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Abstract

A computational model of legged locomotion was developed in which all mo-
tions are physically-based. A dynamic simulator for articulated figures forms the
basis of all motion in the system, where forces are applied to bodies, and their
accelerations are then computed. A gait controller coordinates the activity of
stepping and stance, and is based on biological mechanisms found in
vertebrates and invertebrates. Dynamic motor programs, based on spring and
damper combinations, provide the forces required to move the limbs in order to
step and to propel the body forward. The system successfully computes the mo-
tions of a simulated six-legged insect negotiating level and uneven terrain.

A VHS videotape containing sample animations accompanies this thesis.
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1. Introduction

In recent years, the field of computer animation has been turning more and

more to dynamic simulation in order to produce realistic motion. Dynamic sim-

ulation presents new problems when compared to kinematic simulations, how-

ever. Most notably, the problem of controlling motion becomes more complex

because controlling forces must be supplied at the joints, instead of directly ma-

nipulating joint angles. However, physically-based approaches, being based on

real-world phenomena, encourage the development of control strategies which

can be used in the field of robotics, and which can test the validity or usefulness

of theories on how biological systems control motion.

This thesis develops a strategy to coordinate and control the motion of a

hexapod in a physically-based manner. A completely dynamic model of loco-

motion has not been previously reported in the computer graphics literature.

There are three major components to the approach: a dynamic simulator which

creates physical motions, a gait controller which coordinates the activity of step-

ping and stance, and dynamic motor programs, which produce forces to control

the motions of the limbs. The dynamic simulator computes the accelerations of

rigid bodies, jointed into articulated figures, in response to applied forces. The

gait controller sequences stepping such that coherent patterns are created, suit-

able to move the body forward at a given velocity. The motor programs control

the desired motions of stepping and stance, providing forces to propel the body

forward.

Dynamic simulation presents many problems, such as slow computation time,

stability problems, and complex algorithms to implement, but it has many

desirable features. Many behaviors are automatically produced in dynamic sys-

tems, such as: falling under gravity, bouncing collisions, supporting contacts,
interaction among different objects, and velocity and momentum effects.

Dynamic simulations attempt to mimic the physical properties of the real

world, and thus animations which employ dynamics appear very realistic.



One of the most interesting aspects of dynamic simulations is the way in which

dynamic elements can adapt to their surroundings through mechanical

compliance. A simple example of such compliance would be a dynamic linkage

which falls to a (possibly curved) surface under gravity. After it has fallen and

settled, it has conformed, or complied, to the shape of the surface. The result-

ing configuration of the linkage follows the surface, without the system

explicitly computing the joint angles needed to conform. A more complex ex-

ample, demonstrated in this thesis, is locomotion over uneven terrain. The

springy properties of the limbs allow a leg to conform to the differing heights of

the terrain, without actually planning the different joint angles needed to adapt

to the different heights.

The gait controller is a biologically-inspired model, using theories from neurolo-

gy and physiology. Basically, the gait controller employs coupled oscillators, or

pacemakers, which generate basic stepping patterns. Reflexes serve to reinforce

the basic stepping pattern, while increasing the adaptability of the gait to exter-

nal disturbances. Walking speed is set by simply assigning the appropriate

oscillator frequency- high frequencies for fast walking, low frequencies for slow

walking- and the gait controller creates the appropriate stepping pattern.

The motion control technique used in this thesis is based on exponential

springs and dampers placed at the joints in the hexapod figure. The springs

supply forces to position the limbs, against the disturbances of other forces,

such as impacts with the ground. Motion is controlled by moving the rest posi-

tion of the springs over time, using motor programs. In this manner, the legs

are driven to lift up and forward during stepping, and to support the body and

drive it forward during stance.

The layout of this thesis is basically as follows. Chapter 2 provides background

material for the discussion, and presents the related work of other researchers.

Chapter 3 recounts the approach I have taken to create physically-simulated lo-

comotion. Chapter 4 details the implementation of my approach, the program



corpus. Chapter 5 presents the results of my walking experiments, and analyzes

the properties of the locomotion. Finally, chapter 6 concludes with a summary

of the research, and puts forth ways in which the work can be continued and

improved upon.



2. Background and Related Work

As there are three main problems to be addressed by this thesis, the background

chapter will be divided into three main sections: dynamic simulation, gait genera-

tion and motor control. An additional section, walking machines and simulations,

will present other researchers' synthetic locomotion results.

2.1. Dynamic Simulation

The physical simulation of motion plays a key role in this thesis, because we are

interested in achieving a realistic model of locomotion. Realistic not only in the

sense of appearing convincing, but also in the sense of accurately representing

the physical world in which we live. Because of this quest for realism, dynamic

simulation forms the foundation of the walking system presented in this thesis.

By dynamic simulation we mean that all movements occur according to the laws

of Newtonian physics, as they would in the real world, under the same condi-

tions. We simulate the world, using the laws of dynamic motion.

Dynamic simulation covers a broad category of techniques, only some of which

are employed in this thesis. Two main classes of techniques can be specified, in-

verse and forward dynamics. Inverse dynamics solves the problem of determin-

ing what forces would be required to produce a specific motion. Forward dy-
namics, on the other hand, calculates what motion would result given applied

forces. However, many dynamic simulation techniques allow both forces and

motions to be specified, then solve for the unspecified forces and motions. We
will term the simulators which employ this technique hybrid simulators

Extended figure 1: On the bottom right of each page
in this chapter, you will find a photograph of a horse
with rider, taken by Eadweard Muybridge in the late
1800's [1]. Muybridge was one of the first researchers
of the stepping patterns of animals and people. By
slowly flipping the pages of this chapter, you will ob-
serve the "amble" gait of the horse.
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Figure 1: Simulation Techniques

(see Figure 1). In this thesis, we are not interested in specifying the final mo-

tions involved in locomotion. If we knew the motions ahead of time, there

would be little point in simulation, unless we wanted to study the forces in-

volved in the specified locomotion. Instead, we will specify the goal of locomo-

tion and employ calibrated force-producing agents to create approximate limb

motions. Thus, a forward dynamics simulator is required.

Another division of simulation techniques can be made: flexible object simulation

and rigid body simulation. As its name implies, flexible object simulation deals with

objects capable of deformation, such as skin, JelloTm and cloth. Rigid body simu-

lation, on the other hand, deals with objects incapable of deformation.

Although most real objects deform in some way, bone, robot linkages, insect ex-

oskeletons and many other nearly-rigid bodies can

often be approximated as rigid bodies.

It should be noted that potentially important fac-

tors are ignored when the rigid body approximation

is made. For example, the deer, dog and other quad-

rupeds are believed to store energy, as elastic strain



energy, in the aponeurosis (a spinal bone) during galloping [2]. In addition,

modal vibrations of robot parts can induce movements very different from pre-

dicted results which are based solely on a rigid body simulation. A large body of

research has recently been performed on correctly modeling the elastic proper-

ties of robot links and joints [3; 4]. Plastic deformations and breakage due to

stress and strain are also not accounted for in basic rigid body simulators.

Rigid body simulators typically allow bodies to be connected together to form

articulated figures. These figures are comprised of rigid links connected by joints,

which allow the links to move relative to each other with one or more degrees

of freedom. With each new link, the overall equations of motion for the articu-

lated figure change; i.e. the motion of each link is dependent on the motion of

the other links. Therefore, articulated figure simulators must be generalized to

deal with different link and joint configurations.

One way to achieve this generality is to employ a constraint-based approach. In

constraint methods, the relationships between different links is defined, and the

entire system is solved simultaneously. For example, two links could be con-

strained to be connected together at a joint which does not allow them to sepa-

rate, but does allows them to rotate freely around the connection point. The

constraint equations would then solve for the force required to hold together

the connection. This solves an inverse dynamics problem in the sense that forc-

es are being computed from a specified motion (or lack of motion). However,

the rotary motion at the joint would remain unconstrained, and the resulting

motion at the joint would be determined by other applied forces, solving the

forward dynamics problem. Therefore, since both motion and forces can be

specified, constraint methods are classed as hybrid

simulators, as described above. An advantage of

constraint based methods is that constraints can be

established not only between links, but also be-

tween links and the environment. For example, one

end of a link could be fixed to a point on the

ground. Constraint methods also allow complex



linkage geometries, such as kinematic loops, to be created. The main drawback

of constraint methods is that they require more computation than other meth-

ods (described below). Another problem is that they can be more numerically

unstable [5; 6].

Isaacs and Cohen describe a straightforward method of constraint simulation

based on a matrix formulation [7]. Joints are configured as kinematic con-

straints, and either accelerations or forces can be specified for the links. An

equation is established for each degree of freedom, yielding n simultaneous

equations to solve. These equations form a matrix which needs to be inverted,

yielding O(n3) complexity. Interdependencies among the constraints typically
make the matrix non-sparse, such that sparse matrix solutions cannot be em-

ployed to reduce the complexity.

Barzel and Barr have described constraint-based simulators in [8]. Their methods

allow for the "self-assembly" of linkage structures by satisfying the constraint

equations using a critically damped function. For example, two links which are

separated could be constrained to connect together, and because the constraint

equation is critically damped, the parts would move together and connect in

the fastest possible time, without overshooting each other. The published

Barzel-Barr method is of order O(n3) computational complexity, where n is the

number of constraints. This can be reduced to approximately O(n 2) using a

sparse matrix solution [6].

Witkin and Kass describe a method they term spacetime constraints in which the

constraint equations are solved not only for the joint/link geometry, but also

for the applied control forces [9]. Another important

feature of their system is that the constraint equa-

tions are solved simultaneously for the entire time

span of the simulation. Because of this, energy (or

some other function) can be minimized over all of

time, unlike Barzel and Barr's system which can in-

troduce extra momentum in links as self-assembly



occurs. Solving over the entire span of time incurs a very large computational

cost, however. Spacetime constraints will be discussed further in the Motor

Control section below.

Other methods for solving the articulated, forward dynamics problem directly

encode the link/joint relationships into the dynamics equations. Instead of solv-

ing the constraint forces required to hold joints together, these methods solve

the equations of motion for the figure using the joint geometries as part of the

formulation. Therefore, self-assembly (as in Barzel-Barr) is not possible in these

systems. However, these methods can use the joint relationships to reduce the

number of computations required for the dynamics of the figure, making them

more efficient than the constraint methods.

The non-constraint methods fall into two main categories: ones that form a set

of simultaneous equations for the accelerations and then solve them, and ones

that form a recursive relationship propagating force and movement information

through the linkage, solving directly for accelerations [10]. The first type of

formulations typically yield O(n3) complexity, because there are n simulta-

neous equations to solve (forming a matrix which requires inversion). The re-

cursive formulations, however, can reach O(n), although the benefit of the re-

cursive methods is not without cost. They are more difficult to develop, and the

cost of the computations per link is higher than the simultaneous equation

methods. Articulated figures with few joints are less expensive to compute

using simultaneous equations; figures with many joints are more efficiently

computed using the recursive methods. According to Featherstone [10], the

Walker-Orin method [11] is the most efficient of the simultaneous methods, and

Featherstone's Articulated Body Method is the most

efficient of the recursive methods. The point at

which Walker and Orin's method becomes more ef-

ficient than Featherstone's is when n < 9. Because

the articulated figure to be modeled in this thesis

has many links and joints, I chose the Articulated

Body Method (ABM) as the basis for our simulation



method.

Armstrong has developed a recursive dynamic formulation, which has approxi-

mately the same computational efficiency as the ABM [12; 10]. Armstrong et al

have experimented with this method to simulate a moving human figure in

near-real time [13] . However, the Armstrong method is only capable of efficient-

ly simulating spherical joints, unlike the ABM which allows fully general joint

types.

Another efficient recursive method has been formulated by Lathrop [14], and

implemented by Schroder [6; 15]. The advantage of Lathrop's method over

Featherstone's is that it allows for kinematic constraints at the end-effectors. For

example, Lathrop's formulation would allow the end-effector of a linkage to

maintain connection with a point on the ground. Lathrop's method can also be

extended to handle kinematic loops [6]. It is not clear, however, that these con-

straints would be generally useful for the physically-accurate simulation of loco-

motion. This topic will be discussed more in the Future Work chapter.

An important aspect of dynamic simulation is the computational numerics

involved in executing the various algorithms. Most forward dynamics algo-

rithms compute accelerations. These accelerations need to be numerically inte-

grated into velocities and positions. Various integration methods have been de-

veloped for computational use; many of these are discussed in [16; 17; 18].
Whatever integration method is used, the integrator must sample the dynamics

solution at various discrete points in time to estimate the continuous solution.

The better the integration technique, the fewer times it will have to sample the

accelerations in order to get a stable solution for the

velocities and positions. An unstable solution will be

dominated by incorrect results, very often exhibited

by high frequency perturbations. A common prob-

lem in dynamic simulations is that the system is

often stiff Stiffness results when low frequency

components and high frequency components



(which decay to zero) are mixed in a solution [18]. Typically, the high frequency

components are not of interest, but can cause certain integration techniques to

closely sample them in order to remain stable. Stiffness results when

accelerations are (partially) a function of velocities and positions. This can be

due to functions such as dampers, springs and friction.

2.2. Gait Generation

The dynamic simulation techniques discussed above form the physical basis for

simulated locomotion, but are independent of the control of locomotion. This

section will introduce coordination methods used in natural and synthetic loco-

motion, and the following section will discuss techniques used to produce the

forces required for physically-based motion.

The Soviet physiologist Nicolai Aleksandrovitch Bernstein developed a theory

concerning the control and coordination of movements which has been termed

the Bemstein perspective [19]. One of the major aspects of the Bernstein perspec-

tive is the question of how movements are performed when there are so many

degrees of freedom to control. For example, the human arm (including the wrist

but not the hand) has 7 degrees of freedom of movement due to its joints. In

addition, there are 26 muscles active on these joints. Further, there are hun-

dreds of motor units per muscle. If one desires to simply move one's wrist for-

ward in a straight line, then, essentially, only one degree of freedom in

Cartesian space should be affected. However, the 7 joint angles must be simulta-

neously controlled by the 26 muscle groups which are composed of thousands

of muscle fibers. At the lowest level of control, thousands of units must be suc-

cessfully activated to correctly achieve the motion.

Given so many degrees of freedom to control, it be-

comes desirable to effect some mechanism which al-

lows the highest levels to concern themselves with

only the few degrees of freedom required to specify 461

an action. It appears from much research that natu-

ral movements are coordinated by a hierarchical



structuring of functional units which adapt to each other as well as external in-

fluences [20].

In order to move from place to place, an animal must coordinate its limbs to

bring about coherent motion. Legs are alternately controlled between step and

stance. Stepping, of course, brings the leg up and forward, while stance supports

the body and drives it forward. The overall sequence of the various legs stepping

and standing is termed the gait.

Natural gait has been the focus of much research for many years. One of the

first researchers of gait was Eadweard Muybridge, who in the 1870 and 80's took

time sequenced photographs of various animals and humans at differing speeds

and gaits [1]. (See Extended figure 1 throughout this chapter). Muybridge,
Hildebrand [21], and others have cataloged and analyzed the stepping patterns

of the legs during different mammalian gaits, such as galloping, cantering, trot-

ting, etc. These running gaits are discrete, e.g., either the animal is trotting, or

galloping. The transition period between different gaits is almost nonexistent.

This is in contrast to insect gaits, which the work of Hughes [22] and Wilson [23]
shows to be continuous in nature. To elaborate, for each unique speed at which

an insect travels, there is a unique gait associated with that speed. A smooth

shift through different speeds results in a smooth transition of gaits. One possi-

ble reason for the apparent difference between mammalian and insect gait con-

tinuity may be that larger animals have certain mechanical resonances in their

skeletal and musculo-tendon structure[24; 25]. The discrete mammalian gaits cor-

respond to these resonances, and gaits which would fall outside of the reso-

nances would cause the animal to expend more energy and to experience dis-

comfort. Because insects are so much smaller than

mammals, inertial effects play much smaller roles

[26]. The mechanisms which generate mammalian

gaits may actually be continuous in nature, and in-

deed, computational mechanisms which generate

continuous insect gaits are also capable of generat-

ing many of the discrete mammalian gaits [27].



