
Large-Scale Optimization Methods: Theory and
Applications

by

Nuri Denizcan Vanli

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

c○ Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 27, 2021
Certified by .

Asuman Ozdaglar
Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by .

Pablo A. Parrilo
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Large-Scale Optimization Methods: Theory and Applications

by

Nuri Denizcan Vanli

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Large-scale optimization problems appear quite frequently in data science and machine
learning applications. In this thesis, we show the efficiency of coordinate descent (CD) and
mirror descent (MD) methods in solving large-scale optimization problems.

First, we investigate the convergence rate of the CD method with different coordinate
selection rules. We present certain problem classes, for which deterministic rules provably
outperform randomized rules. We quantify the amount of improvement and the corre-
sponding deterministic order that achieves the maximum improvement. We then show
that for a certain subclass of problems, using any fixed deterministic rule yields a superior
performance than using random permutations. Then, we illustrate the efficiency of the
CD method on a constrained non-convex optimization problem that arise from semidefi-
nite programming with diagonal constraints. We show that the proposed CD methods can
recover the optimal solution when the rank of the factorization is sufficiently large, and
establish the rate of convergence. When the rank of the factorization is small, we provide
tight approximation bounds as a function of the rank.

Next, we study convergence properties of the continuous-time and discrete-time MD
methods. We present a unified convergence theory for mirror descent and related methods.
Then, we establish the implicit bias of the MD method with non-differentiable distance
generating functions. Finally, we introduce the continuous-time MD method with non-
differentiable and non-strictly convex distance generating functions. We show the existence
and convergence of the solutions generated by the MD method and establish their implicit
bias. We illustrate that the combinatorial algorithms resulting from this approach can be
used to solve sparse optimization problems.

Thesis Supervisor: Asuman Ozdaglar
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Pablo A. Parrilo
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to express my deepest gratitude to my advisers Asu Ozdaglar and Pablo Parrilo

as well as my committee member Suvrit Sra.

Asu, I cannot thank you enough for your support throughout my doctoral studies.

Thank you for always finding time to meet with me despite your busy schedule. Thank you

for your enthusiasm, for exposing me to interesting research problems and teaching me how

to communicate my research. Working with you has truly been a joy and I am grateful to

have had the opportunity.

Pablo, working with you has been a wonderful experience. There has not been a single

meeting that I was not impressed by your knowledge and intuition. Thank you for guiding

my research by asking stimulating questions.

Suvrit, thank you for discussing research problems and directions with me, interacting

with you has been invaluable.

Most of this thesis would not have come to fruition if it was not for my amazing collab-

orators: Mert and Murat. I am thankful that I have had the pleasure to work with you,

you have taught me so much. I will always cheerish our fun conversations and I cannot

thank you enough for your guidance on my career directions.

I would like to extend my gratitude to NSF and Draper for funding my research and

to the LIDS staff, and in particular Roxana Hernandez, Jennifer Donovan, Lynne Dell and

Brian Jones for their help in numerous administrative tasks. Special thanks to Roxana for

always creating an opening in Asu’s calendar for our meetings, it has remained a mystery

to me how she managed to do so.

I am thankful to the LIDS/MIT community at large for making my time here so enjoy-

able. I have been fortunate to have had many friends at MIT and for that I am thankful

to Asu’s and Pablo’s group, Dennis Shen, Matthew Staib, Matthew Brennan1, Zhi Xu,

Igor Kadota and so many more. Special thanks to Jason, James and Jackie for many fun

1Rest in peace.

5

memories2.

I have been fortunate to have Seyhmus as my roommate for many years, who has made

my life at Boston incredibly fun. Of course, the past several years would not have been

nearly as enjoyable if it was not for the company of Ozge with whom I shared many great

memories.

Throughout my life, I have been spoiled by the love and support of two amazing indi-

viduals that I look up to. Mom and Dad, this thesis is dedicated to you.

2I also extend thanks to Sazerac Company for producing Fireball, which may or may not have caused
us to forget some great memories.

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Thesis Outline . 19

2 Background 21

2.1 Notation . 21

2.2 Convex Sets . 22

2.3 Convex Functions and Conjugates . 23

2.4 Subgradients . 25

2.5 Set-Valued Maps . 26

I Coordinate Descent Method 29

3 An Overview 31

3.1 Existing Convergence Results . 32

3.2 CD and CGD Methods for Quadratic Problems 37

3.3 Summary of Contributions . 39

4 When Does CCD outperform RCD? 43

4.1 An Asymptotic Rate Comparison Metric 44

4.1.1 Asymptotic Converge Rate for Iterative Algorithms 45

4.1.2 A Motivating Example . 46

7

4.2 Deterministic Orders Provably Outperform Randomized Sampling 47

4.2.1 Convergence Rate of CCD for 2-Cyclic Matrices 48

4.2.2 Convergence Rate of CCD for Irreducible M-Matrices 51

4.2.3 Convergence Rate of CCD for Non-frustrated Matrices 57

4.3 Numerical Validation . 59

4.4 Discussion . 61

4.5 Additional Proofs . 61

4.5.1 Proof of Lemma 4.12 . 61

4.5.2 An Example Achieving Lower and Upper Bounds 63

5 Randomness and Permutations in the CD Method 65

5.1 Preliminaries . 66

5.2 Convergence Rate Criteria . 67

5.3 Prior work on the RPCD method . 71

5.4 Performance of RPCD vs RCD on a class of diagonally dominant matrices 74

5.4.1 Convergence rates of RPCD, RCD and CCD in improvement se-

quence ℐ1 . 75

5.4.2 Convergence rates of RPCD and RCD in improvement sequences ℐ2
& ℐ3 . 80

5.5 Numerical Validation . 83

5.6 Discussion . 85

5.7 Additional Proofs . 85

5.7.1 Proof of Lemma 5.6 . 85

5.7.2 Proof of Proposition 5.7 . 86

5.7.3 Proof of Proposition 5.8 . 90

5.7.4 Proof of Proposition 5.9 . 91

5.7.5 Proof of Proposition 5.11 . 92

8

6 Convergence Rate of the CD Method for Solving Large SDPs via Burer-

Monteiro Approach 97

6.1 Convergence Rate of the CD Method . 99

6.1.1 Riemannian Geometry of the Problem 100

6.1.2 Global Rate of Convergence . 103

6.1.3 Local Rate of Convergence . 106

6.1.4 Quadratic Decay Condition Holds Generically 114

6.2 Approximately Achieving the Maximum Value of (CVX) 117

6.3 Related Work . 127

6.4 Numerical Results . 131

6.5 Discussion . 133

6.6 Additional Proofs . 135

6.6.1 Proof of Corollary 6.3 . 135

6.6.2 Rest of the Proof of Theorem 6.5 136

6.6.3 Proof of Theorem 6.17 . 140

II Mirror Descent Method 143

7 An Overview 145

7.1 Mirror Descent Dynamics . 145

7.2 Sufficient Conditions for Well-Defined Dynamics 147

7.3 Generalized Bregman Divergence . 149

7.3.1 Related Literature . 151

7.3.2 Properties of Generalized Bregman Divergence 153

7.4 Convergence of Mirror Descent Dynamics 154

7.4.1 Weak Convergence . 155

7.4.2 Strong Convergence . 158

7.5 Motivation . 165

9

7.6 Summary of Contributions . 168

8 A Unified View of Mirror Descent Method in Discrete-Time and Related

Methods 173

8.1 Discretization of Mirror Descent Dynamics 174

8.1.1 Forward Euler Discretization . 174

8.1.2 Backward Euler Discretization . 178

8.2 A Unified View of Existing Methods . 179

8.3 A Unified Convergence Analysis . 185

8.3.1 Related Work & Contributions . 186

8.3.2 Convergence Analysis for Non-smooth Problems 189

8.3.3 Convergence Analysis for Relatively Smooth Optimization Problems 193

8.4 Applications . 196

8.4.1 Sparse Recovery Problem . 196

8.4.2 Low-Rank Recovery Problem . 198

8.5 Discussion . 200

9 Generalized Mirror Descent Methods 201

9.1 Relaxing Strict Convexity Condition . 202

9.1.1 Existence of a Solution . 203

9.1.2 Convergence of Solutions . 205

9.1.3 Discrete-Time Solutions . 206

9.2 Relaxing Bounded Domain Condition . 207

9.2.1 Existence and Uniqueness of the Solution 209

9.2.2 Convergence of Solutions . 211

9.2.3 Discrete-Time Solutions . 214

9.3 Discussion on Discrete-Time Solutions . 215

9.4 Application: Minimum ℓ1-norm Solution to Linear Systems 219

9.4.1 Iteratively Solving the Nonnegative Least Squares Subproblems . . 224

10

9.4.2 A Numerically Efficient Implementation of Algorithm 8 via QR De-

composition . 227

9.4.3 Related Work . 228

9.5 Numerical Experiments . 229

9.6 Discussion . 231

9.7 Additional Proofs . 232

9.7.1 Proof of Theorem 9.3 . 232

9.7.2 A Dual Viewpoint . 234

9.7.3 Proof of Theorem 9.12 . 236

9.7.4 Proof of Theorem 9.13 . 237

11

12

List of Figures

4-1 Distance to the optimal solution of the iterates of CCD and RCD for the

cyclic matrix in (4.3.1) (left figure) and a randomly permuted version of the

same matrix (right figure) where the y-axis is on a logarithmic scale. The

left (right) panel corresponds to the consistent (inconsistent) ordering for

the same quadratic optimization problem. 60

4-2 Distance to the optimal solution of the iterates of CCD and RCD for the

𝑀 -matrix matrix in (4.3.2) for the worst-case initialization (left figure) and

a random initialization (right figure). 60

5-1 Plot of 𝑠(𝑡, 𝑛) and 𝑠(𝑡, 𝑛) versus 𝑡 ∈ (0, 1) for different values of 𝑛. 79

5-2 Tightness of the bounds in Proposition 5.9 when 𝑛 = 1000 and 𝛼 = 0.9
𝑛−1

:

Left figure for (5.4.11) and right figure for (5.4.12). 81

5-3 Tightness of the bounds in Proposition 5.11 when 𝑛 = 1000 and 𝛼 = 0.9
𝑛−1

:

Left figure for (5.4.13) and right figure for (5.4.14). 82

5-4 CCD vs RPCD vs RCD with worst-case initialization for 𝑛 = 1000 (top row)

and 𝑛 = 10000 (bottom row): 𝛼 = 0.01
𝑛−1

in the left column, 𝛼 = 0.50
𝑛−1

in the

middle column, and 𝛼 = 0.99
𝑛−1

in the right column. 84

5-5 CCD vs RPCD vs RCD with random initialization for 𝑛 = 1000: 𝛼 = 0.01
𝑛−1

(left figure), 𝛼 = 0.50
𝑛−1

(middle figure), and 𝛼 = 0.99
𝑛−1

(right figure). 84

6-1 Comparisons of different randomization schemes for 𝑛 ∈ {200, 1000} with

𝑟 = ⌈
√

2𝑛⌉. 128

13

6-2 Performance of CD and CD2 (Algorithms 3 and 4) compared to other meth-

ods. Here, RTR and RGD refer to Riemannian Trust Region and Riemannian

Gradient Descent, respectively. 132

6-3 Comparing the final performance of different methods after (near) convergence.133

6-4 Phase transition in recovering the optimal solution of (CVX) by an approx-

imately second-order stationary solution of (Non-CVX). 134

7-1 Generalized Bregman divergences when Φ is non-differentiable. The value

of the divergence depends on the choice of subgradient. 151

9-1 Graphs of 𝜕Φ and 𝜕Φ* for Φ = | · | and 𝒳 = [−2, 2]. 216

9-2 Graphs of 𝜕Φ and 𝜕Φ* for Φ = | · |+ 𝜆
2
(·)2 and 𝒳 = [−2, 2]. 217

9-3 Graphs of 𝜕𝜖Φ* for 𝜖 = 0.1 (left) and 𝜖 = 0.02 (right), where Φ = | · | and

𝒳 = [−2, 2]. 218

9-4 Running times of the Homotopy, MD, PFP and AISS methods averaged over

100 randomly generated problems. 230

9-5 Trajectory of the iterations of the Homotopy and MD methods on the dia-

betes dataset. Top row corresponds to the Homotopy method, whereas the

bottom row corresponds to the MD method. Left column shows the evolu-

tion of the dual objective and ℓ∞-norm of the gradients, whereas the right

column shows the evolution of the primal variables. 232

14

List of Tables

3.1 Rate of convergence of the CGD method when 𝑓 is convex continuously

differentiable and ∇𝑓 is coordinate-wise Lipschitz continuous, see (3.1.1).

ℓ denotes the iteration counter such that 𝑘 = ℓ𝑛. The CGD method is

implemented with a constant stepsize rule specific to each coordinate, i.e.,

there exists constants 𝜂(𝑖) > 0 for all 𝑖 ∈ [𝑛] such that 𝜂𝑘 = 𝜂(𝑗) when

𝑖𝑘 = 𝑗. When presenting the linear convergence rate of CGD methods with

randomized rules, it is assumed that 𝜇≪ 𝐿max and the approximation (1−
𝑐/𝑛)𝑛ℓ ≈ (1−𝑐)ℓ is used for simplicity. Dependence on constants are ignored

for clarity. 35

6.1 Summary of certain definitions stated in Section 6.1.1. 103

8.1 A summary of existing methods. 181

15

16

Chapter 1

Introduction

1.1 Motivation

In the last few decades, machine learning has become increasingly prevalent to learn ex-

planatory models of the world. Continuous optimization methods, as a tool for learning

and solving machine learning models, usually determine the computational bottlenecks for

the size of the models and problems that can be solved. With the ever-increasing amount

of data available to process, the number of applications that are cast as large-scale op-

timization problems are growing dramatically. Therefore, there is a significant interest

in developing simple continuous optimization methods that require low iteration cost and

low memory storage, so that they scale better with the size of the problems. Although

such methods need not converge to high-accuracy solutions fast, low-accuracy solutions are

sufficient for machine learning applications as the data is usually noisy.

One of the most celebrated methods that is acknowledged for its simplicity is the co-

ordinate descent (CD) method. The CD method is a classical optimization algorithm that

has seen a revival of interest because of its competitive performance in machine learning

applications. The CD method is particularly convenient for large-scale optimization prob-

lems since updating a single variable (or a block of variables in the case of block-CD) at

each iteration of the algorithm is significantly cheaper than updating all variables simul-

17

taneously. Consequently, the CD method has been successfully applied to a variety of

large-scale optimization problems in the literature, such as lasso, support vector machines

and optimal transport.

Another method that is particularly well-suited for large-scale optimization problems is

the mirror descent (MD) method. The MD method is a first-order optimization algorithm

that generalizes the gradient descent method to non-Euclidean geometries via distance

generating functions that are specific to the desired geometry. Thus, by changing the

Euclidean geometry to a more pertinent geometry to the problem at hand, the MD method

enjoys almost dimension-free convergence rates, which makes the MD method extremely

useful in large-scale optimization problems.

In this thesis, we present several algorithmic and theoretic contributions to the CD and

MD methods. Our main purposes are to obtain a better understanding of the performance

of existing optimization methods and to develop algorithms that can efficiently solve certain

large-scale optimization problems. There are five fundamental questions we ask, each of

which we study in one corresponding section in the thesis:

1. When does the CD method with randomized coordinate selection rule outperform

the CD method with deterministic coordinate selection rule?

2. Does randomly permuted coordinate selection fix the worst-case behavior of uniformly

random coordinate selection in the CD method?

3. Can the CD method be efficiently applied to solve large-scale non-convex optimization

problems of certain kind with precise convergence and approximation guarantees?

4. How does the MD method relate to existing optimization methods in the literature

and is there a unified lens through which they can be understood and analyzed?

5. Can the MD method be extended to more general geometries that are not necessarily

smooth?

18

1.2 Thesis Outline

The first part of the thesis focuses on the CD method. In Chapter 3, we provide a back-

ground on the CD method. In Chapter 4, which is based on [72], we study the CD method

with deterministic and randomized update rules. We present problem classes for which the

CD method with any cyclic order is faster than the CD method with randomized coordinate

selection in terms of asymptotic worst-case convergence. Then in Chapter 5, which is based

on [73], we show that using random permutations instead of random with-replacement sam-

pling improves the performance of the CD method in the worst-case. In Chapter 6, which

is based on [61], we consider applying the CD method to the non-convex optimization

problem that arises from low-rank factorization to semidefinite programs with diagonal

constraints. We establish global sublinear convergence and local linear convergence of the

CD method. We then develop a method based on the CD and Lanczos methods that

returns an approximately globally optimal solution.

The second part of the thesis focuses on the MD method. In Chapter 7, we provide a

background on the MD method. In Chapter 8, we present a unified approach to analyze

several optimization methods including MD, dual averaging, Bregman proximal gradient

and Bregman proximal point. We apply the presented methodology to two problem classes

and systematically recover the celebrated rate estimates for the aforementioned methods

often under weaker assumptions. In Chapter 9, we develop the continuous-time MD method

that generalize the existing MD method to non-smooth geometries. We investigate the

convergence properties of the corresponding continuous-time inclusion and discuss how to

discretize it. Finally, we show the efficiency of the resulting method for a few celebrated

problems.

19

20

Chapter 2

Background

In this section, we provide some definitions and basic results on convex analysis. Our

presentation largely follows [128, 130, 10] and we refer to these books for a more detailed

treatment of convex analysis, variational analysis and set-valued analysis, respectively.

2.1 Notation

Unless stated otherwise, all vectors are column vectors and represented by lowercase letters.

Matrices are represented by uppercase letters, scalars are represented by lowercase Greek

letters, and sets are represented by uppercase Greek letters. Superscripts are used to

represent iteration counters, whereas subscripts are used to represent coordinates for a

vector and columns for a matrix. R denotes the set of real numbers, R≥ denotes the set

of non-negative real numbers and R̄ = R ∪ {−∞,∞} denotes the set of extended real

numbers. [𝑛] denotes the set of positive integers up to and including 𝑛.

For a vector 𝑥, ‖𝑥‖𝑝 represents its ℓ𝑝-norm. For matrices 𝐴,𝐵, we write ⟨𝐴,𝐵⟩ =

trace(𝐴𝐵⊤) for the inner product associated to the Frobenius norm ‖𝐴‖F =
√︀
⟨𝐴,𝐴⟩.

For a matrix 𝐴, ‖𝐴‖1 = max1≤𝑗≤𝑛

∑︀𝑛
𝑖=1 |𝐴𝑖𝑗| represents its 1-norm, ‖𝐴‖1,1 =

∑︀𝑛
𝑖,𝑗=1 |𝐴𝑖𝑗|

represents its 𝐿1,1-norm, and ‖𝐴‖* = tr(
√
𝐴⊤𝐴) represents its nuclear norm. ℬ2,𝑛 = {𝑥 ∈

R𝑛 : ‖𝑥‖2 ≤ 1} denotes the Euclidean unit ball in R𝑛. For matrices, ≥ and ≤ are entry-wise

21

operators. Matrices 𝐼 and 0 denote the identity matrix and the zero matrix respectively

and their dimensions can be understood from the context.

2.2 Convex Sets

The indicator function of a set 𝒳 is denoted by

𝜄𝒳 (𝑥) =

⎧
⎪⎨
⎪⎩

0 if 𝑥 ∈ 𝒳 ,

+∞ otherwise.

A subset 𝒳 of R𝑛 is said to be

∙ convex if (1− 𝜆)𝑥+ 𝜆𝑦 ∈ 𝒳 whenever 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒳 and 0 < 𝜆 < 1.

∙ closed if it contains all its limit points.

For a set 𝒳 ⊂ R𝑛:

∙ its normal cone is denoted by 𝒩𝑋 and defined as

𝒩𝒳 (𝑥) =

⎧
⎪⎨
⎪⎩
{𝑦 ∈ R𝑛 : ⟨𝑦, 𝑢− 𝑥⟩ ≤ 0, ∀𝑢 ∈ 𝒳} if 𝑥 ∈ 𝒳

∅ if 𝑥 /∈ 𝒳

∙ its affine hull is denoted by aff 𝒳 and defined as

aff 𝒳 =

{︃
𝑚∑︁

𝑖=1

𝜆𝑖𝑥𝑖

⃒⃒
⃒⃒𝑚 > 0, 𝑥𝑖 ∈ 𝒳 , 𝜆𝑖 ∈ R,

𝑚∑︁

𝑖=1

𝜆𝑖 = 1

}︃
.

∙ its closure is denoted by cl𝒳 and defined as

cl𝒳 =
⋂︁
{𝒳 + 𝜖ℬ2,𝑛 : 𝜖 > 0}.

22

∙ its interior is denoted by int𝒳 and defined as

int𝒳 = {𝑥 : ∃𝜖 > 0, 𝑥+ 𝜖ℬ2,𝑛 ⊂ 𝒳}.

∙ its relative interior is denoted by ri𝒳 and defined as

ri𝒳 = {𝑥 ∈ aff 𝒳 : ∃𝜖 > 0, (𝑥+ 𝜖ℬ2,𝑛) ∩ (aff 𝒳) ⊂ 𝒳}.

2.3 Convex Functions and Conjugates

Let 𝑓 : 𝒳 → R̄ be a function where 𝒳 ⊂ R𝑛. The graph of 𝑓 is defined to be the set:

graph 𝑓 = {(𝑥, 𝑦) ∈ 𝒳 × R̄ : 𝑦 = 𝑓(𝑥)}.

The epigraph of 𝑓 is defined to be the set:

epi 𝑓 = {(𝑥, 𝑦) ∈ 𝒳 × R̄ : 𝑦 ≥ 𝑓(𝑥)}.

A function 𝑓 is said to be convex on 𝒳 if epi 𝑓 is convex as a subset of R̄𝑛+1. The effective

domain of a convex function 𝑓 , denoted by dom 𝑓 , is the projection of epi 𝑓 on R𝑛:

dom 𝑓 = {𝑥 : ∃𝑦, (𝑥, 𝑦) ∈ epi 𝑓} = {𝑥 : 𝑓(𝑥) < +∞}.

Convex functions are continuous on int dom 𝑓 and differentiable on int dom 𝑓 except for a

set of measure zero. The closure of a convex function 𝑓 , cl 𝑓 , is the function whose epigraph

is the closure of the epigraph of 𝑓 .

A convex function 𝑓 is said to be

∙ proper if dom 𝑓 is non-empty and 𝑓(𝑥) > −∞ for every 𝑥 ∈ dom 𝑓 ,

∙ closed if cl 𝑓 = 𝑓 ,

23

∙ lower semicontinuous if the sublevel set {𝑥 : 𝑓(𝑥) ≤ 𝛼} is closed for every 𝛼 ∈ R.

For proper convex functions, closedness is the same as lower semicontinuity.

For a function 𝑓 : 𝒳 → R̄, its convex conjugate is defined as

𝑓 *(𝑦) = sup
𝑥∈𝒳
{⟨𝑥, 𝑦⟩ − 𝑓(𝑥)}.

If 𝑓 is convex, then 𝑓 * is a closed convex function, and proper if and only if 𝑓 is proper.

For any proper convex function 𝑓 and its convex conjugate 𝑓 *, Fenchel’s inequality holds:

⟨𝑥, 𝑦⟩ ≤ 𝑓(𝑥) + 𝑓 *(𝑦), ∀𝑥 ∈ dom 𝑓 and ∀𝑦 ∈ dom 𝑓 *.

A proper convex function 𝑓 with effective domain 𝒳 is:

∙ convex if and only if

𝑓(𝜆𝑥+ (1− 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1− 𝜆)𝑓(𝑦), ∀𝑥, 𝑦 ∈ 𝒳 and 𝜆 ∈ (0, 1), (2.3.1)

∙ called strictly convex if the inequality (2.3.1) is strict,

∙ called strongly convex with constant 𝜇 > 0 with respect to the norm ‖·‖ if the following

holds:

𝑓(𝜆𝑥+(1−𝜆)𝑦) ≤ 𝜆𝑓(𝑥)+(1−𝜆)𝑓(𝑦)−𝜆(1− 𝜆)𝜇

2
‖𝑥− 𝑦‖2, ∀𝑥, 𝑦 ∈ 𝒳 and 𝜆 ∈ (0, 1).

∙ called essentially strictly convex if 𝑓 is strictly convex on every convex subset of

dom 𝜕𝑓 (see the next section for the definition of 𝜕𝑓).

∙ called essentially smooth if it satisfies the following three conditions for 𝒞 = int(dom 𝑓):

1. 𝒞 ̸= ∅;

2. 𝑓 is differentiable on 𝒞;

24

3. lim𝑘→∞ ‖∇𝑓(𝑥𝑘)‖ = +∞ for any sequence {𝑥𝑘} in 𝒞 converging to a boundary

point 𝑥 of 𝒞.

2.4 Subgradients

A vector 𝑔 is said to be a subgradient of a convex function 𝑓 at point 𝑥 if

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑔, 𝑦 − 𝑥⟩, ∀𝑧 ∈ dom 𝑓.

The set of all subgradients of 𝑓 at 𝑥 is called the subdifferential of 𝑓 at 𝑥 and is denoted

by 𝜕𝑓(𝑥). The effective domain of 𝜕𝑓 is given by

dom 𝜕𝑓 = {𝑥 : 𝜕𝑓(𝑥) ̸= ∅},

and satisfies

ri(dom 𝑓) ⊆ dom 𝜕𝑓 ⊆ dom 𝑓.

The range of 𝜕𝑓 is given by

rge 𝜕𝑓 =
⋃︁
{𝜕𝑓(𝑥) : 𝑥 ∈ R𝑛},

and satisfies

ri(dom 𝑓 *) ⊆ rge 𝜕𝑓 ⊆ dom 𝑓 *.

Chain rule holds for subdifferentials under mild conditions: For any proper convex

function 𝑓 , we have 𝜕(𝜆𝑓)(𝑥) = 𝜆𝜕𝑓(𝑥). For any proper convex functions 𝑓 and 𝑔, we have

𝜕(𝑓 + 𝑔)(𝑥) = 𝜕𝑓(𝑥) + 𝜕𝑔(𝑥) if ri(dom 𝑓) ∩ ri(dom 𝑔) ̸= ∅. Let 𝑓(𝑥) = ℎ(𝐴𝑥), where ℎ

is a proper convex function on R𝑚 and 𝐴 is a linear transformation from R𝑛 to R𝑚, then

𝜕𝑓(𝑥) = 𝐴⊤𝜕ℎ(𝐴𝑥) if rge𝐴 ∩ ri(domℎ) ̸= ∅ or if ℎ is polyhedral and rge𝐴 ∩ domℎ ̸= ∅.

For any closed proper convex function 𝑓 , the following are equivalent (known as the

25

conjugate subgradient theorem):

1. 𝑓(𝑥) + 𝑓 *(𝑔) = ⟨𝑥, 𝑔⟩;

2. 𝑔 ∈ 𝜕𝑓(𝑥);

3. 𝑥 ∈ 𝜕𝑓 *(𝑔).

This implies 𝜕𝑓 * is the inverse of 𝜕𝑓 in the sense of set-valued maps.

For a closed proper convex function 𝑓 , 𝜕𝑓 is a single-valued mapping if and only if

𝑓 is essentially smooth. In this case, 𝜕𝑓(𝑥) = {∇𝑓(𝑥)}, for all 𝑥 ∈ int(dom 𝑓), whereas

𝜕𝑓(𝑥) = ∅ for all 𝑥 /∈ int(dom 𝑓). Furthermore, 𝜕𝑓 is injective if and only if 𝑓 is strictly

convex on ri(dom 𝑓) and essentially smooth.

2.5 Set-Valued Maps

A set-valued map 𝐹 : ℰ ⇒ ℰ* is a map that associates with any 𝑥 ∈ ℰ a subset 𝐹 (𝑥) of

ℰ*. The subset dom𝐹 = {𝑥 : 𝐹 (𝑥) ̸= ∅} is called domain of 𝐹 . The image of a set 𝒳 ⊂ ℰ
under 𝐹 is the set

ℱ(𝒳) =
⋃︁

𝑥∈𝒳

𝐹 (𝑥).

The range of 𝐹 is the image of ℰ . The graph of 𝐹 is given by

graph𝐹 = {(𝑥, 𝑦) ∈ ℰ × ℰ* : 𝑦 ∈ 𝐹 (𝑥)}.

A set-valued map 𝐹 : ℰ ⇒ ℰ* is said to be

∙ closed (or has closed graph) if its graph is a closed subset of ℰ × ℰ*.

∙ closed-valued (or has closed values) if 𝐹 (𝑥) is a closed set for each 𝑥. The terms,

open-valued, compact-valued and convex-valued are defined similarly.

26

∙ locally bounded at 𝑥 if for some neighborhood ℳ of 𝑥, the set 𝐹 (ℳ) is bounded. 𝐹

is said to be locally bounded if it is so at every 𝑥 ∈ ℰ . 𝐹 is said to be bounded if rge𝐹

is a bounded subset of ℰ*.

For a set-valued map 𝐹 : ℰ ⇒ ℰ*:

∙ the upper inverse 𝐹 u of a subset 𝒴 of ℰ* is defined by

𝐹 u(𝒴) = {𝑥 ∈ ℰ : 𝐹 (𝑥) ⊂ 𝒴},

∙ the lower inverse 𝐹 ℓ of a subset 𝒴 of ℰ* is defined by

𝐹 ℓ(𝒴) = {𝑥 ∈ ℰ : 𝐹 (𝑥) ∩ 𝒴 ̸= ∅}.

A set-valued map 𝐹 : ℰ ⇒ ℰ* is called:

∙ upper semi-continuous at 𝑥 ∈ ℰ if for any open 𝒩 containing 𝐹 (𝑥), there exists a

neighborhood ℳ of 𝑥 such that 𝐹 (ℳ) ⊂ 𝒩 (equivalently, the upper inverse image

𝐹 u(𝒩) contains a neighborhood of 𝑥 in ℰ). We say that 𝐹 is upper semi-continuous

if it is so at every 𝑥 ∈ ℰ .

∙ lower semi-continuous at 𝑥 ∈ ℰ if for any 𝑦 ∈ 𝐹 (𝑥) and any neighborhood 𝒩 of

𝑦, there exists a neighborhood ℳ of 𝑥 such that 𝐹 (𝑥′) ∩ 𝒩 ≠ ∅ for all 𝑥′ ∈ ℳ
(equivalently, the lower inverse image 𝐹 ℓ(𝒩) contains a neighborhood of 𝑥). We say

that 𝐹 is lower semi-continuous if it is so at every 𝑥 ∈ ℰ .

∙ continuous at 𝑥 ∈ ℰ if it is both upper and lower semi-continuous at 𝑥. We say that

𝐹 is continuous if it is so at every 𝑥 ∈ ℰ .

∙ monotone if it has the property that

⟨𝑦1 − 𝑦2, 𝑥1 − 𝑥2⟩ ≥ 0, ∀𝑦1 ∈ 𝐹 (𝑥1) and 𝑦2 ∈ 𝐹 (𝑥2).

27

∙ maximal monotone if no enlargement of its graph is possible without destroying mono-

tonicity, i.e., if for every (𝑥1, 𝑦1) ∈ (ℰ × ℰ*) ∖ graph𝐹 , there exists (𝑥2, 𝑦2) ∈ graph𝐹

such that ⟨𝑦1 − 𝑦2, 𝑥1 − 𝑥2⟩ < 0.

28

Part I

Coordinate Descent Method

29

30

Chapter 3

An Overview

Consider the unconstrained optimization problem

min
𝑥∈R𝑛

𝑓(𝑥),

where 𝑓 : R𝑛 → R is smooth and convex. The CD method is an iterative algorithm

that performs global minimizations with respect to a single coordinate (or several coor-

dinates in the case of block-CD) at each iteration. Specifically, at iteration 𝑘, an index

𝑖𝑘 ∈ {1, 2, . . . , 𝑛} is chosen and the decision variable is updated to minimize the objective

function in the 𝑖𝑘-th coordinate direction [21, 22]. The steps of this method are summa-

rized in Algorithm 1. The integer 𝑘 = ℓ𝑛+ 𝑗 keeps track of the total number of iterations

consisting of outer iterations indexed by ℓ and inner iterations indexed by the counter 𝑗.

Each outer iteration is called a “cycle" or an “epoch” of the algorithm.

The CD method can be implemented with various coordinate selection schemes, both

deterministic and stochastic, for choosing the coordinate 𝑖𝑘 to be updated at iteration 𝑘.

Prominent schemes include the following.

∙ Cyclic CD (CCD): The index 𝑖(ℓ, 𝑗) is chosen in a cyclic fashion over the elements in

the set {1, 2, . . . , 𝑛} satisfying 𝑖(ℓ, 𝑗) = 𝑗 + 1.

∙ Randomized CD (RCD): The index 𝑖(ℓ, 𝑗) is chosen randomly with replacement from

31

Algorithm 1: Coordinate Descent (CD)
Choose initial point 𝑥0 ∈ R𝑛

for ℓ = 0, 1, . . . do
for 𝑗 = 0, 1, . . . , 𝑛− 1 do

Set 𝑘 = ℓ𝑛+ 𝑗
Choose index 𝑖𝑘 = 𝑖(ℓ, 𝑗) ∈ {1, 2, . . . , 𝑛}
𝑥𝑘+1
𝑖 = 𝑥𝑘𝑖 for all 𝑖 ̸= 𝑖𝑘, and 𝑥𝑘+1

𝑖𝑘
∈ arg min𝜉∈R 𝑓(𝑥𝑘1, . . . , 𝑥

𝑘
𝑖𝑘−1, 𝜉, 𝑥

𝑘
𝑖𝑘+1, . . . , 𝑥

𝑘
𝑛)

end for
end for

the set {1, 2, . . . , 𝑛}. Unless otherwise stated, each coordinate has the same proba-

bility of being chosen.

∙ Random Permutations CD (RPCD): At the beginning of each epoch ℓ, a permutation

of {1, 2, . . . , 𝑛} is chosen, denoted by 𝜋ℓ, uniformly at random over all permutations.

Then, the index 𝑖(ℓ, 𝑗) is chosen as the (𝑗 + 1)-th element of 𝜋ℓ. Each permutation

𝜋ℓ is independent of the permutations used at all previous and later epochs. This

approach amounts to sampling indices from the set {1, 2, . . . , 𝑛} without replacement

for each epoch.

The CD method in Algorithm 1 is an exact-minimization scheme along each chosen

coordinate. When the exact-minimization of the objective function in the 𝑖𝑘-th coordinate

is costly, it is often replaced with an approximate-minimization scheme, e.g., by moving

along the direction pointed by the negative coordinate gradient, see Algorithm 2. This

method is called as the coordinate gradient descent (CGD) method.

3.1 Existing Convergence Results

The CD method has a long history in optimization and have been used in many applications.

The convergence of the CD method has been studied extensively in the literature (cf.

[23, 95, 96, 110]). It is known that when 𝑓 is continuously differentiable but possibly non-

32

Algorithm 2: Coordinate Gradient Descent (CGD)
Choose initial point 𝑥0 ∈ R𝑛

for ℓ = 0, 1, 2, . . . do
for 𝑗 = 0, 1, 2, . . . , 𝑛− 1 do

Set 𝑘 = ℓ𝑛+ 𝑗
Choose index 𝑖𝑘 = 𝑖(ℓ, 𝑗) ∈ {1, 2, . . . , 𝑛}
Choose stepsize 𝜂𝑘 > 0
𝑥𝑘+1 ← 𝑥𝑘 − 𝜂𝑘[∇𝑓(𝑥𝑘)]𝑖𝑘𝑒𝑖𝑘 , where [∇𝑓(𝑥𝑘)]𝑖𝑘 = 𝑒⊤𝑖𝑘∇𝑓(𝑥𝑘)

end for
end for

convex, if each subproblem has a unique solution and 𝑓 is monotonically non-increasing

between the current iterate and the minimizer of the subproblem, then every limit point of

the sequence {𝑥𝑘} generated by the CD method is a stationary point. When one of these

conditions do not hold, the CD method does not necessarily converge to a stationary point

of non-convex problems as shown by Powell [119]. When 𝑓 is convex and its level sets

are compact, the CD method converges even when the subproblems do not have unique

solutions [69]. In [122], it has been shown that each subproblem can be solved inexactly, by

optimizing a certain surrogate function, and the resulting inexact CD method converges.

The rate of convergence of the CD method, even when 𝑓 is convex, is difficult to establish

[108]. To the best of our knowledge, the global rate of convergence is not established in the

general case, whereas in [95] it is shown that when 𝑓 is twice-differentiable and strongly

convex, the CD method with almost cyclic rule or Gauss-Southwell rule1 converges linearly

to a minimizer of 𝑓 , although no rate estimate is given. In [132], the authors consider a

special composite optimization problem, where 𝑓 is the composition of a convex function

with Lipschitz continuous gradients and the ℓ1-norm of the variable. They show that the

CD method with cyclic rule converges faster than the CGD method with cyclic rule when a

certain isotonicity condition holds, whereas the difference in the rate of convergence is not

quantified. Note that in the case of 2-block updates, the CD method is equivalent to the

1Gauss-Southwell rule corresponds to choosing the “best” coordinate to update.

33

alternating minimization method, for which sublinear convergence is proven for composite

optimization problems in [17].

The existing theory on the convergence of the CGD method is significantly richer com-

pared to the one of the CD method. Of course the rate of convergence of the CGD method

is significantly affected by the choice of coordinate selection and stepsize rules. This is

extensively studied in the literature and we present a non-exhaustive overview of the ex-

isting results in Table 3.1. Let {𝑥𝑘} denote the sequence generated by the CGD method

with some coordinate selection rule. Linear and sublinear rates of convergence in Table 3.1

represent an upper bound on either 𝑓(𝑥ℓ𝑛) − 𝑓(𝑥*) or ‖𝑥ℓ𝑛 − 𝑥*‖2, where ℓ represents the

epoch counter and for randomized coordinate selection rules, expectation of these values

are considered. Most of the existing work analyze the rate of convergence of the CGD

method under the assumption that ∇𝑓 is coordinate-wise Lipschitz continuous, i.e., for

every coordinate 𝑖 = 1, . . . , 𝑛, there exist a constant 0 < 𝐿𝑖 <∞ such that

|[∇𝑓(𝑥+ 𝑡𝑒𝑖)]𝑖 − [∇𝑓(𝑥)]𝑖| ≤ 𝐿𝑖|ℎ|, ∀𝑥 ∈ R𝑛, 𝑡 ∈ R, (3.1.1)

where {𝑒𝑖} denote the standard basis vectors. The maximum, minimum and average of

such constants are respectively denoted by

𝐿max = max
𝑖∈[𝑛]

𝐿𝑖, 𝐿min = min
𝑖∈[𝑛]

𝐿𝑖 and 𝐿avg =
1

𝑛

𝑛∑︁

𝑖=1

𝐿𝑖.

Let 𝐿 denote the global Lipschitz constant of ∇𝑓 , that is

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖* ≤ 𝐿‖𝑥− 𝑦‖, ∀𝑥, 𝑦 ∈ R𝑛.

By using the relationships between norm and trace of a symmetric matrix, we can observe

that

1 ≤ 𝐿

𝐿max

≤ 𝑛.

Indeed, the lower bound holds trivially and the upper bound is achieved when ∇𝑓(𝑥) = 𝐴𝑥,

34

Table 3.1: Rate of convergence of the CGD method when 𝑓 is convex continuously differen-
tiable and ∇𝑓 is coordinate-wise Lipschitz continuous, see (3.1.1). ℓ denotes the iteration
counter such that 𝑘 = ℓ𝑛. The CGD method is implemented with a constant stepsize rule
specific to each coordinate, i.e., there exists constants 𝜂(𝑖) > 0 for all 𝑖 ∈ [𝑛] such that
𝜂𝑘 = 𝜂(𝑗) when 𝑖𝑘 = 𝑗. When presenting the linear convergence rate of CGD methods with
randomized rules, it is assumed that 𝜇≪ 𝐿max and the approximation (1−𝑐/𝑛)𝑛ℓ ≈ (1−𝑐)ℓ
is used for simplicity. Dependence on constants are ignored for clarity.

Paper Coordinate Selection Rule Stepsize Sublinear Rate Linear Rate

[108] Randomized: 𝑝𝑖 = 𝐿𝑖

𝑛𝐿avg

1
𝐿𝑖

𝐿avg

ℓ

(︁
1− 𝜇

𝐿avg

)︁ℓ

[19] Cyclic 1
𝐿𝑖

𝐿3
max𝑛

3

𝐿2
minℓ

(︁
1− 𝐿2

min𝜇

𝐿3
max𝑛

3

)︁ℓ

[19] Cyclic 1
𝐿

𝐿𝑛
ℓ

(︀
1− 𝜇

𝐿𝑛

)︀ℓ

[137] Cyclic 1
𝐿max

min(𝐿2𝑛,𝐿2
avg𝑛

2)

𝐿maxℓ
×

where 𝐴 is the matrix of ones. Whenever 𝑓 is assumed to be strongly convex, we denote

the strong convexity constant by 𝜇 > 0.

In [108], sublinear and linear convergence rates of the CGD method with randomized

coordinate selection rule is presented, see the first row of Table 3.1. Following this work,

sublinear and linear convergence rates of the CGD method with cyclic update rule is pre-

sented in [19]. The sublinear rates presented in [19] are improved in [137], where the

authors also presented tighter converge rates for quadratic optimization problems. In or-

der to compare these rates of convergence, let us first recall the convergence rate of the

gradient descent method. The gradient descent method when applied to smooth convex

functions enjoy a sublinear convergence rate of 𝐿/ℓ and when the function is additionally

𝜇-strongly convex it enjoys a linear convergence rate of (1−𝜇/𝐿)ℓ, where ℓ is the iteration

counter. Note that in general an iteration of gradient descent requires as many flops as an

epoch of coordinate gradient descent, and hence these rates can be fairly compared with

the ones in Table 3.1. The rate results in Table 3.1 indicate that the randomized CGD

method converges faster (in expectation) than the gradient descent method. In particular,

35

these rates suggest that the randomized CGD method can be 𝒪(𝑛) times faster than the

gradient descent method since 𝐿/𝐿avg can be as large as 𝑛. On the other hand, the CGD

method with a cyclic update rule does not enjoy this feature, which can be observed by

inspecting Table 3.1: the cyclic CGD method converges much slower than the gradient

descent method. When 𝐿min = 𝐿max, it can be observed that the cyclic CGD method with

stepsize 1/𝐿𝑖 can be 𝒪(𝑛2) times slower than the gradient descent method, whereas this

gap reduces to 𝒪(𝑛) for more conservative stepsize rules.

While the convergence of the CGD method with cyclic and randomized coordinate

selection rules are relatively well-studied, there is limited understanding of the effects of

random permutations in CGD methods, with the exception of a few recent papers that

focus on special quadratic problems [138, 88, 89, 113]. Among these, Oswald and Zhou [113]

studies the effects of random permutations on the convergence rate of the successive over-

relaxation (SOR) method (that is used to solve linear systems) and presents a convergence

rate on the expected function value of the iterates generated by the SOR method. The

cyclic CGD method, when applied to quadratic minimization problems with stepsize 1/𝐿𝑖,

is equivalent to the SOR method (applied to the linear system that represents the first-order

optimality condition of the quadratic problem) when the relaxation parameter is chosen

as 𝜔 = 1. Therefore, the convergence rate results in [113] readily extend to the CGD

method with random permutations for quadratic problems. In [138], the authors construct

a quadratic problem, for which the distance of the iterates (to the optimal solution) for the

cyclic CGD method decays 𝒪(𝑛2) times slower than the distance of the expected iterates

for the CGD method with randomized and randomly permuted coordinate selections. Lee

and Wright [88] consider the same problem and present that the expected function values

of the iterates generated by the CGD method with randomized and randomly permuted

coordinate selections decay with similar rates, while the asymptotic convergence rate of with

random permutations is shown to be slightly better than for random with-replacement. In

a following paper [89], the results in [88] are generalized to a larger class of quadratic

problems through a more elaborate analysis.

36

3.2 CD and CGD Methods for Quadratic Problems

In order to clarify the rate of convergence comparison between cyclic and randomized

coordinate selection rules, we consider quadratic optimization problems:

min
𝑥∈R𝑛

1

2
𝑥⊤𝐴𝑥− 𝑏⊤𝑥, (3.2.1)

where 𝐴 is a positive semidefinite matrix. For this problem, the coordinate Lipschitz

constant 𝐿𝑖 is equal to the corresponding diagonal entry of the matrix 𝐴, that is 𝐿𝑖 = 𝐴𝑖𝑖.

Furthermore the strong convexity and the smoothness constants are respectively given by

𝜇 = 𝜆min(𝐴) and 𝜇 = 𝜆max(𝐴).

Starting from an initial point 𝑥0 ∈ R𝑛, the CD method, at each iteration 𝑘, picks a

coordinate of 𝑥, say 𝑖𝑘, and updates the decision vector by performing exact minimization

along the 𝑖𝑘-th coordinate:

𝑥𝑘+1 = 𝑥𝑘 − 𝐴⊤
𝑖𝑘
𝑥𝑘 − 𝑏𝑖𝑘
𝐴𝑖𝑘,𝑖𝑘

𝑒𝑖𝑘 .

The CGD method on the other hand performs the following update:

𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘[𝐴𝑥𝑘 − 𝑏]𝑖𝑘 𝑒𝑖𝑘 .

It is easy to see that the CD update rule is equivalent to the CGD update rule with stepsize

1/𝐴𝑖𝑘,𝑖𝑘 . Therefore, for quadratic optimization problems, we will refer to the CGD method

with stepsize 1/𝐴𝑖𝑘,𝑖𝑘 as the CD method in order to highlight the choice of stepsize.

To observe the the convergence rate difference between different variants of CD methods

for quadratic problems, let us consider the case 𝐿𝑖 = 𝐴𝑖𝑖 = 1 for all 𝑖 ∈ [𝑛] and 𝐿 = 𝒪(𝑛).

Then, the RCD method enjoys [108] a sublinear convergence rate of 1/ℓ and a linear

convergence rate of (1− 𝜇)ℓ. On the other hand, [19] shows that the CCD method enjoys

a sublinear convergence rate of 𝑛3/ℓ and a linear convergence rate of (1 − 𝜇/𝑛3)ℓ. It can

be observed from Table 3.1 that more conservative choice of stepsizes yield a sublinear

37

convergence rate of 𝑛2/ℓ and a linear convergence rate of (1 − 𝜇/𝑛2)ℓ for the cyclic CGD

method. It is shown in [138] that these rate results also hold for when stepsize is chosen

more greedily. In particular, the authors show that the CCD method enjoys a sublinear

convergence rate of 𝑛2/ℓ and a linear convergence rate of (1−𝜇/𝑛2)ℓ. Let us recall that the

gradient descent method enjoys a sublinear convergence rate of 𝑛/ℓ and a linear convergence

rate of (1 − 𝜇/𝑛)ℓ for this particular setting. This performance gap between the gradient

descent, CCD and RCD methods is investigated in [138], where the authors constructed a

quadratic problem for which the cyclic CGD method is 𝒪(𝑛) times slower than the gradient

descent method, which in turn is 𝒪(𝑛) times slower than the randomized CGD method.

Establishing tight convergence rate estimates for the RPCD method is significantly more

difficult compared to the CCD and RCD methods. There are only a few papers in the liter-

ature that characterize rate estimates for the RPCD method even for quadratic problems.

Among these, Oswald and Zhou [113] studies the convergence rate of the successive over-

relaxation (SOR) method (that is used to solve linear systems) with random permutations

and presents a convergence rate on the expected function value of the iterates generated by

the SOR method. The CD method, when applied to quadratic minimization problems, is

equivalent to the SOR method (applied to the linear system that represents the first-order

optimality condition of the quadratic problem) when the relaxation parameter is chosen

as 𝜔 = 1. Therefore, the rate estimates in [113] readily extend to the RPCD method for

quadratic problems, yielding a linear convergence rate estimate of (1−𝜇/𝐿2)ℓ. This implies

that the RPCD method can be as slow as the CCD method in the worst-case. However,

this conservative rate estimate is rarely observed in practice. In particular, in [138] and

[88], the authors consider the quadratic problem for which the CCD method is 𝒪(𝑛2) times

slower than the RCD method, and show that the RPCD method attains a slightly better

asymptotic rate of convergence compared to the RCD method. In [89], the results in [88]

are generalized to a larger class of quadratic problems through a more elaborate analysis.

38

3.3 Summary of Contributions

In the remainder of this part, we present several contributions on the convergence of the

CD method as detailed below.

In Chapter 4, we investigate the performance gap between the CCD and RCD methods

for quadratic problems. The existing rate estimates suggest the RCD method performs

better than the CCD method, whereas numerical experiments do not provide clear justifi-

cation for this comparison. We address this problem by establishing the efficiency of CCD

over RCD on three problem classes:

1. 𝐴 is an M-matrix, i.e., the off-diagonal entries of 𝐴 are nonpositive. These matrices

arise in a large number of applications. A notable example is problems that consider

minimization of quadratic forms of graph Laplacians (where𝐴 = 𝐷−𝑊 and𝑊 denoes

the weighted adjacency graph and 𝐷 is a diagonal matrix given by 𝐷𝑖,𝑖 =
∑︀

𝑗 𝑊𝑖,𝑗),

e.g., for spectral partitioning and semisupervised learning.

2. 𝐴 is a non-frustrated matrix, i.e., off-diagonal entries of −𝐴 does not contain any

cycles with an odd number of negative edge weights. This set of matrices naturally

extend M-matrices as any non-frustrated matrix is sign-similar to an M-matrix.

3. 𝐴 is a 2-cyclic matrix, i.e., the graph induced by 𝐴 is bipartite.

We build on the seminal works of Young [153] and Varga [147] on the analysis of Gauss-

Seidel method for solving linear systems of equations (with matrices satisfying certain

properties) and provide a novel analysis that allows us to compare the asymptotic worst-

case convergence rate of CCD and RCD for the aforementioned class of problems and

establish the faster performance of CCD with any deterministic order. Furthermore, we

provide lower and upper bounds on the amount of improvement on the rate of CCD relative

to RCD. We also provide a characterization of the best cyclic order (that leads to the

maximum improvement in convergence rate) in terms of the combinatorial properties of

the Hessian matrix of the objective function.

39

In Chapter 5, we study the convergence rate of RPCD for a special class of quadratic

optimization problems with a diagonally dominant, permutation invariant Hessian matrix of

𝐴 = (1+𝛼)𝐼−𝛼11⊤, and compare its performance to that of RCD and CCD. In particular,

we first provide an exact worst-case convergence rate comparison between RPCD, RCD,

and CCD in terms of the distance of the expected iterates to the optimal solution, as a

function of a parameter that represents the extent of diagonal dominance of the Hessian

matrix. Our results show that, on this problem, CCD is always faster than RPCD, which

in turn is always faster than RCD. Furthermore, we show that the relative convergence

rate of RPCD to RCD goes to infinity as the Hessian matrix becomes more diagonally

dominant. On the other extreme, as the Hessian matrix becomes less diagonally dominant,

the ratio of convergence rates converges to a value in [3/2, 𝑒 − 1), with the upper bound

𝑒− 1 achieved in the limit as 𝑛→∞. Our second set of results compares the convergence

rates of RPCD and RCD with respect to two other criteria that are widely used in the

literature: the expected distance of the iterates to the solution and the expected function

values of the iterates. For these criteria, we show that RPCD is faster than RCD in terms

of the tightest upper bounds we obtain, and the amount of improvement increases as the

matrices become more diagonally dominant.

In Chapter 6, we provide the first local and global convergence rate guarantees for the

CD method applied to a particular non-convex problem. This problem arises from a low-

rank factorization to semidefinite programs with diagonal constraints. As discussed above,

establishing precise rate estimates for the CD method is notoriously difficult. However, we

exploit the special manifold structure of the corresponding problem and characterize con-

vergence rate estimates for the CD method. First, we establish the global sublinear conver-

gence of the CD method without any assumptions on the problem. We then show that the

CD method enjoys a linear convergence rate around a neighborhood of any local minimum

when the objective function satisfies a quadratic growth condition. We then prove that this

quadratic growth condition generically holds, i.e., the set of problems for which this condi-

tion does not hold has measure zero. Next, we propose an algorithm by incorporating the

40

CD and Lanczos methods. We show that this algorithm returns an approximately globally

optimal solution to the corresponding non-convex problem. We conclude the chapter by

validating our theoretical results via numerical examples and presenting the efficiency of

the CD method compared to the state-of-the-art manifold optimization methods.

41

42

Chapter 4

When Does CCD outperform RCD?

In this chapter, we investigate problem classes for which the CCD method is faster than

the RCD method in terms of asymptotic worst-case convergence. Our main focus will be

on quadratic problems:

min
𝑥∈R𝑛

1

2
𝑥⊤𝐴𝑥, (4.0.1)

where 𝐴 is a positive definite matrix. Although we do not include a linear term in (4.0.1),

it is only for ease of presentation and all our results directly extend to quadratic problems

of the type 1
2
𝑥⊤𝐴𝑥− 𝑏⊤𝑥 for any 𝑏 ̸= 0.

In order to compactly represent the CCD and RCD iterations in a matrix form, we

introduce the following decomposition on the Hessian matrix:

𝐴 = 𝐷 −𝑁 −𝑁⊤,

where 𝐷 is the diagonal part of 𝐴 and −𝑁 is the strictly lower triangular part of 𝐴. The

update rule (over an epoch) of the CCD method with cyclic order 1, . . . , 𝑛 (i.e., 𝑖𝑘 = 𝑘

(mod 𝑛) + 1), is then given by:

𝑥
(ℓ+1)𝑛
CCD = 𝐶 𝑥ℓ𝑛CCD, where 𝐶 = (𝐷 −𝑁)−1𝑁⊤. (4.0.2)

43

Note that the update rule in (4.0.2) is equivalent to one iteration of the Gauss-Seidel (GS)

method applied to the first-order optimality condition of (4.0.1), i.e., applied to the linear

system 𝐴𝑥 = 0 [150].

We next consider the RCD method, where 𝑖𝑘 is chosen at random among {1, . . . , 𝑛}
with probabilities {𝑝1, . . . , 𝑝𝑛} independently at each iteration 𝑘. Given the 𝑘-th iterate

generated by the RCD algorithm 𝑥𝑘RCD, we have

E𝑘

[︀
𝑥𝑘+1

RCD | 𝑥𝑘RCD

]︀
=
(︀
𝐼 − 𝑃𝐷−1𝐴

)︀
𝑥𝑘RCD,

where 𝑃 = diag(𝑝1, . . . , 𝑝𝑛) and the conditional expectation E𝑘 is taken over the random

variable 𝑖𝑘 given 𝑥𝑘RCD. Using the nested property of the expectations, the RCD iterations

in expectation over an epoch satisfy

E𝑥(ℓ+1)𝑛
RCD = 𝑅 E𝑥ℓ𝑛RCD, where 𝑅 =

(︀
𝐼 − 𝑃𝐷−1𝐴

)︀𝑛
. (4.0.3)

In Section 4.1, we present the notion of asymptotic convergence rate to compare the

CCD and RCD methods and provide a motivating example on which CCD converges faster

than RCD. In Section 4.2, we present classes of problems for which the asymptotic conver-

gence rate of CCD is faster than the one of RCD. We conclude in Section 4.3 by providing

numerical experiments that validates our theoretical results on the performance of the CCD

and RCD methods.

4.1 An Asymptotic Rate Comparison Metric

In the following section, we define our basis of comparison for rates of CCD and RCD

methods. To measure the performance of these methods, we use the notion of the average

worst-case asymptotic rate that has been studied extensively in the literature for charac-

terizing the rate of iterative algorithms [147]. In Section 4.1.2, we construct an example,

for which the rate of CCD is more than twice the rate of RCD. This raises the question

44

whether the best known convergence rates of CCD in the literature are tight or whether

there exist a class of problems for which CCD provably attains better convergence rates

than the best known rates for RCD, a question which we will answer positively in Section

4.2.

4.1.1 Asymptotic Converge Rate for Iterative Algorithms

Consider an iterative method with update rule 𝑥(ℓ+1)𝑛 = 𝐶𝑥ℓ𝑛 (e.g., the CCD method).

The reduction in the distance to the optimal solution of the iterates generated by this

algorithm after ℓ epochs is given by

‖𝑥ℓ𝑛 − 𝑥*‖
‖𝑥0 − 𝑥*‖ =

‖𝐶ℓ(𝑥0 − 𝑥*)‖
‖𝑥0 − 𝑥*‖ . (4.1.1)

Note that the right hand side of (4.1.1) can be as large as ‖𝐶ℓ‖, hence in the worst-case,

the average decay of distance at each epoch of this algorithm is ‖𝐶ℓ‖1/ℓ. Over any finite

epochs ℓ ≥ 1, we have ‖𝐶ℓ‖1/ℓ ≥ 𝜌(𝐶) and ‖𝐶ℓ‖1/ℓ → 𝜌(𝐶) as ℓ→∞. Thus, we define the

asymptotic worst-case convergence rate of an iterative algorithm (with iteration matrix 𝐶)

as follows

Rate(CCD) := lim
ℓ→∞

sup
𝑥0∈R𝑛

−1

ℓ
log

(︂‖𝑥ℓ𝑛 − 𝑥*‖
‖𝑥0 − 𝑥*‖

)︂
= − log(𝜌(𝐶)). (4.1.2)

We emphasize that this notion has been used extensively for studying the performance of

iterative methods such as GS and Jacobi methods [23, 110, 147, 153]. Note that according

to our definition in (4.1.2), larger rate means faster algorithm and we will use these terms

interchangably in throughout the chapter.

Analogously, for a randomized method with expected update rule E𝑥(ℓ+1)𝑛 = 𝑅E𝑥ℓ𝑛

(e.g., the RCD method), we consider the asymptotic convergence of the expected iterate

error ‖E(𝑥ℓ𝑛)− 𝑥*‖ and define the asymptotic worst-case convergence rate as

Rate(RCD) := lim
ℓ→∞

sup
𝑥0∈R𝑛

−1

ℓ
log

(︂‖E(𝑥ℓ𝑛)− 𝑥*‖
‖𝑥0 − 𝑥*‖

)︂
= − log(𝜌(𝑅)), (4.1.3)

45

Note that in (4.1.3), we use the distance of the expected iterates ‖E𝑥ℓ𝑛 − 𝑥*‖ as our con-

vergence criterion. One can also use the expected distance (or the squared distance) of

the iterates E‖𝑥ℓ𝑛 − 𝑥*‖ as the convergence criterion, which is a stronger convergence cri-

terion than the one in (4.1.3). This follows since E‖𝑥ℓ𝑛 − 𝑥*‖ ≥ ‖E𝑥ℓ𝑛 − 𝑥*‖ by Jensen’s

inequality and any convergence rate on E‖𝑥ℓ𝑛 − 𝑥*‖ immediately implies at least the same

convergence rate on ‖E𝑥ℓ𝑛 − 𝑥*‖ as well. Since we consider the reciprocal case, i.e., obtain

a convergence rate on ‖E𝑥ℓ𝑛 − 𝑥*‖ and show that it is slower than that of CCD, our results

naturally imply that the convergence rate on E‖𝑥ℓ𝑛 − 𝑥*‖ is also slower than that of CCD.

4.1.2 A Motivating Example

In this section, we provide an example for which the (asymptotic worst-case convergence)

rate of CCD is better than the one of RCD and building on this example, in Section 4.2,

we construct a class of problems for which CCD attains a better rate than RCD. For some

positive integer 𝑛 ≥ 1, consider the 2𝑛× 2𝑛 symmetric matrix

𝐴 = 𝐼 −𝑁 −𝑁⊤, where 𝑁 =
1

𝑛2

⎡
⎣0𝑛×𝑛 0𝑛×𝑛

1𝑛×𝑛 0𝑛×𝑛

⎤
⎦, (4.1.4)

and 1𝑛×𝑛 is the 𝑛× 𝑛 matrix with all entries equal to 1 and 0𝑛×𝑛 is the 𝑛× 𝑛 zero matrix.

Noting that 𝐴 has a special structure (𝐴 is equal to the sum of the identity matrix and the

rank-two matrix −𝑁−𝑁⊤), it is easy to check that 1−1/𝑛 and 1+1/𝑛 are eigenvalues of 𝐴

with the corresponding eigenvectors
[︁
11×𝑛 11×𝑛

]︁⊤
and

[︁
11×𝑛 −11×𝑛

]︁⊤
. The remaining

2𝑛− 2 eigenvalues of 𝐴 are equal to 1.

The iteration matrix of the CCD algorithm when applied to the problem in (4.0.1) with

the matrix (4.1.4) can be found as

𝐶 =

⎡
⎣0𝑛×𝑛

1
𝑛21𝑛×𝑛

0𝑛×𝑛
1
𝑛31𝑛×𝑛

⎤
⎦.

46

The eigenvalues of 𝐶 are all zero except the eigenvalue of 1/𝑛2 with the corresponding

eigenvector [𝑛11×𝑛,11×𝑛]⊤. Therefore, 𝜌(𝐶) = 1/𝑛2 and Rate(CCD) = − log(𝜌(𝐶)) =

2 log 𝑛. On the other hand, the spectral radius of the expected iteration matrix of RCD

can be found as

𝜌(𝑅) =

(︂
1− 𝜆min(𝐴)

𝑛

)︂𝑛

≥ 1− 𝜆min(𝐴) =
1

𝑛
,

which yields Rate(RCD) = − log(𝜌(𝑅)) ≤ log 𝑛. Thus, we conclude

Rate(CCD)

Rate(RCD)
≥ 2, ∀𝑛 ≥ 1.

That is, CCD is at least twice as fast as RCD in terms of the the asymptotic rate. This

motivates us to investigate if there exists a more general class of problems for which the

asymptotic worst-case rate of CCD is larger than that of RCD. The answer to this question

turns out to be positive as we describe in the following section.

4.2 Deterministic Orders Provably Outperform Random-

ized Sampling

In this section, we present special classes of problems (of the form (4.0.1)) for which the

asymptotic worst-case rate of CCD is larger than that of RCD. We begin our discussion by

highlighting the main assumption we will use in this section.

Assumption 1. Hessian matrix 𝐴 has the following properties:

(i) 𝐴 is a symmetric positive definite matrix with smallest eigenvalue 𝜇 > 0.

(ii) The diagonal entries of 𝐴 are 1.

Given any positive definite matrix 𝐴 with diagonals 𝐷 ̸= 𝐼, the diagonal entries of

the preconditioned matrix 𝐷−1/2𝐴𝐷−1/2 are 1. Therefore, part (ii) of Assumption 1 is

mild. The relationship between the smallest eigenvalue of the original matrix and the

47

preconditioned matrix are as follows. Let 𝜎 > 0 and 𝐿max denote the smallest eigenvalue

and the largest diagonal entry of the original matrix, respectively. Then, the smallest

eigenvalue of the preconditioned matrix satisfies 𝜇 ≥ 𝜎/𝐿max.

Remark 4.1. For the RCD algorithm, the coordinate index 𝑖𝑘 ∈ {1, . . . , 𝑛} (at iteration 𝑘)

can be chosen using different probability distributions {𝑝1, . . . , 𝑝𝑛}. The most widely used

distributions (due to their simplicity) have the form 𝑝𝑖 =
𝐴𝛼

𝑖,𝑖∑︀𝑁
𝐽=1 𝐴

𝛼
𝑗,𝑗

for a choice of 𝛼 ≥ 0 as

discussed in [108]. Since by Assumption 1, the diagonal entries of 𝐴 are 1, we have 𝑝𝑖 = 1
𝑛

for all 𝑖 ∈ {1, . . . , 𝑛} and 𝛼 ≥ 0. Therefore, in the rest of the chapter, we consider the

RCD algorithm with uniform and independent coordinate selection at each iteration.

In the following lemma, we characterize the spectral radius of the RCD method.

Lemma 4.2. Suppose Assumption 1 holds. Then, the spectral radius of the expected itera-

tion matrix 𝑅 of the RCD algorithm (defined in (4.0.3)) is given by

𝜌(𝑅) =
(︁

1− 𝜇

𝑛

)︁𝑛
. (4.2.1)

Proof By Assumption 1, 𝜇 > 0 and tr𝐴 = 𝑛, which implies all eigenvalues of the matrix

𝐴/𝑛 are in the interval (0, 1). Therefore, we have

𝜌(𝑅) = 𝜆max

(︂(︂
𝐼 − 1

𝑛
𝐴

)︂𝑛)︂
=

(︂
1− 1

𝑛
𝜆min(𝐴)

)︂𝑛

=
(︁

1− 𝜇

𝑛

)︁𝑛
.

In the following sections, we present classes of problems for which CCD attains better

convergence rates than RCD.

4.2.1 Convergence Rate of CCD for 2-Cyclic Matrices

In this section, we introduce the class of 2-cyclic matrices and show that the asymptotic

worst-case convergence rate of CCD is more than two times faster than that of RCD.

48

Definition & Properties

Definition 4.3 (2-Cyclic Matrix). A matrix 𝐻 is 2-cyclic if there exists a permutation

matrix 𝑃 such that

𝑃𝐻𝑃⊤ = 𝐷 +

⎡
⎣ 0 𝐵1

𝐵2 0

⎤
⎦, (4.2.2)

where the diagonal null submatrices are square and 𝐷 is a diagonal matrix.

This definition can be interpreted as follows. Let 𝐻 be a 2-cyclic matrix, i.e., 𝐻 satisfies

(4.2.2). Then, the graph induced by the matrix 𝐻 − 𝐷 is bipartite. The definition in

(4.2.2) is first introduced in [153], where it had an alternative name, called Property A. A

generalization of this property is later introduced by Varga to the class of 𝑝-cyclic matrices

[147] where 𝑝 ≥ 2 can be arbitrary.

We next introduce the following definition that will be useful in Theorem 4.13 and

explicitly identify the class of matrices that satisfy this definition.

Definition 4.4 (Consistently Ordered Matrix). For a matrix 𝐻, let 𝐻 = 𝐻𝐷 −𝐻𝐿 −𝐻𝑈

be its decomposition such that 𝐻𝐷 is a diagonal matrix, 𝐻𝐿 (and 𝐻𝑈) is a strictly lower

(and upper) triangular matrix. If the eigenvalues of the matrix 𝛼𝐻𝐿 + 𝛼𝐻𝑈 − 𝛾𝐻𝐷 are

independent of 𝛼 for any 𝛾 ∈ R and 𝛼 ̸= 0, then 𝐻 is said to be consistently ordered.

In the next lemma, we highlight the connection between Definitions 4.3 and 4.4.

Lemma 4.5 ([153, Theorem 4.5]). A matrix 𝐻 is 2-cyclic if and only if there exists a

permutation matrix 𝑃 such that 𝑃𝐻𝑃⊤ is consistently ordered.

This lemma shows that in order for the lower bounds in Theorem 4.13 to hold with

equality, it is necessary and sufficient that the lower triangular part of 𝐴 can be written as

𝑁 =

⎡
⎣ 0 0

𝐵 0

⎤
⎦, for a real matrix 𝐵 where the diagonal null submatrices are square matrices

of appropriate dimension. However, in Theorem 4.13, we assume that 𝐴 is an 𝑀 -matrix,

49

i.e., 𝑁 ≥ 0. In the following theorem, we prove that a similar spectral radius equality to

Theorem 4.13 holds for consistently ordered 2-cyclic matrices under less restrictive assump-

tions (by removing the assumption that the off-diagonal entries are non-positive).

