formulation is made by assessing whether the

network is operational by time 1 [10]. Botev’s modeling is slightly different than

our MVN model as its underlying multivariate distribution is artificial in the sense

that it doesn’t represent an underlying physical quantity that dictates the reliabil-

ity. Instead the latent distributions are generated by the user as a mechanism for

importance sampling in Network Reliability estimations.
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1.4 Chapter Outline

The remainder of this thesis is organized as follows:

Chapter 2 provides background information on HF communication systems, the

inspiration for the MVN Model. It covers the ionosphere and its effects on HF ra-

diowaves, as well as the various HF Channel models. We then describe how the

correlation of ionospheric characteristics and the effect of the ionosphere on the prop-

agation of radio waves leads to the assumption that the received signal strengths on

links in a network may be modeled as correlated normal random variables.

Chapter 3 formulates the MVN Model. First we detail the independent Bernoulli

random failure model used in most of the Network Reliability literature. Then we

contrast this model with the MVN model which is able to capture correlated failures

in networks. We then discuss the reliability problem and describe exact methods of

computing the reliability and the limitations of the exact methods.

Chapter 4 discusses methods to estimate the reliability under the MVN model.

First we provide an abstract representation of the estimation problem. It then de-

scribes how approaches previously used in the literature for the Bernoulli model are

not valid when link failures are correlated. Two algorithms are then provided to

estimate the reliability under the MVN model and their performance is compared.

Chapter 5 explores the most reliable path problem under the MVN model. It

first describes how the problem under the MVN model lacks the property of optimal

substructure which is essential for the previous techniques used to solve this problem

when link failures are independent. It then describes a method creating optimal

substructure that permits a greedy algorithm to enumerate the most reliable path.

An upper and lower bound on the most reliable path is given based on assuming all

links are fully correlated or independent respectively. Finally, it describes an approach

where we assume links are independent and solve the equivalent most reliable path

problem may be a valid approach for solving the most reliable path problem under

the MVN Model.
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Chapter 2

HF Communication

The following chapter provides background information on HF communication. First,

we discuss the composition and variability of the ionosphere which HF communication

is reliant upon. Next, we cover HF skywave propagation and its relationship to the

ionosphere. Finally, we discuss HF channel modeling and the characteristics that lead

to the MVN model.

2.1 The Ionosphere

The ionosphere is an outer region of Earth’s atmosphere that consists of partially

ionized gases and free electrons. Ionization occurs in sunlit regions of the ionosphere

when ultra-violet and x-ray solar radiation collides with neutral gas molecules. Dur-

ing this interaction, these neutral gas molecules release an electron and become posi-

tively charged. Recombination occurs when free electrons combine with the positively

charged ions to form inert molecules. During the day the rate of ionization is gen-

erally greater than the rate of ionization. At night, recombination continues while

ionization effectively ceases. The ionosphere can be broken up into multiple regions

which are distinct in their electron density and height. The D-region is the lowest

(70-90km above the Earth) region, and primarily acts as an attenuator to HF ra-

diowaves. D-region attenuation is greatest during the day when ionization peaks,

however this region completely dissipates shortly after sunset through the recombina-
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Figure 2-1: Ionospheric Regions and their heights [40]

tion process. Attenuation by the D-region is also frequency dependent, with higher

frequency signals attenuated more than lower frequency signals. The E-region’s alti-

tude is approximately 90km to 130km above Earth’s surface, and unlike the D-region,

refracts HF radiowaves and can be used for medium range communications on the

lower end of the HF spectrum (less than 10 MHz). The E-region also dissipates at

night but does not completely disappear. The F-region is the dominant region used

for long-range HF communications due to its height (130-1000km) and its high free-

electron density. At night, the F-region is a single layer but during the day this region

splits into two distinct layers, the lower F1 (130-310km) and and upper F2 layer (200-

1000). Peak ionization is generally achieved between mid-day to mid-afternoon, and

due to its height allows HF signals to propagate up to 4,000km on a single reflection

off of ionosphere. [21, Chapter 2].

The ionosphere is a highly dynamic and inhomogeneous propagation medium. Its

properties vary temporally and spatially, and both variations primarily coincide with

the amount of solar radiation absorbed by the particular region. Solar activity varies

on a nine to fourteen year solar cycle which corresponds to how much radiation is

being emitted by the sun. [5]. A well-known index of solar activity, the sunspot

number (SSN), roughly characterizes the number of spots visible on the solar disk.

It is used in predicting HF propagation as the SSN is proportional to the component

of solar activity which most severely influences HF systems [21, Chapter 2]. During

22



solar minimum, fewer free electrons are produced in the ionosphere and only lower

frequency HF signals will be reflected. Meanwhile, during solar maximum solar radia-

tion is at its peak thus more free electrons are available in the ionosphere thus higher

frequencies in the HF bands may be used. Also during solar maximum there is a

greater likelihood of large solar flares occurring. Solar flares increase the ionization of

and absorption by the D-layer and can cause brief loss of propagation for HF signals

[5].

Seasonal variation in the ionosphere is due to changes in the distance from the

sun as well as the tilt of Earth’s axis. For the hemisphere experiencing summer, the

apparent elevation of the sun is greater and it receives more direct illumination for a

longer period each day compared to the other hemisphere experiencing winter. This

means at noon in the summer, ionization of all layers is typically greater than the

winter months and higher frequency propagation is supported. However, there are

"anomalous features" such as the so called "seasonal anomaly" which refers to greater

support at noon for higher frequencies in the Winter than those in the Summer during

solar maximum [31]. Hourly variation in the ionosphere stems from the rotation of

the Earth about its axis. Supported frequencies for a given region are higher during

the day due to direct exposure to the sun.

Generally free electron density increases during periods that correspond to in-

creased solar radiation on all timescales (i.e. daily: noon; seasonally: summer; solar

cyclically: solar maximum). Thus higher frequency propagation is supported within

the HF Bands during the periods of increased solar radiation. However, this trend

is primarily for a non-disturbed ionosphere in the mid-latitude regions of the North-

ern and Southern Hemispheres. Around Earth’s poles and the equator we see many

irregularities that cause deviations away from this overall trend. In particular the

High Latitude Region is the portion of the ionosphere whose properties are largely

reliant on the magnetospheric fluctuations and corpuscular radiation as opposed to

solar radiation. In this region we see a more frequent occurrence of ionospheric irreg-

ularities and disturbances, which provide special challenges for HF propagation that

don’t exist in mid-latitude or equatorial regions. For an in depth look into the iono-
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spheric differences of the High Latitude and Equatorial regions, readers are directed

to [21, Chapter 3] and the sources within. There are a wide range of irregularities that

may exist in certain regions in the ionosphere and their impact on HF propagation

is important for a complete understanding of the dynamic HF propagation medium.

Table 2.1 contains a brief description of the most widely studied irregularities and

ionospheric disturbances as well as their effect on HF communication Links.

Table 2.1: Table of ionospheric irregularities and disturbances. Adopted from [2] and

[5]

2.2 HF Communication

The inhomogenous and dynamic ionosphere creates a unique propagation environ-

ment for HF radiowaves. The following section describes the mechanisms behind

ionospheric propagation and the multitude of effects the ionosphere has on radiowaves

in the HF Frequency band.

24



2.2.1 Ionospheric Propagation

When an electromagnetic wave passes through an ionized region, the upper part of

the wave continually slows causing the wave to refract or bend as it propagates. The

amount of refraction depends on the ionization density of the medium, the frequency

of the electromagnetic wave, and the angle of incidence [21, Chapter 4]. Thus for HF

communication, the signal path between a transmitter and receiver is determined by

the electron density along the portion of the path that passes through the ionosphere,

the frequency of the signal, and the transmitting antenna’s elevation angle.

Figure 2-2: Basic single-hop path of skywave propagation

For a given layer, its critical frequency is the highest frequency at which a vertically

incident radio wave refracts 180 degrees [2]. As a function of free electron density 𝑁

(electrons per 𝑚3), it is approximately:

𝑓0 ≈ 9
√
𝑁 (2.1)

Similarly, for oblique transmissions, the maximum usable frequency (MUF) for a given

layer is given by:

𝑓𝑀 ≈ 𝑓0 sec (𝜑) (2.2)
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where 𝜑 is the angle of incidence on the reflecting refracting [25]. Carrier frequency

also determines the amount of energy lost to absorption for a particular path. The D-

region is the primary attenuator along an ionospheric path, thus its electron density

and layer thickness determines the lowest usable frequency often referred to as the

Absorption Limiting Frequency (ALF) [5].

Figure 2-3: Signal paths as a function of incident angle using a fixed carrier frequency.

Originally from [38]

The potential paths of a transmission for a fixed frequency is shown in Figure

2-3. Rays corresponding with high elevation angles penetrate through the ionosphere

and are not reflected, while low elevation angles are able to propagate a considerable

distance before their return to earth. As the elevation angle increases, the ground

distance of the corresponding ray decreases until reaching the point where the ele-
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vation angle exceeds the maximum angle for the given frequency. The area on the

ground where no signal is able to be received is called the skip-zone. For antennas

with omnidirectional radiation patterns, this leads to an annular coverage pattern

that is unique to HF. At ground distances just beyond the skip-zone, there is a col-

lection of rays that have the same end point. The high-rays penetrate further into

the ionosphere thus have a longer total path length, while the low-rays are more

immediately reflected, however both rays will combine at the same endpoint. Since

the propagation path of the high-ray is longer, the signal will face more attenuation

and be more delayed than the lower ray. The bifurcation into high and low rays is

not unique to the area just beyond the skip-zone, and may occur at greater ground

distances when operating below the maximum useable frequency for a link.

Figure 2-4: Splitting into High and Low Rays

The ray-tracing depictions given so far do not tell the complete story of ionospheric

propagation. Earth’s magnetic field causes electromagnetic waves to split into two

separately polarized components once entering the ionosphere: the ordinary (O) and

extraordinary (X) waves. The refractive index of the ionosphere is different for the O

and X waves. The O waves takes a slightly longer path through the ionosphere and

are subjected its effects for longer. Upon recombination of the O and X waves, the

polarization of the combined wave will appear to have been rotated due to different

amounts of phase change of the O and X waves through their respective trajectories.

For a more in depth coverage of this magneto-ionic splitting and Faraday rotation,

readers are referred to [21, Chapter 4]
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Over long distances a signal may take multiple "hops" off the ground and the

ionosphere to reach its destination. The mode of propagation refers to the specific

layer(s) and bounces of the received signal as shown in 2-5 (modes: 1F, 2F, 2E,

etc). Ground distances greater than 4000km, such as across oceans, generally rely on

multiple hops off the F1 or F2-region [1].

Figure 2-5: Possible single/multi-hop trajectories

Due to the dynamic nature of the ionosphere, propagation prediction for frequency

planning/selection has been imperative for the operation of HF links. If a selected

transmission frequency is too high given the current conditions (i.e. exceeds the

oblique critical frequency) the signal will penetrate through all layers of the ionosphere

and not be refracted. If a selected frequency is too low given the current conditions

(i.e. is below the ALF) either the D-region attenuates the signal too much to be

received or the signal is unable to penetrate the E-region and is refracted back at

shorter distances than what is required. Due to this frequency dependent attenuation,

it is desirable to operate as close to the oblique critical frequency as possible.

So far all discussions of HF propagation have centered on oblique incidence sky-

waves, where the elevation angles are relatively low and link distances are generally

long. An alternative method of propagation revolves around transmitting at lower

frequencies and very high (near vertical) elevation angles. This method is called

28



Near-Vertical Incidence Skywaves (NVIS) and has a range of 250km with a small or

non-existent skip zone [24]. For this to occur, the transmission frequency must be

below the critical frequency of the ionosphere at the site of transmission. NVIS can

be used to overcome local terrain barriers (such as mountains) that would interfere

with low-angled signals or for broadcasts in a local region.

Figure 2-6: NVIS Propagation

2.2.2 Signal Attenuation

For a given path-geometry, there are several attenuation factors whose effects will be

compounded on the received signal [18]:

1. Free-Space Path-Loss: Caused by the spatial spread of the signal and can be

determined via the following:

𝐿𝐹𝑆 = (4𝜋𝑑𝑓/𝑐)2 (2.3)

where 𝑑 is the total path-distance, 𝑓 is the carrier frequency, and 𝑐 is the speed

of light.

2. Polarization Loss: Due to the mismatch of the antenna polarization and wave
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polarization, the receive antenna may not be able to absorb all of the incoming

signal’s energy

3. Ionospheric Absorption: Primarily from the D Region, energy will absorbed

by the ionosphere. This attenuation is inversely proportional to the carrier

frequency.

4. Ground Absorption/Scattering: For multi-hop signal paths, some energy will

be lost due to absorption or scattering by the ground

These factors lead to slow variations in received signal strength and are generally

well-understood and can be quantified.

