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Abstract

Many advances in functional genomics and in biology more broadly can be attributed
to the rise of massively parallel sequencing technology and its derivatives. As the
volume of sequencing and other high-throughput experimental data increases expo-
nentially, so does the need for computational methods to analyze and condense these
vast amounts of data, and to help explain the underlying phenomena. In this thesis,
I describe five projects that introduce novel techniques and methods in functional
genomics.

The first project introduces a simulation-based framework to investigate neural
network architectures that are trained on biological sequence data, as is common in
functional genomics. The second project describes a two-pronged approach to study
the determinants of cell type-specific chromatin accessibility, with an ensemble of
neural networks trained on DNase-seq data to predict chromatin accessibility, and
MIAA, the multiplexed integrated accessibility assay, to validate, experimentally,
these in silico predictions. The third project presents a method to identify long-range
genomic interactions from ChIA-PET and HiChIP data. Enabled by this work, the
fourth project aims to provide a means to identify reproducible long-range genomic
interactions. We continue the analysis of long-range interactions in the fifth project
by performing co-enrichment analysis of transcription factor sequence motifs.

Collectively, these methods provide new approaches to a range of problems in func-
tional genomics, from finding appropriate neural network architectures for sequence-
based prediction tasks to uncovering patterns in long-range genomic interactions.

Thesis Supervisor: David K. Gifford
Title: Professor of Electrical Engineering and Computer Science
Professor of Biological Engineering
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Chapter 1

Introduction

1.1 Chromatin accessibility

Chromatin structure is critical for the regulation of DNA-dependent processes such as

transcription [34], replication [21], recombination [22], and DNA damage repair [20,

24], and thus is an upstream regulator of most biological functions, including gene

expression patterns that shape cell identity. Furthermore, the dysregulation of chro-

matin accessibility is an underappreciated factor in cancer initiation and progres-

sion [2, 29], and a better understanding of the cell type and cell state speci�c rules

of chromatin accessibility is needed in order to develop more accurate models of cell

di�erentiation and identity, and diseases associated with its dysregulation.

We de�ne chromatin accessibility as a measure of the relative depletion of local

nucleosome contact with genomic DNA [35]. Nucleosomes are the basic units of chro-

matin architecture, which consist of DNA wrapped around eight histone proteins.

Regions ofopen or accessiblechromatin are nucleosome-depleted, and transcription-

ally active [8], as well as commonly associated with active enhancers [32], while regions

of closed chromatin are nucleosome-enriched and inaccessible to most transcription

factors [12].

The chromatin state is modulated by post-translational modi�cations of histone

proteins, which alter the charge of the histones and thereby strengthens or weakens

interactions between histones and the negatively charged DNA. Collectively, these
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histone modi�cations constitute the so-called histone code. Histone modi�cations are

handed down to mitotic daughter cells and are sometimes even maintained through

meiosis [13].

Common post-translational modi�cations of histones include acetylation and deacety-

lation of lysine residues by histone acetyltransferases (HATs) and histone deacetylases

(HDACs), respectively. HATs remove the positive charge on the histones through the

enzymatic addition of acetyl groups. As a consequence, the histone packing decreases,

which makes the chromatin more accessible.

Chromatin accessibility is also in�uenced by methylation. Histone methyltrans-

ferases (HMTs) add one or more methyl groups to lysine and arginine residues of

histones, which increases their hydrophobicity. This modi�cation has the opposite

e�ect; methylated histones are more tightly packed than their unmethylated counter-

parts, e�ectively decreasing chromatin accessibility. The methyl groups are removed

by histone demethylases (HDMs).

While the roles of other forms of histone modi�cations, such as phosphorylation,

ubiquitylation, and sumoylation, are less well understood, their e�ect on chromatin

accessibility has been shown in numerous studies [1, 28, 25, 27].

The histone modi�ers themselves are not site-speci�c, but are directed to their

site of action by sequence-speci�c transcription factors. This mechanism has been

shown for HATs [14], HDACs [17], HMTs [31], and HDMs [26].

We use the termgrammar, or cell type-speci�c grammar of chromatin accessibility,

to refer to a set of probabilistic and spatial rules of sequence motifs that explains the

di�erences between chromatin accessibility pro�les of various cell types. These rules

describe patterns of sequence motifs that are associated with open chromatin regions

in a speci�c cell type or cell state. They may include combinations of sequence motifs,

spacing or orientation constraints between sequence motifs. An example of such a rule

would be the following: sequence motif A is found between 10 and 50 bp upstream

of sequence motif B in open chromatin regions in cell state Y, where the sequence

motifs might correspond to transcription factor binding sites. Spatial relationships

between transcription factor binding sites are biologically relevant, as there exist
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both homotypic [7] as well as heterotypic clusters of transcription factors [15] and the

combinatorial interactions between them have been shown to be important [30].

Chapter 2 introduces a �exible simulator that makes it possible to specify a set

of probabilistic rules describing the hypothesized rules of chromatin accessibility and

other biological phenomena, and subsequently synthesize sequence data that adheres

to these rules. In chapter 3 we present a neural network-based approach to identify

determinants of cell type-speci�c chromatin accessibility and how to validate them

experimentally.

1.2 Long-range genomic interactions

Another layer in the many-layered regulation of gene expression are physical, three-

dimensional chromatin interactions [3, 36]. These interactions can occur between

genomic regions that are millions of base pairs apart from each other. Together, they

form a functionally meaningful, higher-order organization of the genome [4].

Sequencing-based assays such as ChIA-PET [6], HiChIP [23], and Hi-C [19] have

been used to discover numerous examples of long-range interactions with functional

consequences, ranging from interactions mediated by structure-de�ning architectural

proteins [33, 10, 5, 11] to enhancer-promoter interactions [16, 18, 37].

Chapters 4 to 6 introduce computational methods to detect long-range genomic

interactions, to assess their reproducibility, and to uncover pairs of transcription

factors that interact with each other throughout the genome.

1.3 Thesis outline

The following �ve chapters describe �ve di�erent projects that were previously pub-

lished (chapters 3 - 5) or are currently under review (chapters 2 and 6).

In chapter 2 we introduceseqgra, a simulation-based framework to investigate neu-

ral network architectures that are trained on biological sequence data, as is common

in functional genomics. Chapter 3 describes a two-pronged approach to study the
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determinants of cell type-speci�c chromatin accessibility, with an ensemble of neural

networks trained on DNase-seq data to predict chromatin accessibility, and MIAA,

the multiplexed integrated accessibility assay, to experimentally validate thesein sil-

ico predictions. In chapter 4 we presentCID, a method to identify long-range genomic

interactions from ChIA-PET and HiChIP data. Chapter 5 picks up where the pre-

vious chapter left o� by introducing IDR2D, a method which represents a means to

identify reproducible long-range genomic interactions. And lastly, we presentspatzie

in chapter 6, which continues the analysis of long-range interactions by performing

co-enrichment analysis of transcription factor sequence motifs.

1.4 Collaborators

The work presented in this thesis would not have been possible without the many

collaborators that I was fortunate enough to work with. The experimental arm of the

MIAA project from chapter 3 was carried out by Budhaditya Banerjee and Richard I.

Sherwood of the Sherwood Lab at Harvard Medical School. The method introduced

in chapter 4 bene�ted greatly from the conceptual input of Michael Closser and Hynek

Wichterle from the Wichterle Lab at Columbia University. Furthermore, all projects

presented here are a result of close collaboration and countless conversations with

members of the Gi�ord Lab, speci�cally Jennifer Hammelman and Yuchun Guo.

1.5 Availability

The software that is described in this thesis is freely available and licensed under

permissive open source licenses. The method of chapter 2 was packaged as a pip-

installable Python package and is part of the Python Package Index. Documentation

can be found athttps://kkrismer.github.io/seqgra and the source code is hosted

on GitHub and available athttps://github.com/gifford-lab/seqgra . The source

code for the model from chapter 3 is also available on GitHub athttps://github.

com/gifford-lab/DeepAccess . CID, the method from chapter 4 is part of the larger
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GEM [9] Java package and can be downloaded fromhttp://groups.csail.mit.edu/

cgs/gem/cid . The source code is available athttps://github.com/gifford-lab/

GEM3. IDR2D from chapter 5 and spatzie from chapter 6 are both available as an

R/Bioconductor packages and part of their functionality is also o�ered online at

https://idr2d.mit.edu and https://spatzie.mit.edu , respectively. The source

code repositories for both methods are also available on GitHub athttps://github.

com/gifford-lab/idr2d and https://github.com/gifford-lab/spatzie .
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Network Architectures for Genomics

Prediction Tasks
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2.1 Abstract

