Compilation Techniques for Reconfigurable Analog
Devices
by
Sara Achour

B.S., University of California, Los Angeles (2013)
S.M., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2021
(© Sara Achour, MMXXI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

AUthor ..o
Department of Electrical Engineering and Computer Science
August 27, 2021

Certified Dy
Martin Rinard

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted Dy ..o
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

Compilation Techniques for Reconfigurable Analog Devices
by

Sara Achour

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2021, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Reconfigurable dynamical-system solving analog devices are a powerful new ultra-low-
power computing substrate capable of executing dynamical systems in a performant
and energy-efficient manner. This class of devices leverages the physical behavior of
transistors to directly implement computation. Under this paradigm, voltages and
currents within the device implement continuously evolving variables in the compu-
tation. These hardware platforms are challenging to use because they are subject
to a variety of low-level physical behaviors that profoundly affect the computation.
Relevant physical behaviors include operating range and frequency limitations, noise,
process variation, and quantization error.

In this thesis, I present compilation techniques for automatically configuring such
devices to execute dynamical systems and present the first compiler that automati-
cally targets a physical dynamical system-solving reconfigurable analog device of this
class. The presented compiler frees the end user from reasoning about the low-level
physical behaviors present in the hardware and automates the process of mapping
the dynamical system to the analog hardware. This thesis also introduces specifi-
cation languages for describing dynamical systems, and the capabilities and physical
limitations of the reprogrammable analog hardware. The compiler targets these spec-
ifications when mapping the computation.

To faithfully implement a computation, the compiler configures the device so that
the original dynamical system dynamics can be recovered from the physics of the
device at runtime. The mapped computation simultaneously leverages the device
physics to implement the desired computation, respect the physical limitations of the
device, and attenuate away the unwanted physical behaviors present in the analog
hardware. The compiler configures and composes together the analog blocks and
simultaneously accounts for all of the low-level behaviors present in the device.

The compiler first maps the target dynamical system to the analog hardware
and then transforms the produced circuit to attenuate away unwanted analog be-
havior. The compiler employs a multi-stage, algebraic rewrite-based circuit synthesis
procedure to map the dynamical system to the analog hardware. This procedure syn-
thesizes analog circuits that effectively use parametric and specialized analog blocks

and leverage physical laws to perform computation.

The compiler automatically transforms the mapped circuit to attenuate away the
unwanted analog behaviors present in the circuit. This transformation transforms
the signals to respect the operating range and frequency limitations present in the
hardware and reduces the effect of analog noise, quantization error, process variation-
induced behavioral deviations on the computation. The transformed circuit preserves
the original dynamics of the system such that the original dynamical system variable
trajectories can be recovered by applying a compiler-derived recovery transform. The
compiler formulates the problem of transforming the circuit as a convex optimization
problem — this enables the compiler to optimally identify circuit transformations that
maximize circuit characteristics such as execution speed and signal quality.

The compiler deploys a cross-cutting program optimization in which the calibra-
tion algorithm and compiler work together to reduce the effect of process variation-
induced behavioral variations on the overall computation. This thesis presents the
concept of a delta model, a hardware abstraction that captures the device-specific
behavioral deviations present in the calibrated analog hardware. The compiler uses
this hardware abstraction to compensate for behavioral variations for the specific
device at hand while transforming the circuit. This optimization involves all parts
of the software stack. I introduce delta model language constructs to the hardware
specification language, develop a novel delta-model aware circuit scaling optimization,
and introduce new calibration and characterization procedures into the device run-
time and firmware to implement this optimization. With this optimization enabled,
[am able to attain higher fidelity results with more consistency on the target hard-
ware. This thesis also presents a co-designed calibration algorithm that prioritizes
eliminating behavioral deviations that cannot be compensated for in compilation.

I evaluate the compiler on applications from the biology, physics, and controls
domains. The results demonstrate that these applications execute with acceptable
error while consuming microjoules of energy.

Thesis Supervisor: Martin Rinard
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

[want to thank my advisor, Martin Rinard, for supervising my research and mentoring
me over these years. Under his guidance, I felt that I grew as both a researcher and
a communicator. I greatly appreciated all of his insights over the years — research-

related, philosophical, and otherwise.

I would also like to express my gratitude to Michael Carbin and Yannis Tsividis for
serving as readers for this thesis. I greatly appreciated all of the valuable insights they
brought to this work. I would like to thank Yannis Tsividis especially for working
with me on this project and providing the hardware prototypes I targeted in this

research. His expertise and insights were invaluable for this line of work.

I would like to take the time to acknowledge all of my wonderful colleagues from
the programming languages and systems communities for all of the insights they’ve
offered over the years. I'd like to thank Sasa Misailovic, Michael Carbin, Stelios
Sidiroglou-Douskos, Jeff Perkins, and Michael Gordon for showing me the ropes when
I first started as a graduate student and involving me in the various grants we’ve had
throughout the years. I'd like to more generally thank both the current and former
members of the PAC group. The camaraderie within the group undoubtedly helped

make the most strenuous of deadlines more bearable.

I will always be grateful for all of my mentors throughout undergrad that set me
on this path. I'd like to thank Jens Palsberg and Glenn Reinman for introducing
me to computer science research. Without their guidance, I would likely have not
discovered this career path. I am also forever indebted to Joe DiStefano, who taught
mentored me through my undergraduate years. Had I not been a part of the compu-
tational systems biology interdepartmental program he supervised, I would not have

discovered computer science as a field of study.

While this journey was long, it was far from lonely. I will forever be grateful
to all of my friends from MIT for being there for me throughout this process. I
will fondly remember all of the thanksgivings, patio beers, Dungeons and Dragons

sessions, adrenaline-inducing boating excursions that we had over the years. It was

these adventures that really made my time here at MIT special. I'd like to thank
my flatmates Eva Golos, Deborah Pohlmann, Lindsay Brownell, and Kasturi Shah
for living with me over the years. Our morning coffees, spontaneous brunches, and
post-work outings made even the bleakest of days enjoyable. I would like to also
extend my gratitude to all of the people at WMBR for hosting me and giving 1001 a
home. Monday nights will always hold a special place in my heart. Finally, I would
like to thank my family for ensuring I received a good education and encouraging me
to pursue a career in STEM. Without their support, this journey surely would have
been more difficult.

This thesis is dedicated to my grandmother, Zaina, who ensured her children

received the education that she was denied as a girl. In loving memory of my grand-

father, Said.

Contents

1 Introduction 27
1.1 Dynamical Systems oL 30
1.2 Analog Computing 32

1.2.1 Modern Analog Computing 32
1.3 Problem Statemento 36
1.3.1 Challenges 36
1.3.2 Advancement over State of the Art 37
1.3.3 Circuit Synthesis 40
1.3.4 Circuit Scaling 41
1.4 Overview of Thesis L 43
1.4.1 Background and Related Work 44
1.4.2 Dynamical Systems L. 44
1.4.3 Dynamical System Applications 44
1.4.4 Reconfigurable Analog Devices 45
1.4.5 Scaled and Unscaled ADPs 47
1.4.6 Compilation Overview 48
1.4.7 Circuit Synthesiso 49
1.4.8 Circuit Scaling oL 50
1.4.9 Results. 52
1.5 Reading Strategies for this Thesis 54
1.6 Summary 55

2 Related Work

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

Dynamical Systems
2.1.1 Applications
2.1.2 Types of Dynamical Systems
2.1.3 Differential Equation Solvers
History of Analog Computing
2.2.1 Compilers for Historical Analog Computers.
Dynamical System-Solving Reconfigurable Analog Device
2.3.1 Compilers for Dynamical System-Solving Analog Devices . . .
Other Kinds of Reconfigurable Analog Devices
2.4.1 Spiking Neural Networks
2.4.2 Neural Networks and Machine Learning
2.4.3 Field-Programmable Analog Arrays and Analog Fabrics
Compilation and Synthesis Techniques
2.5.1 Deductive Synthesis L.
2.5.2 Code Generation
2.5.3 Superoptimization and Rewrite Systems
2.5.4 Compilers for CGRAs
2.5.5 FPGA Place+Route Algorithms
2.5.6 Interval Analysis
25.7 Scaling

Conclusion

Dynamical Systems

Dynamical System Overview
3.1.1 Execution of First-Order ODEs
3.1.2 Changing the Speed of First-Order ODEs.
The Dynamical System Specification Language
3.2.1 Mathematical Expression Language

3.2.2 Dynamical System Specification Language

8

59
60
60
62
63
64
66
69
71
73
73
74
76
76
76
7
78
79
80
81
81
82

3.3 Conclusion 95

Dynamical System Applications 97
4.1 Simple Oscillator (cos) 98
4.2 Dampened Harmonic Oscillator (cosc) 99
4.3 Pendulum (pend) 100
4.4 Spring (Spring)o 101
4.5 Vanderpol Oscillator (vanderpol) 102
4.6 Forced Vanderpol Oscillator (forced) 103
4.7 1D Heat Model (heatN4X2) 104
4.8 PID Controller (pid) 105
4.9 Kalman Filter (kalman) 107
4.10 Michaelis Menten Reaction (smmrxn) 109
4.11 Genetic Toggle Switch (gentog) 111
4.12 Botulism Neurotoxin (bont4) 113
4.13 Example Real-Time Dynamical Systems 114

4.13.1 Bias Shift Detector 114

4.13.2 Denoiser 116
4.14 Conclusion 117
Reconfigurable Analog Devices 119
5.1 Programmability of of Analog Devices 124
5.2 Low-Level Physics and Analog Devices 126
5.3 Delta Models 130
5.4 Notation for Language Grammars 133
5.5 Analog Device Specification Language 136

5.5.1 Block Specification Language 137

5.5.2 Device Layout Specification 142
5.6 Analog Device Programming Language 145
5.7 HCDCv2 Analog Device Specification 146

5.7.1 HCDCv2 Block Specifications 148

9

5.8

5.9

5.7.2

HCDCv2 Layout

HCDCv2 Manufacturing Variations, Calibration, and Delta Models

5.8.1
5.8.2
5.8.3

HCDCv2 Calibration
HCDCv2 Delta Models

Example: mul block o000

HCDCv2 Software Stack and Runtime

5.9.1
5.9.2
5.9.3
5.9.4
5.9.5

HCDCv2 Low-Level Programming Interface
The Calibration, Profiling, and Delta Model Databases
Calibration, Profiling, and Model Elicitation
Analog Device Program Execution

ADP Execution on the HCDCv2

5.10 Conclusion

6 Scaled and Unscaled ADPs

6.1 Simple Oscillator (cos) Lo

6.2

6.3

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

Signal Dynamics of Unscaled ADP
Challenges with Running the Unscaled ADP
Scaled ADPo
Physical Realizability of Scaled ADP

Preservation of Original Dynamics in Scaled ADP

Notation and Overview,

6.2.1
6.2.2
6.2.3
6.2.4

Unscaled Signal Dynamics
Syntactic Matchingo
Scaled Signal Dynamics

Signal Preservation o0

Dynamical System Applications

6.3.1
6.3.2
6.3.3
6.3.4

Dampened Harmonic Oscillator (cosc)

Pendulum (pend) Lo

Spring (Spring)o
Van der Pol Oscillator (vanderpol)

10

164
165
166
167
171
172
173
175
177
178
180

6.3.5 Heat Equation (heatN4X2) 234

6.3.6 Forced Van der Pol Oscillator (forced) 242
6.3.7 PID Controller (pid) 249
6.3.8 Kalman Filter (kalman) 259
6.3.9 Michaelis Menten Reaction (smmrxn) 266
6.3.10 Genetic Toggle Switch (gentog) 275
6.3.11 Botulism Neurotoxin (bont4) 287
6.4 General Trends Lo 292
6.4.1 Unscaled ADPs 292
6.4.2 Scaled ADPs 293
6.5 Conclusion L 296
Compilation Overview 299
7.1 Harmonic Oscillator 301
7.1.1 Harmonic Oscillator Dynamical System Specification 302
7.2 The SIMPL Analog Device 303
7.3 The Harmonic Oscillator on the SIMPL Device 309
7.3.1 Unscaled ADP 309
7.3.2 Scaled ADP 312
7.4 Circuit Synthesis (LGraph), 317
7.4.1 Tableau-based VADP Fragment Synthesis 319
742 VADP Assembly 327
7.4.3 VADP Place and Route 337
7.5 LScale Compilation Pass., 343
7.5.1 CGP Generation Procedure 347
7.5.2 Factor Constraint Generation 353
7.6 Conclusion 358
Circuit Synthesis 361
8.1 Problem Definition oo 362
8.1.1 Notation 362

8.2

8.3

8.4

8.1.2 Dynamical System Specification 365
8.1.3 Analog Device Specification 365
8.1.4 Analog Device Program 366
8.1.5 Virtual Analog Device Program 366
VADP Fragment Synthesis 367
8.2.1 The Tableau 367
8.2.2 Basic Approacho Lo 368
8.2.3 The Initial Tableau 368
8.2.4 The Solved Tableau 369
8.2.5 The — Operator 369
8.2.6 Goal and Relation Selection 369
8.2.7 Unification 370
8.2.8 Applying the Unification to the Tableau 372
8.2.9 Applying the Unification to the VADP 372
8.2.10 Applying the Unification to Tableau Relations 374
8.2.11 Putting it all Together 376
8.2.12 Computation with Physical Laws 376
8.2.13 Search Algorithm 379
8.2.14 Synthesis Optimizations 380
Assemblyo 380
8.3.1 Circuit Collation 381
8.3.2 Assembly Fragment Synthesis Overview 381
8.3.3 AFSP Interface Elicitation 382
8.3.4 AFSP Fragment Generation 383
8.3.5 Assembly Fragment Integration 394
Place and Route 395
8.4.1 Placement Lo 395
8.4.2 Routing 397
8.4.3 Block Placement Problem Generation 397
8.4.4 Place and Route Algorithm 399

12

85 Conclusion 400

9 Analog Circuit Scaling 403
91 The CGPand GP. 405
9.1.1 The Geometric Programming Problem 405

9.1.2 The Combinatorial Geometric Programming Problem 406

9.2 Problem Definition oo 407
9.21 Notation Lo 408

9.2.2 Analog Device Specification 408

9.2.3 Dynamical System Specification and Analog Device Program . 410

9.2.4 Delta Model Database and Calibration Strategy 410
9.2.5 Analog and Digital Quality Measures 411
9.3 CGP Generation 412
9.3.1 CGP Variables 413

