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Abstract

Many advances in functional genomics and in biology more broadly can be attributed
to the rise of massively parallel sequencing technology and its derivatives. As the
volume of sequencing and other high-throughput experimental data increases expo-
nentially, so does the need for computational methods to analyze and condense these
vast amounts of data, and to help explain the underlying phenomena. In this thesis,
I describe five projects that introduce novel techniques and methods in functional
genomics.

The first project introduces a simulation-based framework to investigate neural
network architectures that are trained on biological sequence data, as is common in
functional genomics. The second project describes a two-pronged approach to study
the determinants of cell type-specific chromatin accessibility, with an ensemble of
neural networks trained on DNase-seq data to predict chromatin accessibility, and
MIAA, the multiplexed integrated accessibility assay, to validate, experimentally,
these in silico predictions. The third project presents a method to identify long-range
genomic interactions from ChIA-PET and HiChIP data. Enabled by this work, the
fourth project aims to provide a means to identify reproducible long-range genomic
interactions. We continue the analysis of long-range interactions in the fifth project
by performing co-enrichment analysis of transcription factor sequence motifs.

Collectively, these methods provide new approaches to a range of problems in func-
tional genomics, from finding appropriate neural network architectures for sequence-
based prediction tasks to uncovering patterns in long-range genomic interactions.

Thesis Supervisor: David K. Gifford
Title: Professor of Electrical Engineering and Computer Science
Professor of Biological Engineering
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Chapter 1

Introduction

1.1 Chromatin accessibility

Chromatin structure is critical for the regulation of DNA-dependent processes such as

transcription [34], replication [21], recombination [22], and DNA damage repair [20,

24], and thus is an upstream regulator of most biological functions, including gene

expression patterns that shape cell identity. Furthermore, the dysregulation of chro-

matin accessibility is an underappreciated factor in cancer initiation and progres-

sion [2, 29], and a better understanding of the cell type and cell state specific rules

of chromatin accessibility is needed in order to develop more accurate models of cell

differentiation and identity, and diseases associated with its dysregulation.

We define chromatin accessibility as a measure of the relative depletion of local

nucleosome contact with genomic DNA [35]. Nucleosomes are the basic units of chro-

matin architecture, which consist of DNA wrapped around eight histone proteins.

Regions of open or accessible chromatin are nucleosome-depleted, and transcription-

ally active [8], as well as commonly associated with active enhancers [32], while regions

of closed chromatin are nucleosome-enriched and inaccessible to most transcription

factors [12].

The chromatin state is modulated by post-translational modifications of histone

proteins, which alter the charge of the histones and thereby strengthens or weakens

interactions between histones and the negatively charged DNA. Collectively, these

23



histone modifications constitute the so-called histone code. Histone modifications are

handed down to mitotic daughter cells and are sometimes even maintained through

meiosis [13].

Common post-translational modifications of histones include acetylation and deacety-

lation of lysine residues by histone acetyltransferases (HATs) and histone deacetylases

(HDACs), respectively. HATs remove the positive charge on the histones through the

enzymatic addition of acetyl groups. As a consequence, the histone packing decreases,

which makes the chromatin more accessible.

Chromatin accessibility is also influenced by methylation. Histone methyltrans-

ferases (HMTs) add one or more methyl groups to lysine and arginine residues of

histones, which increases their hydrophobicity. This modification has the opposite

effect; methylated histones are more tightly packed than their unmethylated counter-

parts, effectively decreasing chromatin accessibility. The methyl groups are removed

by histone demethylases (HDMs).

While the roles of other forms of histone modifications, such as phosphorylation,

ubiquitylation, and sumoylation, are less well understood, their effect on chromatin

accessibility has been shown in numerous studies [1, 28, 25, 27].

The histone modifiers themselves are not site-specific, but are directed to their

site of action by sequence-specific transcription factors. This mechanism has been

shown for HATs [14], HDACs [17], HMTs [31], and HDMs [26].

We use the term grammar, or cell type-specific grammar of chromatin accessibility,

to refer to a set of probabilistic and spatial rules of sequence motifs that explains the

differences between chromatin accessibility profiles of various cell types. These rules

describe patterns of sequence motifs that are associated with open chromatin regions

in a specific cell type or cell state. They may include combinations of sequence motifs,

spacing or orientation constraints between sequence motifs. An example of such a rule

would be the following: sequence motif A is found between 10 and 50 bp upstream

of sequence motif B in open chromatin regions in cell state Y, where the sequence

motifs might correspond to transcription factor binding sites. Spatial relationships

between transcription factor binding sites are biologically relevant, as there exist
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both homotypic [7] as well as heterotypic clusters of transcription factors [15] and the

combinatorial interactions between them have been shown to be important [30].

Chapter 2 introduces a flexible simulator that makes it possible to specify a set

of probabilistic rules describing the hypothesized rules of chromatin accessibility and

other biological phenomena, and subsequently synthesize sequence data that adheres

to these rules. In chapter 3 we present a neural network-based approach to identify

determinants of cell type-specific chromatin accessibility and how to validate them

experimentally.

1.2 Long-range genomic interactions

Another layer in the many-layered regulation of gene expression are physical, three-

dimensional chromatin interactions [3, 36]. These interactions can occur between

genomic regions that are millions of base pairs apart from each other. Together, they

form a functionally meaningful, higher-order organization of the genome [4].

Sequencing-based assays such as ChIA-PET [6], HiChIP [23], and Hi-C [19] have

been used to discover numerous examples of long-range interactions with functional

consequences, ranging from interactions mediated by structure-defining architectural

proteins [33, 10, 5, 11] to enhancer-promoter interactions [16, 18, 37].

Chapters 4 to 6 introduce computational methods to detect long-range genomic

interactions, to assess their reproducibility, and to uncover pairs of transcription

factors that interact with each other throughout the genome.

1.3 Thesis outline

The following five chapters describe five different projects that were previously pub-

lished (chapters 3 - 5) or are currently under review (chapters 2 and 6).

In chapter 2 we introduce seqgra, a simulation-based framework to investigate neu-

ral network architectures that are trained on biological sequence data, as is common

in functional genomics. Chapter 3 describes a two-pronged approach to study the
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determinants of cell type-specific chromatin accessibility, with an ensemble of neural

networks trained on DNase-seq data to predict chromatin accessibility, and MIAA,

the multiplexed integrated accessibility assay, to experimentally validate these in sil-

ico predictions. In chapter 4 we present CID, a method to identify long-range genomic

interactions from ChIA-PET and HiChIP data. Chapter 5 picks up where the pre-

vious chapter left off by introducing IDR2D, a method which represents a means to

identify reproducible long-range genomic interactions. And lastly, we present spatzie

in chapter 6, which continues the analysis of long-range interactions by performing

co-enrichment analysis of transcription factor sequence motifs.

1.4 Collaborators

The work presented in this thesis would not have been possible without the many

collaborators that I was fortunate enough to work with. The experimental arm of the

MIAA project from chapter 3 was carried out by Budhaditya Banerjee and Richard I.

Sherwood of the Sherwood Lab at Harvard Medical School. The method introduced

in chapter 4 benefited greatly from the conceptual input of Michael Closser and Hynek

Wichterle from the Wichterle Lab at Columbia University. Furthermore, all projects

presented here are a result of close collaboration and countless conversations with

members of the Gifford Lab, specifically Jennifer Hammelman and Yuchun Guo.

1.5 Availability

The software that is described in this thesis is freely available and licensed under

permissive open source licenses. The method of chapter 2 was packaged as a pip-

installable Python package and is part of the Python Package Index. Documentation

can be found at https://kkrismer.github.io/seqgra and the source code is hosted

on GitHub and available at https://github.com/gifford-lab/seqgra. The source

code for the model from chapter 3 is also available on GitHub at https://github.

com/gifford-lab/DeepAccess. CID, the method from chapter 4 is part of the larger

26

https://kkrismer.github.io/seqgra
https://github.com/gifford-lab/seqgra
https://github.com/gifford-lab/DeepAccess
https://github.com/gifford-lab/DeepAccess


GEM [9] Java package and can be downloaded from http://groups.csail.mit.edu/

cgs/gem/cid. The source code is available at https://github.com/gifford-lab/

GEM3. IDR2D from chapter 5 and spatzie from chapter 6 are both available as an

R/Bioconductor packages and part of their functionality is also offered online at

https://idr2d.mit.edu and https://spatzie.mit.edu, respectively. The source

code repositories for both methods are also available on GitHub at https://github.

com/gifford-lab/idr2d and https://github.com/gifford-lab/spatzie.
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2.1 Abstract

Sequence models based on deep neural networks have achieved state-of-the-art perfor-

mance on regulatory genomics prediction tasks, such as chromatin accessibility and

transcription factor binding. But despite their high accuracy, their contributions to a

mechanistic understanding of the biology of regulatory elements is often hindered by

the complexity of the predictive model and thus poor interpretability of its decision

boundaries. To address this, we introduce seqgra, a deep learning pipeline that in-

corporates the rule-based simulation of biological sequence data and the training and

evaluation of models, whose decision boundaries mirror the rules from the simulation

process. The method can be used to (1) generate data under the assumption of a

hypothesized model of genome regulation, (2) identify neural network architectures

capable of recovering the rules of said model, and (3) analyze a model’s predictive

performance as a function of training set size, noise level, and the complexity of the

rules behind the simulated data.
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2.2 Introduction

Over the last five to ten years, neural networks were successfully applied to make

large gains on a wide range of tasks in such diverse fields as computer vision, com-

puter audition, natural language processing, and robotics. While the structure and

the semantics of the data used to train and evaluate neural networks can be vastly

different, the core learning algorithms are almost always the same and the neural

network architectures are often composed of similar building blocks. This is also true

for the field of genomics, and computational biology as a whole, where deep neu-

ral networks are trained on data that are obtained experimentally using functional

genomics assays such as DNase-seq [5], ATAC-seq [6], and ChIP-seq. Motivated by

their success, architectural building blocks commonly seen in these networks, such as

convolutional layers, recurrent layers, batch normalization, drop-out, and skip connec-

tions [15, 22, 31, 20], have been imported from computer vision and other fields. This

cross-fertilization between fields and the general applicability of the building blocks

of deep learning has more recently been seen in the adoption of transformer-based

architectures for image classification tasks in computer vision and protein prediction

tasks in biology. However, most data sets used to train supervised deep learning mod-

els in biology are different from data sets in computer vision and natural language

processing in two ways. (1) Biological problems contain noisy input and noisy labels

in that not only is there substantial intra-class variability and noise in the input, e.g.,

images labeled as cat contain cats that vary in terms of breed, color, position, pose,

etc., but also a significant fraction of examples are mislabeled, i.e., images labeled as

cat are empty or contain dogs. This is rare in computer vision data sets, but common

in data sets derived from functional genomics assays. (2) Feature attribution or other

model explanation methods are not human-interpretable. We understand images of

cats in the sense that we know which parts of the image contain information that

is relevant for the classification (because they belong to the cat) and which parts

are irrelevant (because they belong to the background). This intuitive understanding

is necessary when attribution methods such as saliency maps are applied to assess a
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model’s ability to base predictions on relevant parts of the input. In biology, examples

often include DNA sequence windows of various widths, most commonly 1000 base

pairs (bp), which, unlike images of cats, are not human-readable. This biology-specific

issue of inherently opaque examples exacerbates the general interpretability issue of

deep neural networks, whereas the lack of high quality data sets contributes to the

reproducibility crisis and makes it more difficult to compare architectures, as they

are often only evaluated on a custom data set.

The method introduced here, seqgra, attempts to improve the process by which

neural network architectures are chosen for specific genomics prediction tasks and

provides a framework to evaluate model interpretation methods. Its fully repro-

ducible pipeline provides a means to (1) simulate data based on a pre-defined set

of probabilistic rules, (2) create and train models based on a precise description of

their architecture, loss, optimizer, and training process, and (3) evaluate the trained

models using conventional test set metrics as well as an array of feature attribution

methods. These feature attribution methods in combination with simulated data and

thus perfect ground truth enable an analysis of the model’s decision boundaries and

how well they capture the underlying rules of the data generation process from step 1.

Utilizing this framework, models are not only evaluated based on their predictive per-

formance, but also on the ability to recover the vocabulary (e.g., specific transcription

factor binding site motifs) and grammar (e.g., spacing constraints between interact-

ing transcription factors) of the data set, while assigning little weight to confounding

factors and idiosyncratic noise.

Efforts in this area include Kipoi [1], a repository for trained genomics models,

and Selene [8], a framework for biological sequence based deep learning models that

supports training of PyTorch models, model evaluation with conventional test set

metrics (ROC and precision-recall curves), and variant effect prediction and in silico

mutagenesis of trained models. To our knowledge none of the existing methods offer

functionality for simulating data using a general framework of probabilistic rules, nor

do they incorporate feature attribution methods.

Furthermore, this simulation-based framework can also serve as a testbed for hy-
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Figure 2-1: A framework for simulation-based evaluation of neural network

architectures. (figure caption continued on next page)
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Figure 2-1: A framework for simulation-based evaluation of neural network

architectures. (A) Schematic of the three main components: First, a simulator

generates synthetic data according to the rules and specifications defined in the data

definition file. Second, a learner creates a neural network model whose architecture

and hyperparameters are specified in the model definition file, and trains it on the

synthetic data from step 1. And third, the trained model is evaluated in terms

of predictive performance and its ability to recover the rules specified in the data

definition file. (B) The data definition specifies the basic properties of the synthetic

data, including the alphabet (e.g., DNA, RNA, protein) and its distribution, as well as

condition-specific rules (the grammar), which determine how information about the

label 𝑦 is encoded in the input 𝑥. (C) The model definition contains all information

required to create and train the model. (D) A schematic of six simulated toy data

sets for multi-class classification, where the classes 𝑦 correspond to cell types and the

input 𝑥 are sequence windows (depicted as gray bars) that encode information about

the class 𝑦 at certain positions in 𝑥 (colored areas). The rules that determine how this

information is encoded range from basic (cell type specific k -mer at fixed position) to

complex (non-specific combinations of position weight matrices with cell type specific

spacing constraints).
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potheses about biological phenomena or as a means to investigate the strengths and

weaknesses of various feature attribution methods across different neural network

architectures that are trained on data sets with varying degrees of complexity. In

the former use case, the hypothesis is encoded in the rules of the simulation process

to identify an appropriate neural network architecture, which is subsequently trained

and evaluated on experimental data. The performance of this simulation-vetted archi-

tecture on experimental data serves as an indication of the validity of the hypothesis

and its underlying assumptions about the biological phenomenon.

2.3 Materials and Methods

2.3.1 Position probability matrices and position weight matri-

ces

We use position probability matrices (PPM) with a DNA alphabet (Σ = {A,C,G,T})

to represent sequence motifs:

PPM⏞  ⏟  ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A C G T

1 𝑦1,A 𝑦1,C 𝑦1,G 𝑦1,T

2 𝑦2,A 𝑦2,C 𝑦2,G 𝑦2,T
...

...
...

...
...

𝑛 𝑦𝑛,A 𝑦𝑛,C 𝑦𝑛,G 𝑦𝑛,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.1)

As the name suggests, each cell of a PPM is a probability, the probability of observing

a particular nucleotide at a particular position, and each row sums to one, i.e., at each

position one of the four nucleotides must be present. We use the notation PPM𝑘(𝑖, 𝑗)

to access the probability of observing the 𝑗th nucleotide at the 𝑖th position in a

specific PPM𝑘.

These PPMs usually describe experimentally obtained estimates of transcription

factor binding sites, but may also describe artificially constructed sequence motifs.

41



100%

3%

7%

5%

4%

7%

3%

2%

0%

9%

29%

100%

29%

26%

32%

26%

41%

32%

28%

25%

32%

26%

100%

35%

33%

35%

34%

33%

38%

33%

17%

1%

13%

100%

9%

10%

12%

0%

9%

10%

7%

18%

14%

19%

100%

13%

17%

22%

12%

33%

9%

0%

7%

14%

7%

100%

9%

8%

6%

21%

4%

8%

5%

8%

2%

0%

100%

4%

4%

7%

4%

0%

4%

4%

4%

2%

4%

100%

6%

6%

8%

4%

8%

4%

0%

4%

11%

2%

100%

8%

1%

2%

3%

2%

12%

10%

4%

3%

0%

100%

se1

se2

se3

se4

se5

se6

se7

se8

se9

se10

se
1

se
2

se
3

se
4

se
5

se
6

se
7

se
8

se
9

se
10

0.00 0.25 0.50 0.75 1.00
empirical similarity score

0 30.4 31.91 36.9 35.06 37.14 39.59 41.94 57.08 54.37

46.08 0 24.36 35.63 25.02 43.54 39.06 33.27 38.74 52.66

43.01 19.14 0 24.4 24.5 31.13 45.47 34.69 38.87 57.83

41.64 27.04 18.32 0 24.14 28.24 31.05 37.92 37.05 51.01

46.21 20.82 21.68 33.16 0 31.3 38.16 34.93 39.34 24.05

41.92 33.19 22.82 30.95 24.77 0 39.16 33.34 45.62 26.2

51.31 33.59 41.67 31.97 33.18 37.58 0 39.08 60.29 54.49

46.28 30.87 30.68 43.67 31.37 40.81 40.3 0 48.38 45.33

56.8 31.42 26.96 27.79 31.49 39.35 47.68 42.51 0 55.66

47.28 33.98 34.21 42.04 15.56 20.54 44.83 34.81 44.89 0

se1

se2

se3

se4

se5

se6

se7

se8

se9

se10

se
1

se
2

se
3

se
4

se
5

se
6

se
7

se
8

se
9

se
10

0 10 20 30 40 50 60
KL divergence

100%

19%

15%

18%

13%

17%

19%

11%

22%

15%

4%

100%

5%

10%

5%

3%

1%

1%

0%

1%

8%

11%

100%

10%

5%

3%

8%

8%

9%

7%

28%

59%

58%

100%

27%

28%

21%

38%

23%

31%

0%

6%

6%

8%

100%

1%

7%

2%

1%

2%

77%

83%

81%

82%

81%

100%

83%

78%

76%

85%

14%

0%

3%

7%

4%

3%

100%

4%

16%

4%

50%

56%

55%

52%

51%

46%

50%

100%

51%

54%

3%

0%

6%

1%

0%

5%

6%

2%

100%

4%

17%

24%

24%

19%

27%

23%

13%

25%

17%

100%

se1

se2

se3

se4

se5

se6

se7

se8

se9

se10

se
1

se
2

se
3

se
4

se
5

se
6

se
7

se
8

se
9

se
10

0.00 0.25 0.50 0.75 1.00
empirical similarity score

0 39.49 32.09 25.23 36.55 14.78 39.65 23.88 40.81 33.33

35.53 0 37.52 15.78 36.39 17.01 42.55 27.47 68.35 26.39

33.78 47.53 0 31.96 30.32 16.54 38.18 21.56 41.02 29.42

24.98 28.41 30.69 0 20.62 7.97 44.28 17.1 45.76 23.59

30.16 39.87 32.05 18.76 0 15.92 27.48 26.98 44.43 29.49

27.48 35.37 27.7 14.84 29.57 0 41.19 16.12 40.23 22.24

32.59 43.84 30.35 35.23 24.48 20.03 0 26.51 39 28.57

27.77 42.59 24.3 18.51 33.26 8.73 34.96 0 38.59 20.15

32.76 67.15 37.14 37.66 40.81 19.75 33.36 26.6 0 37.28

40.7 42.16 32.21 28.12 41.78 13.66 38.98 19.37 49.27 0

se1

se2

se3

se4

se5

se6

se7

se8

se9

se10

se
1

se
2

se
3

se
4

se
5

se
6

se
7

se
8

se
9

se
10

0 20 40 60
KL divergence

A B

C D E F

Figure 2-2: Selection of sequence motifs for simulation grammars. (A) ROC

curve of Bayes Optimal Classifier on multi-class classification task with 10 classes,

prior to filtering out ambiguous sequence motifs. (B) Same as panel A, after ambigu-

ous sequence motifs were removed. (C) KL divergence matrix of 10 sequence motifs,

prior to filtering. (D) Empirical similarity score matrix of 10 sequence motifs, prior

to filtering. (E) Same as panel C, after removing ambiguous motifs. (F) Same as

panel D, after removing ambiguous motifs.
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To calculate the likelihood of a sequence given a PPM, we first convert the PPM

to a position weight matrix (PWM) by transforming the elements of the PPM to log

likelihoods,

𝑦′𝑖,𝑗 = log2

𝑦𝑖,𝑗
𝑝𝑗

, (2.2)

using background sequence probabilities 𝑝, which are described in section 2.3.6. The

score of a particular position in a DNA sequence is then calculated by adding the

value of the observed nucleotide at each position in the PWM.

2.3.2 Motif information content

To calculate the information content of a sequence motif represented as a PPM, we

first calculate U(𝑖), the uncertainty at position 𝑖 as follows:

U(𝑖) = −
∑︁
𝑗∈Σ

PPM(𝑖, 𝑗) × log2(PPM(𝑖, 𝑗)). (2.3)

The information content at position 𝑖 is then defined as follows

IC(𝑖) = 𝑡− U(𝑖), (2.4)

where 𝑡 = log2(|Σ|), the total information content per position in bits. In order to

obtain MIC, the information content of the entire motif, we add up the individual

positions:

MIC =
𝑛∑︁

𝑖=1

IC(𝑖), (2.5)

where 𝑛 is the motif width in nucleotides (nt), see matrix in 2.1.

2.3.3 Relative entropy between motif and background distri-

bution

The information content of a motif is a special case of the relative entropy of a

motif where background probabilities 𝑝 are uniform. Relative entropy, also known

as KL divergence, between a motif and the background distribution is calculated per
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position, similarly to IC:

𝐷KL(𝑖) =
∑︁
𝑗∈Σ

PPM(𝑖, 𝑗) × log2

(︂
PPM(𝑖, 𝑗)

𝑝𝑗

)︂
, (2.6)

and then summed over positions to obtain the Motif Relative Entropy,

MRE =
𝑛∑︁

𝑖=1

𝐷KL(𝑖). (2.7)

2.3.4 Relative entropy between two motifs

While the relative entropy between a particular motif, PPM1, and the background

distribution is a way to gauge the learnability of a grammar where the presence of

PPM1 carries information, the relative entropy between two motifs, PPM1 and PPM2,

is equally useful to assess the learnability of grammars with multiple, semantically

distinct sequence elements.

By slightly adjusting the 𝐷KL from above, we calculate the KL divergence of

position 𝑖 between two motifs as follows:

𝐷KL(PPM1,PPM2, 𝑖) =∑︁
𝑥∈Σ

PPM1(𝑖, 𝑥) × log2

(︂
PPM1(𝑖, 𝑥)

PPM2(𝑖, 𝑥)

)︂
.

(2.8)

The motif pair relative entropy of PPM1 relative to PPM2 is then defined as

MPRE(PPM1,PPM2) =
𝑛∑︁

𝑖=1

𝐷KL(PPM1,PPM2, 𝑖). (2.9)

To calculate the MPRE between motifs of unequal width, we pad the shorter

motifs with neutral positions using background probabilities.

Another issue with equation 2.9 is that it does not capture highly similar but

shifted motifs. PPM1 might be equivalent to PPM2 shifted by one position and thus

considered highly similar, but MPRE(PPM1,PPM2) in its current form does not

reflect this. To resolve this, we calculate MPRE(PPM1,PPM2) for several alignments
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of PPM1 and PPM2 and take the minimum.

2.3.5 Empirical similarity score between two motifs

The empirical similarity score (ESS) between PPM1 and PPM2 is another way to

assess the similarity between two motifs and thus the difficulty to distinguish between

them. ESS(PPM1,PPM2) is calculated by generating 𝑘 (in this work, 𝑘 = 100)

instances of motif 2, flanked on both sides by background sequences of length 𝑛1,

where 𝑛1 is the width of PPM1. All positions of these 𝑘 sequences are then scored by

PWM1 (the position weight matrix of PPM1), and the highest score per sequence is

returned. ESS(PPM1,PPM2) is then the mean of these 𝑘 scores. ESS motif matrix

plots (Figure 2-2 and Supplementary Figure A-3) depict adjusted empirical similarity

scores, which are shifted by ESS0 if ESS0 < 0, where ESS0 = min𝑗 ESS(PPM𝑖,PPM𝑗),

and normalized such that the self similarity score ESS(PPM𝑖,PPM𝑖) = 1.0.

Both MPRE and ESS are asymmetric, i.e., ESS(PPM1,PPM2) ̸= ESS(PPM2,PPM1).

2.3.6 Alphabet distribution for grammars

For all grammars discussed in this paper, we used the natural nucleotide distribution

of the human genome, 29.565 % adenine (A), 20.435 % cytosine (C), 20.435 % guanine

(G), and 29.565 % thymine (T) [21].

2.3.7 Motif database

We used HOMER motifs for all grammar sequence elements that were based on

transcription factor binding site motifs. These motifs were obtained by analyzing

data from publicly available ChIP-seq experiments [11].

2.3.8 Feature importance evaluators

While conventional test set metrics, such as ROC curves and precision-recall curves,

assess model performance based on a set of examples (e.g., the test set), feature
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importance evaluators quantify the contribution of each input feature to the model’s

prediction. In the context of seqgra, feature importance evaluators are used to assess

what we call grammar or vocabulary recovery, the degree to which a model was able to

align its decision boundaries with the rules of the grammar that was used to simulate

the data it was trained on. This is possible because for simulated data we not only

know the ground truth label for each example, but also which positions are part of the

background and thus contain no information about the class label, and which positions

were altered by a grammar rule and thus do contain information about the class

label. These position-level annotations (background positions, grammar positions)

are provided for all simulated examples.

More formally, feature importance evaluators take a model 𝑓(𝑥), a target 𝑦 and

an example 𝑥𝑖 of width 𝑛, and return 𝑧, an 𝑛-dimensional vector that contains the

attribution value (also known as importance, relevance, contribution) of each input

position to model 𝑓(𝑥) predicting target 𝑦. Please note that 𝑛 is the sequence length

of the example, not the number of features. For instance, if the input to the model

is a 150 nt DNA sequence, 𝑥𝑖 is a 150 by 4 matrix (one-hot encoded), containing 600

features, but its width 𝑛 = 150. Feature attribution values in seqgra are grouped and

reported at the position level, not the input feature level.

