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Abstract

Ultra-wideband (UWB) is a modern range measurement technology which can pro-
vide high-speed, low-cost ranging, however UWB measurements can be difficult to
model. In an effort to increase accuracy of localization using UWB, this thesis de-
velops models to better understand the complex error patterns of UWB range mea-
surements, specifically how separation distance and relative angle between modules
affect error. These models are used to develop three error prediction and correction
methods to improve localization: (1) range-based error correction, (2) angle-based
error correction, and (3) fused range-angle error correction. While it was found that
decreasing mean measurement error does not always decrease localization error, the
lowest measurement error and lowest localization error both resulted from the fused
error correction method. The fused error model combines the separation distance
and relative angle models to predict and correct for range error, decreasing the mean
measurement error by over 80%, the mean localization error by approximately 35%
when using least squares estimation, and by approximately 56% when smoothing the
trajectory with a Kalman Filter.

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Using range measurements to localize an agent’s position is referred to as trilateration.

Trilateration is a well-researched area and is used by familiar technologies such as the

Global Positioning System (GPS). There has been a substantial amount of work on

trilateration for robot localization in various domains, such as for underwater vehicles

using acoustic beacons, however the problem of localization with Ultra-Wideband

(UWB) range measurements remains difficult, due in part to the challenge of modeling

UWB range measurement errors. This thesis investigates the problem of localization

for small mobile robots using UWB ranging in indoor environments.

UWB has been investigated for several decades, but has only recently begun to

see widespread integration into commercial products, such as smartphones and smart

home gadgets. It is seen by companies as a strong option for short-distance (typically

<100 meters), high-speed data transfer (such as Apple’s AirDrop feature) and for

range-based localization [22]. UWB’s wide bandwidth gives its signal the ability to

travel through walls and other solid objects, making it a good alternative to traditional

ranging technologies (lidar, ultrasound, etc.) for localization in complex environments

[21]. In addition to its ability to measure ranges without a direct line-of-sight (LOS)

between the modules, UWB is low-power, making it safe around humans and medical

devices and a good candidate for use in hospitals [14] and in assisted living facilities

[1] for tasks such as patient tracking.

UWB’s low-power ranging and ability to function under non-line-of-sight (NLOS)
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conditions is advantageous in many scenarios, however UWB still has its challenges.

In particular, UWB measurement error can be impacted by many environmental

factors and even the distances and angles between the modules. The varying error

of UWB range measurements points to the necessity of an error model which can

capture the effect of the most influential factors to predict accurately the error of

each measurement. The goal of this research is (1) to gain a better understanding

of UWB range error and how it changes with separation distance and antenna angle,

(2) to develop simple models which capture the essence of these error patterns, and

(3) to apply these models to dynamic situations to improve localization accuracy.

1.1 Ultra-Wideband Ranging

Due to its low cost and widespread availability, this work uses the Decawave DWM1001C

module which is equipped with Decawave’s DW1000 UWB transceiver, running a ver-

sion of Two-Way-Ranging (TWR) [6, 8]. TWR is based on the principle of multiplying

the Time-of-Flight (ToF) of the UWB signal by the speed of light to calculate the

distance between the modules.

To measure distances between UWB modules, it is required to have at least two

devices: a tag and an anchor. There is no hardware difference between a tag and

anchor; the only difference is in the software, which controls what role they each play

in communication. The tag is the module attached to the object to be localized which

initiates the communication to the surrounding anchor(s). The anchor is typically

fixed in place (as will be assumed in this thesis); its job is to listen for a signal from

the tag and respond.

There are many different patterns in which communication can happen between

an anchor and tag. In particular, Decawave uses a ranging scheme called asymmetric

double-sided TWR. The major difference between TWR and asymmetric double-sided

TWR is that the former only sends two signals: one from the tag to the anchor and

a second from the anchor to the tag. The latter sends three: (1) from the tag to the

anchor, (2) from the anchor to the tag, and (3) once more from tag to the anchor.
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The advantage of asymmetric double-sided TWR is that it is more robust against

clock and frequency drift1 [6]. A diagram of asymmetric double-sided TWR ranging

is shown in Figure 1-1.

Figure 1-1: TWR uses a three-part signal transmission pattern to determine the
distance between the tag and anchor.

From this point forward, asymmetric double-sided TWR will be called TWR for

brevity. The TWR equation used to determine the distance between the UWBs is

given as

𝑇𝑝𝑟𝑜𝑝 =
(𝑇1,𝑇𝑎𝑔𝑇2,𝐴𝑛𝑐ℎ𝑜𝑟) − (𝑇1,𝐴𝑛𝑐ℎ𝑜𝑟𝑇2,𝑇𝑎𝑔)

𝑇1,𝑇𝑎𝑔 + 𝑇2,𝐴𝑛𝑐ℎ𝑜𝑟 + 𝑇1,𝐴𝑛𝑐ℎ𝑜𝑟 + 𝑇2,𝑇𝑎𝑔

(1.1)

where 𝑇𝑝𝑟𝑜𝑝 is the estimated time of flight, 𝑇1,𝑇𝑎𝑔 and 𝑇2,𝐴𝑛𝑐ℎ𝑜𝑟 are the respective

round trip time times it takes receive the signal back to the module after it was sent.

𝑇2,𝑇𝑎𝑔 and 𝑇1,𝐴𝑛𝑐ℎ𝑜𝑟 are the respective times for the tag and anchor to receive a signal

and send one back [6]. A simplified visual representation of these variables is shown

in Figure 1-2.

1Clock drift is one of the leading causes of UWB range measurement error [24].
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Figure 1-2: A simplified diagram of asymmetric double-sided Two-Way Ranging.

Two of the most researched challenges of UWB are multipath effects and NLOS

errors. Multipath effects occur when the signal bounces off objects or walls, often in

addition to traveling the direct path (DP) between modules, and therefore can re-

sult in multiple different distance measurements. One way to mitigate the error from

multipath effects is to use the shortest distance returned, since this is usually (but

not always) the DP measurement [16]. NLOS errors occur when there is no physical

line-of-sight path between the anchor and tag, causing the UWB modules to overesti-

mate the distance between one another. There are two ways this overestimation can

happen: the signal can get delayed when it travels through a solid object or, if the

object is impenetrable to the signal, the signal may take take a longer path. Both

scenarios are shown in Figure 1-3. As long as the geometry of the modules and the

object stays the same, the additional length that appears in the range measurement

is constant [13], a contributing factor to why NLOS errors are more challenging to

detect than multipath errors.

Prorok and Martinoli [21] characterized the error distribution for UWB ranging

using Time Difference of Arrival (TDoA) methods. TDoA is similar to TWR, but it

requires clock synchronization between modules to measure the difference in arrival

times from all anchors to the tag instead of directly measuring the time of flight for

each signal separately. They concluded that LOS ranging error can be described by

a normal distribution, whereas NLOS ranging error can be described by a log-normal
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(a) The signal is delayed during its travel through an object.

(b) The signal travels a farther distance than the DP.

Figure 1-3: The NLOS path from the beacon to the object is always longer than the
LOS path.

distribution. Additionally, their work showed that multiple factors impact the shape

of the distribution, including characteristics of the surrounding environment. This

means that the parameters describing the measurement error distribution for one

environment will not necessarily be valid in another environment.

A growing population of researchers have experimented using machine learning

techniques to decrease UWB range and localization error, particularly by mitigating

the effects of NLOS ranging [2, 19, 30]. But machine learning has been used for other

avenues for error mitigation as well. Tiemann et al. [27] reported significantly de-

creased range errors when using a neural net to correct for the orientation-dependent

portion of error.

In addition to the presence or absence of a LOS path between modules and separa-

tion distance, error is also impacted by the angle of the UWB antennas. For example,

Sharma et al. [23] found a slight increase in error when antennas were beside each

other as opposed to facing each other. UWB antennas are anisotropic in nature,

meaning that the module’s transmission and receiving of a signal is not uniform in

all directions [3, 7, 27]. This is the reason why the error varies with the angle of the
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antenna. According to data taken in an anechoic chamber, the orientation most ro-

bust against signal strength variation is when the antenna is upright [7], as in Figure

1-4. For that reason, this orientation was used for all the experiments in this thesis.

Figure 1-4: The UWB’s upright orientation, used for all experiments.

