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Abstract 

Nowadays, more constraints are required for design of internal combustion engines, to meet the 

energy saving and the emissions standards in the new era. Engine emissions and engine 

durability are two of the most important factors in the development of IC engines. 

Engine particulate emissions are strongly correlated with the lubricant oil consumption.  On the 

other hand, the carbon soot particles mixed in the lubricant from the combustion are the major 

source for long term wear of the piston, piston ring, and cylinder liner.  Costly engine tests are 

required to develop the new system to meet emission and durability requirements.  More 

advanced data analytics and models connecting critical design and operating parameters to 

performance will help shorten the development lead time for more efficient and cleaner engines. 

This thesis work aims to model the engine wear during break-in and steady-state stages, capture 

oil emission correlations with engine operating parameters, and provide engine design guidance. 

This work is the first time to build deterministic physics-based wear models to perform 

systematic level engine wear simulations, including the effect of the liner topography. The wear 

simulation results are compared to experimental outcomes for both engine stages. It is also the 

first try to model the oil emission based on machine learning and connect the data-driven results 

with different engine ring-pack designs. The results suggest a good consistency of the machine 

learning analyzation and the underlying oil emission physics. The entire defined data-driven 

procedures show a promising future to accelerate engine development cycle, reduce engine 

testing cost, and help understand oil transport mechanisms and design influences.  
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Chapter 1. Introduction 

1.1 Background and motivations 

Nowadays, more constraints are required for design of internal combustion engines, to meet the 

energy saving and the carbon emission standards in the new era. Engine emission and engine 

durability are two of the most important factors in the development of IC engines.  

Engine emission is strongly correlated with engine efficiency and lubricant oil usage. Around 

10% of the total fuel energy is dissipated to heat due to mechanical friction, among which 20% is 

caused by the contact between the cylinder liner and the piston rings [1]. The behavior of the 

friction between the piston rings and the liner, in general can be divided to two stages: the break-

in period and the steady state. As illustrated in Figure 1.1, the friction level between piston rings 

and the liner reduces during the engine break-in period, followed by a stable friction magnitude 

for more or less the rest of the engine life. This can also be reflected in the engine Stribeck curve 

change during the break-in. As illustrated in Figure 1.2, the Stribeck gradually shifts towards the 

horizontal axis during the break-in, indicating a reduction of the friction level in the mixed 

lubrication regime. The friction change in the break-in period is mainly caused by the liner 

surface topography evolution, which is a direct result of engine break-in wear [2].  

 

Figure 1.1. the friction change during engine running 
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Figure 1.2. the engine Stribeck curve change during the break-in. 𝑐𝑜𝑒𝑓 is the friction coefficient. 
𝜇 is the lubricant viscosity. V is the sliding speed. P is the normal load [2] 

 

In addition to the engine efficiency, the transport and emission of lubricant oil is critical to 

engine emission, especially carbon particle emission. Experiments show that the particle 

emission has a positive correlation with oil emission. As plotted in Figure 1.3, in real engine 

tests, it is observed that the high peaks of the oil emission time series have significant 

overlapping with the particle number sequence. This indicates an important particle emission 

source: oil emission. When lubricant entering the combustion chamber through the piston ring-

pack system, carbon particles will be generated and become part of exhaust gases. Therefore, 

from the aspects of engine efficiency and carbon particle generation, it is important to understand 

the process of friction evolution during the engine break-in and the oil emission, leaking through 

the ring-pack system. 
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Figure 1.3. oil emission and particle emission [3] 

 

Figure 1.4. oil emission through the ring-pack system 

The second design constraint is the engine durability. The durability of internal combustion 

engines depends on the life times of different engine components, among which piston rings and 

the cylinder liner are critical to engine failure. These two components are in contact and under 

crank 

piston 
ring 

liner 

oil emission 
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cyclic loadings, making them easy to experience severe wear. For example, in the following 

figure, a liner has experienced severe wear processing, with numerous abrasive wear scars in the 

piston sliding direction. Such a liner, after severe wear, loses its tightness with the piston ring, 

resulting an engine failure. On the other hand, the ring surface is even under a more vulnerable 

condition because it always contacts with the liner throughout the engine running process, 

although it has a higher harness than the liner. As a result, providing understandings and models 

of the steady-state engine wear process is essential to developing sustainable engines. 

 

Figure 1.5. a cylinder liner with tribological failure  

While sufficient lubricant supply helps reducing wear and friction, inadequate control of 

lubricant transport results in unacceptable oil emissions.  This thesis work focuses on these two 

competing processes to provide more advanced understanding and models to develop more 

efficient and cleaner engines.   

 

1.2 The general understanding of the physics for engine wear and engine oil 

emission 

Wear of the piston rings and the cylinder liner can be divided into two stages based on the 

friction behavior change, break-in and steady-state. The dominant wear mechanisms in these two 

stages of engine life are different, and are discussed and modeled separately for the two stages.  

Wear is a complex process, with many different mechanisms coupled together. In this work, only 

mechanical wear mechanisms are considered, because these mechanisms contribute the most for 
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surface topography changes. These mechanisms, including asperity flattening, fatigue wear, 

third-body and two body abrasive wear, cause surface topography change in the scale of 

micrometers or sub-micrometers. At this scale of wear, the surface contact and lubrication 

conditions will be influenced. Other mechanisms, such as molecular level physical or chemical 

wear processes, are not modeled in this work.  

 

Figure 1.6. the dominant mechanical wear mechanisms at different stages of engine running 

Based on the current understanding of engine wear, different mechanical mechanisms dominate 

in different stages of engine running because of the topography changes of the ring surface and 

the liner surface. After an engine starts running, surface asperities immediately experience a 

plastic flattening process. This process happens very fast, with only several hundreds of engine 

cycles, the original asperities on the liner surface are flattened [4].  After that, as asperities on the 

liner surface are under cyclic loadings, asperity fatigue wear starts to become the dominant wear 

mechanism. Surface cracks and subsurface cracks initiate and propagate under the external 

loadings, eventually leading to fractures of the liner asperities. During this process, the ring 

surface has little wear because the hardness of the ring coating is remarkably higher than the 

liner. As a result, the ring surface approximately remains smooth during the engine break-in 

period. The asperities with high peaks on the liner surface are gradually removed and the average 

time 
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size of the contacting asperities are getting larger.  Together with more and more hydrodynamic 

support, the fatigue wear rate diminishes at the end of break-in stage for at least majority of the 

liner along the stroke.   

After the break-in period, as the third-body abrasive wear becomes significant to cause wear on 

both the ring surface and the liner surface around the TDC and BDC areas where boundary 

lubrication between rings and liner still exist. Because the ring surface is gradually roughened 

with third-body abrasion, two-body abrasive wear also initiates and damage the liner surface. 

Combining two-body and third-body effects, abrasive wear is the dominant wear mechanism in 

the engine steady state, as many abrasive wear scars are observed during experiments of this 

stage [5,6,7]. Figure 1.7 and Figure 1.8 illustrate the different dominant wear mechanisms during 

the break-in and the steady-state engine periods.  

 

(a) 

 

(b) 

Figure 1.7. the different dominant wear mechanisms at different engine running stages (a) 

asperity fatigue wear (b) abrasive wear 

Ring 

Ring 
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(a)                                                                     (b) 

Figure 1.8. the observed different mechanisms of wear (a) fatigue wear [8]  (b) abrasive wear [7] 

In this work, the engine break-in wear and steady-state wear are modeled separately with 

asperity fatigue wear and abrasive wear, respectively. In reality, the dominant wear mechanism 

transition does not have a clear turning point for break-in and steady-state running.  However, for 

the model simplicity, the two different wear mechanisms are modeled and simulated in a 

separate way. 

Engine oil consumption is known as one of the most difficult problems in engine development.  

Most of time, many design iterations are needed to find optimal solutions.  Among other, large 

number of involved design and operating parameters, lack of sufficient understandings and 

predictions of oil transport, complexity of transient oil consumption behaviors, and difficulties in 

measuring real time oil consumption are the burdens for solving oil consumption problems.  One 

particular area that has brought much attention especially recently, is the oil emission and its 

impact on particle number (PN) emission during real driving emission cycles.  The engine OEMs 

are obliged to ensure the engines to meet emission standard in real driving conditions.  As the 

instantaneous oil consumption under varying speed and load is not uniquely defined by steady-

state oil consumption at the present speed and load, a simple steady-state oil consumption 

measurement is not able give sufficient information to predict arbitrary driving cycle.  As such, 

on the physics side, understanding the oil accumulation history and its relationship with the oil 

consumption rate, and on the experimental side, ability to design a test cycle whose results can 
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be used to predict any driving cycles, bear practical interest to understanding and predicting the 

transient oil consumption as well as minimizing the engine test time. 

 

1.3 Existing work and the thesis objectives 

To meet the current challenges in developing internal combustion engines, this work aims to 

generate new knowledge and models on the wear of piston rings and liner as well as on the oil 

emissions.  As mentioned in the previous section, engine oil emission is strongly correlated with 

engine particle emission. To design low-emission engines, the oil emission characteristics need 

to be connected to engine design parameters as well as engine running cycles. However, because 

of the complexity of oil transport mechanisms contributing to the oil emission and the 

involvement of vast amount of relevant design and operating parameters, predicting oil emission 

reliably is still out of reach.  Currently, evaluating the oil emission is still largely relying on 

engine tests, which is expensive in both time and cost [9,10,11]. Moreover, the oil emission 

residence time and extra oil consumption during the transient operation have been one of the 

major concerns for the engine lubricating-oil transport and consumption with previous research 

works dedicated to this topic [12,13].  However, these works focus on step transient with 

constant speed and load before and after the step transient.  In contrast, the real engines 

experience various speed and load changes. 

to the first objective of this work is to employ Machine Learning (ML) to extract important 

parameters and relations dictating the transient oil emission from the oil emission measurements 

under Real Driving Emission (RDE) cycles and to predict oil emission of other driving cycles 

based on the training results. The central questions to be addressed include 

x If the current oil emission does not solely depend on the engine speed and load of the 

present time, how far back of the history of the operating conditions, hereafter called 

residence time, plays a determining effects on the present oil emission? 

x Purely based on oil emission measurement, what other parameters are also important to 

determining the present OE? 
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x What are the implications to the oil transport mechanisms from the parameters and 

relations gained from the ML? 

x What is the shortest running cycle whose OE measurement can be used to predict the OE 

of arbitrary driving cycles without further tests. 

Previous wear models, particularly fatigue wear and abrasive wear models, can be roughly 

divided into physics-based models and mathematical models. Physics-based models usually can 

be used to simulate the material loss or surface height change at the contacting spots, without 

including the effect of surface roughness [14,15,16,17]. Previous physics-based fatigue wear and 

abrasive wear models are based on a single contacting point. Statistical models, on the other 

hand, focus more on the change of important surface roughness parameters during the wear 

process [18,19,20,21,22]. Some statistical models can also generate a worn surface topography 

with some artificially generated scratching lines, but the physics processes are missing [2,23]. 

This work is the first time to build deterministic physics-based wear models to perform 

systematic level engine wear simulations, including the effect of the liner topography. With the 

built model, it is able to predict the wear coefficients in engine break-in and steady-state stages 

and estimate engine life time under given conditions. Design guidance can be provided to build 

more sustainable and more efficient engines. 

The objectives of the second part of the thesis work are to develop deterministic models for the 

break-in of the liner roughness and the long-term wear of the liner roughness and rings.  The 

work focuses on the mechanical processes only.  A fatigue delamination wear model is employed 

for the break-in period while an abrasion model is employed for the long-term wear of the liner 

roughness and the rings.  Third body particles are introduced for the abrasion model in order to 

bring wear on the coated ring whose material in general is harder than the liner.  Finally, the 

modeling results will be compared with the measurements on friction and ring wear.   

 

1.4 Scope of the thesis 

Machine learning based oil emission modeling is discussed in Chapter 2. The data processing, 

model selection and fitting procedures are defined first. Important system properties are also 
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studied and estimated, such as the oil emission residence time, engine acceleration effect and 

quasi-static sequences. Point prediction, interval prediction and total oil emission prediction are 

also discussed with different application purposes.  

The break-in wear model is physics-based and comprised of different sub-models. In Chapter 3, 

the mechanisms during the engine break-in are modeled and integrated. Wear simulation results 

are also compared to the existing empirical wear law. Some friction experimental measurements 

during the break-in are also presented and compared in Chapter 3. 

Abrasive wear modeling of engine steady state is discussed in Chapter 4, starting from the basis 

of all the sub-models of third-body transport and abrasion. The two important influencing factors 

are investigated: the particle size distribution and the ring coating material. These are critical 

design components for engine sustainability. 

Chapter 5 summaries the thesis work and provides the potential future work for improvements. 
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Chapter 2. Learning Oil Transport Mechanisms from Oil 

Emission Measurement via Machine Learning  

2.1 General introduction  

As discussed in Chapter 1, engine particle emission is positively correlated with engine oil 

emission. Designing low oil emission engines is the key to reduce emissions in the automotive 

industry. However, development of new engines has two nontrivial challenges. First, the internal 

mechanisms of engine emission are complex, with many different physical and chemical 

processes coupled together. As a result, it is difficult to build models of engine oil emission and 

obtain insights of some important system properties. Second, the oil emission testing process of 

new engines takes long time, at least one to two weeks, leading to a slow development cycle and 

high design and testing cost. In this chapter, we propose a set of data-driven procedures based on 

experimental oil emission measurement to improve the design and testing process of engine 

development.  

Due to the complexity of oil transport and emission process, data-driven methods is more 

efficient and feasible to conduct modeling work in a fast paced engine development 

environment. The entire set of data-driven procedures is summarized in Figure 2.1, as a form of a 

flowchart. As the input of the data-driven procedure, oil emission measurements provide 

simultaneously-recorded engine speed, load and oil emission sequences. After data processing 

and feature engineering, the most suitable model is selected to capture the correlations between 

oil emission and engine running conditions. With a chosen machine learning model, some 

important system properties can be calculated and evaluated, such as the residence time and 

input data uncertainty. The uncertainty level of the input data can be used to provide feedbacks 

on engine experimental setup, such as data collection methods, sensor setup or the amount of 

data required for oil emission analysis. Another important system property is the residence time, 

which will be applied in data augmentation and total oil emission prediction. Uncertainty and the 

residence time are also useful in designing engine testing cycles to minimize the testing duration 

and cost.  
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Figure 2.1 the overall scope of the data-driven procedures defined in this project for new engine 

development 

The structure of this chapter is also based on the oil emission dataset analysis procedures. First, 

the basic data structure and the piston ring-pack designs used in this project are introduced. Data 

processing and feature engineering are discussed next with a chosen machine learning model for 

the oil emission regression task. With the chosen model, important system properties are 

investigated, followed by predictions and design of engine testing cycle. 

 

2.2 Oil emission datasets and engine testing conditions  
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Among all engine design elements, ring-pack design is the critical part to control oil emission. 

Figure 2.2 contains two pictures of a real running engine piston ring pack using two-dimensional 

Laser Induced Fluorescence [24]. The horizontal dark bars are the piston rings while the oil 

exists in the bright areas, with more oil accumulating in brighter locations. there accumulates 

large amount of oil in all regions of the ring pack during the closed-throttle condition, 

particularly below the second ringAfter the throttle is opened, it [24] appeared that most of the 

oil in the third land and oil control ring was quickly released downwards while some of the oil 

leaked upwards passing the top ring to the crown land.  This leaked oil will never return to the 

engine lubrication system and eventualy become engine emission. Therefore, engine oil emission 

is remarkably influenced by the ringpack design and the accumulation process of the lubricant. 

         

                                (a)                                                                    (b) 

Top ring 

2nd ring 
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                                (c)                                                                    (d) 

 

(e) 

Figure 2.2 oil emission mechanisms near the ringpack system. (a)-(d) the oil accumulation 

process during closing throttle (e) opening throttle, oil released from the ring-pack system to 

form oil emission [24] 
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In this work, the oil emission measurements by Mahle [11] of a turbo-charged Si engine with 

three different oil control rings are used to illustrate how the defined data-driven procedures are 

used to perform system analysis, predictions and engine testing designs.  The first two oil control 

rings have the same design, namely, three-piece oil control ring, but different tensions.  The first 

has a standard tension and the second has 1/3 of the standard tension.  The thrid oil control ring 

is Uflex. A rail gap is designed to make it easier for assembly, but it also allows oil leakage 

through the oil control ring. The only differernce between design 1 and design 2 is the tension 

within the expander. Design 1 contains high tension in the expander compared to design 2 so that 

the bore and the ring fitting is tighter. Design 3 does not uses three-piece oil control ring. Instead, 

there is only one piece in the oil control ring for design 3. This makes it more flexible to fit into 

the bore with changing shapes, but the notches on the ring provide additional paths for oil 

leakage. 

   

Figure 2.3 the oil control of ring-pack design 1 and design 2 
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Figure 2.4 the oil control of ring-pack design 3 

The collected data from oil emission experiments of different ringpack designs are presented as 

time sequences. The sensors record the engine status during the testing process, including engine 

speed, engine load and oil emission. These variables are all recorded instantaneously with a fixed 

time interval, 0.55 second.  The load and speed sequences are predefined from a Real Driving 

Emission (RDE) cycle  while the oil emission series is the corresponding system response. 

Therefore, in order to eliminate the random effect of a single engine test, the experiment is 

conducted 6 times with the same predefined speed and load. The averaged result is used as the 

final experimental oil emission measurement datasets.  

 

 

Figure 2.5 oil emission datasets for the three different ringpack designs.  

baseline: ring-pack design 1; worst case: ring-pack design 2; u-flex: ring-pack design 3  

Figure 2.5 shows the datasets of oil emissions measured in real engine experiments. The ring 

pack design names, ‘baseline’, ‘worst case’ and ‘u-flex’, are the original names provided used by 
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Mahle [11]. For simplicity, we use ring-pack design 1 to 3 to refer to the designs. Oil emission 

sequences are also plotted with different colors in Figure 2.5, for different ring-pack designs. 

Compared to design 2, ring-pack design 1 has the lower accumulated oil emission amount, 

because of its higher tension. Design 1 also achieves lower oil emission than design 3. 

 

2.3 Data processing, feature engineering and model selection 

The measurement of the oil emission test series was presented as a set of time sequences, 

including engine speed, engine load and real time oil emission. Several steps should be made 

with the purpose of capturing internal mathematical correlations within the oil emission datasets. 

Data processing, feature engineering, and choosing appropriate models are the essential three 

steps for data-driven modeling for engine oil emission. It is inefficient or sometimes even 

unfeasible to feed raw measurement data into machine learning models. Based on the physics 

properties of the problem and measurement data structures, necessary data separation and 

rescaling are needed for data processing. Feature engineering is another preparation step for 

algorithm fitting, which turns a physics problem into a mathematical one through defining 

independent variables and the corresponding dependent variable. After data processing and 

feature engineering, a set of models should be chosen to fit the data and catch the correlation. In 

this step, several candidate models are compared under a carefully selected evaluation metric 

before the best is selected. 