The gait-generating mechanisms employed by the cockroach have been studied

by many researchers. Wilson analyzed the stepping patterns cockroaches exhib-

ited under a variety of conditions [23]. He then developed five rules which de-

scribe the gait behavior of many insects:

1. A wave of steps runs from rear to head (and no leg steps until the one be-

hind is placed in a supporting position).

2. Adjacent legs across the body alternate in phase.

3. Stepping time is constant.

4. The frequency with which each legs steps varies.

5. The interval between steps of adjacent legs on the same side of the body

is constant, and the interval between the stepping of the foreleg and hind-

leg varies inversely with the stepping frequency.

Wilson made hypotheses about the neurological mechanisms which could gen-

erate these rules, and his ideas were confirmed by the experimental work of

Pearson [28]. Each leg in the cockroach has a pacemaker or oscillator, which

rhythmically triggers the leg to step. The oscillators are coupled together, and

their interaction generates the various gaits. At slow oscillator frequencies, slow
"wave" gaits are generated, and at high frequencies faster wave gaits and the

"tripod" gait is generated. As the oscillator frequencies smoothly change, a

smooth gait change is effected. The concept of coupled oscillators is not a new

one; in the 1930's, von Holst proposed the coupled oscillator model to explain

the wide range of interacting cyclic behaviors he observed in nature [29].

In addition to the coupled oscillators, reflexes also play an important role in gait

generation. Reflexes can both trigger or retard the

stepping of limbs [28]. In the cockroach, the step re-

flex causes a leg to step when hair receptors detect

that the leg has nearly reached its back-reaching ex-

tent. Another cockroach reflex employs cuticle

stress-receptors, which measure the load that a leg is

bearing, and prevent a leg from stepping if it is sup-



porting the insect. In general, reflexes reinforce the stepping pattern generated

by the coupled oscillators, while increasing the adaptability of the creature

under changing environmental conditions. Reflexes seem to play an even more

important role during locomotion over uneven terrain. A study by Pearson of

locusts walking over uneven terrain shows that a rigid gait is not employed over

rough terrain [30]. To find suitable footholds, the legs employ searching tactics,

and an elevator reflex causes the leg to lift higher if it encounters an obstacle dur-

ing a stepping movement.

In order to synthesize gait for walking robots or simulations, researchers have

created the field of computational gait. McGhee [31] derived the following for-

mula which describes the number of distinct gait patterns possible for a k-legged

system:

N = (2k - 1)! Equation 1

For a quadruped, therefore, 7! = 5040 distinct gait patterns are possible. For a

hexapod, 11! = 3,916,800 gaits can be generated. Selecting which gait to use

from this large number can seem overwhelming. Using a matrix analysis of gait,

however, McGhee and Jain showed that the 5040 quadruped gaits can be re-

duced to 492 temporally equivalent gaits. They further showed that the 492

gaits can be reduced to 45 equivalence classes. Sun employed further matrix

transformations to reduce quadruped gaits to 14 equivalence classes [32]. Sun

also showed that the 3,916,800 hexapod gaits can be reduced to 148 equiva-

lence classes. In addition, all 288 regular symmetric hexapod gaits can be re-

duced to 7 equivalence classes.

Many of the methods used to actually generate gaits are based on finite state con-

trol [31; 24; 33]. Under this method of control, each leg

cycles through a set of states, such as step and

stance. Stepping and stance is typically broken

down into smaller sets of states such as step up and

forward, and step down and forward.

Communication between the individual leg state

machines, and commands from higher levels of

...........



control determine the stepping pattern.

Beer, Chiel and Sterling employ a heterogeneous neural network to simulate the

stepping patterns exhibited by the cockroach [34; 35]. The network is created by a

set of coupled differential equations, which model a neuron cell membrane. The

cell membrane acts as a resistor-capacitor circuit and sums the input potentials,

generating an output frequency. The gait generator employs 37 neurons . For

each of the six legs there are three motor neurons, two sensory neurons and one

pacemaker neuron. Overall walking speed is set by one command neuron. By

varying the firing frequency of the command neuron, a variety of gaits is gener-

ated by the network. Slow walking speeds employ the wave gait, and the high-

est speed employs the tripod gait, the same behavior exhibited by many insects.

2.3. Motor Control

Once the overall pattern of step and stance sequencing has been coordinated, it

must be performed in some manner. In a kinematic simulation, the geometry of

the desired motions alone determines the movements. In a forward dynamic

simulation, however, forces must be delivered to the limbs to create the move-

ments. The problem of dynamic motor control is determining what forces need

to be supplied over time in order to create a specified motion. For the fine con-

trol of motion, exact forces are required. These forces can be difficult to com-

pute, due in part to the forces introduced by the interaction of the different

linkages and joints in an articulated figure. For a broader scope of motion, such

as "swing leg up and forward," less demanding methods can be employed.

In biological systems, the basic producer of bio-me-

chanical forces is the muscle. McMahon [36] con-

tains an excellent review of the force-producing

properties of muscle, under varying types of stimu-

lation. In 1922, V. A. Hill proposed a mechanical

model for the active muscle which is depicted in

Figure 2. Hill's model is based on a contractile ele-



Figure 2: The Hill model for the force response of the active muscle.

ment which consists of a force generator in parallel with a non-linear damper.

The damper exerts a force as a function of the velocity of muscle shortening

(X1). The contractile element exerts a force, To, as a function of the contractile

element length, x1, and time, t. The contractile force rises and falls with the

muscle stimulation, and during tetanus (the highest efficiency of stimulation

and force development) the force To rises to a constant level, equal to the iso-

metric tension on the muscle. In addition, a spring in parallel with the contrac-

tile element exerts a force as a function of x1. Another spring lies in series with

the contractile element and parallel spring, and produces a force as a function

of the length x2. The parallel spring models the elas-

tic properties of the muscle fibers, while the series

spring models the elastic properties of the connec-

tive tendon. The Hill model has proven very useful

in describing the mechanical properties of muscle

acting under a load in the skeletal system. In some

ways, however, the Hill Model is misleading. From - I .



the diagram in Figure 2, one would be led to believe that a mechanical damper,
such as the viscous water medium in the muscle, is acting as a dashpot. In fact,

the mechanical properties of the muscle's water does not match the damping ef-

fects seen in the Hill Model. The Hill model explains the muscle's force response

in mechanical terms, however, it should be noted that muscle is more accurate-

ly modeled as biochemical reactions which release energy.

Reflexes and feedback are used to regulate the action of the muscle [36]. The

stretch reflex increases the amount of stimulation a muscle receives when it is

stretched beyond its equilibrium length, as an attempt to return the muscle to

its previous length. This reflex is initiated by the muscle spindle organ, which

lies in parallel with the main muscle fibers. Within the spindle organ lies a

small set of muscle fibers, and a nuclear bag fiber which detects changes in

length. When the muscle is stretched by some outside force, the spindle organ

senses the change in length and increases stimulation to the muscle fibers.

During voluntary movements, the muscle fibers in the spindle organ are co-

stimulated with the main muscle mass, from higher centers. This keeps the

muscle and spindle organ at approximately the same length, so that the stretch

reflex does not interfere with a stretch controlled by higher centers.

Sensors in the tendon organs are responsible for reflex stiffness. The sensors

measure muscle force, and send inhibitory signals to the muscles. It is thought

that this reflex allows the skeletal-muscular system to present a constant stiff-

ness to the world, in spite of changing environmental conditions. A balance is

achieved between the spindle organ and tendon organ signals, so that neither

length nor force regulation has complete control of the muscle system

(see Figure 3). The tendon organs are also responsi-

ble for the clasp-knife reflex. This reflex prevents the

muscle from over-exerting itself and causing dam-

age to tissues. The force sensors in the tendon organ

detect strong force and send strong inhibitory sig-

nals to the muscle. When the reflex becomes active,
the limb it controls suddenly looses tension, which

20



Figure 3: A diagram of stiffness regulation in the stretch reflex [361.

looks somewhat like a clasp-knife returning to its sheath.

Starting with the assumption that muscles are tunable, spring-like force genera-

tors, motor control researchers have come up with an equilibrium-point hypothe-

sis to explain how controlled movements are produced [37; 38; 39; 40]. This model

treats the muscle, along with its feedback system, as a single, tunable unit, with

measurable, spring-like properties. Postures are controlled by establishing an

equilibrium between agonist and antagonist muscle

groups. This equilibrium configuration forms a

point in a controlling space, which can be specified

by the neuromuscular system. The equilibrium-

point hypothesis states that movements are pro-

duced by changing the equilibrium point from one

posture to another. Exactly how the change from



one point to another is accomplished is not fully understood. Experiments by

Bizzi, Chapple and Hogan show that it is not the case that the equilibrium

point is instantly switched from one point to another [37]. Hogan describes a

"virtual trajectory" of equilibrium points which control movements[39].

One of the basic controlling means in nature is the servomechanism [20], which

employs negative feedback to steer a system toward some equilibrium. Sensors

are used to measure some signal, and an error term is constructed based on the

displacement of the system from its goal. The error term is used to stimulate the

system in the direction of the goal. The way in which moths orient towards the

light is a servomechanism; unless both eyes detect light, the moth turns more

towards the light. If one eye of a moth is blinded, it turns continually in a cir-

cle, since only one eye is ever illuminated. The controlling means of the stretch

reflex, described above, can also be thought of as a servomechanism, since it

employs active feedback to regulate the length of the muscle system.

The study of computational motor control has arisen mostly from the need to con-

trol robotic systems. Again, the problem comes down to what forces are re-

quired to produce specific motions. In many cases, the demands on precision

can be very high. In some applications, not only the motion of the system

needs to be controlled, but also the force applied by the robot onto its environ-

ment.

Before describing computational motor control, an interesting example of inter-

active motor control will be presented. An interactive graphical editor, Virya, de-

veloped by Wilhelms, allows controlling functions to be specified for an articu-

lated figure simulator [41]. The user draws and edits

curves to indicate what forces or torques are to be

applied at a degree of freedom. Alternately, the mo-

tion of the degree of freedom can be defined with a ......

curve, and an approximate force will be automati-

cally calculated to achieve approximately that mo-

tion. Results from using Virya and similar experi-



Figure 4: a simple servomechanism implementing spring position control

ments by Armstrong, Green and Lake [13], reveal that direct manipulation of the

forces and torques needed to achieve certain motions or goals is very difficult.

One problem is that there are typically many degrees of freedom to control.

Another problem is that forces applied at one degree of freedom influence not

only that DOF, but also (potentially) the entire dynamic system. In addition,

Coriolis and centripetal forces arise due to the motion of the bodies in the sys-

tem, and must be counteracted for accurate motion.

A basic servomechanism might be used to automate motion control. A simple

feedback system which employs a spring to draw a dynamic system towards a

specified position is shown in Figure 4. A linear spring function produces a force

proportional to the displacement of the dynamic system from the target posi-

tion. The feedback system will automatically respond to external perturbations

which cause a drifting from the target. The problem with this basic approach is

that the system will not necessarily ever reach the target. Once an equilibrium is

reached between the spring force and external forces, the spring cannot draw

the system any closer to the goal. Increasing the

spring strength, k, will make the error displacement

smaller and smaller, but not zero. In addition, the

simple spring system depicted in Figure 4, in the ab-

sence of damping (from external forces), will actual-

ly fight itself; the spring will bring the system closer

to the target, but in the process the system will pick



up momentum and overshoot the target. The spring will then have to pull the

system back again, and so on.

Inverse dynamic techniques (including constraint based systems) can calculate

the exact force required to bring the system to a target, without any displace-

ment. However, in order to exactly counteract external disturbance forces, those

forces must be known. In a simulation system, it is reasonable to say that these

forces will be known, but it is not always a valid assumption that the controller

should have knowledge of them. For example, if a simulated human was stand-

ing and received a push from the side, the controlling system should not know

exactly what force is being applied and immediately counteract it, if a humanly-

realistic motion is desired. Instead the human should begin to fall to the side,

and when the controller discovers the error in balance, it would try to correct

and rebalance.

An, Atkeson and Hollerbach employ model-based control [42], in which a descrip-

tive model of the kinematics, dynamics and motors of a system are used to com-

pute accurate controlling forces for robot manipulators. The complete robot sys-

tem, including motor properties, linkage elasticity, joint viscosity, etc., is often

termed the plant. A model of the inverse-plant is used to predict and plan how

the system will respond to controlling input. Determining the exact values for a

plant, and thus its inverse, can be difficult, however.

Another class of inverse-dynamics controlling methodologies are optimization

techniques. With these techniques, a goal is specified, along with the details of

the physical system. Some measurable quantity, such as energy expenditure, is

chosen to be minimized. The system is then ana-

lyzed over a period of time to determine what con-

trolling parameters will yield the optimal result.

Because optimization techniques solve the entire

dynamic system with controlling parameters over

an interval of time, they can be quite computation-

ally expensive. Brotman and Netravali have devel-



oped a system using optimal control to interpolate between a set of motion key-

frames [43]. Witkin and Kass term their method of optimal control spacetime con-

straints [9]. Their method allows goals to be specified in kinematic and energy

terms, such as "jump from here to there, clearing a hurdle in between, and

don't waste energy."

Optimization techniques along with other constraint techniques can be termed

key event simulation, because specific events must be satisfied. This is in contrast

to forward simulation in which a system is established, and then simulated for-

ward in time [44]. Controlling techniques for key event simulation require glo-

bal knowledge about the system, sometimes over the entire time span of the

simulation. Forward simulation controllers, however, need only partial knowl-

edge of the world, presumably derived from a simulated sensor. The more so-

phisticated the controller, the more knowledge of the world it will require.

External influences, such as interactive input, can be easily incorporated into a

forward simulation at any point in time, unlike methods such as spacetime con-

straints, which must be solved over the entire span of time.

2.4. Walking Machines and Simulations

Walking machines have been the subject of research for many years. A human-

controlled, four-legged vehicle was developed at General Electric by Liston and

Moser in the mid-1960 [45]. Using force-feedback, the driver could "feel" obsta-

cles and negotiate uneven terrain. The first example of an autonomous legged

vehicle, controlled by a digital computer, was a hexapod robot developed by

McGhee [46]. The hexapod could employ a number of gaits, and negotiate rough

terrain with areas marked as forbidden. A similar hexapod was developed by
Sutherland [47]. Its gait control system is similar to

the one presented in this thesis [24]. Legged robots

designed by Raibert differ from the above robots in

that they employ dynamic balance; i.e. they can run

and hop without enough legs always on the ground

to statically support the body [48].



In the computer graphics field, simulations of legged locomotion have also been

an area of active research. A kinematic simulation of human walking was devel-

oped by Zeltzer using a finite state machine approach [33]. The biped model was

capable of walking over uneven terrain. However, since the motions lacked a

physical basis, some of the walking appeared overly simplified, especially when

adapting to terrain. Girard developed a system for kinematically simulating the

locomotion of creatures with various numbers of legs [49]. In his system, gaits

and leg motions are interactively created, and gait shifts are accomplished by

simply interpolating between defined gaits. Some dynamic aspects were also

added, such as parabolic trajectories while in the air and banking during turns.

However, because the motions are interactively defined, the overall motions

lack a complete dynamic basic, which can make them appear artificial. Sims

created a walking system with an interactive figure editor which allows the user

to quickly and easily define new figures [50]. The figure can then automatically

employ defined gaits over uneven terrain, and also hop or "pronk" using a dy-

namic trajectory. A dynamic model of snake and worm locomotion was devel-

oped by Miller [51]. Although not legged locomotion, Miller's work is interesting

in this context because of its dynamic nature. The forward motion of the snakes

is ultimately due to friction, as is the motion of the roach in this thesis.
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3. Approach

This chapter describes the approach that I have taken to develop a dynamic

model of locomotion. My approach is basically one of forward simulation, where

a physically accurate model of a hexapod and its environment is constructed,

and a control algorithm for walking is established (without global knowledge of

its environment), and the system is then simulated forward in time. The success

or failure of the system depends on the accuracy and robustness of the control

system, as the dynamic simulation will faithfully incorporate all controlling

forces, whether they help or hinder locomotion.

