
Learning Through the Lens of Robustness

by

Dimitris Tsipras

Diploma, ECE, National Technical University of Athens (2014)

MSc, CS, Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

September 2021

© 2021 Massachusetts Institute of Technology. All rights reserved

Author .
Department of Electrical Engineering and Computer Science

July 15, 2021

Certified by .
Aleksander Mądry

Cadence Design Systems Professor of Computing
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Learning Through the Lens of Robustness

by

Dimitris Tsipras

Submitted to the Department of Electrical Engineering and
Computer Science on July 15, 2021 in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

Abstract

Despite their impressive performance on large-scale benchmarks, machine learning sys-
tems turn out to be quite brittle outside of the exact setting in which they were developed.

How can we build ML models that are robust and reliable enough for real-world deployment?

To answer this question, we first focus on training models that are robust to small,
worst-case perturbations of their input. Specifically, we consider the framework of robust
optimization and study how these tools can be leveraged in the context of modern ML
models. As it turns out, this approach leads us to the first deep learning models that are
robust to a wide range of (small) perturbations on realistic datasets.

Next, we explore how such a paradigm of adversarially robust learning differs from the
standard learning setting. As we will see, robust learning may require training a model
that relies on a fundamentally different set of input features. In fact, this requirement can
give rise to a trade-off between robustness and accuracy. At the same time, the features
that robust models rely on turn out to be more aligned with human perception and, in
turn, make these models also useful outside the context of reliability.

Finally, we move beyond the worst-case perturbation setting and investigate other
robustness challenges in deploying models in the wild. On one hand, we develop general
methodologies for creating benchmarks that gauge model robustness along a variety of
axes, such as subpopulation shift and concept transformations. On the other hand, we
explore ways to improve the reliability of our models during deployment. To this end, we
study how we can bias the features that a model learns towards features that generalize
to new environments. Moreover, we develop a methodology that allows us to directly
rewrite the prediction rules of a model with virtually no additional data collection.

Thesis Supervisor: Aleksander Mądry

Title: Cadence Design Systems Professor of Computing

3

4

Acknowledgements

This thesis would not have been possible without the help and support of many. Unfor-
tunately, I now realize that a short acknowledgements section cannot hope to give them
justice, but I’ll give it a shot anyway.

First and foremost, I want to thank my advisor, Aleksander. He supported me through-
out these years, always providing thoughtful and caring advice on research, work, and life.
His endless energy and attention to detail has been one of my main sources of motivation
during my PhD. And we actually had fun.

I also want to thank all my collaborators, Andrew, Logan, Shibani, Brandon, Michael,
Alex M., Alex T., Adrian, Mahi, David, Saachi, Jacob, Ludwig, Kunal, and Antonio. I
learned a lot from each and every one of them. Moreover, I want to single out Andrew,
Logan, and Shibani: our lengthy discussions shaped the bulk of my ideas and research
agenda through my PhD.

I am also grateful for finding a research home at MIT. Our extended lab was an amazing
environment to learn, discuss, and have fun. For that I want to thank everyone involved,
Andrew, Logan, Shibani, Brandon, Alex M., Kyriakos, Saachi, Guillaume, Sam, Hadi, Kai,
Eric, Jerry, Samanta, Natalia, Kamila, and Debbie. I also want to single out Debbie, for
making everything so much easier. Finally, I want to thank Piotr, for being a supportive
mentor throughout these years, and Rebecca, for all her help.

I want to also thank Zico and Costis, for serving in my thesis defense committee and
their advice throughout, as well as Dimitris Fotakis and Stathis Zachos for believing in me
back in the day.

This period of my life would not have been complete without all my friends. This
includes my friends from high-school and undergrad, for being there from the start, Adam,
Panagiotis, Stratos, Themis, Antones, Kostas, Ilias, and Billy; the amazing family in Boston
for making this city feel home, Manolis, Katerina, Konstantinos, Christina, Chara, Lydia P.,
Terra, Lydia Z., Marinos, Dj Z, Themis, Sophie, Andreas, Andrew, Logan, Ilias, Konstantina
M., Konstantina B., Christos, Vasso, Kyriakos, Eva; and the Insti lads, Ishita, Ian (courtesy
appointment), Rushina, Gangrade, Priyank, Yamini, and Prithika for all the fun trips.

Finally, I will always be grateful to my parents, Iraklis and Eftychia for their whole-
hearted support and for raising me to be a person that I can be proud of. Last, but not
least, I want to thank Shibs, for making my life better in every way.

5

Contents

Introduction 12

I Robustness to Worst-Case Perturbations 24

1 Building robust models 25

1.1 An optimization view on adversarial robustness 26

1.2 Solving the outer problem: Training robust models 28

1.3 Solving the inner problem: Finding good perturbations 29

1.4 Adversarially robust deep learning models 31

1.5 Network capacity and adversarial robustness 34

1.6 Transferability . 35

1.7 Subsequent work . 36

2 Fundamentals of worst-case robustness 38

2.1 The robust features model . 38

2.1.1 Standard learning can lead to brittle models 39

2.1.2 Robustness and accuracy can be at odds 40

2.1.3 Learning a robust classifier . 41

2.2 Non-robust features in real-world datasets 43

2.2.1 Simply removing non-robust features improves robustness 44

2.2.2 Non-robust features suffice for standard classification 45

2.2.3 Transferability can arise from non-robust features 47

2.3 What do robust features look like? . 49

2.3.1 Latent model representations . 49

2.3.2 Using robust features in downstream tasks 56

6

II Real-World Robustness 63

3 Towards capturing real-world deployment 64
3.1 Simulating subpopulation shift . 65

3.1.1 The BREEDS methodology . 65

3.1.2 Utilizing the ImageNet class hierarchy 68

3.1.3 ImageNet-based BREEDS tasks . 69

3.1.4 Calibrating BREEDS benchmarks via human studies 70

3.1.5 Model performance under subpopulation shift 71

3.2 Concept-level transformations . 73

3.2.1 Synthesizing concept-level counterfactuals 73

3.2.2 Probing model robustness via counterfactuals 74

4 Improving robustness: Finding the right features 77
4.1 Robustness to synthetic transformations . 78

4.2 Combining distinct feature priors . 79

4.2.1 Feature priors as different perspectives 80

4.2.2 Combining diverse priors on unlabeled data 83

4.2.3 Using co-training to avoid spurious correlations 87

5 Adapting models by rewriting their prediction rules 90
5.1 Background: Rewriting generative models 91

5.2 Editing classifiers . 93

5.3 Does editing generalize? . 94

5.3.1 Evaluation setup . 94

5.3.2 The effectiveness of editing . 96

5.4 Real-world demonstrations . 97

Bibliography 98

Appendix 114

A Additional details for Chapter 1 114
A.1 Experimental setup. 114

A.2 Statement and application of Danskin’s theorem 114

A.3 Inspecting a robust model . 115

7

B Additional details for Chapter 2 119
B.1 Alternative models for adversarial examples 119

B.2 Experimental setup . 121

B.2.1 Datasets . 121

B.2.2 Models . 121

B.2.3 Adversarial training . 121

B.2.4 Adversarial examples for large ε . 122

B.2.5 Constructing a Robust Dataset . 122

B.2.6 Non-robust features suffice for standard classification 124

B.2.7 Image-to-image translation . 124

B.2.8 Generation . 125

B.2.9 Inpainting . 125

B.2.10 Super-resolution . 125

B.3 Proofs for Section 2.1 . 126

B.3.1 Proof of Theorem 2.1.1 . 126

B.3.2 Proof of Theorem 2.1.2 . 127

B.4 Additional figures . 130

B.4.1 Inverting representations . 132

B.4.2 Direct feature visualizations for standard and robust models 134

B.4.3 Additional examples of feature manipulation 136

B.4.4 Image generation . 137

B.4.5 Image-to-image translation . 142

B.4.6 Inpainting . 144

C Additional details for Chapter 3 145
C.1 Experimental setup for Section 3.1 . 145

C.1.1 Dataset . 145

C.1.2 Pipeline formalization . 145

C.1.3 WordNet issues . 146

C.1.4 Manual calibration . 148

C.1.5 Resulting hierarchy . 148

C.1.6 Annotator task . 155

C.1.7 Evaluating model performance . 157

C.2 Additional experimental results . 158

C.2.1 Human baselines for BREEDS tasks . 158

C.2.2 Model evaluation . 159

8

C.3 Experimental details for Section 3.2 . 165
C.3.1 Experimental setup . 165
C.3.2 Concept transformation pipeline . 165

C.4 Additional experiments . 167

D Additional details for Chapter 4 171
D.1 Details for Section 4.1 . 171

D.1.1 Experimental setup . 171
D.1.2 Full experimental results . 171

D.2 Details for Section 4.2 . 174
D.2.1 Datasets . 174
D.2.2 Model architectures and input preprocessing 175
D.2.3 Training setup . 175
D.2.4 Ensembles . 178
D.2.5 Self-training and co-training schemes 179
D.2.6 Experiment organization . 181
D.2.7 Full pre-trained ensemble results . 181
D.2.8 Ensembling self-trained models . 182
D.2.9 Self-training and co-training on STL-10 and CIFAR-10 184
D.2.10 Correlation between the individual feature-biased models and the

final standard model . 186
D.2.11 Ensembles for spurious datasets . 186
D.2.12 Breakdown of test accuracy for co-training on CelebA 188

E Additional details for Chapter 5 189
E.1 Experimental details . 189

E.1.1 Datasets . 189
E.1.2 Models . 189
E.1.3 Model rewriting . 190
E.1.4 Evaluation . 190
E.1.5 Real-world data collection . 191

E.2 Additional experiments . 193
E.2.1 The effectiveness of editing . 193
E.2.2 A fine-grained look at performance improvements 201
E.2.3 Ablations . 203
E.2.4 Fine-grained model behavior on typographic attacks 209

9

List of Figures and Tables

1 Imperceptible perturbations can fool state-of-the-art ML models 12
2 Large, adversarial perturbations for robust models resemble natural inputs 17

1.1 Loss value of the trajectory of projected gradient descent 30
1.2 Concentration of the loss values of local maxima found by PGD 31
1.3 Loss of worst-case perturbations during adversarial training 32
1.4 Robustness of PGD-trained models . 33
1.5 Conceptual illustration of standard and robust decision boundaries 34
1.6 The interaction between model capacity and robustness 36
1.7 Transferring PGD perturbations between models 37

2.1 Test accuracy of adversarially-trained models 42
2.2 Conceptual diagram of experiments studying non-robust features 44
2.3 Training models on datasets with modified non-robust features 45
2.4 Samples from datasets where only non-robust features are useful 46
2.5 Test accuracy of models relying on non-robust features 47
2.6 Relating transferability to non-robust feature learning 48
2.7 Worst-case perturbations for robust models contain salient features 50
2.8 Inverting the latent representations of standard and robust models 51
2.9 Constrained inversion of latent representation 52
2.10 Visualizing constrained representation inversion 53
2.11 Inverting representations for out-of-distribution inputs 53
2.12 Visualizing individual neurons for robust models 54
2.13 Comparing feature visualizations with maximally activating inputs 54
2.14 Manipulating inputs via neurons maximization 55
2.15 Generating images using robust classifiers . 57
2.16 Image inpainint using robust classifiers . 59
2.17 Image-to-image translation using robust classifiers 60
2.18 Super-resolution using robust classifiers . 61

10

2.19 Sketch-to-image using robust model gradients 62
2.20 Paint-with-features . 62

3.1 Illustration of our pipeline to create subpopulation shift benchmarks 66
3.2 BREEDS benchmarks constructed using ImageNet 69
3.3 Sample images from the ENTITY-13 and LIVING-17 tasks 70
3.4 Human performance on (binary) BREEDS tasks 71
3.5 Robustness of standard models to subpopulation shifts 72
3.6 Pipeline for measuring robustness to concept-level transformations 74
3.7 Model sensitivities diagnosed using our pipeline 76

4.1 Effect of train-time interventions subpopulation robustness 79
4.2 Model performance after fine-tuning on the target subpopulations 80
4.3 Visualizing shape and texture feature priors 81
4.4 Ensemble accuracy when combining models with diverse feature priors . . 82
4.5 Performance of self-trained and co-trained models 83
4.6 Similarity of shape- and texture-biased models during co-training 87

5.1 Editing prediction rules in pre-trained classifiers 91
5.2 Method for directly editing the prediction-rules of a classifier 92
5.3 Evaluating the performance of our editing methodology 95
5.4 Performance of editing in real-world scenarios 98

11

Introduction

Machine learning (ML) is having a profound impact on our society and lives. Indeed, there
is by now a plethora of systems that use ML to streamline a wide range of tasks such as
spam detection [Sah+98], image recognition [Kri09; KSH12], language translation [Wu+16],
and speech recognition [GMH13]. These developments paint a promising picture. In
particular, they give us hope that we may be able to reliably automate decisions in contexts
where the cost of mistakes is high—e.g., autonomous vehicles or medical practice.

But, are we there yet? Unfortunately, while the performance of existing ML models
is certainly impressive, it also quite brittle. Perhaps the most jarring demonstration of
such brittleness is the phenomenon of adversarial examples [Big+13; Sze+14]: state-of-
the-art image classifier can be completely fooled by imperceptible input perturbations (cf.
Figure 1). In fact, such adversarial examples can be constructed in the physical world.
That is, one can 3D-print a turtle that is classified as a rifle [Ath+18], or create innocuous
stickers that cause a banana to be recognized as a “toaster” [Bro+18]. Moreover, these
failures are not limited to image classification. One can create voice commands that are
unintelligible to humans yet home devices can pick up [Car+16] or add irrelevant text to a
passage to mislead question answering models [JL17].

“pig” (91%)

=

“airliner” (99%)

+0.005x

adversarial noise

Figure 1: Adding an imperceptible perturbations to a natural image of a “pig” can cause
an otherwise highly-accurate classifier to misclassify it into an “airliner”.

While these are only a few of the ways in which models can fail outside of their comfort
zone, such failures raise questions about how reliable we can expect these models to be in
the real world. Crucially, these failures point towards a more fundamental shortcoming of

12

these models: they may not be solving the underlying problem the way we expect them
to. That is, if the model in Figure 1 was really able to recognize the physical object in the
image, then a small perturbation should not cause it to classify a pig as an “airplane”.
Indeed, a key theme throughout this thesis is that robustness is not simply a desirable
property of our models but is rather inherently connected to the goal of learning itself.

Motivated by this state of affairs, the overarching goal of this thesis is to lay the
foundations for building ML systems that can cope with the real world. Specifically, it
revolves around two main thrusts.

First, we will aim to understand the fundamentals of robustness and how the goal
of being robust pertains to learning itself. To do so, we will consider small, worst-case
perturbations and address the following questions. How can we build models that are
robust to such perturbations? Why are models trained in the standard way not robust to
them? Is robust learning fundamentally different to standard learning?

In the second thrust, we will move beyond worst-case perturbations and focus on
robustness challenges that we expect models to face when deployed in the real world. That
is, we ask: how can we simulate such challenges in a precise yet tractable manner? How
can we prepare models to face these challenges? Can we develop tools to easily fix our
models when they fail?

In the remainder of this introduction, we provide an overview of each of these thrusts,
outlining our key ideas and results, and mapping them to the corresponding thesis parts.

Part I: Worst-case perturbations

The existence of adversarial examples represents a profound obstacle to the deployment
of ML models in the real world. After all, it shows that the predictions of that model
cannot be trusted outside of benign environments. Consequently, robustness to worst-case
perturbations has attracted significant research attention as a security objective. That is,
if adversarial examples are viewed as attacks, how can we design defenses that ensure
models perform as intended?

Building robust models

Previous approaches to preventing adversarial examples focused on mitigating specific
types of attacks. For instance, typical adversarial examples are crafted using first-order
methods [Sze+14; GSS15] which can be impeded by rendering the optimization land-
scape of a model hard to navigate—e.g., via distillation [Pap+16] or introducing random-

13

ness [Dhi+18]. However, the fact that a particular type of attacks is ineffective does not
mean that the model is robust in general. In order for a model to be robust in a meaningful
way, there needs to be a well-defined threat model—a concrete set of perturbations—to
which that model is robust to. Indeed, it has been found that essentially none of these
methods lead to models that are actually robust—it is still possible to arbitrarily fool these
models using a slightly modified attack [CW17b; CW17a; He+17; ACW18].

So how can we build models that are actually robust? The first major contribution of
this thesis is developing a conceptual framework that allows us to train models that are
robust to all perturbations within a well-defined threat model.

Formulating the robustness objective. Our starting point will be to formulate a concrete
robustness objective that we want our models to satisfy. To this end, recall that models
are typically trained via empirical risk minimization (ERM), that is finding the model
parameters θ that minimize some loss function L on the average-case input-label pair (x, y)
from some distribution D:

min
θ

E(x,y)∼D L(θ; x, y).

However, a small loss value is vacuous when it comes to worst-case guarantees. Instead,
if an adversary is able to perturb each input x by a perturbation within a threat model ∆,
then the relevant loss function on that input becomes

max
δ∈∆
L(θ; x + δ, y),

as we need to account for the worst-case perturbation of that input. Thus, the key realiza-
tion here is that we need to directly incorporate robustness into the ERM framework. To
do so, we need to focus on the following min-max optimization problem

min
θ

E(x,y)∼D max
δ∈∆
L(θ; x + δ, y).

Indeed, being able to obtain a good solution to this problem would imply that we have a
robust model: the loss remains low even under worst-case perturbations within ∆.

Solving the min-max problem. At first glance, this problem appears challenging: we are
not minimizing a differentiable function (which is the case in standard training), but rather
the maximum of a function over a set of perturbations. In order to bypass this obstacle
and train a robust model, we will leverage a theorem for robust optimization, namely
Danskin’s theorem [Dan67]. As we will describe in more detail in Section 1.2, according

14

to this theorem, training robust models boils down to training the model on worst-case
perturbations of each inputs. This process is also know as adversarial training [GSS15]
since it involves effectively training with an adversary in the loop.

Unfortunately, finding worst-case perturbations for complex ML models is, in general,
intractable. Nevertheless, our exploration of the optimization landscape of these models
in Section 1.3 reveals that approximately worst-case perturbations are actually quite easy
to compute. We can thus incorporate such worst-case perturbations into training without
a prohibitive computational overhead.

Overall, this process allows us to train the first models that achieve significant ro-
bustness against all perturbations within the threat model specified. Indeed, even when
evaluating these models against several distinct attacks, including attacks stronger than
those used during training, the robustness of these models is not significantly reduced, cf.
Section 1.4.

Fundamentals of worst-case robustness

While our exploration so far did lead us to models that are more robust, there is still
a lot that we do not understand about adversarial examples as a phenomenon. First
and foremost, why are highly-accurate models so brittle to begin with? After all, we
now know that robust models for these tasks do exist (cf. Chapter 1). Moreover, why do
adversarial examples constructed for one model tend to fool other independent models
too (a phenomenon known as transferability [Sze+14; PMG16])? Finally, as it turns out, the
robust models that we train in Chapter 1 are less accurate than their standard counterparts.
If robustness is a property that we think of as beneficial, why would there be a drop in the
model’s performance?

The robust features model. The second major contribution of this thesis is the develop-
ment of a conceptual model through which we can reason about robustness, in general,
and these phenomena, in particular. At a high level, our model is based on the notion of the
so-called robust and non-robust features. These notions are motivated by the construction
of a natural classification task where input features are independent and correlated with
the task label at varying degrees (see Section 2.1). Specifically, some of these features will
be non-robust: while predictive on the average input, they can be manipulated by small
perturbation to be predictive of the wrong label.

This setting exemplifies a fundamental dichotomy between standard and robust learn-
ing. When learning a standard classifier—i.e., a classifier that aims to maximize accuracy—

15

relying on non-robust features is beneficial, after all they are predictive of the correct
label. However, since a small perturbation can render these features misleading, a robust
classifier cannot depend on them at all.

This dichotomy provides an explanation for many of the aforementioned empirical
phenomena that we observe around adversarial examples. First, it hints at their origin:
models pick up predictive yet non-robust features which can be easily manipulated via
small perturbations—hence their vulnerability to adversarial examples. Moreover, the fact
that adversarial examples transfer between distinct model can be directly attributed to the
fact that different models are likely to pick up the same non-robust features. Finally, this
dichotomy provides an explanation as to why robust models are less accurate than their
standard counterparts: they are forced to ignore certain predictive features of the input.

Is this framework predictive? The conceptual framework discussed so far is consistent
with existing empirical phenomena related to robustness. But is there a way to test whether
it actually reflects reality?

Unfortunately, explicitly manipulating robust and non-robust features of the input is
challenging—after all, we still don’t have a good way of capturing the individual, high-
level features that deep networks rely on. Nevertheless, as we will see in Section 2.2, we
can implicitly disentangle robust and non-robust features.

Specifically, we will design two experiments that allow us to further scrutinize our
conceptual framework. First, in Section 2.2.1, we demonstrate that by training a standard
model solely on the robust features of a dataset, the resulting model ends up being robust
to a significant degree. This indicates that the presence of non-robust features is to some
extent necessary for certain adversarial examples to exist. Second, in Section 2.2.2, we
show that by training standard models solely on the non-robust features of a dataset we
can obtain non-trivial generalization. This corroborates the hypothesis that adversarial
examples arise from signals in the input that are predictive, since non-robust features are
sufficient for generalization.

Overall, these findings demonstrate that real-world datasets do indeed contain predic-
tive non-robust features that our models are sensitive to. This conclusion has implications
on model behavior even beyond concerns about security against adversaries. It indicates
that ML models can make their predictions quite differently from the way that we, as
humans, do, by relying on patterns that we cannot even perceive. Thus, one might wonder
if we can ever expect to actually reason about the behavior of such models and trust them
in high-stakes applications.

16

What do robust features look like? Our exploration so far indicates that robust models
rely on different features of the input than standard models. Can we visualize and
qualitatively examine these robust features?

Indeed, it turns out that even the most simple and natural visualization method sheds
light onto these features. That is, constructing large, worst-case perturbations for robust
models leads to inputs that contain human-recognizable features of the target class, see
Figure 2. This phenomenon indicates that robust models are actually biased towards fea-
tures that align better with how us, humans, perceive images. Going deeper, in Chapter 2.3
we explore this phenomenon of perceptual alignment in two ways.

turtle → bird primate → bird primate → bug

Figure 2: Crafting a large adversarial perturbation for a robust model leads to images that
humans recognize as the class that the model predicts.

First, we focus on the latent representations learned by robust models. We find that, in
stark contrast with standard models, individual components of these representations can
be directly visualized to produce human-understandable concepts. That is, in Section 2.3.1
we are able to identify concepts such as “stripes” which are also present in images that
strongly activate the corresponding representation component. Moreover, we are able
to approximate reconstruct the input of a robust model based solely on the latent repre-
sentation of that input. This is again in contrast to standard models—where attempting
to reconstruct inputs directly results in unintelligible images—and further supports the
hypothesis that robust representations capture more human-semantic features of the input.

Second, we further explore that phenomenon that, for robust models, class maximiza-
tion—perturbing an input to maximize the score of a certain class—introduces salient
features of the target class. Specifically, in Section 2.3.2, we find that a significant number
of traditionally challenging image synthesis tasks such as image generation, image-to-
image translation, and image in-painting can be approximately performed through this
simple primitive. In fact, all of these tasks can be simultaneously be performed using only
a single robust classifier without any task-specific training or regularization.

Overall, these findings establish robustness as a property that is desirable even beyond
reliability or security concerns and enables a range of new modes of model interactions.

17

Part II: Real-world robustness

In the first part of this thesis, we focused on model robustness within a concrete, well-
defined threat model: small, worst-case input perturbations. This allowed us to rigorously
study different facets of robust learning and identify fundamental phenomena such as
a potential robustness-accuracy trade-off. However, the perturbations that models will
face during deployment are not always small, nor are they always worst-case. Thus, our
goal in the second part of the thesis is to expand our study to real-world robustness chal-
lenges. Specifically, we will structure our approach around three core directions: creating
benchmarks, learning more reliable models, and fixing models during deployment.

Towards capturing real-world deployment

So, what are the robustness challenges that models will face during deployment? The over-
arching issue here is that, while we train our models on a curated dataset that represents a
snapshot of the task we want to solve, these models will be deployed in environments that
are likely to be different. For instance, in the context of images, models might encounter ob-
jects that are photographed in different poses and against different backgrounds [Pon+06;
TE11; Alc+19; Xia+20], under different weather conditions [BVP18; HD19], or using a
different camera [Sae+10]. Moreover, even if models were robust to such transformations
of a single object, the goal is for them to be able to recognize a concept (e.g., “dog”) which
might actually manifest differently across environments or evolve over time.

It is thus clear that we cannot expect to develop a single benchmark or methodology
that will capture all relevant facets of robustness. Instead, we need to decompose the
problem into a series of concrete robustness subproblems that we can study separately.
In Chapter 3, we take a step in this direction and develop general methodologies for
capturing two families of challenges that models are likely to encounter during deployment:
subpopulation shift and concept transformations.

Subpopulation shift. Can our models recognize poodles as dogs if, during training,
they have only seen dalmatians? This question exemplifies a major challenge in model
development: we cannot expect our training set to be perfectly representative of the real
world. Indeed, when collecting data for a specific concept of interest (say “dog”), we will
inevitable miss some of its subpopulations (say “poodle”). Thus, the ability of the model
to generalize is tightly connected to its ability to generalize to such unseen subpopulations.

So, how can we create benchmarks for studying robustness to such subpopulation

18

shifts? At first glance, this appears to require decomposing existing datasets into distinct
subpopulations. However, such a process would require a significant data annotation
effort which, apart from being quite costly, can also be error-prone, potentially introducing
additional human biases into the dataset.

In order to avoid this obstacle, in Section 3.1 we develop a scalable methodology
for constructing subpopulation shift benchmarks. The key idea is to group existing,
semantically similar classes into super-classes which will then form the subpopulations
of interest. By applying this methodology, which we term BREEDS, to the ImageNet
dataset [Den+09; Rus+15], we create a suite of benchmarks that comprise subpopulation
shifts of varying granularity. We find that while the resulting shifts do indeed pose a
significant challenge for existing models, more accurate models are still more robust to
these shifts.

Concept transformations. A model can learn to recognize a concept in a variety of ways.
For instance, it can recognize the class “car” by associating it with a variety of signals, such
as road, car body, or wheels. However, the way these signals manifest across different
environments can be quite different. For instance, the model could encounter vehicles on
snowy roads or vehicles with old, rusty wheels. How well will the model generalize when
such individual input components change?

In order to measure generalization along this axis, in Section 3.2, we develop a pipeline
that evaluates a model on input counterfactuals. That is, we study how the prediction of
the model on a specific input would change if a component of that input is transformed.
For instance, can the model recognize a “poodle” when it is standing on wood instead of
grass, or can the model recognize a “bride” when the groom is wearing a colorful jacket?
We find that in many of these cases, models are quite sensitive to these transformations,
indicating that they indeed often rely on context in an undesirable way.

Improving robustness: Finding the right features

We will now turn our attention to preparing models to tackle robustness challenges such
as those described above. To this end, recall that a key takeaway from our discussion on
robust and non-robust features was that the model’s robustness is inherently tied to the
features it uses. While there are many features that are useful for performing the desired
task during model training, the way that these features generalize in the real world might
be quite different. For instance, both “floppy ears” and “grass” might be useful signals for
recognizing beagles—after all, dogs are often photographed outdoors. However, out of

19

these two features, only the ear shape remains useful when recognizing beagles indoors.
From this perspective, our major focus in Chapter 4 is on biasing the features that the

model relies on in order to improve its robustness to a variety of conditions. We explore
this approach via two thrusts.

Robustness to synthetic transformations. As we described earlier, training a model to
be robust to small, worst-case perturbations can significantly affect the features that it
relies on. However, the same principle applies to any method that provides robustness to
a set of transformations—e.g., data augmentation or stylized training [Gei+19]. That is, by
training a model to be robust to a family of transformations, we can implicitly prevent this
model from relying on any feature that is not invariant to these transformations.

Therefore, in Section 4.1 we evaluate how robustness to a range of synthetic transfor-
mations affects the ability of models to handle subpopulations shifts (simulated via the
BREEDS methodology described above). We find that, indeed, robustness to synthetic trans-
formations has an effect on how well these models generalize. Moreover, this improvement
is not always explained by models being more accurate in the absence of subpopulation
shift. This indicates that models are actually learning to rely on different sets of features
which makes them generalize differently across subpopulations.

Leveraging unlabeled data via feature prior diversity. A promising approach to expos-
ing a model to a more diverse set of inputs is to collect a large amount of additional,
unlabeled inputs and incorporate them into training. The canonical approach for doing so
is self-learning: train a model on existing labeled data, use it to obtain pseudo-labels for
the unlabeled data, and then leverage these for further training. However, this approach
suffers from an inherent drawback: models tend to reinforce suboptimal prediction rules
learned from the original (labeled) data.

So, how can we bias models away from features that are unlikely to be predictive in the
real world? Our key observation in Section 4.2 is that we can treat models which rely on
different input features as distinct perspectives on the data. That is, by training multiple
models, each with a different feature prior, we can combine them to distill prediction
rules that are supported by multiple views of the data. To this end, we employ the classic
framework of co-training [BM98] where the predictions of each model are added to a
common pool of pseudo-labeled examples that are used to further train all models.

We apply this methodology to two setting where the training data is unreliable: one
where the labeled dataset is too small and one where it contains a spurious correlation,
i.e., a correlation that does not hold on the test set. We find that, in both cases, co-training

20

using multiple, diverse feature priors results in models that generalize better to the actual
task at hand. This demonstrates that, throughout training, these models are able to correct
each other’s mistakes and steer away from learning misleading correlations.

Adapting models by rewriting their prediction rules

Despite our best efforts to build models that are robust, they will eventually encounter con-
ditions in which their performance degrades significantly. Therefore, reliable deployment
requires us to develop tools for adapting our models to such conditions.

Consider for instance a scenario where a model has trouble recognizing vehicles on
snowy roads. The canonical method for ameliorating this issue involves collecting addi-
tional data and using it for further model training. However, collecting a large number of
photographs depicting vehicles on snowy roads might be tricky: we need to ensure that
we collect a diverse enough range of vehicles in diverse enough conditions.

Therefore, in Section 5.2, we develop a methodology that allows us to directly edit the
prediction rules of a model without the need for additional data collection. Our approach is
based on the method of Bau et al. [Bau+20a] for rewriting generative models and in focused
around performing a small, targeted modification to the parameters of the model using a
handful of example inputs. Conceptually, the goal of our method is to ensure that a specific
concept, say “snowy road”, is treated by the model in the same way as another concept,
say “road”. This allows the model to reuse the original predictions rules—which rely on
the presence of “road”—in this new setting without the need for significant retraining.
As it turns out, this approach is quite effective. In particular, it enables us to modify the
model’s behavior on a range of real-world scenarios using a single, synthetically crafted
example.

Outlook: Towards reliable machine learning

While our progress so far is encouraging, we are still far from building models that are
truly reliable. However, going forward, we believe that there are promising avenues for
research, focused around the following two directions.

Understanding the space of robustness priors. Our findings so far establish robustness
as a powerful tool for influencing the behavior of a model. That is, by enforcing different
invariances to a model (through adversarial training or data augmentation), we can bias it

21

towards relying on different features of the input and thus potentially improve its ability
to generalize to new environments.

However, this is only a first step towards exploring and harnessing the space of
robustness-based priors. What other invariances can we efficiently enforce when training
our models? How do these invariances affect different notions of real-world robustness?
In fact, the answer to these questions is likely to be domain- or application-specific. Thus,
how can we develop the tools to help practitioners identify the right feature priors for a
particular task at hand?

A deployment toolkit. Model deployment is not a one-shot process. Models will in-
evitably make mistakes which will then need to be analyzed by model designers and used
to improve the model. How can we create tools to facilitate this process?

On one hand, we need to enable effective model debugging: how can we distill
model failures into concrete, actionable insights? Inevitably, such a process needs to
involve domain experts. Thus, when designing debugging tools we need to account
for the corresponding costs: what are ways to minimize the need for expert knowledge,
potentially by effectively leveraging non-expert human annotators?

On the other hand, after pinpointing the problematic model behavior, model designers
need to correct it. Our methodology for directly editing prediction rules is only a first step
in this direction of implementing precise modifications to the way models predict. What
are other effective interfaces through which humans can interact with models? How can
we expose the inner workings of a model to a human designer in a way that facilitates
model correction?

Thesis organization

Chapter 1 describes our methodology for training models that are robust to small, worst-
case perturbations. It is based on joint work with Aleksander Mądry, Alex Makelov,
Ludwig Schmidt, and Adrian Vladu [Mad+18].

Chapter 2 explores the fundamentals of robustness through the robust features model.
It is based on joint work with Logan Engstrom, Andrew Ilyas, Aleksander Mądry, Shibani
Santurkar, Brandon Tran, and Alex Turner [Tsi+19; Ily+19; Eng+19a; San+19].

Chapter 3 focuses on scalable methods for measuring model robustness to deployment
conditions. Section 3.1 focuses on subpopulation shift and is based on joint work with
Aleksander Mądry and Shibani Santurkar [STM21], while Section 3.2 focuses on concept

22

transformations and is based on joint work with David Bau, Mahi Elango, Aleksander
Mądry, Shibani Santurkar, and Antonio Torralba [San+21].

Chapter 4 studies how different training methodologies can impact the features that a
model learns and, in turn, how this can affect the robustness of the model on downstream
tasks. Section 4.1 focuses on robustness to synthetic transformations in the context of
subpopulation shift and is based on joint work with Aleksander Mądry and Shibani
Santurkar [STM21], while Section 4.2 focus on leveraging unlabeled data through diverse
feature priors and is based on joint work with Saachi Jain and Aleksander Mądry [JTM21].

Chapter 5 describes our method for adapting a model by directly editing its prediction
rules and is based on joint work with David Bau, Mahi Elango, Aleksander Mądry, Shibani
Santurkar, and Antonio Torralba [San+21].

23

Part I

Robustness to Worst-Case Perturbations

24

Chapter 1

Building robust models

Imperceptible input perturbations can cause models that are otherwise highly accurate
to produce arbitrarily wrong predictions [Big+13; Sze+14]. In fact, such adversarial per-
turbations are quite pervasive. There is by now a large body of work demonstrating that
they can be computed quite easily in a number of different domains [JL17; Car+16; SCJ19],
even without full access to the model [Che+17; Ily+18]. Moreover, these perturbations can
transfer between different model architectures [Sze+14; PMG16] and can also manifest in
the physical world [KGB16; Ath+18; Evt+18; Bro+18].

The security implications of this phenomenon are clear, one cannot trust the predic-
tions of the model when it is deployed in an adversarial environment. However, this
phenomenon hints at an even more significant reliability concern: if models are sensitive
to input changes that we, as humans, cannot even perceive, how can we expect them to be
robust to all the challenges that they will face when deployed in the real world? Thus, if
we do want to eventually deploy ML models reliably, we need to first understand:

Can we train ML models that are robust to small, worst-case perturbations?

This question has drawn significant research attention with multiple method for train-
ing robust models being proposed. Unfortunately, to the best of our knowledge, none of
these approaches were successful. The key issue is that these methods are relatively ad hoc
approaches that aim to prevent an adversary from easily constructing effective adversarial
perturbations. However, they were not tied to any specific robustness objective and can
thus be bypassed by adaptive methods for constructing adversarial perturbations [CW17b;
He+17; CW17a; ACW18].

Here, we will take an alternative approach. That is, we will study the problem of
robustness by first formulating a concrete robustness objective that we want our models
to satisfy. Specifically, we will study a natural min-max formulation that allows us to

25

use established tools from robust optimization [BEN09]. As we will see, despite the non-
convexity and non-concavity of its constituent parts, the underlying optimization problem
is tractable. This will allow us to train the first models that are robust to a wide range of
small, worst-case perturbations.

Chapter outline:

• First, we will present our conceptual framework for training robust models based on
robust optimization in Section 1.1.

• We will then study the landscape of the corresponding optimization problem. Specif-
ically, we will tackle the outer minimization problem in Section 1.2, the inner maxi-
mization problem in Section 1.3, and then demonstrate how this methodology can
lead us to robust models in Section 1.4.

• Finally, we will dive deeper into the empirical behavior of robust models by exploring:
(a) the impact of model capacity on robustness (Section 1.5); (b) black-box transfer
attacks using robust models (Section 1.6).

• We will conclude by discussing subsequent work in this area and outline the current
state of worst-case robustness 1.7.

1.1 An optimization view on adversarial robustness

Our discussion will revolve around an optimization view of adversarial robustness. This
perspective will allows us to formulate a concrete objective that we want our models to
satisfy and, in turn, will allow us to develop a principled training methodology.

Recall that the canonical methodology for training ML learning models is empirical
risk minimization (ERM). That is, the goal is to find model parameters that minimize the
error of the model on a fixed set of input—the training set. Concretely, consider a standard
classification task with an underlying data distributionD over pairs input label pairs (x, y).
Then the goal is to compute model parameters θ that perform best on the average input

min
θ

E(x,y)∼D L(x, y, θ)

where the L function captures how well the model performs on an input-label pair (x, y).
While this methodology typically leads to models that can predict accurately on new,

unseen inputs, these models are not necessarily robust. That is, given an example x with

26

label y it is possible to construct a similar input xadv such that the model incorrectly assigns
xadv a label y′ 6= y [Big+13; Sze+14].

In order to reliably train models that are robust to adversarial perturbations, it is
necessary to augment the ERM paradigm appropriately. The first step towards doing so
is to specify a perturbation set ∆ that precisely defines that set of perturbations that our
models should be resistant to. In the setting of image classification, we choose what is
perhaps the simplest set of perturbations: an `∞-ball around each input. It is worth noting
that while a small `∞ distance between images implies that they are perceptually similar,
there are many other natural notions of similarity that one can consider [FF15; Xia+18].

Next, we modify the definition of population risk ED[L] by incorporating the above
perturbation model. Instead of feeding samples from the distribution D directly into the
loss L, we allow for a worst-case perturbation of the input first. This gives rise to the
following saddle point problem, which is our central object of study:

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
δ∈∆
L(θ, x + δ, y)

]
. (1.1)

Formulations of this type (and their finite-sample counterparts) have a long history in
robust optimization, going back to Wald [Wal45].

This formulation gives us a unifying perspective that encompasses much of prior
work on adversarial robustness. Both the inner maximization and the outer minimization
problems have a natural interpretation in our context. The inner maximization problem
aims to find an adversarial version of a given data point x that achieves a high loss. This is
precisely the problem of finding a worst-case perturbation. On the other hand, the goal
of the outer minimization problem is to find model parameters so that the adversarial loss
given by the inner problem is minimized. This is precisely the problem of training a robust
classifier using adversarial training techniques.

Crucially, this saddle point problem presents a clear goal that an ideal robust classifier
should achieve. In particular, when the parameters θ yield a (nearly) vanishing risk, the
corresponding model is perfectly robust to attacks specified by our attack model. In the
rest of this chapter, we will investigates the structure of this saddle point problem in the
context of deep neural networks. These investigations then lead us to training techniques
that produce models with high resistance to a wide range of adversarial attacks.

27

1.2 Solving the outer problem: Training robust models

We start our investigation by focusing on solving the outer minimization problem: find
model parameters that low adversarial loss. Recall that if we find that parameters, then we
know that the resulting model is robust to adversarial perturbations, since, by definition,
these cannot increase its loss significantly.

The canonical way of training a model is via stochastic gradient descent (SGD)—
iterating updating the parameters to improve the loss on a random set of training examples.
However, it is not a priori clear how this methodology can be used to solve our saddle
point formulation (1.1). The main challenge is that we are not optimizing a fixed function
but rather a maximum over function values.

Nevertheless, we can bypass this challenge by leveraging a classic theorem in opti-
mization, namely Danskin’s theorem [Dan67]. This theorem states that, under a set of
assumptions, if we compute the gradient of the L with respect to θ on a maximizer δ∗ then
this correspond to a descent direction for the maximum—i.e., the adversarial loss—(see
Appendix A.2 for the exact statement of the theorem). There is thus a very intuitive way
of solving the outer problem: use SGD to optimize L with respect to θ, but replace each
input-label pair (x, y) with a worst case perturbation (xadv, y). This process is also known
as adversarial training [GSS15] since we are effectively training against an adversary that
perturbs inputs.

Note that the exact assumptions of Danskin’s theorem do not hold for the setting of
standard deep neural networks. That is, the L function is not continuously differentiable
due to ReLUs and max-pooling units and we are only computing approximate maximizers
of the inner problem. Still, as our experiments in Section 1.4 demonstrate, the underlying
intuition is still valid and allows to train robust models.

Nevertheless, there is a key takeaway from this discussion: the perturbations used for
adversarial training should be approximately worst-case. While this is apparent from the
statement of the theorem, it also manifests clearly in empirical experiments. Early attempts
at training robust models were using crude methods for computing these perturbations,
e.g., by simply linearizing the loss around each data point [GSS15]. As a result, while these
methods lead to model that were robust to such crudely-constructed perturbations, they
could be fooled completely by slightly more sophisticated perturbations [Tra+17].

28

1.3 Solving the inner problem: Finding good perturbations

We now turn our attention to the inner maximization problem. That is, for a fixed input-
label pair (x, y) and fixed model parameters θ, how can we find that worst `∞-bound
perturbations:

max
‖δ‖∞≤ε

L(θ, x + δ, y)

where ε is the maximum allowed perturbation magnitude. Recall, that findings such
worst-case perturbations is crucial for our ability to use them for training robust models as
discussed in the previous section.

Since the structure of the loss function L will be quite complex for most modern
machine learning models, we will attempt to find an approximate solution to this problem
via a first-order method. Specifically, to ensure that δ remains within the allowed set ∆, we
need to employ project gradient descent (PGD) where we will project the solution to the
allowed set at each step. Moreover, we choose to use a version of PGD that might be better
suited for `∞-based problem wherein at each step we move to the further point within
an `∞-box to the direction of the gradient. Overall, our optimization process is iterative
where at each step we perform an update of the form

xt+1 = Πx+∆
(
xt + α sgn(∇xL(θ, x, y))

)
,

for some small step size α.

In the context of adversarial perturbations, this method is known as the “basic iterative
method” [KGB17]. In its simplest form, where only a single step of size ε is taken, this
corresponds to the “fast gradient sign method” (FGSM) [GSS15] which equivalent to
maximized a first-order approximation of the loss around x.

The landscape of adversarial perturbations

So, can PGD find worst-case perturbations reliably? A priori, this is not clear. After all,
in the case of deep neural networks, we are maximizing a highly non-concave functions.
Thus, while PGD will eventually lead us to some local maximum, there is not guarantee
that this will be a good approximation for the global maximum.

To understand this problem in more detail, we investigate the landscape of local
maxima found by PGD for a variety of models trained on the MNIST [LeC98] and CIFAR-
10 [Kri09] datasets We will study both standard models and through a small glitch in the
timeline, the robust models that we will train in Section 1.4. Specifically, we will pick a

29

few test examples at random and apply PGD from multiple random starting points in an
`∞-box of size ε around each example.

We find that, over multiple random restarts, PGD behaves quite consistently, cf. Fig-
ure 1.1. That is, the loss increases fairly consistently across iterations and plateaus at similar
values. Moreover, even over a large number of such random restarts (105), the values of
the local maxima found are well concentrated without visible outliers, cf. Figure 1.2. We
find that while PGD finds multiple distinct local maxima, the loss value of these maxima
tends to be well-concentrated.

MNIST

0 25 50 75 100
Iterations

0

50

100

150

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0

50

100

150

0 25 50 75 100
Iterations

0

50

100

150

0 25 50 75 100
Iterations

0

50

100

0 25 50 75 100
Iterations

0

50

100

150

Standard training

0 25 50 75 100
Iterations

0

1

2

3

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0.0
0.5
1.0
1.5
2.0

0 25 50 75 100
Iterations

0.0

0.5

1.0

0 25 50 75 100
Iterations

1
2
3
4
5

0 25 50 75 100
Iterations

2

4

6

Adversarial training

CIFAR10

0 25 50 75 100
Iterations

0

50

100

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0
20
40
60
80

0 25 50 75 100
Iterations

0
25
50
75

100

0 25 50 75 100
Iterations

0
25
50
75

100

0 25 50 75 100
Iterations

0

25

50

75

Standard training

0 25 50 75 100
Iterations

1.2

1.4

1.6

Lo
ss

 v
al

ue

0 25 50 75 100
Iterations

0.2

0.3

0 25 50 75 100
Iterations

0.5
1.0
1.5
2.0
2.5

0 25 50 75 100
Iterations

0.2

0.4

0.6

0 25 50 75 100
Iterations

0.4

0.6

0.8

1.0

Adversarial training

Figure 1.1: Loss value over the course of 20 runs of projected gradient descent (PGD) on
random examples from the MNIST and CIFAR-10 dataset. Each run starts at a uniformly
random point in the `∞-ball around the same natural example. Notice how the loss
plateaus after a relatively small number of iterations, while the final loss values are fairly
clustered.

