
Expressive Typography

High Quality Dynamic and Responsive
Typography in the Electronic Environment

by

David Small

Bachelor of Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts 1987

Submitted to the Media Arts and Sciences
Section in Partial Fulfillment for the Require-
ments of the Degree

Master of Science in Visual Studies
at the
Massachusetts Institute of Technology

February, 1990

© Massachusetts Institute of
All rights reserved

Technology, 1990

At7 David Small
Media Arts and Sciences

January 19, 1990

Certifi by Muriel Cooper
- . //7Professor of Visual Studies

Thesis Supervisor

S hw B t

AcCPea Dy

MASSACHUSE1 ISTITIUTE
OF TECHNNl OGY

FEB 27 1990
UtRAch

Le en eUn

Department Committee for
Graduate Students

Expressive Typography

High Quality Dynamic and Responsive
Typography in the Electronic Environment

by

David Small

Submitted to the Media Arts and Sciences Section on
January 19, 1990 in Partial Fulfillment for the Require-
ments of the Degree of Master of Science in Visual
Studies at the Massachusetts Institute of Technology

Abstract

This thesis develops a methodology for handling
complex typographic information. Tools for cre-
ating and modifying complex typography, in both
the static and dynamic cases, form a platform
for greater expression. Dynamic text is created
using a spring- based physical simulation
model. Type can be animated with sound and
voice. The quality of screen fonts is empha-
sized, and a scheme for real-time filtering of
fonts is discussed. Simulation of pigments on a
massively parallel computer enables complex
simulation of pigment and paper based fonts.
The thesis exists as a dynamic, interactive ex-
periment.

Thesis Supervisor: Muriel Cooper
Title: Professor of Visual Studies

The work reported herein was supported in part by
NYNEX, Hewlett Packard, IBM and Bitstream.

Acknowledgements

I would like to thank the following people:

Mike McKenna, the best friend a boy could
have.

Muriel Cooper, for never tolerating the ugly, the
incoherent, the poorly designed, or the kludgy.

Ron MacNeil, Patrick Purcell, and Walter
Bender for their words of encouragement.

Russell Greenlee, Suguru Ishizaki, and Sylvain
Morgain for showing me how to get it done.

Bob Sabiston, for teaching me how to program
and for making the complex so simple.

Laura Robin and Ming Chen for their help and
friendship.

Wave for showing me how not to fear the Con-
nection Machine.

Anne Russell and Pascal Chesnais, for giving
me the courage to go on, when all seemed
hopeless.

Marie Crowley, for all those words that she

knows how to spell correctly.

Jacqueline Casey, for reminding me that design-
ing is supposed to be fun, and for her fresh per-
spective on everything.

Mom and Dad, for putting up with me for so
many years and for always being interested,
even when I can't explain what it is that I do.

Sergio Canetti and Nathan Felde, of NYNEX,
for their kind support and interest and for want-
ing me to do what I wanted to do.

Nicholas Negroponte and the Media Laboratory
for giving me the opportunity to grow here.

Given 1. the waterfall

2. the illuminating gas,

one wil d
we shall etermine he conditions

for the instantaneous State of Rest (or allegorical appearance)

of auof a group] of facts
seeming to necessitate each other

under certain laws, in order to isolate the(si

of accordance between, on the one hand,
al the (?)

the State of Rest (capable of (numerable eccentricitie))

and, on the other, a choice of Possibilities

authorized by these laws and also

eterm he

Marcel Duchamp
Door of Given: 1. The Waterfall,
2. The Illuminating Gas. 1946-1966

Under the sea
Under the sea
Thats why its hotter
Under the water
Take it from me

Sebastian
The Little Mermaid
Walt Disney

Contents

Abstract
Acknowledgments
Quotes
Contents

1 Introduction
1.1 Overview 7
1.2 Motivation 9
1.3 Related Work 9
1.4 Example 11

2 Dynamics
2.1 Dynamic Simulation 13
2.2 Distorting Matrices 16
2.3 Springy Fonts 19

3 Sound
3.1 Sound and The Workstation 20
3.2 Keyboard Type Control 21
3.3 Voice Type Control 23

4 Quality
4.1 The Font Pipeline 24
4.2 Filtering on the Fly 25

5 Wet Fonts
5.1 The Connection Machine 27
5.2 Simulation of Pigment and Water 28
5.3 Type as Pigment - parrallel fonts 32

6 Conclusion
6.1 Conclusion 35
6.2 About this thesis 37

7 Appendices
7.1 Dynamics 40
7.2 Solving a 4x4 matrix 42
7.3 The MIDI Server 43
7.4 The Dispersion Algoritm 44
7.5 Parallel Display of Type 47

8 Bibliography 49

1 Introduction

1.1 Overview
Typography is used to express ideas,

style and emotion. It is used to enhance the
display of information, especially where spatial
clues are important. This thesis looks into some
of the issues raised by the use of typography in
the electronic environment. The computer
requires us to rethink much of what has been
learned about type in the print domain. We will
look at four interrelated topics: dynamics, sound,
quality, and wet fonts. Each of these topics re-
quires us to look at type in a different way. In
doing so we are forced to develop a robust and
flexible model for type, which allows us to have
a greater range of typographic expression than
was previously possible.

The computer enables us to handle the
vast amount of computation that is now re-
quired. It can track multiple objects, render
graphics, compute simulations and manufacture
high-quality letterforms. Perhaps the most
exciting property of the computer is the ability to
create images that evolve and change over
time.

Dynamics refer to the movement of
graphical objects on the CRT, usually in re-
sponse to changing information, user interac-
tion, or physical constraints. This thesis ex-
plores the use of dynamic simulation to animate

wet fonts is the term I am using to
refer to the simulation of fonts as
areas of ink and water responding
to an active paper medium.

The computer used is a Hewlett-
Packard 835 equipped with a
1280x1 024 32 bit display with
hardware assisted 3-d rendering,
including solid modeling and
shading.

the shape of individual letterforms. By so doing
we can create type which is responsive to physi-

cal events. Springy constraints allow the de-
signer to modify letterforms quickly and intui-

tively.
Sound and sight together help us to

navigate through complex environments. Audio

cues can be an integral part of simulations, the
user interface, and expressive typographic com-
munication. The spoken word and the written

word have evolved along a parallel course.
Now we have the potential to bring these two
aspects of language closer together.

The need to maintain the integrity of type
on computer displays cannot be overstated. We
increasingly consume information displayed on

computers, and while many people have be-
come accustomed to low resolution type and
graphics, it is both counter-productive and tech-
nologically outdated. A fast-filtering method
allows us to maintain the quality that is essen-

tial to typographic communication while retain-
ing the greatest flexibility for the designer.

The use of the Connection Machine, a
massively parallel supercomputer, provides us
with a radically different way of thinking about
the nature of graphics. It is possible to think of

the screen, not merely as a canvas on which im-

ages can be pasted, but as an active, computa-
tionally rich medium. For example, we can
simulate an active paper by assigning an entire
processor to each pixel on the screen. This
allows us to think of type less as a pure abstrac-

tion of shape, and more as an area of changing

pigment density, which can change and evolve
over time.

1.2 Motivation

The interface to the computer will be dy-
namic, flexible, personalized, and responsive.
Designing for that kind of rich environment is
much more complex than for a flat page of
paper. Design is both an analytical and an ex-
ploratory, playful activity. The computer should
be able to support a rich, unconstrained play en-
vironment without sacrificing ease-of-use. Ac-
cess to the appropriate level of detail should be
available without difficulty.