Convergence Rates

In the next theorem, we characterize the convergence rate of CCD algorithm applied to a

2-cyclic matrix. Since 𝜌(𝑅) ≥ 1 − 𝜇 by Lemma 4.2, the following theorem indicates that

the spectral radius of the CCD iteration matrix is smaller than 𝜌2(𝑅).

Theorem 4.6. Suppose Assumption 1 holds and 𝐴 is a consistently ordered 2-cyclic matrix.

Then, the spectral radius of the CCD method is given by

𝜌(𝐶) = (1− 𝜇)2.

Proof The eigenvalues of 𝐶 are the roots of the polynomial

𝜑𝐶(𝜆) = det(𝜆𝐼 − 𝐶) = 0.

As 𝐼 −𝑁 is non-singular and det(𝐼 −𝑁) = 1, we have

𝜑𝐶(𝜆) = det(𝐼 −𝑁) det(𝜆𝐼 − 𝐶)

= det(𝜆𝐼 − 𝜆𝑁 −𝑁⊤)

=
√
𝜆 det

(︂√
𝜆𝐼 −

(︂√
𝜆𝑁 +

1√
𝜆
𝑁⊤
)︂)︂

.

Therefore, if
√
𝜆 is an eigenvalue of the matrix

√
𝜆𝑁 + 1√

𝜆
𝑁⊤, then 𝜆 is an eigenvalue of

𝐶. Furthermore, since the eigenvalues of the matrix
√
𝜆𝑁 + 1√

𝜆
𝑁⊤ are independent of 𝜆

as 𝐴 is a consistently ordered matrix by definition, then
√
𝜆 is an eigenvalue of 𝑁 +𝑁⊤ as

well. Consequently, we have 𝜌(𝐶) = 𝜌2(𝑁 +𝑁⊤) = 𝜌2(𝐼 − 𝐴) = (1− 𝜇)2.

50

Remark 4.7. Note that our motivating example given by (4.1.4) in Section 4.1.2 is an

example of a consistently ordered 2-cyclic matrix where Theorem 4.6 is directly applicable.

In fact, for (4.1.4), we can apply Theorem 4.6 with 𝜇 = 1 − 1/𝑛 leading to 𝜌(𝐶) = 1/𝑛2,

which coincides exactly with our previous computations of 𝜌(𝐶) in Section 4.1.2. We also

give an example in Section 4.5.2 where CCD is twice faster from any arbitrary initialization

with probability one.

The following corollary states that the asymptotic worst-case convergence rate of CCD is

more than twice larger than that of RCD for quadratic problems whose Hessian is a 2-cyclic

matrix. This corollary directly follows by Theorem 4.6 and definitions (4.1.2)-(4.1.3).

Corollary 4.8. Suppose Assumption 1 holds and 𝐴 is a consistently ordered 2-cyclic ma-

trix. Then, for the constant 𝜈𝑛 > 1 as defined in (4.2.10), the asymptotic worst-case rate

of CCD and RCD satisfies

Rate(CCD)

Rate(RCD)
= 2𝜈𝑛, where 𝜈𝑛 :=

log(1− 𝜇)

𝑛 log
(︀
1− 𝜇

𝑛

)︀ . (4.2.3)

In the following remark, we highlight several properties of the constant 𝜈𝑛.

Remark 4.9. 𝜈𝑛 is a monotonically increasing function of 𝑛 over the interval [1,∞), where

𝜈1 = 1 and lim𝑛→∞ 𝜈𝑛 = − log(1−𝜇)
𝜇

> 1. Furthermore, lim𝜇→0+ 𝜈𝑛 = 1.

4.2.2 Convergence Rate of CCD for Irreducible M-Matrices

In this section, we first define the class of 𝑀 -matrices and then present the convergence

rate of the CCD algorithm applied to quadratic problems whose Hessian is an M-matrix.

Definition & Properties

Definition 4.10 (𝑀 -matrix). A real matrix 𝐴 with 𝐴𝑖,𝑗 ≤ 0 for all 𝑖 ̸= 𝑗 is an 𝑀-matrix

if 𝐴 has the decomposition 𝐴 = 𝑠𝐼 −𝐵 such that 𝐵 ≥ 0 and 𝑠 ≥ 𝜌(𝐵).

51

We emphasize that 𝑀 -matrices arise in a variety of applications such as belief prop-

agation over Gaussian graphical models [99] and distributed control of positive systems

[121], and has been used to analyze performance of various algorithms in the literature

[23, 132, 144]. Furthermore, graph Laplacians are 𝑀 -matrices, therefore solving linear sys-

tems with 𝑀 -matrices (or equivalently solving (4.0.1) for an 𝑀 -matrix 𝐴) arise in a variety

of applications for analyzing random walks over graphs and distributed optimization and

consensus problems over graphs (cf. [79] for a survey). For quadratic problems, the Hessian

is an M-matrix if and only if the gradient descent mapping is an isotone operator [23, 132]

and in Gaussian graphical models, M-matrices are often referred as attractive models [99].

In the following lemma, we highlight a property of non-singular M-matrices, which we

will use in the following section to characterize the convergence rate of the CCD method

applied to quadratic problems whose Hessian is an M-matrix.

Lemma 4.11 ([117, Theorem 2]). 𝐴 is a nonsingular M-matrix if and only if 𝐴−1 exists

and 𝐴−1 ≥ 0.

Before concluding this section, we introduce the following lemma, which is presented in

variuos papers (e.g., [147, Lemma 4.12], [109, Corollary 1.2], [78, Theorem 1]) to analyze

the spectral radii of nonnegative matrices. Particularly, this lemma states that if the matrix

𝑒𝛼𝑁+𝑒−𝛼𝑁⊤ is not consistently ordered (where 𝑁 ≥ 0 is a strictly lower triangular matrix),

then its spectral radius is strictly log-convex in 𝛼. The proof of this lemma is presented in

Section 4.5.1 for completeness.

Lemma 4.12. Let 𝐵𝛼 = 𝑒𝛼𝑁 + 𝑒−𝛼𝑁⊤, where 𝑁 ≥ 0 is a strictly lower triangular matrix

and 𝛼 ∈ R. Then, either 𝜌(𝐵𝛼) is strictly log-convex in 𝛼 with 𝜌(𝐵𝛼) > 𝜌(𝐵0) for all 𝛼 ̸= 0

or 𝜌(𝐵𝛼) is constant for all 𝛼 ∈ R (i.e., 𝐵𝛼 is a consistently ordered matrix).

Convergence Rates

In the following theorem, we provide lower and upper bounds on the spectral radius of

the iteration matrix of CCD for quadratic problems whose Hessian matrix is an irreducible

52

𝑀 -matrix. In particular, we show that the spectral radius of the iteration matrix of CCD

is strictly smaller than the one of RCD for irreducible 𝑀 -matrices. Note that the Hessian

matrix in our motivating example (in Section 4.1.2) is an irreducible 𝑀 -matrix.

Theorem 4.13. Suppose Assumption 1 holds, 𝐴 is an irreducible M-matrix and 𝑛 ≥ 2.

Then, the iteration matrix of the CCD algorithm 𝐶 = (𝐼 −𝑁)−1𝑁⊤ satisfies the following

inequality

(1− 𝜇)2 ≤ 𝜌(𝐶) ≤ 1− 𝜇
1 + 𝜇

, (4.2.4)

where the inequality on the left holds with equality if and only if 𝐴 is a consistently ordered

matrix.

Proof Since 𝐴 is an 𝑀 -matrix, 𝐼−𝑁 is an 𝑀 -matrix as well. Consequently, (𝐼−𝑁)−1 ≥
0, which implies 𝐶 = (𝐼 − 𝑁)−1𝑁⊤ ≥ 0 by Lemma 4.11. Then, by Perron-Frobenius

Theorem, there exists a real eigenvalue of 𝐶, denoted by 𝜆, and the corresponding unit-

norm eigenvector 𝑧 ≥ 0 satisfying 𝜆 = 𝜌(𝐶) ≥ 0 and

𝐶𝑧 = 𝜆𝑧.

Multiplying both sides of the above equality by 𝐼 −𝑁 from the left, we obtain

𝑁⊤𝑧 = 𝜆(𝐼 −𝑁)𝑧,

and rearranging terms yields

(𝜆𝑁 +𝑁⊤)𝑧 = 𝜆𝑧. (4.2.5)

Therefore, 𝜆 is an eigenvalue of the matrix 𝜆𝑁 +𝑁⊤. We then observe that 𝜆𝑁 +𝑁⊤ is an

irreducible matrix as 𝐴 is irreducible as the indices of the nonzero entries of both matrices

are the same. Since 𝜆𝑁 + 𝑁⊤ is nonnegative and irreducible and 𝑧 is nonnegative, then

by Perron-Frobenius Theorem, 𝑧 is the eigenvector corresponding to the spectral radius of

53

𝜆𝑁 +𝑁⊤. Therefore,

𝜆 = 𝜌(𝜆𝑁 +𝑁⊤) =
√
𝜆 𝜌

(︂√
𝜆𝑁 +

1√
𝜆
𝑁⊤
)︂
. (4.2.6)

In order to obtain a lower bound on the right-hand side of (4.2.6), we use Lemma 4.12

(note that 𝜆 < 1 by Definition 4.10) and conclude that

𝜆 ≥
√
𝜆 𝜌
(︀
𝑁 +𝑁⊤)︀, (4.2.7)

with equality if and only if 𝐴 is a consistently ordered matrix. Since 𝜆 = 𝜌(𝐶), (4.2.7)

yields

𝜌(𝐶) ≥ 𝜌2
(︀
𝑁 +𝑁⊤)︀ = 𝜌2(𝐼 − 𝐴) = (1− 𝜇)2,

with equality if and only if 𝐴 is a consistently ordered matrix, which concludes the proof

of the lower bound in (4.2.4). In order to obtain an upper bound on 𝜌(𝐶), we turn our

attention back to (4.2.5) and multiply both sides by 𝑧⊤ from the left. This yields

𝜆𝑧⊤𝑁𝑧 + 𝑧⊤𝑁⊤𝑧 = 𝜆,

since ‖𝑧‖ = 1. Noting that 𝑧⊤𝑁𝑧 = 𝑧⊤𝑁⊤𝑧 and defining 𝛽 = 𝑧⊤𝑁𝑧, we obtain

𝜆 =
𝛽

1− 𝛽 . (4.2.8)

Since 𝜌(𝑁 +𝑁⊤) = 𝜌(𝐼−𝐴) = 1−𝜇, then for any ‖𝑦‖ = 1, we have 𝑦⊤(𝑁 +𝑁⊤)𝑦 ≤ 1−𝜇.

Picking 𝑦 = 𝑧 in this inequality yields 2𝛽 ≤ 1 − 𝜇 and combining this with (4.2.8) and

noting 𝜆 = 𝜌(𝐶) imply the upper bound in (4.2.4).

An immediate consequence of Theorem 4.13 is that for quadratic problems whose Hes-

sian is an irreducible M-matrix, the best cyclic order that should be used in CCD can be

characterized as follows.

54

Remark 4.14. Throughout the text, we considered the CCD method that follows the stan-

dard cyclic order (1, 2, . . . , 𝑛). However, we can construct a CCD method that follows an

alternative deterministic order by considering a permutation 𝜋 of {1, 2, . . . , 𝑛}, and choos-

ing the coordinates according to the order (𝜋(1), 𝜋(2), . . . , 𝜋(𝑛)) instead. For any given

order 𝜋, (4.0.1) can be reformulated as follows

min
𝑥𝜋∈R𝑛

1

2
𝑥⊤𝜋𝐴𝜋𝑥𝜋, where 𝐴𝜋 := 𝑃𝜋𝐴𝑃

⊤
𝜋 and 𝑥𝜋 = 𝑃𝜋 𝑥,

where 𝑃𝜋 is the corresponding permutation matrix of 𝜋. Supposing that Assumption 1 holds,

the corresponding CCD iterations for this problem can be written as follows

𝑥(ℓ+1)𝑛
𝜋 = 𝐶𝜋 𝑥

ℓ𝑛
𝜋 , where 𝐶𝜋 = (𝐼 −𝑁𝜋)−1𝑁⊤

𝜋 and 𝑁𝜋 = 𝑃𝜋𝐿𝑃𝜋.

If 𝐴 is an irreducible M-matrix and satisfies Assumptions 1, then so does 𝐴𝜋. Consequently,

Theorem 4.13 yields the same upper and lower bounds (in (4.2.4)) on 𝜌(𝐶𝜋) as well, i.e.,

the spectral radius of the iteration matrix of CCD with any cyclic order 𝜋 satisfies

(1− 𝜇)2 ≤ 𝜌(𝐶𝜋) ≤ 1− 𝜇
1 + 𝜇

, (4.2.9)

where the inequality on the left holds with equality if and only if 𝐴𝜋 is a consistently ordered

matrix. Therefore, if a consistent order 𝜋* exists, then the CCD method with the consistent

order 𝜋* attains the smallest spectral radius (or equivalently, the fastest asymptotic worst-

case convergence rate) among the CCD methods with any cyclic order.

Remark 4.15. The irreducibility of 𝐴 is essential to derive the lower bound in (4.2.4)

of Theorem 4.13. However, the upper bound in (4.2.4) holds even when 𝐴 is a reducible

matrix.

We next compare the spectral radii bounds for CCD (given in Theorem 4.13) and RCD

(given in Lemma 4.2). Since 𝜇 > 0, the right-hand side of (4.2.4) can be relaxed to

(1− 𝜇)2 ≤ 𝜌(𝐶) < 1− 𝜇. A direct consequence of this inequality is the following corollary,

55

which states that the asymptotic worst-case rate of CCD is strictly better than that of

RCD at least by a factor that is strictly greater than 1.

Corollary 4.16. Suppose Assumption 1 holds, A is an irreducible M-matrix and 𝑛 ≥ 2.

Then, the asymptotic worst-case rate of CCD and RCD satisfies

1 < 𝜈𝑛 <
Rate(CCD)

Rate(RCD)
≤ 2𝜈𝑛, where 𝜈𝑛 :=

log(1− 𝜇)

𝑛 log
(︀
1− 𝜇

𝑛

)︀ , (4.2.10)

and the inequality on the right holds with equality if and only if 𝐴 is a consistently ordered

matrix.

In the following corollary, we highlight that as the smallest eigenvalue of 𝐴 goes to

zero, the asymptotic worst-case rate of the CCD algorithm becomes twice the asymptotic

worst-case rate of the RCD algorithm.

Corollary 4.17. Suppose Assumption 1 holds, A is an irreducible M-matrix and 𝑛 ≥ 2.

Then, we have

lim
𝜇→0+

Rate(CCD)

Rate(RCD)
= 2.

Proof By Theorem 4.13, we have the following worst-case asymptotic rate bounds for

the CCD algorithm

− log(1− 𝜇) + log(1 + 𝜇) ≤ Rate(CCD) ≤ −2 log(1− 𝜇).

Dividing both sides of the above inequality by − log(1− 𝜇), we obtain

1− log(1 + 𝜇)

log(1− 𝜇)
≤ Rate(CCD)

− log(1− 𝜇)
≤ 2.

Taking limit of both sides as 𝜇→ 0+ yields

lim
𝜇→0+

Rate(CCD)

− log(1− 𝜇)
= 2. (4.2.11)

56

By Lemma 4.2, we have the following asymptotic worst-case rate for the RCD algorithm

Rate(RCD) = −𝑛 log
(︁

1− 𝜇

𝑛

)︁
.

Dividing both sides of the above inequality by − log(1− 𝜇) and taking limit of both sides

as 𝜇→ 0+, we get

lim
𝜇→0+

Rate(RCD)

− log(1− 𝜇)
= 1. (4.2.12)

Combining (4.2.11) and (4.2.12) concludes the proof.

4.2.3 Convergence Rate of CCD for Non-frustrated Matrices

In this section, we define the class of non-frustrated matrices and present the convergence

rate of the CCD algorithm applied to quadratic problems whose Hessian is a non-frustrated

matrix.

Definition & Properties

Definition 4.18. A real matrix 𝐴 is called a non-frustrated matrix if 𝐴 has the decompo-

sition 𝐴 = 𝐼 − 𝐵 such that 𝐵 does not contain any frustrated cycles, i.e., cycles with an

odd number of negative edge weights.

The class of non-frustrated matrices are highly related to the class of M-matrices as we

highlight in the following lemma. It states that any non-frustrated matrix is sign-similar

to an M-matrix.

Lemma 4.19 ([59]). Let 𝑆(𝐵) be the signed digraph of 𝐵, i.e., 𝑆(𝐵) = sign(𝐵). If 𝐵

is irreducible and all cycles of 𝑆(𝐵) are positive, then 𝐵 is sign-similar to a non-negative

matrix, i.e., 𝐵 = 𝐷𝐸𝐷−1, where 𝐸 ≥ 0 and 𝐷 is a diagonal matrix with entries ±1.

57

Convergence Rates

Using Lemma 4.19 and Theorem 4.13, we show that the same convergence rate guarantees

in Theorem 4.13 (for M-matrices) hold for the non-frustrated matrices as well.

Theorem 4.20. Suppose Assumption 1 holds, 𝐴 is an irreducible non-frustrated matrix

and 𝑛 ≥ 2. Then, the iteration matrix of the CCD algorithm 𝐶 = (𝐼 − 𝑁)−1𝑁⊤ satisfies

the following inequality

(1− 𝜇)2 ≤ 𝜌(𝐶) ≤ 1− 𝜇
1 + 𝜇

,

where the inequality on the left holds with equality if and only if 𝐴 is a consistently ordered

matrix.

Proof Since 𝐴 is assumed to be an irreducible non-frustrated matrix, then by Definition

4.18 and Lemma 4.19, 𝐴 is sign-similar to 𝐴 (i.e., 𝐴 = 𝐷𝐴𝐷−1 for some diagonal matrix

𝐷 whose entries are ±1.), where 𝐴 is the comparison matrix of 𝐴 defined as

𝐴𝑖,𝑗 =

⎧
⎪⎨
⎪⎩
𝐴𝑖,𝑗 , if 𝑖 = 𝑗

−|𝐴𝑖,𝑗| , else.
(4.2.13)

Let 𝐴 = 𝐼 − �̄� − �̄�⊤ be the decomposition of 𝐴 such that �̄� is a strictly lower triangular

matrix. Then, by Theorem 4.13, we conclude that

(1− 𝜇)2 ≤ 𝜌(𝐶) ≤ 1− 𝜇
1 + 𝜇

,

where the inequality on the left holds with equality if and only if 𝐴 is a consistently ordered

58

matrix. To conclude the proof, we claim that 𝐶 is sign-similar to 𝐶, which follows since

𝐶 = (𝐼 −𝑁)−1𝑁⊤

= (𝐷(𝐼 − �̄�)𝐷)−1(𝐷�̄�𝐷)⊤

= 𝐷(𝐼 − �̄�)−1𝐷2�̄�⊤𝐷

= 𝐷(𝐼 − �̄�)−1�̄�⊤𝐷

= 𝐷𝐶𝐷,

where the equalities follow since 𝐷 is a Householder matrix, i.e., 𝐷 = 𝐷−1 and 𝐷2 = 𝐼.

Hence, 𝐶 is sign-similar to 𝐶 and consequently 𝜌(𝐶) = 𝜌(𝐶), which concludes the proof.

4.3 Numerical Validation

In this section, we compare the performance of CCD and RCD through numerical examples.

First, we consider the quadratic optimization problem in (4.0.1), where 𝐴 is an 𝑛×𝑛 matrix

defined as follows

𝐴 = 𝐼 −𝑁 −𝑁⊤, where 𝑁 =
1

𝑛

⎡
⎣ 0 0

1𝑛
2
×𝑛

2
0

⎤
⎦, (4.3.1)

and 1𝑛
2
×𝑛

2
is the 𝑛

2
× 𝑛

2
matrix with all entries equal to 1. Here, it can be easily checked

that 𝐴 is a consistently ordered 2-cyclic matrix. By Theorem 4.6 and Corolloary 4.8, the

worst-case convergence rate of CCD on this example is

2𝜈𝑚 = 2
log(1− 𝜇)

𝑚 log
(︀
1− 𝜇

𝑚

)︀ =
log(0.5)

50 log
(︀
1− 1

200

)︀ ≈ 2.77

times faster than the convergence rate of RCD asymptotically. This is illustrated on the left

panel of Figure 4-1, where the distance to the optimal solution is plotted in a logarithmic

59

1 2 3 4 5 6 7 8 9 10
−14

−12

−10

−8

−6

−4

−2

0

Number of Epochs ℓ

lo
g
(||x

ℓ
−

x
∗ ||

)

Consistent Ordering, Worst-Case Initialization

CCD

RCD

Expected RCD

1 2 3 4 5 6 7 8 9 10
−14

−12

−10

−8

−6

−4

−2

0

Number of Epochs ℓ

lo
g
(||x

ℓ
−

x
∗ ||

)

Inconsistent Ordering, Worst-Case Initialization

CCD

RCD

Expected RCD

Figure 4-1: Distance to the optimal solution of the iterates of CCD and RCD for the cyclic
matrix in (4.3.1) (left figure) and a randomly permuted version of the same matrix (right
figure) where the y-axis is on a logarithmic scale. The left (right) panel corresponds to the
consistent (inconsistent) ordering for the same quadratic optimization problem.

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Number of Epochs ℓ

lo
g
(||x

ℓ
−

x
∗
||

||x
0
−

x
∗
||

)

M-Matrix, Worst-Case Initialization

CCD

RCD

Expected RCD

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Number of Epochs ℓ

lo
g
(||x

ℓ
−

x
∗
||

||x
0
−

x
∗
||

)
M-Matrix, Random Initialization

CCD

RCD

Expected RCD

Figure 4-2: Distance to the optimal solution of the iterates of CCD and RCD for the
𝑀 -matrix matrix in (4.3.2) for the worst-case initialization (left figure) and a random
initialization (right figure).

scale over epochs. Note that even if our results our asymptotic, we see the same difference

in performances on the early epochs (for small ℓ). On the other hand, when the matrix

𝐴 is not consistently ordered, according to Theorem 4.13, CCD is still faster but the

difference in the convergence rates decreases with respect to the consistent ordering case.

To illustrate this, we need to generate an inconsistent ordering of the matrix 𝐴. For this

goal, we generate a random permutation matrix 𝑃 and replace 𝐴 with 𝐴𝑃 := 𝑃𝐴𝑃⊤ in the

optimization problem (4.0.1). The right panel in Figure 4-1 shows that for this inconsistent

ordering CCD is still faster compared to RCD, but not as fast (the slope of the decay of

60

error line in blue marker is less steep) predicted by our theory.

We next consider the case that 𝐴 is an irreducible positive definite 𝑀 -matrix. In

particular, we consider the matrix

𝐴 = (1 + 𝛿)𝐼 − 𝛿1𝑛×𝑛, (4.3.2)

where 1𝑛×𝑛 is the 𝑛 × 𝑛 matrix with all entries equal to 1 as before and 𝛿 = 1
𝑛+5

. We set

𝑛 = 100 and plot the performance of CCD and RCD methods for the quadratic problem

defined by this matrix. In Figure 4-2, we compare the convergence rate of CCD and RCD

for an initial point that corresponds to a worst-case (left figure) and for a random choice of

an initial point (right figure). We conclude that the asymptotic rate of CCD is faster than

that of RCD demonstrating our results in Theorem 4.13 and Corolloary 4.16.

4.4 Discussion

In this chapter, we compared the CCD and RCD methods on a class of quadratic problems.

We showed by a novel analysis that for this problem class, the CCD method is always

faster than the RCD method in terms of the worst-case asymptotic rate. We also gave a

characterization of the best cyclic order to follow in the CCD method. We showed that using

the best cyclic order the CCD method can converge more than twice as fast as the RCD

method. Finally, we verified the tightness of our results through numerical experiments.

4.5 Additional Proofs

4.5.1 Proof of Lemma 4.12

Suppose the largest eigenvalue of 𝐵𝛼 has a multiplicity of 1. Then,

𝜌(𝐵𝛼) = lim
𝑡→∞

[tr (𝐵𝛼)𝑡]1/𝑡. (4.5.1)

61

In order to find the diagonal entries of (𝐵𝛼)𝑡, we consider the graph generated by the matrix

𝐵𝛼 and define the weight of a walk as the product of the weights of the corresponding edges

in the walk. We then observe that the 𝑖th diagonal of the matrix (𝐵𝛼)𝑡 can be written as

the summation of weights of all closed walks of length 𝑡 (from the 𝑖th node to itself).

In particular, consider a valid closed walk 𝑤 that contains edges (𝑖𝑠, 𝑖𝑠+1)
𝑡−1
𝑠=0 such that

𝑖0 = 𝑖𝑡 = 𝑖 and [𝐵𝛼]𝑖𝑠,𝑖𝑠+1 > 0 for all 𝑠. Then, we can define a symmetric walk 𝑤′ with edges

(𝑖𝑠+1, 𝑖𝑠)
𝑡−1
𝑠=0 and the 𝑖th diagonal entry of (𝐵𝛼)𝑡 contains the weights of both 𝑤 and 𝑤′ as

summands. Furthermore, the weight of the walk 𝑤 can be written as 𝜑𝛼(𝑤) = 𝑒𝑐𝑤𝛼𝜑0(𝑤),

for some integer 𝑐𝑤, where

𝜑0(𝑤) =
𝑡−1∏︁

𝑠=0

[𝐵0]𝑖𝑠,𝑖𝑠+1 .

The weight of the symmetric walk 𝑤′ is then found by 𝜑𝛼(𝑤′) = 𝑒−𝑐𝑤𝛼𝜑0(𝑤) since 𝐵0 is

symmetric. Therefore, the 𝑖th diagonal entry of (𝐵𝛼)𝑡 can be found as follows

[(𝐵𝛼)𝑡]𝑖,𝑖 =
∑︁

all valid walks 𝑤

𝑒𝑐𝑤𝛼 + 𝑒−𝑐𝑤𝛼

2
𝜑0(𝑤).

It is easy to observe that cosh(𝑐𝑤𝛼) = 𝑒𝑐𝑤𝛼+𝑒−𝑐𝑤𝛼

2
is a strictly log-convex function of 𝛼 for

any 𝑐𝑤 ̸= 0. Thus, if there exists a walk 𝑤 for which 𝑐𝑤 ̸= 0, then tr (𝐵𝛼)𝑡 is a strictly

log-convex function of 𝛼 since 𝜑0(𝑤) > 0 for all valid walks. On the other hand, tr (𝐵𝛼)𝑡

is constant in 𝛼 if and only if 𝑐𝑤 = 0 for all valid walks, which implies that the graph is

bipartite since starting from an arbitrary node 𝑖 it is not possible to return back to node 𝑖

in odd number of steps. This together with (4.5.1) imply the statement of the lemma.

For the case the largest eigenvalue of 𝐵𝛼 has a multiplicity of at least 2, we consider

the matrix �̃�𝛼(𝜖) = 𝐵𝛼 + 𝜖𝐼, whose largest eigenvalue has a multiplicity of 1 for any 𝜖 > 0.

Using the same arguments as above, we can conclude that the statement of the lemma

holds for any �̃�𝛼(𝜖) with 𝜖 > 0 and taking the limit as 𝜖 → 0+ concludes the proof of the

lemma.

62

4.5.2 An Example Achieving Lower and Upper Bounds

Consider solving the linear system 𝐴𝑥 = 0 where A is defined as follows

𝐴 =

⎡
⎣ 1 −𝛿
−𝛿 1

⎤
⎦

for some 𝛿 ∈ (0, 1). The CCD algorithm applied to this problem has the following iteration

matrix

𝐶 =

⎡
⎣0 𝛿

0 𝛿2

⎤
⎦,

whereas the expected RCD iteration matrix is

𝑅 =

(︂
𝐼 − 𝐴

2

)︂2

=

⎡
⎣1/2 𝛿/2

𝛿/2 1/2

⎤
⎦

2

=
1

4

⎡
⎣1 + 𝛿2 2𝛿

2𝛿 1 + 𝛿2

⎤
⎦.

The eigendecomposition of this matrix can be found as follows

𝑅 =

⎡
⎣

1√
2
− 1√

2

1√
2

1√
2

⎤
⎦
⎡
⎣

1+𝛿
2

0

0 1−𝛿
2

⎤
⎦
⎡
⎣

1√
2
− 1√

2

1√
2

1√
2

⎤
⎦

−1

.

Therefore, after ℓ epochs the distance of the iterates generated by RCD starting from the

initial point 𝑥0 = [𝑎, 𝑏]⊤ becomes

E‖𝑥ℓ − 𝑥*‖ = E‖𝑥ℓ‖ ≥ ‖E𝑥ℓ‖ = ‖𝑅ℓ𝑥0‖ = ‖

⎡
⎣
(︀
1+𝛿
2

)︀ℓ
𝑎

(︀
1−𝛿
2

)︀ℓ
𝑏

⎤
⎦‖

=

√︃(︂
1 + 𝛿

2

)︂2ℓ

𝑎2 +

(︂
1− 𝛿

2

)︂2ℓ

𝑏2.

≥
(︂

1 + 𝛿

2

)︂ℓ

|𝑎|

≥ 𝛿ℓ|𝑎|.

63

Therefore, in order to achieve a solution in the 𝜖-neighborhood of the optimal solution

𝑥* = 0, i.e., to attain ‖𝑥ℓ − 𝑥*‖ = 𝜖, the RCD method requires

𝑁𝑅(𝜖) ≥ log 𝜖

log 𝛿
− log |𝑎|

log 𝛿

epochs, for any 𝑎 ̸= 0.

On the other hand, for the CCD algorithm, we have

𝐶ℓ =

⎡
⎣0 𝛿2ℓ−1

0 𝛿2ℓ

⎤
⎦,

and consequently the suboptimality of the iterates generated by the CCD algorithm is

‖𝐶ℓ𝑥0‖ = 𝛿2ℓ
√︂
𝑏2 +

1

𝛿2
𝑏2.

Therefore, in order to achieve a solution in the 𝜖-neighborhood of the optimal solution

𝑥* = 0, i.e., to attain ‖𝑥ℓ − 𝑥*‖ = 𝜖, the CCD method requires

𝑁𝐶(𝜖) =
log 𝜖

2 log 𝛿
− log

(︀
𝑏2 + 1

𝛿2
𝑏2
)︀

4 log 𝛿

epochs.

Note that for small 𝜖 the first terms in the expression of 𝑁𝐽(𝜖) and 𝑁𝐶(𝜖) are dominant.

In particular we have,

lim
𝜖→0+

𝑁𝑅(𝜖)

𝑁𝐶(𝜖)
=≥ 2 log 𝛿

log 𝛿
= 2, (4.5.2)

for any 𝑎 ̸= 0.

64

Chapter 5

Randomness and Permutations in the

CD Method

In this chapter, we investigate the convergence rate of the RPCD method for a special class

of quadratic problems we studied in Chapter 4. Interest in the RPCD method is motivated

by both empirical observations and practical implementation: In many machine learning

applications, RPCD is observed numerically to outperform its with-replacement sampling

counterpart RCD [105, 124]. Moreover, without-replacement sampling-based algorithms

(such as RPCD and random reshuffling [71, 146]) are often easier to implement efficiently

than their with-replacement counterparts (such as RCD and stochastic gradient descent)

[88, 124] as it requires sequential data access, in contrast to the random data access required

by with-replacement sampling (see e.g. [29, 134]).

The organization of this chapter is as follows. In Section 5.1, we discuss the CCD,

RCD and RPCD algorithms in more detail and describe the three criteria that are used

for analyzing convergence throughout the chapter. In Section 5.3, we survey known results

on the convergence rate of RPCD. We analyze the convergence rates of CCD, RCD, and

RPCD with respect to the first convergence criterion in Section 5.4.1 and the behavior of

RCD and RPCD with respect to the second and third convergence criteria in Section 5.4.2.

We validate our theoretical results via numerical experiments in Section 5.5 and conclude

65

the chapter in Section 5.6.

5.1 Preliminaries

In this chapter, we consider the quadratic problem in (4.0.1). Similar to the previous

chapter, the update rule of the CCD method (with update order 1, . . . , 𝑛) over an epoch is

given by

𝑥
(ℓ+1)𝑛
CCD = 𝐵CCD 𝑥

ℓ𝑛
CCD, where 𝐵CCD = (𝐷 −𝑁)−1𝑁𝑇 , (5.1.1)

and 𝐴 = 𝐷 − 𝑁 − 𝑁𝑇 with 𝐷 representing the diagonal part of 𝐴 and −𝑁 representing

the strictly lower triangular part of 𝐴.

We next consider the CCD method with a given order 𝜋. We let 𝑃𝜋 denote the permu-

tation matrix corresponding to order 𝜋 and split the permuted Hessian matrix as follows:

𝐴𝜋 = 𝑃 𝑇
𝜋 𝐴𝑃𝜋 = 𝐷𝜋 −𝑁𝜋 −𝑁𝑇

𝜋 , (5.1.2)

where −𝑁𝜋 is a strictly lower triangular matrix and 𝐷𝜋 is a diagonal matrix. Then, similar

to (5.1.1), we have

𝑥
(ℓ+1)𝑛
CCD-𝜋 = 𝐵CCD-𝜋 𝑥ℓ𝑛CCD-𝜋, where 𝐵CCD-𝜋 = (𝐷𝜋 −𝑁𝜋)−1𝑁𝑇

𝜋 . (5.1.3)

Note that 𝐵CCD and 𝐵CCD-𝜋 are not symmetric matrices as the first column of both matrices

are zero, whereas the first row contains nonzero entries.

For the RCD method, the indices 𝑖𝑘 are chosen independently at random at each iter-

ation 𝑘. Denoting by 𝑥𝑘RCD the 𝑘-th iterate generated by RCD, the update rule for RCD

over a single iteration can be written as

𝑥𝑘+1
RCD = 𝐵RCD-𝑘 𝑥𝑘RCD, where 𝐵RCD-𝑘 = 𝐼 − 1

𝐴𝑖𝑘𝑖𝑘

𝑒𝑖𝑘𝑒
𝑇
𝑖𝑘
𝐴. (5.1.4)

66

The expectation of 𝐵RCD-𝑘 with respect to the random variable 𝑖𝑘 is denoted as follows:

𝐵RCD = E𝑘𝐵RCD-𝑘, (5.1.5)

where we note that 𝐵RCD is a symmetric matrix, by symmetry of 𝐴 and uniform distribution

of 𝑖𝑘.

For the RPCD algorithm, each coordinate is processed exactly once in each epoch

according to a uniformly and independently chosen order. Recalling that 𝜋ℓ denotes the

permutation of coordinates used in epoch ℓ and using the iteration matrix corresponding

to CCD-𝜋ℓ (see (5.1.3)), epoch ℓ of RPCD can be written as

𝑥
(ℓ+1)𝑛
RPCD = 𝐵RPCD-ℓ 𝑥ℓ𝑛RPCD, where 𝐵RPCD-ℓ = 𝑃𝜋ℓ

𝐵CCD-𝜋ℓ
𝑃 𝑇
𝜋ℓ
. (5.1.6)

We introduce the following notation for the expected value of 𝐵RPCD-ℓ with respect to

permutation 𝜋ℓ:

𝐵RPCD = Eℓ𝐵RPCD-ℓ, (5.1.7)

where we note that 𝐵RPCD is a symmetric matrix since 𝜋ℓ is chosen uniformly at random

over all permutations (see Lemma 5.5).

5.2 Convergence Rate Criteria

We next discuss how to measure and compare the convergence rates of different variants of

CD. Three different improvement sequences have been used to measure the performance of

CD methods in the literature:

(𝑖) ℐ1(𝑥𝑘CD) = ‖E𝑥𝑘CD − 𝑥*‖, (Distance of expected iterates)

(𝑖𝑖) ℐ2(𝑥𝑘CD) = E‖𝑥𝑘CD − 𝑥*‖2, (Expected distance of iterates)

(𝑖𝑖𝑖) ℐ3(𝑥𝑘CD) = E𝑓(𝑥𝑘CD)− 𝑓(𝑥*). (Expected function value)

67

(see e.g. [19, 72, 108, 126, 137, 138, 150]). While these three measures can be related to

each other (Jensen’s inequality yields ℐ21 ≤ ℐ2 and strong convexity enables lower and upper

bounding ℐ3 between constant positive multiples of ℐ2), we will provide different analyses

for each of the measures to obtain the tightest estimates.

In the above definitions, expectations can be removed for deterministic algorithms such

as CCD. By Jensen’s inequality, we have that ℐ21 (𝑥𝑘CD) ≤ ℐ2(𝑥𝑘CD) for all 𝑘. For a strongly

convex function 𝑓 , ℐ3 can be lower and upper bounded between constant positive multiples

of ℐ2.

To study convergence rate of the CCD, RCD and RPCD methods with respect to im-

provement sequence ℐ1, we use the operators derived in the previous section that represent

one iterate or one epoch. The iteration matrices of CCD and RPCD are defined over an

epoch (see (5.1.1) for CCD, (5.1.6) and (5.1.7) for RPCD). Therefore, using the generic

subscript “CD” to represent the cases 𝐵CD = 𝐵CCD for CCD and 𝐵CD = 𝐵RPCD for RPCD,

we have the following update rule

Eℓ𝑥
(ℓ+1)𝑛
CD = 𝐵CD 𝑥

ℓ𝑛
CD,

where Eℓ denotes the expectation with respect to the random variables in epoch ℓ given 𝑥ℓ𝑛CD.

Note that the random variables in each epoch are independent and identically distributed

across different epochs for RPCD (and RCD). Therefore, by using the law of iterated

expectations, we obtain

E𝑥(ℓ+1)𝑛
CD = 𝐵ℓ

CD 𝑥
0,

where E here denotes the expectation with respect to all random variables arising in the

algorithm. Hence, the worst-case convergence rate with respect to ℐ1 can be expressed as

sup
𝑥0∈R𝑛

(︂‖E𝑥ℓ𝑛CD‖
‖𝑥0‖

)︂1/ℓ

= sup
𝑥0∈R𝑛

(︂‖𝐵ℓ
CD 𝑥

0‖
‖𝑥0‖

)︂1/ℓ

= ‖𝐵ℓ
CD‖1/ℓ. (5.2.1)

When 𝐵CD is a symmetric matrix (as in RPCD), we have ‖𝐵ℓ
CD‖1/ℓ = 𝜌(𝐵CD). Hence,

68

(5.2.1) yields a per-epoch worst-case convergence rate of 𝜌(𝐵RPCD) for RPCD. When 𝐵CD is

asymmetric (which is the case for CCD), we have by Gelfand’s formula limℓ→∞ ‖𝐵ℓ
CD‖1/ℓ =

𝜌(𝐵CD). Thus, 𝜌(𝐵CCD) represents an asymptotic worst-case convergence rate measure for

CCD.

For RCD, a similar derivation involving a single iteration (rather than one epoch) yields

from (5.1.4) and (5.1.5) that

E𝑘𝑥
𝑘+1
RCD = 𝐵RCD 𝑥

𝑘
CCD.

Similar reasoning to the above yields a per-iteration worst-case convergence rate of 𝜌(𝐵RCD),

or equivalently a per-epoch rate of 𝜌(𝐵RCD)𝑛, for RCD. (Note that, because 𝐵RCD is sym-

metric, we have 𝜌(𝐵RCD) = ‖𝐵RCD‖.)

In our analysis of convergence rate of RCD with respect to improvement sequence ℐ2,
it follows from (5.1.4) that

E‖𝑥𝑘+1
RCD‖2 = (𝑥𝑘RCD)𝑇E

[︀
(𝐵RCD-𝑘)𝑇𝐵RCD-𝑘

]︀
𝑥𝑘RCD

≤ ‖E
[︀
(𝐵RCD-𝑘)𝑇𝐵RCD-𝑘

]︀
‖‖𝑥𝑘RCD‖2.

For RPCD, we have similarly from (5.1.6) that

E‖𝑥(ℓ+1)𝑛
RPCD ‖2 = (𝑥ℓ𝑛RPCD)𝑇E

[︀
(𝐵RPCD-ℓ)𝑇𝐵RPCD-ℓ

]︀
𝑥ℓ𝑛RPCD

≤ ‖E
[︀
(𝐵RPCD-ℓ)𝑇𝐵RPCD-ℓ

]︀
‖‖𝑥ℓ𝑛RPCD‖2.

The matrices E
[︀
(𝐵RCD-𝑘)𝑇𝐵RCD-𝑘

]︀
and E

[︀
(𝐵RPCD-ℓ)𝑇𝐵RPCD-ℓ

]︀
are both symmetric. Con-

vergence rates be obtained from 𝜌
(︀
E
[︀
(𝐵RCD-𝑘)𝑇𝐵RCD-𝑘

]︀)︀
and 𝜌

(︀
E
[︀
(𝐵RPCD-ℓ)𝑇𝐵RPCD-ℓ

]︀)︀

(or equivalently from the norms of these matrices), the first being a per-iteration conver-

gence rate for RCD under criterion ℐ2, and the second being a per-epoch rate for RPCD

under the same criterion. Results along these lines appear in Section 5.4.2.

Finally, in our analysis of convergence rate of RCD with respect to ℐ3, iteration (5.1.4)

69

yields

E𝑓(𝑥𝑘+1
RCD) = (𝑥𝑘RCD)𝑇E𝑘

[︀
(𝐵RCD-𝑘)𝑇𝐴𝐵RCD-𝑘

]︀
𝑥𝑘RCD

= (𝐴1/2𝑥𝑘RCD)𝑇E𝑘

[︀
𝐴−1/2(𝐵RCD-𝑘)𝑇𝐴𝐵RCD-𝑘𝐴−1/2

]︀
𝐴1/2𝑥𝑘RCD

≤ ‖E𝑘

[︀
𝐴−1/2(𝐵RCD-𝑘)𝑇𝐴𝐵RCD-𝑘𝐴−1/2

]︀
‖‖𝐴1/2𝑥𝑘RCD‖2.

A similar analysis applied to the RPCD update formula (5.1.6) yields

E𝑓(𝑥
(ℓ+1)𝑛
RPCD) ≤ ‖Eℓ

[︀
𝐴−1/2(𝐵RPCD-ℓ)𝑇𝐴𝐵RPCD-ℓ𝐴−1/2

]︀
‖‖𝐴1/2𝑥ℓ𝑛RPCD‖2.

We will show that the matrices in these two bounds are symmetric. Thus, our convergence

rate characterizations for RCD and RPCD with respect to ℐ3 (see Section 5.4.2) will involve

the norms (equivalently, the spectral radii) of these two matrices.

Remark 5.1. Note that for improvement sequence ℐ1, the asymptotic worst-case conver-

gence rate of the algorithm can be simply computed as the spectral radius of the expected

iteration matrix. Furthermore, this bound is tight in the sense that there can be no smaller

contraction rate 𝑐1, for which an inequality of the type ℐ1(𝑥ℓ𝑛CD) ≤ 𝑐ℓ1 ℐ1(𝑥0) asymptoti-

cally holds for all 𝑥0 ∈ ℛ𝑛. Therefore, in Section 5.4.1, we compare the worst-case con-

vergence rates of CCD, RCD and RPCD with respect to ℐ1 through a tight analysis (in

Proposition 5.8). We analyze the ratio of the convergence rates of RCD and RPCD in

Proposition 5.7. On the other hand, for improvement sequences ℐ2 and ℐ3, we consider

per-iteration and per-epoch upper bounds that are not necessarily asymptotically tight. Us-

ing a similar argument to (5.2.1), we can formulate the worst-case contraction factors for ℐ2
and ℐ3, but they would involve computation of powers of matrices (e.g., E

[︀
(𝐵ℓ

CD-𝑘)𝑇𝐵ℓ
CD-𝑘

]︀

and E
[︀
𝐴−1/2(𝐵ℓ

CD-𝑘)𝑇𝐴𝐵ℓ
CD-𝑘𝐴−1/2

]︀
), which does not admit a closed form characterization.

Hence, in Section 5.4.2, we compare the convergence rates of RCD and RPCD based on

per-iteration and per-epoch improvement rates, as has been done previously in the literature

[88, 89, 138].

70

5.3 Prior work on the RPCD method

In this section, we survey the known results on the performance of RPCD. There are several

recent works that study the effects of random permutations in the convergence behavior

of CD methods [88, 89, 113, 138]. To unify the randomization parameters (in RCD and

RPCD) and the component-wise Lipschitz constants in different papers, throughout this

chapter we consider that Assumption 1 holds. Consequently, there exists a unique solution

to (4.0.1), which is denoted by 𝑥* throughout the chapter.

Oswald and Zhou [113] analyzed the effects of random permutations for the successive

over-relaxation (SOR) method, which is equivalent to the CD method with exact line search

for a particular choice of algorithm parameter. They consider quadratic problems whose

Hessian matrix is positive semidefinite and present convergence guarantees for SOR itera-

tions with random permutations, which implies the following guarantee on the performance

of the RPCD method.

Theorem 5.2 ([113, Theorem 4]). Let 𝑓 be a quadratic function of the form (4.0.1) and

suppose Assumption 1 holds. Then the RPCD algorithm enjoys the following guarantee

E𝑓(𝑥ℓ𝑛RPCD)− 𝑓(𝑥*) ≤
(︂

1− 𝜇

(1 + 𝐿)2

)︂ℓ(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
(5.3.1)

Theorem 5.2 provides a convergence rate guarantee on the performance of RPCD for

general quadratic functions. Under the same assumptions in Theorem 5.2, the best known

upper bound on the performance of RCD is given by [108, Theorem 5]:

E
[︂

1

2
‖𝑥𝑘RCD − 𝑥*‖2 + 𝑓(𝑥𝑘RCD)− 𝑓(𝑥*)

]︂

≤
(︂

1− 2𝜇

𝑛(1 + 𝜇)

)︂𝑘(︂
1

2
‖𝑥0 − 𝑥*‖2 + 𝑓(𝑥0)− 𝑓(𝑥*)

)︂
. (5.3.2)

This shows that the the upper bound on the performance of RCD per-epoch is approx-

imately
(︁

1− 2𝜇
𝑛(1+𝜇)

)︁𝑛
≈ 1 − 2𝜇

1+𝜇
, whereas it follows from (5.3.1) that the upper bound

71

on the performance of RPCD can be as large as 1 − 𝜇
(1+𝑛)2

since 𝐿 ≤ tr𝐴 = 𝑛. These

bounds suggest that RPCD may require 𝒪(𝑛2) times more iterations than RCD to return

an 𝜖-optimal solution. However, empirical results show that RPCD often outperforms RCD

in machine learning applications [124, 28]. Furthermore, it has been conjectured that the

expected performance of RPCD should be no worse than the expected performance of RCD

[124] (see also [74, 154] for related work on this conjecture). This motivates to derive tight

bounds for the convergence rate of RPCD and compare them with the known bounds on

the convergence rate of RCD.

A similar phenomenon has been observed for CCD in comparison to RCD. In particular,

the tightest known convergence rate results on the performance of CCD (see [19, 138, 137])

suggest that CCD may require ̃︀𝒪(𝑛2) times more iterations than RCD to guarantee an

𝜖-optimal solution. To understand this gap in the convergence rate bounds, Sun and Ye

[138] focused on the quadratic problem in (4.0.1) with the following permutation invariant1

Hessian matrix

𝐴 = 𝛿𝐼 + (1− 𝛿)11𝑇 , where 𝛿 ∈ (0, 𝑛/(𝑛− 1)). (5.3.3)

In particular, the authors considered a worst-case initialization and the case when 𝛿 is close

to 0, for which 𝐿 = 𝒪(𝑛).2 For this problem, they showed that CCD with the worst-case

initialization indeed requires 𝒪(𝑛2) times more iterations than RCD to return an 𝜖-optimal

solution. They also provided rate comparisons between RPCD and CCD without providing

a comparison between RPCD and RCD, which is presented in the following theorem.

Theorem 5.3 ([138, Proposition 3.4]). Let 𝐾CCD(𝜖), 𝐾RCD(𝜖) and 𝐾RPCD(𝜖) be the min-

imum number of epochs for CCD, RCD and RPCD (respectively) to achieve (expected)

relative error
‖E(𝑥𝑘CD)− 𝑥*‖
‖𝑥0 − 𝑥*‖ ≤ 𝜖,

for initial point 𝑥0 ∈ R𝑛 (for CCD, the expectation operator can be ignored). There exists a

1𝐴 is a permutation invariant matrix if 𝑃𝐴𝑃𝑇 = 𝐴, for any permutation matrix 𝑃 .
2Since 𝐴 has two eigenvalues: 𝛿+𝑛(1−𝛿) with multiplicity 1 and 𝛿 with multiplicity 𝑛−1, the Lipschitz

constant becomes 𝐿 = 𝛿 + 𝑛(1− 𝛿), for 𝛿 ≤ 1; and as 𝛿 → 0, 𝐿→ 𝑛.

72

quadratic problem, whose Hessian matrix 𝐴 satisfies (5.3.3) for some 𝛿 around zero, such

that

𝐾CCD(𝜖)

𝐾RCD(𝜖)
≥ 𝑛2

2𝜋2
≈ 𝑛2

20
, (5.3.4a)

𝐾CCD(𝜖)

𝐾RPCD(𝜖)
≥ 𝑛(𝑛+ 1)

2𝜋2
≈ 𝑛(𝑛+ 2)

20
. (5.3.4b)

Theorem 5.3 shows that the worst-case performance (in improvement sequence ℐ1) of

RPCD and RCD is 𝒪(𝑛2) times faster than that of CCD. In a follow-up work, Lee and

Wright [88] considered the same problem as [138] (see (5.3.3)) for the small 𝛿 case and

presented asymptotic and non-asymptotic analyses of RPCD with respect to improvement

sequence ℐ3, presented in the following theorem.

Theorem 5.4 ([88, Theorem 3.3]). Consider the quadratic problem (4.0.1) with the Hessian

matrix 𝐴 given by (5.3.3), where 𝛿 ∈ (0, 0.4) and 𝑛 ≥ 10. For any 𝑥0 ∈ R𝑛, RPCD has the

following non-asymptotic convergence guarantee

E𝑓(𝑥ℓ𝑛RPCD)− 𝑓(𝑥*) ≤ (1− 2𝛿 + 4𝛿2)ℓ𝑅0,

where 𝑅0 is a constant depending on 𝑥0 and 𝛿. Furthermore, RPCD iterates enjoy an

asymptotic convergence rate of

lim
ℓ→∞

(︀
E𝑓(𝑥ℓ𝑛RPCD)− 𝑓(𝑥*)

)︀1/ℓ
= 1− 2𝛿 − 2𝛿

𝑛
+ 2𝛿2 +𝒪

(︂
𝛿2

𝑛

)︂
+𝒪

(︀
𝛿3
)︀
.

Theorem 5.4 shows that for the particular class of quadratic problems whose Hessian

matrix satisfies (5.3.3), the convergence rate (in improvement sequence ℐ3) of RPCD is

faster than that of RCD in (5.3.2) in terms of the best known upper bounds (note that the

convergence rate of RCD is approximately 1 − 2𝛿/(1 + 𝛿) for this case, see (5.3.2)). This

is the first theoretical evidence that supports the empirical results showing RPCD often

outperforms RCD [124]. In a follow-up work [89], Lee and Wright generalize the results of

73

Theorem 5.4 to quadratic problems, whose Hessian matrix satisfies

𝐴 = 𝛿𝐼 + (1− 𝛿)𝑢𝑢𝑇 , where 𝛿 ∈ (0, 𝑛/(𝑛− 1)), (5.3.5)

where 𝑢 ∈ R𝑛 is a vector with elements of size𝒪(1) (this generalizes (5.3.3) that corresponds

to 𝑢 = 1). The conclusions are similar to [88], but the analysis is different because 𝐴 is no

longer a permutation-invariant matrix.

5.4 Performance of RPCD vs RCD on a class of diago-

nally dominant matrices

As described in the previous section, the existing works [88, 138] analyze the performance

of the RPCD method for quadratic problems, whose Hessian satisfies (5.3.3) for small 𝛿.

Here, we consider the other extreme, i.e., the 𝛿 > 1 case, and provide tight convergence

rate comparisons between RPCD, RCD and CCD with respect to all there improvement

sequences defined in Section 5.2. In deriving convergence rate guarantees, we do not resort

to the tools that are used in the earlier works on RPCD [88, 89, 138]. Instead, we present

a novel analysis based on Perron-Frobenius theory that enables us to compute convergence

rate bounds for all three criteria. For notational simplicity, we introduce the reformulation

𝛼 = 𝛿 − 1, which yields

𝐴 = (1 + 𝛼)𝐼 − 𝛼11𝑇 , where 𝛼 ∈ (0, 1/(𝑛− 1)). (5.4.1)

It is simple to check that 𝐴 has one eigenvalue at 1 − (𝑛 − 1)𝛼 with the corresponding

eigenvector 1 and other 𝑛− 1 eigenvalues equal to 1 + 𝛼. In particular, as 𝛼 goes to zero,

the condition number of 𝐴 gets smaller and in the limit 𝐴 is the identity matrix. On the

74

other hand, as 𝛼→ 1
𝑛−1

, the matrix gets ill-conditioned. Therefore, the parameter

𝑡 := max
𝑖

∑︀
𝑗 ̸=𝑖𝐴𝑖𝑗

𝐴𝑖𝑖

= 𝛼(𝑛− 1) ∈ (0, 1) (5.4.2)

is a measure of diagonal dominance. In the remainder of this section, we analyze the

performance of RPCD, RCD and CCD in improvement sequence ℐ1 and the performance

of RPCD and RCD in improvement sequences ℐ2 and ℐ3 with respect to this diagonal

dominance measure.

5.4.1 Convergence rates of RPCD, RCD and CCD in improvement

sequence ℐ1

In this section, we compare convergence rates of RPCD, RCD and CCD, where improvement

sequence ℐ1(𝑥𝑘) = ‖E𝑥𝑘 − 𝑥*‖ is chosen as the convergence criterion (as in Theorem 5.3).

As we highlighted in Section 5.2, we first compute the expected iteration matrices of the

RPCD and RCD algorithms, and show that they are symmetric. Then, we compute their

spectral radii to conclude the per-epoch worst-case convergence rate of RPCD and RCD,

and analyze their ratio in Proposition 5.7. We also show that the asymptotic worst-case

convergence rate of CCD is faster than that of RPCD and RCD in Proposition 5.8.

We begin our discussion by writing the expected RPCD iterates (see (5.1.6) and (5.1.7))

as follows

Eℓ𝑥
(ℓ+1)𝑛
RPCD = 𝐵RPCD 𝑥

ℓ𝑛
RPCD. (5.4.3)

Note that since the Hessian matrix 𝐴 is permutation invariant, the iteration matrix of the

CCD-𝜋 algorithm for any cyclic order 𝜋 is equal to the iteration matrix of the standart

CCD algorithm, i.e., 𝐵CCD = 𝐵CCD-𝜋 for all orders 𝜋. Therefore, we have 𝐵RPCD =

E𝜋[𝑃𝜋𝐵CCD𝑃
𝑇
𝜋] = E𝑃 [𝑃𝐵CCD𝑃

𝑇], where we drop the subscript 𝜋 from the matrices for

notational simplicity. In order to obtain a formula for 𝐵RPCD, we first reformulate the

75

CCD iteration matrix in (5.1.1) as follows

𝐵CCD = (𝐼 −𝑁)−1𝑁𝑇 = 𝐼 − (𝐼 −𝑁)−1(𝐼 −𝑁 −𝑁𝑇) = 𝐼 − Γ−1𝐴,

where Γ = 𝐼 − 𝑁 . Using this reformulation, the expected iteration matrix of RPCD can

computed as follows

𝐵RPCD = E𝑃

[︀
𝑃𝐵CCD𝑃

𝑇
]︀

= E𝑃

[︀
𝑃 (𝐼 − Γ−1𝐴)𝑃 𝑇

]︀
= 𝐼 − E𝑃

[︀
𝑃Γ−1𝑃 𝑇

]︀
𝐴,

where we used the fact that 𝑃𝑃 𝑇 = 𝐼 and 𝐴𝑃 𝑇 = 𝑃 𝑇𝐴. For the case the Hessian matrix

𝐴 satisfies (5.4.1), Γ−1 can be explicitly computed as

Γ−1 = toeplitz(𝑐, 𝑟), (5.4.4)

where toeplitz(𝑐, 𝑟) denotes the Toeplitz matrix with the first column 𝑐 and the first row

𝑟, which are given by

𝑐 =
[︁
1, 𝛼, 𝛼(1 + 𝛼), 𝛼(1 + 𝛼)2, . . . , 𝛼(1 + 𝛼)𝑛−2

]︁𝑇
, 𝑟 = [1, 0, 0, . . . , 0].

In order to compute E𝑃

[︀
𝑃Γ−1𝑃 𝑇

]︀
, we use the following lemma, which states that expecta-

tion over all permutations separately averages the diagonal and off-diagonal entries of the

permuted matrix.

Lemma 5.5 ([88, Lemma 3.1]). Given any matrix 𝑄 ∈ ℛ𝑛×𝑛 and permutation matrix 𝑃

selected uniformly at random from the set of all permutations, we have

E𝑃 [𝑃𝑄𝑃 𝑇] = 𝜏1𝐼 + 𝜏211
𝑇 ,

where

𝜏2 =
1𝑇𝑄1− tr(𝑄)

𝑛(𝑛− 1)
and 𝜏1 =

tr(𝑄)

𝑛
− 𝜏2. (5.4.5)

Letting 𝑄 = Γ−1 in Lemma 5.5, we observe that the matrix E𝑃 [𝑃Γ−1𝑃 𝑇] has diagonals

76

equal to one and all the off-diagonal entries equal to each other:

E𝑃 [𝑃Γ−1𝑃 𝑇] = (1− 𝛾)𝐼 + 𝛾11𝑇 , (5.4.6)

where 𝛾 can be found as the average of the off-diagonal entries of Γ−1. The following lemma

(whose proof is given in Section 5.7.1) provides an explicit expression for 𝛾.

Lemma 5.6. For any 𝛼 ∈ (0, 1/(𝑛− 1)), we have

𝛾 =
(1 + 𝛼)𝑛 − 𝛼𝑛− 1

𝛼𝑛(𝑛− 1)
,

where 𝛾 denotes the off-diagonal entries of E𝑃 [𝑃Γ−1𝑃 𝑇] in (5.4.6).

Using Lemma 5.6, it follows from the definition of 𝐴 in (5.4.1) and equation (5.4.6) that

𝐵RPCD = 𝐼 − E𝑃 [𝑃Γ−1𝑃 𝑇]𝐴 = ((𝑛− 1)𝛾 − 𝛽)𝐼 + 𝛽11𝑇 ,

where

𝛽 = 𝛼− 𝛾 + 𝛼𝛾(𝑛− 2).

Since 𝐵RPCD is a symmetric matrix, then by (5.2.1), it suffices to compute the spectral

radius of 𝐵RPCD to obtain the worst-case performance of RPCD with respect to improve-

ment sequence ℐ1. To this end, we note that for any 𝛼 ∈ (0, 1/(𝑛 − 1)), 𝐵RPCD > 0 since

𝐵RPCD = E𝑃 [𝑃𝐵CCD𝑃
𝑇] and 𝐵CCD ≥ 0 with at least one strictly positive entry in both the

diagonal and off-diagonal parts (see also (5.7.13) for an explicit formula of 𝐵CCD). Then,

77

by the Perron-Frobenius Theorem [147, Lemma 2.8], we have

𝜌(𝐵RPCD) =
𝑛∑︁

𝑗=1

[𝐵RPCD]𝑖𝑗, for all 𝑖 ∈ [𝑛]

= (𝑛− 1)(𝛾𝛼 + 𝛽)

= (𝑛− 1)(𝛼− 𝛾 + 𝛼𝛾(𝑛− 1))

= 1− [(1− 𝛼(𝑛− 1))(1 + 𝛾(𝑛− 1))].

Substituting the formula for 𝛾 from Lemma 5.6 above, we obtain the spectral radius of the

RPCD iteration matrix as follows

𝜌(𝐵RPCD) = 1− (1− 𝛼(𝑛− 1))
(1 + 𝛼)𝑛 − 1

𝛼𝑛
= 1− 1− 𝑡

𝑛

(︃(︀
1 + 𝑡

𝑛−1

)︀𝑛 − 1
𝑡

𝑛−1

)︃
, (5.4.7)

where 𝑡 = 𝛼(𝑛− 1) denotes the diagonal dominance factor (as defined in (5.4.2)).

For the RCD algorithm, on the other hand, we have (by (5.1.4) and (5.1.5)) the following

expected iterates

E𝑘𝑥
𝑘+1
RCD = 𝐵RCD 𝑥

𝑘
RCD, where 𝐵RCD = 𝐼 − 1

𝑛
𝐴.

Since 𝐴 is a symmetric matrix, then by (5.2.1), the per-epoch worst-case asymptotic rate

of RCD with respect to improvement sequence ℐ1 can be found as

𝜌(𝐵RCD)𝑛 =

(︂
1− 1

𝑛
𝜆min(𝐴)

)︂𝑛

=

(︂
1− 1− 𝑡

𝑛

)︂𝑛

.

In Proposition 5.7, we compare the performance of RPCD and RCD with respect to im-

provement sequence ℐ1. To this end, we define

𝑠(𝑡, 𝑛) =
− log 𝜌(𝐵RPCD)

− log 𝜌(𝐵RCD)𝑛
, (5.4.8)

(where log denotes the natural logarithm), which is equal to the ratio between the number

78

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

n=2

n=10

n=100

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

n=2

n=10

n=100

Figure 5-1: Plot of 𝑠(𝑡, 𝑛) and 𝑠(𝑡, 𝑛) versus 𝑡 ∈ (0, 1) for different values of 𝑛.

of epochs required to guarantee ‖E𝑥ℓ𝑛 − 𝑥*‖ ≤ 𝜖 for RCD and RPCD algorithms. In

particular 𝑠(𝑡, 𝑛) > 1 implies RPCD has a faster worst-case convergence rate than RCD.

In the following theorem, we show that RPCD is faster than RCD for any 𝑡 ∈ (0, 1) and

𝑛 ≥ 2, and quantify the rate of improvement.

Proposition 5.7. The following statements are true:

(𝑖) The function 𝑠(𝑡, 𝑛) is strictly decreasing in 𝑡 over (0, 1).

(𝑖𝑖) lim𝑡→0 𝑠(𝑡, 𝑛) =∞.

(𝑖𝑖𝑖) Let 𝑔(𝑛) := lim𝑡→1 𝑠(𝑡, 𝑛). We have 𝑔(𝑛) ∈ [3/2, 𝑒− 1), for any 𝑛 ≥ 2. Furthermore,

𝑔(𝑛) is strictly increasing in 𝑛 ≥ 2 satisfying

𝑔(2) = 3/2 and lim
𝑛→∞

𝑔(𝑛) = 𝑒− 1.

A consequence of Proposition 5.7 is that RPCD is faster than RCD in the worst-case,

for every 𝑡 ∈ (0, 1) by a factor 𝑠(𝑡, 𝑛) > 1. Furthermore, the amount of acceleration 𝑠(𝑡, 𝑛)

goes to infinity as 𝛼 → 0 for any 𝑛 fixed. This shows that as the matrix 𝐴 becomes more

and more well-conditioned (as 𝛼 → 0), the amount of speed-up 𝑠(𝑡, 𝑛) we obtain with

79

RPCD with respect to RCD goes to infinity. This is consistent with the observation that

cyclic orders work well for diagonal-like matrices that are well-conditioned (see e.g. [147]).

Proposition 5.7 is illustrated in Figure 5-1 (left panel), where we plot the parameter 𝑠(𝑡, 𝑛)

as a function of 𝑡 for different values of 𝑛.

We next compare the convergence rate of CCD with respect to RPCD and RCD. To

this end, as we discuss in Section 5.2 (cf. (5.2.1)), we use 𝜌(𝐵CCD) as the asymptotic per

epoch worst-case convergence rate of CCD, whereas for comparison to RCD, we use a per-

epoch rate of 𝜌(𝐵RCD)𝑛. Note that as discussed in (5.4.3), 𝐵CCD = 𝐵CCD-𝜋 for all 𝜋, and

hence 𝜌(𝐵CCD) = 𝜌(𝐵CCD-𝜋) for all 𝜋. Although, explicit calculation of 𝜌(𝐵CCD) appears

to be challenging, we prove that the known upper bounds [72, Theorem 4.12] on 𝜌(𝐵CCD)

is tighter than 𝜌(𝐵RPCD), which together with Proposition 5.7 imply the following result.

Proposition 5.8. Let 𝑓 be a quadratic function of the form (4.0.1), whose Hessian matrix

given by (5.4.1). Then, the expected iteration matrices of CCD, RPCD and RCD satisfy

𝜌(𝐵CCD) < 𝜌(𝐵RPCD) < 𝜌(𝐵RCD)𝑛, (5.4.9)

for any 𝛼 ∈ (0, 1/(𝑛− 1)) and 𝑛 ≥ 2.

5.4.2 Convergence rates of RPCD and RCD in improvement se-

quences ℐ2 & ℐ3

In this section, we compare the rate of RPCD and RCD with respect to improvement

sequences ℐ2 and ℐ3. When the Hessian matrix 𝐴 satisfies (5.4.1), the smallest eigenvalue

of 𝐴 can be found as follows

𝜇 = 1− 𝑡 = 1− 𝛼(𝑛− 1). (5.4.10)

Plugging this value in the convergence guarantee of RCD in (5.3.2), we can obtain a conver-

gence guarantee on both improvement sequences ℐ2 and ℐ3 as the left hand-side of (5.3.2)

80

0 10 20 30 40 50
10

-2

10
0

10
2

10
4

Actual

Theory

0 10 20 30 40 50
10

-4

10
-2

10
0

10
2

Actual

Theory

Figure 5-2: Tightness of the bounds in Proposition 5.9 when 𝑛 = 1000 and 𝛼 = 0.9
𝑛−1

: Left
figure for (5.4.11) and right figure for (5.4.12).

upper bounds both 2ℐ2 and ℐ3. However, for the particular problem class we consider in this

chapter, we derive a tighter convergence rate guarantee for RCD in the next proposition,

whose proof is deferred to Section 5.7.4.

Proposition 5.9. Let 𝑓 be a quadratic function of the form (4.0.1), whose Hessian matrix

given by (5.4.1). Then, RCD iterations satisfy

E‖𝑥𝑘RCD − 𝑥*‖2 ≤
(︂

1− 2𝜇

𝑛
+
𝜇2

𝑛

)︂𝑘

‖𝑥0 − 𝑥*‖2, (5.4.11)

and

E
(︀
𝑓(𝑥𝑘RCD)− 𝑓(𝑥*)

)︀
≤
(︁

1− 𝜇

𝑛

)︁𝑘(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
. (5.4.12)

Remark 5.10. We observe that the upper bound in (5.4.11) is smaller (tighter) than the

upper bound in (5.3.2) for any 𝛼 ∈ (0, 1/(𝑛− 1)) because

1− 2𝜇

𝑛
+
𝜇2

𝑛
< 1− 2𝜇

𝑛
+

2𝜇2

𝑛
= 1− 2𝜇(1− 𝜇)

𝑛
= 1− 2𝜇(1− 𝜇2)

𝑛(1 + 𝜇)
< 1− 2𝜇

𝑛(1 + 𝜇)
,

where the inequalities are due to the fact that 𝜇 = 1− 𝛼(𝑛− 1) ∈ (0, 1).

