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Abstract

Due to population ageing and increasing incidence of neurological disorders, the de-
mand for robotic technologies for assisting, augmenting, and restoring human loco-
motion is rapidly increasing. Recent approaches aim to make the devices adaptive
to improve performance and to deal with individual differences. When developing
adaptive devices, however, it should be remarked that humans are also adaptive, and
physical interaction with mechanical interventions may substantially change their
behavior. To advance technologies for human locomotion, therefore, not only it is im-
portant to understand fundamentals of human locomotion itself, but also it is required
to understand how human locomotion is altered by the mechanical interventions.

In this thesis, I aimed to understand and establish fundamentals of the effects
of mechanical interventions on human locomotion. In the first part of the thesis,
I characterized how human walking was changed with a powered hip exoskeleton
robot and investigated its underlying principles. In the second part of the thesis, I
quantified how human balance on a narrow beam was substantially and immediately
changed by altering mechanical interface or using mechanical support (i.e., canes).
Behavioral indicators of changes in central neural processes were investigated, which
is critical to determine the potential of an intervention for rehabilitation or compen-
sation. In the last part of the thesis, I developed methods to quantify human balance
mechanisms during normal standing without applying perturbations which may evoke
perturbation-dependent changes to the identified human behavior. Throughout this
work, simple models were extensively used to design and interpret human experiments
as well as to quantify human behaviors with a handful of parameters.

Thesis Supervisor: Neville Hogan
Title: Professor of the Department of Mechanical Engineering and the Department
of Brain and Cognitive Sciences

3



4



Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Neville Hogan. The

very first class that I took at MIT was his “Advanced System Dynamics and Control”

and that entirely changed my life. All of my accomplishments and academic and

personal growth in the last four years wouldn’t have been possible without his insights,

patience, intuition, and encouragement. I sincerely respect him as a professor, scholar,

educator, mentor, and as a human.

I sincerely thank my committee members, Prof. Dagmar Sternad, Prof. Jean-

Jacques Slotine, and Prof. Harry Asada, who were willing to provide their perspec-

tives and share their expertise as I struggled.

Special thanks to my inter-disciplinary collaborators. Meghan Huber, Marta

Russo, Kaymie Shiozawa, Rika Sugimoto-Dimitrova, Kuangen Zhang, and UROPs.

I really enjoyed intellectual discussions we had and the moments we talked about

possible future research ideas.

I appreciate Samsung scholarship for supporting my entire graduate school life,

and offering many opportunities to network with great people.

Thank you the members of the Newman Lab. I miss a lot the days and all-nighters

we had on the mezzanine before pandemic. I wish everything goes well with you all.

Let’s keep in touch.

Thank you to the wonderful staff of the MIT mechanical engineering department.

Thank you to the MIT KGSA, MIT KGSAME, and Boston Korean community.

Thank you to all of my friends here in the US, and there in Korea, who always

supported me and inspired me to complete my journey.

Last but not least, my family, Mom, Dad, Jongmin, Daeun, and Alkong-Dalkong,

thank you for always being there, thank you for your endless support and love. I love

you.

5



6



Contents

1 Introduction 29

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Challenges to Develop Effective Devices for Human Locomotion . . . 31

1.2.1 Understanding Fundamentals of Human Locomotion . . . . . 31

1.2.2 Understanding Interaction Between Humans and Mechanical

Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

I Walking with a Hip Exoskeleton 35

2 Overview 37

3 Human walking with torque pulses between thighs 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Equipment: Samsung GEMS-H Exoskeleton. . . . . . . . . . 42

3.2.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.5 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.6 Dependent Measures . . . . . . . . . . . . . . . . . . . . . . . 46

7



3.2.7 Entrainment Criteria . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.8 Statistical Analyses . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Representative Trials . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Group Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Gait Phase Convergence . . . . . . . . . . . . . . . . . . . . . 50

3.3.4 Mechanical Energy . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.5 Stride Period . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Limitation: Robot-embedded Measurements . . . . . . . . . . 56

3.4.3 Gait Entrainment to Mechanical Perturbations . . . . . . . . . 57

3.4.4 Gait Entrainment: Neural or Mechanical? . . . . . . . . . . . 58

3.4.5 Gait Entrainment: Clinical Implications . . . . . . . . . . . . 59

3.4.6 A Nonlinear Limit-cycle Oscillator as a Descriptive Model of

Human Walking . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Appendix: Off-line stride segmentation . . . . . . . . . . . . . . . . . 62

3.7 Appendix: Phase estimation algorithm . . . . . . . . . . . . . . . . . 64

4 Human walking with virtual stiffness between the thighs 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Equipment: Samsung GEMS-H Exoskeleton . . . . . . . . . . 69

4.2.3 Stiffness Controller . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4 Data Processing and Dependent Measures . . . . . . . . . . . 72

4.2.5 Experimental Protocols . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8



4.3.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.1 Limitations of the Present Study . . . . . . . . . . . . . . . . 86

4.4.2 Rehabilitation: Recovery or Compensation? . . . . . . . . . . 87

4.4.3 Practical Implication . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.4 Neural Control of Walking: Insights Gained . . . . . . . . . . 90

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Appendix: Statistical Analyses Details . . . . . . . . . . . . . . . . . 92

5 Walking Model 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Target Experimental Phenomena to Model . . . . . . . . . . . . . . . 96

5.3 Insights Gained from Coupled Oscillators . . . . . . . . . . . . . . . . 97

5.4 Competent Walking Model . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6.1 Summary of the Results . . . . . . . . . . . . . . . . . . . . . 103

5.6.2 Limitation of the Model . . . . . . . . . . . . . . . . . . . . . 103

5.6.3 Gait Asymmetry May Evoke Frequency Adaptation . . . . . . 105

5.6.4 State-dependent and Time-periodic Interventions . . . . . . . 105

5.6.5 Net Mechanical Energy from the Exoskeleton . . . . . . . . . 106

5.6.6 Scope of the Model . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Appendix: Compass Gait Walker Equations of Motion . . . . . . . . 107

5.7.1 Continuous Dynamics . . . . . . . . . . . . . . . . . . . . . . 108

5.7.2 Discrete Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Discussion 111

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9



II Balancing on a Beam with Mechanical Interventions 113

7 Overview 115

8 Balancing on a beam with rigid soles 117

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2 Human Balancing Experiment . . . . . . . . . . . . . . . . . . . . . . 119

8.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.2.2 Human Balance on a Beam: Representative Subjects . . . . . 124

8.2.3 Effects of Rigid Feet on Balance on a Beam . . . . . . . . . . 126

8.3 Modeling Human Balance on a Beam . . . . . . . . . . . . . . . . . . 128

8.3.1 Double Inverted Pendulum Model . . . . . . . . . . . . . . . . 128

8.3.2 Model of Human Balance with Bare Feet . . . . . . . . . . . . 129

8.3.3 Modeling the Effect of Changing Foot-beam Interface . . . . . 134

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9 Balance on a beam with canes 143

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.2.2 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . 146

9.2.3 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . 148

9.2.4 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 148

9.2.5 Dependent Measures . . . . . . . . . . . . . . . . . . . . . . . 150

9.2.6 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 151

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.3.1 Forces Applied on the Canes . . . . . . . . . . . . . . . . . . . 152

9.3.2 Variability of Center of Pressure and Center of Mass . . . . . 153

9.3.3 Comparison of Postural Sway On and Off the Beam . . . . . . 154

9.3.4 Effect of Forces on Postural Balance in the ML Direction. . . . 156

10



9.3.5 Effect of Forces on Postural Balance in the AP Direction . . . 159

9.3.6 Effect of Forces on Variability of Cane Motion . . . . . . . . . 160

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.4.1 Perceptual Benefits of Canes . . . . . . . . . . . . . . . . . . . 161

9.4.2 Mechanical Benefits of Canes on Postural Sway . . . . . . . . 162

9.4.3 Mechanical Challenge due to Instability of the Canes . . . . . 163

9.4.4 Underlying Control Mechanisms . . . . . . . . . . . . . . . . . 163

9.4.5 Limitations and Outlook . . . . . . . . . . . . . . . . . . . . . 164

9.4.6 Appendix: Intervention for Recovery or Compensation . . . . 165

10 Conclusion 167

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

III Quantifying Balance Mechanism without Perturbation169

11 Overview 171

12 Frequency-Dependent Force Direction Elucidates Neural Control of

Balance 173

12.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

12.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

12.2.1 Human Experiment . . . . . . . . . . . . . . . . . . . . . . . . 175

12.2.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

12.2.3 Comparison of Simulation and Human Experimental Results . 183

12.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

12.3.1 Minimum Required Model Complexity . . . . . . . . . . . . . 185

12.3.2 Best-Fit Model Parameter Set . . . . . . . . . . . . . . . . . . 185

12.3.3 Varying Model Parameters . . . . . . . . . . . . . . . . . . . . 186

12.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

12.4.1 Neural Control or Biomechanics? . . . . . . . . . . . . . . . . 188

11



12.4.2 Physiologically-Plausible Best-Fit Parameters . . . . . . . . . 189

12.4.3 Single vs. Multi-Joint Model . . . . . . . . . . . . . . . . . . . 190

12.4.4 Intersection Point: A Target Variable of Control or an Emer-

gent Consequence? . . . . . . . . . . . . . . . . . . . . . . . . 191

12.4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12.6 Appendix 1: Intersection Point of the Single Inverted Pendulum . . . 193

12.7 Appendix 2: Nonlinear Model Equations . . . . . . . . . . . . . . . . 195

12.8 Appendix 3: Linearized State-Space Matrices . . . . . . . . . . . . . . 197

12.9 Appendix 4: Intersection Point of the Linearized Double Inverted Pen-

dulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

13 Identifying human postural dynamics and control from unperturbed

balance 201

13.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

13.1.1 Previous Studies to Identify Balance . . . . . . . . . . . . . . 201

13.1.2 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . 203

13.1.3 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . 203

13.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

13.2.1 Identifying a General System from autocorrelation matrices . . 204

13.2.2 Identifying Controller Gain . . . . . . . . . . . . . . . . . . . . 207

13.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

13.3.1 Numerical Simulation: Scalar Dynamic System . . . . . . . . 209

13.3.2 Numerical Simulation: Balance Model . . . . . . . . . . . . . 214

13.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

13.4.1 Summary of the Work . . . . . . . . . . . . . . . . . . . . . . 220

13.4.2 Caveats of Parametric Model Fitting . . . . . . . . . . . . . . 221

13.4.3 Important Assumptions . . . . . . . . . . . . . . . . . . . . . 222

13.4.4 Strength of the New Method Compared to the Ordinary Least

Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . 223

12



13.4.5 Wider Application . . . . . . . . . . . . . . . . . . . . . . . . 225

13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

13.6 Appendix: Ordinary Least Squares . . . . . . . . . . . . . . . . . . . 226

13.7 Appendix: Yule-Walker Equations for Multi-variate Autoregressive

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

13.8 Appendix: Discrete-to-Continuous Conversion . . . . . . . . . . . . . 229

13.9 Appendix: Stability Assessment of Rhythmic Movement . . . . . . . 229

14 Concluding Remarks 231

14.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 231

IV Conclusion 233

15 Discussion and Conclusion 235

15.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

15.2 Human Adaptation to Mechanical Interventions: Significant, but Not

Known a Priori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

15.3 Simple Models Promote Insights . . . . . . . . . . . . . . . . . . . . . 236

15.3.1 What Insights? . . . . . . . . . . . . . . . . . . . . . . . . . . 237

15.3.2 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

15.4 Open Questions for Future Studies . . . . . . . . . . . . . . . . . . . 239

15.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

13



14



List of Figures

1-1 Several complementary projects conducted in this thesis . . . . . . . 34

3-1 A The Samsung GEMS-H exoskeleton applied torque pulses between

the two thighs. Subjects were instructed to walk comfortably. B Sub-

jects were divided into two groups. C Experimental protocol for each

day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3-2 A Representative entrained trial. B Representative not-entrained trial

Top: Left hip angle vs. phase, all strides. Black circles denote onsets of

torque pulses. Middle: Pulse phase vs. pulse number. Bottom: Period

deviation vs. stride number. Torque pulses were applied during 20-

100 strides (black, solid). Pre- and post-pulses are also plotted (gray,

dotted). In the top and middle rows, the initial pulse (green dot) and

the last 10 pulses (red dots) are highlighted. . . . . . . . . . . . . . . 49

3-3 Pulse phase vs. Pulse number of all entrained trials for all conditions.

The number (𝑛) of entrained trials for each condition is also presented.

Different colors represent different subjects. The pulse phases are un-

wrapped such that the last value of each trial is between 0 % and 100

%. Pulse phase slope of initial and terminal segments of the entrained

trials are also presented. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3-4 Initial pulse phases and mean of 10 terminal pulse phases of the en-

trained trials for all conditions. . . . . . . . . . . . . . . . . . . . . . 52

15



3-5 Histograms of mean terminal pulse phase and mean terminal work done

by the robot for each condition of (A) the entrained trials and (B)

not-entrained trials (mean of the last 10 strides). . . . . . . . . . . . . 53

3-6 (A) Prediction of pulse mechanical energy as a function of pulse phase

�̂�𝑃 (𝜑𝑃 ) of the representative trial (group-25ms, day 1, subject 1, trial

1), with predicted locking phase 𝜑𝑃 (black, circle) and actual locking

phase 𝜑𝑃 (red, square). (B) Histogram of error of prediction, 𝜑𝑒𝑟𝑟 =

𝜑𝑃 − 𝜑𝑃 for all 10 terminal pulse phases for all entrained trials. . . . 54

3-7 Period deviation vs. stride number of A entrained trials and B not-

entrained trials. Pre-pulse strides and post-pulse strides are distin-

guished (cyan). The means and standard deviations of trials for each

condition are presented as black, thick lines and red, thin lines, respec-

tively. In computing means and standard deviations for each stride

number, outliers were omitted using MATLAB function rmoutliers

with its default setting. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3-8 Stride segmentation using naive peak detection algorithm (A) and us-

ing the proposed algorithm (B). . . . . . . . . . . . . . . . . . . . . 62

3-9 Representative entrained trial (A) and not entrained trial (B). Top:

Hip angle (positive: extension; negative: flexion) vs. normalized time.

All 80 strides of the representative trial. Bottom: trajectory of 𝑠𝑃 vs.

𝑠𝐼 of all strides on the phase plane. Black circles indicate the onsets of

torque pulses. Green dot indicates the initial pulse. Red dots indicate

the onsets of ten terminal pulses. . . . . . . . . . . . . . . . . . . . . 64

4-1 A The Samsung GEMS-H exoskeleton emulated positive and negative

stiffness between the two thighs. Subjects were instructed to walk

comfortably either on a treadmill (TM) or overground (OG). B Stride

segmentation and 𝜃RELROM of normal walking without torque applied. 71

16



4-2 Representative subject data of experiment 1. Stride duration and

𝜃RELRoM of all trials during baseline (left), positive (middle), and neg-

ative (right) stiffness conditions are shown. Shaded regions represent

when the controller was on. . . . . . . . . . . . . . . . . . . . . . . . 76

4-3 Ensemble average of all trials of the same representative subject’s hip

angles (left: top, right: bottom) over a gait cycle from baseline, pos-

itive stiffness on (POS-ON), and negative stiffness on (NEG-ON) of

experiment 1. For each stride, the maximum left hip angle was used

to determine 0 % gait cycle. . . . . . . . . . . . . . . . . . . . . . . . 77

4-4 Phase plane trajectories of strides at the controller state transitions

(ON-to-OFF and OFF-to-ON) from a representative subject during a

positive stiffness trial (top) and a negative stiffness trial (bottom). . . 78

4-5 Experiment 1 results. Mean dependent measures for all subjects for

each condition (PRE, ON, POST) for each experimental trial (trial 1,

trial 2, trial 3) for positive stiffness A and negative stiffness B. All three

trials are plotted on top of one another. Shaded bar graphs and error

bars represent the mean of all trials for each condition and 1 standard

error across subjects. * indicates a significant effect of condition with

𝑝 < 0.05, revealed by planned comparisons. . . . . . . . . . . . . . . . 79

4-6 Representative subject data of experiment 2. Stride duration and

𝜃RELRoM during baseline (left), short-exposure (middle), and long-

exposure (right) trials in the positive (blue) and negative stiffness (red)

conditions are shown. Shaded regions represent when the controller was

on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4-7 Experiment 2 results. Mean dependent measures of all subjects for each

condition (BL, LE) for positive (POS) and negative (NEG) stiffness.

Error bars represent 1 standard error of the mean across subjects. *

indicates a statistically significant difference (𝑝 < 0.05). . . . . . . . . 81

17



4-8 Experiment 2 results for short exposure trials. Mean dependent mea-

sures of all subjects for each block (SE1, SE2, SE3, SE4) and for each

controller state (ON, OFF) for positive A and negative stiffness B.

Error bars represent 1 standard error of the mean across subjects. . . 82

4-9 Experimental results comparing walking overground (Experiment1)

and on treadmill (Experiment2). Mean changes in the dependent mea-

sures from controller state on to off for each walking condition. Error

bars represent 1 standard error across subjects. * indicates a statisti-

cally significant difference (𝑝 < 0.05). . . . . . . . . . . . . . . . . . . 83

4-10 Representative subject data of experiment 3. Each trial was performed

either on the treadmill (TM) or overground (OG). The robot applied

stiffness k that changed from positive to negative values (decrease,

DEC) or from negative to positive (increase, INC). . . . . . . . . . . 84

4-11 Mean ∆𝜃RELROM at each stiffness value, averaged across all subjects.

Error bars represent 1 standard error across subjects. . . . . . . . . . 85

4-12 Schematic illustration of A motor learning, B motor adaptation, and

C reactive adjustment. Motor learning results in a persistent deviation

from baseline behavior. Actual patterns may differ from the idealized

exemplary graphical illustrations. Motor adaptation exhibits abrupt

initial change, gradual correction, and negative after-effects. Reactive

adjustment shows immediate and persistent changes in behavior but no

aftereffects. Motor learning or adaptation are signatures of changes in

neuro-motor control, hence hold promise for recovery. An intervention

that evokes only reactive adjustment is more suitable for compensation. 89

5-1 Descriptive models of walking may have different level of complex-

ity. A single degree-of-freedom oscillator may serve as an abstract and

conceptual model of walking, as well as a high-fidelity models with

hundreds of bones and muscles. Rightmost image is obtained from

https://simtk.org/projects/opensim. . . . . . . . . . . . . . . . . . . 96

18



5-2 Coupled oscillators with two different configurations. . . . . . . . . . 98

5-3 Rhythmic oscillator (central pattern generator), peripheral mechanics,

and exoskeletons as a coupled system. . . . . . . . . . . . . . . . . . . 98

5-4 Schematic of a model of human walking. The model consists of a

central pattern generator (CPG), zero-force trajectory (ZFT) genera-

tor, impedance controller, compass gait walking model as a mechanical

system, a hip exoskeleton robot as a perfect torque source, and hypo-

thetical supra-spinal control. . . . . . . . . . . . . . . . . . . . . . . . 99

5-5 Simulation results. Shaded region indicates when the exoskeleton in-

tervention was simulated. . . . . . . . . . . . . . . . . . . . . . . . . 104

5-6 Stiffness intervention did not disrupt gait symmetry, while pulse in-

tervention evoked asymmetric gait pattern. Black: baseline behavior.

Colored: steady-state trajectory. When stiffness intervention was ap-

plied, despite large change, the symmetric gait pattern was preserved.

On the other hand, applying torque pulses disrupted symmetric gait

pattern. Note that 𝜃rel = 𝜃L − 𝜃R. . . . . . . . . . . . . . . . . . . . 106

5-7 Compass gait walker . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8-1 Experimental Task. (A) Subjects were instructed to maintain balance

on a narrow beam (3.4cm) for as long as possible without stepping off

the beam. Subjects performed the task under two conditions: bare

feet and “rigid feet”. (B) To simulate rigid feet on human subjects,

rigid plastic platforms were attached to the bottom of the subjects’

feet using Velcro straps and tape. . . . . . . . . . . . . . . . . . . . . 120

8-2 Human experimental results. Profiles of angular momentum generated

by A individual segments and B lumped upper body, lower body, and

whole body segments. To visualize the observed patterns in angular

momenta, data from only a representative segment (10 s) of each trial

are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

19



8-3 Experimental Results. (A) Trial time, (B) RMS of center of mass ve-

locity in the mediolateral direction (𝑣wb,𝑦), (C) RMS of whole body

angular momentum (�̂�wb,𝑥), (D) correlation of upper and lower body

angular momentum (Corr-AM), (E) RMS of external foot-beam in-

teraction torque (𝜏ext,𝑥). Individual subjects are represented by colors.

An asterisk represents a significant within-subject difference in the two

conditions (𝑝 < 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8-4 Double Inverted Pendulum Model. . . . . . . . . . . . . . . . . . . . 129

8-5 Simulation results. Time course of angular momentum about the sup-

port of whole body (black), upper body (yellow), and lower body

(green) for different six different balance controllers. The cross cor-

relation coefficient between 𝐿ub and 𝐿lb of each system are denoted as

well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8-6 Block Diagram of the Proposed Human Balance Model . . . . . . . . 136

8-7 Simulation Results. (A) RMS of the horizontal velocity of the center

of mass (𝑣wb,𝑦), (B) RMS of whole body angular momentum (�̂�wb,𝑥),

(C) correlation of upper and lower body angular momentum (Corr-

AM), (D) RMS of actual torque acting at the foot-beam interface

(𝜏1 ≡ 𝜏ext,𝑥). Simulations with different values of the parameter 𝛽 are

represented with colors. The light shaded region indicates the range

of 𝜂 ∈ [0.2, 0.6] that best represents the behavior observed in the bare

feet and rigid feet conditions of the human experiment. . . . . . . . 137

20



9-1 Experimental setup. Participants stood on a beam that was placed in

a fixed position on a force plate, holding a cane in each hand. A set

of 43 light-reflective markers measured displacements of the full body

and the canes in 3D. The canes were instrumented with two 6D torque

sensors at the bottom of each cane. The sketch shows the planar cane

configuration where the two canes were placed to be on one line with

the feet. In the tripod configuration, the canes were placed 0.50 m

further to the front to form a triangle with the feet. . . . . . . . . . . 147

9-2 Representative paths of the center of pressure (CoP) and of the center

of mass (CoM) in the horizontal plane. The two CoPs and CoM for one

trial for each of the different force instructions and the two postures are

shown in a top-down view. A. Exemplary trial when standing on the

ground. The grey line represents the CoP and the black line the CoM.

B. CoP and CoM of one trial of the same participant are shown when

standing on the beam without canes. C. Each panel shows both the

CoP at the feet (colored) and the total CoP (grey) for the three force

conditions: minimum (green), preferred (blue), maximum (red); black

lines show the center of mass (CoM). The two postures are identified

by the drawings at the top of each panel. The beam is the light yellow

area bounded by thin lines for visibility. For all conditions on and off

the beam, the participant stood in tandem stance with the same foot

in the front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

21



9-3 Postural sway metrics for the center of pressure (CoP) and center of

mass (CoM) for all experimental conditions. The light yellow back-

ground indicates metrics for standing on the beam, while the white

background on the left shows results for standing on the ground. The

colored bars show the metrics when the participants used canes; green,

blue and red differentiate the three force conditions. A: Area of the

center of mass (CoM) quantified by the 95% tolerance ellipse. Each

bar shows the mean and standard error (n=16) for the different exper-

imental conditions, pooled over all participants. The white bars on the

left show the CoM area when participants stood on the ground and on

the beam, without canes; the green, blue and red bars represent the

three force conditions. B: Area of the center of pressure (CoP, Total-

CoP and Feet-CoP) quantified by the 95% tolerance ellipse. Each bar

shows the mean and standard error (n=16) for the different experi-

mental conditions, pooled over all participants. The two white bars

show the CoP area when participants did not use canes. The lower

value of CoP on the left represents the participants standing on the

ground; the white bar shows the CoP area when participants stood on

the beam. The colored bars show the Total-CoP and the Feet-CoP

when the participants used canes. (significance levels: ***: 𝑝 < 0.001;

*: 𝑝 < 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

22



9-4 Total center of pressure (Total-CoP) and center of pressure at the feet

(Feet-CoP) in the medio-lateral (ML) direction for different force con-

ditions. A: Mediolateral (ML) component of the Total-CoP motion

with respect to the sum of the forces applied on the canes; each data

point is the average of one trial. Filled circles represent the planar pos-

ture, empty circles the tripod posture. B: Standard deviations of the

ML-component of the Total-CoP motion for the two postures. Each

data point represents one participant; different colors indicate different

participants. C: ML-Feet-CoP against the sum of the forces applied

on the canes for each trial. D: The ML component of the Feet-CoP for

each force condition and for the two postures. Each data point rep-

resents one participant, different colors indicate different participants.

(significance levels: ***: 𝑝 < 0.001; *: 𝑝 < 0.05) . . . . . . . . . . . . 158

9-5 Total center of pressure (Total-CoP) and center of pressure at the

feet (Feet-CoP) in the Antero-Posterior (AP) direction for different

cane conditions. A: Standard deviations of the AP-component of the

Total-CoP motion for the two cane configurations. Data are pooled

together within each force condition. Each data point represents one

participant; different colors indicate different participants. B: The AP

component of the Standard Deviation of the Feet-CoP for each force

condition and for the two cane conditions. Each data point represents

one participant, different colors indicate different participants (*** in-

dicates significance of 𝑝 < 0.001). . . . . . . . . . . . . . . . . . . . . 159

9-6 Paths and path lengths of the left and right hands for different force

instructions differentiated by color. A: Exemplary paths of the move-

ments of the left and right hands from two point of view: x-y at the

top, z-y below. Each colored line shows one trial in the three force

conditions. B: Path lengths for the left and right hands per trial are

plotted against the average force applied to the cane. . . . . . . . . . 161

23



9-7 No behavioral change before (PRE) and after (POST) using canes. *

indicates significant difference between conditions (𝑝 < 0.05). . . . . 165

12-1 a A net ground reaction force, F, made up of horizontal and vertical

components, 𝐹𝑥 and 𝐹𝑧, acts at the center of pressure, CoP, and has

an orientation 𝜃𝐹 . The center of mass, CoM, is also shown. b Two

force vectors from two different time points, which are defined by their

respective 𝜃𝐹 and CoP, intersect at the intersection point, IP. . . . . 176

12-2 Relation between 𝜃𝐹 and CoP for one simulation trial. The data were

processed by filtering the CoP and 𝜃𝐹 signals using a 2nd-order band-

pass filter with a 0.2 Hz wide frequency band. The principal eigenvec-

tor of the covariance matrix of the filtered data was extracted. The

intersection point (IP) was computed as the inverse of the angle of

the principal eigenvector. Note that the time series of the data was

approximated as an ellipse in this schematic illustration. . . . . . . . 178

12-3 Double inverted pendulum model with angle (𝑞𝑖) and torque (𝜏𝑖) con-

ventions and parameter values for mass (𝑚𝑖), length (𝑙𝑖), center of

mass (𝑙𝑐𝑖), and moment of inertia about the center of mass (𝑗𝑖). The

direction of gravity (𝑔) is also defined. . . . . . . . . . . . . . . . . . 179

12-4 Comparison of the intersection point’s frequency-dependence from: a

Human experimental data (reproduced from [24] with permission) and

b Simulation data with best-fit parameters. c The mean of the best-fit

simulation data overlaid on the median of the human data from [24].

Within the frequency band from 1.2 – 2.6 Hz for the human data, there

was no significant difference (with 95% confidence) between the mean

of the intersection point height and the center of mass height. This

frequency band is marked by the shaded region. The high-frequency

asymptote (3 – 8 Hz range) of the intersection point was 0.479± 0.028

and 0.468±0.021 for the human and simulation data, respectively (with

95% confidence). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

24



12-5 Effect of varying parameter values on the frequency-dependence of the

intersection point. Each model parameter was varied with respect to

the “best-fit” parameter set that closely resembled human subject data

observed in [24] (𝛼 = 106, 𝛽 = 0.3, 𝜎𝑟 = 0.9). The height of the center

of mass is indicated by a dashed line. The shaded region, based on

human experiments, indicates the frequency band in which the mean

of the intersection point height was not significantly different from the

center of mass height in [24]. a The parameter 𝛼 determined the cost

of the overall magnitude of the control effort relative to state deviation

from equilibrium. When varying 𝛼, the other parameters were set to

𝛽 = 0.3 and 𝜎𝑟 = 0.9. b The parameter 𝛽 determined the relative cost

of ankle and hip torque. When 𝛽 > 1, there was more penalty on ankle

torque. When varying 𝛽, the other parameters were set to 𝛼 = 106 and

𝜎𝑟 = 0.9. c The parameter 𝜎𝑟 determined the relative strength of noise

in the ankle and the hip. When 𝜎𝑟 > 1, ankle noise was greater than

hip noise. When varying 𝜎𝑟, the other parameters were set to 𝛼 = 106

and 𝛽 = 0.3. d The difference of the intersection point in the 1.2 –

2.6 Hz frequency range of the simulated data compared to the human

subject data [24] with respect to 𝛽. The parameter 𝜎𝑟 was kept at 0.9.

e The difference of the intersection point in the 3 – 8 Hz frequency

range of the simulated data compared to the human subject data [24]

with respect to 𝜎𝑟. The parameter 𝛽 was kept at 0.3. In both cases,

the effect of varying 𝛼 is also shown. The error bars indicate the 95%

confidence interval of the mean of difference when 𝛼 = 106. . . . . . . 186

12-6 Single DoF model cannot have IP below CoM at any frequency. . . . 195

12-7 Height of the intersection point of the linearized double inverted pen-

dulum model with two extreme 𝜎𝑟 values: 𝜎𝑟 = 0 (hip noise only) and

𝜎𝑟 =∞ (ankle noise only). . . . . . . . . . . . . . . . . . . . . . . . . 199

25



13-1 Comparison of estimation methods with different process and mea-

surement noise strengths. Each estimate was obtained from 5 different

trials. Each trial consisted of a time series with length N = 3000. The

mean and standard deviation of the error of estimation (�̂�−𝑎) for each

plot were obtained from 100 iterations of the whole process. . . . . . 211

13-2 The effect of hyper-parameters 𝑚, the maximum time lag of the auto-

correlation function used to estimate �̂�, and 𝑛𝑇 , the total number of

trials, on |�̂�CR(m) − 𝑎|. Noise strengths were fixed as 𝜎𝑤 = 𝜎𝑣 = 1. A

𝑛𝑇 = 5 was fixed and 𝑚 was varied. B 𝑚 = 5 was fixed and 𝑛𝑇 was

varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

13-3 Double inverted pendulum model with angle (𝑞𝑖) and torque (𝜏𝑖) sign

conventions and parameter values for mass (𝑚𝑖), length (𝑙𝑖), center

of mass (𝑐𝑖), and moment of inertia about center of mass (𝑗𝑖). The

direction of gravity (𝑔) is also defined. . . . . . . . . . . . . . . . . . 214

13-4 Mean estimated error of the system matrix 𝑒𝐴(%, left) and the control

gain 𝑒𝐾(%, right) from 10 iterations for different noise combinations.

Errors of the ordinary least squares method (OLS, top) and the new

method (CR, bottom) are shown. For both cases, motor noise was fixed

as 𝜎𝜂 = 0.01. The double inverted pendulum model was simulated with

the Case 1 controller parameters. . . . . . . . . . . . . . . . . . . . . 218

13-5 Mean estimated error of the system matrix 𝑒𝐴(%, left) and the control

gain 𝑒𝐾(%, right) from 10 iterations for different noise combinations.

Errors of the ordinary least squares method (OLS, top) and the new

method (CR, bottom) are shown. For both cases, motor noise was fixed

as 𝜎𝜂 = 0.01. The double inverted pendulum model was simulated with

the Case 2 controller parameters. . . . . . . . . . . . . . . . . . . . . 219

26



List of Tables

4.1 Two-way 3 (Condition: PRE vs. ON vs. POST) x 3 (Trial: 1 vs. 2 vs.

3) within-subject ANOVA results . . . . . . . . . . . . . . . . . . . . 92

4.2 Two-way 2 (Stiffness: positive vs. negative) x 2 (Condition: BL vs.

LE) within-subject ANOVA results . . . . . . . . . . . . . . . . . . . 93

4.3 Two-way 2 (Controller state: ON vs. OFF) x 4 (Block: SE1 vs. SE2

vs. SE3 vs. SE4) within-subject ANOVA results . . . . . . . . . . . . 93

4.4 Two-way 2 (Terrain: TM vs. OG) x 2 (Stiffness: positive vs. negative)

mixed ANOVA results . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Three-way 2 (Order: INC vs. DEC) x 2 (Terrain: TM vs. OG) x 3

(Stiffness (Nm/rad): -3.5 vs. +3.5 vs. +7) within-subject ANOVA . . 93

5.1 Conflicting features of experimental observations. . . . . . . . . . . . 97

5.2 Walking model parameters. . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 Segments of Human Rigid Body Model . . . . . . . . . . . . . . . . . 122

8.2 Representative subjects balance performance . . . . . . . . . . . . . . 125

8.3 Double Inverted Pendulum Model Parameters . . . . . . . . . . . . . 129

8.4 Summary of Simulation Results . . . . . . . . . . . . . . . . . . . . . 134

9.1 Sum of forces applied on the canes. Means and standard deviations

across participants of the sum of the forces applied on the two canes

in the three force conditions and in the two postures. Forces were

averaged across the duration of the trial. . . . . . . . . . . . . . . . . 153

12.1 Lumped Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . 179

27



13.1 double inverted pendulum model parameters . . . . . . . . . . . . . . 215

13.2 Range of noise strengths tested . . . . . . . . . . . . . . . . . . . . . 217

28



Chapter 1

Introduction

1.1 Background

Due to population ageing and increasing incidence of neurological disorders, the de-

mand for robotic technologies for assisting, augmenting, and restoring human loco-

motion is rapidly increasing. Between 2017 and 2050, the percentage of the global

population over 60 is expected to nearly double from 13% to 21.5% [214]. In the

U.S., more than 14% of the elderly population (about 6.8 million) required mobility

assistive devices to compensate for impaired gait and/or balance [92]. Population

ageing is also accompanied by an exponential increase in the incidence of neurological

disorders that lead to locomotion impairment [58, 137]. For example, 65% of post-

stroke survivors experience considerable gait deficits [90, 95, 227] and 795,000 people

have a stroke each year [136]. As a whole, about 20.6 million individuals in the U.S.

suffered from ambulatory disability in 2019 [105].

Robot-aided locomotor rehabilitation therapies have emerged as promising meth-

ods to meet this enormous demand, as robots facilitate safe and efficient delivery of

repetitive, high-intensity, and task-oriented training, which are considered important

for rehabilitation [36, 61, 121]. Moreover, various types of passive walk-aids [19] and

active robotic devices such as exoskeleton with and without crutches [46] have been

developed for assisting balance and walking for physically challenged persons.

On the other hand, research on orthotic devices and active exoskeletons to aug-
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ment able-bodied human performance has rapidly expanded over the previous decades

[46, 236]. This type of robotic devices is designed to add and dissipate power at

one or multiple joints of the lower-extremities to increase strength, provide greater

endurance, and improve other physical capabilities by able-bodied individuals. In

particular, the potential of using lower-limb exoskeletons to augment human walk-

ing and running by reducing metabolic cost and muscle effort has been successfully

demonstrated over the past decades [183]. Despite the differences in the intended

use, developing effective devices either for augmenting, assisting, or restoring human

locomotion face many of the same challenges and constraints [46].

Recent breakthroughs in wearable robotics to improve locomotor economy was

achieved by making devices adaptive to automatically adjust the torque profile pro-

vided by the robots while users were walking or running [44,60,239]. Despite several

challenges, these works found evidence of participant-specific responses to the param-

eters of the robot, highlighting the importance of adaptive and individualized control

strategies that can offer substantial benefits over fixed control strategies.

When developing adaptive devices, however, it should be remarked that hu-

mans are notoriously adaptive as well. Physical interaction with mechanical inter-

ventions may substantially change human locomotion, and these changes would be

intervention-specific. As evidenced by the previous work [239], finding a good generic

assistance pattern and specifying the parameters to adapt are the prerequisites for

developing successful adaptive devices. In order to find the ‘good’ generic pattern,

characterizing how humans interact with mechanical interventions is needed.

This prompts us to step back and ask fundamental research questions. To advance

technologies for human locomotion, not only it is important to understand fundamen-

tals of how healthy humans walk and balance, but also it is critical to understand

how human locomotion is altered by the various mechanical interventions. It will lead

us to identifying effective interventions either for augmenting, assisting, or restoring

human locomotion — and that invites active interdisciplinary research between many

fields.
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1.2 Challenges to Develop Effective Devices for Hu-

man Locomotion

1.2.1 Understanding Fundamentals of Human Locomotion

Despite many seminal works [75,225] that describe normal healthy human balancing

and walking, we still do not have a comprehensive and constructive understanding

of how humans could manage their many-degrees-of-freedom body (about 200 bones)

using highly redundant actuators (about 600 muscles) in a coordinated manner.

Characterizing common patterns across subjects is an important first step towards

understanding human behavior; however, it is not sufficient. The signals we measure,

e.g. joint motion, task-space motion, muscle or neural activities, are outputs of the

closed-loop system constructed by human neuro-motor controller and bio-mechanical

constraints imposed by human body and the environment (e.g., gravity, ground, etc.).

The observed pattern may be the target control variable or an emergent consequence

of regulating other variables. For example, it was found that humans exhibit a spe-

cific ground reaction force patterns during walking [66, 125], but a subsequent study

suspected that the pattern might be emergent rather than controlled [138]. Therefore,

when analyzing human behaviors, it is important to dissociate the contributions from

control and mechanics (i.e., “bugs or features?”).

Identifying functional control variable of human locomotion is important for gen-

eralization because different systems, such as humans with exoskeletons, prosthet-

ics, canes, or other assistive/rehabilitative devices, have different biomechanical con-

straints. Simply mimicking and imposing ‘normal’ human patterns may not lead

to success; for example, early-robotic gait rehabilitation technology that imposed a

prescribed ‘normal’ kinematic trajectory has not met our expectation [51,71].

To make progress, we may begin with reasonable assumptions on the structure of

the controller when analyzing human behaviors. Due to physical limitations, humans

may have simplified their control [72]. Identifying the competent structure of the

simple controller and human models and evaluating whether it can account for the
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experimental observations may promote insights.

1.2.2 Understanding Interaction Between Humans and Me-

chanical Interventions

Humans are notoriously adaptive to mechanical interventions, but predicting how

humans would adapt to a novel intervention is challenging. The predictions made

by state-of-the-art computational human models often mismatch the experimental

observations [2, 35], even though those models could successfully reproduce many

aspects of normal human walking. This is because the behavior of a system in isolation

and the same system physically coupled to another may significantly differ [29, 72],

and because we have limited measurements and data to build a complete human

model that can precisely predict human behaviors in any novel environments.

At this stage of human motor control research [10], characterizing human re-

sponses to individual interventions would be valuable. As mentioned above, this is a

required step to validate potential of an intervention and to justify further improve-

ment. Moreover, it will add a valuable data to understand interaction between human

locomotion and mechanical intervention.

Characterizing behavioral response evoked by an intervention provides useful in-

formation to determine whether the intervention holds promise for neuro-recovery [18,

80]. An intervention that does not evoke any changes in central neuro-motor control

does not hold promise for long-term recovery, but may successfully assist or augment

human locomotion while it is active.

1.3 Contribution

In this thesis, I designed, conducted, and/or participated in healthy human exper-

iments to investigate how simple mechanical interventions alter human locomotion

(balance and walking), quantified behavioral changes to understand their neuro /

mechanical origin, developed simple models to account for experimental observations
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and to gain insight, and developed methods to quantitatively assess human balance

without applying perturbations.

1.3.1 Principles

To gain insight and make progress, I conducted my research based on the following

principles.

• To study unimpaired population because it promises a faster route to insight

than highly-variable impaired population.

• To study mechanical (kinematic and kinetic) behaviors rather than detailed

neuro-muscular activities that are hard to measure without invasion and often

incompatible with experiments conducted outside the lab. Dynamical systems

point of view and control theories of articulated mechanical systems can enhance

our understanding of human locomotion.

• To work with simple models rather than high-fidelity complex models. The

purpose of modeling is to gain insight, not just to make precise predictions.

Well-established simple models with known structures are useful to design ex-

periments, interpret the results, and quantify human locomotion.

1.4 Thesis Organization

Several complementary projects were conducted, with special attention to the effects

of mechanical interventions on human walking and balancing. The three projects

conducted in this thesis are illustrated in Fig. 1-1.

Part I presents how healthy humans changed their walking pattern in response to

different interventions applied by a hip exoskeleton robot (Fig. 1-1a).

The sense of balance is another mechanism that is important for locomotion.