9.3.2 Combinatorial Geometric Programming Problem Formulation 416

9.4 CGP Factor Constraint Generation 420
9.4.1 Expression Factoring Algorithm (fact) 421
9.4.2 Master Expression Elicitation (master) 423

9.5 Completing the ADP 428
9.5.1 Mode Selection 429
9.5.2 Scale Transform Generation 429
9.5.3 Generating the Scaled ADP 430
9.5.4 Implementation 430

9.6 Conclusion 430

10 Results 433

10.1 Experimental Setup 443
10.1.1 Compilation of Scaled ADPs 443
10.1.2 Execution of Scaled ADPs 444
10.1.3 Overview of Statistical Measures 445

10.2 Quality, Runtime, Power, and Energy 447

13

10.2.1 End-to-End Result Quality (% rmse) 449

10.3 Compiler Optimizations and Result Quality 450
10.3.1 Effect of Scaling Transform 451
10.3.2 Effect of Mode Selection 451
10.3.3 Effect of Delta Model Compensation 458
10.3.4 Effect of Calibration Strategy 459

10.4 Compilation Timeo 462

10.5 Optimality of Scaled and Unscaled ADPs 464
10.5.1 Metrics Lo 465
10.5.2 Optimality of ADP Circuit Topology 467
10.5.3 Execution Speed Optimality 469
10.5.4 Signal Dynamic Range Optimality 470
10.5.5 Data Field Value Optimality 472
10.5.6 balanced Scale Objective Function Value Optimality 474
10.5.7 Analog and Digital Quality Measure Breakdown 475

10.6 Viability of Unscaled ADPs ATT7
10.6.1 Execution Speed of Unscaled ADPs 477
10.6.2 Signal Dynamic Ranges of Unscaled ADPs 478
10.6.3 Data Field Values of Unscaled ADPs 479

10.7 Scaling Transform Complexity 480

10.8 Compilation Outcomes and Result Quality 481
10.8.1 Block Instance Selection and Result Quality 483
10.8.2 The Scale Objective Function and Result Quality 486

10.9 Alternate Scaling Objective Functions 492
10.9.1 Quality, Power, Energy, and Runtime 492
10.9.2 Analysis of Best-Performing Circuits 494

10.10Realtime Case Studies oL 495
10.10.1 Case Study A: Bias Shift Detector. 496
10.10.2 Case Study B: Denoiser 497

10.11Conclusiono 498

11 Conclusion

11.1 Review o o
11.1.1 Circuit Scaling
11.1.2 Calibration, Delta Models, and Software Compensation
11.1.3 Analog Device Specification Language
11.1.4 Circuit Synthesis oL

11.2 Limitations
11.2.1 Expressivity of Dynamical System Specification Language
11.2.2 Expressivity of Analog Device Specification Language
11.2.3 Compiler Limitations

11.3 Future Directions

11.3.1 Compiler Optimizations

11.3.2 Mixed-Signal Computing Paradigms
11.3.3 Automated Design-Space Exploration
11.4 Concluding Thoughts

A Appendix

A.1 Interval Propagation Function (ival-prop)

A.2 Expression Evaluation Function (eval)

A.3 Geometric Program Encoding Tricks
A.3.1 Imterval Encoding

15

503
204
205
207
208
510
512
012
013
514
014
014
5915
516
o17

16

List of Figures

3-1
3-2

4-1
4-2
4-3

4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14

Math expressionso 91
Dynamical system specification language (DSSL) grammar 93
Simple harmonic oscillator (cos) 98
Dampened oscillator (cosc)o 99
Pendulum (pend) 100
Two-spring system (Spring) 101
Van der pol oscillator (vanderpol) 102
Forced van der pol oscillator (forced) 103
1D heat equation (heatN4X2), 104
Proportional-integral controller (pid) 105
Kalman filter (kalman), . 107
Michaelis-Menten chemical reaction (smmrxn). 109
Genetic toggle switch (gentog) 111
Botulism neurotoxin model (bont4) 113
Bias change detector oL 114
Signal denoiser Lo 116
ADSL block specification grammar 137
ADSL device layout specification grammar 143
Grammar for analog device program language (ADPL) 145
Die photo of HCDCv2 chip and HCDCv2 Analog Device [51] 147
Integrator (int) block specification 149
Multiplier (mul) block specification 151

17

5-7 Current copier (fan) block specification 153

5-8 Digital-to-analog converter (dac) block specification 155
5-9 LUT (lut) block specification 156
5-10 Analog-to-digital converter (adc) block specification 157
5-11 External input/output (extin,extout) block specification 158
5-12 Routing block specifications 0L 159
5-13 Kirchhoff’'s Law 160
5-14 HCDCv2 device specification (1/2) 161
5-15 HCDCv2 device specification (2/2) 162
5-16 HCDCv2 Layout Overview 163

5-17 Calibrated Block Error for Maximize Fit/Minimize Error Calibration
Strategies for Multiplier (1,3,0,0) 167

5-18 Uncorrectable Delta Model Error for Maximize Fit/Minimize Error

Calibration Strategies for Multiplier (1,3,0,0) 170
5-19 Laboratory Setup for HCDCv2 171
5-20 Calibration, Delta Model, and Profiling Database Overview 174
5-21 Calibration, Profiling, and Model Inference Operations 175
5-22 Block Configuration, Connection, and Execution Operations 177
6-1 cos dynamical system specification 186
6-2 cos unscaled ADP o 186
6-3 cos unscaled ADP - circuit representation 187
6-4 cos unscaled ADP signal dynamics 189
6-5 cosscaled ADP 191
6-6 cos scaled adp - circuit representation 192
6-7 cos scaled ADP signal dynamics 196
6-8 cosc dynamical system specification 203
6-9 cosc unscaled ADPo 203
6-10 cosc unscaled ADP signal dynamics 203
6-11 cosc scaled ADP 204

6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-38
6-37
6-40
6-39
6-41

cosc scaled ADP signal dynamics 204

pend dynamical system specification L. 208
pend unscaled ADP 208
pend unscaled ADP signal dynamics 208
pend scaled ADPo 209
pend scaled ADP signal dynamics 209
spring dynamical system specification 214
spring ADP connections 0oL 214
spring unscaled ADP - excluding connections 215
spring unscaled ADP signal dynamics 215
spring scaled ADP - excluding connections 216
spring scaled ADP signal dynamics 217
vanderpol dynamical system specification 224
vanderpol unscaled ADPo 224
vanderpol unscaled ADP signal dynamics 225
vanderpol scaled ADP o oo 225
vanderpol scaled ADP signal dynamics 226
heatN4X2 dynamical system specification 230
heatN4X2 ADP connections 230
heatN4X2 unscaled ADP - excluding connections 231
heatN4X2 unscaled ADP signal dynamics 231
heatN4X2 scaled ADP - excluding connections 232
heatN4X2 scaled ADP signal dynamics 233
forced dynamical system specification 239
forced ADP connectionso 239
forced unscaled ADP signal dynamics 240
forced unscaled ADP 240
forced scaled ADP signal dynamics 241
forcedscaled ADPo 241
pid dynamical system specification 246

19

6-42 pid ADP connections oo 246

6-44 pid unscaled ADP signal dynamics 247
6-43 pid unscaled ADP oo 247
6-46 pid scaled ADP signal dynamics 248
6-45 pidscaled ADPo 248
6-47 kalman dynamical system specification 254
6-48 kalman unscaled ADP 255
6-49 kalman unscaled ADP signal dynamics 256
6-50 kalman scaled ADP oo 257
6-51 kalman scaled ADP signal dynamics 258
6-52 smmrxn dynamical system specification 264
6-53 smmrxn unscaled ADP oo 264
6-54 smmrxn unscaled ADP signal dynamics 264
6-55 smmrxn scaled ADP 265
6-56 smmrxn scaled ADP signal dynamics 265
6-57 gentog dynamical system specification 270
6-58 gentog ADP connections oL 270
6-59 gentog unscaled ADP - excluding connections 271
6-60 gentog unscaled ADP signal dynamics 272
6-61 gentog scaled ADP - excluding connections 273
6-62 gentog scaled ADP signal dynamics 274
6-63 bont4 dynamical system specification 283
6-64 bont4 ADP connections 283
6-65 bont4 unscaled ADP - excluding connections 284
6-66 bont4 unscaled ADP signal dynamics 284
6-67 bont4 scaled ADP - excluding connections 285
6-68 bont4 scaled ADP signal dynamics 286
7-1 Compiler Overview 300
7-2 Simple Harmonic Oscillator 301

7-3 Harmonic Oscillator DSS 302

7-4 SIMPL Analog Blocks 303
7-5 SIMPL Device Layout 303
7-6 ADS Layout Specification for SIMPL 307
7-7 Analog circuit described by unscaled ADP 309
7-8 Unscaled ADP implementing harmonic oscillator 309
7-9 Unscaled dynamics of the cos benchmark 310
7-10 Unscaled ADP implementing harmonic oscillator 312
7-11 Scaled ADP implementing harmonic oscillator 313
7-12 Scaled dynamics of the harmonic oscillator 315
7-13 Circuit Synthesis (LGraph) Overview 317
7-14 VADP Fragment Synthesis (LGraph) Overview 319
7-15 VADP Fragments for Harmonic Oscillator 321
7-16 VADP Synthesis Steps for Harmonic Oscillator Position 322
7-17 VADP Assembly Step Overview 328
7-18 Assembly Fragment Synthesis Overview 330
7-19 Disconnected VADP for Harmonic Oscillator 332
7-20 Harmonic Oscillator VADP after Assembly Procedure 333
7-21 Complex Multi-Level Assembly Fragment Generation 335
7-22 Tree structure generation. s is shorthand for an analog current. . . . 336
7-23 LGraph Place and Route Overview 337
7-24 BPP Placement Operation Overview 339
7-25 Harmonic Oscillator ADP after Place and Route 341
7-26 Circuit Scaling Overview (LScale) 343
7-27 Scaled Harmonic Oscillator ADP 349
7-28 Factor Constraint Generation Procedure(LScale) 354
8-1 Example of partially specialized virtual block instance 375
8-2 Overview of Kirchhoff’slaw 377
8-3 Tree restructuring exampleo 390

9-1 Circuit scaling pass overview (LScale) 407

9-2 Expression factoring rules (fact) 422
10-1 Measured waveforms for lowest error ADPs 449
10-2 Measured waveforms for single-mode nomaster executions 452

10-3 Measured waveforms for ideal, minerr, and maxfit executions (1/3) 454
10-4 Measured waveforms for ideal, minerr, and maxfit executions (2/3) 455

10-5 Measured waveforms for ideal, minerr, and maxfit executions (3/3) 456

10-6 Distribution of % rmses for ideal, minerr, and maxfit executions . . 457
10-7 Breakdown of % rmses by originating unscaled ADP (1/2) 484
10-8 Breakdown of % rmses by originating unscaled ADP (2/2) 485
10-9 External input for bias shift detector 496
10-100utput signal from bias shift detector 496
10-11External input for denoiser L. 497
10-120utput signal from denoiser 497
A-1 Interval propagation function, 532
A-2 Expression evaluation function 0oL 533

22

List of Tables

5.1 Shorthand for language grammars

9.1 CGP scale transform and mode selection variable summary

9.2 CGP property variable summary

10.1 Dynamical system benchmarks
10.2 Quality, runtime, power, and energy of best-performing ADPs
10.3 Performance of single-mode (nomaster) executions
10.4 Compilation times for the LGraph and LScale compilation passes. . .
10.5 LGraph performance breakdown by compilation pass.
10.6 Breakdown of ADP connections and blocks (by block type)
10.7 Breakdown of ADP route blocks
10.8 Execution speeds for scaled ADPs.
10.9 Dynamic ranges of the time varying signals in the scaled ADPs
10.10Signal amplitudes of the fixed signals in the scaled ADPs
10.11Breakdown of balanced scale objective values
10.12Breakdown of analog and digital quality measures by signal type . . .
10.13Execution speeds for unscaled ADPs
10.14Dynamic ranges of the time-varying signals in the unscaled ADPs . .
10.15Signal amplitudes of the fixed signals in the unscaled ADPs
10.16Summary of magnitude and time scale factors for scaled ADPs. . . .
10.17Correlation analysis between ADP quality measures / balanced scal-
ing objective values and the % rmse of measured waveforms.

10.18Quality, runtime, power, and energy of single executions

23

486

10.19Summary of signals maximized by the single scale objective function 491

A.1 GP Constraint Derivation for Two-Sided Intervals 535

24

List of Algorithms

© o0 N O Ot ks W N

e e e e e T e e e
O N O Ot =W NN = O

Unification application to VADP in tableau (apply-vadp) 373
Unification application to tableau hardware relations (apply-rel) . . 374
VADP fragment synthesis search algorithm 379
Concrete assembly block generation algorithm (BuildConcBlock) . . 385

Assembly tree structure generation algorithm (BuildTreeStructure) 387

Assembly tree level generation algorithm (BuildLevel) 387
Level restructuring algorithm (RestructureLevel) 388
Level restructuring helper function (Restruct) 389
VADP translation algorithm (LevelsToVADP) 392

VADP output signal selection algorithm (SelectFreeOutputPort) . 393

VADP assembly fragment integration algorithm (IntegrateFragment) 394

VADP source signal selection algorithm (SelectFreeVADPSource) . . 395
Place and route algorithm (PlaceAndRoute) 399
Delta model retrieval function (delta-model) 411
Factor constraint generation algorithm (factor) 420
Master expression elicitation algorithm (master) 424
Expression harmonization algorithm (harm) 425
Direct expression harmonization algorithm (harm-direct) 427

25

26

Chapter 1

Introduction

Specialized computing platforms, implemented on a range of devices including ana-
log, photonic, and digital devices, are becoming pervasive and crucial for satisfying
the computational needs of different domains. Examples include specialized devices
that efficiently solve problems in machine learning, quantum computing, signal pro-
cessing, robotics, and biology [120, 56, 54, 11, 108, 85, 105, 29, 128, 31, 140, 132,
51, 61, 141, 15, 109, 102, 62, 87, 89, 38]. Delivering the potential of such devices
to domain specialists is a challenge as there is sometimes a significant gap between
the programming interface that the device provides and a programming model the
end user can use productively. This gap between an effective high-level programming
model and the hardware programming interface often occurs in designs that prioritize
accuracy, device area, or performance over usability.