My approach breaks down into three main procedural components which de-

scribe how the physical and controlling mechanisms will operate, and a set of

structural components which describe the parameters of the hexapod

(see Figure 5). The three procedural components are: a dynamic simulator, a gait

controller and motor programs. Dynamic simulation forms the foundation of

the system, since all motions are computed by the simulator. Because a forward

dynamics simulator is employed, forces must be applied to create movement.

Figure 5: breakdown of approach for dynamic locomotion



Featherstone's Articulated Body Method (ABM) [10; 52] was selected as the simu-

lation algorithm, because it is one of the most efficient methods for forward dy-

namics. The gait controller coordinates the sequences of stepping and stance

for the hexapod. The controller used in this thesis is based on the coupled oscil-

lator model with reflexive feedback [28]. The motor programs generate the forces

required for stepping and stance. They are based on exponential spring and

damper combinations, which are tuned over time. In addition, there is another

procedural unit, the graphics system, which is not directly involved in the cre-

ation of locomotion, but is required for display and animation of the simula-

tion.

The structural components describe the parameters that the functional units

will operate on. The structural model of the hexapod describes how it mechani-

cally constructed (i.e. the kinematic structure of the links and joints, and the

mass and inertia of the links), how it appears when graphically rendered, and

the specifics of how it will move (i.e. the maximum speed, motor program pa-

rameters, etc.) Some of the structural elements were designed from a study of in-

sect physiology, others were developed by trial and error methods.

3.1. Dynamic Simulation

As has been previously noted, the dynamic simulator forms the basis of all mo-

tion in this dynamic locomotion system. The simulator accepts forces acting on

an articulated body as input, and computes the acceleration of the degrees of

freedom of the figure as output. These accelerations are numerically integrated

over time to give rise to the velocities and position of the DOF's.

Featherstone's ABM is introduced in [52], and developed further in [10].

Featherstone claims (with substantial proof) that the ABM is the most efficient

algorithm yet developed for forward dynamics simulation. Deyo and

Ingebretsen [53] claim that Bae's recursive algorithm [54] is the most efficient, al-

though the claim is not substantiated. The main reason for the algorithm's effi-

ciency is because it is recursive in nature. Instead of solving a set of simulta-

neous equations describing the kinematic and dynamic relationships between



different links in an articulated figure, recursive dynamics formulations estab-

lish a recursive, linear relationship between parent and child links. The simulta-

neous equations methods have a computational complexity of approximately

O(n3), whereas recursive methods can achieve a complexity of 0(n), as the ABM

does.

The ABM operates on branching, articulated figures, comprised of links connect-

ed by joints. The joint type in the ABM is flexible in that many different joint

types can be specified. For example, rotary and prismatic (translational) joints

are supported, as well as combinations of both, such as screw and cylindrical

joints. A joint can have from one to six degrees of freedom.

One of the links in the articulated figure is chosen to be the root body, or base.

This link can actually be any of the links in the figure, but it is logical to choose

the most central body in the branching structure. If the recursive algorithm

were implemented on a parallel processor machine, then the most efficient root

body would be the most central, since all branches could be processed in paral-

lel. The root body is somewhat special in the ABM since kinematic constraints

can be specified for it. The other links in the figure, including the end-effectors

(last link in a branch of the figure), do not support kinematic constraints; their

motion is determined by the applied forces only. However, an inverse dynamics

algorithm can be used to compute those forces needed for kinematic con-

straints.

The key feature of the Articulated Body Method is the concept of the articulated

body inertia. Just as the inertia tensor of a rigid body determines its acceleration

when the applied force is known, the articulated body inertia tensor of a rigid

body, within an articulated figure, determines the acceleration when the ap-

plied force is known. Formally, the equation of motion for a free rigid body is:

f = I a + p Equation 2

where f is the applied force, I is the inertia tensor, a is the acceleration and p,

is the bias force (centripetal and Coriolis) produced by the body's velocity. The
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equation of motion for rigid body gantry motion

in an articulated figure reads:

^ ^A ,,.'-

f = I a + p Equation 3
^Awhere I is the articulated body in-

ertia tensor, and p is the bias force

which incorporates the pV from block m
motion

above, as well as joint reaction

forces. The ^ above these

quantities denote that they are rep-

resented in spatial notation. This

notation, developed by x

Featherstone, is based on screw Figure 6: a two dimensional block and gantry

calculus [55], and essentially unites

the rotational and translational aspects of motion into a single vector quantity.

Appendix A gives an introduction to the spatial algebra required to implement

the ABM, however, Featherstone should be referred to in [10] for a tutorial in

and reference for spatial notation.

"A
The articulated body inertia ( I ) gives directional properties to the apparent

mass of a body. To use an example from Featherstone [52], a simple two dimen-

sional block and gantry system will be described (see Figure 6). The first mass,

mi1 , is a block free to move up and down in y along the second mass, m2 , to

which it is attached by a prismatic joint. The second mass is free to move from

side to side in x along another prismatic joint. A force applied to n1 in the y di-

rection will yield an acceleration in the y:

a =-Equation 4.

A force applied to mi or m2 in the x direction, however, needs to overcome the

combined mass of both the block and gantry, producing an acceleration in x:



ax = mi+m Equation 5.

These two equations can be combined into a single matrix equation:

fy7 0 1 .ami Equation 6.
It can be seen that the apparent mass of the system is higher in the x direction

than in the y. It is the difference in the degrees of freedom between the two

bodies due to the joints which creates this effect. The mass matrix in Equation 6

is the articulated body inertia for this two dimensional system.

The full development of the ABM is left to Featherstone [10], however, the basic

equations needed to implement the ABM are described in Appendix B. The

basic operation of the algorithm progresses as follows: first the algorithm passes

from the leaf bodies of the figure tree in to the root body, accumulating the ar-

ticulated body inertia (IA ) and bias forces ( p), then Equation 3 is used to com-

pute the acceleration of the root body as in:

a= (IA) (f - P) Equation 7

finally, the algorithm passes from the root out to the leaves computing the ac-

celerations of the joints.

3.2. Gait Control

In order to coordinate the stepping and stance of the hexapod, a biologically-in-

spired approach has been used. A computational model of coupled oscillators is

used to generated the overall stepping patterns. In addition, feedback via reflex-

es reinforces the general stepping pattern while increasing the adaptability of

the gait. The coupled oscillator model is employed in this thesis because it is

adaptive and robust, and because it lends itself well to hierarchical structuring.

The higher centers of control simply specify walking speed, and the gait con-

troller selects the appropriate gait, and sends motor commands to the levels

below it.

The oscillators will be modeled as pacemaker units which rhythmically trigger



an action. Each leg receives an os-

cillator, and the action which it oscillators

triggers is stepping. The coupling step triggers

between oscillators will be mod-

eled as phase and time relation-

ship rules which the oscillators master

maintain between each other. oscillator les

These relationships are mathemat-

ical translations of the stepping

rules observed in the cockroach abdomen

by Wilson, presented in the

Background and Related Work

chapter. The oscillators cycle with Figure 7: the coupled oscillator configuration

the same frequency, such that a

master frequency is set, and all oscillators match that frequency (see Figure 7).

Because of the coupling rules between oscillators (most importantly, that legs

across from each other step 1800 out of phase) different gaits and walking

speeds result when the oscillator frequency is varied. Further details of these

models will be given in the Implementation chapter.

Reflexes are modeled as conditional units. When a certain condition is met, the

reflex can inhibit or trigger different actions. For example, the step reflex trig-

gers stepping when a leg is bent back past a specified angle. This helps the hexa-

pod avoid over-extending the reach of its legs. An inhibitory reflex prevents

stepping if an immediate neighbor (front, back and side) of a leg is already step-

ping. In general, adjacent legs should not step simultaneously, since it would

decrease the stability of the supporting legs. An exception to this rule is seen in

the locust when negotiating uneven terrain [30]. The two middle legs of the lo-

cust are lifted simultaneously, while the other legs support, in order to lift the

legs out of a large depression in the terrain. A load bearing reflex inhibits step-

ping if a leg is currently bearing too much weight (see Figure 8). This prevents

the hexapod from stepping with a leg that is currently an important support

site. Again, more details on the models will be presented in the
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Implementation chapter.

connIt should be noted that this mod-
rigger eling is not a fine-grained neural

leg angle sensor,
step reflex: network approach as Beer, et al,

oscillatorshave employed [34]. Instead, the
loadoscillators and reflexes are mod-

ger
inhibitiongger eled as computational units, and

adjacent leg angle sensor the oscillator coupling is modeled
oscillators

load beari as rules for the oscillators units to
loadr ex:

eiinhibits stepping follow.

Figure 8: reflex feedback to the oscillators The oscillators and reflexes trigger

the stepping motor programs for the legs. One stepping is initiated, it continues

to completion and stance begins again. The gait controller only generates the

pattern of stepping, and is not directly responsible for the movements of the

legs or body. However, the movements of the legs, due to the motor programs

and dynamic simulation, do feedback into the gait controller through the re-

flexes.

3.3. Motor Programs

The dynamic motor programs are responsible for delivering forces, through the

joints of the hexapod, to create the movements required for locomotion. There

are two motor programs: step and stance. The stepping program must compute

the forces necessary to lift the leg up and forward, and place it in a position to

take up the load of the body when stance begins. The stance program supplies

the forces needed to support the body via the legs, and propel it forward.

Stepping programs are triggered by the gait controller, as described above.

Stance programs automatically begin when stepping has completed.

The dynamic motor programs create forces by using exponential springs. As

their name implies, These springs have an exponential relationship between

the displacement, x, of the spring from its rest position (or angle) and the force



f (force)generated, f, such that:

f = a (eiA - 1) Equation8 400

where a controls linear strength, 300

and p controls exponential rise. The

force response of an exponential 100

spring is shown in Figure 9. The ex-..
-2 -11 2

ponential response creates a steep The effect of varying 0: a=1; V- 4, 3,2

potential well; with a large displace- f 3 torce)

ment, the force becomes extremely

high. The p parameter controls the 250
C-200

width of the well, and the a param-

eter controls how fast a well of a 100

given width will linearly rise. When 50

an exponential spring is used for po- 2 1 2

sition control, the degree of free- The effect of varying a: a--2 1 0.S; -3

dom it controls will very likely stay Figure 9 the force response of an

within the lower parts of the well, exponential spring: f (e1A - 1)

since the forces grow so large out-

side of the lower region.

A motor program controls motion by changing the rest position (or angle) of its

exponential spring over time. This causes the force potential-well to travel along

the degree of freedom, "dragging" the controlled limb along with it. The rest

position is modified using a linear interpolation from the current position to

the target position. In more physical terms, the rest position travels with a con-

stant velocity to the target. This is not an exacting method of motion control,

and would be inappropriate for a movement such as a controlled reach and

grasp.

Although this springy method of motor control does not allow specified trajec-

tories to be exactly executed, it does have an interesting advantage over meth-



ods which do control exact move- z (torce)400-
ments (especially kinematic systems).

The potential wells created by the 300

springs lead to a compliant system, 200
which allows the final motion to fall

within a range of possible motions. 100

For example, to negotiate uneven ter-

rain, a kinematic locomotion system 2 1

would need to compute the leg joint Figure 10: linear vs. exponential spring force

angles needed to place a foot at differ-

ent heights at different points on the

terrain. Using a dynamic, compliant system however, the legs can automatically

adjust to the different heights of the terrain, which is demonstrated in this the-

sis. For example, if a foot were to land in a hole, the joint angles would be rotat-

ed beyond their normal values, but would still fall within the force potential

well created by the springs. When a foot lands on a rise, the joint angles would

be compressed more than usual, but the compliant response in the joints would

allow this. In the hill case, the force response of the springs would lie on the op-

posite side of the potential well from the hole case.

A disadvantage of using exponential springs is that they create a stiff system. As

the force response of the springs is pushed further and further up the steep walls

of the potential well, the numerical sampling of the integrator must take small-

er and smaller time steps to get an accurate result. Linear springs would not cre-

ate such a stiff system for a given force output, but exponential springs have the

advantage that at small displacements, they are less stiff than linear springs

(see Figure 10). In addition, linear springs need to be very strong to create simi-

lar forces to the exponential springs at large displacements.

In some basic structural ways, this method of motor control is similar to the

equilibrium position hypothesis, presented in the Background and Related

Work chapter. I am not claiming to model that hypothesis, but rather claim

that the gross hierarchical structuring is comparable. In the equilibrium posi-



tion hypothesis, motion is created by "interpolating," in some manner, between

different postures. This interpolation occurs in a neuromuscular controlling

space. In my dynamic motor program model, different postures are "calibrated"

(discussed in the Implementation and Results and Analysis chapters) and mo-

tion is achieved by interpolating between them. The controlling space of the

motor programs is the rest length of the exponential-spring actuators.

3.4. Roach Description

The final component necessary for a simulation of dynamic locomotion is the

set of data needed to describe the hexapod/roach model. This model includes

not only the graphical objects used for display, but also other information

specifying the mechanical design of the articulated figure, as well as data de-

scribing how the roach will walk. Essentially this data is a set of static informa-

tion which describes the physical properties, control parameters and graphical

models for the hexapod. All of this data will be detailed in the Implementation

chapter.

The physical properties include the size, shape and density (and thus mass and

inertia) of each link in the figure, as well as the figure's mechanical design. The

mechanical design describes how the figure is constructed: the joint axes' loca-

tions, directions and degrees of freedom, and the branching tree structure of the

figure. This kinematic design is based on studies of cockroach physiology, from

diagrams and text descriptions [22; 56].

The control parameters determine the basic gait features and the motor program

parameters. Constant gait features are the stepping speed, the time between

stepping of adjacent legs on the same side of the body, the number of legs and

default values for other parameters such as oscillator frequency. The motor pro-

grams for step and stance define what joint angles are traversed by the exponen-

tial springs during those actions. These programs are "tuned" via a trial-and-er-

ror method to determine appropriate spring strengths and joint angle values. In

general, this trial-and-error approach is not the appropriate method to deter-

mine the operating dynamic parameters, since it requires an "expert" tuner (i.e.



the programmer) to make "educated" guesses as to the parameters, based on the

experience gained from previous experiments. In some sense, the expert tuner

acts as natural selection in an "evolutionary" process which increases the ro-

bustness of the locomotion. Other methods for determining the motor parame-

ters will be discussed in the Future Work section.

The same data that is used for the computation of the physical inertia (the size

and shape of the body parts) is used as the geometric data for graphical render-

ing. In addition, rendering information such as the color, shading parameters

and lighting models is specified for all of the graphical objects.



4. Implementation: Corpus

In order to implement the methods described in the Approach chapter, the

program corpus was designed and programmed by the author. Corpus is a system

for simulating the forward dynamics of articulated figures, with gait control

mechanisms, force-producing motor programs and rendering support. A

"corpus" is the body of a man or animal (Webster's 7th), and thus the

articulated-figure simulator, corpus is so-named. Corpus is implemented in the c

programming language, and uses several support libraries, also implemented in

c: rendermatic (David Chen, MIT), a rendering library with geometric collision

detection; retepmatic (Peter Schr6der, MIT), additional rendering code; and

robotlib (David Chen, MIT), a matrix manipulation package. The control of

corpus is implemented through a scripting command language, which allows

figures to be constructed, dynamically simulated, gait controlled, motor

controlled and rendered.

The data which describes the mechanical structure of the hexapod and the spe-

cifics of how the hexapod will walk (gait and motor parameters) form the re-

maining parts of the implementation of this thesis. Although not directly a part

of corpus, this data describes the operating parameters for the program execu-

tion.

4.1. Dynamic Simulation

Corpus employs the Articulated Body Method (ABM) described in the Approach

chapter and Appendix B. Underlying the ABM is a set of spatial algebra

functions (see Appendix A for a discussion of spatial algebra). These functions

include:

" spatial operators (e.g. spatial transpose, spatial cross),

" spatial transformation matrix operators,

e and operators used to build spatial quantities from more intuitive data and

to recover that data from spatial quantities.



