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Abstract

This thesis seeks to provide continuous Deasphalted oil (DAO) yield estimations for a
Solvent deasphalting (SDA) unit by constructing modern machine learning models us-
ing data sets from a commercial downstream oil and gas refinery in the United States.
These data sets include plant operating parameters and laboratory measurements for
feed properties. The best machine learning model, determined via an extensive cross-
validation procedure, exhibits high out-of-sample 𝑅2 values of 0.76. Furthermore, this
predictive machine learning model is incorporated into a linear optimization frame-
work to enhance crude oil purchasing decisions for a downstream refinery. Results
suggest that the proposed approach, combining predictive and prescriptive analytics,
can result in significant profitability gains estimated at $730,000 annually. The re-
sults of this model can be utilized for more accurate plant monitoring within oil & gas
downstream refineries, as well as improved decision making by oil and gas planning
professionals.
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Chapter 1

Introduction

1.1 Prelude

Machine learning analytics have experienced a resurgence in popularity, stemming

from both recent technological developments and improved access to large data sets.

Coincident with its prevalence, human competency in machine learning continues to

grow with new technology applications occurring rapidly. The oil and gas industry

continues to undergo a digital transformation, and, along with it, there continues to

be rapid growth in the number of machine learning applications including price fore-

casting, asset optimization, and predictive maintenance. These firms can be further

motivated to do this due to recent research that indicates firms with increasing spend-

ing on digital infrastructure experience improved firm performance (Brynjolfsson &

Hitt, 1996). Additionally, recent research has found that firms that utilize predictive

analytics experience improved productivity (Brynjolfsson, Jin, & McElheran, 2021).

1.2 Motivations

This thesis seeks to provide continuous Deasphalted oil (DAO) yield estimations for

a Solvent deasphalting (SDA) unit by utilizing historical operating data and modern

machine learning techniques. This stems from experience with issues utilizing physics-

based models as discussed in Section 1.7 and potential economic benefits to existing
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linear programming models as discussed in Section 1.4.

As part of this thesis, I seek to address several questions to pursue this problem.
Primary Research Questions

1. How can machine learning based models augment their physics based

counterparts, to improve the accuracy of SDA DAO yields?

2. Which features are the most important in impacting SDA DAO yields?

3. How can we incorporate predictive machine learning analytics into an

optimization framework to produce tangible business value?

1.3 Industry Overview

It is convenient to split the oil and gas industry into three sectors: upstream, mid-

stream, and downstream as seen in Figure 1-1.

Figure 1-1: L1 decomposition of oil and gas industry.

The upstream oil and gas sector focuses on identifying oil reservoirs below the

Earth’s surface, producing crude oil and gas. While natural gas can provide significant

value, this thesis is focused primarily on the crude oil value chain, and therefore we

eschew further discussion of the natural gas produced by reservoirs. After locating
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potential crude oil reserves, detailed planning, exploration, drilling, and production

of oil and gas follows within the upstream industry.

The midstream sector is responsible for the transportation of crude oil produced

from upstream oil wells to downstream processing facilities. This transportation can

take place via pipelines, tankers, trucks, or rail cars. Additionally, the midstream sec-

tor is responsible for the storage and marketing of petroleum commodities, including

crude oil and natural gas.

The downstream sector includes the refining of crude oils to produce lower molecu-

lar weight petroleum fuels. These fuels are then blended to result in finished petroleum

products for mass consumption. These petroleum products include motor gasoline,

jet, diesel, asphalt, and lubricants. This sector comprises petrochemical plants, dis-

tribution operations, retail centers, and oil refineries (Pandey, Rastogi, Kainkaryam,

Bhattacharya, & Saputelli, 2020).

In oil and gas refineries, high-value petroleum products such as gasoline, jet fuel,

and diesel can be produced by first distilling crude oil. This distillation produces

gas oil, distilled oil, and atmospheric residue. Further distillation of the atmospheric

residue under reduced pressure creates vacuum gas oil, distilled oil, and vacuum

residue (Lee et al., 2014).

This vacuum residue, often called "resid" for short, contains asphaltene com-

pounds that contain large amounts of heavy metal, sulfur, and nitrogen (Lee et al.,

2014). Additionally, it is very viscous and cannot readily be used as transportation

fuels. While these heavy-end materials can be upgraded, the conversion process can

be very costly due to the need for a large amount of hydrogen for hydrotreating or

hydrocracking techniques. An alternative approach is to utilize SDA to remove the

fractions most responsible for the low quality in advance of hydrotreating or hydroc-

racking (Brons & Yu, 1995).
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1.4 Refinery Economics

A full review of refinery economics is outside the scope of this thesis. Nevertheless, it

is important to briefly discuss a selection of the economic drivers as they pertain to

this work and further provide motivation and context for the machine learning model.

The purchase of feedstock, crude oil and other blend stocks, accounts for about

85% of a refinery’s operating cost (Robinson, 2007). The sale of refined products

constitute the revenue for a refinery. Generally, refineries operate to make as much of

the refined high-value light products (gasoline, jet fuel, and diesel) as possible, with

other products acting similar to by-products (McKinsey Energy Insights, Products ,

n.d.). This is true in the case of SDA, where the finished products from downstream

units that produce transportation fuels provide more revenue than the asphalt pitch

from an SDA.

To maximize refinery profitability, many refiners utilize linear programming op-

timization tools to make near-term commercial decisions. These tools are used to

find the crude and product slate which maximizes the profitability of the refinery,

subject to market and operational constraints (McKinsey Energy Insights, Optimiza-

tion, n.d.). Amongst other decision variables, these linear programs optimize decision

variables for:

• Feedstock selection - which crude oils to buy and in what quantities.

• Product slate - which refined products to make, how much of each product to

make and the quality of each product.

Many linear programs utilize crude oil data to estimate feed parameters. Ad-

ditionally, heuristics or physics-based models can be used to estimate intermediate

parameters within the refining process. In the case of SDA, a physics-based mod-

els can be used to estimate intermediate yield values which in turn can be used to

estimate the amount of DAO produced by the unit. However, in the case where

a heuristic or physics-based model is inaccurate, it can lead to poor estimation of

intermediate products leading to suboptimal feedstock and product slate selection.
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1.5 Crude Oil Characteristics

It is important to discuss the properties of crude oil so as to better understand the

complexity of the system under analysis. In contrast to other industries which may

deal with products that are pure chemicals, crude oil is a mixture of a variety of

chemical compounds called hydrocarbons.

One of the most important characteristics of crude oil is it’s behavior when it’s

temperature increases. To illustrate this point, let us consider pure liquid water

(𝐻2𝑂(𝑙)) at atmospheric pressure. Liquid water, when brought to it’s boiling point

of 212 ∘F (100 ∘C) will begin to boil and, if given sufficient time and heat input

to maintain the temperature, will vaporize entirely. However, bringing crude oil to

the same temperature, a portion of it will boil off, and the remainder will remain

liquid. This phenomenon is because crude oil can contain thousands of hydrocarbon

compounds, with each of these compounds having a unique boiling point. Generally,

one can observe that an increase in the number of carbon atoms in the molecular

increases the boiling temperatures (Fahim, Al-Sahhaf, & Elkilani, 2010). A table

illustrating this is presented in Table 1.1.

Name Molecular Formula Boiling
Point (∘C)

Methane 𝐶𝐻4 -164
Pentane 𝐶5𝐻12 36
Octane 𝐶8𝐻18 125
Dodecane 𝐶12𝐻26 216
Triacontane 𝐶30𝐻62 450

Table 1.1: Boiling Point Temperatures for Selected Hydrocarbons

1.5.1 Distillation Curves

Due to the variety of compounds present in crude oil, it is useful to characterize

crude oils by their boiling properties, often by their distillation (or boiling) curve.

This curve presents important information of the bulk behavior of the crude oil. An

example of a distillation curve can be found in Figure 1-2. As will be discussed further
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in section 2.1.1, it is useful to consider portions of this distillation curve, such as the

90% recovery point, the temperature at which 90% of the volume of the oil has been

boiled off.

Figure 1-2: Example distillation curve with 90% recovery point noted in red

1.6 SDA Overview

A high yield of DAO can be achieved in the SDA process by removing asphaltenes

based on solvent separation. Figure 1-3 shows a basic process flow diagram of an

SDA unit. Vacuum residue is fed into a solvent extractor, which produces a mixture

of DAO laden with solvent overhead, and asphaltene-rich pitch with a small amount
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of solvent is drawn off the bottom of the extractor column. The mixture of DAO

and solvent is then separated in a DAO/solvent separator to produce DAO, and the

recovered solvent is then recycled to the extractor. Any remaining solvent is then

removed in a DAO stripper utilizing stripping steam. In the asphalt stripper, a small

amount of residual solvent is separated for recycling, and a concentrated asphaltene

pitch is produced (Lee et al., 2014). This separation is done by solvent extraction

without any chemical reaction taking place.

Figure 1-3: Process Flow Diagram of an SDA unit

The DAO produced from an SDA unit can then be used for further conversion
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into transportation fuels and chemical raw materials through additional refinement.

