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Abstract

Generating new, photorealistic views of a scene given only a single video is a difficult
task that computer vision researchers have worked on for decades. This problem
has recently seen a resurgence in interest due to its potential application in areas
such as virtual reality. However, current novel view synthesis techniques are not
suitable for the short, casual videos that people typically record. Such videos deviate
from the setups that these approaches typically use, where there are dense, high-
resolution images of the scene. In this paper, we propose a method for refining an
initial, coarse scene geometry which we then use for novel view synthesis on short
video sequences. The core of our method is a geometry refinement step where we
project the geometry to source views to remove inconsistent points. This refined
geometry provides important shape and appearance information in data poor regions
that would otherwise be difficult to accurately render. We evaluate our approach
on the RealEstate10K dataset and demonstrate that compared to prior work, we
synthesize views that are more temporally consistent.

Thesis Supervisor: William T. Freeman
Title: Thomas and Gerd Perkins Professor of EECS
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Chapter 1

Introduction

Imagine watching a video you took during your favorite vacation. No matter how

many times you watch it, the trajectory through the scene will remain the same. If

you want to see what the scene would look like from different viewpoints, you would

have to return to where you recorded the video. But what if you could generate new

views to explore the scene freely from the comfort of your own home?

To generate views of a scene in the traditional graphics pipeline, a skilled com-

puter graphics designer needs to painstakingly create a high-quality 3D model, manu-

ally specify photorealistic materials, and run computation-intensive light simulations.

This process is not only very tedious but also unforgiving, as any imperfection will

result in unpleasant artifacts in the final renders.

To alleviate this problem, a new subfield, neural rendering, emerges at the intersec-

tion of computer vision and computer graphics, where researchers exploit the strong

representation powers of deep neural networks to learn parts or the entirety of the

rendering process. These machine learning techniques avoid the current bottleneck

of manual work by learning directly from only videos or photos.

However, existing works on scene neural rendering typically use dedicated com-

puter vision datasets that contain high resolution videos which were deliberately

taken to capture what the scene looks like from many different positions and angles.

Models learn from the dense views to implicitly reason about geometry or utilize the

high quality images to explicitly reconstruct an accurate geometry which is used for
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rendering.

These prior works’ reliance on high resolution, comprehensive inputs limits their

applicability since most casually recorded videos do not share those qualities. Even

current state of the art techniques experience a considerable decrease in performance

and produce temporally inconsistent views given these unstructured videos. This

project focuses on novel view synthesis from a single, fly-through, monocular RGB

video. Because this type of video is so ubiquitous, improving view synthesis on them

would enable greater accessibility to creating and disseminating experiences.

In this paper, we propose a method for novel view synthesis on short video se-

quences that enables greater movement and produces fewer temporal inconsistencies

than existing approaches. We begin by joining per-frame depth predictions to gen-

erate a fused mesh. Then, we refine the fused mesh’s appearance and shape by

differentiably rasterizing the mesh to source views and optimizing 2D losses. For

each point on the refined mesh, we assign a set of learnable features which encode

information about the scene. These features are jointly optimized with a rendering

network which produces the final output.

We evaluate our method on scenes from the RealEstate10K [26] dataset. The

quick fly-through style of the videos in the RealEstate10K dataset resembles that

of the videos which people casually record and is also challenging for novel view

synthesis since objects are seen in few frames and are viewed from few angles. We

show that we qualitatively outperform existing works on novel extrapolated views

and are quantitatively competitive on holdout views.
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Chapter 2

Related Work

Our work’s primary goal is to improve novel view synthesis results. However, we

also address the challenge of producing 3D geometries that are well-suited for view

synthesis tasks. In this chapter, we review related works in both 3D reconstruction

and neural rendering.

2.1 3D Reconstruction

3D reconstruction is the problem of generating a scene’s 3D geometry given only

images of the scene. Popular representations of 3D geometries include point clouds

and meshes.