I present a new compiler for ultra-low power reconfigurable analog computing
platforms which solve dynamical systems [61, 51, 128, 140|. These devices are pro-
grammed by routing together configurable analog blocks using digitally programmable
interconnects. The programmed computation is then executed by powering on the
analog device and observing the voltage and current trajectories over time. These
signal trajectories capture the evolution of dynamical system quantities over time.
The presented compiler automates the programming process so that these devices
are more accessible to programmers. The compiler automatically performs all of the

device configuration steps for the end user and automatically reasons about any low-

27

level physical behaviors present in the device. With this compiler, the end user needs
only to specify the dynamical system, variables of interest, and value ranges for each
variable. The compiler produces, as output, a configuration for the analog device
that encodes a circuit comprised of configured analog blocks. The original dynamical
system dynamics can be recovered from the circuit dynamics at runtime by applying

a compiler-derived recovery transform.

To faithfully implement the computation, the compiler transforms the computa-
tion to reduce the effect of a variety of low-level physical behaviors on the overall
computation. Relevant low-level physical behaviors include operating range and fre-
quency limitations, noise, process variation-induced behavioral deviations, and quan-
tization error. These low-level behaviors can have a profound effect on the fidelity
of the mapped computation. The compiler transforms the mapped computation to
respect the physical limitations of the device and attenuate away the unwanted phys-
ical behaviors present in the analog blocks — this reduces the effect of these low-level
physical behaviors on the computation. The original dynamical system dynamics can
be recovered from the transformed computation at runtime by applying a compiler-
derived recovery transform. The compiler, therefore, frees the end user from reasoning
about and compensating for the low-level physical behaviors present in the hardware

when designing the computation.

The compiler deploys a cross-cutting program optimization in which the device
calibration algorithm and compiler work together to reduce the effect of process
variation-induced behavioral variations on the overall computation. Each block on the
analog device is designed to implement some function g. However, due to the effects
of process variation, the blocks rarely implement g accurately post-fabrication. To
mitigate this issue, designers introduce calibration circuits into the hardware. With
this addition, each block in the analog hardware can be calibrated to implement a

range of functions fi...f,.

Traditional Approach: Traditionally, the compiler targets the function g that each
block is designed to implement. The calibration algorithm then calibrates each block

to implement the function f; that most closely approximates the function g. With this

28

traditional approach, the compiler may produce circuits that inaccurately execute the
target computation. These inaccuracies occur when the circuit includes blocks that

cannot be calibrated to closely approximate the function g.

Co-Designed Approach: This work deploys a cross-cutting compiler optimization
which enables the compiler to target a range of functions ¢...g,, for each block.
Under this paradigm, the calibration algorithm identifies the function pair (f;, g;) in
which f; most closely approximates g; over all pairs of f and g functions. Because
each block on the device may be calibrated to implement a range of functions, the
calibration algorithm is free to select a function g; for each block that can be imple-
mented with the smallest error in hardware. This approach introduces less error into
the computation because each block in the associated circuit may be calibrated to

implement the function that delivers the lowest error.

This thesis introduces a delta model specification construct that codifies the space
of functions ¢;...g,, for each block and a delta model hardware abstraction that de-
scribes, for each block instance in the device on hand, the function g; the block
instance has been calibrated to most closely approximate. The compiler uses the
delta model hardware abstraction to compensate for behavioral variations present in
the calibrated hardware when transforming the circuit. This compiler optimization
enables the compiler to reduce the effect of process variation on the overall compu-
tation. I also present a co-designed calibration algorithm that selects the function
g; the target block can be calibrated to most closely approximate and calibrates the

block to implement the desired function.

The compiler automatically maps the target dynamical system to the analog hard-
ware. The compiler productively configures and composes together programmable
mixed-signal blocks that implement a host of non-standard, complex functions and
leverages physical laws, such as Kirchhoff’s law, to implement the desired compu-
tation. The compiler also introduces special-purpose blocks to convert, copy, and
route signals as necessary to implement the desired computation. These capabilities
together enable the compiler to effectively map the target dynamical system to the

analog hardware.

29

The compiler presented in this thesis works with a specification of the target analog
device written in the analog device specification language. The analog device speci-
fication language offers language constructs for describing the programmable blocks,
programmable connections, and the low-level physical behaviors present in the target
device. Because the compiler targets a specification of the analog device, it is capable
of targeting a range of devices. Specific devices include simulated devices based on
mixed-signal gene-protein network accelerators [128, 140| and the HCDCv?2 differen-
tial equation solving analog device[61, 51, 132, 61, 51|. T evaluate the compiler on
the HCDCv2 differential-equation solving analog device [61, 51, 132]. This compiler
is the first to target any simulated or fabricated reconfigurable differential equation-
solving analog device. I evaluate the compiler on a broad range of dynamical systems
from the physics, biology, and controls domains. The automatically generated config-
urations execute the described dynamical system computations with acceptable error

while consuming significantly less energy than corresponding digital computations.

1.1 Dynamical Systems

A dynamical system is a system whose state evolves over time. Dynamical systems
appear in a wide variety of fields including mathematics, physics, chemistry, biology,
economics, engineering, machine learning, signal processing, and medicine |74, 117,
78, 14, 33, 9, 20, 143, 19, 45, 12, 25, 47, 118|. In the biological and physical sciences,
researchers use dynamical systems to predict and understand the behavior of physical
processes |74, 117|. For example, medical practitioners may use a dynamical system
to model the effect of an injection on an individual’s hormone levels and then use this
information to derive an initial dosage.

Dynamical systems also often appear in systems which interact with the environ-
ment. Dynamical systems can be used to reconstruct higher-order information from
environmental signals and control actuators (e.g. motors) in real-time [78, 14, 33, 9].
For example, a drone may use a dynamical system to adjust the speed of its rotors

based on wind conditions.

30

Dynamical systems are typically implemented with ordinary differential equations
(ODEs) or partial differential equations (PDEs). In this work, I focus on dynamical
systems comprised of ordinary differential equations. An ordinary differential equa-
tion (ODE) is a differential equation in which all derivatives are taken with respect
to an independent variable, typically time. Practitioners generally are interested in
simulating a dynamical system. Dynamical system simulators and solvers compute

the trajectories of the state variables over simulation time.

While dynamical systems are invaluable in many different domains, there are
challenges with simulating dynamical systems accurately and performantly on dig-
ital hardware. Digital ODE solvers have difficulty efficiently simulating non-linear
differential equations or differential equations with dynamics which operate on dif-
ferent time scales. To mitigate these issues, practitioners linearize the differen-
tial equations or replace fast-evolving differential equations with closed-form solu-
tions [107, 41, 133, 58, 98, 99, 17]. These optimizations approximate the dynamical

system but enable the digital solver to more efficiently simulate the system.

These efficiency issues are especially important for dynamical system applications
with real-time performance requirements. Real-time dynamical systems typically in-
terface with the environment and appear in robotics, communications, and feature
recognition (e.g. voice recognition) applications [129, 106, 139|. To function correctly,
the real-time dynamical system must continuously process sensor inputs or continu-
ously tune actuator parameters without falling behind. Because these applications are
typically run on embedded systems, these dynamical system implementations must
meet real-time performance requirements on energy- and compute-constrained plat-
forms. Typically, practitioners discretize or aggressively simplify real-time dynamical
systems to improve performance [139]. Even with these simplifications, performantly
executing such computations in energy- and compute-constrained environments re-

mains a challenge.

31

1.2 Analog Computing

Historically, practitioners simulated dynamical systems with analog computers. This
form of analog computing primarily involved manually building analog circuits from
basic electrical components such as resistors, capacitors, and inductors to simulate
dynamical systems [130, 34, 104, 91|. These historical analog computers offered high-
precision analog primitives that could be manufactured at low tolerances. These
functional units performed computation at high accuracy — usually within 0.01%
error relative to the full-scale range of the signal for linear components [65].
Typically, the programmer would draft a circuit whose physical behavior was anal-
ogous to the dynamical system dynamics. In these circuits, the physics of the voltages
in the circuit over time match the dynamics of the target dynamical system over time.
To execute the dynamical system, the practitioner would power on the analog circuit
and observe the trajectories of the analog voltages of interest for a period of time.
If the practitioner designed the circuit correctly, the observed current and voltage
trajectories would follow the same path as the dynamical system variable trajecto-
ries. Researchers favored performing numerical computations with analog hardware
because digital hardware was not yet mature enough to perform these computations
efficiently. These historical analog computing platforms disappeared as the perfor-

mance of digital computers improved.

1.2.1 Modern Analog Computing

In recent years, analog computation has been experiencing a renaissance in the hard-
ware community. Hardware designers have put forth a variety of modern day digitally
programmable electrical analog devices [51, 61, 54, 11, 105, 29, 128, 31, 140, 109, 15,
102]. These analog devices use standard CMOS processes and leverage transistor
physics to perform computation. This line of research focuses on ultra-low power
reconfigurable electrical analog devices which simulate dynamical system computa-
tions (61, 51, 128, 140].

This class of modern dynamical system-solving analog devices leverages the ana-

32

log behavior of transistors to implement computation. Under this paradigm, voltages
and currents within the device capture the dynamics of the continuously evolving
variables in the dynamical system. This computational model closely resembles the
computational model employed by historical analog devices. Because modern devices
make use of standard CMOS processes, they are much smaller than their historical
counterparts. These devices also offer digitally programmable interconnects and val-
ues and are much easier to automatically configure and integrate with digital systems.

Unlike historical analog computers, modern dynamical system-solving analog de-
vices are engineered for energy efficiency and capable of performing computation with
very little power [51, 61|. These modern analog devices provide low-power approx-
imate computational blocks that incur between 1%-5% error. These low-precision
blocks are difficult to manufacture at low tolerances and are therefore sensitive to the
effects of process variation [132, 51, 61]. These modern analog blocks are also subject
to operating range and frequency limitations and are sensitive to noise. In contrast,
historical analog devices consumed much more power and area but provided high
precision components that could be manufactured at low tolerances and were there-
fore less affected by process variation. Because modern analog devices are inherently
approximate devices, they require the development of fundamentally new program-
ming techniques. Applying the programming techniques used for historical analog
computers would produce unacceptably inaccurate results on this class of modern

hardware.

Benefits of Modern Dynamical System-Solving Analog Devices

Dynamical system-solving analog devices are attractive computational targets be-
cause they are low power devices and have predictable performance characteris-
tics [51, 61]. In these systems, the mapping between dynamical system simulation
time and wall-clock time can be statically computed with high accuracy at compile-
time. This mapping defines how many milliseconds of wall-clock time it takes to
simulate the dynamical system for one unit of simulation time. Practitioners can

then use this mapping to determine if the analog implementation of the dynamical

33

system meets the performance requirements of the target computation.

Today, dynamical systems are simulated with digital dynamical system simulators.
Digital simulators do not typically have predictable performance characteristics when
simulating non-linear and stiff dynamical systems [107, 41, 133, 58, 98, 99, 17|. Stat-
ically inferring a tight execution time bound for digital dynamical system simulators
therefore remains a challenge.

This class of modern analog devices is also capable of efficiently simulating com-
plex dynamical systems. Because dynamical system-solving analog devices are highly
parallel spatial computing substrates, the execution time of the dynamical system
does not necessarily increase with dynamical system size and complexity.

These performance characteristics together enable practitioners to execute dynam-
ical systems which execute predictably and performantly while consuming very little
energy. In addition, some dynamical system-solving analog devices can compute on
externally provided analog signals and support emitting analog signals to externally
accessible hardware interfaces [51, 61|. These devices therefore support low power,

realtime signal processing applications that work with analog sensors and actuators.

Programming Modern Dynamical System-Solving Analog Devices

Modern dynamical system-solving analog devices are programmed by routing together
configurable analog blocks using programmable interconnects to form an analog cir-
cuit. For the programmed circuit to faithfully implement the dynamical system, the
original dynamical system variable trajectories must be recoverable from the voltage
and current trajectories at runtime. The original dynamical system trajectories are
recovered by applying a recovery transform to the measured signal trajectories. The
recovery transform maps signal values to dynamical system variable values and wall-
clock time samples to simulation time samples. A dynamical system is recoverable
from a programmed circuit if it can be recovered at runtime through the use of a
recovery transform.

Physical Limitations, Noise, and Quantization Error: This class of reconfig-

urable analog devices is subject to a variety of low-level physical effects which affect

34

the fidelity of the computation. Analog blocks impose frequency, current, and voltage
range limitations and have unique noise characteristics. The digital interfaces to ana-
log blocks are subject to the effects of quantization error and encode a limited range
of digital values. The practitioner must account for all of these low-level physical

behaviors when programming the hardware.

Process Variation: Analog blocks are also subject to process variation-induced vari-
ations in behavior — these unwanted behaviors appear post-fabrication and vary from
device to device. Hardware designers typically introduce calibration circuits into their
design to reduce the effect of process variation on the overall computation. These cali-
bration circuits are tuned online post-fabrication to eliminate unwanted behavior from
the device on hand. These calibration circuits either self-tune autonomously or are
configured by an algorithm implemented in the device firmware. In some cases, the
calibration circuits fail to completely eliminate the process variation-induced behav-
ioral variations from the analog blocks. This causes the calibrated block’s behavior
to deviate from its expected behavior and introduces error into the computation. In
extreme cases, practitioners may need to hand-select well-behaved blocks or manually
account for behavioral deviations present in the device on-hand when programming

the hardware.

Prior to the techniques presented in this thesis, practitioners had to manually
program these state-of-the-art dynamical system-solving analog devices to implement
the desired computation. This process involves manually drafting an analog circuit
composed of configured blocks. Because these blocks are implemented with analog
circuits, practitioners must also account for a host of low-level physical behaviors,
including noise, process variation, and signal and frequency range limitations. To
do so, practitioners must manually transform the programmed circuit to account
for these behaviors while simultaneously ensuring the original dynamical system is
recoverable at runtime. This arduous, error-prone programming process remains a

significant barrier to adopting these platforms today.

35

1.3 Problem Statement

My thesis research presents a compiler for reconfigurable dynamical system-solving
analog devices. The compiler automatically generates an analog circuit composed
of configured blocks and transforms the circuit to account for the low-level physical
behaviors present in the hardware. The compiler accepts, as input, a specification of
the dynamical system and a specification of the analog device. The compiler produces,
as output, an analog device program (ADP) which can be executed on the analog
hardware. The analog device program configures and connects together a subset of
blocks resident on the target analog device and specifies the recovery transform. The
recover transform recovers the original dynamical system dynamics from the ADP
signal trajectories. The end user provides the dynamical system specification, and
the hardware designer provides the analog device specification.

The analog device program produced by the compiler implements a circuit whose
physical behavior captures the behavior of the target dynamical system such that
the original dynamical system is recoverable at runtime. The compiler automatically
derives a recovery transform that recovers the original dynamical system as part of
the compilation process. To our knowledge, this is the first compiler to target a
simulated or fabricated differential-equation solving reconfigurable analog device of

this class.

