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Abstract

Batteries are becoming increasingly important in a variety of applications, including
electric vehicles and ships as well as load matching in electric grids. Cell voltage balancers
are critical to extracting maximal performance out of batteries and to extending their
lifespan. Charge pump balancers can quickly and efficiently shuttle charge across battery
cells to equalize voltages. Component selection of MOSFETs and capacitors is vital
in optimizing for performance, cost, and volume. This thesis presents experimental
and PSpice simulation data from several capacitor-based charge pump configurations
designed for cell voltage balancing. At 0.4 V cell differential, the peak balance current
of the 2S balancer was over 9.9 A. At 0.8 V cell differential, the peak balance current
of the 4S balancer was over 14.6 A. Ultimately, these charge pumps can be combined
to construct a high-current and multilevel cell voltage balancer efficient across a wide
range of voltages.
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Chapter 1

Introduction

Batteries are useful for a wide range of applications such as in electric vehicles and ships

as well as load matching in electric grids to increase efficiency and reduce emissions. For

example, the Tesla Model S uses a total of 7616 lithium-ion cells [1]. In [2], a 3 MW

energy storage system including five 600 kW lithium-ion battery modules can provide

full ship backup power for 10 minutes with substantial fuel savings! Other applications

include UPS and pulse power. The voltages of individual cells and supercapacitors are

low, typically in the range 2–4 V [3]. Therefore, the cells need to be configured in series

to reach the sufficiently high voltage required. When multiple cells are connected in

series, the cell voltage is not always equal to the pack voltage divided by the number

of cells [4]. This is due to inherent slight differences among cells in terms of capacity

and internal resistance [1]. In short, since series connected cells have the same current

flowing through them, due to the inherent differences, the voltage of individual cells will

be different [3, 5].

Cell voltage balancing is important for several reasons. One of these is lifespan. A

cell that exceeds its maximal recommended charging voltage will degrade prematurely,

a process that is auto-accelerating [4]. A second reason is incomplete performance ex-

traction. Due to protection circuitry, a battery pack will stop charging if even one of the

cells reaches the maximal recommended charging voltage [6]. Similarly, a battery pack

will stop discharging if even one of the cells reaches the minimal recommended charging

voltage.
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There are two main cell voltage balancing techniques: passive and active [3]. A

passive balancer is a simple circuit to make; as a cell reaches the maximum voltage, a

resistor is connected in parallel with the cell through a MOSFET to drain the excess

energy [1]. However, this leads to energy dissipation and heat-related issues [1, 3, 7].

On the other hand, an active balancer, while more complicated and expensive, shuttles

charge back and forth between cells. Active balancers come in three main categories:

capacitive based, inductive based, and transformer based [1].

This thesis is organized as follows: Chapter 2 presents the design of cell voltage

balancers. It introduces the charge pump balancer concept and presents three differ-

ent power circuits and the accompanying control circuit. It also discusses MOSFET,

capacitor, and gate driver selection. Chapter 3 presents the evaluation of cell voltage

balancers. It discusses the experimental setup, gate drive power, efficiency, power dissi-

pation, and PCB design. Chapter 4 presents the simulation of cell voltage balancers in

PSpice. Chapter 5 presents a cell tester circuit for cycling cells. Finally, Chapter 6 gives

conclusions and discusses potential future work.
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Chapter 2

Cell Voltage Balancer: Design

2.1 Charge Pump Balancer Concept

Figure 2-1 shows the charge pump based cell voltage balancer concept. The basic idea

is that in state 1, switches 1 and 3 are closed, and the flying capacitor is connected in

parallel with bypass capacitor 1 and they exchange charge. Likewise, in state 2, switches

2 and 4 are closed, and the flying capacitor is connected in parallel with bypass capacitor

2 and they exchange charge. Over time, charge will be transferred from the higher

voltage cell/battery (group of cells) to the lower voltage cell/battery, and the voltages

will equalize. Note, battery B1 and bypass capacitor 1 are constantly exchanging charge.

Similarly, battery B2 and bypass capacitor 2 are also constantly exchanging charge. It

goes without saying that the capacitance of the cells is much, much greater than the

capacitance of the bypass capacitors. The bypass capacitors filter the battery current

and decouple any connection inductance [8].

There are several commercial products on the market available in this topology; they

usually go under the name of switched capacitor/charge pump inverter. These include

the Texas Instruments LM266x, Maxim Integrated MAX889, and Linear Technology

LT1054 [9, 10, 11], just to name three. There even exist on AliExpress, Amazon, Ebay,

etc. modules that conveniently incorporate on a breakout board the LM2662 IC, the

flying and two bypass capacitors, and header pins. [12] gives some additional insight

into the charge pump inverter.
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Cby1 Cby2

Cfly

+ +

+

S2 S3 S4S1

B1 B2
Figure 2-1: Charge pump based cell voltage balancer concept.

2.2 Power Circuit 1: 2S Balancer

Power Circuit 1, shown in Figure 2-2, is a 2S charge pump based cell voltage balancer

consisting of four MOSFETs and three capacitors. 2S stands for 2 cells in series; in

general, NS stands for N cells in series. (As an aside, NP stands for N cells in parallel.)

MOSFETs M1 and M3 are N-channel, while M2 and M4 are P-channel. Enhancement

mode (as opposed to depletion mode) MOSFETs are normally ‘off’ (i.e., at zero gate-

source voltage 𝑉𝐺𝑆) and require a gate-source voltage above the threshold (in magnitude)

to turn ‘on’. N-channel MOSFETs are turned on with a positive gate-source voltage,

while P-channel MOSFETs are turned on with a negative gate-source voltage. Due to

this complementary logic of N- and P-channel MOSFETs, a common gate signal can be

used to drive all four MOSFETs in Power Circuit 1. This greatly simplifies the control

circuit. When the gate signal is high, N-channels M1 and M3 conduct, and the flying

capacitor is connected in parallel with bypass capacitor 1 and they exchange charge.

Similarly, when the gate signal is low, P-channels M2 and M4 conduct, and the flying

capacitor is connected in parallel with bypass capacitor 2.

MOSFETs M1 and M4 are high-threshold, while M2 and M3 are low-threshold.
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Low-threshold MOSFETs are MOSFETs that can be turned on with low (in magnitude)

gate-source voltage. Similarly, high-threshold MOSFETs are MOSFETs that can be

turned on with high gate-source voltage. In the datasheets, manufacturers will typically

give specs for important parameters such as the on-state resistance 𝑅𝐷𝑆(𝑜𝑛) and gate

charge 𝑄𝑔 at a typical 𝑉𝐺𝑆 value(s). For low-threshold MOSFETs, a common typical

𝑉𝐺𝑆 value used by manufacturers is 4.5 V (sometimes 3 V and/or 2.5 V are used). For

high-threshold MOSFETs, a common typical 𝑉𝐺𝑆 value used by manufacturers is 10 V

(sometimes 12 V and/or 20 V are used). As a general note, in the following figures, low-

threshold MOSFETs are represented with green gates and high-threshold MOSFETs

with red gates.

Cby1

M1 M2 M3 M4

Cby2

Cfly

+ +

+

B1 B2

Figure 2-2: Power Circuit 1: 2S balancer. MOSFETs M1 and M3 are N-channel, while
M2 and M4 are P-channel. M1 and M4 are high-threshold, while M2 and M3 are low-
threshold.

The common source MOSFETs M2 and M3 can be low-threshold because the comple-

mentary logic of N- and P-channel MOSFETs prevents simultaneous conduction in these

two switches. For instance, as the common gate signal swings through ground, both M2

and M3 are in the off state. Transient conduction of MOSFET pair M1 and M2, as well

as pair M3 and M4, is also unlikely because neither M2 nor M3 can conduct until the

common gate voltage swings past ground by more than the threshold voltage. The most

likely incorrect transient conduction state in this power circuit is through MOSFETs

19



M1 and M4. When the gate voltage is close to the neutral ground, N-channel M1 has

positive gate-source voltage and P-channel M4 has negative gate-source voltage. If the

thresholds of M1 and M4 are not high enough, these two MOSFETs could transiently

conduct, thus charging the flying capacitor to a higher voltage and thereby reducing the

circuit efficiency. Therefore, M1 and M4 should be high-threshold.

2.3 Power Circuit 2: 4S Balancer

Power Circuit 2, shown in Figure 2-3, is a 4S charge pump based cell voltage balancer

consisting of four MOSFETs and three capacitors. The positions of the N- and P-channel

MOSFETs are switched compared with Power Circuit 1; thus, MOSFETs M1 and M3

are P-channel, while M2 and M4 are N-channel. This is because in Power Circuit 1, for

a battery voltage of 8 V, M1 and M4 would simultaneously conduct as the gate signal

swings through ground, even with the use of high-threshold MOSFETs. The sources

and drains are also flipped compared with Power Circuit 1; this is necessary, else there

would be an unwanted conduction path through the reverse p-n junction body diodes

and the cells would just short themselves, even with no gate signal present.

Cby1

M1 M2 M3 M4

Cby2

Cfly

+ +

+

B1 B2

Figure 2-3: Power Circuit 2: 4S balancer. MOSFETs M1 and M3 are P-channel, while
M2 and M4 are N-channel. M1 and M4 are low-threshold, while M2 and M3 are high-
threshold.
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In this power circuit, transient conduction of MOSFET pair M1 and M2, as well

as pair M3 and M4, is impossible because of their common source connections. Gate

voltages beyond the power circuit supply rails are needed to apply sufficient negative

voltage to the gate of P-channel M1 and sufficient positive voltage to the gate of N-

channel M4. These should be low-threshold to minimize the gate voltage needed beyond

the power rails. Note, the MOSFETs need to have sufficient gate-source voltage rating

for the relatively high voltage that the gate drive applies, both when the switch is on

and off. Extra gate voltage used to drive MOSFETs M1 and M4 is available for M2

and M3, which have a neutral source voltage when on. It is possible for M2 and M3 to

transiently cross-conduct if their threshold voltages are not high enough. For example,

when the gate signal is some intermediate positive voltage during the transition from

high to low, N-channel M2 can remain on as P-channel M3 turns on prematurely. A

similar thing can happen when the gate signal is transitioning from low to high. This

could partially discharge the flying capacitor and thereby reduce the circuit efficiency.

Therefore, M2 and M3 should be high-threshold.

2.4 Power Circuit 3: 8S Balancer

Power Circuit 3, shown in Figure 2-4, is an 8S charge pump based cell voltage balancer

consisting of four MOSFETs, three capacitors, and one inductor. The inductor is added

to lower the resonant frequency. In Power Circuit 2, for a battery voltage of 16 V, M2

and M3 would simultaneously conduct during the transitions from high to low and low to

high, even with the use of high-threshold MOSFETs. To avoid this, for the 8S balancer,

MOSFETs M1 and M2 are P-channel, while M3 and M4 are N-channel. Because the two

P-channel MOSFETs (M1 and M2) are adjacent, as are the two N-channel MOSFETs

(M3 and M4), two inverted gate signals are necessary to drive the MOSFETs. One gate

signal drives the outer MOSFETs M1 and M4, and the other gate signal drives the inner

MOSFETs M2 and M3. This is unlike Power Circuits 1 and 2 where one gate signal is

sufficient. A bootstrap circuit is proposed to level shift the gate signal more negative

for P-channel M1 and more positive for N-channel M4.
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Cby1

M1 M2 M3 M4

Cby2

Cfly

+ +

gd- gd+
R R RR

CC

L +

B1 B2

Figure 2-4: Power Circuit 3: 8S balancer (with bootstrap circuit shown). MOSFETs M1
and M2 are P-channel, while M3 and M4 are N-channel. M1 and M4 are low-threshold,
while M2 and M3 are high-threshold.

2.5 MOSFET Selection

Table A.1 in Appendix A shows a subset of the MOSFET table used in the component

selection process.

For an NS balancer, each of the four MOSFETs in the circuit has to block (N/2)S

voltage in the static case (i.e., the circuit is either in state 1 or state 2) when off. However,

this does not take into account the dynamics, and thus any potential voltage spikes

during transitions between states, so a safety margin is necessary. For a 2S balancer,

10 V rated MOSFETs provide a 150 % safety margin over the 4 V static case. Because

there exist many, many power MOSFETs rated for at least 10 V, the max 𝑉𝐷𝑆 rating is

not much of a concern for a 2S balancer. For a 4S balancer, 20 V rated MOSFETs also

provide a 150 % safety margin over the now 8 V static case. For an 8S balancer, 30 V

rated MOSFETs provide a 87.5 % safety margin over the 16 V static case.

The drain-source on-state resistance 𝑅𝐷𝑆(𝑜𝑛) of a MOSFET is both a function of

the gate-source voltage 𝑉𝐺𝑆 and the junction temperature 𝑇𝐽 . 𝑅𝐷𝑆(𝑜𝑛) decreases as 𝑉𝐺𝑆

increases (the MOSFET is ‘more on’), while 𝑅𝐷𝑆(𝑜𝑛) increases as 𝑇𝐽 increases. The gate

charge 𝑄𝑔 is the total amount of charge needed to charge up the parasitic capacitances
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(e.g., 𝐶𝐺𝑆 and 𝐶𝐺𝐷) to turn the MOSFET on [13, 14]. There is typically a trade-off

relationship between the on-state resistance and the gate charge: the smaller the die

size, the lower the gate charge but the higher the on-state resistance [13].

The turn-on time 𝑡𝑜𝑛 is defined as the sum of the turn-on delay time 𝑡𝑑(𝑜𝑛) and the

rise time 𝑡𝑟. Similarly, the turn-off time 𝑡𝑜𝑓𝑓 is defined as the sum of the turn-off delay

time 𝑡𝑑(𝑜𝑓𝑓) and the fall time 𝑡𝑓 . Every switching period 𝑇𝑠𝑤, each MOSFET turns on

once and turns off once. Thus, the turn-on and turn-off times should be much faster

than the switching period, i.e., 𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓 ≤ 0.1𝑇𝑠𝑤. For example, if 𝑇𝑠𝑤 = 10 µs (i.e.,

𝑓𝑠𝑤 = 100 kHz), 𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓 should at most be 1 µs. In addition, since the four MOSFETs

share a common gate signal, it is especially important that no MOSFET turns on much

quicker than another one turns off. Comparable turn-on and turn-off times help prevent

shoot-through current.

The junction-to-ambient thermal resistance 𝑅𝜃𝐽𝐴 can be used as a first-order ap-

proximation to how much the device will heat up during operation while dissipating 𝑃

watts of power: 𝑇𝐽 = 𝑇𝐴 + 𝑅𝜃𝐽𝐴𝑃 ≤ 𝑇𝐽(max). One should never exceed the the maxi-

mum junction temperature 𝑇𝐽(max), usually 150 or 175 °C for power MOSFETs. Note,

the 𝑅𝜃𝐽𝐴 values listed are typically measured on a 1 in2 FR-4 material board with 2 oz

copper weight and thus are optimistic; the thermal resistance will obviously be higher

for a more minimal footprint size such as 1/4 in2.

The gate location is the location of the gate relative to the source (left or right) if

the drain is oriented at the top. A convenient gate location can make a board layout

simpler.

Price is also an important consideration and is not shown in the table because it

depends on the time of buy, quantity, supplier, etc.

2.6 Capacitor Selection

Section A.2 in Appendix A show subsets of the capacitor tables used in the component

selection process.

Each bypass capacitor is directly across a cell/battery, so it needs to be able to
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withstand the maximum cell voltage (i.e., at the full state of charge), plus any voltage

ripple on top of that. The flying capacitor in either state is connected to one of the

bypass capacitors, so it also needs to withstand an equal voltage. For a lithium iron

phosphate (LiFePO4) cell with a nominal voltage of 3.2 V and max operating voltage of

3.6 V, 6.3 V rated bypass and flying capacitors would give a comfortable safety margin

of 75 %. For a higher max voltage of 4.2 V, the safety margin would still be reasonable

at 50 %. For a lower voltage cell such as lithium titanate oxide (LTO) with a nominal

cell voltage of 2.3 V and max operating voltage of 3.0 V, 4 V rated capacitors would

give a low safety margin of 33 %. For the 4S balancer, if 8 V is the maximum battery

voltage, 10 V rated capacitors would give a low safety margin of 25 %, while 16 V rated

capacitors would give a comfortable safety margin of 100 %. For the 8S balancer, if 16 V

is the maximum battery voltage, 20 V rated capacitors would give a low safety margin

of 25 %, while 16 V rated capacitors would give a reasonable safety margin of 56.25 %.

