
Efficient Deep Learning: From Theory to Practice

by

Lucas Liebenwein

B.Sc., Swiss Federal Institute of Technology Zurich (2015)
S.M., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

© Lucas Liebenwein 2021. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

August 27, 2021

Certified by. .
Daniela Rus

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Efficient Deep Learning: From Theory to Practice

by

Lucas Liebenwein

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Modern machine learning often relies on deep neural networks that are prohibitively
expensive in terms of the memory and computational footprint. This in turn sig-
nificantly inhibits the potential range of applications where we are faced with non-
negligible resource constraints, e.g., real-time data processing, embedded devices, and
robotics. In this thesis, we develop theoretically-grounded algorithms to reduce the
size and inference cost of modern, large-scale neural networks. By taking a theoretical
approach from first principles, we intend to understand and analytically describe the
performance-size trade-offs of deep networks, i.e., the generalization properties. We
then leverage such insights to devise practical algorithms for obtaining more efficient
neural networks via pruning or compression. Beyond theoretical aspects and the in-
ference time efficiency of neural networks, we study how compression can yield novel
insights into the design and training of neural networks. We investigate the practi-
cal aspects of the generalization properties of pruned neural networks beyond simple
metrics such as test accuracy. Finally, we show how in certain applications pruning
neural networks can improve the training and hence the generalization performance.

Thesis Supervisor: Daniela Rus
Title: Professor of Electrical Engineering and Computer Science

3

4

This doctoral thesis has been examined by a Committee of the
Department of Electrical Engineering and Computer Science:

Daniela Rus .
Chairperson, Thesis Supervisor

Professor of Electrical Engineering and Computer Science

Michael Carbin .
Member, Thesis Committee

Associate Professor of Electrical Engineering and Computer Science

Song Han .
Member, Thesis Committee

Assistant Professor of Electrical Engineering and Computer Science

6

Acknowledgments

This thesis would have not been possible without the support from many people

throughout my years as graduate student at MIT.

I would like to start by expressing my deep gratitude towards my advisor Daniela

Rus. When I met Daniela five years ago, I just started out in my research career and

did not know where this path would take me. Her invaluable guidance over the years

were pivotal in my development and helped me grow both as a researcher and person.

Daniela’s enthusiasm for science and passion for solving some of the most impactful

problems are inspiring and have consistently encouraged me to think hard about how

our research can have a positive influence in the world. Her drive towards reaching a

goal not only helped me to stay focused while navigating the infinite depth of research

but has also taught me to be intentional and mindful in my time management. I

would also like to thank Daniela for fostering such an interdisciplinary, open-minded,

collaborative, and social community within our lab. I am already starting to miss my

time as graduate student in your lab.

Together with Daniela, Song Han and Michael Carbin formed my thesis committee

that offered critical advice and guidance towards the final steps in my PhD, including

my defense and the creation of this thesis. For that, I would like to thank them.

Even before working towards this thesis, I had the opportunity to collaborate with

and learn from many amazing people around the world including my undergraduate

advisors Max Kriegleder and Raffaello D’Andrea at ETH Zurich; Emilio Frazzoli; as

well as Javier Alonso-Mora, Jonathan DeCastro, Sertac Karaman, Russ Tedrake, and

Cristian-Ioan Vasile during my years as SM student at MIT.

All of the research presented in this thesis is a result of many fruitful collaborations

with inspiring, exceptional individuals with whom I had the pleasure to interact with

and to learn from during my time as PhD student. Specifically, I would like to

thank Alexander Amini, Zahra Babaiee, Cenk Baykal, Brandon Carter, Dan Feldman,

Oren Gal, David Gifford, Igor Gilitschenski, Ramin Hasani, Mathias Lechner, Björn

Lütjens, Alaa Maalouf, Ryan Sander, Wilko Schwarting, and Tim Seyde for exploring

7

so many exciting and interesting avenues of research with me. I also want to especially

emphasize my gratitude towards Cenk Baykal who has been an integral part of many

– if not most – of the research projects during my time at MIT. I truly enjoyed

working so closely with you over the years.

The days on campus would have not been the same without the exceptional group

of people at the Distributed Robotics Lab, with many of whom I have become close

friends. The countless memories, including all of our lunches, coffee breaks, deeply

passionate discussions about research and politics or both, late-night work sessions,

lab outings, and so much more, will always make me smile when I will be looking back

upon my time at MIT. For that, I am thankful to all of my current and former lab

mates: Murad Abu-Khalaf, Javier Alonso-Mora, Alexander Amini, Brandon Araki,

Thomas Balch, Yutong Ban, Rohan Banerjee, Cenk Baykal, James Bern, Thomas

Buchner, Noam Buckman, Veevee Cai, Lillian Chin, Changhyun Choi, Jeana Choi,

Sebastian Claici, Joseph DelPreto, David Dorhout, Stephanie Gil, Hunter Hansen,

Ramin Hasani, Josie Hughes, Robert Katzschmann, Shuguang Li, Xiao Li, Jeffrey

Lipton, Robert MacCurdy, Mieke Moran, Felix Naser, Teddy Ort, Liam Paull, Alyssa

Pierson, Aaron Ray, John Romanishin, Guy Rosman, Andrés Salazar-Gómez, Ryan

Sander, Wilko Schwarting, Tim Seyde, Hayim Shaul, Andy Spielberg, Ryan Truby,

Paul Tylkin, Alex Wallar, Johnson Wang, and Annan Zhang.

I also want to thank Radu Grosu, Ramin Hasani, and all the other members of the

CPS group at TU Vienna who gave me a second research home away from my research

home at home while spending a year in Vienna during the Covid-19 pandemic. It has

been wonderful interacting with everyone and getting to know many of you during

that time.

Outside of the realms of research, I am incredibly thankful for all my friends,

including my friends in Vienna, in Zurich, and in Boston. Thank you for your support,

friendship, and fun times, especially in those moments where it is just helpful to forget

about research for a while.

To all my family back home in Austria, thank you for always encouraging me to

pursue my dreams and for giving me the strength to follow through with them. I want

8

to thank my mother, Jutta, for all the conversations and the advice over the years;

my father, Karl, for always supporting me and having my back; my sister, Leonie, for

being everything you could wish for in a sister; Stefanie, Constantin, and Nicolaus

for all the happy moments together; Karin and Wolfgang for never being more than

a phone call away; and my grandmother, Berta, for constantly inspiring me with an

endless array of stories from a different time.

Finally, I cannot express the amount of love, joy, and gratitude I feel towards you,

Pia. You make me feel alive in the morning when I wake up next to you, cheerful

in the afternoon when I look at you, jovial in the evening when I talk to you, and

serene at night when I fall asleep in your arms. Through hardship and struggle, you

are there for me every step of the way and I could not imagine life without you. Your

compassion, dedication, joyfulness, and kindness never fail to amaze me.

To you, my love.

9

10

Contents

List of Figures 19

List of Tables 29

1 Introduction 37

1.1 Motivation . 37

1.2 Vision . 39

1.3 Challenges . 40

1.3.1 Provable Coresets for Layers 40

1.3.2 Composable Neural Network Pruning Guarantees 41

1.3.3 Practical Pruning from Theoretical Guarantees 42

1.3.4 Modular Compression Techniques 42

1.3.5 Scalable Pruning Solutions . 43

1.3.6 Generalization and Robustness in Pruning 44

1.3.7 Improved Generalization via Pruning 44

1.4 Contributions . 45

1.4.1 Overview of Contributions . 45

1.4.2 Open-source Implementation 47

1.4.3 Detailed Contributions . 47

1.5 Outline . 53

2 Related Work 55

2.1 Coresets and Theoretical Foundations 55

11

2.2 Neural Network Compression and Pruning 56

2.2.1 Unstructured Pruning . 57

2.2.2 Structured Pruning via Filter Pruning 58

2.2.3 Low-rank Compression . 59

2.2.4 Network-aware Compression 60

2.2.5 Retraining of Pruned Networks 60

2.3 Generalization of Neural Networks 61

2.3.1 Generalization . 61

2.3.2 Robustness . 62

2.3.3 Robust Training and Pruning 63

2.3.4 Implicit Regularization via Overparameterization 63

2.4 Architecture Design and Search . 64

2.5 Continuous-depth Models . 65

I Theoretical Foundations 67

3 Sensitivity-informed Compression Bounds for Neural Networks 69

3.1 Overview . 69

3.1.1 Contributions . 70

3.1.2 Relevant Papers . 70

3.1.3 Outline . 70

3.2 Problem Definition . 71

3.2.1 Fully-connected Neural Networks 71

3.2.2 Neural Network Coreset Problem 71

3.3 Method . 72

3.3.1 Sparsifying Weights in Neurons 72

3.3.2 Neural Network Sparsification 73

3.4 Analysis . 73

3.4.1 Preliminaries . 74

3.4.2 Empirical Sensitivity for Positive Weights 75

12

3.4.3 Importance Sampling Bounds for Positive Weights 78

3.4.4 Importance Sampling Bounds for all Weights 84

3.5 Network Compression Bounds . 91

3.5.1 Layer-wise Approximation . 91

3.5.2 Network Compression . 93

3.5.3 Generalization Bounds . 95

3.6 Results . 95

3.6.1 Experimental Setup . 95

3.6.2 Results . 97

3.7 Discussion . 98

4 Generalized Compression Bounds 99

4.1 Overview . 99

4.1.1 Contributions . 100

4.1.2 Relevant Papers . 100

4.1.3 Outline . 100

4.2 Problem Definition . 100

4.3 Method . 101

4.4 Analysis . 103

4.4.1 Channel Sparsification . 103

4.4.2 Main Compression Theorem 108

4.4.3 Extension to Filters . 108

4.4.4 Boosting Sampling via Deterministic Choices 109

4.5 Discussion . 116

II Efficient Neural Networks 117

5 Provable Filter Pruning 119

5.1 Overview . 119

5.1.1 Contributions . 120

5.1.2 Relevant Papers . 121

13

5.1.3 Outline . 121

5.2 Filter Pruning . 121

5.2.1 Preliminaries . 122

5.2.2 Sampling-based Filter Pruning 122

5.2.3 A Tightly-concentrated Estimator 123

5.2.4 Empirical Sensitivity . 125

5.2.5 Derandomized Filter Pruning 127

5.3 Optimal Budget Allocation . 128

5.4 Results . 130

5.4.1 Experimental Setup . 131

5.4.2 Comparison Methods . 131

5.4.3 LeNet Architectures on MNIST 133

5.4.4 Convolutional Neural Networks on CIFAR-10 135

5.4.5 Convolutional Neural Networks on ImageNet 137

5.4.6 Application to Real-time Regression Tasks 140

5.5 Discussion . 142

6 Automatic Layer-wise Decomposition 145

6.1 Overview . 145

6.1.1 Contributions . 147

6.1.2 Relevant Papers . 147

6.1.3 Outline . 147

6.2 Method . 148

6.2.1 Preliminaries . 148

6.2.2 Local Layer Compression . 150

6.2.3 Global Network Compression 153

6.2.4 Automatic Layer-wise Decomposition Selector (ALDS) 157

6.3 Results . 161

6.3.1 Experimental Setup . 161

6.3.2 One-shot Compression with Baselines 166

14

6.3.3 ImageNet Benchmarks . 168

6.3.4 Ablation Study . 170

6.3.5 Extensions of ALDS . 172

6.4 Discussion . 173

III Applications 174

7 Pruning Beyond Test Accuracy 175

7.1 Overview . 175

7.1.1 Contributions . 177

7.1.2 Relevant Papers . 178

7.1.3 Outline . 178

7.2 Methodology . 178

7.2.1 Pruning Setup . 178

7.2.2 Experiments Roadmap . 181

7.3 Function Distance . 182

7.3.1 Methodology . 182

7.3.2 Results . 184

7.4 Pruning under Distribution Changes 186

7.4.1 Methodology . 188

7.4.2 Results . 189

7.5 Towards Robust Pruning . 194

7.5.1 Methodology . 195

7.5.2 Results . 195

7.6 Discussion . 197

8 Pruning Continuous-depth Models 201

8.1 Overview . 201

8.1.1 Contributions . 204

8.1.2 Relevant Papers . 204

8.1.3 Outline . 204

15

8.2 Background . 205

8.3 Pruning Neural ODEs . 206

8.3.1 A General Framework for Training Sparse Flows 207

8.3.2 From Dense to Sparse Flows 207

8.4 Experimental Setup . 209

8.5 Experiments . 209

8.5.1 Density Estimation on 2D Data 211

8.5.2 Density Estimation on Real Data – Tabular 212

8.5.3 Density Estimation on Real-Data – Vision 213

8.5.4 Pruning Flattens the Loss Surface 216

8.5.5 On the Robustness of Decision Boundaries 217

8.6 Discussion . 219

9 Conclusion 221

9.1 Summary . 221

9.2 Lessons Learned . 222

9.3 Closing Remarks . 225

A Appendix: Automatic Layer-wise Decomposition 227

B Appendix: Pruning Beyond Test Accuracy 231

B.1 Detailed Methodology and Prune Results 231

B.1.1 Experimental Setup for CIFAR-10 232

B.1.2 Pruning Performance on CIFAR-10 233

B.1.3 Experimental Setup on ImageNet 233

B.1.4 Pruning Performance on ImageNet 235

B.1.5 Experimental Setup for Pascal VOC 236

B.1.6 Pruning Performance on VOC 236

B.2 Additional Results for Function Distance 237

B.2.1 Comparison of Informative Features 238

B.2.2 Noise Similarities . 241

16

B.3 Additional Results for Prune Potential 248

B.3.1 Detailed Results for Prune Potential with Corruptions 248

B.3.2 Choice of Commensurate Accuracy 255

B.3.3 Detailed Results for Excess Error with Corruptions 255

B.3.4 Results for Overparameterization 259

B.4 Detailed Results for Robust Pruning 260

B.4.1 Experimental Setup and Prune Results 260

B.4.2 Results for Prune Potential 261

B.4.3 Results for Excess Error . 266

B.4.4 Results for Overparameterization 269

17

18

List of Figures

1-1 An overview of the thesis research organized around the three parts. . 54

3-1 Evaluation of drop in classification accuracy after compression against

the MNIST, CIFAR-10, and FashionMNIST datasets with varying

number of hidden layers (𝐿) and number of neurons per hidden layer

(𝜂*). Shaded region corresponds to values within one standard devia-

tion of the mean. 97

3-2 Evaluation of relative error after compression against the MNIST,

CIFAR-10, and FashionMNIST datasets with varying number of hid-

den layers (𝐿) and number of neurons per hidden layer (𝜂*). 97

5-1 Overview of our pruning method. We use a small batch of data points

to quantify the relative importance 𝑠ℓ𝑗 of each filter 𝑊 ℓ
𝑗 in layer ℓ by

considering the importance of the corresponding feature map 𝑎ℓ𝑗 =

𝜑(𝑧ℓ𝑗) in computing the output 𝑧ℓ+1 of layer ℓ + 1, where 𝜑(·) is the

non-linear activation function. We then prune filters by sampling each

filter 𝑗 with probability proportional to 𝑠ℓ𝑗 and removing the filters

that were not sampled. We invoke the filter pruning procedure each

layer to obtain the pruned network (the prune step); we then retrain

the pruned network (retrain step), and repeat the prune-retrain cycle

iteratively. 120

19

5-2 The performance of our approach on a LeNet300-100 architecture trained

on MNIST with no derandomization (denoted by ”rand”), with par-

tial derandomization (denoted by ”partial”), and with complete de-

randomization (denoted by ”derand”). The plot in (a) and (b) show

the resulting test accuracy for various percentage of retained param-

eters 1 − (pruneratio) before and after retraining, respectively. The

additional error of the derandomized algorithm can be neglected in

practical settings, especially after retraining. 128

5-3 Early layers of VGG are relatively harder to approximate due to their

large spatial dimensions as shown in (a). Our error bounds naturally

bridge layer compressibility and importance and enable us to automat-

ically allocate relatively more samples to early layers and less to latter

layers as shown in (b). The final layer – due to its immediate influence

on the output – is also automatically assigned a large portion of the

sampling budget. 129

5-4 The accuracy of the generated pruned models for the evaluated pruning

schemes for various target prune ratios. Note that the 𝑥 axis is the

percentage of parameters retained, i.e., (1 − pruneratio). ThiNet

was omitted from the plots for better readability. Our results show that

our approach generates pruned networks with minimal loss in accuracy

even for high prune ratios. Shaded regions correspond to values within

one standard deviation of the mean. 138

5-5 The results of our evaluations of the algorithms in the prune-only sce-

nario, where the network is iteratively pruned down to a specified target

prune ratio and the fine-tuning step is omitted. Note that the 𝑥 axis

is the percentage of parameters retained, i.e., (1− pruneratio). 140

20

5-6 The performance of our approach on a regression task used to infer the

steering angle for an autonomous driving task (Amini et al., 2018). (a)

An exemplary image taken from the data set. (b) The performance of

our pruning procedure before retraining evaluated on the test loss and

compared to competing filter pruning methods. Note that the 𝑥 axis

is percentage of parameters retained, i.e., 1− (pruneratio). 141

6-1 ALDS Overview. The framework consists of a global and local step

to obtain an optimal per-layer low-rank compression. We first ran-

domly initialize the number of subspaces for each layer. We then op-

timize for the optimal per-layer, per-subspace rank by minimizing the

maximum relative compression error (global step). Given a per-layer

budget, we then optimize for the number of low-rank subspaces in each

layer (local step). Both steps are repeated iteratively until convergence. 146

6-2 Convolution to matrix multiplication. A convolutional layer of 𝑓 = 20

filters, 𝑐 = 6 channels, and 2 × 2 kernel (𝜅1 = 𝜅2 = 2). The input tensor

shape is 6 × 3 × 3. The corresponding weight matrix has 𝑓 = 20 rows

(one row per filter) and 24 columns (𝑐× 𝜅1 × 𝜅2), as for the corresponding

feature matrix, it has 24 rows and 4 columns, the 4 here is the number of

convolution windows (i.e., number of pixels/entries in each of the output

feature maps). After multiplying those matrices, we reshape them to the

desired shape to obtain the desired output feature maps. 149

21

6-3 Low-rank decomposition for convolutional layers via singular value

decomposition (SVD). The given convolution, c.f. Figure 6-2, has

20 filters, each of shape 6 × 2 × 2, resulting in a total of 480 parameters.

After extracting the corresponding weight matrix 𝑊 ∈ R20×24 (𝑓 × 𝑐𝜅1𝜅2),

we compute its (𝑗 = 7)-rank decomposition to obtain the pair of matrices

𝑈 ∈ R20×7 (𝑓 × 𝑗) and 𝑉 ∈ R7×24 (𝑗 × 𝑐𝜅1𝜅2). Those matrices are encoded

back as a pair of convolutional layers, the first (corresponding to 𝑉) has

𝑗 = 7 filters, 𝑐 = 6 channels and a 2×2 (𝜅1×𝜅2) kernel, whereas the second

(corresponding to 𝑈) is a 1 × 1 convolution of 𝑓 = 20 filters, and 𝑗 = 7

channels. The resulting layers have 308 parameters. 150

6-4 Left: 2D convolution. right: decomposition used for Automatic

Layer-wise Decomposition Selector (ALDS). For a 𝑓 × 𝑐 × 𝜅1 × 𝜅2

convolution with 𝑓 filters, 𝑐 channels, and 𝜅1 × 𝜅2 kernel, our per-layer

decomposition consists: (1) 𝑘 parallel 𝑗 × 𝑐/𝑘 × 𝜅1 × 𝜅2 convolutions; (2) a

single 𝑓 × 𝑘𝑗 × 1× 1 convolution applied on the first layer’s (stacked) output.153

6-5 One-shot compress+retrain experiments on CIFAR-10 with baseline

comparisons. 166

6-6 The size-accuracy trade-off for various compression ratios, methods,

and networks. Compression was performed after training and networks

were re-trained once for the indicated amount (one-shot). (a, b, d,

e): the difference in test accuracy for fixed amounts of retraining. (c,

f): the maximal compression ratio with less-than-1% accuracy drop for

variable amounts of retraining. 167

6-7 One-shot compress+retrain for DeeplabV3-ResNet50 on VOC. 167

6-8 The difference in test accuracy (“Delta Top1 Test Accuracy”) for var-

ious target compression ratios, ALDS-based/ALDS-related methods,

and networks on CIFAR-10. 172

22

6-9 The difference in test accuracy (“Delta Top1 Test Accuracy”) for var-

ious target compression ratios, ALDS-based/ALDS-related methods,

and networks on CIFAR-10. The networks were compressed once and

not retrained afterwards. 172

7-1 The accuracy of the generated pruned models for the evaluated pruning

schemes for various target prune ratios using iterative fine-tuning. . . 181

7-2 Heatmap of confidences on informative pixels from pruned ResNet20

models. Y-axis is the model used to generate 10% pixel subsets of 2000

sampled CIFAR-10 test images, x-axis describes the models evaluated

with each 10% pixel subset, cells indicate mean confidence towards true

class of the model from the x-axis on tested data from y-axis. Prun-

ing by (a)Weight Thresholding (WT), (b) Filter Thresholding (FT),

(c) Sensitivity-informed Provable Pruning (SiPP), (d) Provable Filter

Pruning (PFP). 184

7-3 The functional similarities between pruned ResNet20 models and their

unpruned parent. We consider the difference in the output after inject-

ing various amounts of noise into the input, see (a), (b) and (c), (d) for

networks weight-pruned with WT and filter-pruned with FT, respec-

tively. The differences between a separately trained network and the

unpruned parent is also shown. The plots depict the difference mea-

sured as the percentage of matching predictions and as norm-based

difference in the output after applying softmax, see (a), (c) and (b),

(d), respectively. 185

7-4 The functional similarities between pruned ResNet20 models and their

unpruned parent. 186

7-5 Example images from the CIFAR-10 test dataset that were used in this

study with various levels of noise injected. A human test subject can

classify the images equally well despite the noise present. 189

23

7-6 The prune potential (%) achievable over various levels of noise injected

into the input on different network architectures trained and pruned

on CIFAR-10. 190

7-7 The prune potential for a ResNet20 on CIFAR-10-C test datasets. We

observe that depending on the type of corruption the network has sig-

nificantly less prune potential than when measured w.r.t. the nominal

CIFAR-10 test accuracy. 192

7-8 Prune potential of a ResNet18 (ImageNet). 193

7-9 The prune potential (b) and excess error (c) of a ResNet20 shown for

corruptions that were included (train distribution) and excluded (test

distribution) during training. The prune-accuracy curves in (a) are

shown for corruptions from the test distribution. 195

8-1 Pruning neural ordinary differential equations (neural ODEs) improves

their generalization with at least 1 order of magnitude less parameters.

CIFAR-10 density estimation. Values and methods are described in

Table 8.6. 202

8-2 Improved generalization through pruning. 8-2a: pruning enhances gen-

eralization of continuous-depth models. Structured pruning (green),

unstructured pruning (blue). More details in Section 8.5. 8-2b: flat

minima result in better generalization compared to sharp minima.

Pruning neural ODEs flattens the loss around local minima. Figure 8-

2b is reproduced from Keskar et al. (2017). 203

8-3 Negative log likelihood of Sparse Flow as function of prune ratio. . . . 212

8-4 Unstructured pruning of FFJORD (PR= Prune ratio). 213

8-5 Multi-modal Gaussian flow and pruning. We observe that Sparse Flows

attract the vector-field directions uniformly towards the mean of each

Gaussian distribution, while an unpruned flow does not exploit this

feature and contains converging vectors in between Gaussians. 214

24

8-6 Loss vs. prune ratio for MNIST and CIFAR10. Unstructured Pruning

is applied. 214

8-7 Negative log-likelihood versus prune ratio on tabular datasets with

unstructured pruning. 215

8-8 Robustness of decision boundaries for pruned networks. Column 1 is

the decision boundary. Column 2 = state-space, and column 3 = the

flow of data points. 218

B-1 The difference in test accuracy to the uncompressed network for the

generated pruned models trained on CIFAR-10 for the evaluated prun-

ing schemes for various target prune ratios. 233

B-2 The accuracy of the generated pruned models trained on ImageNet for

the evaluated pruning schemes for various target prune ratios. 235

B-3 The accuracy of the generated pruned models trained on VOC for

the evaluated pruning schemes and various target prune ratios for a

DeeplabV3-ResNet50 architecture. 237

B-4 Heatmap of confidences on informative pixels from pruned VGG16

models. Y-axis is the model used to generate 10% pixel subsets of 2000

sampled CIFAR-10 test images, x-axis describes the models evaluated

with each 10% pixel subset, cells indicate mean confidence towards true

class of the model from the x-axis on tested data from y-axis. Pruning

by (a) Weight Thresholding (WT), (b) Filter Thresholding (FT), (c)

SiPP, (d) Provable Filter Pruning (PFP). 239

B-5 Heatmap of confidences on informative pixels from pruned ResNet20

models. Y-axis is the model used to generate 10% pixel subsets of 2000

randomly sampled CIFAR-10-C corrupted test images, x-axis describes

the models evaluated with each 10% pixel subset, cells indicate mean

confidence towards true class of the model from the x-axis on tested

data from y-axis. Pruning by (a) Weight Thresholding (WT), (b) Filter

Thresholding (FT). 240

25

B-6 Heatmap of confidences on informative pixels from pruned VGG16

models. Y-axis is the model used to generate 10% pixel subsets of 2000

randomly sampled CIFAR-10-C corrupted test images, x-axis describes

the models evaluated with each 10% pixel subset, cells indicate mean

confidence towards true class of the model from the x-axis on tested

data from y-axis. Pruning by (a) Weight Thresholding (WT), (b) Filter

Thresholding (FT). 240

B-7 The functional similarities between pruned ResNet56 models and their

unpruned parent. 242

B-8 The functional similarities between pruned ResNet110 models and their

unpruned parent. 242

B-9 The functional similarities between pruned VGG16 models and their

unpruned parent. 243

B-10 The functional similarities between pruned DenseNet22 models and

their unpruned parent. 243

B-11 The functional similarities between pruned WRN16-8 models and their

unpruned parent. 244

B-12 The functional similarities between pruned ResNet56 models and their

unpruned parent. 245

B-13 The functional similarities between pruned ResNet110 models and their

unpruned parent. 246

B-14 The functional similarities between pruned VGG16 models and their

unpruned parent. 246

B-15 The functional similarities between pruned DenseNet22 models and

their unpruned parent. 247

B-16 The functional similarities between pruned WRN16-8 models and their

unpruned parent. 247

B-17 The prune potential of a ResNet20 achievable for CIFAR-10 out-of-

distribution data sets. 249

26

B-18 The prune potential of a ResNet56 achievable for CIFAR-10 out-of-

distribution data sets. 250

B-19 The prune potential of a ResNet110 achievable for CIFAR-10 out-of-

distribution data sets. 251

B-20 The prune potential of a VGG16 achievable for CIFAR-10 out-of-

distribution data sets. 251

B-21 The prune potential of a DenseNet22 achievable for CIFAR-10 out-of-

distribution data sets. 252

B-22 The prune potential of a WRN16-8 achievable for CIFAR-10 out-of-

distribution data sets. 252

B-23 The prune potential of a ResNet18 achievable for ImageNet out-of-

distribution data sets. 253

B-24 The prune potential of a ResNet101 achievable for ImageNet out-of-

distribution data sets. 253

B-25 The prune potential of a DeeplabV3 achievable for Pascal VOC out-

of-distribution data sets. 254

B-26 The prune potential of a ResNet20 trained on CIFAR-10 for WT and

FT, respectively. In each figure the same experiment is repeated with

different values of 𝛿 ranging from 0% to 5%. 254

B-27 The difference in excess error for a ResNet20 trained on CIFAR-10. . 256

B-28 The difference in excess error for a ResNet56 trained on CIFAR-10. . 256

B-29 The difference in excess error for a ResNet110 trained on CIFAR-10. . 257

B-30 The difference in excess error for a VGG16 trained on CIFAR-10. . . 257

B-31 The difference in excess error for a DenseNet22 trained on CIFAR-10. 257

B-32 The difference in excess error for a WRN16-8 trained on CIFAR-10. . 257

B-33 The difference in excess error for a ResNet18 trained on ImageNet. . . 258

B-34 The difference in excess error for a ResNet101 trained on ImageNet. . 258

B-35 The difference in excess error for a DeeplabV3 trained on Pascal VOC. 258

B-36 The difference in test accuracy (nominal CIFAR-10) to the uncom-

pressed network. 261

27

B-37 The prune potential of a robustly pruned ResNet20 achievable for

CIFAR-10 out-of-distribution data sets. 262

B-38 The prune potential of a robustly pruned ResNet56 achievable for

CIFAR-10 out-of-distribution data sets. 263

B-39 The prune potential of a robustly pruned ResNet110 achievable for

CIFAR-10 out-of-distribution data sets. 263

B-40 The prune potential of a robustly pruned VGG16 achievable for CIFAR-

10 out-of-distribution data sets. 264

B-41 The prune potential of a robustly pruned DenseNet22 achievable for

CIFAR-10 out-of-distribution data sets. 264

B-42 The prune potential of a robustly pruned WRN16-8 achievable for

CIFAR-10 out-of-distribution data sets. 265

B-43 The difference in excess error for a robustly pruned ResNet20 trained

on CIFAR-10. 266

B-44 The difference in excess error for a robustly pruned ResNet56 trained

on CIFAR-10. 266

B-45 The difference in excess error for a robustly pruned ResNet110 trained

on CIFAR-10. 267

B-46 The difference in excess error for a robustly pruned VGG16 trained on

CIFAR-10. 267

B-47 The difference in excess error for a robustly pruned DenseNet22 trained

on CIFAR-10. 267

B-48 The difference in excess error for a robustly pruned WRN16-8 trained

on CIFAR-10. 268

28

List of Tables

5.1 We report the hyperparameters used during MNIST training, pruning,

and fine-tuning for the LeNet architectures. LR hereby denotes the

learning rate and LR decay denotes the learning rate decay that we

deploy after a certain number of epochs. During fine-tuning we used

the same hyperparameters except for the ones indicated in the lower

part of the table. 133

5.2 The prune ratio and the corresponding test error of the sparsest net-

work – with commensurate accuracy – generated by each algorithm. . 134

5.3 We report the hyperparameters used during training, pruning, and fine-

tuning for various convolutional architectures on CIFAR-10. LR hereby

denotes the learning rate and LR decay denotes the learning rate decay

that we deploy after a certain number of epochs. During fine-tuning

we used the same hyperparameters except for the ones indicated in

the lower part of the table. {30, . . .} denotes that the learning rate is

decayed every 30 epochs. 135

29

5.4 Overview of the pruning performance of each algorithm for various

CNN architectures. For each algorithm and network architecture, the

table reports the prune ratio (PR, %) and pruned FLOPs ratio (FR,

%) of pruned models when achieving test accuracy within 0.5% of

the original network’s test accuracy (or the closest result when the

desired test accuracy was not achieved for the range of tested PRs).

Our results indicate that our pruning algorithm generates smaller and

more efficient networks with minimal loss in accuracy, when compared

to competing approaches. 136

5.5 The performance of our algorithm and that of state-of-the-art filter

pruning algorithms on modern CNN architectures trained on CIFAR-

10. The reported results for the competing algorithms were taken

directly from the corresponding papers. For each network architecture,

the best performing algorithm for each evaluation metric, i.e., Pruned

Err., Err. Diff, PR, and FR, is shown in bold. The results show

that our algorithm consistently outperforms state-of-the-art pruning

approaches in nearly all of the relevant pruning metrics. 137

5.6 The hyper-parameters used for training and pruning residual networks

trained on the ImageNet data set. 139

5.7 Comparisons of the performance of various pruning algorithms on ResNets

trained on ImageNet (Russakovsky et al., 2015). The reported results

for the competing algorithms were taken directly from the correspond-

ing papers. For each network architecture, the best performing algo-

rithm for each evaluation metric, i.e., Pruned Err., Err. Diff, PR, and

FR, is shown in bold. 139

5.8 We report the hyperparameters used for training and pruning the driv-

ing network of Amini et al. (2018) together with the provided data set.

No fine-tuning was conducted for this architecture. 141

30

6.1 The experimental hyperparameters for training, compression, and re-

training for the tested CIFAR-10 network architectures. “LR” and

“LR decay” hereby denote the learning and the (multiplicative) learn-

ing rate decay, respectively, that is deployed at the epochs as specified.

“{𝑥, . . .}” indicates that the learning rate is decayed every 𝑥 epochs. . 164

6.2 The experimental hyperparameters for training, compression, and re-

training for the tested ImageNet network architectures. “LR” and

“LR decay” hereby denote the learning and the (multiplicative) learn-

ing rate decay, respectively, that is deployed at the epochs as specified.

“{𝑥, . . .}” indicates that the learning rate is decayed every 𝑥 epochs. . 165

6.3 The experimental hyperparameters for training, compression, and re-

training for the tested VOC network architecture. “LR” and “LR

decay” hereby denote the learning and the learning rate decay, respec-

tively. Note that the learning rate is polynomially decayed after each

step. 166

6.4 Baseline results for Δ-Top1≥−0.5% for one-shot. Results coincide with

Figures 6-5, 6-6, 6-7. 168

6.5 AlexNet and ResNet18 Benchmarks on ImageNet. We report Top-1,

Top-5 accuracy and percentage reduction in terms of parameters and

FLOPs denoted by CR-P and CR-F, respectively. Best results with

less than 0.5% accuracy drop are bolded. 169

7.1 Overview of the pruning methods evaluated. Here, 𝑎(𝑥) denotes the

activation of the corresponding layer with respect to a sample input 𝑥

to the network. 179

7.2 The prune potential of various networks trained on CIFAR-10 (up-

per part) and ImageNet (lower part) evaluated on the train and test

distribution, which consist of nominal data and the average over all

corruptions, respectively. 194

8.1 Pruning Methods. 208

31

8.2 Toy Dataset Hyperparameters. 210

8.3 Tabular Datasets Hyperparameters. 211

8.4 Image Datasets Hyperparameters. 211

8.5 Negative test log-likelihood (NLL) in nats of tabular datasets from (Pa-

pamakarios et al., 2017) and corresponding architecture size in number

of parameters (#params). Sparse Flow (based on Free-form Jacobian

of Reversible Dynamics (FFJORD)) with lowest NLL and competing

baseline with lowest NLL are bolded. 215

8.6 Negative test log-likelihood (NLL) in bits/dim for image datasets and

corresponding architecture size in number of parameters (#params).

Sparse Flow (based on FFJORD) with lowest NLL and competing

baseline with lowest NLL are bolded. 216

8.7 Eigenanalysis of the Hessian 𝐻 in terms of the largest eigenvalue

(𝜆𝑚𝑎𝑥), trace (tr), and condition number (𝜅) of pruned and unpruned

continuous normalizing flows on the mixture of Gaussian task. Num-

bers are normalized with respect to the unpruned flow. 217

A.1 The maximal compression ratio for which the drop in test accuracy is at

most some pre-specified 𝛿 on CIFAR-10. The table reports compression

ratio in terms of parameters and FLOPs, denoted by CR-P and CR-F,

respectively. When the desired 𝛿 was not achieved for any compression

ratio in the range the fields are left blank. The top values achieved for

CR-P and CR-F are bolded. 228

A.2 The maximal compression ratio for which the drop in test accuracy is

at most 𝛿 = 1.0% for ResNet20 (CIFAR-10) for various amounts of

retraining (as indicated). The table reports compression ratio in terms

of parameters and FLOPs, denoted by CR-P and CR-F, respectively.

When the desired 𝛿 was not achieved for any compression ratio in the

range the fields are left blank. The top values achieved for CR-P and

CR-F are bolded. 228

32

A.3 The maximal compression ratio for which the drop in test accuracy

is at most some pre-specified 𝛿 on ResNet18 (ImageNet). The table

reports compression ratio in terms of parameters and FLOPs, denoted

by CR-P and CR-F, respectively. When the desired 𝛿 was not achieved

for any compression ratio in the range the fields are left blank. The

top values achieved for CR-P and CR-F are bolded. 229

A.4 The maximal compression ratio for which the drop in test accuracy

is at most 𝛿 = 1.0% for ResNet18 (ImageNet) for various amounts of

retraining (as indicated). The table reports compression ratio in terms

of parameters and FLOPs, denoted by CR-P and CR-F, respectively.

When the desired 𝛿 was not achieved for any compression ratio in the

range the fields are left blank. The top values achieved for CR-P and

CR-F are bolded. 229

A.5 The maximal compression ratio for which the drop in test accuracy is at

most some pre-specified 𝛿 on DeeplabV3-ResNet50 (Pascal VOC2012).

The table reports compression ratio in terms of parameters and FLOPs,

denoted by CR-P and CR-F, respectively. When the desired 𝛿 was not

achieved for any compression ratio in the range the fields are left blank.

The top values achieved for CR-P and CR-F are bolded. 229

B.1 We report the hyperparameters used during training, pruning, and

retraining for various convolutional architectures on CIFAR-10. LR

hereby denotes the learning rate and LR decay denotes the learning

rate decay that we deploy after a certain number of epochs. During

retraining we used the same hyperparameters. {30, . . .} denotes that

the learning rate is decayed every 30 epochs. 232

33

B.2 Overview of the pruning performance of each algorithm for various

CNN architectures evaluated on the CIFAR data set. For each algo-

rithm and network architecture, the table reports the prune ratio (PR,

%) and the ratio of flop reduction (FR, %) of pruned models when

achieving test accuracy within 𝛿 = 0.5% of the original network’s test

accuracy (or the closest result when the desired test accuracy was not

achieved for the range of tested PRs). The top values for the error

and either PR (for weight-based) or FR (for filter-based algorithms)

are bolded, respectively. 234

B.3 We report the hyperparameters used during training, pruning, and

retraining for various convolutional architectures on ImageNet. LR

hereby denotes the learning rate and LR decay denotes the learning

rate decay that we deploy after a certain number of epochs. 234

B.4 Overview of the pruning performance of each algorithm for various

CNN architectures trained and evaluated on the ImageNet data set.

For each algorithm and network architecture, the table reports the

prune ratio (PR, %) and the ratio of flop reduction (FR, %) of pruned

models when achieving test accuracy within 𝛿 = 0.5% of the original

network’s test accuracy (or the closest result when the desired test

accuracy was not achieved for the range of tested PRs). The top values

for the error and either PR (for weight-based) or FR (for filter-based

algorithms) are bolded, respectively. 236

B.5 We report the hyperparameters used during training, pruning, and

retraining for various architectures on Pascal VOC 2011. LR hereby

denotes the learning rate and LR decay denotes the learning rate decay.

Note that the learning rate is polynomially decayed after each step. . 237

34

B.6 Overview of the pruning performance of each algorithm for DeeplabV3

trained and evaluated on Pascal VOC segmentation data. For each

algorithm, the table reports the prune ratio (PR, %) and the ratio

of flop reduction (FR, %) of pruned models when achieving IoU test

accuracy within 𝛿 = 0.5% of the original network’s test accuracy (or

the closest result when the desired test accuracy was not achieved for

the range of tested PRs). The top values for the error and either

PR (for weight-based) or FR (for filter-based algorithms) are bolded,

respectively. 238

B.7 The average and minimum prune potential computed on the train and

test distribution, respectively, for weight prune methods (WT, SiPP).

The train distribution hereby consists of nomimal data, while the test

distribution consists of the CIFAR-10-C, ImageNet-C, VOC-C corrup-

tions. 259

B.8 The average and minimum prune potential computed on the train and

test distribution, respectively, for filter prune methods (FT, PFP). The

train distribution hereby consists of nomimal data, while the test dis-

tribution consists of the CIFAR-10-C, ImageNet-C, VOC-C corruptions.260

B.9 The list of corruptions used for the train and test distribution, respec-

tively, categorized according to type. 261

B.10 The average and minimum prune potential computed on the train and

test distribution, respectively, for weight prune methods (WT, SiPP).

The train and test distribution hereby each consist of a mutually ex-

clusive subset of corruptions as listed in Table B.9. 270

B.11 The average and minimum prune potential computed on the train and

test distribution, respectively, for filter prune methods (FT, PFP). The

train and test distribution hereby each consist of a mutually exclusive

subset of corruptions as listed in Table B.9. 270

35

36

Chapter 1

Introduction

1.1 Motivation

Within the past decade, large-scale deep neural networks (DNNs) have demonstrated

unprecedented empirical success in high-impact applications such as object classi-

fication (Chen et al., 2017), speech recognition (Graves et al., 2013), computer vi-

sion (Krizhevsky et al., 2012), and natural language processing (Vaswani et al., 2017).

In addition, neural networks (NNs) have become the backbone of many other learning

problems such as self-supervised learning (Brown et al., 2020), reinforcement learn-

ing (Mnih et al., 2013), and applications thereof such as robotics (Levine et al., 2016),

autonomous driving (DeCastro et al., 2018; Schwarting et al., 2020), games (Silver

et al., 2018), and sustainable artificial intelligence (Lütjens et al., 2019).

However, with the ever-increasing size of state-of-the-art (SOTA) neural networks,

the resulting storage and computation requirements of these models are becoming in-

creasingly prohibitive in terms of both time and space. For example, GPT-3 (Brown

et al., 2020), one of the current state-of-the-art models for natural language process-

ing (NLP), contains 175 Billion Parameters. As noted by Brown et al. (2020), the

sheer size of GPT-3 results in a training cost of “several thousand petaflop/s-days of

compute” or equivalently several hundred single-GPU-years assuming 20 teraflop/s for

a single graphics processing unit (GPU). Training and inference with such models are

thus only possible through massive parallelization requiring thousands of GPU units.

37

This has significant financial and environmental implications as well. For example,

the training procedure of GPT-3 roughly costs about $12 million to train a single in-

stance of the model (Wiggers, 2021). Even earlier neural network architectures, such

as those proposed by Badrinarayanan et al. (2015); He et al. (2016); Krizhevsky et al.

(2012); Long et al. (2015), contain millions of parameters, rendering them prohibitive

to deploy on platforms that are resource-constrained, e.g., embedded devices, mobile

phones, or small-scale robotic platforms.

To this end, prior work has considered the possibility of reducing the size, infer-

ence cost, and training cost of large-scale DNNs without degradation in performance.

Among others, techniques include quantization (Rastegari et al., 2016; Wu et al.,

2016), where weights are represented using less bits, knowledge distillation (Hinton

et al., 2015; Park et al., 2019), where a small network is trained to imitate a large one,

and neural architecture search (NAS) (Liu et al., 2019a), where the architecture and

the weights of the neural network are learned simultaneously. Additional methods are

low-rank compression, where the underlying weight tensors are represented in a lower

dimensional subspace, and pruning (Han et al., 2015a), where individual weights or

structures of the network are removed.

Pruning and compressing existing architectures particularly stand out as succinct

ways to study and describe the phenomenon of overparameterization in deep neural

networks (Arora et al., 2018; Liebenwein et al., 2021a). By starting out from large

architectures we can theoretically and empirically study to what amount the network

architecture can be reduced without degradation in performance. Consequently, we

can also investigate algorithms that yield minimal representations for a given learning

task. Moreover, such techniques enable us to consider individually compressing differ-

ent parts of the network, including weights or neurons in layers, or representing layers

in lower dimensional subspaces (low-rank compression). We can thus gain novel in-

sights into efficient representations for single layers as well as the overall width-depth

trade-off in networks.

Typical pruning algorithms either proceed by gradually pruning the network dur-

ing training (Gale et al., 2019; He et al., 2018; Peste et al., 2021; Zhu and Gupta, 2017)

38

or by pruning the network after training followed by a retraining period (Baykal et al.,

2021b; Han et al., 2015a; Liebenwein et al., 2020; Renda et al., 2020). By pruning in-

dividual parameters or structures, the network subsequently requires less storage and

has reduced inference cost thus promising to alleviate some of the concerns that come

with large-scale DNNs. An overview of recent approaches is, e.g., given by Blalock

et al. (2020); Gale et al. (2019); Hoefler et al. (2021).

However, current pruning approaches fall short in several key areas. They are

generally based on heuristics (Han et al., 2015a; He et al., 2018; Lee et al., 2019;

Li et al., 2016; Luo et al., 2017; Ullrich et al., 2017; Yu et al., 2018b) that lack

guarantees on the size and performance of the pruned network. Most prior approaches

also require cumbersome ablation studies (He et al., 2018; Li et al., 2016) or manual

hyper-parameter tuning (Luo et al., 2017) in order to obtain practical results. Others

heavily rely on assumptions such as that parameters and structures of the network

with large weight magnitudes are more important, which does not hold in general (Li

et al., 2016; Ye et al., 2018; Yu et al., 2018b).

In short, we currently lack a principled understanding of what constitutes an

efficient or optimally-parameterized architecture, what are the trade-offs between

different architectures, and what are algorithms that enable us to obtain optimally-

parameterized neural networks. Much of modern machine learning research is driven

by empirical performance, which is justified as many of the application are ultimately

driven by the empirical success of such models. Despite the predominantly empirical

nature of deep learning, we are motivated by the vision that theoretical insights and

principled approaches to designing and training neural networks inherently yield more

efficient, more scalable, and more performant models.

1.2 Vision

The vision of this thesis is thus to enable the wide-spread adaptation of deep learning-

based systems and applications beyond current, mostly cloud-based applications. We

do so by advancing our theoretical understanding and practical toolkit for efficiently

39

designing and deploying such systems. In today’s machine learning systems, large

parts of the system itself, specifically the architecture and the associated hyperpa-

rameters, are predominantly hand-engineered. Consequently, these parts are neither

well-understood nor optimized for efficiency. This makes the design process of intel-

ligent machine learning systems prohibitively expensive for small-scale systems, such

as Internet of Things (IoT) devices, mobile device, or robots. For example, to design

a deep neural network for a robot, we currently need to design, test, and tune the

architecture of the network to ensure adequate performance on the target application,

e.g., robot control. Simultaneously, we must ensure that we meet the computational

resource constraints of the system, e.g., a small microcontroller.

By contrast, the techniques proposed as part of this thesis enable a more principled

understanding of deep learning. Thereafter, this thesis introduces methods building

upon our improved theoretical understanding to automatically design and implement

more efficient neural networks. As a result, the design process, e.g., for a learning-

based robotic system, becomes less cumbersome and more flexible. At the same time,

we enable faster prototyping times and the ability to conveniently pick the optimal

trade-off between performance and computation time suited for the task at hand. We

envision that the techniques presented in this thesis will therefore be a driving force

in broadening the range of possible applications for deep learning previously inhibited

by the resource- and labor-intensive nature of current state-of-the-art systems.

1.3 Challenges

In order to realize our vision we have to overcome fundamental challenges of con-

ceptual as well as theoretical and practical nature. Below, we discuss key technical

challenges that this thesis aims to make progress towards solving.

1.3.1 Provable Coresets for Layers

A prototypical NN usually consists of a number of linear and non-linear layers, i.e.,

operations, that are either stacked together sequentially, in parallel, or a combination

40

thereof. Having a precise understanding and tight (analytical) description of indi-

vidual layers can thus serve as crucial starting point for analyzing neural network

architectures. Specifically, linear layers usually contain the vast majority of param-

eters (and thus computational complexity of the network). We note that provable

approximation techniques for large-scale linear algebra in itself is a well-studied prob-

lem, e.g., see the work of Achlioptas et al. (2013). However, the challenge hereby

lies in developing techniques that maximize the parameter-efficiency trade-offs using

insights from the actual input data distribution of the network. Unlike generic ma-

trices, individual layers of neural networks are trained for specific input data – an

insight that we can leverage to develop more efficient approximation techniques.

In this thesis, we analyze individual (linear) layers of neural networks to provably

quantify the trade-off between approximation quality and size of the layer. We build

upon the rich body of literature in coresets (Feldman, 2020), i.e., a weighted subset

of the original set of points (or parameters in this case). Coreset techniques can be

used to analytically describe the original set up to some desired approximation error

and have found numerous applications in classical machine learning problems such

as k-means (Feldman et al., 2007). Moreover, we consider designing and analyzing

our coreset techniques in a data-informed manner, thus leveraging the network- and

data-dependent distribution of inputs to the various layers.

1.3.2 Composable Neural Network Pruning Guarantees

Neural network architectures can be arbitrarily composed out of individual layers giv-

ing rise to a diverse set of architectures. Thus, in addition to deciphering individual

layers, our network analysis has to be composable and adaptable according to the

given architecture. The challenge hereby lies in accurately describing the approxi-

mation error across multiple layers and capturing how errors propagate through the

network in order to leverage our layer-wise coresets analysis.

To this end, we develop a composable error analysis for simultaneously compress-

ing multiple layers of a neural network. We also incorporate concepts of generalization

theory from the neural network literature (Arora et al., 2018) to bridge the fields of

41

neural network pruning and generalization theory. Both fields share the common goal

of understanding the trade-offs between the size and performance of the network.

1.3.3 Practical Pruning from Theoretical Guarantees

While theoretical frameworks and bounds can provide comprehensive insights into the

foundation of deep learning, instantiating them for practical, large-scale architectures

often leads to loose bounds. Consequently, there exists a large gap between theoret-

ical predictions and empirical observations in the neural network literature. Thus,

considering the transition of theoretical guarantees into practical algorithms requires

a careful trade-off between relevant parts of the theoretical analysis and observation-

driven algorithms that are usually heuristic in nature. In the context of pruning, it is

particularly challenging to capture the global effects of pruning individual layers. In

order words, we need to be able to handle the trade-off between how much each indi-

vidual layer should be pruned in order to obtain an approximately optimal network

for the desired size.

Building upon our theoretical coresets tools, we develop practical pruning algo-

rithms advancing the Pareto-optimal frontier of performance-size trade-offs for neural

networks. We consider mainly vision networks that are composed of numerous indi-

vidual layers of different types, including linear, convolutional, batch normalization,

and non-linear activation layers. Moreover, we frame the per-layer pruning problem

as a constrained optimization problem. The goal is to achieve minimal overall dif-

ference in loss compared to the original, unpruned network subject to some desired

overall reduction in network parameters.

1.3.4 Modular Compression Techniques

Beyond parameter efficiency in terms of weights, we can consider other structures

of the network as well and investigate their redundancy. This question is related to

dimensionality reduction (Cohen et al., 2015) and can provide useful insights into the

macro parameters of the network architecture, such as the minimal required width

42

of individual layers. From a implementation perspective we note that the former

requires specialized software and hardware to leverage the resulting sparsity, while

the latter directly emits a smaller architecture leading to faster runtimes in practice.

In addition to unstructured pruning, i.e., removing individual weights, we provide

a principled approach to structured pruning, i.e., removing filters and neurons, and

low-rank compression. We generalize our notion of parameter pruning to pruning

substructures and provide the accompanying theoretical compression guarantees. In

addition, we consider low-rank compression as an alternative subprocedure to dimen-

sionality reduction and highlight how we can incorporate low-rank decomposition into

our pruning framework.

1.3.5 Scalable Pruning Solutions

The usual design process for neural network architectures requires a human expert

to parameterize each layer individually in a labor-intensive, iterative process. Al-

ternatively, prior work considered NAS, e.g., see the recent approaches of Cai et al.

(2018); Liu et al. (2019a). The search essentially proceeds by optimizing over both

the weights and connections of a generic architecture thus significantly decreasing the

human labor effort at the cost of a significant increase in computational complexity.

A fundamental challenge towards more scalable and automated training of efficient

neural networks is thus to overcome the trade-offs between automated design and the

resulting computational cost of the interleaved training and design process.

In this thesis, we leverage our insights on pruning via composable coresets to

devise algorithm that can significantly reduce the human effort required to design

novel architectures. Specifically, we leverage our network analysis to understand how

a given base architecture can be optimally pruned and re-factored to suit the task

at hand while simultaneously generating an architecture with minimal inference cost.

We incorporate both structured pruning and low-rank decomposition into our pruning

framework enabling us to significantly reduce the dimensionality of layers leading to

novel architectures on the fly.

43

1.3.6 Generalization and Robustness in Pruning

Complementary to our theoretical understanding of pruning and generalization, study-

ing practical aspects of generalization can provide crucial insights into the perfor-

mance capabilities of neural networks. Since pruned networks are highly optimized

for efficiency, we have to vigilantly examine their potential side effects, brittleness,

or bias to an even greater extent than for regular networks. The challenge is thus to

develop measurable and practical benchmarks that enable us to reliably quantify the

performance of a pruned network across a wide range of tasks.

Specifically, in this thesis we establish empirical benchmarks to more accurately

assess the performance-size trade-off of pruned networks that go beyond simple met-

rics such as test accuracy. We study networks from a practical lens when faced with

out-of-distribution input data points in order to understand how pruned networks

differ. Our insights shed light on the need to consider task-specific evaluation metrics

during pruning, prior to the deployment of a pruned network to, e.g., safety-critical

systems such as robots. In that sense, we aim to provide a robust, empirical frame-

work to measure the amount of genuine overparameterization in networks.

1.3.7 Improved Generalization via Pruning

Pruning provides a principled approach to optimize the computational efficiency of

deep learning practice. More broadly speaking, we can study the training and the

design of neural networks through the lens of pruning. Here we are interested in un-

derstanding whether pruning may improve the stability of training or potentially lead

to more performant architectures in the first place. To examine this question further,

we consider the model of neural ordinary differential equations (neural ODEs) (Chen

et al., 2018b) and other time-continuous neural networks (Grathwohl et al., 2019).

Unlike regular, fixed-depth networks, neural ODEs can naturally model depth-varying

(time-varying) tasks. Applications include robotic control tasks, where we want to

control the robot at arbitrary moments in time (Lechner et al., 2020a), and generative

models, where the transformation from noise to data is modelled in a time-continuous

44

fashion (Grathwohl et al., 2019). Due to the depth-varying nature of such models,

designing an appropriate architecture becomes an even more challenging task. In

addition, the training is more prone to suffer from numerical issues such as exploding

or vanishing gradients (Lechner and Hasani, 2020).

In this thesis, we investigate continuous-depth models via pruning to understand

some of their inherent generalization properties. Based on these insights, we devise

a framework to train sparse, continuous-depth models. We improve upon the ex-

isting performance-size trade-off in typical generative modeling tasks such as image

generation (Grathwohl et al., 2019). Overall, sparse models lead to better practical

performance while requiring less parameters and sometimes less training as well.

1.4 Contributions

Towards overcoming the challenges outlined in the previous section, we present novel

techniques that are based on theoretically-grounded algorithms to reduce the size and

inference cost of modern large-scale neural networks. We present practical modifi-

cations to our algorithms and study their effectiveness in a variety of experimental

settings. Finally, we study the effects of pruning neural networks in the context of

robustness and generalization beyond typical benchmarks.

1.4.1 Overview of Contributions

List of Contributions

This thesis contributes the following:

• A provable pruning approach via coresets for any linear neural network layer

followed by an error analysis for composed networks and its application to gen-

eralization bounds.

• A generalization of our coreset tools and analysis to structured pruning in con-

junction with a theoretically-grounded, yet practical approach to filter pruning

for arbitrary network architectures.

45

• A unified pruning framework extending our pruning results to decomposition-

based, low-rank compression with empirical pruning benchmarks highlighting

the efficacy of the proposed method.

• A large-scale empirical study on the limitations of pruning and on the gen-

eralization properties of pruned neural networks including out-of-distribution

robustness properties.

• An investigation of continuous-depth neural network models with applications

to vision-based generative modeling tasks leading to enhanced generalization

capabilities of such architectures via pruning.

New Capabilities

By taking a theoretical approach from first principles, we analytically describe the

performance-size trade-offs, i.e., the generalization properties, of modern neural net-

works. To the best of our knowledge, we provide the first coreset-based analysis

and accompanying theoretical error guarantees of compressed neural networks. Our

approach is flexible with regards to the architecture, accounts for various types of

pruning, and provides novel insights into the theoretical study of neural networks.

We then leverage our coreset tools to devise practical algorithms for obtaining

efficient neural network architectures via pruning. Building upon our novel approach

to network pruning, we conceive a modular, fully-automated framework to neural

network compression. We highlight its efficacy in the context of structured pruning

and low-rank compression. Compared to prior work, we achieve higher prune ratios

for the same accuracy levels while simultaneously providing a set of more flexible and

automated pruning procedures. Hence, our pruning techniques are not only highly

effective in practice but also broadly applicable beyond common benchmarks due to

minimal required effort for hyperparameter tuning.

Finally, we study practical aspects of the generalization properties of pruned neu-

ral networks beyond simple metrics such as test accuracy and consider how pruning

may negatively affect their robustness properties. In a separate study, we highlight

46

that pruning can also have a significant positive impact on the generalization per-

formance of generative, continuous-depth models including generative modeling of

images. Unlike prior work, which is predominantly focused on obtaining the smallest

network possible for a desired level of accuracy, our work highlights that pruning may

alter the generalization abilities of networks beyond the aforementioned performance-

size trade-offs. In that sense, we open up an array of potential future work to study

pruning as a novel means to regularize the training of neural networks.

1.4.2 Open-source Implementation

Apart from the results presented in this thesis, we contribute an open-source library

for pytorch-based neural network pruning and compression:

• Lucas Liebenwein. Torchprune: A research library for pytorch-based neural

network pruning, compression, and more. https://github.com/lucaslie/

torchprune, 2021.

The aforementioned library contains the necessary code and hyperparameters to re-

produce the experimental results presented throughout this thesis. In addition, our

code also contains the pruning and compression methods contributed by this thesis as

well as commonly-used benchmark pruning methods. Finally, we provide a modular

application programming interface (API) to build on top of our research code.

1.4.3 Detailed Contributions

We provide a chapter-by-chapter overview of our contributions below including ref-

erences to the papers on which the respective contributions are based.

Sensitivity-informed Compression Bounds

We introduce a provable approach to weight pruning via layer-wise sparsification of

trained, fully-connected models in a way that approximately preserves the model’s

predictive accuracy. Based on the insight that we can leverage a small batch of input

47

https://github.com/lucaslie/torchprune
https://github.com/lucaslie/torchprune

data points to approximately estimate the relative importance of individual parame-

ters, we derive a provable sparsification scheme for individual layers. We then derive

compositional network compression bounds that analytically capture and quantify

the parameter-error trade-off when pruning a network that is sequentially composed

of individual layers. Finally, we present weight pruning results for fully-connected

networks. Our empirical results suggest that our framework reliably generates com-

pressed networks and outperforms existing provable approaches to matrix sparsifica-

tion in the context of neural networks. In short, our contributions are as follows:

• A provable coreset approach to sparsifying neural network parameters via im-

portance sampling based on a novel, empirical notion of sensitivity.

• Analytical results establishing guarantees on the approximation accuracy, size,

and generalization of the compressed neural network.

• Evaluations on real-world data sets that demonstrate the practical effectiveness

of our algorithm in compressing neural network parameters and validate our

theoretical results.

These results are based on the following joint papers with Cenk Baykal:

• Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela

Rus. Data-dependent coresets for compressing neural networks with applica-

tions to generalization bounds. In International Conference on Learning Rep-

resentations, 2019.

• Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela

Rus. Sipping neural networks: Sensitivity-informed provable pruning of neural

networks. SIAM Journal on Mathematics of Data Science (Under Review; arXiv

preprint arXiv:1910.05422), 2021b.

We present our results in Chapter 3. For further context and additional results, we

may also refer the interested reader to Cenk Baykal’s doctoral thesis (Baykal, 2021).

48

Provable Filter Pruning

We present a provable approach for generating compact convolutional neural networks

(CNNs) by identifying and removing redundant filters from an over-parameterized

network. Our algorithm uses a small batch of input data points to assign a saliency

score to each filter and constructs an importance sampling distribution where filters

that highly affect the output are sampled with correspondingly high probability. In

contrast to existing filter pruning approaches, our method is simultaneously data-

informed, exhibits provable guarantees on the size and performance of the pruned

network, and is widely applicable to varying network architectures and data sets.

Our analytical bounds bridge the notions of compressibility and importance of net-

work structures, which gives rise to a fully-automated procedure for identifying and

preserving filters in layers that are essential to the network’s performance. Our exper-

imental evaluations on popular architectures and data sets show that our algorithm

consistently generates sparser and more efficient models than those constructed by

existing filter pruning approaches. Our contributions here are as follows:

• An extension of our provable coreset approach in the context of filter and neuron

pruning based on a generalized notion of empirical sensitivity.

• Analytical results establishing guarantees on the trade-off between approxima-

tion accuracy and size of the pruned neural network.

• An improved pruning framework via a mixture approach of sampling-based

and deterministic pruning and accompanying analysis highlighting the improved

sample efficiency.

• A layer-wise allocation procedure to optimally allocate a per-layer prune budget

based on our layer-wise theoretical error guarantees.

• Evaluations on large-scale data sets and networks that demonstrate the practical

effectiveness of our algorithm in compressing neural networks via filter pruning.

These results are based on the following paper:

49

• Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus.

Provable filter pruning for efficient neural networks. In International Conference

on Learning Representations, 2020.

We present our results in Chapters 4 and 5.

Automatic Layer-wise Decomposition Selector (ALDS)

We present a novel global compression framework for neural networks that automat-

ically analyzes each layer to identify the optimal per-layer compression ratio, while

simultaneously achieving the desired overall compression. Our algorithm hinges on

the idea of compressing each convolutional (or fully-connected) layer by “slicing” its

channels into multiple groups and decomposing each group via low-rank decomposi-

tion. At the core of our algorithm is the derivation of layer-wise error bounds from

the Eckart–Young–Mirsky theorem. We then leverage these bounds to frame the

compression problem as an optimization problem, where we wish to minimize the

maximum compression error across layers and propose an efficient algorithm towards

a solution. Our experiments indicate that our method outperforms existing low-rank

compression approaches across a wide range of networks and data sets. In short, our

contributions are as follows:

• An efficient layer-wise decomposition framework relying on a straightforward

decomposition of each layer that is based on the singular value decomposition

(SVD).

• A generalization of our layer-wise decomposition via an automatically-determined

splitting of the underlying weight tensor into multiple subsets.

• A global framework that optimally determines the type of decomposition (num-

ber of subsets) and the optimal per-layer low-rank compression based on mini-

mizing the maximum relative error incurred.

• Extensive experimental evaluations on multiple benchmarks, models, and datasets,

including large-scale datasets, establishing the competitive performance of our

50

algorithm relative to existing approaches.

These results are based on the following paper:

• Lucas Liebenwein, Alaa Maalouf, Oren Gal, Dan Feldman, and Daniela Rus.

Compressing neural networks: Towards determining the optimal layer-wise de-

composition. In Advances in Neural Information Processing Systems (Under

Review; arXiv preprint arXiv:2107.11442), 2021c.

We present our results in Chapter 6.

Pruning Beyond Test Accuracy

We evaluate whether the use of test accuracy alone is sufficient to assess that pruned

models perform well across a wide spectrum of ”harder” metrics such as generaliza-

tion to out-of-distribution data and resilience to noise. Across evaluations on varying

architectures and data sets, we find that pruned networks effectively approximate the

unpruned model, however, the prune ratio at which pruned networks achieve commen-

surate performance varies significantly across tasks. These results call into question

the extent of genuine overparameterization in deep learning and raise concerns about

the practicability of deploying pruned networks, specifically in the context of safety-

critical systems, unless they are widely evaluated beyond test accuracy to reliably

predict their performance. In short, our contributions are as follows:

• A class of novel functional distance metrics for classification-based neural net-

works to investigate the functional similarities between pruned networks and

their unpruned counterpart.

• A principled approach to quantify the amount of overparameterization in a

network across multiple inference tasks via the notion of prune potential, i.e.,

the maximal prune ratio with commensurate performance.

• A unified framework to establish task-specific guidelines that help practition-

ers assess the effects of pruning during the design and deployment of neural

networks in practice.

51

• A broad range of experiments for multiple data sets, architectures, and pruning

methods showing that our observations hold across common pruning bench-

marks and real-world scenarios.

These contributions are based on the following paper:

• Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela

Rus. Lost in pruning: The effects of pruning neural networks beyond test accu-

racy. In A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings of Machine

Learning and Systems, volume 3, pages 93–138, 2021a.

We present our results in Chapter 7.

Pruning Continuous-depth Models

Continuous deep learning architectures enable learning of flexible probabilistic mod-

els for predictive modeling as neural ODE, and for generative modeling as continuous

normalizing flows (CNFs). We assess whether pruning can improve the generaliza-

tion performance of neural ODEs by extracting the essential weights while removing

redundant ones in order to improve the convergence properties of the training pro-

cedure. Specifically, we design a framework to decipher the internal dynamics of

such continuous-depth models by pruning their network architectures. Our empirical

results suggest that pruning improves generalization for neural ODEs in generative

modeling. Moreover, pruning finds minimal and efficient neural ODE representations

with up to 98% less parameters compared to the original network, without loss of

accuracy. Finally, we show that by applying pruning we can obtain insightful infor-

mation about the design of better neural ODEs.

Our contributions can be summarized as follows:

• A generic pruning framework for unstructured and structured pruning of continuous-

depth neural networks, including neural ODEs and CNFs.

• An extensive experimental analysis that highlights the improved generalization

performance of sparse neural ODEs in classification and generative modeling

tasks on low-dimensional toy data and high-dimensional tabular data.

52

• A generalization of our sparsity-inducing pruning framework to generative mod-

eling of images highlighting a loss-size trade-off with over an order-of-magnitude

improvement over prior work.

• A Hessian-based analysis of the training of sparse flows that indicates an im-

proved, i.e., flattened, loss landscape of pruned neural ODEs further corrobo-

rating our findings.