1.3.1 Challenges

Reconfigurable analog computing platforms present fundamentally different program-

ming challenges than digital computing platforms:

o The low-level physics of the device can have a fundamental effect on the compu-
tation — analog blocks impose frequency, current, and voltage range limitations
and have unique noise and error characteristics. Analog blocks are also sub-
ject to process variation-induced variations in behavior. All of these low-level
physical behaviors must be taken into consideration when programming the de-

vice. This is especially true for modern incarnations of analog devices which

36

often offer low precision, approximate blocks and are sensitive to the effects of
process variation. Failing to adequately consider these low-level behaviors in-
troduces more error into an already approximate computation — this may cause

the mapped program to execute with unacceptable error.

The provided analog blocks may implement complex functions — analog devices
provide highly specialized blocks that implement anything from simple func-
tions to sets of differential equations. These blocks are highly configurable and
often can be reconfigured to implement a multitude of different functions. Be-
cause there is no universally agreed upon collection of analog blocks, the set
of provided programmable blocks may vary across analog computing platforms.
Furthermore, two blocks of the same type may not implement the same set of

functions in practice due to variations introduced during fabrication.

Analog blocks cannot be arbitrarily routed together — the programmable in-
terconnects are heavily constrained and limited in quantity. Therefore, com-
putations must be carefully laid out on the device so that all the necessary

connections can be made.

All of these factors together make reconfigurable analog devices a challenging

compilation target that requires fundamentally new techniques.

1.3.2 Advancement over State of the Art

This thesis introduces new languages which together define the compilation problem.

The compiler maps programs written in the dynamical system specification language

to an analog device. The compiler works with a specification of the device, written

in the analog device programming language. The compiler produces, as output, a

transformed analog circuit, written in the analog device programming language:

e Dynamical System Specification Languages - In this thesis, I introduce a

specification language for defining dynamical systems. The dynamical system

specification language (DSSL) provides constructs for specifying systems of

37

first-order differential equations. The DSSL is the high-level language targeted
by the compiler.

e Analog Device Specification Language: This thesis presents a novel spec-
ification language for reconfigurable analog devices. The analog device speci-
fication language (ADSL) offers block specification constructs for defining the
programming interface, dynamics, physical behaviors, and physical limitations
of each block. The specification language also provides constructs for specify-
ing the spatial layout of blocks on the device and the available digitally pro-
grammable connections offered by the device. A key challenge with designing
the ADSL is identifying the right abstractions for the programming interface

and low-level physical behaviors.

e Analog Device Programming Language: This thesis also presents a pro-
gramming language (ADPL) for analog devices. The analog device program-
ming language offers constructs for configuring blocks and enabling digitally
programmable connections within the device. These two constructs together
are used to describe a circuit of configured blocks on the device. The ADPL
also supports defining a recovery transform — this recovery transform recovers

the original dynamical system dynamics at runtime.

The compiler presented in this thesis leverages the following compilation tech-

niques to target the analog device effectively:

e Circuit Synthesis - This thesis presents a novel circuit synthesis procedure
that derives an analog device program that implements the given dynamical sys-
tem, subject to the resource and connectivity constraints of the analog device.
This circuit synthesis procedure can identify non-trivial usages of the available
blocks to implement the desired circuit and use specialized blocks when neces-

sary to forward, convert, and copy signals.

e Circuit Scaling - This thesis presents a novel circuit scaling procedure that au-

tomatically transforms an input analog device program to abide by the physical

38

restrictions imposed by the device. The resulting transformed circuit captures
the original dynamical system such that the original dynamical system is re-
coverable at runtime. The circuit scaling procedure derives a transform that
automatically compensates for process variation-induced behavioral deviations
present in the device. This compensation operation is critical for obtaining

accurate executions on modern analog devices.

Synergistic Calibration and Compilation - This thesis presents a novel
cross-cutting compiler optimization in which the device calibration routines
and compiler work together to reduce the effect of process variation-induced

behavioral deviations on the overall computation.

Traditionally, architects design calibration algorithms to eliminate the subset
of the behavioral deviations that can be attenuated away with the calibra-
tion circuitry. I introduce a co-designed calibration algorithm that prioritizes
eliminating behavioral variations that the compiler cannot handle during com-

pilation.

I introduce the concept of a delta model, a new hardware abstraction that cap-
tures behavioral deviations present in the calibrated hardware. The compiler
targets the delta model representation of the behavioral deviations when tar-
geting the device on hand. The compiler identifies and compensates for any
correctable behavioral deviations when scaling the circuit. This abstraction
provides the compiler with a more accurate representation of the empirically
observed behavior of the calibrated device on hand. The compiler uses these
models to produce programs that deliver better end-to-end accuracy. All uncor-
rectable behavioral deviations are accepted as part of the behavior of the block

and introduce error into the overall computation.

This optimization involves all parts of the software stack. I introduce delta
model language constructs to the ADSL, develop a novel delta-model aware
circuit scaling optimization, and introduce new calibration and characterization

procedures into the device runtime and firmware to implement this optimization.

39

With this optimization enabled, I am able to attain higher fidelity results with

more consistency on the target hardware.

1.3.3 Circuit Synthesis

Because analog blocks are often engineered for efficiency and generality rather than
ease of use, there may be a substantial semantic gap between the dynamical system
and the analog hardware. For example, some analog devices may only provide compu-
tational blocks that implement complicated functions which are difficult to compose

together.

The goal of the circuit synthesis procedure is to derive an analog device program
that implements the given dynamical system, subject to the resource and connectivity
constraints of the analog device. The circuit synthesis procedure ensures the physics
of the circuit implemented by the derived analog device program is algebraically
equivalent to the dynamics of the dynamical system. Two relations are algebraically
equivalent if they produce the same output over all possible inputs. The circuit
synthesis procedure works with an idealized representation of the hardware which is

not subject to low-level physical behaviors.

The circuit synthesis procedure automatically derives an analog circuit comprised
of configured analog blocks that implements the target dynamical system. The circuit
synthesis algorithm can identify non-trivial usages of the available blocks to implement
the desired circuit. The compiler also employs a spatially aware routing procedure
that can successfully map circuits in the presence of a restrictive routing environment.
The circuit synthesis procedure produces an analog device program that encodes a
circuit which is algebraically equivalent to the starting dynamical system. In this
thesis, I refer to an ADP produced by the circuit synthesis procedure as an unscaled

ADP.

40

1.3.4 Circuit Scaling

The physical behavior of an analog device has a profound impact on the implemented
computation. Relevant phenomena include quantization error, noise, manufacturing
variations, and frequency, current, and voltage range limitations. For an analog device
program to faithfully implement a dynamical system, it must not violate the physical
constraints of the analog hardware. A compilation goal is therefore to transform the
analog device program to abide by the physical restrictions imposed by the device,
while ensuring the dynamics of the original dynamical system can be recovered at

runtime.

The circuit scaling procedure computes a scaling transform comprised of magni-
tude scale factors which scale the values and signals in the ADP and a time scale
factor which changes the execution speed of the computation. The circuit scaling
procedure applies the scaling transform to the provided unscaled ADP to produce a
scaled ADP. The scaling transform is applied to the unscaled ADP by multiplying
each digitally settable value by its magnitude scale factor. This internally sets the
execution speed of the computation and scales all the signals in the ADP by their
respective magnitude scale factors. The circuit scaling procedure exploits a property
of dynamical systems to tune the execution speed of the dynamical system (Sec-
tion 3.1.2). The scaled ADP specifies a recovery transform that recovers the original
dynamical system dynamics at runtime. The specified recovery transform multiplies

the signal samples and time samples by statically derived constant factors.

The circuit scaling procedure produces a scaled ADP which respects all of the
frequency, current, and voltage range limitations imposed by the device and com-
pensates for the subset of process variation-induced behavioral variations which are
amenable to static compensation. The scaled ADP also increases the dynamic range
of the signals when possible to reduce the effect of noise and error on the computation.
Applying the recovery transform specified in the scaled ADP at runtime recovers the

original dynamical system dynamics from the observed signal trajectories.

The circuit scaling procedure frames the core problem of finding a scaling trans-

41

form as a geometric programming problem. A geometric programming problem is a
type of constrained optimization problem that can be solved optimally and efficiently
with a numerical solver [18, 92|. The geometric programming problem contains an
objective function that encodes the optimality criteria of the optimization problem.
Because geometric programming problems can support non-linear constraints, the cir-
cuit scaling algorithm can propagate the scaling transform through non-linear analog
blocks. The problem constraints ensure the dynamical system dynamics are recover-
able from the scaled ADP and encode the physical limitations of the hardware. The
objective function encodes what property of the scaled ADP to optimize. In this
thesis, I use an objective function that jointly maximizes the computation speed and

the signal-to-noise ratio of the signals and values.

The circuit scaling algorithm presented in this thesis also deploys a delta model
compensation optimization which compensates for manufacturing variation-induced
behavioral deviations present in the calibrated device. This optimization enables the
compiler to tailor the scaling procedure to more effectively target the device on hand.
The delta model compensation optimization intelligently scales the circuit to reduce
the effect of a subset of correctable behavioral deviations. Here, a correctable behav-
ioral deviation is a deviation which scales a signal or value within an analog block.
This optimization augments the geometric programming problem recoverability con-
straints to incorporate the effect of these correctable deviations on the scaled signals.
The delta model compensation optimization works with a set of empirically elicited

delta models for the device on hand.

Note that the circuit scaling algorithm presented in this thesis supports partially
reprogramming the ADP blocks to better scale the circuit. The algorithm formulates
the circuit scaling+block reprogramming problem as a combinatorial geometric pro-
gramming problem (CGP) which contains both geometric programming constraints
and discrete constraints. The circuit scaling algorithm solves the CGP to obtain a
set of block reprogramming operations. Once the compiler has reprogrammed the
blocks, the CGP simplifies to a geometric programming problem which computes the

optimal scaling transform for the ADP.

42

Evaluation

Using the above techniques, I designed a compilation toolchain that targets the
HCDCv2 analog device[51, 61]. The HCDCv2 analog device is an ultra low power
reconfigurable analog computing platform designed for running general non-linear dy-
namical systems. I compile twelve benchmark applications from the biology, physics,
and controls domains to the HCDCv2 with the implemented compilation toolchain.
The compilation toolchain produces multiple scaled ADPs that all implement the tar-
get dynamical system. I execute the produced scaled ADPs on the analog hardware
and compare the recovered variable trajectories with reference trajectories computed
with a high-precision digital differential equation solver. For all benchmark applica-
tions, the compiler is able to identify analog programs that execute the dynamical

system on the analog hardware at high fidelity.

I then investigate the effect the presented compiler optimizations have on the fi-
delity of the end-to-end results. The scaling transform is integral to producing circuits
that can be executed on the analog device. The behavioral deviation compensation
and block reprogramming optimizations are critical to producing circuits that accu-
rately execute the target dynamical system on the analog hardware. These findings
demonstrate that the circuit scaling procedure and its associated optimizations are

critical parts of the compilation process.

To the best of my knowledge, this compiler is the first to target any modern pro-
grammable analog device for dynamical systems. This thesis is the first to present
experimental results for any compiled computation executing on any physical pro-

grammable analog device of this class.

1.4 Overview of Thesis

I next present a summary of the topics covered in this thesis. Each section in this

summary corresponds to a chapter in the thesis.

43

1.4.1 Background and Related Work (Chapter 2)

I present an overview of the related work. I first provide an overview of use cases for
dynamical systems, outline the types of dynamical systems, and provide an overview
of digital simulation approaches for dynamical systems. I then discuss classes of dy-
namical systems which are difficult to simulate accurately and efficiently with digital
solvers. I then provide an overview of the history of analog computing and describe
how practitioners programmed historical analog devices in the past. I then present
an overview of the kinds of modern reconfigurable analog devices seen today and
contrast the software techniques employed by these devices. I conclude this chapter

with a discussion of related compilation techniques and numerical methods.

1.4.2 Dynamical Systems (Chapter 3)

[present the high-level dynamical system specification language (DSSL) targeted by
the compiler. The dynamical system specification language is a high-level program-
ming language used for describing dynamical systems. I first present an overview
of dynamical systems and ordinary differential equations (ODEs) and discuss digital
and analog simulation approaches for ODEs. I introduce the time scaling property
of ODEs — the compiler leverages this time scaling property to change the execution
speed of the computation. I then formally introduce the dynamical system specifica-

tion language and summarize all of the language constructs.

1.4.3 Dynamical System Applications (Chapter 4)

I present the dynamical system specifications for twelve benchmark dynamical system
applications from the biological, physics, and controls domains. I then present the
dynamical system specifications for two real-time signal processing applications that

continuously perform computation on external analog signals.

44

1.4.4 Reconfigurable Analog Devices (Chapter 5)

I provide a comprehensive overview of differential equation-solving analog devices
and introduce the analog device specification language. In this chapter, I also present
the analog device specification for the HCDCv2 hardware platform and provide an

overview of the HCDCv2 runtime system and firmware.

Programming Challenges from the Gates Up

I first provide an overview of the high-level and low-level programming interfaces
for the target class of devices. I next present an overview of the low-level physical
behaviors (unexpected signal biases and gains, frequency-dependent behavior, and
noise) present in this class of devices. I then discuss how these behaviors are mitigated
(or propagated to higher levels of abstraction) in the device firmware, in the device
runtime, in the analog device specification. Common mitigation strategies include
calibrating the hardware and imposing physical restrictions such as operating range
and frequency limitations on the device. The compiler automatically reasons about

the low-level behaviors which are not mitigated at lower levels of abstraction.

Delta Models and Calibration

I next introduce the concept of a delta model — a hardware abstraction that cap-
tures process variation-induced behavioral variations present in the calibrated device
on hand. This compiler uses this hardware abstraction to produce programs that
execute more accurately on the analog device. The calibration algorithm deployed
in the device firmware impacts the delta models’ ability to capture the behavioral
variations present in the calibrated hardware. I refer to the calibration algorithm as
the calibration strategy in this thesis. I introduce a traditional calibration strategy
which is typically used in hardware design, and a co-designed calibration strategy
which is designed with the capabilities of delta models in mind. I then describe the

effect these calibration strategies have on the delta model.