Ye et al. [31] studied the impact of antenna angle in indoor environments with

high levels of multipath effects while using TDoA methods. They found that antenna

angle could account for up to a couple centimeters of error regardless of the multipath

mitigation algorithm used. Ledergerber and D’Andrea tested incorporating the angle

of the UWB antennas into the error model in their localization algorithm to account

for the antenna’s anisotropic nature. They later abandoned the idea when they saw

no significant improvements, however, they did note potential failure points in their

work and therefore exploring this should not be written off too quickly [18]. We will

consider the effect of antenna angle on measurement error in Chapters 3 and 4.

Despite knowledge of anisotropic antenna signal and error patterns, there is limited

information provided by antenna manufacturers that would allow the relationship

between antenna angle and error to be inferred [29]. Signal fidelity is one measurement

sometimes provided by antenna manufacturers which describes the change in a signal

calculated by the correlation between the input and output signals of the antenna

[17]. It has been used to classify the three-dimensional performance of antennas [20]

and has shown some success when used to predict error due to antenna angle [29].

Cazzorla et al. [3] used Round-Trip-Time (RTT), another UWB distance measure-
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ment scheme similar to TWR, to study UWB range error. Under LOS conditions,

it was seen that the standard deviation of the range measurements increases as the

distance between the tag and anchor increases, in a close to linear fashion. This

increase in variance was solely determined from stationary module experiments. A

moving tag will further complicate the statistics of the received signal.2 The effect of

distance on error distributions under LOS conditions has also been investigated by

De Angelis et al. [5], where the Pearson Type IV distribution was used to model RTT

of a UWB signal at various separation distances between the tag and anchor. They

found that the distributions became more asymmetric as the tag and anchor became

farther apart.

In addition to the geometry between the tag and anchors, electromagnetic in-

terference, humidity, and the operating temperature of the modules are a sample of

many environmental factors which can affect range error [5]. At the very least, these

factors will vary from one experiment to another, and they may even change during a

single experiment or deployment. Additionally, for Decawave’s DWM1000 modules,

there has been shown to be variation between the modules themselves, causing the

measurement error of different anchor-tag pairs to differ [18]. These findings high-

light the need to be careful when generalizing any one error model to multiple module

pairs.

1.2 Localization

Trilateration is the concept of using distance measurements from multiple known lo-

cations to an agent in order to determine its position. Assuming no error and no

additional information, a minimum of three range measurements from three station-

ary beacons is required to determine a point’s location in two-dimensional space.

With only two range measurements, a pair of possible locations of the point may be

determined. With a single range measurement, only a circle on which the point is

2The increase in variance of measurements from a moving tag are handled in some NLOS detection
algorithms, as noted by Khodjaev et al. [16].
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located is known, as shown in Figure 1-5.

(a) One beacon (b) Two beacons (c) Three beacons

Figure 1-5: Trilateration using one, two, and three beacons.

Whereas Figure 1-5 depicts an idealized scenario, in reality the measured distances

will rarely overlap at a single point due to measurement error. Modeling and handling

the error of each individual measurement properly is vital to improving the accuracy

of the localization estimate.

In general, for range-based localization, least squares estimation is one of the most

common algorithms to use. Other solutions include variations of the Kalman Filter,

most typically the Extended or Unscented Kalman Filters (EKF and UKF). Through

simulations which expressed the simulated range measurements as non-Gaussian dis-

tributions (as previously discussed), it was seen that the Particle Filter’s state esti-

mation error was lower than both the EKF and least squares estimation [5]. However,

Particle Filters can encounter difficulties when the size of the state space grows too

large — for example, when performing cooperative localization with many vehicles.

The error correction methods that we present later in the thesis can be beneficial

regardless of the type of state estimator that is employed.

Sometimes error in the localization estimate from these algorithms can be induced

by an assumption that ties together range measurements taken at slightly different

times. This becomes a problem when the measurement rate and robot’s speed are such

that the robot’s position changes significantly between measurements from different

anchors. One approach to account for this issue is to consider both the time and dis-

tance of each range measurement to fit a trajectory to the data [10, 11, 25, 26]. While

slower robots that stay close to the anchors may be able to sample at high enough
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rates that this issue becomes negligible, Clark et al. [4] suggest that localization al-

gorithms applied to faster robots or with limited sampling rates may be hindered by

time delays. On the other hand, it is also important to note that position estimation

can also fail when the sampling rate is too high, since this can augment the size of

the estimation problem such that it is too large to feasibly solve [11]. From this point

forward, it will be assumed that the sampling rate of the UWB modules and the

speed of the robots are such that the distance the robot travels between samples is

negligible and that the frequency of measurements results in a problem which is not

too large to solve.

Using a UKF, Fu et al. [9] concluded a notable pattern to localization error using

Time of Arrival (ToA) range calculations with UWB modules. They found that that

the error of the two-dimensional position estimate follows a radial pattern. More

specifically, the direction of the error points away from the geometric center of the

square pattern of anchors, and the error magnitude is correlated with the distance

from that point. To compensate for this error, changed the UKF to adjust for the

expected error as a function of the distance and direction of the estimated location

from the geometric center.

While the work by Fu et al. [9] shows that it is possible to compensate for the

radially-patterned error post-localization calculation, this solution does not seem to

target the origin of the error. The radial error pattern suggests that measurement

error may be distance-dependent. The following work in this thesis is focused on

the distance- and angle-dependent error of UWB range measurements and develops

models to predict that error with the ultimate goal of improving localization accuracy.

Chapter 2 describes the robot used for testing and presents a model for the robot’s

kinematics. It also describes the mathematics of range-based localization using least

squares estimation. Chapter 3 seeks to understand patterns of UWB range error

for various separation distances and antenna angles using static data. Subsequently,

Chapter 4 applies the conclusions from the static data to develop and compare three

different models for predicting and correcting range measurement error. These models

are then evaluated for the potential to improve localization performance.
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Chapter 2

Robot Localization

The robot used for all experiments was designed and built by the Marine Robotics

Group, the research group of which the author is involved. The robot is a differential

drive robot, meaning that the robot has one bi-directional wheel on either side and

one low-friction ”peg” which slides passively on the ground. The robot was designed

to be low-cost, yet reliable. An image of the robot is shown in Figure 2-1.

Figure 2-1: The robot used for all experiments.

2.1 Development of the Robot’s Equations of Motion

The state vector is defined as the robot’s two-dimensional pose (x, y, and 𝜃) with

respect to a global frame, as shown in Figure 2-2.
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Figure 2-2: The top-view of the robot, showing its pose with respect to the global
frame. The red circle indicates the point on the robot which is used to define its
location.

To model the differential drive robot, the unicycle model was used. The variables

𝑋 and 𝑌 are used to indicate the global frame, and the variables 𝑥 and 𝑦 are used to

indicate the body frame. The two inputs to the system are the desired left and right

wheel velocities, however the discrete state space model is set up so that the input

vector is the change in 𝑋, 𝑌 , and 𝜃 for the current time step. The final propagation

equation is written as⎡⎢⎢⎢⎣
𝑋𝑡+1

𝑌𝑡+1

𝜃𝑡+1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑋𝑡

𝑌𝑡

𝜃𝑡

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑑𝑋𝑡

𝑑𝑌𝑡

𝑑𝜃𝑡

⎤⎥⎥⎥⎦ (2.1)

where the subscript 𝑡 denotes the previous time step and 𝑡 + 1 denotes the current

time step. The inputs to the matrix 𝑑𝑋𝑡, 𝑑𝑌𝑡, and 𝑑𝜃𝑡 are the changes in 𝑋, 𝑌 , and

𝜃 from the previous time step. They are calculated by

𝑑𝑋𝑡 = 𝑑𝑥𝑡 cos 𝜃 − 𝑑𝑦𝑡 sin 𝜃

𝑑𝑌𝑡 = 𝑑𝑥𝑡 sin 𝜃 + 𝑑𝑦𝑡 cos 𝜃

𝑑𝜃𝑡 = 2 arcsin

(︂
𝑑𝑟𝑟,𝑡 − 𝑑𝑟𝑙,𝑡

2𝑏

)︂ (2.2)
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where 𝑏 is the wheelbase, 𝑑𝑟𝑟,𝑡 and 𝑑𝑟𝑙,𝑡 are the linear distance traveled by the right

and left wheels, and 𝑑𝑥𝑡 and 𝑑𝑦𝑡 are the changes in the 𝑥 and 𝑦 directions of the body

coordinate frame. The inputs to Equations 2.2 are calculated by

𝑑𝑟𝑟,𝑡 = 𝑅𝑤𝑢𝑟,𝑡𝑑𝑡

𝑑𝑟𝑙,𝑡 = 𝑅𝑤𝑢𝑙,𝑡𝑑𝑡

𝑑𝑟𝑡 =
1

2
(𝑑𝑟𝑟,𝑡 + 𝑑𝑟𝑙,𝑡)