2.3.1 Data processing 

For a dynamic system like engine oil emission, a commonly used practical analysis is separating 

the response into steady-state and transient parts [9,13,25]. The total oil emission at any moment 

is the summation of steady-state oil emission and transient oil emission: 

𝑂𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑂𝐸𝑠𝑠 + 𝑂𝐸𝑡𝑟  

𝑂𝐸𝑠𝑠: steady-state oil emission 

𝑂𝐸𝑡𝑟: transient oil emission 
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More specifically, 𝑂𝐸𝑠𝑠 is only determined by the engine speed and engine load at the 

corresponding moment, while 𝑂𝐸𝑡𝑟 is influenced by previous load and speed history as well. Due 

to the existence of system memory, the number of previous influencing steps is also a limited 

number, T. Therefore, we have: 

𝑂𝑡
𝑠𝑠 = 𝑓𝑠𝑠( 𝑆𝑡,  𝐿𝑡) 

𝑂𝑡
𝑡𝑟 = 𝑓𝑡𝑟( 𝑆𝑡,   𝑆𝑡−1, 𝑆𝑡−2…  𝑆𝑡−𝑇,  𝐿𝑡,   𝐿𝑡−1,  𝐿𝑡−2…  𝐿𝑡−𝑇,  𝑂𝑡−1,  𝑂𝑡−2…  𝑂𝑡−𝑇) 

For the steady state component, 16 independent responses are recorded with each engine ring pack 

design. A simple third order polynomial fitting is adopted to fit the steady-state oil emission 

correlation: 

𝑂𝑡
𝑠𝑠 = 𝑓𝑠𝑠( 𝑆𝑡,  𝐿𝑡) = 𝐴30𝐿3 + 𝐴21𝐿2𝑆 + 𝐴12𝐿𝑆2 + 𝐴03𝑆3 + 𝐴20𝐿2 + 𝐴11𝐿𝑆 + 𝐴02𝑆2 +

                                       𝐴10𝐿 + 𝐴01𝑆 + 𝐴00  

Where L and S are the normalized speed and load at each moment. The above expression is a 

third-order polynomial fitting, but in application the final choice of polynomial order is decided 

by the fitting error on the testing set, not limited to third-order.  

The reason to fit the correlation after normalizing the speed and load data of the 16 points is to 

eliminate the effect of different magnitude of the two features. Min-max scaling is used as the 

normalization method: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

Furthermore, with the same purpose, the entire load and speed sequences are processed with 

min-max scaling where the minimum and maximum values are defined by the extremums in the 

steady-state dataset. 

As an example, here we use the ring-pack design 1.  

Engine speed [rpm] Engine load [N] Oil emission [g/h] 

700 -0.1 0.23 
1550 -23.1 1.96 
1550 10 0.56 
1550 122 1.39 
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1550 243.1 3.52 
1550 374.9 7.82 
3000 -27.6 2.93 
3000 10 0.97 
3000 131 2.93 
3000 262 8.58 
3000 390 18.91 
4600 -35.4 6.48 
4600 10 1.31 
4600 128 6.08 
4600 256.1 13.56 
4600 390.9 39.3 

 

Table 2.1 the steady-state engine status of ring-pack design 1 

Through a third-order polynomial fitting, the correlation of baseline steady state can be 

mathematically represented by the following curve. The highest point corresponds to the most 

extreme steady state testing condition where the engine speed and load are 4600 rpm and 390.9 

N, respectively. 

 

Figure 2.6 steady-state correlation of ring-pack design 1 
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                        (a) design 2                                                    (b) design 3 

Figure 2.7 steady-state correlation of design 2 and design 3 

 

2.3.2 Feature Engineering 

The oil emission dataset is a set of time series. With the purpose of predicting in the oil emission 

series, supervised learning is applied to uncover the correlation of transient oil emission 

component. The essential part of feature engineering in supervised learning is defining the 

independent variables and dependent variables, among which we would like to find a 

mathematical mapping. In the task of predicting a single step of oil emission, the dependent 

variable is the oil emission at each moment while the independent variables are the speed, load 

and oil emission at previous steps and the speed and load values at the current moment. 

Although the system memory duration is not determined yet (will be investigated in the next 

section), it is clear that the oil emission at each moment is only correlated with the status of the 

recent history. In other words, the system has a residence time. From the physics of the oil 

transport process, it is natural to draw such a conclusion. Oil emission is largely dependent on 

the oil accumulation in the ring pack (above the oil control ring). Moreover, oil accumulation is 

not an instantaneous process, which requires a certain number of engine cycles to achieve 

equilibrium. The subscript T in the equation above represents the number of previous steps used 

as input features. The optimized value of T is determined by the system residence time, which 

will be discussed next. In Section 2.5, a number of system properties will be investigated under 
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the scope of machine learning, including residence time, acceleration effect, quasi-static oil 

emission. With different regression purposes, the corresponding feature set is also different. But, 

the scope of using previous speed, load and oil emission steps remains the same. 

Normalization is applied to all the input features in order to avoid the potential effect of 

magnitude inconsistent across speed, load and oil emission feature groups. Although some 

machine learning models are insensitive to feature normalization, it is still applied as a standard 

procedure. For example, using tree-based models, such as gradient boosting and random forest, 

does not require feature normalization as an indivisible procedure, but utilizing neural networks 

needs normalization to eliminate feature magnitude effect. In this project, two normalization 

methods are adopted: min-max scaling and standard normalization. 

Min-max scaling: 𝑋𝑛𝑜𝑟𝑚 = 𝑋−𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

 

Standard normalization: 𝑋𝑛𝑜𝑟𝑚 = 𝑋−𝑋𝑚𝑒𝑎𝑛
𝜎

 

𝑋 and 𝑋𝑛𝑜𝑟𝑚 are the original value and the normalized value, respectively. 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, 𝑋𝑚𝑒𝑎𝑛 

are the minimum, maximum and average values of the feature set. Speed, load and oil emission 

are rescaled separately. The normalized values, as the outcome of normalization, cover different 

ranges based on different normalization approaches. Min-max scaling leads to the normalized 

value in the range of [0, 1], while standard normalization makes the result in both negative and 

positive regions. The final choice of normalization methods depends on the final performance on 

the testing dataset. 

 

 2.3.3 Model selection 

For the oil emission dataset, several models can be used to fit the correlation and investigate 

underlying system properties. With the purpose of selecting the most efficient model, the original 

dataset is divided into a training set and a testing set while the final performance comparison 

relies on the testing set. As the dataset is a time sequence set, the split of training and testing sets 

is along the time axis: the first 80% of the total measurement sequence is used as the training set 

with the rest 20% as the testing set. The prerequisite assumption to make such a partition is that 
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the engine status keeps stable across the time domain of oil emission series so that the correlation 

remains the same in the training set and the testing set. This assumption is valid once the engine 

experiment goes beyond the beginning break-in period. The separation of the time series data is 

illustrated in the following figure. 

Figure 2.8 the split of the training and the testing datasets 

For sequential datasets, many models can perform the role of correlation fitting. Among those 

models, several widely-used models are considered in this project and compared to each other to 

select the best model [25]. Auto regressive integrated moving average (ARIMA), recurrent 

neural network (RNN), gradient boosting and random forest are the most commonly utilized 

model for time series datasets [26,27,28].  

The first model, ARIMA, is a traditional statistical time series model, very efficient in capturing 

linear serial correlations. The mathematical expression of ARIMA is: 

𝑌𝑡 = 𝛼1𝑌𝑡−1 + ⋯ + 𝛼𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 

Where 𝑌𝑡 to 𝑌𝑡−𝑝 are the time series values and 𝜀𝑡 to 𝜀𝑡−𝑞 are the error terms with Gaussian 

distribution. The model tries to find the best fitting parameters for 𝛼1 to 𝛼𝑝 and 𝜃1 to 𝜃𝑞. 

ARIMA is computationally efficient because it is a generalized linear model. Therefore, it is 

difficult to fit the transient oil emission data which contains a significant portion of nonlinear 

correlation. 
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The second model is a special type of neural network: recurrent neural network (RNN). RNN can 

find both linear and nonlinear serial correlations through regression of successive terms in a 

series.  The following figure shows the working mechanisms of RNN. It uses a single neuron in 

an iterative way to perform the memory function so that the model a deal with time series data. 

Contrary to ARIMA, RNN can detect nonlinear correlations in time series as well. However, the 

RNN model is a kind of deep neural networks, requiring a large set of training data so that the 

model variance can be reduced to an accepted range. In this project, the oil emission sequence 

only contains thousands of measurement points, which is not sufficient for training an RNN. The 

testing accuracy also confirms the limitation of application of RNN on the oil emission problem. 

Little training set size will lead to a high variance level along with a risk of overfitting.  

 

Figure 2.9 the structure of RNN 

The third model is gradient boosting. Gradient boosting is a kind of resemble method, which 

performs classification or regression on the results of many basis learners. The final prediction of 

the entire model depends the way to integrate those basis learners: majority voting for 

classification or weighted average for regression. Because gradient boosting algorithm builds 

each basis learner based on the residual error of all previous leaners, it can significantly improve 

the fitting via bias reduction. Gradient boosting is pragmatically useful for tabular datasets. 

Meanwhile, the oil emission system has a residence time, which makes it possible to convert the 

time series data into a tabular set. Therefore, gradient boosting is suitable for this oil emission 

regression problem.  

The fourth model is random forest. Similar to gradient boosting, random forest is a kind of 

resemble methods as well. The symbolic difference is that random forest builds each basis 

learner independently while gradient boosting builds each learner based on previous residuals. 
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As a result, the averaging regression result on all the basis learners in random forest can keep the 

entire model variance at a low level. Therefore, which model can better perform the task of oil 

emission regression depends on the fitting would benefit more from bias reduction or variance 

reduction. Both gradient boosting and random forest are good at fitting tabular data which can be 

converted from oil emission time series. 

Based on the regression on the testing set, gradient boosting performs the best with the lowest 

fitting error. The metric used to evaluation model fitting is mean absolute percent error (MAPE): 

MAPE =
1
𝑁

∑ |
𝑥𝑖 − 𝑥𝑖̂

𝑥𝑖
|

𝑁

𝑖=1

 

Where 𝑥𝑖 and 𝑥𝑖̂ are the real value and the predicted value for each testing sample point. The 

main reason to use this metric is the existence of many high peaks of oil emission response. For 

instance, if the traditional metric squared loss or absolute loss is utilized, the overall loss function 

will be consisted mainly from fitting errors of those emission peaks, leading to the condition that 

oil emission measurements are unevenly evaluated. The following table contains the testing error 

of the four models. 

 

Testing error 

(MAPE) 

ARIMA RNN Gradient 

boosting 

Random forest 

Ringpack 

design 1  

0.327 0.312 0.188 

 

0.221 

Ringpack 

design 2 

0.257 0.199 0.197 

 

0.285 

Ringpack 

design 3 

0.409 0.391 0.307 

 

0.641 

 

Table 2.2 the fitting results of different statistical time series models 
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From the regression results on the testing set, gradient boosting is the best candidate regression 

model achieving the lowest testing error. Therefore, gradient boosting is chosen as the model for 

further analysis of the oil emission problem. 

 

2.4 Data fitting 

In Section 1.2, the final chosen machine learning model for the oil emission regression task is 

gradient boosting. In this chapter, the details of model fitting will be presented, along with the 

best model hyperparameter combination for each ring-pack design.  

 

2.4.1 Model fitting 

Gradient boosting, as a resemble method, requires defining the type of basis learners as the first 

step. A commonly used basis learner is classification and regression tree (CART), a non-

parametric decision tree learning technique being able to perform either classification or 

regression. CART could build variance tree structures in order to minimize an objective function. 

Compared to each basis learner, gradient boosting can reduce bias by fitting model residuals in 

every iteration. Therefore, each CART can grow relatively larger and deeper without too much 

concern of overfitting. More specifically, tree-based gradient boosting is the best model for the 

project. 

To uniquely determine a tree-based gradient boosting model, several hyperparameters should be 

fixed. The major hyperparamters are listed in the table below. 

notation   

min_samples_split the minimum number of samples (or 
observations) which are required in a node to 

be considered for splitting 
min_samples_leaf the minimum samples (or observations) 

required in a terminal node 
max_depth the maximum depth of each tree 

learning_rate a weighting factor for the corrections by new 
trees when added to the model. 
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n_estimators the number of basis learners 

subsample the fraction of observations to be selected for 
each tree 

 

Table 2.3 the hyperparameters of tree-based gradient boosting 

The best parameter combination is selected through 10-fold cross validation. Among many 

different combinations, the hyperparameter set with the minimum is the searching target. 

However, a complete search of all hyperparameter combinations is time consuming and 

computationally expensive. As such, we employed two techniques to reduce the computation 

cost: grid search and pairwise parameter tuning.  

Grid search consists of two steps: coarse search and fine search. A set of hyperparameter 

combinations is tested, followed by a fine search of the hyperparameter space near the best 

combination. This two-stage search method is possible to miss the optimized combination, but 

the final choice, being able to beat most of the parameter combinations, can be used as an 

approximation of the  optimizated combination. Pairwise parameter tuning makes use of the 

internal connections among the tuning hyperparameters to reduce the amount of calculation. In 

this model for instance, learning_rate and n_estimators is a pair of related hyperparameter. 

Lower values of learning_rate would require larger number of trees to model all the relations 

because the weight of each tree is lower in the final result. In the parameter tuning process, lower 

learning_rate corresponds to higher value of n_estimators, making the search space smaller 

compared to unconstrained search. 

With the hyperparameter tuning procedure defined, the optimized hyperparameter combinations 

are obtained for all the three ring-pack designs. As mentioned above, although those 

hyperparamter combinations are not guaranteed to be the global optimality, they are close to the 

most optimized solution. The optimal hyperparameter combinations are presented in the 

following table. It is important to point out that the correlation fitted with the hyperparameters 

defined in the table is only the transient component. Along with the steady-state correlation, the 

entire oil emission sequence can be predicted. 
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 Design1 Design2 Design3 

min_samples_split 1 3 2 

min_samples_leaf 2 4 1 

max_depth 4 6 5 

learning_rate 0.2 0.1 0.15 

n_estimators 280 400 300 

subsample 1 0.95 1 

 

Table 2.4 the optimized hyperparameters of tree-based gradient boosting 

 

2.4.2 Comparison of different data processing methods 

In the interest of comparing the performance of different data processing methods and showing 

the robustness of separating steady-state and transient component, we provide the exact 

prediction results of oil emission on the testing series. The predicted oil emission is illustrated 

both as sequences and testing accuracies.  

  

                     (a) Ring-pack design 1                                     (b) Ring-pack design 2 
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(c) Ring-pack design 3 

Figure 2.10   oil emission prediction, steady-state only  

                        (a) Ring-pack design 1                                     (b) Ring-pack design 2 

                                     

            (c) Ring-pack design 3 
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Figure 2.11   oil emission prediction, separating steady-state and transient  

In Figure 2.10, the three plots show the predicted oil emission series on top of the real measured 

oil emission based on steady-state part only. The most difficult part for steady-state prediction is 

the condition that oil emission has an abrupt increase due to sudden change of load or speed. 

These peak positions contain high level of transient component. With the help of machine 

learning based transient correlation, we can dramatically improve the oil emission prediction, as 

illustrated in Figure 2.11. The improvement is mainly from oil emission peaks as transient part is 

properly added into consideration. Quantitatively, the prediction accuracies of different data 

processing methods are listed in the table.  

Data processing Testing error 

No separation for steady 

state and transient, fitted 

with machine learning 

Design 1: 0.432 
Design 2: 0.471 
Design 3:  0.797 

Steady state only Design 1:  0.358 
Design 2: 0.536 
Design 3: 0.871 

Separating steady state and 

transient components 

Design 1: 0.188 
Design 2: 0.197 
Design 3: 0.307 

 

Table 2.5 testing errors of different data processing methods 

 

2.5 System investigation 

Up to now, the data processing and model fitting procedures are well defined to properly model 

the oil emission sequence. With the determined feature engineering and fitting model, essential 

system properties can be investigated and connected to oil transport physics and system design. 

The studied content via machine learning includes: residence time estimation, engine 

acceleration effect on oil emissions, effect of previous oil emission steps and quasi-static oil 

emission sequence generation. 
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The overall methodology used to investigate system properties is balancing the tradeoff between 

variance and bias. Statistical models cannot perfectly describe the true nonlinear correlations of 

many engineering processes, with the residual error being classified into two kinds: variance and 

bias. The error due to variance is taken as the variability of a model prediction for a given data 

point. This is usually caused by high stochasticity of the training set or overcomplicated model, 

leading to a capture of unnecessary correlations. On the contrary, bias is taken as the difference 

between the model prediction and the true value of the system which we are targeting to predict. 

Bias is often caused by oversimplified model or the missing of important influencing factors. 

The relation between bias and variance can be illustrated in a scatter plot.  

In Figure 2.12, the origin point represents the real target value while the solid points are the 

predicted values by the model. In order to consider the fact that any prediction is only a 

characteristic value of an output distribution, the prediction here is represented by a set of 

different points. The ideal situation is the case with low bias and low variance, but the tradeoff 

between bias and variance always exists. In Figure 2.13, the magnitudes of bias and variance 

have opposite trends with changing model complexity.  When the model becomes more 

complex, bias is decreasing because of the enhancement of model expressiveness. However, 

variance increases in this process because of overfitting. Correspondingly, the overall error can 

achieve a minimum value with a good balance between the pair of tradeoffs. Model complexity 

depends on many things, such as the model type, the number of model parameters used for fitting 

and the choice of features.  

 

  (a)  low bias, low variance    (b) high bias, low variance 
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  (c)  low bias, high variance    (d) high bias, high variance 

Figure 2.12 the effect of bias and variance on predictions                            

 

Figure 2.13 the bias-variance tradeoff     

In this section, the only influencing factor of the model complexity is limited to the chosen 

features. This is conducted through a fixed model and optimized hyperparameter tuning. The 

model utilized in this section is tree-based gradient boosting. Although it is possible that 

switching to another time series model could achieve better fitting results in some conditions, we 

still use gradient boosting to eliminate the effect of different models. Hyperparameters are 

selected based on cross validation results to make sure that the regression error reduces to 

minimum value once the model is defined. Therefore, the only influencing factor left is the 

choice of features.  

 

error 

model complexity 

total error 

variance 

bias 
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2.5.1 Residence time 

The oil emission at each moment is a function of the oil emission, speed and load of some period 

before that moment: 

𝑂𝑡
𝑠𝑠 = 𝑓𝑠𝑠( 𝑆𝑡,  𝐿𝑡) 

𝑂𝑡
𝑡𝑟 = 𝑓𝑡𝑟( 𝑆𝑡,   𝑆𝑡−1, 𝑆𝑡−2…  𝑆𝑡−𝑇,  𝐿𝑡,   𝐿𝑡−1,  𝐿𝑡−2…  𝐿𝑡−𝑇,  𝑂𝑡−1,  𝑂𝑡−2…  𝑂𝑡−𝑇) 

Here, T represents the number of previous steps included in feature engineering to correlate oil 

emission at each moment. According to the theories of bias-variance tradeoff and model 

complexity, if the model type and feature processing procedure are fixed, the only thing that can 

influence the model complexity is the choice of features. With various values of T to fit the 

model, the optimal number of T can be determined to reach the best balance between bias and 

variance. 