Part II presents how human balance on a beam was affected by the (passive) mechan-

ical interventions such as wearing rigid soles or using canes (Fig. 1-1b).
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(a) Characterize human
walking with mechanical
interventions

(b) Characterize human
balance with mechanical
interventions

(c) Quantifying human bal-
ance mechanisms without
applying perturbations

Figure 1-1: Several complementary projects conducted in this thesis

As presented in Part I and Part II, humans are highly adaptive to mechanical

perturbations. Therefore, Part III presents two complementary methods to iden-

tify human balance mechanisms during normal standing, without applying external

perturbations to avoid evoking adaptation during estimation process (Fig. 1-1c).

All of these works were conducted with close collaboration with many researchers.

At the beginning of each chapter, I highlighted contributions of the collaborators and

funding sources.

Part IV will conclude the thesis with some general points of discussion and open

research questions that would be useful to advance the field.
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Part I

Walking with a Hip Exoskeleton
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Chapter 2

Overview

While rehabilitation of upper-limb motor function with human-interactive robots has

met with success, robot-aided locomotor rehabilitation has been challenging. To

inform more effective approaches to robotic gait therapy, it is important to understand

neuro-mechanical dynamics and control of unimpaired locomotion and how it interacts

with the robotic interventions.

In Chapter 3, we investigated how human gait was altered when a hip exoskele-

ton robot applied periodic sequences of torque pulses, especially when the period of

intervention was close to but different from natural preferred stride duration. This

intervention was designed to test the generality of mechanical entrainment-based re-

habilitation which was first proposed in [4]. Experiments were conducted outside the

lab to investigate more natural human behavior.

In Chapter 4, we investigated how human gait was altered when a hip exoskeleton

robot applied torques to emulate a virtual spring in between thighs. Changes in

spatio-temporal gait parameters were characterized in response to both positive and

negative stiffness during walking overground and on a treadmill.

Both experimental studies were conducted using a wearable hip exoskeleton robot,

the Samsung Gait Enhancing and Motivating Systems for Hip (GEMS-H), developed

by Samsung Advanced Institute of Technology (SAIT). This low-mass autonomous

exoskeleton device enabled human subject experiments during overground walking.

All experiments were conducted with young unimpaired subjects.
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With a view to applications in locomotor rehabilitation, the studies assessed

whether each intervention induced changes in the gait pattern during walking, and

whether any behavioral changes were indicative of changes in central neuro-motor

control. Lack of such evidence would imply that the intervention is only suitable for

compensation; otherwise, the intervention may hold promise for rehabilitation.

Finally, in Chapter 5, we developed a mathematical model and simulation to

encapsulate the results of both experimental studies. A necessary neuro-motor control

structure of human walking was discussed and then a simple human walking model

was presented.
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Chapter 3

Human walking with torque pulses

between thighs

This work was done in collaboration with Dr. Meghan E. Huber (Newman Lab

for Biomechanics and Human Rehabilitation, MIT; now Prof. Meghan E Huber at

Human Robot Systems Laboratory, University of Massachusetts). We implemented

controller, designed and conducted human experiments, and analyzed data together.

We would like to thank Devon Goetz (MIT) and Vibha Agarwal (MIT) for their help

in collecting and analyzing the data.

This work was supported by the Global Research Outreach program of Samsung

Advanced Institute of Technology and a Samsung scholarship. Devon Goetz and

Vibha Agarwal were also supported by the MIT Undergraduate Research Opportu-

nity Program (UROP). Prof. Neville Hogan was also supported by the Eric P. and

Evelyn E. Newman fund, NIH-R01-HD087089, NSF-NRI 1637824, and NSF-CRCNS-

1724135.

This work was partially presented in [108], and submitted as in [111].

3.1 Introduction

While there is evidence to suggest that complementing conventional gait therapy

with robot-aided training can be beneficial [127], but on its own, robot-aided gait
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therapy does not outperform conventional physical therapy in terms of clinical mea-

sures (such as walking speed, step length, and step frequency) [71]. The recent rise of

autonomously powered exoskeleton robots promises new avenues of delivering therapy

in more ecological contexts, outside of a formal clinical setting [83, 121, 130]. To live

up to their promise and maximize gait recovery, however, we must better understand

natural human locomotion and how humans react to exoskeletal robotic interventions.

Earlier robotic gait rehabilitation approaches have been criticized as they en-

forced repetition of preprogrammed kinematics which may have discouraged active

engagement of participants and suppressed their natural rhythmic dynamics of walk-

ing [31, 71, 145]. Our previous studies proposed a novel robotic intervention to mod-

ulate gait frequency that respects the rhythmic dynamic nature of walking: gait

entrainment [5]. It was shown that applying periodic torque pulses at the ankle,

using an ankle exoskeleton robot, could induce subjects to increase their cadence to

synchronize with the period of the pulses, when the pulse period was close to but

shorter than subjects’ preferred stride duration. This experimental observation also

suggests that a nonlinear neuro-mechanical limit cycle oscillator is a reasonable de-

scription of the dynamics of human walking. Moreover, subjects adapted their gait so

that plantar-flexion torque pulses from the robot aligned with ankle push-off, which

maximized their mechanical assistance. Subsequent studies showed that entrainment

was observed more often, occurred earlier, and persisted longer during overground

walking compared to treadmill walking [145]. Motivated by this success with healthy

individuals, Ahn et al. studied the feasibility of this intervention to treat locomotor

deficits of neurologically-impaired patients and increase their cadence and walking

speed [8]. This paradigm is similar to the auditory entrainment but different in that

it involves physical interaction and energy exchange.

Gait entrainment to rhythmic, auditory signals is well-known and has been studied

in depth [40, 41, 115, 166], but synchronization to other forms of rhythmic stimuli is

underexplored. Since the pioneering work of Ahn and Hogan that investigated gait

entrainment to exoskeletal mechanical signals [5], there is a growing interest in gait

entrainment to various types of stimuli, including an oscillating treadmill [141, 203],

40



periodic vertical force [186], and electrical muscle stimulation [144,207]. These studies

share the motivation that gait entrainment holds promise for locomotor rehabilitation,

as well as providing a useful experimental paradigm to better inform neuro-motor

control of human walking. However, results also show that while promising, gait

entrainment is not straightforward to achieve.

The goal of the present study was to test whether humans similarly entrain to pe-

riodic torque pulses applied at the hip joints while walking overground. Torque pulses

were applied by an autonomous hip exoskeleton robot, the Samsung Gait Enhancing

and Motivating Systems for Hip (GEMS-H). We hypothesized that subjects would

entrain their gait to periodic perturbations applied to the hip joint, consistent with

prior results from the ankle entrainment studies. A preliminary study showed that

entrainment to hip torque pulses seemed promising [108]. In the study reported here,

experiments were conducted for two consecutive days to evaluate whether the second

day elicited more entrainment. We also assessed how increasing the difference between

the torque pulse period and subjects’ preferred stride duration affected human’s re-

sponses. Finally, we investigated whether subjects aligned the torque pulses to a

specific phase of the gait cycle; and whether it was related to the mechanical power

or work done by the hip exoskeleton robot, similar to the behavior observed in prior

entrainment studies using an ankle exoskeleton [4, 145]. Assessment of gait entrain-

ment requires accurate and reliable phase estimation. We developed an off-line stride

segmentation algorithm and applied a phase estimation algorithm developed in [220],

which do not requiring external sensors such as motion capture or foot-switches.

3.2 Methods

3.2.1 Subjects

A total of fifteen healthy young adults (gender: 4 females, 11 males; mean age: 25.53

years old) participated in this study. They were divided into two groups: group-

25ms (𝑁 = 7) and group-50ms (𝑁 = 8). All subjects gave informed written consent
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before the experiment. The experimental protocol was reviewed and approved by the

Institutional Review Board of the Massachusetts Institute of Technology (protocol #:

1809534122; approval date: 10/18/2018).

3.2.2 Equipment: Samsung GEMS-H Exoskeleton.

The Samsung Gait Enhancing and Motivating Systems for Hip (GEMS-H) developed

by Samsung Advanced Institute of Technology (Suwon, South Korea) was used in

this study (Figure 1a; [106, 114, 116, 189]). This low-mass (2.1 kg) robot is worn

around the waist and fastened to the thighs. A pair of actuators, one at each hip

joint, applies torque in the sagittal plane (hip flexion and extension). Passive hinges

allow unencumbered hip ab/adduction motion in the frontal plane. The torque out-

put of each actuator is estimated and controlled by sensing electrical current in the

respective motor. Encoders embedded in the actuator modules measure hip joint

angles. All electronics, actuators, and power sources are located onboard the de-

vice, allowing for untethered operation. Unlike laboratory-based tethered exoskele-

ton testbeds [33, 65, 160, 239], this autonomous exoskeleton allows experiments to be

conducted overground, thereby enabling study of the effects of intervention in more

ecological contexts.

3.2.3 Experimental Procedure

On two consecutive days, all subjects performed ten walking trials (two baseline trials

followed by eight pulse trials) per day wearing the GEMS-H exoskeleton (Fig. 3-1A).

Each trial consisted of 120 strides, and all trials were performed in a long corridor

(approximately 250 m) with low foot traffic to simulate real-world walking conditions.

Throughout the trials, subjects listened to white noise through wireless, over-the-ear

headphones to mask the sound of the exoskeleton and environment. Subjects were

instructed to walk at their comfortable pace, but they were neither informed that

the torque pulses would be delivered periodically, nor asked to “entrain" to these

perturbations. The experiment lasted approximately 45 minutes on each day.
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Figure 3-1: A The Samsung GEMS-H exoskeleton applied torque pulses between the
two thighs. Subjects were instructed to walk comfortably. B Subjects were divided
into two groups. C Experimental protocol for each day.

Baseline Trials

In baseline trials, the hip exoskeleton was unpowered (i.e., zero motor current), and

subjects were instructed to walk at a comfortable pace. On each day, preferred stride
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duration (𝑇𝑜) was quantified as the average stride period from the middle 30 strides

in the second baseline trial.

Pulse Trials

In the pulse trials, the hip exoskeleton was unpowered during the first 20 strides,

powered during the subsequent 80 strides, and unpowered for the remaining 20 strides

(Fig. 3-1B). When powered, the exoskeleton delivered periodic torque pulses to both

legs simultaneously. The torque pulses were trapezoidal in shape with a duration (𝑇𝑑)

of 200 ms (Fig. 3-1A). The magnitude of peak torque (𝜏𝑀) was set to 0.1 times the

subject body mass in kg. For safety, the torque magnitude was upper bounded by 8

Nm.

The torque pulse applied to the right hip (𝜏𝑅) was always in the flexion direction

(negative) and in the extension direction (positive) for the left hip (𝜏𝐿). The torques

to the left and right hips were always of the same magnitude but opposite direction,

i.e., 𝜏𝑅 + 𝜏𝐿 = 0 (Fig. 3-1A). For subjects in group-25ms, the pulse period (𝑇𝑝) was

set to be 25 ms faster than their preferred stride duration (∆𝑇 = 𝑇𝑜 − 𝑇𝑝 = 25 ms);

for subjects in group-50ms, the pulse period was set to be 50 ms faster than their

preferred stride duration (∆𝑇 = 𝑇𝑜 − 𝑇𝑝 = 50 ms). Subjects were instructed to walk

in whatever way they found most comfortable. They were aware that the exoskeleton

would alternate between powered and unpowered states during these trials, but they

were not informed how the exoskeleton was controlled.

3.2.4 Hypotheses

To understand whether a nonlinear stable limit cycle oscillator is a reasonably com-

petent descriptive model of the neuro-mechanical system controlling human walking,

we assessed how the difference between torque pulse period and subjects’ preferred

stride duration affected entrainment. We hypothesized that entrainment would be

observed more often when the difference was smaller, i.e., more often in group-25ms

than in group-50ms (hypothesis 1). Synchronization itself does not specify the
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phase at which entrainment occurs. However, if entrainment occurs due to the dy-

namic structure of the human walking controller, a consistent phase when entrained

was expected. Therefore, we hypothesized that the phase when entrained would be

consistent across different trials and subjects, i.e., for all entrained trials the distri-

butions of the terminal pulse phases would not be different (hypothesis 2).

It is important to assess neural and/or biomechanical contributions. Experiments

were conducted for two consecutive days to evaluate whether the second day elicited

more entrainment. If the central nervous system (CNS) learned the adapted be-

havior, repeated bouts should evoke more frequent entrainment. We hypothesized

that entrainment would be observed more often in day 2 than in day 1 (hypothesis

3). Lastly, we tested whether mechanical energy/work done by the robot had any

relation to entrainment, similar to the behavior observed in the prior entrainment

studies using an ankle exoskeleton. We hypothesized that the locking phase would be

commensurate with the phase where the torque pulse could provide maximal positive

power (hypothesis 4).

3.2.5 Data Processing

Stride Segmentation

Each stride began with maximum extension (positive) of the left hip angle (𝜃𝐿), which

approximately corresponds to left toe-off [157]. Because torque pulses applied during

the pulse trials affected position measurements, simple peak detection was not reliable

to separate each stride from the entire time-series data. To account for the inevitable

relative motion between the exoskeleton and the wearer, we developed an off-line

stride segmentation algorithm, as described in Section 3.6.

Phase Estimation

Determining phase variables from experimental signals is not trivial, especially when

the signals are non-stationary [23, 175]. Previous studies [172, 173] proposed to

compute phase from kinematic observations (kinematic phase) to understand neu-
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romechanical control of animal locomotion subject to mechanical perturbation. Re-

cent work in the robotics community exploited kinematic phase variables to design

biped walking controllers, and this showed more robust performance than using a

time-based phase variable [224]. Inspired by these previous studies, Gregg and col-

leagues [161, 218–220] recently proposed reliable and robust methods to determine

a phase variable for human walking, using hip angle. We adopted this method to

estimate the gait phase of human subjects 𝜑. The estimated phase was used to as-

sess entrainment, and to investigate to which phase of the gait cycle the mechanical

perturbations converged. We briefly present the method in Section 3.7, but readers

are referred to the original work for details.

3.2.6 Dependent Measures

Pulse Phase

Pulse phase 𝜑𝑃 (%) was defined as the phase at which the onset of the torque pulse

occurred within the gait cycle.

Pulse Phase Slope

Pulse phase slope (%/#) was defined as the average change of pulse phase (%) with

respect to pulse number (#). Pulse phase slope was computed over the first 10 pulses

(initial pulse phase slope) and the last 10 pulses (terminal pulse phase slope) of each

trial by linear regression (MATLAB function lmfit).

Period Deviation

Period deviation ∆𝑇 (ms) was defined as the difference between each stride duration

and the torque pulse period for each respective trial.

Pulse Mechanical Energy

Pulse mechanical energy 𝐸𝑃 (J/Nm) passed from the robot to the human was es-

timated for each torque pulse by integrating instantaneous power over time. To
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normalize the measure, the net energy was divided by peak commanded torque (𝜏𝑀)

of the corresponding trial(𝐸𝑝 = 1
𝜏𝑀

∫︀
𝜏𝑅𝜃𝑅 + 𝜏𝐿𝜃𝐿𝑑𝑡). The joint torques were esti-

mated from the current sensors. The angular velocities were obtained by filtering

the measured joint angular positions and compensating for group delay (MATLAB

function designfilt).

Predicted Pulse Phase

Ignoring kinematic variation induced by the robot perturbation, one can approximate

the pulse mechanical energy as a function of pulse phase. Assuming an ideal pulse was

applied to the wearers with magnitude 𝜏𝑀(= 𝜏𝐿 = −𝜏𝑅), and using the kinematics

obtained during baseline trials, the pulse mechanical energy is calculated as

�̂�𝑃 (𝜑𝑃 ) ≈ 1

𝜏𝑀

∫︁
𝜏𝑀(𝜃𝐿 − 𝜃𝑅)𝑑𝑡 = ∆𝜃𝑅𝐸𝐿(𝜑𝑃 ), (3.1)

where 𝜃𝑅𝐸𝐿 = 𝜃𝐿 − 𝜃𝑅, ∆𝜃𝑅𝐸𝐿 = 𝜃𝑅𝐸𝐿(𝑡𝑜𝑛(𝜑𝑃 ) + 𝑇𝑑) − 𝜃𝑅𝐸𝐿(𝑡𝑜𝑛(𝜑𝑃 )), and 𝑡𝑜𝑛 is

the pulse onset time corresponding to 𝜑𝑃 . Based on hypothesis 4, we predicted

the pulse phase 𝜑𝑃 (%) would maximize the pulse mechanical energy, i.e. 𝜑𝑃 =

argmax𝜑𝑃
�̂�𝑃 (𝜑𝑃 ).

3.2.7 Entrainment Criteria

Each trial was classified as entrained if the magnitude of the terminal pulse phase

slope was < 0.5 (%/#), i.e., the total change of pulse phase (%) within the last 10

pulses (#) was below 5%; otherwise, it was considered not entrained.

3.2.8 Statistical Analyses

Statistical analyses were conducted using the Statistics and Machine Learning Tool-

box of MATLAB R2018b (Mathworks, MA). For all statistical tests, the significance

level was set to 𝑝 = 0.05.

A 2 (group: 25ms vs. 50ms: between subjects factor) × 2 (day: 1 vs 2: within-
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subjects factor) mixed model ANOVA on the number of entrained trials was per-

formed to test whether entrainment more often occurred when difference between

natural stride duration and pulse period was smaller (hypothesis 1) and whether

the second day elicited more entrainment (hypothesis 3).

A 2 (group: 25ms vs. 50ms) × 2 (day: 1 vs. 2) ANOVA on the average of last 10

pulse phases of the entrained trials was performed to test whether the distribution of

pulse phases depends on the experimental conditions(hypothesis 2).

A residual analysis was conducted to compare the agreement between the ac-

tual pulse phase and predicted pulse phase for maximizing mechanical work 𝜑𝑃 (%)

(hypothesis 4).

3.3 Results

3.3.1 Representative Trials

Fig. 3-2 presents two representative trials: entrained (group-25ms, day 1, subject 1,

trial 1) and not entrained (group-50ms, day 1, subject 2, trial 1). In the entrained trial

(Fig. 3-2A), the pulse phase converged at the end of the trial (M: 65.6%, SD: 0.54%

in the last 10 pulse phases). The stride duration was approximately matched to the

torque pulse period (period deviation close to zero). After the torque pulses ceased,

stride duration slowly returned towards its pre-perturbation value (stride number 100

- 120). However, in the not-entrained trial (Fig. 3-2B), the pulse phase drifted through

all phases of the gait cycle and stride duration was little affected by the intervention

(non-zero period deviation).

3.3.2 Group Results

Consistent with hypothesis 1, gait entrainment was observed more frequently in

group-25ms (day1: 71%, 40 out of 56 trials; day2: 79%, 44 out of 56 trials) than

in group-50ms (day1: 39%, 25 out of 64 trials; day2: 45%, 29 out of 64 trials), and

this difference was statistically significant (𝐹 [1, 13] = 7.8, 𝑝 = 0.015). Counter to
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Figure 3-2: A Representative entrained trial. B Representative not-entrained trial
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hypothesis 3, there was no statistical difference between consecutive days of exper-

iments (𝐹 [1, 13] = 0.37, 𝑝 = 0.55). There was no statistically significant interaction

between groups and days (𝐹 [1, 13] = 0.002, 𝑝 = 0.97).

Fig. 3-3 presents the progression of pulse phase vs. pulse number for all entrained

trials for each condition. In entrained trials, pulse phase converged to an approxi-

mately constant value before the perturbation ceased. Within each trial, the pulse

phases tended to drift in one direction (either increasing or decreasing). Fig. 3-3

(bottom) presents the distribution of the initial pulse phase slopes and the terminal

pulse phase slopes of the entrained trials. After initial transients, subjects adapted

their gait and reached steady-state motion within 80 strides.

3.3.3 Gait Phase Convergence

Fig. 3-4 presents initial pulse phases (the first pulse phase) and terminal pulse phases

(the last ten) of the entrained trials. While the initial pulse phases were distributed

widely across the entire gait cycle, the terminal pulse phases formed a unimodal

distribution in each condition. Consistent with hypothesis 3, the terminal pulse

phase was consistent across all entrained trials (M =63.8 %); neither the effect of

period difference (group-25ms vs. group-50ms; 𝐹 [1, 137] = 0.001, 𝑝 = 0.97), day (day1

vs. day2: 𝐹 [1, 137] = 0.08, 𝑝 = 0.78), nor their interaction (𝐹 [1, 137] = 2.96, 𝑝 =

0.088) were statistically significant.

3.3.4 Mechanical Energy

Fig. 3-5 compares the pulse mechanical energy 𝐸𝑃 and the terminal pulse phase

𝜑𝑃 of the last ten pulses of (A) entrained trials and (B) not-entrained trials for all

conditions. The histograms of the entrained trials show that the pulse phase and

the positive work done by the robot were closely related. The unimodal distribution

of the terminal pulse phases of all entrained trials (𝑀 = 63.8%, 𝑆𝐷 = 10.4%) were

centered about those at which subjects could gain the most mechanical benefit from

the exoskeleton robot (𝑀 = 65.1%, 𝑆𝐷 = 1.57%). On the other hand, those of the
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Figure 3-3: Pulse phase vs. Pulse number of all entrained trials for all conditions.
The number (𝑛) of entrained trials for each condition is also presented. Different
colors represent different subjects. The pulse phases are unwrapped such that the
last value of each trial is between 0 % and 100 %. Pulse phase slope of initial and
terminal segments of the entrained trials are also presented.

not-entrained trials were more widely distributed in terms of both energy and pulse

phase.

The representative trial exemplifies the similarity between the actual terminal
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Figure 3-4: Initial pulse phases and mean of 10 terminal pulse phases of the entrained
trials for all conditions.

pulse phase 𝜑𝑃 and the phase for maximal work of robot 𝜑𝑃 (Fig. 3-6A). The distribu-

tion of the error between prediction and actual of all entrained trials (𝜑𝑒𝑟𝑟 = 𝜑𝑃 −𝜑𝑃 )

(Fig. 3-6B) was centered around zero (𝑀 = −1.3%, 𝑆𝐷 = 10.2%). These results in-
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(A) Entrained Trials

(B) Not Entrained Trials

Figure 3-5: Histograms of mean terminal pulse phase and mean terminal work done
by the robot for each condition of (A) the entrained trials and (B) not-entrained
trials (mean of the last 10 strides).

dicate a close relationship between the converged phase and positive mechanical work

done by the robot in support of hypothesis 4.
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Figure 3-6: (A) Prediction of pulse mechanical energy as a function of pulse phase
�̂�𝑃 (𝜑𝑃 ) of the representative trial (group-25ms, day 1, subject 1, trial 1), with pre-
dicted locking phase 𝜑𝑃 (black, circle) and actual locking phase 𝜑𝑃 (red, square). (B)
Histogram of error of prediction, 𝜑𝑒𝑟𝑟 = 𝜑𝑃 − 𝜑𝑃 for all 10 terminal pulse phases for
all entrained trials.

3.3.5 Stride Period

Fig. 3-7 presents how the period deviation of entrained trials and not-entrained trials

varied in each condition. In all entrained trials, stride duration adapted to match the

torque pulse period, resulting in a mean period deviation close to zero. Upon removal

of the robotic intervention, stride durations slowly returned to their pre-perturbation

values. Conversely, stride duration did not converge to the torque pulse period in not-

entrained trials. T-tests indicated that in each condition, the mean period deviation

was not significantly different from zero during entrained trials (group-25ms x day1:

𝑝 = 0.51, group-25ms x day 2: 𝑝 = 0.77, group-50ms x day1: 𝑝 = 0.61, group-50ms

x day2: 𝑝 = 0.11), but was significantly different from zero during not-entrained

trials (group-25ms x day1: 𝑝 < 0.001, group-25ms x day 2: 𝑝 < 0.001, group-50ms

x day1: 𝑝 < 0.001, group-50ms x day2: 𝑝 < 0.001). There was a constant offset in
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(B) Not-Entrained Trials

Figure 3-7: Period deviation vs. stride number of A entrained trials and B not-
entrained trials. Pre-pulse strides and post-pulse strides are distinguished (cyan). The
means and standard deviations of trials for each condition are presented as black, thick
lines and red, thin lines, respectively. In computing means and standard deviations
for each stride number, outliers were omitted using MATLAB function rmoutliers
with its default setting.

55



period deviation for not-entrained trials. While this offset was smaller on day 2 of

not-entrained trials, in particular of group-25ms, it was larger than that of entrained

trials.

3.4 Discussion

3.4.1 Summary of Results

This study characterized unimpaired human subjects’ responses to periodic torque

pulses applied about the hip joints during overground walking.

We observed that human subjects entrained their gait to the periodic mechanical

torque pulses applied by a hip exoskeleton robot. During this process, subjects syn-

chronized their stride duration to match that of the external mechanical perturbation

(Fig. 3-7). For all groups, by the end of entrained trials, pulse phase converged to a

unimodal distribution centered around 63-65 % (Fig.3-3 and Fig. 3-4). Further anal-

ysis revealed that entrainment occurred such that the mechanical energy flow from

the robot to the wearer was maximized (Fig. 3-5).

Gait entrainment was observed more often when the pulse period was closer to

subjects’ preferred stride duration, and this difference was statistically significant

(𝑝 = 0.015). However, there was no statistical difference between the two days of

experiments (𝑝 = 0.55), suggesting that longer training periods might be required to

elicit further changes in neuro-motor behavior.

3.4.2 Limitation: Robot-embedded Measurements

There are trade-offs between tightly-controlled lab experiments and experiments in

real-world conditions. For example, walking overground enables a study of natural

human behaviors in more ecological contexts, but the ability to measure human be-

havior is limited. On the other hand, walking on a treadmill in a lab enables reliable

collection of various data (e.g., ground reaction forces using force plates or whole-body

kinematics using a motion capture system). However, walking on a treadmill is me-
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chanically different from walking overground. For instance, the treadmill belt speed

changes periodically depending on the gait phase, and may require motor adaptation

to a dynamic environment [208]. The goal of this study was to investigate entrainment

in real-world conditions, despite the associated limitations.

Entrainment was assessed based on robot-embedded joint position measurements.

Because the exoskeleton robot did not perfectly conform to each individual, the hip

joint angles measured by the robot-embedded encoders may have differed from the

true human joint angles. The robot actuators transmitted power and/or torque

through a thigh frame and belt assembly that was tightly coupled to the human

subjects. However, torque transmission may have been imperfect due to a myriad of

reasons (e.g., friction in the actuator, elasticity in human tissue or the thigh frame,

and relative motion between the exoskeleton robot and the wearer). The difference

between torque estimated from on-board sensors and external force-sensitive resistor

(FSR) sensors was presented in [38]. Nonetheless, our conclusion that periodic torque

pulses at the hip joints induced gait entrainment is still valid because it relies on the

trend of behavior rather than exact values. Inaccurate kinematic measurement and

inaccurate torque application cannot dismiss our results.

Measurements based on whole-body kinematics (e.g., stride length), or stride seg-

mentation based on external sensors (e.g., foot-mounted sensors) would be useful to

confirm and further illuminate our results. In addition, direct measurements of mus-

cle activity (e.g., surface electromyography; sEMG) would be useful to further iden-

tify neuro-muscular mechanisms associated with gait entrainment. Measurements of

metabolic cost would also add useful information to track consequential changes in

locomotion economy following adaptation.

3.4.3 Gait Entrainment to Mechanical Perturbations

Periodic torque pulses applied by a hip exoskeleton evoked gait entrainment, ac-

companied by convergence of pulse phase to a constant value across all conditions.

Entrainment occurred more often when the period of perturbation was closer to sub-

jects’ natural stride duration. The results are consistent with previous studies that
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showed entrainment to mechanical perturbations [5,141,145,186,203,206]. However,

the basin of entrainment was smaller and rate of successful entrainment was lower

with the hip exoskeleton than with an ankle exoskeleton [5, 145,206].

While entrainment itself does not enforce convergence to a particular constant

phase, subjects entrained their gait to maximize the work done by the hip exoskele-

ton robot, as illustrated in Fig. 3-5. This result is consistent with previous studies

with different mechanical interventions, in which individuals adapted to leverage pos-

itive power from the devices [20], aligning the timing of robotic torques from an ankle

exoskeleton with ankle propulsion [5, 65, 145]. Subjects tended to get the most me-

chanical assistance during the gait phase when the ankle does the most positive work

[56].

3.4.4 Gait Entrainment: Neural or Mechanical?

Does gait entrainment involve any central neural process, or was it purely due to

peripheral neuro-mechanics? The potential bio-mechanical benefits discussed in the

previous section seem to suggest that biomechanical mechanisms at least played a sig-

nificant role. In fact, a previous modeling study suggested that gait entrainment may

not require any supra-spinal mechanisms [4]. However, that model could not repro-

duce some experimental results (e.g., entrainment to periodic perturbations slower

than preferred walking period [145, 174]), suggesting that some higher-level neural

contribution may be required. Indeed, it is hard to dismiss the role of supra-spinal

control in gait entrainment.

The intervention in this study was designed to either drive the legs apart or pull

them together, depending on the phase at which the pulse occurred. Since the torque

pulse period was similar to the stride duration not the step duration, this intervention

influenced inter-leg coordination, breaking symmetry, which might be detected by the

CNS as an error to be corrected [169]. Mechanical perturbations affecting inter-leg

coordination have been shown to evoke locomotor adaptation, e.g., split-belt treadmill

walking [169] and many other studies involving unilateral perturbation [21, 59, 103,

223]. Conversely, our companion study [110] showed that an intervention that did

58



not affect symmetry did not evoke motor adaptation.

Moreover, the timing of locomotor patterns is thought to be mediated at the spinal

level (e.g., central pattern generators) but under supraspinal control (e.g., motor cor-

tex, via brainstem centers) and afferent sensory feedback [52,67,123,129,205]. While

auditory signals cannot directly influence inter-leg coordination, substantial studies

have shown that the rhythmic adaptation observed in auditory-motor synchroniza-

tion involves central neural mechanisms (e.g. cortical areas, basal ganglia and the

cerebellum) [40]. There is also evidence that neuro-motor adaptation to a mechanical

perturbation was predominantly due to descending drive from supra-spinal levels [91].

For example, an intact cerebellum and motor cortex appear to be critical for motor

adaptation [190].

In sum, it seems reasonable to suggest that both high-level (supra-spinal) control

and low-level peripheral biomechanical structures contributed to the observed gait

entrainment to mechanical perturbation at the hip joints.

3.4.5 Gait Entrainment: Clinical Implications

Mechanical gait entrainment may serve as a novel permissive locomotor rehabilita-

tion therapy that minimally encumbers the natural dynamics of walking. Similar to

the auditory gait entrainment which has shown promising therapeutic effects [41],

mechanically entraining gait to increase cadence may result in increased walking

speed [49, 115] or stride length [41], which might be important functional outcomes

for post-stroke survivors [155,184]. In addition, walking in recovering stroke patients

(and in some healthy elders) looks a lot like a sporadic slow sequence of individual

steps. Mechanical entrainment may promote more natural (rhythmic) action and

hence be beneficial.

To maximize the potential therapeutic effects of mechanical gait entrainment,

different torque pulse profiles (including continuous rhythmic torque patterns) and

performance-based protocols for gradual improvement [8, 98, 206] should be investi-

gated. To understand underlying neuro-mechanical mechanisms of entrainment, a

modelling study would be insightful [2]. Once the most effective method has been
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established, studies with patient populations should follow to evaluate whether neuro-

motor adaptation in healthy subjects translates to neuro-recovery in clinical settings.

These matters are left for future studies.

3.4.6 A Nonlinear Limit-cycle Oscillator as a Descriptive Model

of Human Walking

When exposed to external periodic forcing, a nonlinear limit cycle oscillator is en-

trained and synchronizes its frequency with that of the stimuli [63]. This synchroniza-

tion only occurs when the frequency and strength of the stimuli are in a finite region

called the basin of entrainment1; outside this region in parameter space, entrainment

does not occur.

The experiments reported here were designed based on a working hypothesis that

a nonlinear, stable limit cycle oscillator is a reasonable descriptive model of human

walking. The experimental observations of this study can be summarized by two

characteristics: phase-locking to a unimodal phase distribution; and a finite basin of

entrainment (more entrainment in group-25ms than in group-50ms). Inevitable noise

in biological systems was also observed, e.g., in stride durations or pulse phase dis-

tributions. Despite the unquestionable complexity of the human neuromotor system,

there is considerable practical value to describing human walking with an exoskele-

ton robot by a simplified mathematical model: a nonlinear limit-cycle oscillator with

periodic forcing, subject to the presence of stochasticity. Note that a linear model

(e.g. a second-order mass-spring-damper system) cannot exhibit a finite basin of en-

trainment. Despite the evident power of linear analysis, some phenomena require

nonlinearity. Stochasticity is also required, though deterministic chaos may not be

necessary [6].

This simple theoretical model provides useful insights to predict and interpret

complicated experimental observations. First, the finite basin of entrainment is de-

termined by two parameters: the period of perturbation and the coupling strength.

1It is also said that the system exhibits the Arnold’s tongue structure, due to the shape of the
basin of entrainment.
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From this point of view, it is natural to observe less entrainment in group-50ms than

in group-25ms. When the parameters are outside the basin of entrainment, entrain-

ment will not occur and the pulse phase will drift. However, when the parameters are

close to the boundary, the pulse phase will drift slowly when it is near the converged

phase (critical slowing [202]). In that case, stochasticity may ‘push’ the system into

the basin of entrainment. We believe this is what we observed in some trials in Fig.

3-3.

Second, this simple theoretical model might potentially be useful to quantify indi-

viduals with a small number of parameters. For example, the model presented in [63]

only requires three parameters: the convergence rate of the limit cycle (this may be

a characteristic of individual subjects), the relative frequency between the stimulus

(pulse period 𝑇𝑝) and the oscillator (subjects’ preferred stride duration 𝑇𝑜), and the

coupling strength (which may be related to pulse magnitude 𝜏𝑚 or pulse duration

𝑇𝑑 or both). A model of this kind may serve to customize treatment protocols to

individual patients.

3.5 Conclusion

This study characterized unimpaired human subjects’ responses to periodic torque

pulses applied by a hip exoskeleton robot during overground walking. The pertur-

bation evoked gait entrainment, accompanied by convergence of pulse phase to a

similar value across all conditions. Entrainment occurred more often when the pe-

riod of perturbation was closer to subjects’ natural stride duration. The ability of

a hip exoskeleton robot to induce gait entrainment is promising. Exploiting the

natural oscillatory dynamics of walking to induce entrainment may provide a novel,

minimally-encumbering approach to locomotor rehabilitation therapy.
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Figure 3-8: Stride segmentation using naive peak detection algorithm (A) and using
the proposed algorithm (B).

3.6 Appendix: Off-line stride segmentation

For each pulse trial, first the peaks in the time-series of left hip angle 𝜃𝐿 are identified

using a peak detection algorithm (MATLAB findpeaks). This set of indices of the

identified peaks, 𝑖𝑝𝑘 ∈ ℐ𝑃𝐾 , serve as an initial seed for optimization. Note these

indices are integers. The tuples of indices of the onset-offset pairs of torque pulses

are also identified from applied torque 𝜏𝐿: (𝑖𝑜𝑛, 𝑖𝑜𝑓𝑓 ) ∈ ℐ𝑂𝑁−𝑂𝐹𝐹 . If the torque pulses

occurred near the identified peaks of the hip angle, it is likely that the corresponding

peaks were affected by the pulses and need corrections. These peaks are removed

from ℐ𝑃𝐾 and then stored as decision variables to be updated, ℐ𝐷𝑉 (See Algorithm

1).

Algorithm 1 Off-line stride segmentation initialization
1: Given left hip angle peak indices ℐ𝑃𝐾 , torque pulse onset-offset index tuples
ℐ𝑂𝑁−𝑂𝐹𝐹

2: Initialize decision variable ℐ𝐷𝑉

3: for 𝑖𝑝𝑘 ∈ ℐ𝑃𝐾 do
4: if ∃(𝑖𝑜𝑛, 𝑖𝑜𝑓𝑓 ) ∈ ℐ𝑂𝑁−𝑂𝐹𝐹 s.t. 𝑖𝑝𝑘 ∈ [𝑖𝑜𝑛, 𝑖𝑜𝑓𝑓 ] then
5: 𝑖𝑑𝑣 ← 𝑖𝑝𝑘
6: Append ℐ𝐷𝑉 with 𝑖𝑑𝑣
7: Remove 𝑖𝑝𝑘 from ℐ𝑃𝐾

8: end if
9: end for

The affected peaks are then corrected in a way to minimize inter-stride variability
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𝑉 . To compute inter-stride variability 𝑉 , the time-series of left hip angle 𝜃𝐿 and

right 𝜃𝑅 are first segmented using ℐ𝑃𝐾 ∪ ℐ𝐷𝑉 , each stride is time-normalized with

length 𝑁 using interpolation (MATLAB interp1), ensemble average is computed,

then sum of squared error of each stride and the ensemble average is computed; see

Algorithm 2. In this work, the genetic algorithm (MATLAB function ga) was used

to find the integer-valued decision variables ℐ𝐷𝑉 that globally minimize 𝑉 , but other

more efficient solvers may be used. To avoid over-correction, each of the corrected

peak index is bounded in time by ±𝑇𝑑 (= ± 200 ms) from its initial value.

Algorithm 2 Inter-stride variability
1: procedure inter-stride Var(𝜃𝐿, 𝜃𝑅, ℐ𝑃𝐾 , ℐ𝐷𝑉 , 𝑁)
2: Initialize 𝑉 ← 0
3: Initialize stride segments 𝒮
4: Sort ℐ𝑆 = ℐ𝑃𝐾 ∪ ℐ𝐷𝑉 in ascending order
5: for 𝑠-th index 𝑖𝑠 ∈ ℐ𝑆 do
6: 𝜃

(𝑠)
𝐿 ← (𝜃𝐿[𝑖𝑠], 𝜃𝐿[𝑖𝑠 + 1], · · · , 𝜃𝐿[𝑖𝑠+1])

7: 𝜃
(𝑠)
𝑅 ← (𝜃𝑅[𝑖𝑠], 𝜃𝑅[𝑖𝑠 + 1], · · · , 𝜃𝑅[𝑖𝑠+1])

8: 𝜃
(𝑠)
𝐿 ← interp1((𝑖𝑠, · · · , 𝑖𝑠+1),𝜃

(𝑠)
𝐿 , (1, · · · , 𝑁))

9: 𝜃
(𝑠)
𝑅 ← interp1((𝑖𝑠, · · · , 𝑖𝑠+1),𝜃

(𝑠)
𝑅 , (1, · · · , 𝑁))

10: Store 𝜃
(𝑠)
𝐿 ,𝜃

(𝑠)
𝑅 in 𝒮

11: end for
12: Compute ensemble average: 𝜃𝐿 and 𝜃𝑅

13: for 𝜃
(𝑠)
𝐿 ,𝜃

(𝑠)
𝑅 ∈ 𝒮 do

14: 𝑉 ← 𝑉 + ‖𝜃(𝑠)
𝐿 − 𝜃𝐿‖2 + ‖𝜃(𝑠)

𝑅 − 𝜃𝑅‖2
15: end for
16: return 𝑉
17: end procedure

The optimal stride segments 𝒮 were used to calculate dependent measures for

each stride. The effect of the developed algorithm is clearly shown in Fig. 3-8. When

motion artifacts were significant as in this study (due to relative motion between

exoskeleton robots and the wearers), this method could outperform the näive peak

detection algorithm to segment strides from a long time-series data. Of course, using

external sensors such as motion capture systems or force plate to detect gait events

would be more convenient and accurate, but sometimes it is not compatible with the

human studies outside the lab.
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3.7 Appendix: Phase estimation algorithm
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Figure 3-9: Representative entrained trial (A) and not entrained trial (B). Top: Hip
angle (positive: extension; negative: flexion) vs. normalized time. All 80 strides of
the representative trial. Bottom: trajectory of 𝑠𝑃 vs. 𝑠𝐼 of all strides on the phase
plane. Black circles indicate the onsets of torque pulses. Green dot indicates the
initial pulse. Red dots indicate the onsets of ten terminal pulses.

The phase estimation algorithm is adopted from [161, 219, 220]. For 𝑠-th stride

𝜃
(𝑠)
𝐿 ∈ 𝒮 from Appendix 3.6, the angle and its integral are shifted and scaled to obtain
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two signals 𝑠
(𝑠)
𝑃 and 𝑠

(𝑠)
𝐼 .

𝑠
(𝑠)
𝑃 = 𝜃

(𝑠)
𝐿 −

1

𝑁

𝑁∑︁
𝑖=1

𝜃
(𝑠)
𝐿 [𝑖] (3.2)

𝑠
(𝑠)
𝐼 [𝑘] =

𝑘∑︁
𝑖=1

𝑠
(𝑠)
𝑃 [𝑖] (3.3)

𝑔(𝑠) =
max 𝑠

(𝑠)
𝑃 −min 𝑠

(𝑠)
𝑃

max 𝑠
(𝑠)
𝐼 −min 𝑠

(𝑠)
𝐼

(3.4)

𝑠
(𝑠)
𝐼 = 𝑔𝑠

(𝑠)
𝐼 (3.5)

The two signals 𝑠
(𝑠)
𝑃 and 𝑠

(𝑠)
𝐼 construct a closed-orbit on the phase plane. The

phase of each data point for each stride is computed as the angle of the data point

on the phase plane as shown in Fig. 3-9.