81

0 10 20 30 40 50
10

-5

10
0

10
5

Actual

Theory

0 10 20 30 40 50
10

-6

10
-4

10
-2

10
0

10
2

Actual

Theory

Figure 5-3: Tightness of the bounds in Proposition 5.11 when 𝑛 = 1000 and 𝛼 = 0.9
𝑛−1

: Left
figure for (5.4.13) and right figure for (5.4.14).

We next analyze the performance of RPCD in the following proposition and show that

the convergence rate guarantee of RPCD is tighter than the convergence rate guarantee of

RCD in Proposition 5.9. The proof of Proposition 5.11 is given in Section 5.7.5.

Proposition 5.11. Let 𝑓 be a quadratic function of the form (4.0.1), whose Hessian matrix

given by (5.4.1). Then, RPCD iterations satisfy

E‖𝑥ℓ𝑛RPCD−𝑥*‖2 ≤
(︂

1− 2𝜇

𝑛

(︂
(1 + 𝛼)𝑛 − 1

𝛼

)︂
+
𝜇2

𝑛

(︂
(1 + 𝛼)2𝑛 − 1

𝛼(𝛼 + 2)

)︂)︂ℓ

‖𝑥0−𝑥*‖2, (5.4.13)

and

E𝑓(𝑥ℓ𝑛RPCD)− 𝑓(𝑥*) ≤
(︂

1− 𝜇

𝑛

(︂
(1 + 𝛼)2𝑛 − 1

𝛼(𝛼 + 2)

)︂)︂ℓ(︀
𝑓(𝑥0)− 𝑓(𝑥*)

)︀
. (5.4.14)

We next compare the convergence rates we derive for the RCD and RPCD algorithms.

In particular, we consider the convergence rate of both algorithms in improvement sequence

ℐ2 since we obtain tighter upper bounds for it. Comparing the convergence rate bounds

for RCD and RPCD in (5.4.11) and (5.4.13), respectively, we can observe that RPCD is

82

faster (in terms of the best known rate guarantees) than RCD by a factor of

𝑠(𝑡, 𝑛) :=
− log

(︁
1− 2𝜇

𝑛

(︁
(1+𝛼)𝑛−1

𝛼

)︁
+ 𝜇2

𝑛

(︁
(1+𝛼)2𝑛−1
𝛼(𝛼+2)

)︁)︁

−𝑛 log
(︁

1− 2𝜇
𝑛

+ 𝜇2

𝑛

)︁ ,

which is plotted in Figure 5-1 (right panel) in the interval 𝑡 ∈ (0, 1) for different values of 𝑛.

We observe from this figure that the convergence rate bound for RPCD is better than than

the one for RCD for all 𝑡 ∈ (0, 1) and 𝑛 ≥ 2. Furthermore, the difference in convergence

rate bounds increases as 𝑡 gets smaller, i.e., as the Hessian matrix becomes more diagonally

dominant. We can also show that 𝑠(𝑡, 𝑛) behaves similar to 𝑠(𝑡, 𝑛) as 𝑡 → 1, where the

limiting values can be found in Proposition 5.7.

5.5 Numerical Validation

Here we compare the performance of CCD, RPCD, and RCD for the quadratic problem

(4.0.1) with Hessian matrix (5.4.1). In Figure 5-4, we use a worst-case initialization 𝑥0 = 1,

for 𝑛 ∈ {1000, 10000} and 𝛼 ∈
{︀

0.01
𝑛−1

, 0.50
𝑛−1

, 0.99
𝑛−1

}︀
. We observe that CCD is the faster than

RPCD, which is faster than RCD. This behavior is in accordance with the theoretical results

in Propositions 5.8-5.11. Furthermore, as 𝛼 decreases, we can see that the ratio between

the convergence rates of RPCD and RCD increases, consistent with Proposition 5.7 (see

also Figure 5-1). We can also observe from the right column in Figure 5-4 that when 𝛼

is close to 1/(𝑛 − 1), the ratio between the convergence rates of RPCD and RCD is close

to the theoretical limits obtained in Proposition 5.7 (see part (iii), which shows that the

ratio is in the interval [3/2, 𝑒− 1)). Figure 5-5 plots similar results to Figure 5-4, but for a

random initialization rather than worst-case initialization. Convergence rates depicted in

Figure 5-5 are similar to those of Figure 5-4, due to the fact that 𝑥ℓ𝑛 becomes colinear with

the vector of ones as ℓ increases (as 1 is the leading eigenvector of the expected iteration

matrix), so that the worst-case convergence rate dictates the performance of the algorithms.

83

0 50 100

10
-200

10
0

CCD

RPCD

RCD

0 50 100

10
-100

10
0

CCD

RPCD

RCD

0 50 100
10

-1

10
0

CCD

RPCD

RCD

0 50 100

10
-200

10
0

CCD

RPCD

RCD

0 50 100

10
-100

10
0

CCD

RPCD

RCD

0 50 100
10

0

10
1

CCD

RPCD

RCD

Figure 5-4: CCD vs RPCD vs RCD with worst-case initialization for 𝑛 = 1000 (top row)
and 𝑛 = 10000 (bottom row): 𝛼 = 0.01

𝑛−1
in the left column, 𝛼 = 0.50

𝑛−1
in the middle column,

and 𝛼 = 0.99
𝑛−1

in the right column.

0 50 100

10
-200

10
0

CCD

RPCD

RCD

0 50 100

10
-100

10
0

CCD

RPCD

RCD

0 50 100

10
0

CCD

RPCD

RCD

Figure 5-5: CCD vs RPCD vs RCD with random initialization for 𝑛 = 1000: 𝛼 = 0.01
𝑛−1

(left
figure), 𝛼 = 0.50

𝑛−1
(middle figure), and 𝛼 = 0.99

𝑛−1
(right figure).

84

5.6 Discussion

In this chapter, we surveyed the known results on the performance of RPCD for special

cases of strongly convex quadratic objectives and add to these results by presenting a class

of convex quadratic problems with diagonally dominant Hessians. Using the distance of

the expected iterates to the optimal solution as the convergence criterion, we compared

the ratio between the performances of RPCD and RCD with respect to a parameter that

represents the extent of diagonal dominance. We illustrated that as the Hessian matrix

becomes more diagonally dominant, this ratio goes to infinity, whereas as it gets smaller

it goes to a constant in the interval [3/2, 𝑒 − 1). We also showed that CCD outperforms

both RPCD and RCD for this class of problems. When expected distance of the iterates

or expected function value of the iterates is used as the convergence criterion, we presented

that the worst-case convergence rate bounds derived for RPCD are tighter compared to the

ones for RCD. This is in accordance with our first set of results, i.e., when distance of the

expected iterates is used as the convergence criterion. Computational experiments validate

our theoretical results, which fill a gap between the theoretical guarantees for RPCD and

its empirical performance.

5.7 Additional Proofs

5.7.1 Proof of Lemma 5.6

Applying Lemma 5.5 with 𝑄 = Γ−1, where Γ−1 is defined in (5.4.4), we get

𝛾 =

∑︀𝑛−2
𝑗=0 (𝑛− 1− 𝑗)𝛼(1 + 𝛼)𝑗

𝑛(𝑛− 1)
=
𝛼

𝑛

𝑛−2∑︁

𝑗=0

(1 + 𝛼)𝑗 − 𝛼

𝑛(𝑛− 1)

𝑛−2∑︁

𝑗=0

𝑗(1 + 𝛼)𝑗

=
(1 + 𝛼)𝑛−1 − 1

𝑛
− (1 + 𝛼)𝑛−1

𝑛
+

(1 + 𝛼)𝑛 − 1− 𝛼
𝛼𝑛(𝑛− 1)

=
(1 + 𝛼)𝑛 − 𝛼𝑛− 1

𝛼𝑛(𝑛− 1)
,

where the third equality follows by the following lemma. This completes the proof.

85

Lemma 5.12. For any real scalar 𝜂 ̸= 1 and integer 𝑘 ≥ 0, we have

𝑘∑︁

𝑗=0

𝑗𝜂𝑗 = (𝑘 + 1)
𝜂𝑘+1

𝜂 − 1
− (𝜂𝑘+1 − 1)𝜂

(𝜂 − 1)2
.

Proof Consider the cumulative sums 𝑢𝑘(𝜂) :=
∑︀𝑘

𝑗=0 𝜂
𝑗 = 𝜂𝑘+1−1

𝜂−1
. It is easy to see that

∑︀𝑘
𝑗=0 𝑗𝜂

𝑗 = 𝜂𝑢′𝑘(𝜂) where 𝑢′𝑘(𝜂) is the derivative of 𝑢𝑘(𝜂). Differentiating the right-hand

side of the formula for 𝑢𝑘 yields the result.

5.7.2 Proof of Proposition 5.7

Proof of Part (i)

Defining ℎ(𝑡, 𝑛) =
(1+ 𝑡

𝑛−1)
𝑛
−1

𝑡
𝑛−1

, where 𝑡 ∈ (0, 1) and 𝑛 ≥ 1 is an integer, we have by the

definition in (5.4.8) that 𝑠(𝑡, 𝑛) = 𝜌1(𝑡, 𝑛)/𝜌2(𝑡, 𝑛), where

𝜌1(𝑡, 𝑛) = − log

(︂
1− 1− 𝑡

𝑛
ℎ(𝑡, 𝑛)

)︂
and 𝜌2(𝑡, 𝑛) = −𝑛 log

(︂
1− 1− 𝑡

𝑛

)︂
.

Throughout the rest of the proof, for simplicity, whenever the dependence of ℎ, 𝜌1 and

𝜌2 on 𝑛 is clear, we will abbreviate them by ℎ(𝑡), 𝜌1(𝑡) and 𝜌2(𝑡), respectively. Similarly,

whenever the dependence on 𝑡 is also clear, we will abbreviate them by ℎ, 𝜌1 and 𝜌2,

respectively. In order to prove statement (i) of Proposition 5.7, it suffices to show that the

partial derivative satisfies

𝜕𝑡𝑠(𝑡, 𝑛) =
𝜕𝑡(𝜌1)𝜌2 − 𝜌1𝜕𝑡(𝜌2)

𝜌22
< 0,

for all 𝑡 ∈ (0, 1). This holds if and only if

𝜕𝑡(𝜌1)

𝜌1
<
𝜕𝑡(𝜌2)

𝜌2
⇔ 𝜕𝑡(log 𝜌1) < 𝜕𝑡(log 𝜌2), (5.7.1)

86

for all 𝑡 ∈ (0, 1), where we used the fact that 𝜌1 and 𝜌2 are positive for 𝑡 ∈ (0, 1). We can

compute these partial derivatives in the right-hand side as follows

𝜕𝑡(log 𝜌1) =
1

𝜌1
𝜕𝑡(𝜌1) =

−1

𝜌1

(︂
1

1− 1−𝑡
𝑛
ℎ(𝑡)

)︂(︂
ℎ(𝑡) + ℎ′(𝑡)(𝑡− 1)

𝑛

)︂
,

and similarly

𝜕𝑡(log 𝜌2) =
1

𝜌2
𝜕𝑡(𝜌2) =

−1

𝜌2

(︂
1

1− 1−𝑡
𝑛

)︂
.

Hence, in order to prove (5.7.1), it is sufficient to show that

1

𝜌1

(︂
1

1− 1−𝑡
𝑛
ℎ(𝑡)

)︂
𝑞(𝑡) >

1

𝜌2

(︂
1

1− 1−𝑡
𝑛

)︂
, where 𝑞(𝑡) :=

ℎ(𝑡) + ℎ′(𝑡)(𝑡− 1)

𝑛
,

which, after inserting the formulas for 𝜌1 and 𝜌2, is equivalent to

− 𝑛 log

(︂
1− 1− 𝑡

𝑛

)︂(︂
1− 1− 𝑡

𝑛

)︂
𝑞(𝑡) > − log

(︂
1− 1− 𝑡

𝑛
ℎ(𝑡)

)︂(︂
1− 1− 𝑡

𝑛
ℎ(𝑡)

)︂
, (5.7.2)

for 𝑡 ∈ (0, 1). The main ingredients to prove this inequality is to approximate the non-linear

functions 𝑞 and ℎ with piecewise linear functions, which are easier to deal with, in other

words, linearizing 𝑞 and ℎ above leads to simpler expressions for the derivatives of both

sides of this inequality. In order to approximate 𝑞, we first write a binomial expansion for

ℎ(𝑡) as follows

ℎ(𝑡) =

(︀
1 + 𝑡

𝑛−1

)︀𝑛 − 1
𝑡

𝑛−1

=
𝑛∑︁

𝑖=1

(︂
𝑛

𝑖

)︂(︂
𝑡

𝑛− 1

)︂𝑖−1

.

This implies that 𝑞(𝑡) is of the form 𝑞(𝑡) = 1
2

+ 2
3
𝑡 +

∑︀𝑛−1
𝑗=2 𝑐𝑗𝑡

𝑗, where 𝑐2 > 0 and 𝑐𝑗 ≥ 0,

for all 𝑗 ∈ {3, . . . , 𝑛− 1}. Therefore, the first and second derivatives of 𝑞 are positive over

𝑡 ∈ (0, 1) and 𝑞 is strictly convex. We then consider linearizations of 𝑞(𝑡) at 𝑡 = 0 and

𝑡 = 1, which are given by

𝑞0(𝑡) =
1

2
+

2

3
𝑡 and 𝑞1(𝑡) =

ℎ(1)− 2(𝑛− 1)(1− 𝑡)
𝑛

.

87

(Note that in the special case 𝑛 = 2, 𝑞(𝑡) is linear so that 𝑞0(𝑡) = 𝑞1(𝑡) for all 𝑡. However,

for 𝑛 > 2, 𝑞0 ̸= 𝑞1). In particular, it can be checked that 𝑞0(𝑡) = 𝑞1(𝑡), for 𝑡 = 1− 6ℎ(1)−7𝑛
4(2𝑛−3)

.

Since 𝑞(𝑡) is convex,

𝑞(𝑡) ≥ 𝑞(𝑡) = max(𝑞0(𝑡), 𝑞1(𝑡)) =

⎧
⎪⎨
⎪⎩
𝑞0(𝑡), if 𝑡 ∈ [0, 𝑡),

𝑞1(𝑡), if 𝑡 ∈ [𝑡, 1].

(5.7.3)

The right-hand side of (5.7.2) is of the form

𝑧(𝑡) = − log(𝑦(𝑡))𝑦(𝑡) = 𝐸(𝑦(𝑡)), where 𝑦(𝑡) = 1− 1− 𝑡
𝑛

ℎ(𝑡), 𝐸(𝑦) = − log(𝑦)𝑦.

(5.7.4)

As ℎ is convex, we have the bounds

ℎ(𝑡) = (1− 𝑡)ℎ(0) + 𝑡ℎ(1) ≥ ℎ(𝑡) and 𝑦(𝑡) ≥ 𝑦(𝑡) = 1− 1− 𝑡
𝑛

ℎ(𝑡), 𝑡 ∈ (0, 1). (5.7.5)

Using the facts that the function 𝐸(·) has a maximum of 1/𝑒 over the interval [0, 1] and is

strictly decreasing over the interval (1/𝑒, 1], it follows from (5.7.5) that

𝐸(𝑦(𝑡)) = 𝑧(𝑡) ≤ 𝑧(𝑡) :=

⎧
⎪⎨
⎪⎩
𝐸(𝑦(𝑡)) if 𝑦 ∈ (1/𝑒, 1]⇔ 𝑡 ∈ (𝑡*, 1]

1/𝑒 if 𝑦 ∈ [0, 1/𝑒]⇔ 𝑡 ∈ [0, 𝑡*]

(5.7.6)

where 𝑡* is the largest 𝑡 ∈ (0, 1) such that 𝑦(𝑡) = 1/𝑒 and admits the formula

𝑡* = −1

2

2𝑛− ℎ(1)

ℎ(1)− 𝑛 +
1

2

√︃(︂
2𝑛− ℎ(1)

ℎ(1)− 𝑛

)︂2

+
4

𝑒

𝑛

ℎ(1)− 𝑛.

Combining the lower bound (5.7.3) on 𝑞(𝑡) and the upper bound (5.7.6) on 𝑧(𝑡), a sufficient

condition for (5.7.2) is to show that the following relaxed inequality holds

− 𝑛 log

(︂
1− 1− 𝑡

𝑛

)︂(︂
1− 1− 𝑡

𝑛

)︂
𝑞(𝑡)− 𝑧(𝑡) > 0, for all 𝑡 ∈ (0, 1). (5.7.7)

88

The left-hand side is a piecewise continuously differentiable function (pieces defined by the

intervals [0, 𝑡], (𝑡, 𝑡*] and (𝑡*, 1])) and it is positive at 𝑡 = 0. The rest of the proof is about

showing that the left-hand side in (5.7.7) stays positive for 𝑡 ∈ (0, 1), this is achieved by

computing and lower bounding the first order derivatives of the left-hand side. The details

are skipped due to space considerations and follows from standard calculus techniques.

Proof of Part (ii)

Since lim𝑡→0+ 𝜌2(𝑡) = −𝑛 log(1 − 1/𝑛), whereas lim𝑡→0+ 𝜌1(𝑡) = − log(1 − ℎ(0)/𝑛) = ∞ as

ℎ(0) = 𝑛, we obtain lim𝑡→0+ 𝑠(𝑡, 𝑛) = lim𝑡→0(𝜌1(𝑡)/𝜌2(𝑡)) =∞.

Proof of Part (iii)

We observe that 𝑔(𝑛) = lim𝑡→1−
𝜌1(𝑡)
𝜌2(𝑡)

= lim𝑡→1−
𝜌′1(𝑡)

𝜌′2(𝑡)
, since lim𝑡→1− 𝜌1(𝑡) = lim𝑡→1− 𝜌2(𝑡) =

0. The derivatives of 𝜌1(𝑡) and 𝜌2(𝑡) with respect to 𝑡 are given by

𝜌′1(𝑡) = −ℎ(𝑡) + ℎ′(𝑡)(𝑡− 1)

𝑛− (1− 𝑡)ℎ(𝑡)
and 𝜌′2(𝑡) = − 𝑛

𝑛− (1− 𝑡) .

Therefore, we obtain

𝑔(𝑛) = lim
𝑡→1−

ℎ(𝑡)+ℎ′(𝑡)(𝑡−1)
𝑛−(1−𝑡)ℎ(𝑡)

𝑛
𝑛−(1−𝑡)

=
ℎ(1)

𝑛
=

(︂
1 +

1

𝑛− 1

)︂𝑛−1

+
1

𝑛
− 1.

In order to show that 𝑔(𝑛) is strictly increasing in 𝑛, consider the extension of 𝑔 to the

positive real line, i.e., consider the function 𝑔(𝑧) =
(︀
1 + 1

𝑧

)︀𝑧
+ 1

𝑧+1
−1, where 𝑧 ≥ 0. Taking

its derivative with respect to 𝑧, we get

𝑔′(𝑧) =

(︂
log

(︂
1 +

1

𝑧

)︂
− 1

𝑧 + 1

)︂(︂
1 +

1

𝑧

)︂𝑧

− 1

(𝑧 + 1)2
.

Using the lower bounds log(1 + 𝑦) ≥ 2𝑦
2+𝑦

for 𝑦 ≥ 0 and (1 + 1/𝑦)𝑦 ≥ 2 for 𝑦 ≥ 1, we obtain

𝑔′(𝑧) ≥ 2

(︂
2

2𝑧 + 1
− 1

𝑧 + 1

)︂
− 1

(𝑧 + 1)2
=

1

(𝑧 + 1)(𝑧 + 1/2)
− 1

(𝑧 + 1)2
> 0,

89

for any 𝑧 ≥ 1. Consequently, 𝑔(𝑛) is strictly increasing in 𝑛 ≥ 2. Furthermore, it follows

directly from the definition that 𝑔(2) = 3/2 and since lim𝑛→∞(1 + 1/𝑛)𝑛 = 𝑒, we get

lim𝑛→∞ 𝑔(𝑛) = 𝑒− 1. This completes the proof of part (𝑖𝑖𝑖).

5.7.3 Proof of Proposition 5.8

The proof of 𝜌(𝐵RPCD) < 𝜌(𝐵RCD)𝑛 follows by Proposition 5.7, hence is omitted. Since the

off-diagonal entries of 𝐴 are nonpositive and 𝐴 is a positive definite matrix, then it follows

by [72, Theorem 4.12] that 𝜌(𝐵CCD) ≤ 1−𝜇
1+𝜇

= 1 − 2𝜇
1+𝜇

, where 𝜇 = 1 − (𝑛 − 1)𝛼. On the

other hand, from (5.4.7), we have 𝜌(𝐵RPCD) = 1− 𝜇 (1+𝛼)𝑛−1
𝑛𝛼

. Hence, in order to show that

𝜌(𝐵CCD) < 𝜌(𝐵RPCD), for all 𝛼 ∈ (1, 1/(𝑛− 1)) and 𝑛 ≥ 2, it suffices to show

2

1 + 𝜇
>

(1 + 𝛼)𝑛 − 1

𝑛𝛼
⇔ 1

1− (𝑛−1)𝛼
2

>
(1 + 𝛼)𝑛 − 1

𝑛𝛼
.

Since 𝛼 ∈ (1, 1/(𝑛− 1)), it is sufficient to show that

𝑛𝛼 >

(︂
1− (𝑛− 1)𝛼

2

)︂
((1 + 𝛼)𝑛 − 1). (5.7.8)

Using the Binomial expansion (1 + 𝛼)𝑛 =
∑︀𝑛

𝑗=0

(︀
𝑛
𝑗

)︀
𝛼𝑗, we get

(︂
1− (𝑛− 1)𝛼

2

)︂
((1 + 𝛼)𝑛 − 1) =

𝑛∑︁

𝑗=1

(︂
𝑛

𝑗

)︂
𝛼𝑗 − 𝑛− 1

2

𝑛∑︁

𝑗=1

(︂
𝑛

𝑗

)︂
𝛼𝑗+1

<

𝑛∑︁

𝑗=1

(︂
𝑛

𝑗

)︂
𝛼𝑗 − 𝑛− 1

2

𝑛−1∑︁

𝑗=1

(︂
𝑛

𝑗

)︂
𝛼𝑗+1

= 𝑛𝛼 +
𝑛∑︁

𝑗=2

(︂(︂
𝑛

𝑗

)︂
− 𝑛− 1

2

(︂
𝑛

𝑗 − 1

)︂)︂
𝛼𝑗,

where the inequality follows since we omit the last term of the second sum and the last

equality follows by peeling out the first entry of the first sum. We can observe that

(︂
𝑛

𝑗

)︂
− 𝑛− 1

2

(︂
𝑛

𝑗 − 1

)︂
=

(︂
𝑛+ 1− 𝑗

𝑗
− 𝑛− 1

2

)︂(︂
𝑛

𝑗 − 1

)︂
=

(︂
(𝑛+ 1)(2− 𝑗)

2𝑗

)︂(︂
𝑛

𝑗 − 1

)︂
≤ 0,

90

for all 𝑗 ∈ {2, . . . , 𝑛}. This proves (5.7.8), which concludes the proof.

5.7.4 Proof of Proposition 5.9

RCD iterations can be written (by (5.1.4)) as follows

𝑥𝑘+1
RCD =

(︀
𝐼 − 𝑒𝑖𝑘𝑒𝑇𝑖𝑘𝐴

)︀
𝑥𝑘RCD,

where 𝑖𝑘 is drawn uniformly at random from the set {1, 2, . . . , 𝑛}. Letting E𝑘 denote the

expectation with respect to 𝑖𝑘 given 𝑥𝑘 and taking norm squares of both sides, we obtain

E𝑘‖𝑥𝑘+1
RCD‖2 = (𝑥𝑘RCD)𝑇 E𝑘

[︀(︀
𝐼 − 𝐴𝑇 𝑒𝑖𝑘𝑒

𝑇
𝑖𝑘

)︀(︀
𝐼 − 𝑒𝑖𝑘𝑒𝑇𝑖𝑘𝐴

)︀]︀
𝑥𝑘RCD

= (𝑥𝑘RCD)𝑇

(︃
1

𝑛

𝑛∑︁

𝑖=1

(︀
𝐼 − 𝐴𝑇 𝑒𝑖𝑒

𝑇
𝑖 − 𝑒𝑖𝑒𝑇𝑖 𝐴+ 𝐴𝑇 𝑒𝑖𝑒

𝑇
𝑖 𝐴
)︀
)︃
𝑥𝑘RCD

= (𝑥𝑘RCD)𝑇
(︂
𝐼 − 2𝐴

𝑛
+
𝐴2

𝑛

)︂
𝑥𝑘RCD ≤ ‖𝑄‖‖𝑥𝑘RCD‖2 with 𝑄 := 𝐼 − 2𝐴

𝑛
+
𝐴2

𝑛
,

where we used the fact that 𝐴 = 𝐴𝑇 and
∑︀𝑛

𝑖=1 𝑒𝑖𝑒
𝑇
𝑖 = 𝐼. Using this recursion and noting

that 𝑥* = 0, we get

E‖𝑥𝑘+1
RCD − 𝑥*‖2 ≤ ‖𝑄‖𝑘 ‖𝑥0 − 𝑥*‖2. (5.7.9)

The eigenvalues of 𝑄 are of the form 1− 2𝜆/𝑛+𝜆2/𝑛, where 𝜆 is an eigenvalue of 𝐴. Since

𝑄 is symmetric and 𝐴 has only two distinct eigenvalues that are equal to 𝜇 = (1−𝛼(𝑛−1))

and 𝐿 = 1 + 𝛼, we obtain

‖𝑄‖ = max{1− 2𝜇/𝑛+ 𝜇2/𝑛, 1− 2𝐿/𝑛+ 𝐿2/𝑛} = 1− 2𝜇/𝑛+ 𝜇2/𝑛. (5.7.10)

91

Using (5.7.10) in (5.7.9) concludes the proof of (5.4.11). The proof of (5.4.12) can be done

by following similar lines to the above proof as follows

𝑓(𝑥𝑘+1
RCD) = (𝑥𝑘RCD)𝑇 E𝑘

[︀(︀
𝐼 − 𝐴𝑇 𝑒𝑖𝑘𝑒

𝑇
𝑖𝑘

)︀
𝐴
(︀
𝐼 − 𝑒𝑖𝑘𝑒𝑇𝑖𝑘𝐴

)︀]︀
𝑥𝑘RCD

= (𝑥𝑘RCD)𝑇 E𝑘

[︀
𝐴− 𝐴𝑇 𝑒𝑖𝑘𝑒

𝑇
𝑖𝑘
𝐴− 𝐴𝑒𝑖𝑘𝑒𝑇𝑖𝑘𝐴+ 𝐴𝑇 𝑒𝑖𝑘𝑒

𝑇
𝑖𝑘
𝐴𝑒𝑖𝑘𝑒

𝑇
𝑖𝑘
𝐴
]︀
𝑥𝑘RCD

= (𝑥𝑘RCD)𝑇 E𝑘

[︀
𝐴− 𝐴𝑒𝑖𝑘𝑒𝑇𝑖𝑘𝐴

]︀
𝑥𝑘RCD

= (𝑥𝑘RCD)𝑇
(︂
𝐴− 𝐴2

𝑛

)︂
𝑥𝑘RCD ≤ ‖𝐼 −

𝐴

𝑛
‖𝑓(𝑥𝑘RCD) =

(︁
1− 𝜇

𝑛

)︁
𝑓(𝑥𝑘RCD),

where in the third equality, we use the fact that 𝐴 = 𝐴𝑇 and 𝑒𝑇𝑖 𝐴𝑒𝑖 = 1, for all 𝑖 ∈ [𝑛], and

in the fourth equality, we use
∑︀𝑛

𝑖=1 𝑒𝑖𝑒
𝑇
𝑖 = 𝐼, respectively. This concludes the proof.

5.7.5 Proof of Proposition 5.11

RPCD iterations can be written (by (5.1.6)) as follows

𝑥
(ℓ+1)𝑛
RPCD = 𝑃𝜋ℓ

𝐵CCD𝑃
𝑇
𝜋ℓ
𝑥ℓ𝑛RPCD.

Considering improvement sequence ℐ2, this yields

Eℓ‖𝑥(ℓ+1)𝑛
RPCD ‖2 = (𝑥ℓ𝑛RPCD)𝑇E𝑃 [𝑃𝐵𝑇

CCD𝐵CCD𝑃
𝑇]𝑥ℓ𝑛RPCD ≤ ‖𝑆‖‖𝑥ℓ𝑛RPCD‖2,

where 𝑆 = E𝑃 [𝑃𝐵𝑇
CCD𝐵CCD𝑃

𝑇]. Using this recursion, we obtain

E‖𝑥ℓ𝑛RPCD‖2 ≤ ‖𝑆‖ℓ
⃦⃦
𝑥0RPCD

⃦⃦2
.

The contraction factor ‖𝑆‖ can be computed by applying Lemma 5.5 with 𝑄 = 𝐵𝑇
CCD𝐵CCD,

which yields

𝑆 = E𝑃 [𝑃𝐵𝑇
CCD𝐵CCD𝑃

𝑇] = 𝜏1𝐼 + 𝜏211
𝑇 , (5.7.11)

92

where

𝜏2 =
1𝑇𝐵𝑇

CCD𝐵CCD1− tr(𝐵𝑇
CCD𝐵CCD)

𝑛(𝑛− 1)
and 𝜏1 =

tr(𝐵𝑇
CCD𝐵CCD)

𝑛
− 𝜏2.

Since 𝑆 is a symmetric matrix, we have ‖𝑆‖ = 𝜌(𝑆). Furthermore, we can observe that

𝐵𝑇
CCD𝐵CCD has strictly positive entries both in its diagonals and off-diagonals, consequently

we have 𝑆 > 0. Then, by Perron-Frobenius Theorem [147, Lemma 2.8], we have

‖𝑆‖ = 𝜌(𝑆) = 𝜏1 + 𝑛𝜏2 =
1

𝑛
1𝑇𝑆1. (5.7.12)

In order to compute (5.7.12), we first compute the matrix 𝐵CCD as follows

𝐵CCD = 𝐼 − Γ−1𝐴 =

⎧
⎪⎨
⎪⎩
𝛼((1 + 𝛼)𝑖−1 − (1 + 𝛼)𝑖−𝑗), if 𝑖 ≥ 𝑗,

𝛼(1 + 𝛼)𝑖−1, if 𝑖 < 𝑗.

(5.7.13)

Combining (5.7.12) and (5.7.13), we obtain

‖𝑆‖ =
1

𝑛
1𝑇𝐵𝑇

CCD𝐵CCD1 =
1

𝑛
‖𝐵CCD1‖2 =

1

𝑛

𝑛∑︁

𝑖=1

((𝐵CCD1)𝑖)
2,

where

(𝐵CCD1)𝑖 = 1− 𝜇(1 + 𝛼)𝑖−1. (5.7.14)

This yields

‖𝑆‖ =
1

𝑛

𝑛∑︁

𝑖=1

(︀
1− 2𝜇(1 + 𝛼)𝑖−1 + 𝜇2(1 + 𝛼)2(𝑖−1)

)︀

= 1− 2𝜇

𝑛

(︂
(1 + 𝛼)𝑛 − 1

𝛼

)︂
+
𝜇2

𝑛

(︂
(1 + 𝛼)2𝑛 − 1

𝛼(𝛼 + 2)

)︂
,

which proves (5.4.13).

We next prove the results regarding the function suboptimality in (5.4.14). To this end,

93

we consider the expected function suboptimality (note that 𝑓(𝑥*) = 0), which yields

Eℓ𝑓(𝑥
(ℓ+1)𝑛
RPCD) = (𝑥ℓ𝑛RPCD)𝑇E𝑃 [𝑃𝐵𝑇

CCD𝑃
𝑇𝐴𝑃𝐵CCD𝑃

𝑇]𝑥ℓ𝑛RPCD

= (𝑥ℓ𝑛RPCD)𝑇E𝑃 [𝑃𝐵𝑇
CCD𝐴𝐵CCD𝑃

𝑇]𝑥ℓ𝑛RPCD

≤ ‖E𝑃 [𝐴−1/2𝑃𝐵𝑇
CCD𝐴𝐵CCD𝑃

𝑇𝐴−1/2]‖‖𝐴1/2𝑥ℓ𝑛RPCD‖2

= ‖E𝑃 [𝐴−1/2𝑃𝐵𝑇
CCD𝐴𝐵CCD𝑃

𝑇𝐴−1/2]‖ 𝑓(𝑥ℓ𝑛RPCD)

= ‖E𝑃 [𝑃𝐴−1/2𝐵𝑇
CCD𝐴𝐵CCD𝐴

−1/2𝑃 𝑇]‖ 𝑓(𝑥ℓ𝑛RPCD)

= ‖𝐺‖ 𝑓(𝑥ℓ𝑛RPCD),

where 𝐺 := E𝑃 [𝑃𝐴−1/2𝐵𝑇
CCD𝐴𝐵CCD𝐴

−1/2𝑃 𝑇] and the equalities follow since 𝐴 and 𝐴−1/2

are symmetric permutation invariant matrices, i.e., 𝑃𝐴𝑃 𝑇 = 𝐴 and 𝑃𝐴−1/2𝑃 𝑇 = 𝐴−1/2. It

can be shown that 𝐴1/2𝐵CCD𝐴
−1/2 is a non-negative matrix, hence applying Lemma 5.5 to

the matrix 𝑄 = 𝐴−1/2𝐵𝑇
CCD𝐴𝐵CCD𝐴

−1/2, it can be shown (similar to the previous proof)

that

‖𝐺‖ = 𝜌(𝐺) =
1

𝑛
‖𝐴1/2𝐵CCD𝐴

−1/21‖2 =
1

𝑛
‖1− 𝐴1/2Γ−1𝐴1/21‖2, (5.7.15)

where 𝐴1/2 = 𝛾𝐼 − 𝜎11𝑇 with 𝛾 =
√

1 + 𝛼 and 𝜎 = (𝛾 − √𝜇)/𝑛. This yields 𝐴1/21 =

(𝛾 − 𝑛𝜎)1 =
√
𝜇1. Multiplying both sides of the above equality by Γ−1 from the left, we

obtain

Γ−1𝐴1/21 =
√
𝜇 𝑐, (5.7.16)

where it follows from (5.4.4) that

𝑐 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1 + 𝛼

1 + 𝛼 + 𝛼(1 + 𝛼)
...

1 + 𝛼 + 𝛼(1 + 𝛼) + · · ·+ 𝛼(1 + 𝛼)𝑛−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1 + 𝛼

(1 + 𝛼)2

...

(1 + 𝛼)𝑛−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

94

Multiplying (5.7.16) from the left by 𝐴1/2, we get

𝐴1/2Γ−1𝐴1/21 =
√
𝜇(𝛾𝑐− 𝜎‖𝑐‖11), where ‖𝑐‖1 =

(1 + 𝛼)𝑛 − 1

𝛼
. (5.7.17)

Using (5.7.17) in (5.7.15), we obtain

‖𝐺‖ =
1

𝑛

𝑛∑︁

𝑖=1

(1−√𝜇(𝛾𝑐𝑖 − 𝜎‖𝑐‖1))2 = 1− 2
√
𝜇

𝑛

𝑛∑︁

𝑖=1

(𝛾𝑐𝑖 − 𝜎‖𝑐‖1) +
𝜇

𝑛

𝑛∑︁

𝑖=1

(𝛾𝑐𝑖 − 𝜎‖𝑐‖1)2

= 1− 2
√
𝜇

𝑛
(𝛾 − 𝑛𝜎)‖𝑐‖1 +

𝜇

𝑛

𝑛∑︁

𝑖=1

(︀
𝛾2𝑐2𝑖 − 2𝛾𝜎‖𝑐‖1𝑐𝑖 + 𝜎2‖𝑐‖21

)︀

= 1− 2𝜇

𝑛
‖𝑐‖1 +

𝜇

𝑛

(︀
𝛾2‖𝑐‖22 − 2𝛾𝜎‖𝑐‖21 + 𝑛𝜎2‖𝑐‖21

)︀
, (5.7.18)

where

‖𝑐‖22 =
(1 + 𝛼)2𝑛 − 1

𝛼(𝛼 + 2)
and ‖𝑐‖21 =

(1 + 𝛼)2𝑛 − 2(1 + 𝛼)𝑛 + 1

𝛼2
.

Modifying the terms in (5.7.18), we get

‖𝐺‖ = 1− 2𝜇

𝑛
‖𝑐‖1 +

𝜇

𝑛

(︀
𝛾2‖𝑐‖22 − 𝛾𝜎‖𝑐‖21 + 𝜎(𝑛𝜎 − 𝛾)‖𝑐‖21

)︀

= 1− 2𝜇

𝑛
‖𝑐‖1 +

𝜇

𝑛

(︂
(1 + 𝛼)‖𝑐‖22 −

1 + 𝛼− (1− 𝛼(𝑛− 1))

𝑛
‖𝑐‖21

)︂

= 1− 2𝜇

𝑛
‖𝑐‖1 +

𝜇

𝑛

(︀
(1 + 𝛼)‖𝑐‖22 − 𝛼‖𝑐‖21

)︀

= 1− 2𝜇

𝑛
‖𝑐‖1 +

𝜇

𝑛

(︂
(1 + 𝛼)

(1 + 𝛼)2𝑛 − 1

𝛼(𝛼 + 2)
− (1 + 𝛼)2𝑛 − 2(1 + 𝛼)𝑛 + 1

𝛼

)︂

= 1− 𝜇

𝑛

(︂
(1 + 𝛼)2𝑛 − 1

𝛼(𝛼 + 2)

)︂
,

which concludes the proof of Proposition 5.11.

95

96

Chapter 6

Convergence Rate of the CD Method

for Solving Large SDPs via

Burer-Monteiro Approach

In this chapter, we study the convergence rate of the CD method on a certain non-convex

problem that arises from semidefinite programming (SDP) with diagonal constraints:

maximize ⟨𝐴,𝑋⟩ (CVX)

subject to 𝑋𝑖𝑖 = 1, for 𝑖 ∈ [𝑛],

𝑋 ⪰ 0,

where 𝐴,𝑋 ∈ Sym𝑛 (real symmetric matrices of size 𝑛 × 𝑛). This problem appears as a

convex relaxation to the celebrated Max-Cut problem [67], graphical model inference [60],

community detection problems [13], and group synchronization [101].

Although SDPs serve as reliable relaxations to many combinatorial problems, the result-

ing convex problem is still computationally challenging. Interior point methods can solve

SDPs to arbitrary accuracy in polynomial-time, but they do not scale well with the problem

dimension 𝑛. A popular approach to remedy these limitations is to introduce a low-rank

97

factorization 𝑋 = 𝜎𝜎⊤, where 𝜎 ∈ R𝑛×𝑟 with 𝑟 denoting the rank. This reformulation re-

moves the positive semidefinite cone constraint in (CVX) since 𝑋 = 𝜎𝜎⊤ is guaranteed to

be a positive semidefinite matrix, and choosing 𝑟 ≪ 𝑛 provides computational efficiency as

well as storage benefits. This method is often referred to as Burer-Monteiro approach [40].

Denoting 𝑖-th row of 𝜎 by 𝜎𝑖, i.e., 𝜎 = [𝜎1, 𝜎2, ..., 𝜎𝑛]⊤, the resulting non-convex problem

can be written as follows

maximize ⟨𝐴, 𝜎𝜎⊤⟩ (Non-CVX)

subject to ‖𝜎𝑖‖ = 1, for 𝑖 ∈ [𝑛].

We consider solving (Non-CVX) using the CD method. To describe the update rule of the

CD method, we let 𝑓 : R𝑛×𝑟 → R denote the objective function:

𝑓(𝜎) = ⟨𝐴, 𝜎𝜎⊤⟩.

Given the current iterate 𝜎𝑘, the CD method chooses a row 𝑖𝑘 ∈ [𝑛] of the matrix 𝜎𝑘 and

maximizes the following objective

𝑓(𝜎𝑘) =
𝑛∑︁

𝑖=1

⟨𝜎𝑘
𝑖 , 𝑔

𝑘
𝑖 ⟩, where 𝑔𝑘𝑖 :=

∑︁

𝑗 ̸=𝑖

𝐴𝑖𝑗 𝜎
𝑘
𝑗 ,

over the block 𝜎𝑘
𝑖𝑘
∈ 𝒮𝑟−1. More formally, we can write the update rule of the algorithm as

follows

𝜎𝑘+1
𝑖𝑘

= arg max
‖𝜁‖=1

𝑓(𝜎𝑘
1 , . . . , 𝜎

𝑘
𝑖𝑘−1, 𝜁, 𝜎

𝑘
𝑖𝑘+1, . . . , 𝜎

𝑘
𝑛),

= arg max
‖𝜁‖=1

2⟨𝜁, 𝑔𝑘𝑖𝑘⟩+
∑︁

𝑖 ̸=𝑖𝑘

∑︁

𝑗 ̸=𝑖,𝑖𝑘

𝐴𝑖𝑗⟨𝜎𝑘
𝑖 , 𝜎

𝑘
𝑗 ⟩, (6.0.1)

= arg max
‖𝜁‖=1

⟨𝜁, 𝑔𝑘𝑖𝑘⟩ =
𝑔𝑘𝑖𝑘
‖𝑔𝑘𝑖𝑘‖

, (6.0.2)

with the convention that 𝜎𝑘+1
𝑖𝑘

= 𝜎𝑘
𝑖𝑘

when ‖𝑔𝑘𝑖𝑘‖ = 0. Blocks 𝜎𝑘
𝑖𝑘

to be updated at each

98

Algorithm 3: The CD Method
Initialize 𝜎0 ∈ R𝑛×𝑟 and calculate 𝑔0𝑖 =

∑︀
𝑗 ̸=𝑖𝐴𝑖𝑗𝜎

0
𝑗 , for all 𝑖 ∈ [𝑛].

for 𝑘 = 0, 1, 2, . . . do
Choose block 𝑖𝑘 = 𝑖 using one of the coordinate selection rules.
𝜎𝑘+1
𝑖𝑘
← 𝑔𝑘𝑖𝑘/‖𝑔𝑘𝑖𝑘‖.

𝑔𝑘+1
𝑖 ← 𝑔𝑘𝑖 − 𝐴𝑖𝑖𝑘𝜎

𝑘
𝑖𝑘

+ 𝐴𝑖𝑖𝑘𝜎
𝑘+1
𝑖𝑘

, for all 𝑖 ̸= 𝑖𝑘.
end for

iteration can be chosen through any deterministic or randomized rule, and we focus on

three coordinate selection rules:

∙ Uniform sampling: 𝑖𝑘 = 𝑖 with probability 𝑝𝑖 = 1/𝑛.

∙ Importance sampling: 𝑖𝑘 = 𝑖 with probability 𝑝𝑖 = ‖𝑔𝑘𝑖 ‖/
∑︀𝑛

𝑗=1 ‖𝑔𝑘𝑗 ‖.

∙ Greedy coordinate selection: 𝑖𝑘 = arg max𝑖∈[𝑛](‖𝑔𝑘𝑖 ‖ − ⟨𝜎𝑘
𝑖 , 𝑔

𝑘
𝑖 ⟩).

In the following sections, we analyze the convergence of the CD method with these coordi-

nate selection rules.

The remainder of this chapter is organized as follows. In Section 6.1, we prove the

global sublinear convergence and local linear convergence of the CD method with explicit

rate estimates. In Section 6.2, we introduce a second-order method based on the CD and

Lanczos methods that is guaranteed to return solutions with global optimality guarantees.

We also provide a global sublinear convergence rate estimate for this algorithm. We perform

numerical experiments to validate our theoretical results in Section 6.4 and conclude the

chapter in Section 6.5.

6.1 Convergence Rate of the CD Method

Throughout the chapter, we use the following notation. For a function ℎ, ∇ℎ and gradℎ

represent its Euclidean and Riemannian gradients, respectively. Similarly, ∇2ℎ and Hessℎ

represent its Euclidean and Riemannian Hessians, respectively. We let 𝒮𝑚−1 denote the

99

unit sphere in R𝑚. For a vector 𝑦, Diag(𝑦) represents the diagonal matrix whose 𝑖-th

diagonal entry is 𝑦𝑖. Similarly for a matrix 𝐴, diag(𝐴) represents the vector whose 𝑖-th

entry is 𝐴𝑖𝑖.

Before discussing the convergence of the CD method, we first assume without loss of

generality that 𝐴 is a symmetric matrix and 𝐴𝑖𝑖 = 0, for all 𝑖 ∈ [𝑛] (the latter assumption

is removed in Section 6.2 to keep our presentation consistent with the existing works in the

literature). Indeed, if 𝐴 is not symmetric, then we can replace 𝐴 by (𝐴+𝐴⊤)/2, which is a

symmetric matrix, and the objective value (Non-CVX) remains the same for all 𝜎 ∈ R𝑛×𝑟

since 𝜎𝜎⊤ is symmetric. Similarly, replacing the diagonal entries of 𝐴 by zeros decreases

the objective value by the constant tr𝐴 for all feasible 𝜎, since the diagonal entries of 𝜎𝜎⊤

are equal to 1.

In order to analyze the convergence rate of the CD method, we require certain tools

from the manifold optimization literature, which are highlighted in Section 6.1.1. We refer

to [2, Section 5.4] for a more detailed treatment of this topic. In Section 6.1.2, we present

a global sublinear rate estimate for the CD method and in Section 6.1.3, we present a local

linear rate estimate under quadratic decay condition. In Section 6.1.4, we show that this

condition generically holds.

6.1.1 Riemannian Geometry of the Problem

We define the following submanifold of matrices R𝑛×𝑟 that corresponds to the Riemannian

geometry induced by the constraints of the problem (Non-CVX) in the Euclidean space:

ℳ𝑟 :=
{︀
𝜎 = (𝜎1, . . . , 𝜎𝑛)⊤ ∈ R𝑛×𝑟 : ‖𝜎𝑖‖ = 1, ∀𝑖 ∈ [𝑛]

}︀
.

This manifold represents the Cartesian product of 𝑛 unit spheres in R𝑟. For any given

point 𝜎 ∈ ℳ𝑟, its tangent space can be found by taking the differential of the equality

100

constraints as follows

𝑇𝜎ℳ𝑟 :=
{︀
𝑢 = (𝑢1, . . . , 𝑢𝑛)⊤ ∈ R𝑛×𝑟 : ⟨𝑢𝑖, 𝜎𝑖⟩ = 0, ∀𝑖 ∈ [𝑛]

}︀
.

The Riemannian gradient of 𝑓 on this manifold can be computed by the projection of

its Euclidean gradient onto the tangent bundle. In particular, let 𝒫⊥
𝜎 : R𝑛×𝑟 → 𝑇𝜎ℳ𝑟

denote the projection operator from the Euclidean space to the tangent space of 𝜎. When

applied to a given matrix 𝑤 = (𝑤1, . . . , 𝑤𝑛)⊤ ∈ R𝑛×𝑟, this projection operator yields

𝒫⊥
𝜎 (𝑤) = (𝑤1 − ⟨𝜎1, 𝑤1⟩𝜎1, . . . , 𝑤𝑛 − ⟨𝜎𝑛, 𝑤𝑛⟩𝜎𝑛)⊤,

= 𝑤 −Diag(diag(𝑤𝜎⊤))𝜎.

Therefore, the Riemannian gradient of 𝑓 at 𝜎 can be computed as follows

grad𝑓(𝜎) = 𝒫⊥
𝜎 (∇𝑓(𝜎)) = 2(𝐴− Λ)𝜎,

where Λ = Diag(diag(𝐴𝜎𝜎⊤)). Or equivalently, the Riemannian gradient of 𝑓 at 𝜎 can be

explicitly expressed as follows

grad𝑓(𝜎) = 2 (𝑔1 − ⟨𝜎1, 𝑔1⟩𝜎1, . . . , 𝑔𝑛 − ⟨𝜎𝑛, 𝑔𝑛⟩𝜎𝑛)⊤,

and its magnitude is given by

‖grad𝑓(𝜎)‖2F = 2
𝑛∑︁

𝑖=1

‖𝑔𝑖 − ⟨𝜎𝑖, 𝑔𝑖⟩𝜎𝑖‖2 = 2
𝑛∑︁

𝑖=1

(︀
‖𝑔𝑖‖2 − ⟨𝜎𝑖, 𝑔𝑖⟩2

)︀
. (6.1.1)

Using the same approach, we can calculate the Riemannian Hessian of 𝑓 at 𝜎 along

the direction of a vector 𝑢 ∈ 𝑇𝜎ℳ𝑟 by projecting the directional derivative of the gradient

vector field onto the tangent space of 𝜎 as follows

Hess𝑓(𝜎)[𝑢] = 𝒫⊥(D grad𝑓(𝜎)[𝑢]),

101

where D grad𝑓(𝜎)[𝑢] denotes the directional gradient of grad𝑓(𝜎) along the direction 𝑢.

This yields

Hess𝑓(𝜎)[𝑢] = 𝒫⊥(︀2(𝐴− Λ)𝑢− 2Diag(diag(𝐴𝜎𝑢⊤ + 𝐴𝑢𝜎⊤))𝜎
)︀

= 𝒫⊥(2(𝐴− Λ)𝑢),

(6.1.2)

and in particular, for any 𝑢 ∈ 𝑇𝜎ℳ𝑟, we have

⟨𝑢,Hess𝑓(𝜎)[𝑢]⟩ = 2⟨𝑢, (𝐴− Λ)𝑢⟩. (6.1.3)

The geodesics 𝑡 ↦→ 𝜎(𝑡) (i.e., curves of shortest path with zero acceleration) can be

expressed as a function of 𝜎 = 𝜎(0) ∈ℳ𝑟 and 𝑢 ∈ 𝑇𝜎ℳ𝑟 as follows

𝜎𝑖(𝑡) = 𝜎𝑖 cos(‖𝑢𝑖‖𝑡) +
𝑢𝑖
‖𝑢𝑖‖

sin(‖𝑢𝑖‖𝑡). (6.1.4)

This geodesic can be thought as the curve on the manifold that are obtained by moving

from 𝜎 ∈ ℳ𝑟 towards the direction pointed by 𝑢 ∈ 𝑇𝜎ℳ𝑟. According to this definition,

the exponential map Exp𝜎 : 𝑇𝜎ℳ𝑟 →ℳ𝑟 corresponds to evaluating the point at 𝑡 = 1 on

the geodesic function, i.e., letting 𝜎′ = Exp𝜎(𝑢), where 𝑢 ∈ 𝑇𝜎ℳ𝑟, we have

𝜎′
𝑖 = 𝜎𝑖 cos(‖𝑢𝑖‖) +

𝑢𝑖
‖𝑢𝑖‖

sin(‖𝑢𝑖‖).

According to this geodesic map, we can also define the following geodesic distance between

two points 𝜎 and 𝜎′ on the manifold:

dist(𝜎, 𝜎′) =

(︃
𝑛∑︁

𝑖=1

(arccos ⟨𝜎𝑖, 𝜎′
𝑖⟩)2
)︃1/2

. (6.1.5)

More specifically, letting 𝜎′ = Exp𝜎(𝑢), we obtain

dist(𝜎, 𝜎′) =

(︃
𝑛∑︁

𝑖=1

(arccos ⟨𝜎𝑖, 𝜎𝑖 cos ‖𝑢𝑖‖⟩)2
)︃1/2

= ‖𝑢‖F.

102

Projection to the tangent space 𝑇𝜎ℳ𝑟 at 𝜎 𝒫⊥
𝜎 (𝑤) = 𝑤 −Diag(diag(𝑤𝜎⊤))𝜎

Riemannian gradient at 𝜎 grad𝑓(𝜎) = 2(𝐴− Λ)𝜎
Riemannian Hessian at 𝜎 along 𝑢 ∈ 𝑇𝜎ℳ𝑟 Hess𝑓(𝜎)[𝑢] = 𝒫⊥(2(𝐴− Λ)𝑢)

Geodesic 𝑡→ 𝜎(𝑡) 𝜎𝑖(𝑡) = 𝜎𝑖 cos(‖𝑢𝑖‖𝑡) + 𝑢𝑖

‖𝑢𝑖‖ sin(‖𝑢𝑖‖𝑡)
Exponential map 𝜎′ = Exp𝜎(𝑢) 𝜎′

𝑖 = 𝜎𝑖 cos(‖𝑢𝑖‖) + 𝑢𝑖

‖𝑢𝑖‖ sin(‖𝑢𝑖‖)

Table 6.1: Summary of certain definitions stated in Section 6.1.1.

Similarly, the distance between a point 𝜎 and a non-empty, closed and (geodesically) convex

set Ω can be found as

dist(𝜎,Ω) = min
𝜎′∈Ω

dist(𝜎, 𝜎′).

6.1.2 Global Rate of Convergence

In this section, we show that the CD method is globally convergent to a first-order station-

ary point of the problem (Non-CVX) with a sublinear rate. As a first step to prove the

convergence of the CD method, we observe that the function values of the iterates gener-

ated by the CD method is a non-decreasing sequence. The increase in the function value

per iteration (before reaching to stationarity) can be explicitly computed as we present in

the following lemma.

Lemma 6.1. Suppose at the 𝑘-th iteration of the CD method, 𝑖𝑘-th block is chosen (with

some coordinate selection rule). Then, the CD method yields the following ascent on the

objective value:

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) = 2
(︀
‖𝑔𝑘𝑖𝑘‖ − ⟨𝜎

𝑘
𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩

)︀
≥ 0.

Proof According to the decomposition in (6.0.1), we can compute the objective function

103

as follows:

𝑓(𝜎𝑘+1) = 2⟨𝜎𝑘+1
𝑖𝑘

, 𝑔𝑘+1
𝑖𝑘
⟩+

∑︁

𝑖 ̸=𝑖𝑘

∑︁

𝑗 ̸=𝑖,𝑖𝑘

𝐴𝑖𝑗⟨𝜎𝑘+1
𝑖 , 𝜎𝑘+1

𝑗 ⟩,

= 2⟨𝜎𝑘+1
𝑖𝑘

, 𝑔𝑘𝑖𝑘⟩+
∑︁

𝑖 ̸=𝑖𝑘

∑︁

𝑗 ̸=𝑖,𝑖𝑘

𝐴𝑖𝑗⟨𝜎𝑘
𝑖 , 𝜎

𝑘
𝑗 ⟩, (6.1.6)

where the latter equality follows since 𝑔𝑘+1
𝑖𝑘

= 𝑔𝑘𝑖𝑘 and all the terms in the sum are indepen-

dent of 𝜎𝑘+1
𝑖𝑘

. After adding and subtracting 2⟨𝜎𝑘
𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩ to the right-hand side of (6.1.6), we

obtain

𝑓(𝜎𝑘+1) = 𝑓(𝜎𝑘) + 2
(︀
⟨𝜎𝑘+1

𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩ − ⟨𝜎

𝑘
𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩

)︀
.

By the update rule of the algorithm, we have 𝜎𝑘+1
𝑖𝑘

= 𝑔𝑘𝑖𝑘
⧸︀
‖𝑔𝑘𝑖𝑘‖, and plugging this value in

the above equation concludes the proof.

In the following theorem, we consider the CD method with greedy coordinate selection

and show that its functional ascent (see Lemma 6.1) can be related to the norm of the

Riemannian gradient of the function evaluated at the current iterate. By doing so, we

prove that the CD method returns a solution with arbitrarily small Riemannian gradient.

Theorem 6.2. Let 𝑓 * = max‖𝜎𝑖‖=1,∀𝑖∈[𝑛] 𝑓(𝜎). Then, for any 𝐾 ≥ 1, CD with greedy

coordinate selection yields the following guarantee

min
𝑘∈[𝐾−1]

‖grad𝑓(𝜎𝑘)‖2F ≤
2𝑛‖𝐴‖1(𝑓 * − 𝑓(𝜎0))

𝐾
. (6.1.7)

Proof From Lemma 6.1, we have

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) = 2
(︀
‖𝑔𝑘𝑖𝑘‖ − ⟨𝜎

𝑘
𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩

)︀
= 2 max

𝑖∈[𝑛]

(︀
‖𝑔𝑘𝑖 ‖ − ⟨𝜎𝑘

𝑖 , 𝑔
𝑘
𝑖 ⟩
)︀
,

where the latter equality follows by the greedy coordinate selection rule. We can rewrite

104

this equation as follows:

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) = max
𝑖∈[𝑛]

2‖𝑔𝑘𝑖 ‖
(︀
‖𝑔𝑘𝑖 ‖ − ⟨𝜎𝑘

𝑖 , 𝑔
𝑘
𝑖 ⟩
)︀

‖𝑔𝑘𝑖 ‖
,

≥ max
𝑖∈[𝑛]

‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘
𝑖 , 𝑔

𝑘
𝑖 ⟩2

‖𝑔𝑘𝑖 ‖
,

where the inequality follows since ‖𝑔𝑘𝑖 ‖ ≥ ⟨𝜎𝑘
𝑖 , 𝑔

𝑘
𝑖 ⟩ for all 𝜎𝑘

𝑖 ∈ R𝑟. Lower bounding the

maximum with the mean of its arguments, we get

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ 1

𝑛

𝑛∑︁

𝑖=1

‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘
𝑖 , 𝑔

𝑘
𝑖 ⟩2

‖𝑔𝑘𝑖 ‖
. (6.1.8)

The ‖𝑔𝑘𝑖 ‖ term in the denominator in (6.1.8) can be upper bounded as follows

‖𝑔𝑘𝑖𝑘‖ ≤
∑︁

𝑗 ̸=𝑖𝑘

|𝐴𝑖𝑘𝑗|‖𝜎𝑘
𝑗 ‖ ≤ ‖𝐴‖1. (6.1.9)

Using this bound in (6.1.8), we get

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ 1

𝑛‖𝐴‖1

𝑛∑︁

𝑖=1

(︀
‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘

𝑖 , 𝑔
𝑘
𝑖 ⟩2
)︀

=
‖grad𝑓(𝜎𝑘)‖2F

2𝑛‖𝐴‖1
. (6.1.10)

In order to conclude (6.1.7), we assume the contrary that ‖grad𝑓(𝜎𝑘)‖2F > 𝜖 for all 𝑘 ∈
[𝐾 − 1]. Then, using the boundedness of 𝑓 , we observe that

𝑓 * − 𝑓(𝜎0) ≥ 𝑓(𝜎𝐾)− 𝑓(𝜎0) =
𝐾−1∑︁

𝑘=0

[︀
𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘)

]︀
.

Using the functional ascent bound of CD in (6.1.10), we get

𝑓 * − 𝑓(𝜎0) ≥
𝐾−1∑︁

𝑘=0

‖grad𝑓(𝜎𝑘)‖2F
2𝑛‖𝐴‖1

>
𝐾𝜖

2𝑛‖𝐴‖1
,

where the latter inequality follows by the assumption. Then, by contradiction, the algo-

105

rithm returns a solution with ‖grad𝑓(𝜎𝑘)‖2F ≤ 𝜖, for some 𝑘 ∈ [𝐾 − 1], provided that

𝐾 ≥ 2𝑛‖𝐴‖1(𝑓 * − 𝑓(𝜎0))

𝜖
.

Using a similar approach to Theorem 6.2, we show in the following corollary that the

CD method with uniform and importance sampling attains a similar sublinear convergence

rate in expectation. The proof of this corollary follows similar lines to the proof of Theorem

6.2, hence is deferred to Section 6.6.1.

Corollary 6.3. Let 𝑓 * = max‖𝜎𝑖‖=1,∀𝑖∈[𝑛] 𝑓(𝜎). Then, for any 𝐾 ≥ 1, randomized CD

yields the following guarantee

min
𝑘∈[𝐾−1]

E‖grad𝑓(𝜎𝑘)‖2F ≤
2𝐿(𝑓 * − 𝑓(𝜎0))

𝐾
, (6.1.11)

where

𝐿 =

⎧
⎪⎨
⎪⎩
𝑛‖𝐴‖1, for uniform sampling,

‖𝐴‖1,1, for importance sampling.
(6.1.12)

We can observe from (6.1.7), (6.1.11) and (6.1.12) that the CD method with uniform

sampling attains the same sublinear rate as the CD method with greedy coordinate selection

in expectation as they both require at most
⌈︀(︀

2𝑛‖𝐴‖1(𝑓 * − 𝑓(𝜎0))
)︀
/𝜖
⌉︀

iterations to return

a solution 𝜎 satisfying ‖grad𝑓(𝜎)‖2F ≤ 𝜖. On the other hand, we see that the CD method

with importance sampling enjoys a tighter convergence rate compared to the CD method

with uniform sampling, as ‖𝐴‖1,1 ≤ 𝑛‖𝐴‖1 for all 𝐴 ∈ R𝑛×𝑛.

6.1.3 Local Rate of Convergence

Although the CD method enjoys the sublinear convergence rates presented in Section 6.1.2,

it is numerically observed that the rate of convergence is linear when 𝜎𝑘 is close to a local

106

maximum [75, 148]. In this section, we investigate this behavior and prove that indeed

CD attains a linear convergence rate around a local maximum under the quadratic decay

condition on the objective function, which is classically defined as follows [6, 26]: Consider

the unconstrained maximization problem: max𝑥 𝜙(𝑥), and let Ω�̄� denote the set of local

maximizers with objective value 𝜙(�̄�). Then, the quadratic decay condition is said to be

satisfied at �̄� for 𝜙, if there exists constants 𝜇, 𝛿 > 0 such that 𝜙(𝑥) ≤ 𝜙(�̄�)−𝜇 dist2(𝑥,Ω�̄�),

for all 𝑥 such that ‖𝑥− �̄�‖ ≤ 𝛿, where dist measures the distance between point 𝑥 and set

Ω�̄�.

For the constrained optimization problem that we are considering in (Non-CVX), this

definition needs to be slightly reworked. In particular, let 𝜎 be a local maximum of

(Non-CVX) and consider the Taylor expansion of Exp𝜎(𝑢) around 𝜎:

𝑓(Exp𝜎(𝑢)) = 𝑓(𝜎) +
1

2
⟨𝑢,Hess𝑓(𝜎)[𝑢]⟩+𝒪

(︀
‖𝑢‖3F

)︀
,

where the first-order term is zero as 𝜎 is a local maximum. Then, for a sufficiently small

neighborhood of 𝜎, the quadratic decay condition is satisfied if and only if there exists

a constant 𝜇 > 0 such that ⟨𝑢,Hess𝑓(𝜎)[𝑢]⟩ ≤ −𝜇 dist2(Exp𝜎(𝑢),Ω𝜎), for all Exp𝜎(𝑢)

sufficiently close to 𝜎, where Ω𝜎 is the set on which 𝑓 has constant value 𝑓(𝜎). Assume

for the sake of simplicity that 𝜎 is a strict local maximum, i.e., Ω𝜎 = {𝜎}. Then, the

distance between Exp𝜎(𝑢) and 𝜎 can be found as the norm of the tangent vector that

connects these two points via the geodesic curve, i.e., dist(Exp𝜎(𝑢), 𝜎) = ‖𝑢‖F. Therefore,

the quadratic decay condition is satisfied if and only if there exists a constant 𝜇 > 0 such

that ⟨𝑢,Hess𝑓(𝜎)[𝑢]⟩ ≤ −𝜇‖𝑢‖2F for all 𝑢 ∈ 𝑇𝜎ℳ𝑟, where we note that the condition that

Exp𝜎(𝑢) is sufficiently close to 𝜎 is dropped considering the limit as 𝑢→ 0.

Unfortunately, no local maximum is a strict local maximum for the problem (Non-CVX).

To observe this, let O(𝑟) = {𝑄 ∈ R𝑟×𝑟 : 𝑄⊤𝑄 = 𝑄𝑄⊤ = 𝐼} denote the orthogonal group

in dimension 𝑟. Then, it can be observed that 𝑓(𝜎𝑄) = ⟨𝐴, 𝜎 𝑄𝑄⊤𝜎⊤⟩ = ⟨𝐴, 𝜎𝜎⊤⟩ = 𝑓(𝜎),

for any 𝑄 ∈ O(𝑟). Therefore, in order to measure the distance between Exp𝜎(𝑢) and Ω𝜎,

107

we define the following equivalence relation ∼:

𝜎 ∼ 𝜎′ ⇐⇒ ∃𝑄 ∈ 𝑂(𝑟) : 𝜎 = 𝜎′𝑄. (6.1.13)

This equivalence relation induces a quotient space denoted byℳ𝑟/ ∼ and we let [𝜎] denote

the equivalence class of a given matrix 𝜎 ∈ℳ𝑟. According to this definition, 𝑓 has constant

value of 𝑓(𝜎) on the set [𝜎], i.e., Ω𝜎 = [𝜎]. We let 𝒱𝜎 ⊂ 𝑇𝜎ℳ𝑟 denote the tangent space

to the equivalence class [𝜎], which can be found as 𝒱𝜎 = {𝜎𝐵 : 𝐵 ∈ R𝑟×𝑟 and 𝐵⊤ =

−𝐵}.1 Therefore, dist(Exp𝜎(𝑢), [𝜎]) = ‖𝑢‖F if the closest point to Exp𝜎(𝑢) in [𝜎] is 𝜎,

or equivalently dist(Exp𝜎(𝑢), [𝜎]) = ‖𝑢‖F if 𝑢 ∈ 𝑇𝜎ℳ𝑟 ∖ 𝒱𝜎. Consequently, we say that

quadratic decay is satisfied at 𝜎 for 𝑓 if Hess𝑓(𝜎) is negative definite on the orthogonal

complement of 𝒱𝜎 in 𝑇𝜎ℳ𝑟. The formal statement of this definition is as follows.

Definition 6.4 (Quadratic Decay). Let 𝜎 be a local maximum of (Non-CVX). Quadratic

decay condition is said to be satisfied at 𝜎 for 𝑓 if there exists a constant 𝜇 > 0 such that

⟨𝑢,Hess𝑓(𝜎)[𝑢]⟩ ≤ −𝜇‖𝑢‖2F, for all 𝑢 ∈ 𝑇𝜎ℳ𝑟 ∖ 𝒱𝜎, (6.1.14)

where 𝒱𝜎 is the tangent space to the equivalence class [𝜎].

In the following theorem, we present the linear convergence rate of the CD method

under the quadratic decay condition. We defer the validity of this condition to Section

6.1.4 where we show that quadratic decay generically (over the set of matrices 𝐴) holds for

𝑓 when 𝑟 is sufficiently large.

Theorem 6.5. Let �̄� be a limit point of the CD method and assume that �̄� is a local

maximum that satisfies the quadratic decay condition. If 𝜎0 is sufficiently close to the

equivalent class [�̄�], then the iterates generated by the CD method with greedy coordinate

1Note that the dimension of 𝒱𝜎 depends on the rank of 𝜎, and hence the quotient space is not a manifold.