The prediction MAPE as a function of T is plotted in Figure 2.14. All the three ringpack designs 

show the same trend that the fitting error decreases, followed by an increment as T becomes 

larger. This agrees with the tradeoff between bias and variance. When T is small, bias contributes 

the most to the total error because the model is oversimplified without some important steps 

considered. When T becomes large enough, bias reduces to a low level but variance gets 

significant. The model is overcomplicated since irrelevant steps are included, leading to model 

overfitting. The optimized value of T, with the best variance-bias balance, indicates the most 

proper choice of features. This value is defined as the residence time of each ring-pack design. It 

is important to mention that this statistical estimation is an overall fitting average residence time, 

different from the real system residence time. From the physics point of view, the residence time 

of the entire oil emission system is not a constant, but a varying value based on the instantaneous 

system status. However, this optimal value of T can be used as a characteristic value of the 

system residence time.  
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Figure 2.14 the prediction error with different number of previous steps 

 Ringpack 

design 1  

Ringpack 

design 2 

Ringpack 

design 3   

Residence time [# steps] 12-16  8-10  5-8 

Residence time [seconds] 6.6-8.8 4.4-5.5 2.7-4.4 

 

Table 2.6 estimated residence time 

In Table 2.6, the residence time of each ring-pack design is listed. It is also converted to the real 

time duration in seconds, with 0.55 second for each time step interval. Considering the 

uncertainty of the model fitting, an interval near the optimization T is chosen as the residence 

time range. Ring-pack design 1 has the longest residence time, 6.6-8.8 seconds. This result from 

machine learning explains the ring-pack design logic. Ring-pack design 1 and design 2 have the 

same three-piece oil control ring setup, with different ring tensions. Comparing Designs 1 and 2, 

Design 1 provides lower oil supply rate to the ring pack region above the oil control ring due to 

its higher tension.  Thus, it may be reasonable to expect that the present oil accumulation in the 

ring pack with Design 1 takes longer time to reach than Design 2 with higher oil supply rate.  For 

Design 3, there are about 50 small gaps on the oil control ring and they may provide direct paths 
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between the region below the OCR and above.  Thus the findings from the model that Design 3 

has the shortest residence time also make sense.   

The existence of residence time can be reflected by calculating the influence of each feature as 

well. In Figure 2.15, the influence of oil emission, speed and load of previous steps (features) are 

quantitatively calculated and plotted, with higher weight indicating larger contribution in 

correlation fitting. The horizontal axis represents how many steps those features before the 

targeted oil emission moment. The system memory exists due to the decay of feature influence.  

These results show that the features of the previous a few time steps are most important to the 

outcome of the oil emission and then the influence of the past features decreases dramatically 

before becoming irrelevantly small. 

 

                    (a) Ringpack design 1                                     (b) Ringpack design 2 

 

(c) Ringpack design 3 

Figure 2.15 The contribution of each feature for oil emission prediction 

The calculation of the feature weights relies on the internal mechanisms of tree-based gradient 

boosting, more specifically, the model of CART. As explained in Figure 2.16, the split of each 
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tree node includes two steps: selecting a feature (F) and defining a best threshold value 𝑓0. The 

choice of F and  𝑓0 is usually done by brute force searching or random searching. After defining 

the two steps, data samples can be divided into the two sub-nodes of the parent node. During this 

process, the regression error is reduced by some amount, 𝑘(𝐹). Based on the built gradient 

boosting model, the total contribution of each feature can be calculated as: 

𝑤𝑒𝑖𝑔ℎ𝑡(𝐹) =  ∑ 𝑤𝑖 ∑ 𝑘𝑖
𝑗(𝐹)

𝑗𝑖

 

Here index i denotes different trees and index j denotes different node splits. 𝑤𝑖 is the weight of 

each tree in the calculation of final regression results. 

 

Figure 2.16 The mechanisms of CART 

2.5.2 Engine accelerations 

Ground on the physics of oil transport in the ring-pack system, engine acceleration should be an 

important input feature because inertia force of oil is determined by acceleration. The calculation 

of engine acceleration is fairly straightforward: the first-order differenced speed sequence is the 

acceleration series.  

  𝐴𝑡 =  𝑆𝑡 −  𝑆𝑡−1 

 𝐴𝑡 is the engine acceleration. The feature choice in previous sections includes the speed terms, 

but acceleration history is not added into the model. Theoretically, if the machine learning model 

is perfectly intelligent, it should be able to fully discover the correlation between oil emission 

and engine acceleration because the speed information is already provided. However, in practice, 

select 
feature F 

F < 𝑓0 F ≥ 𝑓0 
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the effect of engine acceleration can only be partially detected via machine learning if the 

acceleration terms are not explicitly added into the feature set.  

  

                    (a) Ring-pack design 1                                     (b) Ring-pack design 2 

 

(c) Ring-pack design 3 

Figure 2.17 oil emission prediction, with acceleration added into the feature set 

Figure 2.17 contains plots of predicted oil emission sequences, adding previous acceleration 

terms. Compared to the regression results without explicitly including accelerations, the 

prediction of oil emission peaks is improved, which is usually the difficult part to forecast. For 

example, the first significant oil emission peak of ring-pack design 1 testing series is very close 

to the predicted value. 
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Figure 2.18 prediction around oil emission peaks, ring-pack design 1 

The quantitative testing errors are presented in Table 2.7. The results show that adding 

acceleration as input features can improve the predictions, achieving lower errors. The amount of 

error reduction through adding acceleration is small, because the original fitting already includes 

the speed sequence, with partial acceleration correlation captured. 

 Without acceleration With acceleration 

Ring-pack design 1 0.188 0.171 

Ring-pack design 2 0.197 0.190 

Ring-pack design 3 0.307 0.302 

Table 2.7 prediction errors of the three designs, with or without acceleration included 

 

2.5.3 Correlation of previous oil emission steps 

When we are defining the residence time in the previous sections, it refers to the status of the 

entire system with a period of time. Thus, the feature set contains speed, load and oil emission 

status within the residence time period. In this section, an important property is investigated: the 

Markov property of oil emission. The Markov property means that evolution of one variable in 

the future depends only on the present state and does not depend on past history. In order to 
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investigate this property of oil emission, the feature set only includes the last oil emission step 

before each moment: 

𝑂𝑡
𝑡𝑟 = 𝑓𝑡𝑟( 𝑆𝑡,   𝑆𝑡−1, 𝑆𝑡−2…  𝑆𝑡−𝑇,  𝐿𝑡,   𝐿𝑡−1,  𝐿𝑡−2…  𝐿𝑡−𝑇,  𝑂𝑡−1) 

The speed and load terms are selected same as before, with 𝑇 also denotes the number of 

previous steps included in feature engineering.  

  

                    (a) Ringpack design 1                                     (b) Ringpack design 2 

 

      (c) Ringpack design 3 

Figure 2.19  testing errors of different feature choices: multiple oil emission steps and a single oil 

emission step before every moment 

 

The testing results with a single oil emission step are illustrated in Figure 2.19. In these plots, the 

horizontal axis is the number of previous speed and load steps considered, the variable T. 

Comparing to the results with multiple previous oil emission steps considered, the regression has 
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very close prediction error if only one oil emission step is kept. Although the regression errors 

have some difference, the magnitude is small enough to draw the conclusion that the current oil 

emission values depend mostly on the previous oil emission step. Oil emission has incomplete 

Markov property.  The dependency of the previous speed and load is because they contribute to 

the oil accumulation below the top ring, which is the oil source passing the top ring to the crown 

land to add more oil to the crown land. The oil emission is coming from oil escaping the crown 

land (above the top ring), while the last time step reflects the oil accumulation on the crown land. 

 

2.5.4 Quasi-steady oil emission sequence generation 

The original measured oil emission sequence consists of both steady-state and transient 

components. With the found characteristic residence time, it is possible to generate a quasi-static 

sequence using the steady-state correlation. There are mainly two motivations to generate 

artificial oil emission series. First, the generated sequence can be utilized to verify the existence 

of system residence time and whether the found residence time is in a reasonable range. Second, 

this generating process can be applied as part of data augmentation, which is useful when the 

data volume for training is inadequate. Through adding reliably generated data, machine learning 

can better find the underlying correlation and make improved predictions. The quasi-static oil 

emission generation process is explained visually in Figure 2.20 and is divided into three steps:  

1. The original load and speed sequences are elongated τ times, where τ is the characteristic 

residence time in terms of measurement steps. This means in the original sequence, the 

two adjacent steps have a time lag ∆t. Now it becomes τ∆t. 

2. Linear interpolation is used to fill the gaps. Because the machine learning fitting requires 

a fixed time interval, it is necessary to perform interpolation between any two adjacent 

points in the elongated sequence. In order to maintain the same time interval ∆t, τ − 1 

artificial points are interpolated within each gap.  

3. The elongated sequence is quasi-steady, we use steady-state correlation to obtain the 

corresponding OE sequence. The load and speed sequences are elongated through linear 
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interpolation while the corresponding OE is calculated with the fitted polynomials for the 

SS OE.  

 

 

Figure 2.20  the quasi-static oil emission generation process 

After obtaining the generated sequence, the training data set can include the generated data as 

well. With the same data processing and feature engineering procedures, the entire training set 

volume is expanded τ times because the length of the generated sequence is τ times longer than 

the original one. Table 2.8 shows that the prediction error reduces by adding to new quasi-static 

sequence into the training set. This improvement confirms that the generated data can enhance 

the training set and do contribution to transient correlation capturing. This is a good indication 

that the found residence time is in the correct range through getting the best bias-variance 

balance. 

  Without quasi-static 
sequence 

Adding quasi-static 
sequence 

Ringpack design 1 0.188 0.182 

Ringpack design 2 0.197 0.187 

Ringpack design 3 0.307 0.289 

 

original load/speed sequence 

elongated load/speed 
sequence 
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Table 2.8 prediction errors of the three designs, with or without generated sequences included 

It is critical to point out that the error reduction is limited to a small amount through adding the 

new sequence, although the entire training set becomes larger. This is because the new sequence 

is quasi-static covering only a portion of the transient correlation. By distracting the steady-state 

component, the transient magnitude left is zero. Therefore, the enlarged portion of training data 

of transient set always has the same training target value: 

𝑂𝑡
𝑡𝑟 = 0 = 𝑓𝑡𝑟( 𝑆𝑡,   𝑆𝑡−1, 𝑆𝑡−2…  𝑆𝑡−𝑇,  𝐿𝑡,   𝐿𝑡−1,  𝐿𝑡−2…  𝐿𝑡−𝑇,  𝑂𝑡−1) 

This limited coverage of transient oil emission leads to insignificant error reduction. 

 

2.5.5 Connecting data-driven results to oil transport and emission physics 

Based on the system analysis in Section 2.5.1-2.5.4, the data-driven system investigation results 

can be utilized to build the connection between engine operating conditions and the oil transport 

and emission process. This provides essential understandings about the oil transport mechanisms, 

which can be applied to designing emission reduced engines.  

 

Figure 2.21 different stages of the oil transport process through the ring-pack system 
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As illustrated in Figure 2.21, the oil transport and emission process through the ring-pack system 

can be divided into four stages. The first stage is the oil leaking process through the oil control 

ring, leading to oil accumulation above the oil control ring. For each moment, this process is 

correlated with the engine operating conditions within the residence time. In addition, the 

residence time is determined by the design of the oil control ring. For instance, design 1 has the 

longest residence time because it uses the three-piece oil control ring maintaining high tension 

within the expander. As a result, oil accumulation above the oil control ring is very slow, 

therefore, the corresponding system residence time is the longest. On the other hand, the oil 

control ring of design 3 has many notches on it, providing direct oil flow paths. The oil 

accumulation is fast, resulting a shorter residence time. The second stage of oil transport is the 

process of oil leakage through the top two rings This process is correlated with the current load 

the and the current speed of the engine. The third stage is the oil accumulation process on the 

piston crownland (the area above the first ring) and the transport to the engine exhaust. As 

presented in Section 2.5.3, the current oil emission step is only correlated with the last step of oil 

emission, meaning the measured oil emission in the exhaust is directly coming from this stage, 

determined by the last oil emission step and the current engine operating condition. The last 

stage is the oil emission in the engine exhaust, which is measured and recorded in the oil 

emission sequence.  

 

2.6 Prediction 

The core application of machine learning is performing predictions of complex systems. The 

prediction can be applied in three aspects: point prediction for online monitoring system, interval 

prediction for uncertainty evaluation and total oil emission estimation. Interval prediction can 

also be considered as part of future data processing since it can provide feedback to the data 

collection procedure or experimental setup. 

 

2.6.1 Point prediction 
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Point prediction is the most commonly used prediction type. From a probability point of view, 

any prediction is a probability distribution because prediction always contains some level of 

uncertainty. Point prediction of a model gives only a single value as prediction output. That 

value can be the mean, median or other statistics of the output variable distribution. The type of 

the predicted statistic depends on the objective function setup for training. The most widely used 

objective function in regression problems is the squared loss function, through minimizing which 

can provide the mean of the prediction distribution: 

𝑚𝑖𝑛
𝑥̂  ∑(𝑥̂ − 𝑥𝑖)2 ⇔  𝑥̂ = ∫ 𝑥𝑓(𝑥)𝑑𝑥 

Where 𝑥̂ is the predicted statistic, 𝑥𝑖 are the samples observed and 𝑓(𝑥) is the underlying 

probability distribution of the predicted variable. 

For application in the oil emission system, point prediction can be utilized in online monitoring 

system. Based on the current engine status and the previous history within one residence time 

period, the algorithm can predict the future oil emission value. Once the expected oil emission 

value exceeds a critical value, the system will give out a warning of abnormally high oil 

emission coming next. If it is necessary, the engine testing should be suspended with inspection 

possibly required.  

 

2.6.2 Interval prediction 

Mentioned in the previous section, any prediction contains an underlying probability distribution, 

which is very useful for system design, such as risk analysis and tolerance design. However, 

obtaining the precisely description of an estimated output distribution is sometimes difficult or 

even intractable. Instead of trying to obtaining a complete distribution over an entire domain, it is 

often practically more useful to perform an interval prediction. Interval prediction can provide a 

range of the predicted variable at some certain level of confidence. On systematic level, one 

important application of interval prediction is uncertainty quantification. 

Before using obtained data to train a machine learning model, it is always important to check the 

quality of the data. If the data is not qualified or contains high level of stochasticity, the training 
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model may have high variance because noise could also be included as some part of captured 

correlation. Therefore, quantifying the uncertainty level is a necessary step before performing 

any prediction.  

Within a dataset, uncertainty can be classified to two kinds: aleatoric uncertainty (or statistical 

uncertainty) and epistemic uncertainty (or systematic uncertainty). Aleatoric uncertainty is the 

uncertainty in the input dataset, which can also be interpreted as the stochasticity of the dataset 

itself. This kind of uncertainty is caused by the data generation or data collection process, such as 

unstable experimental setup, measurement noise or simply due to improper sampling frequency 

of a time series. Epistemic uncertainty, on the contrary, is the uncertainty caused by the model 

used to fit the data. These two kinds of uncertainty are summarized in the table below. 

 Uncertainty sources 
Statistical uncertainty x Measurement noise 

x Unstable experimental setup 
x Improper sampling frequency  
x Not enough data 

… 
Systematic uncertainty x Error of fitting 

x Stochastic procedures in the algorithm 
Table 2.9 the two types of uncertainty 

In this oil emission project, we only focus on the first kind of uncertainty, statistical uncertainty. 

This is the uncertainty reflecting the data quality. In order to eliminate the effect of systematic 

uncertainty, the randomness of tree-based gradient boosting is reduced to zero by setting the 

hyperparameter subsample to be 1. This means the built of each tree is optimized through all 

features, rather than a random set of features (for example, 80% of all features). Therefore, in 

this section, the tree-based gradient is purely deterministic.  

Quantile regression is applied to predict probability intervals. In Section 1.4.1, it is discussed that 

the type of the predicted statistic depends on the objective function setup for training. The 

objective function used for quantile regression is called quantile loss function: 

L(𝑥̂ − 𝑥𝑖) = { 𝛼(𝑥̂ − 𝑥𝑖)                      𝑖𝑓 𝑥̂ ≥ 𝑥𝑖 
−(1 − 𝛼)(𝑥̂ − 𝑥𝑖)                       𝑖𝑓 𝑥̂ < 𝑥𝑖                  
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Where 𝑥̂ is the predicted statistic, 𝑥𝑖 are the samples observed and 𝛼 is the quantile value, with 

0 < 𝛼 < 1.  

  

Figure 2.22 quantile loss functions with different 𝛼 values 

Where 𝑥̂ is the predicted statistic, 𝑥𝑖 are the samples observed and 𝛼 is the quantile value, with 

0 < 𝛼 < 1. As plotted in Figure 2.22, the quantile loss function can be geometrically considered 

as a rotated absolute loss function, with different rotation angles corresponding to different 

quantiles. For instance, loss function 1 is the standard absolute loss function, through minimizing 

which output median can be obtained. Loss function 2 and 3 are the corresponding loss function 

of 25% quantile and 75 % quantile, respectively. One problem of this loss function is that it is 

not derivable at the origin, making it difficult for the optimization algorithm to minimize the 

objective function. As an alternative, Huber loss function, a very simple piecewise function, is 

adopted here. Huber loss uses squared loss when  |𝑥̂ − 𝑥𝑖| is small and keeps the same format as 

the original quantile loss function when  |𝑥̂ − 𝑥𝑖| is larger than a threshold value.  

Figure 2.23 to Figure 2.28 are the interval prediction results of the three ring-pack design oil 

emissions, with two different quantile intervals, 90% and 70%. There are three oil emission 

sequence sections chosen for each case for better comparison. The 90% quantile interval band 

can cover almost every real oil emission measurement point, except for some rare conditions, 

such as the two peak oil emissions in ring-pack design 2. The 70% quantile band is apparently 

narrower, leaving more real measurements uncovered by the interval. The predicted quantile 

intervals of ring-pack design 3 are significantly wider than the other two ring-pack designs. This 
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indicates that the prediction of ring-pack design 3 oil emission contains the highest level of 

uncertainty. As discussed before, the only uncertainty source in this analysis comes from the data 

itself.  

To quantify the uncertainty level of the three datasets, average quantile interval size over the 

entire testing sequence is calculated for each design. Larger average interval size means the 

higher stochasticity involved in the dataset. Figure 2.29 is the calculated average quantile 

interval size of the three ring-pack designs, with varying quantiles. These intervals are all 

centered with the output median. It is easy to observe that the oil emission data uncertainty of 

ring-pack design 3 is remarkably higher than the other two oil emission sets. This agrees with the 

wide quantile bands plotted in Figure 2.27 and 2.28. It is also interesting to interpret this high 

level of uncertainty of the physics and experimental perspective. The oil control ring in design 3 

has many small gaps, providing paths for oil to leak from the oil reservoir.  On the measurement 

side, although the leaked oil contains both liquid and vapor, the oil emission measurement used 

in this experiment can only detect the vapor part.  Thus, one possible scenario is that the lube oil 

leaking out of the top ring with Design 3 may have more varieties in oil droplets sizes, which 

contribute to the oil vapor differently.  Although there is no clear reason for this hypothesis, it 

directs the right attention when the oil transport is further investigated based on the findings here.   

  



64 

 

 

Figure 2.23 90% interval prediction of ringpack design 1, different oil emission sections 

 

 
Figure 2.24 70% interval prediction of ringpack design 1, different oil emission sections 
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Figure 2.25 90% interval prediction of ringpack design 2, different oil emission sections 

 

 
Figure 2.26 70% interval prediction of ring-pack design 2, different oil emission sections 
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Figure 2.27 90% interval prediction of ringpack design 3, different oil emission sections 

 

 
Figure 2.28 70% interval prediction of ringpack design 3, different oil emission sections 
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Figure 2.29 average quantile interval sizes 

In Figure 2.29, the minimum quantile interval plotted is 50%. However, the trend of the interval 

size is disturbed by quantile cross when the quantile is low. Quantile cross means the predicted 

value of the higher quantile is even smaller than the value of lower higher quantile, which is 

mathematically wrong. The problem of quantile cross becomes significant when we decrease the 

quantile range. Based on the current estimation of the oil emission datasets, about 1/4 of the 

predicted intervals have the problem of quantile cross when the quantile range is reduced to 10%. 

