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Abstract

Sepsis is a life-threatening condition that occurs when the body’s normal response to
an infection is out of balance. A key part of managing sepsis involves the adminis-
tration of intravenous fluids and vasopressors, but prescribing the correct balance of
interventions is challenging since both under- and over-resuscitation can lead to ad-
verse outcomes. While many retrospective studies have attempted to understand the
relationship between sepsis treatment, fluid overload, mortality, and other outcomes,
most are correlation-based and cannot actually estimate the causal effects of inter-
vention. Prospective randomized clinical trials allow researchers to test the effects of
alternative therapies more directly, but these types of studies tend to span multiple
years and recent results regarding optimal regimes have been conflicting.

In this thesis, we use methods from causal inference to predict outcomes in sep-
sis patients under different fluid and vasopressor strategies. Specifically, we explore
a recurrent neural network approach to g-computation, a technique that allows us
to estimate effects under treatments that are dynamic and time-varying. Our work
builds on a previous sequential deep learning implementation known as G-Net. We
evaluate G-Net using synthetic physiological data and show that it outperforms tra-
ditional linear regression models in predicting patient trajectories under alternative
interventions. We then adapt and apply the improved architecture for analyzing
outcomes under counterfactual treatment strategies in a real-world cohort of sepsis
patients, using observational data collected from the intensive care unit. Our results
demonstrate that G-Net is able to generate reasonable counterfactual estimates under
alternative regimes.
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Chapter 1

Introduction

Sepsis occurs when the body undergoes an extreme response to infection [23]. The

mechanisms normally used to fight off the infection trigger a chain of adverse events

in the body, leading to severe multiple organ damage and possibly even death. The

number of sepsis cases in the United States is at least 1.7 million per year, with a

mortality rate of 15% to 30% [5, 25]. Sepsis accounts for one-third of all patients who

die in a hospital setting [5].

A key part to managing septic patients is restoring tissue perfusion through the

administration of intravenous fluids and/or vasopressors [7]. Prescribing the optimal

balance of fluids and vasopressors remains challenging, since both under- and over-

resuscitation can lead to adverse outcomes. Under-resuscitation from fluids may

insufficiently treat the septic shock condition, ultimately resulting in multi-organ

failure, while over-resuscitation from fluids may harm the cardio-respiratory systems

and cause pulmonary and peripheral edema. Vasopressors are typically administered

when patients’ blood pressure fails to respond to fluids, but they are known to have

harmful effects on patients and can induce arrhythmias if overdosed [16].

Analyzing the effects of fluid treatment strategies in sepsis patients has been a

recent area of interest for researchers and clinicians aiming to improve outcomes

for the condition. Although there have been many retrospective studies looking at

the relationship between fluid interventions, fluid overload, and mortality, most of

these use correlational approaches like regression analyses which do not adjust for
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time-varying confounders and cannot estimate the causal effects of fluid therapy on

sepsis prognosis [8, 17]. While prospective studies can better tease apart causal

relationships, they often take many years to execute and are very costly in terms of

time and resources [1, 27, 30]. Consequently, conflicting results from various clinical

trials across the last two decades has hindered the adoption of standardized protocol-

based intervention guidelines for sepsis, resulting in substantial variations in treatment

decisions that depend on the treating clinician.

In our study, we developed a deep sequential modeling approach to g-computation

for estimating the effects of fluid and vasopressor strategies among sepsis patients ad-

mitted to the intensive care unit (ICU). G-computation is a causal inference method

for estimating expected counterfactual outcomes under dynamic, time-varying treat-

ment strategies. While previous research using g-computation employed linear regres-

sion models in their implementations, we propose using recurrent neural networks to

better capture the complex temporal dependencies between covariates in the patient

history.

Our work builds on prior work by Li et al. [18] to further develop G-Net, an

RNN-based approach to g-computation, by experimenting with different architec-

tural designs for the model, investigating modeling issues encountered in real-world

(as opposed to synthetic) data, and applying the model to a practical clinical setting.

To evaluate G-Net’s performance using different architectural designs, we conducted

experiments on simulated data from CVSim, a program that simulates the human

cardiovascular system [10]. Finally, we applied G-Net to predicting outcomes of sep-

sis patients in the ICU under alternative fluid resuscitation treatment regimes using

real-world observational data from the MIMIC database [15]. The alternative treat-

ment regimes were defined based on guidelines from CLOVERS and ProCESS, two

well-known randomized clinical trials studying fluid resuscitation strategies in sepsis

patients [1, 30].

The rest of this chapter focuses on setting up the problem of counterfactual pre-

diction and describing how g-computation can be used to carry out this task. We

conclude by outlining the contributions of our work and the organization of this thesis.
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1.1 G-Computation for Counterfactual Prediction

In the real world, we can only observe one set of outcomes (i.e. those that actually

occurred under the observational regime), but often we might wonder what might have

happened had a different course of action been followed. This is particularly important

for clinicians who may have to choose between multiple treatment options for their

patients but do not have the luxury of testing all strategies before making a decision.

Sepsis patients, who often display heterogeneous responses to the same therapies, may

particularly benefit from clinicians being able to predict the effects of these alternative

intervention strategies. The task described can be formally classified as counterfactual

prediction, in which the goal is to estimate the trajectories of potential outcomes under

different interventions given previous observed covariate history [11, 28].

Prediction of outcomes as a function of therapy is difficult due to the fact that

the outcomes depend on complex interactions among multiple time-varying, dynamic

treatments and evolving patient covariate history. Time-varying describes treatments

that comprise decisions at multiple time points while dynamic indicates that the in-

tervention at each time point is dependent on the history up to that time point. While

administering large volumes of fluids to septic patients may be required to increase

their blood pressure and promote blood perfusion through their organs, such strategies

can also lead to fluid overload which result in their own set of adverse effects [7, 16].

The regime that clinicians adopt for a given septic patient will likely involve decisions

at multiple timesteps on how much fluid to administer (time-varying), and the vol-

ume ultimately administered will strongly depend on the patient’s observed history

up until the present (dynamic). As such, any method used to address problems in-

volving counterfactual prediction must be able to account for underlying relationships

between intervention regimes and other variables of interest.

Our study focuses on using g-computation to predict the effects of alternative

treatment strategies on outcomes in sepsis patients. Given the data under the observa-

tional regime, g-computation first learns the distribution of covariates at each timestep

conditioned on the history of covariates and treatments up until that timestep, and
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then estimates the counterfactual outcomes by simulating the data forward in time

under different treatment strategies [11].

Typically, the conditional distribution of covariates on observed history is esti-

mated via regression models. While any model could theoretically be used as input

to g-computation, most prior work has focused on generalized linear regression mod-

els (GLMs), which are unable to capture temporal dependencies present in the data.

A recent study by Li et al. proposed a recurrent neural network (RNN) implementa-

tion of G-computation (G-Net) and evaluated its performance using synthetic patient

data generated by CVSim, a well-established mechanistic model of the cardiovascular

system [18]. They also applied G-Net to predict diuretics onset as a fluid overload

indicator on real-world ICU data, but their work was limited due to the fact that

diuretics can be prescribed for a number of reasons (e.g. a patient on mechanical

ventilation) that are not directly related to fluid overload; this resulted in the model

outputs being difficult to interpret. In addition, their implementation did not ac-

count for the fact that real-world ICU data can be sparse and irregularly sampled,

a challenge frequently encountered in the development of deep sequential models for

clinical applications [20].

1.2 Contribution

In our study, we investigated various architectural designs and modeling techniques

for G-Net, a deep sequential modeling approach based on g-computation for predicting

outcomes under dynamic, time-varying treatment regimes. We tested and validated

G-Net’s performance under different architectural designs using CVSim and applied

G-Net to estimating effects of fluids and vasopressor strategies among sepsis patients

in the ICU. Evaluation on synthetic data (CVSim) was important to assess the per-

formance of G-Net in predicting outcomes of alternative regimes, as real-world data

only contains information about outcomes under the observational regime. In other

words, there is no “ground-truth” counterfactual dataset that can be used for testing,

and we must rely on clinical expertise to evaluate the predictions made by the model

20



under the different interventions of interest. The use of synthetic data can provide

more rigorous evidence on the performance of G-Net in the task of counterfactual

prediction. The contributions of this thesis are outlined as follows:

1. Improvements to G-Net for counterfactual prediction on synthetic

data. We extended the framework introduced by Li et al. [18], which is capa-

ble of capturing complex temporal dependencies among multiple time-varying

variables. To test the model, we used synthetic data generated by CVSim. A

component of this work involved refining the process of data generation to bet-

ter align with real-world physiological observations, which subsequently aided

in improving the training and prediction performance of G-Net.

2. Adaptation of G-Net for clinical applications. We explored various mod-

ifications to adapt G-Net for counterfactual estimation on real-world patient

data, such as testing different architectures and experimenting with methods

for modeling missingness. The clinical dataset we focused on was a retrospec-

tive cohort of sepsis patients from the ICU, which we defined and compiled as

part of our work here.

3. Analysis of counterfactual treatment strategies for sepsis patients. We

applied our RNN-based g-computation approach to predict adverse outcomes

(e.g. fluid overload and mortality) as a function of fluid management strategies

in sepsis patients. Unlike previous studies on sepsis interventions that focused

on correlational relationships between fluid intervention strategies and sepsis

prognosis, this work used a causal inference approach that adjusts for time-

varying confounders in order to provide insight into the causal role of different

treatment regimes on outcomes in sepsis patients.

1.3 Thesis Organization

The next chapter provides further background on sepsis and its treatment, in addition

to describing previous studies using g-computation and deep neural networks for
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counterfactual prediction. Chapter 3 formalizes the counterfactual prediction problem

and outlines the g-computation framework in greater depth. This helps set up Chapter

4, which discusses the implementation, training, and simulation of G-Net.

We first tested and validated G-Net on a synthetic dataset generated by CVSim;

the data generation process and subsequent G-Net experiments using CVSim data are

addressed in Chapters 5 and 6, respectively. In Chapter 7, we provide details on the

cohort design of sepsis patients used in our study, while in Chapter 8, we report the

results of performing predictive check analyses with G-Net on this cohort. In Chapter

9, we present the outcome predictions made by G-Net under various counterfactual

regimes. Finally, we conclude with a summary of our results and future research

directions in Chapter 10.
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Chapter 2

Related Work

In this chapter, we provide additional background on sepsis treatment research that

helps better motivate our clinical problem of interest. We also discuss previous studies

employing g-computation for clinical applications and consider recent progress in

developing deep learning models for counterfactual prediction. Finally, we introduce

previous work on the G-Net framework in order to set up the foundation for our

contributions.

2.1 Improving Sepsis Treatment Strategies

There have been multiple clinical trials that have attempted to study optimal treat-

ment strategies for sepsis, with the goal of developing a set of improved intervention

guidelines. For example, in 2001, Rivers et al. reported groundbreaking results on the

effectiveness of early-goal directed therapy (EGDT) from a randomized trial on pa-

tients with severe sepsis or septic shock, which subsequently led to clinicians pursuing

more liberal fluid administration strategies for treating septic patients [27].

A follow-up randomized study on protocol-based care for early septic shock (Pro-

CESS), conducted more than a decade later, aimed to investigate whether the EGDT

findings were generalizable and how the EGDT protocol compared against (1) protocol-

based standard therapy that did not require the placement of a central venous catheter,

administration of inotropes, or blood transfusions and (2) the usual care [1]. The re-
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sults suggested that protocol-based treatments did not necessarily improve outcomes

in sepsis patients diagnosed in emergency departments. This is consistent with other

randomized studies following Rivers et al. that have shown no benefits of adminis-

tering large volumes of fluid over standard treatment practices and is supported by a

growing body of observational literature [31].

More recently, clinical trials have increasingly focused on investigating strategies

that limit fluid administration in the early intervention of sepsis. The CLOVERS

study, which began in 2018 and was targeted for recent completion in June 2021,

tested two treatment regimes, early use of vasopressors (and thus restricted use of

fluids) or early use of liberal fluids, in affecting downstream outcomes in patients

presenting in the ICU with sepsis-induced hypotension [30]. The findings of this

study have yet to become available, as it frequently takes several years for trials

examining fluid resuscitation strategies to be executed and validated.

Because of the lengthy timeline required to carry out prospective clinical trials,

Shahn et al. proposed using causal inference techniques to gain some insight into sep-

sis treatment decisions in the meantime [31]. They performed a retrospective cohort

study of ICU patients with sepsis to estimate 30-day mortality outcomes resulting

from administering different volumes of fluid during the first 24 hours of ICU care.

They used a dynamic marginal structural model (MSM), adjusting for confounding

between treatment strategy and patient characteristics, and found that there was a

beneficial effect of fluid resuscitation caps on 30-day mortality.

While their study demonstrated the potential for causal inference in analyzing

treatment outcomes and informing the findings of past and future clinical trials, the

utility of their results is limited due to the restricted ability of MSMs in making

predictions for dynamic, time-varying intervention strategies. The model they used

assumes that the optimal dynamic treatment regime would be chosen among a mod-

erate set of enforceable regimes, which were selected based on only a subset of past

covariate history [31]. A method known as g-computation, on the other hand, can

make predictions using the entire covariate and treatment history, which provides a

richer set of information to inform those predictions.
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2.2 Applications of the Parametric G-Formula

G-computation is an approach first proposed by Robins et al. for estimating time-

varying treatment effects [28], though for many years its applications were limited by

the lack of sufficient computational software and of rich clinical time-series data. In

one of the first major studies applying the parametric g-formula to an epidemiological

problem, Taubman et al. aimed to predict the population risk of coronary heart

disease under a number of hypothetical lifestyle interventions, including no smoking,

exercising at least 30 minutes a day, maintaining a healthy diet, consuming at least

5 grams of alcohol a day, maintaining a lower body mass index, a combination of the

previous 5 interventions, and no intervention [33]. This was a retrospective cohort

study using data from the Nurses’ Health Study collected between 1982 and 2002,

and the results illustrated the potential for the g-formula to be used in estimating the

effects of counterfactual treatment regimes that are time-varying and dynamic.

The g-computation algorithm, described further in Chapter 3, requires arbitrary

regression models to learn observational covariate distributions conditioned on past

history. While previous studies, including Taubman et al., have mostly relied on

GLMs for this task, there is no conceptual barrier to substituting these models with

more complex ones.

2.3 Deep Learning for Counterfactual Prediction

Due to their ability to handle complex time dependencies between variables, there has

been increased interest in applying RNNs to the problem of estimating time-varying

treatment effects. Bica et al. introduced the Counterfactual Recurrent Network

(CRN), which applies domain adversarial training to build treatment-invariant rep-

resentations of patient history for estimating effects of counterfactual intervention

strategies over time [4]. Prior to that, Lim et al. explored the use of RNNs in im-

plementing marginal structural models (so-called recurrent MSMs) for counterfactual

predictions and demonstrated that their model outperformed linear baselines and tra-
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ditional MSM approaches [19]. Recent research by Atan et al., Alaa et al., and Yoon

et al. have also looked at predicting outcomes under counterfactual strategies given

data under the observational regime [2, 3, 37].

Although these techniques show promise in estimating treatment effects, they are

restricted to either learning point exposures and/or making outcome predictions for

time-varying treatment strategies that are static, whereas we are interested in pre-

dictions for dynamic regimes as well. An example of a static treatment strategy

might be “give 1 liter fluid each hour for the next 3 hours” as it does not depend

on recent covariate history. Contrast this with a dynamic strategy, which might say

“for each hour in the next 3 hours, if blood pressure is less than 65, give 1 liter

fluids, otherwise give 0 liters.” Methods like history-adjusted MSMs would only be

able to estimate outcomes of interest under the first strategy, but not the second,

while g-computation could handle both. G-computation relies on different modeling

assumptions than MSMs, and can handle high dimensional health history in partic-

ular. It is also able to estimate the distribution of counterfactual outcomes under a

time-varying treatment strategy, which is not as straightforward to do with MSMs.

In a previous study by Schulam et al., researchers used Gaussian processes (GPs)

to implement a continuous time version of g-computation; however, they only con-

sidered static time-varying strategies when developing their model [29]. Xu et al.

also explored GPs to predict individual patient-level treatment response curves, but

their evaluation was limited to predictive checks on a held-out test set derived from

real-world ICU data; they did not examine the performance of their model on coun-

terfactual predictions [36]. Another limitation of both studies is the use of GPs, which

are intractable for large datasets and have high time complexity as the number of vari-

ables increases. RNNs, and especially long short-term memory networks (LSTMs), on

the other hand, are more scalable and better able to handle higher-dimensional data;

indeed, they have been shown to achieve start-of-the-art performance on a variety

of time series regression tasks [6, 34, 35]. But despite these successes, to the best

of our knowledge, there have not been any “deep" implementations of g-computation

attempted yet.
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2.4 Background on G-Net

Previous research by Li et al. developed a flexible sequential deep learning framework

for g-computation to estimate the conditional distribution of covariates given patient

history at each time point and to simulate the covariates under various treatment

strategies [18]. Simulating the joint distribution is difficult when covariates possess

different distribution types (e.g. categorical versus continuous), so the covariates were

separated into groups or types and sequentially simulated, group by group.

