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Abstract 

In the field of artificial intelligence hardware, a memristor has been proposed as 

an artificial synapse for creating neuromorphic computer applications. Changes 

in weight values in the form of conductance must be identifiable and uniform to 

train a neural network in memristor arrays. Because of the high mobility of metal 

ions in the Si switching medium, an electrochemical metallization (ECM) 

memory has shown a high analogue switching capacity. However, switching 

unpredictability is caused by the extreme stochasticity of ion transport. I 

demonstrated a Si memristor with alloyed conduction channels that works 

dependably and enables large-scale crossbar array deployment. In addition, 

heterogeneously integrated neuromorphic chips have been developed to allow 

physically reconfigurable neuromorphic computing. This thesis examines alloyed 

metal-based silicon memristors and stackable neuromorphic chips with 

heterogeneous integration for reliable and reconfigurable neuromorphic 

computing. 
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row). Kernel operations were performed in parallel by stacking three different kernel layers. 

The maximum and minimum values of the current sums are indicated by error bars. ..........117 

Figure 3-4: The use of stackable neuromorphic chips in a noisy environment: the insertion of a 

denoising functional layer in the midst of the chaos. a, the addition of Gaussian noise (0.5) to 

images from the eye layer results in the generation of corrupted letter images. b, block diagram 

of the letter recognition task that was performed on a corrupted ‘T' letter image. On the 

corrupted letter image of the letter T, we performed three different kernel operations. The 

current sums are calculated for each kernel individually. The difference between the current 

sum and the previous sum is indicated by arrows. Because of the noise in the letter "T," the 

outputs of the current sum from the "I" kernel and the "T" kernel show only a marginal 

difference, indicating that letter recognition is difficult. c, Denoising functional layer neural 

network architecture with denoising autoencoder (25 × 5 × 25 neurons) and denoising 

autoencoder. The denoising layer, which includes memristor crossbar arrays, is added after the 

letter images have been denoised in step d, as shown in the black diagram. Example of letter 

recognition task performed on denoised letter image of the letter T, as described in the block 
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diagram shown in Figure 3b. Following the denoising process, the current sum from the ‘T' 

kernel yields a significantly higher value than the current sum from the ‘I' kernel. This implies 

that, following the completion of the denoising process, the task of letter recognition will be 

more successful. 
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Figure 3-5: Schematic illustration of three-dimensionally stacked neuromorphic chips for 

multi-modal sensor fusion. a, Photodetectors and strain sensors can provide several sensory 

inputs. The depth and width of networks can be changed by simply stacking or changing chips. 

Furthermore, the size and kind of memristor crossbar array can be changed based on the size 

and function of the sensor array. b, an example of a basic neural network architecture for sensor 

fusion. The top left (red) neurons represent early visual processing. Bottom left (blue) neurons 

represent early haptic processing. Right (purple) neurons exhibit multi-modal sensor fusion 

with sparse connections. 
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Figure 3-6: Confocal optical measurement setup for chip-to-chip communication. a, An optical 

image of a confocal imaging setup. The beam path of light input from a 635 nm laser diode is 

indicated by a yellow arrow (light source). Hetero-integrated chips are mounted to adapters as 

shown in the photo in the right-hand side. Purple lines represent the chip for the eye layer, 

whereas green lines represent the chip for the process layer. Micro-manipulators fine-tune two 

chips. When more than two chips are communicated, they are replaced and measured 

sequentially. b, A confocal imaging setup diagram. The light is formed into three letters ('M,' 

'I,' and 'T') using a patterned photomask. PM stands for patterned mask; CL stands for free-

space collimator lens; BS stands for beam splitter; OL stands for objective lens; and 

CHIP stands for hetero-integrated chip. To adjust the position of light pattern input and chips, 
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a confocal setup was employed. We were able to accomplish minimal optical crosstalk between 

chips by carefully tweaking micro-manipulators and shifting the positions of chip mount 

adapters with proximity. 

................................................................................................................................................125 

Figure 3-7: I-V characteristics of 6 × 6 photodiode array and 6 × 6 LED array in an eye layer. 

a, I-V curves of photodiodes. Orange curves show the response of photodiodes to the light (0.1 

mW/mm2) while blue curves show the I-V characteristics with no light. b, I-V curves of LED 

devices in 6 × 6 array. Optoelectronic devices (photodiodes and LEDs) in other layers (e.g. 

denoising layer and classification layer) show the similar levels of performance. For the 

demonstration, only 25 devices were used for 5 × 5 pixels images.  
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Figure 3-8: Schematic illustrations of photodiodes/LEDs array fabrication for a stackable 

heterogeneously integrated neuromorphic chip. a, Silicon on insulator (SOI) wafer with 

epitaxially grown Si was prepared. b, SiO2 layer was deposited on the SOI wafer by plasma 

enhanced chemical vapor deposition (PECVD). The SiO2 layer was patterned using a 

photolithography tool and wet etch (BOE 7:1). c, epitaxial Si was patterned and etched by wet 

etch (KOH solution). d, After epitaxial lift-off (ELO) process, LED/PD stack was transferred 

to the SiO2 membrane treated with APTES and polyimide. The detail of LED/PD stack 

structure is shown in red box. e, LED was patterned by wet etch (Cr etchant, HCl + H3PO4). f, 

PD was patterned by wet etch. g, Ti/Pt/Au was deposited on the p-doped side. h, Ni/Ge/Au was 

deposited on the n-doped side. The final structure of LED/PD stack is shown in navy box. 
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Figure 3-9: Field-programmable gate array (FPGA) system for memristor crossbar array 

measurement. a, Schematic of FPGA system. Parallel programming and reading were 
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controlled by software on computer. b, Image of the FPGA system. The system consists of a 

core board, a 64 channels-TIA board, two 64 channels-DAC boards, and a connector board 

with DUT connectors. DUT connectors were connected to the probe card for programming and 

reading. We used 5K ohm resistors to initiate the crossbar array. c, Image of the crossbar array 

mounted to the probe card......................................................................................................128 

Figure 3-10: Schematic of 5 x 5 kernel operation on 5 x 5-pixel images. To perform a 

recognition task of three 5 × 5 letter patterns, we implemented three 5 × 5 kernels into Si 

memristor crossbar arrays. Fig. 3-10 presents three 5 × 5 kernels represented in software (Top) 

and programmed in memristor crossbar arrays (Bottom), respectively. 
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Figure 3-11: Image preprocessing in the layer-to-layer light communication. Patterned Images 

obtained by photodiode arrays with 0.1 V reverse bias both in eye layer (‘A’ images) and in 

classification layer (‘B’ images). Due to the light diffraction, there are some noises around the 

letter patterns (Top, ‘A’ images). These noises are filtered when the light information is 

processed by a photodiode array in classification layer (Bottom, ‘B’ images). 
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Figure 3-12: Flow chart of the optical and electrical measurements in chips. Black boxes 

indicate the interactions between a laser diode and photodiodes. Blue boxes indicate the 

interactions between LED/PD stacks. Red boxes indicate the interactions between a memristor 

crossbar and the FPGA system. In the process of a crossbar, the conductance programming has 

been performed using a closed-loop scheme before Multiply-Accumulate (MAC) operations. 
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Figure 3-13: Software simulation results of denoising autoencoder to noisy input as a function 

of Gaussian noise level. Denoising autoencoder has been implemented to improve the pattern 

recognition. Gaussian noise has been added to ground truth with different noise levels. Noisy 

inputs are inserted to the 25 × 5 × 25 denoising autoencoder. Denoised output show the 

simulation result of noisy input. Learning parameters are as follows. Adam optimizer has been 

adopted with 0.0003 of learning rate and 100 of epochs. Loss has been calculated by the mean 

squared error (MSE) and weights have been updated by back-propagation. Different level of 

gaussian noise has been added to the original data. ...............................................................132 

Figure 3-14: Denoising autoencoder training loss. Training loss from denoising autoencoder. 

Adam optimizer has been adopted with 0.0003 of learning rate. Loss has been calculated by 

the mean squared error (MSE) and weights have been updated by back-propagation. Different 

level of gaussian noise has been added to the original data. Total number of dataset is 180 and 

20 % of dataset is used for validation 

................................................................................................................................................133 

Figure 3-15: Distribution (cumulative distribution function) of Multiply-accumulate (MAC) 

operations and current sums of denoising autoencoder in software and memristor crossbar 

arrays. As described in Fig 3-4c, the 25 × 5 × 25 denoising autoencoder has been implemented 

into Ag-Cu alloy Si-based memristor crossbar arrays. No bias value has been used in the neural 

network. For both fully-connected layers, differential pairs of memristors are used to represent 

positive and negative MAC values. A rectified linear unit (ReLu) has been used to MAC values 

in the first fully-connected layer. Then, MAC values are normalized and converted to voltage 

pulses before the second fully-connected layer. Histograms show the MAC values performed 

by software (floating number) and Ag-Cu alloy Si-based memristor crossbar arrays (current 
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sums averaged by the number of maximum number pulses = 100, unit - μA). Left shows the 

MAC values in the first fully-connected layer and right shows the MAC values in the second 

fully-connected layer. The output current from the crossbar is calculated by memristor 

differential pairs. The negative MAC values are zeroed for the next kernel layer ................134 
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Chapter 1  

Introduction to Neuromorphic Computing 

Neuromorphic computing is the term used to describe computers or components that are 

inspired by the brain and that mimic an artificial neural network with densely connected 

parallel neurons and synapses. In order to realize neuromorphic computing, a physical 

computing platform is required. Designing the appropriate device, circuits, and architecture for 

neuromorphic computing hardware is essential for putting neural networks in embedded 

systems into widespread use. Deep learning and artificial intelligence (AI) advances have led 

to great attention being given to memristor-based AI hardware accelerator, since it can conduct 

a matrix multiplication in the simplest form to help with AI workloads. Computing systems 

have a long history, and I will highlight one kind of memory that is called memristor and is 

also known as resistive random access memory (RRAM) in this thesis. With the alloying 

technique I developed, I enhanced RRAM, which would be a critical component of 

neuromorphic computing technology. 

1.1 Computing Systems 

Once deep neural network (DNN) was implemented, artificial intelligence (AI) began 

performing better than human beings. Despite DNN-based AI models outperforming human-

level recognition and classification, the gap between computer systems and human brain is still 

wide when it comes to their functionality and energy efficiency. AI algorithms nowadays are 
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implemented on traditional computer devices such as CPUs and GPUs (GPU). To accelerate 

the speed of computation for AI tasks, field-programmable gate array (FPGA) and application 

specific integrated circuit (ASIC) have been developed as well as described in Table 1-1. These 

computer systems, however, are built on silicon technologies that have beyond the fundamental 

limits of quantum mechanics. There is thus only a small amount of space to enhance the overall 

system performance and energy efficiency in traditional computer systems. Performance of the 

computer system is mostly dependent on the data bandwidth between processor units and 

memory units in the conventional von Neumann computing design, in which the processor 

units and memory units are physically separate. This is because the processor units handle data 

received from memory units and the data handled is then stored in memory units. Because of 

this, current computer hardware research is mostly interested in addressing bottlenecks at the 

processor-memory level, as well as artificial intelligence algorithms, peripheral circuits, and 

computing architecture integrated together. Advanced computational hardware that seeks to 

achieve extremely efficient operations in neural networks is referred to as AI hardware 

accelerator. Non-von Neumann computing architecture such as in-memory computing allows 

for large and concurrent data processing. To use AI hardware in this way, the hardware is 

capable of handling computer operations for neural networks with a speed and efficiency 

beyond that of standard computers. Table 1-2 summarizes strengths and weaknesses of 

hardware used for AI data processing. Unlike CPU, AI hardware is designed to improve the 

efficiency of computer operations for AI. Due to the parallel data processing required by AI 

algorithms, GPUs have found widespread usage as AI platform hardware. Until now, GPU has 

contributed the most to the AI implementation in real-world applications. FPGA is another kind 

of AI hardware that offers higher degrees of reconfigurability via hardware reconfigurability. 

In general, FPGA consumes less power but costs more than GPU. Because FPGA is flexible in 

terms of design and efficient when it comes to energy use, it is an excellent option for people 
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that need these characteristics. In the meantime, ASIC contains many types of chips such as 

tensor processing unit (TPU) and neural processing unit (NPU) to implement AI models. 

Application-specific ASIC design offers rapid data processing and low device footprint. 

Although ASIC can perform complicated computer operations with the optimized architecture 

including an arithmetic unit like CPU, it is not possible to reconfigure the architecture once it 

is designed and it takes long time to manufacture ASIC chips. To solve these problems, 

neuromorphic computing hardware, which mimics biological neural networks, has been 

proposed as the next stage of ASIC for accelerating AI workloads and increasing energy 

efficiency for computer processes. The aim of this thesis is to investigate the use of 

neuromorphic computer hardware, considered the next generation AI hardware, as it relates to 

this work.  
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Table 1-1: Features and manufacturers of hardware systems. 
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Table 1-2: Hardware types for AI-driven data processing. 
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1.2 Memristor: resistive random access memory 

Processing information in human brain has an entirely different paradigm from 

conventional von-Neumann computing architecture. While von-Neumann computing 

architecture is optimized for accurate and precise information processing, human brain is 

controlled by spatial and temporal events called ‘spike’. Neurons can accumulate spikes 

through synapses and convert them to membrane potential. If many spikes arrive at the neurons 

within a short time, a membrane potential reaches threshold, and a neuron outputs a spike to 

other neurons. The spike events are different from digital information in von-Neumann 

computing architecture in the way that spike only contains information regarding time and the 

origin of spike. To mimic these biological behaviors like neurons and synapses, many 

electronic and ionic devices have been invented. The most widely known device is ‘memristor’ 

which is also known as resistive random access memory (RRAM). For clarity, I will use the 

term RRAM for memristors from now on. Once it was found that RRAM can represent 

synapses in neural networks by modulating resistance values with a sandwiched two terminal 

device, they have been substantially studied to implement neural networks primarily on the 

simplest structure nano-device ‘RRAM’. In the first generation of neuromorphic computing 

hardware, synaptic devices were constructed by complementary metal oxide semiconductor 

(CMOS) transistors. Thus, synaptic strength information between neurons must be stored and 

processed separately. However, research communities longed for neuromorphic computing 

hardware that can exhibit more biological behaviors by having both memory function and 

processing function in a single device. Flash memory, RRAM, phase-change random access 

memory (PRAM), and magnetic random access memory (MRAM) were suggested for the next 

generation neuromorphic device. Among them, RRAM is a strong candidate for the next 

generation neuromorphic computing since it can have multi-values like biological synapses. 

Compared to flash memory type neuromorphic device, RRAM devices show high switching 



34 

 

speed, high device density, low operating voltage, low energy consumption, and CMOS 

compatibilities for micro- and nano- fabrication. 

 

 Since the first resistance switching is reported in Au/SiO2/Al RRAM devices, many 

two terminal RRAM devices have been suggested [33]. The switching of RRAM can be 

achieved by the transformation of the functional materials. In typical, it can have two states 

‘OFF’ and ‘ON’ determined by the values of resistance. Current-voltage (I-V) measurement 

curves are presented depending on a switching medium and an active metal. One is bipolar 

RRAM and the other is unipolar RRAM as shown in Figure 1-1. When the voltage is scanned 

during the I-V curve test, the device has an electric field to it such that there is a transition from 

high resistance to low resistance in the RESET process or from low resistance to high resistance 

in the SET process. Since the majority of RRAM devices can have analog values not just digital 

(‘OFF’ and ‘ON’), researchers have attempted to enable this RRAM’s analog memory devices 

to stimulate biological synaptic functions [34], [35]. In particular, when it comes to the 

advanced artificial intelligence technique which is deep learning, a crossbar array of RRAMs 

shows the great potential for accelerating a multiply-accumulate (MAC) operation by simply 

sending a train of voltages and receiving a current. For reliable MAC operations for deep 

learning, a great number of RRAM devices is required in a RRAM-based crossbar array. In 

this thesis, electrochemical metallization (ECM), one type of RRAM device, will be mainly 

discussed since I improved the property of ECM-based RRAM using metallurgy. I will discuss 

the working principle of ECM-based RRAM and its challenges for the rest of this chapter.  

