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Abstract

Imaging scenes that are not in our direct line-of-sight, referred to as non-line-of-sight
(NLOS) imaging, has recently gained considerable attention from the computational
imaging community. With a diverse set of potential applications in several domains,
NLOS imaging is an emerging topic with many unanswered questions despite the
progress made in the last decade. In this thesis, we aim to find answers to some of
these questions by focusing on a popular NLOS imaging setting, namely occluder-aided
imaging, which exploits occluding structure in the scenes to extract information from
the hidden scenes. We do this by first focusing on the scene classification problem,
where we study the problem of identifying individuals by exploiting shadows cast
by occluding objects on a diffuse surface. In particular, we develop a learning-based
method that discovers hidden cues in the shadows and relies on building synthetic
scenes composed of 3D face models obtained from a single photograph of each identity.
We transfer what we learn from the synthetic data to the real data using domain
adaptation in a completely unsupervised way and report classification accuracies over
75% for a binary classification task that takes place in a scene with unknown geometry
and occluding objects. Next, we focus on the problem of scene estimation, which aims
to recover an image of the hidden scene from NLOS measurements. We present a
learning-based framework that exploits deep generative models and demonstrate the
promise of this framework via simulations.

Thesis Supervisor: Gregory W. Wornell
Title: Sumitomo Professor of Engineering
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Chapter 1

Introduction

Whenever we interact with images in our daily lives, we often care little about how
these images are formed. Whether they are captured by an optical device or just form
in our brains, these images are typically the result of a physical process referred to as
image formation. When an image of a scene is formed, the light rays emitted from
a light source hit the objects in the scene and are reflected, refracted, transmitted,
or absorbed by these objects, eventually hitting a camera sensor, photographic film,
or our retina. Although the appearances of physically distant objects might seem
somewhat independent from each other, they are in fact connected through the light
that propagates through the entire scene volume, creating a light field, which surrounds
and binds all of the objects in the scene. Therefore, the appearance of each object in
a given scene is effectively influenced by everything else in that scene.

When we observe a scene, we might sometimes be interested in having some knowledge
about parts of the scene that are outside our field of view. Since the light field connects
the hidden part of the scene to its visible part, at least some information about these
hidden scenes is embedded in our observations. The study of extracting information
from the hidden scenes based on the visible scenes that are in our direct line-of-sight
is called non-line-of-sight (NLOS) imaging, and it is the primary focus of this thesis.
NLOS imaging is currently an active area of research with a diverse set of poten-
tial applications in surveillance, search-and-rescue, robotic vision, and medical imaging.

Throughout the last decade, NLOS imaging has been applied to several different tasks
such as recovering 2D images of the scene [1, 2], reconstructing videos of unknown
scenes [3], and estimating the motion and the number of hidden objects [4]. While
several methods aim to recover the whole hidden scene [1, 2, 3], often in accidental
scenarios [5] where no prior assumptions can be made about the scenes, recovering
certain attributes of the scene in such accidental scenarios can be useful in certain
applications. For instance, deciding whether or not a non-visible scene includes a
person could be potentially useful for autonomous driving [6], or determining whether
there is hazardous activity in an unknown scene would be practical for security and
surveillance applications. In this thesis, we explore both categories of applications,
namely, we focus on both recovering certain attributes from the hidden scene (which
we refer to as scene classification) and recovering the entirety of it (which we refer to
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as scene estimation). In both applications, we exploit occluding objects present in the
scene, called occluders, which improve the conditioning of the imaging problem [5, 7].
We approach these problems from a learning perspective, where we leverage large
amounts of image data to achieve robust and reliable NLOS imaging systems.

In Chapter 2, we first present a summary of the NLOS imaging literature by focus-
ing on the methods that are most related to this thesis, and discuss how we model
occluder-aided methods by describing the convolutional model of occlusion. Next, we
provide a brief overview on 3D morphable face models by explaining how these models
are used in different domains of application including our scene classification method.
Finally, we focus on the field of domain adaptation by summarizing the most relevant
unsupervised approaches, one of which we employ in our scene classification method.

In Chapter 3, we focus on the scene classification problem, where we study the problem
of identifying individuals in a given room by only observing shadows cast by occluding
objects on a blank wall. We present a learning-based framework that discovers hidden
cues in the shadows and achieves promising classification accuracies in a two-person
classification task that takes place in a scene with unknown geometry and occluding
objects, and show that seemingly innocuous shadows arising all around us can be used
to reveal at least some biometric information.

In Chapter 4, we explore the corresponding scene estimation problem, where we
describe a learning-based methodology to recover images of hidden scenes. Our simu-
lations suggest the potential of learning-based approaches to help build better NLOS
imaging systems that are robust to several changes in the scenes of interest.

Finally in Chapter 5, we conclude by summarizing our findings and discussing the
potential research directions for occluder-aided NLOS imaging.
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Chapter 2

Background and Related Work

2.1 Imaging Beyond Line-of-Sight

NLOS imaging has so far been explored in a variety of settings, with various scene
geometries, data collection strategies, and imaging devices. In this section, we first
present a short survey on NLOS imaging methods with more emphasis on occluder-
aided approaches, which are the main focus of this thesis. Then, we focus on modeling
the occlusion by describing the commonly used convolutional model, which we adopt
in our scene estimation method presented in Chapter 4.

2.1.1 NLOS Imaging Methods

Based on how the observed data is collected, NLOS imaging methods can be divided
into two categories: active methods, which typically involve an imaging device that
consists of an coherent illumination source (such as laser) and a photon detector (such
as single-photon avalanche diode), and passive methods, which do not require such
specialized equipment and work under the ambient light from the scene. We illustrate
typical configurations of active and passive methods in Figure 2-1.

Active Methods. In active imaging methods, several patches of the observed scene
are illuminated so that the light pulses reflecting on these patches reach the hidden
scene and are reflected back to the photon detector through the observed scene. The in-
creasing availability of less expensive time-of-flight sensors has enabled the proliferation
of active NLOS imaging methods over the last few years [8, 9, 10, 11, 12, 13, 14, 15, 16].
Due to the memory and computation requirements of active imaging systems, several
methods focus on the development of faster and more accurate reconstruction algo-
rithms under conventional scene geometries [9, 11, 13, 15], while [14] describes a novel
acquisition geometry involving vertical structures in the scene, and [16] demonstrates
NLOS imaging of hidden scenes over very large distances.

Passive Methods. Passive methods have been studied in a diverse set of scene ge-
ometries and imaging objectives, due to their wide applicability to different scenarios
as they do not require specialized equipment. These methods typically work under
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Figure 2-1: Typical scene configurations of active and passive imaging. (a) In active imaging,
a coherent illumination source such as laser scans the observed scene and the light pulses
respectively bounce from the observed scene, hidden scene, and observed scene again before
reaching the detector. Most active methods do not rely on occluders in the scene. (b) Passive
imaging methods typically work under the ambient light from the scene. The light rays
reflecting from the hidden scene bounce from the observed scene and reach to an imaging
device such as a digital camera. Many passive methods exploit occluders in the scene.

the ambient light from the scene, and the observed data can even be collected with
an ordinary digital camera [1]. Although obtaining good reconstruction quality with
passive methods is usually quite challenging as opposed to their active counterparts
[7], promising results can be achieved by having some degree of control over the
scene [17, 1]. In this thesis, we are primarily interested in achieving good reconstruc-
tion quality even when the control over the scenes is limited, and as observed in [5],
accidental scene geometries that enable us to perform NLOS imaging arise around us
more commonly than we think.