These latter operators include functions such as:

" build a spatial force from a linear force applied at a point,

" extract the linear velocity of a point from the spatial velocity,

" and build a spatial joint axis from the axis direction and location, and

joint type.

The dynamics code is a straightforward implementation of the ABM, computed

in body-local coordinates. Computing in body-local coordinates instead of

world space (or the inertial frame) has several advantages. Local coordinate com-

putation allows certain optimizations to be made to the code [10]. These optimi-

zations have not, as yet, been done in corpus, but the transformation code

which would be modified is localized to allow such operations to be easily

made. A problem with inertial coordinates, discovered by the author, is that

they increase numerical noise. This is discussed further in the Integration

section, below. Lastly, local coordinates can provide, at times, more intuitive

values for spatial quantities; for example, the joint axis direction would con-

stantly change in inertia coordinates, but is a constant in body-local coordi-

nates.

Corpus dynamics operate on articulated figures with branching structure, with-

out kinematic loops. Loops can be simulated using forces, which does not pro-

vide exact closures (there are small gaps of variable size between the links), and

can lead to a stiff system. The links in the articulated figure are connected by

one degree of freedom joints. The joints can be rotary or sliding (prismatic).

Multiple degree of freedom joints and different joint types are supported by the

underlying algorithm, and only simple changes to the joint data structure are

needed to implement this.

External forces and joint forces are specified before the dynamics algorithm be-

gins, using functions described below. Forces generators include gravity ,

collisions, motor program springs, joint dampers, etc. The dynamics algorithm

then passes from the leaves bodies to the root body, summing articulated-body

inertia and bias forces, then progresses from the root body to the leaves, solving



for accelerations.

4.2. Integration

Once the accelerations have been computed by the dynamics algorithms, they

must be numerically integrated to compute velocities and positions. Corpus sup-

ports three methods for integration: Euler; fourth order Runge-Kutta; and fifth

order, adaptive Runge-Kutta. The most basic Euler method would simply

increment the integrand by the derivative times the time step, as in:

vnew = Vold + a dt Equation 9

and

Pnew = Pold + vnew dt Equation 10.

This assumes constant acceleration and velocity over the time step. Further-

more, the term due to acceleration is not included in the position (p) computa-

tion. A more accurate method for Euler integration assumes constant accelera-

tion over the time step, but uses an average of the new and old velocity to com-

pute the new position. This accounts (in approximation) for the fact that veloci-

ty is, in fact, changing over the time interval. Also, the term due to acceleration

(by doubly integrating acceleration) should be accounted for in the position

computation. In the more accurate Euler integration, Equation 9 remains the

same, but Equation 10 is rewritten as:

pne, = poia + ( vnew+ void) dt + a dt2 Equation 11.
Pe ol+ 2 2 Euto 1

This is the Euler method employed in corpus. For each joint, the one DOF accel-

eration is integrated to joint velocity and position. The root spatial acceleration

is component-wise integrated to a spatial velocity, and then to spatial

"position" [6]. This position is used to compute the incremental transformation

which updates the local coordinate frame of the root body. The transform is

constructed by forming a spatial transformation matrix which first rotates

around the 3D axis specified by the upper three elements of the spatial position

by the angle specified by the axis magnitude, then translates by the lower three

elements. Since the local frame continuously updates to follow the moving

body, the spatial position can be discarded after the new transform is made.



Euler integration allows for very rapid execution of the simulation, since only

one call to the dynamics is required per time step. Also, since Euler integration

is so simple, makes only one call to the dynamics, and does not require any

non-integrated state to be maintained (discussed below), it can be very useful

for de-bugging code. However, Euler integration can become unstable very

rapidly, and the simple system outlined above does not adjust the time step for

varying stability conditions. A more stable integration method is Runge-Kutta,

in which multiple sub-steps are taken for each desired time step. A fourth-order

Runge-Kutta has been implemented in corpus, as described in Press [16]. In this

method, four sub-steps are taken per time step and the results are averaged with

different weights for the different sub-steps. Because this integration is much

more accurate than Euler (fourth order vs. first order), it is possible to take larger

time steps and still remain stable.

The most accurate and robust integration method in corpus is an adaptive fifth

order Runge-Kutta. The implementation uses the basic structure from Press [16],

but the way in which the sub-steps are laid out in time, and the coefficients

used to weigh the results are due to Fehlberg [17]. This method takes six sub-

steps and weighs the results in different manners to compute both a fourth and

fifth order solution. The two solutions are compared, and the difference is used

as a gauge of the accuracy of the fifth order solution. If the difference is beyond

a designated value, then the algorithm backs up to the beginning of the time

step and restarts with a smaller step size (selected using the accuracy estima-

tion).

Because the integrator must be able to back up in time in order to adapt to less

stable conditions, the state (positions and velocities) data must be backed up

also. This is trivial, since the integrator is initially passed this information. How-

ever, the problem arises that time-varying state data which is not integrated

must also be backed up. This non-integrated state includes such parameters as

motor program state, breakable springy connections to the world or a body, and

the root body's transformation matrix. The integrator structure was modified to

support the storage of this state, which must be passed to the dynamics algo-



rithm.

Integration of spatial quantities presents a special problem when inertial coordi-

nates are used instead of local coordinates. Due to the nature of spatial algebra,

rotational values are specified with regard to the origin of the coordinate frame

which they are expressed in. Other methods often express rotation with respect

to the axis about which the body is rotating. In spatial algebra, as a body travels

further and further from the inertial origin, any "local" rotation it undergoes is

expressed with respect to the origin, such that the body actually rotates far away

from its correct position. Spatial algebra then corrects for this by translating the

body back to the position it should occupy. Mathematically, this is completely

valid. However, as the integrator attempts to "sum" this motion over an inter-

val of time, the rotation-then-translation method becomes less and less accurate

the further the body is from the inertial origin. The integrator "notices" this in

its error estimation, and sub-divides more and more, until many sub-samples

are needed for simply rotary motions. Integrating in local coordinates solves

this problem, since the local origin is a (presumably) small distance from the

point about which rotation is occurring. Note that this is only an issue for the

root body, since it is the only body undergoing full 6 DOF motion. For all other

bodies, only the joint motion is integrated, and joint motion is constant across

coordinate frames.

4.3. Articulated figures in corpus

Articulated figures are "built" in corpus using scripting commands. An

interactive, graphical method, which would supply the necessary commands to

corpus, could be employed to construct figures. However, currently only script

files are used to build figures. Corpus breaks down figures into bodies, parts, and

corpora.

Bodies are the individual links in a figure which are based on graphical objects.

Bodies also have a specified density, joint axis, joint type, and initial transfor-

mation, which takes them from graphical modeling space to their own local

frame. Local frames are defined for non-root bodies by placing their local origin
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at the location of their joint (the one which connects to their parent body). The

bodies are translated, rotated and scaled using- simple scripting commands, the

same commands generally used in corpus to manipulate graphical objects. Using

the object shape and specified density, the inertia tensor is automatically calcu-

lated by a function coded by Peter Schr6der (MIT). This tensor is then built into

a spatial inertia tensor.

Parts are used to rigidly attach extra graphical objects to bodies. They are orient-

ed using scripting commands into the local space of the body to which they will

attach. Their density is specified, and their computed inertia is added to the

body.

Both bodies and parts can optionally be declared non-inertial and/or non-collid-

ing. If they are non-inertial, then they contribute no inertia to the body. If they

are non-colliding, they are not collision detected against any other object.

Using combinations of these two options, parts can be added to bodies to be

used as simple "bounding" objects, which have fewer polygons, but represent

the general shape of the body, to speed up collision detection (discussed below).

Bodies and parts are also declared as convex or concave. If a body is purely con-

vex, collision detection can be performed more rapidly.

Bodies are attached to one another by specifying the parent and child bodies,

and the transformation which places the child body in the space of the parent.

This transform is again specified using the transformation commands in corpus.

For example, if a child is attached to the end of a parent, and that end is located

5 meters along the x axis, in the parents space, then the specified transform

would be "translate 5 in x" (specifically "move 5 0 0" in corpus).

Corpora are articulated figures (one is a "corpus"). Corpora are initialized after all

parent/child connections have been specified, and a root body is designated.

Corpora can be placed on and off the integration list so that they can be simulat-

ed or not when the dynamics is called. The root body can be specified as fixed or

moving; when fixed the acceleration and velocity of the root are always zero.



The velocity and acceleration of the base can also be explicitly set, to produce

constrained motion at the root.

4.4. External Forces

Any external force can be added to any body in a corpus. One of the most sim-

ple and useful is gravity. To add gravity, a force is applied to each body, at its

center of mass, equal to the body's mass times 9.8, in the negative z direction

(positive z in corpus is "up"). Other gravitational constants can be specified, if

desired.

Other external forces applied to bodies are collision forces. Detection of collisions

is described below. When a collision occurs, a force is applied at the point of

penetration/contact. The force can be decomposed into two components, a

normal force and a tangential force. The normal force pushes the point out of the

penetrating surface, along the normal of contact, and the tangential forces ac-

count for surface friction. This is basically the approach outlined by Wilhelms

and Barsky in [41]. The normal force can be generated by linear springs, expo-

nential springs and dampers. In general, only exponential springs are employed,

and damping effects are accounted for by applying a coefficient of restitution to

the spring force. The action of the coefficient directly models the energy loss

when an object rebounds from a collision. The coefficient ranges from zero to

one, where zero is total energy loss, and one is a perfectly elastic collision. The

coefficient is used when the collision point's velocity is upward, out of the sur-

face. When this occurs, the spring force is scaled by the coefficient.

Tangential forces are also applied at the points of contact and are used in corpus

to model sliding friction. These forces are applied in the plane of the contact

(tangent to the contact normal). Several models of friction have been experi-

mented with in corpus, with generally equal results. In general, only one model

is employed, in which the normal force is scaled by the coefficient of friction,

and is applied in a direction to oppose the tangential velocity of the contact

point. This tends to bring any tangential motion to a halt, unless the force pro-

ducing the motion is greater than the generated force, in which case sliding
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occurs. The problem with this method is that when sliding does not occur (i.e.

when the force producing tangential motion is less than the friction force) a

stiff system is created. The friction force applied to prevent sliding should exact-

ly counteract the other tangential forces, but in a strictly forward dynamic sys-

tem, that force is not known. The stiff system arises as the approximate friction

force over-compensates, producing motion in the opposite direction. This new

motion must then be opposed by the friction forces, which again reverses the

motion direction, and so on.

The most basic collision detection available in corpus is detecting penetration of

the bounding boxes of bodies against a ground plane. This is actually sufficient

for many of the walking experiments performed for this thesis, since the objects

which comprise the hexapod are rectangular solids, and most of the tests were

performed on level surfaces. The collision detection operates by simply testing

the worldspace location of each of the eight corners of a body's graphical

bounding box against a specified z value, which forms the level plane. For each

corner below the z value, a spring force is applied to the body at that corner,

using the distance below the z plane as the spring displacement.

Collision detection in corpus also supports detection of body bounding boxes

against uneven terrain, parametrized as a regular "grid" of triangular polygons

[33; 50; 57]. Because the grid is regularly spaced, a look-up table of the heights can

be made from the triangular polygonal object. The table allows for rapid testing

for points under the grid. To test a point, its x-y location is checked against the

table's corresponding entries which surround that point. The table values are in-

terpolated to get the exact height of the triangular polygon at the test point's x-

y location. If the test point is below the polygon, a spring is applied as described

above. The normal force direction must match the normal of the polygon, and

the tangential forces must lie in the plane of the polygon. Note that body

bounding box edges are not tested against the terrain edges, so the collision de-

tection is incomplete. However, the hexapod supports itself on small bodied

"feet" such that edges play very little role in its normal walking collisions.
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Inter-body collision detection is also supported in corpus. Body bounding boxes

are tested against other body bounding boxes. When a corner point is detected

within another box, spring forces are applied as previously described, using the

normal of the penetrated surface as the force normal. The force is applied equal-

ly and oppositely to each dynamic body. Again, edge collisions are not tested,

leaving the detection incomplete. This form of detection is not used for the

walking experiments.

A more complete form of collision detection is available in corpus through

rendermatic, the graphical rendering library (David Chen, MIT). Using this meth-

od, arbitrarily shaped objects can be collision detected against each other, and

all penetrating points and edges are detected. Collision detection can be per-

formed more rapidly for purely convex objects, so bodies are marked as convex

or concave upon their creation. The depths of the penetrations are not reported,

however, so this method cannot be used with repulsive springs, which require

displacement values. This method can be used with an analytic collision re-

sponse, which does not require depth information. This response is supported

in corpus, but will be described only briefly, since it is not used in the walking

experiments. Basically, the response method operates using conservation of mo-

mentum principles, as described by Moore and Wilhelms in [58] and Hahn in

[59]. The algorithm was reformulated in spatial algebra, and implemented for

single body (non-articulated) collisions. The algorithm operates faster than the

spring method, since only one time step is required to evaluate the collision, in-

stead of the multiple sub-steps required to compute a springy elastic collision.

The method can be extended to articulated bodies, using a large matrix ap-

proach, as Moore describes (Hahn's articulated body approach does not retain

dynamic integrity, as the entire figure is treated as one completely rigid object),

which has an efficiency of approximately O(n 3). This analytic method does not

work well with continuous support (as opposed to instantaneous collisions),

and objects sink into the ground. Because walking involves large intervals of

support, this method was not explored further.

Another external force available in corpus is an attach force. This force allows
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bodies to be attached to other bodies or the ground using exponential springs.

In the multiple body case, the force is applied equally and oppositely to the two

bodies. The spring is allowed to break is it is stretched beyond a specified dis-

tance (which corresponds to a certain force). Instead of damping, a coefficient

of restitution is specified, such that if the connection points of two bodies are

moving towards each other, the spring force is scaled down by the coefficient,

providing for energy loss.

4.5. Joints and Joint Forces

Internal forces in articulated figures are generated at the joints. Some of these

forces are those which hold the figure together at the joints, but these are calcu-

lated implicitly as part of the ABM. Other joint forces are those forces applied in

the direction (rotary or linear) of the joint. These forces are those which actively

control the motion of a figure in corpus.

Basic parameters for a joint are its position (or angle) (q), velocity (q), and

acceleration (4). Any of these parameters can be directly set through corpus com-

mands, and acceleration is computed during the dynamic simulation. Most of

the joint forces applied in corpus are parametrized by the values of these param-

eters.

All forces applied at the joints are summed into the total joint force, Q.
Damping can be applied at joints to slow their motion. The damping force is

equal to the damping constant times the joint velocity. Linear and exponential

springs can also be placed at joints. Linear spring have a spring constant and a

rest position; the force generated is equal to the spring constant times the differ-

ence between the joint position and the rest position. Similarly, exponential

springs generate a force as a function of joint displacement from the spring rest

position. Exponential springs and their parameters are discussed in the

Approach chapter. Joint limit springs are also available in corpus, such that

spring and damper combinations are activated when the joint position exceeds

a specified value. Joint limits are not employed in the walking experiments,
however. Finally, any arbitrary bias (or "extra") force can be added into Q using



corpus commands.

Dynamic motor programs in corpus operate using the underlying joint force
mechanisms described above. Motor programs are activated at a joint by speci-
fying a target joint rest position for its exponential spring and the time to take

to reach that rest position. From this information, the program computes the

constant velocity required for the exponential spring to travel from its current

rest position to the target position, in the time specified. The motor program

passes the velocity information directly to the integrator, with the other

derivatives, such that the rest position is automatically updated over time. The

motor program deactivates itself when the target position has been reached.

4.6. Gait Controller

The gait controller is a straightforward implementation of the mechanisms

described in the Approach chapter. The coupled oscillators are implemented as

one master oscillator with phase shifts for the six leg oscillators. The oscillators

are modeled implicitly as sine waves which trigger when they reach their peaks.