The machine learning based solution for quantile loss is called composite quantile regression, 

which predicts multiple quantiles simultaneously. In the objective function of composite quantile 

regression, one additional term is assigned to penalize quantile cross for any two adjacent 

predicted quantiles. 

However, composite quantile regression can be implemented with neural networks but not tree 

based regression. In neural networks, it is easy to set the number of neurons in the last layer 

equal to the number of quantiles required to predict at the same time. Meanwhile, in the objective 

function of the entire network, penalty terms can be added to the quantile cross. It is difficult for 

a tree-based algorithm to predict multiple targets simultaneously. The CART does not have a 

network architecture, with the algorithm always trying to find the best path from the root to a leaf 

to predict just a single value, as illustrated in Figure 2.30.   
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  (a) prediction based on a single path                  (b) prediction based on the final layer 

Figure 2.30 different prediction mechanisms of a regression tree and a neural network 

 

2.6.3 Total oil emission prediction 

The point prediction and the interval prediction discussed previously are all online predictions in 

the set of time series problems, containing oil emission history before the predicted moment. 

However, online prediction cannot meet the demand of total oil emission prediction task, which 

is an offline prediction problem. The total oil emission prediction task is providing an oil 

emission estimation based on the given load and speed sequences without conducting an engine 

experiment. This could save a lot of time and cost from reducing the number of experiments. 

It is discussed in the system investigation section that oil emission has an approximate Markov 

property, depending on the oil emission status of the previous moment. However, performing an 

offline prediction means that there is no information about oil emission provided. One possible 

solution is using rolling prediction. With rolling prediction, the oil emission value at each 

moment is calculated based on the speed, load and oil emission before that moment while the oil 

emission history is from prediction as well. Through iterating the entire sequence and adding the 

obtained oil emission sequence together, the total oil emission amount can be estimated.  

Rolling prediction of oil emission has a severe limitation, error accumulation. As each oil 

emission step is calculated based on the previous estimated oil emissions, prediction error will 

accumulate from the beginning of the sequence to the end. As a result, after some number of oil 

emission prediction steps, the calculated value will have nontrivial error.  

root 

leaf 
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In fact, with the purpose of obtaining the total emission over a given engine series, it is not 

necessary to calculate the entire corresponding oil emission sequence. The machine learning 

based mathematical mapping can be optimized through dividing the sequence into chunks with a 

fixed length. Instead of trying to get the oil emission at every moment, considering the total oil 

emission amount of these divided chunks is a more reasonable approach to avoid error 

accumulation. 

Summarized in Figure 2.31, the procedure consists of two steps: sequence sectioning and 

training variables setup. The entire oil emission time series dataset is divided into chunks with 

length 𝜏, the residence time in terms of measurement steps. The speed, load and oil emission 

sequences are all partitioned with the same length of chunks. The selected regression target, the 

dependent variable, is the total oil emission amount of every chunk. Because the objective is 

obtaining thetotal amount of oil emission, the calculation of the exact value at each time step is 

not needed. The features, the independent variables, are the speed and load steps of the current 

chunk and the previous chunk. The speed and load information of the previous chunk is also 

included because they could have influence on the oil emission at the current chunk. Since the 

chunk length is 𝜏, no further speed or load steps have correlation with the training target.  

 

Figure 2.31  the chosen independent variables and the dependent variable in the total oil emission 

prediction task. The supervised learning model is built on these variables 

 

The targeted correlation of supervised learning in this section can be expressed as: 

𝑂𝑡𝑜𝑡 = 𝑓𝑡𝑟( 𝑆𝑡−2𝜏+1,   𝑆𝑡−2𝜏+2,…  𝑆𝑡,  𝐿𝑡−2𝜏+1,   𝐿𝑡−2𝜏+2, …  𝐿𝑡) 
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For prediction, the first step is also chopping the sequence into segments with length τ with the 

given speed and load sequences. Upon that, the trained machine learning model is used to predict 

the OE over each segment. The final total OE is the summation of prediction results over all 

chopped segments, as presented in Figure 2.32. One additional improvement to eliminate the 

effect of chopping position, all τ possible chopping positions will be tried and an averaged result 

will be given as the final prediction. 

 

Figure 2.32 prediction of total oil emission over a given engine status sequence 

 

MAPE Ringpack 
design 1 

Ringpack 
design 2 

Ringpack 
design 3 

Sequence of length τ 0.15 0.21 0.29 
Sequence of length 500 0.05 0.09 0.09 
Sequence of length 1000 0.05 0.10 0.08 

 

Table 2.10 total oil emission prediction results with different engine sequence lengths 

The total oil emission prediction errors are listed in Table 2.10. When the given engine operating 

sequence is long enough, the prediction error goes below 10% for all the three ringpack designs. 

Since the total OE is obtained through the summation of all chopped segments, the absolute error 

is smaller over a long sequence than the unit length τ. This is due to the reduction of variance 

when the predicted sequence is longer.  

 

2.7 Design engine testing Cycles 

… 

𝜏 𝜏 𝜏 𝜏 

𝑂𝐸1 𝑂𝐸2 𝑂𝐸3 𝑂𝐸𝑘  … + + + + = total OE 
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Besides prediction, another essential application of this project is to provide engine testing 

guidance to save time and cost for manufacturers. Before the engine product is launched to the 

market, thorough engine testing should be conducted so that the oil emission condition of any 

customer driving cycle is within expectation. Because conducting a real engine testing is 

expensive, it is important to find a short but efficient engine testing sequence to cover all 

possible driving conditions. Different from the previous supervised learning setup, this testing 

cycle design requires an unsupervised model to verify whether or not a given testing cycle is 

representative of a specific engine. This task needs to provide design feedback without obtaining 

the corresponding oil emission series, leaving only load and speed sequences as inputs. In this 

project, one-class support vector machine (OCSVM) is utilized as the unsupervised learning 

model. 

 

2.7.1 One-class support vector machine and novelty detection 

Support vector machine (SVM) is a traditional machine learning model, more commonly used 

for binary classification problems. It splits the labeled samples into two groups in the nonlinear 

kernel space separated by a hyperplane with maximum margins from the samples. OCSVM, as a 

variant of SVM, is an unsupervised learning model, usually applied to novelty detection. Same 

as SVM, the first step of OCSVM is mapping the samples into a new kernel space. Instead of 

finding a hyperplane, OCSVM is search a hypersphere with minimum radius to contain all the 

samples in the kernel space: 

𝑚𝑖𝑛
𝑅, 𝑐  𝑅2 

Subject to: ‖𝑥𝑖 − 𝑐‖2 ≤ 𝑅2 for all 𝑖 = 1, … 𝑛 

Where R is the radius of the hypersphere, c is the center of the hypersphere. 𝑥𝑖 is the training 

sample point. The hypersphere in the kernel space corresponds an enclosed surface in the 

original feature space, which is difficult to obtain without mapping to the kernel space, as 

illustrated in Figure 2.33. 
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Figure 2.33 OCSVM for training 

If the uncertainty of the dataset is considered, not all of the training points are necessary to be 

included with the hypersphere. Some of the points should be allowed to locate outside of the 

hypersphere to counteract the data uncertainty. In this situation, the distance from the points 

outside of the hypersphere to the decision boundary can be added to the objective function as 

penalty terms: 

𝑚𝑖𝑛
𝑅, 𝑐  𝑅2 + 𝛽 ∑ 𝜉𝑖

𝑛

𝑖=1

 

Subject to: ‖𝑥𝑖 − 𝑐‖2 ≤ 𝑅2 + 𝜉𝑖   for all 𝑖 = 1, … 𝑛 

                   𝜉𝑖 ≥ 0 

The parameter 𝛽 decides the magnitude of the penalty on the points locating outside of the 

hypersphere. This parameter should be correlated with the uncertainty level of the oil emission 

dataset. If the uncertainty level is high, 𝛽 will be set to a relatively lower value to reduce the 

penalties for the points outside of the hypersphere.  

Once the optimized hypersphere is found, we can check an arbitrary given sample point, whether 

or not it is predictable (within the hypersphere). In addition, the distance from a point to the 

hypersphere surface is defined positive for interior points and negative for points outside. Figure 

2.34 shows how the testing points are compared with the hypersphere boundary. 

feature 
space

kernel space 

data processing 
normalization 
kernel mapping 
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Figure 2.34 OCSVM for testing   

 

2.7.2 Application to engine testing design 

Before getting to the procedure of engine testing cycle design, we first use OCSVM to verify 

whether the testing sequence is covered by the training sequence in Section 1.4. In this 

unsupervised learning task, the only focused variables are the input features (independent 

variables). 

 

Figure 2.35 the distances from points to the decision boundary 

By mapping the original feature space into a Gaussian kernel space, the hypersphere is found to 

enclose the training samples. As an example, the dataset of ringpack design 1 is used. Because 

the evaluated uncertainty of design 1 experimental data is low, all training sample points are 

enclosed within the decision boundary of OCSVM in the training process. For the testing 

sequence, the normalized distance of every testing point to the hypersphere is calculated and 

+ 
- 
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plotted in the histogram of Figure 2.35. Most of the points have positive distances, suggesting 

that the majority of the testing sequence falls into the same region as the training set in the 

feature space. The rest 3% of the testing samples, having negative distances, are outside of the 

decision boundary. The prediction of those points may not be accurate enough as the training set 

does not cover the feature space region of them. 

It is interesting to plot the obtained distances in Figure 2.35 in the time domain as a whole 

sequence. Based on Figure 2.36, the locations of the distances are not random, with a continuous 

sequential pattern. There are some periods with significantly lower distances to boundary, 

suggesting the low confidence of the fitted model to predict these time sections. Compared to 

Figure 2.11, these regions are the peaks of oil emission in the testing series, leaving observable 

difference between the predictions and the real measurements. The results of these two sanctions 

now agree about the conditions difficult to predict based on the training set. 

 

Figure 2.36 the distances from points to the decision boundary, as a time series 

OCSVM is also very useful for engine testing sequence design. With a given engine, the speed 

range and the load range are determined, so that in the real customer driving conditions the speed 

and load values will not exceed these ranges. Under the given speed and load ranges, using 

design of experiments principles, such as Taguchi method, can generate the full set of target 

engine sequences that the testing cycles should cover. The number of all target engine sequences 

is finite with a defined residence time. The target engine operating sequences should be 

presented as a tabular set of data, with the number of features twice as the residence time steps τ. 
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In this design procedure, only speed and load are the input features of engine experiments design 

while the oil emission is just the corresponding response. 

 𝐿1 𝐿2 … 𝐿τ 𝑆1 𝑆2 … 𝑆τ 

1         

2         

… 

N         

 

Table 2.11 the format of the target engine status, generated by design of experiments 

The generated target engine operating series is used as the testing set of OCSVM. The training 

set can be chosen from existing customer driving cycles or engine experiments. OCSVM is 

utilized to verify whether the target engine status sample locate within the space covered by the 

engine experiments in the feature space. Among all possible testing cycles, the shortest one 

satisfying the statistical coverage criteria of OCSVM can be chosen as the ideal testing cycle to 

push experimental cost to the minimum amount. 

 

2.8 Conclusion 

In the project of engine oil emission, machine learning and other statistical models are applied to 

find correlations, analyze system properties, perform predictions and design for engine testing. A 

complete set of data-driven procedures are defined in this chapter, including data processing, 

featuring engineering, model section, system parameter estimation, prediction and experiments 

design. These procedures are coupled together through important system properties, such as 

uncertainty and system residence time. On the application level, both supervised learning and 

unsupervised learning models are applied with the purpose of predictions and engine testing 

designs, respectively. As the examples used in this project, the oil emission testing datasets of the 

three different ring-pack designs are analyzed, fitted and connected to the physics of the oil 

transport mechanisms. The results suggest a good consistency of the machine learning 

analyzation and the underlying oil emission physics. The entire defined data-driven procedures 



76 

 

show a promising future to accelerate engine development cycle, reduce engine testing cost, and 

help understand oil transport mechanisms and design influences.  
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Chapter 3. Deterministic modeling of liner wear during the 

break-in period and its impact on piston ring lubrication 

 

3.1 General introduction  

To design engines with low greenhouse gas emissions, it is important to reduce friction in the 

contact system of piston rings and cylinder liners. Besides friction loss, the contact of a piston 

ring and liner also leads to wear of both surfaces of the ring and the liner, which can cause 

negative effect in friction reduction. The reason is directly related to the surface plateau-honed 

structures of cylinder liners. A critical manufacturing step in the manufacturing process of liners 

is called the plateau-honing process. The process includes two stages: rough honing, creating the 

valley part with grooves and fine honing leading to much smaller plateau roughness compared 

with the valleys [29,30]. As some features of the plateau roughness are quickly worn off during 

break-in period, engine lubrication condition and friction will change significantly. Therefore, it 

is crucial to understand and simulate the break-in wear of the liner surface with the target of 

understanding engine lubrication change and generating better liner roughness design.  

The two-body asperity fatigue wear model presented here is physics-based and comprised of 

different sub-models. First, the surface plastic flattening was considered as the mechanism 

responsible for the changes of the surface during the initial contact and it was modeled with an 

asperity contact model and a simple flattening process.  Then the asperity fatigue wear was 

considered as the dominant process for the change of the surface during the rest of break-in 

period. As the successive mechanism, asperity fatigue wear is studied, starting from the theory of 

delamination, which was first proposed by Suh [8]. Two sub-models are discussed to complete 

the simulation of fatigue wear: crack initiation and crack propagation. Because fatigue wear 

happens at the asperity level and near the surface, surface crack and subsurface cracks are 

modeled separately due to different initiation positions and driving forces for subsequent crack 

growth.  
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Many previous physics-based models were developed to simulate the fatigue wear process. 

Lundberg-Palmgren model is a representative work of early fatigue wear [14]. Lundberg and 

Palmgren proposed the first mathematical model for predicting contact fatigue life. The later 

studies by Tallian added more physics-based understandings and the proposed models are based 

on a crack propagation and elastic/plastic properties of materials [15,16]. Kudish and Burris 

improved the previous models by adding the effect of normal stress, size of the contact, and 

friction coefficient [17]. Previous works were also conducted for modeling of engine break-in 

wear [18,19,20]. However, without engaging detailed mechanisms of break-in wear, these 

models mainly focus on how to model the wear processes in a mathematical way. This thesis 

work for the first time applies the fatigue wear theories to liner roughness break-in wear. 

Furthermore, the functional change in ring lubrication and friction caused by the wear 

investigated here will be demonstrated and the comparison with the experimental measurements 

on friction will be presented. 

  

Liner Surface Measurement 

• Confocal microscope  
• Original liner surface finish  

Asperity Contact Model 

• Contact pressure on asperities   
• Asperity plastic deformation  

Ring 
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Figure 3.1. The four parts of the break-in liner wear project 

The work is consisted of four parts, as presented in Figure 3.1. As the model input, liner surface 

topography is measured and represented as a roughness matrix, with each entry as the height of 

the corresponding location. The asperity contact model is used to determine the clearance 

between the two surfaces based on the contact condition of each asperity. For the asperities under 

cyclic load, both surface cracks and subsurface cracks initiate, propagate and cause asperity 

fracture when they meet each other. As the last part, friction change is also calculated and 

compared   

 

3.2 Elements of break-in asperity fatigue wear 

In order to perform physics-based deterministic modeling of break-in liner wear, the two basic 

processes are modeled: asperity contact and asperity fatigue. The governing equations and 

approximations are presented in this section. 

 

3.2.1 Asperity contact 

Due to the design convention that ring surface is significantly smoother compared with the liner 

surface, the deformation of asperities on the liner surface first experiences a flattening process, 

with a fast change for the plateau roughness. This plastic flattening process is significant 

Asperity Fatigue Wear Model 

• Fatigue models and parameters 
• Fracture time for each asperity 
• New liner surface topography 

Engine Cycle Friction Model 

• Oil viscosity, density 
• Lubrication theory 
• Friction change during break-in 

Different correlations in engine cycles: 
Hydrodynamic pressure correlation 
Hydrodynamic friction correlation 
Contact pressure correlation 
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especially during the first several cycles of engine running. Although this process is short in 

duration, the change of surface topology significantly affects the behavior of the asperity contact. 

Therefore, it is essential to consider this mechanism, and integrate it into the entire two-body 

break-in wear simulation.  

This asperity contact model is computationally efficient under several assumptions. First, the 

contact occurs between a smooth surface and a rough surface, with the smooth surface 

considered as a rigid body. In the ring liner contact system, ring is prominently smoother and 

harder compared with liner. Second, the interactions among asperities are neglected, so the 

deformation of each asperity only depends on the contact situation between the ring and its own. 

This assumption is sufficient for a sparse contact pattern, with the real contact area only consists 

of a small portion of the nominal contact area. The final assumption is that all asperities have 

spherical summits, which contact with the ring.  

Based on the work of Chang [31], the contact model for each single spherical asperity can be 

mathematically expressed as: 

𝐴𝑐 = 𝜋𝑅ℎ;  𝑃𝑎 =
4𝐸
3𝜋

(
ℎ
𝑅

)1/2   

𝐴𝑐 = 𝜋𝑅ℎ[1−2( ℎ−ℎ1
ℎ2−ℎ1

)
3

+ 3 ( ℎ−ℎ1
ℎ2−ℎ1

)
2
];   𝑃𝑎 = 𝐻 − 𝐻(1 − 𝑘) 𝑙𝑛 ℎ2−𝑙𝑛 ℎ

𝑙𝑛 ℎ2−𝑙𝑛 ℎ1
 

𝐴𝑐 = 2𝜋𝑅ℎ;  𝑃𝑎 = 𝐻 

 

In equations above,  𝐴𝑐 is the real contact area, 𝑃𝑎 is the mean contact pressure. R is the radius 

curvature of the asperity tips, H is the hardness of the material, and k is the mean contact 

pressure factor, which represents that if the mean normal pressure 𝑃𝑎  exceeds kH, initial yielding 

occurs. For a liner made of cast iron, k is usually taken around 0.4. The determining parameter in 

the model is the interference depth h, which is the asperity tip height reduction after contact. 

Figure 3.2 shows the geometric properties and asperity deformation of the contact model.  
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Figure 3.2 asperity contact model 

The contact pattern for each asperity always falls into one of the three contact categories: elastic, 

elastoplastic contact and fully plastic. The three categories are identified by two critical 

interference depth: ℎ1 = (3𝜋𝑘𝐻
4𝐸

)2𝑅 and ℎ2 = (3𝜋𝐻
2𝐸

)2𝑅. When ℎ ≤ ℎ1, the contact is purely 

elastic, which corresponds to the condition that the normal pressure everywhere on the contact 

surface is smaller than material hardness. Elastoplastic condition is a transition between elastic 

contact and fully plastic contact, with the center part of the contact region reaches plasticity. As 

the interference depth further exceeds ℎ2, the contact becomes fully plastic. Equations above 

correspond to the analytical expressions of real contact area and mean contact pressure for the 

three conditions, respectively. 

Based on the asperity contact model discussed above, the average clearance between the ring and 

the rough liner surface under a given pressure can be solved iteratively. The summation of 

contact forces over all individual asperities equals the total load of solid-to-solid contact.  

For asperities contacting elastically with the ring, they will recover their original shape right after 

the ring leaves. However, when the deformation contains some portion of plasticity, permanent 

flattening effect would occur.  