45

Analog Device Specification and Programming Language

I rigorously describe the analog device specification language. The analog device
specification language enables hardware designers to define all of the available digi-
tally settable connections and programmable blocks within the device. The language
will support the specification of blocks with specialized programming interfaces and
provide constructs for describing the spatial layout of these blocks in hardware. The
analog device specification language offers language constructs for defining the input-
output relation implemented by each block and noise, operating range, and frequency
annotations for specifying the physical limitations and low-level physical behaviors
present within the block. The analog device specification language also offers con-
structs for defining delta model specifications. The compiler combines each block’s
delta model specification with empirically derived delta model information to identify
a block’s delta models.

I rigorously describe the analog device programming language. The analog de-
vice programming language (ADPL) supports the specification of circuits comprised
of configured analog blocks. The language offers constructs for programming block
values and connecting block ports together with digitally programmable signals. The
analog device programming language supports annotating signals within the circuit
with dynamical system variables and expressions. The compiler uses these annota-
tions to relate currents and voltages to quantities in the target dynamical system.
The programming language also supports the specification of a scaling transform for
the described circuit. This transform is applied to the data field values before execu-
tion — the resulting scaled circuit respects all of the physical behaviors and limitations
imposed on the computation by the analog device. The scaling transform is also used

to recover the original dynamical system dynamics from the signal trajectories.

The HCDCv2

I present the analog device specification for the HCDCv2 and describe the calibra-
tion procedures and runtime system deployed by the HCDCv2. 1 first present the

46

block specifications and device layout specification for the HCDCv2. I then provide
an overview of the calibration strategies deployed by the HCDCv2. The calibra-
tion strategy dictates how the firmware calibrates the blocks in the HCDCv2. Each
calibration strategy prioritizes eliminating a subset of unwanted behaviors within a
calibrated block. The HCDCv2 firmware offers two calibration strategies: a tradi-
tional calibration strategy (minimize_error) and a co-designed calibration strategy
(maximize_fit). The traditional calibration strategy seeks to calibrate each block
to deliver the block input-output relation described in the HCDCv2 analog device
specification. The co-designed calibration strategy prioritizes eliminating behaviors
that the compiler cannot statically compensate for with a delta model. I provide a de-
tailed multiplier case study which demonstrates how the delta model and calibration
strategy interact on a fabricated instance of the HCDCv2.

I then provide an overview of the HCDCv2 runtime and low-level programming
interface. I discuss the device calibration and characterization procedures employed
by the device runtime and describe how the runtime empirically derives delta model
information from the HCDCv2. The HCDCv2 runtime system stores the collected
calibration, characterization, and delta model information in calibration, profiling,
and delta model databases. 1 conclude the chapter with an overview of how the

HCDCv2 runtime executes an ADP to the HCDCv2.

1.4.5 Scaled and Unscaled ADPs (Chapter 6)

I next present a detailed overview of the analog device programs produced by the

compiler. This chapter introduces the concept of an unscaled ADP and a scaled

ADP:

e Unscaled ADPs: The compiler first produces an unscaled ADP which im-
plements the target dynamical system. In an unscaled ADP, the physics of
the currents and voltages are semantically equivalent to the dynamical system
dynamics. The unscaled ADP does not consider any of the operating range

and frequency limitations of the device or take into account the effect of analog

47

noise, quantization, or process variation.

e Scaled ADPs: The compiler produces a scaled ADP from the unscaled ADP
which takes into account all of the physical restrictions and behaviors described
above. The scaled ADP specifies a scaling transform that scales all of the
programmable values and signals in the circuit so that the circuit dynamics

respect the physical constraints of the device.

A scaling transform is a collection of constant coefficients that describe how
all the signals in the program are scaled. The scaling transform is applied at
compile-time by multiplying all digitally set values by their respective coef-
ficients. The resulting scaled computation preserves the original behavior of
the dynamical system such that it can be recovered at runtime by multiplying
the signals by constant values. I discuss this dynamical system preservation

property in detail.

I present a cosine ADP case study in which the cosine dynamical system (Sec-
tion 4.1) is programmed to the HCDCv2 analog device. This case study presents the
unscaled and scaled ADPs for the cosine application. I then present the unscaled and
scaled ADPs for the twelve benchmark applications introduced in Chapter 4. All of
these ADPs were produced by the compiler.

1.4.6 Compilation Overview (Chapter 7)

I provide a high-level overview of the compilation process. In this chapter, I demon-
strate how the compiler maps a harmonic oscillator dynamical system computation
to a simple reconfigurable analog device (the SIMPL analog device). Each step of
compilation is described at a high level and then demonstrated on this running ex-
ample.

I first introduce the harmonic oscillator dynamical system specification, the SIMPL
analog device specification and the unscaled and scaled ADPs for the harmonic os-

cillator. The dynamical system and analog device specifications are the inputs to the

48

compiler, and the unscaled and scaled ADPs are the intermediate and final outputs
of the compiler.
I then describe the operation of the compiler at a high level. The compiler operates

in two phases:

e Circuit Synthesis (LGraph): The compiler first synthesizes a circuit com-
prised of configured blocks that implements the provided dynamical system.
The LGraph pass first synthesizes a circuit fragment that implements each rela-
tion in the dynamical system. It then assembles all of the circuit fragments to
form a full circuit that implements the dynamical system. Finally, it maps the
circuit blocks to locations on the device and connections to sequences of digi-
tally settable connections in the device. The LGraph compilation pass returns

an unscaled ADP as output.

e Circuit Scaling (LScale): The compiler then derives a scaling transform
for the circuit which preserves the integrity of mapped analog computation in
the presence of low-level physical behaviors (automated circuit scaling). The
LGraph pass returns a scaled ADP which implements the dynamical system

computation.

1.4.7 Circuit Synthesis (Chapter 8)

I provide a rigorous description of the circuit synthesis pass. This circuit synthe-
sis pass produces analog device programs which are guaranteed to be algebraically
equivalent to the provided dynamical system. That is, the analog device program
specifies a circuit that implements a dynamical system that can be transformed into
the original dynamical system by successively applying algebraic rewrite rules.

The proposed compiler uses a staged circuit synthesis algorithm that efficiently
synthesizes circuits by breaking up the compilation process into multiple, more spe-
cialized passes. Each pass refines the circuit by adding and configuring blocks. This
multi-stage compilation approach enables the compiler to explicitly handle special-use

blocks, such as blocks that route and copy signals.

49

I formally describe the circuit synthesis procedure. I first introduce all of the nec-
essary notation and mathematical constructs used in this chapter. I then rigorously

describe each step of circuit synthesis:

e Circuit Fragment Synthesis: The circuit synthesis pass first synthesizes a
circuit fragment that implements each dynamical system relation. This pro-
cedure uses a novel tableau-based search algorithm that incrementally builds
the circuit fragment by successively unifying analog blocks with goals in the
tableau. The unification algorithm uses a sophisticated algebraic rewrite engine
capable of identifying non-trivial usages of analog blocks. This rewrite engine
enables the unification algorithm to configure complex analog building blocks

to implement the desired expressions.

e Assembly: The circuit synthesis pass then assembles all of the produced frag-
ments to form a completed circuit. The circuit assembly procedure inserts blocks
when necessary to copies and convert signals. The output of this procedure is

a circuit that implements the dynamical system.

e Place and Route: The circuit synthesis pass then maps all blocks to the
circuit to locations on the analog device and all connections in the circuit to
digitally settable connections in the analog device. The placement and routing
algorithm intelligently uses the device layout information to map the circuit to
the analog hardware. This algorithm inserts routing blocks when necessary to

make the desired connections.

1.4.8 Circuit Scaling (Chapter 9)

I provide a rigorous description of the circuit scaling pass. The circuit scaling pass
computes a scaling transform for a provided unscaled ADP.

[first introduce the combinatorial geometric programming (CGP) and geomet-
ric programming problem (GP) formulations used by the circuit scaling pass. These
problem formulations both encode the circuit scaling problem. The geometric pro-

gramming problem (GP) is a type of optimization problem that can be efficiently

50

solved with a convex solver to minimize some objective function. The CGP is an ex-
tension to the convex optimization problem that supports the specification of discrete
constraints over integer variables. The CGP becomes a GP once all of the integer
variables are assigned to values. The circuit scaling pass uses both of these problem

formulations to scale the circuit.

I then formally descibe the circuit scaling pass. 1 first introduce all the new
notation used in this chapter. This chapter reuses the notation introduced in Chap-
ter 8 and introduces new constructs which capture physical behaviors and limitations

present in the analog device.

I then formally describe how the compiler derives a CGP from the unscaled ADP.
The compiler derives a collection of linear constraints from the (nonlinear) dynamics
and structure of the circuit described in the ADP. The CGP encodes the device
operating range and frequency restrictions and the effects of noise and quantization
error on the computation. The CGP also ensures that the scaling transform preserves
the original dynamics of the unscaled ADP (and dynamical system). Specifically, the
CGP ensures that the scaled dynamics at every input and output port equals the
unscaled dynamics of the port times some constant coefficient. The compiler uses the
delta model information from Chapter 5 to produce a scaling transform that preserves
the original dynamics in the presence of manufacturing variation-induced behavioral
variations. The CGP formulation enables the compiler to reconfigure blocks to better
scale the circuit. The compiler encodes these reconfiguration operations as discrete
variables and constraints in the CGP. The discrete constraints capture the effect of

each reconfiguration operation on the scaling problem.

I then describe how the compiler uses the CGP to scale the circuit. The com-
piler first solves the CGP to produce a set of block reconfiguration operations which
are then applied to the unscaled ADP. The compiler then concretizes the discrete
CGP variables which capture the reconfiguration operations to produce a set of GP
constraints. The compiler then constructs the GP by combining the derived GP
constraints with a user-provided scaling objective function that captures the circuit

property to optimize. The compiler solves the GP to identify the scaling transform

51

that best minimizes some criteria. In this thesis, I use a balanced scaling objective
function that jointly maximizes the execution speed and the dynamic range of the

scaled signals.

1.4.9 Results (Chapter 10)

I evaluate the efficacy of the compiler. I compile the twelve benchmarks presented in
Chapter 3 to the HCDCv2 with the compiler presented in this thesis. I perform the

following analyses to evaluate the efficacy of my compiler:

e Power, Energy, and Quality Analysis: [study the execution time and
energy usage of each application and qualitatively and quantitatively examine
the agreement between the collected analog waveforms and the ground-truth
dynamical system dynamics. I find that the produced scaled ADPs execute in
0.25-1.92 milliseconds, consume 0.10-5.09 pJ of energy, and report 3.46 x 10~5%-
1.96% error. Here, the reported error is the root-mean-squared error of the mea-
sured waveform with the recovery transform applied relative to the amplitude of
the reference waveform. I compute the reference waveform for each benchmark
application by simulating the dynamical system with a high precision digital
ordinary differential equation solver. After all compiler optimizations are ap-
plied, the collected analog waveforms with the recovery transform applied are

visually indistinguishable from the reference waveforms.

o Effect of Compiler Optimizations: I study the effect of different compiler
optimizations on the fidelity of the produced waveforms. Both the scaling trans-
form and the partial block reprogramming feature employed by the circuit scal-
ing pass are crucial for obtaining a good quality result for a number of the
benchmarks. I also investigate the importance of incorporating delta model
information into the scaling procedure and find that this improves the fidelity
of the result for 10 of the 12 benchmarks. I then investigate the effect of the

calibration strategy on the quality of the produced results. For 9 of the 12

52

benchmarks, the co-designed calibration strategy delivers comparable or lower-

error results more consistently than the traditional strategy.

Compilation Outcomes: I present the compilation times and study the op-
timality of the produced unscaled and scaled ADPs. I find that the unscaled
ADPs rarely use more special-use routing and assembly blocks than necessary.
The scaled ADPs frequently run at the maximum speed of the device. Generally
speaking, the compiler is not able to simultaneously maximize all of the signals
and values in a given ADP. However, the compiler can maximize at least one
value for all benchmarks and one signal for 9 of the 12 benchmarks. For all of
the benchmarks, the compiler can produce a scaled ADP in which at least half
the signals occupy 50% of the port operating ranges. These results indicate that
the compiler can effectively scale the ADP to attain good speeds and signal dy-
namic ranges while respecting operating range and frequency limitations. I then
investigate how well the scaled ADPs minimize the balanced scale objective
function introduced in Chapter 9. I find that the compiler can identify multiple
scaling transforms that scale signals in different ways but attain comparable
balanced scale objective values. These findings demonstrate that the compiler
can identify multiple good scaling transforms within the space of physically vi-
able, recoverable scaling transforms. I then investigate why the unscaled ADPs
cannot be directly executed on the analog device. I find that in all cases, the
unscaled ADPs violate the frequency and operating range restrictions imposed

by the device.

Compilation Outcomes and Result Quality: I investigate the relationship
between the scaled ADP characteristics and the end-to-end result quality. The
goal of this analysis is to determine if there are any ADP characteristics that are
strongly predictive of the end-to-end result quality. I find that the block instance
selection has a profound impact on the quality of the produced waveforms.
I use this observation to inform a potential future research direction in the

concluding chapter of this thesis (Chapter 11). I also find that the balanced

53

objective function value is predictive of the end-to-end result quality for 11 of
the 12 benchmarks (Pearson coefficient > 0.5). For 6 of the 12 benchmarks, the
balanced objective function value strongly correlates with the quality of the
produced waveform (Pearson coefficient > 0.9). The results of the analysis can

be used to inform future compilation techniques.

e Alternative Scaling Objective Functions: I investigate the potential of an
alternative scaling objective function. This analysis aims to determine if the
scaling objective function deployed by the compiler can be further improved
in future work. I find that for 5 of the 12 benchmarks, the alternate scaling
objective attains better or comparable quality results while consuming less en-
ergy. I use the results of this analysis to inform future research directions in the

concluding chapter of this thesis.

Realtime Case Studies: I compile and execute the real-time dynamical sys-
tem applications from Section 4.13 on the HCDCv2. I find that for both dy-
namical systems, the HCDCv2 performs the desired signal processing operation

in real-time on an externally provided signal.

1.5 Reading Strategies for this Thesis

I next present a collection of strategies for reading this thesis. These reading strategies

outline which chapters to focus on and are organized by reading goal:

e [want to understand this research area at a high level — Read the background
chapter (Chapter 2), Section 3.1 of the dynamical systems chapter (Chapter 3),
the introduction and Sections 5.1-5.3 of the reconfigurable analog devices chap-
ter (Chapter 5), and the conclusion chapter (Chapter 11). These sections pro-
vide an overview of prior work, outline the high-level challenges for the applica-
tion domain and target hardware, and outline some productive future research

directions for this domain.