Explicitly, the peaks are detected when the phase input to the sine function

(which is not actually computed) passes beyond 90, the phase at which the

sine wave reaches its peak. Each frame, the phase input to the oscillators is
incremented by the time step divided by the oscillator cycling time (the inverse
of the oscillator frequency) times one complete cycle (360"). The gait computa-
tions are performed once per frame, not once per sub-step that the dynamics al-
gorithm might take. Otherwise, the oscillator and gait state would have to
become part of the integrator's stored "non-integrated state" (as discussed
above), so that the gait information could be backed-up in time when a dynam-

ic instability is detected.

The coupling phase offsets (from the master oscillator) are based on mathemati-

cal translations of Wilson's rules (see the Background and Related Work

chapter). Because the wave of stepping runs from rear to front along one side of
the body (rule 1), the phase offsets for the oscillators must be larger, the further

back along the body. The amount of this phase offset is based on the current os-
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cillator frequency, and is of constant time duration (rule 5) . The phase offset is

equal to the stepping delay divided by the oscillator cycling time, times one

complete phase cycle (3600). Optimally, the time offset should be equal to the

stepping time, so that as soon as a leg finishes stepping, the leg in front of it

will begin to step. Legs across each other step 180 'out of phase (rule 2).

When an oscillator triggers, it changes the motor state of the leg it controls.

Stepping is not directly triggered, because stepping can be inhibited by the load

reflex, as described below. Instead, oscillators trigger the potential stepping

state, which directly changes to the stepping state, if not inhibited.

The step reflex can also trigger the potential stepping state. The reflex is mod-

eled simply as a conditional unit which triggers when the upper limb segment

of the leg is bent back, relative to the body, beyond a specified angle. The im-

plementation of the step reflex allows the programmer to specify the joint of

any body as the joint to monitor. A "trigger" angle and direction is specified,

and when the joint angle passes the trigger angle, in the given direction (either

greater than or less than), the potential stepping state of that leg is set.

The load-bearing reflex is implemented in a similar manner. This reflex inhibits

the stepping state, such that the potential stepping state cannot change to the

stepping state, and stance continues. The reflex inhibits stepping when the

force generated in the upper supporting joint in the leg (second joint from the

body) exceeds some specific value. For each leg, the programmer specifies a

body (and thus its joint) and a trigger force value. When that joint force is

exceeded, stepping is inhibited. The potential stepping state does not change to

stepping until the reflex is inactive.

When the potential stepping state for a leg changes to stepping, the stepping

motor program is activated. Stepping occurs for a specified, constant time, and

when it is complete, the stance state is set and the stance motor program for

that leg is activated. The high-level stepping and stance motor programs are

specified for each leg as sets of corpus commands. In general, these commands



will be joint motor program commands, which specify target angles for

exponential springs, and times to reach the targets. For each joint in the leg, a

motor program is set to control its motion.

Over the time span of its activity, a higher-level motor program (such as step or

stance) might require multiple lower-level motor commands for a given joint.

For example, the step motor programs for the front legs first move the limbs up

and forward, then down and forward. This is accomplished by using timers. A

timer in corpus allows commands to be set to act when the simulation clock ad-

vances a given amount. The step motor program for the front legs, therefore,

starts the initial joint motor programs and also sets timers for the second joint

motor programs.

4.7. Hexapod Data

The kinematic structure of the hexapod was de-

rived from text descriptions and diagrams from

insect physiology textbooks. A set of diagrams of

the insect Blatta from Hughes [22] was used to

parametrize the sizes of the limb parts of the

hexapod. A reproduction of one of the diagrams
is shown in Figure 11. The lengths and widths of

Figure 11: A sample diagram
the limb parts were measured, and a rectangular and the resulting hexapod.
solid was constructed to represent that limb (the

width measurement from the 2D diagrams was

used for two width directions in the 3D model). A further refinement in the

shape of the limb and body parts, beyond the rectangular solid, was not

attempted. Study instead focuses on the basic motions and physical parameters

involved in locomotion.

The joint connections were established from the diagrams and text [22]. There

are four segments to each leg. The uppermost (most proximal to the thorax) is

called the coxa, and generally allows one DOF relative to the thorax.

Continuing down the limb, the next segment is formed by the trochanter and
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femur, which has a one DOF joint with the coxa (at the trochanter). The two

one DOF joints (between the thorax and coxa, and between the coxa and tro-

chanter) are oriented roughly at right angles to each other, so that the distal

parts of the limb have a large range of motion. The femur attaches to the next

segment, the tibia, by a one DOF joint. The most distal segment is formed by

the tarsi (multiple small "foot" structures), which are more flexible than the

other limb segments because of multiple joints between the femur and one an-

other. In corpus the tarsi are reduced to two rigid bodies, each possessing a one

DOF joint, such that two DOF motion is present at the "foot."

The head, thorax and abdomen body parts were also parametrized from the

Blatta diagrams. The head is jointed to the thorax so that it can turn from side

to side (superfluous to locomotion). The thorax is jointed to the abdomen so

that they can move up and down relative to each other. Although the connec-

tion between thorax and abdomen is not simply jointed in the insect, a rotary

joint between the thorax and abdomen in the hexapod accounts, in approxima-

tion, for overall body flexibility and curvature. The overall scaling of the roach

gives it a total length of approximately 2.9 cm.

The density of the body and limb parts was set to the density of water, 1

gm/cm3. Animal tissues in general are composed of mostly water, so this

seemed a reasonable approximation. The total mass of the hexapod is 2.1 gm.

A corpus script which constructs the hexapod is given in Appendix C. The script

also sets the dynamic parameters of the environment and the hexapod (for ex-

ample the ground spring constants, and hexapod joint dampers), and sets typi-

cal operating parameters for the gait controller and dynamic motor programs. A

partial listing of corpus commands (used in the script) is given in Appendix D.



5. Results and Analysis

5.1. Dynamic Simulator

The ABM implementation provides accurate and robust results for the simula-

tion of many systems. For well-behaved systems (systems which are not stiff or

very quickly varying), Euler integration provides stable results, and the simula-

tions continue for an indefinite time. For more complex systems, the Runge-

Kutta 5th order integrator will adapt the time-step size to the complexity of the

problem, providing good results. The more complex a system is, the more "tun-

ing" it will typically require. This tuning consists partly of:

" setting spring constants,

" creating a balance between springs and dampers,

" setting the speeds and ranges of motion for motor programs,

e setting elasticity and friction values for collisions, etc.

Even the adaptive integrator requires "tuning," in order to set the error toler-

ance. Simulations with very high accelerations and velocities, such as the

hexapod, can undergo much larger error values than slower moving simula-

tions.

Careful tuning can mean the difference between a stable and unstable simula-

tion. However, tuning is often not critical to stability, and can be used as the

creative input to simulations. Physical systems typically operate "automatically"

once set in operation, and tuning can be used to change their characteristics.

For example, in a sequence from the animation Grinning Evil Death [60], 40 cere-

al puffs bounce about on a table. When they first drop into the scene, they have

a low elasticity, and their bouncing quickly dies out. After a few moments, they

are given a partially-random upward velocity, setting them again in motion.

The puffs' elasticity is then set above 1.0, such that they actually gain energy

during collisions, creating a very active and lively look for the puffs.

The dynamics system has been tested successfully is a variety of fashions. Some

of the tests include:

52



" letting a body fall freely under gravity, and verifying numerically that its

acceleration is indeed 9.8m/sec2,

" letting a rotating body fall freely under gravity, and numerically verifying

its straight-line acceleration,
" giving a body a random velocity (linear and rotational), and verifying its

straight-line motion, and constant rotational velocity. These last two tests

are more robust than they may first appear, since the bodies undergo ro-

tation in their local frames, such that their "straight-line motion" is actu-

ally the accumulation of many rotating -motions in the local frame.

* comparing the motion of simple articulated bodies against the Virtual

Erector Set [6], another articulated body simulator,

" comparing the motion of a body whose local frame origin has been shift-

ed far away from the body versus a body whose local origin is at its center

of mass. The motion of an origin far from the body will be greatly

exaggerated during rotations of the body, verifying that complex integra-

tion of a local frame proceeds correctly.

" verifying the results of simple articulated figure tests against values at-

tained by directly computing the motions "by hand." For example, a

three body linkage was created, with all bodies aligned along one axis.

One of the end bodies was given an initial joint velocity, and all other

bodies were at rest. On the first time-step, the instantaneous velocity of

the end body created centripetal forces which accelerated the linkage sys-

tem exactly along the axis along which all bodies were aligned, just as a

"hand" analysis of such a system revealed.

In addition, many complex simulations have been computed which "look

right," revealing not that the simulations are numerically correct, but that they

appear intuitively correct to the human psychophysical system. These visual

verifications do not validate the motions. However, many systems which are in-

correctly computed (due to an error in the dynamics code) definitely appear in-

correct.



5.2. Gait Controller

The coupled oscillators produce gait stepping patterns which appear very similar

to the recorded patterns of insect stepping [23; 28; 22]. The wave gait results for

slow oscillator frequencies (see Figure 12 and Animation 2). The fastest allowed

oscillator frequency produces the tripod gait (see Figure 13 and Animation 3).

Comparisons of the stepping patterns for the tripod gait created by the compu-

tational model and by real cockroaches can be seen between Figure 13 and

Figure 14. Frequencies faster than the tripod gait frequency would trigger legs to

step before their neighbors had completed their stepping. Smooth changes in

oscillator frequency result in smooth changes in gait (see Animation 4). As the

oscillator frequency increases, the waves of stepping activity which travel up

each side of the body occur with a higher frequency, and the two waves begin

to overlap in time. Eventually, the wave of stepping begins at the rear while the

front leg is stepping, and the two sides of the body overlap completely in time
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Figure 12: The coupled oscillators produce the wave gait for slow
oscillator frequencies. The stepping pattern produced is shown in the
upper left. In the upper right, the oscillators for each leg are shown. The
two lower images of the roach depict the stance and stepping motor pro-
grams operating in the absence of external forces. The activity over time
is shown in Animation 2.



(but 1800 out of phase), resulting in the tripod gait. The oscillators trigger

motor programs appropriately for stepping and stance.

The step reflex and load bearing reflexes function correctly, but require calibra-

tion. They should not function during undisturbed walking, but should instead

reinforce stable stepping patterns under disturbances. The calibration procedure

is to observe and analyze undisturbed walking, and then set reflex trigger values

beyond the norm. Different leg pairs (front, middle, and back) will require

different values since their ranges of motion are different, and they support dif-

ferent loads. This calibration has not yet been performed for the hexapod
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Figure 13: The coupled oscillators produce the tripod gait at high oscilla-
tor frequencies. For the activity over time, see Animation 3.
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Figure 14: The stepping pattern exhibited by a real cockroach employing
the tripod gait. White sections indicate when the foot is in the air, black
indicates when the foot is on the ground. (Adapted from Pearson [281)



model. However, these two reflexes have been studied for a simple kinematic

hexapod [61]. The step reflex increases the robustness of the gait, especially dur-

ing turning and speed changes. The load-bearing reflex (implemented in the ki-

nematic model as a table lookup of stable stepping patterns) increases stability

when limbs are missing, and prevents the step reflex from triggering a support-

ing leg to step. Up to this point, the thesis dynamics experiments have studied

adaptive locomotion not through "nervous" or control adaptation, but through

the mechanical compliance offered by the physical simulation.

5.3. Walking Experiments

Using the initial joint and spring angles established from the Blatta diagrams,

the hexapod was "dropped" onto level ground in several dynamic simulations.

The first attempts employed linear springs at the joints, and on every attempt

the hexapod would collapse, as the supporting forces generated at the joints

were not strong enough. Eventually, the springs were set so strong, that a very

stiff system was created, and the adaptive integrator sub-divided the frame rate

time step many times while the hexapod was simply falling though the air, and

the spring strengths were still insufficient to support the hexapod. It was at this

point that exponential springs, in place of linear springs, were introduced at the

joints. On the first attempt, the exponential springs created forces sufficient to

support the hexapod as it was dropped on the ground. In addition, while the

hexapod was falling through the air, the integrator only slightly sub-divided the

frame rate, since the exponential springs generate less force than the linear

springs at low displacements (see the Approach chapter, especially,

Figure 10 on page 31).

During the first walking experiment, the initial posture was found to be too

low, and the hexapod dragged its abdomen along the ground behind it. Al-

though the cockroach frequently drags its abdomen along the ground [22], we

desired a model of locomotion in which the body was fully supported as in

many other insects. Therefore the posture was raised up higher, by using joint

motor programs to move the exponential spring rest angles to values which fur-

ther extended the limbs. These spring angles were used as the new initial posi-



tion for further walking experiments.

Dozens of walking simulations have been executed, often successively "tuning"

the action of the motor programs or other parameters. For example, the posture

might be modified (as explained in the preceding paragraph), or the springs

might be made stronger to better support the body, or the range of motion and

timing of the stepping and stance programs might be refined. For example, the

step program originally did not lift the foot fast enough or high enough to

avoid dragging it along the ground for much of the stepping time, so the motor

program was modified to lift the leg up higher, and more rapidly at the begin-

ning of the step.

Figure 15 and Animation 5 show the hexapod employing the tripod gait over

level terrain. The interval between steps of successive legs employed was 50

msec, compared to approximately 120 msec for the beetle Chrysomela which has

a "relatively long" stepping interval [22]. The walking speed exhibited by the

hexapod was approximately 5.5 cm/sec. Insects show a wide variety of walking

speed, varying from 2.0-9.8 cm/sec in the Earwig, 3.2-17.5 cm/sec for Blatta,
and 1.0-20.0 cm/sec for Periplaneta [22]. The walking speed of our simulated

roach falls well within these ranges, but is considerably slower than real insects

walking at their top speeds. This experiment employed a sliding model of fric-

tion with a fairly low coeffi-

cient of friction (0.7).

A different walking experi-

ment, also employing the tri-

pod gait, used a ground con-

tact model in which the

"feet" were modeled as hav-

ing sticky pads, under active

control of the hexapod, like

many insects [56]. During
Figure 15: The hexapod employs the tripod gait over

stance, the feet would stick level terrain.



to the ground using exponential springs. The springs were allowed to break, if

the force rose above a specified limit, allowing the feet to slide slightly and stick

again. The walking speed of the hexapod increased to approximately 8.0

cm/sec, using the sticky foot model.

An interesting observation of our hexapod is that it exhibits a side-to-side "wig-

gle" as it progresses forward, using the tripod gait. In fact, the same sort of zig-

zag path is seen in real insects [56]. The phenomenon can be explained when

the propulsive forces are analyzed. The front supporting leg acts as a tractor,

pulling the center of mass forward, and towards the point of support. The rear

supporting leg (on the same side of the body as the front support) pushes the

body forward, and produces turning forces in the direction of either "left" or

"right," depending whether the line of force produced by the limb (the line

passing from the point of contact on the ground and the point of contact with

the body) passes in front of or behind the body's center of mass. At the begin-

ning of stance, the rear leg will tend to rotate the body in the same direction as

the front leg. As stance continues and the rear foot moves back relative to the

body, the line of force produced by the leg will shift further and further for-

ward, and its turning forces will tend toward the opposite direction. The middle

supporting leg, on the opposite side of the body, serves to support that side,

propel the body forward, and to counteract part of the rotary forces produced

by the other two supporting limbs.

Locomotion over uneven terrain is shown in Figure 16 and Animation 7. The

sticky-foot model of contact was used for this simulation, to prevent the hexa-

pod from sliding down the hill. The hexapod adapts to the terrain purely by the

mechanical compliance of the springs and dampers in the legs. The stepping

and stance motor programs were not modified for the terrain; a more complete

system should adapt its motor control for different environmental conditions.

Certain reflexes and control strategies which insects use to adapt to uneven ter-

rain are presented from Pearson's work with locusts in [30]. However, it is inter-

esting to note how dynamic simulation and mechanical compliance can lead to

adaptive behavior, without special planning.