 Unlike other types of RRAM devices, the active electrode of ECM-based RRAM 

devices is made of a metal that is readily dissolved in and transported through the switching 

medium layer, which distinguishes them from other types of RRAM devices. When referring 
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to the switching medium layer, it should be used in a wide sense to encompass materials with 

both low and high ionic conductivity. This fundamental definition of ECM-based RRAM 

devices may be fulfilled by a broad range of different materials, but the active metal in most 

devices studied so far has been Ag or Cu. The ECM-based RRAM serves primarily to illustrate 

the concept of devices with highly mobile active electrodes such as Ag, Cu, or Ni [36], [37]. 

Single Ag filaments were initially seen using an optical microscope and the Ag/Ag-As2S3/Au 

device [38]. Transmission electron microscopy was used to investigate the conducting channels 

in the Pt/SiO2/Ag memristor devices under investigation [36]. There is no conductive filaments 

generated in the SiO2 layer between the Ag electrode and the Pt electrode due to the novel 

planar device's manufacturing method. Ag+ is produced when a positive voltage is applied to 

the Ag electrode, resulting in oxidation. When an electric field is applied, Ag+ flows toward 

the Pt negative electrode, which also serves as a positive electrode. This process is called ‘SET’ 

and occurs under the condition that the active electrode is supplied with a sufficiently high bias 

voltage V. The SET process is divided into the following steps, which are shown using Ag as 

an example of the active electrode and Pt as the catalyst: First, anodic dissolution of Ag in the 

solid electrolyte according to the reaction where Ag+ represents the metal cations. Second, as 

a consequence of the high electric field, the Ag+ cations move across the solid electrolyte. 

Third, the amount of Ag+ cations in the solid electrolyte decreases and is removed. When Ag+ 

comes into contact with the surface of the Pt electrode, the reduction process begins, resulting 

in the conversion of Ag+ to Ag. The switching middle layer of RRAM devices acquires 

conductive Ag filaments throughout the Ag accumulation process and this results in a low 

resistance state. When the metal filament has grown enough to make contact with the opposing 

Ag electrode, an ECM-based RRAM device is activated. Unless a substantial voltage of 

opposite polarity is applied, the device will stay in the ON state until the electrochemical 

breakdown of the metal filament forces it to be reset to the OFF state. During the first phase of 
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RESET, the electronic current passes through the metallic filament while an electrochemical 

current dissolves it. The ‘RESET’ finalizes after the conductive filament is broken by the 

current and the Pt electrode receives a positive voltage, resulting in a high resistance condition 

for the RRAM device. With a careful design of materials selection, RRAM devices could be 

controlled with tunable SET and RESET processes. Although ECM-based RRAM can achieve 

many excellent one of switching properties, none of RRAM devices can meet device 

requirements simultaneously such as temporal variation, spatial variation, switching endurance, 

data retention, multi-level capability, and asymmetric nonlinearity for reliable neuromorphic 

computing as depicted in Figure 1-2. Here, I also would like to cover device performance 

requirements and why each of them is significant.  

First, the difficulty of mass manufacturing RRAM devices is exacerbated by the lack 

of uniformity in various device characteristics. Several factors, such as switching voltages and 

high- and low-resistance states, may be very changeable. Resistance switching is subject to 

temporal and spatial variations. The variation of electrical characteristics of RRAM devices is 

considered the most challenging factor for real-life applications. It is possible that the variation 

of RRAM device can be used for security application like a random number generator, but it is 

required to have less variation in neuromorphic computing which I mainly discuss in this thesis. 

The random nature of conductive filament formation and rupture is the main source of these 

variations. The changing nature of RRAM devices between cycles and devices is a major data 

storage bottleneck. Oxygen vacancy defects, which occur in the conductive filaments from the 

stochastic behavior of creation and destruction during the switching event, influence impact 

variability from cycle to cycle. Due to the conductive filament's random nature, it is impossible 

to predict and precisely regulate its shape. There is also non-uniformity between RRAM 

devices, which results in the degradation of the window margin between two states and lowers 

memory performance. According to the researchers, manufacturing process inconsistencies 
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like as variations in switching layer thickness, etching damage, and electrode surface roughness 

explain this unpredictability. 

Second, endurance is a property of resistant random access memory that is 

characterized by making transitions between a high resistance state (HRS) and a low resistance 

state (LRS). As a result, the test for endurance is comprised of finding out maximal number of 

SET and RESET cycles. This often uses the figure of merit, resistance values for HRS and LRS 

versus the number of switching cycles. Each resistive state change has the potential to 

permanently damage the RRAM and degrade its performance. Again, endurance is defined by 

how many times an RRAM device can be switched between the HRS and LRS states but retain 

a detectable ratio between the two states. The detectable ratio for two states is commonly 

suggested above 5 but it is not standardized. The endurance test is performed based on the 

maximum number of successful set/reset cycles until the HRS and LRS become the value the 

researchers set tentatively (5 is commonly used). In a resistive switching device, RRAM’s 

endurance properties are tested via a series of I-V sweep measurements through the extraction 

of HRS and LRS when a read voltage is applied. This technique is dependable since it allows 

for device switching at the right time throughout each cycle. For a more realistic measurement 

that is close to the device operation, pulse input can be used instead of I-V sweep.   

 Third, data retention of an RRAM device is governed by the stability of the LRS and 

HRS after set and reset transitions. The duration of the device's state after a set/reset operation 

influences the amount of data that an RRAM device can keep after a set/reset operation. 

Therefore, the figure of merit for data retention is current versus time for each resistance state. 

The resistance states can be measured at multi-level values with varying compliance current or 

number of voltage input. To assess the state retention, one must use a low read voltage and 

apply continuous voltage stress over time, and then analyze the current versus time curves for 

both LRS and HRS. Because of the dispersive nature of atomic rearrangements, it is difficult 
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to achieve a lengthy retention period in RRAM as a consequence of set voltage. In HRS, 

however, retention time is irrelevant since the device is often in its original state, and RRAM 

will maintain this state even in the absence of bias. A greater compliance current results in a 

stronger conducting filament that is more stable over time in an RRAM with conductive 

filament switching mechanisms, while a lower compliance current results in a weaker 

conducting filament that is less stable over time. One of the main challenges for RRAM devices 

is securing the excellent data retention for weakly formed conducting filament. 

Fourth, RRAM devices are capable of achieving multilayer resistive states, which 

enables them to provide the advantages of low-cost, high-density nonvolatile data storage 

systems. At the present, significant research is being conducted in the area of RRAM with the 

aim of reducing memory arrays while improving their structural density. Previously, RRAM 

storage density was improved by shrinking the device; however, the intricacy of the 

experimental methods made this impossible to apply successfully. Other possible are the use 

of three-dimensional (3D) crossbar structures and vertical RRAM. However, each of these 

architectural forms require complicated manufacturing processes, which is undesirable. A far 

more straightforward method of increasing storage density in RRAM devices is to use 

multilevel property, which can make the storage of more bits per device without scalability. 

This layered state is one of the most intriguing features of RRAM, as it has the potential to 

substantially improve the device density of the memory system. This means we can accomplish 

more than simply ON and OFF states, and we can do it without increasing the device's size. 

Precision control of the resistance of the different resistance levels in RRAM is needed for 

successful multilevel state functioning; otherwise, the device would exhibit variability and 

reliability issues due to the random nature of conductive filament. 

Fifth, non-linearity of resistance value update is substantially critical in RRAM devices. 

It is desirable that potentiation process (resistance value getting smaller) and depression 
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process (resistance value getting larger) are symmetric and linear to identical voltage pulses 

with the opposite polarity. Voltage pulses are required for neural network training because they 

potentiate or depress each synapse, independent of its initial resistive state. A high linearity of 

the RRAM characteristics is required, where a fixed applied pulse results in a known amount 

of potentiation/depression via an additive or multiplicative term, and (ii) a high symmetry of 

the update is required, where similar update characteristics are obtained for potentiation or 

depression under positive or negative bias, respectively. Because RRAM devices have distinct 

set and reset transitions, symmetric features are typically difficult to accomplish with this 

technology. Linear weight update is needed for synaptic applications; however, real-world 

RRAM devices often exhibit non-linear behavior. RRAM technologies often exhibit a 

considerable degree of non-linearity as compared to other memory technologies in terms of 

both potentiation and depression properties. The asymmetric non-linearity factor is one method 

for determining the non-linearity of RRAM devices (ANL). It will be utilized in the book's 

Chapter 2. The high ANL values for Ag-based traditional RRAM devices are readily discovered 

in Chapter 2, where they are addressed in depth. My goal is to propose an alloying technique 

for improving device non-linearity, which will have a significant effect on the training process 

of neural networks on RRAM. 
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Figure 1-1: Types of bipolar and unipolar two terminal RRAM devices. a, bipolar RRAM 

device schematic. Depending on the size of filament inside of switching medium, the resistance 

value of RRAM device is determined. (Orange: OFF, yellow: ON). b, unipolar RRAM device 

schematic. c, I-V characteristics of bipolar RRAM device. HRS and LRS stand for high 

resistance value and low resistance value. SET process forms or strengthens a filament and 

RESET process disrupts or weakens the filament. d, I-V characteristics of unipolar RRAM 

device.  
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Figure 1-2: Challenges in memristor device performance matrices. Six device matrices are 

presented. Each number in round brackets represents good device performance from ref [1]–

[6]. It is worth noting that none of RRAM devices developed can meet all six requirements at 

the same time.   
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1.3 Research Goals and Thesis Organization 

The purpose of this thesis is to investigate and build a reliable RRAM device as well as crossbar 

arrays for reliable neuromorphic computing applications. When copper (Cu) and silver (Ag) 

are alloyed, silicon-based RRAM devices show superior switching characteristics such as 

linearity, symmetry, and uniformity when compared to silicon-based RRAM devices with silver 

active metal. Additionally, this thesis describes the development of heterogeneously integrated 

neuromorphic devices for reconfigurable neuromorphic computer hardware. We can physically 

reassemble the chips using chip-to-chip optical connectivity for a variety of applications. It is 

anticipated that hetero-integrated neuromorphic circuits would enable easy reconfiguration of 

various sensory devices and multi-functional computers. The following is the substance of this 

thesis. To begin, Chapter 2 discusses the device solution, which consists of Ag-Cu alloy silicon-

based RRAM devices. The alloying metal method enables us to build well-balanced RRAM  

devices in terms of device performance matrices suggested in Fig. 1-2. Second, Chapter 3 adds 

to the hardware-level reconfigurability that heterogeneously integrated stackable chips provide 

in order to adapt to a variety of situations (i.e. multi-modality like light, touch, temperature, 

and high noisy environment). At the conclusion of each chapter, the work's contributions will 

be addressed.  
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Chapter 2 

Alloying Conducting Channels for Reliable 

Neuromorphic Computing 

This chapter covers Ag-Cu alloyed memristor device and crossbar arrays. This chapter has been 

published with minor changes as ‘Alloying conducting channels for reliable neuromorphic 

computing’, Nature Nanotechnology, 15, 574-579 (2020) [39]. Hanwool Yeon†, Peng Lin†, 

Chanyeol Choi†, Scott Tan, Yongmo Park, Doyoon Lee, Jaeyong Lee, Feng Xu, Bin Gao, 

Huaqiang Wu, He Qian, Yifan Nie, Seyoung Kim, and Jeehwan Kim. (†co-first authors) The 

abstract of the paper is shown below. 

For emerging neuromorphic computing applications, a memristor has been suggested as an 

artificial synapse [40]–[42]. With regards to device conductance, alterations to the weight 

values should be distinct and homogeneous while training a neural network in memristor 

arrays. Because metal ions are highly mobile in the Si switching medium, good analog 

switching performance has been demonstrated [1], [6], [43] by a primarily-silicon-based 

electrochemical metallization (ECM) memory [44], [45]. Alternatively, switching variability 

is caused by the high stochasticity of ion transport. We present our controllable, stable Si-

based memristor that incorporates alloyed conduction channels for large-scale crossbar array 
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implementation. The principal mobile metal in the conduction channel is conventional silver 

(Ag), which is alloyed with silicidable copper (Cu) to stabilize switching. Cu effectively 

governs Ag movement at an appropriate alloying ratio. This results in three major 

improvements: first, there is significantly greater uniformity in spatial and temporal 

switching; second, across many levels of conductance there is stable data retention; and, 

third, in analogue conductance states the programming symmetry is ameliorated. With our 

alloyed memristor, we are able to produce large crossbar arrays featuring precise analogue 

programming and high device yield. These discoveries represent an essential step in the 

progression past von Neumann computing. 

 

2.1 Introduction 

Device performance matrices must meet a variety of requirements in order to run large-scale 

memristor arrays. Metal-oxide-based memristors have previously shown promise for image 

classification and signal processing in the context of large-scale arrays [3], [43], [46]–[48]. In 

the majority of these implementations, however, an extra transistor, acting as the selection 

device, was required to connect each memristor in a series and to control the device’s analog 

switching properties [3], [49], [50]. Although the gate voltage of the choosing transistor can 

modulate a reasonable analogue weight update [3], by adding a transistor, the memristor’s 

stackability and scalability are limited while the design complexity and peripheral overheads 

increase significantly. However, a memristor array without a transistor has significant 

limitations because it loses its ability for fine-grained conductance tuning and it becomes 

increasingly sensitive to switching variations. [51]. Even without transistors, ECM memory 

[52], [53] exhibits excellent multi-level switching properties towards a more linear and 

symmetric weight update. For above cases, Ag is commonly used as an active metal because 
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of its high mobility [44], [45]. However, because of the weakly formed conduction channels 

in low conductance states, such mobility causes weight variation and lowers long-term 

reliability [54]. Although these devices can modulate precise analogue states, they cannot be 

maintained for computing purposes. As a result, we need to develop a novel memristor that 

retains stability at all conductance levels while simultaneously demonstrating great analogue 

tunability. 

 

2.2 Contributions and Methods 

In this portion of my thesis, I will outline my first independent project. In order to solve the 

problems of stochastic switching uniformity and tunable weights across a wide range of 

conductance levels, we pioneered a new hardware approach that tackles both of these issues at 

the same time in a single device. Prior to developing our ECM devices, we first established a 

metallurgical approach. This was accomplished via the formation of and tailoring of conduction 

channels inside a switching medium in the order to discover a combination of metals and 

switching medium that would solve the problems of uniformity and tunable weights. We 

selected Si as our switching medium because of the large number of studies that have been 

done on the interactions between silicon and metals. On the basis of this information, we 

investigated how various combinations of metals would react with one another and with the Si 

switching media. We concluded that Ag and Cu were the most thermodynamically compatible 

combination, and this determination was confirmed when we built our memristors. Because of 

a combination of three factors, the conduction channels produced by Ag and Cu in Si exhibited 

substantially superior memristor performance. First, the conduction channels demonstrated 

uniform switching gradients. Second, when multilevel conductance states were tested, the 

channels showed reliable retention. Third, the analog conductance updates showed enhanced 
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linearity and/or symmetry. Upon observing this promising performance, we fabricated 32 x 32 

transistor-less alloyed memristor crossbar arrays to test our hardware. We had a 100% yield, 

were able to program and operate the memristor reliably, and performed interference tasks 

thanks to the significantly improved data retention. This work will facilitate the field’s move 

towards efficient analogue computing without the need for transistors in the memristor arrays.  
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Figure 2-1: Figures show the d.c. switching performance of a Si memristor using an Ag–Cu 

alloy. a, Following the forming process, typical current–voltage curves of Ag (left) and 

silicidable metals (Cu, Ni, Ti, and Cr) (right). b, Retention characteristics of Ag devices with 

several conductance levels (measured at 0.5 V). c, The effect of the Ag–Cu thickness ratio on 

alloying during production on d.c. switching uniformity—normalized on/off uniformity over 

100 cycles. d, Uniform switching of the Ag–Cu device during 100 cycles. The nominal 

thicknesses of Ag and Cu are 2 and 1 nm, respectively. e, Histogram for the set voltage 

distribution of the Ag (black) and Ag–Cu (red) devices illustrated in a and d. f, Improved 

retention characteristics of Ag–Cu devices (measured at 0.5 V) with varying compliance 

currents.  
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We began by attempting to understand the switching behaviors of our Si ECM memory, which 

are dependent on the active metals used in its construction. A 6-nanometer thick amorphous Si 

(a-Si) film atop a p-type Si substrate (0.01 centimeter) containing several active metals, 

including Ag, Cu, Ni, Cr, and Ti, is used as a device layer (see Methods for details about the 

device fabrication). Under a d.c. operation mode, a substantial difference in resistive switching 

performances was detected among the active electrodes, based on their reactivity with Si, as 

illustrated in Fig. 2-1a. Reversible resistive switching was seen in Ag devices, with the device 

conductance increasing under a positive biased condition (that is, set) and decreasing under a 

negative biased condition (that is, reset). After the forming process, however, irreversible 

conductance alterations were detected in Cu, Ni, Ti, and Cr devices. These metal-dependent 

switching behaviors are pertinent to recent work on Si ECM memory [21], [55]–[57], and their 

phase diagram with Si can be understood (Fig. 2-10). Ag is thermodynamically unstable in Si, 

as seen in the phase diagram, implying that it can be electrochemically mobile and resulting in 

resistive switching behavior. Cu, Ni, Ti, and Cr, on the other hand, have a significant interaction 

with Si, promoting the formation of a thermodynamically stable interface between the 

conduction channel and Si (associated to silicides), which might result in irreversible switching. 