Among the specs listed in the tables are capacitance, ESR (equivalent series resis-

tance), and volume. The amount of charge that can be transferred in each switching

cycle is proportional to the capacitance (see ∆𝑄 = 𝐶∆𝑉 ), so larger capacitances for

the flying and bypass capacitors are preferable [15]. Larger capacitances also have the

benefit of lowering the control power; this is because the gate drive power is propor-

tional to the switching frequency (see Section 3.2) and the resonant frequency of the

circuit is 𝑓0 =
1

2𝜋
√
𝐿𝐶

[1, 15, 16, 17, 5]. Note, 𝐿 is the total parasitic inductance and

ESL of the flying and bypass capacitors if no discrete inductor is present in the circuit.

Using low ESR capacitors lowers the overall circuit resistance and increases the balance

current. For power dissipation, the use of low ESR capacitors is also important to avoid

the dissipation being concentrated in the capacitors rather than the power MOSFETs

(see Section 3.4). Paralleling capacitors is one easy way to increase the capacitance and

lower the ESR.

Some important specs not listed in the tables are capacitance tolerance (±20 % is

common), voltage and temperature coefficients (especially important for ceramics), and

ripple current ratings (important for aluminum capacitors). Price is also an important

consideration that is not shown.
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2.7 Control Circuit

One large advantage of the power circuits described is the simplicity of drive. For Power

Circuits 1 and 2, the same gate signal can be used to drive all 4 MOSFET gates. For

Power Circuit 3, two gate signals that are inverse of each other (in sign, not necessarily

in magnitude) are required to drive the gates. One can simply put the LEDs of the

two optocoupler gate drivers antiparallel to ensure that the outputs cannot be high

simultaneously.

An astable (not to be confused with bistable or monostable) multivibrator is a circuit

that is not stable in either of the two possible output states and thus acts as an oscillator

[18]. An astable multivibrator can be used to generate a square wave.

Figure 2-5 shows an op-amp based astable multivibrator [18, 19]. As mentioned, there

are two states: output high (i.e., 𝑉𝑂 = 𝑉𝑂𝐻) and output low (𝑉𝑂 = 𝑉𝑂𝐿). For analysis,

let us assume the initial state is output high. Let us also assume the capacitor voltage

is low (this will soon become apparent). Let us also make the reasonable assumption

that 𝑉𝑂𝐻 = −𝑉𝑂𝐿 ≡ 𝑉𝑆𝐴𝑇 (true for the Texas Instruments OPA2192 op-amp that was

used in many of the experiments).

−

+
R1

R2

R

C

Vs-

Vs+

Figure 2-5: Op-amp astable multivibrator.

The resistor 𝑅 and capacitor 𝐶 make a series RC circuit. 𝐶 will charge through
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𝑅 and the capacitor voltage 𝑉𝐶 will exponentially approach 𝑉𝑆𝐴𝑇 with time constant

𝜏 = 𝑅𝐶. When 𝑉𝐶 surpasses 𝛽𝑉𝑆𝐴𝑇 , where 𝛽 ≡ 𝑅2

𝑅1 + 𝑅2

is defined as the feedback

fraction, the inverting input 𝑉− is now greater than non-inverting input 𝑉+ and thus the

output saturates to -𝑉𝑆𝐴𝑇 . In this second state, 𝐶 will now discharge through 𝑅 and

exponentially approach −𝑉𝑆𝐴𝑇 . When 𝑉𝐶 falls below −𝛽𝑉𝑆𝐴𝑇 , 𝑉− is now less than 𝑉+

and the output saturates back to 𝑉𝑆𝐴𝑇 , the first state. The cycle repeats with frequency

𝑓 = 1/
[︀
2𝑅𝐶 ln

(︂
1 + 𝛽

1 − 𝛽

)︂]︀
(a derivation is given in Appendix B).

The 𝑅𝐶 time constant multiplied by 2 ln

(︂
1 + 𝛽

1 − 𝛽

)︂
sets the oscillation period. Ca-

pacitors with ±5 % tolerance are common, and are fine for this application; meanwhile,

resistors with ±1 % tolerance are common. To minimize unnecessary power dissipation,

for a constant 𝑅𝐶, 𝑅 should be large and thus 𝐶 is small. For a frequency range of

10–100 kHz, and at a feedback fraction 𝛽 = 0.75, 𝐶 = 1 nF gives a reasonable range of

2.57–25.7 kΩ for 𝑅. The values of 𝑅1 and 𝑅2 should also be large for similar reasons.

For 𝑅1 = 10 kΩ, and the same 𝛽 = 0.75, 𝑅2 = 30 kΩ.

Only 1 op-amp is needed to generate a square wave. If a pulse wave (a generalization

of the square wave where the duty cycle does not have to be 50 %) is instead desired,

a second op-amp is needed. Figure 2-6 shows a schematic of an op-amp based pulse

wave generator. The capacitor waveform from the astable multibrator is fed into the

inverting input of the second op-amp. An additional DC voltage is fed into the non-

inverting input. The second op-amp functions as a comparator; the proportion of time

that the DC voltage is higher than the sawtooth wave is the resulting duty cycle. The

pull-down resistor ensures roughly 50 % duty cycle if no explicit DC voltage is applied

to the non-inverting terminal.

2.8 Gate Driver Selection

The selection of the gate driver is not too critical, at least in comparison to MOS-

FETs and capacitors. Regardless, several gate drivers were tested, including the Isocom

IS480P, IXYS IX3180G, Texas Instruments UCC27321, and Toshiba TLP5774. The

Texas Instruments LM7322, a dual op-amp with the ability to drive a high capacitive
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Figure 2-6: Op-amp pulse wave generator.

load, was also tested as a driver. The TLP5774 was the best driver we tested in terms

of peak output current while consuming low quiescent supply and LED current, and the

IX3180G performed similarly.

The IS480P, IX3180G, and TLP5774 are optocouplers and thus have the advantage

of electrical isolation. The UCC27321 has an enable pin, which may be useful in stopping

balancer operation when the voltage differential of the cells is below a small threshold.

One of the two op-amps in the LM7322 can be used as an astable multivibrator, so one

chip could potentially double as both the clock and the driver.

The UCC27321 and IS480P require a minimum supply voltage of 4 V and 4.5 V,

respectively, compared to the 10 V of the TLP5774 and IX3180G. The minimum supply

voltage for the LM7322 is 2.5 V. The LM7322, and possibly the UCC27321 and IS480P,

have a low enough minimum supply voltage requirement that they might be able to

be directly powered from the cells without the use of a DC-to-DC converter. The

UCC27321 has a low maximum supply voltage rating of 15 V, practically eliminating it

from consideration based on that spec alone. In fact, when the UCC27321 driver was

tested at ±7 V, the driver failed to drive four MOSFET gates at around 50 kHz. It

worked fine though for lower voltages. The IX3180G has a more moderate, but still low,

maximum supply voltage rating of 20 V. The IS480P, TLP5774, and LM7322 have high

maximum supply voltage ratings of at least 30 V.
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Chapter 3

Cell Voltage Balancer: Evaluation

3.1 Experimental Setup

To test the cell voltage balancers, the combination of a DC power supply and DC

electronic load was used to simulate a cell/battery (with infinitely large capacity). Both

are needed as typical power supplies are one quadrant; this means they can only source

current at a positive voltage. An electronic load, on the other hand, is designed to

sink current at a positive voltage, so it complements a power supply. Power supplies

(electronic loads too) with a voltage and current resolution of 1 mV and 1 mA or better

are common and should be used.

Figure 3-1 shows a diagram of the experimental setup used in many of the tests. The

power supplies are in constant voltage mode; the electronic loads are in constant current

mode. Note, the current limit of the power supply that is emulating the higher voltage

cell must be sufficiently high. Similarly, the current setting of the electronic load that is

emulating the lower voltage cell must also be sufficiently high. For this specific example,

the higher voltage ‘cell’ is at 3.400 V and is sourcing 6.716 A − 1.999 A = 4.717 A.

Similarly, the lower voltage ‘cell’ is at 3.000 V, but instead sinking 5.999 A − 1.279 A =

4.720 A. The sourcing and sinking currents should be the same or almost the same for

a well-designed circuit with properly selected components. An imbalance would suggest

shoot-through current during switching. This could be due to several reasons; to name a

few: inappropriate MOSFET thresholds (e.g., using a low-threshold MOSFET in place
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Figure 3-1: Experimental setup diagram (top) and simplified circuit model (bottom).
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of a high-threshold MOSFET), incompatible MOSFET timings (e.g., using a MOSFET

that is comparatively slow to turn off), or incorrect cell voltages (e.g., using total of 4S

cell voltage for a 2S balancer). The average of the source and sink currents is taken to

be the balance current.

Figure 3-1 also shows a simplified circuit model of the experimental setup with the

important parasitic resistances shown. The resistance is due to a combination of wire

and contact resistance. 10 AWG wire, which has a resistance of ∼1.0 mΩ/ft, was used

for the experiments. There is little net current flowing through the ground terminal,

so any parasitic resistances there are ignored. Note, the voltage differential seen at the

balancer circuit will be less than the 0.4 V differential set at the supplies because of the

parasitic resistances from long power supply leads. In this example, the cell differential

as seen by the balancer circuit is 3.372 V−3.028 V = 344 mV. The remote sense features

of the power supplies may be used to compensate for the voltage drop in the wires.

One-quadrant power supplies and electronic loads are ubiquitous EE (electrical en-

gineering) lab equipment. However, instead of a power supply and an electronic load

to simulate a cell, a bidirectional (i.e., two-quadrant) power supply can be used. A

bidirectional power supply can both source and sink current at a positive voltage. Being

physically one device, a bidirectional power supply offers several advantages. For exam-

ple, a power supply and electronic load when connected may interact with each other

strangely when a feature such as remote sense is turned on. In short, remote sense may

or may not work; this would not happen with a bidirectional power supply. Another

benefit is that bidirectional power supplies often are regenerative when sinking current,

and thus send the majority of their absorbed energy back to the grid [20]. This is better

for the environment and less wasteful than an electronic load. In the above example,

the electronic loads dissipate roughly 2 A * 3.4 V + 6 A * 3 V = 24.8 W of power. One

disadvantage of a bidirectional power supply is that it tends to be more expensive than

the sum of a (one-quadrant) power supply and an electronic load.
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3.2 Gate Drive Power

This section shows an example calculation of the gate drive power, henceforth referred

to as gate power, for Power Circuit 1 and compares that calculation with experimental

results.

For the calculation and experiment, the gate signal is a square wave with amplitude

7 V. The MOSFETs M1, M2, M3, and M4, respectively, are the ON Semiconductor

NVMYS1D3N04C, Vishay SQD40031EL, Nexperia PSMNR70-30YLHX, and Infineon

IPD90P03P404. The voltage of cell 1 is 𝑉𝐵1 = 3.0 V and cell 2 is 𝑉𝐵2 = 3.4 V. The

Toshiba TLP5774 gate driver was used with a 3.3 Ω gate resistor.

Figure 3-2: Gate charge curves of NVMYS1D3N04C (top left), SQD40031EL (top right),
PSMNR70-30YLHX (bottom left), and IPD90P03P404 (bottom right) MOSFETs cour-
tesy of the manufacturers’ datasheets [21, 22, 23, 24].
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The gate power (partial) is 𝑃𝑔𝑎𝑡𝑒 = 𝑄𝑔𝑉𝑔𝑓𝑠𝑤 [25]. 𝑄𝑔 is the gate charge, 𝑉𝑔 is the

gate voltage relative to the source voltage (i.e., 𝑉𝑔𝑠), and 𝑓𝑠𝑤 is the switching frequency.

As previously mentioned, 𝑄𝑔 is the total amount of charge needed to turn the MOSFET

on [13, 14]. The 𝑄𝑔𝑉𝑔 product is the gate energy, and is represented by the area of the

rectangle from the intersection point on the curve to the origin [26]. The 𝑄𝑔 values can

be found from the gate charge curves on the manufacturer datasheets, reproduced in

Figure 3-2. Remember that the sources of M1 and M4 are not at ground; the source of

M1 is at −𝑉B1 while the source of M4 is at +𝑉B2.

The calculated gate powers of the four MOSFETs, and their total sum, as a function

of 𝑓𝑠𝑤 are

𝑃𝑔𝑎𝑡𝑒|NVMYS1D3N04C = [(75 nC)(10 V) + (18 nC)(4 V)]𝑓𝑠𝑤 = 8.22𝑒− 7 * 𝑓𝑠𝑤
𝑃𝑔𝑎𝑡𝑒|SQD40031EL = [2(132 nC)(7 V)]𝑓𝑠𝑤 = 1.85𝑒− 6 * 𝑓𝑠𝑤
𝑃𝑔𝑎𝑡𝑒|PSMNR70-30YLHX = [2(75 nC)(7 V)]𝑓𝑠𝑤 = 1.05𝑒− 6 * 𝑓𝑠𝑤
𝑃𝑔𝑎𝑡𝑒|IPD90P03P404 = [(104 nC)(10.4 V) + (28 nC)(3.6 V)]𝑓𝑠𝑤 = 1.18𝑒− 6 * 𝑓𝑠𝑤∑︀

𝑃𝑔𝑎𝑡𝑒 = 4.90𝑒− 6 * 𝑓𝑠𝑤
As astute reader may notice that the curves in Figure 3-2 only show the gate charge

values for positive 𝑉𝐺𝑆 for the two N-channel MOSFETs, and negative 𝑉𝐺𝑆 for the

two P-channel MOSFETs. Because the datasheets do not show the negative part of

the curve for the N-channel MOSFETs nor the positive part of the curve for the P-

channel MOSFETs, it was assumed, as an initial guess, that the gate charge curves

are symmetric. However, note that gate charges from different gate voltage swings are

generally not comparable; for example, there is no exact way to determine 𝑄𝑔 for a swing

of −10 V to +10 V if 𝑄𝑔 is only given for 0 V to +10 V [27].

Finally, adding in the quiescent power of the gate driver, the gate power is 𝑃𝑔𝑎𝑡𝑒 =

4.90𝑒 − 6 * 𝑓𝑠𝑤 + (0.002 A)(14 V) = 4.90𝑒 − 6 * 𝑓𝑠𝑤 + 0.028 W. The 2 mA is the power

supply reading of the unloaded TLP5774 driver that was used in the experiment. The

datasheet also confirms this value. Figure 3-3 shows the experimental data plotted along

with the equation predicted from the calculation. The line of best fit of the experimental

data is 𝑃𝑔𝑎𝑡𝑒 = 8.27𝑒−6*𝑓𝑠𝑤 +0.023 W. Compare the calculation with the experimental

results. The calculation is an underestimate by ∼41 %. Suffice to say, the gate power is
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proportional to the gate charge, gate voltage, switching frequency product. Additionally,

a small offset is added to take into account the quiescent power.

Figure 3-3: Gate power vs frequency for the NVMYS1D3N04C, SQD40031EL,
PSMNR70-30YLHX, and IPD90P03P404 MOSFETs.

Note, the proportion of the gate power that is dissipated in the gate resistor is
𝑅𝑔

𝑅𝑜 + 𝑅𝑔

, where 𝑅𝑔 is the value of the gate resistor and 𝑅𝑜 is the output impedance

of the gate driver [28]. The remaining power is dissipated in the gate driver. In

our case, the power dissipated in the gate resistor at 100 kHz switching frequency is
3.3 Ω

7/6 + 3.3 Ω
(854 mW) = 631 mW. This means that the gate resistor should be rated

for at least 3/4 W power dissipation. The remaining power, 223 mW, is dissipated in

the gate driver; this dissipation is less than the maximum allowable for the TLP5774:

500 mW.