𝑑𝑥𝑡 = 𝑑𝑟𝑡 cos

(︂
𝑑𝜃𝑡
2

)︂
𝑑𝑦𝑡 = 𝑑𝑟𝑡 sin

(︂
𝑑𝜃𝑡
2

)︂
(2.3)

where 𝑅𝑤 is the wheel radius, 𝑑𝑟,𝑡 is the distance traveled by the robot, 𝑢𝑟,𝑡 is the

velocity input to the right wheel, and 𝑢𝑙,𝑡 is the velocity input to the left wheel. The

two constants in this model, 𝑏 and 𝑅𝑤, are visually represented in Figure 2-3.

Figure 2-3: The measurements of the wheelbase, 𝑏, and the wheel radius, 𝑅𝑤, on a
top-view diagram of the robot.
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To test the validity of this model, consider a robot traveling a lawnmower pattern.1

Eight trials were analyzed for model validation. A single trial was used to generate

all of following plots since its mean position and heading errors were most similar to

the mean errors averaged over all trials.

The starting position and heading for state propagation are equivalent to the

starting point of the ground truth measurements. A plot of the ground truth data

taken by a Vicon motion capture system with the propagated state is shown for the

translational movement in Figure 2-4.

Figure 2-4: Propagated and ground truth positions (from a motion capture system)
of the robot’s lawnmower trajectory.

1The same experiments are used for model validation as were used to test the three error correction
methods developed and analyzed in Chapter 4.
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The individual errors in the X and Y directions are shown in Figures 2-5a and

2-5b. Averaged for all trials, the mean absolute value error in the X and Y directions

are 7.1 and 5.4 cm, respectively. This translates to a mean position error of 10.0 cm

throughout the two-and-a-half minute experiments and a final position which has, on

average, an error equivalent to 0.9% of the total distance traveled. Figure 2-5c shows

the heading error. The mean absolute value of heading error for all trials was 1.6

degrees.

(a) Error of X position (b) Error of Y position

(c) Heading Error

Figure 2-5: The robot’s position and heading were estimated by propagating the
equations of motion. These figures show the error in the X, Y, and 𝜃 directions of
the estimate as compared with ground truth measured by a motion capture system.

Overall, the translational motion using the propagated equations slightly under-

estimated the actual distance traveled. The estimated heading of pure rotation using
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the propagated equations had high accuracy, with the maximum mean heading error

of any single trial only 2.6 degrees. However, it must be noted that due to wheel slip,

the accuracy of this model can vary considerably depending on the ground surface

and the length of the trajectory.

2.2 Localization using Least Squares Estimation

Since the range measurements are noisy, three range measurements will likely never

align perfectly at a single point. To estimate the position of the robot using noisy

measurements, least squares estimation was used.

The measurement equation was assumed to be of the form

p = 𝜑𝑇 X̂ (2.4)

where X̂ is a 2x1 vector of the estimated 𝑋 and 𝑌 coordinates of the robot in the

global frame, 𝜑𝑇 is a 3x2 matrix, and p is a 3x1 matrix which is recalculated at each

time step. The matrices 𝜑𝑇 and p are defined as

𝜑𝑇 =

⎡⎢⎢⎢⎣
2(𝑋2 −𝑋1) 2(𝑌2 − 𝑌1)

2(𝑋3 −𝑋2) 2(𝑌3 − 𝑌2)

2(𝑋1 −𝑋3) 2(𝑌1 − 𝑌3)

⎤⎥⎥⎥⎦ (2.5)

and

p =

⎡⎢⎢⎢⎣
(𝑟21 −𝑋2

1 − 𝑌 2
1 ) − (𝑟22 −𝑋2

2 − 𝑌 2
2 )

(𝑟22 −𝑋2
2 − 𝑌 2

2 ) − (𝑟23 −𝑋2
3 − 𝑌 2

3 )

(𝑟23 −𝑋2
3 − 𝑌 2

3 ) − (𝑟21 −𝑋2
1 − 𝑌 2

1 )

⎤⎥⎥⎥⎦ (2.6)

where (𝑋1, 𝑌1), (𝑋2, 𝑌2), and (𝑋3, 𝑌3) are the positions and 𝑟1, 𝑟2, and 𝑟3 are the

range measurements of beacons 1, 2, and 3, respectively.

This least squares estimate is used in Section 4.5 to estimate the robot’s position
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using measurements corrected by the three different error models developed in Sec-

tions 4.2, 4.3, and 4.4. Subsequently, the estimated positions from the least squares

algorithm are combined with the equations of motion developed in Section 2.1 using

a Kalman Filter. The results from the least squares estimate and from the Kalman

Filter are used to compare the localization accuracy of the three error correction

methods.
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Chapter 3

Static Error Modeling

3.1 Separation Distance Data

The most basic data which can give insight into patterns of error distribution within

UWB ranging is data taken while the tag and the anchor are both fixed in place. As

a starting point for understanding the impact of the separation distance of modules

on measurement error and to determine how those trends differed for LOS and NLOS

paths, static ranging data were collected in two different indoor spaces. One envi-

ronment was a large, open motion capture space and the other was a home with a

reasonably open floor plan and uncluttered environment.

During data collection in each location, the tag was kept in one location through-

out the experiment, while the anchors were moved to varying distances between one

and eleven meters from the tag. The names of the anchors are consistent with the

id’s given to each UWB module by Decawave: dw9838, dw971f, and dw2f95. At each

distance, the anchors were fixed in place while roughly 5000 measurements were col-

lected between each anchor-tag pair. At all times during data collection, the tag and

anchors were oriented vertically and facing each other, as depicted in Figure 3-1. It

is important to note that the exact angles of the UWB modules were not considered

since it was assumed that minuscule differences in relative angles between the tag and

each anchor were negligible. Environments were kept as constant as possible, with the

only deviations being minimal human movement far from both the tag and sensor. It
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was assumed that this slight motion would have negligible impact on the UWB range

measurements. Ground truth data in the motion capture space was determined by

Vicon cameras and was hand-measured in the home environment, resulting in much

lower uncertainty in the motion capture space. For this reason, the results from the

laboratory data set were trusted more when drawing conclusions about UWB error

characteristics.

Figure 3-1: UWB modules facing each other. The blocks on which they are mounted
hold ultra-reflective spheres used to track the objects in the motion capture space.

Figure 3-2 presents the data from the static ranging experiments taken in the

motion capture space. Figures 3-2a and 3-2c show that the average error magnitude

increases as separation distance increases in a close to linear trend for both LOS and

NLOS ranging. Additionally, it can be seen that the error differs for each anchor-tag

pair. This is unlikely to be caused by environmental factors since the anchors were

positioned within centimeters of each other and were ranging to the same tag at the

same time.

Further analysis of Figure 3-2 reveals a key feature of the data: smaller separation

distances tend to vary more in their expected error. More specifically, around 3000

mm separation distance, there is an abrupt change in the variance of the measure-

ments from higher-variance (seemingly more ”random”) to lower-variance with a more

predictable trend. To better understand this trend, a line can be fit to the data above

3000 mm separation distance using least squares estimation. The separation distance,
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(a) LOS error (b) LOS percent error

(c) NLOS error (d) NLOS percent error

Figure 3-2: LOS and NLOS range error in the motion capture space.