In their study, Li et al. used two covariate groups, one for categorical variables and

one for continuous variables, and explored four different neural network architectures

involving different combinations of linear and LSTM layers for computing represen-

tations of patient history and modeling the distributions of the covariate groups [18].

The authors found that the sequential deep learning models, i.e. employing LSTMs to

model conditional covariate distributions, demonstrated improved performance over

the linear regression baseline on synthetic patient data. Our work builds on this ini-

tial implementation of G-Net by refining the model architecture and adapting it for

real-world use cases.
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Chapter 3

G-Computation Overview and

Problem Setup

Counterfactual prediction is useful in scenarios that necessitate individuals to make

decisions under uncertainty by allowing them to estimate the effects of the various

possible courses of action. Depending on the scope of the problem, there are many

methods that could potentially be employed for the task of counterfactual predic-

tion. When the treatment strategies being studied are time-varying, we can employ

a class of generalized methods known as “g-methods” to estimate their effects [24].

G-methods allow us to obtain consistent estimates of the effects of different treat-

ment plans and the ratio of their outcomes, and include marginal structural models

(MSMs), structural nested models, and g-computation [24].

In our study, we aimed to estimate outcomes under dynamic, time-varying coun-

terfactual treatment strategies given observed patient histories with high-dimensional

histories. Of the g-methods discussed, g-computation is particularly well-suited to this

task. The framework is carried out by (1) learning the conditional distributions of

covariates based on past covariate values and treatment actions, and (2) estimating

counterfactual outcomes by simulating from these distributions forward in time via

Monte Carlo methods. In this chapter, we review the g-computation procedure in

more depth and discuss how it can be applied to our problem of interest.
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3.1 Problem Setup

We are interested in measuring the effect of different treatment strategies 𝑔 on a set

of outcomes, where both the treatment and outcomes may be influenced by a set of

covariates. The strategies of interest are dynamic and time-varying, which means

the treatment administered at timestep 𝑡 depends on the patient covariate history

and treatment actions taken up until this point. An example of such a strategy is

“at each timestep 𝑡, give 500mL of fluid if mean arterial blood pressure is less than

65mmHg and if the patient has not developed pulmonary edema; otherwise administer

vasopressors.” G-computation can be used to estimate effects of such time-varying

and dynamic treatment strategies. In contrast, other methods such as MSMs, can

only make predictions for static, time-varying regimes. (See Section 2.3 for examples.)

Using g-computation, we can test a number of different treatment strategies of

interest by simulating the effects of those strategies on covariates and outcomes.

From the simulations, we can derive insights on population-level treatment effects

and compare results across counterfactual regimes. Let us define:

• 𝑡 ∈ {0, . . . , 𝐾} to be discrete-valued time, with 𝐾 being the end of followup

• 𝐴𝑡 to be the observed treatment action at time 𝑡

• 𝑌𝑡 to be the observed value of the outcome(s) at time 𝑡

• 𝐿𝑡 to be a vector of 𝑑 covariates at time 𝑡 that may influence treatment decisions

or be associated with the outcome

• �̄�𝑡 to be the history 𝑋0, . . . , 𝑋𝑡 and 𝑋 𝑡 to be the future 𝑋𝑡, . . . , 𝑋𝐾 for arbitrary

time varying variable 𝑋 (for example, �̄�𝑡 would denote patient covariate history

up to and including timestep 𝑡)

A dynamic, time-varying treatment strategy 𝑔 can be written as a collection of func-

tions 𝑔 = {𝑔0, . . . , 𝑔𝐾}, such that 𝑔𝑡 maps patient history onto a treatment action

𝑔𝑡(�̄�𝑡, 𝐴𝑡−1) at time 𝑡, where (�̄�𝑡, 𝐴𝑡−1) is the patient history preceding intervention

at time 𝑡. That is to say, treatment at timestep 𝑡 depends on the covariates up to
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and including timestep 𝑡 and the sequence of treatment actions preceding timestep 𝑡

(i.e. up to and including timestep 𝑡− 1).

Given a strategy 𝑔, we denote 𝑌𝑡(𝑔) to be the patient outcomes observed at time

𝑡 as a result of following 𝑔 from baseline [28]. For a patient who has had 𝑚 − 1

timesteps of observed treatment 𝐴𝑚−1, for whom we would like to predict the effects

of a different strategy 𝑔 administered from timestep 𝑚 onward, we can denote the

counterfactual outcome at time 𝑡 to be 𝑌𝑡(𝐴𝑚−1, 𝑔𝑚), where 𝑡 ≥ 𝑚.

The goal of counterfactual prediction is to estimate the expected counterfactual

patient outcomes

{𝐸[𝑌𝑡(𝐴𝑚−1, 𝑔𝑚)|�̄�𝑚, 𝐴𝑚−1], 𝑡 ≥ 𝑚} (3.1)

given observed patient history through time 𝑚, observed treatment history through

time 𝑚− 1, and some specified treatment strategy 𝑔. In addition, it is also possible

to estimate the counterfactual outcome distributions at future time points

{𝑝(𝑌𝑡(𝐴𝑚−1, 𝑔𝑚)|�̄�𝑚, 𝐴𝑚−1), 𝑡 ≥ 𝑚} (3.2)

for 𝑡 ≥ 𝑚. It is helpful to note that if we do not condition on (�̄�𝑚, 𝐴𝑚−1) in either

Equation 3.1 or 3.2, we obtain the expectation and distribution, respectively, over the

full population.

3.2 The G-Computation Framework

Provided the setup described above, we can now introduce a formal explanation of

the g-formula and the assumptions underlying g-computation.

3.2.1 The G-Formula

To estimate Equations 3.1 and 3.2 through g-computation, the following assumptions

must hold [28]:
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• Consistency: the counterfactual outcome is the same as the observed outcome

when the counterfactual regime is the observed regime; that is, 𝑌𝑡(𝐴𝑡) = 𝑌𝑡 for

𝑡 ∈ {0, . . . , 𝐾}

• Sequential Exchangeability: there is no unobserved confounding of treat-

ment at any time, so that all drivers of treatment are observed at every hour

• Positivity: the counterfactual strategy of interest has some non-zero proba-

bility of being followed; this is important to avoid conditioning on events with

zero probability

Under these assumptions, we can rewrite Equation 3.2 as

𝑝(𝑌𝑚(𝐴𝑚−1, 𝑔𝑚)|�̄�𝑚, 𝐴𝑚−1) = 𝑝(𝑌𝑚|�̄�𝑚, 𝐴𝑚−1, 𝐴𝑚 = 𝑔𝑚(�̄�𝑚, 𝐴𝑚−1)), (3.3)

for 𝑡 = 𝑚. In other words, the conditional distribution of the counterfactual outcome

is simply the conditional distribution of the observed outcome given patient history

and the treatment strategy of interest.

The equation above becomes more complicated for 𝑡 > 𝑚, as it is necessary to

adjust for time-varying confounding. If we use 𝑋𝑖:𝑗 to represent 𝑋𝑖, . . . , 𝑋𝑗 for any

arbitrary variable 𝑋, under Assumptions 1-3, the g-formula yields

𝑝(𝑌𝑡(𝐴𝑚−1, 𝑔𝑚) = 𝑦|�̄�𝑚, 𝐴𝑚−1) (3.4)

=

∫︁
𝑙𝑚+1:𝑡

𝑝(𝑌𝑡 = 𝑦|�̄�𝑚, 𝐴𝑚−1, 𝐿𝑚+1:𝑡 = 𝑙𝑚+1:𝑡, 𝐴𝑚:𝑡 = 𝑔(�̄�𝑚, 𝐴𝑚−1, 𝑙𝑚+1:𝑡))

×
𝑡∏︁

𝑗=𝑚+1

𝑝(𝐿𝑗 = 𝑙𝑗|�̄�𝑚, 𝐴𝑚−1, 𝐿𝑚+1:𝑗−1 = 𝑙𝑚+1:𝑗−1, 𝐴𝑚:𝑗−1 = 𝑔(�̄�𝑚, 𝐴𝑚−1, 𝑙𝑚+1:𝑗−1))

This captures the fact that outcomes at time 𝑡 > 𝑚 depend on (1) observed patient

covariate history up to and including timestep 𝑚, (2) treatment actions under the

observational regime up to and including timestep 𝑚−1, (3) treatment actions under

the counterfactual regime starting from timestep 𝑚, and (4) the effects of the new

regime on covariates, which would manifest starting from timestep 𝑚 + 1.
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3.2.2 Steps of G-Computation

In practice, it is difficult to solve for the integral in Equation 3.4 in its closed form,

but Monte Carlo simulations can be used to approximate it. That is, we can simu-

late a population of patients under the counterfactual treatment regime and use the

empirical outcome distribution as an estimation of the actual outcome distribution.

To construct a simulated trajectory for a single patient under some intervention

strategy of interest, we sample from the joint distribution 𝑝(𝐿𝑡|�̄�𝑡−1, 𝐴𝑡−1) at each

timestep 𝑡 ∈ {𝑚, . . . ,𝐾}. We then repeat this process 𝑀 times to form a simulated

population, where the empirical distribution of the outcomes at each time 𝑡 allows us

to approximate Equation 3.2. The sample averages of the draws at each time 𝑡 are

an estimate of the conditional expectations in Equation 3.1 that can serve as point

predictions for 𝑌𝑡(𝐴𝑚−1, 𝑔𝑚).

The procedure described above is provided as pseudocode in Algorithm 1, starting

at timestep 𝑚. Without loss of generality, the outcome 𝑌𝑡 is assigned to be a variable

in the covariate vector 𝐿𝑡 for simplicity. Note that when 𝑡 = 𝑚 + 1, line 4 of the

algorithm simply simulates 𝑙*𝑚+1 from the distribution 𝑝(𝐿𝑡|�̄�𝑚, 𝐴𝑚−1, 𝐴𝑚 = 𝑎*𝑚).

Algorithm 1: G-Computation
1 for 𝑛← 1 to 𝑀
2 Set 𝑎*𝑚 = 𝑔𝑚(�̄�𝑚, 𝐴𝑚−1)
3 for 𝑡← 𝑚 + 1 to 𝐾
4 Simulate 𝑙*𝑡 from 𝑝(𝐿𝑡|�̄�𝑚, 𝐴𝑚−1, 𝐿𝑚+1:𝑡−1 = 𝑙*𝑚+1:𝑡−1, 𝐴𝑚:𝑡−1 = 𝑎*𝑚:𝑡−1)
5 Set 𝑎*𝑡 = 𝑔𝑚(�̄�𝑚, 𝐴𝑚−1, 𝑙

*
𝑚+1:𝑡, 𝑎

*
𝑚:𝑡−1)
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Chapter 4

G-Net: A Recurrent Network

Approach to G-Computation

The g-computation algorithm requires us to first learn the conditional distributions

𝑝(𝐿𝑡|�̄�𝑡−1, 𝐴𝑡−1) for each covariate given patient history at timestep 𝑡. Once these

distributions have been learned, we can apply the procedure described in Algorithm

1 of Section 3.2.2 to simulate the covariates under different intervention strategies.

Traditional methods employ GLMs to carry out g-computation, but here we propose

an RNN approach for this task. RNNs have been shown to perform well in situations

involving high-dimensional, multivariate, time-varying data and thus were our model

of choice for implementing the G-Net framework. To perform g-computation, G-Net

operates in two modes: (1) in training mode, we fit the network in a manner that

enables us to simulate from 𝑝(𝐿𝑡|�̄�𝑡−1, 𝐴𝑡−1), then (2) in simulation mode, we use the

trained model to sample covariates at each timestep following Algorithm 1.

4.1 Estimating the Conditional Distributions of

Covariates

For a vector 𝐿𝑡, we can separate the individual covariates into 𝑝 (potentially multi-

variate) disjoint groups, where the number of covariates in each group need not be

35



the same. We denote the 𝑝 components of 𝐿𝑡 by 𝐿0
𝑡 , . . . , 𝐿

𝑝−1
𝑡 , where 𝑝 ranges from

1 through the number of covariates 𝑑. By setting 𝑝 = 1, we can model all covariates

simultaneously and directly approximate 𝑝(𝐿𝑡|�̄�𝑡−1, 𝐴𝑡−1). On the other hand, by

setting 𝑝 > 1, we can model groups of covariates separately. This may be desirable if

the distribution of the covariates are of different types, rendering it difficult to sample

from their joint distribution such as in the case of mixing continuous and categorical

variables. Learning a separate model for each type of distribution, then, could theo-

retically help improve performance. In fact, we could even set 𝑝 to be 𝑑 and train a

custom model for every variable. Notationally, we will refer to these covariate-specific

models as boxes (Figure 4-1).

When 𝑝 > 1, we can impose an arbitrary ordering on the covariate groups

𝐿0
𝑡 , . . . , 𝐿

𝑝−1
𝑡 and estimate the conditional distributions of each covariate group 𝐿𝑗

𝑡

given all variables preceding it in this ordering. In other words, we can learn 𝑝 condi-

tional distributions of the form 𝑝(𝐿𝑗
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ). Once we obtain these

distributions, we can simulate from 𝑝(𝐿𝑡|�̄�𝑡−1, 𝐴𝑡−1) by exploiting the basic probabil-

ity identity:

𝑝(𝐿𝑡|�̄�𝑡−1,𝐴𝑡−1) = 𝑝(𝐿0
𝑡 |�̄�𝑡−1, 𝐴𝑡−1)× 𝑝(𝐿1

𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿
0
𝑡 )

× · · · × 𝑝(𝐿𝑝−1
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑝−2
𝑡 ) (4.1)

In other words, we can simulate from 𝑝(𝐿𝑡|�̄�𝑡−1, 𝐴𝑡−1) by simulating each 𝐿𝑗
𝑡 from

𝑝(𝐿𝑗
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ) in the order that was imposed during training.

4.2 Network Architecture

When designing G-Net, we aimed to create a flexible architecture for carrying out g-

computation that can be conveniently configured depending on the problem at hand.

At each timestep, G-Net is trained to predict 𝐿𝑡, the covariates at timestep 𝑡, given

(�̄�𝑡−1, 𝐴𝑡−1), the covariates and treatment action at timestep 𝑡− 1.

The simplest implementation involves a single box 𝑓 0(·; Λ0) with learnable pa-

rameters Λ0 that takes as input all covariates and treatment actions up to timestep
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𝑡− 1 and uses them to predict the covariates at timestep 𝑡. That is to say, the input

at each timestep is (�̄�𝑡−1, 𝐴𝑡−1) and the output is 𝐿𝑡. For values of 𝑝 greater than

1, we use 𝑝 boxes to model each of the 𝑝 covariate groups. The input to the first

box 𝑓 0(·; Λ0) is simply (�̄�𝑡−1, 𝐴𝑡−1), while the output is 𝐿0
𝑡 = 𝑓 0(�̄�𝑡−1, 𝐴𝑡−1; Λ0), the

covariates in the first group at timestep 𝑡. This output is then concatenated with

𝐿𝑡−1 to form the vector (�̄�𝑡−1, 𝐴𝑡−1, 𝐿
0
𝑡 ), which serves as the input to the next box

𝑓 1(·; Λ1). In general, the input to the 𝑗th box 𝑓 𝑗(·; Λ𝑗) is (�̄�𝑡−1, 𝐴𝑡−1, 𝐿
0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 )

while the output is 𝐿𝑗
𝑡 = 𝑓 𝑗(�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ; Λ𝑗). In the CVSim experiments

(Chapter 6), we used 𝑝 = 2 while in the the MIMIC experiments (Chapter 8), we set

𝑝 to the number of covariates. We refer to this latter design as one variable per box,

which captures the fact that each covariate distribution is being learned by a separate

model. Specific implementation details are provided in Sections 6.1.2 and 8.1.1.

With this general schematic in mind, there are many possible implementations of

G-Net we can consider. Of particular interest in our study was varying the type of

model used for the 𝑝 boxes: specifically, we focused on comparing the performance

of linear versus LSTM layers. Another extension we explored was learning a repre-

sentation of the covariates 𝑅𝑡 = 𝑟(�̄�𝑡−1, 𝐴𝑡−1; Θ) with learnable parameters Θ that

could be fed into the subsequent covariate boxes; the input to 𝑓 𝑗(·; Λ𝑗) would then be

(𝑅𝑡, 𝐿
0
𝑡 , . . . , 𝐿𝑡−1). Alternatively, it was also possible to learn separate representations

𝑅𝑗
𝑡 = 𝑟𝑗(�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ; Θ𝑗) for each box so that the box simply computes

𝑓 𝑗(𝑅𝑗
𝑡 ; Λ𝑗). A basic diagram of the G-Net framework is provided in Figure 4-1. The

purpose of the representational layer was to create abstractions of patient histories

and allow for more flexibility in how information was shared across variables and

time.