3.3 Efficiency

The efficiency of the circuit can be calculated by 𝜂 =
𝑃out

𝑃in
=

𝑉out𝐼out

𝑉in𝐼in + 𝑃control
, where 𝑉𝑜𝑢𝑡

is the voltage of the cell/battery at the lower voltage, i.e., 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛. The asymptotic
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efficiency, which ignores the power consumption of the control circuit (i.e., 𝑃control = 0)

and assumes zero current imbalance (i.e., 𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛), is 𝜂𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

. Let us define

the average voltage of the two cells/batteries being balanced as 𝑉𝑎𝑣𝑔 ≡
1

2
(𝑉𝑖𝑛 +𝑉𝑜𝑢𝑡) and

their voltage differential as ∆𝑉 ≡ 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡. Rewriting the asymptotic efficiency formula

in terms of these variables, 𝜂𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 =
𝑉avg − 0.5∆𝑉

𝑉avg + 0.5∆𝑉
. This means that 𝜂𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 ↑ as

both 𝑉𝑎𝑣𝑔 ↑ and ∆𝑉 ↓. Figure 3-4 shows the asymptotic efficiency vs cell voltage differ-

ential curves for the 2S, 4S, and 8S balancers. Figures 3-5 and 3-6 show the efficiency vs

cell voltage differential as measured for the 2S and 4S PCBs, respectively, and compare

that to the asymptotic efficiency.

The asymptotic efficiency does not take into account the power consumed by the

control circuit. Using the asymptotic efficiency formula, limΔ𝑉→0 𝜂𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 = 1. In

actuality, limΔ𝑉→0 𝜂 = 0. The control circuit is of course necessary to operate the power

circuit, so its power consumption should be taken into account. Figure 3-7 shows the

efficiency of a 10 mA/mV (corresponds to a 4 A balance current at 0.4 V cell differential)

2S balancer balancing cells that are at an average voltage of 3.2 V. Two scenarios are

considered: one where the control circuit consumes a constant 0.1 W power and another

where the control circuit consumes 1 W. For a high control power consumption of 1 W,

the circuit efficiency is 24.2 % for 10 mV cell voltage differential and 38.9 % for 20 mV

differential. For a low control power consumption of 0.1 W, the circuit efficiency is 76.0 %

for 10 mV differential and 86.0 % for 20 mV differential. In practical use, hysteric control

would be used to shut off balancer operation when the cell voltage differential is low,

and resume operation when the differential is higher.

Large differences in the MOSFET timings may negatively affect the circuit efficiency

by violating the zero current imbalance assumption that was used above. For example,

the four MOSFETs in Table 3.1 were tested on the 2S balancer PCB. The current

imbalance was over 0.9 A at the low switching frequency of 22 kHz! One tip-off that

something was not quite right was that even in the large TO-220SM package, the Toshiba

TJ200F04M3L was very hot, much hotter than the other MOSFETs in the circuit. This

was confirmed with a thermal imaging camera. The TJ200F04M3L is a good MOSFET

with lots of merit, but unsuitable for this particular switching application. It has a slow
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Figure 3-4: Asymptotic efficiency vs cell voltage differential for the 2S (top), 4S (middle),
and 8S (bottom) balancers at various average cell voltages.
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Figure 3-5: Efficiency vs cell voltage differential for the 2S PCB at average cell voltages
of 2.4 V (top), 3.2 V (middle), and 3.6 V (bottom).
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Figure 3-6: Efficiency vs cell voltage differential for the 4S PCB at average cell voltages
of 4.8 V (top), 6.4 V (middle), and 7.2 V (bottom).
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Figure 3-7: Efficiency vs cell voltage differential for a 10 mA/mV balancer balancing
3.2 V cells for different control powers.

turn-off time of over 2 µs; that is 1-2 orders of magnitude slower than the other turn-on

and -off times of the other MOSFETs in that selection. In summary, it is important to

choose MOSFETs with comparable turn-on and turn-off times.

Table 3.1: Switching characteristics of selected MOSFETs without comparable timings.

Manufacturer Part number 𝑡𝑑(𝑜𝑛) [ns]
(typical)

𝑡𝑟 [ns]
(typical)

𝑡𝑑(𝑜𝑓𝑓) [ns]
(typical)

𝑡𝑓 [ns]
(typical)

ON Semiconductor NVMYS1D3N04C 15 22 48 16
Toshiba TJ200F04M3L 29 14 1750 515
Nexperia PSMNR70-30YLHX 28 51 61 45
Infineon IPB180P04P403 48 31 72 81

3.4 Power Dissipation

The power dissipated in the power circuit (four MOSFETs, flying capacitor, bypass

capacitor 1, and bypass capacitor 2) is 𝑃𝑑𝑖𝑠𝑠 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 = 𝑉𝑖𝑛𝐼𝑖𝑛 − 𝑉𝑜𝑢𝑡𝐼𝑜𝑢𝑡, where 𝑉𝑖𝑛

39



is the higher of the two cell voltages (i.e., 𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡). Let us again assume zero current

imbalance such that 𝐼𝑖𝑛 = 𝐼𝑜𝑢𝑡 ≡ 𝐼; 𝑃𝑑𝑖𝑠𝑠 = (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)𝐼.

Where is that power being dissipated? Let us ignore any power dissipation in the

bypass capacitors because those are in parallel with a cell, which has a large capacitance

in comparison to itself. In addition, for simplicity, let us assume that all four MOSFETs

have the same 𝑅𝐷𝑆(𝑜𝑛) value so that the current flowing in state 1 is equal to that in

state 2. In state 1, MOSFETs M1 and M3 are on and connect the flying capacitor in

parallel with bypass capacitor 1. In state 2, M2 and M4 are on and connect the flying

capacitor in parallel with bypass capacitor 2. Because the flying capacitor conducts

current in both states, and each MOSFET conducts current in only one state, the power

dissipated in the flying capacitor is twice that of an individual MOSFET for equivalent

resistance.

The power dissipated in the power circuit is highly dependent on the cell voltage

differential 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 ≡ ∆𝑉 . In fact, it is proportional to the square of the voltage

differential:
∆𝑉 2

𝑅
, where 𝑅 can be thought of as the overall circuit resistance. For the

2S balancer, let us choose (arbitrarily) 0.4 V as the typical worst-case cell differential.

For 8 A balance current at 0.4 V cell differential, 𝑃𝑑𝑖𝑠𝑠 = 3.2 W. That is 0.64 W per

device on average. A quick rule of thumb for a power device such as a MOSFET is

that a heat sink is probably not needed if the power dissipation is less than 1 W. This

means heat sinking is not strictly necessary for the 2S PCB. For the 4S balancer, it is

logical to use 0.8 V as the reference cell differential since 0.4 V was for the 2S. For 14 A

balance current at 0.8 V cell differential, 𝑃𝑑𝑖𝑠𝑠 = 11.2 W. That is 2.24 W per device on

average. It is important that the ESR of the flying capacitor be roughly the same as

𝑅𝐷𝑆(𝑜𝑛) of the MOSFETs to avoid the power dissipation being concentrated in the flying

capacitor. If necessary, one can parallel capacitors to lower the equivalent ESR of the

flying capacitor.

Figure 3-8 shows a thermal circuit model for a device connected to a heat sink

[29]. Let us use the model to estimate the necessary heat sinking for the 4S balancer.

Let us use the Vishay SQD40031EL, On Semiconductor NVMYS1D3N04C, Infineon

IPB180P04P403, and Nexperia PSMNR70-30YLHX as MOSFETs M1, M2, M3, and
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M4, respectively. Let us use the Aavid 7106DG heat sink on P-channel M1 and P-

channel M3. The drains of M2 and M3 are connected, so they ‘share’ a heat sink. Let us

use a case-to-sink thermal resistance of 𝑅𝜃𝐶𝑆 = 0.5 °C/W, even though the 7106DG heat

sink attaches directly to a surface mount pad and the thermal conductivity of solders is

negligible [30]. Finally, let us use 25 °C for the ambient temperature.

Pdiss

TJ

RθJC

RθCS

RθSA

TC

TS

TA

Figure 3-8: Thermal circuit model for a device connected to a heat sink.

The junction temperatures of M1 and M4 can be calculated as

𝑇𝐽(𝑀1) = 25 °C + (1.1 + 0.5 + 20 °C/W)2.24 W = 73.4 °C ≤ 175 °C

𝑇𝐽(𝑀4) = 25 °C + 1.5(42 °C/W)2.24 W = 166.1 °C ≤ 175 °C

The factor of 1.5 is a rough estimate to derate the 𝑇𝐽𝐴 specification for the copper pad

not being 1 in2 [31]. To find the junction temperatures of M2 and M3, the following

system of equations is solved

𝑇𝐽(𝑀2) − 𝑇𝑆

1.12 °C/W + 0.5 °C/W
= 2.24 W

𝑇𝐽(𝑀3) − 𝑇𝑆

1.0 °C/W + 0.5 °C/W
= 2.24 W

𝑇𝑆 − 𝑇𝐴

16 °C/W
= 4.48 W

=⇒ 𝑇𝑆 = 94.9 °C, 𝑇𝐽(𝑀2) = 98.5 °C ≤ 175 °C, 𝑇𝐽(𝑀3) = 98.2 °C ≤ 175 °C
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The above calculations show that two heat sinks for the 4S PCB can sufficiently

dissipate the heat provided enough capacitors are paralleled for the flying capacitor so

that the losses are not concentrated there. In general, for a given power dissipation

and target junction temperature, Figure 3-9 can be used to find the maximum allowable

junction-to-ambient thermal resistance. For the 8S balancer operating at a worst-case

differential of 1.6 V, all four MOSFETs will need to be heat sinked.

Figure 3-9: Junction-to-ambient thermal resistance vs power dissipation for junction
temperatures of 125 °C, 150 °C, and 175 °C.

3.5 PCB Design

Figure 3-10 shows a photograph of the perfboard based 2S balancer prototype. Similar

perfboard based prototypes were made for the 4S balancer and the tester circuit de-

scribed in Chapter 5. For scale, the perfboard is 2 ” x 1.75 ”. A handmade prototype is

appropriate for rapid prototyping and allows for experimentation/testing. Screw termi-

nal blocks were used for the balancer circuits to allow for easy testing of the capacitors.
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Figure 3-10: Photograph of the perboard based 2S prototype.

PCBs (printed circuit boards) for the 2S and 4S balancers were designed using an

electronic design automation (EDA) software to verify the initial results of the perfboard-

based prototypes. A PCB offers several advantages over a hand-made prototype. Copper

can also be controlled to a few thousandths of an inch. This allows for precise control of

parasitics and improved repeatability of results. Once the PCB is designed, the circuit

can be mass produced quickly and cheaply.

Figures of the resulting 2S and 4S PCB designs are shown in Appendix C. The 2S

PCB is 2 ” x 2 ” and the 4S PCB is 2.2 ” x 2 ”. The overall PCB design is a 2-layer

board with the control circuit on one side of the board and the power circuit on the

other. There exist three vias: one via to connect ground on both sides of the board

and the other two vias to connect the gate signal to the gates of the four MOSFETs. A

copper weight of 2 oz (thickness 2.8 mils) was chosen instead of the more common 1 oz to

allow for higher ampacity. The higher copper thickness should also be more durable and

allow for multiple solder/desolder rework. In addition, there were several other design

goals: to make the board both hand solder and testing friendly and to minimize parasitic
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resistances.

The PCB is intended to be hand soldered, so pads were made large. Tiny package

sizes were also avoided. For example, on the control side, the smallest flat chip package

size used is 0805 (imperial). 0805 size is 0.08” x 0.05” (i.e., 80 mil x 50 mil) nominally.

For the 8-pin dual op-amp, the larger SOIC package (nominal body size of 4.9 mm x

3.9 mm) is used instead of the also common VSSOP (3.0 mm x 3.0 mm). On the power

side, MOSFETs no smaller than 5 mm x 6 mm are used, though there exists many quality

power MOSFETs in the 3 mm x 3 mm package size. At these larger sizes, there should

not be a need for a microscope, although tweezers can be helpful.

To help make the board testing friendly, there are 4 testpoint pads included to help

in debugging/verification of key signals. The testpoint pads are large enough to fit a

surface mount testpoint attachment such as the Keystone 519xTR series. Testpoint 1 is

located at the inverting input of the multivibrator op-amp. Testpoint 2 is located after

the output resistor of the comparater op-amp. Testpoints 3 and 4 are located before and

after the gate resistor, respectively. Testpoint 1 can be used to view the multivibrator

timing capacitor waveform. Testpoint 2 can be used to view the pulse wave after the op-

amp output resistor. Testpoint 2 can also be used to bypass the op-amp based oscillator

signal and instead inject an external oscillator signal, such as from a signal generator

(although make sure to desolder the resistor feeding back to the op-amp). Testpoints 3

and 4 can be used to view the gate signal before and after the gate resistor.

The flexibility of accepting components of slightly different package sizes is important

for testing in the lab environment. A ‘flexible’ board helps avoid the wasteful production

of a multitude of almost identical boards. For example, for the designed PCBs, the

P-channel MOSFET pad can fit both the TO-263 and TO-252 packages. The flying

capacitor pad can fit three 2917 size packages in addition to one 1210 size package,

or six 1210 size packages. The bypass capacitor pad can fit two 2917 size packages in

addition to one 1210 size package, or four 1210 size packages. The capacitor pads are

surface mount, but of course through-hole capacitors can be soldered on as well. For

example, aluminum polymer capacitors in a thin radial, can package can fit. The gate

resistor pad can fit anything from 1206 size to the much larger 2512 size if a lot of power
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dissipation is needed. Other popular package sizes within that range include 1210 and

2010.

Other testing friendly features include the use of a dual op-amp to allow for the

generation of the more generic pulse wave, even though a square wave would gate the

MOSFETs fine. There exist independent supplies for the op-amp and gate driver, even

though it is possible to run both off of the same supply. Additionally, there is a hole

(M3 size) in each corner of the PCB that can be used for PCB standoffs.

Minimizing parasitic resistance was another major design goal, especially on the

power side of the board. It would be pointless to use MOSFETs with sub 5 mΩ on-state

resistance if the resistance of the trace interconnects are equal or higher. For a target

1 mΩ trace resistance, the required thickness for a 1 ” long, 2 oz copper trace is 252 mil

at 35 °C (25 °C ambient temperature and 10 °C temperature rise) and 313 mil at 100 °C

[32, 33]. A lot of copper on the power side also allows for better heat dissipation. On the

control side, a ground pour was used as ground is by far the most common connection

point. In addition to facilitating short connections, the ground pour can also help to

provide shielding. In general, a high percentage of copper by area has the bonus of

less etching chemicals used during the manufacturing process in addition to there being

less copper as a waste product. The resulting PCBs are predominately copper by area

(figures in Appendix C); the control side of the board is 77 % copper for the 2S PCB

and 79 % for the 4S. The power side is 68 % copper for the 2S PCB and 75 % for the 4S.

A ‘revision 2’ for each was made after testing the first version of the PCB. The main

improvement in revision 2 is the modification of the MOSFET footprints to eliminate

the handlebar extensions on the drain pads. The handlebar shapes were initially chosen

to increase the drain pad copper area to allow for improved heat dissipation. In reality,

any additional heat sinking capability from them was small and they just got in the

way of the layout. Note, the revision 2 PCBs have not yet been tested at the time of

submission of this thesis.
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Chapter 4

Cell Voltage Balancer: Simulation

4.1 PSpice Modeling

A PSpice model was developed to compare simulation results with measured experi-

mental data from the Power Circuit 1 prototype. Figure 4-1 shows the resulting PSpice

schematic. A single PSpice simulation with a frequency sweep of 10–50 kHz and a spac-

ing of 1 kHz takes roughly 10–20 minutes on a 4th generation i7 quad-core processor,

comparable to the time it takes to gather experimental data from the prototype.