𝑅, between the anchor and tag is defined as

𝑅 = �̂�− 𝐸 (3.1)

where �̂� is the measured range between the UWBs and 𝐸 is the error. The linear

relationship between separation distance, 𝑅, and error, 𝐸, is defined as

𝐸 = 𝑚𝑅 + 𝑏 (3.2)

where 𝑚 and 𝑏 are the constants found for each anchor-tag pair. The values of these

constants are shown in Table 3.1. The lines of best fit are shown alongside the raw
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data in Figure 3-3. While the parameter 𝑏 of the best fit lines may differ for various

anchor-tag pairs in a given environment, the rate at which the error changes as a

function of separation distance, 𝑚, is consistent across all anchor-tag pairs. In fact,

this trend is so consistent that if a line is fit to all data points above 3000 mm using

least squares estimation, the slopes for all three anchor-tag pairs are similar, with a

maximum percent difference of 16%.

Table 3.1: Distance model parameters.

Anchor 𝑚 [1] 𝑏 [mm]
dw9838 −1.93 × 10−3 −115.4
dw971f −1.93 × 10−3 −101.4
dw2f95 −2.24 × 10−3 −186.6

Figure 3-3: LOS error in the motion capture space with lines fitted by least squares
estimation. The lines are described by Equation 3.2 and the parameters for each line
are included in Table 3.1.

Though analyzing mean error values provides a solid understanding of general

error trends, it does not completely describe the error distributions. To better un-

derstand these data, standard deviation was considered. It was seen that for LOS

and NLOS measurements in both environments, the standard deviation increased in

a linear fashion with respect to separation distance. This pattern is shown for both
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locations and paths in Figure 3-4. It can also be seen that the standard deviation

of LOS and NLOS measurements taken in the motion capture space both include a

section of data which stands out among the rest, approximately 8000-9500 mm for

the LOS data and approximately 5000-9000 for the NLOS data. This outlying trend

was consistent for both LOS and NLOS data despite being taken days apart, but

did not occur when ranging with the same UWBs in the home environment. Even

though the distances at which these outlying data occur are not exactly the same

in the LOS and NLOS data, it is hypothesized that this is the result of a physical

characteristic of the motion capture space. This unique data pattern is one example

of the difficult-to-model nature of UWB ranging which has led researchers to varying

conclusions regarding UWB error distributions.

(a) Motion Capture Space: LOS (b) Home Environment: LOS

(c) Motion Capture Space: NLOS (d) Home Environment: NLOS

Figure 3-4: The standard deviation of the stationary range measurements at different
distances for LOS and NLOS paths in two locations.

39



3.2 Relative Angle Data

Section 3.1 showed that there is a clear correlation between separation distance and

measurement error, although additional data taken with a moving tag and static

anchors showed that there is likely more to the story. In data collected where a tag

was mounted on a robot which drove a lawnmower pattern in the motion capture

space, it was seen that error of the estimated position corresponded to the direction

of the robot’s travel. More specifically, the magnitude of the position error was higher

when the robot was traveling parallel to the y-axis rather than parallel to the x-axis,

as seen in Figure 3-5.1 These results suggest a correlation between sensor angle and

range error. To quickly test this hypothesis, the tag mounted on the robot was rotated

by 90 degrees clockwise and a similar lawnmower path was driven. This time, the

higher magnitude error was seen while the robot was driving parallel to the x-axis,

as seen in Figure 3-6. This analysis confirms the directional nature of the UWB

antennas. To further investigate this behavior, additional static data were taken

where the distance between the anchor and tag remained constant, but the angle of

the tag changed.

The experiment was conducted in the motion capture space, with ground truth

data for position and orientation collected by the Vicon camera system. A diagram

of the experimental setup is shown in Figure 3-7. All three anchors were positioned

beside each other, and the distance to the tag was approximately 7400-7500 mm,

a distance purposefully chosen to be greater than 3000 mm — the distance around

which the error in the separation distance data became significantly more predictable.

As with the previous static data set, this static angular data also collected around

5000 range measurements from each of the three anchors while all UWB modules

were fixed in place. The tag was rotated so that data were captured roughly every 9

degrees, or at 40 different points within a 360 degree circle.

1More details about this experimental setup and an analysis of the results are presented in
Chapter 4.
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Figure 3-5: A three-dimensional plot of the magnitude of localization error of the
robot driving a lawnmower pattern with the antenna pointing straight ahead on the
robot.

Figure 3-6: A three-dimensional plot of the magnitude of localization error of the
robot driving a lawnmower pattern with the antenna rotated 90 degrees clockwise.
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Figure 3-7: Angular data experimental setup.

Since the geometry of the setup causes the angles between each anchor and the

tag to be slightly different, a metric for the relative angle was designed to normalize

for this difference. The relative angle was defined as the difference between the tag’s

heading in the global coordinate frame and that of the anchor such that the relative

angle, 𝜃𝑟𝑒𝑙, is calculated by

𝜃𝑟𝑒𝑙 = 𝛽 − 𝛼 (3.3)

where 𝛽 is the heading of the tag and 𝛼 is the heading of the anchor, as shown in

Figure 3-8. For reference, an anchor and tag facing each other would have a relative

angle of 180 degrees.

Figure 3-8: A visual representation of heading parameters for Equation 3.3.

The error magnitude versus relative angle is plotted for each anchor-tag pair in
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Figure 3-9. It is important to point out that it is the magnitude of the mean percent

error plotted radially; the actual percent errors were all negative, meaning that range

measurements, on average, underestimated the actual distance. The data seem quali-

tatively elliptical in shape, therefore an open-source ellipse-fitting MATLAB function

was used to model the data [12]. The elliptical models are overlaid in red on the

raw data for each anchor-tag pair in Figure 3-9. It can be seen that the lowest error

occurs with a relative angle of 0 degrees. Although this is consistent across the data

for all three anchors, it is not explicitly reflected in the ellipse model for simplicity

and not to overfit the data. Future work could create a more detailed angular error

model.

Figure 3-9: The static relative angle data taken in the motion capture space, with
the overlaid elliptical models. The radius represents the magnitude of percent error
for each relative angle.

To understand the impact of relative angle on range error, consider a scenario

where relative angle has no impact on range error. In this case, the static angle

data points would form a perfect circle, or a nearly-perfect circle when including

unavoidable sensor noise. To numerically confirm the significant difference between

a circle and the resulting ellipses, eccentricity can be calculated. The eccentricity 𝑒

of an ellipse can assume any value 0 ≤ 𝑒 < 1. A circle is a special case of an ellipse

where 𝑒 = 0 and a parabola’s eccentricity is 𝑒 = 1. For anchors dw9838, dw971f,

and dw2f95, the eccentricities of the elliptical error models are 0.7547, 0.6748, and

0.6510, respectively. These calculated eccentricities of the angular models show that
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a perfect circle would not suitably model the data.

Parallels between the static distance data set (Section 3.1) and this static angular

data set highlight the consistency of the UWB ranging error in a single environment

— even when data is taken several weeks apart. The relative angle data were taken

at a separation distance of approximately 7400-7500 mm, and the separation distance

data were taken with a relative angle of 180 for all distances. Comparing the angular

model’s percent error estimate for a relative angle of 180 degrees and the separation

distance model’s percent error estimate at 7450 mm shows that the two estimates

coincide well. Of all anchor-tag pairs, the maximum difference between the estimates

is approximately 11%. The values for each anchor-tag pair can be seen in Table 3.2.

While this does not prove the models accurate, it is evidence of the models’ validity

and of the consistency and predictability of the error of an anchor-tag pair — at least

in a given environment. This evidence suggests that a single error model for one

environment will be sufficient to decrease effectively the range measurement errors

for the entire deployment.

Table 3.2: Measured and predicted percent errors.

Model-Predicted Percent Error (%) Percent
Anchor Separation Distance Relative Angle Difference
dw9838 -1.86 -1.74 6.9%
dw971f -1.64 -1.55 5.8%
dw2f95 -2.42 -2.73 11.4%

3.3 Chapter Summary

This chapter has presented static data which explore the impact of separation distance

and relative angle on range measurement error. It was found that the magnitude of

error increased with separation distance and that the error changed based on the

relative angle between the anchor and tag. Two models were developed to described

the error patterns. First, a linear model was used to describe the relationship between
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separation distance and error. Second, an elliptical model was used to describe the

magnitude of percent error as a function of relative angle.