𝜑[𝑖] =
1

2𝜋
𝑎𝑡𝑎𝑛(

𝑠𝐼 [𝑖]

𝑠𝑃 [𝑖]
) ∈ [0, 1]. (3.6)
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Chapter 4

Human walking with virtual stiffness

between the thighs

This work was done in collaboration with Dr. Meghan E. Huber (Newman Lab

for Biomechanics and Human Rehabilitation, MIT; now Prof. Meghan E Huber at

Human Robot Systems Laboratory, University of Massachusetts). We implemented

controller, designed and conducted human experiments, and analyzed data together.

We would like to thank Vibha Agarwal (MIT) and Haley R. Warren (University of

Vermont) for their help in collecting and analyzing the data.

This work was supported by the Global Research Outreach program of Samsung

Advanced Institute of Technology and a Samsung scholarship. Vibha Agarwal was

also supported by the MIT Undergraduate Research Opportunity Program (UROP).

Haley R. Warren was also supported by the MIT Summer Research Program (MSRP).

Prof. Neville Hogan was also supported by the Eric P. and Evelyn E. Newman fund,

NIH-R01-HD087089, NSF-NRI 1637824, and NSF-CRCNS-1724135.

This work was partially presented in [78,107], and is under review in [110].

4.1 Introduction

Current portable lower-limb exoskeleton robots can successfully improve locomotion

economy (i.e., reduce metabolic cost during normal walking and running) [183]. While
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concurrent changes in kinematic and kinetic measures were also observed, they were

not the primary objective, but investigated to understand how the improved locomo-

tion economy was achieved [96,132,160,237].

Re-establishing healthy gait patterns is further complicated by the fact that the

human nervous system responds differently to different robot interventions. Some

evoke changes or adaptation in neuro-motor control. These changes can be person-

specific and occur over multiple timescales, lasting from minutes to years. It seems

reasonable that induced changes in the nervous system are a pre-requisite for an in-

tervention to be considered as a viable treatment option for neuro-recovery. However,

it is as yet uncertain what promises persistent neuro-motor recovery, and even if so,

how long the required training would be [168].

Compensation is another approach through which healthy gait patterns can be

reinstated. While they may not induce long-term changes in the central nervous sys-

tem, compensatory interventions may immediately augment locomotor capabilities,

and that may evoke secondary benefits. Therefore, understanding a robot’s influence

on locomotor behavior – and the underlying neural controller – is needed to determine

whether an intervention is suitable for treatment (to promote long-term recovery) or

compensation (by providing assistance).

In the work reported here, we characterized how gait kinematics change with

the application of virtual stiffness using a hip exoskeleton robot, to determine its

potential for gait rehabilitation, either therapeutic or compensatory. We surmised

that the mismatch of gait kinematics between healthy and impaired individuals may

result from (or at least can be mathematically described as) an inability to properly

tune joint stiffness [74]. Thus, it may be possible to restore healthy kinematics by

applying a compensatory joint stiffness, positive or negative, to the affected joint(s).

We also assessed whether the altered kinematics that resulted from applying hip

stiffness contained behavioral signatures indicative of changes of central neuro-motor

control. Modulating stiffness is an appealing approach for several reasons. First,

it makes the exoskeleton act in a predictable manner. Second, it can be used for

various walking conditions without requiring on-line estimation or prediction of the

68



gait phase, human intent, or the environment (e.g., ground slope and height). Third,

stiffness can be passively implemented as a low-cost, low-mass, and low-power device,

as shown in [140,151,193].

We used the Samsung Gait Enhancing and Motivating Systems for Hip (GEMS-H)

exoskeleton [106,114,116,189] to emulate a virtual spring between the thighs of unim-

paired subjects. We first evaluated whether applying stiffness induced quantifiable

changes in gait kinematics (hip range of motion and stride duration) under various

conditions (treadmill and overground). With a view to applications in locomotor

rehabilitation, we also assessed whether the altered kinematics resulting from apply-

ing hip stiffness contained behavioral signatures indicative of changes in neuro-motor

control. Preliminary reports of portions of this work were presented in [78,107].

4.2 Methods

4.2.1 Participants

A total of 12 healthy, young adults (mean age: 25.3 years; gender: four females,

eight males) took part in this study. Three independent experiments were conducted

and four subjects participated each experiment. Each subject took part in only one

experiment. None had previously worn a hip exoskeleton nor partaken in a similar

experiment. All participants gave informed written consent before the experiment.

The experimental protocol was approved by the Institutional Review Board of the

MIT (protocol #: 1809534122; approval date: 10/18/2018).

4.2.2 Equipment: Samsung GEMS-H Exoskeleton

The Samsung Gait Enhancing and Motivating Systems for Hip (GEMS-H) developed

by Samsung Advanced Institute of Technology (Suwon, South Korea) was used in

this study (Fig. 4-1A; [106, 114, 116, 189]). Detailed description of the device can be

found in Chapter 3.
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4.2.3 Stiffness Controller

In all experiments, the GEMS-H was programmed to emulate a virtual torsional

spring between the thighs using the following control law (Fig. 4-1A):

𝜃REL = 𝜃L − 𝜃R (4.1)

𝜃REL,DZ =

⎧⎪⎨⎪⎩𝜃REL, if |𝜃REL| ≥ 𝜃th

0, otherwise
(4.2)

⎡⎣𝜏L
𝜏R

⎤⎦ =

⎡⎣−𝑘𝜃REL,DZ

𝑘𝜃REL,DZ

⎤⎦ (4.3)

where 𝑘 is the torsional stiffness, 𝜃REL is the relative angle between two legs, and

𝜏L, 𝜏R are hip joint torques on the left (L) and right (R), respectively. To ensure a

smooth sign change in the output torque, a deadzone (𝜃th, approximately ±2 deg) was

applied to the relative angle (𝜃REL,DZ). The commanded torque was determined by a

high-level controller running at 200 Hz and implemented by a low-level current con-

troller running at 10 kHz. Torques with the same magnitude and opposite direction

were applied to left and right legs. This minimized the net moment applied to the

robot base and minimized relative motion between the robot and the human subject,

improving both user comfort and measurement accuracy. When the applied stiffness

was positive (i.e., 𝑘 > 0 Nm/rad), the exoskeleton pushed the thighs together to a

stable equilibrium point at 𝜃REL = 0 rad. When it was negative (i.e., 𝑘 < 0 Nm/rad),

the robot pulled the thighs apart from an unstable equilibrium point at 𝜃REL = 0

rad. When the stiffness controller was off (i.e., 𝜏L = 𝜏R = 0 Nm), the backdrivable

exoskeleton exerted minimal torque.
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Figure 4-1: A The Samsung GEMS-H exoskeleton emulated positive and negative
stiffness between the two thighs. Subjects were instructed to walk comfortably either
on a treadmill (TM) or overground (OG). B Stride segmentation and 𝜃RELROM of
normal walking without torque applied.
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4.2.4 Data Processing and Dependent Measures

Signal Processing

Encoders embedded in the actuator modules directly measured joint angular positions

(sampling rate: 200 Hz). Using an FIR filter (order: 50, passband: 20 Hz, stopband:

30 Hz) approximating an ideal low-pass filtered differentiator, the position signals

were filtered to estimate joint velocities off-line. The group delay of the filter was

used to compensate for the time shift of the signals due to the filtering process.

Signal processing was performed using MATLAB R2018b (Mathworks, MA; function:

designfilt).

Stride Segmentation

To calculate dependent measures, we first segmented and time-normalized the signals

for each stride. Each stride began with maximum extension of the left hip joint (0

% of the gait cycle), which approximately corresponds to left toe-off [157]. The left

thigh flexed (negative velocity), approximately from 0 % to 50 % of the gait cycle

and extended (positive velocity) approximately from 50 % to 100 % of the gait cycle.

Dependent Measures

The temporal aspects of gait behavior were characterized by stride duration. The

spatial aspects were quantified by the range of motion (ROM) of the relative angle

(𝜃REL). Note that the ROM of hip motion is highly correlated with stride length.

The ROM of the 𝑖-th stride was computed as 𝜃RELROM [𝑖] = 𝜃REL,max[𝑖]− 𝜃REL,min[𝑖]

as illustrated in Fig.4-1B.

Statistical Analysis

Statistical analyses were performed using the Statistics and Machine Learning Tool-

box of MATLAB R2018b (Mathworks, MA). Statistical tests are detailed under in-

dividual experiments described below. Within-subject ANOVA was conducted us-

ing MATLAB function anovan. For all statistical tests, the significance level was
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set to 𝑝 = 0.05. When a significant effect was found with more than two levels,

planned comparisons in the form of pairwise t-tests for within-subject effects were

conducted to determine which pairs of levels were significantly different from one an-

other, using the MATLAB function ttest without applying any corrections. The

results were double-checked with MATLAB function fitrm, ranova, multcompare.

Mixed-effect within-subject ANOVA was conducted using an online-available func-

tion [88].

4.2.5 Experimental Protocols

Experiment 1

The first experiment evaluated how applied stiffness affected kinematics during over-

ground walking. This included an investigation of transient and steady-state behavior

to determine if adaptation or learning occurred.

Each subject performed a total of 8 trials while wearing the GEMS-H exoskeleton.

In each trial, subjects walked for 120 strides at their preferred pace in a long corridor

(approximately 250 m) with low foot traffic to simulate real-world walking conditions.

The first two trials were considered baseline trials. During these trials, the stiffness

controller was off for all 120 strides (BL). In the six experimental trials, the stiffness

controller was off for the first 20 strides (PRE), turned on for the next 50 strides

(ON), and then turned off for the remaining 50 strides (OFF). Half of the trials were

performed with negative stiffness (𝑘 = -5 Nm/rad), and the other half were performed

with positive stiffness (𝑘 = 5 Nm/rad). Trials performed in each stiffness condition

were blocked and counterbalanced across subjects.

To assess the effect of applied stiffness on kinematics during overground walking,

a 3 (Condition: PRE vs. ON vs. POST) x 3 (Trial: 1 vs. 2 vs. 3) within-subjects

ANOVA was conducted on mean 𝜃RELROM and mean stride duration separately for

each stiffness condition.
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Experiment 2

Given the prevalent use of treadmills for gait rehabilitation, the second experiment

evaluated whether the effect of applied stiffness on kinematics differed during tread-

mill walking compared to overground walking. Because the treadmill affords longer

walking trials, the response to both long and short repeated exposures was examined.

Kinematic changes during overground (Experiment1) and treadmill (Experiment2)

walking were then compared.

The experiment took place over two consecutive days. On each day, subjects

performed three trials (BL: baseline, SE: short-exposure, and LE: long-exposure)

wearing the GEMS-H exoskeleton while walking on a Sole Fitness F80 treadmill (0.84

m × 1.90 m deck; 0.045 m/s belt speed resolution). Preferred treadmill speed was

established by each subject at the beginning of each experiment and then maintained

for all remaining treadmill trials. Subjects were given up to 200 strides to self-adjust

the speed of the treadmill to one they felt could comfortably be maintained for the

duration of the experiment.

In the BL trials, subjects walked with the stiffness controller off for 1000 strides

(BL). In the SE trials, subjects walked for 540 strides. The stiffness controller started

in the off state for the first 60 strides (SE0-OFF) and then toggled between on and

off for four blocks (SE1, SE2, SE3, SE4). Each block consisted of 60 strides with the

controller on (SE1-ON, ..., SE4-ON), followed by 60 strides with the controller off

(SE1-OFF, ..., SE4-OFF). Stiffness was positive (5 Nm/rad) on one day and negative

(-5 Nm/rad) on the other, and this order was counterbalanced across subjects. While

subjects were informed that the controller would turn on and off during the trial,

they were not told how the exoskeleton was controlled. For safety purposes, subjects

walked for approximately 10 strides overground with the exoskeleton powered before

the start of the SE trial. In the LE trials, subjects walked for 1000 strides with the

stiffness controller on (LE). The stiffness value was the same as that used in the SE

trial of that day.

To assess the effect of applied stiffness on kinematics during treadmill walking, a 2
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(Stiffness: positive vs. negative) x 2 (Condition: BL vs. LE) within-subjects ANOVA

was conducted on mean 𝜃RELROM and mean stride duration. A 2 (Controller state:

ON vs. OFF) x 4 (Block: SE1 vs. SE2 vs. SE3 vs. SE4) within-subject ANOVA was

conducted on mean 𝜃RELROM and mean stride duration separately for each stiffness

condition to determine whether the effect of applied stiffness differed across short,

repeated exposures.

To test whether the effect of applied stiffness differed between overground (Ex-

periment1) and treadmill walking (Experiment2), a 2 (Terrain: TM vs. OG) x 2

(Stiffness: positive vs. negative) mixed ANOVA was conducted on mean ∆𝜃RELROM

and mean ∆stride duration. Terrain was a between-subjects factor, and stiffness

was a within-subjects factor. The dependent measures were calculated for all strides

across all trials when the controller was ‘ON (Experiment1: ON, Experiment2: LE)’

and ‘OFF (Experiment1: POST, Experiment2: BL)’; ANOVA was conducted on the

mean of difference of ‘OFF’ from ‘ON’.

Experiment 3

The third experiment was designed to test whether changes in kinematics affect or

transfer to subsequent tasks with different stiffness values.

Each subject performed four experimental trials. Each trial was performed ei-

ther on the treadmill (TM) or overground (OG). In decreasing (DEC) trials, stiffness

was applied between thighs by the exoskeleton robot and its value was incrementally

decreased from positive (𝑘 = 7 Nm/rad) to negative (𝑘 = -3.5 Nm/rad) by ∆𝑘 =

3.5 Nm/rad. In increasing trials (INC), the stiffness was increased from negative to

positive over the same range. For each stiffness value, subjects walked 100 strides

on the treadmill or 15 strides overground. Before and after each experimental trial,

subjects walked at their preferred speed for 50 strides on the treadmill (or 10 strides

overground) with the robot controller off. All trials were conducted in a single day.

Treadmill and overground trials were grouped, and the order of each group was ran-

domized for each subject. The order of trials (increasing or decreasing stiffness) were

also randomized in each group.
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To determine whether the effect of applied stiffness on kinematics depended on the

order in which the different values were applied, a 2 (Order: increasing vs. decreasing)

x 2 (Terrain: treadmill vs. overground) x 3 (Stiffness: -3.5 Nm/rad vs. 3.5Nm/rad

vs. 7 Nm/rad) within-subjects ANOVA was conducted on mean 𝜃RELROM.
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Figure 4-2: Representative subject data of experiment 1. Stride duration and
𝜃RELRoM of all trials during baseline (left), positive (middle), and negative (right)
stiffness conditions are shown. Shaded regions represent when the controller was on.

4.3 Results

4.3.1 Experiment 1

Fig. 4-2 exemplifies how gait patterns changed over strides in different stiffness con-

ditions (baseline, positive, and negative). Note that the graph shows all trials of

the same representative subject in each panel; the response was consistent across
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repeated exposure to the intervention. During the baseline trials, both stride du-

ration and 𝜃RELROM remained unchanged. When the positive (negative) stiffness

was applied, 𝜃RELROM immediately decreased (increased) and remained unchanged

over 50 subsequent strides with the controller ON. When the stiffness was removed,

again 𝜃RELROM immediately recovered to the baseline level and remained unchanged

thereafter. On the other hand, stride duration was essentially unaffected by the robot

controller. Fig. 4-3 shows ensemble averages of the left, right, and relative hip angles

during a single stride for different stiffness conditions (Baseline BL, Positive ON, Neg-

ative ON). Note that the symmetry between left and right legs, typical of unimpaired

and unperturbed walking, was preserved despite the presence of applied stiffness.
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Figure 4-3: Ensemble average of all trials of the same representative subject’s hip
angles (left: top, right: bottom) over a gait cycle from baseline, positive stiffness on
(POS-ON), and negative stiffness on (NEG-ON) of experiment 1. For each stride, the
maximum left hip angle was used to determine 0 % gait cycle.

Phase plane trajectories at the controller transitions (ON-to-OFF and OFF-to-

ON) from a representative subject are shown in Fig. 4-4. It also shows the strides

immediately before and immediately after the controller state transition as well as

the last stride in the ‘new’ (transitioned) state. Steady-state behavior was reached

within a single stride.
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Figure 4-5: Experiment 1 results. Mean dependent measures for all subjects for each
condition (PRE, ON, POST) for each experimental trial (trial 1, trial 2, trial 3) for
positive stiffness A and negative stiffness B. All three trials are plotted on top of
one another. Shaded bar graphs and error bars represent the mean of all trials for
each condition and 1 standard error across subjects. * indicates a significant effect of
condition with 𝑝 < 0.05, revealed by planned comparisons.

Effects of applied stiffness on kinematics

The main effect ‘Condition (PRE vs. ON vs. POST)’ was significant for mean ROM

for both positive and negative stiffness (Fig. 4-5A, Table 4.1). The ‘Condition’ for

mean stride duration was barely significant for positive stiffness (𝑝 = 0.05); however,

planned comparisons did not reveal significant differences between levels. Thus, even

though the effect was statistically significant, it was weak. Moreover, the differences

between the conditions on mean stride duration for positive stiffness (below 30 ms)

were on par with the typical variability observed in normal walking (3 % of mean stride
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duration [70]). The difference between PRE and POST condition were insignificant,

indicating that the behavior returned to baseline after removal of the intervention.
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Figure 4-6: Representative subject data of experiment 2. Stride duration and
𝜃RELRoM during baseline (left), short-exposure (middle), and long-exposure (right)
trials in the positive (blue) and negative stiffness (red) conditions are shown. Shaded
regions represent when the controller was on.

4.3.2 Experiment 2

Fig. 4-6 exemplifies how the gait patterns of a representative subject changed over

strides in three different stiffness conditions. As in experiment 1, the change of 𝜃REL

was immediate and significant when the robot controller was turned ON and OFF,

and the response was similar over repeated short exposures (SE) for both positive

and negative stiffness. Moreover, the ROM was maintained over 1000 strides for both
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Figure 4-7: Experiment 2 results. Mean dependent measures of all subjects for each
condition (BL, LE) for positive (POS) and negative (NEG) stiffness. Error bars
represent 1 standard error of the mean across subjects. * indicates a statistically
significant difference (𝑝 < 0.05).

positive and negative stiffness (LE). However, stride durations were not as consistent

as in Experiment 1. In particular, in the negative stiffness condition, where the

magnitude of kinematic change was larger, stride duration showed larger variability.

Effects of applied stiffness on kinematics

Both main effects (stiffness: positive vs. negative and condition: BL vs. LE) and

their interaction had a significant effect on the mean ROM (Fig. 4-7, Table 4.2).

Condition and interaction had a significant effect on stride duration (although the

effect of condition was marginal; 𝑝 = 0.048) while stiffness did not (Fig. 4-7, Table

4.2). Planned comparisons revealed that the mean 𝜃RELROM and the mean stride

duration of the LE condition between positive and negative stiffness were significantly

different (𝑝 = 0.0024 and 𝑝 = 0.027, respectively), while those of the BL condition

were not. This significant interaction occurred because positive and negative stiffness

affected ROM and stride duration in opposite ways; for example, applying negative

stiffness increased ROM while positive stiffness decreased it.
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Effects were similar across short, repeated exposures

The controller state (ON vs. OFF) had a significant effect on mean ROM for both

positive and negative stiffness (Fig 4-8, Table 4.3). It had a significant effect on mean

stride duration for negative stiffness only. Block (SE1 vs. SE2 vs. SE3 vs. SE4)

had a significant effect on mean ROM for negative stiffness only (Fig 4-8, Table 4.3).

However, planned comparisons did not reveal significant differences between levels.

Thus, even though the effect was statistically significant, it was weak. Moreover, the

differences between mean stride duration for negative stiffness (less than 16 ms) were

far less than the typical variability observed in normal walking.
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Difference between overground (Experiment1) and treadmill (Experiment2)

walking

The effect of stiffness (positive vs. negative) on both ∆𝜃RELROM and ∆stride dura-

tion was statistically significant (Fig. 4-9, Table 4.4). The effect of terrain (OG vs.

TM) was statistically significant on stride duration only.

4.3.3 Experiment 3

Fig. 4-10 exemplifies how the gait patterns of a representative subject changed over

strides while the subject was walking on the treadmill (TM) or overground (OG)

while stiffness decreased (DEC) or increased (INC). In all trials, when the exoskele-

ton stiffness value changed, Mean 𝜃RELROM was immediately altered and remained

unchanged over subsequent strides. Fig. 4-11 shows mean ∆𝜃RELROM values aver-

aged across subjects, for different conditions. Note that responses in DEC and INC

trials are almost identical.
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Does increasing and decreasing stiffness account for observed differences?

Stiffness (-3.5 Nm/rad vs. +3.5 Nm/rad vs. +7 Nm/rad) had a significant effect on

mean ∆𝜃RELROM, but order (INC vs. DEC) or terrain (TM vs. OG) did not (Fig.

4-11, Table 4.5).

4.4 Discussion

This study characterized unimpaired human subjects’ responses to stiffness applied

between the thighs during walking. With a view to applications in locomotor rehabil-

itation, either to provide assistance or promote recovery, this study aimed to assess
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whether imposed stiffness induced changes in the gait pattern (which is required

for assistance); and whether any changes persisted, which would indicate changes in

central neuro-motor control (necessary to promote recovery).

Both positive and negative stiffness significantly affected kinematics (Fig. 4-2-Fig.

4-11) as represented by the changes in 𝜃relROM. However, the experimental results

showed little, if any, evidence of changes in neuro-motor control, inconsistent with

previous studies that observed adaptation in response to imposed stiffness [20] or

damping [103]. Changes in thigh kinematics due to imposed stiffness persisted over

50 strides (Experiment1, Fig. 4-2) or 1000 strides (Experiment2: LE, Fig. 4-6). They

were consistent across multiple trials (Experiment1, Fig. 4-2) or repeated short-term

exposures (Experiment2: SE, Fig. 4-6). The presence of time-varying behavior often

signals change in the neuro-motor system (e.g., learning or adaptation); we did not

observe this.

The existence of transients (e.g., aftereffects) and changes in transient behavior

(e.g., savings) when switching between conditions also reflect changes in neuro-motor

control. Neither was observed. Changes in kinematics occurred within a single stride,

both when the controller transitioned from OFF to ON and ON to OFF. The applied

stiffness also did not affect steady-state baseline behavior. For example, there was
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no difference between PRE and POST in experiment 1. Moreover, neither repeated

transitions between ON and OFF (Experiment2: SE, Fig. 4-6) nor changing the

order of stiffness values (Experiment3: INC and DEC, Fig. 4-10) induced significant

differences, which implied that even short-lived after-effects were absent.

While the effect of applied hip stiffness on the spatial aspects of gait was im-

mediate and pronounced, its effect on the temporal aspects was minimal. During

overground walking, stride duration was essentially unaffected. Changes in stride

duration were greater during treadmill walking. Such a differential effect on tread-

mill and overground walking is not surprising [12, 145]. It might be attributed to

the constraints on speed and admissible foot placements that the treadmill imposed.

Practically speaking, changes in stride duration were small given the natural variance

observed during walking [70].

4.4.1 Limitations of the Present Study

Robot-embedded Hip Measurement

In this study, robot-embedded encoder measurements were post-processed to compute

temporal and spatial measures of gait. Because the robot did not perfectly conform

to each individual, the hip joint angles measured by the robot-embedded encoders

may have differed from the human hip joint angles. Nonetheless, our conclusion

that changes in gait pattern due to applied stiffness did not reflect adaptation are

still valid because they rely on the trend of changes rather than exact values. It

is also possible that knee, ankle, or other body parts may have exhibited adaptive

changes that we did not measure. However, normal subjects exhibit robust intra-

limb coordination [169,220], hence it would be remarkable indeed if the knee and/or

ankle joints exhibited adaptive changes while the hip joint did not. Nonetheless,

measurements based on whole-body kinematics (e.g., stride length) would be useful

to confirm and further illuminate our results. In addition, direct measurements of

muscle activity (e.g., surface electromyography; sEMG) would be useful to identify

neuro-muscular mechanisms associated with the behavioral changes.
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Robot Torque/power Transfer

The robot actuators transmitted power and/or torque through a thigh frame and belt

assembly that was tightly coupled to the human subject. Due to actuator friction

and elasticity in tissues and/or the thigh frame, torque transmission may have been

imperfect. The difference between torque estimated from on-board sensors and ex-

ternal force-sensitive resistor (FSR) sensors was presented in [38]. However, even if

the actual applied torques differed from those commanded, their effect on kinematics

was unambiguous. Inaccurate torque application cannot dismiss our results.

Subject Population

We only studied young, healthy individuals, and it is possible that impaired subjects

may show different responses.

4.4.2 Rehabilitation: Recovery or Compensation?

Technologies for compensation and recovery should be distinguished. An exoskeletal

technology may be programmed to behave in many different ways to provide ther-

apy or assistance (or both). A therapeutic intervention for recovery should not just

temporarily enhance performance, but also lead to long-lasting improvements in per-

formance under normal conditions. Such longer-term persistence implies that the

intervention affected central neural control [80]. In other words, an intervention that

does not evoke any changes in central neuro-motor control does not hold promise for

long-term recovery.

On the other hand, interventions that do not evoke neuro-motor changes may pro-

ductively compensate for human capability. Sometimes long-term, permanent behav-

ioral improvement cannot be achieved; in that case, compensation without recovery

is still valuable. For locomotion, an assistive intervention that did not evoke adapta-

tion might still be beneficial; for example, it might improve balance immediately [79],

augment load-carrying performance, improve economy, and may allow those with ab-

normal kinematics to walk with longer strides and faster speed, which might have
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positive cardio-vascular effects as well. Assistive and therapeutic interventions both

have their roles in rehabilitation.

In this study, we did not observe any evidence of changes in central neural control

needed for neuro-recovery. Current therapeutic paradigms for rehabilitation are based

on principles of motor learning and neuroplasticity [97,149,168]. Motor learning refers

to a process associated with long-term practice or experience leading to relatively per-

manent changes in behaviors (Fig. 4-12A) [168,200]. Motor adaptation is a relatively

short-term process of correcting an initial abrupt change in behavior due to a novel in-

tervention (Fig. 4-12B) [18,168,191,200]. The presence of negative after-effects upon

removal of the intervention implies the central neuro-motor controller was adjusted.

Some interventions that elicited locomotor adaptation in healthy humans [21,59,103]

also improved neurologically impaired gait kinematics [104, 229, 230, 235]. While it

is still controversial whether repeated adaptations result in learning (hence recov-

ery) [18,168,228] or whether they involve different forms of neuroplasticity [200], both

indicate that the CNS makes adjustments to the feedforward motor plan [103, 168],

which is necessary for neuro-motor recovery.

Another form of behavioral change is reactive [79, 103, 168]. These responses

are immediate reactions necessary to accommodate the intervention. They persist

throughout the intervention but then immediately disappear when it is removed,

without any evidence of gradual adjustment or aftereffects (Fig. 4-12C) [168]; more-

over, those changes do not affect or transfer to subsequent tasks [79]. This type of

response indicates that the intervention may have limited benefit for neuro-recovery,

but may compensate for inadequate motor behavior by assisting performance; and it

is consistent with our data.

4.4.3 Practical Implication

The results of this study, in particular of experiment 3, imply that a (nonlinear) map-

ping function or a lookup table that can predict changes in kinematics from applied

stiffness could be obtained easily and quickly, which would facilitate customizing the

proposed intervention to each individual. This is actually a very important property
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Figure 4-12: Schematic illustration of A motor learning, B motor adaptation, and C
reactive adjustment. Motor learning results in a persistent deviation from baseline
behavior. Actual patterns may differ from the idealized exemplary graphical illus-
trations. Motor adaptation exhibits abrupt initial change, gradual correction, and
negative after-effects. Reactive adjustment shows immediate and persistent changes
in behavior but no aftereffects. Motor learning or adaptation are signatures of changes
in neuro-motor control, hence hold promise for recovery. An intervention that evokes
only reactive adjustment is more suitable for compensation.

for an exoskeletal technology because the behavior of human individuals are extremely

variable [183].

Depending on the value of stiffness, the robot may provide assistance or resistance.

In this study, the robot provided assistance (positive work) during half of the gait cycle

and resistance (negative work) during the other half. This actually means that the

proposed intervention can be realized by purely passive mechanisms, or low-power

variable stiffness actuators [27, 28]. Passive exoskeleton technologies have obvious

advantages such as low mass, low power, and low cost. On the other hand, using

the programmability of a technology such as GEMS-H, modulating stiffness values

based on the phase of the gait cycle may achieve always-assisting or always-resisting

intervention that might be useful for augmenting or challenging (i.e., “exercising")

users while walking.

Despite the lack of evidence of motor adaptation in the current study, it is possible

that other forms of virtual impedance may elicit different neural responses. Further

studies are encouraged to evaluate the bio-mechanical impact of such interventions

on healthy and impaired gait kinematics.

89



4.4.4 Neural Control of Walking: Insights Gained

This study provides important insight into the complexity of human locomotion con-

trol that involves both spinal and supraspinal structures. We found it quite surprising

that imposing stiffness between the thighs did not evince any evidence of motor learn-

ing or adaptation, whereas many previous studies have shown evidence of locomotor

adaptation to various types of interventions during walking [5, 18, 20, 21, 59, 103, 145,

169–171]. Moreover, in upper-limb studies, unstable stiffness applied to the hand

evoked motor adaptation that changed hand stiffness to compensate while perform-

ing a reaching task [32]. Why did we not see any evidence of neuro-motor adaptation

to applied positive / negative stiffness between the thighs?

Motor adaptation is an error-driven calibration process that adjusts motor com-

mands when exposed to a novel intervention [18]. There is some evidence that neuro-

motor adaptation to a mechanical perturbation is predominantly due to descending

drive from supra-spinal levels [91]. For example, an intact cerebellum and motor

cortex appear to be critical for motor adaptation [190]. Therefore, the lack of neuro-

motor adaptation we observed implies that the supra-spinal level of locomotor control

did not detect any error to correct despite large changes in kinematics. 𝜃RELROM is

an indicator of stride length. If stride length was a primary concern of the controller,

subjects would have adapted to regulate the 𝜃RELROM during walking. However,

they did not, as evidenced by the immediate change with no after-effect, implying

that an increase or decrease in 𝜃RELROM due to applied stiffness was not detected as

an error to correct.

A symmetric gait pattern minimizes the net change in angular momentum over a

stride and might be important for stability; conversely, an asymmetric gait pattern

may negatively impact balance during walking at moderate speed. Notably, the

intervention introduced in this study did not affect symmetry between the two legs.

The (virtual) spring applied equal magnitude but opposite direction torques to both

thighs during the entire gait cycle. In contrast, those interventions that induced

locomotor adaptation, e.g., torque pulses [5,108,145], forces on a single leg [20,21,53,
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59, 103], or split-belt treadmills with asymmetric speed [169, 170], all interfered with

inter-leg coordination. The requirement ‘not-to-fall while moving forward’ might

be the primary functional objective of walking. In that sense, the neuro-muscular

controller might be biased towards producing symmetric patterns of walking. As long

as they are symmetric, the supra-spinal nervous system may not perceive even large

changes in gait kinematics (e.g., 𝜃RELROM) as errors to be corrected. Consequently,

we suggest that the supra-spinal human walking controller is less sensitive to step

length / stride length within broad limits, but sensitive to inter-leg coordination.

The different responses observed in 𝜃RELROM and stride duration suggest that

at least two dissociable control layers exist in the neuro-motor control of human

walking. Changes in hip kinematics due to applied stiffness were similar to the changes

in behavior observed when humans walked on a narrow beam while wearing rigid

soles [79], which could be attributed to mechanical interaction between the periphery

and environment [109]. In contrast, in our study, stride duration did not deviate

substantially from the normal baseline pattern during overground walking. This

suggests the existence of a separate layer controlling the rhythm of walking, which

was not affected by the applied stiffness nor by the resultant changes in kinematics.

In sum, we suggest that human locomotion control is organized as a hierarchy

with at least three layers: a supra-spinal nervous system that is associated with mo-

tor adaptation, an intermediate layer that controls stride duration, and a lower layer

that may deal with mechanical interaction between the periphery and the environment

(e.g., gravity, ground, etc.) to determine kinematics (e.g., stride length or 𝜃RELROM).

This organization is also consistent with a neuro-mechanical control architecture con-

sisting of a rhythmic pattern generator and a reflex-based neuro-muscular structure

as suggested previously [52,205]. Of course, there may be further layers of control and

coordination, e.g. to project affective state or mood (probably a ‘high-level’ concern)

or reduce discomfort (probably a ‘low-level’ concern), but our data are silent on this

possibility.

Here, the supra-spinal nervous system intervenes in the detailed control of the

lower-level system only when need arises, e.g., when a symmetric gait pattern is dis-
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rupted by mechanical interventions, but not when stiffness is applied between the

thighs, slowly correcting descending signals to the lower-level systems. This slow

feedback loop is associated with locomotor adaptation that shows gradual changes in

gait pattern over more than tens of strides. If descending signals from the supra-spinal

layer to the lower layers remain the same (i.e. there is no adaptation or learning), the

frequency of walking also remains the same. Applied hip stiffness is autonomously

handled by the (lowest-level) peripheral neuro-mechanics without changing timing,

resulting in immediate changes of limb kinematics. Of course, whether these specu-

lations have merit requires further investigation.

4.5 Conclusion

This study characterized unimpaired human subjects’ responses to rotational stiff-

ness applied about the hip joints during walking. Imposed stiffness evoked significant

and reproducible kinematic changes but subjects showed no evidence of neuro-motor

adaptation. The lack of neuro-motor adaptation suggests that, within broad limits,

the CNS is surprisingly unaware of (or indifferent to) the details of lower limb kine-

matics. It also suggests that alternative interventions may be required to promote

recovery. However, the immediate, significant and reproducible changes in kinematics

suggest that applying hip stiffness with an exoskeleton may be an effective assistive

technology for compensation.

4.6 Appendix: Statistical Analyses Details

Table 4.1: Two-way 3 (Condition: PRE vs. ON vs. POST) x 3 (Trial: 1 vs. 2 vs. 3)
within-subject ANOVA results

Positive Stiffness Negative Stiffness
Mean ROM Mean stride duration Mean ROM Mean stride duration

[𝑑𝑓𝑛𝑢𝑚, 𝑑𝑓𝑑𝑒𝑛] 𝐹 -value 𝑝 𝐹 -value 𝑝 𝐹 -value 𝑝 𝐹 -value 𝑝
Condition [2, 6] 73.84 0.0001* 5.4 0.046* 47.08 0.0002* 1.63 0.27

Trial [2, 6] 1.49 0.30 0.09 0.92 4.25 0.071 0.65 0.56
Condition x Trial [4, 12] 1.05 0.42 0.22 0.92 0.18 0.94 1.8 0.19
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Table 4.2: Two-way 2 (Stiffness: positive vs. negative) x 2 (Condition: BL vs. LE)
within-subject ANOVA results

Mean ROM Mean stride duration
[𝑑𝑓𝑛𝑢𝑚, 𝑑𝑓𝑑𝑒𝑛] 𝐹 -value 𝑝 𝐹 -value 𝑝

Stiffness [1, 3] 65.33 0.004* 10.02 0.051
Condition [1, 3] 57.1 0.0048* 10.5 0.048*

Stiffness x Condition [1, 3] 141.5 0.0013* 15.88 0.028*

Table 4.3: Two-way 2 (Controller state: ON vs. OFF) x 4 (Block: SE1 vs. SE2 vs.
SE3 vs. SE4) within-subject ANOVA results

Positive Stiffness Negative Stiffness
Mean ROM Mean stride duration Mean ROM Mean stride duration

[𝑑𝑓𝑛𝑢𝑚, 𝑑𝑓𝑑𝑒𝑛] 𝐹 -value 𝑝 𝐹 -value 𝑝 𝐹 -value 𝑝 𝐹 -value 𝑝
Block [3, 9] 0.34 0.80 0.56 0.66 8.5 0.0054* 0.67 0.60
State [1, 3] 442.5 0.0002* 6.1 0.090 135.66 0.0014* 67.17 0.0038*

Block x State [3, 9] 0.27 0.85 1.54 0.27 2.96 0.091 1.47 0.29

Table 4.4: Two-way 2 (Terrain: TM vs. OG) x 2 (Stiffness: positive vs. negative)
mixed ANOVA results

Mean ∆ROM Mean ∆stride duration
[𝑑𝑓𝑛𝑢𝑚, 𝑑𝑓𝑑𝑒𝑛] 𝐹 -value 𝑝 𝐹 -value 𝑝

Terrain [1, 6] 3.23 0.12 9.65 0.021*
Stiffness [1, 6] 162.6 0.000014* 28 0.0018*

Terrain x Stiffness [1, 6] 0.77 0.41 4.47 0.079

Table 4.5: Three-way 2 (Order: INC vs. DEC) x 2 (Terrain: TM vs. OG) x 3
(Stiffness (Nm/rad): -3.5 vs. +3.5 vs. +7) within-subject ANOVA

Mean ∆ROM
[𝑑𝑓𝑛𝑢𝑚, 𝑑𝑓𝑑𝑒𝑛] 𝐹 -value 𝑝

Order [1, 3] 0.21 0.68
Terrain [1, 3] 1.26 0.34
Stiffness [3, 6] 509.14 0*

Order x Terrain [1, 3] 5.3 0.10
Order x Stiffness [2, 6] 1.55 0.29
Stiffness x Terrain [2, 6] 0.95 0.44

Order x Stiffness x Terrain [2, 6] 0.16 0.85
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Chapter 5

Walking Model

This work was supported by the Global Research Outreach program of Samsung

Advanced Institute of Technology and a Samsung scholarship.

5.1 Introduction

In Chapter 3 and Chapter 4, we quantified changes in gait patterns when different

interventions were applied by a hip exoskeleton. To develop effective interventions

for human locomotion, it is important to understand underlying neuro-mechanical

processes that gives rise to such differences. The goal of this chapter was to identify

essential mechanisms to reproduce both experimental observations to enhance our

understanding of neuromotor control of human walking.

To develop models, one should first determine the degree of complexity. Indeed,

the same behavior can be accounted for by different models with different complexities

(Fig. 5-1). The state-of-the-art high-fidelity models have been used to understand un-

derlying control mechanisms of normal walking and to predict human joint mechanics

and muscle activities in responses to novel interventions [35, 52, 194]. However, even

the high-fidelity models often do not exactly reproduce experimental observations,

requiring appropriate modifications to the models. When using those overly complex

models, gaining insight is hindered rather than promoted, because there are too many

parameters that are often more than the required number of variables to reproduce
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Figure 5-1: Descriptive models of walking may have different level of complexity. A
single degree-of-freedom oscillator may serve as an abstract and conceptual model
of walking, as well as a high-fidelity models with hundreds of bones and muscles.
Rightmost image is obtained from https://simtk.org/projects/opensim.

observations.

In this chapter, we focus on simple models to understand the necessary mechanism

to qualitatively explain experimental results. We first identify the key experimental

observations to be accounted for by the model. Next, the key challenges and the

essential mechanisms to reproduce experimental observations are investigated using

conceptual models. Finally, a simple but competent model of walking is presented.

5.2 Target Experimental Phenomena to Model

In the previous Chapters, it was characterized how human walking was altered by

two different interventions: periodic torque pulses (Chapter 3) and stiffness between

the thighs (Chapter 4).

Among many different features evoked by those interventions, we identified a

conflicting feature: stride frequency. The stiffness intervention resulted in essentially

no change in stride duration, which implied existence of a dissociable control layer that

governs the temporal pattern of walking. On the other hand, the pulse interventions

evoked entrainment, implying that the phase dynamic was somehow influenced by

the intervention.

Table 5.1 summarizes why the two features are difficult to be reproduced simul-

taneously. In short, if the stride frequency is emergent, then stride frequency will

change when stiffness is applied; conversely, if the stride frequency is controlled, en-
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Table 5.1: Conflicting features of experimental observations.

Intervention Stiffness Intervention Pulse Intervention
Features Invariant stride period Stride period → pulse period

Implication Period (frequency) is controlled Period (frequency) is emergent

trainment to torque pulses will not be observed. Developing models for each result

might be straightforward, but developing a simple unifying model for both is not.

5.3 Insights Gained from Coupled Oscillators

The conflict can be more clearly elaborated by using simple oscillator models. To

illustrate the concept, we adopt the examples presented in [222]. First, consider a

pair of one-way (unidirectional) coupled identical oscillators (Fig. 5-2a):

⎧⎪⎨⎪⎩ẋ1 = f(x1, 𝑡)

ẋ2 = f(x2, 𝑡) + u(x1)− u(x2) + d(x1,x2, 𝑡)

(5.1)

where x1,x2 are state vectors, f(x, 𝑡) the dynamics of the uncoupled oscillators,

u(x1)− u(x2) the coupling forces, and d the perturbation. If d = 0 and the sys-

tems meet certain conditions, the two systems in (5.1) will synchronize.

On the other hand, consider two-way coupled identical oscillators of the form (Fig.