The computation time involved in simulating the walking motion of the hexa-

pod is relatively high, especially compared to kinematic models. On a Hewlett-

Packard Series 9000 Model 835 (a RISC based workstation, rated at 12 MIPS) one

videoframe at 1/40 real time ( 1/1200 sec simulation time) takes approximately

4 minutes of computation time. The dynamics algorithm is called approximate-

ly 100 times in that interval by the adaptive step-size integrator. A simple kine-

matic model of the hexapod [61] operates in real time, but has fewer degrees of

freedom (20 DOF vs. 38 DOF) and does not display complex, realistic motion.

The dynamics code does not currently take advantage of several numerical

optimizations, which could increase speed by an order of magnitude. In addi-

tion, a stiff-system integrator could increase speed greatly by saving many calls

to the dynamics algorithm [18].

5.4. Computer Animation and Dynamic Locomotion
The accompanying VHS videotape shows several simulations of the hexapod.

Animation 1 shows the hexapod falling under gravity to the ground. Supporting

Figure 16: Locomotion over uneven terrain. Mechanical compliance in
the limbs allows the legs of the hexapod to adapt to the different heights
of the terrain.



forces are generated at contact points with the ground using exponential

springs. The hexapod supports its weight through the joints using exponential

springs and dampers. By instantaneously changing the rest length of the

springs, very strong, sudden joint forces are generated, causing the hexapod to

jump.

Animation 2 shows an animated diagram of the wave gait. In the upper left, a

stepping pattern shows the time-varying activation of the step and stance motor

programs. Step is shown as white, stance as black. The upper right shows a dia-

gram of the coupled oscillators. When stepping is triggered by the oscillator, it

flashes white. On the bottom of the screen two views are shown of the hexapod

executing the motor programs in the absence of external forces (i.e. no gravity

and no ground). Animation 3 shows a similar diagram of the tripod gait. And

Animation 4 shows a transition from a slow wave gait to the tripod gait, as the

oscillator frequency increases. The time indicators (i.e. "1/20 real time") indicate

playback rate, not computation time. The hexapod is modeled as being very

small, and small things move relatively quickly, hence the slow playback rate.

Animation 5 shows a normal tripod gait on level terrain. A sliding model of

friction was used in this simulation, with a fairly low coefficient of friction (0.7).

Animation 6 also shows a tripod gait, this one employing the sticky-foot model

of ground contact. Animation 7 depicts the hexapod using the wave gait over

uneven terrain. Mechanical compliance allows the legs to conform to the

terrain.

Creative usage of the hexapod model is shown in the computer animation

Grinning Evil Death (GED) [60]. Sections from GED can be seen in Animation 8.

The story concerns a giant robotic cockroach from outer space. The roach crash-

es its space-pod into a city, and begins to wreak havoc there. All motions of the

roach were dynamically simulated, without any direct manipulations from the

animator. Instead, high level walking commands were issued, and in some

cases, special-purpose motor programs were scripted by the animator.
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In the first animated sequence, the roach is activated in its space-pod. Mechani-

cal compliance allows the roach to lie and stand in the curved egg shape, with-

out carefully planning the joint angles for the legs. The activation sequence is

animated by instantaneously changing the rest length of the springs at the

joints, creating sudden strong forces and the resulting "twitch" of the figure.

The next scene, after the roach has exited its space-pod, shows a normal tripod

gait. This sequence uses the sticky-foot model for the foot-ground contacts. The

police car seen at the end of the sequence is a dynamic simulation employing

the Virtual Erector Set [6; 15], an efficient dynamics simulation system.

The roach is next seen breaking through a set of high-voltage wires, in a se-

quence displaying interaction between different dynamic elements. The wires

are constructed as dynamic linkages in corpus, and the loops are closed at the

middle of the linkages by attach forces, described in the Implementation

chapter. The loop-closeure exponential springs are set to break at a particular

force, and the roach is instructed to walk forward, through the wires. Collision

detection is performed between the roach parts and the wire parts, and expo-

nential springs are used to repel parts in contact. As the roach pushes through

the wires, the tension at the closure points grows greater and greater, until the

breakage force is exceeded, and the closure is broken. A particle system is gener-

ated at each point of contact between the roach and wires simulating sparks.

Particle systems are also placed at the broken end of each wire.

The next animated sequence (skipping over several scenes from GED) shows the

roach reacting violently to a spray of insecticide (not depicted in the test se-

quence). The roach is using a tripod gait in this scene, however, the middle legs

are placed on backwards, so that the front and back legs push the roach for-

ward, but the middle legs absorb that energy and push the roach backwards

again, giving the roach bouncing and flailing motions.

The roach's adverse reaction to the spray continues in the next scenes, as the

roach flips over on its back. At the beginning of the flip sequence, the friction



on the ground is turned down to nearly zero, and without any traction, but

with the legs striking the ground, the roach pushes itself up and over. The roach

recovers from the spray, and attempts to right itself. First, the roach is pro-

grammed to use a fast tripod gait. Then motor programs are set at the abdomen-

thorax joint to wrench the body back and forth. A corner of the body strikes the

ground with a large velocity, and the impact forces rotate the body over.
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6. Conclusion

A dynamic simulator underlies all motion in corpus, the dynamic locomotion

system. The simulator computes the motion of articulated figures in response to

applied forces, such as gravity, collision/support forces, friction, joint springs

and dampers, etc. The primary role of the simulator in this thesis is to compute

the physically-based motion of a simulated six-legged insect. The kinematic

structure of the hexapod is based on studies of insect physiology.

To coordinate the hexapod's walking, a gait controller is used to produce step-

ping patterns. The gait controller is based on hypothesized control mechanisms

in vertebrates and invertebrates. Coupled oscillators, with reflexive feedback

produce the stepping patterns, based on a simple high level input command,

the oscillator frequency. For different frequencies, different gait are produced,

the same gaits exhibited by real insects. Smooth gaits changes are effected by

smoothly changing the oscillator frequencies.

The motion of the limbs are controlled by dynamic motor programs. When

stepping is triggered by an oscillator, the step motor program is activated. When

the step of a limb is complete, the stance motor program takes over. These pro-

grams move the rest angles of exponential springs in the joints of the limbs to

produce forces in order to create movements. The step program lifts the leg up

and forward, and the stance program drives the leg down and back. Propulsive

forces are supplied by the stance program, and the contact forces with the

ground. Either friction or sticky forces at the "feet" of the hexapod ultimately

supply the forces needed to drive the body forward, through the supporting

limbs.

The hexapod walks with a speed comparable to real insects, and displays walk-

ing phenomena observed in insects. For example, a side-to-side wiggle is ob-

served in the hexapod, as it uses the tripod gait, due to the dynamic nature of

the propulsive forces supplied through the supporting limbs.



One of the most interesting results of this thesis is way in which dynamic com-

pliance can be used to provide adatability to different environmental condi-

tions. Due to the nature of the dynamic simulation and the springyness of the

articulated figure, the hexapod can automatically adapt the configuration of its

limbs to different terrains, without explicit calculation of the different joint an-

gles required. The "give" in the hexapod structure allows the figure to comply

to environmental influences.

This thesis has demonstrated that a dynamic model of legged locomotion is

computationally feasible. On a Hewlett-Packard Series 9000 Model 835 (a RISC

based workstation, rated at 12 MIPS) one videoframe at 1/40 real time ( 1/1200

sec simulation time) takes approximately 4 minutes of computation time. The

dynamics algorithm is called approximately 100 times in that interval by the

adaptive step-size integrator. Although the computation time is somewhat slow,

simulation results can be obtained on "overnight" runs of the code.

The most immediate shortcoming of this thesis is the lack of calibration for the

step and load-bearing reflexes. Once these reflexes are calibrated (by examining

undisturbed walking, and setting the trigger parameters beyond the range of

normal motions and stresses) the adaptive effect of the reflexes can be studied,

during locomotion which receives external disturbances, and during

locomotion over uneven terrain.

Computation time remains a problem for the dynamic simulation in this thesis.

Speed could likely be increased by using a stiff-method integrator, since fewer

calls would be made to the dynamics algorithm. For some types of locomotion,

such as the sticky-foot model, might be better be modeled using a constraint

method, such as Lathrop's endpoint-constraint prorogation method [14; 6]. The

sticky-foot model essentially imposes a kinematic constraint on the end-effec-

tors, and a constraint method which deals directly with this effect should

reduce the stiffness of the system, and decrease computation time.



Appendix A: Spatial Algebra

This appendix gives an overview of the spatial quantities and operators required

to implement the Articulated Body Method employed in this thesis. For a full

tutorial in spatial algebra, however, the reader is referred to Featherstone [10].

Basically, spatial algebra is based on screw calculus [55], and uses 6 dimensional

vectors to encode not only direction and magnitude (as 3 dimensional vectors

do), but also position. For example, the spatial representation of a rotary joint

axis specifies the axis about which rotations occur, and also the location of that

axis in 3 space. Using its ability to encode direction and position, spatial algebra

unifies the rotational and translational aspects of motion into single vector

quantities. For example, spatial velocity contains both the angular and linear

velocity, and is transformed and manipulated as a single quantity. Contrast this

with more traditional dynamics formulations which treat the angular and linear

velocities separately, and use different equation sets for each. It should be noted

that spatial vectors are column vectors, typical to robotics notation. These vec-

tors are the transpose of computer graphics row vectors. Similarly, matrixes

(such as rotation matrixes) in spatial notation are the transpose of computer

graphics style matrixes.

Before discussing spatial vectors, the three dimensional cross operator is

introduced:

x- 0 -z y
y x = z 0 -.X
z- L-y X 0 _Equation 12.

The cross operator allows cross product operations to be folded into matrixes, as

will be seen below.

The general form of a spatial vector is as follows:

ao Equation 13



where a is a 3 dimensional vector which specifies a magnitude and direction,

and ao specifies the location of a in the following manner:

r x a = ao Equation 14

where r is the 3 vector from the coordinate frame origin to the location of vec-

tor a (the r vector can actually point to any location on the line defined by the

direction of a, positioned in space).

The first spatial quantity we will discuss is spatial velocity. Spatial velocity

contains the angular and linear components of velocity as follows:

v + r x o _ Vol Equation 15

where o is the angular velocity of the body, and vo is the linear velocity of the

point on the body which is traveling through the origin. This point on the body

may be imaginary, if the body is not actually coincident with the origin. The

subscript 0 denotes that the spatial value is taken with respect to the coordinate

frame 0. If the linear velocity of some other point in the body is known, vo may

be calculated from the location of that point, given by the vector r, and the lin-

ear velocity at that point, t , as shown in Equation 15.

Spatial acceleration contains the angular and linear accelerations of a rigid body

as follows:

ao=

r+ t x o + r x o aol Equation 16
where 60 is the angular acceleration of the body, and ao is the linear acceleration

of the point in the body passing through the origin. If the linear acceleration ( r

) and the linear velocity ( t ) of some other point in the body (specified by r) is

known, ao can be calculated as in Equation 16.

The 6x6, spatial rigid-body inertia tensor is given as:



m (PO x) M 1 H -TH MI=* + (OP x)m (POX) (OP x) m .I H I
Equation 17

where m is the scalar mass of the body, OP denotes the vector from the origin to

the location of the point from which the 3x3 inertia tensor, 1*, was derived. OP

might typically point to the center of mass of the body, where the I* calculation

can be simplified for certain simple cases, such as symmetrical boxes, rods or

spheres.

Spatial forces are given by:
f ff == Uf Ol x f]_ Equation 18

where f denotes the linear force applied at point P, and fo denotes the resulting

torque at the origin, due to the linear force. A pure torque applied at the origin

can also be added in to fo.

Joint axes are represented in spatial notation by:

S =[sOJ Equation 19.
A one DOF rotary joint is represented such that s defines the direction of the

axis about which rotation occurs (this value should be normalized), and so de-

fines the location of the rotation axis where:

so= r x s Equation 20

where r is the vector from the origin to a point on the s axis. A one DOF pris-

matic (sliding) joint is defined where s = 0, and so is the normalized axis along

which translation will occur.

Two special operators need to be defined in spatial algebra. The first, the spatial

cross operator, denoted by x, is used just as the regular cross operator

(Equation 12), and is given by:
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a- ax 0[ ] bx ax] Equation 21.
The second spatial operator is the spatial transpose, denoted by a superscript S,

and is used in place of the normal matrix transpose operator. The spatial trans-

pose of a spatial vector is given as:
s a =[ aoT aT ] Equation 22.

The spatial transpose of a spatial matrix (either inertia tensor or coordinate

transform is given as:

[ABIs _ DT BT 1CD] L CT AT _ Euto23

Spatial transformation matrixes bring spatial quantities from one coordinate

frame to another, in the following manner:

aP = pXo ao Equation 24

where the value of a is transformed from coordinate frame 0 to P. Spatial inertia

tensors require a pre- and post-multiplication with spatial transformation ma-

trixes as follows:

Ip = pXo Io oXp Equation 25.

A translation from one coordinate frame to another is constructed as follows:

1 0pL(rx)T 1 J Equation 26

where r is the translation vector OP. A rotation matrix is formed as:

-rE 0]
aP=0 E J 0  Equation 27

where E is the 3x3 rotation matrix which takes values from frame 0 to P. Spatial

transformation matrixes may be concatenated to form compound transforms,

just as in computer graphics notation, except that pre-multiplies become post-

multiplies. The spatial transformation which corresponds to a change in coordi-

nate frames where a translation if followed by a rotation is given as:

Equation 23.



Eap = -E (xT Eo_
E] Equation 28.

This corresponds to the standard computer graphics transformation matrix,

where:

ap = ao
ET 1

0
0

r. ry rz 1 _ Equation 29

where E and r are the same as in Equation 28.
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Appendix B: The Articulated Body Method for Dynamic Simulation

In spatial algebra, the equations of motion are succinctly stated. They can be

derived, starting from the conservation of momentum, which is stated:

IV = constant Equation 30

where I is the spatial rigid-body inertia tensor, and V is its spatial velocity. Tak-

ing the derivative with respect to time describes how an applied force changes

the momentum:

f d1)=It 9x)i Equation 31

where f is the applied spatial force, and 3 is the resulting spatial acceleration.

Featherstone rewrites Equation 31 as:

f=I'+ p" Equation 32

where "' is the bias force, which contains the velocity dependent forces of the

body (centripetal and Coriolis).

The basic equation used in the ABM appears very similar to Equation 32, and is

defined as:
f=I a+p Equation 33

^%Awhere I is the articulated body inertia, and p is the bias force. The articulated

body inertia gives the inertia of a body directional properties, such that the

apparent mass of a body might be different, in different directions. The bias

force in Equation 33 incorporates the velocity dependent terms (as the j" term

does in Equation 32) as well as the forces needed to hold the joints together,

and forces transmitted through the joints. When the articulated body inertia,

bias force and desired acceleration of a body is known, the force needed to cre-

ate that acceleration can be found using Equation 33. The acceleration of a body

can be found when I , p and the externally applied force, f are known using:

"A -1. = (I ) (f -n@) Equation 34.



The key to developing the ABM them is deriving the recursive equations which

determine the articulated body inertias and bias forces, as is done in [52] and

[10]. The final equations for the ABM, computed in body local space, is given

below. Because these computations occur in body local space, all values are rep-

resented in a body's own local coordinate frame, which travels along with the

body. These local frames might have their origin at the body's center of mass or

the body's joint axis. Different optimizations can be made for different selec-

tions of local frames, for a discussion, see [10] and [6].

The algorithm below operates on a kinematic linkage forming a single linear

chain. A simple extension to branching figures follows the equations. The bod-

ies in the chain are numbered 0 to n, where body 0 is the root body and body n is

the leaf body. Body i is any body along the linkage, from 0 to n. Body i-1 is

termed the parent of body i, and body i+1 is named the child of body i. The algo-

rithm operates basically as follows:

1. Starting with the leaf body, the articulated body inertia and bias force is

"accumulated" along the chain, in to the root body.

2. The acceleration of the root body is computed using the inverse of its

articulated body inertia, and its bias force.

3. The joint accelerations are computed out from the root body to the leaf

body.