Sequence models based on deep neural networks have achieved state-of-the-art perfor-

mance on regulatory genomics prediction tasks, such as chromatin accessibility and

transcription factor binding. But despite their high accuracy, their contributions to a

mechanistic understanding of the biology of regulatory elements is often hindered by

the complexity of the predictive model and thus poor interpretability of its decision

boundaries. To address this, we introduce seqgra, a deep learning pipeline that in-

corporates the rule-based simulation of biological sequence data and the training and

evaluation of models, whose decision boundaries mirror the rules from the simulation

process. The method can be used to (1) generate data under the assumption of a

hypothesized model of genome regulation, (2) identify neural network architectures

capable of recovering the rules of said model, and (3) analyze a model's predictive

performance as a function of training set size, noise level, and the complexity of the

rules behind the simulated data.
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2.2 Introduction

Over the last �ve to ten years, neural networks were successfully applied to make

large gains on a wide range of tasks in such diverse �elds as computer vision, com-

puter audition, natural language processing, and robotics. While the structure and

the semantics of the data used to train and evaluate neural networks can be vastly

di�erent, the core learning algorithms are almost always the same and the neural

network architectures are often composed of similar building blocks. This is also true

for the �eld of genomics, and computational biology as a whole, where deep neu-

ral networks are trained on data that are obtained experimentally using functional

genomics assays such as DNase-seq [5], ATAC-seq [6], and ChIP-seq. Motivated by

their success, architectural building blocks commonly seen in these networks, such as

convolutional layers, recurrent layers, batch normalization, drop-out, and skip connec-

tions [15, 22, 31, 20], have been imported from computer vision and other �elds. This

cross-fertilization between �elds and the general applicability of the building blocks

of deep learning has more recently been seen in the adoption of transformer-based

architectures for image classi�cation tasks in computer vision and protein prediction

tasks in biology. However, most data sets used to train supervised deep learning mod-

els in biology are di�erent from data sets in computer vision and natural language

processing in two ways. (1) Biological problems contain noisy input and noisy labels

in that not only is there substantial intra-class variability and noise in the input, e.g.,

images labeled ascat contain cats that vary in terms of breed, color, position, pose,

etc., but also a signi�cant fraction of examples are mislabeled, i.e., images labeled as

cat are empty or contain dogs. This is rare in computer vision data sets, but common

in data sets derived from functional genomics assays. (2) Feature attribution or other

model explanation methods are not human-interpretable. We understand images of

cats in the sense that we know which parts of the image contain information that

is relevant for the classi�cation (because they belong to the cat) and which parts

are irrelevant (because they belong to the background). This intuitive understanding

is necessary when attribution methods such as saliency maps are applied to assess a
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model's ability to base predictions on relevant parts of the input. In biology, examples

often include DNA sequence windows of various widths, most commonly 1000 base

pairs (bp), which, unlike images of cats, are nothuman-readable. This biology-speci�c

issue of inherently opaque examples exacerbates the general interpretability issue of

deep neural networks, whereas the lack of high quality data sets contributes to the

reproducibility crisis and makes it more di�cult to compare architectures, as they

are often only evaluated on a custom data set.

The method introduced here,seqgra, attempts to improve the process by which

neural network architectures are chosen for speci�c genomics prediction tasks and

provides a framework to evaluate model interpretation methods. Its fully repro-

ducible pipeline provides a means to (1) simulate data based on a pre-de�ned set

of probabilistic rules, (2) create and train models based on a precise description of

their architecture, loss, optimizer, and training process, and (3) evaluate the trained

models using conventional test set metrics as well as an array of feature attribution

methods. These feature attribution methods in combination with simulated data and

thus perfect ground truth enable an analysis of the model's decision boundaries and

how well they capture the underlying rules of the data generation process from step 1.

Utilizing this framework, models are not only evaluated based on their predictive per-

formance, but also on the ability to recover the vocabulary (e.g., speci�c transcription

factor binding site motifs) and grammar (e.g., spacing constraints between interact-

ing transcription factors) of the data set, while assigning little weight to confounding

factors and idiosyncratic noise.

E�orts in this area include Kipoi [1], a repository for trained genomics models,

and Selene [8], a framework for biological sequence based deep learning models that

supports training of PyTorch models, model evaluation with conventional test set

metrics (ROC and precision-recall curves), and variant e�ect prediction andin silico

mutagenesis of trained models. To our knowledge none of the existing methods o�er

functionality for simulating data using a general framework of probabilistic rules, nor

do they incorporate feature attribution methods.

Furthermore, this simulation-based framework can also serve as a testbed for hy-
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Figure 2-1: A framework for simulation-based evaluation of neural network

architectures. (�gure caption continued on next page)
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Figure 2-1: A framework for simulation-based evaluation of neural network

architectures. (A ) Schematic of the three main components: First, a simulator

generates synthetic data according to the rules and speci�cations de�ned in the data

de�nition �le. Second, a learner creates a neural network model whose architecture

and hyperparameters are speci�ed in the model de�nition �le, and trains it on the

synthetic data from step 1. And third, the trained model is evaluated in terms

of predictive performance and its ability to recover the rules speci�ed in the data

de�nition �le. ( B ) The data de�nition speci�es the basic properties of the synthetic

data, including the alphabet (e.g., DNA, RNA, protein) and its distribution, as well as

condition-speci�c rules (the grammar), which determine how information about the

label y is encoded in the inputx. (C) The model de�nition contains all information

required to create and train the model. (D ) A schematic of six simulated toy data

sets for multi-class classi�cation, where the classesy correspond to cell types and the

input x are sequence windows (depicted as gray bars) that encode information about

the classy at certain positions inx (colored areas). The rules that determine how this

information is encoded range from basic (cell type speci�ck-mer at �xed position) to

complex (non-speci�c combinations of position weight matrices with cell type speci�c

spacing constraints).
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potheses about biological phenomena or as a means to investigate the strengths and

weaknesses of various feature attribution methods across di�erent neural network

architectures that are trained on data sets with varying degrees of complexity. In

the former use case, the hypothesis is encoded in the rules of the simulation process

to identify an appropriate neural network architecture, which is subsequently trained

and evaluated on experimental data. The performance of this simulation-vetted archi-

tecture on experimental data serves as an indication of the validity of the hypothesis

and its underlying assumptions about the biological phenomenon.

2.3 Materials and Methods

2.3.1 Position probability matrices and position weight matri-

ces

We use position probability matrices (PPM) with a DNA alphabet (� = f A; C; G; Tg)

to represent sequence motifs:

PPMz }| {0

B
B
B
B
B
B
B
B
B
@

A C G T

1 y1;A y1;C y1;G y1;T

2 y2;A y2;C y2;G y2;T

...
...

...
...

...

n yn;A yn;C yn;G yn;T

1

C
C
C
C
C
C
C
C
C
A

(2.1)

As the name suggests, each cell of a PPM is a probability, the probability of observing

a particular nucleotide at a particular position, and each row sums to one, i.e., at each

position one of the four nucleotides must be present. We use the notation PPMk(i; j )

to access the probability of observing thej th nucleotide at the i th position in a

speci�c PPMk .

These PPMs usually describe experimentally obtained estimates of transcription

factor binding sites, but may also describe arti�cially constructed sequence motifs.
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Figure 2-2: Selection of sequence motifs for simulation grammars. (A ) ROC

curve of Bayes Optimal Classi�er on multi-class classi�cation task with 10 classes,

prior to �ltering out ambiguous sequence motifs. (B ) Same as panel A, after ambigu-

ous sequence motifs were removed. (C) KL divergence matrix of 10 sequence motifs,

prior to �ltering. ( D ) Empirical similarity score matrix of 10 sequence motifs, prior

to �ltering. ( E) Same as panel C, after removing ambiguous motifs. (F) Same as

panel D, after removing ambiguous motifs.
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To calculate the likelihood of a sequence given a PPM, we �rst convert the PPM

to a position weight matrix (PWM) by transforming the elements of the PPM to log

likelihoods,

y0
i;j = log2

yi;j

pj
; (2.2)

using background sequence probabilitiesp, which are described in section 2.3.6. The

score of a particular position in a DNA sequence is then calculated by adding the

value of the observed nucleotide at each position in the PWM.

2.3.2 Motif information content

To calculate the information content of a sequence motif represented as a PPM, we

�rst calculate U (i ), the uncertainty at position i as follows:

U(i ) = �
X

j 2 �

PPM(i; j ) � log2(PPM(i; j )) : (2.3)

The information content at position i is then de�ned as follows

IC(i ) = t � U(i ); (2.4)

where t = log2(j� j), the total information content per position in bits. In order to

obtain MIC, the information content of the entire motif, we add up the individual

positions:

MIC =
nX

i =1

IC(i ); (2.5)

wheren is the motif width in nucleotides (nt), see matrix in 2.1.

2.3.3 Relative entropy between motif and background distri-

bution

The information content of a motif is a special case of the relative entropy of a

motif where background probabilitiesp are uniform. Relative entropy, also known

as KL divergence, between a motif and the background distribution is calculated per
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position, similarly to IC:

DKL (i ) =
X

j 2 �

PPM(i; j ) � log2

�
PPM(i; j )

pj

�
; (2.6)

and then summed over positions to obtain the Motif Relative Entropy,

MRE =
nX

i =1

DKL (i ): (2.7)

2.3.4 Relative entropy between two motifs

While the relative entropy between a particular motif, PPM1, and the background

distribution is a way to gauge the learnability of a grammar where the presence of

PPM1 carries information, the relative entropy between two motifs, PPM1 and PPM2,

is equally useful to assess the learnability of grammars with multiple, semantically

distinct sequence elements.