Although the thermodynamic instability of Ag compared to Si permits resistive switching, it 

also results in significant switching variation and poor data retention. The set voltage and on/off 

ratio of the Ag device's associated 100 d.c. switching show temporal fluctuations of 16.4 and 

97.6%, respectively (Fig 2-11a,b). For different fabrication batches, the device also shows a lot 

of spatial variance (Fig 2-11c,d). Furthermore, as illustrated in Fig. 2-10b, the device's 

conductance levels degrade significantly at each conductance level. 
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Figure 2-2: The impact of alloying on d.c. switching performance is kinetically and 

thermodynamically regulated. 100 switching curves (top), set voltage histogram (middle), and 

retention characteristics with different compliance currents for Ag–Ti, Ag–Cr, and Ag–Ni 

(bottom). Ag and the alloying element have nominal thicknesses of 2 and 1 nm, respectively.  
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In order to address issues such as non-uniform switching and short data retention, it may be 

necessary to improve the interactivity of active metals with their switching medium. We could 

not choose active metals that would form irreversible conduction channels by reacting too 

strongly with the Si switching medium. Keeping the requirements for an active metal in mind, 

we developed Ag alloys with silicidable metals that could perform resistive switching with 

augmented uniformity and data retention. We centered our design research around satisfying 

the subsequent three requirements. First, the silicidable metals and Ag must be 

thermodynamically stable together to increase Ag’s stability in Si. Next, the silicidable metals’ 

drift mobility [58] needs to be equal or higher than Ag’s drift mobility in order for them to 

migrate into Si before or at least at the same time as the Ag migration so that the silicidable 

metal create the Ag conduction channel scaffold. Finally, the proportion of silicidable metal to 

silver must be minimized to maintain the dominant switching characteristics of Ag. In order to 

find the ideal silicidable metal, we investigated the phase diagrams of Ag with each silicidable 

metal (Fig. 2-12) and considered the diffusivity of each silicidable metal in silicon (Fig. 2-13). 

We chose copper as the complementary alloying element for a variety of reasons. First, as 

previously stated, Cu has greater diffusivity in Si than Ag (ref.[59]), so it is able to form a 

backbone or scaffold for the Ag (Fig. 2-13). Additionally, while Ni and Cr are not miscible in 

Ag, Cu is partially miscible, which forms a bridge to stabilize Ag in Si (Fig. 2-12). We 

calculated the interfacial energy and stability of the conduction channel between Si and Ag–Cu 

using density functional theory, and we employed a kinetic Monte Carlo simulation to predict 

switching dynamics centered on the Ag–Cu alloy to assess our hypothesis about the 

establishment of the Ag–Cu alloying conduction channel (See Supplementary Note 1, Fig. 2-

14–2-16). These simulations indicate that while alloying Ag with Cu appears to help stabilize 

the conductance channel, Ag can still diffuse in and out during set and reset. We determined 

the optimal Ag–Cu ratio by assessing the d.c. switching performance of a nominal thickness 
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control of Ag and Cu during evaporation at various Ag–Cu mixing ratios (see Fig. 2-10c and 

Fig. 2-5–2-7 for more details). The best Ag–Cu ratio was obtained by comparing the 

performance of d.c. switching with various Ag–Cu mixing ratios. According to Fig. 2-1d, when 

Ag–Cu devices were utilized in place of pure Ag devices, a considerable improvement in d.c. 

switching uniformity was attained (Fig. 2-1a) (Fig. 2-1a). The remarkable change in the 

temporal variation of the set voltage from 16.4 to 3.3 percent with enhanced spatial uniformity 

(Fig. 2-1e and Fig. 2-17), even though the formation voltage remained practically identical, 

was statistically quantified (Fig. 2-1e and Fig. 2-17). (Fig. 2-18). However, as indicated in Fig. 

2-1f, when switching from low to high conductance states for Ag–Cu devices, a considerable 

improvement in data retention was found. This advancement was especially noteworthy (see 

Fig. 2-19 for details of the retention properties with increased temperatures and extended 

evaluation times). Additionally, uniform switching properties with consistent data retention 

were shown to be only marginally dependent on the ambient moisture level (Fig. 2-20), which 

has been shown to have a substantial effect on switching characteristics [23], [25]. It is worth 

noting that alloying Ag with silicidable metals does not necessarily result in increased 

memristive performance, as the alloying process must follow the principles stated above. For 

example, despite their higher cost, Ag–Ti devices obey the law of miscibility with Ag but have 

a lower diffusivity than Ag in Si (Fig. 2-13). Because of its low diffusivity, it may not be 

possible to form a backbone before Ag has migrated, despite the fact that Ti forms stable 

compounds with Si. As a result of this, Fig. 2-2a demonstrates the non-uniform distribution of 

d.c. switching in Ag–Ti devices and a low data retention rate, similar to Ag devices. As a result, 

although the diffusivity of Ag–Cr and Ag–Ni devices is higher than that of Ag (Fig. 2-13), they 

are not miscible with Ag. In contrast to Ag devices, Ag–Cr–Ni devices exhibit improved d.c. 

switching uniformity as a result of the formation of backbones in comparison to Ag devices 

(Fig. 2-2b,c). However, due to the immiscibility of the Ag–Cr and Ag–Ni devices with Ag, 
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long-term stability of conductance levels was not attainable with these devices. Through these 

design criteria, we observed that an Ag–Cu alloying is helpful for driving a Si memristor's 

uniform switching and stable multilevel data retention.  
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Figure 2-3: The impact of alloy on the analogue nanosecond switching behavior of Si 

memristors. a,b, Average and standard deviation of 50P/50D ten-cycle conductance updates in 

Ag–Cu alloy (a) and pure Ag (b) under the same pulse condition (pulse conditions: potentiation 

(P) of 50 ns, 4.8 V, and n = 50, depression (D) of 50 ns, –2.9 V, and n = 50, and Vread of 1 V, 1 

ms. c, PDF of the ANL and G contrast from ten devices (50P/50D, five cycles each) for the 

Ag–Cu alloy (red) and pure Ag (grey). ANL = (GP(N/2) – GD(N/2)/(Gmax – Gmin), where Gmax, 

Gmin, GP(N/2) and GD(N/2) indicate the maximum conductance, minimum conductance, 

median value of potentiation, and medium value of depression, respectively. G contrast equals 

Gmax/Gmin. d, Endurance test of a Si memristor based on the conduction channel of an Ag–Cu 

alloy. The conductance was programmed at 50P/50D for 30 cycles. The following pulse 

conditions were used for the endurance test: potentiation of 50 ns, 5 V, and n = 50, depression 

of 50 ns, 3 V, and n = 50, and Vread of 1 V, 1 ms.  
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In order to demonstrate the computational capacity of our alloyed ECM memristors, 32 x 32 

transistor-less arrays of Ag–Cu devices were fabricated, as depicted in Figs. 2-4a–c, in order 

to show that they are capable of storing information. The fabrication technique was developed 

in such a way that the utilization of Si bottom electrodes could be increased to the greatest 

extent possible (Methods, Supplementary Note 2 and Fig. 2-8). For the purpose of determining 

the effect of alloying on the crossbar arrays, we also created arrays with silver and silver–nickel 

devices. For all electrical actions on the array, such as electroforming, programming, and 

inferences, among other things, a customized measuring system was utilized to ensure that they 

were carried out correctly (Methods). In order to detect poor retention, it was determined that 

we would program conductance ranges between zero and fifteen seconds (Fig. 2-25). This is 

the range in which poor retention can be detected. To demonstrate the weight storing 

capabilities of the materials, a 256-level greyscale image was encoded into the Ag–Cu–Ag and 

Ag–Ni arrays, as shown in Figure 2-4d, and the resulting image was displayed in Figure 2-4e. 

As a result, all of the arrays achieved 100 percent device yield, and the observable evolution 

of weight values revealed that the Ag–Cu alloy array maintained the intended picture due to 

the significantly improved data retention when compared to the other arrays. However, the 

contrast and quality of the images encoded into the Ag–Ni and Ag arrays deteriorated 

dramatically, with practically all of the recorded information being lost as a result of this 

degradation. These findings demonstrate the efficacy of the alloy strategy in terms of enhancing 

the long-term stability of ECM memristors over time, as demonstrated by the results. This 

makes it possible to operate on arrays with lower conductance ranges, which can aid in the 

reduction of programming power (see Supplementary Note 3 and Fig. 2-26) as well as the 

alleviation of sneak path and line resistance difficulties (see Supplementary Note 4 and 

Supplementary Figs. 2-27–2-30).  
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Figure 2-4: 32 x 32 Si memristor arrays with Ag and alloy active electrodes. a, Illustration of 

an Ag–Cu alloy memristor chip. b, An optical micrograph of a single 32 x 32 array. 240 μm 

scale bar c, SEM picture of a section of the array revealing the crossbar structure. 15 μm scale 

bar c, Image programming and data retention experiments in Ag (top), Ag–Ni (middle), and 

Ag–Cu (bottom) arrays. e, Convolutional kernel processing in the Ag–Cu array, demonstrating 

the Ag–Cu array's computational capabilities.  
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We programmed convolutional kernels into the Ag–Cu transistor-less arrays and used them to 

conduct image processing tasks in order to demonstrate that they were functionally operational. 

When a kernel (with a tiny matrix of weights) is applied to each pixel and its local neighbors 

in an image, the convolutional process creates output pixels from the weighted sum operation 

between the kernel weights and the input pixel values, which is performed on the input pixel 

values. In order to take advantage of the enhanced data preservation given by the Ag–Cu 

memristor, faithful image processing based on convolutional kernels was demonstrated, as 

illustrated in Figs. 2-4e and 2-4f. Parallel processing was achieved by programming four image 

kernels into four columns of the array (sharpen, box blur, vertical and horizontal edge detection, 

and vertical and horizontal edge detection) (Methods and Fig. 2-9). To implement negative 

weights, two memristors in the same output column were employed as a differential pair to 

accept either positive- or negative-valued input pixels (1 x 18 pixels total for each input vector). 

It has been demonstrated that our alloy approach is effective for computing applications 

through the successful image processing performed with Ag–Cu memristor arrays. Large array 

sizes may be required in order to accommodate more sophisticated jobs. In addition, increasing 

the array dimension can result in a quadratic rise in the parallelism of multiply-accumulate 

operations when the array size is increased. In order to lower the line resistances and to 

overcome more severe sneak-path concerns in large-scale arrays, further scaling of the array 

dimension needs optimization of the array architecture (Supplementary Note 4) as the array 

dimension grows larger (for example, integrating selector devices). The precision of the 

analogue tuning should also be carefully examined because the programming voltage may be 

disrupted by different weight patterns and increasing line resistances in big arrays, which can 

cause the programming voltage to fluctuate. 
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Figure 2-5 depicts the deposition of Ag-Cu films for active metals. We designed a step-by-step 

metal deposition method to push Ag-Cu together into a switching medium during the shaping 

stage. We began by depositing ultrathin Ag islands on switching medium, the thickness of 

which controls the opening area of Si (step1). Following that, we deposited ultrathin Cu on top 

of Ag islands-deposited Si, where the Cu islands make direct contact with the switching 

medium (step2). Finally, we enclosed the Ag-Cu islands in a 15 nanometer thick Ag film (step3). 

The ‘Ag-Cu thickness ratio' determines the quantity of Cu involved in switching. The more Ag 

film is deposited, the less Cu contributes to switching. During the formation process, the Ag-

Cu alloying conduction channels are created in the switching medium.  
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Figure 2-6: The development of an Ag-Cu alloy. SEM images and energy dispersive X-ray 

(EDX) mapping of an Ag-Cu alloying layer on an amorphous Si surface. 400 μm scale bars 

When the overall thickness was 2 to 4 nanometers, discontinuous metal films were produced 

with evenly dispersed metal clusters. Metal clusters merged at a 7-nanometer-thick Ag film 

with a 2-nanometer-thick Cu film.  
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Figure 2-7: The impact of the Ag-Cu alloying ratio on DC switching uniformity and retention. 

Normalized on/off uniformity of I Ag and (ii) Cu layers with regard to nominal thickness. 

Following the step-by-step evaporation, a 15-nanometer-thick additional Ag layer was added. 

For this mapping, the best-performing device for 100 cycles at a compliance current of 5 mA 

was chosen for each alloying condition. DC switching curves with temporal on/off conductance 

changes, as well as room temperature retention data, are also provided. When Cu was 

evaporated even 1 nm before Ag, transistors exhibited irreversible breakdown behavior 

comparable to pure Cu devices (20-nanometer-thick Cu layer). Switching performance 

dynamically varied as Ag thickness grew under fixed Cu thickness (1 nanometer), and Ag (2 

nanometer)/Cu (1 nanometer) layers generated optimum switching performance: extremely 

uniform switching with steady retention behavior at multi-level states. As the Ag-Cu ratio 

diverged from 2 nanometer-1 nanometer, non-uniform switching with poor retention (7 

nanometer-1 nanometer) or on/off degradation occurred, although consistent data retention (2 
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nanometer-2 nanometer) was found. These findings clearly indicate that Cu additions in Ag 

active electrodes have a substantial effect on switching performance, even though the quantity 

of Cu is too tiny to create a continuous layer on the Si surface. In addition, Cu's function may 

be described as follows. (1) Cu improves the stability of an Ag-based conduction channel while 

lowering the maximum on/off ratio owing to residual Cu elements linked to the Si switching 

medium (called backbone of the conduction channel). (2) Excess Cu in the Ag active electrode 

reduces the on/off window as the cycle number increases. An adjusted Ag-Cu ratio, on the other 

hand, may promote uniform switching with reasonably reliable data retention.  
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Figure 2-8: Layout of crossbars for alloy arrays with metal capping. In large array 

implementations, metal capping for p+ Si bottom electrodes is recommended to minimize line 

resistance. To create an alloy array with a gold capping layer, a novel method was devised. (a) 

Photolithography and dry etching are used to create isolated a-Si/p+ Si line patterns on an SOI 

wafer. Active device regions are shown by the protrusions on the line patterns. (b) putting a cap 

of Au on top of the p+ line patterns to decrease line resistance. The active zones are unaffected. 

(c) the bottom electrodes are passivated while the active regions are exposed. (d) finishing 

device arrays by patterning the top electrodes.  
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Figure 2-9: Stability demonstration of an Ag-Cu alloy memristor array for inference. (a) For 

parallel kernel operation, four convolutional kernels illustrated in (b) were programmed into 

four columns of the 32 32 array. As a differential pair, two memristors are utilized to represent 

both positive and negative weights.  
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Below is dedicated to Methods for research work presented in Chapter 2.  

Trench-type Si memristor fabrication 

A PECVD SiO2/SiNx isolation layer (120 nanometer/20 nanometer) was formed at 300 °C and 

a 6-nanometer-thick intrinsic a-Si film was prepared on a p-type (100)-oriented Si wafer 

(0.01 ohm centimeter, boron doping concentration of ~1019 centimeter−3) by plasma-enhanced 

chemical vapour deposition (PECVD) at 200 °C. After through-hole patterning in the isolation 

layer (25–800 micrometer2), 20-nanometer-thick active metals were deposited into the hole to 

create contact with the a-Si and a Cr/Au layer (20 nanometer/100 nanometer) was generated 

on top of the active metals to act as a passivation layer. As the counter electrode of the ECM 

memory, an ohmic contact between Au and p-Si was created. Cr and SiNx (refs. [26]–[30]) 

were chosen to inhibit moisture penetration into the Si switching medium, hence increasing the 

device's resistance to environmental fluctuations. 