108

selection enjoy the following linear convergence rate

𝑓(�̄�)− 𝑓(𝜎𝑘+1) ≤
(︂

1− 𝜇

4𝑛2‖𝐴‖1

)︂(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
. (6.1.15)

Proof We first discuss the outline of the proof for clarity. By (6.1.10), we have the

following functional ascent bound on the iterates of the algorithm

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ ‖grad𝑓(𝜎𝑘)‖2F
2𝑛‖𝐴‖1

. (6.1.16)

In order to prove linear convergence, our aim is to show that ‖grad𝑓(𝜎𝑘)‖2F ≥ 𝑐(𝑓(�̄�)−𝑓(𝜎𝑘))

for some positive constant 𝑐 such that 𝑐 < 2𝑛‖𝐴‖1, in a neighborhood around the limit

points of the iterates generated by the algorithm. To prove this, we consider the Taylor

approximation of ‖grad𝑓(𝜎𝑘)‖2F and 𝑓(𝜎𝑘) around 𝜎 ∈ [�̄�], where 𝜎 is the closest point to

𝜎𝑘 in the set �̄�. In the remainder of this proof, we show that the desired inequality holds

by relating the most significant terms in these Taylor expansions. We defer bounding the

higher-order terms to Section 6.6.2 in order not to distract the reader from the content.

Let �̄� be the limit point of a subsequence {𝜎𝑘ℓ}𝑘ℓ≥0 that contains 𝜎𝑘. Then, we consider

the solution 𝜎 ∈ [�̄�] such that 𝜎 is the projection of 𝜎𝑘 onto [�̄�], i.e., dist(𝜎, 𝜎𝑘) ≤ dist(𝜎′, 𝜎𝑘)

for all 𝜎′ ∈ [�̄�]. Then, by construction there exists �̄� ∈ 𝑇𝜎ℳ𝑟 ∖𝒱𝜎 such that Exp𝜎(�̄�) = 𝜎𝑘.

For ease of presentation, we let 𝑢 = �̄�/‖�̄�‖F denote the normalized tangent vector and

consider the following geodesic to describe 𝜎𝑘:

𝜎𝑘
𝑖 = 𝜎𝑖 cos(‖𝑢𝑖‖𝑡) +

𝑢𝑖
‖𝑢𝑖‖

sin(‖𝑢𝑖‖𝑡), (6.1.17)

where it can be observed that 𝑡 = ‖�̄�‖F recovers the original exponential map 𝜎𝑘 = Exp𝜎(�̄�).

The second order Taylor approximation to (6.1.17) yields (note that 𝑡 = ‖�̄�‖F < 1, when 𝜎

and 𝜎𝑘 are sufficiently close):

𝜎𝑘
𝑖 = 𝜎𝑖 + 𝑡𝑢𝑖 −

𝑡2

2
‖𝑢𝑖‖2𝜎𝑖 +𝒪

(︀
𝑡3
)︀
,

109

and using this approximation, we obtain

𝑔𝑘𝑖 = 𝑔𝑖 + 𝑡𝑣𝑖 −
𝑡2

2
𝑔𝑖 +𝒪

(︀
𝑡3
)︀
,

where

𝑣𝑘𝑖 =
∑︁

𝑗 ̸=𝑖

𝐴𝑖𝑗𝑢𝑗 and 𝑔𝑖 =
∑︁

𝑗 ̸=𝑖

𝐴𝑖𝑗‖𝑢𝑗‖2𝜎𝑗.

This yields the following Taylor approximation to ‖grad𝑓(𝜎𝑘)‖2F:

‖grad𝑓(𝜎𝑘)‖2F = 2
𝑛∑︁

𝑖=1

(︁
‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘

𝑖 , 𝑔
𝑘
𝑖 ⟩

2
)︁

= 2
𝑛∑︁

𝑖=1

(︃
‖𝑔𝑖 + 𝑡𝑣𝑖 −

𝑡2

2
𝑔𝑖‖2 − ⟨𝜎𝑖 + 𝑡𝑢𝑖 −

𝑡2

2
‖𝑢𝑖‖2𝜎𝑖, 𝑔𝑖 + 𝑡𝑣𝑖 −

𝑡2

2
𝑔𝑖⟩

2
)︃

+𝒪
(︀
𝑡3
)︀
,

= 2
𝑛∑︁

𝑖=1

{︀
‖𝑔𝑖‖2 + 2𝑡⟨𝑔𝑖, 𝑣𝑖⟩ − 𝑡2⟨𝑔𝑖, 𝑔𝑖⟩+ 𝑡2‖𝑣𝑖‖2

−
(︂
⟨𝜎𝑖, 𝑔𝑖⟩+ 𝑡⟨𝜎𝑖, 𝑣𝑖⟩ −

𝑡2

2
⟨𝜎𝑖, 𝑔𝑖⟩+ 𝑡⟨𝑢𝑖, 𝑔𝑖⟩+ 𝑡2⟨𝑢𝑖, 𝑣𝑖⟩ −

𝑡2

2
‖𝑢𝑖‖2⟨𝜎𝑖, 𝑔𝑖⟩

)︂2
}︃

+𝒪
(︀
𝑡3
)︀
.

Observe that as 𝜎 is a local maximum, we have 𝜎𝑖 = 𝑔𝑖/‖𝑔𝑖‖ for all 𝑖 ∈ [𝑛]. This follows

since the first-order stationarity condition implies 𝜎𝑖 = ±𝑔𝑖/‖𝑔𝑖‖ for all 𝑖 ∈ [𝑛]; and having

𝜎𝑖 = −𝑔𝑖/‖𝑔𝑖‖ for some 𝑖 ∈ [𝑛] conflicts with the assumption that 𝜎 is a local maximum as

replacing 𝜎𝑖 with any other feasible point on the sphere increases the objective function.

We also have that ⟨𝜎𝑖, 𝑢𝑖⟩ = 0 for all 𝑖 ∈ [𝑛], as 𝑢 ∈ 𝑇𝜎ℳ𝑟. Using these facts in the above

110

equality, we get

‖grad𝑓(𝜎𝑘)‖2F = 2
𝑛∑︁

𝑖=1

[︂
‖𝑔𝑖‖2 + 2𝑡‖𝑔𝑖‖⟨𝜎𝑖, 𝑣𝑖⟩ − 𝑡2‖𝑔𝑖‖⟨𝜎𝑖, 𝑔𝑖⟩+ 𝑡2‖𝑣𝑖‖2

−
(︂
‖𝑔𝑖‖+ 𝑡⟨𝜎𝑖, 𝑣𝑖⟩ −

𝑡2

2
⟨𝜎𝑖, 𝑔𝑖⟩+ 𝑡2⟨𝑢𝑖, 𝑣𝑖⟩ −

𝑡2

2
‖𝑢𝑖‖2‖𝑔𝑖‖

)︂2]︂
+𝒪

(︀
𝑡3
)︀
,

= 2
𝑛∑︁

𝑖=1

[︂
‖𝑔𝑖‖2 + 2𝑡‖𝑔𝑖‖⟨𝜎𝑖, 𝑣𝑖⟩ − 𝑡2‖𝑔𝑖‖⟨𝜎𝑖, 𝑔𝑖⟩+ 𝑡2‖𝑣𝑖‖2

−
(︂
‖𝑔𝑖‖2 + 2𝑡‖𝑔𝑖‖⟨𝜎𝑖, 𝑣𝑖⟩ − 𝑡2‖𝑔𝑖‖⟨𝜎𝑖, 𝑔𝑖⟩+ 2𝑡2‖𝑔𝑖‖⟨𝑢𝑖, 𝑣𝑖⟩

− 𝑡2‖𝑢𝑖‖2‖𝑔𝑖‖2 + 𝑡2⟨𝜎𝑖, 𝑣𝑖⟩2
)︂]︂

+𝒪
(︀
𝑡3
)︀
,

= 2𝑡2
𝑛∑︁

𝑖=1

(︀
‖𝑣𝑖‖2 − ⟨𝜎𝑖, 𝑣𝑖⟩2 − 2‖𝑔𝑖‖⟨𝑢𝑖, 𝑣𝑖⟩+ ‖𝑢𝑖‖2‖𝑔𝑖‖2

)︀
+𝒪

(︀
𝑡3
)︀
. (6.1.18)

Since ⟨𝜎𝑖, 𝑢𝑖⟩ = 0 for all 𝑖 ∈ [𝑛], we have by the Pythagorean theorem that

‖𝑣𝑖‖2 − ⟨𝜎𝑖, 𝑣𝑖⟩2 − ⟨
𝑢𝑖
‖𝑢𝑖‖

, 𝑣𝑖⟩
2

≥ 0.

Using this inequality in (6.1.18), we get

‖grad𝑓(𝜎𝑘)‖2F ≥ 2𝑡2
𝑛∑︁

𝑖=1

(︂
⟨ 𝑢𝑖‖𝑢𝑖‖

, 𝑣𝑖⟩
2

− 2‖𝑔𝑖‖⟨𝑢𝑖, 𝑣𝑖⟩+ ‖𝑢𝑖‖2‖𝑔𝑖‖2
)︂

+𝒪
(︀
𝑡3
)︀
,

= 2𝑡2
𝑛∑︁

𝑖=1

(︂
‖𝑢𝑖‖‖𝑔𝑖‖ − ⟨

𝑢𝑖
‖𝑢𝑖‖

, 𝑣𝑖⟩
)︂2

+𝒪
(︀
𝑡3
)︀
. (6.1.19)

In order to lower bound (6.1.19) by 𝑐(𝑓(𝜎) − 𝑓(𝜎𝑘)), we consider the second order Taylor

111

approximation of 𝑓(𝜎𝑘), which can be written as follows

𝑓(𝜎𝑘) =
𝑛∑︁

𝑖=1

⟨𝜎𝑘
𝑖 , 𝑔

𝑘
𝑖 ⟩,

=
𝑛∑︁

𝑖=1

⟨𝜎𝑖 + 𝑡𝑢𝑖 −
𝑡2

2
‖𝑢𝑖‖2𝜎𝑖, 𝑔𝑖 + 𝑡𝑣𝑖 −

𝑡2

2
𝑔𝑖⟩+𝒪

(︀
𝑡3
)︀
,

=
𝑛∑︁

𝑖=1

(︂
⟨𝜎𝑖, 𝑔𝑖⟩+ 𝑡⟨𝜎𝑖, 𝑣𝑖⟩ −

𝑡2

2
⟨𝜎𝑖, 𝑔𝑖⟩+ 𝑡⟨𝑢𝑖, 𝑔𝑖⟩+ 𝑡2⟨𝑢𝑖, 𝑣𝑖⟩ −

𝑡2

2
‖𝑢𝑖‖2⟨𝜎𝑖, 𝑔𝑖⟩

)︂
+𝒪

(︀
𝑡3
)︀
.

Similar to the previous derivations, using the fact that 𝜎𝑖 = 𝑔𝑖/‖𝑔𝑖‖ and ⟨𝜎𝑖, 𝑢𝑖⟩ = 0 for all

𝑖 ∈ [𝑛], we obtain

𝑓(𝜎𝑘) = 𝑓(𝜎) +
𝑛∑︁

𝑖=1

(︂
𝑡⟨𝜎𝑖, 𝑣𝑖⟩ −

𝑡2

2
⟨𝜎𝑖, 𝑔𝑖⟩+ 𝑡2⟨𝑢𝑖, 𝑣𝑖⟩ −

𝑡2

2
‖𝑢𝑖‖2⟨𝜎𝑖, 𝑔𝑖⟩

)︂
+𝒪

(︀
𝑡3
)︀
,

= 𝑓(𝜎) +
𝑛∑︁

𝑖=1

(︃
𝑡
∑︁

𝑗 ̸=𝑖

𝐴𝑖𝑗⟨𝜎𝑖, 𝑢𝑗⟩ −
𝑡2

2

∑︁

𝑗 ̸=𝑖

𝐴𝑖𝑗‖𝑢𝑗‖2⟨𝜎𝑖, 𝜎𝑗⟩+ 𝑡2⟨𝑢𝑖, 𝑣𝑖⟩ −
𝑡2

2
‖𝑢𝑖‖2⟨𝜎𝑖, 𝑔𝑖⟩

)︃

+𝒪
(︀
𝑡3
)︀
,

= 𝑓(𝜎) + 𝑡
𝑛∑︁

𝑗=1

∑︁

𝑖 ̸=𝑗

𝐴𝑗𝑖⟨𝜎𝑖, 𝑢𝑗⟩ −
𝑡2

2

𝑛∑︁

𝑗=1

∑︁

𝑖 ̸=𝑗

𝐴𝑗𝑖‖𝑢𝑗‖2⟨𝜎𝑖, 𝜎𝑗⟩

+ 𝑡2
𝑛∑︁

𝑖=1

(︂
⟨𝑢𝑖, 𝑣𝑖⟩ −

1

2
‖𝑢𝑖‖2⟨𝜎𝑖, 𝑔𝑖⟩

)︂
+𝒪

(︀
𝑡3
)︀
,

where the last line follows since 𝐴 is symmetric. Using the definition 𝑔𝑗 =
∑︀

𝑖 ̸=𝑗 𝐴𝑗𝑖𝜎𝑖 and

𝜎𝑖 = 𝑔𝑖/‖𝑔𝑖‖ in the above inequality yields

𝑓(𝜎𝑘) = 𝑓(𝜎) + 𝑡
𝑛∑︁

𝑗=1

⟨𝑔𝑗, 𝑢𝑗⟩ −
𝑡2

2

𝑛∑︁

𝑗=1

‖𝑢𝑗‖2⟨𝑔𝑗, 𝜎𝑗⟩+ 𝑡2
𝑛∑︁

𝑖=1

(︂
⟨𝑢𝑖, 𝑣𝑖⟩ −

1

2
‖𝑢𝑖‖2⟨𝜎𝑖, 𝑔𝑖⟩

)︂

+𝒪
(︀
𝑡3
)︀
,

= 𝑓(𝜎) + 𝑡2
𝑛∑︁

𝑖=1

(︀
⟨𝑢𝑖, 𝑣𝑖⟩ − ‖𝑢𝑖‖2‖𝑔𝑖‖

)︀
+𝒪

(︀
𝑡3
)︀
. (6.1.20)

112

Reorganizing terms, we get

𝑓(�̄�)− 𝑓(𝜎𝑘) = 𝑓(𝜎)− 𝑓(𝜎𝑘) = 𝑡2
𝑛∑︁

𝑖=1

(︀
‖𝑢𝑖‖2‖𝑔𝑖‖ − ⟨𝑢𝑖, 𝑣𝑖⟩

)︀
+𝒪

(︀
𝑡3
)︀
. (6.1.21)

Turning back our attention to (6.1.19), we can lower bound the right-hand side as follows

‖grad𝑓(𝜎𝑘)‖2F ≥ 2𝑡2
𝑛∑︁

𝑖=1

1

‖𝑢𝑖‖2
(︀
‖𝑢𝑖‖2‖𝑔𝑖‖ − ⟨𝑢𝑖, 𝑣𝑖⟩

)︀2
+𝒪

(︀
𝑡3
)︀
,

≥ 2𝑡2
𝑛∑︁

𝑖=1

(︀
‖𝑢𝑖‖2‖𝑔𝑖‖ − ⟨𝑢𝑖, 𝑣𝑖⟩

)︀2
+𝒪

(︀
𝑡3
)︀
,

≥ 2𝑡2

𝑛

(︃
𝑛∑︁

𝑖=1

(︀
‖𝑢𝑖‖2‖𝑔𝑖‖ − ⟨𝑢𝑖, 𝑣𝑖⟩

)︀
)︃2

+𝒪
(︀
𝑡3
)︀
,

where the second inequality follows since ‖𝑢𝑖‖2 ≤ ‖𝑢‖2F = 1 and the last inequality follows

since (
∑︀𝑛

𝑖=1 𝑎𝑖)
2 ≤ 𝑛

∑︀𝑛
𝑖=1 𝑎

2
𝑖 , for all 𝑎𝑖 ∈ R, 𝑖 ∈ [𝑛]. Using the second order approximation

derived in (6.1.21) in the above inequality, we obtain

‖grad𝑓(𝜎𝑘)‖2F ≥
𝑓(�̄�)− 𝑓(𝜎𝑘)

𝑛

𝑛∑︁

𝑖=1

2
(︀
‖𝑢𝑖‖2‖𝑔𝑖‖ − ⟨𝑢𝑖, 𝑣𝑖⟩

)︀
+𝒪

(︀
𝑡3
)︀
,

=
2⟨𝑢, (Λ− 𝐴)𝑢⟩

𝑛

(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
+𝒪

(︀
𝑡3
)︀
,

where Λ = Diag(‖𝑔1‖, . . . , ‖𝑔𝑛‖). Since we have 2⟨𝑢, (𝐴− Λ)𝑢⟩ ≤ −𝜇‖𝑢‖2F by the quadratic

decay condition, we conclude that

‖grad𝑓(𝜎𝑘)‖2F ≥
𝜇

𝑛

(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
+𝒪

(︀
𝑡3
)︀
. (6.1.22)

This implies that whenever 𝜎𝑘 is sufficiently close to 𝜎, i.e., whenever 𝑡 is sufficiently small

(cf. (6.1.17)), the remainder in the Taylor approximation, i.e., the 𝒪(𝑡3) terms, will be

dominated by 𝜇
𝑛

(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
. In particular, if 𝜎0 is sufficiently close to �̄� to satisfy

𝒪(𝑡3) ≥ − 𝜇
2𝑛

(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
in the above inequality (see Section 6.6.2 for a proof of this),

113

we then have

‖grad𝑓(𝜎𝑘)‖2F ≥
𝜇

2𝑛

(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
. (6.1.23)

Combining this inequality with (6.1.16), we get

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ 𝜇

4𝑛2‖𝐴‖1
(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
. (6.1.24)

Rearranging terms in the above inequality concludes the proof.

The linear convergence rate of the CD method with greedy coordinate selection in

Theorem 6.5 can be extended for importance sampling and uniform sampling as we highlight

in the following (its proof follows similar lines to the proofs of Theorem 6.5 and Corollary

6.3 and hence is omitted).

Corollary 6.6. Let the conditions in Theorem 6.5 hold. Then, the iterates generated by

the CD method enjoys the local linear convergence rate

𝑓(�̄�)− E𝑓(𝜎𝑘) ≤ (1− 𝜌)𝑘
(︀
𝑓(�̄�)− 𝑓(𝜎0)

)︀
,

where 𝜌 = 𝜇
4𝑛‖𝐴‖1,1 for importance sampling and 𝜌 = 𝜇

4𝑛2‖𝐴‖1 for uniform sampling.

6.1.4 Quadratic Decay Condition Holds Generically

In this section, we consider the quadratic decay condition, which is a condition on (Non-CVX),

and relate it to a condition on the original problem in (CVX). In particular, we characterize

sufficient conditions on (CVX) for quadratic decay to hold. We first provide some back-

ground on semidefinite programming (see for example [3], for a more detailed treatment of

114

this topic). Consider the SDP in (CVX):

maximize ⟨𝐴,𝑋⟩

subject to 𝑋𝑖𝑖 = 1, for 𝑖 ∈ [𝑛],

𝑋 ⪰ 0,

and its dual:

minimize ⟨1, 𝑦⟩

subject to 𝑍 = Diag(𝑦)− 𝐴,

𝑍 ⪰ 0,

where 1 is the vector of ones of appropriate size. Let 𝑋* and (𝑦*, 𝑍*) denote the primal

and dual optimal solutions, respectively, and let 𝑟* denote the rank of 𝑋*. Then, there

exists a 𝑄 ∈ 𝑂(𝑛) such that

𝑋* = 𝑄Diag(𝜆1, . . . , 𝜆𝑟* , 0, . . . , 0)𝑄⊤,

𝑍* = 𝑄Diag(0, . . . , 0, 𝜔𝑟*+1, . . . , 𝜔𝑛)𝑄⊤.

We say that strict complementarity holds if 𝜆𝑖 > 0 for 𝑖 = 1, . . . , 𝑟* and 𝜔𝑗 > 0 for

𝑗 = 𝑟* + 1, . . . , 𝑛. Furthermore, let 𝑄1 ∈ R𝑛×𝑟* and 𝑄2 ∈ R𝑛×(𝑛−𝑟*) respectively denote the

first 𝑟* columns and the last 𝑛−𝑟* columns of𝑄 and let 𝑞𝑖 denote the 𝑖th row of𝑄1, i.e., 𝑄1 =

[𝑞1, 𝑞2, . . . , 𝑞𝑛]⊤. Then, (𝑦*, 𝑍*) is dual nondegenerate if and only if {𝑞1𝑞⊤1 , . . . , 𝑞𝑛𝑞⊤𝑛 } spans

Sym𝑟* , i.e., the set of real symmetric 𝑟*×𝑟* matrices [3, Theorem 3]. Strict complementarity

and dual nondegeneracy are known to hold generically (over the set of possible cost matrices

𝐴 ∈ R𝑛×𝑛, i.e., they fail to hold only on a subset of measure zero of R𝑛×𝑛) as proven in [3,

Lemma 2]. Using these definitions, we show in the next theorem that strict complementarity

and dual nondegeneracy are sufficient for quadratic decay to hold at the maximizer of

(Non-CVX).

115

Theorem 6.7. Suppose that 𝑋* = 𝜎𝜎⊤ and (𝑦*, 𝑍*) = (diag(Λ),Λ − 𝐴) are respectively

primal and dual optimal solutions satisfying strict complementarity and dual nondegener-

acy, where Λ = Diag(‖𝑔1‖, . . . , ‖𝑔𝑛‖). If 𝑟 ≥ rank(𝑋*), then quadratic decay is satisfied for

𝑓 at all �̄� such that �̄��̄�⊤ = 𝑋*.

Proof Suppose rank(𝑋*) = 𝑟* ≤ 𝑟, then by strict complementarity, we have rank(𝑍*) =

𝑛− 𝑟* and kernel of 𝑍* is equal to the column space of 𝑋*, i.e., ker(𝑍*) = col(𝑋*). Since

𝑋* = 𝜎𝜎⊤ and 𝑍* = Λ − 𝐴, we equivalently have ker(Λ − 𝐴) = col(𝜎). As 𝑍* is feasible

for the dual, then 𝑍* = Λ− 𝐴 ⪰ 0, and consequently ⟨𝑢, (Λ− 𝐴)𝑢⟩ ≥ 0, for all 𝑢 ∈ R𝑛×𝑟.

Now consider the quadratic form ℎ(𝑢) := ⟨𝑢, (Λ− 𝐴)𝑢⟩ over 𝑢 ∈ 𝑇𝜎ℳ𝑟. First, we show

that ℎ(𝑢) = 0 if and only if 𝑢 ∈ 𝒱𝜎. The if direction of the proof is straightforward, i.e.,

(Λ− 𝐴)𝜎 = 0 and 𝑢 = 𝜎𝐵 for some skew-symmetric matrix 𝐵 directly imply ℎ(𝑢) = 0 for

all 𝑢 ∈ 𝒱𝜎. To show the only if direction, let 𝑢 ∈ 𝑇𝜎ℳ𝑟 such that ℎ(𝑢) = 0, or equivalently

tr((Λ−𝐴)𝑢𝑢⊤) = 0. As both Λ−𝐴 and 𝑢𝑢⊤ are positive semidefinite matrices, this implies

(Λ − 𝐴)𝑢 = 0. Therefore, columns of 𝑢 are in ker(Λ − 𝐴) = col(𝜎), which implies there

exists 𝐵 ∈ R𝑟×𝑟 such that 𝑢 = 𝜎𝐵 (note that it is not possible to make this claim without

strict complementarity). As 𝑢 ∈ 𝑇𝜎ℳ𝑟, then ⟨𝜎𝑖, 𝑢𝑖⟩ = ⟨𝜎𝑖, 𝐵⊤𝜎𝑖⟩ = ⟨𝜎𝑖𝜎⊤
𝑖 , 𝐵⟩ = 0, for

all 𝑖 ∈ [𝑛]. Without loss of generality, assume that the last 𝑟 − 𝑟* columns of 𝜎 are equal

to zero. Then, by dual nondegeneracy of the SDP, the principal submatrices of dimension

𝑟* × 𝑟* of {𝜎𝑖𝜎⊤
𝑖 }𝑛𝑖=1 spans 𝒮𝑟* . Consider the decomposition

𝐵 =

⎡
⎣𝐵11 𝐵12

𝐵21 𝐵22

⎤
⎦,

where 𝐵11 ∈ R𝑟*×𝑟* and 𝐵22 ∈ R(𝑟−𝑟*)×(𝑟−𝑟*). Then, the dual nondegeneracy implies that

𝐵11 is a skew-symmetric matrix, i.e., 𝐵⊤
11 = −𝐵11. Furthermore, as the last 𝑟− 𝑟* columns

of 𝜎 are equal to zero, then 𝑢 = 𝜎𝐵 does not depend on 𝐵21 and 𝐵22. Therefore, we can

pick 𝐵21 = −𝐵⊤
12 and 𝐵22 = 0 such that 𝐵 is a skew-symmetric matrix and observe that

𝑢 ∈ 𝒱𝜎. The same argument can be extended for all �̄� such that �̄��̄�⊤ = 𝑋* using parallel

transport.

116

To conclude the proof, we let {𝑢ℓ}𝑛(𝑟−1)
ℓ=1 be an orthogonal basis to 𝑇𝜎ℳ𝑟 such that

{𝑢ℓ}𝑠ℓ=1 is a basis for 𝒱𝜎. Let 𝑀 ∈ R𝑛(𝑟−1)×𝑛(𝑟−1) such that 𝑀𝑖𝑗 = ⟨𝑢𝑖, (Λ− 𝐴)𝑢𝑗⟩.
Consider the function ℎ̄ : R𝑛(𝑟−1) → R𝑛(𝑟−1) such that ℎ̄(𝑣) = 𝑣⊤𝑀𝑣 and observe that

ℎ̄(vec(𝑢)) = ℎ(𝑢). Let 𝐿 = [vec(𝑢1), . . . , vec(𝑢𝑠)]⊤ ∈ R𝑠×𝑛(𝑟−1), then 𝑣⊤𝑀𝑣 > 0 for all 𝑣

such that 𝐿𝑣 = 0 and 𝑣 ̸= 0. Then, by Finsler’s Lemma, 𝐿⊤
⊥𝑀𝐿⊥ ≻ 0, where 𝐿⊥ is any

basis of the right null-space of 𝐿. Equivalently, there exists 𝜇 > 0 such that ℎ(𝑢) ≥ 𝜇‖𝑢‖2F
for all 𝑢 ∈ 𝑇𝜎ℳ𝑟 ∖ 𝒱𝜎.

Remark 6.8. Finsler’s Lemma [36, Lemma C.11.2] also yields that 𝜇 = 𝜆min(𝐿⊤
⊥𝑀𝐿⊥).

This theorem states that quadratic decay holds for all global maxima of (Non-CVX)

provided that the rank of the factorization is large enough so that the global maximum

values of (CVX) and (Non-CVX) are equal to one another. For this case, the set of all global

maxima is an equivalence class corresponding to a solution since strict complementarity and

dual nondegeneracy imply that the primal solution of (CVX) is unique. On top of this, when

𝑟 ≥
√

2𝑛, it is known that (see [32, Theorem 2]) any local maximum is global generically

(i.e., for almost all cost matrices 𝐴). As strict complementarity and dual nondegeneracy

also hold generically for (CVX), then consequently, when 𝑟 ≥
√

2𝑛, quadratic decay holds

for all local maxima generically as we highlight in the following corollary.

Corollary 6.9. If 𝑟 ≥
√

2𝑛, then quadratic decay holds for all local maxima generically.

6.2 Approximately Achieving the Maximum Value of

(CVX)

Our results in Section 6.1 show that the CD method converges with a sublinear rate to a

first-order stationary solution and with a linear rate to a local maximum when initialized

sufficiently close to it. In this section, we incorporate a second-order oracle to the CD

method in order to obtain an algorithm, which we refer as CD2, that returns an approximate

117

second-order stationary point. More specifically, at the current iteration of the algorithm,

if the norm of the gradient is large, we take a CD step. Otherwise, we run a subroutine

(e.g., Lanczos method) to find the leading eigenvector of the Hessian. The main motivation

for designing such an algorithm is that the approximate second-order stationary solutions

provide 𝒪(1/𝑟) approximation to (CVX). In particular, call 𝜎 an 𝜀-approximate concave

point if ⟨𝑢,Hess𝑓(𝜎)[𝑢]⟩ ≤ 𝜀⟨𝑢, 𝑢⟩, for all 𝑢 ∈ 𝑇𝜎ℳ𝑟. Then, the following theorem provides

an approximation ratio between the approximate concave points of (Non-CVX) and the

maximum value of (CVX).

Theorem 6.10 ([101, Theorem 1]). Let 𝜎 ∈ℳ𝑟 be an 𝜀-approximate concave point. Then,

for any positive semidefinite 𝐴, the following approximation ratio holds:

𝑓(𝜎) ≥
(︂

1− 1

𝑟 − 1

)︂
SDP(𝐴)− 𝑛

2
𝜀, (6.2.1)

where SDP(𝐴) is the maximum value of (CVX).

This approximation ratio follows due to a generalization of the randomized rounding

approach (most famously presented by [67]) applied to an 𝜀-approximate concave point. In

fact, it can be shown that it is not possible to find a better approximation ratio (in terms

of the dependence on the rank of the factorization 𝑟) for all problems 𝐴. This result is

highlighted in the following theorem.

Theorem 6.11 ([37, Theorems 1 & 3]). Let SDP(𝐴) be the maximum value of (CVX)

and SDP𝑟(𝐴) be the maximum value of (Non-CVX). Then, for all positive semidefinite

matrices 𝐴, the following approximation ratio holds:

1 ≥ SDP𝑟(𝐴)

SDP(𝐴)
≥ 𝛾(𝑟) =

2

𝑟

(︂
Γ((𝑟 + 1)/2)

Γ(𝑟/2)

)︂2

= 1−Θ(1/𝑟), (6.2.2)

where Γ(𝑧) =
∫︀∞
0
𝑥𝑧−1𝑒−𝑥𝑑𝑥 is the Gamma function. Furthermore, under the unique games

conjecture, there is no polynomial-time algorithm that approximates SDP𝑟(𝐴) with an ap-

proximation ratio greater than 𝛾(𝑟) + 𝜀 for any 𝜀 > 0.

118

Algorithm 4: CD2
1: Initialize 𝜎0 ∈ R𝑛×𝑟 and calculate 𝑔0𝑖 =

∑︀
𝑗 ̸=𝑖𝐴𝑖𝑗𝜎

0
𝑗 , for all 𝑖 ∈ [𝑛].

2: for 𝑘 = 0, 1, 2, . . . do
3: Compute ‖grad𝑓(𝜎𝑘)‖2F = 2

∑︀𝑛
𝑖=1(‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘

𝑖 , 𝑔
𝑘
𝑖 ⟩

2
).

4: if ‖grad𝑓(𝜎𝑘)‖2F > 𝜀3/(1350‖𝐴‖1) then
5: 𝑖𝑘 ← arg max𝑖∈[𝑛](‖𝑔𝑘𝑖 ‖ − ⟨𝜎𝑘

𝑖 , 𝑔
𝑘
𝑖 ⟩)

6: 𝜎𝑘+1
𝑖𝑘
← 𝑔𝑘𝑖𝑘/‖𝑔𝑘𝑖𝑘‖.

7: 𝑔𝑘+1
𝑖 ← 𝑔𝑘𝑖 − 𝐴𝑖𝑖𝑘𝜎

𝑘
𝑖𝑘

+ 𝐴𝑖𝑖𝑘𝜎
𝑘+1
𝑖𝑘

, for all 𝑖 ̸= 𝑖𝑘.
8: else
9: Find a direction 𝑢𝑘 ∈ 𝑇𝜎𝑘ℳ𝑟 such that ⟨𝑢𝑘,Hess𝑓(𝜎𝑘)[𝑢𝑘]⟩ ≥ 𝜆max(Hess𝑓(𝜎𝑘))/2,

⟨𝑢𝑘, grad𝑓(𝜎𝑘)⟩ ≥ 0, and ‖𝑢𝑘‖F = 1.
10: 𝜎𝑘+1

𝑖 ← 𝜎𝑘
𝑖 cos(‖𝑢𝑘𝑖 ‖𝑡) +

𝑢𝑘
𝑖

‖𝑢𝑘
𝑖 ‖

sin(‖𝑢𝑘𝑖 ‖𝑡), for all 𝑖 ∈ [𝑛], where 𝑡 = 𝜀/(15‖𝐴‖1).
11: 𝑔𝑘+1

𝑖 ←∑︀
𝑗 ̸=𝑖𝐴𝑖𝑗𝜎

𝑘+1
𝑗 , for all 𝑖 ∈ [𝑛].

12: end if
13: end for

These results provide motivation to design algorithms with second-order guarantees to

solve (Non-CVX) and for this reason, we propose the CD2 algorithm (see Algorithm 4),

which can be described as follows: When the Frobenius norm of the Riemannian gradient

is at least as large as ‖grad𝑓(𝜎𝑘)‖2F > 𝜖3/(1350‖𝐴‖1), we use the CD method to update

the current solution. Otherwise, we assume that there is a second-order oracle that re-

turns an update direction 𝑢𝑘 ∈ 𝑇𝜎𝑘ℳ𝑟 such that ⟨𝑢𝑘,Hess𝑓(𝜎𝑘)[𝑢𝑘]⟩ ≥ 𝜆max(Hess𝑓(𝜎𝑘))/2,

⟨𝑢𝑘, grad𝑓(𝜎𝑘)⟩ ≥ 0, and ‖𝑢𝑘‖F = 1. Notice that finding a tangent vector 𝑢𝑘 that satisfy

⟨𝑢𝑘,Hess𝑓(𝜎𝑘)[𝑢𝑘]⟩ ≥ 𝜆max(Hess𝑓(𝜎𝑘))/2 and ‖𝑢𝑘‖F = 1 is an eigenpair problem and can

be solved efficiently using the Lanczos method. The condition ⟨𝑢𝑘, grad𝑓(𝜎𝑘)⟩ ≥ 0, on the

other hand, can always be satisfied by switching the sign of 𝑢𝑘. It is a straightforward

exercise to explicitly construct such a vector and it can be found in [30, Lemma 11]. Once

the update direction 𝑢𝑘 ∈ 𝑇𝜎𝑘ℳ𝑟 is obtained, we take a step towards this direction using

the geodesics on the manifold. When the step size is carefully chosen, it can be shown

that the objective value of the iterates generated by this procedure is a monotonically in-

creasing sequence until the approximate second-order stationary condition is satisfied. This

property is presented in the following lemma.

119

Lemma 6.12. Let 𝑢𝑘 ∈ 𝑇𝜎𝑘ℳ𝑟 such that ⟨𝑢𝑘,Hess𝑓(𝜎𝑘)[𝑢𝑘]⟩ ≥ 𝜀/2, ⟨𝑢𝑘, grad𝑓(𝜎𝑘)⟩ ≥ 0

and ‖𝑢𝑘‖F = 1. Consider the update rule given by the exponential map 𝜎𝑘+1 = Exp𝜎𝑘(𝑡𝑢𝑘),

i.e.,

𝜎𝑘+1
𝑖 = 𝜎𝑘

𝑖 cos(‖𝑢𝑘𝑖 ‖𝑡) +
𝑢𝑘𝑖
‖𝑢𝑘𝑖 ‖

sin(‖𝑢𝑘𝑖 ‖𝑡), for all 𝑖 ∈ [𝑛], (6.2.3)

where 𝑡 = 𝜀
15‖𝐴‖1 is the step size. These iterates satisfy the following ascent in the function

value:

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ 𝜀3

2700‖𝐴‖21
.

Proof The Taylor expansion of 𝜎𝑘+1 around 𝜎𝑘 is given by

𝜎𝑘+1
𝑖 = 𝜎𝑘

𝑖

∞∑︁

ℓ=0

(−1)ℓ

(2ℓ)!
(‖𝑢𝑘𝑖 ‖𝑡)2ℓ + 𝑢𝑘𝑖

∞∑︁

ℓ=0

(−1)ℓ

(2ℓ+ 1)!
(‖𝑢𝑘𝑖 ‖𝑡)2ℓ+1,

= 𝜎𝑘
𝑖 + 𝑡𝑢𝑘𝑖 −

𝑡2

2
‖𝑢𝑘𝑖 ‖2𝜎𝑘

𝑖 −
𝑡3

6
‖𝑢𝑘𝑖 ‖2𝑢𝑘𝑖 + . . . ,

and using this, we can compute the Taylor expansion of 𝑓(𝜎𝑘+1) as follows

𝑓(𝜎𝑘+1) =
𝑛∑︁

𝑖=1

∑︁

𝑗 ̸=𝑖

𝐴𝑖𝑗⟨𝜎𝑘+1
𝑖 , 𝜎𝑘+1

𝑗 ⟩,

=
𝑛∑︁

𝑖=1

∑︁

𝑗 ̸=𝑖

𝐴𝑖𝑗

[︂
⟨𝜎𝑘

𝑖 , 𝜎
𝑘
𝑗 ⟩+ 𝑡

(︀
⟨𝜎𝑘

𝑖 , 𝑢
𝑘
𝑗 ⟩+ ⟨𝑢𝑘𝑖 , 𝜎𝑘

𝑗 ⟩
)︀

+
𝑡2

2

(︀
−‖𝑢𝑘𝑗‖2⟨𝜎𝑘

𝑖 , 𝜎
𝑘
𝑗 ⟩+ 2⟨𝑢𝑘𝑖 , 𝑢𝑘𝑗 ⟩ − ‖𝑢𝑘𝑖 ‖2⟨𝜎𝑘

𝑖 , 𝜎
𝑘
𝑗 ⟩
)︀]︂
− 𝑡3𝛽,

where 𝛽 represents the third and higher-order terms. Using the definitions of 𝑓(𝜎𝑘) and its

derivatives, the above equality can be written as follows

𝑓(𝜎𝑘+1) = 𝑓(𝜎𝑘) + 𝑡⟨𝑢𝑘, grad𝑓(𝜎𝑘)⟩+
𝑡2

2
⟨𝑢𝑘,Hess𝑓(𝜎𝑘)[𝑢𝑘]⟩ − 𝑡3𝛽. (6.2.4)

Here, our aim is to upper bound the magnitude of the remainder term corresponding to the

third and higher-order terms. To this end, we upper bound the higher-order terms using

120

the Cauchy-Schwarz inequality for each term individually. This yields

|𝛽| ≤
𝑛∑︁

𝑖=1

∑︁

𝑗 ̸=𝑖

|𝐴𝑖𝑗|
(︃

∞∑︁

ℓ=3

𝑡ℓ−3

ℓ!
(‖𝑢𝑘𝑖 ‖+ ‖𝑢𝑘𝑗‖)ℓ

)︃
.

As 𝑡 < 1 and 𝐴 is a symmetric matrix, we can upper bound the right hand-side of the

above inequality as follows

|𝛽| ≤ ‖𝐴‖1
𝑛∑︁

𝑖=1

(︃
∞∑︁

ℓ=3

2ℓ

ℓ!
‖𝑢𝑘𝑖 ‖ℓ

)︃
.

Since ‖𝑢𝑖‖ ≤ 1 for all 𝑖 ∈ [𝑛], we consequently have

|𝛽| ≤ ‖𝐴‖1
(︃

𝑛∑︁

𝑖=1

‖𝑢𝑘𝑖 ‖2
)︃(︃

∞∑︁

ℓ=3

2ℓ

ℓ!

)︃
= ‖𝐴‖1

∞∑︁

ℓ=3

2ℓ

ℓ!
.

where the latter equality follows since ‖𝑢𝑘‖F = 1. Using
∑︀∞

ℓ=3
2ℓ

ℓ!
= 𝑒2− 5 ≤ 5/2 above and

plugging this bound back in (6.2.4), we obtain

𝑓(𝜎𝑘+1) ≥ 𝑓(𝜎𝑘) + 𝑡⟨𝑢𝑘, grad𝑓(𝜎𝑘)⟩+
𝑡2

2
⟨𝑢𝑘,Hess𝑓(𝜎𝑘)[𝑢𝑘]⟩ − 5‖𝐴‖1

2
𝑡3. (6.2.5)

Since we are given that ⟨𝑢𝑘, grad𝑓(𝜎𝑘)⟩ ≥ 0 and ⟨𝑢𝑘,Hess𝑓(𝜎𝑘)[𝑢𝑘]⟩ ≥ 𝜀/2, (6.2.5) yields

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ 𝜀

4
𝑡2 − 5‖𝐴‖1

2
𝑡3.

Choosing 𝑡 = 𝜀
15‖𝐴‖1 maximizes the right-hand side of the above inequality and concludes

the proof.

Using this ascent lemma, we next analyze the global convergence of Algorithm 4 in

Theorem 6.13, where we assume that we have access to a subroutine that solves the eigenpair

problem to the desired accuracy. We then implement the subroutine using the Lanczos

algorithm (presented in Algorithm 5) and present its convergence in Theorem 6.17. In

121

particular, we have the following theorem for the former case.

Theorem 6.13. Suppose that in Algorithm 4, the CD method is used at iteration 𝑘 when

‖grad𝑓(𝜎𝑘)‖2F ≥ 𝜀3/(1350‖𝐴‖1) and a second-order step (see lines 9-11 of Algorithm 4) is

taken otherwise. Let 𝐾CD denote the number of CD epochs made and let 𝐾H denote the

number of second-order oracle iterations made such that 𝐾 = 𝑛𝐾CD +𝐾H. Then, as soon

as

𝐾CD +𝐾H =

⌈︂
675𝑛‖𝐴‖21

𝜀2

⌉︂
, (6.2.6)

Algorithm 4 is guaranteed to return a solution 𝜎𝐾 that satisfies

𝑓(𝜎𝐾) ≥
(︂

1− 1

𝑟 − 1

)︂
SDP(𝐴)− 𝑛

2
𝜀, (6.2.7)

where SDP(𝐴) is the maximum value of (CVX).

Proof As we have proven previously in (6.1.10), each iteration of CD yields the following

functional ascent

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ ‖grad𝑓(𝜎𝑘)‖2F
2𝑛‖𝐴‖1

≥ 𝜀3

2700𝑛‖𝐴‖21
, (6.2.8)

where the latter inequality holds since the CD method is applied at iteration 𝑘 of Algorithm

4 if ‖grad𝑓(𝜎𝑘)‖2F ≥ 𝜀3

1350‖𝐴‖1 . Similarly, by Lemma 6.12, each iteration of the second-order

oracle yields the following functional ascent

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ 𝜀3

2700‖𝐴‖21
. (6.2.9)

Hence, an epoch (𝑛 iterations) of CD yields the same amount of function value improvement

as an iteration of the second-order oracle. Let

𝑓 * =

(︂
1− 1

𝑟 − 1

)︂
SDP(𝐴)

denote the desired approximation ratio and consider the approximation gap of the solution

122

𝜎 with respect to 𝑓 * that is given by

ℎ(𝜎) = 𝑓 * − 𝑓(𝜎). (6.2.10)

The aim of the algorithm is to find a solution 𝜎 that satisfy ℎ(𝜎) ≤ 𝜖 for some 𝜖 > 0.

Consider that the CD2 method runs 𝐾CD epochs of CD and 𝐾H iterations of the second-

order oracle such that a total of 𝐾 = 𝑛𝐾CD + 𝐾H iterations are made. Let 𝒢 = {0 ≤ 𝑘 ≤
𝐾 − 1 : ‖grad𝑓(𝜎𝑘)‖2F ≥ 𝜀3

1350‖𝐴‖1} be the set of iterations at which CD step is taken and

let ℋ = {0 ≤ 𝑘 ≤ 𝐾 − 1} ∖ 𝒢 be the set of iterations at which a second-order oracle step is

taken. Then, the approximation gap decreases at each iteration by the following amount:

ℎ(𝜎𝑘)− ℎ(𝜎𝑘+1) ≥ 𝜀3

2700‖𝐴‖21
𝛿𝑘, (6.2.11)

where, for notational simplicity, we introduced

𝛿𝑘 =

⎧
⎪⎨
⎪⎩

1
𝑛
, if 𝑘 ∈ 𝒢,

1, if 𝑘 ∈ ℋ.
(6.2.12)

By Theorem 6.10, we are given that any 𝜀-approximate concave point 𝜎 satisfies

ℎ(𝜎) ≤ 𝑛

2
𝜀. (6.2.13)

Hence, the right-hand side of (6.2.11) can be lower bounded as follows

ℎ(𝜎𝑘)− ℎ(𝜎𝑘+1) ≥ 2𝛿𝑘
675𝑛3‖𝐴‖21

ℎ3(𝜎𝑘). (6.2.14)

123

Considering the reciprocal of the approximation gap, we observe that

1

ℎ2(𝜎𝑘+1)
− 1

ℎ2(𝜎𝑘)
=

(︀
ℎ(𝜎𝑘)− ℎ(𝜎𝑘+1)

)︀(︀
ℎ(𝜎𝑘) + ℎ(𝜎𝑘+1)

)︀

ℎ2(𝜎𝑘+1)ℎ2(𝜎𝑘)
,

≥ 2𝛿𝑘
675𝑛3‖𝐴‖21

ℎ(𝜎𝑘)
(︀
ℎ(𝜎𝑘) + ℎ(𝜎𝑘+1)

)︀

ℎ2(𝜎𝑘+1)
, (6.2.15)

where the inequality follows by (6.2.14). As the right-hand side of (6.2.14) is lower bounded

by zero, we have ℎ(𝜎𝑘) ≥ ℎ(𝜎𝑘+1). Thus, we can lower bound the right-hand side of (6.2.15)

as follows

1

ℎ2(𝜎𝑘+1)
− 1

ℎ2(𝜎𝑘)
≥ 4𝛿𝑘

675𝑛3‖𝐴‖21
. (6.2.16)

Summing (6.2.16) over 𝑘 = 0, 1, . . . , 𝐾 − 1, we get

1

ℎ2(𝜎𝐾)
− 1

ℎ2(𝜎0)
≥

𝐾−1∑︁

𝑘=0

4𝛿𝑘
675𝑛3‖𝐴‖21

=
4

675𝑛3‖𝐴‖21
(𝐾CD +𝐾H).

Given that 𝜎0 is not an 𝜀-approximate concave point (or else, there is nothing to prove),

we have
1

ℎ2(𝜎𝐾)
≥ 4

675𝑛3‖𝐴‖21
(𝐾CD +𝐾H). (6.2.17)

Since by (6.2.13), we know that 1
ℎ(𝜎)
≥ 2

𝑛𝜀
for any 𝜀-approximate concave point, then as

soon as

𝐾CD +𝐾H ≥
675𝑛‖𝐴‖21

𝜀2
(6.2.18)

iterations made, the CD2 method is guaranteed to return an 𝜀-approximate concave point,

i.e., there exists a solution 𝜎𝑘 for some 1 < 𝑘 < 𝐾 such that ℎ(𝜎𝑘) ≤ 𝑛
2
𝜀. Since {ℎ(𝜎𝑘)}𝑘≥0

is a nonincreasing sequence (as we have already shown in (6.2.14)), then the final iterate of

the algorithm 𝜎𝐾 is guaranteed to satisfy ℎ(𝜎𝐾) ≤ 𝑛
2
𝜀, i.e., 𝜎𝐾 is an 𝜀-approximate concave

point.

124

In Theorem 6.13, 𝐾CD +𝐾H represents the total number of epochs to guarantee (6.2.7),

whereas the iteration counter of the algorithm is given in terms of 𝐾 = 𝑛𝐾CD +𝐾H. This

is due to the fact that, at each iteration of the CD method, a single row of 𝜎 is updated

and consequently 𝑛 iterations of the CD method add up to an epoch. On the other hand,

at each iteration of the second-order step, all entries of 𝜎 are updated, and hence each

second-order iteration is an epoch. In terms of the computational cost, an iteration of CD

requires 𝒪(𝑛𝑟) operations and consequently an epoch of CD requires 𝒪(𝑛2𝑟) operations,

whereas the second-order direction of update is typically found approximately via a few

iterations of the power method or the Lanczos method (see Theorem 6.17 for a more

rigorous treatment of this statement), which require 𝒪(𝑛2𝑟) operations. Therefore, an

epoch of Algorithm 4 typically has a computational complexity of 𝒪(𝑛2𝑟). Furthermore,

by Theorem 6.13, we observe that in at most 𝒪(𝑛‖𝐴‖21/𝜀2) epochs, Algorithm 4 returns

a solution that achieves the optimal approximation ratio up to an accuracy of 𝒪(𝑛𝜀). In

particular, picking 𝜀 = 2 SDP(𝐴)/(𝑛(𝑟 − 1)), we obtain the following corollary.

Corollary 6.14. Consider the setup of Theorem 6.13 and set 𝜀 = 2 SDP(𝐴)/(𝑛(𝑟 − 1)).

Then, as soon as

𝐾 =

⌈︂
675𝑛3(𝑟 − 1)2‖𝐴‖21

4(SDP(𝐴))2

⌉︂
, (6.2.19)

Algorithm 4 is guaranteed to return a solution 𝜎𝐾 that satisfies

𝑓(𝜎𝐾) ≥
(︂

1− 2

𝑟 − 1

)︂
SDP(𝐴).

Remark 6.15. In order to understand the total running time of CD2, consider the following

example. Let 𝐴 be the adjacency matrix of a random Erdos-Rényi graph on 𝑛 nodes and

⌊𝑐𝑛⌋ edges. The size of the maximum cut in this graph normalized by the number of nodes

can be bounded between [𝑐/2 + 0.4
√
𝑐, 𝑐/2 + 0.6

√
𝑐] with high probability as 𝑛 increases, for

all sufficiently large 𝑐 [65]. Since the maximum value of (CVX) is within 0.878 of the

maximum cut [67], we can then conclude that SDP(𝐴)/𝑛 = 𝒪(𝑐) with high probability. We

can also observe that for this graph, the degree of a node approximately follows a Poisson

125

distribution with mean 2𝑐, which can be approximated by a normal distribution with mean 2𝑐

and variance
√

2𝑐, for large 𝑐 [65]. Then, we have ‖𝐴‖1 = 𝒪(𝑐 log 𝑛) with high probability.

Therefore, for this problem, Corollary 6.14 states that in ̃︀𝒪(𝑛𝑟2) iterations (where tilde is

used to hide the logarithmic dependences), Algorithm 4 returns a 𝒪(1/𝑟)-optimal solution

with high probability. Per iteration computational cost of the algorithm is 𝒪(𝑛𝑟𝑐), which

results in a total running time of ̃︀𝒪(𝑛2𝑟3𝑐). In comparison, Klein-Lu method (see [82,

Lemma 4]) requires ̃︀𝒪(𝑛2𝑟3𝑐) running time and the matrix multiplicative weights method

(see [7, Theorem 3]) requires ̃︀𝒪(𝑛2𝑟3.5/𝑐) running time to return a 1/𝑟-optimal solution.

Remark 6.16. It has been shown in [120, Theorem 3.1] and [50, Theorem 3.5] that an

exactly feasible approximately second-order stationary point to (Non-CVX) is also approx-

imately optimal for (CVX). Our CD2 method returns such a solution and in light of these

results, we can conclude that it finds a high-quality solution to (CVX) with high probability

whenever 𝑟 ≥
√

2𝑛. See Figure 6-4 for an empirical validation of this result.

In the description of Algorithm 4 (see line 9), we assumed that we have access to a vector

in the tangent space of the current iterate, which satisfies certain second-order conditions.

In Algorithm 5, we describe an efficient subroutine to find this desired tangent vector

based on the Lanczos method. In particular, the Lanczos method returns a tridiagonal real

symmetric matrix whose diagonal entries are {𝛼ℓ}ℓ≥1 and off-diagonal entries are {𝛽ℓ}ℓ≥2,

where ℓ denotes the iteration counter in Algorithm 5. The entire spectrum of such a

Algorithm 5: Lanczos Method
1: Given 𝜎, define 𝐻[𝑢] = Hess𝑓(𝜎)[𝑢] + 4‖𝐴‖1𝑢. Initialize 𝑢1 ∈ 𝑇𝜎ℳ𝑟 such that
‖𝑢1‖F = 1. Let 𝛼1 = ⟨𝑢1, 𝐻[𝑢1]⟩ and 𝑟1 = 𝐻[𝑢1]− 𝛼1𝑢1.

2: for ℓ ≥ 2 do
3: 𝛽ℓ = ‖𝑟ℓ−1‖F
4: 𝑢ℓ = 𝑟ℓ−1/𝛽ℓ (If 𝛽ℓ = 0, pick 𝑢ℓ ⊥ span(𝑢1, . . . , 𝑢ℓ−1) arbitrarily)
5: 𝛼ℓ = ⟨𝑢ℓ, 𝐻[𝑢ℓ]⟩
6: 𝑟ℓ = 𝐻[𝑢ℓ]− 𝛼ℓ𝑢ℓ − 𝛽ℓ𝑢ℓ−1

7: end for

126

symmetric tridiagonal matrix can be efficiently computed in almost linear time in the

dimension of the matrix [51]. Consequently, letting 𝑦 denote the leading eigenvector of

this tridiagonal matrix, we can construct the desired tangent vector in Algorithm 4 as

𝑢𝑘 =
∑︀

ℓ≥1 𝑦ℓ𝑢ℓ. It is well-known that after 𝑛(𝑟 − 1) iterations, the Lanczos method

constructs the leading eigenvector exactly (since order-𝑛(𝑟− 1) Krylov subspace spans the

entire tangent space). Furthermore, it is also possible to analyze the performance of the

Lanczos method with early termination [84]. Building on these ideas, we characterize the

quality of the solution returned by Algorithms 4+5 in the following theorem, whose proof

can be found in Section 6.6.3.

Theorem 6.17. Suppose in Algorithm 5, we initialize 𝑢1 uniformly at random over 𝑇𝜎ℳ𝑟.

Let

ℓ* =

⎡
⎢⎢⎢

(︃
1

2
+ 2

√︂
‖𝐴‖1
𝜀

)︃
log

⎛
⎝

⌈︁
675𝑛‖𝐴‖21

𝜀2

⌉︁
1.648

√︀
𝑛(𝑟 − 1)

𝛿

⎞
⎠
⎤
⎥⎥⎥
,

and consider that Algorithm 5 is run for min(ℓ*, 𝑛(𝑟 − 1)) iterations at each call from

Algorithm 4. Then, after 𝐾 iterations (defined as in (6.2.19)), Algorithm 4 returns a

solution 𝜎𝐾 that satisfies

𝑓(𝜎𝐾) ≥
(︂

1− 1

𝑟 − 1

)︂
SDP(𝐴)− 𝑛

2
𝜀,

with probability at least 1− 𝛿.

6.3 Related Work

Landscape Results

There are numerous papers that analyze the landscape of the solution space of (Non-CVX).

In particular, it is known that (CVX) admits an optimal solution of rank 𝑟 such that

𝑟(𝑟 + 1)/2 ≤ 𝑛 [14, 114]. Using this observation, it has been shown in [40, 41, 76] that

when 𝑟 ≥
√

2𝑛, if 𝜎 is a rank deficient second-order stationary point of (Non-CVX), then

127

0

10

20

30

0 5 10 15 20

cyclic
greedy
importance
rnd−perm
uni−rnd

0

1

2

0 5 10 15 20

cyclic
greedy
importance
rnd−perm
uni−rnd

0

20

40

60

80

0 5 10 15 20

cyclic
greedy
importance
rnd−perm
uni−rnd

0

1

2

0 5 10 15 20

cyclic
greedy
importance
rnd−perm
uni−rnd

0

10

20

30

0.00 0.01 0.02 0.03 0.04 0.05

cyclic
greedy
importance
rnd−perm
uni−rnd

0

1

2

0.00 0.01 0.02 0.03 0.04 0.05

cyclic
greedy
importance
rnd−perm
uni−rnd

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8

cyclic
greedy
importance
rnd−perm
uni−rnd

0

1

2

0.0 0.2 0.4 0.6 0.8

cyclic
greedy
importance
rnd−perm
uni−rnd

<latexit sha1_base64="LH5hipLU2WTgU2zuDkvxOHBn680=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBDiJeyKosegF48RzAM2a5idzCZD5rHM9Aoh5DO8eFDEq1/jzb9xkuxBEwsaiqpuurviVHALvv/trayurW9sFraK2zu7e/ulg8Om1ZmhrEG10KYdE8sEV6wBHARrp4YRGQvWioe3U7/1xIzlWj3AKGWRJH3FE04JOClMKh3L+5I8Ds+6pbJf9WfAyyTISRnlqHdLX52epplkCqgg1oaBn0I0JgY4FWxS7GSWpYQOSZ+FjioimY3Gs5Mn+NQpPZxo40oBnqm/J8ZEWjuSseuUBAZ20ZuK/3lhBsl1NOYqzYApOl+UZAKDxtP/cY8bRkGMHCHUcHcrpgNiCAWXUtGFECy+vEya59XgsurfX5RrN3kcBXSMTlAFBegK1dAdqqMGokijZ/SK3jzwXrx372PeuuLlM0foD7zPH6pqkNk=</latexit> f
(�

k
)

<latexit sha1_base64="xRzvIcRVC0j8744U7VjPstooVuc=">AAACD3icbVDJSgNBEO2JW4xb1KOXxqDES5gRRY9BQTxGMAtkYujp6Zk06VnorhHDZP7Ai7/ixYMiXr1682/sLAdNfFDweK+KqnpOLLgC0/w2cguLS8sr+dXC2vrG5lZxe6ehokRSVqeRiGTLIYoJHrI6cBCsFUtGAkewptO/HPnNeyYVj8JbGMSsExA/5B6nBLTULR7aQxvYA6S+JG6GvbKtuB+Qu/6RPeymE+sqy7rFklkxx8DzxJqSEpqi1i1+2W5Ek4CFQAVRqm2ZMXRSIoFTwbKCnSgWE9onPmtrGpKAqU46/ifDB1pxsRdJXSHgsfp7IiWBUoPA0Z0BgZ6a9Ubif147Ae+8k/IwToCFdLLISwSGCI/CwS6XjIIYaEKo5PpWTHtEEgo6woIOwZp9eZ40jivWacW8OSlVL6Zx5NEe2kdlZKEzVEXXqIbqiKJH9Ixe0ZvxZLwY78bHpDVnTGd20R8Ynz8aS51V</latexit> kg
ra

d
f
(�

k
)k

F

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)
<latexit sha1_base64="Ta2n0V5BcklB1tGDi1KbbLuOvkg=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4Crui6DHoRW8RzAOSJcxOepMhsw9meoNhyZ948aCIV//Em3/jZLMHTSxoKKq66e7yEyk0Os63tbK6tr6xWdoqb+/s7u3bB4dNHaeKQ4PHMlZtn2mQIoIGCpTQThSw0JfQ8ke3M781BqVFHD3iJAEvZINIBIIzNFLPtrsIT5jdI6hcmfbsilN1ctBl4hakQgrUe/ZXtx/zNIQIuWRad1wnQS9jCgWXMC13Uw0J4yM2gI6hEQtBe1l++ZSeGqVPg1iZipDm6u+JjIVaT0LfdIYMh3rRm4n/eZ0Ug2svE1GSIkR8vihIJcWYzmKgfaGAo5wYwrgS5lbKh0wxboLQZROCu/jyMmmeV93LqvNwUandFHGUyDE5IWfEJVekRu5InTQIJ2PyTF7Jm5VZL9a79TFvXbGKmSPyB9bnD02zlBc=</latexit>

Iteration

<latexit sha1_base64="Ta2n0V5BcklB1tGDi1KbbLuOvkg=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4Crui6DHoRW8RzAOSJcxOepMhsw9meoNhyZ948aCIV//Em3/jZLMHTSxoKKq66e7yEyk0Os63tbK6tr6xWdoqb+/s7u3bB4dNHaeKQ4PHMlZtn2mQIoIGCpTQThSw0JfQ8ke3M781BqVFHD3iJAEvZINIBIIzNFLPtrsIT5jdI6hcmfbsilN1ctBl4hakQgrUe/ZXtx/zNIQIuWRad1wnQS9jCgWXMC13Uw0J4yM2gI6hEQtBe1l++ZSeGqVPg1iZipDm6u+JjIVaT0LfdIYMh3rRm4n/eZ0Ug2svE1GSIkR8vihIJcWYzmKgfaGAo5wYwrgS5lbKh0wxboLQZROCu/jyMmmeV93LqvNwUandFHGUyDE5IWfEJVekRu5InTQIJ2PyTF7Jm5VZL9a79TFvXbGKmSPyB9bnD02zlBc=</latexit>

Iteration

<latexit sha1_base64="Ta2n0V5BcklB1tGDi1KbbLuOvkg=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4Crui6DHoRW8RzAOSJcxOepMhsw9meoNhyZ948aCIV//Em3/jZLMHTSxoKKq66e7yEyk0Os63tbK6tr6xWdoqb+/s7u3bB4dNHaeKQ4PHMlZtn2mQIoIGCpTQThSw0JfQ8ke3M781BqVFHD3iJAEvZINIBIIzNFLPtrsIT5jdI6hcmfbsilN1ctBl4hakQgrUe/ZXtx/zNIQIuWRad1wnQS9jCgWXMC13Uw0J4yM2gI6hEQtBe1l++ZSeGqVPg1iZipDm6u+JjIVaT0LfdIYMh3rRm4n/eZ0Ug2svE1GSIkR8vihIJcWYzmKgfaGAo5wYwrgS5lbKh0wxboLQZROCu/jyMmmeV93LqvNwUandFHGUyDE5IWfEJVekRu5InTQIJ2PyTF7Jm5VZL9a79TFvXbGKmSPyB9bnD02zlBc=</latexit>

Iteration

<latexit sha1_base64="Ta2n0V5BcklB1tGDi1KbbLuOvkg=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4Crui6DHoRW8RzAOSJcxOepMhsw9meoNhyZ948aCIV//Em3/jZLMHTSxoKKq66e7yEyk0Os63tbK6tr6xWdoqb+/s7u3bB4dNHaeKQ4PHMlZtn2mQIoIGCpTQThSw0JfQ8ke3M781BqVFHD3iJAEvZINIBIIzNFLPtrsIT5jdI6hcmfbsilN1ctBl4hakQgrUe/ZXtx/zNIQIuWRad1wnQS9jCgWXMC13Uw0J4yM2gI6hEQtBe1l++ZSeGqVPg1iZipDm6u+JjIVaT0LfdIYMh3rRm4n/eZ0Ug2svE1GSIkR8vihIJcWYzmKgfaGAo5wYwrgS5lbKh0wxboLQZROCu/jyMmmeV93LqvNwUandFHGUyDE5IWfEJVekRu5InTQIJ2PyTF7Jm5VZL9a79TFvXbGKmSPyB9bnD02zlBc=</latexit>

Iteration

<latexit sha1_base64="oTFoEevll1T2Fwe8SNFEgZyGb+8=">AAACCnicbVDLSgMxFM3UV62vUZduokVwISVTFN0Uim5cVrAP6Awlk2ba0ExmTDJCGbp246+4caGIW7/AnX9jpp2Fth64cHLOveTe48ecKY3Qt1VYWl5ZXSuulzY2t7Z37N29looSSWiTRDySHR8rypmgTc00p51YUhz6nLb90XXmtx+oVCwSd3ocUy/EA8ECRrA2Us8+FLUqQqdQwhp0OaGMu+pe6rQqJtCV2btnl1EFTQEXiZOTMsjR6Nlfbj8iSUiFJhwr1XVQrL0US80Ip5OSmygaYzLCA9o1VOCQKi+dnjKBx0bpwyCSpoSGU/X3RIpDpcahbzpDrIdq3svE/7xuooNLL2UiTjQVZPZRkHCoI5jlAvtMUqL52BBMJDO7QjLEEhNt0iuZEJz5kxdJq1pxzivo9qxcv8rjKIIDcAROgAMuQB3cgAZoAgIewTN4BW/Wk/VivVsfs9aClc/sgz+wPn8A0sKZHw==</latexit>

n = 200, r = d
p

2ne

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

<latexit sha1_base64="npQnblQgF682MV+rWnGFPv3ymuY=">AAACC3icbVDLSgMxFM3UV62vUZduQovgQkqmKLopFN24rGAf0BlKJs20oZnMmGSEMnTvxl9x40IRt/6AO//GTDsLbT1w4eSce8m9x485Uxqhb6uwsrq2vlHcLG1t7+zu2fsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe344+vM7zxQqVgk7vQkpl6Ih4IFjGBtpL5dFnUHIXQKJaxDlxPKuKvupU5rYgpdmb37dgVV0QxwmTg5qYAczb795Q4ikoRUaMKxUj0HxdpLsdSMcDotuYmiMSZjPKQ9QwUOqfLS2S1TeGyUAQwiaUpoOFN/T6Q4VGoS+qYzxHqkFr1M/M/rJTq49FIm4kRTQeYfBQmHOoJZMHDAJCWaTwzBRDKzKyQjLDHRJr6SCcFZPHmZtGtV57yKbs8qjas8jiI4AmVwAhxwARrgBjRBCxDwCJ7BK3iznqwX6936mLcWrHzmEPyB9fkDRa6ZWA==</latexit>

n = 1000, r = d
p

2ne

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

Figure 6-1: Comparisons of different randomization schemes for 𝑛 ∈ {200, 1000} with
𝑟 = ⌈

√
2𝑛⌉.

𝜎 is a global maximum for (Non-CVX) and 𝑋 = 𝜎𝜎⊤ is a global maximum for (CVX).

In [33], the authors showed that when 𝑟 ≥
√

2𝑛, for almost all 𝐴, every 𝜎 that is a first-

order stationary point is rank deficient. In [50], the authors showed that the Burer-Monteiro

method can solve SDPs to any desired accuracy in polynomial time, in the setting of smooth

analysis. For arbitrary rank 𝑟, it is shown that all local maxima are within a 𝑛‖𝐴‖2/
√
𝑟

gap from the optimum of (CVX) [103], and any 𝜀-approximate concave point is within a

Rg(Non-CVX)/(𝑟−1)+𝑛𝜀/2 gap from the optimum of (CVX) [101], where Rg(Non-CVX)

is the range of the problem (Non-CVX), i.e., the difference between the maximum and the

minimum values of the objective in (Non-CVX).

Algorithms to Solve (Non-CVX)

Javanmard et al. [75] showed that when applied to solve (Non-CVX), Riemannian gradi-

ent ascent and block-coordinate maximization methods provide excellent numerical results,

yet no convergence guarantee is provided. Similar experimental results are also observed

128

in [148] for the block-coordinate maximization algorithm and in [101] for the Riemannian

gradient ascent algorithm. Concurrent to this work, in [148], the authors analyzed the

convergence of the deterministic block-coordinate maximization algorithm. In particular,

they showed that the deterministic block-coordinate maximization algorithm is asymptot-

ically convergent (see [148, Theorem 3.2]) and enjoys a local liner convergence with no

explicit rate estimates (see [148, Theorem 3.5]). They also proved that the deterministic

block-coordinate maximization approach converges to a local maximum generically under

random initialization using the center-stable manifold theorem similar to [90]. These results

hold under the assumption that the iterates generated by the algorithm satisfy a certain

condition that is seemingly impossible to verify without actually running the algorithm. To

alleviate this issue, the authors suggested using a coordinate ascent method with a suffi-

ciently small step size, for which the aforementioned convergence results hold without this

precarious assumption. In [30], the authors provided a global sublinear convergence rate

for the Riemannian trust-region method for general non-convex problems and these results

have been used in [32, 101] for the non-convex Burer-Monteiro approach. Augmented La-

grangian methods have been proposed to solve (Non-CVX) as well [40, 41], however these

methods do not benefit from separability of the manifold constraints, and hence are usually

slower [33].