The asphaltene pitch is used as road-packing material for low-grade fuel and can be

utilized to produce heat and hydrogen by gasification (Fahim et al., 2010).

Typically, light hydrocarbon solvents ranging from propane to hexane are used as

solvents to extract the DAO product. Increasing the carbon number of the solvent

will generally reduce the quality of the DAO but increases the volume of DAO that

is produced due to the increased average molecular weight of the hydrocarbons that

are soluble in the solvent (Pang et al., 2010; Brons & Yu, 1995). Propane and butane

have widely been used to produce high-quality DAO. Refiners have utilized the use of

higher carbon solvents such as pentane and hexane with increased demand for light

oil and consequently effective heavy oil upgrading.

1.7 Physics Based Models for Predicting SDA DAO

Yield

Studies on SDA have emphasized extracting DAO under various conditions, in an

attempt to understand the impact of plant operation, solvent properties, and feed

properties on DAO yields. Baek et al. (Baek, Kim, Kim, & Hong, 1993) investigated

the effects of both temperature and pressure on DAO yield, finding DAO yield to vary

significantly with varying temperature and pressure. This was further corroborated

by Ng who noted that DAO yields decreased with increasing temperature. This was

attributed to higher temperatures increasing the difference in solubility parameters

between the solvent and feedstock (Ng, 1997).

Gillis and Tine took this further, studying the effect of solvent-to-oil ratio and

temperature on DAO yield (Gillis & Tine, 1998). This work noted that increasing

solvent-to-oil ratio at the same extractor overhead temperature increased the DAO

yield.

Feed properties have also been found to affect DAO yields. Literature suggests

that increasing feed density will decrease DAO yields (Maples, 2008). Notably, how-
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ever, this work did not incorporate the effects of extractor temperatures, pressures,

and solvent-to-oil ratios discussed above which also impact DAO yields.

Existing literature provides an excellent foundation for analytical SDA DAO yield

models. Yet, there are still gaps that make it challenging to apply these models

commercially.

First, literature on physics-based models do not look at the refinery system, in-

stead focusing exclusively on the SDA itself. Many physics-based models do not

consider upstream plant operation, how this operation affects SDA feed properties

and it’s corresponding effects on the DAO yield. Without analysis of the refining

system, these models will not be able to accurately quantify expected DAO yields.

Second, the overwhelming majority of physics-based models are developed from

laboratory settings in which limited data is collected. This is primarily due to feasi-

bility and cost limitations, especially in the context of processing heavy residuum oils.

The limited data collected can prove useful for observing general trends and inspir-

ing future work. However, building an accurate model for prediction of DAO yields

requires a large amount of data which may only be feasibly obtained at commercial

scale.

Third, individual studies have focused on one, or in some cases a few, parameters

at a time and how these impact DAO yields. However, as there are a plethora of

features which can impact DAO yield, there is no well-established holistic model to

incorporate plant operating parameters, solvent properties, and feed properties to

predict DAO yield.

To address some of these issues, private industrial firms have developed proprietary

models to predict DAO yield as a function of plant operating parameters, solvent

properties, and feed properties. However, just like the literature-based counterparts,

many of these models rely on laboratory data for SDA feed or asphalt pitch. A

hindrance to the success and utility of these DAO models in commercial applications

is the challenge of obtaining accurate, reliable, and consistent laboratory data. Due

to the nature of vacuum residue, it is often challenging to routinely sample SDA

service streams due to the high viscosity and high melting point of the asphaltene.
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Therefore, models which require large amounts of physical laboratory data often

run into practical issues in an oil and gas refinery when samples cannot be reliably

obtained.

1.8 Structure

This thesis seeks to provide continuous DAO yield estimations for a SDA unit by

constructing modern machine learning models using data sets from a commercial

refinery in the United States. These data sets include plant operating parameters

and laboratory measurements for feed properties. These predictive machine learning

models exhibit high out-of-sample 𝑅2 values of 0.76. Furthermore, this predictive

machine learning model is incorporated into a linear optimization framework for a

hypothetical downstream refinery, improving profitability by an estimated $730,000

annually.

This thesis is structured as follows:

• The remainder of Chapter 1 will provide an introduction to the oil and gas

industry, with an emphasis on SDA, as well as important facets of crude oil

characteristics that will prove important in future chapters.

• Chapter 2 provides descriptive information on the datasets and features as well

as a brief discussion on the various scaling methods utilized for this analysis.

• Chapter 3 describes the various predictive modeling methods used in this thesis

for continuous estimation of DAO yields.

• Chapter 4 discusses applying the aforementioned predictive modeling techniques

into an optimization framework.

• Chapter 5 discusses pertinent results from the modeling work completed in

Chapters 3 and 4.

• Chapter 6 draws conclusions and presents opportunities for future work.
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Chapter 2

Data Sets and Features

The data sets compiled for this machine learning problem come from a commercial

SDA unit in the United States. The type of solvent used in this unit is maintained

at consistent concentrations (i.e., the solvent is not changing significantly through-

out operation). The exact solvent utilized will not be disclosed due to confidential

classifications. The data sets include a comprehensive compilation of daily process

variables and laboratory results. Additionally, laboratory data was taken from the

upstream vacuum distillation unit.

2.1 Data Sets

2.1.1 Predictive Modeling

Features from SDA Process Instrumentation

SDA units, like most refinery units, have multiple instruments which provide informa-

tion about the temperature, pressure, and flow rate for various streams. Within pro-

cess equipment, including those presented in Figure 1-3, additional instrumentation

can be added to monitor for temperature, pressure, and level within the equipment.

Table 2.1 contains information regarding the features from SDA process instrumen-

tation considered in this analysis.
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Feature Description Units

Solvent to Feed Ratio Ratio of Solvent to SDA Feed 𝑏𝑝𝑑
𝑏𝑝𝑑

Total Recycled Solvent Solvent recycle back to Extractor bpd
Extractor Top Temperature Temperature of the top stream of

the Extractor
∘F

DAO Stripper Bottoms
Temperature

Temperature of the Bottom of the
DAO Stripper

∘F

DAO Separator Bottoms
Temperature

Temperature of the Bottom of the
DAO Separator

∘F

DAO Separator Top Pres-
sure

Pressure of the Top of the DAO
Separator

psig

Table 2.1: Features from SDA Process Instrumentation. Reference Figure 1-3 for
equipment descriptions

Features from SDA Laboratory Analysis

Similar to many other refinery units, routine laboratory testing is completed on

streams to check for a variety of physical and chemical qualities. Of particular interest

in our analysis are the properties of the feedstock for the SDA unit, previously denoted

as "resid". As previously mentioned in Section 1.6, obtaining laboratory samples for

SDA feedstock can be quite challenging. Due to a large amount of missing values

for the laboratory data, feed properties have been generated utilizing steady-state

process simulation. Table 2.2 contains information regarding the SDA laboratory

variables considered in this analysis.

Feature Description Units

Asphaltene Content Fraction of Feed determined to be Asphaltene wt. %
Viscosity at 212 ∘F Kinematic Viscosity of the Feed at 212 ∘F cSt
Viscosity at 122 ∘F Kinematic Viscosity of the Feed at 122 ∘F cSt

Specific Gravity Otherwise Referred to as the Relative Density, the
ratio of the density of the Feed with respect to
water, expressed as 𝜌𝐹𝑒𝑒𝑑

𝜌𝐻2𝑂

Unitless

Table 2.2: Features from SDA Laboratory Analysis.
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Features from Vacuum Distillation Unit Laboratory Analysis

SDA units typically receive the bottoms stream from the vacuum distillation unit.

Upstream influences on the SDA unit must be considered as the operations of the

upstream vacuum distillation unit can have significant impacts on the SDA. The

properties of the next highest stream, referred to in this analysis as the "heavy gas

oil" stream, are critical. It is crucial to evaluate the distillation properties of this

heavy gas oil stream to understand how much "DAO-like" material is present in

this stream. For example, a heavy gas oil stream with increasing 90% recovery point,

represents a stream that has higher boiling points than those with lower 90% recovery

points. Due to this increase in 90% recovery point, the heavy gas oil stream would be

laden with material that, if sent to an SDA, would likely become DAO. Therefore, one

would expect that an increase in the 90% recovery point of this heavy gas oil stream

would result in a decrease of DAO yields at the SDA unit. The overlapping tails of

heavy gas oil and the SDA feedstock are a typical result of distillation (petroleum-

refining-in-nontechnical-language, 2008).