 

Ag alloy deposition 

For the deposition of the Ag alloy, a step-by-step evaporation procedure was used. Following 

the evaporation of the Ag, the alloying metal was evaporated (Figs. 2-5 and 2-6). The switching 

medium's Ag alloying ratio was adjusted by the nominal thickness of the metals as determined 

using a quartz crystal microbalance. 

 

Si memristor crossbar array fabrication 

As the substrate, a 150-millimeter (100)-oriented silicon-on-insulator wafer was employed. 

After the initial wafer cleaning, a stack of a 500-nanometer-thick heavily doped p-type Si layer 

(0.001 ohm centimeter) and a 200-nanometer-thick p-type Si layer (0.01 ohm centimeter) was 
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homoepitaxially grown on a silicon-on-insulator wafer at 940 °C by ultrahigh vacuum chemical 

vapour deposition, followed by the deposition of a 6-nanometer-thick intrinsic a-Si thin film 

using PECVD. The Si bitlines were patterned and isolated from each other using 

photolithography and dry etching. Additional Cr/Au layers (1 nanometer/100 nanometer thick) 

were designed and deposited on top of the bitlines using photolithography and electron-beam 

evaporation to reduce wire resistance and serve as measurement input/output pads, as 

illustrated in Fig. 2-8. After that, a PECVD layer of SiO2/SiNx (120 nanometer/20 nm) was 

deposited to cover the entire wafer as a passivation layer for the bitlines. Following that, the 

active device region and input/output contact pads for the bitlines were formed using a 

photolithography etch that included reactive ion etching and wet etching with a buffered oxide 

solution to remove the capping layer selectively. The Ag alloy layer (20 nanometer) and Cr/Au 

capping layer (20 nanometer/50 nanometer) were deposited over the active area to serve as the 

memristor's active top electrodes. The fabrication process was completed by patterning and 

depositing the wordline using tilted Au sputtering. 

 

Device d.c. measurements 

The B1500A semiconductor device parameter analyser, in conjunction with a B1517A high-

resolution source measure unit, was used to perform quasi-static d.c. current–voltage 

measurements as well as room-temperature state-retention studies. During the forming and 

setting process, bidirectional current–voltage sweep measurements were performed on the Si 

memristors with a compliance current to ensure proper operation. 

Ultrafast pulse measurement 

An oscilloscope (DSOX3024T, Keysight), a pulse generating unit (PGU 33600A, Keysight), 

and a transimpedance amplifier (DHPCA-100, Edmund 59–179) were used to conduct an 
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ultrafast (nanoscale) analogue switching test. Weight update was carried out using a series of 

programming pulses for potentiation and depression in the same amplitude but opposite 

polarity as the original pulses. After each programming pulse, read pulses were delivered to 

our memristive devices in order to track the change in conductance over time. To ensure that 

the conductance values were stabilized, a current from the read pulse was integrated and 

averaged for one millisecond. Because wave reflections are likely to occur in the radio-

frequency domain, the impedance value of the oscilloscope was set to 50 ohm, and the load 

impedance of the pulse generator unit was set to infinite to prevent reflections. 

Array measurement 

The array measurement was carried out using a board-level peripheral system that had been 

designed to have parallel access and programming capability. The system's specifics have been 

previously published. [60]. The memristor arrays were accessed using a 32 x 32 probe card that 

was linked to the peripheral system and measured the voltage across them. In order to facilitate 

selective programming while also minimizing sneak-path issues, a 1/2 voltage biasing scheme 

was implemented (selected rows were biased at 1/2 of the operating voltage, and selected 

columns were biased at 1/2 of the operating voltage, whereas all of the unselected rows and 

columns were grounded). To combat sneak current during computation, the ground scheme (in 

which all column outputs were essentially grounded by the transimpedance amplifiers) was 

utilized for inference to suppress it. Supplementary Note 4 provides a detailed examination of 

the array operations performed on our passive Ag–Cu memristor array. Each device in the 

produced array must undergo an initial electroforming procedure before it can be used. It was 

necessary to perform the forming process in a series by applying a train of ramping voltage 

pulses to the device until its conductance exceeded the one microsecond threshold. Following 

the formation of the gadget, it was reset to its initial off state by the manufacturer. The forming 

voltages (which were picked between 4 and 8 V) were tiny enough that they did not cause 
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problems with devices that were not selected being set to 1/2 voltages. Each device in the array 

was cycled between 5 and 20 µS at least five times after electroforming to ensure that it was 

ready for application. 

 

Image programming and retention test 

A closed-loop technique was used to program greyscale images into different alloy arrays, 

which were then tested. The conductance values between the maximum and minimum 

conductance values defined for each task were linearly transferred to the 256-scale pixel values 

using linear mapping. The conductance tuning of pixels and devices was carried out in parallel 

within each column to allow for rapid programming. It was necessary to perform the retention 

test several times at an interval of 10 seconds by repeatedly checking the device conductance. 

When comparing different alloy memristors, the raw conductance value as well as the 

reconstructed image based on 256-scale pixel values were both employed to make the 

comparison. It was necessary to reverse and linearly translate the conductance values back to 

the greyscale pixel values in order to obtain the final result. 

 

Convolutional kernel operation 

In order to demonstrate the feasibility of using Ag–Cu alloy memristor arrays for reliable 

inference applications, four convolutional kernels were selected for use in a proof-of-concept 

presentation. Each kernel consisted of three pixels by three pixels, and two memristors were 

utilized to represent both positive and negative weight values in each kernel. The 3 x 3 x 2 

memristors were mapped into an 18 x 1 vector and programmed into a column of the array 

using the MATLAB programming language. The 3 × 3 input pixels were applied accordingly 

to the input rows, with both positive- and negative-valued pixel amplitude for the differential 
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memristor pair. After programming the kernels, 3 × 3 input matrices from a 310 × 194 pixel 

image were fed to the array in series for iterative convolutional kernel operations. Through the 

use of a transimpedance amplifier, the column outputs from each cycle were converted into 

voltage amplitude, which was then read out by analog-to-digital converters and recorded as a 

single pixel in filtered images. 

 

Below is dedicated to Supplementary Notes for research work of the chapter 2.  

 

Supplementary Note 1. DFT and KMC simulation for conduction channel formation 

 

1.1. DFT calculation of stability of the interface between metal clusters and Si medium 

When metallic clusters are formed in a solid electrolyte, extra pressure (ΔP) is applied on the 

clusters due to the surface tension [61], [62]. Δp is given approximately by Δp = 2 γ /r, where 

γ is the interfacial energy and r is the radius of the clusters. As a result, extra pressure can 

rupture metal clusters, and interfacial energy should be reduced to improve metal cluster 

thermodynamic stability. The use of Ag clusters has been used to show volatile resistive 

switching devices (also known as diffusive memristors) that are based on the high interfacial 

energy of the Ag/switching medium. [63]. This is consistent with our findings that pure Ag 

produces unstable conductance weight, which is explained by the thermodynamic 

immiscibility of Ag in Si. As a first-order approximation, the interfacial energy between Si 

surface and metal (alloy) layers were investigated using DFT calculation with Vienna ab-initio 

Simulation Package (VASP). With a cut-off energy of 450 eV, the valence electrons were 

extended into projected enhanced waves. The exchange-correlation effect is described using 
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the Perdew-Burke-Ernzerh technique. The electronic and ionic convergence requirements were 

10-6 eV and 10-5 eV, respectively. The Si-metal interface was built using 2x2 Si-3x3 Cu, 3 x 3 

Si-4 x 4 Ag, and bi-axial strain of 0.4 percent and -1.5 percent on the metal layers, respectively, 

to reduce lattice mismatch. A 4 x 4 x 1 Monkhorst-Pack mesh was used for integration across 

the first Brillouin zone. The interfacial energy (int) between Si and the metal layer is defined 

as follows: ESi is the energy of the silicon substrate, Emetal is the total energy of the metal (alloy) 

layer, Esystem is the total energy of the metal/Si stacked system, A is the interface area, Si is the 

surface energy of Si, and metal is the surface energy of metal, respectively [64], [65]. Two Cu-

Ag alloying scenarios are investigated over the Si surface: (1) Si in contact with metal layers 

(Ag and Cu) and (2) Si in contact with a complete Cu-Ag stoichiometric mixture (Si/Cu-Ag). 

The interfacial energy between the metal layer and the Si switching medium is seen in Fig 2-

14. Cu incorporation into Ag clusters reduces interfacial energy, implying that alloying Ag with 

Cu improves the stability of Ag-based conduction channels by lowering surface tension. As a 

consequence, consistent and reliable switching with symmetric analog weight update is 

achieved. 

 

1.2. KMC simulation for conduction channel formation 

The simulation results of (1) Forming, (2) Reset, and (3) Set operations are shown in Fig 2-

15. Supplementary Note 1.3 contains the details of the simulation conditions and parameters. 

 

(1) Forming process 

Anodic oxidation occurs at the active metal when a positive bias is provided, and metal cations 

move into the Si matrix. Because of the low ionic conductivity of the Si matrix, cations are 

reduced and metallic clusters are generated at the Si bulk (i.e., conduction channel creation) 
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rather than on the surface of the inert electrode during migration, as seen in the 3s recorded 

image. Cu and Ag form metallic clusters at the same time because their mobility is equivalent 

to or quicker than that of Ag. The interfacial energy of Si matrix/metal clusters determines the 

stability of metallic clusters.[61], [66]. Whether the dominant phase of Cu clusters is a silicide 

or not, thermodynamically stable clusters are driven by attractive interfacial contact between 

Si and Cu. However, Ag clusters are unstable in the Si matrix. Our DC sweep results clearly 

imply that the Cu-based conduction channel is too steady to induce resistive switching. As a 

result, the amount of Cu-based clusters should be kept to a minimum to avoid irreversible 

breakdown, and Ag clusters should be the major component of the conduction channel. Because 

Cu improves the thermodynamic stability of Ag in Si, it can function as a nucleation promoter 

for Ag clusters. 

 

(2) Reset 

Joule-heating-assisted electrochemical oxidation occurs in the conduction channel when 

negative bias is applied [67]. Because of the thermodynamic instability, when the conduction 

channel is exclusively made of Ag, the channel is easily eroded: high Ag/Si interfacial energy 

increases Ag cluster contraction in addition to thermo-electrochemical stressors. Ag clusters 

are predominantly dissolved in the Ag alloying channel, while Cu clusters are largely preserved 

at the Si matrix based on a 7 s captured image. Cu residual clusters could be the source of the 

stable off-state conductance level. 

 

(3) Set 

Ag devices have non-uniform SET performance because channel re-formation is stochastic by 

nature. However, uniform switching is enabled in Ag-Cu alloy memristors because Ag clusters 
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are re-formed around Cu clusters, which act as the skeletal structure for the conduction 

channels. 

 

1.3. Configuration of KMC simulation 

We have included different physical and chemical processes in our KMC simulation since it is 

based on electrochemical metallization (ECM) RRAM: (1) Ag+ /Cu+ cation dissolution from 

the anode (dissolution), (2) Ag+ /Cu+ cation diffusion in the dislocated Si (diffusion), (3) 

Ag+/Cu+ cation reduction at the nucleation site (electro-crystallization), (4) Ag-Cu cluster 

growth from a single nucleation atom (metal clustering), and (5) Ag/Cu atom oxidation from 

Ag-Cu cluster and Ag/Cu atom oxidation from the nucleation site (oxidation). All reduction, 

oxidation, and diffusion rates are expressed as P = f ∙ exp(-Ea/kBT), where f is the vibration 

frequency, Ea is the activation energy that depends on each process, kB is Boltzmann constant, 

and T is the temperature. Table 2-1 contains a comprehensive list of all important parameters. 

According to Ref [68], [69], the activation energy barrier for cation dissolution from the anode 

is investigated in this study. The cation diffusion in Si is referred from Ref [19]. The 

computational approach estimates the cation reduction and oxidation activation energies at the 

nucleation location. When the metal-Si bonding energy is higher, reduction is more likely to 

occur whereas oxidation is more difficult [62]. This implies that the activation energy of Cu for 

reduction is low, whereas Ag's activation energy for reduction is large. The thermodynamic 

nucleation model is used to calculate the activation energy of Ag-Cu cluster growth. The 

equilibrium thermodynamics-based classical nucleation model [63], both homogeneous and 

heterogeneous nucleation are mainly governed by Gibbs free energy (ΔG) associated with the 

surface energy of cluster (Φ) as expressed as ΔG = Φ –Δµ, where Δµ represents super-

saturation which indicates the electrochemical potential difference between metal cations and 
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fixed metal atoms in cluster. Since Δµ is proportional to bonding energy, Cu is estimated to 

have lower activation energy for cluster growth than Ag [64]. Other factors such as diffusion 

or redox activity energy barrier are also assessed using the DFT computation. The activity 

energy associated with the oxidation process of the AgCu cluster is proportional to the number 

of bonds linked to the atom. The oxidation of cluster atoms with more linked bonds necessitates 

a higher activation energy. When an external voltage is applied, Ea can be altered through both 

physical and chemical processes. The diffusion barrier is decreased along the electrical field 

direction, causing cation migration from anode to cathode. For the redox reaction, Ea for the 

forward and reverse transitions can be described as –αqη and (1- α)qη, where α is typically 0.5 

and η represents the electrochemical overpotential [62], [70]. A random resistor network based 

on percolation theory is used to replicate the above microscopic process [71], [72]. In this 

model, the resistance value of the bond connecting Ag/Cu metal atom site is the lowest denoted 

by 𝑟𝑙 𝑚𝑒𝑡𝑎𝑙 , and the resistance value of the Si-Si bond is the highest denoted by 𝑟ℎ
𝑏𝑢𝑙𝑘. The 

resistance value of the bond connecting Ag/Cu atom and Si atom falls in between 𝑟𝑙 𝑚𝑒𝑡𝑎𝑙 and 

𝑟ℎ
𝑏𝑢𝑙𝑘. All of the resistance's I-V characteristics follow the laws of ohmic behavior. This results 

in an electric potential distribution being derived from the Kirchhoff equation, while the 

temperature distribution is supplied by the Fourier heat equation as a consequence of the 

Kirchhoff equation: 𝐶𝑑𝑇/𝑑𝑡= ∇(𝑘 ∙ ∇𝑇) + 𝑄, where C is the heat capacity per unit volume of Si 

bulk, k is the thermal conductivity of Si bulk and Q is the Joule heat power density. On the 

basis of the electric potential distribution and the local temperature distribution, the calculations 

for all microscopic processes are made. Fig 2-16 depicts a flowchart of the KMC simulation 

procedure. 
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Figure 2-10: Phase diagram of metal-silicon. a, Ag-Si[7]. b, Ti-Si[8], c, Cr-Si[9]. d, Ni-Si[10]. 

e, CuSi[11]. With the exception of Ag, the production of silicides is thermodynamically favored 

for the elements Ti, Cr, Ni, and Cu.  
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Figure 2-11: Ag memristor DC switching uniformity. Temporal change in the set voltage (a) 

and on/off conductance (b) of an Ag device, as seen in the manuscript's Fig. 2-10a. Variation 

in set voltage (c) and on-off conductance throughout space (d). Each batch contains 5 devices 

that have been tested under the identical DC working conditions (compliance current, 5 mA, 

>100 DC cycles per device). The standard-deviation-to-mean of set voltage and on/off ratio 

were calculated to be 16.2 percent and 156.2 percent for batch 1 and 18.7 percent and 189.7 

percent for batch 2.  
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Figure 2-12: Phase diagram of metal-silver. a, Ti-Ag[12]. b, Cr-Ag[13]. c, Ni-Ag[14]. d, Cu-

Ag[15]. Ti produces intermetallic compounds with Ag, showing that Ti and Ag have an 

attraction force. Despite the fact that Cr, Ni, and Cu form a solid solution system with Ag, a 

miscible zone exists in the Ag-rich phase of Cu-Ag alloy. Thus, Cu-Ag can form a 

thermodynamically stable mixed compound (i.e., a solid solution), whereas repulsion force 

occurs at Cr-Ag and Ni-Ag regardless of the mixing ratio or temperature. 
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Figure 2-13: Metal diffusivity in Si. a, Diffusion barrier height of Ti[16], Cr[17], Ni[18], 

Cu[19], and Ag[20]. b, The metal diffusivity Arrhenius plot. Cu, Ni, and Cr diffuse quicker 

than Ag, whereas Ti is the slowest metal. 
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Figure 2-14: The interfacial energy and relaxed structures of an Ag-Cu layer on a Si switching 

medium When we look carefully at the interface of metal cluster and Si medium, as shown in 

the schematic (left), there are three probable possibilities as described: (1) pure silver, (2) an 

Ag-Cu alloy, and (3) pure copper. The addition of Cu reduces interfacial energy, while the 

interfacial energy of pure Ag clusters is 55 meV Å-2 higher than pure Cu clusters. This means 

that the external pressure on Ag-Cu clusters is reduced due to lower interfacial energy when 

compared to pure Ag clusters, and that alloying Cu with Ag can improve the thermodynamic 

stability of Ag-based conduction channels in Si switching medium. Supplementary Note 1.1 

has the simulation information.  
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Figure 2-15: Switching dynamics based on alloying conduction channel: Forming (left), reset 

(middle), and set (right) states. In this simulation, we look at a conduction channel generated 

by mixing Ag and Cu atoms in a Si switching medium. Actual alloying has been considered 

while developing with an incoming uniform mixture of Ag/Cu atoms inside a switching 

medium. For the initial state, we examined the atomic fractions of Ag and Cu, as well as their 

activation energies for anode cation dissolution. The 1 s state of formation is the stage at which 

Ag and Cu atoms begin to dissolve into the Si switching medium based on their activation 

energy. Furthermore, during reset/set procedures, Ag clusters are dissolved/rejuvenated to a 

greater extent than Cu clusters. These leftover Cu atoms can serve as the backbone of the 

conduction channel, improving switching uniformity and conductance state stability. 