The results, which are presented in Chapter 8, are based on the following paper:

• Lucas Liebenwein, Ramin Hasani, Alexander Amini, and Daniela Rus. Sparse

flows: Pruning continuous-depth models. In Advances in Neural Information

Processing Systems (Under Review; arXiv preprint arXiv:2106.12718), 2021b.

1.5 Outline

The premise of the thesis is to develop practical algorithms for efficient and scalable

deep neural networks rooted in the theoretical foundations of coresets. The thesis is

structured according to the outline shown in Figure 1-1.

In Part I, we introduce the theoretical foundations for our pruning algorithms.

We study the problem of sparsifying the weights of a fully-connected network in

a way that the output of the network is provably approximated in Chapter 3. We

generalize our theoretical analysis and resulting compression bounds to pruning filters

in convolutional neural networks in Chapter 4. We also conduct preliminary pruning

experiments based on our theoretical analysis and derive novel generalization bounds

from our compression bounds.

In Part II, we focus on devising practical and efficient pruning algorithms derived

from our theoretical compression bounds. We introduce a novel approach to struc-

tured pruning, i.e., filter pruning, in Chapter 5 and provide experimental evidence to

highlight the effectiveness of our approach. In Chapter 6, we build upon our insights

into pruning to devise a global compression framework for low-rank compression that

53

simultaneously considers the overall compression ratio while optimizing for the per-

layer compression ratio.

In Part III, we consider various applications of pruning to study its effects in

greater depth. We investigate the effects of pruning on the generalization capa-

bilities of the network to out-of-distribution data in Chapter 7. In Chapter 8, we

analyze continuous-depth models and explore how pruning can help designing better-

generalizing and more efficient architectures for generative modeling tasks.

In Chapter 9, we conclude the thesis by discussing our findings, providing insights

into some of the crucial aspects of our work, and proposing directions for future work.

Efficient Deep Learning: From Theory To Practice

Part I:
Theoretical
Foundations

Part II:
Efficient Neu-
ral Networks

Part III:
Applications

Chapter 3:

Sensitivity-

informed

Compression

Bounds

for Neural

Networks

Chapter 4:

Generalized

Compression

Bounds

Chapter 5:

Provable

Filter

Pruning

Chapter 6:

Automatic

Layer-wise

Decom-

position

Chapter 7:

Pruning

Beyond Test

Accuracy

Chapter 8:

Pruning

Continuous-

depth

Models

Figure 1-1: An overview of the thesis research organized around the three parts.

54

Chapter 2

Related Work

This thesis is inspired by the diverse and rich literature on modern machine learning

and beyond. Overall, the process of designing and understanding neural networks,

their training, and their architectural properties are fundamental cornerstones in mod-

ern machine learning and serve as foundation to enable the empirical success of deep

learning across many machine learning disciplines and applications. Specifically, this

thesis builds upon prior work in the areas of coresets, deep learning, neural network

compression, pruning, and architecture design as well as applications thereof such as

computer vision, natural language processing, and robotics. We also draw inspirations

from the literature on specialized neural network architectures, such as continuous-

time and continuous-depth models that are frequently used to model time-series data.

2.1 Coresets and Theoretical Foundations

Coreset constructions were originally introduced in the context of computational ge-

ometry (Agarwal et al., 2005) and subsequently generalized for applications to other

problems via an importance sampling-based sensitivity framework (Braverman et al.,

2016; Langberg and Schulman, 2010). Coresets have been used successfully to ac-

celerate various machine learning algorithms such as 𝑘-means clustering (Braver-

man et al., 2016; Feldman and Langberg, 2011), graphical model training (Molina

et al., 2018), support vector machines (Baykal et al., 2017; Tukan et al., 2020a),

55

and logistic regression (Huggins et al., 2016). The surveys of Bachem et al. (2017);

Munteanu and Schwiegelshohn (2018) contain additional references as well. Other

coreset applications include dimensionality reduction (Laparra et al., 2015), com-

putational speed-ups (Maalouf et al., 2019), spectral clustering (Peng et al., 2015),

feature selection (Gallagher et al., 2017), graph theory (Zhang and Rohe, 2018), ran-

domized linear algebra (Cohen et al., 2015, 2017; Drineas et al., 2008; Maalouf et al.,

2020), active learning (Baykal et al., 2021a), and sampling-based reachability analy-

sis (Liebenwein et al., 2018).

Our work extends coreset constructions beyond classical machine learning appli-

cation to the realm of modern, deep-learning based systems. In contrast to most prior

work, we generate coresets for reducing the number of parameters rather than data

points. Via a novel construction scheme based on an efficiently-computable notion

of data-driven sensitivity our approach is amenable to deep learning pipelines and

stands in contrast to worst-case bounds often seen in other coresets literature.

2.2 Neural Network Compression and Pruning

The need to tame the excessive storage requirements and costly inference associated

with large, over-parameterized networks has led to a rich body of work in network

pruning and compression dating back to some of the early work by LeCun et al. (1990).

These approaches include those inspired by classical tensor decompositions (Denton

et al., 2014) applicable both during and after training (Alvarez and Salzmann, 2017;

Ioannou et al., 2015; Jaderberg et al., 2014; Kim et al., 2015b; Tai et al., 2015; Yu

et al., 2017). In a similar vein, there are approaches based on random projections and

hashing (Arora et al., 2018; Chen et al., 2015a,b; Shi et al., 2009; Ullrich et al., 2017;

Weinberger et al., 2009) that compress a pre-trained network. Other methods enable

inference speed-ups by embedding sparsity as an objective directly in the training pro-

cess (Alvarez and Salzmann, 2017; Ioannou et al., 2015), by using quantization (Gong

et al., 2014; Wu et al., 2016; Zhou et al., 2017), or by exploiting the tensor structure

to induce sparsity (Cheng et al., 2015; Choromanska et al., 2016; Sindhwani et al.,

56

2015; Wen et al., 2016; Zhao et al., 2017).

One of the most prevalent type of neural network compression entails pruning (Han

et al., 2015a), where individual weights or structures of a – usually pre-trained – net-

work are removed, which is then often times followed by a retraining period to regain

the original accuracy. In general, pruning can be categorized into two main types

of pruning: (i) unstructured pruning (Frankle and Carbin, 2019; Han et al., 2015a)

aims to reduce the number of non-zero parameters by inducing sparsity into weight

tensors, which can achieve high compression rates but requires specialized software

and/or hardware in order to achieve faster inference times; (ii) structured pruning (He

et al., 2018; Li et al., 2019b) aims to modify the structure of the underlying weight

tensors, which usually results in smaller compression rates but directly achievable

faster inference times without requiring specialized software (Luo and Wu, 2018). A

thorough overview of recent pruning approaches is, e.g., also provided by Blalock

et al. (2020); Gale et al. (2019); Hoefler et al. (2021); Liu et al. (2019c); Ye et al.

(2018).

Overall, one of the predominant drawbacks of these methods is that they require

laborious hyperparameter tuning, lack rigorous theoretical guarantees on the size and

performance of the resulting compressed network, and/or conduct compression in a

data-oblivious way. Consequently, these methods do not achieve optimal parameter

efficiency or require significantly more training time in order to obtain optimally-

pruned networks.

We discuss pruning and compression approaches most related to our proposed

contributions in more detail below.

2.2.1 Unstructured Pruning

Weight pruning (LeCun et al., 1990) techniques aim to reduce the number of weights

in a layer while approximately preserving its output. Such techniques hinge upon the

idea that only a few dominant weights within a layer are required to approximately

preserve the output. After assigning each weight a saliency score, e.g., its magni-

tude (Han et al., 2015a), the parameters of the network are usually sparsified by

57

deterministically removing those weights below a certain score (Frankle and Carbin,

2019; Guo et al., 2016; Han et al., 2015a; LeCun et al., 1990; Renda et al., 2020).

Approaches of this type also include the works of Aghasi et al. (2017); Dong et al.

(2017a); Iandola et al. (2016); Lebedev and Lempitsky (2016); Lin et al. (2017), where

the desired sparsity is embedded as a constraint or via a regularizer into the train-

ing pipeline, and those of Gamboa et al. (2020); Lee et al. (2019); Lin et al. (2020);

Molchanov et al. (2016, 2019); Yu et al. (2018b) that really on data-informed saliency

criteria to prune the network.

The research proposed in this thesis overcomes two major drawbacks of prior work:

(1) our proposed research exhibits rigorous theoretical guarantees of the effect that

the discarded weights can have on the compressed network, which, to the best of our

knowledge, is the first work to introduce a practical weight pruning algorithm with

provable guarantees; and (2) our work extends to structured pruning with favorable

empirical performance, which, unlike weight pruning, does not require specialized

hardware and sparse linear algebra libraries in order to speed up inference.

2.2.2 Structured Pruning via Filter Pruning

Pruning entire neurons and filters directly shrinks the network leading to smaller

storage requirements and improved inference-time performance on any hardware (Li

et al., 2019b; Luo and Wu, 2018). Lately, these approaches were investigated in many

papers (Chen et al., 2020; Dong et al., 2017b; He et al., 2019; Kang and Han, 2020; Li

et al., 2016, 2019b; Liu et al., 2019b; Ye et al., 2018, 2020). Usually, filters are pruned

by assigning an importance score to each neuron/filter, either solely weight-based (He

et al., 2018, 2017) or data-informed (Yu et al., 2018b), and removing those with a

score below a threshold. Most weight-based approach rely on taking the norm of the

filters to assign filter importance and subsequently prune unimportant filers. These

methods are data-oblivious heuristics that heavily rely on the assumption that filters

with large weight magnitudes are more important, which may not hold in general (Ye

et al., 2018). Moreover, Liu et al. (2019c) have noted that filter pruning may not

be effective when applied on a per-layer basis without global consideration of the

58

resulting architecture.

In general, prior work on neuron and filter pruning has focused on approaches that

either lack theoretical guarantees or a principled approach to allocating the sampling

budget across layers, requiring tedious ablation studies or settling for a naive uni-

form allocation across the layers. In contrast, our proposed methods assign saliency

scores to filters based on theoretical insights gained through our error analysis with

accompanying error bounds. Subsequently, we leverage our theoretical error bounds

to automatically identify important layers and allocate the user-specified prune ra-

tio across layers. We can thus leverage our methods to automatically optimize the

resulting architecture.

2.2.3 Low-rank Compression

Common approaches to low-rank compression entail leveraging tensor decomposi-

tions techniques such as Tucker-decomposition (Kim et al., 2015b), CP-decomposition

(Lebedev et al., 2015), Tensor-Train (Garipov et al., 2016; Novikov et al., 2015)

and others (Denil et al., 2013; Ioannou et al., 2017; Jaderberg et al., 2014). Other

decomposition-like approaches include weight sharing, random projections, and fea-

ture hashing (Arora et al., 2018; Chen et al., 2015a,b; Shi et al., 2009; Ullrich et al.,

2017; Weinberger et al., 2009). Alternatively, low-rank compression can be performed

via matrix decomposition, e.g., singular value decomposition (SVD). To this end, the

tensor is flattened before applying SVD as done by Denton et al. (2014); Sainath

et al. (2013); Tukan et al. (2020b); Xue et al. (2013); Yu et al. (2017) among oth-

ers. Chen et al. (2018a); Denton et al. (2014); Maalouf et al. (2021) also explore the

use of subspace clustering before applying low-rank compression to each cluster to

improve the approximation error. Notably, most prior work relies on some form of

expensive approximation algorithm – even to just solve the per-layer low-rank com-

pression, e.g., clustering or tensor decomposition. In this thesis, we instead focus on

the global compression problem and show that simple compression techniques (SVD

with channel slicing) are advantageous in this context as we can use them as efficient

subroutines. We note that we can even extend our algorithm to multiple, different

59

types of per-layer decomposition. Our insights lead to novel state-of-the-art results

for low-rank compressed networks.

2.2.4 Network-aware Compression

To determine the compression ratio of each layer, prior work suggests to account for

compression during training (Alvarez and Salzmann, 2017; Ioannou et al., 2015; Wen

et al., 2017; Xu et al., 2020), e.g., by training the network with a penalty that encour-

ages the weight matrices to be low-rank or sparse. Others suggest to select layer ranks

using variational Bayesian matrix factorization (Kim et al., 2015b). In their recent

paper, Chin et al. (2020) suggest to produce an entire set of compressed networks with

different accuracy/speed trade-offs. Our work was also inspired by a recent line of

work towards automatically choosing or learning the rank of each layer (Gusak et al.,

2019; Idelbayev and Carreira-Perpinán, 2020; Li and Shi, 2018; Tiwari et al., 2021;

Zhang et al., 2015b,c). We take such approaches further and suggest a global com-

pression framework that incorporates multiple decomposition techniques with more

than one hyper-parameter per layer (number of subspaces and ranks of each layer).

This approach increases the number of local minima in theory and helps improving

the performance in practice. Moreover, we consider such a framework both in the

context of structured pruning and low-rank compression highlighting novel types of

connections between these types of compression.

2.2.5 Retraining of Pruned Networks

Virtually any pruning approach is combined with an appropriate training and/or re-

training stage to regain the accuracy of the original network. For example, a potential

prune pipeline with retraining may proceed as follows:

1. Prune weights of the trained network according to some criterion of importance;

2. Retrain the resulting network to regain the full accuracy;

3. Iteratively repeat steps 1 & 2 to further reduce the size.

60

Moreover, pruning can be performed before (Lee et al., 2019; Tanaka et al., 2020;

Wang et al., 2020), during (Kusupati et al., 2020; Peste et al., 2021; Yu et al., 2018a;

Zhu and Gupta, 2017), or after training (Han et al., 2015a; Singh and Alistarh, 2020),

and repeated iteratively (Renda et al., 2020) as described above. Tuning hyperpa-

rameters for both training, pruning, and retraining is also critical for obtaining good

performance in practice as previously explored by Frankle and Carbin (2019); Gale

et al. (2019); Renda et al. (2020) among others.

Our work also exhibits improved performance when combined with more retraining

and/or iterative prune-retrain strategies. However unlike prior work, our proposed

methods exhibit tight error bounds that lead to improved performance in prune-

only scenarios where no retraining is performed or no data is available to retrain

the network. Our proposed methods also exhibit favorable performance compared to

state-of-the-art approaches in scenarios where the amount of retraining is limited.

2.3 Generalization of Neural Networks

2.3.1 Generalization

The generalization properties of neural networks have been extensively investigated

in various contexts (Bartlett et al., 2017; Dziugaite and Roy, 2017; Neyshabur et al.,

2017a). However, as pointed out by Neyshabur et al. (2017b), current approaches

to obtaining generalization bounds do not fully or accurately capture the empiri-

cal success of state-of-the-art neural network architectures. Recently, Arora et al.

(2018); Nagarajan and Kolter (2019); Zhou et al. (2018a) highlighted the close con-

nection between compressibility and generalization of neural networks. Arora et al.

(2018) presented a compression method based on the Johnson-Lindenstrauss (JL)

Lemma (Johnson and Lindenstrauss, 1984) and proved generalization bounds based

on succinct reparameterizations of the original neural network. Pruning is hereby

viewed as a form of noise injection into the network. By quantifying the (unpruned)

network’s ability to withstand random noise, they characterize the prunability of the

61

network to establish generalization bounds.

Building upon the work of Arora et al. (2018), we extend our theoretical coreset

results to establish novel generalization bounds. Unlike the method of Arora et al.

(2018), which exhibits guarantees of the compressed network’s performance only on

the set of training points, our method’s guarantees hold (probabilistically) for any

random point drawn from the data distribution. In addition, we establish that our

method can 𝜀-approximate the neural network output neuron-wise, which is stronger

than the norm-based guarantee of Arora et al. (2018). We also empirically investigate

the generalization ability of pruned networks under changes to the input distribution.

Unlike prior work, we establish a principled understanding of the performance-size

trade-off in neural networks under distribution changes. Specifically, for the first

time we show that as a result of pruning, the network’s ability to withstand noise and

other types of data corruption is diminished. In other words, the network’s ability

to generalize is “traded” in exchange for compactness even though the nominal test

accuracy, i.e., its nominal ability to generalize, is maintained.

2.3.2 Robustness

Our work builds on and extends previous work that investigates the robustness of

pruned networks. Recently, Gamboa et al. (2020); Guo et al. (2018); Wang et al.

(2018); Ye et al. (2019); Zhao et al. (2018) investigated the effects of adversarial inputs

on pruned networks, however, the resulting evidence is inconclusive. While Gamboa

et al. (2020); Guo et al. (2018) report that adversarial robustness may improve or

remain the same for pruned networks, Wang et al. (2018); Ye et al. (2019); Zhao

et al. (2018) report decreased robustness for pruned networks. Concurrently, the

work of Hooker et al. (2019) investigated whether certain class accuracies are more

affected than others. In contrast to prior work, we investigate both the functional

similarities of pruned networks and the task-specific prune potential, i.e., the maximal

prune ratio possible without loss in accuracy. Based on the findings of this thesis, we

highlight the need to assess pruned networks across a wide variety of tasks to safely

deploy networks due to the unpredictable nature of a network’s prune potential.

62

2.3.3 Robust Training and Pruning

Among others, Dhillon et al. (2018); Wijayanto et al. (2019) investigated pipelines

that incorporate pruning and robust training to obtain simultaneously sparse and

robust networks. Gui et al. (2019); Sehwag et al. (2019) use magnitude-based prun-

ing (Han et al., 2015a) to train sparse, robust networks, while the work of Sehwag

et al. (2020) incorporates the robustness objective into an optimization-based pruning

procedure. The results presented in this thesis offer a complementary viewpoint to

the findings of prior work in that we can indeed efficiently train pruned networks that

are (adversarially) robust. However, for the first time we show that pruned networks

are disproportionally more affected by distributional changes in the input regardless

of the training procedure.

2.3.4 Implicit Regularization via Overparameterization

Our work also relates to the beneficial role of overparameterization in deep learn-

ing (Allen-Zhu et al., 2019; Zhang et al., 2016). Conventional wisdom (Du et al.,

2019; Neyshabur et al., 2015, 2018, 2019) states that stochastic gradient methods

used for training implicitly regularize the network. This in turn ensures that the net-

work generalizes well despite the potential to severely overfit. Moreover, the findings

of Belkin et al. (2019); Nakkiran et al. (2020) suggest that the implicit regularization

potential increases with the parameter count. Complementary to prior work, our

work thoroughly establishes that pruned networks suffer distinctly more from small

shifts in the input data distribution compared to unpruned networks. This is pos-

sibly due to the decreased implicit regularization potential as a result of the lower

parameter count. Finally, our findings highlight that explicit regularization in the

form of robust training can help regain some of the robustness properties that would

otherwise be lost.

63

2.4 Architecture Design and Search

The process of designing a suitable neural network architecture is a key ingredient

in deep learning going back to the very early days of neural networks (Miller et al.,

1989). Many break-through advancements in performance can be traced back to novel

architectural designs, e.g., the advent of convolutional neural networks (Krizhevsky

et al., 2012) during the ILSVRC challenge (Russakovsky et al., 2015) or the more

recent advancements in attention layers (Vaswani et al., 2017) for natural language

processing. These advancements usually stem from tedious, manual design iterations

with very little automation mostly relying on scientific intuition rather than algorith-

mic and/or theoretical advancements (Liu et al., 2019a). For example, convolutional

neural networks (CNNs) slowly improved over the years via numerous, small refine-

ments including residual connections (He et al., 2016), batch normalization (Ioffe

and Szegedy, 2015), fully-convolutional network architectures (Long et al., 2015),

improved depth-width trade-offs (Zagoruyko and Komodakis, 2016), and separable

convolutions (Chollet, 2017). And CNNs are still being improved up to this day, e.g.,

see the recent work of Brock et al. (2021).

Prior work has thus considered the idea of automatically optimizing the archi-

tecture design in order to minimize the human effort required, e.g., see the recent

survey of Elsken et al. (2019). This process is commonly referred to as neural ar-

chitecture search (NAS). NAS approaches include evolutionary algorithms (Miller

et al., 1989), where the considered architectures are randomly evolved before being

trained and evaluated, and reinforcement learning (Zoph and Le, 2016), where the

final loss is considered as a reward signal to an agent that is being trained. Another

line of work considers the idea of differentiable architecture search (Liu et al., 2019a),

where relative importance scores for a set of architectural design features are learned

via gradient descent. Approaches of this flavor also include proxy-less architecture

search (Cai et al., 2018), where the weights and design features of the architectures are

co-optimized simultaneously via gradient descent. Moreover, neural network pruning

can be viewed as a light-weight form of (proxy-less) NAS, specifically in the context

64

of pruning layers at different prune ratios (Liu et al., 2019c).

Our work builds upon this observation by suggesting a fully-automated budget

allocation procedure that allocates an optimal per-layer prune ratio. Unlike prior

work, which predominantly relies on manual procedures or heuristics, our allocation

procedure is rooted in our coresets-based error analysis leading to more optimally

pruned network architectures. Beyond structured pruning, we develop coreset tools

for decomposition-based compression methods. Hence, we obtain another degree of

freedom to compress the parent architecture thus further improving upon the possible

parameter efficiency-performance trade-off. We then show how pruning can lead

to an enhanced understanding of neural architectures when designing continuous-

depth neural networks (Chen et al., 2018b) by providing insights into the sparsity-

generalization trade-off. In summary, our work attempts to shrink the gap between

neural architecture search, which is fully-automated but computationally expensive,

and a manual design procedure, which is computationally efficient but labor-intensive.

We do so by highlighting how pruning can be leveraged into an efficient, light-weight

architecture search procedure.

2.5 Continuous-depth Models

A continuous normalizing flow (CNF) (Chen et al., 2018b) efficiently (Grathwohl

et al., 2019) maps a latent space to data via ordinary differential equations (ODEs),

relaxing the strong constraints over discrete normalizing flows (Dinh et al., 2016;

Durkan et al., 2019; Huang et al., 2020; Kingma and Dhariwal, 2018; Papamakarios

et al., 2017; Rezende and Mohamed, 2015). CNFs enable learning flexible probabilistic

models by arbitrarily-chosen neural network topologies. This is in part enabled by

learning the derivative of an ODE that can encode complex dynamics. Moreover,

using adaptive numerical solvers for ODEs we obtain variable-depth architectures

on the fly. While recent works investigated ways to improve the efficiency of CNFs

(Finlay et al., 2020; Grathwohl et al., 2019; Hasani et al., 2021a; Li et al., 2020),

regularize the flows (Onken et al., 2020; Yang and Karniadakis, 2020), or solving some

65

of their shortcomings such as crossing trajectories (Dupont et al., 2019; Massaroli

et al., 2020), less is understood about their inner dynamics during and post training.

In this thesis, we use pruning algorithms to investigate generalization properties of

sparse neural ordinary differential equations (neural ODEs) and CNFs. In particular,

we investigate how the inner dynamics and the modeling performance of a continuous

flow vary if we methodologically prune its neural network architecture. Here, our

main objective is to better understand the dynamics of CNFs in density estimation

tasks as we increase the sparsity of the network. Finally, we show that pruning can

improve generalization in neural ODEs.

66

Part I

Theoretical Foundations

67

68

Chapter 3

Sensitivity-informed Compression

Bounds for Neural Networks

3.1 Overview

In this chapter, we consider the problem of sparsifying the parameters of a trained

neural network in a principled way so that the output of the compressed neural

network is approximately preserved. We introduce a neural network compression

approach based on identifying and removing weighted edges with low relative impor-

tance via coresets, small weighted subsets of the original set that approximate the

pertinent cost function. Our compression algorithm hinges on extensions of the tra-

ditional sensitivity-based coresets framework (Braverman et al., 2016; Langberg and

Schulman, 2010). In this sense, the work presented in this chapter aims to provide an-

alytical network compression bounds and highlight avenues towards practical pruning

algorithms that are inspired by the theoretical guarantees. We further highlight the

intrinsic connection between compression bounds and generalization bounds (Allen-

Zhu et al., 2019; Arora et al., 2018, 2019; Baykal et al., 2019; Neyshabur et al., 2019;

Zhou et al., 2018b).

69

3.1.1 Contributions

The main contributions of this chapter are as follows:

• A provable coreset approach to sparsifying neural network parameters via im-

portance sampling based on a novel, empirical notion of sensitivity.

• Analytical results establishing guarantees on the approximation accuracy, size,

and generalization of the compressed neural network.

• Evaluations on real-world data sets that demonstrate the practical effectiveness

of our algorithm in compressing neural network parameters and validate our

theoretical results.

3.1.2 Relevant Papers

The results presented in this chapter are based on the following joint papers with

Cenk Baykal:

• Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela

Rus. Data-dependent coresets for compressing neural networks with applica-

tions to generalization bounds. In International Conference on Learning Rep-

resentations, 2019.

• Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela

Rus. Sipping neural networks: Sensitivity-informed provable pruning of neural

networks. SIAM Journal on Mathematics of Data Science (Under Review; arXiv

preprint arXiv:1910.05422), 2021b.

For further context and additional results, we may also refer the interested reader to

Cenk Baykal’s doctoral thesis (Baykal, 2021).

3.1.3 Outline

We first define the neural network coreset problem in Section 3.2. Subsequently, we

introduce the neuron-wise sparsification procedure in Section 3.3 and analyze its per-

70

formance in Section 3.4. The main compression theorem is presented in Section 3.5

and we present preliminary compression results on fully-connected networks in Sec-

tion 3.6. We conclude the chapter with a discussion section (Section 3.7).

3.2 Problem Definition

3.2.1 Fully-connected Neural Networks

A feedforward fully-connected neural network (NN) with 𝐿 ∈ N+ layers and param-

eters 𝜃 defines a mapping 𝑓𝜃 : 𝒳 → 𝒴 for a given input 𝑥 ∈ 𝒳 ⊆ R𝑑 to an output

𝑦 ∈ 𝒴 ⊆ R𝑘 as follows. Let 𝜂ℓ ∈ N+ denote the number of neurons in layer ℓ ∈ [𝐿],

where [𝐿] = {1, . . . , 𝐿} denotes the index set, and where 𝜂0 = 𝑑 and 𝜂𝐿 = 𝑘 with

slight abuse of notation. Further, let 𝜂 =
∑︀𝐿

ℓ=1 𝜂
ℓ and 𝜂* = maxℓ∈{1,...,𝐿} 𝜂

ℓ. For

layers ℓ ∈ {1, . . . , 𝐿}, let 𝑊 ℓ ∈ R𝜂ℓ×𝜂ℓ−1
be the weight matrix for layer ℓ with entries

denoted by 𝑤ℓ
𝑖𝑗, rows denoted by 𝑤ℓ

𝑖 ∈ R1×𝜂ℓ−1
, and 𝜃 = (𝑊 1, . . . ,𝑊𝐿). For notational

simplicity, we assume that the bias is embedded in the weight matrix. Then for an

input vector 𝑥 ∈ R𝑑, let 𝑎0 = 𝑥 and 𝑧ℓ = 𝑊 ℓ𝑎ℓ−1 ∈ R𝜂ℓ , ∀ℓ ∈ {1, . . . , 𝐿}, where

𝑎ℓ−1 = 𝜑(𝑧ℓ−1) ∈ R𝜂ℓ−1
denotes the activation. We consider the activation function

to be the rectified linear unit (ReLU) function, i.e., 𝜑(·) = max{· , 0} (entry-wise, if

the input is a vector). The output of the network for an input 𝑥 is 𝑓𝜃(𝑥) = 𝑧𝐿, and in

particular, for classification tasks the prediction is argmax𝑖∈[𝑘] 𝑓𝜃(𝑥)𝑖 = argmax𝑖∈[𝑘] 𝑧
𝐿
𝑖 .

Note that sometimes we may refer to weights and neurons as edges and nodes instead.

3.2.2 Neural Network Coreset Problem

Consider the setting where a neural network 𝑓𝜃(·) has been trained on a training set

of independent and identically distributed (i.i.d.) samples from a joint distribution on

𝒳 × 𝒴 , yielding parameters 𝜃 = (𝑊 1, . . . ,𝑊𝐿). We further denote the input points

of a validation data set as 𝒫 = {𝑥𝑖}𝑛𝑖=1 ⊆ 𝒳 and the marginal distribution over the

input space 𝒳 as 𝒟. We define the size of the parameter tuple 𝜃, nnz(𝜃), to be the

sum of the number of non-zero entries in the weight matrices 𝑊 1, . . . ,𝑊𝐿.

71

For any given 𝜀, 𝛿 ∈ (0, 1), our overarching goal is to generate a reparameterization

𝜃, yielding the neural network 𝑓𝜃(·), using a randomized algorithm, such that the

number of number of nonzero (nnz) parameters is significantly reduced, i.e., nnz(𝜃)≪

nnz(𝜃), and the neural network output 𝑓𝜃(𝑥), 𝑥 ∼ 𝒟 can be approximated up to

1 ± 𝜀 multiplicative error with probability greater than 1 − 𝛿. We define the 1 ± 𝜀

multiplicative error between two 𝑘-dimensional vectors 𝑎, 𝑏 ∈ R𝑘 as the following

entry-wise bound: 𝑎 ∈ (1± 𝜀)𝑏 ⇔ 𝑎𝑖 ∈ (1± 𝜀)𝑏𝑖 ∀𝑖 ∈ [𝑘], and formalize the definition

of an (𝜀, 𝛿)-coreset as follows.

Definition 1 ((𝜀, 𝛿)-coreset). Given user-specified 𝜀, 𝛿 ∈ (0, 1), a set of parameters

𝜃 = (�̂� 1, . . . , �̂�𝐿) is an (𝜀, 𝛿)-coreset for the network parameterized by 𝜃 if for 𝑥 ∼ 𝒟,

it holds that

P̂
𝜃,𝑥

(𝑓𝜃(𝑥) ∈ (1± 𝜀)𝑓𝜃(𝑥)) ≥ 1− 𝛿,

where P𝜃,𝑥 denotes a probability measure with respect to a random data point 𝑥 and

the output 𝜃 generated by a randomized compression scheme.

3.3 Method

In this section, we introduce our neuron-wise sparsification procedure. Our method

is based on an importance sampling scheme that extends traditional sensitivity-based

coreset constructions to the application of compressing parameters in neural networks.

We further highlight how our neuron-wise sparsification procedure can be used to

compress entire networks.

3.3.1 Sparsifying Weights in Neurons

Our method hinges on the insight that a small subsample of the data points 𝒮 of ap-

propriate size (see Section 3.4 for details) can be used to gauge the relative importance

of incoming weights to a neuron.

Our algorithm to sparsify a neuron’s weights is presented in Algorithm 1. Note

that we call the procedure separately for either the positive or negative weights in-

72

coming to the neuron. This separation step is required in order to obtain valid

approximation guarantees as outlined in Section 3.4. The cached activations are used

to compute the sensitivity, i.e., relative importance, of each considered weight 𝑗 ∈ 𝒲

of neuron 𝑖 ∈ [𝜂ℓ], ℓ ∈ {1, . . . , 𝐿} (Algorithm 1, Lines 1-3). The relative importance

of each weight 𝑗 is computed as the maximum (over 𝑥 ∈ 𝒮) ratio of the weight’s con-

tribution to the sum of contributions of all (positive or negative) weights. In other

words, the sensitivity 𝑠𝑗 of a weight 𝑗 captures the highest (relative) impact 𝑗 had on

the output of neuron 𝑖 ∈ [𝜂ℓ] in layer ℓ across all 𝑥 ∈ 𝒮.

The sensitivities are then used to compute an importance sampling distribution

over the incoming weights (Lines 5-7). The intuition behind the importance sampling

distribution is that if 𝑠𝑗 is high, then the weight 𝑗 is more likely to have a high

impact on the output of neuron 𝑖, therefore we should keep the weight 𝑗 with a

higher probability. 𝑚 weights are then sampled with replacement (Lines 8-9) and the

sampled weights are then reweighed to ensure unbiasedness of our estimator (Lines 11-

13).

3.3.2 Neural Network Sparsification

In order to sparsify all the weights in a network we can invoke Algorithm 1 separately

for positive and negative weights of all neurons in the network. Given an appropriate

notion for the size of 𝒮 and the value of 𝜀 and 𝛿 we can sparsify each neuron in the

network while obtaining a provably compressed network. The appropriate notion for

𝜀, 𝛿, and 𝒮 will be clear from our analysis section and the corresponding network

compression bounds, see Section 3.4 and 3.5, respectively.

3.4 Analysis

In this section, we establish the theoretical guarantees of our neural network com-

pression method as outlined in Section 3.3.

73

Algorithm 1 SparsifyNeuron(𝒲 , 𝑤, 𝜀, 𝛿,𝒮, 𝑎(·))
Input: 𝒲 ⊆ [𝜂ℓ−1]: index set of either positive or negative weights; 𝑤 ∈ R1×𝜂ℓ−1

: row
vector corresponding to the weights incoming to neuron 𝑖 ∈ [𝜂ℓ] in layer ℓ ∈ {1, . . . , 𝐿};
𝜀, 𝛿 ∈ (0, 1): error and failure probability, respectively; 𝒮 ⊆ 𝒫: subsample of the original
point set; 𝑎(·): cached activations of previous layer for all 𝑥 ∈ 𝒮.
Output: �̂�: sparse weight vector.

1: for 𝑗 ∈ 𝒲 do

2: 𝑠𝑗 ← max𝑥∈𝒮
𝑤𝑗𝑎𝑗(𝑥)∑︀

𝑘∈𝒲 𝑤𝑘𝑎𝑘(𝑥)
; ◁ Compute the sensitivity of each edge

3: end for

4: 𝑆 ←
∑︀

𝑗∈𝒲 𝑠𝑗 ;

5: for 𝑗 ∈ 𝒲 do

6: 𝑞𝑗 ← 𝑠𝑗
𝑆 ; ◁ Generate the importance sampling distribution over the incoming edges

7: end for

8: 𝑚←
⌈︁
8𝑆 𝐾 log(8 𝜂/𝛿)

𝜀2

⌉︁
; ◁ Compute the number of required samples

9: 𝒞 ← a multiset of 𝑚 samples from 𝒲 where each 𝑗 ∈ 𝒲 is sampled with probability 𝑞𝑗 ;

10: �̂� ← (0, . . . , 0) ∈ R1×𝜂ℓ−1
; ◁ Initialize the compressed weight vector

11: for 𝑗 ∈ 𝒞 do

12: �̂�𝑗 ← �̂�𝑗 +
𝑤𝑗

𝑚𝑞𝑗
; ◁ Entries are reweighted by 1

𝑚𝑞𝑗
to ensure unbiasedness of our

estimator

13: end for

14: return �̂�;

3.4.1 Preliminaries

Let 𝑥 ∼ 𝒟 be a randomly drawn input point. We explicitly refer to the pre-activation

and activation values at layer ℓ ∈ {1, . . . , ℓ} with respect to the input 𝑥 ∈ supp(𝒟),

where supp(𝒟) denotes the support of the distribution 𝒟, as 𝑧ℓ(𝑥) and 𝑎ℓ(𝑥), respec-

tively. The values of 𝑧ℓ(𝑥) and 𝑎ℓ(𝑥) at each layer ℓ will depend on whether or not

we compressed the previous layers ℓ′ ∈ {1, . . . , ℓ}. To formalize this interdependency,

we let 𝑧ℓ(𝑥) and �̂�ℓ(𝑥) denote the respective quantities of layer ℓ when we replace the

weight matrices 𝑊 1, . . . ,𝑊 ℓ in layers 1, . . . , ℓ by �̂� 1, . . . , �̂� ℓ, respectively.

For the remainder of this section (Section 3.4) we let ℓ ∈ {1, . . . , 𝐿} be an any

layer and let 𝑖 ∈ [𝜂ℓ] be an arbitrary neuron in layer ℓ. For the sake of readability,

we omit the the variable denoting the layer ℓ ∈ {1, . . . , 𝐿}, the neuron 𝑖 ∈ [𝜂ℓ],

and the incoming edge index 𝑗 ∈ [𝜂ℓ−1], whenever they are clear from the context.

For example, when referring to the intermediate value of a neuron 𝑖 ∈ [𝜂ℓ] in layer

74

ℓ ∈ {1, . . . , 𝐿}, 𝑧ℓ𝑖 (𝑥) = ⟨𝑤ℓ
𝑖 , �̂�

ℓ−1(𝑥)⟩ ∈ R with respect to a point 𝑥, we will simply

write 𝑧(𝑥) = ⟨𝑤, 𝑎(𝑥)⟩ ∈ R, where 𝑤 := 𝑤ℓ
𝑖 ∈ R1×𝜂ℓ−1

and 𝑎(𝑥) := 𝑎ℓ−1(𝑥) ∈ R𝜂ℓ−1×1.

Under this notation, the weight of an incoming edge 𝑗 is denoted by 𝑤𝑗 ∈ R.

3.4.2 Empirical Sensitivity for Positive Weights

In the following, we introduce our notion of relative importance of a neuron’s weight in

an arbitrary layer, denoted by empirical sensitivity (ES). For ease of presentation, we

will for now assume that all weights and input activations are entry-wise non-negative.

We then show how we can estimate the empirical sensitivity for any data point 𝑥 ∼ 𝒟

with high probability. Later on, we will derive an importance sampling bound from

our notion of empirical sensitivity. We begin by defining empirical sensitivity.

Definition of empirical sensitivity

To this end, let𝒲 = {𝑗 ∈ [𝜂ℓ−1] : 𝑤𝑗 > 0} ⊆ [𝜂ℓ−1] be the index set of incoming edges

with positive weights. We quantify the relative importance of each edge as follows.

Definition 2 (Relative Importance). The importance of an incoming edge 𝑗 ∈ 𝒲

with respect to an input 𝑥 ∈ supp(𝒟) is given by the function 𝑔𝑗(𝑥), where

𝑔𝑗(𝑥) =
𝑤𝑗 𝑎𝑗(𝑥)∑︀

𝑘∈𝒲 𝑤𝑘 𝑎𝑘(𝑥)
∀𝑗 ∈ 𝒲 .

Note that 𝑔𝑗(𝑥) is a function of the random variable 𝑥 ∼ 𝒟. We now present our

first assumption that pertains to the cumulative distribution function (CDF) of the

relative importance random variable.

Assumption 1. There exist universal constants 𝐾,𝐾 ′ > 0 such that for all 𝑗 ∈

𝒲, the CDF of the random variable 𝑔𝑗(𝑥) for 𝑥 ∼ 𝒟, denoted by 𝐹𝑗 (·), satisfies

𝐹𝑗 (𝑀𝑗/𝐾) ≤ exp (−1/𝐾′) , where 𝑀𝑗 = min{𝑦 ∈ [0, 1] : 𝐹𝑗 (𝑦) = 1}.

Assumption 1 is a technical assumption on the ratio of the weighted activations

that will enable us to rule out pathological problem instances where the relative

importance of each edge cannot be well-approximated using a small number of data

75

points 𝒮 ⊆ 𝒫 . Henceforth, we consider a uniformly drawn (without replacement)

subsample 𝒮 ⊆ 𝒫 , where |𝒮| = ⌈𝐾 ′ log (8 𝜂 𝜂*/𝛿)⌉, and define the sensitivity of an

edge as follows.

Definition 3 (Empirical Sensitivity). Let 𝒮 ⊆ 𝒫 be a subset of distinct points from

𝒫 𝑖.𝑖.𝑑.∼ 𝒟𝑛.Then, the sensitivity over positive edges 𝑗 ∈ 𝒲 directed to a neuron is

defined as 𝑠𝑗 = max𝑥∈𝒮 𝑔𝑗(𝑥).

Order Statistic Sampling

We now establish a couple of technical results that will quantify the accuracy of our

approximations of edge importance (i.e., sensitivity).

Lemma 1. Let 𝐾,𝐾 ′ > 0 be universal constants and let 𝒟 be a distribution with CDF

𝐹 (·) satisfying 𝐹 (𝑀/𝐾) ≤ exp(−1/𝐾 ′), where 𝑀 = min{𝑥 ∈ [0, 1] : 𝐹 (𝑥) = 1}. Let

𝒫 = {𝑋1, . . . , 𝑋𝑛} be a set of 𝑛 = |𝒫| i.i.d. samples each drawn from the distribution

𝒟. Let 𝑋𝑛+1 ∼ 𝒟 be an i.i.d. sample. Then,

P
(︂
𝐾 max

𝑋∈𝒫
𝑋 < 𝑋𝑛+1

)︂
≤ exp(−𝑛/𝐾).

Proof. Let 𝑋max = max𝑋∈𝒫 ; then,

P(𝐾𝑋max < 𝑋𝑛+1) =

∫︁ 𝑀

0

P(𝑋max < 𝑥/𝐾|𝑋𝑛+1 = 𝑥) 𝑑P(𝑥)

=

∫︁ 𝑀

0

P (𝑋 < 𝑥/𝐾)𝑛 𝑑P(𝑥) since 𝑋1, . . . , 𝑋𝑛 are i.i.d.

≤
∫︁ 𝑀

0

𝐹 (𝑥/𝐾)𝑛 𝑑P(𝑥) where 𝐹 (·) is the CDF of 𝑋 ∼ 𝒟

≤ 𝐹 (𝑀/𝐾)𝑛
∫︁ 𝑀

0

𝑑P(𝑥) by monotonicity of 𝐹

= 𝐹 (𝑀/𝐾)𝑛

≤ exp(−𝑛/𝐾 ′) CDF assumption,

and this completes the proof.

76

We now proceed to establish that the notion of empirical sensitivity is a good ap-

proximation for the relative importance. For this purpose, let the relative importance

𝑔𝑗(𝑥) of an edge 𝑗 after the previous layers have already been compressed be

𝑔𝑗(𝑥) =
𝑤𝑗 �̂�𝑗(𝑥)∑︀

𝑘∈𝒲 𝑤𝑘 �̂�𝑘(𝑥)
.

Lemma 2 (Empirical Sensitivity Approximation). Let 𝜀 ∈ (0, 1/2), 𝛿 ∈ (0, 1), ℓ ∈

{1, . . . , 𝐿}, Consider a set 𝒮 = {𝑥1, . . . , 𝑥𝑛} ⊆ 𝒫 of size |𝒮| ≥ ⌈𝐾 ′ log (8 𝜂 𝜂*/𝛿)⌉.

Then, conditioned on the event ℰ1/2 occurring, i.e., �̂�(𝑥) ∈ (1± 1/2)𝑎(𝑥),

P
𝑥∼𝒟

(︀
∃𝑗 ∈ 𝒲 : 𝐶 𝑠𝑗 < 𝑔𝑗(𝑥) | ℰ1/2

)︀
≤ 𝛿

8 𝜂
,

where 𝐶 = 3𝐾 and 𝒲 ⊆ [𝜂ℓ−1].

Proof. Consider an arbitrary 𝑗 ∈ 𝒲 and 𝑥′ ∈ 𝒮 corresponding to 𝑔𝑗(𝑥
′) with CDF

𝐹𝑗 (·) and recall that 𝑀 = min{𝑥 ∈ [0, 1] : 𝐹𝑗 (𝑥) = 1} as in Assumption 1. Note that

by Assumption 1, we have

𝐹 (𝑀/𝐾) ≤ exp(−1/𝐾 ′),

and so the random variables 𝑔𝑗(𝑥
′) for 𝑥′ ∈ 𝒮 satisfy the CDF condition required by

Lemma 1. Now let ℰ be the event that 𝐾 𝑠𝑗 < 𝑔𝑗(𝑥) holds. Applying Lemma 1, we

obtain

P(ℰ) = P(𝐾 𝑠𝑗 < 𝑔𝑗(𝑥)) = P
(︂
𝐾 max

𝑥′∈𝒮
𝑔𝑗(𝑥

′) < 𝑔𝑗(𝑥)

)︂
≤ exp(−|𝒮|/𝐾 ′).

Now let ℰ̂ denote the event that the inequality 𝐶𝑠𝑗 < 𝑔𝑗(𝑥) =
𝑤𝑗 �̂�𝑗(𝑥)∑︀

𝑘∈𝒲 𝑤𝑘 �̂�𝑘(𝑥)
holds

and note that the right side of the inequality is defined with respect to 𝑔𝑗(𝑥) and

not 𝑔𝑗(𝑥). Observe that since we conditioned on the event ℰ1/2, we have that �̂�(𝑥) ∈

(1± 1/2)𝑎(𝑥).

77

Now assume that event ℰ̂ holds and note that by the implication above, we have

𝐶 𝑠𝑗 < 𝑔𝑗(𝑥) =
𝑤𝑗 �̂�𝑗(𝑥)∑︀

𝑘∈𝒲 𝑤𝑘 �̂�𝑘(𝑥)
≤ (1 + 1/2)𝑤𝑗 𝑎𝑗(𝑥)

(1− 1/2)
∑︀

𝑘∈𝒲 𝑤𝑘 𝑎𝑘(𝑥)

≤ 3 · 𝑤𝑗 𝑎𝑗(𝑥)∑︀
𝑘∈𝒲 𝑤𝑘 𝑎𝑘(𝑥)

= 3 𝑔𝑗(𝑥).

where the second inequality follows from the fact that 1+1/2/1−1/2 ≤ 3. Moreover, since

we know that 𝐶 ≥ 3𝐾, we conclude that if event ℰ̂ occurs, we obtain the inequality

3𝐾 𝑠𝑗 ≤ 3 𝑔𝑗(𝑥)⇔ 𝐾 𝑠𝑗 ≤ 𝑔𝑗(𝑥),

which is precisely the definition of event ℰ . Thus, we have shown the conditional

implication
(︀
ℰ̂ | ℰ1/2

)︀
⇒ ℰ , which implies that

P(ℰ̂ | ℰ1/2) = P(𝐶 𝑠𝑗 < 𝑔𝑗(𝑥) | ℰ1/2) ≤ P(ℰ)

≤ exp(−|𝒮|/𝐾 ′).

Since our choice of 𝑗 ∈ 𝒲 was arbitrary, the bound applies for any 𝑗 ∈ 𝒲 . Thus,

we have by the union bound

P(∃𝑗 ∈ 𝒲 : 𝐶 𝑠𝑗 < 𝑔𝑗(𝑥) | ℰ1/2) ≤
∑︁
𝑗∈𝒲

P(𝐶 𝑠𝑗 < 𝑔𝑗(𝑥) | ℰ1/2) ≤ |𝒲| exp(−|𝒮|/𝐾 ′)

=

(︂
|𝒲|
𝜂*

)︂
𝛿

8𝜂
≤ 𝛿

8𝜂
.

In practice, the set 𝒮 referenced above is chosen to be a subset of the validation

data.

3.4.3 Importance Sampling Bounds for Positive Weights

Under the positive weight assumption, we now establish approximation guarantees

under the assumption that the weights are positive. We will leverage our notion

78

of empirical sensitivity to derive an importance sampling distribution over the set of

weights incoming to a neuron and establish a corresponding approximation guarantee.

Positive Weight Sparsification

Our first lemma establishes a core result that relates the weighted sum with respect

to the sparse row vector �̂�,
∑︀

𝑘∈𝒲 �̂�𝑘 �̂�𝑘(𝑥), to the value of the of the weighted

sum with respect to the ground-truth row vector 𝑤,
∑︀

𝑘∈𝒲 𝑤𝑘 �̂�𝑘(𝑥). We remark

that there is randomness with respect to the randomly generated row vector �̂�ℓ
𝑖 , a

randomly drawn input 𝑥 ∼ 𝒟, and the function �̂�(·) = �̂�ℓ−1(·) defined by the randomly

generated matrices �̂� 2, . . . , �̂� ℓ−1 in the previous layers. Unless otherwise stated, we

will henceforth use the shorthand notation P(·) to denote P�̂�ℓ, 𝑥. Moreover, for ease of

presentation, we will first condition on the event ℰ1/2 that �̂�(𝑥) ∈ (1± 1/2)𝑎(𝑥) holds.

This conditioning will simplify the preliminary analysis and will be removed in our

subsequent results.

Lemma 3 (Positive-Weights Sparsification). Let 𝜀, 𝛿 ∈ (0, 1), and 𝑥 ∼ 𝒟.

SparsifyNeuron(𝒲 , 𝑤, 𝜀, 𝛿,𝒮, 𝑎(·)) generates a row vector �̂� such that

P

(︃∑︁
𝑘∈𝒲

�̂�𝑘 �̂�𝑘(𝑥) /∈ (1± 𝜀)
∑︁
𝑘∈𝒲

𝑤𝑘 �̂�𝑘(𝑥) | ℰ1/2

)︃
≤ 3𝛿

8𝜂

where nnz(�̂�) ≤
⌈︁
8𝑆 𝐾 log(8 𝜂/𝛿)

𝜀2

⌉︁
, and 𝑆 =

∑︀
𝑗∈𝒲 𝑠𝑗.

Proof. Let 𝜀, 𝛿 ∈ (0, 1) be arbitrary. Moreover, let 𝒞 be the coreset with respect to the

weight indices 𝒲 ⊆ [𝜂ℓ−1] used to construct �̂�. Note that as in SparsifyNeuron,

𝒞 is a multiset sampled from 𝒲 of size 𝑚 =
⌈︁
8𝑆 𝐾 log(8 𝜂/𝛿)

𝜀2

⌉︁
, where 𝑆 =

∑︀
𝑗∈𝒲 𝑠𝑗 and

𝒞 is sampled according to the probability distribution 𝑞 defined by

𝑞𝑗 =
𝑠𝑗
𝑆

∀𝑗 ∈ 𝒲 .

Let

𝑧 =
∑︁
𝑘∈𝒲

�̂�𝑘 �̂�𝑘(𝑥)

79

be the approximate intermediate value corresponding to the sparsified matrix �̂� and

let

𝑧 =
∑︁
𝑘∈𝒲

𝑤𝑘 �̂�𝑘(𝑥).

Now define ℰ to be the (favorable) event that 𝑧 𝜀-approximates 𝑧, i.e., 𝑧 ∈ (1±𝜀)𝑧,

We will now show that the complement of this event, ℰc, occurs with sufficiently small

probability. Let 𝒵 ⊆ supp(𝒟) be the set of well-behaved points, i.e., the points for

which our empirical sensitivity approximately upper bounds the relative importance

of the weight for a particular input point, defined as follows:

𝒵 = {𝑥′ ∈ supp(𝒟) : 𝑔𝑗(𝑥
′) ≤ 𝐶𝑠𝑗 ∀𝑗 ∈ 𝒲} ,

where 𝐶 = 3𝐾. Let ℰ𝒵 denote the event that 𝑥 ∈ 𝒵.

Conditioned on ℰ𝒵 , event ℰc occurs with probability ≤ 𝛿
4𝜂
: Let 𝑥 ∼ 𝒟 such

that 𝑥 ∈ 𝒵 and let 𝒞 = {𝑐1, . . . , 𝑐𝑚} be 𝑚 samples from𝒲 with respect to distribution

𝑞 as before. Define 𝑚 random variables 𝑇𝑐1 , . . . , 𝑇𝑐𝑚 such that for all 𝑗 ∈ 𝒞

𝑇𝑗 =
𝑤𝑗 �̂�𝑗(𝑥)

𝑚𝑞𝑗
=

𝑆 𝑤𝑗 �̂�𝑗(𝑥)

𝑚𝑠𝑗
. (3.1)

For any 𝑗 ∈ 𝒞, we have for the conditional expectation of 𝑇𝑗:

E [𝑇𝑗 | ℰ𝒵 , ℰ1/2] =
∑︁
𝑘∈𝒲

𝑤𝑘 �̂�𝑘(𝑥)

𝑚𝑞𝑘
· 𝑞𝑘

=
∑︁
𝑘∈𝒲

𝑤𝑘 �̂�𝑘(𝑥)

𝑚

=
𝑧

𝑚
.

Moreover, we also note that conditioning on the event ℰ𝒵 (i.e., the event that 𝑥 ∈ 𝒵)

does not affect the expectation of 𝑇𝑗. Let 𝑇 =
∑︀

𝑗∈𝒞 𝑇𝑗 = 𝑧 denote our approximation

80

and note that by linearity of expectation,

E [𝑇 | ℰ𝒵 , ℰ1/2] =
∑︁
𝑗∈𝒞

E [𝑇𝑗 | ℰ𝒵 , ℰ1/2] = 𝑧

Thus, 𝑧 = 𝑇 is an unbiased estimator of 𝑧; thus, we will henceforth refer to E [𝑇] as

simply 𝑧 for brevity.

For the remainder of the proof we will assume that 𝑧 > 0, since otherwise, 𝑧 = 0 if

and only if 𝑇𝑗 = 0 for all 𝑗 ∈ 𝒞 almost surely, which follows by the fact that 𝑇𝑗 ≥ 0 for

all 𝑗 ∈ 𝒞 by definition of𝒲 and the non-negativity of the ReLU activation. Therefore,

in the case that 𝑧 = 0, it follows that P(|𝑧 − 𝑧| > 𝜀𝑧) = P(𝑧 > 0) = P(0 > 0) = 0,

which trivially yields the statement of the lemma.

We now proceed with the case where 𝑧 > 0 and leverage the fact that 𝑥 ∈ 𝒵1 to

establish that for all 𝑗 ∈ 𝒲 :

𝐶𝑠𝑗 ≥ 𝑔𝑗(𝑥) =
𝑤𝑗 �̂�𝑗(𝑥)∑︀

𝑘∈𝒲 𝑤𝑘 �̂�𝑘(𝑥)
=

𝑤𝑗 �̂�𝑗(𝑥)

𝑧

⇔ 𝑤𝑗 �̂�𝑗(𝑥)

𝑠𝑗
≤ 𝐶 𝑧. (3.2)

Utilizing the inequality established above, we bound the conditional variance of each

𝑇𝑗, 𝑗 ∈ 𝒞 as follows

Var(𝑇𝑗 | ℰ𝒵 , ℰ1/2) ≤ E [(𝑇𝑗)
2 | ℰ𝒵 , ℰ1/2]

=
∑︁
𝑘∈𝒲

(𝑤𝑘 �̂�𝑘(𝑥))2

(𝑚𝑞𝑘)2
· 𝑞𝑘

=
𝑆

𝑚2

∑︁
𝑘∈𝒲

(𝑤𝑘 �̂�𝑘(𝑥))2

𝑠𝑘

≤ 𝑆

𝑚2

(︃∑︁
𝑘∈𝒲

𝑤𝑘 �̂�𝑘(𝑥)

)︃
𝐶 𝑧

=
𝑆 𝐶 𝑧2

𝑚2
.

1Since we conditioned on the event ℰ𝒵 .

81

Since 𝑇 is a sum of (conditionally) independent random variables, we obtain

Var(𝑇 | ℰ𝒵 , ℰ1/2) = 𝑚Var(𝑇𝑗 | ℰ𝒵 , ℰ1/2) ≤
𝑆 𝐶 𝑧2

𝑚
.

Now, for each 𝑗 ∈ 𝒞 let

̃︀𝑇𝑗 = 𝑇𝑗 − E [𝑇𝑗 | ℰ𝒵 , ℰ1/2] = 𝑇𝑗 − 𝑧 and ̃︀𝑇 =
∑︁
𝑗∈𝒞

̃︀𝑇𝑗.

Note that by the fact that we conditioned on 𝑥 ∈ 𝒵 (event ℰ𝒵), we obtain by definition

of 𝑇𝑗 in (3.1) and the inequality (3.2):

𝑇𝑗 =
𝑆 𝑤𝑗 �̂�𝑗(𝑥)

𝑚𝑠𝑗
≤ 𝑆 𝐶 𝑧

𝑚
. (3.3)

We also have that 𝑆 ≥ 1 by definition. More specifically, using the fact that the

maximum over a set is greater than the average and rearranging sums, we obtain

𝑆 =
∑︁
𝑗∈𝒲

𝑠𝑗 =
∑︁
𝑗∈𝒲

max
𝑥′∈𝒮

𝑔𝑗(𝑥
′)

≥ 1

|𝒮|
∑︁
𝑗∈𝒲

∑︁
𝑥′∈𝒮

𝑔𝑗(𝑥
′) =

1

|𝒮|
∑︁
𝑥′∈𝒮

∑︁
𝑗∈𝒲

𝑔𝑗(𝑥
′)

=
1

|𝒮|
∑︁
𝑥′∈𝒮

1 = 1.

Thus, the inequality established in (3.3) with the fact that 𝑆 ≥ 1 we obtain an upper

bound on the absolute value of the centered random variables:

|̃︀𝑇𝑗| =
⃒⃒⃒⃒
𝑇𝑗 −

𝑧

𝑚

⃒⃒⃒⃒
≤ 𝑆 𝐶 𝑧

𝑚
= 𝑀, (3.4)

which follows from the fact that:

if 𝑇𝑗 ≥ 𝑧
𝑚
: Then, by our bound in (3.3) and the fact that 𝑧

𝑚
≥ 0, it follows that

⃒⃒⃒ ̃︀𝑇𝑗

⃒⃒⃒
= 𝑇𝑗 −

𝑧

𝑚
≤ 𝑆 𝐶 𝑧

𝑚
− 𝑧

𝑚
≤ 𝑆 𝐶 𝑧

𝑚
.

82

if 𝑇𝑗 <
𝑧
𝑚
: Then, using the fact that 𝑇𝑗 ≥ 0 and 𝑆 ≥ 1, we obtain

⃒⃒⃒ ̃︀𝑇𝑗

⃒⃒⃒
=

𝑧

𝑚
− 𝑇𝑗 ≤

𝑧

𝑚
≤ 𝑆 𝐶 𝑧

𝑚
.

Applying Bernstein’s inequality to both ̃︀𝑇 and −̃︀𝑇 we have by symmetry and the

union bound,

P(ℰc | ℰ𝒵 , ℰ1/2) = P
(︀
|𝑇 − 𝑧| ≥ 𝜀𝑧 | ℰ𝒵 , ℰ1/2

)︀
≤ 2 exp

(︃
− 𝜀2𝑧2

2 Var(𝑇) + 2 𝜀 𝑧𝑀
3

)︃

≤ 2 exp

(︃
− 𝜀2𝑧2

2𝑆𝐶 𝑧2

𝑚
+ 2𝑆 𝐶 𝑧2

3𝑚

)︃

= 2 exp

(︂
−3 𝜀2𝑚

8𝑆 𝐶

)︂
≤ 𝛿

4𝜂
,

where the second inequality follows by our upper bounds on Var(𝑇) and
⃒⃒⃒ ̃︀𝑇𝑗

⃒⃒⃒
and the

fact that 𝜀 ∈ (0, 1), and the last inequality follows by our choice of 𝑚 =
⌈︁
8𝑆 𝐾 log(8 𝜂/𝛿)

𝜀2

⌉︁
.

This establishes that for any �̂�(·) satisfying 𝑥 ∈ 𝒵, the event ℰc occurs with probability

at most 𝛿
4𝜂

.

Removing the conditioning on ℰ𝒵 : We have by law of total probability

P(ℰ | �̂�(·), ℰ1/2) ≥
∫︁
𝑥∈𝒵

P(ℰ | ℰ𝒵 , ℰ1/2) P
𝑥∼𝒟

(𝑥 = 𝑥 | �̂�(·), ℰ1/2) 𝑑𝑥

≥
(︂

1− 𝛿

4𝜂

)︂∫︁
𝑥∈𝒵

P
𝑥∼𝒟

(𝑥 = 𝑥 | �̂�(·), ℰ1/2) 𝑑𝑥

=

(︂
1− 𝛿

4𝜂

)︂
P

𝑥∼𝒟
(ℰ𝒵 | �̂�(·), ℰ1/2)

≥
(︂

1− 𝛿

4𝜂

)︂(︂
1− 𝛿

8𝜂

)︂
≥ 1− 3𝛿

8𝜂

83

where the second-to-last inequality follows from the fact that P(ℰc | ℰ𝒵 , ℰ1/2) ≤ 𝛿
4𝜂

as was established above and the last inequality follows by Lemma 2. This concludes

the proof.

3.4.4 Importance Sampling Bounds for all Weights

We now relax the requirement that the weights are strictly positive and instead con-

sider the following index sets that partition the weighted edges: 𝒲+ = {𝑗 ∈ [𝜂ℓ−1] :

𝑤𝑗 > 0} and 𝒲− = {𝑗 ∈ [𝜂ℓ−1] : 𝑤𝑗 < 0}. We still assume that the incoming

activations from the previous layers are positive and we discuss how to relax this

assumption towards the end of the section. In order to establish sampling bounds

for all weights, we thus consider sparsifying the positive and negative weights sepa-

rately before re-combining the approximated outputs. In order to establish bounds

on the overall approximation, we need to consider the additional error incurred from

approximating the positive and negative weights separately.

Definition of Sign Complexity

To this end, we define Δℓ
𝑖(𝑥) for a point 𝑥 ∼ 𝒟 and neuron 𝑖 ∈ [𝜂ℓ] as

Δℓ
𝑖(𝑥) =

∑︀
𝑘∈[𝜂ℓ−1] |𝑤ℓ

𝑖𝑘 𝑎
ℓ−1
𝑘 (𝑥)|⃒⃒⃒∑︀

𝑘∈[𝜂ℓ−1] 𝑤
ℓ
𝑖𝑘 𝑎

ℓ−1
𝑘 (𝑥)

⃒⃒⃒ .
Following a similar approach to Assumption 1 and the proof of Lemma 2 we can

establish that we can effectively approximate Δℓ
𝑖(𝑥) for any point 𝑥 ∼ 𝒟 via a finite

set of samples from 𝒟. To this end, we let the sign complexity of neuron 𝑖 in layer ℓ

be defined as

Δ̂ℓ =

(︃
1

|𝒮|
max
𝑖∈[𝜂ℓ]

∑︁
𝑥′∈𝒮

Δℓ
𝑖(𝑥

′)

)︃
+ 𝜅,

where 𝜅 =
√

2𝜆*
(︀
1 +
√

2𝜆* log (8 𝜂 𝜂*/𝛿)
)︀
. We will omit the formal proof for brevity

and will refer the interested reader to the original paper (Baykal et al., 2019) for a

more detailed discussion.

84

Neuron Approximation

We now proceed to establishing approximation bounds for individual neurons. Note

that we consider establishing these bounds in the context of approximating all neurons

simultaneously. This will ease the subsequent analysis of establishing network-wide

approximation bounds.

To this end, for 𝜀 ∈ (0, 1) and ℓ ∈ {1, . . . , 𝐿}, we let 𝜀′ = 𝜀
2𝐿

and define

𝜀ℓ =
𝜀′

Δ̂ℓ→
=

𝜀

2𝐿
∏︀𝐿

𝑘=ℓ Δ̂𝑘
.

To formalize the interlayer dependencies, for each 𝑖 ∈ [𝜂ℓ] we let ℰ ℓ𝑖 denote the (de-

sirable) event that

𝑧ℓ𝑖 (𝑥) ∈ (1± 2 ℓ 𝜀ℓ+1) 𝑧
ℓ
𝑖 (𝑥)

holds, and let ℰ ℓ = ∩𝑖∈[𝜂ℓ] ℰ ℓ𝑖 be the intersection over the events corresponding to each

neuron in layer ℓ.

The following lemma establishes a key result for approximating the value of neuron

given that the previous layer’s neurons are approximated well, i.e., the event ℰ ℓ𝑖 holds.

Lemma 4 (Conditional Neuron Value Approximation). Let 𝜀, 𝛿 ∈ (0, 1), ℓ ∈ {1, . . . , 𝐿},

𝑖 ∈ [𝜂ℓ], and 𝑥 ∼ 𝒟. Invoking SparsifyNeuron for the positive and negative weights

generates a row vector �̂�ℓ
𝑖 = �̂�ℓ+

𝑖 − �̂�ℓ−
𝑖 ∈ R1×𝜂ℓ−1

such that

P
(︀
ℰ ℓ𝑖 | ℰ ℓ−1

)︀
= P

(︀
𝑧ℓ𝑖 (𝑥) ∈ (1± 2 ℓ 𝜀ℓ+1) 𝑧

ℓ
𝑖 (𝑥) | ℰ ℓ−1

)︀
≥ 1− 𝛿/𝜂, (3.5)

where 𝜀ℓ = 𝜀′

Δ̂ℓ→ and nnz(�̂�ℓ
𝑖) ≤

⌈︁
8𝑆 𝐾 log(8 𝜂/𝛿)

𝜀ℓ2

⌉︁
+ 1, where 𝑆 =

∑︀
𝑗∈𝒲+

𝑠𝑗 +
∑︀

𝑗∈𝒲−
𝑠𝑗.

Proof. Let �̂�ℓ+
𝑖 and �̂�ℓ−

𝑖 denote the sparsified row vectors generated when Spar-

sifyNeuron is invoked with first two arguments corresponding to (𝒲+, 𝑤
ℓ
𝑖) and

(𝒲−,−𝑤ℓ
𝑖), respectively. We will at times omit including the variables for the neuron

𝑖 and layer ℓ in the proofs for clarity of exposition, and for example, refer to �̂�ℓ+
𝑖 and

�̂�ℓ−
𝑖 as simply �̂�+ and �̂�−, respectively.