30

MNIST

0 40 80 120 160
Loss value

lo
g(

fre
qu

en
cy

)

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

0 40 80 120 160
Loss value

CIFAR10

0 25 50 75 100
Loss value

lo
g(

fre
qu

en
cy

)

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

0 25 50 75 100
Loss value

Figure 1.2: Values of the local maxima given by the cross-entropy loss for five examples
from the MNIST and CIFAR10 evaluation datasets. For each example, we start projected
gradient descent (PGD) from 105 uniformly random points in the `∞-ball around the
example and iterate PGD until the loss plateaus. The blue histogram corresponds to the
loss on a standard network, while the red histogram corresponds to the adversarially
trained counterpart. The loss is significantly smaller for the adversarially trained networks,
and the final loss values are very concentrated without any outliers.

1.4 Adversarially robust deep learning models

We will now apply the methodology described in the last two sections to train models that
are robust against small, adversarial perturbations. Specifically, starting from a standard
training pipeline for two canonical datasets we will add a worst-case perturbation to each
example during training.

Specifically, we will compute these perturbations using a few steps of PGD starting
from a random perturbation around each training example. Note that this computation
is performed on-the-fly during training with respect to the model parameters at the
corresponding training step. Since we are training the model for multiple epochs, there is
no benefit from restarting PGD multiple times per batch—a new start will be chosen the
next time each example is encountered. See Appendix A.1 for additional details.

We find that over the course of training the adversarial loss decreases consistently, cf.
Figure 1.3. This indicates that we are indeed making progress in solving the problem
of (1.1). Indeed, the final robust accuracy of these models on the test set is actually
significant—93% for MNIST and 50% for CIFAR.

In order to evaluate the robustness of the resulting model, we will compute worst-case

31

0k 25k 50k 75k 100k
Iterations

0.10

1.00

Lo
ss

 v
al

ue

0k 25k 50k 75k
Iterations

0.01

0.10

1.00

Lo
ss

 v
al

ue

(a) MNIST (b) CIFAR10

Figure 1.3: Cross-entropy loss on adversarial examples during training. The plots show
how the adversarial loss on training examples evolves during training the MNIST and
CIFAR10 networks against a PGD adversary. The sharp drops in the CIFAR10 plot cor-
respond to decreases in training step size. These plots illustrate that we can consistently
reduce the value of the inner problem of the saddle point formulation (1.1), thus producing
an increasingly robust classifier.

perturbations using stronger methods that those during training. Specifically, we will
consider: (a) PGD with more iterations, including multiple random restarts per examples;
(b) PGD based on the Carlini-Wagner (CW) loss [CW17b] thus directly optimizing the
difference between correct and incorrect logits; (c) transferring adversarial perturbations
from other models (potentially with a different architecture). We present these results in
Table 1.4a for MNIST and Table 1.4b for CIFAR10.

We find that none of these perturbations can significantly reduce the performance of
the resulting models. This is stark contrast to previous approaches where the robustness
of the model was limited to perturbations computed in the same ways as those during
training. Instead, our models appear to be robust to any perturbation that we can compute
within these `∞-perturbation models.

Third-party evaluation. In order to put the robustness of our models to test, we publicly
released them in the form of a challenge1,2. Over the four years that these challenges have
been public, multiple independent research groups have submitted white-box attacks.
Nevertheless, none of these attacks reduced the robust accuracy of our models by a
significant amount.

1https://github.com/MadryLab/mnist_challenge
2https://github.com/MadryLab/cifar10_challenge

32

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge

Method Steps Restarts Source Accuracy

Natural - - - 98.8%
FGSM - - A 95.6%
PGD 40 1 A 93.2%
PGD 100 1 A 91.8%
PGD 40 20 A 90.4%
PGD 100 20 A 89.3%
Targeted 40 1 A 92.7%
CW 40 1 A 94.0%
CW+ 40 1 A 93.9%

FGSM - - A’ 96.8%
PGD 40 1 A’ 96.0%
PGD 100 20 A’ 95.7%
CW 40 1 A’ 97.0%
CW+ 40 1 A’ 96.4%

FGSM - - B 95.4%
PGD 40 1 B 96.4%
CW+ - - B 95.7%

(a) MNIST

Method Steps Source Accuracy

Natural - - 87.3%
FGSM - A 56.1%
PGD 7 A 50.0%
PGD 20 A 45.8%
CW 30 A 46.8%

FGSM - A’ 67.0%
PGD 7 A’ 64.2%
CW 30 A’ 78.7%
FGSM - Anat 85.6%
PGD 7 Anat 86.0%

(b) CIFAR-10

Figure 1.4: Performance of the adversarially trained network against different `∞-bounded
perturbations: (a) MNIST with a bound of 0.3, (b) CIFAR-10 with a bound of 8/255. For
each model of attack we show the most effective attack in bold. The source networks
considered for the attack are: the network itself (A) (white-box attack), an independtly
initialized and trained copy of the network (A’), a copy of the network trained on natural
examples (Anat). CW and CW+ denote a PGD attack using the CW loss [CW17b] with
confidence parameter (κ) equal to 0 and 50 respectively.

Manually inspecting a robust model. In order to get a better understanding of the inter-
nals of a robust model, we manually inspect the resulting MNIST classifier in Appendix A.3.
The most striking observation is that the first convolutional layer has collapsed to a few
1× 1 convolutions. Combined with the following ReLU unit, this effectively implements
a thresholding operation which truncates pixels below or above a certain value. Since in
MNIST most pixels are either 0 or 1, this is actually a valid strategy for ignoring small
perturbations.

33

1.5 Network capacity and adversarial robustness

Solving the problem from Equation (1.1) successfully is not sufficient to guarantee robust
and accurate classification. We need to also argue that the value of the problem (i.e. the
final loss we achieve against adversarial examples) is small, thus providing guarantees for
the performance of our classifier. In particular, achieving a very small value corresponds
to a perfect classifier, which is robust to adversarial inputs.

For a fixed set ∆ of possible perturbations, the value of the problem is entirely depen-
dent on the model architecture and training process used. Consequently, the capacity of
the model becomes a major factor affecting its overall performance. It is possible that
a stronger classifier is necessary for classifying examples robustly (see Figure 1.5 for an
illustration).

Figure 1.5: A conceptual illustration of standard vs. adversarial decision boundaries. Left:
A set of points that can be easily separated with a simple (in this case, linear) decision
boundary. Middle: The simple decision boundary does not separate the `∞-balls (here,
squares) around the data points. Hence there are adversarial examples (the red stars)
that will be misclassified. Right: Separating the `∞-balls requires a significantly more
complicated decision boundary. The resulting classifier is robust to adversarial examples
with bounded `∞-norm perturbations.

Our experiments verify that capacity is crucial for robustness, as well as for the ability to
successfully train against strong adversaries. For the MNIST dataset, we consider a simple
convolutional network and study how its behavior changes against different adversaries
as we keep doubling the size of network (i.e. double the number of convolutional filters
and the size of the fully connected layer). The initial network has a convolutional layer
with 2 filters, followed by another convolutional layer with 4 filters, and a fully connected
hidden layer with 64 units. Convolutional layers are followed by 2× 2 max-pooling layers
and adversarial examples are constructed with ε = 0.3. The results are in Figure 1.6.

For the CIFAR10 dataset, we used a ResNet model [He+16]. We performed data
augmentation using random crops and flips, as well as per image standarization. To

34

increase the capacity, we modified the network incorporating wider layers by a factor
of 10. This results in a network with 5 residual units with (16, 160, 320, 640) filters each.
This network can achieve an accuracy of 95.2% when trained with natural examples.
Adversarial examples were constructed with ε = 8. Results on capacity experiments
appear in Figure 1.6.

We observe the following phenomena:

Capacity alone helps. We observe that increasing the capacity of the network when
training using only natural examples (apart from increasing accuracy on these exam-
ples) increases the robustness against one-step perturbations. This effect is greater when
considering adversarial examples with smaller ε.

Weak models may fail to learn non-trivial classifiers. In the case of small capacity
networks, attempting to train against a strong adversary (PGD) prevents the network from
learning anything meaningful. The network converges to always predicting a fixed class,
even though it could converge to an accurate classifier through standard training. The
small capacity of the network forces the training procedure to sacrifice performance on
natural examples in order to provide any kind of robustness against adversarial inputs.

The value of the saddle point problem decreases as we increase the capacity. Fixing
an adversary model, and training against it, the value of (1.1) drops as capacity increases,
indicating the the model can fit the adversarial examples increasingly well.

1.6 Transferability

We will now turn our attention to transferability—the phenomenon that adversarial per-
turbations transfer between independently trained models. Specifically, for the CIFAR10
dataset, we investigate the transferability PGD-based perturbations on a standard and
wide version of a ResNet, each trained in the standard way (ERM on natural examples)
and with PGD adversarial training.

We observe that adversarial perturbations transfer significantly better between models
that have been trained in a similar manner—cf. Figure 1.7. That is, transfer attacks from
PGD-trained models do not transfer well to standard models and vice-versa. This hints
towards the possibility that PGD-trained models have fundamentally different decision
boundaries than standard models and are thus sensitive to different perturbations.

35

MNIST

1 2 4 8 16
0

20
40
60
80

100

Capacity scale

A
cc

ur
ac

y

1 2 4 8 16
0

20
40
60
80

100

Capacity scale
1 2 4 8 16

0.01

0.1

1

Capacity scale

A
ve

ra
ge

lo
ss

Natural
FGSM
PGD

CIFAR-10

Simple Wide

Natural 92.7% 95.2%
FGSM 27.5% 32.7%
PGD 0.8% 3.5%

Simple Wide

79.4% 87.3%
51.7% 56.1%
43.7% 45.8%

Simple Wide

0.00357 0.00371
0.0115 0.00557
1.11 0.0218

(a) Standard training (b) PGD training (c) Training Loss

Figure 1.6: The effect of network capacity on the performance of the network. We trained
MNIST and CIFAR10 networks of varying capacity on: (a) natural examples, (b) with
FGSM-made adversarial examples, (c) with PGD-made adversarial examples. In the first
three plots/tables of each dataset, we show how the standard and adversarial accuracy
changes with respect to capacity for each training regime. In the final plot/table, we show
the value of the cross-entropy loss on the adversarial examples the networks were trained
on. This corresponds to the value of our saddle point formulation (1.1) for different sets of
allowed perturbations.

1.7 Subsequent work

Since the publication of this work, there has been significant effort on verifying and
improving the robustness of these models.

Formal robustness verification. As we discussed in Section 1.4, despite our best efforts to
compute the worst possible perturbations for our models, we still do not have guarantees
on the robustness of these models. In order to obtain such guarantees, later work focus on
the formal verification of the robustness of PGD-trained models. The earliest such work
was that of Carlini et al. [Car+17] who use the Reluplex [Kat+17] framework to verify the
robustness of PGD-trained models on a few inputs. Later work developed more efficient
methods for model verification [TXT19] including ways of modifying PGD-training to lead
to models that are easier to verify [Dvi+18; Xia+19].

A parallel line of work focuses on producing certified lower bounds on the robust

36

Source model
Target model Standard PGD-trained Wide standard Wide PGD-trained

Standard 6.6% 71.8% 1.4% 75.6%
PGD-trained 78.1% 57.7% 77.9% 65.2%
Wide standard 10.9% 79.1% 0.0% 79.7%
Wide PGD-trained 86.4% 72.1% 86.0% 64.2%

Table 1.7: Transferring PGD perturbations between models. We create PGD adversarial
examples on CIFAR-10 with ε = 8 for 7 iterations from the evaluation set on the source
model, and then evaluate them on an independently initialized target model. The lower
the target model accuracy the better these perturbations transfer. The diagonal corresponds
to white-box attacks.

accuracy of a model [WK18; RSL18]. While such method do not provide us with an exact
robustness guarantee, they are more efficient and can thus scale to larger models.

Improving empirical robustness to `p-bounded perturbations. There have been a num-
ber of methods proposed for improving the empirical robustness of models. These method
modify the robust optimization framework by introducing alternative robustness ob-
jectives [Zha+19], treating misclassified examples differently [Wan+19], or relying on
additional unlabeled data [Car+19; S+19]. However, despite the significant robustness
improvements offered by these methods (and combinations of them), the robust accuracy
of state-of-the-art models is still far from perfect, even when considering relatively small
perturbations [Gow+20].

Other notions of worst-case perturbations. Going beyond `p-bounded input changes, a
number of alternative notions of worst-case robustness have been proposed. These include
spatial transformations (e.g., rotations and translations) [FF15; Eng+19b], deformations of
the image [WSK19], and combinations of different `p-based bounds [TB19; MWK20].

Randomized smoothing. Finally, an orthogonal line of work has lead to a methodology
know as randomized smoothing [Lec+19; CRK19]. The key idea here is to create a smoothed
classifier that, starting from some input, evaluates a base classifier on multiple, noisy
versions of this input and the predicts the majority vote of these. A byproduct of this
methodology is that, if a large fraction of these noisy predictions agree, then this translates
into a robustness bound on the overall smoothed classifier.

37

Chapter 2

Fundamentals of worst-case robustness

In the previous chapter, we focused on the phenomenon of adversarial examples and
described a methodology for building more robust models. At the same, this discussion
did not really shed any light on why standard models are brittle in the first place. That is,
why is it so easy to find adversarial examples and why do they transfer across architectures?

Moreover, the distinction between standard and robust models is unclear. How can we
intuitively understand the impact of robust optimization to our models? Also, why are the
robust models we trained less accurate than their standard counterparts on the standard
test set? Finally, are there qualitatively differences in what features these models learn?

Our goal in this chapter is to build a conceptual model of how adversarial examples
arise and how robust optimization impacts model behavior.

Chapter outline:

• We will first formulate a simple and natural setting which captures many of the
empirical behaviors observed around adversarial examples in Section 2.1.

• Then, in Section 2.2 we will design a set of experiments to better grasp how predictive
this conceptual model is in real datasets.

• Finally, we will take a closer look at the features that robust models learn in Section 2.3
and explore what new modes of interaction they allow.

2.1 The robust features model

We will focus out study around a simple binary classification task. Specifically, we will con-
sider inputs which comprise a set of independent, normally-distributed features. Crucially,

38

the degree to which each feature is correlated with the label of the input varies.

Concretely, the input-label pairs (x, y) are sampled from a distribution D as follows:

y u.a.r∼ {−1,+1}, x1 =

+y, w.p. p

−y, w.p. 1− p
, x2, . . . , xd+1

i.i.d∼ N (ηy, 1), (2.1)

where N (µ, σ2) is a normal distribution with mean µ and variance σ2, and p ≥ 0.5. The
parameter p quantifies how correlated the feature x1 is with the label. For the sake of
example, we can think of p as being 0.95. Note that the choice of p is fairly arbitrary; the
same qualitative behavior will arise for any p < 1.

In the rest of this section, we will demonstrate how adversarial examples arise naturally
in this model. Moreover, we will see how robustness requires models to rely on different
sets of features, hence giving rise to an inherent robustness-accuracy trade-off.

2.1.1 Standard learning can lead to brittle models

Recall that in the canonical classification setting, the primary focus is on maximizing
standard accuracy, i.e., the performance on (yet) unseen samples from the underlying
distribution. Specifically, the goal is to train models that have low expected loss (also known
as population risk):

min
θ

E
(x,y)∼D

[L(x, y; θ)]. (2.2)

Each sample from D consists of a single feature that is moderately correlated with the
label and d other features that are only very weakly correlated with it. Despite the fact
that each one of the latter type of features individually is hardly predictive of the correct
label, this distribution turns out to be fairly simple to classify from a standard accuracy
perspective. Specifically, a natural (linear) classifier

favg(x) := sign(w>unifx), where wunif :=
[

0,
1
d

, . . . ,
1
d

]
, (2.3)

achieves standard accuracy arbitrarily close to 100%, for d large enough. Indeed, observe
that

Pr[favg(x) = y] = Pr[sign(wunifx) = y] = Pr

[
y
d

d

∑
i=1
N (ηy, 1) > 0

]
= Pr

[
N
(

η,
1
d

)
> 0

]
,

39

which is > 99% when η ≥ 3/
√

d.

In general, when learning a standard classifier, any feature that is even slightly corre-
lated with the label is useful. As a result, a standard classifier will take advantage (and
thus rely on) the weakly correlated features x2, . . . , xd+1 (by implicitly pooling informa-
tion) to achieve almost perfect standard accuracy. However, this is not longer true in
the presence of worst-case perturbations. In particular, an `∞-bounded adversary that is
only allowed to perturb each feature by a moderate ε can effectively override the effect
of the aforementioned meta-feature. For instance, if ε = 2η, an adversary can shift each
weakly-correlated feature towards −y. The classifier would now see a perturbed input
x′ such that each of the features x′2, . . . , x′d+1 are sampled i.i.d. from N (−ηy, 1) (i.e., now
becoming anti-correlated with the correct label). Thus, when ε ≥ 2η, the adversary can
essentially simulate the distribution of the weakly-correlated features as if belonging to the
wrong class. In this case, the probability that the classifier of (2.3) is predicting correctly is

min
‖δ‖∞≤ε

Pr[sign(x + δ) = y] ≤ Pr
[
N
(

η,
1
d

)
− ε > 0

]
= Pr

[
N
(
−η,

1
d

)
> 0

]
,

which in this specific setting is less than 1%.

Transferability. An interesting implication of our analysis is that standard training pro-
duces classifiers that rely on features that are weakly correlated with the correct label. This
will be true for any classifier trained on the same distribution. Hence, the adversarial
examples that are created by perturbing each feature in the direction of −y will transfer
across classifiers trained on independent samples from the distribution. This constitutes a
manifestation of the phenomenon of transferability [Sze+14] and hints at its origin.

2.1.2 Robustness and accuracy can be at odds

Intriguingly, our discussion so far draws a distinction between robust features (x1) and
non-robust features (x2, . . . , xd+1) that arises in the presence of worst-case perturbations.
While aggregating the non-robust features is far more predictive of the true label, it can
be easily manipulated. Hence, a tension between standard and adversarial accuracy
arises. Any classifier that aims for high accuracy (say > 99%) will have to heavily rely
on non-robust features (the robust feature provides only, say, 95% accuracy). However,
since the non-robust features can be arbitrarily manipulated, this classifier will inevitably
have low adversarial accuracy. We make this formal in the following theorem proved in
Appendix B.3.1.

40

Theorem 2.1.1 (Robustness-accuracy trade-off). Any classifier that attains at least 1 − δ

accuracy on D has robust accuracy at most p
1−p δ against an `∞-bounded adversary with ε ≥ 2η.

This bound implies that if p < 1, as accuracy approaches 100% (δ → 0), adversarial
accuracy falls to 0%. As a concrete example, consider p = 0.95, for which any classifier
with accuracy more than 1− δ will have robust accuracy at most 19δ1. Also it is worth
noting that the theorem is tight. If δ = 1− p, both the standard and adversarial accuracies
are bounded by p which is attained by the classifier that relies solely on the first feature.
Additionally, note that compared to the scale of the features ±1, the value of ε required to
manipulate the standard classifier is very small (ε = O(η), where η = O(1/

√
d)).

Empirical robustness-accuracy trade-off. It turns out this trade-off is fairly pervasive
when training robust models. In Figure 2.1 we observe that it holds for a variety of datasets,
perturbations, and training set sizes. Interestingly, this trade-off appears to be reversed in
the small-data regime especially for MNIST. We hypothesize that in this regime, robust
training acts as a form of data augmentation, counteracting the price of robustness.

2.1.3 Learning a robust classifier

When training robust models, the goal is to achieve low expected adversarial loss:

min
θ

E
(x,y)∼D

[
max
δ∈∆
L(x + δ, y; θ)

]
. (2.4)

Here, ∆ represents the set of perturbations that the adversary can apply to induce mis-
classification. Similarly to before, we focus on the case when ∆ is the set of `p-bounded
perturbations, i.e., ∆ = {δ ∈ Rd | ‖δ‖p ≤ ε}.

As we have seen in the distributional model D (2.1), a classifier that achieves very high
standard accuracy (2.2) will inevitably have near-zero adversarial accuracy. This is true
even when a classifier with reasonable standard and robust accuracy exists. Hence, in
an adversarial setting (2.4), where the goal is to achieve high adversarial accuracy, the
training procedure needs to be modified. We now make this phenomenon concrete for
linear classifiers trained using the soft-margin SVM loss. Specifically, in Appendix B.3.2
we prove the following theorem.

Theorem 2.1.2 (Adversarial training matters). For η ≥ 4/
√

d and p ≤ 0.975 (the first feature
is not perfect), a soft-margin SVM classifier of unit weight norm minimizing the distributional loss

1Hence, any classifier with standard accuracy ≥ 99% has robust accuracy ≤ 19% and any classifier with
accuracy ≥ 96% has robust accuracy ≤ 76%.

41

103 104

Training Samples

94

95

96

97

98

99

St
an

da
rd

 A
cc

ur
ac

y
(%

)
2-trained

train =
0
0.5
1.5
2.5

103 104

Training Samples

94

95

96

97

98

99

St
an

da
rd

 A
cc

ur
ac

y
(%

)

-trained

train =
0
0.1
0.2
0.3

(a) MNIST

102 103 104

Training Samples
30

40

50

60

70

80

90

St
an

da
rd

 A
cc

ur
ac

y
(%

)

2-trained

train =
0
20/255
80/255
320/255

102 103 104

Training Samples

40

50

60

70

80

90

St
an

da
rd

 A
cc

ur
ac

y
(%

)

-trained

train =
0
2/255
4/255
8/255

(b) CIFAR-10

103 104 105

Training Samples

30

40

50

60

70

80

90

St
an

da
rd

 A
cc

ur
ac

y
(%

)

2-trained

train =
0
0.5

103 104 105

Training Samples
20

30

40

50

60

70

80

90

St
an

da
rd

 A
cc

ur
ac

y
(%

)

-trained

train =
0
0.0125

(c) Restricted ImageNet

Figure 2.1: Comparison of the standard accuracy of models trained against `2- and `∞-
bounded perturbations as a function of size of the training dataset. We observe that
when training with few samples, adversarial training has a positive effect on model
generalization (especially on MNIST). However, as training data increase, the standard
accuracy of robust models drops below that of the standard model (εtrain = 0).

achieves a standard accuracy of > 99% and adversarial accuracy of < 1% against an `∞-bounded
adversary of ε ≥ 2η. Minimizing the distributional adversarial loss instead leads to a robust
classifier that has standard and adversarial accuracy of p against any ε < 1.

This theorem shows that if our focus is on robust models, adversarial training is
necessary to achieve non-trivial adversarial accuracy in this setting. Soft-margin SVM
classifiers and the constant 0.975 are chosen for mathematical convenience. Our proofs do
not depend on them in a crucial way and can be adapted, in a straightforward manner, to
other natural settings, e.g. logistic regression.

On the (non-)existence of an accurate and robust classifier. It might be natural to expect
that in the regime of infinite data, the Bayes-optimal classifier—the classifier minimizing
classification error with full-information about the distribution—is a robust classifier. Note
however, that this is not true for the setting we analyze above. Here, the trade-off between
standard and adversarial accuracy is an inherent trait of the data distribution itself and
not due to having insufficient samples. In this particular classification task, we (implicitly)
assumed that there does not exist a classifier that is both robust and very accurate (i.e.,

42

> 99% standard and robust accuracy). Thus, for this task, any classifier that is very
accurate (including the Bayes-optimal classifier) will necessarily be non-robust.

This seemingly goes against the common assumption in adversarial ML that such
perfectly robust and accurate classifiers for standard datasets exist, e.g., humans. However,
this might not necessarily be that case in the standard ML benchmarks. It is possible
that given our current architectural and algorithmic choices, combined with the size
and diversity of our current datasets, that this trade-off exists. That it, achieving perfect
accuracy in these settings might not be possible without relying on brittle features. Thus,
while the trade-off we analyzed here is unconditional, it might still arise in practical
settings when conditioning on the current state-of-the-art.

2.2 Non-robust features in real-world datasets

A crucial property of the model we are analyzing so far is that adversarial examples are a
direct consequence of the standard learning paradigm. That is, adversarial perturbations
arise as well-generalizing, yet brittle, features. This is a major departure from previous models
for adversarial examples. In these models, adversarial examples tend to be viewed as
aberrations arising either from the high dimensional nature of the input space or statistical
fluctuations in the training data [Sze+14; GSS15; TG16; Gil+18; Sch+18; MDM18; Sha+19a]
(see Section B.1 for a more detailed discussion and comparison).

Our goal in this section will be to take a closer look at real datasets and understand
whether adversarial examples actually arise from predictive features. Specifically, we
will design ways of modifying a dataset in order to disentangle robust and non-robust
features and study how this affects the resulting classifier (see Figure 2.2 for a conceptual
illustration). The main challenge is that, for complex domains (e.g., images), analyzing
individual features (here pixels) is not particularly meaningful. Nevertheless, we can still
conceptually distinguish between robust and non-robust features as follows.

Robust features. Features that are useful for making correct predictions that remain
useful even after applying a small, worst-case perturbation. For instance, the presence of a
large grass patch cannot be modified by a small perturbation.

Non-robust features. Features that are useful but can be rendered useless or even mis-
leading through a small perturbation. For instance, these might include faint patterns on
the texture of an object.

43

Robust dataset

Train

good standard accuracy
good robust accuracy

good standard accuracy
bad robust accuracy

Unmodified
test set

Training image

frog

frog

frog

Non-robust dataset

Train

(a)

Evaluate on
original test set

Training image

Robust Features: dog
Non-Robust Features: dog

dog

Relabel as cat

Robust Features: dog
Non-Robust Features: cat

cat

cat

max P(cat)

Adversarial example
towards “cat”

Traingood accuracy

(b)

Figure 2.2: A conceptual diagram of our experiments. In (a) we disentangle features
into combinations of robust/non-robust features (Section 2.2.1). In (b) we construct a
dataset which appears mislabeled to humans (via adversarial examples) but results in
good accuracy on the original test set (Section 2.2.2).

2.2.1 Simply removing non-robust features improves robustness

As a first step, we will explore whether we can effectively remove non-robust features
from a dataset. If only the robust features of a dataset are useful then standard training
will resulting robust models. Concretely, our goal is to create a training set (semantically
similar to the original) on which standard training yields good robust accuracy on the original,
unmodified test set (Figure 2.2a).

Unfortunately, we cannot directly manipulate the features of complex, high-dimensional
datasets. Our key idea is that we can use a robust model (trained using the methodology of
Chapter 1) as a proxy for the datasets robust features. We will then manipulate the dataset
so that the only useful features are those relevant to that model.

Specifically, given a robust model C we will construct a training set D̂R via a one-to-one
mapping x 7→ xr from the original training set for D. As a proxy for the features that the
robust model uses we will consider the representation of a data point in the penultimate
layer of the classifier. To construct the desired points we will start from an input consisting
of random noise. Since random noise is not associated with the label of the input, this
noise-label pair contains no useful features. We will then optimize the input to minimize
its distance to the original input in the latent representation space of the robust model.
Intuitively, this process aims to preserve the robust features of the original input without
introducing any of the other features.

Given the new training set for D̂R (a few random samples are visualized in Figure 2.3a),
we train a classifier using standard (non-robust) training. We then test this classifier on the
original test set (i.e. D). The results (Figure 2.3b) indicate that the classifier learned using

44

“airplane’’ “ship’’ “dog’’ “frog’’“truck’’
D

D̂ N
R

D̂ R

(a)

Std Training
 using

Adv Training
 using

Std Training
 using R

Std Training
 using NR

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
on

 (%

)

Std accuracy Adv accuracy (= 0.25)

(b)

Figure 2.3: Left: Random samples from our variants of the CIFAR-10 [Kri09] training set:
the original training set; the robust training set D̂R, restricted to features used by a robust
model; and the non-robust training set D̂NR, restricted to features relevant to a standard
model (labels appear incorrect to humans). Right: Standard and robust accuracy on the
CIFAR-10 test set (D) for models trained with: (i) standard training (on D) ; (ii) standard
training on D̂NR; (iii) adversarial training (onD); and (iv) standard training on D̂R. Models
trained on D̂R and D̂NR reflect the original models used to create them: notably, standard
training on D̂R yields nontrivial robust accuracy.

the new dataset attains good accuracy in both standard and adversarial settings. As a control,
we repeat this methodology using a standard (non-robust) model for C in our construction
of the dataset. Sample images from the resulting “non-robust dataset” D̂NR are shown in
Figure 2.3a—they tend to resemble more the source image of the optimization x0 than the
target image x. We find that training on this dataset leads to good standard accuracy, yet
yields almost no robustness (Figure 2.3b). We also verify that this procedure is not simply
a matter of encoding the weights of the original model—we get the same results for both
D̂R and D̂NR if we train with different architectures than that of the original models.

Overall, our findings corroborate the hypothesis that adversarial examples can arise
from (non-robust) features of the data itself. By filtering out non-robust features from the
dataset (e.g. by restricting the set of available features to those used by a robust model),
one can train a significantly more robust model using standard training. Moreover, it
provides evidence that adversarial vulnerability is caused by non-robust features and is
not inherently tied to the standard training framework.

2.2.2 Non-robust features suffice for standard classification

The results of the previous section show that by restricting the dataset to only contain
features that are used by a robust model, standard training results in classifiers that are

45

significantly more robust. This suggests that when training on the standard dataset, non-
robust features take on a large role in the resulting learned classifier. Here we set out to
show that this role is not merely incidental or due to finite-sample overfitting. In particular,
we demonstrate that non-robust features alone suffice for standard generalization— i.e., a
model trained solely on non-robust features can perform well on the standard test set.

To show this, we construct a dataset where the only features that are useful for classifi-
cation are non-robust features. To accomplish this, we modify each input-label pair (x, y)
as follows. We select a target class t either (a) uniformly at random among classes (hence
features become uncorrelated with the labels) or (b) deterministically according to the
source class (e.g. using a fixed permutation of labels). Then, we add a small adversarial
perturbation to x in order to ensure it is classified as t by a standard model. The resulting
inputs are nearly indistinguishable from the originals (cf. Figure 2.4)—to a human observer,
it thus appears that the label t assigned to the modified input is simply incorrect. The result-
ing input-label pairs (xadv, t) make up the new training set (pseudocode in Appendix B.2
Figure B.6).

D
U

si
ng

no

n-
ro

bu
st

U
si

ng

ro
bu

st

(a) D̂rand

D
U

si
ng

no

n-
ro

bu
st

U
si

ng

ro
bu

st

(b) D̂det

Figure 2.4: Random samples from datasets where the input-label correlation is entirely
based on non-robust features. Samples are generated by performing small adversarial
perturbations using either random (D̂rand) or deterministic (D̂det) label-target mappings
for every sample in the training set. Each image shows: top: original; middle: adversarial
perturbations using a standard ERM-trained classifier; bottom: adversarial perturbations
using a robust classifier (adversarially trained against ε = 0.5).

Now, since ‖xadv − x‖ is small, by definition the robust features of xadv are still cor-
related with class y (and not t) in expectation over the dataset. After all, humans still
recognize the original class. On the other hand, since every xadv is strongly classified as t
by a standard classifier, it must be that some of the non-robust features are now strongly
correlated with t (in expectation).

46

Source Dataset
Dataset

CIFAR-10 ImageNetR

D 95.3% 96.6%

D̂rand 63.3% 87.9%
D̂det 43.7% 64.4%

Table 2.5: Test accuracy (on D) of classifiers trained on the D, D̂rand, and D̂det training sets
created using a standard (non-robust) model. For both D̂rand and D̂det, only non-robust
features correspond to useful features on both the train set and D. These datasets are
constructed using adversarial perturbations of x towards a class t (random for D̂rand and
deterministic for D̂det); the resulting images are relabeled as t.

In the case where t is chosen at random, the robust features are originally uncorrelated
with the label t (in expectation), and after the adversarial perturbation can be only slightly
correlated (hence being significantly less useful for classification than before) 2.

In contrast, when t is chosen deterministically based on y, the robust features actually
point away from the assigned label t. In particular, all of the inputs labeled with class t
exhibit non-robust features correlated with t, but robust features correlated with the original
class y. Thus, robust features on the original training set provide significant predictive
power on the training set, but will actually hurt generalization on the standard test set.

We find that standard training on these datasets actually generalizes to the original
test set, as shown in Table 2.5). This indicates that non-robust features are indeed useful
for classification in the standard setting. Remarkably, even training on D̂det (where all
the robust features are correlated with the wrong class), results in a well-generalizing
classifier. This indicates that non-robust features can be picked up by models during
standard training, even in the presence of robust features that are predictive

2.2.3 Transferability can arise from non-robust features

We will now turn our attention to the transferability of adversarial examples. Recall that
according to our conceptual model, this phenomenon can in fact be viewed as a natural
consequence of the existence of non-robust features. Given that such features are inherent

2Goh [Goh19] provides an approach to quantifying this “robust feature leakage” and finds that one can
obtain a (small) amount of test accuracy by leveraging robust feature leakage on D̂rand.

47

25 30 35 40 45 50
Test accuracy (%; trained on Dy + 1)

60

70

80

90

100

Tr
an

sf
er

 su
cc

es
s r

at
e

(%
)

VGG-16

Inception-v3

ResNet-18 DenseNet

ResNet-50

Figure 2.6: Transfer rate of adversarial examples from a ResNet-50 to different architectures
alongside test set performance of these architecture when trained on the dataset generated
in Section 2.2.2. Architectures more susceptible to transfer attacks also performed better
on the standard test set supporting our hypothesis that adversarial transferability arises
from utilizing similar non-robust features.

to the data distribution, different classifiers trained on independent samples from that
distribution are likely to utilize similar non-robust features. Consequently, an adversarial
example constructed by exploiting the non-robust features learned by one classifier will
transfer to any other classifier utilizing these features in a similar manner.

In order to illustrate and corroborate this hypothesis, we train five different architec-
tures on the dataset generated in Section 2.2.2 (adversarial examples with deterministic
labels) for a standard ResNet-50 [He+16]. Our hypothesis would suggest that architectures
which learn better from this training set (in terms of performance on the standard test
set) are more likely to learn similar non-robust features to the original classifier. Indeed,
we find that the test accuracy of each architecture is predictive of how often adversarial
examples transfer from the original model to standard classifiers with that architecture
(Figure 2.6). These findings thus corroborate our hypothesis that adversarial transferability
arises when models learn similar brittle features of the underlying dataset.

48

2.3 What do robust features look like?

In the previous section, we provided evidence towards the fact that robust models rely on
a different set of features than standard models. Can we explore the features and gain a
better understanding of what they are?

Perhaps the most natural approach to visualize the features of a robust model would
be to find inputs that are confidently predicted as a specific class. This would correspond
to computing large, worst-case perturbations—e.g., via PGD—similarly to how one would
find adversarial examples. Intuitively, this process will highlight the features that the
model most strongly relies on for recognizing that class.

The resulting visualizations are presented in Figure 2.7. Surprisingly, we can observe
that adversarial perturbations for robust models tend to produce salient characteristics
of another class. In fact, the corresponding adversarial examples for robust models can
often be perceived as samples from that class. This behavior is in stark contrast to standard
models, for which adversarial examples appear to humans as noisy variants of the input
image. Interestingly, Ross and Doshi-Velez [RD18] find a similar behavior when, instead
of adversarially training models, they regularize their gradients during training. This
indicates that even a very local notion of robustness, can have a large effect on how a
model behaves.

In the rest of this section we will further study this representations of robust models in
two ways. First, in Section 2.3.1 we will focus on the intermediate representations learned
by robust models. Second, in Section 2.3.2 we will study how the phenomena we observe
can be leveraged to perform downstream image synthesis tasks.

2.3.1 Latent model representations

In general, deep neural networks can be thought of as linear classifiers acting on learned
feature representations (also known as feature embeddings). A major goal in representation
learning is for these embeddings to encode high-level, interpretable features of any given
input [GBC16; BCV13; Ben19]. Indeed, learned representations turn out to be quite
versatile—in computer vision, for example, they are the driving force behind transfer
learning [Gir+14; Don+14], and image similarity metrics such as VGG distance [DB16a;
JAF16; Zha+18].

Here we will see how robustness can significantly improve the utility and versatility of
these representations by enabling new modes of interaction. The experiment setup for the
rest of this Section is presented in Appendix B.2

49

4

Original

8

Standard

8

-trained

8

2-trained

9 4 7 7

(a) MNIST

airplane

Original

bird

Standard

bird

-trained

bird

2-trained

dog deer bird deer

(b) CIFAR-10

primate

Original

dog

Standard

dog

-trained

dog

2-trained

bird turtle dog cat

(c) Restricted ImageNet

Figure 2.7: Visualizing large-ε adversarial perturbations for standard and robust (`2/`∞-
adversarial training) models. We construct these examples by iteratively following the
(negative) loss gradient while staying with `2-distance of ε from the original image. We
observe that the images produced for robust models effectively capture salient data char-
acteristics and appear similar to examples of a different class. (The value of ε is equal
for all models and much larger than the one used for training.) Additional examples are
visualized in Figure B.8 and B.9 of Appendix B.4.

Inverting robust representations

In order to better understand the features captured by robust representations, we will
attempt to reconstruct their corresponding inputs. Specifically, starting from some image
x1, we will attempt to find an image x2 with a similar latent representation. To do so,
we will minimize the `2-distance of these images in representation space by solving the
following optimization problem:

x′1 = x1 + arg min
δ

‖R(x1 + δ)− R(x2)‖2. (2.5)

This process can be seen as recovering an image that maps to the desired target repre-
sentation, and hence is commonly referred to as representation inversion [DB16b; MV15;

50

UVL17]. It turns out that in sharp contrast to what we observe for standard models, the
images resulting from minimizing (2.5) for robust models are actually semantically similar
to the original (target) images whose representation is being matched, and this behavior is
consistent across multiple samplings of the starting point (source image) x1 (cf. Figure 2.8).

Target ()x2 So
ur

ce
 (

)

x 1
R

ob
us

t
(

)
x′� 1

St
an

da
rd

 (

)
x′� 1

Figure 2.8: Inverting standard and robust models on the Restricted ImageNet dataset.
Target (x2) & Source (x1): random examples image from the test set or white noise; Robust(x′1)
and Standard(x′1): result of minimizing the objective (2.5) to match (in `2-distance) the
representation of the target image starting from the corresponding source image for (top):
a robust (adversarially trained) and (bottom): a standard model respectively. For the robust
model, we observe that the resulting images are perceptually similar to the target image
in terms of high-level features (even though they do not match it exactly), while for the
standard model they often look more similar to the source image which is the seed for
the optimization process. Additional results in Appendix B.4.1, and similar results for
ImageNet are in Appendix B.4.

Representation proximity seems to entail semantic similarity. In fact, we can see that
the similarity between the resulting image and the target image is not simply a result
of some implicit bias of the optimization process. To illustrate this, we will attempt to
match the representation of a target image while staying close to the starting image of the
optimization in pixel-wise `2-norm (this is equivalent to putting a norm bound on δ in
objective (2.5)). With standard models, we can consistently get close to the target image in
representation space, without moving far from the source image x1. On the other hand, for
robust models, we cannot get close to the target representation while staying close to the
source image—this is illustrated quantitatively in Figure 2.9. This indicates that for robust
models, semantic similarity may in fact be necessary for representation similarity.

We also find that even when δ is highly constrained (i.e., when we are forced to stay
close to the source image and thus cannot match the target representation well), the
solution to the inversion problem still displays salient features of the target image (c.f.

51

21 23 25 27 29
0

0.2
0.4
0.6
0.8

1
1.2

Allowed `2 distance from source imageM
in

di
st

an
ce

in
re

p.
sp

ac
e

Robust network
Standard network

ε for robust opt.

Figure 2.9: Optimizing objective (2.5) with PGD and an `2-norm constraint around the
source image. On the x-axis is the radius of the constraint set, and on the y-axis is the
distance between the representation of the minimizer of (2.5) within the constraint set and
the representation of the target image, normalized by the norm of the latter: i.e., a point
(xi, yi) on the graph corresponds to yi = min‖δ‖2≤xi

‖R(x + δ)− R(xtarg)‖2/‖R(xtarg)‖2.
Notably, we are unable to closely match the representation of the target image for the
robust network until the norm constraint grows very large, and in particular much larger
than the norm of the perturbation that the model is trained to be robust against. Shown
are 95% confidence intervals over random choice of source and target images.

Figure 2.10). Both of these observations suggest that the representations of robust networks
function closer to how we would expect high-level feature representations to behave.

Inversion of out-of-distribution inputs. The inversion properties uncovered above hold
even for out-of-distribution inputs, demonstrating that robust representations capture
general features as opposed to features only relevant for the specific classification task. In
particular, we repeat the inversion experiment (minimization of distance in representation
space) using images from classes not present in the original training dataset (Figure 2.11
right) and structured random patterns (Figure B.11 in Appendix B.4.1): the reconstructed
images consistently resemble the targets.

Direct feature visualization

A common technique for visualizing and understanding the representation function R(·)
of a given network is optimization-based feature visualization [OMS17], a process in which we
maximize a specific feature (component) in the representation with respect to the input, in
order to obtain insight into the role of the feature in classification. Concretely, given some
i ∈ [k] denoting a component of the representation vector, we use gradient descent to find

52

Constraint = 2 Constraint = 8 Constraint = 32 Constraint = 128 Target image

Figure 2.10: Visualizing the final solutions to the optimizing objective (2.5) when constrain-
ing the solution to lie in an `2 ball around the source image for an adversarially robust
neural network. Even when the radius of the constraint set is small and we cannot match
the representation very well, salient features of the target image still arise.

Ta
rg

et
R

es
ul

t

Test set Out-of-distribution

Ta
rg

et
R

es
ul

t

Test set Out-of-distribution

Figure 2.11: Robust representations yield semantically meaningful embeddings. Target:
random images from the test set (col. 1-5) and from outside of the training distribution
(6-10); Result: images obtained from optimizing inputs (using Gaussian noise as the source
image) to minimize `2-distance to the representations of the corresponding image in the
top row. (More examples appear in Appendix B.4.1.)

an input x′ that maximally activates it, i.e., we solve:

x′ = x0 + arg max
δ

R(x0 + δ)i (2.6)

for various starting points x0 which might be random images from D or random noise.

For robust representations, we find that easily recognizable high-level features emerge
from optimizing objective (2.6) directly, without any regularization or post-processing. We
present the results of this maximization in Figure 2.12 (top): coordinates consistently
represent the same concepts across different choice of starting input x0 (both in and out of
distribution). Furthermore, these concepts are not merely an artifact of our visualization
process, as they consistently appear in the test-set inputs that most strongly activate their
corresponding coordinates (Figure 2.13).

This is again a significant departure from standard models where direct feature visual-
ization does not produce unintelligible results. Thus prior work on visualization usually
tries to regularize objective (2.6) through a variety of methods. These methods include
applying random transformations during the optimization process [MOT15; OMS17],

53

Seeds ()x0

Maximizing different coordinates ()i

St
an

da
rd

R
ob

us
t

Figure 2.12: Correspondence between image-level patterns and activations learned by
standard and robust models on the Restricted ImageNet dataset. Starting from randomly
chosen seed inputs (noise/images), we use PGD to find inputs that (locally) maximally
activate a given component of the representation vector. In the left column we have the
seed inputs x0 (selected randomly), and in subsequent columns we visualize the result of
the optimization (2.6), i.e., x′, for different activations, with each row starting from the
same (far left) input x0 for (top): a robust (adversarially trained) and (bottom): a standard
model. Additional visualizations in Appendix B.4.2, and results for ImageNet in B.4.2.

Activation 444
(“long fish”)

Activation 939
(“insect legs”)

Maximized from noise

Most activated

Least activated Maximized from noise

Most activated

Least activated

Figure 2.13: Maximizing inputs x′ found by solving (2.6) with x0 being a gray image for
two random activations of a robust model trained on the Restricted ImageNet dataset. For
each activation, we plot the three images from the validation set that had the highest or
lowest activation value sorted by the magnitude of the selected activation.