Supplementary Note and Table 2-1 give the simulation circumstances and parameters, 

respectively. 
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Figure 2-16: Schematic representation of the KMC simulation.  
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Figure 2-17: Ag-Cu memristor spatial variation. The cumulative probability of (a) the set 

voltage and (b) the on-off conductance (read voltage, 0.6 V). Each batch contains 5 devices 

that have been tested under the identical DC working conditions (compliance current, 5 mA, 

>100 DC cycles per device). The standard-deviation-to-mean (/) of set voltage and on/off ratio 

were calculated to be 5.1 percent and 49.4 percent for batch 1 and 4.9 percent and 47.1 percent 

for batch 2. 
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Figure 2-18: Typical forming and subsequent reset processes of pure Ag devices (a) and Ag-

Cu alloy devices (b). It should be noted that high formation voltage (>10 V) is undesirable for 

memristor crossbar array operation because it can cause irreversible breakdown of the devices 

and, as a result, reduced device yield [21], [22]. The forming voltage of Ag and Ag-Cu devices 

is roughly 3.7 V, which is 12 V greater than the fixed voltage (c). We believe that this difference 

is allowable for the array operation, which is strongly supported by the high yield (100 percent) 

of Si memristor crossbar array.  
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Figure 2-19: Retention test with raised temperature for 1 h. At room temperature (a) and 85 °C 

(b), conductance levels (over 10 µS) were stable, but lower conductance levels could not be 

achieved due to poor stability and increased off-state conductance caused by thermal excitation 

of free carriers from the p+ -Si layer, respectively. However, as temperature rose to 120 °C (c), 

conductance steadily declined, which is similar to the retention behaviors of pure Ag devices 

at room temperature.  
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Figure 2-20: The effect of ambient moisture on the memristive performance of Ag-Cu devices. 

DC switching (a), on- and off-state conductance (b), and retention characteristics (c) as a 

function of relative humidity (% RH) at ambient temperature. Because moisture (H2O) in a 

switching medium plays a significant role in redox-based switching dynamics, the level of 

ambient moisture can influence the switching performance of redox-based memristors [23]–

[25]. Despite the fact that the humidity level was altered from 12 to 60 percent RH, Ag-Cu 

devices demonstrated similar switching behaviors and retention properties. This consistent 

behavior could be due to the device's passivation layers, which prevent H2O migration into the 

Si switching medium: Cr[26], [27] and silicon nitride[28]–[30] layers, known as excellent 

materials for preventing water molecules/ions from penetrating (i.e., anti-corrosion), cover Ag-

Cu active metal and Si switching medium. 
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Figure 2-21: ANL and G distinguish between temporal and spatial differences in analog 

switching. For conductance update from 10 Si memeristor devices with three distinct active 

metals (a) Ag-Cu alloy, (b) pure Ag, and (c) Ag-Ni alloy, 5-cycles of 50 potentiation and 50 

depression pulses are used. Pulse condition: Potentiation (50 ns, 4.8 V, n = 50), Depression (50 

ns, -2.9 V, n = 50), Vread (50 ns, -2.9 V, n = 50). (1 V, 1 ms). 
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Figure 2-22: Endurance of Ag-Cu alloyed device. Pulsed voltage stresses (PVS) test is 

performed under a square pulse condition (non-sinusoidal periodic waveform) on small device 

cells (< 25 µm2). Each pulse cycle is made up of two processes: potentiation and depression. 

While the potentiation process (VP) uses 50 pulses of 4.5 V (amplitude) and 50 ns (duration), 

the depression process (VD) uses 50 pulses of -2.8 V (amplitude) and 50 ns (duration). Data 

points representing ON (red dots) and OFF (black dots) states are gathered at a power of 2 DC 

cycles (2n, n = 0 to 24) with read voltage (0.5 V). Throughout the PVS test (> 109 pulses), the 

device maintained a high on/off ratio (> 100), which is significantly greater than 5. (considered 

as device failure) [31], [32]. DC condition: set (4 V), reset (-3.2 V), and compliance current (5 

mA). 
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Figure 2-23: The variation in conductance (ΔG) as a function of pulse amplitude and duration. 

The conductance change (ΔG) is measured using a nanosecond pulse. At a read voltage of 1 V, 

we set the initial conductance at 10-6 S. (a) Change in conductance with increasing square pulse 

voltage amplitudes (V = 2, 3, 4, and 5). The pulse condition for conductance measurement is 

shown inset in (a). (b) Change in conductance with different square pulse durations at the 

nanosecond level using 4 V nanosecond pules. The conductance shift with ultrashort pulses is 

seen in the inset (left) (10 ns, 30 ns, and 50 ns with 5 V nanosecond pulses). The pulse condition 

for conductance is shown in the inset (right) in (b). In both cases, a 5 µm × 5 µm cell is used. 
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Figure 2-24: Analog potentiation and depression in 512 steps (512P/512D). For conductance 

update in an AgCu alloy Si memristor device, three cycles of 512 potentiation and 512 

depression pulses are used. Pulse condition: Potentiation (200 ns, 3.7 V, n = 512), Depression 

(200 ns, -2.75 V, n = 512), Vread (200 ns, -2.75 V, n = 512). (1 V, 200 ns). 
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Figure 2-25: Statistical examination of the retention measurement for each picture pixel in Fig. 

2-4d. Pixel values in 256-level grayscale images are uniformly distributed into 13 groups (e.g. 

0-19, 20-39, etc.). For each time step and alloy device (a) Ag, (b) Ag-Ni, and (c) AgCu, the 

average values of the pixel groups were computed. The grayscale picture values mapped from 

the conductance values are shown on the left y-axis of the images, while the actual conductance 

of the device is shown on the right y-axis. 
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Figure 2-26: The I-V characteristics of an Ag-Cu memristor with varying compliance currents. 

With a compliance current of less than 100 A, the device can be programmed indefinitely.  
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Figure 2-27: SPICE simulation configuration. (a) IV Ag-Cu behavioral model parameters 

compared to measured device performance (b) An Ag-Cu model with a reduced OFF state 

conductivity. (c) Schematics of the 1/2V and 1/3V write schemes, as well as the ground read 

technique, employed in array operation and SPICE simulation. 
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Figure 2-28: For the write process, SPICE simulation is used. (a) Voltage delivery maps for 

Ag-Cu arrays with various line resistances and biasing techniques. A 3V bias is given to the 

source terminals from the left and bottom terminals. Reduced voltage biases applied across 

device connections in the 32 × 32 array are indicated by color gradients. (b) Simulation of the 

write process to send 3V to the worst-case cells in arrays, i.e. the cell closest to the source, such 

as the top right cell in Figure 1. (a). Arrays of various sizes were evaluated. The green and blue 

lines represent extracted voltage biases at the half-selected cell nearest to the source. When the 

voltage bias of a half-selected cell exceeds the writing threshold, write disturb occurs (e.g. 3V). 

The simulations were run for three alternative device conditions: the original Ag-Cu model, the 

modified Ag-Cu model, and the Ag-Cu model that only employs the lower 10% of conductance 
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ranges. Improved scalability for the write process is obtained by using a better device model 

or decreasing the conductance ranges of Ag-Cu memristors.  
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Figure 2-29: For the read process, SPICE simulation is used. (a) Average read error in 32 × 32 

arrays. The read error is defined as the difference between the inferred device conductance and 

the actual device conductance based on the TIA readout. The simulation findings indicated that 

when cells got further away from the source, their reading mistakes increased, which was 

caused by line resistance. Three alternative device conditions, similar to those utilized in write 

simulation, were also investigated here. Limiting device conductance was discovered to be 

beneficial in lowering the influence of line resistance. (b) Read error simulation in a 1 × 32 

array with the same wire resistance as in (a) to rule out the effect of sneak pathways. The 

simulations produced comparable results (a). (c) The read error differences between (a) and (b) 

were calculated and revealed extremely modest changes, demonstrating that line resistance is 
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the most important element during the read process using the ground read scheme. (d) 

Simulation of read errors throughout the read process in various array sizes using an Ag-Cu 

device model with a limited (lower) conductance range. 
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Figure 2-30: SPICE simulation is used in computing. (a) Simulated multiply-accumulate (MAC) 

error in 32 32 arrays. The computed MAC value of input voltage vectors and the conductance 

of programmed devices (values derived from TIAs) are compared to the array's actual MAC 

output. (b) Simulation of MAC error in various array sizes and device conditions. 
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Table 2-1: Summary of KMC simulation parameters. 
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Table 2-2: Summary of simulation parameters   
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Supplementary Note 2. Design considerations for array fabrication with Si electrode  

Our alloy memristor array made use of a single crystal Si electrode, which provides good 

switching performance and a high device yield. However, the Si electrode is more resistive 

than metal, making it unsuitable for use as long interconnects. For large array operations, 

ensuring low line resistance is crucial (see supplementary Note 4 for more details). To address 

this issue, we employed a modified crossbar architecture for our alloy memristor array, as 

shown schematically in Fig. 2-8. To lower line resistance, a metal capping layer of 100 nm 

thick Ti/Au layer was placed on top of the array's long p+ Si bottom electrodes (see Methods). 

As a result, we were able to reach 1.5 cell-to-cell line resistance, which is sufficient for our 32 

× 32 arrays' operations. This method may be even more effective in dense designs with 10 nm 

features, where nanometer silicon line patterns would be exceedingly resistive. The usage of 

this arrangement necessitates a somewhat bigger size (~6-8 F2 cell), yet it is still a dense design 

with numerous performance benefits. When using a more complex foundry process, the 

arrangement could be further optimized. Meanwhile, additional engineering efforts, such as 

narrowing device conductance ranges, as demonstrated in Supplementary Note 4, may be 

useful in compensating for high line resistance, particularly in nano-scale arrays. In the 

meantime, the epitaxial formed p+ Si bottom electrode employed in this work is not a 

prerequisite for the alloy memristor. Bottom electrodes can also be made of other types of 

single crystal p+ Si films with corresponding doping concentrations. We have, for example, 

manufactured devices using as-received p+ Si wafers and demonstrated equivalent performance. 

We chose high temperature epitaxial deposition for the p+ Si layer deposition because it was 

the most convenient option for us to deposit a specific p+ Si layer on top of the SOI wafer with 

different doping concentration for the device layer. Any Front-End-Of-Line (FEOL) 

compatible doping approach, such as ion implantation, can be used to replace the procedure. 
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As a result, our memristor's fabrication technique is compatible with integration with CMOS 

circuits, which is essential for a completely integrated system. 

Supplementary Note 3. Array operation at reduced conductance ranges 

While wide dynamic ranges may imply more resolvable states for computing, the high current 

required during programming will use a significant amount of power. To address this issue, we 

chose to limit array operations to the lower conductance ranges. The DC characterisation of 

our device with varied current compliance is shown in Fig. 2-26. The device can be stably 

programmed at less than 100 μA while maintaining a sufficient operation window. Operating 

devices with a limited conductance range can nonetheless achieve good programmability for 

computing, as evidenced by the consistent analog switching behavior in Fig. 2-3 and extremely 

reliable array demonstrations in Fig. 2-4. Reduced programming current/power may be 

advantageous for future on-chip memory and computer applications. In addition, our SPICE 

simulation (see Supplementary Note 4) reveals that integrating low device conductance in 

arrays is more advantageous in dealing with sneak path and line resistance difficulties. 

Nonetheless, the real conductance ranges can be adjusted further because low device 

conductance and less dynamic range may introduce greater latencies and impair MAC 

accuracies due to non-ideal circuit conditions such as readout circuitry input offsets and thermal 

disturbances. 

Supplementary Note 4. Analysis of the impact of line resistance and sneak paths in alloy 

memristor arrays 

SPICE (Simulation Program with Integrated Circuit Emphasis) simulation was used to analyze 

the performance of alloy memristors in large-scale arrays utilizing the behavioral device model 

of Ag-Cu memristor. Figure 2-27a depicts the measured device's I-V characteristics (gray color) 

as well as the SPICE model (red color). In the investigation, additional device models and 
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conditions were also used. First, a device model with similar I-V characteristics to an AgCu 

memristor but lower OFF state conductance was derived from the Ag-Cu model (i.e. lower 

mean conductance and higher On/Off ratio); the modified model's IV-plot is illustrated in Fig. 

2-27b. On the contrary, we investigated a situation in which the devices were only operated at 

the lowest 10% of their complete conductance ranges (i.e., lower mean conductance and lower 

On/Off ratio). In addition to multiple device models, different electrode line resistances, array 

dimensions, and I/O biasing techniques were used to analyze their effects during the Write, 

Read, and Multiply-Accumulate (MAC) operations. Table 2-2 summarizes the parameters 

utilized in simulations. We began by evaluating the array's performance during the Write 

operation. Because of sneak paths and nonzero line resistances, the voltage bias across the 

device junction may deviate significantly from the voltage bias applied between the selected 

row/column source terminals, resulting in reduced voltage delivery efficiency, defined as: 

Voltage delivery efficiency = Vjunction(i,j) / Vsource = Vjunction(i,j) / (Vrow(i) – Vcolumn(j)) To simulate 

the write operation, all devices in a 32 × 32 Ag-Cu memristor array were programmed with a 

randomly generated weight distribution. All devices were written in succession, and the 

row/column source terminals were suitably biased using either a 1/3V or a 1/2V method (as 

schematically illustrated in Fig. 2-27c). As shown in Fig. 2-28a, the actual voltage biases across 

the selected device junctions were recovered and used to plot the voltage delivery map. The 

color gradient seen in the figures implies a significant voltage drop across the arrays. According 

to the simulation results, lower line resistance is crucial for ensuring strong array programming 

capabilities. The presence of non-zero line resistance would not only result in a direct voltage 

drop across the electrodes, but would also have a significant impact on the biasing precision of 

the 1/3V and 1/2V methods, limiting their effectiveness in suppressing sneak current. Sneak 

pathways had an impact as well, as evidenced by the color variation related with the randomly 

created conductance map for 1/3V and 1/2V schemes. Higher source voltages are necessary to 
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compensate for the voltage drop due to the reduced voltage delivery efficiency. As the source 

voltage biases increased, so did the voltage biases across those half-selected cells (cells that 

share at least one electrode with the selected cell). When any half-selected cell obtains voltage 

bias that above the switching threshold and is unintentionally programmed, the write 

disturbance occurs. To quantify the scalability of an Ag-Cu array, we simulated the Write 

process with various array dimensions, aiming to supply 3V (the device's set threshold) to the 

worst-case cell. From each simulation, the junction voltages of the selected cell (the one closest 

to the source) and the first half-selected cell (the one closest to the source with the least voltage 

drop) were collected. The graphs of actual junction voltages of selected cells and first half-

selected cells over varied array dimensions are shown in Fig. 2-28b. The write failure occurs 

when the voltage bias of the first half-chosen cell exceeds the voltage bias of the selected cell. 