4.3 Training

G-Net is fit to a one-step-ahead prediction task that provides us with estimates of

the conditional expectations 𝐸[𝐿𝑗
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ] for all 𝑡 and 𝑗. Given

these conditional expectations, we can simulate from 𝑝(𝐿𝑗
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 )
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Figure 4-1: Flexible architecture for the G-Net framework using separate representa-
tions for each timestep. The treatment 𝐴𝑡 at timestep 𝑡 is calculated deterministically
based on the covariates 𝐿𝑡.

as described in Section 4.4. Here we discuss some key design choices made during the

training portion of our experiments.

4.3.1 Teacher-Forcing

For each covariate group 𝑗, G-Net is trained to predict the values for that group given

patient history (i.e. covariates and treatments up to timestep 𝑡 − 1) and the values

of covariate groups 0 through 𝑗 − 1 at timestep 𝑡. In this section, we will denote 𝐿𝑡

as the ground-truth data and �̂�𝑡 as the predicted covariates.

The sequential nature of the G-Net framework gives rise to two alternate methods

for training (Figure 4-2). The first method is student-forcing, in which the input

to each box after 𝑓 0(·; Λ0) comprises the ground-truth covariates at time 𝑡 − 1 and

the predicted covariates at time 𝑡 from the previous boxes. In other words, box 𝑗

computes �̂�𝑗
𝑡 = 𝑓 𝑗(�̄�𝑡−1, 𝐴𝑡−1, �̂�

0
𝑡 , . . . , �̂�

𝑗−1
𝑡 ; Λ𝑗). Contrasting with student-forcing is

teacher-forcing, where the inputs to every box come from the ground-truth data.
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This means that for each box 𝑓 𝑗(·; Λ0), we concatenate the ground-truth values for

𝐿0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 at timestep 𝑡 to the patient history up to timestep 𝑡−1 and compute �̂�𝑗

𝑡 =

𝑓 𝑗(�̄�𝑡−1, 𝐴𝑡−1, 𝐿
0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ; Λ𝑗). In our experiments, we used teacher-forcing during

training, which is essential for learning conditional expectations that are reflective of

the observational dataset, from which we can derive the conditional probabilities as

required by g-computation.

Figure 4-2: Training by (a) teacher-forcing or (b) student-forcing. The input to the
first box 𝑓 0 at timestep 𝑡 under both paradigms is (�̄�𝑡−1, 𝐴𝑡−1).

4.3.2 Loss Optimization

Through optimizing appropriately defined loss functions during training, we can teach

G-Net to accurately estimate the covariates at each time point 𝑡 using standard

gradient descent techniques. During training, we can optimize either the joint loss over

all boxes or individual losses over each box separately; the former requires training

all the boxes together while the latter allows flexibility in training one box at a
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time. In both cases, we averaged the loss over all patients and timesteps in a given

batch to reduce possible biases related to the number of timesteps. We employed

cross-entropy (CE) loss for categorical variables, binary cross-entropy (BCE) loss for

binary variables, and mean squared error (MSE) loss for continuous variables. When

optimizing the joint loss, an additional weight parameter may be introduced to vary

the relative contribution of each covariate group to the overall loss value.

4.4 Simulation

While the training procedure described above provides us with the conditional ex-

pectations 𝐸[𝐿𝑗
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ], our ultimate goal is to simulate from the

conditional distributions 𝑝(𝐿𝑗
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ). For boxes that model cate-

gorical covariates, the last layer applies a softmax function that produces a vector of

probabilities describing the likelihood of the sample being classified as each category.

This softmax output can be used to define a categorical distribution from which we

sample the value of the categorical variable at simulation time. Similarly, for binary

variables, G-Net outputs a single number describing the probability of that variable

being assigned the positive class. To obtain the actual value of the variable, we sample

from a Bernoulli distribution parametrized by this number.

Variables with continuous densities are more complicated to simulate, but there

are various approaches we might take. One possible method takes advantage of the

conditional expectations and empirical losses as follows

𝐿𝑗
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ∼ 𝐸[𝐿𝑗

𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿
0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 ] + 𝜖𝑗𝑡 (4.2)

where 𝐿𝑗
𝑡 |�̄�𝑡−1, 𝐴𝑡−1, 𝐿

0
𝑡 , . . . , 𝐿

𝑗−1
𝑡 is the value of the covariate 𝐿𝑗

𝑡 conditioned on pa-

tient history and 𝜖𝑗𝑡 is randomly sampled from the empirical distribution of the resid-

uals 𝐿𝑗
𝑡 − �̂�𝑗

𝑡 . These residuals are timestep-specific and computed from a holdout

validation dataset not used to fit the model parameters (Θ,Λ) that generated the

conditional expectations. This approach does not make any parametric assumptions,
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which is advantageous because we do not need to limit the application of G-Net to co-

variates with specific underlying distributions. However, it does make the simplifying

assumption that covariate error distribution does not depend on patient history.
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Chapter 5

Synthetic Data Generation Using

CVsim

Using real-world datasets to evaluate counterfactual predictions presents a challenge

because we are only able to observe outcomes from treatments that were actually

administered to patients. To evaluate the ability of our models in estimating effects

of counterfactual strategies, then, it is necessary to use simulated data in which the

"ground truth" effects for various alternative strategies can be obtained through sim-

ulation. To this end, we used a physiological simulator, CVSim, to generate synthetic

observational and counterfactual datasets for the evaluation of G-Net performance.

5.1 Background on CVSim

CVSim is an open-source program that simulates the dynamics of the human cardio-

vascular system [10]. Multiple versions of varying complexity are available, though

for the purposes of our study, we focused on CVSim-6. This version consists of 6

compartments, two of which function as the left and right ventricles and four of

which represent the systemic and pulmonary arteries and veins separated by micro-

circulation. Two important physiological reflex systems for maintaining blood pres-

sure homeostasis, the arterial baroreflex (ABR) and cardiopulmonary reflex (CPR),

are also implemented as part of the model and were turned on in our experiments.

43



Given a set of input variables defining the hemodynamic system, CVSim-6 is

capable of simulating forward various outputs, such as blood pressure, blood flow,

and heart rate, under the lumped-parameter hemodynamic model. To generate the

synthetic datasets for our experiments, we modified and extended CVSim by adding

(a) treatment functions to allow for intervention actions to be taken at each timestep,

and (b) stochastic components in order to generate patients with different baseline

physiological measurements.

5.1.1 Inputs

To simulate the cardiovascular system under different conditions, we can vary one

or more of CVSim’s hemodynamic parameters, such as total peripheral resistance,

arterial compliance, nominal heart rate, and zero-pressure filling volume. At the start

of simulation for each new patient, we randomly generated values for the parameters

listed in Table A.1 to set their baseline physiological state. The ranges referenced

in Table A.1 were determined with clinical guidance based on plausible physiological

values and were only used to set the patient’s initial parameters (i.e. they do not

bound the covariates for later timesteps 𝑡 > 0). Note that altering these parameters

causes the CVSim program to deviate from its original steady state and leads to

activation of the ABR and CPR to achieve a new steady state. We ensured this new

steady state was reached prior to beginning data collection of outputs, described in

Section 5.1.2. The first timestep in which data is collected is taken to be 𝑡 = 1, and

the preceding timestep is 𝑡 = 0.

5.1.2 Outputs

Given the initial settings of the input variables, CVSim deterministically simulates

forward 25 hemodynamic outputs, including vascular resistance and variables charac-

terizing blood flow, pressure, and volume. In addition to these outputs, we derived 4

additional outputs for our experiments: systolic blood pressure, diastolic blood pres-

sure, mean arterial pressure, and a pulmonary edema indicator, yielding a total of
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29 variables collected at each timestep. Below are the definitions of the additional

parameters:

• Systolic Blood Pressure (SBP): the highest measured arterial blood pres-

sure while the heart is contracting.

• Diastolic Blood Pressure (DBP): the lowest measured arterial blood pres-

sure while the heart is contracting.

• Mean Arterial Pressure (MAP): the average arterial pressure throughout

one cardiac cycle, computed as MAP = 2
3
DBP + 1

3
SBP. It is sometimes also

referred to as mean blood pressure (MBP).

• Pulmonary Edema (PE): a binary variable indicating pulmonary venous

pressure above a certain threshold, determined as PE = [PVP > 25mmHg] in

our study.

The complete list of output covariates from CVSim is provided in Table A.2, with the

subset of covariates used in subsequent G-Net experiments bolded. By modeling only

a subset of variables in our dataset, we ensured that there were long range temporal

dependencies present that were mediated by the excluded variables. We will hereon

refer to these covariates by their abbreviations.

5.2 Data Generation

We generated three datasets with CVsim: a simulated observational dataset 𝐷𝑜 under

treatment regime 𝑔𝑜 and two different counterfactual datasets 𝐷𝑐1 and 𝐷𝑐2 under

alternative regimes 𝑔𝑐1 and 𝑔𝑐2. Our goal was to learn the conditional distributions

of the covariates using 𝐷𝑜 during training and evaluate the resulting model on a

counterfactual prediction task using 𝐷𝑐1 and 𝐷𝑐2 during testing.

An important concern for physicians presented with hypotensive patients in a

clinical setting is to restore those patients’ blood pressure (specifically, MAP and

CVP) to some reasonable level. This can be accomplished by administering fluids
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or vasopressors, which increase blood volume and vascular resistance, respectively.

Provided with this information, we developed an observational treatment strategy 𝑔𝑜

that was stochastic and employed fluids and vasopressors in combination.

Under 𝑔𝑜, the probability of receiving a non-zero dose of either fluids or vasopres-

sors at a given timestep increased as the MAP and CVP decreased according to a

logistic function. Conditioned on the treatment being non-zero, the dose was sam-

pled from a normal distribution with mean inversely proportional to MAP and CVP.

The counterfactual regimes 𝑔𝑐1 and 𝑔𝑐2 were similar to 𝑔𝑜, except that they were

deterministic and used different coefficients relating treatment to MAP and CVP.

Regime-specific details are provided in Sections 5.2.3 and 5.2.4.

The generation process for each of the three datasets differed only in the treatment

assignment rules; all other aspects were held constant. In 𝐷𝑐1 and 𝐷𝑐2, patients were

assigned treatment according to 𝑔𝑜 for the first 𝑚 − 1 simulation timesteps; then

for timesteps 𝑚 to 𝐾, the strategy switched to one of 𝑔𝑐1 or 𝑔𝑐2 depending on the

dataset. This is illustrated in Figure 5-1 for a single sample patient simulated by

CVSim. Since the first instance of the counterfactual strategy is administered at

timestep 𝑚, any changes in covariates as a result of the new regime will be observed

starting at timestep 𝑚 + 1.

Figure 5-1: Covariate trajectories for the same patient under two different treatment (fluid
bolus) strategies: 𝑔𝑐1 (blue) and 𝑔𝑐2 (orange) starting at 𝑡 = 34 (black dashed line).
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5.2.1 Disease Simulation

In real-world scenarios, patients are only given treatment when afflicted with some

pathological condition. To model the disease process in CVSim, we introduced a

function for injecting either sepsis or blood loss events into our simulated patients.

At each timestep, patients developed disease with probability 𝑃 (disease) = 0.05;

conditioned on developing disease at timestep 𝑡, patients could experience either sepsis

or blood loss with probability 𝑃 (sepsis|disease) = 𝑃 (blood loss|disease) = 0.5. These

two events were mutually exclusive within a single timestep, but it did not preclude

the patient from experiencing both diseases at different time points across the course

of the simulation. Sepsis and blood loss were modeled deterministically as follows:

• To simulate sepsis, we decreased TPR at time 𝑡+1 by setting 𝐿𝑡𝑝𝑟
𝑡+1 = 𝛼𝑠𝑒𝑝×𝐿𝑡𝑝𝑟

𝑡 ,

where 𝛼𝑠𝑒𝑝 = 0.7.

• To simulate blood loss, we decreased TBV at time 𝑡 + 1 by setting 𝐿𝑡𝑏𝑣
𝑡+1 =

𝛼𝑙𝑜𝑠𝑠 × 𝐿𝑡𝑏𝑣
𝑡 , where 𝛼𝑙𝑜𝑠𝑠 = 0.85.

5.2.2 Treatment Simulation

At every timestep of simulation, patients could be given fluids, vasopressors, or neither

if no treatment was needed; the two treatments were mutually exclusive in the CVSim

data generation experiements and patients could not receive both at the same time.

To represent the intervention action taken at time 𝑡, we define the vector 𝐴𝑡 =

(𝐴1
𝑡 , 𝐴

2
𝑡 ), where 𝐴1

𝑡 denotes the amount of fluid administered and 𝐴2
𝑡 denotes the

amount of vasopressor administered. In CVSim, administration of fluids was modeled

by an increase in TBV while administration of vasopressors was accounted for by an

increase in TPR.

Treatment at time 𝑡 was a function of patient covariate history and given by

𝐴𝑡 = 𝑔(�̄�𝑡) for arbitrary intervention strategy 𝑔. The probability of choosing fluids

versus vasopressors was dependent on whether the patient had pulmonary edema

𝐿𝑝𝑒
𝑡 : since pulmonary edema indicates fluid overload, it was less likely for additional
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fluids to be administered to these patients and more likely for vasopressors to be used

instead. The dosage of the treatment depended on a subset of covariates, specifically

MAP and CVP, which were chosen based on the fact that maintaining adequate

blood pressure is an important goal in clinical practice [26]. The target MAP was

70 mmHg while the target CVP was 10mmHg, so the dosages varied as a function of

∆𝑚𝑎𝑝,𝑡 ≡ 70−𝐿𝑚𝑎𝑝
𝑡 and ∆𝑐𝑣𝑝,𝑡 ≡ 10−𝐿𝑐𝑣𝑝

𝑡 . The more positive the difference between

current and target pressure, the greater the dose of treatment administered. If the

values of ∆𝑚𝑎𝑝,𝑡 and ∆𝑐𝑣𝑝,𝑡 produced a treatment dose that was negative, then no

treatment action was taken at timestep 𝑡 (i.e. we set the dose amount to zero).

5.2.3 Observational Regime

The observational treatment strategy 𝑔𝑜 was stochastic and determined as a function

of patient MAP and CVP according to the steps below:

1. Compute the probability of treatment 𝑃 (𝐴𝑡|𝐿𝑡) = 1
1+𝑒−𝑥 , where 𝑥 = 𝛾1×∆𝑚𝑎𝑝+

𝛾2 ×∆𝑐𝑣𝑝 + 𝛾0 to determine whether treatment is administered.

2. If treatment is administered, determine whether the patient should receive fluids

or vasopressors, where the probability of fluids 𝑃 (𝐴1
𝑡 |𝐿𝑡) = 𝜌1 − 𝜌2 × 𝐿𝑝𝑒

𝑡 .

3. If fluids are administered, generate the dose (in mL) as 𝐴1
𝑡 ∼ max(0, 𝛽1

1 ×

∆𝑚𝑎𝑝,𝑡 + 𝛽1
2 ×∆𝑐𝑣𝑝,𝑡 +𝒩 (0, 500)) and update TBV as 𝐿𝑡𝑏𝑣

𝑡+1 = 𝐿𝑡𝑏𝑣
𝑡 + 𝐴1

𝑡 .

4. If vasopressors are administered, generate the dose as 𝐴2
𝑡 ∼ max(0, 𝛽2

1 ×∆𝑚𝑎𝑝 +

𝛽2
2 ×∆𝑐𝑣𝑝 +𝒩 (0, 1)) and update TPR as 𝐿𝑡𝑝𝑟

𝑡+1 = 𝐿𝑡𝑝𝑟
𝑡 + 1− 1

𝐴2
𝑡+1

.

After experimenting with the various parameters introduced above, we opted to use

the following settings: 𝛾0 = 0.65, 𝛾1 = 0.3, 𝛾2 = 0.24, 𝜌1 = 0.5, 𝜌2 = 0.2, 𝛽1
1 = 20, 𝛽1

2 =

120, 𝛽2
1 = 0.2, 𝛽2

2 = 0.3.

5.2.4 Counterfactual Regimes

Unlike 𝑔𝑜, counterfactual regimes 𝑔𝑐1 and 𝑔𝑐2 were deterministic; however, the treat-

ment dose administered under either strategy was still dependent on patient MAP
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and CVP. Counterfactual strategy 𝑔𝑐1 is outlined as follows:

1. If 𝐿𝑚𝑎𝑝
𝑡 < 65mmHg, the probability of treatment is 𝑃 (𝐴𝑡|𝐿𝑡) = 1; otherwise, no

treatment is administered.

2. If 𝐿𝑝𝑒
𝑡 = 0, the probability of administering fluids is 𝑃 (𝐴1

𝑡 |𝐿𝑡) = 1; otherwise,

𝑃 (𝐴1
𝑡 |𝐿𝑡) = 0 and vasopressors are administered instead.