85

Let 𝑥 ∼ 𝒟 and define

𝑧+(𝑥) =
∑︁
𝑘∈𝒲+

�̂�+
𝑘 �̂�𝑘(𝑥) ≥ 0 and 𝑧−(𝑥) =

∑︁
𝑘∈𝒲−

(−�̂�−
𝑘) �̂�𝑘(𝑥) ≥ 0

be the approximate intermediate values corresponding to the sparsified matrices �̂�+

and �̂�−; let

𝑧+(𝑥) =
∑︁
𝑘∈𝒲+

𝑤𝑘 �̂�𝑘(𝑥) ≥ 0 and 𝑧−(𝑥) =
∑︁
𝑘∈𝒲−

(−𝑤𝑘) �̂�𝑘(𝑥) ≥ 0

be the corresponding intermediate values with respect to the the original row vector

𝑤; and finally, let

𝑧+(𝑥) =
∑︁
𝑘∈𝒲+

𝑤𝑘 𝑎𝑘(𝑥) ≥ 0 and 𝑧−(𝑥) =
∑︁
𝑘∈𝒲−

(−𝑤𝑘) 𝑎𝑘(𝑥) ≥ 0

be the true intermediate values corresponding to the positive and negative valued

weights. Note that in this context, we have by definition

𝑧ℓ𝑖 (𝑥) = ⟨�̂�, �̂�(𝑥)⟩ = 𝑧+(𝑥)− 𝑧−(𝑥),

𝑧ℓ𝑖 (𝑥) = ⟨𝑤, �̂�(𝑥)⟩ = 𝑧+(𝑥)− 𝑧−(𝑥), and

𝑧ℓ𝑖 (𝑥) = ⟨𝑤, 𝑎(𝑥)⟩ = 𝑧+(𝑥)− 𝑧−(𝑥),

where we used the fact that �̂� = �̂�+ − �̂�− ∈ R1×𝜂ℓ−1
.

Finally, let 𝜀, 𝛿 ∈ (0, 1) be arbitrary and let 𝒲+ = {𝑗 ∈ [𝜂ℓ−1] : 𝑤𝑗 > 0} and

𝒲− = {𝑗 ∈ [𝜂ℓ−1] : 𝑤𝑗 < 0}. Let 𝜀ℓ be defined as before, 𝜀ℓ = 𝜀′

Δ̂ℓ→ , where Δ̂ℓ→ =∏︀𝐿
𝑘=ℓ Δ̂𝑘 and Δ̂ℓ =

(︁
1
|𝒮| max𝑖∈[𝜂ℓ]

∑︀
𝑥′∈𝒮 Δℓ

𝑖(𝑥
′)
)︁

+ 𝜅.

Observe that 𝑤𝑗 > 0 ∀𝑗 ∈ 𝒲+ and similarly, for all (−𝑤𝑗) > 0 ∀𝑗 ∈ 𝒲−. That

is, each of index sets 𝒲+ and 𝒲− corresponds to strictly positive entries in the

arguments 𝑤ℓ
𝑖 and −𝑤ℓ

𝑖 , respectively passed into SparsifyNeuron. Observe that

86

since we conditioned on the event ℰ ℓ−1, we have

2 (ℓ− 2) 𝜀ℓ ≤ 2 (ℓ− 2)
𝜀

2𝐿
∏︀𝐿

𝑘=ℓ Δ̂𝑘

≤ 𝜀∏︀𝐿
𝑘=ℓ Δ̂𝑘

≤ 𝜀

2𝐿−ℓ+1
Since Δ̂𝑘 ≥ 2 ∀𝑘 ∈ {ℓ, . . . , 𝐿}

≤ 𝜀

2
,

where the inequality Δ̂𝑘 ≥ 2 follows from the fact that

Δ̂𝑘 =

(︃
1

|𝒮|
max
𝑖∈[𝜂ℓ]

∑︁
𝑥′∈𝒮

Δℓ
𝑖(𝑥

′)

)︃
+ 𝜅

≥ 1 + 𝜅 Since Δℓ
𝑖(𝑥

′) ≥ 1 ∀𝑥′ ∈ supp(𝒟) by definition

≥ 2.

we obtain that �̂�(𝑥) ∈ (1± 𝜀/2)𝑎(𝑥), where, as before, �̂� and 𝑎 are shorthand notations

for �̂�ℓ−1 ∈ R𝜂ℓ−1×1 and 𝑎ℓ−1 ∈ R𝜂ℓ−1×1, respectively. This implies that ℰ ℓ−1 ⇒ ℰ1/2
and since 𝑚 =

⌈︁
8𝑆 𝐾 log(8 𝜂/𝛿)

𝜀2

⌉︁
in Algorithm 1 we can invoke Lemma 3 with 𝜀 = 𝜀ℓ on

each of the SparsifyNeuron invocations to conclude that

P
(︀
𝑧+(𝑥) /∈ (1± 𝜀ℓ)𝑧

+(𝑥) | ℰ ℓ−1
)︀
≤ P

(︀
𝑧+(𝑥) /∈ (1± 𝜀ℓ)𝑧

+(𝑥) | ℰ1/2
)︀
≤ 3𝛿

8𝜂
,

and

P
(︀
𝑧−(𝑥) /∈ (1± 𝜀ℓ)𝑧

−(𝑥) | ℰ ℓ−1
)︀
≤ 3𝛿

8𝜂
.

Therefore, by the union bound, we have

P
(︀
𝑧+(𝑥) /∈ (1± 𝜀ℓ)𝑧

+(𝑥) or 𝑧−(𝑥) /∈ (1± 𝜀ℓ)𝑧
−(𝑥) | ℰ ℓ−1

)︀
≤ 3𝛿

8𝜂
+

3𝛿

8𝜂
=

3𝛿

4𝜂
.

Moreover, we have with probability at most 𝛿
4𝜂

that Δℓ
𝑖(𝑥) > Δ̂ℓ as formalized in

our corresponding paper (Baykal et al., 2019). We omit further details for brevity.

Thus, by the union bound over the failure events, we have that with probability at

87

least 1− (3𝛿/4𝜂 + 𝛿/4𝜂) = 1− 𝛿/𝜂 that both of the following events occur

1. 𝑧+(𝑥) ∈ (1± 𝜀ℓ)𝑧
+(𝑥) and 𝑧−(𝑥) ∈ (1± 𝜀ℓ)𝑧

−(𝑥) (3.6)

2. Δℓ
𝑖(𝑥) ≤ Δ̂ℓ (3.7)

Recall that 𝜀′ = 𝜀
2𝐿

, 𝜀ℓ = 𝜀′

Δ̂ℓ→ , and that event ℰ ℓ𝑖 denotes the (desirable) event that

𝑧ℓ𝑖 (𝑥) (1± 2 ℓ 𝜀ℓ+1) 𝑧
ℓ
𝑖 (𝑥) holds, and similarly, ℰ ℓ = ∩𝑖∈[𝜂ℓ] ℰ ℓ𝑖 denotes the vector-wise

analogue where

𝑧ℓ(𝑥) (1± 2 ℓ 𝜀ℓ+1) 𝑧
ℓ(𝑥).

Let 𝑘 = 2 (ℓ − 1) and note that by conditioning on the event ℰ ℓ−1, i.e., we have by

definition

�̂�ℓ−1(𝑥) ∈ (1± 2 (ℓ− 1)𝜀ℓ)𝑎
ℓ−1(𝑥) = (1± 𝑘 𝜀ℓ)𝑎

ℓ−1(𝑥),

which follows by definition of the ReLU function. Recall that our overarching goal is

to establish that

𝑧ℓ𝑖 (𝑥) ∈ (1± 2 ℓ𝜀ℓ+1) 𝑧
ℓ
𝑖 (𝑥),

which would immediately imply by definition of the ReLU function that

�̂�ℓ𝑖(𝑥) ∈ (1± 2 ℓ𝜀ℓ+1) 𝑎
ℓ
𝑖(𝑥).

Having clarified the conditioning and our objective, we will once again drop the index

𝑖 from the expressions moving forward.

Proceeding from above, we have with probability at least 1− 𝛿/𝜂

𝑧(𝑥) = 𝑧+(𝑥)− 𝑧−(𝑥)

≤ (1 + 𝜀ℓ) 𝑧
+(𝑥)− (1− 𝜀ℓ) 𝑧

−(𝑥) By event (3.6)

≤ (1 + 𝜀ℓ)(1 + 𝑘 𝜀ℓ) 𝑧
+(𝑥)− (1− 𝜀ℓ)(1− 𝑘 𝜀ℓ) 𝑧

−(𝑥) Conditioning on ℰ ℓ−1.

88

We can further simplify the above expression as

𝑧(𝑥) ≤
(︀
1 + 𝜀ℓ(𝑘 + 1) + 𝑘𝜀2ℓ

)︀
𝑧+(𝑥) +

(︀
−1 + (𝑘 + 1)𝜀ℓ − 𝑘𝜀2ℓ

)︀
𝑧−(𝑥)

=
(︀
1 + 𝑘 𝜀2ℓ

)︀
𝑧(𝑥) + (𝑘 + 1) 𝜀ℓ

(︀
𝑧+(𝑥) + 𝑧−(𝑥)

)︀
=
(︀
1 + 𝑘 𝜀2ℓ

)︀
𝑧(𝑥) +

(𝑘 + 1) 𝜀′∏︀𝐿
𝑘=ℓ Δ̂𝑘

(︀
𝑧+(𝑥) + 𝑧−(𝑥)

)︀
≤
(︀
1 + 𝑘 𝜀2ℓ

)︀
𝑧(𝑥) +

(𝑘 + 1) 𝜀′

Δℓ
𝑖(𝑥)

∏︀𝐿
𝑘=ℓ+1 Δ̂𝑘

(︀
𝑧+(𝑥) + 𝑧−(𝑥)

)︀
By event (3.7)

=
(︀
1 + 𝑘 𝜀2ℓ

)︀
𝑧(𝑥) +

(𝑘 + 1) 𝜀′∏︀𝐿
𝑘=ℓ+1 Δ̂𝑘

|𝑧(𝑥)| By Δℓ
𝑖(𝑥) =

𝑧+(𝑥) + 𝑧−(𝑥)

|𝑧(𝑥)|

=
(︀
1 + 𝑘 𝜀2ℓ

)︀
𝑧(𝑥) + (𝑘 + 1) 𝜀ℓ+1 |𝑧(𝑥)|.

To upper bound the last expression above, we begin by observing that 𝑘𝜀2ℓ ≤ 𝜀ℓ,

which follows from the fact that 𝜀ℓ ≤ 1
2𝐿
≤ 1

𝑘
by definition. Moreover, we also note

that 𝜀ℓ ≤ 𝜀ℓ+1 by definition of Δ̂ℓ ≥ 1. Now, we consider two cases.

Case of 𝑧(𝑥) ≥ 0: In this case, we have

𝑧(𝑥) ≤
(︀
1 + 𝑘 𝜀2ℓ

)︀
𝑧(𝑥) + (𝑘 + 1) 𝜀ℓ+1 |𝑧(𝑥)|

≤ (1 + 𝜀ℓ)𝑧(𝑥) + (𝑘 + 1)𝜀ℓ+1𝑧(𝑥)

≤ (1 + 𝜀ℓ+1)𝑧(𝑥) + (𝑘 + 1)𝜀ℓ+1𝑧(𝑥)

= (1 + (𝑘 + 2) 𝜀ℓ+1) 𝑧(𝑥) = (1 + 2 ℓ𝜀ℓ+1) 𝑧(𝑥),

where the last equality follows by definition of 𝑘 = 2 (ℓ − 1), which implies that

𝑘 + 2 = 2ℓ. Thus, this establishes the desired upper bound in the case that 𝑧(𝑥) ≥ 0.

Case of 𝑧(𝑥) < 0: Since 𝑧(𝑥) is negative, we have that

𝑧(𝑥) ≤
(︀
1 + 𝑘 𝜀2ℓ

)︀
𝑧(𝑥) + (𝑘 + 1) 𝜀ℓ+1 |𝑧(𝑥)|

≤ 𝑧(𝑥)− (𝑘 + 1)𝜀ℓ+1𝑧(𝑥)

≤ (1− (𝑘 + 1)𝜀ℓ+1) 𝑧(𝑥)

≤ (1− (𝑘 + 2)𝜀ℓ+1) 𝑧(𝑥) = (1− 2 ℓ𝜀ℓ+1) 𝑧(𝑥),

89

and this establishes the upper bound for the case of 𝑧(𝑥) being negative.

Putting the results of the case by case analysis together, we have the upper bound

of 𝑧(𝑥) ≤ 𝑧(𝑥) + 2 ℓ𝜀ℓ+1|𝑧(𝑥)|. The proof for establishing the lower bound for 𝑧(𝑥) is

analogous to that given above, and yields 𝑧(𝑥) ≥ 𝑧(𝑥) − 2 ℓ𝜀ℓ+1|𝑧(𝑥)|. Putting both

the upper and lower bound together, we have that with probability at least 1− 𝛿
𝜂
:

𝑧(𝑥) ∈ (1± 2 ℓ𝜀ℓ+1) 𝑧(𝑥),

and this completes the proof.

Remarks on Negative Activations

We note that up to now we assumed that the input 𝑎(𝑥), i.e., the activations from

the previous layer, are strictly nonnegative. However, we can decompose the input

into 𝑎(𝑥) = 𝑎pos(𝑥) − 𝑎neg(𝑥), where 𝑎pos(𝑥) ≥ 0 ∈ R𝜂ℓ−1
and 𝑎neg(𝑥) ≥ 0 ∈ R𝜂ℓ−1

.

Furthermore, we can define the sensitivity over the set of points {𝑎pos(𝑥), 𝑎neg(𝑥) |

𝑥 ∈ 𝒮} (instead of {𝑎(𝑥) | 𝑥 ∈ 𝒮}), and thus maintain the required nonnegativity of

the sensitivities. Then, in the terminology of Lemma 4, we let

𝑧+pos(𝑥) =
∑︁
𝑘∈𝒲+

𝑤𝑘 𝑎pos,𝑘(𝑥) ≥ 0 and 𝑧−neg(𝑥) =
∑︁
𝑘∈𝒲−

(−𝑤𝑘) 𝑎neg,𝑘(𝑥) ≥ 0

be the corresponding positive parts, and

𝑧+neg(𝑥) =
∑︁
𝑘∈𝒲+

𝑤𝑘 𝑎neg,𝑘(𝑥) ≥ 0 and 𝑧−pos(𝑥) =
∑︁
𝑘∈𝒲−

(−𝑤𝑘) 𝑎pos,𝑘(𝑥) ≥ 0

be the corresponding negative parts of the preactivation of the considered layer, such

that

𝑧+(𝑥) = 𝑧+pos(𝑥) + 𝑧−neg(𝑥) and 𝑧−(𝑥) = 𝑧+neg(𝑥) + 𝑧−pos(𝑥).

We also let

Δℓ
𝑖(𝑥) =

𝑧+(𝑥) + 𝑧−(𝑥)

|𝑧(𝑥)|

90

be as before, with 𝑧+(𝑥) and 𝑧−(𝑥) defined as above. Equipped with above defini-

tions, we can rederive Lemma 4 analogously in the more general setting, i.e., with

potentially negative activations. We also note that we require a slightly larger sample

size now since we have to take a union bound over the failure probabilities of all

four approximations (i.e. 𝑧+pos(𝑥), 𝑧−neg(𝑥), 𝑧+neg(𝑥), and 𝑧−pos(𝑥)) to obtain the desired

overall failure probability of 𝛿/𝜂.

3.5 Network Compression Bounds

The following core result establishes unconditional layer-wise approximation guaran-

tees and culminates in our main compression theorem. We first establish layer-wise

error guarantees before we proceed with stating the compression bounds for the entire

network.

3.5.1 Layer-wise Approximation

The following corollary immediately follows from Lemma 4 and establishes a layer-

wise approximation guarantee.

Corollary 5 (Conditional Layer-wise Approximation). Let 𝜀, 𝛿 ∈ (0, 1), ℓ ∈ {1, . . . , 𝐿},

and 𝑥 ∼ 𝒟. Appropriately invoking SparsifyNeuron for each neuron in layer ℓ

generates a sparse weight matrix �̂� ℓ =
(︀
�̂�ℓ

1, . . . , �̂�
ℓ
𝜂ℓ

)︀⊤ ∈ R𝜂ℓ×𝜂ℓ−1
such that

P(ℰ ℓ | ℰ ℓ−1) = P
(︀
𝑧ℓ(𝑥) ∈ (1± 2 ℓ 𝜀ℓ+1) 𝑧

ℓ(𝑥) | ℰ ℓ−1
)︀
≥ 1− 𝛿 𝜂ℓ

𝜂
, (3.8)

where 𝜀ℓ = 𝜀′

Δ̂ℓ→ , 𝑧ℓ(𝑥) = �̂� ℓ�̂�ℓ(𝑥), and 𝑧ℓ(𝑥) = 𝑊 ℓ𝑎ℓ(𝑥).

Proof. Since (3.5) established by Lemma 4 holds for any neuron 𝑖 ∈ [𝜂ℓ] in layer ℓ

and since (ℰ ℓ)c = ∪𝑖∈[𝜂ℓ](ℰ ℓ𝑖)c, it follows by the union bound over the failure events

(ℰ ℓ𝑖)c for all 𝑖 ∈ [𝜂ℓ] that with probability at least 1− 𝜂ℓ𝛿
𝜂

𝑧ℓ(𝑥) = �̂� ℓ�̂�ℓ−1(𝑥) ∈ (1± 2 ℓ 𝜀ℓ+1)𝑊
ℓ𝑎ℓ−1(𝑥) = (1± 2 ℓ 𝜀ℓ+1) 𝑧

ℓ(𝑥).

91

The following lemma removes the conditioning on ℰ ℓ−1 and explicitly considers the

(compounding) error incurred by generating coresets �̂� 1, . . . , �̂� ℓ for multiple layers.

Lemma 6 (Layer-wise Approximation). Let 𝜀, 𝛿 ∈ (0, 1), ℓ ∈ {1, . . . , 𝐿}, and 𝑥 ∼ 𝒟.

Appropriately invoking SparsifyNeuron for each neuron in layer ℓ generates a

sparse weight matrix �̂� ℓ ∈ R𝜂ℓ×𝜂ℓ−1
such that, for 𝑧ℓ(𝑥) = �̂� ℓ�̂�ℓ(𝑥),

P
(�̂� 2,...,�̂� ℓ), 𝑥

(ℰ ℓ) = P
(�̂� 2,...,�̂� ℓ), 𝑥

(︀
𝑧ℓ(𝑥) ∈ (1± 2 ℓ 𝜀ℓ+1) 𝑧

ℓ(𝑥)
)︀
≥ 1− 𝛿

∑︀ℓ
ℓ′=2 𝜂

ℓ′

𝜂
.

Proof. Invoking Corollary 5, we know that for any layer ℓ′ ∈ {1, . . . , 𝐿},

P
�̂� ℓ′ , 𝑥, �̂�ℓ′−1(·)

(ℰ ℓ′ | ℰ ℓ′−1) ≥ 1− 𝛿 𝜂ℓ
′

𝜂
. (3.9)

We also have by the law of total probability that

P(ℰ ℓ′) = P(ℰ ℓ′ | ℰ ℓ′−1)P(ℰ ℓ′−1) + P(ℰ ℓ′ | (ℰ ℓ′−1)c)P((ℰ ℓ′−1)c)

≥ P(ℰ ℓ′ | ℰ ℓ′−1)P(ℰ ℓ′−1) (3.10)

Repeated applications of (3.9) and (3.10) in conjunction with the observation that

P(ℰ1) = 12 yield

P(ℰ ℓ) ≥ P(ℰ ℓ′ | ℰ ℓ′−1)P(ℰ ℓ′−1)

... Repeated applications of (3.10)

≥
ℓ∏︁

ℓ′=1

P(ℰ ℓ′ | ℰ ℓ′−1)

≥
ℓ∏︁

ℓ′=1

(︂
1− 𝛿 𝜂ℓ

′

𝜂

)︂
By (3.9)

≥ 1− 𝛿

𝜂

ℓ∑︁
ℓ′=1

𝜂ℓ
′

By the Weierstrass Product Inequality,

2Since we do not compress the input layer.

92

where the last inequality follows by the Weierstrass Product Inequality3 and this

establishes the lemma.

3.5.2 Network Compression

Having established the layer-wise approximation guarantee of our sampling scheme,

we present our main theorem for neural network compression that establishes the de-

sired approximation guarantee of our algorithm. The proof is based on appropriately

invoking Lemma 6 to establish approximation guarantees for the entire network.

Theorem 7 (Network Compression). For 𝜀, 𝛿 ∈ (0, 1), invoking SparsifyNeuron

for each neuron in the network generates a set of parameters 𝜃 = (�̂� 1, . . . , �̂�𝐿) of

size

nnz(𝜃) ≤
𝐿∑︁

ℓ=1

𝜂ℓ∑︁
𝑖=1

(︃⌈︃
32𝐿2 (Δ̂ℓ→)2 𝑆ℓ

𝑖 𝐾 log(8 𝜂/𝛿)

𝜀2

⌉︃
+ 1

)︃

in 𝒪
(︀
𝜂 𝜂* log

(︀
𝜂 𝜂*/𝛿

)︀)︀
time such that P𝜃, 𝑥∼𝒟 (𝑓𝜃(𝑥) ∈ (1± 𝜀)𝑓𝜃(𝑥)) ≥ 1− 𝛿.

Proof. Invoking Lemma 6 with ℓ = 𝐿, we have that for 𝜃 = (�̂� 1, . . . , �̂�𝐿),

P̂
𝜃, 𝑥

(𝑓𝜃(𝑥) ∈ 2𝐿𝜀𝐿+1𝑓𝜃(𝑥)) = P̂
𝜃, 𝑥

(𝑧𝐿(𝑥) ∈ 2𝐿𝜀𝐿+1𝑧
𝐿(𝑥))

= P(ℰ𝐿)

≥ 1− 𝛿
∑︀𝐿

ℓ′=1 𝜂
ℓ′

𝜂

= 1− 𝛿,

3The Weierstrass Product Inequality (Doerr, 2018) states that for 𝑝1, . . . , 𝑝𝑛 ∈ [0, 1],

𝑛∏︁
𝑖=1

(1− 𝑝𝑖) ≥ 1−
𝑛∑︁

𝑖=1

𝑝𝑖.

93

where the last equality follows by definition of 𝜂 =
∑︀𝐿

ℓ=1 𝜂
ℓ. Note that by definition,

𝜀𝐿+1 =
𝜀

2𝐿
∏︀𝐿

𝑘=𝐿+1 Δ̂𝑘

=
𝜀

2𝐿
,

where the last equality follows by the fact that the empty product
∏︀𝐿

𝑘=𝐿+1 Δ̂𝑘 is equal

to 1. Thus, we have 2𝐿𝜀𝐿+1 = 𝜀, and so we conclude

P̂
𝜃, 𝑥

(𝑓𝜃(𝑥) ∈ (1± 𝜀)𝑓𝜃(𝑥)) ≥ 1− 𝛿,

which, along with the sampling complexity of Algorithm 1 (Line 8), establishes the

approximation guarantee provided by the theorem.

For the computational time complexity, we observe that the most time consuming

operation is the per-neuron weight sparsification procedure. The asymptotic time

complexity of each SparsifyNeuron invocation for each neuron 𝑖 ∈ [𝜂ℓ] in layers

ℓ ∈ {1, . . . , 𝐿} is dominated by the relative importance computation for incoming

edges (Algorithm 1, Lines 1-3). This can be done by evaluating 𝑤ℓ
𝑖𝑘𝑎

ℓ−1
𝑘 (𝑥) for all

𝑘 ∈ 𝒲 and 𝑥 ∈ 𝒮, for a total computation time that is bounded above by 𝒪
(︀
|𝒮| 𝜂ℓ−1

)︀
since |𝒲| ≤ 𝜂ℓ−1 for each 𝑖 ∈ [𝜂ℓ]. Thus, SparsifyNeuron takes 𝒪

(︀
|𝒮| 𝜂ℓ−1

)︀
time. Summing the computation time over all layers and neurons in each layer, we

obtain an asymptotic time complexity of 𝒪
(︀
|𝒮|
∑︀𝐿

ℓ=2 𝜂
ℓ−1𝜂ℓ

)︀
⊆ 𝒪 (|𝒮| 𝜂* 𝜂). Since

|𝒮| ∈ 𝒪(log(𝜂 𝜂*/𝛿)), we conclude that the computational complexity our neural

network compression algorithm is

𝒪
(︀
𝜂 𝜂* log

(︀
𝜂 𝜂*/𝛿

)︀)︀
. (3.11)

We note that we can obtain a guarantee for a set of 𝑛 randomly drawn points by

invoking Theorem 7 with 𝛿′ = 𝛿/𝑛 and union-bounding over the failure probabilities,

while only increasing the sampling complexity logarithmically.

94

3.5.3 Generalization Bounds

As a corollary to our main results, we obtain novel generalization bounds for neural

networks in terms of empirical sensitivity. Following the terminology of Arora et al.

(2018), the expected margin loss of a classifier 𝑓𝜃 : R𝑑 → R𝑘 parameterized by 𝜃

with respect to a desired margin 𝛾 > 0 and distribution 𝒟 is defined by 𝐿𝛾(𝑓𝜃) =

P(𝑥,𝑦)∼𝒟𝒳 ,𝒴 (𝑓𝜃(𝑥)𝑦 ≤ 𝛾 + max𝑖 ̸=𝑦 𝑓𝜃(𝑥)𝑖). We let �̂�𝛾 denote the empirical estimate of

the margin loss. The following corollary follows directly from the argument presented

by Arora et al. (2018) and Theorem 7.

Corollary 8 (Generalization Bounds). For any 𝛿 ∈ (0, 1) and margin 𝛾 > 0, sparsify-

ing the network in context of Theorem 7 generates weights 𝜃 such that with probability

at least 1− 𝛿, the expected error 𝐿0(𝑓𝜃) with respect to the points in 𝒫 ⊆ 𝒳 , |𝒫| = 𝑛,

is bounded by

𝐿0(𝑓𝜃) ≤ �̂�𝛾(𝑓𝜃) + ̃︀𝒪
⎛⎝√︃max𝑥∈𝒫 ‖𝑓𝜃(𝑥)‖22 𝐿2

∑︀𝐿
ℓ=1(Δ̂

ℓ→)2
∑︀𝜂ℓ

𝑖=1 𝑆
ℓ
𝑖

𝛾2 𝑛

⎞⎠ .

3.6 Results

In this section, we evaluate the practical effectiveness of our compression algorithm on

popular small-scale benchmark data sets and varying fully-connected trained neural

network configurations in various prune-only scenarios. The purpose of these exper-

iments is to highlight the practical effectiveness of our method to sparsify a given

neural network when comparing against other benchmarks that provide approxima-

tion guarantees.

3.6.1 Experimental Setup

Our algorithms. We test three variations of our compression algorithm: (i) sole

neuron sparsification (CoreNet), (ii) sparsification with neuron pruning (CoreNet+),

and (iii) sparsification with neuron pruning and amplification (CoreNet++). For

CoreNet+, we note that we remove neurons whenever the maximum activation of a

95

neuron is equal to 0 over all evaluations on 𝒮. For CoreNet++, we run amplification

on CoreNet+ as is common for randomized algorithms by constructing multiple ap-

proximations and keeping the approximation that achieves lowest error on a separate

hold-out dataset from the validation set. More details and additional analysis may

be found in the corresponding paper (Baykal et al., 2019).

Networks and datasets. We use MNIST (LeCun et al., 1998), FashionMNIST

(Xiao et al., 2017), and CIFAR-10 (Torralba et al., 2008) and varying fully-connected

trained neural network configurations: 2 to 5 hidden layers, 100 to 1000 hidden units,

either fixed hidden sizes or decreasing hidden size denoted by pyramid in the figures.

Baselines. We compare the effectiveness of our sampling scheme in reducing the

number of non-zero parameters of a network, i.e., in sparsifying the weight matrices,

to that of uniform sampling, singular value decomposition (SVD), and current state-

of-the-art sampling schemes for matrix sparsification (Achlioptas et al., 2013; Drineas

and Zouzias, 2011; Kundu and Drineas, 2014), which are based on matrix norms – ℓ1

and ℓ2 (Frobenius).

Setup All algorithms were implemented in Python using the PyTorch library (Paszke

et al., 2017) and simulations were conducted on a computer with a 2.60 GHz Intel

i9-7980XE processor (18 cores total) and 128 GB RAM. Training was performed for

30 epochs on the normalized data sets using an Adam optimizer with a learning rate

of 0.001 and a batch size of 300. The test accuracies were roughly 98% (MNIST),

45% (CIFAR-10), and 96% (FashionMNIST), depending on the network architecture.

To account for the randomness in the training procedure, for each data set and neural

network configuration, we averaged our results across 4 trained neural networks. For

comparison, we evaluated the average relative error in output (ℓ1-norm) and average

drop in classification accuracy relative to the accuracy of the uncompressed network.

Both metrics were evaluated on a previously unseen test set.

96

3.6.2 Results

Results for varying architectures and datasets are depicted in Figures 3-1 and 3-2 for

the average drop in classification accuracy and relative error (ℓ1-norm), respectively.

As apparent from Figure 3-1, we are able to compress networks to about 15% of their

original size without significant loss of accuracy for networks trained on MNIST and

FashionMNIST, and to about 50% of their original size for CIFAR-10.

10 20 30 40
Percentage of Non-zero Parameters Retained

20

40

60

80

Av
er

ag
e

Dr
op

 in
 A

cc
ur

ac
y

[%
] MNIST: L = 3, * = 1000, Pyramid

Uniform
SVD
1
2
1 + 2

2
CoreNet
CoreNet+
CoreNet++

10 20 30 40
Percentage of Non-zero Parameters Retained

10

20

30

40
Av

er
ag

e
Dr

op
 in

 A
cc

ur
ac

y
[%

] CIFAR: L = 3, * = 1000, Pyramid
Uniform
SVD
1
2
1 + 2

2
CoreNet
CoreNet+
CoreNet++

10 20 30 40
Percentage of Non-zero Parameters Retained

20

40

60

80

Av
er

ag
e

Dr
op

 in
 A

cc
ur

ac
y

[%
] FashionMNIST: L = 3, * = 1000, Pyramid

Uniform
SVD
1
2
1 + 2

2
CoreNet
CoreNet+
CoreNet++

Figure 3-1: Evaluation of drop in classification accuracy after compression against
the MNIST, CIFAR-10, and FashionMNIST datasets with varying number of hidden
layers (𝐿) and number of neurons per hidden layer (𝜂*). Shaded region corresponds
to values within one standard deviation of the mean.

10 20 30 40
Percentage of Non-zero Parameters Retained

2 2

2 1

20

21

22

23

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

MNIST: L = 3, * = 1000, Pyramid
Uniform
SVD
1
2
1 + 2

2
CoreNet
CoreNet+
CoreNet++

10 20 30 40
Percentage of Non-zero Parameters Retained

20

22

24

26

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

CIFAR: L = 3, * = 1000, Pyramid
Uniform
SVD
1
2
1 + 2

2
CoreNet
CoreNet+
CoreNet++

10 20 30 40
Percentage of Non-zero Parameters Retained

2 2

2 1

20

21

22

23

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

FashionMNIST: L = 3, * = 1000, Pyramid
Uniform
SVD
1
2
1 + 2

2
CoreNet
CoreNet+
CoreNet++

Figure 3-2: Evaluation of relative error after compression against the MNIST, CIFAR-
10, and FashionMNIST datasets with varying number of hidden layers (𝐿) and num-
ber of neurons per hidden layer (𝜂*).

The simulation results presented in this section validate our theoretical results

established in Section 3.4. In particular, our empirical results indicate that we are able

to outperform networks compressed via competing methods in matrix sparsification

across the considered trials. The results presented in this section further suggest that

empirical sensitivity can effectively capture the relative importance of neural network

parameters, leading to a more informed importance sampling scheme.

97

3.7 Discussion

We present a coreset-based neural network compression algorithm for compressing

the parameters of a trained, fully-connected neural network in a manner that approx-

imately preserves the network’s output. Our method and analysis extend traditional

coreset constructions to the application of compressing parameters, which may be of

independent interest. Our work distinguishes itself from prior approaches in that it

establishes theoretical guarantees on the approximation accuracy and size of the gen-

erated compressed network. As a corollary to our analysis, we obtain generalization

bounds for neural networks, which may provide novel insights on the generalization

properties of neural networks. We empirically demonstrate the practical effectiveness

of our compression algorithm on a variety of fully-connected neural network configu-

rations and real-world data sets.

In subsequent chapters, we aim to extend our theoretical guarantees to other

types of networks, namely convolutional neural networks (CNNs), and sparsification

procedures, i.e., structured pruning. By building upon the theoretical tools and

analysis techniques developed in this chapter, we aim to provide a simultaneously

practical and theoretically-grounded approach to neural network pruning.

98

Chapter 4

Generalized Compression Bounds

4.1 Overview

In the previous chapter, we introduced network compression bounds in the context of

weight sparsification for a network solely consisting of fully-connected layers. We will

now highlight how we can generalize our theory of network compression to other types

of layers and other types of sparsification. Specifically, in this chapter we generalize

our compression bounds to convolutional layers when pruning entire filter and channel

groups instead of individual weights from the network. Unlike weight pruning, filter

pruning (or structured pruning) directly shrinks the underlying network architecture

by reducing the width of each layer. This has important practical implications as

well in terms how well we can leverage our network pruning algorithms to obtain

efficient neural networks in practice (see Part II as well). We also note that neuron

pruning in the context of fully-connected layers can be viewed as a special case of

filter pruning, hence our guarantees hold regardless of the type of layer. The crux of

our generalized theory lies in measuring the empirical sensitivity (ES) of the feature

maps (or channels) generated by each of the filters in the previous layer, which will

in turn enable us to quantify the importance of filters across layers.

99

4.1.1 Contributions

The main contributions of this chapter are as follows:

• An extension of our provable coreset approach in the context of filter and neuron

pruning based on a generalized notion of empirical sensitivity.

• Analytical results establishing guarantees on the trade-off between approxima-

tion accuracy and size of the pruned neural network.

• An improved pruning framework via a mixture approach of sampling-based

and deterministic pruning and accompanying analysis highlighting the improved

sample efficiency.

4.1.2 Relevant Papers

The results presented in this chapter are based on the following paper:

• Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus.

Provable filter pruning for efficient neural networks. In International Conference

on Learning Representations, 2020.

4.1.3 Outline

We begin by formally re-introducing the neural network compression problem in the

context of filter pruning as shown in Section 4.2. Subsequently, we discuss the pruning

procedure in Section 4.3 and analyze its performance in Section 4.4. We discuss some

implications of our theory in Section 4.5. We note that the purpose of this chapter

is to derive the bounds of Chapter 3 in the context of filter pruning. For practical

implications and empirical results, we refer the reader to Part II of this thesis.

4.2 Problem Definition

The set of parameters 𝜃 of a convolutional neural network (CNN) with 𝐿 convolutional

layers is a tuple of 4-dimensional weight matrices corresponding to each layer, i.e.,

100

𝜃 = (𝑊 1, . . . ,𝑊𝐿), where 𝑊 ℓ denotes the 4-dimensional tensor in layer ℓ ∈ [𝐿], 𝑊 ℓ
𝑗

filter 𝑗 ∈ [𝜂ℓ], and 𝜂ℓ the number of filters in layer ℓ. Moreover, let 𝑊 ℓ+1
:𝑗 be channel

𝑗 of tensor 𝑊 ℓ+1 that corresponds to filter 𝑊 ℓ
𝑗 . The set of parameters 𝜃 defines the

mapping 𝑓𝜃 : 𝒳 → 𝒴 from the input space 𝒳 to the output space 𝒴 . We consider the

setting where a neural network 𝑓𝜃(·) has been trained on a training set of independent

and identically distributed (i.i.d.) samples from a joint distribution defined on 𝒳 ×𝒴 ,

yielding parameters 𝜃. We let 𝒟 denote the marginal distribution over the input

space 𝒳 and define the size of the parameter tuple 𝜃, nnz(𝜃), to be the number of

nonzero (nnz) entries in the weight tensors 𝑊 1, . . . ,𝑊𝐿.

For an input 𝑥 ∈ 𝒳 to the network, we let 𝑧ℓ(𝑥) and 𝑎ℓ(𝑥) = 𝜑(𝑧ℓ(𝑥)) denote the

pre-activation and activation of layer ℓ, where 𝜑 is the activation function (applied

entry-wise). The 𝑗th feature map of layer ℓ is given by 𝑎ℓ𝑗(𝑥) = 𝜑(𝑧ℓ𝑗(𝑥)). For a given

input 𝑥 ∈ 𝒳 , the output of the neural network with parameters 𝜃 is given by 𝑓𝜃(𝑥).

For any given 𝜀, 𝛿 ∈ (0, 1), our overarching goal is to use a randomized algorithm

to generate a small reparameterization 𝜃 of 𝜃 such that nnz(𝜃) ≪ nnz(𝜃) and for

𝑥 ∼ 𝒟 the reference network output 𝑓𝜃(𝑥) can be approximated by 𝑓𝜃(𝑥) up to 1± 𝜀

entry-wise1 multiplicative error with probability greater than 1− 𝛿.

Definition 4 ((𝜀, 𝛿)-coreset). For 𝜀, 𝛿 ∈ (0, 1), and a set of parameters 𝜃 = (𝑊 1, . . . ,𝑊𝐿),

𝜃 = (�̂� 1, . . . , �̂�𝐿) such that nnz(𝜃)≪ nnz(𝜃), is an (𝜀, 𝛿)-coreset for the original set

of parameters 𝜃 if

P̂
𝜃,𝑥

(𝑓𝜃(𝑥) ∈ (1± 𝜀)𝑓𝜃(𝑥)) ≥ 1− 𝛿,

where P𝜃,𝑥 denotes the probability measure with respect to a random data point 𝑥 ∼ 𝒟

and the output 𝜃 generated by a randomized compression scheme.

4.3 Method

Algorithm 2 is the full algorithm for pruning features, i.e., neurons in fully-connected

layers and channels in convolutional layers. Note that when pruning features/channels

1For two tensors 𝑇1, 𝑇2 of same dimensions, 𝑇1 ∈ (1± 𝜀)𝑇2 denotes follow entry-wise bound: for
each scalar entry 𝑡1 in tensor 𝑇1, 𝑡1 ∈ (1± 𝜀)𝑡2, where 𝑡2 is the corresponding entry in 𝑇2.

101

in one layer we can also prune the corresponding neurons/filters in the previous

layer. The pseudocode is organized for clarity of exposition rather than computational

efficiency. Recall that 𝜃 is the full parameter set of the net, where 𝑊 ℓ ∈ R𝜂ℓ×𝜂ℓ+1
is

the weight matrix between layers ℓ− 1 and and ℓ. 𝑊 ℓ
𝑘 refers to the 𝑘th neuron/filter

of 𝑊 ℓ.

Algorithm 2 PruneChannels(𝜃, ℓ,𝒮, 𝜀, 𝛿)

Input: 𝜃: trained net; ℓ ∈ [𝐿]: layer; 𝒮 ⊂ supp(𝒟): sample of inputs; 𝜀 ∈ (0, 1): accuracy;
𝛿 ∈ (0, 1): failure probability
Output: �̂� ℓ: filter-reduced weight tensor for layer ℓ; �̂� ℓ+1: channel reduced, weight tensor
for layer ℓ+ 1

1: for 𝑗 ∈ [𝜂ℓ] do

2: for 𝑖 ∈ [𝜂ℓ+1] and x ∈ 𝒮 do

3: 𝐼+ ← {𝑗 ∈ [𝜂ℓ] : 𝑤ℓ+1
𝑖𝑗 𝑎ℓ𝑗(x) ≥ 0}

4: 𝐼− ← [𝜂ℓ] ∖ 𝐼+

5: 𝑔ℓ+1
𝑖𝑗 (x)← max𝐼∈{𝐼+,𝐼−}

𝑤ℓ+1
𝑖𝑗 𝑎ℓ𝑗(x)∑︀

𝑘∈𝐼 𝑤
ℓ+1
𝑖𝑘 𝑎ℓ𝑘(x)

6: end for

7: 𝑠ℓ𝑗 ← maxx∈𝒮 max𝑖∈[𝜂ℓ+1] 𝑔
ℓ+1
𝑖𝑗 (x)

8: end for

9: 𝑆ℓ ←
∑︀

𝑗∈[𝜂ℓ] 𝑠
ℓ
𝑗

10: for 𝑗 ∈ [𝜂ℓ] do

11: 𝑝ℓ𝑗 ← 𝑠ℓ𝑗/𝑆
ℓ

12: end for

13: 𝐾 ← value from Assumption 2

14: 𝑚←
⌈︀
(6 + 2𝜀)𝑆ℓ𝐾 log(2 𝜂ℓ+1/𝛿)𝜀−2

⌉︀
15: ℋ ← distribution on [𝜂ℓ] assigning probability 𝑝ℓ𝑗 to index 𝑗

16: �̂� ℓ ← (0, . . . , 0) ◁ same dimensions as 𝑊 ℓ

17: �̂� ℓ+1 ← (0, . . . , 0) ◁ same dimensions as 𝑊 ℓ+1

18: for 𝑘 ∈ [𝑚] do

19: 𝑐(𝑘)← random draw from ℋ
20: �̂� ℓ

𝑐(𝑘) ← 𝑊 ℓ
𝑐(𝑘) ◁ no reweighing or considering multiplicity of drawing index 𝑐(𝑘)

multiple times

21: �̂� ℓ+1
:𝑐(𝑘) ← �̂� ℓ+1

:𝑐(𝑘) +
𝑊 ℓ+1

:𝑐(𝑘)

𝑚𝑝𝑐(𝑘)
◁ reweighing for unbiasedness of pre-activation in layer

ℓ+ 1

22: end for

23: return �̂� ℓ = [�̂� ℓ
1 , . . . , �̂�

ℓ
𝜂ℓ
]; �̂� ℓ+1 = [�̂� ℓ+1

:1 , . . . , �̂� ℓ+1
:𝜂ℓ

]

102

4.4 Analysis

For notational simplicity, we will derive our theoretical results for linear layers, i.e.,

neuron pruning. We remind the reader that this result also applies to convolutional

neural networks by taking channels of a weight tensor in place of neurons.

4.4.1 Channel Sparsification

Recall that 𝑧ℓ+1
𝑖 (x) denotes the pre-activation of the 𝑖th neuron in layer ℓ + 1 given

input x, and the activation 𝑎ℓ𝑗(𝑥) = max{0, 𝑧ℓ𝑗(x)}.

Definition 5 (Edge Sensitivity (Baykal et al., 2019)). Fixing a layer ℓ ∈ [𝐿], let 𝑤ℓ+1
𝑖𝑗

be the weight of edge (𝑗, 𝑖) ∈ [𝜂ℓ] × [𝜂ℓ+1]. The empirical sensitivity of weight entry

𝑤ℓ+1
𝑖𝑗 with respect to input x ∈ 𝒳 is defined to be

𝑔ℓ+1
𝑖𝑗 (x) = max

𝐼∈{𝐼+,𝐼−}

𝑤ℓ+1
𝑖𝑗 𝑎ℓ𝑗(x)∑︀

𝑘∈𝐼 𝑤
ℓ+1
𝑖𝑘 𝑎ℓ𝑘(x)

, (4.1)

where 𝐼+ = {𝑗 ∈ [𝜂ℓ] : 𝑤ℓ+1
𝑖𝑗 𝑎ℓ𝑗(x) ≥ 0} and 𝐼− = [𝜂ℓ] ∖ 𝐼+ denote the set of positive

and negative edges, respectively.

Algorithm 2 uses empirical sensitivity to compute the sensitivity of neurons on

Lines 9-12.

Definition 6 (Neuron Sensitivity). The sensitivity of a neuron 𝑗 ∈ [𝜂ℓ] in layer ℓ is

defined as

𝑠ℓ𝑗 = max
x∈𝒮

max
𝑖∈[𝜂ℓ+1]

𝑔ℓ+1
𝑖𝑗 (x) (4.2)

In this section, we prove that Algorithm 2 yields a good approximation of the

original net. We make the following assumption on the cumulative distribution func-

tion (CDF) of the input to ensure that the input distribution is not pathological.

Assumption 2. There exist universal constants 𝐾,𝐾 ′ > 0 such that for any layer ℓ

and all 𝑗 ∈ [𝜂ℓ], the CDF of the random variable max𝑖∈[𝜂ℓ+1] 𝑔
ℓ+1
𝑖𝑗 (𝑥) for 𝑥 ∼ 𝒟, denoted

by 𝐹𝑗 (·), satisfies 𝐹𝑗 (𝑀𝑗/𝐾) ≤ exp (−1/𝐾′) , where 𝑀𝑗 = min{𝑦 ∈ [0, 1] : 𝐹𝑗 (𝑦) = 1}.

103

Note that the analysis is carried out for the positive and negative elements of

𝑊 ℓ+1 separately, which is also considered in the definition of sensitivity (Definition 5).

For ease of exposition, we will thus assume that throughout the section 𝑊 ℓ+1 ≥ 0

(element-wise), i.e., 𝐼+ = [𝜂ℓ], and derive the results for this case. However, we note

that we could equivalently assume 𝑊 ℓ+1 ≤ 0 and the analysis would hold regardless.

By considering both the positive and negative parts of 𝑊 ℓ+1 in Definition 5 we can

carry out the analysis for weight tensors with positive and negative elements.

Theorem 9. Let 𝜀, 𝛿 ∈ (0, 1), ℓ ∈ [𝐿], and let 𝒮 be a set of Θ(log (𝜂*/𝛿)) i.i.d. samples

drawn from 𝒟. Then, �̂� ℓ+1 contains at most 𝒪(𝑆ℓ log(𝜂*/𝛿)𝜀−2)) channels and for

𝑥 ∼ 𝒟, with probability at least 1− 𝛿, we have 𝑧ℓ+1 ∈ (1± 𝜀)𝑧ℓ+1 (entry-wise), where

𝜂* = maxℓ∈[𝐿] 𝜂
ℓ.

The remainder of this section builds towards proving Theorem 9. We begin by

fixing a layer ℓ ∈ [𝐿] and neuron 𝑖 ∈ [𝜂ℓ+1]. Consider the random variables {𝑌𝑘}𝑘∈[𝑚]

where 𝑌𝑘(x) = 1
𝑚𝑝𝑗

𝑤ℓ+1
𝑖𝑗 𝑎ℓ𝑗(x) where Algorithm 2 selected index 𝑗 ∈ [𝜂ℓ] on the 𝑘th

iteration of Line 19. Note that 𝑧ℓ+1
𝑖 (x) =

∑︀
𝑗∈[𝜂ℓ] 𝑤

ℓ+1
𝑖𝑗 𝑎ℓ𝑗(x) and so we may also write

𝑔ℓ+1
𝑖𝑗 (x) = 𝑤ℓ+1

𝑖𝑗 𝑎ℓ𝑗(x)/𝑧ℓ+1
𝑖 (x) when it is more convenient.

Lemma 10. For each x ∈ 𝒳 and 𝑘 ∈ [𝑚], E [𝑌𝑘(x)] = 𝑧ℓ+1
𝑖 (x)/𝑚.

Proof. 𝑌𝑗 is drawn from distribution ℋ defined on Line 15, so we compute the expec-

tation directly.

E [𝑌𝑗(x)] =
∑︁
𝑘∈[𝜂ℓ]

𝑤ℓ+1
𝑖𝑘 𝑎ℓ𝑘(x)

𝑚𝑝𝑘
· 𝑝𝑘 =

1

𝑚

∑︁
𝑘∈[𝜂ℓ]

𝑤ℓ+1
𝑖𝑘 𝑎ℓ𝑘(x) =

𝑧ℓ+1
𝑖 (x)

𝑚

To bound the variance, we use the approach introduced in Chapter 3, where the

main idea is to use the notion of empirical sensitivity to establish that a particu-

lar useful inequality holds with high probability over the randomness of the input

point 𝑥 ∼ 𝒟. Given that the inequality holds we can establish favorable bounds on

the variance and magnitude of the random variables, which lead to a low sampling

complexity.

104

For a random input point x ∼ 𝒟, let 𝒢 denote the event that the following

inequality holds (for all neurons): max𝑖∈[𝜂ℓ+1] 𝑔
ℓ+1
𝑖𝑗 (x) ≤ 𝐶 𝑠𝑗 ∀𝑗 ∈ [𝜂ℓ], where 𝐶 =

max{3𝐾, 1} and 𝐾 is defined as in Assumption 2.

We now prove that under Assumption 2, event 𝒢 occurs with high probability.

From now on, to ease notation, we will drop certain superscripts/subscripts with the

meaning is clear. For example, 𝑧(x) will refer to 𝑧ℓ+1
𝑖 (x).

Lemma 11. If Assumption 2 holds, P(𝒢) > 1 − 𝛿/2𝜂ℓ. Here the probability is over

the randomness of drawing x ∼ 𝒟.

Proof. Since max𝑖∈[𝜂ℓ+1] 𝑔𝑖𝑗(𝑥) is a function of 𝑥 ∼ 𝒟, for any 𝑗 ∈ [𝜂ℓ] we can let 𝐷 be a

distribution over max𝑖∈[𝜂ℓ+1] 𝑔𝑖𝑗(𝑥) and observe that since 𝑠𝑗 = maxx∈𝒮 max𝑖∈[𝜂ℓ+1] 𝑔𝑖𝑗(x),

the negation of event 𝒢 for a single neuron 𝑗 ∈ [𝜂ℓ] can be expressed as the event

𝑋 > 𝐶 max
𝑘∈[|𝒮|]

𝑋𝑘,

where 𝑋 ∼ 𝐷 and 𝑋1, . . . , 𝑋|𝒮|
𝑖.𝑖.𝑑.∼ 𝐷 since the points in 𝒮 were drawn i.i.d. from 𝒟.

Invoking Lemma 8 from Baykal et al. (2019) in conjunction with Assumption 2, we

obtain for any arbitrary 𝑗

P(max
𝑖∈[𝜂ℓ+1]

𝑔𝑖𝑗(𝑥) > 𝐶 𝑠𝑗) = P(𝑋 > 𝐶 max
𝑘∈[|𝒮|]

𝑋𝑘) ≤ exp(−|𝒮|/𝐾 ′)

with the 𝐾 ′ from Assumption 2. Since our choice of neuron 𝑗 was arbitrary, the

inequality above holds for all neurons, therefore we can apply the union bound to

obtain:

P
𝑥∼𝒟

(𝒢) = 1− P(∃𝑗 ∈ [𝜂ℓ] : max
𝑖∈[𝜂ℓ+1]

𝑔𝑖𝑗(𝑥) > 𝐶 𝑠𝑗)

≥ 1−
∑︁
𝑗∈[𝜂ℓ]

P(max
𝑖∈[𝜂ℓ+1]

𝑔𝑖𝑗(𝑥) > 𝐶 𝑠𝑗)

≥ 1− 𝜂ℓ exp(−|𝒮|/𝐾 ′)

≥ 1− 𝛿

2𝜂ℓ+1

105

where the last line follows from the fact that |𝒮| ≥
⌈︀
𝐾 ′ log

(︀
2 𝜂ℓ𝜂ℓ+1/𝛿

)︀⌉︀
.

Lemma 12. For any x such that event 𝒢 occurs, then |𝑌𝑘(x)−E [𝑌𝑘(x)]| ≤ 𝐶𝑆𝑧/𝑚.

Here the expectation is over the randomness of Algorithm 2.

Proof. Recall that 𝑆 =
∑︀

𝑗∈[𝜂ℓ] 𝑠𝑗. Let neuron 𝑗 ∈ [𝜂ℓ] be selected on iteration 𝑘 of

Line 19. For any 𝑘 ∈ [𝑚] we have:

𝑌𝑘(x) =
𝑤𝑖𝑗𝑎𝑗(x)

𝑚𝑝𝑗
= 𝑆

𝑤𝑖𝑗𝑎𝑗(x)

𝑚𝑠𝑗
≤ 𝐶 𝑆

𝑤𝑖𝑗𝑎𝑗(x)

𝑚 max𝑖′ 𝑔𝑖′𝑗(x)
≤ 𝐶 𝑆

𝑤𝑖𝑗𝑎𝑗(x)

𝑚𝑔𝑖𝑗(x)
=

𝐶 𝑆 𝑧

𝑚
,

where the first inequality follows by the inequality of event 𝒢, the second by the

fact that max𝑖′ 𝑔𝑖′𝑗(x) ≥ 𝑔𝑖𝑗(x) for any 𝑖, and the third equality by definition of

𝑔𝑖𝑗(x) = 𝑤𝑖𝑗𝑎𝑗(x)/𝑧(x). This implies that |𝑌𝑘 − E [𝑌𝑘]| =
⃒⃒
𝑌𝑘 − 𝑧

𝑚

⃒⃒
∈ [−𝑧/𝑚,𝐶𝑆𝑧/𝑚]

by Lemma 10 and since 𝑌𝑘 ≥ 0. The result follows since 𝐶, 𝑆 ≥ 1.

Lemma 13. For any x such that event 𝒢 occurs, then Var(𝑌𝑘(x)) ≤ 𝐶𝑆𝑧2/𝑚2. Here

the expectation is over the randomness of Algorithm 2.

Proof. We can use the same inequality obtained by conditioning on 𝒢 to bound the

variance of our estimator.

Var(𝑌𝑘(x)) = E [𝑌 2
𝑘 (x)]− (E [𝑌𝑘(x)])2

≤ E [𝑌 2
𝑘 (x)]

=
∑︁
𝑗∈[𝜂ℓ]

(︂
𝑤𝑖𝑗𝑎𝑗(x)

𝑚𝑝𝑗

)︂2

· 𝑝𝑗 by definition of 𝑌𝑘

=
𝑆

𝑚2

∑︁
𝑗∈[𝜂ℓ]

(𝑤𝑖𝑗𝑎𝑗(x))2

𝑠𝑗
since 𝑝𝑗 = 𝑠𝑗/𝑆

≤ 𝐶𝑆

𝑚2

∑︁
𝑗∈[𝜂ℓ]

(𝑤𝑖𝑗𝑎𝑗(x))2

max𝑖′∈[𝜂ℓ+1] 𝑔𝑖′𝑗(x)
by occurrence of event 𝒢

≤ 𝐶𝑆 𝑧

𝑚2

∑︁
𝑗∈[𝜂ℓ]

𝑤𝑖𝑗𝑎𝑗(x) since 𝑔𝑖𝑗(x) = 𝑤𝑖𝑗𝑎𝑗(x)/𝑧(x)

=
𝐶𝑆𝑧2

𝑚2
.

106

We are now ready to prove Theorem 9.

Proof of Theorem 9. Recall the form of Bernstein’s inequality that, given random

variables 𝑋1, . . . , 𝑋𝑚 such that for each 𝑘 ∈ [𝑚] we have E [𝑋𝑘] = 0 and |𝑋𝑘| ≤ 𝑀

almost surely, then

P

⎛⎝∑︁
𝑘∈[𝑚]

𝑋𝑘 ≥ 𝑡

⎞⎠ ≤ exp

(︃
−𝑡2/2∑︀

𝑘∈[𝑚] E [𝑋2
𝑘] + 𝑀𝑡/3

)︃

We apply this with 𝑋𝑘 = 𝑌𝑘 − 𝑧
𝑚

. We must take the probability with respect to

the randomness of both drawing x ∼ 𝒟 and Algorithm 2. By Lemma 10, 𝐸[𝑋𝑘] = 0.

Let us assume that event 𝒢 occurs. By Lemma 12, we may set 𝑀 = 𝐶𝑆𝑧/𝑚. By

Lemma 13,
∑︀

𝑘∈[𝑚] E [𝑋2
𝑘] ≤ 𝐶𝑆𝑧2/𝑚. We will apply the inequality with 𝑡 = 𝜀𝑧.

Observe that
∑︀

𝑘∈[𝑚] 𝑋𝑘 = 𝑧 − 𝑧. Plugging in these values, and taking both tails

of the inequality, we obtain:

P(|𝑧 − 𝑧| ≥ 𝜀𝑧 : 𝒢) ≤ 2 exp

(︂
−𝜀2𝑧2/2

𝐶𝑆𝑧2/𝑚 + 𝐶𝑆𝜀𝑧2/3𝑚

)︂
= 2 exp

(︂
− 𝜀2𝑚

𝑆𝐾 (6 + 2𝜀)

)︂
since 𝐶 ≤ 3𝐾

≤ 𝛿

2𝜂ℓ+1
by definition of 𝑚

Removing dependence on event 𝒢, we write:

P(|𝑧 − 𝑧| ≥ 𝜀𝑧) ≥ P(|𝑧 − 𝑧| ≥ 𝜀𝑧 : 𝒢)P(𝒢) ≥
(︂

1− 𝛿

2𝜂ℓ+1

)︂(︂
1− 𝛿

2𝜂ℓ+1

)︂
≥ 1− 𝛿

𝜂ℓ+1

where we have applied Lemma 11. This implies the result for any single neuron, and

the theorem follows by application of the union bound over all 𝜂ℓ+1 neurons in layer

ℓ.

107

4.4.2 Main Compression Theorem

Having established layer-wise approximation guarantees as in Section 4.4.1, all that

remains to establish guarantees on the output of the entire network is to carefully

propagate the error through the layers as was shown in Chapter 3. For each 𝑖 ∈ [𝜂ℓ+1]

and ℓ ∈ [𝐿], define

Δ̃ℓ
𝑖(𝑥) = (𝑧+𝑖 (𝑥)+𝑧−𝑖 (𝑥))/|𝑧𝑖(𝑥)|,

where 𝑧+𝑖 (𝑥) =
∑︀

𝑘∈𝐼+ 𝑤ℓ+1
𝑖𝑘 𝑎ℓ𝑘(x) and 𝑧−𝑖 (𝑥) =

∑︀
𝑘∈𝐼− 𝑤ℓ+1

𝑖𝑘 𝑎ℓ𝑘(x) are positive and

negative components of 𝑧ℓ+1
𝑖 (𝑥), respectively, with 𝐼+ and 𝐼− as in Algorithm 2. For

each ℓ ∈ [𝐿], let Δℓ be a constant defined as a function of the input distribution

𝒟 2, such that with high probability over 𝑥 ∼ 𝒟, Δℓ ≥ max𝑖∈[𝜂ℓ+1] Δ
ℓ
𝑖 . Finally, let

Δℓ→ =
∏︀𝐿

𝑘=ℓ Δ𝑘.

Generalizing Theorem 9 to obtain a layer-wise bound and applying error prop-

agation bounds of Chapter 3, we establish our main compression theorem below.

Theorem 14. Let 𝜀, 𝛿 ∈ (0, 1) be arbitrary, let 𝒮 ⊂ 𝒳 denote the set of ⌈𝐾 ′ log (4𝜂/𝛿)⌉

i.i.d. points drawn from 𝒟, and suppose we are given a network with parameters

𝜃 = (𝑊 1, . . . ,𝑊𝐿). Consider the set of parameters 𝜃 = (�̂� 1, . . . , �̂�𝐿) generated by

pruning channels of 𝜃 according to Algorithm 2 for each ℓ ∈ [𝐿]. Then, 𝜃 satisfies

P𝜃, 𝑥∼𝒟 (𝑓𝜃(𝑥) ∈ (1± 𝜀)𝑓𝜃(𝑥)) ≥ 1 − 𝛿, and the number of filters in 𝜃 is bounded by

𝒪
(︁∑︀𝐿

ℓ=1
𝐿2 (Δℓ→)2 𝑆ℓ log(𝜂/𝛿)

𝜀2

)︁
.

4.4.3 Extension to Filters

To extend our algorithm to convolutional neural networks, we need to consider the fact

that there is implicit weight sharing involved by definition of the filters. Intuitively

speaking, to measure the importance of a feature map (i.e. neuron) in the case of a

fully-connected network we consider the maximum impact it has on the preactivation

𝑧ℓ+1(𝑥). In the case of convolutions the same intuition holds, that is we want to

2If Δ𝑖(𝑥) is a sub-Exponential random variable (Vershynin, 2016) with parameter 𝜆 = 𝑂(1), then
for 𝛿 failure probability: Δℓ𝒪(E 𝑥∼𝒟[max𝑖 Δ𝑖(𝑥)] + log(1/𝛿)) (Baykal et al., 2019; Vershynin, 2016)

108

capture the maximum contribution of a feature map 𝑎ℓ𝑗(𝑥), which is now a two-

dimensional image instead of a scalar neuron, to the pre-activation 𝑧ℓ+1(𝑥) in layer

ℓ + 1. Thus, to adapt our algorithm to prune channels, we modify the definition

of sensitivity slightly, by also taking the maximum over the patches 𝑝 ∈ 𝒫 (i.e.,

sliding windows created by convolutions). In this context, each activation 𝑎ℓ𝑗(𝑥) is

also associated with a patch 𝑝 ∈ 𝒫 , which we denote by 𝑎ℓ𝑗𝑝. In particular, the slight

change is the following:

𝑠ℓ𝑗 = max
𝑥∈𝒮

max
𝑖∈[𝜂ℓ+1]

max
𝑝∈𝒫

⟨𝑤ℓ+1
𝑖𝑗 , 𝑎ℓ𝑗𝑝(𝑥)⟩∑︀

𝑘∈[𝜂ℓ]⟨𝑤
ℓ+1
𝑖𝑘 , 𝑎ℓ𝑘𝑝(𝑥)⟩

,

where 𝑎·𝑝 corresponds to the activation window associated with patch 𝑝 ∈ 𝒫 . Also

note that now 𝑤ℓ+1
𝑖𝑗 denotes the kernel of filter 𝑖 for channel 𝑗 and we thus have to

take a dot product with the corresponding patch. Everything else remains the same

and the proofs are analogous.

4.4.4 Boosting Sampling via Deterministic Choices

Importance sampling schemes, such as the one described above, are powerful tools

with numerous applications in Big Data settings, ranging from sparsifying matri-

ces (Achlioptas et al., 2013; Baykal et al., 2019; Drineas and Zouzias, 2011; Kundu

and Drineas, 2014; Tropp et al., 2015) to constructing coresets for machine learning

problems (Bachem et al., 2017; Braverman et al., 2016; Feldman and Langberg, 2011).

However, by the nature of the exponential decay in probability associated with im-

portance sampling schemes, sampling schemes perform truly well when the sampling

pool and the number of samples is sufficiently large (Tropp et al., 2015). However,

under certain conditions on the sampling distribution, the size of the sampling pool,

and the size of the desired sample 𝑚, it has been observed that deterministically

picking the 𝑚 samples corresponding to the highest 𝑚 probabilities may yield an

estimator that incurs lower error (McCurdy, 2018; Papailiopoulos et al., 2014).

To this end, consider a hybrid scheme that picks 𝑘 indices deterministically (with-

out reweighing) and samples 𝑚′ indices. More formally, let 𝒞det ⊆ [𝑛] be the set of

109

𝑘 unique indices (corresponding to weights) that are picked deterministically, and

define

𝑧det =
∑︁
𝑗∈𝒞det

𝑤𝑖𝑗𝑎𝑗,

where we note that the weights are not reweighed. Now let 𝒞rand be a set of 𝑚′ indices

sampled from the remaining indices i.e., sampled from [𝑛] ∖ 𝒞det, with probability

distribution 𝑞 = (𝑞1, . . . , 𝑞𝑛). To define the distribution 𝑞, recall that the original

distribution 𝑝 is defined to be 𝑝𝑖 = 𝑠𝑖/𝑆 for each 𝑖 ∈ [𝑛]. Now, 𝑞 is simply the

normalized distribution resulting from setting the probabilities associated with indices

in 𝒞det to be 0, i.e.,

𝑞𝑖 =

⎧⎪⎨⎪⎩
𝑠𝑖

𝑆−𝑆𝑘
if 𝑖 /∈ 𝒞det,

0 otherwise

,

where 𝑆𝑘 =
∑︀

𝑗∈𝒞det 𝑠𝑗 is the sum of sensitivities of the entries that were determinis-

tically picked.

Instead of doing a combinatorial search over all
(︀
𝑛
𝑘

)︀
choices for the deterministic

set 𝒞det, for computational efficiency, we found that setting 𝒞det to be the indices with

the top 𝑘 sensitivities was the most likely set to satisfy the condition above.

We state the general theorem below.

Theorem 15. It is better to keep 𝑘 feature maps, 𝒞det ⊆ [𝜂ℓ], |𝒞det| = 𝑘, determinis-

tically and sample 𝑚′ =
⌈︀
(6 + 2𝜀) (𝑆ℓ − 𝑆ℓ

𝑘)𝐾 log(8𝜂*/𝛿)𝜀−2
⌉︀
features from [𝜂ℓ] ∖ 𝒞det

if ∑︁
𝑗 /∈𝒞det

(︂
1− 𝑠𝑗

𝑆 − 𝑆𝑘

)︂𝑚′

>

𝜂ℓ∑︁
𝑗=1

(︁
1− 𝑠𝑗

𝑆

)︁𝑚
+

√︂
log(2/𝛿)(𝑚 + 𝑚′)

2
,

where 𝑚 =
⌈︀
(6 + 2𝜀)𝑆ℓ 𝐾 log(4𝜂*/𝛿)𝜀−2

⌉︀
, 𝑆𝑘 =

∑︀
𝑗∈𝒞det 𝑠𝑗 and 𝜂* = maxℓ 𝜂

ℓ.

Proof. Let 𝑚 ≥
⌈︀
(6 + 2𝜀)𝑆ℓ 𝐾 log(4𝜂*/𝛿)𝜀−2

⌉︀
as in Theorem 9 and note that from

Theorem 9, we know that if 𝑧 is our approximation with respect to sampled set of

indices, 𝒞, we have

P(ℰ) ≤ 𝛿

110

where ℰ is the event that the inequality

⃒⃒
𝑧ℓ+1
𝑖 (𝑥)− 𝑧ℓ+1

𝑖 (𝑥)
⃒⃒
≤ 𝜀𝑧ℓ+1

𝑖 (𝑥) ∀𝑖 ∈ [𝜂ℓ+1]

holds. Henceforth, we will let 𝑖 ∈ [𝜂ℓ+1] be an arbitrary neuron and, similar to be-

fore, consider the problem of approximating the neuron’s value 𝑧ℓ+1
𝑖 (𝑥) (subsequently

denoted by 𝑧) by our approximating 𝑧ℓ+1
𝑖 (𝑥) (subsequently denoted by 𝑧).