54

o [want to target a differential-equation solving analog hardware - Read the dy-
namical systems chapter (Chapter 3), dynamical system applications chapter
(Chapter 4), reconfigurable analog devices chapter (Chapter 5), and the analog
device programs chapter (Chapter 6). These chapters rigorously describe the
behavior of the target hardware platform and provide a set of twelve worked

examples for the HCDCv2 analog hardware.

o [want to compare against your results - Read the dynamical systems chapter
(Chapter 3), dynamical system applications chapter (Chapter 4), and results
chapter (Chapter 10). These chapters rigorously describe the benchmark appli-
cations and present a rigorous evaluation of the compiler on the target hardware

platform.

e [want to understand how the compiler works at a high level - Read the dynam-
ical systems chapter (Chapter 3), the introduction and Sections 5.1- 5.6 of the
reconfigurable analog device chapter, section 6.1 of the unscaled /scaled ADPs
chapter (Chapter 6), and the compilation overview chapter (Chapter 7). These
sections introduce the specification languages employed by the compiler and

provide an overview of the operation of the compiler on an example program.

e [want to implement or extend the compiler - First read the dynamical system
chapter (Chapter 3), the reconfigurable analog devices chapter (Chapter 5),
and unscaled/scaled ADPs chapter (Chapter 6). These chapters provide a
comprehensive overview of the compiler inputs and outputs. Then read the
compilation overview (Chapter 7), circuit synthesis (Chapter 8), and circuit
scaling (Chapter 9) chapters. These chapters rigorously describe the operation

of the compiler.

1.6 Summary

Specialized computing platforms, implemented on a range of devices including analog,

photonic, and digital devices, are becoming pervasive and crucial for satisfying the

95

computational needs of different domains. We are already seeing a proliferation of
specialized devices that efficiently solve problems in machine learning, signal process-
ing, and biology. This thesis focuses on an emergent class of reconfigurable ultra-low

power analog devices which solve dynamical systems.

A dynamical system is a system whose state evolves over time. Dynamical sys-
tems appear in a wide variety of fields including mathematics, physics, chemistry,
biology, economics, engineering, and medicine. Typically, practitioners are interested
in simulating a dynamical system. Digital dynamical solvers have difficulty efficiently
simulating non-linear differential equations or differential equations with dynamics
which operate on different time scales. These efficiency issues are exacerbated for
dynamical system applications which process realtime signals or execute on resource-

constrained embedded systems.

In recent years, there has been a proliferation of ulta-low power reconfigurable
analog devices which solve dynamical systems. These analog devices use standard
CMOS processes and leverage transistor physics to perform computation. These de-
vices are attractive computational targets because they consume very little power
and deliver predictable performance regardless of the size and complexity of the dy-
namical system. In these systems, the time required to run a dynamical system can
be computed statically at compile-time. These modern analog computing platforms
are inherently approximate and offer medium-precision blocks that introduce error
into the computation. Furthermore, these blocks cannot be manufactured at low
tolerances and therefore experience a high degree of variation post-fabrication.
Research Problem: Presently, these devices lack software tooling and must be
manually configured by the programmer to implement the desired dynamical system
computation. These devices are programmed by routing together configurable analog
blocks using programmable interconnects. To faithfully implement a computation,
the device physics must preserve the original dynamical system dynamics such that
the practitioner can recover the original dynamical system variable trajectories from

the measured signals at runtime by applying a recovery transform.

This class of analog devices present fundamentally different programming chal-

56

lenges than digital computing platforms. First, low-level physics of the device has
a fundamental effect on the computation and must therefore be taken into account
when programming the device. Analog blocks impose frequency, current, and volt-
age range limitations and have unique noise and error characteristics. All of these
low-level physical behaviors must be taken into consideration when programming the

device.

Analog blocks are also subject to process variation-induced behavioral deviations.
While researchers have developed hardware-based mitigation mechanisms for dealing
with process variation (such as device calibration), these mitigation techniques do
not adequately eliminate all unwanted behaviors across all blocks. Any behavioral
deviations that cannot be eliminated with hardware mitigation techniques must be

compensated for in software or contribute to the computation error.

These analog devices offer highly specialized programmable analog blocks that
implement anything from simple functions to sets of differential equations. The set
of available analog blocks may vary wildly from device to device. Furthermore, these
analog blocks cannot be arbitrarily routed together since the routing environment in

such devices is highly restrictive.

This Thesis: The goal of this research is to automate the programming process so
that these devices are more accessible to programmers. In this thesis, I present a
compiler that takes as input a dynamical system and produces as output a configu-
ration for the analog device which implements the dynamical system on the analog
hardware. The compiler first automatically derives an analog circuits comprised of
configured analog blocks which implement the target dynamical system. The com-
piler then scales all the values in the provided unscaled ADP and produces a scaled
circuit respects all of the physical constraints and behaviors present in the device.
The transformed circuit preserves the original dynamics of the dynamical system —
that is, the original dynamics of any signal can be recovered at runtime by multiplying
it by a statically derived constant factor. This transform compensates for the process
variation-induced behavioral deviations that could not be corrected for in calibration

and rescales the signals and values in the circuit to reduce the effect of noise and

57

quantization error.

In this thesis, I develop a compilation toolchain which targets the ultra-low-power
HCDCv2 analog device and use the compiler to map twelve dynamical system bench-
mark applications to a physical HCDCv2 device. To the best of my knowledge, this
compiler is the first to successfully target a physical (as opposed to simulated) pro-
grammable analog device for dynamical systems and this thesis is the first to present
experimental results for any compiled computation executing on any physical pro-

grammable analog device of this class.

58

Chapter 2

Related Work

This chapter presents an overview of the relevant related work for the work in this

thesis. In this chapter, I cover the following topics:

e Dynamical Systems (Section 2.1): I introduce application domains for dy-
namical systems and provide an overview of the types of dynamical systems
commonly seen in practice. I then discuss the numerical methods used for

simulating dynamical systems and their drawbacks.

e History of Analog Computing (Section 2.2): I provide a brief overview
of how practitioners historically used analog computers to simulate dynamical
systems. I describe the computational model and programming model used for
these historical analog computing platforms. I then provide an overview of the

automated programming techniques used for these hardware platforms.

e Dynamical System-Solving Reconfigurable Analog Devices (Section 2.3):
Recently, researchers have proposed modern reconfigurable analog devices which
leverage the analog behavior of transistors to execute dynamical system compu-
tations. These devices can be configured post-fabrication to simulate a variety
of different dynamical systems. I provide an overview of how these devices sim-
ulate dynamical systems, why they are attractive computational targets, and
how they are programmed today. I describe how the compiler presented in this

thesis lowers the barrier of entry for programming this class of devices.

59

e Other Reconfigurable Analog Computing Platforms (Section 2.4): Re-
searchers have proposed a multitude of reconfigurable mixed-signal and ana-
log computing platforms that target a variety of other application domains. I
provide an overview of these computing platforms, broken up by application
domain. I contrast the programming techniques used to target each class of

computing platforms with the compilation techniques proposed in this thesis.

e Software Techniques (Section 2.5): I provide an overview of related synthe-
sis, compilation, hardware configuration, and numerical computing techniques.
I describe how each software technique relates to the compilation techniques

employed by my compiler.

2.1 Dynamical Systems

A dynamical system is a system whose state evolves over time. Dynamical systems
appear in a wide variety of fields and are typically implemented as ordinary differential
equations or partial differential equations. Typically, the goal is to simulate or solve
a dynamical system. Today, digital differential equation solvers are used to simulate
dynamical systems. Many of these solvers have difficulty efficiently solving non-linear
systems or systems with dynamics that operate on different time scales. To ame-
liorate these issues, practitioners often introduce approximations into the dynamical
system. Common approximations include linearization and replacing parts of the dy-
namical system with closed-form approximations. This section provides an overview
of dynamical system applications and types of dynamical systems and discusses the

numerical simulation approaches used to simulate dynamical systems today.

2.1.1 Applications

Dynamical systems appear in a wide variety of fields including mathematics, physics,
chemistry, biology, economics, engineering, and medicine. In the biological sciences,

practitioners use dynamical systems for medical dosage optimization and disease pre-

60

diction applications and to better understand biological phenomena. [74, 117]. In the
physical sciences, practitioners use dynamical systems to model physical phenomena
such as earthquakes, glacial movement, and planetary motion [47, 112|. In economics,
practitioners use dynamical systems to predict changes in the market [118]. These dy-
namical system computations are typically run on compute clusters and workstations
where power is readily available.

Dynamical systems are also deployed on embedded systems which interact with
the environment. These dynamical systems process signals, from sensors, for example,
to reconstruct higher-order information from the environment in real-time [78, 14].
Embedded dynamical systems can also produce driving signals to control actuators
such as motors to meet some sort of objective [33, 9]. This sort of use case is common
in fields such as robotics. These sensor-actuator applications have real-time perfor-
mance requirements and are often implemented on resource-constrained embedded

systems such as microcontrollers.

Dynamical systems can also be used to perform both unconstrained and con-
strained optimization. Researchers have proposed procedures for transforming opti-
mization problems into time-varying dynamical systems |20, 143|. These dynamical
system encodings of optimization problems converge to a local optimum over time,
given an initial guess. It is also possible to encode various computer algorithms with
dynamical systems. Researchers have previously presented dynamical systems which
sort lists, diagonalize matrices, and solve SAT problems [19].

Dynamical systems also appear in spiking neural networks. A spiking neural net-
work is an artificial neural network inspired by biological neuronal networks. A spiking
neural network contains a collection of interconnected neurons which communicate
with one another. Each neuron produces a spike as output when its membrane elec-
trical charge surpasses a certain threshold. The behavior of the membrane electrical
charge over time is modeled with a time-varying dynamical system.

Dynamical systems also appear in some classes of machine learning models. Continuous-
time recurrent neural networks and neural ODEs are both implemented with dynam-

ical systems [45, 12, 25].

61

Relationship to this work: In this thesis, I present a compiler that maps dynami-
cal systems to dynamical system-solving reconfigurable analog devices. These devices
are attractive computational targets for real-time embedded dynamical system com-
putations since they operate at ultra-low power and have predictable performance
characteristics. Some of these devices are also able to interface with sensors and ac-
tuators directly. Refer to Section 2.3 for an overview of dynamical system-solving

reconfigurable analog devices.

2.1.2 Types of Dynamical Systems

A dynamical system typically consists of one or more interdependent variables which
change over time. Dynamical systems are usually implemented as a system of ordi-
nary differential equations (ODEs) or partial differential equations (PDEs). Systems
of ordinary differential equations contain derivatives taken with respect to an indepen-
dent variable (usually time). Partial differential equations contain derivatives taken

with respect to other variables.

There are various subclasses of ODEs that support non-trivial operators. Stochas-
tic differential equations (SDEs) are systems of ODEs with stochastic behavior [8].
These stochastic systems typically have ODEs with a deterministic component and a
state-dependent stochastic component. Delay differential equations (DDEs) are sys-
tems of differential equations that contain time delayed variables [73]. A time-delayed
variable is a variable which references a value in the past. Because both of these sub-
classes of ODEs have difficult-to-simulate dynamics, they typically require specialized

solvers.

Relationship to this work: In this thesis, I focus on time-varying dynamical sys-
tems made up of ordinary differential equations. The dynamical systems I target in

this work do not contain stochastic behavior or time-delayed variables.

62

2.1.3 Differential Equation Solvers

Practitioners simulate dynamical systems comprised of ordinary differential equations
on digital hardware with ordinary differential equation (ODE) solvers. Classic ODE
solver methods operate by breaking up simulation time into multiple time steps and
then sequentially computing the state of the dynamical system at each time step
[22, 10]. The exact time step segmentation strategy depends on the solver. Some
solvers accept a fixed time step size from the user, while other solvers adaptively
tune the time step size depending on the system dynamics. One drawback to this
simulation technique is that it cannot capture any dynamics which occur between time
steps [113, 114]. As a result, the simulator may produce inaccurate results depending

on the characteristics of the dynamical system and how the solver is parametrized.

Finite difference methods approximately solve ordinary differential equations by
approximating derivatives with value differences [77]. These methods require the dy-
namical system to be linearized before simulation. This linearization step eliminates
non-linear dynamics from the system and reduces the fidelity of the end-to-end result.
Finite difference methods are popular because they are easy to implement and can

be solved efficiently in more resource-constrained systems.

Some kinds of ordinary differential equations are difficult to simulate accurately
and performantly with digital ODE solvers. Dynamical systems with both fast-
evolving and slow-evolving dynamics can introduce numerical instabilities into the
digital simulation [94, 36]. This can cause the ODE solver to produce an inaccurate
result. Practitioners will often substitute fast-evolving dynamics with closed-form so-
lutions when possible to resolve instability issues in the simulation[107, 41, 133]. These
closed-form solutions often involve computationally expensive, highly non-linear op-

erators [30, 27|.

Non-linear dynamical systems are often difficult to simulate as they often use
expensive operators and are difficult to analyze automatically. Non-linear dynami-
cal systems also introduce non-linearities into the dynamical system dynamics. These

non-linearities may introduce numerical instabilities into the digital simulation. Prac-

63

titioners often linearize dynamical system non-linearities to make the computations
tractable and amenable to efficient digital simulation [58, 98, 99, 17]. For dynamical
systems which model physical phenomena, this reduces the accuracy of the model in
relation to the corresponding physical system [37, 138, 21].

Practitioners use a variety of specialized solvers to simulate dynamical systems
implemented with PDEs, SDEs, and DDEs. Dynamical systems comprised of par-
tial differential equations are typically solved with finite difference or finite element
methods [7]. Variants of systems of ODEs, such as SDEs and DDEs, are simulated
with specialized solvers (96, 13|. These specialized solvers efficiently simulate the
difficult-to-simulate behaviors in these systems.

Relationship to this work: In this thesis, I focus on simulating dynamical systems
with analog hardware. Under this paradigm, the evolution of the currents and volt-
ages within the analog device capture the dynamical system’s dynamics over time.
This computational model does not discretize simulation time and can operate on
non-linear dynamical systems. Therefore, this analog approach to solving dynamical

systems does not suffer from the same set of issues as digital ODE solvers.

2.2 History of Analog Computing

Historically, researchers used electrical analog computers to perform dynamical sys-
tem simulation and study control systems [130, 34, 104, 91|. Practitioners used these
analog computers to perform flight simulations, design autopilot systems, implement
radar systems, and teach control theory [130, 34, 104, 91]. Digital computers eventu-
ally replaced these analog computing platforms as transistor sizing improved.