54

“Stripes” (selected) “Red limbs” (random)

Figure 2.14: Visualization of the results from maximizing a chosen (left) and a random
(right) representation coordinate starting from random images for the Restricted ImageNet
dataset. In each figure, the top row has the initial images, and the bottom row has a feature
added. Additional examples in Appendix B.4.3.

restricting the space of possible solutions [NYC15; Ngu+16; Ngu+17], or post-processing
the input or gradients [Oyg15; Tyk16]. While regularization does in general produce better
results qualitatively, it comes with a few notable disadvantages that are well-recognized in
the domain of feature visualization. First, when one introduces prior information about
what makes images visually appealing into the optimization process, it becomes difficult
to disentangle the effects of the actual model from the effect of the prior information intro-
duced through regularization. Furthermore, while adding regularization does improve the
visual quality of the visualizations, the components of the representation still cannot be
shown to correspond to any recognizable high-level feature. Indeed, Olah, Mordvintsev,
and Schubert [OMS17] note that in the representation layer of a standard GoogLeNet,
“Neurons do not seem to correspond to particularly meaningful semantic ideas.”

Feature manipulation. The ability to directly visualize high-level, recognizable features
reveals another application of robust representations, which we refer to as feature manipu-
lation. Consider the visualization objective (2.6) shown in the previous section. Starting
from some original image, optimizing this objective results in the corresponding feature
being introduced in a continuous manner. It is hence possible to stop this process relatively
early to ensure that the content of the original image is preserved. As a heuristic, we stop
the optimization process as soon as the desired feature attains a larger value than all the
other coordinates of the representation. We visualize the result of this process for a variety
of input images in Figure 2.14, where “stripes” or “red limbs” are introduced seamlessly
into images without any processing or regularization. We repeat this process with many
additional random images and random features in Appendix B.4.3. Note that this property
is reminiscent of how the latent space of generative adversarial networks (GANs) [Goo+14]
tends to allow for “semantic feature arithmetic” [RMC16; Lar+16].

55

2.3.2 Using robust features in downstream tasks

Recall that in Figure 2.7, we demonstrated how simple PGD in the input space of robust
models is sufficient to produce salient class characteristics. This process, which we will
call class maximization, effectively utilizes the features learned by the model to manipulate
inputs semantically. In this section, we will see how this primitive is sufficient to perform
some challenging image synthesis tasks. This toolkit we develop is rather minimal: it uses
a single, off-the-shelf robust classifier for all these tasks.

Realistic Image Generation

Synthesizing realistic samples for natural data domains (such as images) has been a long
standing challenge in computer vision [HS97; Gra13; KW15; Goo+14; VKK16; DSB17;
KD18; Kar+18; BDS19]. Many of these methods, however, can be tricky to train and
properly tune, often requiring fine-grained performance optimizations.

In contrast, we will see that robust classifiers, without any special training or auxiliary
networks, can be a powerful tool for synthesizing realistic natural images. At a high
level, our generation procedure is based on maximizing the class score of the desired
class using a robust model. The purpose of this maximization is to add relevant and
semantically meaningful features of that class to a given input image. This approach has
been previously used on standard models to perform class visualization—synthesizing
prototypical inputs of each class—in combination with domain-specific input priors (either
hand-crafted [NYC15] and learned [Ngu+16; Ngu+17]) or regularizers [SVZ13; MOT15;
Oyg15; Tyk16].

As the process of class score maximization is deterministic, generating a diverse set of
samples requires a random seed as the starting point of the maximization process. That is,
to generate a sample of class y, we sample a seed and minimize the loss L of label y

x = arg min
‖x′−x0‖2≤ε

L(x′, y), x0 ∼ Gy,

for some class-conditional seed distribution Gy, using projected gradient descent (PGD).
Ideally, samples from Gy should be diverse and statistically similar to the data distribution.
Here, we use a simple choice for Gy—a multivariate normal distribution fit to the empirical
class-conditional distribution

Gy := N (µy, Σy), where µy = Ex∼Dy [x], Σ = Ex∼Dy [(x− µy)
>(x− µy)],

56

and Dy is the distribution of natural inputs conditioned on the label y. We visualize
example seeds from these multivariate Gaussians in Figure B.21.

house finch armadillo chow jigsaw Norwich terrier notebook

cliff anemone fish mashed potato coffee pot

(a)
dog bird primate crab insect fish turtle

(b)

Figure 2.15: Random samples (of resolution 224×224) produced using a robustly trained
classifier. We show: (a) samples from several (random) classes of the ImageNet dataset
and (b) multiple samples from a few random classes of the restricted ImageNet dataset (to
illustrate diversity). See Figures B.17, B.18, B.19, and B.20 of Appendix B.4 for additional
samples.

This approach enables us to perform conditional image synthesis given any target class.
Samples (at resolution 224×224) produced by our method are shown in Figure 2.15 (also
see Appendix B.4). The resulting images are diverse and realistic, despite the fact that they
are generated using targeted PGD on off-the-shelf robust models.

57

Inpainting

Since class maximization can introduce salient class features, it has potential to restore the
features of corrected images. This task is know as inpainting [EL99; Ber+00; HE07], where,
given an image x, corrupted in a region corresponding to a binary mask m ∈ {0, 1}d, the
goal is to recover the missing pixels in a manner that is perceptually plausible with respect
to the rest of the image. To do so using a robust classifier, given a corrupted image x with
label y, we solve

xI = arg min
x′

L(x′, y) + λ||(x− x′)� (1−m)||2 (2.7)

where L is the cross-entropy loss, � denotes element-wise multiplication, and λ is an
appropriately chosen constant.

In Figure 2.16, we show sample reconstructions obtained by optimizing (2.7) using PGD
(cf. Appendix B.2 for details). We can observe that these reconstructions look remarkably
similar to the uncorrupted images in terms of semantic content. Interestingly, even when
this approach fails (reconstructions differ from the original), the resulting images do tend
to be perceptually plausible to a human, as shown in Appendix Figure B.25.

Image-to-Image Translation

Another task which can be cast as transforming images between class is image-to-image
translation, where the goal is to translate an image from a source to a target domain in a
semantic manner [Her+01].

In this section, we demonstrate that robust classifiers give rise to a new methodology
for performing such image-to-image translations. The key is to (robustly) train a classifier
to distinguish between the source and target domain. Conceptually, such a classifier will
extract salient characteristics of each domain in order to make accurate predictions. We
can then translate an input from the source domain by directly maximizing the predicted
score of the target domain.

In Figure 2.17, we provide sample translations produced by our approach using robust
models—each trained only on the source and target domains for the Horse↔ Zebra, Apple
↔ Orange, and Summer↔Winter datasets [Zhu+17] respectively. (For completeness, we
present in Appendix B.4 Figure B.23 results corresponding to using a classifier trained on
the complete ImageNet dataset.) In general, we find that this procedure yields meaningful
translations by directly modifying characteristics of the image that are strongly tied to the
corresponding domain (e.g., color, texture, stripes).

58

Original Corrupted Inpainted Original Corrupted Inpainted

(a) random samples

Original Corrupted Inpainted Original Corrupted Inpainted

(b) select samples

Figure 2.16: Image inpainting using robust models – left: original, middle: corrupted and
right: inpainted samples. To recover missing regions, we use PGD to maximize the class
score predicted for the image while penalizing changes to the uncorrupted regions.

Note that, in order to manipulate such features, the model must have learned them in
the first place—for example, we want models to distinguish between horses and zebras
based on salient features such as stripes. For overly simple tasks, models might extract
little salient information (e.g., by relying on backgrounds instead of objects3) in which
case our approach would not lead to meaningful translations. Nevertheless, this not a
fundamental barrier and can be addressed by training on richer, more challenging datasets.
From this perspective, scaling to larger datasets (which can be difficult for state-of-the-art
methods such as GANs) is actually easy and advantageous for our approach.

3In fact, we encountered such an issue with `∞-robust classifiers for horses and zebras (Figure B.24). Note
that generative approaches also face similar issues, where the background is transformed instead of the
objects [Zhu+17].

59

horse→ zebra zebra→ horse horse→ zebra zebra→ horse

apple→ orange orange→ apple apple→ orange orange→ apple

summer→ winter winter→ summer summer→ winter winter→ summer

(a) random samples (b) select samples

Figure 2.17: Image-to-image translation on the Horse↔ Zebra, Apple↔ Orange, and
Summer ↔ Winter datasets [Zhu+17] using PGD on the input of an `2-robust model
trained on that dataset. See Appendix B.2 for experimental details and Figure B.22 for
additional input-output pairs.

Super-Resolution

Accentuating the salient characteristics of an image is also an instance of super-resolution,
the task of recovering high-resolution images given their low resolution version [DFE07;
BSH12]. Within our framework, this can be achieved by maximizing the score predicted
by a robust classifier (trained on the original high-resolution dataset) for the underlying
class. At the same time, to ensure that the structure and high-level content is preserved,
we penalize large deviations from the original low-resolution image. Formally, given a
robust classifier and a low-resolution image xL belonging to class y, we use PGD to solve

x̂H = arg min
||x′−↑(xL)||<ε

L(x′, y) (2.8)

where ↑ (·) denotes the up-sampling operation based on nearest neighbors, and ε is a
small constant.

We use this approach to upsample random 32× 32 CIFAR-10 images to full ImageNet
size (224× 224)—cf. Figure 2.18a. For comparison, we also show upsampled images
obtained from bicubic interpolation. In Figure 2.18b, we visualize the results for super-
resolution on random 8-fold down-sampled images from the restricted ImageNet dataset.

60

C
IF
A
R
-1
0

O
ur
s

Bi
cu
bi
c

Im
ag
eN
et
R

O
ur
s

Bi
cu
bi
c

(a) 7x super-resolution on CIFAR-10

C
IF
A
R
-1
0

O
ur
s

Bi
cu
bi
c

Im
ag
eN
et
R

O
ur
s

Bi
cu
bi
c

(b) 8x super-resolution on restricted ImageNet

Figure 2.18: Comparing approaches for super-resolution. Top: random samples from the
test set; middle: upsampling using bicubic interpolation; and bottom: super-resolution using
robust models. We obtain semantically meaningful reconstructions that are especially
sharp in regions that contain class-relevant information.

Since in the latter case we have access to ground truth high-resolution images (actual
dataset samples), we can compute the Peak Signal-to-Noise Ratio (PSNR) of the recon-
structions. Over the Restricted ImageNet test set, our approach yields a PSNR of 21.53
(95% CI [21.49, 21.58]) compared to 21.30 (95% CI [21.25, 21.35]) from bicubic interpolation.
In general, our approach produces high-resolution samples that are substantially sharper,
particularly in regions of the image that contain salient class information.

Note that the pixelation of the resulting images can be attributed to using a very crude
upsampling of the original, low-resolution image as a starting point for our optimization.
Combining this method with a more sophisticated initialization scheme (e.g., bicubic
interpolation) is likely to yield better overall results.

Interactive Image Manipulation

Finally, we take a look at two interactive applications based on the primitives that robust
classifier enable. Such applications have been recently shown to be possible through the
use of generative models [CH18; Par+19; Bau+19]. In this section, we show how our
framework can be used to enable similar artistic applications.

Sketch-to-image. By performing PGD to maximize the probability of a chosen target
class, we can use robust models to convert hand-drawn sketches to natural images. The
resulting images (Figure 2.19) appear realistic and contain fine-grained characteristics of
the corresponding class.

4Sketches were produced by a graduate student without any training in arts.

61

Figure 2.19: Sketch-to-image using robust model gradients. Top: manually drawn sketches
of animals; and bottom: result of performing PGD towards a chosen class. The resulting
images appear realistic while preserving key characteristics of the original sketches4.

Feature Painting. Generative model–based paint applications often allow the user to
control more fine-grained features, as opposed to just the overall class. We now show that
we can perform similar feature manipulation through a minor modification to our basic
primitive of class score maximization. Our methodology is based on the findings of the
previous section wherein manipulating individual activations within representations of a
robust model actually results in consistent and meaningful changes to high-level image
features (e.g., adding stripes to objects). We can thus build a tool to paint specific features
onto images by maximizing individual activations directly, instead of just the class scores.

Concretely, given an image x, if we want to add a single feature corresponding to
component f of the representation vector R(x) in the region corresponding to a binary
mask m, we simply apply PGD to solve

xI = arg maxx′ R(x′) f − λP||(x− x′)� (1−m)||. (2.9)

In Figure 2.20, we demonstrate progressive addition of features at various levels of granu-
larity (e.g., grass or sky) to selected regions of the input image. We can observe that such
direct maximization of individual activations gives rise to a versatile paint tool.

Original + Duck + Grass + Sky

Figure 2.20: Paint-with-features using a robust model—we present a sequence of images
obtained by successively adding specific features to regions of the image by solving (2.9).

62

Part II

Real-World Robustness

63

Chapter 3

Towards capturing real-world
deployment

Our discussion has so far been restricted on a concrete and well-defined notion of robust-
ness: small, worst-case perturbations. While this restriction was necessary to rigorously
explore different facets of robustness, it is not representative of the conditions that model
will encounter during deployment. Thus, we will now shift our focus and attempt to
capture the robustness challenges of the real world.

The gap between the training and deployment environment of a model has been the
focus of a long line of work in machine learning [SG86; WK93; KHA99; Shi00; SKM07;
Qui+09; Mor+12; SK12]. At a high-level, the goal is to ensure that models perform well not
only on unseen samples from the datasets they are trained on, but also on the diverse set
of inputs they are likely to encounter in the real world. However, building benchmarks for
evaluating such robustness is challenging—it requires modeling realistic data variations in
a way that is well-defined, controllable, and easy to simulate.

Prior work in this context has focused on building benchmarks that capture distribution
shifts caused by natural or adversarial input corruptions [Sze+14; FF15; FMF16; Eng+19b;
For+19; HD19; Kan+19], differences in data sources [Sae+10; TE11; Kho+12; TT14; Rec+19],
and changes in the frequencies of data subpopulations [Ore+19; Sag+20]. While each of
these approaches captures a different source of real-world distribution shift, we cannot
expect any single benchmark to be comprehensive. Thus, to obtain a holistic understanding
of model robustness, we need to keep expanding our testbed to encompass more natural
modes of variation.

Our goal in this chapter will be to design benchmark for two general families of
challenges that models will face during deployment.

64

Chapter structure

• In Section 3.1, we develop a methodology for constructing subpopulation shift
benchmarks without the need for significant data collection or annotation.

• In Section 3.2, we focus on measuring model robustness to perturbations that affect
individual concepts within an input.

3.1 Simulating subpopulation shift

In this section, we will explore the question: How well do models generalize to data
subpopulations they have not seen during training? The notion of subpopulation shift this
question refers to is quite pervasive. After all, our training datasets will inevitably fail to
perfectly capture the diversity of the real word. Hence, during deployment, our models are
bound to encounter unseen subpopulations—for instance, unexpected weather conditions
in the self-driving car context or different diagnostic setups in medical applications.

Specifically, we focus on modeling a pertinent, yet relatively little studied, form of
subpopulation shift: one wherein the target distribution (used for testing) contains sub-
populations that are entirely absent from the source distribution that the model was trained
on. Intuitively, we will aim to understand whether models can recognize Dalmatians as
“dogs” even when their training data for “dogs” comprises only Poodles and Terriers.

3.1.1 The BREEDS methodology

The crux of our approach is to leverage existing dataset labels and use them to identify
superclasses—i.e., groups of semantically similar classes. This allows us to construct classi-
fication tasks over such superclasses, and repurpose the original dataset classes to be the
subpopulations of interest. Our procedure for doing this comprises two stages that are
outlined below—see Figure 3.1 for an illustration and Appendix C.1.2 for pseudocode.

Devising subpopulation structure. Typical datasets do not contain annotations for indi-
vidual subpopulations. Since collecting such annotations would be challenging, we take an
alternative approach: we bootstrap the existing dataset labels to simulate subpopulations.
That is, we group semantically similar classes into broader superclasses which, in turn,
allows us to re-purpose existing class labels as the desired subpopulation annotations.
Moreover, we can group classes in a hierarchical manner, obtaining superclasses of differ-

65

Figure 3.1: Illustration of our pipeline to create subpopulation shift benchmarks. Given a
dataset, we define superclasses based on the semantic hierarchy of dataset classes. This
allows us to treat the dataset labels as subpopulation annotations. Then, we construct a
BREEDS task of specified granularity (i.e., depth in the hierarchy) by posing the classifi-
cation task in terms of superclasses at that depth and then partitioning their respective
subpopulations into the source and target domains.

ent specificity. As we will see in Section 3.1.2, such class hierarchies are already present in
large-scale benchmarks [Den+09; Kuz+18].

Simulating subpopulation shifts. Given a set of superclasses, we can define a classi-
fication task over them: the inputs of each superclass correspond to pooling together
the inputs of its subclasses (i.e., the original dataset classes). Within this setup, we can
simulate subpopulation shift in a relatively straightforward manner. Specifically, for each
superclass, we split its subclasses into two random and disjoint sets, and assign one of them
to the source and the other to the target domain. Then, we can evaluate model robustness
under subpopulation shift by simply training on the source domain and testing on the
target domain. Note that the classification task remains identical between domains—both
domains contain the same (super)classes but the subpopulations that comprise each (su-
per)class differ. 1 Intuitively, this corresponds to using different dog breeds to represent
the class “dog” during training and testing—hence the name of our toolkit.

This methodology is quite general and can be applied to a variety of setting to simulate
realistic distribution shifts. Moreover, it has a number of additional benefits:

• Flexibility: Different semantic groupings of a fixed set of classes lead to BREEDS

tasks of varying granularity. For instance, by only grouping together classes that are
quite similar one can reduce the severity of the subpopulation shift. Alternatively,
one can consider broad superclasses, each having multiple subclasses, resulting in a

1Note that this approach can be extended to simulate milder subpopulation shifts where the source and
target distributions overlap but the relative subpopulation frequencies vary, similar to the setting of Oren
et al. [Ore+19].

66

more challenging benchmark.

• Precise characterization: The exact subpopulation shift between the source and
target domains is known. Since both domains are constructed from the same dataset,
the impact of any external factors (e.g., differences in data collection pipelines) is
minimized. Note that such external factors can significantly impact the difficulty of
the task [Pon+06; TE11; Tsi+20]. In fact, minimizing these effects and ensuring that
the shift between the source and target domain is caused solely by the intended input
variations is one of the major challenges in building distribution shift benchmarks.
For instance, recent work [Eng+20] demonstrates that statistical biases during data
collection can significantly skew the intended target distribution.

• Symmetry: Since subpopulations are split into the source and test domains randomly,
we expect the resulting tasks to have comparable difficulty.

• Reuse of existing datasets: No additional data collection or annotation is required
other than choosing the class grouping. This approach can thus be used to also re-
purpose other existing large-scale datasets—even beyond image recognition—with
minimal effort.

Note that this methodology can be viewed as a way of creating benchmarks for domain
generalization. However, we focus on generalizing between different distributions of
real-world images (photographs). This is in contrast to typical domain generalization
benchmarks that focus on generalizing between different stylistic representations, e.g., from
cartoons to drawings. Hence, the only comparable benchmark would be VLCS [Ghi+15],
which is however significantly smaller in scale and granularity than our benchmarks. In a
similar vein, datasets used in federated learning [Cal+18] can be viewed as subpopulation
shift benchmarks since the users present during training and testing might differ. However,
to the best of our knowledge, there has been no large-scale vision benchmark in this setting.

Hendrycks and Dietterich [HD19], in Appendix G, also (manually) construct a classifica-
tion task over superclasses and use ImageNet classes outside of ILSVRC2012 (ImageNet-1k)
to measure “subtype robustness”. (Unfortunately, these classes are no longer publicly avail-
able [Yan+19].) Compared to their work, we use a general methodology to create a broader
suite of benchmarks. Also, our analysis of architectures and robustness interventions is
significantly more extensive.

67

3.1.2 Utilizing the ImageNet class hierarchy

We now describe how our methodology can be applied to ImageNet [Den+09]—specifically,
the ILSVRC2012 subset [Rus+15]—to create a suite of BREEDS benchmarks. ImageNet
contains a large number of classes, making it particularly well-suited for our purpose.

Recall that creating BREEDS tasks requires grouping together similar classes. For
ImageNet, such a semantic grouping already exists—ImageNet classes are a part of the
WordNet hierarchy [Mil95]. However, WordNet is not a hierarchy of objects but rather
one of word meanings. Thus, intermediate hierarchy nodes are not always well-suited for
object recognition due to:

• Abstract groupings: WordNet nodes often correspond to abstract concepts, e.g.,
related to the functionality of an object. Children of such nodes might thus share
little visual similarity—e.g., “umbrella” and “roof” are visually different, despite
both being “coverings.”

• Non-uniform categorization: The granularity of object categorization is vastly dif-
ferent across the WordNet hierarchy—e.g., the subtree rooted at “dog” is 25-times
larger than the one rooted at “cat.” Hence, the depth of a node in this hierarchy does
not always reflect the specificity of the corresponding object category.

• Lack of tree structure: Nodes in WordNet can have multiple parents and thus the
resulting classification task would contain overlapping classes, making it inherently
ambiguous.

Due to these issues, we cannot directly use WordNet to identify superclasses that corre-
spond to a well-calibrated classification task. To illustrate this, we present some of the
superclasses that Huh, Agrawal, and Efros [HAE16] constructed by applying clustering
algorithms directly to the WordNet hierarchy in Appendix Table C.1. Even putting the
issue of overlapping classes aside, a BREEDS task based on these superclasses would induce
a very skewed subpopulation shift across classes—e.g., varying the types of “bread” is
very different that doing the same for different “mammal” species.

To better align the WordNet hierarchy with the task of object recognition in general, and
BREEDS benchmarks in particular, we manually modify it according to the following two
principles: (i) nodes should be grouped together based on their visual characteristics rather
than abstract relationships like functionality, and (ii) nodes of similar specificity should be
at the same distance from the root, irrespective of how detailed their categorization within
WordNet is. Details of this procedure along with the resulting hierarchy are presented in
Appendix C.1.4.

68

3.1.3 ImageNet-based BREEDS tasks

Once the modified version of the WordNet hierarchy is in place, BREEDS tasks can be
created in an automated manner. Specifically, we first choose the desired granularity of the
task by specifying the distance from the root (“entity”) and retrieving all superclasses at
that distance in a top-down manner. Each resulting superclass corresponds to a subtree of
our hierarchy, with ImageNet classes as its leaves. Note that these superclasses are roughly
of the same specificity, due to our hierarchy restructuring process. Then, we randomly
sample a fixed number of subclasses for each superclass to produce a balanced dataset
(omitting superclasses with an insufficient number of subclasses). Finally, as described in
Section 3.1, we randomly split these subclasses into the source and target domain. 2

For our analysis, we create four tasks (cf. Table 3.2) based on different levels/parts
of the hierarchy. To illustrate what the corresponding subpopulation shifts look like, we
present (random) image samples for a subset of the tasks in Figure 3.3. Note that while we
focus on the tasks in Table 3.2 in our study, our methodology readily enables us to create
other variants of these tasks in an automated manner.

Name Subtree Level Subpops Examples

ENTITY-13 “entity” (root) 3 20 “mammal”, “appliance”
ENTITY-30 “entity” (root) 4 8 “fruit”, “carnivore”
LIVING-17 “living thing” 5 4 “ape”, “bear”
NON-LIVING-26 “non-living thing” 5 4 “fence”, “ball”

Table 3.2: BREEDS benchmarks constructed using ImageNet. Here, “level” indicates the
depth of the superclasses in the class hierarchy (task granularity), and the number of
“subpopulations” (per superclass) is fixed to create balanced datasets. We also construct
specialized tasks by focusing on subtrees in the hierarchy, e.g., only living (LIVING-17) or
non-living (NON-LIVING-26) objects. Datasets naming reflects the root of the subtree and
the number of superclasses they contain.

BREEDS benchmarks beyond ImageNet. It is worth nothing that the methodology we
described is not restricted to ImageNet and can be readily applied to other datasets as
well. The only requirement is that we have access to a semantic grouping of the dataset
classes, which is the case for many popular vision datasets—e.g., CIFAR-100 [Kri09],
Pascal-VOC [Eve+10], OpenImages [Kuz+18], COCO-Stuff [CUF18]. Moreover, even when
a class hierarchy is entirely absent, the needed semantic class grouping can be manually

2We also consider more benign or adversarial subpopulation splits for these tasks in Appendix C.2.2.

69

Figure 3.3: Sample images from random object categories for the ENTITY-13 and LIVING-
17 tasks. For each task, the top and bottom row correspond to the source and target
distributions respectively.

constructed with relatively little effort (proportional to the number of classes, not the
number of datapoints).

More broadly, the methodology of utilizing existing dataset annotations to construct
data subpopulations goes beyond image classification tasks. In particular, by splitting
inputs into a source and target domain based on some attribute, we can measure how well
models generalize along this axis. Examples would include grouping by brand in Amazon
reviews [McA+15], by location in Berkeley DeepDrive [Yu+20], and by facial attributes in
CelebA [Liu+15].

3.1.4 Calibrating BREEDS benchmarks via human studies

For a distribution shift benchmark to be meaningful, it is essential that the source and target
domains capture the same high-level task—otherwise generalizing from one domain to the
other would be impossible. To ensure that this is the case for the BREEDS task, we assess
how significant the resulting distribution shifts are for human annotators (crowd-sourced
via MTurk).

Annotator task. To obtain meaningful performance estimates, it is crucial that annotators
perform the task based only on the visual content of the images, without leveraging prior
knowledge. To achieve this, we design the following annotation task. First, annotators are
shown images from the source domain, grouped by superclass, without being aware of
the superclass name (i.e., the grouping it corresponds to). Then, they are presented with
images from the target domain and are asked to assign each of them to one of the groups.
For simplicity, we present two random superclasses at a time, effectively simulating binary
classification. Annotator accuracy can be measured directly as the fraction of images that
they assign to the superclass to which they belong. We perform this experiment for each of
the BREEDS tasks constructed in Section 3.1.3. For comparison, we repeat this experiment

70

without subpopulation shift (test images are sampled from the source domain) and for
the superclasses constructed by Huh, Agrawal, and Efros [HAE16] using the WordNet
hierarchy directly (cf. Appendix C.1.6).

Human: Breeds (S
)

Human: Breeds (T
)

Human: WordNet (S
)

Human: WordNet (T
)

DenseNet121 : Breeds (S
)

DenseNet121 : Breeds (T
)

0

20

40

60

80

100

An
no

ta
to

r a
cc

ur
ac

y
(%

)

ENTITY-13

Human: Breeds (S
)

Human: Breeds (T
)

Human: WordNet (S
)

Human: WordNet (T
)

DenseNet121 : Breeds (S
)

DenseNet121 : Breeds (T
)

ENTITY-30

Human: Breeds (S
)

Human: Breeds (T
)

Human: WordNet (S
)

Human: WordNet (T
)

DenseNet121 : Breeds (S
)

DenseNet121 : Breeds (T
)

LIVING-17

Human: Breeds (S
)

Human: Breeds (T
)

Human: WordNet (S
)

Human: WordNet (T
)

DenseNet121 : Breeds (S
)

DenseNet121 : Breeds (T
)

NON-LIVING-26

Figure 3.4: Human performance on (binary) BREEDS tasks. Annotators are provided with
labeled images from the source distribution for a pair of (undisclosed) superclasses, and
asked to classify samples from the target domain (‘T’) into one of the two groups. As a
baseline we also measure annotator performance without subpopulation shift (i.e., on
test images from the source domain, ‘S’) and tasks created via the WordNet hierarchy
(cf. Appendix C.1.6). We observe that annotators are fairly robust to subpopulation shift.
Further, they consistently perform better on BREEDS task compared to those based on
WordNet directly—indicating that our modified class hierarchy is indeed better calibrated
for object recognition. (We discuss model performance in Section 3.1.5.)

Human performance. We find that, across all tasks, annotators perform well on unseen
data from the source domain, as expected. More importantly, annotators also appear to
be quite robust to subpopulation shift, experiencing only a small accuracy drop between
the source and target domains (cf. Figure 3.5). This indicates that the source and target
domains are indeed perceptually similar for humans, making these benchmarks suitable for
studying model robustness. Finally, across all benchmarks, annotators perform better on
BREEDS tasks, compared to their WordNet equivalents—even on source domain samples.
This indicates that our modified class hierarchy is indeed better aligned with the underlying
visual recognition task.

3.1.5 Model performance under subpopulation shift

We can now use our suite of BREEDS tasks as a testbed for assessing model robustness to
subpopulation shift Specifics of the evaluation setup and additional experimental results
are provided in Appendices C.1.7 and C.2.2.

71

We start by evaluating the performance of various model architectures trained in
the standard fashion: empirical risk minimization (ERM) on the source distribution (cf.
Appendix C.1.7). While models perform well on unseen inputs from the domain they
are trained on, i.e., they achieve high source accuracy, their accuracy considerably drops
under subpopulation shift—more than 30% in most cases (cf. Figure 3.5). At the same
time, models that are more accurate on the source domain also appear to be more robust to
subpopulation shift. Specifically, the fraction of source accuracy that is preserved in the
target domain typically increases with source accuracy. (If this were not the case, i.e., the
model accuracy dropped by a constant fraction under distribution shift, the target accuracy
would match the baseline in Figure 3.5.) This indicates that, improvements in source
accuracy do correlate with models generalizing better to variations in testing conditions.

84 86 88 90 92
Source Accuracy (%)

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

ENTITY-13

80 82 84 86 88 90
Source Accuracy (%)

40

50

60

70

80

90

ENTITY-30

80 82 84 86 88 90
Source Accuracy (%)

40

50

60

70

80

90
NON-LIVING-26

Train: Source | Test: Source (y=x)
Train: Source | Test: Target

Train: Target | Test: Target (reference)
Train: Source + retrain last layer | Test: Target

Baseline

84 86 88 90 92 94
Source Accuracy (%)

50

60

70

80

90

LIVING-17

Figure 3.5: Robustness of standard models to subpopulation shifts. For each task, we
plot the accuracy of various model architectures (denoted by different symbols) on the
target domain as a function of their source accuracy. We find that model accuracy drops
significantly between domains (orange vs. dashed line). Still, models that are more accurate
on the source domain seem to also be more robust (the improvements exceed the baseline
(grey) which would correspond to a constant accuracy drop relative to AlexNet). Moreover,
the drop in model performance can be significantly (but not fully) reduced by retraining
the final model layer with data from the target domain (green).

Models vs. humans. We compare the best performing model (DenseNet-121 in this case)
to our previously obtained human baselines in Figure 3.4. To allow for a fair comparison,
model accuracy is measured on pairwise superclass classification tasks (cf. Appendix C.1.7).
We observe that models do exceedingly well on unseen samples from the source domain—
significantly outperforming annotators under our task setup. At the same time, models
also appear to be more brittle, performing worse than humans on the target domain of
these binary BREEDS tasks, despite their higher source accuracy.

72

Adapting models to the target domain. Finally, we focus on the intermediate data rep-
resentations learned by these models, to assess how suitable they are for distinguishing
classes in the target domain. To evaluate this, we retrain the last (fully-connected) layer
of models trained on the source domain with data from the target domain. We find that
the target accuracy of these models increases significantly after retraining, indicating that
the learned representations indeed generalize to the target domain. However, we cannot
match the accuracy of models trained directly (end-to-end) on the target domain—see
Figure 3.5—demonstrating that there is significant room for improvement.

3.2 Concept-level transformations

Our goal in this section is to evaluate model performance when individual, high-level
concept are transformed. Intuitively, we want to understand questions such as: how is the
prediction of the model affected if there is snow on the road?

Specifically, we will build a pipeline that revolves around input counterfactuals—a prim-
itive commonly used in causal inference [Pea10] and interpretability [Goy+19b; Goy+19a;
Bau+20b]. Counterfactuals can be used to identify the data features that the model uses to
make its prediction on a given input: by assessing how its prediction changes when the
input is modified along a particular axis.

In our case, we use counterfactuals to glean how robust the model’s predictions are
when high-level concepts in the image are transformed. For example, to understand
whether the model is robust to changes in the “wheel” when recognizing a “car” in an
image, we will evaluate it on the same image with a different (transformed) “wheel”.
We now discuss our approach to generate such counterfactuals (Section 3.2.1) and then
describe how they can be used to evaluate the models robustness (Section 3.2.2). Our
complete pipeline is illustrated in Figure 3.6 (see Appendix C.3 for additional details).

3.2.1 Synthesizing concept-level counterfactuals

We generate counterfactuals with respect to a given high-level concept (e.g., “wheel”) in
two steps:

1. Concept identification: First, we find images in which this concept is present, and
pinpoint the regions of each image it appears in. In principle, this could be accom-
plished by manually segmenting images in a fine-grained manner; however this
would be quite costly. So, instead, we leverage pre-trained instance segmentation

73

Evaluate classifierCreate counterfactuals

Dataset
II. Intervene on

concepts
(via style transfer)

“gravel” “fall”

I. Identify concepts
(via instance

segmentation)

“sea” “tree”

Create counterfactuals(a) (b)

Figure 3.6: Concept-based robustness pipeline. To pinpoint the robustness of a model
to transformations of high-level concepts, we (a) synthesize counterfactual images in
which a given concept in the image (detected via instance segmentation) is modified
(via style transfer). Then (b) the impact of this concept-level transformation on classifier
predictions is measured. For example, we see that the model relies on “sea” to predict well
on “albatros”, and on “tree” to detect “sandbar”.

models (e.g., trained on MS-COCO [Lin+14] and LVIS [GDG19]) to automatically
obtain approximate concept segmentations.

2. Concept transformation: Once we have identified where in a given image the rel-
evant concept is present, we need to transform it. We do so by leveraging existing
methods for style transfer [GEB16; Ghi+17] so as to preserve fine-grained image
features and realism. For our analysis, we manually collect a set of realistic textures
(e.g., “snow” and “graffiti”) which we then use to transform image regions where
the concept is present.

These two steps, when combined, allow us toautomatically synthesize counterfactuals
with realistic concept-level transformations, such as “snowy road” or “wooden wheels”. Note
that this process does not require any annotation effort and can thus be directly applied to
new datasets.

3.2.2 Probing model robustness via counterfactuals

We now evaluate classifiers on counterfactuals created with respect to various concept-
style pairs, and measure the change in their performance (relative to unmodified images)
on a per-class level. This allows us to pinpoint:

74

The effect of specific concepts. We can measure and compare the influence of a given
high-level concept on model performance for various classes—in terms of the accuracy
drop caused by the transformed concept. For instance, in Figure 3.7a, we find that the
accuracy of a VGG16 ImageNet classifier drops by 25% on images of “croquet ball” when
“grass” is transformed, whereas its accuracy on “collie” does not change. In line with
previous studies [Zha+07; RSG16; RZT18; Bar+19; Xia+20], we also find that background
concepts, such as “grass”, “sea” and “sand”, have a large effect model performance. We
can contrast this measure of influence across concepts for a single model (Appendix
Figure C.12), and across architectures for a single concept (Appendix C.4). Finally, we can
also examine the effect of the style used to transform a concept—cf. Figure 3.7b.

Per-class prediction rules. If we focus on the model’s predictions for counterfactual
inputs belonging to a single class, we can identify high-level concepts that it relies on for
performing well on said class. It turns out that aside from the main image object, ImageNet
classifiers also heavily depend on commonly co-occurring objects [SC18; Tsi+20; Bey+20]
in the image—e.g., the objects “dress” for the class “groom”, “person” for the class “tench”
(sic), and “road” for the class “race car” (cf. Figure 3.7c and Appendix Figure C.14). We can
also examine which concept-level transformations hurt model performance the most—e.g.,
we find that making “plants” “floral” hurts accuracy on the class “damselfly” 15% more
than making the “plants” “snowy”.

75

(a) Classes sensitive to the visual concept “grass”

(c) Concept sensitivity, class “groom”

(b) Style impact on accuracy

Figure 3.7: Model sensitivities diagnosed using our pipeline in a VGG16 classifier trained
on ImageNet. (a) The accuracy drop induced by transformations of the concept “grass”
highlights classes for which the model relies on this concept: e.g., a “croquet ball” is
not accurately recognized if “grass” is not present, while “collie”s are not affected. (The
twenty classes for which the visual concept is most often present are shown.) (b) Applying
different styles to visual concepts reduces accuracy by varying amounts. (c) Visual concepts
that cause accuracy losses for a given class can highlight context-dependent rules: e.g., the
class “groom” is sensitive to the presence of “dress.”

76

Chapter 4

Improving robustness: Finding the right
features

Our goal in this chapter will be to explore ways in which we can train our models to
be more reliable in the face of real-world deployment challenges. Unfortunately, as we
discussed in Chapter 3, these challenges are impossible to capture within a concrete
mathematical model. Thus, we cannot rely on methods such as robust optimization (as we
did in Chapter 1) since we cannot precisely formulate a desired robustness guarantee.

Instead, we will focus on biasing our models towards features that generalize better.
The key intuition here is that, while many different input signals can be equally predictive
of the correct output during training, only some of these signals might be predictive during
deployment. As an example, under typical conditions, a model can recognize a car based
on the wheels, the body, or the presence of a road. However, if, during deployment, a
car is encountered in a showroom, a model relying on the presence of a road might have
trouble recognizing it.

Chapter structure

• In Section 4.1, we will study how different synthetic perturbations used during
training can affect the ability of a model to generalize across subpopulations.

• In Section 4.2, we will leverage a pool of unlabeled data and explore how we can use
models with diverse feature priors to extract prediction rules that generalize better.

77

4.1 Robustness to synthetic transformations

In Chapter 2, we saw how training models to be robust to small, worst-case perturbations
had a significant effect on the input features they utilized. In this section, we will examine
whether such robust features are more suitable for generalizing across subpopulation
while also expanding our study to new types of robustness interventions. Concretely, we
consider the following families of interventions in the context of the BREEDS benchmarks
developed in Chapter 3 (cf. Appendix D.1 for details):

• Adversarial training: Enhances robustness to worst-case `p-bounded perturbations
(in our case `2) by training models against a projected gradient descent (PGD) adver-
sary (cf. Chapter 1).

• Stylized Training: Encourages models to rely more on shape rather than texture by
training them on a stylized version of ImageNet [Gei+19].

• Random noise: Improves model robustness to data corruptions by incorporating
them as data augmentations during training—we focus on Gaussian noise and Erase
noise [Zho+20], i.e., randomly obfuscating a block of the image.

Relative accuracy. To measure the impact of these interventions, we will focus on the
models’ relative accuracy—the ratio of target accuracy to source accuracy. This metric
accounts for the fact that train-time interventions can impact model accuracy on the source
domain itself. By measuring relative performance, we are able to compare different training
methods on an equal footing.

We find that robustness interventions do have a small, yet non-trivial, impact on
the robustness of a particular model architecture to subpopulation shift—see Figure 4.1.
Specifically, for the case of adversarial training and erase noise, models often retain a
larger fraction of their accuracy to the target domain compared to standard training, hence
lying on the Pareto frontier of a robustness-accuracy trade-off. In fact, for some of the
models trained with these interventions, the target accuracy is slightly higher than models
obtained via standard training, even without adjusting for their lower source accuracy
(raw accuracies for all methods are in Appendix D.1.2). Nonetheless, it is important to note
that none of these method offer significant subpopulation robustness—relative accuracy is
not improved by more than a few percentage points.

Adapting models to the target domain. The impact of these interventions is more pro-
nounced if we consider the target accuracy of these models after their last layer has been

78

77.5 80.0 82.5 85.0 87.5 90.0 92.5
Source Accuracy (%)

61

64

68

71
Re

la
tiv

e
Ac

cu
ra

cy
(%

)
ENTITY-13

Std Adv (= 0.5) Adv (= 1.0) Erase Gaussian Stylized

70 75 80 85 90
Source Accuracy (%)

47

51

56

60
ENTITY-30

80.0 82.5 85.0 87.5 90.0 92.5
Source Accuracy (%)

54

58

62

67
LIVING-17

75 80 85 90
Source Accuracy (%)

42

44

47

50
NON-LIVING-26

Figure 4.1: Effect of train-time interventions on model robustness to subpopulation shift.
We measure model performance in terms of relative accuracy–i.e., the ratio between its
target and source accuracies. This allows us to visualize the accuracy-robustness trade-off
along with the corresponding Pareto frontier (dashed). (Also shown are 95% confidence
intervals computed via bootstrapping.) We observe that some of these interventions do
improve model robustness to subpopulation shift by a small amount—specifically, erase
noise and adversarial training—albeit sometimes at the cost of source accuracy.

retrained on data from the target domain—see Figure 4.2. In particular, we observe that
for adversarially robust models, retraining significantly boosts accuracy on the target
domain—e.g., in the case of LIVING-17 it is almost comparable to the initial accuracy on
the source domain. This indicates that the feature priors imposed by these interventions
incentivize models to learn representations that generalize better to similar domains—in
line with recent results of Utrera et al. [Utr+20] and Salman et al. [Sal+20]. Moreover, we
observe that models trained on the stylized version of these datasets perform consistently
worse, suggesting that texture might be an important feature for these tasks, especially in
the presence of subpopulation shift. Finally, note that we did not perform an exhaustive
exploration of the hyper-parameters used for these interventions (e.g., `2-norm)—it is
possible that these results can be improved by additional tuning. For instance, we would
expect that we can tune the magnitude of the Gaussian noise to achieve performance that
is comparable to that of `2-bounded adversarial training [For+19].

4.2 Combining distinct feature priors

In this section, we will explore whether models that depend on different sets of features
can improve each other. Specifically, we will treat models trained with different feature
priors as diverse perspectives on the data and use them to extract more reliable prediction
rules from a pool of unlabeled data.

79

77.5 80.0 82.5 85.0 87.5 90.0 92.5
Source Accuracy (%)

65

70

76

81
Ta

rg
et

 A
cc

ur
ac

y
w\

 la
st

 la
ye

r r
e-

tra
in

in
g

(%
)

ENTITY-13

Std Adv (= 0.5) Adv (= 1.0) Erase Gaussian Stylized

70 75 80 85 90
Source Accuracy (%)

59

66

73

80
ENTITY-30

80.0 82.5 85.0 87.5 90.0 92.5
Source Accuracy (%)

72

77

83

88
LIVING-17

75 80 85 90
Source Accuracy (%)

61

67

73

80
NON-LIVING-26

Figure 4.2: Target accuracy of models after they have been retrained (only the final linear
layer) on data from the target domain (with 95% bootstrap confidence intervals). Models
trained with robustness interventions often have higher target accuracy than standard
models post retraining.

4.2.1 Feature priors as different perspectives

We will start by studying to what extent models with different feature priors can actually
provide distinct perspectives on the data. To do so we will focus on a pair of feature priors
that arise naturally in the context of image classification: shape and texture.

Training shape- and texture-biased models

In order to train shape- and texture-biased models, we either pre-process the model input
or modify the model architecture. Specifically:

Shape-biased models. To suppress texture information in the images, we pre-process our
inputs by applying an edge detection algorithm. We consider two canonical edge detection
algorithms from the computer vision literature: the Canny edge detection algorithm [DG01]
which produces a binary edge mask, and the Sobel edge detection algorithm [SF68] which
provide a softer edge detection, hence retaining some texture information (see Figures 4.3b
and 4.3c).

Texture-biased models. To prevent the model from relying on the global structure of the
image we utilize a variant of the BagNet architecture [BB19]. This architecture deliberately
limits the receptive field of the model, thus forcing it to make predictions based on local
features (see Figure 4.3d).

We visualize all of these priors in Figure 4.3 and provide further implementation details
in Appendix D.2.

80

(a) Original (b) Sobel (c) Canny (d) BagNet

Figure 4.3: Visualizing different feature priors: (a) an image from the STL-10 dataset; (b)
Sobel edge detection; (c) Canny edge detection; (d) the limited receptive field of a BagNet.

CIFAR-10 STL-10
Standard Canny Sobel BagNet Standard Canny Sobel BagNet

Standard 0.598 0.237 0.259 0.38 0.554 0.305 0.385 0.357
Canny 0.545 0.324 0.143 0.523 0.392 0.212
Sobel 0.594 0.173 0.649 0.262
BagNet 0.655 0.486

Table 4.1: Correlation (Pearson coefficient) of correct predictions on the test set between
different pairs of models. The diagonal entries correspond to models trained with the
same prior but from different random initializations. While the two shape-biased models
(Sobel and Canny) are more aligned with each other, they are both quite different from the
texture-biased model (BagNet).

Diversity of feature-biased models

After training models with shape and texture biases as described above, we evaluate
whether these models capture complementary information about the input. Specifically,
we study models trained on a small subset (100 examples per class) of the CIFAR-10 [Kri09]
and STL-10 [CNL11] datasets, and measure the correlation between which test examples
they correctly classify.

We find that pairs consisting of a shape-biased model and a texture-biased model
(i.e Canny/BagNet or Sobel/BagNet) indeed have the least correlated predictions—cf.
Table 4.1. In other words, the mistakes that these models make are significantly more
diverse than those made by identical models trained from different random initializations.
At the same time, different shape-biased models (Sobel and Canny) are relatively well-
correlated with each other, which corroborates that models trained on similar features of
the input are likely to make similar mistakes.