Algorithms to Solve (CVX)

There also exist methods that solve (CVX) by exploiting its special structure [7, 66, 82, 136].

In particular, [82] reduces (CVX) to a sequence of approximate eigenpair computations

that is efficiently solved using the power method. In [7, 136], matrix multiplicative weights

algorithm is used to approximately solve (CVX), and these ideas are extended in [66]

using sketching techniques [141]. However, these methods require constructing 𝑋 ∈ Sym𝑛

explicitly, which is prohibitive when 𝑛 goes beyond a few thousands, whereas the Burer-

Monteiro approach we consider here easily scales to very large instances as the low-rank

factorization decreases the dimension of the problem from 𝒪(𝑛2) to 𝒪(𝑛𝑟) with 𝑟 ≪ 𝑛.

129

For time complexity comparison between these methods that are based on Lagrangian

relaxation and the Burer-Monteiro approach in this thesis, we refer to Corollary 6.14.

Other CD-Based Methods

Coordinate descent methods have been successfully applied to non-convex differentiable

optimization problems in several papers [143, 116, 125, 94]. In [143], the authors propose a

coordinate gradient descent approach that may be viewed as a hybrid of gradient-projection

and coordinate descent to minimize the sum of a smooth function and a convex separable

function. They analyze the greedy coordinate selection rule and present local linear con-

vergence, although no rate estimates are provided. [125] considers a similar composite but

convex optimization problem and provides explicit rate estimates. These results are then

generelized to non-convex problems by [116] and [94]. However, these approaches heavily

rely on the Euclidean geometry and cannot handle non-convex constraints, which is the

main focus of our thesis.

Computational Complexity Comparison

Per iteration computational cost of the CD method with uniform sampling is 𝒪(𝑛𝑟) as

after 𝑖𝑘 is chosen uniformly at random, 𝑔𝑘𝑖𝑘 can be computed in 2(𝑛 − 1)𝑟 floating point

operations. On the other hand, the CD method with importance sampling and greedy co-

ordinate selection requires all {‖𝑔𝑘𝑖 ‖}𝑛𝑖=1, which can be naively computed in 𝒪(𝑛2𝑟) floating

point operations per iteration. Instead, a smarter implementation is to keep both {𝜎𝑘
𝑖 }𝑛𝑖=1

and {𝑔𝑘𝑖 }𝑛𝑖=1’s in the memory (only the current iterates, not all the past ones) and up-

date them as presented in Algorithm 3, which can be done in 2(𝑛 − 1)𝑟 floating point

operations. Therefore, per iteration computational cost of the CD method with all three

coordinate selection rules is 𝒪(𝑛𝑟) for dense 𝐴 (i.e., when no structure is available on 𝐴).

However, in many SDP applications (such as Max-Cut and graphical model inference), 𝐴

is induced by a graph and letting 𝑑 denote the maximum degree of the graph that induces

𝐴, the computational cost of the CD method becomes 𝒪(𝑑𝑟). In comparison, per iteration

130

computational complexity of the Riemannian gradient ascent algorithm is 𝒪(𝑛2𝑟), whereas

the Riemannian trust-region algorithm runs a few iterations of a subroutine (e.g., power

method) to solve the trust-region subproblem, whose per iteration cost is typically 𝒪(𝑛2𝑟).

6.4 Numerical Results

In this section, we evaluate the empirical performance of the CD method. In what follows,

𝑛 is the dimension of the cost matrix 𝐴 ∈ R𝑛×𝑛, and 𝑟 refers to the rank of factorization.

All algorithms are implemented on Matlab and the experiments are run on a computer

with 2.9 GHz processor and 16 GB memory. RGD and RTR algorithms are implemented

using the Manopt package [31] with the default options and the algorithms are terminated

when the maximum allowed time is reached.

In all experiments, the cost matrix is generated as 𝐴 = (𝐺+𝐺⊤)/𝑛, where 𝐺𝑖𝑗 ∼ N(0, 1)

for all 𝑖 ̸= 𝑗, and 𝐺𝑖𝑖 = 0 for all 𝑖 ∈ [𝑛]. All experiments are based on 50 Monte Carlo

runs over the initialization. For each run, the initial iterate 𝜎0 ∈ R𝑛×𝑟 is the same for all

algorithms and each row of 𝜎0 is generated uniformly at random on 𝒮𝑟−1.

First, we compare various coordinate selection schemes for CD (see Algorithm 3). We

compare cyclic order 𝑖 = (1, 2, . . . , 𝑛), uniform random selection, random permutation or-

der (𝑖 follows a cyclic order of a uniformly random permutation of [𝑛]), greedy coordinate

selection, and selection by importance sampling. Figure 6-1 summarizes the results of our

experiments on 𝑛 ∈ {200, 1000} with 𝑟 = ⌈
√

2𝑛⌉. We observe that greedy coordinate

selection achieves higher function value after running each algorithm the same number of

iterations; yet, due to its high per-iteration cost, cyclic, uniformly random, and random

permutation selection rules perform better in terms of overall runtime complexity. Further-

more, randomized rules that do not cycle through all coordinates achieve lower function

values after running each algorithm the same number of iterations. This phenomenon is

observed for a number of numerical examples in different papers and unfortunately we do

not have a good theoretical understanding about this behavior except for a few preliminary

131

<latexit sha1_base64="LH5hipLU2WTgU2zuDkvxOHBn680=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBDiJeyKosegF48RzAM2a5idzCZD5rHM9Aoh5DO8eFDEq1/jzb9xkuxBEwsaiqpuurviVHALvv/trayurW9sFraK2zu7e/ulg8Om1ZmhrEG10KYdE8sEV6wBHARrp4YRGQvWioe3U7/1xIzlWj3AKGWRJH3FE04JOClMKh3L+5I8Ds+6pbJf9WfAyyTISRnlqHdLX52epplkCqgg1oaBn0I0JgY4FWxS7GSWpYQOSZ+FjioimY3Gs5Mn+NQpPZxo40oBnqm/J8ZEWjuSseuUBAZ20ZuK/3lhBsl1NOYqzYApOl+UZAKDxtP/cY8bRkGMHCHUcHcrpgNiCAWXUtGFECy+vEya59XgsurfX5RrN3kcBXSMTlAFBegK1dAdqqMGokijZ/SK3jzwXrx372PeuuLlM0foD7zPH6pqkNk=</latexit> f
(�

k
)

<latexit sha1_base64="xRzvIcRVC0j8744U7VjPstooVuc=">AAACD3icbVDJSgNBEO2JW4xb1KOXxqDES5gRRY9BQTxGMAtkYujp6Zk06VnorhHDZP7Ai7/ixYMiXr1682/sLAdNfFDweK+KqnpOLLgC0/w2cguLS8sr+dXC2vrG5lZxe6ehokRSVqeRiGTLIYoJHrI6cBCsFUtGAkewptO/HPnNeyYVj8JbGMSsExA/5B6nBLTULR7aQxvYA6S+JG6GvbKtuB+Qu/6RPeymE+sqy7rFklkxx8DzxJqSEpqi1i1+2W5Ek4CFQAVRqm2ZMXRSIoFTwbKCnSgWE9onPmtrGpKAqU46/ifDB1pxsRdJXSHgsfp7IiWBUoPA0Z0BgZ6a9Ubif147Ae+8k/IwToCFdLLISwSGCI/CwS6XjIIYaEKo5PpWTHtEEgo6woIOwZp9eZ40jivWacW8OSlVL6Zx5NEe2kdlZKEzVEXXqIbqiKJH9Ixe0ZvxZLwY78bHpDVnTGd20R8Ynz8aS51V</latexit> kg
ra

d
f
(�

k
)k

F

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

0

10

20

30

0.000 0.005 0.010 0.015

bcm2
cyclic
rgd
rtr
uni−rnd

0

1

2

0.000 0.005 0.010 0.015

bcm2
cyclic
rgd
rtr
uni−rnd

<latexit sha1_base64="oTFoEevll1T2Fwe8SNFEgZyGb+8=">AAACCnicbVDLSgMxFM3UV62vUZduokVwISVTFN0Uim5cVrAP6Awlk2ba0ExmTDJCGbp246+4caGIW7/AnX9jpp2Fth64cHLOveTe48ecKY3Qt1VYWl5ZXSuulzY2t7Z37N29looSSWiTRDySHR8rypmgTc00p51YUhz6nLb90XXmtx+oVCwSd3ocUy/EA8ECRrA2Us8+FLUqQqdQwhp0OaGMu+pe6rQqJtCV2btnl1EFTQEXiZOTMsjR6Nlfbj8iSUiFJhwr1XVQrL0US80Ip5OSmygaYzLCA9o1VOCQKi+dnjKBx0bpwyCSpoSGU/X3RIpDpcahbzpDrIdq3svE/7xuooNLL2UiTjQVZPZRkHCoI5jlAvtMUqL52BBMJDO7QjLEEhNt0iuZEJz5kxdJq1pxzivo9qxcv8rjKIIDcAROgAMuQB3cgAZoAgIewTN4BW/Wk/VivVsfs9aClc/sgz+wPn8A0sKZHw==</latexit>

n = 200, r = d
p

2ne
<latexit sha1_base64="npQnblQgF682MV+rWnGFPv3ymuY=">AAACC3icbVDLSgMxFM3UV62vUZduQovgQkqmKLopFN24rGAf0BlKJs20oZnMmGSEMnTvxl9x40IRt/6AO//GTDsLbT1w4eSce8m9x485Uxqhb6uwsrq2vlHcLG1t7+zu2fsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe344+vM7zxQqVgk7vQkpl6Ih4IFjGBtpL5dFnUHIXQKJaxDlxPKuKvupU5rYgpdmb37dgVV0QxwmTg5qYAczb795Q4ikoRUaMKxUj0HxdpLsdSMcDotuYmiMSZjPKQ9QwUOqfLS2S1TeGyUAQwiaUpoOFN/T6Q4VGoS+qYzxHqkFr1M/M/rJTq49FIm4kRTQeYfBQmHOoJZMHDAJCWaTwzBRDKzKyQjLDHRJr6SCcFZPHmZtGtV57yKbs8qjas8jiI4AmVwAhxwARrgBjRBCxDwCJ7BK3iznqwX6936mLcWrHzmEPyB9fkDRa6ZWA==</latexit>

n = 1000, r = d
p

2ne

0

20

40

60

80

0.00 0.05 0.10 0.15 0.20

bcm2
cyclic
rgd
rtr
uni−rnd

0

1

2

0.00 0.05 0.10 0.15 0.20

bcm2
cyclic
rgd
rtr
uni−rnd

<latexit sha1_base64="yjtsUBrYAQpeVxsetHCgfp8Yiq0=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBg5RsUfRSKHrxWMF+QLuUbJptQ7PZNckWytLf4cWDIl79Md78N6btHrT1wcDjvRlm5vmx4Npg/O3k1tY3Nrfy24Wd3b39g+LhUVNHiaKsQSMRqbZPNBNcsobhRrB2rBgJfcFa/uhu5rfGTGkeyUcziZkXkoHkAafEWMmTVRdjfIEUqqJKr1jCZTwHWiVuRkqQod4rfnX7EU1CJg0VROuOi2PjpUQZTgWbFrqJZjGhIzJgHUslCZn20vnRU3RmlT4KImVLGjRXf0+kJNR6Evq2MyRmqJe9mfif10lMcOOlXMaJYZIuFgWJQCZCswRQnytGjZhYQqji9lZEh0QRamxOBRuCu/zyKmlWyu5VGT9clmq3WRx5OIFTOAcXrqEG91CHBlB4gmd4hTdn7Lw4787HojXnZDPH8AfO5w9QuI/Z</latexit>

n = 1000, r = 2

0

20

40

60

80

0.00 0.05 0.10 0.15 0.20

bcm2
cyclic
rgd
rtr
uni−rnd

0.0

0.5

1.0

1.5

2.0

0.00 0.05 0.10 0.15 0.20

bcm2
cyclic
rgd
rtr
uni−rnd

<latexit sha1_base64="p2OxtmkRAGngGZOi1MxSb4rmMKM=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSJ4kJItFr0Uil48VrAf0C4lm2bb0Gx2TbKFsvR3ePGgiFd/jDf/jWm7B219MPB4b4aZeX4suDYYfztr6xubW9u5nfzu3v7BYeHouKmjRFHWoJGIVNsnmgkuWcNwI1g7VoyEvmAtf3Q381tjpjSP5KOZxMwLyUDygFNirOTJagVjfIkUqqJyr1DEJTwHWiVuRoqQod4rfHX7EU1CJg0VROuOi2PjpUQZTgWb5ruJZjGhIzJgHUslCZn20vnRU3RulT4KImVLGjRXf0+kJNR6Evq2MyRmqJe9mfif10lMcOOlXMaJYZIuFgWJQCZCswRQnytGjZhYQqji9lZEh0QRamxOeRuCu/zyKmmWS26lhB+uirXbLI4cnMIZXIAL11CDe6hDAyg8wTO8wpszdl6cd+dj0brmZDMn8AfO5w9W8I/d</latexit>

n = 5000, r = 2

0

50

100

150

0.00 0.25 0.50 0.75 1.00

bcm2
cyclic
rgd
rtr
uni−rnd

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00

bcm2
cyclic
rgd
rtr
uni−rnd

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)
<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)
<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

Figure 6-2: Performance of CD and CD2 (Algorithms 3 and 4) compared to other methods.
Here, RTR and RGD refer to Riemannian Trust Region and Riemannian Gradient Descent,
respectively.

results [72, 73, 88]. It would be an interesting future direction to theoretically understand

the slower convergence of randomized coordinate selection rules in practice.

Next, we evaluate the performance of these algorithms for 𝑛 ∈ {200, 1000, 5000} with

𝑟 = 2 and 𝑟 =
√

2𝑛. In Figure 6-2, empirical results illustrate the fast convergence of CD

and CD2 (see Algorithm 4) compared to RGD and RTR, for both 𝑟 = ⌈
√

2𝑛⌉ and 𝑟 = 2.

The numerical results indicate our algorithms return a high-quality solution much faster

than RGD and RTR regardless of the rank of the factorization is larger or smaller than the

Barvinok-Pataki bound.

We next compare the final performance of different methods after convergence. That is,

we run all algorithms sufficiently enough until their function value stabilize, and compare

the final value obtained. In Figure 6-3, we clearly observe that the final function values

obtained through CD2 (Algorithm 4 with Lanczos method) and RTR are larger than those

obtained by other algorithms. We also observe that even when the problem size is large

(e.g., 𝑛 = 20, 000), CD returns a desirable solution within ∼20 seconds, whereas it takes

132

approximately a minute for RTR to return such a solution.

Finally, we consider a random SDP with a planted solution. In particular, we consider

a matrix 𝑋 ⪰ 0 such that rank(𝑋) = 𝑟 and 𝑋 ∈ 𝒮𝑛 where 𝑛 = 𝑟(𝑟+1)
2

. We then generate a

MaxCut SDP for which 𝑋 is an optimal solution, i.e., we find a cost matrix 𝐴 in the normal

cone of 𝑋 (this requires solving an auxiliary SDP). For each 𝑟 ∈ {4, 7, 10}, we generate

100 random MaxCut SDPs as described above. We perform a Burer-Monteiro factorization

to these SDPs for a range of ranks in [𝑟 − 4, 𝑟 + 4]. We solve the resulting non-convex

problem using our CD2 algorithm. Figure 6-4 shows the percentage of experiments solved

correctly for each value of 𝑟. We consider a trial correct if the solution returned by CD2 is

sufficiently close to the maximizer of the SDP. Figure 6-4 shows that there is a sharp phase

transition at the Barvinok-Pataki bound. Above this bound, the solutions returned by our

CD2 algorithm is approximately optimal to (CVX) with high probability.

6.5 Discussion

In this chapter, we studied the Burer-Monteiro approach to solve large-scale SDPs. We

considered to solve this non-convex problem using the block-coordinate maximization al-

gorithm that is extremely simple to implement. We proved that for various coordinate

selection rules, CD attains a global sublinear convergence rate of 𝒪(1/𝜖) to guarantee

E‖grad𝑓(𝜎𝑘)‖2F ≤ 𝜖. We also showed the linear convergence of CD around a local max-

<latexit sha1_base64="LH5hipLU2WTgU2zuDkvxOHBn680=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBDiJeyKosegF48RzAM2a5idzCZD5rHM9Aoh5DO8eFDEq1/jzb9xkuxBEwsaiqpuurviVHALvv/trayurW9sFraK2zu7e/ulg8Om1ZmhrEG10KYdE8sEV6wBHARrp4YRGQvWioe3U7/1xIzlWj3AKGWRJH3FE04JOClMKh3L+5I8Ds+6pbJf9WfAyyTISRnlqHdLX52epplkCqgg1oaBn0I0JgY4FWxS7GSWpYQOSZ+FjioimY3Gs5Mn+NQpPZxo40oBnqm/J8ZEWjuSseuUBAZ20ZuK/3lhBsl1NOYqzYApOl+UZAKDxtP/cY8bRkGMHCHUcHcrpgNiCAWXUtGFECy+vEya59XgsurfX5RrN3kcBXSMTlAFBegK1dAdqqMGokijZ/SK3jzwXrx372PeuuLlM0foD7zPH6pqkNk=</latexit> f
(�

k
)

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec) <latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

<latexit sha1_base64="p2OxtmkRAGngGZOi1MxSb4rmMKM=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSJ4kJItFr0Uil48VrAf0C4lm2bb0Gx2TbKFsvR3ePGgiFd/jDf/jWm7B219MPB4b4aZeX4suDYYfztr6xubW9u5nfzu3v7BYeHouKmjRFHWoJGIVNsnmgkuWcNwI1g7VoyEvmAtf3Q381tjpjSP5KOZxMwLyUDygFNirOTJagVjfIkUqqJyr1DEJTwHWiVuRoqQod4rfHX7EU1CJg0VROuOi2PjpUQZTgWb5ruJZjGhIzJgHUslCZn20vnRU3RulT4KImVLGjRXf0+kJNR6Evq2MyRmqJe9mfif10lMcOOlXMaJYZIuFgWJQCZCswRQnytGjZhYQqji9lZEh0QRamxOeRuCu/zyKmmWS26lhB+uirXbLI4cnMIZXIAL11CDe6hDAyg8wTO8wpszdl6cd+dj0brmZDMn8AfO5w9W8I/d</latexit>

n = 5000, r = 2

<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)
<latexit sha1_base64="tn6ZaZICwuctt/WGcNxhJFfHP34=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0GIl7Arih6DXjxGyAuSJcxOOsmQ2QczvWpY8ylePCji1S/x5t84SfagiQUNRVU33V1+LIVGx/m2VlbX1jc2c1v57Z3dvX27cNDQUaI41HkkI9XymQYpQqijQAmtWAELfAlNf3Qz9Zv3oLSIwhqOY/ACNghFX3CGRurahQ7CI6Y1EQAtaeCnk65ddMrODHSZuBkpkgzVrv3V6UU8CSBELpnWbdeJ0UuZQsElTPKdREPM+IgNoG1oyALQXjo7fUJPjNKj/UiZCpHO1N8TKQu0Hge+6QwYDvWiNxX/89oJ9q+8VIRxghDy+aJ+IilGdJoD7QkFHOXYEMaVMLdSPmSKcTRp5U0I7uLLy6RxVnYvys7debFyncWRI0fkmJSISy5JhdySKqkTTh7IM3klb9aT9WK9Wx/z1hUrmzkkf2B9/gDGS5Ot</latexit>

Time (sec)

<latexit sha1_base64="mlDxu4LBy2emteDv2o4HGX8Cs44=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSJ4kLJbLHopFL14rGA/oF1LNs22odlkSbJKWfo/vHhQxKv/xZv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZWVtfWNzZzW/ntnd29/cLBYVPLRBHaIJJL1Q6wppwJ2jDMcNqOFcVRwGkrGN1M/dYjVZpJcW/GMfUjPBAsZAQbKz2Iatm1OEcKVVGlVyi6JXcGtEy8jBQhQ71X+Or2JUkiKgzhWOuO58bGT7EyjHA6yXcTTWNMRnhAO5YKHFHtp7OrJ+jUKn0USmVLGDRTf0+kONJ6HAW2M8JmqBe9qfif10lMeOWnTMSJoYLMF4UJR0aiaQSozxQlho8twUQxeysiQ6wwMTaovA3BW3x5mTTLJa9Scu8uirXrLI4cHMMJnIEHl1CDW6hDAwgoeIZXeHOenBfn3fmYt6442cwR/IHz+QPHS5AX</latexit>

n = 20000, r = 5

0

50

100

150

0 10 20 30

bcm2
cyclic
rgd
rtr
uni−rnd

165.0

167.5

170.0

172.5

25 26 27 28 29 30

bcm2
cyclic
rgd
rtr
uni−rnd 320

340

360

115 116 117 118 119 120

bcm2
cyclic
rgd
rtr
uni−rnd

0

100

200

300

0 25 50 75 100 125

bcm2
cyclic
rgd
rtr
uni−rnd

Figure 6-3: Comparing the final performance of different methods after (near) convergence.

133

0

25

50

75

100

r−4 r−3 r−2 r−1 r r+1 r+2 r+3 r+4
Rank of factorization

E
xp

er
im

en
ts

 s
ol

ve
d

(%
)

r=10, n=55
r=4, n=10
r=7, n=28

Figure 6-4: Phase transition in recovering the optimal solution of (CVX) by an approxi-
mately second-order stationary solution of (Non-CVX).

imum that satisfy the quadratic decay condition. We proved that the quadratic decay

condition generically holds for all local maxima provided that 𝑟 ≥
√

2𝑛. These are the first

precise rate estimates for the non-convex Burer-Monteiro approach in the literature to the

best of our knowledge. We then introduced a new algorithm called CD2 based on CD and

Lanczos methods. We showed that CD2 is guaranteed to return a solution that provides

1 − 𝒪(1/𝑟) approximation to the SDP without any assumptions on the cost matrix 𝐴,

where the 𝑟-dependence of this approximation is optimal under the unique games conjec-

ture. We also presented numerical results that verify our theoretical findings and show that

CD is faster than the state-of-the-art methods. Even though in this thesis, we only consid-

ered SDPs with diagonal constraints, it would be of interest to study the block-coordinate

maximization approach in more generic problems.

134

6.6 Additional Proofs

6.6.1 Proof of Corollary 6.3

Similar to the proof of Theorem 6.2, from Proposition 6.1, we have

𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) = 2
(︀
‖𝑔𝑘𝑖𝑘‖ − ⟨𝜎

𝑘
𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩

)︀
,

=
2‖𝑔𝑘𝑖𝑘‖

(︀
‖𝑔𝑘𝑖𝑘‖ − ⟨𝜎𝑘

𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩

)︀

‖𝑔𝑘𝑖𝑘‖
,

≥ ‖𝑔
𝑘
𝑖𝑘
‖2 − ⟨𝜎𝑘

𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩2

‖𝑔𝑘𝑖𝑘‖
, (6.6.1)

where the inequality follows since ‖𝑔𝑘𝑖𝑘‖ ≥ ⟨𝜎𝑘
𝑖𝑘
, 𝑔𝑘𝑖𝑘⟩, for all 𝜎𝑘

𝑖𝑘
∈ R𝑛×𝑟. Letting E𝑘 denote

the expectation over 𝑖𝑘 given 𝜎𝑘, we have

E𝑘𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥
𝑛∑︁

𝑖=1

𝑝𝑖
‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘

𝑖 , 𝑔
𝑘
𝑖 ⟩2

‖𝑔𝑘𝑖 ‖
.

In particular, when 𝑝𝑖 = 1
𝑛
, for all 𝑖 ∈ [𝑛] (i.e., for uniform sampling case), we have

E𝑘𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ 1

𝑛‖𝐴‖1

𝑛∑︁

𝑖=1

(︀
‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘

𝑖 , 𝑔
𝑘
𝑖 ⟩2
)︀
,

since ‖𝑔𝑘𝑖 ‖ ≤ ‖𝐴‖1, for all 𝑖 ∈ [𝑛] by (6.1.9). Therefore, we have

E𝑘𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ ‖grad𝑓(𝜎𝑘)‖2F
2𝑛‖𝐴‖1

. (6.6.2)

On the other hand, when 𝑝𝑖 =
‖𝑔𝑘𝑖 ‖∑︀𝑛
𝑗=1 ‖𝑔𝑘𝑗 ‖

(i.e., for importance sampling case), we have

E𝑘𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥
∑︀𝑛

𝑖=1 ‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘
𝑖 , 𝑔

𝑘
𝑖 ⟩2∑︀𝑛

𝑗=1 ‖𝑔𝑘𝑗 ‖
=
‖grad𝑓(𝜎𝑘)‖2F
2
∑︀𝑛

𝑗=1 ‖𝑔𝑘𝑗 ‖
.

135

Letting ‖𝐴‖1,1 =
∑︀𝑛

𝑖,𝑗=1 |𝐴𝑖𝑗| denote the 𝐿1,1 norm of matrix𝐴, we observe that
∑︀𝑛

𝑗=1 ‖𝑔𝑘𝑗 ‖ ≤
‖𝐴‖1,1, which in the above inequality yields

E𝑘𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘) ≥ ‖grad𝑓(𝜎𝑘)‖2F
2‖𝐴‖1,1

. (6.6.3)

In order to prove (6.1.11), which corresponds to uniform sampling case, we assume the

contrary that E‖grad𝑓(𝜎𝑘)‖2F > 𝜖, for all 𝑘 ∈ [𝐾 − 1]. Then, using the boundedness of 𝑓 ,

we get

𝑓 * − 𝑓(𝜎0) ≥ E𝑓(𝜎𝐾)− 𝑓(𝜎0) =
𝐾−1∑︁

𝑘=0

E
[︀
𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘)

]︀
=

𝐾−1∑︁

𝑘=0

E
[︀
E𝑘𝑓(𝜎𝑘+1)− 𝑓(𝜎𝑘)

]︀
.

Using the expected functional ascent of CD in (6.6.2) above, we get

𝑓 * − 𝑓(𝜎0) ≥
𝐾−1∑︁

𝑘=0

E‖grad𝑓(𝜎𝑘)‖2F
2𝑛‖𝐴‖1

>
𝐾𝜖

2𝑛‖𝐴‖1
, (6.6.4)

where the last inequality follows by the assumption. Then, by contradiction, the algorithm

returns a solution with E‖grad𝑓(𝜎𝑘)‖2F ≤ 𝜖, for some 𝑘 ∈ [𝐾 − 1], provided that

𝐾 ≥ 2𝑛‖𝐴‖1(𝑓 * − 𝑓(𝜎0))

𝜖
.

The proof of (6.1.12), which corresponds to importance sampling case, can be obtained by

using (6.6.3) (instead of (6.6.2)) in (6.6.4), and hence is omitted.

6.6.2 Rest of the Proof of Theorem 6.5

In order to quantify how close 𝜎0 and 𝜎 should be so that this convergence rate holds, we

need to derive explicit bounds on the higher order terms in (6.1.19) and (6.1.21), which we

136

do in the following. The Taylor expansion of 𝜎𝑘 around 𝜎 yields

𝜎𝑘
𝑖 = 𝜎𝑖 cos(‖𝑢𝑖‖𝑡) +

𝑢𝑖
‖𝑢𝑖‖

sin(‖𝑢𝑖‖𝑡),

= 𝜎𝑖

[︃
∞∑︁

ℓ=0

(−1)ℓ

(2ℓ)!
(‖𝑢𝑖‖𝑡)2ℓ

]︃
+

𝑢𝑖
‖𝑢𝑖‖

[︃
∞∑︁

ℓ=0

(−1)ℓ

(2ℓ+ 1)!
(‖𝑢𝑖‖𝑡)2ℓ+1

]︃
.

Using this expansion, we can compute 𝑓(𝜎𝑘) =
∑︀𝑛

𝑖,𝑗=1𝐴𝑖𝑗⟨𝜎𝑘
𝑖 , 𝜎

𝑘
𝑗 ⟩. The first three terms in

the expansion are already given in (6.1.20) as follows

𝑓(𝜎𝑘) = 𝑓(𝜎) + 𝑡2
𝑛∑︁

𝑖=1

(︀
⟨𝑢𝑖, 𝑣𝑖⟩ − ‖𝑢𝑖‖2‖𝑔𝑖‖

)︀
+ 𝛽𝑓 , (6.6.5)

where 𝛽𝑓 represents the higher order terms. In order to find an upper bound on |𝛽𝑓 |, we

use the Cauchy-Schwarz inequality in the higher order terms in the expansion of 𝑓(𝜎𝑘),

which yields the following bound

|𝛽𝑓 | ≤
𝑛∑︁

𝑖,𝑗=1

|𝐴𝑖𝑗|
(︃

∞∑︁

ℓ=3

𝑡ℓ

ℓ!
(‖𝑢𝑖‖+ ‖𝑢𝑗‖)ℓ

)︃
.

As ‖𝑢‖F = 1, we have ‖𝑢𝑖‖ ≤ 1 for all 𝑖 ∈ [𝑛], which implies

|𝛽𝑓 | ≤
𝑛∑︁

𝑖,𝑗=1

|𝐴𝑖𝑗|
(︃

∞∑︁

ℓ=3

𝑡ℓ

ℓ!
2ℓ

)︃
,

where we note that 𝑡 denotes the geodesic distance between 𝜎𝑘 and [�̄�] as highlighted in

(6.1.17). Assuming that 𝑡 ≤ 1, we obtain the following upper bound

|𝛽𝑓 | ≤ 𝑡3𝑛‖𝐴‖1
(︃

∞∑︁

ℓ=3

2ℓ

ℓ!

)︃
.

Using the inequality
∑︀∞

ℓ=3
2ℓ

ℓ!
= 𝑒2 − 5 ≤ 5/2 above, we get

|𝛽𝑓 | ≤
5𝑛‖𝐴‖1𝑡3

2
.

137

Plugging this value back in (6.6.5), we obtain

𝑓(𝜎𝑘) ≤ 𝑓(𝜎) + 𝑡2
𝑛∑︁

𝑖=1

(︀
⟨𝑢𝑖, 𝑣𝑖⟩ − ‖𝑢𝑖‖2‖𝑔𝑖‖

)︀
+

5𝑛‖𝐴‖1𝑡3
2

. (6.6.6)

Considering the same expansion for ‖grad𝑓(𝜎𝑘)‖2F = 2
∑︀𝑛

𝑖=1(‖𝑔𝑘𝑖 ‖2 − ⟨𝜎𝑘
𝑖 , 𝑔

𝑘
𝑖 ⟩

2
), we get

the following (see (6.1.19)):

‖grad𝑓(𝜎𝑘)‖2F = 2𝑡2
𝑛∑︁

𝑖=1

(︂
‖𝑢𝑖‖‖𝑔𝑖‖ − ⟨

𝑢𝑖
‖𝑢𝑖‖

, 𝑣𝑖⟩
)︂2

+ 𝛽𝑔, (6.6.7)

where 𝛽𝑔 represents the higher order terms. Upper bounding each higher order terms using

the Cauchy-Schwarz inequality as follows, we obtain

|𝛽𝑔| ≤ 2
𝑛∑︁

𝑖=1

[︃
𝑛∑︁

𝑗,𝑚=1

|𝐴𝑖𝑗||𝐴𝑖𝑚|
(︃

∞∑︁

ℓ=3

𝑡ℓ

ℓ!
(‖𝑢𝑗‖+ ‖𝑢𝑚‖)ℓ

)︃

+
𝑛∑︁

𝑗,𝑚=1

|𝐴𝑖𝑗||𝐴𝑖𝑚|

⎛
⎜⎜⎝

∞∑︁

ℓ,𝑠=0
ℓ+𝑠≥3

𝑡ℓ+𝑠

ℓ!𝑠!
(‖𝑢𝑖‖+ ‖𝑢𝑗‖)ℓ+𝑠

⎞
⎟⎟⎠

⎤
⎥⎥⎦.

Using the fact that ‖𝑢𝑖‖ ≤ 1 for all 𝑖 ∈ [𝑛], we get the following upper bound

|𝛽𝑔| ≤ 2
𝑛∑︁

𝑖=1

⎡
⎢⎢⎣

𝑛∑︁

𝑗,𝑚=1

|𝐴𝑖𝑗||𝐴𝑖𝑚|
(︃

∞∑︁

ℓ=3

𝑡ℓ

ℓ!
2ℓ

)︃
+

𝑛∑︁

𝑗,𝑚=1

|𝐴𝑖𝑗||𝐴𝑖𝑚|

⎛
⎜⎜⎝

∞∑︁

ℓ,𝑠=0
ℓ+𝑠≥3

𝑡ℓ+𝑠

ℓ!𝑠!
2ℓ+𝑠

⎞
⎟⎟⎠

⎤
⎥⎥⎦.

Using the upper bound
∑︀𝑛

𝑗,𝑚=1 |𝐴𝑖𝑗||𝐴𝑖𝑚| ≤ ‖𝐴‖21 above, we obtain

|𝛽𝑔| ≤ 2‖𝐴‖21
𝑛∑︁

𝑖=1

⎡
⎢⎢⎣

∞∑︁

ℓ=3

𝑡ℓ

ℓ!
2ℓ +

∞∑︁

ℓ,𝑠=0
ℓ+𝑠≥3

𝑡ℓ+𝑠

ℓ!𝑠!
2ℓ+𝑠

⎤
⎥⎥⎦.

138

Introducing a change of variables in the last sum, we get

|𝛽𝑔| ≤ 2‖𝐴‖21
𝑛∑︁

𝑖=1

[︃
∞∑︁

ℓ=3

𝑡ℓ

ℓ!
2ℓ +

∞∑︁

ℓ=3

𝑡ℓ

ℓ!
2ℓ

(︃
ℓ∑︁

𝑠=0

ℓ!

𝑠!(ℓ− 𝑠)!

)︃]︃
,

= 2‖𝐴‖21
𝑛∑︁

𝑖=1

[︃
∞∑︁

ℓ=3

𝑡ℓ

ℓ!

(︀
2ℓ + 4ℓ

)︀
]︃
.

Assuming that 𝑡 ≤ 1, we obtain the following upper bound

|𝛽𝑔| ≤ 2‖𝐴‖21𝑡3
𝑛∑︁

𝑖=1

[︃
∞∑︁

ℓ=3

1

ℓ!

(︀
2ℓ + 4ℓ

)︀
]︃
.

Using the inequality
∑︀∞

ℓ=3
2ℓ+4ℓ

ℓ!
= 𝑒2 + 𝑒4 − 18 ≤ 44 above, we get

|𝛽𝑔| ≤ 88𝑛‖𝐴‖21𝑡3.

Plugging this value back in (6.6.7), we obtain

‖grad𝑓(𝜎𝑘)‖2F ≥ 2𝑡2
𝑛∑︁

𝑖=1

(︂
‖𝑢𝑖‖‖𝑔𝑖‖ − ⟨

𝑢𝑖
‖𝑢𝑖‖

, 𝑣𝑖⟩
)︂2

− 88𝑛‖𝐴‖21𝑡3. (6.6.8)

Using the same bounding technique as in (6.1.22), we get

‖grad𝑓(𝜎𝑘)‖2F ≥
𝜇

𝑛

(︂
𝑓(�̄�)− 𝑓(𝜎𝑘)− 5𝑛‖𝐴‖1𝑡3

2

)︂
− 88𝑛‖𝐴‖21𝑡3,

=
𝜇

𝑛

(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
− 𝑡3‖𝐴‖1(3𝜇+ 88𝑛‖𝐴‖1).

Therefore, in order for (6.1.23) to hold, we need

𝑡3‖𝐴‖1(3𝜇+ 88𝑛‖𝐴‖1) ≤
𝜇

2𝑛

(︀
𝑓(�̄�)− 𝑓(𝜎𝑘)

)︀
,

139

which can be equivalently rewritten as follows

𝑡3 ≤ 𝜇(𝑓(�̄�)− 𝑓(𝜎𝑘))

2𝑛‖𝐴‖1(3𝜇+ 88𝑛‖𝐴‖1)
.

As 𝑓(𝜎𝑘) is a monotonically non-decreasing sequence, then as soon as 𝜎0 is sufficiently close

to [�̄�] in the sense that

dist(𝜎0, [�̄�]) ≤
(︂

𝜇(𝑓(�̄�)− 𝑓(𝜎𝑘))

2𝑛‖𝐴‖1(3𝜇+ 88𝑛‖𝐴‖1)

)︂1/3

,

then the linear convergence rate presented in (6.1.24) holds.

6.6.3 Proof of Theorem 6.17

Before presenting the proof of Theorem 6.17, we first introduce the following theorem that

characterizes the convergence rate of the Lanczos method with random initialization.

Theorem 6.18 ([84, Theorem 4.2]). Let 𝐴 ∈ R𝑛×𝑛 be a positive semidefinite matrix,

𝑏 ∈ R𝑛 be an arbitrary vector and 𝜆ℓ𝐿(𝐴, 𝑏) denote the output of the Lanczos algorithm

after ℓ iterations when applied to find the leading eigenvalue of 𝐴 (denoted by 𝜆1(𝐴)) with

initialization 𝑏. In particular,

𝜆ℓ𝐿(𝐴, 𝑏) = max

{︂⟨𝑥,𝐴𝑥⟩
⟨𝑥, 𝑥⟩ : 0 ̸= 𝑥 ∈ span(𝑏, . . . , 𝐴ℓ−1𝑏)

}︂
.

Assume that 𝑏 is uniformly distributed over the set {𝑏 ∈ R𝑛 : ‖𝑏‖ = 1} and let 𝜖 ∈ [0, 1).

Then, the probability that the Lanczos algorithm does not return an 𝜖-approximation to the

leading eigenvalue of 𝐴 exponentially decreases as follows

P
(︀
𝜆ℓ𝐿(𝐴, 𝑏) < (1− 𝜖)𝜆1(𝐴)

)︀
⎧
⎪⎨
⎪⎩
≤ 1.648

√
𝑛𝑒−

√
𝜖(2ℓ−1), if 0 < ℓ < 𝑛(𝑟 − 1),

= 0, if ℓ ≥ 𝑛(𝑟 − 1).

Using this result, Theorem 6.17 is proven as follows. Since the tangent space 𝑇𝜎ℳ𝑟

140

has dimension 𝑛(𝑟 − 1), then we can define a symmetric matrix (where we drop the no-

tational dependency on 𝜎 for simplicity) 𝐻 ∈ R𝑛(𝑟−1)×𝑛(𝑟−1) that represents the linear

operator Hess𝑓(𝜎) in the basis {𝑢1, . . . , 𝑢𝑛(𝑟−1)} such that span(𝑢1, . . . , 𝑢𝑛(𝑟−1)) = 𝑇𝜎ℳ𝑟.

In particular, letting 𝐻𝑖𝑗 = ⟨𝑢𝑖,Hess𝑓(𝜎)[𝑢𝑗]⟩ yields the desired matrix 𝐻 and the Lanczos

algorithm is run to find the leading eigenvalue of this matrix. Here, it is important to note

that 𝐻 is not a psd matrix, so it is required to shift 𝐻 with a large enough multiple of

the identity matrix so that the resulting matrix is guaranteed to be positive semidefinite.

In particular, by inspecting the definition of Hess𝑓(𝜎) in (6.1.2), it is easy to observe that

‖Hess𝑓(𝜎)‖op ≤ 4‖𝐴‖1. Therefore, it is sufficient to run the Lanczos algorithm to find the

leading eigenvalue of ̃︀𝐻 = 𝐻 + 4‖𝐴‖1𝐼, where 𝐼 denotes the appropriate sized identity

matrix. On the other hand, we initialize the Lanczos algorithm with a random vector 𝑢 of

unit norm (i.e., ‖𝑢‖F = 1) in the tangent space 𝑇𝜎ℳ𝑟. Notice that 𝑢 can equivalently be

represented as a vector 𝑏 ∈ R𝑛(𝑟−1) in the basis {𝑢1, . . . , 𝑢𝑛(𝑟−1)} as 𝑢 =
∑︀𝑛(𝑟−1)

𝑖=1 𝑏𝑖𝑢
𝑖 such

that ‖𝑏‖ = 1. Then, by Theorem 6.18, we have

P
(︁
𝜆ℓ𝐿(̃︀𝐻, 𝑏) < (1− 𝜖)𝜆1(̃︀𝐻)

)︁
≤ 1.648

√︀
𝑛(𝑟 − 1)𝑒−

√
𝜖(2ℓ−1).

Letting 𝜆1(𝐻) denote the leading eigenvalue of 𝐻, we run the Lanczos algorithm to obtain

a vector 𝑏* such that ‖𝑏*‖ = 1 and ⟨𝑏*, 𝐻𝑏*⟩ ≥ 𝜆1(𝐻)/2. Thus, we want the following to

be small:

P
(︁
𝜆ℓ𝐿(̃︀𝐻, 𝑏) < 4‖𝐴‖1 + 𝜆1(𝐻)/2

)︁
. (6.6.9)

Setting 𝜖* = 𝜆1(𝐻)
16‖𝐴‖1 , we can observe that

(1− 𝜖*)𝜆1(̃︀𝐻) =

(︂
1− 𝜆1(𝐻)

16‖𝐴‖1

)︂
(4‖𝐴‖1 + 𝜆1(𝐻)),

= 4‖𝐴‖1 +
3𝜆1(𝐻)

4
− (𝜆1(𝐻))2

16‖𝐴‖1
,

≥ 4‖𝐴‖1 +
𝜆1(𝐻)

2
,

141

where the inequality follows since 𝜆1(𝐻) ≤ 4‖𝐴‖1. Consequently, we have

P
(︁
𝜆ℓ𝐿(̃︀𝐻, 𝑏) < 4‖𝐴‖1 + 𝜆1(𝐻)/2

)︁
≤ P

(︁
𝜆ℓ𝐿(̃︀𝐻, 𝑏) < (1− 𝜖*)𝜆1(̃︀𝐻)

)︁

≤ 1.648
√︀
𝑛(𝑟 − 1)𝑒−

√
𝜖*(2ℓ−1).

By Theorem 6.13, we know that the Lanczos method is called at most ⌈675𝑛‖𝐴‖21/𝜀2⌉
times to search for an 𝜀-approximate concave point and for any non-desired solution we

have 𝜆1(𝐻) ≥ 𝜀 by the definition of 𝜀-approximate concave point. Then, by using a union

bound over all calls to the Lanczos method, we conclude that when the Lanczos method is

run for ℓ iterations, we have the following guarantee

P(Algorithm 4+5 fails to return an 𝜀-approximate concave point)

≤
⌈︂

675𝑛‖𝐴‖21
𝜀2

⌉︂
1.648

√︀
𝑛(𝑟 − 1)𝑒

−
√

𝜀
16‖𝐴‖1

(2ℓ−1)
.

In order to set this probability to some 𝛿 ∈ (0, 1), we let

ℓ* =

⎡
⎢⎢⎢

(︃
1

2
+ 2

√︂
‖𝐴‖1
𝜀

)︃
log

⎛
⎝

⌈︁
675𝑛‖𝐴‖21

𝜀2

⌉︁
1.648

√︀
𝑛(𝑟 − 1)

𝛿

⎞
⎠
⎤
⎥⎥⎥

= ̃︀𝒪
(︃√︂
‖𝐴‖1
𝜀

log

(︃
𝑛
√︀
𝑛(𝑟 − 1)

𝛿

)︃)︃
,

where tilde is used to hide poly-logarithmic factors in ‖𝐴‖1/𝜀. Since the Lanczos algorithm

is guaranteed to return the leading eigenvalue with probability 1 in at most 𝑛(𝑟− 1) itera-

tions, then running each Lanczos subroutine for min(ℓ*, 𝑛(𝑟−1)) iterations, it is guaranteed

that Algorithm 4+5 returns an 𝜀-approximate concave point with probability at least 1−𝛿.

142

Part II

Mirror Descent Method

143

144

Chapter 7

An Overview

In this chapter, we present a comprehensive review of the mirror descent method. In

Section 7.1, we describe the mirror descent dynamics proposed by Nemirovski and Yudin

[106]. In Section 7.2, we discuss sufficient conditions under which mirror descent dynamics

are well-defined. In Section 7.3, we present a generalization of Bregman divergence that

will be used to analyze the mirror descent method throughout this part. We then study

the convergence of mirror descent in Section 7.4. The contents of this chapter mostly

follow from the existing studies in the literature. Yet, our analyses do not rely on certain

assumptions that have been extensively used in the literature, and hence provide a more

general notion of convergence for the mirror descent method. We rigorously state the

distinctions in the sequel. We conclude the chapter in Section 7.5 by motivating Chapters

8 & 9, and providing an outline.

7.1 Mirror Descent Dynamics

Consider a constrained convex optimization problem of the form

min
𝑥∈𝒳

𝑓(𝑥), (7.1.1)

145

where 𝒳 is a nonempty closed convex subset of ℰ and 𝑓 is a continuously differentiable

convex function. Suppose (ℰ , ‖·‖) is a Banach space, where the norm we use to measure

distance does not necessarily derive from an inner product. In this case, many optimization

methods are not even applicable since 𝑥 ∈ ℰ , whereas ∇𝑓(𝑥) ∈ ℰ*. We do not face this

problem for optimization problems in Hilbert spaces since ℰ* is isometric to ℰ by Riesz

representation theorem. Nemirovski and Yudin [106] proposed to handle this issue by

defining a gradient flow in the dual space ℰ* and then mapping the corresponding trajectory

to the primal space ℰ . The resulting algorithm is called mirror descent.

The original approach of Nemirovski and Yudin [106] constructs the mirror descent

method by functional analytic arguments between primal and dual spaces. In particular

suppose on ℰ*, there exists a continuously differentiable function ℎ. Then for any 𝑦 ∈ ℰ*,
∇ℎ(𝑦) is an element of ℰ . Using this observation, the authors define the following differential

equation in the dual space:

�̇�(𝑡) = −∇𝑓(∇ℎ(𝑦(𝑡))), (7.1.2a)

𝑦(0) = 𝑦0 ∈ dom(∇Φ*), (7.1.2b)

where ∇ℎ is called mirror map from the dual space to the primal space. Suppose 𝑦(𝑡) is a

solution to (7.1.2). Then, the image of this trajectory in the primal space is given by

𝑥(𝑡) = ∇ℎ(𝑦(𝑡)).

Indeed, ℎ needs to satisfy certain conditions for 𝑓(𝑥(𝑡)) to converge to the minimum of

(7.1.1) and in the following section, we present sufficient conditions on ℎ, under which this

holds true. However, before discussing these conditions, we first introduce a change of

notation and let ℎ = Φ*, where Φ* is the convex conjugate of Φ, where Φ is a function

defined on ℰ . The main motivation behind this change of notation is that in practice, we are

given the problem (7.1.1) in the primal space and we are usually interested in constructing

the mirror map according to the geometry of this problem. Therefore, we usually construct

146

ℎ through a function Φ defined on the primal space, called the distance generating function.

With this change of variables, we equivalently write the continuous dynamics in (7.1.2) as

follows:

�̇�(𝑡) = −∇𝑓(∇Φ*(𝑦(𝑡))), (7.1.3a)

𝑦(0) = 𝑦0 ∈ dom(∇Φ*), (7.1.3b)

where the corresponding primal trajectory is given by 𝑥(𝑡) = ∇Φ*(𝑦(𝑡)). In the following

section, we present conditions on the distance generating function Φ (and also on Φ*) such

that the continuous dynamics (7.1.3) is well-defined.

7.2 Sufficient Conditions for Well-Defined Dynamics

We first recall that 𝑓 is assumed to be continuously differentiable, so ∇𝑓 is well-defined.

We require Φ* to be continuously differentiable on its domain for the dynamics (7.1.3) to

be well-defined. Next, we observe that without an additional assumption on 𝑓 , we cannot

make any conclusions on rge∇𝑓 . Therefore, unless we have additional knowledge on 𝑓 ,

the differential equation (7.1.3) should be well-defined on the entire dual space ℰ*. As

𝑦 is an input of ∇Φ* in (7.1.3), we also need dom∇Φ* = ℰ*. Finally, we need to have

rge∇Φ* ⊆ 𝒳 so that ∇𝑓 can be evaluated at ∇Φ*(𝑦) for any 𝑦 ∈ ℰ*. To recap, in order to

have a well-defined dynamics (7.1.3), Φ* needs to satisfy the following conditions:

1. Φ* is differentiable on its domain.

2. dom∇Φ* = ℰ*.

3. rge∇Φ* ⊆ 𝒳 .

Below we relate these conditions on Φ* to conditions on a closed proper convex distance

generating function Φ:

147

∙ Condition 3: Let us begin our discussion from the third condition and disregard the

differentiability of Φ* for the time being. As Φ is closed proper convex, subdifferential

𝜕Φ* is well-defined, and the range of 𝜕Φ* satisfies [128, p. 227]: rge 𝜕Φ* ⊆ dom Φ.

Therefore, as long as dom Φ = 𝒳 , subdifferential of Φ* maps to 𝒳 .

∙ Condition 2: Turning our attention back to the second condition and again dis-

regarding the differentiability of Φ*, we can observe (see e.g., [128, p. 227]) that

ri(dom Φ*) ⊆ dom 𝜕Φ* ⊆ dom Φ*. Therefore, dom 𝜕Φ* = ℰ* if and only if dom Φ* =

ℰ*. Furthermore, dom Φ* = ℰ* if and only if Φ is co-finite (see e.g. [128, Corollary

13.3.1]), i.e., epi Φ contains no non-vertical half-lines. Since ℰ* is finite-dimensional,

the latter condition holds if and only if [16, Theorems 3.3 & 3.4] Φ is supercoercive,

i.e.,

lim
‖𝑥‖→+∞

Φ(𝑥)

‖𝑥‖ = +∞.

∙ Condition 1: Finally, we consider the first condition: 𝜕Φ* is single-valued, i.e., Φ*

is differentiable, on its domain if and only if Φ* is essentially smooth [128, Theorem

26.1], or equivalently if and only if Φ is essentially strictly convex [128, Theorem 26.3].

More compactly, equivalent conditions on Φ to have well-defined dynamics (7.1.3) are given

below:

Proposition 7.1. Let 𝑓 : 𝒳 → R be a continuously differentiable convex function. Then,

the mirror descent dynamics (7.1.3) is well-defined for any closed proper convex function

Φ that satisfies the following conditions:

1. Φ is essentially strictly convex.

2. Φ is supercoercive.

3. dom Φ = 𝒳 .

These three conditions are satisfied when Φ is strongly convex with dom Φ = 𝒳 or

when 𝒳 is bounded and Φ is strictly convex with dom Φ = 𝒳 . As strong/strict convexity

148

is easier to interpret, it is extensively used in the literature to analyze the convergence

of the mirror descent methods. It is important to note that the original description of

the mirror descent method by Nemirovski and Yudin [106] also relies on supercoercivity

and differentiability assumptions, and the reasoning behind these assumptions are also

discussed in [83]. Before discussing the convergence of the mirror descent dynamics, we

first observe that Φ need not be differentiable to have a well-defined dynamics according to

our discussion above, whereas in the standard literature, the analysis of mirror descent is

carried out using Bregman divergences which requires Φ to be continuously differentiable.

Therefore, to analyze the convergence of mirror descent dynamics, we next describe a

generalized Bregman divergence that can be associated with a non-differentiable distance

generating function.

7.3 Generalized Bregman Divergence

Let Φ be a closed proper convex function, and recall the definition of the Bregman diver-

gence associated with Φ when Φ is continuously differentiable:

𝐷Φ(𝑥, 𝑢) = Φ(𝑥)− Φ(𝑢)− ⟨∇Φ(𝑢), 𝑥− 𝑢⟩. (7.3.1)

An important consequence of the convexity of Φ is that 𝐷Φ(𝑥, 𝑢) ≥ 0 for all 𝑥, 𝑢 ∈ ℰ , which

enables us to use Bregman divergence as a Lyapunov function in the analysis of mirror

descent methods. Unfortunately, this definition is not valid when Φ is not continuously

differentiable as ∇Φ(𝑢) is not well-defined. We can address this issue by replacing the

gradient ∇Φ(𝑢) with a subgradient 𝑦 ∈ 𝜕Φ(𝑢), which still yields a nonnegative function

since

Φ(𝑥)− Φ(𝑢)− ⟨𝑦, 𝑥− 𝑢⟩ ≥ 0, ∀𝑥, 𝑢 ∈ ℰ and ∀𝑦 ∈ 𝜕Φ(𝑢). (7.3.2)

We cannot however define (7.3.2) as the divergence between two primal points 𝑥 and 𝑢

since the choice of the subgradient 𝑦 ∈ 𝜕Φ(𝑢) would change the value of this divergence.

149

As an example, consider the function Φ(𝑥) = |𝑥|+𝑥2 in Figure 7-1. When we try to define

the Bregman divergence between points 𝑥 and 𝑢 according to (7.3.2), the choice of the

subgradient causes an ambiguity in the value of the divergence. We can get rid of this

ambiguity by noticing that while a point 𝑢 does not define a unique tangent plane to Φ, a

slope 𝑦 does. There is always at most one plane with slope 𝑦 tangent to Φ, and when it

exists it is given by the equation (as a function of 𝑥):

Φ(𝑢) + ⟨𝑦, 𝑥− 𝑢⟩, where 𝑢 ∈ 𝜕Φ*(𝑦).

The same ambiguity seems to appear here again: 𝜕Φ*(𝑦) can be a set-valued map, and

consequently there is not a unique choice of primal variable 𝑢 ∈ 𝜕Φ*(𝑦). However, this

ambiguity does not matter since when 𝜕Φ*(𝑦) is a set-valued map, each primal variable

𝑢 ∈ 𝜕Φ*(𝑦) lies on a linear segment of Φ due to the convexity of Φ. Thus, both the tangent

plane and the value of the divergence is the same for any such primal variables.

The above discussion motives to define the divergence as a function of a primal point

and a slope of a tangent (a dual point). In particular, we define the generalized Bregman

divergence between a primal point 𝑥 ∈ ℰ and a dual point 𝑦 ∈ ℰ* as follows:

𝐵Φ(𝑥, 𝑦) = Φ(𝑥) + Φ*(𝑦)− ⟨𝑥, 𝑦⟩. (7.3.3)

It is easy to observe that (7.3.3) generalizes the original Bregman divergence because when

Φ is continuously differentiable, we have 𝑦 = ∇Φ(𝑢) and Φ*(𝑦) is given by its convex

conjugate as Φ*(𝑦) = ⟨𝑦, 𝑢⟩−Φ(𝑢), which yields 𝐵Φ(𝑥, 𝑦) = 𝐷Φ(𝑥, 𝑢). An advantage of the

definition (7.3.3) is that the generalized Bregman divergence is symmetric in the sense that

𝐵Φ(𝑥, 𝑦) = 𝐵Φ*(𝑦, 𝑥). (7.3.4)

We can also observe that 𝐵Φ(𝑥, 𝑦) is convex in both 𝑥 and 𝑦 separately (although is not

necessarily convex jointly in 𝑥 and 𝑦). We discuss further properties of the generalized

150

Figure 7-1: Generalized Bregman divergences when Φ is non-differentiable. The value of
the divergence depends on the choice of subgradient.

Bregman divergence (7.3.3) in Section 7.3.2, and in the following section we present related

works in the literature that discuss different generalizations of Bregman divergence.

7.3.1 Related Literature

In the original work of Bregman [34], Bregman divergence is not defined with respect to

a distance generating function, but is assumed to have certain distance-like properties.

In [34, Equation 1.4], Bregman showed that a strictly convex continuously differentiable

distance generating function defines a divergence that satisfies the required conditions. In

more recent literature, Bregman divergence is often associated with a Legendre distance

generating function, see e.g., [53, Definition 2.1], which relaxes certain boundary conditions,

such as closedness and differentiability on the boundary. This allows us to cover important

classes of Bregman divergences, e.g., negative entropy and Burg’s entropy, see [15, Remark

151

4.2]. An extension of these ideas to non-differentiable functions is presented by [80], where

the author considers any closed proper convex function and define two different Bregman

divergences according to minimal and maximal subgradients, which we explain next. For

a given set 𝒳 , let 𝜄𝒳 denote the indicator function of 𝒳 , i.e., 𝜄𝒳 (𝑥) = 0 if 𝑥 ∈ 𝒳 , and +∞
otherwise. The support function of 𝜄𝒳 is given by 𝜄*𝒳 (·) = sup𝑥∈𝒳 ⟨·, 𝑥⟩. By [128, Theorem

23.2], any directional derivative of Φ at 𝑥 is lower bounded by the support function of its

subgradient, i.e., Φ′(𝑥; 𝑑) ≥ 𝜄*𝜕Φ(𝑥)(𝑑), where Φ′(𝑥; 𝑑) is the derivative of Φ at 𝑥 in direction

𝑑. Using this description, Kiwiel [80] proposed the following generalizations of Bregman

divergence:

𝐷♭
Φ(𝑥, 𝑢) = Φ(𝑥)− Φ(𝑢)− 𝜄*𝜕Φ(𝑢)(𝑥− 𝑢),

𝐷♯
Φ(𝑥, 𝑢) = Φ(𝑥)− Φ(𝑢)− 𝜄*𝜕Φ(𝑢)(𝑢− 𝑥).

Similar generalized Bregman divergence definitions using directional derivatives are also

used in [140] to analyze agglomerative clustering with Bregman divergences. In [81], Kiwiel

proposed to specify the Bregman divergence with two points and a subgradient at the second

point as follows

𝐷𝑦
Φ(𝑥, 𝑢) = Φ(𝑥)− Φ(𝑢)− ⟨𝑦, 𝑥− 𝑢⟩, where 𝑦 ∈ 𝜕Φ(𝑢). (7.3.5)

Using this definition, the author then described a proximal point method that is closely

related to mirror descent as we discuss in Chapter 8. This algorithm is reinvented in

[112], called Bregman iterative algorithm, using the same generalized Bregman divergence

definition. It is easy to observe that (7.3.5) and our definition (7.3.3) are equivalent as

𝐵Φ(𝑥, 𝑦) = 𝐷𝑦
Φ(𝑥, 𝑢) for any 𝑢 ∈ 𝜕Φ*(𝑦). Our description above closely follows [68], where

the author uses generalized Bregman divergence to derive regret bounds for maximum a

posteriori estimation methods under different priors.

152

7.3.2 Properties of Generalized Bregman Divergence

We next present a few fundamental properties of generalized Bregman divergences that

will be useful in the sequel. First, we establish three-points identity, which is a natural

generalization of a quadratic identity valid for the Euclidean norm. Generalization of

this identity to Bregman divergences (7.3.1) has been presented in [49, Lemma 3.1]. Its

extension to the generalized Bregman divergence defined in (7.3.5) is presented in [81,

Lemma 4.1], which relaxes the strict convexity and differentiability assumptions on the

distance generating function. Below, we establish it for the generalized Bregman divergence

in (7.3.3).

Lemma 7.2 (three-points identity). Let Φ : 𝒳 → ℰ* be a closed proper convex distance

generating function. Then for any three points 𝑥1, 𝑥3 ∈ 𝒳 and 𝑦2 ∈ dom 𝜕Φ*, the following

identity holds:

𝐵Φ(𝑥3, 𝑦1) +𝐵Φ(𝑥1, 𝑦2)−𝐵Φ(𝑥3, 𝑦2) = ⟨𝑥3 − 𝑥1, 𝑦2 − 𝑦1⟩, ∀𝑦1 ∈ 𝜕Φ(𝑥1).

Proof By the definition of 𝐵Φ, we have

𝐵Φ(𝑥3, 𝑦1) = Φ(𝑥3) + Φ*(𝑦1)− ⟨𝑥3, 𝑦1⟩, (7.3.6)

𝐵Φ(𝑥1, 𝑦2) = Φ(𝑥1) + Φ*(𝑦2)− ⟨𝑥1, 𝑦2⟩, (7.3.7)

𝐵Φ(𝑥3, 𝑦2) = Φ(𝑥3) + Φ*(𝑦2)− ⟨𝑥3, 𝑦2⟩. (7.3.8)

Subtracting (7.3.8) from the sum of (7.3.6) and (7.3.7), we get

𝐵Φ(𝑥3, 𝑦1)+𝐵Φ(𝑥1, 𝑦2)−𝐵Φ(𝑥3, 𝑦2) = Φ(𝑥1)+Φ*(𝑦1)+⟨𝑥3, 𝑦2⟩−⟨𝑥3, 𝑦1⟩−⟨𝑥1, 𝑦2⟩. (7.3.9)

By the conjugate subgradient theorem, we have Φ(𝑥1) + Φ*(𝑦1) = ⟨𝑥1, 𝑦1⟩. Plugging in this

equation above and reorganizing terms, we obtain the desired result.

153

We next show a standard result in convex optimization: If a distance generating function

is strongly convex, then so is the corresponding generalized Bregman divergence.

Lemma 7.3 (strong convexity). Let Φ : 𝒳 → ℰ* be a 𝜇-strongly convex distance generating

function with respect to the norm ‖·‖. Then, 𝐵Φ is 𝜇-strongly convex as well, i.e.,

𝐵Φ(𝑥1, 𝑦2) ≥
𝜇

2
‖𝑥1 − 𝑥2‖2, ∀𝑥1, 𝑥2 ∈ 𝒳 and ∀ 𝑦2 ∈ 𝜕Φ(𝑥2). (7.3.10)

Proof By the definition of 𝐵Φ, we have

𝐵Φ(𝑥1, 𝑦2) = Φ(𝑥1) + Φ*(𝑦2)− ⟨𝑦2, 𝑥1⟩.

By the conjugate subgradient theorem, we have Φ*(𝑦2) = ⟨𝑦2, 𝑥2⟩ − Φ(𝑥2), which implies

𝐵Φ(𝑥1, 𝑦2) = Φ(𝑥1)− Φ(𝑥2)− ⟨𝑦2, 𝑥1 − 𝑥2⟩.

As Φ is 𝜇-strongly convex, the right-hand side in the above equality is lower bounded by

𝜇‖𝑥1 − 𝑥2‖2/2, which concludes the proof.

7.4 Convergence of Mirror Descent Dynamics

In this section, we study the convergence of mirror descent dynamics. We assume 𝑓 : ℰ → R

is a continuously differentiable convex function and Φ : 𝒳 → ℰ* satisfies the conditions

in Proposition 7.1 so that dynamics in (7.1.3) are well-defined. Let 𝑦 : [0,+∞) → ℰ*

be a solution of the mirror descent dynamics (7.1.3) and define the corresponding primal

trajectory 𝑥(𝑡) = ∇Φ*(𝑦(𝑡)). Let 𝒳 * be the set of minimizers of (7.1.1), i.e.,

𝒳 * = arg min
𝑥∈𝒳

𝑓(𝑥),

154

and let 𝒴* be the preimage of 𝒳 * under the map ∇Φ*:

𝒴* = {𝑦 ∈ ℰ* : ∇Φ*(𝑦*) ∈ 𝒳 *}.

If the function values 𝑓(𝑥(𝑡)) converge to min𝑥∈𝒳 𝑓(𝑥) as 𝑡 → ∞, any accumulation point

of 𝑥(𝑡) is contained in 𝒳 *, i.e., 𝑥 converges weakly to 𝒳 *, which implies 𝑦 converges weakly

to 𝒴*. Although the limit points of 𝑦(𝑡) are contained in 𝒴*, 𝑦(𝑡) does not necessarily

have a limit as 𝑡 → ∞. If lim𝑡→∞ 𝑦(𝑡) exists and is an element of 𝒴*, we say that 𝑦(𝑡)

converges strongly to a point in 𝒴*. In Section 7.4.1, we study weak convergence of 𝑦, i.e.,

function value convergence of mirror descent dynamics. In Section 7.4.2, we study strong

convergence of 𝑥 and 𝑦, i.e., pointwise convergence of mirror descent dynamics.

7.4.1 Weak Convergence

In this section, we study weak convergence of mirror descent dynamics. We first establish

asymptotic convergence, then present an ergodic convergence rate and finally show that

a non-ergodic convergence rate can be obtained when Φ* is twice-differentiable. We note

that these results are standard in the literature, although they are often given under the

assumption that the distance generating function is continuously differentiable, see e.g.,

[83, 149]. Below, we present a similar analysis for non-differentiable distance generating

functions using generalized Bregman divergence (7.3.3). We also show that this generalized

Bregman divergence is equivalent to the potential function Nemirovski and Yudin [106] used

to analyze the asymptotic convergence of mirror descent dynamics.

First, we will observe that

𝑉 (𝑦(𝑡)) = 𝐵Φ*(𝑦(𝑡), 𝑥*) +

∫︁ 𝑡

0

(𝑓(∇Φ*(𝑦(𝑠)))− 𝑓(𝑥*)) 𝑑𝑠

is a Lyapunov function for the dynamics in (7.1.3), where 𝑥* ∈ 𝒳 * is arbitrary. Let

155

𝑥(𝑡) = ∇Φ*(𝑦(𝑡)) and consider the derivative of 𝑉 (𝑦(𝑡)) with respect to time:

�̇� (𝑦(𝑡)) = ⟨�̇�(𝑡), ∇Φ*(𝑦(𝑡))− 𝑥*⟩+ 𝑓(∇Φ*(𝑦(𝑡)))− 𝑓(𝑥*)

= −⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡)− 𝑥*⟩+ 𝑓(𝑥(𝑡))− 𝑓(𝑥*),

where the last equation follows by the definition of the dynamics �̇�(𝑡) = −∇𝑓(∇Φ*(𝑦(𝑡))).

Since 𝑓 is continuously differentiable, we have

�̇� (𝑦(𝑡)) = −𝐷𝑓 (𝑥*, 𝑥(𝑡)), (7.4.1)

which is upper bounded by zero for any 𝑦(𝑡) since 𝑓 is convex. Moreover, �̇� (𝑦(𝑡)) = 0 if

and only if 𝑦(𝑡) ∈ 𝒴*. Therefore, LaSalle’s invariance principle [86, Theorem 2] implies

the asymptotic convergence of this differential equation, i.e., every solution 𝑦(𝑡) originating

in some compact set tends to 𝒴* as 𝑡 → ∞. In [106], Nemirovski and Yudin prove the

asymptotic convergence of the mirror descent dynamics by showing that the following

function decreases along the trajectory of 𝑦:

𝑊 (𝑦(𝑡)) = Φ*(𝑦(𝑡))− ⟨𝑦(𝑡), 𝑥*⟩.

Comparing this function with the Lyapunov function above, we can observe that 𝑉 (𝑦(𝑡)) =

𝑊 (𝑦(𝑡))+Φ(𝑥*)+
∫︀ 𝑡

0
(𝑓(∇Φ*(𝑦(𝑠)))−𝑓(𝑥*)) 𝑑𝑠 and the corresponding arguments are closely

related. We next derive convergence rate estimates for the function values.

Theorem 7.4. Let 𝑓 : ℰ → R be a continuously differentiable convex function and Φ :

𝒳 → ℰ* satisfy the conditions in Proposition 7.1. Suppose 𝑦 : [0,+∞) → ℰ* is a solution

of (7.1.3) and let 𝑥(𝑡) = ∇Φ*(𝑦(𝑡)) be the corresponding primal trajectory. Then,

𝑓

(︂
1

𝑡

∫︁ 𝑡

0

𝑥(𝑠) 𝑑𝑠

)︂
− 𝑓(𝑥*) ≤ 𝐵Φ*(𝑦0, 𝑥*)

𝑡
, where 𝑥* ∈ 𝒳 *.