Attribution values are visualized with so-called grammar agreement plots, which

are heatmaps depicting attributions and position-level annotations of several exam-

ples. The plots encode the attribution values in the color luminosity, where lighter

colors indicate low values (low feature importance) and dark colors indicate high

values (high feature importance). The position-level annotations are encoded in the

color hue, with grammar positions in green and background positions in red.

2.3.9 Gradient-based feature importance evaluators

This large class of feature importance evaluators (FIEs) uses backpropagation to cal-

culate the partial derivatives of the output, 𝑓𝑦(𝑥), with respect to the input, 𝑥𝑖. seqgra

includes seven gradient-based feature importance evaluators off-the-shelf, whose im-

plementations are based on code by Yulong Wang [28].
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The most basic FIE, raw gradient [24], just returns the gradient with respect to

the input example 𝑥𝑖:

𝑧RG =
𝜕𝑓𝑦(𝑥)

𝜕𝑥𝑖

, (2.10)

or short ∇𝑓𝑦(𝑥𝑖), where 𝑓𝑗(·) is the activation of the target neuron in the output layer,

e.g., class 𝑗 for multi-class classification tasks.

The absolute gradient method or saliency is defined as

𝑧S = |∇𝑓𝑦(𝑥𝑖)|, (2.11)

where |𝑥| applies the element-wise absolute value operation to vector 𝑥.

Gradient-x-input [2] (gradient times input) is defined as

𝑧GI = 𝑥𝑖∇𝑓𝑦(𝑥𝑖). (2.12)

Integrated Gradients [27] takes the average of multiple (here, 𝐾 = 100) gradi-

ents evaluated along the linear path from the baseline 𝑥0 (which in seqgra is the zero

vector) to the input example 𝑥𝑖. The method is defined as

𝑧IG =
1

𝐾

𝐾∑︁
𝑘

∇𝑓𝑦

(︂
𝑘

𝐾
𝑥𝑖

)︂
. (2.13)

seqgra also supports gradient-based methods that alter the way the gradient is

obtained using backpropagation, namely Guided Backpropagation [25], Decon-

volution [29], and DeepLIFT [23]. The details of these methods are beyond the

scope of this work.

2.3.10 Model-agnostic feature importance evaluators

Model-agnostic FIEs do not require access to the gradients and make no assumptions

about the structure of the model, hence the name. They rely solely on the ability to

evaluate 𝑓𝑦(𝑥), for various altered versions of 𝑥.

Sufficient Input Subsets (SIS) [7] is a perturbation-based method that identifies
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subsets of input features that are sufficient to keep 𝑓𝑦(𝑥) > 𝜏 , i.e., if all other features

are masked, the class prediction does not change (is still above some threshold 𝜏).

Unlike gradient-based FIEs, which return a real-valued vector of feature attributions,

SIS returns a binary vector, indicating for each feature whether it is part of a sufficient

input subset or not.

2.3.11 Hardware infrastructure

Models presented in this paper were trained on three compute nodes with a total of 6

CPUs (2x Intel Xeon E5-2630 v4, 2x Intel Xeon Gold 6138, 2x Intel Xeon Gold 6240),

26 GPUs (8x NVIDIA GeForce GTX 1080 Ti with 11 GB GDDR5X, 10x NVIDIA

GeForce RTX 2080 Ti with 11 GB GDDR6, and 8x NVIDIA Titan RTX with 24 GB

GDDR6), and a total of 833 GB of main memory. The total GPU time (for training

and evaluation) was roughly 12 GPU months.

2.3.12 Software infrastructure

All seqgra data presented in this paper was obtained on machines running Ubuntu

18.04.3 LTS, CUDA 10.1, cuDNN 7.6.5, Python 3.8, NumPy 1.19.2, TensorFlow 2.2.0,

PyTorch 1.7.0, and R 4.0.

2.4 Results

2.4.1 seqgra provides a reproducible, simulation-based frame-

work for neural network architecture evaluation

The method we describe in this paper (seqgra) generates synthetic biological sequence

data according to predefined probabilistic rules in order to either (1) evaluate neural

network architectures trained on these data sets, or (2) test whether the assumptions

about the underlying biological phenomenon that the probabilistic rules of the simu-

lation process are based on, accurately reflect experimentally obtained data. In the
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Figure 2-3: seqgra-enabled ablation analysis reveals most efficient neural

network architecture. (A) Schematic of binary classification grammar using class-

specific HOMER motifs as sequence elements. (B) Schematic of binary classification

grammar using class-specific order of HOMER motifs. (C) Schematic of binary clas-

sification grammar using class-specific spacing of HOMER motifs. (D) Predictive

performance of six neural network architectures with and without batch normaliza-

tion and dropout. (E) Vocabulary recovery of six neural network architectures with

and without batch normalization and dropout.
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former scenario, the result would be a neural network architecture that—when trained

on data sets generated from a similar set of rules—has high predictive performance

and decision boundaries that closely reflect those set of generative rules. The goal

of the latter approach is to arrive at a concise set of probabilistic rules that approx-

imates the biological process in question, and a neural network architecture whose

high performance on simulated data is recapitulated when trained on experimental

data.

A data set in the context of seqgra, whether obtained by simulation or experiment,

is always divided into three subsets, training set, validation set, and test set. Each of

the subsets comprises a number of supervised examples, which are (𝑥, 𝑦, 𝑎)-triplets.

Here, the input variable 𝑥 is a biological sequence (DNA, RNA, protein) of fixed

or variable length, also referred to as sequence window or features; 𝑦 is the target

variable, the condition this example belongs to (e.g., cell type), which is either a

mutually exclusive class or a non-mutually exclusive label, for multi-class classification

tasks or multi-label classification tasks, respectively; and 𝑎 is the positional annotation

of the example, denoting for each position in 𝑥 whether it is part of the grammar or

part of the background. Grammar positions contain information related to 𝑦 and are

therefore important for classification, whereas background positions do not and are

thus irrelevant for classification.

The core functionality of seqgra can be broken down into three components: (1)

Simulator, (2) Learner, and (3) Evaluator. Each component corresponds to a distinct

step in the pipeline depicted in Figure 2-1A.

In step 1, the simulator generates a synthetic data set according to the specifica-

tions laid out in the data definition (see Figure 2-1B), a document that contains a

precise description of the generated data, from the background nucleotide distribution

to the set of probabilistic rules that determines how information about the condition

𝑦 (label, class) is encoded in the sequence window 𝑥. This set of probabilistic rules is

also referred to as grammar or sequence grammar throughout this manuscript (hence

the name seq-gra), and although related to formal grammars, seqgra’s probabilistic

rules are not expressed as and not equivalent to production rules in the context of
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Figure 2-4: Comparison of neural network architectures Basset, Chrom-

DragoNN, and DeepSEA. (figure caption continued on next page)
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Figure 2-4: Comparison of neural network architectures Basset, Chrom-

DragoNN, and DeepSEA. (A) Predictive performance on binary classification

tasks of grammars with class-specific HOMER motifs (left), class-specific order of

HOMER motifs (middle), and class-specific spacing of HOMER motifs. All archi-

tectures were trained on data sets ranging in size from 10,000 examples to 2,000,000

examples. Error bars are standard errors of five models trained on the same grammar,

using five different simulation seeds. (B) Same as panel A, for multi-class classification

tasks with 10 classes. The second plot from the left shows the predictive performance

of models trained on data sets with class-specific interactions of HOMER motifs. (C)

Same as panel B, for multi-class classification tasks with 20 classes. (D) Same as

panel B, for multi-class classification tasks with 50 classes.

formal language theory.

Schematic depictions of six toy data sets, generated from probabilistic rules of

varying complexity, are shown in Figure 2-1D. In each case, the data set contains

examples belonging to one of four classes and the probabilistic rules determine how

information about the class 𝑦 (in this case, the cell type) is encoded in the sequence

window 𝑥. The ability to recover this relationship during training is imperative for the

model’s predictive performance. The sequence windows of the examples are shown

as gray bars with colored spots, where background positions are shown in gray and

grammar positions are shown in color. In the first example, each of the four cell types

can easily be identified by the presence of a class-specific k -mer at the center of the

sequence window, a relationship that, unsurprisingly, can be learned perfectly (i.e.,

close to an ROC AUC of 1.0) and efficiently (i.e., with few training examples) by

most neural network architectures. Since a set of rules as simple as the one used in

example 1 will almost always be an inadequate description of any biological process,

seqgra allows for various ways to increase the complexity. Example 2 represents

a small step up in complexity by replacing the fixed, class-specific k -mer with a

class-specific position weight matrix (PWM), which is a common representation of
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naturally occurring sequence elements, such as binding sites for a transcription factors.

Another small step up in complexity is example 3, where the PWM is placed randomly

within in sequence window. In example 4 none of the PWMs is class-specific, only

a combination of PWMs. Rules like these could be used to model cell type specific

chromatin accessibility that is dependent on the interaction between transcription

factors. Examples 5 and 6 encode class information in the relative position of PWMs

instead of their presence or absence, with example data set 5 using class-specific order

constraints and example data set 6 class-specific spacing constraints.

Once the synthetic data set is generated, it is used by the learner component in

step 2 to train a neural network model. It is important to note that the learner only

has access to 𝑥 and 𝑦 of the (𝑥, 𝑦, 𝑎) example triplets, and the positional annotations

𝑎 are only utilized in step 3. Analogous to the role of the data definition for the

simulator in step 1, the model definition (see Figure 2-1C) serves as a blueprint for

the learner by providing a precise description of the neural network architecture,

the loss function, the optimizer, and hyperparameters of the training process, and

thus ensuring a reproducible model creation, training, and serving process for both

PyTorch and TensorFlow models.

In step 3, the fully trained model from step 2 is then evaluated with the help of

an array of conventional test set metrics and feature importance evaluators, such as

Integrated Gradients [27] and Sufficient Input Subsets [7].

As a means to illustrate the various inputs and output of this pipeline, we pre-

pared the results of a single seqgra analysis in Supplementary Figure A-2. For this

example, we used a simple grammar, similar to the one described in example 1 of

Figure 2-1D, but instead of always inserting the class-specific k -mer, we use different

insertion probabilities for each class, ranging from 100 % present in examples of class

1, 𝐶1, to 80 % present in 𝐶2, 60 % present in 𝐶3, 40 % present in 𝐶4, 20 % present

in 𝐶5, 10 % present in 𝐶6, 5 % present in 𝐶7, and only present in 1 % of 𝐶8 exam-

ples. We chose a neural network architecture with two hidden layers, a convolutional

layer, followed by a fully connected layer (Supplementary Figure A-2A). After the

simulation process finished, diagnostic plots were generated, depicting a heatmap of
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grammar positions for all examples per class (Supplementary Figure A-2B). These

so-called positional grammar probabilities (i.e., the probability for a specific position

to be a grammar position), depicted in the heatmap correspond to the insertion prob-

abilities of the grammar, as expected. Furthermore, the class-specific ROC curves in

Supplementary Figure A-2C show that the chosen neural network architecture was

optimal in terms of predictive performance, with true positive rates of 1.0, 0.8, 0.6,

0.4, 0.2, 0.1, 0.05, and 0.01 (at the zero false positive level) for the classes 𝐶1 to 𝐶8,

which are the theoretical upper limits given the insertion probabilities of the under-

lying grammar. This is also reflected in the precision-recall curves in Supplementary

Figure A-2D. In panels E to G we show the results of the feature importance evalua-

tors raw gradient, absolute gradient, and Sufficient Input Subsets (see sections 2.3.9

and 2.3.10 for details). These heatmaps show whether the model’s predictions were

based on relevant (i.e., grammar) positions and are therefore an indication of the

model’s ability to recover the underlying grammar of the data set. All three methods

suggest high grammar recovery (many dark green positions, few dark red positions).

Supplementary Figure A-2 covered the results obtained from a single seqgra call,

evaluating one neural network model trained on one synthetic data set, but most

seqgra analyses compare various different architectures across a range of data sets

(of different grammar complexities and sizes). For these situations, we provide a

suite of convenient commands that streamline these analyses and provide a schematic

description of their inputs and outputs in Supplementary Figure A-1.

2.4.2 Selection of unambiguous set of HOMER sequence mo-

tifs

In order to generate synthetic data sets that are closer to experimentally obtained

data sets, we replaced the artificially constructed k -mers used in the insertion prob-

ability grammar of Supplementary Figure A-1 with transcription factor binding site

motifs which were obtained from ChIP-seq assays and curated by HOMER [11]. How-

ever, before a collection of experimentally obtained motifs can be used effectively as
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sequence elements in grammars, degenerate motifs must be excluded. These include

motifs with low information content and highly similar motif pairs. If these motifs

are used as sequence elements that encode information about the condition 𝑦, but

either cannot be differentiated from the background distribution or motifs specific to

one condition are highly similar to motifs specific to another condition, the conditions

are rendered inseparable and learning becomes impossible. This scenario is shown in

Figure 2-2A, which depicts the test set ROC curves of a Bayes Optimal Classifier

(BOC) for 10 classes of a data set generated by a grammar using 10 randomly se-

lected HOMER motifs as class-specific sequence elements. BOCs in the context of

seqgra are used to determine whether the conditions of a grammar are separable in

principle, i.e., regardless of data set size and neural network architecture. Instead

of neural network models whose weights are adjusted during training, the BOC has

access to the data definition and uses the rules and sequence elements specified there

directly to classify the examples. If the predictive performance of the BOC is low,

as is the case with conditions 𝐶6, 𝐶8, and 𝐶4 shown in Figure 2-2A, the rules associ-

ated with those conditions are not specific enough to differentiate between them. And

since the rules in this case place a supposedly condition-specific sequence element at a

random position in the sequence window, the only explanation is that these sequence

elements are either indistinguishable from background or indistinguishable from each

other. The latter is shown in the matrices in Figure 2-2C and Figure 2-2D, which

identify the corresponding sequence elements SE6, SE8, and SE4 as most similar to

other sequence elements, i.e., lowest KL divergence and highest empirical similarity

score, respectively (for details, see sections 2.3.4 and 2.3.5).

Figure 2-2B shows BOC performance after the most ambiguous motifs were re-

moved, and the corresponding KL divergence and empirical similarity score matrices

are shown in Figure 2-2E and F. A collection of experimentally derived sequence mo-

tifs will never be completely orthogonal, but the degree of dissimilarity between these

10 were deemed sufficient and all subsequent multi-class classification grammars with

10 classes used these 10 motifs. Supplementary Figure A-3 shows the same selection

process for a collection of 100 HOMER motifs. All HOMER motifs used in this study
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are listed in Supplementary Table A.1, together with a IUPAC notation of the motif,

the motif information content (see section 2.3.2) and the KL divergence between the

motif and the background distribution (see section 2.3.3). Motifs used for binary

classification tasks are listed in Supplementary Table A.2, those for multi-class clas-

sification tasks with 10, 20, and 50 classes are listed in Supplementary Tables A.3,

A.4, and A.5, respectively.

2.4.3 seqgra-enabled ablation analysis reveals most efficient

neural network architecture

Ablation, a technique widely used in neuroscience to determine the functions of brain

regions by removing them one by one, has been used similarly to identify the relevant

components of an artificial neural network [19, 17]. We performed an ablation analysis

to determine the effects of dropout [26] and batch normalization [14] on the predictive

performance and grammar recovery of a basic neural network architecture with two

hidden layers, a convolutional layer with 10 21-nt wide filters, followed by a dense

layer with 5 hidden units, and dropout or batch normalization operations after each

layer. Models were trained on binary classification data sets generated by grammars

using class-specific HOMER motifs (see schematic in Figure 2-3A), class-specific or-

der of HOMER motifs (Figure 2-3B), and class-specific spacing constraints between

HOMER motifs (Figure 2-3C). Test set precision-recall curve AUCs are shown for

all models across all grammars in Figure 2-3D. Unsurprisingly, the predictive perfor-

mance of all architectures increases with data set size, and all architectures approach

a PR AUC of 1.0 for sufficiently large data sets. But this analysis reveals a striking

difference between the neural network architectures in terms of their efficiency, i.e.,

how many training examples are required to reach an AUC of approximately 1.0.

On the grammars tested here, batch normalization had a negative effect on efficiency,

requiring up to 100,000 examples more to converge than architectures without the op-

eration. The architecture with dropout after each hidden layer was the most efficient

and highest performing, both in terms of predictive performance and grammar recov-
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ery (i.e., the model’s propensity to classify examples based on grammar positions) as

shown in Figure 2-3E.

2.4.4 DeepSEA dominates comparison of popular genomics

deep learning architectures

Furthermore, we compared three popular neural network architectures used in the

field of genomics, Basset [15], ChromDragoNN [20], and DeepSEA [31]. All three

architectures were devised with functional genomics data sets in mind and were origi-

nally trained on multi-label classification data sets obtained from numerous DNase-seq

assays, with ChromDragoNN also utilizing RNA-seq and DeepSEA ChIP-seq data.

With over 4 million (Basset), over 6 million (DeepSEA), and over 20 million (Chrom-

DragoNN) trainable parameters, all three can be considered high-capacity models.

The three architectures make use of commonly used building blocks such as convo-

lutional, followed by dense layers (all three), max pooling and dropout operations

(all three), ReLU activation functions (all three), batch normalization (Basset and

ChromDragoNN), and skip connections (ChromDragoNN). Input and output layers

were adjusted to fit the prediction task and architectures were trained on simulated

data sets from scratch without pre-training on their original data sets.

We used the area under the micro-averaged precision-recall curve to evaluate the

test set predictive performance on four multi-class classification tasks (with 2, 10, 20,

and 50 classes) and three or four grammars each, with a sequence window of 1000

nucleotides. The results are shown in Figure 2-4A for binary classification, and Fig-

ures 2-4B, 2-4C, and 2-4D for multi-class classification with 10, 20, and 50 classes,

respectively. The HOMER motifs used by the grammars presented here are listed in

Supplementary Tables A.2-A.5. Each panel contains precision-recall AUCs of models

trained on data sets generated by one grammar, using 5 different random seeds for

simulation (error bars) and 19 different data set sizes. The DeepSEA architecture

exhibited an at times substantially higher predictive performance than Basset and

ChromDragoNN and was the highest performing architecture on all tested data sets.
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Figure 2-5: Predictive performance and grammar recovery of various

model architectures on simulated and experimental data. (A) Schematic

of model selection process: first, identify suitable model architectures on simulated

data; second, train models with simulation-vetted architectures on experimental data.

(B) Naive neural network architecture with fully connected layer. (C) Grammar-

informed neural network architecture with convolutional layer, global max pooling,

and fully connected layer. (D) Predictive performance of naive architecture, trained

and evaluated on simulated and experimental data. (E) Predictive performance of

grammar-informed architecture, trained and evaluated on simulated and experimen-

tal data. (F) Grammar agreement plot (Integrated Gradients) of naive architecture,

trained on experimental data. (G) Grammar agreement plot (Integrated Gradients)

of grammar-informed architecture, trained on experimental data.
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While DeepSEA is the preferred architecture on data sets derived from the grammars

we tested, this is not necessarily true for data sets with other grammars or experi-

mentally obtained data. Interestingly, we observed that high capacity architectures

such as those tested here perform better on data sets generated by grammars that

include interactions, specifically interactions that encode the class label in the order

or spacing of the interacting sequence elements. This is not the case for small-scale

architectures with less than 100,000 trainable parameters, which, as expected, do bet-

ter on grammars without interactions, where the class label is encoded in the presence

of class-specific sequence elements.

2.4.5 High predictive performance of simulation-vetted neural

network architecture recapitulated with ChIP-seq data

In this section we address the question of whether neural network architectures that

perform well on simulated data also succeed on data obtained experimentally. We

decided to model the well-known hetero-dimeric pair of transcription factors SOX2

and POU5F1, whose spacing constraints were previously characterized [9, 10]. To that

end, we used the HOMER motifs SOX2_HUMAN.H11MO.0.A and PO5F1_HUMAN.H11MO.1.A

as sequence elements in the data definition. We also included spacing constraints (0-3

bp between SOX2 and PO5F1 motifs). Figure 2-5A shows a schematic depiction of

the analysis.

The experimental data set was based on two ChIP-seq assays, which targeted the

two transcription factors. The preprocessed data was obtained from the Cistrome

Data Browser [18], specifically the data associated with GEO IDs GSM1701825 for

SOX2 and GSM1705258 for POU5F1.

We evaluated the same neural network architectures on both the simulated and

the experimental data sets. The architecture described in Figure 2-5B with one fully

connected layer (not counting the output layer) is an example of an architecture that

does not assume any structure in the input. It is a naive architecture in the sense

that it was constructed without any knowledge about the grammar that was used to
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simulate the data. The architecture described in Figure 2-5C, on the contrary, makes

assumptions about the data that are in agreement with the grammar, such as a 1D

spatial structure with information encoded in 11-nt long code words (enough to cover

the SOX2-POU5F1 interaction), whose position in the sequence window is irrelevant.

As expected, the test set predictive performance of the naive architecture (Fig-

ure 2-5D) was significantly lower than the grammar-informed architecture (Figure 2-

5E). Furthermore, the performance on the simulated data proved to be a good pre-

dictor for the performance on the experimental data (Figure 2-5D and E).

The agreement between feature importance and the grammar positions, a proxy for

a model’s ability to recover the SOX2 and POU5F1 motifs, is shown in Figure 2-5F for

the naive architecture and in Figure 2-5G for the grammar-informed architecture. The

grammar-informed model’s predictions were based almost exclusively on grammar

positions (positions that contained SOX2 and POU5F1 motifs), whereas this was not

the case for the naive model. Both panels were created with the Integrated Gradients

feature importance evaluator.

2.5 Discussion

In this paper we introduced seqgra, a deep learning infrastructure method for ge-

nomics. It is intended to streamline the development of deep learning models for

biological sequence-based prediction tasks, by providing a reproducible unified frame-

work for (1) flexible, rule-based synthetic data generation; (2) model training; and (3)

model evaluation with conventional test set metrics and feature attribution methods.

This three-step pipeline supports data sets obtained by simulation and experiment,

models implemented in PyTorch and TensorFlow, and numerous gradient-based fea-

ture attribution methods as well as Sufficient Input Subsets, a model-agnostic feature

attribution method, in addition to conventional ROC and precision-recall curves for

model evaluation. Our method greatly simplifies an array of commonly performed

diagnostics and performance assessments of deep learning models, such as ablation

analysis, estimated data set size requirements, and tolerated noise thresholds. The
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simulator and the language of the probabilistic rules are flexible enough to span multi-

class and multi-label classification tasks with any number of classes or labels, DNA

or amino acid sequence windows of variable or fixed length, class-dependent back-

ground distributions, sequence elements defined as position weight matrices or list

of k -mers with associated probabilities, and interactions between sequence elements

with associated order or spacing constraints.

Moreover, the controlled environment of data simulation and reproducible model

training, serving, and evaluation makes seqgra a suitable testbed for feature attribu-

tion and interpretability methods and their interdependencies with neural network

architectures and the complexity level of the training data. The framework can even

be used to perform extensive comparisons between deep learning libraries, which are

rarely done (see Supplementary Figures A-7 and A-8) or identify undocumented be-

havior of the deep learning technology stack, such as an unusual training instability

caused by a random seed of zero on some grammar-architecture combinations, which

is reproducible and occurs in both PyTorch and TensorFlow (see Supplementary Fig-

ures A-4-A-6).

To avoid confusion, we would like to point out that seqgra is not a neural archi-

tecture search technique in the sense that it will not propose suitable neural network

architectures for a particular data set. The model definition is an input, not an out-

put of the seqgra pipeline. However, seqgra can be used in conjunction with neural

architecture search, such as AMBER [30], a neural architecture search method for

architectures aimed at genomics prediction tasks, or general hyperparameter opti-

mization methods, such as Hyperband [16].

One caveat of all simulation-based approaches is the inevitable gap between sim-

ulated and real-world data sets, in the sense that the former is always a simplified

approximation of the latter. Thus insights gained from simulated data might not

carry over to the experimental world. In fact, to a certain degree this will always be

the case. However, while high-performing neural network architectures on simulated

data might not perform as highly on experimental data, the opposite is rarely the

case, i.e., low-performing architectures in simulation are unlikely to improve when
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trained on noisier and/or smaller experimental data sets.

While the intricacies of noisy and biased high-throughput genomics experiments

make for highly complex and poorly understood data sets, training highly complex

alchemy-like [12] deep neural networks on them contributes little to a mechanistic

understanding of the biological processes that are at work underneath and might

worsen the reproducibility crisis in both machine learning [13] and biology [4, 3].

Simulated data, however, is perfectly understood, its noise levels controlled and any

biases artificially introduced and accounted for, which makes it an excellent environ-

ment for model evaluation. With seqgra, the clean room of simulated data and a

precise description of the patterns in the data (i.e., the probabilistic rules in the data

definition) on the one end is paired with an array of feature attribution methods on

the other, to answer questions that are often impossible to answer with poorly un-

derstood genomics data. One such question is whether the predictions of the model

are based on those parts of the input that are in fact relevant for the phenomenon

that is predicted, or, to put it another way, whether the model was able to recover

the underlying rules of the data set.