Early electrical analog computers primarily performed computation with ana-
log voltages and provided components that implemented basic mathematical oper-
ators [134, 63, 64, 127]. Common operators included simple summation, summation
with integration, scaling by a constant value, and signal multiplication. These com-
ponents implemented high-precision analog primitives that could be manufactured at

low tolerances. As a result, these components performed computation at high ac-

64

curacy — usually within 0.01% error relative to the full-scale range of the signal for
linear components [65].
Programming Techniques: Practitioners routed these components together to
form circuits through the use of a patchbay. These early analog computers con-
tained programmable switches that changed the functions implemented by the hard-
ware blocks and potentiometers that scaled signals by constant coefficients|49, 63].
Practitioners would set the potentiometer values and manipulate the switches on the
analog computer to program the components to deliver the desired behavior. These
computers also supported fine-grain monitoring of each computational unit’s input
and output signals. Practitioners would leverage this capability to identify instances
where signals are saturated and to more easily debug the programmed circuit [53].
To program a computation to the analog computer, the practitioner would first
manually derive a circuit comprised of configured components that implements the
desired dynamical system computation with pen and paper. After identifying a cir-
cuit, the researcher would then scale the potentiometer values in the circuit so that the
computation executes accurately without saturating any of the circuit components [6].
The practitioner would then translate the derived circuit to a set of potentiometer

values, block switch settings, and a patchbay wiring scheme [49].

Relationship to this work: This thesis research focuses on modern incarnations
of electrical analog computing platforms which solve dynamical systems. Unlike his-
torical analog computers, modern analog computers are silicon chips with digitally
programmable interconnects and values. These modern analog computers deliver sig-
nificant energy savings but offer lower precision approximate computational blocks
(1%-5% error) [132, 51, 61|. These blocks are subject to the effects of process variation
and noise. The programming techniques used to configure high precision historical
analog hardware would not necessarily deliver good results on modern analog hard-
ware designed to execute approximate computations.

Modern reconfigurable analog devices perform computation primarily with ana-
log currents and offer different programming and debugging interfaces than historical

analog devices. The circuit topology is set with programmable interconnects instead

65

of a patchbay, and the individual components are configured by setting bits instead of
configuring switches and potentiometer values. This programming interface is com-
pletely digital and more amenable to automatic configuration than historical analog
devices. Historical analog devices supported monitoring all voltages which are ac-
cessible through the patchbay. In contrast, modern reconfigurable analog devices
offer a limited debugging interface where only a select subset of components and sig-
nals can be monitored at runtime. Modern analog devices therefore cannot support

programming techniques that monitor all signals at runtime.

2.2.1 Compilers for Historical Analog Computers

In the past, researchers developed compilers which targeted early analog computers[49,
90, 75, 43, 40, 90, 75, 55, 126, 123, 122, 90, 75, 100|. The three most complete efforts
to build a compiler for an analog computer were the APACHE system [49] which
targeted the PACE 231-R analog computer|63], the HAL system [43] which targeted
the EAI 680 analog/logic computer [64]|, and the Hytran and HOI systems which
targeted the Hydac 2400 and EAI 8900 analog computers. Several other early com-
pilation approaches were aspirational and never fully implemented [55, 126], failed to
fully automate the compilation process [123, 122, 40, 90, 75|, or targeted idealized
hardware platforms which did not exist in the real world [100].

The APACHE compiler automatically derived patchbay wiring instructions, po-
tentiometer settings, and switch configurations from the high-level dynamical system
specification [49]. The mapping technique employed by the APACHE system was
highly specialized to the PACE-231-R and could not be generalized to other analog
computing platforms or extended to work with mixed-signal or logical blocks com-
mon in hybrid computation [42]. The HAL compiler automatically derived digital
programs, patchbay wiring instructions, potentiometer settings, and switch configu-
rations from a low-level assembly program. The hybrid assembly programming lan-
guage offered analog component-based primitives that provided programmers with
fine-grain control of the produced circuits [43|. The HAL compiler worked with pro-

grams provided at a much lower level of abstraction than the APACHE compiler

66

but supported the digital and mixed-signal blocks often seen in hybrid computing
platforms. The Hytran and HOI systems [40, 90] were extensively used to check
programs statically but did not automate the circuit generation and circuit scaling
process. These systems required the end user to manually provide the circuit topology
and scale factors to the software system. In summary, of the fully realized compil-
ers, only the APACHE compiler presented an approach for automatically deriving a

circuit from a dynamical system.

The APACHE and HAL compilers supported automatically scaling the target
computation to respect the operating ranges present in the hardware [49]. These
approaches derived constant scaling factors that were then multiplied with the po-
tentiometer values to scale the target computation to respect the hardware operating
ranges [52, 53, 93|. These scaling techniques leveraged a hardware-in-the-loop scale
factor refinement algorithm that dynamically adjusted the scale factors when sig-
nals are saturated. These scaling techniques monitored the output voltage of each
component to refine the scaling transform. In some cases, these automated scaling
procedures produced scaling transforms with large scaling factors — in these cases,
the practitioner had to adjust the circuit topology manually. These early automated
scaling techniques only worked with circuits comprised of linear operators and mul-
tiplication operations, only considered the operating range restrictions present in the

hardware, and focused on producing valid transforms rather than optimal transforms.

Relationship to this work: The automated circuit generation procedure employed
for the APACHE compiler cannot be directly applied to this modern analog hardware
presented in this work. The APACHE compiler was highly specialized to target the
PACE 231-R analog computer lacked support for mixed-signal and digital components
and only supported voltage-mode computation. The modern analog hardware tar-
geted in this work computes with analog currents and contains digital blocks such as
LUTs and analog-digital interfaces such as DACs and ADCs — the APACHE compiler
does not support this computational model or these blocks. Moreover, the APACHE
compiler deployed a mapping algorithm that was not readily generalizable or exten-

sible and could not identify creative usages of components. In contrast, the compiler

67

presented in this work can leverage algebraic rewrite systems and synthesis techniques
to identify non-trivial compositions of blocks. Other early compilers could not auto-
matically generate circuits and required the end user provide the circuit topology as
an input.

The automated scaling procedures used for early analog computers cannot be
applied to the modern dynamical system-solving analog computers targeted in this
work. Early scaling methods only reasoned about operating range limitations and
focus on producing a valid (often suboptimal) scaling transform — this is insufficient
for targeting modern analog hardware. Unlike historical analog devices, which offer
high-precision low-tolerance computational blocks, modern analog devices offer ap-
proximate computational blocks that introduce more error into the computation and
are more sensitive to process variation and noise. The scaling approach employed
in this thesis considers a wide range of behaviors, including process variation, noise,
quantization error (from digital logic), and frequency limitations. This scaling ap-
proach also scales the circuit to optimize a circuit characteristic, such as dynamic
range or execution speed. These capabilities enable the compiler presented in this
thesis to map the high-level computation to approximate computational blocks more

effectively and more productively attenuate away unwanted analog behaviors.

The scaling algorithm presented in this thesis is also capable of automatically
reasoning about a wide range of non-linear operators, including exponentiation, tran-
scendental functions, and discontinuous functions. This scaling approach can also
reprogram the analog blocks to better scale the circuit. In contrast, early automated
scaling approaches require user intervention to reprogram the hardware and only

scaled circuits made up of linear operators and signal multipliers.

Another shortcoming of early automated scaling approaches is that they often
were hardware-in-the-loop techniques that monitored all component output voltages.
It is not feasible to monitor all intermediate signals on a modern analog computing
platform implemented in silicon. Typically, these devices offer only a few externally
accessible input and output interfaces. The automated scaling procedure presented

in this thesis does not require any runtime monitoring of signals to scale the circuit.

68

The scaling transform is computed entirely at compile-time from specifications of the

target hardware and dynamical system.

2.3 Dynamical System-Solving Reconfigurable Ana-

log Device

One prominent line of work focuses on reconfigurable analog devices that solve dy-
namical systems [105, 29, 128, 31, 140, 132, 51, 61, 141]. A dynamical system-solving
analog device is a type of reconfigurable analog device that uses the analog behavior
of transistors to perform dynamical system simulation. These analog devices leverage
the advanced metal-oxide—semiconductor fabrication technologies traditionally found

in consumer electronics such as cell phones, biomedical devices, and edge devices [132].

These reconfigurable analog devices operate in an ultra-low power regime and can
efficiently execute potentially complex non-linear dynamical system computations
with microwatts to milliwatts of power. Because these reconfigurable analog devices
represent dynamical system quantities with continuously evolving currents and volt-
ages, they are not subject to the time discretization errors discussed in Section 2.1.3.
This class of devices also offers predictable performance characteristics. The compiler
can compute the correspondence between wall-clock (execution) time and dynamical
system time statically at compile-time for such platforms. Typically, these devices
can simulate a one-time unit of dynamical system time in 7.93 microseconds to 0.30
milliseconds of wall-clock time, depending on the hardware platform. Because these
devices execute perform computation in parallel, the performance of the hardware
does not necessarily degrade with problem size.

Some of these analog computing platforms have special capabilities. For example,
the devices may be capable of directly processing analog signals in real-time {132, 51,
61] or directly implementing stochastic computation with analog noise [140]. These
performance characteristics and hardware capabilities together make these devices

especially appealing for real-time embedded dynamical system computations.

69

Internally, these devices contain collections of digitally configurable analog blocks
that may be routed together with digitally programmable interconnects to form var-
ious analog circuits. The goal of compilation is to identify a circuit that preserves
the original dynamical system dynamics — that is, the original dynamical system
dynamics can be recovered at runtime from the signal trajectories with a recovery
transform. The computation is then run by powering on the device and observing
the evolution of the currents and voltages of interest over time. The original dy-
namical system variable trajectories are then recovered from the voltage and current
trajectories at runtime by applying a recovery transformation. Because these devices
directly exploit the physics of the underlying hardware substrate, these computations
are susceptible to the effects of analog noise and process variation. The computation
must also respect the analog device’s operating range and frequency restrictions to

execute as expected on the analog device.

The computational model described above is a continuous-time computational
model which directly maps dynamical system simulation time to wall-clock time. Re-
searchers have also proposed hybrid computing platforms which solve dynamical sys-
tems in discrete-time using finite-difference methods [79]. These hardware platforms
use analog circuitry to compute the derivatives of the dynamical system variables with
respect to time. In this thesis, I focus on continuous-time dynamical system-solving

analog devices.

Dynamical system-solving analog devices can be used to execute a variety of dif-
ferent computations. Researchers have developed reconfigurable analog devices which
solve SAT problems and perform constrained optimization 142, 137|. This research
formulates the target SAT problems and quadratic programming problems as time-

varying dynamical systems.

Programming Techniques: Modern dynamical system-solving analog devices are
typically programmed directly with little or no automation [50]. To program these de-
vices, practitioners configure individual blocks on the device and enable the necessary
programmable interconnects to form the desired circuit. Before writing the circuit to

the device, the programmer may have to manually transform the circuit parameters

70

to ensure the circuit respects the device’s operating range and frequency constraints.
The designer may also transform the circuit to reduce the effects of noise and pro-
cess variation. After transforming the circuit, the programmer manually derives the
recovery transformation. This recovery transform recovers the original dynamical
system dynamics from the signal trajectories. The programmer must carefully choose
a circuit transformation that ensures the original dynamical system is recoverable at

runtime.

Relationship to this work: This thesis research presents a compiler that targets
programmable analog devices that solve differential equations in continuous time. I
designed this compiler to be broadly applicable across multiple different hardware
platforms and dynamical system use cases. The compiler works with a dynamical
system specification and a hardware specification that describes the blocks and con-
nections available on the analog device. The compiler works with these specifications
to produce an analog circuit — this enables the compiler to target a variety of recon-
figurable dynamical system-solving analog devices and compile dynamical systems
from a variety of different application domains. I demonstrate that this compiler
can effectively target a fabricated reconfigurable dynamical system-solving analog

device [132, 51, 61] in practice in this thesis.

2.3.1 Compilers for Dynamical System-Solving Analog De-

vices

There has been some recent work on mapping biological networks to programmable
analog devices specifically designed to run biological systems. The proposed compiler
maps biological models implemented in a systems biology markup language (SBML)
to a reconfigurable analog device that simulates reaction networks [140]. The com-
piler produces, as output, a configuration for the target hardware and a system of
differential equations that implements the biological model. The target device con-
tains twenty block instances of a chemical reaction block that can be configured to

implement various chemical reactions.

71

The key technical contribution in this work is a program transformation that
expands lumped kinetic models into systems of chemical reactions. This program
transformation operates directly on the biological model. A lumped kinetic model
condenses systems of chemical reactions into a set of closed-form algebraic functions
which capture the steady-state of the relevant compounds in the system. The authors
present a pattern matching-based method for expanding the lumped kinetic models.

The expanded reactions are then directly mapped onto the target analog hardware.

Relationship to this work: The work presented in [86] was published after our
work on analog compilation [4, 2, 3]. The lumped kinetic expansion optimization
and SBML parser presented in [86] is complementary to my own work and can be
incorporated into my compiler as a simple, domain-specific front-end. In this scenario,
the differential equations emitted by the lumped kinetics expansion optimization pass

would become an input to my compiler.

The compiler presented in [86] does not systematically reason about the low-
level physical behaviors in the hardware (such as process-variation induced behavioral
variations) or transform the circuit to improve the dynamic range of the signals. While
the authors perform some corrections to handle unexpected gains in analog currents
produced from digitally settable data fields, these corrections are localized to the
specific data fields. These corrections therefore do not compensate for all unexpected
gains in the device. As a result, the compiled computation produces results that do
not agree with the reference implementation of the program. The authors list signals
with small dynamic ranges and unexpected gains as possible sources of imprecision

in the compiled computation.

In constrast, the compiler presented in this thesis automatically transforms the
produced circuits to respect all of the operating range and frequency limitations
present within the hardware and considers the effects of process variation, quantiza-
tion error, and noise on the computation. The compiler also increases the dynamic
ranges of the signals to reduce the effect of error on the computation. As a result,
the compiled computations produce results that strongly agree with the reference

implementations of the benchmark applications.

72

The circuit generation algorithm presented in [86] uses a hand-implemented map-
ping procedure to map expanded reactions to analog circuits. This mapping procedure
is designed to target the cytomorphic chip [140] specifically and cannot be general-
ized to other kinds of reconfigurable dynamical system-solving hardware platforms.
In contrast, the compiler presented in this thesis targets a hardware specification and
offers a general compiler architecture for targeting a variety of different reconfigurable
differential equation-solving analog devices.

In summary, the compiler presented in [86] can only be compared to a subset of
the work presented in this thesis (circuit synthesis) and is unlikely to be nearly as
broadly applicable as the techniques presented in this work. Moreover, parts of the
compiler presented in [86] which deal with the analog behavior are still relatively

immature when compared to the compiler presented in this thesis.