By slightly adjusting the DKL from above, we calculate the KL divergence of

position i between two motifs as follows:

DKL (PPM1; PPM2; i ) =
X

x2 �

PPM1(i; x ) � log2

�
PPM1(i; x )
PPM2(i; x )

�
:

(2.8)

The motif pair relative entropy of PPM1 relative to PPM2 is then de�ned as

MPRE(PPM1; PPM2) =
nX

i =1

DKL (PPM1; PPM2; i ): (2.9)

To calculate the MPRE between motifs of unequal width, we pad the shorter

motifs with neutral positions using background probabilities.

Another issue with equation 2.9 is that it does not capture highly similar but

shifted motifs. PPM1 might be equivalent to PPM2 shifted by one position and thus

considered highly similar, but MPRE(PPM1; PPM2) in its current form does not

re�ect this. To resolve this, we calculate MPRE(PPM1; PPM2) for several alignments
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of PPM1 and PPM2 and take the minimum.

2.3.5 Empirical similarity score between two motifs

The empirical similarity score (ESS) between PPM1 and PPM2 is another way to

assess the similarity between two motifs and thus the di�culty to distinguish between

them. ESS(PPM1; PPM2) is calculated by generatingk (in this work, k = 100)

instances of motif 2, �anked on both sides by background sequences of lengthn1,

wheren1 is the width of PPM1. All positions of thesek sequences are then scored by

PWM 1 (the position weight matrix of PPM1), and the highest score per sequence is

returned. ESS(PPM1; PPM2) is then the mean of thesek scores. ESS motif matrix

plots (Figure 2-2 and Supplementary Figure A-3) depict adjusted empirical similarity

scores, which are shifted by ESS0 if ESS0 < 0, where ESS0 = min j ESS(PPM i ; PPM j ),

and normalized such that the self similarity score ESS(PPM i ; PPM i ) = 1 :0.

Both MPRE and ESS are asymmetric, i.e., ESS(PPM1; PPM2) 6= ESS(PPM2; PPM1).

2.3.6 Alphabet distribution for grammars

For all grammars discussed in this paper, we used the natural nucleotide distribution

of the human genome, 29.565 % adenine (A), 20.435 % cytosine (C), 20.435 % guanine

(G), and 29.565 % thymine (T) [21].

2.3.7 Motif database

We used HOMER motifs for all grammar sequence elements that were based on

transcription factor binding site motifs. These motifs were obtained by analyzing

data from publicly available ChIP-seq experiments [11].

2.3.8 Feature importance evaluators

While conventional test set metrics, such as ROC curves and precision-recall curves,

assess model performance based on a set of examples (e.g., the test set), feature
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importance evaluators quantify the contribution of each input feature to the model's

prediction. In the context of seqgra, feature importance evaluators are used to assess

what we call grammar or vocabulary recovery, the degree to which a model was able to

align its decision boundaries with the rules of the grammar that was used to simulate

the data it was trained on. This is possible because for simulated data we not only

know the ground truth label for each example, but also which positions are part of the

background and thus contain no information about the class label, and which positions

were altered by a grammar rule and thus do contain information about the class

label. These position-level annotations (background positions, grammar positions)

are provided for all simulated examples.

More formally, feature importance evaluators take a modelf (x), a target y and

an examplex i of width n, and return z, an n-dimensional vector that contains the

attribution value (also known as importance, relevance, contribution) of each input

position to model f (x) predicting target y. Please note thatn is the sequence length

of the example, not the number of features. For instance, if the input to the model

is a 150 nt DNA sequence,x i is a 150 by 4 matrix (one-hot encoded), containing 600

features, but its width n = 150. Feature attribution values in seqgra are grouped and

reported at the position level, not the input feature level.

Attribution values are visualized with so-called grammar agreement plots, which

are heatmaps depicting attributions and position-level annotations of several exam-

ples. The plots encode the attribution values in the color luminosity, where lighter

colors indicate low values (low feature importance) and dark colors indicate high

values (high feature importance). The position-level annotations are encoded in the

color hue, with grammar positions in green and background positions in red.

2.3.9 Gradient-based feature importance evaluators

This large class of feature importance evaluators (FIEs) uses backpropagation to cal-

culate the partial derivatives of the output,f y(x), with respect to the input, x i . seqgra

includes seven gradient-based feature importance evaluators o�-the-shelf, whose im-

plementations are based on code by Yulong Wang [28].
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The most basic FIE,raw gradient [24], just returns the gradient with respect to

the input example x i :

zRG =
@fy(x)

@xi
; (2.10)

or short r f y(x i ), wheref j (�) is the activation of the target neuron in the output layer,

e.g., classj for multi-class classi�cation tasks.

The absolute gradient method orsaliency is de�ned as

zS = jr f y(x i )j; (2.11)

wherejxj applies the element-wise absolute value operation to vectorx.

Gradient-x-input [2] (gradient times input) is de�ned as

zGI = x i r f y(x i ): (2.12)

Integrated Gradients [27] takes the average of multiple (here,K = 100) gradi-

ents evaluated along the linear path from the baselinex0 (which in seqgra is the zero

vector) to the input example x i . The method is de�ned as

zIG =
1
K

KX

k

r f y

�
k
K

x i

�
: (2.13)

seqgra also supports gradient-based methods that alter the way the gradient is

obtained using backpropagation, namelyGuided Backpropagation [25], Decon-

volution [29], and DeepLIFT [23]. The details of these methods are beyond the

scope of this work.

2.3.10 Model-agnostic feature importance evaluators

Model-agnostic FIEs do not require access to the gradients and make no assumptions

about the structure of the model, hence the name. They rely solely on the ability to

evaluatef y(x), for various altered versions ofx.

Su�cient Input Subsets (SIS) [7] is a perturbation-based method that identi�es
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subsets of input features that are su�cient to keepf y(x) > � , i.e., if all other features

are masked, the class prediction does not change (is still above some threshold� ).

Unlike gradient-based FIEs, which return a real-valued vector of feature attributions,

SIS returns a binary vector, indicating for each feature whether it is part of a su�cient

input subset or not.

2.3.11 Hardware infrastructure

Models presented in this paper were trained on three compute nodes with a total of 6

CPUs (2x Intel Xeon E5-2630 v4, 2x Intel Xeon Gold 6138, 2x Intel Xeon Gold 6240),

26 GPUs (8x NVIDIA GeForce GTX 1080 Ti with 11 GB GDDR5X, 10x NVIDIA

GeForce RTX 2080 Ti with 11 GB GDDR6, and 8x NVIDIA Titan RTX with 24 GB

GDDR6), and a total of 833 GB of main memory. The total GPU time (for training

and evaluation) was roughly 12 GPU months.

2.3.12 Software infrastructure

All seqgra data presented in this paper was obtained on machines running Ubuntu

18.04.3 LTS, CUDA 10.1, cuDNN 7.6.5, Python 3.8, NumPy 1.19.2, TensorFlow 2.2.0,

PyTorch 1.7.0, and R 4.0.

2.4 Results

2.4.1 seqgra provides a reproducible, simulation-based frame-

work for neural network architecture evaluation

The method we describe in this paper (seqgra) generates synthetic biological sequence

data according to prede�ned probabilistic rules in order to either (1) evaluate neural

network architectures trained on these data sets, or (2) test whether the assumptions

about the underlying biological phenomenon that the probabilistic rules of the simu-

lation process are based on, accurately re�ect experimentally obtained data. In the
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Figure 2-3: seqgra-enabled ablation analysis reveals most e�cient neural

network architecture. (A ) Schematic of binary classi�cation grammar using class-

speci�c HOMER motifs as sequence elements. (B ) Schematic of binary classi�cation

grammar using class-speci�c order of HOMER motifs. (C) Schematic of binary clas-

si�cation grammar using class-speci�c spacing of HOMER motifs. (D ) Predictive

performance of six neural network architectures with and without batch normaliza-

tion and dropout. (E) Vocabulary recovery of six neural network architectures with

and without batch normalization and dropout.
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former scenario, the result would be a neural network architecture that�when trained

on data sets generated from a similar set of rules�has high predictive performance

and decision boundaries that closely re�ect those set of generative rules. The goal

of the latter approach is to arrive at a concise set of probabilistic rules that approx-

imates the biological process in question, and a neural network architecture whose

high performance on simulated data is recapitulated when trained on experimental

data.

A data set in the context of seqgra, whether obtained by simulation or experiment,

is always divided into three subsets, training set, validation set, and test set. Each of

the subsets comprises a number of supervised examples, which are(x; y; a)-triplets.