2.2.3 Multipath

A single pulse sent from a transmitter over the HF Channel may take multiple tra-

jectories before being received by the receiver. This phenomenon, called multipath

propagation, may be introduced by many different propagation mechanisms in the

HF Channel. Each of these path lengths will differ so the amplitude and phase of

the received components will differ. At any one time, the received signal is a super-

position of the individual multipath components and for digital communications will

cause inter-symbol interference (ISI). Multi-mode multipath occurs when a signal is

received from two or more ionospheric layers simultaneously, such as simultaneous 1F

and 1E propagation. This also encapsulates multi-hop multipath when a the received

signal is a superposition of multiple reflections off ionospheric layers (ex. simultane-

ous 2E and 1F propagation). A receiver may also see multipath arising from the same

propagation mode. Within the same mode, propagation may be comprised of four

separate components due to high and low rays as well as magneto-ionic splitting [2].

It is quite possible that multiple of these multipath mechanisms occur simultaneously

thus many time delayed versions of a transmission may be received up to milliseconds

apart. Without diversity techniques, severe multipath spread can limit the symbol

rate in digital communications to several hundred symbols/second to prevent ISI [21,

Chapter 4].
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2.2.4 Fading

Fading refers to the fluctuation of received signal energy with time. The main causes

of fading over the HF channel and their fading period are as follows:

Table 2.2: Fading types in the HF Channel, adopted from [18] and [2]

The magnitude of fading may be dependent (selective) or independent (non-

selective) of the carrier frequency. Generally fading caused by the reception of multiple

modes is frequency selective, while single mode fading is non-selective [18]. The total

variation in the received signal over the HF Channel will be due to the combination

of fading effects over all timescales superimposed upon the effects of multipath.

2.2.5 HF Channel Modeling

Variation in signal strength is a random process and in the HF Channel has temporal

effects over a variety of time-scales. The following models capture variation in the

long, short, and intermediate time-scales respectively.

Propagation Predictors

Propagation prediction programs such as ITURHFPROP and VOACAP can be used

predict changes in received power over the timescales of an hour and longer. These are

based on experimentally derived ionospheric coefficient maps along with propagation

models, and provide predictions of monthly median statistics for a given point-to-point

HF communication link. The following inputs are generally needed for propagation

prediction programs:
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1. Latitude and longitude of the transmitter and receiver

2. Month and time of day (typically at the granularity of an hour)

3. Smoothed sunspot number or other ionospheric activity index

4. Frequencies of interest

5. System parameters (antenna model, man-made noise at the receiver, transmit

power, data rate, etc)

From these inputs the programs can predict metrics at the receiver such as signal

strength, SNR, and link reliability as well path-centric metrics such as the maximum

useable frequency and viable modes of propagation for each frequency of interest.

These metrics however are monthly median predictions meaning at the specific input

hour, SSN, and frequencies of interest, the predictions provide the median, lower-,

and upper-deciles in which the metric of interest will exceed for 50%, 10%, and 90%

of the days of the month respectively [1]. These can be powerful tools for long-term

planning, however, they do not provide the granularity required to understand the

real-time performance of a communication link. Figures 2-7 through 2-10 demonstrate

VOACAP’s coverage prediction capabilities. The input parameters were as follows:

1. Location: Washington, DC (38.8771, -77.0409)

2. Time Parameters: August over 00, 06, 12, and 18 UTC

3. SSN: 24

4. Frequency: 10.1 MHz (30m Band)

5. System Parameters: Isotropic Antenna (0 dBi) transmitting at 80W

32



Figure 2-7: VOACAP received power coverage prediction for 00 UTC

Figure 2-8: VOACAP received power coverage prediction for 06 UTC
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Figure 2-9: VOACAP received power coverage prediction for 12 UTC

Figure 2-10: VOACAP received power coverage prediction for 18 UTC

In each of the figures, the shaded and unshaded regions correspond to regions of

night and day respectively. These figures capture the dynamic nature of the iono-

spheric channel as there are no locations with consistent received signal strengths

throughout the day at this single frequency.
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Watterson Model

In contrast to the long-term statistical behavior captured by propagation prediction

programs, the Watterson Model captures the fine-grained behavior of ionospheric

paths on the scale of micro- to milliseconds. The Watterson model assumes the

ionosphere can be modeled as stationary over a short-interval (∼ 10 minutes) for a

band-limited (∼ 10kHz) channel. The base model represents the HF Channel using

an ideal tap delay line, where each tap corresponds to a resolvable propagation path.

Each tap gain function models the received signal for the magneto-ionic components

of the particular path as:

𝐺𝑖(𝑡) = 𝐺𝑋,𝑖 exp (𝑗2𝜋𝜃𝑋,𝑖𝑡) +𝐺𝑂,𝑖 exp (𝑗2𝜋𝜃𝑂,𝑖𝑡) (2.4)

where the 𝐺𝛼,𝑖 terms are sample functions of two complex independent Gaussian

processes, and the exponential allow the addition of Doppler shifts for each component

[47].

Midterm Variation Model

Variation on the order of seconds to minutes is not captured by either the Watter-

son Model nor propagation prediction programs. This time-scale is important in the

design, analysis, and performance evaluation of an HF Network as networking pro-

tocols are sensitive to the variation in the ionosphere at this scale [25]. Mid-term

variations arise in the HF Channel due to ionospheric motion, Faraday fading, the

focusing effect. Frequency domain analysis of midterm fading measurements have

found that variation over this timescale can be subdivided into two distinct normal

processes in the decibel scale. The component with the longest period called the

Long-Term Variation (LTV) has a fade interval of approximately 3 minutes while the

Intermediate-Term Variation (ITV) component has a fade interval of approximately

5 seconds. The standard deviation of each component ranges from 1-4dB throughout

the day [6].
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2.3 Assumptions

In our MVN model, we model the received signal strengths in an HF network as

normally distributed and correlated. The following section describes the justification

for these two assumptions.

2.3.1 Log-normal Shadowing

A widely used model in the wireless communication literature is the log-path loss

model [42]. This model captures distance dependent attenuation in environments

with a high density of obstructions such as inside buildings or within cities . In this

model the average received signal strength in dB (𝑃𝑅𝑥[𝑑𝐵]) is:

𝑃𝑅𝑥[𝑑𝐵] = 𝑃𝑇𝑥[𝑑𝐵] + 𝑃𝐿0 + 10𝛾 log10(
𝑑

𝑑0
) + 𝐿𝐺 (2.5)

where 𝑃𝑇𝑥[𝑑𝐵] is the transmit power in dB, 𝑑0 is a short reference distance from

the transmitter, 𝑃𝐿0 is the path-loss at reference distance 𝑑0, 𝛾 is an experimentally

derived path-loss exponent, 𝑑 is the distance between the transmitter and the receiver,

and 𝐿𝑔 is zero-mean Gaussian random variable. The Gaussian log-fading component

was originally based on empirical measurements in cluttered environments [46], but

has statistical foundations as well: in a cluttered environment there will be multiple

rays between transmitter and receiver, and if the attenuation on each ray is modeled

as a random variable, then by the Central Limit Theorem, the sum of the power in

each ray at the receiver will converge to the normal distribution [16].

A similar justification can be said for using log-normal fading to model large

scale fading in the HF channel. In the HF channel a radiowave will take multiple

trajectories through the inhomogenous ionosphere before reaching the receiver. The

overall attenuation on each ray will be a combination of losses due to diffraction,

scattering, absorption, etc. all of which can be modeled as random variables. Thus

by the Central Limit Theorem, the mean received power between a transmitter and

receiver can be modeled as normally distributed about a distance dependent mean.
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2.3.2 Spatial Correlation of the HF Channels

As stated in Chapter 1, we are interested in modeling and analyzing HF networks

comprised of multiple point-to-point HF communication links. In traditional line-

of-sight wireless networks it can usually be assumed that the channel parameters

for each link are static and independent from one another. There are scenarios in

traditional wireless networks where these assumptions do not hold such as in the event

of rain [50], [13], [23], or shadowing by environmental obstructions [3]. However, in

these examples spatial correlation is induced by the presence of a disturbance in the

propagation medium. Analogously, channel parameters of links in an HF Network

would exhibit spatial correlation if links crossed through regions effected by one of

the events listed in Table 2.1.

However, even under benign ionospheric conditions HF channel parameters would

exhibit correlation induced by the spatial correlation of the propagation medium

itself. Numerous experimental studies have demonstrated the spatial correlation of

ionospheric characteristics such as the F2 critical frequency [32], [44] and the total

electron content [51]. The spatial relationship of signal strengths may also be seen

in Figures 2-7 through 2-10, however it can be observed that this relationship is also

time dependent. The correlation between communication links in an HF Network

will depend on the spatial separation of links’ ionospheric paths, thus correlation

would coincide with the spatial separation of their control points [22]. For a one-hop

mode, this is assumed to lie directly above the midpoint between the transmitter and

receiver [1]. Channel sounding experiments conducted by Goodman and colleagues

have shown that correlation in the HF propagation environment may decrease the

reliability of the overall network [20].
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Chapter 3

The MVN Reliability Model

The following chapter introduces the Network Reliability Problem and the Multivari-

ate Normal (MVN) Model. The traditional Bernoulli failure model that is often used

in Network Reliability literature is described in Section 3.2 and our novel MVN Model

formulation is given Section 3.3. Section 3.4 describes the various Network Reliability

problems and definitions and Section 3.5 presents methods to solve them under the

MVN Model.

3.1 Bernoulli Model

Traditionally, probabilistic graphs G = (V,E,p) have been used to model commu-

nication networks with random link failures. The nodes V = [𝑣1, . . . , 𝑣𝑛] represent

the 𝑛 communication centers or relays and it is typically assumed they do not fail.

The 𝑚 undirected edges 𝐸 = [𝑒1, . . . , 𝑒𝑚] of the graph represent the links between

pairs of nodes 𝑒𝑖 ∈ (𝑣𝑗, 𝑣𝑘) and can be in one of two states: either operational or

failed. The state of link 𝑒𝑖 is denoted by the random variable 𝑋𝑖, where {𝑋𝑖 = 1}

denotes the event 𝑒𝑖 is in the operational state, while {𝑋𝑖 = 0} denotes the event

𝑒𝑖 has failed. For more concise probabilistic expressions, the operational link state

may also be denoted by 𝑥𝑖 and the failed state 𝑥′𝑖 in the following sections. In the

Bernoulli Model, the probability link 𝑒𝑖 is operational is 𝑝𝑖 while the probability link

𝑒𝑖 has failed is 1− 𝑝𝑖 = 𝑞𝑖
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P({𝑋𝑖 = 1}) = P(𝑥𝑖) = 𝑝𝑖 (3.1)

P({𝑋𝑖 = 0}) = P(𝑥′𝑖) = 1− 𝑝𝑖 = 𝑞𝑖 (3.2)

Links may also be modeled using directed edges or arcs A = [𝑎𝑖𝑗] where their con-

nectivity is not assumed to be bidirectional, the probability link 𝑎𝑖𝑗 is operational 𝑝𝑖𝑗

may not equivalent to the probability link 𝑎𝑗𝑖 is operational 𝑝𝑗𝑖.

In the Bernoulli model it is assumed that link failures are independent, meaning

the state of link 𝑒𝑖 does not affect the state probability of any other link 𝑒𝑗:

P(𝑋𝑖|𝑋𝑗) = P(𝑋𝑖) ∀ 𝑖, 𝑗 (3.3)

As a result, the probability of the event that both link 𝑒𝑖 and 𝑒𝑗 are both operational,

or their joint reliability, is given as the product of their marginal reliabilities:

P(𝑥𝑖 ∩ 𝑥𝑗) = P(𝑥𝑖)P(𝑥𝑗) = 𝑝𝑖𝑝𝑗 ∀ 𝑖, 𝑗 (3.4)

3.2 MVN Model Formulation

Inspired by the spatial correlation and the normally distributed signal distribution

expected in an HF Network we developed the following model.

Let the network be modeled as a graph G = (V,E, s, 𝜏 ). Associated with each link

𝑒𝑖 ∈ E is a normally distributed random variable 𝑠𝑖 ∼ 𝑁(𝜇𝑖, 𝜎
2
𝑖 ) and a fixed threshold

𝜏𝑖. The random variable 𝑠𝑖 represents the signal strength (or similar metric such as

SNR) for link 𝑒𝑖, while 𝜏𝑖 is a fixed value that represents the minimum signal strength

required to meet some performance criteria. If the signal is below this threshold

then the link is considered to be in a failed state. It’s also assumed that the vector

s = [𝑠1, . . . , 𝑠𝑚] is jointly normally distributed with mean vector 𝜇 = [𝜇1, . . . , 𝜇𝑚] and

positive-definite covariance matrix Σ, where:
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Σ(𝑖, 𝑗) =

⎧⎪⎨⎪⎩𝜎
2
𝑖 if 𝑖 = 𝑗

𝐶𝑜𝑣(𝑠𝑖, 𝑠𝑗) if 𝑖 ̸= 𝑗

(3.5)

The marginal and joint probability density functions are given as:

𝑓𝑠𝑖(𝑠;𝜇𝑖, 𝜎
2
𝑖 ) =

1√
2𝜋𝜎

𝑒𝑥𝑝

(︂
−(𝑠− 𝜇𝑖)

2

2𝜎2

)︂
(3.6)

𝑓s(s;𝜇,Σ) =
1

(2𝜋)
𝑚
2 |Σ|

𝑒𝑥𝑝

(︂
−1

2
(s− 𝜇)ᵀΣ(s− 𝜇)

)︂
(3.7)

which correspond to a univariate and multivariate normal distribution respectively.