5-2b):

⎧⎪⎨⎪⎩ẋ1 = f(x1, 𝑡) + u(x2)− u(x1)

ẋ2 = f(x2, 𝑡) + u(x1)− u(x2) + 𝑑(x1,x2, 𝑡)

(5.2)

Again, if d = 0 and the coupled systems meets certain conditions, the two systems

in (5.2) can synchronize1.

The difference becomes evident when nonzero perturbation d ̸= 0 is applied to

system 2. In the two-way coupling, the perturbation indirectly affects system 1.

If certain conditions are met, the two oscillators can maintain synchrony. In this
1Readers are referred to [222] to learn the contraction and partial contraction analyses, which

are a simple yet general method to analyze networks of coupled oscillators.
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(a) One-way coupling (b) Two-way coupling

Figure 5-2: Coupled oscillators with two different configurations.

(a) Stiffness intervention (b) Pulse intervention

Figure 5-3: Rhythmic oscillator (central pattern generator), peripheral mechanics,
and exoskeletons as a coupled system.

case, the frequency of the coupled oscillators with the perturbation can be different

from that without the perturbation if perturbation frequency is different from natural

frequency of the coupled system.2

On the other hand, if the oscillators are coupled in a one-way coupling configura-

tion, the perturbation does not affect the system 1 and the frequency of oscillation

of the coupled system will remain the same (as long as the synchrony is not broken

by the perturbation). While this mathematical example is based on coupled identical

oscillators, the analyses can be generalized to the coupling of nonidentical systems.

If we model human walking based on this reasoning as illustrated in Fig. 5-3,

the model can demonstrate the effect of both interventions summarized in Table 5.1;

invariant gait frequency to stiffness and adaptive frequency to periodic pulses. Sup-

pose we replace the ‘system 1’ with some neural oscillator that generates rhythm,

e.g., a central pattern generator (CPG) that appears frequently in the literature of

2For example, consider the coupled system as a single limit cycle oscillator with augmented
state-space, and it is under periodic perturbation [63].
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animal and human locomotion [52,102,129,172,173,204,205], and system 2 with some

peripheral neuro-musculo-skeletal mechanics, interacting with the environment (e.g.,

gravity and ground). The experimental observations evoked by the stiffness interven-

tion require one-way coupling (Fig. 5-3a) and those by the pulse intervention require

two-way coupling (Fig. 5-3b). A convenient way to model human walking is that the

afferent feedback (coupling from system 2: peripheral mechanics to system 1: CPG)

was active with the pulse intervention and inactive with the stiffness intervention.

5.4 Competent Walking Model

Figure 5-4: Schematic of a model of human walking. The model consists of a cen-
tral pattern generator (CPG), zero-force trajectory (ZFT) generator, impedance con-
troller, compass gait walking model as a mechanical system, a hip exoskeleton robot
as a perfect torque source, and hypothetical supra-spinal control.
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5.4.1 Model Structure

As our experiments showed that at least two dissociable levels were required, we for-

mulated a multi-level model. For the lowest level we used a well-established ‘compass

gait walker’, which competently describes the biomechanical relation between walk-

ing speed and step length [100]. At the spinal level we assumed a phase oscillator to

model a biologically-plausible rhythmic Central Pattern Generator (CPG). Between

those levels we inserted a Norton equivalent network [72, 74] to account for the rela-

tion between neuro-muscular mechanical impedance (to manage contact and physical

interaction) and oscillatory nominal motion generated by the CPG. The highest level

supra-spinal control determines activation of phase resetting mechanism which influ-

ences phase dynamic of the system.

The schematic of the mathematical model is illustrated in Fig. 5-4. The model

structure is consistent with several previous walking models [14–16,81,196,204,205].

Central Pattern Generator

We assumed a phase oscillator to model a CPG:

�̇� = 𝜔 + 𝜋𝛿(𝑡− 𝑡𝑐), (5.3)

where 𝜑 is the phase variable, 𝜔 is the natural frequency of oscillation, and 𝑡𝑐 is time

when swing leg makes contact with the ground. 𝛿(·) is the Dirac delta function. The

second term is to cope with the fact that the stance leg and swing leg change.3

If the phase-resetting mechanism is activated, this becomes

�̇� = 𝜔 + (𝜑0 − 𝜑𝑐)𝛿(𝑡− 𝑡𝑐), (5.4)

where 𝜑𝑐 is the phase value at swing leg - ground collision. In effect, this mechanism

resets the value of phase to 𝜑0. The effect of phase resetting mechanism for stability

of walking was presented in [14–16] and its relevance to actual human walking can be
3One may alternatively assign a phase oscillator to each leg to avoid discrete jump of states in

the phase dynamics.
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found in [142] and its references.

Mechanical System: Compass Gait Walker

We adopted a well-established compass gait walker [100] which has two degrees-of-

freedom (DoF) with coordinates q = [𝑞𝑛𝑠, 𝑞𝑠]
𝑇 . 𝑞𝑛𝑠 and 𝑞𝑠 are the angle of non-stance

(swing) leg and stance leg, respectively. When the non-stance leg makes contact with

the ground, the stance and non-stance leg instantaneously switches without double

stance phase and the system states undergoes a discrete jump, i.e., the system has

hybrid dynamics.

The total torque applied to the system is 𝑢𝐻 = 𝜏𝐻 + 𝜏𝑒𝑥𝑜, where 𝜏𝐻 is the human

control and 𝜏𝑒𝑥𝑜 is the exoskeleton torque. Details of its equations of motion can be

found in the Appendix 5.7.

Dynamic Motor Primitives

The neuro-motor peripheral mechanics may be successfully described as a composi-

tion of dynamic motor primitives, which consists of a motion command (zero-force

trajectory; ZFT) and mechanical impedance managing physical interaction. Dynamic

motor primitives are behavioral patterns that robustly emerge from dynamic systems,

i.e. humans [73,74].

The phase variable 𝜑 from CPG is mapped to the zero force trajectory (ZFT) of

the relative angle between the legs 𝑞𝑟𝑒𝑙 = 𝑞𝑠 − 𝑞𝑛𝑠 and its velocity,

𝑞𝑟𝑒𝑙,0(𝜑) = −𝑟𝜔 sin𝜑 (5.5)

𝑞𝑟𝑒𝑙,0(𝜑) =

∫︁
𝑞𝑟𝑒𝑙,0(𝜑)𝑑𝑡 = 𝑟 cos(𝜑) + 𝑟 − 𝑆. (5.6)

Here, 𝑆 is a fixed parameter that represents step length, and 𝑟 is a parameter that

is updated at each step: 𝑟+ = 2𝑆−𝑟−(1+cos𝜑−
𝑐 )

1+cos𝜑(𝑡+𝑐 )
. Superscript − and + denote the

values right before and after swing leg makes contact with the ground. Details of the

rationale can be found in [16].

Mechanical impedance is a dynamic operator, 𝑍{·} : ∆x → f , that determines

101



the generalized force f , evoked by an imposed generalized displacement ∆x = x− x0,

which is the deviation of the actual trajectory x from the zero-force trajectory x0.

Here, impedance control determines the hip joint torque 𝜏𝐻 :

𝜏𝐻 = −𝐾(𝑞𝑟𝑒𝑙 − 𝑞𝑟𝑒𝑙,0)−𝐵(𝑞𝑟𝑒𝑙 − 𝑞𝑟𝑒𝑙,0) (5.7)

where 𝐾 and 𝐵 are effective stiffness and damping.

Exoskeleton

The Samsung GEMS-H exoskeleton was modeled as a perfect torque source. When

the stiffness intervention is tested, the exoskeleton torque is simply

𝜏𝑒𝑥𝑜 = −𝑘𝑞𝑟𝑒𝑙, (5.8)

where 𝑘 is the stiffness of the virtual spring.

When the pulse intervention is tested,

𝜏𝑒𝑥𝑜 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜏𝑀 if mod(𝑡, 𝑇𝑝) < 𝑇𝑑 & right leg is in swing

−𝜏𝑀 if mod(𝑡, 𝑇𝑝) < 𝑇𝑑 & left leg is in swing

0 otherwise

(5.9)

when the periodic pulse intervention is applied, where 𝜏𝑀 , 𝑇𝑝, 𝑇𝑑 are pulse magnitude,

pulse period, and pulse duration, respectively.

Supra-spinal Control

The activity of the afferent feedback to evoke a phase resetting mechanism was deter-

mined by whether the intervention was a (virtual) spring or a sequence of pulses. The

context-based switching of feedback is biologically plausible but it should be tested

in further work.
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5.5 Simulation Result

The model was implemented in MATLAB R2018b(Mathworks, Natick, MA, USA).

Fig. 5-5 presents that the model simulation results could provide a competent de-

scription of our experiments. The stiffness intervention changed range of motion of

the walking model but not stride duration (Fig. 5-5a), and the pulse intervention

evoked gait entrainment of the model. When entrained, pulse phase (𝜑𝑃 ) converged

to a consistent value such that the robot could provide positive work per stride (𝐸𝑝).

5.6 Discussion

5.6.1 Summary of the Results

As the experiments showed that at least two dissociable levels were required, we

formulated a multi-level model. This model could successfully reproduce our main

experimental findings: (1) imposed stiffness changed thigh range of motion but not

stride duration; (2) periodic perturbations evoked gradual entrainment, such that the

exoskeleton provided maximum positive work.

This work showed that even though we grossly simplified the complexity of the

neuro-bio-mechanical system, the simple model was quite successful to describe hu-

man behaviors at least qualitatively. Moreover, it provides insight to understand the

possible mechanisms behind the significantly different behavioral responses.

5.6.2 Limitation of the Model

While several features of the experiments were reproduced, the model transient re-

sponse may need improvement. Stiffness transiently affected model stride duration

while experiments showed no influence. This may be improved by proper low-level

parameter update rules, or may be masked by biological ‘noise’; the model is deter-

ministic. It is also expected that introducing stochasticity will better reproduce the

progress of pulse phase when the model is close to the basin of entrainment.
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(a) Stiffness intervention. Positive (𝑘 = 5Nm/rad) and negative
stiffness (𝑘 = −5Nm/rad) were tested. The model could repro-
duce significant changes in the range of motion with essentially
no change in stride duration.

(b) Pulse intervention. The model could reproduce frequency
adaptation and convergence of pulse phase such that the ex-
oskeleton provide positive mechanical energy per stride. Tested
pulse parameters were 𝜏𝑀 = 2.5 Nm, 𝑇𝑝 = 𝑇𝑜−0.015 s, 𝑇𝑑 = 0.2
s. Resetting phase 𝜑0 = 0.32 rad was obtained from steady-state
walking without interventions, which is dependent on the model
parameters such as impedance.

Figure 5-5: Simulation results. Shaded region indicates when the exoskeleton inter-
vention was simulated.
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Selective response to a certain type of intervention is biologically plausible. How-

ever, the mechanism that triggers the activation of the afferent feedback (phase re-

setting) was not implemented in the simulation. We will discuss possible mechanism

in the following.

5.6.3 Gait Asymmetry May Evoke Frequency Adaptation

As discussed in Chapter 3 and Chapter 4, our data implies that gait asymmetry may

be the key factor that evoked motor adaptation in the experiments. Fig. 5-6 presents

the trajectory of thigh relative motion of the representative subjects of the two exper-

iments. The key difference between interventions that evoked adaptation and those

that did not appears to be whether they induced gait asymmetry: entrainment did;

stiffness did not.

Symmetric gait pattern seems relevant to controlling balance during walking. It

is as yet unclear whether the CNS monitors gait asymmetry directly, or other mea-

sures that would be influenced by gait symmetry (e.g. net moment applied to the

torso). In fact, phase resetting mechanism and fall risk seem closely related in human

walking [142].

If humans detect gait asymmetry, how it is detected is also in question. One ap-

proach could be continuously monitoring the difference between phase of the oscillator

and phase of walking somehow computed from peripheral mechanics. Alternative way

is to evaluate gait symmetry at the end of each stride.

While the requirements for successful rehabilitation continue to be a matter of

debate, an intervention that evokes adaptation would appear to be necessary (though

perhaps not sufficient by itself). We believe addressing this question will provide

critical information for future exoskeletal applications to promote neuro-recovery.

5.6.4 State-dependent and Time-periodic Interventions

Another distinct difference between the stiffness intervention and the pulse interven-

tion is the way they influence the peripheral dynamics. The stiffness intervention is
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Figure 5-6: Stiffness intervention did not disrupt gait symmetry, while pulse interven-
tion evoked asymmetric gait pattern. Black: baseline behavior. Colored: steady-state
trajectory. When stiffness intervention was applied, despite large change, the symmet-
ric gait pattern was preserved. On the other hand, applying torque pulses disrupted
symmetric gait pattern. Note that 𝜃rel = 𝜃L − 𝜃R.

state-dependent, while the pulse intervention is time-periodic and unaffected by the

state of the system.

Assuming the peripheral mechanics of human walking can be described as a semi-

autonomous system [4], its dynamics can be fully described by the flow field in its

state-space. If this is correct, when applying a state-dependent intervention such as

stiffness, the shape of the flow field is altered. On the other hand, applying pulses

does not change the flow field itself but relocates the state vector without following

the autonomous dynamics of the system [63, 150, 221]. Regarding pulse duration as

instantaneous, this introduces a discrete ‘jump’ dynamics to the system, similar to

how instantaneous foot-ground collision is modeled in walking [100,224]. This might

be a critical difference detected by the CNS but this speculation warrants further

experimental studies.

5.6.5 Net Mechanical Energy from the Exoskeleton

The other difference between the stiffness intervention and the pulse intervention

is the net mechanical energy flow between the exoskeleton robot and human sub-

jects. When the stiffness intervention was applied with either positive or negative

106



spring constant, the net mechanical work done by the robot is zero in theory. On

the other hand, the robot with the pulse intervention certainly generates or absorbs

mechanical energy. The frequency adaptation we observed in the experiments may

have been a consequence of finding an energetically-optimal gait pattern that maxi-

mizes mechanical work done by the robot. Many previous works have suggested that

energy optimality explains many aspects of healthy human walking [100, 198, 199].

Furthermore, recent works suggested energy optimality may explain locomotor adap-

tation [188]. However, with the current data, we do not know the energetic cost of

the altered gait pattern compared to the original pattern because for example the

target muscles may benefit from exoskeletons while other muscles might be loaded.

Therefore, this speculation invites further experimental and modeling studies.

5.6.6 Scope of the Model

Importantly, while this model explains the key observations of the data presented in

this thesis, there may be other possible (even better) models that can exhibit the

behaviors. Moreover, this model may not explain other experimental results obtained

by using different hip exoskeleton robot controllers. As emphasized elsewhere, a

simple model deliberately simplifies complex phenomena - to explain a particular

observation(s). Applying this model to other phenomena beyond the scope of the

current experimental data requires care.

5.7 Appendix: Compass Gait Walker Equations of

Motion

Fig. 5-7 illustrates model parameters and joint coordinates. The model has hybrid

dynamics consisting of continuous swing dynamics and discrete collisional dynam-

ics [100].
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Figure 5-7: Compass gait walker

5.7.1 Continuous Dynamics

The equations of motion of the model are expressed as

M(q)q̈ + C(q, q̇)q̇ + G(q) = B𝜏

where q = [𝑞𝑛𝑠, 𝑞𝑠]
𝑇 are non-stance (swing) and stance leg angle and 𝜏 = [𝜏𝐻 , 𝜏𝐴] are

hip and angle torques, respectively. We assumed zero ankle torque to simplify the

model, i.e. 𝜏𝐴 = 0.

The mass matrix, Coriolis and centrifugal torques, gravitational torques, and the

input matrix are detailed as follows:

M(q) =

⎡⎣ 𝑚𝑏2 −𝑚𝑏𝑙 cos(𝑞𝑠 − 𝑞𝑛𝑠)

−𝑚𝑏𝑙 cos(𝑞𝑠 − 𝑞𝑛𝑠) 𝑚𝑎2 + (𝑀 + 𝑚)𝑙2

⎤⎦

C(q, q̇) = 𝑚𝑙𝑏 sin(𝑞𝑠 − 𝑞𝑛𝑠)

⎡⎣ 0 𝑞𝑠

−𝑞𝑛𝑠 0

⎤⎦

G(q) = 𝑔

⎡⎣ 𝑚𝑏 sin(𝑞𝑛𝑠)

−(𝑀𝑙 + 𝑚𝑎 + 𝑚𝑙) sin(𝑞𝑠)

⎤⎦

B =

⎡⎣−1 0

1 1

⎤⎦
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5.7.2 Discrete Dynamics

When the non-swing leg makes contact with the ground, the system state x = [q, q̇]T

undergoes a discrete change. This change can be calculated using the inter-leg angle

at the event, 𝛼 = 1
2
(𝑞−𝑛𝑠 − 𝑞−𝑠 ) based on momentum conservation. Superscript − and

+ denote states right before and after the collision.

x+ = Wx−

where

W =

⎡⎣J 0

0 H

⎤⎦

J =

⎡⎣0 1

1 0

⎤⎦
H = (Q+)−1Q−

Q− =

⎡⎣−𝑚𝑎𝑏 −𝑚𝑎𝑏 + (𝑀𝑙2 + 2𝑚𝑎𝑙) cos(2𝛼)

0 −𝑚𝑎𝑏

⎤⎦

Q+ =

⎡⎣𝑚𝑏(𝑏− 𝑙 cos(2𝛼)) 𝑚𝑙(𝑙 − 𝑏 cos(2𝛼)) + 𝑚𝑎2 + 𝑀𝑙2

𝑚𝑏2 −𝑚𝑏𝑙 cos(2𝛼)

⎤⎦
Model parameters are listed in Table 5.2.

Table 5.2: Walking model parameters.

Symbol Parameter Value (units)
𝑀 body mass 10 (kg)
𝑚 leg mass 5 (kg)
𝑙 = 𝑎 + 𝑏 leg length 1 (m)
𝑎 leg mass position 0.5 (m)
𝑔 gravitational acceleration 9.81 (m/s2)
𝑇𝑜 stride duration 1.5 (s)
𝜔(= 2𝜋 1

𝑇𝑜
) CPG frequency 4.19 (rad/s)

𝑆 reference step length 12 (deg)
𝐾 hip stiffness 15 (Nm/rad)
𝐵 hip damping 5 (Nms/rad)
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Chapter 6

Discussion

6.1 Summary

The overall goal of this work was to explore novel applications of a hip exoskeleton

robot to overcome gait deficits by providing assistance (e.g. to healthy elders) or

treatment (e.g. to stroke survivors). To inform more effective approaches to overcome

gait deficits, it is important to understand the neuro-mechanical dynamics and control

of unimpaired locomotion, and how it interacts with robotic interventions.

We developed two fundamentally different robotic interventions using Samsung

GEMS-H, one time-based, i.e. a periodic sequence of brief pulses, and one state-

based, i.e. emulating a virtual spring between the thighs.

The most striking result of these studies was that the behavioral changes depended

strongly on the type of mechanical intervention, even when it was applied by the

same device. When periodic torque pulses were applied (Chapter 3), we frequently

observed gradual entrainment—a change of stride period to match the perturbation

period. When converged, the torque pulse was located at a gait phase where it

provided mechanical assistance to swing leg motion. Finally, an after-effect when

the perturbations were discontinued (slow drift of stride period back to its preferred

value) showed clear evidence of adaptation.

In contrast, when stiffness was applied (Chapter 4 ) an immediate change of hip

range-of-motion occurred, with no change of stride duration. There was no evidence
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of adaptation.

While the requirements for successful rehabilitation continue to be a matter of

debate, an intervention that evokes adaptation would appear to be necessary (though

perhaps not sufficient by itself) [97,149,168]. The adaptation evoked by entrainment

meets this requirement and shows promise for rehabilitation therapy. Entrainment

might serve as a treatment to encourage faster gait or improve gait symmetry (e.g.

by assisting a stroke survivor’s paretic leg). In contrast, the absence of adaptation to

imposed stiffness indicates that it is not a promising approach to therapy. However,

the immediate response to imposed stiffness suggests that it may be applicable to

maintain wellness in healthy elders, e.g., to encourage larger strides (negative stiffness)

or provide resistive exercise (positive stiffness).

To encapsulate the results of both studies, we developed a mathematical model

and simulation (Chapter 5). Our approach was to shun complexity and find the

simplest model that was competent to account for our observations. The steady-state

response of this deterministic model successfully reproduced our main experimental

findings: (1) imposed stiffness changed thigh range of motion but not stride duration;

(2) periodic perturbations evoked gradual entrainment, with an after-effect when

perturbations were discontinued. That said, the model would benefit from further

development, but that is beyond the scope of this work.

The key difference between interventions that evoked adaptation and those that

did not appears to be whether they induced gait asymmetry: entrainment did; stiff-

ness did not. Symmetric or asymmetric changes of gait appear to be the key fac-

tor in developing robot-aided interventions intended to change locomotor behavior.

Whether this hypothesis is valid or not should be tested with further experiments

and modeling studies. This study will contribute to finding a sufficient condition for

locomotor adaptation and rehabilitation.
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Part II

Balancing on a Beam with

Mechanical Interventions
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Chapter 7

Overview

Maintaining balance is important for human locomotion. While the task of standing

balance seems tedious, it is actually remarkable how humans can coordinate a multi-

degree-of-freedom inherently unstable skeletal system in a stable manner, without

requiring much attention.

Assisting or retraining balancing requires fundamental understanding of human

motor control and how it is altered by the mechanical interventions. One way to

facilitate insights is to investigate the effects of interventions on healthy humans

while they balance on a challenging environment. This would help us (1) understand

balancing skills that humans have, and (2) analyze the effects of the interventions on

human control - and these insights may be relevant to humans with impaired balance.

In this part, we studied how humans balance on a beam; how humans balance

on a beam was affected by simple and passive mechanical interventions; and how we

could understand such behaviors via human experiments and mathematical models.

In Chapter 8, we analyzed the behavior of humans balancing on a narrow beam to

understand how they coordinated their whole-body to accomplish this challenging

task. Then we investigated changes in human behavior when they maintained bal-

ance on a narrow beam with bare feet and with wearing rigid soles. We will show that

this simple change of mechanical interface between foot and beam substantially influ-

enced balancing. Simple models were developed and investigated to identify possible

mechanisms to account for experimental observations.
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Numerous studies showed that postural balance improves through light touch,

highlighting the importance of haptic information, seemingly downplaying the contri-

bution of mechanical support. Chapter 9 examined the effects of canes, which are the

most frequently prescribed mobility-assistive devices. In particular, the experiment

was designed to focus on the mechanical effects of canes on human balancing.
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Chapter 8

Balancing on a beam with rigid soles

This work was conducted in collaboration with Dr. Meghan E Huber (Newman Lab

for Biomechanics and Human Rehabilitation, MIT; now Prof. Meghan E Huber at

Human Robot Systems Laboratory, University of Massachusetts). Experimental data

was collected at Eberhard-Karls-Universität of Tübingen, Germany, in collaboration

with Prof. Martin Giese (Hertie Institute for Clinical Brain Research and University

Clinic Tübingen, Germany), Dr. Enrico Chiovetto (the same), and Prof. Dagmar

Sternad (Action Lab, Northeastern University).

This work was supported by a Samsung scholarship. This work was also sup-

ported by NIH-R01-HD087089, R01-HD081346, NSF-NRI 1637854, NSF-EAGER-

1548514, and NSF-CRCNS-1723998 awarded to Prof. Dagmar Sternad, by the Eric

P. and Evelyn E. Newman fund and NIH-R01-HD087089, NSF-NRI 1637824, NSF-

EAGER-1548501, and NSF-CRCNS-1724135 awarded to Prof. Neville Hogan, by

BMBF FKZ 01GQ1704, BW Stiftung NEU007/1 KONSENS-NHE, EC H2020 ICT-

23-2014 /644727 CogIMon, and HFSP RGP0036/2016 awarded to Prof. Martin Giese.

This work was partially presented in [109,112].

8.1 Introduction

Despite low bandwidth and long latencies in the neuromuscular system, humans have

a remarkable ability to maintain balance across a variety of terrains and conditions.

117



When humans lose this ability, either due to age [185] or injury [213], it has a profound

impact on their quality of life. The use of robotic devices is one promising approach

to assist or or retrain balance, but how to control these robotic devices for impaired

balance ability remains a critical open question [236].

Walking and standing on a narrow beam, or even simply with feet in tandem, is

challenging. Compared to normal stance, humans are less stable in the mediolateral

direction under these conditions due to the reduced base of support [146]. Hence,

balance beam standing and walking are ideal paradigms to study how humans main-

tain balance and how the balance ability can be improved, which would inform the

development of robotic devices for enhancing and retraining balance.

Recent results suggest that our understanding of how healthy humans control

mediolateral balance may not yet be sufficient to deliver effective robotic assistance.

Domingo and Ferris attempted to enhance learning of a balance beam walking task

by providing physical assistance [48] and augmenting error [47]. Counter to their

predictions, practice with these interventions led to worse performance compared to

practicing without any assistance in a beam walking task [47,48]. This was surprising

as robotic guidance and error augmentation have previously been shown to enhance

learning of a variety of other motor skills [156, 167]. One possible explanation for

these unexpected results is that the interventions did not lead subjects to adopt the

imposed balance behavior. This begs the question: what is the natural and desired

balance control strategy of humans? What interventions can improve balance?

In this study, we first examined inter-limb coordination of healthy subjects while

they maintained balance on a narrow beam. Specifically, we examined the spatio-

temporal patterns in the angular momenta generated by individual body segments

in the mediolateral direction (i.e. frontal plane). To truly capture the whole body

coordination, we did not restrict arm movements as in the previous narrow-beam-

walking experiments [47, 48, 181]. In the previous study [181], Sawers et al. showed

that experts (trained ballet dancers) use more muscle synergies or modules compared

to novices, suggesting that experts have finer coordination when balancing during

walking on a beam. To understand the difference between ‘good’ and ‘bad’ balance
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strategies, we also assessed whether the inter-limb coordination patterns differed with

balance performance.

Next, we tested whether mechanical change in the foot-beam interface would influ-

ence human balancing when standing on a beam, by comparing whole-body behavior

with “bare” feet and “rigid” feet. The width of the beam and thus the maximum

range of the center of pressure were identical in both conditions. Hence, the behavior

should be similar in both conditions unless the mechanics of the foot-beam interface

was influential.

Developing a simple yet competent model facilitates understanding the experi-

mental observation. We first examined whether existing balance controllers used in

robotics could adequately describe the coordination pattern observed in the experi-

ment with bare feet condition. Then we investigated whether a simplified model of

foot-beam interface could qualitatively account for differences between bare feet and

rigid feet conditions.

The remainder of the chapter is organized as follows. Section 8.2 details the human

experiments conducted to examine human mediolateral balance when standing on a

narrow beam with and without wearing rigid soles. Section 8.3 examines a simplified

model of human balance that accounts for experimental observations. Section 8.4

follows with points of discussion. Section 8.5 presents concluding remarks.

8.2 Human Balancing Experiment

The purpose of this experiment was to characterize how humans with different skill

levels coordinate their entire body to maintain mediolateral balance on a narrow

beam. We expected that the experienced subject would have better mediolateral

balance compared to the novice subject. We further predicted that the novice and

expert would exhibit differences in inter-limb coordination, reflecting the use of dif-

ferent control strategies to maintain balance in this challenging task.

We also characterized how wearing rigid soles influences mediolateral balance on

a narrow beam. Regardless of whether the task was performed with bare feet or with
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rigid soles, the width of the beam was the same. Thus, we expected that balance

behavior would be similar across the two conditions.

8.2.1 Methods

X
Y

Z

A B

Figure 8-1: Experimental Task. (A) Subjects were instructed to maintain balance
on a narrow beam (3.4cm) for as long as possible without stepping off the beam.
Subjects performed the task under two conditions: bare feet and “rigid feet”. (B) To
simulate rigid feet on human subjects, rigid plastic platforms were attached to the
bottom of the subjects’ feet using Velcro straps and tape.

Subjects

Seven subjects (gender: 2 females, 5 males; age: 𝑀 = 29.8yo, 𝑆𝐷 = 2.0yo) partici-

pated in the experiment. The experiment conformed to the Declaration of Helsinki,

and written informed consent was obtained from all subjects according to a protocol

approved by the ethical committee at the Medical Department of the Eberhard-Karls-

Universität of Tübingen, Germany where the experiment was conducted.
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Experimental Procedure

In each trial, subjects were instructed to stand on a narrow beam (3.4cm width) for as

long as possible with their feet in tandem (Fig. 8-1A). Subjects initially placed their

left (front) foot on the beam. The trial started when they subsequently placed their

right (hind) foot on the beam. The trial ended when one of their feet lost contact

with the beam.

Each subject performed 5 trials without wearing footwear (Bare Feet condition)

followed by another 5 trials wearing flat, rigid soles attached to the bottom of their

feet (Rigid Feet condition). Note that the rigid soles were attached such that ankle

inversion/eversion and plantarflexion/dorsiflexion range of motion were unimpeded

(Fig. 8-1B).

Immediately prior to performing the two standing conditions, all subjects com-

pleted 20 trials walking across the beam in each foot condition as part of a larger

study [79]. Thus, all subjects were sufficiently familiar with both experimental con-

ditions.

Kinematic Data Recording

Kinematic data were collected using a 10-camera Vicon motion capture system (Ox-

ford, UK) at a sampling rate of 100Hz. As illustrated in Fig. 8-1A, the 𝑥-axis of the

lab coordinate frame was aligned with the beam. Reflective markers were placed on

the subjects’ bodies following Vicon’s Plug-In Gait marker set (Fig. 8-1A). For each

subject, the Plug-In Gait model, which consists of 15 rigid body segments, was fit

to the kinematic data using Vicon Nexus and C-Motion Visual3D software (German-

town, MD). See Table 8.1 for list of body segments.

Signal Processing

For each trial, we calculated the following output signals from the model-fitted data

processed in Visual3D to quantify and characterize human balance ability.

The linear velocity of the whole body’s center of mass in the mediolateral (i.e.,
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Table 8.1: Segments of Human Rigid Body Model

Segment Number, 𝑖 Segment Name Body Region
1 Head Upper
2 Thorax/Abdomen Upper
3 Right Upper Arm Upper
4 Right Forearm Upper
5 Right Hand Upper
6 Left Upper Arm Upper
7 Left Forearm Upper
8 Left Hand Upper
9 Pelvis Lower
10 Right Thigh Lower
11 Right Shank Lower
12 Right Foot Lower
13 Left Thigh Lower
14 Left Shank Lower
15 Left Foot Lower

𝑦) direction at each time 𝑡, 𝑣wb,y(𝑡) was calculated by backward finite difference on

𝑐wb,y(𝑡), the whole body center of mass position, with 𝑇𝑠 = 0.01s as step size. The 𝑣𝑦

was subsequently smoothed with a moving average filter.

The angular momentum of 𝑖-th body segment about the axis of the balance beam

(i.e., the 𝑥-axis) at each time 𝑡, 𝐿𝑖,𝑥(𝑡), was calculated by

𝐿𝑖,𝑥(𝑡) = 𝑚𝑖(𝑐𝑖,𝑦(𝑡)𝑣𝑖,𝑧(𝑡)− 𝑐𝑖,𝑧(𝑡)𝑣𝑖,𝑦(𝑡)) + 𝑗𝑖,𝑥𝜔𝑖(𝑡), (8.1)

where 𝑐𝑖,𝑦 and 𝑐𝑖,𝑧 were the positions of the center of mass in 𝑦 and 𝑧 direction, 𝑚𝑖

was the mass, 𝑣𝑖,𝑦 and 𝑣𝑖,𝑧 were the linear velocities in 𝑦 and 𝑧 direction, and 𝑗𝑖,𝑥𝜔𝑖

was the 𝑥 component of the angular momentum about its center of mass in the lab

coordinate frame, respectively.

The total angular momentum of all upper body segments about beam axis at each

time 𝑡, 𝐿ub(𝑡) was calculated by

𝐿ub(𝑡) =
8∑︁

𝑖=1

𝐿𝑖,𝑥(𝑡). (8.2)
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The total angular momentum of all lower body segments about beam axis at each

time 𝑡, 𝐿lb(𝑡) was calculated by

𝐿lb(𝑡) =
15∑︁
𝑖=9

𝐿𝑖,𝑥(𝑡). (8.3)

The total angular momentum of the whole body (i.e., of all body segments) about

beam axis at each time 𝑡, 𝐿wb(𝑡) was calculated by

𝐿wb(𝑡) =
15∑︁
𝑖=1

𝐿𝑖,𝑥(𝑡). (8.4)

The torque about 𝑥-axis at the foot-beam interface was estimated by

𝜏ext,x(𝑡) = �̇�wb(𝑡) + 𝑚𝑔𝑐wb,y(𝑡) ≈ 𝐿wb,x(𝑡)− 𝐿wb,𝑥(𝑡− 𝑇𝑠)

𝑇𝑠

+ 𝑚𝑔𝑐wb,𝑦(𝑡) (8.5)

where 𝑚 =
∑︀15

𝑖=1𝑚𝑖 is the total mass of the subject and 𝑔 is the gravitational

acceleration constant.

To accommodate differences in body size across subjects, the signals of 𝑣wb,𝑦,

𝐿wb,𝑥, and 𝜏ext,𝑥 at time 𝑡 were normalized to obtain 𝑣wb,𝑦, �̂�wb,𝑥, and 𝜏ext,𝑥 at time

𝑡 = 𝑡

(ℎ
𝑔 )

1/2 , respectively, as follows:

To accommodate differences in body size across subjects, the outputs 𝑣wb,𝑦, 𝐿wb,𝑥,

and 𝜏ext,𝑥 at time 𝑡 were normalized to obtain 𝑣wb,𝑦, �̂�wb,𝑥, and 𝜏ext,𝑥 at time 𝑡 = 𝑡

(ℎ
𝑔 )

1/2 ,

respectively, as follows:

𝑣wb,𝑦 =
𝑣wb,𝑦

ℎ
(︁

ℎ
𝑔

)︁−1/2
, �̂�wb,𝑥 =

𝐿wb,𝑥

𝑚ℎ2
(︁

ℎ
𝑔

)︁−1/2
, 𝜏ext,𝑥 =

𝜏ext,𝑥
𝑚𝑔ℎ

(8.6)

where ℎ was the height of each subject.

Dependent Measures

For each subject, the dependent measures were calculated for the longest trial in each

condition. Data from the first and the last 25% of each trial were omitted to minimize
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any possible transients or fatigue effects.

• Trial time, quantified as the amount of time the subject stood with both feet

on the beam, served as the first gross measure of balance ability.

• The root-mean-square (RMS) of 𝑣wb,y and �̂�wb,x also characterized balance pro-

ficiency.

• The correlation coefficient between the angular momenta of the upper and lower

body, ‘Corr-AM’ was used to characterize the coordination between the different

body segments.

• The RMS of 𝜏ext,x was used to assess foot-beam interaction torque.

Statistical Analysis

In order to test if wearing rigid soles affected balance performance and whole-body

coordination, pairwise t-tests were conducted on the dependent measures calculated

for the longest trial in each condition. The significance level was set to 𝛼 = 0.05.

Statistical analyses were performed using MATLAB, Version 2016b (The Mathworks,

Natick, MA).

8.2.2 Human Balance on a Beam: Representative Subjects

Two representative subjects were selected to investigate differences between ‘novice’

and ‘expert’. The ‘Novice’ subject (28yo male, 180cm height, 80kg weight) did not

have any formal balance training. The ‘Expert’ subject (26yo female, 163cm height,

58kg weight) was a trained gymnast.

Gross Assessment of Balance Ability

As expected, the Novice, who had no prior balance training, had worse balance per-

formance than the Expert, who was a trained gymnast. As summarized in Table 8.2,

the Novice was only able to maintain balance for approximately 23 s, whereas the
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Table 8.2: Representative subjects balance performance

Novice Expert
Trial time [s] 23.3 421.2

RMS of 𝑐wb,y [cm] 1.06 0.69
RMS of 𝑣wb,y [cm/s] 0.017 0.015

CorrAM [a.u.] -0.95 -0.91
RMS of 𝐿ub[kg·m2/s] 5.54 2.00
RMS of 𝐿lb[kg·m2/s] 1.58 0.70
RMS of 𝐿wb[kg·m2/s] 4.07 1.43

Expert was able to maintain balance for just over 7 minutes. Novice also had greater

center of mass motion compared to the Expert.

Patterns in Angular Momenta Across Body Segments

Fig. 8-2 depicts the time profiles of angular momenta from a representative portion

(10 seconds) of each subject’s trial. Note that the magnitude of angular momenta

generated by the individual segments depended on the height and weight of subject.

Despite clear differences in body stature and balance ability as indicated by trial time,

the pattern of angular momenta generated by body segments was consistent across

both subjects, which ran counter to our prediction. As illustrated in Fig. 8-2, the

angular momenta of the individual upper body segments consistently acted opposite

to the lower body segments.

Calculation of the cross correlation function between the total angular momentum

of upper body segments, 𝐿ub, and the lower body segments, 𝐿lb confirmed this visual

observation. The most negative cross correlation coefficient (Corr-AM) was -0.95

for Novice and -0.91 for Expert, indicating that the two signals were highly anti-

correlated.

While 𝐿ub and 𝐿lb were highly anti-correlated, they did not cancel each other

out. For both subjects, magnitude of 𝐿ub was generally greater than the magnitude

of 𝐿lb over the course of each trial as described in Table 8.2. As a result, there was

significant whole body angular momentum 𝐿wb about the beam axis throughout the
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entirety of each trial. Note that this same behavior was observed during balance

beam walking as well [37].
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Figure 8-2: Human experimental results. Profiles of angular momentum generated
by A individual segments and B lumped upper body, lower body, and whole body
segments. To visualize the observed patterns in angular momenta, data from only a
representative segment (10 s) of each trial are shown.

8.2.3 Effects of Rigid Feet on Balance on a Beam

Rigid Feet Improved Task Balance Ability

Subjects stood on the beam significantly longer in the rigid feet condition (𝑀 =

236.0s, 𝑆𝐷 = 119.4s) than in the bare feet condition (𝑀 = 103.1s, 𝑆𝐷 = 158.3s),

(𝑡6 = −2.59, 𝑝 = 0.041; Fig. 8-3A).

The RMS of 𝑣wb,𝑦 was significantly reduced in the rigid-feet condition (𝑀 =

0.0024, 𝑆𝐷 = 0.0005) compared to the bare-feet condition (𝑀 = 0.0052, 𝑆𝐷 =

0.0032), (𝑡6 = 2.46, 𝑝 = 0.049; Fig. 8-3B). The RMS of �̂�wb,𝑥 was also significantly

lower in the rigid feet condition (𝑀 = 0.0026, 𝑆𝐷 = 0.0010) compared to the bare-feet
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condition (𝑀 = 0.0078, 𝑆𝐷 = 0.0050), (𝑡6 = 3.02, 𝑝 = 0.023; Fig. 8-3C).

Together, these results indicate that balance performance was improved when

subjects wore rigid soles.

Rigid Feet Altered Whole-body Coordination

Not only the aforementioned representative subjects, all subjects exhibited strong

anti-correlation between upper body and lower-body angular momenta in the bare-

feet condition (Corr-AM; 𝑀 = −0.92, 𝑆𝐷 = 0.04). Even though it was also negative

in the rigid-feet condition, (𝑀 = −0.62, 𝑆𝐷 = 0.29), the value was significantly in-

creased (i.e., less anti-correlated) compared to the bare-feet condition (𝑡6 = −3.00, 𝑝 =

0.024; Fig. 8-3C).

Rigid Feet Reduced Estimated Foot-beam Interaction Torque

The RMS of 𝜏ext,𝑥 was significantly reduced in the rigid feet condition (𝑀 = 0.0172, 𝑆𝐷 =

0.0072) compared to the bare-feet condition (𝑀 = 0.0306, 𝑆𝐷 = 0.0164), (𝑡6 =

2.47, 𝑝 = .049; Fig. 8-3C).

8.3 Modeling Human Balance on a Beam

8.3.1 Double Inverted Pendulum Model

To account for anti-correlation between the upper- and the lower-body angular mo-

mentum, the double inverted pendulum model was chosen for simulations as illus-

trated in Fig. 8-4. The equations of motion is

M(q)q̈ + C(q,q̇)q̇ + G(q) = 𝜏 , (8.7)

where M(q) ∈ R2×2 is the inertia matrix, C(q,q̇)q̇ ∈ R2×1 are the Coriolis and

centrifugal terms, and G(q) ∈ R2×1 are the gravitational torques. The relative joint

angles q = [𝑞1, 𝑞2]
T ∈ R2×1 were chosen as generalized coordinates to describe the
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model. 𝜏 = [𝜏1, 𝜏2]
T ∈ R2×1 is the associated torque vector. The model parameters

used for simulation are listed in Table 8.3, which were obtained from [82,119].

c2

y

q1

q2

g

l2

l1
c1

τ2

τ1

z

m2, j2

m1, j1

Figure 8-4: Double Inverted Pendulum Model.