Here, the input variable x is a biological sequence (DNA, RNA, protein) of �xed

or variable length, also referred to as sequence window or features;y is the target

variable, the condition this example belongs to (e.g., cell type), which is either a

mutually exclusiveclassor a non-mutually exclusivelabel, for multi-class classi�cation

tasks or multi-label classi�cation tasks, respectively; anda is the positional annotation

of the example, denoting for each position inx whether it is part of the grammar or

part of the background. Grammar positions contain information related toy and are

therefore important for classi�cation, whereas background positions do not and are

thus irrelevant for classi�cation.

The core functionality of seqgra can be broken down into three components: (1)

Simulator, (2) Learner, and (3) Evaluator. Each component corresponds to a distinct

step in the pipeline depicted in Figure 2-1A.

In step 1, the simulator generates a synthetic data set according to the speci�ca-

tions laid out in the data de�nition (see Figure 2-1B), a document that contains a

precise description of the generated data, from the background nucleotide distribution

to the set of probabilistic rules that determines how information about the condition

y (label, class) is encoded in the sequence windowx. This set of probabilistic rules is

also referred to asgrammar or sequence grammar throughout this manuscript (hence

the nameseq-gra), and although related to formal grammars, seqgra's probabilistic

rules are not expressed as and not equivalent to production rules in the context of
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Figure 2-4: Comparison of neural network architectures Basset, Chrom-

DragoNN, and DeepSEA. (�gure caption continued on next page)
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Figure 2-4: Comparison of neural network architectures Basset, Chrom-

DragoNN, and DeepSEA. (A ) Predictive performance on binary classi�cation

tasks of grammars with class-speci�c HOMER motifs (left), class-speci�c order of

HOMER motifs (middle), and class-speci�c spacing of HOMER motifs. All archi-

tectures were trained on data sets ranging in size from 10,000 examples to 2,000,000

examples. Error bars are standard errors of �ve models trained on the same grammar,

using �ve di�erent simulation seeds. (B ) Same as panel A, for multi-class classi�cation

tasks with 10 classes. The second plot from the left shows the predictive performance

of models trained on data sets with class-speci�c interactions of HOMER motifs. (C)

Same as panel B, for multi-class classi�cation tasks with 20 classes. (D ) Same as

panel B, for multi-class classi�cation tasks with 50 classes.

formal language theory.

Schematic depictions of six toy data sets, generated from probabilistic rules of

varying complexity, are shown in Figure 2-1D. In each case, the data set contains

examples belonging to one of four classes and the probabilistic rules determine how

information about the classy (in this case, the cell type) is encoded in the sequence

window x. The ability to recover this relationship during training is imperative for the

model's predictive performance. The sequence windows of the examples are shown

as gray bars with colored spots, where background positions are shown in gray and

grammar positions are shown in color. In the �rst example, each of the four cell types

can easily be identi�ed by the presence of a class-speci�ck-mer at the center of the

sequence window, a relationship that, unsurprisingly, can be learned perfectly (i.e.,

close to an ROC AUC of 1.0) and e�ciently (i.e., with few training examples) by

most neural network architectures. Since a set of rules as simple as the one used in

example 1 will almost always be an inadequate description of any biological process,

seqgra allows for various ways to increase the complexity. Example 2 represents

a small step up in complexity by replacing the �xed, class-speci�ck-mer with a

class-speci�c position weight matrix (PWM), which is a common representation of
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naturally occurring sequence elements, such as binding sites for a transcription factors.

Another small step up in complexity is example 3, where the PWM is placed randomly

within in sequence window. In example 4 none of the PWMs is class-speci�c, only

a combination of PWMs. Rules like these could be used to model cell type speci�c

chromatin accessibility that is dependent on the interaction between transcription

factors. Examples 5 and 6 encode class information in the relative position of PWMs

instead of their presence or absence, with example data set 5 using class-speci�c order

constraints and example data set 6 class-speci�c spacing constraints.

Once the synthetic data set is generated, it is used by the learner component in

step 2 to train a neural network model. It is important to note that the learner only

has access tox and y of the (x; y; a) example triplets, and the positional annotations

a are only utilized in step 3. Analogous to the role of the data de�nition for the

simulator in step 1, the model de�nition (see Figure 2-1C) serves as a blueprint for

the learner by providing a precise description of the neural network architecture,

the loss function, the optimizer, and hyperparameters of the training process, and

thus ensuring a reproducible model creation, training, and serving process for both

PyTorch and TensorFlow models.

In step 3, the fully trained model from step 2 is then evaluated with the help of

an array of conventional test set metrics and feature importance evaluators, such as

Integrated Gradients [27] and Su�cient Input Subsets [7].

As a means to illustrate the various inputs and output of this pipeline, we pre-

pared the results of a single seqgra analysis in Supplementary Figure A-2. For this

example, we used a simple grammar, similar to the one described in example 1 of

Figure 2-1D, but instead of always inserting the class-speci�ck-mer, we use di�erent

insertion probabilities for each class, ranging from 100 % present in examples of class

1, C1, to 80 % present inC2, 60 % present inC3, 40 % present inC4, 20 % present

in C5, 10 % present inC6, 5 % present inC7, and only present in 1 % ofC8 exam-

ples. We chose a neural network architecture with two hidden layers, a convolutional

layer, followed by a fully connected layer (Supplementary Figure A-2A). After the

simulation process �nished, diagnostic plots were generated, depicting a heatmap of
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grammar positions for all examples per class (Supplementary Figure A-2B). These

so-called positional grammar probabilities (i.e., the probability for a speci�c position

to be a grammar position), depicted in the heatmap correspond to the insertion prob-

abilities of the grammar, as expected. Furthermore, the class-speci�c ROC curves in

Supplementary Figure A-2C show that the chosen neural network architecture was

optimal in terms of predictive performance, with true positive rates of 1.0, 0.8, 0.6,

0.4, 0.2, 0.1, 0.05, and 0.01 (at the zero false positive level) for the classesC1 to C8,

which are the theoretical upper limits given the insertion probabilities of the under-

lying grammar. This is also re�ected in the precision-recall curves in Supplementary

Figure A-2D. In panels E to G we show the results of the feature importance evalua-

tors raw gradient, absolute gradient, and Su�cient Input Subsets (see sections 2.3.9

and 2.3.10 for details). These heatmaps show whether the model's predictions were

based on relevant (i.e., grammar) positions and are therefore an indication of the

model's ability to recover the underlying grammar of the data set. All three methods

suggest high grammar recovery (many dark green positions, few dark red positions).

Supplementary Figure A-2 covered the results obtained from a single seqgra call,

evaluating one neural network model trained on one synthetic data set, but most

seqgra analyses compare various di�erent architectures across a range of data sets

(of di�erent grammar complexities and sizes). For these situations, we provide a

suite of convenient commands that streamline these analyses and provide a schematic

description of their inputs and outputs in Supplementary Figure A-1.

2.4.2 Selection of unambiguous set of HOMER sequence mo-

tifs

In order to generate synthetic data sets that are closer to experimentally obtained

data sets, we replaced the arti�cially constructedk-mers used in the insertion prob-

ability grammar of Supplementary Figure A-1 with transcription factor binding site

motifs which were obtained from ChIP-seq assays and curated by HOMER [11]. How-

ever, before a collection of experimentally obtained motifs can be used e�ectively as
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sequence elements in grammars, degenerate motifs must be excluded. These include

motifs with low information content and highly similar motif pairs. If these motifs

are used as sequence elements that encode information about the conditiony, but

either cannot be di�erentiated from the background distribution or motifs speci�c to

one condition are highly similar to motifs speci�c to another condition, the conditions

are rendered inseparable and learning becomes impossible. This scenario is shown in

Figure 2-2A, which depicts the test set ROC curves of a Bayes Optimal Classi�er

(BOC) for 10 classes of a data set generated by a grammar using 10 randomly se-

lected HOMER motifs as class-speci�c sequence elements. BOCs in the context of

seqgra are used to determine whether the conditions of a grammar are separable in

principle, i.e., regardless of data set size and neural network architecture. Instead

of neural network models whose weights are adjusted during training, the BOC has

access to the data de�nition and uses the rules and sequence elements speci�ed there

directly to classify the examples. If the predictive performance of the BOC is low,

as is the case with conditionsC6, C8, and C4 shown in Figure 2-2A, the rules associ-

ated with those conditions are not speci�c enough to di�erentiate between them. And

since the rules in this case place a supposedly condition-speci�c sequence element at a

random position in the sequence window, the only explanation is that these sequence

elements are either indistinguishable from background or indistinguishable from each

other. The latter is shown in the matrices in Figure 2-2C and Figure 2-2D, which

identify the corresponding sequence elements SE6, SE8, and SE4 as most similar to

other sequence elements, i.e., lowest KL divergence and highest empirical similarity

score, respectively (for details, see sections 2.3.4 and 2.3.5).