This thesis explores new territory in the
use and representation of type. More impor-
tantly, it lays the foundation on which others can
explore on their own. This thesis tries, not only
communicate what has been done, but to ex-
plore the nature of that communication and
ways in which the computer could be used to
enhance it.

1.3 Related Work

This thesis draws from a wide variety of
research topics - typography, dynamic simula-

tion, music and parallel computing. This meant
synthesizing material from a wide variety of
sources.

Avi Naiman's work on rectangular convo- Avi Naiman, Rectangular Convolution

lution of fonts provided the basis for a fast- for Fast-filtering of Characters.

filtering algorithm. Using his work, and work

done in the VLW by Russell Greenlee we are
now able to filter characters at the rate of six per
second. Naiman's algorithm breaks up the char-
acter into smaller parts which are easy to filter.
Work by Walter Bender and others in the Elec-
tronic Publishing Group, MIT Media Lab, on the
evaluation of typefaces and the combined influ-
ence of design and anti-aliasing on legibility was
very important in defining the type model that
was used. He showed that by combining auto-
matic filtering techniques with adjustments
made by a type designer a superior display
typeface could be made.

Jane Wilhelm's paper on dynamics pro-
vided a good overview of the steps involved in
creating a dynamic simulation. Work done in
the Computer Graphics and Animation Group,
MIT Media Lab by David Zeltzer, Mike McKenna
and Peter Schr6der on collision detection,
springy constraints and everyday physics was
essential to creating a simulation that worked
accurately. Much of their work is covered in
their recent Masters' theses.

Work done in the Speech Group, MIT
Media Lab, especially by Janet Cahn, on the
emotional qualities of speech demonstrates that
distinct emotional states can be determined
from voicing alone.

In addition to the work done in the tech-
nological community, there is of course a long
and rich history of experimental typography from
the design community. Although not often put in
quantitative terms, there is a great deal to be
learned from this work. One such example of

Walter Bender, et. al. CRT Typeface
Design and Evaluation.

Jane Wilhelm, Dynamics for Every-
one.

Mike McKenna, A Dynamic Model of
Locomotion fro Computer Animation.

Peter Schroeder, The Virtual Erector
Set.

Janet Cahn, Generating Expression
in Synthesized Speech.

C Mr and Mrs Martin your guests
are at the door They were waiting
for me They didn't dare come in
by themselves

They were supposed to have
dinner with you this evening

Oh yes We weve expecting shem

And we were hungry
Sinee they didn't put in, an appaae a w te jiet
start dine,r wsithout them, We've had rtsshsV tos*at an

You should not have gone out!

But it was you who
gave me permission

We didn't do it on
purpose

Figure 1. Eugene lonesco and
Massin. The Bald Soprano.

typography that imitates the expressiveness of
the spoken word is The Bald Soprano, a play
written by Eugene lonesco and designed by
Massin. In Les Mots en Liberte by F.T. Mar-
inetti the form embodies the explosive and
revolutionary nature of Futurism.

This work depends heavily on software
written in the Visible Language Workshop and
the Media Laboratory. Bob Sabiston's window
system, Russell Greenlee and Curtis Eubanks
tools for Bitstream fonts, Eric MacDonald's
sound server, and work by Shaun Kaneshiro
and Tim Kukulski which greatly simplified the
complexities involved in working with type. Figure 2. F.T.Marinetti. Les Mots en

liberte futuristes. 1919

1.4 Example

In order to illustrate the various typographic
tools that have been created, the pieces are
integrated in an on-line example of the work.
The result is both an explanation and an ex-
ample of the use of dynamic and responsive
type. In addition it will serve as an environment
in which designers can sit down and explore the
different tools.

The final component of this thesis is an
electronic manuscript in which text is supple-
mented by working, interactive demonstrations.
The reader of the electronic thesis will have ac-
cess to a working environment in which ideas
can be sketched out and tested. This sort of
document or manuscript will evolve over time,
as readers add their own notes and examples.
I hope that it will be a valid model for how typog-
raphy can begin to be used in electronic texts.

2 Dynamics

2.1 Dynamic Simulation

Dynamic simulations have often been
used to demonstrate physical properties or
make realistic animation. We are using dynam-
ics to control graphics which have no real-world
correlates. In doing so, we create something
which is both realistic and abstract. For ex- See Jane wilhelms, Dynamics for

Evetyone, Fourth USENIX
ample, the word breakdown could break into Computer Graphics Workshop, for

pieces. It is important that the computation is a complete treatment of the
piecs. I is mporant hatphysics involved.

fast enough that the user can interact with the
simulation in close to real time. Direct manipula-
tion is then easy, because the computation
matches our expectations.

The study of the physics of bodies in
motion is called dynamics. Forces act on bod-
ies, causing accelerations. Given accelerations
over time, it is possible to compute a body's
velocity and position. This computation involves
solving the Newton's Second Law,

f = m a or f = m dv/dt

where the force applied to a body equals the
mass times the acceleration, and the equations
of motion :

= a or v =fa -= v or p v
at ftat f

Although it is possible to solve the differ-
ential equation for very simple cases, in general
one must use a numerical integration method to
solve for the velocities and positions from the
acceleration, over time. This is especially true if
the bodies are subject to real time user control.

The numerical integration method works
by breaking down the solution into many small
discrete time steps. All the forces acting on
each body are computed and summed, the ac-
celerations are solved, and then new values are
computed for the bodys' velocity and position.
As long as the accelerations or velocities do not
become large, this will give an accurate approxi-
mate solution. The forces acting on a body are
gravity, spring forces, and collision reactions.
The force of gravity is simply the body's mass
times a constant g. The force exerted by a
spring is:

k * (length - rest length)

where k is the spring constant, length is the dis-
tance between the two endpoints of the spring,
and the rest length is the distance between the
endpoints of the spring when it exerts no force.

When the mass collides with the floor, the
component of the velocity perpendicular to the
floor is scaled by the coefficient of restitution (a)
and reflected back. This is due to the conserva-
tion of momentum.

Figure 3. Bodies connected by
springs failing.

vy after collision = - y before collision (Y

Another force is due to damping. This
force acts to slow down the bodies in motion,
creating a "viscous" medium. The force it exerts
is equal to the inverse of the velocity times the
damping constant, b:

F = Fold - Velocity * b

Given the total force acting on each body,
it is possible to compute the instantaneous
acceleration of each body. For some small
amount of time At it is possible to compute new
velocities and positions.

A = F + Mass

Vnew = Vod + A* At

Pnew= Pold + V*At + 0.5*A*At 2

This is the essence of the dynamic simu-
lation. It is possible to create any number of
masses and springs and to connect them in any
manner. The user can interactively modify any
of the parameters of the simulation (spring
constants, masses, gravity, damping, etc.) In
addition, it is possible to grab masses with the
stylus and move them around. There are two
ways to move a mass. One can pick up a mass
and pull it lightly; when the stylus is released the
mass will then move according to the simulation.
If however the user presses down harder, the
mass will "stick" to that location. A clicking
sound is made to indicate that the mass has

Figure 4. Collision with floor and
collision response.

been tacked down. Also, when a mass collides
with the floor, a clanking sound is made. The

greater the mass's velocity, the louder the clank-
ing sound. The integration of graphics and
sound is very important to interactive simula-
tions, and is discussed in greater detail in chap-
ter three.