3. Given that fluids are administered, generate the dose (in mL) as 𝐴1
𝑡 ∼ 𝑚𝑎𝑥(0, 𝛽1

1×

∆𝑚𝑎𝑝,𝑡 + 𝛽1
2 ×∆𝑐𝑣𝑝,𝑡 + 𝛽1

0) and update TBV as 𝐿𝑡𝑏𝑣
𝑡+1 = 𝐿𝑡𝑏𝑣

𝑡 + 𝐴1
𝑡 .

4. If vasopressors are administered, generate the dose as 𝐴2
𝑡 ∼ 𝑚𝑎𝑥(0, 𝛽2

1×∆𝑚𝑎𝑝 +

𝛽2
2 ×∆𝑐𝑣𝑝) and update TPR as 𝐿𝑡𝑝𝑟

𝑡+1 = 𝐿𝑡𝑝𝑟
𝑡 + 1− 1

𝐴2
𝑡+1

.

Counterfactual strategy 𝑔𝑐2 was similar to 𝑔𝑐1, except that 𝑃 (𝐴𝑡|𝐿𝑡) = 1 if and only

if 𝐿𝑚𝑎𝑝
𝑡 < 75mmHg. This was a more aggressive intervention strategy where the

threshold to qualify for treatment was lower. The settings for the parameters under

𝑔𝑐1 and 𝑔𝑐2 were the same as 𝑔𝑜, and we also introduced the additional constant 𝛽1
0 ,

which was set to 1000 in our experiments.

5.2.5 Patient Generation Process

To generate the simulation trajectory for a single patient under treatment strategy 𝑔

in CVSim, we first initialized the input variables 𝑉 in Table A.1 by drawing from in-

dependent uniform distributions bounded by the the defined ranges. At each timestep

from 0 to 𝐾, we did the the following:

1. Generate 𝐿𝑡 from the outputs of CVSim, which are a function of (𝑉, �̄�
′
𝑡−1, 𝐴𝑡−1, 𝑆𝑡−1).

Note that 𝐴𝑡−1 = 0 and that �̄�
′
𝑡−1 is equal to �̄�𝑡−1 except with TBV and TPR

altered post-hoc (i.e. after �̄�𝑡−1 is recorded) according to 𝐴𝑡−1.

2. Generate 𝐴𝑡 as 𝑔(�̄�𝑡).

3. Generate �̄�𝑡
′ from �̄�𝑡 according to 𝐴𝑡.
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Using CVSim, we generated 15,000 trajectories under 𝑔𝑜 and 1,000 trajectories each

under 𝑔𝑐1 and 𝑔𝑐2. All patients were simulated for 66 timesteps in length. After the

generation process was complete, we removed patients whose non-treatment covariates

at the first timestep exceeded one or more of the following thresholds:

• MAP > 250 mmHg

• HR > 250 beats per minute

• All other non-treatment covariates > 99𝑡ℎ percentile of the dataset

Once patients with physiologically improbable values were filtered out, we were left

with 12,774 trajectories under the observational regime and 851 trajectories under

each counterfactual regime. We removed an additional 774 trajectories under the

observational regime to obtain a dataset of exactly 12,000 samples, of which 10,000

(83%) were used for training and 2,000 (17%) were used for validation. There was no

overlap of patients between the training, validation, and counterfactual (i.e. testing)

datasets.

To allow for accurate comparisons between the effects of 𝑔𝑐1 and 𝑔𝑐2, we used

the same 𝑛 = 851 patients in 𝐷𝑐1 and 𝐷𝑐2; that is, the set of trajectories for the

first 𝑚− 1 timesteps in the counterfactual datasets were identical, and only diverged

starting from 𝑡 = 𝑚 once the alternative strategies were applied (Figure 5-1). We can

conceptualize this setup as having 𝑛 patients who have received 𝑚−1 timesteps of the

observational regime and are now being tested under multiple alternative treatment

paths starting at timestep 𝑚. While only one path is possible in real-world settings,

multiple paths can be explored in this simulated environment.

5.2.6 Data Transformations

To adjust continuous-valued covariates to a similar scale, we normalized values by

subtracting the mean and dividing by the standard deviation. That is, we computed

𝑥′ = 𝑥−�̄�
𝜎(𝑥)

and used 𝑥′ as the input to our models, where the mean �̄� and standard

deviation 𝜎(𝑥) were both derived from the training dataset; this is known as Z-score
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standardization. There were no categorical variables in the set of outputs we collected

from CVSim, but binary variables were treated as categorical and one-hot encoded.
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Chapter 6

Evaluating G-Net Performance on

CVSim Data

Using the datasets generated by CVSim, we assessed the ability of G-Net to esti-

mate patient outcomes under alternative treatment strategies. These experiments

were critical in validating our model as we had access to ground-truth counterfactual

datasets during testing time, which was not the case for our later studies using real-

world clinical data. In this chapter, we describe the experimental setup and results of

applying G-Net to the CVSim data, where we trained the model on a one-step-ahead

prediction task using trajectories from the observational dataset 𝐷𝑜 and evaluated its

performance on counterfactual simulation on the test datasets 𝐷𝑐1 and 𝐷𝑐2. Starting

with the basic model architecture described in Chapter 4, we experimented with 4

different implementations of the G-Net framework, described below.

6.1 Experimental Setup

A typical clinical scenario may involve a physician who has observed a patient for

𝑚 − 1 timesteps under the observational regime and would like to predict how they

will respond to a different treatment strategy. Given data 𝐷𝑜 on prior patients who

received the observational regime for 𝐾 timesteps, and assuming that the current

patient is from the same population as those in 𝐷𝑜, we can estimate the effects of the
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counterfactual regime on this particular patient from timestep 𝑚 onward, conditioned

on their history from timesteps 0 through 𝑚−1. This situation is, in fact, a standard

use case for counterfactual prediction and is elaborated on in a more detailed example

in Section 6.1.1. While real-world limitations preclude the ability to test multiple

regimes on a single patient starting at the same physiological state, we can simulate

such a scenario using the CVSim datasets, which provide ground-truth trajectories

for the same patient under different intervention strategies.

Our approach was to train G-Net on 𝐷𝑜, comprising patients who were observed

under the observational regime for 𝐾 timesteps, and use it to predict the trajecto-

ries of patients in 𝐷𝑐1 and 𝐷𝑐2 for timesteps 𝑚 to 𝐾 under different counterfactual

regimes. During prediction, G-Net was fit to the first 𝑚− 1 timesteps of each patient

trajectory; then for 𝑡 ≥ 𝑚, the model computes the appropriate treatment to apply at

each timestep under the counterfactual strategy of interest and predicts the resulting

covariates. In our experiments, we generated 𝑀 = 100 Monte Carlo simulations for

each patient in 𝐷𝑐1 and 𝐷𝑐2 according to Algorithm 1. This yielded a total of 𝑀 ×𝑁

simulations under each counterfactual strategy 𝑔𝑐1 and 𝑔𝑐2, where 𝑁 was the number

of ground-truth trajectories in each of the counterfactual datasets.

6.1.1 Sample Use Case

Figure 6-1 illustrates how G-Net could be used for decision-making with individual

patients using a hypothetical scenario. Both patients (a) and (b) have relatively

similar MAP trajectories in the first half of their trajectories, during which they

received the observational regime. After some time (e.g. at 𝑡 = 34 in the example),

we may be interested in switching to a different strategy and want to be able to predict

how each patient will respond. Based on the simulations, we see that while patient

(a)’s MAP is projected to increase significantly under a more aggressive fluid strategy

𝑔𝑐2 compared to a less aggressive strategy 𝑔𝑐1, patient (b)’s MAP does not show much

difference between the two treatment options, potentially because their blood volume

is already very high. High blood volume and constant MAP may suggest that using

fluids to treat patient (b) is not an effective strategy. If these were real patients, a
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clinician interpreting these results might choose to administer fluids to patient (a)

but not to patient (b) because the small predicted gain in MAP in patient (b) would

not be worth the risk of fluid overload.

Figure 6-1: Estimated effects of two treatment strategies 𝑔𝑐1 (blue) vs 𝑔𝑐2 (green) in two
patients with similar observed MAP (red). The 100 Monte Carlo simulated trajectories are
shown in light blue and green respectively. Under 𝑔𝑐2, both patients would receive similar
volume of fluid, but patient (a)’s predicted treatment effect is larger compared to patient
(b)’s, possibly due to differences in their underlying physiology. Predicted treatment effect
under 𝑔𝑐1 is similar for both patients.

6.1.2 G-Net Implementation

For the CVSim experiments, we focused on a 2-box model of G-Net, splitting covari-

ates into 𝑝 = 2 groups so that all the categorical variables 𝐿0
𝑡 were modeled by one

box and all the continuous variables 𝐿1
𝑡 were modeled by a second box. By experi-

menting with the shared representation layer 𝑟 and the covariate boxes, we developed

4 implementations of G-Net, described below.

• (Linear): a GLM baseline employing 2 non-temporal linear layers to model the

covariate groups.

• (LSTM1 ): similar to (Linear) with an LSTM representational layer (𝑟 =

LSTM). This model also uses linear layers to model the categorical and contin-

uous covariates separately.

• (LSTM2 ): bypasses representation learning (𝑟 = Identity) and uses LSTMs for

the 2 covariate boxes.
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• (LSTM3 ): combines the features of (LSTM1 ) and (LSTM2 ) by employing sep-

arate LSTMs to implement representational learning and model the 2 covariate

groups.

As an additional baseline, we also explored multi-layer perceptrons (MLP) as a non-

linear estimator. This was important to demonstrate how flexible non-linear modeling

and automatic construction of relevant summaries of patient history provided by

LSTMs can help improve counterfactual prediction performance. All five models

were fit to a one-step-ahead prediction task during training time and used to simulate

covariates forward during testing time.

For (LSTM1 ) and (LSTM3 ), we used a representation layer that was shared across

the two boxes, so that at timestep 𝑡, box 𝑓 0 computed 𝑓 0(𝑅𝑡; Λ0) and box 𝑓 1 computed

𝑓 1(𝑅𝑡, 𝐿
0
𝑡 ; Λ0), where 𝑅𝑡 = 𝑟(�̄�𝑡−1, 𝐴𝑡−1). In order to train this representation layer

appropriately, we elected to optimize the joint loss of boxes 𝑓 0(·; Λ0) and 𝑓 1(·; Λ1),

rather than separate box-specific losses.

6.1.3 Model & Training Parameters

To optimize our model, we tuned over the hyperparameter space displayed in Table

6.1. During training, we used the Adam optimizer with early stopping for a maximum

of 50 epochs. The early stopping window was 10 steps and the stop tolerance was

0.01. The experiments were performed on NVIDIA Tesla V100 SXM2 GPUs. Note

that due to limited compute resources, we did not tune over the number of layers

when training LSTM3 , so the number of layers (representational, categorical, and

continuous) was always set to 1.

6.2 Evaluation

There are a number of different evaluation methods that can be used to assess the

performance of the various G-Net models on the counterfactual prediction task. In

our study, we focused on the root mean squared error (RMSE) and calibration over
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Table 6.1: Hyperparameter search space for G-Net in CVSim experiments. *Denotes
parameter setting in the optimal parameter set for this model.

Hyperparameters Search Range
Linear Learning Rate 0.001*, 0.01

Number of Layers 2*, 4
Hidden Dimension 16, 32*

MLP Learning Rate 0.001*, 0.01
Number of Layers (Representation) 1, 2, 4*
Hidden Dimension (Representation) 16, 32*

LSTM 1 Learning Rate 0.001, 0.01*

Number of Layers (Categ & Contin) 1, 2, 4*
Hidden Dimension (Categorical) 8*, 16
Hidden Dimension (Continuous) 32, 64*

LSTM 2 Learning Rate 0.001*, 0.01
Hidden Dimension (Representation) 16, 32*

Hidden Dimension (Categorical) 8*, 16
Hidden Dimension (Continuous) 32, 64*

LSTM 3 Learning Rate 0.001, 0.01*

time. As a qualitative assessment for each covariate, we analyzed the general shape of

the simulated population-level and individual patient-level trajectories in comparison

to the ground-truth trajectories.

6.2.1 Calculating RMSE

We evaluated the accuracy of the simulated counterfactual trajectories against the

ground-truth counterfactual trajectories by computing the RMSE as follows. Consider

a counterfactual dataset 𝐷𝑐 with 𝑁 trajectories. For each patient 𝑖 in 𝐷𝑐, we use G-

Net trained on 𝐷𝑜 to generate 𝑀 simulations predicting the covariate trajectories

for that patient under 𝑔𝑐. These simulations are illustrated by the light blue lines in

Figure 6-2, which displays the MAP of a sample patient in 𝐷𝑐1. In our experiments,

𝑀 was set to 100.

For patient 𝑖, let us use 𝐿𝑡𝑖 to denote the coviarates at time 𝑡 of the ground-

truth counterfactual trajectory and �̃�𝑡𝑖𝑘 to denote the covariates at time 𝑡 of the

𝑘th simulated counterfactual trajectory, where 𝑘 ∈ {1, . . . ,𝑀}. Furthermore, let us
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Figure 6-2: G-Net simulated MAP trajectories (100 Monte Carlo simulations in light
blue, average in solid dark blue) and ground truth (dashed dark blue) for one patient
under 𝑔𝑐1 (starting 𝑡 = 34).

use the superscript 𝑐 to denote individual covariate values, such that 𝐿𝑐
𝑡𝑖 represents

the value of the 𝑐th covariate in the vector 𝐿𝑡𝑖. For a given covariate 𝑐, the point

prediction �̂�𝑐
𝑡𝑖 that G-Net makes for 𝐿𝑐

𝑡𝑖 can be obtained by averaging the results of

the 𝑀 simulations, that is, �̂�𝑐
𝑡𝑖 = 1

𝑀

∑︀𝑀
𝑘=1 �̃�

𝑐
𝑡𝑖𝑘. This is the dark blue line in Figure

6-2. Individually taking the average across simulations for all covariates produces �̂�𝑡𝑖,

the estimate for the full covariate vector 𝐿𝑡𝑖. To compute the MSE, we can average

the difference between 𝐿𝑡𝑖 and �̂�𝑡𝑖 across all covariates, timesteps, and patients as

shown in Equation 6.1.

MSE =
1

𝑁(𝐾 −𝑚)𝑑

𝑁∑︁
𝑖=1

𝐾∑︁
𝑡=𝑚

𝑑∑︁
𝑐=1

(𝐿𝑐
𝑡𝑖 − �̂�𝑐

𝑡𝑖)
2 (6.1)

The RMSE is simply the square root of the MSE given above. Treatment variables are

not included in the calculation of RMSE as they are experimentally adjusted based

on the counterfactual strategy of interest.

6.2.2 Determining Model Calibration

In addition to having the actual trajectory align closely with the average of the

simulated trajectories, we ideally also want it to fall within the range of all the

simulated trajectories. A model that is able to produce such simulations is considered

to be well-calibrated.
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To formally define calibration, let us start by noting the lower and upper quantiles

𝛼𝑙𝑜𝑤 and 𝛼ℎ𝑖𝑔ℎ. Calibration measures the frequency with which the actual counterfac-

tual covariate 𝐿𝑐
𝑡𝑖 is between the 𝛼𝑙𝑜𝑤 and 𝛼ℎ𝑖𝑔ℎ quantiles of the 𝑀 simulated values

�̃�𝑐
𝑡𝑖𝑘, for 𝑘 ∈ {1, . . . ,𝑀}. A higher frequency of actual trajectories that are within

the lower and upper quantiles of their corresponding simulated trajectories suggests

a better calibrated model; ideally, the frequency should be close to 𝛼ℎ𝑖𝑔ℎ − 𝛼𝑙𝑜𝑤. In

our experiments, we set 𝛼𝑙𝑜𝑤 = 0.05 and 𝛼ℎ𝑖𝑔ℎ = 0.95 and targeted a frequency of 0.9.

6.2.3 Analyzing Population Covariate Trajectories

For each covariate, we can conduct a visual inspection of model performance by com-

paring population-level simulated trajectories for that covariate to the population-

level actual trajectories. This makes sense since our goal is to have G-Net be able

to predict counterfactual outcomes for a certain population of interest. A well-

performing model will have the population-level simulated trajectories closely match

those of the actual trajectories for most, if not all, covariates. For continuous vari-

ables, we take the average across patients at each timestep. For binary variables (or

binary variables modeled as categorical), we plot the proportion of patients assigned

to the positive class at each timestep. There were otherwise no categorical variables

in the CVSim dataset.