Variable Description Units

Heavy gas oil 90% recovery
point

Temperature at which 90% of the vol-
ume of the heavy gas oil sample has
vaporized

∘F

Table 2.3: Feature from Vacuum Distillation Unit Laboratory Analysis

2.1.2 Exploratory Data Analysis

Correlation

Figure 2-1 displays the correlation matrix for the variables in the feature set. Readily

apparent is the high value of correlation between the viscosity at 212 ∘F and the

viscosity at 122 ∘F as well as the high correlation between the DAO Separator top

and bottom temperatures. The high correlation between the viscosities is further

discussed in Section 2.1.4.
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Figure 2-1: Correlation Matrix for Feature Set

Condition Number for Determination of Multicollinearity

In the context of linear regression, the condition number provides a method for de-

tecting multicollinearity and is readily provided in modern machine learning software

packages (Seabold & Perktold, 2010). Since non-experimental data will rarely be or-

thogonal, multicollinearity will always be present (Greene, 2003). However, at what

point does this multicollinearity become a problem? Values in excess of 20 are sug-

gested as indicative of a multicollinearity problem (Belsley, Kuh, & Welsch, 1980).

This dataset has a condition number of 3.18, suggesting that multicollinearity is not

strongly present in our dataset.

2.1.3 Scaling Transformations

Because these data sets have confidential classifications, they are required to be scaled

with a scaling transformation in order to anonymize the true values. Standardiza-

tion of a dataset is common practice for many machine learning projects. However,

the choice of scaling can have ramifications on a variety of machine learning algo-
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rithms. For example, methods that incorporate distance calculations, such as K-

Nearest Neighbors (KNN), will weigh high magnitude features more than those with

low magnitudes. Additionally, features with varying scales can have large deleterious

effects on a learning algorithms’ computational efficiency, as is the case with neural

networks. Therefore, it is important to explore a variety of scaling transformations

in order to select the appropriate transformation for the problem at hand.

Linear Transformations

Linear transformations preserve the linear relationships between variables. These

transformations change the dataset and are characterized by adding, subtracting,

multiplying, or dividing the variables in a dataset by a constant. Three linear transfor-

mations are considered for this analysis. A standard scaling transformation approach

is to scale the variables to have a mean of zero with a unit variance with equations

presented in Figure 2-2. An alternative to the zero mean, unit variance scaling is

the "Min Max Scaler" which can be done by scaling according to the formulation

provided in Figure 2-3. This has the benefit of putting all variables on the range

of [0,+1] but can be sensitive to the presence of outliers (Pedregosa et al., 2011).

To combat the effects of outliers, we consider a "Robust Scaler" presented in Figure

2-4 as an alternative to both methods, which can be more robust in the presence of

outliers by removing the median and dividing by the innerquartile range. All three

methods are applied to the data and are presented in Figure 2-5.

Nonlinear Transformations

Nonlinear transformations change the linear relationships between variables. Two

nonlinear transformations are explored utilizing three methodologies, namely the the

Yeo-Johnson transformation (Yeo & Johnson, 2000), and a Quantile transformation

(Pedregosa et al., 2011). It should be noted that the Box-Cox transformation (Box

& Cox, 1964) was avoided as it is only applicable to positive data and cannot be

applied to negative data. The Yeo-Johnson and Quantile Transformations presented

in Figure 2-6.
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𝑧 =
𝑥− 𝜇

𝜎
(2.1)

where the mean is represented as

𝜇 =
1

𝑁

∑︁𝑁

𝑖=0
(𝑥𝑖) (2.2)

with standard deviation defined by

𝜎 =

√︂
1

𝑁

∑︁𝑁

𝑖=0
(𝑥𝑖 − 𝜇)2 (2.3)

where:
𝑥 = 𝑁 x 1 column vector in R
𝑧 = transformation of 𝑥

Figure 2-2: Standard Scaling transform for numeric variables providing a mean of 0
with unit variance

𝜑(𝑥) =
𝑥− min(𝑥)

max(𝑥) − min(𝑥)
(2.4)

where:
𝑥 = 𝑁 x 1 column vector in R

𝜑(𝑥) = transformation of 𝑥
min(𝑥) = minimum of 𝑥
max(𝑥) = maximum of 𝑥

Figure 2-3: Min Max Scaling transform for numeric variables to the range [0, +1]
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Φ(𝑥) =
𝑥− 𝑥̃

𝐼𝑄𝑅(𝑥)
(2.5)

where:
𝑥 = 𝑁 x 1 column vector in R
𝑥̃ = median of 𝑥

𝐼𝑄𝑅(𝑥) = Innerquartile range of 𝑥 (Upton & Cook, 1996)

Figure 2-4: Scaling Transform utilizing RobustScaler Method (Pedregosa et al., 2011).

2.1.4 Feature Engineering

Viscosity Index

As noted in Section 2.1.2, there is high correlation between the viscosity of the feed

at 122 ∘F and 212 ∘F. As a means of addressing this high correlation, but without

losing valuable data, the viscosity index (VI) of the feed was calculated consistent

with ASTM D2270 (ASTM, 2016). VI measures the change in viscosity between two

standard temperatures, 40 ∘C and 100 ∘C. However, because the data collected for

the lower temperature viscosity was at 122 ∘F (50 ∘C) and was not at the appropri-

ate temperature (40 ∘C, 104 ∘F), and because the calculations within ASTM D2270

require kinematic viscosity at precisely 40 ∘C and 100 ∘C, we utilize ASTM D321

(ASTM, 2020) to calculate a kinematic viscosity at 40 ∘C (104 ∘F), then calculated

the viscosity index consistent with ASTM D2270.

The utility of this feature was unfortunately unsuccessful and it provided less

value than using either of the provided viscosity values and therefore was dropped

from the remainder of the analysis.
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Figure 2-5: Feature Density Utilizing Standard Scaling, Min Max Scaling, and Robust
Scaling.

[Feature Density Comparison using Linear Transformations.]
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Figure 2-6: Feature Density Utilizing Quantile (Pedregosa et al., 2011) and Yeo-
Johnson (Yeo & Johnson, 2000) Nonlinear Transformations.
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Chapter 3

Predictive Modeling

3.1 Problem Class

There are many different problem classes within machine learning, including, but not

limited to, supervised learning, unsupervised learning, and reinforcement learning.

This thesis aims to understand a supervised learning problem, where the inputs and

outputs are known and can be mapped together. The problem at hand could be

further classified as supervised regression where there exists a training data 𝐷𝑛 which

contains a set of pairs (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 is a 𝑑−dimensional vector of real

values and 𝑦𝑖 ∈ R.

3.2 Evaluation Criteria

Commonly utilized error metrics for measuring a model’s predictive performance in-

clude the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the

coefficient of determination, commonly referred to as 𝑅2. RMSE is calculated by first

determining the residuals’ value, averaging them, and then taking the square root of

the result as seen in Equation 3.1. MAE is calculated by taking the residuals’ absolute

value and averaging them as seen in Equation 3.2. 𝑅2 is obtained by calculating the

sum of squared errors, dividing it by the total sum of squares, and subtracting this

value from one as seen in Equation 3.3.
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This thesis compares model performance utilizing RMSE as the primary error

metric as this metric will heavily weight the larger errors. While errors are expected

when estimating yields, very high errors will present problems when forecasting future

DAO yields and erode confidence in the machine learning model. In contrast to MAE,

RMSE can be less interpretable. Therefore in some cases, MAE is presented alongside

RMSE to provide greater interpretability.

RMSE =

√︂
1

𝑛

∑︁𝑛

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (3.1)

where:

𝑛 = number of observations

𝑦𝑖 = observed value

𝑦𝑖 = predicted value from machine learning model

MAE =
1

𝑛

∑︁𝑛

𝑖=1
(|𝑦𝑖 − 𝑦𝑖|)2 (3.2)

where:

𝑛 = number of observations

𝑦𝑖 = observed value

𝑦𝑖 = predicted value from machine learning model

𝑅2 = 1 −
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
(3.3)
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where:

𝑛 = number of observations

𝑦𝑖 = observed value

𝑦𝑖 = predicted value from machine learning model

𝑦 = mean value of 𝑦 in the training set

3.3 Resampling Methods

Resampling methods are an incredibly useful tool in which samples from a training

set are repeatedly redrawn and a model is refit on each sample in order to obtain

additional information about the fitted model (Hastie, Tibshirani, & Friedman, 2001).

Two resampling methods were utilized in this thesis:

• 𝑘-fold Cross Validation

• Bootstrap

3.3.1 𝑘-fold Cross-Validation

In 𝑘-fold cross-validation, a training set is randomly partitioned into 𝑘 equal sized

groups, or folds. Of the 𝑘 folds, a single fold is retained as the validation data for

testing the model, with the remaining 𝑘 − 1 folds used as training data. The RMSE

is calculated on the observations in the validation fold. This procedure is repeated

such that each of the 𝑘 folds are used exactly once as the validation data (Hastie

et al., 2001). Then, the 𝑘-fold cross-validation RMSE is calculated as described in

Equation 3.4. This process can be repeated multiple times such that each 𝑘 resample

represents a different portion of the dataset.

RMSECV =
1

𝑘

∑︁𝑘

𝑖=1
RMSE𝑖 (3.4)
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In the case of this thesis, 5-fold cross-validation was used where 𝑘 = 5 repeated

three times. A graphical representation of the 5-fold cross validation process is shown

in Figure 3-1.