2.2 Distorting Matrices

In order to connect typographic objects to
the dynamic simulation it is necessary to be able
to distort the type. Given any four sided figure,
one must be able to distort the character such
that its em-box conforms to the figure. This
could be accomplished by performing a bilinear
interpolation for each point in the character.
Thus if a point's coordinates are (0.3, 0.7), the
new point would lie on the intersection of the
line from three-tenths of the way along the
bottom of the figure to three-tenths of the way
along the top and the line seven-tenths of the
way along the left edge to seven-tenths of the
way along the right edge. This operation would
have to be performed on every point in the
character.

Another way to solve this problem is to
create a four by four matrix which transforms
points in the original space into the distorted
space. The matrix would only have to be calcu-
lated once and every point in the character can
then simply be multiplied by the matrix. This is
implemented to take advantage of a hardware
matrix solver for displayed graphics. We need

0.7 original

0.3 0.3
0.7

Figure 5. Bilinear interpolation
method.

The em-box is the bounding box of
a capitol M. This is commonly used
as a scale of reference for the
typeface.

IConcave, four sided figures.

Figure 6. For some figures, the
solution for the matrix M is undefined.

to compute the matrix M such that the points of

the unit square [(0,0), (0,1), (1,1), (1,0)] when
multiplied by M give the distorted figure

[(P1,,P1,), (P2XP2,), (P3x,P3,), P4x,P4y)]. We

have sixteen unknowns and eight equations to

be solved in terms of eight variables. However,
because we are only dealing with two dimen-

sional points, some of the unknowns in the
matrix can be set to zero.

b 0 d
f 0 h
0 0 0
n 0 p_

Now we only have nine unknowns and
eight equations. If we set the homogeneous
coordinate (p) to one we can now solve the
equations. We must be constrained, however,
to convex four-sided figures.

The problem breaks down into four sepa-

rable matrices; translation, rotation, shear, and
perspective transformations. It was then pos-
sible to solve for these matrices and then multi-
ply them to get the matrix M.

1
0
0

Pix

0 0
1 0
0 1

Ply 0

Unit square

'1,1)

I'
I'
I'

I

V
P1

P2

Figure 7. The matrix M transforms
the unit square to the desired figure,
given the four points P1 to P4.

0
0
0

1

a

M =e
0
m

P3

T=L

P2x - P1x

Sc =0
0

0

0 0
P4y - P1y 0

0 1
0 0

shearx = P4x - Px
P2x - P1x

sheary = P2 -Ply
P4 -Ply

Sh =

1
sheary

0
0

shearx 0 0
1 00
0 1 0
0 01

P3x - P1x
P2x - P1 x

shearx - (P3-P1y)
P4Y - Ply

1 - shearx- sheary

P3y - P1y
P4Y - P1y

sheary- hx

1 - h +1
hx+hy- 1

01
-

hx+h

1 -hy
hx+hy-1

hx +1 0 1-hx
y-1 hx+hy-1
0 1 0
0 0 1

h=

M = P x Sh x Sc x T

2.3 Springy Fonts

Once the dynamic simulation works and it
is possible to distort characters, one can com-
bine these two techniques to create interactive
typographic animation. A network of springs is
designed such that they define a four- sided
figure for each character. Two springs form the
space in between characters. The springs form
the em-box of the character and the rest length
of the connecting springs is set to the correct
spacing. The dynamic simulator is used to
determine the positions of each corner. Then,
given the four corner points, a matrix M is found.
This matrix is concatenated to the stack of
matrices in the graphics pipeline. Then the
character is drawn as if it were at the origin and
on the scale such that it has an em-box one unit
wide. The resulting image automatically con-
forms to the shape of the springs. This is done
for each character in the network.

By selectively clamping and positioning
some points, while leaving other points free, it is
possible to constrain the shape of a word easily
and interactively. In addition, it is possible to
create animations of words. Because dynamic
simulation is used, the animation tends to look
as if it is based on real physical objects, despite
the fact that the letterforms themselves are quite
simple. Words are abstractions, yet the form
words take can suggest images to the reader.
The computer enables us to make moving
images with words.

Figure 8. This figure illustrates a
network of springs used as letterform
constraints.

See Alvy Ray Smith The Viewing
Transformation, for discussion of
the view pipeline.

3 Sound

3.1 Sound and the Workstation

Sound can and should be an integral part
of the computer interface. People can process
sound information at the same time that they are
absorbing visual information. In fact, it is pos-
sible to pay attention to many completely unre-
lated streams of information in this way (watch
MTV for a couple of hours). Because computer
hardware engineers for the most part have
neglected sound (the exception being NeXT
and, to some extent, Apple), it can often be
quite difficult to have even the simplest sound
control. We have chosen MIDI as our means of
interfacing with musical instruments and sam-
plers.

Two-way MIDI communication between
the computer and musical devices provides a
rich environment for exploring the integration of
sound and graphics. The communication is two-
way because we not only want graphics to be
able to create or initiate sounds, we also want to
be able to shape graphics with musical instru-
ments.

MIDI has become a de-facto standard in
the music industry and a wide variety of musical
devices can be controlled with MIDI. It is fast
enough so that there are potentially very short
lags between when the computer triggers a

MIDI - Musical Instrument Digital
Interface, See MIDI Specification
1.0 for a detailed decription of
the interface. C programming for
MIDIby Jim Conger is a good
overview of computer interfacing
for MIDI.

sound and when it is heard. We are currently
using MIDI as a way of controlling both a digital
sampler (an AKAI 950) and a keyboard (for user
input). In order for the computer to communi-
cate with MIDI we need an interface that will
allow the computer to reads and write MIDI
data. This interface is discussed in detail in
Appendix 7.3. Once a platform is established
for computer interaction with musical instru-
ments we can perform experiments which link
graphics and sounds.

3.2 Keyboard Type Control

There are well established conventions
which have allowed people to represent music
(or sound) with graphics. We can look at medie-
val musical scores which represented some of
the music but still left much unspecified. This
worked because the music was well known
throughout the culture. Perhaps also people in
non-literate societies were more able to remem-
ber and embellish simple scores. As music be-
came more sophisticated, the conventions be-
came stricter. This reduced confusion, but also
required that the amount and kind of information
be limited. Starting in the twentieth century,
people began to experiment with other ways of
representing a wider variety of sounds. (See
Masens' score for Duchamp's Band).

What we have done is allow the manipu-
lation of graphics, directly by playing musical
instruments. The keyboard sends information
when a key is pressed (note, channel, key

I - *:.

Ut COC P4"OIV tuK a$ h

* llIU~Ifl~kJ~kAIu~

Ag0c "ci

A 0 ~jt.. ~a~# tth M

1.7

It 3jj.j~ Ll U 3 _____he__

B _____U

LCor. 4p 4 p .

VI.'

C

Figure 9 (A,B,C). Three examples of
musical scores. A is from the
Hirmblogium of the Codex Monasterii
Chiliandarci, 308 AD, B is from a
collection of thirteenth century
French motets, and C is from
Beethoven's Ninth Symphony.

Rl.

oh.

pFJ.

9-.-. - -

velocity), after it is pressed (aftertouch) and
when it is let up. We can connect the informa-
tion from a particular key on the keyboard (for
example middle C) to a dynamic graphic (say
the letter C). Initial velocity and aftertouch can
be used to control the size of the graphic.

Although this experiment is very limited, it
allows us to begin to think of type and dynamic
graphics as being performances of a sort. This
is certainly not a new idea (The Bald Soprano,
by lonesco and designed by Massin being a
wonderful example) however the integration of
elements by the computer gives us the opportu-
nity, not only to automate parts of the process,
but to have much finer control and perhaps most
importantly to add the element of time to a
typographic piece.