In the next section, these two error models are applied to the problem of robot

localization to correct for error in range measurements. Three methods of error

prediction are developed and analyzed. The first relies only on the linear separation

distance error model, and the second relies only on the elliptical relative angle error

model. Finally, the fused model combines the two former models for a more thorough

representation of the error patterns. Each of the three methods is analyzed for its

ability to decrease measurement and localization error.
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Chapter 4

Correcting UWB Measurement Error

Chapter 3 modeled UWB measurement error through static ranging experiments.

This chapter extrapolates those findings to the localization of a moving robot in order

to predict and correct for error of individual range measurements. By decreasing range

measurement error, the accuracy of robot localization can be improved.

Section 4.1 describes the experimental setup for the data used to test error correc-

tion methods. The subsequent sections develop three methods to predict and correct

for range measurement error. Section 4.2 uses a linear model to correct for error due

to separation distance. Section 4.3 uses an elliptical model to correct for error due

to the relative angle between the antennas. Finally, Section 4.4 fuses the separation

distance and relative angle error models to develop a new model which is used to

correct for range measurement error. The three models are compared for their ability

to decrease range error and to improve localization accuracy in Section 4.5.

4.1 Experimental Setup

There are two sets of data, mentioned briefly in Section 3.2, which were used to

validate the effectiveness of the error correction methods. Both data sets were taken in

the motion capture space and consisted of a robot carrying a UWB tag while ranging

to three anchors fixed in space. The anchors were purposefully placed such that the

separation distance was always greater than 3000 mm — the distance above which
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ranging error becomes more predictable. The robot’s path began with a calibration

period in which the robot drove roughly one meter straight forward, reversed back

to its starting position, and then rotated counterclockwise by 90 degrees to begin a

lawnmower pattern. An example ground truth path from the data is shown in Figure

4-1. It is important to note that there was variation in the calibration period and

lawnmower pattern of each trial since the robot was controlled by a joystick.

Figure 4-1: An example lawnmower path. The red star and X indicate the robot’s
start and finish points. The green arrows show the robot’s direction of travel during
the calibration period, and the orange arrow shows the robot’s direction of travel at
the start of the lawnmower pattern.

The tag in the front-facing antenna data set was mounted such that the front of

the antenna was parallel to the front of the robot. The right-facing antenna data set

had the tag rotated 90 degrees clockwise, or facing right on the robot. Photos of the

robot and tag setup for each data set are shown in Figure 4-2.

It was a purposeful design choice to build the calibration period into the exper-

iments instead of simply relying on the exact error models developed in Chapter

3. As discussed in Chapter 1, there are a variety of environmental factors, such as

temperature, humidity, and electromagnetic interference, of which we had no con-

trol. By using a calibration period, the error models could be adjusted to the current

environmental conditions, possibly providing higher accuracy error correction.
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(a) Tag antenna aligned with the
front of the robot to collect the
front-facing antenna data set.

(b) Tag antenna 90 degrees offset
from the front of the robot to col-
lect the right-facing antenna data
set. (Antenna is facing to the left
in the photo.)

Figure 4-2: Orientation of the tag’s antenna on the robot for two separate data sets.

The parameters of the linear and elliptical models from Chapter 3 were averaged

across all three anchors to develop two generalized models: one for separation distance

and one for relative angle. All three error correction methods began by assigning the

generalized linear and/or elliptical model(s) to each of the three anchors. Then,

the models were uniquely adjusted to better fit the error patterns of each anchor

by using data from the calibration period. This was done by propagating the state

equations from Section 2.1 and using them as ground truth to calculate estimates for

the measurement error of each anchor. The most important point in all of this is that

it means these error correction methods do not require the exact static error models

to be determined for each anchor prior to deployment.

Before continuing, consider the validity of using the propagated state equations

as ground truth during this calibration period. It was seen that the mean transla-

tional error during the calibration period was 26 mm. The calibration period has a

minimum distance of 3500 mm to all anchors. Therefore, this mean error translates

to a maximum mean range error of less than 1%.
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4.2 Error Correction using Separation Distance

It was seen in Section 3.1 that separation distance is a factor in UWB range error.

This section uses the distance error model found in Section 3.1 to estimate the error

and correct the measured range. The slope, 𝑚, of the linear separation distance

models from each anchor were averaged and used for all three anchors during this

error correction method. The y-intercept, 𝑏, was uniquely determined for each anchor

by a calibration period at the beginning of each trial. The purpose of this was to

adjust the model of the UWB to better fit the current scenario since it is known that

errors change with many environmental factors.

A formula to determine the relationship between the measured range and the

separation distance can be derived by substituting Equation 3.1 into Equation 3.2.

The result gives

𝑅 =
�̂�− 𝑏

1 + 𝑚
(4.1)

Equation 4.1 is used to correct each range measurement. The actual error can be

computed by substituting Equation 4.1 into Equation 3.2, giving

𝐸 =
𝑚�̂� + 𝑏

𝑚 + 1
(4.2)

The process of correcting the range measurements first begins with the calibration

period. While it is assumed that the slope, 𝑚, is known for all anchors (since all

values were similar for each anchor-tag pair), the y-intercept, 𝑏, was assumed to be

unknown (since it varies significantly between anchors). Therefore, the y-intercept

was calculated using the average error during the calibration period such that

𝑏 = �̄�(1 + 𝑚) + 𝑚
¯̂
𝑅 (4.3)

where �̄� is the average error during the calibration period from the ground truth state

propagation estimate and ¯̂
𝑅 is the average range measurement during the calibration
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period. After determining the value of 𝑏 in the linear model for each anchor-tag pair,

the model may be used to correct for the estimated error of each range measurement

via Equation 4.1.

Ground truth measurements from the Vicon motion capture system were used to

determine the true error of the uncorrected and corrected range measurements. The

values in Table 4.1 denote the averaged mean and median absolute value of error for

all three anchor-tag pairs. The columns labeled percent change present the change

in mean and median absolute value of error from the original, uncorrected statistics.

Negative values signify a decrease in error from the original measurements. Positive

values denote an increase in error.

Table 4.1: Average mean and median range measurement error for each trial after
error correction using the linear separation distance model.

Mean Median
Data Set Trial (cm) (% change) (cm) (% change)

Front-Facing
Antenna

Trial1 4.0 -77.6 3.5 -80.2
Trial2 4.0 -77.4 3.6 -79.9
Trial3 3.6 -80.1 3.1 -82.8
Trial4 4.2 -76.8 3.6 -79.8

Right-Facing
Antenna

Trial1 4.2 -73.4 3.7 -76.0
Trial2 3.8 -75.2 3.3 -78.3
Trial3 4.3 -72.1 3.7 -75.8
Trial4 4.3 -71.4 3.7 -74.5

It can be seen that both mean and median error are greatly improved using this

distance-based correction method. Maximum error is the result of a large spike in

the individual range measurements present in all trials. It is a less important metric

because it is hypothesized to be due to external factors — not of separation distance.

Any change in the maximum error is somewhat arbitrary; therefore maximum error

data have not been included in the analysis of any of the correction methods presented.

Figure 4-3 shows example plots from each data set of the individual error for

each anchor. Figure 4-3a is a plot from trial 2 of the front-facing antenna data set

and Figure 4-3b is from trial 1 of the right-facing antenna data set. These trials
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were chosen as representative of all trials since the post-correction errors were overall

similar to the averages. The large spike in error mentioned in the previous paragraph

can be seen in Figures 4-3a and 4-3b between 80 to 100 seconds for various UWB

anchors.
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(a) Trial 2 of the front-facing antenna data set

(b) Trial 1 of the right-facing antenna data set

Figure 4-3: Error of the range measurements from each anchor-tag pair before and
after error correction using the linear separation distance model.
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4.3 Error Correction using Relative Angle

While Section 4.2 addressed correcting error according to the estimated separation

distance between the anchor and tag, Section 4.3 uses the relative angle elliptical

models developed in Section 3.2 to estimate and correct for measurement error. One

major assumption in this method is that both the size and shape of the angular

elliptical model are consistent across all separation distances for robot localization.

This is a known simplification since Section 3.1 showed that at the very minimum,

the error between two modules with a relative angle of 180 degrees is dependent upon

separation distance.

The elliptical models for each anchor-tag pair from Section 3.2 were used. To

create a more generalized model, the parameters describing each of the three elliptical

models were individually averaged to form a single model. Since it is known that

error changes as a function of environmental factors, the calibration period is used

to scale the elliptical models to better fit the current trial. During the calibration

period, the robot’s state — as determined by the propagated equations of motion

— is considered to be ground truth, as it was in the distance-based error correction

method. The relative angle between the anchor and tag is calculated by Equation

3.3.