6.3 Results

We first fit G-Net to the 10,000 samples in the training portion of 𝐷𝑜 and used the

remaining trajectories for validation. All trajectories comprised 66 timesteps. Given

observed covariate history through timestep 𝑡 = 34 and treatment history through

timestep 𝑡 = 33 for patients in 𝐷𝑐1 and 𝐷𝑐2, we then simulated covariates forward

under each counterfactual strategy for 32 timesteps, from 𝑡 = 35 to 𝑡 = 66. Since the

first instance of the counterfactual strategy was administered at 𝑡 = 34, the effect on

covariates was not observed (predicted) until 𝑡 = 35.
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6.3.1 RMSE Over Time

The RMSE of the simulated counterfactual trajectories in comparison to the ac-

tual counterfactual trajectories was computed for timesteps 35 to 66 and the results

for both 𝑔𝑐1 and 𝑔𝑐2 are displayed in Figure 6-3. The best performing model was

(LSTM3 ), though the performance of all 3 LSTM implementations of G-Net showed

significant improvements over the GLM baseline. In particular, the advantage in-

creased over time under both counterfactual regimes, as illustrated by the widening

gap between the linear RMSE curve and the LSTM RMSE curves. This is reasonable

as LSTMs are expected to handle long-range dependencies better than simpler GLM

models.

Figure 6-3: Normalized RMSE averaged across all output covariates over time under
counterfactual regimes 𝑔𝑐1 and 𝑔𝑐2.

As seen in Figure 6-3, we did not include the results for MLP because the RMSE

over time (1.03 at 𝑡 = 35 to 1.80 at 𝑡 = 66) was much higher than both the LSTM

and GLM models. On the other hand, the MLP model showed better validation loss

than the GLM (0.48 for MLP versus 0.51 for GLM) on the one-step-ahead prediction

task, which is reasonable given the flexibility provided by its non-linear functions.

But ultimately, this flexibility without suitable incorporation of patient history led

to unstable counterfactual prediction and poor performance in the multi-step-ahead

simulation task.
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6.3.2 Calibration Over Time

Calibration plots under 𝑔𝑐1 and 𝑔𝑐2 are provided in Figure 6-4. While the calibration of

the linear model is comparable to the LSTM models at the beginning of simulation,

its performance decreases more quickly at later timesteps. This is consistent with

the RMSE results, which also demonstrate the advantage afforded by LSTMs as

the number of simulation timesteps grows. Under both counterfactual regimes, all

three LSTM models outperform the linear implementation in the latter portion of the

simulation.

Figure 6-4: Model calibration across all output covariates over time under counter-
factual regimes 𝑔𝑐1 and 𝑔𝑐2.

Even so, we observe that the calibration coverage rates for all four models are

somewhat below the target level of 0.9, with the frequency decreasing over time.

This behavior is expected as errors accumulate and propagate with increasing number

of simulation timesteps, causing the predicted trajectories to diverge further from

ground-truth; in addition, the result is in line with the increased RMSE over time

seen in Figure 6-3. One hypothesis for the less-than-nominal calibration rates may be

that the counterfactual predictive density estimates in our experiments do not take

into account uncertainty about model parameter estimates, a challenge that could

potentially be addressed with variational dropout in future studies. Note that we

again exclude MLP from the calibration plots due to significantly poorer performance

compared to either the LSTM or linear models.
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6.3.3 Population-Level Trajectories

To further analyze G-Net’s performance in estimating population-level counterfactual

outcomes, it is helpful to visualize the average simulated trajectories for individual

covariates in comparison to the ground-truth data. This can provide insight into

which variables are simulating well or poorly and how different covariates might be

linked. The average estimated and actual trajectories under 𝑔𝑐1 and 𝑔𝑐2 are plotted

in Figures 6-5 and 6-6, respectively, for a majority of the CVSim outputs used in our

experiments. We excluded pulmonary edema in these figures as the incidence of the

condition was extremely low (less than 0.5%) in the population; thus, all covariates

displayed are continuous.

From these trajectory plots, we again see that G-Net outperforms GLMs in esti-

mating outcomes under alternative treatment strategies for a majority of variables,

with (LSTM3 ) demonstrating the most accurate predictions. For some covariates

(e.g. CVP, AQ, TBV) under the linear model, the predicted trajectories are similar

to ground-truth at earlier timesteps before diverging over time, a result that is similar

to the RMSEs computed in Figure 6-3. For other covariates (e.g. MAP, VT, LVC),

the linear model seems to deviate from ground-truth immediately after the switch

from observational to counterfactual regime, suggesting that only data from the pre-

vious timestep is being used to predict values at the next timestep. This is not the

case with LSTMs, which are able to incorporate the entire patient history under the

observational regime when simulating covariates forward under the new treatment

strategy, leading to better estimations.
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Figure 6-5: Estimated and actual population average trajectories under 𝑔𝑐1 for se-
lected covariates. All LSTM implementations are shown in comparison to the GLM
baseline.
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Figure 6-6: Estimated and actual population average trajectories under 𝑔𝑐2 for se-
lected covariates. All LSTM implementations are shown in comparison to the GLM
baseline.
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Chapter 7

Sepsis Dataset and Cohort Selection

Having validated the ability of G-Net to make predictions under counterfactual treat-

ment strategies on a simulated dataset, we now turn to the problem of analyzing

effects of alternative interventions on a real-world cohort of sepsis patients. Sepsis

patients are typically treated with a combination of intravenous fluids and vasopres-

sors, but the exact balance may vary from patient to patient according to the status

of their condition, their underlying physiology, and their treatment history. Predict-

ing how each individual may respond to a given intervention is difficult, but having

the ability to do so would be useful for clinicians in the ICU attempting to select the

optimal course of action for their patients. In this situation, a tool like G-Net could

help estimate the effects of alternative treatment strategies and assist physicians in

their decision-making processes.

This chapter presents background regarding the cohort of sepsis patients used

in our experiments, including details on the study design, criteria for inclusion and

exclusion, and procedures for extraction and processing of raw clinical data. All

data employed in this work was compiled using the Medical Information Mart for

Intensive Care IV (MIMIC-IV) database v1.0, containing medical records from more

than 523,500 hospital admissions and 76,500 ICU stays at the Beth Israel Deaconess

Medical Center (BIDMC) between 2008 and 2019 [15].
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7.1 Cohort & Study Design

Our cohort was limited to ICU stays in which the patient was identified as septic

under the Third International Consensus Definitions for Sepsis and Septic Shock

(Sepsis-3) and did not meet the criteria for exclusion described in Section 7.1.3. The

final dataset consisted of 8,532 ICU stays, each associated with a distinct patient.

Statistics on cohort characteristics are provided in Table A.3.

7.1.1 Sepsis-3 Definition

The Sepsis-3 criteria provides the most up-to-date definitions for identifying sepsis

and septic shock [32]. Under Sepsis-3, patients are classified as septic if they meet

both of the following requirements: (a) an episode of suspected infection and (b) a

Sequential Organ Failure Assessment (SOFA) score of 2 points or more [14, 32]. An

episode of suspected infection is defined as one of the following: (a) an antibiotic was

administered and a culture was sampled within 24 hours of the antibiotic or (b) a

culture was sampled and an antibiotic was administered within 72 hours of the culture.

The earlier of the two events (antibiotic administration and culture sampling) is used

as the time of onset of suspected infection.

7.1.2 Study Period

Previous studies have shown that sepsis prognosis is strongly determined by treat-

ments given in the early hours of a patient’s ICU stay [1, 30, 31]. Because of this, our

experiments focused on analyzing how intervention strategies implemented within 24

hours of ICU admission affect various clinical outcomes in the first 72 hours of the

stay, along with overall in-hospital mortality. The start of our study coincided with

ICU admission, while the end was taken to be the earlier of 72 hours and the end

of the stay (i.e. due to death or release). During simulation, we only considered

timesteps up to 24 hours (or earlier if the patient left the ICU), as this was the period

in which treatments of interest were administered. For patients still in the ICU after

24 hours, we assumed that they returned to the observational regime.
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To determine ICU admission (i.e. start time) for our study, we used the first heart

rate measurement taken in the interval between 6 hours preceding and following the

ICU admission time documented in MIMIC. If the first heart rate was taken outside

the target interval, we used the documented ICU admission time as the actual ICU

admission time. This modification was made because the documented ICU admission

time is not necessarily reliable [14]. On the other hand, it is typical for patients

to have their vital signs measured immediately upon admission to the ICU, which

suggests that the first heart rate recording is a reasonable indication of when their

stay began.

7.1.3 Study Population

ICU patients were required to meet the Sepsis-3 criteria outlined in Section 7.1.1 to

be included in our study. All patients were adults (age 16 or above) at the time of

sepsis onset and none had missing data, yielding a total of 27,139 patients with 35,010

sepsis-related ICU stays among them (as some patients were admitted on more than

one occasion).

Since we used the ICU admission time as the starting point of our study, patients

whose time of suspected infection was greater than 24 hours after ICU admission

were excluded from the analysis. In addition, patients admitted to the ICU follow-

ing cardiac, vascular, or trauma surgery were also removed because they possess a

mortality risk that is inherently different from other ICU patients [14]. For patients

with more than one ICU stay in MIMIC-IV, only the first stay was included in our

study to avoid repeated measures. Of the 35,010 sepsis-related ICU stays, there were

11,109 stays that were secondary (or greater), 4,973 stays admitted from the cardio-

thoracic surgical service, and 1,110 stays with a late suspected infection time. There

was some degree of overlap between these exclusion groups, and in total we excluded

18,135 stays meeting one or more of these criteria.

From the remaining 16,875 stays (each associated with a unique patient), we

further excluded individuals who did not have any documentation in MIMIC regarding

fluids administered prior to their ICU stay. Most, if not all, sepsis patients are
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expected to receive some form of fluid therapy before being admitted to the ICU, so

a lack of pre-ICU documentation likely indicates a failure to record the information

rather than an actual case of zero pre-ICU fluids being given. Including these patients

without appropriately accounting for their pre-ICU intake would cause issues with

confounding, so we excluded them from our study. After removing these patients, we

were left with a cohort size of 8,963.

The last step in generating our study population was filtering out patients who had

outlier values of certain measurements determined by clinical expertise. These limits

are displayed in Table A.4, with additional details including units given in Table A.6.

Notably, we capped the amount of pre-ICU intake at 10L (10,000mL), since patients

who receive a higher volume are unlikely to be given more fluids during treatment. As

we were interested in using resuscitation fluids as part of our intervention strategies,

it would not be meaningful to include these patients in our experiments. The final

size of our study population was 8,532 patients with one sepsis-related ICU stay each.

During our experiments, we used 6,825 (80%) patients in the training set, 853 (10%)

in the validation set, and 854 (10%) patients in the testing set. An outline of the

cohort construction process is provided in Figure 7-1.

7.1.4 Covariates

As predictors to our model, we selected covariates that are typically monitored in the

ICU and important for determining sepsis intervention strategies, as well as potential

confounders. The covariates we used were similar to that of Li et al. [18], encompass-

ing, but not limited to, basic demographic information, an Elixhauser comorbidity

score, a SOFA score, laboratory values and vital signs, and urine output [18]. A

comprehensive list is provided in Tables A.5 and A.6. The demographics, comorbidi-

ties, and pre-ICU fluids were unmodeled and regarded as static while the remaining

variables were modeled and regarded as dynamic (time-varying). For convenience,

the intervention and outcome variables described in Sections 7.1.5 and 7.1.6 were also

treated as covariates during modeling.
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Figure 7-1: Process for constructing the sepsis cohort.

7.1.5 Interventions

Patients experiencing septic shock are typically treated with resuscitation fluids, va-

sopressors, or a combination of both. With fluids, the primary question of interest

is the volume that should be given to the patient at each time interval, while with

vasopressors, clinicians are more concerned with when to start administration. As

such, we focused on varying fluid volume and vasopressor onset as the two main

intervention variables in our experiments.

The fluids given to a patient can be classified as either treatment or maintenance

(i.e. background). In our study, we were mainly interested in varying the amount

69



of treatment fluids, the list of which is provided in Table A.7. Furthermore, we

specifically considered boluses in our counterfactual intervention strategies, which

are fluids administered at a rate of 250mL/hr or greater [15]. To avoid potential

confounding, all other fluids documented for a patient were treated as background

and captured under a maintenance fluid variable separate from the bolus variable

(Table A.6).

The vasopressors we considered were epinephrine, norepinephrine, dopamine, va-

sopressin, and phenylephrine. For the same dosage amount, different vasopressors

may cause different levels of blood vessel constriction, so their rates were standard-

ized during data extraction to allow comparability [15]. Boluses were modeled with

a single variable representing the dosage amount at each timestep while vasopressors

were modeled with a binary variable indicating whether treatment was given at that

timestep or not.

7.1.6 Outcomes of Interest

The main outcomes of interest in our study were fluid overload and in-hospital mor-

tality. To assess fluid overload, we identified events commonly associated with the

condition, including administration of diuretics, onset of dialysis, initiation of me-

chanical ventilation, and chest X-ray findings of pulmonary edema. For in-hospital

mortality, we directly extracted death and release indicators from the table of hospital

admissions in MIMIC-IV. During training of G-Net, we directly modeled diuretics,

dialysis, mechanical ventilation, and pulmonary edema as binary variables. To rep-

resent when a patient terminated their stay due to either death or release from the

ICU, we modeled a generalized end-of-stay variable. We then used a separate out-

come model, described in Section 8.1.3, to predict whether the patient experienced

in-hospital mortality or was discharged alive. The end-of-stay variable denotes a cen-

soring event : as soon as it takes on value 1 at timestep 𝑡𝑐, the patient is censored

and no training data for that patient is available as input to our model for timesteps

𝑡 > 𝑡𝑐. Consequently, during testing time, we also stopped simulating additional

timesteps if the end-of-stay variable is predicted to be 1.
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7.2 Extraction of Select Covariates

While most of the variables used in our study were extracted previously by the con-

tributors of MIMIC-IV and are publicly available, there were additional covariates

that we derived as part of our work. These include pre-ICU fluids, pulmonary edema

labels, and the Elixhauser comorbidity score. In this section, we discuss the extraction

of this data.

7.2.1 Pre-ICU Fluids

Since our intervention strategies included boluses as a treatment of interest, it was im-

portant to account for pre-ICU fluids as a potential confounder in decisions involving

administration of additional fluids. In the MIMIC-IV database, we extracted pre-ICU

fluids from one of two tables: inputevents and eMAR (electronic medication adminis-

tration records). If patients had fluids documented in both tables, we only used data

from inputevents since the records were most likely duplicates. From eMAR, only

fluids administered within 72 hours prior to ICU admission were regarded as pre-ICU

fluids.

In addition to treatment fluids (Table A.7) documented prior to ICU admission,

we also considered fluids given in the post-anesthesia care unit (PACU) or operating

room (OR) as contributing to the total pre-ICU volume. All PACU-related intake

was added to the total pre-ICU volume, while OR-related intake was only counted

as pre-ICU if (a) the patient did not previously come from the surgical intensive care

unit (SICU) or (b) the patient previously came from the SICU but the OR intake was

documented within 24 hours of ICU admission. Fluids administered in the PACU and

OR include crystalloids, colloids, packed red blood cells, platelets, and fresh frozen

plasma.

7.2.2 Pulmonary Edema Indicator

A common method for diagnosing the presence of pulmonary edema is via chest

radiograph images, which are interpreted by radiologists in radiology reports. These
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radiology reports are typically unstructured, requiring the use of advanced natural

language processing (NLP) and machine learning techniques to extract meaningful

information. In our study, we obtained labels for pulmonary edema status using

CheXpert, a state-of-the-art labeler that automatically detects the presence of 14

different observations in radiology reports, one of which is pulmonary edema [13].

The first step for obtaining these labels was to de-identify the radiology reports

in MIMIC-IV to remove personal health information using a combination of deep

learning and rules-based NLP techniques. Specifically, we employed an architecture

known as bidirectional encoder representations from transformers (BERT), as well as

the pydeid module for annotating and removing personal identifiers, to accomplish

this task. Afterwards, we filtered out all radiology reports associated with chest

X-rays and applied the CheXpert model to these documents.

For each radiology report, CheXpert outputs either 1, 0, or -1 for each of the 14

observations, indicating presence, absence, or possible presence of that observation

[13]. For our purposes, we treated both 1 and -1 as indicating presence of edema.

To determine if a patient developed edema prior to their ICU stay, we considered

findings from the most recent radiology report documented within 72 hours prior to

ICU admission. If there was a positive finding, then the patient was considered to

have pulmonary edema upon ICU admission. We chose 72 hours as a cutoff since the

condition typically takes up to three days to resolve.

7.2.3 Elixhauser Score

The Elixhauser comorbidity index is a method for estimating patient comorbidity

based on the International Classification of Diseases codes (ICD), specifically ICD-9

and ICD-10 [9]. A number of different conditions are factored into the calculation

of the comorbidity score, including heart failure, renal failure, cancer, and obesity,

though the weights for each condition differ depending on the exact algorithm used.

Our study employed the van Walraven method, where a higher score indicates a more

severe degree of comorbidity. The Elixhauser scores were computed for each patient

using records of their diagnoses recorded in MIMIC-IV.
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7.3 Data Preprocessing

Real-world data presents a number of challenges not present in traditional academic

datasets used in many machine learning research applications or synthetic data gen-

erated from a simulator such as CVSim. For example, while patients produced by

CVSim possess covariates documented frequently and at regular intervals, there is no

such guarantee that clinical data collected from the ICU is as neat. Consequently, a

number of preprocessing steps were required to format our data in a manner suitable

for modeling.