2.1.1 Analytical Reconstruction

When the cameras’ poses are known, multi-view stereo (MVS) can be used to generate

a dense geometry. MVS finds correspondences [7] between images and uses geometric

constraints to triangulate [5] the location of the points in the world. If camera poses

are not known, structure from motion (SfM) techniques can solve for them up to a

scale. These poses can be further refined using bundle adjustment and can be used

in the MVS pipeline. COLMAP [18] and ORB-SLAM2 [10] are examples of systems

that combine SfM and MVS to solve the 3D reconstruction problem. High quality

17



correspondences are necessary for MVS to produce good results. Consequently, when

input images are of low quality or distorted, or when the scene contains flat, tex-

tureless, or reflective surfaces, MVS can produces noisy reconstructions. As a result,

MVS cannot be assumed to work well on general videos. Indeed, Zhou et al. [26] find

that COLMAP is prone to failure on scenes in the RealEstate10K dataset.

2.1.2 Learning-Based Reconstruction

Naively, one can use monocular depth prediction models [11] [3] to estimate geome-

tries per frame and combine them. However, depth scales need to be calibrated and

inconsistencies in depth predictions between views often result in layered surfaces in

the fused reconstruction. Luo et al. [8] use optical flow between pairs of images to

improve depth consistency across frames but doesn’t completely solve the problem,

especially for regions far from the camera and for views with little overlap.

Other methods directly optimize a single, explicit underlying geometry. These

approaches achieve better consistency across multiple views but their formulations

often limit their accuracy. Discrete, occupancy-based approaches [2] struggle with

scaling to larger scenes while maintaining quality. Others volumetric representations

[4] have difficulty with modeling thin objects and other fine details.

Recently, neural implicit representations have been used to solve the 3D recon-

struction problem [19]. Such methods do not explicitly predict occupancy but rather

optimize a signed distance function. These techniques can yield good results but

require dense views of the scene.

We use the pipeline proposed by Luo et al. [8] to initialize geometries since it

produces dense geometries for a wide array of scenes and videos. To alleviate its

global consistency limitations, we use the scene’s appearance signals to improve the

underlying geometry.
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2.2 Neural Rendering

Neural rendering is the class of deep learning techniques that enable the generation of

new views of a scene under user-controlled parameters, like lighting, scene appearance,

and camera pose. This project focuses on the popular problem of novel view synthesis

given user-specified camera poses.

2.2.1 Geometry-Based Rendering

Many rendering approaches use some form of a scene’s geometry to assist with view

synthesis. Aliev et al. [1] use point clouds, which they obtain by capturing a scene

with an RGB-D camera, and associate each point with learned features that can be

projected to desired views and inpainted using a rendering network. Other techniques

[14] [15] operate on estimated meshes and encode features on the mesh surface which

is then projected to the novel view and passed to a decoder network for rendering.

Wiles et al. [22] predict novel views using only a single image by predicting depth

and features for every pixel, which are differentiably rasterized to the target view and

refined with a GAN.

While geometries can provide great scaffolding, when they are incorrect, down-

stream rendering quality can suffer dramatically because the models expect the geom-

etry to provide an accurate representation of the scene’s shape. Examples of failure

modes include 1) reconstruction is incomplete with holes in the surface, so points

from behind can bleed to the front 2) incorrect geometries occlude important objects.

The bleeding problem is especially prevalent when using point clouds since even slight

movement can cause the camera ray to slip between two points representing a surface,

leading to temporal inconsistencies.

Our method is similar to the one proposed by Aliev et al. [1] since we also assign

learnable features to our geometries. We also draw inspiration from the differentiable

rasterizer proposed by Wiles et al [22]. Importantly, we differ from existing works in

that we do not require a high fidelity geometry initialization.
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2.2.2 Geometry-Free Rendering

Another class of image-based rendering techniques do not need a scene’s geometry.

Zhou et al. [26] create multi-plane images (MPIs), which are RGBA images at

different depths, and then warps and renders them from back to front in order to

create new images. Other approaches [16] use plane sweep volumes which are similar

to MPIs except the planes are defined fronto-parallel to the target camera view. Such

approaches have limited camera movement and are not well suited for our goal of

rendering camera paths with substantial departure from source views.