Based on existing array circumstances, our simulation reveals that Ag-Cu memristor arrays 

with dimensions up to 64 × 64 can be operated with enough margins below probable write 

failure. To boost array scalability even further, memristors with low conductance would be 

preferable. This might be accomplished through device engineering to create more resistive 

memristors, or by limiting the conductance of the memristors to its lower conductance range. 

Further simulations were performed to support our hypothesis, using either the modified Ag-

Cu model with low off state conductance (high ON/OFF ratio and lower mean conductance) or 

solely the bottom 10% conductance range of the current Ag-Cu model (low ON/OFF ratio and 

lower mean conductance). Both simulations, as shown in Fig. 2-28b, demonstrate reduced write 

disturbances independent of On/Off ratio, implying that a high contrast between line resistance 

and device resistance is required to ensure robust programming in passive selector-less arrays. 

Meanwhile, a simulation based on the “Ground” read technique was run to evaluate the array 

performance during the Read and MAC procedures. The “Ground” read scheme is a realistic 

way for suppressing the sneak path current, and it was used for reading and calculating here. 
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The “ground” system is depicted schematically in Fig. 2-27c. Because all of the columns were 

grounded and had the same voltage potential, the leakage current that flowed between them 

was considerably reduced. However, for the ground read scheme to work properly, low line 

resistance is required so that the ground biases can be appropriately applied to all of the cells 

in the array. In this simulation, we chose a line resistance of 1 Ω, which was near to our actual 

array circumstances. As shown in Fig. 2-29a, the read accuracy of the alloy array was 

investigated by measuring the read errors from all cells in the 32 × 32 array. The read operation 

was simulated by applying a read voltage (i.e. 1V) to the array row by row. The column output 

current can be used to deduce and estimate the conductance of the devices on the specified row 

at each read cycle. The error % was calculated by comparing the estimated and real 

conductance of the devices. The average read error of each column in the 32 x 32 array with 

different device models is shown in Fig. 2-29a. The simulation results show that when the 

columns become further away from the source, the read error increases due to line resistance. 

To reduce read error, use device types with low Off state conductance or limit the conductance 

range. On the other hand, we investigated the efficacy of the ground strategy in suppressing the 

sneak path current. This is investigated further by simulating the read process in a 1 x 32 array 

with the same row and column line resistance as the 32 × 32 array, as seen in Fig. 2-29b. The 

absolute difference in error % between the 32 × 32 array and the 1 × 32 array was calculated 

and presented in Fig. 2-29c, revealing only very tiny variations. The results indicated that the 

nonzero line resistance of the electrode was the primary cause of read error in our process. As 

a result, lowering line resistance or employing low device conductance are favored ways for 

improving reading accuracies, particularly in large arrays. The read errors from a varied array 

size in the optimum low conductance region of an Ag-Cu memristor were simulated further 

and are illustrated in Fig. 2-29d. Finally, we assessed the computation accuracy of multiply-

accumulate (MAC) processes. The MAC procedure includes introducing arbitrary voltage 
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vectors to the array, which are then multiplied by the array's programmed conductance map. 

However, because of the significant impact of line resistance, the programmed conductance of 

each cell deviates from the target conductance, resulting in the MAC error. The MAC error was 

defined as the difference between the MAC values detected from the peripheral output and the 

intended MAC values estimated based on the devices' input voltage amplitudes and desired 

conductance values. It is important to note that the target conductance in this case should be 

the conductance value sensed from the peripherals during the programming step, not the cell's 

genuine conductance value. Figure 2-30a depicts the simulated MAC faults in a 32 x 32 array. 

Our simulation reveals that using devices with low Off state conductance or employing a low 

conductance technique are both effective methods for achieving high accuracy computation. 

The average MAC error for various array sizes is further simulated and depicted in Fig. 2-30b. 

Larger array implementations may be achievable based on our simulation results, but they 

would necessitate considerable modifications of the operating circumstances, such as lowering 

line resistance, employing a more durable 1/3V biasing method, and utilizing a low 

conductance range. Improving the device and array fabrication processes is also critical for 

increasing array size and/or computing precision. 

 

2.3 Conclusion 

We believe that alloying the conduction channels in ECM devices will fundamentally solve the 

‘tunability–stability dilemma' between robust weight adjustment and long-term stability in our 

quest to identify the ultimate device for neuromorphic computing. The proper engineering of 

interaction and migration of alloying elements in conducting channels allows for a great deal 

of flexibility in tailoring the electrical performance of the devices. This allowed us to create 

large-scale transistor-free crossbar arrays capable of storing and inferencing neural network 
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weights. We believe that our alloy design guideline for reliable memristor performance may be 

extended to other material systems in order to optimize conduction channels and switching 

dynamics for improved performance in neuromorphic computing applications. 
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Chapter 3 

Stackable hetero-integrated chips for reconfigurable 

neuromorphic computing 

This chapter introduces the stackable hetero-integrated chips for hardware-wise neuromorphic 

computing. This chapter will be published with a temporary title ‘Stackable Hetero-Integrated 

Chips for Reconfigurable Edge Neuromorphic Computing’, Chanyeol Choi†, Hyunseok Kim†
, 

Ji-Hoon Kang†, Hanwool Yeon†, Celesta S. Chang, Junmin Suh, Jiho Shin, Yeongin Kim, 

Haneol Lee, Doyoon Lee, Sang-Hoon Bae, Hyun Kum, Jaeyong Lee, Ikbeom Jang, Peng Chen, 

Wenqiang Zhang, Peng Yao, Subeen Pang, Kanghyun Ryu, Yifan Nie, Hang Chi, Jagadeesh 

Moodera, Huaqiang Wu*, Peng Lin*, and Jeehwan Kim*. (†co-first authors.) The abstract of 

work is presented below. 

Due to the increasing number of sensors and the quantity of sensory information being 

collected at an exponential pace in this age of edge computing, modern sensor computing 

systems have been receiving greater attention. Additionally, as deep learning advances, parallel 

data processing becomes increasingly necessary to manage the massive amounts of data 

generated by artificial intelligence. It has been proposed to use 3D heterogeneous integration 

in conjunction with improved packaging technologies in order to decrease time delay and 

increase data bandwidth, which have been hampered by data transfers between sensors, 

memory, and CPUs. Despite the fact that 3D integration technologies can provide a multi-



105 

 

functional hardware platform for edge sensor-computing systems, dealing with a large amount 

and a variety of sensory information in real-world scenarios remains difficult due to a lack of 

hardware-wise reconfigurability and hardware constraints such as 2D dataflow. In this paper, 

we propose stackable hetero-integrated chips with light communication for reconfigurable 

modularity and neuromorphic core for parallel data processing. We present three different 

materials systems for hetero-integrated chips, each with its own advantages. In particular, 

silicon-based memristor crossbar arrays for neuromorphic computing, gallium arsenide-based 

photodiodes (PD), and indium gallium phosphide-based light emitting diodes (LED) for chip-

to-chip communication are among the technologies being developed. Using replaceable and 

stackable hetero-integrated circuits, we show the robust kernel operations using optoelectronic 

devices (such as PD and LED) and memristor crossbar arrays to illustrate the robust kernel 

operations. For a more in-depth demonstration of our sensory input processing in a noisy 

environment, we develop and integrate a denoising module to deal with noisy pictures, which 

leads to improved letter recognition accuracy. As a result of our hetero-integrated chips' 

hardware-wise reconfigurability, vertical scalability of diverse functional layers, and non-von-

Neumann computing, we expect sensor-computing systems to be more versatile in their ability 

to accommodate the complexity of any neural network in edge computing. 

 

3.1 Introduction 

Edge computing is made possible by an almost endless number of edge devices located 

near data sources, each of which produces an enormously vast amount of data. The demand for 

edge computing, which combines sensors and processors located in close physical proximity 

to one another, is rapidly expanding in order to decentralize data processing [73]–[75]. 

Furthermore, data-driven artificial intelligence (AI) applications have fundamentally altered 



106 

 

the landscape of computer designs, with the elimination of unnecessary data movement and the 

promotion of parallel data processing becoming critical steps in achieving low latency and high 

energy efficiency for real-time AI applications while maintaining high performance [76]–[78]. 

Because it allows for the smooth integration of various functional layers such as sensors, 

processors, and memory, 3D heterogeneous integration technology makes the deployment of 

the edge computing paradigm possible [79]–[82]. Despite this, there are three key issues with 

the present generation of 3D hetero-integrated chips for edge computing, which are discussed 

below. Firstly, due to the physical connection of functional layers such as sensors and 

processors to one another, they are not replaceable, and a new chip must be created whenever 

the other functional layers are required. Second, because to the high temperature techniques 

that are used in series on 3D hetero-integrated circuits for edge computing, they may result in 

low device yield. Lastly, the employment of the von-Neumann technique in 3D integrated 

systems has a limited ability to accelerate data transfer because of a memory bottleneck and a 

lack of parallel data processing capability. 

 

3.2 Contributions and Methods 

It is demonstrated in this paper that reconfigurable heterogeneous integration can be 

achieved by using stackable chips that include embedded artificial intelligence. Each chip layer 

comprises a hetero-integrated optoelectronic device-based communication unit, which makes 

it possible to change, insert, stack, and restack the layers in a way that is not conceivable with 

any other method of fabrication. Different chips might be combined into a vertically aligned 

chain of processors, taking full advantage of the area communication interfaces and seamless 

connections that are possible when chips are placed in close physical proximity to one another. 

Because of this, the chips can be reconfigured when the external inputs change, if additional 
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processing capabilities are required, or when the input modality changes. This flexibly 

reconfigurable architecture can be utilized to execute a variety of jobs and change over the 

course of a person's lifelong learning process, among other things. In addition, we implemented 

neuromorphic computing processors into the chip by embedding memristor crossbars into each 

layer of the chip's architecture. As a deep learning hardware accelerator, they convey analog 

data quickly and accurately to photo-sensors nearby, allowing for faster deep learning training. 

In a free space, we were able to demonstrate successful communication between each of the 

chip layers thanks to our innovative chip architecture. The eye layer of the chip generated the 

initial data, which was then processed using the memristor-based hardware accelerators. The 

eye layer of the chip reacted to external optical stimuli to generate the initial data. It was also 

possible to test and validate the reconfigurability of our hetero-integrated circuits using our 

architecture because of the way they were designed. Sensor input patterns from a variety of 

sensors were efficiently detected and processed with significant flexibility by replacing or 

stacking pre-trained chip layers. In addition, we were successful in proving an additive feature 

by developing and demonstrating a denoising processor on the chips, which allowed us to 

accurately classify images that had been distorted. We are convinced that the reconfigurability 

of varied functional layers will provide sensor-computing systems with greater versatility in 

order to adapt to the complexity of any sensing data or artificial intelligence assignment.
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Figure 3-1: Integration technologies for sensor-computing systems for use in edge computing 

applications. a, Schematic representation of 3D heterogeneous integration for a sensor-

computing system. A single material system contains physical wires (in yellow) that connect 

different device layers such as sensors, processors, and memory to one another (for example, 

silicon). Vertical interlayer vias are used to physically configure the three-dimensional structure. 

A limitation of functionality and chip stackability can be attributed to the hardwired 

connections. b, Schematics of stackable hetero-integrated chips with chip-to-chip 

communication for sensor-computing systems with chip-to-chip communication. This 

demonstrates the use of light communication between chips, which enables a high degree of 

freedom for hardware-based reconfigurability at the sensor layer and processor layer, among 

other places. Optoelectronic devices such as light emitting diodes (LEDs) and photodiodes are 

used to convey light information between the layers. Each layer is physically in contact with 

the other. Depending on the application, any functional module from a library of functional 

modules can be selected and assembled into a heterogeneously integrated chip stack, which is 

then tested. The first layer of the chip stack is dedicated to the processing of sensory input, and 
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the input can be processed in parallel over the 3D hetero-integrated chip stack as the chip stack 

is built. Pre-programmed neuromorphic processing cores in the stacking hetero-integrated 

circuits enable them to implement various artificial intelligence applications for edge 

computing, such as letter recognition and objection detection.



110 

 

 Traditional heterogeneous-integrated chips and our advanced, reconfigurable 

heterogeneous system are depicted in Fig. 3-1, which also summarizes the designs of both 

systems. However, as previously stated, the existing state of the art heterogeneous integration 

system (Figure 3-1a) is not yet mature enough to solve the key flaws listed below [75], [83], 

[84]. For starters, standard heterogeneously-integrated circuits are unable to respond to 

changing external stimuli since the sensors and processors are fixed after heterogeneous 

integration and cannot be changed to accommodate new or changing environments. For the 

second time, device dependability is susceptible to degradation because to the close spacing 

between layers and high process temperature during post-processing. Third, because von-

Neumann computing makes use of both the processor and the memory for data processing, the 

response time and data bandwidth are both constrained by the superfluous data transfer of 

sensing data. Fig. 3-1b shows how our stacking hetero-integrated chips may totally overcome 

the difficulties mentioned above in conventional hetero-integration systems. First, with the 

standalone hetero-integrated chips, the chips are now removable and stackable, allowing them 

to respond efficiently to a variety of scenarios. Second, we bound optoelectronic systems in 

each layer so that the individual freestanding chip layers may be produced separately, allowing 

light communication across layers to be enabled without affecting the chip production process 

flow. Third, we also consolidated the CPU and memory into a single AI component by 

embedding an artificial intelligence system consisting of memristor arrays in each layer of the 

hetero-integration units. This allowed for efficient and speedy data transport. As shown in 

Figure 3-1b, we have configurable hetero-integrated systems with artificial intelligence and 

optoelectronics, which include photodiodes and light emitting diodes (LED). Each AI- and 

optoelectronic-embedded layer, similar to a Lego block, enabled us to (i) replace either the 

processor or the sensor, depending on sensing or computation requirements, (ii) stack layers to 

enhance neural network tasks, and (iii) add or delete different layers to enhance the function. 
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The following are examples of the above cases: (i) different types of sensors could be easily 

replaced or different pre-trained computing layers could be replaced to recognize various 

sensory input; (ii) trained computing layers could be continuously stacked for highly parallel 

kernel operations to recognize varying and various input from sensor layers; and (iii) 

computing layers could be added for heavy processor unit usage. In order to meet specific 

requirements, hetero-integrated chips can be tailored according to their intended use and the 

sensing modality employed and one can expect following outcomes: (i) Due to the absence of 

wire interconnects, it is possible to easily reconfigure functional layers; (ii) the limitations on 

fabrication processes, such as thermal budget, can be alleviated; and (iii) the spectrum of neural 

network functions, such as increasing/reducing kernels and modulating depth of neural 

networks with cross-modality sensory information, can be broadened by different modality 

sensor devices for multifocal sensors as described in Figure 3-5. 

In this study, we demonstrate a separate kernel operation by replacing computing 

layers with pretrained crossbar arrays in the computing layers, as well as a parallel kernel 

operation by stacking layers with crossbar arrays in the computing layers. It is reasonable to 

predict that when the kernel (designed conductance of the memristor, G) is matched to the input 

picture (voltage input, V), we will have the highest possible current total value (I = Σ (V · G)). 

All of the various layers are assembled and disassembled in order to demonstrate a range of 

chip stacks in different combinations.
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Figure 3-2: Components of stackable hetero-integrated neuromorphic chips. a, an optical image 

of a light sensing layer (eye layer) with light input from the bottom. Patterned photomasks and 

a laser diode with a confocal setup are used to create three different letter patterns: M, I, and T. 