4.1.1 MOSFETs

Infineon has sophisticated SPICE simulation models for many of their power MOSFETs.

Their models include a temperature input, which we set to 40 °C. At low switching

frequencies, as verified by an infrared thermometer, 40 °C is a satisfactory temperature.

4.1.2 Capacitors

Several manufacturers provide SPICE models on their website for their capacitors, al-

though at varying levels of fidelity. Murata allows the user to specify the DC bias voltage

and temperature. Similarly, Kemet allows the user to specify the bias voltage and tem-

perature, as well as a center frequency. Panasonic, Rubycon, and Taiyo Yuden provide

SPICE models with no adjustable DC bias or temperature. For ceramic capacitors, the
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bias voltage matters a lot, while for polymer and film capacitors, for example, it may not

matter. AVX allows the user to specify a temperature from a set of discrete options: -55,

0, 25, 85, 105, and 125 (in °C). Some capacitors do not have a manufacturer-provided

SPICE model. For simulation purposes, a SPICE model for a similar capacitor can be

used instead. For example, United Chemi-Con does not provide a SPICE model for the

APSG160ELL222MJ20S; the SPICE model for the Nichicon PCG0J222MCL1GS was

used instead.

4.1.3 Gate Drivers

We used the IX3180G driver in many of our experiments, but ISYX does not have

any SPICE models available on their website. Toshiba provides several PSpice models

of their drivers, but not of the TLP5774. Toshiba has models for the TLP350H and

TLP5702, potential substitutes for the TLP5774, but they are NMOS totem-pole output

and not CMOS totem-pole output like the TLP5774. The Texas Instruments UCC27321

has a PSpice model which worked well when driving ideal capacitive loads; however, it

failed to converge with the model of Power Circuit 1, even when relaxing the numerical

constraints of the simulation.

PSpice has a model of the Microchip MIC4452, a CMOS totem-pole output driver,

in their default library. The MIC4452 model worked great as long as the GND pin was

connected to 0 V; thus, we had to add a DC offset to the input square wave voltage and

subtract that same DC offset at the output of the driver. Numerically, this was fine,

but to avoid this altogether, we made our own driver model. We used a TI LM7321 op-

amp to drive a CMOS totem-pole output with 2 kΩ resistance between the op-amp and

the totem and 3 Ω output resistance representing approximately 1 Ω output resistance

of the driver itself and an additional 2.2 Ω resistor on the board that was used in the

experiments. We arrived at the input and output resistances by running simulations of

Power Circuit 1 with two of our best capacitor models and making sure the peak balance

current matched. Because switching losses are noticeable at frequencies above 40 kHz,

we made sure the simulation results matched at these higher frequencies as well.

One thing we have observed is that a lot of the drivers we have simulated are numeri-
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cally unstable. Instead, an almost ideal square wave can be used in place of a gate driver.

The almost ideal square wave will tend to slightly overestimate the balance current at

higher frequencies, but works well as the limiting case.

4.1.4 Parasitics

In addition to MOSFETs, capacitors, and gate drivers, the parasitic resistances and

inductances greatly impact the performance of Power Circuit 1. We estimate roughly

1 µH of inductance from long power supply leads. We measured roughly 6 mΩ resistance

from the power supplies to the terminal blocks of the bypass capacitors. The remaining

circuit parasitic resistances and inductances were lumped together and put in series

with the flying capacitor for simplicity of modeling. Lumped parasitic resistance and

inductance were estimated and then tuned using the capacitor models for the Murata

GRM32ER60J227ME05 and Kemet T530X477M006ATE004, as those were considered

our best capacitor models.

4.2 Results

The PSpice simulation results matched the experimental data of the Power Circuit 1

prototype with varying levels of success. Figure 4-2 shows the results for select ceramic

and aluminum polymer capacitors. Similarly, Figure 4-3 shows the results for select

tantalum and tantalum polymer capacitors. In general, the shapes of the resulting

curves matched. However, for some capacitors, the simulation results were off in terms

of peak balance current and/or resonant frequency.
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Figure 4-2: PSpice simulation results (solid line) compared with experimental data (dot-
ted line) of Power Circuit 1 prototype for select ceramic and aluminum polymer capac-
itors.

Figure 4-3: PSpice simulation results (solid line) compared with experimental data (dot-
ted line) of Power Circuit 1 prototype for select tantalum and tantalum polymer capac-
itors.
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Chapter 5

Cell Tester

Figure 5-1 shows the inductor based cell voltage balancer concept and an implementation

for a 2S balancer using both N- and P-channel high-threshold MOSFETs. Compared

to the charge pump based balancer, there are a few key differences. For example, the

inductor based balancer uses an inductor as the intermediate storage element instead

of a flying capacitor. Moreover, two switches are used instead of four. Like the charge

pump based balancer, each cell/battery has a bypass capacitor across it. A failure mode

that exists in the inductor based balancer that is not present in the charge pump based

balancer is if the control circuit were to fail and the output got ‘stuck’ in one state (i.e.,

0 % or 100 % duty cycle), a short circuit would occur. In [34], Freescale Semiconductor

demonstrates a 12S balancer for a Nickel–metal hydride battery based on this inductor

based topology.

B2

B1

L

Cby1

Cby2
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Cby2
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M2

Figure 5-1: Inductor based balancer concept (left) and 2S balancer (right).
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The inductor based balancer can be slightly modified to become a tester circuit

as shown in Figure 5-2. The goal of the tester circuit is to be able to do constant

current/voltage charge/discharge of the ‘cell under test’ B0. Cells B1 and B2 are ‘buffer

cells’. As the name implies, the buffer cells should have a larger capacity than the cell

under test. In between the cell under test and the inductor is a current sensor. The

DAQ takes in as analog input the current (the current sensor voltage) and the voltage of

the cell under test. The DAQ also takes in the voltages of the buffer cells to ensure they

are in the safe operating area. To attenuate any high frequency noise, each analog input

should be passed through a low-pass RC filter before connection to the DAQ; this is a

must! The DAQ implements feedback control and outputs an analog signal to change

the duty cycle. It is important that the two MOSFETs be attached to a heat sink; as

opposed to a balancer with natural negative feedback present to coerce the cell voltage

differential, and thus power dissipation, low, a tester can be on for several hours or even

days at high power. Table 5.1 lists the major components used for the cell tester.
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Figure 5-2: Inductor based cell tester.

The source code for the cell tester is displayed in Appendix E. The most important

part of the code is the PID feedback control; much of the other code relates to the GUI,

intricacies of the DAQ library, writing to CSV, logging, etc. For a useful reference, Brett
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Table 5.1: Components cell tester.

Description Manufacturer Part number Value
high threshold NMOS Infineon IPB180N04S401 1.3mΩ
high threshold PMOS Infineon IPB180P04P403 2.8mΩ
heat sink Ohmite DA-T268-301E 4.3 °C/W
inductor Coilcraft AGM2222-512ME 5.1 µH, 1.1mΩ

bypass capacitor 1/2 Panasonic ECG-SY0J331R 330 µF, 9mΩ
(3 in parallel used)

current sensor LEM LAH 25-NP ±0.3% error

data acquisition system (DAQ) Measurement
Computing USB-1608GX-2AO 8 differential analog inputs,

2 analog outputs
dual op-amp (multivibrator
and comparator) Texas Instruments OPA2192 ±5 µV offset

gate driver Toshiba TLP5774 optocoupler

Beauregard, the creator of the PID Library for Arduino, published a series of blog posts

explaining his implementation of PID control [35].
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Chapter 6

Conclusions and Future Work

This thesis has demonstrated the design, evaluation, and simulation of charge pump

based cell voltage balancers. The designs of the 2S, 4S, and 8S balancer are described.

Evaluation of the balancers are discussed and experimental results of the 2S and 4S

perfboard prototype and PCBs are shown. Simulations in PSpice of the 2S prototype

were developed and the simulation results closely matched with the experimental data.

Additionally, an inductor based cell tester prototype circuit was discussed and the source

code of the accompanying program is shown.

Future work includes making a complete 4S balancer module, with two 2S balancers

and one 4S balancer on one PCB. This includes miniaturizing the existing circuits to

make them more practical. Several changes can be made with this goal in mind. On the

power side, the use of the large TO-263 MOSFET package for the P-channel MOSFETs

can be eliminated in favor of the smaller TO-252 package. The flying capacitor pad can

be shrunk to allow for two 2917 size packages in addition to one 1210 size package. The

bypass capacitor pads can be shrunk to allow for one 2917 size packages in addition to

one 1210 size package. On the control side, the dual op-amp can be replaced with a

single, as a square wave is satisfactory to operate the circuit. The 0603 size package

can be used in place of the 0805 size package where the power level is appropriate. For

example, resistors 10 kΩ, and the bypass capacitors for the op-amp, can likely be 0603

size. The gate resistor can be shrunk from 2512 to 2010 package size. Last, but not

least, the testpoint pads can be eliminated, or miniaturized to a size as small as 40 mil.
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The ultimate goal of our work is to produce a complete 8S balancer module. In

general, a complete NS balancer (consisting exclusively of charge pump based balancers)

requires N-1 balancers and thus 4(N-1) switches and 3(N-1) capacitors. Figure 6-1 shows

the power circuit of a complete 8S balancer. The 8S balancer consists of four units of

Power Circuit 1 operating at 2S voltage on the first level, two units of Power Circuit 2

operating at 4S voltage on the second level, and one unit of Power Circuit 3 operating

at 8S voltage on the third level. In other words, each balancer on the first level balances

two 1S batteries, each balancer on the second level balances two 2S batteries, and the

balancer on the third level balances two 4S batteries.

A 16S balancer PCB that exclusively uses N-channel MOSFETs would also be inter-

esting to design. In addition to designing more circuits/PCBs, other work can be done.

Tests on actual cells, instead of a power supply and electronic load combination (or a

bidirectional power supply), should be run to characterize the dynamic performance of

the balancers. Additional testing of the inductor based tester circuit is needed. More-

over, additional SPICE modeling and simulations can be carried out on the other power

circuits.

58



+
+

+

+
+

+

+
+

+

C
by

1

M
1

M
2

M
3

M
4

C
by

2

+
+

+

+
+

+

+
+

+

+
+

+

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

ce
ll1

ce
ll2

ce
ll3

ce
ll4

ce
ll5

ce
ll6

ce
ll7

ce
ll8

M
17

M
18

M
19

M
20

M
21

M
22

M
23

M
24

M
25

M
26

M
27

M
28

C
by

3
C

by
4

C
by

5
C

by
6

C
by

7
C

by
8

C
by

9
C

by
10

C
by

11
C

by
12

C
by

13
C

by
14

C
fly

1
C

fly
2

C
fly

3

C
fly

5

C
fly

4

C
fly

6

C
fly

7

F
ig

ur
e

6-
1:

8S
m

ul
ti

le
ve

lb
al

an
ce

r.

59



60



Appendix A

MOSFET and Capacitor Selection

Tables

A.1 MOSFET Selection Table

Table A.1 shows a subset of the MOSFET table used in the component selection process.

This is by no means an exhaustive list of power MOSFETs. Please confirm any specs

before selecting/using!

Many of these specs are at 𝑇𝐽 = 25 °C unless otherwise specified. Note, a 𝑉𝑑𝑟𝑖𝑣𝑒 of

4.5 V is used for low-threshold MOSFETs, and 10 V is used for high-threshold.
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Table A.1: MOSFET selection table.
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A.2 Capacitor Selection Tables

Tables A.2 and A.3 show a subset of the 4 V and 6.3 V capacitor tables used in the

component selection process for the 2S balancer. Tables A.4 and A.5 show a subset of

the 10 V and 16 V capacitor tables used in the component selection process for the 4S

balancer. Similar tables can be made with 20 V and 25 V capacitors for the 8S balancer.

This is by no means an exhaustive list of capacitors. Please confirm any specs before

selecting/using!

63



Table A.2: 4 V capacitor selection table.

Table A.3: 6.3 V capacitor selection table.
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Table A.4: 10 V capacitor selection table.

Table A.5: 16 V capacitor selection table.
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Appendix B

Oscillation Frequency Derivation for

Op-amp Astable Multivibrator

This appendix derives the oscillation frequency for the op-amp astable multivibrator

introduced in Section 2.7.

The oscillation period is the sum of the time 𝑇1 that the op-amp is in state 1 (in

steady-state) and the time 𝑇2 that the op-amp is in state 2. Note, under the symmetric

saturation voltage (i.e., 𝑉𝑂𝐻 = −𝑉𝑂𝐿 ≡ 𝑉𝑆𝐴𝑇 ) assumption, 𝑇2 will equal 𝑇1 (i.e., the

duty cycle is 50 %). One can solve the following equation to find 𝑇1

𝑉𝐶(𝑇1) = −𝛽𝑉𝑆𝐴𝑇 = (𝛽𝑉𝑆𝐴𝑇 −−𝑉𝑆𝐴𝑇 )𝑒−𝑇1/𝜏 − 𝑉𝑆𝐴𝑇

Rearranging for 𝑇1 and plugging in 𝑅𝐶 for 𝜏

𝑇1 = −𝑅𝐶 ln

(︂
−𝛽𝑉𝑆𝐴𝑇 + 𝑉𝑆𝐴𝑇

𝛽𝑉𝑆𝐴𝑇 + 𝑉𝑆𝐴𝑇

)︂
= 𝑅𝐶 ln

(︂
1 + 𝛽

1 − 𝛽

)︂

The period is then simply

𝑇 = 2𝑇1 = 2𝑅𝐶 ln

(︂
1 + 𝛽

1 − 𝛽

)︂
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and thus the oscillation frequency is

𝑓 =
1

𝑇
=

1

2𝑅𝐶 ln

(︂
1 + 𝛽

1 − 𝛽

)︂
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Appendix C

2S and 4S PCBs

C.1 2S PCB

Figure C-1 shows the 2S PCB schematic and Table C.1 lists the 2S PCB components.

Figures C-2 and C-3 show two different views of the control side of the 2S board; both

revisions 1 and 2 are shown. Figures C-4 and C-5 show two different views of the power

side; likewise, both revisions 1 and 2 are shown.
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Table C.1: Components 2S PCB

Designator Description
Control side

C1 bypass positive supply op-amp
C2 bypass negative supply op-amp
C3 bypass positive supply gate driver
C4 bypass negative supply gate driver
C8 timing capacitor op-amp
D1 signal diode anti-parallel with optocoupler LED
LED1 indicator LED
R1 timing resistor op-amp
R2 gate resistor
R3 output resistor op-amp
R4 feedback divider resistor op-amp
R5 feedback divider resistor op-amp
R6 pull-down resistor pwm
U1 gate driver
U2 dual op-amp as multivibrator and comparator

Power side
C5 flying capacitor
C6 bypass capacitor 1
C7 bypass capacitor 2
Q1 high threshold NMOS
Q2 low threshold PMOS
Q3 low threshold NMOS
Q4 high threshold PMOS
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Figure C-2: 2D view of control side of 2S PCB: revisions 1 (top) and 2 (bottom).
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Figure C-3: 3D view of control side of 2S PCB: revisions 1 (top) and 2 (bottom).
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Figure C-4: 2D view of power side of 2S PCB: revisions 1 (top) and 2 (bottom).
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Figure C-5: 3D view of power side of 2S PCB: revisions 1 (top) and 2 (bottom).
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C.2 4S PCB

Figure C-6 shows the 4S PCB schematic and Table C.2 lists the 4S PCB components.