One of the most recently proposed ideas for novel view synthesis is the use neural

radiance fields (NeRF) [9]. NeRF forgoes using geometries and even convolutional

layers, instead optimizing a 5D function conditioned on viewing location and direc-

tion. The original NeRF produces results that are reasonably consistent across views

but has difficulty rendering views whose camera poses are far from the training poses.

Additional research has extended NeRF to work with sparser views [23] and have

made NeRF more generalizable [21] by using features from source frames. These

models enable rendering novel views farther from training poses but their reliance on

neighboring frames results in artifacts when the set of keyframes changes. Addition-

ally, they necessitate a robust keyframe selection strategy. NeRF-based models are

also slow to both train and perform inference with since every camera ray must be

sampled at many locations [13].

Because geometry-free rendering approaches have no geometric priors, they typi-

cally requires many more source images to achieve the same quality as their geometry-

based counterparts and offer less camera movement before rendering quality deterio-

rates.
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Chapter 3

Approach

Our system pipeline is divided into three main components: geometry initialization,

geometry refinement, and rendering. In this chapter, we first share relevant back-

ground on the video depth estimation method we use. We then describe each step of

our method in detail.

3.1 Consistent Video Depth Estimation

We use the pipeline proposed by Luo et al. [8] to initialize geometries. Their method

fine-tunes independent monocular depth estimates using dense optical flow fields.

Optical flow is predicted between pairs of images to establish pixel correspondences.

Intuitively, points in one image should match the optical flow when projected to

the second image (minimize spatial loss), and the same point in two images should

project to the same point in world space (minimize disparity loss). These flow-based

geometric losses are back propogated to make the depth predictions more consistent

across frames.

Since the flows are used to calculate the spatial and disparity loss that refine depth

predictions, errors in initial flow prediction can substantially decrease the quality of

the final geometries. The authors acknowledge that frames with little overlap generate

poor flow estimations and use a forward-backward consistency check to determine an

image pair’s suitability. In practice, we find that some of the optical flow predictions
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in the preprocessing step are incorrect even when the frames are close together and

pass the consistency check, as can be seen in Figure 3-4.

Additionally, the videos used in the original paper keep an object at the center of

focus while moving around it, meaning most pairs of images have sufficient overlap.

Videos in the RealEstate10K dataset, however, quickly move across the scene, so

objects do not stay in frame for long. Consequently, we can only construct optical

flow pairs between frames that are temporally close together since those far apart

temporally are also very distant spatially and have little overlap. While we hoped

that information to improve consistency could be implicitly propagated by the chain

of flows, we find that even when a region is seen in both the beginning and the end

of a video, the depth predictions are quite different.

As a result, in order to use these geometries for novel view synthesis, we first must

refine them in order to remove the incorrect points.

(a) The geometry refining setup. A
fused mesh composed of the ver-
tices and triangles M, vertex fea-
tures F, and triangle alphas A are
rasterized to a view specified by
camera parameters K𝑡, P𝑡 to pro-
duce buffer B𝑡.

(b) The rendering setup is similar to the geometry
refining one. The refined mesh features are aug-
mented to produce F′. The augmented features
F′, refined alphas A, and geometry definition M
are rasterized to buffer B′

𝑡 which is rendered by a
rendering network to produce the final output R𝑡.

Figure 3-1: Diagrams showing our method setup for the geometry refining step and
rendering step.
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3.2 Geometry Initialization

For a given input video consisting of 𝑛 source images that are each 𝑊 ×𝐻, let I𝑖 ∈

[0, 1]𝐻×𝑊×3 be the 𝑖-th image, and let K𝑖 ∈ R3×3 and P𝑖 ∈ R3×4 be the corresponding

camera’s intrinsics and extrinsics respectively. We use the aforementioned consistent

video depth network to generate a dense depth estimate D𝑖 for every image.

3.3 Geometry Refining

From depth estimate D𝑖, we can generate mesh M𝑖 with 2(𝐻 − 1)(𝑊 − 1) triangles

by connecting every set of three adjacent pixels (such that a 2 x 2 square of pixels

forms 2 triangles that share an edge). We back project this mesh into world space

using the predicted depth. Every vertex x ∈ R3 on the mesh is assigned a feature

vector which is a concatenation of its RGB value according to its color in I𝑖 and its

depth prediction in D𝑖. Additionally, each triangle is initialized with an alpha value

of 0.5. Let F𝑖 be the set of vertex RGB-D features describing the mesh, and let A𝑖

be the set of triangle alpha values.