81

Model ensembles. Having shown that training models with these feature priors results
in diverse prediction rules, we can now combine them to improve our generalization. The
canonical approach for doing so is to incorporate these models into an ensemble.

We find that the diversity of models trained with different feature priors directly
translates into an improved performance when combining them into an ensemble—cf.
Table 4.4. In fact, we find that the performance of the ensemble is tightly connected
to prediction similarity of its constituents (as measured in Table 4.1), i.e., more diverse
ensembles tend to perform better. For instance, the best ensemble for the STL-10 dataset is
the one combining a shape-biased (Canny) and a texture-biased model (BagNet) which
were the models with the least aligned predictions.

Feature Priors Model 1 Model 2 Ensemble

Same
Standard + Standard 52.54 ± 0.86 51.82 ± 0.86 54.02 ± 0.80
Sobel + Sobel 51.94 ± 0.84 53.69 ± 0.82 54.68 ± 0.83
BagNet + BagNet 42.22 ± 0.88 42.56 ± 0.80 43.49 ± 0.83

Different
Standard + Sobel 52.54 ± 0.83 51.94 ± 0.83 58.21 ± 0.82
Standard + BagNet 52.54 ± 0.84 42.22 ± 0.84 53.03 ± 0.81
Sobel + BagNet 51.94 ± 0.90 42.22 ± 0.84 55.14 ± 0.81

(a) CIFAR-10

Feature Priors Model 1 Model 2 Ensemble

Same
Standard + Standard 53.73 ± 0.91 55.38 ± 0.88 57.06 ± 0.91
Canny + Canny 56.29 ± 0.96 54.99 ± 0.96 58.23 ± 0.93
BagNet + BagNet 52.04 ± 0.98 50.34 ± 0.94 53.42 ± 0.93

Different
Standard + Canny 53.73 ± 0.95 56.29 ± 0.91 60.96 ± 0.96
Standard + BagNet 53.73 ± 0.98 52.04 ± 0.90 57.17 ± 0.90
Canny + BagNet 56.29 ± 0.91 52.04 ± 0.95 61.42 ± 0.92

(b) STL-10

Table 4.4: Ensemble accuracy when combining models trained with a diverse set of feature
priors (models with the same prior are trained from different random initialization). Notice
how models trained with different priors lead to ensembles with better performance.
Moreover, when the accuracy of the two base models is comparable, models that are
more diverse (as measured in Table 4.1) result in better ensembles. We describe the
different methods of combining models in Appendix D.2.4 and provide the full results in
Appendix D.2.7.

82

Ensemble Self-training
 + Ensemble

Co-training
0

10

20

30

40

50

60

70
Ac

cu
ra

cy

Single model
Same feature prior
Different feature prior

(a) CIFAR-10

Ensemble Self-training
 + Ensemble

Co-training
0

10

20

30

40

50

60

70

Ac
cu

ra
cy

Single model
Same feature prior
Different feature prior

(b) STL-10

Figure 4.5: Test accuracy of pre-trained, self-trained, and co-trained models selecting the
best feature prior for each (full results in Table 4.4, Appendix Table D.9, and Table 4.2
respectively). Notice how combinations of models with different feature priors consistently
outperform combinations of models with the same feature prior.

4.2.2 Combining diverse priors on unlabeled data

In the previous section, we saw that training models with different feature priors (e.g.,
shape- and texture-biased models) can lead to prediction rules with less overlapping
failure modes—which, in turn, can lead to more effective model ensembles. However,
ensembles only combine model predictions post hoc and thus cannot take advantage of
diversity during the training process.

In this section, we instead focus on utilizing diversity during training. Specifically,
we will leverage the diversity introduced through these priors in the context of self-
training [Lee+13]: a framework commonly used when the labeled data is insufficient to
learn a well-generalizing model. This framework utilizes unlabeled data, which are then
pseudo-labeled using an existing model and used for further training. While such methods
can often improve the overall model performance, they suffer from a significant drawback:
models tend to reinforce suboptimal prediction rules even when these do not generalize to
the underlying distribution [Ara+20].

Our goal here is to leverage diverse feature priors to address this exact shortcoming.
Specifically, we will jointly train models with different priors on the unlabeled data through
the framework of co-training [BM98]. Since these models capture complementary infor-
mation about the input (cf. Table 4.1), we expect them to correct each other’s mistakes
and improve their prediction rules. As we will see in this section, this approach can in-
deed have a significant impact on the performance of the resulting model, outperforming
ensembles that combine such models only at evaluation time—see summary in Figure 4.5.

83

Setup. We base our analysis on the CIFAR-10 and STL-10 datasets. Specifically, we
treat a small fraction of the training set as labeled examples (100 examples per class),
another fraction as our validation set for tuning hyperparameters (10% of the total training
examples), and the rest of the training set as our unlabeled data. We report our results on
the standard test set of each dataset. (See Appendix D.2 for a full description of our setup
and training process.)

Self-training and ensembles

Before outlining our method for jointly training models with multiple priors on unlabeled
data, we first describe the standard approach for self-training a single model. At a high
level, the predictions of the model on the unlabeled data are treated as correct labels and
are then used to re-train the same model [Lee+13; Isc+19; Zou+19; Xie+20]. The underlying
intuition is that the classifier will predict the correct labels for that data better than chance,
and thus these pseudo-labels can be used to expand the training set.

In practice, however, these pseudo-labels tend to be noisy. Thus, a common approach
is to only use the labels to which the model assigns the highest probability [Lee+13]. This
process is repeated, self-training on increasingly larger fractions of the unlabeled data until
all of it is used. We refer to each such training phase as an era.

Ensembles of diverse self-trained models. Similarly to our results in Table 4.4, we find
that ensembles comprised of self-trained models with diverse feature priors outperform
those that use the same prior from different random initializations (see Figure 4.5 for
a summary and Appendix D.2.8 for the full results). This demonstrates that, after self-
training, these models continue to capture complementary information about the input
that can be leveraged to improve performance.

Co-training models with different feature priors

Moving beyond self-training with a single feature prior, our goal in this section is to
leverage multiple feature priors by jointly training them on the unlabeled data. This idea
naturally fits into the framework of co-training: a method used to learn from unlabeled
data when the inputs correspond to multiple independent sets of features [BM98]. In this
framework, each set of features is used to train a different model. Then, these models are
used to pseudo-label the unlabeled data, from which the most confident examples are
added to a common pool to be used for further training.

84

Concretely, we first train a model for each feature prior. Then, we combine the pseudo-
labels on the unlabeled data that were assigned the highest probability for each model—
including duplicates with potentially different labels—to form a new training set which
we use for further training. Similarly to the self-training case, we repeat this process over
several eras, increasing the fraction of the unlabeled dataset used with each era. Intuitively,
this iterative process allows the models to bootstrap off of each other’s predictions, learning
correlations that they were unable to learn from the labeled data alone. At the end of
this process, we are left with two models, one for each prior used during co-training,
which we combine into a single classifier by training a standard model from scratch on the
combined pseudo-labels. We provide a more detailed explanation of the methodology in
Appendix D.2.5.

Co-training performance. We find that co-training with shape- and texture-based priors
can significantly improve the test accuracy of the final model compared to self-training
with any of the priors alone (Table 4.2). This is despite the fact that, when using self-
training alone, the standard model outperforms all other models (Column 4, Table 4.2).
Moreover, co-training models with diverse priors improves upon simply combining them
in an ensemble (Appendix D.2.8).

In Appendix D.2.9, we report the performance of co-training with every pair of priors.
We find that co-training with shape- and texture-based priors together (Canny + BagNet for
STL-10 and Sobel + BagNet for CIFAR-10) outperform every other prior combination. Note
that this is the case even though, when only ensembling models with different priors (c.f
Table 4.4 and Appendix D.2.8), Standard + Sobel is consistently the best performing pair
for CIFAR-10. Overall, these results indicate that the diversity of shape- and texture-biased
models allows them to improve each other over training.

Additionally, we find that, even when training a single model on the pseudo-labels of
another model, prior diversity can help. Specifically, we compare the performance of a
standard model trained from scratch using pseudo-labels from various self-trained models
(Column 5, Table 4.2). In this setting, using a self-trained shape- or texture-biased model for
pseudo-labeling outperforms using a self-trained standard model. This is despite the fact
that, in isolation, the standard model has higher accuracy than the shape- or texture-biased
ones (Column 4, Table 4.2).

Model alignment over co-training. To further explore the dynamics of co-training, we
evaluate how the correlation between the predictions of the two models evolves as the eras
progress in Figure 4.6 (using the same measure of prediction alignment as in Table 4.1).

85

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training
Standard 52.54 ± 0.81 63.65 ± 0.78 64.02 ± 0.79
Sobel 51.94 ± 0.90 63.05 ± 0.85 64.77 ± 0.81
BagNet 42.22 ± 0.81 53.92 ± 0.84 54.21 ± 0.81

Co-training

Standard 52.54 ± 0.83 65.06 ± 0.78 65.10 ± 0.79+Standard 51.82 ± 0.79 64.93 ± 0.83
Sobel 51.94 ± 0.82 71.88 ± 0.76 74.25 ± 0.75+BagNet 42.22 ± 0.80 73.91 ± 0.73

(a) CIFAR-10

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training
Standard 53.73 ± 0.94 59.92 ± 0.93 60.52 ± 0.91
Canny 56.29 ± 0.92 58.40 ± 0.89 62.19 ± 0.91
BagNet 52.04 ± 0.92 57.80 ± 0.99 61.69 ± 0.96

Co-training

Standard 53.73 ± 0.94 58.05 ± 0.95 61.16 ± 0.94+Standard 55.38 ± 0.92 60.44 ± 0.92
Canny 56.29 ± 0.94 62.21 ± 0.93 67.33 ± 0.89+BagNet 52.04 ± 1.00 66.74 ± 0.94

(b) STL-10

Table 4.2: Test accuracy of self-training and co-training methods on STL-10 and CIFAR-10.
For each model, we report the original accuracy when trained only labeled data (Column
3) as well as the accuracy after being trained on pseudo-labeled data (Column 4). (Recall
that, for the case of co-training pseudo-labeling is performed by combining the predictions
of both models.) Finally, we report the performance of a standard model trained from
scratch on the resulting pseudo-labels (Column 5). We provide 95% confidence intervals
computed via bootstrap with 5000 iterations.

We find that the shape- and texture-biased models exhibit low correlation at the start of
co-training, but this correlation increases as co-training progresses. This is in contrast to
the case of self-training each model on its own, where the correlation remains relatively
low. It is also worth noting that the correlation appears to plateau at a lower value when
co-training models with distinct feature priors as opposed to co-training two standard
models.

Finally, we find that a standard model trained on the pseudo-labels of other models
correlates well with the models themselves (see Appendix D.2.10). Overall, these findings

86

indicate that models trained on each other’s pseudo-labels end up behaving more similarly.

0 2 4 6 8 10 12 14 16 18 20
Eras

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
rre

la
tio

n
be

tw
ee

n
Pr

io
rs

Standard + Standard, Co-Trained
Sobel + BagNet, Co-Trained
Sobel and BagNet, Self-Trained

(a) CIFAR-10

0 2 4 6 8 10 12 14 16 18 20
Eras

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
rre

la
tio

n
be

tw
ee

n
Pr

io
rs

Standard + Standard, Co-Trained
Canny + BagNet, Co-Trained
Canny and BagNet, Self-Trained

(b) STL-10

Figure 4.6: Correlation between the correct predictions of shape- and texture-biased
models over the course of co-training for STL-10 and CIFAR-10. For comparison, we also
plot the correlation between the predictions when the models induced by these priors
are individually self-trained, as well as the correlation of two standard models when
co-trained together.

4.2.3 Using co-training to avoid spurious correlations

A major challenge when training models for real-world deployment is avoiding spurious
correlations: associations which are predictive on the training data but not valid for the
actual task. Since models are typically trained to minimize loss on the training set, they
are quite likely to rely on such spurious correlations [Gur+18; BVP18; Gei+20; Xia+20].

In this section, our goal is to leverage diverse feature priors to control the sensitivity of
the training process to such spurious correlations. Specifically, we will assume that the
spurious correlation does not hold on the unlabeled data (which is likely since unlabeled
data is often collected through a more diverse process). As we will see, if the problematic
correlation is not easily captured by one of the priors, the corresponding model generates
pseudo-labels that are inconsistent with this association, thus steering other models away
from this correlation during co-training.

Setup. We study spurious correlations in two settings. First, we create a synthetic
dataset by tinting each image of the STL-10 labeled dataset in a class-specific way. This
encourages models to predict using the tint, as it is highly predictive on the training
set. At the same time, such a prediction rule does not generalize to the test set where

87

this correlation is absent. Second, we consider a real-world gender classification task
based on CelebA [Liu+15] where hair color (“blond” vs. “non-blond”) is predictive on the
labeled data but not on the unlabeled and test data. Specifically, gender and hair color are
independent attributes on the unlabeled dataset, while the labeled dataset consists only
of blond females and non-blond males. Similarly to the synthetic case, the labeled data
encourages a prediction rule based only on hair color. See Appendix D.2.1 for details.

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training

Standard 13.99 ± 0.66 17.56 ± 0.70 17.81 ± 0.74
Canny 55.95 ± 0.92 57.31 ± 0.89 57.81 ± 0.92
Sobel 55.11 ± 0.91 56.12 ± 0.92 57.16 ± 0.91
BagNet 13.10 ± 0.64 13.53 ± 0.62 14.65 ± 0.66

Co-training

Canny 55.95 ± 0.90 57.74 ± 0.90 57.85 ± 0.95+BagNet 13.10 ± 0.65 55.33 ± 0.92
Sobel 55.11 ± 0.95 57.71 ± 0.90 57.60 ± 0.94+BagNet 13.10 ± 0.62 54.61 ± 0.94

(a) Tinted STL-10

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training

Standard 67.07 ± 0.58 71.57 ± 0.53 71.89 ± 0.53
Canny 80.90 ± 0.47 85.73 ± 0.40 86.55 ± 0.42
Sobel 82.94 ± 0.45 85.42 ± 0.43 84.96 ± 0.43
BagNet 69.35 ± 0.55 64.89 ± 0.59 66.15 ± 0.58

Co-training

Canny 80.90 ± 0.46 89.64 ± 0.36 91.99 ± 0.31+BagNet 69.35 ± 0.55 91.44 ± 0.33
Sobel 82.94 ± 0.44 90.64 ± 0.35 90.99 ± 0.34+BagNet 69.35 ± 0.57 88.72 ± 0.39

(b) CelebA

Table 4.3: Test accuracy of self-training and co-training on tinted STL-10 and CelebA, two
datasets with spurious features (table structure is identical Table 4.2). In both datasets, the
spurious correlation is more easily captured by the BagNet and Standard models over the
shape-based ones. Nevertheless, when co-trained with a shaped-biased model, BagNets
are able to significantly improve their performance, indicating that they rely less on this
spurious correlation. CI: 95% bootstrap.

88

Performance on datasets with spurious features. We find that, when trained only on
the labeled data (where the correlation is fully predictive), both the standard and BagNet
models generalize poorly in comparison to the shape-biased models (see Table 4.3). This
behavior is expected: the spurious attribute in both datasets is color-related and hence
mostly suppressed by the edge detection algorithms used to train shape-based models.
Moreover, even after self-training on the unlabeled data (where the correlation is absent),
the performance of the standard and BagNet models does not improve significantly. Finally,
simply ensembling self-trained models post hoc does not improve their performance. Since
the texture-biased and standard models are significantly less accurate than the shape-biased
one, they end up lowering the overall accuracy of the ensemble (see Appendix D.2.11).

In contrast, when we co-train a texture-biased model with a shape-biased one, the
texture-biased model improves substantially. For instance, when co-trained with a Canny
model, the resulting BagNet model outperforms its self-training performance by 42%
on the tinted STL-10 dataset and 27% on the CelebA dataset. This improvement can be
attributed to the fact that the predictions of the shape-biased model are not consistent with
the spurious correlation on the unlabeled data. Hence, by being trained on pseudo-labels
from that model, the BagNet model is forced to rely on alternative, non-spurious features
for its predictions.

Moreover, particularly on the CelebA dataset, the shape-biased model also improves
when co-trained with a texture-biased model. This indicates that even though the texture-
biased model relies heavily on the spurious correlation, it also captures non-spurious
features that, through pseudo-labeling, improve the performance of the shape-based
model. In Appendix D.2.12, we find that these improvements are concentrated on input
samples where the spurious correlation does not hold.

89

Chapter 5

Adapting models by rewriting their
prediction rules

Unfortunately, despite our best efforts to build robust models, these models will eventually
face deployment conditions that cause their performance to degrade. Such situations
can arise when some of the correlations that a model learns are spurious, i.e., they are
predictive on the training data but not in the real world. For instance, cows may not
always stand on pastures, even if standard ML datasets indicate so. In fact, there is by now
plenty of evidence that not all of the correlations that an ML model relies on are actually
meaningful [TE11; BVP18; SSF19; ASF20; Xia+20; BVA20; Gei+20]. Consequently, in order
to improve the reliability of the model, model designers might want their models to avoid
such correlations. This raises the question:

How can we modify the way in which a given model makes its predictions?

The canonical approach for modifying a model post-hoc is to intervene at the data
level: collect additional input-label pairs that capture the desired behavior and use them
to further train the model. Unfortunately, collecting such data can be challenging: how do
we get cows to pose for us in a variety of environments? Furthermore, data collection is
ultimately a very indirect way of specifying the intended behavior of a model. Even when
the data has been carefully curated to reflect a given real-world task, models still end up
learning unintended prediction rules from it [Pon+06; TE11; Tsi+20; Bey+20].

Our goal in this section our work is to develop a toolkit that enables users to directly
modify the prediction rules learned by an (image) classifier (see Figure 5.1 for examples).

90

“snow” “road”

“iPod letters” “blank”

Pre:
Post:

Pre:
Post:

amphibian
racer

snowmobile
motor scooter

snowplow
car wheel

snowplow
traffic light

iPod
teapot

iPod
mug

iPod
pot

iPod
toilet roll

Edit Test

(a) (b)

(c) (d)

VGG16

CLIP

Figure 5.1: Editing prediction rules in pre-trained classifiers using a single exemplar. (a) We
edit a VGG-16 ImageNet classifier to map the representation of the concept “snow” to that
of “asphalt road”. (b) This edit corrects systematic classification errors on snowy scenes
for various ImageNet classes. (c) We edit an OpenAI CLIP model such that the text “iPod”
maps to a blank area. (d) This change makes the model robust to the typographic attacks
from Goh et al. [Goh+21].

Chapter structure

• In Section 5.1, we outline the approach of Bau et al. [Bau+20a] for editing generative
models that will serve as the basis for our approach.

• In Section 5.2, we describe our methodology for directly rewriting the prediction
rules of a classifier.

• In Section 5.3, we evaluate the performance of the method on the concept transfor-
mation benchmarks of Section 3.2.

• In Section 5.4, we construct two new benchmarks based on new, real-world images
which we use to further evaluate our method.

5.1 Background: Rewriting generative models

Bau et al. [Bau+20a] developed an approach for rewriting a deep generative model, en-
abling a user to replace all occurrences of one selected object (say, “dome”) in the generated
images with another (say, “tree”), without changing the model’s behavior in other contexts.
The approach is built on the observation that, using a handful of example images, we

91

 k*
ij

Label
Original

(x)

Modified
(x’)

Mask
(m)

Label

 v*
ij

Downsample W

Layer L

Classifier

(a) Edit (b) Test

Figure 5.2: Overview of our pipeline for directly editing the prediction-rules of a classifier.
The edit in (a) seeks to modify the network to perceive wooden wheels as standard ones,
using a small set of exemplar images (say from class “car”). To achieve this, we to first
obtain the keys k∗ij corresponding to the new concept (here, “wooden wheel”), and the
values v∗ij corresponding to the original concept (here, “standard wheel”) in the input
and output representation space of a layer L respectively. We then update the weights
W of the layer to enforce this new key-value association (5.1). (b) To test our editing
technique, we measure the improvement in model performance on test instances (from any
class) containing the new concept—in this case, example images of vehicles with “wooden
wheels”.

can identify vectors in the model’s representation space that encode a specific high-level
concept [Kim+18; Bau+20a]. Leveraging this, Bau et al. [Bau+20a] treat each layer of the
model as an associative memory, which maps the concept vector at each spatial location in
its input (which we will refer to as the key) to a concept vector in its output (which we will
call the value). In the simplest case, a linear layer with weights W ∈ Rmxn transforms the
key k ∈ Rn to the value v ∈ Rm.

Observe that in this setting, one could perform a rewrite by modifying the layer weights
from W to W ′ so that v∗ = W ′k∗, where k∗ corresponds to the old concept that we want
to replace, and v∗ the new concept. For instance, if we wanted to replace “domes” with
“trees” in the generated images, we would modify the layer so that the key k∗ for “dome”
maps to the value v∗ for “tree”. Consequently, when this value is fed into the downstream
layers of the network it would result in a tree in the final image. Crucially, this update
should change the model’s behavior to every instance of the concept encoded in k∗—i.e.,
all “domes” in the images should now be “trees”.

To extend this approach to typical deep generative models, two challenges remain:
(1) handling non-linear layers, and (2) ensuring that the edit doesn’t significantly hurt
model behavior in other scenarios. With these considerations in mind, Bau et al. [Bau+20a]

92

propose making the following rank-one updates to the parameters W of an arbitrary
non-linear layer f :

min
Λ

∑
(i,j)∈S

∥∥∥v∗ij − f (k∗ij; W ′)
∥∥∥ (5.1)

s.t. W ′ = W + Λ(C−1d)>. (5.2)

Here, S denotes the set of spatial locations in representation space corresponding to the
concept of interest, d is the top eigenvector of the keys k∗ij corresponding to locations

(i, j) ∈ S and C = ∑d kdkd
> captures the second-order statistics for other keys kd. In

general, the keys and values in (5.1) can be obtained not just from various spatial locations
in the representations of a single image, but over multiple images containing the concept
as well. Intuitively, the goal of this update is to minimally modify the layer parameters to
rewrite the desired key-value mapping. We refer the reader to Appendix E.1 and Bau et al.
[Bau+20a] for additional details.

5.2 Editing classifiers

We now shift our attention to the focus of this work: editing classifiers. To describe our
approach, we will use as a running example the task of enabling classifiers to recognize
vehicles with “wooden wheels”. Specifically, let us start with a single image x from the
dataset, say, from class “car”, that contains the concept “wheel”. Moreover, let the location
of the “wheel” in the image be denoted by a binary mask m.1 We first create a transformed
image x′ of a “car” with a “wooden wheel”—i.e., by manually replacing the wheel, or
by applying the counterfactual-generation procedure described in Section 3.2. Next, we
would like to apply the approach described above to modify a chosen (potentially non-
linear) layer L of the network to rewrite a suitable key-value association. But, we need to
first determine what the relevant keys and values are.

Intuitively, we want the classifier to perceive a “wooden wheel” in the image as it
would a standard one. To achieve this, we must map the keys for wooden wheels to the
value corresponding to their standard counterparts. Thus, the keys that we want to rewrite
correspond to the network’s representation of the concept in the transformed image directly
before layer L. Similarly, the values that we want to map these keys to correspond to the
network’s representation of the concept in the original images directly after layer L. (The
relevant spatial regions in the representation space are simply determined by downsam-

1Such a mask can either be obtained manually or automatically via instance segmentation (cf. Section 3.2).

93

pling the mask to the appropriate dimensions.) Finally, the actual edit is performed by
feeding the resulting key-value pairs into the optimization problem (5.2) to determine the
updated layer weights W ′—see Figure 5.2 for an illustration of the overall process.

5.3 Does editing generalize?

We now demonstrate how the methodology described above can be applied to edit vi-
sion classifiers—specifically, VGG [SZ15] and ResNet [He+15] models trained on the
ImageNet [Den+09; Rus+15] and Places-365 [Zho+17] datasets (cf. Appendix E.1.2). Our
focus will be on improving model generalization to the concept-level transformations from
Section 3.2. Recall that our analysis in that section pinpointed a number of concepts in the
data that when transformed—even in fairly natural ways—caused the model performance
to drop significantly. We will now use our editing approach to correct these sensitivities.2

5.3.1 Evaluation setup

To edit the model with respect to a particular concept-style pair (say “wheel”-“wooden”),
our training set comprises N exemplars, i.e., pairs of original and transformed images, (x, x′)
(cf. Section 5.2) that belong to a single (randomly-chosen) target class in the dataset (e.g.,
“car”). All other transformed images containing the concept, including those belonging
to classes other than the target one, are used for validation and testing (30-70 split). We
create two variants of the test set: one using the same style image as the exemplars (i.e.,
same wooden texture) for the transformation; and another using held-out style images
(i.e., other wooden textures). Our baseline is the canonical fine-tuning approach, i.e.,
directly minimizing the cross-entropy loss on the new data (in this case the transformed
images) with respect to the target label. We consider two variants of fine-tuning (cf.
Appendix E.1.3): (i) local fine-tuning, where we only train the weights of a single layer
L (similar to our editing approach); and (ii) global fine-tuning, where we also train all
other layers between L and the output of the model. It is also worth noting that unlike
fine-tuning, our editing approach does not utilize class labels in any way. In each case, we
select the best hyperparameters—including the choice of the layer to modify—based on
the validation set performance (cf. Appendix E.1.4).

2Note that some of these cases might not be suitable for editing, i.e., when the transformed concept is
critical for recognizing the label of an input image (e.g., transforming concept “dog” in images of class
“poodle”) . We thus manually exclude such concept-class pairs from our analysis—cf. Appendix E.1.4.

94

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100
%

 E
rro

rs
 c

or
re

ct
ed editing

editing (-mask)
local fine-tuning
global fine-tuning

(a) ImageNet-trained VGG16 (concepts from
COCO)

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(b) Places-trained ResNet-18 (concepts from LVIS)

Figure 5.3: Editing vs. fine-tuning, averaged over concept-style pairs. We find that both
methods (and their variants) are fairly successful at correcting misclassifications on the
target class (examples of which are used to perform the modification). This holds even
when the transformation applied during testing is different from the one present in the train
exemplars (e.g., a different texture of “wood”). However, crucially, only the improvements
induced by editing generalize to other classes where the transformed concept is present,
while fine-tuning fails in this setting—typically, causing more errors than it fixes. See
Appendix Figures E.3-E.6 for other experimental settings.

Evaluation criteria. To evaluate the effect of the modification, we need to measure the
change in model performance on the transformed examples (e.g., vehicles with “wooden
wheel” in Figure 5.2b). We will only focus on the subset of examples D that were correctly
classified before the transformation, since we cannot expect to correct mistakes that do not
stem from the transformation itself. Concretely, we will measure the change in the number
of misclassifications made by the model on the transformed examples:

Npre(D)− Npost(D)

Npre(D)
(5.3)

where Npre/post(D) denotes the number of transformed examples misclassified by the
model before and after the modification, respectively. Note that this metric can range from
100% when rewriting leads to perfect classification on the transformed examples, to even a
negative value when the rewriting process causes more mistakes that it fixes.

To quantify the effect of the modification on overall model behavior, we also measure
the change in its (standard) test set performance. Since we are interested in rewrites that do
not significantly hurt the overall model performance, we only consider hyperparameters
that do not cause a large accuracy drop (≤0.25%). We found that the exact accuracy
threshold did not have significant impact on the results—see Appendix Figures E.8-E.11
for the full accuracy-effectiveness trade-off.

95

5.3.2 The effectiveness of editing

Recall that we want our prediction-rule rewrites to generalize. That is, if we modify the
way that our model treats a specific concept, we want this modification to apply to every
occurrence of that concept. For instance, if we edit a model to enforce that “wooden wheels”
should be treated the same as regular “wheels” in the context of “car” images, we want
the model to do the same when encountering other vehicles with “wooden wheels”. Thus,
while analyzing performance in Figure 5.3, we treat inputs belonging to the (target) class
used to perform the modification separately.

Editing. We find that editing is able to consistently correct mistakes in a manner that
generalizes across classes. That is, editing is able to reduce errors in non-target classes by often
more than 20 percentage points, even though it is performed using only three exemplars
from the target class. In Appendix E.2.3, we conduct ablation studies to get a better sense
of the key algorithmic factors driving performance. Notably, we find imposing the editing
constraints (5.1) on the entirety of the image—as opposed to only focusing on key-value
pairs that correspond to the concept of interest—leads to even better performance (cf.
‘-mask’ in Figure 5.3). We hypothesize that this has a regularizing effect as it constrains the
weights to preserve the original mapping between keys and values in regions that do not
contain the concept.

Fine-tuning. In contrast, while the two fine-tuning baselines are able to correct mistakes
on transformed inputs of the target class used to perform the modification, they typically
decrease the model’s performance on other classes—i.e., they cause more errors than they
fix. Moreover, even when we allow a larger drop in the model’s accuracy, or use more
training exemplars, their performance often becomes worse on inputs from other classes—
cf. Appendix Figures E.8-E.11. This suggests that fine-tuning causes the model to overfit
to the class it was trained on.

Interestingly, we find that in all cases where a method improves performance, this
improvement extends to transformations using other variants of the style. For instance, the
modification generalizes to textures of “wood” other than those present in exemplars used
to perform the modification (cf. Figure 5.2b). We present examples of errors (not) corrected
by editing and fine-tuning in Appendix Figure E.7, and provide a per-concept/style break
down in Appendix Figures E.12 and E.13.

96

5.4 Real-world demonstrations

So far, we have seen that our rule rewriting methodology can significantly improve
model generalization to concept-level transformations synthesized using our pipeline from
Section 3.2. To test the versatility of our approach, we now shift our attention to real-world
applications of machine learning models, where similar generalization might be desirable.

Tackling new environments: Vehicles on snow. Our first use-case is adapting pre-
trained classifiers to image subpopulations that are under-represented in the training
data. Specifically, we will focus on the task of recognizing vehicles under heavy snow
conditions—a setting that could be pertinent to self-driving cars. To study this problem, we
collect a set of real photographs from road-related ImageNet classes using Flickr (details
in Appendix E.1.5). To improve model performance under these conditions, we rewrite
its prediction rules: to map “snowy roads” to “road”. To do so, we first create a single
synthetic exemplar: by manually annotating the concept “road” in an ImageNet image
from a different class (here, “police van”), and transforming it using a snow image obtained
from Flickr. We then apply our editing methodology (cf. Section 5.2), using this single
snow-to-road exemplar—see Figure 5.1.

In Figure 5.4a, we measure the error rate of the model on the new test set (vehicles in
snow) before and after performing the rewrite. We find that our edits significantly improve
the model’s error rate on these images, despite the fact that we did not use any real “snowy
road” photographs to edit the model. In contrast, fine-tuning the model under the same
setup does not improve its performance.

Ignoring a spurious feature: Typographic attacks. Our second use-case is modifying
a model to ignore a spurious feature. We focus on the recently-discovered typographic
attacks from Goh et al. [Goh+21]: simply attaching a piece of paper with the text “iPod”
on it is enough to make a zero-shot CLIP [Rad+21] classifier predict an assortment of other
objects to be iPods. We start by reproducing these attacks—see Appendix Figure E.2 for an
illustration. We now rewrite the model’s prediction rules: to map the text “iPod” to “blank”
(as the latter does not cause misclassifications). For the choice of our transformed exemplar
x′, we consider two variants: either a real photograph of a “teapot” with the typographic
attack (Appendix Figure E.2); or an ImageNet image from of a “can opener” (randomly-
chosen) with the typed text “iPod” programatically pasted on it (Figure 5.1). The original
image x for our approach is then obtained by replacing the handwritten/typed text with
a white mask—cf. Figure 5.1. We then use this single training exemplar to perform the

97

racing car
army tank

firetruck
car wheel

traffic light
school bus scooter

0

20

40

60

80

100

Ac
cu

ra
cy

original
global fine-tuning
editing

(a) Vehicles in snowy weather

Typed Handwritten
0

1

2

3

4

5

6

Co
rre

ct
 p

re
di

ct
io

ns

global fine-tuning
local fine-tuning
editing

(b) Typographic attacks

Figure 5.4: (a) Adapting a pre-trained ImageNet classifier to images of vehicles on snowy
roads with a single exemplar. Fine-tuning (both local and global) only slightly improves
accuracy, while editing to map “snowy road”→“road” leads to a consistent improvement
across multiple classes. (b) Improving the robustness of CLIP [Rad+21] models to typo-
graphic attacks [Goh+21]. Editing the model to map the text “iPod”→“blank” using a
single exemplar—either based on hand-written text on a physical teapot or from pasting
typed text on an image of a “can opener”—completely corrects this vulnerability. While
global fine-tuning can also improve model performance in this setting, it requires more
careful hyperparameter tuning and typically hurts model performance in other contexts.

network modification.
In both cases, we find that editing (Section 5.2) is able to fix all the errors caused by the

typographic attacks, see Figure 5.4b. Interestingly, global fine-tuning also helps to correct
many of these errors (potentially by adjusting class biases), albeit less reliably (for specific
hyperparameters). However, unlike editing, fine-tuning also ends up damaging the model
behavior in other scenarios—causing it to now spuriously associate the text “iPod” with
the target class used for training or significantly reducing the accuracy on normal “iPod”
images from the test set (Appendix Figure E.20).

98

Bibliography

[ACW18] Anish Athalye, Nicholas Carlini, and David A. Wagner. “Obfuscated Gradi-
ents Give a False Sense of Security: Circumventing Defenses to Adversarial
Examples”. In: International Conference on Machine Learning (ICML). 2018 (cit.
on pp. 14, 25, 120).

[Alc+19] Michael A Alcorn et al. “Strike (with) a pose: Neural networks are easily
fooled by strange poses of familiar objects”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2019 (cit. on p. 18).

[Ara+20] Eric Arazo et al. “Pseudo-labeling and confirmation bias in deep semi-supervised
learning”. In: International Joint Conference on Neural Networks (IJCNN) (2020)
(cit. on p. 83).

[ASF20] Vedika Agarwal, Rakshith Shetty, and Mario Fritz. “Towards causal vqa:
Revealing and reducing spurious correlations by invariant and covariant
semantic editing”. In: Computer Vision and Pattern Recognition (CVPR). 2020
(cit. on p. 90).

[Ath+18] Anish Athalye et al. “Synthesizing Robust Adversarial Examples”. In: Interna-
tional Conference on Machine Learning (ICML). 2018 (cit. on pp. 12, 25).

[Bar+19] Andrei Barbu et al. “ObjectNet: A large-scale bias-controlled dataset for push-
ing the limits of object recognition models”. In: Neural Information Processing
Systems (NeurIPS). 2019 (cit. on p. 75).

[Bau+19] David Bau et al. “GAN Dissection: Visualizing and Understanding Generative
Adversarial Networks”. In: International Conference on Learning Representations
(ICLR). 2019 (cit. on p. 61).

[Bau+20a] David Bau et al. “Rewriting a deep generative model”. In: European Conference
on Computer Vision (ECCV). 2020 (cit. on pp. 21, 91–93, 190, 203).

[Bau+20b] David Bau et al. “Understanding the role of individual units in a deep neural
network”. In: Proceedings of the National Academy of Sciences (PNAS) (2020)
(cit. on pp. 73, 203).

[BB19] Wieland Brendel and Matthias Bethge. “Approximating CNNs with Bag-of-
local-Features models works surprisingly well on ImageNet”. In: International
Conference on Learning Representations (ICLR). 2019 (cit. on pp. 80, 175).

[BCV13] Y. Bengio, A. Courville, and P. Vincent. “Representation Learning: A Review
and New Perspectives”. In: (2013) (cit. on p. 49).

99

[BDS19] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN Train-
ing for High Fidelity Natural Image Synthesis”. In: International Conference on
Learning Representations (ICLR). 2019 (cit. on p. 56).

[BEN09] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimiza-
tion. Princeton University Press, 2009 (cit. on p. 26).

[Ben19] Yoshua Bengio. Talk Abstract: Learning High-Level Representations for Agents.
Abstract for talk given at MIT. 2019. URL: https://calendar.mit.edu/event/
yoshua_bengio_learning_high-level_representations_for_agents%5C#
.XYozli2ZNhF (cit. on p. 49).

[Ber+00] Marcelo Bertalmio et al. “Image inpainting”. In: Computer graphics and interac-
tive techniques. 2000 (cit. on p. 58).

[Bey+20] Lucas Beyer et al. “Are we done with ImageNet?” In: arXiv preprint arXiv:2006.07159.
2020 (cit. on pp. 75, 90).

[Big+13] Battista Biggio et al. “Evasion attacks against machine learning at test time”.
In: Joint European conference on machine learning and knowledge discovery in
databases (ECML-KDD). 2013 (cit. on pp. 12, 25, 27).

[BM98] Avrim Blum and Tom Mitchell. “Combining labeled and unlabeled data with
co-training”. In: Proceedings of the eleventh annual conference on Computational
learning theory. 1998 (cit. on pp. 20, 83, 84).

[BPR19] Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. “Adversarial examples
from computational constraints”. In: International Conference on Machine Learn-
ing. 2019 (cit. on p. 120).

[Bro+18] Tom B. Brown et al. Adversarial Patch. 2018. arXiv: 1712.09665 [cs.CV] (cit. on
pp. 12, 25).

[BSH12] Harold C Burger, Christian J Schuler, and Stefan Harmeling. “Image denois-
ing: Can plain neural networks compete with BM3D?” In: Computer Vision
and Pattern Recognition (CVPR). 2012 (cit. on p. 60).

[BVA20] Alceu Bissoto, Eduardo Valle, and Sandra Avila. “Debiasing Skin Lesion
Datasets and Models? Not So Fast”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops. 2020, pp. 740–741 (cit. on
p. 90).

[BVP18] Sara Beery, Grant Van Horn, and Pietro Perona. “Recognition in terra incog-
nita”. In: European Conference on Computer Vision (ECCV). 2018 (cit. on pp. 18,
87, 90).

[Cal+18] Sebastian Caldas et al. “Leaf: A benchmark for federated settings”. In: arXiv
preprint arXiv:1812.01097 (2018) (cit. on p. 67).

[Can86] John Canny. “A computational approach to edge detection”. In: 1986 (cit. on
p. 175).

[Car+16] Nicholas Carlini et al. “Hidden Voice Commands”. In: USENIX Security
Symposium. 2016 (cit. on pp. 12, 25).

100

https://calendar.mit.edu/event/yoshua_bengio_learning_high-level_representations_for_agents%5C#.XYozli2ZNhF
https://calendar.mit.edu/event/yoshua_bengio_learning_high-level_representations_for_agents%5C#.XYozli2ZNhF
https://calendar.mit.edu/event/yoshua_bengio_learning_high-level_representations_for_agents%5C#.XYozli2ZNhF
http://arxiv.org/abs/1712.09665

[Car+17] Nicholas Carlini et al. “Ground-Truth Adversarial Examples”. In: ArXiv
preprint arXiv:1709.10207. 2017 (cit. on p. 36).

[Car+19] Yair Carmon et al. “Unlabeled data improves adversarial robustness”. In:
Neural Information Processing Systems (NeurIPS). 2019 (cit. on p. 37).

[CH18] Wengling Chen and James Hays. “Sketchygan: Towards diverse and realistic
sketch to image synthesis”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018 (cit. on p. 61).

[Che+17] Pin-Yu Chen et al. “Zoo: Zeroth order optimization based black-box attacks
to deep neural networks without training substitute models”. In: Workshop on
Artificial Intelligence and Security. 2017 (cit. on p. 25).

[CNL11] Adam Coates, Andrew Ng, and Honglak Lee. “An analysis of single-layer
networks in unsupervised feature learning”. In: Proceedings of the fourteenth
international conference on artificial intelligence and statistics. 2011 (cit. on pp. 81,
174).

[CRK19] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. “Certified adversarial
robustness via randomized smoothing”. In: International Conference on Machine
Learning (ICML). 2019 (cit. on pp. 37, 119, 120).

[CUF18] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. “COCO-Stuff: Thing and
stuff classes in context”. In: Computer vision and pattern recognition (CVPR),
2018. 2018 (cit. on p. 69).

[CW17a] Nicholas Carlini and David Wagner. “Adversarial Examples Are Not Eas-
ily Detected: Bypassing Ten Detection Methods”. In: Workshop on Artificial
Intelligence and Security (AISec). 2017 (cit. on pp. 14, 25).

[CW17b] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of
neural networks”. In: Symposium on Security and Privacy (SP). 2017 (cit. on
pp. 14, 25, 32, 33).

[Dan67] John M. Danskin. The Theory of Max-Min and its Application to Weapons Alloca-
tion Problems. 1967 (cit. on pp. 14, 28).

[DB16a] Alexey Dosovitskiy and Thomas Brox. “Generating images with perceptual
similarity metrics based on deep networks”. In: neural information processing
systems (NeurIPS). 2016 (cit. on p. 49).

[DB16b] Alexey Dosovitskiy and Thomas Brox. “Inverting visual representations with
convolutional networks”. In: Computer Vision and Pattern Recognition (CVPR).
2016 (cit. on p. 50).

[Den+09] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
Computer Vision and Pattern Recognition (CVPR). 2009 (cit. on pp. 19, 66, 68, 94,
145, 165, 189).

[DFE07] Kostadin Dabov, Alessandro Foi, and Karen Egiazarian. “Video denoising
by sparse 3D transform-domain collaborative filtering”. In: European Signal
Processing Conference. 2007 (cit. on p. 60).

101

[DG01] Lijun Ding and Ardeshir Goshtasby. “On the Canny edge detector”. In: Pattern
Recognition. 2001 (cit. on p. 80).

[Dhi+18] Guneet S Dhillon et al. “Stochastic activation pruning for robust adversarial
defense”. In: International Conference on Learning Representations (ICLR) (2018)
(cit. on p. 14).

[Don+14] Jeff Donahue et al. “Decaf: A deep convolutional activation feature for generic
visual recognition”. In: International conference on machine learning (ICML).
2014 (cit. on p. 49).

[DSB17] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation
using real NVP”. In: International Conference on Learning Representations (ICLR).
2017 (cit. on p. 56).

[Dvi+18] Krishnamurthy Dvijotham et al. “Training verified learners with learned
verifiers”. In: ArXiv preprint arXiv:1805.10265. 2018 (cit. on p. 36).

[EL99] Alexei A Efros and Thomas K Leung. “Texture synthesis by non-parametric
sampling”. In: conference on computer vision (CVPR). 1999 (cit. on p. 58).

[Eng+19a] Logan Engstrom et al. “Adversarial Robustness as a Prior for Learned Repre-
sentations”. In: ArXiv preprint arXiv:1906.00945. 2019 (cit. on p. 22).

[Eng+19b] Logan Engstrom et al. “Exploring the Landscape of Spatial Robustness”. In:
International Conference on Machine Learning (ICML). 2019 (cit. on pp. 37, 64).

[Eng+19c] Logan Engstrom et al. Robustness (Python Library). 2019. URL: https://github.
com/MadryLab/robustness (cit. on p. 121).

[Eng+20] Logan Engstrom et al. “Identifying Statistical Bias in Dataset Replication”. In:
International Conference on Machine Learning (ICML). 2020 (cit. on p. 67).

[Eve+10] M. Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”. In:
International Journal of Computer Vision. 2010 (cit. on p. 69).

[Evt+18] Ivan Evtimov et al. “Robust Physical-World Attacks on Machine Learning
Models”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2018 (cit. on p. 25).

[FF15] Alhussein Fawzi and Pascal Frossard. “Manitest: Are classifiers really invari-
ant?” In: British Machine Vision Conference (BMVC). 2015 (cit. on pp. 27, 37,
64).

[FFF18a] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. “Adversarial vulnerabil-
ity for any classifier”. In: Advances in Neural Information Processing Systems
(NeuRIPS). 2018 (cit. on p. 119).

[FFF18b] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. “Analysis of classifiers’
robustness to adversarial perturbations”. In: Machine Learning 107.3 (2018),
pp. 481–508 (cit. on p. 120).

[FMF16] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. “Ro-
bustness of classifiers: from adversarial to random noise”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2016 (cit. on pp. 64, 120).

102

https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness

[For+19] Nic Ford et al. “Adversarial Examples Are a Natural Consequence of Test
Error in Noise”. In: arXiv preprint arXiv:1901.10513. 2019 (cit. on pp. 64, 79,
120).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016 (cit. on p. 49).

[GDG19] Agrim Gupta, Piotr Dollar, and Ross Girshick. “LVIS: A Dataset for Large
Vocabulary Instance Segmentation”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2019 (cit. on pp. 74, 165).

[GEB16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image style transfer
using convolutional neural networks”. In: computer vision and pattern recogni-
tion (CVPR). 2016 (cit. on p. 74).

[Gei+19] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness.” In: International
Conference on Learning Representations (ICLR). 2019 (cit. on pp. 20, 78).