The eye layer receives the letter images. Scale bar: 1 mm. A photodiode measures the intensity 

of light passing through a transparent silicon oxide membrane. b, optical photo of a processor 

layer and an eye layer. To communicate, two chips are physically in contact. The eye layer's 

light input can be passed on to the next layer. Each layer has a photodiode/LED stack that 

allows them to receive and transmit light data. I-V characteristics of LED and photodiode 

devices are presented SEM images with light OFF and ON (~ 0.15 mW/mm2) for the 

photodiode. At 0.1 V reverse bias, photodiode response to LED light in chip-to-chip 

communication as a function of LED light intensity. The chip-to-chip communication is 

depicted in the inset. c, a diagram of a hetero-integrated chip. Illustration and SEM images of 

optoelectronic device stack (photodiode/LED, scale bar: 100 μm), neuromorphic computing 

core (Ag-Cu alloy-based Si memristor crossbar array, scale bar: 100 μm), and sideview of chips 

(scale bar: 1 μm) are presented. We used deep reactive ion etching to align an array of 
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photodiode/LED stacks with backside holes for an optoelectronic device stack (DRIE). We 

made 32 × 32 memristor crossbar arrays for the neuromorphic computing core, as shown in the 

schematic and SEM image. On a 128 × 128 pixel image, three different types of 3 x 3 kernel 

operations (edge detection, sharpen, and soften) are performed. 
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Hetero-integrated chip modules 

To prepare assembly-ready freestanding layers for reconfigurable hetero-integrated 

chips, we first developed a light sensing layer (eye layer) and a processor layer separately. At 

the eye layer, sensor arrays are connected to LEDs where the sensors communicate external 

stimuli while LEDs transfer information to the next layer. The processor layer is composed of 

a communication section and an AI section. The communication section contains 

photodetectors for receiving light signals from the sensor layer and LEDs to send information 

to the next process layers, while the AI section has arrays of memristor crossbars for computing. 

In this work, we utilized an eye layer as a representative case for a layer that senses one of 

sensing modalities. The eye layer is purposely designed to capture visual information, as shown 

in Fig. 3-2a. In the eye layer, photodiodes (PDs) receive light input (letter images) from the 

bottom through holes and transfer the information to the next layer using LED devices. Inset 

of Fig. 3-2a illustrates that three different light inputs are generated by patterned photomasks 

and sensed by photodiodes in an eye layer. The letter patterns were generated in our confocal 

optical setup (See Fig. 3-6 for details). In this work, we used three letter patterns, namely ‘M’, 

‘I’, and ‘T’. As shown in a stack of two chips (Fig. 2b), we have demonstrated chip-to-chip 

light communication enabled by stacks of optoelectronic devices (i.e., LEDs and photodiodes) 

attached to the layers. Each layer has 6 × 6 pixels of the LED/Photodiode stacks and their I-V 

characteristics are presented in Fig. 3-2b. I-V characteristics of 6 × 6 photodiode array and 6 × 

6 LED array in the eye layer are presented in Fig. 3-7. While GaAs photodiodes are positioned 

on the bottom of each stack receiving light input, InGaP LED devices are positioned on the top 

of each stack and send light information to the next layer. LEDs of the bottom layer (eye layer) 

can communicate with photodiodes of the top layer (processor layer). We presented the 

response of a photodiode to the LED light in chip-to-chip light communications as a function 

of light intensity. With varying LED operating voltages, the output currents of photodiodes 



115 

 

were measured at 0.1 V of reverse bias. At the maximum LED light intensity of ~ 1 mW/mm2, 

the output current is around 1 × 10-6 A. We confirmed that there is no crosstalk between each 

LED/Photodiode stack in chip-to-chip light communications with carefully aligned frontside 

LED/Photodiode stacks and backside holes. In this way, photodiodes arrays successfully 

receive patterned light inputs through aligned holes and transfer the information to the next 

layer using LED devices.  

Fig. 3-2c shows schematic illustrations and scanning electron microscope (SEM) 

images of a hetero-integrated chip. They are two main components: (1) optoelectronic device 

stack including GaAs photodiodes and InGaP LED and (2) neuromorphic computing core 

which is a 32 × 32 Ag-Cu alloy-based Si memristor crossbar array. As shown in the 

optoelectronic device stack, each LED/Photodiode stack has three contacts to operate the LED 

and photodiode separately. SEM images are taken for a single optoelectronic device stack and 

its 6 × 6 array. The front- and the back- sides of the array are presented. The square-shaped 

holes on the backside of the chip are precisely aligned with the LED/Photodiode stacks on the 

frontside so the light from the back can be sensed by photodiodes through a transparent SiO2 

layer. The details of the optoelectronic device fabrication processes on a silicon-on-insulator 

(SOI) wafer can be found in Fig. 3-8 and Methods Section. We provide the sideview of our 

hetero-integrated chip using a cross-section SEM image. Pseudo-colored SEM images show 

each component of heterogeneously integrated optoelectronic device stack on a silicon-oxide-

insulator (SOI) wafer. 

In addition, ‘processor layer’ was created to accept the light information from the 

bottom layer and to perform AI computer operations. To do so, the processor layer has another 

component called ‘neuromorphic computing core’. The inset of ‘neuromorphic computing core’ 

shows an illustration and a SEM image of memristor crossbar arrays. We fabricated the Ag-Cu 

alloy-based Si memristor crossbar arrays using the method from ref [39]. After receiving light 
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information from the photodiodes, we have performed neuromorphic computing operations 

(e.g., kernel operation and fully connected operation) onto Ag-Cu alloy-based Si memristor 

crossbar arrays. For more information about our measurement setup for memristor crossbar 

arrays, see Fig. 3-9. We also performed 3 × 3 kernel operations on a 128 × 128-pixel image. 

The input pixel information is flattened and converted to voltage pulses before reaching the 

memristor devices that have programmable resistance values. Each kernel requires 9 × 2 

memristors to represent both positive (G+) and negative (G-) weights which allow for both a 

sign and a magnitude. The current values are generated by the sum of the dot product of each 

row’s input voltage (V) and each row’s conductance level (G+ or G-), as defined by Kirchhoff’s 

law, I = Σ (V · G). As a result, the current values are subtracted to express their weights (G = 

G+ - G-). We programmed linear kernel operations into crossbar arrays and confirmed the 

weights by reading conductance values from each device. We successfully performed the three 

3 × 3 kernel operations of vertical edge detection, sharpen, and soften for image processing. 
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Figure 3-3: Hetero-integrated neuromorphic chips that are replaceable and stackable as well as 

their robust kernel operations. a, Replaceable neuromorphic chips for kernel operations. 

Patterned images produced by photodiodes in kernel layers with a 0.1 V reverse bias are shown 

(Top row). The stacking and replacement of hetero-integrated chips is depicted in block 

diagrams. Different patterned images have had kernel operations performed on them by 

replacing a kernel layer. Each kernel operation's current sums are shown in the graph. The 

maximum and minimum values of the current sums are indicated by error bars. b, The multi-

layer neuromorphic chip stack is depicted in a block diagram. Pre-programmed memristor 

crossbar arrays process the input letter images, which are shared across three kernel layers. The 

current sums are the result of kernel operations on the letters in the input images below (Bottom 

row). Kernel operations were performed in parallel by stacking three different kernel layers. 

The maximum and minimum values of the current sums are indicated by error bars.  
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Letter recognition with neuromorphic computing modules 

We initially programmed three different 5 × 5 kernels (the ‘M' kernel, ‘I' kernel, and 

‘T' kernel) in three different processor layers (the processor ‘M' layer, processor ‘I layer, and 

processor ‘T' layer), as shown in Fig. 3-3a, for the letter recognition task. We then tested the 

performance of the three different 5 × 5 kernels on the letter recognition task. In Fig. S3-10 and 

the Methods Section, the specifics of the 5 × 5 kernel operation on memristor crossbar arrays 

are described in greater detail. Fig. 3-3a shows the three patterned images that are sensed by 

photodiodes in the processor layers, which are shown in the top row. (See Fig. 3-11 for an 

illustration of the patterned images sensed by the eye layer and the filtering effect produced by 

the processor layers.) We were able to perform kernel operations by replacing three processor 

layers with the help of these images. The output current values of the three pattern images are 

converted to the number of read pulses of 0.5 V by multiplying them by the number of pattern 

images. The current sum is accumulated over the number of read pulses and is then divided by 

the number of read pulses to obtain the average current sum. For more information on 

measurements, please see the Methods Section and Fig. 3-12. As a result, we were able to 

obtain the current sums for each column line. Figure 3-3a shows that the processor 'M' layer 

outputs the highest current sum to the patterned image 'M' rather than the pattern images 'I' and 

'T'. This is illustrated in the second row of Figure 3-3a. This indicates that the matching ‘M' 

pattern has been successfully recognized by the processor ‘M' layer of the processor. The other 

processor layers, ‘I' and ‘T,' produce similar results to the matching patterns, ‘I' and ‘T,' by 

producing the highest current sums to the patterns, ‘I' and ‘T,' respectively. We repeated each 

of these kernel operations 15 times for a total of 15 patterned image data sets. It is indicated by 

error bars that the maximum and minimum values of current sums, which can be considered to 

be the values of the multiply-accumulate (MAC) operation, respectively, have been reached. 
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After that, we attempted parallel kernel operation by taking full advantage of the stack-ability 

of multiple computing layers that we had previously trained in advance. Figure 3-3b depicts a 

schematic of a stack with four layers, each of which is composed of one eye layer and three 

processor layers (see Fig. 3-3a). After the eye layer, three patterned inputs are transferred across 

three processor layers, one after the other. The results of the current sums of each kernel to 

pattern images, as demonstrated in Fig. 3-3a, are shown in the first three rows of Fig. 3-3b. The 

letter recognition task was successfully completed for three different kernels, with the highest 

output current to the matching input patterned images being used for each of the three kernels. 

According to our findings, free-space light communication between chips allows us to quickly 

assemble and disassemble chips, allowing us to switch between diverse kernel operations and 

stack multiple layers for parallel computing with ease. The ability to build hardware that can 

be optimized for processing large amounts of complex sensory data in the edge computing era 

will be a further benefit of this research. When combined with advanced optical circuits, we 

believe this hardware will be able to facilitate multimodal data processing in robotics and edge 

computing, among other applications.
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Figure 3-4: The use of stackable neuromorphic chips in a noisy environment: the insertion of 

a denoising functional layer in the midst of the chaos. a, the addition of Gaussian noise (0.5) 

to images from the eye layer results in the generation of corrupted letter images. b, block 

diagram of the letter recognition task that was performed on a corrupted ‘T' letter image. On 

the corrupted letter image of the letter T, we performed three different kernel operations. The 

current sums are calculated for each kernel individually. The difference between the current 

sum and the previous sum is indicated by arrows. Because of the noise in the letter "T," the 

outputs of the current sum from the "I" kernel and the "T" kernel show only a marginal 

difference, indicating that letter recognition is difficult. c, Denoising functional layer neural 

network architecture with denoising autoencoder (25 × 5 × 25 neurons) and denoising 

autoencoder. The denoising layer, which includes memristor crossbar arrays, is added after 

the letter images have been denoised in step d, as shown in the black diagram. Example of 

letter recognition task performed on denoised letter image of the letter T, as described in the 

block diagram shown in Figure 3b. Following the denoising process, the current sum from the 

‘T' kernel yields a significantly higher value than the current sum from the ‘I' kernel. This 
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implies that, following the completion of the denoising process, the task of letter recognition 

will be more successful. 
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System reconfiguration 

Aside from chip stackability and replaceability, one of the most significant advantages 

of reconfigurability is the ability to add new functionalities to a hetero-integrated system. In 

this article, we successfully showed the processing of damaged pictures by adding a denoising 

layer to prefabricated stacks that were not previously prepared for noise processing. While the 

human brain still performs well in moderate noise, the accuracy of artificial neural networks 

declines dramatically with noise [85]. Although humans' robust representation of visual stimuli 

is not fully understood, recognition under noise is a long-term goal in computer vision because 

input data quality distortions from edge devices in insecure and unstable environments such as 

low light conditions and motion blurring are unavoidable [85]. Image denoising was created 

using various neural network designs, which may improve network performance on reasoning 

tasks [86]. First, we applied Gaussian noise to the patterned pictures in Fig. 3-4a, eye layer. For 

our experiment, we used a high Gaussian noise level (δ = 0.5). It is worth noting in Fig. 3b that 

distinguishing letters ‘I' and ‘T' using kernel operations is difficult when the input is noisy. This 

is due to the fact that the pixel information for 'I' and 'T' is identical. In fact, prior to the 

denoising procedure, a damaged ‘T' picture (Fig. 3-4b) was difficult to distinguish by kernel 

operations ‘I' and ‘T' due to the noise, resulting in identical current sum values. To address this 

issue, we developed a denoising autoencoder layer, which is an extension of a traditional 

autoencoder that employs an unsupervised learning criteria between the eye layer and the 

kernel layer of the previous stacking architecture [87], [88]. As shown in Fig. 3-4c, the neural 

network architecture, 25 × 5 × 25 denoising autoencoder, is used to denoise the damaged 

pictures. 5 × 5 patterned pictures are flattened and processed by two fully-connected layers 

with 5 neurons (the first fully-connected layer) and 25 neurons (the second fully-connected 

layer) (the second fully-connected layer). The output neurons' values are adjusted to produce 5 

× 5 denoised patterned pictures. After introducing a denoising layer, severely damaged 
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patterned pictures are denoised, as illustrated in Fig. 3-4d. As a result, a denoised ‘T' picture 

(Fig. 3-4e) seems to output the greatest current sum value to the ‘T' kernel with a higher output 

current differential. Figures 3-13, 3-14, and the Methods Section provide the software 

simulation results and training details for the denoising autoencoder. Details of Figs. 3-4b and 

3-4e may also be found in Fig. 3-15 for distributions of multiply-accumulate (MAC) operations 

in software and distributions of output currents in memristor crossbar arrays. We anticipate that 

our work will have an impact on the field in three ways. For starters, the ability to swap out 

and reuse chip components would decrease waste and set an example for more ecologically 

responsible alternatives. Second, our study may be utilized to develop high-yield multi-modal 

sensor-computing systems, which would have a wide range of applications in the edge 

computing age. Finally, our research will move the field closer to analog computing AI 

hardware.  
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Figure 3-5: Schematic illustration of three-dimensionally stacked neuromorphic chips for 

multi-modal sensor fusion. a, Photodetectors and strain sensors can provide several sensory 

inputs. The depth and width of networks can be changed by simply stacking or changing chips. 