The detailed asperity plastic deformation is not trivial. Because of different shapes, contact 

pressures, contacting angles, all asperities on the liner surface could have various plastic 

deformation patterns. However, under the assumption that asperities all have spherical summits, 

calculating the deformation for asperities is still feasible. An efficient wear model should adopt a 
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relatively universal method to perform asperity deformation analysis over the entire simulating 

surface. As proposed by Sören and Söderberg, asperity plastic deformation can be modeled as 

plastic flattening with an elastic spring back [32]. If the contact deformation involves plasticity, 

the asperity will never get back to its original shape but has a small spring back. The amount of 

elastic spring back at the center of the contact asperity is given by KL Johnson [33]: 

𝑢𝑒𝑙 = 2(1 − 𝑣2)
𝐻
𝐸

√𝐴𝑐

𝜋
  

where 𝑣 is the Poisson ratio, 𝐻 is the material hardness, 𝐸 is the elastic modulus, and 𝐴𝑐 is the 

real contact area. Once the contact is beyond the Hertzain range, identified by the penetration 

depth ℎ > ℎ1, this elastic spring back is used to simulate the asperity height after surface 

flattening. Because of the existence of spring back effect on each asperity contact plastically, 

asperities are not completely flattened. 

 

3.2.2 Asperity fatigue 

Among all mechanical wear mechanisms, surface plastic deformation, fatigue wear and abrasive 

wear are the most essential ones leading to the surface topology change. Delamination theory 

considers the fatigue as the core mechanism in the wear process. In the engine break-in period, 

this is the dominant wear mechanism as the ring surface is still smooth, without abrasion of 

third-body particles.  

In the delamination theory, wear starts with asperity deformation and fracture due to surface 

contact under certain external load. This process starts immediately after contact begins, 

gradually switching plastic contact into elastic contact. Meanwhile, the delamination process also 

begins at the surface and subsurface of the contact material through the process of crack 

initiation. It is critical to point out that the delamination process includes not only crack 

propagation and fracture of surface material, but also crack initiation.  
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Figure 3.3 Crack initiation. Surface cracks initiate from the edge of the contact region where the 

surface tensile stress reaches maximum. Subsurface cracks initiate from maximum shear stress 

region. 

 

As illustrated in Figure 3.3, according to the principal normal stress, the subsurface under each 

contact can be divided into tensile region and compressive region. Both surface cracks and 

subsurface cracks are initiated based on small material defects although the  forces leading to 

crack initiation are different. Surface crack initiation relies on surface tensile stress as tensile 

component on the surface can create a trend for cracks to form and grow (compressive stress will 

not lead to crack initiation as it always helps close the existing defects). Therefore, surface 

cracks always initiate at the edge of contacting region at which surface tensile stress is 

maximum. The damage force for subsurface crack initiation is shear stress. This is because 

subsurface cracks initiate in compressive region where no tensile component would help create 

cracks. The only source for crack initiation is the shear component. As a result, the initiation 

position for subsurface cracks is the maximum shear stress position. 
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 Surface crack Subsurface crack 

Damage force surface tensile 𝜎𝑥𝑥|𝑦=0 shear 𝜏𝑥𝑦 

Initiation 

position 

edge of the contact region location with maximum 𝜏𝑥𝑦 

Propagation 

mode 

mode I, mode II combined mode II only 

Driving force tensile circumferential stress: 

𝜎𝜃𝜃 = 1
√2𝜋𝑟

cos (𝜃
2
)(𝐾1 cos (𝜃

2
)

2
−

3
2

𝐾2sin (𝜃)) 

𝐾1, 𝐾2: stress intensity factors for 

mode I and mode II 

shear stress at crack tip: 

𝜏 = 1
2√2𝜋𝑟

[𝐾1
2 sin2 𝜃 +

2𝐾1𝐾2 sin 2𝜃 + 𝐾2
2(4 −

3 sin2 𝜃)]^0.5  

Propagation 

direction 

perpendicular to 𝜎𝜃𝜃𝑚𝑎𝑥 along 𝜏𝑚𝑎𝑥 

 

Table 3.1. Crack initiation and propagation mechanisms. As surface cracks and subsurface 

cracks locate in different regions under contact asperities, the mechanisms for initiation and 

propagation are different. 

 

After the initiation of surface and subsurface cracks, propagation of cracks would ultimately lead 

to fracture of contact asperities. Similar to initiation of cracks, cracks in tensile region and 

compressive region have different propagation modes and driving forces. For a surface crack, 

both fracture mode1 and fracture mode2 contribute to propagation as tensile stress and shear 

stress exist simultaneously in the tensile region. The driving force for surface crack propagation 

is the tensile circumferential stress 𝜎𝜃𝜃 near the crack tip, with the corresponding propagation 
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direction perpendicular to the maximum 𝜎𝜃𝜃 direction. For a subsurface crack located in the 

compressive region, the driving force is the shear stress at the crack tip while the crack 

propagates to the direction of maximum shear stress 𝜏𝑚𝑎𝑥. The crack initiation and propagation 

mechanisms are summarized in Table 3.1.  

 

 

 

 

Figure 3.4 initiation and propagation of surface cracks and subsurface cracks of one asperity 

under repeated load  

 

The crack propagation is calculated by the Paris-Erdogan law [34] under the assumption of small 

yielding around cracks. Kudish and Burris presented an efficient method to calculate the stress 
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intensity factors 𝐾1 and 𝐾2 under each contact asperity [17]. An asymptotic solution is given by 

the authors to solve 𝐾1 and 𝐾2 in an explicit way.  

 

3.2.3 Algorithm of the deterministic modeling 

Based on sub-models introduced in the previous sections, a final asperity fatigue wear model of 

liner surface in break-in period is developed. This wear model includes the following essential 

steps: asperity contact, surface plastic deformation, crack initiation, crack propagation and 

asperity fracture. These steps are applied for every sliding cycle iteratively. The flowchart in 

Figure 3 shows the algorithm of this fatigue wear model, which integrates all these critical 

mechanisms in the fatigue wear process. 

In Figure 3.5, the asperity fatigue wear algorithm needs two inputs: rough liner surface S, 

represented by a matrix and an external nominal pressure P. First, the algorithm finds the 

clearance h between the liner base altitude and the flat ring surface, according to the asperity 

contact model with the given liner roughness measurement and pressure. All asperities in contact 

A(n) are numerically defined once the clearance is determined, including each asperity’s radius 

of curvature R(n), average normal pressure P(n) and real contact radius r(n). With all the 

information of each asperity, the algorithm performs the surface plastic flattening calculation, 

getting updated surface S and a new clearance h. As the first step into the fatigue part, each 

asperity is identified whether it is an asperity coming to contact for the first time. If it is a new 

contacting asperity, surface cracks Cs and subsurface cracks Csub are assigned to the 

corresponding initiation positions. Otherwise, if an asperity is already in contact, the lengths of 

cracks are updated based on the Paris-Erdogan law. As the following step, the algorithm checks 

for each asperity whether the surface cracks meet with the subsurface cracks. If these cracks 

meet with each other, the asperity is fractured, resulting in a new surface topography. This new 

surface is then used as the input surface of the next cycle. After a specific number of sliding 

cycles, this fatigue wear algorithm provides us a simulated surfaces roughness after wear. 



88 

 

 

Figure 3.5. algorithm of the asperity fatigue wear model  
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Table 3.2 variable notations in the algorithm of the asperity fatigue wear 

 

 

3.3 Fatigue wear results and the friction change during break-in 

Based on the sub-models and algorithms in the previous section, liner surfaces with different 

roughness honing processes are used for simulation of liner wear in the break-in period. Results 

reveal that the wear rate of each surface is high at the beginning, followed by a constant wear 

rate. The constant wear rate obtained through simulation agrees with the empirical Archard’s law 

of wear. The material criteria of Archard’s law during the break-in period of also discussed. With 

plotting complete Stribeck curves of different liner surfaces, the friction change in the ring-liner 

system during the break-in is calculated and compared.  

h 
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3.3.1 Tested surfaces 

For purpose of investigating the effect of liner surface roughness on break-in wear, simulations 

are conducted based on the five different liner surface finishes: GG07, GG09, GG21, GG28 and 

GG30. The classification of different liner surface finishes is summarized in Figure 3.6 [35,36]. 

These liner finishes are classified according to surface roughness parameters: plateau roughness 

𝑅𝑝𝑘, core roughness 𝑅𝑘 and valley roughness 𝑅𝑣𝑘. Rougher ones are located relatively on the 

right of the figure as they have larger total roughness. Therefore, GG07 has the largest roughness 

among all the five finishes.  Furthermore, if several finishes locate colinearly, such as GG21, 

GG28 and GG30, they are manufactured by the same tools for both rough and smooth honing 

while fine honing process happen at different heights. The three surfaces have the same plateau 

roughness and the same valley structure with various plateau ratios. 

 

 

Figure 3.6 different liner surface finishes 

 

3.3.2 Results of liner wear during break-in period 

In this section, liner wear break-in simulation results are presented, based on the asperity fatigue 

wear model. Liner surfaces with different finishes are tested to investigate the impact of 
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roughness, denoted as GG07, GG09, GG21, GG28 and GG30, shown in Figure 4 with the 

Daimler liner finish classification [36]. The surfaces used here as the inputs of the wear model 

are generated numerically based on the real optical measurements [37]. For each surface, 

external nominal pressure varies from 1 MPa to 4 MPa in order to study the effect of pressure on 

fatigue wear as well.  

According to the results of liner wear simulation, wear rate of the liner is relatively large at the 

beginning, but gradually reduces to a steady value for all different nominal stresses. Moreover, 

steady-state wear rate is proportional to normal pressure, as indicated in Figure 3.7. The vertical 

axis is the steady-state wear rate, which is evaluated by the average surface height reduction over 

each thousand running cycles. For wear of metallic materials, Archard’s law is a widely used 

correlation which quantitatively describes sliding wear and external parameters: the volume of 

wear debris for metal sliding is proportional to the product of normal load and sliding distance, 

but inversely proportional to the material hardness [38,39].  

𝑉 = 𝑘
𝑃𝐿
3𝐻

 

In the equation above, V is the volume of wear debris, and P, L, H are external normal 

pressure, sliding distance, material hardness, respectively. k is the wear coefficient, which is a 

constant for a certain material with a specific surface finish. As one important mechanism in 

metal wear, asperity fatigue wear obeys Archard’s law. Therefore, it is reasonable and essential 

to calculate the wear coefficient of surfaces with different finishes, which is conventionally used 

as a parameter to evaluate wear resistance of a surface. 
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Figure 3.7 steady-state wear rate is proportional. 

 

Table 3.3 steady-state wear coefficients of different liners 

 

Corresponding to the constant slope in Figure 3.7, the wear coefficient based on The Archard’s 

equation is presented in Table 3.3. It is essential to point out that the wear coefficients of GG21, 

GG28 and GG30 liner finishes have approximately the same value, indicating steady-state wear 

rate of these surfaces are very close.  The reason may be found from their manufacturing 

procedures. As illustrated in section 2.5, the only difference among GG21, GG28 and GG30 

finishes is the height of fine finish. Although the plateau ratios are different for these three 

surfaces due to fine finish, plateau regions have the same roughness level. Additionally, the size 

and shape of contact asperities are statistically the same for the three finishes. Therefore, it is 

reasonable that their wear coefficients are so close. Furthermore, the results here imply that 
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steady-state asperity fatigue wear rate largely depends on the roughness level of the plateau 

region, resulted from fine honing.  

 

3.3.3 More investigations of Archard’s law of break-in wear 

The steady-state break-in wear rate obtained through the wear simulation above is proportional 

to the external pressure, resulting a good agreement with the Archard’s law. The Archard’s law 

of wear is a widely used empirical correlation, but the generalizability of applying this to all 

break-in wear problems still remains unclear. In this section, we perform an order of magnitude 

estimation to investigate the criteria making Archard’s law a valid correlation of liner break-in 

wear. 

 

Figure 3.8 approximate linearity between the external pressure and the real surface contacting 

ratio, GG30 

 

According to the results of the contact model in section 3.2.1, the real contacting area on the liner 

surface is approximately proportional to the external pressure exerted by the ring. As an 

example, Figure 3.8 shows an approximate linearity correlation of GG30.  

𝑃 ∝ 𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡 
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Here P is the external pressure, 𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the real contacting area under the given pressure P. 

The wear rate in terms of volume loss can be derived as follows (𝑎𝑖 is the real contacting radius 

for one asperity). 

The fractured volume: 

𝑉𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 ∝ ∑ 𝑎𝑖
3 

After plastic flattening, each contacting asperity is under elastic contact condition: 

𝑃𝑎𝑣𝑔 = 4𝐸
3𝜋

(ℎ
𝑅

)1/2  ∝  𝑎𝑖 

The stress intensity factor: 

∆𝑘 ∝ ∝ 𝑎𝑖
3/2 

The crack propagation speed： 

𝑑𝐿
𝑑𝑁

∝ 𝐶∆𝑘𝑒𝑞𝑢
𝑚 ∝ 𝑎𝑖

3𝑚/2 

Crack length leading to fracture: 

𝐿 ∝ 𝑎𝑖 

Time (number of cycles) leading to fracture of one asperity: 

𝑛 ∝ 𝐿
𝑑𝐿/𝑑𝑁

∝ 𝑎𝑖
1−3𝑚/2 

Fatigue wear rate of the entire surface: 

𝑤𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ∝ 𝑤𝑎𝑠𝑝𝑒𝑟𝑖𝑡𝑦𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ∝ 𝑃 ∑ 𝑎𝑖
2+3𝑚/2 

In the derived equations above, 𝑃 is the external pressure. Through doing first-order analysis and 

neglecting higher order terms, the asperity fatigue wear of the entire surface 𝑤𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is 

approximately proportional to 𝑃 ∑ 𝑎𝑖
2+3𝑚/2. Therefore, the criterion making Archard’s law valid 

in asperity fatigue defends on the value of the material properties m, the power coefficient in 
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Paris law and the asperity size 𝑎𝑖. For most of the metallic materials, m is usually between 2 to 6, 

with some extreme cases as high as 8. This means the ∑ 𝑎𝑖
2+3𝑚/2 is a high order summation of 

different asperity sizes, dominated by the large asperities on the liner surface. For the liner 

plateau honing, asperities generated on the plateau are not homogenous with some asperities 

significantly larger than others. Therefore, the wear rate of the entire surface is approximately 

proportional to pressure P as the magnitude of the rest part is mainly determined by the largest 

asperities. 

Currently, calculation of wear often relies on the empirical Archard’s law, with a wear 

coefficient obtained from experiments as a predefined parameter. In this section, we show that 

the validation of such an approach for wear estimation of asperity fatigue depends on the 

material fatigue coefficient and the asperity size distribution.  

 

Figure 3.9 contacting condition of each asperity 

 

3.3.4 Hydrodynamic, contact and friction correlations 

In order to investigate the effect of break-in fatigue wear on engine lubrication, liner surface 

finishes before and after wear simulation are utilized to calculate friction. As the piston ring slides 

to different positions on the liner, the mean clearance also changes, leading to the change of 

hydrodynamic pressure. To obtain the correlations between the ring-liner clearance and 

hydrodynamic pressure, a deterministic model is applied. According to this model, the dependency 
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of the average hydrodynamic pressure on the ring-liner clearance can be expressed by the 

following equation [2]: 

𝑃ℎ𝑦𝑑𝑟𝑜 =
𝜇𝑉

𝜇0𝑉0
𝑃ℎ(

ℎ
𝜎𝑝

)−𝐾ℎ  

Here, 𝜇0 and 𝑉0 are the reference viscosity and reference sliding speed, while 𝜇 and V are the 

corresponding real parameters. 𝑃ℎ and 𝐾ℎ are constants. ℎ/𝜎𝑝  is the ratio of average clearance and 

the standard deviation of plateau roughness. 

Similarly, the hydrodynamic shear stress can be correlated with the ratio ℎ/𝜎𝑝  through the 

following analytical expression with 𝐶𝑖 (i = 1, 2, 3) as constants [2]: 

𝑓ℎ𝑦𝑑𝑟𝑜 =
𝜇𝑉
ℎ

(𝐶1 + 𝐶2 exp (𝐶3
ℎ

𝜎𝑝
))  

The total pressure is the sum of contact pressure and hydrodynamic pressure. The contact pressure 

also depends on clearance, which can be determined by the contact model introduced in Section 

3.2.1. So as to integrate the contact correlation into the friction model of the entire engine cycle, 

an analytical expression is also developed: 

𝑃𝑐 = 𝐾′𝐸′𝐴 (Ω −
ℎ

𝜎𝑝
)

𝑍

  

Here 𝐾′, 𝐴, Ω and 𝑍 are constants for a specific surface. 𝐸′ is the equivalent elastic modulus of the 

two contact surface, which is computed as: 

𝐸′ =
2

1 − 𝑣1
2

𝐸1
+ 1 − 𝑣2

2

𝐸2

  

where 𝑣1, 𝑣2, 𝐸1and 𝐸2are the Poisson ratio and elastic modulus of the two contact materials. 

The correlations of hydrodynamic pressure, hydrodynamic shear stress and contact pressure 

introduced before are utilized to obtain the friction curves for the entire engine cycle. As the 
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ring-liner clearance depends on the ring sliding speed, the friction also varies for each engine 

cycle, with the minimum friction value occurs at the mid stroke at low engine speed. Since the 

sliding speed is close to zero at the top dead center (TDC) and the bottom dead center (BDC), 

different engine speeds have similar friction magnitudes at the two positions. When the clearance 

reaches this smallest value, both contact pressure and hydrodynamic pressure do not have 

obvious change after wear. The simulated contact pressure and hydrodynamic pressure of GG30 

surface finish are plotted in Figure 3.10 as functions of the ring-liner clearance. The wear 

simulation of GG30 is done by the asperity fatigue wear model, with simulated duration of five 

hours, engine speed 400 rpm and external nominal pressure 2MPa. Compared with the original 

surface, the surface after wear simulation has approximately the same hydrodynamic pressure, 

but the contact pressure is reduced because the asperities are flattened and gradually fractured. 

The hydrodynamic friction force is plotted in Figure 3.11, with fitted curves of the hydrodynamic 

shear force equation. Although the hydrodynamic shear stress increases after wear, the total 

friction between the ring and the liner usually decreases because of the loss of contact pressure. 

This can be further revealed in Figure 3.12, which contains the height distribution curves for the 

liner surface before and after wear simulation. The clearance here is defined as the distance 

between the ring surface and the peak of the plateau. With a more flattened plateau, contact 

pressure reduces after wear. When the ring-liner clearance is small, the contact pressure changes 

little because only high asperities are fractured after 5 hours’ break-in wear. Small clearance exists 

for low sliding conditions, especially when the piston moves to the top dead center or the bottom 

dead center. Range1, range2 and range3 correspond to the ring-liner clearance range when the 

engine speed is 100 rpm, 500 rpm and 1000 rpm, respectively.  
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Figure 3.10 hydrodynamic pressures and contact pressures of GG30, before wear and 

after 5 hours running under external load 2MPa 

 
Figure 3.11 normalized shear stress of GG30, before wear and after 5 hours running under 

external load 2MPa 
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Figure 3.12 liner surface height distributions before and after wear simulation 

 

 

3.3.5 Friction evolution during the break-in period 

The evolution of engine lubrication is studied and compared with experimental results through 

the Stribeck curve. The theoretical calculation of friction is performed by both the model of 

hydrodynamic pressure and the model of dry contact. The wear process of different liner finishes 

is simulated by the asperity fatigue wear model, with friction curves plotted for surfaces before 

wear and after wear.  