Figure 10. E.L.T.Mesens. The
Complete Score for Marcel
Duchamp's Band Completed. 1945

3.3 Voice Type Control

Of course there are many aural experi-
ences besides music and perhaps the most
interesting of these for our purposes is speech.
If speech is digitized and analyzed it is possible
to get some information about the aural qualities
of the speech. This information can be linked to
graphics by using the same sort of paradigms
described above.

Because our ability to analyze speech is
currently very limited, it was decided to try and
link a single sound property (volume) to a single
typographic element (point size). The cry of a
baby was recorded and digitized, and then
broken down into a graph of energy over time.
The energy (or volume) of the cry was then
used to control the size of as string of letters

("Aagh") in real time. The result was a visual
representation of the sound of the baby crying.
When seen in conjunction with the sound it
gives the "impression" of the cry.

C1tMM111Ill I]

1 11 11

C

C

1111 111

C

Figure 11. The letter C being scaled
by pressing the note C on the
keyboard.

Aagh

Aagh
Aagh

Figure 13. Sequence of cry images.Figure12. Digitized cry.

4 Quality

4.1 The Font Pipeline

One of the goals of this research is to
provide more flexibility without sacrificing quality.
By using efficient filtering techniques, it is pos-
sible to create anti-aliased fonts on the fly. In
the past, designers have depended on
WYSIWIG (What You See Is What You Get) as
a model when working with computers. This
meant that the image on the screen was an
"accurate" representation of the printed output.
Display Postscript is the latest example of this
trend, where the screen is thought of as nothing
more than a low resolution printer which can
only produce black dots. In fact, by using the
gray levels of the computer screen, and filtering
properly, it is possible to create much higher
apparent screen resolution. This emphasis on
printed output ignores the vast amount of con-
sumed text that is never printed at all, but lies
totally within the electronic environment. It is
not enough that the image on the screen re-
minds one of a typeface, it must be that type-
face; What You See Is All You Get.

Speed is of the essence in an interactive
system, especially when animation is consid-
ered. In order to provide the user with as much
speed as possible, while still maintaining flexibil-
ity, I am using several levels of representation

Outline Description

Sets of straight lines and
sections of circles.
Highest precision. --s

Rotation
Curve fitting
3-d transforms

Rectangle Form

Lists of rectangles, scan conversion
of outline form at medium resolu-
tion. Must beat
least 5 times
higher precision
than bitmap form.

cc

Scale (x, y)
Sub-pixel position

BItmap Form

Intensity bitmap for font.
Eight bits per pixel. UEEE
Pixel precision.

Screen position
Color

2 -g Transparency
n g Pattern masking

Screen Instance

Anti-aliased instance, including
color, transparency, etc. Pixel
precision.

Figure 14. The Font Pipeline

for the font. Certain kinds of transformations
can occur at different levels, so for example, it is
possible to make some changes without always
going back to the font outline. The system can
be thought of as a pipeline which connects
different representations: data flows from higher
levels of representation to lower ones. The user
can interrupt this flow, or make changes at any
level. Unless the designer wants to make
changes, the pipeline remains transparent.

4.2 Filtering on the Fly

Filtering is an important and well recog-
nized way of improving the legibility of screen
fonts. It has never become a widely used tech-
nique partially because anti-aliased typefaces
are more difficult to produce, require greater
storage space, and are rendered slower than
single-bit typefaces. The simplest way to gener-
ate an anti-aliased typeface is to start with a
high-resolution single-bit master and then filter it
down to the desired size. The larger the master,
the smoother the filtered version will be. Unfor-
tunately this process can be quite time consum-
ing (typically, it might take an hour to generate
an entire typeface). If one needed a size which
was unavailable, it would be very inconvenient
to make it.

To get around some of these problems
we have implemented a version of Avi Naiman's
rectangular convolution method for fast filtering
of characters. Essentially, this method breaks

For further information on anti-
aliased text see Bender, et. al.
CRT Typeface Design and
Evaluation.

Avi Naiman, Rectangular Convolution
for Fast Filtering of Characters.

the high-resolution master font into rectangular
parts. Although there are many of these compo-
nent rectangles (three to four hundred per char-
acter on average), there exist very efficient algo-
rithms for filtering rectangles (especially when
the orientation is along the axes of the display).
Russell Greenlee has implemented such an
algorithm that uses a pre-computed filter table,
rather than computing the filter for each element
separately.

Using this method, we can filter a type-
face in approximately fifteen seconds (240 fold
improvement). This is fast enough that it is now
possible to create typefaces on-the-fly rather
than load them off disk. This saves disk space, B. Cnical Filter

but more importantly, gives the designer the
flexibility to make any size face whatsoever,
including fractional sizes (i.e. 12.25 point). Also,
it is possible to create rotated or distorted type
without any loss in quality.

One important advantage to this method
is that it uses a table look up for the filters.
There are many different kinds of filters and C. Gaussian Flter (slow falloff).

there are trade-offs associated with each. Dif-
ferent filters are required depending on the size
of the smallest details in a character, and on the
characteristics of the CRT which is being used.
By using a table to do the filtering it is possible
for the user to swap in a variety of filters, or
even for the computer to choose a filter which
best matches the display and the typeface. D. Gaussian Filter (fast falloff)

Figure 15 (A-D). Several different
filters which can be used to make
anti-aliased fonts.

5 Wet Fonts

5.1 The Connection Machine

In this chapter current work on the Con-
nection Machine that simulates the actions of
water and pigments on a paper substrate will be
discussed. The Connection Machine is a com-
puter with a massively parallel architecture. The
computer is made up of 16,000 processors,
each with its own memory. All processors
execute the same instructions, but they can
have different values to compute with. The
processors are controlled by a serial computer
(also called the front-end computer) and can
interface with a frame-buffer and a parallel data
storage unit (the data vault). In addition to
communicating with the front-end and these
peripherals, individual processors can also
access information stored by other processors.
This architecture is ideal for simulating systems
in which there are many individual components
which function in similar ways. Although each
processor is relatively slow, together they can
process vast amounts of data.

To simulate the actions of paper, it is
necessary to compute the movement of pigment
and water into and out of millions of paper
fibers. Although the rules governing individual
fibers are quite simple, the aggregate behavior
is quite complex. Each fiber needs only to know

For further information on the
Connection Machine see Daniel
Hillis' book The Connection
Machine

its own state, the state of its neighbors, and
some global information. This sort of simulation,
with a million active fibers (1 024x1 024, one fiber
for each pixel), would be extremely difficult to
perform on a serial machine, not only because
of the numbers of computations involved, but
also because of the large amount of data in-
volved (about 45.8 megabytes). It is ideally
suited, however, to compute on the Connection
Machine.

5.2 Diffusion of Pigment and Water

The goal of this project is to create an
interactive simulation of paper, water, paint and
brushes. Various pigments and water can be
applied to the paper in a variety of ways- with
brushes, geometric stamps, and photographic or
typographic screens. Once applied, the pigment
and water will begin to diffuse into the paper
according to the physics of diffusion and trans-
port mechanisms. By varying the way in which
diffusion occurs, different kinds of paper can be
simulated. In fact, it is possible to create a
paper with properties that cannot exist in the
real world.

The basic element of the simulation is the
paper fiber. There is one fiber for each pixel on
the display and one processor for each fiber.
Each fiber knows its own color, the amount of
each pigment it contains, how wet it is, how
absorbent it is, its x and y location, and the color
it computes to send to the display. The simula-
tion can be divided into three main parts: creat-

Memory usage

348 bits per fiber
+ 8 bits per byte
* 1024 by
* 1024 fibers

= 45.613 megabytes

Figure 16. Memory needed to
simulate fibers.