Availability

The source code of the seqgra package is hosted on GitHub (https://github.com/

gifford-lab/seqgra) and licensed under the MIT license. seqgra is part of the

Python Package Index PyPI and can be installed using pip, the Python package

installer. Extensive documentation can be found at https://kkrismer.github.io/

seqgra.
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3.1 Abstract

A key mechanism in cellular regulation is the ability of the transcriptional machin-

ery to physically access DNA. Transcription factors interact with DNA to alter the

accessibility of chromatin, which enables changes to gene expression during develop-

ment or disease or as a response to environmental stimuli. However, the regulation

of DNA accessibility via the recruitment of transcription factors is difficult to study

in the context of the native genome because every genomic site is distinct in multiple

ways. Here we introduce the multiplexed integrated accessibility assay (MIAA), an

assay that measures chromatin accessibility of synthetic oligonucleotide sequence li-

braries integrated into a controlled genomic context with low native accessibility. We

apply MIAA to measure the effects of sequence motifs on cell type-specific accessibil-

ity between mouse embryonic stem cells and embryonic stem cell-derived definitive

endoderm cells, screening 7905 distinct DNA sequences. MIAA recapitulates dif-

ferential accessibility patterns of 100-nt sequences derived from natively differential

genomic regions, identifying E-box motifs common to epithelial-mesenchymal transi-

tion driver transcription factors in stem cell-specific accessible regions that become

repressed in endoderm. We show that a single binding motif for a key regulatory tran-

scription factor is sufficient to open chromatin, and classify sets of stem cell-specific,

endoderm-specific, and shared accessibility-modifying transcription factor motifs. We

also show that overexpression of two definitive endoderm transcription factors, T and

Foxa2, results in changes to accessibility in DNA sequences containing their respec-

tive DNA-binding motifs and identify preferential motif arrangements that influence

accessibility.
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3.2 Introduction

Genomic DNA acts as an instruction book for the cellular machinery to carry out func-

tional processes such as RNA production [44, 33] and DNA repair [4]. Some regions

of the genome are constitutively used across all cell types for shared housekeeping

processes [5, 24], whereas other regions are required only in specific cell types [57, 26].

One key mechanism used to control which regulatory regions are active is the phys-

ical accessibility of chromatin. Because many transcription factors are incapable of

binding in inaccessible or “closed” chromatin, the regulation of chromatin accessibility

ensures such transcription factors do not bind to extraneous or deleterious locations

in the genome.

Transcription factors that interact with closed chromatin are thought to establish

the accessibility of cell type-specific regions and initiate cell state change in differenti-

ation [44, 50], cancer [9, 10], and environmental responses [41, 27] and allow “settler”

transcription factors to bind and activate previously inactive genes. Massively parallel

reporter assays (MPRAs) [20, 58] have been developed to measure the change to gene

expression from the action of promoters [34, 14] or enhancers [32, 40, 23, 48, 29, 28]

and thus can be used to probe the regulatory code. MPRAs allow for studies into

the combinatorial logic of transcription factor action, such as whether specific com-

binations of transcription factor binding sites must be colocalized for proper gene

expression [48, 12, 59]. However, MPRAs do not measure changes to chromatin ac-

cessibility and thus cannot disentangle gene regulation by transcription factors that

depend upon changes in local accessibility.

Previous work has indicated specific transcription factor motifs and logic gov-

erning chromatin accessibility [30, 56, 6], but such effects are difficult to study in a

native genomic context, in which motifs are not independent of nonlocal sequence

effects. Recent approaches have extended MPRAs to measure nucleosome occupancy

via bisulfite treatment [25] or MNase-seq [61] in yeast. However, bisulfite sequenc-

ing requires constrained library design to ensure sufficient CpG sites that act as a

substrate for bisulfite conversion, and MNase-seq requires measurement over multiple
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MNase concentrations to fully measure accessibility [42]. Restriction enzyme strate-

gies have been used to measure nucleosome occupancy and accessibility in yeast [38]

and mouse hepatocyte [7] and stem cells [49], and recently, adenine methyltransferase

has been used to map nucleosome positioning in human cell lines [1, 52]. Here, we aim

to develop an assay that takes advantage of adenine methyltransferase and restriction

enzyme digestion for measuring the local DNA accessibility of genomically integrated

large-scale reporter libraries, and probe the regulatory sequence determinants driving

differential chromatin accessibility between stem cells and definitive endoderm.
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Figure 3-1: Multiplexed integrated accessibility assay (MIAA) measures

local DNA accessibility of synthesized oligonucleotide DNA sequence li-

braries. (A) The MIAA library sequence construct contains a variable DNA se-

quence, homology arms for CRISPR-mediated HDR integration at a specific genomic

locus that includes a binding site for retinoic acid receptor 42 nt downstream from the

variable DNA sequence, and GATC site for DNA adenine methylase (Dam) methy-

lation 1 nt downstream from the variable DNA sequence. (B) DNA sequences of 150

nt are integrated into ESCs at a designated genomic locus. ESCs are split, and half

are differentiated into DE cells. Retinoic acid receptor fused to hyperactivated Dam

enzyme results in methylation of DNA sequences that open DNA. DNA is extracted,

and half is exposed to DpnII, which cleaves unmethylated sequences, whereas half is

exposed to DpnI, which cleaves methylated sequences. Sequences are PCR amplified

and sequenced. (figure caption continued on next page)

73



Figure 3-1: Multiplexed integrated accessibility assay (MIAA) measures

local DNA accessibility of synthesized oligonucleotide DNA sequence li-

braries. (C) DpnI and DpnII read counts measured from a single DE replicate show

difference between designed chromatin opening and neutral DNA sequences. (D)

Proportion of DpnII read counts measured from a single ESC replicate gives esti-

mate of MIAA openness. (E) Genomic sequences are differentially DE accessible or

ESC accessible as reported by difference between MIAA Dpn proportion in defini-

tive endoderm compared with ESCs with randomly shuffled DNA control sequences

(significance computed by Wilcoxon rank-sum test). (F) Differential accessibility

as measured by log change in normalized DNase-seq reads and MIAA methylation

proportion shows correlation between native differential accessibility and MIAA ac-

cessibility. The correlation reported is the Pearson’s correlation coefficient (r).

3.3 Materials and Methods

3.3.1 DNA sequence library design

All oligonucleotide libraries were ordered from Twist Biosciences. Variable DNA se-

quences (70-100 nt depending on library) are flanked by 25-nt primer sequences con-

taining a GATC site and homology arms for CRISPR integration. We identified six

native genomic sequences of size 100 nt from a pilot experiment that did not drive dif-

ferential accessibility with MIAA but varied in GC-content. We randomly perturbed

these native sequences three times each to obtain a total of 24 neutral sequence back-

grounds. For our first experiment, we took each background and inserted either one

motif seven times (positions 2, 16, 30, 44, 58, 72, 86) or two motifs in which motif 1 is

inserted four times (positions 2, 30, 58, 86) and motif 2 is inserted three times (posi-

tions 16, 44, 72). For our second experiment, we limited ourselves to nine backgrounds

that we expected to have high reproducibility to the set of 24. In this experiment,

we tested sequences of size 70 nt. By using the consensus sequences of known ES key

TFs (POU5F1, SOX2, KLF4) or DE key TFs (FOXA2, GATA4, SOX17), we inserted

74



one, two, or three motifs into each sequence. We tested homotypic DNA sequences

consisting of one unique motif, as well as heterotypic DNA sequences enumerating all

possible motif orders. Consensus motifs for key developmental transcription factors

are listed in Supplemental Table S3. Additional hypotheses were tested within MIAA

libraries that were not described in this paper. The DNA sequences that were used

in this paper are denoted by a column within the Supplemental Data.

3.3.2 DNA sequence library integration

Electroporations were performed in two to four biological replicates into p2L RAR-

DamA126 ESCs (for cell line construction and RARg-DamN126A-V5His construct

sequence, see Supplemental Methods). Cells were grown for 5-8 d after electroporation

to obtain adequate quantities for doxycycline treatment. When indicated, cells were

differentiated to DE before doxycycline treatment.

3.3.3 High-throughput sequencing

After DpnI/II digestion, fragments are amplified with three steps of PCR. First,

PCR primers to sequence outside the homology arms such that only sequences that

are properly integrated at the desired locus and that have not been cleaved by the

DpnI/II enzyme are amplified (13 cycles). The second PCR step and third PCR

steps further amplify sequences and add adaptors for Illumina sequencing. For primer

information and further details, see Supplemental Methods. Samples were sequenced

on an Illumina NextSeq 550 instrument at the Harvard Medical School Biopolymers

Facility or the MIT BioMicro Center.

3.3.4 DNA sequence library processing

Reads were mapped to library DNA sequences by taking the reverse complement

to the raw read, in which the first N nucleotides (between 70 and 100 based on

the size of the designed sequence) are the designed variable DNA sequence. Perfect

matches were counted using a custom R script (Supplemental Code). Reads were
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normalized to reads per million over the total number of reads in the digest. DNA

sequences were kept if they had a threshold number of total normalized reads over

all replicates, based on the observation of high standard deviation at low total read

counts. The threshold was selected based on visual inspection and can be found

in the Supplemental Code. Once reads were normalized and high variability DNA

sequences filtered, MIAA accessibility was computed as a proportion of DpnI/II read

counts DpnII/(DpnI + DpnII).

3.3.5 DeepAccess model and motif importance

We obtain DNase-seq regions using the 100 nt centered at the MACS2 narrow peak

call. Accessibility prediction is treated as a multitask classification problem, in which

each genomic sequence (100 bp) is associated with a two-dimensional bit vector repre-

senting whether the sequence is open in each cell type (ESC and DE cell). We trained

an ensemble of 10 convolutional neural networks. For specific details on network ar-

chitecture, see Supplemental Methods. The fully connected output layer present in all

neural network architectures contains two neurons with a sigmoid activation function

that returns a value between zero and one, which represents the probability of the

predicted DNA “openness” in each of the two cell types. DeepAccess is trained on a

balanced data set with 400,000 sequences across four possible classification scenarios

of a sequence (1) open in endoderm cells and closed in ESCs, (2) open in ESCs and

closed in endoderm cells, (3) open in both cell types, or (4) closed in both cell types.

A test set of 22,357 sequences is held out for performance evaluation.

We extracted motifs from DeepAccess by applying smoothed gradient ascent to

score each nucleotide in the 100-nt DNA sequence by its importance for predicting

the output [46, 47] and multiplied times the input (a one-hot encoding of the DNA

sequence) because gradients will assign nonzero values to DNA characters not present

in the sequence. To obtain sequence importance for features that drive accessibility

differentially between DE cells and ESCs, we set the gradient loss to the difference

between the predicted accessibility of two cell types. We then selected windows of size

10 with the highest ensemble weighted average saliency over a set of 5000 training
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sequences and used those as the DeepAccess-derived motifs. We also extracted the

top motifs with the highest increase in saliency of differential accessibility between

the CNN without trainable hidden layers and the CNNs with hidden layers, which

represent motifs that gain importance from the CNNs that learn relationships between

motifs.

3.4 Results

3.4.1 Multiplexed integrated accessibility assay measures lo-

cal accessibility of integrated DNA sequences

In previous work, we used a DNase I cleavage assay, SLOT, to measure chromatin

accessibility of a set of DNA sequences integrated into a defined genomic locus [18].

Although SLOT was able to determine the relative accessibility of classes of DNA se-

quences, it had poor resolution to measure accessibility of individual DNA sequences,

because of the low cleavage probability of DNase I at enzyme concentrations capable

of discriminating levels of chromatin accessibility. We hypothesized that we could

measure changes in DNA accessibility with higher sensitivity by observing the chro-

matin accessibility-dependent methylation of Escherichia coli adenine DNA adenine

methylase (Dam) to the locus, given the high efficiency and stability of Dam methy-

lation in cells [55] and the known propensity of Dam to methylate more frequently

in accessible chromatin [55, 54, 1, 52]. We further hypothesized that fusing Dam

to retinoic acid receptor-gamma (RAR) would enhance the differential methylation

of this RAR-Dam fusion protein at genomic loci with RAR binding motifs, and we

make use of a mutant version of Dam methyltransferase shown to display increased

signal-to-noise over wild-type Dam [55, 54].

We designed a library consisting of 150-nt synthesized oligonucleotides that con-

sist of a 100-nt variable DNA sequence surrounded by a fixed sequence that allows for

PCR amplification and contains an Illumina sequencing adapter and a Dam recogni-

tion sequence (GATC) (Fig. 3-1A). For integration, we chose a genomic locus with
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minimal prior DNase I accessibility proximal to a RAR binding site. To allow in-

ducible expression of RAR-Dam, we integrated a single copy of RAR-Dam with a

doxycycline-sensitive promoter into a fixed genomic locus using Cre/LoxP recombi-

nation into a mouse embryonic stem cell (mESC) line with constitutive rtTA expres-

sion [31].

After DNA sequence integration into the mESC cell line, we induce the expres-

sion of RAR-Dam and, after 24 h, collect genomic DNA (Fig. 3-1B). DNA sequences

that increase chromatin accessibility should increase adenine methylation of the DNA

sequence’s GATC site, owing to the combined effect of the preference of Dam methy-

lase to methylate in accessible chromatin, and increased local RAR binding, owing

to increased chromatin accessibility. Purified genomic DNA is split it into two pools;

one pool is exposed to the restriction enzyme DpnI and the other pool to DpnII,

which preferentially cleave methylated and unmethylated GATC sites, respectively.

From each pool, we then amplify DNA sequences using a three-step PCR amplifica-

tion process (Supplemental Fig. B-1). First, DNA sequences are amplified by primers

outside of the homology arms to ensure only correctly integrated DNA sequences are

amplified. Only undigested DNA sequences will be amplified at this step owing to

the site of the GATC site of restriction enzyme cleavage between the PCR primers.

Then, two additional PCR steps are used to further amplify DNA sequences and add

Illumina sequencing adapters for high-throughput sequencing. If a DNA sequence is

more accessible, it will have fewer read counts in the DpnI digested pool and more

read counts in the DpnII digested pool (Fig. 3-1C). The proportion of DpnII to DpnI

sequencing counts, therefore, represents the impact of that DNA sequence on local

DNA accessibility (Fig. 3-1D). We designate this high-throughput genomically inte-

grated assay of chromatin accessibility the multiplexed integrated accessibility assay

(MIAA).

Because our particular interest is in changes to accessibility during differentiation,

we differentiated mESCs into definitive endoderm (DE) cells using a well-established

differentiation protocol shown to yield >90% DE [45] before RAR-Dam induction.

We tested a library of 5978 DNA sequences in eight biological replicates (four
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replicates at sequence integration, each split into two replicates before RAR-Dam

activation) for stem cells (ESCs) and four biological replicates (two replicates at se-

quence integration, each split into two replicates before RAR-Dam activation) for DE

cells. To gauge the reliability of MIAA, we included sets of positive and negative con-

trol DNA sequences used in our previous work that maximally pack 100-nt variable

sequences with DNA sequence motifs shown to have an opening or neutral effect on

chromatin by a k-mer model trained on DNase-seq [18]. From MIAA measurements,

we found that the Hashimoto et al. positive control DNA sequences yielded signif-

icantly higher Dam methylation than the negative control DNA sequences (Fig. 3-

1C,D), with 81%-99% of positive control DNA sequences yielding higher methylation

than the average negative control DNA sequence in each replicate (𝑃 < 0.001 by

Wilcoxon rank-sum test for all replicates). We found in comparing control sequences

with GC-content in the range of 30%-50%, MIAA replicates had 96%-100 of positive

control DNA sequences yielding higher methylation than the average negative control

DNA sequence, whereas SLOT had 4.5%-13.6% of positive control DNA sequences

yielding higher methylation than the average negative control sequence (Supplemen-

tal Fig. S2), suggesting that MIAA provides a marked improvement over SLOT in

the measurement of accessibility differences of single DNA sequences in the context

of large libraries. Biological replicates of MIAA were also well correlated (Pearson’s

𝑟 = 0.5-0.79) (Supplemental Fig. S3).

We note that negative control (accessibility neutral) DNA sequences are still

methylated at a rate of 20%-50%. In line with this result, we found ≈ 20% RAR-Dam

methylation in two known native genomic inaccessible chromatin loci as measured by

qPCR, compared with 85%-95% methylation at known RAR binding sites (Supple-

mental Fig. S2). We do not know if this means that RAR-Dam can methylate ≈ 20%

of inaccessible chromatin while it is tightly wound or if the methylation is happening

during cell cycle phases when chromatin is accessible. We also found that retinoic

acid binding sites within our sequence appeared to have no impact on MIAA results

(Supplemental Fig. S4), suggesting that linking RAR to Dam is unlikely to confound

our aim of measuring chromatin accessibility.
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We separately designed a pilot experiment of 2000 DNA sequences to deter-

mine whether MIAA could measure differential chromatin accessibility. First, we

ran KMAC, a method for de novo motif enrichment [17], on differentially accessible

DNase-seq regions using the top 10,000 peaks that were differentially accessible (de-

fined by peak overlap) in DE-accessible or ESC-accessible genomic regions measuring

motif enrichment relative to a background the top 10,000 of genomic regions that are

DNase accessible in both ESCs and DE.We used a similar methodology to Hashimoto

et al. (2016) to maximally pack oligonucleotides with DNA sequence motifs, by start-

ing from a single motif and extending the designed sequence with the highest scoring

KMAC motif that overlapped the previous motif by four bases. Our data show that

that MIAAwas able to separate DNA sequences that were designed to open chromatin

in DE cells from those that were designed to open chromatin in ESCs (Supplemental

Fig. S5).

We then asked whether MIAA could measure differential accessibility of native

genomic sequences. To help identify 100-nt native genomic sequences that were dif-

ferentially accessible between DE cells and ESCs, we developed a deep learning model

trained to predict DNase-accessible regions from underlying DNA sequence and cell

type-specific DNase-seq training data. This method, which we call DeepAccess, trains

an ensemble of 10 convolutional neural networks on DNase-seq data from ESCs and

DE cells to predict whether a 100-nt genomic region is accessible or inaccessible in

both cell types that had good performance on held-out genomic regions (for details,

see Methods; Supplemental Fig. S6). We tested 213 native DNA sequences that

DeepAccess predicted would be differentially accessible between ESCs and DE cells

with MIAA, and found that as a group these DNA sequences showed differential ac-

cessibility between ESCs and DE cells (Fig. 3-1E) with a per-sequence effect size that

correlates with differential accessibility measured by DNase-seq (Pearson’s 𝑟 = 0.53;

𝑃 < 0.001) (Fig. 3-1F). Although statistically significant as a group, only 78% of the

native genomic DNA sequences recapitulated the differential accessibility of the na-

tive loci from which they were derived by having both higher DNase-seq read counts

and greater MIAA-measured accessibility in one cell type over the other. These
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Figure 3-2: Differentially accessible motif generation from DNase-seq data

validated by MIAA. (A) DNase-seq accessible regions called with MACS2 and 100-

nt sequences extracted centered at narrow peak. KMAC and DeepAccess were applied

to extract significant motifs potentially driving differential accessibility between ESCs

and endoderm. (B) DNA sequences were designed using seven instances of each

motif at the same locations in each DNA sequence inserted into 24 100-nt neutral

sequence backgrounds, as well as pairs of motifs (C). (D) Predictions from DeepAccess

for differential accessibility replicate experimental results (effect size by paired 𝑡-

test between ESC and DE measurements). The correlation reported is the Pearson

correlation coefficient (r). (figure caption continued on next page)
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Figure 3-2: Differentially accessible motif generation from DNase-seq data

validated by MIAA. (E) Motif sequences show differential accessibility via open-

ing ESC, opening endoderm, closing ESC, and closing endoderm (left to right). (Top

row) Distribution of MIAA-measured accessibility in ESCs and DE cells for KMAC-

or DeepAccess-generated motif, tested over 24 neutral sequence backgrounds and ran-

domly shuffled DNA controls (CTRL). (Bottom row) Measurements for a particular

DeepAccess or KMAC motif. Each dot represents a single neutral background. The

y-axis is the difference between endoderm and ESC accessibility, and the x -axis is

the difference between each DNA sequence and its shuffled control. The cell type in

which control measurement is made is in parentheses.

100-nt endogenous sequences were selected by DeepAccess from DNase-seq accessible

regions that can be kilobases in length, so we hypothesize that sequences for which we

did not observe differential accessibility may not contain all of the binding elements

controlling accessibility of the native locus or may rely on either local or distal inter-

actions with chromatin that were not recapitulated at our genomic integration site.

The observed correlation in differential accessibility between DNase-seq and MIAA

suggests that a 100-bp sequence transplanted into a specified locus can retain a sub-

stantial amount of the information required to encode a particular level of chromatin

accessibility (Fig. 3-1F).

We also included in our library a randomly shuffled nucleotide counterpart for each

DNA sequence in order to account for any potential effects of nucleotide composition.

We found that most native genomic sequences that were more accessible in ESCs

than in DE cells had similar accessibility in ESCs compared with randomly shuffled

DNA controls but had lower accessibility in endoderm compared with shuffled control

DNA sequences (Supplemental Fig. S7). We hypothesized that these DNA sequences

contain motifs that result in decreases in accessibility in DE cells. We performed

motif enrichment (for details, see Supplemental Methods) on these DNA sequences

and found that 98% (compared with 0% of endoderm native sequences) contained a
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match to the ZEB2 motif (Supplemental Fig. S7), a known transcriptional repressor

that has been implicated in early gastrulation by repression of CDH1 (also known as

E-cadherin) [2], suggesting that the DeepAccess-selected ESC sequences were selected

based on an endoderm-specific repressor of chromatin accessibility. In contrast, none

of our DeepAccess-selected native genomic sequences contained motifs for the known

ESC reprogramming factors POU5F1, SOX2, or KLF4 [50], which we would expect

to increase chromatin accessibility in ESCs.

To investigate why DeepAccess chose ESC native genomic sequences that con-

tain ZEB2 motifs over known reprogramming factors, we compared DeepAccess-

predicted differential accessibility for ChIP-seq sites for the known pluripotency fac-

tors POU5F1, SOX2, and KLF4, which contained their DNA-binding motifs along

with ZEB2 genomic motif instances, and found that although the knownpioneer tran-

scription factor motifs had positive effects on ESC accessibility, ZEB2 motifs had

the strongest predicted effect on differential accessibility by the presence of the mo-

tif causing a decrease in predicted accessibility in DE cells (Supplemental Fig. S7).

ZEB2 binding sites were also enriched in ESC-specific genomic accessible regions with

14% containing a ZEB2 motif relative to 9% in endoderm-specific accessible regions

(𝑃 < 0.001 by hypergeometric test). In comparison, 12% of genomic ESC-specific

accessible regions contained a SOX2 motif, 6% contained a POU5F1 motif, and 6%

contained a KLF4 motif. KEGG biological pathway analysis of ZEB2 motif sites in

ESC-accessible regions showed an enrichment of motif sites proximal to genes regu-

lating pluripotency of ESCs (𝑃 < 0.001), including the key pluripotency regulators

KLF4, SOX2, and NANOG, a finding that is consistent with a model of ZEB2 re-

pression of pluripotency during DE differentiation [53]. The ZEB2 motif is similar to

motifs of other E-box epithelial-mesenchymal transition driver transcription factors

such as ZEB1, SNAI1, SNAI2, and TWIST1 [51], all of which are expressed during

ESC differentiation to endoderm. We note that subsequent MIAA libraries described

in this paper show that DNA sequences containing POU5F1, SOX2, and KLF4 mo-

tifs do yield ESC-enriched accessibility. Overall, we find that 100-nt DNA sequences

extracted from genomic regions with differential chromatin accessibility recapitulate
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this differential accessibility when transplanted to a fixed chromatin locus.

3.4.2 DNase-seq analysis identifies motifs driving cell type-

specific accessibility

We then hypothesized that we could identify and confirm with MIAA motifs that con-

trol chromatin accessibility in a cell type-specific manner through a set of synthetic,

designed DNA sequences. By using cell type-specific DNase-seq data, we extracted

short (8- to 12-nt) DNA sequence motifs that we hypothesized would cause differ-

ential accessibility using two methods (Fig. 3-2A). First, we used the motifs that

were derived from de novo motif discovery by running KMAC on ESC differentially

accessible and DE differentially accessible genomic regions. Second, we used DeepAc-

cess to obtain hypotheses about which motifs were most responsible for differential

accessibility between DE cells and ESCs (for details, see Supplemental Methods).

Unlike KMAC’s pure enrichment approach, DeepAccess is able to learn nonlinear

relationships between sequence motifs for predicting accessibility. From our set of

motif hypotheses from both methods, we designed synthetic DNA sequences with

either seven instances of one motif (Fig. 3-2B), which we call motif sequences, or

two different motifs (Fig. 3-2C), which we call motif pair sequences, inserted into 24

fixed sequence backgrounds of varied GC-content. Fixed background sequences were

previously measured to have a neutral impact on cell type-specific accessibility with

MIAA (see Methods for details). We chose to pack each DNA sequence with the

maximum number of motifs (54%-84% of the positions in each DNA sequence are

part of a motif) while leaving space for sequence variation. For each DNA sequence,

we also included a control in which the nucleotides are randomly shuffled to observe

the influence of nucleotide content alone.

To determine whether DeepAccess was able to predict the effects of motif sequences

or motif pair sequences, we compared the DeepAccess-predicted effect size of each mo-

tif or motif pair on differential accessibility to the equivalent MIAA measurement. We

found that DeepAccess results are correlated (Pearson’s 𝑟 = 0.62; 𝑃 < 0.001) with
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MIAA-measured differential accessibility (Fig. 3-2D). However, we found that Deep-

Access failed to perform well in predicting paired effects between DNA sequences and

shuffled controls (ESC Pearson’s 𝑟 = 0.24; DE Pearson’s 𝑟 = 0.42) (Supplemental

Fig. S8), which we hypothesize is the result of overconfidence of neural networks on

out-of-distribution inputs [37, 35], because the network had not seen the shuffled con-

trol DNA sequences during training. We tested for statistically significant differential

accessibility of our motifs and motif pairs by first performing paired tests between

MIAA openness in ESCs and DE cells and then performing paired tests between DNA

sequences and shuffled controls under a Benjamini-Hochberg multiple hypothesis cor-

rection at a false-discovery rate of 0.05 (for details, see Supplemental Methods). Out

of 38 tested motif sequences, 20 induced differential accessibility, and out of 38 motif

pair sequences, 26 induced differential accessibility. We also found these results to be

largely consistent across a secondary closed integration locus (Supplemental Fig. S9).

Thus, MIAA was able to confirm that motifs identified using DeepAccess are able to

result in observable changes to accessibility both between cell types and compared

with shuffled control sequences (Fig. 3-2E).