The Stribeck curve reflecting the friction coefficient as a function of sliding speed is plotted in 

Figure 3.13. When sliding speed is low (boundary lubrication), friction is mainly caused by solid 

contact. As the sliding speed increases, hydrodynamic friction gradually does more significant 

contribution so that it goes into mixed friction. If the speed keeps increasing, two surfaces are 

separated further and hydrodynamic force is the only friction source. because of the increase of 

shear rate, friction increases again. For GG07, because the surface is rougher, it needs larger 
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sliding velocity to enter hydrodynamic lubrication condition, which is beyond the range of 

engine speed. Unlike GG30, the contact pressure of GG07 is always playing the major role 

regardless of the piston position, and this situation does not change after wear. Two factors 

contribute to the difference with GG30. First, the GG07 surface finish is rougher than GG30, 

leading to a stronger contact correlation. Second, the average asperity size of GG07 is larger 

compared with GG30, resulting lower asperity fatigue wear rate as mentioned in the previous 

section. Therefore, the surface topology change of GG07 is also smaller, resulting that the 

friction drop of GG07 after wear is not as remarkable as GG30. The experimental measurements 

also support this difference between GG07 and GG30. 

Based on the Stribeck curves, engine friction level at different running speeds can also be 

expected. For instance, when the engine speed is low, the contact pressure has a slight drop. This 

leads to the friction reduction after wear at the mid stroke, while contact pressure is always the 

dominant one, much larger than the hydrodynamic pressure. When the engine speed reaches a 

high level, contact pressure is much lower than hydrodynamic pressure at the mid stroke, for 

both conditions before and after wear. Compared with the friction measurements obtained 

experimentally, the trend of the relative importance between hydrodynamic pressure and contact 

pressure agrees well.  

One important mismatch between simulation and experiment is the magnitude of friction drop of 

GG30. Especially for low engine speed, the friction drop in the mid stroke region is larger than 

the predicted result. As hydrodynamic friction is not dominant at low engine speed, this indicates 

the predicted contact pressure drop is smaller than experimental measurements. Therefore, the 

break-in wear rate is also underestimated. One source for the underestimation of fatigue wear 

rate comes from the assumption of small yielding for calculating crack propagation. However, it 

is not always necessarily that the plastic regions around cracks are small compared with crack 

lengths. With the extended plastic regions, cracks can propagate faster than predicted in this 

fatigue model, leading to higher wear rate and more dramatic friction drop. The other possible 

error source is the assumption that asperity fatigue wear is uniform over the entire liner surface 

while in reality asperity contact is different along the stroke during break-in. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.13 Stribeck curves for experimental measurements and simulation results. (a) 

simulation results, GG30 (b) simulation results, GG07 (c) experimental measurements, GG30 (d) 

experimental measurements, GG07 
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3.4 Conclusion 

In this chapter, asperity fatigue liner wear model during break-in period in internal combustion 

engines is established. Two mechanisms leading to liner topography change has been studied: 

asperity plastic deformation and fatigue. Simulation results agree with Archard’s wear law that 

for a specific liner surface finish, the steady-state wear rate is proportional to external nominal 

load. The criterion making the Archard’s law valid during the break-in is also derived. 

Simulations indicate that the maximum steady-state wear rate can be obtained for a specific 

surface roughness level. This could be applied in the future for liner surface roughness design to 

minimize the break-in time.  

The engine friction change due to break-in liner wear calculated by the presented wear model 

shows the same trend as the experimental measurements. The liner finish with smoother plateau 

region exhibits faster break-in than the rougher liner finish. Moreover, the evolution of the 

friction predicted is comparable to the measurement in magnitude, implying the potential of the 

model in predicting duration of the break-in period and asymptotic friction.  With the assumption 

of small yielding, fatigue wear rate is underestimated compared with experimental 

measurements.  
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Chapter 4. Deterministic modeling of the piston rings and the 

liner wear during the steady state period 

 

4.1 General introduction and background 

After the engine break-in period, two significant changes occur in the system of the piston ring 

and the cylinder liner. The dominant wear mechanism switches from asperity fatigue to abrasive 

wear. Meanwhile, the friction level becomes stable, with further friction reduction stopped. The 

transition from break-in to steady-state wear is caused by the flattening, fracture of the original 

asperities on the liner surface and the third-body particles in the aged oil. In addition to third-

body particles, the ring surface also creates two-body abrasive wear on the liner because the ring 

is gradually getting rougher. For the ring-liner sliding pair, the ring is the moving part, resulting 

a direct contact with the liner throughout the engine running period. Contrarily, any location on 

the liner only contacts with the ring twice within one engine revolution, with no contact with the 

ring for most of the time. As a consequence, the piston ring experiences longer duration of 

contact stress than anywhere on the liner and thus its wear needs to be studied together with the 

liner although it is remarkably harder than the liner material.  

As the liner is significantly softer than the ring, it can hardly damage the ring surface by itself 

through direct contact. Instead, third-body particles play the major role in damaging the piston 

rings. The third-body particles in the engine system can be from the combustion outcome as 

carbon soot particles, or the wear debris. Considering the solid particles are mainly carbon soot 

particles and the hardness of carbon is greater than that of worn particles and the coatings on the 

ring, we will first focus on situation with the soot as the only third-body particles, which is the 

simplest situation that both liner and ring wear can be generated through abrasion process. As 

illustrated in Figure 4.1, the modeled three components in the steady-state engine wear system 

are: the ring, soot particles and the liner. With the assumption of their relative hardness, liner 

wear in the steady state is caused by the abrasion of both third-body particles and the roughened 

ring, while the damage of the ring is only caused by the abrasion of the particles. This is the 

overall assumption made in this project about the modeling of engine steady-state wear. 



106 

 

 

 

Figure 4.1. The three components of the wear system during steady-state engine condition. The 

relative hardness of the three components: third-body particles are harder than the ring; the 

particles and the ring is significantly harder than the liner. 

The nontrivial effect of soot particles is also confirmed experiments. The experiments are 

conducted through real engine testing, with controlling the size of the third-body particles to 

investigate the influence of particles on wear. A particle filter is applied to the engine system so 

that third-body particles with sizes larger than a certain threshold cannot enter the ring-liner 

system and cause further wear on the surfaces of the ring or the liner. The severity during the 

steady-state is evaluated from the ring side, with measuring the width of the wear track. In 

addition, the cross section of the ring after wear is also plotted to intuitively compare the wear 

volume of each test [7]. Figure 4.2 illustrates the significant influence of the third-body particles 

on ring wear. Without a particle filter, all soot particles will participate in the third-body wear 

process, resulting a wider wear track on the ring surface. If the particle filter is added, the width 

of the wear track becomes narrower, reducing from more than 2000 μm to less than 1000 μm. In 

terms of wear volume, the cross sections of the rings indicate an even larger reduction. In (c) and 

(d) of Figure 4.2, the wear volume, as the lost material, is greatly reduced if the particle filter is 

added. From this set of real engine experiments, it is important to focus the modeling work on 

the effect of third-body particles, which plays the key role in engine long term running condition 

and design for sustainability. 

Ring 

hardness comparison: 

𝐻𝑠𝑜𝑜𝑡 ≥ 𝐻𝑟𝑖𝑛𝑔 ≫ 𝐻𝑙𝑖𝑛𝑒𝑟  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.2. steady-state wear results with different soot particle levels. (a) the wear track on the 

ring without a particle filter. (b) the wear track on the ring with a particle filter. (c) the ring cross 

section without a particle filter. (d) the ring cross section with a particle filter [7]. 
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On the liner side, the mechanisms become more complicated. As the softest and the most 

vulnerable part, the liner faces the abrasive wear from the particles and the ring. However, the 

wear loss on the liner surface is not uniformly distributed from the TDC to the BDC. Different 

areas on the liner surface experience different levels of abrasive wear as the load, clearance, 

lubrication condition vary at different positions. Engine experiments also show the difference of 

wear severity.  

           

                                 (a)                                                                            (b) 

          

                                 (c)                                                                            (d) 
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Figure 4.3. The wear conditions on the liner surface. The pictures were taken from a heavy-duty 

diesel engine after 80000 km driving (a) the liner surface before the test. (b) The TDC area after 

the wear test. (c) The BDC area after the wear test. (d) A zoomed picture of BDC [40]. 

When the ring slides from the TDC to the BDC, the normal load between the two surfaces is 

always changing. In mid stroke, the contact load is relatively low and the hydrodynamic pressure 

becomes significant. In such a case, wear does not happen in a fast pace because of the large 

clearance filled with lubricants. When the ring moves at the TDC or the BDC, the contact 

pressure becomes dominant, providing a potential to create severe wear. Furthermore, the 

conditions of the TDC and the BDC are different as well. As shown in Figure 4.3, the original 

liner honing structure at the TDC still exists due largely to the existence of tribo-film, meaning 

that the material loss due to wear is limited. However, the honing structure around the BDC 

position of the oil control ring is almost completely removed and there was no sign of tribo-film.  

The lubrication function of the original liner surface is damaged. This indicates more severe 

wear happens at the BDC, making it the critical area for the engine durability design. Although 

both the TDC and the BDC experience high contact load, a layer of tribo-film is formed in the 

TDC area to protect the liner from further damaging. This layer is formed based on the additives 

in the oil. Therefore, in this project, wear of the BDC area is considered and modeled, where 

most of the normal force is supported by the solid-solid contact with no tribo-film formation. The 

dominant wear mechanism is also reflected in the experiments. As shown in (d) of Figure 4.3, 

vertical scratches, scars of abrasive wear, along the sliding direction are generated. In this work, 

we focus on the oil control ring (OCR) and liner wear at the BDC where there is plenty of oil and 

the soot content in sump oil is representative to the oil here.  This pair presents the purest 

environment for the abrasive wear with 3rd body involvement.  On the practical side, wear of the 

oil control ring is one of the most critical issues in engine development as it directly contributes 

to the sustainability of the oil consumption control. 

In general, the work of this chapter focuses on several aspects of the engine steady-state wear, 

which is the key problem of the engine durability. The size of third-body particles that do the 

most damage to the ring-liner system is investigated. Different processes are also studied and 

modeled so that more understanding of detailed mechanisms can be provided for design. 
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Moreover, systematic simulations of steady-state wear are conducted in a physics-based 

deterministic way.   

 

4.2 Elements of steady-state wear modeling 

The process of steady-state wear is complicated, involving many different physical and chemical 

mechanisms. These mechanisms are coupled together to make it even more difficult to model. In 

this project, only the mechanisms and transport processes that mostly contribute to the surface 

topography change are modeled. These mechanisms have the most significant influence on the 

abrasive wear rate and engine durability. Several essential model elements are discussed in this 

section: third-body particle size distribution, particle movement in lubricant, particle entrapment, 

particle embedment, particle transport and abrasion. The entire simulation algorithm consists of 

these parts to perform a systematic wear modeling of the ring-liner system. 

 

4.2.1 Particle size distributions 

As the most important abrasion source, carbon soot particles are vital for the system, whose size 

distribution is a decisive factor. In general, particle size distributions in different systems vary 

due to different particle formation mechanisms. In internal combustion engines, the sizes of 

third-body soot particles cover a wide range, from the order of 10 nanometers to several 

micrometers. Moreover, the distribution of soot particles is highly skewed because of the 

agglomeration effect. Some particles can grow extremely large, consisting of hundreds of 

primary carbon particles while the lower bound of soot particle size can never become smaller 

than zero. The particle size distribution in the engines can be approximately described by the log-

normal distribution: 

𝑓(𝑑) =
1

√2𝜋𝜎2
(

1
𝑑

)𝑒−(𝑙𝑛𝑑−𝜇)2

2𝜎2  
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In the probability density function above, 𝑑 is the particle diameter. 𝜇 and 𝜎 are the two 

parameters originated from the standard normal distribution, but they are now the mean and the 

standard deviation of the log-normal distribution.  

The approximate log-normal distribution of engine soot particles is also observed in engine tests. 

As plotted in Figure 4.4, the frequencies of different particle sizes form a bell shaped curve. 

Considering the horizontal axis, the particle diameter, is in logarithmic scale, the overall size 

distributions are close to the set of log-normal distributions, even under various of engine 

running conditions of load and speed. 

 

Figure 4.4. soot particle size distribution from real engine tests. Particles are collected from the 

engine exhaust. 𝐷𝑝 is the particle diameter. 𝐴𝑓𝑙 to 𝐸𝑓𝑙 indicate different engine running 

conditions [41]. 

It is important to point out the underlying mechanism leading to the log-normal soot particle size 

distribution. Based on the central limit theorem, the summation of a sequence of independent 

random variables is normally distributed. As a generalization, a log-normal distribution is formed 

through multiplying many independent random variables. In engines, the soot particles are 

agglomerates of primary carbon particles, leading to the random influencing factors 

multiplicative to each other. However, the size distribution of primary carbon particles is not 
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necessarily log-normal distribution. Instead, the size of primary carbon particles is closer to a 

normal distribution, as illustrated in Figure 4.5 [42].  

In this project, log-normal distributions are used as the third-body particle size distributions, 

because almost all the particles collected in engine exhaust and aged oil are agglomerated 

particles. The particles are modeled as hard and spherical balls to simplify the calculation.    

 

Figure 4.5. the particle size distribution of primary soot particles [42] 

 

4.2.2 Particle movement in lubricant 

If a particle is squeezed between the ring and the liner, its movement pattern will be determined 

by the solid to solid contact. However, before a particle gets into the clearance, it would flow 

with the lubricant. The Reynolds number can be estimated with a typical third-body size of 500 

nm: 

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
~ 

0.8 × 103𝑘𝑔
𝑚3 × 1𝑚

𝑠 × 5 × 10−7𝑚

0.01𝑃𝑎. 𝑠
 

~ 0.04 ≪ 1 
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With a small Reynolds number, the flow can be assumed to Stokes flow for the particles. Under 

the Stokes flow assumption, third-body particles will simply follow the flow streamlines. 

Therefore, the flow condition needs to be solved in order to provide the movement of particles in 

the lubricant.  

An existing model developed by Chen [2] is able to provide the horizontal lubricant flow field, in 

the sliding direction and the circumferential direction. However, the vertical direction, 

perpendicular to the two surfaces, is still missing. In this section, the vertical velocity profile is 

derived in order to obtain a complete velocity field.  

 

Figure 4.6. the coordinate system of the lubricant flow field between the ring and the liner 

With a moving ring and pressure gradient, the flow between the ring and the liner is a mixture of 

Couette flow and Poiseuille flow. As indicated in Figure 4.6, the z direction is the direction 

perpendicular to the surfaces while the x direction is the sliding direction. The governing 

equations of Couette flow and Poiseuille flow are the following three: 

x 
y 

z 

ring 

liner 

U 
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𝑢 =
1

2𝜇
(−

𝜕𝑃
𝜕𝑥

) 𝑧(ℎ − 𝑧) + 𝑈
𝑧
ℎ

 

𝑣 =
1

2𝜇
(−

𝜕𝑃
𝜕𝑦

) 𝑧(ℎ − 𝑧) 

𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦

+
𝜕𝑤
𝜕𝑧

= 0 

Where u, v and w denote the lubricant velocities in x, y and z directions, respectively. P is the 

pressure while U is the ring sliding speed. h denotes the local clearance between the two 

surfaces. The first two equations are the velocity equations, with the third one as the continuity 

equation. Based on the governing equations, the vertical velocity w should have the following 

format: 

𝜕𝑤
𝜕𝑧

= 𝐶1(𝑥,  𝑦)𝑧 + 𝐶2(𝑥,  𝑦)𝑧2 

Where  

𝐶1(𝑥,  𝑦) = [
1

2𝜇
(

𝜕𝑃
𝜕𝑥

𝜕ℎ
𝜕𝑥

+
𝜕2𝑃
𝜕𝑥2 ℎ) +

𝑈
ℎ2

𝜕ℎ
𝜕𝑥

] +
1

2𝜇
(

𝜕𝑃
𝜕𝑦

𝜕ℎ
𝜕𝑦

+
𝜕2𝑃
𝜕𝑦2 ℎ) 

𝐶2(𝑥,  𝑦) = −
1

2𝜇
(

𝜕2𝑃
𝜕𝑥2 +

𝜕2𝑃
𝜕𝑦2) 

The boundary conditions are: 

𝑤 = 0     at 𝑧 = 0 

𝑤 = 0      at 𝑧 = ℎ 

Theoretically, solving the vertical velocity field does not require two boundary conditions. 

However, in this problem, the two boundary conditions are not independent. The existing model 

calculating the horizontal velocities already includes the mass conservation in the two directions, 

making the two boundary conditions above coupled through the continuity equation.  
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Based on the derivation above, the full velocity profile of the lubricant at any liner location can 

be obtained. The calculation results show that the velocity in the vertical direction is significantly 

smaller than the velocities in the other two perpendicular directions. For instance, Figure 4.7 

contains the velocity profiles of two different locations with different local clearances. The 

velocity along the sliding direction is always the largest, but the velocity component w is 

extremely small. Therefore, it is reasonable to neglect w in the flow field. Particles are mainly 

flowing with the ring sliding direction. The two examples are calculated based on the following 

physics properties:  

Ring sliding velocity  = 0.1m/s 

Lubricant dynamic viscosity = 0.01 Pa. s 

Other properties, such as the local pressure, pressure gradient and velocity v, are obtained 

through the existing two-dimensional flow model. 

 

Figure 4.7. the velocity fields of the lubricant at two different locations on the liner surface 

With all the analysis in this section, the particle movement in the lubricant can be simplified 

through two assumptions in the modeling work. First, because the velocity of the lubricant is 

dominated by the component in the ring sliding direction, the velocities in the vertical and 

circumferential directions are neglected. Second, once a third-body particle is in the nominal 

contact region between the liner and the ring but not stuck in the local clearances, it will follow 
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the lubricant flow in the sliding direction with the streamline at the center of the clearance. These 

two assumptions can make the calculation efficient without losing modeling accuracy. 

 

4.2.3 Particle entrapment 

If a particle is floating with the lubricant, it will not create any wear or surface topography 

change, simply because there is no direct contact. Once a particle moves to the position where 

the local clearance is equal to the particle diameter, it is possible for it to get trapped between the 

two surfaces and create damages on the ring and the liner. However, the particle is also possible 

to be rejected by that clearance, being pushed back to the lubricant again. Therefore, it is 

essential to find a criterion that a particle will further get trapped between the surfaces once it 

arrives the clearance entrance. As illustrated in Figure 4.8, it is discussed in this section, whether 

a particle would be squeezed in the clearance or return to the floating condition in the lubricant. 

 

Figure 4.8. the entrapment model for a particle at the entrance of a local clearance 

As proposed by Nikas [ref], the entrapment status of a particle depends on the three kinds of 

forces exerting on the particle: fluid forces, normal forces from the two surfaces and the 

corresponding friction forces. As shown in Figure 4.9, the moving ring generates a normal force 

𝑁1 and a tangential friction force 𝑇1, which tries to drag the particle further into the clearance. As 

a response, the liner also generates a normal force and a friction force to counterbalance the 

forces exerting on the particle by the sliding ring. Meanwhile, the particle is under the influence 

? 
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of the force from the lubricant as well. The of the fluid forces in three different directions can be 

calculated as [43]: 

𝐹𝑥
(𝑓) ≅ −3𝜋𝜂

𝑈1

2
𝑑 − 𝜋

𝜋 + 4
16

(
𝜕𝑃
𝜕𝑥

) 𝑑3 

𝐹𝑦
(𝑓) ≅ −𝜋

𝜋 + 4
16

(
𝜕𝑃
𝜕𝑦

) 𝑑3 

𝐹𝑧
(𝑓) ≅ −3𝜋𝜂𝑑 (

𝜕𝑧1

𝜕𝑥
𝑈1

√1 + (𝜕𝑧1/𝜕𝑥)2
) 

𝐹𝑥
(𝑓), 𝐹𝑦

(𝑓), 𝐹𝑧
(𝑓) are the fluid forces in three directions. 𝜂 is the dynamic viscosity of the lubricant 

and 𝑃 is the local fluid pressure. 𝑑 is the particle diameter. 𝜕𝑧1
𝜕𝑥

 denotes the local gradient of the 

moving surface. 𝑈1 is the sliding speed of the piston ring. 