Passive NLOS imaging methods typically exploit structure present in the scenes that
induces occlusion, and such structure has been historically used in imaging systems
that use coded apertures [18, 19, 20, 21, 22], which rely on a known pattern of occlusion
to recover the scenes of interest. These occluders improve the conditioning of the
imaging problem [5, 7] and they have been recently exploited in several passive NLOS
imaging methods [4, 17, 23, 24, 1, 2, 3, 25]. Among these methods, [4] shows that
vertical occluder structure such as corners can be used to recover 1D projection of
a moving scene, from which the number of people moving in the hidden scene, their
sizes and speeds can be estimated. [24] and [25] extend this idea to image stationary
objects and make 2D inferences about the hidden scenes, while [23] detects obstacles
around the corners for autonomous driving applications..

In another line of work [17] proposes a method that infers 4D light fields of the hidden
scenes from 2D shadows cast by a known occluder, even when the occluder has a
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Figure 2-2: Convolutional model of occlusion. Under certain assumptions, we can model
the power radiated from the observed scene as a convolution of the power radiated from the
hidden scene and the occluder shape. Discretization allows us to represent this relation with
a transfer matrix shown on the right. Figure adapted from [7].

complex structure. In a different setting, [1] uses a small, rectangular occluder with
known shape but unknown position to recover 2D scenes, while [2] exploits motion in
hidden scenes to recover the hidden scene without any assumptions about the occluder
shape and position. In the latter method, however, the reconstruction quality remains
limited in real-world applications. In a more unconstrained scene geometry, [3] studies
the problem of recovering scenes by looking at a nearby visible region and formulates
it as a matrix factorization problem. Although this method is able to reconstruct
certain hidden scenes surprisingly well, it is not robust to changes in the hidden scenes
and the parameterization of the neural network used in the pipeline.

2.1.2 Modeling Occluder-aided NLOS Imaging

Light Propagation Model. In this thesis as well as in preceding occluder-aided
methods, the light propagation is described in terms of rays, also known as the ray
optics or geometrical optics model. Under this model, the light moves in straight lines
in a homogeneous medium, and it can be reflected and absorbed by the materials
it interacts with [26]. Furthermore, it is commonly assumed that the ambient light
sources in the scene generate light rays in random phases (also known as incoherence)
and this allows us to assume that the light intensity is additive [27].

Scene Geometry. In the vast majority of the occluder-aided methods, it is assumed
that the observations are made on a diffuse flat surface such as a flat wall. Under this
assumption, the observations can be modeled as two-dimensional (2D) projections of
three-dimensional (3D) hidden scenes onto a flat surface, which makes the problem
poorly-conditioned as one 2D observation can be explained by multiple 3D hidden
scenes. Therefore, it is commonly assumed that the hidden scene and the occluder
lie in 2D planes that are parallel to each other as well as to the observation plane.
Another common convention is to assume that the hidden scene, occluder and observed
plane are sufficiently far away from each other relative to their sizes, which allows
for neglecting the light attenuation over distance [2]. In particular, suppose that a
point light source with intensity 𝐼 illuminates a small flat surface 𝑑𝐴 with distance 𝑟
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from the light source. If the angle between the incident light and the surface normal
is 𝜃, the intensity contribution of this light source to the surface is proportional to
𝐼 𝑑𝐴 cos(𝜃)/𝑟2 under the ray optics model [26]. Now suppose that the same light
source is located at the origin and is incident on the plane 𝑧 = 𝑧0. Under the same
model, the intensity contribution of the light source to a small surface patch 𝑑𝐴
located at (𝑥, 𝑦, 𝑧0) is proportional to 𝐼 𝑑𝐴 𝑧0 / (𝑥2 + 𝑦2 + 𝑧20)3/2 which simplifies to
𝐼 𝑑𝐴/𝑧20 for all (𝑥, 𝑦) such that 𝑧0 ≫

√︀
𝑥2 + 𝑦2, i.e., when the size of the scene of

interest is sufficiently small compared its distance to the light source [2], the intensity
contribution of the light source to any point in the scene is the same.

Convolutional Model of Occlusion. Under the light propagation model and the
scene geometry we have introduced, we now show that the observations can be modeled
as a 2D convolution of the hidden scene and the occluder [2], which has also been
adopted in certain computer graphics applications [28, 29]. In particular, without
loss of generality, assume that the hidden scene, occluder, and observed scene are all
1-dimensional (1D) and lie parallel to each other in a 2D plane as shown in Figure 2-2.
Here, we denote the intensity of the hidden scene as 𝑓(𝑥), the intensity of the observed
scene as 𝑦(𝑥) and the opacity of the occluder 𝜅(𝑥) (the percentage of the light intensity
blocked by the occluder) over space in one dimension 0 ≤ 𝑥 ≤ 𝐿.

Now suppose that we discretize the hidden and the observed scenes uniformly into
𝑛 bins of size ∆ = 𝐿/𝑛 each, and denote the centers of these bins as 𝑥1, 𝑥1, . . . , 𝑥𝑛.
Assuming the function 𝑓 attains constant value at each bin (this is a valid assumption
if the discretization is sufficiently fine), we can denote power radiated from bin 𝑖 as
𝑓𝑖 = 𝑓(𝑥𝑖) · ∆, and similarly the measured power of the observed scene at bin 𝑖 as
𝑦𝑖. Since we ignore the light attenuation over distance and assume that the light
intensity is additive, the observed power at each bin can be written as a weighted
linear combination of the radiated power from each bin of the hidden scene, where
the weights are determined by the opacity of the occluder and the scene geometry.
In particular, given a bin 𝑖 in the hidden scene and a bin 𝑗 in the observed scene,
suppose that the line connecting the centers of these bins pass through the part of
the occluder that has opacity 𝜅𝑖𝑗 ∈ [0, 1]. In this construction, the observed power
at bin 𝑗 due to all bins in the hidden scene is simply 𝑦𝑗 =

∑︀𝑛
𝑖=1 𝜅𝑖𝑗𝑓𝑖. Therefore,

we can define a transfer matrix A ∈ R𝑛×𝑛 with A𝑖,𝑗 = 𝜅𝑖𝑗, which maps the hidden
scene to the observed scene with the relation y = Af where f := [𝑓1, . . . , 𝑓𝑛] ∈ R𝑛

and y := [𝑦1, . . . , 𝑦𝑛] ∈ R𝑛. Under this model, we observe that an impulse in the
hidden scene creates a shadow in the observed scene that exhibits a scaled and shifted
pattern of the occluder determined by the scene geometry. Hence, the matrix A is
simply a convolution operator that exhibits a Toeplitz structure as shown in Figure 2-2.