Out of the 46 motif or motif pair sequences that induced differential accessibility

across cell types and were compared with shuffled control sequences as measured by

MIAA, DeepAccess predicted the correct direction of differential accessibility between

the two cell types in 76% (35/46) of cases (Supplemental Table S1). In comparing

results from DeepAccess to KMAC, we found only 32% (8/25) of our KMAC motifs

or motif pairs were differentially accessible compared with 74.5% (38/51) of DeepAc-

cess (Supplemental Table S1), indicating our DeepAccess approach was successful in

identifying motifs driving differential accessibility.

3.4.3 GC-content and transcription factor binding motifs con-

trol accessibility

We noticed previously that the positive control DNA sequences from the Hashimoto

et al. (2016) library had higher GC-content than the negative control DNA sequences.
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Figure 3-3: MIAA identifies global influence of GC-content and differen-

tially accessible motifs. (figure caption continued on next page)
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Figure 3-3: MIAA identifies global influence of GC-content and differen-

tially accessible motifs. (A) GC-content observed to be correlated with acces-

sibility in both stem and endoderm cells from positive (Hashimoto et al. opening)

and negative (Hashimoto et al. neutral) control sequences. (B) GC-content corre-

lated with accessibility in random DNA sequences. A regression model was trained on

MIAA Dpn proportions with GC-content, replicate, and cell type-specific effects of 20

motifs and 26 motif pairs as features, and predicts well on (C) held-out test data (n =

4404) and performs significantly better than (D) a model trained without motif vari-

ables (adjusted R-squared motif model = 0.398; adjusted R-squared no motif model

= 0.095). The correlation reported is the Pearson correlation coefficient (r). (E)

Regression weights of individual motifs and motif pairs in stem and DE cells. Hierar-

chical clustering of regression weights followed by motif enrichment recovers clusters

representing cell type-specific transcription factor DNA-binding motifs. (F) Exam-

ple of individual motifs (left, middle) that alone do not result in differentially open

chromatin but result in differentially open chromatin ESCs in combination (right).

(Top row) Distribution of MIAA-measured accessibility in ESCs and DE cells for

KMAC- or DeepAccess-generated motif, tested over 24 neutral sequence backgrounds

and randomly shuffled DNA controls (CTRL). (Bottom row) Measurements for a

particular DeepAccess or KMAC motif, in which each dot represents a single neutral

background. The y-axis is the difference between endodermand ESC accessibility,

and the x -axis is the difference between each DNA sequence and its shuffled control

in ESCs.
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To clarify the role of GC-content in driving accessibility, we selected a total of 200

positive and negative control DNA sequences from the Hashimoto et al. (2016) li-

brary, which were designed to include a string of motifs that were predicted by a

model trained on DNase-seq to have a positive or neutral impact on accessibility [18].

We selected positive and negative controls with either high GC-content (60%-70%)

or low GC-content (30%-50%). We found that in both cell types, positive control

DNA sequences drove uniformly and equivalently high accessibility regardless of GC-

content (Fig. 3-3A), suggesting that motifs associated with accessible regions can

increase accessibility independently of GC-content. However, in endoderm, positive

control DNA sequences for both GC-content bins had increased accessibility com-

pared with negative control DNA sequences with matched GC-content (𝑃 < 0.001

by Wilcoxon rank-sum test), whereas in ESCs, only the low GC-content bin had dif-

ferential accessibility between negative and positive controls (𝑃 < 0.001 by Wilcoxon

rank-sum test) (Fig. 3-3A) because of high accessibility among high-GC neutral DNA

sequences. GC-content was positively correlated with accessibility in both ESCs and

DE cells among both sets of control DNA sequences (ESC Pearson’s 𝑟 = 0.476; DE

Pearson’s 𝑟 = 0.357), suggesting that GC-content is a contributor to MIAA-measured

accessibility alongside motif composition. DeepAccess-predicted accessibility was con-

sistent with MIAA, indicating these effects were to be expected from observations on

DNase-seq (Supplemental Fig. S10).

Because this result could be an effect of sequence motifs included in the high-GC-

content negative control DNA sequences, we then examined the nucleotide-shuffled

DNA sequences that we designed to act as controls for motif activity to see if the effect

of GC-content on MIAA accessibility held in random DNA. We found that the GC-

content of randomly shuffled sequences correlated with MIAA accessibility in both

cell types (Fig. 3-3B). We also found that accessibility was significantly higher (𝑃 <

0.001 by one-tailed Wilcoxon signed-rank test) in ESCs compared with endoderm

cells across all GC-content bins, except in DNA sequences with <35% GC-content

(N= 372). Altogether, these results indicate that GC-content alone is a sufficient

DNA signal to drive accessibility in both ESCs and endoderm as measured by MIAA
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and also to drive accessibility differences between these two cell contexts through its

heightened impact in ESCs.

Consistent with previous research that suggests a relationship between GC-rich

regions and accessibility [39, 57, 42], we found that the top 5000 DE cell-specific

regions and the top 5000 ESC-specific regions from DNase-seq have higher GC-content

than randomly sampled DNase-inaccessible regions (Supplemental Fig. S10). We then

set out to examine the impact each motif or motif pair sequence derived from our

DeepAccess- and KMAC-derived hypotheses beyond the confounding effects of GC-

content. We trained a linear regression model to predict MIAA Dpn ratios from GC-

content, experimental replicate, and cell type-specific effects for all DNA sequences

containing differential motifs or motif pairs. This linear model had good performance

on training (Pearson’s 𝑟 = 0.6335) and held-out test data (Pearson’s 𝑟 = 0.5841)

(Fig. 3-3C; for details, see Supplemental Methods) and significantly improved from

regression models that did not include motif effects (adjusted R-squared motif model

= 0.398; adjusted R-squared no motif model = 0.095) (Fig. 3-3D), reinforcing the

salient effects of transcription factor binding motifs in controlling accessibility.

We next sought to determine which transcription factor binding motifs most

strongly drove differential accessibility between ESCs and endoderm. Because KMAC

and DeepAccess identified sequence motifs and motif pairs that could represent the

same transcription factor binding site, we clustered the regression weights to identify

clusters of motifs and motif pairs representing similar influences on MIAA-measured

accessibility (Fig. 3-3E). We then ran motif discovery on the designed DNA sequences

in each cluster to obtain transcription factor candidates (for details, see Supplemental

Methods). We identified motifs for known transcription factors such as Pou and Sox

motifs as ESC-enriched and motifs for T-box and Fox factors as enriched in DE cells.

The regression weights for these differential accessibility-driving motifs were robust,

showing high consistency between models trained on biological replicates (Pearson’s

𝑟 = 0.963) (Supplemental Fig. S11), indicating that although MIAA correlation at

the level of individual DNA sequences is modest, our estimation of motif-level effects

is highly reproducible. We also identified motif pair sequences that show interesting
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nonlinear activity with respect to differential accessibility compared to their motif

sequence effects alone (Fig. 3-3F). In sum, MIAA data enable de novo discovery of

features such as GC-content and transcription factor motifs that govern differential

chromatin accessibility and validate predictions of motifs impacting differential chro-

matin accessibility made by DeepAccess.

3.4.4 Overexpression of DE transcription factors T and Foxa2

increase accessibility of DNA sequences with their DNA-

binding motifs

We then hypothesized we could connect our discovered motifs to transcription factors

driving differential accessibility by ectopically expressing transcription factors known

to bind to certain enriched motifs. We overexpressed the transcription factors T or

Foxa2 in ESCs and measured the accessibility of our DNA sequence library with

MIAA (Fig. 3-4A). We trained a joint regression model to predict condition-specific

accessibility with data from four conditions: ESCs, DE cells, ESCs with Foxa2 over-

expression, and ESCs with T overexpression (Supplemental Fig. S12; for details,

see Supplemental Methods). We then selected the motifs with the greatest positive

difference in regression weights between the overexpressed T (ESC + T ) and the

ESC conditions. We found that T overexpression increases MIAA accessibility most

strongly in DNA sequences with a motif pair that partially matches the motif of a T

homodimer with two motifs in a minus/plus orientation and is significantly enriched

over other dimer orientations in T ChIPseq peaks (𝑃 < 0.001 by 𝜒2 test) (Supplemen-

tal Fig. S13). The second strongest motif is also significantly enriched in T binding in

mouse DE as measured by ChIP-seq (𝑃 < 0.05 under Benjamini-Hochberg multiple

hypothesis correction) (Fig. 3-4B). Overall, only 6/76 motifs or motif pairs showed a

significant increase in ESC accessibility upon T overexpression (for details, see Sup-

plemental Methods), supporting that T binding is capable of increasing accessibility

specifically at motif-containing DNA sequences in a fixed chromatin context.

Similarly, we examined the motifs with the greatest increase in accessibility upon
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Figure 3-4: Overexpression of DE lineage-defining transcription factors re-

sults in changes to certain motifs representing DNA binding. (A) Synthetic

DNA sequence library is integrated into ESCs, and Foxa2 and T are overexpressed.

(B) Regression weight heatmap of top motifs and motif pairs that increase accessibil-

ity under T overexpression compared with ESCs. Blue star indicates motif visually

matches T homodimer in ± orientation that is enriched in ChIP-seq peaks. Yellow star

indicates motif is statistically enriched in ChIP-seq peaks of T binding in mouse defini-

tive endoderm cells (𝑃 < 0.05 HOMER motif enrichment with Benjamini-Hochberg

correction). (figure caption continued on next page)
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Figure 3-4: Overexpression of DE lineage-defining transcription factors

results in changes to certain motifs representing DNA binding. (C) Regres-

sion weight heatmap of top motifs and motif pairs that increase accessibility under

Foxa2 overexpression compared to ESCs. Star indicates motif is statistically enriched

in FOXA2 ChIP-seq peaks in mouse DE cells (𝑃 < 0.05 HOMER motif enrichment

with Benjamini-Hochberg correction).

Foxa2 overexpression and found that the third and fourth top motifs were enriched in

sequences from FOXA2 ChIP-seq peaks (𝑃 < 0.05 under Benjamini-Hochberg multi-

ple hypothesis correction) (Fig. 3-4C). Foxa2 overexpression results in more substan-

tial changes in ESC motif accessibility profiles than T overexpression (Supplemental

Fig. S14), which is consistent with data showing that Foxa2 overexpression also re-

sults in more changes to gene expression (Supplemental Fig. S15), and therefore may

lead to secondary chromatin accessibility changes unrelated to the FOXA2 motif.

Both T and Foxa2 overexpression resulted in increased accessibility at a TGTCAA-

CATT motif, which is likely because it contains sequences capable of binding both

factors and is consequently enriched in both T and FOXA2 ChIP-seq. We also found

that both Foxa2 and T overexpression resulted in chromatin accessibility changes

that brought cells closer to the MIAA profile of DE cells (Supplemental Fig. S14).

Thus, overexpression of individual transcription factors is capable of increasing the

chromatin accessibility of a specific cohort of motif-containing sequences in a con-

trolled chromatin context, providing evidence that binding of these factors leads to

increased chromatin accessibility.

3.4.5 Exploration of ordering of ESC and endoderm key tran-

scription factors uncovers subtle TF-TF interactions

Finally, we used MIAA to explore interactions between motifs that are difficult to

measure from observational approaches such as DNase-seq because of the lack of

suitably controlled genomic motif arrangements. To probe interaction effects over a
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Figure 3-5: Lineage transcription factor motifs impact chromatin accessi-

bility with preferential spatial ordering. (A) DNA sequence construction from

the ESC key transcription factors POU5F1, SOX2, and KLF4. (B) DNA sequence

construction from the DE key transcription factors GATA4, SOX17, and FOXA2.

(C) Each dot represents a single neutral DNA background sequence that contains

one instance of a POU5F1 motif and one instance of a KLF4 motif (two total motif

instances per DNA sequence). On the y-axis is the difference between endoderm and

ESC accessibility, and on the x -axis is the difference between each DNA sequence and

its shuffled control in ESCs. (figure caption continued on next page)
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Figure 3-5: Lineage transcription factor motifs impact chromatin acces-

sibility with preferential spatial ordering. (D) Each dot represents a single

neutral DNA background sequence that contains one instance of a GATA4 motif

and one instance of a FOXA2 motif (two total motif instances per DNA sequence).

On the y-axis is the difference between endoderm and ESC accessibility, and on the

x -axis is the difference between each DNA sequence and its shuffled control in DE

cells. (E) All motif orderings that had significant accessibility relative to random

shuffled DNA controls, ranked by mean differential accessibility. Transcription factor

pairs with significant changes in accessibility owing to transcription factor order are

colored. Transcription factor orders with significant differential accessibility between

DE cells and ESCs are starred (significance computed by paired 𝑡-test and Wilcoxon

signed-rank with Benjamini-Hochberg correction at FDR < 0.05).

constrained set of known transcription factors, we designed a new library from the

consensus binding motifs of the ESC lineage-defining transcription factors POU5F1,

SOX2, and KLF4 (Fig. 3-5A) and the DE transcription factors FOXA2, SOX17, and

GATA4 (Fig. 3-5B). We tested homotypic DNA sequences with one, two, or three

instances of a motif and heterotypic DNA sequences with combinations of motifs

with every possible motif ordering (in a single orientation).

We found that single motif instances were able to significantly increase accessi-

bility compared with shuffled DNA sequences for 2/6 transcription factors (SOX17

and GATA4) but were rarely able to make DNA significantly differentially accessible

(Supplemental Fig. S16). We note that the consensus motifs for SOX17 and SOX2

are highly similar, sharing a common sequence (CATTGTTT), so it is likely that both

Sox factors and possibly others bind to both motifs tested. In contrast, in our DNA

sequences containing two motif instances, 17/18 significantly increased accessibility

compared with shuffled DNA sequences in at least one cell type (Supplemental Fig.

S17), indicating that MIAA is capable of reliably detecting accessibility changes re-

sulting from a minimum of two motif instances and that all six motifs open chromatin
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in at least one cell type. We then tested for differential accessibility with 6-nt versus

20-nt distance between motifs, which we selected based on literature supporting pref-

erential distances between SOX2 and POU5F1 and between KLF4 and POU5F1 [16],

and we found that none were significantly sensitive to spacing under multiple hy-

pothesis correction. We found that overall the measured accessibility impact of these

motifs did not match well with the expression of the canonical transcription factors

that are expected to bind these motifs, suggesting that the MIAA assay measures

more than the relative expression of specific transcription factors (Supplemental Fig.

S18).

We then examined all homotypic and heterotypic conformations with one, two, or

three motif instances for induction of accessibility and differential accessibility. Over-

all, we found that 35/42 conformations significantly increased accessibility compared

with shuffled versions in at least one cell type, and 15 out of 42 motif conforma-

tions were statistically significant for differential accessibility induction after multiple

hypothesis correction (Fig. 3-5E). Of these 15 conformations inducing differential

accessibility, 10 are heterotypic, with POU5F1-KLF4 combinations and POU5F1-

KLF4-SOX2 combinations preferentially driving accessibility in ESCs (Fig. 3-5C,E;

Supplemental Fig. S19) and FOXA2-GATA4 and SOX17-GATA4 combinations driv-

ing endoderm accessibility (Fig. 3-5D,E; Supplemental Fig. S19).

In several cases, homotypic motif arrays showed accessibility patterns inconsistent

with the expression of their expected transcription factors. For example, homotypic

SOX17 motifs drive ESC-enriched accessibility, and homotypic FOXA2 motifs drive

accessibility equivalently in ESCs and endoderm in contrast to the endoderm-specific

expression of both transcription factors. Though we chose canonical motifs for factors

well known in the literature to be associated with ESCs and endoderm, motifs are

often shared by multiple members of a transcription factor family. In fact, it has been

shown that FOXD3 binds in ESCs to motifs that will eventually become occupied by

FOXA2 in endoderm [60]. This same effect likely holds for SOX2 and SOX17 as well

given the similarity of their motifs.

In addition, we observed several instances of heterotypic combinations of tran-
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scription factor motifs in which order (whether a transcription factor motif was closer

to the 5′ or 3′ end of the designed ssDNA sequence) had an impact on accessibility. For

ESC factor binding motifs, we found that one ordering of POU5F1 and KLF4 more

strongly differentially opens chromatin, whereas the other opens chromatin equiva-

lently in both cell types (Fig 3-5E). We also found four out of six sequences that

contained all three ESC reprogramming motifs were differentially accessible, and the

order of these motifs had an impact on the level of differential accessibility (Fig. 3-5E).

Among endoderm factor motif combinations, we found that particular FOXA2 and

GATA4 and SOX17 and GATA4 (Fig. 3-5E) orientations promoted more differential

accessibility. Previous studies have implicated GATA4 and FOXA2 as accessibility-

enhancing transcription factors [8, 44] and have shown that their interaction can drive

accessibility changes during endoderm differentiation [6]. The motif arrangements

that produced the most differential MIAA accessibility were also most often enriched

in the genome (Supplemental Fig. S20). Because such native genomic instances are

rare and confounded by other differences, MIAA provides a more controlled approach

to identifying motif arrangements with differential activity.

3.5 Discussion

The MIAA is a new assay for measuring changes in chromatin accessibility caused

by short DNA sequences integrated into a fixed locus in the genome. Most prior ap-

proaches to understanding the control of chromatin accessibility have used correlative

approaches that identify genomic DNA sequences that tend to coincide with accessi-

ble chromatin in a particular cell type [19, 43, 9, 13, 56] or leverage natively occurring

SNPs to identify “DNase-QTLs” for which the single nucleotide change correlates with

a change in chromatin accessibility [11, 15], revealing motifs whose disruption is en-

riched in such variants. MIAA enables screening of an arbitrarily large and diverse

library of sequences for their impact on chromatin accessibility. The MIAA assay

measures the differential accessibility induced by designed oligonucleotide libraries

through the preference for RAR-Dam to bind and methylate accessible DNA. MIAA
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can measure the relative effects on local chromatin accessibility of many sequences in

parallel in a fixed genomic context. This has enabled us to identify candidate accessi-

bility modifiers such as transcription factor binding sites and cooperative interactions

between such sites. Notably, because MIAA lacks the ability to measure exact nucle-

osome positions, it is not suitable to identify classically defined pioneer factors that

must be shown to bind to nucleosomal DNA and move or evacuate nucleosomes.

We applied MIAA to study the effects of motifs on differential accessibility between

ESC and DE cell states using a number of distinct experimental designs. Through

the use of native genomic 100-nt DNA sequences transplanted to a fixed locus, we

were able to recapitulate the differential accessibility from native DNase-seq (Pear-

son’s 𝑟 = 0.53; 𝑃 < 0.001), which we believe can be partially attributed to the use

of DeepAccess to scan for highly differential native sequences that are more likely

to be causal for specifying differential chromatin accessibility. Through examination

of randomly shuffled control DNA sequences, we identify a distinction between how

a set of natively ESC-specific and endoderm-specific sequences achieved differential

accessibility. The natively endoderm-accessible sequences opened chromatin more in

endoderm than in ESCs and more than their shuffled versions on average, suggesting

the presence of binding sites for endoderm-specific accessibility-promoting transcrip-

tion factors. On an individual level, only a subset of sequences act in this way, sug-

gesting that a 100-nt DNA sequence does not always fully recapitulate the chromatin

accessibility status of native regulatory elements, which often span over a kilobase.

This may be caused by the absence in MIAA of specific sequence elements outside

the 100-nt sequence that either contribute to or interact with the 100-nt sequence in

its native locus.

We found a distinct pattern in the natively ESC-accessible sequences. In this

cohort of sequences, MIAA accessibility was higher in ESCs than in endoderm as

expected; however, there was no difference between the ESC accessibility of the DNA

sequences and their shuffled counterparts. Instead, the accessibility in endoderm

was reduced compared with shuffled controls, suggesting that differential accessi-

bility of these sequences was primarily achieved through binding sites that depress
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accessibility in endoderm. This result indicates that, for the integration locus used

in this work, MIAA is capable of measuring sequence-dependent increases and de-

creases in accessibility. We found suggestive evidence that E-box binding sites used

by epithelial-mesenchymal transition driver transcription factors such as Zeb factors

maybe responsible for this repression, as such binding sites were found in 98% of

the DeepAccess-proposed ESC-enriched native genomic sequences and none of the

endoderm-enriched native genomic sequences. Because the native genomic sites were

selected by DeepAccess based on predicted optimal differential accessibility modeled

from DNase-seq regions, it is striking to have detected such a consistent difference

in the mechanism of achieving differential accessibility, and it will be intriguing to

explore a larger cohort of cell type-specific sequences to determine which mechanism

is more common. It is important to note that DeepAccess results will be specific to

the cell types that are being compared, which may also explain why DeepAccess did

not strongly identify the key ESC transcription factors. We note that our subsequent

exploration of POU5F1, SOX2, and KLF4 motif combinations identified a number

of designs that consistently yielded ESC-enriched accessibility compared with scram-

bled versions, indicating that ESCs are also capable of achieving sequence-specific

increases in chromatin accessibility.

To identify causal motifs and transcription factors involved in mediating differen-

tial chromatin accessibility, we then focused on exploring DNA sequences containing

various combinations of sequence motifs. We show that, independently of binding

motifs, higher GC-content increases accessibility. In MIAA, we can confirm this to

occur in the absence of transcription factor binding motifs because of our use of shuf-

fled versions of each designed DNA sequence. Although it is formally possible that

this GC effect is an artifact of the use of Dam methylase, we show that native ge-

nomic accessible regions also show elevated GC-content, and it has been reported that

transcription factors and DNase I hypersensitive regions are also enriched in GC-rich

regions [57].

In spite of its importance, predicting MIAA chromatin accessibility of held-out

DNA sequences purely based on GC-content yields poor results, whereas much bet-
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ter results are achieved by accounting for binding motifs. Of the motifs that can be

confidently matched to known transcription factor families, our results are consistent

with the action of known tissue-specific pioneer factors including SOX2 and POU5F1

in ESCs and GATA4 and FOXA2 in the endoderm [8, 21, 50]. We confirm the

role of FOXA2 and T in endoderm-specific chromatin opening by showing that over-

expression of these DE transcription factors in ESCs can increase MIAA-measured

accessibility significantly in DNA sequences with DNA-binding motifs recognized by

these factors. We found that our method of aggregating motif measurements over

multiple sequence backgrounds resulted in highly reproducible estimates of motif ef-

fects over biological replicates (r = 0.963), highlighting the power of MIAA to identify

accessibility-altering motifs.

We then designed a library using consensus motifs of several key transcription fac-

tors in all possible combinations and orderings, from which we provide evidence that

a single binding site is sufficient to increase chromatin accessibility and as few as two

binding sites are sufficient to induce differential accessibility between two cell types.

These results suggest for the first time that individual transcription factor binding

events in the absence of DNA-binding cofactors are capable of altering chromatin

accessibility in mammalian cells.

We also found that for motifs known to bind to both ESC and DE transcription

factors, motif order has a subtle effect on accessibility, which provides support for

specific transcription factor interactions driving accessibility change. This result il-

lustrates the complexity of differential accessibility induction, which cannot simply be

distilled to the presence of consensus motifs for differentially expressed transcription

factors. In addition to the reuse of genomic motifs by different members of the same

transcription factor family in different cell states [60], certain transcription factors

such as those in the Sox and Pou family can show profoundly distinct binding to spe-

cific dimeric motifs that differ in subtle ways [3]. MIAA offers an exciting new way

to explore subtleties that influence transcription factor binding logic such as motif

ordering, spacing, and dimeric motifs in a controlled genomic setting.

We observed subtle effects of motif order on differential accessibility in our library
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using consensus motifs of lineage transcription factors, and observed strong changes in

accessibility by a motif pair matching a T dimer when T was overexpressed, suggesting

that MIAA has the capacity to measure the effects of transcription factor interactions

on accessibility. Predicting differential accessibility from DNA sequence has been a

much more difficult task than predicting cell type-consistent accessibility [18, 22, 36],

and one possible reason is that more conditional logic is used. The ability of MIAA

to obtain sensitive measurements of the effects of specific motif combinations on dif-

ferential accessibility by exhausting all possible combinations of motifs in a controlled

fashion makes MIAA a valuable tool in training accurate predictive models of chro-

matin accessibility. There are many directions for future work, including a deeper

examination of the impact of genomic integration site on local DNA accessibility as

well as a further investigation into features such as motif spacing, which are likely to

impact transcription factor interaction logic. MIAA may also find an important use in

classifying the large collection of SNPs that may impact chromatin accessibility [11].

Another possible application of MIAA is to understand chromatin accessibility dur-

ing differentiation by taking measurements at multiple timepoints to discover novel

transcription factor regulatory logic, such as switching of binding partners, in devel-

opmentally relevant cell types.

Availability

All raw and processed sequencing data generated in this study have been submitted to

the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)

under accession number GSE145920. Prefiltered unnormalized MIAA read counts

are available as Supplemental Data. Accession numbers for previously published

DNase-seq, ChIP-seq, and RNA-seq data that were used in this study are listed

in Supplemental Table S2. Code for DeepAccess accessibility prediction and motif

extraction is available at GitHub (https://github.com/gifford-lab/DeepAccess).

Code for MIAA library processing and producing manuscript figures is available at

GitHub (https://github.com/gifford-lab/MIAA-analysis).
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4.1 Abstract

Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is a method

for the genome-wide de novo discovery of chromatin interactions. Existing computa-

tional methods typically fail to detect weak or dynamic interactions because they use

a peak-calling step that ignores paired-end linkage information. We have developed a

novel computational method called Chromatin Interaction Discovery (CID) to over-

come this limitation with an unbiased clustering approach for interaction discovery.

CID outperforms existing chromatin interaction detection methods with improved

sensitivity, replicate consistency, and concordance with other chromatin interaction

datasets. In addition, CID also outperforms other methods in discovering chromatin

interactions from HiChIP data. We expect that the CID method will be valuable in

characterizing 3D chromatin interactions and in understanding the functional conse-

quences of disease-associated distal genetic variations.
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4.2 Introduction

Physical three-dimensional (3D) chromatin interactions between regulatory genomic

elements play an important role in regulating gene expression [2, 31]. For example, the

creation of chromatin interactions between the promoters and locus control regions

of the β-globin gene is sufficient to trigger transcriptional activation, indicating that

chromatin looping causally underlies gene regulation [4].

Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is a

technology for the genome-wide de novo detection of chromatin interactions mediated

by a specific protein factor [8]. In ChIA-PET, crosslinked chromatin is sonicated and

then immunoprecipitated by antibodies that bind to a protein of interest, followed by

proximity ligation, and sequencing [8]. The paired-end tags (PETs) are then mapped

to the genome to identify the two genomic locations that interact with each other.

Therefore, similar to Hi-C data [19], the ChIA-PET interactions are represented by a

pair of genomic locations that interact with each other. By focusing on the chromatin

interactions associated with a specific protein, ChIA-PET is capable of generating

high-resolution (≈ 100 bp) genome-wide chromatin interaction maps of functional

elements [29]. The ChIA-PET method has been used to detect structures defined by

architectural proteins, including CTCF [29, 10] and cohesin [5, 13], detect enhancer-

promoter interactions associated with RNAPII [14, 18, 32], and detect interactions

involving other transcription factors [8, 30]. In addition, multiple studies have applied

the ChIA-PET method to link distal genetic variants to their target genes and to study

the structural and functional consequences of non-coding genetic variations [29, 9].

To gain biological insight from ChIA-PET data, computational analysis pipelines

and statistical models have been developed [12, 17, 16, 23, 24]. Typically, analysis

pipelines start with data pre-processing that includes linker filtering and linker re-

moval. The resulting PETs are then mapped to the genome and duplicated PETs are

removed. To detect chromatin interactions, a peak-calling step [17, 16, 24] is usu-

ally used to define peak regions enriched with reads as interaction anchors, and then

groups of PETs linking two peak regions are considered as candidate interactions.
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Finally, the number of PETs supporting a candidate interaction is used to compute

the statistical significance of the interaction.

Existing chromatin interaction methods based on peak-calling [17, 16, 24] lose

information at the peak-calling step by ignoring the paired-end linkage information

that is indicative of chromatin interactions. For example, for an RNAPII ChIA-

PET dataset that aims to detect promoter-enhancer interactions, the RNAPII signal

enrichment at certain weak or dynamic enhancers may not be strong enough to be

detected as a peak by the peak-calling algorithm. Thus, interactions involving weak

enhancers typically will not be detected, even though there may be a sufficient number

of PETs linking these enhancers to other genomic elements in the raw data. In

addition, for interactions with detected anchors, the PET count quantification may be

inaccurate because some nearby PETs may fall outside of the peak region boundaries.

Thus, peak-calling-based approaches limit the detection of candidate interactions and

can inaccurately quantify the PET count support.

We developed a novel computational method called chromatin interaction discov-

ery (CID) that uses an unbiased clustering approach to detect chromatin interactions

to address the shortcomings of peak-calling-based methods. We show that CID can

be applied to both ChIA-PET and HiChIP data and that CID outperforms existing

peak-calling-based methods in terms of sensitivity, replicate consistency, and concor-

dance with other chromatin interaction datasets.
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Figure 4-1: CID uses density-based clustering to discover chromatin in-

teractions. (A) ChIA-PET interactions can be discovered as groups of dense arcs

connecting two genomic regions. Each arc is a PET. (B) The PETs plotted on a

two-dimensional map using the genomic coordinates of the two reads. Each point is a

PET. The colors represent the density values, defined as the number of PETs in the

neighborhood. The red dashed square represents the size of the neighborhood. (C)

The clustering decision graph. Each point is a PET. The points with high density and

high delta values are selected as cluster centers. For simplicity, only large clusters are

labelled. (D) The read pairs are assigned to the nearest cluster centers. The clusters

are labeled as in (C). (E) The clusters are visualized as arcs. The clusters are labeled

as in (C) and (D).
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4.3 Materials and Methods

4.3.1 Segmentation of PETs

First, CID groups all the single-end reads that are within 5000 bp of each other

into non-overlapping regions. The maximum DNA fragment size in the ChIA-PET

protocol is estimated to be ≈ 5000 bp [17]. Therefore, two groups of reads that are

> 5000 bp apart are expected to belong to independent interaction anchor regions.

Next, for each region, we group PETs whose left reads map to the region into groups

where the right reads of the PETs map to independent anchor regions that are at

least 5000 bp from each other. We then further split the PET groups if the left reads

of the PETs in a group can be split into independent anchor regions. This process

iterates until the PET groups cannot be further split. The result of this segmentation

step is that millions of PETs are split into small non-overlapping groups that typically

contain < 10, 000 PETs.

4.3.2 ChIA-PET and HiChIP datasets

ChIA-PET datasets (17 datasets associated with protein factors such as POL2RA,

CTCF and RAD21) from various cell types [13, 18, 9] (Supplementary Table C.1)

were downloaded from the ENCODE Project portal (https://www.encodeproject.

org/). FASTQ files of both biological replicates were pre-processed and aligned to

the hg19 genome using the Mango pipeline [24]. The fastq and pre-processed SMC1A

HiChIP data from GM12878 cells [22] were downloaded from NCBI GEO portal

(GSE80820). BEDPE files from ChIA-PET and HiChIP datasets are used as inputs

to CID.

4.3.3 Mango and ChIA-PET2 pipelines

Mango (version 1.2.1) [24] was downloaded from https://github.com/dphansti/

mango. Additionally, we installed the dependencies R (version 3.4.4), bedtools (version

2.26.0), macs2 (version 2.1.1.20160309), and bowtie-align (version 1.2). Mango was
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executed with the default parameters and the flags verboseoutput and reportallpairs

were set. For data sets that were generated with the ChIA-PET Tn5 tagmentation

protocol, additional parameters recommended by the author were used: -keepempty

TRUE -maxlength 1000 -shortreads FALSE.

The BEDPE files generated by Mango after step 3 were also used by the ChIA-

PET2 and CID pipelines in order to examine the differences in the subsequent peak

calling and interaction calling steps.

ChIA-PET2 (version 0.9.2) [16] was obtained from https://github.com/GuipengLi/

ChIA-PET2. The default setting for all parameters were used, except that the starting

step was set to 4 to start the analysis from Mango-derived BEDPE files.

4.3.4 hichipper pipeline

The HiChIP raw fastq files were initially processed with HiC-Pro [28] (https://

github.com/nservant/HiC-Pro) using default settings except specifying MboI in-

stead of HindIII digestion. Subsequently, hichipper [15] (https://github.com/aryeelab/

hichipper) was used to analyze the HiC-Pro output, specifying EACH,ALL as the

peaks option and providing the MboI BED file for restriction fragments.

4.3.5 Replicate consistency analysis

For each dataset, we counted the number of interactions that are present in both

replicates. Jaccard coefficients are then calculated by dividing the intersection of

interactions in replicates 1 and 2 by the union of interactions in both replicates.

Interactions in replicates 1 and 2 were considered identical, if both interaction anchors

overlapped between replicates or the gap between them was <1000 bp.

In situations where the ranking of interactions mattered (e.g. fraction of replicated

interactions in the top n interactions), interactions were sorted in ascending order of

their false discovery rate (FDR) and posterior probability (if there were tied FDR

values).
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4.3.6 Functional annotation of interaction calls

The GENCODE 19 gene annotation [11] was used to generate the promoter anno-

tations. Each transcription start site (TSS) is expanded to 2.5 kb up/downstream

to define a promoter. We used ChIP-seq peak calls of H3K27ac histone modifica-

tion, which associates with active enhancers, as the enhancer annotations. The set

of broad peak calls of H3K27ac ChIP-seq data from K562 cells was downloaded from

ENCODE project website (accession ENCFF931VAQ). For the interaction calls from

all the methods, a call is considered annotated as an enhancer-promoter interaction

if one anchor region of the interaction overlaps with a promoter annotation and the

other anchor overlaps an enhancer annotation.

4.3.7 Hi-C loop overlap analysis

Hi-C loop calls for GM12878 and K562 cells [25] were downloaded from NCBI GEO

portal (GSE63525, combined primary and replicate samples). The HICCUPS loop

calls from SMC1A HiChIP data were downloaded from Mumbach et al. [22]. The

overlap between Hi-C loops and ChIA-PET and HiChIP interaction calls were com-

puted using pairToPair in bedtools with parameters ‘-slop 1000 -type both -is’.

4.3.8 5C interaction overlap analysis

5C interaction calls for K562 cells were downloaded from the original study [27]. The

overlap between 5C interactions (tested and positive) and ChIA-PET interaction calls

were computed using pairToPair in bedtools with parameters ‘-slop 1000 -type both

-is’.

4.3.9 Software availability

The CID software was implemented in Java. Information on CID is at (http://

giffordlab.mit.edu/cid/). The source code and license is at (https://github.

com/gifford-lab/GEM3)
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4.4 Results

4.4.1 Chromatin interaction discovery (CID)

CID discovers chromatin interactions using a density-based clustering method [26] to

cluster proximal PETs into interactions. CID continuously resolves anchors and thus

is more flexible than peak-calling-based methods that can only discover interactions

between statically identified peak regions. Once CID identifies candidate interactions,

it then applies the MICC statistical model [12] to compute the statistical significance

of the interactions.

CID first filters out PETs that are shorter than 5000 bp because they are likely

to be self-ligation PETs. CID then efficiently clusters ChIA-PET data by segment-

ing the total set of PETs into independent groups of proximally located PETs (see

section 4.3.1). CID then clusters each group of PETs.

A PET 𝑖 is represented as a two-dimensional vector [𝐶𝑖,𝐿, 𝐶𝑖,𝑅], where 𝐶𝑖,𝐿 and

𝐶𝑖,𝑅 are the genomic coordinates of the center of the left and right reads of PET

𝑖, respectively, 𝐶𝑖,𝐿 < 𝐶𝑖,𝑅. The distance between two PETs is quantified as the

Chebyshev distance [1] calculated from the read coordinates of the PETs:

Distance (PET𝑖,PET𝑗) = max (|𝐶𝑖,𝐿 − 𝐶𝑗,𝐿| , |𝐶𝑖,𝑅 − 𝐶𝑗,𝑅|) (4.1)

We employ a density-based clustering method [26] that finds cluster centers that

are characterized by a higher density than their neighbors and by a relatively large

distance from points with higher densities. For ChIA-PET data (Figure 4-1A), the

density of a PET is defined as the number of neighboring PETs within a certain cutoff

distance to the PET. The densities of all PETs can be visualized by plotting each PET

as a point (Ci,L,Ci,R) on a 2D space (Figure 4-1B). A high-density group of points

on the plot suggests potential chromatin interactions between two genomic regions.

After computing the density values, a delta value of a PET is defined as its distance

to the nearest PET that has a higher density. For the PET with the highest density,

delta is defined as the largest distance between any pair of PETs [26]. By requiring
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Figure 4-2: CID is more sensitive and consistent at discovering ChIA-

PET interactions than peak-calling-based methods. (figure caption continued

on next page)
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Figure 4-2: CID is more sensitive and consistent at discovering ChIA-PET

interactions than peak-calling-based methods. (A) Comparison of interactions

called by CID, ChIA-PET2, and Mango in the CEBPB locus using POLR2A ChIA-

PET data from K562 cells. The ChIA-PET2 and Mango interaction calls are based

on peak calls (shown as blue rectangles) from the same ChIA-PET data by treating

PETs as single-end reads (shown as the ChIA-PET ChIP track). The PET counts

of the interactions are represented as the numeric values above the arcs. For CID,

only significant interactions with >8 PETs are shown. Dashed-line arcs represents

insignificant candidate interactions. (B) Interaction calls of CID are more consistent

across replicates than those of ChIA-PET2 and Mango. Accumulative fractions of

replicated interaction calls are computed using top ranking interactions at increasing

ranks. For CID, only top 10 000 calls are shown. (C) Interaction calls of CID are

more replicable than those of ChIA-PET2 and Mango across a large set of ChIA-PET

data. For each dataset, same number of top-ranking calls in replicates are used to

compute Jaccard coefficient for all three methods.
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cluster centers have high delta values, the clustering method prevents too many points

in a high-density region from being called as cluster centers [26]. The cluster centers

are then the PETs with both high density and high delta values, as visualized in a

clustering decision graph (Figure 4-1C). Following the clustering method [26], PETs

are ranked by the product of their density and delta values and a PET is assigned

to the same cluster as its nearest neighbor of higher density (Figure 4-1D). After

cluster assignment, singleton clusters are interpreted as noise and are not considered

as candidate interactions. Because some PET clusters may be close to each other, a

post-processing step merges nearby PET clusters. The PET clusters that contain at

least two PETs are then proposed as candidate interactions (Figure 4-1E).

CID then applies the MICC statistical model [12] to compute the statistical sig-

nificance of the candidate interactions. MICC applies a Bayesian mixture model to

systematically separate true interactions from random ligation and random collision

noise and computes false discovery rates (FDRs) for the candidate interactions [12].

The cutoff criteria for significant interactions are (i) FDR ≤ 0.05 and (ii) PET count

> 3. In principle, CID can use the MICC, Mango, or ChiaSig [23] models to com-

pute statistical significance of the discovered interactions. We chose the MICC model

because it has been shown to be more sensitive than the Mango model [12].

4.4.2 CID is more sensitive at discovering ChIA-PET interac-

tions than peak-calling-based methods

We compared CID with two peak-calling-based ChIA-PET analysis methods, ChIA-

PET2 [16] and Mango [24], and found that CID is more sensitive than these methods

at chromatin interaction discovery. We tested these three methods on a widely used

dataset, POL2RA ChIA-PET from K562 cells [18]. We first studied the chromatin

interactions called by three methods in the 400 kb genomic region downstream of the

CEBPB gene. The pre-determined peak regions called by ChIA-PET2 and Mango

limit the interactions that can be discovered. In contrast, CID uses an unbiased ap-

proach and discovers a substantial number of interactions that are missed by ChIA-

122



PET2 and Mango (Figure 4-2A). The missed interactions are between the CEBPB

promoter and non-promoter regions that have weak enrichment of reads and are not

called as peaks by ChIA-PET2 or Mango. In addition, peak-calling-based methods

only count the PETs that are within the peak regions and miss nearby PETs that just

fall out of the peak region boundaries. In contrast, CID’s clustering approach includes

all the neighboring PETs. Indeed, the PET count in the CID called interactions are

higher than the same interactions called by the other methods (Figure 4-2A). The

accurate quantification of PET counts for interactions is important for the subse-

quent test of their statistical significance. Many of the candidate interactions called

by ChIA-PET2 and Mango contain too few PETs to reach statistical significance,

yet the interactions called by CID across the same anchor regions are statistically

significant because their PET counts are higher (Figure 4-2A). We further compared

the significant interactions in the CEBPB locus between two biological replicates and

found that CID called 11 replicable interactions that contain at least 9 PETs. In

contrast, there are only one replicable ChIA-PET2 interaction and zero replicable

Mango interactions in this region (Supplementary Figure C-1). Across the whole

genome, CID discovers more interactions than ChIA-PET2 and Mango (Figure 4-2B,

Supplementary Figure S2).

Next, we investigated whether the interactions discovered by CID are function-

ally relevant. For the K562 POL2RA ChIA-PET data, we overlapped the interaction

calls by all three methods with the annotations of enhancers (E, H3K27ac ChIP-seq

peaks in K562 cells) and promoters (P, 2.5kb up/downstream of annotated TSS in

GENCODE 19). An interaction is annotated as a candidate enhancer-promoter in-

teraction if one of its anchor regions overlaps with at least one promoter or enhancer

annotation and the other anchor region overlaps with at least one annotation of the

opposite type (E-P or P-E). More than 80% of CID calls are annotated as candidate

enhancer-promoter interactions, at the similar percentage of overlaps of calls from

ChIA-PET2 and Mango (Supplementary Figure S3). Furthermore, high-ranking CID

calls overlap with annotations at a higher percentage than calls from the other meth-

ods. These results suggest that CID calls reveal chromatin interactions with relevant

123



biological function.

4.4.3 CID is more consistent at discovering ChIA-PET inter-

actions than peak-calling-based methods

In addition, CID interaction calls are more consistent across biological replicates than

those of ChIA-PET2 and Mango. For each method, we compared the interactions

called from biological replicates and computed the accumulated fraction of replicated

calls with increasing number of top-ranking calls. For the K562 POL2RA ChIA-PET

dataset, the interaction calls of CID are more replicable than those of ChIA-PET2

and Mango (Figure 4-2B). We further compared the replicate consistency of the three

methods across a large set of replicated ChIA-PET datasets from the ENCODE

project [6], which assay interactions mediated by factors such as POL2RA, CTCF

and RAD21 (a cohesin subunit), across multiple cell types. Because the numbers of

interactions called by the three methods are different, for each dataset, we took the

same number of top-ranking interaction calls and computed the Jaccard coefficient

between the two replicates. We found that CID has higher Jaccard coefficients than

ChIA-PET2 and Mango across all 17 datasets we tested (Figure 4-2C). Across all

these ChIA-PET datasets, CID is not only more sensitive but also more consistent

in discovering chromatin interactions than ChIA-PET2 and Mango (Supplementary

Figure S2, Supplementary Table S2). We also computed the interaction length distri-

bution and anchor width distribution of interaction calls from Mango, ChIA-PET2,

and CID for all 17 ChIA-PET data sets (Supplementary Figures S4 and S5). The

interaction length distributions are similar among the tested methods. In contrast,

the anchor width distribution of CID differs from other methods because CID called

anchors are defined by clustered PETs instead of the peaks determined based on

single-end read enrichment.
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Figure 4-3: Interactions called by CID are more concordant with Hi-C and

5C data than interactions called by ChIA-PET2 and Mango. (A) Number

of Hi-C loops in GM12878 cells that overlapped with top 5530 interactions called by

three methods from RAD21 ChIA-PET data in GM12878 cells. (B) Number of Hi-C

loops in K562 cells that overlapped with top 613 interactions called by three methods

from POLR2A ChIA-PET data in K562 cells. (C) Fraction of interactions called by

three methods from POLR2A ChIA-PET data in K562 cells that are validated by

5C interactions in K562 cells. The values above the bars show the number of 5C

interactions tested positive and the number of 5C interactions tested, respectively.
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4.4.4 Interactions called by CID are more concordant with Hi-

C and 5C data than interactions called by other methods

To compare the accuracy and biological relevance of interactions detected by CID and

other methods, we intersected the interaction calls with the chromatin loop calls from

deeply sequenced Hi-C data [25]. We first tested the concordance between RAD21

ChIA-PET interactions calls and the Hi-C loop calls in GM12878 cells. Because CID,

ChIA-PET2, and Mango called different numbers of significant interactions, we fo-

cused on comparing the top 5530 interactions called by the three methods. We found

that interactions called by CID overlap with more Hi-C loops than those called by

ChIA-PET2 and Mango. The number of Hi-C loops overlapped with interactions

called by CID, ChIA-PET2, and Mango are 2708, 1622 and 1848, respectively (Fig-

ure 4-3A). Similarly, for K562 cells, POL2RA interactions called by CID overlap with

more Hi-C loops than those called by ChIA-PET2 and Mango. The number of Hi-

C loops overlapped with the top 631 interactions called by CID, ChIA-PET2, and

Mango are 88, 18 and 57, respectively (Figure 4-3B). In addition, the number of Hi-C

loops overlapped with the top 7498 interactions called by CID and ChIA-PET2 are

396 and 83, respectively (Supplementary Figure S6).

We also compared the significant interactions from the three methods with 3C-

Carbon Copy (5C) data mapped as part of the ENCODE project across 1% of the

genome [27]. For the K562 POL2RA ChIA-PET interactions called by the three

methods, we compared the fraction of the interactions that are validated by 5C in-

teractions in K562 cells. Out of 39 interactions tested by 5C that overlap the 7498

significant interactions called by ChIA-PET2, 14 were tested positive by 5C. Out

of 14 interactions tested by 5C that overlap the 631 significant interactions called

by Mango, 4 were tested positive by 5C. In comparison, 40 interactions tested by

5C overlap with the top 7498 significant interactions called by CID, 17 were tested

positive by 5C. The fraction of positive 5C interactions are higher for CID than for

ChIA-PET2 and Mango (Figure 4-3C).

Taken together, these results show that the interactions called by CID are more
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Figure 4-4: CID outperforms other methods in detecting chromatin in-

teractions from HiChIP data. (A) Interaction calls of CID are more consistent

across replicates than those of hichipper. Accumulative fractions of replicated inter-

action calls are computed using top ranking interactions at increasing ranks. Top 100

000 calls are shown. (B) Number of Hi-C loops in GM12878 cells that overlapped

with top 10 255 interactions called by CID, HICCUPS, and hichipper from SMC1A

HiChIP data in GM12878 cells.

concordant with Hi-C and 5C data than interactions called by other methods, sug-

gesting that the interactions discovered by CID are more accurate and biologically

relevant.

4.4.5 CID outperforms other methods in detecting chromatin

interactions from HiChIP data

CID can also be applied to HiChIP [22] data for discovering chromatin interactions.

HiChIP is a recently introduced method that is similar to ChIA-PET. It is an at-

tractive alternative to ChIA-PET because it requires substantially fewer cells and a

simpler protocol [22]. We applied CID to a cohesin-associated HiChIP dataset [22]

and found that the interactions discovered by CID are similar to a cohesin-associated

ChIA-PET dataset [9] in terms of replicate consistency (Supplementary Figure S7).

127



We then compared the results with those from hichipper [15], a peak-calling-based

method for analyzing HiChIP data. We found that the interaction calls of CID are

more consistent across two replicates than those of hichipper (Figure 4-4A). In addi-

tion, we overlapped CID, hichipper, and HICCUPS calls [22] from the same SMC1A

HiChIP data with the Hi-C loops from GM12878 cells [25]. Because HICCUPS only

called 10255 significant interactions from the HiChIP data, we focused on comparing

the top 10255 interactions called by the three methods. We found that interactions

called by CID overlap with slightly more Hi-C loops than those called by HICCUPS,

and significantly more than those called by hichpper. The number of Hi-C loops

overlapped with interactions called by CID, HICCUPS, and hichipper are 3331, 3137

and 1507, respectively (Figure 4-4B). We note that HICCUPS is the same software

that called the loops from Hi-C data [25]. These results show that CID can also be

used to detect chromatin interactions from HiChIP data.

4.5 Discussion

We have demonstrated that CID is more sensitive in discovering chromatin interac-

tions from ChIA-PET data than existing peak-calling-based methods. In addition,

the interactions discovered by CID are more consistent across biological replicates

and more concordant with other types of chromatin interaction data than those dis-

covered by existing methods. We anticipate the improved accuracy and reliability

of CID will be important for elucidating the mechanisms of 3D genome folding and

long-range gene regulation.

We have also shown that CID can be used to detect chromatin interactions from

HiChIP data. A recent study [15] showed that correction of the cut site bias of the

restriction enzyme improves the detection of interaction anchors. Future development

of CID with HiChIP-specific modeling of the cut site bias may further improve the

detection of interactions from HiChIP data.

Cell-type-specific gene expression is often regulated by distal enhancers, and these

enhancers are often enriched with disease-associated variants [7, 21]. However, link-
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ing disease-associated non-coding variants to their affected genes in disease relevant

tissues has been challenging due to the scarcity of long-range interaction data. With

large scale on-going efforts such as the ENCODE project [6] and the 4D Nucleo-

some project [3], high resolution chromatin interaction mapping from a wider range

of tissues and cells will become available in the near future. We expect that the

CID method will be valuable in characterizing 3D chromatin interactions and in

understanding the functional consequences of disease-associated distal genetic varia-

tions [20].
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5.1 Abstract

Chromatin interaction data from protocols such as ChIA-PET, HiChIP, and Hi-C pro-

vide valuable insights into genome organization and gene regulation, but can include

spurious interactions that do not reflect underlying genome biology. We introduce

an extension of the Irreproducible Discovery Rate (IDR) method called IDR2D that

identifies replicable interactions shared by chromatin interaction experiments. IDR2D

provides a principled set of interactions and eliminates artifacts from single experi-

ments. The method is available as a Bioconductor package for the R community, as

well as an online service at https://idr2d.mit.edu.
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5.2 Introduction

The Irreproducible Discovery Rate [15] (IDR) method identifies a robust set of find-

ings that comprise the signal component shared by two replicate experiments. The

IDR method is akin to the false discovery rate (FDR) in multiple hypothesis test-

ing, but instead of alleviating alpha error accumulation within one replicate, IDR

quantifies the reproducibility of findings using a copula mixture model with one re-

producible and one irreproducible component. A finding’s IDR is the probability it

belongs to the irreproducible component. This permits findings that are likely in the

irreproducible noise component to be eliminated for subsequent analyses. Assessing

the IDR of genomic findings has been adopted by ENCODE [10], and is recommended

for all ChIP-seq experiments with replicates [1]. IDR has also been used in numerous

projects outside of ENCODE [4, 2, 24, 28, 17].

Chromatin interaction experiments such as ChIA-PET [6], HiChIP [18], and Hi-

C [16] provide important chromatin structure and gene regulation information, but

the complexity of their results and the sampling noise present in their protocols makes

the principled analysis of resulting data important. Single replicate false discovery

rate (FDR) methods are often used to identify chromatin interactions, but questions

can remain about the veracity of the interactions identified as significant as they may

not be observed in replicate experiments.

Here we generalize IDR from one dimensional analysis, performed on a single

genome coordinate, to the analysis of interactions that are identified in two dimen-

sions by a pair of genome coordinates. We call this extended method Irreproducible

Discovery Rate for Two Dimensions (IDR2D) and it can be readily applied to any

experimental data type that produces two-dimensional genomic results that admit

appropriate distance metrics. We demonstrate the application of IDR2D to data

from ChIA-PET, HiChIP, and Hi-C experiments.

Like IDR, IDR2D independently ranks the findings from each replicate. This

ranking reflects the confidence of the finding, with high-confidence interactions at the

top and low-confidence interactions at the bottom of the list. In a subsequent step,
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corresponding interactions between replicates are identified. A genomic interaction

from replicate 1 is said to correspond to an interaction in replicate 2, if both their

interaction anchors overlap (see Figure 5-1C). After corresponding interactions are

identified and ambiguous mappings of interactions between replicates are resolved (see

equation 5.1 and Figure 5-1D), IDRs are computed for each replicated interaction.