Figure 3-1: Graphical Depiction of 𝑘-fold Cross-Validation with 𝑘 = 5.
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3.3.2 Bootstrap

Bootstrap resampling is a technique used for estimating quantities of a population by

averaging estimates from multiple small data samples. Samples are constructed by

drawing observations from a large data sample one at a time, then returning them to

the data sample after they have been chosen. This permits a given observation to be

included in a given sample more than once, commonly referred to as sampling with

replacement. The non-selected data points can be used as the validation set (James,

Witten, Hastie, & Tibshirani, 2014).

3.4 Classes of Models

Multiple regression algorithms were considered for this prediction problem, including:

• Linear Regression

• K-Nearest Neighbors (KNN)

• Random Forest (RF)

• Extremely Randomized Trees (ET)

• XGBoost

Many of these algorithms contain hyperparameters, parameters which can be ad-

justed to control the learning process of the algorithm. The subsequent sections will

discuss each model in greater detail and, if necessary, the hyperparameter tuning of

that algorithm.

3.4.1 Linear Regression

Linear regression is a parametric regression model which assumes that the DAO yield

function, 𝑓(𝑥), is linear. This makes it computationally inexpensive to fit the model

since we need to estimate only a small number of coefficients. Additionally, the

coefficients have very straightforward interpretations and it is easy to perform tests of
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statistical significance on these coefficients (James et al., 2014). The linear regression

model provides a useful baseline model to compare complex models as proprietary

physics-based models could not be published in this thesis due to confidentiality

agreements. No hyperparameters are tuned in linear regression.

A large disadvantage of linear regression is that by design it makes a strong as-

sumption of the functional form. In this case, if the DAO yield function 𝑓(𝑥) is non

linear, then the resulting model will not be able to provide a good fit.

3.4.2 K-Nearest Neighbors (KNN)

In contrast to linear regression, KNN is a non-parametric, data-driven process that

makes no assumptions about the feature set, thereby providing an alternative and

more flexible approach for performing regression. Given a new observation, the algo-

rithm looks for nearby values in the training data to decide on predictions, with the

final prediction given by local interpolation of the nearby values.

Hyperparameters

There are a variety of hyperparameters to tune in the KNN algorithm. These include:

• Number of neighbors to consider, 𝑘

• Distance metric

• Weighting function

Number of Neighbors to Consider 𝑘. For the number of neighbors to consider,

𝑘, if the value of 𝑘 is too low, then the algorithm can be overfit with high variance.

In contrast, if the values are too large, 𝑘 can fail to capture richness in the data and

exhibit high bias.

Distance Metric. Further, as mentioned in Section 3.4.2, the term nearby implies

a distance. In this study, two common distance metrics are considered, Manhattan

distance and Euclidean distance. Manhattan distance represents the distance between
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two points measured along axes at right angles. Euclidean distance represents the

length of a direct line between two points. Both distances can be represented by the

Minkowski distance formula as noted in Figure 3.5, with Manhattan and Euclidean

distances having 𝑝 = 1 and 𝑝 = 2, respectively.

The Minkowski distance of order 𝑝 ∈ Z between two points 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛)

and 𝑌 = (𝑦1, 𝑦2, ...𝑦𝑛) ∈ R is defined as:

𝐷(𝑋, 𝑌 ) =

(︂ 𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖|𝑝
)︂ 1

𝑝

(3.5)

Weighting Function. It is important to consider the weighting function which is

utilized to perform the weighted average for the KNN algorithm. Three options are

considered for this weighting function:

• Uniform weighting - performing an average of all the 𝑘 nearest neighbors.

• Distance weighting - utilizing the distance metric to perform a weighted average

of the 𝑘 nearest neighbors adjacent to the point.

• Gaussian kernel weighting function - utilizing a kernel function, described in

Equation 3.6, to define the weights for averaging the 𝑘 nearest neighbors.

For the Gaussian kernel weighting function, tuning of the kernel width 𝜎 for both

Manhattan and Euclidean distances can be found in Figure 3-2. Upon observation we

find optimal values of RMSE occur at 𝜎 = 4 with the Manhattan distance significantly

outperforming Euclidean distance for nearly all 𝜎 and 𝑘 under consideration.

Figure 3-3 shows the comparison of the Gaussian kernel function with 𝜎 = 4,

uniform, and distance weighting functions. Both Manhattan and Euclidean distance

metrics are utilized. Upon observation, we find optimal values of RMSE occur using

the Gaussian kernel at 𝑘 = 7, utilizing Manhattan distance.

𝑤𝑖 = 𝑒
−(𝐷(𝑋,𝑌 ))2

𝜎 (3.6)

41



where:

𝐷(𝑋, 𝑌 ) = Minkowski distance presented in Equation 3.5

𝜎 = Kernel width

𝑤𝑖 = Weight of neighbor 𝑖
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Figure 3-2: KNN: Tuning of 𝜎 for use in Gaussian kernel weighting considering both
Manhattan and Euclidean distances. 𝑘 ∈ (0, 20].

Figure 3-3: KNN: Comparison of Gaussian (𝜎 = 4), uniform, and distance weighting
functions for both Manhattan and Euclidean distance metrics.
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3.4.3 Random Forest (RF)

Random Forest (RF) is an ensemble method that builds upon the concepts of bagged

decision trees. RF generates multiple decision trees, and when building each decision

tree, considers only a random sample of the total predictors available in the dataset,

utilizing only the predictors in this random sampling when considering splits in the

decision tree (James et al., 2014). This algorithm is useful for predicting non-linear

interactions among predictors. For this thesis, RF utilizes bootstrap samples to con-

struct trees.

Hyperparameters

While there are a plethora of hyperparameters available to tune in modern RF im-

plementations, we focus our attention on two in particular:

• Number of features considered at each split

• Minimum number of observations in each terminal node

Number of features considered at each split Particularly challenging within

RF is the lack of consistent variable names within open source packages. For example,

in the ranger package for R (Wright & Ziegler, 2017), this hyperparameter is referred

to as mtry. In Python’s sklearn (Pedregosa et al., 2011), this is called max_features.

Regardless of the package, in selecting smaller values for this hyperparameter, each

tree in the random forest will consider less features when splitting at each node, but

as we select more features at each split, we begin to approach bagged forests.

Minimum number of observations in each terminal node Another important

hyperparameter to consider is the minimum number of observations in each terminal

node of the trees. Again, in the ranger package for R (Upton & Cook, 1996), this

hyperparameter is referred to as min.node.size. In Python’s sklearn (Pedregosa et

al., 2011), this is referred to as min_samples_leaf. Regardless of the package, when

selecting lower values for this parameter, the RF will be comprised of deeper trees.
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In contrast, when selecting higher values, the ensemble will be restricted to shallower

trees.

Results of tuning these hyperparameters can be found in Figure 3-4. One can ob-

serve error decreasing with lower observations per terminal node, indicating a prefer-

ence for deeper trees. Further, one can see that we hit a plateau of error improvement

when considering more than four features at each split.

Figure 3-4: RF: Tuning of maximum number of variables considered per split and
minimum number of observations in each terminal node.

3.4.4 Extremely Randomized Trees (ET)

The Extremely Randomized Trees (ET) algorithm builds an ensemble of unpruned

regression trees similar in concept to RF. However, it is has two primary differences

from RF. First is the difference in splitting at each decision node. While both methods

consider a random subset of features for each split in the decision node, RF makes the

split by determining the best split from the random subset of features under consid-

eration. In contrast, ET splits the tree at each decision node randomly without any

consideration of the "best split". Second, ET does not perform bootstrap resampling

and instead uses the whole training set to grow the trees.
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Hyperparameters

Similar to RF, the primary hyperparameters under consideration are the number of

features considered at each split and the minimum number of observations in each

terminal node of the trees. In Python’s sklearn (Pedregosa et al., 2011), these are

called max_features and min_samples_leaf, respectively.

Results of tuning these hyperparameters can be found in Figure 3-5. Similar

to RF, we see that the extremely randomized trees algorithm has lower error with

decreasing observations per terminal node, indicating a preference for deeper trees.

Further, one can observe a plateau in error improvement when considering six features

per split.

Figure 3-5: ET: Tuning of maximum number of variables considered per split and
minimum number of observations in each terminal node.

3.4.5 XGBoost

XGBoost is a gradient boosting framework (Chen & Guestrin, 2016). Similar to other

boosting algorithms, XGBoost combines multiple weak base learners to form an en-

semble model by training each new base learner on the residuals of the ensemble from
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the previous iteration. XGBoost controls for over-fitting by utilizing a regularized

model. XGBoost’s tree booster is utilized for the purposes of this study in order to

better model non-linear relationships within the data.

Hyperparameters

XGBoost has multiple hyperparameters of interest. After exploratory analysis on the

cross validation results, it was determined that there were two hyper parameters that

affected the model performance the most. The first is subsample ratio of columns

when construction each tree, referred to as colsample_bytree within XGBoost’s

Sci-Kit Learn API (Chen & Guestrin, 2016). Next is the maximum tree depth for

each base learner, referred to as max_depth in XGBoost’s Sci-kit Learn API.