Code Summary
- initialize CM

- create display

- create VP set

- allocate memory

- set fiber color and absorb-
ency

- put pigment and water on
paper

while (time)

disperse water
disperse pigment
create image
send image

ing and initializing the paper, applying pigments

and water, and performing diffusion cycles.
The first step requires that a display and

a two-dimensional virtual processor set is cre-

ated with the same width and height as the
desired piece of paper. Then memory is allo-
cated on each VP for all of the data it will need
during the simulation. Memory is allocated on a

stack. This means that if any field is de-allo-
cated, any bits above it in the stack will be lost.

In order to avoid any potential problems, all
fields, including temporary variables, are allo-
cated at the start of the program. Once this is

done there is real memory allocated for every
field on each VP. Given the current memory
size on the CM the largest display that can be

allocated is 1024 x 512 pixels Manipulations of

these fields will take place in all active proces-
sors simultaneously. In addition to these fields
there are a number of global variables. These
exist in memory which is shared by all of the

processors and they are not duplicated.
Once the memory is allocated, some

initial conditions are set. Fiber color and absor-
bancy are initialized and then randomized
slightly for each pixel. Random fiber colors give
the paper a speckled appearance. Random
absorbency is used to generate a "noisy" disper-
sion function.

The second step is to apply pigments and

water. In addition to its own color, each fiber
can contain and be tinted by pigments. Initially

there are only cyan, magenta and yellow pig-
ments. This allows the generation of any color

VP = virtual processor

Memory Stack
bits

24 image_field
23+8 absorbency
23+8 water
23+8 cyan
23+8 magenta
23+8 yellow

24 fiber-color
10 x-coord
9 yoord
1 context
1 context

23+8 tempi
23+8 temp2
23+8 temp3
23+8 temp4
348

mixture; however there will be situations in
which one will need to use spot colors. This is a
simple extension from the three pigments al-
ready used, however it will require more mem-
ory, which is limited. There are several func-
tions which allow pigment and water to be
added to the paper. A specific amount of each
pigment can be added to fibers within a speci-
fied rectangle. In addition, a certain amount of
water can be added. These functions depend
on a property of the Connection Machine called
context. Each virtual processor has one bit
called the context bit. Any functions (addition,
multiplication, etc) which are performed on the
VP set will only be executed on those proces-
sors whose context bit is on.

A more complex method to apply images
is to take a color bitmap and convert it to pig-
ment, which is then placed on the page. The
bitmap can also be used as a water mask. The
function CM_(read/write)to_news_array is
provided for transferring data arrays on the front
end to VP fields in the CM. Type can be applied
in a manner almost identical to bitmaps, and is
discussed in greater detail in Appendix 7.5.

One more method which could be imple-
mented is to use a brush made up of bristles
and controlled with a pressure sensitive stylus.
The brush works in the same manner as the
fibers themselves, able to transfer pigment and
water along gradients both into and out of the
paper.

The last step is to simulate time with the
diffusion cycle. This is nothing more than a loop

Steve Strassmann's paper Hairy
Brushes is a good treatment of the
issues involved in simulating
brushes.

news = north, east, west, south. Of
course, if the VP set is higher
dimentional, news refers to the
processor neighbors in each dimen-
tion.

of dispersing water and pigment, creating a
display image from the pigment content and
color of each fiber, sending the display image to
the frame buffer, and finally removing some
water from all fibers relative to the current hu-
midity.

The dispersion function is the heart of the
program. Modifying the dispersion algorithm
can create drastically different results. The first
step is to disperse the water. For each fiber a
water gradient is calculated relative to its neigh-
bor. In the most simple case, one-half of the
gradient (or difference) between the two fibers is
subtracted from the wetter fiber and added to
the drier fiber. Noise can be added to the dis-
persion by multiplying the gradient by the fibers'
absorbency. Adjusting the amount of variation
of absorbency between fibers changes the
noisiness, or roughness, of the dispersion.
Gravity is also taken into account by modifying
the gradients. Gradients are increased along
the gravity vector and decreased in the opposite
direction.

Pigment diffusion is slightly more compli-
cated. It begins the same way as the water
diffusion by computing a pigment gradient and
modifying it with absorbency and gravity. In ad-

dition, the gradient is multiplied by the water
content of the fiber; the wetter the fiber, the
easier the pigment will move. The gradient is
also multiplied by the molecular mass of the
pigment (a constant). Some pigments will
diffuse faster than others, creating colored
fringes.

Diffusion Mechanism

neighbor

fiber gradients

w cym m~
y

m L movement

See Appendix 7.4 for complete
description of the dispersion
algorithm.

After new pigment values have been
determined for all of the fibers, we can calculate
the displayed color for each fiber. This color is
simply the fiber color minus any pigment. This
is done in three channels (rgb). The red part of
the image is the red part of the fiber color minus
any cyan pigment. This is similar for both green
and blue. If there were any spot pigments, they
would affect more than one channel. I have
also written a function which computes a gray
value for each pixel based on the fiber's water
content. This is very useful for visualizing the
water flow in the paper.

Finally, we have a 24-bit image that can
be sent to the frame buffer. Because news or-
dering is different from frame-buffer ordering,
the image must be shuffled and twiddled before
it is sent to the frame buffer. This operation
takes about 0.5 seconds and is the main factor
in limiting interaction with the simulation.

5.3 Type as Pigment

One of the interesting things about simu-
lated watercolor is the ability to precisely locate
pigment on the paper. This means that it is
possible to create images with fine detail (as on
a silkscreen) but still be able to have the pig-
ment flow freely (as on a wet sheet of paper).
This is particularly interesting with regards to
typography. It is possible to create crisp type
and selectively modify it as if it were made of
ink. Traditionally, type has moved away from

See Appendix 7.5 for parallel font
display algoritm.

Shuffling moves data between
physical processors. Twiddling
moves data around to different
VP's on the same physical proces-
sor.

ink. Technology has enabled us to remove
more and more of the artifacts associated with
ink, and in the case of electronic text, to remove
the ink entirely. Type is thought of more as a
shape, an outline, an abstract delineation be-
tween letterform and space.

Why then should it be interesting to think
of type as a spot of ink on paper? Why indeed!
This way of thinking broadens the possibilities of
the electronic typographic image. The character
becomes an active, moving, physical experi-
ence.

By thinking of a glyph, not as some pure
mathematical construct, but as a loose area of
continuous pigment, we are freed from the
constraints of treating it as an abstraction. We
can use surface tension to "round up" shapes,
or use diffusion to soften them. Bold type could
be made simply by using more ink. Words can
be integrated into images, because now they
are made from the same material. All this is
possible because of this radically different way
of thinking about the letterform.

Figure 17. Series of images demon-
strating the diffusion of a line of
pigment. The water travels from left
to right.

Figure 18. Fives, design used for
the fifth anniversary of the Media
Laboratory. The image was the
result of a collaboration between
David Small and Jacqueline S.
Casey, Visiting Design Scholar at the
Visible Language Workshop. The
varnish shows where the paper is
most wet.

6 Conclusion

6.1 Conclusion

This thesis sets forth a variety of ways to

think about and use typography in the electronic
environment. There are many issues that have
been raised which deserve further investigation.
There will probably never be one unifying ap-
proach to the use of typography to convey
information in the electronic environment.
Rather, there will be a wide selection of related
ways to use type, each suited to a particular
task. The integration of various methods into a
coherent whole will be a difficult but essential
task.