Table 8.3: Double Inverted Pendulum Model Parameters

Parameter Meaning Value [unit]
𝑚1 mass of link 1 28.36 [kg]
𝑙1 length of link 1 0.6960 [m]
𝑐1 center of mass of link 1 0.3480 [m]
𝑗1 moment of inertia of link 1 about its com 1.145 [kg·m2]
𝑚2 mass of link 2 42.54 [kg]
𝑙2 length of link 2 1.044 [m]
𝑐2 center of mass of link 2 0.5220 [m]
𝑗2 moment of inertia of link 2 about its com 3.864 [kg·m2]
g gravitational acceleration 9.810 [m/s2]

8.3.2 Model of Human Balance with Bare Feet

Developing balance control algorithms for bipedal robots has been a major research

interest of the robotics community, and many of them have been implemented on

complex real robotic platforms with demonstrated success. We adopted several bal-

ance controllers from robotics literature that are compatible with the simple double

inverted pendulum model. A subset of controllers was identified that produced bal-
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ance behavior similar to what we observed in humans, i.e. the angular momenta

generated by the upper and lower body segments were anti-correlated.

Joint Impedance Controller (JIC)

The simplest balancing controller is to implement virtual compliance either in joint

(configuration) space or in the Cartesian (task) space. The joint impedance controller

is defined as

u = Kpj(q0 − q)−Kdjq̇, (8.8)

where Kpj,Kdj ∈ R2×2 are positive definite joint stiffness and damping matrices,

respectively, and the rest position q0 = [𝜋
2
, 0]T corresponds to the upright posture.

u ∈ R2×1 is the commanded joint torque vector.

Cartesian Impedance Controller (CIC)

Alternatively, a virtual linear spring-damper supporting the center of mass of the

model can also maintain balance,

u = JT(Kpx(cwb,0 − cwb)−Kdxvwb)), (8.9)

where Kpx,Kdx ∈ R2×2 are positive definite Cartesian stiffness and damping matrices,

respectively, and cwb, cwb,0 are the center of mass position and rest position of the

virtual spring, respectively. vwb = 𝑑
𝑑𝑡
cwb is the center of mass velocity.

Linear Quadratic Regulator (LQR)

By defining the state variables as x := [qT, q̇T]T, one can linearize the nonlinear

equations of motion (8.7) about its equilibrium point, x* and u*, corresponding to

the resting upright posture,

˙̄x = Alinx̄ + Blinū, (8.10)
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where x̄ = x − x* and ū = u− u* and Alin and Blin are linearized state and input

matrices, respectively. Since x* is singular configuration, required joint torque u* = 0.

Hence, the bar is omitted for the input.

The full-state linear quadratic regulator (LQR) takes advantage of the dynamic

model of the system, and the choice of costs on deviation of states and actuation

affects the controller gain KLQR [197].

u = −KLQRx̄. (8.11)

Natural Posture Recovery (NPR)

The natural posture recovery (NPR) method presented by Abdallah and Goswami [1]

is another simple, yet powerful, nonlinear controller for balance. Noting that upright

posture corresponds to maximum potential energy that the system can have, one can

design a control law to maximize the potential energy as below, with a positive gain

𝑘.

q̇ref = 𝑘G(q) (8.12)

u = Kdj(q̇ref − q̇) (8.13)

Here, the property that G(q) = 𝜕𝑉 (q)
𝜕q

T
is used, where 𝑉 (q) is the potential energy of

the system. This control law leads the potential energy of the system towards global

maximum, with some inevitable oscillation.

Angular Momentum Based Controller (AMBC)

The last controller tested in this work is the angular momentum based balance con-

troller (AMBC) recently presented by Featherstone [57]. The controller assumes that

only the hip is actuated to balance (𝑢 = 0). Let us denote the angular momentum of

the total system about the supporting point as 𝐿wb. As the ankle torque is zero, the

131



following relation holds.

𝐿wb = SMq̇ (8.14)

�̇�wb = −𝑚𝑔𝑐wb,y = −SG (8.15)

�̈�wb = −𝑚𝑔�̇�wb,y = −S
𝜕G
𝜕q

q̇ (8.16)

where S = [1 0] is the selection matrix and 𝑐wb,y is the horizontal component of

center of mass position. Consider the following control law:

...
𝐿wb = 𝑘𝑑𝑑�̈�wb + 𝑘𝑑�̇�wb + 𝑘𝐿𝐿wb + 𝑘𝑞(𝑞2 − 𝑞d2 ). (8.17)

By taking the time derivative of (8.16), one can get
...
𝐿wb = −𝑚𝑔𝑐wb,y and the con-

trol torque 𝑢2 is computed by solving the inverse dynamics. The controller gains

(𝑘𝑑𝑑, 𝑘𝑑, 𝑘𝐿, and 𝑘𝑞) are chosen following the rule described in [57] which guarantees

stability.

Simulation Results

Each controller was implemented on the same double inverted pendulum model with

the same initial conditions. Furthermore, random ankle torque noise 𝜏1,pert was added

to simulate the variability observed in the human balancing experiment, i.e. 𝜏 =

u+[𝜏1,pert, 0]T. The perturbation torque was assumed to follow a uniform distribution

on the interval 𝜏1,pert ∈ [−10, 10]N·m. This interval was chosen based on the RMS

value of estimated torque seen at the point of foot-beam contact from the Novice

subject. The simulations were conducted using MATLAB (Mathworks, Inc., MA)

ode45 with default options.

The gains of each controller were empirically, but carefully, chosen such that the

resultant center of pressure (CoP) deviation remained within ± 2cm. This width was

chosen to be close to the width of the beam (3.4cm).

The simulation results are shown in Fig. 8-5. For the six controllers tested, the

time course of angular momentum about the support of whole body (𝐿wb), upper
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Figure 8-5: Simulation results. Time course of angular momentum about the support
of whole body (black), upper body (yellow), and lower body (green) for different six
different balance controllers. The cross correlation coefficient between 𝐿ub and 𝐿lb of
each system are denoted as well.

body (𝐿ub), and lower body (𝐿lb) is plotted and the most negative/positive cross

correlation coefficient between 𝐿ub and 𝐿lb is noted. In the LQR controller, ankle

and hip actuation were equally penalized, whereas in the LQRhip controller, ankle

actuation was largely penalized to suppress use of the ankle. Three controllers showed

positive cross correlation (JIC: 0.88, LQR: 0.61, and NPR: 0.92). The other three

controllers showed high anti-correlation with cross correlation coefficient less than

-0.90 (CIC: -0.90, LQRhip: -0.94, and AMBC: -0.95).

Table 8.4 summarizes the dependent measures of interest. The controllers that

showed high anti-correlation of upper and lower body angular momentum are in bold

font.
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8.3.3 Modeling the Effect of Changing Foot-beam Interface

We developed a simple model to describe the effect of altering the foot-beam in-

teraction dynamics on overt balance behavior observed in the human experiment

(Fig. 8-3), by extending the double inverted pendulum model. While AMBC repro-

duced the observed anti-correlation of upper- and lower-body angular momentum, it

imposed zero RMS ankle torque as shown in Table 8.4, which was not observed in hu-

man behavior. The LQR controller exhibited more robust performance than the CIC

controller. Therefore, we decided to use the LQR controller for a competent model

of human balancing, when investigating the effect of changing mechanical interface

between the feet and the beam (Fig. 8-6).

The full-state LQR determined the control (commanded) torques, u = [𝑢1, 𝑢2]
T =

−KLQRx. The controller gain is determined by solving the following infinite-horizon

optimal problem:

u = argmin
u

∫︁ ∞

0

x𝑇Qx + u𝑇Ru = −KLQRx, (8.18)

with the penalty matrices Q and R were parameterized as ,

Q = I4,R =

⎡⎣𝛽 0

0 1
𝛽

⎤⎦ , (8.19)

such that Q equally penalize the state errors and R penalized ankle and hip actuation

while allowing the parameter 𝛽 to control the relative contribution between control

actions. Changing the parameter 𝛽 does not change the determinant of R so the

Table 8.4: Summary of Simulation Results

CIC LQRhip AMBC JIC LQR NPR
Corr-AM -0.90 -0.94 -0.95 0.88 0.61 0.92

RMS of 𝜏1, [N· m] 6.49 0.967 0 4.94 4.11 4.50
RMS of 𝜏2 [N· m] 32.0 17.1 28.3 2.39 1.41 2.20
RMS of CoP [cm] 1.0 0.70 0.72 0.80 0.75 0.80
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relative penalty between state errors and actuation were maintained at a similar

level. I𝑛 is the identity matrix with dimension 𝑛. In this model, the control torques

represent the joint torques generated by human neural controller.

Foot-beam Interface Model

With a flat, stationary foot on a large support surface, the ankle torque and the

ground reaction moment may be equal. When standing on a narrow beam, however,

the commanded ankle torque may not be directly transmitted to the ground due to

the foot-beam interaction dynamics. In double inverted pendulum model, 𝜏1 is the

actual torque acting between the human body and the beam.1 To describe discrepancy

between the ankle control torque, 𝑢1, and the applied torque at the interface, 𝜏1, the

foot-ankle complex was represented as a torque transmission, with an efficiency factor

𝜂 ∈ [0, 1]:

𝜏1 = 𝜂𝑢1 + 𝜏1,pert (8.20)

𝜏2 = 𝑢2 (8.21)

where 𝜏1,pert is the noise applied to the model in order to reproduce the variability in

humans.

This foot-beam interface model was introduced to describe the change in human

behavior across feet conditions without altering the controller. When balancing on

the ground, the feet may be regarded as an ideal transmission with 𝜂 = 1. Due to foot-

beam interactive dynamics, the bare feet and rigid feet on a beam could be described

as an imperfect transmission with 𝜂 < 1. In simulation, we tested whether humans

performed better with rigid feet because they acted as more efficient transmission

mechanisms than bare feet.

1𝜏1 of the model is equivalent to 𝜏ext,x of the human data.
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Figure 8-6: Block Diagram of the Proposed Human Balance Model

Simulation Details

The double inverted pendulum model with LQR was simulated with rest at upright

posture as its initial condition. The random perturbation torque was drawn from a

uniform distribution on the interval 𝜏1,pert ∈ [−10, 10] N·m as in the previous section.

The simulations were conducted using the MATLAB ode45 function with default

options. The solutions were evaluated at 100Hz using the MATLAB deval function

to compute angular momentum, joint torques, and center of mass velocity. The

dependent measures were also normalized as in human data processing (8.6), using

the model mass and height.

In the simulation, the analysis was carried out by changing parameters 𝛽 and 𝜂,

as follows:

• 𝛽 values from 3 to 5 (step size of 0.5);

• 𝜂 values from 0.0 to 1.0 (step size of 0.05).

The pairs of parameters resulting in physically infeasible behavior (e.g., nega-

tive vertical reaction force, center-of-pressure excursion larger than beam width) or

that did not reproduce human behavior (e.g., positive instead of negative correlation

between upper and lower body angular momenta) were discarded.

Simulation Results

The RMS of the horizontal velocity of the center of mass, 𝑣wb,𝑦, RMS of whole body

angular momentum, �̂�wb,𝑥, correlation coefficient between upper and lower body an-

gular momenta, Corr-AM, and RMS of ankle torque, 𝜏1, for different values of 𝜂 and

𝛽 are presented in Fig. 8-7.
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Figure 8-7: Simulation Results. (A) RMS of the horizontal velocity of the center of
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the parameter 𝛽 are represented with colors. The light shaded region indicates the
range of 𝜂 ∈ [0.2, 0.6] that best represents the behavior observed in the bare feet and
rigid feet conditions of the human experiment.

Given the range of tested parameters, the model with larger 𝛽 showed smaller

Corr-AM and smaller RMS of 𝜏1. On the other hand, it was hard to find consistent

trends on 𝑣wb,y and �̂�wb,x across all values of 𝛽.

Given the range of tested parameters, the model with smaller 𝜂 showed smaller
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Corr-AM, larger RMS of 𝜏1, larger RMS of 𝑣wb,𝑦, and larger RMS of 𝐿wb,𝑥.

The behavior of the model in the range of 𝜂 ∈ [0.2, 0.6] (shaded region in Fig. 8-

7) was comparable to that observed in the human experiment. Model behavior with

small 𝜂 resembled human behavior in the bare feet condition, and model behavior

with large 𝜂 resembled human behavior in the rigid feet condition. Even though

the model could capture the qualitative result, it could not accurately capture the

quantitative results. Within the range of parameters tested, the magnitude of change

in the dependent measures was smaller than that observed in the human experiment.

8.4 Discussion

For robotic devices designed to assist humans with balance, it is necessary that the

assistance they provide does not interfere with the humans’ intended behavior. Along

the same vein, robotic devices used for rehabilitating or retraining balance ability

need to guide users towards a desirable balance strategy. Hence, we sought to further

characterize the intended and desired human behavior during balance such that future

devices can be controlled to provide effective assistance.

Summary of the Experimental Results

The behavior observed from humans standing on the beam revealed several important

characteristics of mediolateral balance. First, while we did not constrain the subjects’

arms, they generated angular momentum correlated with the thorax/abdomen such

that the behavior of the upper body could be lumped into one segment. Second, the

lumped upper body and lower body angular momenta were highly anti-correlated,

meaning they acted in the opposite directions. The contribution of the upper body

was significantly higher such that the overall whole-body angular momentum was non-

zero. Moreover, the sum of the time derivative of the whole-body angular momentum

�̇�wb and the moment due to gravity was also non-zero. This finding indicated the

existence of non-zero external torque applied to the body about the beam axis (see

8.5), despite of the very narrow beam that constrained base of support.
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The results of this study also revealed that foot-beam interaction mechanics sig-

nificantly influenced human behavior when standing on a narrow support surface.

When the contact between the foot and beam was altered by wearing rigid soles,

subjects significantly improved their ability to maintain mediolateral balance. It also

altered inter-limb coordination. While the angular momenta of the upper and the

lower body were anti-correlated with both bare feet and rigid feet conditions, there

was less anti-correlation when the contact was rigid. In addition, the foot-beam in-

teraction torque was reduced with rigid contact; however, it is less clear whether this

indicates changes in balance controls strategy or was merely due to improved balance.

Modeling human balancing on a beam without footwear

Among the balance controllers we tested, three could reproduce the behavior

we observed in the human experiment. Simulations with the LQRhip, AMBC, and

CIC generated behavior with high anti-correlation between 𝐿ub and 𝐿lb. In these

controllers, there was either no or little contribution of the ankle compared to the hip

(Table 8.4).

The remaining controllers we tested could not reproduce the high anti-correlation

between 𝐿ub and 𝐿lb. Instead, the correlation was positive, meaning the double in-

verted pendulum only exhibited in-phase modes. In these controllers, the contribution

of ankle actuation was comparable to or larger than hip actuation.

Note that, in all simulations, the internal noise was identical and the CoP of the

model remained in a reasonable range (Table 8.4). This may indicate that the ob-

served human behavior was not as trivial as one might think; a narrow base of support

of the beam constrains the range of mediolateral CoP, but it does not necessarily limit

the ability to actively use ankle nor enforce humans to exhibit strong anti-correlation

between upper and lower body angular momentum. The consistent whole-body co-

ordination pattern we observed was not an obvious consequence of biomechanical

constraint but should be attributed to the neuro-mechanical balance controller.
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Simplified Model of the Foot-beam Interface

In a companion study [79], it was found that the effects of wearing rigid soles on

human walking on a beam was immediate but did not persist upon removal of the

soles. This suggested that human subjects did not adapt their neural control strategy

during several trials and practice with the rigid soles. Instead, it is likely that the

change of the mechanical interface was responsible for the altered human behavior.

The differences between the bare feet and the rigid feet condition could be repro-

duced by modeling the foot-ankle complex as a transmission mechanism between the

commanded ankle torque and the actual torque that acted between the foot and the

ground. By considering the ankle-foot complex simply as a transmission mechanism

parameterized by 𝜂, we modeled that the transmission of the ankle torque to the

ground was less efficient (smaller 𝜂, i.e., lower torque transmission efficiency) in the

bare feet condition compared to the rigid feet condition.

For an arbitrary control torque, 𝑢1, a smaller 𝜂 yields a smaller applied torque,

𝜏1. Over time, however, a smaller 𝜂 results in a greater accumulation of state errors,

which causes an increase in control torque 𝑢1. Thus, simulation of the model with a

smaller 𝜂 actually resulted in greater 𝜏1, as well as worse balance performance (Fig.

8-7D). Because 𝜏2 was unaffected by 𝜂, a smaller 𝜂 reduced the contribution of ankle

torque relative to hip torque, resulting in a more negative Corr-AM.

In the simulation, the same LQR control strategy with different values of param-

eter 𝛽 was tested to account for possible differences in behavior across individual

subjects. For all 𝛽 values that we tested, the effect of the parameter 𝜂 was consis-

tent. The model could qualitatively reproduce the changes in balance performance

observed with rigid soles: improved balance (decreased RMS CoM velocity and RMS

whole-body angular momentum) and altered whole-body coordination (less negative

anti-corrleation Corr-AM).
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Simple but Competent model Provides Insight

We emphasize that the purpose of the model is not to precisely predict human behav-

ior nor to suggest how the human neuromuscular system controls balance. Rather,

the model was developed to facilitate insights by identifying possible mechanisms that

can describe human behavior we observed. This is a subtle, yet important distinction.

The human system is vastly complex. For instance, there are both passive and active

compliance at the joints, significant time delays within the neuromotor system, and

noise both in sensing and actuation. Even though none of these were considered in the

models tested here, we were nevertheless able to identify controllers that adequately

captured the anti-correlation of upper- and lower-body behavior. Moreover, the effect

of wearing rigid soles on human balancing on a beam could be reproduced without

changing the controller but by introducing mechanical changes.

Importantly, these novel models not only provide explanations of the human data,

but also generate more research questions that should be further discerned.

Future Works

While we limited our investigation to specific forms of controllers, other control ar-

chitectures found in biomechanical studies or robotics could be also investigated

(see [147]). For example, intermittent control [34, 62], optimal control with con-

straints, or treating the problem as a linear-quadratic-Gaussian synthesis might yield

further insights.

The torque transmission loss was lumped into a single parameter 𝜂. Biomechani-

cally and physiologically plausible explanation of this model should be illuminated.

8.5 Conclusions

This study quantified whole body coordination of human balancing on a beam, and

quantified how it was altered by changing the foot-beam mechanical interface, sim-

ply wearing a rigid sole. A highly-simplified model could reproduce several features

of human beam balancing. Importantly, it demonstrated that the difference in hu-
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man behavior between the bare feet and rigid feet conditions could be explained by

accounting for foot-beam mechanical interface rather than a change in the controller.

142



Chapter 9

Balance on a beam with canes

This work was conducted in collaboration with Dr. Marta Russo (Northeastern Uni-

versity, Action Lab) and Prof. Dagmar Sternad (the same). We would like to thank

Christian Moses for his help in collecting the data. We would also like to thank Dr.

Randy Trumbower for lending us torque sensors.

This work was supported by a Samsung scholarship. This work was also supported

by NSF CRCNS-1723998 awarded to Prof. Dagmar Sternad and by NSF CRCNS-

1724135 awarded to Prof. Neville Hogan.

Publication of this work is in preparation [179].

9.1 Introduction

In the last century neuroscientists thought that maintaining postural balance was

achieved by spinal reflexes, triggered by visual, vestibular and somatosensory in-

puts [124]. However, in the more recent past, a large number of studies accumulated

evidence that balancing is a complex skill and should be understood as the interaction

of multiple dynamic sensorimotor processes [75,76]. While the effects on postural con-

trol were mainly evaluated in terms of the fluctuations of the ground reaction forces,

several studies also examined body kinematics and muscle activation. For example,

Ting and Macpherson suggested that to maintain upright balance, muscle synergies

are activated in service of the desired biomechanical output [209]. Based on mea-
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sured ankle torque and muscle activity, Loram and collaborators showed that the

neuromotor system that controls balance relies on motor planning and processing of

sensorimotor information [120]. Morasso and colleagues have demonstrated with a

computational model that postural balance is an intricate control processes involving

forward and inverse internal models [134]. Recent work proposed an optimal feedback

control model to account for the fluctuations of the center of pressure location [118].

Many researchers also focused their attention on the role of sensory information for

postural control. Not surprisingly, visual input together with vestibular and proprio-

ceptive information is strongly involved [154,158]. Less intuitive is the role of haptic

information, such as through touching a surface or holding the hand of another per-

son. A seminal study has shown that light touch of the fingertip on an earth-fixed

surface significantly reduced sway [86]. Increasing the amount of force applied on the

surface had minimal effect on the sway. Indeed, blind individuals who rely on haptic

information from the ‘white cane’ reported that force levels significantly below those

that provided physical support presented useful stabilization [85]. Jeka and collab-

orators confirmed that touch with a cane was effective in reducing postural sway,

indicating that even haptic information from indirect contact with a fixed surface

reduced postural sway. When balance was challenged, for example when standing on

a beam elevated above ground, light touch reduced sway both with and without vi-

sual input [122]. The same study also tested the effect of bimanual light touch under

conditions of increased risk, i.e., greater heights of the beam. Those results showed

that bimanual touch improved postural balance, especially when standing on a high

beam when fear of falling became an issue.

The force levels that have been investigated in the studies on light touch typically

ranged from < 1 N to about 10 N. At such low force levels, benefits derived from

the touch were mainly perceptual and mechanical changes were subordinate. Hence,

this previous set of studies highlighted the perceptual role of support for spatial ori-

entation. In addition, these light touch studies tested participants’ ability to balance

using earth-fixed supports that were stationary; even one study of cane use by Jeka

and colleagues examined the role of a cane that was fixed onto the ground [85]. Such
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a scenario is uncommon when relying on a supporting device. Typically, a cane or

holding the hand of another person does not present a stable or stationary support.

Yet, as seen in the frequent use of sticks or poles in hiking, such nonstationary devices

appear to provide stability.

The aim of the present study was to investigate the mechanical contribution to

postural balance of support through hand-held canes. This study tested the role of

support with two canes, one held in each hand and placed on the ground. In many

activities where balance is challenged, humans rely on both hands for support, for ex-

ample using poles when skiing or hiking. To challenge postural stability, participants

were asked to stand on a narrow beam in tandem stance. In that configuration, the

base of support was strictly limited by the beam dimensions, in particular its width.

For reference, we also included two control conditions: standing on the beam without

canes, and standing on the ground, also in tandem stance. The first question was to

what degree standing on the beam with cane support would improve with respect to

standing on the beam without canes and standing on the ground. While cane support

should evidently decrease postural sway compared to free standing on the beam, we

expected that using canes when balancing on a beam would remain more variable

than standing on the ground without canes (Hypothesis 1).

To explore the influence of forces applied to the canes, participants were asked to

apply minimal, preferred, and maximum levels of force on the two canes, where the

maximal force condition should significantly exceed the force levels studied in earlier

work. We reasoned that greater forces applied on the canes would have significant

mechanical effects on postural stability, and expected that the variability of the center

of mass motion and the center of pressure would be reduced (Hypothesis 2).

Participants were instructed to place the canes in two different configurations. In

the first ‘planar’ condition, participants held the canes symmetrically with their arms

extended to their sides, extending the base of support in the medio-lateral direction,

but confining support to the frontal plane only. In the second ‘tripod’ condition,

canes were placed in front of the body, with both arms at 45deg angle with the

frontal plane. We reasoned that the tripod condition would significantly increase the
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base of support as mechanical support is provided in both medio-lateral and anterior-

posterior directions. We therefore hypothesized that the tripod condition would yield

more stability and that postural variability in center of pressure and center of mass

would decrease (Hypothesis 3).

Nevertheless, these canes presented an additional challenge: a cane is an inverted

pendulum that is inherently unstable. When applying force, its variability (noise) may

increase proportionally as it is regarded as signal-dependent [89]. Moreover, it was

shown that exerting a force on an inherently unstable system can induce mechanical

instability, i.e. the cane may fall over [163, 164]. Hence, higher forces can have the

opposite effect and destabilize posture (Hypothesis 4).

To sensitively evaluate the intricate mechanical effects, ground reaction force was

measured both at the feet and at the canes. The beam was placed on a force plate

and 6-DOF force sensors measured forces applied on the canes. The latter allowed

separate quantification of the center of pressure at the canes and at the feet. Based on

3D kinematic recordings, we also assessed the center of mass motion. Remarkably, we

found that the controller exploits the novel mechanics of the canes allowing for more

variability in task-irrelevant dimensions and reducing unnecessary force activation.

9.2 Methods

9.2.1 Participants

16 participants (7 females, 9 males, between 19 and 36 years) with no history of

neurological conditions and normal or corrected-to-normal vision took part in the

experiments upon signing an informed consent form. The study was approved by the

Institutional Review Board of Northeastern University.

9.2.2 Experimental Apparatus

Participants stood on a narrow wooden beam (width 3.65 cm, height 7.62 cm) that

was placed on the floor on top of a force plate (AMTI, Watertown, MA, Fig. 9-1).
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Figure 9-1: Experimental setup. Participants stood on a beam that was placed in a
fixed position on a force plate, holding a cane in each hand. A set of 43 light-reflective
markers measured displacements of the full body and the canes in 3D. The canes were
instrumented with two 6D torque sensors at the bottom of each cane. The sketch
shows the planar cane configuration where the two canes were placed to be on one
line with the feet. In the tripod configuration, the canes were placed 0.50 m further
to the front to form a triangle with the feet.

They held two aluminum canes, one in each hand, to support themselves (length 117

cm, mass 680 g). The two canes were instrumented with a 6-DOF load cell at the

bottom of each cane to measure the forces applied to the canes (MCW-500 Walker

Sensors, AMTI Watertown, MA). All force data were recorded at 500 Hz sampling

rate. To record the participants’ movements in 3D space, whole-body kinematics were

recorded by 12 optoelectronic cameras at a sampling rate of 100 Hz (Qualisys AB,

Göteborg, Sweden). Each participant was equipped with a standard biomechanical

set of 43 reflective markers, following the C-Motion Plug-In Gait marker set. To track

the orientation of the canes in 3D space, 4 additional markers were attached to each

cane.

147



9.2.3 Experimental Protocol

Participants were asked to stand in tandem stance on the narrow beam without

stepping on the ground. They could choose which foot was at the front of their stance

and they kept the same foot in front in all trials. For all experimental conditions,

participants supported themselves with two canes, one held in each hand, their arms

comfortably extended. Participants were asked to apply one of three levels of force on

the canes: minimum (Min), i.e., as little as they could, preferred (Pref), i.e., as much

as they liked, maximum (Max), i.e., as much as possible. They performed the same

three force conditions in two arm configurations: their arms extended out horizontally

in the frontal plane (Planar), and stretched out forward forming approximately a

45deg angle at the shoulder with the frontal plane (Tripod). In one additional control

condition participants stood on the beam without the cane support. In this difficult

condition they were allowed to move their arms freely to help maintain balance on the

beam. We further recorded a baseline condition in which participants stood on the

ground in the same tandem stance without holding canes (Off Beam vs On Beam).

Each combination of arm configurations and force on the canes was repeated three

times, performed in blocks. Each block presented all experimental conditions once (3

force levels: Min vs. Pref vs. Max in 2 arm configurations: Planar vs. Tripod). Each

trial lasted 30 s; the entire recording session lasted approximately one hour, including

placing the markers on the body.

9.2.4 Data Preprocessing

All analyses were carried out with custom software written in Matlab (The Mathworks

Inc., Natick, MA). All kinematic and kinetic data were filtered with a zero-lag 3rd-

order low-pass Butterworth filter at 10 Hz (functions: butter, filtfilt). In order to

exclude any transient or fatigue effects, data from the first 10% and last 10% of each

trial were excluded from the analysis. The weight of the cane was subtracted from the

vertical component of the force measured at the canes, to estimate the effective force

applied by participants. In trials with cane support, participants did not step off the
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beam during the trial, hence no further action was necessary. In the control condition

where participants stood on the beam without cane support, they occasionally lost

balance and stepped off the beam. These trials were excluded from the analysis.

As the feet of participants were not in direct contact with the force plate but

with the beam, the center of pressure recorded by the force plate (Ground-CoP)

was different from that resultant from the feet-beam interaction (Beam-CoP). The

discrepancy was evaluated by the following equations,

Beam− CoP𝑥 = Ground− CoP𝑥 + ℎ
𝐹 𝑔
𝑥

𝐹 𝑔
𝑧

(9.1)

Beam− CoP𝑦 = Ground− CoP𝑦 + ℎ
𝐹 𝑔
𝑦

𝐹 𝑔
𝑧

(9.2)

where h is the height of the beam and 𝐹 𝑔 =
[︀
𝐹 𝑔
𝑥 , 𝐹

𝑔
𝑦 , 𝐹

𝑔
𝑧

]︀
is the ground reaction force

recorded by the force plate. The 𝑥-axis corresponded to the ML direction, the 𝑦-axis

to the AP direction, and the 𝑧-axis to the vertical direction, as illustrated in Fig. 9-1.

As 𝐹 𝑔
𝑧 >> 𝐹 𝑔

𝑥,𝑦, the additional term on the right side of equation (1) and (2) was

negligible. Thus, in the following only the Ground-CoP was considered. For the sake

of clarity, the CoP on the ground was referred to as the Feet-CoP.

When two canes touched the floor, the participant had three points of contact

with the ground: the feet on the beam, and the tips of the two canes. The feet were

on the beam, which was located on the force platform, thus measuring the ground

reaction force and the center of pressure. Information about the force applied on the

canes was provided by the load cells at the tip of the canes. The center of pressure

of each cane was computed by the ratio between the moments, 𝑚𝑥, and 𝑚𝑦, and the

forces, 𝑓𝑧, measured by the load cells.

𝑐𝑜𝑝𝑥 =
𝑚𝑦

𝑓𝑧
𝑐𝑜𝑝𝑦 =

𝑚𝑥

𝑓𝑧
(9.3)

The spatial positions of the tips of the canes were determined from the markers

attached to the canes. With all variables in the laboratory coordinate frame, the

total center of pressure (Total-CoP) was computed as the ratio of the total moments,
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𝑀𝑥,𝑦, and the total force, 𝐹𝑧. The total moments were defined as the sum of the

product of the vertical force at each point of contact with the respective moment

arm. The moment arm at each point was computed as the sum of the center of

pressure with the relative position 𝑎 = [𝑎𝑥, 𝑎𝑦, 0], which in turn is the vector from the

origin of the coordinate frame to the point of contact. As it was desirable to compute

the CoP in the medio-lateral (ML) and antero-posterior (AP) directions, the total

moments in the AP and ML directions were determined, respectively, as shown in

(9.4), (9.5).

𝑀𝑥 =
3∑︁

𝑖=1

(𝑎𝑖𝑦 + 𝑐𝑜𝑝𝑖𝑦)𝑓
𝑖
𝑧 (9.4)

𝑀𝑦 =
3∑︁

𝑖=1

(𝑎𝑖𝑥 + 𝑐𝑜𝑝𝑖𝑥)𝑓 𝑖
𝑧 (9.5)

The index 𝑖 indicates the current point of contact (𝑖 = 1: feet, 𝑖 = 2: left cane, 𝑖 =

3: right cane). Following the rule applied previously, the total CoP was determined

as

Total− CoP𝑥 =
𝑀𝑦

𝐹𝑧

(9.6)

Total− CoP𝑦 =
𝑀𝑥

𝐹𝑧

(9.7)

where 𝐹𝑧 =
∑︀3

𝑖=1 𝑓
𝑖
𝑧.

For each participant a kinematic model of 15 rigid body segments (head, trunk,

pelvis, left and right upper arms, forearms, hands, thighs, shanks and feet) was fit to

the kinematic data using C-Motion Visual3D (Germantown, MD). The whole-body

center of mass (CoM) was computed in Visual3D.

9.2.5 Dependent Measures

To obtain a metric for postural sway, the fluctuations of the CoP were summarized by

the standard deviations of the CoP in two orthogonal directions, AP and ML. These

two directions were calculated separately, because of the anisotropic constraints of

the beam, i.e., the base of support on the beam was larger in the AP direction
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than in ML. Another measure of postural sway was defined as the area of the 95%

tolerance ellipse. The same metrics were computed for both Feet-CoP and Total-CoP.

In addition, the fluctuations of the center of mass (CoM) were quantified by the area

of the 95% tolerance ellipse. This area was calculated in the horizontal (𝑥− 𝑦) plane

to make it comparable to the areas of the CoPs. Note that movements in the vertical

(𝑧) direction were negligible. To quantify movements of the hand at the tip of the

cane, the path length of the hand movement was calculated as the integral of the root

mean squared sum of the derivatives of the 𝑥-, 𝑦- and 𝑧-components.

pathlength =

∫︁ end

start

√︃(︂
dx

dt

)︂2

+

(︂
dy

dt

)︂2

+

(︂
dz

dt

)︂2

dt (9.8)

9.2.6 Statistical Analysis

A linear mixed model was used to evaluate the differences in the sway of the cen-

ter of mass and the center of pressure between the three levels of force applied to

the canes and the two cane configurations. The mixed model compared the experi-

mental conditions (fixed effects), i.e., beam, force and cane configuration conditions,

which were consistent across participants, and accounted for the effects of normally

distributed variability between participants (random effects). In equation (10) 𝑌 is

the latent response variable for each participant 𝑖 and each trial 𝑗, 𝐵 is the beam

condition (On the Beam or On the Ground); 𝐹 is the force condition (three levels:

Min, Pref, Max), 𝐶 is the arm configuration (two levels: Planar and Tripod), are the

fixed-effects coefficients, 𝑆 are the random-effects coefficients.

𝑌𝑖𝑗 = 𝛽0 + 𝑆0𝑖 + 𝛽𝑏 𝐵𝑗 + (𝛽𝐹 + 𝑆𝐹𝑖)𝐹𝑗 + 𝛽𝑐 𝐶𝑗 + 𝜖𝑖𝑗 (9.9)

To better compare the force conditions in which participants were standing on

the beam with the canes on the ground, a second model (see (9.10)) was tested on a

subset of the data, excluding trials in the control conditions.

𝑌𝑖𝑗 = 𝛽0 + 𝑆0𝑖 + (𝛽𝐹 + 𝑆𝐹𝑖)𝐹𝑗 + 𝛽𝑐 𝐶𝑗 + 𝜖𝑖𝑗 (9.10)
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Additional multiple comparisons were conducted across experimental conditions

by pairwise t-tests with Bonferroni correction. All statistical analyses were carried

out in R, with packages stats, lme4 and lmerTest [162].

9.3 Results

This study examined the mechanical effect of cane support for maintaining stand-

ing balance. Specifically, the experiment aimed to identify the mechanical effects of

two canes on the control of balance when standing on a narrow beam. Participants

supported themselves by holding two canes placed either on their side or in a tripod

configuration (Fig. 9-1). In the latter placement, the arms formed a 45 deg angle and

the canes were in front of the body, forming a triangle with the feet. Participants were

asked to exert three levels of force onto the canes: minimum (Min), preferred (Pref),

and maximum (Max). We measured the displacements of the center of pressure on

the beam, the forces on the canes, the body’s center of mass, and the displacements of

the hands at the cane. To provide a baseline measure, both the center of pressure and

the center of mass were quantified when participants stood on the ground, in the same

tandem foot position as on the beam. Another reference measure was obtained when

participants stood on the beam without cane support. The overarching question of

this study was how different forces applied to the canes and two arms configurations

affected the mechanics and, hence, the control of postural balance.

9.3.1 Forces Applied on the Canes

The first test verified that participants indeed followed instructions and applied dif-

ferent forces on the canes. Table 9.1 shows the summed forces applied on the two

canes averaged over the duration of the trial. For the three force instructions and for

the two cane placements the applied forces ranged between 4 and 50 N for each cane.

The linear mixed model confirmed the difference between the three force instructions

with a significant main effect (𝛽 = 10.1 ± 2.6, 𝑝 < 0.001). All three force conditions

were larger than those examined in previous studies and the preferred force differed
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from both the maximum and the minimum forces. The two cane configurations did

not elicit different forces in the three force conditions (𝛽 = −0.7 ± 4.3, 𝑝 = 0.86).

The preferred force applied on both canes was reliably around 33 N in both arm

configurations, corresponding to the weight of a 3.36 kg mass. Assuming the weight

of the arm is 5% of total body weight, this force approximated the weight of the arm

for an average body mass of 67 kg (3.35 kg) [42,225]. As the weight of the arm was

distributed across hand and shoulder, each cane supported about half of the weight

of the arm, and this significantly offset the need to support the arms against gravity.

9.3.2 Variability of Center of Pressure and Center of Mass

Fig. 9-2 displays exemplary trials of Feet-CoP (colored lines), Total-CoP (grey lines)

and also of the center of mass CoM (black lines) for each experimental condition.

When standing on the ground (Fig. 9-2A), the fluctuations of CoM and CoP were

considerably reduced compared to standing on the beam without canes, especially in

the AP direction (Fig. 9-2B), which was not surprising. When standing on the beam

without canes, both CoP and CoM showed visibly larger excursions, both in the AP

and ML directions, again as expected.

The six panels in Fig. 9-2C show exemplary data from the same participant stand-

ing on the beam with the canes on the ground (yellow shading represents the beam

width). The excursions of both CoPs and CoM were significantly reduced compared

to those when standing on the beam without cane support and were similar to those

measured when standing on the ground (Fig. 9-2A,B). The planar cane configura-

tion led to visibly smaller sway in the AP direction than the tripod configuration,

Table 9.1: Sum of forces applied on the canes. Means and standard deviations across
participants of the sum of the forces applied on the two canes in the three force
conditions and in the two postures. Forces were averaged across the duration of the
trial.

min (M ± SD) pref (M ± SD) max (M ± SD)
planar 8.25 ± 10.08 N 33.21 ± 11.97 N 91.20 ± 36.82 N
tripod 9.64 ± 12.15 N 32.87 ± 12.28 N 85.60 ± 31.71 N
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especially in the maximum force condition. In the minimum force condition, ML

variability was similar in both Feet-CoP and Total-CoP, in both cane configurations.

With increasing forces applied on the canes, the Feet-CoP decreased its ML ampli-

tude. In contrast, the Total-CoP went beyond the width of the beam, indicating that

the participants were moving their weight away from the feet and actively relying on

the canes. Lastly, the fluctuations of the CoM, shown by the black lines, followed the

changes of the Total-CoP across different forces and cane placements and presented

additional evidence that participants shifted their weight beyond the base of support

on the beam towards that provided by the canes.

The exact CoP location along the beam changed between trials, even within the

same participant. This effect resulted from changing the distribution of body weight

from the front to the back foot, even without stepping off the beam between trials.

9.3.3 Comparison of Postural Sway On and Off the Beam

To first evaluate the difference between balancing on the beam supported by canes

with the two control conditions, the area of the CoM served as a collective measure

of balance performance. Fig. 9-3A shows the CoM in the three force conditions

contrasting with the two control conditions; the data combined the two cane con-

figurations to focus on the comparison with the two control conditions. The figure

makes it evident that standing on the beam without canes had the highest degree of

variability (𝛽 = 1682.1± 290.2, 𝑝 < 0.001). The variability of the CoM on the beam

with canes declined to levels similar to the variability on the ground. While pairwise

post-hoc comparisons revealed a significant but small difference for the minimum

force condition, the two higher force conditions did not differ from standing on the

ground (Min: 𝑝 = 0.02, Pref: 𝑝 = 0.08, Max: 𝑝 = 0.1). Interestingly, when applying

increasing force on the canes, the variability of the CoM did not change (𝑝 = 1).

This was counter to the expectation that balancing on the beam would remain more

variable even with cane support (Hypothesis 1).

Fig. 9-3B shows participant averages of the 95% confidence interval of CoP for

all force conditions to compare with the two control conditions without cane support
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Figure 9-2: Representative paths of the center of pressure (CoP) and of the center of
mass (CoM) in the horizontal plane. The two CoPs and CoM for one trial for each of
the different force instructions and the two postures are shown in a top-down view.
A. Exemplary trial when standing on the ground. The grey line represents the CoP
and the black line the CoM. B. CoP and CoM of one trial of the same participant are
shown when standing on the beam without canes. C. Each panel shows both the CoP
at the feet (colored) and the total CoP (grey) for the three force conditions: minimum
(green), preferred (blue), maximum (red); black lines show the center of mass (CoM).
The two postures are identified by the drawings at the top of each panel. The beam
is the light yellow area bounded by thin lines for visibility. For all conditions on and
off the beam, the participant stood in tandem stance with the same foot in the front.

(white bars). To take into account the different nature of Total-CoP and Feet-CoP

when participants used canes, the results were separated. Again, the data were pooled

for the two cane configurations to facilitate comparison. As expected, standing on the

beam without cane support significantly increased the CoP excursions with respect

to standing on the ground by a factor of 10 (𝛽 = 2953.6±236.2, 𝑝 < 0.001). However,
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when participants used the canes for support, the Total-CoP returned to values similar

to standing on the ground, as confirmed by the pairwise post-hoc comparisons (𝑝 = 1).