Similar to our previous analysis of our importance sampling scheme, we let 𝒞rand =

{𝑐1, . . . , 𝑐𝑚′} denote the multiset of 𝑚′ neuron indices that are sampled with respect

to distribution 𝑞 and for each 𝑗 ∈ [𝑚′] define 𝑌𝑗 = �̂�𝑖𝑐𝑗𝑎𝑐𝑗 and let 𝑌 =
∑︀

𝑗∈[𝑚′] 𝑌𝑗. For

clarity of exposition, we define 𝑧rand = 𝑌 be our approximation with respect to the

random sampling procedure, i.e.,

𝑧rand =
∑︁

𝑗∈𝒞rand

�̂�𝑖𝑗𝑎𝑗 = 𝑌.

Thus, our estimator under this scheme is given by 𝑧′ = 𝑧det + 𝑧rand

Now we want to analyze the sampling complexity of our new estimator 𝑧′ so that

P(|𝑧′ − 𝑧| ≥ 𝜀𝑧) ≤ 𝛿/2.

Establishing the sampling complexity for sampling with respect to distribution 𝑞 is

almost identical to the proof of Theorem 9. First, note that E [𝑧′ | x] = 𝑧det+E [𝑧rand |

x] since 𝑧det is a constant (conditioned on a realization x of 𝑥 ∼ 𝒟). Now note that

for any 𝑗 ∈ [𝑚′]

E [𝑌𝑗 | x] =
∑︁

𝑘∈[𝜂ℓ]∖𝒞det

�̂�𝑖𝑘𝑎𝑘 · 𝑞𝑘

=
1

𝑚′

∑︁
𝑘∈[𝜂ℓ]∖𝒞det

𝑤𝑖𝑘𝑎𝑘

=
𝑧 − 𝑧det

𝑚′ ,

and so E [𝑧rand | x] = E [𝑌 | x] = 𝑧 − 𝑧det.

This implies that E [𝑧′] = 𝑧det + (𝑧 − 𝑧det) = 𝑧, and so our estimator remains

111

unbiased. This also yields

|𝑌 − E [𝑌 | x]| = |𝑧rand − E [𝑧rand]| = |𝑧rand + 𝑧det − 𝑧|

= |𝑧′ − 𝑧| ,

which implies that all we have to do to bound the failure probability of the event

|𝑧′ − 𝑧| ≥ 𝜀𝑧 is to apply Bernstein’s inequality to our estimator 𝑧rand = 𝑌 , just as

we had done in the proof of Theorem 9. The only minor change is the variance and

magnitude of the random variables 𝑌𝑘 for 𝑘 ∈ [𝑚′] since the distribution is now with

respect to 𝑞 and not 𝑝. Proceeding as in the proof of Lemma 12, we have

�̂�𝑖𝑗𝑎𝑗(x) =
𝑤𝑖𝑗𝑎𝑗(x)

𝑚′ 𝑞𝑗
= (𝑆 − 𝑆𝑘)

𝑤𝑖𝑗𝑎𝑗(x)

𝑚′ 𝑠𝑗

≤ (𝑆 − 𝑆𝑘)𝐶 𝑧

𝑚′ .

Now, to bound the magnitude of the random variables note that

E [𝑌𝑗 | x] =
𝑧 − 𝑧det

𝑚′ =
1

𝑚′

∑︁
𝑗 /∈𝒞det

𝑤𝑖𝑗𝑎𝑗 ≤
(𝑆 − 𝑆𝑘)𝐶 𝑧

𝑚′ .

The result above combined with this fact yields for the magnitude of the random

variables

𝑅′ = max
𝑗∈[𝑚′]

|𝑌𝑗 − E [𝑌𝑗 | x]| ≤ (𝑆 − 𝑆𝑘)𝐶 𝑧

𝑚′ ,

where we observe that the only relative difference to the bound of Lemma 12 is the

term 𝑆 − 𝑆𝑘 appears, where 𝑆𝑘 =
∑︀

𝑗∈𝒞det 𝑠𝑗, instead of 𝑆3

3and of course the sampling complexity is 𝑚′ instead of 𝑚

112

Similarly, for the variance of a single 𝑌𝑗

Var(𝑌𝑗 | x,𝒢) ≤
∑︁

𝑘∈[𝜂ℓ]∖𝒞det

(𝑤𝑖𝑘𝑎𝑘(x))2

𝑚′2 𝑞𝑘

=
𝑆 − 𝑆𝑘

𝑚′2

∑︁
𝑘∈[𝜂ℓ]∖𝒞det

(𝑤𝑖𝑘𝑎𝑘(x))2

𝑠𝑘

≤ 𝐶(𝑆 − 𝑆𝑘) 𝑧

𝑚′2

∑︁
𝑘∈[𝜂ℓ]∖𝒞det

𝑤𝑖𝑘𝑎𝑘(x)

≤ 𝐶(𝑆 − 𝑆𝑘)𝑧2 min{1, 𝐶(𝑆 − 𝑆𝑘)}
𝑚′2 ,

where the last inequality follows by the fact that
∑︀

𝑘∈[𝜂ℓ]∖𝒞det 𝑤𝑖𝑘𝑎𝑘(x) ≤ 𝑧 and by the

sensitivity inequality from the proof of Lemma 13

∑︁
𝑘∈[𝜂ℓ]∖𝒞det

𝑤𝑖𝑘𝑎𝑘(x) ≤ 𝐶𝑧
∑︁

𝑗∈[𝜂ℓ]∖𝒞det

𝑠𝑗 = 𝐶𝑧(𝑆 − 𝑆𝑘).

This implies by Bernstein’s inequality and the argument in proof of Theorem 9

that if we sample

𝑚′ =
⌈︀
(6 + 2𝜀) (𝑆ℓ − 𝑆ℓ

𝑘)𝐾 log(8𝜂*/𝛿)𝜀−2
⌉︀

times from the distribution 𝑞, then we have

P(|𝑧′ − 𝑧| ≥ 𝜀𝑧) ≤ 𝛿/2.

Now let 𝑝 = (𝑝1, . . . , 𝑝𝑛) be the probability distribution and let 𝒞 denote the

multi-set of indices sampled from [𝑛] when 𝑚 samples are taken from [𝑛] with respect

to distribution 𝑝. For each index 𝑗 ∈ [𝑛] let 𝑈𝑗(𝑚, 𝑝) = 1 [𝑗 ∈ 𝒞] be the indicator

random variable of the event that index 𝑗 is sampled at least once and let 𝑈(𝑚, 𝑝) =∑︀𝑛
𝑖=𝑗 𝑈𝑗(𝑚, 𝑝). Note that 𝑈 is a random variable that denotes the number of unique

samples that result from the sampling process described above, and its expectation

113

is given by

E [𝑈(𝑚, 𝑝)] =
𝑛∑︁

𝑗=1

E [𝑈𝑗(𝑚, 𝑝)] =
𝑛∑︁

𝑗=1

P(𝑖 ∈ 𝒞)

=
𝑛∑︁

𝑗=1

P(𝑗 is sampled at least once)

=
𝑛∑︁

𝑗=1

(1− P(𝑗 is not sampled))

= 𝑛−
𝑛∑︁

𝑗=1

(1− 𝑝𝑗)
𝑚.

Now we want to establish the condition for which 𝑈(𝑚′, 𝑞) < 𝑈(𝑚, 𝑝), which,

if it holds, would imply that the number of distinct weights that we retain with

the deterministic + sampling approach is lower and still achieves the same error

and failure probability guarantees, making it the overall better approach. To apply a

strong concentration inequality, let 𝒞 ′ = 𝒞det∪𝒞rand = {𝑐′1, . . . , 𝑐′𝑘, 𝑐′𝑘+1, . . . , 𝑐
′
𝑚′} denote

the set of indices sampled from the deterministic + sampling (with distribution 𝑞)

approach, and let 𝒞 = {𝑐1, . . . , 𝑐𝑚} be the indices of the random samples obtained

by sampling from distribution 𝑝. Let 𝑓(𝑐′1, . . . , 𝑐
′
𝑚′ , 𝑐1, . . . , 𝑐𝑚) denote the difference

𝑈(𝑚′, 𝑞)−𝑈(𝑚, 𝑝) in the number of unique samples in 𝒞 ′ and 𝒞. Note that 𝑓 satisfies

the bounded difference inequality with Lipschitz constant 1 since changing the index

of any single sample in 𝒞 ∪ 𝒞 ′ can change 𝑓 by at most 1. Moreover, there are

𝑚′ +𝑚 random variables, thus, applying McDiarmid’s inequality (van Handel, 2014),

we obtain

P(E [𝑈(𝑚, 𝑝)− 𝑈(𝑚′, 𝑞)]− (𝑈(𝑚, 𝑝)− 𝑈(𝑚′, 𝑞)) ≥ 𝑡) ≤ exp

(︂
− −2𝑡2

(𝑚 + 𝑚′)

)︂
,

this implies that for 𝑡 =
√︁

log(2/𝛿)(𝑚+𝑚′)
2

,

E [𝑈(𝑚, 𝑝)− 𝑈(𝑚′, 𝑞)] ≤ 𝑈(𝑚, 𝑝)− 𝑈(𝑚′, 𝑞) + 𝑡

with probability at least 1−𝛿/2. Thus, this means that if 𝐸[𝑈(𝑚, 𝑝)]−E [𝑈(𝑚′, 𝑞)] > 𝑡,

114

then 𝑈(𝑚, 𝑝) > 𝑈(𝑚′, 𝑞).

More specifically, recall that

E [𝑈(𝑚, 𝑝)] = 𝑛−
𝑛∑︁

𝑗=1

(1− 𝑝𝑗)
𝑚 = 𝑛−

𝑛∑︁
𝑗=1

(︁
1− 𝑠𝑗

𝑆

)︁𝑚
and

E [𝑈(𝑚′, 𝑞)] = 𝑘 +
∑︁
𝑗:𝑞𝑗>0

(1− (1− 𝑞𝑗)
𝑚′

)

= 𝑘 + (𝑛− 𝑘)−
∑︁
𝑗:𝑞𝑗>0

(1− 𝑞𝑗)
𝑚′

= 𝑛−
∑︁
𝑗:𝑞𝑗>0

(1− 𝑞𝑗)
𝑚′

= 𝑛−
∑︁
𝑗 /∈𝒞det

(︂
1− 𝑠𝑗

𝑆 − 𝑆𝑘

)︂𝑚′

Thus, rearranging terms, we conclude that it is better to conduct the deterministic

+ sampling scheme if

∑︁
𝑗 /∈𝒞det

(︂
1− 𝑠𝑗

𝑆 − 𝑆𝑘

)︂𝑚′

>
𝑛∑︁

𝑗=1

(︁
1− 𝑠𝑗

𝑆

)︁𝑚
+

√︂
log(2/𝛿)(𝑚 + 𝑚′)

2
.

Putting it all together, and conditioning on the above inequality holding, we have

by the union bound

P (|𝑧′ − 𝑧| ≥ 𝜀𝑧 ∪ 𝑈(𝑚′, 𝑞) > 𝑈(𝑚, 𝑝)) ≤ 𝛿,

this implies that with probability at least 1− 𝛿: (i) 𝑧′ ∈ (1± 𝜀)𝑧 and (ii) 𝑈(𝑚′, 𝑞) <

𝑈(𝑚, 𝑝), implying that the deterministic + sampling approach ensures the error guar-

antee holds with a smaller number of unique samples, leading to better compres-

sion.

115

4.5 Discussion

In this chapter, we highlight that our theoretical techniques developed in Chapter 3

can readily generalize to other types of pruning and other types of networks. This

provides some interesting avenues for subsequent work in the sense that we can now

develop practical pruning algorithms for large-scale, deep neural networks in practical

settings, such as deep ResNets (He et al., 2016) on ImageNet (Russakovsky et al.,

2015). We have not shown empirical results for our generalized approach to neural

network compression yet and will dive into details of how we can effectively leverage

our layer-wise error guarantees in the next part of this thesis (Part II). Moreover,

our theoretical results indicate that our sensitivity-based framework can serve as a

modular and flexible proving technique for various types of neural networks, including

potentially new and even more complex architectures such as Transformers (Vaswani

et al., 2017).

116

Part II

Efficient Neural Networks

117

118

Chapter 5

Provable Filter Pruning

5.1 Overview

In this chapter, we introduce a data-informed algorithm for pruning redundant filters

in convolutional neural networks (CNNs) while incurring minimal loss in the network’s

accuracy (see Figure 5-1 for an overview). At the heart of our method lies a novel

definition of filter importance, i.e., filter sensitivity, that is computed by using a small

batch of input points as introduced in Chapter 4. There, we prove that by evaluating

the relative contribution of each filter to the output of the layer, we can accurately

capture its importance with respect to the other filters in the network. We also show

that sampling filters with probabilities proportional to their sensitivities leads to an

importance sampling scheme with low variance, which enables us to establish rigorous

guarantees on the size and performance of the resulting pruned network.

Moreover, our analysis helps bridge the notions of compressibility and importance

of each network layer: layers that are more compressible are less important for pre-

serving the output of the original network, and vice-versa. Hence, we obtain and

introduce a fully-automated sample size allocation procedure for properly identifying

and preserving critical network structures as a corollary.

Unlike weight pruning approaches that lead to irregular sparsity patterns – re-

quiring specialized libraries or hardware to enable computational speedups – our

approach compresses the original network to a slimmer subnetwork by pruning fil-

119

……

Data batch Compute filter sensitivity in each layer Prune filters and output small net

Filter sensitivity 𝑠ℓ𝑗 from feature map importance Sample filter 𝑗 with probability 𝑝ℓ𝑗 ∼ 𝑠ℓ𝑗

Per-Layer Filter Pruning

0.00

0.05

0.10

0.15

0.20𝑊 ℓ
1...

𝑊 ℓ
𝑗

...

𝑎ℓ1 . . . 𝑎ℓ𝑗 . . . 𝑎ℓ𝜂ℓ

𝑧ℓ+1
𝑖

⏞ ⏟ ⏞ ⏟

Figure 5-1: Overview of our pruning method. We use a small batch of data points
to quantify the relative importance 𝑠ℓ𝑗 of each filter 𝑊 ℓ

𝑗 in layer ℓ by considering the
importance of the corresponding feature map 𝑎ℓ𝑗 = 𝜑(𝑧ℓ𝑗) in computing the output 𝑧ℓ+1

of layer ℓ + 1, where 𝜑(·) is the non-linear activation function. We then prune filters
by sampling each filter 𝑗 with probability proportional to 𝑠ℓ𝑗 and removing the filters
that were not sampled. We invoke the filter pruning procedure each layer to obtain
the pruned network (the prune step); we then retrain the pruned network (retrain
step), and repeat the prune-retrain cycle iteratively.

ters, which enables accelerated inference with any off-the-shelf deep learning library

and hardware. We evaluate and compare the effectiveness of our approach in pruning

a diverse set of network architectures trained on real-world data sets. Our empiri-

cal results show that our approach generates sparser and more efficient models with

minimal loss in accuracy when compared to those generated by state-of-the-art filter

pruning approaches.

5.1.1 Contributions

The main contributions of this chapter are as follows:

• A novel pruning framework for filter pruning based on our generalized notion

of sensitivity including sampling-based and deterministic pruning methods.

• A layer-wise allocation procedure to optimally allocate a per-layer prune budget

based on our layer-wise theoretical error guarantees.

120

• Evaluations on large-scale data sets and networks that demonstrate the practical

effectiveness of our algorithm in compressing neural networks via filter pruning.

5.1.2 Relevant Papers

The results presented in this chapter are based on the following paper:

• Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus.

Provable filter pruning for efficient neural networks. In International Conference

on Learning Representations, 2020.

5.1.3 Outline

We introduce our approach to filter pruning in Section 5.2 including a summary of

the theoretical results that our pruning method is based on and discussions about

the sampling-based and derandomized version of our algorithm. In Section 5.3, we

introduce our method to budget allocation, i.e., the process of assigning an optimal

prune ratio to each layer of a network based on our theoretical error guarantees. We

then present empirical results on various benchmarks in Section 5.4 and discuss our

contributions in Section 5.5.

5.2 Filter Pruning

In this section, we introduce the network pruning problem and outline our sampling-

based filter pruning procedure and its theoretical properties. We revisit the notion of

empirical sensitivity (ES) from Part I to quantify the importance of each filter using

a small set of input points. We summarize how our importance criterion enables us

to construct a low-variance importance sampling distribution over the filters in each

layer. We conclude by showing that our approach can eliminate a large fraction of

filters while ensuring that the output of each layer is approximately preserved. We

also discuss how we can further boost the performance of our algorithm by choosing

filters deterministically based on our theoretical insights from Section 4.4.4.

121

5.2.1 Preliminaries

Analogous to Chapter 4, we consider a trained 𝐿-layer network with parameters

𝜃 = (𝑊 1, . . . ,𝑊𝐿), where 𝑊 ℓ denotes the 4-dimensional tensor in layer ℓ ∈ [𝐿], 𝑊 ℓ
𝑗

filter 𝑗 ∈ [𝜂ℓ], and 𝜂ℓ the number of filters in layer ℓ. Moreover, let 𝑊 ℓ+1
:𝑗 be channel 𝑗

of tensor 𝑊 ℓ+1 that corresponds to filter 𝑊 ℓ
𝑗 . We let 𝒳 ⊂ R𝑑 and 𝒴 ⊂ R𝑘 denote the

input and output space, respectively. The marginal distribution over the input space

is given by 𝒟. For an input 𝑥 ∈ 𝒳 to the network, we let 𝑧ℓ(𝑥) and 𝑎ℓ(𝑥) = 𝜑(𝑧ℓ(𝑥))

denote the pre-activation and activation of layer ℓ, where 𝜑 is the activation function

(applied entry-wise). The 𝑗th feature map of layer ℓ is given by 𝑎ℓ𝑗(𝑥) = 𝜑(𝑧ℓ𝑗(𝑥))

(see Figure 5-1). For a given input 𝑥 ∈ 𝒳 , the output of the neural network with

parameters 𝜃 is given by 𝑓𝜃(𝑥).

Our overarching goal is to prune filters from each layer ℓ ∈ [𝐿] by random sampling

to generate a compact reparameterization of 𝜃, 𝜃 = (�̂� 1, . . . , �̂�𝐿), where the number

of filters in the pruned weight tensor �̂� ℓ is a small fraction of the number of filters

in the original (uncompressed) tensor 𝑊 ℓ. Let nnz(𝜃) denote the number of nonzero

(nnz) parameters in the network, i.e., the sum of the number of weights over each

𝑊 ℓ ∈ (𝑊 1, . . . ,𝑊𝐿).

Pruning Objective For a given 𝜀, 𝛿 ∈ (0, 1), our objective is to generate a

compressed network with parameters 𝜃 such that nnz(𝜃)≪ nnz(𝜃) and P𝑥∼𝒟,𝜃(𝑓𝜃(𝑥) ∈

(1 ± 𝜀)𝑓𝜃(𝑥)) ≥ 1 − 𝛿, where 𝑓𝜃(𝑥) ∈ (1 ± 𝜀)𝑓𝜃(𝑥) denotes an entry-wise guarantee

over the output neurons 𝑓𝜃(𝑥), 𝑓𝜃(𝑥) ∈ 𝒴 .

5.2.2 Sampling-based Filter Pruning

Our sampling-based filter pruning algorithm for an arbitrary layer ℓ ∈ [𝐿] is depicted

as Algorithm 3. The sampling procedure takes as input the set of 𝜂ℓ channels in

layer ℓ + 1 that constitute the weight tensor 𝑊 ℓ+1, i.e., 𝑊 ℓ+1 = [𝑊 ℓ+1
:1 , . . . ,𝑊 ℓ+1

:𝜂ℓ
]

as well as the desired relative error and failure probability, 𝜀, 𝛿 ∈ (0, 1), respectively.

In Line 2 we construct the importance sampling distribution over the feature maps

corresponding to the channels by leveraging the empirical sensitivity of each feature

122

Algorithm 3 PruneChannels(𝑊 ℓ+1, 𝜀, 𝛿, 𝑠ℓ)

Input: 𝑊 ℓ+1 = [𝑊 ℓ+1
:1 , . . . ,𝑊 ℓ+1

:𝜂ℓ
]: original channels; 𝜀: relative error; 𝛿: failure probabil-

ity; 𝑠ℓ: feature map sensitivities as in (5.1)
Output: �̂� ℓ+1: pruned channels

1: 𝑆ℓ ←
∑︀

𝑗∈[𝜂ℓ] 𝑠
ℓ
𝑗 ◁ where 𝑠ℓ𝑗 is as in (5.1)

2: 𝑝ℓ𝑗 ← 𝑠ℓ𝑗/𝑆ℓ ∀𝑗 ∈ [𝜂ℓ]

3: 𝑚ℓ ←
⌈︀
(6 + 2𝜀)𝑆ℓ𝐾 log(4𝜂*/𝛿)𝜀

−2
⌉︀

4: �̂� ℓ+1 ← [0, . . . , 0] ◁ same dimensions as 𝑊 ℓ+1

5: for 𝑘 ∈ [𝑚ℓ] do

6: 𝑐(𝑘)← random draw from 𝑝ℓ = (𝑝ℓ1, . . . , 𝑝
ℓ
𝜂ℓ
)

7: �̂� ℓ+1
:𝑐(𝑘) ← �̂� ℓ+1

:𝑐(𝑘) +
𝑊 ℓ+1

:𝑐(𝑘)/𝑚ℓ𝑝ℓ
𝑐(𝑘)

8: end for

9: return �̂� ℓ+1 = [�̂� ℓ+1
:1 , . . . , �̂� ℓ+1

:𝜂ℓ
];

map 𝑗 ∈ [𝜂ℓ] as defined in (5.1) and explained in detail in the following subsections.

Note that we initially prune channels from 𝑊 ℓ+1, but as we prune channels from

𝑊 ℓ+1 we can simultaneously prune the corresponding filters in 𝑊 ℓ.

We subsequently set the sample complexity 𝑚ℓ as a function of the given error (𝜀)

and failure probability (𝛿). This is done in order to ensure that, after the pruning (i.e.,

sampling) procedure, the approximate output – with respect to the sampled channels

�̂� ℓ+1 – of the layer will approximate the true output of the layer – with respect to

the original tensor – up to a multiplicative factor of (1± 𝜀), with probability at least

1 − 𝛿. Intuitively, more samples are required to achieve a low specified error 𝜀 with

low failure probability 𝛿, and vice-versa. We then proceed to sample 𝑚𝑙 times with

replacement according to distribution 𝑝ℓ (Lines 5-8) and reweigh each sample by a

factor that is inversely proportional to its sample probability to obtain an unbiased

estimator for the layer’s output (see below). The unsampled channels in 𝑊 ℓ+1 – and

the corresponding filters in 𝑊 ℓ – are subsequently discarded, leading to a reduction

in the layer’s size.

5.2.3 A Tightly-concentrated Estimator

We now turn our attention to analyzing the influence of the sampled channels �̂� ℓ+1

(as in Algorithm 3) on layer ℓ+1. For ease of presentation, we will henceforth assume

123

that the layer is linear1 and will omit explicit references to the input 𝑥 whenever

appropriate. Note that the true pre-activation of layer ℓ+1 is given by 𝑧ℓ+1 = 𝑊 ℓ+1𝑎ℓ,

and the approximate pre-activation with respect to �̂� ℓ+1 is given by 𝑧ℓ+1 = �̂� ℓ+1𝑎ℓ.

By construction of �̂� ℓ+1 in Algorithm 3, we equivalently have for each entry 𝑖 ∈ [𝜂ℓ+1]

𝑧ℓ+1
𝑖 =

1

𝑚

𝑚∑︁
𝑘=1

𝑌𝑖𝑘, where 𝑌𝑖𝑘 = 𝑊 ℓ+1
𝑖𝑐(𝑘)

𝑎ℓ𝑐(𝑘)

𝑝ℓ𝑐(𝑘)
, 𝑐(𝑘) ∼ 𝑝 ∀𝑘.

By reweighing our samples, we obtain an unbiased estimator for each entry 𝑖 of the

true pre-activation output, i.e., E [𝑧ℓ+1
𝑖] = 𝑧ℓ+1

𝑖 – which follows by the linearity of

expectation and the fact that E [𝑌𝑖𝑘] = 𝑧ℓ+1
𝑖 for each 𝑘 ∈ [𝑚] –, and so we have for

the entire vector E �̂� ℓ+1 [𝑧ℓ+1] = 𝑧ℓ+1. So far, we have shown that in expectation,

our channel sampling procedure incurs zero error owing to its unbiasedness. How-

ever, our objective is to obtain a high probability bound on the entry-wise deviation⃒⃒
𝑧ℓ+1
𝑖 − 𝑧ℓ+1

𝑖

⃒⃒
for each entry 𝑖, which implies that we have to show that our estimator

𝑧ℓ+1
𝑖 is highly concentrated around its mean 𝑧ℓ+1

𝑖 . To do so, we leverage the following

standard result.

Theorem 16 (Bernstein’s inequality (Vershynin, 2016)). Let 𝑌1, . . . , 𝑌𝑚 be a se-

quence of 𝑚 i.i.d. random variables satisfying max𝑘∈[𝑚] |𝑌𝑘 − E [𝑌𝑘]| ≤ 𝑅, and let

𝑌 =
∑︀𝑚

𝑘=1 𝑌𝑘 denote their sum. Then, for every 𝜀 ≥ 0, 𝛿 ∈ (0, 1), we have that

P (|𝑌/𝑚− E [𝑌𝑘]| ≥ 𝜀E [𝑌𝑘]) ≤ 𝛿 for

𝑚 ≥ log(2/𝛿)

(𝜀𝐸[𝑌𝑘])2

(︂
Var(𝑌𝑘) +

2

3
𝜀E [𝑌𝑘]𝑅

)︂
.

Letting 𝑖 ∈ [𝜂ℓ+1] be arbitrary and applying Theorem 16 to the mean of the random

variables (𝑌𝑖𝑘)𝑘∈[𝑚], i.e., to 𝑧ℓ+1
𝑖 , we observe that the number of samples required

for a sufficiently high concentration around the mean is highly dependent on the

magnitude and variance of the random variables (𝑌𝑖𝑘)𝑘. By definition of 𝑌𝑖𝑘, observe

that these expressions are explicit functions of the sampling distribution 𝑝ℓ. Thus, to

minimize2 the number of samples required to achieve high concentration we require a

1The extension to CNNs follows directly as outlined Section 4.4
2We define the minimization with respect to sample complexity from Theorem 16, which serves

124

judiciously defined sampling distribution that simultaneously minimizes both 𝑅𝑖 and

Var(𝑌𝑖𝑘). For example, the naive approach of uniform sampling, i.e., 𝑝ℓ𝑗 = 1/𝜂ℓ for

each 𝑗 ∈ [𝜂ℓ] also leads to an unbiased estimator, however, for uniform sampling we

have Var(𝑌𝑖𝑘) ≈ 𝜂ℓ E [𝑌𝑖𝑘]2 and 𝑅𝑖 ≈ 𝜂ℓ max𝑘(𝑤ℓ+1
𝑖𝑘 𝑎ℓ𝑘) and so Var(𝑌𝑖𝑘), 𝑅 ∈ Ω(𝜂ℓ) in

the general case, leading to a linear sampling complexity 𝑚 ∈ Ω(𝜂ℓ) by Theorem 16.

5.2.4 Empirical Sensitivity

To obtain a better sampling distribution, we leverage the notion of empirical sensitiv-

ity (ES) to prune channels as detailed in Chapter 4. Specifically, for 𝑊 ℓ+1 ≥ 0 (the

generalization can be found in Section 4.4) we let the sensitivity 𝑠ℓ𝑗 of feature map 𝑗

in ℓ be defined as

𝑠ℓ𝑗 = max
𝑥∈𝒮

max
𝑖∈[𝜂ℓ+1]

𝑤ℓ+1
𝑖𝑗 𝑎ℓ𝑗(𝑥)∑︀

𝑘∈[𝜂ℓ] 𝑤
ℓ+1
𝑖𝑘 𝑎ℓ𝑘(𝑥)

, (5.1)

where 𝒮 is a set of 𝑡 independent and identically distributed (i.i.d.) points drawn

from 𝒟. Intuitively, the sensitivity of feature map 𝑗 ∈ [𝜂ℓ] is the maximum (over

𝑖 ∈ [𝜂ℓ+1]) relative impact that feature map 𝑗 had on any pre-activation in the next

layer 𝑧ℓ+1
𝑖 . We then define the probability of sampling each channel as in Algorithm 3:

𝑗 ∈ [𝜂ℓ] as 𝑝𝑗 = 𝑠ℓ𝑗/𝑆
ℓ, where 𝑆ℓ =

∑︀
𝑗 𝑠

ℓ
𝑗 is the sum of sensitivities. Under a mild

assumption on the distribution – that is satisfied by a wide class of distributions, such

as the Uniform, Gaussian, Exponential, among others – of activations (Assumption 2

in Section 4.4), ES enables us to leverage the inherent stochasticity in the draw 𝑥 ∼ 𝒟
and establish (see Lemmas 11, 12, and 13 in Section 4.4) that with high probability

(over the randomness in 𝒮 and 𝑥) that

Var(𝑌𝑖𝑘) ∈ Θ(𝑆 E [𝑌𝑖𝑘]
2) and 𝑅 ∈ Θ(𝑆 E [𝑌𝑖𝑘]) ∀𝑖 ∈ [𝜂ℓ+1]

and that the sampling complexity is given by 𝑚 ∈ Θ(𝑆 log(2/𝛿) 𝜀−2) by Theorem 16.

We note that ES does not require knowledge of the data distribution 𝒟 and is easy

to compute in practice by randomly drawing a small set of input points 𝒮 from the

validation set and passing the points in 𝒮 through the network. This stands in contrast

as a sufficiently good proxy as Bernstein’s inequality is tight up to logarithmic factors (Tropp et al.,
2015).

125

with the sensitivity framework used in state-of-the-art coresets constructions (Bachem

et al., 2017; Braverman et al., 2016), where the sensitivity is defined to be with respect

to the supremum over all 𝑥 ∈ supp(𝒟) in (5.1) instead of a maximum over 𝑥 ∈ 𝒮.

As also noted in Part I, ES inherently considers data points that are likely to be

drawn from the distribution 𝒟 in practice, leading to a more practical and informed

sampling distribution with lower sampling complexity.

Our insights from the discussion in this section culminate in the core theorem

(Theorem 9) that we derive in Chapter 4, which establishes that the pruned channels

�̂� ℓ+1 (corresponding to pruned filters in 𝑊 ℓ) generated by Algorithm 3 is such that

the output of layer ℓ + 1 is well-approximated for each entry. We state it below for

completeness.

Theorem 9. Let 𝜀, 𝛿 ∈ (0, 1), ℓ ∈ [𝐿], and let 𝒮 be a set of Θ(log (𝜂*/𝛿)) i.i.d. samples

drawn from 𝒟. Then, �̂� ℓ+1 contains at most 𝒪(𝑆ℓ log(𝜂*/𝛿)𝜀−2)) channels and for

𝑥 ∼ 𝒟, with probability at least 1− 𝛿, we have 𝑧ℓ+1 ∈ (1± 𝜀)𝑧ℓ+1 (entry-wise), where

𝜂* = maxℓ∈[𝐿] 𝜂
ℓ.

Theorem 9 can be generalized to hold for all weights and applied iteratively to

obtain layer-wise approximation guarantees for the output of each layer. The resulting

layer-wise error can then be propagated through the layers to obtain a guarantee

on the final output of the compressed network. In particular, applying the error

propagation bounds of Chapter 3, we establish our main compression theorem below.

The proofs and additional details can be found in Section 4.4.

Theorem 14. Let 𝜀, 𝛿 ∈ (0, 1) be arbitrary, let 𝒮 ⊂ 𝒳 denote the set of ⌈𝐾 ′ log (4𝜂/𝛿)⌉

i.i.d. points drawn from 𝒟, and suppose we are given a network with parameters

𝜃 = (𝑊 1, . . . ,𝑊𝐿). Consider the set of parameters 𝜃 = (�̂� 1, . . . , �̂�𝐿) generated by

pruning channels of 𝜃 according to Algorithm 2 for each ℓ ∈ [𝐿]. Then, 𝜃 satisfies

P𝜃, 𝑥∼𝒟 (𝑓𝜃(𝑥) ∈ (1± 𝜀)𝑓𝜃(𝑥)) ≥ 1 − 𝛿, and the number of filters in 𝜃 is bounded by

𝒪
(︁∑︀𝐿

ℓ=1
𝐿2 (Δℓ→)2 𝑆ℓ log(𝜂/𝛿)

𝜀2

)︁
.

126

5.2.5 Derandomized Filter Pruning

In Section 4.4.4 we highlight how partially derandomizing our approach can yield to

better theoretical compression bounds. Specifically, we derive the below theoretical

result based on keeping the top-k sensitivities.

Theorem 15. It is better to keep 𝑘 feature maps, 𝒞det ⊆ [𝜂ℓ], |𝒞det| = 𝑘, determinis-

tically and sample 𝑚′ =
⌈︀
(6 + 2𝜀) (𝑆ℓ − 𝑆ℓ

𝑘)𝐾 log(8𝜂*/𝛿)𝜀−2
⌉︀
features from [𝜂ℓ] ∖ 𝒞det

if ∑︁
𝑗 /∈𝒞det

(︂
1− 𝑠𝑗

𝑆 − 𝑆𝑘

)︂𝑚′

>

𝜂ℓ∑︁
𝑗=1

(︁
1− 𝑠𝑗

𝑆

)︁𝑚
+

√︂
log(2/𝛿)(𝑚 + 𝑚′)

2
,

where 𝑚 =
⌈︀
(6 + 2𝜀)𝑆ℓ 𝐾 log(4𝜂*/𝛿)𝜀−2

⌉︀
, 𝑆𝑘 =

∑︀
𝑗∈𝒞det 𝑠𝑗 and 𝜂* = maxℓ 𝜂

ℓ.

These insights prompted us to consider three variations of our filter pruning ap-

proach:

1. No derandomization (”rand”): We apply Algorithm 3 and sample channels with

probability proportional to their sensitivity.

2. Partial derandomization (”partial”): We apply Theorem 15 as a preprocessing

step to keep the top 𝑘 channels and then sample from the rest according to

Algorithm 3.

3. Complete derandomization (”derand”): We simply keep the top channels until

our sampling budget is exhausted.

The results of our evaluations on a LeNet300-100 architecture trained on MNIST can

be seen in Figure 5-2. As visible from Figure 5-2(a), the process of partial deran-

domization does not impact the performance of our algorithm, while the complete

derandomization of our algorithm has a slightly detrimental effect on the perfor-

mance. This is in accordance with Theorem 15, which predicts that that it is best

to only partially derandomize the sampling procedure. However, after we retrain the

network, the additional error incurred by the complete derandomization is negligible

as shown in Figure 5-2(b). Moreover, it appears that – especially for extremely low

127

10 20 30 40 50 60 70
Retained Parameters (%)

10

20

30

40

50

Te
st

 E
rro

r (
%

)

Lenet 300, 100, MNIST
Reference Net
Ours (derand)
Ours (rand)
Ours (partial)

(a) Before retraining

10 15 20 25 30 35 40
Retained Parameters (%)

0

2

4

6

8

10

Te
st

 E
rro

r (
%

)

Lenet 300, 100, MNIST
Reference Net
Ours (derand)
Ours (rand)
Ours (partial)

(b) After retraining

Figure 5-2: The performance of our approach on a LeNet300-100 architecture trained
on MNIST with no derandomization (denoted by ”rand”), with partial derandom-
ization (denoted by ”partial”), and with complete derandomization (denoted by ”de-
rand”). The plot in (a) and (b) show the resulting test accuracy for various percentage
of retained parameters 1− (pruneratio) before and after retraining, respectively. The
additional error of the derandomized algorithm can be neglected in practical settings,
especially after retraining.

sampling regime – the completely derandomized approach seems to incur a slight

performance boost relative to the other approaches. We suspect that simply keeping

the top channels may have a positive side effect on the optimization landscape during

retraining.

Consequently, for our subsequent experimental evaluations we use the completely

derandomized version of our algorithm for both implementational simplicity and the

ability to potentially perform better after retraining, which is an aspect of the pruning

procedure that our analysis currently does not consider.

5.3 Optimal Budget Allocation

In the previous sections, we establish the sampling complexity of our filter pruning

scheme for any user-specified 𝜀 and 𝛿. However, in practice, it is more common for

the practitioner to specify the desired pruning ratio, which specifies the resulting size

of the pruned model. Given this sampling budget, a practical question that arises is

how to optimally ration the sampling budget across the network’s layers to minimize

the error of the pruned model. A naive approach would be to uniformly allocate the

128

(a) VGG16 architecture

2 4 6 8 10 12 14
Layer Index

0

5

10

15

Pe
rc

en
ta

ge
 o

f T
ot

al
 B

ud
ge

t

vgg16, BN, CIFAR10
Fixed Prune Ratio
Ours

(b) Budget Allocation for VGG16

Figure 5-3: Early layers of VGG are relatively harder to approximate due to their
large spatial dimensions as shown in (a). Our error bounds naturally bridge layer
compressibility and importance and enable us to automatically allocate relatively
more samples to early layers and less to latter layers as shown in (b). The final layer
– due to its immediate influence on the output – is also automatically assigned a large
portion of the sampling budget.

sampling budget 𝑁 so that the same ratio of filters is kept in each layer. However,

this allocation scheme implicitly assumes that each layer of the network is of equal

importance to retaining the output, which is virtually never the case in practice, as

exemplified by Figure 5-3(a).

It turns out that our analytical bounds on the sample complexity per layer (𝑚ℓ

in Algorithm 3) naturally capture the importance of each layer. The key insight

lies in bridging the compressibility and importance of each layer: if a layer is not

very important, i.e., it does not heavily influence the output of the network, then

we expect it to be highly compressible, and vice-versa. This intuition is precisely

captured by our sampling complexity bounds that quantify the difficulty of a layer’s

compressibility.

We leverage this insight to formulate a simple binary search procedure for judi-

ciously allocating the sampling budget 𝑁 as follows. Let 𝛿 ∈ (0, 1) be user-specified,

pick a random 𝜀 > 0, and compute the sampling complexity 𝑚ℓ as in Algorithm 3 to-

gether with the resulting layer size 𝑛ℓ. If
∑︀

ℓ 𝑛
ℓ = 𝑁 , we are done, otherwise, continue

searching for an appropriate 𝜀 on a smaller interval depending on whether
∑︀

ℓ 𝑛
ℓ is

greater or less than 𝑁 . The allocation generated by this procedure (see Figure 5-3(b)

129

for an example) ensures that the maximum layer-wise error incurred by pruning is at

most 𝜀.

In other words, our procedure minimizes the maximum (theoretical) error across

layers. Specifically, let 𝜀ℓ(𝑚ℓ) denote our theoretical error guarantee for layer ℓ as a

function of the number of samples. Then our budget allocation procedure may be

stated as the following optimization procedure

min
𝑚1,...,𝑚𝐿

max
ℓ∈[𝐿]

𝜀ℓ(𝑚ℓ) s. t.
∑︁
ℓ∈[𝐿]

𝑛ℓ(𝑚ℓ) ≤ 𝑁, (5.2)

where 𝑛ℓ(𝑚ℓ) denotes the layer size as a function of the number of filters/samples.

Interestingly enough, our approach to budget allocation is independent of the un-

derlying pruning scheme as long as we can describe the layer-wise error incurred by

pruning as a function of the number of parameters we want to keep. We denote the

resulting pruning algorithm by Provable Filter Pruning (PFP).

5.4 Results

In this section, we evaluate and compare our algorithm’s performance to that of state-

of-the-art pruning schemes in generating compact networks that retain the predictive

accuracy of the original model. Our evaluations show that our approach generates

significantly smaller and more efficient models compared to those generated by com-

peting methods. Our results demonstrate the practicality and wide-spread applica-

bility of our proposed approach: across all of our experiments, our algorithm took

on the order of a minute to prune a given network3, required no manual tuning of

its hyper-parameters, and performed consistently well across a diverse set of pruning

scenarios.

3Excluding the time required for the retraining step, which was approximately the same across
all methods

130

5.4.1 Experimental Setup

For our experimental evaluations, we considered a variety of datasets (MNIST, CIFAR-

10, ImageNet) and neural network architectures (LeNet, VGG, ResNet, WideResNet,

DenseNet) and compared against several state-of-the-art filter pruning methods. We

conducted all experiments on either a single NVIDIA RTX 2080Ti with 11GB RAM or

a NVIDIA Tesla V100 with 16GB RAM and implemented them in PyTorch (Paszke

et al., 2017). Retraining with ImageNet was conducted on a cluster of 8 NVIDIA

Tesla V100 GPUs.

Our algorithm only requires two inputs in practice: the desired pruning ratio

(PR) and failure probability 𝛿 ∈ (0, 1), since the number of samples in each layer is

automatically assigned by our allocation procedure described in Section 5.3. Following

the conventional data partitioning ratio, we reserve 90% of the training data set for

training and the remaining 10% for the validation set (Lee et al., 2019).

For each scenario, we prune the original (pre-trained) network with a target prune

ratio using the respective pruning algorithm and fine-tune the network by retraining

for a specified number of epochs. We repeat this procedure iteratively to obtain

various target prune ratios and report the percentage of parameters pruned (PR) and

the percentage of FLOP reduction (FR) for each target prune ratio. The target prune

ratio follows a hyperharmonic sequence where the 𝑖th PR is determined by 1− 1/(𝑖+1)𝛼,

where 𝛼 is an experiment-dependent tuning parameter. We conduct the prune-retrain

cycle for a range of 10 − 20 target prune ratios, and report the highest PR and FR

for which the compressed network achieves commensurate accuracy, i.e., when the

pruned model’s test accuracy is within 0.5% of the original model. The quantities

reported are averaged over 3 trained models for each scenario, unless stated otherwise.

5.4.2 Comparison Methods

We compare our algorithm to that of the following filter pruning algorithms that we

implemented and ran alongside our algorithm: Filter Thresholding (FT) (Li et al.,

2016), SoftNet (He et al., 2018), and ThiNet (Luo et al., 2017). We note that FT

131

and SoftNet are both (weight) magnitude-based filter pruning algorithms, and this

class of pruning schemes has recently been reported to be state-of-the-art (Gale et al.,

2019; Pitas et al., 2019; Yu et al., 2018b). These methods were re-implemented for

our own experiments to ensure an objective comparison method between the methods

and we deployed the same iterative pruning and fine-tune strategy as is used in our

method. Moreover, we considered a fixed pruning ratio of filters in each layers as

none of the competing methods provide an automatic procedure to detect relative

layer importance and allocate samples accordingly. Thus, the differentiating factor

between the competing methods is their respective pruning step that we elaborate

upon below.

Filter Thresholding (FT) (Li et al., 2016) Consider the set of filters 𝑊 ℓ =

[𝑊 ℓ
1 , . . . ,𝑊

ℓ
𝜂ℓ

] in layer ℓ and let
⃦⃦
𝑊 ℓ

𝑗

⃦⃦
2,2

denote the entry-wise ℓ2-norm of 𝑊 ℓ
𝑗 (or

Frobenius norm). Consider a desired sparsity level of 𝑡%, i.e., we want to keep only

𝑡% of the filters. We then simply keep the filters with the largest norm until we satisfy

our desired level of sparsity.

SoftNet (He et al., 2018) The pruning procedure of He et al. (2018) is similar in

nature to the work of Li et al. (2016) except the saliency score used is the entrywise

ℓ1-norm
⃦⃦
𝑊 ℓ

𝑗

⃦⃦
1,1

of a filter map 𝑊 ℓ
𝑗 . During their fine-tuning scheme they allow

pruned filters to become non-zero again and then repeat the pruning procedure. As

for the other comparisons, however, we only employ a one-shot prune and fine-tune

scheme.

ThiNet (Luo et al., 2017) Unlike the previous two approaches, which compute

the saliency score of the filter 𝑊 ℓ
𝑗 by looking at its entry-wise norm, the method

of Luo et al. (2017) iteratively and greedily chooses the feature map (and thus

corresponding filter) that incurs the least error in an absolute sense in the pre-

activation of the next layer. That is, initially, the method picks filter 𝑗* such that

𝑗* = argmin𝑗∈[𝜂ℓ] max𝑥∈𝒮

⃒⃒⃒
𝑧ℓ+1(𝑥)− 𝑧ℓ+1

[𝑗] (𝑥)
⃒⃒⃒
, where 𝑧ℓ+1(𝑥) denotes the pre-activation

of layer ℓ + 1 for some input data point 𝑥, 𝑧ℓ+1
[𝑗] (𝑥) the pre-activation when only con-

132

sidering feature map 𝑗 in layer ℓ, and 𝒮 a set of input data points. We note that this

greedy approach is quadratic in both the size 𝜂ℓ of layer ℓ and the size |𝒮| of the set

of data points 𝒮, thus rendering it very slow in practice. In particular, we only use

a set 𝒮 of cardinality comparable to our own method, i.e., around 100 data points in

total. On the other hand, Luo et al. report to use 100 data points per output class

resulting in 1000 data points for CIFAR-10.

Additional comparisons to other state-of-the-art channel and filter pruning meth-

ods can be found in Table 5.5 and Table 5.7 for CIFAR-10 and ImageNet, respectively.

5.4.3 LeNet Architectures on MNIST

As our first experiment, we evaluate the performance of our pruning algorithm and

the comparison methods on LeNet300-100 (LeCun et al., 1998), a fully-connected

network with two hidden layers of size 300 and 100 hidden units, respectively, and

its convolutional counterpart, LeNet-5 (LeCun et al., 1998), which consists of two

convolutional layers and two fully-connected layers. Both networks were trained on

MNIST using the hyper-parameters specified in Table 5.1.

Table 5.1: We report the hyperparameters used during MNIST training, pruning,
and fine-tuning for the LeNet architectures. LR hereby denotes the learning rate and
LR decay denotes the learning rate decay that we deploy after a certain number of
epochs. During fine-tuning we used the same hyperparameters except for the ones
indicated in the lower part of the table.

LeNet-300-100 LeNet-5

Train

test error 1.59 0.72
loss cross-entropy cross-entropy

optimizer SGD SGD
epochs 40 40

batch size 64 64
LR 0.01 0.01

LR decay 0.1@{30} 0.1@{25, 35}
momentum 0.9 0.9

weight decay 1.0e-4 1.0e-4

Prune
𝛿 1.0e-12 1.0e-12
𝛼 not iterative 1.18

Fine-tune
epochs 30 40

LR decay 0.1@{20, 28} 0.1@{25, 35}

133

Table 5.2: The prune ratio and the corresponding test error of the sparsest network
– with commensurate accuracy – generated by each algorithm.

Prune Method Test Error (%) Prune Ratio (%)

LeNet-300-100

Unpruned 1.59
Ours +0.41 84.32
FT +0.35 81.68
SoftNet +0.41 81.69
ThiNet +10.58 75.01

LeNet-5

Unpruned 0.72
Ours +0.35 92.37
FT +0.47 85.04
SoftNet +0.40 80.57
ThiNet +0.12 58.17

Table 5.2 depicts the performance of each pruning algorithm in attaining the

sparsest possible network that achieves commensurate accuracy for the LeNet archi-

tectures. In both scenarios, our algorithm generates significantly sparser networks

compared to those generated by the competing filter pruning approaches. In fact,

the pruned LeNet-5 model generated by our algorithm by removing filters achieves

a prune ratio of ≈ 90%, which is even competitive with the accuracy of the sparse

models generated by state-of-the-art weight pruning algorithms (Lee et al., 2019) 4.

In addition to evaluating the sparsity of the generated models subject to the com-

mensurate accuracy constraint, we also investigated the performance of the pruning

algorithms for extreme (i.e., around 5%) pruning ratios (see Figure 5-4(a)). We see

that our algorithm’s performance relative to those of competing algorithms is strictly

better for a wide range of target prune ratios. For LeNet-5 Figure 5-4(a) shows that

our algorithm’s favorable performance is even more pronounced at extreme sparsity

levels (at ≈ 95% prune ratio).

4Weight pruning approaches can generate significantly sparser models with commensurate accu-
racy than can filter pruning approaches since the set of feasible solutions to the problem of filter
pruning is a subset of the feasible set for the weight pruning problem

134

5.4.4 Convolutional Neural Networks on CIFAR-10

Next, we evaluated the performance of each pruning algorithm on significantly larger

and deeper Convolutional Neural Networks trained on the CIFAR-10 data set: VGG16

with BatchNorm (Simonyan and Zisserman, 2015), ResNet20, ResNet56, ResNet110 (He

et al., 2016), DenseNet22 (Huang et al., 2017), and WideResNet16-8 (Zagoruyko and

Komodakis, 2016). For CIFAR-10 experiments, we use the standard data augmen-

tation techniques: padding 4 pixels on each side, random crop to 32x32 pixels, and

random horizontal flip. We summarize the complete set of hyperparameters for the

various networks in Table 5.3.

Table 5.3: We report the hyperparameters used during training, pruning, and fine-
tuning for various convolutional architectures on CIFAR-10. LR hereby denotes the
learning rate and LR decay denotes the learning rate decay that we deploy after a
certain number of epochs. During fine-tuning we used the same hyperparameters
except for the ones indicated in the lower part of the table. {30, . . .} denotes that the
learning rate is decayed every 30 epochs.

VGG16 ResNet20/56/110 DenseNet22 WRN-16-8

Train

test error 7.11 8.59/7.05/6.43 10.07 4.81
loss cross-entropy cross-entropy cross-entropy cross-entropy

optimizer SGD SGD SGD SGD
epochs 300 182 300 200

batch size 256 128 64 128
LR 0.05 0.1 0.1 0.1

LR decay 0.5@{30, . . . } 0.1@{91, 136} 0.1@{150, 225} 0.2@{60, . . . }
momentum 0.9 0.9 0.9 0.9

Nesterov 7 7 X X
weight decay 5.0e-4 1.0e-4 1.0e-4 5.0e-4

Prune
𝛿 1.0e-16 1.0e-16 1.0e-16 1.0e-16
𝛼 1.50 0.50/0.79/0.79 0.40 0.36

Fine-tune epochs 150 182 300 200

Our results are summarized in Table 5.4 and Figure 5-4. Similar to the results

reported in Table 5.2 in the previous subsection, Table 5.4 shows that our method is

able to achieve the most sparse model with minimal loss in predictive power relative to

the original network. Furthermore, by inspecting the values reported for percentage

of FLOP reduction (FR), we observe that the models generated by our approach

are not only more sparse in terms of the number of total parameters, but also more

efficient in terms of the inference time complexity.

135

Table 5.4: Overview of the pruning performance of each algorithm for various CNN ar-
chitectures. For each algorithm and network architecture, the table reports the prune
ratio (PR, %) and pruned FLOPs ratio (FR, %) of pruned models when achieving
test accuracy within 0.5% of the original network’s test accuracy (or the closest re-
sult when the desired test accuracy was not achieved for the range of tested PRs).
Our results indicate that our pruning algorithm generates smaller and more efficient
networks with minimal loss in accuracy, when compared to competing approaches.

[%]
Orig. Ours FT SoftNet ThiNet

Err. Err. PR FR Err. PR FR Err. PR FR Err. PR FR

ResNet20 8.60 +0.49 62.67 45.46 +0.43 42.65 44.59 +0.50 46.42 49.40 +2.10 32.90 32.73

ResNet56 7.05 +0.28 88.98 84.42 +0.48 81.46 82.73 +0.36 81.46 82.73 +1.28 50.08 50.06

ResNet110 6.43 +0.36 92.07 89.76 +0.17 86.38 87.39 +0.34 86.38 87.39 +0.92 49.70 50.39

VGG16 7.11 +0.50 94.32 85.03 +1.11 80.09 80.14 +0.81 63.95 63.91 +2.13 63.95 64.02

DenseNet22 10.07 +0.46 56.44 62.66 +0.32 29.31 30.23 +0.21 29.31 30.23 +4.36 50.76 51.06

WRN16-8 4.83 +0.46 66.22 64.57 +0.40 24.88 24.74 +0.14 16.93 16.77 +0.35 14.18 14.09

Figure 5-4 depicts the performance of the evaluated algorithms for various levels

of prune ratios. Once again, we see the consistently better performance of our algo-

rithm in generating sparser models that approximately match or exceed the predictive

accuracy of the original uncompressed network. In addition, Table 5.5 provides fur-

ther comparisons to state-of-the-art filter pruning methods where we compare the

performance of our approach to the results for various ResNets and VGG16 reported

directly in the respective papers. The comparisons in Table 5.5 reaffirm that our algo-

rithm can consistently generate simultaneously sparser and more accurate networks

compared to competing methods.

In view of our results from the previous subsection, the results shown in Table 5.4,

Figure 5-4, and Table 5.5 highlight the versatility and broad applicability of our

method, and seem to suggest that our approach fares better relative to the compared

algorithms on more challenging pruning tasks that involve large-scale networks. We

suspect that these favorable properties are explained by the data-informed evaluations

of filter importance and the corresponding theoretical guarantees of our algorithm –

which enable robustness to variations in network architecture and data distribution.

136

Table 5.5: The performance of our algorithm and that of state-of-the-art filter pruning
algorithms on modern CNN architectures trained on CIFAR-10. The reported results
for the competing algorithms were taken directly from the corresponding papers. For
each network architecture, the best performing algorithm for each evaluation metric,
i.e., Pruned Err., Err. Diff, PR, and FR, is shown in bold. The results show that
our algorithm consistently outperforms state-of-the-art pruning approaches in nearly
all of the relevant pruning metrics.

Model Method Orig. Err. (%) Pruned Err. (%) Err. Diff. (%) PR (%) FR (%)

ResNet20

Ours (within 0.5% err.) 8.60 9.09 +0.49 62.67 45.46
Ours (orig. err.) 8.60 8.64 +0.04 43.16 32.10
Ours (lowest err.) 8.60 8.64 +0.04 43.16 32.10
He et al. (2018) (SoftNet) 7.80 8.80 +1.00 N/A 29.30
He et al. (2019) 7.80 9.56 +1.76 N/A 54.00
Ye et al. (2018) 8.00 9.10 +1.10 37.22 N/A
Lin et al. (2020) 7.52 9.72 +2.20 40.00 N/A

ResNet56

Ours (within 0.5% err.) 7.05 7.33 +0.28 88.98 84.42
Ours (orig. err.) 7.05 7.02 -0.03 86.00 80.76
Ours (lowest err.) 7.05 6.36 -0.69 72.10 67.41
Li et al. (2016) (FT) 6.96 6.94 -0.02 13.70 27.60
He et al. (2018) (SoftNet) 6.41 6.65 +0.24 N/A 52.60
He et al. (2019) 6.41 6.51 +0.10 N/A 52.60
He et al. (2017) 7.20 8.20 +1.00 N/A 50.00
Li et al. (2019b) 6.28 6.60 +0.32 78.10 50.00
Lin et al. (2020) 5.49 5.97 +0.48 40.00 N/A

ResNet110

Ours (within 0.5% err.) 6.43 6.79 +0.36 92.07 89.76
Ours (orig. err.) 6.43 6.35 -0.08 89.15 86.97
Ours (lowest err.) 6.43 5.42 -1.01 71.98 68.94
Li et al. (2016) (FT) 6.47 6.70 +0.23 32.40 38.60
He et al. (2018) (SoftNet) 6.32 6.14 -0.18 N/A 40.80
He et al. (2019) 6.32 6.16 -0.16 N/A 52.30
Dong et al. (2017b) 6.37 6.56 +0.19 N/A 34.21

VGG16

Ours (within 0.5% err.) 7.28 7.78 +0.50 94.32 85.03
Ours (orig. err.) 7.28 7.17 -0.11 87.06 70.32
Ours (lowest err.) 7.28 7.06 -0.22 80.02 59.21
Li et al. (2016) (FT) 6.75 6.60 -0.15 64.00 34.20
Huang et al. (2018b) 7.23 7.83 +0.60 83.30 45.00
He et al. (2019) 6.42 6.77 +0.35 N/A 35.90
Li et al. (2019b) 5.98 6.18 +0.20 78.20 76.50

5.4.5 Convolutional Neural Networks on ImageNet

We consider pruning convolutional neural networks of varying size (ResNet18, ResNet50,

and ResNet101) trained on the ImageNet (Russakovsky et al., 2015) data set. The

hyper-parameters used for training and for our pruning algorithm are shown in Ta-

ble 5.6. For this dataset, we considered two scenarios: (i) iterative pruning without

retraining and (ii) iterative prune-retrain with a limited amount of iterations given

the resource-intensive nature of the experiments.

In the first scenario, we evaluate the baseline effectiveness of each pruning algo-

137

5 10 15 20 25 30
Retained Parameters (%)

0.75
1.00
1.25
1.50
1.75
2.00

Te
st

 E
rro

r (
%

)

Lenet 5, MNIST
Reference Net
Ours
FT
SoftNet

(a) LeNet5

10 20 30 40 50
Retained Parameters (%)

5

6

7

8

9

Te
st

 E
rro

r (
%

)

resnet56, CIFAR10
Reference Net
Ours
FT
SoftNet

(b) ResNet56

10 20 30 40 50
Retained Parameters (%)

5

6

7

8

9

Te
st

 E
rro

r (
%

)

resnet110, CIFAR10
Reference Net
Ours
FT
SoftNet

(c) ResNet110

5 10 15 20 25 30 35
Retained Parameters (%)

6

7

8

9

10

11

Te
st

 E
rro

r (
%

)

vgg16, BN, CIFAR10
Reference Net
Ours
FT
SoftNet

(d) VGG16

40 50 60 70
Retained Parameters (%)

8

9

10

11

12

Te
st

 E
rro

r (
%

)

densenet22, CIFAR10

Reference Net
Ours
FT
SoftNet

(e) DenseNet22

20 40 60
Retained Parameters (%)

4

5

6

7

8

9

Te
st

 E
rro

r (
%

)

wrn16, 8, CIFAR10
Reference Net
Ours
FT
SoftNet

(f) WRN16-8

Figure 5-4: The accuracy of the generated pruned models for the evaluated pruning
schemes for various target prune ratios. Note that the 𝑥 axis is the percentage of
parameters retained, i.e., (1− pruneratio). ThiNet was omitted from the plots for
better readability. Our results show that our approach generates pruned networks
with minimal loss in accuracy even for high prune ratios. Shaded regions correspond
to values within one standard deviation of the mean.

rithm without fine-tuning by applying the same iterative prune-scheme, but without

the retraining step. The results of these evaluations can be seen in Figure 5-5. Fig-

ure 5-5 shows that our algorithm outperforms the competing approaches in generating

compact, more accurate networks. We suspect that by reevaluating the data-informed

filter importance (empirical sensitivity) after each iteration our approach is capable

of more precisely capturing the inter-dependency between layers that alter the rel-

ative importance of filters and layers with each pruning step. This is in contrast

to competing approaches, which predominantly rely on weight-based criteria of filter

importance, and thus can only capture this inter-dependency after retraining (which

subsequently alters the magnitude of the weights).

Next, we consider pruning the networks using the standard iterative prune-retrain

procedure as before with only a limited number of iterations (2-3 iterations per re-

ported experiment). The results of our evaluations are reported in Table 5.7 with

138

Table 5.6: The hyper-parameters used for training and pruning residual networks
trained on the ImageNet data set.

ResNet18/50/101

Train

top-1 test error 30.26/23.87/22.63
top-5 test error 10.93/7.13/6.45

loss cross-entropy
optimizer SGD

epochs 90
batch size 256

LR 0.1
LR decay 0.1@{30, 60}

momentum 0.9
Nesterov 7

weight decay 1.0e-4

Prune
𝛿 1.0e-16
𝛼 0.43/0.50/0.50

Fine-tune epochs 90

Table 5.7: Comparisons of the performance of various pruning algorithms on ResNets
trained on ImageNet (Russakovsky et al., 2015). The reported results for the compet-
ing algorithms were taken directly from the corresponding papers. For each network
architecture, the best performing algorithm for each evaluation metric, i.e., Pruned
Err., Err. Diff, PR, and FR, is shown in bold.

Model Method
Top-1 Err. (%) Top-5 Err. (%)

PR (%) FR (%)
Orig. Pruned Diff. Orig. Pruned Diff.

Resnet18

Ours (within 4.0% top-1) 30.26 34.35 +4.09 10.93 13.25 +2.32 60.48 43.12

Ours (within 2.0% top-1) 30.26 32.62 +2.36 10.93 12.09 +1.16 43.80 29.30

Ours (lowest top-1 err.) 30.26 31.34 +1.08 10.93 11.43 +0.50 31.03 19.99

He et al. (2018) (SoftNet) 29.72 32.90 +3.18 10.37 12.22 +1.85 N/A 41.80

He et al. (2019) 29.72 31.59 +1.87 10.37 11.52 +1.15 N/A 41.80

Dong et al. (2017b) 30.02 33.67 +3.65 10.76 13.06 +2.30 N/A 33.30

Resnet50

Ours (within 1.0% top-1) 23.87 24.79 +0.92 7.13 7.57 +0.45 44.04 30.05

Ours (lowest top-1 err.) 23.87 24.09 +0.22 7.13 7.19 +0.06 18.01 10.82

He et al. (2018) (SoftNet) 23.85 25.39 +1.54 7.13 7.94 +0.81 N/A 41.80

Luo et al. (2017) (ThiNet) 27.12 27.96 +0.84 8.86 9.33 +0.47 33.72 36.39

He et al. (2019) 23.85 25.17 +1.32 7.13 7.68 +0.55 N/A 53.50

He et al. (2017) N/A N/A N/A 7.80 9.20 +1.40 N/A 50.00

Luo and Wu (2018) 23.85 25.24 +1.39 7.13 7.85 +0.72 N/A 48.70

Liu et al. (2019b) 23.40 24.60 +1.20 N/A N/A N/A N/A 51.22

Resnet101

Ours (within 1.0% top-1) 22.63 23.57 +0.94 6.45 6.89 +0.44 50.45 45.08

Ours (lowest top-1 err.) 22.63 23.22 +0.59 6.45 6.74 +0.29 33.04 29.38

He et al. (2018) (SoftNet) 22.63 22.49 -0.14 6.44 6.29 -0.15 N/A 42.20

He et al. (2019) 22.63 22.68 +0.05 6.44 6.44 +0.00 N/A 42.20

Ye et al. (2018) 23.60 24.73 +1.13 N/A N/A N/A 47.20 42.69

139

80 85 90 95
Retained Parameters (%)

40

60

80

100

Te
st

 E
rro

r (
%

)

resnet18, ImageNet
Reference Net
Ours
FT
SoftNet

(a) ResNet18

80 85 90 95
Retained Parameters (%)

20

40

60

80

100

Te
st

 E
rro

r (
%

)

resnet50, ImageNet
Reference Net
Ours
FT
SoftNet

(b) ResNet50

80 85 90 95
Retained Parameters (%)

20

40

60

80

Te
st

 E
rro

r (
%

)

resnet101, ImageNet
Reference Net
Ours
FT
SoftNet

(c) ResNet101

Figure 5-5: The results of our evaluations of the algorithms in the prune-only scenario,
where the network is iteratively pruned down to a specified target prune ratio and
the fine-tuning step is omitted. Note that the 𝑥 axis is the percentage of parameters
retained, i.e., (1− pruneratio).

respect to the following metrics: the resulting error of the pruned network (Pruned

Err.), the difference in model classification error (Err. Diff), the percentage of pa-

rameters pruned (PR), and the FLOP Reduction (FR). We would like to highlight

that – despite the limited resources used during the experiments – our method is

able to produce compressed networks that are as accurate and compact as the mod-

els generated by competing approaches (obtained by significantly more prune-retrain

iterations than allotted to our algorithm).

5.4.6 Application to Real-time Regression Tasks

Real-time applications of neural networks, such as their use in autonomous driving

scenarios, require network models that are not only highly accurate, but also highly

efficient, i.e., fast, when it comes to inference time complexity (Amini et al., 2018).

Model compression, and in particular, filter pruning has potential to generate com-

pressed networks capable of achieving both of these objectives. To evaluate and

compare the effectiveness of our method on pruning networks intended for regres-

sion tasks and real-time systems, we evaluated the various pruning approaches on

the DeepKnight network (Amini et al., 2018), a regression network deployed on an

autonomous vehicle in real time to predict the steering angle of the human driver (see

Table 5.8 for experimental details).

Figure 5-6 depicts the results of our evaluations and comparisons on the Deep-

140

Table 5.8: We report the hyperparameters used for training and pruning the driving
network of Amini et al. (2018) together with the provided data set. No fine-tuning
was conducted for this architecture.

Deepknight

Train

test loss 4.9e-5
loss MSE

optimizer Adam
epochs 100

batch size 32
LR 1e-4

LR decay 0.1@{50, 90}
momentum 0.9

weight decay 1.0e-4

Prune
𝛿 1.0e-32
𝛼 not iterative

Fine-tune epochs 0

(a) Example driving image from Amini
et al. (2018)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Retained Parameters (%)

1

2

3

4

Te
st

 L
os

s
deepknight, Driving

Reference Net
Ours
FT
SoftNet

(b) Pruning performance before re-
training

Figure 5-6: The performance of our approach on a regression task used to infer the
steering angle for an autonomous driving task (Amini et al., 2018). (a) An exemplary
image taken from the data set. (b) The performance of our pruning procedure before
retraining evaluated on the test loss and compared to competing filter pruning meth-
ods. Note that the 𝑥 axis is percentage of parameters retained, i.e., 1− (pruneratio).