Future directions to explore include
translucency, editing, sub-pixel positioning,
bristly brushes and dynamic linking. Translu-

cency can be used to expand the dimensions of
graphics in the Z-axis. Some experiments have

been done, such as using translucency to fade
from one piece of text to another. This tech-
nique could be used in a more general way to
handle linked information or annotations.

Editing abilities can be built into the
system so that text can be added or modified in

real time. Building a robust text editor with anti-

aliased fonts poses several interesting prob-

lems. The editor needs to be able to find words

in text that may contain several different type-

faces. Rendering has to be fast enough so that
text can be inserted at any point, without locking
out the user. Also, text should be able to per-
form some designing on its own, such as identi-

fying and flowing around other objects.
With the fast filtering techniques dis-

cussed earlier, it should be possible to position
text on a sub-pixel basis without causing an
unacceptable loss of speed. More accurate
positioning of text means that the designer has

a much finer control over typesetting operations.
For certain applications (such as subscripts or
justified text) the benefits will outweigh the com-
putational difficulties.

The addition of bristly brushes to the
watercolor simulation will greatly enhance the

interactivity of the system. One will be able to
apply ink or water directly to the paper surface
in a rational manner. Coupled with a model of
surface tension, it will result in a more accurate
and flexible simulation.

Dynamic linking of comments and anno-

tations to the text is an important way to expand
the generality of the system. Although footnotes
currently perform some of the functions associ-
ated with hypertext, a more robust and general
system needs to be developed. It should be

able to handle an arbitrary number of layers and
types of links. This will require some kind of
automatic layout, so that the screen space can

be dynamically allocated in such a way as to
follow design rules and avoid losing the user in
a sea of complexity.

6.2 About this Thesis

In addition to the paper copy filed with
MIT libraries, this thesis exists as an interactive

electronic text. The entire text of the thesis, as
well as interactive simulations, can be traversed
on-line. The purpose in doing this was to break
down the separation that occurs between the
text of the thesis and the subject matter being
presented. Also, it was a good opportunity to
explore certain design issues associated with
electronic texts.

There are several key components to this
implementation of the thesis: interaction, recon-
figurability, annotation, a visual overview, scroll-
ing, and linked "footnotes". Of course, being an

electronic text, this thesis raises a host of issues
- about linking, editing, and personalization -

which have not been addressed at this time. My
criteria in designing the system was that it be
intuitive and as simple as possible. Interaction
should be quick, and the design should not
require a lot of explanation to use. At the same
time, I made the software as modular and flex-
ible as possible so that improvements could be
made gradually.

Interaction is one of the key elements in

the thesis. It is important that the user can
explore in his or her own way the concepts that
are being discussed in the writing. In making
the demonstrations I wanted the reader to be
able to go through the same learning process
that I had (albeit with slightly less pain). In the

future, I hope that I can make it easier to include

Footnotes refer not only to text, but
also to graphics or sketches.

simulation objects as well as recompilable code
fragments.

Reconfigurability is another important
attribute of an electronic text. The layout
should be abstracted as much as is possible
from the specific content of each page. Users
can interactively reconfigure the layout, which

acts as a template for all of the pages. Foot-

notes stay attached to the correct part of the
text, even if the font changes, or the text is

reformatted. I am using a grid to simplify the
design, and most of the layout is determined in
grid rather than absolute coordinates. Colors
should also be abstracted out of the code as
much as possible and easily edited.

Included is a graphical annotation sys-
tem. This allows the user to make color, pres-
sure-sensitive, translucent, anti-aliased
sketches over the thesis. These sketch objects
can be moved around, saved and played back.
In this way, it is possible to build up layers of
annotations and still maintain the kind of quality
that people expect from paper and pencil.

One constant problem with electronic
texts is that it is difficult to get a quick overall
view. With a book, it is easy to pick it up, riffle
through the pages, and get a lot of information
about the book. This feeling can be approxi-
mated electronically by allowing the user to scan

through filtered miniatures of the "pages" that
make up the book. Although the image quality
is somewhat poor, it is easy to get a quick
gestalt of what each page is about. This sort of

fast browsing is a very useful and important

paradigm, especially since that computer gives

you access to such a vast amount of informa-
tion.

In addition to being able to move quickly
through pictorial data, it is also good to be able
to move through textual information smoothly
and quickly without sacrificing typographic
quality. One common way to move through a
large body of type which will not all fit on the
screen at one time is to scroll it inside of a

window. A scrolling function has been imple-
mented which maintains full anti-aliasing and
still moves quite quickly.

Of course, no thesis would be complete
without footnotes. Footnotes are divided into
several classes (citations, explanatory notes,
images, sketches, etc.). This allows us to have
a looser, less constrained definition of a footnote
object, as well as leaving the door open for
other types of footnotes later. It was also impor-
tant to be able to attach the footnote to a par-
ticular part of the text, regardless of how the text
was formatted. This was done by having the
text body send a message to each footnote
object whenever it was reformatted specifying
the new location of the link.

Scrolling Algoritm

to scroll down:
- block move all but the last
line down one line.
- compute which part of the
text will now fall on the first line.
- render just that line.
- repeat for as many lines as
you wish to scroll.

to scroll up:
- same as above, except in
reverse.
- slightly slower because it
takes longer to find out what
part of the text will fall on the
last line.

7 Appendices

7.1 Dynamics

compute forces

/******* spring forces *

for (i = 0; i < params->springs; i++) {
TheSpring(i)->ForceX = cos(TheSpring(i)->Theta) *

TheSpring(i)->k *
(TheSpring(i)->Distance - TheSpring(i)->restjlength);

TheSpring(i)->ForceY = sin(TheSpring(i)->Theta) *

TheSpring(i)->k *
(TheSpring(i)->Distance - TheSpring(i)->restlength);

1****** forces acting on mass *

/ initialize forces *

for (i = 0; i < params->masses; i++) {

TheMass(i)->ForceX = 0.0;
TheMass(i)->ForceY = 0.0;

}
/***** spring forces *

for (i = 0; i < params->springs; i++) {
n = TheSpring(i)->end[0];
if (ITheMass(n)->sticky 11 !(params->selected == n)) {

TheMass(n)->ForceX -= TheSpring(i)->ForceX;

TheMass(n)->ForceY -= TheSpring(i)->ForceY;

}
n = TheSpring(i)->end[1];
if (!TheMass(n)->sticky 11 !(params->selected == n)) {

TheMass(n)->ForceX += TheSpring(i)->ForceX;

TheMass(n)->ForceY += TheSpring(i)->ForceY;

}

for (i = 0; i < params->masses; i++) {
if (!TheMass(i)->sticky 11 !(params->selected == i)) {

/*** gravity ****/

if (TheMass(i)->Wy > 0.5) /* if it is touching the floor,

This code computes the forces,
accelerations, velocities and new
positions for objects.

First, all of the forces are com-
puted.

Spring forces.

Spring forces (with the appropri-
ate sign) are attached to the
masses.