The Feet-CoP showed even smaller values than the Total-CoP with canes and the

CoP on the ground without canes (𝑝 < 0.001). While surprising at first, participants

had three points of contact with the floor that allowed them to rely less on foot-beam

interaction and more on canes. Taken together, these findings confirmed expectations

that standing on the beam increased sway. However, counter to Hypothesis 1, both

CoM and CoP variabilities were not higher than when standing on the beam, but

approached the same level of variability as standing still on the ground. Given the

mechanical instability when balancing without canes, this gives first evidence of the

significant mechanical effect of the canes.

9.3.4 Effect of Forces on Postural Balance in the ML Direc-

tion.

This first analysis focused on the variability in the ML direction as it is the most

relevant direction for maintaining balance on a beam. Fig. 9-4A shows the ML sway

of Total-CoP against the average force applied on the canes; the data points represent

all individual trials of all participants with force condition differentiated by color. Fig.

9-4B shows the same data averaged across the different force and cane conditions and

pooled over all participants. There was no evidence of any change with increasing force

(𝛽 = −0.000015±0.0001, 𝑝 = 0.87). The Total-CoP was affected by the canes showing

a slightly larger ML sway in the tripod condition (𝛽 = 0.0006 ± 0.0002, 𝑝 < 0.001).

While different from what we expected in Hypothesis 2, this finding was consistent

with previous results: ML variability was significantly attenuated by small forces at

the support, and increasing force levels did not further affect sway of the Total-CoP

(9, 10).

In contrast, the ML standard deviation of the Feet-CoP decreased with the average

force for each trial, as shown in Fig. 9-4C. Fig. 9-4D shows the pooled data of all

participants for each experimental condition. For both cane configurations the same
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Figure 9-3: Postural sway metrics for the center of pressure (CoP) and center of mass
(CoM) for all experimental conditions. The light yellow background indicates metrics
for standing on the beam, while the white background on the left shows results for
standing on the ground. The colored bars show the metrics when the participants
used canes; green, blue and red differentiate the three force conditions. A: Area of
the center of mass (CoM) quantified by the 95% tolerance ellipse. Each bar shows
the mean and standard error (n=16) for the different experimental conditions, pooled
over all participants. The white bars on the left show the CoM area when participants
stood on the ground and on the beam, without canes; the green, blue and red bars
represent the three force conditions. B: Area of the center of pressure (CoP, Total-
CoP and Feet-CoP) quantified by the 95% tolerance ellipse. Each bar shows the mean
and standard error (n=16) for the different experimental conditions, pooled over all
participants. The two white bars show the CoP area when participants did not use
canes. The lower value of CoP on the left represents the participants standing on
the ground; the white bar shows the CoP area when participants stood on the beam.
The colored bars show the Total-CoP and the Feet-CoP when the participants used
canes. (significance levels: ***: 𝑝 < 0.001; *: 𝑝 < 0.05)
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Figure 9-4: Total center of pressure (Total-CoP) and center of pressure at the feet
(Feet-CoP) in the medio-lateral (ML) direction for different force conditions. A:
Mediolateral (ML) component of the Total-CoP motion with respect to the sum of
the forces applied on the canes; each data point is the average of one trial. Filled
circles represent the planar posture, empty circles the tripod posture. B: Standard
deviations of the ML-component of the Total-CoP motion for the two postures. Each
data point represents one participant; different colors indicate different participants.
C: ML-Feet-CoP against the sum of the forces applied on the canes for each trial.
D: The ML component of the Feet-CoP for each force condition and for the two
postures. Each data point represents one participant, different colors indicate different
participants. (significance levels: ***: 𝑝 < 0.001; *: 𝑝 < 0.05)

trend was observed: applying a force larger than minimum force reduced the sway

at the feet (𝛽 = −0.0008 ± 0.00015, 𝑝 < 0.001). This indicates that increasing force

applied on the canes let subjects rely less on foot-beam interaction and more on

canes. The variability in the ML direction for the Feet-CoP was not affected by

cane configuration (𝛽 = −0.00016 ± 0.0002, 𝑝 = 0.45), indicating that the spatial

configuration of the arms was not relevant for the ML direction of the Feet-CoP. This

set of results on Feet-CoP is in line with Hypothesis 2, although the Total-CoP did

not show any effect on sway variability with force.
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9.3.5 Effect of Forces on Postural Balance in the AP Direction

The standard deviations of both Feet-CoP and Total-CoP were also compared in the

AP direction, i.e., along the beam length. Fig. 9-5 shows that applying different levels

of force did not affect AP variability neither in Feet-CoP (𝛽 = 0.0003 ± 0.0002, 𝑝 =

0.29) nor Total-CoP (𝛽 = 0.0002 ± 0.0002, 𝑝 = 0.37). However, AP variability was

larger in the tripod condition than the planar condition, both for Feet-CoP and Total-

CoP (Feet-CoP: 𝛽 = 0.002 ± 0.0007, 𝑝 < 0.01; Total-CoP: 𝛽 = 0.002 ± 0.0004, 𝑝 <

0.001). This confirmed that the tripod cane condition allowed for more variability

along the length of the beam and that participants actually exploited this extended

base of support (Hypothesis 3).
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Figure 9-5: Total center of pressure (Total-CoP) and center of pressure at the feet
(Feet-CoP) in the Antero-Posterior (AP) direction for different cane conditions. A:
Standard deviations of the AP-component of the Total-CoP motion for the two cane
configurations. Data are pooled together within each force condition. Each data point
represents one participant; different colors indicate different participants. B: The AP
component of the Standard Deviation of the Feet-CoP for each force condition and
for the two cane conditions. Each data point represents one participant, different
colors indicate different participants (*** indicates significance of 𝑝 < 0.001).
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9.3.6 Effect of Forces on Variability of Cane Motion

Even though participants were instructed to stand still, some small movements in the

body, arms, and hands were always present [55]. This noise inevitably transferred

from the hand to the cane handle, deflecting the cane from the vertical position. As

a cane is an inverted pendulum, small lateral deflections destabilize the vertical cane.

To quantify these deflections, the path length of the hand on the cane handle was

computed for each trial. Fig. 9-6A shows the paths traveled by the right and left

hands of one participant over the course of one trial in each force condition (marked

by color). The path length of the hand increased when more force was applied (right

cane: 𝛽 = 0.006 ± 0.001, 𝑝 < 0.001; left cane: 𝛽 = 0.006 ± 0.001, 𝑝 < 0.001). Fig.

9-6B shows path lengths of all participants, plotted against the average force applied

on the respective cane; each point represents the path length traveled by the right or

left hand during one trial. It shows that the path length increased with the amount of

force applied. Path length in the minimum force condition was significantly different

from the maximum force condition for both hands (right hand: 𝑝 < 0.001, left hand:

𝑝 < 0.001). The preferred force condition was not significantly different from the

minimum force condition for the right hand (𝑝 = 0.09) and only barely significant

for the left hand (𝑝 < 0.05). These results suggest that higher forces indeed had a

destabilizing side-effect as expected (Hypothesis 4).

9.4 Discussion

The present study tested the mechanical effects of cane support in a challenging

balance task. While standing on a narrow beam, the use of canes improved postural

balance as evidenced by the reduced variability of the center of pressure (CoP) and

the center of mass (CoM); these fluctuations declined to the same level as when

standing on the floor. This reduction of sway was observed for all force levels, even

for relatively small forces applied to the two canes. When subjects exerted higher

forces on the canes, the fluctuations of both the CoM and the total center of pressure

(Total-CoP) did not decrease any further. Comparing the two cane configurations,
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Figure 9-6: Paths and path lengths of the left and right hands for different force
instructions differentiated by color. A: Exemplary paths of the movements of the left
and right hands from two point of view: x-y at the top, z-y below. Each colored line
shows one trial in the three force conditions. B: Path lengths for the left and right
hands per trial are plotted against the average force applied to the cane.

participants clearly used the larger base of support when canes and feet formed a

tripod. However, higher forces also destabilized the canes as evidenced by longer

hand paths.

9.4.1 Perceptual Benefits of Canes

Numerous previous studies investigated the effect of light touch on postural control

and showed that increasing forces applied on a support surface did not provide fur-

ther benefit to reduce sway [84–87,122,201]. However, the touch condition in previous

studies by Jeka and colleagues required subjects to apply a target force of 1 N and in

the free force condition they exerted on average 5 N. As the present study wanted to

further probe into the mechanical effects of canes on control, our study tested forces

from 5 N to 100 N that extended well above the previously tested force conditions.

Our results on variability of the Total-CoP and the CoM showed again that, while

canes were generally helpful for balance, exerting the maximum level of force on the

canes did not provide any further stabilizing effect. In addition, when free to use

their preferred force, participants did not choose a high level of force to maintain bal-
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ance, presumably because there was no further benefit. Rather, they stayed within

a force level that reduced the need to support their arms against gravity. Taken

together, these findings corroborated previous studies and supported the widely ac-

cepted conclusion that even very light touch provides perceptual information that

enhances balance performance, similar to how visual information stabilizes postural

sway [158]. Hence, at first blush, these results seem to support the conclusion that

the mechanical effect of the support was negligible. And yet, from a mechanical per-

spective, canes on the ground do increase the base of support and that inherently

changes the mechanics of the system.

9.4.2 Mechanical Benefits of Canes on Postural Sway

Intuitively, canes should facilitate balance, and evidently they do. What are these

mechanical effects and how do they affect demands on postural control? Our data gave

several indications that cane support went beyond being purely perceptual support

and afforded mechanical benefits. First, as the additional contacts with the floor

enlarged the base of support, CoP and CoM went outside the beam width, which

limits the base of support without the canes. Therefore, humans indeed used the

available larger base of support. Second, while the extent of the fluctuations in CoP

and CoM did not depend on the magnitude of forces applied to the canes, they did

depend on the placement of the canes. The standard deviations of the Total-CoP

and Feet-CoP in the tripod condition were significantly larger than in the planar

configuration, indicating that the triangular contact points had a significant influence

on control. Third, the Feet-CoP significantly decreased with increasing force on the

canes, indicating that the more force applied on the canes, the more did control

rely on their support to balance. Fourth, the preferred force applied on each cane

corresponded to the weight of the participant’s arm; the preferred force corresponded

to 5% of average body weight [42]. Hence, this choice of support reduced the effort

required to hold one’s arms, while exploiting the new mechanical support provided

by the additional devices.
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9.4.3 Mechanical Challenge due to Instability of the Canes

Applying forces on the vertical canes is an isometric task with potential instability.

Unlike in previous studies that tested forces applied on a fixed surface, the canes were

not inherently stable; rather, mechanically they presented an inverted pendulum at

its unstable equilibrium point. Hence, the inherent noise in the human sensorimotor

system can introduce displacements that immediately destabilize the inverted pen-

dulum, and with it, destabilize postural balance. Assuming that noise increases with

force, this destabilizing effect increases with higher forces. It was also shown that

applying larger force on an unstable mechanical system induced more mechanical

instability [163–165]. On the other hand, human joint stiffness also increases with

increasing force which probably counteracted this perturbing effect to maintain pos-

tural balance [117]. However, as the observed path lengths of the hand increased with

the applied force, the stiffness at the shoulder joint may have been limited and did

not fully compensate for the displacements of the hands and canes. And yet, the vari-

ability of the CoM and the Total-CoP did not vary with increasing force, indicating

that the larger displacements at the hand may have been compensated at the torso.

Hence, these findings reveal that the cane support not only facilitated balance, but

also created complex control demands across the multi-segmented body.

9.4.4 Underlying Control Mechanisms

All together, these results present an intricate picture of how the canes significantly

affected the control of postural stability, some effects even cancelling each other. What

are the potential control mechanisms underlying these observations? To begin, when

standing on the beam with canes, the variability of the CoM and Total-CoP in the

ML or task-relevant direction were essentially identical to those when standing on the

ground. If the measured fluctuations when standing on the ground are regarded as

a measure of the noise level (as participants were asked to stand as still as possible),

then the use of canes enabled participants to minimize sway all the way to this lower

bound. That could also be the reason why the different force levels did not lead to
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further reductions in sway. Second, when the canes formed a tripod, the fluctuations

of the CoP were larger than in the planar condition, making use of the larger base

of support. Especially, the higher variability in the AP direction suggested that the

controller did not constrain fluctuations, i.e., allowing more variability in this task-

irrelevant direction. Allowing variability in directions orthogonal to what affects the

task is usually interpreted as a reduction of control effort [3,45]. Third, control took

advantage of the additional devices, evidenced in the preferred force level that just

off-set the weight of the arms while staying away from higher forces that potentially

introduced destabilizing effects. In summary, we speculate that the controller avoids

high forces not only because they require more effort without any obvious benefit,

but also because they introduce additional demands on neuro-muscular stiffness to

counteract destabilizing forces. The controller also allows fluctuations as long as the

CoM stays within a certain region, whose limits are defined by the margin of the base

of support and by the noise of the system.

9.4.5 Limitations and Outlook

In the present study participants used canes to balance on a narrow beam holding

them with the arms extended. While this presented a clean geometric body configura-

tion, different mechanisms might be manifest if the canes were held with flexed arms

or when walking with one or two canes. Our metrics, ML and AP standard deviations

and the total area of sway, could capture interesting features of the task, but they

were scalar measures of data distributions. Additional analyses could characterize

the temporal evolution of the forces and their relative centers of pressure. Further,

recent work went beyond analyzing the point of application of the force vector, and

examined the orientation of the ground reaction force with respect to the center of

mass. This analysis revealed interesting information about the relative role of biome-

chanics and control [24,192]. Applying these methods to the more challenging task of

standing on a narrow beam with canes could provide further information about the

strategy adopted by the controller when using canes.
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9.4.6 Appendix: Intervention for Recovery or Compensation

Fig. 9-7 shows how balance performance (measured by the center of mass sway in

medio-lateral (ML) direction, averaged over three trials per condition) varied in each

condition. Importantly, pairwise t-tests identified no significant difference (𝑝 > 0.05)

in the balance performance before and after using canes, while subjects were allowed

to ‘practice’ to balance using canes with different force levels. This implies that

the improved performance may not be attributed to changes in the neural controller,

rather, mainly mechanical effects [79]. This behavioral change is consistent with what

observed in Chapter 8, when humans balancing on a beam with wearing rigid soles.

In sum, the canes may not be useful for promoting neuro-recovery, but may be useful

for compensating for impaired balance.

Figure 9-7: No behavioral change before (PRE) and after (POST) using canes. *
indicates significant difference between conditions (𝑝 < 0.05).
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Chapter 10

Conclusion

10.1 Summary

We investigated human whole-body coordination during balancing in challenging con-

ditions, analyzed how several passive mechanical interventions altered human balance,

and attempted to understand the neuro-mechanical origins of the changes in behavior.

The results found a consistent coordination pattern of humans balancing on a

beam, represented by a high anti-correlation between lumped upper- and lower-body

angular momentum. Despite differences in gross measures of balance, the coordination

pattern was consistent between the novice and expert subjects, suggesting that both

performances could be described with the same balance controller. By simulating

a double inverted pendulum model utilizing different balancing controllers described

in the robotics literature, we identified that the whole-body behavior observed from

humans standing on a beam was best replicated with controllers that predominantly

utilized hip actuation.

When wearing rigid soles, human balance significantly and immediately improved.

Importantly, results suggested that differences in human balancing behavior across

different support surfaces may not solely result from changes in their neural control

strategy, rather it was largely due to mechanical changes at the foot-ground interface.

A simplified model of foot-beam interface was inserted to a double inverted pendulum

model for human balancing. This extended model could capture the several aspects
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of changes in human behavior across different foot contact conditions (bare feet vs.

rigid feet) at least qualitatively.

Similarly, canes significantly reduced the variability of center of pressure and cen-

ter of mass to the same level as when standing on the ground. Increasing the exerted

force beyond the preferred level yielded no further benefits, in fact had a destabilizing

effect on the canes: the displacement of the hand on the cane handle increased with

the force, consistent with the known effect that pushing destabilizes an inverted pen-

dulum. In the preferred condition, participants exploited the altered mechanics by

resting their arms on the canes and, in the tripod configuration, allowing for larger

sway. These results suggest that the controller minimizes effort keeping the center

of mass and center of pressure within the task-allowed region, whose upper limit is

defined by the base of support and lower limit by the noise of the system. Despite

the challenge of a statically unstable system, these results show that, in addition to

augmenting perceptual information, using canes can provide mechanical benefits.

10.2 Discussion

While both simple and passive mechanical interventions could significantly and im-

mediately improve balance, there was little evidence of behavioral signatures that

central neural processes were involved. That is, practice with the devices did not

affect performance over time and without the devices. This implies that the tested

interventions may not be suitable for training for long-term neuro-recovery, but for

compensation, consistent with what we observed and discussed in Chapter 4, when

humans walking with a stiffness intervention.

168



Part III

Quantifying Balance Mechanism

without Perturbation
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Chapter 11

Overview

Objective and quantitative assessments of human balance is critical to design and

follow-up personalized balance training; however, it is as yet largely missing among

current clinical methods [147].

In human balance control research community, input-output system identification

methods are the most frequently used to identify and estimate human balance models.

Despite their mathematical rigor, humans may substantially change their behavior

when perturbation is applied - and it is hard to predict how each intervention would

change the balance dynamics, as extensively demonstrated in Part I and Part II. The

input-output system identification methods require to apply external perturbations -

thus they may accurately identify human reactive balance, but not normal and daily

standing balance.

In this Part, we present two different methods to quantify the normal balancing

mechanisms of humans without applying perturbation.

In Chapter 12, we developed a systematic method for identifying dynamics and

control of human standing based on force-plate data, motivated by a consistent pat-

tern observed in healthy humans, presented in [24]. Aiming to develop the simplest,

competent, and neuromechanically justifiable dynamic model that could account for

the pattern, we first explored the minimum number of degrees of freedom required

for the model. Then, we exploited the structure of a well-established optimal control

theory that was parameterized to maximize physiologically-relevant insight.
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In Chapter 13, we explored a mathematically rigorous system identification method

to identify the dynamics of human standing based on a time-series of joint motion

data. With a biomechanically reasonable model of the multi-joint human body, the

method could reliably estimate the state feedback controller. The method was vali-

dated using numerical simulations, which established a foundation for experimental

studies to identify human balance mechanisms without applying perturbation and

without exact information about internal biological noise.
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Chapter 12

Frequency-Dependent Force Direction

Elucidates Neural Control of Balance

This work was conducted in collaboration with Kaymie Shiozawa (MIT, Newman Lab

for Biomechanics and Human Rehabilitation), Prof. Dagmar Sternad (Northeastern

University, Action Lab), and Dr. Marta Russo (the same), with insightful input from

Prof. Kreg Gruben (University of Wisconsin, Neuromuscular Coordination Labora-

tory). Kaymie Shiozawa conducted numerical simulation and analyzed the numerical

data. I mentored Kaymie, developed simulations, and performed mathematical anal-

ysis of the intersection point. Dr. Marta Russo and Prof. Sternad helped frequency

analysis and statistical analyses, and provided insightful comments throughout the

work.

This work was supported by a Samsung scholarship. This work was also supported

by NSF-CRCNS 1724135 awarded to Prof. Neville Hogan and by NSF-CRCNS-

1723998 awarded to Prof. Dagmar Sternad.

This work was published in [192].

12.1 Background

Controlling balance during standing and walking is a fundamental necessity for human

mobility. Although maintaining upright posture involves little overt movement, its
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inherently unstable nature poses an interesting sensorimotor control problem [11,76,

147,158].

While many recent studies have investigated reactive balance by applying pertur-

bations to the individual [64, 94, 158, 215], it is also important to understand how

humans maintain their balance without external perturbations, i.e., during quiet

standing. In particular, the center of pressure and the fluctuations of the center

of mass have been commonly used to evaluate balance performance during quiet

standing [39, 131]. However, studying the center of mass and/or the center of pres-

sure trajectories alone is insufficient to describe the complex dynamics and control

of the multi-segmented human body. Insights can be gained by investigating how

humans use the direction of their foot-ground interaction force, which is the outcome

of a complex sensorimotor control process that involves timed muscle activity, biome-

chanical constraints, and sensory feedback from multiple pathways. Importantly, the

ground reaction force directly contributes to the centroidal dynamics of the human

body [148]. The orientation of the ground reaction force vector and where its line-

of-action lies relative to the center of mass may give further insight into how human

subjects control the translational motion of the center of mass and net angular motion

of the body.

Recently, Gruben and colleagues suggested a new method to study the relation

between the orientation of the ground reaction force vector and the center of pressure

in human subjects during quiet standing [24, 232]. Net ground reaction forces at

different times, which have different orientations and points of application (centers

of pressure), intersect at some point in space. The authors defined this point as the

intersection point and examined its relation to the center of mass of the standing

individual. Because the height of the intersection point relative to the center of mass

determines the translational and angular components of centroidal accelerations, it

provides a compact geometric representation that is useful for understanding the

dynamics and control of human standing balance. When analyzing the force vectors

in the frequency domain, this previous study [24] found that the vertical position

of the intersection point exhibited a consistent pattern across subjects. With this

174



observation, the authors suggested that the frequency-dependent intersection point

characterizes the neural controller of human balance. However, the biomechanics of

upright posture might account for some of the variation of intersection point height

across different frequency bands.

This study therefore aimed to elucidate the extent to which the frequency-dependent

variation of the intersection point could be attributed to neural control strategies or

to biomechanics. To that end, the first objective was to develop the simplest, com-

petent, and neuromechanically justifiable dynamic model that could account for the

consistent pattern observed across multiple subjects [24]. Second, we examined the

hypothesis that the neural control strategies in standing balance would economize con-

trol effort [94]. To test this hypothesis, we took advantage of the Linear Quadratic

Regulator (LQR) [197], a well-established optimal control method, that enabled a

systematic search of physiologically-plausible controller parameters [76,99,210,211]

12.2 Methods

12.2.1 Human Experiment

Experimental Procedure

In the previous study [24], ten unimpaired, young participants (24.2 ± 10.3 years)

were asked to stand quietly while viewing a mark at head height 1 m away. Each

participant completed one 50 s trial standing on a 6-axis force-plate measuring at

1000 Hz. The subjects’ average mass and height were 71 kg and 1.75 m, respectively.

Intersection Point

The intersection point was defined as a point in space where the net ground reaction

force vectors at adjacent time-steps intersect [24], as illustrated in Fig. 12-1. The

intersection point is a geometric representation of the relation between the ground

reaction force and the center of pressure in human subjects. This point was orig-

inally identified with the goal to understand how humans maintain balance during
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Figure 12-1: a A net ground reaction force, F, made up of horizontal and vertical
components, 𝐹𝑥 and 𝐹𝑧, acts at the center of pressure, CoP, and has an orientation 𝜃𝐹 .
The center of mass, CoM, is also shown. b Two force vectors from two different time
points, which are defined by their respective 𝜃𝐹 and CoP, intersect at the intersection
point, IP.

walking [66,125]; Gruben and colleagues were the first to apply it to understand the

mechanics of standing balance [24].

Assuming subtle movements of the body and small variations in ground reaction

force orientations, the orientation of the ground reaction force (𝜃𝐹 ) can be approxi-

mated as

− 𝐹𝑥

𝐹𝑧

= tan 𝜃𝐹 ≈ 𝜃𝐹 , (12.1)

where 𝐹𝑥 and 𝐹𝑧 are the horizontal and vertical components of the net ground reaction

force, respectively.

The height of the intersection point (𝐼𝑃 ) of two forces at adjacent times (𝐹 (𝑡), 𝐹 (𝑡+

𝛿𝑡)) is

𝐼𝑃 (𝑡) =
CoP(t)− CoP(t + 𝛿t)

𝜃𝐹 (𝑡)− 𝜃𝐹 (𝑡 + 𝛿𝑡)
,

where CoP(𝑡) is the center of pressure at time 𝑡.
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Frequency-Dependence of the Intersection Point

Investigating the system response in the frequency domain often yields insight into

the structure of a dynamic system. To parse the time series into frequency bands, a

Hamming window with the length of the entire data set was first applied to both 𝜃𝐹

and CoP signals. 𝜃𝐹 and CoP signals were then bandpass-filtered (zero-lag, 2nd-order

Butterworth) and parsed into bands of 0.2 Hz width centered on frequencies from 0.5

to 7.9 Hz (38 nominally non-overlapping bands). Finally, the principal eigenvector of

the best-fit covariance matrix of 𝜃𝐹 plotted against CoP (both signals detrended to

have zero-mean) was extracted for each band. Its slope is equivalent to the inverse

of the intersection point, as illustrated in Fig. 12-2. This is because, assuming small

variation between the forces,

𝜃𝐹 (𝑡 + 𝛿𝑡) ≈ 𝜃𝐹 (𝑡) + 𝛿𝜃𝐹 (𝑡),

CoP(t + 𝛿t) ≈ CoP(t) + 𝛿CoP(t),

the lower-order component of the intersection point height (𝐼𝑃 ) can be approximated

as

𝐼𝑃 ≈ 𝑑CoP

𝑑𝜃𝐹
, (12.2)

and re-arranging (12.2) results in

𝑑𝜃𝐹 =
1

𝐼𝑃
𝑑CoP. (12.3)

Gruben and colleagues [24] found that the vertical position of the intersection

point exhibited a consistent pattern across subjects: it was above the center of mass

at low frequencies and decreased as frequency increased, reaching an asymptote below

the center of mass at higher frequencies as shown in Fig. 12-4a in the results section.
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Figure 12-2: Relation between 𝜃𝐹 and CoP for one simulation trial. The data were
processed by filtering the CoP and 𝜃𝐹 signals using a 2nd-order bandpass filter with
a 0.2 Hz wide frequency band. The principal eigenvector of the covariance matrix
of the filtered data was extracted. The intersection point (IP) was computed as the
inverse of the angle of the principal eigenvector. Note that the time series of the data
was approximated as an ellipse in this schematic illustration.

12.2.2 Simulation

Single Inverted Pendulum Model

We first investigated whether a single inverted pendulum, which is a widely accepted

model for human quiet standing [147], could reproduce the experimental observa-

tions. Theoretical analysis showed that the model could not adequately reproduce

the experimental observation in [24], because the intersection point height of the sin-

gle inverted pendulum was always above the center of mass (Appendix 12.6). Hence,

a multi-degree-of-freedom model was required.

Double Inverted Pendulum Model

The double inverted pendulum model that was used to simulate a multi-segmented

human body is illustrated in Fig. 12-3. The lumped model parameters summarized

in Table 12.1 used the anthropometric distribution of male subjects in the sagittal
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Figure 12-3: Double inverted pendulum model with angle (𝑞𝑖) and torque (𝜏𝑖) con-
ventions and parameter values for mass (𝑚𝑖), length (𝑙𝑖), center of mass (𝑙𝑐𝑖), and
moment of inertia about the center of mass (𝑗𝑖). The direction of gravity (𝑔) is also
defined.

plane [42] based on the average height and weight of the subjects from [24]. Any mass

and length below the ankle was neglected, as the simulation assumed the ankle to be

a pin joint. The center of mass positions were measured with respect to the ankle

joint for link 1 and the hip joint for link 2. The moments of inertia were calculated

about the center of mass of each link.

Table 12.1: Lumped Model Parameters

Symbol Parameter (units) Value
Link 1

Lower Body
Link 2

Upper Body
𝑚 Mass (kg) 26.30 42.88
𝑙 Length (m) 0.867 0.851
𝑙𝑐 Center of mass(m) 0.589 0.332

𝑗
Moment of
inertia (kgm2) 1.400 2.227

𝑔
Gravitational
acceleration (m/s2) 9.81

179



The equations of motion of the double inverted pendulum were

M(q)q̈ + C(q, q̇)q̇ + G(q) = 𝜏 , (12.4)

where M(q) ∈ R2×2 is the inertia matrix, C(q, q̇) ∈ R2×2 contains the Coriolis and

centrifugal terms, G(q) ∈ R2×1 are gravitational torques, and 𝜏 = [𝜏1, 𝜏2]
𝑇 ∈ R2×1 is

the joint torque vector (see Appendix 12.7 for full symbolic inertia, centrifugal, and

gravitational matrices). Generalized coordinates are q = [𝑞1, 𝑞2]
𝑇 ∈ R2×1 as defined

in Fig. 12-3. These variables represent the sagittal plane angular displacements of

the ankle and hip joints respectively.

Defining the state vector as x = [q𝑇 , q̇𝑇 ]𝑇 , (12.4) can be rewritten in state-

determined form as

ẋ =

⎡⎣ q̇

−M(q)−1(C(q, q̇)q̇ + G(q)) + 𝜏

⎤⎦ . (12.5)

The internal perturbations that cause persistent sway in quiet standing were simulated

by additive noise,

𝜏 = 𝑢 + w, (12.6)

where 𝑢 = [𝑢1, 𝑢2]
𝑇 are the ankle and hip torques that stabilize the body. In this

study, we assumed the noise w ∈ R2×1 was white, mutually uncorrelated, and followed

a zero-mean Gaussian distribution with covariance matrix 𝐸{ww𝑇} = 𝑑𝑖𝑎𝑔{𝜎2
1, 𝜎

2
2}.

The relative strength of the two noise sources was defined as 𝜎𝑟 = 𝜎1/𝜎2, where 𝜎1

and 𝜎2 are the noise at the ankle and hip, respectively.

𝐹𝑥 and 𝐹𝑧, the horizontal and vertical components of the ground reaction force,

were computed as follows

𝐹𝑥 = 𝑚𝑟𝐶𝑜𝑀,𝑥, 𝐹𝑧 = 𝑚(𝑟𝐶𝑜𝑀,𝑧 + 𝑔),

where 𝑚 = 𝑚1+𝑚2 is the total mass of the body, 𝑟𝐶𝑜𝑀,𝑥 and 𝑟𝐶𝑜𝑀,𝑧 are the horizontal

and vertical components of the center of mass acceleration. The center of pressure
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was then computed as

CoP =
𝜏1
Fz

. (12.7)

Linear Quadratic Regulator

This study used a nonlinear model with a linear controller. Hence, the nonlinear

equations of motion (12.5) were first linearized about the upright balancing posture

at rest (x* = 0 and 𝜏* = 0) as follows

˙̄x = A𝑙𝑖𝑛x̄ + B𝑙𝑖𝑛�̄� + B𝑙𝑖𝑛w, (12.8)

where x̄ = x − x* = x, �̄� = 𝑢 − 𝑢* = 𝑢, and A𝑙𝑖𝑛 and B𝑙𝑖𝑛 are linearized state

and input matrices, respectively (see Appendix 12.8 for the linearized state-space

matrices).

As normal human standing is evidently stable in the upright position, the LQR

method was chosen as it guarantees a stable closed-loop system1. The LQR is an

optimal linear state-feedback controller that minimizes the quadratic cost function

𝐽 =

∫︁ ∞

0

[x𝑇 (𝑡)Qx(𝑡) + 𝑢𝑇 (𝑡)R𝑢(𝑡)]𝑑𝑡 (12.9)

to determine control torques

𝜏ctl = −K𝐿𝑄𝑅x, (12.10)

where K𝐿𝑄𝑅 is the optimal control gain matrix found via the LQR procedure. The

matrices Q and R in (12.9) weight the state and input deviations from zero.

1To ensure stability, the state-space matrices A𝑙𝑖𝑛 and B𝑙𝑖𝑛 must be a controllable pair, the Q
matrix must be symmetric positive semi-definite, and the R matrix must be symmetric positive
definite.
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We parameterized the input weighting matrix2 as

R = 𝛼

⎡⎣𝛽 0

0 1/𝛽

⎤⎦ , (12.11)

to facilitate exploration of two important features: the relative cost between state de-

viation and control effort, determined by the parameter 𝛼, and the relative magnitude

of hip and ankle effort, determined by the parameter 𝛽.

When 𝛼 is large, control effort is reduced to a minimum value required for stability.

Thus, with this choice of 𝛼, the need to add joint torque limits to the model was

eliminated. Additionally, with large 𝛼, the resulting closed-loop system has a well-

defined behavior (placing its poles at the mirror images of the unstable open-loop

poles) that is independent of the state weighting matrix Q. To evaluate the working

hypothesis that humans economize effort, the minimal-effort solution was of interest.

Consequently, the choice of the state weighting matrix was not critical, and Q = 𝐼4,

the identity matrix with dimension 4, was chosen to equally penalize each state’s

deviation from equilibrium.

When 𝛽 > 1, the ankle torque is penalized more heavily than the hip, and vice

versa when 𝛽 < 1. Since the LQR controller minimizes a quadratic cost function

(12.9) to achieve stability, only the symmetric components of R affect the result.

The diagonal values of R were selected such that the size of the matrix (i.e., the

product of its eigenvalues) was always equal to 1 and only the components’ ratio

affected the results. This choice of parameters also allowed for conclusions to be

drawn about the relative penalty on the ankle and hip joints.

2The off-diagonal elements were deliberately set to zero to reduce the number of parameters to
fit. In human, there is no muscle that spans over the hip and ankle simultaneously, justifying the
choice. It is possible that active neural feedback control may yield non-zero off-diagonal terms. If
this parameterization fails to reproduce human experimental data, one may add coupling terms to
the matrix R.
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Simulation Protocol

The simulation was conducted using semi-implicit Euler integration. The initial con-

dition was set to x0 = [0, 0, 0, 0]𝑇 . Replicating the experimental protocol of Gruben

and colleagues [24], each simulation was run for 50 s at 1000 Hz. All simulations were

conducted in MATLAB 2020a (Mathworks, Natick MA).

To observe the effect of altering the LQR parameters on the frequency-dependence

of the intersection point and to find the simplest model that could reproduce the

human data, various parameters were tested using the following procedure. First, the

parameter that weights the relative cost of the control input, 𝛼, was set to a large

value to ensure minimal control (𝛼 > 104). This design choice effectively reduced the

number of parameters to two (𝛽 and 𝜎𝑟) as the essential intersection point frequency-

dependence (above the center of mass at low frequencies, below at high frequencies)

varied little as long as 𝛼 was sufficiently large. Then the noise ratio, 𝜎𝑟, was adjusted

to produce the best fit at high frequencies while setting 𝛽 = 1. Lastly, 𝛽 was varied

to produce the best fit in the frequency range where the intersection point height was

approximately equal to the center of mass height. At the same time, it was ensured

that the asymptotic behavior and the fit at high frequencies were maintained.

40 trials were conducted for each tested parameter set to enable statistical analysis

of the simulated dependence of the intersection point height on frequency.

12.2.3 Comparison of Simulation and Human Experimental

Results

When determining the goodness of fit across different model parameter conditions,

the average difference of the simulated data and the human subject data from [24]

was computed over selected frequency bands by

average difference =

∑︀𝑁
𝑖=1 Human Data𝑖 − Simulation Data𝑖

𝑁𝑏𝑎𝑛𝑑

, 𝑖 = 1, 2, ...𝑁𝑏𝑎𝑛𝑑.
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Figure 12-4: Comparison of the intersection point’s frequency-dependence from: a
Human experimental data (reproduced from [24] with permission) and b Simulation
data with best-fit parameters. c The mean of the best-fit simulation data overlaid
on the median of the human data from [24]. Within the frequency band from 1.2 –
2.6 Hz for the human data, there was no significant difference (with 95% confidence)
between the mean of the intersection point height and the center of mass height. This
frequency band is marked by the shaded region. The high-frequency asymptote (3
– 8 Hz range) of the intersection point was 0.479 ± 0.028 and 0.468 ± 0.021 for the
human and simulation data, respectively (with 95% confidence).

where Human Data𝑖 is the median of the intersection point height as a fraction of the

center of mass height reported by Gruben and colleagues [24] at each frequency band;

Simulation Data𝑖 is the average intersection point height as a fraction of the center of

mass height across 40 trials of the simulation data in a given frequency band; 𝑁𝑏𝑎𝑛𝑑

is the number of frequency bands for which the difference in the data was computed.

Because balance is characterized by only small motions, a constant center of mass

height was assumed.

To identify the onset of the high-frequency asymptote, the human data were fit

to an exponential function. The best-fit decay constant was 𝑇 ∼= 1 Hz. Assuming

the curve reached its asymptote at frequency ∼= 3𝑇 , the asymptote started at 3 Hz.

Therefore, the difference between the simulated and experimental asymptote was

evaluated at frequencies from 3 to 8 Hz (𝑁𝑏𝑎𝑛𝑑 = 25). To evaluate the effect of

different controller parameters on the frequency range in which the experimentally

observed intersection point height crossed the center of mass height, the average

difference between simulation and human data was evaluated at frequencies from

1.2 - 2.6 Hz (𝑁𝑏𝑎𝑛𝑑 = 7). This range encompassed the frequencies in which the

observed intersection point height was not statistically different from the center of
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mass height in human subject experiments [24]. One-sample t-tests were used to

evaluate the difference between the center of mass height and the simulated mean

intersection point height. The 95% confidence interval of the mean of the difference

was computed as well.

12.3 Results

12.3.1 Minimum Required Model Complexity

Theoretical analysis showed that a single-degree-of-freedom inverted pendulum model

could not reproduce the experimental observation in [24]. The intersection point

height of a single inverted pendulum model was always above the center of mass for

any selection of parameters (Appendix 12.6). Hence, we proceeded with a double

inverted pendulum, i.e. with two degrees of freedom, to approximate the multi-

segmented human body.

12.3.2 Best-Fit Model Parameter Set

The simulated center of mass height did not deviate far from 0.97 m, the height of

the center of mass when perfectly upright, justifying the assumption of small angular

displacement. In what follows, the center of mass height was therefore assumed to be

constant.

The simulated frequency-dependent intersection point response for the parameter

set, 𝛼 = 106, 𝛽 = 0.3, 𝜎𝑟 = 0.9, best matched the human subject data from [24]

as shown in Fig. 12-4. Both simulations and human experimental results show that

the intersection point height crossed the center of mass height in similar frequency

bands (1.2 – 2.6 Hz) and had similar asymptotes at higher frequencies. The difference

compared to human data for this parameter set was 0.101 ± 0.040 in the 1.2 – 2.6

Hz range and 0.011 ± 0.019 in the 3 – 8 Hz range (both within the 95% confidence

interval).
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12.3.3 Varying Model Parameters

Varying the simulation parameters affected both the frequency at which the intersec-

tion point crossed the height of the center of mass and the high-frequency asymptote.

The effect of changing parameter values is presented in Fig. 12-5a, 12-5b, and 12-5c.

The differences between simulation and human data for certain parameter sets are

shown in Fig. 12-5d and 12-5e.
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Figure 12-5: Effect of varying parameter values on the frequency-dependence of the
intersection point. Each model parameter was varied with respect to the “best-fit”
parameter set that closely resembled human subject data observed in [24] (𝛼 = 106,
𝛽 = 0.3, 𝜎𝑟 = 0.9). The height of the center of mass is indicated by a dashed line.
The shaded region, based on human experiments, indicates the frequency band in
which the mean of the intersection point height was not significantly different from
the center of mass height in [24]. a The parameter 𝛼 determined the cost of the
overall magnitude of the control effort relative to state deviation from equilibrium.
When varying 𝛼, the other parameters were set to 𝛽 = 0.3 and 𝜎𝑟 = 0.9. b The
parameter 𝛽 determined the relative cost of ankle and hip torque. When 𝛽 > 1, there
was more penalty on ankle torque. When varying 𝛽, the other parameters were set to
𝛼 = 106 and 𝜎𝑟 = 0.9. c The parameter 𝜎𝑟 determined the relative strength of noise
in the ankle and the hip. When 𝜎𝑟 > 1, ankle noise was greater than hip noise. When
varying 𝜎𝑟, the other parameters were set to 𝛼 = 106 and 𝛽 = 0.3. d The difference
of the intersection point in the 1.2 – 2.6 Hz frequency range of the simulated data
compared to the human subject data [24] with respect to 𝛽. The parameter 𝜎𝑟 was
kept at 0.9. e The difference of the intersection point in the 3 – 8 Hz frequency range
of the simulated data compared to the human subject data [24] with respect to 𝜎𝑟.
The parameter 𝛽 was kept at 0.3. In both cases, the effect of varying 𝛼 is also shown.
The error bars indicate the 95% confidence interval of the mean of difference when
𝛼 = 106.
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Effect of 𝛼

As shown in Fig. 12-5a, when 𝛼, the weighting of control effort relative to state

deviation, was increased, the intersection point crossed the center of mass at lower

frequencies. For example, when 𝛼 was varied from 10−4 to 106, the frequency at which

the intersection point crossed over the center of mass moved from 3.9 Hz to 1.5 Hz.

As expected from theory, when 𝛼 was relatively large (𝛼 > 104), there was little effect

of varying its value on the difference between human and simulation data for different

model parameter sets, as shown in Fig. 12-5d and 12-5e.

Effect of 𝛽

As in Fig. 12-5b, when 𝛽 was decreased, i.e. when hip control was penalized more than

ankle control, the intersection point crossed the center of mass at higher frequencies.

For example, when 𝛽 was varied from 1 to 0.3, the frequency at which the intersection

point crossed over the center of mass moved from 1.1 Hz to 1.5 Hz. In Fig. 12-5d,

𝛽 = 0.2 was shown to be the parameter with the smallest difference (0.024) in the

1.2-2.6 Hz range when 𝛼 = 106. However, both the selection of 𝛽 = 0.2 and 𝛽 = 0.1

sacrificed the high-frequency fit, increasing the absolute value of the difference in that

range by 0.102 and 0.292, respectively, compared to 𝛽 = 0.3 when 𝛼 = 106. As 𝛽

deviated from 𝛽 = 0.3, the absolute value of the difference in the 1.2 – 2.6 Hz range

increased by 0.181 when 𝛽 = 1 and 𝛼 = 106.