Under the convolution model, if both the hidden scene and the occluder are unknown,
we can state the scene recovery problem as a blind deconvolution problem which is
a well-studied problem for a diverse set of applications ranging from astronomical
imaging to channel equalization [30, 31, 32, 33, 34, 35, 36, 37, 38]. Since the convo-
lution operation is linear, the blind deconvolution problem is an instance of a linear
inverse problem. Specifically, we aim to recover the scene of interest f ∈ R𝑛 from a
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Figure 2-3: Variations in 3D shape, facial expression, and appearance for Basel Face Model
2019 [65]. Each attribute is represented by an individual PCA basis. Figure courtesy of [66].

set of measurements y ∈ R𝑚 with y = Af + n where A ∈ R𝑚×𝑛 captures the linear
operation dictated by the convolution and n ∈ R𝑚 denotes the noise. Since there are
infinitely many pairs of (A, f) that explain a given y, the problem is inherently ill-
posed. Traditionally, such problems are approached by imposing priors on the signals
of interest to constrain the solution space. For natural images, promoting sparsity
in wavelet domains or spatial gradients have been quite popular [39, 40, 41, 42, 43].
However, since these hand-crafted priors sometimes do not constrain the solution space
sufficiently well, constructing stronger, more application-specific priors has motivated
the use of data-driven approaches for popular vision problems such as superresolution
[44, 45, 46], deblurring [47, 48, 49], inpainting [50, 51, 52], or for any linear inverse
problem involving images [53]. Linear inverse problems can also be approached by
relying on deep generative models [54, 55, 56] by constraining the solutions to be
samples from an image distribution, which can be achieved by either estimating the
distribution itself [57, 58, 59] or directly accessing samples from the distribution
without explicitly constructing the distribution [60, 61, 62]. In Chapter 4 of this thesis,
we will explore the latter approach by employing a conditional generative model [63, 64].

2.2 3D Morphable Face Models

3D morphable models (3DMMs) are statistical models of human faces [67, 68, 69, 65],
which have been widely used in domains such as face recognition, entertainment, neu-
roscience and psychology for over 20 years [66]. Traditional 3DMMs were developed by
constructing principal component analysis (PCA) bases of 3D shape and appearance
of human faces, obtained from a collection of 3D scans. While early 3DMMs only
modeled neutral faces, they were later extended to incorporate facial expressions as
well [70, 65, 69], resulting in a full 3D model of human faces where 3D shape, facial
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source domain target domain

Figure 2-4: An example of source and target domains for domain adaptation. Given a
source domain and a target domain, domain adaptation seeks to modify the model trained
with the source domain so that it performs well on the target domain. Samples from the
MNIST [87] and SVHN [88] datasets for the source and target domains, respectively.

expression and appearance1 are disentangled by design. In Figure 2-3, we illustrate the
variations in 3D shape, facial expression, and appearance in one of the most commonly
used 3DMMs, the Basel Face Model 2019 [65].

Since the traditional 3DMMs are linear models (based on PCA bases), they often
have limited representation power, which recently has motivated the use of nonlinear
3DMMs [71, 72, 73] and deep neural networks for realistic face textures synthe-
sis [74, 75, 76, 77, 78]. Over the last decade, advances in deep learning also allowed
3DMMs to achieve remarkable results in the challenging problem of recovering 3D
faces from 2D images, commonly referred to as 3D face reconstruction [79, 80, 81, 82],
with more recent methods focusing on learning 3D face models without requiring
explicit 3D shape labels [83, 84, 71, 85, 86]. Among these methods, Deng et al. [86]
introduces an inverse graphics model that is trained in an end-to-end fashion. In
this pipeline, a set of 3DMM parameters as well as lighting and pose parameters are
estimated from a single 2D image, which are then used to render a 2D face image
using a differentiable renderer. As we will elaborate in Chapter 3, we employ this
reconstruction network to collect synthetic face data which we leverage in our identity
classification method.

1Appearance is sometimes referred to as albedo or texture.
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2.3 Domain adaptation

Over the last few years, there has been a significant amount of work in the area of
domain adaptation [89, 90], which is the study of transferring knowledge learned from
a source domain to a target domain. For example, suppose we are given a dataset
of images of digits (shown as source domain in Figure 2-4), and suppose we learn a
classifier from this data, which is able to identify which digit is displayed in a given
test image. Since this classifier is trained on one particular dataset, we would expect
it to perform poorly on a test image from another dataset (shown as target domain in
Figure 2-4). The main objective of domain adaptation is to adapt the model learned
from the source domain such that it performs well on the target domain.

Recent approaches in domain adaptation have been concentrated towards deep learning-
based solutions and unsupervised methods where no labels from the target domain are
used. These methods commonly rely on aligning the distributions of the source and
target domains in feature spaces [91, 92, 93, 94, 95, 96, 97, 98]. Among these methods,
Deep Domain Confusion [91] aims for learning domain-invariant representations by
imposing a Maximum Mean Discrepancy loss [99], Deep Correlation Alignment [95]
aligns the second-order statistics of the source and the target domains, while Adversarial
Discriminative Domain Adaptation [97] employs an adversarial discriminator in order
to make the representations of the two domains indistinguishable from each other.
In another approach, Li et al. [100] shows that updating the batch normalization
statistics [101] for the target domain can also be very effective, which we employ in
our identity classification method presented in Chapter 3.
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Chapter 3

Scene Classification

In this chapter, we focus on the scene classification problem, which we define as the
problem of recovering certain attributes from the hidden scenes that are not in our
direct line-of-sight. These attributes might include the number of people in the scene,
speeds and sizes of the hidden objects, or 1D temporal summaries of activities around
the corners as explored in the pioneering work of corner camera [4]. In this chapter,
we introduce a novel task, namely, we study the problem of recovering the identities
of people in a given room. We do this by observing shadows cast on a diffuse surface
such as a blank wall, induced by the presence of an occluder.

We approach our scene classification task with a learning-based method that classifies
identities by looking at images that contain shadows cast by occluding objects, where
we rely on synthetically collected labeled data and real unlabeled data. In particular,
we transfer what we learn from the synthetic data to the real data in a completely
unsupervised way by using a domain adaption technique [100]. To minimize the
domain gap between the real and synthetic domains, we employ a state-of-the-art 3D
face reconstruction network [86] to obtain accurate 3D face models of the identities of
interest using a single photograph of each identity. We show that our method is able
to achieve surprisingly high classification accuracies in a two-person classification task.

While our work is focused on a methodology for identification from shadows, an
important motivation stems from a desire to begin to understand whether otherwise
benign images of shadow phenomema have the potential to leak at least some biometric
information that could be of societal concern. Although it remains to be determined
whether biometric cues we discover in shadows could be used to reliably distinguish
large numbers of identities, these cues might potentially be used with malicious intent,
e.g., to determine the presence of an individual in a room without their consent.
Even if such technology do not reach the level of uniquely identifying an individual,
it might reliably narrow the identity to within a group of individuals by extracting
some amount of biometric information from shadows, which would still raise privacy
concerns. At the same time, the extensions of our method could facilitate applications
that would have positive societal impacts. For instance, such extensions would be
useful in certain security and surveillance applications, or in identity recognition tasks
that require no storage or observation of any sensitive information about the identities,
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Figure 3-1: Face reconstructions of the two identities with varying expressions. Given RGB
reconstructions of the faces, we first convert their textures to grayscale and match their
average intensity levels. Expressions are randomly sampled and varied in the dataset.

enabling face recognition without taking any photographs of the individuals.