 

  

Figure 4.9. forces exerting on a particle at the clearance entrance 

With the obtained fluid forces, equations of force balance can be derived. It is assumed here that 

the particle can only move along the sliding direction, or opposite to the ring moving direction if 

the particle is pushed back to the lubricant. Consequently, the force balance in the other two 

directions can be established [43]: 

𝑁1𝑦 + 𝑇1𝑦 + 𝑁2𝑦 + 𝑇2𝑦 + 𝐹𝑦
(𝑓) = 0 
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𝑁1𝑧 + 𝑇1𝑧 + 𝑁2𝑧 + 𝑇2𝑧 + 𝐹𝑧
(𝑓) = 0 

|𝑇1| = 𝜇1|𝑁1| 

|𝑇2| = 𝜇2|𝑁2| 

Where 𝑁1𝑦, 𝑇1𝑦,  𝑁2𝑦 and  𝑇2𝑦 are the y direction component of the corresponding forces. The 

same notation is also applied to the z direction. 𝜇1 and 𝜇2 are the friction coefficients of the ring 

and the liner surfaces. Thus, the normal forces and the tangential forces exerted by the two 

surfaces on the particle can be calculated through solving the set of force balancing equations. As 

the last step to determine whether or not the particle will further get trapped between the local 

clearance, the resultant force in the sliding direction is calculated: 

𝐹𝑥
(𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡) = 𝑁1𝑥 + 𝑇1𝑥 + 𝑁2𝑥 + 𝑇2𝑥 + 𝐹𝑥

(𝑓) 

The status of the particle is determined by the signs of the three calculated forces: the two normal 

forces 𝑁1, 𝑁2 and the resultant force 𝐹𝑥
(𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡). If either 𝑁1 or 𝑁2 is negative, the particle will 

leave the local clearance back to the lubricant because𝑁1 and 𝑁2 must be positive. If a valid force 

equilibrium is established, 𝐹𝑥
(𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡) becomes the determining factor. A negative 𝐹𝑥

(𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡) 

means the resultant force points into the clearance, forcing the particle getting squeezed between 

the ring and the liner. Thus, the particle gets trapped. Otherwise, with a positive 𝐹𝑥
(𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡), the 

particle simply leaves the entrance of the clearance back to the lubricant. 

So far, the analysis is almost adequate as the particle movement is dominated in the sliding 

direction. However, in order to include the possibility of a particle to escape the clearance from 

other directions rather than the sliding direction, a generalized version of particle entrapment is 

also proposed. The main logic remains the same, with one improvement. As illustrated in Figure 

4.10, the tangential force 𝑇2 is not strict to the sliding direction. Instead, it can point to any 

direction perpendicular to 𝑁2. The particle will get trapped only if the particle fails to leave the 

clearance with all possible 𝑇2 directions. For simplicity, the calculation can be completed with a 

rotating coordinate (x’, y’, z), in which the z axis is the rotating axis. The simulation is 

completed through enumerating all possible directions of 𝑇2. In each case, 𝑇2 and x’ are always 
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in the same vertical plane. Within the set of force balancing equations, only the equilibrium 

equation of y’ needs to be modified: 

𝑁1𝑦′ + 𝑇1𝑦′ + 𝑁2𝑦′ + 𝑇2𝑦′ + 𝐹𝑦′
(𝑓) = 0 

The balancing equation is now established in the y’ direction. After obtaining the forces, the 

criterion of particle entrapment also has a modification. For any direction of 𝑇2, if 𝑁1, 𝑁2 are all 

positive and the resultant force 𝐹𝑥′
(𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡) points into the direction with a negative clearance 

gradient, the particle gets trapped. Otherwise, the particle will simply find one direction for 𝑇2 

and leave the clearance.  

 

 

Figure 4.10. forces exerting on a particle at the clearance entrance, with all possible particle 

escaping directions 

Simulations are performed based on the refined entrapment model to investigate important 

properties of the entrapment process. In the setup of the simulations, 1000 particles are randomly 

assigned to different locations on the liner surface, with reducing clearances in the ring sliding 

direction. With a fixed ring height, the diameter of each particle is set to be the same as the local 

clearance so that the particles are exactly at the clearance entrances. The ring surface is assumed 

smooth in this case. 
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In Figure 4.11, the influences of the ring sliding velocity and the friction coefficient are plotted. 

The trap ratio is defined as the proportion of trapped particles among all the simulated particles 

at the clearance entrances. In this simulation, the friction coefficients of the two surfaces are 

always equal, which is also close to the friction condition in a ring-liner system. With a fixed 

friction coefficient, the trap ratio is not influenced obviously by the ring sliding speed. However, 

the magnitude of the friction coefficient plays an important role in particle entrapment. When the 

sliding velocity is fixed to 1m/s, the number of trapped particles significantly increases as the 

friction coefficient is increasing. When the friction coefficient reaches 0.3, most of the particles 

get trapped into the local clearances. The results show a great influence of the friction 

coefficient, but the effect of the ring sliding speed is trivial. 

 

                                        (a)                                                                          (b) 

Figure 4.11. The influences of the ring sliding velocity and the friction coefficient. (a) the effect 

of the sliding velocity (b) the effect of the friction coefficient 

It is also interesting to investigate the status of each particle and find more influencing factors. 

With a constant ring sliding speed 1m/s and a fixed friction coefficient value 0.1, the trapped 

particles and the free particles are separated into two groups. For each group, histograms are 

plotted with the magnitude of the local clearances as the bin axis. Plotted in (a) and (b) of Figure 

4.12, nontrapped particles are distributed more in the range of large local clearance gradient 

compared to the trapped particles. If further decomposition of the local clearance is conducted, it 

is apparent to observe that the gradient in the sliding direction (x direction) plays the dominant 
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role in (c) and (d). The trapped particles all locate in the positions with local x direction gradient 

smaller than 0.2. This threshold is consistent with the friction coefficient value of 0.1 for both 

surfaces. If a local clearance with gradient larger than the sum of the two coefficients of the two 

surfaces, the entrance will become too steep for the particle being pushed further into the 

clearance. On the other hand, larger friction coefficient can help the particle overcome the slope 

of clearance entrance. It is also reflected in Figure 4.12 that the clearance gradient in the y 

direction is not essential. The particle status is mainly determined by the gradient in the ring 

sliding direction. 

 

                                        (a)                                                                          (b) 

 

                                        (c)                                                                          (d) 
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                                        (e)                                                                          (f) 

Figure 4.12. trapped and nontrapped particles locating at different clearance gradient positions. 

(a) the total clearance gradient distribution of trapped particles (b) the total clearance gradient 

distribution of nontrapped particles (c) the x direction clearance gradient distribution of trapped 

particles (d) the x direction clearance gradient distribution of nontrapped particles (e) the y 

direction clearance gradient distribution of trapped particles (f) the y direction clearance gradient 

distribution of nontrapped particles 

In this section, the particle entrapment model is established. Based on simulations, the status of a 

particle at the clearance entrance largely depends on the friction level and the local geometry, 

especially the clearance gradient in the sliding direction. 

 

4.2.4 Transport and embedment of trapped particles 

Once a particle is getting trapped between the two surfaces, it is possible for the particle to create 

abrasive wear scars. Meanwhile, which surface will suffer from the third-body abrasion depends 

on the movement pattern of the trapped particle. For a trapped particle, three movement patterns 

are possibly to happen: embedding into the ring, embedding into the liner or rotating between the 

two surfaces. If a particle is embedded into one surface, it will slide with that surface and 

damage the other. If a particle is rotating between the two surfaces, it can create wear scars on 

both the ring and the liner.  
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The movement pattern of a trapped particle can be determined by the torques of the normal and 

tangential forces and the friction coefficient. As shown in Figure 4.13, with a moving ring, the 

normal forces from the two surfaces are not collinear, with a distance e between. Similarly, there 

is also a distance h between the two tangential forces. The ratio of e/h can be calculated by the 

following equations [44]: 

𝐷1 =
𝑁

4𝜋𝑅𝐻1
 

𝐷2 =
𝑁

4𝜋𝑅𝐻2
 

𝑒 =
4

3𝜋
(𝑟1 + 𝑟2) 

𝑒
ℎ

=
𝑁

2𝜋2𝑅2𝐻1

𝜀1
1/2 + 𝜀2

1/2

𝜀1
3/2 + 𝐻2

𝐻1
𝜀2

3/2
 

𝜀1 = 1 − (1 −
𝑁

4𝜋𝑅2𝐻1
)2 

𝜀2 = 1 − (1 −
𝑁

4𝜋𝑅2𝐻2
)2 

Where N is the normal force, R is the particle radius. 𝐷𝑖, 𝑖s the indentation into the surfaces (i=1, 

2). 𝑟𝑖  is the projected contact radii of the two surfaces, while 𝐻𝑖 is the material hardness.  
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Figure 4.13.  the forces and torques exerted on a trapped particle 

In the calculation above, the underlying assumption is that the contact is plastic so that the 

contact pressure reaches the material hardness. Such an assumption is reasonable for the third-

body particles in general because the elastic indentation limits of the particles are so small that 

almost all the trapped ones will contact plastically with the surfaces. 

The determining factor of particle rolling or sliding is simply the relative magnitue between the 

ratio  𝑒
ℎ
 and the friction coefficient 𝜇. If 𝜇 is larger than 𝑒

ℎ
, the particle will roll between the two 

surfaces. Otherwise, it will get embedded into one surface and slide against the other. 
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(a) 

 

(b) 

Figure 4.14. the decision boundary of particle rolling and sliding. (a) friction coefficiet 0.2 (b) 

friction coefficient 0.1 

In Figure 4.14, the blue curves illustrate the crtical total indentation (𝐷1 + 𝐷2) of a particle 

between the two transport modes, rolling and sliding with a varying particle size as the horizontal 

axis. If the total indentation is less than the critical value, the particle will tend to roll, 

corresponding to the green area below the critical total indentation curve. Otherwise, the particle 

will be in the sliding mode, squeezed between the two surfaces. It is also reflected in Figure 4.14 

that higher friction coefficient will increase the critical total indentation value, leaving more 

particles rolling instead of sliding.  

When a particle is slding, it always gets embedded into one surface and slides against the other to 

create wear scars. This is because the maximum tengential force for a surface to resist the 

particle sliding is limited. As the two surfaces provide different maximum tengential forces, the 

surface with smaller critical tengential force would lose the resistence to a moving particle. As a 

result, the particle will be embedded into the other surface. This is also observed in experiments 

that a sliding particle sticks to one surface generating continous wear scars [44], as shown in 

Figure 4.15. The width of a third-body wear scar depends on the size and shape of the slding 

particle. 
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Figure 4.15. a sliding wear scar [44] 

The maximum tengential force of one surface is determined by the particle size, indentation 

depth and the surface friction coefficient. For a spherical particle, the sliding tengential force can 

be estimated [45]: 

𝐹𝑓 =
2𝑟2𝐻

𝜋
[
𝑅2

𝑟2 sin−1 𝑟
𝑅

− √𝑅2

𝑟2 − 1] + 𝜇
4𝑅2𝑁
𝜋𝑟2 [1 − √1 −

𝑟2

𝑅2] 

Where 𝑅 is the particle diameter, 𝑟 is the radius of the projected contact area. 𝜇 is the surface 

friction coefficient and 𝐹𝑓 is the overall tengential force of a particle to overcome the resistence 

and generate a path.  



128 

 

 

Figure 4.16. the particle sliding model  

For the same surface, the critical tengential force increases with the particle indentation depth. 

Therefore, a particle tends to get embedded into the softer surface as the indentation is larger 

compared with the harder sliding counterpart. The particles have higher chance to get embedded 

into the soft surface, leaving the hard one vunerable in this case. However, higher hardness of the 

ring would help the ring to hold the particles and increase the critical tengential force. As a 

result, some particles would get embedded in the ring, making the liner wear with a combination  

of two-body and third-body abrasion. 

 

4.2.5 The abrasion model 

When a trapped particle is sliding against one surface, it generates abrasive wear scars. Three 

abrasion scenarios can happen in this process, depending on the particle indentation depth. As 

presented in Figure 4.17, the indentation is purely elastic if the indentation depth is small, 

resulting no permanent deformation on the surface. As the indentation depth increases, 

permanent plastic deformation occurs, pushing the material on the path to the two sides to form 

side ridges. In this scenario, plowing effect is dominant with no material volume loss. The 

material is merely redistributed on the surface to form new grooves with pile-ups. If the 
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indentation depth increases further, the plowing effect now becomes cutting, with new pile-ups 

forming at the two sides. The material in the cutting path is detached from the surface forever. 

          

                         (a)                                                                              (b) 

 

(c) 

Figure 4.17. three scenarios of a sliding particle. (a) elastic indentation (b) plowing effect with no 

material loss (c) cutting 

For spherical particles, the quantitative criteria for these three sliding scenarios are given based 

on the indentation geometry [46].  

1. elastic indentation: 

𝐷
𝑟

< 1.78(
𝐸
𝜎𝑦

)−1 

2. particle plowing: 
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1.78(
𝐸
𝜎𝑦

)−1 ≤
𝐷
𝑟

< [1 + 0.037(
𝐸
𝜎𝑦

)]−1 

3. cutting: 

𝐷
𝑟

≥ [1 + 0.037(
𝐸
𝜎𝑦

)]−1 

Where D and r are defined in Figure 4.16. E, 𝜎𝑦 are the elastic modulus and yield strength of the 

surface.  

For a sliding particle, it generates wear scars only on one surface as it is embedded into the other 

surface. The same abrasion model is also adopted for rolling particles. The difference is that a 

rolling particle creates wear scars on both surfaces with only half of the ring sliding distance. 

The total wear track length is the same as a sliding particle, but it is distributed on both the ring 

and the liner. 

 

4.3 The modeling algorithm 

With all the sub-models defined in the previous section, the systematic simulation procedure can 

be established. The entire algorithm is organized to provide wear modeling for both the ring and 

the liner during the engine steady-state condition.  

The liner roughness matrix, the nominal external pressure and the soot particle concentration are 

provided as the model inputs. With the given particle concentration and defined particle size 

distribution, soot particles are randomly generated on the liner surface. For each engine cycle, 

the ring slides over the liner twice, in two opposite directions. For each sliding process, as the 

ring moves from one end to the other end on the liner, it will encounter particles on the liner 

surface. If a particle is at the place where the local clearance is larger than the particle diameter, 

the particle will flow with the lubricant. When a particle is arriving at the clearance entrance with 

local clearance smaller than the particle size in the ring sliding direction, the particle entrapment 

model is applied to determine whether it would be further trapped in the clearance. If a particle is 

trapped, the particle movement model is used to analyze the movement pattern, either rolling or 
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sliding. For a rolling particle, it travels half of the ring sliding distance, creating damages on both 

surfaces. For a sliding particle, the embedded surface is determined by the calculating and 

comparing the maximum tangential forces. After that, the counterpart surface topography is 

updated based on the abrasion model. As the ring surface is significantly harder than the liner 

surface, the two-body wear scars are also generated with each ring sliding process.  

With the defined systematic modeling procedure, the wear rate and the surface topography after 

the steady-state wear can be obtained.   

 

4.4 Systematic simulations 

Systematic simulations are performed with the combined algorithm. In this work, it is found that 

two factors are decisive to steady-state abrasive wear: the particle size distribution and the ring 

hardness. Both short-term and long-term simulations are conducted. The short-term simulations 

are used to investigate the effect of the particle size distribution as the effect is obvious just 

within a short engine simulation period. Long-term simulations are conduced to investigate the 

effect of the ring properties. Long-term engine experiments are also used for comparison and 

model improvement.  

 

4.4.1 The effect of particle size distribution 

As discussed in Section 4.2.1, the particle size can be approximately described as log-normal 

distributions. In this section, two sets of simulations are conducted with different particle size 

distributions. Both distributions are log-normal, as shown in Figure 4.18. Particle size 

distribution 1 represents a set of small soot particles, without significant agglomeration effect. 

Most of the particles have diameters smaller than 100 nm, which is the range of primary carbon 

particles. Size distribution 2 corresponds to a more typical soot size range, with most of the 

particle diameters in the sub-micrometer range. Some large ones are in the micrometer scale.  
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                                        (a)                                                                           (b) 

Figure 4.18. The two particle size distributions. (a) particle size distribution 1 (b) particle size 

distribution 2 

Except for different particle size distributions, other simulation conditions keep the same for the 

two sets. The ring material is steel, without any coating on the surface. The elastic modulus and 

material hardness of the ring used in the simulation are 200 GPa and 3Gpa, respectively. The 

nominal contact pressure is 2MPa while the soot particle concentration is 0.1%. The material 

properties of cast iron are used for the liner, with elastic modulus 120GPa and hardness 915 

MPa. The number of engine cycles is limited to 3000 in order to reduce the influence of two-

body abrasion before the ring gets too rough due to the third-body abrasive wear.  

As seen in Figure 4.19, the change of the liner surface topography is not significant. After 500 

cycles, no obvious abrasive scars can be observed. Even after 3000 cycles, only a few scratches 

are created as a result of the abrasive wear. However, the wear rate increases apparently if the 

particle size distribution 2 is adopted in the simulation. With only 500 cycles, many scratches 

already occur on the surface, as shown in Figure 4.20.   

The particle size distribution has remarkable influence on the wear rate because it determines the 

entrapment ratio. If a particle is small, it has lower chance to encounter with a clearance smaller 

than its diameter, leaving it less likely to damage the surfaces. This is confirmed with a 

comparison between the particle size distribution and the clearance size distribution, which also 

provides an insight on the particle size distribution doing the most damage. 
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(a) 

 

                                 (b)                                                                      (c) 

Figure 4.19. the liner topography change with particles following size distribution 1. (a) before 

wear (b) after 500 cycles (c) after 3000 cycles 

 



134 

 

(a) 

 

                                 (b)                                                                      (c) 

Figure 4.20. the liner topography change with particles following size distribution 2. (a) before 

wear (b) after 500 cycles (c) after 3000 cycles 

As illustrated in Figure 4.21 and Figure 4.22, the red dashed line corresponds to the ring position 

on the liner surface height distribution with the given nominal pressure. On the particle size 

distribution plots, the blue shadow regions cover the particle size range of the frequency peaks. 