If interaction 𝑥𝑖,1 in replicate 1 overlaps with more than one interaction in replicate

2, the ambiguous mapping is resolved by choosing 𝑥*,2 in the following way:

𝑥*,2 = argmin
𝑥𝑗,2∈Ω𝑥𝑖,1

𝑓(𝑥𝑖,1, 𝑥𝑗,2), (5.1)

where Ω𝑥𝑖,1
is the set of interactions in replicate 2 that overlaps with the interaction

𝑥𝑖,1 in replicate 1, and 𝑓(·, ·) is the ambiguity resolution value (ARV) between an

interaction in replicate 1 and an overlapping interaction in replicate 2. Depending

on the ambiguity resolution method, this value corresponds to the genomic distance

between anchor midpoints (see 1. in Figure 5-1D), the additive inverse of the relative

anchor overlap (see 2. in Figure 5-1D), or the sum of the interaction ranks, where

more significant interactions have lower ranks.

IDR2D is used as the final step in chromatin interaction data workflows (see

Figure 5-1A). The input to IDR2D are BEDPE formatted files of genomic interactions,

where each genomic interaction has a score associated with it. This score is used to

rank the interactions and can be probability-based, such as the scores from MICC-

based methods [8, 14, 7], or based on a heuristic. For Hi-C experiments, IDR2D

supports the .hic file format from the Juicer / Straw pipeline and the .matrix/.bed

file formats from the Hi-C Pro pipeline. Figure 5-1B breaks the IDR2D procedure

into five steps.
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Figure 5-1: IDR2D identifies reproducible genomic interactions. (figure

caption continued on next page)
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Figure 5-1: IDR2D identifies reproducible genomic interactions. (A) IDR2D

is a potential post-processing step in the data analysis pipelines for ChIA-PET,

HiChIP, and Hi-C experiments that were done in replicate. It is compatible with

a range of different interaction callers, such as ChIA-PET2, Mango, and CID. (B)

This schematic depicts the five steps of the IDR2D procedure. In step 1, the data is

prepared for IDR analysis, which includes the removal of interactions on non-standard

chromosomes and a suitable transformation of the value column, which will be the

basis of the ranking. In step 2, interactions in replicate 1 that overlap interactions in

replicate 2 are identified, and in step 3 a one-to-one correspondence between overlap-

ping interactions is established by resolving ambiguous cases. After this unambiguous

mapping is established, in step 4 the irreproducible discovery rates are estimated for

each interaction pair. Lastly, diagnostics plots are created in step 5. (C) An interac-

tion in replicate 1 (R1) is assigned to all interactions in R2 for which both interaction

anchors overlap or are within maximum gap of each other. (D) If more than one in-

teraction in R2 overlaps with an interaction in R1, there are three methods to resolve

this ambiguous mapping: select the interaction in R2 with (1) the smallest distance

between the anchor midpoints (width of the green bars), (2) the largest relative over-

lap (width of the green bars divided by the sum of the anchor widths), or (3) the

lowest rank sum of the interactions, which prioritizes more significant interactions.

142



5.3 Materials and Methods

5.3.1 IDR

IDR2D extends the reference implementation of IDR in R by Qunhua Li [15]. All

datasets were analyzed with the IDR2D package using default parameters. We used

overlap as ambiguity resolution method and allowed no gaps between overlapping

interactions (max.gap = 0L). The applied value transformations were dependent on

the interaction calling method. The results were not sensitive to the initial values of

the mean, standard deviation, correlation coefficient, or proportion of the reproducible

component.

5.3.2 ChIA-PET datasets

We used 17 ChIA-PET datasets associated with protein factors that include POL2RA,

CTCF and RAD21 from selected cell types (Supplementary Table D.1). The datasets

were downloaded from the ENCODE Project portal (https://www.encodeproject.

org/). All FASTQ files of both biological replicates were pre-processed and aligned

to the hg19 genome assembly using steps 1, 2 and 3 in the ChIA-PET data analysis

software Mango.

5.3.3 HiChIP datasets

The FASTQ SMC1A HiChIP data from GM12878 cells [18] were downloaded from

the NCBI GEO portal (GSE80820). Raw read files were analyzed with HiC-Pro [22],

and interactions were subsequently called by CID and hichipper [12].

5.3.4 Hi-C datasets and subsampling procedure

Preprocessed contact matrix files in .hic format were downloaded from the NCBI

GEO portal (Supplementary Table D.1) and parsed with Straw, a data extraction

API for .hic files [5].
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FASTQ files for Hi-C datasets from ENCODE were processed with the HiC-Pro

pipeline [22] using default parameters for HindIII digested DNA. Contact matrices

were normalized with the ICE procedure [9].

Subsampling of Hi-C contact matrices was performed using uniform sampling of

individual reads without replacement.

5.3.5 Mango pipeline

Mango 1.2.1 [19] was downloaded from https://github.com/dphansti/mango. Ad-

ditionally, we installed the dependencies R 3.4.4, bedtools 2.26.0, macs2 (version

2.1.1.20160309) [29], and bowtie-align 1.2 [11]. Mango was executed with the default

parameters and the flags verboseoutput and reportallpairs were set. For datasets

that were generated with the ChIA-PET Tn5 tagmentation protocol, additional pa-

rameters recommended by the author were used: -keepempty TRUE -maxlength

1000 -shortreads FALSE. For subsequent IDR2D analyses, we used the P column

in the Mango output files to establish the ranking of interactions. This column con-

tains unadjusted p-values, which were transformed using the log.additive.inverse

transformation to match the IDR semantics of the value column, where interactions

with larger values are more likely to be true interactions.

The BEDPE files generated by Mango after step 3 were also used by the ChIA-

PET2 and CID pipelines.

5.3.6 ChIA-PET2 pipeline

ChIA-PET2 0.9.2 [14] was obtained from https://github.com/GuipengLi/ChIA-PET2.

The default setting was used for all parameters, except that the starting step was set

to 4 to start the analysis from Mango-derived BEDPE files. The ranking for the

IDR2D analysis was established by the untransformed -log10(1-PostProb) column,

which is an output of MICC [8], a Bayesian mixture model used internally by ChIA-

PET2 and CID.
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5.3.7 CID pipeline

CID 1.0 [7] is part of the Java genomics software package GEM 3.4, which was

downloaded from https://groups.csail.mit.edu/cgs/gem/versions.html. We

used the default CID parameters. Before running MICC, we filtered all interactions

that were supported by only one PET read. Same as with ChIA-PET2, we used the

untransformed -log10(1-PostProb) column to rank interactions in IDR2D.

5.3.8 Package and web development

The R package development process was supported using devtools. We used roxygen2

for inline function documentation, and knitr and R Markdown for package vignettes.

With the R package we provide a platform-independent implementation of the meth-

ods introduced in this paper. The Hi-C analysis part of the package requires the

Python package hic-straw [5], which is a data extraction API for Hi-C contact maps.

The website was developed in R with the reactive web application framework

shiny from RStudio. The components of the graphical user interface were provided by

shiny and shinyBS, which serve as an R wrapper for the components of the Bootstrap

front-end web development framework. The analysis job queue of the website uses an

SQLite database.
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Figure 5-2: IDR2D analysis of 17 replicated ChIA-PET experiments iden-

tifies reproducible components. (figure caption continued on next page)
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Figure 5-2: IDR2D analysis of 17 replicated ChIA-PET experiments iden-

tifies reproducible components. (A) Diagnostic scatterplot of IDRs of genomic

interactions called by CID from replicated ChIA-PET experiments targeting RAD21

in HepG2 cells. Plotted are replicated interactions with their estimated IDR (color)

and their scores in the two replicates (position). As expected, interactions with low

IDRs that have a low probability of belonging to the irreproducible component, are

along the diagonal (similar scores in both replicates). (B) Similar to panel A, but

plots interaction ranks instead of scores (higher score results in lower rank). (C) A

comparison of ChIA-PET interaction callers ChIA-PET2, CID, and Mango across 17

ChIA-PET experiments. Significant IDR < 0.05, highly significant IDR < 0.01, total

interactions is the number of interactions in replicate 1.

5.4 Results

5.4.1 IDR2D identifies reproducible components of ENCODE

ChIA-PET experiments

To assess the performance and utility of IDR2D we analyzed the read data of 17

ChIA-PET experiments that had replicates (see Supplementary Table D.1). Mango

was used for data preprocessing such as linker removal, read mapping (via bowtie),

and peak calling (via macs2). We called interactions with three different methods

(ChIA-PET2, CID, and Mango) and then used IDR2D to identify reproducible inter-

actions across replicates. The number of identified interactions varies greatly between

the three interaction callers, with on average CID identifying the most, and Mango the

fewest interactions (see Figure 5-2C and Supplementary Tables D.2, D.3, and D.4).

As a result, the overall reproducibility of interactions is also dependent on the inter-

action caller. For example, the ChIA-PET experiments Snyder.GM19239.RAD21 and

Snyder.GM19240.RAD21 show poor reproducibility across all three interaction calling

methods. By identifying the reproducible component within each of the replicated

experiments, IDR2D helps to assess the overall reproducibility of each experiment, as
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Figure 5-3: Mappings of genomic interactions between replicated ChIA-

PET experiments are predominantly unambiguous. The great majority of

interactions in replicate 1 that overlapped with interactions in replicate 2 only over-

lapped with one interaction, leading to an unambiguous assignment of correspond-

ing replicated interactions (green bars). Unsurprisingly, the number of ambiguous

mappings (interactions in replicate 1 that overlap with more than one interaction in

replicate 2) increases when the maximum acceptable gap is increased, the tolerated

distance between anchors to still be considered overlapping.
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well as the reproducibility of individual findings, which in turn informs the conclusions

drawn from the data. In addition, it can be used to help qualify new experimental

protocols for consistent results. Venn diagrams depicting the overlap of identified

interactions between ChIA-PET2, CID, and Mango are shown in Supplementary Fig-

ure D-1.

Furthermore, we used IDR2D to analyze experimental results from replicated

HiChIP (see Supplementary Tables D.5 and D.6). Similar to ChIA-PET, IDR2D can

identify reproducible HiChIP interactions and expose poorly replicated experiments,

which is valuable information for subsequent analysis steps.

5.4.2 Mappings of genomic interactions between replicated

ChIA-PET experiments are predominantly unambigu-

ous

The great majority of interactions in replicate 1 that overlapped with interactions in

replicate 2 overlapped with only one interaction, leading to an unambiguous assign-

ment of corresponding replicated interactions (see Figure 5-3). Unsurprisingly, the

number of ambiguous mappings (interactions in replicate 1 that overlap with more

than one interaction in replicate 2) increases when the maximum gap is increased,

the tolerated distance between anchors that are considered to overlap. On average,

only 2.66% of interactions are ambiguous in the case of zero max gap, whereas this

number increases to 8.00% and 24.11% with maximum gaps of 1000 and 5000 bp,

respectively.

There are more ambiguous mappings between replicated interactions that were

called with CID (14.73% for CID, 9.90% for ChIA-PET2, and 10.14% for Mango).

We expect this is because (1) CID on average calls significantly more interactions than

ChIA-PET2 and Mango, and (2) interactions called with CID exhibit a wider range

of anchor lengths, and longer anchors naturally increase the probability of overlap.
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Figure 5-4: Reproducibility analysis of Hi-C experiments. (figure caption

continued on next page)
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Figure 5-4: Reproducibility analysis of Hi-C experiments. (A) Summary of

IDR2D results on individual chromosomes of three pairs of Hi-C experiments, True

replicate Hi-C experiments (Lieberman.GM12878) are compared to IDR2D analysis

of Hi-C experiments of different alleles (Lieberman.Patski) and different treatments

(Skok.NSD2). (B) Histograms of the IDR distribution of IDR values for all blocks

of chromosome 1 for the three pairs of Hi-C experiments. (C) Scatterplots of block

ranks of chromosome 1 of the two Hi-C replicate experiments, colored by IDR. (D)

Analagous to C, for Hi-C experiments of paternal and maternal alleles. (E) Analagous

to C, for Hi-C experiments before and after overexpression of NSD2. Axis scales are

not fixed between scatterplots.

5.4.3 Assessing reproducibility of Hi-C experiments

When analyzing pairs of Hi-C experiments with IDR2D, blocks from Hi-C contact

matrices are used as observations. The resolution of contact matrix values typically

ranges between 5 kbp (kilo base pairs) to 2.5 Mbp blocks. With the fixed grid of

contact map observations, finding corresponding observations in the second replicate

is straightforward. Each block in replicate 1 is simply matched with the block span-

ning the same genomic regions in replicate 2. Blocks are subsequently ranked by their

read counts and analyzed using the same procedure that was used for ChIA-PET and

HiChIP data.

In addition to computing IDR values, IDR2D produces diagnostic plots that help

interpret the overall reproducibility of a pair of Hi-C experiments, as well as identify

reproducible parts of Hi-C contact matrices for a more focused, downstream analysis.

In Figure 5-4 we show IDR2D results for three pairs of Hi-C experiments. The first

pair of Hi-C experiments consists of true replicate experiments in GM12878 cells [21].

The second pair of experiments were obtained in phased murine embryonic kidney

fibroblasts, where allele-specific Hi-C reads [21] were available (different alleles in

Figure 5-4) [3], and the third pair of Hi-C experiments were obtained before and after

the overexpression of NSD2 (different treatments) [13]. GEO identifiers of all data
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sets are listed in the Supplementary Table D.1 and detailed results in Supplementary

Table S7. Figure 5-4A gives an overview of all data sets and all resolutions, showing

that, as expected, the reproducibility is highest between true replicates, and in general

higher at lower resolutions (larger blocks). Figure 5-4B depicts the distribution of

IDR values for chromosome 1 of each of the Hi-C pairs at block resolutions of 1

Mbp, 250 kbp, and 10 kbp. The largest fraction of reproducible blocks is found

between replicated experiments. Figures 5-4C-E are scatterplots of interaction pairs

(corresponding blocks in the contact matrices) of the two experiments, where the color

denotes the IDR value of the interaction pair. Given a Hi-C experiment with a fixed

sequencing depth, the higher the resolution of the Hi-C analysis the less reproducible

the individual interactions will be as a consequence of sampling noise.

Not all Hi-C interaction pairs that lie on the diagonal and have similar ranks in

both replicates are deemed reproducible by IDR2D. For example, see the upper right

panel of Figure 5-4C. This lack of reproducibility is intended and is justified by taking

into account the poor reproducibility of other interaction pairs with similar ranks. Hi-

C contacts close to the diagonal can be found irreproducible when they are in rank

neighborhoods of irreproducibility. We note that while experiment level methods

may find a Hi-C experiment reproducible, IDR2D may find a specific interaction

irreproducible because it is in a rank neighborhood that is not reproducibly ordered.

IDR2D may require increased sequencing depth to consistently rank interactions to

ascertain reproducibility of such interactions.

IDR2D is largely insensitive to sequencing depth when it is sufficient to recover

contacts, thus reproducible pairs of experiments are identified as such even if their

sequencing depths are different. Reproducibility as measured by IDR2D only starts

to degrade significantly at extremely low coverage, with only very few reads (single to

low double digits) per block. Subsampling experiments were performed to illustrate

this behavior (see Supplementary Figure D-2).
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5.5 Discussion

The appropriate choice of significance values for the computation of interaction ranks

depends on the method used to identify contacts. As a general rule, larger values

should reflect higher confidence and there should be as few ties as possible. IDR2D

operates on the ranks of the interactions in both replicates and therefore is invariant

to order-preserving transformations of the original significance values. If p-values are

used as significance values for interactions, the additive inverse or the log additive

inverse of uncorrected p-values is recommended. Unadjusted p-values are preferred

over p-values adjusted for multiple hypothesis testing, because uncorrected p-values

reduce rank ties.

Other methods assess the overall reproducibility of genome interaction exper-

iments but do not characterize the reproducability of each reported contact. Such

methods include HiCRep [27], HiC-spector [26], and GenomeDISCO [23]. GenomeDISCO

also supports experimental data from ChIA-PET and HiChIP. HiCRep calculates a

score of experiment reproducibility between contact matrices based on aggregated

stratified Pearson correlation coefficients, while HiC-spector determines experiment

reproducibility by comparing the eigenvectors of a spectral decomposition of the con-

tact maps, and GenomeDISCO’s concordance score is based on random walks on a

graph representation of contact maps. These methods have in common that they

assess the overall reproducibility of replicated experiments with a global measure of

similarity between contact matrices. IDR2D provides a measure of reproducibility

for each reported contact and then summarizes these findings to characterize experi-

ment reproducability (see Supplementary Figure D-3). IDR2D’s fine-grained analysis

of reproducibility identifies contacts that are invariant across experimental replicates

and those that are not, which is a unique capability. Thus, IDR2D is intended to

complement, rather than replace previous Hi-C reproducibility assessment methods.

IDR2D, and the methods mentioned above, are limited to comparisons of two

replicates at a time. If more replicates are available, multiple pairwise analysis can

be performed and the results combined.
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While IDR2D is a compatible post-processing step for the tested interaction

callers, it cannot recover true interactions that were discarded by the interaction

caller and therefore the identified set of reproducible interactions is always limited by

the sensitivity of the caller.

IDR2D can potentially support single-cell or single-molecule chromatin interaction

data obtained by methods such as Sci-Hi-C [20] and ChIA-Drop [30]. However, the

sparsity of interaction data from single cells will necessitate data imputation or cell

clustering as preprocessing steps to IDR2D, similar to strategies applied to single-cell

ATAC-seq data [25].

IDR2D offers a complementary way to evaluate the results of chromatin interaction

experiments for significance, and provides a foundation for subsequent analysis such

as enhancer-gene mapping that incorporates the important concept of experimental

replicability.

Availability

The implementation of IDR2D facilitates workflow integration with other data anal-

ysis pipelines, and is also web-accessible at https://idr2d.mit.edu. IDR2D is im-

plemented in R and bundled as an R/Bioconductor package (idr2d), supporting ob-

servations with both one-dimensional and two-dimensional genomic coordinates. The

IDR2D website implementation offers a number of ways to transform the scores to

match IDR requirements, and to map interactions between replicates. The source

code of the R package is hosted on GitHub (https://github.com/gifford-lab/

idr2d).
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6.1 Abstract

Genomic interactions provide important context to our understanding of the state

of the genome. One question is whether specific transcription factor interactions

give rise to genome organization. We introduce spatzie, an R package and a website

that implements statistical tests for significant transcription factor motif cooperativity

between enhancer-promoter interactions. We conducted controlled experiments under

realistic simulated data from ChIP-seq to confirm spatzie is capable of discovering co-

enriched motif interactions even in noisy conditions. We then use spatzie to investigate

cell type specific transcription factor cooperativity within recent human ChIA-PET

enhancer-promoter interaction data. The method is available online at https://

spatzie.mit.edu.
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6.2 Introduction

Genome organization plays an important role in the function of the genome in develop-

ment [19, 6, 21] and disease [5]. Specific transcription factor cooperation is a potential

explanation for the cell type specificity of genomic interactions, especially those that

tether enhancers to promoters. Recent methods seek to detect such transcription

factor cooperativity by generating models to predict enhancer-promoter interactions

and measuring the importance of model features [33, 30]. However, these methods

can be difficult to interpret either due to the complexity of model choice or the use

of shrinkage techniques that could eliminate correlated features.

Here we introduce spatzie, an R/Bioconductor package named after the German

diminutive for sparrow and inspired by the long-range geographical patterns of their

songs [32], a reference to the long-range genomic interactions of transcription factor

cooperativity. Within spatzie we implement a collection of statistical methods to

identify transcription factor co-enrichment in experimental data obtained by protein-

centric chromatin conformation methods such as ChIA-PET [10] and HiChIP [28].

We demonstrate the utility of spatzie by discovering the co-enrichment of transcrip-

tion factor binding motifs simulated from ChIP-seq data. Furthermore, we apply

spatzie to investigate cell type-specific interactions from RAD21-targeted ChIA-PET

experiments across 24 human cell lines.
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Select motifs with greater than T 
occurrence in promoters or enhancers

For each motif pair (M1,M2) compute pairwise signficance 
between motif co-occurrence* in enhancer vs promoter

Perform multiple hypothesis correction 
of p-values of motif pairs 

motif database 
(PWM)

Interaction file
(bedpe)

filter_motifs

anchor_pair_enrich

filter_pair_motifs

* co-occurrence can be computed as 
    - hypergeometric test for motif co-occurrence
    - pearson correlation of motif counts
    - pearson correlation of motif PWM match scores

Use motifmatchr to scan for motifs
in enhancer and promoter regionsscan_motifs

A

Enhancer Promoter

Interacting 
transcription factors

B

Figure 6-1: spatzie identifies motif pairs underlying enhancer-promoter

interactions using co-occurrence and correlation statistics. (A) spatzie is

designed to identify transcription factors which are facilitating interactions between

enhancers and promoters based on detecting co-enrichment relationships between the

presence of DNA-binding motifs in enhancer-promoter pairs. (B) Given input of a

database of transcription factor DNA-binding motifs and a set of enhancer-promoter

interactions, scan interactions for motifs, then limit analysis by filtering to motifs that

are frequently present within the interactions of interest. Next we compute pairwise

significance of motif co-occurrence in the enhancer and promoter data. Finally, we

filter motif pairs that significantly co-occur under multiple hypothesis correction.
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6.3 Materials and Methods

6.3.1 ChIP-seq data for simulated co-enrichment

We simulate a cooperative relationship where binding of USF1 at promoters is co-

dependent on binding of ELF1 at enhancers. Raw ChIP-seq data for USF1 and

ELF1 from MEL mouse cells was downloaded from ENCODE (Supplementary Ta-

ble E.1). Reads were trimmed for adaptors and low-quality positions using Trim-

galore (Cutadapt v0.6.2) [26] and aligned to the mouse genome (mm10) with bwa

mem (v0.7.1.7) [23] with default parameters. Duplicates were removed with samtools

(v1.7.2) [24] markdup, and ChIP binding events were called with GPS (v3.4) [12]

with default parameters.

6.3.2 ChIA-PET datasets

ChIA-PET interaction data was downloaded as processed files from Grubert et al.

2020 (see section E.3). Raw data for all experiments is accessible from GEO (Sup-

plementary Table E.1).

6.3.3 Genomic annotations

For simulated data, mm10 promoter annotations were downloaded from the UCSC

browser using the R package GenomicFeatures [22]. For human RAD21 ChIA-PET,

hg19 promoter ensemble gene annotations were also downloaded from the UCSC

browser using the same method. Within interaction data, regions that were within

2.5 kb of a promoter were classified as promoter regions. All other regions were

classified as gene-distal enhancer regions.

6.3.4 Statistical cooperativity calculation with spatzie

We implement three methods to measure the relationship between transcription fac-

tor binding motifs in promoter and enhancer regions of genomic interactions. Each

method takes as input two vectors, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛−1, 𝑦𝑛),
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where 𝑛 is the number of enhancer-promoter interactions. 𝑥𝑖 is a set that contains

all PWM scores for motif 𝑎 in the promoter region of interaction 𝑖. 𝑦𝑖, in contrast,

contains those scores for motif 𝑏 in the enhancer region of interaction 𝑖.

Score-based correlation coefficient

We assume motif scores follow a normal distribution and are independent between

enhancers and promoters. We can therefore compute how correlated scores of any

two transcription factor motifs are between enhancer and promoter regions using

Pearson’s product-moment correlation coefficient:

𝑟 =

∑︀
(𝑥′

𝑖 − 𝑥̄′)(𝑦′𝑖 − 𝑦′)√︀∑︀
(𝑥′

𝑖 − 𝑥̄′)2
∑︀

(𝑦′𝑖 − 𝑦′)2
,

where the input vectors 𝑥 and 𝑦 from above are transformed to vectors 𝑥′ and 𝑦′ by

replacing the set of scores with the maximum score for each region:

𝑥′
𝑖 = max𝑥𝑖

𝑥′
𝑖 is then the maximum motif score of motif 𝑎 in the promoter region of interaction

𝑖, 𝑦′𝑖 is the maximum motif score of motif 𝑏 in the enhancer region of interaction 𝑖,

and 𝑥̄′ and 𝑦′ are the sample means.

Significance is then computed by transforming the correlation coefficient 𝑟 to test

statistic 𝑡, which is Student 𝑡-distributed with 𝑛− 2 degrees of freedom.

𝑡 =
𝑟
√
𝑛− 2√

1 − 𝑟2

All p-values are calculated as one-tailed p-values of the probability that scores are

greater than or equal to 𝑟.

Count-based correlation coefficient

Instead of calculating the correlation of motif scores directly, the count-based corre-

lation metric first tallies the number of instances of a given motif within an enhancer
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or a promoter region, which are defined as all positions in those regions with motif

score p-values of less than 5 * 10−5, which tends to work well for human and mouse

motifs [31, 18]. Formally, the input vectors 𝑥 and 𝑦 are transformed to vectors 𝑥′′

and 𝑦′′ by replacing the set of scores with the cardinality of the set:

𝑥′′
𝑖 = |𝑥𝑖|

And analogous for 𝑦′′𝑖 . Finally, the correlation coefficient 𝑟 between 𝑥′′ and 𝑦′′ and

its associated significance are calculated as described above.

Instance co-occurrence

Instance co-occurrence (or match association) uses the presence or absence of a motif

within an enhancer or promoter to determine a statistically significant association,

thus 𝑥′′′ and 𝑦′′′ are defined by:

𝑥′′′
𝑖 = 1𝑥′′

𝑖 >0

The significance of instance co-occurrence is determined by the hypergeometric

test:

𝑝 =
𝑃𝑎∑︁

𝑘=𝐼𝑎𝑏

(︀
𝑃𝑎

𝑘

)︀(︀
𝑛−𝑃𝑎

𝐸𝑏−𝑘

)︀(︀
𝑛
𝐸𝑏

)︀ ,

where 𝐼𝑎𝑏 is the number of interactions that contain a match for motif 𝑎 in the

promoter and motif 𝑏 in the enhancer, 𝑃𝑎 is the number of promoters that contain

motif 𝑎 (𝑃𝑎 =
∑︀𝑛

𝑖 𝑥
′′′
𝑖 ), 𝐸𝑏 is the number of enhancers that contain motif 𝑏 (𝐸𝑏 =∑︀𝑛

𝑖 𝑦
′′′
𝑖 ), and 𝑛 is the total number of interactions, which is equal to the number of

promoters and to the number of enhancers.