Proof Applying Jensen’s inequality to the definition of 𝑉 (𝑦(𝑡)) and lower bounding

156

𝐵Φ*(𝑦(𝑡), 𝑥*) ≥ 0, we get

𝑓

(︂
1

𝑡

∫︁ 𝑡

0

𝑥(𝑠) 𝑑𝑠

)︂
− 𝑓(𝑥*) ≤ 𝑉 (𝑦(𝑡))

𝑡
.

Since 𝑉 (𝑦(𝑡)) is non-increasing, right-hand side is upper bounded by 𝑉 (𝑦(0)), which yields

the desired result.

When Φ* is twice differentiable, we show that function values generated by mirror

descent method enjoys a non-ergodic convergence rate.

Theorem 7.5. Let 𝑓 : ℰ → R be a continuously differentiable convex function and Φ : 𝒳 →
ℰ* be a twice-differentiable function that satisfies the conditions in Proposition 7.1. Suppose

𝑦 : [0,+∞) → ℰ* is a solution of (7.1.3) and let 𝑥(𝑡) = ∇Φ*(𝑦(𝑡)) be the corresponding

primal trajectory. Then,

𝑓(𝑥(𝑡))− 𝑓(𝑥*) ≤ 𝐵Φ*(𝑦0, 𝑥*)

𝑡
, where 𝑥* ∈ 𝒳 *. (7.4.2)

Proof Let us consider the following Lyapunov function

𝑉 (𝑦(𝑡)) = 𝑡 (𝑓(∇Φ*(𝑦(𝑡)))− 𝑓(𝑥*)) +𝐵Φ*(𝑦(𝑡), 𝑥*). (7.4.3)

The derivative of 𝑉 with respect to time is given by

�̇� (𝑦(𝑡)) = 𝑓(∇Φ*(𝑦(𝑡)))−𝑓(𝑥*)+𝑡 ⟨∇𝑓(∇Φ*(𝑦(𝑡))),∇2Φ*(𝑦(𝑡))× �̇�⟩+⟨�̇�(𝑡), ∇Φ*(𝑦(𝑡))− 𝑥*⟩,

where the equality follows since Φ* is twice differentiable. Using the definition of the

dynamics �̇�(𝑡) = −∇𝑓(𝑥(𝑡)), where 𝑥(𝑡) = ∇Φ*(𝑦(𝑡)), we obtain

�̇� (𝑦(𝑡)) = 𝑓(𝑥(𝑡))− 𝑓(𝑥*) + 𝑡 ⟨∇𝑓(𝑥(𝑡)),∇2Φ*(𝑦(𝑡))×∇𝑓(𝑥(𝑡))⟩ − ⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡)− 𝑥*⟩,

157

As Φ* is convex, ∇2Φ*(𝑦) is positive semidefinite, and consequently

�̇� (𝑦(𝑡)) ≤ 𝑓(𝑥(𝑡))− 𝑓(𝑥*)− ⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡)− 𝑥*⟩,

with equality if 𝑦(𝑡) ∈ 𝒴*. Similar to (7.4.1), the right-hand side above equals−𝐷𝑓 (𝑥*, 𝑥(𝑡)),

which yields �̇� (𝑦(𝑡)) ≤ 0 with equality if and only if 𝑦(𝑡) ∈ 𝒴*, i.e., 𝑉 is a non-increasing

function of time. A simple manipulation of (7.4.3) yields 𝑓(𝑥(𝑡))− 𝑓(𝑥*) ≤ 𝑉 (𝑦(𝑡))/𝑡 since

𝐵Φ*(𝑦(𝑡), 𝑥*) ≥ 0. Since 𝑉 (𝑦(𝑡)) is a non-increasing function of time, we obtain the desired

result.

7.4.2 Strong Convergence

Our discussions so far illustrate the function values 𝑓(𝑥(𝑡)) converge to min𝑥∈𝒳 𝑓(𝑥) as

𝑡→∞, which does not say anything about the pointwise convergence (i.e., strong conver-

gence) of the trajectories 𝑥 or 𝑦. Strong convergence often requires additional assumptions

on the objective function other than convexity even for gradient systems, see e.g., the coun-

terexample of Baillon [12]. For mirror descent methods, we refer to the recent paper [25]

that constructs an example, where 𝑓 is linear and Φ is Legendre, and mirror descent con-

verges weakly but not strongly. Although strong convergence need not hold for gradient-like

systems in general, it can be shown to hold under certain assumptions on 𝑓 . In particular,

strong convergence of gradient systems has been shown when 𝑓 is even or strongly convex

[38], or when int𝒳 * ̸= ∅ [35]. These results have been extended to heavy ball [4], Newton’s

method [5], and Nesterov’s accelerated gradient descent [8]. We establish in the following

theorem that under a similar assumption, mirror descent trajectories converge strongly.

Theorem 7.6. Let 𝑓 : ℰ → R be a continuously differentiable convex function such that

int𝒳 * ̸= ∅ and let Φ : 𝒳 → ℰ* be a twice-differentiable function that satisfies the conditions

in Proposition 7.1. Suppose 𝑦 : [0,+∞) → ℰ* is a solution of (7.1.3) and let 𝑥(𝑡) =

∇Φ*(𝑦(𝑡)) be the corresponding primal trajectory. Then, 𝑦(𝑡) converges strongly as 𝑡→∞

158

to a point in 𝒴*, and consequently 𝑥(𝑡) converges strongly to a point in 𝒳 *.

Proof Consider the following potential function

𝑉𝛽(𝑡) = 𝑡(𝑓(𝑥(𝑡))− 𝑓(𝑥*)) + 𝛽𝐵Φ*(𝑦(𝑡), 𝑥*).

Following similar lines to the proof of Theorem 7.5, we can obtain the derivative of 𝑉𝛽(𝑡)

with respect to time as follows

𝑑

𝑑𝑡
𝑉𝛽(𝑡) = 𝑓(𝑥(𝑡))− 𝑓(𝑥*) + 𝑡 ⟨∇𝑓(𝑥(𝑡)), �̇�(𝑡)⟩ − 𝛽 ⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡)− 𝑥*⟩

≤ 𝑓(𝑥(𝑡))− 𝑓(𝑥*)− 𝛽 ⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡)− 𝑥*⟩, (7.4.4)

where the inequality follows as Φ* is convex and twice differentiable. The length of the

trajectory 𝑦(𝑡) is given by
∫︀∞
0
‖�̇�(𝑡)‖2 𝑑𝑡, and our aim is to show that this length is finite.

Since int𝒳 * ̸= ∅, there exists a 𝑥* ∈ 𝒳 * and an 𝜖 > 0 such that ∇𝑓(𝑥′) = 0 for all

𝑥′ ∈ 𝒩𝜖(𝑥
*) = {𝑥 : ‖𝑥− 𝑥′‖2 ≤ 𝜖}. As 𝑓 is a continuously differentiable convex function,

we have

𝑓(𝑥′) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑥′ − 𝑥⟩, ∀𝑥′ ∈ 𝒩𝜖(𝑥
*).

This implies ⟨∇𝑓(𝑥), 𝑥′ − 𝑥⟩ ≤ 0 since 𝑥′ ∈ 𝒳 *. We then obtain

⟨∇𝑓(𝑥), 𝑥′ − 𝑥*⟩ ≤ ⟨∇𝑓(𝑥), 𝑥− 𝑥*⟩.

Taking the supremum over 𝑥′ ∈ 𝒩𝜖(𝑥
*), we get

𝜖 ‖∇𝑓(𝑥)‖2 ≤ ⟨∇𝑓(𝑥), 𝑥− 𝑥*⟩.

Using this inequality in (7.4.4), we obtain

𝑑

𝑑𝑡
𝑉𝛽(𝑡) + 𝜖𝛽 ‖∇𝑓(𝑥(𝑡))‖2 ≤ 𝑓(𝑥(𝑡))− 𝑓(𝑥*).

159

Integrating this inequality from 0 to 𝑡, we get

𝑉𝛽(𝑡)− 𝑉𝛽(0) + 𝜖𝛽

∫︁ 𝑡

0

‖∇𝑓(𝑥(𝑠))‖2 𝑑𝑠 ≤
∫︁ 𝑡

0

(𝑓(𝑥(𝑠))− 𝑓(𝑥*)) 𝑑𝑠. (7.4.5)

As �̇�(𝑡) = −∇𝑓(𝑥(𝑡)), 𝑉𝛽(𝑡) ≥ 0, and 𝑉𝛽(0) < +∞, we can conclude that 𝑦(𝑡) has finite

length if the right-hand side of (7.4.5) is finite. To establish this, we upper bound the

right-hand side of (7.4.4) using convexity of 𝑓 , similar to (7.4.1), as follows:

𝑑

𝑑𝑡
𝑉𝛽(𝑡) ≤ −(𝛽 − 1)(𝑓(𝑥(𝑡))− 𝑓(𝑥*)).

For any 𝛽 > 1, integrating the above inequality from 0 to 𝑡 yields

∫︁ 𝑡

0

(𝑓(𝑥(𝑠))− 𝑓(𝑥*)) 𝑑𝑠 ≤ 𝑉𝛽(0)− 𝑉𝛽(𝑡)

𝛽 − 1
< +∞.

This concludes the proof of strong convergence of 𝑦(𝑡) and consequently of 𝑥(𝑡) = ∇Φ*(𝑦(𝑡))

as 𝑡→∞. By LaSalle’s invariance principle, we can conclude that 𝑦(𝑡) converges strongly

to a point in 𝒴*, and consequently 𝑥(𝑡) converges strongly to a point in 𝒳 * as 𝑡→∞.

We next present a similar strong convergence result when the set of optimal solutions

is polyhedral and characterize the point that mirror descent trajectory converges to. An

earlier result of this kind is also presented in the original work of Bregman [34] for a

relaxation method based on Bregman projections, see [34, Lemma 3 & Theorem 3]. More

recently, a similar result has been shown in [70, Theorem 1] for mirror descent updates in

discrete-time with continuously differentiable distance generating functions. However, this

result relies on the assumption that the discrete-time sequence {𝑥𝑘} generated by the mirror

descent method converges to a global minimizer, i.e., 𝑥∞ = lim𝑘→∞ 𝑥𝑘 exists and 𝑥∞ ∈ 𝒳 *.

This assumption is quite restrictive and is relaxed in the theorem below. Furthermore unlike

[70], our results hold for non-differentiable distance generating functions and hence covers a

broader class of problems including constrained optimization problems and problems with

160

mixed norm penalties such as elastic norm.

Theorem 7.7. Let Φ : 𝒳 → ℰ* satisfy the conditions in Proposition 7.1. Suppose 𝑓(𝑥) =

𝑔(𝐴𝑥− 𝑏), where 𝑏 ∈ rge𝐴, 𝑔 is a strictly convex continuously differentiable function with

0 = arg min𝑧 𝑔(𝑧), and 𝒳 * = 𝒳 ∩{𝑥 ∈ ℰ : 𝐴𝑥 = 𝑏} ≠ ∅. Let 𝑦 : [0,+∞)→ ℰ* be a solution

of (7.1.3). Then, the corresponding primal trajectory 𝑥(𝑡) = ∇Φ*(𝑦(𝑡)) satisfies

lim
𝑡→∞

𝑥(𝑡) = arg min
𝑥∈ℰ
𝐴𝑥=𝑏

𝐵Φ(𝑥, 𝑦0). (7.4.6)

Proof Since Φ is strictly convex, there exists a unique solution to (7.4.6) denoted by 𝑥*

and the following KKT conditions are satisfied at 𝑥*:

(feasibility) 𝐴𝑥* = 𝑏,

(stationarity) ∃𝑧* : 𝑦0 + 𝐴⊤𝑧* ∈ 𝜕Φ(𝑥*).

LaSalle’s invariance principle [86, Theorem 2] implies that if 𝑦 is an accumulation point of

𝑦(·), say with the corresponding subsequence {𝑡𝑘}𝑘≥0, then ∇Φ*(𝑦) is an element of the set

of optimal solutions 𝒳 *. Consequently, the corresponding accumulation point �̄� = ∇Φ*(𝑦)

is feasible for (7.4.6). Stationarity condition can be verified by integrating the mirror

descent dynamics in the dual space:

∫︁ 𝑡

0

�̇�(𝜏) 𝑑𝜏 = −
∫︁ 𝑡

0

∇𝑓(∇Φ*(𝑦(𝜏))) 𝑑𝜏,

which is well-defined by Peano existence theorem. This yields

𝑦(𝑡)− 𝑦0 = −𝐴⊤
∫︁ 𝑡

0

∇𝑔(𝐴∇Φ*(𝑦(𝜏))− 𝑏) 𝑑𝜏.

Plugging in 𝑡 = 𝑡𝑘 and taking the limit as 𝑘 →∞ in the above equation, we obtain

𝑦 − 𝑦0 = −𝐴⊤ lim
𝑡𝑘→∞

∫︁ 𝑡𝑘

0

∇𝑔(𝐴∇Φ*(𝑦(𝜏))− 𝑏) 𝑑𝜏.

161

Since 𝑦 ∈ 𝜕Φ(�̄�) by conjugate subgradient theorem, the above equation implies the exis-

tence of a 𝑧 such that the stationary condition holds. Consequently �̄� is an optimal solution

to the problem (7.4.6). As the optimal solution of (7.4.6) is unique and given by 𝑥*, then

any accumulation point of 𝑥(·) is 𝑥*, which concludes the proof.

An immediate consequence of this theorem is presented below, which shows that when

applied to quadratic problems, mirror descent returns the solution with smallest Φ in the

least squares sense.

Corollary 7.8. Let Φ : 𝒳 → ℰ* satisfy the conditions in Proposition 7.1 and suppose

𝑓(𝑥) = 1
2
‖𝐴𝑥− 𝑏‖22. Let 𝑦 : [0,+∞) → ℰ* be a solution of (7.1.3) and suppose 𝒳 * =

𝒳 ∩ {𝑥 ∈ ℰ : 𝐴𝑥 = 𝑃𝑏} ≠ ∅, where 𝑃 = 𝐴(𝐴⊤𝐴)−1𝐴⊤ is the projection matrix onto rge𝐴.

Then, the corresponding primal trajectory 𝑥(𝑡) = ∇Φ*(𝑦(𝑡)) satisfies

lim
𝑡→∞

𝑥(𝑡) = arg min
𝑥∈ℰ

𝐴𝑥=𝑃𝑏

𝐵Φ(𝑥, 𝑦0).

Theorem 7.7 and Corollary 7.8 have strong implications on the mirror descent methods.

In particular, it illustrates that mirror descent dynamics does not converge to an arbitrary

minimizer of 𝑓 , but converges to the one that minimizes the generalized Bregman divergence

with respect to the initialization. We will discuss the ramifications of this theorem in more

detail in Section 7.5. Before doing so, we next present another strong convergence result

under a certain growth condition that is used to show the length of the gradient curves

are bounded. In particular, Lojasiewicz [91] showed that for any real analytic function 𝑓 ,

there exist 𝜌 ∈ [0, 1) and 𝐶 > 0 such that the following inequality

‖∇𝑓(𝑥)‖ ≥ 𝐶|𝑓(𝑥)− 𝑓(𝑥*)|𝜌 (7.4.7)

holds for all 𝑥 around a neighborhood of a critical point 𝑥* of 𝑓 . This inequality is known

as Lojasiewicz gradient inequality and is sufficient show that the length of the gradient flow

trajectory is finite [91, p. 1592]. Below, we consider an application of Lojasiewicz gradient

162

inequality to mirror descent dynamics and prove the strong convergence of its trajectory.

Theorem 7.9. Suppose 𝑓 is a real analytic function and Φ : 𝒳 → ℰ* is an 𝐿-smooth

function that satisfies the conditions in Proposition 7.1, where Φ* is twice-differentiable.

Let 𝑦 : [0,+∞) → ℰ* be a solution of (7.1.3). Then, either lim𝑡→∞ ‖𝑦(𝑡)‖ = ∞ or there

exists 𝑦* ∈ ℰ* such that lim𝑡→∞ 𝑦(𝑡) = 𝑦*.

Proof Assume that ‖𝑦(𝑡)‖ does not go to infinity as 𝑡→∞ (or else the proof is complete),

then 𝑦(𝑡) has an accumulation point 𝑦* ∈ ℰ*. It remains to show that lim𝑡→∞ 𝑦(𝑡) = 𝑦*.

To this end, we consider

𝑑

𝑑𝑡
𝑓(∇Φ*(𝑦(𝑡))) = ⟨∇𝑓(∇Φ*(𝑦(𝑡))),∇2Φ*(𝑦(𝑡))× �̇�(𝑡)⟩,

similar to our derivations in the proof of Theorem 7.5. Since �̇�(𝑡) = −∇𝑓(∇Φ*(𝑦(𝑡))), we

then have

𝑑

𝑑𝑡
𝑓(∇Φ*(𝑦(𝑡))) = −⟨∇𝑓(∇Φ*(𝑦(𝑡))),∇2Φ*(𝑦(𝑡))×∇𝑓(∇Φ*(𝑦(𝑡)))⟩,

Since Φ is assumed to be 𝐿-smooth, convex conjugacy implies Φ* is 1/𝐿-strongly convex.

Therefore, we obtain the following upper bound on �̇� (𝑡):

𝑑

𝑑𝑡
𝑓(∇Φ*(𝑦(𝑡))) ≤ − 1

𝐿
‖∇𝑓(∇Φ*(𝑦(𝑡)))‖2, (7.4.8)

which implies 𝑓(∇Φ*(𝑦(𝑡))) is non-increasing. As 𝑦* is an accumulation point of 𝑦(𝑡), we

consequently have lim𝑡→∞ 𝑓(∇Φ*(𝑦(𝑡))) = 𝑓(∇Φ*(𝑦*)). Observe that if there exists 𝑇 > 0

such that 𝑓(∇Φ*(𝑦(𝑇))) = 𝑓(∇Φ*(𝑦*)), then it is immediate that lim𝑡→∞ 𝑦(𝑡) = 𝑦* since

∇𝑓(∇Φ*(𝑦(𝑡))) = 0 for any 𝑡 ≥ 𝑇 .

We next consider the complementary case: 𝑓(∇Φ*(𝑦(𝑡))) > 𝑓(∇Φ*(𝑦*)) for all 𝑡 ≥ 0.

As 𝑓 is assumed to be real analytic, (7.4.7) holds around some neighborhood of 𝑦*, denoted

163

by 𝒩 *, and using this inequality in (7.4.8), we obtain

𝑑

𝑑𝑡
𝑓(∇Φ*(𝑦(𝑡))) ≤ −𝐶

𝐿
‖∇𝑓(∇Φ*(𝑦(𝑡)))‖ × |𝑓(∇Φ*(𝑦(𝑡)))|𝜌, (7.4.9)

provided that 𝑦(𝑡) ∈ 𝒩 *, where we assumed 𝑓(∇Φ*(𝑦*)) = 0 for simplicity. Since we

assumed that 𝑓(∇Φ*(𝑦(𝑡))) > 𝑓(∇Φ*(𝑦*)) for all 𝑡 ≥ 0, then (7.4.9) can be equivalently

written as follows

𝑀
𝑑

𝑑𝑡
[𝑓(∇Φ*(𝑦(𝑡)))]1−𝜌 ≤ −‖∇𝑓(∇Φ*(𝑦(𝑡)))‖, where 𝑀 =

𝐿

𝐶(1− 𝜌)
. (7.4.10)

For any 𝑡2 > 𝑡1 ≥ 0, the length of the curve 𝑦 between 𝑡1 and 𝑡2 is given by

Length𝑦(𝑡1, 𝑡2) =

∫︁ 𝑡2

𝑡1

‖�̇�(𝑡)‖ 𝑑𝑡.

Since �̇�(𝑡) = −∇𝑓(∇Φ*(𝑦(𝑡))), we obtain the following upper bound on Length𝑦(𝑡1, 𝑡2)

using inequality (7.4.10):

Length𝑦(𝑡1, 𝑡2) ≤ −𝑀
∫︁ 𝑡2

𝑡1

(︂
𝑑

𝑑𝑡
[𝑓(∇Φ*(𝑦(𝑡)))]1−𝜌

)︂
𝑑𝑡, (7.4.11)

provided that 𝑦(𝑡) ∈ 𝒩 * for all 𝑡 ∈ (𝑡1, 𝑡2). A straightforward manipulation of (7.4.11)

yields

Length𝑦(𝑡1, 𝑡2) ≤𝑀 [𝑓(∇Φ*(𝑦(𝑡1)))− 𝑓(∇Φ*(𝑦(𝑡2)))]
1−𝜌

≤𝑀 [𝑓(∇Φ*(𝑦(𝑡1)))]
1−𝜌, (7.4.12)

where the last inequality follows since 𝑓(∇Φ*(𝑦(𝑡2))) ≥ 0. This proves that the length of

curve 𝑦 between any (𝑡1, 𝑡2) is finite provided that the curve lies in the neighborhood 𝒩 *.

We next show that indeed there exists 𝑡1 ≥ 0 such that 𝑦(𝑡) ∈ 𝒩 * for all 𝑡 ≥ 𝑡1, which

concludes the proof.

As 𝒩 * is non-empty by the definition of the Lojasiewicz gradient inequality, there exists

164

𝑟 > 0 such that the radius-𝑟 ball around 𝑦*, denoted by ℬ𝑟 = {𝑦 ∈ ℰ* : ‖𝑦 − 𝑦*‖ < 𝑟},
is contained in 𝒩 *. Since 𝑦* is an accumulation point of 𝑦(𝑡), there exists 𝑡1 ≥ 0 such

that ‖𝑦(𝑡1)− 𝑦*‖ < 𝑟/2 and 𝑀 [𝑓(∇Φ*(𝑦(𝑡1)))]
1−𝜌 < 𝑟/2. Assume the contrary that 𝑦(𝑡)

is not contained in ℬ𝑟 for all 𝑡 ≥ 𝑡1. Then necessarily for some 𝑡 > 𝑡1, ‖𝑦(𝑡)− 𝑦*‖ = 𝑟

holds. Denoting the smallest such time instance by 𝑡2, we observe that 𝑦(𝑡) ∈ 𝒩 * for all

𝑡 ∈ [𝑡1, 𝑡2). Then, (7.4.12) implies Length𝑦(𝑡1, 𝑡2) < 𝑟/2. Consequently, ‖𝑦(𝑡2)− 𝑦*‖ ≤
‖𝑦(𝑡2)− 𝑦(𝑡1)‖ + ‖𝑦(𝑡1)− 𝑦*‖ < 𝑟, which is a contradiction. Therefore, 𝑦(𝑡) ∈ 𝒩 * for all

𝑡 ≥ 𝑡1.

Theorem 7.9 is a generalization of the original work of Lojasiewicz [91] for gradient flows.

These ideas are generalized to gradient-like systems in [85], where pointwise convergence is

proven under an angle condition. Our proof above follows similar lines to [85], where we use

the smoothness of Φ and twice-differentiability of Φ* to obtain an equivalent condition. We

also refer to [1], where the authors show pointwise convergence for discrete-time systems

under the same assumptions as in [85]. The ideas of [1] can be used to prove the pointwise

convergence of mirror descent in discrete-time, which we do not discuss further in this

thesis.

7.5 Motivation

As we discussed in the previous sections, mirror descent methods are attractive for large-

scale optimization problems since they can enjoy almost dimension-free convergence rates

by considering a pertinent geometry to the problem at hand. Theorem 7.7 and Corollary

7.8 suggest another advantage of mirror descent methods: When the optimization problem

has many global minima, which is often the case for large-scale problems, mirror descent

recovers the solution that minimizes the corresponding Bregman divergence with respect

to the initial solution provided to the algorithm. More specifically, let us consider the

initialization 𝑦0 = arg min𝑦 Φ*(𝑦). Then, Theorem 7.7 implies that mirror descent dynamics

165

return the solution to the problem:

min Φ(𝑥) (7.5.1a)

s.t. 𝐴𝑥 = 𝑏. (7.5.1b)

Such convex optimization problems with linear constraints are central in the optimization

literature [21, 22]. Our discussions in the earlier sections imply that mirror descent can

be used to solve these problems as long as the conditions in Proposition 7.1 are satisfied

(recall that these conditions are satisfied when Φ is strongly convex). An important ex-

ample that satisfies these conditions is when 𝑓 is the least squares objective 1
2
‖𝐴𝑥− 𝑏‖22

and Φ is the elastic net regularizer. Our results imply that mirror descent can be used

to recover the minimum ℓ1 + ℓ2 norm solution over the linear system 𝐴𝑥 = 𝑏. Although

the problems where Φ is strongly convex can be handled with the theory presented in this

chapter, there are several celebrated large-scale optimization problems that unfortunately

do not satisfy the strong convexity condition. Among these we highlight the following two

that have attracted significant attention from optimization, signal processing and machine

learning communities: ℓ1-norm minimization and nuclear norm minimization subject to

linear constraints. These two problems are shown to provide sparsest and minimum rank

(respectively) solutions to linear system of equations, and recovering such sparse and min-

imum rank solutions are fundamental problems in signal processing and machine learning

as we discuss below.

Consider the problem of finding the sparsest solution of the linear system:

min ‖𝑥‖0 (7.5.2a)

s.t. 𝐴𝑥 = 𝑏, (7.5.2b)

where ‖𝑥‖0 = |{𝑖 : 𝑥𝑖 ̸= 0}| counts the number of nonzero entries of 𝑥. Recovering such

sparse solutions is a central problem in signal processing, where the aim is to recover the

sparse signal 𝑥* ∈ R𝑛 from the measurements 𝑏 ∈ R𝑚 that is obtained through the sensing

166

matrix 𝐴 ∈ R𝑚×𝑛. It is well-known that (7.5.2) is NP-hard [104], which prompted re-

searchers and practitioners to use its convex relaxation: the ℓ1-norm minimization problem

subject to linear constraints, which is also known as the basis pursuit problem and is given

by

min ‖𝑥‖1 (7.5.3a)

s.t. 𝐴𝑥 = 𝑏. (7.5.3b)

Note that this problem is the convex relaxation of (7.5.2) as the objective function ‖·‖0
is replaced by ‖·‖1, i.e., its convex envelope on the unit ball. Compressed sensing theory

guarantees that under certain conditions [44, 54], the optimal solution of the NP-hard prob-

lem (7.5.2) is given by the optimal solution of its convex relaxation (7.5.3). Although this

convex problem can be solved by off-the-shelf linear programming solvers such as interior

point methods or the simplex algorithm, such methods do not exploit the special structure

of (7.5.3) and usually do not scale well as the problem dimension increases [56]. This urged

many researchers to develop efficient solvers tailored to the basis pursuit problem, see e.g.,

[20, 56, 145].

Another problem of great interest is the low-rank matrix recovery:

min rank(𝑋) (7.5.4a)

s.t. 𝒜(𝑋) = 𝑏. (7.5.4b)

This problem has many applications such as matrix completion [123], collaborative filtering

[135], minimum order linear system realization [63], and output feedback stabilization [58].

Similar to the previous example, the problem (7.5.4) is NP-hard in general. That is why,

rank(𝑋) is replaced by its convex envelope on the unit ball of matrices with spectral norm

less than one. It is shown that [62] the nuclear norm of 𝑋, i.e., ‖𝑋‖* = tr(
√
𝑋⊤𝑋) the

sum of the singular values of 𝑋, is the desired convex envelope for rank(𝑋), which yields

167

the following convex relaxation:

min ‖𝑋‖* (7.5.5a)

s.t. 𝒜(𝑋) = 𝑏. (7.5.5b)

It is proven that under certain conditions, the optimal solution of the NP-hard problem

(7.5.4) is given by the optimal solution of the convex problem (7.5.5) [45, 46, 123]. Although

this problem can be cast as a semidefinite programming problem, the standard semidefinite

programming solvers is observed to be computationally expensive for large-scale problems,

and consequently many specialized algorithms have been developed to solve (7.5.5), see

e.g., [43, 97].

7.6 Summary of Contributions

As we discussed in the previous section, there is a prominent set of large-scale optimization

problems that can be addressed by mirror descent methods provided that mirror descent

can be implemented with non-strictly convex and non-differentiable distance generating

functions. This corresponds to generalizing the mirror descent method to non-smooth

geometries, which to our knowledge is not studied before in the literature.

In Chapter 8, we discuss how to discretize the mirror descent dynamics under the condi-

tions of Proposition 7.1. The mirror descent differential equation (7.1.3) we are discretizing

is defined in the dual space (similar to the original work of Nemirovski and Yudin [106]), and

hence we call the resulting discrete-time methods as dual methods. This is in contrast to

some existing works in the literature (see e.g., [39, 77, 149]), where mirror descent dynamics

is defined as a differential equation in the primal space, see (8.2.1), and consequently the

discrete-time methods that arise from this dynamics are to be viewed as primal methods.

We first highlight the differences between these two approaches and characterize that strict

convexity of Φ is necessary for the dual methods, whereas essential smoothness of Φ is

necessary for the primal methods. When both conditions hold, primal and dual methods

168

are equivalent to each other. This characterization enables us to study the corresponding

methods under weaker assumptions. We next show that even though the primal and dual

methods arise from a different geometric intuition, their convergence can be analyzed under

a unified framework. This is thanks to our generalized Bregman divergence definition that

does not require strict convexity or essential smoothness of Φ, and provides a measure of

slackness for a primal and dual variable pair. We establish that convergence of all these

methods can be reduced down to three components: An approximation error that arises

from using explicit discretization which can be controlled by Lipschitz-like conditions or

bounded subgradients, a subproblem optimality term that arises from the update rule and

is controlled by the normal cone condition, and a function value improvement term that

arise from the fact that negative gradient is a descent direction and is controlled by the

well-known geometric property called the three-points identity. We apply our techniques

to show the convergence of the aforementioned methods for non-smooth and relatively

smooth problems. For non-smooth problems, we recover the existing convergence guaran-

tees [18, 49, 81, 107] on the primal and dual methods through a simple unified approach.

For relatively smooth problems, we recover the existing convergence guarantees for the pri-

mal methods presented in [15, 93] and we extend the existing analysis to dual methods that

enables to use non-differentiable distance generating functions. Finally, we show that the

forward Euler discretization of the mirror descent dynamics yields some of the celebrated

methods in the literature. In particular, we illustrate that linearized Bregman iterations

[152] that is used to solve compressed sensing problems is equivalent to the mirror descent

method. Similarly, we show that the celebrated singular value thresholding algorithm [43]

that is used to solve low-rank recovery problems is an instance of the mirror descent method.

Our results provide a strong link between the existing methods in the literature and their

analyses.

In Chapter 9, we discuss a systematic approach to generalize the mirror descent method

to handle non-strictly convex and non-differentiable distance generating functions. To the

best of our knowledge, there has been no work in the literature that studied this problem.

169

When the strict convexity condition on Φ is relaxed, the continuous-time mirror descent

dynamics is given by a differential inclusion. We show that this differential inclusion is

well-defined and has solutions that satisfy the convergence guarantees enjoyed by the mirror

descent differential equation presented Section 7.4 provided that dom Φ is bounded. Keep

in mind that this procedure is not a simple change from a smooth optimization problem

to a non-smooth one since the composite differential inclusion structure interferes with the

monotonicity of the right-hand side of the differential inclusion, which we handle by using

other properties. When dom Φ is not bounded, we show that mirror descent can still be

applied to quadratic optimization problems using the monotonicity preserving property of

the linear maps. We show that in this case the mirror descent differential inclusion yields a

unique solution that is given in the form of a differential equation almost everywhere. We

then discuss how to discretize the mirror descent differential inclusion either through using

𝜖-subgradients or by regularizing the differential inclusion and converting it to a differential

equation that can be solved using the methods presented in Chapter 8. We also claim

that when the surfaces of discontinuity in the right-hand side of the differential inclusion

admit a stratified structure and when an efficient method of sliding on the corresponding

hypersurfaces is known, then the trajectory of the mirror descent differential inclusion

can be recovered by a combinatorial algorithm. We illustrate this approach on a sparse

recovery problem, which yields a structure given by a sequence of nonnegative least squares

problems. This formulation is considered before in the compressed sensing literature, where

the method is called the adaptive inverse scale space method [42]. Unfortunately, this

method is not efficient unless the solution that we are looking for is super sparse. More

specifically, the original sparse recovery problem is of size 𝑛 with linear objective and

linear equality constraints, whereas the resulting formulation requires solving a sequence of

quadratic optimization problems with linear inequality constraints (where the length of the

sequence and the size of the problem can be as large as 𝑛). Unlike [42], we handle this issue

by constructing an active-set method that uses the solution of the previous subproblem as

a warm start to the next problem. We discuss how to efficiently implement the resulting

170

algorithm.

171

172

Chapter 8

A Unified View of Mirror Descent

Method in Discrete-Time and Related

Methods

In this chapter, we study the mirror descent method in discrete-time. In Section 8.1, we

discuss forward and backward Euler discretization applied to mirror descent dynamics. We

then present a detailed discussion on the resulting discrete-time mirror descent methods and

other existing methods in the literature such as the Bregman proximal gradient and dual

averaging methods. We then present in Section 8.2 a universal recipe to prove convergence

of all these methods. In Section 8.3, we apply the presented methodology to non-smooth

and relatively smooth optimization problems and recover the existing rate estimates in

the literature as well as certain novel rate estimates in a simple comprehensible way. For

a more detailed summary of our contributions and comparisons to existing works in the

literature, we refer to Section 8.3.1. Finally, in Section 8.4, we show the celebrated sparse

optimization methods, the linearized Bregman iterative method and the singular value

thresholding method, are instances of the mirror descent method. We conclude the chapter

in Section 8.5 with a few remarks.

173

8.1 Discretization of Mirror Descent Dynamics

In this chapter, we discuss discretization of mirror descent dynamics and the resulting

algorithms. Recall the mirror descent dynamics to minimize a convex continuously differ-

entiable function 𝑓 over a closed convex set 𝒳 :

�̇�(𝑡) = −∇𝑓(∇Φ*(𝑦(𝑡))), (8.1.1a)

𝑦(0) = 𝑦0 ∈ dom(∇Φ*). (8.1.1b)

Below, we discuss forward and backward Euler methods applied to (8.1.1).

8.1.1 Forward Euler Discretization

We first consider the forward Euler method, which yields the following discrete-time update:

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝑘∇𝑓(∇Φ*(𝑦𝑘)), (8.1.2)

with the initialization 𝑦0 ∈ dom(∇Φ*). This yields a sequence of primal solutions by a

simple computation 𝑥𝑘 = ∇Φ*(𝑦𝑘), and hence we can equivalently write the update rule

(8.1.2) as follows:

𝑥𝑘 = ∇Φ*(𝑦𝑘), (8.1.3a)

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘). (8.1.3b)

We also observe that another equivalent formulation to (8.1.2) can be obtained using gen-

eralized Bregman divergences as follows:

𝑥𝑘+1 = arg min
𝑥

{︂
⟨𝑥,∇𝑓(𝑥𝑘)⟩+

1

𝜂𝑘
𝐵Φ(𝑥, 𝑦𝑘)

}︂
, (8.1.4a)

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘). (8.1.4b)

174

Indeed, the optimality condition of (8.1.4a) is given by

𝑦𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘) ∈ 𝜕Φ(𝑥𝑘+1),

and when 𝑦𝑘+1 is updated as in (8.1.4b), we have 𝑦𝑘+1 ∈ 𝜕Φ(𝑥𝑘+1), which implies 𝑥𝑘+1 =

∇Φ*(𝑦𝑘+1) as Φ* is differentiable. In the sequel, we will use both (8.1.3) and (8.1.4) to

relate the mirror descent method to existing methods in the literature. Throughout the

thesis, we refer to (8.1.3) as the explicit mirror descent method in discrete-time.

Follow-the-regularized-leader

In the online convex optimization literature, any algorithm minimizing a linearized sum of

past losses plus a regularization term is considered a follow-the-regularized-leader variant.

Therefore, the online version of (8.1.3) is also referred as follow-the-regularized-leader al-

gorithm with linear losses or online mirror descent [133]. Its extension to online composite

optimization problems is called regularized dual averaging method [151].

Dual Averaging

Dual averaging is proposed by Nesterov in [107] for non-smooth optimization problems,

where the main idea is to prevent the subgradients enter the optimization model with

decreasing weights. The author addresses this issue by using two control sequences: one is

the step size that aggregates subgradients in the dual space (denoted with 𝜂 below) and the

other is a dynamically updated scale between the primal and dual spaces (denoted with 𝛽

below). The update rule of dual averaging is given by

𝑥𝑘 = arg min
𝑥∈ℰ

{︀
𝛽𝑘Φ(𝑥)− ⟨𝑥, 𝑦𝑘⟩

}︀
, (8.1.5a)

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘). (8.1.5b)

175

The only difference between (8.1.5) and the description in [107, Equations 2.4 & 2.14] is

the definition of Φ: Here, Φ is defined on ℰ with dom Φ = 𝒳 , i.e., it is an extended real-

valued function, whereas in [107] Φ is defined on 𝒳 and thus the minimization in (8.1.5a)

taken over 𝒳 . Recalling our generalized Bregman divergence definition, (8.1.5a) can be

equivalently written as follows:

𝑥𝑘 = arg min
𝑥∈ℰ

𝐵Φ(𝑥, 𝑦𝑘/𝛽𝑘). (8.1.6)

Observe that the optimality condition of (8.1.6) implies that 𝑦𝑘/𝛽𝑘 ∈ 𝜕Φ(𝑥𝑘) and hence we

have 𝑥𝑘 ∈ ∇Φ*(𝑦𝑘/𝛽𝑘) since Φ* is continuously differentiable. Therefore, the dual averaging

updates are given by

𝑥𝑘 = ∇Φ*(𝑦𝑘/𝛽𝑘), (8.1.7a)

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘). (8.1.7b)

Comparing (8.1.7) and (8.1.3), we can see how dual averaging generalizes mirror descent

with an additional control sequence {𝛽𝑘}, a scale between the primal and dual spaces.

Bregman Proximal Gradient

When Φ is continuously differentiable on its domain, the computation in (8.1.4b) is redun-

dant since 𝑦𝑘+1 = ∇Φ(𝑥𝑘+1) and 𝑥𝑘+1 is already computed in (8.1.4a). That is, we can

equivalently write (8.1.4) as follows:

𝑥𝑘+1 = arg min
𝑥∈ℰ

{︂
⟨𝑥,∇𝑓(𝑥𝑘)⟩+

1

𝜂𝑘
𝐵Φ(𝑥,∇Φ(𝑥𝑘))

}︂
. (8.1.8)

Furthermore, since Φ is assumed to be differentiable, we can replace the generalized Breg-

man divergence in (8.1.8) with the classical Bregman divergence (7.3.1), i.e., we obtain the

176

update rule of the Bregman proximal gradient method:

𝑥𝑘+1 = arg min
𝑥∈𝒳

{︂
⟨𝑥,∇𝑓(𝑥𝑘)⟩+

1

𝜂𝑘
𝐷Φ(𝑥, 𝑥𝑘)

}︂
. (8.1.9)

Note that we changed the optimization space from ℰ in (8.1.8) to 𝒳 in (8.1.9). That is

because, the classical Bregman divergence definition is valid only on the space, where Φ is

differentiable. Since 𝒳 is assumed to be a closed set, Φ is differentiable on 𝒳 when one of

the following two conditions hold:

1. 𝒳 is both open and closed, that is 𝒳 = ℰ .

2. ∇Φ diverges as its argument goes to 𝜕𝒳 , that is lim𝑘→∞ ‖∇Φ(𝑥𝑘)‖ = +∞ for any se-

quence {𝑥𝑘} in 𝒳 converging to a boundary point 𝑥 of 𝒳 . Note that this is equivalent

to saying that Φ is essentially smooth.

These two conditions ensure that the iterates generated by the mirror descent and Bregman

proximal gradient methods remain in the interior of the feasible set 𝒳 . Furthermore, since

Φ and Φ* are differentiable, there is a bijective mapping between the primal and dual

spaces, which imply the equivalence of these two methods.

These two conditions above (first discussed in [18]) are essential to be able to conclude

the equivalence of the mirror descent and Bregman proximal gradient methods. In partic-

ular, if 𝒳 is a bounded closed convex set and ∇Φ does not diverge as its argument goes to

𝜕𝒳 , then Φ cannot be differentiable on 𝜕𝒳 . As an example, consider 𝒳 = {𝑥 : ‖𝑥‖2 ≤ 1}
and suppose we want to choose 1

2
‖𝑥‖22 as the distance generating function. If we define

Φ(𝑥) = 1
2
‖𝑥‖22 when 𝑥 ∈ 𝒳 and +∞ otherwise, then Φ is not differentiable on 𝜕𝒳 . This is

not an issue for the mirror descent method: it does not require Φ to be differentiable since

it uses subgradients of Φ, see (8.1.3b). On the other hand, when Φ is not differentiable on

𝒳 , the Bregman proximal gradient method becomes ill-defined. However, this issue can be

handled by setting Φ(𝑥) = 1
2
‖𝑥‖22 for every 𝑥 ∈ ℰ , which ensures differentiability of Φ on 𝒳 .

Then, the subproblem in (8.1.9) is solved over the set 𝒳 , which ensures the primal iterates

177

generated by the Bregman proximal gradient method remains feasible. This procedure is

often called forward-backward splitting [52].

8.1.2 Backward Euler Discretization

We next consider the backward Euler method, which yields the following discrete-time

update:

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝑘∇𝑓(∇Φ*(𝑦𝑘+1)), (8.1.10)

with the initialization 𝑦0 ∈ dom(∇Φ*). Similar to the previous section, primal solutions

are given by 𝑥𝑘 = ∇Φ*(𝑦𝑘). Using generalized Bregman divergences, it is straightforward

to observe that (8.1.10) can be equivalently written as follows:

𝑥𝑘+1 = arg min
𝑥

{︂
𝑓(𝑥) +

1

𝜂𝑘
𝐵Φ(𝑥, 𝑦𝑘)

}︂
, (8.1.11a)

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘+1). (8.1.11b)

Indeed, the optimality condition of (8.1.11a) is given by

𝑦𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘+1) ∈ 𝜕Φ(𝑥𝑘+1),

and when 𝑦𝑘+1 is updated as in (8.1.11b), we have 𝑦𝑘+1 ∈ 𝜕Φ(𝑥𝑘+1), which implies 𝑥𝑘+1 =

∇Φ*(𝑦𝑘+1) as Φ is strictly convex. The equivalence of (8.1.10) and (8.1.11) hence follows.

Throughout the thesis, we refer to (8.1.11) as the implicit mirror descent method in

discrete-time. In [81], the algorithm in the exact form (8.1.11), but with a different gen-

eralized Bregman divergence definition (see (7.3.5)), is proposed and its convergence is

proven. Later in [112], the same algorithm is reinvented and is called Bregman iterative

regularization algorithm. Its convergence is proven for the case 𝑓 is a quadratic and Φ is

the total variation seminorm. There is a huge literature on this method and for a detailed

analysis and applications we refer the reader to [81, 152].

178

Bregman Proximal Point Method

Similar to our discussions for the Bregman proximal gradient method in the previous sec-

tion, when Φ is continuously differentiable on its domain, the computation in (8.1.11b) is

redundant since 𝑦𝑘+1 = ∇Φ(𝑥𝑘+1) and 𝑥𝑘+1 is already computed in (8.1.11a). That is, we

can equivalently write (8.1.11) as follows:

𝑥𝑘+1 = arg min
𝑥∈ℰ

{︂
𝑓(𝑥) +

1

𝜂𝑘
𝐵Φ(𝑥,∇Φ(𝑥𝑘))

}︂
. (8.1.12)

Furthermore, since Φ is assumed to be differentiable, we can replace the generalized Breg-

man divergence in (8.1.12) with the classical Bregman divergence (7.3.1), i.e., we obtain

the update rule of the Bregman proximal point method:

𝑥𝑘+1 = arg min
𝑥∈𝒳

{︂
𝑓(𝑥) +

1

𝜂𝑘
𝐷Φ(𝑥, 𝑥𝑘)

}︂
. (8.1.13)

This method in (8.1.13) is first proposed in [47], where the authors call it the Bregman

proximal minimization method. The convergence of this method is extensively analyzed in

[47, 49, 142].

8.2 A Unified View of Existing Methods

According to our discussion above, the explicit and implicit mirror descent methods as well

as the dual averaging method can be viewed as dual algorithms. That is, these methods

arise from the discretization of the mirror descent dynamics in continuous-time (8.1.1),

which describes a flow in the dual space. For these methods to be well-defined, Φ needs

to be strictly/strongly convex, so that the mapping from the dual space to the primal

space is single-valued, i.e., 𝜕Φ* = ∇Φ*. Notice that these methods do not require Φ to be

continuously differentiable.

On the other hand, the Bregman proximal gradient and Bregman proximal point meth-

ods are primal algorithms. This can be observed more clearly by considering the following

179

continuous-time dynamics in the primal space:

𝑑

𝑑𝑡
∇Φ(𝑥(𝑡)) = −∇𝑓(𝑥(𝑡))−𝒩𝒳 (𝑥(𝑡)), (8.2.1)

Indeed, forward-backward splitting applied to (8.2.1) yields the Bregman proximal gradi-

ent method in (8.1.9), whereas backward Euler discretization applied to (8.2.1) yields the

Bregman proximal point method in (8.1.13). For these methods to be well-defined, we need

the additional assumption that Φ is continuously differentiable, i.e., the mapping from the

primal space to the dual space is single-valued 𝜕Φ = ∇Φ. For an overview of all these

algorithms and their differences, see Table 8.1.

As the remarks above make it clear, all aforementioned methods have different update

rules, yet their convergence follows by a unified theory. To observe this, we first unify

the notation and for dual methods we let {𝑦𝑘} denote the dual sequence generated by the

method. On the other hand, for primal methods we let {𝑦𝑘 = ∇Φ(𝑥𝑘)} denote the image

of the primal sequence generated by the method, which is well-defined as Φ is assumed to

be differentiable for primal methods. We also let {𝑑𝑘} denote the update sequence, i.e.,

𝑑𝑘 = −𝜂𝑘∇𝑓(𝑥𝑘+1) for the implicit mirror descent and Bregman proximal point methods,

whereas 𝑑𝑘 = −𝜂𝑘∇𝑓(𝑥𝑘) for the rest of the methods. We first observe that all methods

satisfy the following subproblem optimality condition.

Lemma 8.1. Consider the methods in Table 8.1 applied to solve the problem (7.1.1). Every

iteration of these methods satisfies

(𝑦𝑘 + 𝑑𝑘)− 𝑦𝑘+1 ∈ 𝒩𝑋(𝑥𝑘+1), ∀𝑘 ≥ 0. (8.2.2)

Proof For explicit and implicit mirror descent as well as dual averaging, we have 𝑦𝑘+1 =

𝑦𝑘 + 𝑑𝑘 by their definition (recall these are dual methods). Then, (8.2.2) trivially holds

since 0 ∈ 𝒩𝒳 (𝑥) for every 𝑥 ∈ 𝒳 . On the other hand, for the Bregman proximal gradient

180

Ta
bl

e
8.

1:
A

su
m

m
ar

y
of

ex
is

ti
ng

m
et

ho
ds

.

P
ri

m
al

M
et

ho
d

D
ua

lM
et

ho
d

C
on

ti
nu

ou
s-

T
im

e
D

yn
am

ic
s

𝑑 𝑑
𝑡
∇

Φ
(𝑥

(𝑡
))

=
−
∇
𝑓

(𝑥
(𝑡

))
−
𝒩

𝒳
(𝑥

(𝑡
))

𝑑 𝑑
𝑡
𝑦
(𝑡

)
=
−
∇
𝑓

(∇
Φ

* (
𝑦
(𝑡

))
)

B
ac

kw
ar

d
E

ul
er

D
is

cr
et

iz
at

io
n

B
re

gm
an

pr
ox

im
al

po
in

t

𝑥
𝑘
+
1

=
ar

g
m

in
𝑥
∈
𝒳

{︁ 𝑓
(𝑥

)
+

1 𝜂
𝑘
𝐷

Φ
(𝑥
,𝑥

𝑘
)}︁

Im
pl

ic
it

m
ir

ro
r

de
sc

en
t

𝑥
𝑘
+
1

=
ar

g
m

in
𝑥
∈
ℰ

{︁ 𝑓
(𝑥

)
+

1 𝜂
𝑘
𝐵

Φ
(𝑥
,𝑦

𝑘
)}︁

𝑦
𝑘
+
1

=
𝑦
𝑘
−
𝜂 𝑘
∇
𝑓

(𝑥
𝑘
+
1
)

Fo
rw

ar
d

E
ul

er
D

is
cr

et
iz

at
io

n

B
re

gm
an

pr
ox

im
al

gr
ad

ie
nt

𝑥
𝑘
+
1

=
ar

g
m

in
𝑥
∈
𝒳

{︁ ⟨
𝑥
,∇

𝑓
(𝑥

𝑘
)⟩

+
1 𝜂
𝑘
𝐷

Φ
(𝑥
,𝑥

𝑘
)}︁

E
xp

lic
it

m
ir

ro
r

de
sc

en
t

𝑥
𝑘

=
∇

Φ
* (
𝑦
𝑘
)

𝑦
𝑘
+
1

=
𝑦
𝑘
−
𝜂 𝑘
∇
𝑓

(𝑥
𝑘
)

Fo
rw

ar
d

E
ul

er
+

D
yn

am
ic

Sc
al

in
g

×
D

ua
la

ve
ra

gi
ng

𝑥
𝑘

=
∇

Φ
* (
𝑦
𝑘
/𝛽

𝑘
)

𝑦
𝑘
+
1

=
𝑦
𝑘
−
𝜂 𝑘
∇
𝑓

(𝑥
𝑘
)

181

method, the optimality of (8.1.9) implies

(∇Φ(𝑥𝑘)− 𝜂𝑘∇𝑓(𝑥𝑘))−∇Φ(𝑥𝑘+1) ∈ 𝒩𝑋(𝑥𝑘+1),

which is equivalent to (8.2.2). Similarly, for the Bregman proximal point method, the

optimality of (8.1.13) implies

(∇Φ(𝑥𝑘)− 𝜂𝑘∇𝑓(𝑥𝑘+1))−∇Φ(𝑥𝑘+1) ∈ 𝒩𝑋(𝑥𝑘+1),

which is equivalent to (8.2.2).

The normal cone condition in Lemma 8.1 together with the three-points identity pre-

sented in Lemma 7.2 and the fact that −∇𝑓 is a descent direction imply the convergence of

all aforementioned methods as we discuss below. Throughout the section for generality, we

consider the case where 𝑓 is non-differentiable and let 𝑥* ∈ arg min 𝑓 be an optimal solution

of (7.1.1). In the remainder of this section, we present a universal recipe of convergence for

the explicit mirror descent, Bregman Proximal gradient, implicit mirror descent, Bregman

proximal point and dual averaging methods. The main idea is to represent the function

suboptimality by the following three terms:

1. Approximation error that arises in explicit methods due to approximating 𝑓(𝑥𝑘+1)

around 𝑥𝑘, which is controlled by a Lipschitz-like condition or arithmetic-geometric

mean inequality.

2. Optimality condition of the subproblem defined by the update rule of the method,

which is controlled by Lemma 8.1.

3. Function value improvement measure that can be characterized by three-points iden-

tity Lemma 7.2 or four-points inequality Lemma 8.2.

182

Explicit Mirror Descent & Bregman Proximal Gradient Methods

Recall that for the explicit mirror descent and Bregman proximal gradient methods, we

have

𝑑𝑘 = −𝜂𝑘𝑔𝑘, where 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘).

Then, convexity of 𝑓 implies

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ ⟨𝑑𝑘, 𝑥* − 𝑥𝑘⟩,

After a slight massaging, we obtain

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ ⟨𝑑𝑘, 𝑥𝑘+1 − 𝑥𝑘⟩+ ⟨𝑑𝑘, 𝑥* − 𝑥𝑘+1⟩

≤ 𝑇 𝑘
1 + 𝑇 𝑘

2 + 𝑇 𝑘
3 , (8.2.3)

where

𝑇 𝑘
1 = ⟨𝑑𝑘, 𝑥𝑘+1 − 𝑥𝑘⟩,

𝑇 𝑘
2 = ⟨𝑦𝑘 + 𝑑𝑘 − 𝑦𝑘+1, 𝑥* − 𝑥𝑘+1⟩,

𝑇 𝑘
3 = ⟨𝑦𝑘+1 − 𝑦𝑘, 𝑥* − 𝑥𝑘+1⟩.

Observe that for a convergent algorithm ‖𝑥𝑘+1 − 𝑥𝑘‖ goes to zero as 𝑘 → ∞, i.e., 𝑇 𝑘
1 is a

decreasing sequence of approximation errors (that arise from approximating 𝑓(𝑥𝑘+1) around

𝑥𝑘). Furthermore, 𝑇 𝑘
2 ≤ 0 by Lemma 8.1 (optimality of subproblems) and using Lemma

7.2 (three-points identity) with 𝑥1 = 𝑥𝑘+1, 𝑥3 = 𝑥*, 𝑦1 = 𝑦𝑘+1 and 𝑦2 = 𝑦𝑘, we obtain

𝑇 𝑘
3 = 𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘).

183

Implicit Mirror Descent & Bregman Proximal Point Methods

Recall that for the implicit mirror descent and Bregman proximal point methods, we have

𝑑𝑘 = −𝜂𝑘𝑔𝑘+1, where 𝑔𝑘+1 ∈ 𝜕𝑓(𝑥𝑘+1).

Then, convexity of 𝑓 implies 𝜂𝑘(𝑓(𝑥𝑘+1) − 𝑓(𝑥*)) ≤ ⟨𝑑𝑘, 𝑥* − 𝑥𝑘+1⟩. Using the definitions

in the previous section, it is straightforward to observe that

𝜂𝑘(𝑓(𝑥𝑘+1)− 𝑓(𝑥*)) ≤ 𝑇 𝑘
2 + 𝑇 𝑘

3 , (8.2.4)

i.e., the upper bounds in (8.2.3) and (8.2.4) are identical up to an approximation error 𝑇 𝑘
1 .

Dual Averaging Method

Similar to the explicit mirror descent method, the dual averaging update directions are

given by

𝑑𝑘 = −𝜂𝑘𝑔𝑘, where 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘),

and similar to (8.2.3) we have

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ 𝑇 𝑘
1 + 𝑇 𝑘

2 + 𝑇 𝑘
3 .

𝑇 𝑘
1 and 𝑇 𝑘

2 can be upper bounded similar to the explicit mirror descent and Bregman

proximal gradient methods. On the other hand for 𝑇 𝑘
3 , we introduce the following four-

points inequality that follows from the three-points identity (Lemma 7.2) and Fenchel’s

inequality.

Lemma 8.2 (four-points inequality). Let Φ : 𝒳 → ℰ* be a closed proper convex distance

generating function. Then for any four points 𝑥1, 𝑥3 ∈ 𝒳 and 𝑦1, 𝑦2 ∈ dom 𝜕Φ*, the

184

following inequality holds:

𝐵Φ(𝑥3, 𝑦1) +𝐵Φ(𝑥1, 𝑦2)−𝐵Φ(𝑥3, 𝑦2) ≥ ⟨𝑥3 − 𝑥1, 𝑦2 − 𝑦1⟩.

Proof Similar to the proof of Lemma 7.2, (7.3.9) yields

𝐵Φ(𝑥3, 𝑦1) +𝐵Φ(𝑥1, 𝑦2)−𝐵Φ(𝑥3, 𝑦2) = Φ(𝑥1) + Φ*(𝑦1) + ⟨𝑥3, 𝑦2⟩ − ⟨𝑥3, 𝑦1⟩ − ⟨𝑥1, 𝑦2⟩.

By Fenchel’s inequality, we have Φ(𝑥1)+Φ*(𝑦1) ≥ ⟨𝑥1, 𝑦1⟩. Plugging in this equation above

and reorganizing terms, we obtain the desired result.

To upper bound 𝑇 𝑘
3 , we apply Lemma 8.2 with 𝑥1 = 𝑥𝑘+1, 𝑥3 = 𝑥*, 𝑦1 = 𝑦𝑘+1/𝛽𝑘 and

𝑦2 = 𝑦𝑘/𝛽𝑘, which yields

𝑇 𝑘
3 ≤ 𝛽𝑘

[︀
𝐵Φ(𝑥*, 𝑦𝑘/𝛽𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1/𝛽𝑘)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘/𝛽𝑘)

]︀
.

Using the recipe described in this section, we next establish the convergence rate of the

aforementioned methods for non-smooth and relatively smooth problems.

8.3 A Unified Convergence Analysis

We next apply the universal convergence recipe presented in Section 8.2 to non-smooth

and relatively smooth problems in Sections 8.3.2 and 8.3.3, respectively. Before doing so,

we first discuss the related work in the literature and our contributions in the following

section.

185

8.3.1 Related Work & Contributions

Non-Smooth Problems

A unified analysis of the explicit mirror descent and Bregman proximal gradient methods

is first presented in the seminal work of Beck and Teboulle [18]. In particular, the authors

showed that when Φ is Legendre, the iterates generated by the explicit mirror descent

and Bregman proximal gradient methods are equivalent. Thus, the convergence of explicit

mirror descent can be analyzed via Bregman divergences. Unfortunately, this equivalence

does not hold unless Φ is essentially smooth on 𝒳 as discussed in the previous section. Our

analysis here only requires assumptions to have well-defined discrete-time methods, i.e., Φ

is not assumed to be continuously differentiable for the dual methods.

In [100], online versions of the explicit mirror descent and Bregman proximal gradient

methods (as well as the follow-the-regularized-leader method) are considered. The authors

consider unconstrained composite optimization problems with a time-varying non-smooth

component. In this case, the difference between the explicit mirror descent and Bregman

proximal gradient methods appear as a result of having a time-varying regularizer. The

authors show that unification of these methods can still be shown if the mirror map is

varied over time as well with a suitable scaling. This idea is quite different from what we

present in this chapter and see (8.3.1) for a more rigorous description.

The most closely related work to this chapter is by Juditsky et al. [77], where the

authors consider the explicit mirror descent and Bregman proximal gradient methods (in

their paper these methods are called dual averaging and mirror descent, respectively). The

main contribution of [77] is the definition of a unified mirror descent method that reduces

to either the Bregman proximal gradient method (i.e., when Φ is continuously differentiable

on ℰ , see [77, Proposition 2.2]) or the explicit mirror descent method (i.e., Φ is strongly

convex or Φ is strictly convex and 𝒳 is bounded, see [77, Proposition 3.2]). Indeed, it is

obvious that under the former assumption the Bregman proximal gradient method is well-

defined, whereas under the latter assumptions Proposition 7.1 holds (see the discussion

186

following Proposition 7.1). The authors provide a unified framework for explicit mirror

descent and Bregman proximal gradient methods, and recover their rate estimates for non-

smooth problems presented in [18]. Our framework in this chapter additionally covers

the dual averaging, implicit mirror descent and Bregman proximal point methods for non-

smooth problems, and recovers the rate estimates presented in [107, 49, 81], respectively.

Furthermore, we extend our analysis to relatively smooth problems and obtain the rate

estimates presented in [15] and [93], while relaxing certain differentiability conditions as we

discuss below in more detail. A similar unified framework for non-smooth and relatively

smooth problems has been presented for the explicit mirror descent and Bregman proximal

gradient methods in [139]. However, it relies on the assumption Φ is Legendre and thus

does not have the generality of the results of this chapter.

Relatively Smooth Problems

Relative smoothness is first introduced in [15] for composite optimization problems, where

one of the components is continuously differentiable while the other is not. For the sake

of clarity, we discuss the non-composite case (7.1.1), where the methods we consider can

be applied to composite problems with an additional proximal step as presented in [15].

In [15], the authors consider solving (7.1.1) with a Bregman proximal gradient algorithm,

where 𝑓 is continuously differentiable on int𝒳 and Φ is Legendre such that 𝑓 is 𝐿-smooth

with respect to Φ:

∃𝐿 > 0 such that 𝐿Φ− 𝑓 is convex on int𝒳 .

As we discussed in the previous section, when Φ is Legendre, the iterates generated by the

Bregman proximal gradient algorithm remain in int𝒳 and are identical to the iterates of

the explicit mirror descent method (for the composite case, see [15, Section 3] for additional

assumptions on the non-differentiable component function). Under the relative smoothness

assumption, the authors prove the weak convergence of the Bregman proximal gradient

187

method (called NoLips algorithm in [15]) and with additional assumptions they also prove

strong convergence of the iterates. Unlike [15], we do not only focus on the explicit mirror

descent and Bregman proximal gradient methods when they are equivalent (i.e., when Φ

is of Legendre type). More specifically, for our analysis to hold strict/strong convexity is

sufficient for the dual methods and essential smoothness is sufficient for the primal methods.

In [93], the authors define relative smoothness in the same way and establish the con-

vergence rate of the Bregman proximal gradient method. Their analysis does not require

Φ to be strictly/strongly convex, but uses a slightly weaker assumption that Φ is strongly

convex relative to 𝑓 , and they provide a linear convergence rate estimate when 𝑓 is rel-

atively strongly convex with respect to Φ (i.e., ∃𝜇 > 0 such that 𝑓 − 𝜇Φ is convex on

int𝒳). They also consider the explicit mirror descent method (which the authors call dual

averaging, not to be confused with dual averaging we define in Table 8.1) and present its

sublinear and linear rate estimates. Yet, their analysis requires Φ to be continuously differ-

entiable on ℰ while constraints are handled with a projection step similar to the Bregman

proximal gradient method. Hence, this method is not well-defined for non-differentiable

distance generating functions unlike the mirror descent and dual averaging methods we

consider here. Nevertheless, the assumptions in [93] are milder compared to [15] such that

the trajectory of the Bregman proximal gradient method is not necessarily identical to the

trajectory of the mirror descent method. The authors also extend their analysis to com-

posite optimization problems using a slight generalization of Bregman divergence, but that

analysis is much different from the one we consider here in the sense that the subgradient

of the non-smooth component function cancels out in the update rule and the algorithm

effectively becomes a Bregman proximal gradient method similar to [15].

In [92], the above ideas are extended to non-smooth problems using subgradient meth-

ods, and an extension to stochastic composite optimization problems is presented in [64].

The algorithm in [64] reduces to regularized dual averaging method for deterministic prob-

lems of the type min𝒳 𝑓 + 𝑔, where 𝑓 is convex continuously differentiable and 𝑔 is closed

proper convex. Given a distance generating function Φ of Legendre type, the update rule

188

of the regularized dual averaging method is given by (see [64, Section 2.2]):

𝑦𝑘 = 𝑦𝑘−1 − 𝜂∇𝑓(𝑥𝑘−1), (8.3.1a)

𝑥𝑘 = ∇Φ*
𝑘(𝑦𝑘), (8.3.1b)

where Φ𝑘 = Φ + 𝑘𝜂𝑔 and 𝜂 > 0 is a fixed step size. An important difference of this

algorithm from [15] is that it does not necessarily operate on int𝒳 . Indeed when 𝑔 = 𝜄𝒳 ,

it can be observed that this method reduces to the explicit mirror descent method since

𝜄𝒳 is not affected by scaling in (8.3.1b). However, for an arbitrary regularizer 𝑔, this

method is different from the explicit mirror descent method due to the time-varying distance

generating function Φ𝑘. A generalization of this method is studied in [48], where the authors

consider Φ𝑘 = Φ + ℎ(𝑘, 𝜂)𝑔 and the function ℎ is a design parameter.

8.3.2 Convergence Analysis for Non-smooth Problems

In this section, we consider a constrained convex optimization problem of the form

min
𝑥∈𝒳

𝑓(𝑥), (8.3.2)

where 𝒳 is a nonempty closed convex subset of ℰ and 𝑓 is a closed proper convex function.

Let Φ be a 𝜇-strongly convex function, which is assumed to be continuously differentiable

on 𝒳 whenever we are talking about primal methods, whereas it may be non-differentiable

for dual methods.

Explicit Mirror Descent & Bregman Proximal Gradient Methods

By our discussions in Section 8.2, the following inequality holds for the explicit mirror

descent and Bregman proximal gradient methods:

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ ⟨𝑑𝑘, 𝑥𝑘+1 − 𝑥𝑘⟩+𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘),

189

where 𝑑𝑘 = −𝜂𝑘𝑔𝑘 and 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘). Using arithmetic-geometric mean inequality on the

first term, we obtain

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ 𝜂2𝑘
2𝜇
‖𝑔𝑘‖2* +

𝜇

2
‖𝑥𝑘+1 − 𝑥𝑘‖2 +𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘).

Using Lemma 7.3 with 𝑥1 = 𝑥𝑘+1, 𝑥2 = 𝑥𝑘 and 𝑦2 = 𝑦𝑘, we can observe that 𝜇
2
‖𝑥𝑘+1 − 𝑥𝑘‖2−

𝐵Φ(𝑥𝑘+1, 𝑦𝑘) ≤ 0, which substituting into the above inequality yields

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ 𝜂2𝑘
2𝜇
‖𝑔𝑘‖2* +𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1).

Summing this inequality for 𝑘 = 1, . . . , ℓ (where we start the initial index from 1 for

notational convenience), we get

ℓ∑︁

𝑘=1

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ 𝐵Φ(𝑥*, 𝑦1)−𝐵Φ(𝑥*, 𝑦ℓ+1) +
1

2𝜇

ℓ∑︁

𝑘=1

𝜂2𝑘 ‖𝑔𝑘‖2*.

Lower bounding each 𝑓(𝑥𝑘) by min𝑘 𝑓(𝑥𝑘) in the left-hand side and noticing that𝐵Φ(𝑥*, 𝑦ℓ+1)

is non-negative, we obtain

min
1≤𝑘≤ℓ

𝑓(𝑥𝑘)−min
𝑥∈𝒳

𝑓(𝑥) ≤
𝐵Φ(𝑥*, 𝑦1) + 1

2𝜇

∑︀ℓ
𝑘=1 𝜂

2
𝑘 ‖𝑔𝑘‖2*∑︀ℓ

𝑘=1 𝜂𝑘
,

which is identical to the rate estimate for Bregman proximal gradient method presented in

[18, Theorem 4.1]. Note that our analysis shows that the same estimate holds also for the

explicit mirror descent method without the assumption Φ is continuously differentiable,

whereas the analysis in [18] holds for the mirror descent method under differentiability

assumption. Choosing a suitable stepsize as described in [18, Proposition 4.1]:

𝜂𝑘 =

√︀
2𝜇𝐵Φ(𝑥*, 𝑦1)

𝐿𝑘
, ∀𝑘 ≥ 1,

190

we obtain the following rate estimate (cp. [18, Theorem 4.2]):

min
1≤ℓ≤𝑘

𝑓(𝑥ℓ)−min
𝑥∈𝒳

𝑓(𝑥) ≤ 𝐿
√︀

2𝜇𝐵Φ(𝑥*, 𝑦1)√
𝜇𝑘

.

Implicit Mirror Descent & Bregman Proximal Point Methods

By our discussions in Section 8.2, the following inequality holds for the implicit mirror

descent and Bregman proximal point methods:

𝜂𝑘(𝑓(𝑥𝑘+1)− 𝑓(𝑥*)) ≤ 𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘),

Summing this inequality for 𝑘 = 0, . . . , ℓ− 1, we get

ℓ−1∑︁

𝑘=0

𝜂𝑘(𝑓(𝑥𝑘+1)− 𝑓(𝑥*)) ≤ 𝐵Φ(𝑥*, 𝑦0)−𝐵Φ(𝑥*, 𝑦ℓ)−
ℓ−1∑︁

𝑘=0

𝐵Φ(𝑥𝑘+1, 𝑦𝑘).