[Gei+20] Robert Geirhos et al. “Shortcut learning in deep neural networks”. In: Nature
Machine Intelligence. 2020 (cit. on pp. 87, 90).

[Ghi+15] Muhammad Ghifary et al. “Domain generalization for object recognition with
multi-task autoencoders”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 2551–2559 (cit. on p. 67).

[Ghi+17] Golnaz Ghiasi et al. “Exploring the structure of a real-time, arbitrary neural
artistic stylization network”. In: arXiv preprint arXiv:1705.06830. 2017 (cit. on
pp. 74, 166).

[Gil+18] Justin Gilmer et al. “Adversarial spheres”. In: Workshop of International Confer-
ence on Learning Representations (ICLR). 2018 (cit. on pp. 43, 119).

[Gir+14] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: computer vision and pattern recognition (CVPR).
2014, pp. 580–587 (cit. on p. 49).

[Gir+18] Ross Girshick et al. Detectron. https://github.com/facebookresearch/
detectron. 2018 (cit. on p. 165).

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech Recog-
nition with Deep Recurrent Neural Networks”. In: International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). 2013 (cit. on p. 12).

[Goh+21] Gabriel Goh et al. “Multimodal neurons in artificial neural networks”. In:
Distill (2021) (cit. on pp. 91, 97, 98, 192).

[Goh19] Gabriel Goh. “A Discussion of ’Adversarial Examples Are Not Bugs, They Are
Features’: Robust Feature Leakage”. In: Distill (2019). https://distill.pub/2019/advex-
bugs-discussion/response-2. DOI: 10.23915/distill.00019.2 (cit. on p. 47).

[Goo+14] Ian Goodfellow et al. “Generative adversarial nets”. In: neural information
processing systems (NeurIPS). 2014 (cit. on pp. 55, 56).

103

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://doi.org/10.23915/distill.00019.2

[Gow+20] Sven Gowal et al. “Uncovering the limits of adversarial training against norm-
bounded adversarial examples”. In: arXiv preprint arXiv:2010.03593 (2020)
(cit. on p. 37).

[Goy+19a] Yash Goyal et al. “Counterfactual visual explanations”. In: arXiv preprint
arXiv:1904.07451 (2019) (cit. on p. 73).

[Goy+19b] Yash Goyal et al. “Explaining classifiers with causal concept effect (cace)”. In:
arXiv preprint arXiv:1907.07165 (2019) (cit. on p. 73).

[Gra13] Alex Graves. “Generating sequences with recurrent neural networks”. In:
arXiv preprint arXiv:1308.0850. 2013 (cit. on p. 56).

[GSS15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
Harnessing Adversarial Examples”. In: International Conference on Learning
Representations (ICLR). 2015 (cit. on pp. 13, 15, 28, 29, 43, 120).

[Gur+18] Suchin Gururangan et al. “Annotation artifacts in natural language inference
data”. In: North American Chapter of the Association for Computational Linguistics
(NAACL). 2018 (cit. on p. 87).

[HAE16] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. “What makes ImageNet
good for transfer learning?” In: arXiv preprint arXiv:1608.08614 (2016) (cit. on
pp. 68, 71, 146, 147, 155).

[HD19] Dan Hendrycks and Thomas G. Dietterich. “Benchmarking Neural Network
Robustness to Common Corruptions and Surface Variations”. In: International
Conference on Learning Representations (ICLR). 2019 (cit. on pp. 18, 64, 67).

[He+15] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015 (cit. on
pp. 94, 114).

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2016 (cit. on pp. 34,
48, 121, 165, 189).

[He+17] Warren He et al. “Adversarial example defense: Ensembles of weak defenses
are not strong”. In: USENIX Workshop on Offensive Technologies (WOOT). 2017
(cit. on pp. 14, 25).

[HE07] James Hays and Alexei A Efros. “Scene completion using millions of pho-
tographs”. In: ACM Transactions on Graphics (TOG). 2007 (cit. on p. 58).

[Her+01] Aaron Hertzmann et al. “Image analogies”. In: Computer graphics and interac-
tive techniques. 2001 (cit. on p. 58).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation. 1997 (cit. on p. 56).

[Ily+18] Andrew Ilyas et al. “Black-box Adversarial Attacks with Limited Queries and
Information”. In: International Conference on Machine Learning (ICML). 2018
(cit. on p. 25).

[Ily+19] Andrew Ilyas et al. “Adversarial Examples Are Not Bugs, They Are Features”.
In: Neural Information Processing Systems (NeurIPS). 2019 (cit. on p. 22).

104

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: International
Conference on Machine Learning (ICML). 2015 (cit. on p. 175).

[Isc+19] Ahmet Iscen et al. “Label propagation for deep semi-supervised learning”. In:
Computer Vision and Pattern Recognition (CVPR). 2019 (cit. on p. 84).

[JAF16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-
time style transfer and super-resolution”. In: European conference on computer
vision (ECCV). 2016 (cit. on p. 49).

[JL17] Robin Jia and Percy Liang. “Adversarial Examples for Evaluating Reading
Comprehension Systems”. In: Empirical Methods in Natural Language Processing
(EMNLP). 2017 (cit. on pp. 12, 25).

[JTM21] Saachi Jain, Dimitris Tsipras, and Aleksander Madry. “Co-Priors: Combining
Biases on Learned Features”. In: Preprint. 2021 (cit. on p. 23).

[Kan+19] Daniel Kang et al. “Testing Robustness Against Unforeseen Adversaries”. In:
ArXiv preprint arxiv:1908.08016. 2019 (cit. on p. 64).

[Kar+18] Tero Karras et al. “Progressive Growing of GANs for Improved Quality,
Stability, and Variation”. In: International Conference on Learning Representations.
2018 (cit. on p. 56).

[Kat+17] Guy Katz et al. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks”. In: International Conference on Computer Aided Verification. 2017
(cit. on p. 36).

[KD18] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative flow with invert-
ible 1x1 convolutions”. In: Neural Information Processing Systems (NeurIPS).
2018 (cit. on p. 56).

[KGB16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial examples
in the physical world”. In: arXiv preprint arXiv:1607.02533 (2016) (cit. on p. 25).

[KGB17] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Machine
Learning at Scale”. In: International Conference on Learning Representations
(ICLR). 2017 (cit. on p. 29).

[KHA99] Mark G Kelly, David J Hand, and Niall M Adams. “The impact of changing
populations on classifier performance”. In: international conference on Knowl-
edge discovery and data mining (SIGKDD). 1999 (cit. on p. 64).

[Kho+12] Aditya Khosla et al. “Undoing the damage of dataset bias”. In: European
Conference on Computer Vision (ECCV). 2012 (cit. on p. 64).

[Kim+18] Been Kim et al. “Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (tcav)”. In: International conference on
machine learning (ICML). 2018 (cit. on p. 92).

[Kri09] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”.
In: Technical report. 2009 (cit. on pp. 12, 29, 45, 69, 81, 114, 121, 174).

105

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet Classifi-
cation with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2012 (cit. on p. 12).

[KSJ19] Beomsu Kim, Junghoon Seo, and Taegyun Jeon. “Bridging Adversarial Ro-
bustness and Gradient Interpretability”. In: International Conference on Learning
Representations Workshop on Safe Machine Learning (ICLR SafeML). 2019 (cit. on
p. 120).

[Kuz+18] Alina Kuznetsova et al. “The open images dataset v4: Unified image classifi-
cation, object detection, and visual relationship detection at scale”. In: arXiv
preprint arXiv:1811.00982 (2018) (cit. on pp. 66, 69).

[KW15] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
International Conference on Learning Representations (ICLR). 2015 (cit. on p. 56).

[Lar+16] Anders Boesen Lindbo Larsen et al. “Autoencoding beyond pixels using a
learned similarity metric”. In: International Conference on Machine Learning
(ICML). 2016 (cit. on p. 55).

[Lec+19] Mathias Lecuyer et al. “Certified robustness to adversarial examples with
differential privacy”. In: Symposium on Security and Privacy (SP). 2019 (cit. on
pp. 37, 120).

[LeC98] Yann LeCun. “The MNIST database of handwritten digits”. In: Technical report.
1998 (cit. on pp. 29, 114, 121).

[Lee+13] Dong-Hyun Lee et al. “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks”. In: Workshop on challenges in
representation learning, ICML. 2013 (cit. on pp. 83, 84).

[Lin+14] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision (ECCV). 2014 (cit. on pp. 74, 165).

[Liu+15] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: International
Conference on Computer Vision (ICCV). 2015 (cit. on pp. 70, 88, 174).

[Mad+18] Aleksander Madry et al. “Towards deep learning models resistant to adver-
sarial attacks”. In: International Conference on Learning Representations (ICLR).
2018 (cit. on pp. 22, 119–121, 124, 171).

[McA+15] Julian McAuley et al. “Image-based recommendations on styles and sub-
stitutes”. In: Research and development in Information Retrieval (SIGIR). 2015
(cit. on p. 70).

[MDM18] Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. “The
curse of concentration in robust learning: Evasion and poisoning attacks from
concentration of measure”. In: AAAI Conference on Artificial Intelligence (AAAI).
2018 (cit. on pp. 43, 119).

[Mil95] George A Miller. “WordNet: a lexical database for English”. In: Communica-
tions of the ACM (1995) (cit. on pp. 68, 145).

106

[Mor+12] Jose G Moreno-Torres et al. “A unifying view on dataset shift in classification”.
In: Pattern recognition (2012) (cit. on p. 64).

[MOT15] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism:
Going deeper into neural networks. 2015. URL: https://ai.googleblog.com/
2015/06/inceptionism-going-deeper-into-neural.html (cit. on pp. 53,
56).

[MV15] Aravindh Mahendran and Andrea Vedaldi. “Understanding deep image
representations by inverting them”. In: computer vision and pattern recognition
(CVPR). 2015 (cit. on p. 50).

[MWK20] Pratyush Maini, Eric Wong, and Zico Kolter. “Adversarial robustness against
the union of multiple perturbation models”. In: International Conference on
Machine Learning (ICML). 2020 (cit. on p. 37).

[Nak19] Preetum Nakkiran. “Adversarial robustness may be at odds with simplicity”.
In: arXiv preprint arXiv:1901.00532. 2019 (cit. on p. 120).

[Ngu+16] Anh Nguyen et al. “Synthesizing the preferred inputs for neurons in neural
networks via deep generator networks”. In: Neural Information Processing
Systems (NeurIPS). 2016 (cit. on pp. 55, 56).

[Ngu+17] Anh Nguyen et al. “Plug & play generative networks: Conditional iterative
generation of images in latent space”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2017 (cit. on pp. 55, 56).

[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images”. In:
Conference on computer vision and pattern recognition (CVPR). 2015 (cit. on pp. 55,
56).

[OMS17] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visual-
ization”. In: Distill. 2017 (cit. on pp. 52, 53, 55).

[Ore+19] Yonatan Oren et al. “Distributionally Robust Language Modeling”. In: Em-
pirical Methods in Natural Language Processing (EMNLP). 2019 (cit. on pp. 64,
66).

[Oyg15] Audun Oygard. Visualizing GoogLeNet Classes. 2015. URL: https : / / www .
auduno.com/2015/07/29/visualizing-googlenet-classes/ (cit. on pp. 55,
56).

[Pap+16] Nicolas Papernot et al. “Distillation as a Defense to Adversarial Perturbations
Against Deep Neural Networks”. In: Symposium on Security and Privacy (SP).
2016 (cit. on p. 13).

[Par+19] Taesung Park et al. “Semantic Image Synthesis with Spatially-Adaptive Nor-
malization”. In: Computer Vision and Pattern Recognition (CVPR). 2019 (cit. on
p. 61).

[Pea10] Judea Pearl. “Causal inference”. In: Causality: Objectives and Assessment. 2010
(cit. on p. 73).

107

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://www.auduno.com/2015/07/29/visualizing-googlenet-classes/
https://www.auduno.com/2015/07/29/visualizing-googlenet-classes/

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. “Transferability in
Machine Learning: from Phenomena to Black-box Attacks using Adversarial
Samples”. In: ArXiv preprint arXiv:1605.07277. 2016 (cit. on pp. 15, 25).

[Pon+06] Jean Ponce et al. “Dataset issues in object recognition”. In: Toward category-level
object recognition. 2006 (cit. on pp. 18, 67, 90).

[Qui+09] Joaquin Quionero-Candela et al. Dataset shift in machine learning. The MIT
Press, 2009 (cit. on p. 64).

[Rad+21] Alec Radford et al. “Learning transferable visual models from natural lan-
guage supervision”. In: arXiv preprint arXiv:2103.00020. 2021 (cit. on pp. 97,
98, 189).

[RD18] Andrew Slavin Ross and Finale Doshi-Velez. “Improving the adversarial
robustness and interpretability of deep neural networks by regularizing their
input gradients”. In: Thirty-second AAAI conference on artificial intelligence. 2018
(cit. on p. 49).

[Rec+19] Benjamin Recht et al. “Do ImageNet Classifiers Generalize to ImageNet?” In:
International Conference on Machine Learning (ICML). 2019 (cit. on p. 64).

[RMC16] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In:
International Conference on Learning Representations (ICLR). 2016 (cit. on p. 55).

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why Should I
Trust You?”: Explaining the Predictions of Any Classifier”. In: International
Conference on Knowledge Discovery and Data Mining (KDD). 2016 (cit. on p. 75).

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified defenses
against adversarial examples”. In: International Conference on Learning Repre-
sentations (ICLR). 2018 (cit. on pp. 37, 119).

[Rus+15] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: International Journal of Computer Vision (IJCV). 2015 (cit. on pp. 19,
68, 94, 121, 145, 165, 189).

[RZT18] Amir Rosenfeld, Richard Zemel, and John K. Tsotsos. “The Elephant in the
Room”. In: arXiv preprint arXiv:1808.03305. 2018 (cit. on p. 75).

[S+19] Robert Stanforth, Alhussein Fawzi, Pushmeet Kohli, et al. “Are Labels Re-
quired for Improving Adversarial Robustness?” In: Neural Information Process-
ing Systems (NeurIPS). 2019 (cit. on p. 37).

[Sae+10] Kate Saenko et al. “Adapting visual category models to new domains”. In:
European conference on computer vision (ECCV). 2010 (cit. on pp. 18, 64).

[Sag+20] Shiori Sagawa et al. “Distributionally Robust Neural Networks for Group
Shifts: On the Importance of Regularization for Worst-Case Generalization”.
In: International Conference on Learning Representations. 2020 (cit. on p. 64).

[Sah+98] Mehran Sahami et al. “A Bayesian approach to filtering junk e-mail”. In:
Learning for Text Categorization. 1998 (cit. on p. 12).

108

[Sal+20] Hadi Salman et al. “Do Adversarially Robust ImageNet Models Transfer
Better?” In: Advances in Neural Information Processing Systems (NeurIPS). 2020
(cit. on p. 79).

[San+19] Shibani Santurkar et al. “Image Synthesis with a Single (Robust) Classifier”.
In: Neural Information Processing Systems (NeurIPS). 2019 (cit. on p. 22).

[San+21] Shibani Santurkar et al. “Editing a classifier by rewriting its prediction rules”.
In: Preprint. 2021 (cit. on p. 23).

[SC18] Pierre Stock and Moustapha Cisse. “Convnets and imagenet beyond accuracy:
Understanding mistakes and uncovering biases”. In: European Conference on
Computer Vision (ECCV). 2018 (cit. on p. 75).

[Sch+18] Ludwig Schmidt et al. “Adversarially Robust Generalization Requires More
Data”. In: Advances in Neural Information Processing Systems (NeurIPS). 2018
(cit. on pp. 43, 119).

[SCJ19] Octavian Suciu, Scott E. Coull, and Jeffrey Johns. “Exploring Adversarial
Examples in Malware Detection”. In: IEEE Security and Privacy Workshops
(SPW). 2019 (cit. on p. 25).

[SF68] Irwin Sobel and Gary Feldman. “A 3x3 isotropic gradient operator for image
processing”. In: 1968 (cit. on pp. 80, 175).

[SG86] Jeffrey C Schlimmer and Richard H Granger. “Beyond Incremental Processing:
Tracking Concept Drift.” In: AAAI. 1986 (cit. on p. 64).

[Sha+19a] Ali Shafahi et al. “Are adversarial examples inevitable?” In: International
Conference on Learning Representations (ICLR). 2019 (cit. on pp. 43, 119).

[Sha+19b] Adi Shamir et al. “A Simple Explanation for the Existence of Adversarial
Examples with Small Hamming Distance”. In: arXiv preprint arXiv:1901.10861.
2019 (cit. on p. 120).

[Shi00] Hidetoshi Shimodaira. “Improving predictive inference under covariate shift
by weighting the log-likelihood function”. In: Journal of statistical planning and
inference (2000) (cit. on p. 64).

[SK12] Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary
environments: Introduction to covariate shift adaptation. MIT press, 2012 (cit. on
p. 64).

[SKM07] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller. “Covari-
ate shift adaptation by importance weighted cross validation”. In: Journal of
Machine Learning Research (JMLR) (2007) (cit. on p. 64).

[SSF19] Rakshith Shetty, Bernt Schiele, and Mario Fritz. “Not Using the Car to See the
Sidewalk–Quantifying and Controlling the Effects of Context in Classification
and Segmentation”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2019 (cit. on p. 90).

[STM21] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. “Breeds: Bench-
marks for subpopulation shift”. In: International Conference on Learning Repre-
sentations (ICLR). 2021 (cit. on pp. 22, 23).

109

[SVZ13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside
convolutional networks: Visualising image classification models and saliency
maps”. In: arXiv preprint arXiv:1312.6034 (2013) (cit. on p. 56).

[SZ15] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: International Conference on
Learning Representations (ICLR). 2015 (cit. on pp. 94, 165, 175, 189).

[Sze+14] Christian Szegedy et al. “Intriguing properties of neural networks”. In: Inter-
national Conference on Learning Representations (ICLR). 2014 (cit. on pp. 12, 13,
15, 25, 27, 40, 43, 64).

[TB19] Florian Tramèr and Dan Boneh. “Adversarial Training and Robustness for
Multiple Perturbations”. In: Neural Information Processing Systems (NeurIPS).
2019 (cit. on p. 37).

[TE11] Antonio Torralba and Alexei A Efros. “Unbiased look at dataset bias”. In:
CVPR 2011. 2011 (cit. on pp. 18, 64, 67, 90).

[TG16] Thomas Tanay and Lewis Griffin. “A Boundary Tilting Perspective on the
Phenomenon of Adversarial Examples”. In: ArXiv preprint arXiv:1608.07690.
2016 (cit. on pp. 43, 119).

[TM98] Carlo Tomasi and Roberto Manduchi. “Bilateral filtering for gray and color
images”. In: Sixth international conference on computer vision (IEEE Cat. No.
98CH36271). 1998 (cit. on p. 175).

[Tra+17] Florian Tramer et al. “The Space of Transferable Adversarial Examples”. In:
ArXiv preprint arXiv:1704.03453. 2017 (cit. on p. 28).

[Tsi+19] Dimitris Tsipras et al. “Robustness May Be at Odds with Accuracy”. In:
International Conference on Learning Representations (ICLR). 2019 (cit. on p. 22).

[Tsi+20] Dimitris Tsipras et al. “From ImageNet to Image Classification: Contextualiz-
ing Progress on Benchmarks”. In: International Conference on Machine Learning
(ICML). 2020 (cit. on pp. 67, 75, 90).

[TT14] Tatiana Tommasi and Tinne Tuytelaars. “A testbed for cross-dataset analysis”.
In: European Conference on Computer Vision (ECCV). 2014 (cit. on p. 64).

[TXT19] Vincent Tjeng, Kai Xiao, and Russ Tedrake. “Evaluating Robustness of Neural
Networks with Mixed Integer Programming”. In: International Conference on
Learning Representations (ICLR). 2019 (cit. on p. 36).

[Tyk16] Mike Tyka. Class visualization with bilateral filters. 2016. URL: https://mtyka.
github.io/deepdream/2016/02/05/bilateral-class-vis.html (cit. on
pp. 55, 56).

[Utr+20] Francisco Utrera et al. “Adversarially-Trained Deep Nets Transfer Better”. In:
ArXiv preprint arXiv:2007.05869. 2020 (cit. on p. 79).

[UVL17] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Deep Image Prior”.
In: ArXiv preprint arXiv:1711.10925. 2017 (cit. on p. 51).

110

https://mtyka.github.io/deepdream/2016/02/05/bilateral-class-vis.html
https://mtyka.github.io/deepdream/2016/02/05/bilateral-class-vis.html

[VKK16] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel
recurrent neural networks”. In: International Conference on Machine Learning
(ICML). 2016 (cit. on p. 56).

[Wal45] Abraham Wald. “Statistical Decision Functions Which Minimize the Maxi-
mum Risk”. In: Annals of Mathematics. 1945 (cit. on p. 27).

[Wan+19] Yisen Wang et al. “Improving adversarial robustness requires revisiting mis-
classified examples”. In: International Conference on Learning Representations.
2019 (cit. on p. 37).

[WK18] Eric Wong and J Zico Kolter. “Provable defenses against adversarial examples
via the convex outer adversarial polytope”. In: International Conference on
Machine Learning (ICML). 2018 (cit. on pp. 37, 119).

[WK93] Gerhard Widmer and Miroslav Kubat. “Effective learning in dynamic envi-
ronments by explicit context tracking”. In: European Conference on Machine
Learning. 1993 (cit. on p. 64).

[WSK19] Eric Wong, Frank Schmidt, and Zico Kolter. “Wasserstein adversarial exam-
ples via projected sinkhorn iterations”. In: International Conference on Machine
Learning (ICML). 2019 (cit. on p. 37).

[Wu+16] Yonghui Wu et al. “Google’s neural machine translation system: Bridging the
gap between human and machine translation”. In: arXiv preprint arXiv:1609.08144.
2016 (cit. on p. 12).

[Xia+18] Chaowei Xiao et al. “Spatially Transformed Adversarial Examples”. In: Inter-
national Conference on Learning Representations (ICLR). 2018 (cit. on p. 27).

[Xia+19] Kai Y. Xiao et al. “Training for Faster Adversarial Robustness Verification via
Inducing ReLU Stability”. In: International Conference on Learning Representa-
tions (ICLR). 2019 (cit. on pp. 36, 119).

[Xia+20] Kai Xiao et al. “Noise or signal: The role of image backgrounds in object
recognition”. In: arXiv preprint arXiv:2006.09994 (2020) (cit. on pp. 18, 75, 87,
90).

[Xie+20] Qizhe Xie et al. “Self-training with noisy student improves imagenet classi-
fication”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020 (cit. on p. 84).

[Yan+19] Kaiyu Yang et al. Towards Fairer Datasets: Filtering and Balancing the Distribution
of the People Subtree in the ImageNet Hierarchy. http://image-net.org/update-
sep-17-2019. Accessed: 2020-10-01. 2019 (cit. on p. 67).

[Yu+20] Fisher Yu et al. “BDD100K: A diverse driving dataset for heterogeneous
multitask learning”. In: Computer Vision and Pattern Recognition (CVPR). 2020
(cit. on p. 70).

[Zha+07] Jianguo Zhang et al. “Local features and kernels for classification of texture
and object categories: A comprehensive study”. In: International journal of
computer vision. 2007 (cit. on p. 75).

111

http://image-net.org/update-sep-17-2019
http://image-net.org/update-sep-17-2019

[Zha+18] Richard Zhang et al. “The unreasonable effectiveness of deep features as a
perceptual metric”. In: Computer Vision and Pattern Recognition (CVPR). 2018
(cit. on p. 49).

[Zha+19] Hongyang Zhang et al. “Theoretically Principled Trade-off between Robust-
ness and Accuracy”. In: International Conference on Machine Learning (CIML).
2019 (cit. on p. 37).

[Zho+17] Bolei Zhou et al. “Places: A 10 million image database for scene recognition”.
In: IEEE transactions on pattern analysis and machine intelligence (2017) (cit. on
pp. 94, 165, 189).

[Zho+20] Zhun Zhong et al. “Random Erasing Data Augmentation.” In: AAAI. 2020
(cit. on p. 78).

[Zhu+17] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-consistent
adversarial networks”. In: international conference on computer vision(ICCV).
2017 (cit. on pp. 58–60, 142, 143).

[Zou+19] Yang Zou et al. “Confidence regularized self-training”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2019 (cit. on p. 84).

112

Appendix

113

Appendix A

Additional details for Chapter 1

A.1 Experimental setup.
Our first dataset will be MNIST [LeC98] which contains black-and-white images of handwritten
digits. We will use a since convolutional network consisting of two convolutional layers with 32
and 64 filters respectively, each followed by 2× 2 max-pooling, and a fully connected layer of size
1024. Since most pixels are either 0 (black) or 1 (white) we restrict perturbations to an `∞ norm of
0.3. We will craft these perturbations using 40 steps of PGD with a step size of 0.01.

Our second dataset will be CIFAR-10 [Kri09] which contains RGB photographs from 10 cate-
gories. Here we will restrict perturbations to an `∞ norm of 8/255 computed using 7 steps of PGD
with step size 2/255. Our architecture will be a wide variant of a ResNet [He+15].

A.2 Statement and application of Danskin’s theorem
Recall that our goal is to minimize the value of the saddle point problem

min
θ

ρ(θ), where ρ(θ) = E(x,y)∼D

[
max
δ∈∆
L(θ, x + δ, y)

]
.

In practice, we don’t have access to the distribution D so both the gradients and the value of
ρ(θ) will be computed using sampled input points. Therefore we can consider –without loss of
generality– the case of a single random example x with label y, in which case the problem becomes

min
θ

max
δ∈∆

g(θ, δ), where g(θ, δ) = L(θ, x + δ, y) .

If we assume that the loss L is continuously differentiable in θ, we can compute a descent
direction for θ by utilizing the classical theorem of Danskin.

Theorem A.2.1 (Danskin). Let ∆ be nonempty compact topological space and g : Rn × ∆ → R be
such that g(·, δ) is differentiable for every δ ∈ ∆ and ∇θ g(θ, δ) is continuous on Rn × ∆. Also, let
δ∗(θ) = {δ ∈ arg maxδ∈∆ g(θ, δ)}.

Then the corresponding max-function

φ(θ) = max
δ∈∆

g(θ, δ)

114

is locally Lipschitz continuous, directionally differentiable, and its directional derivatives satisfy

φ′(θ, h) = sup
δ∈δ∗(θ)

h>∇θ g(θ, δ) .

In particular, if for some θ ∈ Rn the set δ∗(θ) = {δ∗θ } is a singleton, the the max-function is differentiable
at θ and

∇φ(θ) = ∇θ g(θ, δ∗θ)

The intuition behind the theorem is that since gradients are local objects, and the function φ(θ)
is locally the same as g(θ, δ∗θ) their gradients will be the same. The theorem immediately gives
us the following corollary, stating the we can indeed compute gradients for the saddle point by
computing gradients at the inner optimizers.

Corollary A.2.2. Let δ be such that δ ∈ ∆ and is a maximizer for maxδ L(θ, x + δ, y). Then, as long as it
is nonzero, −∇θL(θ, x + δ, y) is a descent direction for φ(θ) = maxδ∈∆ L(θ, x + δ, y).

Proof of Corollary A.2.2. We apply Theorem A.2.1 to g(θ, δ) := L(θ, x + δ, y) and ∆ = B‖·‖(ε). We
see that the directional derivative in the direction of h = ∇θL(θ, x + δ, y) satisfies

φ′(θ, h) = sup
δ∈δ∗(θ)

h>∇θL(θ, x + δ, y) ≥ h>h = ‖∇θL(θ, x + δ, y)‖2
2 ≥ 0 .

If this gradient is nonzero, then the inequality above is strict. Therefore it gives a descent direction.

A technical issue is that, since we use ReLU and max-pooling units in our neural network
architecture, the loss function is not continuously differentiable. Nevertheless, since the set of
discontinuities has measure zero, we can assume that this will not be an issue in practice, as we
will never encounter the problematic points.

Another technical issue is that, due to the not concavity of the inner problem, we are not able
to compute global maximizers, since PGD will converge to local maxima. In such cases, we can
consider a subset ∆′ of ∆ such that the local maximum is a global maximum in the region ∆′.
Applying the theorem for ∆′ gives us that the gradient corresponds to a descent direction for the
saddle point problem when the adversary is constrained in ∆′. Therefore if the inner maximum is a
true adversarial example for the network, then SGD using the gradient at that point will decrease
the loss value at this particular adversarial examples, thus making progress towards a robust
model.

These arguments suggest that the conclusions of the theorem are still valid in our saddle point
problem, and—as our experiments confirm—we can solve it reliably.

A.3 Inspecting a robust model
The robust MNIST model described so far is small enough that we can visually inspect most of
its parameters. Doing so will allow us to understand how it is different from a standard network
and what are the general characteristics of a network that is robust against `∞ adversaries. We will
compare three different networks: a standard model, and two adversarially trained ones. The latter
two models are identical, modulo the random weight initialization, and were used as the public
and secret models used for our robustness challenge.

115

Initially, we examine the first convolutional layer of each network. We observe that the robust
models only utilize 3 out of the total 32 filters, and for each of these filters only one weight is non-
zero. By doing so, the convolution degrades into a scaling of the original image. Combined with
the bias and the ReLU that follows, this results in a thresholding filter, or equivalently ReLU(αx− β)
for some constants α, β. From the perspective of adversarial robustness, thresholding filters are
immune to any perturbations on pixels with value less than β− ε. We visualize a sample of the
filters in Figure A.1 (plots a, c, and e).

Having observed that the first layer of the network essentially maps the original image to three
copies thresholded at different values, we examine the second convolutional layer of the classifier.
Again, the filter weights are relatively sparse and have a significantly wider value range than the
standard version. Since only three channels coming out of the first layer matter, is follows (and is
verified) that the only relevant convolutional filters are those that interact with these three channels.
We visualize a sample of the filters in Figure A.1 (plots b, d, and f).

Finally, we examine the softmax/output layer of the network. While the weights seem to be
roughly similar between all three version of the network, we notice a significant difference in the
class biases. The adversarially trained networks heavily utilize class biases (far from uniform), and
do so in a way very similar to each other. A plausible explanation is that certain classes tend to be
very vulnerable to adversarial perturbations, and the network learns to be more conservative in
predicting them. The plots can be found in Figure A.2.

All of the “tricks” described so far seem intuitive to a human and would seem reasonable
directions when trying to increase the adversarial robustness of a classifier. We emphasize the
none of these modifications were hard-coded in any way and they were all learned solely through
adversarial training. We attempted to manually introduce these modifications ourselves, aiming to
achieve adversarial robustness without adversarial training, but with no success. A simple PGD
adversary could fool the resulting models on all the test set examples.

116

(a) Standard Model First Conv. Layers (b) Natural Model Second Conv. Layer

(c) Public Model First Conv. Layers (d) Public Model Second Conv. Layer

(e) Secret Model First Conv. Layers (f) Secret Model Second Conv. Layer

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 3 2 1 0 1

Figure A.1: Visualizing a sample of the convolutional filters. For the standard model
(a,b) we visualize random filters, since there is no observable difference in any of them.
For the first layer of robust networks we make sure to include the 3 non-zero filters. For
the second layer, the first three columns represent convolutional filters that utilize the 3
non-zero channels, and we choose the most interesting ones (larger range of values). We
observe that adversarially trained networks have significantly more concentrated weights.
Moreover, the first convolutional layer degrades into a few thresholding filters.

117

0 2 4 6 8
Class

0.050

0.075

0.100

0.125

0.150

0.175

So
ftm

ax
 b

ia
s

natural
public
secret

0.4 0.2 0.0 0.2 0.4
Softmax weight

0

1000

2000

3000

4000
Fr

eq
ue

nc
y

natural
public
secret

(a) Softmax biases for each class (b) Distribution of softmax weights

Figure A.2: Softmax layer examination. For each network we create a histogram of the
layer’s weights and plot the per-class bias. We observe that while weights are similar
(slightly more concentrated for the standard one) the biases are far from uniform and with
a similar pattern for the two adversarially trained networks.

118

Appendix B

Additional details for Chapter 2

B.1 Alternative models for adversarial examples
Here, we describe other models for adversarial examples and how they relate to the model presented
in Chapter 2.

Concentration of measure in high-dimensions. An orthogonal line of work [Gil+18; FFF18a;
MDM18; Sha+19a], argues that the high dimensionality of the input space can present fundamental
barriers on classifier robustness. At a high level, one can show that, for certain data distributions,
any decision boundary will be close to a large fraction of inputs and hence no classifier can be
robust against small perturbations. While there might exist such fundamental barriers to robustly
classifying standard datasets, this model cannot fully explain the situation observed in practice,
where one can train (reasonably) robust classifiers on standard datasets [Mad+18; RSL18; WK18;
Xia+19; CRK19].

Insufficient data. Schmidt et al. [Sch+18] propose a theoretical model under which a single
sample is sufficient to learn a good, yet non-robust classifier, whereas learning a good robust
classifier requires O(

√
d) samples. Under this model, adversarial examples arise due to insufficient

information about the true data distribution. However, unless the adversary is strong enough (in
which case no robust classifier exists), adversarial inputs cannot be utilized as inputs of the opposite
class (as done in our experiments in Section 2.2.2). We note that our model does not explicitly
contradict the main thesis of Schmidt et al. [Sch+18]. In fact, this thesis can be viewed as a natural
consequence of our conceptual framework. In particular, since training models robustly reduces
the effective amount of information in the training data (as non-robust features are discarded),
more samples should be required to generalize robustly.

Boundary Tilting. Tanay and Griffin [TG16] introduce the “boundary tilting” model for adver-
sarial examples, and suggest that adversarial examples are a product of over-fitting. In particular,
the model conjectures that “adversarial examples are possible because the class boundary extends
beyond the submanifold of sample data and can be—under certain circumstances—lying close
to it.” Consequently, the authors suggest that mitigating adversarial examples may be a matter
of regularization and preventing finite-sample overfitting. In contrast, our empirical results in
Section 2.2.2 suggest that adversarial inputs consist of features inherent to the data distribution,
since they can encode generalizing information about the target class.

119

Inspired by this hypothesis and concurrently to our work, Kim, Seo, and Jeon [KSJ19] present
a simple classification task comprised of two Gaussian distributions in two dimensions. They
experimentally show that the decision boundary tends to better align with the vector between the
two means for robust models. This is a special case of our theoretical results in Section 2.1.1. (Note
that this exact statement is not true beyond two dimensions, as discussed in Section 2.1.1.)

Test Error in Noise. Fawzi, Moosavi-Dezfooli, and Frossard [FMF16] and Ford et al. [For+19]
argue that the adversarial robustness of a classifier can be directly connected to its robustness under
(appropriately scaled) random noise. While this constitutes a natural explanation of adversarial
vulnerability given the classifier robustness to noise, these works do not attempt to justify the
source of the latter.

At the same time, recent work [Lec+19; CRK19; For+19] utilizes random noise during training
or testing to construct adversarially robust classifiers. In the context of our framework, we can
expect the added noise to disproportionately affect non-robust features and thus hinder the model’s
reliance on them.

Local Linearity. Goodfellow, Shlens, and Szegedy [GSS15] suggest that the local linearity of
DNNs is largely responsible for the existence of small adversarial perturbations. While this
conjecture is supported by the effectiveness of adversarial attacks exploiting local linearity (e.g.,
FGSM [GSS15]), it is not sufficient to fully characterize the phenomena observed in practice. In
particular, there exist adversarial examples that violate the local linearity of the classifier [Mad+18],
while classifiers that are less linear do not exhibit greater robustness [ACW18].

Piecewise-linear decision boundaries. Shamir et al. [Sha+19b] prove that the geometric struc-
ture of the classifier’s decision boundaries can lead to sparse adversarial perturbations. However,
this result does not take into account the distance to the decision boundary along these direction or
feasibility constraints on the input domain. As a result, it cannot meaningfully distinguish between
classifiers that are brittle to small adversarial perturbations and classifiers that are moderately
robust.

Other theoretical models utilizing non-robust features. Bubeck, Price, and Razenshteyn
[BPR19] and Nakkiran [Nak19] propose theoretical models where the barrier to learning robust
classifiers is, respectively, due to computational constraints or model complexity. In order to
construct distributions that admit accurate yet non-robust classifiers they (implicitly) utilize the
concept of non-robust features. Namely, they add a low-magnitude signal to each input that
encodes the true label. This allows a classifier to achieve perfect standard accuracy, but cannot be
utilized in an adversarial setting as this signal is susceptible to small adversarial perturbations.
[FFF18b] prove upper bounds on the robustness of classifiers and exhibit a standard vs. robust
accuracy trade-off for specific classifier families on a synthetic task. Their setting also (implicitly)
utilizes the notion of robust and non-robust features, however these features have small magnitude
rather than weak correlation.

120

B.2 Experimental setup

B.2.1 Datasets
We perform our analysis on the MNIST [LeC98], CIFAR-10 [Kri09], and ImageNet [Rus+15] datasets.
We also consider a smaller variant of the ImageNet dataset by grouping together classes that are
semantically similar into superclasses, as shown in Table B.1. This leads to a dataset that has
significantly more samples per class compared to ImageNet.

Table B.1: Classes used in the Restricted ImageNet model. The class ranges are inclusive.

Class Corresponding ImageNet Classes

“Dog” 151 to 268
“Cat” 281 to 285

“Frog” 30 to 32
“Turtle” 33 to 37
“Bird” 80 to 100

“Primate” 365 to 382
“Fish” 389 to 397
“Crab” 118 to 121
“Insect” 300 to 319

B.2.2 Models
• MNIST: We use a simple convolutional architecture [Mad+18]1.

• CIFAR-10: We consider a standard ResNet model [He+16]. It has 4 groups of residual layers
with filter sizes (16, 16, 32, 64) and 5 residual units each2.

• ImageNet and Restricted ImageNet: We use the ResNet-50 architecture trained with a learning
rate of 0.1 which drops by a factor of 10 every 30 epochs. We trained for a total of 110 epochs
with a batch size of 256.

B.2.3 Adversarial training
We perform adversarial training to train robust classifiers following [Mad+18]. Specifically, we train
against a projected gradient descent (PGD) adversary, starting from a random initial perturbation
of the training data. We consider adversarial perturbations in `p norm where p = {2, ∞}. Unless
otherwise specified, we use the values of ε provided in Table B.2 to train/evaluate our models
(pixel values in [0, 1]). The implementation of this process has been released under the robustness
library [Eng+19c].

1https://github.com/MadryLab/mnist_challenge/
2https://github.com/MadryLab/cifar10_challenge/

121

https://github.com/MadryLab/mnist_challenge/
https://github.com/MadryLab/cifar10_challenge/

Table B.2: Value of ε used for adversarial training/evaluation of each dataset and `p-norm.

Constraint MNIST CIFAR-10 (Restricted) Imagenet

`∞ 0.3 4/255 0.005
`2 1.5 0.314 1

B.2.4 Adversarial examples for large ε

The images we generated for Figure 2.7 were allowed a much larger perturbation from the original
sample in order to produce visible changes to the images. These values are listed in Table B.3. Since
these levels of perturbations would allow to truly change the class of the image, training against
such strong adversaries would be impossible. Still, we observe that smaller values of ε suffice to
ensure that the models rely on the most robust features.

Table B.3: Value of ε used for large-ε adversarial examples of Figure 2.7.

Adversary MNIST CIFAR-10 Restricted Imagenet

`∞ 0.3 0.125 0.25
`2 4 4.7 40

B.2.5 Constructing a Robust Dataset
In Section 2.2.1, we describe a procedure to construct a dataset that contains features relevant only
to a given (standard/robust) model. We initialize xr as a different randomly chosen sample from
the training set. We then perform normalized gradient descent (`2-norm of gradient is fixed to be
constant at each step). At each step we clip the input xr to in the [0, 1] range so as to ensure that it
is a valid image. Details on the optimization procedure are shown in Table B.5. We provide the
pseudocode for the construction in Figure B.4.

122

GETROBUSTDATASET(D)

1. CR ← ADVERSARIALTRAINING(D)
gR ←mapping learned by CR from the input to the representation layer

2. DR ← {}

3. For (x, y) ∈ D

x′ ∼ D

xR ← arg minz∈[0,1]d ‖gR(z) − gR(x)‖2

Solved using `2-PGD starting from x′

DR ← DR
⋃ {(xR, y)}

4. Return DR

Figure B.4: Algorithm to construct a “robust” dataset, by restricting to features used by a
robust model.

Table B.5: Parameters used for optimization procedure to construct dataset in Section 2.2.1.

CIFAR-10 Restricted Imagenet

step size 0.1 1
iterations 1000 2000

123

B.2.6 Non-robust features suffice for standard classification
To construct the dataset as described in Section 2.2.2, we use the standard projected gradient descent
(PGD) procedure described in [Mad+18] to construct an adversarial example for a given input from
the dataset. Perturbations are constrained in `2-norm while each PGD step is normalized to a fixed
step size. The details for our PGD setup are described in Table B.7. We provide pseudocode in
Figure B.6.

GETNONROBUSTDATASET(D, ε)

1. DNR ← {}

2. C ← STANDARDTRAINING(D)

3. For (x, y) ∈ D

t uar∼ [C] # or t← (y + 1) mod C

xNR ← min||x′−x||≤ε LC(x′, t) # Solved using `2 PGD

DNR ← DNR
⋃ {(xNR, t)}

4. Return DNR

Figure B.6: Algorithm to construct a dataset where input-label association is based entirely
on non-robust features.

Table B.7: Projected gradient descent parameters used to construct constrained adversarial
examples in Section 2.2.2.

Attack Parameters CIFAR-10 Restricted Imagenet

ε 0.5 3
step size 0.1 0.1
iterations 100 100

B.2.7 Image-to-image translation
The parameters used for PGD are as follows.

Dataset ε # steps Step size

ImageNet 60 80 1
Horse↔ Zebra 60 80 0.5

Apple↔ Orange 60 80 0.5
Summer↔Winter 60 80 0.5

124

B.2.8 Generation
In order to compute the class conditional Gaussians for high resolution images (224×224×3) we
downsample the images by a factor of 4 and upsample the resulting seed images with nearest
neighbor interpolation.

Dataset ε # steps Step size

CIFAR-10 30 60 0.5
restricted ImageNet 40 60 1

ImageNet 40 60 1

B.2.9 Inpainting
To create a corrupted image, we select a patch of a given size at a random location in the image. We
reset all pixel values in the patch to be the average pixel value over the entire image (per channel).

Dataset patch size ε # steps Step size

restricted ImageNet 60 21 0.1 720

B.2.10 Super-resolution
We directly perform PGD using the following parameters for each datasets.

Dataset ↑ factor ε # steps Step size

CIFAR-10 7 15 1 50
restricted ImageNet 8 8 1 40

125

B.3 Proofs for Section 2.1

B.3.1 Proof of Theorem 2.1.1

The main idea of the proof is that an adversary with ε = 2η is able to change the distribution of
features x2, . . . , xd+1 to reflect a label of −y instead of y by subtracting εy from each variable. Hence
any information that is used from these features to achieve better standard accuracy can be used by
the adversary to reduce adversarial accuracy. We define G+ to be the distribution of x2, . . . , xd+1
when y = +1 and G− to be that distribution when y = −1. We will consider the setting where
ε = 2η and fix the adversary that replaces xi by xi − yε for each i ≥ 2. This adversary is able to
change G+ to G− in the adversarial setting and vice-versa.

Consider any classifier f (x) that maps an input x to a class in {−1,+1}. Let us fix the probability
that this classifier predicts class +1 for some fixed value of x1 and distribution of x2, . . . , xd+1.
Concretely, we define pij to be the probability of predicting +1 given that the first feature has sign i
and the rest of the features are distributed according to Gj. Formally,

p++ = Pr
x2,...,d+1∼G+

(f (x) = +1 | x1 = +1),

p+− = Pr
x2,...,d+1∼G−

(f (x) = +1 | x1 = +1),

p−+ = Pr
x2,...,d+1∼G+

(f (x) = +1 | x1 = −1),

p−− = Pr
x2,...,d+1∼G−

(f (x) = +1 | x1 = −1).

Using these definitions, we can express the standard accuracy of the classifier as

Pr(f (x) = y) = Pr(y = +1) (p · p++ + (1− p) · p−+)
+ Pr(y = −1) (p · (1− p−−) + (1− p) · (1− p+−))

=
1
2
(p · p++ + (1− p) · p−+ + p · (1− p−−) + (1− p) · (1− p+−))

=
1
2
(p · (1 + p++ − p−−) + (1− p) · (1 + p−+ − p+−))) .