Like the Bernoulli model, marginal link reliabilities can be given as a fixed value,

however, they are based on evaluating the corresponding univariate normal integral

for that link:

P(𝑥𝑖) = P(𝑠𝑖 ≥ 𝜏𝑖) =

∫︁ ∞

𝜏𝑖

𝑓𝑠𝑖(𝑠;𝜇𝑖, 𝜎
2
𝑖 )𝑑𝑠 = 𝑝𝑖 (3.8)

The key difference between the Bernoulli and MVN model lies in the joint proba-

bilities of link states for two or more links. For example, for two links 𝑒𝑖 and 𝑒𝑗 with

their signal covariance 𝜎𝑖,𝑗 ̸= 0:

P({𝑠𝑖 ≥ 𝜏𝑖} ∩ {𝑠𝑗 ≥ 𝜏𝑗}) =

∫︁ ∞

𝜏𝑖

∫︁ ∞

𝜏𝑗

1

2𝜋|Σ|
𝑒𝑥𝑝

(︂
−1

2
(s− 𝜇)ᵀΣ(s− 𝜇)

)︂
𝑑𝑠𝑗𝑑𝑠𝑖

where:

𝜇 = [𝜇𝑖, 𝜇𝑗]
ᵀ

Σ =

⎡⎣ 𝜎2
𝑖 𝜎𝑖,𝑗

𝜎𝑖,𝑗 𝜎2
𝑗

⎤⎦
Similarly, the probability link 𝑒𝑖 has failed and 𝑒𝑗 is operation is given as:

P({𝑠𝑖 < 𝜏𝑖} ∩ {𝑠𝑗 ≥ 𝜏𝑗}) =

∫︁ 𝜏𝑖

−∞

∫︁ ∞

𝜏𝑗

1

2𝜋|Σ|
𝑒𝑥𝑝

(︂
−1

2
(s− 𝜇)ᵀΣ(s− 𝜇)

)︂
𝑑𝑠𝑗𝑑𝑠𝑖
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where the mean and covariance parameters remain unchanged. If their covariance

was zero, 𝜎𝑖,𝑗 = 0, then 𝑠𝑖 and 𝑠𝑗 would be statistically independent and their joint

reliability could be evaluated as the product of their marginals as in the Bernoulli

model.

This difference in the joint probabilities also changes the expression for conditional

reliabilities as:

P(𝑋𝑖|𝑋𝑗) =
P(𝑋𝑖 ∩𝑋𝑗)

P(𝑋𝑗)
(3.9)

which does not simplify to the univariate probability P(𝑋𝑖) unless their correlation

𝜌𝑖𝑗 = 0.

Since there are still only two possible states for each link, operational (𝑥𝑖) or

failed (𝑥′𝑖), the state of G can described by the random state vector X ∈ 𝒳 , where

|𝒳 | = 2𝑚. Any graph state X can be partitioned into two sets: the operational set

x = [𝑋𝑖 : 𝑋𝑖 = 𝑥𝑖] and the failed set x′ = [𝑋𝑖 : 𝑋𝑖 = 𝑥′𝑖].

The probability of the event G is in state X = [𝑋1, ..., 𝑋𝑚] is:

P(X) = P

(︃
𝑚⋂︁
𝑖=1

𝑋𝑖)

)︃
(3.10)

which under the MVN model becomes:

P(X) = P

(︃
𝑚⋂︁
𝑖=1

{𝑠𝑖
𝑥𝑖

R
𝑥′
𝑖

𝜏𝑖})

)︃
(3.11)

In the Bernoulli model (or the uncorrelated MVN case) this simplifies to:

P(X) =
𝑚∏︁
𝑖=1

P(𝑋𝑖) (3.12)

3.3 Network Reliability

Network reliability is defined as the probability of the event the network is in an

"operational" state. Whether or not a graph state X is operational or not will depend

on the network’s intended function, but we will focus on three of the most common
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definitions: two-terminal, k-terminal, and all-terminal reliability. These definitions

and examples as applied to the graph depicted in Figure 3-1 are given below along

with the definitions of important graph substructures for reliability.

Figure 3-1: Bridge Graph

Definitions:

Pathset (or Path) - PS: A sequence of edges which join a sequence of distinct

vertices

Ex. (𝑒2, 𝑒5) and (𝑒1, 𝑒3, 𝑒5) are paths between nodes 𝑣1 and 𝑣4

Cutset(or Cut) - CS: A subset of edges such that their removal from the graph

partitions it into two (or more) separate subgraphs.

Ex. (𝑒1, 𝑒2), (𝑒2, 𝑒3, 𝑒5), and (𝑒1, 𝑒3, 𝑒4, 𝑒5) are all cuts

Minimal Cut(or mincut) - C: A cut set such that the removal of any link from

the set would make the remaining links no longer a cut set. Every cutset contains

one or more minimal cuts.

Ex. (𝑒1, 𝑒2) and (𝑒2, 𝑒3, 𝑒5) are both mincuts, while (𝑒1, 𝑒3, 𝑒4, 𝑒5) is not but contains

the mincut (𝑒1, 𝑒3, 𝑒4)

Two-terminal Reliability - Relst(G): The probability of the event that for a given
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node pair (𝑣𝑠, 𝑣𝑡) ∈ V there is at least one path connecting the two nodes.

K-terminal Reliability - RelK(G): The probability of the event that there is at

least one path between 𝑘 specified nodes

All-terminal Reliability - RelA(G): The probability the event that for every node

pair (𝑣𝑖, 𝑣𝑗) ∈ V there is at least one path connecting the two nodes.

When applied to directed graphs, these definitions may be referred to as all-terminal/two-

terminal/k-terminal connectivity instead of reliability.

For all definitions of reliability, we can define a structure function Ψ(·) which

indicates when a graph’s state X = [𝑋1, . . . , 𝑋𝑚] is operational based on the specified

network operation definition. For example, for two-terminal reliability:

Ψ𝑠𝑡(X) =

⎧⎪⎨⎪⎩1 if a path exists between nodes 𝑣𝑠 and 𝑣𝑡

0 otherwise
(3.13)

3.4 Evaluating Network Reliability

All definitions of reliability may be expressed as the probability its structure function

evaluates to one:

𝑅𝑒𝑙(G) = P({Ψ(X) = 1}) =
∑︁
X∈𝒳

P(X)Ψ(X) (3.14)

where each term of the summation is non-zero only if Ψ(X) for that particular state

evaluates to one. The set of all possible graph states 𝒳 contains the |𝒳 | = 2𝑚

possible values of the random Bernoulli vector X = [𝑋𝑖]
𝑚
𝑖=1. The naive evaluation

of the above expression requires the enumeration of all 2𝑚 states and thus quickly

becomes prohibitive for large networks.

All reliability expressions can also be evaluated in terms of their minpaths or

mincuts. Letting {𝑃𝑖} denotes the event that all links the ith minpath are operational

and {𝐶𝑖} denotes the event that all links the ith mincut have failed:
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𝑅𝑒𝑙(G) = P({X contains a minpath}) = P(
⋃︁
𝑃𝑖∈𝒫

{𝑃𝑖}) (3.15)

= 1− P({X contains a mincut}) = 1− P(
⋃︁
𝐶𝑖∈𝒞

{𝐶𝑖}) (3.16)

Where the probability of a minpath P({𝑃𝑖}) is the joint probability of all links in the

minpath:

P({𝑃𝑖}) = P(
⋂︁

𝑗:𝑒𝑗∈𝑃𝑖

𝑥𝑗) (3.17)

Both 5.1 and 3.16 are expressed in terms of unions of non-disjoint events. This

contrasts Equation 3.14 as only one graph state may exist at a single time thus there is

no overlap in their event space and the individual graph states are mutually exclusive.

Meanwhile it is possible (and often common) for multiple overlapping minpaths or

mincuts to exists in a single graph state thus they are not mutually exclusive sets. To

evaluate reliability using minpaths, the inclusion-exclusion principal must be used:

P

(︃
𝐾⋃︁
𝑖=1

{𝑃𝑖}

)︃
=

𝐾∑︁
𝑖=1

P{𝑃𝑖} −
𝐾∑︁
𝑖<𝑗

P({𝑃𝑖} ∩ {𝑃𝑗}) +
𝐾∑︁

𝑖<𝑗<𝑘

P({𝑃𝑖} ∩ {𝑃𝑗} ∩ {𝑃𝑘})+

...+ (−1)𝐾−1
∑︁

𝑖<...<𝐾

P

(︃
𝐾⋂︁
𝑘=1

{𝑃𝑘}

)︃
(3.18)

Even when links are independent, there are two main issues with the naive imple-

mentation of this approach:

1. Generating all paths/mincuts requires exponential time since the number of

paths/mincuts may be exponential in |𝑉 |.

2. Generating all subsets of the minpaths/mincuts can take 2ℎ time where ℎ is the

number of paths/mincuts.

Thus the naive implementation is a doubly exponential algorithm [14].
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Figure 3-2: Edge Contraction G · 𝑒3 and deletion G− 𝑒3 of 𝑒3

3.4.1 Factoring Method

As will be explained in the following chapter, there are many methods of evalu-

ating/approximating reliability under the Bernoulli Model that do not work under

the MVN due to correlation. One method that does have applicability to both the

Bernoulli and the MVN model is the Factoring Method. First described by [33], this

approach relies on repeatedly applying a pair of operations called edge contractions

and edge deletions. Contracting 𝑒𝑖 from a graph (G · 𝑒𝑖) merges the two endnodes of

𝑒𝑖 into a single node and removes 𝑒𝑖 along with any parallel edges. Deleting 𝑒𝑖 from

a graph (G− 𝑒𝑖) simply removes 𝑒𝑖 from the graph without effecting any other nodes

or edges. These operations are demonstrated in Figure 3-2

The reliability of a graph can be expressed as the weighted sum of the reliabilities

of the subgraphs created via the contraction/deletion process.

Theorem 3.4.1 (Factoring Theorem [14]). For a given network G with independent

link failures:

𝑅𝑒𝑙(G) = 𝑅𝑒𝑙(G · 𝑒𝑖)P(𝑥𝑖) +𝑅𝑒𝑙(G− 𝑒𝑖)P(𝑥′𝑖) (3.19)

This theorem can be reapplied to subsequent subgraphs 𝐺 · 𝑒𝑖 and 𝐺 − 𝑒𝑖, lead-

ing to a recursive algorithm to compute the reliability of any graph. The factoring

46



method can equivalently be thought of as a conditioning process, where edge contrac-

tion is equivalent to conditioning on a link being in the operational state, and edge

deletion is equivalent to conditioning on the event a link is in the failed state. In the

Bernoulli Model, this has no effect on the reliability of subgraphs as all links are inde-

pendent thus the probability link 𝑒𝑗 fails in subgraph G ·𝑒𝑖 is 𝑞𝑗. However, when links

are correlated the conditional distributions must be considered when computing the

reliabilities of subgraphs. This leads to the following Correlated Factoring Theorem:

Theorem 3.4.2 (Correlated Factoring Theorem). For a given network G, let the

set x correspond to the links conditioned to be operational/contracted in the original

graph G and the set x′ correspond to the links conditioned to be failed/deleted in the

original graph G.