Effect of 𝜎𝑟

Adjusting 𝜎𝑟 shifted the high frequency asymptote (3 – 8 Hz) of the intersection point,

as shown in Fig. 12-5c. Variation of the high-frequency asymptote of the intersection

point height was predicted by the analysis presented in Appendix 12.9. Here, the

two extremes, zero noise in the ankle (𝜎𝑟 = 0) and the hip (𝜎𝑟 =∞), provided lower

and upper bounds for the high frequency asymptote. When compared to the best-fit

height of the intersection point at high frequencies, the asymptote was 55% higher

when 𝜎𝑟 = 2 (more noise in the ankle) and 30% lower when 𝜎𝑟 = 0.5 (more noise
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in the hip). In Fig. 12-5e, 𝜎𝑟 = 0.9 is shown to be the best-fit parameter with the

smallest difference value, at -0.011 when 𝛼 = 106. As 𝜎𝑟 deviated from the best-fit

value, the difference increased to 0.245 when 𝜎𝑟 = 2 and to -0.154 when 𝜎𝑟 = 0.5,

when 𝛼 = 106.

12.4 Discussion

This study analyzed a deliberately simplified model of human quiet standing with a

stabilizing linear optimal controller to better understand the origin of the frequency-

dependent intersection point reported by Boehm et al [24].

The simplest competent model required two degrees of freedom (ankle and hip)

with a stabilizing controller that used minimal control effort and more ankle torque

than hip torque. We successfully identified a narrow range of parameters that pro-

vided not only a quantitative reproduction of experimental observations, but also

qualitative insight.

12.4.1 Neural Control or Biomechanics?

Despite the biomechanical constraints that limit the admissible center of mass ac-

celerations and the centers of pressure [99, 101], the ground reaction force options

to comply with these constraints are infinite [50, 66]. Beyond the obvious fact that

the musculo-skeletal system is inherently unstable without a neural controller, we

should not expect mechanics alone to determine the intersection point’s frequency

dependence. When Gruben and colleagues [24] analyzed the frequency dependence of

the intersection point, they observed a consistent trend across multiple subjects and

suggested that this consistency was the signature of a neural controller employed by

humans during balance.

The results of our simulations replicated the frequency dependence of the intersec-

tion point reported for human standing in the sagittal plane—the intersection point

was above the center of mass at low frequencies and below the center of mass at high

frequencies, as shown in Fig. 12-4.

188



To understand the general frequency-dependent trend of the intersection point,

first consider an extreme case at very low frequencies where the two-degree-of-freedom

pendulum behaves similar to a single rigid body: its intersection point would be

above the center of mass, like that of the single inverted pendulum (Appendix 12.6).

A double inverted pendulum can also be stabilized solely by hip torque, i.e. zero

ankle torque. In the latter case, the system would exhibit higher frequency behavior

while maintaining the intersection point height to be zero (from (12.7) and (12.2)

with 𝜏1 = 0). This indicates that the general trend for the intersection point to

be above the center of mass at low frequencies and below at high frequencies may

be a consequence of biomechanics, i.e. a double inverted pendulum stabilized about

upright posture.

However, biomechanics cannot account for the specific details of the frequency

variation of the intersection point height. Somewhere between the low-frequency and

high-frequency regimes, the intersection point must cross from above to below the

center of mass height; this particular crossing point is not specified by biomechanics.

Similarly, biomechanics does not dictate the asymptote to which the intersection point

height converges at high frequencies. In fact, both the intersection point’s asymptote

and the frequency at which the intersection point height crossed that of the center

of mass varied substantially across the tested parameter values. Only a small set

of model parameters could replicate human behavior. Therefore, we conclude that

the details of the profile of intersection point height with frequency reflect a neural

control strategy used by humans during quiet stance.

12.4.2 Physiologically-Plausible Best-Fit Parameters

The main contribution of this work is to deploy a deliberately-simplified mathematical

analysis to elucidate how experimental observations of the frequency-dependence of

the intersection point may inform the neural control of balance. To conduct this

quantitative analysis, the model parameters were systematically varied such that the

simulated intersection point frequency-dependent response closely replicated human

data. To facilitate analysis, we took advantage of the LQR procedure and its well-
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known properties.

Selecting 𝛼 = 106 yielded the best-fit result compared to human data, suggesting

that a double inverted pendulum model with minimal control effort can successfully

account for the frequency-dependent intersection point response observed in humans.

Though it is widely assumed that humans generally minimize effort, supporting ev-

idence during quiet standing has been sparse. Our results show that the observed

variation of intersection point height with frequency implies that humans minimize

control effort rather than reduce state deviation during quiet standing. This is consis-

tent with the conclusion of a previous study reporting that the nervous system does

not exert more control effort than necessary to stabilize upright balance [94].

Long transmission delays in the neural system pose a risk to stability of the balance

controller. To account for this, the continuous feedback loop gain must be effectively

zero at high frequencies regardless of variations in other model parameters. However,

muscle mechanical impedance is not limited in this way; it can respond essentially

instantaneously. Behavior in the high frequency range is therefore not likely to depend

on neural feedback (defined by 𝛼 and 𝛽), but instead on neuromuscular impedance

and noise (defined by 𝜎𝑟). Hence, the noise ratio, 𝜎𝑟, was adjusted to fit the high-

frequency range before fitting the low-frequency range with 𝛽.

Altering the relative noise magnitude in the ankle and the hip torques (𝜎𝑟) shifted

the high-frequency asymptote of the intersection point height. The simulation result

most similar to human experimental data had a 0.9 : 1 ankle-to-hip noise ratio.

The 𝛽 value that best described human data [24], 0.3, penalizes hip control effort

more than ankle control effort. That is, the system is more likely to use the ankle

to maintain upright posture than hip. This is consistent with previous findings that

humans primarily use the “ankle strategy” during quiet standing [75,99,139,178].

12.4.3 Single vs. Multi-Joint Model

The observed trend that the intersection point varied with frequency in humans re-

quires multi-segment mechanics (Appendix 12.6). Although the single inverted pen-

dulum model has been widely used to model quiet human standing [93,133,135,147,
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158, 226], our finding that a single-segment model cannot adequately describe quiet

standing is also consistent with recent literature [68,94,159,176,180].

Why no more than two degrees of freedom? It is patently obvious that the standing

human body has many more degrees of freedom. However, although adding a knee

joint [233] or multiple segments of the spine might more accurately replicate human

biomechanics, it is unclear whether this would improve the insight to be gleaned from

experimental observations. In fact, as shown in Appendix 12.9, the two-segment

model yields a high-frequency asymptote for the intersection point height that must

lie between zero (corresponding to zero noise at the ankle) and below the center of

mass height (corresponding to zero noise at the hip). These two extremes bracket the

experimental observations reported by Gruben and colleagues [24]. Thus, the two-

segment model used in this study was the simplest that could competently reproduce

the experimental results observed by Boehm et al [24].

12.4.4 Intersection Point: A Target Variable of Control or an

Emergent Consequence?

In this study, the feedback signal was the state error (joint angles and velocities) rather

than the intersection point height. Even so, the control model was able to replicate the

frequency dependence of the intersection point found in humans. Hence, it appears

that the intersection point may be an emergent consequence of stabilization rather

than a variable explicitly regulated by the controller. Consistent with this hypothesis,

a previous study suggested that the force direction pattern observed in human walking

might be an emergent property rather than a target variable of control [138]. However,

further experimentation would be required to test this hypothesis.

12.4.5 Limitations

The simulations conducted in this study assumed simple mechanics. The joint torques

in the model are net joint torques that summarize the contributions of various ele-

ments, from passive muscle properties to complex neural control. Known features of

191



neuromuscular physiology such as muscle mechanical impedance, neural transmission

delay, or sensory noise were omitted. While these features are unquestionably present,

our goal was to identify the simplest model competent to reproduce experimental ob-

servations. Despite the lack of muscle- and nerve-level detail, our simulations were

able to articulate subtle differences between control parameters that influence the

frequency-dependence of the intersection point. Nevertheless, including those neuro-

physiological features might yield further insight; that is deferred to future work.

This study employed a linear full-state feedback controller with a constant gain

matrix (proportional feedback of angle and angular velocity) even though the cen-

tral nervous system comprises many nonlinear neural elements. This decision was

motivated by the observation that the body generates only small motions about the

upright posture, justifying the use of a linearized model to obtain feedback controller

gains. This observation also justified the choice of additive noise, as higher-order

terms that characterize nonlinear noise processes are negligible. We therefore mod-

eled the noise as white. However, some studies have indicated that biological noise

may be better described by ‘pink’ or Brownian noise [216]. Since the low-pass filter

property of inertial mechanics suppresses high-frequency components of the spectrum,

this noise model proved to be a convenient and viable option.

Finally, the model employed in this study assumed a perfect state estimator.

Future studies might assess the effect of including sensory information into the mo-

tor controller by employing other control architectures, for instance, using an adap-

tive [215] or optimal state estimator [99] instead of perfect full-state measurements.

Another important point to highlight is that we do not presume that the central

nervous system actually implements the linear regulator used in our model. The

LQR design procedure was simply a tool to generate stabilizing controllers while

simultaneously analyzing the influence of factors like the cost of control on balance

performance.
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12.5 Conclusion

This study showed that a double inverted pendulum stabilized by a linear minimal-

effort controller could account for the ground reaction force pattern observed in human

quiet standing. Numerical simulations also informed the contribution of neural con-

trol and biomechanics in generating the pattern observed in human data, i.e. the

frequency-dependence of the intersection point. The results suggest that the intersec-

tion point conveys quantitative information about human balance control strategies.

This study introduced a method to select optimal control and noise parameters

that best reproduced human data. This method might be extended to study human

neural control strategies in different contexts, e.g., balance in the frontal plane, bal-

ance on a beam, balance with and without assistive devices, or in other populations

such as aged or neurologically impaired subjects.

12.6 Appendix 1: Intersection Point of the Single

Inverted Pendulum

The intersection point below center of mass at high frequencies observed in human

data cannot be reproduced by a single inverted pendulum model. Consider a single

inverted pendulum with mass 𝑚, center of mass position from the pivot 𝑙𝑐, moment

of inertia about pivot 𝑗′, gravitational acceleration 𝑔, and actuated by ankle torque

𝜏 . The equation of motion is

𝑗′𝑞 −𝑚𝑔𝑙𝑐 sin 𝑞 = 𝜏 = 𝑢 + 𝑤, (12.12)

where 𝑞 is the angular displacement of the ankle joint with respect to the upright

equilibrium posture, 𝑢 is the control torque, and 𝑤 is the additive actuation noise.

For small motion typical of quiet standing, linearization of (12.12) is well justified:

𝑗′𝑞 −𝑚𝑔𝑙𝑐𝑞 = 𝜏.

193



As introduced in (12.3), the intersection point is defined in terms of the orientation

of the force, 𝜃𝐹 , and the center of pressure, CoP:

𝜃𝐹 = −𝐹𝑥

𝐹𝑧

≈ 𝑚𝑙𝑐𝑞

𝑚𝑔
=

𝑙𝑐
𝑔
𝑞, 𝐶𝑜𝑃 =

𝜏

𝐹𝑧

≈ 𝜏

𝑚𝑔
=

𝑗′

𝑚𝑔
𝑞 − 𝑙𝑐𝑞.

Taking the Laplace transform:

Θ𝐹 (𝑠) =
𝑙𝑐
𝑔
𝑠2𝑄(𝑠), 𝐶𝑂𝑃 (𝑠) = (

𝑗′

𝑚𝑔
𝑠2 − 𝑙𝑐)𝑄(𝑠),

where 𝑠 is a complex variable, 𝑄(𝑠), Θ𝐹 (𝑠), and 𝐶𝑂𝑃 (𝑠) are the Laplace transforms

of 𝑞, 𝜃𝐹 , and 𝐶𝑜𝑃 , respectively. Denote 𝐻(𝑠) = 𝑄(𝑠)/𝑊 (𝑠), the transfer function

from input noise to output motion, where 𝑊 (𝑠) is the Laplace transform of 𝑤. To

investigate the intersection point at high frequency, consider 𝑠 = 𝑖Ω where 𝑖2 = −1

and Ω → ∞. As the first term of 𝐶𝑂𝑃 (𝑠) dominates, Θ𝐹 (𝑠) and 𝐶𝑂𝑃 (𝑠) have

the same phase. Then, the variation of two output variables will be linear at high

frequencies and the intersection point can be determined from the ratio of magnitudes

of the two outputs:

𝐼𝑃 (Ω) =
|𝐶𝑂𝑃 (𝑖Ω)|
|Θ𝐹 (𝑖Ω)|

=

𝑗′

𝑚𝑔
Ω2 + 𝑙𝑐
𝑙𝑐
𝑔

Ω2
=

𝑗′Ω2 + 𝑚𝑔𝑙𝑐
𝑚𝑙𝑐Ω2

.

As Ω→∞,

𝐼𝑃 (Ω)→ 𝑗′

𝑚𝑙𝑐
=

𝑗 + 𝑚𝑙2𝑐
𝑚𝑙2𝑐

= 𝑙𝑐 +
𝑗

𝑚𝑙𝑐
> 𝑙𝑐.

Note that the centroidal moment of inertia is 𝑗 = 𝑗′−𝑚𝑙2𝑐 . Therefore, the intersection

point height must be greater than the center of mass height. The single inverted

pendulum model cannot explain the intersection point behavior observed in human

studies.
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Figure 12-6: Single DoF model cannot have IP below CoM at any frequency.

12.7 Appendix 2: Nonlinear Model Equations

The equations of motion of the double inverted pendulum are expressed in (12.4).

Note that the choice of generalized coordinates, 𝑞1, 𝑞2, are consistent with the gener-

alized forces (torques) that are applied. The following details each component of the

matrices in terms of the variables in Table 12.1. 𝑗′1 and 𝑗′2 denote moment of inertia

taken about ankle and hip joints, respectively. 𝑙𝑐1 is the distance from the ankle joint

to the center of mass of link 1, and 𝑙𝑐2 is the distance from the hip joint to the center

of mass of link 2. cos (𝑞𝑖) and sin (𝑞𝑖) are replaced with 𝑐𝑖 and 𝑠𝑖, respectively. Setting

𝜃2 = 𝑞1 + 𝑞2, cos (𝜃2) and sin (𝜃2) are replaced with 𝑐𝜃2 and 𝑠𝜃2 , respectively.

M(q) =

⎡⎣𝑗′1 + 𝑗′2 + 𝑚2(𝑙
2
1 + 2𝑙1𝑙𝑐2𝑐2) 𝑗′2 + 𝑚2𝑙1𝑙𝑐2𝑐2

𝑗′2 + 𝑚2𝑙1𝑙𝑐2𝑐2 𝑗′2

⎤⎦

C(q, q̇) = 𝑚2𝑙1𝑙𝑐2𝑠2

⎡⎣−2𝑞2 −𝑞2
𝑞1 0

⎤⎦
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G(q) = −𝑔

⎡⎣𝑚1𝑙𝑐1𝑠1 + 𝑚2(𝑙1𝑠1 + 𝑙𝑐2𝑠𝜃2)

𝑚2𝑙𝑐2𝑠𝜃2

⎤⎦

The ground reaction forces are computed from the motion of the center of mass,

r𝐶𝑜𝑀(q) ∈ R2×1. The acceleration of the center of mass was computed as

r̈𝐶𝑜𝑀 = [𝑟𝐶𝑜𝑀,𝑥, 𝑟𝐶𝑜𝑀,𝑧]
𝑇 =

[︁
J̇𝐶𝑜𝑀 J𝐶𝑜𝑀

]︁
ẋ. (12.13)

J𝐶𝑜𝑀 ∈ R2×2 is the Jacobian of the center of mass with respect to the joint angles q

and x = [q, q̇]𝑇 is the state vector.

The Jacobian matrix and its derivative are given as follows:

J𝐶𝑜𝑀 = −
[︁
J𝐶𝑜𝑀,1 J𝐶𝑜𝑀,2

]︁
and

J̇𝐶𝑜𝑀 =

⎡⎣𝐽𝐶𝑜𝑀,(1,1) 𝐽𝐶𝑜𝑀,(1,2)

𝐽𝐶𝑜𝑀,(2,1) 𝐽𝐶𝑜𝑀,(2,2)

⎤⎦ ,

where

J𝐶𝑜𝑀,1 =

⎡⎣𝑀1𝑙𝑐1𝑐1 + 𝑀2(𝑙1𝑐1 + 𝑙𝑐2𝑐𝜃2)

𝑀1𝑙𝑐1𝑠1 + 𝑀2(𝑙1𝑠1 + 𝑙𝑐2𝑠𝜃2)

⎤⎦ ,

J𝐶𝑜𝑀,2 =

⎡⎣𝑀2𝑙𝑐2𝑐𝜃2

𝑀2𝑙𝑐2𝑠𝜃2

⎤⎦ ,

𝐽𝐶𝑜𝑀,(1,1) = 𝑀1𝑙𝑐1𝑞1𝑠1 + 𝑀2(𝑙1𝑞1𝑠1 + 𝑙𝑐2𝜃2𝑠𝜃2),

𝐽𝐶𝑜𝑀,(1,2) = 𝑀2𝑙𝑐2𝜃2𝑠𝜃2 ,

𝐽𝐶𝑜𝑀,(2,1) = −𝑀1𝑙𝑐1𝑞1𝑐1 −𝑀2(𝑙1𝑞1𝑐1 + 𝑙𝑐2𝜃2𝑐𝜃2),

𝐽𝐶𝑜𝑀,(2,2) = −𝑀2𝑙𝑐2𝜃2𝑐𝜃2 ,

and 𝑀1 = 𝑚1

𝑚1+𝑚2
and 𝑀2 = 𝑚2

𝑚1+𝑚2
.
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12.8 Appendix 3: Linearized State-Space Matrices

Linearizing the equations of motion about the stable upright position, we are left with

(12.8). The state-space matrices are

A𝑙𝑖𝑛 =

⎡⎣ 0 I

M−1 𝜕G
𝜕q

0

⎤⎦
x=x*,𝜏=𝜏*

B𝑙𝑖𝑛 =

⎡⎣ 0

M−1B

⎤⎦
x=x*,𝜏=𝜏*

,

where
𝜕G

𝜕q

⃒⃒⃒⃒
x=x*

= −𝑔

⎡⎣𝑚1𝑙𝑐1 + 𝑚2(𝑙1 + 𝑙𝑐2) 𝑚2𝑙𝑐2

𝑚2𝑙𝑐2 𝑚2𝑙𝑐2

⎤⎦
and B = I2.

12.9 Appendix 4: Intersection Point of the Linearized

Double Inverted Pendulum

Noting (12.1) and (12.7), consider two outputs y = [𝑦1, 𝑦2]
𝑇 : 𝑦1 = −𝐹𝑥 = −𝑚𝑟𝐶𝑜𝑀,𝑥,

𝑦2 = 𝜏1. From (12.13), 𝑦1 = −𝑚[1, 0]̈r𝐶𝑜𝑀 = −𝑚[1, 0][J̇𝐶𝑜𝑀 ,J𝐶𝑜𝑀 ]ẋ , J𝑦1ẋ. Then,

linearized output equations can be obtained as

y = Cx + D𝜏 =

⎡⎣C1

C2

⎤⎦x +

⎡⎣D1

D2

⎤⎦ 𝜏 ,

where C1 = J𝑦1A𝑙𝑖𝑛,D1 = J𝑦1B𝑙𝑖𝑛, evaluated at (x, 𝜏 ) = (x*, 𝜏*), and C2 = 0,D2 =

[1, 0]. With controller 𝜏 = −Kx + w as in (12.6) and (12.10), the closed-loop linear
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system can be constructed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ = (Alin −BlinK)x + Blinw = Aclx + Blinw

𝑦1 = (C1 −D1K)x + D1w = Ccl,1x + D1w

𝑦2 = (C2 −D2K)x + D2w = Ccl,2x + D2w.

(12.14)

The multi-input, multi-output (MIMO) transfer function can be obtained

Y(𝑠) = H(𝑠)W(𝑠), H(𝑠) =

⎡⎣𝐻11(𝑠) 𝐻12(𝑠)

𝐻21(𝑠) 𝐻22(𝑠)

⎤⎦
where Y(𝑠) and W(𝑠) are the Laplace transforms of y and w, respectively. The

intersection point at each frequency can be obtained by the procedure outlined in the

methods section, as the inverse of the slope of the principal eigenvector. If 𝑦1(𝑡) and

𝑦2(𝑡) are harmonic, this procedure is equivalent to finding the slope of the major axis

of an ellipsoid that the two signals form.

Assuming two harmonic signals 𝑦𝑖(𝑡) with magnitude 𝜈𝑖 and phase 𝜑𝑖 at frequency

Ω,

𝑦1(𝑡) = 𝜈1 sin(Ω𝑡 + 𝜑1), 𝑦2(𝑡) = 𝜈2 sin(Ω𝑡 + 𝜑2),

and an implicit formula for the ellipsoid can be written in quadratic form,

sin2 𝜑 = [𝑦2, 𝑦1]

⎡⎣ 1
𝜈22

− cos𝜑
𝜈1𝜈2

− cos𝜑
𝜈1𝜈2

1
𝜈21

⎤⎦⎡⎣𝑦1
𝑦2

⎤⎦
where 𝜑 = 𝜑1 − 𝜑2.

The eigenvector corresponding to the smaller eigenvalue is the major axis and its

slope is the inverse of the intersection point as in Fig 12-2.

Consider two extreme cases where the ankle noise is zero (𝑤1 = 0 and 𝜎𝑟 = 0)

and the hip noise is zero (𝑤2 = 0 and 𝜎𝑟 =∞). For example, when hip noise is zero,
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Figure 12-7: Height of the intersection point of the linearized double inverted pendu-
lum model with two extreme 𝜎𝑟 values: 𝜎𝑟 = 0 (hip noise only) and 𝜎𝑟 = ∞ (ankle
noise only).

substituting 𝑠 = 𝑖Ω,

𝑦1
𝑤1

(𝑖Ω) = 𝐻11 (𝑖Ω) ,
𝑦2
𝑤1

(𝑖Ω) = 𝐻21 (𝑖Ω)

and

𝜈1 = |𝐻11 (𝑖Ω)| , 𝜑1 = ∠𝐻11 (𝑖Ω) ,

𝜈2 = |𝐻21 (𝑖Ω)| , 𝜑2 = ∠𝐻21 (𝑖Ω) .

The intersection point height can be calculated using this method at different fre-

quencies as shown in Fig. 12-7. We numerically validated that the system response

with any 𝜎𝑟 is bounded by these two extreme responses. It seems possible to analyt-

ically derive the shape of the intersection point, given a feedback controller gain and

given noise ratio 𝜎𝑟, but this is left for future study.
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Chapter 13

Identifying human postural dynamics

and control from unperturbed balance

This work was conducted in collaboration with Kuangen Zhang (co-affiliated with

Southern University of Science and Technology, China and University of British

Columbia, Canada; a visiting student at Newman Lab for Biomechanics and Hu-

man Rehabilitation, MIT). We worked together to formulate the problem, develop

the method, refine the mathematics, and analyze the simulation results.

This research was supported by a Samsung scholarship. This was also supported

by the MIT-SUSTech centers for mechanical engineering research and education.

Kuangen Zhang was supported in part by funding from the University of British

Columbia.

This work was published in [113].

13.1 Background

13.1.1 Previous Studies to Identify Balance

Identifying Dynamics by Perturbing Balance

Studies of human postural control can be broadly classified into two different exper-

imental paradigms: perturbed balance and unperturbed balance [22, 217]. In per-
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turbed balance, external perturbations are applied to challenge participants’ balance,

e.g. by applying pushing/pulling forces or translating/rotating a platform on which

they stand. Those perturbations have traditionally been regarded as necessary to

identify the dynamics of human postural control, because the input (external pertur-

bation) and output (motion in response to the perturbation) are directly measured,

allowing application of well-established closed-loop system identification techniques

to obtain a robust and reliable input-output dynamic relation [54,64,94,217]. While

insights into sensorimotor control of balance may be gained in this way, it should

be noted that humans are notoriously adaptive and are likely to change behavior in

response to the applied perturbations [22]. For example, Park et al. [152] showed that

postural feedback gains scaled with the magnitude of the applied disturbance. Hence,

the closed-loop dynamics and control estimated in this way may not well represent

those of daily activity.

Understanding Natural Balance without Perturbations

In contrast, unperturbed balance studies do not apply external perturbation. Instead,

the only challenges to individuals’ balance arise from internal biological noise in motor

and / or sensory systems. The response to this biological noise may be used to inves-

tigate humans’ natural postural control. Unperturbed balance also includes studies

to understand humans’ remarkable balance ability in challenging environments, such

as on a narrow beam [37, 79, 112, 182]. In these environments, applying external

perturbation is often avoided because the environment itself is so challenging that

participants may lose balance before enough data has been collected.

Consistent behavioral patterns observed across individuals, represented by descrip-

tive measures such as center of mass or center of pressure motion, suggest strategies

to manage complex whole-body balancing in a coordinated manner [24,37,39,79,112,

131]. While there is no doubt that characterizing behavioral patterns is important,

it does not define the postural control strategy [77]. Identifying the controller solely

from behavioral features is quite difficult since different controllers may reproduce the

same features observed in experiments [112]. On the other hand, it is quite difficult
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to apply the system identification techniques which have been widely-employed for

perturbed balancing, because the inputs to the system (biological noise) that induce

output motion (e.g., sway) in unperturbed balance are internal and inaccessible to

direct measurement [217]. A reliable system identification method for unperturbed

balance would be highly desirable.

13.1.2 Existing Methods

Recently, Ahn and Hogan [7] and Ahn et al. [9] have shown that it is possible to es-

timate parameters of a noisy, scalar (first-order) dynamical system without external

perturbation. Noting that a time series of the dynamical system output can be repre-

sented as an autoregressive model of order one, they quantified the bias in estimation

based on conventional linear regression methods, then proposed how to compensate

for it. Equipped with this revised method, they assessed the gait stability of a model

that simulated human walking [7] and, using experimental data, estimated the error-

correction gain of a model of human motor learning [9]. Other more classical theories

relevant to linear, stationary, white stochastic processes with unknown noise strength

have also treated multi-dimensional system parameter identification [13,126,212,234].

13.1.3 Main Contribution

The main contribution of this chapter is to develop and validate a systematic method

to identify the closed-loop dynamics of a multi-joint model of unperturbed human

balancing. We formulate this problem as identifying a stochastically-excited, linear,

finite-dimensional, discrete-time dynamic system. We exploit auto-correlation ma-

trices of the measurements with non-zero time lags to estimate the parameters of

the model. The strengths of the noise processes are not required, which is espe-

cially important when identifying unperturbed balance which is driven by unknown

internal noise. To better understand the key properties of the new method, we first

consider a simple scalar dynamic model. Then we present a numerical example of

a model that simulates human upright balancing and show that its dynamics can
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be identified accurately. Assuming the dynamic structure of a stochastically-excited

double-inverted-pendulum model, a state feedback controller can also be identified.

Conversely, comparable parameters estimated using conventional least squares meth-

ods exhibit large errors.

The method is largely inspired by similar approaches developed to identify hu-

man gait stability [7], human motor learning dynamics [9], and brain activity from

electroencelphalogram (EEG) signals [13]. While those studies did not consider mea-

surement noise separately from biological noise, we show that measurement noise can

cause significant bias in estimation. We also present a way to mitigate the problem.

With this method, natural human postural dynamics and control can be studied in

depth without concerning adaptation or possible reflex responses evoked by external

perturbations. Reliable quantitative identification of the dynamics and control of

human balance would enable diagnosis and treatment of individuals with impaired

balance, and the development of safe and effective assistive and / or rehabilitative

technologies.

13.2 Methods

13.2.1 Identifying a General System from autocorrelation ma-

trices

Consider a discrete-time stochastic finite-dimensional linear time-invariant dynamic

system

⎧⎪⎨⎪⎩x𝑡+1 = Ax𝑡 + Gw𝑡

z𝑡 = Hx𝑡 + v𝑡,

(13.1)

where x ∈ R𝑛𝑥 , z ∈ R𝑛𝑧 are state and measured output vectors, respectively, at time

𝑡.

We assume that process noise, w ∈ R𝑛𝑤 , and measurement noise, v ∈ R𝑛𝑣 , are
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white and uncorrelated:

𝐸{w𝑡} = 0, 𝐸{w𝑡w
𝑇
𝑠 } = Σw𝛿𝑡𝑠

𝐸{v𝑡} = 0, 𝐸{v𝑡v
𝑇
𝑠 } = Σv𝛿𝑡𝑠

𝐸{w𝑡v
𝑇
𝑠 } = 0 ∀𝑡, 𝑠

The objective is to estimate the 𝑛𝑥 × 𝑛𝑥 system matrix A. We first compute the

auto-correlation matrix of the output z with non-zero lag 𝑘 > 0 as

Rzz(𝑘) = 𝐸{z𝑡z𝑇𝑡−𝑘}

= 𝐸{(Hx𝑡 + v𝑡)(Hx𝑡−𝑘 + v𝑡−𝑘)𝑇}

= 𝐸{Hx𝑡x
𝑇
𝑡−𝑘H

𝑇 + Hx𝑡v
𝑇
𝑡−𝑘 + v𝑡x

𝑇
𝑡−𝑘H

𝑇 + v𝑡v
𝑇
𝑡−𝑘}

= H𝐸{x𝑡x
𝑇
𝑡−𝑘}H𝑇 = HRxx(𝑘)H𝑇

. (13.2)

Rzz(0) can be obtained as

Rzz(0) = 𝐸{z𝑡z𝑇𝑡 }

= 𝐸{(Hx𝑡 + v𝑡)(Hx𝑡 + v𝑡)
𝑇}

= 𝐸{Hx𝑡x
𝑇
𝑡 H

𝑇 + Hx𝑡v
𝑇
𝑡 + v𝑡x

𝑇
𝑡 H

𝑇 + v𝑡v
𝑇
𝑡 }

= H𝐸{x𝑡x
𝑇
𝑡 }H𝑇 + 𝐸{v𝑡v

𝑇
𝑡 } = HRxx(0)H𝑇 + Σv

(13.3)

An expression for Rxx(𝑘) for the dynamic system (13.1) can easily be obtained.

Noting that 𝐸{x𝑡w
𝑇
𝑠 } = 0 for 𝑡 ≤ 𝑠,

Rxx(𝑘) = 𝐸{x𝑡x
𝑇
𝑡−𝑘}

= 𝐸{(A𝑘x𝑡−𝑘 +
𝑘∑︁

𝑗=1

A𝑗−1Gw𝑡−𝑗)x
𝑇
𝑡−𝑘} = A𝑘𝐸{x𝑡−𝑘x

𝑇
𝑡−𝑘} = A𝑘Rxx(0)

(13.4)
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where Rxx(0) can be obtained as

Rxx(0) = P = 𝐸{x𝑡x
𝑇
𝑡 }

= 𝐸{(Ax𝑡−1 + Gw𝑡−1)(Ax𝑡−1 + Gw𝑡−1)
𝑇}

= 𝐸{Ax𝑡−1x
𝑇
𝑡−1A

𝑇 + Gw𝑡−1w
𝑇
𝑡−1G

𝑇}

= ARxx(0)A𝑇 + GΣwG
𝑇 = APA𝑇 + GΣwG

𝑇

(13.5)

From (13.2) and (13.4), it readily follows that

Rzz(𝑘) = HA𝑘PH𝑇 , ∀𝑘 > 0 (13.6)

If H−1 exists, one can derive the matrix 𝐴 from autocorrelation matrices as

A = H−1Rzz(𝑘 + 1)Rzz(𝑘)−1H, (13.7)

Note that (13.7) holds for all 𝑘 > 0.

We now turn to the estimation problem. Using the ergodic property of z𝑡, Rzz(𝑘)

can be estimated as 1
𝑁−𝑘

∑︀𝑁
𝑡=𝑘+1 z𝑡z

𝑇
𝑡−𝑘 for 𝑘 ≥ 0, where 𝑁 is the length of the time

series. As long as the process is ergodic, it has been shown that R̂zz(𝑘) provides an

asymptotically unbiased, normal, and consistent estimate [153]. The estimation can

be improved by either increasing the trial duration (N) or combining multiple-trial

data of each participant. In practice, the trial duration cannot be arbitrarily extended

because participants’ dynamics may vary over time due to fatigue. Denoting 𝑛𝑇 as

the total number of trials per participant and R̂
(𝑖)
zz(𝑘) as the estimated autocorrelation

matrix for 𝑖-th trial, we can re-define R̂zz(𝑘) as

R̂zz(𝑘) =
1

𝑛𝑇

𝑛𝑇∑︁
𝑖=1

R̂(𝑖)
zz(𝑘) =

1

𝑛𝑇

1

𝑁 − 𝑘

𝑛𝑇∑︁
𝑖=1

𝑁∑︁
𝑡=𝑘+1

z
(𝑖)
𝑡 z

(𝑖)𝑇
𝑡−𝑘 .

where z(𝑖) is the measured output of 𝑖-th trial. From (13.7), we obtain an expression
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for the estimate of A as

ÂCR = H
−1
R̂zz(𝑘 + 1)R̂zz(𝑘)−1H,∀𝑘 > 0, (13.8)

where the subscript CR stands for correlation.

In practice, since Rzz(𝑘) = HRxx(𝑘)H𝑇 = HA𝑘Rxx(0)H𝑇 , for a stable system

with ‖A‖ < 1, too large a value of 𝑘 will cause Rzz(𝑘) to have a large condition

number, which may amplify numerical error and degrade the quality of estimate. To

alleviate this performance degradation, by noting that the relation AH−1Rzz(𝑘) =

H−1Rzz(𝑘 + 1) holds for all 𝑘 > 0, (13.8) can be improved

ÂCR(m) = H−1[R̂zz(2), ..., R̂zz(𝑚 + 1)]× [R̂zz(1), ..., R̂zz(𝑚)]+H (13.9)

for a hyperparameter 𝑚, where ·+ denotes a pseudo-inverse operator.

13.2.2 Identifying Controller Gain

In order to apply (13.9) to identify human postural control, consider a controllable

system ⎧⎪⎨⎪⎩x𝑡+1 = Ax𝑡 + Bu𝑡 + Gw𝑡

z𝑡 = Hx𝑡 + v𝑡

, (13.10)

where u ∈ R𝑛𝑢 is control input and B is input weighting matrix. If a balancing human

is modeled as a set of kinematically coupled rigid segments, with an appropriate

choice of generalized coordinates the structure of A and B may be determined from

equations of motion using standard methods. For example, if relative joint angles

and angular velocities are chosen as the state vector x and joint torques as the input

vector u, the system matrix A and input matrix B are constrained by the dynamic

structure. In particular, if joint angles comprise the first elements of x, B must

have [0] as its top 𝑛𝑥/2 rows. The corresponding rows of A have a a unity block

[I] in the first 𝑛𝑥/2 columns. The second half of the matrix is determined by the

continuous-to-discrete time conversion rule and sampling frequency, as the first rows
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of the corresponding matrix in continuous-time consist of a [0] block and a unity

block [I]; see Appendix 13.8. The dimensions and precise meaning of the rest of

A and B depend on the system configuration, state vector, and control input. For

instance, modeling a human as a planar inverted pendulum with two joints (ankle

and hip), one may assume the pendulum is controlled either by joint torque actuators

(u: joint torques) or muscle actuators (u: muscle forces), depending on the purpose

of the model. While these assumptions may be restrictive, they are biomechanically

reasonable and establish the structure of A and B.

Next, suppose the system is equipped with a feedback controller that stabilizes

the system about its operating point x = 0,⎧⎪⎨⎪⎩y𝑡 = Cx𝑡 + Du𝑡 + e𝑡

u𝑡 = −Ky𝑡 + 𝜂𝑡

(13.11)

where y ∈ R𝑛𝑦 , e ∈ R𝑛𝑒 ,𝜂 ∈ R𝑛𝜂 are sensory signals fed back to a stabilizing con-

troller, sensory noise, and motor noise, respectively. K is the 𝑛𝑢 × 𝑛𝑦 gain matrix.

Without loss of generality and for simplicity, we can assume D = 0 1. The closed-loop

system equipped with the controller (13.10)-(13.11) is reduced to

⎧⎪⎨⎪⎩x𝑡+1 = Aclx𝑡 + G𝑐𝑙w̃𝑡

z𝑡 = Hx𝑡 + v𝑡

(13.12)

where Acl = A−BKC, Gcl = [G,−BK,B], and w̃ = [wT, eT,𝜂𝑇 ]. We assume

that the noise sources w, e, and 𝜂 are white, mutually uncorrelated, and with covari-

ance matrices Σw,Σe,Σ𝜂, respectively. An asymptotically unbiased and consistent

estimate Âcl can be obtained using the procedure of (13.9).

One can further estimate the gain matrix Kx = KC of the state-feedback con-

1Extension of the method to non-zero D would be straightforward, but is left for future work.
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troller (13.11) by solving the following linear regression problem,

K̂x = B+(A− Âcl) (13.13)

Note that for 𝑛𝑢 < 𝑛𝑥, this is an over-determined problem and its unique solu-

tion can be obtained. Note also that the controller gain can be estimated in the

continuous-time domain using a proper discrete-to-continuous time model conversion,

as described in Appendix 13.8.

This method requires a priori knowledge of A and B but those are determined

by the mechanical physics of the model assumed to describe experimental human

balancing data. Note especially that if joint angles and angular velocities are chosen

as the state vector x and joint torques (with zero mechanical impedance) as the input

vector u, constructing A and B for the open-loop (uncontrolled) system only requires

knowledge of kinematics and gravito-inertial mechanics. Geometric and inertial prop-

erties of limb segments are quite well quantified in the literature, for example see [42].

In this way, the method presented here ‘fills in’ the missing data about mechanical

impedance.

This approach is well-justified and enough to model apparent mechanical behavior

of human balancing. However, if one pursues to develop a model that encapsulate

complex details of human body such as muscle dynamics and neural transmission, a

more sophisticated method will be needed.

13.3 Results

13.3.1 Numerical Simulation: Scalar Dynamic System

Model

To gain insight, consider a simple stable dynamic system,
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⎧⎪⎨⎪⎩𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑔𝑤𝑡

𝑧𝑡 = ℎ𝑥𝑡 + 𝑣𝑡,

(13.14)

where 𝑎, 𝑔, ℎ are unknown scalar system parameters. Unknown noise processes

are drawn from zero-mean Gaussian distributions, 𝑤𝑡 ∼ 𝒩 (0, 𝜎2
𝑤), 𝑣𝑡 ∼ 𝒩 (0, 𝜎2

𝑣). We

assume |𝑎| < 1, i.e., the system is stable. It can readily be obtained from (13.2) -

(13.5) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑅𝑥𝑥(0) = 𝑃 = 𝑎2𝑃 + 𝑔2𝜎2
𝑤 = 1

1−𝑎2
𝑔2𝜎2

𝑤

𝑅𝑥𝑥(𝑘) = 𝑎𝑘𝑃, ∀𝑘 ≥ 0

𝑅𝑧𝑧(0) = ℎ2𝑃 + 𝜎2
𝑣 = 1

1−𝑎2
𝑔2ℎ2𝜎2

𝑤 + 𝜎2
𝑣

𝑅𝑧𝑧(1) = 𝑎ℎ2𝑃

𝑅𝑧𝑧(𝑘 + 1) = 𝑎𝑅𝑧𝑧(𝑘),∀𝑘 ≥ 1

Simulation Setup

For this simple system, we compared the new method (13.9), �̂�CR(m) with different

𝑚-values (𝑚 = 1 and 𝑚 = 10), with the ordinary least-squares method (OLS),

�̂�OLS. The ordinary least-squares method is detailed in Appendix 13.6; note that the

estimate yielded by OLS is equivalent to that yielded by the Yule-Walker equations,

which are widely used [7, 13]. In the following numerical example, we simulated the

dynamic system (13.14) with ℎ = 𝑔 = 1 for different system parameters 𝑎 ∈ (−1, 1)

with a finite resolution of 0.1. The estimates �̂�CR(m) and �̂�OLS were computed from

five different trials (𝑛𝑇 = 5) and each trial consisted of a time series with length

𝑁 = 3000. This corresponds to 30s of simulation with a sampling rate of 100Hz,

typical for studies of human behavior. The noise strengths 𝜎𝑤, 𝜎𝑣 were also varied

such that the relative strength 𝜎𝑟 = 𝜎𝑣/𝜎𝑤 was 0, 1/2, 1, and 2. Finally, to understand

the statistical properties of the estimation methods, we iterated the above procedure

100 times and obtained the mean and standard deviation of the error of estimation,
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�̂�(·) − 𝑎. All simulations and computations were conducted in MATLAB R2018b

(Mathworks, MA).