Four common sub-expressions, 'i, hi, di and ui are derived which occur in mul-

tiple locations in the ABM equations. They can be computed once, and used in

multiple equations to improve efficiency. The subscript, ;, indicates that the

value is represented in the coordinate frame of body i. The first sub-expression

s QEquation 35

describes the acceleration of body i, due to its joint velocity, qi .The joint posi-

tion (or angle) is given as q, and the joint acceleration is given as qi. These val-

ues are scalars for one DOF joints. For multiple DOF joints, these values must

take on the dimension n, where n is the number of DOFs. Additionally, for mul-



tiple DOF joints, the body joint axis, ', must have n row s, defining a motion

sub-space [10]. The next three sub-expressions do not have physical interpreta-

tions as meaningful as the first; they are simply recurring terms in other expres-

sions. They are given as:

hi = i si Equation 36

di = Si's hi Equation 37

^"S.- S
u;= Q-hi c - pi Equation 38

where Q is the pure force (or torque) applied at the joint. This force is due to a

joint actuator, damper, spring, or any other force function. For single degree of

freedom joints, Q is a scalar, and for multiple degree of freedom joints, Q takes

on a dimension equal to the number of DOFs.

The velocity of body i, is defined in terms of its parent (body i-1) velocity and

the joint velocity, qi:
= vi-1 + si Qi Equation 39.

This equation "reads" that the spatial velocity of body i is equal to the spatial

velocity of the parent (transformed from its own coordinate frame into the

body i frame) plus the velocity due to the joint velocity.

The motion (velocity) or body i creates forces acting on that body. This spatial

force (bias force) is given as:

pyl= (Yi X )Zi9 Equation 40

The articulated body inertia of body i is calculated from its own spatial inertia

tensor, plus the articulated body inertia of its child minus the amount of inertia

that cannot be "seen" through the child's joint axis (transformed from the

frame of body i+1 to i).

= + i + +1 h i+1  h 1 )
+ J 1X1 +1 k' di+ - i d1 In) Equation 41

The articulated body inertia of a leaf body at the end of a chain of length n is

defined to be simply its spatial inertia.
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The bias force of body i consists of its own velocity-dependent force, minus the

net external force, f;ex, applied to that body, plus the amount of bias force of its

child which is transmitted through the child's joint, plus the force required to

hold the child body (i+1) connected to the joint, plus the forces due to the

child's joint force.

p= P -ext + ;i+ 1 (Pi+i + I+-1 Ci+1 + ui-i hii) , (fn = 'n - fnt
di+i

Equation 42.

The external force could be due to gravity, global damping, a springy collision

force, etc. The bias force of the leaf body (body n) is defined to be its velocity

dependent force minus its externally applied force).

The spatial acceleration of body i is given as its parent acceleration, plus the ac-

celeration due to the joint velocity, plus the joint acceleration term:

ai = i- 1 ai-1 + 'i + si 4; Equation 43.

The spatial acceleration of the root body (body 0) is computed from the inverse

of its articulated body inertia times the (negative) bias force (which includes the

externally applied forces):
. = ^A 1-1

o= (T6) (-po) Equation 44

This solves the forward dynamics problem for the root body. Alternately, the

motion of the root body can be constrained to follow a specified acceleration,

simply by setting the spatial acceleration, 0o. The constraint force required to

achieve the specified acceleration is calculated as:

f 6onstaint = Yo ao + po Equation 45.

This solves the inverse dynamics problem for the root body only. The joint ac-

celerations of all other bodies in the linkage are still determined by the applied

forces. However, the joint accelerations do respond in the correct physical man-

ner from the constrained base acceleration.



The joint acceleration of body i is determined by the parent acceleration, the

joint force, the velocity-dependent acceleration (involving the articulated body

inertia) and the bias force of body i.

. u; , ih .1 ai.1
d; Equation 46

To reiterate and expand upon the algorithm operation:

0) As an initializing step, the spatial velocity of the links is computed

from the root body (whose velocity is known) out to the leaf body, using

Equation 39. In addition, all transformation matrixes between links must

be known, and joint forces and external forces should be established.

1) Beginning with the leaf body, and operating in to the root body, the ar-

ticulated body inertia and bias force is computed:

a) the four sub-expressions are calculated (Equation 35-Equation 38).

b) the velocity-dependent force is calculated using Equation 40.

c) the articulated body inertia is calculated with Equation 41.

d) the bias force is computed using Equation 42.

2) The acceleration of the root body is computed using Equation 44.

3) The joint accelerations of the bodies is computed out from the root

body to the leaf, using Equation 46, and the spatial acceleration is com-

puted using Equation 43. (The spatial acceleration of body i is needed to

compute the joint acceleration of body i+1.)

The algorithm is easily extended to handle branching kinematic structures, as

all of the above equations hold true for branches. The root body becomes the

body at which all branches eventually converge. This body can actually be any

body in the structure, but it is logical to choose the most central, and/or mas-

sive body to be the root. There are multiple leaf bodies, one at the end of each

branch. Articulated body inertias and bias forces simply sum at a branch node



(the parent body where two or more child branches converge). This is the only

modification necessary to the algorithm as it is described in the equations

above, besides a required change in the body-numbering subscript notation (i.e.

the subscript i is inadequate to place a body in a branching structure).



Appendix C: Roach Construction Scripts

The following script defines the kinematic structure of the hexapod, and sets

the operating parameters for the gait and dynamic motor programs.

# SETUP THE WORLD
addworld w

groundk 0

groundb 0

# strong exp ground
groundea 17.5
groundeB 3000

grounde .5
groundfric 0.7

groundemaxz .01

integration rkf
eps 10

# 1/2400 of a sec

dt 0.00041666666666667
h 0.000033333

# CONSTRUCT THE ROACH
addcorpus broach

# The unit cubeb is a beveled cube,

# size 1 in each dimension,

# centered about the origin

get head from .. /data/unitcubeb

get thorax from .. /data/unitcubeb

get abdomen from .. /data/unitcubeb

# first make them all 1 cm long

localxforms
scale head .01 .01 .01

scale thorax .01 .01 .01

scale abdomen .01 .01 .01

# size each object
scale head 0.265 0.25 0.635

scale thorax 1.06 0.875 0.529

scale abdomen 1.63 1.25 0.706

# move joint to origin
move thorax 0.00529 0 0

move head 0.0013525 0 -.00141

# make into bodies

addbody abdomen abdomen 0 0 1 rotary 1000

addbody thorax thorax 0 1 0 rotary 1000

addbody head head 1 0 0 rotary 1000

# move to parent position

xformcenter 0 0 0

localxforms
move thorax 0.00815 0 .001

xformcenter 0 0 0

rotate head y 10

# 0.01058 = 2.0 * .0059

# (thorax half-length)
localxforms
move head 0.01058 0 0

# create tree structure

linkbodies abdomen thorax

linkbodies thorax head

setroot abdomen

# CONSTRUCT FRONT LEFT LEG
get leg fl0 from .. /data/unitcubeb

get leg fl1 from .. /data/unitcubeb

get leg f12 from .. /data/unitcubeb

get leg f13 from .. /data/unit_cubeb

get leg fl4 from .. /data/unit cubeb

# leg fl3 is small joint used for
# making 2 dof end effector

postmult
move leg fl0 0
move leg fl1 0
move leg_fl2 0
move leg fl3 0
move leg_fl4 0

scale
scale
scale
scale
scale

scale
scale
scale
scale
scale

legfl 0
legfl1
leg_fl2
leg f13
leg fl4

leg_f 10
legfl1
leg f12
leg fl3
leg fl4

.01

.01

.01
.01
.01

.01

.01
.01
.01
.01

.01

.01

.01
.01
.01

0.21 0.49 0.21
0.11 0.6 0.11
0.053 0.60 0.053
0.035 0.035 0.035
0.035 0.18 0.035

addbody leg flO leg flO 0 0 1 rotary 1000

# leg flO joint gets reset in MakeJoints



addbody leg_fl1 leg_fli 1

addbody legfl2 leg_f12 1

addbody leg_f13 leg_fl3 0

addbody legfl4 leg_fl4 1

rotate legflO x -45

move leg flO 0.009 0.0044

linkbodies thorax legflO

rotary 1000
rotary 1000
rotary 1000
rotary 1000

-0.0015

rotate leg fl1 x 90

rotate leg fli y 90

move leg fl1 0 0.0049 0

linkbodies legflo legfl1

rotate leg_fl2 x -90

move leg f12 0 0.0060 0

linkbodies leg fl1 leg f12

move leg f13 0 0.0060 0

linkbodies leg f12 leg fl3

move leg f14 0 0.00035 0

linkbodies leg f13 leg f14

# CONSTRUCT FRONT RIGHT LEG

get legfrO from .. /data/unit_cubeb

get legfri from .. /data/unit_cubeb

get legfr2 from .. /data/unit_cubeb

get legfr3 from .. /data/unit_cubeb

get legfr4 from .. /data/unit cubeb

postmult
move leg frO

move leg fri
move leg fr2
move leg fr3
move leg fr4

scale
scale
scale
scale
scale

scale
scale
scale
scale
scale

legfrO
leg fr1
leg fr2
leg fr3
leg fr4

legfrO
leg fr1
leg fr2
leg fr3
leg fr4

-. 5
-. 5
-. 5
-. 5
-. 5

.01

.01

.01

.01

.01

.01

.01
.01
.01
.01

.01

.01

.01

.01

.01

0.21 0.49 0.21
0.11 0.6 0.11
0.053 0.60 0.053
0.035 0.035 0.035
0.035 0.18 0.035

addbody legfrO legfrO 0 0 1 rotary 1000

# legfrO joint gets reset in MakeJoints

addbody leg fri legfrl 1 0 0 rotary 1000

addbody legfr2 legfr2 1 0 0 rotary 1000

addbody legfr3 legfr3 0 0 1 rotary 1000

addbody leg fr4 legfr4 1 0 1 rotary 1000

rotate leg frO x 45

move leg frO 0.009 -0.0044 -0.0015

linkbodies thorax leg frO

rotate legfri x -90
rotate legfr1 y 90

move leg fr1 0 -0.0049 0

linkbodies leg_frO leg_fri

rotate leg fr2 x 90
move legfr2 0 -0.0060 0

linkbodies legfrl leg_fr2

move legfr3 0 -0.0060 0

linkbodies leg_fr2 legfr3

move leg fr4 0 -0.00035 0

linkbodies leg_fr3 legfr4

# CONSTRUCT MIDDLE LEFT LEG

get leg ml0 from .. /data/unit_cubeb

get leg ml1 from .. /data/unit cubeb

get leg-m12 from .. /data/unit cubeb

get leg ml3 from ../data/unit cubeb

get leg-m14 from .. /data/unit cubeb

postmult
move leg mlO 0 .5 0

move leg mll 0 .5 0

move leg_m12 0 .5 0

move leg m13 0 .5 0

move leg m14 0 .5 0

scale
scale
scale
scale
scale

scale
scale
scale
scale
scale

leg ml0
leg mll
leg m12
leg ml3
leg ml4

leg mlO
leg mll
leg m12
leg ml3
leg m14

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

0.18 0.60 0.18

0.071 0.42 0.071

0.053 0.95 0.053
0.035 0.035 0.035

0.035 0.20 0.035

addbody leg_mlO leg mlO 0 0 1

# leg mlO joint gets reset in

addbody leg_mll leg ml1 1 0 0

addbody leg m12 leg m12 1 0 0

addbody leg m13 leg m13 0 0 1

addbody leg_ml4 leg m14 1 0 1

rotate leg mlO x -45

move legmlO 0.0055 0.0044 -0

linkbodies thorax leg-mlO

rotate leg mll x 90

rotate leg mll y -45

move leg mll 0 0.0060 0

linkbodies leg ml0 leg mll

rotate leg m12 x -90

move leg m12 0 0.0042 0

rotary 1000
MakeJoints
rotary 1000
rotary 1000
rotary 1000
rotary 1000

.0015



linkbodies leg-ml1 leg_ml2

move leg m13 0 0.0095 0

linkbodies leg-ml2 leg_ml3

move legml4 0 0.00035 0

linkbodies leg ml3 leg_ml4

# CONSTRUCT MIDDLE RIGHT LEG

get leg mrO from .. /data/unitcubeb

get leg mr from .. /data/unit_cubeb

get leg mr2 from ../data/unitcubeb

get leg mr3 from .. /data/unitcubeb

get leg mr4 from .. /data/unit cubeb

postmult
move leg mrO 0

move leg mrl 0
move legmr2 0

move leg mr3 0
move leg mr4 0

scale
scale
scale
scale
scale

scale
scale
scale
scale
scale

leg mrO
leg mrl
leg mr2
leg mr3
leg mr4

leg mr0
leg mr1
leg mr2
leg mr3
leg mr4

-. 5
-. 5
-. 5
-. 5
-. 5

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

0.18 0.60 0.18
0.071 0.42 0.071

0.053 0.95 0.053

0.035 0.035 0.035

0.035 0.20 0.035

addbody legmr0 leg mr0 0 0 1 rotary 1000

# leg mrO joint gets reset in MakeJoints

addbody leg mr1leg nn 1 0 0 rotary 1000

addbody leg mr2 leg mr2 1 0 0 rotary 1000

acdbocy leg mr3 legmr3 0 0 1 rotary 1000

addbody leg mr4 leg mr4 1 0 1 rotary 1000

rotate leg mrO x 45

move leg mrO 0.0055 -0.0044 -0.0015

linkbodies thorax leg mr0

rotate legmrl x -90

rotate legmr1 y -45

move legmrl 0 -0.0060 0

linkbodies leg-mrO legmrl

rotate legmr2 x 90

move legmr2 0 -0.0042 0

linkbodies leg-mrl leg mr2

move leg mr3 0 -0.0095 0

linkbodies leg mr2 leg mr3

move leg mr4 0 -0.00035 0

linkbodies leg mr3 leg mr4

# CONSTRUCT BACK LEFT LEG
get leg blO from .. /data/unitcubeb

get leg bl1 from ../data/unitcubeb

get leg b12 from .. /data/unitcubeb

get leg b13 from .. /data/unitcubeb

get leg b14 from ../data/unitcubeb

postmult
move leg blO

move leg_bl1
move leg_b12
move leg b13
move-leg_bl4

scale
scale
scale
scale
scale

scale
scale
scale
scale
scale

leg blO
leg bl1
leg bl2
leg bl3
leg bl4

leg-blO
leg-bl1
leg b12
leg b13
leg-bl4

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

0.25 0.56 0.25

0.11 0.35 0.11
0.071 1.41 0.071

0.035 0.035 0.035
0.035 0.35 0.035

addbody leg blO leg blO 0 0 1

# leg blO joint gets reset in

addbody leg bl1 leg bl1 1 0 0

addbody leg_bl2 leg b12 1 0 0

addbody leg b13 leg b13 0 0 1

addbody leg b14 leg b14 1 0 1

rotate leg blO x -45
move legblO 0.0015 0.0044

linkbodies thorax leg blO

rotary 1000

MakeJoints
rotary 1000
rotary 1000

rotary 1000

rotary 1000

-0.0015

rotate leg bl1 x 90
rotate leg bl1 y -90

move leg bl1 0 0.0056 0

linkbodies leg blO leg_bl1

rotate leg b12 x -90
move leg b12 0 0.0035 0

linkbodies leg bl1 leg b12

move leg b13 0 0.0141 0

linkbodies leg b12 leg_bl3

move leg b14 0 0.00035 0

linkbodies leg b13 leg_b14

# CONSTRUCT BACK RIGHT LEG

get leg brO from .. /data/unit_cubeb

get leg brl from .. /data/unit_cubeb

get legbr2 from .. /data/unitcubeb

get leg br3 from .. /data/unitcubeb

get leg br4 from .. /data/unitcubeb

postmult



move

move

move

move

move

scale
scale
scale
scale
scale

scale
scale
scale
scale
scale

leg brO 0 -. 5 0

leg brl 0 -. 5 0

leg br2 0 -. 5 0

legbr3 0 -.5 0
legbr4 0 -.5 0

leg br0
leg brl
leg br2
leg br3
leg br4

leg brO
leg brl
leg br2
leg br3
leg br4

.01

.01

.01

.01

.01

.01 .01

.01 .01

.01 .01

.01 .01

.01 .01

0.25 0.56 0.25
0.11 0.35 0.11
0.071 1.41 0.071

0.035 0.035 0.035

0.035 0.35 0.035

addbody legbrO legbrO 0 0 1 rotary 1000

# leg br0 joint gets reset in MakeJoints

addbody legbrl legbri 1 0 0 rotary 1000

addbody legbr2 legbr2 1 0 0 rotary 1000

addbody legbr3 legbr3 0 0 1 rotary 1000

addbody legbr4 legbr4 1 0 1 rotary 1000

rotate leg br0 x 45

move legbrO 0.0015 -0.0044 -0.0015

linkbodies thorax leg br0

rotate leg brl x -90

rotate leg br1 y -90

move leg br1 0 -0.0056 0

linkbodies leg bra leg br1

rotate leg br2 x 90

move leg br2 0 -0.0035 0

linkbodies leg brl leg br2

move leg br3 0 -0.0141 0

linkbodies leg br2 leg br3

move leg br4 0 -0.00035 0

linkbodies leg br3 leg br4

# INITIALIZE THE CORPUS FIGURE
corpusinit
rootmotion free

# SETUP JOINT PARAMETERS
# revise leg joints using parent

# coordinate frames

setjointp legblO 0 0 1 rotary

setjointp legbra 0 0 1 rotary

setjointp leg ml0 0 0 1 rotary

setjointp legmr0 0 0 1 rotary

setjointp legflO 0 0 1 rotary

setjointp legfrO 0 0 1 rotary

joint head Qtype 3

joint head k .1

joint
joint
joint

joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint

head b .01

head kq 0
head springtype mass

thorax
thorax
thorax
thorax
thorax
thorax

leg blO
leg blO
leg blC
leg blO
leg blC
leg blO
leg-blC

leg-bl :

leg bli
leg b1O
leg-bl1
legblO
leg bll

legbll

legbl
leg bl1
leg-bl

leg-bl.