Knight network without the fine-tuning step. We omitted the iterative fine-tuning step

for this scenario and instead evaluated the test loss for various prune ratios because

(i) the evaluated algorithms were able to generate highly accurate models without the

retraining step and (ii) in order to evaluate and compare the performance of solely

the core pruning procedure. Similar to the results obtained in the preceding prun-

ing scenarios, Figure 5-6 shows that our method consistently outperforms competing

approaches for all of the specified prune ratios.

141

5.5 Discussion

Empirical Results. In addition to the favorable empirical results of our algorithm,

our approach exhibits various advantages over competing methods that manifest

themselves in our empirical evaluations. For one, our algorithm does not require

any additional hyper-parameters other than the pruning ratio and the desired failure

probability. Given these sole two parameters, our approach automatically allocates

the number of filters to sample for each layer. This alleviates the need to perform

time-intensive ablation studies (He et al., 2018) and to resort to uninformed (i.e.,

uniform) sample allocation strategies, e.g., removing the same percentage of filters

in each layer (Li et al., 2016), which fails to consider the non-uniform influence of

each layer on the network’s output (see Section 5.3). Moreover, our algorithm is

simple-to-implement and computationally efficient both in theory and practice: the

computational complexity is dominated by the |𝒮| forward passes required to com-

pute the sensitivities (|𝒮| ≤ 256 in practical settings) and in practice, our algorithm

takes on the order of a minute to prune the network.

Theoretical Error Guarantees. We present – to the best of our knowledge –

the first filter pruning algorithm that generates a pruned network with theoretical

guarantees on the size and performance of the generated network. Our method is

data-informed, simple-to-implement, and efficient both in theory and practice. Our

approach can also be broadly applied to varying network architectures and data sets

with minimal hyper-parameter tuning. This stands in contrast to existing filter prun-

ing approaches that are generally data-oblivious, rely on heuristics for evaluating the

parameter importance, or require tedious hyper-parameter tuning. Our empirical

evaluations on popular network architectures and data sets reaffirm the favorable

theoretical properties of our method and demonstrate its practical effectiveness in

obtaining sparse, efficient networks. We envision that besides its immediate use for

pruning state-of-the-art models, our approach can also be used as a sub-procedure in

other deep learning applications, e.g., for identifying winning lottery tickets (Frankle

and Carbin, 2019) and for efficient architecture search (Liu et al., 2019c).

142

Global compression. Moreover, we also identified a modular compression frame-

work that considers both the layer-wise error guarantees as well as global consider-

ations of how much each individual layer should be pruned in order to achieve the

optimal performance-size trade-off in a given network (see Section 5.3). Our main

insight hereby hinges on the observation that we can leverage our layer-wise error

guarantees to optimize over the per-layer prune ratios to obtain a more optimally

pruned network. We will further build upon this insight in our next chapter, Chap-

ter 6, where we consider the neural network compression problem in the context of

low-rank decomposition techniques.

143

144

Chapter 6

Automatic Layer-wise

Decomposition

6.1 Overview

Neural network compression entails taking an existing model and reducing its compu-

tational and memory footprint in order to enable the deployment of large-scale net-

works in resource-constrained environments. In the previous chapters, we approach

this problem from the perspective of pruning either individual weights or structures

such as neurons and filters from the underlying weight tensors of each layer.

Complementary to this approach, low-rank compression aims at decomposing a

layer’s weight tensor into a tuple of smaller low-rank tensors. Such compression tech-

niques may build upon the rich literature on low-rank decomposition and its numerous

applications outside deep learning such as dimensionality reduction (Laparra et al.,

2015) or spectral clustering (Peng et al., 2015). Moreover, low-rank compression can

be readily implemented in any machine learning framework by replacing the existing

layer with a set of smaller layers without the need for, e.g., sparse linear algebra

support.

In this sense, just like our approach to filter pruning (Chapter 5) we can readily

obtain efficiency gains from the network since we can replace the large, dense layers

by smaller, but still dense layers. Moreover, by considering low-rank compression we

145

Figure 6-1: ALDS Overview. The framework consists of a global and local step to
obtain an optimal per-layer low-rank compression. We first randomly initialize the
number of subspaces for each layer. We then optimize for the optimal per-layer, per-
subspace rank by minimizing the maximum relative compression error (global step).
Given a per-layer budget, we then optimize for the number of low-rank subspaces in
each layer (local step). Both steps are repeated iteratively until convergence.

can gain insights about the dimensionality of the underlying feature space.

Within deep learning, we encounter two related, yet distinct challenges when

applying low-rank compression. On the one hand, each layer should be efficiently

decomposed (the “local step”) and, on the other hand, we need to balance the amount

of compression in each layer in order to achieve a desired overall compression ratio

with minimal loss in the predictive power of the network (the “global step”). While

the “local step“, i.e., designing the most efficient layer-wise decomposition method,

has traditionally received lots of attention (Denton et al., 2014; Garipov et al., 2016;

Jaderberg et al., 2014; Kim et al., 2015b; Lebedev et al., 2015; Novikov et al., 2015),

the “global step” has only recently been the focus of attention in research, e.g., see

the recent works of Alvarez and Salzmann (2017); Idelbayev and Carreira-Perpinán

(2020); Xu et al. (2020).

Building upon our insights from Chapter 5, we design a framework that simul-

taneously accounts for both the local (layer-wise compression) and global step (bud-

get allocation). Our proposed solution, termed Automatic Layer-wise Decomposition

Selector (ALDS), addresses this challenge by iteratively optimizing for each layer’s

decomposition method (local step) and the low-rank compression itself while account-

ing for the maximum error incurred across layers (global step). In that sense, it also

provides a generalization of our pruning framework presented in the previous chapter

by decoupling the local and global step during the optimization procedure.

146

6.1.1 Contributions

Our contributions can be summarized as follows:

• An efficient, layer-wise decomposition framework relying on a straightforward

decomposition of each layer that is based on singular value decomposition

(SVD), where each layer’s weight tensor is first folded and decomposed via

SVD followed by encoding the resulting pair of matrices as two separate layers.

• A generalization of our layer-wise decomposition via an automatically-determined

splitting of the weight matrix into multiple subsets for enhanced low-rank de-

composition.

• A global framework (ALDS) that optimally determines the type of decompo-

sition (number of subspaces) and the optimal per-layer low-rank compression

based on minimizing the maximum relative error incurred.

• Extensive experimental evaluations on multiple benchmarks, models, and datasets,

including large-scale datasets, establishing the competitive performance of our

algorithm relative to existing approaches.

6.1.2 Relevant Papers

The results presented in this chapter are based on the following paper:

• Lucas Liebenwein, Alaa Maalouf, Oren Gal, Dan Feldman, and Daniela Rus.

Compressing neural networks: Towards determining the optimal layer-wise de-

composition. In Advances in Neural Information Processing Systems (Under

Review; arXiv preprint arXiv:2107.11442), 2021c.

6.1.3 Outline

The chapter is structured as follows. In Section 6.2 we introduce our approach to

low-rank compression and the global consideration that lead to our main contribu-

tion, i.e., an error-aware global compression framework. Subsequently, we highlight

147

our experimental results in Section 6.3 including necessary experimental details for

reproducibility. Additional results are provided in Appendix A. We conclude this

chapter with a discussion in Section 6.4.

6.2 Method

In this section, we introduce our compression framework consisting of a layer-wise

decomposition method (Section 6.2.2), a global selection mechanism to simultane-

ously compress all layers of a network (Section 6.2.3), and an optimization procedure

(ALDS) to solve the selection problem (Section 6.2.4). Before diving into the de-

tails of our methods, we present some preliminaries pertaining to the use of low-rank

compression techniques in the context of neural networks (Section 6.2.1).

6.2.1 Preliminaries

Our layer-wise compression technique hinges upon the insight that any linear layer

may be cast as a matrix multiplication, which enables us to rely on SVD as compres-

sion subroutine. Focusing on convolutions we show how such a layer can be recast as

matrix multiplication. Similar approaches have been used by Denton et al. (2014);

Idelbayev and Carreira-Perpinán (2020); Wen et al. (2017) among others.

Convolution to matrix multiplication. For a given convolutional layer of 𝑓

filters, 𝑐 channels, 𝜅1 × 𝜅2 kernel and an input feature map with 𝑐 features, each of

size 𝑚1×𝑚2, we denote by𝒲 ∈ R𝑓×𝑐×𝜅1×𝜅2 and 𝒳 ∈ R𝑐×𝑚1×𝑚2 the weight tensor and

input tensor, respectively. Moreover, let 𝑊 ∈ R𝑓×𝑐𝜅1𝜅2 denote the unfolded matrix

operator of the layer constructed from 𝒲 by flattening the 𝑐 kernels of each filter

into a row and stacking the rows to form a matrix. Finally, let 𝑝 denote the total

number of sliding blocks and 𝑋 ∈ R𝑐𝜅1𝜅2×𝑝 denote the unfolded input matrix, which

is constructed from the input tensor 𝒳 as follows: while simulating the convolution

by sliding 𝒲 along 𝒳 we extract the sliding local blocks of 𝒳 across all channels by

flattening each block into a 𝑐𝜅1𝜅2-dimensional column vector and concatenating them

148

Figure 6-2: Convolution to matrix multiplication. A convolutional layer of 𝑓 = 20
filters, 𝑐 = 6 channels, and 2× 2 kernel (𝜅1 = 𝜅2 = 2). The input tensor shape is 6× 3× 3.
The corresponding weight matrix has 𝑓 = 20 rows (one row per filter) and 24 columns
(𝑐 × 𝜅1 × 𝜅2), as for the corresponding feature matrix, it has 24 rows and 4 columns, the
4 here is the number of convolution windows (i.e., number of pixels/entries in each of the
output feature maps). After multiplying those matrices, we reshape them to the desired
shape to obtain the desired output feature maps.

together to form 𝑋. As illustrated in Figure 6-2, we may now express the convolution

𝒴 = 𝒲 * 𝒳 as the matrix multiplication 𝑌 = 𝑊𝑋, where 𝒴 ∈ R𝑓×𝑝1×𝑝2 and 𝑌 ∈

R𝑓×𝑝 correspond to the tensor and matrix representation of the output feature maps,

respectively, and 𝑝1, 𝑝2 denote the spatial dimensions of 𝒴 . The equivalence of 𝒴 and

𝑌 can be easily established via an appropriate reshaping operation since 𝑝 = 𝑝1𝑝2.

Efficient tensor decomposition via SVD. Equipped with the notion of corre-

spondence between convolution and matrix multiplication our goal is to decompose

the layer via its matrix operator 𝑊 ∈ R𝑓×𝑐𝜅1𝜅2 . To this end, we compute the 𝑗-rank

approximation of 𝑊 using SVD and factor it into a pair of smaller matrices 𝑈 ∈ R𝑓×𝑗

and 𝑉 ∈ R𝑗×𝑐𝜅1𝜅2 . We may then replace the original convolution, represented by 𝑊 ,

by two smaller convolutions, represented by 𝑉 and 𝑈 for the first and second layer,

respectively. Just like for the original layer, we can establish an equivalent convolu-

tion layer for both 𝑈 and 𝑉 as depicted in Figure 6-3. To establish the equivalence

we note that (a) every row of the matrices 𝑉 and 𝑈 corresponds to a flattened filter

of the respective convolution, and (b) the number of channels in each layer is equal to

149

Figure 6-3: Low-rank decomposition for convolutional layers via SVD. The given
convolution, c.f. Figure 6-2, has 20 filters, each of shape 6×2×2, resulting in a total of 480
parameters. After extracting the corresponding weight matrix 𝑊 ∈ R20×24 (𝑓 × 𝑐𝜅1𝜅2), we
compute its (𝑗 = 7)-rank decomposition to obtain the pair of matrices 𝑈 ∈ R20×7 (𝑓 × 𝑗)
and 𝑉 ∈ R7×24 (𝑗 × 𝑐𝜅1𝜅2). Those matrices are encoded back as a pair of convolutional
layers, the first (corresponding to 𝑉) has 𝑗 = 7 filters, 𝑐 = 6 channels and a 2× 2 (𝜅1 × 𝜅2)
kernel, whereas the second (corresponding to 𝑈) is a 1×1 convolution of 𝑓 = 20 filters, and
𝑗 = 7 channels. The resulting layers have 308 parameters.

the number of channels in its corresponding input tensor. Hence, the first layer, which

is represented by 𝑉 ∈ R𝑗×𝑐𝜅1𝜅2 has 𝑗 filters, c.f. (a), each consisting of 𝑐 channels,

c.f. (b), with kernel size 𝜅1 × 𝜅2. The second layer corresponding to 𝑈 has 𝑓 filters,

c.f. (a), 𝑗 channels, c.f. (b), and a 1 × 1 kernel and may be equivalently represented

as the tensor 𝒰 ∈ R𝑓×𝑗×1×1. Note that the number of weights is reduced from 𝑓𝑐𝜅1𝜅2

to 𝑗(𝑓 + 𝑐𝜅1𝜅2).

6.2.2 Local Layer Compression

We detail our low-rank compression scheme for convolutional layers below and note

that it readily applies to fully-connected layers as well as a special case of convolutions

with a 1× 1 kernel.

Compressing Convolutions via SVD

Given a convolutional layer of 𝑓 filters, 𝑐 channels, and a 𝜅1 × 𝜅2 kernel we denote

the corresponding weight tensor by 𝒲 ∈ R𝑓×𝑐×𝜅1×𝜅2 . Following Denton et al. (2014);

Idelbayev and Carreira-Perpinán (2020); Wen et al. (2017) and others, we can then

150

interpret the layer as a linear layer of shape 𝑓 × 𝑐𝜅1𝜅2 and the corresponding rank

𝑗-approximation as two subsequent linear layers of shape 𝑓×𝑗 and 𝑗×𝑐𝜅1𝜅2. Mapped

back to convolutions, this corresponds to a 𝑗 × 𝑐× 𝜅1 × 𝜅2 convolution followed by a

𝑓 × 𝑗 × 1× 1 convolution.

Multiple Subspaces

Following the intuition outlined in Section 6.1 we propose to cluster the columns

of the layer’s weight matrix into 𝑘 ≥ 2 separate subspaces before applying SVD to

each subset. To this end, we may consider any clustering method, such as k-means

or projective clustering (Chen et al., 2018a; Maalouf et al., 2021). However, such

methods require expensive approximation algorithms which would limit our ability

to incorporate them into an optimization-based compression framework as outlined

in Section 6.2.3. In addition, arbitrary clustering may require re-shuffling the input

tensors which could lead to significant slow-downs during inference. We instead opted

for a simple clustering method, namely channel slicing, where we simply divide the 𝑐

input channels of the layer into 𝑘 subsets each containing at most ⌈𝑐/𝑘⌉ consecutive

input channels. Unlike other methods, channel slicing is efficiently implementable,

e.g., as grouped convolutions in PyTorch (Paszke et al., 2017) and ensures practical

speed-ups subsequent to compressing the network.

Remarks on Clustering Methods to Choose Subspaces

As shortly mentioned above, one can cluster the columns of the corresponding weight

matrix 𝑊 , instead of clustering the channels of the convolutional layer. Here, the

channel clustering can be defined as constraint clustering of these columns, where

columns which include entries that correspond to the same kernel (e.g., the first 4

columns in 𝑊 from Figure 6-3) are guaranteed to be in the same cluster.

This generalization is easily adaptable to other clustering methods that generate a

wider set of solutions, e.g., the known 𝑘-means. An intuitive choice for our case could

be projective clustering and its variants. The goal of projective clustering is to

compute a set of 𝑘 subspaces, each of dimension 𝑗, that minimizes the sum of squared

151

distances from each column in 𝑊 to its closest subspace from this set. Then, we can

partition the columns of 𝑊 into 𝑘 subsets according to their nearest subspace from

this set. This is a natural extension of SVD that solves this problem for the case of 𝑘 =

1. However, this problem is known to be NP-hard, hence expensive approximation

algorithms are required to solve it, or alternatively, a local minimum solution can be

obtained using the Expectation-maximization (EM) method (Dempster et al., 1977).

Furthermore, and probably more importantly, all of these methods cannot be con-

sidered as structured compression since arbitrary clustering may require re-shuffling

the input tensors which could lead to significant slow-downs during inference. For ex-

ample, when compressing a fully-connected layer, the arbitrary clustering may result

in nonconsecutive neurons from the first layer that are connected to the same neuron

in the second layer, while neurons that are between them are not. Hence, these layers

can only have a large, sparse instead of a small, dense representation.

To this end, we choose to use channel slicing, i.e., we simply split the chan-

nels of the convolutional layer into 𝑘 chunks, where each chunk has at most 𝑐/𝑘

consecutive channels. Splitting the channels into consecutive subsets (without allow-

ing any arbitrary clustering) and applying the factorization on each one results in a

structurally compressed layer without the need of special software/hardware support.

Furthermore, this approach is the fastest among all the others.

Finally, while other approaches may give a better initial guess for a compressed

network in theory, in practice this is not the case; see Figure 6-8. We see that in

practice, our method improve upon state-of-the-art techniques and obtains smaller

networks with higher accuracy without the use of those complicated approaches that

may result in sparse but not smaller network.

Overview of Per-layer Decomposition

In summary, for given integers 𝑗, 𝑘 ≥ 1 and a 4D tensor𝒲 ∈ R𝑓×𝑐×𝜅1×𝜅2 representing

a convolution the per-layer compression method proceeds as follows:

1. Partition the channels of the convolutional layer into 𝑘 subsets, where each

152

Figure 6-4: Left: 2D convolution. right: decomposition used for ALDS. For
a 𝑓 × 𝑐 × 𝜅1 × 𝜅2 convolution with 𝑓 filters, 𝑐 channels, and 𝜅1 × 𝜅2 kernel, our per-layer
decomposition consists: (1) 𝑘 parallel 𝑗×𝑐/𝑘×𝜅1×𝜅2 convolutions; (2) a single 𝑓×𝑘𝑗×1×1
convolution applied on the first layer’s (stacked) output.

subset has at most ⌈𝑐/𝑘⌉ consecutive channels, resulting in 𝑘 convolutional

tensors {𝒲𝑖}𝑘𝑖=1 where 𝒲𝑖 ∈ R𝑓×𝑐𝑖×𝜅1×𝜅2 , and
∑︀𝑘

𝑖=1 𝑐𝑖 = 𝑐.

2. Decompose each tensor 𝒲𝑖, 𝑖 ∈ [𝑘], by building the corresponding weight

matrix 𝑊𝑖 ∈ R𝑓×𝑐𝑖𝜅1𝜅2 , c.f. Figure 6-4, computing its 𝑗-rank approximation,

and factoring it into a pair of smaller matrices 𝑈𝑖 of 𝑓 rows and 𝑗 columns and

𝑉𝑖 of 𝑗 rows and 𝑐𝑖𝜅1𝜅2 columns.

3. Replace the original layer in the network by 2 layers. The first consists of 𝑘

parallel convolutions, where the 𝑖th parallel layer, 𝑖 ∈ [𝑘], is described by the

tensor 𝒱𝑖 ∈ R𝑗×𝑐𝑖×𝜅1×𝜅2 which can be constructed from the matrix 𝑉𝑖 (𝑗 filters,

𝑐𝑖 channels, 𝜅1 × 𝜅2 kernel). The second layer is constructed by reshaping each

matrix 𝑈𝑖, 𝑖 ∈ [𝑘], to obtain the tensor 𝒰𝑖 ∈ R𝑓×𝑗×1×1, and then channel stacking

all 𝑘 tensors 𝒰1, · · · ,𝒰𝑘 to get a single tensor of shape 𝑓 × 𝑘𝑗 × 1× 1.

The decomposed layer is depicted in Figure 6-4. The resulting layer pair has

𝑗𝑐𝜅1𝜅2 and 𝑗𝑓𝑘 parameters, respectively, which implies a parameter reduction from

𝑓𝑐𝜅1𝜅2 to 𝑗(𝑓𝑘 + 𝑐𝜅1𝜅2).

6.2.3 Global Network Compression

In the previous section, we introduced our layer compression scheme. We note that

in practice we usually want to compress an entire network consisting of 𝐿 layers up to

a pre-specified relative reduction in parameters, i.e., up to some desired compression

153

ratio (CR). However, it is generally unclear how much each layer ℓ ∈ [𝐿] should be

compressed in order to achieve the desired CR while incurring a minimal increase in

loss. Unfortunately, this optimization problem is NP-complete as we would have to

check every combination of layer compression resulting in the desired CR in order to

optimally compress each layer. On the other hand, simple heuristics, e.g., constant

per-layer compression ratios, may lead to sub-optimal results, see Section 6.3. To

this end, we propose an efficiently solvable global compression framework based on

minimizing the maximum relative error incurred across layers. We describe each

component of our optimization procedure in greater detail below.

The Layer-wise Relative Error as Proxy for the Overall Loss

Since the true cost (the additional loss incurred after compression) would result in

an NP-complete problem, we replace the true cost by a more efficient proxy. Specif-

ically, we consider the maximum relative error 𝜀 := maxℓ∈[𝐿] 𝜀
ℓ across layers, where

𝜀ℓ denotes the theoretical maximum relative error in the ℓth layer as described in

Theorem 17 below. We choose to minimize this particular cost because: (i) minimiz-

ing the maximum relative error ensures that no layer incurs an unreasonably large

error that might otherwise get propagated or amplified; (ii) relying on a relative in-

stead of an absolute error notion is preferred as scaling between layers may arbitrarily

change, e.g., due to batch normalization, and thus the absolute scale of layer errors

may not be indicative of the increase in loss; and (iii) the per-layer relative error has

been shown to be intrinsically linked to the theoretical compression error, e.g., see

the work of Arora et al. (2018) and Part I of this thesis, thus representing a natural

proxy for the cost.

Definition of the Per-layer Relative Error

Let 𝒲ℓ ∈ R𝑓ℓ×𝑐ℓ×𝜅ℓ
1×𝜅ℓ

2 and 𝑊 ℓ ∈ R𝑓ℓ×𝑐ℓ𝜅ℓ
1𝜅

ℓ
2 denote the weight tensor and corre-

sponding folded matrix of layer ℓ, respectively. The per-layer relative error 𝜀ℓ is

hereby defined as the relative difference in the operator norm between the matrix

�̂� ℓ (that corresponds to the compressed weight tensor �̂�ℓ) and the original weight

154

matrix 𝑊 ℓ in layer ℓ, i.e,.

𝜀ℓ := ‖�̂� ℓ −𝑊 ℓ‖/‖𝑊 ℓ‖. (6.1)

Note that while in practice our method decomposes the original layer into a set

of separate layers (see Section 6.2.2), for the purpose of deriving the resulting error

we re-compose the compressed layers into the overall matrix operator �̂� ℓ, i.e., �̂� ℓ =

[𝑈 ℓ
1𝑉

ℓ
1 · · ·𝑈 ℓ

𝑘ℓ
𝑉 ℓ
𝑘ℓ

], where 𝑈 ℓ
𝑖 𝑉

ℓ
𝑖 is the factorization of the 𝑖th cluster (set of columns)

in the ℓth layer, for every ℓ ∈ [𝐿] and 𝑖 ∈ [𝑘ℓ], see supplementary material for more

details. We note that the operator norm ‖ · ‖ for a convolutional layer thus signifies

the maximum relative error incurred for an individual output patch (“pixel”) across

all output channels.

Derivation of Relative Error Bounds

We now derive an error bound that enables us to describe the per-layer relative error

in terms of the compression hyperparameters 𝑗ℓ and 𝑘ℓ, i.e., 𝜀ℓ = 𝜀ℓ(𝑘ℓ, 𝑗ℓ). This

will prove useful later on as we have to repeatedly query the relative error in our

optimization procedure. The error bound is described in the following.

Theorem 17. Given a layer matrix 𝑊 ℓ and the corresponding low-rank approxima-

tion �̂� ℓ, the relative error 𝜀ℓ := ‖�̂� ℓ −𝑊 ℓ‖/‖𝑊 ℓ‖ is bounded by

𝜀ℓ ≤
√
𝑘/𝛼1 ·max

𝑖∈[𝑘]
𝛼𝑖,𝑗+1, (6.2)

where 𝛼𝑖,𝑗+1 is the 𝑗 + 1 largest singular value of the matrix 𝑊 ℓ
𝑖 , for every 𝑖 ∈ [𝑘],

and 𝛼1 = ‖𝑊 ℓ‖ is the largest singular value of 𝑊 ℓ.

Proof. First, we recall the matrices 𝑊 ℓ
1 , · · · ,𝑊 ℓ

𝑘 and we denote the SVD factorization

for each of them by: 𝑊 ℓ
𝑖 = �̃� ℓ

𝑖 Σ̃ℓ
𝑖𝑉

ℓ
𝑖 . Now, observe that for every 𝑖 ∈ [𝑘], the matrix

�̂� ℓ
𝑖 is the 𝑗-rank approximation of 𝑊 ℓ

𝑖 . Hence, the SVD factorization of �̂� ℓ
𝑖 can be

writen as �̂� ℓ
𝑖 = �̃� ℓ

𝑖 Σ̂ℓ
𝑖𝑉

ℓ𝑇

𝑖 , where Σ̂ℓ
𝑖 ∈ R𝑓×𝑑 is a diagonal matrix such that its first

𝑗-diagonal entries are equal to the first 𝑗-entries on the diagonal of Σ̃ℓ
𝑖 , and the rest

155

are zeros. Hence,

𝑊 ℓ − �̂� ℓ = [𝑊 ℓ
1 − �̂� ℓ

1 , · · · ,𝑊 ℓ
𝑘 − �̂� ℓ

𝑘] = [�̃� ℓ
1(Σ̃ℓ

1 − Σ̂ℓ
1)𝑉

ℓ
1 , · · · , �̃� ℓ

𝑘(Σ̃ℓ
𝑘 − Σ̂ℓ

𝑘)𝑉 ℓ
𝑘]

= [𝑈 ℓ
1 · · · �̃� ℓ

𝑘] diag
(︁

(Σ̃ℓ
1 − Σ̂ℓ

1)𝑉
ℓ
1 , . . . , (Σ̃

ℓ
𝑘 − Σ̂ℓ

𝑘)𝑉 ℓ
𝑘

)︁
.

(6.3)

By (6.3) and by the triangle inequality, we have that

⃦⃦⃦
𝑊 ℓ − �̂� ℓ

⃦⃦⃦
≤
⃦⃦⃦[︁

𝑈 ℓ
1 · · · �̃� ℓ

𝑘

]︁⃦⃦⃦ ⃦⃦⃦
diag

(︁
(Σ̃ℓ

1 − Σ̂ℓ
1)𝑉

ℓ
1 , . . . , (Σ̃

ℓ
𝑘 − Σ̂ℓ

𝑘)𝑉 ℓ
𝑘

)︁⃦⃦⃦
. (6.4)

Now, we observe that

⃦⃦⃦[︁
𝑈 ℓ
1 · · · �̃� ℓ

𝑘

]︁⃦⃦⃦2
=

⃦⃦⃦⃦[︁
𝑈 ℓ
1 · · · �̃� ℓ

𝑘

]︁[︁
𝑈 ℓ
1 · · · �̃� ℓ

𝑘

]︁𝑇 ⃦⃦⃦⃦
= ‖diag(𝑘, . . . , 𝑘)‖ = 𝑘. (6.5)

Finally, we show that

⃦⃦⃦
diag

(︁
(Σ̃ℓ

1 − Σ̂ℓ
1)𝑉

ℓ
1 , . . . , (Σ̃

ℓ
𝑘 − Σ̂ℓ

𝑘)𝑉 ℓ
𝑘

)︁⃦⃦⃦
= max

𝑖∈[𝑘]

⃦⃦⃦
(Σ̃ℓ

𝑖 − Σ̂ℓ
𝑖)𝑉

ℓ
𝑖

⃦⃦⃦
(6.6)

= max
𝑖∈[𝑘]

⃦⃦⃦
(Σ̃ℓ

𝑖 − Σ̂ℓ
𝑖)
⃦⃦⃦

= max
𝑖∈[𝑘]

𝛼𝑖,𝑗+1, (6.7)

where the second equality holds since the columns of 𝑉 are orthogonal and the

last equality holds according to the Eckhart-Young-Mirsky Theorem (Theorem 2.4.8

of Golub and Van Loan (2013)). Plugging (6.7) and (6.5) into (6.4) concludes the

proof.

Resulting Network Size

Let 𝜃 = {𝒲ℓ}𝐿ℓ=1 denote the set of weights for the 𝐿 layers and note that the num-

ber of parameters in layer ℓ is given by
⃒⃒
𝒲ℓ
⃒⃒

= 𝑓 ℓ𝑐ℓ𝜅ℓ
1𝜅

ℓ
2 and |𝜃| =

∑︀
ℓ∈[𝐿] |𝒲ℓ|.

Moreover, note that |�̂�ℓ| = 𝑗ℓ(𝑘ℓ𝑓 ℓ + 𝑐ℓ𝜅ℓ
1𝜅

ℓ
2) if decomposed, 𝜃 = {�̂�ℓ}𝐿ℓ=1, and⃒⃒⃒

𝜃
⃒⃒⃒

=
∑︀

ℓ∈[𝐿]

⃒⃒⃒
�̂�ℓ
⃒⃒⃒
. The overall compression ratio is thus given by 1 − |𝜃|/|𝜃| where

we neglected other parameters for ease of exposition. Observe that the layer budget⃒⃒⃒
�̂�ℓ
⃒⃒⃒

is fully determined by 𝑘ℓ, 𝑗ℓ just like the error bound.

156

Global Network Compression

Putting everything together we obtain the following formulation for the optimal per-

layer budget:

𝜀𝑜𝑝𝑡 = min
{𝑗ℓ,𝑘ℓ}𝐿ℓ=1

max
ℓ∈[𝐿]

𝜀ℓ(𝑘ℓ, 𝑗ℓ) (6.8)

subject to 1− |𝜃(𝑘1,𝑗1,...,𝑘𝐿,𝑗𝐿)|/|𝜃| ≤ CR,

where CR denotes the desired overall compression ratio. Thus optimally allocating

a per-layer budget entails finding the optimal number of subspaces 𝑘ℓ and ranks 𝑗ℓ

for each layer constrained by the desired overall CR.

6.2.4 Automatic Layer-wise Decomposition Selector (ALDS)

Overview

We propose to solve (6.8) by iteratively optimizing 𝑘1, . . . , 𝑘𝐿 and 𝑗1, . . . , 𝑗𝐿 until

convergence akin of an EM-like algorithm as shown in Algorithm 4 and Figure 6-1.

Specifically, for a given set of weights 𝜃 and desired compression ratio CR we first

randomly initialize the number of subspaces 𝑘1, . . . , 𝑘𝐿 for each layer (Line 2). Based

on given values for each 𝑘ℓ we then solve for the optimal ranks 𝑗1, . . . , 𝑗𝐿 such that

the overall CR is satisfied (Line 4). Note that the maximum error 𝜀 is minimized if

all errors are equal. Thus solving for the ranks in Line 4 entails guessing a value for

𝜀, computing the resulting network size, and repeating the process until the desired

CR is satisfied, e.g. via binary search. Subsequently, we re-assign the number of

subspaces 𝑘ℓ for each layer by iterating through the finite set of possible values for

𝑘ℓ (Line 7) and choosing the one that minimizes the relative error for the current

layer budget 𝑏ℓ (computed in Line 6). We then iteratively repeat both steps until

convergence (Lines 3-8). To improve the quality of the local optimum we initialize

the procedure with multiple random seeds (Lines 1-11) and pick the allocation with

the lowest error (Line 12). We note that we make repeated calls to our decomposition

subroutine (i.e. SVD; Lines 4, 7) highlighting the necessity for it to be efficient.

157

Algorithm 4 ALDS(𝜃, CR, 𝑛seed)
Input: 𝜃: network parameters; CR: overall compression ratio; 𝑛seed: number of random
seeds to initialize
Output: 𝑘1, . . . , 𝑘𝐿: number of subspaces for each layer; 𝑗1, . . . , 𝑗

𝐿: desired rank per
subspace for each layer

1: for 𝑖 ∈ [𝑛seed] do

2: 𝑘1, . . . , 𝑘𝐿 ← RandomInit()

3: while not converged do

4: 𝑗1, . . . , 𝑗𝐿 ← OptimalRanks(CR, 𝑘1, . . . , 𝑘𝐿) ◁ Global step: choose such that

𝜀1 = . . . = 𝜀𝐿

5: for ℓ ∈ [𝐿] do

6: 𝑏ℓ ← 𝑗ℓ(𝑘ℓ𝑓 ℓ + 𝑐ℓ𝜅ℓ1𝜅
ℓ
2) ◁ resulting layer budget

7: 𝑘ℓ ← OptimalSubspaces(𝑏ℓ) ◁ Local step: minimize error bound for a given

layer budget

8: end for

9: end while

10: 𝜀𝑖 = RecordError(𝑘1, . . . , 𝑘𝐿, 𝑗1, . . . , 𝑗𝐿)

11: end for

12: return 𝑘1, . . . , 𝑘𝐿, 𝑗1, . . . , 𝑗𝐿 from 𝑖best = argmin𝑖 𝜀𝑖

Implementation Details

Our suggested algorithm aims at minimizing the maximum relative error 𝜀 := maxℓ∈[𝐿] 𝜀
ℓ

across the 𝐿 layers of the network as a proxy for the true cost, where 𝜀ℓ is the theo-

retical maximum relative error in the ℓth:

𝜀ℓ :=

⃦⃦⃦
�̂� ℓ −𝑊 ℓ

⃦⃦⃦
‖𝑊 ℓ‖

.

Through Algorithm 4, for every ℓ ∈ [𝐿] we need to repeatedly compute 𝜀ℓ as

a function of 𝑗ℓ and 𝑘ℓ. At Line 4, we are given a guess for the optimal values of

𝑘1, . . . , 𝑘𝐿, and our goal is to compute the values 𝑗1, . . . , 𝑗𝐿 such that the resulting

errors 𝜀1, . . . , 𝜀𝐿 are (approximately) equal in order to minimize the maximum error

maxℓ∈[𝐿] 𝜀
ℓ while achieving the desired global compression ratio. To this end, we guess

a value for 𝜀 and for given 𝑘1, . . . , 𝑘𝐿 pick the corresponding 𝑗1, . . . , 𝑗𝐿 such that 𝜀

constitutes a tight upper bound for the relative error in each layer. Based on the

now resulting budget (and consequently compression ratio) we can now improve our

158

guess of 𝜀, e.g., via binary search or other types of root finding algorithms, until we

convergence to a value of 𝜀 that corresponds to our desired overall compression ratio.

Subsequently, for each layer we are given specific values of 𝑘ℓ and 𝑗ℓ, which implies

that we are given a budget 𝑏ℓ for every layer ℓ ∈ [𝐿]. Subsequently, we re-assign the

number of subspaces 𝑘ℓ and their ranks 𝑗ℓ for each layer by iterating through the

finite set of possible values for 𝑘ℓ (Line 7) and choosing the combination of 𝑗ℓ, 𝑘ℓ that

minimizes the relative error for the current layer budget 𝑏ℓ (computed in Line 6).

We then iteratively repeat both steps until convergence (Lines 3-8).

Hence, instead of computing the cost of each layer at each step, we can save a

lookup table that stores the errors 𝜀ℓ for the possible values of 𝑘ℓ and 𝑗ℓ of each

layer. For every layer ℓ ∈ [𝐿], we iterate over the finite set of values of 𝑘ℓ, and we

split the matrix 𝑊 ℓ to 𝑘ℓ matrices (according to the channel slicing approach that is

explained in Section 6.2.2), then we compute the SVD-factorization of each matrix

from these 𝑘ℓ matrices, and finally, compute 𝜀ℓ that corresponds to a specific 𝑗ℓ (𝑘ℓ

is already given) in 𝑂(𝑓𝑑) time, where 𝑓 is the number of rows in the weight matrix

that corresponds to the ℓth layer and 𝑑 is the number of columns.

Furthermore, instead of computing each option of 𝜀ℓ in 𝑂(𝑓𝑑) time, we use the

derived upper bound to compute it in 𝑂(𝑘) time and saving it in the lookup table.

This is done to ensure a more efficient implementation of the lookup table, and having

this table ensures a more efficient implementation of Algorithm 4.

Extensions

Here, we use SVD with multiple subspaces as per-layer compression method. How-

ever, we note that ALDS can be readily extended to any desired set of low-rank

compression techniques. Specifically, we can replace the local step of Line 7 by a

search over different methods, e.g., Tucker decomposition, PCA, or other SVD com-

pression schemes, and return the best method for a given budget. In general, we may

combine ALDS with any low-rank compression as long as we can efficiently evaluate

the per-layer error of the compression scheme. Note that this essentially equips us

with a framework to automatically choose the per-layer decomposition technique fully

159

automatically.

To this end, we test an extension of ALDS where in addition to searching over

multiple values of 𝑘ℓ we simultaneously search over various flattening schemes to

convert a convolutional tensor to a matrix before applying SVD.

As before, let 𝒲 ∈ R𝑓×𝑐×𝜅1×𝜅2 denote the weight tensor for a convolutional layer

with 𝑓 filters, 𝑐 input channels, and a 𝜅1×𝜅2 kernel. Moreover, let 𝑗 denote the desired

rank of the decomposition. We consider the following schemes to automatically search

over:

• Scheme 0: flatten the tensor to a matrix of shape 𝑓 × 𝑐𝜅1𝜅2. The decomposed

layers correspond to a 𝑗 × 𝑐× 𝜅1 × 𝜅2-convolution followed by a 𝑓 × 𝑗 × 1× 1-

convolution. This is the same scheme as used in ALDS.

• Scheme 1: flatten the tensor to a matrix of shape 𝑓𝜅1× 𝑐𝜅2. The decomposed

layers correspond to a 𝑗 × 𝑐× 1× 𝜅2-convolution followed by a 𝑓 × 𝑗 × 𝜅1 × 1-

convolution.

• Scheme 2: flatten the tensor to a matrix of shape 𝑓𝜅2× 𝑐𝜅1. The decomposed

layers correspond to a 𝑗 × 𝑐× 𝜅1 × 1-convolution followed by a 𝑓 × 𝑗 × 1× 𝜅2-

convolution.

• Scheme 3: flatten the tensor to a matrix of shape 𝑓𝜅1𝜅2× 𝑐. The decomposed

layers correspond to a 𝑗 × 𝑐× 1× 1-convolution followed by a 𝑓 × 𝑗 × 𝜅1 × 𝜅2-

convolution.

We denote this method by ALDS+ and provide preliminary results in Section 6.3.5.

We note that since ALDS+ is a generalization of ALDS its performance is at least as

good as the original ALDS. Moreover, our preliminary results actually suggest that

the extension clearly improves upon the empirical performance of ALDS.

160

6.3 Results

6.3.1 Experimental Setup

Our experimental evaluations are based on a variety of network architectures, data

sets, and compression pipelines. In the following, we provide all necessary hyperpa-

rameters to reproduce our experiments for each of the datasets and respective network

architectures.

All networks were trained, compressed, and evaluated on a compute cluster with

NVIDIA Titan RTX and NVIDIA RTX 2080Ti GPUs. The experiments were con-

ducted with PyTorch 1.7 and our code is fully open-sourced.

All networks are trained according to the hyperparameters outlined in the respec-

tive original papers. During retraining, we reuse the same hyperparameters.

Moreover, each experiment is repeated 3 times and we report mean and mean,

standard deviation in the tables and figures, respectively.

For each data set, we use the publicly available development set as test set and use

a 90%/5%/5% split on the train set to obtain a separate train and two validation sets.

One validation set is used for data-dependent compression methods, e.g., PCA (Zhang

et al., 2015a); the other set is used for early stopping during training.

Networks and datasets

We study various standard network architectures and data sets. Particularly, we

test our compression framework on ResNet20 (He et al., 2016), DenseNet22 (Huang

et al., 2017), WRN16-8 (Zagoruyko and Komodakis, 2016), and VGG16 (Simonyan

and Zisserman, 2015) on CIFAR-10 (Torralba et al., 2008); ResNet18 (He et al.,

2016), and AlexNet (Krizhevsky et al., 2012) on ImageNet (Russakovsky et al., 2015);

and on Deeplab-V3 (Chen et al., 2017) with a ResNet50 backbone on Pascal VOC

segmentation data (Everingham et al., 2015).

161

Baselines

We compare ALDS to a diverse set of low-rank compression techniques. Specifically,

we have implemented PCA (Zhang et al., 2015b), SVD with energy-based layer al-

location (SVD-Energy) following Alvarez and Salzmann (2017); Wen et al. (2017),

and simple SVD with constant per-layer compression (Denton et al., 2014). Addi-

tionally, we also implemented the recent learned rank selection mechanism (L-Rank)

of Idelbayev and Carreira-Perpinán (2020). Finally, we implemented two recent filter

pruning methods, i.e., FT of Li et al. (2016) and PFP from Chapter 5, as alternative

compression techniques for densely compressed networks. Each baseline comparison

method is described in more detail below:

1. PCA (Zhang et al., 2015a) decomposes each layer based on principle component

analysis of the pre-activation (output of linear layer). We implement the sym-

metric, linear version of their method. The per-layer compression ratio is based

on the greedy solution for minimizing the product of the per-layer energy, where

the energy is defined as the sum of singular values in the compressed layer, see

Equation (14) of Zhang et al. (2015a).

2. SVD-Energy (Alvarez and Salzmann, 2017; Wen et al., 2017) decomposes each

layer via matrix folding akin to our SVD-based decomposition. The per-layer

compression ratio is found by keeping the relative energy reduction constant

across layers, where energy is defined as the sum of squared singular values.

3. SVD (Denton et al., 2014) decomposes each layer via matrix folding akin to our

SVD-based decomposition. However, we hereby fix 𝑘ℓ = 1 for all layers ℓ ∈ [𝐿] in

order to provide a nominal comparison akin of “standard” tensor decomposition.

The per-layer compression ratio is kept constant across all layers.

4. L-Rank (Idelbayev and Carreira-Perpinán, 2020) decomposes each layer via

matrix folding akin to our SVD-based decomposition. The per-layer compres-

sion is determined by minimizing a joint cost objective of the energy and the

162

computational cost of each layer, see Equation (5) of Idelbayev and Carreira-

Perpinán (2020) for details.

5. FT (Li et al., 2016) prunes the filters (or neurons) in each layer with the lowest

element-wise ℓ2-norm. The per-layer compression ratio is set manually (constant

in our implementation).

6. PFP (Chapter 5) prunes the channels with the lowest sensitivity, where the

data-dependent sensitivities are based on a provable notion of channel pruning.

The per-layer prune ratio is determined based on the associated theoretical error

guarantees.

Additional comparisons on ImageNet are provided in Section 6.3.3.

Retraining

For our experiments, we study one-shot and iterative learning rate rewinding inspired

by Renda et al. (2020) for various amounts of retraining. In particular, we consider

the following unified compress-retrain pipeline across all methods:

1. Train for 𝑒 epochs according to the standard training schedule for the respec-

tive network.

2. Compress the network according to the chosen method.

3. Retrain the network for 𝑟 epochs using the training hyperparameters from

epochs [𝑒− 𝑟, 𝑒].

4. Iteratively repeat 1.-3. after projecting the decomposed layers back (op-

tional).

Reporting Metrics

We report Top-1, Top-5, and IoU test accuracy as applicable for the respective task.

For each compressed network we also report the compression ratio, i.e., relative re-

duction, in terms of parameters and floating point operations denoted by CR-P and

163

Table 6.1: The experimental hyperparameters for training, compression, and retrain-
ing for the tested CIFAR-10 network architectures. “LR” and “LR decay” hereby
denote the learning and the (multiplicative) learning rate decay, respectively, that
is deployed at the epochs as specified. “{𝑥, . . .}” indicates that the learning rate is
decayed every 𝑥 epochs.

C
IF

A
R

-1
0

Hyperparameters VGG16 Resnet20 DenseNet22 WRN-16-8

(Re-)Training

Test accuracy (%) 92.81 91.4 89.90 95.19
Loss cross-entropy cross-entropy cross-entropy cross-entropy
Optimizer SGD SGD SGD SGD
Epochs 300 182 300 200
Warm-up 10 5 10 5
Batch size 256 128 64 128
LR 0.05 0.1 0.1 0.1
LR decay 0.5@{30, . . . } 0.1@{91, 136} 0.1@{150, 225} 0.2@{60, . . . }
Momentum 0.9 0.9 0.9 0.9
Nesterov 7 7 X X
Weight decay 5.0e-4 1.0e-4 1.0e-4 5.0e-4

Compression
𝛼 0.80 0.80 0.80 0.80
𝑛seed 15 15 15 15

CR-F, respectively. Each experiment was repeated 3 times and we report mean and

standard deviation.

Relevant Hyperparameters

CIFAR-10. All relevant hyperparameters are outlined in Table 6.1. We add a

warmup period in the beginning where we linearly scale up the learning rate from

0 to the nominal learning rate to ensure proper training performance in distributed

training settings (Goyal et al., 2017). During training we use the standard data aug-

mentation strategy for CIFAR: (1) zero padding from 32x32 to 36x36; (2) random

crop to 32x32; (3) random horizontal flip; (4) channel-wise normalization. During

inference only the normalization (4) is applied. The compression ratios are chosen

according to a geometric sequence with the common ratio denoted by 𝛼 in Table 6.1,

i.e., the compression ratio for iteration 𝑖 is determined by 1 − 𝛼𝑖. The compres-

sion parameter 𝑛seed denotes the number of seeds used to initialize Algorithm 4 for

compressing with ALDS.

ImageNet. We report the relevant hyperparameters in Table 6.2. For ImageNet, we

consider the networks architectures Resnet18 (He et al., 2016) and AlexNet (Krizhevsky

164

Table 6.2: The experimental hyperparameters for training, compression, and retrain-
ing for the tested ImageNet network architectures. “LR” and “LR decay” hereby
denote the learning and the (multiplicative) learning rate decay, respectively, that
is deployed at the epochs as specified. “{𝑥, . . .}” indicates that the learning rate is
decayed every 𝑥 epochs.

Im
ag

eN
et

Hyperparameters ResNet18 AlexNet

(Re-)Training

Top 1 Test accuracy (%) 69.64 57.30
Top 5 Test accuracy (%) 88.98 80.20
Loss cross-entropy cross-entropy
Optimizer SGD SGD
Epochs 90 90
Warm-up 5 5
Batch size 256 256
LR 0.1 0.1
LR decay 0.1@{30, 60, 80} 0.1@{30, 60, 80}
Momentum 0.9 0.9
Nesterov 7 7

Weight decay 1.0e-4 1.0e-4

Compression
𝛼 0.80 0.80
𝑛seed 15 15

et al., 2012). During training we use the following data augmentation: (1) randomly

resize and crop to 224x224; (2) random horizontal flip; (3) channel-wise normalization.

During inference, we use a center crop to 224x224 before (3) is applied.

Pascal VOC. We consider the segmentation task from Pascal VOC 2012 (Ever-

ingham et al., 2015). We augment the nominal data training data using the extra

labels as provided by Hariharan et al. (2011). As network architecture we consider

a DeeplabV3 (Chen et al., 2017) with ResNet50 backbone pre-trained on ImageNet.

During training we use the following data augmentation pipeline: (1) randomly re-

size (256x256 to 1024x1024) and crop to 513x513; (2) random horizontal flip; (3)

channel-wise normalization. During inference, we resize to 513x513 exactly before

the normalization (3) is applied. The experimental hyperparameters are summarized

in Table 6.3.

165

Table 6.3: The experimental hyperparameters for training, compression, and retrain-
ing for the tested VOC network architecture. “LR” and “LR decay” hereby denote
the learning and the learning rate decay, respectively. Note that the learning rate is
polynomially decayed after each step.

P
as

ca
l

V
O

C
20

12
–

S
eg

m
en

ta
ti

on

Hyperparameters DeeplabV3-ResNet50

(Re-)Training

IoU Test accuracy (%) 69.84
Top 1 Test accuracy (%) 94.25
Loss cross-entropy
Optimizer SGD
Epochs 45
Warm-up 0
Batch size 32
LR 0.02

LR decay (1 - “step”/“total steps”)0.9

Momentum 0.9
Nesterov 7

Weight decay 1.0e-4

Compression
𝛼 0.80
𝑛seed 15

6.3.2 One-shot Compression with Baselines

We train reference networks on CIFAR-10, ImageNet, and VOC, and then com-

press and retrain the networks once with 𝑟 = 𝑒 for various baseline comparisons

and compression ratios. In Figure 6-5, we provide results for DenseNet22, VGG16,

and WRN16-8 on CIFAR-10. Notably, our approach is able to outperform existing

baselines approaches across a wide range of tested compression ratios. Specifically, in

the region where the networks incur only minimal drop in accuracy (Δ-Top1≥−1%)

ALDS is particularly effective.

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

ALDS (Ours) PCA SVD-Energy SVD L-Rank FT PFP

20.0% 30.0% 40.0% 50.0% 60.0% 70.0%
Compression Ratio (Parameters)

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y densenet22, CIFAR10

(a) DenseNet22

70.0% 75.0% 80.0% 85.0% 90.0% 95.0%
Compression Ratio (Parameters)

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y vgg16_bn, CIFAR10

(b) VGG16

86.0% 88.0% 90.0% 92.0% 94.0% 96.0%
Compression Ratio (Parameters)

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y wrn16_8, CIFAR10

(c) WRN16-8

Figure 6-5: One-shot compress+retrain experiments on CIFAR-10 with baseline com-
parisons.

166

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

ALDS (Ours) PCA SVD-Energy SVD L-Rank FT PFP

R
es
N
et
20

,
C
IF
A
R
-1
0

20.0% 40.0% 60.0% 80.0%
Compression Ratio (Parameters)

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

(a) Compress-only (r=0)

20.0% 40.0% 60.0% 80.0%
Compression Ratio (Parameters)

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

(b) One-shot (r=e)

1.0%3.0%10.0%30.0%100.0%
Amount of Retraining

0.0%

20.0%

40.0%

60.0%

80.0%

Co
m

pr
es

sio
n

Ra
tio

 (P
ar

am
s) resnet20, CIFAR10, = 1.0%

(c) Sweep (Δ-Top1≥-1%)

R
es
N
et
18

,
Im

ag
eN

et

0.0% 20.0% 40.0% 60.0% 80.0%
Compression Ratio (Parameters)

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet18, ImageNet

(d) Compress-only (r=0)

20.0% 40.0% 60.0% 80.0%
Compression Ratio (Parameters)

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet18, ImageNet

(e) One-shot (r=e)

3.0%10.0%30.0%100.0%
Amount of Retraining

0.0%

20.0%

40.0%

60.0%

80.0%

Co
m

pr
es

sio
n

Ra
tio

 (P
ar

am
s) resnet18, ImageNet, = 1.0%

(f) Sweep (Δ-Top1≥-1%)

Figure 6-6: The size-accuracy trade-off for various compression ratios, methods, and
networks. Compression was performed after training and networks were re-trained
once for the indicated amount (one-shot). (a, b, d, e): the difference in test accuracy
for fixed amounts of retraining. (c, f): the maximal compression ratio with less-than-
1% accuracy drop for variable amounts of retraining.

20.0% 40.0% 60.0% 80.0%
Compression Ratio (Parameters)

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 Io
U

Te
st

 A
cc

ur
ac

y

deeplabv3_resnet50, VOCSegmentation2012

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

ALDS (Ours)
PCA
SVD-Energy
SVD
L-Rank
FT
PFP

Figure 6-7: One-shot com-
press+retrain for DeeplabV3-
ResNet50 on VOC.

Moreover, we tested ALDS on ResNet20

(CIFAR-10) and ResNet18 (ImageNet) as

shown in Figure 6-6. For these experiments,

we performed a grid search over both mul-

tiple compression ratios and amounts of re-

training. Here, we highlight that ALDS out-

performs baseline approaches even with sig-

nificantly less retraining. On Resnet 18 (Im-

ageNet) ALDS can compress over 50% of the

parameters with minimal retraining (1% retraining) and a less-than-1% accuracy drop

compared to the best comparison methods (40% compression with 50% retraining).

Finally, we tested the same setup on a DeeplabV3 with a ResNet50 backbone

trained on Pascal VOC 2012 segmentation data, see Figure 6-7. We note that ALDS

consistently outperforms other baselines methods in this setting as well (60% CR-P

167

Table 6.4: Baseline results for Δ-Top1≥−0.5% for one-shot. Results coincide with
Figures 6-5, 6-6, 6-7.

Model Metric ALDS (Ours) PCA SVD-Energy SVD L-Rank FT PFP

C
IF
A
R
-1
0

ResNet20
Top1: 91.39

Δ-Top1 -0.47 -0.11 -0.21 -0.29 -0.44 -0.32 -0.28

CR-P, CR-F 74.91, 67.86 49.88, 48.67 49.88, 49.08 39.81, 38.95 28.71, 54.89 39.69, 39.57 40.28, 30.06

VGG16
Top1: 92.78

Δ-Top1 -0.11 -0.02 -0.08 +0.29 -0.35 -0.47 -0.47

CR-P, CR-F 95.77, 86.23 89.72, 85.84 82.57, 81.32 70.35, 70.13 85.38, 75.86 79.13, 78.44 94.87, 84.76

DenseNet22
Top1: 89.88

Δ-Top1 -0.32 +0.20 -0.29 +0.13 +0.26 -0.24 -0.44

CR-P, CR-F 56.84, 61.98 14.67, 34.55 15.16, 19.34 15.00, 15.33 14.98, 35.21 28.33, 29.50 40.24, 43.37

WRN16-8
Top1: 89.88

Δ-Top1 -0.42 -0.49 -0.41 -0.96 -0.45 -0.32 -0.44

CR-P, CR-F 87.77, 79.90 85.33, 83.45 64.75, 60.94 40.20, 39.97 49.86, 58.00 82.33, 75.97 85.33, 80.68

Im
a
g
e
N
e
t

ResNet18
Top1: 69.62, Top5: 89.08

Δ-Top1, Top5 -0.40, -0.05 -0.95,-0.37 -1.49, -0.64 -1.75, -0.72 -0.71, -0.23 +0.10, +0.42 -0.39, -0.08

CR-P, CR-F 66.70, 43.51 9.99, 12.78 39.56, 40.99 50.38, 50.37 10.01, 32.64 9.86, 11.17 26.35, 17.96

V
O
C DeeplabV3

IoU: 91.39 Top1: 99.34

Δ-IoU, Top1 +0.14, -0.15 -0.26, -0.02 -1.88, -0.47 -0.28, -0.18 -0.42, -0.09 -4.30, -0.91 -0.49, -0.21

CR-P, CR-F 64.38, 64.11 55.68, 55.82 31.61, 32.27 31.64, 31.51 44.99, 45.02 15.00, 15.06 45.17, 43.93

vs. 20% without accuracy drop).

Our one-shot results are again summarized in Table 6.4 where we report CR-P

and CR-F for Δ-Top1≥−0.5%. We note that pruning usually takes on the order of

seconds and minutes for CIFAR and ImageNet, respectively, which is usually faster

than even a single training epoch.

6.3.3 ImageNet Benchmarks

Next, we test our framework on two common ImageNet benchmarks, ResNet18 and

AlexNet. We follow the compress-retrain pipeline outlined in the beginning of the

section and repeat it iteratively to obtain higher compression ratios. Specifically,

after retraining and before the next compression step we project the decomposed

layers back to the original layer. This way, we avoid recursing on the decomposed

layers.

Our results are reported in Table 6.5 where we compare to a wide variety of

available compression benchmarks (results were adapted directly from the respective

papers). The middle part and bottom part of the table for each network are organized

into low-rank compression and filter pruning approaches, respectively. Note that the

reported differences in accuracy (Δ-Top1 and Δ-Top5) are relative to our baseline

accuracies. On ResNet18 we can reduce the number of FLOPs by 65% with minimal

drop in accuracy compared to the best competing method (MUSCO, 58.67%). With

168

Table 6.5: AlexNet and ResNet18 Benchmarks on ImageNet. We report Top-1, Top-5
accuracy and percentage reduction in terms of parameters and FLOPs denoted by
CR-P and CR-F, respectively. Best results with less than 0.5% accuracy drop are
bolded.

Method Δ-Top1 Δ-Top5 CR-P (%) CR-F (%)

R
e
sN

e
t1

8
,

T
op

1,
5:

69
.6

4%
,

88
.9

8%

ALDS (Ours) +0.41 +0.37 66.70 42.70

ALDS (Ours) -0.38 +0.04 75.00 64.50

ALDS (Ours) -0.90 -0.25 78.50 71.50

ALDS (Ours) -1.37 -0.56 80.60 76.30

MUSCO (Gusak et al., 2019) -0.37 -0.20 N/A 58.67

TRP1 (Xu et al., 2020) -4.18 -2.5 N/A 44.70

TRP1+Nu (Xu et al., 2020) -4.25 -2.61 N/A 55.15

TRP2+Nu (Xu et al., 2020) -4.3 -2.37 N/A 68.55

PCA (Zhang et al., 2015b) -6.54 -4.54 N/A 29.07

Expand (Jaderberg et al., 2014) -6.84 -5.26 N/A 50.00

PFP (Liebenwein et al., 2020) -2.26 -1.07 43.80 29.30

SoftNet (He et al., 2018) -2.54 -1.2 N/A 41.80

Median (He et al., 2019) -1.23 -0.5 N/A 41.80

Slimming (Liu et al., 2017) -1.77 -1.19 N/A 28.05

Low-cost (Dong et al., 2017b) -3.55 -2.2 N/A 34.64

Gating (Hua et al., 2018) -1.52 -0.93 N/A 37.88

FT (He et al., 2017) -3.08 -1.75 N/A 41.86

DCP (Zhuang et al., 2018) -2.19 -1.28 N/A 47.08

FBS (Gao et al., 2018) -2.44 -1.36 N/A 49.49

A
le
x
N
e
t,

T
o
p
1
,
5:

57
.3
0%

,
8
0.
20

% ALDS (Ours) +0.10 +0.45 92.00 76.10

ALDS (Ours) -0.21 -0.36 93.0 77.9

ALDS (Ours) -0.41 -0.54 93.50 81.4

Tucker (Kim et al., 2015a) N/A -1.87 N/A 62.40

Regularize (Tai et al., 2015) N/A -0.54 N/A 74.35

Coordinate (Wen et al., 2017) N/A -0.34 N/A 62.82

Efficient (Kim et al., 2019) -0.7 -0.3 N/A 62.40

L-Rank (Idelbayev et al., 2020) -0.13 -0.13 N/A 66.77

NISP (Yu et al., 2018b) -1.43 N/A N/A 67.94

OICSR (Li et al., 2019a) -0.47 N/A N/A 53.70

Oracle (Ding et al., 2019) -1.13 -0.67 N/A 31.97

169

a slightly higher drop in accuracy (-1.37%) we can even compress 76% of FLOPs.

On AlexNet, our framework finds networks with -0.21% and -0.41% difference in

accuracy with over 77% and 81% fewer FLOPs. This constitutes a more-than-10%

improvement in terms of FLOPs compared to current state-of-the-art (L-Rank) for

similar accuracy drops.

6.3.4 Ablation Study

In order to gain a better understanding of the various aspects of our method we

consider an ablation study where we selectively turn off various features of ALDS.

Specifically, we compare the full version of ALDS to the following variants:

1. ALDS-Error solves for the optimal ranks (Line 4 of Algorithm 4) for a desired

set of values for 𝑘1, . . . , 𝑘𝐿. We test 𝑘ℓ = 3, ∀ℓ ∈ [𝐿]. This variant tests the

benefits of varying the number of subspaces compared to fixing them to a desired

value.

2. SVD-Error corresponds to ALDS-Error with 𝑘ℓ = 1, ∀ℓ ∈ [𝐿]. This variants

tests the benefits of having multiple subspaces in the first places in the context

error-based allocation of the per-layer compression ratio.

3. ALDS-Simple picks the ranks in each layer for a desired set of values of

𝑘1, . . . , 𝑘𝐿 such that the per-layer compression ratio is constant. We test 𝑘ℓ =

3, ∀ℓ ∈ [𝐿], and 𝑘ℓ = 5, ∀ℓ ∈ [𝐿]. This variant tests the benefits of allocat-

ing the per-layer compression ratio according to the layer error compared to a

simple constant heuristic.

4. Messi proceeds like ALDS-Simple but replaces the subspace clustering with

projective clustering (Maalouf et al., 2021). We test 𝑘ℓ = 3, ∀ℓ ∈ [𝐿]. This

variant tests the disadvantages of having a simple subspace clustering technique

(channel slicing) compared to using a more sophisticated technique.

We note that ALDS-Simple with 𝑘ℓ = 1, ∀ℓ ∈ [𝐿] corresponds to the SVD com-

parison method from the previous sections.

170

We study the variations on a ResNet20 trained on CIFAR-10 in two settings:

compression only and one-shot compress+retrain. The results are presented in Fig-

ures 6-8. We highlight that the complete variant of our algorithm (ALDS) consistently

outperforms the weaker variants providing empirical evidence on the effectiveness of

each of the core components of ALDS.

We note that varying the number of subspaces for each layer in order to optimally

assign a value of 𝑘ℓ in each layer is crucial in improving our performance. This is

apparent from the comparison between ALDS, ALDS-Error, and SVD-Error: having

a fixed value for k yields sub-optimal results.

Picking an appropriate notion of cost (maximum relative error) is furthermore

preferred over simple heuristics such a constant per-layer compression ratio. Specifi-

cally, the main difference between ALDS-Error and ALDS-Simple is the way how the

ranks are determined for a given set of 𝑘’s: ALDS-Error optimizes for the error-based

cost function while ALDS-Simple relies on a simple constant per-layer compression

ratio heuristic. In practice, ALDS-Error outperforms ALDS-Simple across all tested

scenarios.

Finally, we test the disadvantages of using a simple subspace clustering method.

To this end, we compare ALDS-Simple and Messi for fixed values of 𝑘. While in some

scenarios, particularly without retraining, Messi provides modest improvements over

ALDS-Simple, the improvement is negligible for most settings. Moreover, note that

Messi requires an expensive approximation algorithm as explained in Section 6.2.2.

This would in turn prevent us from incorporating Messi into the full ALDS framework

in a computationally efficient manner. However, as apparent from the ablation study

we exhibit the most performance gains for features related to global considerations

instead of local, per-layer improvements. In addition, we should also note that Messi

does not emit a structured reparameterization thus requires specialized software or

hardware to obtain speed-ups. Consequently, we may conclude that channel slicing

is the appropriate clustering technique in our context.

171

20.0% 40.0% 60.0% 80.0%
Compression Ratio (Parameters)

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

(a) no retraining (𝑟 = 0)

20.0% 40.0% 60.0% 80.0%
Compression Ratio (Parameters)

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

(b) one-shot (𝑟 = 𝑒)

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-80.0%

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

ALDS
ALDS-Error3
ALDS-Simple3
ALDS-Simple5
Messi3
SVD-Error

Figure 6-8: The difference in test accuracy (“Delta Top1 Test Accuracy”) for vari-
ous target compression ratios, ALDS-based/ALDS-related methods, and networks on
CIFAR-10.

6.3.5 Extensions of ALDS

We test and compare ALDS with ALDS+ (see Section 6.2.4) to investigate the per-

formance gains we can obtain from generalizing our local step to search over multiple

decomposition schemes. We run one-shot compress-only experiments on ResNet20

(CIFAR-10) and ResNet18 (ImageNet).

The results are shown in Figure 6-9. We find that ALDS+ can significantly in-

crease the performance-size trade-off compared to our standards ALDS method. This

is expected since by generalizing the local step of ALDS we are increasing the search

space of possible decomposition solution. Using our ALDS framework we can effi-

ciently and automatically search over the increases solution space. We envision that

our observations will invigorate future research into the possibility of not only choos-

ing the optimal per-layer compression ratio but also the optimal compression scheme.

20.0% 30.0% 40.0% 50.0% 60.0%
Compression Ratio (Parameters)

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet20, CIFAR10

ALDS+ ALDS

(a) ResNet20 (CIFAR-10)

40.0% 50.0% 60.0% 70.0% 80.0%
Compression Ratio (Parameters)

-60.0%

-40.0%

-20.0%

0.0%

De
lta

 T
op

1
Te

st
 A

cc
ur

ac
y resnet18, ImageNet

ALDS+ ALDS

(b) ResNet18 (ImageNet)

Figure 6-9: The difference in test accuracy (“Delta Top1 Test Accuracy”) for vari-
ous target compression ratios, ALDS-based/ALDS-related methods, and networks on
CIFAR-10. The networks were compressed once and not retrained afterwards.

172

6.4 Discussion

Practical benefits. By conducting a wide variety of experiments across multiple

datasets and networks we have shown the effectiveness and versatility of our compres-

sion framework compared to existing methods. The runtime of ALDS is negligible

compared to retraining and it can thus be efficiently incorporated into compress-

retrain pipelines.

ALDS as modular compression framework. By separately considering the low-

rank compression scheme for each layer (local step) and the actual low-rank compres-

sion (global step) we have provided a framework that can efficiently search over a set

of desired hyperparameters that describe the low-rank compression. Our framework

can be viewed as a natural generalization of the type of pruning problem we have en-

countered in the previous chapters and may serve as a potent plug-and-play solution

for multiple different types of pruning or compression.