7.3.1 Binning Strategy

When employing RNN frameworks for time-series prediction, observations are typi-

cally represented as sequences with fixed-width time steps. However, datasets in the

real-world are often collected at different frequencies across different patients and vari-

ables and are thus seldom as neat as the ones prepared in synthetic environments. To

adapt the MIMIC clinical data for sequential deep network modeling, we processed

time-varying variables into discrete bins. Some measurements, such as laboratory

values (e.g. creatinine, BUN, bicarbonate, etc.), are generally recorded once per day

while other measurements, such as vital signs (e.g. heart rate, blood pressure, etc.),

are taken once every hour. Because of this, we chose a bin size of one hour. If more

than one measurement was documented in a particular hour for a particular variable,

values were averaged to produce a single aggregate value.

Using this binning scheme poses an issue, however, as we lose the temporal or-

dering between any interventions and covariates administered and measured, respec-

tively, in the same hourly bucket. This is important as covariate values recorded after

a treatment action may reflect responses to that treatment; placing the covariate in

the same bucket as the treatment would eliminate the possibility of our model recog-

nizing any causal effects present. To circumvent this problem, the following re-binning

procedure was used for covariates and outcomes recorded in the same hour ℎ as the

intervention:

73



1. If the covariate or outcome was documented prior to the intervention, we left

the value in bucket ℎ.

2. If the covariate or outcome was documented after the intervention, we re-

assigned the value to the next bucket ℎ + 1.

Note that with outcomes, we were chiefly interested in the onset of each outcome,

as opposed to the mere presence or absence, at each hour. This is because once an

outcome is deemed to have occurred, it is likely for it to continue across multiple time

steps (e.g. a patient placed on mechanical ventilation is usually ventilated for more

than a single hour). Thus, for outcomes, we applied the re-binning procedure only

to the start times of the outcome and did not make any adjustments at subsequent

hours.

As we considered two treatments, boluses and vasoporessors, in our study, it was

possible for both interventions to be administered at different times in the same

hour. If this occurred, we re-binned covariates on the second treatment. In other

words, all values observed before the later treatment action (including measurements

recorded between the two treatment actions) were left in bucket ℎ, while measure-

ments recorded after the second treatment action were pushed to bucket ℎ + 1.

An example of the strategy described above is illustrated in Figure 7-2. Say there

is a patient admitted to the ICU at 11:05, who has a laboratory value documented at

13:20 and a vital sign recorded at 13:50. Since the time of these measurements occurs

between the second and third hours with respect to admission time (hours 2.25 and

2.75 for the laboratory and vital observations, respectively), they would be placed

into hourly bin 3 provided that no interventions are administered in the same time

step. Now let’s introduce two treatment actions for this patient: a bolus administered

at 13:11 (hour 2.1) and vasopressors administered at 13:35 (hour 2.5). In this case, we

would re-bin with respect to the time of vasopressor administration. The laboratory

measurement would remain in hourly bin 3 but the vital sign would be reassigned to

hourly bin 4, to allow our model to learn the appropriate causal relationships between

the interventions, covariates, and outcomes.
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Figure 7-2: Rebinning procedure for covariates without (a) and with (b) treatment
administered in the same hourly bin. In the diagram, fluids refer to fluid boluses
while vasos indicate vasopressors.

7.3.2 Irregularly Sampled Data

Not all clinical data is collected frequently (i.e. at every hour) or consistently (i.e.

at the same time interval), resulting in irregularly sampled data with many missing

values, also known as NaNs. For a variable whose measurement in a given hour is

NaN, we take the most recent measurement in a preceding hour and use that as the

value for this hour, a method known as forward-filling imputation (Figure 7-3). This

approach makes sense as variables are typically only measured when the clinician

believes there has been a change in its value; otherwise, it is reasonable to assume

that the measurement is constant. It follows, then, that variables that tend to change

more frequently are also measured more frequently.

To forward-fill NaN values present at the start of the ICU stay, we used the most

recent measurement in the 24 hours preceding admission. The 24-hour window was

chosen since many variables, with the exception of vital signs, are recorded once per

day and assumed to remain constant until the next measurement. While vital signs

are measured more frequently, we did not have to worry about NaNs at the start of
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Figure 7-3: Forward-filling imputation for missing data. Only data from timestep
𝑡 = 1 onward was used during the experiments, but values between 𝑡 = −24 and
𝑡 = 0, if they were present, were considered while forward-filling data at the beginning
of the ICU stay.

the ICU stay because our study defined ICU admission as the time of the first heart

rate recording, and it is expected that other vital signs are documented along with the

heart rate. For patients who did not have any recent measurements preceding ICU

admission, we simply median-filled NaN values at the beginning of the stay, using

the median value of the covariate from the original (i.e. non-forward-filled) training

dataset. We found that using the median yielded improved results compared to using

the mean, as it is less subject to distortion by outliers.

The only values in our dataset that were not forward-filled were related to fluid

balance, including boluses, maintenance fluids, and urine output. In addition, va-

sopressors, diuretics, dialysis, and mechanical ventilation, which were all recorded

with a start and end time in MIMIC-IV, were zero-filled during hours outside of the

documented time intervals.

7.3.3 Indicators for Missing Data

Recall that for many variables, clinicians record a new value only when they have

reason to believe that there was a change in that variable. For example, following

antibiotics treatment, a new laboratory culture may be ordered to check for decreased

presence of microbes in the patient. This suggests that missing data is not missing

at random, and that the pattern of documentation itself can provide information
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about patient status. Previous studies showed that in addition to the forward-filling

procedure described above, introducing binary indicators for each variable to represent

missingness can potentially improve performance of RNNs on a multi-label sequence

classification task [20]. For a given variable, its associated indicator takes on value

1 if a measurement was recorded in that hour or 0 if the value was originally NaN

and required forward-filling (Figure 7-3). The model would be expected to learn

a relationship between the indicator variables and their corresponding covariates,

specifically that the covariate value should only change at this timestep compared to

the previous if the indicator variable is predicted to be 1.

In our work, we explored a similar approach to modeling missingness as Lipton et

al. [20]. We found that while introducing indicators for missingness lowered validation

loss on the one-step-ahead prediction task during training, it did not improve simu-

lation results when evaluated against a hold-out ground-truth test set. Given that

adding the indicator variables nearly doubled the number of inputs to our model, it

is reasonable that training performance increased simply due to an increase in predic-

tors. Unfortunately, since each missingness indicator was incorporated as a separate

additional box in the model, we hypothesize that error propagation was amplified

during simulation time, leading to decreased testing performance. Because of this

finding, we ultimately did not include indicators for missingness in the experiments

presented in Chapter 8 on the MIMIC data.

7.3.4 Additional Data Transformations

Similar to the CVSim experiments, the continuous-valued inputs to our models were

normalized as 𝑥′ = 𝑥−�̄�
𝜎(𝑥)

, where �̄� and 𝜎(𝑥) were both derived from the training

dataset. For covariates with log-normal distributions, we first took the logarithm of

the values prior to calculating the mean, standard deviation, and normalized values.

For covariates with log-normal distributions that could take on nonpositive values,

we used the standard normalization procedure described above, as logarithms are

only meaningful when applied to quantities greater than 0. Binary variables were

treated as binary in the MIMIC study (as opposed to categorical in the CVSim
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experiments). Finally, we introduced a nonlinear representation of time by applying

a cubic spline transformation to the (unmodeled) hour covariate. This was to allow

for better comparability between the linear and LSTM models.

78



Chapter 8

Assessing Predictive Performance of

G-Net on the Sepsis Cohort

With real-world datasets, the only information we have available is that which was

generated under the observational regime; we don’t have access to outcomes had

the clinicians followed an alternative treatment strategy. In other words, there are no

“ground-truth counterfactual datasets” analogous to the CVSim datasets 𝐷𝑐1 and 𝐷𝑐2

against which we can compare the results of G-Net’s counterfactual predictions. As

such, to evaluate G-Net on the sepsis dataset, we tested its predictive abilities under

the observational regime via “predictive check” experiments. Predictive checks allow

us to assess how well our model estimates population-level covariate distributions

under observational treatment strategies, which is necessary to gain confidence about

its predictions under counterfactual strategies.

8.1 Experimental Setup

In this segment of our study, we were interested in estimating the effects of sepsis

treatments administered in the first 24 hours of the ICU stay on patient prognosis

later in the stay. G-Net was used to simulate forward patient covariates for up to

24 timesteps, after which patient history was fed into separate classifier models to

estimate the occurrence of various outcomes of interest in the first 72 hours and in-
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hospital mortality. The goal of the predictive check was to ensure that G-Net learned

the correct covariate distributions in the observational cohort, which was evaluated by

comparing the G-Net simulated trajectories and the predicted outcome prevalences

against the ground-truth dataset.

We divided our 8,532-patient cohort into training, validation, and testing sets

using an 80-10-10 split, respectively, and trained G-Net on a one-step-ahead prediction

task with the training set as input and the validation set for hyperparameter tuning.

During testing time, G-Net was provided with the patient’s baseline physiological

state at ICU admission (i.e. their covariates at timestep 𝑡 = 1) and tasked with

predicting trajectories at timesteps 𝑡 > 1. Unlike the CVSim experiments, where

the counterfactual treatment strategies were predefined, the sepsis predictive checks

included treatment variables (bolus volume and vasopressor indicator) as part of

the simulated covariate trajectories. This was necessary as we were evaluating the

predictive ability of G-Net in these experiments.

For each patient in the testing set, we generated 𝑀 = 10 Monte Carlo simulations

according to Algorithm 1. This yielded a total of 𝑀 × 𝑁 simulations predicted for

the testing set. Since our study focused on intervention strategies during the first 24

hours of a sepsis patient’s ICU stay, the maximum length for a simulated trajectory

was 24 timesteps (up to 23 simulated timesteps in addition to 1 baseline timestep),

though it was possible for a patient’s stay to be predicted to end before the 24-hour

cutoff due to the presence of censoring variables. For patients whose stays were not

predicted to end by 24 hours, we simply stopped simulating after the 24th timestep.

Following simulation, we used the forecasted patient histories to estimate the onset

of various outcomes of interest within the first 72 hours of the ICU stay, in addition to

in-hospital mortality. Note that for these outcomes, we were not so much interested as

to when they occurred within the 72 hours so much as to whether they occurred at all.

We built individual classifier models for predicting each outcome given the covariate

and treatment history in the first 24 hours as input. These outcome models, described

in Section 8.1.3, were trained using the same training and validation datasets as G-

Net. A diagram of the high-level experimental setup is provided in Figure 8-1.
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Figure 8-1: Experimental setup for the sepsis experiments. G-Net was used to sim-
ulate covariate trajectories in the first 24 hours of the ICU stay; given the covariate
trajectories as input, predictions for various outcomes of interest were then produced
by the individual outcome models.

8.1.1 Details on Implementation & Training of G-Net

We focused on a 𝑑-box model of G-Net for the set of predictive check experiments

using the MIMIC sepsis cohort; that is, we modeled each covariate 𝐿𝑐
𝑡 with a separate

box, an architecture known as one variable per box. Given the results from the CVSim

experiments (as presented in Section 6.3), we opted to focus on refining (LSTM2 ),

which employs LSTMs for each covariate box with no representational layer. While

(LSTM3 ) demonstrated slightly lower RMSE during testing, the additional represen-

tational layer used in this implementation added a degree of time complexity that

outweighed the mild performance gain provided by the model. As a baseline, we

also constructed a one variable per box version of (Linear). Similar to the CVSim

experiments, the models adapted for the sepsis study were fit to a one-step-ahead

prediction task during training time and used to simulate covariates forward during

testing time. However, with the lack of a shared representation layer, we were able to

optimize the loss for each box individually during training, allowing G-Net to learn
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the distributions of the covariates more accurately. In this chapter, we will refer to

the LSTM model as (LSTM ) and the linear model as (Linear).

In principle, the ordering of covariate groups should not affect model performance

according to the assumptions of G-computation, but in practice, we found that chang-

ing the variable ordering could lead to differences in the simulation performance. Due

to the method of covariate rebinning we employed in our study (as discussed in Section

7.3.1), the model required the covariate and outcome boxes to precede the treatment

boxes in the prediction order; boxes for the censoring variables, which only included

end-of-stay in our experiments, were placed last. This means, for example, that the

input to the end-of-stay box at timestep 𝑡 of simulation includes patient history up

to and including timestep 𝑡− 1, along with the predicted values at timestep 𝑡 for the

covariates, treatments, and other outcomes (see Section 4.2 for more details). The

final ordering we used for our model was determined empirically and is given by the

order presented in Table A.6. Static variables were inputted as predictors to each box

but not modeled in our experiments.

Along with the covariate ordering, another challenge of working with real-world

data was that patients in our cohort did not necessarily stay in the ICU for the

same amount of time, resulting in variable-length inputs to our models. In order

to support batching during training, we padded all trajectories to the same length

(𝑡 = 24, which was the maximum length of any trajectory in our dataset) using a

dummy value. Batching is helpful as it produces a more stable gradient estimate

for backpropagation and also speeds up the training process. During the forward

pass, we inputted in the entire padded trajectory, but only computed the loss on

timesteps with actual measurements. At testing time, we simply stopped simulating

once a positive instance of a censoring variable was encountered for a given patient,

or once we reached timestep 𝑡 = 24. Because of the different timesteps at which a

censoring variable could be sampled, it was necessary that we simulate one patient

at a time instead of in batches. Lack of batching ability also explains why we only

generated 𝑁 = 10 simulations per test patient rather than 𝑁 = 100 as in the CVSim

experiments.
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8.1.2 Model & Training Parameters

The hyperparameter space we used to tune our model is displayed in Table 8.1.

These values are on a per-box basis, meaning that each box in the model could have

a different optimal parameter set. During training, we used the Adam optimizer

with early stopping for a maximum of 100 epochs and performed the experiments on

NVIDIA Tesla V100 SXM2 GPUs. The early stopping window was 10 steps and the

stop tolerance was 0.001, and we employed a batch size of 32.

Table 8.1: Hyperparameter search space for G-Net in MIMIC experiments. *Denotes
optimal parameter settings that were shared across all boxes in the model, where
“optimal” is defined according to the criteria discussed in Section 8.2.

Hyperparameters Search Range
Linear Learning Rate 0.001, 0.01

Number of Layers 2*, 3
Hidden Dimension 16, 32, 64, 128

L2 Penalty 1e-4, 1e-5, 1e-6*
Dropout (LSTM Layers) 0.0, 0.1*, 0.2

LSTM 2 Learning Rate 0.001*, 0.01

8.1.3 Outcome Model

Provided treatment for sepsis in the first 24 hours of the ICU stay, we were interested

in predicting whether a patient experienced various adverse outcomes at any point

during the first 72 hours of the stay, as well as overall in-hospital mortality. For this

task, we built and trained separate models for the following outcomes: development

of pulmonary edema, onset of diuretics, onset of dialysis, initiation of mechanical

ventilation, and death versus release from the hospital, though death versus release

was not restricted to the same 72-hour window as the other outcomes. Each model

accepts as input patient history in the first 24 hours of the ICU stay and outputs a

binary indicator predicting whether the patient experienced that outcome. Addition-

ally, we imposed an arbitrary ordering on the outcomes so that the predictions made

by earlier models in the ordering were included as input to later models.
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The outcome models were developed using the MIMIC sepsis cohort with an iden-

tical training-validation-testing split as G-Net (as described in Section 8.1), and they

were tested on the ground-truth held-out test set before being applied to the trajec-

tories simulated by G-Net for the patients in the test set. At prediction time, the

pulmonary edema, diuretics, dialysis, and mechanical ventilation indicators were au-

tomatically set to 1 if the patient had experienced the outcome during the first 24

hours of their ICU stay, and they were set to 0 if the patient had ended their stay

before 24 hours without experiencing the outcome prior to leaving. When training

the models for these outcomes, we also excluded patients who had already experi-

enced that outcome in the first 24 hours. The end-of-stay indicator was handled

somewhat differently from the others variables, as it indiscriminately captured both

death and release during simulation and required the outcome model to predict the

ultimate outcome. As such, all patients were included during training and testing of

the in-hospital mortality outcome model.

The hyperparameter space used in tuning the outcome models is presented in

Table 8.2. We tested both linear and RNN (using LSTM layers) implementations,

with an early stopping window of 5 steps, a stop tolerance of 0.001, a batch size of

64, and an L2 penalty of 1e-6, and found that the RNN-based models yielded better

performance. We also explored different orderings of the outcomes.

Table 8.2: Hyperparameter search space for outcome model *Denotes optimal param-
eter settings that were shared across all outcome models.