Similarly, we can express the accuracy of this classifier against the adversary that replaces G+ with
G− (and vice-versa) as

Pr(f (xadv) = y) = Pr(y = +1) (p · p+− + (1− p) · p−−)
+ Pr(y = −1) (p · (1− p−+) + (1− p) · (1− p++))

=
1
2
(p · p+− + (1− p) · p−− + p · (1− p−+) + (1− p) · (1− p++))

=
1
2
(p · (1 + p+− − p−+) + (1− p) · (1 + p−− − p++))) .

126

For convenience we will define a = 1− p++ + p−− and b = 1− p−+ + p+−. Then we can rewrite

standard accuracy :
1
2
(p(2− a) + (1− p)(2− b))

= 1− 1
2
(pa + (1− p)b),

adversarial accuracy :
1
2
((1− p)a + pb).

We are assuming that the standard accuracy of the classifier is at least 1− δ for some small δ. This
implies that

1− 1
2
(pa + (1− p)b) ≥ 1− δ =⇒ pa + (1− p)b ≤ 2δ.

Since pij are probabilities, we can guarantee that a ≥ 0. Moreover, since p ≥ 0.5, we have
p/(1− p) ≥ 1. We use these to upper bound the adversarial accuracy by

1
2
((1− p)a + pb) ≤ 1

2

(
(1− p)

p2

(1− p)2 a + pb
)

=
p

2(1− p)
(pa + (1− p)b)

≤ p
1− p

δ.

B.3.2 Proof of Theorem 2.1.2
We consider the problem of fitting the distribution D of (2.1) by using a standard soft-margin SVM
classifier. Specifically, this can be formulated as:

min
w

E
[
max(0, 1− yw>x)

]
+

1
2

λ‖w‖2
2 (B.1)

for some value of λ. We will assume that we tune λ such that the optimal solution w∗ has `2-norm
of 1. This is without much loss of generality since our proofs can be adapted to the general case. We
will refer to the first term of (B.1) as the margin term and the second term as the regularization term.

First we will argue that, due to symmetry, the optimal solution will assign equal weight to all
the features xi for i = 2, . . . , d + 1.

Lemma B.3.1. Consider an optimal solution w∗ to the optimization problem (B.1). Then,

w∗i = w∗j ∀ i, j ∈ {2, ..., d + 1}.

Proof. Assume that ∃ i, j ∈ {2, ..., d + 1} such that w∗i 6= w∗j . Since the distribution of xi and xj are
identical, we can swap the value of wi and wj, to get an alternative set of parameters ŵ that has the
same loss function value (ŵj = wi, ŵi = wj, ŵk = wk for k 6= i, j).

Moreover, since the margin term of the loss is convex in w, using Jensen’s inequality, we get
that averaging w∗ and ŵ will not increase the value of that margin term. Note, however, that

127

‖w∗+ŵ
2 ‖2 < ‖w∗‖2, hence the regularization loss is strictly smaller for the average point. This

contradicts the optimality of w∗.

Since every optimal solution will assign equal weight to all xi for k ≥ 2, we can replace these
features by their sum (and divide by

√
d for convenience). We will define

z =
1√
d

d+1

∑
i=2

xi,

which, by the properties of the normal distribution, is distributed as

z ∼ N (yη
√

d, 1).

By assigning a weight of v to that combined feature the optimal solutions can be parametrized as

w>x = w1x1 + vz,

where the regularization term of the loss is λ(w2
1 + v2)/2.

Recall that our chosen value of η is 4/
√

d, which implies that the contribution of vz is distributed
normally with mean 4yv and variance v2. By the concentration of the normal distribution, the
probability of vz being larger than v is large. We will use this fact to show that the optimal classifier
will assign on v at least as much weight as it assigns on w1.

Lemma B.3.2. Consider the optimal solution (w∗1 , v∗) of the problem (B.1). Then

v∗ ≥ 1√
2

.

Proof. Assume for the sake of contradiction that v∗ < 1/
√

2. Then, with probability at least 1− p,
the first feature predicts the wrong label and without enough weight, the remaining features cannot
compensate for it. Concretely,

E[max(0, 1− yw>x)] ≥ (1− p) E
[
max

(
0, 1 + w1 −N

(
4v, v2))]

≥ (1− p) E

[
max

(
0, 1 +

1√
2
−N

(
4√
2

,
1
2

))]

> (1− p) · 0.016.

We will now show that a solution that assigns zero weight on the first feature (v = 1 and
w1 = 0), achieves a better margin loss.

E[max(0, 1− yw>x)] = E [max (0, 1−N (4, 1))]
< 0.0004.

Hence, as long as p ≤ 0.975, this solution has a smaller margin loss than the original solution.
Since both solutions have the same norm, the solution that assigns weight only on v is better than
the original solution (w∗1 , v∗), contradicting its optimality.

We have established that the learned classifier will assign more weight to v than w1. Since z
will be at least y with large probability, we will show that the behavior of the classifier depends
entirely on z.

128

Lemma B.3.3. The standard accuracy of the soft-margin SVM learned for problem (B.1) is at least 99%.

Proof. By Lemma B.3.2, the classifier predicts the sign of w1x1 + vz where vz ∼ N (4yv, v2) and
v ≥ 1/

√
2. Hence with probability at least 99%, vzy > 1/

√
2 ≥ w1 and thus the predicted class is y

(the correct class) independent of x1.

We can utilize the same argument to show that an adversary that changes the distribution of z
has essentially full control over the classifier prediction.

Lemma B.3.4. The adversarial accuracy of the soft-margin SVM learned for (B.1) is at most 1% against an
`∞-bounded adversary of ε = 2η.

Proof. Observe that the adversary can shift each feature xi towards y by 2η. This will cause z to be
distributed as

zadv ∼ N (−yη
√

d, 1).

Therefore with probability at least 99%, vyz < −y ≤ −w1 and the predicted class will be−y (wrong
class) independent of x1.

It remains to show that adversarial training for this classification task with ε > 2η will results
in a classifier that has relies solely on the first feature.

Lemma B.3.5. Minimizing the adversarial variant of the loss (B.1) results in a classifier that assigns 0
weight to features xi for i ≥ 2.

Proof. The optimization problem that adversarial training solves is

min
w

max
‖δ‖∞≤ε

E
[
max(0, 1− yw>(x + δ))

]
+

1
2

λ‖w‖2
2,

which is equivalent to

min
w

E
[
max(0, 1− yw>x + ε‖w‖1)

]
+

1
2

λ‖w‖2
2.

Consider any optimal solution w for which wi > 0 for some i > 2. The contribution of terms
depending on wi to 1 − yw>x + ε‖w‖1 is a normally-distributed random variable with mean
2η − ε ≤ 0. Since the mean is non-positive, setting wi to zero can only decrease the margin term of
the loss. At the same time, setting wi to zero strictly decreases the regularization term, contradicting
the optimality of w.

Clearly, such a classifier will have standard and adversarial accuracy of p against any ε < 1
since such a value of ε is not sufficient to change the sign of the first feature. This concludes the
proof of the theorem.

129

B.4 Additional figures

5

Or
ig

in
al

9 7 3 4 9 6 6 5

3

St
an

da
rd

4 9 8 7 7 5 4 6

5

-tr
ai

ne
d

9 7 8 4 9 6 6 5

3

2-t
ra

in
ed

4 7 8 4 7 5 6 5

(a) MNIST

cat

Or
ig

in
al

ship ship airplane frog frog automobile frog cat

bird

St
an

da
rd

automobile bird bird bird bird frog bird frog

frog

-tr
ai

ne
d

automobile automobile bird deer horse truck deer bird

frog

2-t
ra

in
ed

automobile automobile ship deer truck cat cat deer

(b) CIFAR-10

(c) Restricted ImageNet

Figure B.8: Large-ε perturbations, bounded in `∞-norm, similar to those in Figure 2.7.

130

5
Or

ig
in

al
9 7 3 4 9 6 6 5

3

St
an

da
rd

4 2 8 5 7 5 4 6

5

-tr
ai

ne
d

4 7 8 4 7 5 5 5

3

2-t
ra

in
ed

4 2 5 9 7 5 4 8

(a) MNIST

cat

Or
ig

in
al

ship ship airplane frog frog automobile frog cat

frog

St
an

da
rd

bird bird bird deer bird truck bird bird

frog

-tr
ai

ne
d

airplane truck deer deer deer dog deer frog

bird

2-t
ra

in
ed

automobile automobile ship deer truck cat deer frog

(b) CIFAR-10

(c) Restricted ImageNet

Figure B.9: Large-ε adversarial examples, bounded in `2-norm, similar to those in Fig-
ure 2.7.

131

B.4.1 Inverting representations

(a)

(b)

Figure B.10: Robust representations yield semantically meaningful inverses: Original:
randomly chosen test set images from the Restricted ImageNet dataset; Inverse: images
obtained by inverting the representation of the corresponding image in the top row starting
from: (a) different test images and (b) Gaussian noise.

132

Recovering out-of-distribution inputs using robust representations

(a) Random kaleidoscope patterns.

(b) Samples from other ImageNet classes outside what the model is trained on.

Figure B.11: Robust representations yield semantically meaningful inverses: (Original):
randomly chosen out-of-distribution inputs; (Inverse): images obtained by inverting the
representation of the corresponding image in the top row starting from Gaussian noise.

Inverting standard representations

Figure B.12: Standard representations do not yield semantically meaningful inverses:
(Original): randomly chosen test set images from the Restricted ImageNet dataset; (Inverse):
images obtained by inverting the representation of the corresponding image in the top row
starting from Gaussian noise.

133

B.4.2 Direct feature visualizations for standard and robust models
Additional feature visualizations for the Restricted ImageNet dataset

Figure B.13: Correspondence between image-level features and representations learned by
a robust model on the Restricted ImageNet dataset. Starting from randomly chosen seed
inputs (noise/images), we use a constrained optimization process to identify input features
that maximally activate a given component of the representation vector. Specifically, (left
column): inputs to the optimization process, and (subsequent columns): features that activate
randomly chosen representation components, along with the predicted class of the feature.

Figure B.14: Correspondence between image-level features and representations learned by
a robust model on the Restricted ImageNet dataset. Starting from randomly chosen seed
inputs (noise/images), we use a constrained optimization process to identify input features
that maximally activate a given component of the representation vector. Specifically, (left
column): inputs to the optimization process, and (subsequent columns): features that activate
select representation components, along with the predicted class of the feature.

134

Feature visualizations for the ImageNet dataset

Seeds ()x0

Maximizing different coordinates ()i

St
an

da
rd

 (
R

es
N

et
50

)
R

ob
us

t
(R

es
N

et
50

)
St

an
da

rd
 (

VG
G

16
)

Figure B.15: Correspondence between image-level patterns and activations learned by
standard and robust models on the complete ImageNet dataset. Starting from randomly
chosen seed inputs (noise/images), we use PGD to find inputs that (locally) maximally
activate a given component of the representation vector. In the left column we have the
original inputs (selected randomly), and in subsequent columns we visualize the result of
the optimization (2.6) for different activations, with each row starting from the same (far
left) input for (top): a robust (adversarially trained) ResNet-50 model, (middle): a standard
ResNet-50 model and (bottom): a standard VGG16 model.

135

B.4.3 Additional examples of feature manipulation

Figure B.16: Visualization of the results adding various neurons, labelled on the left, to
randomly chosen test images. The rows alternate between the original test images, and
those same images with an additional feature arising from maximizing the corresponding
neuron.

136

B.4.4 Image generation

Figure B.17: Random samples generated for the CIFAR dataset.

137

Figure B.18: Random samples generated for the Restricted ImageNet dataset.

138

Figure B.19: Random samples generated for the ImageNet dataset.

139

Figure B.20: Random samples from a random class subset.

140

CIFAR10

Restricted ImageNet

ImageNet

Figure B.21: Samples from class-conditional multivariate normal distributions used as a
seed for the generation process. 141

B.4.5 Image-to-image translation

Horse↔ Zebra

Apple↔ Orange

Summer↔Winter

Figure B.22: Random samples for image-to-image translation on the Horse↔ Zebra, Apple
↔ Orange, and Summer↔Winter datasets [Zhu+17]. Details in Appendix B.2.

142

Horse→ Zebra Apple→ Orange

Figure B.23: Random samples for image-to-image translation on the Horse↔ Zebra and
Apple ↔ Orange datasets [Zhu+17] using the same robust model trained on the entire
ImageNet dataset. Here we use ImageNet classes “zebra” (340) and “orange” (950).

Figure B.24: Training an `∞-robust model on the Horse↔ Zebra dataset does not lead to
plausible image-to-image translation. The model appears to associate “horse” with “blue
sky” in which case the zebra to horse translation does not behave as expected.

143

B.4.6 Inpainting
O

ri
gi

na
l

C
or

ru
pt

ed
In

pa
in

te
d

Good Failures Bad Failures

Figure B.25: Failure cases for image inpainting using robust models – top: original, middle:
corrupted and bottom: inpainted samples. To recover missing regions, we use PGD to
maximise the class score of the image under a robust model while penalizing changes
to the uncorrupted regions. The failure modes can be categorized into “good” failures –
where the infilled region is semantically consistent with the rest of the image but differs
from the original; and “bad” failures – where the inpainting is clearly erroneous to a
human.

144

Appendix C

Additional details for Chapter 3

C.1 Experimental setup for Section 3.1

C.1.1 Dataset

We perform our analysis on the ILSVRC2012 dataset [Rus+15]. This dataset contains a thousand
classes from the ImageNet dataset [Den+09] with an independently collected validation set. The
classes are part of the broader hierarchy, WordNet [Mil95], through which words are organized
based on their semantic meaning. We use this hierarchy as a starting point of our investigation but
modify it as described in Appendix C.1.5.

For all the BREEDS superclass classification tasks, the train and validation sets are obtained by
aggregating the train and validation sets of the descendant ImageNet classes (i.e., subpopulations).
Specifically, for a given subpopulation, the training and test splits from the original ImageNet
dataset are used as is.

C.1.2 Pipeline formalization

Recall that our process for evaluating model robustness under subpopulation shift (cf. Section 3.1)
is as follows. We present the pseudocode for this process in Algorithm 1.

1. Choose a level in the hierarchy and use it to define a set of superclasses by grouping the
corresponding dataset classes together. Note that the original dataset classes form the
subpopulations of the superclasses.

2. For every superclass, select a (random) set of subpopulations (i.e., classes in the original
dataset) and use them to train the model to distinguish between superclasses (we call this the
source domain).

3. For every superclass, use the remaining unseen subpopulations (i.e., classes in the original
dataset) to test how well the model can distinguish between the superclasses (target domain).

145

Algorithm 1 The BREEDS methodology. Evaluating the training method train on level L
of the hierarchy H—restricted to the subtree under root—using Nsub subpopulations per
superclass.

function createDatasets(H, L, Nsub, root):
source, target← [], []

for node ∈ H do

if node.depth = L and root ∈ node.ancestors and len(node.leaves) ≥ Nsub then
y← node.label

subclasses← random.choice(node.leaves, Nsub)

for (i, c) ∈ enumerate(subclasses) do

if i ≤ Nsub / 2 then
domain← source

else
domain← target

for x ∈ c.inputs do
domain.append((x, y))

return (source, target)

function evaluateMethod(train, H, L, Nsub, root):
source, target← createDatasets (H, L, Nsub, root)

model ← train(source)

correct, total← 0, 0

for (x, y) ∈ target do
correct += (model(x) = y)

total += 1
targetAccuracy← correct

total

return targetAccuracy

C.1.3 WordNet issues
As discussed in Section 3.1.2, WordNet is a semantic rather than a visual hierarchy. That is, object
classes are arranged based on their meaning rather than their visual appearance. Thus, using
intermediate nodes for a visual object recognition task is not straightforward. To illustrate this, we
examine a sample superclass grouping created by Huh, Agrawal, and Efros [HAE16] via automated
bottom-up clustering in Table C.1.

First, we can notice that these superclasses have vastly different granularities. For instance,
“organism” contains the entire animal kingdom, hence being much broader than “produce”. More-
over, “covering” is rather abstract class, and hence its subclasses often share little visual similarity
(e.g., “window shade”, “pajama”). Finally, due to the abstract nature of these superclasses, a large
number of subclasses overlap—“covering” and “commodity” share 49 ImageNet descendants.

146

Superclass Random ImageNet classes

instrumentality fire engine, basketball, electric fan, wok, thresher, horse cart,
harvester, balloon, racket, can opener, carton, gong, unicycle,
toilet seat, carousel, hard disc, cello, mousetrap, neck brace,
barrel

man-made structure beacon, yurt, picket fence, barbershop, fountain, steel arch
bridge, library, cinema, stone wall, worm fence, palace, suspen-
sion bridge, planetarium, monastery, mountain tent, sliding
door, dam, bakery, megalith, pedestal

covering window shade, vestment, running shoe, diaper, sweatshirt,
breastplate, shower curtain, shoji, miniskirt, knee pad, apron,
pajama, military uniform, theater curtain, jersey, football hel-
met, book jacket, bow tie, suit, cloak

commodity espresso maker, maillot, iron, bath towel, lab coat, bow tie,
washer, jersey, mask, waffle iron, mortarboard, diaper, bolo
tie, seat belt, cowboy hat, wig, knee pad, vacuum, microwave,
abaya

organism thunder snake, stingray, grasshopper, barracouta, Newfound-
land, Mexican hairless, Welsh springer spaniel, bluetick, golden
retriever, keeshond, African chameleon, jacamar, water snake,
Staffordshire bullterrier, Old English sheepdog, pelican, sea
lion, wire-haired fox terrier, flamingo, green mamba

produce spaghetti squash, fig, cardoon, mashed potato, pineapple, zuc-
chini, broccoli, cauliflower, butternut squash, custard apple,
pomegranate, strawberry, Granny Smith, lemon, head cabbage,
artichoke, cucumber, banana, bell pepper, acorn squash

Table C.1: Superclasses constructed by Huh, Agrawal, and Efros [HAE16] via bottom-up
clustering of WordNet to obtain 36 superclasses—for brevity, we only show superclasses
with at least 20 ImageNet classes each.

147

C.1.4 Manual calibration
We manually modify the WordNet hierarchy according to the following two principles so as to
make it better aligned for visual object recognition.

1. Nodes should be grouped together based on their visual characteristics, rather than ab-
stract relationships like functionality—e.g., we eliminate nodes that do not convey visual
information such as “covering”.

2. Nodes of similar specificity should be at the same distance from the root, irrespective of how
detailed their categorization within WordNet is—for instance, we placed “dog” at the same
level as “cat” and “flower”, even though the “dog” sub-tree in WordNet is much larger.

Finally, we removed a number of ImageNet classes that did not naturally fit into the hierarchy.
Concretely, we modified the WordNet hierarchy by applying the following operations:

• Collapse node: Delete a node from the hierarchy and add edges from each parent to each child.
Allows us to remove redundant or overly specific categorization while preserving the overall
structure.

• Insert node above: Add a dummy parent to push a node further down the hierarchy. Allows
us to ensure that nodes of similar granularity are at the same level.

• Delete node: Remove a node and all of its edges. Used to remove abstract nodes that do not
reveal visual characteristics.

• Add edge: Connect a node to a parent. Used to reassign the children of nodes deleted by the
operation above.

We manually examined the hierarchy and implemented these actions in order to produce super-
classes that are calibrated for classification. The resulting hierarchy contains nodes of comparable
granularity at the same level. Moreover, as a result of this process, each node ends up having a
single parent and thus the resulting hierarchy is a tree. The full hierarchy can be explored using the
notebooks provided with the hierarchy in the Supplementary Material.

C.1.5 Resulting hierarchy
The parameters for constructing the BREEDS benchmarks (hierarchy level, number of subclasses,
and tree root) are given in Table 3.2. The resulting tasks—obtained by sampling disjoint ImageNet
classes (i.e., subpopulations) for the source and target domain—are shown in Tables C.1, C.2, C.3,
and C.4. Recall that for each superclass we randomly sample a fixed number of subclasses per
superclass to ensure that the dataset is approximately balanced.

148

Superclass Source Target

garment trench coat, abaya, gown, poncho,
military uniform, jersey, cloak, bikini,
miniskirt, swimming trunks

lab coat, brassiere, hoopskirt, cardi-
gan, pajama, academic gown, apron,
diaper, sweatshirt, sarong

bird African grey, bee eater, coucal, Amer-
ican coot, indigo bunting, king pen-
guin, spoonbill, limpkin, quail, kite

prairie chicken, red-breasted mer-
ganser, albatross, water ouzel, goose,
oystercatcher, American egret, hen,
lorikeet, ruffed grouse

reptile Gila monster, agama, triceratops,
African chameleon, thunder snake, In-
dian cobra, green snake, mud turtle,
water snake, loggerhead

sidewinder, leatherback turtle, boa
constrictor, garter snake, terrapin, box
turtle, ringneck snake, rock python,
American chameleon, green lizard

arthropod rock crab, black and gold garden spi-
der, tiger beetle, black widow, barn
spider, leafhopper, ground beetle, fid-
dler crab, bee, walking stick

cabbage butterfly, admiral, lacewing,
trilobite, sulphur butterfly, cicada,
garden spider, leaf beetle, long-
horned beetle, fly

mammal Siamese cat, ibex, tiger, hippopota-
mus, Norwegian elkhound, dugong,
colobus, Samoyed, Persian cat, Irish
wolfhound

English setter, llama, lesser panda, ar-
madillo, indri, giant schnauzer, pug,
Doberman, American Staffordshire
terrier, beagle

accessory bib, feather boa, stole, plastic bag,
bathing cap, cowboy boot, necklace,
crash helmet, gasmask, maillot

hair slide, umbrella, pickelhaube, mit-
ten, sombrero, shower cap, sock, run-
ning shoe, mortarboard, handkerchief

craft catamaran, speedboat, fireboat, yawl,
airliner, container ship, liner, tri-
maran, space shuttle, aircraft carrier

schooner, gondola, canoe, wreck, war-
plane, balloon, submarine, pirate,
lifeboat, airship

equipment volleyball, notebook, basketball,
hand-held computer, tripod, projec-
tor, barbell, monitor, croquet ball,
balance beam

cassette player, snorkel, horizontal
bar, soccer ball, racket, baseball, joy-
stick, microphone, tape player, reflex
camera

furniture wardrobe, toilet seat, file, mosquito
net, four-poster, bassinet, chiffonier,
folding chair, fire screen, shoji

studio couch, throne, crib, rocking
chair, dining table, park bench, chest,
window screen, medicine chest, bar-
ber chair

instrument upright, padlock, lighter, steel drum,
parking meter, cleaver, syringe, aba-
cus, scale, corkscrew

maraca, saltshaker, magnetic com-
pass, accordion, digital clock, screw,
can opener, odometer, organ, screw-
driver

149

man-made structure castle, bell cote, fountain, planetar-
ium, traffic light, breakwater, cliff
dwelling, monastery, prison, water
tower

suspension bridge, worm fence, turn-
stile, tile roof, beacon, street sign,
maze, chainlink fence, bakery, drilling
platform

wheeled vehicle snowplow, trailer truck, racer, shop-
ping cart, unicycle, motor scooter, pas-
senger car, minibus, jeep, recreational
vehicle

jinrikisha, golfcart, tow truck, ambu-
lance, bullet train, fire engine, horse
cart, streetcar, tank, Model T

produce broccoli, corn, orange, cucumber,
spaghetti squash, butternut squash,
acorn squash, cauliflower, bell pep-
per, fig

pomegranate, mushroom, strawberry,
lemon, head cabbage, Granny Smith,
hip, ear, banana, artichoke

Table C.1: Superclasses used for the ENTITY-13 task, along with the corresponding sub-
populations that comprise the source and target domains.

150

Superclass Source Target

serpentes green mamba, king snake, garter
snake, thunder snake

boa constrictor, green snake, ringneck
snake, rock python

passerine goldfinch, brambling, water ouzel,
chickadee

magpie, house finch, indigo bunting,
bulbul

saurian alligator lizard, Gila monster, Ameri-
can chameleon, green lizard

Komodo dragon, African chameleon,
agama, banded gecko

arachnid harvestman, barn spider, scorpion,
black widow

wolf spider, black and gold garden
spider, tick, tarantula

aquatic bird albatross, red-backed sandpiper,
crane, white stork

goose, dowitcher, limpkin, drake

crustacean crayfish, spiny lobster, hermit crab,
Dungeness crab

king crab, rock crab, American lobster,
fiddler crab

carnivore Italian greyhound, black-footed ferret,
Bedlington terrier, basenji

flat-coated retriever, otterhound, Shih-
Tzu, Boston bull

insect lacewing, fly, grasshopper, sulphur
butterfly

long-horned beetle, leafhopper, dung
beetle, admiral

ungulate llama, gazelle, zebra, ox hog, hippopotamus, hartebeest,
warthog

primate baboon, howler monkey, Madagascar
cat, chimpanzee

siamang, indri, capuchin, patas

bony fish coho, tench, lionfish, rock beauty sturgeon, puffer, eel, gar

barrier breakwater, picket fence, turnstile,
bannister

chainlink fence, stone wall, dam,
worm fence

building bookshop, castle, mosque, butcher
shop

grocery store, toyshop, palace, beacon

electronic equipment printer, pay-phone, microphone, com-
puter keyboard

modem, cassette player, monitor, dial
telephone

footwear clog, Loafer, maillot, running shoe sandal, knee pad, cowboy boot,
Christmas stocking

garment academic gown, apron, miniskirt, fur
coat

jean, vestment, sarong, swimming
trunks

headdress pickelhaube, hair slide, shower cap,
bonnet

bathing cap, cowboy hat, bearskin,
crash helmet

home appliance washer, microwave, Crock Pot, vac-
uum

toaster, espresso maker, space heater,
dishwasher

kitchen utensil measuring cup, cleaver, coffeepot,
spatula

frying pan, cocktail shaker, tray, cal-
dron

151

measuring instrument digital watch, analog clock, parking
meter, magnetic compass

barometer, wall clock, hourglass, digi-
tal clock

motor vehicle limousine, school bus, moped, con-
vertible

trailer truck, beach wagon, police van,
garbage truck

musical instrument French horn, maraca, grand piano, up-
right

acoustic guitar, organ, electric guitar,
violin

neckwear feather boa, neck brace, bib, Windsor
tie

necklace, stole, bow tie, bolo tie

sports equipment ski, dumbbell, croquet ball, racket rugby ball, balance beam, horizontal
bar, tennis ball

tableware mixing bowl, water jug, beer glass,
water bottle

goblet, wine bottle, coffee mug, plate

tool quill, combination lock, padlock,
screw

fountain pen, screwdriver, shovel,
torch

vessel container ship, lifeboat, aircraft car-
rier, trimaran

liner, wreck, catamaran, yawl

dish potpie, mashed potato, pizza, cheese-
burger

burrito, hot pot, meat loaf, hotdog

vegetable zucchini, cucumber, butternut squash,
artichoke

cauliflower, spaghetti squash, acorn
squash, cardoon

fruit strawberry, pineapple, jackfruit,
Granny Smith

buckeye, corn, ear, acorn

Table C.2: Superclasses used for the ENTITY-30 task, along with the corresponding sub-
populations that comprise the source and target domains.

152

Superclass Source Target

salamander eft, axolotl common newt, spotted salamander

turtle box turtle, leatherback turtle loggerhead, mud turtle

lizard whiptail, alligator lizard African chameleon, banded gecko

snake night snake, garter snake sea snake, boa constrictor

spider tarantula, black and gold garden spi-
der

garden spider, wolf spider

grouse ptarmigan, prairie chicken ruffed grouse, black grouse

parrot macaw, lorikeet African grey, sulphur-crested cocka-
too

crab Dungeness crab, fiddler crab rock crab, king crab

dog bloodhound, Pekinese Great Pyrenees, papillon

wolf coyote, red wolf white wolf, timber wolf

fox grey fox, Arctic fox red fox, kit fox

domestic cat tiger cat, Egyptian cat Persian cat, Siamese cat

bear sloth bear, American black bear ice bear, brown bear

beetle dung beetle, rhinoceros beetle ground beetle, long-horned beetle

butterfly sulphur butterfly, admiral cabbage butterfly, ringlet

ape gibbon, orangutan gorilla, chimpanzee

monkey marmoset, titi spider monkey, howler monkey

Table C.3: Superclasses used for the LIVING-17 task, along with the corresponding sub-
populations that comprise the source and target domains.

153

Superclass Source Target

bag plastic bag, purse mailbag, backpack

ball volleyball, punching bag ping-pong ball, soccer ball

boat gondola, trimaran catamaran, canoe

body armor bulletproof vest, breastplate chain mail, cuirass

bottle pop bottle, beer bottle wine bottle, water bottle

bus trolleybus, minibus school bus, recreational vehicle

car racer, Model T police van, ambulance

chair folding chair, throne rocking chair, barber chair

coat lab coat, fur coat kimono, vestment

digital computer laptop, desktop computer notebook, hand-held computer

dwelling palace, monastery mobile home, yurt

fence worm fence, chainlink fence stone wall, picket fence

hat bearskin, bonnet sombrero, cowboy hat

keyboard instrument grand piano, organ upright, accordion

mercantile establishment butcher shop, barbershop shoe shop, grocery store

outbuilding greenhouse, apiary barn, boathouse

percussion instrument steel drum, marimba drum, gong

pot teapot, Dutch oven coffeepot, caldron

roof dome, vault thatch, tile roof

ship schooner, pirate aircraft carrier, liner

skirt hoopskirt, miniskirt overskirt, sarong

stringed instrument electric guitar, banjo violin, acoustic guitar

timepiece digital watch, stopwatch parking meter, digital clock

truck fire engine, pickup tractor, forklift

wind instrument oboe, sax flute, bassoon

squash spaghetti squash, acorn squash zucchini, butternut squash

Table C.4: Superclasses used for the NON-LIVING-26 task, along with the corresponding
subpopulations that comprise the source and target domains.

154

C.1.6 Annotator task
As described in Section 3.1.4, the goal of our human studies is to understand whether humans can
classify images into superclasses even without knowing the semantic grouping. Thus, the task
involved showing annotators two groups of images, each sampled from the source domain of a
random superclass. Then, annotators were shown a new set of images from the target domain (or
the source domain in the case of control) and were asked to assign each of them into one of the two
groups. A screenshot of an (random) instance of our annotator task is shown in Figure C.2.

Each task contained 20 images from the source domain of each superclass and 12 images for
annotators to classify (the images where rescaled and center-cropped to size 224× 224 to match the
input size use for model predictions). The two superclasses were randomly permuted at load time.
To ensure good concentration of our accuracy estimates, for every superclass, we performed binary
classification tasks w.r.t. 3 other (randomly chosen) superclasses. Further, we used 3 annotators per
task and annotators were compensated $0.15 per task.

Comparing with the original hierarchy. In order to compare our superclasses with those
obtained by Huh, Agrawal, and Efros [HAE16] via WordNet clustering,1 we need to define a
correspondence between them. To do so, for each of our tasks, we selected the clustering (either top-
down or bottom-up) that had the closest number of superclasses. Following the terminology from
that work, this mapping is: ENTITY-13→ DOWNUP-36, ENTITY-30→ UPDOWN-127, LIVING-17
→ DOWNUP-753 (restricted to “living” nodes), and NON-LIVING-26→ DOWNUP-345 (restricted
to “non-living” nodes).

1https://github.com/minyoungg/wmigftl/tree/master/label_sets/hierarchy

155

https://github.com/minyoungg/wmigftl/tree/master/label_sets/hierarchy

Figure C.2: Sample MTurk annotation task to obtain human baselines for BREEDS bench-
marks.

156

C.1.7 Evaluating model performance
Model architectures and training

The model architectures used in our analysis are in Table C.3 for which we used standard imple-
mentations from the PyTorch library (https://pytorch.org/docs/stable/torchvision/models.
html). For training, we use a batch size of 128, weight decay of 10−4, and learning rates listed in
Table C.3. Models were trained until convergence. On ENTITY-13 and ENTITY-30, this required
a total of 300 epochs, with 10-fold drops in learning rate every 100 epochs, while on LIVING-
17and NON-LIVING-26, models a total of 450 epochs, with 10-fold learning rate drops every 150
epochs. For adapting models, we retrained the last (fully-connected) layer on the train split of
the target domain, starting from the parameters of the source-trained model. We trained that
layer using SGD with a batch size of 128 for 40,000 steps and chose the best learning rate out of
[0.01, 0.1, 0.25, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 8.0, 10.0, 11.0, 12.0], based on test accuracy.

Model Learning Rate

alexnet 0.01
vgg11 0.01
resnet18 0.1
resnet34 0.1
resnet50 0.1
densenet121 0.1

Table C.3: Models used in our analysis.

Model pairwise accuracy

In order to make a fair comparison between the performance of models and human annotators
on the BREEDS tasks, we evaluate model accuracy on pairs of superclasses. On images from that
pair, we determine the model prediction to be the superclass for which the model’s predicted
probability is higher. A prediction is deemed correct if it matches the superclass label for the image.
Repeating this process over random pairs of superclasses allows us to estimate model accuracy on
the average-case binary classification task.

157

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

C.2 Additional experimental results

C.2.1 Human baselines for BREEDS tasks
In Section 3.1.4, we evaluate human performance on binary versions of our BREEDS tasks. Ap-
pendix Figures C.4a and C.4b show the distribution of annotator accuracy over different pairs of
superclasses for test data sampled from the source and target domains respectively.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Annotator accuracy on binary task

0

5

10

15

20

De
ns

ity

ENTITY-13
WordNet
Breeds

0.6 0.7 0.8 0.9 1.0
Annotator accuracy on binary task

0

5

10

15

20

De
ns

ity

ENTITY-30
WordNet
Breeds

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Annotator accuracy on binary task

0

10

20

30

40

50

60

70

De
ns

ity

LIVING-17
WordNet
Breeds

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Annotator accuracy on binary task

0

10

20

30

40
De

ns
ity

NON-LIVING-26
WordNet
Breeds

(a) Source domain (no subpopulation shift)

0.5 0.6 0.7 0.8 0.9 1.0
Annotator accuracy on binary task

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
ns

ity

ENTITY-13
WordNet
Breeds

0.5 0.6 0.7 0.8 0.9 1.0
Annotator accuracy on binary task

0

5

10

15

20

De
ns

ity

ENTITY-30
WordNet
Breeds

0.5 0.6 0.7 0.8 0.9 1.0
Annotator accuracy on binary task

0

10

20

30

40

De
ns

ity

LIVING-17
WordNet
Breeds

0.2 0.4 0.6 0.8 1.0
Annotator accuracy on binary task

0

2

4

6

8

10

12

14

16

De
ns

ity

NON-LIVING-26
WordNet
Breeds

(b) Target domain (with subpopulation shift)

Figure C.4: Distribution of annotator accuracy over pairwise superclass classification tasks.
We observe that human annotators consistently perform better on tasks constructed using
our modified ImageNet class hierarchy (i.e., BREEDS) as opposed to those using WordNet.

158

C.2.2 Model evaluation
In Figures C.5- C.7, we visualize model performance over BREEDS superclasses for different model
architectures. We observe in general that models perform fairly uniformly over classes when the
test data is drawn from the source domain. This indicates that the tasks are well-calibrated—the
various superclasses are of comparable difficulty. At the same time, we see that model robustness
to subpopulation shift, i.e., drop in accuracy on the target domain, varies widely over superclasses.
This could be either due to some superclasses being broader by construction or due to models
being more sensitive to subpopulation shift for some classes.

159

ga
rm

en
t

bir
d

rep
tile

art
hro

po
d

mam
mal

ac
ce

sso
ry

cra
ft

eq
uip

men
t

fur
nit

ure

ins
tru

men
t

man
-m

ad
e s

tru
ctu

re
whe

ele
d v

eh
icle

pro
du

ce

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ENTITY-13 | Model=alexnet
Source Target

se
rpe

nte
s

pa
sse

rin
e

sa
uri

an
ara

ch
nid

aq
ua

tic
 bi

rd
cru

sta
ce

an
ca

rni
vo

re
ins

ec
t

un
gu

lat
e

pri
mate

bo
ny

 fis
h

ba
rrie

r
bu

ild
ing

ele
ctr

on
ic

eq
uip

men
t

foo
tw

ea
r

ga
rm

en
t

he
ad

dre
ss

ho
me a

pp
lia

nc
e

kit
ch

en
 ut

en
sil

mea
su

rin
g i

ns
tru

men
t

moto
r v

eh
icle

mus
ica

l in
str

um
en

t
ne

ck
wea

r

sp
ort

s e
qu

ipm
en

t
tab

lew
are too

l
ve

sse
l

dis
h

ve
ge

tab
le

fru
it

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ENTITY-30 | Model=alexnet
Source Target

sa
lam

an
de

r

tur
tle

liza
rd

sn
ak

e

sp
ide

r

gro
us

e

pa
rro

t

cra
b

do
g

wolf fox
do

mes
tic

 ca
t

be
ar

be
etl

e
bu

tte
rfly ap

e
mon

ke
y

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LIVING-17 | Model=alexnet
Source Target

ba
g

ba
ll

bo
at

bo
dy

 ar
mor

bo
ttle bu

s ca
r

ch
air co
at

dig
ita

l c
om

pu
ter

dw
ell

ing
fen

ce ha
t

ke
yb

oa
rd

ins
tru

men
t

merc
an

tile
 es

tab
lish

men
t

ou
tbu

ild
ing

pe
rcu

ssi
on

 in
str

um
en

t
po

t
roo

f
sh

ip
ski

rt

str
ing

ed
 in

str
um

en
t

tim
ep

iec
e

tru
ck

wind
 in

str
um

en
t

sq
ua

sh

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

NON-LIVING-26 | Model=alexnet
Source Target

Figure C.5: Per-class source and target accuracies for AlexNet on BREEDS tasks.

160

ga
rm

en
t

bir
d

rep
tile

art
hro

po
d

mam
mal

ac
ce

sso
ry

cra
ft

eq
uip

men
t

fur
nit

ure

ins
tru

men
t

man
-m

ad
e s

tru
ctu

re
whe

ele
d v

eh
icle

pro
du

ce

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ENTITY-13 | Model=resnet50
Source Target

se
rpe

nte
s

pa
sse

rin
e

sa
uri

an
ara

ch
nid

aq
ua

tic
 bi

rd
cru

sta
ce

an
ca

rni
vo

re
ins

ec
t

un
gu

lat
e

pri
mate

bo
ny

 fis
h

ba
rrie

r
bu

ild
ing

ele
ctr

on
ic

eq
uip

men
t

foo
tw

ea
r

ga
rm

en
t

he
ad

dre
ss

ho
me a

pp
lia

nc
e

kit
ch

en
 ut

en
sil

mea
su

rin
g i

ns
tru

men
t

moto
r v

eh
icle

mus
ica

l in
str

um
en

t
ne

ck
wea

r

sp
ort

s e
qu

ipm
en

t
tab

lew
are too

l
ve

sse
l

dis
h

ve
ge

tab
le

fru
it

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ENTITY-30 | Model=resnet50
Source Target

sa
lam

an
de

r

tur
tle

liza
rd

sn
ak

e

sp
ide

r

gro
us

e

pa
rro

t

cra
b

do
g

wolf fox
do

mes
tic

 ca
t

be
ar

be
etl

e
bu

tte
rfly ap

e
mon

ke
y

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LIVING-17 | Model=resnet50
Source Target

ba
g

ba
ll

bo
at

bo
dy

 ar
mor

bo
ttle bu

s ca
r

ch
air co
at

dig
ita

l c
om

pu
ter

dw
ell

ing
fen

ce ha
t

ke
yb

oa
rd

ins
tru

men
t

merc
an

tile
 es

tab
lish

men
t

ou
tbu

ild
ing

pe
rcu

ssi
on

 in
str

um
en

t
po

t
roo

f
sh

ip
ski

rt

str
ing

ed
 in

str
um

en
t

tim
ep

iec
e

tru
ck

wind
 in

str
um

en
t

sq
ua

sh

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

NON-LIVING-26 | Model=resnet50
Source Target

Figure C.6: Per-class source and target accuracies for ResNet-50 on BREEDS tasks.

161

ga
rm

en
t

bir
d

rep
tile

art
hro

po
d

mam
mal

ac
ce

sso
ry

cra
ft

eq
uip

men
t

fur
nit

ure

ins
tru

men
t

man
-m

ad
e s

tru
ctu

re
whe

ele
d v

eh
icle

pro
du

ce

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ENTITY-13 | Model=densenet121
Source Target

se
rpe

nte
s

pa
sse

rin
e

sa
uri

an
ara

ch
nid

aq
ua

tic
 bi

rd
cru

sta
ce

an
ca

rni
vo

re
ins

ec
t

un
gu

lat
e

pri
mate

bo
ny

 fis
h

ba
rrie

r
bu

ild
ing

ele
ctr

on
ic

eq
uip

men
t

foo
tw

ea
r

ga
rm

en
t

he
ad

dre
ss

ho
me a

pp
lia

nc
e

kit
ch

en
 ut

en
sil

mea
su

rin
g i

ns
tru

men
t

moto
r v

eh
icle

mus
ica

l in
str

um
en

t
ne

ck
wea

r

sp
ort

s e
qu

ipm
en

t
tab

lew
are too

l
ve

sse
l

dis
h

ve
ge

tab
le

fru
it

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ENTITY-30 | Model=densenet121
Source Target

sa
lam

an
de

r

tur
tle

liza
rd

sn
ak

e

sp
ide

r

gro
us

e

pa
rro

t

cra
b

do
g

wolf fox
do

mes
tic

 ca
t

be
ar

be
etl

e
bu

tte
rfly ap

e
mon

ke
y

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LIVING-17 | Model=densenet121
Source Target

ba
g

ba
ll

bo
at

bo
dy

 ar
mor

bo
ttle bu

s ca
r

ch
air co
at

dig
ita

l c
om

pu
ter

dw
ell

ing
fen

ce ha
t

ke
yb

oa
rd

ins
tru

men
t

merc
an

tile
 es

tab
lish

men
t

ou
tbu

ild
ing

pe
rcu

ssi
on

 in
str

um
en

t
po

t
roo

f
sh

ip
ski

rt

str
ing

ed
 in

str
um

en
t

tim
ep

iec
e

tru
ck

wind
 in

str
um

en
t

sq
ua

sh

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

NON-LIVING-26 | Model=densenet121
Source Target

Figure C.7: Per-class source and target accuracies for DenseNet-121 on BREEDS tasks.

162

Effect of different splits

As described in Section 3.1, to create BREEDS tasks, we first identify a set of relevant superclasses (at
the chosen depth in the hierarchy), and then partition their subpopulations between the source and
target domains. For all the tasks listed in Table 3.2, the superclasses are balanced—each of them
comprise the same number of subpopulations. To ensure this is the case, the desired number of
subpopulations is chosen among all superclass subpopulations at random. These subpopulations
are then randomly split between the source and target domains.

Instead of randomly partitioning subpopultions (of a given superclass) between the two do-
mains, we could instead craft partitions to be more/less adversarial as illustrated in Figure C.8.
Specifically, we could control how similar the subpopulations in the target domain are to those in
the source domain. For instance, a split would be less adversarial (good) if subpopulations in the
source and target domain share a common parent. On the other hand, we could make a split more
adversarial (bad) by ensuring a greater degree of separation (in terms of distance in the hierarchy)
between the source and target domain subpopulations.

Good

Bad

Random

Source

TargetSuperclasses

Dataset classes

Figure C.8: Different ways to partition the subpopulations of a given superclass into the
source and target domains. Depending on how closely related the subpopulations in the
two domain are, we can construct splits that are more/less adversarial.

We now evaluate model performance under such variations in the nature of the splits themselves—
see Figure C.9. As expected, models perform comparably well on test data from the source domain,
independent of the how the subpopulations are partitioned into the two domains. However, model
robustness to subpopulation shift varies considerably based on the nature of the split—it is lowest
for the most adversarially chosen split. Finally, we observe that retraining the linear layer on data
from the target domain recovers a considerable fraction of the accuracy drop in all cases—indicating

163

that even for the more adversarial splits, models do learn features that transfer well to unknown
subpopulations.

Source Target Target + RT
0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
ResNet-18

good rand bad

Source Target Target + RT
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ResNet-50

(a) ENTITY-13 task

Source Target Target + RT
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ResNet-18

good rand bad

Source Target Target + RT
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ResNet-50

(b) ENTITY-30 task

Figure C.9: Model robustness as a function of the nature of subpopulation shift within
specific BREEDS tasks. We vary how the underlying subpopulations of each superclass
are split between the source and target domain—we compare random splits (used in the
majority of our analysis), to ones that are more (bad) or less adversarial (good). When
models are tested on samples from the source domain, they perform equally well across
different splits, as one might expect. However, under subpopulation shift (i.e., on samples
from the target domain), model robustness varies drastically, and is considerably worse
when the split is more adversarial. Yet, for all the splits, models have comparable target
accuracy after retraining their final layer.