For the entire trial, the heading of the anchor’s antenna, 𝛼, is known, and the

heading of the tag, 𝛽, is calculated by the propagated equations of motion from

Section 2.1.1 During the calibration period, to sort the calculated percent error as

a function of relative angle, a 360 degree circle was sliced into bins of 0.05 radians,

or roughly 2.9 degrees, each. For each anchor, the estimated percent range error was

sorted into the correct bin. At the end of the calibration period, the average error for

each bin was computed. This was done to identify the relationship between relative

angle and error for the current trial in order to properly scale the elliptical models.

From the calibration period, a scaling factor was determined to adjust the size of

the elliptical relative angle versus percent error models for the current conditions. The

1Potential higher-accuracy methods of estimating the robot’s heading during localization are
discussed in 5.2.

54



scaling factor, 𝑆, is essentially equivalent to the percent error during the calibration

period divided by the expected percent error during the calibration period, according

to the generalized ellipse model. More specifically, the formula for the scaling factor

is

𝑆 =
𝜖

𝜖𝑔
(4.4)

where 𝜖 is the mean percent error for all populated bins of the calibration period and

𝜖𝑔 is the expected percent error according to the generalized ellipse model using the

median relative angle during the robot’s rotation. Finally, for each range measure-

ment, the estimated percent error, 𝜖, is determined by finding the predicted error

from the elliptical model given the relative angle and multiplying it by the scaling

factor such that

𝜖 = 𝑆𝜖𝑎 (4.5)

where 𝜖𝑎 is the predicted error from the unscaled, generalized ellipse model for the

current relative angle. Percent error is equivalent to the range error, 𝐸, divided by

the separation distance, 𝑅, such that

𝜖 =
𝐸

𝑅
(4.6)

The value of 𝜖 is estimated from Equation 4.5. By combining Equation 3.1 with

Equation 4.6, an estimate for the separation distance, 𝑅, can be calculated as

𝑅 =
�̂�

1 + 𝜖
(4.7)

The percent error versus relative angle data from the calibration period are shown

in Figure 4-4, alongside the calibrated elliptical models. Figure 4-4a shows the data

from Trial 2 of the front-facing antenna data set, and Figure 4-4b shows the data from

Trial 1 of the right-facing antenna data set. Although the measured relative angles of
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each anchor-tag pair are different for each data set, the general sizes of the angular

models are very similar for each anchor between data sets. For anchor dw971f, the

lowest error is seen at a relative angle of zero degrees for Figures 4-4a and 4-4b. This

is the same trend as seen in the static angular data in Section 3.2, which suggests

that adjusting the current elliptical model to include the lower error at and around

zero degrees may further decrease range error and improve localization accuracy.

(a) Trial 2 of the front-facing antenna data set

(b) Trial 1 of the right-facing antenna data set

Figure 4-4: Using the data from the calibration period, the relationship between
relative angle and percent error is plotted in blue. The calibrated elliptical models
are overlaid on the raw data.

Ground truth measurements from the Vicon motion capture system were used to

determine the error of the initial measurements and the error of the angle-corrected

measurements. Table 4.2 presents the mean and median range error for each trial after

angle-based error correction. Comparing these data to the distance-corrected results

from Table 4.1, the error is lower for the distance-based correction. Nonetheless, the
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angle-based correction decreases the mean error by an average of 65.2% for all trials

of both data sets.

Table 4.2: Average mean and median range measurement error for each trial after
error correction using the elliptical relative angle model.

Mean Median
Data Set Trial (cm) (% change) (cm) (% change)

Front-Facing
Antenna

Trial1 6.9 -63.5 6.2 -66.9
Trial2 6.7 -64.5 5.6 -70.4
Trial3 6.4 -66.0 5.5 -71.1
Trial4 6.3 -66.1 5.6 -69.9

Right-Facing
Antenna

Trial1 6.4 -63.8 5.7 -68.2
Trial2 7.0 -60.9 6.5 -64.1
Trial3 8.5 -52.9 8.4 -55.1
Trial4 6.7 -62.2 6.3 -65.3

A more detailed understanding of the error for each anchor-tag pair can be seen

in Figure 4-5, which shows the individual error for all anchors of trial 2 of the front-

facing antenna data set and trial 1 of the right-facing antenna data set. Again,

these trials were chosen as representative of all trials. This figure is comparable to

Figure 4-3, which shows the individual improvements in range error for distance-

based correction. From the size of the elliptical model, it can be seen that anchor

dw971f has comparatively greater predicted error during the calibration period. This

is opposite of what we would expect since the distance from the tag to anchor dw971f

is shorter than the distance to either of the other anchors. This could be partially

due to the accuracy of the robot’s equations of motion, as it was seen in Section 2.1

the majority of the error was along the same direction as the the line between anchor

dw971f and the tag.

This correction method does not improve anchor dw971f ’s range error as much

as either of the other two anchors. The reason for this is unclear, though it could be

due to the relative angle during the calibration period since neither of the other two

anchors have similar relative angles in the calibration period of either data set. It

could also be connected to the separation distance since during the calibration period
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(a) Trial 2 of the front-facing antenna data set

(b) Trial 1 of the right-facing antenna data set

Figure 4-5: Error of the range measurements from each anchor-tag pair before and
after error correction using the elliptical relative angle model.
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anchor dw971f has a separation distance equivalent to about half the separation

distance of the other two anchors.

4.4 A Fused Model for Correcting Error

Sections 4.3 and 4.3 used separation distance and relative angles as separate methods

to correct for error of UWB range measurements. In this section, these two error

models are fused to provide a more thorough description of error which can correct

range measurements more consistently and produce localization results with lower

error than either of the former models. The key assumption underlying this fused

model is that the elliptical shape of the angular error model is constant for all separa-

tion distances, though the size of the ellipse scales linearly with the expected percent

error from the calibrated separation distance model.

The parameters describing the linear distance error model and the elliptical an-

gular error model were found using the same methods as described in Section 4.2 and

Section 4.3, respectively. The way that these two models were tied together was by

the distance error ratio, 𝑟. The purpose of the distance error ratio is to constantly

adjust the size of the ellipse model to reflect the current estimated separation dis-

tance. Recall from Section 4.3 that the scaling factor essentially scales the generalized

ellipse model to fit the data during the calibration period. Therefore, the distance

error ratio is a fraction of the expected percent error of the current measurement

divided by the expected error of the calibration period, both according to the linear

separation distance model. The calculation for 𝑟 is

𝑟 =
𝜖𝑑
𝜖𝑑

(4.8)

where 𝜖𝑑 and 𝜖𝑑 are the percent errors predicted by the calibrated linear distance

model. The formula for 𝜖𝑑 is calculated by dividing Equation 4.2 by Equation 4.1,

59



which results in

𝜖𝑑 =
𝑚�̂� + 𝑏

�̂�− 𝑏
(4.9)

While 𝜖𝑑 is calculated directly via Equation 4.9, 𝜖𝑑 is calculated via Equation 4.9 by

setting �̂� equal to the average range measurement of the anchor during the calibration

period such that

𝜖𝑑 =
𝑚

¯̂
𝑅 + 𝑏
¯̂
𝑅− 𝑏

(4.10)

where ¯̂
𝑅 is the average range measurement of the anchor during the calibration period.

Then, the predicted percent error from the fused model can be calculated by

𝜖 = 𝑟𝜖𝑎 (4.11)

where 𝜖 is the final predicted percent error according to the fused model and 𝜖𝑎 is the

predicted percent error according to the angular model. Finally, the corrected range

is calculated by Equation 4.7.

It was found that this method of error correction resulted in lower average mean

and median range error for all trials when compared to the distance- and angle-based

error correction methods. The mean and median measurement error for each trial

using the fused model to correct error can be seen in Table 4.3.

The fused error correction method was more consistent in its corrections than

either of the previous methods, though it did not always produce the lowest error

for each individual anchor-tag pair. Plots of the individual errors from the selected,

representative trials of both data sets showing the results of the fused model error

correction are presented in Figure 4-6.
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Table 4.3: Average mean and median range measurement error for each trial after
error correction using the fused distance-angle model.