Results of tuning these hyperparameters can be seen in Figure 3-6. We see that for

this problem, XGBoost generally has lower error with increasing colsample_bytree

and with increasing max_depth. However, we still find that the error is minimized

with colsample_bytree = 0.9 and max_depth = 6.

Figure 3-6: XGBoost: Tuning of subsample ratio of columns (Column Sample by
Tree) and maximum tree depth for each base learner (Max Depth) with 100 estima-
tors.
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3.5 Summary of Hyperparameters

Table 3.1 summarizes all of the hyperparameters under consideration for this thesis.

Hyperparameter Model Description
𝑘 KNN Number of nearest neighbors to use in aver-

aging.
Distance Metric KNN Type of distance metric to use when deter-

mining distance. Can be Manhattan or Eu-
clidean distance.

Weighting Function KNN Type of weighting function to use when aver-
aging. Can be uniform, distance, or Gaussian
kernel.

𝜎 KNN Kernel width. Used only when Gaussian Ker-
nel Weighting Function is used.

mtry RF, ET Number of features considered at each split.
Also referred to as max_features.

min.node.size RF, ET Minimum number of observations in each
terminal node. Also referred to as
min_samples_leaf.

colsample_bytree XGBoost Subset ratio of columns when constructing
each tree.

max_depth XGBoost Maximum tree depth for each base learner.

Table 3.1: Hyperparameter summary for all methods.
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Chapter 4

Linear Optimization

Linear optimization is a method to achieve the best outcome in a mathematical

model whose requirements are represented by linear relationships. Specifically, linear

optimization is a technique for the optimization of a linear objective function which

is subject to linear constraints.

This chapter discusses utilization of the predictive models developed in Chap-

ter 3 in a linear optimization framework and utilizes work completed by Gurobi

(Gurobi Optimization, 2021) with modifications made to suit the problem at hand.

A linear optimization problem can be described in two parts:

1. A linear function to be maximized or minimized.

2. Problem constraints

This chapter will first discuss the data utilized for this optimization problem, then

provide a description of the problem at hand. After discussing these items, we will

address the linear function to be maximized and the constraints under consideration,

formulating the optimization problem in greater detail.
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4.1 Dataset

4.1.1 Crude Oil

Data for nine crude oils were obtained utilizing publicly available data provided by

Exxon-Mobil (ExxonMobil, 2020). The prices for these crude oils were obtained

using OilPrice (Crude Oil Prices Today , 2021). Parameters utilized in this analysis

are presented in Table 4.1.

Property Units Description

Light Naphtha Cut Volume % LV Fraction of Crude Oil that will distill to
Light Naphtha

Medium Naphtha Cut Volume % LV Fraction of Crude Oil that will distill to
Medium Naphtha

Heavy Naphtha Cut Volume % LV Fraction of Crude Oil that will distill to
Heavy Naphtha

Light Oil Cut Volume % LV Fraction of Crude Oil that will distill to
Light Oil

Heavy Oil Cut Volume % LV Fraction of Crude Oil that will distill to
Heavy Oil

Resid Cut Volume % LV Fraction of Crude Oil that will distill to
Resid

Specific Gravity (60 ∘F) Unitless Otherwise Referred to as the Relative
Density, the ratio of the density of the
Feed with respect to water, expressed
as 𝜌𝐹𝑒𝑒𝑑

𝜌𝐻2𝑂

Resid Viscosity (212 ∘F) cSt Kinematic Viscosity of the Feed at 212
∘F

Table 4.1: Crude oil properties utilized for this analysis. Data obtain from publicly
available information published by Exxon-Mobil (ExxonMobil, 2020)

.
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4.1.2 Finished Products

Finished product pricing is presented in Table 4.2.

Finished Product Price ($/Bbl)

Premium Gasoline 52.00
Regular Gasoline 52.00

Jet Fuel 49.00
Fuel Oil 45.50
Asphalt 41.00

Table 4.2: Finished Petroleum Product Pricing. Motor gasoline pricing obtained
from the U.S. Energy Information Administration (EIA, 2021). Jet fuel pricing were
obtained from the International Air Transport Association (IATA, 2021)

4.2 Decision Variables

A table of the decision variables can be found in Table 4.3. All decision variables are

non-negative variables, meaning that they must be ≥ 0.

4.3 Problem Description and Constraints

For this optimization problem, we consider a hypothetical downstream oil gas refinery

which purchases 𝐾 types of crude oil and refines them through a five-step process of

distillation, reforming, cracking, SDA, and blending. These steps are done so that the

refinery may produce finished petroleum products for sale. A graphical representation

of this model is presented in Figure 4-1.

4.3.1 Distillation

As previously mentioned in Chapter 1, the distillation process separates crude oil into

fractions according to their boiling points. We consider separation into six fractions:

light naphtha, medium naphtha, heavy naphtha, light oil, heavy oil, and resid.

51



Figure 4-1: Process Flow Diagram of a hypothetical oil refinery for use in a linear
optimization problem. Decision variable descriptions can be found in Table 4.3.
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Decision Variable Description

CR Number of barrels of crude 𝑖 to buy.
LN Number of barrels of light naphtha to distill.
MN Number of barrels of medium naphtha to distill.
HN Number of barrels of heavy naphtha to distill.
LO Number of barrels of light oil to distill.
HO Number of barrels of heavy oil to distill.
R Number of barrels of residuum to distill.

LNRG Number of barrels of light naphtha used to produce reformed gasoline.
MNRG Number of barrels of medium naphtha used to produce reformed gaso-

line.
HNRG Number of barrels of heavy naphtha used to produce reformed gasoline.

RG Number of barrels of reformed gasoline to produce.
LOCGO Number of barrels of light oil used to produce cracked gasoline and

cracked oil.
HOCGO Number of barrels of heavy oil used to produce cracked gasoline and

cracked oil.
CG Number of barrels of cracked gasoline to produce.
CO Number of barrels of cracked oil to produce.

LNPMF Number of barrels of light naphtha used to produce premium motor fuel.
LNRMF Number of barrels of light naphtha used to produce regular motor fuel.
MNPMF Number of barrels of medium naphtha used to produce premium motor

fuel.
MNRMF Number of barrels of medium naphtha used to produce regular motor

fuel.
HNPMF Number of barrels of heavy naphtha used to produce premium motor

fuel.
HNRMF Number of barrels of heavy naphtha used to produce regular motor fuel.
RGPMF Number of barrels of reformed gasoline used to produce premium motor

fuel.
RGRMF Number of barrels of reformed gasoline used to produce regular motor

fuel.
CGPMF Number of barrels of cracked gasoline used to produce premium motor

fuel.
CGRMF Number of barrels of cracked gasoline used to produce regular motor

fuel.
LOJF Number of barrels of light oil used to produce jet fuel.
HOJF Number of barrels of heavy oil used to produce jet fuel.
COJF Number of barrels of cracked oil used to produce jet fuel.
RAS Number of barrels of residuum used to produce asphalt.
PMF Number of barrels of premium motor fuel to produce.
RMF Number of barrels of regular motor fuel to produce.
JF Number of barrels of jet fuel to produce.
FO Number of barrels of fuel oil to produce.

Table 4.3: Table of decision variables and abbreviations.

4.3.2 Reforming

After distillation, light, medium, and heavy naphtha can be blended together into

regular or premium gasoline, or they can go through a process called reforming. The

53



output of this reforming process is a product referred to as reformed gasoline with an

octane number of 115.

Each type of naphtha yields a different amount of reformed gasoline. The yields

of reformed gasoline for each type of naphtha are given in Table 4.4.

Naphtha Yield of Reformed Gasoline (bbl
bbl)

Light 0.6
Medium 0.52
Heavy 0.45

Table 4.4: Reformed Gasoline Yields from varying Naphtha Types.

4.3.3 Cracking

Light and heavy oils can be blended into jet fuel or put through a process known as

fluidized catalytic cracking. The catalytic cracked produces cracked oil and cracked

gasoline.

Cracked gasoline has an octane number of 105 with yields presented in Table 4.5.

Oil Yield of Cracked Oil (bbl
bbl) Yield of Cracked Gasoline (bbl

bbl)

Light Oil 0.68 0.28
Heavy Oil 0.75 0.2

Table 4.5: Cracked oil and gasoline yields for the cracking process.

4.3.4 SDA

Resid is fed to the SDA, which produces either heavy oil or asphalt. In an attempt

to parametrize the flow of oil out of the SDA, we are presented with two options:

1. Utilize fixed values of DAO yield to predict the heavy oil and asphalt yields

that come out of the SDA.

2. Utilize the predictive machine learning models developed in Chapter 3 to predict

the heavy oil and asphalt yields that come out of the SDA.
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We will contrast these two approaches in order to consider the value that the

predictive machine learning models bring to an optimization framework with results

presented in Chapters 5.