We use a smooth piece-wise function 𝑐(𝑥) to clamp features and alphas in the

range [0, 1] so that RGBA values are valid even after back propagation updates. Let

𝑡(𝑥) = 1
2
tanh(7(𝑥− 1

2
)) + 1

2
. Then we have

𝑐(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑡(𝑥) + 0.001− 𝑡(0.001) 𝑥 < 0.001

𝑥 0.001 ≤ 𝑥 ≤ 0.999

𝑡(𝑥) + 0.999− 𝑡(0.999) 𝑥 > 0.999

(3.1)

We join meshes from 𝐾 different views to form fused mesh {(M𝑘,F𝑘,A𝑘)}𝐾𝑘=1. We

use a differentiable rasterizer from Pytorch3D [12] and a custom alpha compositing

blending function to rasterize the fused mesh to a buffer B𝑡 in target view 𝑡, which is

specified by a camera K𝑡 and pose P𝑡. Formally, B𝑡 = 𝑅(K𝑡,P𝑡, {(M𝑘, 𝑐(F𝑘), 𝑐(A𝑘))}𝐾𝑘=1).

Importantly, we omit the depth channel from being clamped. B𝑡 ∈ R𝐻×𝑊×4, with
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the top three channels T𝑡 being the rendered RGB and the last channel D′
𝑡 being the

rendered depth. Blending and alpha compositing are discussed in further detail in

Section 3.5.

We minimize the difference between the top three channel buffer and the target

source view. We also impose anisotropic total variation loss 𝑇𝑉 on the rendered

depth 𝐷 as a form of regularization since we expect surfaces to be flat.

𝑇𝑉 (𝐷) =
∑︁
𝑖,𝑗

|𝐷𝑖,𝑗 −𝐷𝑖,𝑗−1|+ |𝐷𝑖,𝑗 −𝐷𝑖−1,𝑗| (3.2)

Thus the whole loss function to refine the geometries is

ℒ = ‖T𝑡 − I𝑡‖22 + 𝜆𝑇𝑉 𝑇𝑉 (D′
𝑡) (3.3)

where 𝜆𝑇𝑉 is the weight of the total variation loss.

With this method, a point that is observed as having different colors when viewed

from different angles can have its colors adjusted accordingly to be the average. How-

ever, a point which is spatially inconsistent cannot be fixed by changing its color

alone since it will appear inconsistent in some source view. Because we accumulate

many points in the z-buffer and initialize alphas at 0.5, incorrect geometries’ alphas

will have large gradients pushing them to 0 while the correct geometries behind it

will change very little. Since points with 𝛼 = 0 effectively have no impact on the

rendered buffer, incorrect geometries can be eliminated in this fashion.

Thus, we are able to directly and jointly optimize the geometry’s shape and ap-

pearance, using only source images as supervision. An example of the geometry

optimization can be seen in Figure 3-2.
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(a) Pre-optimization mesh depth (b) Pre-optimization mesh RGBA

(c) Post-optimization mesh depth (d) Post-optimization mesh RGBA

Figure 3-2: Mesh RGBA optimization results projected to a source view. Many
of the floating artifacts are removed in the optimization process. Furthermore, the
incorrectly distorted regions on the curtain and painting are refined away.

3.4 Rendering

Once the fused geometry has been refined, it can be used for rendering. The optimized

RGBA {(F𝑘,A𝑘)}𝐾𝑘=1 from the refinement step are used during rendering. In addi-

tion to the optimized RGB values, each vertex is also associated with 28 additional

features. Let {(F′
𝑘)}𝐾𝑘=1 be this augmented set of features.

Similar to in the geometry refinement step, we differentiably rasterize the mesh to

a feature buffer B′
𝑡 = 𝑅(K𝑡,P𝑡, {(M𝑘, 𝑐(F

′
𝑘), 𝑐(A𝑘))}𝐾𝑘=1). This feature buffer is then

processed by the rendering network to produce the final result R𝑡.