𝑅𝑒𝑙(G|x ∩ x′) = 𝑅𝑒𝑙(G|𝑥𝑖∩x ∩ x′)P(𝑥𝑖|x ∩ x′)+𝑅𝑒𝑙(G|𝑥′𝑖∩x∩x′)P(𝑥′𝑖|x ∩ x′) (3.20)

When the sets x and x′ are empty this simplifies to:

𝑅𝑒𝑙(G) = 𝑅𝑒𝑙(G|𝑥𝑖)P(𝑥𝑖) +𝑅𝑒𝑙(G|𝑥′𝑖)P(𝑥′𝑖) (3.21)

which is identical to Theorem 3.4.1

For a simple proof of the validity of these theorems we use the fact that reliability

is simply the probability of the event G is operational and the fact that the event

space of link 𝑒𝑖, 𝒳𝑖, is confined to either an operating 𝑥𝑖 or failed 𝑥′𝑖 state which are

disjoint event spaces. Thus by the total law of probability:

P(G is operational) =
∑︁
𝑋𝑖∈𝒳𝑖

P(G is operational|𝑋𝑖)P(𝑋𝑖) (3.22)
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which is equivalently:

𝑅𝑒𝑙(G) = 𝑅𝑒𝑙(G|𝑥𝑖)P(𝑥𝑖) +𝑅𝑒𝑙(G|𝑥′𝑖)P(𝑥′𝑖) (3.23)

= 𝑅𝑒𝑙(G · 𝑒𝑖)P(𝑥𝑖) +𝑅𝑒𝑙(G− 𝑒𝑖)P(𝑥′𝑖) (3.24)

(3.25)

Note that Theorem 3.4.2 is not dependent on the underlying signal distribution

being a multivariate Gaussian and would still valid true under a generally probabilis-

tic framework for reliability that incorporates correlation. When applied to the MVN

model, the link signal distribution s becomes a truncated multivariate normal distri-

bution after any contraction or deletion. For example, after the contraction operation

G · 𝑒𝑖, the signal distribution for the rest of the links would be given by:

𝑓s|𝑥𝑖
(s|𝑥𝑖;𝜇,Σ) =

𝑓s(s)I(𝑠𝑖 ≥ 𝜏𝑖)

P(𝑠𝑖 ≥ 𝜏𝑖)
(3.26)

where 𝑓s is the original signal distribution prior to conditioning. Like the MVN

distribution, probabilities associated with the truncated MVN distribution do not

have closed forms but can be evaluated numerically.
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Chapter 4

Approximating MVN Reliability

Due to the NP-Completeness of Network Reliability problems, most of the literature

concerning the Bernoulli model revolves around estimating the reliability instead of

exact computations. Simulation based methods such as Monte Carlo methods are

often used in the Network Reliability literature when the size of the network makes

computing the exact reliability infeasible. Even for the Bernoulli Model there is not

a universal algorithm that’s optimal for all graphs and class of reliability problems.

In this chapter, two different simulation methods are presented to estimate the unre-

liability.

4.1 Problem Abstraction

All Network reliability problems may be abstracted to the following: We have a

continuous sample space 𝒮 ∈ R𝑚 that contains all possible realizations of our signal

vector s. We have a function 𝐼 : 𝒮 → 𝒳 , where 𝒳 is subdivided 2𝑚 disjoint subspaces

(𝒳1, ...,𝒳2𝑚) corresponding to all the possible link states of G. The function 𝐼 is the

evaluation of I(𝑠𝑖 > 𝜏𝑖) ∀ 𝑖 ∈ 1, ..,𝑚. The weight of any 𝒳𝑖 can only be computed by

integrating the region of 𝒮 that maps to 𝒳𝑖 under function 𝐼

𝒲(𝒳𝑖) =

∫︁
𝑠:𝐼(𝑠)→𝒳𝑖

𝑓s(𝑠)𝑑s (4.1)
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where 𝑓s is the probability distribution of s. All 𝒳𝑖 are disjoint therefore the sum of

their weights is equivalent to the sum of all weights in 𝒮:

∑︁
𝑖

𝒲(𝒳𝑖) =𝒲(𝒮) = 1 (4.2)

We also have another function Ψ : 𝒳 → Γ, where Γ is comprised of two disjoint

subsets 𝒞 and 𝒞 ′ corresponding to connected and disconnected states under the struc-

ture function Ψ.The weight of 𝒞 is the sum of weights of 𝒳𝑖 such that 𝒳𝑖 maps to 𝒞

under Ψ:

𝒲(𝒞) =
∑︁

𝑖:Ψ(𝒳𝑖)→𝒞

𝒲(𝒳𝑖) (4.3)

Similarly for 𝒞 ′

𝒲(𝒞 ′) =
∑︁

𝑖:Ψ(𝒳𝑖)→𝒞′

𝒲(𝒳𝑖) (4.4)

And because Γ is the union of the two disjoint subsets 𝒞 and 𝒞 ′:

𝒲(𝒞 ′) = 1−𝒲(𝒞) (4.5)

The goal of Network Reliability approximations is to estimate the weight of 𝒞

(the reliability) or 𝒞 ′ (the unreliability), which can also be defined by estimating the

weight of the region of 𝒮 that maps to 𝒞 or 𝒞 ′, referred to as 𝒮𝒞 and 𝒮𝒞′ respectively.

The following properties make this a challenging problem:

1. The functions 𝐼 and Ψ are non-invertible so the relationship between 𝒮 and Γ

may only be computed by mapping 𝒮 → 𝒳 → Γ

2. The space of 𝒮 scales with 𝑚 thus may be very large thus it may be infeasible

to map 𝒮 → 𝒳 → Γ for the entire space of 𝒮

3. The number of subspaces 𝒳𝑖 grows with 2𝑚

4. The weight of 𝒞 ′ might be very small, meaning it is challenging to sample 𝑠 that

will map to 𝒞 ′
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Figure 4-1: Probability density function of 𝑓s(s;𝜇,Σ) with red lines depicting 𝜏1 and
𝜏2

Item four corresponds to estimating the unreliability in a reliable network, and

the inverse problem of estimating reliability in an unreliable network is just as hard

for the same reason. The problems of estimating 𝒲(𝒞 ′) as 𝒲(𝒞 ′) → 0 is referred to

as the rare-event unreliability problem and is often a problem of interest.

Say we are given a small network with the signal distribution of s = [𝑠1, 𝑠2] ∼

N(𝜇,Σ) with the following parameters:

𝜇 = [0, 0]ᵀ

Σ =

⎡⎣ 1 0.5

0.5 1

⎤⎦

and the thresholds 𝜏 = [−1,−1]ᵀ.

Figure 4-1 depicts the probability density function in three-dimensions while Fig-

ure 4-2 depicts its contour plot. The corners of Figure 4-2 also label the regions of 𝒮
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Figure 4-2: Contour plot for Figure 4-1

that correspond to each 𝒳𝑖 ∈ 𝒳 based on the function 𝐼.

𝒳1 = [𝑥′1, 𝑥2]

𝒳2 = [𝑥1, 𝑥2]

𝒳3 = [𝑥′1, 𝑥
′
2]

𝒳4 = [𝑥1, 𝑥
′
2]

Now the mapping of 𝒳 to Γ depends on the network topology. There are two possible

configurations given that 𝒮 ∈ R2: G1 where 𝑒1 and 𝑒2 are in series, and G2 where 𝑒1

and 𝑒2 are in parallel both of which are shown in 4-3

If we are concerned with estimating the all-terminal unreliability then Ψ maps

𝒳1 → 𝒞 and {𝒳2, 𝒳3 𝒳4} → 𝒞 ′ for G1, and {𝒳1, 𝒳2 𝒳4} → 𝒞 and 𝒳3 → 𝒞 ′ for G2.

To compute the unreliability for either of these topologies, we would need to compute

the weights of all 𝒳𝑖 mapped to 𝒞 ′ using equation 4.1, and then sum these weights. In

this example, the number of link states is small thus the exact computation of these

weights is feasible. However, due to the number of states increasing exponentially with

the number of links, approximation methods will be more efficient exact computation

in situations outside of trivial examples. The following chapter provides the basic
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Figure 4-3: Possible graphs for the bivariate normal distribution - G1: Series graph;
G2: Parallel graph

theory on estimators needed for understanding the efficiency of the approximation

algorithms.

4.2 Estimation

Suppose 𝜃 is an estimation of some quantity of interest 𝜃. If 𝑍1,..., 𝑍𝐾 are independent

samples of a random variable 𝑍 with expected value 𝐸[𝑍] = 𝜃, then an unbiased

estimator of 𝜃 is:

𝜃 =
1

𝐾

𝐾∑︁
𝑖=1

𝑍𝑖 (4.6)

An efficient estimator 𝜃𝑒𝑓𝑓 is one that estimates 𝜃 in the "best" possible manner, where

"best" depends on an assigned loss function. The Mean-Squared Error 𝐸[(𝜃− 𝜃)2] is

most often used in which case:

𝐸[(𝜃 − 𝜃)2] = 𝑉 𝑎𝑟(𝜃) + (𝐸[𝜃 − 𝜃])2 (4.7)

where on the right hand side, the first term 𝑉 𝑎𝑟(𝜃) is the variance of our estimator and

the second term (𝐸[𝜃− 𝜃])2 refers to the bias of the estimator. Generally to minimize

the MSE we want an unbiased estimator (𝐸[𝜃 − 𝜃])2=0 and seek to minimize the

estimator’s variance. The accuracy of the our estimator can be measured in terms of
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its relative error:

𝑅𝐸(𝜃) =

√︁
𝑉 𝑎𝑟(𝜃)

𝜃
(4.8a)

=

√︀
𝑉 𝑎𝑟(𝑍)

𝜃
√
𝐾

(4.8b)

In the rare-event context, 𝜃 is typically dependent on some parameter 𝛾, such that

𝜃(𝛾) → 0 as 𝛾 → ∞. For analyzing the efficiency of estimators under the rare-

events we care about the following measures (arranged from the strongest to weakest

condition)[17, Chapter 10]:

1. 𝜃 has Asymptotically Vanishing Relative Error if:

lim sup
𝛾→∞

√︀
𝑉 𝑎𝑟(𝑍(𝛾))

𝜃(𝛾)2
= 0 (4.9)

2. 𝜃 has Bounded Relative Error and is Strongly Efficient if:

lim sup
𝛾→∞

√︀
𝑉 𝑎𝑟(𝑍(𝛾))

𝜃(𝛾)2
≤ 𝑄 <∞ (4.10)

3. 𝜃 is Logarithmically Efficient if:

lim sup
𝛾→∞

√︀
𝑉 𝑎𝑟(𝑍(𝛾))

𝜃(𝛾)2−𝜖
= 0 ∀ 𝜖 > 0 (4.11)

or equivalently

lim inf
𝛾→∞

⃒⃒⃒⃒
⃒ ln
√︀
𝑉 𝑎𝑟(𝑍(𝛾))

ln 𝜃(𝛾)2

⃒⃒⃒⃒
⃒ ≥ 1 (4.12)

An estimator with bounded relevant error implies the number of samples needed

to estimate 𝜃 to a given relative accuracy is bounded in 𝛾. For a logarithmically

efficient estimator, the number of trials needed to estimate 𝜃 within a given relative

error grows at a rate of o(log 𝜃(𝛾))[9].
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4.3 Direct Monte Carlo

The following section describes a Direct Monte Carlo method for estimating the un-

reliability of a network under the MVN Model. It can be applied to two-terminal/k-

terminal/all-terminal unreliability and can easily be modified to estimate the reliabil-

ity. The objective of this estimator is to approximate the weight of 𝒞 ′ which is equiv-

alent to the probability the given network has failed. Given graph G = (V,E, s, 𝜏 ),

and structure function Ψ, we do the following:

Algorithm 1: Direct Monte Carlo for Unreliability
input : G = (V,E, s, 𝜏 )

output: 𝑈̂ - Estimate of the unreliability

for 𝑘 ← 1 to 𝐾 do

Sample s(𝑘) = [𝑠
(𝑘)
1 , ..., 𝑠

(𝑘)
𝑚 ]

Evaluate 𝑋(𝑘)
𝑖 = I(𝑠(𝑘)𝑖 ≥ 𝜏𝑖) ∀ 𝑖

Evaluate 𝑍(𝑘) = 1−Ψ(X(𝑘))

𝑈̂ ← 1
𝐾

∑︀𝐾
𝑘=1 𝑍

(𝑘)

Under the MVN Model, to create a link-state sample X(𝑘) we must first sample

s(𝑘) from s ∼ N(𝜇,Σ). This can be done using the combination of the Box-Muller

method for generating univariate standard normal random variables and linear trans-

formations using of the mean vector 𝜇 and Cholesky-decomposition of the covariance

matrix Σ = 𝐿𝐿ᵀ. Once s(𝑘) has been sampled, the equivalent graph state is gener-

ated by assessing I(𝑠(𝑘)𝑖 ≥ 𝜏𝑖) for all 𝑖 ∈ [1,𝑚]. The DMC algorithm for reliability

would be almost identical, except 𝑍(𝑘) = Ψ(X(k)). The structure function Ψ(X(𝐾))

can be evaluated using a depth first search (DFS) which has worst-case runtime of

O(|V|+ |E|). Given the Cholesky-decomposition L is precomputed, the generation

of s(𝑘) is on the order of O(|E|) assuming univariate Gaussian’s can be generated

in constant time. As a result, the runtime of the Direct Monte Carlo algorithm is

dominated by the required number of trials needed to achieve some specified relative

error. Consider our estimator 𝑍 = 𝑍(𝜏) = Ψ(X(s,𝜏)). 𝑍 evaluates to either zero or

one on each trial thus is a Bernoulli random variable with expectation and variance
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given by following:

𝐸[𝑍] = 𝐸[𝑍(𝜏)] = 𝑈𝑛𝑟𝑒𝑙(G(𝜏)) = 𝑈(𝜏) (4.13)