3.1 Overview

Suppose we are given 𝐾 different identities who are individually present in a room
with an unknown geometry, and suppose we observe shadows cast by an occluder
in the room blocking the light reflected by each individual. Denoting each obser-
vation as x ∈ R𝑑×𝑑 (grayscale images of resolution 𝑑 × 𝑑) and its ground truth
label as 𝑦 ∈ 𝒴 = {𝒞1, 𝒞2, . . . , 𝒞𝐾}, we aim to learn a classifier given training data
𝒮 = {(x1, 𝑦1), . . . , (x𝑁 , 𝑦𝑁 )}. In this work, we restrict our attention to the case where
𝑑 = 256 and 𝐾 = 2, i.e., we focus on the problem of distinguishing two identities.

Since we follow a data-driven approach, representing possible variations such as
occluder shape, lighting conditions, facial expressions, and head poses in the training
data is crucial to achieve a robust classification system. Since collecting such data is
highly impractical, we focus on a method that avoids such challenges. In particular,
we use 3D graphics software to collect large amounts of training data, by placing 3D
faces and objects into simulated scenes. Then, we transfer what we learn from these
simulated scenes to the real settings by employing unsupervised domain adaptation.

3.2 3D Face Modeling

To minimize the discrepancy between the synthetic and real domains, we use a 3D
face reconstruction network [86], which allows us to obtain a 3D model of an identity
from a single image. The reconstructed faces in this work follow the Basel Face
Model 2009 [68] with the neck and the ear regions excluded from the model, which
enables us to ensure that the network trained with the synthetic data only relies on
the identity information, i.e., trivial information such as the thickness of the neck or
the contrast between the hair and skin intensities cannot be exploited in our method.
The expression variations, on the other hand, are provided by the model constructed
from the FaceWarehouse dataset [70], which we use to sample identities with varying
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expressions. Formally, given a number of vertices 𝑉, a face shape S ∈ R3𝑉 and its
texture T ∈ R3𝑉 can be represented as

S = S̄ + Mid𝛼id + Mexp𝛼exp

T = T̄ + Mtex𝛽
(3.1)

where S̄ ∈ R3𝑉 and T̄ ∈ R3𝑉 are the mean shape and mean texture of the model; Mid,
Mexp, Mtex are the identity, expression and texture bases; 𝛼id ∈ R80, 𝛼exp ∈ R64 and
𝛽 ∈ R80 are the identity, expression and texture coefficients. Here, S̄, T̄,Mid,Mexp,Mtex

are all provided by the model whereas 𝛼id and 𝛽 are provided by the face recon-
struction. We create an expression variation in the dataset by sampling 𝛼exp from
𝒩 (0, 0.5I). Finally, we convert the reconstructed textures to grayscale to avoid poten-
tial reliance on color information, and scale the intensity levels of the two identities so
that the average intensity of their textures are the same. We show the reconstructed
faces and their grayscale versions with varying expressions in Figure 3-1.

3.3 Scene Geometry and Datasets

Our imaging configuration includes the following: a person whose identity is unknown,
a light source that illuminates the face of this person, a blank wall where we make
our observations, and an occluding object which creates shadows on this wall. In this
work, for the purposes of illustration, we limit our attention to chairs as occluding
objects, as they are one of the most common and diverse classes of indoor objects.
We note that, however, our method can easily be extended to handle more classes of
objects by incorporating them in the training set.

In our synthetic data collection, we use 3D chair models provided by ShapeNet [102],
we use a white planar object as a wall, and a white spotlight as an illumination source.
When we render these scenes, we cover as much variation as possible by changing
the pose, position and expression of the faces and vary the illumination conditions
by changing the position of the light sources, which we will elaborate on in the next
section. A representative synthetic scene is shown in Figure 3-2a, where we also
illustrate our coordinate convention.

In our real data collection, the two identities sit across a blank wall individually, where
a chair is positioned between the identity and the wall. The identities are illuminated
by spotlights in different positions while the expressions and poses of the subjects as
well as the pose of the chair are varied during the data collection. We performed these
experiments in a physical space shown in Figure 3-2b.

3.4 Domain Adaptation

Given two sets of data 𝒮 = {(x𝑠
1, 𝑦

𝑠
1), . . . , (x

𝑠
𝑁 , 𝑦

𝑠
𝑁)} and 𝒯 = {(x𝑡

1, 𝑦
𝑡
1), . . . , (x

𝑡
𝑁 , 𝑦

𝑡
𝑁)},

which represent the source data and the target data, respectively, our objective is to
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(a) Synthetic scene geometry (b) Real scene geometry

Figure 3-2: Scene geometries for synthetic and real settings. Both scenes consist of four
main components: a person whose identity is unknown, an illumination source, a blank wall,
and an occluding object that creates the shadows on the wall.

learn a classifier using the source data 𝒮 such that it performs well on the target data
𝒯 . This can be achieved in a supervised manner by using very few labeled samples
from 𝒯 , or in an unsupervised manner by using no labeled samples from 𝒯 . In this
work we follow the latter, as we seek to ensure that the supervision signals coming
from the target domain involves only identity information, i.e., these signals may
depend on unintended cues from the real-world settings such as clothing, reflectance
of the hair or other unintended phenomena.

Our method involves training a classification network that follows the ResNet-18
architecture [103], where we change the final classification layer so that it reflects
the number of classes in our application. Initializing the feature extraction module
with the pretrained weights, we first train the network on the synthetic data in a
supervised manner. Then, we freeze the learned weights and update the running means
and variances of each batch normalization layer in the network [100] by feeding the
unlabeled target data 𝒯 = {x𝑡

1, . . . ,x
𝑡
𝑁} through the network. As we will show, the

updated network generalizes reasonably well to the test samples from the target domain.

3.5 Experiments and Results

In this section, we describe our experiments in detail by elaborating on the collection
of real and synthetic data, and provide classification accuracies obtained in different
stages of our method.

3.5.1 Synthetic Data Collection and Training

We generate our synthetic data randomly, where we vary the pose, expression and the
position of the face, the location of the light source, and the occluder shape. According
to the coordinate definition shown in Figure 3-2a, we have the following configurations
and variations in the dataset. Here, with a slight abuse of notation, we denote a point
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Figure 3-3: Representative samples from the dataset, where each column shows one sample.
Our dataset covers a diverse set of head poses, facial expressions, and occluder shapes.

in 3D by (𝑥, 𝑦, 𝑧) where the unit of measure is meters. We illustrate the variations in
the dataset in Figure 3-3 by showing representative samples from the dataset.

• We vary the facial expressions by sampling the expression coefficients from
𝒩 (0, 0.5I), which changes the face shape according to Equation 3.1.

• We rotate the faces around 𝑦– and 𝑧–axes, which we refer to as elevation and
azimuth. We sample both elevation and azimuth uniformly from [−30, 30]
degrees, where zero rotation means that the face is directly positioned towards
the wall as shown in Figure 3-2a. Positive angles indicate clockwise rotations
with respect to the 𝑥𝑧– and 𝑥𝑦–planes.

• We sample the position of the face uniformly along the line connecting (1.55, 0.0, 1.15)
and (1.75, 0.0, 1.15), i.e., face position varies along the 𝑥–axis as variations in
other axes are accounted for in the data augmentation step where the final
images are randomly cropped.