Lower bounding each 𝑓(𝑥𝑘) by min𝑘 𝑓(𝑥𝑘) in the left-hand side and noticing that𝐵Φ(𝑥*, 𝑦ℓ+1)

and 𝐵Φ(𝑥𝑘+1, 𝑦𝑘) are non-negative, we obtain

min
1≤𝑘≤ℓ

𝑓(𝑥𝑘)−min
𝑥∈𝒳

𝑓(𝑥) ≤ 𝐵Φ(𝑥*, 𝑦0)∑︀ℓ−1
𝑘=0 𝜂𝑘

,

which is precisely the rate estimated obtained in [49, Theorem 3.4] for the Bregman prox-

imal point method and in [81, Lemma 4.1] for the implicit mirror descent method.

Dual Averaging Method

By our discussions in Section 8.2, the following inequality holds for the dual averaging

method:

𝜂𝑘(𝑓(𝑥𝑘)−𝑓(𝑥*)) ≤ ⟨𝑑𝑘, 𝑥𝑘+1 − 𝑥𝑘⟩+𝛽𝑘
[︀
𝐵Φ(𝑥*, 𝑦𝑘/𝛽𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1/𝛽𝑘)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘/𝛽𝑘)

]︀
,

191

where 𝑑𝑘 = −𝜂𝑘𝑔𝑘 and 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘). Using arithmetic-geometric mean inequality on the

first term, we obtain

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ 𝜂2𝑘
2𝜇𝛽𝑘

‖𝑔𝑘‖2* +
𝜇𝛽𝑘
2
‖𝑥𝑘+1 − 𝑥𝑘‖2

+ 𝛽𝑘
[︀
𝐵Φ(𝑥*, 𝑦𝑘/𝛽𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1/𝛽𝑘)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘/𝛽𝑘)

]︀
.

Using Lemma 7.3 with 𝑥1 = 𝑥𝑘+1, 𝑥2 = 𝑥𝑘 and 𝑦2 = 𝑦𝑘/𝛽𝑘, we can observe that 𝜇
2
‖𝑥𝑘+1 − 𝑥𝑘‖2−

𝐵Φ(𝑥𝑘+1, 𝑦𝑘/𝛽𝑘) ≤ 0, which substituting into the above inequality yields

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ 𝜂2𝑘
2𝜇𝛽𝑘

‖𝑔𝑘‖2* + 𝛽𝑘
[︀
𝐵Φ(𝑥*, 𝑦𝑘/𝛽𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1/𝛽𝑘)

]︀

=
𝜂2𝑘

2𝜇𝛽𝑘
‖𝑔𝑘‖2* + 𝛽𝑘Φ*(𝑦𝑘/𝛽𝑘)− 𝛽𝑘Φ*(𝑦𝑘+1/𝛽𝑘)− ⟨𝑥*, 𝑦𝑘⟩+ ⟨𝑥*, 𝑦𝑘+1⟩.

Summing this inequality for 𝑘 = 0, . . . , ℓ, we get

ℓ∑︁

𝑘=0

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ 1

2𝜇

ℓ∑︁

𝑘=0

𝜂2𝑘
𝛽𝑘
‖𝑔𝑘‖2* − ⟨𝑥*, 𝑦0⟩+ ⟨𝑥*, 𝑦ℓ+1⟩

+ 𝛽0Φ
(𝑦0/𝛽0)− 𝛽ℓΦ(𝑦ℓ+1/𝛽ℓ)−

ℓ−1∑︁

𝑘=0

(𝛽𝑘+1 − 𝛽𝑘) Φ(𝑥𝑘+1).

where the inequality follows by

𝛽𝑘+1Φ
(𝑦𝑘+1/𝛽𝑘+1)− 𝛽𝑘Φ(𝑦𝑘+1/𝛽𝑘) = ⟨𝑥𝑘+1, 𝑦𝑘+1⟩ − 𝛽𝑘+1Φ(𝑥𝑘+1)− 𝛽𝑘Φ*(𝑦𝑘+1/𝛽𝑘)

≤ −(𝛽𝑘+1 − 𝛽𝑘) Φ(𝑥𝑘+1),

which follows by the Fenchel’s inequality. Assuming that {𝛽𝑘} is a non-decreasing sequence,

we obtain
ℓ∑︁

𝑘=0

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ 𝛽0𝐵Φ(𝑥*, 𝑦0/𝛽0) +
1

2𝜇

ℓ∑︁

𝑘=0

𝜂2𝑘
𝛽𝑘
‖𝑔𝑘‖2*,

which is identical to [107, Theorem 1].

192

8.3.3 Convergence Analysis for Relatively Smooth Optimization

Problems

In this section, we consider a constrained convex optimization problem of the form

min
𝑥∈𝒳

𝑓(𝑥), (8.3.3)

where 𝒳 is a nonempty closed convex subset of ℰ and 𝑓 : ℰ → R is a continuously

differentiable convex function. We assume Φ is continuously differentiable on 𝒳 for the

primal methods and Φ is assumed to satisfy the conditions in Proposition 7.1 for the dual

methods. We also assume that 𝑓 is 𝐿-smooth relative to Φ, i.e., ∃𝐿 > 0 such that

𝑓(𝑥) ≤ 𝑓(𝑢) + ⟨∇𝑓(𝑢), 𝑥− 𝑢⟩+ 𝐿𝐵Φ(𝑥, 𝑦), ∀𝑥, 𝑢 ∈ 𝒳 and ∀𝑦 ∈ 𝜕Φ(𝑢). (8.3.4)

In the remainder of this section, we apply the universal convergence recipe presented in

Section 8.2 to relatively smooth problems.

Explicit Mirror Descent & Bregman Proximal Gradient Methods

By our discussions in Section 8.2, the following inequality holds for the explicit mirror

descent and Bregman proximal gradient methods:

𝜂𝑘(𝑓(𝑥𝑘)− 𝑓(𝑥*)) ≤ ⟨𝑑𝑘, 𝑥𝑘+1 − 𝑥𝑘⟩+𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘),

where 𝑑𝑘 = −𝜂𝑘∇𝑓(𝑥𝑘). Using the relative smoothness assumption (8.3.4) with 𝑥 = 𝑥𝑘+1,

𝑢 = 𝑥𝑘 and 𝑦 = 𝑦𝑘, the above inequality can be equivalently written as follows (cp. [15,

Lemma 5]):

𝜂𝑘(𝑓(𝑥𝑘+1)− 𝑓(𝑥*)) ≤ 𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1)− (1− 𝜂𝑘𝐿)𝐵Φ(𝑥𝑘+1, 𝑦𝑘).

193

Let 𝜂𝑘 = 1/(2𝐿) for all 𝑘 such that the last term above guarantees {𝑓(𝑥𝑘)} is a non-

increasing sequence converging to min𝒳 𝑓 . Then, we have

𝑓(𝑥𝑘+1)− 𝑓(𝑥*) ≤ 2𝐿(𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1)).

Summing this inequality for 𝑘 = 0, . . . , ℓ− 1, we get

ℓ−1∑︁

𝑘=0

(𝑓(𝑥𝑘+1)− 𝑓(𝑥*)) ≤ 2𝐿(𝐵Φ(𝑥*, 𝑦0)−𝐵Φ(𝑥*, 𝑦ℓ)).

Observing 𝐵Φ(𝑥*, 𝑦ℓ) ≥ 0 and applying Jensen’s inequality, we obtain

𝑓(𝑥𝑘)− 𝑓(𝑥*) ≤ 2𝐿

𝑘
𝐵Φ(𝑥*, 𝑦0),

which is identical to [15, Theorem 1] for the Bregman proximal gradient method and [93,

Theorem 3.2] for the explicit mirror descent method (note that the method we call explicit

mirror descent is called dual averaging in [93]). It is important to highlight that [15] and

[93] assume Φ is continuously differentiable on 𝒳 , whereas Φ is non-differentiable in our

analysis.

Implicit Mirror Descent & Bregman Proximal Point Methods

By our discussions in Section 8.2, the following inequality holds for the implicit mirror

descent and Bregman proximal point methods:

𝜂𝑘(𝑓(𝑥𝑘+1)− 𝑓(𝑥*)) ≤ 𝐵Φ(𝑥*, 𝑦𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘),

Choosing a constant stepsize 𝜂𝑘 = 𝜂 and summing this inequality for 𝑘 = 0, . . . , ℓ − 1, we

get

𝜂

ℓ−1∑︁

𝑘=0

(𝑓(𝑥ℓ)− 𝑓(𝑥*)) ≤ 𝐵Φ(𝑥*, 𝑦0)−𝐵Φ(𝑥*, 𝑦ℓ)−
ℓ−1∑︁

𝑘=0

𝐵Φ(𝑥𝑘+1, 𝑦𝑘).

194

Observing {𝑓(𝑥𝑘)} is a non-increasing sequence and applying Jensen’s inequality, we obtain

𝑓(𝑥𝑘)− 𝑓(𝑥*) ≤ 1

𝜂𝑘
𝐵Φ(𝑥*, 𝑦0),

Dual Averaging Method

By our discussions in Section 8.2, the following inequality holds for the dual averaging

method:

𝜂𝑘(𝑓(𝑥𝑘)−𝑓(𝑥*)) ≤ ⟨𝑑𝑘, 𝑥𝑘+1 − 𝑥𝑘⟩+𝛽𝑘
[︀
𝐵Φ(𝑥*, 𝑦𝑘/𝛽𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1/𝛽𝑘)−𝐵Φ(𝑥𝑘+1, 𝑦𝑘/𝛽𝑘)

]︀
,

where 𝑑𝑘 = −𝜂𝑘∇𝑓(𝑥𝑘). Using the relative smoothness assumption (8.3.4) with 𝑥 = 𝑥𝑘+1,

𝑢 = 𝑥𝑘 and 𝑦 = 𝑦𝑘, the above inequality can be equivalently written as follows:

𝜂𝑘(𝑓(𝑥𝑘+1)− 𝑓(𝑥*)) ≤ 𝛽𝑘[𝐵Φ(𝑥*, 𝑦𝑘/𝛽𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1/𝛽𝑘)]− (𝛽𝑘 − 𝜂𝑘𝐿)𝐵Φ(𝑥𝑘+1, 𝑦𝑘/𝛽𝑘).

Let 𝜂𝑘 = 1/(2𝐿) for all 𝑘 and {𝛽𝑘} be a non-decreasing sequence with 𝛽0 > 1/2 such that

the last term above guarantees {𝑓(𝑥𝑘)} is a non-increasing sequence converging to min𝒳 𝑓 .

Then, we have

𝑓(𝑥𝑘+1)− 𝑓(𝑥*) ≤ 2𝐿𝛽𝑘[𝐵Φ(𝑥*, 𝑦𝑘/𝛽𝑘)−𝐵Φ(𝑥*, 𝑦𝑘+1/𝛽𝑘)]− 𝐿(2𝛽𝑘 − 1)𝐵Φ(𝑥𝑘+1, 𝑦𝑘/𝛽𝑘).

Summing this inequality for 𝑘 = 0, . . . , ℓ− 1 and using similar tricks to our analysis in the

previous section, we get

ℓ−1∑︁

𝑘=0

(𝑓(𝑥𝑘+1)− 𝑓(𝑥*)) ≤ 2𝐿𝛽0𝐵Φ(𝑥*, 𝑦0/𝛽0),

which by applying Jensen’s inequality yields

𝑓(𝑥𝑘)− 𝑓(𝑥*) ≤ 2𝐿𝛽0
𝑘

𝐵Φ(𝑥*, 𝑦0/𝛽0).

195

8.4 Applications

In this section, we consider a few celebrated problems in the literature and specify the

mirror descent method applied to these problems. We establish that the linearized Bregman

iterative method [152] and the singular value thresholding method [43] are instances of the

explicit mirror descent method, in Sections 8.4.1 and 8.4.2, respectively.

8.4.1 Sparse Recovery Problem

Here we consider the setting:

𝑓(𝑥) =
1

2
‖𝐴𝑥− 𝑏‖22, 𝒳 = R𝑛 and Φ(𝑥) = ‖𝑥‖1 +

𝜆

2
‖𝑥‖22.

As we have discussed in Theorem 7.7, when applied to solve min𝒳 𝑓 , the mirror descent

method returns the solution to the following problem

min ‖𝑥‖1 +
𝜆

2
‖𝑥‖22,

s.t. 𝐴𝑥 = 𝑏,

provided that 𝑦0 = 0. This problem is used as a surrogate to the basis pursuit problem

(𝜆 = 0) and one of the most celebrated solvers is the linearized Bregman iterative method

[152]. The linearized Bregman iterative method is designed to minimize 𝜇‖𝑢‖1 + 1
2𝛿
‖𝑢‖22

subject to 𝐴𝑢 = 𝑏 and consists of the following iterations:

𝑣𝑘+1 = 𝑣𝑘 + 𝐴⊤(𝑏− 𝐴𝑢𝑘) (8.4.2a)

𝑢𝑘+1 = 𝛿 𝑇𝜇(𝑣𝑘+1), (8.4.2b)

where

𝑇𝜇(𝑣) = [𝑡𝜇(𝑣1), . . . , 𝑡𝜇(𝑣𝑛)]⊤

196

is the soft thresholding operator given by

𝑡𝜇(𝜉) =

⎧
⎪⎨
⎪⎩

0 if |𝜉| ≤ 𝜇,

sgn(𝜉)(|𝜉| − 𝜇) if |𝜉| > 𝜇.

Compare the update rule of linearized Bregman iterations (8.4.2) with the update rule of

the explicit mirror descent method:

𝑥𝑘 = ∇Φ*(𝑦𝑘), (8.4.3a)

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝐴⊤(𝐴𝑥𝑘 − 𝑏). (8.4.3b)

Indeed, it can be observed that these two methods are equivalent as we highlight below.

Proposition 8.3. Let (𝑥𝑘, 𝑦𝑘) denote the primal and dual sequences generated by the ex-

plicit mirror descent method (8.4.3) and (𝑢𝑘, 𝑣𝑘) denote the primal and dual sequences gen-

erated by the linearized Bregman iterative method (8.4.2). When 𝜂 = 1/𝜇 and 𝜆 = 1/(𝜇𝛿),

the iterates generated by these two methods are equivalent, i.e., 𝑥𝑘 = 𝑢𝑘 and 𝑦𝑘 = 𝑣𝑘/𝜇 for

all 𝑘.

Proof We begin the proof by computing ∇Φ*. The subdifferential of Φ at 𝑥 is given by

𝜕Φ(𝑥) = 𝜆𝑥+ Sgn(𝑥). Therefore, for any 𝑦 ∈ 𝜆𝑥+ Sgn(𝑥), we have 𝑥 = ∇Φ*(𝑦), i.e.,

∇Φ*(𝑦) =
1

𝜆
𝑇1(𝑦).

Observe that 𝑦𝑘 = 𝑣𝑘/𝜇 for all 𝑘 provided that 𝑥𝑘 = 𝑢𝑘. We prove this by induction:

𝑦0 = 𝑣0 = 0 by the initialization and suppose these relations hold for some 𝑘. Then, we

have

𝑇1(𝑦
𝑘) = 𝑇1(𝑣

𝑘/𝜇) =
1

𝜇
𝑇𝜇(𝑣𝑘).

Consequently, we obtain

𝑥𝑘 = ∇Φ*(𝑦𝑘) =
1

𝜆𝜇
𝑇𝜇(𝑣𝑘).

197

As 𝜆 = 1/(𝜇𝛿), we get 𝑥𝑘 = 𝑢𝑘. Since we have 𝑦𝑘 = 𝑣𝑘/𝜇 by the induction step, we obtain

𝑦𝑘+1 =
𝑣𝑘

𝜇
− 1

𝜇
𝐴⊤(𝐴𝑢𝑘 − 𝑏) =

𝑣𝑘+1

𝜇
,

which concludes the proof.

8.4.2 Low-Rank Recovery Problem

Here we consider the setting:

𝑓(𝑥) =
1

2
‖𝒜𝑋 − 𝑏‖22, 𝒳 = R𝑛×𝑚 and Φ(𝑥) = ‖𝑋‖* +

𝜆

2
‖𝑋‖2F,

where 𝒜 is a linear operator acting on the space of 𝑛 × 𝑚 matrices and 𝑏 ∈ R𝑝. As we

have discussed in Theorem 7.7, when applied to solve min𝒳 𝑓 , the mirror descent method

returns the solution to the following problem

min ‖𝑋‖* +
𝜆

2
‖𝑋‖2F

s.t. 𝒜𝑋 = 𝑏,

provided that 𝑦0 = 0. This problem is used as a surrogate to the low-rank matrix recovery

problem (𝜆 = 0) and one of the most celebrated solvers is the singular value thresholding

method [43], which is an extension of the linearized Bregman iterative method [152]. The

linearized Bregman iterative method is designed to minimize 𝜏‖𝑊‖1 + 1
2
‖𝑊‖22 subject to

𝒜𝑊 = 𝑏 and consists of the following iterations:

𝑊 𝑘 = 𝐷𝜏 (𝒜⊤𝑧𝑘), (8.4.5a)

𝑧𝑘+1 = 𝑧𝑘 + 𝛿(𝑏−𝒜𝑊 𝑘), (8.4.5b)

198

where similar to the previous section

𝐷𝜏 (𝑊) = 𝑈𝐷𝜏 (Σ)𝑉 ⊤, where 𝐷𝜏 (Σ) = diag({𝜎𝑖 − 𝜏}+),

and 𝑡+ = max(0, 𝑡) is the positive part of 𝑡. Compare the update rule of the singular value

thresholding method (8.4.5) with the update rule of the explicit mirror descent method:

𝑋𝑘 = ∇Φ*(𝑌 𝑘), (8.4.6a)

𝑌 𝑘+1 = 𝑌 𝑘 − 𝜂𝒜⊤(𝒜𝑋𝑘 − 𝑏). (8.4.6b)

Indeed, it can be observed that these two methods are equivalent as we highlight below.

Proposition 8.4. Let (𝑋𝑘, 𝑌 𝑘) denote the primal and dual sequences generated by the

explicit mirror descent method (8.4.6) and (𝑊 𝑘, 𝑧𝑘) denote the primal and dual (in the

Lagrange sense) sequences generated by the linearized Bregman iterative method (8.4.5).

When 𝜂 = 𝛿/𝜏 and 𝜆 = 1/𝜏 , the iterates generated by these two methods are equivalent,

i.e., 𝑋𝑘 = 𝑊 𝑘 and 𝑌 𝑘 = 𝒜⊤𝑧𝑘/𝜏 for all 𝑘.

Proof We begin the proof by computing ∇Φ*. The subdifferential of Φ at 𝑋 = 𝑈Σ𝑉 ⊤

is given by

𝜕Φ(𝑋) = 𝜆𝑋 + {𝑈𝑉 ⊤ + 𝑆 : 𝑋 and 𝑆 have orthogonal row/column spaces and ‖𝑆‖ ≤ 1},

where ‖·‖ denotes the spectral norm. Therefore, similar to the proof of Proposition 8.3, we

have

∇Φ*(𝑌) =
1

𝜆
𝐷1(𝑌).

Observe that 𝑌 𝑘 = 𝒜⊤𝑧𝑘/𝜏 for all 𝑘 provided that 𝑋𝑘 = 𝑊 𝑘. We prove this by induction:

𝑌 0 = 𝒜⊤𝑧0 = 0 by the initialization and suppose these relations hold for some 𝑘. Then,

we have

𝐷1(𝑌
𝑘) = 𝐷1(𝒜⊤𝑧𝑘/𝜏) =

1

𝜏
𝐷𝜏 (𝒜⊤𝑧𝑘).

199

Consequently, we obtain

𝑋𝑘 = ∇Φ*(𝑌 𝑘) = 𝐷𝜏 (𝒜⊤𝑧𝑘) = 𝑊 𝑘.

Since we have 𝑌 𝑘 = 𝒜⊤𝑧𝑘/𝜏 by the induction step, we obtain

𝑌 𝑘+1 =
𝒜⊤𝑧𝑘

𝜏
− 𝛿

𝜏
𝒜⊤(𝒜𝑊 𝑘 − 𝑏) = 𝒜⊤𝑧𝑘+1/𝜏,

which concludes the proof.

8.5 Discussion

In this chapter, we presented a unified framework for explicit and implicit mirror descent,

dual averaging, Bregman proximal gradient and Bregman proximal point methods. Our

main aim in this chapter was to clarify the assumptions needed for each method to be well-

defined, so that our discussion in the following chapter would be easier to comprehend. In

doing so, we presented a universal convergence recipe for the aforementioned methods by

characterizing the function value suboptimality as a composition of approximation error,

update rule optimality and function value improvement. We also established the equiva-

lence between certain celebrated optimization methods and mirror descent. Our results are

more comprehensive than the existing studies in the literature under milder assumptions.

200

Chapter 9

Generalized Mirror Descent Methods

In this chapter, we study mirror descent methods with non-strictly convex and non-differentiable

distance generating functions, which we call generalized mirror descent methods. Recall that

the mirror descent dynamics is given by:

�̇�(𝑡) = −∇𝑓(∇Φ*(𝑦(𝑡))), (9.0.1a)

𝑦(0) = 𝑦0 ∈ ℰ*. (9.0.1b)

As we discussed in Section 7.2, we require the following conditions on Φ to have a well-

defined dynamics (9.0.1):

1. Φ is essentially strictly convex, so that Φ* is differentiable on its domain.

2. Φ is supercoercive, so that dom∇Φ* = ℰ*.

3. dom Φ = 𝒳 , so that rge∇Φ* ⊆ 𝒳 .

Our main purpose in this section is to relax the first two conditions and study the result-

ing dynamics. This corresponds to extending the mirror descent method to non-smooth

geometries, which to our knowledge is not studied in the literature before. Note that the

third condition ensures that the iterates generated by the mirror descent method remains

201

feasible and hence cannot be relaxed unless a separate projection step is incorporated into

(9.0.1a), which we do not pursue here.

Outline

In Section 9.1, we consider relaxing only the first condition and in order to guarantee that

the second condition still holds, we consider the case dom Φ = 𝒳 is bounded. We illustrate

that the resulting mirror descent dynamics are still well-defined and has solutions that

satisfy the convergence guarantees enjoyed by the mirror descent differential equation (cp.

Section 7.4). In Section 9.2, we relax the second condition as well, but in doing so we face

the problem of having a differential inclusion with non-compact values, which may prohibit

convergence. Thus, we focus on quadratic problems for which we handle this problem by

the monotonicity of the mirror descent differential inclusion. We show that the resulting

dynamics enjoy similar convergence rates to the mirror descent differential equation. In

Section 9.3, we discuss a few methods to obtain discrete-time solutions to the mirror descent

differential inclusion. In Section 9.4, we illustrate that in certain examples the trajectory

of the mirror descent method can be efficiently recovered by a discrete-time method in

finitely many iterations. We provide numerical experiments in Section 9.5 and conclude

the chapter with certain remarks in Section 9.6

9.1 Relaxing Strict Convexity Condition

When the distance generating function Φ is non-strictly convex, the mirror descent dynam-

ics have the following differential inclusion form:

�̇�(𝑡) = −∇𝑓(𝜕Φ*(𝑦(𝑡))), (9.1.1a)

𝑦(0) = 𝑦0 ∈ ℰ*, (9.1.1b)

202

where 𝜕Φ* : ℰ* ⇒ 𝒳 is a set-valued map. As we discussed in the previous section, here

we keep the supercoercivity condition by assuming dom Φ = 𝒳 is bounded. For the mirror

descent differential equation (9.0.1), we have only dealt with the convergence of the solu-

tion in the previous sections. However for the mirror descent differential inclusion (9.1.1),

even the existence of a solution is not immediate. The simplest approach to tackle this

issue is to reduce the corresponding differential inclusion to a differential equation. More

specifically, we investigate if there exists a differential equation �̇�(𝑡) = −𝑔(𝑦(𝑡)) concealed

in the differential inclusion (9.1.1) in the sense that 𝑔(𝑦) ∈ ∇𝑓(𝜕Φ*(𝑦)) for every 𝑦. If it

is so, we can conclude that a solution of the differential equation is a solution of the dif-

ferential inclusion (9.1.1), which resolves the existence issue. This approach reduces to the

so called selection problem, where one tries to select a single-valued map in the set-valued

map 𝜕Φ* such that the selection satisfies some regularity conditions such as continuity and

measurability. We do not discuss the details of such selection rules, but for an interested

reader, we refer to [10, Chapter 9] for a detailed treatment of this topic. Our approach is

based on showing that ∇𝑓 ∘ 𝜕Φ* is an upper semi-continuous map, which in turn implies

the existence of a selection rule by the approximate selection theorem [10, Theorem 9.2.1].

Before discussing this method in detail, we first define what we mean by a solution. We

require that a solution 𝑦(·) has to be absolutely continuous, i.e., 𝑦(·) should be the primitive

of its derivative:

𝑦(𝑡) = 𝑦0 +

∫︁ 𝑡

0

�̇�(𝑠) 𝑑𝑠.

In the following section, we show the existence of a solution to mirror descent differen-

tial inclusion (9.1.1). We then present the convergence of a solution and discuss how to

discretize the mirror descent differential inclusion.

9.1.1 Existence of a Solution

We begin our discussion by showing that the set-valued map ∇𝑓 ∘ 𝜕Φ* is upper semi-

continuous. To this end, we first introduce the following lemma, which is a standard result

203

on upper semi-continuous maps.

Lemma 9.1 ([9, Proposition 1.1.1]). Suppose 𝑆 : 𝒜 ⇒ ℬ and 𝑇 : ℬ ⇒ 𝒞 are upper

semi-continuous maps, then so is 𝑇 ∘ 𝑆 : 𝒜⇒ 𝒞.

Below, we conclude the upper semi-continuity of ∇𝑓 ∘ 𝜕Φ* using Lemma 9.1.

Proposition 9.2. Let Φ be a closed proper convex function with dom Φ = 𝒳 , where 𝒳 is

a non-empty bounded closed convex set. Then, ∇𝑓 ∘ 𝜕Φ* is upper semi-continuous.

Proof We begin the proof by showing that 𝜕Φ* is bounded and closed. Since Φ is a closed

proper convex function, we have rge 𝜕Φ* ⊆ dom Φ, see e.g., [128, p. 227]. As dom Φ = 𝒳
and 𝒳 is bounded, then rge 𝜕Φ* is bounded. Next, we consider closedness of 𝜕Φ*. 𝜕Φ* is

closed (i.e., has closed graph) when Φ* is closed proper convex. Φ* is closed proper convex

when Φ is proper convex, which is satisfied by the assumption. Consequently, 𝜕Φ* is closed.

Since 𝜕Φ* is bounded and closed on ℰ*, then it is upper semi-continuous by [11, Theorem

1.4.1]. It is easy to observe that for a single-valued map ∇𝑓 , the definitions of upper inverse

and lower inverse reduce to the inverse of the function ∇𝑓 . Therefore, the continuity of

∇𝑓 trivially implies that ∇𝑓 is upper semi-continuous. The result then follows by Lemma

9.1 with 𝑇 = ∇𝑓 and 𝑆 = 𝜕Φ*.

The upper semi-continuity of ∇𝑓 ∘ 𝜕Φ* is promising to show the local existence of a

solution to the differential inclusion (9.1.1). In particular, since ∇𝑓 ∘ 𝜕Φ* is upper semi-

continuous around a neighborhood of 𝑦0 ∈ int(dom 𝜕Φ*), then the approximate selection

theorem [10, Theorem 9.2.1] implies the existence of a solution 𝑦(·) in a neighborhood of 𝑦0

defined on [0, 𝑇] for some 𝑇 > 0. Extending this result to entire ℰ*, we obtain the desired

result. This results follows by [9, Theorems 2.1.3 & 2.1.4] and we present a proof sketch in

Section 9.7.1.

Theorem 9.3. Suppose 𝑓 : ℰ → R is a continuously differentiable convex function with

bounded gradients on a non-empty bounded closed convex set 𝒳 . Let Φ be a closed proper

204

convex function with dom Φ = 𝒳 . Then, there exists a solution 𝑦(·) defined on [0,+∞) to

the differential inclusion (9.1.1).

9.1.2 Convergence of Solutions

Let 𝑦 be an absolutely continuous solution defined on [0,+∞) to the differential inclusion

(9.1.1). We next show that the corresponding primal trajectory enjoys the same sublinear

rate of convergence as the mirror descent differential equation.

Theorem 9.4. Suppose the conditions in Theorem 9.3 hold. Let 𝑦 be a solution to (9.1.1).

If �̇� is continuous almost everywhere, then there exists a selection 𝑥(𝑡) ∈ 𝜕Φ*(𝑦(𝑡)) such

that every accumulation point of 𝑥 is contained in 𝒳 * = arg min 𝑓 and

𝑓

(︂
1

𝑡

∫︁ 𝑡

0

𝑥(𝑠) 𝑑𝑠

)︂
− 𝑓(𝑥*) ≤ 𝐵Φ*(𝑦0, 𝑥*)

𝑡
, where 𝑥* ∈ 𝒳 *.

Proof Let 𝒩 be the set of times 𝑡 such that 𝑦 is not differentiable at 𝑡, 𝑦 is not right

continuous at 𝑡 or �̇�(𝑡) /∈ −∇𝑓(𝜕Φ*(𝑦(𝑡))). For every 𝑡 /∈ 𝒩 , let 𝑥(𝑡) ∈ 𝜕Φ*(𝑦(𝑡)) such that

�̇�(𝑡) = −∇𝑓(𝑥(𝑡)). Then, similar to our discussions in Chapter 7, we consider the following

function for every 𝑡 /∈ 𝒩 :

𝑉 (𝑦(𝑡)) = 𝐵Φ*(𝑦(𝑡), 𝑥*) +

∫︁ 𝑡

0

(𝑓(𝑥(𝑠))− 𝑓(𝑥*)) 𝑑𝑠,

which is a Lyapunov function candidate for the mirror descent differential inclusion (9.1.1).

Recall the definition of generalized Bregman divergence:

𝑉 (𝑦(𝑡)) = Φ*(𝑦(𝑡)) + Φ(𝑥*)− ⟨𝑦(𝑡), 𝑥*⟩+

∫︁ 𝑡

0

(𝑓(𝑥(𝑠))− 𝑓(𝑥*)) 𝑑𝑠.

In order to conclude 𝑉 (𝑦(𝑡)) is a Lyapunov function, we need to show that it is non-

205

increasing. To this end, we consider

lim
𝑠→0+

1

𝑠
(Φ*(𝑦(𝑡+ 𝑠))− Φ*(𝑦(𝑡))) ≤ lim

𝑠→0+

1

𝑠
⟨𝑥(𝑡+ 𝑠), 𝑦(𝑡+ 𝑠)− 𝑦(𝑡)⟩,

lim
𝑠→0+

1

𝑠
(Φ*(𝑦(𝑡))− Φ*(𝑦(𝑡+ 𝑠))) ≤ lim

𝑠→0+

1

𝑠
⟨𝑥(𝑡), 𝑦(𝑡)− 𝑦(𝑡+ 𝑠)⟩,

where the inequality follows since 𝑥(𝑡) ∈ 𝜕Φ*(𝑡) and 𝑥(𝑡+𝑠) ∈ 𝜕Φ*(𝑡+𝑠). Taking the limit

as 𝑠→ 0+ and noting that 𝑥 is right continuous, we get

lim
𝑠→0+

1

𝑠
Φ*(𝑦(𝑡+ 𝑠))− Φ*(𝑦(𝑡)) = −⟨𝑥(𝑡),∇𝑓(𝑥(𝑡))⟩.

Therefore, the right derivative of 𝑉 with respect to 𝑡 is given by

�̇� (𝑦(𝑡)) = 𝑓(𝑥(𝑡))− 𝑓(𝑥*)− ⟨𝑥(𝑡),∇𝑓(𝑥(𝑡))⟩

= −𝐷𝑓 (𝑥*, 𝑥(𝑡)),

which is upper bounded by zero. Thus, applying Jensen’s inequality to 𝑉 and following

similar steps to Theorem 7.4, we obtain the desired result.

9.1.3 Discrete-Time Solutions

We next discuss how to discretize the mirror descent differential inclusion using explicit

Euler method. In particular, we consider the stochastic recursive inclusions:

𝑦𝑘+1 = 𝑦𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘) + 𝜂𝑘𝜉
𝑘, (9.1.2)

where 𝑥𝑘 ∈ 𝜕Φ*(𝑦𝑘) are the selections from inclusions, 𝜂𝑘 is the stepsize and {𝜉𝑘}𝑘≥0 is an

arbitrary noise sequence. In order to compare the discrete-time system with the continuous-

206

time dynamics, we define 𝑦 as the linear interpolation of the iterates 𝑦𝑘 given by

𝑦(𝑡) = 𝑦𝑘 +
𝑡− 𝑡𝑘

𝑡𝑘+1 − 𝑡𝑘
(𝑦𝑘+1 − 𝑦𝑘), for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1),

where 𝑡𝑘 =
∑︀𝑘

𝑗=0 𝜂𝑗 is the cumulative stepsizes that correspond to discretization times.

In order to characterize the time derivative of this solution, we also define the following

constant interpolation:

�̄�(𝑡) = 𝑥𝑘, for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1).

According to these definitions, we have ˙̄𝑦(𝑡) = −∇𝑓(�̄�(𝑡)) almost everywhere. We then

have the following convergence theorem on the interpolated sequence, cp. [27, Theorem

5.2] and [57, Theorem 2], whose proof is omitted.

Theorem 9.5. Let conditions of Theorem 9.3 and the following hold.

1. Iterates are bounded: sup𝑘 ‖𝑦𝑘‖ <∞ and sup𝑘 ‖𝑥𝑘‖ <∞.

2. Stepsize sequence satisfies:
∑︀∞

𝑘=0 𝜂𝑘 =∞ and
∑︀∞

𝑘=0 𝜂
2
𝑘 <∞.

3. Weighted noise sequence converges: lim𝑘→∞
∑︀𝑘

𝑗=0 𝜂𝑗𝜉
𝑗 = 𝜔 for some 𝜔 ∈ ℰ*.

Then, every limit point 𝑦(·) of {𝑦(𝑡+ ·), 𝑡 ≥ 0} in 𝐶([0,∞), ℰ*) as 𝑡→∞ satisfies (9.1.1)

almost everywhere, i.e.,

𝑦(𝑡) = 𝑦0 −
∫︁ 𝑡

0

∇𝑓(𝑥(𝑠)) 𝑑𝑠, 𝑡 ≥ 0, where 𝑥(𝑡) ∈ 𝜕Φ*(𝑦(𝑡)), ∀𝑡.

The theorem above establishes the convergence of the dual variable and we refer to

Section 9.3 for a further discussion on the convergence of the primal trajectory.

9.2 Relaxing Bounded Domain Condition

We next investigate relaxing the bounded domain condition in addition to the differen-

tiability condition. This corresponds to mirror descent dynamics with non-strictly convex

207

distance generating functions with domain ℰ , which implies Φ* need not be differentiable

on its domain and dom 𝜕Φ* is not necessarily entire ℰ*. Keep in mind that we still impose

the third condition: dom Φ = 𝒳 , which is fundamental to ensure that the solutions gener-

ated by the mirror descent dynamics are feasible. When dom 𝜕Φ* ̸= ℰ*, we are not only

concerned with the existence of a solution 𝑦(·) but also its viability as well, i.e., 𝑦(𝑡) should

be contained in dom 𝜕Φ* for all 𝑡 ≥ 0.

Consider the set-valued map 𝜕Φ* described in the previous section and suppose we fix

a closed convex set 𝒴 = dom 𝜕Φ* by setting 𝜕Φ*(𝑦) = ∅ for every 𝑦 /∈ 𝒴 . Then, it can

be shown that the trajectories generated by (9.1.1) remain feasible under mild conditions

[9, Theorem 5.2.7]. In particular, when −∇𝑓(𝜕Φ*(𝑦)) ⊂ 𝑇𝒴(𝑦), where 𝑇𝒴(𝑦) denotes the

tangent cone of 𝒴 at 𝑦, there exists a feasible solution to (9.1.1). However, we are principally

interested with the primal trajectory and consequently Φ* is often constructed via its convex

conjugate Φ. Therefore, in general it does not make much sense to impose a restriction on

dom 𝜕Φ* unless dom 𝜕Φ* is bounded as a consequence of the definition of Φ. Recall that

dom 𝜕Φ* is bounded if and only if Φ contains a non-vertical half line. Let 𝑦 denote the slope

of this half line. Then, 𝜕Φ*(𝑦) is not compact and the existence theorems in the previous

section does not apply. Therefore, without additional conditions on the objective function

𝑓 , mirror descent differential inclusion does not necessarily have a solution. Therefore in

the sequel, we consider the particular case, where 𝑓 is a convex quadratic function, and

study the corresponding mirror descent differential inclusion.

Our main focus in this section is on unconstrained quadratic problems:

𝑓(𝑥) =
1

2
‖𝐴𝑥− 𝑏‖22 and 𝒳 = ℰ ,

where 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚. We consider mirror descent dynamics to solve min𝒳 𝑓

with a non-strictly convex non-differentiable distance generating function Φ : ℰ → R. The

208

corresponding mirror descent differential inclusion is then given by

�̇�(𝑡) = −𝐴⊤(𝐴𝜕Φ*(𝑦(𝑡))− 𝑏), (9.2.1a)

𝑦(0) = 𝑦0 ∈ dom 𝜕Φ*. (9.2.1b)

Here, we do not rule out the possibility that dom 𝜕Φ* is a bounded subset of ℰ*. Indeed,

this is not just a theoretical curiosity, but it is the case for many interesting problems.

As an example, consider Φ(𝑥) = ‖𝑥‖1 whose subdifferential is given by 𝜕Φ(𝑥) = {𝑦 ∈
ℰ* : ‖𝑦‖∞ ≤ 1, ⟨𝑦, 𝑥⟩ = ‖𝑥‖1}. Since the range of 𝜕Φ is bounded by the unit ℓ∞-ball, it

follows that the domain of 𝜕Φ* is bounded by the same ball (as 𝑥 ∈ 𝜕Φ*(𝑦) is equivalent

to 𝑦 ∈ 𝜕Φ(𝑥), for any 𝑥 ∈ ℰ and 𝑦 ∈ ℰ*).

9.2.1 Existence and Uniqueness of the Solution

It can be observed from (9.2.1a) that �̇� ∈ rge𝐴⊤. Therefore, if 𝑦0 ∈ dom 𝜕Φ* ∩ rge𝐴⊤, we

can consider a change of variables 𝑦 = 𝐴⊤𝑧, where 𝑧 ∈ R𝑚, and consider the equivalent

differential inclusion:

�̇�(𝑡) = −(𝐴𝜕Φ*(𝐴⊤𝑧(𝑡))− 𝑏), (9.2.2a)

𝑧(0) = 𝑧0 ∈ ℰ*𝐴, (9.2.2b)

where ℰ*𝐴 = {𝑧 ∈ R𝑚 : 𝐴⊤𝑧 ∈ dom 𝜕Φ*} is the pre-image of dom 𝜕Φ* under the linear

map 𝐴⊤ and 𝑧0 ∈ ℰ*𝐴 such that 𝑦0 = 𝐴⊤𝑧0. We start studying this differential inclusion by

showing that the right-hand side of (9.2.2a) is a maximal monotone operator.

Lemma 9.6. Let Φ : ℰ → R be a closed proper convex function and suppose 0 ∈ ri(dom 𝜕Φ*).

Then, 𝑇 : 𝑧 ↦→ 𝐴(𝜕Φ*(𝐴⊤𝑧(𝑡)))− 𝑏 is a maximal monotone map.

Proof It is well-known (see e.g., [130, Theorem 12.17]) that subdifferential of a closed

proper convex function is maximal monotone. Since Φ is assumed to be closed proper

convex, then so is Φ*, which implies 𝜕Φ* is a maximal monotone map. Furthermore,

209

maximality is preserved under linear transformations [130, Theorem 12.43]. In particular,

𝑆(𝑧) = 𝐴𝜕Φ*(𝐴⊤𝑧) is maximal monotone provided that rge𝐴⊤ ∩ ri(dom 𝜕Φ*) ̸= ∅. Since

0 ∈ rge𝐴⊤ and 0 ∈ ri(dom 𝜕Φ*) by the assumption of the lemma, it follows that 𝑆 is

maximal monotone. As any constant map is trivially maximal monotone with domain R𝑚,

then 𝑇 (𝑧) = 𝑆(𝑧)− 𝑏 is maximal monotone, see e.g., [130, Corollary 12.44].

As an immediate consequence of the maximal monotonicity of the right-hand side of

(9.2.2a), the differential inclusion (9.2.2) has a unique solution by [9, Theorem 3.2.1]. Fur-

thermore, this solution is called slow solution and is characterized by the smallest norm

element of the set-valued map (9.2.2a). Throughout this section, we will assume that ℰ is

equipped with ℓ2-norm, and for a given closed convex set 𝒦, we let

𝑚(𝒦) = Π𝒦(0)

denote the smallest ℓ2-norm element of 𝒦. Then, a solution 𝑧 to the differential inclusion

�̇� = 𝐹 (𝑧) is called slow solution if �̇� = 𝑚(𝐹 (𝑧)) almost everywhere. By [9, Theorem 3.2.1],

the unique solution to (9.2.2) is characterized by the corresponding slow solution as we

highlight below, whose proof is omitted.

Theorem 9.7. Suppose the conditions in Lemma 9.6 hold. Then, there exists a unique

solution 𝑧(·) defined on [0,∞) to the differential inclusion (9.2.2), which is the slow solution,

i.e.,

�̇�(𝑡) = 𝑚(−(𝐴𝜕Φ*(𝐴⊤𝑧(𝑡))− 𝑏)) almost everywhere. (9.2.3)

Furthermore, this solution enjoys the following properties:

1. 𝑡 ↦→ ‖�̇�(𝑡)‖2 is non-increasing.

2. Let 𝑧1 and 𝑧2 be the solutions issued from 𝑧01 and 𝑧02, respectively. Then, ‖𝑧1(𝑡)− 𝑧2(𝑡)‖2 ≤
‖𝑧01 − 𝑧02‖2 for all 𝑡 ≥ 0.

210

3. For all 𝑡 ≥ 0, �̇�(𝑡) is continuous from the right and

�̇�(𝑡) = lim
𝑠→0+

𝑧(𝑡+ 𝑠)− 𝑧(𝑡)

𝑠
.

9.2.2 Convergence of Solutions

Observe that (9.2.3) establishes a subgradient selection rule for 𝜕Φ*, which is called minimal

selection. We denote this selection by 𝑥(𝑡) for all 𝑡 ≥ 0 since this corresponds to the primal

trajectory we are interested in. More specifically, we let

𝑥(𝑡) ∈ arg min
𝑥∈𝜕Φ*(𝐴⊤𝑧(𝑡))

‖𝐴𝑥− 𝑏‖2, ∀𝑡 ≥ 0. (9.2.4)

We then observe that

𝑉 (𝑧(𝑡)) = 𝐵Φ*(𝐴⊤𝑧(𝑡), 𝑥*) +

∫︁ 𝑡

0

(𝑓(𝑥(𝑠))− 𝑓(𝑥*)) 𝑑𝑠

is a Lyapunov function for mirror descent dynamics. Recall the definition of generalized

Bregman divergence:

𝑉 (𝑧(𝑡)) = Φ*(𝐴⊤𝑧(𝑡)) + Φ(𝑥*)− ⟨𝐴⊤𝑧(𝑡), 𝑥*⟩+

∫︁ 𝑡

0

(𝑓(𝑥(𝑠))− 𝑓(𝑥*)) 𝑑𝑠.

Consider the right-derivative of 𝑉 with respect to time, which is well-defined since Φ* is

continuous, �̇�(𝑡) is right-continuous and consequently 𝑓(𝑥(𝑡)) is right-continuous (since 𝑓

is a quadratic function, also compare with (9.2.4)):

�̇� (𝑧(𝑡)) = lim
𝑠→0+

1

𝑠
(𝑉 (𝑧(𝑡+ 𝑠))− 𝑉 (𝑧(𝑡)))

= 𝑓(𝑥(𝑡))− 𝑓(𝑥*) + lim
𝑠→0+

1

𝑠
(Φ*(𝐴⊤𝑧(𝑡+ 𝑠))− Φ*(𝐴⊤𝑧(𝑡))− ⟨𝐴𝑥*, 𝑧(𝑡+ 𝑠)− 𝑧(𝑡)⟩).

(9.2.5)

211

Since Φ* is convex, the following inequalities hold:

Φ*(𝐴⊤𝑧(𝑡+ 𝑠))− Φ*(𝐴⊤𝑧(𝑡)) ≤ −⟨𝑥(𝑡+ 𝑠), 𝐴⊤(𝑧(𝑡)− 𝑧(𝑡+ 𝑠))⟩,

Φ*(𝐴⊤𝑧(𝑡))− Φ*(𝐴⊤𝑧(𝑡+ 𝑠)) ≤ −⟨𝑥(𝑡), 𝐴⊤(𝑧(𝑡+ 𝑠)− 𝑧(𝑡))⟩,

as 𝑥(𝑡+ 𝑠) ∈ 𝜕Φ*(𝐴⊤𝑧(𝑡+ 𝑠)) and 𝑥(𝑡) ∈ 𝜕Φ*(𝐴⊤𝑧(𝑡)). After some elementary operations,

these inequalities can be equivalently written as follows

Φ*(𝐴⊤𝑧(𝑡+ 𝑠))− Φ*(𝐴⊤𝑧(𝑡)) ≤ −⟨𝐴𝑥(𝑡+ 𝑠)− 𝑏, 𝑧(𝑡)− 𝑧(𝑡+ 𝑠)⟩ − ⟨𝑏, 𝑧(𝑡)− 𝑧(𝑡+ 𝑠)⟩,

Φ*(𝐴⊤𝑧(𝑡))− Φ*(𝐴⊤𝑧(𝑡+ 𝑠)) ≤ −⟨𝐴𝑥(𝑡)− 𝑏, 𝑧(𝑡+ 𝑠)− 𝑧(𝑡)⟩ − ⟨𝑏, 𝑧(𝑡+ 𝑠)− 𝑧(𝑡)⟩.

Taking the limit as 𝑠→ 0+, we observe that

lim
𝑠→0+

1

𝑠
Φ*(𝐴⊤𝑧(𝑡+ 𝑠))− Φ*(𝐴⊤𝑧(𝑡)) ≤ −⟨�̇�(𝑡), �̇�(𝑡)⟩+ ⟨𝑏, �̇�(𝑡)⟩,

lim
𝑠→0+

1

𝑠
Φ*(𝐴⊤𝑧(𝑡))− Φ*(𝐴⊤𝑧(𝑡+ 𝑠)) ≤ ⟨�̇�(𝑡), �̇�(𝑡)⟩ − ⟨𝑏, �̇�(𝑡)⟩.

Since these inequalities provide tight lower and upper bounds, we have

lim
𝑠→0+

1

𝑠
Φ*(𝐴⊤𝑧(𝑡+ 𝑠))− Φ*(𝐴⊤𝑧(𝑡)) = −‖�̇�(𝑡)‖22 + ⟨𝑏, �̇�(𝑡)⟩.

Using this equation in (9.2.5), we obtain

�̇� (𝑧(𝑡)) = 𝑓(𝑥(𝑡))− 𝑓(𝑥*)− ‖�̇�(𝑡)‖22 − ⟨𝐴𝑥* − 𝑏, �̇�(𝑡)⟩).

Since �̇�(𝑡) = −(𝐴𝑥(𝑡)− 𝑏), we then get

�̇� (𝑧(𝑡)) = 𝑓(𝑥(𝑡))− 𝑓(𝑥*)− ⟨(𝐴𝑥(𝑡)− 𝑏)− (𝐴𝑥* − 𝑏), 𝐴𝑥(𝑡)− 𝑏⟩).

212

Rearranging terms, we can observe that

�̇� (𝑧(𝑡)) = 𝑓(𝑥(𝑡))− 𝑓(𝑥*)− ⟨𝑥(𝑡)− 𝑥*, 𝐴⊤(𝐴𝑥(𝑡)− 𝑏)⟩).

Since ∇𝑓(𝑥(𝑡)) = 𝐴⊤(𝐴𝑥(𝑡) − 𝑏), we conclude that �̇� (𝑧(𝑡)) = −𝐷𝑓 (𝑥*, 𝑥(𝑡)). Thus, we

arrive at the following result.

Theorem 9.8. Suppose the conditions in Lemma 9.6 hold and let

𝑥(𝑡) ∈ arg min
𝑥∈𝜕Φ*(𝐴⊤𝑧(𝑡))

‖𝐴𝑥− 𝑏‖2, ∀𝑡 ≥ 0. (9.2.6)

denote a primal trajectory corresponding to the minimal selection rule presented in Theorem

9.7. Then, every accumulation point of 𝑥(𝑡) is contained in 𝒳 * = arg min 𝑓 . Furthermore,

the following convergence rate holds:

𝑓

(︂
1

𝑡

∫︁ 𝑡

0

𝑥(𝑠) 𝑑𝑠

)︂
− 𝑓(𝑥*) ≤ 𝐵Φ*(𝐴⊤𝑧0, 𝑥*)

𝑡
, where 𝑥* ∈ 𝒳 *.

An immediate consequence of this theorem is that the mirror descent differential inclu-

sion is implicitly biased towards minimum divergence solutions, similar to Theorem 7.7.

Corollary 9.9. Suppose the conditions in Lemma 9.6 hold and let 𝑥(𝑡) denote a primal

trajectory given by (9.2.6) corresponding to the minimal selection rule presented in Theorem

9.7. Then, every accumulation point �̄� of 𝑥(𝑡) satisfies

�̄� ∈ arg min
𝑥∈ℰ

𝐴𝑥=𝑃𝑏

𝐵Φ(𝑥,𝐴⊤𝑧0), (9.2.7)

where 𝑃 = 𝐴(𝐴⊤𝐴)−1𝐴⊤ is the projection matrix onto rge𝐴.

Proof The following KKT conditions are satisfied at any optimal solution 𝑥* to (9.2.7):

(feasibility) 𝐴𝑥* = 𝑃𝑏,

(stationarity) ∃𝜆* : 𝐴⊤𝑧0 + 𝐴⊤𝜆* ∈ 𝜕Φ(𝑥*).

213

As we have shown in Theorem 9.8 (and by LaSalle’s invariance principle), any accumulation

point �̄� of 𝑥(𝑡) is contained in 𝒳 *, i.e., satisfies ∇𝑓(�̄�) = 𝐴⊤(𝐴�̄� − 𝑏) = 0, which implies

that 𝐴�̄� = 𝑃𝑏. In order to verify the stationarity condition, we integrate the slow solution

(9.2.3):

𝑧(𝑡)− 𝑧0 = −
∫︁ 𝑡

0

(𝐴𝑥(𝑠)− 𝑏) 𝑑𝑠,

where 𝑥(𝑡) is given by (9.2.6) (note that 𝑥(𝑡) need not be unique, whereas �̇�(𝑡) = −(𝐴𝑥(𝑠)−
𝑏) is). Let {𝑥(𝑡𝑘)} denote the subsequence that converges to �̄�. Then, multiplying both

sides by 𝐴⊤ from the left and taking the limit as 𝑘 →∞, we get

𝐴⊤𝑧0 − lim
𝑘→∞

∫︁ 𝑡𝑘

0

𝐴⊤(𝐴𝑥(𝑠)− 𝑏) 𝑑𝑠 ∈ 𝜕Φ(�̄�).

Thus, �̄� is an optimal solution to the problem (9.2.7).

Remark 9.10. Our discussions in this section trivially extend to the case 𝒳 is bounded. In

particular, observe that in Lemma 9.6, the condition 0 ∈ ri(dom 𝜕Φ*) holds since bounded

𝒳 implies dom 𝜕Φ* = ℰ*. Furthermore, the convergence results (Theorems 9.7 and 9.8)

readily extend to the case dom 𝜕Φ* = ℰ*.

9.2.3 Discrete-Time Solutions

Finally, we study discretization methods applied to mirror descent differential inclusion

(9.2.2) for quadratic problems. We consider the backward Euler method (since ℰ*𝐴 may be

bounded and a projection step is required), which yields the following discrete-time update:

𝑧𝑘+1 = 𝑧𝑘 − 𝜂𝑘 (𝐴𝑥𝑘+1 − 𝑏), where 𝑥𝑘+1 = 𝜕Φ*(𝐴⊤𝑧𝑘+1). (9.2.8)

Similar to the previous section, our focus will be on approximate update rules. Therefore,

we first introduce the following notation. Let 𝑇 : 𝑧 ↦→ 𝐴𝜕Φ*(𝐴⊤𝑧)− 𝑏 denote the maximal

monotone mapping we have described in Lemma 9.6. The proximal point algorithm in

214

(9.2.8) is based on the Minty characterization [102] that for each 𝑧 and 𝜂𝑘 > 0, there is a

unique 𝑢 such that 𝑢− 𝑧 ∈ −𝜂𝑘𝑇 (𝑢), or equivalently

𝑧 ∈ (1 + 𝜂𝑘𝑇)(𝑢).

Consequently, 𝑃𝑘 = (1+𝜂𝑘𝑇)−1 is a single-valued mapping called proximal mapping. Using

this definition, we can observe that (9.2.8) can be equivalently written as 𝑧𝑘+1 = 𝑃𝑘(𝑧𝑘).

We consider the case, where the proximal map is approximately calculated yielding the

update rule

𝑧𝑘+1 = 𝑃𝑘(𝑧𝑘) + 𝜉𝑘. (9.2.9)

We then have the following convergence theorem on the discrete-time sequence, as an

immediate consequence of [129, Theorem 1].

Theorem 9.11. Let {𝑧𝑘}𝑘≥0 be any sequence generated by the discrete-time update rule in

(9.2.9). Assume 𝑧𝑘 ∈ ℰ*𝐴 for all 𝑘 ≥ 0, the error sequence satisfies
∑︀∞

𝑘=0 ‖𝜉𝑘‖2 < ∞ and

𝑏 ∈ rge𝐴⊤. Then, 𝑧𝑘 converges weakly to a point 𝑧* such that 0 ∈ 𝑇 (𝑧*) as 𝑘 →∞.

9.3 Discussion on Discrete-Time Solutions

In this section, we present a detailed discussion on the discrete-time solutions to the mirror

descent differential inclusion. Theorem 9.5 and Theorem 9.11 show that the dual trajectory

𝑦 generated by particular discretizations discussed in the corresponding theorems converges

to a fixed point of the differential inclusion. This is sufficient to show the convergence of

the dual variables to a solution of the initial value problem (9.1.1), whereas the convergence

of primal variables generated by some 𝑥 ∈ 𝜕Φ*(𝑦) need not converge to a minimizer of 𝑓

in certain applications. This behavior can be observed by inspecting the graph of 𝜕Φ and

𝜕Φ* as we discuss below with an example.

Consider the setting ℰ = R, 𝒳 = [2, 2] and Φ(𝑥) = |𝑥|. Graphs of 𝜕Φ and 𝜕Φ* are

depicted in Figure 9-1. From the figure on the right, we observe that we have 𝑥 = 0 when

215

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 9-1: Graphs of 𝜕Φ and 𝜕Φ* for Φ = | · | and 𝒳 = [−2, 2].

𝑦 ∈ (−1, 1), 𝑥 = 2 when 𝑦 > 1 and 𝑥 = −2 when 𝑦 < −1. Therefore, the primal variable 𝑥

takes only three different values almost everywhere for 𝑦 ∈ R. Suppose the minimizer of 𝑓

is at 𝑥* = 1, e.g., say 𝑓(𝑥) = (𝑥− 1)2/2. Then, unless 𝑦 = 1 exactly, we cannot recover 𝑥*

without an error that is strictly bounded away from zero. The observation in this example

holds for many interesting problems. In particular, the region of interest in the dual space

(to generate a primal variable that minimizes 𝑓) corresponds to a set of measure zero. This

issue can be handled in several ways as we discuss below.

The first approach is to solve a subproblem upon the termination of the discrete-time

method. In particular, Theorems 9.5 and 9.11 guarantee that the dual trajectory converges

weakly to a pre-image of 𝒳 *. Let 𝑦∞ denote the dual variable upon the termination of the

discrete-time method. Then, we can solve the following subproblem:

𝑥∞ ∈ arg min
𝑥∈𝜕Φ*(𝑦)

‖𝑦−𝑦∞‖2≤𝜖

‖∇𝑓(𝑥)‖2, (9.3.1)

for some 𝜖 > 0 to recover a minimizer of 𝑓 . This approach makes sense if computing

subdifferentials 𝜕Φ* is relatively cheap and the problem (9.3.1) is not more expansive than

solving the original problem. Note that the problem in (9.3.1) is a robust optimization

problem variant and efficient methods for solving this problem exists in the literature [24].

216

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 9-2: Graphs of 𝜕Φ and 𝜕Φ* for Φ = | · |+ 𝜆
2
(·)2 and 𝒳 = [−2, 2].

The second approach is to regularize the distance generating function Φ and revert the

problem to a differential equation. This resolves the issue as can be observed in Figure 9-2

for the example discussed above. For this example, the region of interest in the dual space

R has measure 𝜆𝐷, where 𝐷 is the diameter of 𝒳 . This enables to use stepsizes that are

proportional to 𝜆 by sacrificing from the sparsity induced by Φ, where the sacrifice also

increases proportional to 𝜆. As discussed in Section 8.4, this approach is taken in many

state-of-the-art solvers since the resulting differential equation is easier to interpret and

rate estimates can be obtained for sufficiently small stepsizes.

Another approach to handle the aforementioned issue is to consider 𝜖-subdifferentials:

𝜕𝜖Φ(𝑥) = {𝑦 ∈ ℰ* : Φ(𝑢) ≥ Φ(𝑥) + ⟨𝑦, 𝑢− 𝑥⟩ − 𝜖, ∀𝑢 ∈ ℰ}, (9.3.2)

instead of regular subdifferentials. Figure 9-3 illustrates how using 𝜖-subgradients result in

obtaining a region of interest with strictly positive measure for the particular example dis-

cussed above. For this approach, the convergence of the resulting method can be analyzed

using similar techniques to [127], which we do not discuss here. Suppose the discrete-time

method terminates with the dual variable 𝑦∞, then a primal solution can be found by

217

Figure 9-3: Graphs of 𝜕𝜖Φ* for 𝜖 = 0.1 (left) and 𝜖 = 0.02 (right), where Φ = | · | and
𝒳 = [−2, 2].

solving a problem of the following type:

𝑥∞ ∈ arg min
𝑥∈𝜕𝜖Φ*(𝑦∞)

‖∇𝑓(𝑥)‖2. (9.3.3)

An advantage of this method over the one described in (9.3.1) is that the optimization space

in (9.3.3) is explicitly defined by the choice of 𝜖 and using a sequence of non-increasing {𝜖𝑘}’s
naturally yield easier problems to solve.

A far more efficient approach is to track the trajectory of the differential inclusion explic-

itly. In particular, Theorem 9.11 shows that the solution to the mirror descent differential

inclusion is uniquely determined by the minimum selection rule. Therefore, if we can trace

the solution along the submanifolds where �̇� (or �̇�) is continuous, then upon termination

the final subgradient chosen according to the minimum selection rule becomes an optimal

solution. In the following section, we illustrate this idea for the basis pursuit problem.

218

9.4 Application: Minimum ℓ1-norm Solution to Linear

Systems

The problem of finding the minimum ℓ1-norm solution to an undetermined system of linear

equations has attracted a lot of attention in optimization and signal processing communi-

ties. One of the main reasons for this interest is the fact that the minimum ℓ1-norm solution

is often the sparsest possible solution under certain conditions. More specifically, consider

recovering an unknown signal 𝑥0 ∈ R𝑛, given a measurement vector 𝑏 ∈ R𝑚 and a sensing

matrix 𝐴 ∈ R𝑚×𝑛 such that 𝑏 = 𝐴𝑥0. When 𝑥0 is sufficiently sparse and the sensing matrix

𝐴 is incoherent with the basis under which 𝑥0 is sparse, then 𝑥0 can be exactly recovered

by computing the minimum ℓ1-norm solution to this linear system, i.e., by the following

problem:

min ‖𝑥‖1 (9.4.1a)

s.t. 𝐴𝑥 = 𝑏. (9.4.1b)

We find an optimal solution to (9.4.1) by solving the problem

min
𝑥∈R𝑛

1

2
‖𝐴𝑥− 𝑏‖22,

using the mirror descent method with Φ(𝑥) = ‖𝑥‖1. As shown in Theorem 9.7, the unique

solution to the mirror descent dynamics for this problem is given by

�̇�(𝑡) = 𝑚(−(𝐴𝜕Φ*(𝐴⊤𝑧(𝑡))− 𝑏)), (9.4.2)

and Corollary 9.9 guarantees that the limit points of the primal trajectory generated by

the mirror descent method:

𝑥(𝑡) ∈ arg min
𝑥∈𝜕Φ*(𝐴⊤𝑧(𝑡))

1

2
‖𝐴𝑥− 𝑏‖22 (9.4.3)

219

are minimum ℓ1-norm solutions among the least squares solutions.

We begin our discussion by observing that Φ*(𝐴⊤𝑧) = 𝜄𝒵(𝑧), where 𝒵 = {𝑧 ∈ R𝑚 :

‖𝐴⊤𝑧‖∞ ≤ 1}. Then, letting 𝑎𝑖 denote the 𝑖-th column of 𝐴, i.e., 𝐴 = [𝑎1, . . . , 𝑎𝑛], the 𝑖-th

coordinate of the subdifferential of Φ* is given as follows

𝜕𝑖Φ
*(𝐴⊤𝑧) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |𝑎⊤𝑖 𝑧| < 1,

R≥ if 𝑎⊤𝑖 𝑧 = 1,

R≤ if 𝑎⊤𝑖 𝑧 = −1,

∅ if |𝑎⊤𝑖 𝑧| > 1.

For ease of presentation, we define the following functions:

𝜓𝑖(𝑧) = 𝑎⊤𝑖 𝑧 − 1,

𝜓−𝑖(𝑧) = 𝑎⊤𝑖 𝑧 + 1,

which represent the boundary of 𝒵 as highlighted below:

𝒵 = {𝑧 ∈ R𝑚 : 𝜓𝑖(𝑧) ≤ 0 and 𝜓−𝑖(𝑧) ≥ 0, ∀𝑖 ∈ [𝑛]}.

We finally let 𝐼(𝑧) denote the set of active constraints at solution 𝑧:

ℐ(𝑧) = ℐ+(𝑧) ∪ ℐ−(𝑧),

where

ℐ+(𝑧) = {𝑖 ∈ [𝑛] : 𝜓𝑖(𝑧) = 0},

ℐ−(𝑧) = {𝑖 ∈ [𝑛] : 𝜓−𝑖(𝑧) = 0}.

Throughout the paper, we let ℐ(𝑧) = ℐ+(𝑧) ∪ ℐ−(𝑧) denote an active-set for simplicity,

220

whereas in actual implementation we need to define both ℐ+(𝑧) and ℐ−(𝑧) separately.

Every time it is stated that there exists an active set ℐ(𝑧), it should be understood that

there exist two disjoint sets ℐ+(𝑧) and ℐ−(𝑧) that uniquely define the active-set ℐ(𝑧).

As we hinted in the previous section, our aim here is to trace the trajectory of the mirror

descent differential inclusion. This can be done by tracking the set of active constraints at

𝑧. In particular, for two dual solutions 𝑧1 and 𝑧2, if their active sets are the same, then

the corresponding primal solutions given by the minimum selection rule is the same as

well. A closer look into this argument together with the right continuity of �̇� as shown in

Theorem 9.7 reveal that the mirror descent method applied to solve the quadratic problem
1
2
‖𝐴𝑥− 𝑏‖22 with distance generating function Φ(𝑥) = ‖𝑥‖1 is equivalent to the gradient

flow applied to the dual problem of (9.4.1). More specifically, the dual of the basis pursuit

problem (9.4.1) is given by

max ⟨𝑏, 𝑧⟩ (9.4.4a)

s.t. ‖𝐴⊤𝑧‖∞ ≤ 1, (9.4.4b)

or equivalently min𝑧∈R𝑚 ⟨𝑏, 𝑧⟩ + 𝜄𝑍(𝑧). Since 𝜄𝑍(𝑧) = 𝜕Φ*(𝐴⊤𝑧) as discussed above, a

gradient descent dynamics applied to the dual problem yields the gradient flow presented

in (9.4.2). For a more detailed description of this equivalence, we refer to Section 9.7.2.

Since the boundary of 𝜄𝑍 is polyhedral and �̇� is right continuous as shown in Theorem 9.7,

then addition operator allows us to slide on the subspace (submanifold in the general case)

defined by the active constraints. Therefore, we can represent the trajectory of the mirror

descent differential inclusion by the following discrete-time process:

𝑧𝑘+1 = 𝑧𝑘 + 𝜂𝑘𝑑
𝑘, (9.4.5)

221

where 𝜂𝑘 > 0 is a stepsize and 𝑑𝑘 is the update direction given by

𝑑𝑘 = 𝑏−
∑︁

𝑖∈ℐ(𝑧𝑘)

𝑥𝑘𝑖 𝑎𝑖, (9.4.6)

and 𝑥𝑘𝑖 , 𝑖 ∈ ℐ(𝑧𝑘), is a solution to the following problem (cp. (9.4.3)):

min
1

2

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒𝑏−

∑︁

𝑖∈ℐ(𝑧𝑘)

𝑥𝑖𝑎𝑖

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

2

2

(9.4.7a)

s.t. 𝑥𝑖 ≥ 0, ∀𝑖 ∈ ℐ+(𝑧𝑘), (9.4.7b)

𝑥𝑖 ≤ 0, ∀𝑖 ∈ ℐ−(𝑧𝑘). (9.4.7c)

It is important to highlight that there may be many optimal solutions of (9.4.7). However,

they all yield to the same update direction given in (9.4.6), since (9.4.7) is essentially a

Euclidean projection onto a closed convex set.

According to the update rule in (9.4.5), we can pick the stepsize 𝜂𝑘 as large as possible

until a new constraint becomes active (without violating the right continuity of �̇�). Before

discussing how to pick this stepsize, we first make the following observation. For any

𝑧𝑘 ∈ 𝒵 with the corresponding update direction 𝑑𝑘 is defined according to (9.4.6), let

𝑖 ∈ ℐ(𝑧𝑘) be an index such that 𝑎⊤𝑖 𝑑𝑘 ̸= 0. Then for any sufficiently small 𝜂𝑘 > 0, we have

𝑖 /∈ ℐ(𝑧𝑘 + 𝜂𝑘𝑑
𝑘), i.e., 𝑖 leaves the active-set. We denote the set of variables that leave the

active-set at iteration 𝑧𝑘 by ℬ(𝑧𝑘) = ℬ+(𝑧𝑘) ∪ ℬ−(𝑧𝑘), where

ℬ+(𝑧𝑘) =
{︀
𝑖 ∈ ℐ+(𝑧𝑘) : 𝑎⊤𝑖 𝑑

𝑘 ̸= 0
}︀

and ℬ−(𝑧𝑘) =
{︀
𝑖 ∈ ℐ−(𝑧𝑘) : 𝑎⊤𝑖 𝑑

𝑘 ̸= 0
}︀
. (9.4.8)

Using these definitions, we next characterize the largest allowable stepsize in the following

proposition. Note that the existence of a strictly positive stepsize trivially follows by the

right continuity of �̇�.