𝑉 𝑎𝑟(𝑍) = 𝑈(𝜏)(1− 𝑈(𝜏)) (4.14)

As 𝜏 →∞, 𝑉 𝑎𝑟(𝑍(𝜏))→ 𝑈(𝜏), thus:

lim inf
𝜏→∞

⃒⃒⃒⃒
⃒ ln
√︀
𝑉 𝑎𝑟(𝑍(𝜏))

ln𝑈(𝜏)2

⃒⃒⃒⃒
⃒ =

ln𝑈(𝜏)

ln𝑈(𝜏)2
= 1/2 < 1 (4.15)

thus the DMC estimor is not logarithmically efficient meaning it will taking a pro-

hibitively large number of trials to estimate the unreliability as 𝑈 →∞. For example,

the relative error the DMC estimator is:

𝑅𝐸(𝑈̂) =

√︁
𝑉 𝑎𝑟(𝑈̂)

𝑈
=

√︂
1− 𝑈
𝐾 × 𝑈

≈
√︂

1

𝐾 × 𝑈
(4.16)

where 𝐾 is the number of trials. Thus to achieve a relative error of 1% when the

unreliability is 10−6 the number of trials needed is approximately:

𝐾 ≈ 1

𝑅𝐸(𝑈̂)2 × 𝑈
= 1010 (4.17)

4.4 Challenges Introduced by Correlation

Estimator performance can be improved by utilizing known information about the

model. This gives us the ability to reduce the variance of our estimator. The variance

reduction techniques most frequently seen in literature for the estimation of Network

Reliability revolve around the ability to perfectly sample either minpaths or mincuts

in G. An algorithm that perfectly samples minpaths will generate a minpath with

probability proportional to its occurrence probability:

P(𝑃𝑖 is generated) =
P(𝑃𝑖)∑︀
𝑗 P(𝑃𝑗)

(4.18)
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Figure 4-4: Parallel Graph

If one can perfectly sample either minpaths or mincuts, the reliability as expressed

in Equations 5.1 or 3.16 may be approximated using the DNF probability FPRAS

developed by Karp, Luby, and Madras [28]. The perfect sampling algorithms consid-

ered were based on two main concepts: iterative graph transformations or random

walks. The follow two sections describe how these operations don’t produce perfectly

sampled minpaths or mincuts under the correlation introduced by the MVN model.

4.4.1 Random Walks

It has been well documented in the network reliability literature that a random walk

on G produces a perfectly sampled spanning tree [48] [12]. A random walk is per-

formed on G by starting at some initial vertex 𝑣0, and transitioning to a neighboring

vertex with probability proportional to the probability (or weight) of their connecting

edge. Recording the edge traversed for the first time when each vertex is encountered

produces a spanning tree. A more effective approach is to used a loop-erased random

walk where cycles are erased from the random walk if the walk revisits a node. These

are sequential algorithms, thus their transition probabilities can be described as using

the conditional probabilities of prior events. The total probability of the sequential

events is the product of their conditional probabilities. When these sampled events

are independent of one another, the product of the conditional events simplifies to

the product of the marginal probabilities of each event. In the case of random walks

on G this is needed to produce a spanning tree with the correct perfect sampling

probability. This is best exemplified via an example:
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Say we want to sample a rooted spanning tree with root node 𝑣1 in graph de-

picted in Figure 4-4. For the spanning tree 𝑃1 = [𝑒1, 𝑒3] to be perfectly sampled, the

algorithm would have to produce 𝑃1 with probability:

P(𝑥1 ∩ 𝑥3)
P(𝑥1 ∩ 𝑥3) + P(𝑥1 ∩ 𝑥4) + P(𝑥2 ∩ 𝑥3) + P(𝑥2 ∩ 𝑥4)

(4.19)

to satisfy Equation 4.18.

Starting at 𝑣1, and letting P(S𝑗[𝑒𝑖]) denote the probability 𝑒𝑖 is traversed in step

𝑗, the transition probabilities for the first iteration of the random walk would be:

P(S1[𝑒𝑖]) =

⎧⎪⎨⎪⎩
P(𝑥1)

P(𝑥1)+P(𝑥2)
if 𝑖 = 1

P(𝑥2)
P(𝑥1)+P(𝑥2)

if 𝑖 = 2

(4.20)

For the next step, one must consider the conditional probabilities given the prior

traversals. The following transitional probabilities for step 2 would be applied if 𝑒1

was traversed in step 1 of the random walk:

P(S2[𝑒𝑖]) =

⎧⎪⎨⎪⎩
P(𝑥3|𝑥1)

P(𝑥3|𝑥1)+P(𝑥4|𝑥1)
if 𝑖 = 3

P(𝑥4|𝑥1)
P(𝑥3|𝑥1)+P(𝑥4|𝑥1)

if 𝑖 = 4

(4.21)

Thus the probability of the random walk outputting the spanning tree given by 𝑃1 =

[𝑒1, 𝑒3] is:

P(𝑃1 is generated) =
P(𝑥1)

P(𝑥1) + P(𝑥2)
× P(𝑥3|𝑥1)

P(𝑥3|𝑥1) + P(𝑥4|𝑥1)
(4.22)

When link failures are independent, this simplifies to:

P(𝑃1 is generated) =
P(𝑥1)

P(𝑥1) + P(𝑥2)
× P(𝑥3

P(𝑥3) + P(𝑥4)
(4.23)

=
P(𝑥1)P(𝑥3)

P(𝑥1)P(𝑥3) + P(𝑥1)P(𝑥4) + P(𝑥2)P(𝑥3) + P(𝑥2)P(𝑥4)
(4.24)

Which is equivalent to Equation 4.19 under the independent link assumption. The
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denominator in the above expression is the sum of the probabilities of all spanning

trees with root node 𝑣1, thus Equation 4.18 is satisfied and the random walk perfectly

sampled 𝑃1. However, if correlation cannot be disregarded Equation 4.22 simplifies

to:

P(𝑃1 is generated) =

=
P(𝑥1)P(𝑥3|𝑥1)

P(𝑥1)P(𝑥3|𝑥1) + P(𝑥2)P(𝑥3|𝑥1) + P(𝑥1)P(𝑥4|𝑥1) + P(𝑥2)P(𝑥4|𝑥1)

=
P(𝑥1 ∩ 𝑥3)

P(𝑥1 ∩ 𝑥3)) + P(𝑥2)P(𝑥3|𝑥1) + P(𝑥1 ∩ 𝑥4) + P(𝑥2)P(𝑥4|𝑥1)

which is not equivalent to Equation 4.19. This demonstrates how random walks fail

to perfectly sample spanning trees when links are correlated.

4.4.2 Graph Transformations

In the Bernoulli model one can usually divide a graph G = (V,E) into multiple

subgraphs G(1) = (V(1),E(1)), . . . ,G(𝑘) = (V(𝑘),E(𝑘)) where V(𝑖) shares a single node

with V(𝑖+1) for all 𝑖 = 1, ..., 𝑘− 1. In this scenario, these subgraphs are in series with

one another. Since link failures are independent, the overall reliability is the same as

the product of the subgraph reliabilities:

𝑅𝑒𝑙(G) =
𝑘∏︁

𝑖=1

𝑅𝑒𝑙(G(𝑖)) (4.25)

Another outcome of this ability to subdivide the graph is that one can transform

a set of n parallel links into an equivalent single link and vice-versa without effecting

the reliability of the overall graph.

59



Figure 4-5: Series to Parallel Conversion

Where one can solve for the reliability of the subgraph defined as the two-terminal

reliability from 𝑣𝑖 to 𝑣𝑗 as:

𝑝𝑝 = 1− (1− 𝑝𝑠)1/𝑁 (Series to Parallel) (4.26)

𝑝𝑠 = 1− (1− 𝑝𝑝)𝑁 (Parallel to Series) (4.27)

These transformations are an effective method for reducing the size of G for easier

computation, and in some simple graphs may be used to solved for the overall graph

reliability. This divisibility of graphs under the Bernoulli model is also used Recursive

Contraction Algorithm which is a method of sampling mincuts in the Bernoulli model

[27]. In this algorithm, every link 𝑒𝑖 with failure probability 𝑞𝑖 is replaced with a

“bundle” of 𝑘𝑒 parallel links with the same endpoint as 𝑒𝑖 but with failure probability

1− 𝜃 where 𝑘𝑖 = ⌈− ln(𝑞𝑖)
𝜃
⌉ , such that the failure probability of the equivalent bundle

is now (1− 𝜃)𝑘𝑖 . As 𝜃 → 0, the failure probability converges to 𝑞𝑖. In general, graph

transformations that preserve the reliability of the graph are called reductions [14].
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The Factoring Method is an example of reductions that can be applied in both the

Bernoulli and MVN Models. However, the other reductions listed in this section are

not possible under the MVN Model as they would require adding or deleting random

variables from our multivariate distribution s which would result in changes to the

reliability of the original graph.

4.5 General Splitting Method

The following method first introduced by [11] allows for the estimation of unreliability

in reliability graphs with correlated failures and does not require enumerating mincuts

or minpaths. This approach uses a dynamic representation of the Network Reliability

that is given below:

Assume link 𝑒𝑖 is operational for 𝑠𝑖 units of time before failing, where 𝑠𝑖 is random.

We can specify some deterministic time 𝜏 and the variable 𝑋𝑖(𝜏) = I(𝑠𝑖 ≥ 𝜏) signifies

if the link 𝑒𝑖 is still operational at time 𝜏 . G(X(𝜏)) where X(𝜏) = [𝑋1(𝜏), ..., 𝑋𝑚(𝜏)] is

the subgraph of G that only contains the edges that for which𝑋𝑖(𝜏) = 1 meaning they

are still operational at time 𝜏 . The network is operational at 𝜏 if the graph remains

connected after 𝜏 time units i.e. Ψ(X(𝜏)) = 1. Unreliability of the network can then

be expressed as the probability the network is disconnected at time 𝜏 . Even though

this model is based around a dynamic process of time-dependent network failures, if

we let the failure times follow a multivariate normal distribution s = [𝑠1, ..., 𝑠𝑚] ∼

N(𝜇,Σ) the formulation is mathematically identical ours in the MVN model.

For the following explanation of the Generalized Splitting method we will use the

time-based description of the model as the methods are more intuitive when explained

in terms of time instead of signal strengths. Given a realization of the random vector

s, the score of s, 𝑊 (s), is the last time the network is operational:

𝑊 (s) = sup{𝛾 : Ψ(X(𝛾)) = 1)} (4.28)

This score is independent of originally specified threshold 𝜏 , however if 𝑊 (s) > 𝜏
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then we know Ψ(X(𝜏)) = 1. To evaluate 𝑊 (s) we use the following algorithm:

Algorithm 2: Score Function
input : Sampled signal vector s = [𝑠1, ..., 𝑠𝑚]
output: Score 𝑊 (s)

Apply permutation 𝜋 to s such that 𝑠𝜋1 < 𝑠𝜋2 < ... < 𝑠𝜋𝑚

for 𝑏← 1 to 𝑚 do
X𝑏 ← X(s𝜋b

)
if Ψ(X𝑏) = 1 then

break
return 𝑊 (s)← 𝑠𝜋𝑏−1

Based on this score function, the unreliability of a network can equivalently be

expressed as:

𝑅𝑒𝑙(G) = P(𝑊 (s) < 𝜏) (4.29)

A Direct Monte Carlo approach can be implemented using this score function in place

of using the structure function on sampled states, however the relative error remains

the same as in Equation 4.16. This means when a network failure is a rare-event,

it suffers from the same limitations as the DMC implementation in Section 4.2, and

is also more costly per trial. Returning to the abstract formulation of the Network

Reliability problem, the region 𝒮𝒞′ is equivalent to the region of 𝒮 where 𝑊 (𝑠) < 𝜏

denoted as 𝒮𝜏 . If we defined a set of intermediate thresholds 𝜏0 < 𝜏1 < ..., 𝜏𝑇 = 𝜏 ,

then we can further decompose the subspace 𝒮 into nested subspaces 𝒮𝜏0 , 𝒮𝜏1 , ..., 𝒮𝜏 .
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Figure 4-6: Nested subspaces for parallel graph with small 𝜏

The subspace 𝒮𝜏𝑖 will contain all subspaces 𝒮𝜏𝑗 where 𝑗 > 𝑖, thus these are not

disjoint subspaces. Now we can represent the probability that a sample s lies in 𝒮𝜏
as

P(s ∈ 𝒮𝜏𝑇 ) = P(s ∈ 𝒮𝜏0)P(s ∈ 𝒮𝜏1 |s ∈ 𝒮𝜏0) · · ·P(s ∈ 𝒮𝜏𝑇 |s ∈ 𝒮𝜏𝑇−1
) (4.30)

Simulation-based methods need to generate sufficiently many samples of the rare-

event in order to provide an accurate approximation. However if we can decompose

the state space into nested subsets, then we can represent the rare event as the

intersection of a nested sequence of events. For for example, if we are given a set

of intermediate thresholds 𝜏0 > 𝜏1 > ..., > 𝜏𝑇 = 𝜏 and we generate sample s we

know that if 𝑊 (s) > 𝜏𝑖, then 𝑊 (s) > 𝜏𝑗 for all 𝑗 > 𝑖. This nested structure of the

state space allows us to represent the probability of generating a sample such that
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𝑊 (s) > 𝜏 as:

P(𝑊 (s) > 𝜏) = P(𝑊 (s) > 𝜏0)P(𝑊 (s) > 𝜏1|𝑊 (s) > 𝜏0)...