The rendering network is a U-Net [17] with 2 downsampling layers, 2 skip con-

nections, and 2 upsampling layers. Every downsampling layer contains 2 convolution

layers, each followed by ReLU. The final convolution in the downsampling layers has

stride 2 to accomplish the downsampling.

We minimize the 𝐿2 error between the final rendered image and the target source

view in addition to the losses in the geometry refining step. The loss for training the
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(a) First 3 channels of B′
𝑡 (b) Rendered image (c) Target source image

Figure 3-3: Example of a intermediate buffer and resulting rendered view

rendering network and fine tuning the geometries is

ℒ = ‖R𝑡 − I𝑡‖22 + ‖T𝑡 − I𝑡‖22 + 𝜆𝑇𝑉 𝑇𝑉 (D′
𝑡) (3.4)

3.5 Alpha Compositing

To perform alpha compositing, we first project the mesh to the target view in screen

space. Then, for every pixel, we accumulate the 40 nearest points on the mesh in the z-

direction in a z-buffer in increasing order. Given its original alpha 𝛼𝑖, the 𝑖-th point’s

effective alpha 𝛼′
𝑖 is determined front to back 𝛼′

𝑖 = 𝛼𝑖

∏︀𝑖−1
𝑗 (1 − 𝛼′

𝑗). Additionally,

every point is assigned a probability 𝑤𝑖 of affecting the pixel in question based on

its depth and proximity to the center of the camera ray. A pixel’s final value 𝑣 is

determined by compositing the features of the points in the buffer 𝑣 =
∑︀

𝑗 𝛼
′
𝑗𝑤𝑗𝑣𝑗.

This process is repeated for every channel. A triangle’s features are determined by

interpolating its vertices’ features. Our alpha compositing is implemented to work

with the existing Pytorch3D framework.

3.6 Implementation Details

Optical Flow Preprocessing

Optical flows are generated between views that are 1, 2, 3, and 4 frames apart using

the method proposed by Teed et al. [20]. Views farther then this distance have con-
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siderably less accurate flow predictions and decrease depth estimate quality.

Consistent Video Depth Network

Our depth network backbone is MiDaS [11]. The depth network is trained for a total

of 40 epochs. During the first 10 epochs, we only optimize the embedding layer to

correct the scale while freezing MiDaS. In the final 30 epochs, we jointly train the

depth prediction network and the embedding layer. The network is trained using the

ADAM [6] optimizer with a learning rate 10−5, 𝛽1 = 0.5, and 𝛽2 = 0.9.

Geometry Refining

We select the first frame, last frame, and 7 uniformly sampled intermediate frames to

fuse. We use a subset of the frames due to reduce memory usage and to speed up the

process. Geometry is refined for 30 epochs. For vertex RGBs, we use ADAM with

a learning rate 0.001, 𝛽1𝑅𝐺𝐵
= 0.5, 𝛽2𝑅𝐺𝐵

= 0.9. For triangle alphas, we use ADAM

with a learning rate 0.01, 𝛽1𝑎𝑙𝑝ℎ𝑎 = 0.5, 𝛽2𝑎𝑙𝑝ℎ𝑎 = 0.9. Additionally, we set 𝜆𝑇𝑉 = 10−5.

Rendering Network

We train the painting network for 40 epochs with ADAM with learning rate 0.005,

𝛽1𝑝𝑎𝑖𝑛𝑡
= 0.5, 𝛽2𝑝𝑎𝑖𝑛𝑡

= 0.9. For geometry tuning, we use the same parameters as in

the geometry refining step.
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(a) Image 1 (b) Image 2

(c) Estimated optical flow from pixels in image 1 to image 2

(d) Depth prediction for Image 1 (e) Depth prediction for Image 2

Figure 3-4: Figures showing where consistent video depth fails. In 3-4c, each pixel’s
color encodes the flow’s direction of movement, and the color’s saturation is directly
proportional to the magnitude of the 2D displacement. Neighboring points on wall
surfaces undergo similar movement, but the sharp color boundaries on the walls be-
tween the white and pink regions incorrectly suggest that portions of the wall are
stationary while adjacent parts move significantly. Consequently, the depth predic-
tion is incorrect in those areas.
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Chapter 4

Results

We compare our method with state of the art novel view synthesis methods on 8

scenes from the challenging RealEstate10K dataset. Additionally, we justify our de-

sign choice in our experiment with different model designs. We demonstrate that

our approach qualitatively outperforms current state of the art methods on novel ex-

trapolated views and are quantitatively competitive with existing works on held out

source views.