Figures C-7 and C-8 show two different views of the control side of the 4S board; both

revisions 1 and 2 are shown. Figures C-9 and C-10 show two different views of the power

side; likewise, both revisions 1 and 2 are shown.
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Table C.2: Components 4S PCB

Designator Description
Control side

C1 bypass positive supply op-amp
C2 bypass negative supply op-amp
C3 bypass positive supply gate driver
C4 bypass negative supply gate driver
C8 timing capacitor op-amp
D1 signal diode anti-parallel with optocoupler LED
LED1 indicator LED
R1 timing resistor op-amp
R2 gate resistor
R3 output resistor op-amp
R4 feedback divider resistor op-amp
R5 feedback divider resistor op-amp
R6 pull-down resistor pwm
U1 gate driver
U2 dual op-amp as multivibrator and comparator

Power side
C5 flying capacitor
C6 bypass capacitor 1
C7 bypass capacitor 2
Q1 low threshold PMOS (and heat sink)
Q2 high threshold NMOS
Q3 high threshold PMOS (and heat sink)
Q4 low threshold NMOS
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Figure C-7: 2D view of control side of 4S PCB: revisions 1 (top) and 2 (bottom).
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Figure C-8: 3D view of control side of 4S PCB: revisions 1 (top) and 2 (bottom).
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Figure C-9: 2D view of power side of 4S PCB: revisions 1 (top) and 2 (bottom).
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Figure C-10: 3D view of power side of 4S PCB: revisions 1 (top) and 2 (bottom).
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Appendix D

Balancer and Tester Results

This appendix shows some of the experimental results from the 2S and 4S balancer

(perfboard) prototypes and PCBs. The experiments with the 2S balancers used 3.0 V

and 3.4 V as the ‘cell’ voltages, and the experiments with the 4S balancers used 6.0 V

and 6.8 V. Moreover, the experiments on the prototypes did not use the remote sense

feature of the power supplies. In contrast, the experiments on the PCBs did use the

remote sense feature. The only exception to this is when we forgot to turn on remote

sense for one of the experiments and is noted (the yellow curve in Figure D-9).

This appendix also shows some of the experimental results from the cell tester pro-

totype.

D.1 2S Balancer Prototype

The following MOSFETs were used on the 2S balancer prototype: Infineon IPB180N04S401,

Infineon IPB180P04P4L02, Infineon IPB011N04LG, and Infineon IPB180P04P403 as

M1, M2, M3, and M4, respectively.
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Figure D-1: Balance current vs switching frequency for ceramic capacitors on the 2S
balancer prototype.

Figure D-2: Balance current vs switching frequency for aluminum polymer capacitors
on the 2S balancer prototype.
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Figure D-3: Balance current vs switching frequency for aluminum polymer and elec-
trolytic capacitors on the 2S balancer prototype.

Figure D-4: Balance current vs switching frequency for tantalum polymer capacitors on
the 2S balancer prototype.
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D.2 4S Balancer Prototype

Various MOSFET combinations were tried on the 4S balancer prototype. For the curves

shown, the following MOSFETs were used: Infineon IPD042P03L3G, ON Semicondutor

FDD9409-F085, Infineon IPD90P03P404, and Vishay SQJQ100EL as M1, M2, M3, and

M4, respectively.

Figure D-5: Balance current vs switching frequency for ceramic and aluminum polymer
capacitors on the 4S balancer prototype.

Figure D-6: Balance current vs switching frequency for tantalum polymer capacitors on
the 4S balancer prototype.
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D.3 2S Balancer PCB

The following MOSFETs were used on the 2S balancer PCB: ON Semiconductor NVMYS-

1D3N04C, Vishay SQD40031EL, Nexperia PSMNR70-30YLHX, and Infineon IPD90P03-

P404 as M1, M2, M3, and M4, respectively. However, for the gray curve in Figure D-7,

P-channels in the larger TO-263 package were used in an attempt to push performance,

Infineon IPB180P04P4L02 as M2 and Infineon IPB180P04P403 as M4.

Figure D-8 shows the balance current vs cell voltage differential for ceramic and

tantalum polymer capacitors on the 2S balancer PCB. Note the linearity of balance

current with cell voltage differential. This is an intrinsic property of the charge pump

based balancer and extends beyond the 2S. At high voltage differential, the current may

slightly deviate from linearity to a lower value (in magnitude) due to the increased power

dissipation and thus increased circuit resistance (e.g., traces, MOSFETs, etc.).

Figure D-7: Balance current vs switching frequency for ceramic and tantalum polymer
capacitors on the 2S balancer PCB.
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Figure D-8: Balance current vs cell voltage differential for ceramic and tantalum polymer
capacitors on the 2S balancer PCB.
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D.4 4S Balancer PCB

The following MOSFETs were used on the 4S balancer PCB: Vishay SQD40031EL, ON

Semiconductor NVMYS1D3N04C, Infineon IPB180P04P403, and Nexperia PSMNR70-

30YLHX as M1, M2, M3, and M4, respectively.

Figure D-9: Balance current vs switching frequency for ceramic and tantalum polymer
capacitors on the 4S balancer PCB.

Figure D-10: Balance current vs switching frequency for aluminum polymer capacitors
on the 4S balancer PCB.
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D.5 Cell Tester Prototype

Figure D-11: Current vs switching frequency at 45 % duty cycle on the cell tester pro-
totype.

Figure D-12: Current vs switching frequency at 55 % duty cycle on the cell tester pro-
totype.
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Figure D-13: Current vs commanded current at 30 kHz switching frequency on the cell
tester prototype.

Figure D-14: Cycle test with a cell on the cell tester prototype.
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Appendix E

Cell Tester Program

The following program was written for the cell tester. More testing of the program is

needed.

1 """

2 Program for battery tester circuit.

3

4 There are two variations of the program:

5 1) manual program (runs by default)

6 2) cycling program (runs with ’-cycle ’ as command line argument)

7

8 ALWAYS MAKE SURE THERE IS A GATE SIGNAL BEFORE CONNECTING THE CELLS !!!

9 PLEASE REMEMBER TO DISCONNECT CELLS ON PROGRAM QUIT !!!

10 The biggest potential failure modes of this program:

11 1) program fails to output pulse

12 2) program outputs a pulse of fixed duty cycle and cell voltage

drifts out of range

13

14 The program uses two threads , the second one for the controls , and the

main one for the gui.

15

16 Python 3.8 or higher required. Tested on Python 3.8.

17 External packages required:

18 matplotlib (https :// matplotlib.org/)

19 mcculw (https :// github.com/mccdaq/mcculw /)
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20

21 Tested on USB -1608GX -2AO.

22

23 Authors:

24 Mostafa Negm

25 William Lynch

26 """

27

28 import abc

29 from collections import deque

30 import csv

31 import datetime

32 import enum

33 import logging

34 import operator

35 import queue

36 import sys

37 import threading

38 import time

39 import tkinter as tk

40 import tkinter.font as tkFont

41 import tkinter.messagebox

42

43 from matplotlib.animation import FuncAnimation

44 from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

45 import matplotlib.pyplot as plt

46

47 import mcculw

48 import mcculw.device_info

49

50 ##########

51 # CONSTANTS

52 ##########

53

54 DEBUG = True # check_rep and logs controls contributions of

proportional , derivative , and integral
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55

56 # channels

57 CHANNEL_V_PWM = 1

58 CHANNEL_CELL_UNDER_TEST = 3

59 CHANNEL_BUFFER_BOTTOM = 1

60 CHANNEL_BUFFER_TOP = 0

61 CHANNEL_CURRENT_SENSOR = 4

62

63 # analog output

64 NOMINAL_V_PWM = 0

65 MIN_V_PWM = -10

66 MAX_V_PWM = 10

67

68 # cell under test

69 NOMINAL_CURRENT = 0

70 MIN_CURRENT = -10

71 MAX_CURRENT = 10

72 ABS_MIN_CURRENT = -15

73 ABS_MAX_CURRENT = 15

74

75 NOMINAL_VOLTAGE = 3.3

76 MIN_VOLTAGE = 1.5

77 MAX_VOLTAGE = 3.8

78 ABS_MIN_VOLTAGE = 1.3

79 ABS_MAX_VOLTAGE = 4

80

81 # buffer cells

82 ABS_MIN_VOLTAGE_BUFFER = 3.0

83 ABS_MAX_VOLTAGE_BUFFER = 3.6

84

85 # current sensor

86 AMPS_PER_VOLT_CURRENT_SENSOR = -5

87 OFFSET_CURRENT_SENSOR = -0.13

88

89 # controls

90 DELTA_T = 1/100
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91

92 # for derivative control

93 # M_BACK = 1: susceptible to noise

94 # M_BACK > 1: less susceptible to noise , but go too far back in time

and information is outdated and thus

95 # counterproductive

96 M_BACK_CC = 2

97 M_BACK_VC = 1

98

99 # current control

100 K_P_CC = (( MAX_V_PWM - MIN_V_PWM) / (MAX_CURRENT - MIN_CURRENT)) *

(1/8)

101 K_D_CC = 0.01 * K_P_CC

102 K_I_CC = 20 * K_P_CC

103

104 # voltage control

105 K_P_VC = (( MAX_V_PWM - MIN_V_PWM) / (MAX_VOLTAGE - MIN_VOLTAGE)) *

(1/8)

106 K_D_VC = 0.01 * K_P_VC

107 K_I_VC = 60 * K_P_VC

108

109 #

110 DISPLAY_REFRESH_PERIOD_MS = 100

111 MULTIPLE_WRITING = 1

112 MULTIPLE_PLOTTING = 30

113

114 # A basic sanity check of (some of) the program constants. Far from

exhaustive.

115 # DAQ channels are nonnegative integers

116 assert isinstance(CHANNEL_V_PWM , int) and CHANNEL_V_PWM >= 0

117 assert isinstance(CHANNEL_CURRENT_SENSOR , int) and

CHANNEL_CURRENT_SENSOR >= 0

118 assert isinstance(CHANNEL_CELL_UNDER_TEST , int) and

CHANNEL_CELL_UNDER_TEST >= 0

119 assert isinstance(CHANNEL_BUFFER_BOTTOM , int) and CHANNEL_BUFFER_BOTTOM

>= 0
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120 assert isinstance(CHANNEL_BUFFER_TOP , int) and CHANNEL_BUFFER_TOP >= 0

121

122 # different analog inputs can’t be connected to the same channels

123 assert len({ CHANNEL_CELL_UNDER_TEST , CHANNEL_BUFFER_BOTTOM ,

CHANNEL_BUFFER_TOP , CHANNEL_CURRENT_SENSOR }) == 4

124

125 # -10 <= MIN_V_PWM <= NOMINAL_V_PWM <= MAX_V_PWM <= 10

126 assert -10 <= MIN_V_PWM

127 assert MIN_V_PWM <= NOMINAL_V_PWM

128 assert NOMINAL_V_PWM <= MAX_V_PWM

129 assert MAX_V_PWM <= 10

130

131 # ABS_MIN_CURRENT <= MIN_CURRENT <= NOMINAL_CURRENT <= MAX_CURRENT <=

ABS_MAX_CURRENT

132 assert ABS_MIN_CURRENT <= MIN_CURRENT

133 assert MIN_CURRENT <= NOMINAL_CURRENT

134 assert NOMINAL_CURRENT <= MAX_CURRENT

135 assert MAX_CURRENT <= ABS_MAX_CURRENT

136

137 # 1.3 <= ABS_MIN_VOLTAGE < MIN_VOLTAGE < ABS_MIN_VOLTAGE_BUFFER <

NOMINAL_VOLTAGE

138 # < ABS_MAX_VOLTAGE_BUFFER < MAX_VOLTAGE < ABS_MAX_VOLTAGE <= 4

139 assert 1.3 <= ABS_MIN_VOLTAGE

140 assert ABS_MIN_VOLTAGE < MIN_VOLTAGE

141 assert MIN_VOLTAGE < ABS_MIN_VOLTAGE_BUFFER

142 assert ABS_MIN_VOLTAGE_BUFFER < NOMINAL_VOLTAGE

143 assert NOMINAL_VOLTAGE < ABS_MAX_VOLTAGE_BUFFER

144 assert ABS_MAX_VOLTAGE_BUFFER < MAX_VOLTAGE

145 assert MAX_VOLTAGE < ABS_MAX_VOLTAGE

146 assert ABS_MAX_VOLTAGE <= 4

147

148 # low positive proportional and integral gains , nonnegative derivative

gains

149 # derivative and integral gains (much) lower than proportional gain

150 # cc

151 assert 0 < K_P_CC < 1
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152 assert 0 < K_I_CC < 70* K_P_CC

153 assert 0 <= K_D_CC < 0.1* K_P_CC

154 # vc

155 assert 0 < K_P_VC < 100

156 assert 0 < K_I_VC < 70* K_P_VC

157 assert 0 <= K_D_VC < 0.1* K_P_VC

158

159 assert isinstance(M_BACK_CC , int) and 1 <= M_BACK_CC <= 3

160 assert isinstance(M_BACK_VC , int) and 1 <= M_BACK_VC <= 3

161

162 assert 1/200 <= DELTA_T <= 1

163 assert DISPLAY_REFRESH_PERIOD_MS >= 100

164

165 # integer multiples

166 assert isinstance(MULTIPLE_WRITING , int) and MULTIPLE_WRITING >= 1

167 assert isinstance(MULTIPLE_PLOTTING , int) and MULTIPLE_PLOTTING >= 20

168

169

170 ##########

171 # other

172 ##########

173

174 def between(val , min_val , max_val):

175 """

176 Return True if min_val <= val <= max_val , else False.

177 """

178 return min_val <= val <= max_val

179

180

181 def clip(val , min_val , max_val):

182 """

183 Return min_val , if val < min_val

184 max_val , if val > max_val

185 val , otherwise

186 """

187 if min_val > max_val:
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188 min_val , max_val = max_val , min_val

189 return min(max_val , max(val , min_val))

190

191

192 def display_float(x, decimal_places) -> str:

193 """

194 Return x as a string with the specified number of decimal_places

(>= 0) if x is numeric else x.

195 """

196 if is_numeric(x):

197 return ’{:.{}f}’.format(x, decimal_places)

198 return x

199

200

201 def is_numeric(x) -> bool:

202 """

203 Return True if x is a number or numeric string , else False.

204 """

205 try:

206 float(x)

207 return True

208 except (TypeError , ValueError):

209 return False

210

211

212 ##########

213 # Tester class

214 ##########

215

216 class Tester(tk.Frame):

217 """

218 This class is only a base class and should be subclassed.

219

220 See Also

221 --------

222 ManualTester , CycleTester
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223 """

224

225 def __init__(self):

226 super(Tester , self).__init__(tk.Tk())

227

228 # Initialize tkinter properties

229 self.master.protocol("WM_DELETE_WINDOW", self.quit)

230 self.master.wm_title(type(self).__name__)

231 self.master.minsize(width =800, height =600)

232 self.master.grid_columnconfigure (0, weight =1)

233 self.master.grid_rowconfigure (0, weight =1)

234

235 self.grid(sticky=tk.NSEW)

236

237 # default fonts are small , so make them slightly larger

238 tk_default_font = tkFont.nametofont("TkDefaultFont")

239 tk_default_font.configure(size=tk_default_font.actual(’size’)

+2)

240 tk_text_font = tkFont.nametofont("TkTextFont")

241 tk_text_font.configure(size=tk_text_font.actual(’size’)+2)

242

243 # By default , the example detects all available devices and

selects the

244 # first device listed.

245 # If use_device_detection is set to False , the board_num

property needs

246 # to match the desired board number configured with Instacal.