• We use a white spotlight with a beamwidth of 15 degrees, directed to the face.
We sample its location uniformly along the line connecting (0.15,−1.0, 1.50) and
(0.15, 1.0, 1.50).

• Occluders are located 0.7 meters from the wall and situated on the ground,
where we measure the distance from the center of mass of the occluder. We
also render all occluders with black texture to eliminate the effect of the light
bouncing off the occluder.

We collect our synthetic data using Mitsuba2 [104], with which we render 256 × 256
images of the observed wall using 50 000 samples per pixel. Rendering one image
takes approximately 50 seconds on an NVIDIA GeForce RTX 2080 Ti GPU, and all
images are normalized to [0, 1] range after rendering. For each identity, we collect
4000 images which we split into train and test sets with 75% − 25% split, which gives
us 6000 train and 2000 test samples. We illustrate random samples from the synthetic
dataset in Figure 3-4a.
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(a) Source images (b) Target images

Figure 3-4: Random images from the source and the target datasets.

We train our classification network with the synthetic data for 30 epochs, using binary
cross entropy loss and Adam optimizer [105] with a learning rate of 0.0001. We
augment the training data by flipping the images randomly, resizing them to 280× 280
resolution and randomly cropping a 224 × 224 patch from these images. At test time,
we resize the images to 280 × 280 resolution and center-crop the 224 × 224 patch from
them. In our experiments, we pick the epoch with the highest test accuracy, and use
the network at that epoch as our baseline, on which we apply domain adaptation.

3.5.2 Real Data Collection and Domain Adaptation

To represent the typical use cases, we deliberately cover fewer variations in our real
data compared to the synthetic data. In particular, we experiment with 4 light source
locations by using 4 separate spotlights, and 2 different occluders which we repose in
5 different angles to increase the diversity in the dataset. Similar to what we have in
the synthetic dataset, the identities also change their head poses and facial expressions
while the data is collected. We collect 4000 samples for each identity, and we randomly
split the whole dataset into train and test sets with 75% − 25% split. We illustrate
random samples from the real dataset in Figure 3-4b.

We illustrate our results in Figure 3-5 where we visualize the feature distributions
of the test samples before and after domain adaptation using t-SNE [106], where we
extract these features from the final layer before classification. Before the domain
adaptation (shown in the first row), we observe that the network trained on the source
data produces two feature clusters for the source and the target domains. Furthermore,
the ground truth labels of the source samples seem to be well-separated which allows
the network to achieve a classification accuracy of 75.80% on the source domain, as
illustrated in the predictions plot. Since the network has not seen any target samples
before the domain adaptation, it performs poorly on the target domain, achieving
62.70% accuracy. After the domain adaptation (shown in the second row), we observe
that the feature distributions of the source and the target data are well-aligned, and
the ground truth labels for both domains seem to be well-separated which allows
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Figure 3-5: Summary of results. We illustrate feature distributions of the test data in 2D
using t-SNE dimensionality reduction technique [106]. Feature distributions of source and
target domains before domain adaptation are shown in the first row, where we observe that
the network performs well on the source domain but not on the target domain. In the second
row, feature distributions after domain adaptation are shown, which reflect that the network
generalizes well to the target data as well.

the network to achieve a classification accuracy of 76.35% on the target domain, as
illustrated in the predictions plot. We also report average classification accuracies in
Table 3.1 computed over 20 independent experiments using the same datasets, network
architecture and hyperparameters.

3.6 Discussion and Analysis

In this section, we provide a detailed interpretation of our results where we seek
to explain the behavior of our method in various scene configurations. To achieve
this, we analyze our results on the synthetic images for which have access to the
conditions under which they are rendered such as occluder shape, head pose, and light
source location. In particular, we analyze the samples on which the network fails or
performs well, and the regions of the input that the network relies on the most by
using interpretable machine learning tools referred to as saliency methods.
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Table 3.1: Average classification accuracies over 20 independent experiments. We report
test accuracies on the source domain and on the target domain before and after adaptation.

source target (before adapt.) target (after adapt.)

74.57 ± 0.84 59.67 ± 9.26 77.08 ± 2.42

(a) Incorrectly classified images (b) Correctly classified images

Figure 3-6: Random samples from incorrectly and correctly classified images. We observe
that incorrectly classified images usually lack shadows (hence penumbrae) where most useful
information lies. In contrast, correctly classified images usually have large shadow areas.

In our first set of analyses, we investigate the influence of occluder shape and face
appearance on the classification performance, where we compare all 484 fail cases
(which gives us an accuracy of 75.80% on the source domain) with 484 of the cor-
rectly classified images with the highest softmax probabilities. For the occluder shape
analysis, we illustrate random samples from the incorrectly and correctly classified
images in Figure 3-6 where we observe that the incorrectly classified images usually
lack shadows. In particular, defining black pixels (with zero intensity) in each image
as umbra, the umbrae cover 12.11% of the incorrectly classified images on average,
whereas they cover 21.95% of the correctly classified images.

The fact that the shadows appear to be crucial for inferring identities is consistent
with the analysis of the resolving power of single edge occluders which are widely
explored in the last few years [4, 24, 25]. In our case, we use the resolving power of
the edges of the occluder, where the penumbra formed on the wall can be used to
calculate 1D projections of the input face along the direction of the edges. In other
words, our results suggest that the penumbrae contain the most useful information
about the unknown scenes, and they are in fact where our network appears to rely on
the most, as we will show in the saliency map analysis.

We now investigate the effect of the face appearance on the results by analyzing the
impact of the head pose and light source location on the predictions. We illustrate
our findings in Figure 3-7, where we show elevation-azimuth and light source position-
azimuth plots for correctly and incorrectly classified examples. In the first plot, we
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Figure 3-7: Correctly and incorrectly classified examples depending on azimuth, elevation
and light source position. We observe that faces with lower elevations and fewer cast shadows
are more likely to be classified correctly.

observe that the elevation has an evident impact on classification performance, where
faces with higher elevation are more likely to be misclassified. This can be explained
by our scene geometry shown in Figure 3-2a, where a more direct view of the face is re-
flected on the wall when the elevation is low, which makes the problem less challenging.
Taking the averages over all samples shown in the plot, incorrectly classified examples
have an average elevation of +2.83 degrees whereas correctly classified examples have
an average of −6.73 degrees. In the second plot, we observe a positive correlation
(a Pearson correlation of 0.22) between the light source position (measured along
the 𝑦-axis) and the azimuth for correctly classified examples, for which the faces are
illuminated with lower incidence angles. This means that the faces with fewer cast
shadows are more likely to be predicted correctly, e.g., strong shadows cast by the
nose on the cheek make the classification task more challenging.

Finally, we investigate which regions of the input images have more influence on
the class predictions by employing a saliency method referred to as integrated gradi-
ents [107]. We illustrate several examples in Figure 3-8, where we show the original
inputs and the image attributions for each input. We observe that the network is more
sensitive to the penumbra regions compared to other parts of the image, which is in
line with our previous observation that the penumbrae contain the most information
about the identities.