4.1 Dataset

The RealEstate10K dataset is a large dataset generated from YouTube videos. Be-

cause the videos are from YouTube, no ground truth information about camera pa-

rameters or scaling is known. However, the dataset contains camera poses which were

estimated by SLAM and refined using bundle adjustment. On average, each scene we

use has 200 source views. We resize all the images to be 512 × 256 pixels and hold

out 10% of the source images which are used for testing.

In addition to the holdout views from the input video, we also generate novel

poses for every scene by interpolating between the first and last source poses. Novel

pose rotation is interpolated using spherical linear interpolation. Because there is no

ground truth for the custom novel poses we generate, we evaluate these novel views

qualitatively on how photorealistic they are.
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4.2 Comparisons

We compare our approach with leading geometry-based and geometry-free novel view

synthesis methods. All models are trained using the same views except for Stable

View Synthesis which comes pretrained and can be used on previously unseen envi-

ronments.

NeRF

NeRF optimizes a 5D function that predicts the color and volume density given a

point’s 3D location and viewing direction. It determines a pixel’s color by sampling

many different points along the camera ray. We train NeRF for 200000 iterations on

every scene. We sample rays linearly in inverse depth and without normalized device

coordinates.

IBRNet

IBRNet uses a lot of the same principles as NeRF, except it extracts features from

neighboring source views instead of querying a 5D function. These features are pro-

cessed by a ray transformer to produce the final color and density prediction for the

target pixel. We fine-tune IBRNet for 60000 iterations on every scene. We use the 9

closest source poses during test time. To determine neighboring keyframes, we cal-

culate source pose similarity as the weighted sum of the difference in the source pose

rotation and translation from the target’s.

Stable View Synthesis (SVS)

SVS encodes features from every source image and back projects them onto a 3D

mesh that was generated using COLMAP MVS and Delaunay reconstruction. During

rendering, for every pixel in the target view, a neural network generates an aggregated

feature vector based on the source features on the mesh and the viewing direction.

These aggregated features are then rendered by a rendering network. SVS can be

used out of the box, so we use their pretrained network.
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(a) Ours (b) NeRF

(c) IBRNet (d) SVS

(e) Ground truth image

Figure 4-1: Holdout view comparisons. NeRF produces blurry renderings on the left
part of the image. The other methods produce good results.
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(a) Ours (b) NeRF

(c) IBRNET (d) SVS

(e) Sample source image (f) Sample source image

Figure 4-2: Novel view comparisons with a large camera baseline. We correctly render
large portions of the scene’s geometry whereas other methods struggle with this view.
SVS suffers from an occlusion due to incorrect reconstruction. IBRNet has substantial
line artifacts. NeRF renders part of the fridge and the light but otherwise fails. We
provide examples of source frames to show that most of the regions in the target view
are visible during training. Thus, these failures are not because those regions were
occluded in training images.
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(a) Ours (b) NeRF

(c) IBRNet (d) SVS

(e) Sample source image (f) Sample source image

Figure 4-3: Novel view comparisons with a small camera baseline. Our method
produces sharper results and has fewer artifacts. NeRF has a lot of blurring and
even some incorrect colors covering large portions of the wall and table. IBRNet
produce many wave-like artifacts on both the wall and the table, distorting the scene’s
geometry. SVS has some geometric artifacts at the far right tip of the table which is
duplicated, and the segment of the wall on the right by the white door. Additionally,
SVS has incorrect geometries for the light on the top left and the boundary between
the ceiling and wall on the left. Our geometry is correct except for the slight curve
in the wall. We exhibit slightly less detail on the table compared to SVS.
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Scene 1 Scene 2 Scene 3 Scene 4* Scene 5 Scene 6 Scene 7* Scene 8 Mean