Proposition 9.12. Let 𝑧𝑘 ∈ 𝒵 be a dual solution with the corresponding active-set ℐ(𝑧𝑘)

222

and the update direction 𝑑𝑘. Then, 𝑑𝑘 is the update direction for all 𝑧𝑘 + 𝜂𝑑𝑘, where

0 ≤ 𝜂 ≤ 𝜂 and

𝜂 = min
𝑖/∈ℐ(𝑧𝑘)∖ℬ(𝑧𝑘)

sgn(𝑎⊤𝑖 𝑑
𝑘)− 𝑎⊤𝑖 𝑧

𝑎⊤𝑖 𝑑
𝑘

. (9.4.9)

Proposition 9.12 (whose proof is deferred to Section 9.7.3) establishes a method to track

the continuous-time mirror descent solution given by (9.4.2). In particular, given a dual

solution 𝑧𝑘 ∈ 𝒵 with the corresponding set of active constraints ℐ(𝑧𝑘), we let 𝑥𝑘𝑖 , 𝑖 ∈ ℐ(𝑧𝑘),

be a solution to the non-negative least squares problem presented in (9.4.7), construct the

update direction as in (9.4.6) and perform the update (9.4.5) using the stepsize (9.4.9). At

the next iterate 𝑧𝑘+1, we can recompute the active-set ℐ(𝑧𝑘+1) from the scratch or update

the active-set as follows

ℐ+(𝑧𝑘+1) =
(︀
ℐ+(𝑧𝑘) ∖ ℬ+(𝑧𝑘)

)︀
∪ ℱ+(𝑧𝑘) and ℐ−(𝑧𝑘+1) =

(︀
ℐ−(𝑧𝑘) ∖ ℬ−(𝑧𝑘)

)︀
∪ ℱ−(𝑧𝑘),

where ℱ(𝑧𝑘) = ℱ+(𝑧𝑘)∪ℱ−(𝑧𝑘) denotes the set of constraints that will become active, i.e.,

ℱ+(𝑧𝑘) =

{︂
𝑖 /∈ ℐ(𝑧𝑘) ∖ ℬ(𝑧𝑘) :

1− 𝑎⊤𝑖 𝑧𝑘
𝑎⊤𝑖 𝑑

𝑘
= 𝜂𝑘

}︂
, (9.4.10a)

ℱ−(𝑧𝑘) =

{︂
𝑖 /∈ ℐ(𝑧𝑘) ∖ ℬ(𝑧𝑘) :

−1− 𝑎⊤𝑖 𝑧𝑘
𝑎⊤𝑖 𝑑

𝑘
= 𝜂𝑘

}︂
. (9.4.10b)

The resulting procedure is presented in Algorithm 6 and its finite-time convergence is

proven in Theorem 9.13, whose proof is deferred to Section 9.7.4 in order not to distract

the reader.

Theorem 9.13. Algorithm 6 terminates with a pair of primal and dual optimal solutions

in finitely many iterations provided that the system 𝐴𝑥 = 𝑏 is realizable.

Algorithm 6 presents that the basis pursuit problem can be solved by a sequence of

nonnegative least squares problems (modulo a sign change for indices 𝐼−(𝑧)). However, a

significant drawback of this approach is that the resulting algorithm is far more expensive

than solving the basis pursuit problem directly: We started with an optimization problem

223

Algorithm 6: Discrete-Time Realization of Mirror Descent Dynamics
Initialize 𝑧0 = 0 and ℐ(𝑧0) = ∅.
for 𝑘 ≥ 0 do

Solve (9.4.7) to find 𝑥𝑘𝑖 , 𝑖 ∈ ℐ(𝑧𝑘).
Compute the direction of update 𝑑𝑘 = 𝑏−∑︀𝑖∈ℐ(𝑧𝑘) 𝑥

𝑘
𝑖 𝑎𝑖.

Compute the stepsize 𝜂𝑘 by (9.4.9).
Find the constraints that turn non-active ℬ(𝑧𝑘) by (9.4.8).
Find the constraints that will become active ℱ(𝑧𝑘) by (9.4.10).
Update the dual variable 𝑧𝑘+1 = 𝑧𝑘 + 𝜂𝑘𝑑

𝑘.
Update the active-set ℐ(𝑧𝑘+1) = (ℐ(𝑧𝑘) ∖ ℬ(𝑧𝑘)) ∪ ℱ(𝑧𝑘).

end for

of size 𝑛 with linear objective and linear equality constraints, and now we have a sequence

of quadratic optimization problems with linear inequality constraints (where the length of

the sequence and the size of the problem can be as large as 𝑛). In the following section, we

discuss how to handle this issue iteratively, where the main idea is to use the solution of the

previous subproblem as a warm start to the next problem. This corresponds to embedding

another active-set algorithm into Algorithm 6 as detailed below.

9.4.1 Iteratively Solving the Nonnegative Least Squares Subprob-

lems

In this section, we present an efficient method to solve the nonnegative least squares sub-

problems in Algorithm 6 by adding/removing variables to the active-set one at a time. Our

approach is based on the active-set method of Lawson and Hanson [87] (given in Algorithm

7). This method can be viewed as a greedy active-set method, where at each outer iteration

a variable is introduced into the active-set (denoted by 𝒫 , where 𝑥𝑖 > 0, 𝑖 ∈ 𝒫 and 𝑥𝑖 = 0,

𝑖 ∈ ℛ) and at each inner iteration the first variable that turn negative (while introducing the

new variable into the active-set) leaves the active-set. This algorithm converges in finitely

many iterations as each inner iteration consists of at most |𝒫| iterations and each outer

iteration strictly decreases the objective 1
2
‖𝐴𝑥− 𝑏‖22, which implies an active-set cannot be

224

visited twice.

Throughout this section, given any index set ℐ ⊂ [𝑛], for a vector 𝑥 ∈ R𝑛 we let

𝑥ℐ ∈ R|ℐ| denote the subvector of 𝑥 with indices ℐ, and for a matrix 𝐴 ∈ R𝑚×𝑛 we let

𝐴ℐ ∈ R𝑚×|ℐ| denote the submatrix of 𝐴 with columns ℐ.

Algorithm 7: Lawson & Hanson Algorithm [87] for Nonnegative Least Squares Prob-
lem

Input: 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚.
Output: 𝑥* ∈ arg min𝑥≥0

1
2
‖𝐴𝑥− 𝑏‖22.

Initialize 𝒫 = ∅, ℛ = [𝑛], 𝑥 = 0, 𝑑 = 𝐴⊤(𝑏− 𝐴𝑥).
while ℛ ≠ ∅ and 𝑑 � 0 do
𝑗 ∈ arg max𝑖∈ℛ 𝑑𝑖.
𝒫 ← 𝒫 ∪ {𝑗} and ℛ ← ℛ ∖ {𝑗}.
𝑠𝒫 = (𝐴⊤

𝒫𝐴𝒫)−1(𝐴𝒫)⊤𝑏.
while 𝑠𝒫 ≯ 0 do
ℓ = arg min𝑖∈𝒫:𝑠𝑖≤0{𝑥𝑖/(𝑥𝑖 − 𝑠𝑖)}.
𝛼 = 𝑥ℓ/(𝑥ℓ − 𝑠ℓ).
𝑥← 𝑥+ 𝛼(𝑠− 𝑥).
𝒫 ← 𝒫 ∖ 𝒮 and ℛ ← ℛ∪ 𝒮, where 𝒮 = {𝑖 ∈ 𝒫 : 𝑥𝑖 = 0}.

end while
𝑥 = 𝑠 and 𝑑 = 𝐴⊤(𝑏− 𝐴𝑥).

end while

Before describing how to incorporate Algorithm 7 into Algorithm 6, we first fix certain

definitions to avoid any confusion as both algorithms are active-set algorithms. At iteration

𝑘, the active-set corresponding to Algorithm 6 is given by ℐ𝑘 = ℐ(𝑧𝑘) and we let 𝒬𝑘 =

[𝑛]∖ℐ𝑘 denote the complementary-set. When we apply Algorithm 7 to solve the nonnegative

least squares problem over indices ℐ𝑘, it partitions ℐ𝑘 into two subsets: 𝒫𝑘 and ℛ𝑘. We

refer 𝒫𝑘 as active-set since it denotes the strictly positive indices of 𝑥, and ℛ𝑘 as nonstrict-

set since for any 𝑖 ∈ ℛ𝑘 both 𝑥𝑖 = 0 and |𝑎⊤𝑡 𝑥| = 1 holds, i.e., it denotes the indices for

which strict complementarity does not hold. To be able to keep track of the sign of each

variable, we need to consider 𝒫𝑘 = 𝒫𝑘
+ ∪ 𝒫𝑘

− and ℛ𝑘 = ℛ𝑘
+ ∪ ℛ𝑘

−, whereas 𝒬𝑘 is sufficient

to represent the remaining indices.

225

Suppose we apply Algorithm 7 to solve the subproblem in Algorithm 6 at iteration 𝑘.

Then, Algorithm 7 returns a primal solution 𝑥𝑘 and a direction of update 𝑑𝑘 as well as an

active-set 𝒫𝑘 = 𝒫𝑘
+ ∪𝒫𝑘

− and a nonstrict-set ℛ𝑘 = ℛ𝑘
+ ∪ℛ𝑘

−, which we denote as the tuple

(𝑥𝑘, 𝑑𝑘,𝒫𝑘,ℛ𝑘). As soon as a positive step in the direction 𝑑𝑘 is taken in Algorithm 6, the

constraints that become inactive is given by

ℬ𝑘
+ =

{︀
𝑖 ∈ ℛ𝑘

+ : 𝑎⊤𝑖 𝑑
𝑘 ̸= 0

}︀
and ℬ𝑘

− =
{︀
𝑖 ∈ ℛ𝑘

− : 𝑎⊤𝑖 𝑑
𝑘 ̸= 0

}︀
. (9.4.11)

since for any 𝑖 ∈ 𝒫𝑘, 𝑥𝑘𝑖 ̸= 0 holds, which implies 𝑎⊤𝑖 𝑑𝑘 = 0 by complementary slackness.

Therefore, removing indices ℬ𝑘 from the complementary set ℛ𝑘 does not affect optimality.

That is, the tuple (𝑥𝑘, 𝑑𝑘,𝒫𝑘,ℛ𝑘 ∖ ℬ𝑘) is optimal for the corresponding nonnegative least

squares problem over indices 𝒫𝑘 ∪ (ℛ𝑘 ∖ℬ𝑘). Thus, let us update the nonstrict-set and the

complementary-set as follows: ℛ𝑘 ← ℛ𝑘 ∖ ℬ𝑘 and 𝒬𝑘 ← 𝒬𝑘 ∪ ℬ𝑘. Then, we can pick the

step size as follows

𝜂𝑘 = min
𝑖∈𝒬𝑘

sgn(𝑎⊤𝑖 𝑑
𝑘)− 𝑎⊤𝑖 𝑧𝑘

𝑎⊤𝑖 𝑑
𝑘

. (9.4.12)

After performing the dual update 𝑧𝑘+1 = 𝑧𝑘 + 𝜂𝑘𝑑𝑘, a certain set of indices become active

at 𝑧𝑘+1, which is then given by

ℱ𝑘
+ =

{︂
𝑖 ∈ 𝒬𝑘 :

1− 𝑎⊤𝑖 𝑧𝑘
𝑎⊤𝑖 𝑑

𝑘
= 𝜂𝑘

}︂
and ℱ𝑘

− =

{︂
𝑖 ∈ 𝒬𝑘 :

−1− 𝑎⊤𝑖 𝑧𝑘
𝑎⊤𝑖 𝑑

𝑘
= 𝜂𝑘

}︂
. (9.4.13)

Now, we arrive at the next dual solution 𝑧𝑘+1 and we need to solve the nonnegative least

squares problem over indices 𝒫𝑘 ∪ ℛ𝑘 ∪ ℱ𝑘. We can solve this problem from the scratch

by assigning 𝑥 = 0, 𝑑 = 𝑏, 𝒫 = ∅, and ℛ = 𝒫𝑘 ∪ ℛ𝑘 ∪ ℱ𝑘 in Algorithm 7. However, a

more efficient way is to initialize with 𝑥 = 𝑥𝑘, 𝑑 = 𝑑𝑘, 𝒫 = 𝒫𝑘, and ℛ = ℛ𝑘 ∪ ℱ𝑘 as

this is a valid active-set iterate for Algorithm 7. Since at each iteration of Algorithm 6

we expect that only a few indices become active, this initialization is expected to be very

close to the solution of the corresponding nonnegative least squares problem, and only a

few iterations (often just one!) of Algorithm 7 would yield the optimal solution. After we

226

obtain the solution to the subproblem at iteration 𝑘+ 1, we end up at where we started in

the previous iteration. The resulting algorithm is given in Algorithm 8.

Algorithm 8: An Efficient Discrete-Time Realization of Mirror Descent Dynamics
Initialize 𝑧0 = 0, 𝑥0 = 0, 𝑑0 = 𝑏, 𝒫0 = ∅, ℛ0 = ∅, 𝒬0 = [𝑛], 𝑘 = 0.
while 𝑑𝑘 ̸= 0 do

Compute the step size 𝜂𝑘 (9.4.12) and find the constraints that become active ℱ𝑘

(9.4.13).
Update the dual variable 𝑧𝑘+1 = 𝑧𝑘 + 𝜂𝑘𝑑𝑘.
Run Algorithm 7 initialized at (𝑥 = 𝑥𝑘, 𝑑 = 𝑑𝑘,𝒫 = 𝒫𝑘,ℛ = ℛ𝑘 ∪ ℱ𝑘), call the
corresponding values upon termination as (𝑥𝑘+1, 𝑑𝑘+1,𝒫𝑘+1,ℛ𝑘+1).
Find the constraints that become non-active ℬ𝑘+1 (9.4.11) and update the sets
ℛ𝑘+1 ← ℛ𝑘+1 ∖ ℬ𝑘+1 and 𝒬𝑘+1 ← 𝒬𝑘+1 ∪ ℬ𝑘+1.
Compute the direction of update 𝑑𝑘+1 = 𝑏−∑︀𝑖∈𝒫𝑘+1 𝑥

𝑘+1
𝑖 𝑎𝑖.

end while

9.4.2 A Numerically Efficient Implementation of Algorithm 8 via

QR Decomposition

Even though the implementation in Algorithm 8 resolves the problem of solving the full

nonnegative least squares problem from the scratch, it is not an efficient algorithm as each

iteration of Algorithm 7 requires inverting the matrix 𝐴⊤
𝒫𝐴𝒫 for every active-set. Instead

of performing this costly operation at each iteration, we can modify the matrix 𝑅 = [𝐴, 𝑏]

with elementary row operations to maintain a QR decomposition over the active-set of

indices. More specifically, let 𝒫 be an active set, then we want 𝑅𝒫 to be the R-factor

corresponding to the QR decomposition of 𝐴𝒫 . If such a relationship holds, then we can

solve 𝐴𝒫𝑥𝒫 = 𝑏 for 𝑥𝒫 via back substitution starting from the last index and working

towards the first. Updating 𝑅 when an index is added to 𝒫 or removed from 𝒫 can be

efficiently performed via Givens rotation as follows. Suppose 𝒫 = {𝑖1, . . . , 𝑖𝑝}, where the

indices are written in increasing order, and assume that 𝑅 is given such that 𝑅𝒫 is the

R-factor of the QR decomposition of 𝐴𝒫 .

227

∙ Suppose we want to remove 𝑖ℓ from 𝒫 . To do so, we need to zero the unwanted

subdiagonal elements 𝑅𝑗,𝑖𝑗 , 𝑗 = ℓ+1, . . . , 𝑝. This can be done by a sequence of Givens

rotations: 𝑅′ = 𝐺𝑝 . . . 𝐺ℓ+1𝑅, where 𝐺𝑗 denote the rotation in planes (rows) 𝑗−1 and

𝑗 such that when it multiplies a matrix 𝑅 from the left, it sets the entry of 𝑅 at the

𝑗-th row and 𝑖𝑗-th column to zero. Therefore, letting 𝒫 ′ = (𝑖1, . . . , 𝑖ℓ−1, 𝑖ℓ+1, . . . , 𝑖𝑝),

𝑅′
𝒫 ′ is the R-factor of the QR-decomposition of 𝐴𝒫 ′ .

∙ Suppose we want to add 𝑖ℓ to 𝒫 = (𝑖1, . . . , 𝑖ℓ−1, 𝑖ℓ+1, . . . , 𝑖𝑝). To do so, we need to

zero the unwanted subdiagonal elements 𝑅𝑗,𝑖ℓ , 𝑗 = ℓ + 1, . . . ,𝑚. This can be done

by a sequence of Givens rotations: 𝑅′ = 𝐽ℓ+1 . . . 𝐽𝑚𝑅, where 𝐽𝑗 denote the rotation

in planes (rows) 𝑗 − 1 and 𝑗 such that when it multiplies a matrix 𝑅 from the left,

it sets the entry of 𝑅 at the 𝑗-th row and 𝑖ℓ-th column to zero. Therefore, letting

𝒫 ′ = (𝑖1, . . . , 𝑖ℓ−1, 𝑖ℓ, 𝑖ℓ+1, . . . , 𝑖𝑝), 𝑅′
𝒫 ′ is the R-factor of the QR-decomposition of 𝐴𝒫 ′ .

As the size of the active-set never exceeds 𝑚, both of these operations can be performed in

𝒪(𝑚𝑛) flops. Solving for the primal variable 𝑥𝒫 can be done via back substitution, which

takes additional 𝒪(𝑚2) flops. Hence, every step in Algorithm 8 takes at most 𝒪(𝑚𝑛) flops,

which significantly reduces the computational cost as matrix inversion may require 𝒪(𝑚3)

flops.

9.4.3 Related Work

Algorithm 6 is essentially a sequence of non-negative least squares problems with growing

size. In [42], the authors define an algorithm called the adaptive inverse scale space method,

which considers the same differential inclusion as (9.1.1). The authors establish that the

sequence of nonnegative least squares problems that are defined above yields a solution to

the ℓ1-norm minimization problem, while our results here show that this solution is unique.

A significant drawback of the method in [42] (and Algorithm 6 here) is that it requires

to solve a non-negative least squares problems of evergrowing size. This is extremely

discouraging because when 𝑛 ≈ 𝑚 and the minimum ℓ1-norm solution is not super sparse,

228

solving the sequence of subproblems becomes far more costly than solving the basis pursuit

problem directly, say using the simplex method. However, in Sections 9.4.1 and 9.4.2, we

present an efficient implementation whose iteration cost does not grow as the size of the

subproblems grows. This yields an algorithm that can be efficiently used for solving the

basis pursuit problem.

A closely related method to Algorithm 8 is the polytope faces pursuit (PFP) method

proposed in [118]. The PFP method is a greedy active-set method to solve the dual of the

basis pursuit problem. The variables that enter the active-set are determined according to

the same principle as (9.4.13). However, the authors does not use the sequential nonnega-

tive least squares formulation to determine which variables should leave the active-set, but

instead randomly pick an index and remove it from the active-set when a strictly positive

stepsize according to (9.4.12) cannot be chosen. Consequently, the algorithm is not nec-

essarily convergent. In fact, the greedy update rule in [118] for linear programming with

inequality constraints is first presented by the seminal work of Rosen [131]. This method

is called the gradient projection method as it projects the gradient direction (i.e., negative

gradient) onto the subspace spanned by the active constraints. In comparison, Algorithm

8 projects the gradient direction onto the dual feasible space, which is far more efficient

because when the gradient direction is in the interior of the dual feasible space, Algorithm

8 allows us to cut through the dual polyhedron instead of walking on the boundary.

For a more detailed understanding on the differences of this method with respect to the

Homotopy method [111, 98] and the orthogonal matching pursuit (OMP) method [115],

we refer to [56, Section 8] and [42, Section 5.3], respectively. Comparisons between these

methods are also discussed in the following numerical experiments.

9.5 Numerical Experiments

All algorithms are implemented on Matlab and the experiments are run on a computer with

2.9 GHz processor and 16 GB memory. Homotopy and PFP algorithms are implemented

229

Figure 9-4: Running times of the Homotopy, MD, PFP and AISS methods averaged over
100 randomly generated problems.

using the SparseLab package [55] with the default options.

We first consider a random sparse problem, where the entries of the matrix 𝐴 is sampled

from 𝐴𝑖𝑗 ∼ N(0, 1). Then, the columns of 𝐴 are normalized to have unit norm. We then

plant a random solution sampled from 𝑥𝑖 ∼ Unif[−1, 1]. All experiments are based on 100

Monte Carlo runs over the initialization 𝑥0 = 0. In Figure 9-4, we compare the running

time of the MD method described in Algorithm 8 with respect to Homotopy, PFP and AISS

methods. It can be seen from the left panel that the running time of the AISS method that

does not exploit the efficient implementation of the nonnegative least squares formulation

deteriorates as 𝑚 increases. This results from the resolving the sequential nonnegative least

squares problems from the stratch every time instead of using the previous solution as a

warm-start to an active-set method as done in Algorithm 8. Similarly, as 𝑛 increases, the

running time of the PFP method quickly deteriorates due to the random variable removal,

which results redundant basis changes in the evolution of the PFP method. On the other

hand the MD method presented in Algorithm 8 finds the optimal solution as fast as the

Homotopy method.

We next compare the MD and Homotopy methods on the diabetes dataset in Figure

9-5. As we can observe from the figures in the left column, the MD method monotonically

230

increases the dual objective at each iteration, whereas the Homotopy method decreases the

ℓ∞-norm of the gradient of the primal objective at each iteration. Hence, the Homotopy

method is a primal method, whereas the MD method is a dual method. In the right column

of Figure 9-5, we observe that the primal trajectories generated by the Homotopy and MD

methods are significantly different. Indeed, the Homotopy method returns the trajectory

of min𝑥 𝑓(𝑥) + 𝜆‖𝑥‖1 as 𝜆 goes from ∞ to 0. On the other hand, primal trajectory of the

MD method is generated by a row generation method, i.e., by sequentially adding the rows

of the linear system 𝐴𝑥 = 𝑏 and solving the corresponding subproblem.

9.6 Discussion

In this chapter, we extended the mirror descent method to non-smooth geometries by relax-

ing the strict convexity condition on the distance generating function Φ. We showed that

when dom Φ is bounded, every limit point of a solution to the mirror descent differential

inclusion is a pre-image of a primal variable that minimizes the objective function. On

the other hand when dom Φ is unbounded, we showed that the mirror descent method can

still be applied to solve quadratic optimization problems, for which the differential inclu-

sion admits a unique solution. We discussed how to obtain discrete-time solutions to the

differential inclusion either through using 𝜖-subgradients or by regularizing the differential

inclusion and converting it to a differential equation that can be solved using the methods

presented in Chapter 8. Finally, we discussed an application for which the trajectory of

the solution to the differential inclusion can be exactly and efficiently recovered via an

active-set method.

231

0 5 10 15

0

100

200

300

400

500

600

700

800

900

1000

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15

-1000

-800

-600

-400

-200

0

200

400

600

800

0 1 2 3 4 5 6 7 8 9 10 11

0

100

200

300

400

500

600

700

800

900

1000

0

1

2

3

4

5

6

7

10
5

0 1 2 3 4 5 6 7 8 9 10 11

-800

-600

-400

-200

0

200

400

600

800

1000

Figure 9-5: Trajectory of the iterations of the Homotopy and MD methods on the dia-
betes dataset. Top row corresponds to the Homotopy method, whereas the bottom row
corresponds to the MD method. Left column shows the evolution of the dual objective
and ℓ∞-norm of the gradients, whereas the right column shows the evolution of the primal
variables.

9.7 Additional Proofs

9.7.1 Proof of Theorem 9.3

We begin the proof by showing that ∇𝑓 ∘𝜕Φ* has non-empty closed convex values for every

𝑦 ∈ ℰ*, and it maps to a bounded set. Since dom Φ = 𝒳 is bounded, Φ is supercoercive,

which implies dom Φ* = ℰ* as we discussed in Section 7.2. This also implies 𝜕Φ*(𝑦) is

non-empty at every 𝑦 ∈ ℰ* by [128, Theorem 23.4]. Furthermore, it is straightforward

232

to observe that 𝜕Φ* is closed-valued and convex-valued since the subdifferential 𝜕Φ*(𝑦) is

given by the intersection of infinite set of halfspaces:

𝜕Φ*(𝑦) =
⋂︁

𝑣∈domΦ*

{𝑥 : Φ*(𝑣) ≥ Φ*(𝑦) + ⟨𝑥, 𝑣 − 𝑦⟩}.

Since ∇𝑓 is continuous and dom∇𝑓 = ℰ , it maps bounded closed convex sets to bounded

closed convex sets. Thus, ∇𝑓 ∘𝜕Φ* is an upper semi-continuous map (by Lemma 9.1) from

ℰ* to some 𝒴 ⊂ ℰ* with non-empty closed convex values, where 𝒴 is bounded since rge 𝜕Φ*

is bounded and ∇𝑓 is Lipschitz continuous. Consequently, we can apply [9, Theorem 2.1.4]

to show that for any 𝑦0 ∈ dom 𝜕Φ*, there exists an absolutely continuous solution 𝑦(·)
defined on [0,+∞) to the differential inclusion (9.1.1). Below, we provide a short proof of

this claim.

Let 𝐵 denote the unit ball in ℰ* × ℰ* and let {𝑔𝑛} be a sequence of continuous single-

valued maps such that graph(𝑔𝑛) ⊂ graph(∇𝑓∘𝜕Φ*)+𝜀𝑛𝐵, where the existence of such maps

for every 𝜀𝑛 > 0 follows by the approximate selection theorem [9, Theorem 1.12.1]. Suppose

𝜀𝑛 approaches to zero as 𝑛 → ∞ and let 𝑦𝑛 : [0, 𝑇] → ℰ* be solutions to the differential

equation �̇�𝑛(𝑡) = −𝑔𝑛(𝑦𝑛(𝑡)) with 𝑦𝑛(0) = 𝑦0. Since rge(∇𝑓 ∘ 𝜕Φ*) = 𝒴 is bounded and 𝜀𝑛

is finite, rge 𝑔𝑛 is also bounded, i.e., each �̇�𝑛 takes values in a bounded set. Consequently,

each 𝑦𝑛 takes values in a compact set as 𝑇 and 𝑦0 are finite. Therefore, Ascoli-Arzela and

Banach-Alaoglu theorems imply (see [9, Theorem 0.3.4]) that there exists a subsequence

{𝑦𝑛𝑘
} such that 𝑦𝑛𝑘

converges uniformly to 𝑦 on [0, 𝑇] and �̇�𝑛𝑘
converges weakly to �̇� in

𝐿1([0, 𝑇]) (i.e., functions that are absolutely integrable on [0, 𝑇]). Then, by the convergence

theorem for upper semi-continuous maps [9, Theorem 1.4.1], we conclude that for almost

all 𝑡 ∈ [0, 𝑇], (𝑦(𝑡), �̇�(𝑡)) ∈ graph(−∇𝑓 ∘ 𝜕Φ*), i.e., �̇�(𝑡) ∈ −(∇𝑓 ∘ 𝜕Φ*)(𝑦(𝑡)). Taking

𝑇 →∞ concludes the proof.

233

9.7.2 A Dual Viewpoint

Consider the dual of the basis pursuit problem given in (9.4.4). Letting 𝑔(𝑧) = ⟨𝑏, 𝑧⟩, the

gradient flow direction at 𝑧 ∈ 𝒵 is given by

𝑑 = lim
𝜂→0+

P𝒵(𝑧 + 𝜂∇𝑔(𝑧))− 𝑧
𝜂

, (9.7.1)

where P𝒵(𝑧) is the Euclidean projection of 𝑧 onto 𝒵:

P𝒵(𝑧) = arg min
𝑧′∈𝒵

1

2
‖𝑧 − 𝑧′‖22.

Then, as shown in the following proposition, the update direction 𝑑 is given by a solution

of the nonnegative least squares problem.

Proposition 9.14. Let 𝑧 ∈ 𝒵 be a dual solution and ℐ(𝑧) = ℐ+(𝑧) ∪ ℐ−(𝑧) denote the set

of active constraints at 𝑧. Then, the gradient flow direction 𝑑 defined in (9.7.1) is given by

𝑑 = 𝑏−
∑︁

𝑖∈ℐ(𝑧)

𝑥*𝑖 𝑎𝑖,

where 𝑥*𝑖 , 𝑖 ∈ ℐ(𝑧), is a solution to the following problem:

min
1

2

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒𝑏−

∑︁

𝑖∈ℐ(𝑧)

𝑥𝑖𝑎𝑖

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

2

2

s.t. 𝑥𝑖 ≥ 0, ∀𝑖 ∈ ℐ+(𝑧),

𝑥𝑖 ≤ 0, ∀𝑖 ∈ ℐ−(𝑧).

Proof We begin the proof by rewriting the projection onto the dual feasible set as

P𝒵(𝑧+ 𝑡𝑏) = 𝑧+ 𝑡𝑑*. Then, 𝑑* can be found as the argument of the following minimization

234

problem

min
1

2
‖(𝑧 + 𝑡𝑑)− (𝑧 + 𝑡𝑏)‖22

s.t. ‖𝐴⊤(𝑧 + 𝑡𝑑)‖∞ ≤ 1.

For 𝑡 sufficiently small, non-active constraints cannot be violated by 𝑧 + 𝑡𝑑. Therefore, we

can rewrite the above problem as follows:

min
1

2
‖(𝑧 + 𝑡𝑑)− (𝑧 + 𝑡𝑏)‖22

s.t. 𝜓𝑖(𝑧 + 𝑡𝑑) ≤ 0, ∀𝑖 ∈ ℐ+(𝑧),

𝜓−𝑖(𝑧 + 𝑡𝑑) ≥ 0, ∀𝑖 ∈ ℐ−(𝑧).

As 𝜓𝑖(𝑧) = 0 for every 𝑖 ∈ ℐ+(𝑧) and 𝜓−𝑖(𝑧) = 0 for every 𝑖 ∈ ℐ−(𝑧), we equivalently have

min
1

2
‖𝑑− 𝑏‖22

s.t. 𝑎⊤𝑖 𝑑 ≤ 0, ∀𝑖 ∈ ℐ+(𝑧),

𝑎⊤𝑖 𝑑 ≥ 0, ∀𝑖 ∈ ℐ−(𝑧).

The Lagrange dual corresponding to this problem is given by

max min
𝑑

⎧
⎨
⎩

1

2
‖𝑑− 𝑏‖22 +

∑︁

𝑖∈ℐ(𝑧)

𝑥𝑖𝑎
⊤
𝑖 𝑑

⎫
⎬
⎭

s.t. 𝑥𝑖 ≥ 0, ∀𝑖 ∈ ℐ+(𝑧),

𝑥𝑖 ≤ 0, ∀𝑖 ∈ ℐ−(𝑧).

235

Massaging this problem, we obtain

max min
𝑑

⎧
⎨
⎩

1

2
𝑑⊤𝑑− 𝑑⊤

⎛
⎝𝑏−

∑︁

𝑖∈ℐ(𝑧)

𝑥𝑖𝑎𝑖

⎞
⎠
⎫
⎬
⎭

s.t. 𝑥𝑖 ≥ 0, ∀𝑖 ∈ ℐ+(𝑧),

𝑥𝑖 ≤ 0, ∀𝑖 ∈ ℐ−(𝑧).

The minimizer of the inner problem is given by

𝑑* = 𝑏−
∑︁

𝑖∈ℐ(𝑧)

𝑥𝑖𝑎𝑖,

and plugging in this value to the above problem, we get

max − 1

2

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒𝑏−

∑︁

𝑖∈ℐ(𝑧)

𝑥𝑖𝑎𝑖

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

2

2

s.t. 𝑥𝑖 ≥ 0, ∀𝑖 ∈ ℐ+(𝑧),

𝑥𝑖 ≤ 0, ∀𝑖 ∈ ℐ−(𝑧).

Taking the minus sign outside of the maximization, we get the desired result.

9.7.3 Proof of Theorem 9.12

As we discussed in Section 9.4, the update direction does not change until a new variable

enters into the active-set. In order to find which constraint becomes active first, we perform

the following ratio test among all non-active constraints. To derive the ratio test, we first

236

observe that for every 𝑖 /∈ ℐ(𝑧𝑘) ∖ ℬ(𝑧𝑘), we have

𝜓𝑖(𝑧
𝑘 + 𝜂𝑑𝑘) = 𝜓𝑖(𝑧

𝑘) + 𝜂𝑎⊤𝑖 𝑑
𝑘, where 𝜓𝑖(𝑧

𝑘) < 0,

𝜓−𝑖(𝑧
𝑘 + 𝜂𝑑𝑘) = 𝜓−𝑖(𝑧

𝑘) + 𝜂𝑎⊤𝑖 𝑑
𝑘, where 𝜓−𝑖(𝑧

𝑘) > 0.

Solving 𝜓𝑖(𝑧
𝑘 + 𝜂𝑑𝑘) = 0 and 𝜓−𝑖(𝑧

𝑘 + 𝜂𝑑𝑘) = 0 for 𝜂, we find the values of 𝜂 for which the

corresponding inequality becomes active. Among these values the minimum positive one is

the largest possible step size that we are looking for. Furthermore, for each 𝑖 /∈ ℐ(𝑧𝑘)∖ℬ(𝑧𝑘),

exactly one of 𝜓𝑖 and 𝜓−𝑖 becomes active with some 𝜂 > 0 and the other becomes active

with some 𝜂 < 0. Therefore, 𝜂 is given by

𝜂 = min
𝑖/∈ℐ(𝑧𝑘)∖ℬ(𝑧𝑘)

{︂
max

(︂
−𝜓𝑖(𝑧

𝑘)

𝑎⊤𝑖 𝑑
𝑘
, −𝜓−𝑖(𝑧

𝑘)

𝑎⊤𝑖 𝑑
𝑘

)︂}︂
.

Using the definitions 𝜓𝑖(𝑧
𝑘) = 𝑎⊤𝑖 𝑧

𝑘 − 1 and 𝜓−𝑖(𝑧
𝑘) = 𝑎⊤𝑖 𝑧

𝑘 + 1, and observing that 𝜓𝑖

becomes active with some positive 𝜂 whenever 𝑎⊤𝑖 𝑑𝑘 > 0 and 𝜓−𝑖 becomes active otherwise,

we can rewrite 𝜂 as follows:

𝜂 = min
𝑖/∈ℐ(𝑧𝑘)∖ℬ(𝑧𝑘)

−𝑎
⊤
𝑖 𝑧

𝑘 − sgn(𝑎⊤𝑖 𝑑
𝑘)

𝑎⊤𝑖 𝑑
𝑘

,

which is what we wanted to prove.

9.7.4 Proof of Theorem 9.13

We prove this theorem in three steps. First, we show that {‖𝑑𝑘‖22}𝑘≥0 is a strictly decreasing

sequence (this trivially follows by Theorem 9.7, yet below we include a proof for the discrete-

time method as well for completeness). We then claim that there are finitely many values

‖𝑑𝑘‖22 can take due to finitely many active-set combinations. We conclude the proof by

showing that at every iteration 𝑘 with 𝑑𝑘 ̸= 0, objective value increases by a positive

amount, ruling out termination before the optimal solution is obtained.

Let {𝑧𝑘}𝑘≥0 be a sequence of dual variables generated by Algorithm 6 with the cor-

237

responding sequence of active-sets {ℐ(𝑧𝑘)}𝑘≥0. Let 𝑓𝑘 denote the optimum value of the

subproblem (9.4.7) solved at iteration 𝑘, i.e.,

𝑓𝑘 = min
1

2

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒𝑏−

∑︁

𝑖∈ℐ(𝑧𝑘)

𝑥𝑖𝑎𝑖

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

2

2

(9.7.2a)

s.t. 𝑥𝑖 ≥ 0, ∀𝑖 ∈ ℐ+(𝑧𝑘), (9.7.2b)

𝑥𝑖 ≤ 0, ∀𝑖 ∈ ℐ−(𝑧𝑘), (9.7.2c)

and let 𝑥𝑘𝑖 , 𝑖 ∈ ℐ(𝑧𝑘), be a corresponding minimizer. Then, we claim that {𝑓𝑘}𝑘≥0 is a

nonincreasing sequence. This can be concluded by first observing that the objective value

remains the same when we change the constraints as follows

𝑓𝑘 = min
1

2

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒𝑏−

∑︁

𝑖∈ℐ(𝑧𝑘)

𝑥𝑖𝑎𝑖

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

2

2

(9.7.3a)

s.t. 𝑥𝑖 ≥ 0, ∀𝑖 ∈ ℐ+(𝑧𝑘) ∖ ℬ+(𝑧𝑘), (9.7.3b)

𝑥𝑖 ≤ 0, ∀𝑖 ∈ ℐ−(𝑧𝑘) ∖ ℬ−(𝑧𝑘), (9.7.3c)

𝑥𝑖 = 0, ∀𝑖 ∈ ℱ+(𝑧𝑘) ∪ ℱ−(𝑧𝑘), (9.7.3d)

which follows since ℐ+(𝑧𝑘) ∩ ℱ+(𝑧𝑘) = ∅ and ℐ−(𝑧𝑘) ∩ ℱ−(𝑧𝑘) = ∅, and for any 𝑖 ∈ ℬ(𝑧𝑘),

𝑎⊤𝑖 𝑑
𝑘 = 0 holds, which implies 𝑥𝑘𝑖 = 0 by complementary slackness. From equation 9.7.3,

we can observe that 𝑓𝑘+1 ≤ 𝑓𝑘, as 𝑥𝑖 = 𝑥𝑘𝑖 , 𝑖 ∈ ℐ(𝑧𝑘) ∖ ℬ(𝑧𝑘), and 𝑥𝑖 = 0, 𝑖 ∈ ℱ(𝑧𝑘), is a

feasible solution for the subproblem at iteration 𝑘+1. Furthermore, the equality 𝑓𝑘+1 = 𝑓𝑘

holds if and only if 𝑑𝑘+1 = 𝑑𝑘. This follows due to the strong convexity of ℓ2-norm, but

below we include a proof for completeness. It is easy to observe the if part of the proof, and

the only if part is can be shown by contraposition. To that end, with an abuse of notation,

we let 𝑥𝑘 denote a solution to the subproblem at iteration 𝑘 + 1, with 𝑥𝑘𝑖 = 0, 𝑖 ∈ ℱ(𝑧𝑘).

Suppose 𝑑𝑘 ̸= 𝑑𝑘+1, which implies there exists 𝑥𝑘 and 𝑥𝑘+1 such that 𝑥𝑘𝑗 ̸= 𝑥𝑘+1
𝑗 for some

𝑗 ∈ ℐ(𝑧𝑘+1). Consider a new solution to this problem defined as �̄�𝑖 = (𝑥𝑘𝑖 + 𝑥𝑘+1
𝑖)/2,

238

𝑖 ∈ ℐ(𝑧𝑘+1). Then, �̄� is dual feasible as the feasible set is convex and

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒𝑏−

∑︁

𝑖∈ℐ(𝑧𝑘+1)

�̄�𝑖𝑎𝑖

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

2

2

<

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒𝑏−

∑︁

𝑖∈ℐ(𝑧𝑘+1)

𝑥𝑘𝑖 𝑎𝑖

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

2

2

+

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒𝑏−

∑︁

𝑖∈ℐ(𝑧𝑘+1)

𝑥𝑘+1
𝑖 𝑎𝑖

⃒⃒
⃒⃒
⃒⃒

⃒⃒
⃒⃒
⃒⃒

2

2

, (9.7.4)

where the strict inequality holds due the Cauchy-Schwarz inequality since 𝑥𝑘𝑗 ̸= 𝑥𝑘+1
𝑗 .

Therefore, 𝑥𝑘 cannot be optimal for the subproblem at iteration 𝑘+1, i.e., 𝑓𝑘 ̸= 𝑓𝑘+1. This

concludes that {𝑓𝑘}𝑘≥0 is a strictly decreasing sequence.

We observe that if active-sets at two distinct iterations 𝑘 ̸= 𝑗 are the same, i.e., ℐ+(𝑧𝑘) =

ℐ+(𝑧𝑗) and ℐ−(𝑧𝑘) = ℐ−(𝑧𝑗), then 𝑓𝑘 = 𝑓 𝑗 since an active-set uniquely characterizes the

optimal value of the problem (9.7.2). As {𝑓𝑘}𝑘≥0 is a strictly decreasing sequence, an

active-set cannot be visited twice. Finally, whenever 𝑑𝑘 ̸= 0, we have 0 < 𝜂𝑘 < ∞. The

upper bound follows since 𝜂𝑘 =∞ holds when 𝑎⊤𝑖 𝑑𝑘 = 0 for all 𝑖 /∈ ℐ(𝑧𝑘) ∖ℬ(𝑧𝑘). However,

when the latter condition holds the ray emanating from 𝑧𝑘 in the direction 𝑑𝑘 is an extreme

ray, i.e., 𝑧(𝜂) = 𝑧𝑘 + 𝜂𝑑𝑘 is feasible for every 𝜂 ≥ 0 and the objective value at 𝑧(𝜂) is

an increasing function of 𝜂. Therefore, dual problem is unbounded, which implies primal

problem is infeasible, and this conflicts with the assumption that 𝐴𝑥 = 𝑏 is realizable;

consequently 𝜂𝑘 < ∞ holds. Therefore, there exists some 𝑖 /∈ ℐ(𝑧𝑘) ∖ ℬ(𝑧𝑘) such that

𝑎⊤𝑖 𝑑
𝑘 ̸= 0. Since |𝑎⊤𝑖 𝑧𝑘| ≠ 1 for every 𝑖 /∈ ℐ(𝑧𝑘) and sgn(𝑎⊤𝑖 𝑑

𝑘) = −𝑎⊤𝑖 𝑧𝑘 for every 𝑖 ∈ ℬ(𝑧𝑘),

it follows that the numerator of (9.4.9) is strictly positive, i.e., 𝜂𝑘 > 0. As the algorithm

does not terminate until 𝑑𝑘 = 0, {‖𝑑𝑘‖22}𝑘≥0 is a strictly decreasing sequence, and there

are finitely many values ‖𝑑𝑘‖22 can take, it follows that the algorithm returns an optimal

solution in finitely many iterations.

239

240

Bibliography

[1] P. A. Absil, R. Mahony, and B. Andrews. Convergence of the iterates of descent
methods for analytic cost functions. SIAM Journal on Optimization, 16(2):531–547,
2005.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, Princeton, NJ, USA, 2007.

[3] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Complementarity and nonde-
generacy in semidefinite programming. Mathematical Programming, 77(1):111–128,
1997.

[4] F. Alvarez. On the minimizing property of a second order dissipative system in
Hilbert spaces. SIAM Journal on Control and Optimization, 38(4):1102–1119, 2000.

[5] F. Alvarez, H. Attouch, J. Bolte, and P. Redont. A second-order gradient-like dissipa-
tive dynamical system with hessian-driven damping. application to optimization and
mechanics. Journal de MathÃľmatiques Pures et AppliquÃľes, 81(8):747–779, 2002.

[6] M. Anitescu. Degenerate nonlinear programming with a quadratic growth condition.
SIAM Journal on Optimization, 10(4):1116–1135, 2000.

[7] S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefiniite
programming using the multiplicative weights update method. In Proceedings of the
46th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’05, pages
339–348, 2005.

[8] H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont. Fast convergence of inertial
dynamics and algorithms with asymptotic vanishing viscosity. Mathematical Pro-
gramming, 168:123–175, 2018.

[9] J.-P. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and Viability
Theory. Springer-Verlag, 1984.

[10] J.-P. Aubin and H. Frankowska. Set-Valued Analysis. Birkhauser, 1990.

[11] A. Auslender and M. Teboulle. Asymptotic cones and functions in optimization and
variational inequalities. Springer Monographs in Mathematics, 2006.

241

[12] J. B. Baillon. Un exemple concernant le comportement asymptotique de la solution
du problÃĺme 𝑑𝑢/𝑑𝑡 + 𝜕𝜑(𝜇) ∋ 0. Journal of Functional Analysis, 28(3):369–376,
1978.

[13] A. S. Bandeira, N. Boumal, and V. Voroninski. On the low-rank approach for semidefi-
nite programs arising in synchronization and community detection. arXiv:1602.04426,
2016.

[14] A. I. Barvinok. Problems of distance geometry and convex properties of quadratic
maps. Discrete & Computational Geometry, 13(2):189–202, 1995.

[15] H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz
gradient continuity: First-order methods revisited and applications. Mathematics of
Operations Research, 42(2):330–348, 2017.

[16] H. H. Bauschke, J. M. Borwein, and P. L. Combettes. Essential smoothness, essen-
tial strict convexity, and Legendre functions in Banach spaces. Communications in
Contemporary Mathematics, 3(4):615–647, 2001.

[17] A. Beck. On the convergence of alternating minimization for convex programming
with applications to iteratively reweighted least squares and decomposition schemes.
SIAM Journal on Optimization, 25(1):185–209, 2015.

[18] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient meth-
ods for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[19] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013.

[20] S. Becker, J. Bobin, and E. J. CandÃĺs. NESTA: A fast and accurate first-order
method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

[21] D. P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[22] D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015.

[23] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., 1989.

[24] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust
optimization. SIAM Review, 53(3):464–501, 2011.

[25] J. Bolte and E. Pauwels. Curiosities and counterexamples in smooth convex opti-
mization. arXiv:2001.07999, 2020.

[26] J. F. Bonnans and A. Ioffe. Second-order sufficiency and quadratic growth for non-
isolated minima. Mathematics of Operations Research, 20(4):801–817, 1995.

242

[27] V. S. Borkar. Stochastic Approximation. Hindustan Book Agency, 2008.

[28] L. Bottou. Curiously fast convergence of some stochastic gradient descent algorithms.
In Proceedings of the symposium on learning and data science, 2009.

[29] L. Bottou. Stochastic gradient descent on toy problems. http://leon.bottou.org/
projects/sgd, 2012.

[30] N. Boumal, P.-A. Absil, and C. Cartis. Global rates of convergence for nonconvex
optimization on manifolds. arXiv:1605.08101, 2016.

[31] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox
for optimization on manifolds. Journal of Machine Learning Research, 15:1455–1459,
2014.

[32] N. Boumal, V. Voroninski, and A. S. Bandeira. The non-convex Burer-Monteiro
approach works on smooth semidefinite programs. In Advances in Neural Information
Processing Systems, pages 2757–2765, 2016.

[33] N. Boumal, V. Voroninski, and A. S. Bandeira. Deterministic guarantees for Bu-
rerâĂŞMonteiro factorizations of smooth semidefinite programs. arXiv:1804.02008,
2018.

[34] L. M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics, 7(3):200–217, 1967.

[35] H. Brezis. OpÃľrateurs Maximaux Monotones et semigroups de Contractions dans les
Espaces de Hilbert. North-Holland Publishing Co., 1973.

[36] C. Briat. Linear parameter-varying and time-delay systems. Springer, 2014.

[37] J. Briët, F. M. de Oliveira Filho, and F. Vallentin. The positive semidefinite
grothendieck problem with rank constraint. In Automata, Languages and Program-
ming, pages 31–42, 2010.

[38] R. E. Bruck. Asymptotic convergence of nonlinear contraction semigroups in Hilbert
space. Journal of Functional Analysis, 18(1):15–26, 1975.

[39] S. Bubeck. Convex optimization: Algorithms and complexity. arXiv:1405.4980, 2014.

[40] S. Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solv-
ing semidefinite programs via low-rank factorization. Mathematical Programming,
95(2):329–357, 2003.

[41] S. Burer and R. D. C. Monteiro. Local minima and convergence in low-rank semidef-
inite programming. Mathematical Programming, 103(3):427–444, Jul 2005.

243

http://leon.bottou.org/projects/sgd
http://leon.bottou.org/projects/sgd

[42] M. Burger, M. Moller, M. Benning, and S. Osher. An adaptive inverse scale space
method for compressed sensing. Mathematics of Computation, 82(281):269–299, 2013.

[43] J.-F. Cai, E. J. CandÃĺs, and Z. Shen. A singular value thresholding algorithm for
matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

[44] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489–509, 2006.

[45] E. J. CandÃĺs and B. Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(717), 2009.

[46] E. J. CandÃĺs and T. Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

[47] Y. Censor and S. A. Zenios. Proximal minimization algorithm with 𝐷-functions.
Journal of Optimization Theory and Applications, 73:451–464, 1992.

[48] S.-K. Chao and G. Cheng. A generalization of regularized dual averaging and its
dynamics. arXiv:1909.10072, 2019.

[49] G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization
algorithm using Bregman functions. SIAM Journal on Optimization, 3(3):538–543,
1993.

[50] D. Cifuentes and A. Moitra. Polynomial time guarantees for the Burer-Monteiro
method. arXiv:1912.01745, 2019.

[51] E. S. Coakley and V. Rokhlin. A fast divide-and-conquer algorithm for computing the
spectra of real symmetric tridiagonal matrices. Applied and Computational Harmonic
Analysis, 34(3):379 – 414, 2013.

[52] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[53] A. R. De Pierro and A. N. Iusem. A relaxed version of Bregman’s method for con-
vex programming. Journal of Optimization Theory and Applications, 51:421âĂŞ440,
1986.

[54] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[55] D. L. Donoho and Others. Sparselab: Seeking sparse solutions to linear systems of
equations. https://sparselab.stanford.edu/, 2009.

244

https://sparselab.stanford.edu/

[56] D. L. Donoho and Y. Tsaig. Fast solution of ℓ1-norm minimization problems when
the solution may be sparse. IEEE Transactions on Information Theory, 54(11):4789–
4812, 2008.

[57] J. C. Duchi and F. Ruan. Stochastic methods for composite and weakly convex
optimization problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018.

[58] L. El Ghaoui and P. Gahinet. Rank minimization under LMI constraints: A frame-
work for output feedback problems. In Proceedings of the European Control Confer-
ence, 1993.

[59] G. M. Engel and H. Schneider. Cyclic and diagonal products on a matrix. Linear
Algebra and its Applications, 7(4):301 – 335, 1973.

[60] M. A. Erdogdu, Y. Deshpande, and A. Montanari. Inference in graphical models via
semidefinite programming hierarchies. In Advances in Neural Information Processing
Systems, pages 416–424, 2017.

[61] M. A. Erdogdu, A. Ozdaglar, P. A. Parrilo, and N. D. Vanli. Convergence rate of
block-coordinate maximization burer-monteiro method for solving large SDPs. Math-
ematical Programming, 2021.

[62] M. Fazel. Matrix rank minimization with applications. PhD thesis, Stanford Univer-
sity, 2002.

[63] M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to
minimum order system approximation. In Proceedings of the 2001 American Control
Conference, volume 6, pages 4734–4739, 2001.

[64] N. Flammarion and F. Bach. Stochastic composite least-squares regression with
convergence rate 𝑂(1/𝑛). In Proceedings of the 2017 Conference on Learning Theory,
volume 65 of Proceedings of Machine Learning Research, pages 831–875. PMLR, 2017.

[65] D. Gamarnik and Q. Li. On the max-cut of sparse random graphs. arXiv:1411.1698,
2014.

[66] D. Garber and E. Hazan. Approximating semidefinite programs in sublinear time. In
Proceedings of the 24th International Conference on Neural Information Processing
Systems, pages 1080–1088, 2011.

[67] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115–1145, 1995.

[68] G. J. Gordon. Regret bounds for prediction problems. In Proceedings of the Twelfth
Annual Conference on Computational Learning Theory, COLT ’99, page 29âĂŞ40,
1999.

245

[69] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear GaussâĂŞ-
Seidel method under convex constraints. Operations Research Letters, 26(3):127–136,
2000.

[70] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Characterizing implicit bias in terms
of optimization geometry. In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
1832–1841. PMLR, 2018.

[71] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo. Why random reshuffling beats
stochastic gradient descent. Mathematical Programming, 186:49 – 84, 2021.

[72] M. Gurbuzbalaban, A. Ozdaglar, P. A. Parrilo, and N. D. Vanli. When cyclic co-
ordinate descent outperforms randomized coordinate descent. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 30, pages 6999–
7007. Curran Associates, Inc., 2017.

[73] M. Gurbuzbalaban, A. Ozdaglar, N. D. Vanli, and S. J. Wright. Randomness and
permutations in coordinate descent methods. Mathematical Programming, 181, 03
2018.

[74] A. Israel, F. Krahmer, and R. Ward. An arithmeticâĂŞgeometric mean inequality
for products of three matrices. Linear Algebra and its Applications, 488:1–12, 2016.

[75] A. Javanmard, A. Montanari, and F. Ricci-Tersenghi. Phase transitions in semidef-
inite relaxations. Proceedings of the National Academy of Sciences, 113(16):E2218–
E2223, 2016.

[76] M. Journee, F. Bach, P.-A. Absil, and R. Sepulchre. Low-rank optimization on the
cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327–
2351, 2010.

[77] A. Juditsky, J. Kwon, and E. Moulines. Unifying mirror descent and dual averaging.
arXiv:1910.13742, 2020.

[78] J. F. C. Kingman. A convexity property of positive matrices. The Quarterly Journal
of Mathematics, 12(1):283–284, 1961.

[79] S. J. Kirkland and M. Neumann. Group inverses of M-matrices and their applications.
CRC Press, 2012.

[80] K. C. Kiwiel. Free-steering relaxation methods for problems with strictly convex costs
and linear constraints. Mathematics of Operations Research, 22(2):326–349, 1997.

[81] K. C. Kiwiel. Proximal minimization methods with generalized Bregman functions.
SIAM Journal on Control and Optimization, 35(4):1142–1168, 1997.

246

[82] P. Klein and H.-I Lu. Efficient approximation algorithms for semidefinite programs
arising from MAX CUT and COLORING. In Proceedings of the Twenty-eighth An-
nual ACM Symposium on Theory of Computing, STOC ’96, pages 338–347, New
York, NY, USA, 1996. ACM.

[83] W. Krichene. Continuous and discrete dynamics for online learning and convex op-
timization. PhD thesis, University of California at Berkeley, 2016.

[84] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalues by the power
and lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl., 13(4):1094–
1122, 1992.

[85] C. Lageman. Pointwise convergence of gradient-like systems. Mathematische
Nachrichten, 280(13-14):1543–1558, 2007.

[86] J. LaSalle. Some extensions of Liapunov’s second method. IRE Transactions on
Circuit Theory, 7(4):520–527, 1960.

[87] C. L. Lawson and R. J. Hanson. Solving least squares problems. SIAM, 1995.

[88] C.-P. Lee and S. J. Wright. Random permutations fix a worst case for cyclic coordinate
descent. IMA Journal of Numerical Analysis, 39(3):1246–1275, 2019.

[89] C.-P. Lee and S. J. Wright. Analyzing random permutations for cyclic coordinate
descent. Mathematics of Computation, 89:2217–2248, 2020.

[90] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. Gradient descent only con-
verges to minimizers. In 29th Annual Conference on Learning Theory, volume 49,
pages 1246–1257. PMLR, 23–26 Jun 2016.

[91] S. Lojasiewicz. Sur la géométrie semi- et sous- analytique. Annales de l’Institut
Fourier, 43(5):1575–1595, 1993.

[92] H. Lu. âĂĲrelative continuityâĂİ for non-lipschitz nonsmooth convex optimization
using stochastic (or deterministic) mirror descent. INFORMS Journal on Optimiza-
tion, 1(4):288–303, 2019.

[93] H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by
first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354,
2018.

[94] Z. Lu and L. Xiao. Randomized block coordinate non-monotone gradient method for
a class of nonlinear programming. Technical Report MSR-TR-2013-66, June 2013.

[95] Z.-Q. Luo and P. Tseng. On the convergence of the coordinate descent method for
convex differentiable minimization. Journal of Optimization Theory and Applications,
72(1):7–35, 1992.

247

[96] Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent
methods: a general approach. Annals of Operations Research, 46(1):157–178, 1993.

[97] S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods for
matrix rank minimization. Mathematical Programming, 128:321–353, 2011.

[98] D. M. Malioutov, M. Cetin, and A. S. Willsky. Homotopy continuation for sparse
signal representation. In IEEE International Conference on Acoustics, Speech, and
Signal Processing Proceedings. (ICASSP ’05)., volume 5, pages 733–736, 2005.

[99] D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief propagation
in gaussian graphical models. Journal of Machine Learning Research, 7:2031–2064,
2006.

[100] B. McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theo-
rems and l1 regularization. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 525–533, 2011.

[101] S. Mei, T. Misiakiewicz, A. Montanari, and R. I. Oliveira. Solving SDPs for synchro-
nization and MaxCut problems via the Grothendieck inequality. arXiv:1703.08729,
2017.

[102] G. J. Minty. Monotone (nonlinear) operators in hilbert space. Duke Mathematical
Journal, 29(3):341–346, 1962.

[103] A. Montanari. A Grothendieck-type inequality for local maxima. arXiv:1603.04064,
2016.

[104] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on
Computing, 24(2):227–234, 1995.

[105] D. Needell and J. A. Tropp. Paved with good intentions: Analysis of a randomized
block Kaczmarz method. Linear Algebra and its Applications, 441:199 – 221, 2014.

[106] A. S. Nemirovski and D. B. Yudin. Problem Complexity and Method Efficiency in
Optimization. John Wiley & Sons, 1983.

[107] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
Programming, 120:221–259, 2009.

[108] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[109] R. D. Nussbaum. Convexity and log convexity for the spectral radius. Linear Algebra
and its Applications, 73:59–122, 1986.

248

[110] J. Ortega and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Society for Industrial and Applied Mathematics, 2000.

[111] M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach to variable selection
in least squares problems. IMA Journal of Numerical Analysis, 20(3):389–403, 2000.

[112] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization
method for total variation-based image restoration. Multiscale Modeling & Simula-
tion, 4(2):460–489, 2005.

[113] P. Oswald and W. Zhou. Random reordering in SOR-type methods. Numerische
Mathematik, 135(4):1207–1220, 2017.

[114] G. Pataki. On the rank of extreme matrices in semidefinite programs and the mul-
tiplicity of optimal eigenvalues. Mathematics of Operations Research, 23(2):339–358,
1998.

[115] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition. In
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pages
40–44, 1993.

[116] A. Patrascu and I. Necoara. Efficient random coordinate descent algorithms for large-
scale structured nonconvex optimization. Journal of Global Optimization, 61, 2013.

[117] R. J. Plemmons. M-matrix characterizations.IâĂŤnonsingular m-matrices. Linear
Algebra and its Applications, 18(2):175 – 188, 1977.

[118] M. D. Plumbley. Recovery of sparse representations by polytope faces pursuit. In
Independent Component Analysis and Blind Signal Separation, pages 206–213, 2006.

[119] M. Powell. On search directions for minimization algorithms. Mathematical Program-
ming, 4:193–201, 1973.

[120] T. Pumir, S. Jelassi, and N. Boumal. Smoothed analysis of the low-rank approach
for smooth semidefinite programs. In Advances in Neural Information Processing
Systems, pages 2281–2290, 2018.

[121] A. Rantzer. Distributed control of positive systems. In 50th IEEE Conference on
Decision and Control and European Control Conference, pages 6608–6611, 2011.

[122] M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence analysis of block
successive minimization methods for nonsmooth optimization. SIAM Journal on
Optimization, 23(2):1126–1153, 2013.

[123] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.

249

[124] B. Recht and C. Ré. Toward a noncommutative arithmetic-geometric mean inequal-
ity: Conjectures, case-studies, and consequences. JMLR Workshop and Conference
Proceedings, 23:11.1–11.24, 2012.

[125] P. Richtarik and M. Takac. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Mathematical Programming,
144, 07 2011.

[126] P. Richtarik and M. Takac. Parallel coordinate descent methods for big data opti-
mization. Mathematical Programming, 156:433–484, 2016.

[127] S. M. Robinson. Linear convergence of epsilon-subgradient descent methods for a
class of convex functions. Mathematical Programming, 86:41–50, 1999.

[128] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[129] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14(5):877–898, 1976.

[130] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Springer, 2009.

[131] J. B. Rosen. The gradient projection method for nonlinear programming. part i.
linear constraints. Journal of the Society for Industrial and Applied Mathematics,
8(1):181–217, 1960.

[132] A. Saha and A. Tewari. On the nonasymptotic convergence of cyclic coordinate
descent methods. SIAM Journal on Optimization, 23(1):576–601, 2013.

[133] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and
Trends in Machine Learning, 4(2):107âĂŞ194, 2012.

[134] O. Shamir. Without-replacement sampling for stochastic gradient methods. In Ad-
vances in Neural Information Processing Systems, pages 46–54, 2016.

[135] N. Srebro. Learning with Matrix Factorizations. PhD thesis, Massachusetts Institute
of Technology, 2004.

[136] D. Steurer. Fast SDP algorithms for constraint satisfaction problems. In Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages
684–697, 2010.

[137] R. Sun and M. Hong. Improved iteration complexity bounds of cyclic block coordinate
descent for convex problems. In Advances in Neural Information Processing Systems
28, pages 1306–1314. 2015.

[138] R. Sun and Y. Ye. Worst-case complexity of cyclic coordinate descent: 𝑂(𝑛2) gap
with randomized version. Mathematical Programming, 185:485–520, 2021.

250

[139] M. Teboulle. A simplified view of first order methods for optimization. Mathematical
Programming, 170:67âĂŞ96, 2018.

[140] M. Telgarsky and S. Dasgupta. Agglomerative Bregman clustering. In Proceedings of
the 29th International Conference on Machine Learning, ICML ’12, pages 1527–1534,
2012.

[141] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. Practical sketching algorithms for
low-rank matrix approximation. SIAM Journal on Matrix Analysis and Applications,
38(4):1454–1485, 2017.

[142] P. Tseng and D. P. Bertsekas. On the convergence of the exponential multiplier
method for convex programming. Mathematical Programming, 60:1–19, 1993.

[143] P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming, 117:387–423, 03 2009.

[144] R. Tutunov, H. Bou-Ammar, and A. Jadbabaie. Distributed SDDM solvers: Theory
& applications. arXiv:1508.04096, 2015.

[145] E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit
solutions. SIAM Journal on Scientific Computing, 31(2):890âĂŞ912, 2008.

[146] N. D. Vanli, M. Gurbuzbalaban, and A. Ozdaglar. Global convergence rate of prox-
imal incremental aggregated gradient methods. SIAM Journal on Optimization,
28(2):1282–1300, 2018.

[147] R. S. Varga. Matrix iterative analysis. Springer Science & Business Media, 2009.

[148] P.-W. Wang, W.-C. Chang, and J. Z. Kolter. The mixing method: Coordinate descent
for low-rank semidefinite programming. arXiv:1706.00476, 2017.

[149] A. Wilson. Lyapunov Arguments in Optimization. PhD thesis, University of California
at Berkeley, 2018.

[150] S. J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–
34, 2015.

[151] L. Xiao. Dual averaging methods for regularized stochastic learning and online opti-
mization. Journal of Machine Learning Research, 11(88):2543–2596, 2010.

[152] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for
ℓ1-minimization with applications to compressed sensing. SIAM Journal on Imaging
Sciences, 1(1):143–168, 2008.

[153] D. M. Young. Iterative solution of large linear systems. Academic Press, 1971.

251

[154] T. Zhang. A note on the non-commutative arithmetic-geometric mean inequality.
arXiv:1411.5058, 2014.

252

	Introduction
	Motivation
	Thesis Outline

	Background
	Notation
	Convex Sets
	Convex Functions and Conjugates
	Subgradients
	Set-Valued Maps

	I Coordinate Descent Method
	An Overview
	Existing Convergence Results
	CD and CGD Methods for Quadratic Problems
	Summary of Contributions

	When Does CCD outperform RCD?
	An Asymptotic Rate Comparison Metric
	Asymptotic Converge Rate for Iterative Algorithms
	A Motivating Example

	Deterministic Orders Provably Outperform Randomized Sampling
	Convergence Rate of CCD for 2-Cyclic Matrices
	Convergence Rate of CCD for Irreducible M-Matrices
	Convergence Rate of CCD for Non-frustrated Matrices

	Numerical Validation
	Discussion
	Additional Proofs
	Proof of Lemma 4.12
	An Example Achieving Lower and Upper Bounds

	Randomness and Permutations in the CD Method
	Preliminaries
	Convergence Rate Criteria
	Prior work on the RPCD method
	Performance of RPCD vs RCD on a class of diagonally dominant matrices
	Convergence rates of RPCD, RCD and CCD in improvement sequence I1
	Convergence rates of RPCD and RCD in improvement sequences I2 & I3

	Numerical Validation
	Discussion
	Additional Proofs
	Proof of Lemma 5.6
	Proof of Proposition 5.7
	Proof of Proposition 5.8
	Proof of Proposition 5.9
	Proof of Proposition 5.11

	Convergence Rate of the CD Method for Solving Large SDPs via Burer-Monteiro Approach
	Convergence Rate of the CD Method
	Riemannian Geometry of the Problem
	Global Rate of Convergence
	Local Rate of Convergence
	Quadratic Decay Condition Holds Generically

	Approximately Achieving the Maximum Value of (CVX)
	Related Work
	Numerical Results
	Discussion
	Additional Proofs
	Proof of Corollary 6.3
	Rest of the Proof of Theorem 6.5
	Proof of Theorem 6.17

	II Mirror Descent Method
	An Overview
	Mirror Descent Dynamics
	Sufficient Conditions for Well-Defined Dynamics
	Generalized Bregman Divergence
	Related Literature
	Properties of Generalized Bregman Divergence

	Convergence of Mirror Descent Dynamics
	Weak Convergence
	Strong Convergence

	Motivation
	Summary of Contributions

	A Unified View of Mirror Descent Method in Discrete-Time and Related Methods
	Discretization of Mirror Descent Dynamics
	Forward Euler Discretization
	Backward Euler Discretization

	A Unified View of Existing Methods
	A Unified Convergence Analysis
	Related Work & Contributions
	Convergence Analysis for Non-smooth Problems
	Convergence Analysis for Relatively Smooth Optimization Problems

	Applications
	Sparse Recovery Problem
	Low-Rank Recovery Problem

	Discussion

	Generalized Mirror Descent Methods
	Relaxing Strict Convexity Condition
	Existence of a Solution
	Convergence of Solutions
	Discrete-Time Solutions

	Relaxing Bounded Domain Condition
	Existence and Uniqueness of the Solution
	Convergence of Solutions
	Discrete-Time Solutions

	Discussion on Discrete-Time Solutions
	Application: Minimum 1-norm Solution to Linear Systems
	Iteratively Solving the Nonnegative Least Squares Subproblems
	A Numerically Efficient Implementation of Algorithm 8 via QR Decomposition
	Related Work

	Numerical Experiments
	Discussion
	Additional Proofs
	Proof of Theorem 9.3
	A Dual Viewpoint
	Proof of Theorem 9.12
	Proof of Theorem 9.13