164

C.3 Experimental details for Section 3.2

C.3.1 Experimental setup
For our experimental analysis we use the ImageNet-1k [Den+09; Rus+15] and Places-365 [Zho+17]
datasets which contain images from 1,000 and 365 categories respectively. In particular, both
prediction-rule discovery and editing are performed on (or using) samples from the standard test
sets to avoid overlap with the training data used to develop the models.

We utilize two canonical, yet relatively diverse model architectures for our study: namely,
VGG [SZ15] and ResNet [He+16]. We use the standard PyTorch implementation 2 and train the
models from scratch on the ImageNet and Places365 datasets. The accuracy of each model on the
corresponding test set is provided in Table C.10.

ImageNet classifiers. We study: (i) a VGG16 variant with batch normalization and (ii) a ResNet-
50. Both models are trained using standard hyperparameters: SGD for 90 epochs with an initial
learning rate of 0.1 that drops by a factor of 10 every 30 epochs. We use a momentum of 0.9, a
weight decay of 10−4 and a batch size of 256 for the VGG16 and 512 for the ResNet-50.

Places365 classifiers. We study: (i) a VGG16 and (ii) a ResNet-18. Both models are trained
for 131072 iterations using SGD with a single-cycle learning rate schedule peaking at 2e-2 and
descending to 0 at the end of training. We use a momentum 0.9, a weight decay 5e-4 and a batch
size of 256 for both models.

Test Accuracy (%)

Architecture \ Dataset ImageNet Places

VGG 73.70 54.02

ResNet 75.77 54.24

CLIP-ResNet 59.84 -

Table C.10: Accuracy of each model architecture on the datasets used in our analysis.

C.3.2 Concept transformation pipeline
Recall that our pipeline consists of two steps: concept detection and concept transformation
(Section 3.2). We describe each step below and provide examples in Figure C.11.

We detect concepts using pre-trained object detectors trained on MS-COCO [Lin+14] and
LVIS [GDG19]. For MS-COCO, we use a model with a ResNet-101 backbone3 which is trained on
COCO-Stuff4 annotations and can detect 182 concepts. For LVIS, we use a pre-trained model from
the Detectron [Gir+18] model zoo5, which can detect 1230 classes. We only consider a prediction as

2https://pytorch.org/vision/stable/models.html
3https://github.com/kazuto1011/deeplab-pytorch
4https://github.com/nightrome/cocostuff
5https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md

165

https://pytorch.org/vision/stable/models.html
https://github.com/kazuto1011/deeplab-pytorch
https://github.com/nightrome/cocostuff
https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md

"G
ra

ve
l"

Image Style #0 Style #1 Style #2
"T

V
st

at
ic"

"S
an

d"
"M

et
al

lic
"

"W
oo

de
n"

"D
irt

"
"F

al
l c

ol
or

s"

(a)

"M
os

ai
cs

"

Image Style #0 Style #1 Style #2

"F
ur

ry
"

"F
lo

ra
l"

"G
ra

ffi
ti"

"B
la

ck
 &

 w
hi

te
"

"W
at

er
"

"S
no

w"

(b)

Figure C.11: Illustration of concept-level transformations in ImageNet: We transform the
concept “road” in images belonging to various classes via style transfer. Each row (within
(a) and (b)) depicts the stylization of a single image with respect to the style described in
the label (e.g., “gravel”). We collect three examples per style, which are then split across
training and testing.

valid for a specific pixel if the model’s predicted probability is at least 0.80 for the COCO-based
model and 0.15 for the LVIS-based model (chosen based on manual inspection). Moreover, we treat
a concept as present in a specific image if it present in at least 100 pixels (image size is 224×224 for
ImageNet and 256×256 for Places).

In order to transform concepts, we utilize the fast style transfer methodology of Ghiasi et al.
[Ghi+17] using their pre-trained model6. This allows us to quickly apply the same style to a large
number of images which is ideal for our use-case. Specifically, we manually choose 14 styles
(illustrated in Figure C.11) and choose 3 images for each. This allows us to perform the concept-
level transformation in several ways and evaluate how sensitive our model is to the exact style

6https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2

166

https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2

used.
All the pre-trained models used are open-sourced and freely available for non-commercial

research.

C.4 Additional experiments
Here, we expand on our analysis in Section 3.2 so as to characterize the effect of concept-level
transformations on classifiers.

Per concept. In Figure C.12, we visualize the accuracy drop induced by transformations of a
specific concept for classifiers trained on ImageNet and Places-365 (similar to Figure 3.7a). Here,
the accuracy drop post-transformation is measured only on images that contain the concept of
interest. We then present the average drop across transformations, along with 95% confidence
intervals. We find that there is a large variance between: (i) a model’s reliance on different concepts,
and (ii) different model’s reliance on a single concept. For instance, the accuracy of a ResNet-50
ImageNet classifier drops by more than 30% on the class “three-toed sloth” when “tree”s in the
image are modified, while the accuracy of a VGG16 model drops by less than 5% under the same
setup.

Per transformation. In Figure C.13, we illustrate how the model’s sensitivity to specific concepts
varies depending on the applied transformation. Across concepts, we find that models are more
sensitive to transformations to textures such as “grafitti” and “fall colors” than they are to “wooden”
or “metallic”.

Per class (prediction-rules). In Figure C.14, we provide additional examples of class-level
prediction rules identified using our methodology. Specifically, for each class, the highlighted
concepts are those that hurt model accuracy when transformed.

167

vo
lley

ba
ll

ba
sso

on

ba
lan

ce
be

am

tro
mbo

ne
cor

ne
t

ho
riz

on
tal

 ba
r
coh

o
rac

ket

un
icy

cle

ba
rra

cou
ta
sta

ge

pin
g-p

on
g b

all sax

po
tte

r's
 whe

el

pa
ral

lel
ba

rs
tor

ch

Fre
nch

 ho
rn

ba
rbe

ll
cel

lo
ten

ch

ImageNet classes

0

5

10

15

20

25

30

35

40

Ac
cu

ra
cy

 d
ro

p
(%

)

ba
lan

ce
be

am

vo
lley

ba
ll

ba
rra

cou
ta

tro
mbo

ne

ba
sso

oncel
lo

pa
ral

lel
ba

rs
cor

ne
t
coh

o sax

ho
riz

on
tal

 ba
r
ten

ch

pin
g-p

on
g b

all

Fre
nch

 ho
rn
rac

kettor
ch

un
icy

cle

po
tte

r's
 whe

el
sta

ge
dru

m

ImageNet classes

0

10

20

30

40

50

60

Ac
cu

ra
cy

 d
ro

p
(%

)

(a) Concept: “person”; Models: VGG16 (left) and ResNet-50 (right) trained on ImageNet.

san
db

ar

tot
em

 po
le

lak
esi

de

sus
pe

nsi
on

 br
idg

e

mob
ile

ho
me

bo
ath

ou
se
tus

ker
cas

tlewing

sno
wmob

ile

con
ve

rtib
le

thr
ee

-to
ed

 slo
th

meg
alit

h

sto
ne

 wall

tra
ffic

 lig
ht

ho
riz

on
tal

 ba
r
ind

ri

str
ee

t s
ign

bir
dh

ou
se

mou
nta

in
ten

t

ImageNet classes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ac
cu

ra
cy

 d
ro

p
(%

)

thr
ee

-to
ed

 slo
th
ind

ri

tot
em

 po
le

sus
pe

nsi
on

 br
idg

e

lak
esi

de

meg
alit

h

bo
ath

ou
se

ho
riz

on
tal

 ba
r

sul
ph

ur-
cre

ste
d c

ock
ato

o
tus

ker

tra
ffic

 lig
ht

bir
dh

ou
se

sno
wmob

ile

mou
nta

in
ten

t
cas

tle

str
ee

t s
ign

sto
ne

 wall

con
ve

rtib
le

mob
ile

ho
me

wing

ImageNet classes

0

10

20

30

40

Ac
cu

ra
cy

 d
ro

p
(%

)

(b) Concept: “tree”; Models: VGG16 (left) and ResNet-50 (right) trained on ImageNet.

dre
ssi

ng
 ro

om

dis
cot

he
qu

e

clo
thi

ng
 st

ore

nu
rsi

ng
 ho

me

Places classes

0

1

2

3

4

5

6

7

Ac
cu

ra
cy

 d
ro

p
(%

)

dre
ssi

ng
 ro

om

dis
cot

he
qu

e

clo
thi

ng
 st

ore

nu
rsi

ng
 ho

me

Places classes

0

1

2

3

4

Ac
cu

ra
cy

 d
ro

p
(%

)

(c) Concept: “dress”; Models: VGG16 (left) and ResNet-18 (right) trained on Places-365.

nu
rse

ry

ho
tel

 ro
om

yo
uth

 ho
ste

l
be

rth

be
dro

om

do
rm

 ro
om

Places classes

2.5
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Ac
cu

ra
cy

 d
ro

p
(%

)

ho
tel

 ro
om

yo
uth

 ho
ste

l

nu
rse

ry
be

rth

be
dro

om

do
rm

 ro
om

Places classes

0

5

10

15

20

Ac
cu

ra
cy

 d
ro

p
(%

)

(d) Concept: “bed”; Models: VGG16 (left) and ResNet-18 (right) trained on Places-365.

Figure C.12: Dependence of a classifier on a specific high-level concept: average accuracy
drop (along with 95% confidence intervals obtained via bootstrapping), over various styles,
induced by the transformation of said concept. The classes for which the concept is most
often present are shown.

168

TV
 st

at
ic

Fu
rry

Sn
ow

Bl
ac

k
&

wh
ite

W
oo

de
n

M
et

al
lic

W
at

er
M

os
ai

cs
Gr

av
el

Fa
ll

co
lo

rs
Gr

af
fit

i
Di

rt
Sa

nd
Fl

or
al

Transformation

studio couch
table lamp

desktop computer
television

pajama
home theater

iron
dining table

space heater
bannister

modem
window shade

switchIm
ag

eN
et

 c
la

ss
es

Concept: wall-concrete

0

5

10

15

Fa
ll

co
lo

rs

Gr
av

el

Sn
ow

Bl
ac

k
&

wh
ite

Gr
af

fit
i

W
oo

de
n

Fl
or

al

Fu
rry

Transformation

home theatermedicine chestswitchbannistermodemirontable lampdining tablewindow shadedesktop computertelevisionspace heaterstudio couchpajamaIm
ag

eN
et

 c
la

ss
es

Concept: wall-concrete

0

10

20

30

40

TV
 st

at
ic

Fu
rry

Sn
ow

Bl
ac

k
&

wh
ite

W
oo

de
n

M
et

al
lic

W
at

er
M

os
ai

cs
Gr

av
el

Fa
ll

co
lo

rs
Gr

af
fit

i
Di

rt
Sa

nd
Fl

or
al

Transformation

leatherback turtle

ruddy turnstone

Im
ag

eN
et

 c
la

ss
es Concept: sand

0

2

4

6

Fa
ll

co
lo

rs

Gr
av

el

Sn
ow

Bl
ac

k
&

wh
ite

Gr
af

fit
i

W
oo

de
n

Fl
or

al

Fu
rry

Transformation

leatherback turtle

ruddy turnstone

Im
ag

eN
et

 c
la

ss
es Concept: sand

0

5

10

15

TV
 st

at
ic

Fu
rry

Sn
ow

Bl
ac

k
&

wh
ite

W
oo

de
n

M
et

al
lic

W
at

er
M

os
ai

cs
Gr

av
el

Fa
ll

co
lo

rs
Gr

af
fit

i
Di

rt
Sa

nd
Fl

or
al

Transformation

fountain pen
ballpoint

whistle
corkscrew

screw
maraca
buckle

Im
ag

eN
et

 c
la

ss
es Concept: table

0.0

2.5

5.0

7.5

Fa
ll

co
lo

rs

Gr
av

el

Sn
ow

Bl
ac

k
&

wh
ite

Gr
af

fit
i

W
oo

de
n

Fl
or

al

Fu
rry

Transformation

corkscrew
screw

whistle
fountain pen

ballpoint
maraca
buckle

Im
ag

eN
et

 c
la

ss
es Concept: table

0

10

20

30

40

(a) VGG16 (left) and ResNet-50 (right) models trained on ImageNet.

Gr
af

fit
i

W
oo

de
n

Sn
ow

Gr
av

el

Fa
ll

co
lo

rs

Bl
ac

k
&

wh
ite

Fu
rry

Fl
or

al

Transformation

airfield
indoor

runway
heliport

landing deck
outdoorPl

ac
es

 c
la

ss
es

Concept: airplane

5

10

15

20

25

Gr
av

el

W
oo

de
n

Gr
af

fit
i

Fu
rry

Bl
ac

k
&

wh
ite

Fl
or

al

Sn
ow

Fa
ll

co
lo

rs

Transformation

airfield
runway
indoor

heliport
landing deck

outdoorPl
ac

es
 c

la
ss

es

Concept: airplane

0

5

10

15

20

Gr
af

fit
i

W
oo

de
n

Sn
ow

Gr
av

el

Fa
ll

co
lo

rs

Bl
ac

k
&

wh
ite

Fu
rry

Fl
or

al

Transformation

home office

conference room

computer room

Pl
ac

es
 c

la
ss

es

Concept: desk

2

4

6

8

10

Gr
av

el

W
oo

de
n

Gr
af

fit
i

Fu
rry

Bl
ac

k
&

wh
ite

Fl
or

al

Sn
ow

Fa
ll

co
lo

rs

Transformation

home office

conference room

computer room

Pl
ac

es
 c

la
ss

es

Concept: desk

0.0

2.5

5.0

7.5

10.0

Gr
af

fit
i

W
oo

de
n

Sn
ow

Gr
av

el

Fa
ll

co
lo

rs

Bl
ac

k
&

wh
ite

Fu
rry

Fl
or

al

Transformation

hotel room
youth hostel

berth
bedroom

Pl
ac

es
 c

la
ss

es

Concept: blanket

5

0

5

10

Gr
av

el

W
oo

de
n

Gr
af

fit
i

Fu
rry

Bl
ac

k
&

wh
ite

Fl
or

al

Sn
ow

Fa
ll

co
lo

rs

Transformation

hotel room
berth

bedroom
youth hostel

Pl
ac

es
 c

la
ss

es

Concept: blanket

0

5

(b) VGG16 (left) and ResNet-18 (right) models trained on Places-365.

Figure C.13: Heatmaps illustrating classifier sensitivity to various concept-level trans-
formations. Here, we measure model sensitivity in terms of the per class accuracy drop
induced by the transformation on images of that class which contain the concept of interest.

169

pe
rso

n

sun
gla

sse
s

coa
t
mirro

r

go
gg

les shi
rt

sw
ea

ter

he
ad

ba
nd

cel
lula

r te
lep

ho
ne

cam
era tre

e

spe
cta

cle
s

Concepts

0

5

10

15

20

25

Ac
cu

ra
cy

 d
ro

p
(%

)

ImageNet class: sunglasses

ov
en
sto

ve

fire
pla

ce

tra
sh

cancha
ir

ha
nd

le
lam

p

wall-
tile

wall-
con

cre
tepo

t
bo

wl
kn

ob

ref
lec

torclo
ck

tai
llig

ht

sui
tca

se

moto
rcy

cle

cho
pp

ing
 bo

ard
po

ste
r
pa

n

Concepts

0

5

10

15

20

25

30

35

Ac
cu

ra
cy

 d
ro

p
(%

)

ImageNet class: stove

car tru
ck

moto
rcy

cle roa
d

gra
ss

sky
-ot

he
r

Concepts

0

2

4

6

8

10

12

14

Ac
cu

ra
cy

 d
ro

p
(%

)

ImageNet class: racer

pe
rso

n

ba
na

na bir
d fish

Concepts

0

2

4

6

8

Ac
cu

ra
cy

 d
ro

p
(%

)

ImageNet class: tench

(a) VGG16 classifier trained on the ImageNet dataset.

do
g

pe
rso

ncat

wall-
con

cre
te

wall-
oth

er

ted
dy

 be
artoy

cou
ch
car

pe
t
be

d

flo
or-

woo
d

do
or-

stu
ff

wall-
woo

d

din
ing

 ta
blecha

ir
mirro

r

mirro
r-s

tuf
f
sof

a

wind
ow

-ot
he

r
cow

Concepts

0

10

20

30

40

Ac
cu

ra
cy

 d
ro

p
(%

)

Places class: /v/veterinarians_office

wall-
con

cre
tebe

d

wall-
oth

er

cur
tai

n

fur
nit

ure
-ot

he
r

cei
ling

-ot
he

r

wind
ow

-ot
he

r
sof

a

bla
nke

t
ligh

t

do
or-

stu
ff

mirro
r-s

tuf
f tv

he
ad

bo
ard

arm
cha

ir

tel
ev

isio
n s

et

matt
res

s

wind
ow

-bl
ind
cou

ch
tab

le

Concepts

0

10

20

30

40

Ac
cu

ra
cy

 d
ro

p
(%

)

Places class: /h/hotel_room

air
pla

ne

sky
-ot

he
r

he
lico

pte
r
bo

at
clo

ud
s

bu
ildi

ng
-ot

he
r

mou
nta

in
tru

ck

jet
 pl

an
e

go
lfca

rt
tra

cto
r

tra
iler

 tru
cksea

sno
wmob

ile

wate
r-o

the
r

sky
scr

ap
er
riv

ercarten
t

pla
tfo

rm

Concepts

0
5

10
15
20
25
30
35

Ac
cu

ra
cy

 d
ro

p
(%

)

Places class: /h/heliport

she
lf

wind
ow

-ot
he

r

cei
ling

-ot
he

r

pe
rso

n

bu
ildi

ng
-ot

he
r

flo
werligh

t

po
tte

d p
lan

t

clo
the

s

wall-
con

cre
te

flo
or-

tile

flo
or-

woo
d

flo
or-

oth
er
mirro

r

sig
nb

oa
rd

car
db

oa
rd

wall-
woo

d

tab
lec

lot
h

po
ste

r
pa

pe
r

Concepts

0

2

4

6

8

10

Ac
cu

ra
cy

 d
ro

p
(%

)

Places class: /g/gift_shop

(b) ResNet-18 classifier trained on the Places-365 dataset.

Figure C.14: Per-class prediction rules: high-level concepts, which when transformed,
significantly hurt model performance on that class. Here, we visualize average accuracy
drop (along with 95% confidence intervals obtained via bootstrapping) for a specific
concept, over various styles.

170

Appendix D

Additional details for Chapter 4

D.1 Details for Section 4.1

D.1.1 Experimental setup
For model training, we use the hyperparameters provided in Appendix C.1.7. Additional intervention-
specific hyperparameters are listed in Appendix Table D.1. Due to computational constraints, we
trained a restricted set of model architectures with robustness interventions—ResNet-18 and
ResNet-50 for adversarial training, and ResNet-18 and ResNet-34 for all others. Adversarial train-
ing was implemented using the robustness library,1 while random erasing using the PyTorch
transforms.2

Eps Step size #Steps

0.5 0.4 3
1 0.8 3

(a) PGD-training [Mad+18]

Mean StdDev

0 0.2

(b) Gaussian
noise

Probability Scale Ratio

0.5 0.02 - 0.33 0.3 - 3.3

(c) Random erasing

Table D.1: Additional hyperparameters for robustness interventions.

D.1.2 Full experimental results
In Tables D.2 and D.3, we present the raw accuracies of models trained using various train-time
robustness interventions.

1https://github.com/MadryLab/robustness
2https://pytorch.org/docs/stable/torchvision/transforms.html

171

https://github.com/MadryLab/robustness
https://pytorch.org/docs/stable/torchvision/transforms.html

ResNet-18

Task ε
Accuracy (%)

Source Target Target-RT

ENTITY-13
0 90.91 ± 0.73 61.52 ± 1.23 76.71 ± 1.09
0.5 89.23 ± 0.80 61.10 ± 1.23 74.92 ± 1.04
1.0 88.45 ± 0.81 58.53 ± 1.26 73.35 ± 1.11

ENTITY-30
0 87.88 ± 0.89 49.96 ± 1.31 73.05 ± 1.17
0.5 85.68 ± 0.91 48.93 ± 1.34 71.34 ± 1.14
1.0 84.23 ± 0.91 47.66 ± 1.23 70.27 ± 1.17

LIVING-17
0 92.01 ± 1.30 58.21 ± 2.32 83.38 ± 1.79
0.5 90.35 ± 1.35 55.79 ± 2.44 83.00 ± 1.89
1.0 88.56 ± 1.50 53.89 ± 2.36 80.90 ± 1.92

NON-LIVING-26
0 88.09 ± 1.28 41.87 ± 2.01 73.52 ± 1.71
0.5 86.28 ± 1.32 41.02 ± 1.91 72.41 ± 1.71
1.0 85.19 ± 1.38 40.23 ± 1.92 70.61 ± 1.73

ResNet-50

Task ε
Accuracy (%)

Source Target Target-RT

ENTITY-13
0 91.54 ± 0.64 62.48 ± 1.16 79.32 ± 1.01
0.5 89.87 ± 0.80 63.01 ± 1.15 80.14 ± 1.00
1.0 89.71 ± 0.74 61.21 ± 1.22 78.58 ± 0.98

ENTITY-30
0 89.26 ± 0.78 51.18 ± 1.24 77.60 ± 1.17
0.5 87.51 ± 0.88 50.72 ± 1.28 78.92 ± 1.06
1.0 86.63 ± 0.88 50.99 ± 1.27 78.63 ± 1.03

LIVING-17
0 92.40 ± 1.28 58.22 ± 2.42 85.96 ± 1.72
0.5 90.79 ± 1.55 55.97 ± 2.38 87.22 ± 1.66
1.0 89.64 ± 1.47 54.64 ± 2.48 85.63 ± 1.73

NON-LIVING-26
0 88.13 ± 1.30 41.82 ± 1.86 76.58 ± 1.69
0.5 88.20 ± 1.20 42.57 ± 2.03 78.84 ± 1.62
1.0 86.17 ± 1.36 41.69 ± 1.96 76.16 ± 1.61

Table D.2: Effect of adversarial training on model robustness to subpopulation shift. All
models are trained on samples from the source domain—either using standard training
(ε = 0.0) or using adversarial training. Models are then evaluated in terms of: (a) source
accuracy, (b) target accuracy and (c) target accuracy after retraining the linear layer of
the model with data from the target domain. Confidence intervals (95%) obtained via
bootstrapping. Maximum task accuracy over ε (taking into account confidence interval)
shown in bold.

172

ResNet-18

Task Intervention Accuracy (%)
Source Target Target-RT

ENTITY-13

Standard 90.91 ± 0.73 61.52 ± 1.23 76.71 ± 1.09
Erase Noise 91.01 ± 0.68 62.79 ± 1.27 78.10 ± 1.09
Gaussian Noise 77.00 ± 1.04 47.90 ± 1.21 70.37 ± 1.17
Stylized ImageNet 76.85 ± 1.00 50.18 ± 1.21 65.91 ± 1.17

ENTITY-30

Standard 87.88 ± 0.89 49.96 ± 1.31 73.05 ± 1.17
Erase Noise 88.09 ± 0.80 49.98 ± 1.31 74.27 ± 1.15
Gaussian Noise 74.12 ± 1.16 35.79 ± 1.21 65.62 ± 1.28
Stylized ImageNet 70.96 ± 1.16 37.67 ± 1.21 60.45 ± 1.22

LIVING-17

Standard 92.01 ± 1.30 58.21 ± 2.32 83.38 ± 1.79
Erase Noise 93.09 ± 1.27 59.60 ± 2.40 85.12 ± 1.71
Gaussian Noise 80.13 ± 1.99 46.16 ± 2.57 77.31 ± 2.08
Stylized ImageNet 79.21 ± 1.85 43.96 ± 2.38 72.74 ± 2.09

NON-LIVING-26

Standard 88.09 ± 1.28 41.87 ± 2.01 73.52 ± 1.71
Erase Noise 88.68 ± 1.18 43.17 ± 2.10 73.91 ± 1.78
Gaussian Noise 78.14 ± 1.60 35.13 ± 1.94 67.79 ± 1.79
Stylized ImageNet 71.43 ± 1.73 30.56 ± 1.75 61.83 ± 1.98

ResNet-34

Task Intervention Accuracy (%)
Source Target Target-RT

ENTITY-13

Standard 91.75 ± 0.70 63.45 ± 1.13 78.07 ± 1.02
Erase Noise 91.76 ± 0.70 62.71 ± 1.25 77.43 ± 1.06
Gaussian Noise 81.60 ± 0.97 50.69 ± 1.28 71.50 ± 1.13
Stylized ImageNet 78.66 ± 0.94 51.05 ± 1.30 67.38 ± 1.16

ENTITY-30

Standard 88.81 ± 0.81 51.68 ± 1.28 75.12 ± 1.11
Erase Noise 89.07 ± 0.82 51.04 ± 1.27 74.88 ± 1.08
Gaussian Noise 75.05 ± 1.11 38.31 ± 1.26 67.47 ± 1.22
Stylized ImageNet 72.51 ± 1.10 38.98 ± 1.22 61.65 ± 1.25

LIVING-17

Standard 92.83 ± 1.19 59.74 ± 2.27 85.46 ± 1.83
Erase Noise 92.96 ± 1.32 61.13 ± 2.30 85.66 ± 1.78
Gaussian Noise 84.06 ± 1.71 48.38 ± 2.44 78.79 ± 1.91
Stylized ImageNet 80.94 ± 2.00 44.16 ± 2.43 72.77 ± 2.18

NON-LIVING-26

Standard 89.64 ± 1.17 43.03 ± 1.99 74.99 ± 1.66
Erase Noise 89.62 ± 1.31 43.53 ± 1.89 75.04 ± 1.70
Gaussian Noise 79.26 ± 1.61 34.89 ± 1.91 68.07 ± 1.78
Stylized ImageNet 71.49 ± 1.65 31.10 ± 1.80 62.94 ± 1.90

Table D.3: Effect of various train-time interventions on model robustness to subpopulation
shift. All models are trained on samples from the source domain.

173

D.2 Details for Section 4.2

D.2.1 Datasets
For our first set of experiments (Section 4.2.2), we focus on a canonical setting where a small portion
of the training set if labeled and we have access to a pool of unlabeled data.

STL-10. The STL-10 [CNL11] dataset contains 5,000 training and 8,000 test images of size 96×96
from 10 classes. We designate 1,000 of the 5,000 (20%) training examples to be the labeled training
set, 500 (10%) to be the validation set, and the rest are used as unlabeled data.

CIFAR-10. The CIFAR-10 [Kri09] dataset contains 50,000 training and 8,000 test images of size
32×32 from 10 classes. We designate 1,000 of the 50,000 (2%) training examples to be the labeled
training set, 5000 (10%) to be the validation set, and the rest as unlabeled data.

In both cases, we report the final performance on the standard test set of that dataset. We also
create two datasets that each contain a different spurious correlation.

Tinted STL-10. We reuse the STL-10 setup described above, but we add a class-specific tint to
each image in the (labeled) training set. Specifically, we hand-pick a different color for each of the
10 classes and then add this color to each of the pixels (ensuring that each RGB channel remains
within the valid range)—see Figure D.4 for examples. This tint is only present in the labeled part of
the training set, the unlabeled and test parts of the dataset are left unaltered.

(a) Original

(b) Tinted

Figure D.4: Tinted STL-10 images. The tint is class-specific and thus models can learn to
predict based mostly on that tint.

Biased CelebA. We consider the task of predicting gender in the CelebA [Liu+15] dataset. In
order to create a biased training set, we choose a random sample of 500 non-blond males and 500
blond females. We then use a balanced unlabeled dataset consisting of 1,000 random samples for
each of: blond males, blond females, non-blond males, and non-blond females. We use the standard
CelebA test set which consists of 12.41% blond females, 48.92% non-blond females, 0.90% blond

174

males, and 37.77% non-blond males. (Note that a classifier predicting purely based on hair color
with have an accuracy of 50.18% on that test set.)

All of the datasets that we use are freely available for non-commercial research purposes.
Moreover, to the best of our knowledge, they do not contain offensive content or identifiable
information (other than publicly available celebrity photos).

D.2.2 Model architectures and input preprocessing

For both the standard model and the models trained on images processed by edge detection
algorithm, we use a standard model architecture—namely, VGG16 [SZ15] with the addition of
batch normalization [IS15] (often referred to as VGG16-BN). We describe the exact edge detection
process as well as the architecture of the BagNet model (texture prior) below. We visualize these
priors in Figure D.6.

Canny edge detection. Given an image, we first smooth it with a 5 pixel bilateral filter [TM98],
with filter σ in the coordinate and color space set to 75. After smoothing, the image is converted to
gray-scale. Finally, a Canny filter [Can86] is applied to the image, with hysteresis thresholds 100
and 200, to extract the edges.

Sobel edge detection. Given an image, we first upsample it to 128×128 pixels. Then we convert
it to gray-scale and apply a Gaussian blur (kernel size=5, σ = 5). The image is then passed through
a Sobel filter [SF68] with a kernel size of 3 in both the horizontal and the vertical direction to extract
the image gradients.

BagNet. For our texture-biased model, we use a slimmed down version of the BagNet architec-
ture from Brendel and Bethge [BB19]. The goal of this architecture is to limit the receptive field
of the model, hence forcing it to make predictions based on local features. The exact architecture
we used is shown in Figure D.5. Intuitively, the top half of the network—i.e., the green and blue
blocks—construct features on patches of size 20×20 for 96×96 images and 10×10 for 32×32 images.
The rest of the network consists only of 1×1 convolutions and max-pooling, hence not utilizing the
image’s spatial structure.

D.2.3 Training setup

Basic training

We train all our models using stochastic gradient descent (SGD) with momentum (a coefficient of
0.9) and a decaying learning rate. We add weight decay regularization with a coefficient of 10−4.
In terms of data augmentation, we apply random cropping with a padding of 4 pixels, random
horizontal flips, and a random rotation of ±2 degrees. These transformations are applied after the
edge detection processing. We train all models with a batch size of 64 for 96×96-sized images and
128 for 32×32-sized images for a total of 300 epochs. All our experiments are performed using our
internal cluster which mainly consists of NVIDIA 1080 Ti GTX GPUs.

175

CBR, 1x1, 128
CBR, 5x5, 128

rf: 5, img size: 96

CBR, 1x1, 128
MaxPool (2)

rf: 6, img size 48

CBR, 1x1, 256
CBR, 3x3, 256

rf: 10, img size 48

CBR, 1x1, 256
Max Pool (2)

rf: 12, img size 24

CBR, 1x1, 512
CBR, 3x3, 512

rf 20: img size 24

CBR, 1x1, 1024
Max Pool (2)

CBR, 1x1, 1024
Max Pool (2)

CBR, 1x1, 1024
Max Pool (6)

rf:20, img size 1

CBR, 1x1, 512
CBR, 1x1, 512
CBR, 1x1, 256
CBR, 1x1, 128

Linear, 10

CBR, 1x1, 256
CBR, 5x5, 256

rf: 5, img size: 32

CBR, 1x1, 256
MaxPool (2)

rf: 6, img size 16

CBR, 1x1, 512
CBR, 3x3, 512

rf: 10, img size 16

CBR, 1x1, 1024
Max Pool (2)

CBR, 1x1, 1024
Max Pool (2)

CBR, 1x1, 1024
Max Pool (4)

rf: 10, img size 1

CBR, 1x1, 512
CBR, 1x1, 512
CBR, 1x1, 256
CBR, 1x1, 128

Linear, 10

Custom BagNet20 Custom BagNet10

Figure D.5: The customized BagNet architecture used for training texture-biased models.
The basic building block consists of a convolutional layer, followed by batch normalization
and finally a ReLU non-linearity (denoted collectively as CBR).

176

(a) Original (b) Sobel (c) Canny (d) BagNet

Figure D.6: Further visualizations of the different feature priors we introduce. For each
original image (a), we visualize the output of both edge detection algorithms—Sobel (b)
and Canny (c)—as well as the receptive field of the BagNet model.

177

Hyperparameter tuning. To ensure a fair comparison across feature priors, we selected the
hyperparameters for each dataset-prior pair separately, using the held-out validation set (separate
from the final test used for reporting performance). Specifically, we performed a grid search
choosing the learning rate (LR) from [0.1, 0.05, 0.02, 0.01, 0.005], the number of epochs between each
learning rate drop (K) from [50, 100, 300] and the factor with which the learning rate is multiplied
(γ) from [0.5, 1]. The parameters chosen are shown in Table D.7. We found that all models achieved
near-optimal performance strictly within the range of each hyperparameters. Thus, we did not
consider a wider grid.

Dataset Prior LR γ K

STL-10

Standard 0.01 0.5 100
Canny 0.01 0.5 100
Sobel 0.005 0.5 100
BagNet 0.05 0.5 100

CIFAR-10

Standard 0.01 0.5 100
Canny 0.01 0.5 100
Sobel 0.01 0.5 100
BagNet 0.01 0.1 100

CelebA

Standard 0.005 0.5 50
Canny 0.005 0.1 100
Sobel 0.01 0.5 50
BagNet 0.02 0.5 100

Table D.7: Hyperparameters chosen through grid search for each dataset-prior pair (we
used the STL-10 hyperparameters for the tinted STL-10 dataset). LR corresponds to the
learning rate, γ to the factor used to decay the learning rate at each drop, and K to the train
epochs between each learning rate drop.

D.2.4 Ensembles
In order to leverage prior diversity, we ensemble models trained with (potentially) different priors.
We use the following ensembles:

1. Take Max: Predict based on the model assigning the highest probability on this example.

2. Average: Average the (softmax) output probabilities of the models, predict the class assigned
the highest probability.

3. Rank: Each model ranks all test examples based on the probability assigned to their predicted
labels. Then, for each example, we predict using the model which has a lower rank on this
example.

We then report the maximum of these ensemble methods in Table 4.4.

178

D.2.5 Self-training and co-training schemes
In the setting that we are focusing on, we are provided with a labeled dataset X and an unlabeled
dataset U, where typically there is much more unlabeled data (|U| � |X|). We are then choosing a
set of (one or more) feature priors each of which corresponds to a different way of training a model
(e.g., using edge detection preprocessing).

General methodology. We start by training each of these models on the labeled dataset. Then,
we combine the predictions of these models to produce pseudo-labels for the unlabeled dataset.
Finally, we choose a fraction of the unlabeled data and train the models on that set using the
produced pseudo-labels (in additional to the original labeled set X). This process is repeated
using increasing fractions of the unlabeled dataset until, eventually, models are trained on its
entirety. We refer to each such phase as an era. We include an additional 5% of the unlabeled data
per era, resulting in a total of 20 eras. During each era, we use the training process described in
Appendix D.2.3 without re-initializing the models (warm start). After completing this process, we
train a standard model from scratch using both the labeled set and resulting pseudo-labels. The
methodology used for choosing and combining pseudo-labels is described below for each scheme.

Self-training. Since we are only training one model, we only need to decide how to choose
the pseudo-labels to use for each era. We do this in the simplest way: at ear t, we pick the subset
Ut ⊆ U of examples that are assigned the highest probability on their predicted label. We attempt to
produce a class-balanced training set by applying this process separately on each class (as predicted
by the model). The pseudocode for the method is provided in Algorithm 2.

Algorithm 2 Self-training
Parameters :Number of eras T. Fraction added per era k.
Input :Labeled data X with n classes, unlabeled data U, model trained on X.
for era t ∈ 1...T do

forward-pass U through the model to create pseudo-labels Ut = [] for each class c do
Select the kt|U|

n most confident examples from U predicted by the model as class c
Add those examples to Ut with class c

Re-train (warm start) the model on X ∪Ut until convergence
Train a standard model from scratch on X ∪UT.

179

Standard co-training. Here, we train multiple models (in our experiments two) based on a
common pool of pseudo-labeled examples in each era. In each era t, each model labels the unlabeled
dataset U. Then, for each class, we alternate between models, adding the next most confident
example predicted as that class for that model to Ut, until we reach a fixed number of unique
examples have been added for that class (5% of the size of the unlabeled dataset per era). Note that
this process allows both conflicts and duplicates: if multiple models are confident about a specific
example, that example may be added more than once (potentially with a different label each time).
Finally, we train each model (without re-initializing) on X ∪Ut. The pseudocode for this method
can be found in Algorithm 3.

Algorithm 3 Standard Co-Training
Parameters :Number of eras T. Fraction added per era k.
Input :Labeled data X with n classes, unlabeled data U, models trained on X.
for era t ∈ 1...T do

forward-pass U through each model to create pseudo-labels Ut = [] for each class c do
U(c)

t = [] while the number of unique examples in U(c)
t < kt|U|

n do
for each model m do

Add the next most confident example predicted by m as class c to U(c)
t

Add U(c)
t to Ut

Re-train (warm start) each model on X ∪Ut until convergence
Train a standard model from scratch on X ∪UT.

180

D.2.6 Experiment organization
We now provide the full experimental results used to create the plots in the main body as well
as additional analysis. Specifically, in Appendix D.2.7 and D.2.8 we present the performance
of individual ensemble schemes for pre-trained and self-trained models respectively. Then, in
Appendix D.2.9 we present the performance of co-training for each combination of feature priors.
In Appendix D.2.10 we analyse the effect that co-training has on model similarity after training.
Finally, in Appendix D.2.11 we evaluate model ensembles on datasets with spurious correlations
and in Appendix D.2.12 we breakdown the performance of co-training on the skewed CelebA
dataset according to different input attributes.

D.2.7 Full pre-trained ensemble results
In Table 4.4, we reported the best ensemble method for each pair of models trained with different
priors on the labeled data. In Table D.8, we report the full results over the individual ensembles.

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 52.54 ± 0.85 51.82 ± 0.85 53.98 ± 0.83 54.02 ± 0.85 53.98 ± 0.83 54.02 ± 0.82
Sobel + Sobel 51.94 ± 0.88 53.69 ± 0.86 54.62 ± 0.83 54.68 ± 0.86 54.61 ± 0.85 54.68 ± 0.83
Canny + Canny 45.48 ± 0.84 44.19 ± 0.88 46.46 ± 0.82 46.48 ± 0.86 46.70 ± 0.83 46.70 ± 0.79
BagNet + BagNet 42.22 ± 0.80 42.56 ± 0.83 43.32 ± 0.82 43.49 ± 0.82 43.33 ± 0.85 43.49 ± 0.84
Standard + Sobel 52.54 ± 0.79 51.94 ± 0.82 58.14 ± 0.82 58.21 ± 0.88 58.12 ± 0.82 58.21 ± 0.90
Standard + Canny 52.54 ± 0.87 45.48 ± 0.81 55.18 ± 0.82 55.49 ± 0.83 54.41 ± 0.81 55.49 ± 0.83
Standard + BagNet 52.54 ± 0.85 42.22 ± 0.80 52.89 ± 0.84 53.03 ± 0.89 50.69 ± 0.81 53.03 ± 0.85
Sobel + Canny 51.94 ± 0.82 45.48 ± 0.85 53.81 ± 0.84 53.95 ± 0.80 53.18 ± 0.91 53.95 ± 0.85
Sobel + BagNet 51.94 ± 0.86 42.22 ± 0.82 54.42 ± 0.84 55.14 ± 0.83 53.50 ± 0.82 55.14 ± 0.84
Canny + BagNet 45.48 ± 0.78 42.22 ± 0.79 49.95 ± 0.84 50.57 ± 0.82 49.64 ± 0.81 50.57 ± 0.84

(a) Ensemble Baselines for CIFAR-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 53.73 ± 0.86 55.38 ± 1.00 56.95 ± 0.94 57.06 ± 0.91 56.94 ± 0.97 57.06 ± 0.91
Sobel + Sobel 55.49 ± 0.94 55.64 ± 0.98 56.71 ± 0.92 56.83 ± 0.90 56.66 ± 0.89 56.83 ± 0.94
Canny + Canny 56.29 ± 0.92 54.99 ± 0.96 58.04 ± 0.94 58.23 ± 0.94 57.95 ± 0.89 58.23 ± 0.93
BagNet + BagNet 52.04 ± 0.92 50.34 ± 0.90 53.40 ± 0.98 53.42 ± 0.91 53.29 ± 0.96 53.42 ± 0.98
Standard + Sobel 53.73 ± 0.94 55.49 ± 0.95 59.01 ± 0.90 59.08 ± 0.91 58.94 ± 0.96 59.08 ± 0.95
Standard + Canny 53.73 ± 1.00 56.29 ± 0.94 60.90 ± 0.94 60.96 ± 0.94 60.85 ± 0.87 60.96 ± 0.94
Standard + BagNet 53.73 ± 0.95 52.04 ± 0.90 56.99 ± 0.94 57.17 ± 0.92 57.04 ± 0.91 57.17 ± 0.94
Sobel + Canny 55.49 ± 0.91 56.29 ± 0.94 59.92 ± 0.95 60.02 ± 0.97 59.77 ± 0.91 60.02 ± 0.91
Sobel + BagNet 55.49 ± 0.94 52.04 ± 0.95 59.17 ± 0.94 59.76 ± 0.96 59.08 ± 0.89 59.76 ± 0.87
Canny + BagNet 56.29 ± 0.96 52.04 ± 0.95 61.09 ± 0.92 61.42 ± 0.94 60.68 ± 0.92 61.42 ± 0.93

(b) Ensemble Baselines for STL-10

Table D.8: Full results for ensembles of pre-trained models.

181

D.2.8 Ensembling self-trained models
In Table D.9, we report the best ensemble method for pairs of self-trained models with different
priors. In Table D.10, we report the full results over the individual ensembles. We find that, similar
to the ensembles of models trained on the labeled data, models with diverse priors gain more
from ensembling. However, co-training models with diverse priors together still outperforms
ensembling self-trained models.

Feature Priors Model 1 Model 2 Ensemble

Same
Standard + Standard 59.92 ± 0.95 59.34 ± 0.88 62.25 ± 0.93
Canny + Canny 58.40 ± 0.94 57.69 ± 0.94 60.38 ± 0.92
BagNet + BagNet 57.80 ± 0.96 58.11 ± 0.85 60.52 ± 0.90

Different
Standard + Canny 59.92 ± 0.90 58.40 ± 0.95 64.44 ± 0.90
Standard + BagNet 59.92 ± 0.94 57.80 ± 0.96 63.19 ± 0.87
Canny + BagNet 58.40 ± 0.94 57.80 ± 0.96 64.80 ± 0.91

(a) STL-10

Feature Priors Model 1 Model 2 Ensemble

Same
Standard + Standard 63.65 ± 0.81 61.95 ± 0.82 64.85 ± 0.79
Sobel + Sobel 63.05 ± 0.81 66.01 ± 0.80 66.25 ± 0.82
BagNet + BagNet 53.92 ± 0.82 52.90 ± 0.91 55.00 ± 0.83

Different
Standard + Sobel 63.65 ± 0.81 63.05 ± 0.83 67.52 ± 0.77
Standard + BagNet 63.65 ± 0.81 53.92 ± 0.88 64.10 ± 0.79
Sobel + BagNet 63.05 ± 0.83 53.92 ± 0.89 65.68 ± 0.79

(b) CIFAR-10

Table D.9: Ensemble performance when combining self-trained models with Standard,
Canny, Sobel, and BagNet priors. When two models of the same prior are ensembled, the
models are trained with different random initializations.