Simulation Result
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Figure 13-1: Comparison of estimation methods with different process and measure-
ment noise strengths. Each estimate was obtained from 5 different trials. Each trial
consisted of a time series with length N = 3000. The mean and standard deviation
of the error of estimation (�̂� − 𝑎) for each plot were obtained from 100 iterations of
the whole process.
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Fig. 13-1 compares the performance of different estimation methods. The ordinary

least-squares estimate �̂�OLS shows small variance but non-zero bias. The mean error

of the estimate is zero at 𝑎 = 0, but the bias at large |𝑎| is considerable and probably

unacceptable. On the other hand, �̂�CR(m) is not biased when the system parameter 𝑎 is

non-zero and large. However, when |𝑎| ∼ 0, its performance is degraded. In general,

the variance and mean error of all methods decrease as relative noise strength 𝜎𝑟

increases, i.e., with more accurate measurements and larger internal perturbation.

To understand the difference between �̂�OLS and �̂�CR(1), it is convenient to derive

analytic expressions. The ordinary least squares method is given as

�̂�OLS =
�̂�𝑧𝑧(1)

�̂�𝑧𝑧(0)
≈ 𝑅𝑧𝑧(1)

𝑅𝑧𝑧(0)
(13.15)

and �̂�CR(1) is given as

�̂�CR(1) =
�̂�𝑧𝑧(2)

�̂�𝑧𝑧(1)
≈ 𝑅𝑧𝑧(2)

𝑅𝑧𝑧(1)
(13.16)

where

𝑅𝑧𝑧(1)

𝑅𝑧𝑧(0)
=

𝑎ℎ2𝑃

ℎ2𝑃 + 𝜎2
𝑣

=
𝑎

1 + (1− 𝑎2) 𝜎2
𝑣

ℎ2𝑔2𝜎2
𝑤

(13.17)

𝑅𝑧𝑧 (2)

𝑅𝑧𝑧 (1)
=

𝑎2ℎ2𝑃

𝑎ℎ2𝑃
= 𝑎 (13.18)

It is clear that even if autocorrelation is perfectly estimated, e.g., �̂�𝑧𝑧(𝑘) = 𝑅𝑧𝑧(𝑘),

�̂�OLS has bias which depends on both the system parameters 𝑎, 𝑔, ℎ and the unknown

noise strengths 𝜎2
𝑤, 𝜎

2
𝑣 , while �̂�CR(1) provides an unbiased estimate without requiring

any information about the noise strengths. In particular, the bias in �̂�OLS increases

as the relative noise 𝜎𝑣/𝜎𝑤 increases. On the other hand, �̂�CR(1) is not well defined

for |𝑎| ∼ 0 because its denominator contains 𝑎. These properties are well represented

in Fig. 13-1. While �̂�OLS has smaller variance for all 𝑎 values, the error due to bias is

substantial for non-zero 𝑎. �̂�CR(1) has relatively large variance in general but provides

quite an accurate estimate unless 𝑎 is close to 0. When true 𝑎 is close to 0, �̂�CR(1) is

quite imprecise.
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Figure 13-2: The effect of hyper-parameters 𝑚, the maximum time lag of the autocor-
relation function used to estimate �̂�, and 𝑛𝑇 , the total number of trials, on |�̂�CR(m)−𝑎|.
Noise strengths were fixed as 𝜎𝑤 = 𝜎𝑣 = 1. A 𝑛𝑇 = 5 was fixed and 𝑚 was varied. B
𝑚 = 5 was fixed and 𝑛𝑇 was varied.

This drawback can be overcome if we use �̂�CR(10). This estimate for large true 𝑎

is as accurate and exhibits as little bias as �̂�CR(1). More importantly, it is remarkable

that �̂�CR(10) substantially improves accuracy and variance even when |𝑎| ∼ 0. While

its variance is still larger than �̂�OLS, the accuracy of its mean value is comparable.

We also tested the effect of hyper-parameters 𝑚, the maximum time lag in au-

tocorrelation to estimate �̂�, and 𝑛𝑇 , the total number of trials, on the error of es-

timation and present the result in Fig. 13-2. The absolute value of the error of

estimation, |�̂�CR(m)− 𝑎| was computed, then the average and variance of the absolute

error were computed from 100 iterations. As shown in Fig. 13-2, in general both

hyper-parameters monotonically improved the reliability of estimation by reducing
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both mean error and its variance. As might be expected, increasing the number of

trials had more effect than 𝑚. This is because increasing 𝑚 means more �̂�𝑧𝑧(𝑘) are

recruited for �̂�, while increasing the number of trials helps to better estimate 𝑅𝑧𝑧(𝑘)

and consequently reduces the errors that propagate in estimating �̂�. Thus it is always

recommended to use as large as 𝑛𝑇 as possible, i.e., collect as many data as possible

from each participant.

The performance improvement with increasing 𝑚 quickly reached a plateau, and

thus a sufficiently large value of 𝑚, for instance 𝑚 = 10 can be chosen to improve the

estimation. As can be seen in Fig. 13-1 and Fig. 13-2, the variance when |𝑎| ∼ 0 is still

quite large. Therefore one may first compute �̂�OLS to estimate 𝑎, then compute �̂�CR(m)

when |�̂�OLS| is larger than a threshold, e.g., 0.1. For higher dimensional systems, one

may instead use the norms of Rzz(𝑘) and Rzz(1) to determine the value of 𝑚.

13.3.2 Numerical Simulation: Balance Model

Double inverted pendulum model

Figure 13-3: Double inverted pendulum model with angle (𝑞𝑖) and torque (𝜏𝑖) sign
conventions and parameter values for mass (𝑚𝑖), length (𝑙𝑖), center of mass (𝑐𝑖), and
moment of inertia about center of mass (𝑗𝑖). The direction of gravity (𝑔) is also
defined.
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Human quiet standing is often modeled as an inverted pendulum with single [119],

double [112], or more than two joints [99]. To establish how the new method performs

for a multi-joint case, we adopted a double inverted pendulum model of human quiet

standing. Lumped model parameters including mass, center of mass position from

joint, length, moment of inertia about center of mass of each link, and gravitational

acceleration are listed in Table 13.1. They were computed based on the anthropo-

morphic distribution of males [42], with weight and height of 73 kg and 1.73 m. We

assumed that the foot is not moving during standing and regarded the ankle as a

pin joint; any mass and length below the ankle was neglected in the double-inverted

pendulum model. Fig. 13-3 illustrates joint angles and torques for ankle (𝑞1, 𝜏1) and

hip (𝑞2, 𝜏2). As in (13.11), it was assumed that each joint torque is a sum of control

input torque and actuation error, 𝜏𝑖 = 𝑢𝑖 + 𝜂𝑖. The state vector x = [𝑞1, 𝑞2, 𝑞1, 𝑞2]
𝑇

and input vector u = [𝑢1, 𝑢2]
𝑇 were defined accordingly.

Stabilizing Controller

We used an infinite-horizon linear quadratic regulator (LQR) to stabilize the double

inverted pendulum. The LQR is a state-feedback controller in which gain Kx is

determined such that a quadratic cost is minimized:

Kx = argmin
Kx

∫︁ ∞

0

[x𝑇 (𝑡)Qx(𝑡) + u𝑇 (𝑡)Ru(𝑡)]dt,

Table 13.1: double inverted pendulum model parameters

Symbol Parameter meaning (units) Value
𝑚1 Mass of link 1 (kg) 25.89
𝑙1 Length of link 1 (m) 0.857
𝑐1 Center of mass of link 1 (m) 0.582
𝑗1 Moment of inertia of link 1 (kgm^2) 1.350
𝑚2 Mass of link 2 (kg) 42.20
𝑙2 Length of link 2 (m) 0.841
𝑐2 Center of mass of link 2 (m) 0.328
𝑗2 Moment of inertia of link 2 (kgm^2) 2.547
g Gravitational acceleration (m/s^2) 9.81
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where u = −Kxx [197]. Two sets of parameters of the LQR were tested:

• Case 1:

Q = I4, R =

⎡⎣5 0

0 1/5

⎤⎦ .

• Case 2:

Q = I4, R = 106

⎡⎣0.3 0

0 10/3

⎤⎦ .

The parameters used in Case 1 are those which were reported as well-representing

human balancing and similar to the ‘hip strategy’ [109,112]. Case 2 was intended to

test a different type of controller which encouraged more use of the ‘ankle’, similar to

the ‘ankle strategy’, but minimized control effort.

Finally, the torque controller was perturbed by internal sensory noise e and motor

noise 𝜂 with Σe = 𝜎2
𝑒I4 and Σ𝜂 = 𝜎2

𝜂I2 such that

𝜏 = u + 𝜂 = −Kx(x + e) + 𝜂.

Model Linearization

While we used the full nonlinear equations of motion to simulate human balance, when

stabilized by the LQR and perturbed by small internal noise, the resultant motion

of the double inverted pendulum is subtle, consistent with experimental observations

of quiet standing [64, 233]. For small motion, the nonlinear system can be well-

approximated as a linear system (13.10), as described in the previous chapter. From

the linearized model, Acl = A−BKx was obtained.

Simulation Setup

We used the new method to estimate the closed-loop system matrix Acl and con-

troller gain matrix Kx. Because the model was developed in continuous-time, we
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first estimated discrete-time model parameters using (13.9), then converted them

into continuous-time model parameters by following the method described in Ap-

pendix 13.8. The size of the error between true and estimated matrices were computed

as below

𝑒𝐴 = (‖Acl − Âcl‖2)/‖Acl‖2 (13.19)

𝑒𝐾 = (‖Kx − K̂x‖2)/‖Kx‖2 (13.20)

Note that from the choice of the state vector x, the first two rows of Acl are constrained

to [0, I]. Therefore, we replaced the first two rows of Âcl with [0, I] to obtain the

controller gain using (13.13) and compute errors.

Similar to the example presented in 13.3.1, the errors obtained from the new

method and from the ordinary least squares method were compared for different

combinations of noise strengths. Note that sensory and motor noise are essentially

equivalent in this setup, e.g., u𝑡 = −KCx𝑡 −Ke𝑡 + 𝜂𝑡 = −KCx𝑡 + 𝜂𝑡. Thus, in the

following simulation we fixed 𝜎𝜂 and varied 𝜎𝑒. The tested parameters are summarized

in Table 13.2.

Âcl was computed from five different trials (𝑛𝑇 = 5). In each trial, a semi-

implicit Euler integrator was used to simulate forward dynamics of the model for 90

s with a time step of 0.01 s (100Hz sampling rate, 𝑁 = 9000). Finally, in order to

understand the statistical properties of each estimation method, we iterated the above

procedure 10 times and obtained the mean and standard deviation of 𝑒𝐴,(·) and 𝑒𝐾,(·).

All simulations and computations were conducted in MATLAB 2018b (Mathworks,

MA).

Table 13.2: Range of noise strengths tested

Symbol Parameter meaning Range
𝜎𝑒 Sensory noise strength [1e-02, 3e-02]
𝜎𝜂 Motor noise strength 1e-02
𝜎𝑣 Measurement noise strength [1e-03, 5e-03]
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Case 1

Figure 13-4: Mean estimated error of the system matrix 𝑒𝐴(%, left) and the control
gain 𝑒𝐾(%, right) from 10 iterations for different noise combinations. Errors of the
ordinary least squares method (OLS, top) and the new method (CR, bottom) are
shown. For both cases, motor noise was fixed as 𝜎𝜂 = 0.01. The double inverted
pendulum model was simulated with the Case 1 controller parameters.

Results

Fig. 13-4 and Fig. 13-5 present the mean error of estimation of the system matrix 𝑒𝐴

and the controller gain 𝑒𝐾 obtained from Âcl,OLS and Âcl,CR for various combinations

of noise strengths and for two different controllers. In general, increasing measurement

noise degraded performance estimation. For example, in Case 1, when 𝜎𝑒 = 0.01 and

𝜎𝜂 = 0.01, the mean 𝑒𝐴,OLS was 40.5% with 𝜎𝑣 = 0.001 but 86.9% with 𝜎𝑣 = 0.005.

Increasing sensory noise improved the estimate of the ordinary least squares method,

yet its performance remained much worse than that obtained from the new method.
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Case 2

Figure 13-5: Mean estimated error of the system matrix 𝑒𝐴(%, left) and the control
gain 𝑒𝐾(%, right) from 10 iterations for different noise combinations. Errors of the
ordinary least squares method (OLS, top) and the new method (CR, bottom) are
shown. For both cases, motor noise was fixed as 𝜎𝜂 = 0.01. The double inverted
pendulum model was simulated with the Case 2 controller parameters.

The performance gap between the ordinary least squares method and the new method

was even larger when estimating controller gain. For example, the mean error of

estimation 𝑒𝐾 from the ordinary least squares method reached about 150%.

Within the range of parameters tested, the error of estimation from the new

method was slightly affected by different levels of noise. The mean and standard

deviation of the error of estimation for all conditions were about 10% and 9% for 𝑒𝐴

and 11% and 10% for 𝑒𝐾 , respectively.

The performance gap between the ordinary least squares method and the new

method was even larger in Case 2, as shown in Fig. 13-5. For example, the mean
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error of estimation 𝑒𝐾 from the ordinary least squares method reached over 400%

(note the scale of the color bar), while the mean and standard deviation of the error

of estimation from the new method for all conditions were about 10% and 7% for 𝑒𝐴

and 9% and 6% for 𝑒𝐾 , respectively.

13.4 Discussion

13.4.1 Summary of the Work

In this work, we presented an unbiased parametric system identification method that

enables estimating the dynamics of human postural control using recorded joint tra-

jectories without external perturbation. While the physical world is in the continuous-

time domain, our digital measurement systems provide us signals in the discrete-time

domain. Hence, we investigated a method to identify a discrete-time model. With a

biomechanically reasonable model of the multi-joint human body, the gain matrix of

a state-feedback controller can also be estimated. We first examined the properties

of the new method using a simple scalar dynamic system. While the ordinary least

squares method showed bias due to unknown noise in the system, the new method

did not show bias even without information about the system’s noise strengths. The

variance of the new method was substantially reduced by employing multiple trials

to improve the estimate of autocorrelation with non-zero time lags. The new method

was then validated using a double inverted pendulum model stabilized by two dif-

ferent state-feedback controllers and perturbed by internal noise, a reasonable model

of human balancing which can describe the widely-reported ‘ankle’ and ‘hip’ strate-

gies [75]. In particular, compared to the ordinary least squares method, the controller

gain identified by the new method was considerably more accurate, yielding errors

of ∼10% or less. The numerical simulation examples indicate that the new method

can be used to identify human postural dynamics from experimental data. Given a

biomechanically plausible model of the relevant gravito-inertial mechanics, the net

multi-joint impedance, whether due to intrinsic mechanics or feedback control, may
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also be identified.

13.4.2 Caveats of Parametric Model Fitting

Like other parametric system identification techniques, the new method relies heavily

on the model which determines the structure of A and B. It should also be noted

that Kx identified from the method is the gain matrix of a linear full-state feedback

controller. Consequently, several trade-offs must be considered when developing mod-

els and interpreting results. As presented in this study, one may model a human as

a double inverted pendulum with joint positions and velocities as its states and joint

torques as its control input. With this model, the gain Kx should be interpreted as

the apparent impedance seen at the ankle and the hip, i.e., stiffness and damping at

each joint as well as coupling between them. Depending on the order of the model

and the physical meaning of the state and input vectors, the precise meaning of Kx

will vary. Therefore, the state vector and the model order should be carefully deter-

mined, based on the purpose of modeling. Moreover, the method does not draw any

conclusions about underlying neural processes but only their products; it only iden-

tifies the net contributions from all control components such as intrinsic mechanical

impedance and neural feedback control.

Significant time delay due to limited neural signal transmission rate is another

important factor that makes human motor control challenging. However, the current

work did not incorporate this aspect of human postural control. To identify time

delay in the system, more sophisticated methods are required. In recent literature,

the limitation of neural transmission has often been modeled as a pure time-delay

in state feedback control [17, 64, 217]. This would essentially increase the order (or

the maximum lag) of the model (13.12). Neglecting measurement noise, that model

is equivalent to the widely studied auto-regressive models with order larger than

one, and there exist a number of papers treating such models with scalar [238] and

multi-dimensional state variables [13]. Both the unknown model order (equivalent

to the unknown time delay) and the model parameters can be estimated, as briefly

presented in Appendix 13.7. Augmenting the present methods with such features is
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left for future work.

13.4.3 Important Assumptions

The new method requires a number of modeling assumptions including 1) the stochas-

tic dynamics of human balancing is linear and time-invariant (stationary), 2) the num-

ber of independent measurements equals the order of the system (hence H−1 exists),

and 3) the process and measurement noises are white and mutually uncorrelated.

Linear and Stationary Processes

A mechanical system with any controller (nonlinear, discontinuous, or higher order)

must yield at least the lower-order behavior modeled here. Musculo-skeletal mechan-

ics acts to smooth out discontinuities. The remaining nonlinearities would either be

differentiable or resemble noise, and small motions would justify a linearized repre-

sentation. Indeed it has been widely reported that unperturbed human balancing

exhibits only subtle movement [131,233].

The stationarity of human balance is debatable [22, 143, 187]; due to fatigue or

change in control strategy (e.g., transitioning between an ‘ankle strategy’ and a ‘hip

strategy’ [75]) during balancing, the system may exhibit time-varying dynamics. Sta-

tionarity should be established before applying the new method to identify human

postural control.

Existence of H

Whether H−1 exists or not depends on the model. If one develops a joint-level human

balance model, joint angular positions and velocities can be measured with combi-

nation of reasonably high accuracy with available technologies, e.g., motion capture

systems (MOCAP), inertial measurement units (IMUs), accelerometers, gyroscopes,

and goniometers. In general it becomes harder to obtain full measurement of states

as more complex features of postural control are included in the model (e.g., muscle

dynamics or neural time delay). On the other hand, [126, 212, 234] have shown that
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an appropriate system order and parameters may be identified from partial measure-

ments for single-input systems. Further investigation and application of such methods

to the analysis of human postural control is left for future work.

White and Mutually Uncorrelated Noise

The new method relies heavily on the assumption that all noise processes in (13.10)

are white and uncorrelated with each other. However, some studies have indicated

that biological noise may best be described by ‘pink’ noise or Brownian noise [216].

Moreover, linear models lump all the higher-order and nonlinear terms of a real hu-

man system into process noise, which might not be white. However, it should be

noted that the purpose of system identification is to parameterize a model which may

provide mechanically feasible explanations of observations and guide experiments to

test hypotheses. In that sense, any model is wrong, and white noise may be wrong,

but it is a convenient and useful approximation.

13.4.4 Strength of the New Method Compared to the Ordi-

nary Least Squares Method

We used a scalar stochastic dynamic system to analyze properties of the new method.

In Fig. 13-1, it was shown that the variance and bias of the new method are sensitive to

the size of the true system parameters. The method’s performance degraded when 𝑎

was close to 0 (in the 1D model). In the multi-joint model, it would correspond to the

case when ‖Acl‖ is close to 0. However, such a case is quite rare in biological systems.

In particular, ‖Acl‖ = 0 implies that the neural controller rejects any perturbation

within one sampling interval.

It was also shown that the quality of the estimate is sensitive to the size of mea-

surement noise, or more precisely, the size of measurement noise relative to process

noise (internal biological noise), 𝜎𝑟. Both the ordinary least squares method and

the new method performed better as measurement noise decreased. When 𝜎𝑟 = 0,

the ordinary least squares method provided a very accurate estimate of the system
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parameter 𝑎 as shown in Fig. 13-1 and it outperformed the new method. However,

as 𝜎𝑟 became larger, error in the ordinary least squares method increased rapidly.

In contrast, the new method showed consistent performance across a range of 𝜎𝑟

values. Moreover, recruiting multiple auto-correlation matrices with different time

lags (𝑚 = 10) substantially improved the precision of the new method and provided

accurate estimates for values of ‖𝑎‖ ∼ 0. The improvement can easily be extended

to the multi-dimensional case as it does not require any difficult operations. The

performance difference between the new method and the conventional ordinary least

squares method was even more pronounced in the double inverted pendulum example

as shown in Fig. 13-4 and Fig. 13-5.

Furthermore, with the known parameters A and B based on the gravito-inertial

model, the controller gain matrix could be estimated. The mean error of estimation

of controller gain obtained from the new method was much smaller than that from the

ordinary least squares method (Fig. 13-4 and Fig. 13-5), especially when measurement

noise was large. Sensitivity to measurement noise is an important practical consider-

ation. It has been reported that the variability of joint angles during quiet standing

is on the order of 0.1 deg [64,233]. The measurement errors of state-of-the-art IMUs,

0.2 - 0.3 deg, [231] is comparable to and perhaps larger than sway motion during

quiet standing. This work showed that when measurement noise was comparable to

process noise, the ordinary least squares method can be substantially biased, while

our method was unbiased for even larger noises.

The practical implication is quite striking. While measurement noise can be fur-

ther reduced by setting up high-precision MOCAP in the lab, such high-precision

measurement systems are usually expensive and require large space. If clinicians are

to diagnose patients remotely in at-home settings, they may not have access to accu-

rate measurement systems (e.g., MOCAP or high-precision IMUs). In that case, our

method would be an effective alternative to the conventional ordinary least squares

method because it does not require such high-precision sensors.
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13.4.5 Wider Application

The method proposed in this work is applicable to any linear, discrete-time stochastic

system, thus relevant to a broad range of human system studies. For example, the

new method appears to be applicable to the study of rhythmic movements, another

important field in human motor control [73,74]. For example, it is possible to quantify

the degree of stability of walking [7] or rhythmic arm movement [240]. The relevance

of the proposed framework to rhythmic movement is detailed in Appendix 13.9. In

a recent study, Ahn and Hogan [7] have shown how to obtain accurate assessment of

gait stability by correcting the bias due to the short duration of experimental time

series. However, that method was limited to a scalar human walking model and

not easily extensible to the multi-joint models which are typical of human systems.

Moreover, significant error in human motion measurement systems was not accounted

for. Combining the strength of the new method with the results of Ahn and Hogan [7]

may improve the state-of-the-art in stability assessment of human walking [30]. The

same technique may also improve experimental stability assessment of legged robots.

Another interesting field of application is motor learning [9,69]. In motor learning

studies, how humans learn a task from observing errors in each trial is often modeled

as a linear discrete-time system with some feedback mechanism as in (13.10). Typical

human motor learning models assume measurement noise and process noise are the

same (v = w in (13.1)). Due to this assumption, the least squares estimate requires

additional correction as shown in [9] while our new method can readily be applied.

Recent studies [9, 69] have examined a scalar dynamic model which assumes that a

task error can be represented by a scalar variable. A method for multi-dimensional

systems, as presented in the current study, would enable studies of how humans learn

complex tasks in which error cannot be simply represented by a single number.

13.5 Conclusion

This study presented a mathematically rigorous system identification method for

identifying dynamics of unperturbed balance. With a biomechanically reasonable

225



model of the multi-joint human body, the gains of a state-feedback controller can also

be estimated without any information about the system’s noise strength. A numerical

example with a double inverted pendulum model of human quiet standing validated

the method.

Methods to assess human motor control have significant practical importance.

They may allow quantitative diagnosis of individual patients and development of

customized treatment plans. With an aging population, technology-assisted human

mobility is a growing need. The methods presented here may allow better assess-

ment of technology-assisted mobility, which may eventually lead to development of

customized assistive and / or rehabilitative technologies.

This work established that system identification of unperturbed balance is possible

with several testable assumptions. Application of the proposed method to the real-

world experimental data is on-going, led by Rika Sugimoto-Dimitrova.

13.6 Appendix: Ordinary Least Squares

For the zero-mean discrete timeseries {z𝑡}𝑁1 obtained from the system (13.1),

z𝑡+1 = Hx𝑡+1 + v𝑡+1

= H(Ax𝑡 + Gw𝑡) + v𝑡+1

= HAH−1(z𝑡 − v𝑡) + HGw𝑡 + v𝑡+1

= HAH−1z𝑡 −HAH−1v𝑡 + HGw𝑡 + v𝑡+1,

one can form the over-determined system⎛⎜⎜⎜⎜⎜⎜⎝
z𝑇2

z𝑇3
...

z𝑇𝑁

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

T

=

⎛⎜⎜⎜⎜⎜⎜⎝
z𝑇1

z𝑇2
...

z𝑇𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

W

(HAH−1)𝑇⏟  ⏞  
Φ
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or succinctly

T = WΦ

which can be readily solved using the usual least-squares estimator

Φ̂OLS = (W𝑇W)−1W𝑇T

= (z1z
𝑇
1 + · · ·+ z𝑁−1z

𝑇
𝑁−1)

−1(z1z
𝑇
2 + · · ·+ z𝑁−1z

𝑇
𝑁)

= R̂zz(0)−1R̂zz(1)

= (HÂOLSH
−1

)𝑇

Rearranging, the ordinary least squares estimate is obtained as

ÂOLS = H−1R̂zz(1)R̂zz(0)−1H (13.21)

which is equivalent to (13.8) with 𝑘 = 0.

13.7 Appendix: Yule-Walker Equations for Multi-

variate Autoregressive Models

If one assumes a zero-mean discrete timeseries {z𝑡}𝑁1 is an autoregressive process, a

method to estimate the appropriate order 𝑝 of the model

z𝑡 = A1z𝑡−1 + A2z𝑡−2 · · ·+ A𝑝z𝑡−𝑝 + e(𝑡)

and the corresponding coefficients A𝑗 can be established. By multiplying z𝑇𝑡−𝑘 to each

side of equation, taking expectation, and noting that 𝐸{e(𝑡)z(𝑡− 𝑘)𝑇} = 0, one can

obtain

Rzz(𝑘) = A1Rzz(𝑘 − 1) + A2Rzz(𝑘 − 2) + A𝑝Rzz(𝑘 − 𝑝),∀𝑘 > 0
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Substituting 𝑘 = 1, 2, · · · , 𝑝 in the above equation, with Rzz(𝑘)𝑇 = Rzz(−𝑘), one can

obtain the set of equations referred to as the Yule-Walker equations [13,238]:

Rzz(1) = A1Rzz(0) + A2Rzz
𝑇 (1) + A𝑝Rzz

𝑇 (𝑝− 1)

Rzz(2) = A1Rzz(1) + A2Rzz(0) + A𝑝Rzz
𝑇 (𝑝− 2)

...

Rzz(𝑝) = A1Rzz(𝑝− 1) + A2Rzz(𝑝− 2) + A𝑝Rzz(0)

which can also be written as

(︁
Rzz(1),Rzz(2), · · · ,Rzz(𝑝)

)︁
⏟  ⏞  

r̃

=
(︁
A1,A2, · · · ,A𝑝

)︁
⏟  ⏞  

Φ

⎛⎜⎜⎜⎜⎜⎜⎝
Rzz(0) Rzz(1) · · · Rzz(𝑝− 1)

Rzz
𝑇 (1) Rzz(0) · · · Rzz(𝑝− 2)
...

Rzz
𝑇 (𝑝− 1) Rzz(𝑝− 2) · · · Rzz(0)

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

R̃

or succinctly

r̃ = ΦR̃

Note that this is a well-posed system with the same number of equations as un-

knowns. The matrix R̃ is full-rank and symmetric, so that invertibility is guaranteed.

Therefore the coefficients or the system parameters Φ can be estimated by

Φ̂ = r̃R̃
−1

There are various ways to determine the order of the system 𝑝. For example, the

proper order 𝑝 can be determined by minimizing the Akaike information criterion
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(AIC). Readers are referred to [13] for more details. Note that for the model with

order 𝑝 = 1, the resultant parameter estimate of Â1 is the same as the ordinary least

squares method, i.e., Â1 = Rzz(1)Rzz(0)−1

13.8 Appendix: Discrete-to-Continuous Conversion

The method described in this work is based on discrete-time system model, but

sometimes continuous-time models are more convenient. In such cases, the discrete-

time system parameters obtained using the new method should be properly converted

to continuous-time approximation.

In the example in Balance Model, we used semi-implicit Euler integrator to in-

tegrate forward dynamics. Therefore the conversion from the continuous-time system

parameters Ac to its discrete-time counterpart Ad becomes

Ad =

⎡⎣I 𝑑𝑡I

0 I

⎤⎦ +

⎡⎣0 𝑑𝑡2I

0 𝑑𝑡I

⎤⎦Ac

where 𝑑𝑡 is the sample time interval. If we assume that the top rows of Ac are [0, I],

Ad =

⎡⎣I 0

0 I

⎤⎦ +

⎡⎣𝑑𝑡I 𝑑𝑡2I

0 𝑑𝑡I

⎤⎦Ac

therefore the discrete-time to continuous-time conversion is obtained as

Ac =
1

𝑑𝑡

⎡⎣I −𝑑𝑡I
0 I

⎤⎦⎛⎝Ad −

⎡⎣I 0

0 I

⎤⎦⎞⎠

13.9 Appendix: Stability Assessment of Rhythmic

Movement

Orbital stability of a limit cycle in state-space has one-to-one correspondence to the

stability of a discrete return map, or Poincarè map. The eigenvalues of the linearized

229



Poincaré map are called characteristic or Floquet multipliers [202,224].

The Poincarè map x ↦→ 𝑃 (x) relates the state of a system after one cycle (x𝑡+1)

and its current state (x𝑡): x𝑡+1 = 𝑃 (x𝑡). It follows that limit cycle trajectories

correspond to the fixed point (x*) of the map, x* = 𝑃 (x*), and the (local) orbital

stability of the limit cycle is equivalent to the stability of the corresponding fixed point

of the map on the Poincarè section. To evaluate the effects of small perturbations on

x*, the Poincarè map can be linearized:

x𝑡+1 − x* =
𝜕𝑃

𝜕x
|(x=x*)(x𝑡 − x*)

Denoting Ap = 𝜕𝑃
𝜕x
|(x=x*) and assuming x* = 0 without loss of generality, also assum-

ing white process and measurement noise, we obtain the following expression,⎧⎪⎨⎪⎩x𝑡+1 = Apx𝑡 + Gw𝑡

z𝑡 = Hx𝑡 + v𝑡

to which (13.9) can be readily applied to obtain Âp. The maximum Floquet multiplier

is the eigenvalue of Âp with the largest modulus.
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Chapter 14

Concluding Remarks

14.1 Summary and Discussion

In this part, two complementary methods to quantify normal balance control were

presented. Quantifying normal balance control without applying perturbations is not

a trivial problem. A major challenge is that we can only measure the output sway and

the driving signals, the internal biological noise, are not directly measurable without

invasion. This prevents using typical optimization or machine learning techniques

to find optimal model parameters that minimize RMS time-domain errors between

actual and simulated trajectories. Both of the two methods we developed resolved

this challenge. Further improvements of the methods and application of the methods

to the various data sets are already on-going by my colleagues Kaymie Shiozawa and

Rika Sugimoto-Dimitrova.

One of the major accomplishments of Chapter 12 is that we analytically proved

that a single inverted pendulum model could not reproduce the ground reaction force

pattern observed in experiments, no matter what controller was used. This is not

at all an ‘obvious’ result. Note that we investigated human balance in sagittal-plane

standing, which has been modeled as a single inverted pendulum in a vast number

of previous studies - by far this is the most common biomechanical model used in

the literature [147]. As demonstrated, developing a simple model may seem trivial,

but developing a simple but competent model is not at all obvious and requires (and
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facilitates) keen insight.

While human behaviors are largely complex with their internally complicated

neuro-musculo-skeletal structures, their apparent behaviors can be simple. The small

number of parameters required to estimate simple models is advantageous and prac-

tical to quantify individual human data. Moreover, the quantified data of young and

healthy individuals will serve as a reference to assess balance control of older and/or

neurologically impaired populations. The severity of impaired balance can be quan-

tified by calculating its deviation from normal. The methods provided here hence

would be useful to design and follow-up personalized training.

Fall-related injuries due to loss of balance, frequently observed in the elderly pop-

ulation, pose a significant threat to life [177]. Both methods presented in this work

hence have significant practical importance. Both methods do not require expensive,

high-precision in-lab systems (e.g., systems to apply external perturbations, motion

capture system requiring a number of built-in cameras and markers). A single force

plate (Chapter 12) or a modest-precision motion measurement system (Chapter 13)

are deemed enough. This is advantageous to develop human balance diagnosis sys-

tems, perhaps outside the lab. With the rapid development of motion measurement

technologies e.g. wearable sensors (goniometers or IMUs) or inexpensive and machine-

learning based image processing technologies, this seems promising.
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Part IV

Conclusion
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Chapter 15

Discussion and Conclusion

15.1 Summary

In this thesis, I designed, conducted, and / or participated in healthy human ex-

periments to investigate how simple mechanical interventions alter human locomo-

tion (balance and walking), quantified behavioral changes to understand their neuro

/ mechanical origins, developed simple models to account for experimental observa-

tions and gain insight, and developed methods to quantitatively assess human balance

without applying perturbations.

15.2 Human Adaptation to Mechanical Interventions:

Significant, but Not Known a Priori

The most important lesson we learned is that different interventions may evoke very

different behavioral responses; and the results are unknown a priori. In Part I,

we showed that different interventions based on the same device (Samsung GEMS-

H) may evoke quite different behavioral responses. Applying periodic pulses evoked

motor adaptation; on the other hand, applying stiffness evoked immediate changes,

implying that only peripheral neuro-mechanics was involved. In Part II, we showed

that altering mechanical interfaces by wearing rigid soles or using canes significantly
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altered human balancing, but they did not seem to evoke changes in central neural

processes.

None of these results were able to be precisely predicted before conducting hu-

man experiments. The quantification and modeling conducted in these studies will

serve as foundation to understand neuro-mechanical behavior of human locomotion

and to understand the effects of the mechanical interventions on human balance. Un-

derstanding how humans alter their behavior due to mechanical interventions will

provide significant information for developing effective devices and interventions for

assisting, augmenting, and restoring human locomotion.

To make progress, neither just theory nor just experiment would work; exper-

iments and theories must complement each other. Falsifiable predictions made by

theories should be validated by experiments and extensive data require theories and

descriptive models for proper interpretation [10]. Experiments should guide models,

and theories and models should inspire new experiments. In this iterative process,

simple models play a powerful role.

15.3 Simple Models Promote Insights

While complex theoretical models and data-driven computational approaches are

prevalent, the importance of simple models should not be dismissed. Recently,

high-fidelity human models with anatomical and physiological details (with all the

bones, muscles, muscular dynamics, and some of reflex responses) have made sub-

stantial progress [43, 194]. Those complex models are used to not only analyze

observation but also to predict and understand human locomotion with interven-

tions [35, 52, 128, 195, 196]. With advanced computational techniques and machine

learning tool-boxes, and with the rise in computing power, using high-fidelity models

seems more promising than ever. However, in this thesis, we heavily used simple

models. Why are we still investigating simple models? Aren’t they too simple to

correctly predict details of experimental data?

In fact, it is challenging even for the most complex existing models to precisely
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predict the effects of a novel intervention on human locomotion. For example, our

recent study showed that computational models could not exactly reproduce how hu-

man walking changes with a hip exoskeleton robot [2], and it was hard to understand

why; complex models often obscure insights due to their large number of tunable

parameters. Even though not straightforward, one may add additional components

to correct the model [35], but even this ‘corrected’ model is unlikely to reproduce

‘all’ testable human behaviors. Building a perfect human model faces fundamental

limitation that humans are vastly complex biological systems and we do not have

access to all levels of signals.

At this point we should admit that “all models are wrong, but some are useful”

(by the statistician George Box [25, 26]). While no model (remember it is a model)

can be ‘true’, a model can be useful if it properly encapsulates the phenomena of

interest. Unnecessary details are rather to be removed than retained. This shares

the philosophy of parsimony with the famous ‘Occam’s razor’ and another famous

aphorism “everything should be made as simple as possible, but not simpler” by Dr.

Albert Eistein1.

Simple models are simple, and due to their simplicity, they cannot predict all

aspects of human behaviors. However, the goal of modeling is insight, not just pre-

diction. The models developed or presented in this thesis deliberately did not address

neuro-physiological details (e.g. individual muscle activities), but they still provide

us with several important insights. So, what insight?

15.3.1 What Insights?

First, simple models are useful to identify essential features to reproduce a behavior,

i.e., sufficient conditions. With this, we can sometimes reject a ‘wrong necessary

condition’, even if they are a widely-accepted and dominant theory. For example,

Ahn and Hogan showed that long-range correlations in stride intervals may not require

1It turned out that people have paraphrased his original (and long) statement into a ‘simple as
possible’ form. See an interesting short blog article: https://quoteinvestigator.com/2011/05/
13/einstein-simple/#more-2363
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chaotic walking dynamics [6]. In this thesis, I identified that a context-based switching

is required to reproduce two different exoskeleton experiment. This was not obvious

before delving into the math.

This also helps to dissociate contribution of neural control and biomechanics when

analyzing human behaviors. In Chapter 8 and Chapter 12, investigating simple mod-

els concluded that the observed human behaviors cannot be a mere consequence of

mechanical constraints.

Second, simple models provide clear conceptual understanding of mechanisms to

make testable predictions. For example, a ‘necessary consequence’ of limit cycle

oscillators is that they are entrained when coupled to another oscillator. This under-

standing enabled us to design experiments to apply pulse torques to humans during

walking to assess whether a limit cycle oscillator is a competent descriptive model for

human walking [5, 108,111].

Third, simple models allow for quantifying human behaviors with a handful of

parameters, and the known structures of the simple models facilitate the parame-

ter fitting process (for example, see 12). This would be important for diagnosis of

individuals and to provide customized therapy in clinical studies.

Last but not least, simple models provide a perspective or framework to ask ‘right

questions’ when interpreting experimental data. Another necessary consequence of

nonlinear dynamics of coupled oscillators is that entrainment does not always occur.

In general, coupling strength and frequency difference between two oscillators deter-

mine when entrainment would occur (the so-called Arnold’s Tongue structure [63]).

To those who have such conceptual understanding, it is not surprising that human

subjects did not always synchronize their gait frequency to the robot. Rather, they

would ask more interesting questions such as ‘what are the parameters that determine

the coupling strength for this intervention?’, which would be useful to make progress.

15.3.2 Caveats

One important caveat should be emphasized. While simple models can reject ‘wrong

necessary conditions’, rejecting ‘alternative sufficient conditions’ requires care. Using
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the example of [6], this study cannot rule out the possibility that human walking

dynamics may be chaotic. The simple descriptive models provided in this thesis also

cannot rule out other possible mechanisms.

Another caveat is that there is no golden rule to determine how simple the model

should be. For those who are interested in muscle activities, a double-inverted pen-

dulum model for human balance is just too simple. It all depends on the phenomenon

of interest, and the perspective of a researcher. For example, a walking model that

reasonably described speed-step length relationship [100] predicted that applying stiff-

ness between thighs would significantly affect gait frequency, which was not consistent

with our experiments (Chapter 4). However, this is just because the purpose of the

model was not to interpret human walking with exoskeleton robot.

15.4 Open Questions for Future Studies

There are several important questions to be addressed to advance the field.

First, the high-level control objective of human locomotion should be identified.

When we simplify human motor control, identifying the right representation and

control variables is important. For example, controlling a limb during walking can

be done using a Cartesian impedance control rather than a joint impedance control.

Humans may care about absolute angles rather than relative angles between limbs

when balancing. Distinguishing controlled behavior and emergent behavior is difficult,

but it can be done experimentally, supported by a careful modeling studies. For

example, applying stiffness using a hip exoskeleton robot found that humans may be

indifferent to changes in kinematics as long as inter-leg symmetric pattern is preserved.

Second, a unifying experimental and theoretical framework of human locomotion

that integrates walking and balance should be developed. As deeply discussed in [11],

there is a huge disciplinary divide in the investigation of balance and walking, while

walking and balance are integrated motor behaviors required for locomotion. To

fully understand the stability and versatility of human locomotion, and to develop

systems to assist or augment human locomotion in the real-world, a unifying frame-
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work is necessary. Moreover, transient behaviors should be more deeply investigated

for assisting versatile human locomotion. For example, how humans accelerate and

decelerate? How humans initiate and terminate walking?

Third, for practical and clinical purposes, we need to understand ‘why’ some in-

terventions evoked central neural processes to adapt (promising for neuro-recovery),

while others did not (promising for compensation). To generalize the scientific find-

ings, we should keep asking ‘what class of intervention’ can be useful, rather than

‘what particular intervention’ can be. For example, does state-dependent interven-

tion evoke qualitatively different behaviors than time-dependent intervention? Is

inter-leg coordination a key to evoke motor adaptation? What characteristics of in-

terventions can encapsulate all the interventions tested in this study that elicited

immediate responses not adaptation?

15.5 Conclusion

Human behavioral experiments and modeling can be a complementary source of in-

sight. Not only can models aid our understanding of how the behavioral observations

arise, but they can also produce new predictions to inform the design of subsequent

experiments. Advancing robotic technologies will allow for systematically testing dif-

ferent interventions in ecological context. With understanding of fundamentals of

human locomotion and how they interact with robotic interventions, developing suc-

cessful and effective devices for human locomotion that meet our demand will be

possible.
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