Gravity.

gravity is counteracted */
TheMass(i)->ForceY -= params->gravity

TheMass(i)->mass;

/*** damping ****/

TheMass(i)->ForceX -= (TheMass(i)->VeIX * params-

>damping);
TheMass(i)->ForceY -= (TheMass(i)->VeY * params-

>damping);

/**** Compute new position from force *******/

if (TheMass(i)->sticky params->selected == i) {
TheMass(i)->AccelX = 0.0;
TheMass(i)->AccelY = 0.0;
TheMass(i)->VeIX = 0.0;

TheMass(i)->VelY = 0.0;

else {
TheMass(i)->AccelX = TheMass(i)->ForceX /

TheMass(i)->mass;
TheMass(i)->AccelY = TheMass(i)->ForceY /

TheMass(i)->mass;
TheMass(i)->VeIX += TheMass(i)->AccelX*params-

>dTime;
TheMass(i)->VelY += TheMass(i)->AccelY*params-

>dTime;

if (TheMass(i)->Wy < 0.5) /* if it hits the floor,
bounce */

if (TheMass(i)->VelY < 0.0) {
TheMass(i)->VelY = -(params->floor) * TheMass(i)-

>VeIY;
if (TheMass(i)->VelY > 0.2) { /* make a clank sound

velocity = (int) (TheMass(i)->VelY * 20);

if (velocity > 127) velocity = 127;

clank(velocity);

TheMass(i)->Wx += TheMass(i)->VelX * params-

>dTime +
0.5 * TheMass(i)->AccelX * params->dTime *

params->dTime;

Damping forces.

if the mass is fixed or held by the

cursor, its acceleration is zero.

Acceleration = force / mass.

Velocity = acceleration * dt.

Collision detection:
If there is a colision with the floor,

the Y component of the velocity

is reflected back scaled by the

floor's damping factor.

Make a sound when the mass

hits the floor.

Compute new positions for each
mass. Position += velocity * dt +

1/2 acceleration * dt2

TheMass(i)->Wy += TheMass(i)->VelY * params-

>dTime +
0.5 * TheMass(i)->AccelY * params->dTime *

params->dTime;

7.2 Distortion with Matrices

Tx = x1;

Ty = y1;
Translate(M, Tx, Ty, 0.0, FALSE);
concattransformation3d(screen, M, PRE, PUSH);

ScaleX = x2 - Tx;

ScaleY = y4 - Ty;

Scale(M, ScaleX, ScaleY, 1.0, FALSE);
concattransformation3d(screen, M, PRE, REPLACE);

ShearX = (x4 - Tx)/ScaleX;

ShearY = (y2 - Ty)/ScaleY;

Shear(M, ShearX, ShearY, FALSE);
concattransformation3d(screen, M, PRE, REPLACE);

/**** **

Hx = (x3-Tx)/ScaleX - ShearX*Hy;

Hy = (y3-Ty)/ScaleY - ShearY*Hx;

Solving for Hx, we get:

Hx = ((x3-Tx)/ScaleX - ShearX*(y3-Ty)/ScaleY) /
(1 - (ShearX*ShearY));

Hy = (y3-Ty)/ScaleY - ShearY*Hx;

Homo(M, (1 - Hy) / (Hx + Hy - 1), (1 - Hx) / (Hx + Hy - 1),

FALSE);
concattransformation3d(screen, M, PRE, REPLACE);

draw_rect_char2(screen, params->rfont, params->string[i] - 33,
250, 250, 250, 0, 0);

popmatrix(screen);

This code demonstrates how to
compute the 4x4 matrix which will

transform the unit rectangle to

the general quadrilateral {(xl,
yl), (x2, y2), (x3, y3), (x4,y4)}.

Compute translation.

Compute scale.

Compute shear.

Compute homogenous coordi-

nate.

Draw character.

Pop all matrices off of the matrix

stack.

Shear(M,x,y,c) Subroutines:
float M[4][4],x,y; Shear.
int c;

float temp[4][4];

Makeldentity(M);
M[1][0] = X;

M[0][1] = y;
I

Homo(M,a,b,c) Homogenous.
float M[4][4],a,b;
int c;
{

float temp[4][4];

Makeldentity(M);
M[O][3] = a;
M[O][0] = a + 1;

M[1][3] = b;
M[1][1] = b + 1;

}

7.3 The MIDI Server

The work described below was done in large
part by Eric MacDonald.

The hardware device we are using is the
Hinton Box. It provides us with real-time inter-
facing between RS-232 (a common communica-

tions standard used by computers) and MIDI. In

addition to this hardware, software must be
written to provide transparent access to the
Hinton Box from windows running on several

different workstations. Let's trace a signal from
the keyboard to the window environment and

then back to the sampler. First, someone

presses the key on the keyboard. It figures out
which key has been pressed and how quickly

and sends a three byte long packet to its MIDI

out port. The packet goes out onto the MIDI

loop, travelling through the AKAI and into the
Hinton Box. Here, the data is read and passed

through several optional filters (the filters can

strip out extraneous information such as after-
touch). They are then stored in a buffer until the

server process reads from the serial port. The
server reads the bytes in and immediately writes
them out to the pipe (same as stdin) and flushes
the buffer. (It is important that sanitary condi-
tions are maintained to prevent lags). The
window system is running a loop during which it

samples all of the input devices and then sends

messages to the appropriate windows. Every
cycle it checks the MIDI input buffer. If it finds
any data it sends a data received message to

the current MIDI window. The window reads the
data, figures out which key has been pressed

and how hard, and then performs some action
(for example, highlighting a letter). Now let us

suppose the a window wants to trigger a sound.
It simply sends some data backwards through

the same elements until it reaches, for example,

the AKAI and triggers a sample.
Using a seperate process for the server

simplifies communications and allows many

machines to have access to the sound equip-
ment without any re-cabling.

The MIDI Server

Figure 19. The MIDI server.

7.4 The Dispersion Algorithm

dispersepigmentandwater(Page)
struct FiberStruct *Page;

/*** EAST/WEST ****/

disperse to neighbor(Page, X);
/*** NORTH/SOUTH ***/

disperse to neighbor(Page, Y);

dispersejto-neighbor(Page, axis)
struct FiberStruct *Page;
unsigned int axis;

CMfield-id t inwardgradient;

CMfieldidt outwardgradient;
CMfieldidt inflow;
CMfieldidt outflow;
CMfieldid_t pigment[3];

... initialization of variables...

Turnoncontext(Page, Page->context, 2, 2, Page->width - 2,

Page->height - 2);

/****** calculate gradients *********/

CMget from-news1 L(inf low, Page->water, axis, 1, s + e + 1);

CM f subtract_3 1L(inwardgradient, inflow, Page->water,s, e);

CM_f_multiply_2_1 L(inwardgradient, Page->absorbency, s, e);

/***** adjust gradients for gravity ********/

CMstore_context(Page->oldcontext-store);
CM_f_gtzero 1L(inwardgradient, s, e);

CMlogandcontextwith testo;

CM-f-multiplyconstant_2_1L(inwardgradient, gravity, s, e);

CMloadcontext(Page->oldcontext-store);

CMstore_context(Page->oldcontext-store);
CM fIt_zero_1 L(inward_gradient, s, e);

CM-logandcontextwith testo;

This code demonstrates a simple

dispersion algoritm implemented

in C/Paris.

Dispersion occurs in each

dimension seperately.

CMfieldidt refers to a parrallel

data structure.Turn on only those

processors not on the edge of the

paper. This prevents wrap-

around.

gradient = absorbency * (neigh-

bor - self)

Adjust gradients to account for

gravity.