247 use_device_detection = True

248 self.board_num = 0

249 try:

250 if use_device_detection:

251 self._configure_first_detected_device ()

252 self.device_info = mcculw.device_info.DaqDeviceInfo(self.

board_num)

253 except Exception:

254 raise
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255

256 # analog input support

257 if not self.device_info.supports_analog_input:

258 raise Exception(’Error: The DAQ device does not support

analog input’)

259 self.ai_info = self.device_info.get_ai_info ()

260 self.ai_range = self.ai_info.supported_ranges [0]

261

262 # analog out support

263 if not self.device_info.supports_analog_output:

264 raise Exception(’Error: The DAQ device does not support

analog output ’)

265 self.ao_info = self.device_info.get_ao_info ()

266

267 #

268 self.program_quit = False

269 self.controls_running = False

270

271 #

272 self.control_mode = Tester.ControlMode.current

273 self.control_mode_var = tk.StringVar(value=self.control_mode.

value)

274

275 self.desired_current = NOMINAL_CURRENT

276 self.desired_voltage = NOMINAL_VOLTAGE

277 self.desired_v_pwm = NOMINAL_V_PWM

278

279 self.measured_current = self.measure_current ()

280 self.measured_voltage = self.measure_voltage(

CHANNEL_CELL_UNDER_TEST)

281 self.voltage_buffer_bottom = self.measure_voltage(

CHANNEL_BUFFER_BOTTOM)

282 self.voltage_buffer_top = self.measure_voltage(

CHANNEL_BUFFER_TOP)

283 self.actual_v_pwm = self.a_out(CHANNEL_V_PWM , NOMINAL_V_PWM)

284 self.abs_current_limit = abs(ABS_MAX_CURRENT)
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285

286 # used to pass messages from controls thread to main thread for

plotting purposes

287 self.message_passing = queue.Queue()

288

289 # store values related to plotting

290 self.plotting = {}

291

292 # for controls

293 self.queue = deque()

294 self.lock = threading.Lock()

295

296 self.create_gui ()

297 self.update_display ()

298 self.ani = FuncAnimation(self.fig , self.update_plot , interval

=1000)

299 self._periodically_ping ()

300 self.thread_controls = self.start_thread_controls ()

301 self.check_rep ()

302

303 def _configure_first_detected_device(self):

304 """

305 See also:

306 https :// github.com/mccdaq/mcculw/blob/master/examples/ui/

ui_examples_util.py

307 """

308 mcculw.ul.ignore_instacal ()

309 devices = mcculw.ul.get_daq_device_inventory(mcculw.enums.

InterfaceType.ANY)

310 if not devices:

311 raise mcculw.ul.ULError(mcculw.enums.ErrorCode.BADBOARD)

312

313 # Add the first DAQ device to the UL with the specified board

number

314 mcculw.ul.create_daq_device(self.board_num , devices [0])

315
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316 def check_rep(self):

317 if DEBUG:

318 # MIN_CURRENT <= self.desired_current <= MAX_CURRENT

319 assert self.desired_current >= MIN_CURRENT

320 assert self.desired_current <= MAX_CURRENT

321

322 # MIN_VOLTAGE <= self.desired_voltage <= MAX_VOLTAGE

323 assert self.desired_voltage >= MIN_VOLTAGE

324 assert self.desired_voltage <= MAX_VOLTAGE

325

326 # MIN_V_PWM <= self.desired_v_pwm <= MAX_V_PWM

327 assert self.desired_v_pwm >= MIN_V_PWM

328 assert self.desired_v_pwm <= MAX_V_PWM

329

330 ##########

331 # Tester.ControlMode enum

332 ##########

333

334 class ControlMode(enum.Enum):

335 current = "cc"

336 voltage = "vc"

337

338 ##########

339 # mcculw: https :// github.com/mccdaq/mcculw/

340 ##########

341

342 def a_in(self , channel):

343 """

344 Return the analog input of a user -specified channel.

345

346 See also:

347 https :// github.com/mccdaq/mcculw/blob/master/examples/

console/a_in.py

348 """

349 try:

350 # Get a value from the device
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351 if self.ai_info.resolution <= 16:

352 # Use the a_in method for devices with a resolution <=

16

353 value = mcculw.ul.a_in(self.board_num , channel , self.

ai_range)

354 # Convert the raw value to engineering units

355 eng_units_value = mcculw.ul.to_eng_units(self.board_num

, self.ai_range , value)

356 else:

357 # Use the a_in_32 method for devices with a resolution

> 16

358 # (optional parameter omitted)

359 value = mcculw.ul.a_in_32(self.board_num , channel , self

.ai_range)

360 # Convert the raw value to engineering units

361 eng_units_value = mcculw.ul.to_eng_units_32(self.

board_num , self.ai_range , value)

362

363 # Display the raw value

364 # print(’Raw Value:’, value)

365 # Display the engineering value

366 # print(’Engineering Value: {:.3f}’.format(eng_units_value)

)

367 return eng_units_value

368 except Exception as e:

369 logger.error(e, exc_info=True)

370 raise

371

372 def a_out(self , channel , voltage):

373 """

374 Write the voltage to a user -specified channel. Return the

outputted voltage.

375

376 See also:

377 https :// github.com/mccdaq/mcculw/blob/master/examples/

console/v_out.py
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378 """

379 try:

380 ao_range = self.ao_info.supported_ranges [0]

381 voltage = clip(voltage , ao_range.range_min , ao_range.

range_max)

382

383 # print(’Outputting ’, voltage , ’Volts to channel ’, channel)

384 # Send the value to the device (optional parameter omitted)

385 mcculw.ul.v_out(self.board_num , channel , ao_range , voltage)

386 return voltage

387 except Exception as e:

388 logger.error(e, exc_info=True)

389 raise

390

391 ##########

392 # getters and setters

393 ##########

394

395 def get_desired_current(self) -> float:

396 """

397 Getter for self.desired_current.

398 """

399 self.check_rep ()

400 return self.desired_current

401

402 def set_desired_current(self , desired_current) -> None:

403 """

404 Setter for self.desired_current.

405

406 Sets self.desired_current if desired_current is numeric. Clips

the value to be within the limits if necessary.

407 """

408 if is_numeric(desired_current):

409 self.desired_current = clip(float(desired_current),

MIN_CURRENT , MAX_CURRENT)

410 self.check_rep ()
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411

412 def get_desired_voltage(self) -> float:

413 """

414 Getter for self.desired_voltage.

415 """

416 self.check_rep ()

417 return self.desired_voltage

418

419 def set_desired_voltage(self , desired_voltage) -> None:

420 """

421 Setter for self.desired_voltage.

422

423 Sets self.desired_voltage if desired_voltage is numeric. Clips

the value to be within the limits if necessary.

424 """

425 if is_numeric(desired_voltage):

426 self.desired_voltage = clip(float(desired_voltage),

MIN_VOLTAGE , MAX_VOLTAGE)

427 self.check_rep ()

428

429 def get_desired_v_pwm(self) -> float:

430 """

431 Getter for self.desired_v_pwm.

432 """

433 self.check_rep ()

434 return self.desired_v_pwm

435

436 def set_desired_v_pwm(self , desired_v_pwm) -> None:

437 """

438 Setter for self.desired_v_pwm.

439

440 Sets self.desired_v_pwm if desired_v_pwm is numeric. Clips the

value to be within the limits if necessary.

441 """

442 if is_numeric(desired_v_pwm):
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443 self.desired_v_pwm = clip(float(desired_v_pwm), MIN_V_PWM ,

MAX_V_PWM)

444 self.check_rep ()

445

446 def get_measured_current(self) -> float:

447 """

448 Getter for self.measured_current.

449 """

450 self.check_rep ()

451 return self.measured_current

452

453 def set_measured_current(self , measured_current) -> None:

454 """

455 Setter for self.measured_current.

456 """

457 self.measured_current = measured_current

458 self.check_rep ()

459

460 def get_measured_voltage(self) -> float:

461 """

462 Getter for self.measured_voltage , the voltage of the cell under

test.

463 """

464 self.check_rep ()

465 return self.measured_voltage

466

467 def set_measured_voltage(self , measured_voltage) -> None:

468 """

469 Setter for self.measured_voltage , the voltage of the cell under

test.

470 """

471 self.measured_voltage = measured_voltage

472 self.check_rep ()

473

474 def get_actual_v_pwm(self) -> float:

475 """
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476 Getter for self.actual_v_pwm.

477 """

478 self.check_rep ()

479 return self.actual_v_pwm

480

481 def set_actual_v_pwm(self , actual_v_pwm) -> None:

482 """

483 Setter for self.actual_v_pwm.

484 """

485 self.actual_v_pwm = actual_v_pwm

486 self.check_rep ()

487

488 def get_voltage_buffer_bottom(self) -> float:

489 """

490 Getter for self.voltage_buffer_bottom.

491 """

492 self.check_rep ()

493 return self.voltage_buffer_bottom

494

495 def set_voltage_buffer_bottom(self , voltage_buffer_bottom) -> None:

496 """

497 Setter for self.voltage_buffer_bottom.

498 """

499 self.voltage_buffer_bottom = voltage_buffer_bottom

500 self.check_rep ()

501

502 def get_voltage_buffer_top(self) -> float:

503 """

504 Getter for self.voltage_buffer_top.

505 """

506 self.check_rep ()

507 return self.voltage_buffer_top

508

509 def set_voltage_buffer_top(self , voltage_buffer_top) -> None:

510 """

511 Setter for self.voltage_buffer_top.
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512 """

513 self.voltage_buffer_top = voltage_buffer_top

514 self.check_rep ()

515

516 def get_control_mode(self) -> ControlMode:

517 """

518 Getter for self.control_mode.

519 """

520 self.check_rep ()

521 return self.control_mode

522

523 def set_control_mode(self , control_mode: ControlMode) -> None:

524 """

525 Setter for self.control_mode.

526 """

527 self.control_mode = control_mode

528 self.check_rep ()

529

530 def get_abs_current_limit(self):

531 """

532 Getter for self.abs_current_limit. Only used for voltage

control.

533 """

534 self.check_rep ()

535 return self.abs_current_limit

536

537 def set_abs_current_limit(self , abs_current_limit: float):

538 """"

539 Setter for self.abs_current_limit. Only used for voltage

control.

540 """

541 self.abs_current_limit = abs_current_limit

542 self.check_rep ()

543

544 ##########

545 # measure/display
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546 ##########

547

548 def measure_current(self):

549 """

550 Measure the voltage at channel CHANNEL_CURRENT_SENSOR and

multiply by AMPS_PER_VOLT_CURRENT_SENSOR

551 and add OFFSET_CURRENT_SENSOR to get the current.

552 """

553 try:

554 return AMPS_PER_VOLT_CURRENT_SENSOR * self.a_in(

CHANNEL_CURRENT_SENSOR) + OFFSET_CURRENT_SENSOR

555 except Exception as e:

556 logger.error(e, exc_info=True)

557 raise

558

559 def measure_voltage(self , channel: int):

560 """

561 Measure the voltage at channel channel.

562 """

563 try:

564 return self.a_in(channel)

565 except Exception as e:

566 logger.error(e, exc_info=True)

567 raise

568

569 def update_display(self):

570 """

571 Update the readings (measured current , voltage , v_pwm , etc.) on

the GUI.

572 """

573 self.after(DISPLAY_REFRESH_PERIOD_MS , self.update_display)

574 self.master.measured_current_value["text"] = ’{} A’.format(

display_float(self.get_measured_current (), 3))

575 self.master.measured_voltage_value["text"] = ’{} V’.format(

display_float(self.get_measured_voltage (), 3))
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576 self.master.actual_v_pwm_value["text"] = ’{} V’.format(

display_float(self.get_actual_v_pwm (), 3))

577 self.master.voltage_buffer_bottom_value["text"] = ’{} V’.format

(display_float(self.get_voltage_buffer_bottom (), 3))

578 self.master.voltage_buffer_top_value["text"] = ’{} V’.format(

display_float(self.get_voltage_buffer_top (), 3))

579 self.check_rep ()

580

581 def update_plot(self , frame):

582 """

583 Update the plot.

584 """

585 def round_to(x: float , base: float) -> float:

586 # Round x to "nearest" base and return the rounded number.

587 return base * round(x / base)

588

589 new_data = False

590 for _ in range(self.message_passing.qsize()):

591 try:

592 (time , measured_current , measured_voltage) = self.

message_passing.get_nowait ()

593 self.plotting["times"]. append(time)

594 self.plotting["currents"]. append(measured_current)

595 self.plotting["voltages"]. append(measured_voltage)

596 new_data = True

597 except queue.Empty:

598 pass

599

600 if self.plotting["currents"][-1] < self.plotting["

min_current"]:

601 self.plotting["min_current"] = self.plotting["currents"

][-1]

602 if self.plotting["currents"][-1] > self.plotting["

max_current"]:

603 self.plotting["max_current"] = self.plotting["currents"

][-1]
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604 if self.plotting["voltages"][-1] < self.plotting["

min_voltage"]:

605 self.plotting["min_voltage"] = self.plotting["voltages"

][-1]

606 if self.plotting["voltages"][-1] > self.plotting["

max_voltage"]:

607 self.plotting["max_voltage"] = self.plotting["voltages"

][-1]

608

609 if new_data:

610 # update data

611 self.line_voltage.set_data(self.plotting["times"], self.

plotting["voltages"])

612 self.line_current.set_data(self.plotting["times"], self.

plotting["currents"])

613

614 # update axes limits

615 self.ax_voltage.set_xlim(self.plotting["times"][0], self.

plotting["times"][ -1])

616 # (lower , upper bound) is (round down to nearest 0.2, round

up to nearest 0.2)

617 lower_bound = round_to(self.plotting["min_voltage"], 0.2)

618 upper_bound = round_to(self.plotting["max_voltage"], 0.2)

619 if lower_bound > self.plotting["min_voltage"]:

620 lower_bound -= 0.2

621 if upper_bound < self.plotting["max_voltage"] or

upper_bound == lower_bound:

622 upper_bound += 0.2

623 self.ax_voltage.set_ylim(lower_bound , upper_bound)

624 # (lower , upper bound) is (floor of min towards -infinity ,

ceiling of max towards infinity)

625 self.ax_current.set_ylim(int(self.plotting["min_current"]

// 1), int(-(-self.plotting["max_current"] // 1)))

626 return

627

628 ##########
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629 # controls

630 ##########

631

632 def start_thread_controls(self):

633 """

634 Create and start a thread that handles the controls and return

the created thread.

635 """

636 thread_controls = threading.Thread(name="", target=self.

controls)

637 thread_controls.start ()

638 return thread_controls

639

640 def controls(self):

641 """

642 Handle current and voltage control.

643 """

644 while not self.program_quit:

645 time.sleep(DELTA_T - (time.perf_counter () % DELTA_T)) #

run no faster than DELTA_T

646

647 # update measurements

648 self.set_measured_current(self.measure_current ())

649 self.set_measured_voltage(self.measure_voltage(

CHANNEL_CELL_UNDER_TEST))

650 self.set_voltage_buffer_bottom(self.measure_voltage(

CHANNEL_BUFFER_BOTTOM))

651 self.set_voltage_buffer_top(self.measure_voltage(

CHANNEL_BUFFER_TOP))

652

653 if self.controls_running:

654 self._controls ()

655 return

656

657 def _controls(self):

658 def datetime_now () -> str:
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659 # Return the current date and time in string format: "

YYYYmonDD_HH;MM;SS",

660 # where mon is the abbreviated month name.