Hyperparameters Search Range
Linear Learning Rate 0.001, 0.01

Number of Layers 2, 3
Hidden Dimension 32, 64

L2 Penalty 1e-6
Dropout (LSTM Layers) 0.0*, 0.1

RNN Learning Rate 0.001*, 0.01
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8.2 Evaluation

To evaluate the performance of G-Net, we focused on two aspects: (1) accuracy of

simulated population-level covariate trajectories in comparison to ground-truth tra-

jectories under the observational regime, and (2) similarity in predicted outcome

prevalence for the simulated patients compared to the ground-truth outcome preva-

lence. Both procedures are described in more detail below.

8.2.1 Qualitative Analysis Using Covariate Trajectories

As in the CVSim evaluation, we plotted population-level covariate trajectories sim-

ulated for patients in the test dataset and analyzed them against the ground-truth

population-level covariate trajectories. If the simulated trajectories closely follow the

actual trajectories, it is reasonable to consider the model well-performing and to ex-

pect the counterfactual predictions made by the model to hold some validity. For

continuous variables, we averaged the values at each timestep across patients, while

for non-censoring binary variables, we calculated the proportion of patients at each

timestep who had the variable set to 1. For censoring variables, we plotted a cumu-

lative percentage of patients who had encountered a positive instance of the variable

over time.

Due to the presence of these censoring variables, we noted that some patients

might not have had measurements for all 24 timesteps. To address patients who

ended their stay early when computing the population-level trajectories, we simply

excluded them from the denominator at later timesteps so that the average covariate

value at timestep 𝑡 only took into account patients who were still in the ICU.

8.2.2 Quantitative Analysis Using Outcome Prevalence

The presence of censoring variables presented a challenge in quantifying the degree

of error in the G-Net simulations, as it was possible for the predicted trajectory for a

patient to have a different number of timesteps compared to the actual trajectory. In

this case, it was unclear how to define the RMSE at timesteps in which the predicted
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trajectory had already ended but the actual trajectory still reported covariate values,

or vice versa. As such, we were precluded in the sepsis predictive check experiments

from computing RMSE over time in the same manner as in the CVSim experiments,

where all patients were observed for equal-length stays.

Outside of RMSE, an alternate proxy for quantitatively analyzing G-Net perfor-

mance is to look at the proportion of outcomes of interest predicted for the simulated

patients in comparison to the actual proportion of those outcomes in the test set

patients. That is, for each outcome, can we train a classifier to predict whether a

patient will develop that outcome given their covariate history? Additionally, if we

use the trajectories simulated by G-Net as the inputted covariate history to this clas-

sifier, is the predicted percentage of patients who have this outcome the same as the

actual percentage of patients in the ground-truth dataset? The proportions should

be approximately equal if the simulated trajectories are accurate estimations of the

actual trajectories, and this finding would provide further evidence that G-Net is

able to predict average effects of treatment strategies in our given cohort of sepsis

patients. This approach was suitable for our study since we were primarily interested

in aggregate performance at the population level rather than individual predictions.

8.3 Results

We implemented a one variable per box model of G-Net and explored the use of

GLMs and LSTMs for the boxes. No representational layer was employed in these

experiments to reduce complexity. We first fit G-Net using the 6,825 patients in the

training set, with the 853 patients in the validation set for hyperparameter tuning.

Given observed covariate history at baseline (i.e. ICU admission at 𝑡 = 1), we then

simulated covariates forward up to 𝑡 = 24 and predicted various outcomes of interest

following simulation. The treatment variables were included as part of the simulation

in order to evaluate the predictive ability of G-Net under the observational regime.
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8.3.1 Population-Level Covariate Trajectories

The population-level trajectories for selected covariates is presented in Figure 8-2,

which compares the predictive abilities of the (Linear) and (LSTM ) implementations

of G-Net applied to the sepsis cohort. Note that the values shown for bolus and

maintenance fluids, as well as urine output, represent the total volume recorded or

predicted at each hour. In contrast to the CVSim experiments, we found that the

LSTM model did not always outperform the GLM; rather, the performance varied

depending on the covariate. For example, while the trajectories for vasopressors,

BUN, and heart rate predicted by (LSTM ) are shown to be closer to ground truth

than (Linear), the opposite is true for bicarbonate, mechanical ventilation, and SOFA

score.

Observing the variability in performance between the two models, we experi-

mented with a “hybrid” version of G-Net (hereon referred to as (Hybrid) in this chap-

ter) combining the trained boxes from the (Linear) and (LSTM ) implementations.

This was possible given that each box was trained and optimized separately from the

other boxes, so there was no practical barrier preventing us from using the output of

an LSTM-based box as the input to a linear-based box, or vice versa, during simula-

tion time. The only constraint was that the boxes in (Linear) and (LSTM ) had to

be ordered in the same sequence, because the input to box 𝑗 at time 𝑡 required the

outputs of the preceding boxes (�̂�0
𝑡 , . . . , �̂�

𝑗−1
𝑡 ); that is to say, regardless of what model

type was used for box 𝑗, the box must have been provided access to the covariates

from boxes 0 to 𝑗 − 1 at time 𝑡.

To construct the hybrid model, we compared the trajectories of the (Linear)

and (LSTM ) predictions relative to ground-truth for each covariate and selected the

best-performing box to be used in the hybrid construct (Table A.8). The resulting

model employed during simulation comprised a mosaic of GLM and LSTM boxes. It

should be noted that we used the simulated trajectories, rather than the one-step-

ahead validation loss, to determine level of performance. For almost all covariates,

the LSTM boxes achieved lower validation losses at training time compared to the
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Figure 8-2: Simulated and ground-truth population-level trajectories for selected co-
variates in the predictive check experiments.
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GLMs, but this did not necessarily translate to better performance at testing time

as illustrated by the results in Figure 8-2. This finding is not unreasonable as the

settings at testing time (multi-step-ahead simulation) and training time (one-step-

ahead prediction) were not identical, and it is reminiscent of the results of applying

MLP to the CVSim dataset, where we showed that the performance of MLP exceeded

GLM during training but was considerably worse during testing.

Our rationale for the hybrid model was that combining the best-performing boxes

for each covariate would help improve the overall predictions made by G-Net. Not only

would this increase the accuracy of the covariate predictions individually, but recall

that the inputs to box 𝑗 included the outputs of boxes 0 through 𝑗 − 1; this suggests

that an increase in the accuracy of the covariate predictions earlier in the simulation

ordering can also help performance of covariates later in the ordering. On the flip

side, we recognize that poor predictions made in prior boxes may also negatively affect

predictions of downstream covariates. This is one disadvantage of the one variable

per box framework, because while it allows for more robust estimation of covariate

distributions, it also increases the room for error during simulation: errors that can

be propagated and amplified over time as they are passed through the sequence of

boxes in the model.

The predictions made by (Hybrid) are plotted in Figure 8-2 in blue. For the

most part, we see that the hybrid implementation performs on par with or better

than the all-linear or all-LSTM models, a difference that is particularly noticeable for

covariates such as lactate and platelet.

8.3.2 Outcome Model Predictions

The outcome models were trained using the same training and validation datasets

as G-Net and evaluated using the ground-truth trajectories from the testing dataset.

Instead of purely looking at accuracy, we were interested in comparing the percentage

of patients predicted to experience each outcome compared to the actual percentage of

patients who experienced that outcome. Given that the patients in the testing dataset

were assumed to be from the same distribution as the patients in the training and
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validation datasets, we expected predictions using ground-truth trajectories from the

testing dataset to be accurate estimations of population-level outcome prevalences.

The results for the best-performing outcome models, which all employ LSTMs, are

presented in Table 8.3. In this case, “best-performing” was defined by the validation

loss at training time, which makes sense since the tasks during training and testing

were identical. Note that the order of outcomes provided in the table was empirically

determined to produce the most accurate predictions.

Table 8.3: Proportion of patients in the test set experiencing in-hospital mortality and
other outcomes of interest within the first 72 hours of the ICU stay. The estimated
percentages (columns 3 and 4) were produced by the best-performing outcome models
and the simulated trajectories were generated under the (Hybrid) implementation of
G-Net.

Outcome
Actual

Proportion

Proportion
Predicted from
Ground-Truth
Trajectories

Proportion
Predicted from

Simulated
Trajectories

Pulmonary Edema 0.459 0.447 0.462
Mechanical Ventilation 0.450 0.465 0.463

Diuretic 0.269 0.249 0.287
Dialysis 0.045 0.054 0.053

In-Hospital Mortality 0.129 0.155 0.158

Once we validated the outcome classifiers on the ground-truth test set trajecto-

ries, we applied the LSTMs to the trajectories simulated by the (Linear), (LSTM ),

and (Hybrid) models in order to estimate the proportion of patients that experienced

each of the outcomes conditioned on their covariate history predicted by G-Net. If the

estimated proportions are similar to the actual proportions, then we can more confi-

dently say that the trajectories simulated by G-Net come from the same distribution

as trajectories in the ground-truth dataset and that G-Net is accurately modeling the

given population. Of the trajectories simulated by the different G-Net implementa-

tions, we found that the outcome percentages estimated using the hybrid-simulated

trajectories most closely aligned with the actual percentages, which supports the find-

ings in Figure 8-2 regarding the respective performances of the three models. The

results of the outcome predictions are displayed in Table 8.3.
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From the table shown above, we observe that onset of dialysis and in-hospital mor-

tality appear to be moderately overestimated compared to the actual percentages seen

in the ground-truth test set. However, we also observe that the proportions predicted

from the ground-truth versus simulated trajectories are very similar, suggesting that

these inaccuracies do not necessarily indicate poor simulation performance by G-Net,

but rather suggest room for improving the architecture of the respective outcome

models. In fact, the percentages predicted from the simulated trajectories are fairly

similar to the percentages predicted from the ground-truth trajectories for a majority

of the outcomes, with the exception of onset of diuretics where the discrepancy is

larger. Even so, the predicted proportions are able to match the actual proportions

to a reasonable degree. Additional analyses should be conducted to confirm there is

no statistically significant difference in the predictions made using the ground-truth

versus simulated trajectories.
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Chapter 9

Predicting Counterfactual Treatment

Effects in Sepsis Patients

Having obtained promising results from the predictive check experiments, we hy-

pothesized that G-Net could be used to reliably estimate covariate trajectories under

alternative interventions for which we do not have ground-truth data for. In this

chapter, we explore two counterfactual strategies of interest and report the outcomes

predicted by G-Net under these strategies.

9.1 Counterfactual Strategies

To devise interventions that were relevant, interesting, and not likely to violate

the positivity assumptions required by g-computation, we considered regimes im-

plemented by established clinical trials studying the early treatment of sepsis. Specif-

ically, we focused on adapting interventions employed in the CLOVERS and ProCESS

trials [1, 30] and developed two counterfactual strategies to test: a conservative and

a liberal strategy. The conservative strategy is based on the CLOVERS study and

involves conservative use of treatment fluids, while the liberal strategy is based on

the ProCESS study and employs treatment fluids more liberally. Details about these

trials, as well as how we modified them for our experiments, are provided below. Note

that when testing the counterfactual interventions, we only borrowed the treatment
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protocols without adopting the other study design criteria set forth in the CLOVERS

and ProCESS trials.

9.1.1 Conservative Intervention Strategy

The conservative intervention regime defined in our study was based on the Crystal-

loid Liberal or Vasopressors Early Resuscitation in Sepsis (CLOVERS) clinical trial,

which compared the use of restrictive versus liberal fluids in the treatment of hy-

potensive patients with suspected sepsis infection during the first 24 hours of their

ICU stay [30]. In the restrictive fluids intervention arm, patients were treated with

only vasopressors to achieve a mean arterial pressure between 65mmHg and 75mmHg,

while in the liberal fluids intervention arm, patients were administered fluid boluses

to increase blood pressure. Additional details about the inclusion/exclusion criteria,

outcome measures, and treatment strategies can be found on the study website [30].

All patients admitted into the CLOVERS study were required to have received a

minimum of 1L and a maximum of 3L of fluid prior to enrollment.

With clinical guidance, we modified the CLOVERS restrictive fluids arm for our

study as follows (Figure 9-1): for a patient with blood pressure below 65mmHg at

time 𝑡, a 500mL bolus was administered if the total volume of fluids (including both

treatment and maintenance) they received up until that time point did not exceed

𝑋 liters and if they did not have any signs of fluid overload; otherwise, vasopressors

were administered. While 𝑋 = 1 in the CLOVERS study, we tested values 𝑋 = 1, 3

and 5 in our experiments and we did not exclude any patients from our cohort during

simulation if their pre-ICU fluid level was above or below 𝑋. Patients who received

more than 𝑋 liters of pre-ICU fluids were simply not given additional fluids during

treatment, while patients who received less than 𝑋 liters of pre-ICU fluids were

administered boluses until they reached or surpassed 𝑋 liters, after which they were

switched to vasopressors. Fluid overload was defined in our study as the presence of

pulmonary edema, administration of diuretics without mechanical ventilation, onset

of dialysis, or initiation of mechanical ventilation [30]. Maintenance fluids were always

set to 0 as per the CLOVERS guidelines.
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Figure 9-1: Procedure for the conservative counterfactual regime. *Fluid overload
is defined as one of the following: pulmonary edema, diuretics without mechanical
ventilation, dialysis, or mechanical ventilation.

9.1.2 Liberal Intervention Strategy

The liberal intervention strategy was developed using the Protocol-Based Care for

Early Septic Shock (ProCESS) trial as a guide. The investigators of this study were

interested in examining various protocol-based strategies for sepsis treatment, includ-

ing the so-called protocol-based “standard strategy,” which involves more liberal use

of fluids than the CLOVERS restrictive fluid intervention arm [1]. All patients admit-

ted into the study had received a minimum of 2L of fluids, or were given additional

fluids to achieve the 2L baseline unless they were determined to be fluid overloaded

by the treating clinician. Patients with systolic blood pressure below 100mmHg were

treated with 500-1000mL fluid boluses if they were not fluid overloaded and with

vasopressors if they were. More information about the trial can be referenced in the

publication by the ProCESS investigators [1].

While the ProCESS standard strategy was only defined for the first 6 hours of

sepsis treatment, we extended it to 24 hours for our experiments. Similar to the trial,

patients in our study with systolic blood pressure below 100mmHg were treated with

1L fluid boluses if they did not display evidence of fluid overload and vasopressors
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if they did. At each timestep, treatment was administered if systolic blood pressure

was below 100mmHg; otherwise 250mL maintenance fluids were administered. No

maintenance fluids were administered during timesteps in which boluses or vasopres-

sors were used or if the patient was fluid overloaded. During the first timestep in

which a patient required treatment, if they had not yet received the 2L minimum and

did not present signs of fluid overload, they were provided with a 1L fluid bolus or a

larger quantity if needed to reach the 2L threshold. Fluid overload under the liberal

counterfactual strategy was defined similarly as the conservative treatment regime.

The protocol is outlined in Figure 9-2.

Figure 9-2: Procedure for the liberal counterfactual regime. *Administered only if
the patient is not fluid overloaded, defined in the same manner as in the conservative
regime.

9.2 Evaluation

Due to the lack of a ground-truth dataset to compare to, we relied on clinical exper-

tise to determine if the predicted covariate trajectories averaged over the population

were physiologically plausible and logically consistent with the different counterfac-

tual strategies. For example, we might expect the incidence of pulmonary edema to
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be higher under the modified ProCESS strategy compared to CLOVERS because the

former employs treatment fluids more liberally than the latter. Note that the treat-

ment variables (treatment bolus and vasopressor onset) are no longer being predicted

under the counterfactual experiments, as they are computed based on the strategies

of interest. However, we can also plot the computed treatment trajectories and com-

pare them to the observational treatment trajectories to check that the treatments

are being administered correctly. That is, we would expect the average amount of

fluid bolus administered to be greater under the liberal regime and smaller under

the conservative regime than the observational regime; furthermore, the prevalence

of vasopressors would be expected to be greater under the conservative regime than

the liberal regime.

9.3 Results

We used the (Hybrid) version of G-Net to simulate covariate trajectories for patients

in the testing set under the conservative and liberal strategies, in order to estimate the

effects of these strategies on downstream outcomes. Select covariates are presented in

Figure 9-3, allowing for comparison of the two counterfactual regimes, where 𝑋 = 1

in the conservative regime. In order to interpret these results, we must assume that

there is no unobserved confounding; while an inherent limitation of observational

studies is the inability to guarantee adjustment for all confounders, we believe that

we accounted for the most import variables that drive fluid and vasopressor treatment

decisions in sepsis.