4.3.5 Blending

Blending is the process of bringing together all of the previous streams in order to

produce finished products for sale. Four products are developed in this refinery:

1. Gasoline

2. Jet Fuel

3. Fuel Oil

4. Asphalt

Gasoline There are two kinds of gasoline, regular and premium. These are made by

blending naphtha, reformed gasoline, and cracked gasoline. The primary requirement

under consideration is the octane content of the gasoline. Regular gasoline must have

an octane of at least 84 and premium gasoline must have an octane number of at

least 94. We assume that octane numbers blend linearly by volume. We consider

the octane numbers for the light, medium, and heavy naphthas are 90, 80, and 70

respectively. The octane numbers of reformed gasoline and cracked gasoline were

previously noted in Section 4.3.2 and 4.3.3, respectively.

Jet Fuel Jet fuel is made by blending light, heavy, and cracked oils which have

vapor pressures of 1.0, 0.6, and 1.5 kg
cm2 , respectively. Jet Fuel must have a vapor

pressure that does not exceed 1.0 kg
cm2 . We assume that vapor pressures blend linearly

by volume.

Fuel Oil Fuel oil is produced by blending light oil, cracked oil, heavy oil, and asphalt

in a ratio of 10 : 4 : 3 : 1.
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Asphalt Asphalt is produced as a low-value product from the SDA and does not

have product quality constraints.

4.3.6 Throughput Constraints

We consider the refinery to have the following throughput constraints:

1. At most, 45,000 barrels of crude can be distilled per day.

2. At most, 10,000 barrels of naphtha can be reformed per day.

3. At most, 8,000 barrels of oil can be cracked per day.

4. To meet minimum flow requirements on the bottoms stream of the SDA, we

must produce a minimum of 500 barrels of Asphalt.

5. Premium gasoline production must be at least 40 % of regular gasoline produc-

tion.

6. There is unlimited availability of all 𝐾 crude oils under consideration.

4.4 Network Flows

It is convenient to consider the refinery linear optimization problem analogous to a

network flow optimization problem. To that end, it is useful to represent the refinery

as a directed graph with each step in the process as a node, and the amount of flow

cannot exceed the capacity of each arc. However, in order to complete such a graph,

we must add further nodes into the diagram representing bypass nodes.

Bypass nodes represent decision nodes in which we must make a decision about

where to send the incoming streams. As an example, referencing Figure 4-2, we can

examine bypass node 1. At this node, we must make a decision if the light naphtha

should go to the regular motor fuel blending pool, the premium motor fuel blending

pool, or be sent to be reformed and processed into reformed gasoline. Nine of these

bypass nodes are added so as to construct a proper network diagram.
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Figure 4-2: Network flow diagram of a hypothetical oil refinery for use in a linear
optimization problem. Decision variable descriptions can be found in Table 4.3.

4.5 Objective

The objective of this linear optimization problem is to maximize the profit of the

refinery. We can represent this profit as noted in Equation 4.1.

Profit =
𝑁∑︁
𝑗=1

(Pricej * Flowj) −
𝐾∑︁
𝑖=1

(Costi * Purchasei) (4.1)

where:

𝑖 = 1, ..., 𝐾 (Crude Oils)

𝑗 = 1, ..., 𝑁 (Products)
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4.6 Constraints

Based upon our problem description, we can classify our constraints into four cate-

gories:

• Capacity Constraints

• Yield Constraints

• Flow Constraints

• Product Quality Constraints

Please note that all acronyms and descriptions for variables are described in Table

4.3.

4.6.1 Capacity Constraints

Capacity constraints are the limits placed on the hypothetical refinery as a result

of limited distillation, reforming, and cracking capacity. The distillation capacity

constraint can be represented by Equation 4.2.

∑︁
𝑖∈ Crudes

CR𝑖 ≤ 45,000 (4.2)

Similarly, the reforming capacity constraint can be represented by Equation 4.3.

LNRG + MNRG + HNRG ≤ 10,000 (4.3)

Again, the cracking capacity constraint can be represented by Equation 4.4.

LOCGO + HOCGO ≤ 8,000 (4.4)
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Lastly, the minimum flow requirements for the SDA can be represented by Equa-

tion 4.5.

A ≥ 500 (4.5)

4.6.2 Yield Constraints

With the exception of Blending, each of the major processes (Distillation, Reforming,

Cracking, and SDA) under consideration have associated yields that must be explicitly

declared.

Distillation Yield Constraints

Light Naphtha Light naphtha is produced by distillation of the crude oils. The

amount of light naphtha created by distillation can be represented by Equation 4.6.

𝐾∑︁
𝑖=1

(LNCR𝑖
* CR𝑖) = LN (4.6)

Medium Naphtha Similarly, medium naphtha is produced by distillation of the

crude oils. The amount of medium naphtha created by distillation can be represented

by Equation 4.7.

𝐾∑︁
𝑖=1

(MN𝐶𝑅𝑖
* CR𝑖) = MN (4.7)

Heavy Naphtha Heavy naphtha is produced by distillation of the crude oils. The

amount of heavy naphtha created by distillation can be represented by Equation 4.8.

𝐾∑︁
𝑖=1

(HN𝐶𝑅𝑖
* CR𝑖) = HN (4.8)
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Light Oil Light Oil is produced by distillation of the crude oils. The amount of

light oil created by distillation can be represented by Equation 4.9.

𝐾∑︁
𝑖=1

(LO𝐶𝑅𝑖
* CR𝑖) = LO (4.9)

Heavy Oil Heavy Oil is produced by distillation of the crude oils. The amount of

light oil created by distillation can be represented by Equation 4.10.

𝐾∑︁
𝑖=1

(HO𝐶𝑅𝑖
* CR𝑖) = HO (4.10)

Resid Lastly, resid is produced by distillation of the crude oils. The amount of

resid created by distillation can be represented by Equation 4.11.

𝐾∑︁
𝑖=1

(R𝐶𝑅𝑖
* CR𝑖) = R (4.11)

Reforming Yield Constraints

Reformed Gasoline Reformed gasoline is produced through reformation. The

amount of reformed gasoline created by reforming can be represented by Equation

4.12. Note that the coefficients within the equation come from Table 4.4.

0.60 * LNRG + 0.52 * MNRG + 0.45 * HNRG = RG (4.12)

Cracking Yield Constraints

Cracked Oil Cracked oil is produced through the cracking process. The amount of

cracked oil created by cracking can be represented by Equation 4.13. Note that the

coefficients within the equation come from Table 4.5.
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0.68 * LOCGO + 0.75 * HOCGO = CO (4.13)

Cracked Gasoline Cracked gasoline is also produced through the cracking process.

The amount of cracked gasoline created by cracking can be represented by Equation

4.14. Note that the coefficients within the equation come from Table 4.5.

0.28 * LOCGO + 0.20 * HOCGO = CG (4.14)

SDA Yield Constraints

As noted in Section 4.3.4, the SDA produces both heavy oil and asphalt.

Heavy Oil from SDA We can represent the amount of heavy oil produced from

the SDA by Equation 4.15.

SDAHO =
𝐾∑︁
𝑖=1

(RCR𝑖
* CR𝑖 * 𝜂𝑖) (4.15)

where:

𝜂𝑖 = DAO Yield for crude 𝑖

Asphalt from SDA We can represent the amount of asphalt produced from the

SDA by Equation 4.16.

A =
𝐾∑︁
𝑖=1

(RCR𝑖
* CR𝑖 * (1 − 𝜂𝑖)) (4.16)
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4.6.3 Flow Constraints

Flow constraints represent mass conservation, meaning that the amount of barrels

flowing into the node must equal the amount of barrels flowing out of the node.

These apply to each of the bypass nodes as well as the product nodes.

Bypass Nodes

For the bypass nodes, it is helpful to utilize the numbering provided in Figure 4-2.

Bypass Node 1

LN = LNPMF + LNRG + LNRMF (4.17)

Bypass Node 2

MN = MNPMF + MNRG + MNRMF (4.18)

Bypass Node 3

HN = HNPMF + HNRG + HNRMF (4.19)

Bypass Node 4

LO = LOCGO + LOJF + LOFO (4.20)

Bypass Node 5

SDAHO + HO = HOCGO + HOJF + HOFO (4.21)

Bypass Node 6

RG = RGPMF + RGRMF (4.22)
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Bypass Node 7

CG = CGPMF + CGRMF (4.23)

Bypass Node 8

CO = COJF + COFO (4.24)

Bypass Node 9

A = AFO + AA (4.25)

Finished Products

For each of the finished product nodes, the amount of finished product is equal to the

amount of incoming streams. This is expressed for each of the finished products.

Regular Motor Fuel (Gasoline)

RMF = RGRMF + LNRMF + MNRMF + HNRMF + CGRMF (4.26)

Premium Motor Fuel (Gasoline)

PMF = RGPMF + LNPMF + MNPMF + HNPMF + CFPMF (4.27)

Jet Fuel

JF = LOJF + HOJF + COJF (4.28)

Fuel Oil

FO = LOFO + HOFO + COFO + AFO (4.29)
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4.6.4 Product Quality Constraints

Lastly, we consider the product quality constraints previously discussed.