3.7 Conclusion and Future Work

We show that it is possible to reliably identify individuals by looking at the shadows
induced by their presence. We approach this problem as a domain adaptation problem,
where we transfer what we learn from the synthetic data to the real data without using
any labeled real data. Our synthetic data acquisition relies on a 3D face reconstruction
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Figure 3-8: Image attributions extracted by the Integrated Gradients [107]. We observe
that the network is mostly sensitive to the penumbra regions where most information lies.

network with which we obtain accurate 3D models of faces from only a single photo of
each identity. We demonstrate that our method achieves surprisingly high classification
accuracies in the real domain and is robust to several variations in the scene, such as
occluder shape, lighting, head pose and facial expressions. Our results suggest that
our network is sensitive to the penumbra portions of the shadows, which we explain
with the resolving power of the occluding edges. Such shadows arise all around us in
various scene geometries and we demonstrate the potential of turning these shadows
into physical signatures. Although it remains to be seen whether our method could be
extended to distinguish large numbers of identities, work under more extreme lighting
conditions, or handle different classes of occluders, our results suggest that at least
some biometric information is revealed by such shadows.
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Chapter 4

Scene Estimation

We now focus on the problem of scene estimation, where we aim to recover the entire
hidden scene based only on the measurements from the observed scene. To study this
problem, we first summarize two of the more recent passive NLOS imaging methods,
namely the blind scene recovery method in [2], and computational mirrors [3]. Based
on the limitations of these methods, we then discuss how learning-based approaches
could allow us to achieve better scene reconstruction quality and robustness to changes
in the scene such as the occluder structure and the hidden scene content, which we
support with our simulations.

4.1 Motivation

Blind scene recovery [2]. In [2], an occluder-aided NLOS imaging method is
introduced that makes no prior assumptions about the occluder such as its shape
and position. In this method, the hidden scene, occluder, and observed scene are
assumed to lie in 2D planes that are parallel to each other, which, with an additional
set of physical assumptions, gives rise to the convolutional model as described in
Chapter 2. With this model, this scene reconstruction problem can be formulated as
a blind deconvolution problem, which we previously established as an ill-posed linear
inverse problem. Furthermore, if we constrain our scenes to include common indoor
objects, many accidental scene geometries cause the effective kernel size induced by the
occluder to be much larger than what the vast majority of image deblurring methods
deal with [47, 48, 49]. This makes the blind occluder-aided scene recovery extremely
challenging, and applying state-of-the-art image deblurring methods directly to NLOS
imaging scenarios generally yield unsatisfactory results.

The blind scene recovery method in [2] consists of two steps. In the first step, the
occluder shape is estimated from a video of the observed scene using an occluder
recovery algorithm, which assumes that the hidden scene is slowly moving. Under this
assumption, the differences between two consecutive time instances of the hidden scene
are likely to be sparse signals, consisting of a superposition of impulses. Therefore,
the difference frames of the observed video are likely to manifest a superposition of
the shifted versions of the occluder shape, due to the linearity of convolution. The
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Figure 4-1: Occluder estimation and scene recovery results from [2]. Figure adapted from [2].

algorithm then simply registers these shifted versions of the occluder which yields the
final estimate. In the second step, based on the estimated occluder, the hidden scene
is recovered via the linear least squares estimator with Tikhonov regularization.

We illustrate a representative result obtained with [2] in Figure 4-1 where we observe
a very limited reconstruction quality, which we attribute to two main factors. First,
the occluder recovery relies on motions in the hidden scene and works under the as-
sumption that the difference frames are sparse signals, which does not always happen
in practice. Second, the hidden scene estimation is merely a least squares solution
which does not promote natural image features sufficiently well. To circumvent these
limitations, we: 1) explore a learning-based occluder estimation method that automat-
ically recovers occluder shape from an observed video; and 2) develop a learning-based
hidden scene estimation method that captures stronger image priors in a deep network.

Computational mirrors [3]. If the observed scene is not a flat surface, but rather
an arbitrary scene, the hidden scene recovery problem can still be formulated as a
linear inverse problem as demonstrated in [3], where the light transport matrix is
not necessarily constrained to follow Toeplitz structure. In this more general scene
geometry, illustrated in Figure 4-2, the observed scene Z can be written as a matrix
product of the hidden scene L and the light transport matrix that defines a mapping
from the hidden scene to the observed scene determined by the scene geometry and
the objects in the scene. Therefore, the main objective in this method is to factorize
the observed scene into the hidden scene and the light transport matrix.

The matrix factorization problem formulated in [3] is solved by parameterizing the
hidden scene and the light transport matrix by two separate convolutional neural
networks, which has been showed to impose natural image features and has been
applied to several tasks in computer vision such as image denoising, superresolution,
and inpainting [108]. The matrix factorization is then achieved by optimizing these
two networks so that the product of their output gives the observed video, which
yields the results shown in Figure 4-3. In these results, although we observe a
promising reconstruction quality in two of the scenes (shown in the first row), the
performance degrades notably when the scene is more complex (shown in the second
row). Furthermore, the optimization stability and reconstruction quality of this method
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Figure 4-2: Scene geometry adopted in computational mirrors [3]. The observed scene can
be written as a product of the hidden scene and the light transport. Figure courtesy of [3].
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Figure 4-3: Scene estimation results of computational mirrors [3]. Although we observe a
promising reconstruction quality in Scene #1 and #2, the performance degrades notably
when the scene is more complex in Scene #3 and #4. Figure adapted from [3].

are also observed to be sensitive to several factors such as the network architecture,
activation functions used, hyperparameter choices, and loss functions [3]. This further
motivates us to develop a learning-based method that generalizes well over different
hidden scenes and occluders, and is robust to the changes in the environment.

4.2 Learning-based Blind Scene Recovery

In this section, we develop an alternative approach to blind scene recovery. We
begin by formally defining our objective and introducing the dataset we use in our
simulations. We then describe a learning-based methodology for blind deconvolution.
Finally, we present our preliminary results.

4.2.1 Problem Formulation

In the sequel, we assume that the convolution model is valid, i.e., the observed scene
can be modeled as a convolution of the hidden scene and the occluder shape as
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hidden scene dataset occluder dataset

Figure 4-4: Representative samples from the dataset. We illustrate 4 videos and 16 occluders
from the train set. Sizes of the frames and occluders are not drawn to scale.

described in Chapter 2. Furthermore, since the occluders are physical objects with
opacity in the range [0, 1], the observed scene is always a low-pass filtered version of the
hidden scene. Therefore, the low-frequency content of the hidden scene is maintained
in the observed scene, which motivates us to make our hidden scene estimations
conditioned on the observed scene.

In our scene recovery method, we follow a two-step approach similar to what is
proposed in [2]. First, we estimate the occluder shape based on a set of observed video
frames, which is carried out by a standard learning-based approach. Then, we use
the estimated occluder to recover the hidden scene, using a deep generative model
trained with generative adversarial network (GAN) framework [60]. As mentioned in
Chapter 2, we use these models to capture natural image statistics inside a neural
network, which we optimize using a large amount of data.