Figure 2-2B shows BOC performance after the most ambiguous motifs were re-

moved, and the corresponding KL divergence and empirical similarity score matrices

are shown in Figure 2-2E and F. A collection of experimentally derived sequence mo-

tifs will never be completely orthogonal, but the degree of dissimilarity between these

10 were deemed su�cient and all subsequent multi-class classi�cation grammars with

10 classes used these 10 motifs. Supplementary Figure A-3 shows the same selection

process for a collection of 100 HOMER motifs. All HOMER motifs used in this study
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are listed in Supplementary Table A.1, together with a IUPAC notation of the motif,

the motif information content (see section 2.3.2) and the KL divergence between the

motif and the background distribution (see section 2.3.3). Motifs used for binary

classi�cation tasks are listed in Supplementary Table A.2, those for multi-class clas-

si�cation tasks with 10, 20, and 50 classes are listed in Supplementary Tables A.3,

A.4, and A.5, respectively.

2.4.3 seqgra-enabled ablation analysis reveals most e�cient

neural network architecture

Ablation, a technique widely used in neuroscience to determine the functions of brain

regions by removing them one by one, has been used similarly to identify the relevant

components of an arti�cial neural network [19, 17]. We performed an ablation analysis

to determine the e�ects of dropout [26] and batch normalization [14] on the predictive

performance and grammar recovery of a basic neural network architecture with two

hidden layers, a convolutional layer with 10 21-nt wide �lters, followed by a dense

layer with 5 hidden units, and dropout or batch normalization operations after each

layer. Models were trained on binary classi�cation data sets generated by grammars

using class-speci�c HOMER motifs (see schematic in Figure 2-3A), class-speci�c or-

der of HOMER motifs (Figure 2-3B), and class-speci�c spacing constraints between

HOMER motifs (Figure 2-3C). Test set precision-recall curve AUCs are shown for

all models across all grammars in Figure 2-3D. Unsurprisingly, the predictive perfor-

mance of all architectures increases with data set size, and all architectures approach

a PR AUC of 1.0 for su�ciently large data sets. But this analysis reveals a striking

di�erence between the neural network architectures in terms of their e�ciency, i.e.,

how many training examples are required to reach an AUC of approximately 1.0.

On the grammars tested here, batch normalization had a negative e�ect on e�ciency,

requiring up to 100,000 examples more to converge than architectures without the op-

eration. The architecture with dropout after each hidden layer was the most e�cient

and highest performing, both in terms of predictive performance and grammar recov-
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ery (i.e., the model's propensity to classify examples based on grammar positions) as

shown in Figure 2-3E.

2.4.4 DeepSEA dominates comparison of popular genomics

deep learning architectures

Furthermore, we compared three popular neural network architectures used in the

�eld of genomics, Basset [15], ChromDragoNN [20], and DeepSEA [31]. All three

architectures were devised with functional genomics data sets in mind and were origi-

nally trained on multi-label classi�cation data sets obtained from numerous DNase-seq

assays, with ChromDragoNN also utilizing RNA-seq and DeepSEA ChIP-seq data.

With over 4 million (Basset), over 6 million (DeepSEA), and over 20 million (Chrom-

DragoNN) trainable parameters, all three can be considered high-capacity models.

The three architectures make use of commonly used building blocks such as convo-

lutional, followed by dense layers (all three), max pooling and dropout operations

(all three), ReLU activation functions (all three), batch normalization (Basset and

ChromDragoNN), and skip connections (ChromDragoNN). Input and output layers

were adjusted to �t the prediction task and architectures were trained on simulated

data sets from scratch without pre-training on their original data sets.

We used the area under the micro-averaged precision-recall curve to evaluate the

test set predictive performance on four multi-class classi�cation tasks (with 2, 10, 20,

and 50 classes) and three or four grammars each, with a sequence window of 1000

nucleotides. The results are shown in Figure 2-4A for binary classi�cation, and Fig-

ures 2-4B, 2-4C, and 2-4D for multi-class classi�cation with 10, 20, and 50 classes,

respectively. The HOMER motifs used by the grammars presented here are listed in

Supplementary Tables A.2-A.5. Each panel contains precision-recall AUCs of models

trained on data sets generated by one grammar, using 5 di�erent random seeds for

simulation (error bars) and 19 di�erent data set sizes. The DeepSEA architecture

exhibited an at times substantially higher predictive performance than Basset and

ChromDragoNN and was the highest performing architecture on all tested data sets.
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Figure 2-5: Predictive performance and grammar recovery of various

model architectures on simulated and experimental data. (A ) Schematic

of model selection process: �rst, identify suitable model architectures on simulated

data; second, train models with simulation-vetted architectures on experimental data.

(B ) Naive neural network architecture with fully connected layer. (C) Grammar-

informed neural network architecture with convolutional layer, global max pooling,

and fully connected layer. (D ) Predictive performance of naive architecture, trained

and evaluated on simulated and experimental data. (E) Predictive performance of

grammar-informed architecture, trained and evaluated on simulated and experimen-

tal data. (F) Grammar agreement plot (Integrated Gradients) of naive architecture,

trained on experimental data. (G) Grammar agreement plot (Integrated Gradients)

of grammar-informed architecture, trained on experimental data.
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While DeepSEA is the preferred architecture on data sets derived from the grammars

we tested, this is not necessarily true for data sets with other grammars or experi-

mentally obtained data. Interestingly, we observed that high capacity architectures

such as those tested here perform better on data sets generated by grammars that

include interactions, speci�cally interactions that encode the class label in the order

or spacing of the interacting sequence elements. This is not the case for small-scale

architectures with less than 100,000 trainable parameters, which, as expected, do bet-

ter on grammars without interactions, where the class label is encoded in the presence

of class-speci�c sequence elements.

2.4.5 High predictive performance of simulation-vetted neural

network architecture recapitulated with ChIP-seq data

In this section we address the question of whether neural network architectures that

perform well on simulated data also succeed on data obtained experimentally. We

decided to model the well-known hetero-dimeric pair of transcription factors SOX2

and POU5F1, whose spacing constraints were previously characterized [9, 10]. To that

end, we used the HOMER motifsSOX2_HUMAN.H11MO.0.AandPO5F1_HUMAN.H11MO.1.A

as sequence elements in the data de�nition. We also included spacing constraints (0-3

bp between SOX2 and PO5F1 motifs). Figure 2-5A shows a schematic depiction of

the analysis.

The experimental data set was based on two ChIP-seq assays, which targeted the

two transcription factors. The preprocessed data was obtained from the Cistrome

Data Browser [18], speci�cally the data associated with GEO IDsGSM1701825for

SOX2 andGSM1705258for POU5F1.

We evaluated the same neural network architectures on both the simulated and

the experimental data sets. The architecture described in Figure 2-5B with one fully

connected layer (not counting the output layer) is an example of an architecture that

does not assume any structure in the input. It is a naive architecture in the sense

that it was constructed without any knowledge about the grammar that was used to
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simulate the data. The architecture described in Figure 2-5C, on the contrary, makes

assumptions about the data that are in agreement with the grammar, such as a 1D

spatial structure with information encoded in 11-nt long code words (enough to cover

the SOX2-POU5F1 interaction), whose position in the sequence window is irrelevant.

As expected, the test set predictive performance of the naive architecture (Fig-

ure 2-5D) was signi�cantly lower than the grammar-informed architecture (Figure 2-

5E). Furthermore, the performance on the simulated data proved to be a good pre-

dictor for the performance on the experimental data (Figure 2-5D and E).

The agreement between feature importance and the grammar positions, a proxy for

a model's ability to recover the SOX2 and POU5F1 motifs, is shown in Figure 2-5F for

the naive architecture and in Figure 2-5G for the grammar-informed architecture. The

grammar-informed model's predictions were based almost exclusively on grammar

positions (positions that contained SOX2 and POU5F1 motifs), whereas this was not

the case for the naive model. Both panels were created with the Integrated Gradients

feature importance evaluator.

2.5 Discussion

In this paper we introduced seqgra, a deep learning infrastructure method for ge-

nomics. It is intended to streamline the development of deep learning models for

biological sequence-based prediction tasks, by providing a reproducible uni�ed frame-

work for (1) �exible, rule-based synthetic data generation; (2) model training; and (3)

model evaluation with conventional test set metrics and feature attribution methods.

This three-step pipeline supports data sets obtained by simulation and experiment,

models implemented in PyTorch and TensorFlow, and numerous gradient-based fea-

ture attribution methods as well as Su�cient Input Subsets, a model-agnostic feature

attribution method, in addition to conventional ROC and precision-recall curves for

model evaluation. Our method greatly simpli�es an array of commonly performed

diagnostics and performance assessments of deep learning models, such as ablation

analysis, estimated data set size requirements, and tolerated noise thresholds. The
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simulator and the language of the probabilistic rules are �exible enough to span multi-

class and multi-label classi�cation tasks with any number of classes or labels, DNA

or amino acid sequence windows of variable or �xed length, class-dependent back-

ground distributions, sequence elements de�ned as position weight matrices or list

of k-mers with associated probabilities, and interactions between sequence elements

with associated order or spacing constraints.