Furthermore, the size and kind of memristor crossbar array can be changed based on the size 

and function of the sensor array. b, an example of a basic neural network architecture for sensor 

fusion. The top left (red) neurons represent early visual processing. Bottom left (blue) neurons 

represent early haptic processing. Right (purple) neurons exhibit multi-modal sensor fusion 

with sparse connections. 
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Figure 3-6: Confocal optical measurement setup for chip-to-chip communication. a, An optical 

image of a confocal imaging setup. The beam path of light input from a 635 nm laser diode is 

indicated by a yellow arrow (light source). Hetero-integrated chips are mounted to adapters as 

shown in the photo in the right-hand side. Purple lines represent the chip for the eye layer, 

whereas green lines represent the chip for the process layer. Micro-manipulators fine-tune two 

chips. When more than two chips are communicated, they are replaced and measured 

sequentially. b, A confocal imaging setup diagram. The light is formed into three letters ('M,' 

'I,' and 'T') using a patterned photomask. PM stands for patterned mask; CL stands for free-

space collimator lens; BS stands for beam splitter; OL stands for objective lens; and 

CHIP stands for hetero-integrated chip. To adjust the position of light pattern input and chips, 

a confocal setup was employed. We were able to accomplish minimal optical crosstalk between 

chips by carefully tweaking micro-manipulators and shifting the positions of chip mount 

adapters with proximity. 
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Figure 3-7: I-V characteristics of 6 × 6 photodiode array and 6 × 6 LED array in an eye layer. 

a, I-V curves of photodiodes. Orange curves show the response of photodiodes to the light (0.1 

mW/mm2) while blue curves show the I-V characteristics with no light. b, I-V curves of LED 

devices in 6 × 6 array. Optoelectronic devices (photodiodes and LEDs) in other layers (e.g. 

denoising layer and classification layer) show the similar levels of performance. For the 

demonstration, only 25 devices were used for 5 × 5 pixels images.  
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Figure 3-8: Schematic illustrations of photodiodes/LEDs array fabrication for a stackable 

heterogeneously integrated neuromorphic chip. a, Silicon on insulator (SOI) wafer with 

epitaxially grown Si was prepared. b, SiO2 layer was deposited on the SOI wafer by plasma 

enhanced chemical vapor deposition (PECVD). The SiO2 layer was patterned using a 

photolithography tool and wet etch (BOE 7:1). c, epitaxial Si was patterned and etched by wet 

etch (KOH solution). d, After epitaxial lift-off (ELO) process, LED/PD stack was transferred 

to the SiO2 membrane treated with APTES and polyimide. The detail of LED/PD stack 

structure is shown in red box. e, LED was patterned by wet etch (Cr etchant, HCl + H3PO4). f, 

PD was patterned by wet etch. g, Ti/Pt/Au was deposited on the p-doped side. h, Ni/Ge/Au was 

deposited on the n-doped side. The final structure of LED/PD stack is shown in navy box. 
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Figure 3-9: Field-programmable gate array (FPGA) system for memristor crossbar array 

measurement. a, Schematic of FPGA system. Parallel programming and reading were 

controlled by software on computer. b, Image of the FPGA system. The system consists of a 

core board, a 64 channels-TIA board, two 64 channels-DAC boards, and a connector board 

with DUT connectors. DUT connectors were connected to the probe card for programming and 

reading. We used 5K ohm resistors to initiate the crossbar array. c, Image of the crossbar array 

mounted to the probe card.  
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Figure 3-10: Schematic of 5 x 5 kernel operation on 5 x 5-pixel images. To perform a 

recognition task of three 5 × 5 letter patterns, we implemented three 5 × 5 kernels into Si 

memristor crossbar arrays. Fig. 3-10 presents three 5 × 5 kernels represented in software (Top) 

and programmed in memristor crossbar arrays (Bottom), respectively. 
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Figure 3-11: Image preprocessing in the layer-to-layer light communication. Patterned Images 

obtained by photodiode arrays with 0.1 V reverse bias both in eye layer (‘A’ images) and in 

classification layer (‘B’ images). Due to the light diffraction, there are some noises around the 

letter patterns (Top, ‘A’ images). These noises are filtered when the light information is 

processed by a photodiode array in classification layer (Bottom, ‘B’ images). 
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Figure 3-12: Flow chart of the optical and electrical measurements in chips. Black boxes 

indicate the interactions between a laser diode and photodiodes. Blue boxes indicate the 

interactions between LED/PD stacks. Red boxes indicate the interactions between a memristor 

crossbar and the FPGA system. In the process of a crossbar, the conductance programming has 

been performed using a closed-loop scheme before Multiply-Accumulate (MAC) operations. 
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Figure 3-13: Software simulation results of denoising autoencoder to noisy input as a function 

of Gaussian noise level. Denoising autoencoder has been implemented to improve the pattern 

recognition. Gaussian noise has been added to ground truth with different noise levels. Noisy 

inputs are inserted to the 25 × 5 × 25 denoising autoencoder. Denoised output show the 

simulation result of noisy input. Learning parameters are as follows. Adam optimizer has been 

adopted with 0.0003 of learning rate and 100 of epochs. Loss has been calculated by the mean 

squared error (MSE) and weights have been updated by back-propagation. Different level of 

gaussian noise has been added to the original data.  
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Figure 3-14: Denoising autoencoder training loss. Training loss from denoising autoencoder. 

Adam optimizer has been adopted with 0.0003 of learning rate. Loss has been calculated by 

the mean squared error (MSE) and weights have been updated by back-propagation. Different 

level of gaussian noise has been added to the original data. Total number of dataset is 180 and 

20 % of dataset is used for validation. 
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Figure 3-15: Distribution (cumulative distribution function) of Multiply-accumulate (MAC) 

operations and current sums of denoising autoencoder in software and memristor crossbar 

arrays. As described in Fig 3-4c, the 25 × 5 × 25 denoising autoencoder has been implemented 

into Ag-Cu alloy Si-based memristor crossbar arrays. No bias value has been used in the neural 

network. For both fully-connected layers, differential pairs of memristors are used to represent 

positive and negative MAC values. A rectified linear unit (ReLu) has been used to MAC values 

in the first fully-connected layer. Then, MAC values are normalized and converted to voltage 

pulses before the second fully-connected layer. Histograms show the MAC values performed 

by software (floating number) and Ag-Cu alloy Si-based memristor crossbar arrays (current 

sums averaged by the number of maximum number pulses = 100, unit - μA). Left shows the 

MAC values in the first fully-connected layer and right shows the MAC values in the second 

fully-connected layer. The output current from the crossbar is calculated by memristor 

differential pairs. The negative MAC values are zeroed for the next kernel layer. 
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This section is dedicated for Methods. 

 

Stackable Optoelectronic Neuromorphic Chip Fabrication. 

We employed a silicon on insulator (SOI) wafer with 200 nm p+ Si (0.01 Ω cm, 8E18) and 500 

nm p++ Si (0.002 Ω cm, 7E19) layers epitaxially formed. First, a SiO2 layer was formed as a 

protective layer (PECVD-Samco-PD220, high frequency plasma at 300° C) and patterned with 

photolithography and a 7:1 buffered oxide etchant (BOE). Second, we etched Si at 40 degrees 

Celsius with a 50 % KOH solution for GaAs LED/PD stack integration. Meanwhile, we used 

49 percent HF to execute an epitaxial lift-off (ELO) technique on an LED/PD stack. Finally, 

the LED/PD stack was taken up by PDMS and released onto the SiO2 layer, where it was treated 

with oxygen plasma (50 sccm, 100W, 5 mins) and coated with (3-Aminopropyl)triethoxysilane 

(APTES) and polyimide. The LED/PD stack was then patterned using a photolithography tool 

(MLA-150) and wet etching (Cr etchant for GaAs etch, HCl/H3PO4 for InGaP etch). While 

Ti/Pt/Au (10/20/100 nm) was used for the p-type side contact, Ge/Ni/Au (20/20/200 nm) was 

used for the n-type side contact. Wet etch was used to isolate each device after metal contact 

deposition. The LED/PD arrays were encased in SiO2 (100 nm) and patterned with reactive ion 

etching (RIE). Then, using photolithography and electron beam evaporation, a top metal layer 

of Ti/Au (10/400 nm) was deposited. The manufacturing of the Ag-Cu alloy-based Si 

memristor crossbar array was the next stage, as detailed in ref [39]. After removing the SiO2 

protective layer placed in the first phase, the crossbar array was created. Finally, backside holes 

aligned with the LED/PD arrays were made using photolithography and the deep reactive ion 

etch (DRIE) procedure for chip-to-chip communications. Using scanning electron microscopy 

and optical microscopy, we demonstrated that Si was totally etched and that the SiO2 layer 

persisted. 
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Optical measurement. 

Fig. 3-6 depicts an image as well as an optical measuring schematic. The original chip's light 

source was a laser diode (635 nm wavelength), which was powered by a pulse generator unit. 

The laser diode's light was collimated using a mounted achromatic doublet and lenses. We 

created the confocal microscopy setup using a beam splitter and an objective lens to guarantee 

that the light was focused on the chip. Two micro-manipulators and a piezoelectric actuator 

were used to precisely position two chips for chip-to-chip communication. Every light-emitting 

diode and photodiode on the chips was fanned out of the device area, allowing for external I/O 

configuration. The chips' top metal layer was in contact with an anisotropic conductive film 

(3M) before being connected to a pulse generator unit (33600A) and a digital storage 

oscilloscope (DSOX3024T) via flat flex connectors (FFC). 

 

 

Electrical Measurement Setup. 

We outfitted the field-programmable gate array (FPGA) system with 64 channel 

transimpedance amplifiers (TIA) and two 64 channel digital-analog converters for the 

memristor crossbar array measurement (DACs).  The probe card was designed to 

accommodate a 32 × 32 crossbar array. The resolution of the voltage output DAC is 16 bits. 

The resolution of the voltage acquisition DAC is 12 bits. There are 128 programmable I/O 

channels and 64 current collection channels in the system. The maximum voltage output 

amplitude is 10V, with a resolution of 1.2 mV. The array measurement was carried out using a 

bespoke board-level peripheral system with parallel accessing and programming capabilities. 

(More information on resistors and current compliance will be provided later.) Fig. 3-9 shows 

the schematic and image of the FPGA system, as well as a 32 × 32 array image. The 

conductance values in the memristor were programmed utilizing a closed loop technique for 
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kernel operations and denoising autoencoder. The read voltage pulses of 0.5 V with a duration 

of 10 milliseconds were used. The amplitude of the input determined the number of read pulses. 

In the paper, the output current is accumulated over the number of read pulses and then 

averaged by the number of read pulses to calculate the current sum. 

 

Kernel operation in kernel layers. 

In distinct memristor crossbar arrays, we programmed three letter kernels, ‘M' kernel layer, ‘I' 

kernel layer, and ‘T' kernel layer. In memristor crossbar arrays, 25 × 2 Si memristors were 

employed for each kernel operation, as explained in the manuscript. In memristor crossbar 

arrays, the kernel procedure consists of three steps: (1) weight programming, (2) differential 

pairs testing, and (3) voltage input for kernel operations are all possible. As previously stated, 

we examined 5 × 5 differential pairs of memristors, which represent 5 × 5 pixels, prior to 

performing kernel operation. The measured values for 5 × 5 kernels are shown in Fig. 3-10. 

There was no substantial retention decay detected during the writing and reading processes. 

 

Neural network simulation and implementation.  

Python and Pytorch were used to create the denoising autoencoder. The denoising 

autoencoder's architecture is 25 × 5 × 25 without bias. (The number of neurons is represented 

by each number.) First, we measured the current output values of a photodiode array in response 

to patterned light input. The current output from photodiodes was amplified by 107 and used in 

the neural network simulation under the assumption that the gain of the transimpedance 

amplifier was set to 107. Following the first fully-connected layer of 25 × 5, the activation 

function was chosen as a Rectified linear unit (ReLU). During the training phase, we used MSE 

as the loss function, Adam as the optimizer, a learning rate of 0.003, and an epoch of 100. The 

dataset is 180 by 180 (‘M': 60, ‘I': 60, ‘T': 60). We used 144 letter data for the training set and 
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36 letter data for the test set. Following the completion of the training, we obtained weight 

values in order to program memristor crossbar arrays. The specifically built probe card 

communicated between the FPGA system and the memristor crossbar arrays. The Python-

MATLAB interface transforms write and read requests into FPGA commands for programming 

and accessing memristor conductance values. The denoising autoencoder output (denoised 

pictures) is normalized and transformed to pixel values. The pixel data are translated to voltage 

and delivered to LED devices in the next layer to conduct kernel actions. Fig. 3-12 depicts the 

workflow of light communications and memristor crossbar array activities. 

 

3.3 Conclusion 

In summary, we demonstrated the stability of light communication by performing 

kernel operations, which are core activities in AI, on multi-stacked neuromorphic circuits with 

three separate pre-programmed processor layers. Furthermore, by incorporating a denoising 

layer between the eye and kernel layers, our chip stack demonstrates good tolerance to high 

noise levels. Pattern identification by kernel operations improved dramatically after denoising 

damaged images. These Lego-like, heterogeneously connected neuromorphic processors give 

designers a lot of leeway when it comes to designing near-sensor computing systems that can 

be seamlessly optimized for edge AI applications. Our framework, which is based on the co-

design of sensory/neuromorphic devices and chip architecture, enables a wide range of 

applications for reconfigurable edge neuromorphic computing. Our chips will also bring 

tremendous adaptability to neuromorphic edge computing by leveraging critical machine 

learning techniques like transfer learning, which simply require fine-tuning of the last layer. 
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Chapter 4 

Conclusion 

This chapter is devoted to a summary of my thesis, which includes a conclusion and 

recommendations for further research. 

 

4.1 Conclusion 

The traditional RRAM devices for neuromorphic computing, as described in Chapter 1, 

were suffering from poor device performance metrics such as endurance, retention, multi-level 

representation, temporal and spatial fluctuations. However, while each of the device 

performance metrics might be improved separately, there was no RRAM device that could 

satisfy all of the specifications at the same time. The capacity of multi-level representation is 

particularly important for the next generation of AI hardware, which is required to improve 

device density while also avoiding the need for analog-to-digital conversions. As a result, 

neuromorphic devices may be used to achieve completely analog computing. Because of the 

stochastic nature of Ag atoms, which may result in more slow ion motions in a switching 

medium, Ag-based RRAM devices have been under investigation for a long time. The 

stochastic behavior of Ag, on the other hand, is very difficult to regulate because of the weak 
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thermal interaction between Ag and the Si medium, which results in computing errors in 

neuromorphic computing. 

In Chapter 2, I introduced an alloying technique for the typical Ag-based RRAM 

devices, which was followed by a discussion of the results. It was discovered that using this 

alloying method, device performance improved in all metrics, including long endurance (> 107), 

long retention (> 1 hr at high temperature), and improved variation (when compared to the 

performance of Ni-Ag and Cu-Ag alloys) at multi-level conductance values. Second, I 

demonstrated stackable hardware-wise reconfigurable chips that were equipped with a variety 

of sensors and processors. One of the chips' features is an artificial intelligence module, which 

is enabled via crossbar arrays of alloyed RRAM devices. It offered hardware-based stack-

ability as well as the ability to reconfigure neural network architectures. I showed basic image 

processing, letter recognition, and denoising utilizing kernel operations in deep neural networks, 

as well as simple image processing, letter recognition, and denoising. Analog neuromorphic 

computing and edge computing will be made possible by the use of the optimized RRAM 

devices and reconfigurable architecture in a cost-effective and energy-efficient manner. 

 

4.2 Future work 

The primary objectives of neuromorphic computing as the next generation of artificial 

intelligence hardware are (1) acceleration of matrix multiplication, (2) reduced system power 

consumption, and (3) completely analog computing, all of which are achievable. Despite the 

fact that my work in this thesis, which includes materials science innovation and hardware 

architectural flexibility, may lead to advances in three objectives, there are still difficulties in 

(1) device, (2) circuit, and (3) architecture design and implementation of neuromorphic 

computing. 
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The following are the difficulties that neuromorphic devices must overcome. In the first 

place, it is difficult to integrate a neuromorphic device with traditional material systems. 

Second, only a small number of conductance ranges have been obtained thus far. Third, there 

are significant spatiotemporal device variations found. In order to address these problems, two-

dimensional materials-based memristors, piezoelectric material-based memristors, and three-

terminal memristors are presented as potential candidates. When compared to two-terminal 

memristive devices, gate-controlled three-terminal memristive devices may be able to regulate 

the ion movement with more precision than their counterparts. 

There are additional difficulties in implementing neuromorphic computing at the circuit 

level, which must be overcome in order to be effective. First, there is a sneak path problem 

with crossbar arrays. Second, backpropagation is difficult to include into the circuit because 

calculating partial derivatives is unfriendly to the existing neuromorphic circuits, making it 

difficult to incorporate. Third, transfers between read mode and write mode, as well as digital-

to-analog conversions, have the potential to waste a significant amount of energy. Suppressing 

a sneak route using a three-dimensional crossbar array with high resistance may be a good 

solution for dealing with the first problem mentioned above. Backpropagation may be 

accomplished by embedding analog circuits within the chips, which approximate the partial 

derivative values and update devices in the process. Selector devices have the potential to 

reduce the energy consumption associated with digital-to-analog conversions. 

Because of a lack of weight update methods, system-level neuromorphic computing has 

not been completely explored to its potential. Recently, memristor crossbar arrays for 

convolutional neural networks have been developed and implemented [89]. Despite the fact 

that this study demonstrated successful convolutional neural network implementations with 

distinct programmed weights using RRAM devices, it was unable to attain high precision via 

the use of a weight transfer technique. With the introduction of hybrid training, which consider 
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device variability as well as incomplete training data, it achieves accuracy that is similar to that 

of software. Because the update algorithms for neuromorphic systems are still in the early 

stages of research, it is necessary to create hybrid techniques that are tailored to certain 

networks and applications. As neuromorphic devices, circuits, and architecture continue to 

improve, it is expected that fully hardware-implemented neuromorphic chips will be available 

at one point in the future. However, the requirements for device-, circuit-, and architectural 

design, on the other hand, are heavily influenced by the applications. Therefore, rather than 

focusing only on increasing performance at each level, I believe that future work will need to 

include co-designing hardware and software in order to optimize the neuromorphic system 

depending on the applications. 
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