Mean Median
Data Set Trial (cm) (% change) (cm) (% change)

Front-Facing
Antenna

Trial1 2.9 -83.2 2.5 -85.4
Trial2 2.9 -83.0 2.4 -85.9
Trial3 2.7 -84.5 2.2 -87.3
Trial4 3.0 -83.0 2.4 -85.9

Right-Facing
Antenna

Trial1 3.2 -80.7 2.8 -83.1
Trial2 3.4 -78.7 2.9 -81.4
Trial3 3.9 -76.4 3.2 -80.2
Trial4 3.2 -79.7 2.7 -83.1
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(a) Trial 2 of the front-facing antenna data set

(b) Trial 1 of the right-facing antenna data set

Figure 4-6: Error of the range measurements from each anchor-tag pair before and
after error correction using the fused distance-angle model.
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4.5 Comparing Correction Methods

All three error correction methods substantially decreased the individual range errors,

however, by directly comparing the range and localization error from each data set,

statistics show that the fused model is superior at decreasing localization error. Table

4.4 presents the average mean and median range error values for all anchors in each

data set. Overall, the error was highest for the angle-corrected measurements, and

lowest for the fused model-corrected measurements.

Table 4.4: Average error mean and median error of range measurements for all trials
of each data set and correction method. Bold values indicate the correction method
resulting in the lowest error or the greatest decrease in error for each data set.

Mean Median
Data Set Method (cm) (% change) (cm) (% change)

Front-Facing
Antenna

None 17.8 – 17.6 –
Distance 3.9 -78.0 3.5 -80.7
Angle 6.6 -65.0 5.7 -69.6
Fused 2.8 -83.4 2.4 -86.1

Right-Facing
Antenna

None 16.8 – 16.8 –
Distance 4.1 -73.0 3.6 -76.2
Angle 7.1 -60.0 6.7 -6.2
Fused 3.4 -78.9 2.9 -82.0

Figure 4-7 presents the error for individual anchors of trial 2 of the front-facing

antenna data set for all three error correction methods alongside each other.2 To

understand the qualitative patterns of the error correction method, first consider

Figure 4-7b, showing the angle-based correction method. It can be seen that the

error increases toward the end of the robot’s path because the UWB error model is

less accurate since the distance between the anchor and tag has changed. This is

especially noticeable for anchor dw971f. Next, looking at Figure 4-7a, it can be seen

that there is no longer an increasing linear trend in the corrected error. That trend is

corrected when adjusting the predicted error based on separation distance. Finally,
2The three plots in Figure 4-7 are copies of the plots in Figures 4-3a, 4-5a, and 4-6a.
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consider Figure 4-7c which uses a fused model to correct for error due to distance

and angle simultaneously. Using the fused model, the corrected error magnitude is

more consistent across the robot’s entire trajectory and the sections of higher absolute

value error in Figure 4-7a are brought closer to zero.

Looking at the decrease in error of specific anchors, the errors of anchors dw2f95

and dw9838 are only about 1 cm different for the angle- and distance-based correction

methods. While anchor dw2f95 ’s error is lower using the angle-based error correction,

anchor dw9838 ’s error is lower when correcting via distance. The error of anchor

dw971f after angle-based correction is 2.5 times higher than when using distance-

based correction. From the distance-based to the fused model corrections, it can be

seen that the biggest improvement is seen for anchor dw971f. This is hypothesized to

be because anchor dw971f is the only anchor in this trial whose relative angles are

not close to the 180 degrees which the distance-based correction assumes.

While the errors after distance-based correction are close to the errors after the

fused model correction, this is not the case for localization error. Least squares esti-

mation (detailed in Section 2.2) was used to localize the tag with (1) the uncorrected

range measurements, (2) the distance-corrected measurements, (3) the angle-corrected

measurements, and (4) the fused model-corrected measurements. The mean and me-

dian localization error is shown for each data set in Table 4.5.

It can be seen that although both the distance- and angle-based correction meth-

ods greatly decrease individual range measurement error, the overall localization error

does not always decrease. The angle-based correction method in particular causes an

increase in localization error for all trials. The distance-based correction does slightly

better, with mean values decreasing in five of eight trials and increasing in only three

of them. The only error correction method presented in this paper which decreases the

range-based least squares localization error for every trial is the fused model correc-

tion. Furthermore, even in the trials for which the distance-based correction decreases

localization error, the fused model’s localization error is equal or lower. In fact, only

considering the trials in which the distance-based correction decreases localization

error, the fused-model localization error is still nearly 20% lower on average.
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Table 4.5: Average mean and median localization error using least squares estimation
for all trials of each data set and correction method. Bold values indicate the cor-
rection method resulting in the lowest error or the greatest decrease in error for each
data set.

Mean Median
Data Set Method (cm) (% change) (cm) (% change)

Front-Facing
Antenna

None 9.9 – 8.8 –
Distance 10.3 +3.8 8.8 0.0
Angle 11.9 +20.2 10.5 +18.8
Fused 6.7 -30.2 5.3 -39.5

Right-Facing
Antenna

None 12.1 – 11.6 –
Distance 8.8 -27.8 7.6 -34.6
Angle 14.1 +16.8 13.2 +14.4
Fused 7.3 -39.7 6.3 -45.9

The change in localization error can be seen in Figure 4-8, which shows plots of the

uncorrected localization and the localization after all three correction methods for trial

2 of the front-facing antenna data set. Although the mean and median range errors

are greatly reduced by all three correction methods (Table 4.5), the mean localization

error for this trial actually increases for the distance- and angle-based corrections, by

4.1 and 25.8% respectively. On the other hand, the fused model decreases the mean

localization error by 25.8%.

Looking qualitatively at the plots, the uncorrected localization, Figure 4-8a, has

significant error in the X direction when the robot moves parallel to the y-axis. In

the angle-corrected localization plot, Figure 4-8c, it is interesting to see the increase

in localization error as the robot gets toward the end of its path. This is likely a

result of the increase in error of the corrected measurements as the robot moves away

from its starting point and the elliptical error model becomes less accurate. Visually,

the distance-based correction, Figure 4-8b, seems to do much better than both the

uncorrected and angle-corrected localization, however, this is not the case. While

the distance-corrected localization does have lower error than the angle-corrected

localization, it has higher error than the uncorrected measurements. The fused model,

Figure 4-8d, has much lower error than the three other methods. For example, one
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place this can be seen is by the strong correlation between the localization estimate

and ground truth position while the robot is traveling along the x-axis.

To see why overall lower range error may not always translate to lower localization

error, consider the example given in Figure 4-9. Figure 4-9a depicts a scenario where

all three range measurements have high error, but their errors seem to “cancel” to

result in a localization estimate with low error. However, Figure 4-9b shows a scenario

where two of the measurements are very accurate and only one has high error, which

results in a localization estimate with low accuracy. In particular, the pattern of

higher error leading to lower accuracy can be visually observed when using the angle-

based correction method. By comparing Figure 4-7b and 4-8c, it can be seen that even

though the mean range error decreased with respect to the original measurements, the

localization error did not. In this specific case, anchor dw971f is disproportionately

responsible for the measurement error, in a scenario similar to the bottom left range

measurement in Figure 4-9b. The localization error summary in Table 4.5 and the

theoretical example given in Figure 4-9 is evidence that it is not enough to decrease

the mean range errors, but decreasing range errors in a consistent manner is vital to

improving localization error.

After performing least squares estimation, the estimated positions were used in a

Kalman Filter to smooth out the position estimate. The linear state space model is

described by Equation 2.1 and the measurement equation is described by Equation

2.4. The covariance matrices for the process and measurement noise were kept con-

stant throughout all trials. The average mean and median localization error of each

data set are shown in Table 4.6. All percent changes were computed with respect to

the uncorrelated localization error using the Kalman Filter.

The same pattern as previously seen occurs when using a Kalman filter for local-

ization as well: decreasing measurement error does not always decrease localization

error. As was seen in the least squares localization estimate, the fused model was the

only model to decrease mean error in all trials of both data sets. A plot of the error

over time for a representative trial, trial 2 of the front-facing antenna data set, can

be seen in Figure 4-10.
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Table 4.6: Average mean and median filtered localization error for all trials of each
data set and correction method. Bold values indicate the correction method resulting
in the lowest error or the greatest decrease in error for each data set.