Motor Fuel (Gasoline) Octane Tolerance

As discussed in Section 4.3.5, there are octane requirements for both regular and

premium motor gasoline. These can be represented by Equations 4.30 and 4.31 where

each coefficient represents the octane number of the corresponding stream.

Regular Motor Fuel (Gasoline)

90 * LNRMF + 80 * MNRMF + 70 * HNRMF

+115 * RGRMF + 105 * CGRMF ≥ 87 * RMF
(4.30)

Premium Motor Fuel (Gasoline)

90 * LNPMF + 80 * MNPMF + 70 * HNPMF

+115 * RGPMF + 105 * CGPMF ≥ 91 * PMF
(4.31)

Premium-to-Regular Motor Fuel (Gasoline) Ratio

Further, as discussed in Section 4.3.5, we have a requirement to produce a ratio of

premium-to-regular motor gasoline in order to meet contractual obligations. This can

be represented by Equation 4.32.

PMF ≥ 0.40 * RMF (4.32)

Jet Fuel Vapor Pressure Tolerance

As discussed in Section 4.3.5, there is a vapor pressure target for jet fuel. This can

be represented by Equation 4.33.
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1.0 * LOJF + 0.6 * HOJF + 1.5 * COJF ≤ 1.0 * JF (4.33)

Fuel Oil Ratio

As discussed in Section 4.3.5, the fuel oil is created by blending together components

in a specific ratio. This can be represented by Equation 4.34.

10

18
LOFO +

4

18
COFO +

3

18
HOFO +

1

18
AFO = FO (4.34)
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Chapter 5

Results

This chapter provides the modeling results the scaling methods discussed in Chapter 2,

the predictive modeling discussed in Chapter 3, and the linear optimization discussed

in Chapter 4.

5.1 Scaling Methodology

The success of the scaling methods discussed in 2.1.3 was evaluated utilizing a KNN

regressor, described in Section 3.4.2. The results are presented in Table 5.1.

Scaling Transformation In-Sample RMSE Out-of-Sample RMSE

StandardScaler 1.31 2.21
MinMaxScaler 1.78 2.11
RobustScaler 1.25 2.48
Yeo-Johnson 1.25 2.16

Quantile Transformer 1.26 1.83

Table 5.1: Results of varying scaling transformation. All values are presented in
DAO Yield (Volume %). KNN algorithm used to evaluate in and out of sample
performance using a Gaussian kernel with 𝜎 = 4, 𝑘 = 7, and Manhattan distance.
Reference Section 2.1.3 for descriptions of various scaling transformations.

These results suggest that in-sample, the Yeo-Johnson and Robust Scaler are

the most effective scaling transformations to minimize RMSE. However, in order to

minimize the RMSE out-of-sample, the quantile transformation with normal distribu-

67



tion is preferred, closely followed by the simple MinMaxScaler. Results for all KNN

algorithms presented this point forward utilize a quantile transformer with normal

distribution as it performed very well both in and out-of-sample.

5.2 Predictive Modeling

This section discusses the results of the predictive modeling described in Chapter 3.

5.2.1 Model Classes

Linear Regression

The results of the linear regression model on the train and test set are presented in

Figure 5-1. We can see that the model doesn’t overfit the data but fails to capture

significant richness in the data that other algorithms are able to capture.

Figure 5-1: Linear regression results for the training set and testing set.

KNN

As discussed in Chapter 3, three different weighting algorithms are considered as

part of KNN. Namely, these are uniform weighting, distance weighting, and Gaussian

weighting. Results are presented for all three of these weighting methods.
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KNN, Uniform Weighting The results of the KNN, uniform weighting model on

the train and test set are presented in Figure 5-2. We can see that the model doesn’t

overfit the data and actually performs quite well on the testing data.

Figure 5-2: KNN, Uniform Weighting results for the training set and testing set.

KNN, Distance Weighting The results of the KNN, distance weighting model

on the train and test set are presented in Figure 5-3. In this case, we can observe

significant overfitting. Training data is modeled perfectly while the testing data fails

to come close to the in-sample performance.

Figure 5-3: KNN, Distance Weighting results for the training set and testing set.
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KNN, Gaussian Weighting The results of the KNN, Gaussian weighting model

on the train and test set are presented in Figure 5-4. In this case, we can observe

slight overfitting. Training data is modeled quite well while the performance on the

testing data falls short. Nevertheless, the KNN, Gaussian weighting model performs

best on the testing set of all the KNN models.

Figure 5-4: KNN, Gaussian Weighting results for the training set and testing set.

RF

The results of the RF model on the train and test set are presented in Figure 5-5.

Again, we can observe slight overfitting. Training data is modeled quite well while

the performance on the testing data falls short.
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Figure 5-5: RF results for the training set and testing set.

ET

The results of the ET model on the train and test set are presented in Figure 5-6.

We can observe significant overfitting. Training data is modeled perfectly while the

testing data fails to come close to the in-sample performance.

Figure 5-6: ET results for the training set and testing set.

XGBoost

The results of the XGBoost model on the train and test set are presented in Figure

5-7. We can observe significant overfitting. Training data is modeled perfectly while
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the testing data fails to come close to the in-sample performance.

Figure 5-7: XGBoost results for the training set and testing set.

Summary of In-Sample and Out-of-Sample Performance

Table 5.2 summarizes the in and out-of-sample performance of each of the models.

Model In-Sample 𝑅2 Out-of-Sample 𝑅2

Linear Regression 0.37 0.32
KNN, Uniform Weighting 0.78 0.71
KNN, Distance Weighting 1.00 0.73
KNN, Gaussian Weighting 0.91 0.76

RF 0.90 0.74
ET 1.00 0.76

XGBoost 1.00 0.76

Table 5.2: Predictive model performance for both in and out-of-sample.

5.2.2 Validation and Test Set Performance

It can be useful to judge the accuracy of the results for each algorithm considering only

the training and testing sets as previously discussed. However, it is also beneficial to

analyze how the algorithm performs on the validation set as well. Figure 5-8 presents

the results of each tuned algorithm on a 10-fold validation set, repeated three times

alongside the results from the testing set. All models outperform the base linear
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regression in both testing and validation sets. While KNN with Gaussian weighting

demonstrates the best out-of-sample performance, this model shows a much wider

range of results in comparison to RF and ET algorithms, suggesting it may be less

robust than other algorithms for this problem.

Figure 5-8: Testing set (red) and validation set (box and whisker) performance for
all model algorithms.

5.2.3 Feature Importance

We can utilize Shapley Additive Explanations (SHAP) (Lundberg & Lee, 2017) to bet-

ter explain and understand the output of machine learning models. This is especially

useful for tree ensemble methods like RF, ET, and XGBoost which are considered in

this thesis. SHAP provides insight into these models which can otherwise be opaque

and challenging to understand.

Figure 5-9 presents a beeswarm plot of SHAP values for the RF algorithm sorted

by importance in descending order. We find that the three most important variables

relate to the feed viscosity, the 90% recovery point of the feed, and the temperature

of the SDA extractor. This has implications on the physics-based models that were
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previously discussed in 1.7.

Figure 5-9: SHAP values for the RF algorithm.

5.3 Linear Optimization

This section describes the results of the linear optimization model, primarily de-

scribing the economic benefits as well as the robustness of the model under varying

conditions.

5.3.1 Economic Evaluation

To properly quantify the economic impact of integrating the predictive model within

the linear optimization problem, it’s important to consider three cases:

1. Base Case - What would be the economic impact to the refinery if it did not

utilize a predictive machine learning model to predict DAO yields?

2. Machine Learning Case - What would be the economic impact of the refinery

if it utilizes a predictive machine learning model to predict DAO yields?
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3. Omniscient Case - What would be the economic impact of the refinery in the

impossible scenario whereby the refinery already knew exactly what the DAO

yield, would be?

While it can be tempting to quantify the benefits by only comparing items one

and two above, it is highly beneficial to understand the gap between the baseline

(item one) and omniscience to understand how much closer we get to an omniscient

solution by implementing more complicated methods. It is important to note that

evaluating the omniscient case is only possible in a look back scenario when DAO

yields have already been observed.

The method for economic evaluation is presented in Figure 5-10. For each case, we

can utilize the linear optimization framework to produce the crude decision variables

for a given DAO yield. Average DAO yield is denoted by 𝜂. The DAO yield predicted

by the machine learning model is denoted by 𝜂. Lastly, the true DAO yield is denoted

by 𝜂. Utilizing these yields in the linear optimization framework, we can obtain a

variety of decision variables including the crude decision variables. Now, we can utilize

these decision variables along with the true DAO yield, 𝜂, to determine the profit for

that case.

In selecting a random data point from the training set, we find that there is

noticeable profit improvement as denoted in Table 5.3. Utilizing the machine learning

predictive model, we can reduce the profitability gap between the average DAO yield

and the omniscient DAO yield by more than 36%.