Looking at the trajectories given in Figure 9-3, we note that the volume of fluids

administered is much higher under the liberal counterfactual regime than either the

observational or conservative counterfactual regimes. Furthermore, the volume is

highest at the first timestep, which reflects patients receiving enough fluid to reach

the 2L minimum required by the protocol. At later timesteps, the bolus amount

under the liberal strategy continues to exceed the observational, while the amount

under the conservative strategy remains below the observational. This pattern is also
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Figure 9-3: Population-level trajectories for selected covariates predicted under coun-
terfactual treatment regimes, with the exception of bolus volume, maintenance fluids,
and vasopressor indicator, which are calculated deterministically. Ground-truth co-
variate trajectories under the observational regime are also plotted for reference. Note
that the results displayed here for the conservative regime use a fluid cap of 𝑋 = 1
liter.
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seen with maintenance fluids, which are not used in the conservative strategy and

administered more generously in the liberal strategy.

The percentage of patients on vasopressors, meanwhile, is generally higher under

the conservative strategy than the observational, which is in turn higher than the

liberal. Notably, there are fewer patients on vasopressors at earlier timesteps under

the conservative strategy than the observational, indicating that patients may not

have yet reached the fluid cap and are still being treated with boluses; however, the

level of vasopressors quickly increases and remains high for the rest of the simulation.

These observations are expected based on how we defined the two counterfactual

interventions in Section 9.1 and suggest that the interventions were implemented

correctly during simulation.

Turning to the predicted trajectories, we see that both counterfactual regimes are

able to maintain blood pressure at comparable levels above the observational regime,

with the liberal regime achieving slightly higher blood pressure at later timesteps

in the simulation. The effects of the alternative interventions on heart rate and

respiratory rate are similar to the observational; similarly, there is not much difference

in lactate levels and urine output between the three strategies.

With respect to laboratory values, the levels of hemoglobin, BUN (blood nitrogen

urea), and creatinine are noticeably lower under the liberal regime than the conser-

vative, and somewhat lower under the liberal regime than the observational. This

may be explained by the fact that administering large amounts of resuscitation fluids

increases the bloodstream fluid volume, which in turn decreases the concentration of

various substances in the body [21]. It follows, then, that limiting the use of fluids

in the conservative regime may increase the apparent levels of these substances com-

pared to the observational. Additionally, it should be noted that acute increase in

BUN and creatinine are both markers for acute renal failure [12]. These compounds

are normally eliminated from the body by the kidneys, but hypotension can lead to

decreased renal perfusion and reduced renal filtration. Treatment for sepsis is ex-

pected to reverse these effects by increasing blood pressure, leading to greater waste

clearance. The decreased levels of BUN and creatinine under the liberal regime sug-
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gests that administering resuscitation fluids could potentially restore kidney function

more effectively than either the observational or conservative interventions.

Interestingly, the predicted trajectories for pulmonary edema and mechanical ven-

tilation appear to be similar under the conservative and liberal strategies, and even

slightly higher than the observational. Initially, this seems somewhat surprising as

these outcomes are markers for fluid overload, and we would have expected them to

be more common under a treatment regime employing liberal fluids, such as the mod-

ified ProCESS intervention. One possible hypothesis for this observation is that the

downstream effects of increased fluid administration are not manifested until later in

the ICU stay, after the first 24 hours of treatment. Indeed, once we obtained the sim-

ulated trajectories under the counterfactual regimes, we applied the outcome models

to these trajectories and found that markers of fluid overload, as well as in-hospital

mortality, were predicted to occur more frequently under the liberal regime compared

to the conservative regime (Table 9.1).

Table 9.1: Predicted prevalence of various outcomes of interest under the conserva-
tive and liberal counterfactual strategies. The predicted prevalences using simulated
trajectories under the observational regime are also provided for reference.

Outcome Observational Conservative Liberal
Pulmonary Edema 0.462 0.445 0.535

Mechanical Ventilation 0.463 0.450 0.474
Diuretic 0.287 0.299 0.311
Dialysis 0.053 0.054 0.069

In-Hospital Mortality 0.158 0.147 0.160

The most prominent difference in predicted outcome prevalence between the two

counterfactual regimes is seen pulmonary edema, which is estimated to develop in

a larger proportion of patients under the liberal regime compared to the conserva-

tive. This is reasonable given that greater volumes of fluid are administered under

the liberal regime while urine output is predicted to be approximately equal across

strategies; together, these observations lead to a net fluid balance that is much higher

in patients receiving the liberal intervention [22].
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Also consistent with the prediction of increased pulmonary edema is the fact

that the percentages of patients initiating mechanical ventilation, diuretics, and/or

dialysis are also somewhat increased under the liberal regime in comparison to the

observational; on the other hand, the percentages under the conservative regime are

similar to or slightly less than the observational. A mild decrease in in-hospital

mortality is seen under the conservative strategy, which aligns with previous studies

reporting that placing caps on resuscitation fluids in the early treatment of sepsis may

help improve patient prognosis [31]. Moreover, there appears to be no difference in

the death rate between the observational and liberal counterfactual strategies, which

is a finding also reported by the ProCESS study [1].

9.4 Limitations

In the future, additional research may be undertaken to explore other counterfactual

regimes and refine the ones presented in this thesis. While we based the conservative

and liberal strategies on existing clinical trials (CLOVERS and ProCESS, respec-

tively), it was necessary to simplify and modify the protocols to some extent to fit

into our study design and modeling framework. For example, we operationalized fluid

overload as the presence of pulmonary edema, the onset of diuretics or dialysis, or

the initiation of mechanical ventilation, as those were the covariates we were able

to extract from the MIMIC database. The ProCESS and CLOVERS trials, on the

other hand, also included observations like jugular venous distention, rales, and/or

bilateral crackles in their criteria. To increase the validity of our models for real-world

applications, it is important that we find ways to model counterfactual strategies as

closely and accurately as possible as to how they might be implemented in actual

clinical settings.

Another limitation of our study pertains to the interpretation of the population-

level covariate trajectories in Figure 9-3. For a given covariate, the differences between

trajectories under the two counterfactual regimes do not strictly represent causal

effects, because these differences depend on who still remains in the ICU at each
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timestep. Consider the average decrease in platelet levels seen in patients receiving the

liberal treatment versus the conservative. With high probability, the set of patients

left in the ICU at timestep 𝑡 > 1 who were receiving the liberal treatment was not

the same set of patients left in the ICU at timestep 𝑡 > 1 who were receiving the

conservative treatment. Because we were no longer comparing the same exact cohort

of patients at each timestep after baseline, the observed differences between the two

populations could have been due to characteristics of the patients themselves rather

than a causal effect of the intervention strategy used.

On the other hand, this isn’t to say that the plots in Figure 9-3 are unable to

provide any insight into patient outcomes under alternative intervention strategies.

If the rate of end-of-stay in the first 24 hours is low under the different treatment

scenarios, then these plots may still reasonably approximate the effects of counter-

factual regimes on the covariates and outcomes shown. This is because a low rate

of end-of-stay implies that the patient population at the end of 24 hours is largely

the same as the patient population at the start, and since we started with the same

cohort of patients admitted to the ICU under each counterfactual regime, it follows

that the cohort of patients remaining in the ICU after the follow-up period must also

be similar across regimes. Even in this case, however, it still must be noted that the

observed effect isn’t necessarily a causal one. Ultimately, prospective studies and ran-

domized clinical trials will be required to obtain more conclusive results and further

clarify the appropriate dosage and timing of treatment. In the meantime, the work

presented here provides an instructive example for how g-computation can potentially

be used to support clinical decision-making and explore multiple treatment strategies

efficiently, perhaps to inform future experimental studies.
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Chapter 10

Conclusion

Treating sepsis is challenging due to the heterogeneity in patient responses and the

potential for developing adverse outcomes elicited by the very interventions (i.e. flu-

ids and vasopressors) used to stabilize the condition. In real-world clinical settings,

physicians can only observe the set of outcomes associated with the treatment that

they actually administered to the patient and thus do not have access to outcomes

that might have happened had they taken a different course of action. Given the

difficulty in determining optimal interventions for sepsis patients, it would be useful

to be able to test various interventions before selecting one to administer. This is pre-

cisely the goal of counterfactual prediction, where we aim to estimate the effects of

alternative treatment regimes on patient covariate trajectories provided information

under the observational regime. While there are many methods that can be used to

carry out this task, our study focused on g-computation, as it is particularly suited

for handling inputs that are high dimensional under interventions that are dynamic

and time-varying.

In this thesis, we introduced G-Net, a flexible recurrent neural network approach

to g-computation for estimating outcomes under counterfactual treatment strategies.

The model was first evaluated using synthetic data generated from a well-established

program simulating the cardiovascular system, from which we could obtain both an

observational and multiple counterfactual datasets for training and testing, respec-

tively. During our experiments, we explored a number of different architectures and
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showed that LSTMs yielded more accurate population-level counterfactual predictions

compared to GLM and MLP baselines. Notably, the advantage of LSTMs increased

as the number of simulation timesteps increased, illustrating their ability to learn

complex relationships between time-varying covariates and capture their long-range

dependencies.

After validating the performance of G-Net on synthetic data, we adapted one of

the LSTM-based architectures for analyzing fluid and vasopressor treatment strate-

gies in a real-world cohort of sepsis patients. It was necessary to modify the model to

address issues with missing and irregularly sampled values seen in real-world datasets.

Given the lack of counterfactual information, we assessed the predictive abilities of

G-Net on a held-out test set under the observational regime and demonstrated that

the model is able to accurately simulate forward most covariates at testing time. The

simulated trajectories also led to predicted outcome probabilities that were similar to

the ground-truth probabilities. When we applied G-Net to analyzing outcomes under

counterfactual treatment strategies derived from protocols used in widely known clin-

ical trials studying the early treatment of sepsis, we found that G-Net made logical

and clinically plausible predictions on covariate trajectories.

Future extensions of this work may be interested in employing other architectures

for G-Net such as time-series generative adversarial networks, or adding temporal

attention mechanisms to improve performance on datasets where the covariate de-

pendencies span across larger ranges of time. Performance may also be improved by

modifying the training procedure so that the task at training time versus testing time

are more similar. In our study, G-Net was trained on a one-step-ahead prediction

task but evaluated on its ability to generate multi-step-ahead simulations, and we hy-

pothesize that incorporating the simulation loss during model optimization can help

boost testing accuracy. Given that neural networks require a significant volume of

data for adequate learning, it may also be useful to acquire a larger cohort for future

experiments. Finally, we note that the distribution of the Monte Carlo simulations

produced by G-Net in this work constitute an estimate of uncertainty about a coun-

terfactual prediction; however, our current architecture does not provide uncertainty
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estimation about the G-Net parameter estimates themselves. In the future, we may

want to investigate techniques for incorporating model uncertainty in counterfactual

outcome prediction.

We hope that the work presented in this thesis can ultimately help improve the

treatment outcomes of sepsis patients in the ICU. Using simulated data from a mech-

anistic model, we successfully demonstrated the ability for G-Net in estimating coun-

terfactual outcomes under alternative treatment strategies, with improved qualitative

and quantitative results over previous models. While we primarily focused on clin-

ical applications in our work, we recognize that G-Net is a powerful tool that can

be adapted for a variety of scenarios in which one would like to predict downstream

effects of alternative courses of action.
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Appendix A

Tables

Table A.1: Input parameters to CVSim and their corresponding ranges. *Cannot be
lower than zero-pressure filling volume.

Input Covariate Range
Zero-Pressure Filling Volume 500 - 3,500

Total Blood Volume* 500 - 6,500
Nominal Heart Rate 40 - 160

Total Peripheral Resistance 0.1 - 1.3
Arterial Compliance 0.4 - 1.1

Pulmonary Arterial Compliance 2.0 - 3.4
Pulmonary Microcirculation Resistance 0.4 - 1.00
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Table A.2: Output parameters of CVSim. Covariates in bold and denoted with an
asterisk (*) are the covariates used in the G-Net experiments.

Output Covariate Abbreviation
Left Ventricle Pressure* LVP

Left Ventricle Flow* LVQ
Left Ventricle Volume LVV

Left Ventricle Contractility* LVC
Right Ventricle Pressure* RVP

Right Ventricle Flow* RVQ
Right Ventricle Volume RVV

Right Ventricle Contractility* RVC
Central Venous Pressure* CVP

Central Venous Flow CVQ
Central Venous Volume CVV
Arterial Pressure* AP

Arterial Flow* AQ
Arterial Volume AV

Pulmonary Arterial Pressure PAP
Pulmonary Arterial Flow PAQ

Pulmonary Arterial Volume PAV
Pulmonary Edema* PE

Pulmonary Venous Pressure PVP
Pulmonary Venous Flow PVQ

Pulmonary Venous Volume* PVV
Heart Rate* HR

Arteriolar Resistance* AR
Venous Tone* VT

Total Blood Volume* TBV
Intra-thoracic Pressure PTH

Mean Arterial Pressure* MAP
Systolic Blood Pressure* SBP

Diastolic Blood Pressure DBP
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Table A.3: Sepsis-3 cohort characteristics. *Denotes proportion of patients released
from the ICU in the first 24 hours (not from the hospital).

Characteristic n
Number of ICU stays 8,532

Mean age 65.26
Median age 67.0

Male 4,683
Race – white 5,184
Race – black 698
Race – other 2,453

Death rate (first 24hrs) 1.75%
Release rate* (first 24hrs) 11.74%

In-hospital mortality 13.68%
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Table A.4: Outlier values for specific covariates used to exclude patients at baseline
in the sepsis experiments.

Covariate Maximum Value Units
Heart rate 250 beats/min

Diastolic Blood Pressure 200 mmHg
Systolic Blood Pressure 250 mmHg
Mean Blood Pressure 220 mmHg

BUN 100 mmol/L
Weight 200 kgs
pCO2 150 mmHg

Urine output 8,000 mL
Pre-ICU Fluid Amount 10,000 mL

Platelet 1500 counts/109L
pO2 600 mmHg

Base excess 50 mmol/L
Calcium 80 mg/dL
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Table A.5: MIMIC static variables. All variables were used as inputs to our models.

Variable Name Variable Type Units
Age Continuous years

Gender Binary N/A
Pre-ICU Fluid Amount Continuous mL

Elixhauser Score Continuous N/A
End Stage Renal Failure Binary N/A
Congestive Heart Failure Binary N/A
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Table A.6: MIMIC time-varying variables. All variables were used as inputs to our
models, and boluses and vasopressors were also intervention variables. *Refers to
maintenance fluids (not an intervention).

Variable Name Variable Type Units
Heart Rate Continuous beats/min

Diastolic Blood Pressure Continuous mmHg
Systolic Blood Pressure Continuous mmHg
Mean Blood Pressure Continuous mmHg

Temperature Continuous ∘C
SOFA Score Treated as Continuous N/A

Platelet Continuous counts/109L
Hemoglobin Continuous g/dL

Calcium Continuous mg/dL
BUN Continuous mmol/L

Creatinine Continuous mg/dL
Bicarbonate Continuous mmol/L

Lactate Continuous mmol/L
pO2 Continuous mmHg
sO2 Continuous %
spO2 Continuous %
pCO2 Continuous mmHg

Total CO2 Continuous mEq/L
pH Continuous Numerical[1,14]

Base excess Continuous mmol/L
Weight Continuous kgs

Respiratory Rate Continuous breaths/min
Fluid Volume* Continuous mL
Urine Output Continuous mL

Pulmonary Edema Indicator Binary N/A
Diuretics Indicator Binary N/A
Dialysis Indicator Binary N/A

Mechanical Ventilation Indicator Binary N/A
Bolus Volume Continuous mL

Vasopressor Indicator Binary N/A
End of Stay Indicator Binary N/A
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Table A.7: Resuscitation fluids employed in the treatment of sepsis patients.

Fluid Category
Albumin 5% Colloids
Albumin 25% Colloids

Hetastarch (Hespan) 6% Colloids
Dextran 40 Colloids
Dextran 70 Colloids
NaCl 0.9% Crystalloid Bolus
NaCl 0.45% Crystalloid Bolus

NaCl 3% (Hypertonic Saline) Crystalloid Bolus
Lactate Ringer (LR) Crystalloid Bolus

D5 1/2NS Crystalloid Bolus
D5 1/4NS Crystalloid Bolus

D5N5 Crystalloid Bolus
D5LR Crystalloid Bolus

Fresh Frozen Plasma FFP Transfusion
PACU FFP Intake FFP Transfusion

Packed Red Blood Cells RBC Transfusion
PACU Packed RBC Intake RBC Transfusion

Platelets RBC Transfusion
PACU Platelet Intake RBC Transfusion
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Table A.8: Boxes used to model individual covariates in the hybrid implementation
of G-Net. The ordering of boxes within the hybrid model is the same as in Table A.6.

LSTM Linear
Heart Rate Fluid Volume

Diastolic Blood Pressure Urine output
Systolic Blood Pressure SOFA Score
Mean Blood Pressure Temperature

Lactate Platelet
pH pO2

Hemoglobin Respiratory Rate
Calcium BUN

Base Excess Bicarbonate
pCO2 spO2

Total CO2 Pulmonary Edema Indicator
Creatinine Diuretic Indicator

Weight Mechanical Ventilation Indicator
sO2

Dialysis Indicator
Vasopressor Indicator

Bolus Volume
End of Stay Indicator
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