Mean Median
Data Set Method (cm) (% change) (cm) (% change)

Front-Facing
Antenna

None 8.6 – 9.2 –
Distance 9.1 +9.0 8.4 -8.2
Angle 9.7 +13.5 8.7 -3.7
Fused 4.2 -51.1 3.4 -62.7

Right-Facing
Antenna

None 11.6 – 12.0 –
Distance 6.3 -45.5 6.1 -48.1
Angle 11.7 +2.2 11.5 -3.7
Fused 4.6 -60.9 4.0 -66.9

In Figure 4-10, it is shown that the localization error of the angle-corrected ranges

increases with time. The distance-corrected and fused model-corrected error follow a

similar trend, although the distance-corrected localization error is greater for almost

every time step. For each error correction method, the resulting localization estimates

for this representative trial are plotted in Figure 4-11.

Overall, it can be seen that the localization error is further improved with a

Kalman Filter as compared with the raw least squares estimate. For the fused model

specifically, the mean error of all trials is decreased by an additional 2.5 cm, or

approximately an additional 35%.
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(a) Distance-based correction

(b) Angle-based correction

(c) Fused model correction

Figure 4-7: Error of the measurements from each anchor-tag pair of Trial 2 of the
front-facing antenna data set for all three error correction methods.
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(a) Uncorrected (b) Distance-based correction

(c) Angle-based correction (d) Fused model correction

Figure 4-8: The resulting localization using least squares estimation for Trial 2 of
the front-facing antenna data set for the uncorrected measurements and for all three
error correction methods.
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(a) A set of equally bad range measure-
ments could lead to good localization.

(b) One poor range measurement can re-
sult in poor localization.

Figure 4-9: Range measurements with high error can result in good localization and
measurements with comparatively lower error can result in poor localization. The
red star is the actual position of the tag, the grey lines represent the range measure-
ments, and the yellow circle is the theoretical localization estimate given those range
measurements.

Figure 4-10: The localization error over time for Trial 2 of the front-facing antenna
data set for all correction methods, smoothed with a Kalman Filter.
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(a) Uncorrected (b) Distance-based correction

(c) Angle-based correction (d) Fused model correction

Figure 4-11: The resulting localization, smoothed with a Kalman Filter, for Trial 2 of
the front-facing antenna data set for the uncorrected measurements and for all three
error correction methods.
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Chapter 5

Conclusion

5.1 Summary of Contribution

With the goal of improving accuracy of range-based localization using UWB, the data

presented builds upon the current understanding of UWB error, developing simple

models to describe measurement error as a function of separation distance and relative

angle between an anchor and tag. This work applies these models to robot localization

to predict and correct for measurement error, resulting in approximately 80% lower

range error, 35% lower localization error when using a least squares approach, and

56% lower localization error when smoothing the trajectory with a Kalman Filter.

Two sets of data with static anchors and static tags were taken separately to

explore the relationship between separation distance and relative angle with UWB

range error. It was seen that the magnitude of range error increased with separation

distance in a generally linear trend. Using least squares estimation, a line was fit to

the data, and the resulting slopes of the lines were consistent for all three anchor-tag

pairs. When plotting percent error versus relative angle in polar coordinates, the error

was shown to be elliptical in shape, therefore an ellipse was fit to the data. It was

found that the eccentricities and ellipses of all three anchor-tag pairs were similar.

The three different methods of error correction developed and analyzed in this

work include: (1) a method based on estimating error from only separation distance,

(2) a method based on estimating error from only relative angle, and (3) a method
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which fuses the separation distance and relative angle models together to estimate

error (the fused model). All three methods start with distance and/or relative angle

error models generalized from the stationary data models. Since UWB range error is

affected by many uncontrollable environmental factors, all three methods also use a

short calibration period before localization starts to adjust the models to fit the error

patterns of the current environment.

Two sets of range data of a robot driving a lawnmower pattern were used to

validate the three different correction methods. The only difference between the two

data sets was the orientation in which the UWB tag was mounted on the robot.

All three correction methods significantly lowered the error of the individual range

measurements. Averaged over all trials of both data sets, the distance-based correction

decreased the mean error by 75.5%, the angle-based correction by 62.5%, and the fused

model by 81.6%. In general, all correction methods resulted in greater decreases in

individual range errors for the front-facing antenna data set than for the right-facing

antenna data set. The only difference in the two data sets is the orientation of the tag

on the robot, suggesting that perhaps there are more intricacies to the relationship

between relative angle and range error than were discovered in this work.

To test localization accuracy, the corrected measurements from all three methods

were used to localize the robot using least squares estimation. Although individual

range errors were significantly decreased using all three correction methods, this was

not so with localization error. The distance-based correction method only decreased

the mean localization error in five of the eight trials, and the angle-based correction

method decreased the mean localization error for none of the trials. The fused model

outperformed the other two, with 25.8 to 44.4% decreases in error for all trials. These

results show that decreases in individual range error do not always lead to higher

accuracy localization.

Next, the range based localization estimate was smoothed using a Kalman Filter.

Using the Kalman filter, the distance-based error correction only improved the mean

localization error for half the trials, and the angle-based error correction improved

three of eight. The fused model error correction significantly improved the localization

74



accuracy of all trials, lowering the error by over 50% in six of the eight.

Range-based localization is a well-researched area and frequently used for everyday

tasks such as tracking and navigation. While there are many technologies available

to estimate distance, many require a direct line-of-sight. UWB is a contemporary

technology, lauded for its ability to transmit a signal through solid objects to measure

distance between antennas. Although this quality makes UWB a favorable option for

indoor and cluttered environments, it does come with challenges. Most notably, the

error is sensitive to many environmental factors and even to the exact geometry

between antennas. This work focuses on modeling and correcting for UWB error

related to separation distance and the relative angle between antennas, contributing

to the understanding of UWB error patterns.

5.2 Future Research

This thesis confirmed the distance and angle dependence of UWB range measurements

with the Decawave DWM1001 module and developed a fused error model to correct

for this error. A possible next step in this work is to extrapolate these findings to new

scenarios. For example, since these generalized models were developed with data from

the same UWB modules as were used for testing, the robustness of these models could

be tested with robot experiments in new environments, under NLOS conditions, or

even with other brands of UWB antennas. Data taken from additional DWM1001C

modules give us confidence that the models could be extrapolated to other Decawave

modules.

These data focused on separation distances above 3000 mm. However, despite po-

tential near-field antenna effects, it is believed that the three error correction methods

developed would decrease the range error of measurements taken at distances shorter

than 3000 mm as well. The only anticipated constraint is that the error correction

methods would result in a greater reduction of error if the robot calibration period

began with a separation distance of 3000 mm or greater from all anchors. Future

research could be done to confirm this hypothesis.
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Additionally, our model and experiments are based on motion of a robot in the

plane of the UWB modules. Further research and analysis would be necessary for

applications that would involve three-dimensional motion, such as experiments with

unmanned aerial vehicles.

A potential application of this work could be for error correction of cooperative lo-

calization. Sometimes localization capabilities are required in situations where access

to the area to pre-place stationary UWB anchors is not possible due to safety (natural

disasters, collapsed buildings, military applications) or accessibility (lava tubes, outer

space, underwater). Cooperative localization uses UWB modules on multiple robots

for short-distanced relative localization of the individual robots within the swarm.

The error correction methods developed in this thesis could be applied to cooperative

localization of robot swarms to correct for range measurement error.

Another area of future work could consider the estimate of the robot’s heading

during localization. In this thesis, the propagated equations were used to estimate

the heading of the tag at all time steps along the trajectory. The model validation in

Section 2.1 showed the mean absolute value of heading error to be 1.6 degrees, how-

ever this accuracy of measurement is not guaranteed for all robots or environments.

Future work could benefit from improving the accuracy of the heading estimate. One

potential way to do this is to mount a second tag on the robot so that an estimate

for the heading may be calculated by range measurements. This estimate could be

combined with the heading estimate from the robot model using a Kalman Filter

(or similar) to improve heading accuracy. A more complex solution may include the

development of an algorithm which combines each range measurement with the rela-

tive angle error models to find a probability distribution which describes the robot’s

heading at each time step, solving both the error prediction and heading estimation

problems simultaneously.
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