661 return datetime.datetime.now().strftime("%Y%b%d_%H;%M;%S")

662

663 logger.info(’in _controls ’)

664

665 try:

666 # create new csv

667 filename = ’{}. csv’.format(datetime_now ())

668 file = open(filename , ’w’, newline=’’)

669 writer = csv.writer(file , delimiter=’,’)

670 try:

671 row_to_write = ["time [s]", "measured current [A]", "

measured voltage [V]", "v_pwm [V]"]

672 if DEBUG and MULTIPLE_WRITING == 1:

673 row_to_write += ["proportional", "derivative", "

integral"]

674 writer.writerow(row_to_write)

675 except PermissionError as e:

676 logger.error(e, exc_info=True)

677

678 # for averaging

679 i_writing = 0

680 sum_measured_currents_writing = 0

681 sum_measured_voltages_writing = 0

682 sum_actual_v_pwm_writing = 0

683 i_plotting = 0

684 sum_measured_currents_plotting = 0

685 sum_measured_voltages_plotting = 0

686

687 past_times = deque ([0.0]* max(M_BACK_CC , M_BACK_VC), maxlen=

max(M_BACK_CC , M_BACK_VC)+1) # most recent at index 0

688 # derivative on measurements (and not errors) to eliminate

derivative kicks

689 past_currents = deque ([0.0]* M_BACK_CC , maxlen=M_BACK_CC +1)
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690 past_voltages = deque ([0.0]* M_BACK_VC , maxlen=M_BACK_VC +1)

691 i_term = 0 # integral

692

693 start_time = time.perf_counter ()

694

695 measured_current_0 = self.get_measured_current ()

696 measured_voltage_0 = self.get_measured_voltage ()

697

698 # write to csv

699 try:

700 row_to_write = [display_float (0, 2),

701 display_float(measured_current_0 , 3),

702 display_float(measured_voltage_0 , 3),

703 display_float(self.get_desired_v_pwm (),

3)]

704 if DEBUG and MULTIPLE_WRITING == 1:

705 row_to_write += [0, 0, 0]

706 writer.writerow(row_to_write)

707 except PermissionError as e:

708 logger.error(e, exc_info=True)

709

710 self.plotting = {

711 "times": deque ([0], maxlen =10000) ,

712 "currents": deque ([ measured_current_0], maxlen =10000) ,

713 "voltages": deque ([ measured_voltage_0], maxlen =10000) ,

714 "min_current": float(’inf’),

715 "max_current": float(’-inf’),

716 "min_voltage": float(’inf’),

717 "max_voltage": float(’-inf’)

718 }

719

720 controls_state = {

721 "prev_func": None ,

722 "init_time": start_time ,

723 "curr_time": start_time ,

724 }
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725

726 while self.controls_running:

727 time.sleep(DELTA_T - ((time.perf_counter () - start_time

) % DELTA_T)) # run no faster than DELTA_T

728

729 # update time and measurements

730 curr_time = time.perf_counter () - start_time

731 measured_current = self.measure_current ()

732 measured_voltage = self.measure_voltage(

CHANNEL_CELL_UNDER_TEST)

733 self.set_measured_current(measured_current)

734 self.set_measured_voltage(measured_voltage)

735

736 past_times.appendleft(curr_time)

737 past_currents.appendleft(measured_current)

738 past_voltages.appendleft(measured_voltage)

739

740 #

741 voltage_buffer_bottom = self.measure_voltage(

CHANNEL_BUFFER_BOTTOM)

742 voltage_buffer_top = self.measure_voltage(

CHANNEL_BUFFER_TOP)

743 self.set_voltage_buffer_bottom(voltage_buffer_bottom)

744 self.set_voltage_buffer_top(voltage_buffer_top)

745

746 # if measurements out of ABSOLUTE ratings , immediately

stop and break

747 if not between(measured_current , ABS_MIN_CURRENT ,

ABS_MAX_CURRENT):

748 raise Exception(’measured current {} not in range

({}, {})’.format(measured_current , ABS_MIN_CURRENT , ABS_MAX_CURRENT

))

749 if not between(measured_voltage , ABS_MIN_VOLTAGE ,

ABS_MAX_VOLTAGE):

750 raise Exception(’measured voltage {} not in range

({}, {})’.format(measured_voltage , ABS_MIN_VOLTAGE , ABS_MAX_VOLTAGE
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))

751 # or (not between(voltage_buffer_bottom ,

ABS_MIN_VOLTAGE_BUFFER , ABS_MAX_VOLTAGE_BUFFER)) \

752 # or (not between(voltage_buffer_top ,

ABS_MIN_VOLTAGE_BUFFER , ABS_MAX_VOLTAGE_BUFFER)):

753

754 if len(self.queue) != 0:

755 try: # in case command.execute throws an exception

756 self.lock.acquire ()

757 command = self.queue.popleft ()

758 if command.execute != controls_state["prev_func

"]:

759 controls_state["prev_func"] = command.

execute

760 controls_state["init_time"] = curr_time

761 controls_state["curr_time"] = curr_time

762

763 success = command.execute(controls_state["

curr_time"] - controls_state["init_time"], self)

764 if not success:

765 self.queue.appendleft(command)

766 self.lock.release ()

767 except Exception as e:

768 logger.error(e, exc_info=True)

769 raise

770

771 desired_current = self.get_desired_current ()

772 desired_voltage = self.get_desired_voltage ()

773

774 if self.get_control_mode () == Tester.ControlMode.

current:

775 # calculate p, i, d terms

776 error = desired_current - measured_current

777 diff = (past_currents [0] - past_currents[M_BACK_CC

]) / (past_times [0] - past_times[M_BACK_CC ])

778 p_term = K_P_CC * error
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779 d_term = clip(K_D_CC * diff , -abs(p_term), abs(

p_term)) # make sure that abs of derivative term not greater than

abs of proportional term

780 i_term = clip(i_term + K_I_CC*error*( past_times [0]-

past_times [1]), MIN_V_PWM , MAX_V_PWM)

781 command = clip(p_term - d_term + i_term , MIN_V_PWM ,

MAX_V_PWM)

782 else: # Tester.ControlMode.voltage

783 # calculate command for the voltage control ,

784 # as well as commands for current control at +/-

self.get_abs_current_limit ()

785 # command voltage

786 error_volt = desired_voltage - measured_voltage

787 diff_volt = (past_voltages [0] - past_voltages[

M_BACK_VC ]) / (past_times [0] - past_times[M_BACK_VC ])

788 p_term_volt = K_P_VC * error_volt

789 d_term_volt = clip(K_D_VC * diff_volt , -abs(

p_term_volt), abs(p_term_volt))

790 i_term_volt = clip(i_term + K_I_VC * error_volt * (

past_times [0] - past_times [1]), MIN_V_PWM , MAX_V_PWM)

791 command_volt = p_term_volt - d_term_volt +

i_term_volt

792

793 # command current min

794 error_min_curr = -self.get_abs_current_limit () -

measured_current

795 diff_min_curr = (past_currents [0] - past_currents[

M_BACK_CC ]) / (past_times [0] - past_times[M_BACK_CC ])

796 p_term_min_curr = K_P_CC * error_min_curr

797 d_term_min_curr = clip(K_D_CC * diff_min_curr , -abs

(p_term_min_curr), abs(p_term_min_curr))

798 i_term_min_curr = clip(i_term + K_I_CC*

error_min_curr *( past_times [0]- past_times [1]), MIN_V_PWM , MAX_V_PWM)

799 command_min_curr = p_term_min_curr -

d_term_min_curr + i_term_min_curr

800
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801 # command current max

802 error_max_curr = self.get_abs_current_limit () -

measured_current

803 diff_max_curr = (past_currents [0] - past_currents[

M_BACK_CC ]) / (past_times [0] - past_times[M_BACK_CC ])

804 p_term_max_curr = K_P_CC * error_max_curr

805 d_term_max_curr = clip(K_D_CC * diff_max_curr , -abs

(p_term_max_curr), abs(p_term_max_curr))

806 i_term_max_curr = clip(i_term + K_I_CC*

error_max_curr *( past_times [0]- past_times [1]), MIN_V_PWM , MAX_V_PWM)

807 command_max_curr = p_term_max_curr -

d_term_max_curr + i_term_max_curr

808

809 # current limit , update integral term

810 command = clip(command_volt , command_min_curr ,

command_max_curr)

811 if command == command_volt:

812 p_term = p_term_volt

813 d_term = d_term_volt

814 i_term = i_term_volt

815 elif command == command_min_curr:

816 p_term = p_term_min_curr

817 d_term = d_term_min_curr

818 i_term = i_term_min_curr

819 else: # command_max

820 p_term = p_term_max_curr

821 d_term = d_term_max_curr

822 i_term = i_term_max_curr

823 command = clip(command , MIN_V_PWM , MAX_V_PWM)

824

825 # actuate

826 self.set_desired_v_pwm(command)

827 self.set_actual_v_pwm(self.a_out(CHANNEL_V_PWM , self.

get_desired_v_pwm ()))

828

829 # for writing
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830 sum_measured_currents_writing += measured_current

831 sum_measured_voltages_writing += measured_voltage

832 sum_actual_v_pwm_writing += self.get_actual_v_pwm ()

833 i_writing += 1

834 if i_writing == MULTIPLE_WRITING:

835 try:

836 row_to_write = [display_float(curr_time , 2),

837 display_float(

sum_measured_currents_writing / MULTIPLE_WRITING , 3),

838 display_float(

sum_measured_voltages_writing / MULTIPLE_WRITING , 3),

839 display_float(

sum_actual_v_pwm_writing / MULTIPLE_WRITING , 3)]

840 if DEBUG and MULTIPLE_WRITING == 1:

841 row_to_write += [p_term , d_term , i_term]

842 writer.writerow(row_to_write)

843 except PermissionError as e:

844 logger.error(e, exc_info=True)

845 i_writing = 0

846 sum_measured_currents_writing = 0

847 sum_measured_voltages_writing = 0

848 sum_actual_v_pwm_writing = 0

849

850 # for plotting

851 sum_measured_currents_plotting += measured_current

852 sum_measured_voltages_plotting += measured_voltage

853 i_plotting += 1

854 if i_plotting == MULTIPLE_PLOTTING:

855 self.message_passing.put_nowait ((curr_time ,

856

sum_measured_currents_plotting / MULTIPLE_PLOTTING ,

857

sum_measured_voltages_plotting / MULTIPLE_PLOTTING))

858 i_plotting = 0

859 sum_measured_currents_plotting = 0

860 sum_measured_voltages_plotting = 0
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861 file.close ()

862 except Exception as e:

863 logger.error(e, exc_info=True)

864 finally:

865 # set v_pwm back to nominal before returning

866 self.set_desired_v_pwm(NOMINAL_V_PWM)

867 self.set_actual_v_pwm(self.a_out(CHANNEL_V_PWM , self.

get_desired_v_pwm ()))

868

869 self.stop()

870 logger.info(’returning from _controls ’)

871 return

872

873 def _periodically_ping(self):

874 self.after (30*1000 , self._periodically_ping)

875 if not self.controls_running:

876 logger.info(’periodically pinging ’)

877 self.set_desired_v_pwm(NOMINAL_V_PWM)

878 self.set_actual_v_pwm(self.a_out(CHANNEL_V_PWM , self.

get_desired_v_pwm ()))

879 return

880

881 ##########

882 # gui

883 ##########

884

885 def create_gui(self):

886 """

887 Create the GUI.

888 """

889 self._create_gui_device_label ()

890 self._create_gui_frame_desired ()

891 self._create_gui_frame_measured ()

892 self._create_gui_frame_other ()

893 self._create_gui_frame_plot ()

894 self._create_gui_frame_buttons ()
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895

896 def _create_gui_device_label(self):

897 device_label = tk.Label(self)

898 device_label["text"] = (’Board Number ’ + str(self.board_num)

899 + ": " + self.device_info.product_name

900 + " (" + self.device_info.unique_id + "

)")

901 device_label.pack(fill=tk.NONE , anchor=tk.NW)

902 return

903

904 def _create_gui_frame_desired(self):

905 return

906

907 def _create_gui_frame_measured(self):

908 frame = tk.LabelFrame(self , text="Measured", padx=30, pady =3)

909 frame.pack(fill=tk.X, anchor=tk.W, padx=3, pady =3)

910 return self._create_gui_frame_measured_helper(frame)

911

912 def _create_gui_frame_measured_helper(self , parent_frame):

913 # measured current

914 measured_current_label = tk.Label(parent_frame , text="current:"

)

915 measured_current_label.grid(row=0, column=0, sticky=tk.W)

916 self.master.measured_current_value = tk.Label(parent_frame)

917 self.master.measured_current_value.grid(row=0, column =1)

918

919 # measured voltage

920 measured_voltage_label = tk.Label(parent_frame , text="voltage:"

)

921 measured_voltage_label.grid(row=1, column=0, sticky=tk.W)

922 self.master.measured_voltage_value = tk.Label(parent_frame)

923 self.master.measured_voltage_value.grid(row=1, column =1)

924

925 # v_pwm

926 actual_v_pwm_label = tk.Label(parent_frame , text="v_pwm:")

927 actual_v_pwm_label.grid(row=2, column=0, sticky=tk.W)
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928 self.master.actual_v_pwm_value = tk.Label(parent_frame)

929 self.master.actual_v_pwm_value.grid(row=2, column =1)

930 return

931

932 def _create_gui_frame_other(self):

933 frame_other = tk.LabelFrame(self , text="Other", padx=30, pady

=3)

934 frame_other.pack(fill=tk.X, anchor=tk.W, padx=3, pady =3)

935

936 # voltage buffer cell bottom

937 voltage_buffer_bottom_label = tk.Label(frame_other , text="

buffer bottom:")

938 voltage_buffer_bottom_label.grid(row=3, column=0, sticky=tk.W)

939 self.master.voltage_buffer_bottom_value = tk.Label(frame_other)

940 self.master.voltage_buffer_bottom_value.grid(row=3, column =1)

941

942 # voltage buffer cell top

943 voltage_buffer_top_label = tk.Label(frame_other , text="buffer

top:")

944 voltage_buffer_top_label.grid(row=4, column=0, sticky=tk.W)

945 self.master.voltage_buffer_top_value = tk.Label(frame_other)

946 self.master.voltage_buffer_top_value.grid(row=4, column =1)

947 return

948

949 def _create_gui_frame_plot(self):

950 self.fig = plt.figure ()

951 self.fig.tight_layout ()

952 self.canvas = FigureCanvasTkAgg(self.fig , self)

953 self.canvas.get_tk_widget ().pack(side="top", fill=’both’,

expand=True)

954

955 self.ax_voltage = self.fig.add_subplot (111)

956 self.ax_voltage.set_xlabel(’time [s]’)

957 self.ax_voltage.set_ylabel(’cell voltage [V]’)

958 self.ax_voltage.tick_params(axis=’y’, colors=’blue’)

959 self.ax_voltage.yaxis.label.set_color(’blue’)
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960 self.line_voltage , = self.ax_voltage.plot([], [], ’b’)

961

962 self.ax_current = self.ax_voltage.twinx()

963 self.ax_current.set_ylabel(’cell current [A]’)

964 self.ax_current.tick_params(axis=’y’, colors=’red’)

965 self.ax_current.yaxis.label.set_color(’red’)

966 self.line_current , = self.ax_current.plot([], [], ’r’)

967 return

968

969 def _create_gui_frame_buttons(self):

970 frame_buttons = tk.Frame(self)

971 frame_buttons.pack(fill=tk.X, side=tk.RIGHT , anchor=tk.SE)

972

973 # start button

974 self.master.start_button = tk.Button(frame_buttons , text="Start

", bg=’green ’)

975 self.master.start_button["command"] = self.start

976 self.master.start_button.grid(row=0, column=0, padx=3, pady =3)

977

978 # quit button

979 quit_button = tk.Button(frame_buttons , text="Quit")

980 quit_button["command"] = self.quit

981 quit_button.grid(row=0, column=1, padx=3, pady =3)

982 return

983

984 ##########

985 # gui button callbacks

986 ##########

987

988 def start(self):

989 """

990 Callback for start_button.

991 """

992 # measure and verify voltages of cells in range

993 measured_voltage = self.measure_voltage(CHANNEL_CELL_UNDER_TEST

)
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994 if not between(measured_voltage , ABS_MIN_VOLTAGE ,

ABS_MAX_VOLTAGE):

995 tk.messagebox.showerror("Error", ("Cell voltage reading

from channel {} is {}."

996 " Please ensure a valid connection

and try again.")

997 .format(CHANNEL_CELL_UNDER_TEST ,

measured_voltage))

998 return

999

1000 """

1001 voltage_buffer_bottom = self.measure_voltage(

CHANNEL_BUFFER_BOTTOM)

1002 if not between(voltage_buffer_bottom , ABS_MIN_VOLTAGE_BUFFER ,

ABS_MAX_VOLTAGE_BUFFER):

1003 tk.messagebox.showerror ("Error", ("Cell voltage reading

from channel {} is {}."

1004 " Please ensure a valid connection

and try again .")