Multiple hypothesis testing

While the R package spatzie supports several methods to adjust p-values, three to con-

trol the family-wise error rate or FWER (Holm’s method [16], Hochberg’s method [15],

Bonferroni’s method [7]) and two to control the false discovery rate or FDR (Ben-

167



jamini and Hochberg’s method [1], and Benjamini and Yekutieli’s method [2]), all

p-values presented in this work were corrected using the method of Benjamini and

Hochberg.

6.4 Results

6.4.1 spatzie tests transcription factor motifs for co-enrichment

in enhancer-promoter interactions

The goal of spatzie is to identify pairs of transcription factor motifs which have a

relationship such that the presence of motif A in an enhancer is associated with the

presence of motif B in the promoter, indicating these transcription factors may be

cooperating to drive enhancer-promoter interactions (Figure 6-1A). Given an input of

interacting genomic loci, we select only those interactions which contain one locus that

is gene-distal, which we label enhancer, and one locus overlapping a gene transcrip-

tion start site, which we label promoter. Then, we scan these regions for transcription

factor motifs using a database of DNA-binding motifs identified by ChIP-seq exper-

iments, such as HOCOMOCO [20], HOMER [14], or JASPAR [9]. In order to limit

hypothesis testing, spatzie provides a function to filter transcription factor motifs to

those present in some threshold number of interactions. After filtering, we test tran-

scription factor motifs pairwise for co-enrichment between enhancer and promoter

pairs. Since the relationship between the DNA-binding motif and transcription fac-

tor activity is complex, spatzie provides three possibilities: 1) the strength of the

transcription factor motif match (i.e., the PWM score), 2) the number of motif sites

within the sequence, and 3) the presence or absence of motif sites. These definitions

result in three different statistical tests for co-enrichment: the significance tests of

1) score-based or 2) count-based correlation coefficients, and 3) the hypergeometric

test for co-occurrence over-representation (Figure 6-1B). Finally, we adjust the sig-

nificance of these co-enrichment scores to account for multiple hypothesis testing and

report significant transcription factor pairs.

168



6.4.2 spatzie identifies co-enrichment from simulated data

We validate spatzie by simulating a co-enrichment relationship where binding of USF1

at promoters is co-dependent on binding of ELF1 at enhancers. Using ELF1 and USF1

ChIP-seq data from ENCODE, we aligned and called binding events with GPS [12].

We then filtered USF1 binding sites to those that overlapped annotated promoters

and filtered ELF1 binding events to any event that did not overlap a promoter.

Then, we matched the most significant USF1 promoter event to the most significant

ELF1 enhancer event, thus creating a simulated enhancer-promoter interaction data

set where the strongest USF1 promoter events are matched with ELF1 enhancer

events. We found that the three described methods (score-based correlation, count-

based correlation, and motif presence/absence association) all result in significant

co-occurrence between the USF1 motif and the ELF1 motif (Figure 6-2A-C). The

DNA binding motifs of all other transcription factors with significant co-enrichment

are highly similar to USF1 and ELF1 (Supplementary Figure E-1).

We also test that spatzie performs under noisy experimental conditions. We take

the top 𝑁 percent of enhancer interactions and randomly permute them such that

they are paired with new promoters and then run spatzie using score-based correla-

tion, count-based correlation, and motif presence/absence association (Figure 6-2D-

F). We find that all methods collapse after 75% and 100% of the enhancers have been

randomly permuted, indicating that co-occurrence is a result of the strength of the co-

occurrence of the DNA binding motifs underlying the simulated enhancer-promoter

interaction data.

6.4.3 spatzie identifies germ layer and tissue-specific enhancer-

promoter transcription factor interactions

Finally, we investigate enhancer-promoter interactions from RAD21 ChIA-PET of 24

human cell lines from ENCODE [11]. Based on the most significant co-enrichment

scores on simulated data coming from the score correlation method, we chose to use

score correlation to investigate transcription factor motif co-occurrence in enhancer-
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Figure 6-2: spatzie validates co-enrichment of ELF1 and USF1 on simu-

lated enhancer-promoter interaction data. (A) spatzie cooperativity estima-

tion computed using correlation of motif scores shows significant enhancer-promoter

interactions for USF1 and ELF1 motifs. (B) spatzie cooperativity estimation com-

puted using correlation of counts shows strongest enrichment between USF1 and

ELF1 motifs. (C) spatzie cooperativity estimation computed using motif instance

co-occurrence shows significant co-enrichment of USF2 and ELF1 motifs. Adjusted

p-values were corrected with the Benjamini-Hochberg procedure. Randomization ex-

periments where top 𝑁% of enhancer events are randomly permuted shows shrinking

significance of co-enrichment under noisy data for (D) score correlation, (E) count

correlation, and (F) hypergeometric co-enrichment. Dashed line represents the sig-

nificance threshold at 𝑝 < 0.05 under Bonferroni correction.
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Figure 6-3: spatzie identifies transcription factor cooperation underlying

interactions that are germ line and tissue-specific. (figure caption continued

on next page)
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Figure 6-3: spatzie identifies transcription factor cooperation underlying

interactions that are germ line and tissue-specific. (A) Pearson correlation of

pairwise interactions shows similarity between related tissues. PCA on spatzie dis-

covered transcription factor interactions shows (B) germ layer (C) and tissue type

clustering. (D) Pairwise correlation of spatzie transcription factor motif interactions

shows increasing relatedness of germ layer and tissue type. Significance computed by

Wilcoxon rank-sum test. (E) Extraction of germ layer-specific transcription factor

motif interactions include relevant lineage-determining transcription factor families,

such as Fox in endoderm and ectoderm. Spatzie correlation scores are z-scores nor-

malized by row. (F) Extraction of tissue-specific transcription factor motif interac-

tions include potential transcription factor trade-offs at the promoter and enhancer

that may mediate tissue-specific enhancer-promoter interactions. Spatzie correlation

scores are z-scores normalized by row.

promoter interactions. After evaluating with spatzie the score correlation of 50,286

enhancer-promoter interactions that were present in at least one cell type, we find

interactions cluster by tissue and germ line (Figure 6-3A-C), and that correlation of

discovered motif pairs increases among cell types from the same germ layer and tissue

(Figure 6-3D). While previous work has shown that cohesin-mediated genomic inter-

actions are similarly stratified by germ layer and tissue [11], our analysis with spatzie

shows that there is sufficient information within the co-enrichment of motifs under-

lying enhancer and promoter interactions to reproduce biologically meaningful germ

layer and tissue layer organization. We found the tissue-level correlation between

spatzie-discovered co-enriched motifs was reproducible with interaction calls using

CID (Supplementary Figure E-2), which was previously shown to recover more repro-

ducible interactions from ChIA-PET data [13]. We then extracted enhancer-promoter

interactions that had the highest germ layer-specific expression and found that these

include transcription factors such as Fox family members, which have a known role

in endoderm development [8, 4] and ectoderm development [27, 29], and Nfatc4 in
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mesoderm interactions, which is a known T cell [25] and myogenic [17, 3] differenti-

ation factor. (Figure 6-3E). Similarly, we examined tissue-level specific interactions

(Figure 6-3F) and found instances that were cell type specific, which is indicative

of a potential trade-off in partnering of Sta5 at the enhancer with either Nfatc4 or

Nanog at the promoter in blood or in liver tissues, respectively, or of AP2B at the

promoter with Nfia or Zsc31 at the enhancers in breast or blood tissues, respectively

(Figure 6-3F).

6.5 Discussion

Overall, spatzie contributes to a growing field of tools for the analysis of enhancer-

promoter interaction data by providing a collection of statistical tests to identify tran-

scription factor motif co-enrichment. While other methods such as PEP-Motif [33]

and the graphical lasso approach taken in Pliner et al. [30] may identify such co-

enrichment relationships, they spend computational power to identify motifs that

predict the activity of enhancers and promoters independent of their interactions,

whereas spatzie focuses exclusively on identifying motifs which share a co-enrichment

relationship between enhancer-promoter interactions. We validate spatzie on experi-

mental data where we use real ChIP-seq data to simulate enhancer-promoter interac-

tions between USF1 binding at promoters and ELF1 binding at enhancers. We show

that spatzie’s three modes of motif pair relationship (motif score correlation, motif

count correlation, and instance co-occurrence) all successfully identify USF1:ELF1

motif co-occurrence relationships even under noisy conditions, with motif score corre-

lation achieving the most robust results. We also apply spatzie to data from 24 human

cell lines and are able to show transcription factor co-enrichments that are discovered

by spatzie cluster at germ-layer and tissue level, indicating these co-enrichment rela-

tionships are related to the organization of these cell types by germ layer and tissue.

Furthermore, the identified germ layer and tissue-specific transcription factor interac-

tions contain lineage-determining transcription factors, indicating that transcription

factor co-enrichment between enhancers and promoters contains transcription factors
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that are known to play a role in differentiation and may point to their function as

players in the structural organization of the genome. One concern with motif co-

enrichment approaches is that the primary effects discovered can be attributed to

the activity of cell type-specific transcription factors without a cooperative relation-

ship. However, as evidence to the contrary we find examples of tissues that share

enhancer or promoter motifs with different partners, indicating spatzie is identifying

co-enrichment beyond general transcription factor activity. This combined with evi-

dence that spatzie does not discover co-enrichment when we entirely randomize the

relationship between binding for simulated interactions from USF1 and ELF1 ChIP-

seq suggests that spatzie effects are not dominated by the general over-enrichment

of motifs, but instead are based on a dependent relationship between a pair of tran-

scription factors underlying enhancer-promoter interactions. In sum, we hope spatzie

provides biological insight into the cell type-specific rules of transcription factor co-

operativity underlying enhancer-promoter interactions.

Availability

The functionality of spatzie is bundled as an R package with the same name. The

source code of the R package is hosted on GitHub (https://github.com/gifford-lab/

spatzie). The core functionality is also available online at https://spatzie.mit.

edu, which includes enhancer-promoter motif co-enrichment analysis with HOCO-

MOCO or user-defined motifs on interactions data mapped to either hg38, hg19,

mm9, or mm10.
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Chapter 7

Conclusions

This thesis has introduced several machine learning and bioinformatics methods for

the analysis of high-throughput experimental data in functional genomics.

Chapter 2 described a framework for evaluating neural network architectures by

combining rule-based simulation of biological sequence data and feature attribution

methods, and thereby providing an avenue for investigating the model’s ability to

recover the underlying rules. In chapter 3 we used an ensemble of deep neural networks

to predict cell type-specific chromatin accessibility. These in silico predictions were

subsequently validated experimentally. The remaining three chapters presented novel

computational methods for the analysis of long-range genomic interaction data from

assays such as ChIA-PET [4], HiChIP [9], and Hi-C [8]. While chapter 4 focused

on the identification of such genomic interactions, chapter 5 presented a method to

assess their reproducibility. Chapter 6 concluded the analysis of long-range genomic

interactions by uncovering co-enriched pairs of transcription factor sequence motifs

in enhancer-promoter interactions.

7.1 Deep learning in biology

In recent years the field of computational biology has seen a proliferation of deep

learning models, which were trained on a variety of biological sequence-based data

types, such as data sets derived from ChIP-seq, DNase-seq, ATAC-seq [2], and RNA-
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seq experiments. The architectural building blocks of the neural networks that were

trained on biological sequence data were in large part adapted from fields pioneering

the application of neural networks, most noteably computer vision and natural lan-

guage processing. Such building blocks include convolutional layers [1, 15, 6], recur-

rent layers [11, 12], dilated convolutional layers [5], skip connections [10], and, more

recently, graph-convolutional layers [13] and transformer-based architectures [3, 7].

Despite the apparent diversity of neural network architectures in genomics and the

various quantities and annotations they are trained to predict, they are similar in

the sense that they are high-capacity models with millions of trainable parameters.

This overparameterization oftentimes helps predictive performance, even on unseen

data (i.e., low generalization error), for reasons that are not entirely understood [14].

However, large overparameterized models are difficult to interpret, with complicated

decision boundaries and built-in redundancy. While trading interpretability for pre-

dictive performance can be beneficial in situations where prediction accuracy is the

primary objective, with models trained on biological sequences the prediction is often

secondary to a succinct explanation of the rules behind the predictions. Ultimately,

the goal is to arrive at a mechanistic understanding of the underlying biological phe-

nomena that are modeled by neural networks. As described in chapter 2, we hope a

simulation-based approach, when paired with neural network interpretability meth-

ods, will be a valuable tool on the way to more informative models.
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Appendix A

Supplementary information for

seqgra: Principled Selection of

Neural Network Architectures for

Genomics Prediction Tasks

Supplementary information can also be found on the bioRxiv website:

https://doi.org/10.1101/2021.06.14.448415.
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Figure A-1: Schematic of common use cases for seqgra command line

interface.
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Figure A-1: Schematic of common use cases for seqgra command line in-

terface. The seqgra package contains four commands, seqgra, seqgrae, seqgras,

and seqgraa. seqgra contains the core functionality of (1) generating synthetic data

using the Simulator component, (2) training models on either synthetic or experi-

mental data using various Learner components, and (3) evaluating the model using

various Evaluator components. seqgrae, short for seqgra ensemble, is a convenient

way to generate multiple synthetic data sets with various data set sizes and simula-

tion seeds and train models on them using a range of model seeds. seqgras, short for

seqgra summary, is a tool to gather properties and metrics across a number of data

sets and models and compare them using Comparator components. seqgraa, short

for seqgra attribution, runs feature importance evaluators on a number of trained

models, using the same set of examples each time.
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Figure A-2: Insertion probability test. (A) Grammar and model description.

(B) Grammar position heatmap (on the left) depicting the probability of grammar

annotation for all positions (1 - 150) and all classes (𝐶1 to 𝐶8). (C) Test set ROC

curve of classifier trained on synthetic data depicts class-specific true positive rates

that mirror insertion probabilities, as expected.
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Figure A-2: Insertion probability test. (D) Test set PR curve of same classifier,

class-specific curves mirror insertion probabilities. (E) Raw gradient feature impor-

tance for classes 𝐶1 to 𝐶7 (classifier did not correctly predict class 𝐶8). The x-axis is

the position in the sequence window, the y-axis are randomly drawn examples with

that class label. Dark green areas are grammar positions with high feature importance

(desired), dark red areas are background positions with high feature importance (un-

desired). (F) Same as panel E, for absolute gradient (saliency) feature importance.

(G) Same as panel E, for Sufficient Input Subsets (SIS) feature importance. The only

difference is that SIS is an inherently discrete measure of feature importance, either

positions are part of a sufficient input subset or not.
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Figure A-3: Selection of sequence motifs for MC100 simulation grammars.

(A) ROC curve of Bayes Optimal Classifier on multi-class classification task with 100

classes, prior to filtering out ambiguous sequence motifs.
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Figure A-3: Selection of sequence motifs for MC100 simulation grammars.

(B) Same as panel A, after ambiguous sequence motifs were removed. (C) KL diver-

gence matrix of 100 sequence motifs, prior to filtering. (D) Same as panel C, after

removing ambiguous motifs. (E) Empirical similarity score matrix of 100 sequence

motifs, prior to filtering. (F) Same as panel D, after removing ambiguous motifs.
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Figure A-4: PyTorch and TensorFlow affected by random seed induced

instability. (A) Shown are test set PR AUCs of a PyTorch neural network architec-

ture with two hidden layers, a convolutional layer with 10 21-nt wide filters followed

by a dense layer with 5 units, trained on binary classification data sets using HOMER

motifs without interactions. This PyTorch neural network architecture exhibits an

unusual variability in PR AUC when trained with a random seed of zero. (B) Shown

are test set PR AUCs of a TensorFlow neural network architecture with a convolu-

tional layer with 10 21-nt wide filters, a global max pooling operation, and a dense

layer with 10 units, trained on multi-class classification data sets with 10 classes using

HOMER motifs with spacing-sensitive interactions. This TensorFlow neural network

architecture exhibits an unusual variability in PR AUC when trained with a random

seed of zero. (C) Unlike panel A, this PyTorch neural network architecture (convolu-

tional layer with 10 11-nt wide filters followed by a dense layer with 5 units), which

was trained on the same data sets as the one in panel A, does not exhibit unusually

high variability of PR AUCs when trained with a random seed of zero.

194



Figure A-4: PyTorch and TensorFlow affected by random seed induced in-

stability. (D) Similarly, this TensorFlow neural network architecture (convolutional

layer with 10 21-nt wide filters followed by a dense layer with 10 units), which was

trained on the same data sets as the one in panel B, also does not exhibit unusually

high variability of PR AUCs when trained with a random seed of zero.
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Figure A-5: PyTorch models trained with random seed 0 suffer

from grammar-dependent and architecture-dependent instability. Not all

grammar-architecture combinations are affected.
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Figure A-6: TensorFlow models trained with random seed 0 suffer

from grammar-dependent and architecture-dependent instability. Not all

grammar-architecture combinations are affected.
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MC2: no interactions MC2: order−sensitive interactions MC2: spacing−sensitive interactions
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Figure A-7: Comparison of PyTorch and TensorFlow architectures trained

on binary classification data sets. When comparing an equivalent neural network

architecture, trained on the same data set, test set PR AUCs between models imple-

mented and trained with deep learning libraries PyTorch and TensorFlow are similar.

Shown here are comparisons across three grammars, 19 data set sizes, and seven

neural network architectures.
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MC10: no interactions MC10: interactions MC10: order−sensitive interactions MC10: spacing−sensitive interactions
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Figure A-8: Comparison of PyTorch and TensorFlow architectures trained

on multi-class classification data sets with 10 classes. When comparing an

equivalent neural network architecture, trained on the same data set, test set PR

AUCs between models implemented and trained with deep learning libraries PyTorch

and TensorFlow are similar. Shown here are comparisons across four grammars, 19

data set sizes, and seven neural network architectures.
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A.2 Supplementary Tables

ID Motif IUPAC notation Width (in nt) MIC 𝐷KL(·)

se1 FOXA1:AR AGTAAACAAAAAAGAACANA 20 18.9 17.4

se2 Bcl11a TYTGACCASWRG 12 11.3 11.8

MC2 grammar motifs above

se3 Brachyury ANTTMRCASBNNNGTGYKAAN 21 11.5 11.6

se4 CEBP:CEBP NTNATGCAAYMNNHTGMAAY 20 14.8 14.3

se5 Chop ATTGCATCAT 10 13.2 12.7

se6 CHR CGGTTTCAAA 10 12.6 11.8

se7 CTCF-SatelliteElement TGCAGTTCCAANAGTGGCCA 20 18.8 19.6

se8 Mouse Recombination Hotspot ACTYKNATTCGTGNTACTTC 20 15.3 14.9

se9 RAR:RXR RGGTCADNNAGAGGTCAV 18 16.3 17.3

se10 DUX BCWGATTCAATCAAN 15 17.9 16.9

MC10 grammar motifs above

se11 E2F7 VDTTTCCCGCCA 12 13.4 14.6

se12 EBNA1 GGYAGCAYDTGCTDCCCNNN 20 18.1 19.2

se13 ERE AAGGTCACNGTGACC 15 14.3 15.2

se14 ETS:E-box AGGAAACAGCTG 12 17.3 17.6

se15 EWS:ERG-fusion ATTTCCTGTN 10 13.7 13.5

se16 Foxh1 NNTGTGGATTSS 12 11.3 11.1

se17 FXR AGGTCANTGACCTN 14 12.3 13.2

se18 GATA3 AGATGKDGAGATAAG 15 17.3 16.5

se19 GATA3 AGATSTNDNNDSAGATAASN 20 16.9 16.3

se20 GATA NAGATWNBNATCTNN 15 14.0 13.3

MC20 grammar motifs above

se21 GATA:SCL CGGCTGCNGNNNNCAGATAA 20 15.4 15.9

se22 Gfi1b AAATCACTGC 10 13.9 13.8

se23 GRHL2 AAACYKGTTWDACMRGTTTB 20 13.5 13.4

se24 Hand2 TGACANARRCCAGRC 15 13.2 13.6

se25 HINFP TWVGGTCCGC 10 11.7 13.2

se26 HOXB13 TTTTATKRGG 10 13.5 12.6

se27 LRF AAGACCCYYN 10 11.2 12.5

se28 LXRE GGGTTACTANAGGTCA 16 17.5 17.9

se29 NF1:FOXA1 NNTGTTTATTTTGGCA 16 17.3 16.7

se30 NFAT:AP1 GAATGGAAAAAATGAGTCAT 20 15.5 15.1

se31 NFAT ATTTTCCATT 10 13.1 12.5

se32 NFY AGCCAATCGG 10 13.3 13.8

se33 Nur77 TGACCTTTNCNT 12 15.1 14.8

se34 Oct2 ATATGCAAAT 10 15.3 14.1

se35 Oct4:Sox17 CCATTGTATGCAAAT 15 15.9 15.0

se36 OCT4-SOX2-TCF-NANOG ATTTGCATAACAATG 15 16.4 14.9

se37 p53 ACATGCCCGGGCAT 14 16.7 18.2

se38 PAX3:FKHR-fusion ACCGTGACTAATTNN 15 14.6 14.1

Continued on next page
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Table A.1 – Continued from previous page

ID Motif IUPAC notation Width (in nt) MIC 𝐷KL(·)

se39 PAX5 GTCACGCTCNCTGA 14 15.1 16.3

se40 PAX6 NGTGTTCAVTSAAGCGKAAA 20 13.9 14.3

se41 Pax7 NTAATTDGCYAATTANNWWD 20 16.0 13.9

se42 Pax7 TAATCAATTA 10 16.3 14.6

se43 Pax8 GTCATGCHTGRCTGS 15 13.4 14.6

se44 Pitx1:Ebox YTAATTRAWWCCAGATGT 18 12.7 11.8

se45 PRDM10 TGGTACATTCCA 12 11.9 12.3

se46 PRDM14 AGGTCTCTAACC 12 13.7 14.0

se47 PRDM15 YCCDNTCCAGGTTTT 15 13.2 13.7

se48 PRDM9 ADGGYAGYAGCATCT 15 12.8 13.1

se49 PSE WAVTCACCMTAASYDAAAAG 20 10.6 10.3

se50 RBPJ:Ebox GGGRAARRGRMCAGMTG 17 14.3 15.2

Table A.1: Homer transcription factor motifs for multi-class classification

tasks with 2, 10, 20, and 50 classes (MC2-MC50): These motifs are used

for grammars without interactions, with interactions, with interactions with order

constraints, and with interactions with spacing constraints. The columns (from left

to right) contain the seqgra-internal sequence element ID, the motif name (name of

the transcription factor or complex), a summary of the motif in IUPAC notation,

the width of the motif in nucleotides, the motif information content (MIC), and the

KL divergence between the motif and the background sequence (using the human

genomic nucleotide distribution).
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ID Motif min 𝐷KL(·, ·) max ESS(·, ·)
se1 FOXA1:AR 46.1 0 %
se2 Bcl11a 30.4 33 %

Table A.2: Homer transcription factor motifs for binary classification tasks

(MC2): These motifs are used for MC2 grammars without interactions, with inter-

actions, with interactions with order constraints, and with interactions with spacing

constraints. The columns (from left to right) contain the seqgra-internal sequence

element ID, the motif name (name of the transcription factor or complex), the mini-

mum KL divergence between the motif and the other motif in this grammar, and the

maximum adjusted empirical similarity score (ESS) between the motif and the other

motif in this grammar.

ID Motif min 𝐷KL(·, ·) max ESS(·, ·)
se1 FOXA1:AR 41.6 9 %
se2 Bcl11a 19.1 41 %
se3 Brachyury 18.3 38 %
se4 CEBP:CEBP 24.4 17 %
se5 Chop 15.6 33 %
se6 CHR 20.5 21 %
se7 CTCF-SatelliteElement 31.1 8 %
se8 Mouse Recombination Hotspot 33.3 6 %
se9 RAR:RXR 37.0 11 %
se10 DUX 24.1 12 %

Table A.3: Homer transcription factor motifs for multi-class classification

tasks with 10 classes (MC10): These motifs are used for MC10 grammars without

interactions, with interactions, with interactions with order constraints, and with

interactions with spacing constraints. The columns (from left to right) contain the

seqgra-internal sequence element ID, the motif name (name of the transcription factor

or complex), the minimum KL divergence between the motif and the other 9 motifs in

this grammar, and the maximum adjusted empirical similarity score (ESS) between

the motif and the other 9 motif in this grammar.
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ID Motif min 𝐷KL(·, ·) max ESS(·, ·)
se1 FOXA1:AR 39.0 10 %
se2 Bcl11a 18.0 40 %
se3 Brachyury 18.3 35 %
se4 CEBP:CEBP 24.4 13 %
se5 Chop 15.6 32 %
se6 CHR 20.5 19 %
se7 CTCF-SatelliteElement 31.1 10 %
se8 Mouse Recombination Hotspot 24.3 9 %
se9 RAR:RXR 35.1 9 %
se10 DUX 24.1 14 %
se11 E2F7 20.1 15 %
se12 EBNA1 35.0 13 %
se13 ERE 16.8 18 %
se14 ETS:E-box 33.1 17 %
se15 EWS:ERG-fusion 20.5 20 %
se16 Foxh1 27.9 30 %
se17 FXR 16.8 35 %
se18 GATA3 30.7 21 %
se19 GATA3 31.2 20 %
se20 GATA 31.7 15 %

Table A.4: Homer transcription factor motifs for multi-class classification

tasks with 20 classes (MC20): These motifs are used for MC20 grammars without

interactions, with interactions, with interactions with order constraints, and with

interactions with spacing constraints. The columns (from left to right) contain the

seqgra-internal sequence element ID, the motif name (name of the transcription factor

or complex), the minimum KL divergence between the motif and the other 19 motifs

in this grammar, and the maximum adjusted empirical similarity score (ESS) between

the motif and the other 19 motif in this grammar.