...P(𝑊 (s) > 𝜏𝑇 |𝑊 (s) > 𝜏𝑇−1)
(4.31)

These conditional probabilities are much larger than the probability we actually

seek, thus are easier to generate samples from. Markov Chain Monte Carlo (MCMC)

is a method of approximately sampling from an arbitrary distributed. The main idea

is to generate a Markov Chain whose limiting distribution is equal to the desired

distribution [17, Chapter 6]. The General Splitting algorithm uses MCMC to sample

from the conditional probability distributions given above. The main idea of the

GS approach is to define a Markov chain on the state space 𝒮 that evolves under a

conditional distribution that pushes the chain from the region 𝒮𝑡 to 𝒮𝑡+1. We begin

with a partition of levels ∞ = 𝜏0 > 𝜏1 > ..., > 𝜏𝑇 = 𝜏 and a pre-selected splitting

factor 𝐹 ≥ 2. The levels are chosen such that:

𝜚𝑡 = P(𝑊 (s) > 𝜏𝑡|𝑊 (s) > 𝜏𝑡−1) ≈ 1/𝐹 (4.32)

for all t=1,...,T-1 and are estimated through an independent pilot algorithm. For

each level we construct a Markov Chain S𝑡,𝑗 having stationary density equal to the

density of S conditional on 𝑊 (S) > 𝜏𝑡:

𝑓𝑡(s) = 𝑓s(s)
I(𝑊 (s > 𝜏𝑡))

P(𝑊 (s > 𝜏𝑡)
(4.33)

where 𝑓s(s) is our unconditional distribution (𝑓s(s) ∼ N(𝜇,Σ)). For the MVN Model

𝑓𝑡(s) with corresponds to a truncated normal distribution where the region of trun-

cation restricts the density to be non-zero only where 𝑊 (s > 𝜏𝑡). The transitional

kernel density 𝜅𝑡(S𝑡,𝑗+1|S𝑡,𝑗) controls the evolution of the chain and is constructed

via a hit-and-run sampler which is described below. At the t-th stage, if the current

state of the Markov Chain is generated from the density 𝑓𝑡 and evolves according to

𝜅𝑡(S𝑡,𝑗+1|S𝑡,𝑗) then each subsequent state also has density 𝑓𝑡. This means the Markov
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chain will never go below the level 𝜏𝑡 that has already been reached. Each chain is

halted if the number of transitions exceeds the splitting factor 𝐹 without reaching the

region defined by the next threshold 𝒮𝜏𝑡+1 . The following algorithm is for generating

a single starting chain and provides an unbiased estimate of the unreliability.

Algorithm 3: GS Algorithm for Network Unreliability
input : Splitting Factor 𝐹 , number of levels 𝑇 , and thresholds 𝜏1, , , , 𝜏𝑇

output: Unbiased estimate of the unreliability 𝑍(𝑘)

Sample s from unconditional density 𝑓s(s)

if 𝑊 (s) < 𝜏1 then

𝑌1 ← s

else

return 𝑍(𝑘) ← 0

for 𝑡← 2 to 𝑇 do

𝑌𝑡 ← 0

for all 𝐵1 ∈ 𝑌𝑡−1 do

for 𝑖 = 1 to 𝐹 do

Sample 𝐵𝑖 from 𝜅𝑡−1(B𝑖+1|B𝑖)

if 𝑊 (𝐵𝑖) < 𝜏𝑡 then

add 𝐵𝑖 to 𝑌𝑡

return 𝑍(𝑘) ← |𝑌𝜏 |/𝐹 𝑇−1

This algorithm would be run for 𝐾 trials to obtain 𝑍(1), · · · , 𝑍(𝐾). One can then

estimate the unreliability using Equation 4.6. The variance of our estimator 𝜎2
𝑍 can

be estimated via the empirical variance:

𝜎̂2 =
1

𝐾 − 1

𝐾∑︁
𝑘=1

(𝑍(𝑘) − 𝑈̂𝑘)2 (4.34)

where 𝑈̂𝑘 is the estimate of the unreliability after the 𝑘th trial.
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4.5.1 Hit-and-Run Sampler

The hit-and-run sampler is an MCMC method of generating random variables from

a target distribution:

𝑓x(x) =
𝑝x(x)
𝒵

(4.35)

Under the MVN Model, the density 𝜅𝑡−1(B𝑖+1|B𝑖) corresponds with sampling from

a truncated normal distribution. The following hit-and-run sampler can be used to

generate the next states.

Algorithm 4: Truncated MVN Hit-and-Run Sampler
input : A sample si−1 such that 𝑊 (si−1) > 𝜏𝑡, positive integer b, 𝜇, Σ

output: si+1 drawn from 𝜅𝑡(s𝑖+1|s𝑖)

s← si

for 𝑖 = 1 to 𝑏 do
Sample 𝛿 from N(0, I)

d←
(︁

𝛿1
||𝛿|| , ..., (

𝛿𝑚
||𝛿||

)︁
Sample 𝜆 from

Λ ∼ 𝑁

(︂
−(s− 𝜇)ᵀΣ−1d

dᵀΣ−1d
,

1

dᵀΣ−1d

)︂
if 𝑊 (s + 𝜆d) < 𝜏𝑡 then

s← s + 𝜆d

else
s← s

s𝑖+1 ← s

4.5.2 Pilot Algorithm

To determine the appropriate thresholds 𝜏1, ..., 𝜏𝑇 such that Equation 4.32 is satisfied

the following Adaptive Multilevel (ADAM) splitting algorithm is used.
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Algorithm 5: ADAM Algorithm
input : Splitting factor 𝐹 , sample size 𝑁0 (a large integer multiple of 𝐹 ),

and final threshold 𝜏

output: Number of levels 𝑇 , thresholds 𝜏1, ..., 𝜏𝑇 ,conditional probability

estimates 𝜚1, ..., 𝜚𝑇

𝑞 ← 𝑁0/𝐹

Generate 𝑁0 samples s1, ..., sN from unconditional density

Sort the samples in increasing order of 𝑊 (s), say s(1), ..., s(N)

𝜏1 ← [𝑊 (s𝑞) +𝑊 (s𝑞+1)]/𝐹

𝑡← 1

while 𝜏𝑡 > 𝜏 do
𝑡← 𝑡+ 1

Y𝑡−1 ← {s(𝑞), ..., s(𝑁)}

Y𝑡 ← ∅

for all s0 ∈ Y𝑡−1 do

for 𝑗 = 1 to 𝐹 do
Sample s𝑗 from the density 𝜅𝑡−1(·|s𝑗−1) and add it to Y𝑡

Sort the elements of Y𝑡 be increasing order of 𝑊 (s), say s(1), ..., s(N)

𝜏𝑡 ← max ([𝑊 (s𝑞) +𝑊 (s𝑞+1)]/𝐹, 𝜏)

if 𝜏𝑡 > 𝜏 then
𝜚𝑡 = 1/F

else
Let 𝑌𝜏 = [s(1), ..., s(𝑁𝑡)] be the largest subset of elements in Y𝑡 such

that 𝑊 (s) ≥ 𝜏

𝜚𝑇 = 𝑁𝑇/𝑁0

𝑇 ← 𝑡

This algorithm is very similar to the main GS algorithm, except it determines

where the thresholds are based on the splitting factors. We start by generating

𝑁𝑜 samples from the unconditional distribution, and determine a threshold 𝜏1 such

that 𝑞 of them have 𝑊 (s) < 𝜏1. Then in subsequent runs we generate 𝑁𝑜 samples

from conditional distribution given by Equation 4.33, and once again determine a

threshold 𝜏𝑡 such that 𝑞 of the sample have 𝑊 (s) < 𝜏𝑡. This process halts when the

67



threshold determined exceeds our intended final threshold 𝜏 . In addition to producing

the thresholds that will be used in Algorithm 2, 𝜏1, ..., 𝜏𝑇 , the pilot algorithm also

produces estimates of conditional probabilities 𝜚1, ..., 𝜚𝑇 . These can be used to form

an initial estimate of the unreliability:

𝑈̂𝑝𝑖𝑙𝑜𝑡 =
𝑇∏︁
𝑡=1

𝜚𝑡 (4.36)

Unlike Algorithm 2, each stage performs a fixed number of simulations and the

thresholds are determined online using random populations {Y𝑡}. As a result, 𝑈̂𝑝𝑖𝑙𝑜𝑡

is not an unbiased estimate of the unreliability[11].

4.6 Simulation

The following section gives results from implementations of the approximation algo-

rithms described in Sections 4.3 and 4.5. First, we describe a method of generating

MVN parameters based on the spatial relationships of edges in a graph. This MVN

parameter generation method is an abstraction of the distant dependent means and

control point dependent correlation coefficients expected in an HF Network.

4.6.1 MVN Parameter Generation

The MVN Model requires an of a graph G = (V,E) as well as a specification of the

signal distribution s ∼ N(𝜇,Σ) and thresholds 𝜏 . To simulate network reliability with

parameters that would model spatial relationships of an HF Network the following

geometric model was used: Let G = (V,E) be given on a two-dimensional plane,

with node coordinates given by the tuple vector L = [(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)] for nodes

V = [𝑉1, ..., 𝑉𝑁 ]. Three user-defined inputs are also needed:

1. Transmit Power vector T = [𝑇1, ..., 𝑇𝑛]

2. Variance vector 𝜎 = [𝜎1, ..., 𝜎𝑚]

3. Threshold vector 𝜏 = [𝜏1, ..., 𝜏𝑚]
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where 𝑛 and 𝑚 are the number of nodes and edges in G respectively. In order to use

an undirected graphical model, we will assume that all input parameters are the same

for each node and link, thus the common transmit power, variance, and thresholds

will be refered to as 𝑇 , 𝜎, and 𝜏 respectively

To define the means signal strength for each link and correlations between the

signal strengths of links, we require the link lengths:

𝑙(𝑒𝑖) =
√︀

(𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2 (4.37)

for 𝑒𝑖 ∈ (𝑣𝑎, 𝑣𝑏), as well as the distance between link midpoints:

𝑀(𝑒𝑖, 𝑒𝑗) =

√︃(︂
(𝑥𝑎 + 𝑥𝑏)− (𝑥𝑐 + 𝑥𝑑)

2

)︂2

+

(︂
(𝑦𝑎 + 𝑦𝑏)− (𝑦𝑐 + 𝑦𝑑)

2

)︂2

(4.38)

for 𝑒𝑗 ∈ (𝑉𝑐, 𝑉𝑑). The mean signal strength over link 𝑒𝑖 is:

𝜇𝑖 = 𝑇 − 𝑙(𝑒𝑖) (4.39)

meaning the path-loss is modeled as linear which is unrealistic for an HF Network

(or any other wireless network), but once again this geometric model captures overall

spatial trends seen in an HF network and is not intended to model the physical

propagation environment. The correlation between links 𝑒𝑖 and 𝑒𝑗 is given by the

squared-exponential kernel:

𝐶𝑜𝑟𝑟(𝑠𝑖, 𝑠𝑗) = 𝜌𝑖,𝑗 = 𝑒𝑥𝑝

(︂
−
𝑀2

𝑖,𝑗

2𝑙2

)︂
(4.40)

where 𝑙 is the characteristic length which is user defined and allows one to modify the

magnitude of the relationship between spacial separation and correlation. Kernels,

also called covariance functions, define nearness or similarity (usually in space or time)

between inputs 𝑥𝑖 and 𝑥𝑗. For a function 𝑘(𝑥𝑖, 𝑥𝑗) to be a valid covariance function,
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it must be positive semi-definite meaning:

∫︁
𝑘(𝑥𝑖, 𝑥𝑗)𝑓(𝑥𝑖)𝑓(𝑥𝑗)𝑑𝜇(𝑥𝑖)𝑑𝜇(𝑥𝑗) ≥ 0 (4.41)

for all 𝑓 ∈ 𝐿2(𝒳 , 𝜔) where 𝜔 denotes a measure. For more information on kernels,

readings are directed to [43].

Figure 4-7: Correlation as a function of midpoint separation 𝑀(𝑒𝑖, 𝑒𝑗) under the

squared exponential kernel with characteristic length 𝑙 = 1
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Figure 4-8: Bridge Graph on 2-dimensional plane

As an example, the bridge graph given in 4-8 the following input parameters were

used:

which resulted in the mean vector 𝜇 = [3, 3, 2.56, 3, 3]ᵀ and the covariance matrix

given in Table 4.1
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Table 4.1: Σ = Cov(𝑠𝑖, 𝑠𝑗) for Bridge Graph example

4.6.2 Algorithm Results

The following section reports numerical experiments for the DMC and GS methods.