182

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 63.65 ± 0.81 61.95 ± 0.87 64.84 ± 0.77 64.85 ± 0.76 64.83 ± 0.83 64.85 ± 0.79
Sobel + Sobel 63.05 ± 0.87 66.01 ± 0.82 66.19 ± 0.81 66.25 ± 0.79 66.17 ± 0.81 66.25 ± 0.83
BagNet + BagNet 53.92 ± 0.87 52.90 ± 0.83 54.86 ± 0.87 55.00 ± 0.83 54.87 ± 0.82 55.00 ± 0.87
Standard + Sobel 63.65 ± 0.79 63.05 ± 0.80 67.42 ± 0.79 67.52 ± 0.79 67.38 ± 0.79 67.52 ± 0.77
Standard + Canny 63.65 ± 0.90 51.82 ± 0.88 63.70 ± 0.81 63.91 ± 0.81 63.02 ± 0.83 63.91 ± 0.82
Standard + BagNet 63.65 ± 0.81 53.92 ± 0.82 64.05 ± 0.85 64.10 ± 0.79 62.69 ± 0.80 64.10 ± 0.86
Sobel + Canny 63.05 ± 0.81 51.82 ± 0.80 61.43 ± 0.80 61.42 ± 0.80 60.66 ± 0.81 61.43 ± 0.83
Sobel + BagNet 63.05 ± 0.78 53.92 ± 0.83 65.45 ± 0.85 65.68 ± 0.82 64.65 ± 0.80 65.68 ± 0.82
Canny + BagNet 51.82 ± 0.81 53.92 ± 0.79 59.60 ± 0.81 59.79 ± 0.83 60.24 ± 0.82 60.24 ± 0.81

(a) Ensemble Baselines for CIFAR-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Standard 59.92 ± 0.92 59.34 ± 0.99 62.18 ± 0.92 62.25 ± 0.96 62.16 ± 0.88 62.25 ± 0.94
Canny + Canny 58.40 ± 0.95 57.69 ± 0.89 60.30 ± 0.95 60.36 ± 0.92 60.38 ± 0.91 60.38 ± 0.95
BagNet + BagNet 57.80 ± 0.89 58.11 ± 0.94 60.42 ± 0.90 60.46 ± 0.98 60.52 ± 0.93 60.52 ± 0.90
Standard + Sobel 59.92 ± 0.92 57.86 ± 0.91 62.49 ± 0.89 62.69 ± 0.91 62.66 ± 0.89 62.69 ± 0.94
Standard + Canny 59.92 ± 0.94 58.40 ± 0.95 64.29 ± 0.95 64.44 ± 0.89 64.34 ± 0.95 64.44 ± 0.95
Standard + BagNet 59.92 ± 0.89 57.80 ± 0.97 63.01 ± 0.93 63.10 ± 0.89 63.19 ± 0.88 63.19 ± 0.88
Sobel + Canny 57.86 ± 0.91 58.40 ± 0.93 62.20 ± 0.92 62.14 ± 0.92 62.22 ± 0.90 62.22 ± 0.91
Sobel + BagNet 57.86 ± 0.95 57.80 ± 0.95 62.24 ± 0.94 62.58 ± 0.90 63.52 ± 0.91 63.52 ± 0.88
Canny + BagNet 58.40 ± 0.93 57.80 ± 0.95 64.38 ± 0.89 64.64 ± 0.92 64.80 ± 0.90 64.80 ± 0.92

(b) Ensemble Baselines for STL-10

Table D.10: Full results for ensembles of self-trained models.

183

D.2.9 Self-training and co-training on STL-10 and CIFAR-10

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training

Standard 52.54 ± 0.86 63.65 ± 0.76 64.02 ± 0.82
Canny 45.48 ± 0.90 51.82 ± 0.82 55.59 ± 0.80
Sobel 51.94 ± 0.88 63.05 ± 0.84 64.77 ± 0.80
BagNet 42.22 ± 0.82 53.92 ± 0.89 54.21 ± 0.85

Co-training

Standard 52.54 ± 0.91 65.06 ± 0.76 65.10 ± 0.84+Standard 51.82 ± 0.86 64.93 ± 0.80
Canny 45.48 ± 0.85 51.15 ± 0.79 55.74 ± 0.80+Canny 44.19 ± 0.82 51.65 ± 0.81
Sobel 51.94 ± 0.86 67.18 ± 0.80 68.47 ± 0.74+Sobel 53.69 ± 0.89 67.35 ± 0.77
Canny 45.48 ± 0.79 58.66 ± 0.81 65.34 ± 0.81+Sobel 51.94 ± 0.80 64.87 ± 0.79
Canny 45.48 ± 0.85 59.19 ± 0.85 67.59 ± 0.74+BagNet 42.22 ± 0.85 67.92 ± 0.79
Sobel 51.94 ± 0.81 71.88 ± 0.73 74.25 ± 0.74+BagNet 42.22 ± 0.82 73.91 ± 0.71
BagNet 42.22 ± 0.79 55.94 ± 0.83 56.05 ± 0.77+BagNet 42.56 ± 0.86 55.26 ± 0.88
Canny 45.48 ± 0.85 59.23 ± 0.81 67.21 ± 0.77+Standard 52.54 ± 0.87 66.92 ± 0.82
Sobel 51.94 ± 0.83 71.44 ± 0.76 73.83 ± 0.76+Standard 52.54 ± 0.85 73.59 ± 0.72
Standard 52.54 ± 0.88 66.67 ± 0.83 66.77 ± 0.75+BagNet 42.22 ± 0.80 67.12 ± 0.75

Table D.11: Performance of self-training and co-training on CIFAR-10 for each prior
combination.

184

Methods Prior(s) Labeled Only +Unlabeled
Self/Co-Training

+ Standard model
with Pseudo-labels

Self-training

Standard 53.73 ± 0.95 59.92 ± 0.91 60.52 ± 0.94
Canny 56.29 ± 0.96 58.40 ± 0.91 62.19 ± 0.92
Sobel 55.49 ± 0.96 57.86 ± 0.98 60.92 ± 0.89
BagNet 52.04 ± 0.96 57.80 ± 0.99 61.69 ± 0.95

Co-training

Standard 53.73 ± 0.95 58.05 ± 0.92 61.16 ± 0.95+Standard 55.38 ± 0.96 60.44 ± 0.95
Canny 56.29 ± 0.92 60.22 ± 0.91 63.24 ± 0.92+Canny 54.99 ± 0.94 59.56 ± 0.94
Sobel 55.49 ± 0.96 58.93 ± 0.91 60.68 ± 0.94+Sobel 55.64 ± 0.95 59.23 ± 0.90
Canny 56.29 ± 0.95 62.40 ± 0.99 65.53 ± 0.84+Sobel 55.49 ± 0.92 64.11 ± 0.91
Canny 56.29 ± 0.92 62.21 ± 0.89 67.33 ± 0.88+BagNet 52.04 ± 0.94 66.74 ± 0.87
Sobel 55.49 ± 0.92 62.72 ± 0.94 65.79 ± 0.94+BagNet 52.04 ± 1.00 65.44 ± 0.91
BagNet 52.04 ± 0.89 59.85 ± 0.89 60.84 ± 0.95+BagNet 50.34 ± 0.91 60.16 ± 0.89
Canny 56.29 ± 0.94 62.16 ± 0.92 65.67 ± 0.93+Standard 53.73 ± 0.92 64.22 ± 0.91
Sobel 55.49 ± 0.95 61.15 ± 0.89 63.08 ± 0.91+Standard 53.73 ± 0.92 61.74 ± 0.93
Standard 53.73 ± 0.94 61.99 ± 0.88 62.34 ± 0.89+BagNet 52.04 ± 0.91 62.31 ± 1.00

Table D.12: Performance of self-training and co-training on STL-10 for each prior combina-
tion.

185

D.2.10 Correlation between the individual feature-biased models and
the final standard model

CIFAR-10 STL-10
Method Prior Before After Before After

Self-training

Standard 0.598 0.813 0.554 0.728
Canny 0.237 0.622 0.305 0.519
Sobel 0.259 0.76 0.385 0.621
BagNet 0.38 0.752 0.357 0.516

Co-training

Canny 0.237 0.595 0.305 0.496
+BagNet 0.38 0.664 0.357 0.538
Sobel 0.259 0.719 0.385 0.581
+BagNet 0.38 0.716 0.357 0.554

Table D.13: Similarity between models before and after training on pseudo-labeled data.
Our measure of similarity is the (Pearson) correlation between which test examples are
correctly predicted by each model. In Columns 3 and 5 we report that notion of similarity
between the pre-trained feature-biased models and the pre-trained standard model (the
numbers are reproduced from Table 4.1). Then, in columns 4 and 6 we report the similarity
between the feature-biased models at the end of self- or co-training and the standard
model trained on their (potentially combined) pseudo-labels. We observe that through
this process of training a standard model on the pseudo-labels of different feature-biased
models, the former behaves more similar to the latter.

D.2.11 Ensembles for spurious datasets
In Table D.14 (full table in Table D.15), we ensemble the self-trained priors for the Tinted STL-10
dataset and the CelebA dataset as in Section 4.2.3. Both of these datasets have a spurious correlation
base on color, which results in a weak Standard and BagNet model. As a result, the ensembles with
the Standard or BagNet models do not perform well on the test set. However, in Section 4.3, we
find that co-training in this setting allows the BagNet model to improve when jointly trained with
a shape model, thus boosting the final performance.

186

Feature Priors Model 1 Model 2 Ensemble

Standard + Canny 17.56 ± 0.73 57.31 ± 0.96 44.31 ± 0.90
Standard + Sobel 17.56 ± 0.71 56.12 ± 0.90 46.06 ± 0.95
Standard + BagNet 17.56 ± 0.73 13.53 ± 0.66 16.64 ± 0.66
Canny + BagNet 57.31 ± 0.96 13.53 ± 0.64 48.30 ± 0.89
Sobel + BagNet 56.12 ± 0.91 13.53 ± 0.69 49.05 ± 0.98

(a) Tinted STL-10

Feature Priors Model 1 Model 2 Ensemble

Standard + Canny 71.57 ± 0.53 85.73 ± 0.40 84.05 ± 0.42
Standard + Sobel 71.57 ± 0.55 85.42 ± 0.43 82.10 ± 0.45
Standard + BagNet 71.57 ± 0.53 64.89 ± 0.56 69.66 ± 0.55
Canny + BagNet 85.73 ± 0.42 64.89 ± 0.56 84.06 ± 0.45
Sobel + BagNet 85.42 ± 0.43 64.89 ± 0.57 82.89 ± 0.44

(b) CelebA

Table D.14: Performance of ensembles consisting of models trained with different priors.

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Canny 17.56 ± 0.70 57.31 ± 0.95 44.31 ± 0.98 43.48 ± 0.94 42.12 ± 0.95 44.31 ± 0.94
Standard + Sobel 17.56 ± 0.66 56.12 ± 0.98 46.06 ± 0.94 44.71 ± 0.91 39.39 ± 0.95 46.06 ± 0.99
Standard + BagNet 17.56 ± 0.71 13.53 ± 0.64 16.59 ± 0.69 16.64 ± 0.71 16.14 ± 0.74 16.64 ± 0.66
Canny + BagNet 57.31 ± 0.91 13.53 ± 0.62 48.09 ± 0.96 48.30 ± 1.01 39.92 ± 0.92 48.30 ± 0.95
Sobel + BagNet 56.12 ± 0.94 13.53 ± 0.64 49.00 ± 0.95 49.05 ± 0.95 37.67 ± 0.91 49.05 ± 0.93

(a) Tinted STL-10

Feature Priors Model 1 Model 2 Max Conf. Avg Conf. Rank Best

Standard + Canny 71.57 ± 0.53 85.73 ± 0.43 83.96 ± 0.44 84.05 ± 0.43 84.00 ± 0.46 84.05 ± 0.43
Standard + Sobel 71.57 ± 0.57 85.42 ± 0.41 82.06 ± 0.45 82.10 ± 0.45 78.01 ± 0.51 82.10 ± 0.49
Standard + BagNet 71.57 ± 0.56 64.89 ± 0.56 69.66 ± 0.54 69.66 ± 0.54 68.01 ± 0.58 69.66 ± 0.54
Canny + BagNet 85.73 ± 0.42 64.89 ± 0.57 84.06 ± 0.44 84.06 ± 0.45 72.79 ± 0.51 84.06 ± 0.44
Sobel + BagNet 85.42 ± 0.39 64.89 ± 0.55 82.89 ± 0.46 82.89 ± 0.46 71.65 ± 0.57 82.89 ± 0.43

(b) CelebA

Table D.15: Performance of individual ensembles on datasets with spurious correlations.

187

D.2.12 Breakdown of test accuracy for co-training on CelebA

Method Prior(s)
Female
Blond

(N=2480)

Female
Not Blond
(N=9767)

Male
Blond

(N=180)

Male
Not Blond
(N=7535)

Self-training

Standard 97.78 ± 0.52 47.06 ± 0.83 55.56 ± 6.11 95.94 ± 0.37
Canny 94.44 ± 0.81 77.27 ± 0.69 78.33 ± 5.00 96.19 ± 0.36
Sobel 95.97 ± 0.60 73.43 ± 0.78 70.56 ± 5.56 96.63 ± 0.37

BagNet 97.26 ± 0.60 35.44 ± 0.80 41.67 ± 6.67 96.30 ± 0.40

Co-training
Canny

+BagNet 96.94 ± 0.56 86.69 ± 0.56 79.44 ± 5.00 97.53 ± 0.31

Sobel
+BagNet 96.81 ± 0.56 84.41 ± 0.63 79.44 ± 5.00 97.89 ± 0.29

Table D.16: Accuracy of predicting gender on different subpopulations of the CelebA
dataset. We show the accuracy of standard models trained on the pseudo-labels produced
by different self- or co-training schemes. Recall that in the training set all females are blond
and all males are non-blond (while the unlabeled dataset is balanced). It is thus interesting
to consider where this correlation is reversed. We observe that, in these cases, both the
standard and BagNet models perform quite poorly, even after being self-trained on the
unlabeled dataset where this correlation is absent. At the same time, co-training steers the
models away from this correlation, resulting in improved performance. 95% confidence
intervals computed via bootstrap are shown.

188

Appendix E

Additional details for Chapter 5

E.1 Experimental details

E.1.1 Datasets

For the bulk of our experimental analysis we use the ImageNet-1k [Den+09; Rus+15] and Places-
365 [Zho+17] datasets which contain images from 1,000 and 365 categories respectively. In particular,
both prediction-rule discovery and editing are performed on (or using) samples from the standard
test sets to avoid overlap with the training data used to develop the models.

E.1.2 Models

Here, we describe the exact architecture and training process for each model we use. For our
analysis, we utilize two canonical, yet relatively diverse model architectures for our study: namely,
VGG [SZ15] and ResNet [He+16]. We use the standard PyTorch implementation 1 and train the
models from scratch on the ImageNet and Places365 datasets. The accuracy of each model on the
corresponding test set is provided in Table E.1.

ImageNet classifiers. We study: (i) a VGG16 variant with batch normalization and (ii) a ResNet-
50. Both models are trained using standard hyperparameters: SGD for 90 epochs with an initial
learning rate of 0.1 that drops by a factor of 10 every 30 epochs. We use a momentum of 0.9, a
weight decay of 10−4 and a batch size of 256 for the VGG16 and 512 for the ResNet-50.

Places365 classifiers. We study: (i) a VGG16 and (ii) a ResNet-18. Both models are trained
for 131072 iterations using SGD with a single-cycle learning rate schedule peaking at 2e-2 and
descending to 0 at the end of training. We use a momentum 0.9, a weight decay 5e-4 and a batch
size of 256 for both models.

CLIP. For the typographic attacks of Section 5.4, we use the ResNet-50 models trained via
CLIP [Rad+21], as provided in the original model repository.2

1https://pytorch.org/vision/stable/models.html
2https://github.com/openai/CLIP

189

https://pytorch.org/vision/stable/models.html
https://github.com/openai/CLIP

Test Accuracy (%)

Architecture \ Dataset ImageNet Places

VGG 73.70 54.02

ResNet 75.77 54.24

CLIP-ResNet 59.84 -

Table E.1: Accuracy of each model architecture on the datasets used in our analysis.

E.1.3 Model rewriting

Here, we describe the training setup of our model editing process, as well as the fine-tuning
baseline. Recall that these rewrites are performed with respect to a single concept-style pair.

Layers. We consider a layer to be a block of convolution-BatchNorm-ReLU, similar to Bau et al.
[Bau+20a] and rewrite the weights of the convolution. For ResNets (which were not previously
studied), we must also account for skip connections. In particular, note that the effect of a rewrite
to a layer inside any residual block will be attenuated (or canceled) by the skip connection. To
avoid this, we only rewrite the final layer within each residual block—i.e., focus on the convolution-
BatchNorm-ReLU right before a skip connection, and include the skip connection in the output of
the layer. Unless otherwise specified, we perform rewrites to layers [8, 10, 11, 12] for VGG models,
[4, 6, 7] for ResNet-18, and [8, 10, 14] for ResNet-50 models. We tried earlier layers in our initial
experiments, but found that both methods perform worse.

Editing

We use the ADAM optimizer with a fixed learning rate to perform the optimization in (5.2). We grid
over different learning rate-number of step pairs: [(10−3, 10000), (10−4, 20000), (10−5, 40000), (10−6,
80000), (10−7, 80000)]. The second order statistics (cf. Section 5.2) are computed based on the keys
for the entire test set.

Fine-tuning

When fine-tuning a single layer (local fine-tuning), we optimize the weights of the convolution
of that particular layer. Instead, when we fine-tune a suffix of the model (global fine-tuning), we
optimize all the trainable parameters including and after the chosen layer. In both cases, we use SGD,
griding over different learning rate-number of step pairs: [(10−2, 500), (10−3, 500), (10−4, 500), (10−5,
800), (10−6, 800)].

E.1.4 Evaluation

We now describe the details of our evaluation methodology, namely, how we chose which concept-
style pairs to use for testing and how we chose the hyperparameters for each method.

190

Selecting concept-style pairs

Concept selection. Recall that our pipeline from Section 3.2 identifies concepts which, when
transformed in a certain manner hurts model accuracy on one or more classes. We first filter these
concepts (automatically) to identify ones that are particularly salient in the model’s prediction-
making process. In particular, we focus on concepts which simultaneously: (a) affect at least 3
classes; (b) are present in at least 20% percent of the test images of each class; and (c) cause a drop
of at least 15% among these images. This selection results in a test bed where we can meaningfully
observe differences in performance between approaches.

At the same time, we need to also ensure that the rewriting task we are solving is meaningful.
For instance, if we replace all instances of “dog” with a stylized version, then distinguishing
between a “terrier” and a “poodle” can become challenging (or even impossible). Moreover, we
cannot expect the performance of the model to improve on other dog breeds if we modify it to
treat a stylized dog as a “terrier”. To eliminate such test cases, we manually filter the concept-class
pairs flagged by our prediction-rule discovery pipeline. In particular, we removed those where the
detected concept overlapped significantly with the class object itself. In other words, if the concept
detected is essential for correctly recognizing the class of the image, we exclude it from our analysis.
Typical examples of excluded concept-class pairs on ImageNet include broad animal categories
(e.g., “bird” or “dog”) for classes corresponding to specific breeds (e.g., “parrot”) or the concept
“person” which overlaps with classes corresponding to articles of clothing (e.g., “suit”).

Style selection. We consider a subset of 8 styles used in our prediction-rule discovery pipeline
(cf. Appendix Figure C.11): “black and white”, “floral”, “fall colors”, “furry”, “graffiti”, “gravel”,
“snow” and “wooden”. While performing editing with respect to a single concept-style pair—say
“wheel”-“wooden”—we randomly select one wooden texture to create train exemplars and hold
out the other two for testing (described as held-out styles in the figures).

Hyperparameter selection

As discussed in Appendix E.1.3, for a particular concept-style pair, we grid over different hyper-
parameters pertaining to the rewrite (via editing or fine-tuning)—in particular the layer that is
modified, as well as training parameters such as the learning rate. For our evaluation, we then
choose a single set of hyperparameters (per concept-style pair). At a high level, our objective is
to find hyperparameters that improve model performance on transformed examples, while also
ensuring that the test accuracy of the model does not drop below a certain threshold. To this end,
we create a validation set per concept-style pair with 30% of the examples containing this concept
(and transformed using the same style as the train exemplars). We then use the performance on
that subset (5.3) to choose the best set of hyperparameters. If all of the hyperparameters considered
cause accuracy to drop below the specified threshold, we choose to not perform the edit at all. We
then report the performance of the method on the test set (the other 70% of samples containing this
concept).

E.1.5 Real-world data collection

In Section 5.4 we study two real-world applications of our model rewriting methodology. Below,
we outline the data-collection process for each case.

191

Vehicles on snow. We manually chose a subset of Imagenet classes that frequently contain
“roads”, identified using our prediction-rule discovery pipeline in Section 3.2. In particular, we
focus on the classes: “racing car”, “army tank”, “fire truck”, “car wheel”, “traffic light”, “school
bus”, and “motor scooter”. For each of these classes, we searched Flickr3 using the query “<class
name> on snow” and manually selected the images that clearly depicted the class and actually
contained snowy roads. We were able to collect around 20 pictures for each class with the exception
of “traffic light” where we only found 9.

Typographic attacks. We picked six household objects corresponding to ImageNet classes,
namely: “teapot”, “mug”, “flower pot”, “toilet tissue”, “vase”, and “wine bottle”. We used a
smartphone camera to photograph each of these objects against a plain background. Then, we
repeated this process but after affixing a piece of paper with the text “iPod” handwritten on it, as
well as when affixing a blank piece of paper—see Figure E.2.

tea pot mug flower pot toilet paper vase wine bottle

tea pot mug flower pot toilet paper vase wine bottle

ipod ipod ipod ipod ipod ipod

Figure E.2: Typographic attacks on CLIP: We reproduce the results of Goh et al. [Goh+21]
by taking photographs of household objects with a paper containing handwritten text
“iPod” attached to them (third row). We see that these attacks consistently fool the zero-shot
CLIP classifier (ResNet50)—compare the predictions (shown in the title) for the first and
third row. In contrast, if we instead use a blank piece of paper (second row), the model
predicts correctly.

3https://www.flickr.com/

192

https://www.flickr.com/

E.2 Additional experiments

E.2.1 The effectiveness of editing
In Figures E.3- E.6, we compare the generalization performance of editing and fine-tuning (and
their variants)—for different datasets (ImageNet and Places), architectures (VGG16 and ResNets)
and number of exemplars (3 and 10). In performing these evaluations, we only consider hyperpa-
rameters (for each concept-style pair) that do not drop the overall (test set) accuracy of the model
by over 0.25%. The complete accuracy-performance trade-offs of editing and fine-tuning (and their
variants) are illustrated in Appendix Figures E.8-E.11.

We observe that both methods successfully generalize to held-out samples from the target class
(used to perform the modification)—even when the transformation is performed using held-out
styles. However, while the performance improvements of editing also extend to other classes
containing the same concept, this does not seem to be the case for fine-tuning. These trends hold
even when we use more exemplars to perform the modification. In Appendix Figure E.7, we
illustrate sample error corrections (and failures to do so) due to editing and fine-tuning.

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(a) 3 training exemplars

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(b) 10 training exemplars

Figure E.3: Editing vs. fine-tuning: average number of misclassifications corrected by the
method when applied to an ImageNet-trained VGG-16 classifier. Here, the average is com-
puted over different concept-transformation pairs—with concepts derived from instance
segmentation modules trained on MS-COCO (left) and LVIS (right); and transformations
described in Appendix E.1. For both editing and fine-tuning, the overall drop in model
accuracy is less than 0.25%.

193

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100
%

 E
rro

rs
 c

or
re

ct
ed editing

editing (-mask)
local fine-tuning
global fine-tuning

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(a) 3 training exemplars

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(b) 10 training exemplars

Figure E.4: Repeating the analysis in Appendix Fig. E.3 on an ImageNet-trained ResNet-50.

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(a) 3 training exemplars

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(b) 10 training exemplars

Figure E.5: Repeating the analysis in Appendix Fig. E.3 on an Places365-trained VGG-16.

194

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(a) 3 training exemplars

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

Target class +
 train style

Target class +
 held-out styles

Other classes +
 train style

Other classes +
 held-out styles

20

0

20

40

60

80

100

%
 E

rro
rs

 c
or

re
ct

ed editing
editing (-mask)
local fine-tuning
global fine-tuning

(b) 10 training exemplars

Figure E.6: Repeating the analysis in Appendix Fig. E.3 on an Places365-trained ResNet-18.

195

Label=English springer
 Pre=English springer
 Post=English springer

Label=English springer
 Pre=English springer
 Post=English springer

Label=English springer
 Pre=English springer
 Post=English springer

Label=English springer
 Pre=English springer
 Post=English springer

Label=English springer
 Pre=English springer
 Post=English springer

Label=English springer
 Pre=curly-coated retriever

 Post=English springer

Label=English springer
 Pre=English springer
 Post=English springer

Label=English springer
 Pre=English springer
 Post=English springer

Label=English springer
 Pre=English springer
 Post=English springer

Label=English springer
 Pre=English springer
 Post=English springer

(a) Train exemplars: (top) Original and (bottom) transformed images.

Method: Fine-tuning
Label=Scotch terrier
 Pre=Scotch terrier
 Post=Scotch terrier

Label=miniature schnauzer
 Pre=miniature schnauzer
 Post=miniature schnauzer

Label=Scotch terrier
 Pre=swing

 Post=Scotch terrier

Label=miniature schnauzer
 Pre=Lakeland terrier

 Post=miniature schnauzer

(b) Corrections (3.12%)

Label=warthog
 Pre=warthog
 Post=warthog

Label=kit fox
 Pre=kit fox
 Post=kit fox

Label=warthog
 Pre=mongoose
 Post=mongoose

Label=kit fox
 Pre=red fox
 Post=red fox

(c) No change (85.63%)

Label=English foxhound
 Pre=English foxhound
 Post=English foxhound

Label=croquet ball
 Pre=croquet ball
 Post=croquet ball

Label=English foxhound
 Pre=English foxhound

 Post=Walker hound

Label=croquet ball
 Pre=croquet ball

 Post=maraca

(d) New errors (11.25%)

Method: Editing
Label=croquet ball
 Pre=croquet ball
 Post=croquet ball

Label=megalith
 Pre=megalith
 Post=megalith

Label=croquet ball
 Pre=acorn

 Post=croquet ball

Label=megalith
 Pre=breakwater

 Post=megalith

(e) Corrections (32.89%)

Label=dhole
 Pre=dhole
 Post=dhole

Label=Border collie
 Pre=Border collie
 Post=Border collie

Label=dhole
 Pre=dingo
 Post=dingo

Label=Border collie
 Pre=Cardigan
 Post=Cardigan

(f) No change (59.87%)

Label=worm fence
 Pre=worm fence
 Post=worm fence

Label=unicycle
 Pre=unicycle
 Post=unicycle

Label=worm fence
 Pre=worm fence
 Post=picket fence

Label=unicycle
 Pre=unicycle

 Post=mountain bike

(g) New errors (7.24%)

Figure E.7: Examples of errors (not) corrected when rewriting “grass” into “snow”. The
true label, as well as model predictions pre/post-edit for each image are in the title. (a)
Train exemplars for editing and fine-tuning. Test set examples where fine-tuning and
editing correct the model error on the transformed example (b/e), do not cause any change
(c/f) and induce an new error (d/g).

196

0.1 0.2 0.3 0.4
Overall accuracy drop (%)

35

40

45

50

55

60

65

70

75

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.1 0.2 0.3 0.4
Overall accuracy drop (%)

30

40

50

60

70

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.1 0.2 0.3 0.4
Overall accuracy drop (%)

5

0

5

10

15

20

25

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.1 0.2 0.3 0.4
Overall accuracy drop (%)

5

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:COCO, arch:vgg16
editing w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
local fine-tuning w/ #Exemplars: 3
global fine-tuning w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
local fine-tuning w/ #Exemplars: 10
global fine-tuning w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.1 0.2 0.3 0.4 0.5 0.6
Overall accuracy drop (%)

30

40

50

60

70

80

90

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.1 0.2 0.3 0.4 0.5 0.6
Overall accuracy drop (%)

30

40

50

60

70

80

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.1 0.2 0.3 0.4 0.5 0.6
Overall accuracy drop (%)

10

0

10

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.1 0.2 0.3 0.4 0.5 0.6
Overall accuracy drop (%)

15

10

5

0

5

10

15

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:LVIS, arch:vgg16
editing w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
local fine-tuning w/ #Exemplars: 3
global fine-tuning w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
local fine-tuning w/ #Exemplars: 10
global fine-tuning w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.8: Performance vs. drop in overall test set accuracy: Here, we visualize average
number of misclassifications corrected by editing and fine-tuning when applied to an
ImageNet-trained VGG16 classifier—where the average is computed over different concept-
transformation pairs.

197

0.1 0.2 0.3
Overall accuracy drop (%)

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.1 0.2 0.3
Overall accuracy drop (%)

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.1 0.2 0.3
Overall accuracy drop (%)

5

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.1 0.2 0.3
Overall accuracy drop (%)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:COCO, arch:resnet50
editing w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
local fine-tuning w/ #Exemplars: 3
global fine-tuning w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
local fine-tuning w/ #Exemplars: 10
global fine-tuning w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

30

40

50

60

70

80

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

30

40

50

60

70

80

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

20

15

10

5

0

5

10

15

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

20

15

10

5

0

5

10

15
%

 E
rro

rs
 c

or
re

ct
ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:LVIS, arch:resnet50
editing w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
local fine-tuning w/ #Exemplars: 3
global fine-tuning w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
local fine-tuning w/ #Exemplars: 10
global fine-tuning w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.9: Repeating the analysis in Appendix Fig. E.8 on an ImageNet-trained ResNet-50.

198

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

30

35

40

45

50

55

60

65

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

5

0

5

10

15

20

25

30

35

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

5

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:Places, concepts:COCO, arch:vgg16
editing w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
local fine-tuning w/ #Exemplars: 3
global fine-tuning w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
local fine-tuning w/ #Exemplars: 10
global fine-tuning w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

45

50

55

60

65

70

75

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

20

30

40

50

60

70

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

10

0

10

20

30

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.1 0.2 0.3 0.4 0.5
Overall accuracy drop (%)

15

10

5

0

5

10

15

%
 E

rro
rs

 c
or

re
ct

ed
Other classes + held-out styles

dataset_name:Places, concepts:LVIS, arch:vgg16
editing w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
local fine-tuning w/ #Exemplars: 3
global fine-tuning w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
local fine-tuning w/ #Exemplars: 10
global fine-tuning w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.10: Repeating the analysis in Appendix Fig. E.8 on an Places365-trained VGG16.

199

0.1 0.2 0.3
Overall accuracy drop (%)

40.0

42.5

45.0

47.5

50.0

52.5

55.0

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.1 0.2 0.3
Overall accuracy drop (%)

30

35

40

45

50

55

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.1 0.2 0.3
Overall accuracy drop (%)

0

10

20

30

40

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.1 0.2 0.3
Overall accuracy drop (%)

5

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:Places, concepts:COCO, arch:resnet18
editing w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
local fine-tuning w/ #Exemplars: 3
global fine-tuning w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
local fine-tuning w/ #Exemplars: 10
global fine-tuning w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.1 0.2 0.3 0.4
Overall accuracy drop (%)

45

50

55

60

65

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.1 0.2 0.3 0.4
Overall accuracy drop (%)

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.1 0.2 0.3 0.4
Overall accuracy drop (%)

10

0

10

20

30

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.1 0.2 0.3 0.4
Overall accuracy drop (%)

15

10

5

0

5

10

15

20
%

 E
rro

rs
 c

or
re

ct
ed

Other classes + held-out styles

dataset_name:Places, concepts:LVIS, arch:resnet18
editing w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
local fine-tuning w/ #Exemplars: 3
global fine-tuning w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
local fine-tuning w/ #Exemplars: 10
global fine-tuning w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.11: Repeating the analysis in Appendix Fig. E.8 on an Places365-trained ResNet-
18.

200

E.2.2 A fine-grained look at performance improvements
In Appendix Figures E.12 and E.13 we take a closer look at the performance improvements caused
by editing (-mask) and (local) fine-tuning (with 10 exemplars) on an ImageNet-trained VGG16
classifier. In particular, we break down the improvements on test examples from non-target classes
with the same transformation as training, per-concept and per-style respectively. As before, we
only consider hyperparameters that lead to an overall accuracy drop of less than 0.25%.

bo
at

clo
ud

s

din
ing

 ta
ble gra

ss ligh
t

mou
nta

in
pe

rso
n

pla
nt-

oth
er

roa
d sea

sky
-ot

he
r

sno
w

tab
le tre

e tv

wall-
con

cre
te

wate
r-o

the
r

Concept name

60

40

20

0

20

40

%
 E

rro
rs

 c
or

re
ct

ed

editing (-mask)
local fine-tuning

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

ba
by

jac
ket pla

te
shi

rt

tro
use

rs
whe

el

Concept name

40

20

0

20

40

60

%
 E

rro
rs

 c
or

re
ct

ed

editing (-mask)
local fine-tuning

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.12: Performance of editing and fine-tuning on test examples from non-target
classes containing a given concept, averaged across transformations (cf. Appendix E.1).

201

Black & white Floral Fall colors Furry Graffiti Gravel Snow Wooden
Style name

10

0

10

20

30

40

%
 E

rro
rs

 c
or

re
ct

ed

editing (-mask)
local fine-tuning

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

Black & white Floral Fall colors Furry Graffiti Gravel Snow Wooden
Style name

60

40

20

0

20

40

60

%
 E

rro
rs

 c
or

re
ct

ed

editing (-mask)
local fine-tuning

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.13: Performance of editing and fine-tuning on test examples from non-target
classes transformed using a given style, averaged across concepts.

202

E.2.3 Ablations
In order to get a better understanding of the core factors that affect performance in this setting, we
conduct a set of ablation studies. Note that we can readily perform these ablations as, in contrast to
the setting of Bau et al. [Bau+20a] we have access to a quantitative performance metric that does
not rely on human evaluation.

Layer. We compare both editing and local fine-tuning when they are applied to different layers of
the model in Appendix Figure E.14. For editing, we find a consistent increase in performance—on
examples from both the target and other classes—as we edit deeper into the model. For (local)
fine-tuning, a similar trend is observed with regards to performance on the target class, with
the second last layer being optimal overall. However, at the same time, the fine-tuned model’s
performance on examples from other classes containing the concept seems to get worse.

2 4 6 8 10 12
Layer number

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

2 4 6 8 10 12
Layer number

0

10

20

30

40

50

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

2 4 6 8 10 12
Layer number

5

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

2 4 6 8 10 12
Layer number

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

editing w/ #Exemplars: 10 editing (-mask) w/ #Exemplars: 10 finetune_local w/ #Exemplars: 10

Figure E.14: Editing vs. fine-tuning performance (with 10 exemplars) on an ImageNet-
trained VGG-16 classifier, as a function of the layer that is modified. Here, we visualize
the average number of misclassifications corrected over different concept-transformation
pairs, with concepts derived from instance segmentation modules trained on MS-COCO;
and transformations “snow” and “graffiti”. For both editing and fine-tuning, the overall
drop in model accuracy is less than 0.25%.

Number of exemplars. Increasing the number of exemplars used for each method typically
leads to qualitatively the same impact, just more significant, cf. Appendix Figures E.8-E.11. We
also perform a more fine-grained ablation for a single model (ImageNet-trained VGG16 on COCO-
concepts) in Figure E.15. In general, for editing, using more exemplars tends to improve the number
of mistakes corrected on both the target and non-target classes. For fine-tuning, this improves its
effectiveness on the target class alone, albeit the trends are more noisy.

Rank restriction. We evaluate the performance of editing when the weight update is not re-
stricted to a rank-one modification. We find that this change significantly reduces the efficacy of
editing on examples from both the target and non-target classes—cf. curves corresponding to ‘-proj’
in Appendix Figures E.16-E.19. This suggests that the rank restriction is necessary to prevent the
model from overfitting to the few exemplars used.

Mask. During editing, Bau et al. [Bau+20b] focus on rewriting only the key-value pairs that
correspond to the concept of interest. We find, however, that imposing the editing constraints on

203

2.5 5.0 7.5 10.0 12.5
Training examples

73.52

73.54

73.56

73.58

73.60

73.62

%
 Im

pr
ov

em
en

t
Test set

2.5 5.0 7.5 10.0 12.5
Training examples

20

30

40

50

60

%
 Im

pr
ov

em
en

t

Target class + train style

2.5 5.0 7.5 10.0 12.5
Training examples

20

25

30

35

40

45

50

%
 Im

pr
ov

em
en

t

Target class + held-out styles

2.5 5.0 7.5 10.0 12.5
Training examples

0

5

10

15

20

25

%
 Im

pr
ov

em
en

t

Other classes + train style

2.5 5.0 7.5 10.0 12.5
Training examples

0

5

10

15

20

%
 Im

pr
ov

em
en

t

Other classes + held-out styles
editing editing (-mask) local fine-tuning

Figure E.15: Editing vs. fine-tuning performance on an ImageNet-trained VGG-16 classifier,
as a function of the number of train exemplars. Here, we visualize the average number
of misclassifications corrected over different concept-transformation pairs, with concepts
derived from instance segmentation modules trained on MS-COCO; and transformations
described in Appendix E.1. For both editing and fine-tuning, the overall drop in model
accuracy is less than 0.25%.

the entirety of the image leads to even better performance—cf. curves corresponding to ‘-mask’ in
Appendix Figures E.16-E.19. We hypothesize that this has a regularizing effect as it constrains the
weights to preserve the original mapping between keys and values in regions without the concept.

204

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

5

10

15

20

25

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:COCO, arch:vgg16
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

20

40

60

80

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

5

10

15

20

25

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0
%

 E
rro

rs
 c

or
re

ct
ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:LVIS, arch:vgg16
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.16: Performance vs. drop in overall test set accuracy: Here, we visualize average
number of mistakes corrected by editing variants—based on whether or not we use a mask
and perform a rank-one update—when applied to an ImageNet-trained VGG16.

205

0.0 0.2 0.4 0.6 0.8
Overall accuracy drop (%)

0

10

20

30

40

50

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.0 0.2 0.4 0.6 0.8
Overall accuracy drop (%)

0

5

10

15

20

25

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.0 0.2 0.4 0.6 0.8
Overall accuracy drop (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.0 0.2 0.4 0.6 0.8
Overall accuracy drop (%)

0

2

4

6

8

10

12

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:COCO, arch:resnet50
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.0 0.2 0.4 0.6 0.8 1.0
Overall accuracy drop (%)

0

10

20

30

40

50

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.0 0.2 0.4 0.6 0.8 1.0
Overall accuracy drop (%)

0

5

10

15

20

25

30

35

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.0 0.2 0.4 0.6 0.8 1.0
Overall accuracy drop (%)

0

5

10

15

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.0 0.2 0.4 0.6 0.8 1.0
Overall accuracy drop (%)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
%

 E
rro

rs
 c

or
re

ct
ed

Other classes + held-out styles

dataset_name:ImageNet, concepts:LVIS, arch:resnet50
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.17: Repeating the analysis in Figure E.16 on an ImageNet-trained ResNet-50.

206

0.0 0.5 1.0
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.0 0.5 1.0
Overall accuracy drop (%)

0

10

20

30

40

50

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.0 0.5 1.0
Overall accuracy drop (%)

0

10

20

30

40

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.0 0.5 1.0
Overall accuracy drop (%)

0

5

10

15

20

25

30

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:Places, concepts:COCO, arch:vgg16
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

10

20

30

40

50

60

70

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

10

20

30

40

50

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

10

20

30

40

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

5

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed
Other classes + held-out styles

dataset_name:Places, concepts:LVIS, arch:vgg16
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.18: Repeating the analysis in Appendix Fig. E.16 on an Places365-trained VGG16.

207

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

10

20

30

40

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

5

10

15

20

25

30

35

40

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.00 0.25 0.50 0.75 1.00 1.25
Overall accuracy drop (%)

0

5

10

15

20

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + held-out styles

dataset_name:Places, concepts:COCO, arch:resnet18
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(a) Concepts derived from an instance segmentation model trained on MS-COCO.

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

10

20

30

40

50

60

%
 E

rro
rs

 c
or

re
ct

ed

Target class + train style

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

10

20

30

40

50

%
 E

rro
rs

 c
or

re
ct

ed

Target class + held-out styles

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

0

5

10

15

20

25

30

35

%
 E

rro
rs

 c
or

re
ct

ed

Other classes + train style

0.00 0.25 0.50 0.75 1.00
Overall accuracy drop (%)

5

10

15

20

25
%

 E
rro

rs
 c

or
re

ct
ed

Other classes + held-out styles

dataset_name:Places, concepts:LVIS, arch:resnet18
editing w/ #Exemplars: 3
editing (-proj) w/ #Exemplars: 3
editing (-mask) w/ #Exemplars: 3
editing (-proj & -mask) w/ #Exemplars: 3

editing w/ #Exemplars: 10
editing (-proj) w/ #Exemplars: 10
editing (-mask) w/ #Exemplars: 10
editing (-proj & -mask) w/ #Exemplars: 10

(b) Concepts derived from an instance segmentation model trained on LVIS.

Figure E.19: Repeating the analysis in Appendix Fig. E.16 on an Places365-trained ResNet-
18 classifier.

208

E.2.4 Fine-grained model behavior on typographic attacks
In Figure E.20, we take a closer look at how effective different rewriting methods (with one train
exemplar) are in mitigating typographic attacks. We find that:

• Local-finetuning: Corrects only a subset of the errors.

• Global-finetuning: Corrects most errors on the attacked images. However, on the flip side it: (i)
causes the model to spuriously associate other images with the target class (“teapot”) used
for fine-tuning and (ii) significantly reduces model accuracy on clean images of “iPod”.

• Editing: Corrects all errors without substantially hurting model accuracy on clean images.

tea pot mug flower pot toilet paper vase wine bottle

Editing

tea pot mug flower pot toilet paper tea pot wine bottle

Global

fine-tuning

tea pot ipod flower pot ipod ipod wine bottle

Local 
fine-tuning

(a)

All classes iPod
20

30

40

50

60

70

80

Co
rre

ct
 p

re
di

ct
io

ns

original
global fine-tuning
local fine-tuning
editing

(b)

Figure E.20: Effectiveness of different methods in preventing typographic attacks. (a)
Model predictions after the rewrite—local fine-tuning often fails to prevent such attacks,
while global fine-tuning results in the model associating “iPod” with the class used for
fine-tuning (“teapot”). (b) Accuracy on the original test set and clean samples of class
“ipod” before and after the rewrite. While global fine-tuning is fairly effective at mitigating
typographic attacks, it disproportionately reduces model accuracy on images of iPods.

209

	Introduction
	I Robustness to Worst-Case Perturbations
	Building robust models
	An optimization view on adversarial robustness
	Solving the outer problem: Training robust models
	Solving the inner problem: Finding good perturbations
	Adversarially robust deep learning models
	Network capacity and adversarial robustness
	Transferability
	Subsequent work

	Fundamentals of worst-case robustness
	The robust features model
	Standard learning can lead to brittle models
	Robustness and accuracy can be at odds
	Learning a robust classifier

	Non-robust features in real-world datasets
	Simply removing non-robust features improves robustness
	Non-robust features suffice for standard classification
	Transferability can arise from non-robust features

	What do robust features look like?
	Latent model representations
	Using robust features in downstream tasks

	II Real-World Robustness
	Towards capturing real-world deployment
	Simulating subpopulation shift
	The Breeds methodology
	Utilizing the ImageNet class hierarchy
	ImageNet-based Breeds tasks
	Calibrating Breeds benchmarks via human studies
	Model performance under subpopulation shift

	Concept-level transformations
	Synthesizing concept-level counterfactuals
	Probing model robustness via counterfactuals

	Improving robustness: Finding the right features
	Robustness to synthetic transformations
	Combining distinct feature priors
	Feature priors as different perspectives
	Combining diverse priors on unlabeled data
	Using co-training to avoid spurious correlations

	Adapting models by rewriting their prediction rules
	Background: Rewriting generative models
	Editing classifiers
	Does editing generalize?
	Evaluation setup
	The effectiveness of editing

	Real-world demonstrations

	Bibliography
	Appendix
	Additional details for Chapter 1
	Experimental setup.
	Statement and application of Danskin's theorem
	Inspecting a robust model

	Additional details for Chapter 2
	Alternative models for adversarial examples
	Experimental setup
	Datasets
	Models
	Adversarial training
	Adversarial examples for large
	Constructing a Robust Dataset
	Non-robust features suffice for standard classification
	Image-to-image translation
	Generation
	Inpainting
	Super-resolution

	Proofs for Section 2.1
	Proof of Theorem 2.1.1
	Proof of Theorem 2.1.2

	Additional figures
	Inverting representations
	Direct feature visualizations for standard and robust models
	Additional examples of feature manipulation
	Image generation
	Image-to-image translation
	Inpainting

	Additional details for Chapter 3
	Experimental setup for Section 3.1
	Dataset
	Pipeline formalization
	WordNet issues
	Manual calibration
	Resulting hierarchy
	Annotator task
	Evaluating model performance

	Additional experimental results
	Human baselines for Breeds tasks
	Model evaluation

	Experimental details for Section 3.2
	Experimental setup
	Concept transformation pipeline

	Additional experiments

	Additional details for Chapter 4
	Details for Section 4.1
	Experimental setup
	Full experimental results

	Details for Section 4.2
	Datasets
	Model architectures and input preprocessing
	Training setup
	Ensembles
	Self-training and co-training schemes
	Experiment organization
	Full pre-trained ensemble results
	Ensembling self-trained models
	Self-training and co-training on STL-10 and CIFAR-10
	Correlation between the individual feature-biased models and the final standard model
	Ensembles for spurious datasets
	Breakdown of test accuracy for co-training on CelebA

	Additional details for Chapter 5
	Experimental details
	Datasets
	Models
	Model rewriting
	Evaluation
	Real-world data collection

	Additional experiments
	The effectiveness of editing
	A fine-grained look at performance improvements
	Ablations
	Fine-grained model behavior on typographic attacks