Our dataset consists of the following: 1) a set of short videos consisting of 16 frames,
with 24 frames-per-second frame rate and 256 × 256 resolution; 2) a set of randomly
generated occluders with 64 × 64 resolution. We acquire our video data from two
episodes of a cartoon that are publicly available (each containing ∼ 25000 frames),
and we construct the occluders such that they consist of 8 × 8 grid of binary-valued
subblocks of size 5 × 5 pixels as shown in Figure 4-4. In this dataset, we obtain train
samples from one episode while we obtain the test samples from the other one, so that
there is no overlap between train and test datasets. To generate the occluders, we
sample 64-dimensional binary vectors consisting of 32 ones and 32 zeros, which we
reshape into an 8 × 8 grid and discard the samples that are not sufficiently smooth,
which we determine by calculating the total variation of the samples. We generate
10000 occluders and use half of them for the train set and the other half for the test set.

In our scene estimation method, we assume that the hidden scene is dynamic, i.e.,
it changes over time whereas the occluder is static. Suppose we are given 𝑁 RGB
videos of resolution 𝑅×𝑅 and fixed length 𝑇 each, and 𝑁 occluders sampled from the
training set, where we denote each video as f 𝑖 := [f 𝑖1, f

𝑖
2, . . . , f

𝑖
𝑇 ] ∈ ℱ and each occluder

as k𝑖 ∈ 𝒦. Under the convolution model, we denote the observed video corresponding
to these samples as y𝑖 := [f 𝑖1 * k𝑖, f 𝑖2 * k𝑖, . . . , f 𝑖𝑇 * k𝑖] ∈ 𝒴 . Our aim is then to learn a
function that estimates the hidden scenes f 𝑖 from observed scenes y𝑖. As mentioned
previously, we approach this problem with a two-step method where we first estimate
the occluder and then deconvolve the observed video with this occluder.
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4.2.2 Occluder Estimation

As observed in [2], a slowly moving scene will have sparse difference frames |f 𝑖𝑡 − f 𝑖𝑡−1|,
and the difference observation frames |y𝑖

𝑡 − y𝑖
𝑡−1| = |f 𝑖𝑡 * k𝑖 − f 𝑖𝑡−1 * k𝑖| = |f 𝑖𝑡 − f 𝑖𝑡−1| * k𝑖

will manifest a superposition of the shifted versions of the occluder. Our occluder
estimation method also builds on the idea that several observations in the presence
of a static occluder should lead to a robust estimate of the occluder, but it does not
necessarily require sparse difference frames.

In our method, we assume that each occluder in the dataset has a lower dimensional
representation in some latent space 𝒲. An obvious latent representation for the
occluders in our dataset is the 64-dimensional binary vector used to generate these
occluders as explained in Section 4.2.1, although different latent spaces can also be
constructed or learned from the data. Assuming each occluder k𝑖 in the dataset
has a latent code w𝑖 ∈ {0, 1}64, our objective is to learn an estimator 𝐸 : 𝒴 → 𝒲
that correctly estimates the latent codes of the occluders from the observed videos.
Formally, given pairs of observed videos and latent codes {(y𝑖,w𝑖)}𝑁𝑖=1, we aim to
solve the following optimization problem:

arg min
𝐸

Ey,w

[︀
‖𝐸(y) −w‖1

]︀
(4.1)

where 𝐸 is a neural network that follows a ResNet-18 architecture [103], with the
last layer reflecting the dimensionality of the latent codes. We minimize the above
objective using stochastic gradient descent [105] with a minibatch size of 8 and a
learning rate of 0.0001 for 2500 epochs. During inference time, we feed observed videos
from the test dataset to the trained estimator 𝐸 and threshold the output to obtain
the estimated latent code of the occluder.

4.2.3 Non-Blind Deconvolution

Once the latent code of the occluder is estimated, we perform non-blind deconvolution
on each frame of the observed video individually, which we achieve by training a deep
generative model that is conditioned on both the observed frames and the estimated
latent codes. In particular, our objective is to learn a generator 𝐺 : 𝒴1×𝒲×𝒵 → ℱ1,
where 𝒲 denotes the set of occluder latent codes, 𝒵 denotes the set of noise vectors
that inject stochasticity into the model, ℱ1 and 𝒴1 denote the sets of hidden and
observed frames, respectively.

We train 𝐺 with the generative adversarial network (GAN) framework [60, 63, 64] in
which a generator 𝐺 and an adversarial discriminator 𝐷 play a two-player zero-sum
game. In particular, the generator learns how to produce fake samples that fool the
discriminator, which at the same time learns how to distinguish fake samples from
real samples coming from the dataset. We define the GAN loss as

ℒGAN(𝐺,𝐷) = Ey1,w,f1 [log𝐷(y1,w, f1)]+Ey1,w,z[log(1−𝐷(y1,w, 𝐺(y1,w, z))] (4.2)
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Figure 4-5: Summary of our scene estimation pipeline. Given a set of hidden scenes and
occluders, we obtain the observed scenes by simply convolving them. During training, we
estimate the occluders from observed videos using the estimator 𝐸, and the observed frames
are deconvolved with the ground truth occluders using the conditional generator 𝐺. Both 𝐸
and 𝐺 are optimized with the loss functions indicated in Equations 4.1 and 4.5. At inference
time, after estimating the occluder latent with 𝐸, we deconvolve each frame of the observed
video with the estimated occluder using 𝐺.

which is minimized over 𝐺 and maximized over 𝐷. Here, w ∈ 𝒲 denotes the occluder
latent code, z ∈ 𝒵 denotes the random noise vector sampled from 𝒩 (0, I), f1 ∈ ℱ1 and
y1 ∈ 𝒴1 denote the hidden and observed video frames, respectively. Furthemore, we
combine the GAN loss with two additional losses: perceptual loss [109], which measures
the perceptual similarity between two images, and feature matching loss [110], which
improves the training stability. Suppose we are given 𝑁 tuples of observed frames,
their occluder latents, and the ground truth hidden frames {y𝑖

1,w
𝑖, f 𝑖1}𝑁𝑖=1. We impose

perceptual similarity between the ground truth hidden scene f1 and the estimated
hidden scene 𝐺(y1,w, z) as follows:

ℒP(𝐺) = Ey1,w,f1,z

∑︁
𝑖∈ℐP

𝜆
(𝑖)
P

[︀ ⃦⃦
𝑉𝑖

(︀
f1
)︀
− 𝑉𝑖

(︀
𝐺(y1,w, z)

)︀⃦⃦
1

]︀
(4.3)

where 𝑉𝑖 denotes the 𝑖th layer feature extractor of a pretrained VGG-19 network [111],
𝜆
(𝑖)
P denotes the associated weighting factors, and ℐP denotes the index set of the

feature extracted layers. Similarly, we match the features of the real and fake images
extracted from multiple layers of the discriminator as follows:

ℒFM(𝐺,𝐷) = Ey1,w,f1,z

∑︁
𝑖∈ℐFM

𝜆
(𝑖)
FM

[︀
‖𝐷𝑖(y1,w, f1) −𝐷𝑖(y1,w, 𝐺(y1,w, z))‖1

]︀
(4.4)

where 𝐷𝑖 denotes the 𝑖th layer feature extractor of the discriminator 𝐷, 𝜆(𝑖)
FM denotes
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Figure 4-6: Occluder estimation results. (a) Average BER after each epoch. We observe
that the test BER plateaus slightly below 20%, reaching a minimum of 18.12%. (b) Occluder
estimations on random pairs of observed videos and occluders from the test data.

the associated weighting factors, and ℐFM denotes the index set of the feature extracted
layers. Our final objective is to solve the following minimax problem:

arg min
𝐺

[︂[︁
max
𝐷

ℒGAN(𝐺,𝐷)
]︁

+ 𝜆
[︀
ℒP(𝐺) + ℒFM(𝐺,𝐷)

]︀]︂
(4.5)

where 𝜆 denotes the weighting factor for perceptual and feature matching losses. In
our model, we use a U-Net architecture [112] for the generator and a patch-based
fully convolutional network [64] for the discriminator, which we train in an alternating
fashion using stochastic gradient descent [105] with a minibatch size of 16 and a
learning rate of 0.0005 for both the generator and the discriminator for 50 epochs. We
illustrate the two steps of our method in Figure 4-5.