202



ID Motif min 𝐷KL(·, ·) max ESS(·, ·)

se1 FOXA1:AR 32.7 15 %

se2 Bcl11a 12 45 %

se3 Brachyury 18.3 39 %

se4 CEBP:CEBP 23.0 18 %

se5 Chop 15.6 35 %

se6 CHR 17.6 26 %

se7 CTCF-SatelliteElement 31.1 9 %

se8 Mouse Recombination Hotspot 24.2 10 %

se9 RAR:RXR 22.3 28 %

se10 DUX 24.1 23 %

se11 E2F7 20.1 15 %

se12 EBNA1 35.0 12 %

se13 ERE 16.8 20 %

se14 ETS:E-box 26.9 16 %

se15 EWS:ERG-fusion 17.9 18 %

se16 Foxh1 20.7 36 %

se17 FXR 13.2 38 %

se18 GATA3 28.1 18 %

se19 GATA3 31.2 20 %

se20 GATA 27.4 20 %

se21 GATA:SCL 19.5 14 %

se22 Gfi1b 23.1 14 %

se23 GRHL2 21.2 19 %

se24 Hand2 15.2 30 %

se25 HINFP 25.6 23 %

se26 HOXB13 25.6 14 %

se27 LRF 23.2 20 %

se28 LXRE 20.0 28 %

Continued on next page
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Table A.5 – Continued from previous page

ID Motif min 𝐷KL(·, ·) max ESS(·, ·)

se29 NF1:FOXA1 29.1 13 %

se30 NFAT:AP1 19.1 17 %

se31 NFAT 17.2 20 %

se32 NFY 19.8 25 %

se33 Nur77 27.6 18 %

se34 Oct2 17.1 29 %

se35 Oct4:Sox17 22.6 15 %

se36 OCT4-SOX2-TCF-NANOG 17.9 14 %

se37 p53 27.3 10 %

se38 PAX3:FKHR-fusion 19.7 17 %

se39 PAX5 20.8 13 %

se40 PAX6 23.6 14 %

se41 Pax7 21.7 23 %

se42 Pax7 20.7 25 %

se43 Pax8 25.4 18 %

se44 Pitx1:Ebox 14.1 33 %

se45 PRDM10 14.5 33 %

se46 PRDM14 18.4 17 %

se47 PRDM15 23.0 18 %

se48 PRDM9 17.9 34 %

se49 PSE 15.0 44 %

se50 RBPJ:Ebox 17.8 24 %

Continued on next page
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Table A.5 – Continued from previous page

ID Motif min 𝐷KL(·, ·) max ESS(·, ·)

Table A.5: Homer transcription factor motifs for multi-class classification

tasks with 50 classes (MC50): These motifs are used for MC50 grammars without

interactions, with interactions, with interactions with order constraints, and with

interactions with spacing constraints. The columns (from left to right) contain the

seqgra-internal sequence element ID, the motif name (name of the transcription factor

or complex), the minimum KL divergence between the motif and the other 49 motifs

in this grammar, and the maximum adjusted empirical similarity score (ESS) between

the motif and the other 49 motif in this grammar.
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Appendix B

Supplementary information for

Identification of determinants of

differential chromatin accessibility

through a massively parallel

genome-integrated reporter assay

Additional supplementary information can be found on the Genome Research website:

https://doi.org/10.1101/gr.263228.120.
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B.1 Supplementary Figures

Figure B-1: MIAA PCR steps to select for proper integration and un-

cleaved library phrases. First set of PCR primers are designed to select for se-

quences that have been integrated at the specific genomic locus and are uncleaved by

DpnI/II enzyme. Second set and third round of PCR primers enrich for add Illumina

PE primers.
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Appendix C

Supplementary information for High

resolution discovery of chromatin

interactions

Additional supplementary information can be found on the Nucleic Acids Research

website:

https://doi.org/10.1093/nar/gkz051.
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C.1 Supplementary Figures

Figure C-1: CID is more sensitive and consistent at discovering ChIA-

PET interactions than peak-calling-based methods. Comparison of interac-

tions called by CID, ChIA-PET2, and Mango in the CEBPB locus using two POLR2A

ChIA-PET replicates from K562 cells. The PET counts of the interactions are rep-

resented as the numeric values above the arcs. Arcs in orange represent significant

interactions that are replicable across biological replicates. Arcs in cyan represent

significant interactions that are not replicable across biological replicates.
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C.2 Supplementary Tables

dataset label Target Cell line GEO/ENCODE identifier
Ruan.K562.POLR2A POLR2A K562 ENCSR000BZY
Ruan.MCF-7.POLR2A POLR2A MCF-7 ENCSR000CAA
Snyder.K562.POLR2A POLR2A K562 ENCSR000FDC
Ruan.MCF-7.CTCF CTCF MCF-7 ENCSR000CAD
Snyder.GM12878.RAD21.2014 RAD21 GM12878 ENCSR752QCX
Snyder.GM12878.RAD21.2016 RAD21 GM12878 ENCSR981FNA
Snyder.GM12891.RAD21 RAD21 GM12891 ENCSR299VMZ
Snyder.GM12892.RAD21 RAD21 GM12892 ENCSR033GUP
Snyder.GM19238.RAD21 RAD21 GM19238 ENCSR527RXH
Snyder.GM19239.RAD21 RAD21 GM19239 ENCSR479MTN
Snyder.GM19240.RAD21 RAD21 GM19240 ENCSR312TUD
Snyder.HepG2.RAD21 RAD21 HepG2 ENCSR014ZXR
Snyder.JurkatCloneE61.RAD21 RAD21 Jurkat clone E61 ENCSR465NNU
Snyder.K562.RAD21 RAD21 K562 ENCSR000FDB
Snyder.LNCaPCloneFGC.RAD21 RAD21 LNCaP clone FGC ENCSR011ITK
Snyder.MCF-7.RAD21 RAD21 MCF-7 ENCSR716WZI
Snyder.SU-DHL-2.RAD21 RAD21 SU-DHL-2 ENCSR466AXT
Chang.GM12878.SMC1A.HiChIP SMC1A GM12878 GSE80820

Table C.1: ChIP-seq and ChIA-PET datasets used for CID analyses.
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Appendix D

Supplementary information for

IDR2D identifies reproducible

genomic interactions

Additional supplementary information can be found on the Nucleic Acids Research

website:

https://doi.org/10.1093/nar/gkaa030.
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D.1 Supplementary Figures
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Figure D-1: Overlap between reproducible interactions identified by ChIA-

PET2, CID, and Mango, and IDR2D. Each Venn diagram shows the overlap

between interactions called by ChIA-PET2, CID, and Mango that had an IDR of less

than 0.05 of one of 17 replicated ENCODE ChIA-PET experiments.
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Figure D-2: Influence of sequencing depth on IDR2D analysis. All panels

are based on IDR2D analysis of subsampled replicates of GSE63525, chromosome 16.

Panels A - C use block sizes of 50 kbp.
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Figure D-2: Influence of sequencing depth on IDR2D analysis. (A) Rank

scatterplots of IDR2D analysis of subsampled replicate 1 and subsampled replicate 2

at read retention rates of 1.0 (all reads retained) to 0.001 (99.9% of reads removed).

(B) Rank scatterplots of IDR2D analysis of original replicate 1 and subsampled repli-

cate 2. (C) Rank scatterplots of IDR2D analysis of original replicate 1 and subsam-

pled replicate 1. (D) Relative overlap of interactions with IDR < 0.05 between

subsampled and original IDR2D analysis at various read retention rates and block

sizes.
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Figure D-3: Hi-C reproducibility between replicates and non-replicates.

(A) Relative reproducibility scores of IDR2D analyses between biological replicates

and non-replicates. Scores were calculated based on the number of highly reproducible

blocks (IDR < 0.01) in the contact matrix, summarizing results of all chromosomes

and averaged over various resolutions (block sizes of 2.5 Mbp, 1 Mbp, 500 kbp, 250

kbp, 100 kbp, 50 kbp, 25 kbp, 10 kbp, and 5 kbp). (B) Visualizations of contact

maps of chromosome 12 showing all blocks (left), blocks with IDR < 0.05 between

two biological replicates in cell line NCI-H460 (middle), and blocks with IDR < 0.05

between two non-replicates (right).
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D.2 Supplementary Tables

ChIA-PET dataset identifier Target Cell line ENCODE identifier
Ruan.K562.POLR2A POLR2A K562 ENCSR000BZY
Ruan.MCF-7.POLR2A POLR2A MCF-7 ENCSR000CAA
Snyder.K562.POLR2A POLR2A K562 ENCSR000FDC
Ruan.MCF-7.CTCF CTCF MCF-7 ENCSR000CAD
Snyder.GM12878.RAD21.2014 RAD21 GM12878 ENCSR752QCX
Snyder.GM12878.RAD21.2016 RAD21 GM12878 ENCSR981FNA
Snyder.GM12891.RAD21 RAD21 GM12891 ENCSR299VMZ
Snyder.GM12892.RAD21 RAD21 GM12892 ENCSR033GUP
Snyder.GM19238.RAD21 RAD21 GM19238 ENCSR527RXH
Snyder.GM19239.RAD21 RAD21 GM19239 ENCSR479MTN
Snyder.GM19240.RAD21 RAD21 GM19240 ENCSR312TUD
Snyder.HepG2.RAD21 RAD21 HepG2 ENCSR014ZXR
Snyder.JurkatCloneE61.RAD21 RAD21 Jurkat clone E61 ENCSR465NNU
Snyder.K562.RAD21 RAD21 K562 ENCSR000FDB
Snyder.LNCaPCloneFGC.RAD21 RAD21 LNCaP clone FGC ENCSR011ITK
Snyder.MCF-7.RAD21 RAD21 MCF-7 ENCSR716WZI
Snyder.SU-DHL-2.RAD21 RAD21 SU-DHL-2 ENCSR466AXT

HiChIP dataset identifier Target Cell line GEO identifier
Chang.GM12878.H3K27ac H3K27ac GM12878 GSE101498
Chang.K562.H3K27ac H3K27ac K562 GSE101498
Chang.mES.H3K27ac H3K27ac mES GSE101498
Chang.MyLa.H3K27ac H3K27ac MyLa GSE101498
Chang.Naive.CTCF CTCF Naive GSE101498
Chang.Naive.H3K27ac H3K27ac Naive GSE101498
Chang.Th17.H3K27ac H3K27ac Th17 GSE101498
Chang.Treg.H3K27ac H3K27ac Treg GSE101498
Flynn.GM12878.Smc1a Smc1a GM12878 GSE80820

HiC dataset identifier Cell line GEO identifier
Lieberman.GM12878 GM12878 GSE63525
Lieberman.Patski Patski GSE71831
Skok.NSD2 multiple myeloma GSE131651
HiC dataset identifier and cell line ENCODE identifier
A549 ENCSR444WCZ
SK-N-DZ ENCSR105KFX
SK-MEL-5 ENCSR312KHQ
LNCaP clone FGC ENCSR346DCU
NCI-H460 ENCSR489OCU
T47D ENCSR549MGQ
SK-N-MC ENCSR834DXR

Table D.1: ChIA-PET, HiChIP, and HiC datasets used for IDR2D analyses.
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Dataset identifier Total int. Rep. int. IDR < 0.05 IDR < 0.01
Ruan.K562.POLR2A 15,029 9594 8816 4919
Ruan.MCF-7.POLR2A 23,540 14,718 2714 1251
Snyder.K562.POLR2A 20,683 9142 446 220
Ruan.MCF-7.CTCF 42,958 12,042 11,664 10,503
Snyder.GM12878.RAD21.2014 26,376 11,176 10,977 10,191
Snyder.GM12878.RAD21.2016 354,536 127,172 101,330 11,164
Snyder.GM12891.RAD21 26,180 20,144 19,245 14,628
Snyder.GM12892.RAD21 33,731 16,253 15,906 14,401
Snyder.GM19238.RAD21 90,887 12,471 11,031 1676
Snyder.GM19239.RAD21 50,387 1712 526 47
Snyder.GM19240.RAD21 6225 2226 1212 94
Snyder.HepG2.RAD21 47,544 18,308 12,819 1300
Snyder.JurkatCloneE61.RAD21 18,408 9745 889 367
Snyder.K562.RAD21 5540 4470 4352 3782
Snyder.LNCaPCloneFGC.RAD21 34,260 12,456 9718 1056
Snyder.MCF-7.RAD21 109,485 14,793 5117 639
Snyder.SU-DHL-2.RAD21 99,864 39,891 31,437 3266

Table D.2: IDR2D analysis of ChIA-PET interactions called by ChIA-PET2.

Columns are (1) total number of interactions in replicate 1, (2) number of repro-

ducible interactions, (3) number of reproducible interactions with IDR < 0.05, and

(4) number of reproducible interactions with IDR < 0.01.

Dataset identifier Total int. Rep. int. IDR < 0.05 IDR < 0.01
Ruan.K562.POLR2A 116,932 40,693 26,958 8698
Ruan.MCF-7.POLR2A 98,484 33,147 5064 681
Snyder.K562.POLR2A 51,323 12,352 6300 1513
Ruan.MCF-7.CTCF 53,351 14,321 4163 1162
Snyder.GM12878.RAD21.2014 49,102 16,309 6556 1733
Snyder.GM12878.RAD21.2016 394,045 105,704 36,662 10,363
Snyder.GM12891.RAD21 45,295 29,509 13,398 3633
Snyder.GM12892.RAD21 70,222 26,637 9594 2457
Snyder.GM19238.RAD21 162,936 23,444 10,573 2745
Snyder.GM19239.RAD21 98,449 4074 169 22
Snyder.GM19240.RAD21 15,473 4325 295 65
Snyder.HepG2.RAD21 53,725 16,886 1876 267
Snyder.JurkatCloneE61.RAD21 46,965 14,837 1642 228
Snyder.K562.RAD21 13,891 8791 790 104
Snyder.LNCaPCloneFGC.RAD21 66,356 19,021 2013 299
Snyder.MCF-7.RAD21 43,930 14,754 1641 262
Snyder.SU-DHL-2.RAD21 132,610 43,197 17,460 4765

Table D.3: IDR2D analysis of ChIA-PET interactions called by CID. Columns are

(1) total number of interactions in replicate 1, (2) number of reproducible interac-

tions, (3) number of reproducible interactions with IDR < 0.05, and (4) number of

reproducible interactions with IDR < 0.01.
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Dataset identifier Total int. Rep. int. IDR < 0.05 IDR < 0.01
Ruan.K562.POLR2A 16,847 10,581 2273 1149
Ruan.MCF-7.POLR2A 23,540 14,718 2714 1251
Snyder.K562.POLR2A 17,191 7051 2419 477
Ruan.MCF-7.CTCF 41,542 11,975 1274 502
Snyder.GM12878.RAD21.2014 29,770 12,057 1993 619
Snyder.GM12878.RAD21.2016 166,543 69,897 36,597 8039
Snyder.GM12891.RAD21 28,426 21,983 3976 338
Snyder.GM12892.RAD21 37,730 17,900 11,050 1182
Snyder.GM19238.RAD21 97,679 13,084 1038 109
Snyder.GM19239.RAD21 57,254 2231 1 0
Snyder.GM19240.RAD21 6462 2219 47 14
Snyder.HepG2.RAD21 26,747 12,285 3091 494
Snyder.JurkatCloneE61.RAD21 18,408 9745 889 367
Snyder.K562.RAD21 7203 5474 412 98
Snyder.LNCaPCloneFGC.RAD21 24,065 11,992 1308 420
Snyder.MCF-7.RAD21 20,277 10,412 1453 511
Snyder.SU-DHL-2.RAD21 71,043 34,226 24,909 2552

Table D.4: IDR2D analysis of ChIA-PET interactions called by Mango. Columns

are (1) total number of interactions in replicate 1, (2) number of reproducible inter-

actions, (3) number of reproducible interactions with IDR < 0.05, and (4) number of

reproducible interactions with IDR < 0.01.

Dataset identifier Total int. Rep. int. IDR < 0.05 IDR < 0.01
Chang.GM12878.H3K27ac 8,170,291 4,076,304 2,133,248 408,385
Chang.K562.H3K27ac 6,059,672 2,724,718 991,394 295,193
Chang.mES.H3K27ac 4,997,523 2,593,482 1,902,221 118,607
Chang.MyLa.H3K27ac 6,010,073 2,745,081 1,052,481 345,503
Chang.Naive.CTCF 1,368,563 52,845 6885 1607
Chang.Naive.H3K27ac 69,861 49,823 13,504 1821
Chang.Th17.H3K27ac 2,135,349 1,418,902 889,736 188,608
Chang.Treg.H3K27ac 365,827 253,529 105,227 15,856
Flynn.GM12878.Smc1a 6,036,994 2,232,884 369,344 4166

Table D.5: IDR2D analysis of HiChIP interactions called by CID. Columns are (1)

total number of interactions in replicate 1, (2) number of reproducible interactions, (3)

number of reproducible interactions with IDR < 0.05, and (4) number of reproducible

interactions with IDR < 0.01.
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Dataset identifier Total int. Rep. int. IDR < 0.05 IDR < 0.01
Flynn.GM12878.Smc1a 2,312,685 1,126,785 71,850 2892

Table D.6: IDR2D analysis of HiChIP interactions called by hichipper. Columns

are (1) total number of interactions in replicate 1, (2) number of reproducible inter-

actions, (3) number of reproducible interactions with IDR < 0.05, and (4) number of

reproducible interactions with IDR < 0.01.

D.3 Supplementary Methods

D.3.1 IDR2D procedure

We first define Ω𝑥𝑖,1
as the set of interactions in replicate 2 that overlaps with the

interaction 𝑥𝑖,1 in replicate 1. Two interactions 𝑥𝑖,1 and 𝑥𝑗,2 are overlapping, if both

of their interaction anchors are overlapping or are less than a predefined maximum

gap away from each other.

If interaction 𝑥𝑖,1 overlaps with more than one interaction in replicate 2, the am-

biguous mapping is resolved by choosing 𝑥*,2 in the following way:

𝑥*,2 = argmin
𝑥𝑗,2∈Ω𝑥𝑖,1

𝑓(𝑥𝑖,1, 𝑥𝑗,2), (D.1)

where 𝑓(·, ·) is the ambiguity resolution value (ARV) between an interaction in repli-

cate 1 and an overlapping interaction in replicate 2. The three supported ambiguity

resolution methods are depicted in figure 1D of the main manuscript.

To estimate irreproducible discovery rates, IDR2D uses a two-component copula

mixture model that is identical to the model described for the original IDR method,

with one component for irreproducible interaction pairs and another one for repro-

ducible interaction pairs. After a bijective mapping between interactions in replicate

1 and interactions in replicate 2 is established, the posterior probability that an in-

teraction pair 𝑖 denoted as (𝑥𝑖,1, 𝑥𝑖,2), with significance values from replicates 1 and 2
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belongs to the irreproducible component is defined as

Pr((𝑥𝑖,1, 𝑥𝑖,2); 𝜃irrep, 𝜃rep) =
𝐶irrep

𝐶irrep + 𝐶reproducible
(D.2)

𝐶irrep = 𝜋0ℎ0

(︀
𝐺−1 (𝐹1 (𝑥𝑖,1)) , 𝐺

−1 (𝐹2 (𝑥𝑖,2))
)︀

(D.3)

𝐶rep = 𝜋1ℎ1

(︀
𝐺−1 (𝐹1 (𝑥𝑖,1)) , 𝐺

−1 (𝐹2 (𝑥𝑖,2))
)︀

(D.4)

ℎ0 ∼ 𝒩

⎛⎝⎛⎝0

0

⎞⎠ ,

⎛⎝1 0

0 1

⎞⎠⎞⎠ (D.5)

ℎ1 ∼ 𝒩

⎛⎝⎛⎝𝜇1

𝜇1

⎞⎠ ,

⎛⎝ 𝜎2
1 𝜌1𝜎

2
1

𝜌1𝜎
2
1 𝜎2

1

⎞⎠⎞⎠ , (D.6)

where 𝜃irrep = 𝜋0 and 𝜃rep = (𝜋1, 𝜇1, 𝜎
2
1, 𝜌1), the estimated parameters of the two

components (see Li et al. [1] section 2.2.3 for details on the estimation procedure).

For a definition of 𝐺, and 𝐹1 and 𝐹2, the marginal distributions of the coordinates in

the two replicates, see Li et al. [1] section 2.2.2 for details.
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Appendix E

Supplementary information for

spatzie: An R package for

identifying significant transcription

factor motif co-enrichment from

enhancer-promoter interactions

Supplementary information can also be found on the bioRxiv website:

https://doi.org/10.1101/2021.05.25.445606.
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E.1 Supplementary Figures
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Figure E-1: Transcription factor motif position weight matrices that are discovered

to have significant co-enrichment from USF1 and ELF1 simulated enhancer:promoter

interaction task show high motif similarity to USF1 and ELF1 motifs.
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Figure E-2: (A) Pearson correlation of spatzie motif score of CID discovered en-

hancer:promoter interactions for RAD21 ChIA-PET of 24 human cell types. (B)

Pairwise correlation of spatzie co-enriched motifs from CID enhancer:promoter inter-

actions are higher among samples that are from the same tissue.

229



E.2 Supplementary Tables

dataset label Target Cell line GEO/ENCODE identifier
USF1 rep1 ChIP MEL ENCFF996MWJ
USF1 rep2 ChIP MEL ENCFF550MZG
ELF1 rep1 ChIP MEL ENCFF186NAS
ELF1 rep2 ChIP MEL ENCFF592ERV
ARPE RAD21 ARPE-19 GSE134745
DU145 RAD21 DU-145 GSE134745
MSFIB RAD21 fibroblast GSE134745
GM12878 RAD21 GM12878 GSE134745
H1 RAD21 H1 GSE134745
H9 RAD21 H9 GSE134745
LX RAD21 hepatocyte GSE134745
HepG2 RAD21 HepG2 GSE134745
HT1197 RAD21 HT-1197 GSE134745
HT1376 RAD21 HT-1376 GSE134745
HMTERT RAD21 hTERT-HME1 GSE134745
Jurkat RAD21 Jurkat-Clone-E6-1 GSE134745
AKTHY RAD21 K1 GSE134745
K562 RAD21 K562 GSE134745
KU19 RAD21 KU-19-19 GSE134745
LNCAP RAD21 LNCAP GSE134745
MCF7 RAD21 MCF-7 GSE134745
MSIPS RAD21 MSiPS GSE134745
MSLCL RAD21 MSLCL GSE134745
H1437 RAD21 NCI-H1437 GSE134745
NP RAD21 neural progenitor cells GSE134745
ECS RAD21 pulmonary artery endothelial cells GSE134745
DHL2 RAD21 SU-DHL-2 GSE134745
DHL4 RAD21 SU-DHL-4 GSE134745

Table E.1: ChIP-seq and ChIA-PET datasets used for spatzie analyses.
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E.3 Supplementary Methods

For analysis of human RAD21 ChIA-PET data for co-enrichment of motifs underlying

enhancer:promoter interactions, we applied spatzie to both the interactions that were

provided by Grubert et al. using a custom method for generating a unified interaction

set from many ChIA-PET samples and then using PET support to call cell type-

specific interaction events as well as a unified interaction set that was generated by

calling interactions with CID [1].

E.3.1 Calling interaction events with CID

For each ChIA-PET experiment, we first used Mango 1.2.1 [3] (downloaded from

https://github.com/dphansti/mango) to remove linker sequences and reads po-

tentially due to polymerase chain reaction duplication, and aligned the raw reads

using bowtie 1.2.3 (steps 1 - 3 in Mango pipeline). Mango was executed with the

reportallpairs flag and the recommended parameter settings for the ChIA-PET Tn5

tagmentation protocol: -keepempty TRUE -maxlength 1000 -shortreads FALSE. CID

(downloaded from https://groups.csail.mit.edu/cgs/gem/versions.html) was

then run on the BEDPE file produced by Mango, using default parameters. Lastly,

we used MICC [2] to assess the significance of all interactions identified by CID that

are supported by more than one PET read.

E.3.2 Generating a unified CID interaction set

For the CID interaction set, we first ran CID independently on all 48 samples (24 cell

types; 2 replicates for each cell type). We then took the union of interactions called

in all 48 samples. To merge overlapping interactions, we independently merged over-

lapping anchor1 and anchor2. We then removed interactions containing anchors that

were larger than 20kb in size or interactions where as an artifact of merging, anchor1

and anchor2 overlapped. This resulted in a set of 71,643 joint CID interactions.

231

https://github.com/dphansti/mango
https://groups.csail.mit.edu/cgs/gem/versions.html


E.3.3 Calling CID enhancer:promoter interactions for each

cell type

We then obtained PET support from each of the 48 samples for the set of joint CID

interactions and based on the correlation between replicates removed two samples

(H1 rep2 and pulomonary artery endothelial cell rep2) that did not appear to have

consistent correlation with their other cell type replicate and cell types within the

same tissue. To obtain the interactions for each cell type from our joint CID inter-

actions set, we looked at PET support and replicate correlation. For samples with

two replicates, we called an interaction event within that cell type if it had greater

than 1 PET in both replicates. For samples with one replicate, (H1 and pulomonary

artery endothelial cell), we called an interaction event if the MICC FDR value of the

event was less than 0.05. Interaction events were then filtered to those where one

anchor was within 2.5kb of a promoter and the other was promoter distal (not within

2.5kb of a promoter). The selection criteria for calling cell type-specific allowed us

to obtain a sufficient number of enhancer:promoter interaction events to run spatzie

for co-motif enrichment (range 2,178-14,113 enhancer:promoter interactions per cell

type) and were consistent with the range in the number of enhancer:promoter events

discovered in Grubert et al. (range 1,476-11,850 enhancer:promoter interactions per

cell type).

E.3.4 Analysis of spatzie results for CID and Grubert et al.

interactions

After co-enrichment of motifs at enhancer:promoter interactions was computed with

spatzie, we analyzed the correlation between co-enrichment scores. For Grubert et

al. interactions, we used only motif pairs where co-enrichment was significant under

multiple hypothesis correction in at least one cell type. For CID interactions, we

used all motif pairs as limiting to interactions that were significant under multiple

hypothesis correction resulted in less meaningful clustering of motif co-enrichment

scores by tissue type.
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