1005 .format(CHANNEL_BUFFER_BOTTOM ,

voltage_buffer_bottom))

1006 return

1007

1008 voltage_buffer_top = self.measure_voltage(CHANNEL_BUFFER_TOP)

1009 if not between(voltage_buffer_top , ABS_MIN_VOLTAGE_BUFFER ,

ABS_MAX_VOLTAGE_BUFFER):

1010 tk.messagebox.showerror ("Error", ("Cell voltage reading

from channel {} is {}."

1011 " Please ensure a valid connection

and try again .")

1012 .format(CHANNEL_BUFFER_TOP ,

voltage_buffer_top))

1013 return

1014 """

1015

1016 self.controls_running = True
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1017 self.master.start_button["command"] = self.stop

1018 self.master.start_button["text"] = "Stop"

1019 self.master.start_button["bg"] = ’red’

1020 return

1021

1022 def stop(self):

1023 """

1024 Callback for stop button.

1025 """

1026 self.controls_running = False

1027 self.master.start_button["command"] = self.start

1028 self.master.start_button["text"] = "Start"

1029 self.master.start_button["bg"] = ’green’

1030 return

1031

1032 def quit(self):

1033 """

1034 Callback for quit button.

1035 """

1036 if tk.messagebox.askokcancel("Quit", "Are you sure you want to

quit?"):

1037 self.stop()

1038 self.program_quit = True

1039 self._quit ()

1040

1041 def _quit(self):

1042 if self.thread_controls not in threading.enumerate ():

1043 self.master.destroy ()

1044 else:

1045 self.after (10, self._quit) # check again in 10 ms to

prevent deadlock

1046 return

1047

1048

1049 ##########

1050 # ManualTester class
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1051 ##########

1052

1053 class ManualTester(Tester):

1054 """

1055 Manual control version of the program.

1056 """

1057

1058 def __init__(self):

1059 super().__init__ ()

1060 self.queue = deque([ SetConstantCurrentUntilMeasuredVoltage(

NOMINAL_CURRENT , ComparisonOperator.false)], maxlen =1)

1061 self.check_rep ()

1062

1063 ##########

1064 # gui

1065 ##########

1066

1067 def _create_gui_frame_desired(self):

1068 self.frame_desired_measured = tk.Frame(self)

1069 self.frame_desired_measured.pack(fill=tk.X)

1070 self.frame_desired_measured.grid_columnconfigure (0, weight=1,

uniform="group1")

1071 self.frame_desired_measured.grid_columnconfigure (1, weight=1,

uniform="group1")

1072 self.frame_desired_measured.grid_rowconfigure (0, weight =1)

1073

1074 parent_frame = tk.LabelFrame(self.frame_desired_measured , text=

"Desired", padx=30, pady =3)

1075 parent_frame.grid(row=0, column=0, sticky="nsew", padx=3, pady

=3)

1076

1077 radio_button_options = [("Current (A):", "cc"), ("Voltage (V):"

, "vc")]

1078 for row , (text , value) in enumerate(radio_button_options):

1079 rb = tk.Radiobutton(parent_frame , text=text ,
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1080 variable=self.control_mode_var , value=

value , command=self._radio_command)

1081 rb.grid(row=row , column=0, sticky=tk.W)

1082

1083 # desired current

1084 float_icmd = self.register(self.validate_desired_current_entry)

1085 self.master.desired_current_entry = tk.Entry(

1086 parent_frame , validate=’key’, validatecommand =(float_icmd ,

’%P’), width =8)

1087 self.master.desired_current_entry.grid(row=0, column =1)

1088 self.master.desired_current_entry.insert(0, display_float(self.

get_desired_current (), 3))

1089 self.master.desired_current_entry.bind("<Return >", self.

update_desired_current_entry)

1090 self.master.desired_current_entry.bind("<FocusOut >", self.

sync_desired_current_entry)

1091

1092 self.master.desired_current_update_button = tk.Button(

parent_frame , text="Update")

1093 self.master.desired_current_update_button["command"] = self.

update_desired_current_entry

1094 self.master.desired_current_update_button.grid(row=0, column=2,

padx=3, pady =3)

1095

1096 # desired voltage

1097 float_vcmd = self.register(self.validate_desired_voltage_entry)

1098 self.master.desired_voltage_entry = tk.Entry(

1099 parent_frame , validate=’key’, validatecommand =(float_vcmd ,

’%P’), width =8)

1100 self.master.desired_voltage_entry.grid(row=1, column =1)

1101 self.master.desired_voltage_entry.insert(0, display_float(self.

get_desired_voltage (), 3))

1102 self.master.desired_voltage_entry.bind("<Return >", self.

update_desired_voltage_entry)

1103 self.master.desired_voltage_entry.bind("<FocusOut >", self.

sync_desired_voltage_entry)
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1104

1105 self.master.desired_voltage_update_button = tk.Button(

parent_frame , text="Update")

1106 self.master.desired_voltage_update_button["command"] = self.

update_desired_voltage_entry

1107 self.master.desired_voltage_update_button.grid(row=1, column=2,

padx=3, pady =3)

1108 return

1109

1110 def _create_gui_frame_measured(self):

1111 frame = tk.LabelFrame(self.frame_desired_measured , text="

Measured", padx=30, pady =3)

1112 frame.grid(row=0, column=1, sticky="nsew", padx=3, pady =3)

1113 return self._create_gui_frame_measured_helper(frame)

1114

1115 ##########

1116 # gui other

1117 ##########

1118

1119 @staticmethod

1120 def validate_desired_current_entry(entry):

1121 """

1122 Return True if the entry is blank , a period , a minus sign , a

minus sign followed by a period ,

1123 or a number , else False.

1124 """

1125 # the user may not have started typing , or could be typing in a

decimal or negative number

1126 if entry == ’’ or entry == ’.’ or entry == ’-’ or entry == ’-.’

or is_numeric(entry):

1127 return True

1128 return False

1129

1130 @staticmethod

1131 def validate_desired_voltage_entry(entry):

1132 """
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1133 Return True if the entry is blank , or a positive number , else

False.

1134 """

1135 # the user may not have started typing

1136 if entry == ’’ or (is_numeric(entry) and float(entry) > 0):

1137 return True

1138 return False

1139

1140 def update_desired_current_entry(self , event=None):

1141 """

1142 Add to queue constant current command.

1143 Clip and display contents of desired_current_entry to 3 decimal

places if necessary.

1144 """

1145 desired_current_entry_text = self.master.desired_current_entry.

get()

1146 if is_numeric(desired_current_entry_text):

1147 desired_current = clip(float(desired_current_entry_text),

MIN_CURRENT , MAX_CURRENT)

1148 self.lock.acquire ()

1149 self.queue.append(SetConstantCurrentUntilMeasuredVoltage(

desired_current , ComparisonOperator.false))

1150 self.lock.release ()

1151 self.replace_entry_text(self.master.desired_current_entry ,

display_float(desired_current , 3))

1152 self.check_rep ()

1153

1154 def sync_desired_current_entry(self , event=None):

1155 """

1156 Update desired_current_entry value to that of self.

desired_current.

1157 """

1158 self.replace_entry_text(self.master.desired_current_entry ,

display_float(self.get_desired_current (), 3))

1159 self.check_rep ()

1160
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1161 def update_desired_voltage_entry(self , event=None):

1162 """

1163 Add to queue constant voltage command.

1164 Clip and display contents of desired_voltage_entry to 3 decimal

places if necessary.

1165 """

1166 desired_voltage_entry_text = self.master.desired_voltage_entry.

get()

1167 if is_numeric(desired_voltage_entry_text):

1168 desired_voltage = clip(float(desired_voltage_entry_text),

MIN_VOLTAGE , MAX_VOLTAGE)

1169 self.lock.acquire ()

1170 self.queue.append(SetConstantVoltageUntilMeasuredVoltage(

desired_voltage , ComparisonOperator.false , abs_current_limit =10))

1171 self.lock.release ()

1172 self.replace_entry_text(self.master.desired_voltage_entry ,

display_float(desired_voltage , 3))

1173 self.check_rep ()

1174

1175 def sync_desired_voltage_entry(self , event=None):

1176 """

1177 Update desired_voltage_entry value to that of self.

desired_voltage.

1178 """

1179 self.replace_entry_text(self.master.desired_voltage_entry ,

display_float(self.get_desired_voltage (), 3))

1180 self.check_rep ()

1181

1182 @staticmethod

1183 def replace_entry_text(entry , new_text):

1184 """

1185 Replace the text in entry with new_text.

1186 """

1187 entry.delete(0, tk.END)

1188 entry.insert(0, str(new_text))

1189 return
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1190

1191 def _radio_command(self):

1192 if self.control_mode_var.get() == "cc":

1193 self.update_desired_current_entry ()

1194 else: # vc

1195 self.update_desired_voltage_entry ()

1196

1197

1198 ##########

1199 # CycleTester class

1200 ##########

1201

1202 class CycleTester(Tester):

1203 """

1204 Cycling version of the program.

1205 """

1206

1207 def __init__(self):

1208 super().__init__ ()

1209

1210 # no GUI for this , so change sequences and cycling_commands to

what you want here

1211 sequences = {

1212 1: SetConstantVoltageUntilMeasuredVoltage (3.4,

ComparisonOperator.between , 3.39, 3.41, abs_current_limit =5),

1213 2: SetConstantCurrentUntilMeasuredVoltage (-10,

ComparisonOperator.less_than_equal , 3.05) ,

1214 3: SetConstantCurrentUntilMeasuredVoltage (10,

ComparisonOperator.greater_than_equal , 3.5),

1215 4: SetConstantVoltageUntilMeasuredCurrent (3.8,

ComparisonOperator.less_than_equal , 2),

1216 5: SetConstantCurrentUntilMeasuredVoltage (-5,

ComparisonOperator.less_than_equal , 3.4),

1217 6: SetConstantVoltageUntilMeasuredVoltage (3.4,

ComparisonOperator.false),

1218 }
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1219 cycling_commands = [

1220 (1, 1, 1), # (start_seq , end_seq , repeat)

1221 (2, 4, 1),

1222 (5, 6, 1),

1223 ]

1224

1225 """

1226 sequences = {

1227 1: SetConstantVoltage (3.4, 5),

1228 2: SetConstantCurrentUntilMeasuredVoltage (-10,

ComparisonOperator.less_than_equal , 1.5),

1229 3: SetConstantVoltageUntilMeasuredCurrent (1.5,

ComparisonOperator.greater_than_equal , -0.025),

1230 4: SetConstantCurrentUntilMeasuredVoltage (10,

ComparisonOperator.greater_than_equal , 3.8),

1231 5: SetConstantVoltageUntilMeasuredCurrent (3.8,

ComparisonOperator.less_than_equal , 1),

1232 6: SetConstantCurrentUntilMeasuredVoltage (-10,

ComparisonOperator.less_than_equal , 3.4),

1233 7: SetConstantVoltage (3.4, 5),

1234 }

1235 cycling_commands = [

1236 (1, 1, 1), # (start_seq , end_seq , repeat)

1237 (2, 5, 1),

1238 (6, 7, 1),

1239 ]

1240 """

1241

1242 for (start_seq , end_seq , repeat) in cycling_commands:

1243 for _ in range(repeat):

1244 for i in range(start_seq , end_seq +1):

1245 self.queue.append(sequences[i])

1246

1247 self.check_rep ()

1248

1249
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1250 ##########

1251 # CyclingCommand and ComparisonOperator classes

1252 ##########

1253

1254 class CyclingCommand(abc.ABC):

1255 @abc.abstractmethod

1256 def execute(self , elapsed_time: float , tester: Tester) -> bool:

1257 pass

1258

1259

1260 class SetConstantCurrentUntilMeasuredVoltage(CyclingCommand):

1261 def __init__(self , desired_current: float , comparison_operator , *

operator_args):

1262 assert desired_current >= MIN_CURRENT

1263 assert desired_current <= MAX_CURRENT

1264

1265 self.desired_current = desired_current

1266 self.comparison_operator = comparison_operator

1267 self.operator_args = operator_args

1268

1269 def execute(self , elapsed_time , tester):

1270 if elapsed_time == 0:

1271 tester.set_control_mode(Tester.ControlMode.current)

1272 tester.set_desired_current(self.desired_current)

1273 return self.comparison_operator(tester.get_measured_voltage (),

*self.operator_args)

1274

1275

1276 class SetConstantVoltageUntilMeasuredVoltage(CyclingCommand):

1277 def __init__(self , desired_voltage: float , comparison_operator , *

operator_args , abs_current_limit=abs(MAX_CURRENT)):

1278 assert desired_voltage >= MIN_VOLTAGE

1279 assert desired_voltage <= MAX_VOLTAGE

1280 assert abs_current_limit >= MIN_CURRENT

1281 assert abs_current_limit <= MAX_CURRENT

1282
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1283 self.desired_voltage = desired_voltage

1284 self.comparison_operator = comparison_operator

1285 self.operator_args = operator_args

1286 self.abs_current_limit = abs_current_limit

1287

1288 def execute(self , elapsed_time , tester):

1289 if elapsed_time == 0:

1290 tester.set_control_mode(Tester.ControlMode.voltage)

1291 tester.set_desired_voltage(self.desired_voltage)

1292 tester.set_abs_current_limit(self.abs_current_limit)

1293 return self.comparison_operator(tester.get_measured_voltage (),

*self.operator_args)

1294

1295

1296 class SetConstantVoltageUntilMeasuredCurrent(CyclingCommand):

1297 def __init__(self , desired_voltage: float , comparison_operator , *

operator_args):

1298 assert desired_voltage >= MIN_VOLTAGE

1299 assert desired_voltage <= MAX_VOLTAGE

1300

1301 self.desired_voltage = desired_voltage

1302 self.comparison_operator = comparison_operator

1303 self.operator_args = operator_args

1304

1305 def execute(self , elapsed_time , tester):

1306 if elapsed_time == 0:

1307 tester.set_control_mode(Tester.ControlMode.voltage)

1308 tester.set_desired_voltage(self.desired_voltage)

1309 tester.set_abs_current_limit(abs(MAX_CURRENT))

1310 return self.comparison_operator(tester.get_measured_current (),

*self.operator_args)

1311

1312

1313 class ComparisonOperator:

1314 @staticmethod

1315 def less_than(a, b) -> bool:
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1316 """

1317 Return True if a < b else False.

1318 """

1319 return operator.lt(a, b)

1320

1321 @staticmethod

1322 def less_than_equal(a, b) -> bool:

1323 """

1324 Return True if a <= b else False.

1325 """

1326 return operator.le(a, b)

1327

1328 @staticmethod

1329 def greater_than_equal(a, b) -> bool:

1330 """

1331 Return True if a >= b else False.

1332 """

1333 return operator.ge(a, b)

1334

1335 @staticmethod

1336 def greater_than(a, b) -> bool:

1337 """

1338 Return True if a > b else False.

1339 """

1340 return operator.gt(a, b)

1341

1342 @staticmethod

1343 def between(val , min_val , max_val) -> bool:

1344 """

1345 Return True if min_val <= val <= max_val , else False.

1346 """

1347 return min_val <= val <= max_val

1348

1349 @staticmethod

1350 def false(val) -> bool:

1351 """
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1352 Return False.

1353 """

1354 return False

1355

1356

1357 ##########

1358 # main

1359 ##########

1360

1361 if __name__ == "__main__":

1362 if sys.version_info < (3, 8):

1363 raise Exception(’Python 3.8 or higher required.’)

1364

1365 # logging

1366 logger = logging.getLogger(__name__)

1367 logger.setLevel(logging.DEBUG)

1368 f_handler = logging.FileHandler(’log123.log’)

1369 f_format = logging.Formatter(’%( asctime)s - %( levelname)s - %(

message)s’)

1370 f_handler.setFormatter(f_format)

1371 logger.addHandler(f_handler)

1372

1373 logger.info("Hello , World!")

1374

1375 if ’-cycle’ in sys.argv:

1376 tester1 = CycleTester ()

1377 else:

1378 tester1 = ManualTester ()

1379 tester1.master.mainloop ()

1380

1381 logger.info("Bye!")

Listing E.1: Source code for the cell tester circuit.
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