4.3 Preliminary Results

We now present our preliminary results on the scene estimation problem. In particular,
we first evaluate our occluder estimation network on the test data and provide both
qualitative and quantitative results. Next, we present our non-blind deconvolution
results on a set of observed videos with different choices of occluders.

Occluder estimation. Since each occluder k𝑖 in our dataset has a latent representa-
tion w𝑖 ∈ {0, 1}64 as a 64-dimensional binary vector, it is natural to adopt bit error
rate (BER) as the error metric for our occluder estimation method, which is defined as
the number of bit errors divided by the number of bits in a given code. We illustrate
the average BER after each epoch in Figure 4-6(a), where we observe that the test
BER plateaus slightly below 20%, reaching a minimum of 18.12%. In Figure 4-6(b),
we show occluder estimations on random pairs of observed videos and occluders from
the test data, which validates our quantitative evalutation. Finally, we illustrate the
full pipeline of our occluder estimation method by presenting 4 test videos paired with
random test occluders in Figure 4-7.
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Figure 4-7: Full pipeline of our occluder estimation method. 4 test videos paired with
random test occluders are illustrated. Each row shows a video and its corresponding occluder.

Non-blind deconvolution. We deconvolve the 4 test observed videos shown in
Figure 4-7 with 3 sets of occluders as illustrated in Figure 4-8. In the first row, we de-
convolve each frame with the original occluder, which shows the baseline performance
for our method. In the second row, we use the estimated occluders to deconvolve the
videos, and we observe only a slight degradation in the estimated videos compared
to the baseline. Finally in the third row, we deconvolve the observed videos with
randomly selected occluders which yields poor reconstruction quality since the occluder
shapes do not match with the original occluders well.

Our occluder estimation results suggest that in the presence of a static occluder,
multiple observations of the visible scene can be used to reliably estimate the occluder
shape, even when we have a small number of observations. This further suggests that
a more reliable and robust occluder estimation method can be achieved by simply
increasing the number of observations, which might be practical in certain imaging
settings, e.g., when a 5 minute video of a slowly moving visible scene can be collected
by a camera with reasonable frame rate. Our scene reconstrucions, on the other
hand, show that the generator indeed uses the occluder information to deconvolve
the images, and that the reconstruction quality only slightly suffers from using the
estimated occluders. This suggests that our blind scene recovery method is robust to
imperfect estimations of the occluder shape.

4.4 Conclusion and Future Work

In this chapter, we have introduced a novel learning-based framework for occluder-aided
NLOS scene estimation. We demonstrated that approaching the blind deconvolution
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Figure 4-8: Non-blind deconvolution results. We deconvolve 4 observed videos shown in
Figure 4-7 with 3 sets of occluders: original, estimated, and random. The generator uses the
occluder information to deconvolve the images and the reconstruction quality only slightly
suffers from using the estimated occluders.

problem with a two-step method can indeed be useful, and that the learning-based
approaches have a potential to help build NLOS imaging systems that are robust to
changes in the scene. We also showed that building a lower dimensional latent space
for occluders can provide interpretable representations to the network, which raises
the question of what the best representations are and how they can be constructed.

The immediate applicability of our scene estimation method to real-world tasks,
however, still remains unclear. Since acquiring a large amount of real-world data with
several variations in the scene is prohibitive, covering such variations with synthetic
data might prove to be useful similar to what is demonstrated in Chapter 3. If
the convolution model remains valid in the application of interest, we believe that
our findings in this chapter might directly be applicable to such settings. In more
unconstrained scene geometries, however, convolutional idealization might no longer
apply, especially when the occluder cannot be approximated well with a 2D object. In
such cases, we believe that a combination of 3D graphics software-aided data collection
and domain adaptation is worth exploring.
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Chapter 5

Concluding Remarks

In this thesis, we presented two methods for two different applications of occluded-
aided non-line-of-sight (NLOS) imaging. In the scene classification part, we introduced
a novel problem where we investigated whether seemingly innocuous shadows arising
all around us can be used to reveal some identity information. We formulated this
problem as an unsupervised domain adaptation problem, where we collected synthetic
data comprising of shadow images under various scene geometries and configurations,
and adapted what we learned from this data to the real data. Our results demonstrated
the potential of exploiting an overlooked optical phenomenon to reveal useful biometric
information, which we supported with our experiments.

Since it is yet unclear whether our identity classification method can be extended to
handle multiple identities, we believe it is first worth evaluating the performance of the
same method when more than two identities are of interest. Even if the overall accuracy
of our method under such settings turns out to be not very promising, it might be
used to reliably narrow identities within a group of individuals, which would still be of
use in certain applications and at the same time raise privacy concerns. On the other
hand, although we focused on a method that works well with an arbitrary occluder
shape belonging to a specific class, it is also worth exploring an identity classification
method in which the occluder shape is carefully chosen and the number of identities is
arbitrary. This line of research would bring questions such as which occluder structures
allow more identity information to leak into the shadows. In addition, one might
also be interested in identity recognition that require no storage or observation of
any sensitive information about the identities, for which such information leakage in
shadows could be exploited. In this case, the amount of leakage should be sufficient
to reliably distinguish one identity from the others while preventing it being used to
reconstruct an image of the identity or reveal any other sensitive information.

In the scene estimation part of this thesis, we focused on a more classical passive NLOS
imaging application, where we sought to determine whether learning-based approaches
could bring more accuracy and robustness to the scene reconstructions in occluder-
aided imaging. Motivated by the limitations of the state-of-the-art work, we proposed
a two-step approach that first estimates the occluder shape and then reconstructs
the scene based on these estimations. The preliminary results we obtained using our
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pipeline suggested the promise of learning-based approaches in occluder-aided imaging.

Although we suggest that the occluder-aided NLOS imaging might benefit greatly
from the recent advancements in deep learning, we should also note that the lack of
adequate data availability could delay progress. Therefore, exploring efficient data
collection strategies or tailoring existing data for NLOS imaging applications would
be another research direction that would contribute to the computational imaging
community. In the absence of such data, however, generating synthetic data that are
representative of the real world is crucial, and hence strong idealizations such as the
convolutional model of occlusion might not be immediately used for synthetic data
collection. To achieve more realistic synthetic data, it is worth further exploring 3D
graphics software-based data collection and combining it with state-of-the-art domain
adaptation methods or possibly developing novel domain adaptation techniques that
are more suitable for NLOS imaging applications.

Non-line-of-sight imaging is an emerging topic with many exciting research directions
that await investigation from the broader computational imaging community, and we
anticipate that growing interest in learning-based methodologies will transform how
we approach imaging problems in the next decade.
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