Each algorithm was tested on both the bridge graph shown in 4-8 and the larger graph

shown in 4-10. The MVN parameters were generated using the methods described in

4.6.1. For all experiments the following parameters were held constant: 𝜎 = 1, 𝑙 = 1,

and 𝜏 = 0. As a result of 𝜎 and 𝑙 being constant, the covariance matrix Σ was also

constant between all experiments on the same graph. To demonstrate the relationship

between the unreliability and the run-time/accuracy of these approximation methods,

the unreliability was reduced by increasing the transmit power of each node, thus

increasing all 𝜇𝑖, for each subsequent experiment. The variance of the estimator, 𝜎2
𝑍 ,

was estimated between each iteration of the algorithms using Equation 4.34 which

was then used to estimate the relative error:

𝑅𝐸(𝑈̂) =
𝜎̂𝑍

𝑈̂𝑘

√
𝑘

(4.42)

where 𝑈̂𝑘 was the estimate of the unreliability after trial 𝑘. Both the DMC and GS

algorithm would output their estimate 𝑈̂𝑘 when 𝑅𝐸(𝑈̂) fell below some small 𝜖. For

DMC algorithm, the number of trials had a limit of 5 × 107 put into place for the

rare failure event experiments. The pilot algorithm of the GS method used an initial

sample size of 3000 for all trials. An explanation off all metrics in the results tables

can be found in Table 4.2.
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Table 4.2: Description of all metrics for the results

For the first three experiments, 𝑇 was chosen such that the DMC algorithm would

converge in under 5× 107 trials. These results are given in Table 4.3.

Experiments 1,2, and 3 correspond to the scenarios of high, moderate, and low

unreliability respectively. The unreliability for each trial 𝑈 was computed by enumer-

ating each state in G, computing its probability, and then summing the probabilities

of each state. For all experiments both the DMC algorithm and GS algorithm were

able to achieve a relative error of 0.0300 prior to halting and produced estimates with

a relative error <6%. The difference in runtimes is most significant in the high and

moderate reliability scenarios, where the ratio of the DMC Runtime to GS Runtime

is 0.0177 and 0.032 respectively. The initial estimates output by the GS Pilot algo-
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Table 4.3: Results of Experiments 1, 2 and 3 for Bridge Graph

rithm were accurate in these cases and for all three experiments actually provided

better estimates than the DMC algorithm and sometimes even the main GS Algo-

rithm. However, the Pilot Algorithm uses a fixed number of trials thus its accuracy

is not guaranteed. One thing to note is the difference in the increase of the number

of trials between subsequent experiments. The number of trials for the GS algorithm

increases by less than 50% between each consecutive experiment, while the number

of trials increases exponentially for the DMC algorithm. The time per trial is fixed

for DMC algorithm thus we also see an exponential increase in overall runtime. The

DMC algorithm however proved to be much more effective in for these unreliabilities

as was expected.

For Experiment #4, the unreliability was reduced to 4.20×10−6 making the faiure

of G a rare-event.
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Table 4.4: Experiment #4 results for Bridge Graph

For the rare failure event scenario examined under Experiment #4, the DMC

algorithm was halted after running for over 3000 seconds after reaching its limit of

5× 107 trials. The GS Algorithm did achieve convergence of its relative error to 0.03

and was able to provide an estimate with low approximation error in less than 1000

seconds. The relative errors of the DMC method and GS method are compared in

Figure 4-9. Only first 1.38 × 107 trials are plotted for the DMC method to equate

the runtimes between the two plots. It can be seen that the relative error decreases

far more rapidly before leveling off at around 0.1 and then gradually decreases to its

stopping point of 0.03. Meanwhile the relative error of the DMC method takes longer

to approach a leveling point, and the leveling point is about 0.2 thus the gradual

approach of 0.03 takes significantly longer.

75



Figure 4-9: Relative error for the DMC Method (Top) and the GS Method (Bottom)

for Experiment #4

For Experiment #5 the graph shown in 4-10 was used and the results are shown

below in Table 4.5. Comparing the results of Experiment #1 to #5 we see see that

the number of trials does not effect the number of trials needed for convergence either

the DNC nor GS methods. The difference in the runtime of the GS method between

Experiments #1 and #5 can be explained by the longer average computation time

of 𝑊 (s) via Algorithm 2 for the larger graph. The computing of 𝑈 via full state

enumeration took 489 seconds for Experiment #5 while the same computation only

took 0.98 seconds for Experiment #1. This is because the Bridge graph only had

25 = 32 states while the graph in 4-10 had 214 = 16384 states. This demonstrates

how unreliability computation becomes unfeasible quickly for larger graphs.

These results demonstrate how the DMC method is an efficient and accurate

method for computing the unreliability. Even for an unreliability on the order of

10−4 the DMC method outperformed the GS algorithm. Only when the unreliability

becomes extremely low does the GS method become more effective.

These results also illustrate how both methods are invariant to the size of G thus
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Table 4.5: Experiment #5 results

are not restricted to small graphs like full state enumeration.

To use these algorithms in practical setting an initial run of the DMC method

could be performed with a more modest limit on the maximum number of trials; for

example ∼ 107. If the the relative error of the DMC method does not converge within

this limit, then it is known that we are dealing with a rare-failure event unreliability,

and the GS method should be used instead.
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Figure 4-10: Fourteen link graph used for Experiment #5
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Chapter 5

Most Reliable Path Problem

In this chapter we consider the problem of finding the most reliable path between two

nodes. Section 5.1 will provide an overview of this problem and the difference between

solving this problem under the Bernoulli and MVN Models. Section 5.2 provides a

method to solve the most reliable path problem under the MVN Model while Section

5.3 provides upper and lower bounds on the reliability of the most reliable path.

5.1 Shortest Path Problem Formulation

Given G = (V,E), and the set of all paths 𝒫𝑠,𝑡 from nodes 𝑣𝑠 to 𝑣𝑡, the most reliable

path 𝑃 *
𝑠,𝑡 ∈ 𝒫𝑠,𝑡 has the maximum joint reliability or equivalently the minimum joint

failure probability of all ST-paths:

𝑃 *
𝑠𝑡 = 𝑎𝑟𝑔 max

𝑃∈𝒫𝑠𝑡

P

(︃⋂︁
𝑒𝑖∈𝑃

𝑥𝑖

)︃
= 𝑎𝑟𝑔 min

𝑃∈𝒫𝑠𝑡

P

(︃⋃︁
𝑒𝑖∈𝑃

𝑥′𝑖

)︃
(5.1)

First we consider the case where link reliabilities are independent as in the Bernoulli

model. We can rewrite equation 5.1 under the independence assumption as the prod-

uct of marginal reliabilities:

𝑃 *
𝑠𝑡 = arg max

𝑃∈𝒫𝑠𝑡

P

(︃⋂︁
𝑒𝑖∈𝑃

𝑥𝑖

)︃
= arg max

𝑃∈𝒫𝑠𝑡

∏︁
𝑒𝑖∈𝑃

𝑝𝑖 (5.2)
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Using the fact that the both the maximum and logarithm functions are non-decreasing,

we can equivalently express the objective function as:

𝑃 *
𝑠𝑡 = arg max

𝑃∈𝒫𝑠𝑡

∏︁
𝑒𝑖∈𝑃

𝑝𝑖

= arg max
𝑃∈𝒫𝑠𝑡

log(
∏︁
𝑒𝑖∈𝑃

𝑝𝑖)

= arg max
𝑃∈𝒫𝑠𝑡

∑︁
𝑒𝑖∈𝑃

log(𝑝𝑖)

= arg min
𝑃∈𝒫𝑠𝑡

−
∑︁
𝑒𝑖∈𝑃

log(𝑝𝑖) (5.3)

This formulation is equivalent to the single pair shortest path problem with edge

lengths given by 𝑑(𝑒𝑖) = − log 𝑝𝑖 [7].

5.1.1 Shortest Path Problem

Shortest path problems are applicable to many applications outside of communication

networks such as transportation networks, optimal control, and as sub-problems to

other complex graph theoretic problems [7]. Consider a graph G = (V,E) in which

each edge 𝑒𝑖 is assigned a distance 𝑑𝑖. Given any path 𝑃 = [𝑒𝑙, 𝑒𝑚, ..., 𝑒𝑧], the length of

the path is 𝑑𝑙+𝑑𝑚+· · ·+𝑑𝑧. There are multiple variants of the shortest path problem,

but the most well known is the problem of finding the shortest path from every node

to some terminal node designated as 𝑣1. The shortest path problem exhibits the

property of optimal substructure: if the shortest path from 𝑣𝑖 to 𝑣𝑘 goes through

an intermediate node 𝑣𝑗, then the portion of the path from 𝑣𝑖 to 𝑣𝑗 is the shortest

path between 𝑣𝑖 to 𝑣𝑗 and the portion of the path from 𝑣𝑗 to 𝑣𝑘 is the shortest path

between 𝑣𝑗 and 𝑣𝑘 [8]. This optimal substructure lends itself to greedy algorithms,

dynamic programming, or linear programming formulations of the problem. For more

information on these approaches to solving the shortest-path problem, readers are

directed to [15, Chapter 24].
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Figure 5-1: Example for non-optimal substructure

5.1.2 Lack of Optimal Substructure

When link failures are independent, the optimal substructure property of the most

reliable path problem is maintained. Under correlated link failures, the most reliable

path problems loses optimal substructure and this can be illustrated via the following

example:

Consider the graph shown in Figure 5-1. Optimal substructure would imply if

P(𝑥1∩𝑥3) ≥ P(𝑥2∩𝑥3), then P(𝑥1) ≥ P(𝑥2). If all links were independent P(𝑥1∩𝑥3) =

P(𝑥1)P(𝑥3) and P(𝑥2 ∩ 𝑥3) = P(𝑥2)P(𝑥3), thus it would require P(𝑥1) ≥ P(𝑥2) and

the problem would have optimal substructure as the most reliable path from 𝑣1 to

𝑣3 would be [𝑒1, 𝑒3] which contains the most reliable path from 𝑣1 to 𝑣2, 𝑒1. To

demonstrate how this could change under correlation let 1 > P(𝑥2) > P(𝑥1) > P(𝑥3).

Let links 𝑒1 and 𝑒3 be fully correlated: P(𝑥1∩𝑥3) = 𝑚𝑖𝑛(P(𝑥1),P(𝑥3)) = P(𝑥3), while

links 𝑒2 and 𝑒3 are independent: P(𝑥2 ∩ 𝑥3) = P(𝑥2)P(𝑥3). Then the most reliable

path from 𝑣1 to 𝑣2 is [𝑒2], while the most reliable path from 𝑣1 to 𝑣3 is [𝑒1, 𝑒3] which

doesn’t contain the most reliable path from 𝑣1 to 𝑣2.

5.2 Graph Transformation Technique

The following technique transforms the graph with correlated link failures into a form

that has optimal substructure for the most reliable path problem. The approach uses

a modified depth first traversal to enumerate all paths from 𝑣𝑠 to 𝑣𝑡.
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Algorithm 6: Path Enumeration Algorithm
Path_DFS(𝐺, 𝑣𝑖, 𝑣𝑡,𝒫𝑠,𝑡, stack)

if 𝑣𝑖 = 𝑣𝑡 then
add stack to 𝒫𝑠,𝑡

return
foreach 𝑣𝑗 in neighbors(𝑣𝑗) do

if 𝑣𝑗 not in stack then
push 𝑣𝑗 to stack

Path_DFS(𝐺, 𝑣𝑗, 𝑣𝑡,𝒫𝑠,𝑡, stack)

pop 𝑣𝑗 from stack
return 𝒫𝑠,𝑡

A traditional DFS algorithm would exclude the line "pop 𝑣𝑗 from the stack", but

this allows the algorithm to backtrack and revisit previously visited nodes for the Path

Enumeration Algorithm. The output of the algorithm 𝒫𝑠,𝑡 would be a set of all paths

from 𝑣𝑠 to 𝑣𝑡 in terms of the nodes in order of their traversal. Using 𝒫𝑠,𝑡, we create

an equivalent path graph by connecting 𝑣𝑠 and 𝑣𝑡 by parallel branches composed of

the paths in 𝒫𝑠,𝑡. The distribution associated with each edge within the same branch

will be conditioned on all preceding edges in the branch being operational. This idea

is illustrated in Figure 5-2.

Figure 5-2: Original graph (left) and corresponding path graph (right)
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As seen from above, each branch between 𝑣𝑠 and 𝑣𝑡 is a path in the original graph.