PSNR ↑

SVS 29.69 26.85 28.44 - 30.59 26.03 - 30.92 28.70
NeRF 28.82 26.25 26.46 24.46 29.12 25.49 27.33 27.24 26.93

IBRNet 31.42 31.82 34.50 29.06 31.02 31.11 31.15 35.86 32.03
Ours 31.35 31.82 33.46 28.11 30.80 32.77 32.39 34.72 31.92

SSIM ↑

SVS 0.959 0.921 0.957 - 0.968 0.918 - 0.9672 0.948
NeRF 0.883 0.774 0.782 0.795 0.853 0.786 0.836 0.811 0.817

IBRNet 0.949 0.949 0.957 0.916 0.894 0.951 0.938 0.973 0.943
Ours 0.940 0.929 0.940 0.904 0.885 0.950 0.938 0.959 0.932

LPIPS ↓

SVS 0.031 0.053 0.036 - 0.028 0.051 - 0.020 0.037
NeRF 0.125 0.254 0.371 0.202 0.184 0.204 0.192 0.224 0.218

IBRNet 0.050 0.042 0.043 0.055 0.075 0.035 0.055 0.025 0.047
Ours 0.044 0.050 0.049 0.059 0.096 0.020 0.049 0.021 0.048

Table 4.1: Quantitative comparison of our approach and state of the art methods on
holdout views. COLMAP MVS failed on Scene 4 and Scene 7, so the required mesh
could not be generated for SVS. We evaluate performance on three metrics: peak
signal to noise ratio (PSNR), structural similarity index measure (SSIM), and per-
ceptual metric (LPIPS) [25]. For PSNR and SSIM, higher scores are better, whereas
for LPIPS, lower scores are better. Numbers in bold are within 1% of the best.

4.3 Discussion

On the holdout views, NeRF produces temporally consistent but blurry renderings,

which is reflected in its low scores across all metrics. IBRNet and SVS excel on the

holdout views. Since adjacent frames in the video are spatially very close to each

other and both approaches leverage the source images to directly generate features

for rendering, their strong performance here is expected. IBRNet, however, produces

many unnatural flickering artifacts between frames. This is likely because IBRNet

does not optimize features in canonical space which can result in different per-frame

estimates for the same region in space, causing the temporal inconsistencies. SVS

also introduces some flickering but to a lesser degree. While we do not report the

best scores, our results are more temporally consistent - something which cannot

be measured by quantitative metrics. We include a link to the video results in the

Appendix so the reader can see our method’s improved temporal consistency.

NeRF and IBRNet do not perform well on the custom novel views. Both of these

methods rely on learned estimates of volume density and color. When training poses

all view the same point in space from similar angles, it is understandable that the

network has difficulty generalizing to points on the surface that were not directly
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Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Mean

PSNR ↑ U-Net 31.35 31.82 33.46 28.11 30.80 32.77 32.39 34.72 31.929
U-Net + Gate 30.63 30.96 32.19 26.39 29.42 31.45 29.78 33.78 30.57
U-Net + No Ft 29.92 29.65 31.16 26.81 29.91 29.87 31.07 32.62 30.12

SSIM ↑ U-Net 0.940 0.929 0.940 0.904 0.885 0.950 0.938 0.959 0.932
U-Net + Gate 0.927 0.914 0.930 0.878 0.867 0.939 0.906 0.952 0.915
U-Net + No Ft 0.919 0.893 0.917 0.883 0.865 0.917 0.920 0.936 0.908

LPIPS ↓ U-Net 0.044 0.050 0.049 0.059 0.096 0.020 0.049 0.021 0.048
U-Net + Gate 0.059 0.066 0.063 0.081 0.143 0.031 0.083 0.025 0.067
U-Net + No Ft 0.066 0.086 0.085 0.077 0.131 0.039 0.068 0.039 0.073

Table 4.2: Results of different model designs. Numbers in bold are within 1% of the
best.

sampled on any training camera ray. Indeed, in poorly rendered regions, the dispar-

ity maps produced by these methods are incorrect. NeRF degeneracy with limited

source views supports the findings by Yu et al. [23]. On custom novel views, SVS

produces artifacts on some of the same regions that look good in the holdout views.