Moreover, the controlled environment of data simulation and reproducible model

training, serving, and evaluation makes seqgra a suitable testbed for feature attribu-

tion and interpretability methods and their interdependencies with neural network

architectures and the complexity level of the training data. The framework can even

be used to perform extensive comparisons between deep learning libraries, which are

rarely done (see Supplementary Figures A-7 and A-8) or identify undocumented be-

havior of the deep learning technology stack, such as an unusual training instability

caused by a random seed of zero on some grammar-architecture combinations, which

is reproducible and occurs in both PyTorch and TensorFlow (see Supplementary Fig-

ures A-4-A-6).

To avoid confusion, we would like to point out that seqgra is not a neural archi-

tecture search technique in the sense that it will not propose suitable neural network

architectures for a particular data set. The model de�nition is an input, not an out-

put of the seqgra pipeline. However, seqgra can be used in conjunction with neural

architecture search, such as AMBER [30], a neural architecture search method for

architectures aimed at genomics prediction tasks, or general hyperparameter opti-

mization methods, such as Hyperband [16].

One caveat of all simulation-based approaches is the inevitable gap between sim-

ulated and real-world data sets, in the sense that the former is always a simpli�ed

approximation of the latter. Thus insights gained from simulated data might not

carry over to the experimental world. In fact, to a certain degree this will always be

the case. However, while high-performing neural network architectures on simulated

data might not perform as highly on experimental data, the opposite is rarely the

case, i.e., low-performing architectures in simulation are unlikely to improve when
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trained on noisier and/or smaller experimental data sets.

While the intricacies of noisy and biased high-throughput genomics experiments

make for highly complex and poorly understood data sets, training highly complex

alchemy-like [12] deep neural networks on them contributes little to a mechanistic

understanding of the biological processes that are at work underneath and might

worsen the reproducibility crisis in both machine learning [13] and biology [4, 3].

Simulated data, however, is perfectly understood, its noise levels controlled and any

biases arti�cially introduced and accounted for, which makes it an excellent environ-

ment for model evaluation. With seqgra, the clean room of simulated data and a

precise description of the patterns in the data (i.e., the probabilistic rules in the data

de�nition) on the one end is paired with an array of feature attribution methods on

the other, to answer questions that are often impossible to answer with poorly un-

derstood genomics data. One such question is whether the predictions of the model

are based on those parts of the input that are in fact relevant for the phenomenon

that is predicted, or, to put it another way, whether the model was able to recover

the underlying rules of the data set.

Availability

The source code of the seqgra package is hosted on GitHub (https://github.com/

gifford-lab/seqgra ) and licensed under the MIT license. seqgra is part of the

Python Package Index PyPI and can be installed using pip, the Python package

installer. Extensive documentation can be found athttps://kkrismer.github.io/

seqgra.
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3.1 Abstract

A key mechanism in cellular regulation is the ability of the transcriptional machin-

ery to physically access DNA. Transcription factors interact with DNA to alter the

accessibility of chromatin, which enables changes to gene expression during develop-

ment or disease or as a response to environmental stimuli. However, the regulation

of DNA accessibility via the recruitment of transcription factors is di�cult to study

in the context of the native genome because every genomic site is distinct in multiple

ways. Here we introduce the multiplexed integrated accessibility assay (MIAA), an

assay that measures chromatin accessibility of synthetic oligonucleotide sequence li-

braries integrated into a controlled genomic context with low native accessibility. We

apply MIAA to measure the e�ects of sequence motifs on cell type-speci�c accessibil-

ity between mouse embryonic stem cells and embryonic stem cell-derived de�nitive

endoderm cells, screening 7905 distinct DNA sequences. MIAA recapitulates dif-

ferential accessibility patterns of 100-nt sequences derived from natively di�erential

genomic regions, identifying E-box motifs common to epithelial-mesenchymal transi-

tion driver transcription factors in stem cell-speci�c accessible regions that become

repressed in endoderm. We show that a single binding motif for a key regulatory tran-

scription factor is su�cient to open chromatin, and classify sets of stem cell-speci�c,

endoderm-speci�c, and shared accessibility-modifying transcription factor motifs. We

also show that overexpression of two de�nitive endoderm transcription factors,T and

Foxa2, results in changes to accessibility in DNA sequences containing their respec-

tive DNA-binding motifs and identify preferential motif arrangements that in�uence

accessibility.
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3.2 Introduction

Genomic DNA acts as an instruction book for the cellular machinery to carry out func-

tional processes such as RNA production [44, 33] and DNA repair [4]. Some regions

of the genome are constitutively used across all cell types for shared housekeeping

processes [5, 24], whereas other regions are required only in speci�c cell types [57, 26].

One key mechanism used to control which regulatory regions are active is the phys-

ical accessibility of chromatin. Because many transcription factors are incapable of

binding in inaccessible or �closed� chromatin, the regulation of chromatin accessibility

ensures such transcription factors do not bind to extraneous or deleterious locations

in the genome.

Transcription factors that interact with closed chromatin are thought to establish

the accessibility of cell type-speci�c regions and initiate cell state change in di�erenti-

ation [44, 50], cancer [9, 10], and environmental responses [41, 27] and allow �settler�

transcription factors to bind and activate previously inactive genes. Massively parallel

reporter assays (MPRAs) [20, 58] have been developed to measure the change to gene

expression from the action of promoters [34, 14] or enhancers [32, 40, 23, 48, 29, 28]

and thus can be used to probe the regulatory code. MPRAs allow for studies into

the combinatorial logic of transcription factor action, such as whether speci�c com-

binations of transcription factor binding sites must be colocalized for proper gene

expression [48, 12, 59]. However, MPRAs do not measure changes to chromatin ac-

cessibility and thus cannot disentangle gene regulation by transcription factors that

depend upon changes in local accessibility.

Previous work has indicated speci�c transcription factor motifs and logic gov-

erning chromatin accessibility [30, 56, 6], but such e�ects are di�cult to study in a

native genomic context, in which motifs are not independent of nonlocal sequence

e�ects. Recent approaches have extended MPRAs to measure nucleosome occupancy

via bisul�te treatment [25] or MNase-seq [61] in yeast. However, bisul�te sequenc-

ing requires constrained library design to ensure su�cient CpG sites that act as a

substrate for bisul�te conversion, and MNase-seq requires measurement over multiple

71



MNase concentrations to fully measure accessibility [42]. Restriction enzyme strate-

gies have been used to measure nucleosome occupancy and accessibility in yeast [38]

and mouse hepatocyte [7] and stem cells [49], and recently, adenine methyltransferase

has been used to map nucleosome positioning in human cell lines [1, 52]. Here, we aim

to develop an assay that takes advantage of adenine methyltransferase and restriction

enzyme digestion for measuring the local DNA accessibility of genomically integrated

large-scale reporter libraries, and probe the regulatory sequence determinants driving

di�erential chromatin accessibility between stem cells and de�nitive endoderm.
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Figure 3-1: Multiplexed integrated accessibility assay (MIAA) measures

local DNA accessibility of synthesized oligonucleotide DNA sequence li-

braries. (A ) The MIAA library sequence construct contains a variable DNA se-

quence, homology arms for CRISPR-mediated HDR integration at a speci�c genomic

locus that includes a binding site for retinoic acid receptor 42 nt downstream from the

variable DNA sequence, and GATC site for DNA adenine methylase (Dam) methy-

lation 1 nt downstream from the variable DNA sequence. (B ) DNA sequences of 150

nt are integrated into ESCs at a designated genomic locus. ESCs are split, and half

are di�erentiated into DE cells. Retinoic acid receptor fused to hyperactivated Dam

enzyme results in methylation of DNA sequences that open DNA. DNA is extracted,

and half is exposed to DpnII, which cleaves unmethylated sequences, whereas half is

exposed to DpnI, which cleaves methylated sequences. Sequences are PCR ampli�ed

and sequenced. (�gure caption continued on next page)
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Figure 3-1: Multiplexed integrated accessibility assay (MIAA) measures

local DNA accessibility of synthesized oligonucleotide DNA sequence li-

braries. (C) DpnI and DpnII read counts measured from a single DE replicate show

di�erence between designed chromatin opening and neutral DNA sequences. (D )

Proportion of DpnII read counts measured from a single ESC replicate gives esti-

mate of MIAA openness. (E) Genomic sequences are di�erentially DE accessible or

ESC accessible as reported by di�erence between MIAA Dpn proportion in de�ni-

tive endoderm compared with ESCs with randomly shu�ed DNA control sequences

(signi�cance computed by Wilcoxon rank-sum test). (F) Di�erential accessibility

as measured by log change in normalized DNase-seq reads and MIAA methylation

proportion shows correlation between native di�erential accessibility and MIAA ac-

cessibility. The correlation reported is the Pearson's correlation coe�cient (r ).