Error bounds lead to global insights. At the core of our contribution is our

error analysis that enables us to link the global and local aspects of layer-wise com-

pression techniques. We leverage our error bounds in practice to compress networks

more effectively via an automated rank selection procedure without additional te-

dious hyperparameter tuning. However, we also have to rely on a proxy definition

(maximum relative error) of the compression error to enable a tractable solution that

we can implement efficiently. We hope these observations invigorate future research

into compression techniques that come with tight error bounds – potentially even con-

sidering retraining – which can then naturally be wrapped into a global compression

framework.

173

Part III

Applications

174

Chapter 7

Pruning Beyond Test Accuracy

7.1 Overview

In previous chapters, we focus our efforts on finding the most efficient parameteriza-

tion of a given neural network under the constraint that we want to achieve approx-

imately commensurate test accuracy compared to the original, unpruned network.

Recall that a prototypical pruning pipeline with retraining may consist of the follow-

ing steps:

1. Prune weights (“unstructured pruning”) or filters/neurons (“structured prun-

ing”) from the trained network according to some criterion of importance;

2. Retrain the resulting network to regain the full accuracy;

3. Iteratively repeat steps 1 & 2 to further reduce the size.

In other words, successfully pruning a network entails identifying and removing

the redundant parameters. Moreover, starting from a pre-trained, overparameterized

network with good performance (as opposed to a small, randomly initialized net-

work) ensures that the pruned network maintains the same level of performance as

its uncompressed counterpart.

In this chapter, we revisit these common assumptions and rigorously assess how

pruning using state-of-the-art prune-retrain techniques (Baykal et al., 2021b; Lieben-

175

wein et al., 2020; Renda et al., 2020) affects the function represented by a neural

network, including the similarities and disparities exhibited by a pruned network

with respect to its unpruned counterpart.

We formalize the notion of (functional) similarities between networks by intro-

ducing novel types of classification-based functional distance metrics. Using these

metrics, we test the hypothesis that pruned models are (functionally) similar to their

(unpruned) parent network and can be reliably distinguished from separately trained

networks. We term the network’s ability to be pruned for a particular task without

performance decrease its prune potential, i.e., the maximal prune ratio for which the

pruned network maintains its original performance, and test a network’s prune po-

tential under various tasks. The prune potential provides insights into the amount of

overparameterization the network exhibits for a particular task and thus serves as a

useful indicator of how much of the network can be safely pruned.

Our findings. We find that the pruned models are functionally similar to the un-

compressed parent model, which enables us to distinguish the parent of a pruned

network for a range of prune ratios. Despite the similarity between the pruned

network and its parent, we observe that the prune potential of the network varies

significantly for a large number of tasks. That is, a pruned model may be of sim-

ilar predictive power as the original one when it comes to test accuracy, but may

be much more brittle when faced with out of distribution data points. This raises

concerns about deploying pruned models on the basis of accuracy alone, in particular

for safety-critical applications such as autonomous driving (Schwarting et al., 2020),

where unforeseen, out-of-distribution, or noisy data points commonly arise. Our in-

sights, which hold even when considering robust training objectives, underscore the

need to consider task-specific evaluation metrics during pruning, prior to the deploy-

ment of a pruned network to, e.g., safety-critical systems. These results also question

the common assumption that there exists a significant amount of “redundant” pa-

rameters to begin with and provide a robust framework to measure the amount of

genuine overparameterization in networks.

176

Guidelines. Based on these observations we formulate a set of easy-to-follow guide-

lines to pruning in practice:

1. Don’t prune if unexpected shifts in the data distribution may occur during

deployment.

2. Prune moderately if you have partial knowledge of the distribution shifts during

training and pruning.

3. Prune to the full extent if you can account for all shifts in the data distribution

during training and pruning.

4. Maximize the prune potential by explicitly considering data augmentation dur-

ing retraining.

7.1.1 Contributions

• We propose novel functional distance metrics for classification-based neural net-

works and investigate the functional similarities between the pruned network

and its unpruned counterpart.

• We propose the notion of prune potential, i.e., the maximal prune ratio (model

sparsity) at which the pruned network can achieve commensurate performance,

as a quantifiable means to estimate the overparameterization of a network and

show that it is significantly lower on challenging inference tasks.

• We provide a unified framework to establish task-specific guidelines that help

practitioners assess the effects of pruning during the design and deployment of

neural networks in practice.

• We conduct experiments across multiple data sets, architectures, and pruning

methods showing that our observations hold across common pruning bench-

marks and real-world scenarios.

177

7.1.2 Relevant Papers

The results presented in this chapter are based on the following paper:

• Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela

Rus. Lost in pruning: The effects of pruning neural networks beyond test accu-

racy. In A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings of Machine

Learning and Systems, volume 3, pages 93–138, 2021a.

7.1.3 Outline

In Section 7.2 we introduce our approach to pruning and the type of networks and

datasets we consider. We provide additional experimental hyperparameters and nom-

inal prune-accuracy results in Section B.1. Subsequently, we investigate the functional

similarities between pruned networks and their unpruned counterpart in Section 7.3

to formalize our intuition that pruned networks are similar. We provide a detailed

description of these results in Section B.2. We then focus on the main part of the ex-

perimental analysis in Section 7.4, where we investigate how pruned networks behave

under various changes in the input data distribution. A more detailed description

with additional results is provided in Section B.3. Finally, we consider avenues to

improve the robustness of pruned networks in Section 7.5 with additional details

provided in Section B.4. We conclude the chapter with a discussion in Section 7.6.

7.2 Methodology

7.2.1 Pruning Setup

For our experiments, we consider a variety of network architectures, data sets, and

pruning methods as outlined below. Our pruning pipeline, see Algorithm 5, is based

on iterative pruning and retraining following Renda et al. (2020). It is simple,

network-agnostic, and widely used; hence we opted to choose it as representative

pruning pipeline.

178

Table 7.1: Overview of the pruning methods evaluated. Here, 𝑎(𝑥) denotes the acti-
vation of the corresponding layer with respect to a sample input 𝑥 to the network.

Type Method Data-informed Sensitivity Scope
Unstructured WT: Weight Thresholding (Renda et al., 2020) 7 |𝑊𝑖𝑗| Global

(Weights) SiPP: Sensitivity-informed Pruning (Baykal et al., 2021b) X ∝ |𝑊𝑖𝑗𝑎𝑗(𝑥)| Global
Structured FT: Filter Thresholding (Renda et al., 2020) 7 ‖𝑊𝑖:‖1 Local

(Neurons/Filters) PFP: Provable Filter Pruning (Liebenwein et al., 2020) X ∝ ‖𝑊:𝑗𝑎(𝑥)‖∞ Local

Data sets and network architectures. We consider CIFAR-10 (Torralba et al.,

2008), ImageNet (Russakovsky et al., 2015), and Pascal VOC segmentation data (Ev-

eringham et al., 2015) as data sets. We consider ResNets 18/56/110 (He et al., 2016),

WRN16-8 (Zagoruyko and Komodakis, 2016), DenseNet22 (Huang et al., 2017), and

VGG16 (Simonyan and Zisserman, 2015) on CIFAR-10; ResNet18 and 101 (He et al.,

2016) on ImageNet; and a DeeplabV3-ResNet50 (Chen et al., 2017) on VOC.

Training. For all networks, we apply the standard training parameters as indicated

in the respective papers. We apply the linear scaling rule of Goyal et al. (2017) when

training on multiple GPUs in parallel including warm-up. All hyperparameter settings

with their numerical values are listed in Section B.1. All networks are trained once

to completion before pruning (Line 2 of Algorithm 5).

Pruning. We consider multiple unstructured and structured pruning methods, where

we prune individual weights and filters/neurons, respectively, see Table 7.1 for an

overview. We perform pruning by updating a binary mask indicating whether the

corresponding weight is active or pruned (Line 5 of Algorithm 5).

Unstructured pruning. The weight pruning approaches we consider follow a

global pruning strategy: (1) globally sort the weights according to their relative

importance, i.e., sensitivity, and (2) prune 𝑟prune% of the weights with the lowest sen-

sitivity. In particular, we study two methods to compute the sensitivity of weights,

weight thresholding (Renda et al., 2020) and Sensitivity-informed Provable Prun-

ing (SiPP) (Baykal et al., 2021b). Weight Thresholding (WT) is a simple heuristic,

originally introduced by Han et al. (2015a) and re-purposed by Renda et al. (2020),

that defines the sensitivity of a weight as the magnitude of the weight. SiPP, on

179

the other hand, is a data-informed approach with provable guarantees to computing

weight sensitivities (Baykal et al., 2021b). The approach uses a small batch of input

points 𝒮 ⊆ 𝒫 , e.g., from the validation set, to evaluate the saliency of each network

parameter. This is done by incorporating the corresponding (sample) activations,

𝑎(𝑥), 𝑥 ∈ 𝒮, along with the weight into the importance computation (see Table 7.1).

Algorithm 5 PruneRetrain(𝑛cycles, 𝑟prune, 𝑛train, 𝜌train)

Input: 𝑛cycles: number of prune-retrain cycles; 𝑟prune: relative prune ratio; 𝑛train: number
of train epochs; 𝜌train: training hyper-parameters
Output: 𝑐: pruning mask, 𝜃: parameters of the pruned network

1: 𝜃0 ← RandomInit()

2: 𝜃 ← Train(𝜃0, 𝑛train, 𝜌train)

3: 𝑐← 1|𝜃0| ◁ binary mask for the parameters

4: for 𝑖 ∈ [𝑛cycles] do

5: 𝑐← Prune(𝑐⊙ 𝜃, 𝑟prune) ◁ Prune 𝑟prune% of the remaining parameters.

6: 𝜃 ← Train(𝑐⊙ 𝜃, 𝑛train, 𝜌train)

7: end for

8: return 𝑐, 𝜃

Structured pruning. The filter/neuron pruning approaches we consider follow a

two-step strategy: (1) allocate a per-layer prune ratio satisfying the overall prune

ratio and (2) prune the filters with lowest sensitivity in each layer. We study Filter

Thresholding (FT) as used by Renda et al. (2020) and Provable Filter Pruning (PFP),

see Chapter 5. FT, as originally introduced by He et al. (2018); Li et al. (2016)

and used here analogous to Renda et al. (2020), uses the filter norm to evaluate its

sensitivity. Layer allocation is performed manually and we deploy a uniform prune

ratio across layers to avoid further hyperparameters. PFP (Chapter 5) is an extension

of SiPP that evaluates filter sensitivity as the maximum sensitivity of the channel

in the next layer (ℓ∞-norm of the corresponding weight sensitivity). PFP uses the

associated theoretical error guarantees to optimally allocate the layer-wise budget.

Retraining. We retrain the network with the exact training hyperparameters as is

common (Baykal et al., 2021b; Liebenwein et al., 2020; Renda et al., 2020). Specifi-

cally, we re-use the same learning rate schedule and retrain for the same amount of

180

20.0% 40.0% 60.0% 80.0% 100.0%
Pruned Parameters

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet20, CIFAR10

PFP
FT

SiPP
WT

Figure 7-1: The accuracy of the generated pruned models for the evaluated pruning
schemes for various target prune ratios using iterative fine-tuning.

epochs (Line 6 of Algorithm 5). After retraining, we iteratively repeat the pruning

procedure to obtain even smaller networks (Lines 4-7 of Algorithm 5).

Prune results. Figure 7-1 shows an exemplary test accuracy curve of a Resnet20

(CIFAR-10) across different target prune ratios for iterative pruning. The remain-

ing prune results are summarized in the appendix (Section B.1). We note while

PruneRetrain may be more computationally expensive than other pruning pipelines,

it is network-agnostic and produces state-of-the-art pruning results (Renda et al.,

2020).

7.2.2 Experiments Roadmap

Our observations stem from multiple experiments that can be clustered into one set of

experiments pertaining to understanding the functional similarities (i.e., functional

distance) of pruned networks and one set pertaining to the prune potential on a

variety of image-based classification tasks. First, we compare subsets of pixels that are

sufficiently informative for driving the network’s decision. For this, we use the feature-

wise (pixel-wise) selection mechanism of Carter et al. (2019, 2020). We also investigate

how pruned networks behave under ℓ∞-bounded random noise. Second, we assess the

ability of pruned networks to generalize to out-of-distribution (o.o.d.) test data sets

that contain random noise (ℓ∞-bounded) and common corruptions (Hendrycks and

181

Dietterich, 2019; Recht et al., 2018, 2019) including weather, contrast, and brightness

changes. In all experiments, we compare the performance, i.e., the accuracy on the

various test sets, of pruned networks with those of their unpruned counterparts as

well as a separately trained unpruned network. Each experiment is repeated 3 times

and we report mean and standard deviation (error bars). We first provide key insights

for each experiment before diving deeper into the details in the subsequent sections.

7.3 Function Distance

Given a pruned model with commensurate test accuracy relative to the parent (un-

compressed) network, can we conclude that the function represented by the pruned

model is similar to the parent network for unforeseen data points? In this section, we

investigate the extent to which the pruned and parent model are functionally similar

under two distinct metrics: informative features and noise resilience. Our findings

show that pruned networks are more functionally similar to their original network

than a separately trained, unpruned network underscoring the intuition that pruned

networks remain functionally similar to their unpruned counterpart.

7.3.1 Methodology

Comparison of informative features. We compare features (pixels) that are

informative for the decision-making of each model. Specifically, for a network 𝑓𝜃(𝑥)

with parameters 𝜃 and input 𝑥 ∈ R𝑛 we want to find an input mask 𝑚 ∈ {0, 1}𝑛 such

that 𝑓𝜃(𝑥) ≈ 𝑓𝜃(𝑚⊙ 𝑥), i.e.,

𝑚 = argmin
‖𝑚‖0≤(1−𝐵)𝑛

‖𝑓𝜃(𝑥)− 𝑓𝜃(𝑚⊙ 𝑥)‖ (7.1)

for some sparsity level 𝐵. To approximately solve (7.1) we use the greedy backward

selection algorithm (BackSelect) of Carter et al. (2019, 2020). The procedure itera-

tively masks the least informative pixel (i.e., the pixel which if masked would reduce

the confidence of the prediction of the correct label by the smallest amount) to obtain

182

a sorting of the pixels in order of increasing importance. After sorting, we can remove

the bottom 𝐵% of pixels.

Given two networks 𝑓𝜃(·) and 𝑓𝜃(·), we can then measure the difference between

the functions by switching up the respective input masks 𝑚 and �̂� to see the change

in the output, i.e., ‖𝑓𝜃(�̂�⊙ 𝑥)− 𝑓𝜃(𝑚⊙ 𝑥)‖ and vice versa. If one model can make a

confident and correct prediction on the pixels that were informative to another model,

the models may have similar decision-making strategies. We apply this strategy to

identify subsets of informative pixels across a sample of 2000 CIFAR-10 test images.

For each image, we compute the subset of informative pixels, i.e., the input mask 𝑚,

for an unpruned network, five pruned networks (of increasing prune ratio) derived

from that network, and a separate, unpruned network of the same type. We probe

whether the informative pixels from one model are also informative to the other

models for a sparsity level of 90%.

Noise similarities. We consider injecting 𝑙∞-bounded, random noise into the test

data and we compare the predicted labels between the pruned networks and their

unpruned counterpart to investigate the behavior in local neighborhood of points.

Specifically, for two networks 𝑓𝜃(·) and 𝑓𝜃(·) with parameters 𝜃 and 𝜃, respectively,

we consider the expected number of matching label prediction and the expected norm

difference of the output with noise 𝜀, i.e.,

E 𝑥′∼𝒟+𝒰𝑛(−𝜀,𝜀)

[︀
argmax 𝑓𝜃(𝑥

′) = argmax 𝑓𝜃(𝑥
′)
]︀

and

E 𝑥′∼𝒟+𝒰𝑛(−𝜀,𝜀) ‖𝑓𝜃(𝑥′)− 𝑓𝜃(𝑥
′)‖

2
,

respectively. We test the noise similarity of networks for a random subset of 1000 test

images for 100 repetitions of random noise injection and average over the results.

183

(a) ResNet20, Pruning by WT (b) ResNet20, Pruning by FT

(c) ResNet20, Pruning by SiPP (d) ResNet20, Pruning by PFP

Figure 7-2: Heatmap of confidences on informative pixels from pruned ResNet20
models. Y-axis is the model used to generate 10% pixel subsets of 2000 sampled
CIFAR-10 test images, x-axis describes the models evaluated with each 10% pixel
subset, cells indicate mean confidence towards true class of the model from the x-axis
on tested data from y-axis. Pruning by (a)Weight Thresholding (WT), (b) Filter
Thresholding (FT), (c) Sensitivity-informed Provable Pruning (SiPP), (d) Provable
Filter Pruning (PFP).

7.3.2 Results

Comparison of informative features. Figure 7-2 shows heatmaps of mean confi-

dence on masked images containing only the 10% most informative features as ordered

by BackSelect from an unpruned network (ResNet20 on CIFAR-10), five pruned net-

works, and a separate, unpruned network. For each masked image containing only

the informative features (found with respect to the predicted class), we evaluate the

confidence toward the true class for all models to reveal whether such features are in-

formative to the other models. We find features informative to the unpruned network

184

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%
M

at
ch

in
g

la
be

ls

resnet20, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=94%
Separate

(a) WT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.10

0.20

0.30

0.40

0.50

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet20, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=94%
Separate

(b) WT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet20, CIFAR10, FT
Unpruned
PR=16%
PR=47%
PR=70%
PR=80%
PR=93%
Separate

(c) FT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet20, CIFAR10, FT
Unpruned
PR=16%
PR=47%
PR=70%
PR=80%
PR=93%
Separate

(d) FT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet20, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=94%
Separate

Figure 7-3: The functional similarities between pruned ResNet20 models and their
unpruned parent. We consider the difference in the output after injecting various
amounts of noise into the input, see (a), (b) and (c), (d) for networks weight-pruned
with WT and filter-pruned with FT, respectively. The differences between a sepa-
rately trained network and the unpruned parent is also shown. The plots depict the
difference measured as the percentage of matching predictions and as norm-based
difference in the output after applying softmax, see (a), (c) and (b), (d), respectively.

suffice for confident predictions by the pruned networks derived from it, but do not

suffice for prediction by the separate, unpruned network. We also find that informa-

tive features from pruned networks can be used for prediction by the original network,

suggesting these models employ a similar decision-making process. In general, our

results suggest weight-pruned networks maintain higher confidence on parent features

than do filter-pruned networks. For models pruned beyond commensurate accuracy

(PR = 0.98 in Figure 7-2), the informative features are no longer predictive.

Noise similarities. In Figures 7-3a, 7-3c the percentage of matching label pre-

dictions of WT- and FT-pruned ResNet20 networks are shown with respect to their

unpruned counterpart for multiple noise levels. We can conclude that the predictions

of the pruned networks tend to correlate with the predictions of the unpruned parent

185

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%
M

at
ch

in
g

la
be

ls

resnet20, CIFAR10, SiPP
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=94%
Separate

(a) SiPP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet20, CIFAR10, SiPP
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=94%
Separate

(b) SiPP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet20, CIFAR10, PFP
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=94%
Separate

(c) PFP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet20, CIFAR10, PFP
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=94%
Separate

(d) PFP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet20, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=94%
Separate

Figure 7-4: The functional similarities between pruned ResNet20 models and their
unpruned parent.

– clearly more than the predictions from a separately trained, unpruned network.

We also consider the overall difference in the ℓ2-norm between pruned and unpruned

networks of the softmax output where we observe similar trends, see Figures 7-3b,

7-3d. We conduct the same experiments with SiPP- and PFP-pruned networks as

well (see Figure 7-4) to further validate our findings. These results indicate that the

decision boundaries of the pruned network tend to remain close to those of the un-

pruned network implying that during retraining properties of the original function are

maintained. We note that the correlation decreases as we prune more corroborating

our intuitive understanding of pruning.

7.4 Pruning under Distribution Changes

We highlighted that pruned networks behave functionally similarly, however, ulti-

mately the performance is measured in terms of the loss or accuracy on previously

unseen data. In this section, we investigate how pruned networks behave in the pres-

186

ence of shifts in the data distribution, including noise, weather, and other corruptions.

While it is commonly known that out-of-distribution (o.o.d.) data can harm the per-

formance of neural networks (Madry et al., 2018), we specifically investigate whether

pruned network suffer disproportionately more from o.o.d. data compared to their

parent network. Answering this question affirmatively has profound implications on

the practical deployment of pruned networks, specifically for safety-critical systems.

To this end, we define a network’s prune potential to be the maximal prune ratio

for which the pruned network achieves similar loss (up to margin 𝛿) compared to the

unpruned one for data sampled from distribution 𝒟.

Definition 7 (Prune Potential). Given a neural network 𝑓𝜃(𝑥) with parameters 𝜃,

input-label pair (𝑥, 𝑦) ∼ 𝒟, and loss function ℓ(·, ·) the prune potential 𝑃 (𝜃,𝒟) for

some margin 𝛿 is given by

𝑃 (𝜃,𝒟) = max𝑐∈{0,1}|𝜃| 1− ‖𝑐‖0/‖𝜃‖0

subject to (7.2)

E (𝑥,𝑦)∼𝒟
[︀
ℓ(𝑦, 𝑓𝑐⊙𝜃(𝑥))− ℓ(𝑦, 𝑓𝜃(𝑥))

]︀
≤ 𝛿,

where ‖·‖0 denotes the number of nonzero elements, and 𝑐 and 𝜃 denote the prune

mask and parameters, respectively, obtained from PruneRetrain (Algorithm 5).

The prune potential 𝒫(𝜃,𝒟) thus indicates how much of the network can be safely

pruned with minimal additional loss incurred. In other words, it indicates to what

degree the pruned network can maintain the performance of the parent network. As

an additional benefit the prune potential may act as a robust measure to gauge the

overparameterization of a network in the presence of distribution shifts.

Moreover, we define a network’s excess loss to be the additional loss incurred

under distributional changes of the input.

Definition 8 (Excess Loss). Given a neural network 𝑓𝜃(·) with parameters 𝜃, training

distribution 𝒟 from which we can sample input-label pairs (𝑥, 𝑦) ∼ 𝒟, test distribution

𝒟′ from which we can also sample input-label pairs, and loss function ℓ(·, ·), the excess

187

loss 𝑒(𝜃,𝒟′) is given by

𝑒(𝜃,𝒟′) = E
(𝑥′,𝑦′)∼𝒟′

ℓ(𝑦′, 𝑓𝜃(𝑥
′))− E

(𝑥,𝑦)∼𝒟
ℓ(𝑦, 𝑓𝜃(𝑥)).

The excess loss hereby indicates the expected performance drop of the network

for distribution changes, which we can evaluate for various unpruned and pruned

parameter sets for a given network architecture to understand to what extend the

excess loss varies.

7.4.1 Methodology

We choose test error (indicator loss function) to evaluate the prune potential and

excess loss (excess error). We evaluate the constraint of (7.2) for a margin of 𝛿 = 0.5%.

We compare the prune potentials 𝑝 = 𝑃 (𝜃,𝒟) and 𝑝′ = 𝑃 (𝜃,𝒟′) for two distribu-

tions 𝒟 and 𝒟′ to assess whether pruning up to the prune potential 𝑝 implies that

we can also safely prune up to 𝑝 for 𝒟′. Specifically, the difference 𝑝 − 𝑝′ in prune

potential can indicate how much the prune potential varies and thus whether it is

safe to prune the network up to its full potential 𝑝 when the input is instead drawn

from 𝒟′. We note that in practice we may only have access to 𝒟 but not 𝒟′. Thus in

order to safely prune a network up to some prune ratio 𝑝 it is crucial to understand

to what degree the prune potential may vary for shifts in the distribution.

We also compare the excess error 𝑒 = 𝑒(𝜃,𝒟′) and 𝑒 = 𝑒(𝑐⊙𝜃,𝒟′) for an unpruned

and pruned network with parameters 𝜃 and 𝑐⊙𝜃, respectively. Note that the difference

in excess error, 𝑒 − 𝑒, quantifies the additional error incurred by a pruned network

under distribution changes compared to the additional error incurred by an unpruned

network. Ideally, the difference 𝑒 − 𝑒 should be zero across all prune ratios, which

would imply that the prune-accuracy trade-off for nominal data is indicative of the

trade-off for o.o.d. data.

We evaluate the prune potential and excess error using nominal test data (train

distribution 𝒟) and o.o.d. test data (test distribution 𝒟′). Specifically, we consider

o.o.d. data with random noise following Section 7.3.1, and o.o.d. data corrupted using

188

Figure 7-5: Example images from the CIFAR-10 test dataset that were used in this
study with various levels of noise injected. A human test subject can classify the
images equally well despite the noise present.

state-of-the-art corruption techniques, i.e., CIFAR-10.1 (Recht et al., 2018), CIFAR-

10-C (Hendrycks and Dietterich, 2019) for CIFAR-10; ObjectNet (Barbu et al., 2019),

ImageNet-C (Hendrycks and Dietterich, 2019) for ImageNet; and VOC-C (Michaelis

et al., 2019) for VOC. For CIFAR-10-C, ImageNet-C, VOC-C we choose severity level

3 out of 5. The prune potential is evaluated separately for each corruption while the

excess error is evaluated by averaging over all corruptions (test distribution).

7.4.2 Results

Noise

We evaluated the prune potential of multiple CIFAR-10 networks for various noise

levels, the results of which are shown in Figure 7-6. Initially, the network exhibits high

prune potential, similar to the prune potential on the original test data (noise level

0.0). However, as we increase the noise injected into the image the prune potential

rapidly drops to 0%. As shown, most networks’ prune potential based on noise exhibit

similar properties. This is particularly discomforting as the noise does not deteriorate

a human’s ability to classify the images correctly as can be seen from Figure 7-5. These

results highlight we may not be able to significantly prune networks if maintaining

performance on slightly harder data is the goal.

However, we note that depending on the architecture the specific prune potential

may be less affected. Specifically, we note that the prune potential of WideResNets

189

(Figure 7-6, bottom right) seems to be mosstly unaffected by noise across all tested

prune methods. In contrast to the other networks, WideResNets are wider and less

deep, which may provide a possible explanation for the observed behaviors. Due to

the wide spatial dimensions of each network, the noise may be better absorbed since

it may spread across the width of the layer. Moreover, the reduced depth may help in

avoiding positive amplification of the noise as depth increases. From this observation,

we may conclude that WideResNets are indeed overparameterized and henceforth the

prune potential remains unaffected for slight perturbations in the input.

0.00 0.20 0.40 0.60
Uniform noise level

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pr
un

e
Po

te
nt

ia
l,

=
0.

5%

resnet20, CIFAR10
PFP
SiPP
WT
FT

0.00 0.20 0.40 0.60
Uniform noise level

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pr
un

e
Po

te
nt

ia
l,

=
0.

5%

resnet56, CIFAR10
PFP
SiPP
WT
FT

0.00 0.20 0.40 0.60
Uniform noise level

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pr
un

e
Po

te
nt

ia
l,

=
0.

5%

resnet110, CIFAR10
PFP
SiPP
WT
FT

0.00 0.20 0.40 0.60
Uniform noise level

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pr
un

e
Po

te
nt

ia
l,

=
0.

5%

vgg16_bn, CIFAR10

PFP
SiPP
WT
FT

0.00 0.20 0.40 0.60
Uniform noise level

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pr
un

e
Po

te
nt

ia
l,

=
0.

5%

densenet22, CIFAR10
PFP
SiPP
WT
FT

0.00 0.20 0.40 0.60
Uniform noise level

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Pr
un

e
Po

te
nt

ia
l,

=
0.

5%

wrn16_8, CIFAR10

PFP
SiPP
WT
FT

Figure 7-6: The prune potential (%) achievable over various levels of noise injected
into the input on different network architectures trained and pruned on CIFAR-10.

190

Prune-accuracy curves for corruptions

Separately, we investigated the prune potential for image corruptions based on the

CIFAR-10-C, ImageNet-C. In Figures 7-7a and 7-7d we show the test accuracy of

pruned networks across various target prune ratios for a subset of CIFAR-10-C cor-

ruptions for a ResNet20 pruned with WT and FT, respectively. In particular, for

some simpler corruptions, such as Jpeg, the prune-accuracy curves closely resembles

the original CIFAR-10 curve, while for metrics such as Speckle and Gauss the curve

indicates a noticeable accuracy drop across all target prune ratios. Moreover, the

prune-accuracy curve becomes more unpredictable and less stable as indicated by the

significantly higher variance of the resulting accuracy. We thus conclude that the

achievable accuracy of the network depends on the pruning method and the target

prune ratio, however, we observe an equally strong dependence on the chosen test

metric. Consequently, this affects the prune potential of the network highlighting the

sensible trade-off between generalization performance and prune potential.

Prune potential for corruptions

For each corruption we then extracted the resulting prune potential from the prune-

accuracy curves, see Figures 7-7b and 7-7e for weight pruning and filter pruning,

respectively. In particular, for corruptions, such as Gauss, Impulse, or Shot, we

observe that the network’s prune potential hits (almost) 0% implying that any form

of pruning may adversely affect the network’s performance under such circumstances.

We repeated the same experiment for a ResNet18 trained on ImageNet and tested

on ImageNet-C, see Figure 7-8. Noticeably, the network exhibits significantly higher

variance in the prune potential across different corruptions compared to the networks

tested on CIFAR-10. This effect is also more pronounced for filter pruning methods.

In Section B.3.1, we provide results for additional networks for both CIFAR-10 and

ImageNet corroborating our findings presented here.

191

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-7.5%

-5.0%

-2.5%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet20, CIFAR10

CIFAR10 Jpeg Speckle Gauss

0.0%

100.0%

W
T

resnet20, CIFAR10

0.0%

100.0%

Si
PP

0.0%

100.0%

FT
CI

FA
R1

0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

100.0%

PF
P

Train Distribution Test Distribution

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT SiPP FT PFP

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-7.5%

-5.0%

-2.5%

0.0%
De

lta
 T

op
 1

 T
es

t A
cc

ur
ac

y WT, resnet20, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(a) Prune-test curve (WT)

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

Si
PP

Distribution:
Train
Test

(b) Weight prune potential

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.5%

+1.0%

+1.5%

+2.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP

(c) Excess error (Weight)

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, resnet20, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(d) Prune-test curve (FT)

0.0%

50.0%FT
resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

(e) Filter prune potential

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

FT
PFP

(f) Excess error (Filter)

Figure 7-7: The prune potential for a ResNet20 on CIFAR-10-C test datasets. We
observe that depending on the type of corruption the network has significantly less
prune potential than when measured w.r.t. the nominal CIFAR-10 test accuracy.

Choice of 𝛿

We additionally investigate how the prune potential is affected by our choice of 𝛿 (see

Section B.3.2). While the actual value of the prune potential is naturally affected

by 𝛿, we find that our observations of the resulting trends remain unaffected by

our particular choice of 𝛿. Hence, we simply choose 𝛿 = 0.5% uniformly across

all experiments reflecting the requirement that our pruned network should be close

in accuracy to the parent network while allowing some slack to increase the prune

potential.

Excess error

In contrast to the prune potential, the difference in excess error enables us to quantify

across multiple prune ratios how much additional error is incurred by the pruned

network on top of the unpruned network’s excess error when tested on o.o.d. data.

192

0.0%

50.0%W
T

resnet18, ImageNet

Im
ag

eN
et

Ob
je

ct
Ne

t
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

Si
PP

Distribution:
Train
Test

0.0%

50.0%FT

resnet18, ImageNet

Im
ag

eN
et

Ob
je

ct
Ne

t
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%PF
P

Distribution:
Train
Test

Figure 7-8: Prune potential of a ResNet18 (ImageNet).

A non-zero difference thus indicates how the prune-accuracy curve changes under

distribution changes. In other words, the difference in excess error quantifies the

difference in error between the pruned and unpruned network on top of the difference

in error that is incurred for nominal test data (train distribution).

We evaluated the difference in excess error between pruned and unpruned ResNet20

networks trained on CIFAR-10 for various prune ratios (see Figures 7-7c, 7-7f). Note

that by definition the excess error is 0% for a prune ratio of 0%. We observe that

the difference in excess error can reach upwards of 2% and 3% for weight and filter

pruning, respectively. Moreover, the higher the prune ratio the more variance we

can observe indicating that the pruned network’s behavior becomes less predictable

overall. These observations strongly indicate that pruned networks suffer dispropor-

tionally more from o.o.d. data across a wide spectrum of prune ratios and that the

additional performance drop on o.o.d. data is positively correlated with the prune

ratio. In other words, while current pruning techniques achieve commensurate ac-

curacy for high prune ratios on nominal test data, the same pruning techniques do

not maintain commensurate accuracy for even small prune ratios on o.o.d. test data.

Additional results are presented in Section B.3.3.

Measuring overparameterization.

The results presented so far in this section highlight that the prune potential on

nominal test data does not reliably indicate the overall performance of the pruned

193

network. This may lead to novel insights into understanding the amount of overpa-

rameterization in deep networks. In Section B.3.4 we summarize the prune potential

across all tested data distributions and networks as a way to gauge the amount of

overparameterization of a network. A subset of the results are shown in Table 7.2.

While some networks’ prune potentials are significantly affected by changes in the dis-

tribution, other networks’ prune potentials are virtually unaffected. Take for example

the weight prune potential on nominal test data (training distribution) of a VGG16

and a WRN16-8, which is around 98% for both. However, when both networks are

evaluated on o.o.d. test data (test distribution) they exhibit distinctly different be-

haviors. While the WRN16-8’s prune potential remains fairly stable at around 95%

(3% drop), the VGG16’s prune potential falls to 80% (18% drop).

Overall, these results illustrate the fact that the prune potential may act as a

robust measure of a network’s genuine overparameterization in theory, and may also

be helpful in informing the practitioner on the extent of pruning that should be

conducted prior to deployment in practice.

Table 7.2: The prune potential of various networks trained on CIFAR-10 (upper part)
and ImageNet (lower part) evaluated on the train and test distribution, which consist
of nominal data and the average over all corruptions, respectively.

Model Method
Prune Potential (%)

Train Dist. Test Dist. Diff.

ResNet20
WT 84.9 ± 0.0 66.7 ± 3.3 -18.2
FT 65.0 ± 6.7 55.3 ± 4.8 -9.7

VGG16
WT 98.0 ± 0.0 80.9 ± 2.2 -17.1
FT 85.4 ± 2.4 66.3 ± 0.5 -19.1

WRN16-8
WT 98.0 ± 0.0 95.7 ± 0.7 -2.3
FT 86.2 ± 1.3 75.7 ± 4.1 -10.5

ResNet18
WT 85.8 63.6 -22.2
FT 13.7 13.5 -0.2

7.5 Towards Robust Pruning

Our experiments raise the question whether the decreased performance of pruned

networks is a limitation of our current pruning and training techniques or whether it

194

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

+1.0%
De

lta
 T

op
 1

 T
es

t A
cc

ur
ac

y WT, resnet20, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(a) WT, prune-test

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

(b) Prune pot. (WT, FT)

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10_C_Mix1

WT
FT

(c) Excess error (WT, FT)

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-7.5%

-5.0%

-2.5%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet20, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10_C_Mix1

WT
FT

Figure 7-9: The prune potential (b) and excess error (c) of a ResNet20 shown for
corruptions that were included (train distribution) and excluded (test distribution)
during training. The prune-accuracy curves in (a) are shown for corruptions from the
test distribution.

is an inherent limitation of pruned, i.e., smaller, networks themselves. To this end,

we investigated whether training (and retraining) in a robust manner can benefit the

pruned network and minimize the effects we observed previously.

7.5.1 Methodology

To test the hypothesis that we can regain some of the robustness properties of the

unpruned network we repeated the experiments of Section 7.4 but during (re-)training

we incorporated a randomly chosen fixed subset of nine corruptions from CIFAR-10-C

and ImageNet-C into the data augmentation pipeline. That is, every time we sample

an image from the train set during (re-)training we choose an image corruption (or no

corruption) uniformly at random to corrupt the image effectively altering the train

distribution that the network sees. The remaining corruptions are not used during

training and make up the new test distribution. Additional experimental details are

provided in Appendix B.4.

7.5.2 Results

Prune-accuracy curves and prune potential. In Figure 7-9a we show the

prune-accuracy curves for three corruptions from the test distribution for WT-pruned

ResNet20s. Compared to the results in Figure 7-7a where we did not perform robust

(re-)training we observe that the prune-accuracy curves are much more stable and

195

that the prune-accuracy curve on nominal test data (CIFAR-10) is more predictive

of the others. However, the results on the evaluation of the prune potential as shown

in Figure 7-9b for weight and filter pruning reveal that even in this setting the prune

potential can be significantly lower (or exhibit high variation over multiple trials)

for some of the corruptions from the test distribution. These observations further

corroborate our findings but also highlight the beneficial effects of robust training

in efficiently alleviating some of the short-comings (see Appendix B.4 for a complete

exposition of the results).

Excess error. Similar trends can also be observed when considering the difference

in excess error as shown in Figure 7-9c. While we can reduce the correlation between

prune ratio and excess error, we can not entirely eliminate it. Moreover, we can still

observe high variations in the excess error confirming the sensible trade-off between

generalization performance and prune potential.

Implicit regularization. In this section, we show that we can regain much of the

prune potential even under distribution changes, at least when we can incorporate

these additional data points into our training pipeline. For example, the weight prune

potential for a ResNet20 for both the nominal and robust training scenario is around

85%. Consequently, we argue that both pruned and unpruned networks have sufficient

capacity to represent the underlying distribution given that the training is performed

using an appropriate optimization pipeline.

Specifically, previous work noted that overparameterized networks may benefit

from implicit regularization when optimized with a stochastic optimizer and that

more parameters amplify this effect. We can confirm these observations in the sense

that pruned networks suffer disproportionally more from o.o.d. data than unpruned

networks with more parameters. That is, unpruned network exhibit more implicit

regularization through stochastic gradient descent (SGD) leading to more robust-

ness. However, we can regain some of the robustness properties by adding explicit

regularization during training in the form of data augmentation. We can thus “trade”

196

the implicit regularization potential which we lose by removing parameters for explicit

regularization through data augmentation.

Choice of test distribution. While our results suggest that robust training in-

deed improves the generalization of pruned networks for o.o.d. data, we would like

to emphasize that our conclusion intrinsically hinges upon on the choice of train

and test distribution. While we did strictly separate the corruptions used during

train and test time, these corruptions can be loosely categorized into four types, i.e.

noise, blur, weather, digital, all of which are present in both the train and test dis-

tribution. Therefore, we suspect that for significantly different corruption models (or

adversarial inputs) we may observe more significant trade-offs resembling the results

of Section 7.4 where we performed nominal (re-)training. This is a consequence of

requiring additional explicit regularization since the explicit regularization must be

modeled.

7.6 Discussion

Weight vs filter pruning. We find that across all tested corruptions filter pruning

methods are more error-prone and have lower prune potential compared to weight

pruning. We conjecture this trend stems from the fact that structured pruning is

overall a harder problem, implying that structurally pruned networks are less capable

of maintaining the properties of the parent network when compared to those generated

by weight-based pruning.

Genuine overparameterization. In light of our results we conjecture that while

the high capacity of modern networks may not be strictly necessary to achieve high

test accuracy – since pruned networks with commensurate accuracy exist –, the ”ex-

cess” capacity of these networks may be beneficial to maintaining other crucial prop-

erties of the network, such as its ability to perform well on unforeseen or out-of-

distribution data. This challenges the common wisdom that modern networks are

overparameterized and, hence, contain redundant parameters that can be pruned in

197

a straight-forward manner without ”loss of performance.” Unlike prior work that has

predominantly pointed to the test accuracy as a gauge for overparameterization (and

thus the ability to prune a network), we hypothesize that a more robust and accurate

measure of genuine overparameterization is one that not only considers test accuracy,

but also the minimum (or average) prune potential over a variety of tasks. Studying

the prune potential is thus not only useful to study the ability to safely prune a net-

work but also has the positive side-effect of establishing a robust measure of network

overparameterization.

Implicit regularization. Our studies reveal that the amount of overparameteri-

zation is not only a function of the task and the network size but also a function of

the training procedure. Specifically, we can prune the network more if we explicitly

regularize the network during (re-)training thus increasing the “genuine” overparam-

eterization of the network which implies a higher prune potential. However, with

fewer parameters (due to pruning more) we trade in some of the implicit regulariza-

tion potential from SGD. Since implicit regularization is not necessarily model-based

we can only regain the robustness of the pruned network for known, i.e. modeled,

distribution changes.

Generalization-aware pruning. Based on our results we formulate a set of guide-

lines for pruning in practice as shown in Section 7.1. We argue that in order to reliably

and robustly deploy pruned networks especially in the context of safety-critical sys-

tems we should not only designate a hold-out data set (test set) but also a hold-out

data distribution (test distribution). By assessing the performance of the pruned net-

work on data from the train and test distribution, we can then quantify the effect of

pruning in a way that can unearth some of the short-comings that are lost in pruning

and are not apparent from a plain prune-accuracy curve on nominal test data. Fol-

lowing our framework, a practitioner will be able to more reliably assess whether the

pruned network can be considered as performant (in a robust sense) as the unpruned

network.

198

Broader Impact. In this chapter, we study the impact of pruning when deploying

neural networks in real-world conditions. This is of particular importance since the

main motivation to prune neural networks lies within training neural networks that

are simultaneously efficient and accurate. Henceforth, these networks can then be

deployed in resource-constrained environments, such as robotics, to achieve tasks

that could otherwise only be computed on large-scale compute infrastructure.

However, we show that pruned neural networks do not necessarily perform on

par with their unpruned parent but rather that they exhibit significant performance

decreases depending on slight variations within their assigned task. This raises con-

cerns with regards to the ability to find effectively pruned architectures with current

network pruning techniques. With the increasing amount of applications for deep

learning including on small-scale devices, we have to vigilantly monitor and consider

the effects, brittleness, and potential biasedness of small-scale neural networks at an

even higher degree than for regular deep networks.

Conclusion. We have investigated the effects of the pruning process on the func-

tional properties of the pruned network relative to its uncompressed counterpart.

Our empirical results suggest that pruned models are functionally similar to the their

uncompressed counterparts but that, despite this similarity, the prune potential of

the network varies significantly on a task-dependent basis: the prune potential de-

creases significantly as the difficulty of the inference task increases. Our findings

underscore the need to consider task-specific evaluation metrics beyond test accuracy

prior to deploying a pruned network and provide novel insights into understanding

the amount of network overparameterization in deep learning. We envision that our

framework may invigorate further work towards rigorously understanding the inher-

ent model size-performance trade-off and help practitioners in adequately designing

and pruning network architectures in a task-specific manner.

199

200

Chapter 8

Pruning Continuous-depth Models

8.1 Overview

Continuous normalizing flows (CNFs) (Chen et al., 2018b) efficiently (Grathwohl

et al., 2019) map a latent space to data via ordinary differential equations (ODEs),

relaxing the strong constraints over discrete normalizing flows (Dinh et al., 2016;

Durkan et al., 2019; Huang et al., 2020; Kingma and Dhariwal, 2018; Papamakarios

et al., 2017; Rezende and Mohamed, 2015). CNFs enable learning flexible probabilistic

models by arbitrarily-chosen neural network topologies. While recent works investi-

gated ways to improve CNFs’ efficiency (Finlay et al., 2020; Grathwohl et al., 2019; Li

et al., 2020), regularize the flows (Onken et al., 2020; Yang and Karniadakis, 2020), or

solving their fundamental shortcomings such as crossing trajectories (Dupont et al.,

2019; Massaroli et al., 2020), less is understood about their inner dynamics during

and post training.

In this chapter, we set out to use standard pruning algorithms to investigate gen-

eralization properties of sparse neural ordinary differential equations (neural ODEs)

and CNFs. In particular, we investigate how the inner dynamics and the model-

ing performance of a continuous flow varies if we methodologically prune its neural

network architecture. Reducing unnecessary weights of a neural network (pruning)

(Han et al., 2015b; Hassibi and Stork, 1993; LeCun et al., 1990; Li et al., 2016) with-

out loss of accuracy results in smaller network size (Hinton et al., 2015; Liebenwein

201

50k 100k 300k 1.2M 3M 7M 20M 40M 100M
Number of Parameters

3.2

3.7

4.2

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d MAF

SOS

Glow

Res-flow

RQ-NSF
CP-Flow

FFJORDPruning

Pruning Neural ODEs improves generalization

Figure 8-1: Pruning neural ODEs improves their generalization with at least 1 order
of magnitude less parameters. CIFAR-10 density estimation. Values and methods
are described in Table 8.6.

et al., 2021a), computational efficiency (Luo et al., 2017; Molchanov et al., 2016;

Yang et al., 2017), faster inference (Frankle and Carbin, 2019), and enhanced inter-

pretability (Baykal et al., 2019, 2021b; Lechner et al., 2020a; Liebenwein et al., 2020).

Here, our main objective is to better understand CNFs’ dynamics in density esti-

mation tasks as we increase network sparsity and to show that pruning can improve

generalization in neural ODEs.

Unlike in Chapter 7, where we highlight a potential short-coming of pruned neural

networks in terms of generalization ability, here we investigate the ability of pruning

to improve generalization in the context of time-continuous, recurrent neural net-

works. Specifically, we highlight an application of pruning that enables improved

generalization performance compared to prior work with significantly less parameters

as shown in Figure 8-1 for example.

Pruning improves generalization in neural ODEs. Our results consistently

suggest that a certain ratio of pruning of fully-connected neural ODEs leads to lower

empirical risk in density estimation tasks, thus obtaining better generalization. We

validate this observation on a large series of experiments with increasing dimension-

ality. See an example here in Figure 8-2a.

202

0 20 40 60 80
Prune Ratio (%)

0.60

0.65

0.70

0.75

0.80

Lo
ss

 (N
LL

)

(a) Pruned Generalization.

Flat
minimum

Sharp
minimum

Train loss
Test loss

(b) Flat vs. sharp minima.

Figure 8-2: Improved generalization through pruning. 8-2a: pruning enhances gen-
eralization of continuous-depth models. Structured pruning (green), unstructured
pruning (blue). More details in Section 8.5. 8-2b: flat minima result in better gener-
alization compared to sharp minima. Pruning neural ODEs flattens the loss around
local minima. Figure 8-2b is reproduced from Keskar et al. (2017).

Pruning flattens the loss surface of neural ODEs. Additionally, we conduct a

Hessian-based empirical investigation on the objective function of the flows-under-test

in density estimation tasks to better understand why pruning results in better gener-

alization. We find that for neural ODEs, pruning decreases the value of the Hessian’s

eigenvalues, and as a result, flattens the loss which leads to better generalization, c.f.,

Keskar et al. (2017) (Figure 8-2b).

Pruning helps avoiding mode-collapse in generative modeling. In a series of

multi-modal density estimation tasks, we observe that densely connected CNFs often

get stuck in a sharp local minimum (See Figure 8-2b) and as a result, cannot properly

distinguish different modes of data. This phenomena is known as mode-collapse. Once

we sparsify the flows, the quality of the density estimation task increases significantly

and consequently mode-collapse does not occur.

Pruning finds minimal and efficient neural ODE representations. Our frame-

work finds highly optimized and efficient neural ODE architectures via pruning. In

many instances, we can reduce the parameter count by 70-98% (6x-50x compression

rate). Notably, one cannot directly train such sparse and efficient continuous-depth

models from scratch.

203

8.1.1 Contributions

In short, our contributions for this chapter are as follows:

• A generic pruning framework for unstructured and structured pruning of time-

continuous neural networks, including neural ODEs and CNFs.

• An extensive experimental analysis that highlights the improved generalization

performance of sparse, i.e., pruned, neural ODEs in classification and generative

modelling task on low-dimensional toy data and high-dimensional tabular data.

• A generalization of our sparsity-inducing pruning framework to generative mod-

elling of images highlighting a loss-size trade-off with over an order-of-magnitude

improvement over prior work.

• A Hessian-based analysis of the training of sparse flows that indicates an im-

proved, i.e., flattened, loss landscape of pruned neural ODEs further corrobo-

rating our findings.

8.1.2 Relevant Papers

The results presented in this chapter are based on the following paper:

• Lucas Liebenwein, Ramin Hasani, Alexander Amini, and Daniela Rus. Sparse

flows: Pruning continuous-depth models. In Advances in Neural Information

Processing Systems (Under Review; arXiv preprint arXiv:2106.12718), 2021b.

8.1.3 Outline

In the following, we provide the necessary background on neural ODEs and contin-

uous normalizing flows in Section 8.2. Next, we introduce our pruning framework

in Section 8.3 and provide the necessary hyperparameters to instantiate our pruning

framework for the considered networks and datasets in Section 8.4. Our main results

and experimental analysis are presented in Section 8.5 and we conclude the chapter

with a discussion in Section 8.6.

204

8.2 Background

In this section, we describe the necessary background topics to construct our frame-

work. We show how to perform generative modeling by continuous depth models

using the change of variables formula.

Generative modeling via change of variables. The change of variables formula

uses an invertible mapping 𝑓 : R𝐷 → R𝐷, to wrap a normalized base distribution

𝑝𝑧(z), to specify a more complex distribution. In particular, given 𝑧 ∼ 𝑝𝑧(z), a random

variable, the log density for function 𝑓(z) = x can be computed by Grathwohl et al.

(2019):

log 𝑝𝑥(x) = log 𝑝𝑧(z)− log det

⃒⃒⃒⃒
𝜕𝑓(z)

𝜕z

⃒⃒⃒⃒
, (8.1)

where the Jacobian of 𝑓 is determined by 𝜕𝑓(z)
𝜕z

. While theoretically (8.1) demonstrates

a straightforward way to find the log density, from a practical standpoint computa-

tion of the Jacobian determinant has a time complexity of 𝒪(𝐷3). Restricting neural

network architectures can make the computation of this term more tractable. Exam-

ples include designing normalizing flows (Berg et al., 2018; Papamakarios et al., 2017;

Rezende and Mohamed, 2015), autoregressive transformations (Durkan et al., 2019;

Jaini et al., 2019; Kingma et al., 2016; Müller et al., 2019; Oliva et al., 2018a; We-

henkel and Louppe, 2019), partitioned transformations (Dinh et al., 2016; Kingma

and Dhariwal, 2018), universal flows (Kong and Chaudhuri, 2020; Teshima et al.,

2020), and the use of optimal transport theorem (Huang et al., 2020).

Alternative to these discrete transformation algorithms, one can construct a gen-

erative model similar to (8.1), and declare 𝑓 by a continuous-time dynamics (Chen

et al., 2018b; Grathwohl et al., 2019; Lechner et al., 2020b). Given a sample from the

base distribution, one can parametrize an ordinary differential equations (ODEs) by

a function 𝑓(z(𝑡), 𝑡, 𝜃), and solve the ODE to obtain the observable data. When 𝑓 is

a neural network, the system is called a neural ODE (Chen et al., 2018b).

205

Neural ODEs. More formally, a neural ODE is defined by finding the solution to

the initial value problem (IVP): 𝜕z(𝑡)
𝜕𝑡

= 𝑓(z(𝑡), 𝑡, 𝜃), z(𝑡0) = z0, with z0 ∼ 𝑝𝑧0(z0),

to get z(𝑡𝑛) the desired output observations at a terminal integration step 𝑛 (Chen

et al., 2018b).1

Continuous normalizing flows. If z(𝑡𝑛) is set to our observable data, given sam-

ples from the base distribution z0 ∼ 𝑝𝑧0(z0), the neural ODE described above forms

a continuous normalizing flow (CNF). CNFs modify the change in log density by the

left hand-side differential equation and as a result the total change in log-density by

the right hand-side equation (Chen et al., 2018b; Grathwohl et al., 2019):

𝜕 log 𝑝(z(𝑡))

𝜕𝑡
= −Tr

(︂
𝜕𝑓

𝜕z(𝑡)

)︂
, log 𝑝(z(𝑡𝑛)) = log 𝑝(z(𝑡0))−

∫︁ 𝑡1

𝑡0

Tr

(︂
𝜕𝑓

𝜕z(𝑡)

)︂
𝑑𝑡.

(8.2)

The system of two differential equations (the neural ODE (𝜕z(𝑡)
𝜕𝑡

= 𝑓(z(𝑡), 𝑡, 𝜃)) and

(8.2) can then be solved by automatic differentiation algorithms such as backpropa-

gation through time (Rumelhart et al., 1986) or the adjoint sensitivity method (Chen

et al., 2018b; Pontryagin, 2018). Computation of Tr
(︁

𝜕𝑓
𝜕z(𝑡)

)︁
costs 𝒪(𝐷2). A method

called the Free-form Jacobian of Reversible Dynamics (FFJORD) (Grathwohl et al.,

2019) improved the cost to 𝒪(𝐷) by using the Hutchinson’s trace estimator (Adams

et al., 2018; Hutchinson, 1989). Thus, the trace of the Jacobian can be estimated by:

Tr
(︁

𝜕𝑓
𝜕z(𝑡)

)︁
= E𝑝(𝜀)

[︁
𝜀𝑇 𝜕𝑓

𝜕z(𝑡)
𝜀
]︁
, where 𝑝(𝜀) is typically set to a Gaussian or Rademacher

distribution (Grathwohl et al., 2019). Throughout the paper, we investigate the prop-

erties of FFJORD CNFs by pruning their neural network architectures.

8.3 Pruning Neural ODEs

We enable sparsity in neural ODEs and CNFs by removing, i.e., pruning, redundant

weights from the underlying neural network architecture during training. Pruning

1One can design a more expressive representation (Hasani et al., 2020; Vorbach et al., 2021) of
continuous-depth models by using the second-order approximation of the neural ODE formulation
(Hasani et al., 2021b). This representation might give rise to a better neural flows which will be the
focus of our continued effort.

206

can tremendously improve the parameter efficiency of neural networks across numer-

ous tasks, such as computer vision (Liebenwein et al., 2020) and natural language

processing (Maalouf et al., 2021).

8.3.1 A General Framework for Training Sparse Flows

Our approach to training Sparse Flows is inspired by iterative learning rate rewinding,

a recently proposed and broadly adopted pruning framework as used by Liebenwein

et al. (2020); Renda et al. (2020) among others.

In short, our pruning framework proceeds by first training an unpruned, i.e.,

dense network to obtain a warm initialization for pruning. Subsequently, we proceed

by iteratively pruning and retraining the network until we either obtain the desired

level of sparsity, i.e., prune ratio or when the loss for a pre-specified hold-out dataset

(validation loss) starts to deteriorate (early stopping).

We note that our framework is readily applicable to any continuous-depth model

and not restricted to FFJORD-like models. Moreover, we can account for various

types of pruning, i.e., unstructured pruning of weights and structured pruning of

neurons or filters. An overview of the framework is provided in Algorithm 6 and we

provide more details below.

8.3.2 From Dense to Sparse Flows

Train a dense flow for a warm initialization. To initiate the training process,

we first train a densely-connected network to obtain a warm initialization (Line 2 of

Algorithm 6). We use Adam with a fixed step learning decay schedule and weight

decay in some instances. Numerical values for each network and dataset are provided

in the supplementary material. Based on the warm initialization, we start pruning

the network.

Prune for Sparse Flow. For the prune step (Line 5 of Algorithm 6) we either

consider unstructured or structured pruning, i.e., weight or neuron/filter pruning,

207

Table 8.1: Pruning Methods.

Unstructured Pruning
(Han et al., 2015a)

Structured Pruning
(Li et al., 2016)

Target Weights Neurons and Filters

Importance Score |𝑊𝑖𝑗| ‖𝑊𝑖:‖1
Scope Global Local

Algorithm 6 SparseFlow(𝑓 , Φtrain, 𝑃𝑅, 𝑒)

Input: 𝑓 : neural ODE model with parameter set 𝜃; Φtrain: hyper-parameters for
training; 𝑃𝑅: relative prune ratio; 𝑒: number of training epochs per prune-cycle.
Output: 𝑓(·; 𝜃): Sparse Flow; 𝑚: sparse connection pattern.

1: 𝜃0 ← RandomInit()

2: 𝜃 ← Train(𝜃0,Φtrain, 𝑒) ◁ Initial training stage with dense neural ODE (“warm

start”).

3: 𝑚← 1|𝜃0| ◁ Initialize binary mask indicating neural connection pattern.

4: while validation loss of Sparse Flow decreases do

5: 𝑚 ← Prune(𝑚 ⊙ 𝜃, 𝑃𝑅) ◁ Prune 𝑃𝑅% of the remaining parameters and

update binary mask.

6: 𝜃 ← Train(𝑚 ⊙ 𝜃,Φtrain, 𝑒) ◁ Continue training with updated connection

pattern.

7: end while

8: 𝜃 ← 𝑚⊙ 𝜃

9: return 𝑓(·; 𝜃), 𝑚

respectively. At a fundamental level, unstructured pruning aims at inducing spar-

sity into the parameters of the flow while structured pruning enables reducing the

dimensionality of each flow layer. For unstructured pruning, we use magnitude prun-

ing (Han et al., 2015a)), where we prune weights across all layers (global) with mag-

nitudes below a pre-defined threshold. For structured pruning, we use the ℓ1-norm

of the weights associated with the neuron/filter and prune the structures with lowest

norm for constant per-layer prune ratio (local) as proposed by Li et al. (2016). See

Table 8.1 for an overview.

Train the Sparse Flow. Following the pruning step, we re-initiate the training

with the new sparsity pattern and the unpruned weights (Line 6 of Algorithm 6).

208

Note that we generally follow the same hyperparameters as during the initial, dense

training stage.

Iterate for increased sparsity and performance. Naturally, we can iteratively

repeat the Prune and Train step to further sparsify the flow (Lines 4-7 of Algo-

rithm 6). Moreover, the resulting sparsity-performance trade-off is affected by the

total number of iterations, the relative prune ratio 𝑃𝑅 per iteration, and the amount

of training between Prune steps. We find that a good trade-off is to keep the amount

of training constant across all iterations and tune it such that the initial, dense flow

is essentially trained to (or close to) convergence. Depending on the difficulty of

the task and the available compute resources we can then adapt the per-iteration

prune ratio 𝑃𝑅. Note that the overall relative sparsity after 𝑛 iterations is given

by (1 − 𝑃𝑅)𝑛. Detailed hyperparameters for each experiment are provided in the

supplementary material.

8.4 Experimental Setup

We provide the necessary hyperparameters to reproduce our experiments below. For

each set of experiments (Toy, Tabular, Images) we summarize the architecture of the

unpruned model and relevant hyperparameters pertaining to the training/pruning

process. For the experiments on the toy datasets, we based our code on the TorchDyn

library (Poli et al., 2020a). For the experiments on the tabular datasets and image

experiments, we based our code on the official code repository of FFJORD (Grathwohl

et al., 2019).

8.5 Experiments

We perform a diverse set of experiments demonstrating the effect of pruning on the

generalization capability of continuous-depth models. Our experiments include prun-

ing ODE-based flows in density estimation tasks with increasing complexity, as well

209

Table 8.2: Toy Dataset Hyperparameters.

Hyperparameters Gaussians GaussianSpiral Spiral Moon

Architecture

Layers 2 4 4 2
Hidden Size 128 64 64 128
Activation Sigmoid Sigmoid Sigmoid Tanh
Divergence Hutchison Hutchison Hutchison Hutchison

Solver

Type Dopri Dopri Dopri Dopri
Rel. tol. 1.0e-5 1.0e-5 1.0e-5 1.0e-4
Abs. tol 1.0e-5 1.0e-5 1.0e-5 1.0e-4
Backprop. Adjoint Adjoint Adjoint Adjoint

(Re-)Training

Optimizer AdamW AdamW AdamW Adam
Epochs 100 100 100 50
Batch size 1024 1024 1024 128
LR 5.0e-3 5.0e-2 5.0e-2 1.0e-2
𝛽1 0.9 0.9 0.9 0.9
𝛽2 0.999 0.999 0.999 0.999
Weight decay 1.0e-5 1.0e-2 1.0e-6 1.0e-4

Pruning 𝑃𝑅 10% 10% 10% 10%

as pruning neural ODEs in supervised inference tasks. The density estimation tasks

were conducted on flows equipped with Free-form Jacobian of Reversible Dynam-

ics (FFJORD) (Grathwohl et al., 2019), using adaptive ODE solvers (Dormand and

Prince, 1980). We used two code bases (FFJORD from Grathwohl et al. (2019) and

TorchDyn (Poli et al., 2020a)) over which we implemented our pruning framework.

Baselines. In complex density estimation tasks we compare the performance of

Sparse Flows to a variety of baseline methods including: FFJORD (Grathwohl et al.,

2019), masked autoencoder density estimation (MADE) (Germain et al., 2015), Real

NVP (Dinh et al., 2016), masked autoregressive flow (MAF) (Papamakarios et al.,

2017), Glow (Kingma and Dhariwal, 2018), convex potential flows (CP-Flow) (Huang

et al., 2020), transformation autoregressive networks (TAN) (Oliva et al., 2018b), neu-

ral autoregressive flows (NAF) (Huang et al., 2018a), and sum-of-squares polynomial

flow (SOS) (Jaini et al., 2019).

210

Table 8.3: Tabular Datasets Hyperparameters.

Hyperparameters Power Gas Hepmass Miniboone Bsds300

Architecture Please refer to Table 4, Appendix B.1 of Grathwohl et al. (2019).

Solver Please refer to Appendix C of Grathwohl et al. (2019).

(Re-)Training

Optimizer Adam Adam Adam Adam Adam
Epochs 100 30 400 400 100
Batch size 10000 1000 10000 1000 10000
LR 1.0e-3 1.0e-3 1.0e-3 1.0e-3 1.0e-3
LR step 0.1@{90, 97} 0.1@{25, 28} 0.1@{250, 295} 0.1@{300, 350} 0.1@{96, 99}
𝛽1 0.9 0.9 0.9 0.9 0.9
𝛽2 0.999 0.999 0.999 0.999 0.999
Weight decay 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6

Pruning 𝑃𝑅 25% 25% 22% 22% 25%

Table 8.4: Image Datasets Hyperparameters.

Hyperparameters MNIST CIFAR-10

Architecture Please refer to Appendix B.1 (multi-scale) of Grathwohl et al. (2019).

Solver Please refer to Appendix C of Grathwohl et al. (2019).

(Re-)Training

Optimizer Adam Adam
Epochs 50 50
Batch size 200 200
LR 1.0e-3 1.0e-3
LR step 0.1@{45} 0.1@{45}
𝛽1 0.9 0.9
𝛽2 0.999 0.999
Weight decay 0.0 0.0

Pruning 𝑃𝑅 22% 22%

8.5.1 Density Estimation on 2D Data

In the first set of experiments, we train FFJORD on a multi-modal Gaussian distribu-

tion, a multi-model set of Gaussian distributions placed orderly on a spiral as well as

a spiral distribution with sparse regions. Figure 8-4 (first row) illustrates that densely

connected flows (prune ratio = 0%) might get stuck in sharp local minima and as a

result induce mode collapse (Srivastava et al., 2017). Once we perform unstructured

pruning, we observe that the quality of the density estimation in all tasks consider-

ably improves, c.f. Figure 8-4 (second and third rows). If we continue sparsifying the

flows, depending on the task at hand, the flows get disrupted again.

Therefore, there is a certain threshold for pruning flows required to avoid gen-

erative modeling issues such as mode-collapse in continuous flows. We validate this

211

0 50
Prune Ratio (%)

1.2

1.3

Lo
ss

 (N
LL

)

Unstructured Pruning Structured Pruning

0 20 40 60 80
Prune Ratio (%)

1.15

1.20

1.25

1.30

1.35

1.40
Lo

ss
 (N

LL
)

(a) Gaussians

0 20 40 60 80
Prune Ratio (%)

0.60

0.65

0.70

0.75

0.80

Lo
ss

 (N
LL

)

(b) Gaussian Spiral

0 20 40 60 80
Prune Ratio (%)

1.4

1.6

1.8

2.0

Lo
ss

 (N
LL

)

(c) Spiral

Figure 8-3: Negative log likelihood of Sparse Flow as function of prune ratio.

observation by plotting the negative log-likelihood loss as a function of the prune

ratio in all three tasks with both unstructured and structured pruning. As shown in

Figure 8-3, we confirm that sparsity in flows improves the performance of continuous

normalizing flows.

We further explore the inner dynamics of the flows between unpruned and pruned

networks on the multi-modal case, with the aim of understanding how pruning en-

hances density estimation performance. Figure 8-5 represents the vector-field con-

structed by each flow to model 6-Gaussians independently. We observe that sparse

flows with PR of 70% attract the vector-field directions uniformly towards the mean

of each Gaussian distribution. In contrast, unpruned flows do not exploit this feature

and contain converging vectors in between Gaussians. This is how the mode-collapse

occurs.

8.5.2 Density Estimation on Real Data – Tabular

We scale our experiments to a set of five real-world tabular datasets (prepared based

on the instructions given by Papamakarios et al. (2017) and Grathwohl et al. (2019))

to verify our empirical observations about the effect of pruning on the generalizability

of continuous normalizing flows. Table 8.5 summarizes the results. We observe that

sparsifying FFJORD flows substantially improves their performance in all 5 tasks. In

particular, we gain up to 42% performance gain in the POWER, 35% in GAS, 12%

in HEPMASS, 5% in MINIBOONE and 19% in BSDS300.