All neighbors of 𝑣𝑠 will be connected by an edge whose distribution is unchanged

from the original graph. The distribution of subsequent edges along a branch are

conditional on preceding edges being operational. Letting the branches in the path

graph be labeled as 𝐵1, ..., 𝐵4 from the top branch to the bottom, the MVN model

distribution of 𝑒4|1 along the𝐵1 would be the joint distribution of 𝑠1 and 𝑠4 conditioned

on {𝑠1 > 𝜏1}:

𝑓4|1(s) =
𝑓1,4(s)I(𝑠1 > 𝜏1)

P(𝑠1 > 𝜏1)
(5.4)

where 𝑓1,4(s) is the joint distribution of 𝑠1 and 𝑠4. The equivalent probability 𝑒4|1

being operational would be P(𝑠4 > 𝜏4|𝑠1 > 𝜏1) which can be found via the integration

of 𝑓4|1(s):

P(𝑥4|𝑥1) =

∫︁ ∞

𝜏4

∫︁ ∞

𝜏1

𝑓4|1(s)𝑑𝑠1𝑑𝑠4 (5.5)

The resulting probability of each path may be evaluated by taking the product of all

conditional probabilities along each branch. For example, for 𝐵1:

P(𝐵1) = P(𝑠1 > 𝜏1)P(𝑠4 > 𝜏4|𝑠1 > 𝜏1) (5.6)

However, this method would be computationally expensive. To improve upon this

exhaustive enumeration of all probabilities, a greedy algorithm may now be used to

traverse the path graph from 𝑣𝑠 to 𝑣𝑡. Prior to the start of this algorithm a stack 𝐿𝑖 is

initialized for each branch 𝐵𝑖 of the path graph and the starting node 𝑣𝑠 is added to

each stack. Associated with each 𝐿𝑖 is a cost 𝑐𝑖 which is equivalent to the probability

of the edge being on that connects the head of 𝐿𝑖 to the next possible edge in 𝐵𝑖. For

example, at the start of the algorithm:

𝐿1 = [𝑣𝑠]→ 𝑐1 = P(𝑥1)

𝐿2 = [𝑣𝑠]→ 𝑐2 = P(𝑥1)

𝐿3 = [𝑣𝑠]→ 𝑐3 = P(𝑥2)

𝐿4 = [𝑣𝑠]→ 𝑐4 = P(𝑥2)
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At each iteration of the algorithm, the branch (or branches) with the greatest 𝑐𝑖 will

be chosen to add the next node in the branch to the stack, and their costs would be

updated. For example, if P(𝑥1) > P(𝑥2) then after the first iteration our stacks and

costs would be:

𝐿1 = [𝑣𝑠, 𝑣1]→ 𝑐1 = P(𝑥4|𝑥1)

𝐿2 = [𝑣𝑠, 𝑣1]→ 𝑐2 = P(𝑥3|𝑥1)

𝐿3 = [𝑣𝑠]→ 𝑐3 = P(𝑥2)

𝐿4 = [𝑣𝑠]→ 𝑐4 = P(𝑥2)

This process would continue until a branch adds 𝑣𝑡 to its stack meaning that branch

corresponds to the most reliable path.

This method is computation expensive, as just the modified DFS algorithm has

worst case time-complexity of O(V!). However, it is guaranteed to identify the most

reliable path and it offers a possible speedup from complete path enumeration and

computation as the greedy algorithm ensures not all path probabilities are fully com-

puted.

5.3 Bounding Path Reliabilities

Considering the case where correlation between all links is restricted to (0, 1), such

as in our geometric MVN parameter generation model described in Section 4.6.1, the

following bounds on path reliabilities may be applied.

5.3.1 Upper Bound

The reliability of a path is improved as the correlation between links within the path is

increased. Given path 𝑃 = [𝑒1, 𝑒2, ...𝑒𝑘], a simple upper bound on the path reliability
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corresponds to the case where all links are fully correlated:

𝑅𝑒𝑙(𝑃 ) = P

(︃
𝑘⋂︁

𝑖=1

𝑥𝑖

)︃
≤ 𝑚𝑖𝑛(P(𝑥1),P(𝑥2), ...,P(𝑥𝑘)) (5.7)

Identifying the path from 𝑣𝑠 to 𝑣𝑡 with the greatest upper bound can be done by

computing the marginal reliabilities of all links in G and then running a widest-

path algorithm on G using the marginal reliabilities as weights. Whereas a shortest

path algorithm identifies the minimum weighted path from 𝑣𝑠 to 𝑣𝑡, a widest path

algorithm identifies the st-path(s) with the maximum weight of the minimum edge

weights within the path. The widest path problem may be solved via the following

modified Dijkstra’s algorithm:

Algorithm 7: Widest Path Algorithm
input : Graph G = (V,E), Marginal Reliabilities p = [𝑝1, ..., 𝑝𝑚], Source

Node 𝑣𝑠, and Terminal Node 𝑣𝑡

output: Weight of widest path 𝑊 and vector of visited nodes prev

𝑄← V

foreach 𝑣𝑗 in 1 : |V| do
W[𝑣𝑗]←∞

prev[𝑣𝑗]← ∅
W[𝑣𝑠] = 0

while 𝑄 is not empty do
𝑣𝑢 ← vertex in 𝑄 with min 𝑊 [𝑣𝑖]

Delete 𝑣𝑢 from 𝑄

if 𝑣𝑢 = 𝑣𝑡 then
break

foreach neighbor 𝑣𝑛 of 𝑣𝑢 do
𝑤 ← min(𝑊 [𝑣𝑢], 𝑝(𝑣𝑢, 𝑣𝑛))

if 𝑤 > 𝑊 [𝑣𝑛] then
𝑊 [𝑣𝑛]← 𝑤

𝑝𝑟𝑒𝑣[𝑣𝑛]← 𝑣𝑢
return 𝑊 , 𝑝𝑟𝑒𝑣

The upper bound corresponding to Equation 5.10 will be W[𝑣𝑡], while the path

from 𝑣𝑠 to 𝑣𝑡 can be found via by backtracking from 𝑣𝑡 to 𝑣𝑠 in prev. Like Dijkstra’s
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shortest path algorithm, the runtime of this algorithm is 𝑂((𝑛 + 𝑚) log(𝑛)) where

𝑛 = |V| and 𝑚 = |E|. This upper bound may be loose but is easily computed with

the widest path algorithm. Another upper bound that may be applied is:

𝑅𝑒𝑙(𝑃 ) = P

(︃
ℎ⋂︁

𝑖=1

𝑥𝑖

)︃
≤ min

⎛⎝P

⎛⎝ ⋂︁
𝐽⊂{1,...,ℎ}

𝑥𝑖

⎞⎠⎞⎠ (5.8)

This means that a path containing ℎ links can be upper bounded by the joint reliability

of any subset of the ℎ links along the path. This bound does not lend itself to an

algorithm as it is a minimization over a probability of intersection of different subsets.

Similar the the most reliable path problem, this problem lacks optimal substructure

unless all elements in the path are uncorrelated.

5.3.2 Lower Bound

Given path 𝑃 = [𝑒1, 𝑒2, ...𝑒ℎ], a lower bound the reliability of the path corresponds

the scenario where all links are independent of one another. In this case:

ℎ∏︁
𝑖=1

P(𝑥𝑖) ≤ P

(︃
ℎ⋂︁

𝑖=1

𝑥𝑖

)︃
(5.9)

Considering all links to be independent simplifies the MVN Model to the Bernoulli

Model with 𝑝𝑖 = P(𝑠𝑖 > 𝜏). As described by Section 5.1.1, we can reformulate the

most reliable path problem as the shortest path problem with edge lengths given by

𝑑[𝑒𝑖] = −𝑙𝑜𝑔(𝑝𝑖) when all links are independent. Thus we can solve for the path with

the greatest lower bound via a shortest path algorithm.

5.3.3 Tightness of Bounds

While simulating graphs via the geometric MVN parameter generation method de-

scribed in Section 4.6.1, it was observed that correlation had a negligible effect on

the most reliable path and could usually be ignored. Ignoring correlation in this case

means considering all links to be independent with marginal reliabilities given by
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P(𝑠𝑖 > 𝜏) and joint reliabilities computed as a product of marginal reliabilities rather

than the probability of their intersection. This is the same strategy as identifying the

path with the greatest lower bound from Section 5.3.2.

For this section, we will assume correlation between two links is dependant on

a non-increasing function of the distance between their midpoints, such as in the

geometric MVN parameter generation method described in Section 4.6.1. However,

these results may generalize to other spatial correlation models a well, as long as

correlation is inversely related to link separation. Under the midpoint correlation

model, we can specify a decorrelation distance 𝑑′ such that if the midpoint separation

𝑀𝑖,𝑗 between links 𝑒𝑖 and 𝑒𝑗 is greater that 𝑑′ the correlation between the two links

is negligible. Assume the minimum number of links of any st-path in G is ℎ ≥ 2 for

a particular node pair 𝑣𝑠 and 𝑣𝑡. Given the distance between 𝑣𝑠 and 𝑣𝑡 is 𝑑𝑠,𝑡, the

midpoint separation distance between the first and last link of any path is 𝑀1,ℎ ≥

𝑑𝑠,𝑡/2. Assuming 𝑑𝑠,𝑡/2 > 𝑑′, then we know the correlation between the first 𝑒1 and

last link 𝑒ℎ in the path will be negligible and we can approximate their joint reliability

as P(𝑥𝑖 ∩ 𝑥ℎ) ≈ P(𝑥1)P(𝑥ℎ). This is significant because by the upper bound given

in Equation 5.10, we know the reliability of the path would be upper bounded by

P(𝑥1)P(𝑥ℎ).

This idea can also be extended to larger subsets of links. If subset of links 𝑄 ∈ 𝑃

within a path are all uncorrelated with one another, we can upper bound the reliability

of the path as the product of the marginal reliabilities of the uncorrelated subset:

𝑅𝑒𝑙(𝑃 ) = P

(︃
ℎ⋂︁

𝑖=1

𝑥𝑖

)︃
≤
∏︁

𝑖:𝑒𝑖∈𝑄

P(𝑥𝑖) (5.10)

For large graphs with 𝑑𝑠,𝑡 ≫ 𝑑′, this decorrelation of links along a path leads the

lower bound, where correlation is disregarded, to be a much better approximation of

the most reliable path compared to the upper bound. The following example demon-

strates how disregarding correlation by computing path reliabilities as the product of

marginal link reliabilities may be an appropriate strategy for enumerating the most

reliable path when links are correlated under a distance dependent correlation model.
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Figure 5-3: Large graph used for most reliable path analysis
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Table 5.1: User inputs to generate MVN parameters via the the methods described
in Section 4.6

The geometric MVN parameter generation method with inputs shown in Table 5.1

was used for the graph shown in Figure 5-3. The resulting univariate parameters and

the resulting marginal reliabilities for each link are shown in Table 5.2. To give insight

into the relationship between midpoint separation and the resulting link correlation,

the midpoint separation distances for the first eight links are shown in Table 5.3 and

the resulting correlation matrix is shown in Table 5.4.

All paths from 𝑣1 to 𝑣17 were enumerated, and their reliabilities under the MVN

model was computed. The product of link marginal reliabilities (lower bound) and the

minimum marginal reliability (upper bound) for each path was also computed. Figure

5-4 provides the three most reliable paths in descending order of their reliability, as

well as their bounds, marginal link reliabilities, and correlation.

For all paths, the correlation between links is only significant for neighboring

links and this is true for paths even beyond the top three most reliable path. As a

result the lower bounds are tighter than the upper bounds for the three most reliable

links. Its also evident that the most reliable path also has the greatest lower bound

and the greatest upper bound. The paths are presented in descending order of their

reliabilities and this order would be preserved for the top three paths if they were

ranked by their lower bounds. The same is not true for their upper bounds as there

are paths beyond the top three whose upper bound is greater than the upper bound of

the third most reliable path. These patterns are not unique to this particular example,

and the fact that the greatest lower bound corresponded to the most reliable path

was prevalent in all other simulations conducted for this thesis.
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Table 5.2: Univariate distribution parameters and marginal reliabilities for
the graph shown in Figure 5-3 using input parameters from Table 5.1
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Table 5.3: Distances between the midpoints for links 𝑒1 through 𝑒8

Table 5.4: Correlation matrix for 𝑒1 through 𝑒8
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Figure 5-4: Three most reliable paths with their reliabilities, lower/upper bounds,
link marginal reliabilties, and correlation between all links within the path
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5.4 Conclusions and Future Work

The results in this chapter characterize the Most Reliable Path Problem under the

MVN model and provides a method to enumerate its solution. However, this method

relies on the explicit enumeration of all paths thus may take exponential time in

large graphs. The bounding methods offer insight into the problem and may offer

opportunities to prune the set of all possible paths needed to be considered.

The lack of optimal substructure introduced by correlation makes this problem

inherently different than the problem under the Bernoulli model. Much like the Net-

work Reliability Problem, we believe simulation based methods are the best direction

for providing computationally efficient solutions to this problem.
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