3.3 Materials and Methods

3.3.1 DNA sequence library design

All oligonucleotide libraries were ordered from Twist Biosciences. Variable DNA se-

quences (70-100 nt depending on library) are �anked by 25-nt primer sequences con-

taining a GATC site and homology arms for CRISPR integration. We identi�ed six

native genomic sequences of size 100 nt from a pilot experiment that did not drive dif-

ferential accessibility with MIAA but varied in GC-content. We randomly perturbed

these native sequences three times each to obtain a total of 24 neutral sequence back-

grounds. For our �rst experiment, we took each background and inserted either one

motif seven times (positions 2, 16, 30, 44, 58, 72, 86) or two motifs in which motif 1 is

inserted four times (positions 2, 30, 58, 86) and motif 2 is inserted three times (posi-

tions 16, 44, 72). For our second experiment, we limited ourselves to nine backgrounds

that we expected to have high reproducibility to the set of 24. In this experiment,

we tested sequences of size 70 nt. By using the consensus sequences of known ES key

TFs (POU5F1, SOX2, KLF4) or DE key TFs (FOXA2, GATA4, SOX17), we inserted
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one, two, or three motifs into each sequence. We tested homotypic DNA sequences

consisting of one unique motif, as well as heterotypic DNA sequences enumerating all

possible motif orders. Consensus motifs for key developmental transcription factors

are listed in Supplemental Table S3. Additional hypotheses were tested within MIAA

libraries that were not described in this paper. The DNA sequences that were used

in this paper are denoted by a column within the Supplemental Data.

3.3.2 DNA sequence library integration

Electroporations were performed in two to four biological replicates into p2L RAR-

DamA126 ESCs (for cell line construction and RARg-DamN126A-V5His construct

sequence, see Supplemental Methods). Cells were grown for 5-8 d after electroporation

to obtain adequate quantities for doxycycline treatment. When indicated, cells were

di�erentiated to DE before doxycycline treatment.

3.3.3 High-throughput sequencing

After DpnI/II digestion, fragments are ampli�ed with three steps of PCR. First,

PCR primers to sequence outside the homology arms such that only sequences that

are properly integrated at the desired locus and that have not been cleaved by the

DpnI/II enzyme are ampli�ed (13 cycles). The second PCR step and third PCR

steps further amplify sequences and add adaptors for Illumina sequencing. For primer

information and further details, see Supplemental Methods. Samples were sequenced

on an Illumina NextSeq 550 instrument at the Harvard Medical School Biopolymers

Facility or the MIT BioMicro Center.

3.3.4 DNA sequence library processing

Reads were mapped to library DNA sequences by taking the reverse complement

to the raw read, in which the �rst N nucleotides (between 70 and 100 based on

the size of the designed sequence) are the designed variable DNA sequence. Perfect

matches were counted using a custom R script (Supplemental Code). Reads were
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normalized to reads per million over the total number of reads in the digest. DNA

sequences were kept if they had a threshold number of total normalized reads over

all replicates, based on the observation of high standard deviation at low total read

counts. The threshold was selected based on visual inspection and can be found

in the Supplemental Code. Once reads were normalized and high variability DNA

sequences �ltered, MIAA accessibility was computed as a proportion of DpnI/II read

counts DpnII/(DpnI + DpnII).

3.3.5 DeepAccess model and motif importance

We obtain DNase-seq regions using the 100 nt centered at the MACS2 narrow peak

call. Accessibility prediction is treated as a multitask classi�cation problem, in which

each genomic sequence (100 bp) is associated with a two-dimensional bit vector repre-

senting whether the sequence is open in each cell type (ESC and DE cell). We trained

an ensemble of 10 convolutional neural networks. For speci�c details on network ar-

chitecture, see Supplemental Methods. The fully connected output layer present in all

neural network architectures contains two neurons with a sigmoid activation function

that returns a value between zero and one, which represents the probability of the

predicted DNA �openness� in each of the two cell types. DeepAccess is trained on a

balanced data set with 400,000 sequences across four possible classi�cation scenarios

of a sequence (1) open in endoderm cells and closed in ESCs, (2) open in ESCs and

closed in endoderm cells, (3) open in both cell types, or (4) closed in both cell types.

A test set of 22,357 sequences is held out for performance evaluation.

We extracted motifs from DeepAccess by applying smoothed gradient ascent to

score each nucleotide in the 100-nt DNA sequence by its importance for predicting

the output [46, 47] and multiplied times the input (a one-hot encoding of the DNA

sequence) because gradients will assign nonzero values to DNA characters not present

in the sequence. To obtain sequence importance for features that drive accessibility

di�erentially between DE cells and ESCs, we set the gradient loss to the di�erence

between the predicted accessibility of two cell types. We then selected windows of size

10 with the highest ensemble weighted average saliency over a set of 5000 training
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sequences and used those as the DeepAccess-derived motifs. We also extracted the

top motifs with the highest increase in saliency of di�erential accessibility between

the CNN without trainable hidden layers and the CNNs with hidden layers, which

represent motifs that gain importance from the CNNs that learn relationships between

motifs.

3.4 Results

3.4.1 Multiplexed integrated accessibility assay measures lo-

cal accessibility of integrated DNA sequences

In previous work, we used a DNase I cleavage assay, SLOT, to measure chromatin

accessibility of a set of DNA sequences integrated into a de�ned genomic locus [18].

Although SLOT was able to determine the relative accessibility of classes of DNA se-

quences, it had poor resolution to measure accessibility of individual DNA sequences,

because of the low cleavage probability of DNase I at enzyme concentrations capable

of discriminating levels of chromatin accessibility. We hypothesized that we could

measure changes in DNA accessibility with higher sensitivity by observing the chro-

matin accessibility-dependent methylation ofEscherichia coli adenine DNA adenine

methylase (Dam) to the locus, given the high e�ciency and stability of Dam methy-

lation in cells [55] and the known propensity of Dam to methylate more frequently

in accessible chromatin [55, 54, 1, 52]. We further hypothesized that fusing Dam

to retinoic acid receptor-gamma (RAR) would enhance the di�erential methylation

of this RAR-Dam fusion protein at genomic loci with RAR binding motifs, and we

make use of a mutant version of Dam methyltransferase shown to display increased

signal-to-noise over wild-type Dam [55, 54].

We designed a library consisting of 150-nt synthesized oligonucleotides that con-

sist of a 100-nt variable DNA sequence surrounded by a �xed sequence that allows for

PCR ampli�cation and contains an Illumina sequencing adapter and a Dam recogni-

tion sequence (GATC) (Fig. 3-1A). For integration, we chose a genomic locus with
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minimal prior DNase I accessibility proximal to a RAR binding site. To allow in-

ducible expression of RAR-Dam, we integrated a single copy of RAR-Dam with a

doxycycline-sensitive promoter into a �xed genomic locus using Cre/LoxP recombi-

nation into a mouse embryonic stem cell (mESC) line with constitutive rtTA expres-

sion [31].

After DNA sequence integration into the mESC cell line, we induce the expres-

sion of RAR-Dam and, after 24 h, collect genomic DNA (Fig. 3-1B). DNA sequences

that increase chromatin accessibility should increase adenine methylation of the DNA

sequence's GATC site, owing to the combined e�ect of the preference of Dam methy-

lase to methylate in accessible chromatin, and increased local RAR binding, owing

to increased chromatin accessibility. Puri�ed genomic DNA is split it into two pools;

one pool is exposed to the restriction enzyme DpnI and the other pool to DpnII,

which preferentially cleave methylated and unmethylated GATC sites, respectively.

From each pool, we then amplify DNA sequences using a three-step PCR ampli�ca-

tion process (Supplemental Fig. B-1). First, DNA sequences are ampli�ed by primers

outside of the homology arms to ensure only correctly integrated DNA sequences are

ampli�ed. Only undigested DNA sequences will be ampli�ed at this step owing to

the site of the GATC site of restriction enzyme cleavage between the PCR primers.

Then, two additional PCR steps are used to further amplify DNA sequences and add

Illumina sequencing adapters for high-throughput sequencing. If a DNA sequence is

more accessible, it will have fewer read counts in the DpnI digested pool and more

read counts in the DpnII digested pool (Fig. 3-1C). The proportion of DpnII to DpnI

sequencing counts, therefore, represents the impact of that DNA sequence on local

DNA accessibility (Fig. 3-1D). We designate this high-throughput genomically inte-

grated assay of chromatin accessibility the multiplexed integrated accessibility assay

(MIAA).

Because our particular interest is in changes to accessibility during di�erentiation,

we di�erentiated mESCs into de�nitive endoderm (DE) cells using a well-established

di�erentiation protocol shown to yield >90% DE [45] before RAR-Dam induction.