Case Profit ($/Day) Gap between Omniscient Case ($/Day)
Average DAO Yield 887,000 5,500

Predictive ML DAO Yield 889,000 3,500
Omniscient DAO Yield 892,500 -

Table 5.3: Profitability Results from Linear Optimization Framework.
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Figure 5-10: Economic evaluation framework for linear optimization problem.
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5.3.2 Decision Variable Comparison

It’s interesting to compare the values of each decision variable of each case to under-

stand how each case arrived at it’s final profit. This is particularly interesting since

each case arrived at similar profit values in vastly different avenues.

Crude Purchasing Comparison

Figure 5-11 compares the crude purchasing decisions for each of the three cases. Of

all nine crudes under consideration, all three cases only chose crude 2 and crude 8.

Interestingly, the case utilizing predictive machine learning for the SDA DAO yields

chose to only crude 8 which is in contrast to the omniscient case which utilized only

crude 2.

Table 5.4 shows the amount of money spent in each case on crude oil. Interestingly,

the case utilizing predictive machine learning for the SDA DAO yields actually spends

the most money on crude oil.

Case Expenses for Crude Oil ($/Day)
Average DAO Yield 2,860,846

Predictive ML DAO Yield 2,903,440
Omniscient DAO Yield 2,743,650

Table 5.4: Crude expenses for each case.

Finished Products Comparison

Figure 5-12 compares the finished product decision variables for each of the three

cases. Notably the omniscient case produced much more asphalt than either of the

other cases, and opted to produce more jet fuel.

Table 5.5 shows the revenue in each case for all finished products. Interestingly, we

can observe that the omniscient cases maximized profits not by maximizing revenue,

but by minimizing crude expenditures.
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Figure 5-11: Comparison of Crude Decision Variables between the three cases. Note
that, as previously stated in Chapter 4, the refinery has a crude distillation capacity
constraint of 45,000 bbl.

Figure 5-12: Comparison of finished product production between the three cases.
Note that no case opted to generate fuel oil.
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Case Finished Product Revenue ($/Day)
Average DAO Yield 3,735,234

Predictive ML DAO Yield 3,793,405
Omniscient DAO Yield 3,608,640

Table 5.5: Finished Product Revenue for each case.
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Chapter 6

Conclusion

This thesis has provided a continuous DAO yield estimations for a SDA unit by use

of modern machine learning models using data sets from a commercial refinery in

the United States. Additionally, this predictive machine learning model has been

incorporated into a linear optimization framework for a hypothetical downstream

refinery, demonstrating improved profitability by $730,000 annually.

6.1 Research Questions

How can machine learning based models augment their physics based coun-

terparts, to improve the accuracy of SDA DAO yields? In the past chapter

we have reviewed the results of multiple machine learning models and their relative

accuracy in comparison to one another. But how do these compare to existing physics

based models? While many models are proprietary, owned by private firms, others are

published in literature. Utilizing Maples model (Maples, 2008) we can reconstruct a

physics based approach and compare these results to the machine learning approaches

considered as part of this study. When doing this, the physics based approach returns

an 𝑅2 = 0.15, significantly lower than those presented in Table 5.2.

This begs the question - why are machine learning methods successful in develop-

ing models to predict SDA DAO yields? I believe it’s for three key reasons.

First, machine learning methods provide scalable and flexible frameworks to pro-
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cess, interpret, and predict on large volumes of data. As discussed in Chapter 1,

many SDA research papers focus on small amounts of data, the majority of which

are collected in laboratory environments. These smaller datasets cannot provide the

same amount of richness of information as large commercial datasets. When utiliz-

ing larger commercial datasets, the same methodology that has previously been used

in laboratory environments may not be successful, and more advanced methods are

required to solve these problems.

Second, humans have typically been in charge of determining the relationships on

these smaller datasets. In contrast, this thesis utilized machine learning algorithms

which, with the help of a human, helped determine the relationships of the indepen-

dent and dependent variables. Advanced ensemble algorithms such as RF, ET, or

XGBoost provide a method for determining relationships that may not otherwise be

feasible for a human being to determine when reviewing through the data.

Lastly, machine learning allows for consideration of many independent variables

at the same time. Human limitations often fail to visualize relationships beyond two

or three dimensions. In contrast, machine learning methods are successful in higher

order dimensions well beyond what can be visualized on a cartesian coordinate system.

It is for these three reasons that I believe that machine learning methodology

can dramatically improve existing engineering and physics-based methods which seek

to predict dependent variables. However, I do not advocate that machine learning

models replace physics-based models. Rather, I think that these machine learning

models should supplement physics-based models in areas where they can improve

process monitoring and optimization. Significant value is provided from many physics-

based models, which, in many cases, can provide very accurate results.

Which features are the most important in impacting SDA DAO yields?

As mentioned in Section 5.2.3, we can utilize SHAP to understand the importance

of features in the dataset. We find the top eight features visualized in Figure 5-9.

The temperature of the SDA extractor was previously noted as an important feature

in many SDA DAO yield papers. However, the discussion of viscosity and upstream
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90% recovery point were not well discussed in the literature. The remaining variables,

feed specific gravity, DAO stripper bottoms temperature, extractor pressure, recycled

solvent, and solvent-to-oil ratio all align with existing literature.

Using machine learning models, we can gain significant insight into the relative

importance of these variables and their effects on DAO yields. This allows a refining

professional to better understand the implications of their operational decisions and

provides a jumping off point for future research into the SDA process.

Furthermore, as previously discussed, these machine learning models are more ac-

curate than existing physics-based models, suggesting that the relationships between

the features and the dependent variable are not adequately described in the literature.

How can we incorporate predictive machine learning analytics into an op-

timization framework to produce tangible business value? The predictive

machine learning model was successfully integrated into a linear optimization frame-

work and proved to be a profitable endeavor. However, there are several gaps in this

analysis that could be addressed in future work.

First is the sequential nature of the decision framework utilized in this thesis.

The framework considered in this thesis utilized a sequential framework where the

following steps are taken, in the following order (Jacquillat, 2020):

1. Train a machine learning model on training data, to minimize in-sample loss.

2. Use machine learning model to make predictions on new data.

3. Solve deterministic optimization with an estimate.

This sequential approach has significant benefits as it is straightforward, inter-

pretable, and easy to communicate to outside stakeholders. Furthermore, we can

incorporate high complexity machine learning models with linear optimization meth-

ods in order to provide a cohesive model in sequence.

However, this approach did not address the concept of uncertainty. The linear

optimization methodology comprised in Chapter 4 assumes that all quantities are

precisely understood. In practice however, each of the parameters are understood
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to have inherent uncertainty whether this is due to fluctuating operating conditions

or economic circumstances. Therefore, the errors that exist in the machine learning

model can propogate into the linear optimization framework. In truth, these param-

eters are at best understood probabilistically. In order to avoid falling into a flaw of

averages, a stochastic programming model could be utilized to improve the overall

profitability of the refinery by making a decision that acknowledges and considers

the uncertainty in these parameters. A stochastic programming model which utilizes

input data to both make predictions on the SDA DAO yields and utilizes this data

for stochastic scenario generation can aid in addressing the uncertainty in both the

machine learning predictions as well as the other parameters in the model (Bertsimas

et al., 2020).

Additionally, we are attempting to minimize our loss function which attempts to

minimize the error associated with our SDA DAO yield predictions. However for

all downstream oil & gas refineries, the goal is to maximize profitability. The loss

function for the SDA DAO machine learning models is not directly connected to

the objective function of the optimization problem. Therefore, minimization of the

prediction error should, but may not always, lead to the best prediction in the context

of decision making.

6.2 Summary

This thesis reviewed through various machine learning models in an effort to provide

continuous Deasphalted oil (DAO) yield estimations for a Solvent deasphalting (SDA)

unit. These models were constructed using data sets from a commercial downstream

oil and gas refinery in the United States which include plant operating parameters and

laboratory measurements for feed properties. The machine learning models exhibit

high out-of-sample 𝑅2 values of 0.76.

Additionally, this predictive machine learning model was incorporated into a linear

optimization framework for a hypothetical downstream refinery, improving profitabil-

ity by $730,000 annually. The results of this model can be utilized for more accurate
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plant monitoring within oil gas downstream refineries, as well as improved decision

making by oil and gas planning professionals.

6.3 Future Work

There are many actions which can be taken in succession to this thesis that are listed

below, broken by predictive modeling and linear optimization.
Future Work: Predictive Modeling

1. Notably this thesis utilized a dataset wherein the solvent composition

was held constant and therefore would not impact the prediction of DAO

yields. Adding features to the dataset which show the solvent composition

can help further develop a holistic model for DAO yield predictions.

2. Expand predictive analytics to investigate stacked ensemble modeling

and/or deep learning methodologies.

Future Work: Optimization

1. Consider uncertainty in model via development of a stochastic program-

ming model.

2. Expand the linear optimization problems to consider additional crude

oils. Explore the utility of this linear regression problems with more

homogeneous and heterogeneous mixtures to best understand where it

provides the most value.

3. Incorporate fluctuations of pricing of crude oils over time.

4. Incorporate robust optimization methodology into the linear optimization

framework to ensure decisions that are feasible and an optimal solution

for a worst-case objective function.
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