More importantly, this is achieved with flows with 1 to 3 orders of magnitude

212

P
R
=
0
%

P
R
=
3
0%

P
R
=
5
0%

P
R
=
7
0%

P
R
=
9
0%

Figure 8-4: Unstructured pruning of FFJORD (PR= Prune ratio).

less parameters compared to other advanced flows. On MINIBOONE dataset for

instance, we found a sparse flow with only 4% of its original network that outperforms

its densely-connected FFJORD flow. On MINIBOONE, Autoregressive flows (NAF)

and sum-of-squares models (SOS) which outperform all other models possess 8.03

and 6.87 million parameters. In contrast, we obtain a Sparse Flow with only 32K

parameters that outperform all models except NAF and SOS.

Let us now look at the loss versus prune-ratio trends in all experiments to conclude

our empirical observations on real-world tabular datasets. As shown in Figure 8-7, we

observe that pruning considerably improves the performance of flows at larger scale

as well.

8.5.3 Density Estimation on Real-Data – Vision

Next, we extend our experiments to density estimation for image datasets, MNIST

and CIFAR10. We observe a similar case on generative modeling with both datasets,

213

Unpruned

PR = 20% PR = 70% PR = 90%

U
n
st
ru

ct
u
re
d

P
ru

n
in
g

S
tr
u
ct
u
re
d

P
ru

n
in
g

Figure 8-5: Multi-modal Gaussian flow and pruning. We observe that Sparse Flows
attract the vector-field directions uniformly towards the mean of each Gaussian distri-
bution, while an unpruned flow does not exploit this feature and contains converging
vectors in between Gaussians.

where pruned flows outperform densely-connected FFJORD flows. On MNIST, a

sparse FFJORD flow with 63% of its weights pruned outperforms all other bench-

marks. Compared to the second best flow (Residual flow), our sparse flow contains

70x less parameters (234K vs 16.6M). On CIFAR10, we achieve the second best per-

formance with over 38x less parameters compared to Residual flows which performs

best.

0 20 40 60 80
Prune Ratio (%)

0.95

0.96

0.97

0.98

0.99

1.00

Lo
ss

 (N
LL

)

(a) MNIST.

0 20 40 60 80
Prune Ratio (%)

3.38

3.40

3.42

3.44

3.46

Lo
ss

 (N
LL

)

(b) CIFAR10.

Figure 8-6: Loss vs. prune ratio for MNIST and CIFAR10. Unstructured Pruning is
applied.

Furthermore, on CIFAR10, Glow with 44 million parameters performs on par

with our sparse FFJORD network with 657k parameters. It is worth mentioning that

FFJORD obtains this results by using a simple Gaussian prior, while Glow takes

advantage of learned base distribution (Grathwohl et al., 2019). Figure 8-6 illustrates

214

Table 8.5: Negative test log-likelihood (NLL) in nats of tabular datasets from (Papa-
makarios et al., 2017) and corresponding architecture size in number of parameters
(#params). Sparse Flow (based on FFJORD) with lowest NLL and competing base-
line with lowest NLL are bolded.

Model
Power Gas Hepmass Miniboone BSDS300

nats #params nats #params nats #params nats #params nats #params

MADE (Germain et al., 2015) 3.08 6K -3.56 6K 20.98 147K 15.59 164K -148.85 621K

Real NVP (Dinh et al., 2016) -0.17 212K -8.33 216K 18.71 5.46M 13.84 5.68M -153.28 22.3M

MAF (Papamakarios et al., 2017) -0.24 59.0K -10.08 62.0K 17.70 1.47M 11.75 1.64M -155.69 6.21M

Glow (Kingma and Dhariwal, 2018) -0.17 N/A -8.15 N/A 18.92 N/A 11.35 N/A -155.07 N/A

CP-Flow (Huang et al., 2020) -0.52 5.46M -10.36 2.76M 16.93 2.92M 10.58 379K -154.99 2.15M

TAN (Oliva et al., 2018b) -0.60 N/A -12.06 N/A 13.78 N/A 11.01 N/A -159.80 N/A

NAF (Huang et al., 2018a) -0.62 451K -11.96 443K 15.09 10.7M 8.86 8.03M -157.73 42.3M

SOS (Jaini et al., 2019) -0.60 212K -11.99 256K 15.15 4.43M 8.90 6.87M -157.48 9.09M

FFJORD (Grathwohl et al., 2019) -0.35 43.3K -8.58 279K 17.53 547K 10.50 821K -128.33 6.70M

Sparse Flow

-0.45 30K -10.79 194K 16.53 340K 10.84 397K -145.62 4.69M

-0.50 23K -11.19 147K 15.82 160K 10.81 186K -148.72 3.55M

-0.53 13K -11.59 85K 15.60 75K 9.95 32K -150.45 2.03M

-0.52 10K -11.47 64K 15.99 46K 10.54 18K -151.34 1.16M

0 20 40 60 80
Prune Ratio (%)

0.50

0.45

0.40

0.35

Lo
ss

 (N
LL

)

(a) Power

0 20 40 60 80
Prune Ratio (%)

11.5

11.0

10.5

10.0

9.5

9.0

Lo
ss

 (N
LL

)

(b) Gas

0 20 40 60 80
Prune Ratio (%)

16.0

16.5

17.0

Lo
ss

 (N
LL

)

(c) Hepmass

0 20 40 60 80
Prune Ratio (%)

10.0

10.5

11.0

11.5

Lo
ss

 (N
LL

)

(d) Miniboone

0 20 40 60 80
Prune Ratio (%)

150

145

140

135

Lo
ss

 (N
LL

)

(e) Bsds300

Figure 8-7: Negative log-likelihood versus prune ratio on tabular datasets with un-
structured pruning.

the improvement of the loss (negative log-likelihood) in density estimation on image

datasets as a result of pruning neural ODEs. Around 60% sparsity of a continuous

normalizing flow leads to better generative modeling compared to densely structured

flows.

215

Table 8.6: Negative test log-likelihood (NLL) in bits/dim for image datasets and
corresponding architecture size in number of parameters (#params). Sparse Flow
(based on FFJORD) with lowest NLL and competing baseline with lowest NLL are
bolded.

Model
MNIST CIFAR-10

bits/dim #params bits/dim #params

MADE (Germain et al., 2015) 1.41 1.20M 5.80 11.5M

Real NVP (Dinh et al., 2016) 1.05 N/A 3.49 N/A

MAF (Papamakarios et al., 2017) 1.91 12.0M 4.31 115M

Glow (Kingma and Dhariwal, 2018) 1.06 N/A 3.35 44.0M

CP-Flow (Huang et al., 2020) 1.02 2.90M 3.40 1.90M

TAN (Oliva et al., 2018b) 1.19 N/A 3.98 N/A

SOS (Jaini et al., 2019) 1.81 17.2M 4.18 67.1M

RQ-NSF (Durkan et al., 2019) N/A 3.38 11.8M

Residual Flow (Chen et al., 2019) 0.97 16.6M 3.28 25.2M

FFJORD (Grathwohl et al., 2019)) 1.01 801K 3.44 1.36M

Sparse Flows (PR=20%) 0.97 641K 3.38 1.09M

Sparse Flows (PR=38%) 0.96 499K 3.37 845K

Sparse Flows (PR=52%) 0.95 387K 3.36 657K

Sparse Flows (PR=63%) 0.95 302K 3.37 510K

Sparse Flows (PR=71%) 0.96 234K 3.38 395K

Sparse Flows (PR=77%) 0.97 182K 3.39 308K

Sparse Flows (PR=82%) 0.98 141K 3.40 239K

Sparse Flows (PR=86%) 0.97 109K 3.42 186K

8.5.4 Pruning Flattens the Loss Surface

What could be the potential reason for the enhanced generalization of pruned CNFs

besides their ability to resolve mode-collapse which we observed before? To inves-

tigate this further, we conducted a Hessian-based analysis on the flows-under-test.

Dissecting the properties of the Hessian by Eigenanalysis allows us to gain useful

insights about the behavior of neural networks (Erichson et al., 2021; Ghorbani et al.,

2019; Hochreiter and Schmidhuber, 1997; Lechner and Hasani, 2020; Sagun et al.,

2017). We use PyHessian (Yao et al., 2020) tool-set to analyze the Hessian 𝐻 w.r.t.

the parameters of the CNF. This enables us to study the curvature of the loss function

as the eigenvalues of the Hessian determines (locally) the loss gradients’ changes.

Larger Hessian eigenvalues therefore, stand for sharper curvatures and their sign

216

Table 8.7: Eigenanalysis of the Hessian 𝐻 in terms of the largest eigenvalue (𝜆𝑚𝑎𝑥),
trace (tr), and condition number (𝜅) of pruned and unpruned continuous normalizing
flows on the mixture of Gaussian task. Numbers are normalized with respect to the
unpruned flow.

Model NLL 𝜆𝑚𝑎𝑥(𝐻) tr(𝐻) 𝜅(𝐻)

Unpruned FFJORD 1.309 1.000 1.000 1.000
Sparse Flows (PR=20%) 1.163 0.976 0.858 0.825
Sparse Flows (PR=60%) 1.125 0.356 0.583 0.717
Sparse Flows (PR=70%) 1.118 0.295 0.340 0.709

identifies upward or downward curvatures. In Table 8.7, we report the maximum

eigenvalue of the Hessian 𝜆𝑚𝑎𝑥, Hessian’s Trace, and the condition number 𝜅 = 𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
.2

Smaller 𝜆𝑚𝑎𝑥 and tr(𝐻) indicates that our normalizing flow found a flatter minimum.

As shown in Figure 8-2b, a flat minimum leads to a better generalization error as

opposed to a sharp minimum. We find that up to a certain prune ratio, the maximum

of the Hessian decreases and increases thereafter. Therefore, we claim that pruned

continuous flows finds flatter local minimum, therefore, it generalize better than their

unpruned version. Moreover, the Hessian condition number 𝜅 could be an indicator of

the robustness and efficiency of a deep model (Bottou and Bousquet, 2008). Smaller 𝜅

corresponds to obtaining a more robust learned agent. We observe that 𝜅 also follows

the same trend and up to a certain prune ratio it shrinks and then increases again

confirming our hypothesis.

8.5.5 On the Robustness of Decision Boundaries

While pruning improves performance, it is imperative to investigate their robustness

properties in constructing decision boundaries (Lechner et al., 2021). For feedforward

deep models it was recently shown that although pruned networks perform as well as

their unpruned version, their robustness significantly decreases due to smaller network

size (Liebenwein et al., 2021a). Is this also the case for neural ODEs?

We design an experiment to investigate this. We take a simple 2-Dimensional

2This experiment was inspired by the Hessian-based robustness analysis performed by Erichson
et al. (2021).

217

P
R
=
0%

P
R
=
84

%
P
R
=
96

%

Figure 8-8: Robustness of decision boundaries for pruned networks. Column 1 is the
decision boundary. Column 2 = state-space, and column 3 = the flow of data points.

moon dataset and perform classification using unpruned and pruned neural ODEs.3

This experiment (shown in Figure 8-8) demonstrates another valuable property of

neural ODEs: We observe that neural ODE instances pruned up to 84%, manage to

establish a safe decision boundary for the two half moon classes. This insight about

neural ODEs which was obtained by our pruning framework is another testimony

of the merits of using neural ODE in decision-critical applications. Additionally, we

observe that the decision-boundary gets very close to one of the classes for a network

pruned up to 96% which reduces robustness. Though even this network instance

provide the same classification accuracy compared to the densely connected version.

The state-space plot illustrates that a neural ODE’s learned vector-field becomes

edgier as we keep pruning the network. Nonetheless, we observe that the distribution

of the vector-field’s intensity (the color map in the second column) get attenuated

as we go further away from its center, in highly pruned networks. This indicates

that classification near the decision boundary is more sensitive to perturbations in

extremely pruned networks.

3This experiment is performed using the TorchDyn library (Poli et al., 2020a).

218

8.6 Discussion

We show the effectiveness of pruning for continuous neural networks. Pruning im-

proves generalization performance of continuous normalizing flows in density estima-

tion tasks at scale. Additionally, pruning allows us to obtain performant minimal

network instances with at least one order of magnitude less parameter count. By pro-

viding key insights about how pruning improves generative modeling and inference,

we enabled the design of better neural ODE instances.

Ensuring sparse Hessian computation for sparse continuous-depth models.

As we prune neural ODE instances, their weight matrices will contain zero entries.

However the Hessian with respect to those zero entries is not necessarily zero. There-

fore, when we compute the eigenvalues of the Hessian, we must ensure to make the

decomposition vector sets the Hessian of the pruned weights to zero before performing

our eigenanalysis.

What are the limitations of Sparse Flows? Similar to any ODE-based learning

system, the computational efficiency of Sparse Flows is highly determined by the

choice of their ODE solvers, data and model parameters. As the complexity of any of

these fronts increases, the number of function evaluations for a given task increases.

Thus we might have a slow training process. This computational overhead can be

relaxed in principle by the use of efficient ODE solvers (Poli et al., 2020b) and flow

regularization schemes (Massaroli et al., 2020).

What design notes did we learn from applying pruning to neural ODEs?

Our framework suggested that to obtain a generalizable sparse neural ODE repre-

sentation, the choice of activation function is important. In particular activations

that are Lipschitz continuous, monotonous, and bounded are better design choices

for density estimation tasks (Akiba et al., 2019; Hasani et al., 2019a,b). Moreover, we

find that the generalizability of sparse neural ODEs is more influenced by their neural

network’s width than their depth (number of layers). Furthermore, pruning neural

219

ODEs allows us to obtain better hyperparameters for the optimization problem by

setting a trade-off between the value of the learning rate and weight decay.

In summary, we hope to have shown compelling evidence for the effectiveness of

having sparsity in ODE-based flows.

220

Chapter 9

Conclusion

9.1 Summary

In this thesis, we present multiple avenues towards designing more capable and more

efficient deep learning systems. We take a holistic approach in the sense that we

initially analyze neural networks from first principles to derive analytical bounds on

the performance-efficiency trade-offs in modern deep learning architectures. We then

take a deep dive into translating our theoretical findings into practical algorithms

that can generate efficient neural networks and applications thereof.

We contribute a novel set of techniques to analyze neural networks that are rooted

in coresets and provide an intuitive analytical tool box in terms of empirical sensitivity,

i.e., a novel measure of the relative importance of individual structures in the network

(Part I). Moreover, our sensitivity-based framework can serve as a modular and

flexible proving technique for various types of network architectures.

We then derive practical algorithms from our theoretical insights for obtaining

efficient networks using filter pruning and low-rank compression (Part II). To this

end, we build upon our analytical bounds that characterize the emerging trade-off

between size and approximation error of individual network layers. Thereafter, we

develop state-of-the-art methods that aim at optimally compressing individual layers

while accounting for the resulting approximation error in the network. We find that

these insights lead to more efficient and performant architectures in practice.

221

Finally, we study the effects of pruning beyond common benchmarks to analyze

the potential of pruning in a broader spectrum of prospective applications (Part III).

On the one hand, we find that pruning may adversely affect the generalization ability

of the network to generalize to out-of-distribution input data. We empirically show

that this phenomenon is linked to the intrinsic relation between the stochastic training

procedure and the overparameterized optimization landscape. On the other hand, we

provide compelling evidence that pruning can improve the convergence of training by

removing redundant parameters and thus help in the training procedure to find better-

generalizing local optima. We empirically analyze these observations in the context of

continuous-depth models. Their underlying computation graph is significantly more

complex given the recurrent nature of these models and pruning can thus act as potent

regularizer during training.

9.2 Lessons Learned

Below, we provide an informal platform to discuss some of the key insights that the

author gathered over the course of the thesis research.

Theory-informed Empiricism

The research presented in this thesis very much starts out with the premise of devel-

oping a theoretical framework to describe the performance-size trade-off in neural net-

works. We analyze how we can downsample neural network parameters and provide

accompanying relative error bounds with high probability. We also draw connections

to the theory of generalization, which in some sense can be seen as the theoretical

“sibling” of pruning. In generalization theory, we aim to describe the required com-

plexity of the underlying architectures for a given learning task. In pruning, we aim

to optimize for the architecture and accompanying weights with lowest complexity

for a given learning task.

In that sense, our theoretical results help us gain important insights into what is

theoretically possible in the analysis of neural networks. One of the main insights,

222

we gain from our theoretical analysis is that we can often times accurately capture

and describe local, layer-wise behavior of the network. However, analyzing the entire

network architecture often time leads to highly inaccurate bounds given that we have

to repeatedly consider upper bounds for the resulting error accumulated across many

layers. This problem is exacerbated by the highly flexible configuration space of

networks and the resulting diversity in architectures.

Likewise in practice, we observe that pruning individual layers is a manageable

task. However, understanding how an architecture should be optimally pruned as a

whole is a notoriously difficult task that we can only solve approximately optimal even

with today’s compute capabilities. These connections between some of the weaknesses

in the theoretical analysis and corresponding empirical observations can enable us to

leverage our theory to design better and more-informed pruning algorithms.

To this end, we leverage our tight error analysis of individual layers to devise

efficient per-layer pruning strategy. Specifically, we are still able to leverage our

theoretical description of the per-layer pruning procedure in terms of the relative

error guarantees to devise approximately optimal pruning strategies for the entire

network.

Unfortunately, we cannot simply use our global network analysis to inform our

pruning strategy in the same manner. We are hereby limited by our analysis as the

resulting error bounds often times only constitute a fairly loose upper bound. That

is where our main insight comes into play: Our theoretical analysis indicates that the

overall error in the network can be described as a weighted sum, or as some function

more generally speaking, of the relative error in individual layers. We then use this

insight to design better pruning algorithms in practice that are based on optimizing

a convex objective that is a function of the relative error in individual layers.

This example illustrates that we can often times develop and design performant

algorithms in practice with insights developed from the accompanying theory even in

research domains like deep learning that are mostly driven by empirical results. Unlike

some typical problems in computer science (graph algorithms, sorting algorithms,

and so many more) however, we cannot necessarily hope to develop a theoretical

223

description that directly translates into performant algorithms. Such connections, as

seen with the research presented in this thesis, are often times more entangled and

require a careful trade-off with some empirical observations and intuition.

Empiricism-informed Theory

In the same spirit that theory can guide our empirical performance improvements,

empiricism can also lead to better approaches in theory. In this thesis, our empirical

insights have guided our theoretical exploration as well.

A key observation of our early experiments is that heuristics can achieve a close-to-

optimal performance on unstructured pruning. Specifically, using magnitude pruning,

i.e., dropping the weights with lowest absolute value up to a desired threshold, leads

to consistent state-of-the-art results in terms of the performance-size trade-off across

numerous benchmarks and pruning setups.

However, at the same time, there is a gap in the literature of how to optimally

prune network architectures in a structured manner, e.g., by removing entire channels

or low-rank decomposing individual layers. As a consequence, prior work often relies

on manual ablation studies, large-scale grid searches, or other types of error-and-

trial approaches to better assess the trade-offs. While this is useful to gain insights

for particular use cases, such observations hardly generalize beyond the investigated

network architectures.

This conclusion has led us to analyze different types of pruning, mainly neuron and

channel pruning, using our empirical sensitivity framework. As part of the research

presented in this thesis, we show how we can generalize our theoretical analysis to

channel pruning and devise a practical channel pruning algorithm. In our experimen-

tal evaluations, we see that our theory-guided approach leads to clear improvements

in terms of the performance-size trade-off for neural networks.

In this particular scenario, empirical observations enabled us to understand for

what type of problems our intuition about the problem – and thus our ability to devise

suitable heuristics – was sufficient to design effective algorithms (cf. weight pruning)

and where it was not (cf. channel pruning). More generally speaking, empiricism can

224

provide valuable insights into understanding where a deeper theoretical understanding

is required in order to obtain sufficiently performant algorithms.

A Robust Experimental Platform

While conducting the thesis research, the author co-developed a robust and scalable

experiment platform for large-scale testing of our algorithms. This greatly reduced

the friction between our empirical observations and theoretical advancements as well

as enabled us to quickly iterate on our algorithms. While developing robust software

might be a large up-front cost to pay in a fast-paced research environment, it greatly

improves upon the quality of research in the long run.

At the end of the day, deep learning always imposes a significant experimental

overhead as we experiment with different networks, datasets, pruning pipelines, or

hyperparameters. Without the ability to quickly test a variety of configurations,

we might be misguided, overly focus on aspects of the research that do not lead to

significant improvements, or overfit to a particular scenario.

On the other hand, having a robust and standardized experimental platform may

lead to new levels of abstractions that in turn may inform new research ideas and fuel

breakthroughs in the field. This has already led to significant advancements in recent

years, e.g., the advent of Transformers in NLP (Brown et al., 2020) that was enabled

by the ability to train neural networks in a highly distributed fashion. We envision

that the trend towards standardization and abstraction of common deep learning

practices will be crucial in facilitating future advancements in artificial intelligence.

9.3 Closing Remarks

With the push towards global digitalization, we have established the foundations

for harnessing and leveraging big data across numerous aspects of our personal and

professional lives. Machine learning and, in particular, deep learning are powerful

techniques that are increasingly becoming drivers of innovation to turn these enor-

mous amounts of data into consequential insights and so far we have only scratched

225

the surface of what may be achievable down the road. By reducing the computa-

tional cost and consequently the required resources, we can significantly lower the

entry barriers to deep learning and broadening the range of potential applications.

With the methods presented in this thesis, we aspire to contribute an impactful and

valuable set of techniques towards realizing this vision.

Funding

This research was sponsored by the United States Air Force Research Laboratory and

the United States Air Force Artificial Intelligence Accelerator and was accomplished

under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions

contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the United States Air

Force or the U.S. Government. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any copyright notation

herein. This research was further supported in part by The Boeing Company, the

U.S. National Science Foundation (NSF) under Awards 1723943 and 1526815, Office

of Naval Research (ONR) Grant N00014-18-1-2830, Microsoft, and JP Morgan Chase.

226

Appendix A

Appendix: Automatic Layer-wise

Decomposition

We provide additional results of our experimental evaluations for Chapter 6. Specif-

ically, we provide tabularized results of our benchmark experiments presented in

Section 6.3.2.

227

Table A.1: The maximal compression ratio for which the drop in test accuracy is
at most some pre-specified 𝛿 on CIFAR-10. The table reports compression ratio in
terms of parameters and FLOPs, denoted by CR-P and CR-F, respectively. When
the desired 𝛿 was not achieved for any compression ratio in the range the fields are
left blank. The top values achieved for CR-P and CR-F are bolded.

C
IF

A
R

10

Model
Prune

Method
𝛿 = 0.0% 𝛿 = 0.5% 𝛿 = 1.0% 𝛿 = 2.0% 𝛿 = 3.0%

Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F

ResNet20
Top1: 91.39

ALDS +0.09 64.58 55.95 -0.47 74.91 67.86 -0.68 79.01 71.59 -1.88 87.68 83.23 -2.59 89.65 85.32

PCA +0.16 39.98 38.64 -0.11 49.88 48.67 -0.58 58.04 57.21 -1.41 70.54 70.78 -2.11 75.23 76.01

SVD-Energy +0.14 40.22 39.38 -0.21 49.88 49.08 -0.83 57.95 57.15 -1.52 64.76 64.10 -2.17 70.47 70.01

SVD +0.24 14.36 15.34 -0.29 39.81 38.95 -0.90 49.19 50.21 -1.08 57.47 57.80 -2.88 70.14 71.31

L-Rank +0.14 15.00 29.08 -0.44 28.71 54.89 -0.44 28.71 54.89 -1.56 49.87 72.57 -2.82 64.81 80.80

FT +0.15 15.29 16.66 -0.32 39.69 39.57 -0.75 57.77 55.85 -1.88 74.89 71.76 -2.71 79.29 76.74

PFP +0.12 28.74 20.56 -0.28 40.28 30.06 -0.85 58.26 46.94 -1.56 70.49 59.78 -2.57 79.28 69.27

VGG16
Top1: 92.78

ALDS +0.29 94.89 83.94 -0.11 95.77 86.23 -0.52 97.01 88.95 -0.52 97.03 88.95 -0.52 97.03 88.95

PCA +0.47 87.74 81.05 -0.02 89.72 85.84 -0.02 89.72 85.84 -1.12 91.37 89.57 -1.12 91.37 89.57

SVD-Energy +0.35 79.21 78.70 -0.08 82.57 81.32 -0.83 87.74 85.36 -1.22 89.71 87.13 -2.08 91.37 88.58

SVD +0.29 70.35 70.13 +0.29 70.35 70.13 -0.74 75.18 75.13 -1.58 82.58 82.39 -1.58 82.58 82.39

L-Rank +0.35 82.56 69.67 -0.35 85.38 75.86 -0.35 85.38 75.86 -0.35 85.38 75.86 -0.35 85.38 75.86

FT +0.17 64.81 62.16 -0.47 79.13 78.44 -0.87 82.61 82.41 -1.95 89.69 89.91 -2.66 91.35 91.68

PFP +0.16 89.73 74.61 -0.47 94.87 84.76 -0.96 96.40 88.38 -1.33 97.02 90.25 -1.33 97.02 90.25

DenseNet22
Top1: 89.88

ALDS +0.17 48.85 51.90 -0.32 56.84 61.98 -0.54 63.83 69.68 -1.87 69.67 74.48 -1.87 69.67 74.48

PCA +0.20 14.67 34.55 +0.20 14.67 34.55 -0.73 28.83 57.02 -0.73 28.83 57.02 -2.75 40.51 70.03

SVD-Energy -0.29 15.16 19.34 -0.29 15.16 19.34 -1.28 28.62 33.26 -2.21 40.20 44.72

SVD +0.13 15.00 15.33 +0.13 15.00 15.33 -0.87 26.73 27.41 -0.87 26.73 27.41 -2.51 37.99 39.25

L-Rank +0.26 14.98 35.21 +0.26 14.98 35.21 -0.90 28.67 63.55 -1.82 40.33 73.45 -1.82 40.33 73.45

FT +0.15 15.49 16.70 -0.24 28.33 29.50 -0.24 28.33 29.50 -1.46 51.10 51.03 -2.40 64.12 63.09

PFP +0.00 28.68 32.60 -0.44 40.24 43.37 -0.70 49.67 51.94 -1.36 58.20 58.21 -2.43 65.17 64.50

WRN16-8
Top1: 95.21

ALDS +0.05 28.67 13.00 -0.42 87.77 79.90 -0.88 92.75 87.39 -1.53 95.69 92.50 -2.23 97.01 95.51

PCA +0.14 15.00 7.98 -0.49 85.33 83.45 -0.96 91.33 90.23 -1.76 93.90 93.15 -2.45 94.87 94.30

SVD-Energy +0.29 15.01 6.92 -0.41 64.75 60.94 -0.81 85.38 83.52 -1.90 91.38 90.04 -2.46 92.77 91.58

SVD -0.96 40.20 39.97 -1.63 70.48 70.49 -1.63 70.48 70.49

L-Rank +0.25 14.99 6.79 -0.45 49.86 58.00 -0.88 75.20 82.26 -1.70 87.73 92.03 -2.18 89.72 93.51

FT +0.03 64.54 61.53 -0.32 82.33 75.97 -0.95 89.70 83.52 -1.78 94.91 90.82 -2.86 96.42 93.33

PFP +0.05 57.92 54.74 -0.44 85.33 80.68 -0.77 89.71 85.16 -1.69 95.65 92.60 -2.40 96.96 94.36

Table A.2: The maximal compression ratio for which the drop in test accuracy is
at most 𝛿 = 1.0% for ResNet20 (CIFAR-10) for various amounts of retraining (as
indicated). The table reports compression ratio in terms of parameters and FLOPs,
denoted by CR-P and CR-F, respectively. When the desired 𝛿 was not achieved for
any compression ratio in the range the fields are left blank. The top values achieved
for CR-P and CR-F are bolded.

C
IF

A
R

10

Model
Prune

Method
𝑟 = 0% 𝑒 𝑟 = 5% 𝑒 𝑟 = 10% 𝑒 𝑟 = 25% 𝑒 𝑟 = 50% 𝑒 𝑟 = 100% 𝑒

Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F Top1 Acc. CR-P CR-F

ResNet20
Top1: 91.39

ALDS -0.13 14.82 7.03 -0.53 35.87 26.27 -0.73 43.12 33.65 -0.65 43.14 33.33 -0.86 62.39 54.40 -0.88 81.29 74.23

PCA -0.74 19.31 18.64 -0.70 19.34 18.44 -0.59 36.21 35.19 -0.74 60.29 59.81

SVD-Energy -0.64 14.99 14.09 -0.70 19.61 18.81 -0.59 19.61 18.81 -0.73 43.46 42.49 -0.46 55.25 54.59

SVD -0.83 14.36 15.34 -0.58 14.36 15.34 -0.69 28.21 29.11 -0.77 51.58 51.52

L-Rank -0.64 15.00 29.08 -0.33 15.00 29.08 -0.44 28.71 54.89

FT -0.67 15.29 16.66 -0.69 27.76 28.40 -0.75 57.77 55.85

PFP -0.77 14.88 9.61 -0.83 32.71 23.85 -0.54 52.89 42.04

228

Table A.3: The maximal compression ratio for which the drop in test accuracy is at
most some pre-specified 𝛿 on ResNet18 (ImageNet). The table reports compression
ratio in terms of parameters and FLOPs, denoted by CR-P and CR-F, respectively.
When the desired 𝛿 was not achieved for any compression ratio in the range the fields
are left blank. The top values achieved for CR-P and CR-F are bolded.

Im
ag

eN
et

Model
Prune

Method
𝛿 = 0.0% 𝛿 = 0.5% 𝛿 = 1.0% 𝛿 = 2.0% 𝛿 = 3.0%

Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F

ResNet18
Top1: 69.64
Top5: 88.98

ALDS +0.24/+0.39 50.33 23.62 -0.40/-0.05 66.70 43.51 -0.40/-0.05 66.70 43.51 -1.58/-0.55 77.62 59.51 -2.70/-1.39 81.69 66.68

PCA -0.95/-0.37 9.99 12.78 -1.71/-0.85 50.42 51.68 -2.40/-1.06 59.38 60.04

SVD-Energy -1.49/-0.64 39.56 40.99 -2.90/-1.38 59.43 60.65

SVD -1.75/-0.72 50.38 50.37 -2.16/-0.85 59.36 59.33

L-Rank -0.71/-0.23 10.01 32.64 -0.71/-0.23 10.01 32.64 -2.38/-1.38 26.24 59.82

FT +0.10/+0.42 9.86 11.17 +0.10/+0.42 9.86 11.17 -0.66/-0.17 26.08 26.44 -1.83/-0.73 39.88 38.13 -2.99/-1.41 50.33 47.18

PFP +0.36/+0.51 10.09 7.35 -0.39/-0.08 26.35 17.96 -0.39/-0.08 26.35 17.96 -1.62/-0.71 39.66 27.71 -1.62/-0.71 39.66 27.71

Table A.4: The maximal compression ratio for which the drop in test accuracy is
at most 𝛿 = 1.0% for ResNet18 (ImageNet) for various amounts of retraining (as
indicated). The table reports compression ratio in terms of parameters and FLOPs,
denoted by CR-P and CR-F, respectively. When the desired 𝛿 was not achieved for
any compression ratio in the range the fields are left blank. The top values achieved
for CR-P and CR-F are bolded.

Im
ag

eN
et

Model
Prune

Method
𝑟 = 0% 𝑒 𝑟 = 5% 𝑒 𝑟 = 10% 𝑒 𝑟 = 25% 𝑒 𝑟 = 50% 𝑒 𝑟 = 100% 𝑒

Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F Top1/5 Acc. CR-P CR-F

ResNet18
Top1: 69.62
Top5: 89.08

ALDS -0.54/-0.24 39.57 15.20 -0.48/-0.24 50.46 23.70 -0.72/-0.30 53.50 26.90 -0.64/-0.31 61.90 36.58 -0.40/-0.23 68.78 47.23 -0.73/-0.31 70.73 49.85

PCA -inf/-inf 3.33 3.99 -0.80/-0.38 26.21 27.53 -0.76/-0.51 39.53 40.45 -inf/-inf 6.65 8.14

SVD-Energy -0.28/-0.14 10.00 11.05 -0.25/-0.12 10.00 11.05 -0.55/-0.25 26.24 27.14 -0.66/-0.33 39.56 40.48 -inf/-inf 3.33 3.66

SVD -0.32/-0.13 9.98 9.94 -0.19/-0.07 9.98 9.94 -0.71/-0.34 30.63 30.82 -0.59/-0.32 39.53 39.51 -inf/-inf 3.33 3.31

L-Rank -inf/-inf 3.34 10.88 -0.40/-0.23 10.01 32.40 -0.16/+0.03 10.01 32.40 -0.72/-0.26 10.01 32.40

FT -inf/-inf 3.36 3.75 -0.21/-0.15 9.95 10.78 -0.83/-0.46 26.29 26.57 -0.66/-0.32 26.12 26.62

PFP -inf/-inf 3.34 2.37 -0.14/-0.13 9.96 7.72 -0.37/-0.31 20.76 15.14 -0.38/-0.15 26.35 19.14

Table A.5: The maximal compression ratio for which the drop in test accuracy is
at most some pre-specified 𝛿 on DeeplabV3-ResNet50 (Pascal VOC2012). The table
reports compression ratio in terms of parameters and FLOPs, denoted by CR-P and
CR-F, respectively. When the desired 𝛿 was not achieved for any compression ratio
in the range the fields are left blank. The top values achieved for CR-P and CR-F
are bolded.

V
O

C
S

eg
m

en
ta

ti
on

20
12

Model
Prune

Method
𝛿 = 0.0% 𝛿 = 0.5% 𝛿 = 1.0% 𝛿 = 2.0% 𝛿 = 3.0%

IoU/Top1 Acc. CR-P CR-F IoU/Top1 Acc. CR-P CR-F IoU/Top1 Acc. CR-P CR-F IoU/Top1 Acc. CR-P CR-F IoU/Top1 Acc. CR-P CR-F

DeeplabV3-ResNet50

IoU: 68.16
Top1: 94.25

ALDS +0.14/-0.15 64.38 64.11 +0.14/-0.15 64.38 64.11 +0.14/-0.15 64.38 64.11 -1.22/-0.36 71.36 70.89 -2.76/-0.61 76.96 76.37

PCA -0.26/-0.02 31.59 31.63 -0.88/-0.24 55.68 55.82 -1.74/-0.39 64.33 64.54 -2.54/-0.46 71.29 71.63

SVD-Energy -1.88/-0.47 31.61 32.27 -2.78/-0.62 44.99 45.60

SVD +0.01/-0.02 14.99 14.85 -0.28/-0.18 31.64 31.51 -0.89/-0.25 45.02 44.95 -1.97/-0.50 64.42 64.42 -1.97/-0.50 64.42 64.42

L-Rank -0.42/-0.09 44.99 45.02 -0.42/-0.09 44.99 45.02 -1.29/-0.33 55.74 56.01 -2.50/-0.57 64.39 64.82

FT

PFP +0.01/-0.05 31.79 30.62 -0.49/-0.21 45.17 43.93 -0.84/-0.32 55.78 54.61 -0.84/-0.32 55.78 54.61 -2.43/-0.61 64.47 63.41

229

230

Appendix B

Appendix: Pruning Beyond Test

Accuracy

We provide additional details and results pertaining to our experimental setup and

results of Chapter 7.

B.1 Detailed Methodology and Prune Results

Our experimental evaluations are based on a variety of neural network architec-

tures including ResNets (He et al., 2016), VGGs (Simonyan and Zisserman, 2014),

DenseNets (Huang et al., 2017), and WideResNets (Zagoruyko and Komodakis, 2016)

trained on CIFAR-10 (Torralba et al., 2008) and ImageNet (Russakovsky et al., 2015).

We also conduct experiments on a DeeplabV3 (Chen et al., 2017) with a ResNet50

backbone trained on the Pascal VOC 2011 segmentation data set (Everingham et al.,

2015). In the following section we outline the experimental details of the experiments

on which we base our observations. All networks were trained and evaluated on a

compute cluster with NVIDIA RTX 2080Ti and NVIDIA Titan RTX, and the exper-

iments were implemented in PyTorch (Paszke et al., 2017). For each trained network,

we summarize the hyperparameters and the resulting prune results on the nominal

test data.

231

Table B.1: We report the hyperparameters used during training, pruning, and re-
training for various convolutional architectures on CIFAR-10. LR hereby denotes
the learning rate and LR decay denotes the learning rate decay that we deploy after
a certain number of epochs. During retraining we used the same hyperparameters.
{30, . . .} denotes that the learning rate is decayed every 30 epochs.

VGG16 Resnet20/56/110 DenseNet22 WRN-16-8

Train

test error 7.19 8.6/7.19/6.43 10.10 4.81
loss cross-entropy cross-entropy cross-entropy cross-entropy

optimizer SGD SGD SGD SGD
epochs 300 182 300 200

warm-up 5 5 5 5
batch size 256 128 64 128

LR 0.05 0.1 0.1 0.1
LR decay 0.5@{30, . . . } 0.1@{91, 136} 0.1@{150, 225} 0.2@{60, . . . }

momentum 0.9 0.9 0.9 0.9
Nesterov 7 7 X X

weight decay 5.0e-4 1.0e-4 1.0e-4 5.0e-4

Prune
𝛾 1.0e-16 1.0e-16 1.0e-16 1.0e-16
𝛼 0.85 0.85 0.85 0.85

B.1.1 Experimental Setup for CIFAR-10

All hyperparameters for training, retraining, and pruning are outlined in Table B.1.

For training CIFAR-10 networks we used the training hyperparameters outlined in

the respective original papers, i.e., as described by He et al. (2016), Simonyan and

Zisserman (2014), Huang et al. (2017), and Zagoruyko and Komodakis (2016) for

ResNets, VGGs, DenseNets, and WideResNets, respectively. For retraining, we did

not change the hyperparameters and repurposed the training hyperparameters fol-

lowing the approaches of Liebenwein et al. (2020); Renda et al. (2020). We added a

warmup period in the beginning where we linearly scale up the learning rate from 0

to the nominal learning rate. Iterative pruning is conducted by repeatedly removing

the same ratio of parameters (denoted by 𝛼 in Table B.1). The prune parameter

𝛾 describes the failure probability of the (provable) randomized pruning algorithms

SiPP and PFP. We refer the reader to the respective papers for more details, see

the papers by Baykal et al. (2021b) and Liebenwein et al. (2020) for SiPP and PFP,

respectively.

232

20.0% 40.0% 60.0% 80.0% 100.0%
Pruned Parameters

-2.0%

-1.0%

0.0%

+1.0%
De

lta
 T

es
t A

cc
ur

ac
y

resnet20, CIFAR10

PFP
FT

SiPP
WT

(a) Resnet20

20.0% 40.0% 60.0% 80.0% 100.0%
Pruned Parameters

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet56, CIFAR10

PFP
FT

SiPP
WT

(b) Resnet56

20.0% 40.0% 60.0% 80.0% 100.0%
Pruned Parameters

-2.0%

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet110, CIFAR10

PFP
FT

SiPP
WT

(c) Resnet110

60.0% 70.0% 80.0% 90.0%
Pruned Parameters

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

vgg16_bn, CIFAR10
PFP
FT

SiPP
WT

(d) VGG16

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

De
lta

 T
es

t A
cc

ur
ac

y

densenet22, CIFAR10

PFP
FT

SiPP
WT

(e) DenseNet22

20.0% 40.0% 60.0% 80.0% 100.0%
Pruned Parameters

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 T
es

t A
cc

ur
ac

y

wrn16_8, CIFAR10

PFP
FT

SiPP
WT

(f) WRN16-8

Figure B-1: The difference in test accuracy to the uncompressed network for the
generated pruned models trained on CIFAR-10 for the evaluated pruning schemes for
various target prune ratios.

B.1.2 Pruning Performance on CIFAR-10

Below we provide the results regarding the achievable test accuracy of pruned net-

works across multiple target prune ratios. Figure B-1 indices the results for various

networks trained on CIFAR-10 using an iterative schedule to prune them. In Ta-

ble B.2, we indicate the maximal prune ratio (PR) and the maximal ratio of reduced

flops (FR) for which the network achieves commensurate accuracy (within 0.5% of

the original accuracy). We note that the performance of our pruned networks is com-

petitive with state-of-the-art pruning results (Baykal et al., 2021b; Han et al., 2015a;

Liebenwein et al., 2020; Renda et al., 2020). For ResNet20 for example, we are able to

prune the network to 85% sparsity while maintaining the original test error (-0.02%

test error), see Table B.2.

B.1.3 Experimental Setup on ImageNet

The hyperparameters for the ImageNet pruning experiments are summarized in Ta-

ble B.3. We consider pruned convolutional neural networks derived from Resnet18

233

Table B.2: Overview of the pruning performance of each algorithm for various CNN
architectures evaluated on the CIFAR data set. For each algorithm and network
architecture, the table reports the prune ratio (PR, %) and the ratio of flop reduction
(FR, %) of pruned models when achieving test accuracy within 𝛿 = 0.5% of the
original network’s test accuracy (or the closest result when the desired test accuracy
was not achieved for the range of tested PRs). The top values for the error and either
PR (for weight-based) or FR (for filter-based algorithms) are bolded, respectively.

Model
Orig. WT SiPP FT PFP

Err. Err. PR FR Err. PR FR Err. PR FR Err. PR FR

Resnet20 8.60 -0.02 84.92 81.04 -0.08 84.92 78.78 -0.33 52.06 24.98 -0.10 44.9 31.27

Resnet56 7.19 -0.53 92.91 94.31 -0.30 93.30 93.90 -0.38 82.71 65.50 -0.11 84.31 73.65

Resnet110 6.73 -0.10 95.76 96.73 -0.42 95.36 95.88 -0.25 86.71 72.07 -0.25 90.27 82.42

VGG16 7.19 -1.01 97.87 91.24 -0.82 98.00 88.45 -0.38 61.39 56.17 -0.15 90.30 72.03

DenseNet22 10.10 -0.09 71.38 76.81 -0.20 73.16 76.60 +0.21 43.55 42.95 -0.04 46.18 51.86

WRN16-8 4.81 -0.18 95.22 92.89 -0.21 95.30 92.03 +0.13 76.76 71.03 -0.08 78.79 74.51

Table B.3: We report the hyperparameters used during training, pruning, and re-
training for various convolutional architectures on ImageNet. LR hereby denotes the
learning rate and LR decay denotes the learning rate decay that we deploy after a
certain number of epochs.

ResNet18/101

Train

top-1 test error 30.26/22.63
top-5 test error 10.93/6.45

loss cross-entropy
optimizer SGD

epochs 90
warm-up 5

batch size 256
LR 0.1

LR decay 0.1@{30, 60, 80}
momentum 0.9

Nesterov 7

weight decay 1.0e-4

Prune
𝛾 1.0e-16
𝛼 0.90

234

and Resnet101. As in the case of the CIFAR-10 experiments, we re-purpose the train-

ing schedule from the original ResNet paper (He et al., 2016) for both training and

retraining. For multi-gpu training we use the linear scaling rule of (Goyal et al., 2017)

to scale up the learning rate and we use learning rate warm, where we linearly scale

up the learning rate from 0 to the nominal learning rate.

B.1.4 Pruning Performance on ImageNet

The results of our pruning experiments are summarized in Figure B-2 and Table B.4.

Given the computationally expensive nature of ImageNet experiments, we stopped

the experiments once the pruned network did not achieve commensurate accuracy

anymore (instead of going to extreme prune ratios where the performance decays

further). Specifically, we show the achievable test accuracy on nominal ImageNet

data for various target prune ratios in Figure B-2. In Table B.4 we additionally

report the maximal prune ratio (PR) and ratio of removed flops (FR) for which the

pruned network achieves commensurate accuracy (i.e. within 0.5% of the unpruned

network’s accuracy). Just as in the case of CIFAR-10, our results are competitive

with those reported in state-of-the-art papers (Han et al., 2015a; Liebenwein et al.,

2020; Renda et al., 2020).

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet18, ImageNet

SiPP
PFP

WT
FT

(a) Resnet18

10.0%20.0%30.0%40.0%50.0%60.0%70.0%
Pruned Parameters

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet101, ImageNet

SiPP
PFP

WT
FT

(b) Resnet101

Figure B-2: The accuracy of the generated pruned models trained on ImageNet for
the evaluated pruning schemes for various target prune ratios.

235

Table B.4: Overview of the pruning performance of each algorithm for various CNN
architectures trained and evaluated on the ImageNet data set. For each algorithm and
network architecture, the table reports the prune ratio (PR, %) and the ratio of flop
reduction (FR, %) of pruned models when achieving test accuracy within 𝛿 = 0.5%
of the original network’s test accuracy (or the closest result when the desired test
accuracy was not achieved for the range of tested PRs). The top values for the
error and either PR (for weight-based) or FR (for filter-based algorithms) are bolded,
respectively.

Model
Orig. WT SiPP FT PFP

Err. Err. PR FR Err. PR FR Err. PR FR Err. PR FR

ResNet18 30.24 +0.15 85.79 77.14 +0.15 81.58 78.36 -0.07 13.69 10.52 +0.22 30.42 15.74

ResNet101 22.63 -0.71 81.56 83.31 -0.59 81.56 81.85 +0.29 53.11 53.28 +0.26 50.33 44.64

B.1.5 Experimental Setup for Pascal VOC

In addition to CIFAR and ImageNet, we also consider the segmentation task from

Pascal VOC 2011 (Everingham et al., 2015). We augment the nominal data training

data using the extra labels as provided by Hariharan et al. (2011). As network

architecture we consider a DeeplabV3 (Chen et al., 2017) with ResNet50 backbone

pre-trained on ImageNet. During training we use the following data augmentation

pipeline: (1) randomly resize (256x256 to 1024x1024) and crop to 513x513; (2) random

horizontal flip; (3) channel-wise normalization. During inference, we resize to 513x513

exactly before the normalization (3) is applied. We report both intersection-over-

union (IoU) and Top1 test error for each of the pruned and unpruned networks. The

experimental hyperparameters are summarized in Table B.5.

B.1.6 Pruning Performance on VOC

The results of our pruning experiments are summarized in Figure B-3 and Table B.6.

Specifically, we show the achievable test accuracy on nominal VOC data for vari-

ous target prune ratios in Figure B-3. In Table B.6 we report the maximal prune

ratio (PR) and ratio of removed flops (FR) for which the pruned network achieves

commensurate accuracy (i.e. within 0.5% of the unpruned network’s accuracy).

236

Table B.5: We report the hyperparameters used during training, pruning, and retrain-
ing for various architectures on Pascal VOC 2011. LR hereby denotes the learning
rate and LR decay denotes the learning rate decay. Note that the learning rate is
polynomially decayed after each step.

DeeplabV3-ResNet50

Train

IoU test error (%) 34.78
top-1 test error (%) 7.94

Loss cross-entropy
Optimizer SGD

Epochs 45
Warm-up 0

Batch size 32
LR 0.02

LR decay (1 - “step”/“total steps”)0.9

Momentum 0.9
Nesterov 7

Weight decay 1.0e-4

Prune
𝛾 1.0e-16
𝛼 0.80

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-20.0%

-10.0%

0.0%

De
lta

 Io
U

Te
st

 A
cc

ur
ac

y

deeplabv3_resnet50, VOCSegmentation2011

PFP
FT

SiPPDet
WT

Figure B-3: The accuracy of the generated pruned models trained on VOC for the
evaluated pruning schemes and various target prune ratios for a DeeplabV3-ResNet50
architecture.

B.2 Additional Results for Function Distance

In the following, we provide additional empirical evidence for the results presented

in Section 7.3. We consider additional CIFAR networks for comparing informative

input features and comparing matching predictions when injecting random noise as

described in Section 7.3.

237

Table B.6: Overview of the pruning performance of each algorithm for DeeplabV3
trained and evaluated on Pascal VOC segmentation data. For each algorithm, the
table reports the prune ratio (PR, %) and the ratio of flop reduction (FR, %) of
pruned models when achieving IoU test accuracy within 𝛿 = 0.5% of the original
network’s test accuracy (or the closest result when the desired test accuracy was not
achieved for the range of tested PRs). The top values for the error and either PR
(for weight-based) or FR (for filter-based algorithms) are bolded, respectively.

Model
Orig. WT SiPP FT PFP

Err. Err. PR FR Err. PR FR Err. PR FR Err. PR FR

DeeplabV3 34.78 +0.47 58.87 58.65 +0.29 42.98 42.70 +0.00 0.00 0.00 -0.25 20.16 19.14

B.2.1 Comparison of Informative Features

Informative Features Based on Nominal Test Data

Figure B-4 shows results on comparison of informative features for pruned models on

VGG16. The informative features were computed from a random subset of CIFAR-10

test data.

Informative Features Based on Out-of-distribution Test Data

We repeat the experiment with the informative features being computed from a ran-

dom subset of CIFAR-10-C test data (any corruption). Figure B-5 includes results

on comparison of informative features, c.f. Section 7.3.2, for models pruned by WT

and FT on ResNet20. Figure B-6 shows results for VGG16. We note that even when

tested with out-of-distribution test data we observe similar trends, i.e., pruned net-

works in general are more similar in the functional sense to their parent network than

a separately trained, unpruned network.

238

(a) VGG16, Pruning by WT (b) VGG16, Pruning by FT

(c) VGG16, Pruning by SiPP (d) VGG16, Pruning by PFP

Figure B-4: Heatmap of confidences on informative pixels from pruned VGG16 mod-
els. Y-axis is the model used to generate 10% pixel subsets of 2000 sampled CIFAR-10
test images, x-axis describes the models evaluated with each 10% pixel subset, cells
indicate mean confidence towards true class of the model from the x-axis on tested
data from y-axis. Pruning by (a) Weight Thresholding (WT), (b) Filter Thresholding
(FT), (c) SiPP, (d) Provable Filter Pruning (PFP).

239

(a) ResNet20, Pruning by WT (b) ResNet20, Pruning by FT

Figure B-5: Heatmap of confidences on informative pixels from pruned ResNet20
models. Y-axis is the model used to generate 10% pixel subsets of 2000 randomly
sampled CIFAR-10-C corrupted test images, x-axis describes the models evaluated
with each 10% pixel subset, cells indicate mean confidence towards true class of the
model from the x-axis on tested data from y-axis. Pruning by (a) Weight Thresholding
(WT), (b) Filter Thresholding (FT).

(a) VGG16, Pruning by WT (b) VGG16, Pruning by FT

Figure B-6: Heatmap of confidences on informative pixels from pruned VGG16 mod-
els. Y-axis is the model used to generate 10% pixel subsets of 2000 randomly sampled
CIFAR-10-C corrupted test images, x-axis describes the models evaluated with each
10% pixel subset, cells indicate mean confidence towards true class of the model from
the x-axis on tested data from y-axis. Pruning by (a) Weight Thresholding (WT),
(b) Filter Thresholding (FT).

240

B.2.2 Noise Similarities

We consider noise properties of networks when feeding perturbed data into the net-

work. In particular, we are interested in understanding the similarities of the output

of a pruned network and its unpruned parent as described in Section 7.3 of the main

paper. To this end we consider two metrics: (i) percentage of matching predictions

(labels) of pruned networks w.r.t. their unpruned parent for various target prune ra-

tios and (ii) the norm-based difference between pruned networks and their unpruned

parent. Each result also includes comparisons to a separately trained network of the

same architecture with a different random initialization to highlight the functional

similarities between unpruned and pruned networks. Overall, we find that pruned net-

works functionally approximate their pruned parent more closely than a separately

trained network. We provide additional empirical evidence for this conclusion below.

Results for WT and FT on Additional Networks

We consider the functional similarities between pruned networks and their unpruned

parent for the additional neural network architectures ResNet56, ResNet110, VGG16,

DenseNet22, and WideResNet16-8 trained on CIFAR-10 as shown in Figures B-7, B-

8, B-9, B-10, and B-11, respectively. All networks shown here were retrained using the

same iterative prune schedule. As apparent from the respective figures, the functional

similarities are consistent across architectures for the same pruning strategies.

241

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%
M

at
ch

in
g

la
be

ls
resnet56, CIFAR10, WT

Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(a) WT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet56, CIFAR10, WT
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(b) WT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet56, CIFAR10, FT
Unpruned
PR=19%
PR=45%
PR=69%
PR=79%
PR=95%
Separate

(c) FT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet56, CIFAR10, FT
Unpruned
PR=19%
PR=45%
PR=69%
PR=79%
PR=95%
Separate

(d) FT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet56, CIFAR10, WT
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

Figure B-7: The functional similarities between pruned ResNet56 models and their
unpruned parent.

0.00 0.20 0.40 0.60
Uniform noise level

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet110, CIFAR10, WT
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(a) WT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet110, CIFAR10, WT
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(b) WT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet110, CIFAR10, FT
Unpruned
PR=16%
PR=43%
PR=69%
PR=79%
PR=95%
Separate

(c) FT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet110, CIFAR10, FT
Unpruned
PR=16%
PR=43%
PR=69%
PR=79%
PR=95%
Separate

(d) FT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet110, CIFAR10, WT
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

Figure B-8: The functional similarities between pruned ResNet110 models and their
unpruned parent.

242

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%
M

at
ch

in
g

la
be

ls
vgg16_bn, CIFAR10, WT

Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

(a) WT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.10

0.20

0.30

0.40

0.50

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

vgg16_bn, CIFAR10, WT
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

(b) WT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

vgg16_bn, CIFAR10, FT
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

(c) FT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

vgg16_bn, CIFAR10, FT
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

(d) FT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

vgg16_bn, CIFAR10, WT
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

Figure B-9: The functional similarities between pruned VGG16 models and their
unpruned parent.

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

densenet22, CIFAR10, WT
Unpruned
PR=13%
PR=44%
PR=68%
PR=80%
PR=95%
Separate

(a) WT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

0.80

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

densenet22, CIFAR10, WT
Unpruned
PR=13%
PR=44%
PR=68%
PR=80%
PR=95%
Separate

(b) WT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

densenet22, CIFAR10, FT
Unpruned
PR=14%
PR=46%
PR=68%
PR=81%
PR=96%
Separate

(c) FT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

densenet22, CIFAR10, FT
Unpruned
PR=14%
PR=46%
PR=68%
PR=81%
PR=96%
Separate

(d) FT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

densenet22, CIFAR10, WT
Unpruned
PR=13%
PR=44%
PR=68%
PR=80%
PR=95%
Separate

Figure B-10: The functional similarities between pruned DenseNet22 models and
their unpruned parent.

243

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

wrn16_8, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=95%
Separate

(a) WT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.10

0.20

0.30

0.40
So

ftm
ax

 2
-n

or
m

 d
iff

er
en

ce

wrn16_8, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=95%
Separate

(b) WT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

wrn16_8, CIFAR10, FT
Unpruned
PR=16%
PR=47%
PR=70%
PR=81%
PR=95%
Separate

(c) FT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.10

0.20

0.30

0.40

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

wrn16_8, CIFAR10, FT
Unpruned
PR=16%
PR=47%
PR=70%
PR=81%
PR=95%
Separate

(d) FT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

wrn16_8, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=95%
Separate

Figure B-11: The functional similarities between pruned WRN16-8 models and their
unpruned parent.

244

Results for Additional Pruning Methods (SiPP and PFP)

In the following we compare the functional similarities using the alternative weight

and filter pruning methods SiPP (Baykal et al., 2021b) and PFP (Liebenwein et al.,

2020), respectively. The methods are described in more detail in Section 7.2 of the

main paper. Below we present results for ResNet56, ResNet110, VGG16, DenseNet22,

and WRN16-8, see Figures B-12, B-13, B-14, B-15, and B-16 respectively. We note

that the conclusions with regards to the functional similarities remain in essence

unaltered for alternative pruning methods. Networks were trained with the same

iterative prune-retrain schedule as in the previous subsection.

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet56, CIFAR10, SiPP
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(a) SiPP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet56, CIFAR10, SiPP
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(b) SiPP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet56, CIFAR10, PFP
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(c) PFP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet56, CIFAR10, PFP
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(d) PFP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet56, CIFAR10, WT
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

Figure B-12: The functional similarities between pruned ResNet56 models and their
unpruned parent.

245

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%
M

at
ch

in
g

la
be

ls
resnet110, CIFAR10, SiPP

Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(a) SiPP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet110, CIFAR10, SiPP
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(b) SiPP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet110, CIFAR10, PFP
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(c) PFP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

resnet110, CIFAR10, PFP
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

(d) PFP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

resnet110, CIFAR10, WT
Unpruned
PR=14%
PR=42%
PR=68%
PR=78%
PR=95%
Separate

Figure B-13: The functional similarities between pruned ResNet110 models and their
unpruned parent.

0.00 0.20 0.40 0.60
Uniform noise level

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

vgg16_bn, CIFAR10, SiPP
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

(a) SiPP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.10

0.20

0.30

0.40

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

vgg16_bn, CIFAR10, SiPP
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

(b) SiPP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

vgg16_bn, CIFAR10, PFP
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

(c) PFP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.10

0.20

0.30

0.40

0.50

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

vgg16_bn, CIFAR10, PFP
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

(d) PFP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

vgg16_bn, CIFAR10, WT
Unpruned
PR=15%
PR=43%
PR=68%
PR=79%
PR=95%
Separate

Figure B-14: The functional similarities between pruned VGG16 models and their
unpruned parent.

246

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%
M

at
ch

in
g

la
be

ls
densenet22, CIFAR10, SiPP

Unpruned
PR=13%
PR=44%
PR=68%
PR=80%
PR=95%
Separate

(a) SiPP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

densenet22, CIFAR10, SiPP
Unpruned
PR=13%
PR=44%
PR=68%
PR=80%
PR=95%
Separate

(b) SiPP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

densenet22, CIFAR10, PFP
Unpruned
PR=13%
PR=44%
PR=68%
PR=80%
PR=95%
Separate

(c) PFP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.20

0.40

0.60

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

densenet22, CIFAR10, PFP
Unpruned
PR=13%
PR=44%
PR=68%
PR=80%
PR=95%
Separate

(d) PFP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

40.0%

60.0%

80.0%

100.0%

M
at

ch
in

g
la

be
ls

densenet22, CIFAR10, WT
Unpruned
PR=13%
PR=44%
PR=68%
PR=80%
PR=95%
Separate

Figure B-15: The functional similarities between pruned DenseNet22 models and
their unpruned parent.

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

wrn16_8, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=95%
Separate

(a) WT, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.10

0.20

0.30

0.40

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

wrn16_8, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=95%
Separate

(b) WT, Difference

0.00 0.20 0.40 0.60
Uniform noise level

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

wrn16_8, CIFAR10, PFP
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=95%
Separate

(c) PFP, Labels

0.00 0.20 0.40 0.60
Uniform noise level

0.00

0.10

0.20

0.30

0.40

0.50

So
ftm

ax
 2

-n
or

m
 d

iff
er

en
ce

wrn16_8, CIFAR10, PFP
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=95%
Separate

(d) PFP, Difference

0.00 0.20 0.40 0.60
Uniform noise level

60.0%

70.0%

80.0%

90.0%

100.0%

M
at

ch
in

g
la

be
ls

wrn16_8, CIFAR10, WT
Unpruned
PR=15%
PR=46%
PR=69%
PR=80%
PR=95%
Separate

Figure B-16: The functional similarities between pruned WRN16-8 models and their
unpruned parent.

247

B.3 Additional Results for Prune Potential

We present additional experimental evaluation for the results presented in Section 7.4.

As in Section 7.4, we consider the prune potential for pruned networks when testing

the network under noisy input and under corrupted images.

B.3.1 Detailed Results for Prune Potential with Corruptions

CIFAR-10

Following Section 7.4 we present additional results pertaining to the prune poten-

tial of networks when generalizing to out-of-distribution test data of various kinds.

For CIFAR-10, we consider the o.o.d. data sets by Hendrycks and Dietterich (2019)

(CIFAR-10-C) which are publicly available. Additionally, we also compare to CIFAR-

10.1 by Recht et al. (2018), which is an alternative in-distribution test data set for

CIFAR-10. For ImageNet, we consider the ImageNet versions of the CIFAR-10-C

data sets, denoted by ImageNet-C (Hendrycks and Dietterich, 2019). Additionally,

we compare to ObjectNet (Barbu et al., 2019), an o.o.d. data set that exhibits large

variations over the context and the pose of an object instead of image corruptions.

For VOC, we consider the same set of corruptions, denoted by VOC-C, based on the

generalization of the CIFAR-10-C corruptions to any image data set by Michaelis

et al. (2019). For CIFAR-10-C, ImageNet-C, and VOC-C, we evaluate the prune po-

tential for severity level 3 out of 5 (Hendrycks and Dietterich, 2019; Michaelis et al.,

2019). In accordance with the results presented in Section 7.4 we find that the prune

potential can vary substantially depending on the task.

We consider the out-of-distribution prune potential for different CIFAR-10-C data

sets (severity level 3) for the network architectures ResNet20, ResNet56, ResNet110,

VGG16, DenseNet22, and WideResNet16-8, see Figures B-17, B-18, B-19, B-20, B-21,

and B-22, respectively. Each network was weight-pruned and filter-pruned with WT

and SiPP, and FT and PFP, respectively. We note that in general the prune potential

varies across prune methods, network architectures, and task. Moreover, some of

the networks seem to cope better with out-of-distribution data than other networks

248

(e.g. WideResNet16-8 as seen from Figure B-22). However, across all experiments

the prune potential varies significantly and it seems difficult to predict clear trends

highlighting the sensitivity of the prune potential w.r.t. out-of-distribution test data.

ImageNet and VOC

Finally, we consider the prune potential for out-of-distribution test data on a ResNet18

(ImageNet), ResNet101 (ImageNet), and DeeplabV3 (VOC), see Figures B-23, B-24,

and B-25, respectively. We note that the prune potential in this case is equally sen-

sitive to the test task emphasizing that our observations scale to larger networks and

data sets as well instead of being confined to small-scale data sets such as CIFAR-

10. Moreover, considering the expansive nature of ImageNet experiments we did not

prune the network to very extreme prune ratios but instead stopped at around 80%-

90%. In light of these observations, we conjecture that the nominal prune ratio is even

higher, which would result in an even larger overall gap in prune potential between

in-distribution and out-of-distribution test data.

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%FT

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-7.5%

-5.0%

-2.5%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet20, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, resnet20, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-7.5%

-5.0%

-2.5%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet20, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

Figure B-17: The prune potential of a ResNet20 achievable for CIFAR-10 out-of-
distribution data sets.

249

0.0%

50.0%

100.0%

W
T

resnet56, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%

100.0%

FT

resnet56, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet56, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, resnet56, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet56, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

Figure B-18: The prune potential of a ResNet56 achievable for CIFAR-10 out-of-
distribution data sets.

250

0.0%

50.0%

100.0%

W
T

resnet110, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%

100.0%

FT

resnet110, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet110, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, resnet110, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet110, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

Figure B-19: The prune potential of a ResNet110 achievable for CIFAR-10 out-of-
distribution data sets.

0.0%

50.0%

100.0%

W
T

vgg16_bn, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%

100.0%

FT

vgg16_bn, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, vgg16_bn, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, vgg16_bn, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, vgg16_bn, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

Figure B-20: The prune potential of a VGG16 achievable for CIFAR-10 out-of-
distribution data sets.

251

0.0%

50.0%

100.0%

W
T

densenet22, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%

100.0%

FT

densenet22, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, densenet22, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-7.5%

-5.0%

-2.5%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, densenet22, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, densenet22, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

Figure B-21: The prune potential of a DenseNet22 achievable for CIFAR-10 out-of-
distribution data sets.

60.0%

80.0%

100.0%

W
T

wrn16_8, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

60.0%

80.0%

100.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

50.0%

100.0%

FT

wrn16_8, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

50.0%

100.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-2.0%

0.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, wrn16_8, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-6.0%

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, wrn16_8, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-2.0%

0.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, wrn16_8, CIFAR10

CIFAR10
Jpeg
Speckle
Gauss

Figure B-22: The prune potential of a WRN16-8 achievable for CIFAR-10 out-of-
distribution data sets.

252

0.0%

50.0%W
T

resnet18, ImageNet

Im
ag

eN
et

Ob
je

ct
Ne

t
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%FT

resnet18, ImageNet

Im
ag

eN
et

Ob
je

ct
Ne

t
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet18, ImageNet

ImageNet
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, resnet18, ImageNet

ImageNet
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet18, ImageNet

ImageNet
Jpeg
Speckle
Gauss

Figure B-23: The prune potential of a ResNet18 achievable for ImageNet out-of-
distribution data sets.

0.0%

50.0%

W
T

resnet101, ImageNet

Im
ag

eN
et

Ob
je

ct
Ne

t
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%

FT

resnet101, ImageNet

Im
ag

eN
et

Ob
je

ct
Ne

t
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

+4.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet101, ImageNet

ImageNet
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, resnet101, ImageNet

ImageNet
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

+4.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet101, ImageNet

ImageNet
Jpeg
Speckle
Gauss

Figure B-24: The prune potential of a ResNet101 achievable for ImageNet out-of-
distribution data sets.

253

0.0%

50.0%

100.0%

W
T

deeplabv3_resnet50, VOC2011

VO
C2

01
1

Br
ig

ht
ne

ss
Co

nt
ra

st
De

fo
cu

s
El

as
tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

25.0%

50.0%

FT

deeplabv3_resnet50, VOC2011

VO
C2

01
1

Br
ig

ht
ne

ss
Co

nt
ra

st
De

fo
cu

s
El

as
tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

25.0%

50.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 Io
U

Te
st

 A
cc

ur
ac

y

WT, deeplabv3_resnet50, VOC2011

VOC2011
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-40.0%

-30.0%

-20.0%

-10.0%

0.0%

De
lta

 Io
U

Te
st

 A
cc

ur
ac

y

FT, deeplabv3_resnet50, VOC2011

VOC2011
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 Io
U

Te
st

 A
cc

ur
ac

y

WT, deeplabv3_resnet50, VOC2011

VOC2011
Jpeg
Speckle
Gauss

Figure B-25: The prune potential of a DeeplabV3 achievable for Pascal VOC out-of-
distribution data sets.