CM f divide constant_21 L(inwardgradient, gravity, s, e);

CMloadcontext(Page->oldcontext-store);

CMgetfrom-news1 L(outward_gradient, inward_gradient,

axis, 0, s + e + 1);

/**** calculate new water *

CM f add_21 L(Page->water, inward_gradient, s, e);

CM f subtract_21 L(Page->water, outward_gradient, s, e);

CM f minconstant_2_1L(Page->water, 1.0, s, e);

CM f maxconstant_2_1 L(Page->water, 0.0, s, e);

for (i = 0; i < 3; i++) {
/ calculate new pigment *

/****** calculate gradients *********/

CMget fromnews_1 L(inflow, pigment[i], axis, 1, s + e + 1);

CM f subtract 3 L(inwardgradient, inflow, pigment[i], s, e);

CM f multiply_2 1L(inward_gradient, Page->absorbency, s,

e);
CM f multiply_2_1 L(inwardgradient, Page->water, s, e);

CM f multiplyconstant_21 L(inward_gradient,

molecular_weight[i], s, e);

/***** adjust gradients for gravity *

CMstore_context(Page->oldcontext-store);
CM_f_gtzero1 L(inward_gradient, s, e);

CM-logandcontextwith testo;

CM f multiplyconstant_21 L(inwardgradient, gravity, s, e);

CMloadcontext(Page->oldcontext-store);

CMstorecontext(Page->oldcontext-store);
CM fIt_zero_1L(inward_gradient, s, e);

CM-logandcontextwithjtesto;

CM f divide constant_21 L(inward_gradient, gravity, s, e);

CMloadcontext(Page->oldcontext store);

CMget fromnews_1 L(outward_gradient, inwardgradient,

axis, 0, s + e + 1);

water = water + inward gradient -

outward-gradient

For each pigment calculate

gradients and new values.

pigmentgradient =

molecular weight * absorbency *

(neighbor - self)

Adjust gradients to account for

gravity.

/**** calculate new pigment ********/
CM f add_2_1L(pigment[i], inwardgradient, s, e);
CM f subtract_21 L(pigment[i], outwardgradient, s, e);
CM f minconstant_2_1 L(pigment[i], 1.0, s, e);
CM f maxconstant_2_1 L(pigment[i], 0.0, s, e);

}

/*** restore context *

CMloadcontext(Page->context);

pigment = pigment +

inward_gradient -

outward-gradient

Restore context.

7.5 Parallel Display of Type

Read imagejfromdiskandscreenink on_paper(Page, file-
name, width, height, x-off, yoff, cyan, magenta, yellow, water)

struct FiberStruct *Page;
char *filename;
int width, height, x-off, yoff;
float cyan, magenta, yellow, water;

initialize vectors associated with
CM_u_writetonewsarrayiL ...

if ((fp = fopen (filename, "r")) == NULL)

{ printf ("error opening %s, exiting.\n", filename);
perror ("");

exit (0);

if ((buff = (unsigned char *) malloc (width * height)) == NULL)

{ perror ("couldn't malloc buff, exiting");
exit (0);

if ((test = fread (buff, 1, width * height, fp)) != width * height)

(printf ("error reading %s, exiting\n", filename);
perror ("");

exit (0);

CM u move zero L(Page->imagej ield, Page-
>bitsperpixel);

This code demonstrates a

parallel algoritm for the display

of type.

Open file containing font

bitmap.

Malloc buffer.

Read in font bitmap.

Clear image field.

CM_u_writetonewsarray_1 L(red, offsetvector, startvector, Write font bitmap to red bank of

endvector, axisvector, Page->image_red, 8, 2, dimentionvector, image.
1);

fclose (fp);
free (buff);

/*** turn on context x1l, yl, x2, y2 only **********/

Turnoncontext(Page, Page->context, x-off, yoff, x_off + width -

1, yoff + height - 1);

CM f u_float_ 22L(Page->templ, Page->image_red, Convert to float and store in

CHANNELSIZE, Page->s, Page->e); temp1.

CM f divide constant_21 L(Page->templ, 255.0, Page->s, Page-

>e);

CM f multiply_constant_3_1L(Page->temp2, Page->templ, cyan,

Page->s, Page->e); Compute new cyan,

CM f add 2 _1L(Page->cyan, Page->temp2, Page->s, Page->e);

CM f min _constant_2_1L(Page->cyan, 1.0, Page->s, Page->e);

CM f maxconstant_2_1 L(Page->cyan, 0.0, Page->s, Page->e);

CM-f multiply_constant_31 L(Page->temp2,Page->temp1,

magenta, Page->s, Page->e); magenta,
CM f add_2_1 L(Page->magenta,Page->temp2,Page->s,Page->e);

CM f minconstant_2_1 L(Page->magenta,1.0,Page->s,Page->e);

CM f maxconstant_2_1 L(Page->magenta,0.O,Page->s,Page->e);

CM f multiply_constant_31 L(Page->temp2, Page->templ, yellow,

Page->s, Page->e); yellow,

CM f add_2_1 L(Page->yellow,Page->temp2,Page->s,Page->e);

CM f minconstant_2_1L(Page->yellow,1.0,Page->s,Page->e);

CM f maxconstant_2_1 L(Page->yellow,0.0,Page->s,Page->e);

CM-f multiply_constant_31 L(Page->temp2, Page->templ, water, and water.
Page->s, Page->e);
CM f add_2_1 L(Page->water,Page->temp2,Page->s,Page->e);

CM f minconstant_2_1L(Page->water, 1.0,Page->s,Page->e);

CM f maxconstant_2_1 L(Page->water, 0.0,Page->s,Page->e);

CMloadcontext(Page->context);
} Restore context.

8 Bibliography

Beethoven, Ludwig Van. Symphonie IX.
Novello, London.

Bender, Walter, et. al. CRT typeface design and
evaluation. Proceedings of the Human Factors
Society 31st Annual Meeting; October 19-23,
1987:New York. Santa Monica, CA: Human
Factors Society; 1987; 2: 1311-1314.

Cahn, Janet. Generating Expression in Synthe-
sized Speech. Master's thesis, MIT. 1989.

Conger, Jim. C Programming for MIDI. M&T
Publishing, Redwood City, California. 1988.

d'Harnoncourt, Anne and McShine, Kynaston,
eds. Marcel Duchamp. Museum of Modern Art,
New York. 1973.

Fragmenta Chiliandarica Palaeoslavica, a pho-
toreproduction of the B. Hirmologium Codex
Monasterii Chiliandarica 308. Monumenta
Musicae Byzantinae, Volume V. Ejnar
Munksgaardd, Copenhagen. 1957.

Hillis, Daniel. The Connection Machine. MIT
Press, Cambridge MA. 1987.

lonesco, Massin, and Cohen. The Bald So-
prano. Grove Press, Inc. New York, 1956.

McKenna, Michael. A Dynamic Model of Loco-
motion for Computer Animation. Master's the-
sis, MIT. February 1990.

MIDI Musical Instrument Digital Interface: Speci-
fication 1.0.

Naiman, Avi and Fournier, Alain. Rectangular
Convolution for Fast Filtering of Characters.
Computer Graphics, Volume 21, number 4.
Published by ACM Siggraph. July, 1987.

Pietgen, H.-O. and Saupe, D. The Science of
Fractal Images. Springer-Verlag, 1988.

Rubin, William S. Dada and Surrealist Art.
Henry Abrams, New York.

Schr6der, Peter. The Virtual Erector Set. Mas-
ter's thesis, MIT. February, 1990.

Spencer, Herbert. Pioneers of Modern
Typography. MIT Press, Cambridge, MA. 1983.

Strassmann, Steve. Hairy Brushes. Computer
Graphics, Volume 20, number 4. Published by
ACM Siggraph. August, 1986.

Toffoli, Tom maso. Cellular Automata Machines.
MIT Press, Cambridge, MA. 1987.

Uubry, Piere. Cent Motets du Xlle Siecle.
Broude Brothers, New York. 1964.

Wilhelms, Jane. Dynamics for Everyone. Fourth
USENIX Computer Graphics Workshop, 1987.

Wolfram, Stephen. Theory and Applications of
Cellular Automata, Including Selected Papers.
World Scientific, Singapore. 1986.