Most of the particles in each distribution fall into the blue shadow zone based on the particle 

diameters. The blue shadow regions on the particle size distributions have the identical height 

ranges to the red shadow regions on the surface height distributions. These plots clearly show 

that the third-body wear speed is strongly correlated with the relative magnitude between the 

clearance size and the particle size. For particle size distribution 1, the size of the majority of 

particles only covers a little portion of the clearance size range, leaving most particles having no 

chance to get trapped. Contrarily, for particle size distribution 2, most of the particle diameters 

locate within the majority clearance range so that particles have higher chances to meet 

clearances close to their sizes and get trapped. 
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Figure 4.21. particle size distribution 1 and the corresponding clearance size range 

 

  

Figure 4.22. particle size distribution 2 and the corresponding clearance size range 

The results of the short-term simulations show the determining effect of particle size distribution, 

especially the consistence with clearance distribution. If the peaks of the two distributions have a 

significant overlap, third-body particle abrasive wear rate will be high. Moreover, the results also 

indicate that the nominal load is not a dominant factor in third-body wear if the particle size 

distribution covers a large range. Only when the particle size distribution is concentrated in a 

small range, comparable to the clearance variation of different normal loads, external load would 

become more important. This is different from the asperity fatigue wear during the break-in 

period. Figure 4.23 shows the liner topography evolution when the nominal pressure is increased 

to 4MPa, with particle size distribution 2. The increased normal pressure does not lead to a 
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higher third-body wear. The liner wear volumes are 2735 𝑢𝑚3 and 2381 𝑢𝑚3 for 2MPa and 

4MPa, respectively, on the simulated area after 3000 cycles. 

 

(a) 

 

                                 (b)                                                                      (c) 

Figure 4.23. the liner topography change with particles following size distribution 2 and nominal 

pressure 4MPa. (a) before wear (b) after 500 cycles (c) after 3000 cycles 

 

4.4.2 The influence of ring coatings 

Another important influencing factor is the ring coating. Nowadays, the engine manufacturers try 

different coating materials in order to provide more sustainable engines. In this work, long-term 
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simulations are performed to investigate the effect of the ring surface properties, because the 

influence of two-body abrasion becomes significant only when the ring is roughened enough. 

The simulations also provide understandings about the third-body particle abrasion mechanisms 

during the steady state.  

The simulation setup keeps the same except for the ring properties, with nominal pressure 2 

MPa, soot concentration 4.5%. Particle size distribution 2 in the previous section is used in this 

section as well. The number of engine cycles is 500000, corresponding to about 4.2 hours of 

engine running. Simulation 1 and simulation 2 use two different ring coatings, PVD (physical 

vapor deposition) and DLC (diamond-like carbon), respectively. In the simulations, the elastic 

modulus and the hardness of PVD coating are 300 GPa and 10 GPa, close to the typical 

mechanical properties of chromium nitride coatings [47,48,49]. For the DLC coating, 330 GPa 

and 40 GPa are used as the material elastic modulus and hardness.  

 

                                          (a)                                                          (b) 

Figure 4.24. the liner surface topography of simulation 1. (a) before wear  (b) after the wear 

simulation 

In figure 4.24, the liner surface topography change can be observed. Many scratches along the 

sliding direction are generated, as a result of abrasion. This is a typical wear pattern created due 

to abrasive wear. However, the wear patterns created by two-body abrasion and third-body 

abrasion are still different, as illustrated in Figure 4.25. The third-body wear scars are more 

likely to stop in the liner valley regions because particles can fall into these valleys. Only some 

large particles would generate continuous wear scars, crossing the valleys on the liner. The two-
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body wear pattern, on the other side, cannot be stopped by the valleys because the ring always 

moves from one side to the other. The wear scars of two-body abrasion are more likely to be 

continuous along the ring sliding direction. The ring topography after wear is also plotted in 

Figure 4.26, similar to the observed barcode ring wear pattern in engine experiments [7].  

  

                                        (a)                                                                (b) 

Figure 4.25. the two different abrasive wear patterns (a) third-body abrasion (b) two-body 

abrasion 

 

Figure 4.26. the ring surface topography of simulation 1, after wear 
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                                              (a)                                                                 (b) 

Figure 4.27. material wear loss in simulation 1 (a) liner material loss (b) ring coating material 

loss 

Figure 4.27 shows the material loss of simulation 1 as a function of time, for both the ring and 

the liner. The material volume loss is converted to the average height reduction over the entire 

simulation area. The ring wear rate does not vary extensively over the simulation period, but the 

liner wear rate shows an obvious transition. The transition of the liner wear rate mainly comes 

from the two-body wear mechanism. Because the simulation starts from a smooth ring, it takes 

time for the ring to get roughened enough to create significant two-body wear loss on the liner 

side. This transition is largely dependent on the generation of high peaks on the ring surface to 

perform continuous two-body scratches on the liner.  

If the ring coating is switched from PVD to DLC, the ring wear speed shows the same trend in 

experiment 2, with a different magnitude. The ring wear rate is smaller in simulation 2 because 

of two effects. As the DLC coating is harder, the critical indentation for pure cutting also 

increases for the same particle. This makes more particles fall into the plowing abrasion pattern, 

which does not lead to material loss. The material on the surface is merely pushed to different 

positions and redistributed. Meanwhile, the average indentation depth decreases for particles 

with a harder surface, resulting a lower volume loss even in the cutting mode. The trend of liner 

wear rate of simulation 2 is also different from simulation 1. The liner wear rate transition occurs 

significantly earlier than the case with PVD ring coating. As the ring gets harder, it becomes 

easier for particles to get embedded into the liner and slide against the ring. At the same time, 

particles tend to plow on the ring surface and create pile-ups, which have the potential to 

generate continuous two-body scratches. Overall, the smoothness of the harder ring coating is 

damaged quicker for the harder coating. However, eventually, the ring roughness of DLC is 

smaller than the roughness of the worn PVD surface. As plotted in Figure 4.29, the ring 

roughness of simulation 2 after wear is smaller than the ring roughness in simulation 1, because 

of smaller average particle indentations. The DLC roughness eventually is smaller, although it 

evolves faster to break the smoothness at the beginning. 
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Figure 4.28. material wear loss in simulation 2 (a) liner material loss (b) ring coating material 

loss 

  

Figure 4.29. ring roughness after wear 

Experimental wear results are also used for comparison [50]. In Figure 4.30, the ring wear losses 

in engine experiments are plotted with both PVD (chromium nitride) and DLC (hydrogen-free 

carbon) coatings [48,49]. The wear volume is also evaluated by the height reduction on the ring 

surface, with different positions measured. The total testing time is 500 hours. By averaging the 

height reduction at different ring positions, the overall ring wear speeds of the two coatings can 

be estimated, listed in Table 4.1. It is easy to observe that the calculated ring wear rates are 

higher than the wear rates obtained from experiments. Going through all the assumptions and 

approximations, the assumption of rigid spherical third-body particles may lead to an 

overestimation of the wear rate. In the next section, another assumption is introduced to reduce 

the estimation error caused by the rigid spherical particle assumption. 
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Figure 4.30. experimental results of ring wear [50] 

 

Ring coating average wear rate by 

simulations [𝜇𝑚/ℎ] 

average wear rate by 

experiments [𝜇𝑚/ℎ] 

PVD 0.24 1.15× 10−2 

DLC 0.06 3.30× 10−3 

Table 4.1. the average wear rates of ring coatings 

 

4.4.3 One additional assumption for trapped particles 

As compared in the previous section, the ring wear rate is, at least one order of magnitude, larger 

than the ring wear rate obtained from experiments. The rigid spherical particle assumption is 

considered to be the main contributor to overestimating the wear rate because the soot particles 

in real engines are agglomerated and random-shaped. Although the primary carbon particles are 

round and hard, most of the agglomerated soot particles are possible to be deformed if large 

external forces are exerted on the particles. As shown in Figure 4.31, agglomerated particles 
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usually have loose structures [51]. If a particle is trapped, such structures are not able to create 

indentation and generate abrasive scars using their nominal diameters. Therefore, a new 

assumption is made in order to offset the overestimation of wear rate due to non-spherical 

agglomerated soot particles. 

          

Figure 4.31. agglomerated particles [51] 

As illustrated in Figure 4.32, a trapped particle can experience extensive deformation, being 

compressed into a more compact structure. With the compact structure, the particle will cause 

indentation and abrasion on the two surfaces. Considering the possible deformation of particles 

between the two surfaces, one additional assumption is made. For a particle entering a clearance 

smaller than its diameter, it is deformed into a more compact sphere, whose diameter is adaptive 

to the clearance size. The new diameter assigned to the trapped particle is only determined by the 

clearance size, regardless of its original size. The new diameter of the particle is also assumed to 

be h+2d, with h the local clearance size and d the diameter of a primary carbon particle. In this 

work, d is set to be 50 nm. This new assumption is only applied to a trapped particle, while the 

calculation of the previous entrapment process still uses the original particle diameter.  

50 𝑛𝑚 50 𝑛𝑚 
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Figure 4.32. possible deformation of a trapped particle 

  

                          

Figure 4.33. the deformed particle can have diameter adaptive to the local clearance 

With the same input setup in the previous section, simulations are performed adding the new 

assumption about trapped particles. Figure 4.34 show the ring coating wear rates as functions of 

time. The averaged wear rates are summarized in Table 4.2. The predicted wear rates now are 

comparable to the experimental results, from the order of magnitude. However, the absolute 

magnitudes of the predicted wear rates are now smaller than the experimental ones, which could 

be caused by scenarios not covering by the new assumptions. The break-up of a trapped particle 

is not considered here, with only one smaller deformed particle added into simulation. In fact, a 

real particle could be squeezed into many parts, grinding the two surfaces together. In addition, 

the assumed trapped particle size may also bring simulation errors, without considering some 

large round particles having the potential to cut the surfaces. 
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                                          (a)                                                                      (b) 

Figure 4.34. the ring coating wear loss (a) PVD coating (b) DLC coating 

Ring coating average wear rate by 

simulations [𝜇𝑚/ℎ] 

average wear rate by 

experiments [𝜇𝑚/ℎ] 

PVD 5.51× 10−3 1.15× 10−2 

DLC 1.97× 10−3 3.30× 10−3 

 

Table 4.2. the average wear rates of ring coatings, with the additional assumption 

 

4.5 Conclusions 

In this engine steady-state wear simulation work, two-body abrasive wear and third-body 

abrasive wear mechanisms are modeled and applied to systematic wear modeling for the piston 

rings and the liner. The transport and the wear processes of third-body particles play important 

roles in steady-state engine wear, including particle entrapment, particle movement, particle 

indentation and particle abrasion. Both short term and long term systematic simulations are 

performed to investigate the effect of different input parameters. In the short term simulation set, 

we found the determining factor of third-body abrasive wear is the relative magnitude between 
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the clearance distribution and the particle size distribution. If the clearance size distribution and 

particle size distribution have significant overlap, third-body wear rate is high because most of 

the particles have high chance being trapped between the two surfaces and creating wear scars. 

The long-term simulations show that the hardness of the ring coating plays an important role. If 

the ring coating is hard, the wear rate on the ring side will be reduced, but the wear rate of the 

liner at the beginning stage will be larger. This is because for a harder ring, the smoothness of the 

ring surface is damaged faster at the beginning due to more particles embedded into the liner 

surface. Therefore, the tradeoff between the ring wear rate and the liner wear rate at the initial 

stage should be considered for the design of the ring coating. 
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Chapter 5. Conclusions and future work 

In this chapter, the general conclusions and the potential future work are discussed. The first part 

summarizes the oil emission modeling and engine wear modeling work, while the second part 

proposes some potential future work following this thesis.  

 

5.1 Engine oil emission modeling via machine learning 

In this work, a complete set of data-driven procedures are defined, including data processing, 

featuring engineering, model selection, system parameter estimation, prediction and experiments 

design. A number of general conclusions can be drawn based on this work.  

The separation of steady-state oil emission and transient oil emission is an essential data 

processing procedure to capture the underlying correlation. While steady-state oil emission 

depends on the engine speed and load, the transient one also depends on the running conditions 

and oil emission of the past, which either contributes to the oil accumulation in the ring pack of 

the present time or reflects the oil accumulation above the ring pack that directly emits to the 

exhaust.  The residence time defined here is a critical parameter representing the past influence 

on the present oil emission.  The ML algorithm employed here is effective to identify the 

residence time from the oil emission measurements and this is a crucial step to extract further 

transient oil emission information out of engine test results.   

With a defined residence time, further useful information can be derived, namely, the uncertainty 

level and the total oil emission with a given engine running cycle.  The uncertainty can be caused 

by a combination of the measurements and the inherent oil emission behavior of the design.  

Thus, its determination can lead to further analysis of the consistency and robustness of the 

measurements and design.  The interval prediction is found to be adequate for the uncertainty 

estimation.  For the total oil emission prediction for a new test cycle, the methodology developed 

here by dividing the engine test sequence into chunks based on the residence time proves to be 

effective. The ability to predict the total oil emission of other driving cycles based on one test 

enables the development of a test protocol by defining a baseline running cycle that covers, 
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statistically, all the driving varieties.   Albeit unfinished, it is illustrated that an unsupervised 

learning can be applied for engine oil emission experimental design.  Based on the publication, 

this is the first time ML was used to analyze the engine oil emission measurements.  It was found 

that the algorithms employed here are effective and less data-hungry.   Further developments 

along this direction, such as design new test protocol, connecting to physics modeling, and 

adding additional constraints in ML based on physics, will help reduce engine test costs and 

establishing better understanding of oil transport and oil consumption mechanisms.  

 

5.2 Modeling of engine wear 

The wear modeling of engine is completed through deterministic approaches by integrating all 

the critical mechanical processes and sub-models. Both engine break-in and steady-state wear 

processes are modeled, with different dominant mechanisms, asperity fatigue and abrasive wear, 

respectively.  

The simulation results show an agreement with Archard’s wear law that for a specific liner 

surface finish, the steady-state wear rate is proportional to external nominal load when the 

nominal load is fully balanced by the asperity contact. With the linear correlation between wear 

rate and the external pressure, wear coefficients of different liner surfaces can be obtained. 

Simulations indicate that the maximum steady-state wear rate can be obtained for a specific 

surface roughness level. In addition, the engine friction evolution due to break-in liner wear 

calculated by the presented wear model shows the same trend as the experimental measurements. 

The friction evolution speed during the break-in period depends on the roughness level of the 

liner plateau part. 

The wear simulations of the engine steady-state period are based on abrasive wear, both two-

body and third-body abrasion.  It is the first time the complete mechanical processes are 

modeled, from trapping the particles to embedment of the particles on the liner, and subsequent 

various abrasive wear.  With the assumption that the third body particles are have the highest 

hardness among the three, ring can only be worn down by the third body particles that are embed 

on the liner.  Then, roughening of the ring surface initiates its abrasion to the liner, i.e. two body 
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wear.  In terms of the wear marks on the liner, two body wear tends to create continuous valleys 

along the sliding direction while the third body is interrupted by the deep honing grooves.   The 

results indicate that two influencing factors are critical for steady-state engine wear, the third-

body particle size distribution and the mechanical properties of the ring coating. Abrasive wear 

rate is high if the particle size distribution has a significant overlap with the clearance height 

distribution between the two surfaces so that the chances to get the particles trapped are high. 

This is important for particle filter design to reduce further wear. The material choice of the ring 

coating is also an important design parameter. For harder ring coatings, the wear rate of the ring 

will be lower, but the liner would experience a faster transition to significant two-body abrasive 

wear due to higher embedment rate of the particles on the liner, which in turn causes faster 

spread of the wear scare on the ring face. However the overall wear effect of ring coating 

properties on the ring and the liner should be carefully evaluated during the engine component 

design. 

 

5.3 Potential future work 

The work in this thesis is designed to find correlations of the oil emission and provide 

comprehensive models for engine wear. Some potential future work is proposed in this section to 

improve the calculation efficiency, prediction accuracy or generalizability of the models.  

The methodology of the oil emission modeling is data-driven. As pointed out in Chapter 2, data-

driven methods provide advantages to overcoming the modeling difficulties of the complex oil 

transport and emission process. However, they limit the generalizability and the interpretability 

of the model, making it rely heavily on the measurement data of each engine. With an increasing 

understanding about the oil transport and emission process, more physics knowledge can be 

hybridized with the data-driven methods to create a more interpretable model. There are several 

approaches to achieve this goal. The most intuitive way for machine learning and physics hybrid 

is the residual correction. Once a simple physics model is developed, machine learning can be 

applied to build a mathematical mapping from the output of the physics model to the real 

measured data. In this case, machine learning is working as a residual calibrator, while the entire 
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model can have high interpretability and avoid difficulties of modeling the physics details. 

Another way to connect physics and machine learning is designing physics guided objective 

functions to guide the optimization direction. Usually, the objective function only has an error 

term, which is not enough to reflect some important physics properties of the system. Through 

adding a physics-based term, the optimization algorithm can penalize the regression results that 

contradict with physics so that the overall training results can fit better with the physics model 

provided. It is also useful to design an activation function based on physics so that some certain 

physics constraints can be met. So far, the understanding about the oil emission mechanisms is 

still limited. With deeper and more robust physics understanding, these hybrid methods can be 

applied to improve the data-driven modeling. 

For the work of engine wear modeling, the approach is deterministic. However, deterministic 

modeling is expensive, both in time and computation resource occupation. One potential future 

work is abstracting some important sub-models with statistical approaches to increase the 

calculation efficiency. For example, the asperity fatigue calculation currently is based on 

simulations of propagation of each crack. This process can be greatly simplified with additional 

assumptions. Here, one possible approach is proposed to increase the calculation efficiency. 

  

Figure 5.1. asperities with the same size, distributed on the liner surface 

ℎ𝑟𝑖𝑛𝑔  ℎ𝑓𝑟𝑒𝑒  

𝑑ℎ𝑟𝑖𝑛𝑔  
asperities 

height distribution of 
asperities 

ring 
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The assumption required for the calculation simplification is that all the asperities on the liner 

surface have the same size and shape. As illustrated in Figure 5.1, these liner asperities, with the 

same size, are distributed at different heights. Under such an assumption, once the fracture speed 

of an asperity is determined, the correlation can be applied to all the surface asperities. There are 

existing models to convert any liner surface roughness to a new surface having the same sized 

asperities, with the equivalent contacting properties [52,53].  

The fracture of each asperity is now considered as a gradual chopping-off of the highest peaks, 

instead of removing an entire asperity due to crack propagation. For each asperity, ℎ𝑓𝑟𝑒𝑒 

describes the free surface, above which the asperity material is removed due to wear. Combining 

the asperity fatigue mechanism during the break-in, the Paris law of crack propagation can be 

generalized to: 
𝑑𝑤
𝑑𝑡

= 𝑃𝑎𝑟𝑖𝑠(ℎ𝑓𝑟𝑒𝑒, ℎ𝑟𝑖𝑛𝑔, 𝐶𝑜𝑓) 

Where 𝑤 is the crack length and ℎ𝑟𝑖𝑛𝑔 is the actual ring height. Thus, it is possible to calculate 

the time needed to remove the asperities at any ℎ𝑓𝑟𝑒𝑒. With some additional coefficients in the 

generalized Paris law and a fixed asperity height distribution 𝑃(ℎ), some simplification of 

asperity fatigue process can be done. The generalized Paris law may need finite element 

calculation to derive the correlation. However, as the asperity size is assumed to be constant, it 

can be applied to all asperities once the correlation is obtained. The calculation amount is still 

significantly reduced compared to simulating the fracture behavior of each asperity. 

For the steady-state engine wear, the biggest error source comes from the assumption of rigid 

and spherical particles. This assumption would remarkably increase the estimated wear rate as 

most of the particles are agglomerated particles, consisting of many small primary carbon 

particles. They could be deformed and smashed. Although one additional assumption is 

introduced to reduce the wear rate to the same magnitude level as the experimental results, the 

detailed particle transport and trapped process is still not included in the current model. The 

potential future work can include the morphology of third-body particles and the shape change 

during the transport process. This will require more detailed discussions about the chemical 

bonding among primary particles and the morphology distribution of agglomerated particles.  
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