leg bl;

leg-bl,
leg bl.1

legbl
leg-bl
legbl
leg bi1
leg bl
leg bl1

leg bl
leg2bl
leg bl
leg bl
leg bl
leg bl

leg br(
leg br(
leg_br

leg br(
leg br(
leg br(
legbr:

leg br
leg br

leg-bl

Q type 17
e q 0
ea 0.024
eB 10
b .01
springtype mass

q 0.3

Q-type 17

springtype dis
e_q 0.3
ea 1

eB 16

b 0.03

q -0.2
e q -0.2
Q-type 17
springtype dis
ea 1
eB 16

b 0.03

q .4
e_q .4
Q-type 17
springtype dis
ea 1
eB 16
b 0.03

3 Q-type 17
3 springtype dis
3 e q 0
3 ea 0.2
3 eB 8
3 b 0.03

4 Q_type 17
4 springtype dis
4 e q 0
4 ea 0.2
4 eB 8
4 b 0.03

0 q -.3
0 e_q -.3
0 Q type 17
0 springtype dis
0 ea 1
0 eB 16
0 b 0.03

talmass

talmass

talmass

talmass

talmass

talmass

q 0.2
e_q 0.2
Q type 17

l

1

1



joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

springtype distalmass

ea 1
eB 16
b 0.03

leg br1
leg br1
leg br1
leg br1

leg br2
leg br2
leg br2
leg br2
legbr2
leg br2
leg br2

leg br3
leg br3
leg br3
leg br3
leg br3
leg br3

leg br4
leg br4
leg br4
leg br4
leg br4
leg br4

leg mlO
leg m10
leg mlO
leg ml0
legmlO
leg mlO
leg mlO

leg ml1
leg ml1
leg ml1
leg mll
leg ml1
leg ml1
leg mll

leg m12
leg m12
leg m12
leg m12
leg m12
leg m12
leg m12

leg ml3
leg m13
leg m13
leg m13
leg ml3
leg ml13

legm13

q -. 4
e-q -.4
Q_type 17
springtype

ea 1
eB 16
b 0.03

Q type 17
springtype
e q 0
ea 0.2
eB 8
b 0.03

Qtype 17
springtype
e q 0
ea 0.2
eB 8

b 0.03

q .15
e_q .15
Q type 17
springtype
ea 1
eB 16
b 0.03

q -0.5
e_q -0.5
Q type 17
springtype
ea 1
eB 16

b 0.03

q 0
e-q 0
Qtype 17
springtype
ea 1
eB 16

b 0.03

q 0
e-q 0
Q-type 17
springtype
ea 0.2
eB 8
b 0.03

joint leg m14 q 0

joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

leg_m14
leg ml4
leg ml4
leg ml4
leg ml4
leg ml4

leg mrO
leg mrO
leg mr0
leg mrO
leg mrO
leg mrO
leg mrO

leg mrl
leg mr1
leg mrl
legmr1
leg mr1
legmr1
legmr1

leg mr2
leg mr2
leg mr2
legmr2
leg mr2
leg mr2
leg mr2

leg mr3
leg mr3
leg mr3
leg mr3
leg mr3
leg mr3
leg mr3

leg mr4
leg mr4
leg mr4
leg mr4
leg mr4
leg mr4
leg mr4

eq 0
Q type 17
springtype
ea 0.2
eB 8
b 0.03

q -.15
e_q -.15
Q_type 17
springtype
ea 1
eB 16
b 0.03

q 0.5
e-q 0.5
Q_type 17
springtype
ea 1
eB 16
b 0.03

q 0
e-q 0
Q_type 17
springtype
ea 1
eB 16
b 0.03

q 0
e-q 0
Q-type 17
springtype
ea 0.2
eB 8
b 0.03

q 0
e-q 0
Q-type 17
springtype
ea 0.2
eB 8
b 0.03

distalmass

distalmass

distalmass

distalmass

distalmass

distalmass

distalmass

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint

leg fl0
leg fl0
leg-fl 0
leg fl0
leg-fl 0
leg fl0
leg fl0

leg f11
leg fl1
leg fl1

q -. 45
e_q -.45
Q_type 17
springtype distalmass
ea 1
eB 6
b 0.03

q 0
e-q 0

Qtype 17

# new upper joint positions

distalmass

distalmass

distalmass

distalmass

distalmass

distalmass



joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

joint
joint
joint
joint
joint
joint
joint

distalmass

distalmass

leg fll
leg fl1
leg fl1
leg f11

leg f12
leg_ff12
leg ff12
leg f12
leg f12
leg ff12
leg ff12

leg ff13
leg ff13
leg ff13
leg ff13
leg ff13
leg ff13
legff13

leg ff14
leg ff14
leg ff14
leg ff14

leg ff14
leg ff14
legff14

leg fr0
leg fr0
leg fr0
leg fr0
leg fr0
leg fr0
legffr0

leg frl
leg frl
leg frl
leg frl
leg frl
leg frl
legffrl

leg fr2
leg fr2
leg fr2
leg fr2

leg fr2
leg fr2
leg f r2

legfr3
leg_f r3
leg_f r3
legfr3
leg fr3
leg fr3
leg f r3

joint legfr4
joint legfr4
joint legffr4
joint legfr4

joint leg fr4

joint legffr4

joint legffr4

q 0
e_q 0
Q-type 17
springtype distalmass
ea 0.2
eB 8
b 0.03

springtype

ea 1
eB 6
b 0.03

q 0
e-q 0
Q type 17
springtype

ea 1
eB 6
b 0.03

q 0
e-q 0
Q_type 17
ea 0.2
eB 8
springtype
b 0.03

q 0
e-q 0
Q type 17
springtype

ea 0.2
eB 8
b 0.03

q .45
e_q .45
Q type 17
springtype

ea 1
eB 6
b 0.03

q 0
e-q 0
Q type 17
springtype
ea 1
eB 6
b 0.03

q 0
e-q 0
Q_type 17
springtype

ea 1
eB 6
b 0.03

q 0
e_q 0
Q type 17
springtype
ea 0.2
eB 8
b 0.03

*0.5
motor leg_fl2 etarget -.2

timer *0.5 !StepFLb:
timer *0.5 !motor leg_fl1
*0.5
time

retcom 0
! Stance: Leg
motor leg_fl0

# should be a
motor leg fl1
motor legff12
time

*1.0

etarget -0.3

FrontLeft: leg 0
etarget -.05 *1.0

simple maintain
etarget -0.3 *1.0
etarget 0.1 *1.0

distalmass

distalmass

distalmass

distalmass

distalmass

distalmass

# Leg FrontRight: leg 1
procom 1

Step: Leg FrontRight: leg 1
motor leg fr0 etarget .7 *1.0
# lift leg 1/5 time
motor leg frl etarget -.35 *0.2

# lower leg during step - last 1/2 of
time
timer *0.5 motor leg frl etarget 0.3 *0.5
motor leg fr2 etarget .2 *1.0
time

retcom 1
! Stance: Leg FrontRight: leg 1
motor leg fr0 etarget .05 *1.0
# should ba a simple maintain

# SETUP GAIT PARAMETERS AND MOTOR
# PROGRAMS
addroach broach
metabolism 0.05
speed 1000
gaitinit

procom 0

# Leg FrontLeft: leg 0

! Step: Leg FrontLeft: leg 0
motor leg_fl0 etarget -.7 *1.0

# lift leg 1/5 time
motor leg fl1 etarget .35 *0.2

# lower leg during step - last 1/2 of

time
timer *0.5 motor leg_fl1 etarget -0.3



motor leg fri etarget 0.3 *1.0

motor leg fr2 etarget -0.1 *1.0
time

# Leg MiddleLeft: leg 2
procom 2
! Step: Leg MiddleLeft: leg 2

motor leg mlO etarget -.25 *1.0
# lift leg in 2/5 time
motor leg mll etarget 0 *0.4
# do this in last 1/2 of step
timer *0.5 motor leg-mll etarget
*0.5
motor leg m12 etarget .2 *1.0
time

retcom 2
!Stance: Leg MiddleLeft: leg 2
motor leg mlO etarget .25 *1.0
motor leg mll etarget -0.9 *1.0
motor leg m12 etarget 0.8 *1.0
time

# Leg MiddleRight: leg 3
procom 3
! Step: Leg MiddleRight: leg 3
motor leg mrO etarget .25 *1.0
# lift leg in 2/5 time
motor leg mr1 etarget 0 *0.4
# do this in last 1/2 of step
timer *0.5 motor leg_mr1 etarget
motor leg mr2 etarget -.2 *1.0
time

-0.5

0.5 *0.5

retcom 3

! Stance: Leg MiddleRight: leg 3
motor leg mrO etarget -.25 *1.0
motor leg mrl etarget 0.9 *1.0
motor leg mr2 etarget -0.8 *1.0
time

# Leg BackLeft: leg 4
procom 4
! Step: Leg BackLeft: leg 4
motor leg blO etarget -.1 *1.0
# lift leg in 1/3 time
motor leg bl1 etarget 1 *0.3333333333
# descend leg in last 1/2
timer *0.5 motor leg bl1 etarget 0.4 *0.5
motor leg b12 etarget -. 35 *1.0
time

retcom 4
! Stance: Leg
motor leg blO
motor leg bl1
motor leg b12
time

BackLeft: leg 4
etarget .3 *1.0
etarget -0.2 *1.0
etarget 0.4 *1.0

# Leg BackRight: leg 5
procom 5

! Step: Leg BackRight: leg 5
motor legbr0 etarget .1 *1.0
# lift leg in 1/3 time
motor leg br1 etarget -1 *0.3333333333
# descend leg in last 1/2
time *0.5 motor leg bri etarget -0.4 *0.5
motor leg br2 etarget .35 *1.0
time

retcom 5
! Stance: Leg BackRight: leg 5
motor leg brO etarget -.3 *1.0

motor leg br1 etarget 0.2 *1.0
motor leg br2 etarget -0.4 *1.0
time



Appendix D: Corpus Commands

The following is a partial listing of commands available in corpus to manipulate

graphical objects, to create articulated figures, to set dynamic properties of the

environment and of figures, and to set gait parameters.

# COMMENT

Transformation/Object control commands:

premult
postmult
localxforms
xformcenter x y z

get objname [from] instancefilename

closeobj obj name (kill object)

pushobj obj name
popobj obj name

init obj
scale obj x y z

center obj (puts centroid at origin)

move obj <obj> <x y z>

rotate obj {xlylz} angle

rotateaxis obj x y z angle

Gait control commands:

addroach roach name
setroach roach name (set current roach for other commands below)

metabolism time (set's protraction, dleg, retraction, cycle time)

speed val (1.0=top speed, 2.0=1/2 speed of 1.0)

deltaspeed val

incrspeed
topspeed val
bottomspeed val
protime time
rettime time
cycletime time
dlegtime time

gaitgo
gaitinit
procom legnumber [list of commands for protraction]

retcom leg number [list of commands for retraction]

stepreflex {onloff}

legstepreflex leg number body-name triggerangle trigger dir('+' or '-')

loadreflex {onloff}

legloadreflex leg number bodyname joint-force

legstatus legnumber

Dynamics:
addworld world name
setworld world name

alarm time command-string



timer delta-time command-string

timerflush (activate all timers which are triggered by current time)

addcorpus corpus-name
setcorpus corpus-name

corpusinit
addbody body name instancename joint_axisx y z { sliding I rotary }

density [1=inertial 1=colliding 1=convex 1=colliding vel normaltest]

addpart partname inst name body-name density

[1=inertial 1=colliding 1=convex 1=colliding vel normaltest]

setroot body name

setjointp bname joint_axis_x y z

(set joint axis direction in parent's frame)

bodygroundstick bname onloff

maxv bodyname max linear maxangular

addv bodyname linearx y z angular x y z

setrootmatrix [4 lines of 4 floats, the transform matrix for the local space]

setrootpos (harden current position of the corpus)

updatev (update all spatial velocities in the current corpus,

useful after reading in a state file)
linkbodies parent child

integrate corpus name [onloff]

go { # of frames }
motor body { etarget | ... } valuel value2

jointmatchexp body name (set exp spring to the current joint angle)

joint body { q I dq I ... } value (set a joint parameter)
jointstatus body name
rootmotion {fixedIfree)
totalmass (print total mass of corpus)

dumps filename (dump main state of corpus)

loads file name
dumpQs filename (dump joint force values)

dumpas filename (dump acceleration values)

loadas file name
dumpmotors filename (dump motor programs state)

loadmotors file name
dumpcontacts filename (dump special contact data)
loadcontacts file name

dumpcontactforces filename

dumpmatcorpus file-name (dump script to position all objects for rendering)

iter int (loop each frame int times)
dt [time] (set time step for frame)
h [time] (set integrator time step)

eps [val] (set integrator error tolerance)

time [val] (set current time)

integration [rkfixed I rkvar I rkf I euler]

setgrav val (set gravitational acceleration value)

grav [onloff]

ground [onloff]

groundtype [flat I trigrid]

groundkrf [val) (set ground velocity-dependent reaction force)
groundk [val] (set ground linear spring const)
grounde [val] (set ground coefficient of elasticity)
groundfric [val] (set coefficient of sliding friction)

groundfric2 [val] (coefficient of friction model 2)
groundfric2k [val] (friction model 2 spring strength)
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groundfric2e [val] (friction model 2 restitution val)

groundb [val] (set ground damping const)

groundea [val] (set ground exponential spring linear strength)

groundeB [val] (ground exp rise val)

groundstickea [val] (sticky ground exp spring linear strength)

groundstickeB [val] (sticky ground exp spring rise strength)

groundstickemaxz [val] (maximum force penetration val)

groundsticke [val] (ground stick force coefficient of restitution)

groundz [val] (set world space value for z-ground plane)

collide bodyl body2 (set collision detection between bl and b2)

collision [onloff]
collisionanalysis [onloff]

collisione [val] (set collision restitution)

collisionfric [val] (sliding friction value for collisions)

collisionea [val] (exp spring linear strength)

collisioneB [val] (exp spring rise)

collisionemaxz [val] (maximum force depth value)

addtrigrid grid-name instance-name

attach bodyl body2 bodylx y z body2_x y z k ea eB e [break-length]
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