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.0%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

(a) 𝛿 = 0.0%

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

(b) 𝛿 = 0.5%

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 1.0%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

(c) 𝛿 = 1.0%

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 2.0%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

(d) 𝛿 = 2.0%

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 5.0%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

(e) 𝛿 = 5.0%

60.0%

80.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 10.0%

60.0%

80.0%

100.0%

FT

Distribution:
Train
Test

Figure B-26: The prune potential of a ResNet20 trained on CIFAR-10 for WT and
FT, respectively. In each figure the same experiment is repeated with different values
of 𝛿 ranging from 0% to 5%.

254

B.3.2 Choice of Commensurate Accuracy

We evaluated the prune potential for a ResNet20 trained on CIFAR-10 for a range

of possible values for 𝛿 to ensure that our observations hold independent of the spe-

cific choice of 𝛿. Recall that 𝛿 denotes the amount of “slack” when evaluating the

prune potential, i.e., the difference in test accuracy between the pruned and unpruned

network for which the pruned network’s performance is considered commensurate.

Specifically, as shown in Figure B-26, we consider a range of 𝛿 between 0% and 5%.

Naturally, the prune potential is higher overall for larger values of 𝛿. However, we

can see that our main observations essentially remain unchanged, that is the prune

potential still significantly varies across different tasks and distributions. Overall,

these results confirm our previous findings.

B.3.3 Detailed Results for Excess Error with Corruptions

Recall that the excess error is defined as the additional error incurred on the test

distribution compared to the error on the train distribution. The difference in excess

error between pruned and unpruned networks thus quantifies the additional error

incurred by the pruned network on the test distribution on top of the error increase

incurred by the pruned network compared to the unpruned network according to the

prune-accuracy curve on the train distribution.

We used ordinary least squares (linear regression) to compute the prediction of

the relationship between prune ratio and difference in excess error. The 𝑦-intercept is

set to 0 since by the definition the difference in excess error is 0% for a prune ratio of

0%. The shaded regions describe the 95% confidence intervals, which were computed

based on bootstrapping.

The results for the CIFAR-10 network architectures ResNet20, ResNet56, ResNet110,

VGG16, DenseNet22, and WRN16-8 are shown in Figures B-27, B-28, B-29, B-30, B-

31, and B-32, respectively. The results for ImageNet network architectures ResNet18

and ResNet101 are shown in Figures B-33 and B-34, respectively. The results for the

VOC network architecture DeeplabV3 is shown in Figure B-35. Note that ideally the

255

slope would be zero indicating that the prune-accuracy curve on nominal data is pre-

dictive of o.o.d. data. However, as shown most pruned networks exhibit a significant

increase in excess error that increases with higher prune ratios. These results further

corroborate our understanding that networks cannot be pruned to full extent when

faced with o.o.d. data.

Notable exceptions include WRN16-8 (CIFAR-10) and ResNet101 (ImageNet)

with little correlation between the prune ratio and the difference in excess error in-

dicating that those networks may be genuinely overparameterized in a robust sense

confirming our findings from previous sections.

The negative delta in excess error for FT on DeeplabV3 (Figure B-35), on the

other hand, is a spurious consequence of the prune potential of FT for nominal data

already being zero rather than a consequence of the amount of overparameterization

in the network.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.5%

+1.0%

+1.5%

+2.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-27: The difference in excess error for a ResNet20 trained on CIFAR-10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.5%

+1.0%

+1.5%

+2.0%

De
lta

 E
xc

es
s E

rro
r

resnet56, CIFAR10

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

+4.0%

+5.0%

De
lta

 E
xc

es
s E

rro
r

resnet56, CIFAR10

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-28: The difference in excess error for a ResNet56 trained on CIFAR-10.

256

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.5%

+1.0%

+1.5%

+2.0%
De

lta
 E

xc
es

s E
rro

r
resnet110, CIFAR10

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

+4.0%

+5.0%

De
lta

 E
xc

es
s E

rro
r

resnet110, CIFAR10

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-29: The difference in excess error for a ResNet110 trained on CIFAR-10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.5%

+1.0%

+1.5%

+2.0%

De
lta

 E
xc

es
s E

rro
r

vgg16_bn, CIFAR10

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

+4.0%

+5.0%

De
lta

 E
xc

es
s E

rro
r

vgg16_bn, CIFAR10

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%
De

lta
 E

xc
es

s E
rro

r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-30: The difference in excess error for a VGG16 trained on CIFAR-10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

densenet22, CIFAR10

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 E
xc

es
s E

rro
r

densenet22, CIFAR10

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-31: The difference in excess error for a DenseNet22 trained on CIFAR-10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

wrn16_8, CIFAR10

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 E
xc

es
s E

rro
r

wrn16_8, CIFAR10

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-32: The difference in excess error for a WRN16-8 trained on CIFAR-10.

257

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.2%

+0.5%

+0.8%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet18, ImageNet

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.5%

+1.0%

+1.5%

+2.0%

De
lta

 E
xc

es
s E

rro
r

resnet18, ImageNet

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-33: The difference in excess error for a ResNet18 trained on ImageNet.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.8%

-0.5%

-0.2%

0.0%

De
lta

 E
xc

es
s E

rro
r

resnet101, ImageNet

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.5%

+1.0%

+1.5%

+2.0%

De
lta

 E
xc

es
s E

rro
r

resnet101, ImageNet

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-34: The difference in excess error for a ResNet101 trained on ImageNet.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

+4.0%

+5.0%

De
lta

 E
xc

es
s E

rro
r

deeplabv3_resnet50, VOC2011

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

+5.0%

De
lta

 E
xc

es
s E

rro
r

deeplabv3_resnet50, VOC2011

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-35: The difference in excess error for a DeeplabV3 trained on Pascal VOC.

258

B.3.4 Results for Overparameterization

We summarize our results pertaining to using the prune potential as a way to gauge

the amount of overparameterization. Specifically, for each network and prune method,

we evaluate the average and minimum prune potential for both the train and test

distribution. The average and minimum are hereby computed over the corrup-

tions/variations that are included in each distribution. Note that for these exper-

iments the train distribution only contains the nominal data; thus the average and

minimum coincides. For the test distribution we take the average and minimum

over all the respective corruptions. The mean and standard deviation reported are

computed over three repetitions of the same experiment.

The resulting prune potentials are listed in Tables B.7 and B.8 for weight pruning

(WT, SiPP) and filter pruning (FT, PFP), respectively. Note that for most networks

we can observe around 20% drop in average prune potential between train and test

distribution while most networks have 0% (!) minimum prune potential for data

from the test distribution. As previously observed some networks may be considered

genuinely overparameterized in the robust sense including WRN16-8, ResNet101,

which manifests itself with a very stable prune potential across both train and test

distribution.

Table B.7: The average and minimum prune potential computed on the train and
test distribution, respectively, for weight prune methods (WT, SiPP). The train dis-
tribution hereby consists of nomimal data, while the test distribution consists of the
CIFAR-10-C, ImageNet-C, VOC-C corruptions.

Model
WT - Prune Potential (%) SiPP - Prune Potential (%)

Average Minimum Average Minimum
Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist.

ResNet20 84.9 ± 0.0 66.7 ± 3.3 84.9 ± 0.0 0.0 ± 0.0 86.4 ± 2.2 70.4 ± 4.3 86.4 ± 2.2 0.0 ± 0.0
Resnet56 94.6 ± 0.0 82.3 ± 4.2 94.6 ± 0.0 4.6 ± 6.5 94.5 ± 0.9 78.5 ± 1.0 94.5 ± 0.9 0.0 ± 0.0
ResNet110 96.3 ± 0.6 77.9 ± 1.4 96.3 ± 0.6 0.0 ± 0.0 96.5 ± 0.7 78.8 ± 2.8 96.5 ± 0.7 0.0 ± 0.0
VGG16 98.0 ± 0.0 80.9 ± 2.2 98.0 ± 0.0 0.0 ± 0.0 98.0 ± 0.0 80.7 ± 1.9 98.0 ± 0.0 0.0 ± 0.0

DenseNet22 79.8 ± 1.9 76.0 ± 6.7 79.8 ± 1.9 24.9 ± 35.2 79.8 ± 1.9 74.1 ± 9.1 79.8 ± 1.9 21.5 ± 30.4
WRN16-8 98.0 ± 0.0 95.7 ± 0.7 98.0 ± 0.0 90.0 ± 2.1 95.3 ± 0.0 94.1 ± 0.8 95.3 ± 0.0 78.1 ± 15.1

ResNet18 85.8 ± 0.0 63.6 ± 0.0 85.8 ± 0.0 0.0 ± 0.0 81.6 ± 0.0 57.8 ± 0.0 81.6 ± 0.0 0.0 ± 0.0
ResNet101 81.6 ± 0.0 76.8 ± 0.0 81.6 ± 0.0 0.0 ± 0.0 81.6 ± 0.0 70.7 ± 0.0 81.6 ± 0.0 0.0 ± 0.0

DeeplabV3 58.9 ± 9.3 11.6 ± 2.7 58.9 ± 9.3 0.0 ± 0.0 43.0 ± 6.6 11.5 ± 3.1 43.0 ± 6.6 0.0 ± 0.0

259

Table B.8: The average and minimum prune potential computed on the train and test
distribution, respectively, for filter prune methods (FT, PFP). The train distribution
hereby consists of nomimal data, while the test distribution consists of the CIFAR-
10-C, ImageNet-C, VOC-C corruptions.

FT - Prune Potential (%) PFP - Prune Potential (%)

Model
Average Minimum Average Minimum

Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist.

ResNet20 65.0 ± 6.7 55.3 ± 4.8 65.0 ± 6.7 0.0 ± 0.0 66.5 ± 3.0 53.9 ± 4.4 66.5 ± 3.0 0.0 ± 0.0
ResNet56 86.6 ± 1.2 64.8 ± 3.7 86.6 ± 1.2 0.0 ± 0.0 88.1 ± 0.0 64.9 ± 4.0 88.1 ± 0.0 0.0 ± 0.0
ResNet110 88.1 ± 3.5 68.5 ± 3.2 88.1 ± 3.5 0.0 ± 0.0 92.2 ± 1.8 71.6 ± 1.8 92.2 ± 1.8 0.0 ± 0.0
VGG16 85.4 ± 2.4 66.3 ± 0.5 85.4 ± 2.4 0.0 ± 0.0 95.0 ± 0.5 77.9 ± 2.1 95.0 ± 0.5 0.0 ± 0.0

DenseNet22 47.4 ± 2.2 58.2 ± 5.3 47.4 ± 2.2 9.6 ± 13.6 51.8 ± 5.3 59.6 ± 6.0 51.8 ± 5.3 12.6 ± 17.8
WRN16-8 86.2 ± 1.3 75.7 ± 4.1 86.2 ± 1.3 36.6 ± 28.6 86.9 ± 1.9 86.6 ± 1.0 86.9 ± 1.9 66.7 ± 1.7

ResNet18 13.7 ± 0.0 13.5 ± 0.0 13.7 ± 0.0 0.0 ± 0.0 30.4 ± 0.0 22.5 ± 0.0 30.4 ± 0.0 0.0 ± 0.0
ResNet101 53.1 ± 0.0 33.5 ± 0.0 53.1 ± 0.0 0.0 ± 0.0 50.3 ± 0.0 43.0 ± 0.0 50.3 ± 0.0 0.0 ± 0.0

DeeplabV3 0.0 ± 0.0 0.5 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 20.2 ± 0.1 6.8 ± 2.6 20.2 ± 0.1 0.0 ± 0.0

B.4 Detailed Results for Robust Pruning

In this section, we consider whether including additional data augmentation tech-

niques derived from the corruptions of CIFAR-10-C can boost and/or stabilize the

prune potential of a network. Specifically, we incorporate a subset of the corruptions

into the training pipeline to train and retrain the pruned network in a robust man-

ner. Below, we list details pertaining to the experimental setup as well as report the

results on the conducted experiments.

B.4.1 Experimental Setup and Prune Results

To train, prune, and retrain networks we consider the same prune pipeline and exper-

imental setting as described in Section B.3.1. In addition, we incorporate a subset of

the CIFAR-10-C corruptions into the training and retraining pipeline by corrupting

the training data with the respective corruption technique. That is, when sampling

a batch of training data each training image is corrupted with a CIFAR-10-C corrup-

tion (or no corruption) uniformly at random. The subset of corruptions used as part

of the train and test distribution are listed in Table B.9. Note that the train and test

distribution are mutually exclusive, i.e., they do not share any of the corruptions.

However, as shown in Table B.9 each category of corruption is used in both the train

and test distribution. For each corruption, we choose severity level 3 out of 5 just as

260

Table B.9: The list of corruptions used for the train and test distribution, respectively,
categorized according to type.

Train Distribution Test Distribution
Nominal CIFAR-10 (no corruption) CIFAR-10.1

Noise Impulse, Shot Gauss
Blur Motion, Zoom Defocus, Glass

Weather Snow Brightness, Fog, Frost
Digital Contrast, Elastic, Pixel Jpeg

before. The nomimal prune-accuracy curves (CIFAR-10) for each of the trained and

pruned networks are shown in Figure B-36.

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-10.0%

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet20, CIFAR10-C-Mix1

PFP
FT

SiPP
WT

(a) Resnet20

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet56, CIFAR10-C-Mix1

PFP
FT

SiPP
WT

(b) Resnet56

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet110, CIFAR10-C-Mix1

PFP
FT

SiPP
WT

(c) Resnet110

60.0% 70.0% 80.0% 90.0%
Pruned Parameters

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

vgg16_bn, CIFAR10-C-Mix1

PFP
FT

SiPP
WT

(d) VGG16

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 T
es

t A
cc

ur
ac

y

densenet22, CIFAR10-C-Mix1

PFP
FT

SiPP
WT

(e) DenseNet22

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-2.0%

-1.0%

0.0%

+1.0%
De

lta
 T

es
t A

cc
ur

ac
y

wrn16_8, CIFAR10-C-Mix1

PFP
FT

SiPP
WT

(f) WRN16-8

Figure B-36: The difference in test accuracy (nominal CIFAR-10) to the uncom-
pressed network.

B.4.2 Results for Prune Potential

Our results for the prune potential of the network architectures ResNet20, ResNet56,

ResNet110, VGG16, DenseNet22, and WRN16-8 are shown in Figures B-37, B-38,

B-39, B-40, B-41, and B-42, respectively. We note that overall the prune potential

for corruptions from the train distribution can be well preserved since we already

included the respective corruptions during training and we can predict the prune

potential accurately. However, we can also observe that the prune potential improves

for some of the corruptions that were not included during retraining. Despite training

261

in a robust manner, however, the prune potential can still be significantly lower for

corruptions from test distribution and/or exhibit high variance (low predictability).

60.0%

80.0%

W
T

resnet20, CIFAR10_C_Mix1
CI

FA
R1

0
Co

nt
ra

st
El

as
tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle
Prune Potential, = 0.5%

60.0%

80.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%

FT

resnet20, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet20, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-15.0%

-10.0%

-5.0%

0.0%
De

lta
 T

op
 1

 T
es

t A
cc

ur
ac

y FT, resnet20, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

+1.0%
De

lta
 T

op
 1

 T
es

t A
cc

ur
ac

y WT, resnet20, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

Figure B-37: The prune potential of a robustly pruned ResNet20 achievable for
CIFAR-10 out-of-distribution data sets.

262

80.0%

90.0%

W
T

resnet56, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

80.0%

90.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

60.0%

80.0%

FT

resnet56, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

60.0%

80.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet56, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

40.0% 60.0% 80.0% 100.0%
Prune Ratio

-6.0%

-4.0%

-2.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, resnet56, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet56, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

Figure B-38: The prune potential of a robustly pruned ResNet56 achievable for
CIFAR-10 out-of-distribution data sets.

85.0%

90.0%

95.0%

W
T

resnet110, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

85.0%

90.0%

95.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

60.0%

80.0%

FT

resnet110, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

60.0%

80.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-2.0%

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet110, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-4.0%

-2.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, resnet110, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-2.0%

-1.0%

0.0%

+1.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, resnet110, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

Figure B-39: The prune potential of a robustly pruned ResNet110 achievable for
CIFAR-10 out-of-distribution data sets.

263

85.0%

90.0%

95.0%

W
T

vgg16_bn, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

85.0%

90.0%

95.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

50.0%

100.0%

FT

vgg16_bn, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, vgg16_bn, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, vgg16_bn, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, vgg16_bn, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

Figure B-40: The prune potential of a robustly pruned VGG16 achievable for CIFAR-
10 out-of-distribution data sets.

60.0%

80.0%

W
T

densenet22, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

60.0%

80.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

0.0%

25.0%

50.0%

FT

densenet22, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

0.0%

25.0%

50.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, densenet22, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-15.0%

-10.0%

-5.0%

0.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, densenet22, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-10.0%

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, densenet22, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

Figure B-41: The prune potential of a robustly pruned DenseNet22 achievable for
CIFAR-10 out-of-distribution data sets.

264

90.0%

95.0%

W
T

wrn16_8, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

90.0%

95.0%

Si
PP

Distribution:
Train
Test

(a) WT, SiPP

25.0%
50.0%
75.0%

FT

wrn16_8, CIFAR10_C_Mix1

CI
FA

R1
0

Co
nt

ra
st

El
as

tic Bl
ur

Im
pu

lse
Mo

tio
n

Pi
xe

l
Sh

ot
Sn

ow
Zo

om

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

De
fo

cu
s

Fo
g

Fr
os

t
Ga

us
s

Gl
as

s
Jp

eg Sa
t

Sp
at

te
r

Sp
ec

kle

Prune Potential, = 0.5%

25.0%
50.0%
75.0%

PF
P

Distribution:
Train
Test

(b) FT, PFP

0.0%

50.0%

100.0%

W
T

resnet20, CIFAR10

CI
FA

R1
0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

100.0%

FT

Distribution:
Train
Test

0.0%

50.0%

Si
PP

resnet20, CIFAR10
CI

FA
R1

0

CI
FA

R1
0_

1
Br

ig
ht

ne
ss

Co
nt

ra
st

De
fo

cu
s

El
as

tic Fo
g

Fr
os

t
Bl

ur
Ga

us
s

Gl
as

s
Im

pu
lse Jp
eg

Mo
tio

n
Pi

xe
l

Sa
t

Sh
ot

Sn
ow

Sp
at

te
r

Sp
ec

kle
Zo

om

Prune Potential, = 0.5%

0.0%

50.0%

PF
P

Distribution:
Train
Test

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.2%

+0.5%

+0.8%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, wrn16_8, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(c) WT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y FT, wrn16_8, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

(d) FT, prune-test curve

20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.2%

+0.5%

+0.8%

+1.0%

De
lta

 T
op

 1
 T

es
t A

cc
ur

ac
y WT, wrn16_8, CIFAR10_C_Mix1

CIFAR10
Jpeg
Speckle
Gauss

Figure B-42: The prune potential of a robustly pruned WRN16-8 achievable for
CIFAR-10 out-of-distribution data sets.

265

B.4.3 Results for Excess Error

Following the approach described in Section B.3.3 we also evaluated the resulting

difference in excess error between pruned and unpruned networks. Our results are

shown in Figures B-43, B-44, B-45, B-46, B-47, and B-48 for ResNet20, ResNet56,

ResNet110, VGG16, DenseNet22, and WRN16-8, respectively, all of which have been

trained in a robust manner. We note that for most networks, except for smaller ones

like ResNet20, the correlation between prune ratio and difference in excess error al-

most disappears. These results encourage the use of robust pruning techniques in

order to ensure that pruned networks perform reliably. However, we note that the ex-

cess error is computed as an average over all corruptions included in the train and test

distribution, respectively. Thus, it is not an appropriate measure to estimate whether

particular corruptions could still impact the prune potential more significantly than

others.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.2%

+0.5%

+0.8%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10_C_Mix1

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10_C_Mix1

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-43: The difference in excess error for a robustly pruned ResNet20 trained
on CIFAR-10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet56, CIFAR10_C_Mix1

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet56, CIFAR10_C_Mix1

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-44: The difference in excess error for a robustly pruned ResNet56 trained
on CIFAR-10.

266

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet110, CIFAR10_C_Mix1

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

resnet110, CIFAR10_C_Mix1

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-45: The difference in excess error for a robustly pruned ResNet110 trained
on CIFAR-10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

vgg16_bn, CIFAR10_C_Mix1

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.2%

+0.5%

+0.8%

+1.0%

De
lta

 E
xc

es
s E

rro
r

vgg16_bn, CIFAR10_C_Mix1

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-46: The difference in excess error for a robustly pruned VGG16 trained on
CIFAR-10.

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

densenet22, CIFAR10_C_Mix1

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.8%

-0.5%

-0.2%

0.0%

De
lta

 E
xc

es
s E

rro
r

densenet22, CIFAR10_C_Mix1

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-47: The difference in excess error for a robustly pruned DenseNet22 trained
on CIFAR-10.

267

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 E
xc

es
s E

rro
r

wrn16_8, CIFAR10_C_Mix1

WT
SiPP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+0.2%

+0.5%

+0.8%

+1.0%

De
lta

 E
xc

es
s E

rro
r

wrn16_8, CIFAR10_C_Mix1

FT
PFP

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Prune Ratio

0.0%

+1.0%

+2.0%

+3.0%

De
lta

 E
xc

es
s E

rro
r

resnet20, CIFAR10

WT
SiPP
FT
PFP

Figure B-48: The difference in excess error for a robustly pruned WRN16-8 trained
on CIFAR-10.

268

B.4.4 Results for Overparameterization

Finally, we report the average and minimum prune potential across all networks

and prune methods for the train and test distribution, respectively. As highlighted in

Section B.3.4, the prune potential is used to gauge the amount of overparameterization

in the network.

The resulting prune potentials are listed in Tables B.10 and B.11 for weight prune

methods (WT, SiPP) and filter prune methods (FT, PFP), respectively. In contrast

to Section B.3.4 the minimum and average prune potential on the train distribution

differ since here the train distribution contains multiple corruptions. We note that

with robust training the average prune potential remains almost unaffected by changes

in the distribution as also apparent from the results in Section B.4.3. In addition, for

most networks even the minimum prune potential on the test distribution is nonzero.

These results further encourage the use of robust training techniques when pruning

neural networks.

As elaborated upon in Section 7.5, we observe that we can regain much of the

prune potential by explicitly regularizing the pruned network during retraining. In

other words, the amount of overparameterization is not only a function of the data

set and network architecture, but of the training procedure as well.

However, we note that these observations hinge upon the particular choice of the

train and test distribution, which share certain commonalities in this case. Potentially,

it might be possible to construct test distributions that differ significantly from the

train distribution, in which case pruned networks might suffer disproportionally more

from the distribution change compared to unpruned networks. These results would

then be analogous to the ones without robust training presented in Section B.3.

269

Table B.10: The average and minimum prune potential computed on the train and
test distribution, respectively, for weight prune methods (WT, SiPP). The train and
test distribution hereby each consist of a mutually exclusive subset of corruptions as
listed in Table B.9.

Model
WT - Prune Potential (%) SiPP - Prune Potential (%)

Average Minimum Average Minimum
Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist.

ResNet20 87.5 ± 1.9 84.7 ± 0.9 83.5 ± 3.6 72.6 ± 4.9 84.2 ± 1.7 80.3 ± 1.6 77.4 ± 6.1 65.9 ± 6.1
ResNet56 91.8 ± 0.5 91.3 ± 0.4 90.2 ± 1.0 87.8 ± 1.3 88.7 ± 0.5 87.2 ± 0.1 87.8 ± 1.3 81.0 ± 2.0
ResNet110 93.8 ± 0.3 93.2 ± 0.4 92.7 ± 0.0 88.7 ± 0.0 90.8 ± 0.1 90.2 ± 0.1 89.4 ± 1.0 83.6 ± 1.6
VGG16 97.0 ± 0.0 97.0 ± 0.0 97.0 ± 0.0 96.8 ± 0.3 96.5 ± 0.1 95.5 ± 0.5 94.6 ± 0.5 88.3 ± 3.9

DenseNet22 73.4 ± 1.1 72.7 ± 1.9 67.4 ± 0.0 51.8 ± 5.0 64.7 ± 1.3 64.8 ± 0.6 55.4 ± 5.0 51.8 ± 5.0
WRN16-8 97.0 ± 0.0 97.0 ± 0.0 97.0 ± 0.0 96.8 ± 0.3 97.0 ± 0.0 96.7 ± 0.5 96.8 ± 0.3 94.3 ± 3.8

Table B.11: The average and minimum prune potential computed on the train and
test distribution, respectively, for filter prune methods (FT, PFP). The train and test
distribution hereby each consist of a mutually exclusive subset of corruptions as listed
in Table B.9.

FT - Prune Potential (%) PFP - Prune Potential (%)

Model
Average Minimum Average Minimum

Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist. Train Dist. Test Dist.

ResNet20 44.0 ± 6.3 34.4 ± 6.1 19.3 ± 15.0 7.1 ± 10.0 55.2 ± 6.2 47.7 ± 6.4 39.0 ± 16.1 13.3 ± 9.4
ResNet56 77.1 ± 0.4 77.1 ± 0.9 72.2 ± 2.9 67.3 ± 6.1 80.8 ± 0.4 76.3 ± 0.5 78.8 ± 0.2 58.5 ± 7.1
ResNet110 82.1 ± 1.8 81.7 ± 0.8 78.7 ± 0.0 74.9 ± 2.7 84.4 ± 2.1 80.0 ± 2.2 81.6 ± 2.1 58.0 ± 7.7
VGG16 48.0 ± 3.3 41.5 ± 5.2 0.0 ± 0.0 0.0 ± 0.0 81.9 ± 1.8 79.8 ± 2.3 62.7 ± 10.5 63.9 ± 3.9

DenseNet22 20.3 ± 0.7 20.0 ± 5.7 13.2 ± 9.4 6.6 ± 9.4 34.2 ± 8.8 33.1 ± 6.5 17.5 ± 14.2 0.0 ± 0.0
WRN16-8 69.7 ± 4.1 64.8 ± 2.2 54.2 ± 12.9 24.4 ± 17.3 80.7 ± 0.7 76.9 ± 2.9 72.1 ± 3.1 57.2 ± 14.9

270

Bibliography

Dimitris Achlioptas, Zohar Karnin, and Edo Liberty. Matrix entry-wise sampling:
Simple is best. Submitted to KDD, 2013(1.1):1–4, 2013.

Ryan P Adams, Jeffrey Pennington, Matthew J Johnson, Jamie Smith, Yaniv Ovadia,
Brian Patton, and James Saunderson. Estimating the spectral density of large
implicit matrices. arXiv preprint arXiv:1802.03451, 2018.

Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approx-
imation via coresets. Combinatorial and computational geometry, 52:1–30, 2005.

Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. Net-trim: Convex
pruning of deep neural networks with performance guarantee. In Advances in Neural
Information Processing Systems, pages 3180–3189, 2017.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceed-
ings of the 25th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 2623–2631, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in
overparameterized neural networks, going beyond two layers. In Advances in Neu-
ral Information Processing Systems 32, pages 6158–6169. Curran Associates, Inc.,
2019.

Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks.
In Advances in Neural Information Processing Systems, pages 856–867, 2017.

Alexander Amini, Liam Paull, Thomas Balch, Sertac Karaman, and Daniela Rus.
Learning steering bounds for parallel autonomous systems. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization
bounds for deep nets via a compression approach. In International Conference on
Machine Learning, pages 254–263, 2018.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural
networks. In International Conference on Machine Learning, pages 322–332, 2019.

271

Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions
for machine learning. arXiv preprint arXiv:1703.06476, 2017.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. CoRR,
abs/1511.00561, 2015. URL http://arxiv.org/abs/1511.00561.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan
Gutfreund, Josh Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-
controlled dataset for pushing the limits of object recognition models. In Advances
in Neural Information Processing Systems, pages 9448–9458, 2019.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized
margin bounds for neural networks. In Advances in Neural Information Processing
Systems, pages 6241–6250, 2017.

Cenk Baykal. Sampling-based Algorithms for Fast and Deployable AI. PhD thesis,
Massachusetts Institute of Technology, 2021.

Cenk Baykal, Lucas Liebenwein, and Wilko Schwarting. Training support vector
machines using coresets. arXiv preprint arXiv:1708.03835, 2017.

Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus.
Data-dependent coresets for compressing neural networks with applications to gen-
eralization bounds. In International Conference on Learning Representations, 2019.

Cenk Baykal, Lucas Liebenwein, Dan Feldman, and Daniela Rus. Low-regret active
learning. arXiv preprint arXiv:2104.02822, 2021a.

Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus.
Sipping neural networks: Sensitivity-informed provable pruning of neural networks.
SIAM Journal on Mathematics of Data Science (Under Review; arXiv preprint
arXiv:1910.05422), 2021b.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern
machine-learning practice and the classical bias–variance trade-off. Proceedings of
the National Academy of Sciences, 116(32):15849–15854, 2019.

Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max
Welling. Sylvester normalizing flows for variational inference. arXiv preprint
arXiv:1803.05649, 2018.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What
is the state of neural network pruning? In Proceedings of Machine Learning and
Systems 2020, pages 129–146, 2020.

272

http://arxiv.org/abs/1511.00561

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learn-
ing. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Ad-
vances in Neural Information Processing Systems, volume 20. Curran Asso-
ciates, Inc., 2008. URL https://proceedings.neurips.cc/paper/2007/file/

0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf.

Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and
streaming coreset constructions. arXiv preprint arXiv:1612.00889, 2016.

Andrew Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-
performance large-scale image recognition without normalization. arXiv preprint
arXiv:2102.06171, 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search
on target task and hardware. arXiv preprint arXiv:1812.00332, 2018.

Brandon Carter, Jonas Mueller, Siddhartha Jain, and David Gifford. What made
you do this? understanding black-box decisions with sufficient input subsets. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages
567–576, 2019.

Brandon Carter, Siddhartha Jain, Jonas Mueller, and David Gifford. Over-
interpretation reveals image classification model pathologies. arXiv preprint
arXiv:2003.08907, 2020.

Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Storage efficient and dynamic
flexible runtime channel pruning via deep reinforcement learning. Advances in
Neural Information Processing Systems, 33, 2020.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-
thinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

Patrick H. Chen, Si Si, Yang Li, Ciprian Chelba, and Cho-jui Hsieh. GroupRe-
duce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking.
Advances in Neural Information Processing Systems, 2018-December:10988–10998,
jun 2018a. URL http://arxiv.org/abs/1806.06950.

Ricky T. Q. Chen, Jens Behrmann, David K Duvenaud, and Joern-Henrik Ja-
cobsen. Residual flows for invertible generative modeling. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf.

273

https://proceedings.neurips.cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf
http://arxiv.org/abs/1806.06950
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neu-
ral ordinary differential equations. In Advances in neural information processing
systems, pages 6571–6583, 2018b.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.
Compressing neural networks with the hashing trick. In International conference
on machine learning, pages 2285–2294, 2015a.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin
Chen. Compressing convolutional neural networks. CoRR, abs/1506.04449, 2015b.
URL http://arxiv.org/abs/1506.04449.

Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu
Chang. An exploration of parameter redundancy in deep networks with circulant
projections. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2857–2865, 2015.

Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient
model compression via learned global ranking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1518–1528, 2020.

François Chollet. Xception: Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1251–1258, 2017.

Anna Choromanska, Krzysztof Choromanski, Mariusz Bojarski, Tony Jebara, Sanjiv
Kumar, and Yann LeCun. Binary embeddings with structured hashed projections.
In International Conference on Machine Learning, pages 344–353, 2016.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approxima-
tion. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 163–172. ACM, 2015.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-
rank approximation via ridge leverage score sampling. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1758–1777.
SIAM, 2017.

Jonathan A DeCastro, Lucas Liebenwein, Cristian-Ioan Vasile, Russ Tedrake, Ser-
tac Karaman, and Daniela Rus. Counterexample-guided safety contracts for au-
tonomous driving. In International Workshop on the Algorithmic Foundations of
Robotics, 2018.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22, 1977.

274

http://arxiv.org/abs/1506.04449

Misha Denil, Babak Shakibi, Laurent Dinh, Marc Aurelio Ranzato, and Nando de Fre-
itas. Predicting parameters in deep learning. In Advances in Neural Information
Processing Systems 26, pages 2148–2156, 2013.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus.
Exploiting linear structure within convolutional networks for efficient evaluation.
In Advances in neural information processing systems, pages 1269–1277, 2014.

Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran
Khanna, Zachary C. Lipton, and Animashree Anandkumar. Stochastic activation
pruning for robust adversarial defense. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=H1uR4GZRZ.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and Chenggang Yan.
Approximated oracle filter pruning for destructive cnn width optimization. In
International Conference on Machine Learning, pages 1607–1616. PMLR, 2019.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real nvp. arXiv preprint arXiv:1605.08803, 2016.

Benjamin Doerr. Probabilistic tools for the analysis of randomized optimization
heuristics. arXiv preprint arXiv:1801.06733, 2018.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks
via layer-wise optimal brain surgeon. In Advances in Neural Information Processing
Systems, pages 4860–4874, 2017a.

Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more
complicated network with less inference complexity. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5840–5848, 2017b.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae.
Journal of computational and applied mathematics, 6(1):19–26, 1980.

Petros Drineas and Anastasios Zouzias. A note on element-wise matrix sparsification
via a matrix-valued bernstein inequality. Information Processing Letters, 111(8):
385–389, 2011.

Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Relative-error cur
matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2):
844–881, 2008.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent prov-
ably optimizes over-parameterized neural networks. In International Conference
on Learning Representations, 2019. URL https://openreview.net/forum?id=

S1eK3i09YQ.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In
Advances in Neural Information Processing Systems, pages 3134–3144, 2019.

275

https://openreview.net/forum?id=H1uR4GZRZ
https://openreview.net/forum?id=S1eK3i09YQ
https://openreview.net/forum?id=S1eK3i09YQ

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline
flows. arXiv preprint arXiv:1906.04032, 2019.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than
training data. arXiv preprint arXiv:1703.11008, 2017.

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture search:
A survey. J. Mach. Learn. Res., 20(55):1–21, 2019.

N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and
Michael W. Mahoney. Lipschitz recurrent neural networks. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?

id=-N7PBXqOUJZ.

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John
Winn, and Andrew Zisserman. The pascal visual object classes challenge: A retro-
spective. International journal of computer vision, 111(1):98–136, 2015.

Dan Feldman. Core-sets: Updated survey. Sampling Techniques for Supervised or
Unsupervised Tasks, pages 23–44, 2020.

Dan Feldman and Michael Langberg. A unified framework for approximating and
clustering data. In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 569–578. ACM, 2011.

Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A ptas for k-means clus-
tering based on weak coresets. In Proceedings of the twenty-third annual symposium
on Computational geometry, pages 11–18. ACM, 2007.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How
to train your neural ode. arXiv preprint arXiv:2002.02798, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=rJl-b3RcF7.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural
networks. arXiv preprint arXiv:1902.09574, 2019.

Neil Gallagher, Kyle R Ulrich, Austin Talbot, Kafui Dzirasa, Lawrence Carin, and
David E Carlson. Cross-spectral factor analysis. In Advances in Neural Information
Processing Systems, pages 6842–6852, 2017.

Noah Gamboa, Kais Kudrolli, Anand Dhoot, and Ardavan Pedram. Campfire: Com-
pressible, regularization-free, structured sparse training for hardware accelerators.
arXiv preprint arXiv:2001.03253, 2020.

276

https://openreview.net/forum?id=-N7PBXqOUJZ
https://openreview.net/forum?id=-N7PBXqOUJZ
https://openreview.net/forum?id=rJl-b3RcF7

Xitong Gao, Yiren Zhao, Lukasz Dudziak, Robert Mullins, and Cheng-zhong Xu.
Dynamic channel pruning: Feature boosting and suppression. arXiv preprint
arXiv:1810.05331, 2018.

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ulti-
mate tensorization: compressing convolutional and fc layers alike. arXiv preprint
arXiv:1611.03214, 2016.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked
autoencoder for distribution estimation. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages 881–889, Lille, France, 07–09
Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/germain15.html.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural
net optimization via hessian eigenvalue density. In International Conference on
Machine Learning, pages 2232–2241. PMLR, 2019.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press,
2013.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing Deep Con-
volutional Networks using Vector Quantization. arXiv preprint arXiv:1412.6115,
2014.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David
Duvenaud. Ffjord: Free-form continuous dynamics for scalable reversible generative
models. International Conference on Learning Representations, 2019.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–6649. Ieee, 2013.

Shupeng Gui, Haotao N Wang, Haichuan Yang, Chen Yu, Zhangyang Wang, and
Ji Liu. Model compression with adversarial robustness: A unified optimization
framework. In Advances in Neural Information Processing Systems, pages 1285–
1296, 2019.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient
dnns. In Advances In Neural Information Processing Systems, pages 1379–1387,
2016.

277

http://proceedings.mlr.press/v37/germain15.html

Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. Sparse dnns with
improved adversarial robustness. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 242–251. Curran Associates, Inc., 2018.

Julia Gusak, Maksym Kholiavchenko, Evgeny Ponomarev, Larisa Markeeva, Philip
Blagoveschensky, Andrzej Cichocki, and Ivan Oseledets. Automated multi-stage
compression of neural networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pages 0–0, 2019.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding. CoRR,
abs/1510.00149, 2015a. URL http://arxiv.org/abs/1510.00149.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and
connections for efficient neural networks. In Proceedings of the 28th International
Conference on Neural Information Processing Systems-Volume 1, pages 1135–1143,
2015b.

Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra
Malik. Semantic contours from inverse detectors. In 2011 International Conference
on Computer Vision, pages 991–998. IEEE, 2011.

Ramin Hasani, Alexander Amini, Mathias Lechner, Felix Naser, Radu Grosu, and
Daniela Rus. Response characterization for auditing cell dynamics in long short-
term memory networks. In 2019 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2019a.

Ramin Hasani, Guodong Wang, and Radu Grosu. A machine learning suite for ma-
chine components’ health-monitoring. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 9472–9477, 2019b.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. A
natural lottery ticket winner: Reinforcement learning with ordinary neural circuits.
In International Conference on Machine Learning, pages 4082–4093. PMLR, 2020.

Ramin Hasani, Mathias Lechner, Alexander Amini, Lucas Liebenwein, Max
Tschaikowski, Gerald Teschl, and Daniela Rus. Closed-form continuous-depth mod-
els. arXiv preprint arXiv:2106.13898, 2021a.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu.
Liquid time-constant networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(9):7657–7666, May 2021b.

Babak Hassibi and David G Stork. Second order derivatives for network pruning:
Optimal brain surgeon. Morgan Kaufmann, 1993.

278

http://arxiv.org/abs/1510.00149

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning
for accelerating deep convolutional neural networks. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pages 2234–2240. AAAI
Press, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric
median for deep convolutional neural networks acceleration. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4340–4349,
2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1389–1397, 2017.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. Proceedings of the International Confer-
ence on Learning Representations, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.
Sparsity in deep learning: Pruning and growth for efficient inference and training
in neural networks. arXiv preprint arXiv:2102.00554, 2021.

Sara Hooker, Aaron Courville, Yann Dauphin, and Andrea Frome. Selective brain
damage: Measuring the disparate impact of model pruning. arXiv preprint
arXiv:1911.05248, 2019.

Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G Edward Suh.
Channel gating neural networks. arXiv preprint arXiv:1805.12549, 2018.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural
autoregressive flows. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 2078–2087. PMLR, 10–15 Jul 2018a. URL
http://proceedings.mlr.press/v80/huang18d.html.

Chin-Wei Huang, Ricky TQ Chen, Christos Tsirigotis, and Aaron Courville. Convex
potential flows: Universal probability distributions with optimal transport and
convex optimization. arXiv preprint arXiv:2012.05942, 2020.

279

http://proceedings.mlr.press/v80/huang18d.html

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4700–4708, 2017.

Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann. Learning to prune
filters in convolutional neural networks. In 2018 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pages 709–718. IEEE, 2018b.

Jonathan H Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable
bayesian logistic regression. arXiv preprint arXiv:1605.06423, 2016.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for
laplacian smoothing splines. Communications in Statistics-Simulation and Com-
putation, 18(3):1059–1076, 1989.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

Yerlan Idelbayev and Miguel A Carreira-Perpinán. Low-rank compression of neural
nets: Learning the rank of each layer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8049–8059, 2020.

Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, and Antonio
Criminisi. Training cnns with low-rank filters for efficient image classification.
arXiv preprint arXiv:1511.06744, 2015.

Yani Ioannou, Duncan Robertson, Roberto Cipolla, and Antonio Criminisi. Deep
roots: Improving cnn efficiency with hierarchical filter groups. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1231–1240,
2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. In Proceedings of the British Machine
Vision Conference. BMVA Press, 2014.

Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-squares polynomial flow. In
International Conference on Machine Learning, pages 3009–3018. PMLR, 2019.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into
a hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differen-
tiable masks. In International Conference on Machine Learning, pages 5122–5131.
PMLR, 2020.

280

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and
Mikhail Smelyanskiy. On large-batch training for deep learning: Generalization gap
and sharp minima. In 5th International Conference on Learning Representations,
ICLR 2017, 2017.

Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min Kyung. Efficient neural
network compression. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12569–12577, 2019.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun
Shin. Compression of Deep Convolutional Neural Networks for Fast and Low Power
Mobile Applications. 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, nov 2015a. URL http://arxiv.org/

abs/1511.06530.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun
Shin. Compression of deep convolutional neural networks for fast and low power
mobile applications. arXiv preprint arXiv:1511.06530, 2015b.

Diederik P Kingma and Prafulla Dhariwal. Glow: generative flow with invertible
1× 1 convolutions. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 10236–10245, 2018.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. Improving variational inference with inverse autoregressive flow.
arXiv preprint arXiv:1606.04934, 2016.

Zhifeng Kong and Kamalika Chaudhuri. The expressive power of a class of normalizing
flow models. In International Conference on Artificial Intelligence and Statistics,
pages 3599–3609. PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

Abhisek Kundu and Petros Drineas. A note on randomized element-wise matrix
sparsification. arXiv preprint arXiv:1404.0320, 2014.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek
Jain, Sham Kakade, and Ali Farhadi. Soft threshold weight reparameterization for
learnable sparsity. arXiv preprint arXiv:2002.03231, 2020.

Michael Langberg and Leonard J Schulman. Universal 𝜀-approximators for integrals.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Al-
gorithms, pages 598–607. SIAM, 2010.

281

http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1511.06530
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Valero Laparra, Jesús Malo, and Gustau Camps-Valls. Dimensionality reduction via
regression in hyperspectral imagery. IEEE Journal of Selected Topics in Signal
Processing, 9(6):1026–1036, 2015.

Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain damage.
In Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on,
pages 2554–2564. IEEE, 2016.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Vic-
tor S. Lempitsky. Speeding-up convolutional neural networks using fine-tuned cp-
decomposition. In ICLR (Poster), 2015. URL http://arxiv.org/abs/1412.6553.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-
sampled time series. arXiv preprint arXiv:2006.04418, 2020.

Mathias Lechner, Ramin Hasani, Alexander Amini, Thomas A Henzinger, Daniela
Rus, and Radu Grosu. Neural circuit policies enabling auditable autonomy. Nature
Machine Intelligence, 2(10):642–652, 2020a.

Mathias Lechner, Ramin Hasani, Daniela Rus, and Radu Grosu. Gershgorin loss
stabilizes the recurrent neural network compartment of an end-to-end robot learn-
ing scheme. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 5446–5452. IEEE, 2020b.

Mathias Lechner, Ramin Hasani, Radu Grosu, Daniela Rus, and Thomas A Hen-
zinger. Adversarial training is not ready for robot learning. arXiv preprint
arXiv:2103.08187, 2021.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances
in neural information processing systems, pages 598–605, 1990.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network
pruning based on connection sensitivity. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. The Journal of Machine Learning Research, 17(1):
1334–1373, 2016.

Chong Li and CJ Shi. Constrained optimization based low-rank approximation of
deep neural networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 732–747, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

282

http://arxiv.org/abs/1412.6553
https://openreview.net/forum?id=B1VZqjAcYX

Jiashi Li, Qi Qi, Jingyu Wang, Ce Ge, Yujian Li, Zhangzhang Yue, and Haifeng Sun.
Oicsr: Out-in-channel sparsity regularization for compact deep neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7046–7055, 2019a.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scal-
able gradients for stochastic differential equations. In International Conference on
Artificial Intelligence and Statistics, pages 3870–3882. PMLR, 2020.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for
convolutional neural network compression. In Proceedings of the IEEE International
Conference on Computer Vision, pages 5623–5632, 2019b.

Lucas Liebenwein. Torchprune: A research library for pytorch-based neural network
pruning, compression, and more. https://github.com/lucaslie/torchprune,
2021.

Lucas Liebenwein, Cenk Baykal, Igor Gilitschenski, Sertac Karaman, and Daniela
Rus. Sampling-based approximation algorithms for reachability analysis with prov-
able guarantees. In Proceedings of Robotics: Science and Systems, Pittsburgh,
Pennsylvania, June 2018. doi: 10.15607/RSS.2018.XIV.014.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Prov-
able filter pruning for efficient neural networks. In International Conference on
Learning Representations, 2020.

Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus.
Lost in pruning: The effects of pruning neural networks beyond test accuracy. In
A. Smola, A. Dimakis, and I. Stoica, editors, Proceedings of Machine Learning and
Systems, volume 3, pages 93–138, 2021a.

Lucas Liebenwein, Ramin Hasani, Alexander Amini, and Daniela Rus. Sparse flows:
Pruning continuous-depth models. In Advances in Neural Information Processing
Systems (Under Review; arXiv preprint arXiv:2106.12718), 2021b.

Lucas Liebenwein, Alaa Maalouf, Oren Gal, Dan Feldman, and Daniela Rus. Com-
pressing neural networks: Towards determining the optimal layer-wise decomposi-
tion. In Advances in Neural Information Processing Systems (Under Review; arXiv
preprint arXiv:2107.11442), 2021c.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In Advances
in Neural Information Processing Systems, pages 2178–2188, 2017.

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic
model pruning with feedback. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=SJem8lSFwB.

283

https://github.com/lucaslie/torchprune
https://openreview.net/forum?id=SJem8lSFwB

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture
search. In International Conference on Learning Representations, 2019a. URL
https://openreview.net/forum?id=S1eYHoC5FX.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting
Cheng, and Jian Sun. Metapruning: Meta learning for automatic neural network
channel pruning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3296–3305, 2019b.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. Learning efficient convolutional networks through network slimming.
In Proceedings of the IEEE International Conference on Computer Vision, pages
2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking
the value of network pruning. In International Conference on Learning Represen-
tations, 2019c. URL https://openreview.net/forum?id=rJlnB3C5Ym.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end trainable filter pruning
method for efficient deep model inference. arXiv preprint arXiv:1805.08941, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method
for deep neural network compression. In Proceedings of the IEEE international
conference on computer vision, pages 5058–5066, 2017.

Björn Lütjens, Lucas Liebenwein, and Katharina Kramer. Machine learning-based
estimation of forest carbon stocks to increase transparency of forest preservation
efforts. arXiv preprint arXiv:1912.07850, 2019.

Alaa Maalouf, Ibrahim Jubran, and Dan Feldman. Fast and accurate least-mean-
squares solvers. In Advances in Neural Information Processing Systems, pages
8305–8316, 2019.

Alaa Maalouf, Adiel Statman, and Dan Feldman. Tight sensitivity bounds for smaller
coresets. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2051–2061, 2020.

Alaa Maalouf, Harry Lang, Daniela Rus, and Dan Feldman. Deep learning meets
projective clustering. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=EQfpYwF3-b.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
In International Conference on Learning Representations, 2018. URL https:

//openreview.net/forum?id=rJzIBfZAb.

284

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=EQfpYwF3-b
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asma.
Dissecting neural odes. In 34th Conference on Neural Information Processing Sys-
tems, NeurIPS 2020. The Neural Information Processing Systems, 2020.

Shannon McCurdy. Ridge regression and provable deterministic ridge leverage score
sampling. In Advances in Neural Information Processing Systems, pages 2463–2472,
2018.

Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bring-
mann, Alexander S. Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking
robustness in object detection: Autonomous driving when winter is coming. arXiv
preprint arXiv:1907.07484, 2019.

Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks
using genetic algorithms. In ICGA, volume 89, pages 379–384, 1989.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602, 2013.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun-
ing convolutional neural networks for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Impor-
tance estimation for neural network pruning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 11264–11272, 2019.

Alejandro Molina, Alexander Munteanu, and Kristian Kersting. Core dependency
networks. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI). AAAI Press Google Scholar, 2018.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
Neural importance sampling. ACM Transactions on Graphics (TOG), 38(5):1–19,
2019.

Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods and history: A
theoreticians design pattern for approximation and streaming algorithms. KI-
Künstliche Intelligenz, 32(1):37–53, 2018.

Vaishnavh Nagarajan and Zico Kolter. Deterministic PAC-bayesian generalization
bounds for deep networks via generalizing noise-resilience. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?

id=Hygn2o0qKX.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and
Ilya Sutskever. Deep double descent: Where bigger models and more data hurt.
In International Conference on Learning Representations, 2020. URL https://

openreview.net/forum?id=B1g5sA4twr.

285

https://openreview.net/forum?id=Hygn2o0qKX
https://openreview.net/forum?id=Hygn2o0qKX
https://openreview.net/forum?id=B1g5sA4twr
https://openreview.net/forum?id=B1g5sA4twr

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real in-
ductive bias: On the role of implicit regularization in deep learning. In ICLR
(Workshop), 2015. URL http://arxiv.org/abs/1412.6614.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A
pac-bayesian approach to spectrally-normalized margin bounds for neural networks.
arXiv preprint arXiv:1707.09564, 2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Ex-
ploring generalization in deep learning. In Advances in Neural Information Pro-
cessing Systems, pages 5949–5958, 2017b.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan
Srebro. Towards understanding the role of over-parametrization in generalization
of neural networks. arXiv preprint arXiv:1805.12076, 2018.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan
Srebro. The role of over-parametrization in generalization of neural networks.
In International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=BygfghAcYX.

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Ten-
sorizing neural networks. In Proceedings of the 28th International Conference on
Neural Information Processing Systems-Volume 1, pages 442–450, 2015.

Junier Oliva, Avinava Dubey, Manzil Zaheer, Barnabas Poczos, Ruslan Salakhutdi-
nov, Eric Xing, and Jeff Schneider. Transformation autoregressive networks. In
International Conference on Machine Learning, pages 3898–3907. PMLR, 2018a.

Junier Oliva, Avinava Dubey, Manzil Zaheer, Barnabas Poczos, Ruslan Salakhutdi-
nov, Eric Xing, and Jeff Schneider. Transformation autoregressive networks. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 3898–3907. PMLR, 10–15 Jul 2018b. URL http://proceedings.

mlr.press/v80/oliva18a.html.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast
and accurate continuous normalizing flows via optimal transport. arXiv preprint
arXiv:2006.00104, 2020.

Dimitris Papailiopoulos, Anastasios Kyrillidis, and Christos Boutsidis. Provable de-
terministic leverage score sampling. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 997–1006.
ACM, 2014.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow
for density estimation. arXiv preprint arXiv:1705.07057, 2017.

286

http://arxiv.org/abs/1412.6614
https://openreview.net/forum?id=BygfghAcYX
https://openreview.net/forum?id=BygfghAcYX
http://proceedings.mlr.press/v80/oliva18a.html
http://proceedings.mlr.press/v80/oliva18a.html

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distil-
lation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3967–3976, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

Xi Peng, Zhang Yi, and Huajin Tang. Robust subspace clustering via thresholding
ridge regression. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Alter-
nating compressed/decompressed training of deep neural networks. arXiv preprint
arXiv:2106.12379, 2021.

Konstantinos Pitas, Mike Davies, and Pierre Vandergheynst. Revisiting hard thresh-
olding for dnn pruning. arXiv preprint arXiv:1905.08793, 2019.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Torchdyn: A neural differential equations library. arXiv preprint
arXiv:2009.09346, 2020a.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, Jinkyoo Park,
et al. Hypersolvers: Toward fast continuous-depth models. Advances in Neural
Information Processing Systems, 33, 2020b.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge,
2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. In European
conference on computer vision, pages 525–542. Springer, 2016.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-
10 classifiers generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ima-
genet classifiers generalize to imagenet? In International Conference on Machine
Learning, pages 5389–5400, 2019.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing fine-tuning and
rewinding in neural network pruning. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=S1gSj0NKvB.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In International Conference on Machine Learning, pages 1530–1538. PMLR, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533–536, 1986.

287

https://openreview.net/forum?id=S1gSj0NKvB

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empir-
ical analysis of the hessian of over-parametrized neural networks. arXiv preprint
arXiv:1706.04454, 2017.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ram-
abhadran. Low-rank matrix factorization for deep neural network training with
high-dimensional output targets. In 2013 IEEE international conference on acous-
tics, speech and signal processing, pages 6655–6659. IEEE, 2013.

Wilko Schwarting, Tim Seyde, Igor Gilitschenski, Lucas Liebenwein, Ryan Sander,
Sertac Karaman, and Daniela Rus. Deep latent competition: Learning to race
using visual control policies in latent space. In Conference on Robot Learning,
Proceedings of Machine Learning Research. PMLR, 2020.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Towards compact and
robust deep neural networks. arXiv preprint arXiv:1906.06110, 2019.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning
adversarially robust neural networks. arXiv preprint arXiv:2002.10509, 2020.

Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and SVN
Vishwanathan. Hash kernels for structured data. Journal of Machine Learning
Research, 10(Nov):2615–2637, 2009.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, et al. A general reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science, 362(6419):1140–1144, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. Structured transforms for small-
footprint deep learning. In Advances in Neural Information Processing Systems,
pages 3088–3096, 2015.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximations
for model compression. arXiv preprint arXiv:2004.14340, 2020.

288

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, and Charles Sut-
ton. Veegan: Reducing mode collapse in gans using implicit variational learning.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/

paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural net-
works with low-rank regularization. arXiv preprint arXiv:1511.06067, 2015.

Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning
neural networks without any data by iteratively conserving synaptic flow. arXiv
preprint arXiv:2006.05467, 2020.

Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and
Masashi Sugiyama. Coupling-based invertible neural networks are universal dif-
feomorphism approximators. arXiv preprint arXiv:2006.11469, 2020.

Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak Gupta. Chipnet:
Budget-aware pruning with heaviside continuous approximations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/

forum?id=xCxXwTzx4L1.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. IEEE transactions
on pattern analysis and machine intelligence, 30(11):1958–1970, 2008.

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations
and Trends® in Machine Learning, 8(1-2):1–230, 2015.

Murad Tukan, Cenk Baykal, Dan Feldman, and Daniela Rus. On coresets for support
vector machines. In International Conference on Theory and Applications of Models
of Computation, pages 287–299. Springer, 2020a.

Murad Tukan, Alaa Maalouf, Matan Weksler, and Dan Feldman. Compressed deep
networks: Goodbye svd, hello robust low-rank approximation. arXiv preprint
arXiv:2009.05647, 2020b.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural
network compression. arXiv preprint arXiv:1702.04008, 2017.

Ramon van Handel. Probability in high dimension. Technical report, PRINCETON
UNIV NJ, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Pro-
ceedings of the 31st International Conference on Neural Information Processing
Systems, pages 6000–6010, 2017.

289

https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://openreview.net/forum?id=xCxXwTzx4L1
https://openreview.net/forum?id=xCxXwTzx4L1

Roman Vershynin. High-dimensional probability. An Introduction with Applications,
2016.

Charles Vorbach, Ramin Hasani, Alexander Amini, Mathias Lechner, and Daniela
Rus. Causal navigation by continuous-time neural networks. arXiv preprint
arXiv:2106.08314, 2021.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before
training by preserving gradient flow. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/forum?id=SkgsACVKPH.

Luyu Wang, Gavin Weiguang Ding, Ruitong Huang, Yanshuai Cao, and Yik Chau
Lui. Adversarial robustness of pruned neural networks. ICLR Workshop submis-
sion, 2018.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks.
arXiv preprint arXiv:1908.05164, 2019.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Atten-
berg. Feature hashing for large scale multitask learning. In Proceedings of the 26th
annual international conference on machine learning, pages 1113–1120, 2009.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. In Advances in Neural Information Processing
Systems, pages 2074–2082, 2016.

Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Co-
ordinating Filters for Faster Deep Neural Networks. Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2017-Octob:658–666, mar 2017. URL
http://arxiv.org/abs/1703.09746.

Kyle Wiggers. Openai’s massive gpt-3 model is impressive, but size
isn’t everything, May 2021. URL https://venturebeat.com/2020/06/01/

ai-machine-learning-openai-gpt-3-size-isnt-everything/.

Arie Wahyu Wijayanto, Jun Jin Choong, Kaushalya Madhawa, and Tsuyoshi Mu-
rata. Towards robust compressed convolutional neural networks. In 2019 IEEE
International Conference on Big Data and Smart Computing (BigComp), pages
1–8. IEEE, 2019.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized
Convolutional Neural Networks for Mobile Devices. In Proceedings of the Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

290

https://openreview.net/forum?id=SkgsACVKPH
http://arxiv.org/abs/1703.09746
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everyt hing/
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everyt hing/

Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Yingyong Qi, Yiran Chen,
Weiyao Lin, and Hongkai Xiong. TRP: Trained Rank Pruning for Efficient Deep
Neural Networks. IJCAI International Joint Conference on Artificial Intelligence,
2021-Janua:977–983, apr 2020. URL http://arxiv.org/abs/2004.14566.

Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic
models with singular value decomposition. In Interspeech, pages 2365–2369, 2013.

Liu Yang and George Em Karniadakis. Potential flow generator with l2 optimal
transport regularity for generative models. IEEE Transactions on Neural Networks
and Learning Systems, 2020.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convo-
lutional neural networks using energy-aware pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5687–5695, 2017.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian:
Neural networks through the lens of the hessian. In 2020 IEEE International
Conference on Big Data (Big Data), pages 581–590. IEEE, 2020.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers. In International
Conference on Learning Representations, 2018. URL https://openreview.net/

forum?id=HJ94fqApW.

Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu.
Good subnetworks provably exist: Pruning via greedy forward selection. In Inter-
national Conference on Machine Learning, pages 10820–10830. PMLR, 2020.

Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang,
Aojun Zhou, Kaisheng Ma, Yanzhi Wang, and Xue Lin. Adversarial robustness vs.
model compression, or both. In The IEEE International Conference on Computer
Vision (ICCV), volume 2, 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable
neural networks. arXiv preprint arXiv:1812.08928, 2018a.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using
neuron importance score propagation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9194–9203, 2018b.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep
models by low rank and sparse decomposition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 7370–7379, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

291

http://arxiv.org/abs/2004.14566
https://openreview.net/forum?id=HJ94fqApW
https://openreview.net/forum?id=HJ94fqApW

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. In International
Conference on Learning Representations, 2016. URL https://openreview.net/

forum?id=Sy8gdB9xx&.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating Very Deep
Convolutional Networks for Classification and Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38(10):1943–1955, may 2015a. URL
http://arxiv.org/abs/1505.06798.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep con-
volutional networks for classification and detection. IEEE transactions on pattern
analysis and machine intelligence, 38(10):1943–1955, 2015b.

Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. Efficient and
accurate approximations of nonlinear convolutional networks. In Proceedings of the
IEEE Conference on Computer Vision and pattern Recognition, pages 1984–1992,
2015c.

Yilin Zhang and Karl Rohe. Understanding regularized spectral clustering via graph
conductance. In Advances in Neural Information Processing Systems, pages 10631–
10640, 2018.

Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, and Bo Yuan. Theoretical
properties for neural networks with weight matrices of low displacement rank. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 4082–4090. JMLR. org, 2017.

Yiren Zhao, Ilia Shumailov, Robert Mullins, and Ross Anderson. To compress or
not to compress: Understanding the interactions between adversarial attacks and
neural network compression. arXiv preprint arXiv:1810.00208, 2018.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental
Network Quantization: Towards Lossless CNNs with Low-Precision Weights. In
Proceedings of the International Conference on Learning Representations (ICLR)
2017, feb 2017.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz.
Compressibility and generalization in large-scale deep learning. arXiv preprint
arXiv:1804.05862, 2018a.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz.
Non-vacuous generalization bounds at the imagenet scale: a pac-bayesian compres-
sion approach. In International Conference on Learning Representations, 2018b.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of
pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.

292

https://openreview.net/forum?id=Sy8gdB9xx&
https://openreview.net/forum?id=Sy8gdB9xx&
http://arxiv.org/abs/1505.06798

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu,
Junzhou Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep
neural networks. arXiv preprint arXiv:1810.11809, 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

293

	List of Figures
	List of Tables
	Introduction
	Motivation
	Vision
	Challenges
	Provable Coresets for Layers
	Composable Neural Network Pruning Guarantees
	Practical Pruning from Theoretical Guarantees
	Modular Compression Techniques
	Scalable Pruning Solutions
	Generalization and Robustness in Pruning
	Improved Generalization via Pruning

	Contributions
	Overview of Contributions
	Open-source Implementation
	Detailed Contributions

	Outline

	Related Work
	Coresets and Theoretical Foundations
	Neural Network Compression and Pruning
	Unstructured Pruning
	Structured Pruning via Filter Pruning
	Low-rank Compression
	Network-aware Compression
	Retraining of Pruned Networks

	Generalization of Neural Networks
	Generalization
	Robustness
	Robust Training and Pruning
	Implicit Regularization via Overparameterization

	Architecture Design and Search
	Continuous-depth Models

	I Theoretical Foundations
	Sensitivity-informed Compression Bounds for Neural Networks
	Overview
	Contributions
	Relevant Papers
	Outline

	Problem Definition
	Fully-connected Neural Networks
	Neural Network Coreset Problem

	Method
	Sparsifying Weights in Neurons
	Neural Network Sparsification

	Analysis
	Preliminaries
	Empirical Sensitivity for Positive Weights
	Importance Sampling Bounds for Positive Weights
	Importance Sampling Bounds for all Weights

	Network Compression Bounds
	Layer-wise Approximation
	Network Compression
	Generalization Bounds

	Results
	Experimental Setup
	Results

	Discussion

	Generalized Compression Bounds
	Overview
	Contributions
	Relevant Papers
	Outline

	Problem Definition
	Method
	Analysis
	Channel Sparsification
	Main Compression Theorem
	Extension to Filters
	Boosting Sampling via Deterministic Choices

	Discussion

	II Efficient Neural Networks
	Provable Filter Pruning
	Overview
	Contributions
	Relevant Papers
	Outline

	Filter Pruning
	Preliminaries
	Sampling-based Filter Pruning
	A Tightly-concentrated Estimator
	Empirical Sensitivity
	Derandomized Filter Pruning

	Optimal Budget Allocation
	Results
	Experimental Setup
	Comparison Methods
	LeNet Architectures on MNIST
	Convolutional Neural Networks on CIFAR-10
	Convolutional Neural Networks on ImageNet
	Application to Real-time Regression Tasks

	Discussion

	Automatic Layer-wise Decomposition
	Overview
	Contributions
	Relevant Papers
	Outline

	Method
	Preliminaries
	Local Layer Compression
	Global Network Compression
	Automatic Layer-wise Decomposition Selector (ALDS)

	Results
	Experimental Setup
	One-shot Compression with Baselines
	ImageNet Benchmarks
	Ablation Study
	Extensions of ALDS

	Discussion

	III Applications
	Pruning Beyond Test Accuracy
	Overview
	Contributions
	Relevant Papers
	Outline

	Methodology
	Pruning Setup
	Experiments Roadmap

	Function Distance
	Methodology
	Results

	Pruning under Distribution Changes
	Methodology
	Results

	Towards Robust Pruning
	Methodology
	Results

	Discussion

	Pruning Continuous-depth Models
	Overview
	Contributions
	Relevant Papers
	Outline

	Background
	Pruning Neural ODEs
	A General Framework for Training Sparse Flows
	From Dense to Sparse Flows

	Experimental Setup
	Experiments
	Density Estimation on 2D Data
	Density Estimation on Real Data – Tabular
	Density Estimation on Real-Data – Vision
	Pruning Flattens the Loss Surface
	On the Robustness of Decision Boundaries

	Discussion

	Conclusion
	Summary
	Lessons Learned
	Closing Remarks

	Appendix: Automatic Layer-wise Decomposition
	Appendix: Pruning Beyond Test Accuracy
	Detailed Methodology and Prune Results
	Experimental Setup for CIFAR-10
	Pruning Performance on CIFAR-10
	Experimental Setup on ImageNet
	Pruning Performance on ImageNet
	Experimental Setup for Pascal VOC
	Pruning Performance on VOC

	Additional Results for Function Distance
	Comparison of Informative Features
	Noise Similarities

	Additional Results for Prune Potential
	Detailed Results for Prune Potential with Corruptions
	Choice of Commensurate Accuracy
	Detailed Results for Excess Error with Corruptions
	Results for Overparameterization

	Detailed Results for Robust Pruning
	Experimental Setup and Prune Results
	Results for Prune Potential
	Results for Excess Error
	Results for Overparameterization