We tested a library of 5978 DNA sequences in eight biological replicates (four
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replicates at sequence integration, each split into two replicates before RAR-Dam

activation) for stem cells (ESCs) and four biological replicates (two replicates at se-

quence integration, each split into two replicates before RAR-Dam activation) for DE

cells. To gauge the reliability of MIAA, we included sets of positive and negative con-

trol DNA sequences used in our previous work that maximally pack 100-nt variable

sequences with DNA sequence motifs shown to have an opening or neutral e�ect on

chromatin by a k-mer model trained on DNase-seq [18]. From MIAA measurements,

we found that the Hashimoto et al. positive control DNA sequences yielded signif-

icantly higher Dam methylation than the negative control DNA sequences (Fig. 3-

1C,D), with 81%-99% of positive control DNA sequences yielding higher methylation

than the average negative control DNA sequence in each replicate (P < 0:001 by

Wilcoxon rank-sum test for all replicates). We found in comparing control sequences

with GC-content in the range of 30%-50%, MIAA replicates had 96%-100 of positive

control DNA sequences yielding higher methylation than the average negative control

DNA sequence, whereas SLOT had 4.5%-13.6% of positive control DNA sequences

yielding higher methylation than the average negative control sequence (Supplemen-

tal Fig. S2), suggesting that MIAA provides a marked improvement over SLOT in

the measurement of accessibility di�erences of single DNA sequences in the context

of large libraries. Biological replicates of MIAA were also well correlated (Pearson's

r = 0.5-0.79) (Supplemental Fig. S3).

We note that negative control (accessibility neutral) DNA sequences are still

methylated at a rate of 20%-50%. In line with this result, we found� 20%RAR-Dam

methylation in two known native genomic inaccessible chromatin loci as measured by

qPCR, compared with 85%-95% methylation at known RAR binding sites (Supple-

mental Fig. S2). We do not know if this means that RAR-Dam can methylate� 20%

of inaccessible chromatin while it is tightly wound or if the methylation is happening

during cell cycle phases when chromatin is accessible. We also found that retinoic

acid binding sites within our sequence appeared to have no impact on MIAA results

(Supplemental Fig. S4), suggesting that linking RAR to Dam is unlikely to confound

our aim of measuring chromatin accessibility.
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We separately designed a pilot experiment of 2000 DNA sequences to deter-

mine whether MIAA could measure di�erential chromatin accessibility. First, we

ran KMAC, a method for de novo motif enrichment [17], on di�erentially accessible

DNase-seq regions using the top 10,000 peaks that were di�erentially accessible (de-

�ned by peak overlap) in DE-accessible or ESC-accessible genomic regions measuring

motif enrichment relative to a background the top 10,000 of genomic regions that are

DNase accessible in both ESCs and DE.We used a similar methodology to Hashimoto

et al. (2016) to maximally pack oligonucleotides with DNA sequence motifs, by start-

ing from a single motif and extending the designed sequence with the highest scoring

KMAC motif that overlapped the previous motif by four bases. Our data show that

that MIAAwas able to separate DNA sequences that were designed to open chromatin

in DE cells from those that were designed to open chromatin in ESCs (Supplemental

Fig. S5).

We then asked whether MIAA could measure di�erential accessibility of native

genomic sequences. To help identify 100-nt native genomic sequences that were dif-

ferentially accessible between DE cells and ESCs, we developed a deep learning model

trained to predict DNase-accessible regions from underlying DNA sequence and cell

type-speci�c DNase-seq training data. This method, which we call DeepAccess, trains

an ensemble of 10 convolutional neural networks on DNase-seq data from ESCs and

DE cells to predict whether a 100-nt genomic region is accessible or inaccessible in

both cell types that had good performance on held-out genomic regions (for details,

see Methods; Supplemental Fig. S6). We tested 213 native DNA sequences that

DeepAccess predicted would be di�erentially accessible between ESCs and DE cells

with MIAA, and found that as a group these DNA sequences showed di�erential ac-

cessibility between ESCs and DE cells (Fig. 3-1E) with a per-sequence e�ect size that

correlates with di�erential accessibility measured by DNase-seq (Pearson'sr = 0:53;

P < 0:001) (Fig. 3-1F). Although statistically signi�cant as a group, only 78% of the

native genomic DNA sequences recapitulated the di�erential accessibility of the na-

tive loci from which they were derived by having both higher DNase-seq read counts

and greater MIAA-measured accessibility in one cell type over the other. These
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Figure 3-2: Di�erentially accessible motif generation from DNase-seq data

validated by MIAA. (A ) DNase-seq accessible regions called with MACS2 and 100-

nt sequences extracted centered at narrow peak. KMAC and DeepAccess were applied

to extract signi�cant motifs potentially driving di�erential accessibility between ESCs

and endoderm. (B ) DNA sequences were designed using seven instances of each

motif at the same locations in each DNA sequence inserted into 24 100-nt neutral

sequence backgrounds, as well as pairs of motifs (C). (D ) Predictions from DeepAccess

for di�erential accessibility replicate experimental results (e�ect size by pairedt-

test between ESC and DE measurements). The correlation reported is the Pearson

correlation coe�cient ( r ). (�gure caption continued on next page)

81


	Introduction
	Chromatin accessibility
	Long-range genomic interactions
	Thesis outline
	Collaborators
	Availability

	seqgra: Principled Selection of Neural Network Architectures for Genomics Prediction Tasks
	Abstract
	Introduction
	Materials and Methods
	Position probability matrices and position weight matrices
	Motif information content
	Relative entropy between motif and background distribution
	Relative entropy between two motifs
	Empirical similarity score between two motifs
	Alphabet distribution for grammars
	Motif database
	Feature importance evaluators
	Gradient-based feature importance evaluators
	Model-agnostic feature importance evaluators
	Hardware infrastructure
	Software infrastructure

	Results
	seqgra provides a reproducible, simulation-based framework for neural network architecture evaluation
	Selection of unambiguous set of HOMER sequence motifs
	seqgra-enabled ablation analysis reveals most efficient neural network architecture
	DeepSEA dominates comparison of popular genomics deep learning architectures
	High predictive performance of simulation-vetted neural network architecture recapitulated with ChIP-seq data

	Discussion

	Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay
	Abstract
	Introduction
	Materials and Methods
	DNA sequence library design
	DNA sequence library integration
	High-throughput sequencing
	DNA sequence library processing
	DeepAccess model and motif importance

	Results
	Multiplexed integrated accessibility assay measures local accessibility of integrated DNA sequences
	DNase-seq analysis identifies motifs driving cell type-specific accessibility
	GC-content and transcription factor binding motifs control accessibility
	Overexpression of DE transcription factors T and Foxa2 increase accessibility of DNA sequences with their DNA-binding motifs
	Exploration of ordering of ESC and endoderm key transcription factors uncovers subtle TF-TF interactions

	Discussion

	High resolution discovery of chromatin interactions
	Abstract
	Introduction
	Materials and Methods
	Segmentation of PETs
	ChIA-PET and HiChIP datasets
	Mango and ChIA-PET2 pipelines
	hichipper pipeline
	Replicate consistency analysis
	Functional annotation of interaction calls
	Hi-C loop overlap analysis
	5C interaction overlap analysis
	Software availability

	Results
	Chromatin interaction discovery (CID)
	CID is more sensitive at discovering ChIA-PET interactions than peak-calling-based methods
	CID is more consistent at discovering ChIA-PET interactions than peak-calling-based methods
	Interactions called by CID are more concordant with Hi-C and 5C data than interactions called by other methods
	CID outperforms other methods in detecting chromatin interactions from HiChIP data

	Discussion

	IDR2D identifies reproducible genomic interactions
	Abstract
	Introduction
	Materials and Methods
	IDR
	ChIA-PET datasets
	HiChIP datasets
	Hi-C datasets and subsampling procedure
	Mango pipeline
	ChIA-PET2 pipeline
	CID pipeline
	Package and web development

	Results
	IDR2D identifies reproducible components of ENCODE ChIA-PET experiments
	Mappings of genomic interactions between replicated ChIA-PET experiments are predominantly unambiguous
	Assessing reproducibility of Hi-C experiments

	Discussion

	spatzie: An R package for identifying significant transcription factor motif co-enrichment from enhancer-promoter interactions
	Abstract
	Introduction
	Materials and Methods
	ChIP-seq data for simulated co-enrichment
	ChIA-PET datasets
	Genomic annotations
	Statistical cooperativity calculation with spatzie

	Results
	spatzie tests transcription factor motifs for co-enrichment in enhancer-promoter interactions
	spatzie identifies co-enrichment from simulated data
	spatzie identifies germ layer and tissue-specific enhancer-promoter transcription factor interactions

	Discussion

	Conclusions
	Deep learning in biology

	Supplementary information for seqgra: Principled Selection of Neural Network Architectures for Genomics Prediction Tasks
	Supplementary Figures
	Supplementary Tables

	Supplementary information for Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay
	Supplementary Figures

	Supplementary information for High resolution discovery of chromatin interactions
	Supplementary Figures
	Supplementary Tables

	Supplementary information for IDR2D identifies reproducible genomic interactions
	Supplementary Figures
	Supplementary Tables
	Supplementary Methods
	IDR2D procedure


	Supplementary information for spatzie: An R package for identifying significant transcription factor motif co-enrichment from enhancer-promoter interactions
	Supplementary Figures
	Supplementary Tables
	Supplementary Methods
	Calling interaction events with CID
	Generating a unified CID interaction set
	Calling CID enhancer:promoter interactions for each cell type
	Analysis of spatzie results for CID and Grubert et al. interactions