This disparity is likely due to poorly reconstructed geometries. Occluding geometries

have the occluded objects’ features projected onto them in the SVS feature aggrega-

tion step. Because holdout views are so close to the source views, there are relevant

features to use when rendering holdout views. However, on our custom novel poses,

there could be potentially no relevant features of the newly occluded regions on the

occluding surface, causing this drop in performance. Because we remove many incon-

sistent points during our geometry refinement step, we don’t suffer from this issue as

much.

It’s important to note that NeRF and IBRNet produce remarkable results on

datasets where there are dense source views and limited camera movement. Sim-

ilarly, SVS does well on scenes where MVS produces high quality reconstructions

and there are sufficient source views to help compensate for imperfect geometries.

These methods are well-suited to scenes that satisfy the assumptions of their setups.

Novel view synthesis from casually recorded videos is a difficult task because there

are virtually no assumptions that can be made about the data setting or quality.
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4.4 Model Experiments

We compare our final model with one that uses gated convolutions and one that does

not augment points with learnable features in Table 4.2.

Many novel view synthesis methods report better results using gated convolutions

[24] when performing inpainting; however, we do not see such improvements. Instead,

we find that gated convolutions result in lower PSNR and SSIM scores, although

they’re within 5% of the non-gated version. LPIPS increases by a relative 39%, which

shows that using gated convolutions definitively decreases performance in our case.

We also find that when we do not add learnable features to the geometry, performance

decreases even further, although this is expected since material information besides

color can no longer be represented.
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Chapter 5

Conclusion

We presented a method for using a scene’s appearance information in source images

to improve an initial geometry prediction and enable better view synthesis on short

videos sequences. Starting with a rough estimate of the scene geometry, our method

improves geometry appearance and shape by differentiably rasterizing the mesh to

source views and optimizing 2D losses. We assign learnable features to points on the

refined mesh which are jointly trained with a rendering network. We demonstrate that

scene geometry can be improved using only source images as supervision, which can

benefit other geometry-based rendering methods. Our method surpasses state of the

art neural rendering techniques on short videos, where we produce more temporally

consistent extrapolated views and achieve similar quality on holdout views.

There are a few areas to explore to improve the accuracy and efficiency of our

method. While we show success in improving scene geometries and appearance by

optimizing RGBA values, the initialized depth predictions need to be reasonable since

we only remove points but don’t have a strategy for adding new ones. Additionally,

points that minimally affect the rasterizations because the points in front of them have

high alphas are still included in the forward pass. Because the same point in 3D space

is often visible in multiple frames, there can be many unnecessary points. Removing

these points can considerably improve rasterizing speed. Additionally, similar to most

recent works in neural rendering, ours is currently limited to static scenes, so adapting

this method to work on dynamic scenes would be a very exciting future direction.
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Appendix A

Supplementary Material

A.1 Video Results

Link to the supplemental video comparing our method to state of the art approaches

on the source poses and novel poses.

A.2 Additional Figures
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(a) COLMAP’s dense point cloud (b) COLMAP’s Delaunay mesh

(c) Our fine-tuned mesh

Figure A-1: Comparison of our reconstruction with COLMAP’s. Notice how the
appearance of our mesh is much clearer than COLMAP point cloud, especially on
the floor. Additionally, much of the noise which is present in the COLMAP recon-
structions is not present in ours. Because we use per frame depth estimates, we also
recover geometries that are seen in few frames, like the floor and the window in the
foreground, which COLMAP fails to do.
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(a) Ours (b) NeRF

(c) IBRNet (d) SVS (Reconstruction fails)

(e) Sample source image (f) Sample source image

Figure A-2: More novel view comparisons with a small camera baseline. Our method
produces sharper results and suffers from fewer artifacts. NeRF cannot render the
details on the tile flooring and is overall quite blurry. IBRNet has a lot of artifacts
like on the tiling which is wavy, and on the column which is heavily distorted. Our
method produces a slight distortion on the top of the column.
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