2.4 Other Kinds of Reconfigurable Analog Devices

Pure and mixed-mode analog accelerators have been developed for accelerating a
broad range of applications, including neural networks, SAT solvers, and neuromor-
phic computations [15, 109, 102, 62, 87, 89, 38|. Modern reconfigurable analog devices
may leverage a variety of different physical phenomena to implement computation.
Researchers have proposed photonic analog computing platforms which leverage the
physical properties of light to perform computation, for example [85, 116, 81]. In this
section, I focus on electrical analog devices implemented with mixed-signal and analog
ICs. This class of reconfigurable analog devices targets a wide variety of application
domains and computational models. In this section, I introduce reconfigurable analog

devices by application domain.

2.4.1 Spiking Neural Networks

Researchers have designed analog computing platforms that implement spiking neural
networks [89, 69, 15]. These devices are attractive computational targets because they

can simulate large spiking neural networks (SNNs) at low power. Typically, these

73

platforms implement the neuronal models with analog circuitry and route/process
spikes to neurons with digital circuitry. Researchers have also designed mixed-signal
SNN accelerators which leverage device mismatch to implement device-specific, non-
uniform neuron models [89].

Programming Techniques: Compilers that target mixed-signal spiking neural net-
works accelerators typically directly map the target spiking neural network to hard-
ware elements. This mapping procedure directly maps neuron parameters to circuit
parameters and neurons to analog functional units within the hardware. Because
mixed-signal SNN accelerators offer analog functional units which directly correspond
to SNN elements, the mapping process is relatively straightforward. The compiler
employed in [89] maps a non-linear dynamical system to a network of analog neuron
elements. This mapping identifies a neuron topology that approximately implements
each differential equation in the target dynamical system. With this computational
model, integration is performed in discrete time.

Relationship to this work: This thesis targets dynamical-system solving analog
devices that solve differential equations in continuous time. This compilation for this
class of hardware is fundamentally different from the compilation problem for spiking
neural networks. For our target class of hardware, there is no straightforward mapping
between the target dynamical system and the analog computational units provided
by the hardware. Furthermore, the devices targeted in this thesis perform dynamical
system simulation purely in analog. The compiler must explicitly introduce logic to
re-use and route signals. In contrast, mixed-signal SNN accelerators represent neuron
inputs and outputs as digital signals. The SNN compiler is free to route and buffer

these digital signals through the chip without reasoning about any analog behavior.

2.4.2 Neural Networks and Machine Learning

Researchers have also developed mixed-signal programming-in-memory systems which
implement multiply-accumulate operations directly in memory with analog ICs [48,
23, 24, 88|. These systems are attractive computational targets for big-data applica-

tions because they perform computation directly on data in memory and therefore

74

require less data movement. The stored data is typically binary data in these systems,

and the applied weights are typically decimal values between -1 and 1.

Researchers have also developed mixed-signal and analog accelerators which fully
implement neural networks [111, 39, 121]. Some of these mixed-signal devices imple-

ment neural networks which approximate digital sub-computations [39, 121].

Programming Techniques: The analog logic in these accelerators typically imple-
ments straightforward mathematical sub-computations such as weighted summation.
These analog logic units are typically embedded in a larger digital system that imple-
ments the rest of the neural network operators. Depending on the hardware platform,
the analog units are programmed through specialized hardware instructions or auto-
matically programmed by the compiler during the mapping process. Because there
is a direct correspondence between the neural network topology and the functional

units on the device, the mapping process is relatively straightforward.

One key challenge with programming analog MAC computational units is accu-
rately setting the weights. Because analog ICs are sensitive to low-level physical
behaviors present in the hardware, the programmed weights do not accurately reflect
the actual weights applied in the hardware. Researchers have proposed alternate neu-
ral network training algorithms that consider hardware imperfections when training

the models [24].

Relationship to this work: This thesis targets dynamical-system solving analog
devices. These devices fully implement the entire dynamical system computation in
analog hardware. For this hardware, there is no straightforward mapping between the
target dynamical system and the provided functional units. The compiler presented
in this thesis identifies non-trivial mappings between the hardware and the dynamical

system.

The dynamical systems targeted in this thesis often contain values that lie outside
of the range of values supported by the analog hardware. The compiler presented in
this thesis transforms the computation so that it can be accurately implemented in

the analog hardware.

1)

2.4.3 Field-Programmable Analog Arrays and Analog Fabrics

Researchers have developed reconfigurable analog fabrics which enable individual
transistors to be routed together [120, 56, 54, 11, 108|. These versatile devices are
capable of implementing a variety of different analog and mixed-signal circuits.
Programming Techniques: These devices are programmed with a Simulink-style
block diagram language. The configurable blocks in this language are parametrized
analog circuits which route together transistors within the fabric. The associated
software toolchain composes together the configured circuits in the block diagram to
form a low-level circuit.

Relationship to this work: The compilation techniques presented in this the-
sis are complementary to the software techniques used to target field-programmable
analog arrays. The compiler presented in this thesis targets analog devices with pro-
grammable analog functional units that implement high-level mathematical functions.
The compilation techniques presented in this thesis can automatically derive a block
diagram that implements a dynamical system, given a library of FPAA mathematical
blocks. The FPAA software toolchain can then be used to map the derived block

diagram to a low-level circuit.

2.5 Compilation and Synthesis Techniques

The compilation techniques presented in this thesis draw inspiration from compilation
and synthesis techniques presented in academic literature. In this section, I provide an
overview of related techniques. For each software technique, I describe the relationship

between the proposed technique and the technique employed by our compiler.

2.5.1 Deductive Synthesis

The broad concept of a tableau has been widely used in theorem proving [1] and for
the synthesis of functional programs [82, 84, 83|. In this context, logical deduction

rules transform a set of assertions and goals into a proof, potentially with output

76

entries that make it possible to extract a program from the proof.
Relationship to this work: The compiler uses a tableau to organize a search for a
configuration of the target analog hardware platform that is algebraically equivalent
to the specified dynamical system. Unlike these previous approaches, the compiler
works with complex multifunctional analog components, not standard programming
language primitives. To correctly utilize these components, the compiler uses alge-
braic unification and must deal successfully with the cascading relation entanglement
inherent in the use of such powerful but complex analog components.

Also, unlike these previous approaches, the compiler synthesis algorithms operate
in the presence of resource constraints — they synthesize the dynamical system onto a
hardware platform with finite resources. The compiler synthesis algorithms therefore
must track the resources that have been consumed in the synthesis (including complex
partially consumed components), with the synthesis failing if it consumes too many

resources.

2.5.2 Code Generation

Code generators extract machine code from intermediate representations of the pro-
grams [35, 5, 44]. Code generators use tree pattern matching to translate code trees
into sequences of machine instructions. Typically, code generators work with concise
machine specifications which map IR patterns to instructions.

Relationship to this work: The compiler presented in this thesis works with dy-
namical systems that may contain feedback loops and circular dependencies. These
dynamical systems cannot be represented as trees and cannot be mapped to analog
hardware with code generation techniques.

Individual differential equation relations can be represented as trees with variables
and constant values as terminal nodes. However, for these relations, the mapping be-
tween hardware blocks and differential equation terms and expressions is often highly
non-trivial. The compiler may need to select and apply non-trivial transformations
that alter (and sometimes complicate) the expression tree structure while mapping

the differential equation to the hardware. Code generation algorithms do not support

7

these sorts of transformations.

2.5.3 Superoptimization and Rewrite Systems

Researchers have proposed domains-specific superoptimizers which combine mathe-
matical and machine rewrite rules to generate search spaces of instruction sequences
that implement a given computation [68, 136|. Typically the goal of such optimiz-
ers is to implement a computation with a specific instruction set. Superoptimizers

typically employ search-based algorithms to find efficient instruction sequences.

Recently, researchers have developed tools for developing solver-aided languages [131].
These general-purpose tools enable programmers to define rewrite systems that trans-

form programs.

Relationship to this work: The compiler proposed in this work differs from su-
peroptimization research in that it produces inherently parallel analog hardware con-
figurations with no concept of sequencing. The target blocks include a finite set
of complex, potentially partially utilized analog building blocks optimized for ana-
log efficiency, not digital machine instructions. And the relevant reasoning involves

continuous, non-linear functions, not digital logic.

The compiler uses a custom, multi-stage circuit synthesis procedure to construct
a circuit that implements a given dynamical system. This circuit synthesis procedure
uses an off-the-shelf computer algebra system that efficiently searches over algebraic
rewrite rules. The multi-stage circuit synthesis algorithm uses domain information to
decompose the problem and efficiently synthesize circuits. To implement the circuit
synthesis procedure with a general rewrite system, the hardware domain information,
algebraic rewrite rules, and usages of the analog blocks would need to be encoded
as rewrite rules. This embedding of the synthesis problem is likely to produce a
prohibitively large search space which the generalized solver would have to navigate

efficiently.

78

2.5.4 Compilers for CGRAs

Researchers have developed compilation techniques for coarse-grained reconfigurable
architectures (CGRAs) [125, 97]. CGRAs are digital spatial computing platforms
that typically offer processing elements and memory blocks linked together with a
programmable mesh. Depending on the architecture, the individual processing ele-
ments may themselves be configurable and implement multiple operators. CGRAs
are digital computational substrates and therefore support storing and loading digital

values from memory.

Researchers have developed compilation techniques and hardware specification
languages for this class of accelerators |70]. These contributions focus on accelerators
that offer digital computing elements and offer language constructs for memories,
registers, and communication interfaces. The associated compilation techniques rea-
son about data movement and exploit parallelization opportunities. Researchers have
also proposed techniques that automate the process of mapping a data-flow graph to
a CGRA [26]. These techniques identify embeddings of the data-flow graph in the
CGRA computational substrate.

Relationship to this work: The compilation techniques and language constructs
used for CGRAs cannot be effectively applied to differential-equation solving ana-
log computing platforms. Reconfigurable analog devices primarily work with analog
signals which cannot readily be re-routed, buffered, loaded, or stored during exe-
cution. Furthermore, a key focus of CGRA compilers is in identifying parallelism.
Because reconfigurable analog devices execute all computation in parallel by design,
the compiler does not need to identify parallelization opportunities when mapping
the computation to the hardware. The core circuit synthesis algorithm presented in

this thesis solves a fundamentally different set of problems than the CGRA compilers.

The CGRA mapping technique proposed in [26] is similar to the place+route
algorithm proposed in this thesis. One key difference is that this mapping technique
does not consider the spatial orientation of the functional units when mapping the

DFG to the hardware. In reconfigurable analog devices, spatially co-located blocks are

79

easier to connect together than spatially distant blocks. The place-+route algorithm
presented in this thesis exploits the blocks’ spatial orientation to more performantly

map the analog circuit to the hardware.

2.5.5 FPGA Place+Route Algorithms

Over the years, researchers have developed a multitude of place-and-route procedures
for mapping digital designs to FPGAs [124, 115, 16]. FPGA place-and-route proce-
dures map digital logic elements to physical resources on the FPGA and maps con-
nections between elements to digitally settable paths in the FPGA. Typically, these
place-and-route algorithms identify placements that minimize the length of the wires
or place digital elements relatively uniformly within the computational substrate.
These place-and-route procedures take advantage of the rich routing environment of-
fered by FPGAs. For example, some place-and-route algorithms will randomly place
logic elements within the FPGAs while exploring candidate digital design layouts —
because FPGAs offer a large number of interconnects, these random placements likely
translate to valid layouts of the design.

Relationship to this work: In this thesis, I present a place+route algorithm that
maps an analog circuit to the programmable analog hardware. This place+route
algorithm maps analog blocks to physical blocks on the analog device and maps con-
nections between elements to digitally settable paths within the analog device. This
place+route algorithm presented in this work differs from FPGA place-and-route
algorithms because it targets a device that offers a highly restrictive routing envi-
ronment which requires the allocation of specialized functional units to form certain
connections. The place+route algorithm presented in this thesis generates valid block
placements in the presence of restrictive routing conditions and introduces functional
units when necessary to form connections. In contrast, FPGA place+route algorithms
operate under the assumption that a large number of placements are valid and may
explore a large number of invalid placements when applied to this class of hardware.
FPGA place+route algorithms also do not typically support introducing specialized

functional units to form connections.

80

2.5.6 Interval Analysis

Interval analysis has a long history in fields such as electrical engineering, control
theory, and robotics [71, 66]. Researchers have proposed algebras for propagating
intervals through mathematical functions [57, 67]. These interval analysis techniques
are often used in numerical computation to statically analyze user-defined problems
before solving them. Some interval analysis techniques can contract intervals to at-
tain tighter bounds on variables and expressions. There also exist interval analysis
techniques that automatically derive interval bounds for ordinary differential equa-
tions [28, 101|. For some biological and physical systems, it is possible to derive tight
interval bounds analytically by leveraging conservation laws |72, 60].

Relationship to this work: The compiler presented in this thesis uses interval
analysis to bound the analog signals for the parameter scaling process. The compiler
uses basic interval arithmetic (without contraction) to propagate intervals through
mathematical functions [57].

The compiler presented in this thesis requires the programmer to provide interval
annotations for each of the time-varying variables in the dynamical system. These
interval annotations tell the compiler the range of values each variable may take on.
These annotations can conceivably be automatically derived for some systems using

the above techniques.

2.5.7 Scaling

Scaling is used in numerical computation to reduce the effect of numerical error and
improve the stability of numerical computations [119, 59]. These numerical scaling
transforms are typically highly domain-specific and are often manually derived. Scal-
ing transformations for numerical computations typically only consider the numerical
error of the computations.

Practitioners also manipulate the timescale of time-varying dynamical systems
comprised of ODEs to render the system more amenable to simulation and lineariza-

tion [103]|. These approaches typically introduce a tunable time scale parameter into

81

the numerical computation that multiplies all the derivatives by a constant factor.
Relationship to this work: The compiler presented in this thesis automatically
scales the quantities in the analog circuit so that the signals within the circuit respect
all of the physical limitations of the hardware. The compiler considers a wide range
of low-level analog behaviors and physical constraints when scaling the circuit. In
contrast, numerical scaling approaches focus on numerical stability and numerical
€error.

The compiler uses the same basic approach employed by numerical time scaling
approaches to change the timescale of the computation. Unlike numerical approaches,
the compiler considers analog frequency restrictions imposed by the hardware when

changing the timescale and optimizes execution speed instead of numerical stability.

2.6 Conclusion

In this chapter, I presented an overview of the relevant related work for this thesis.
Dynamical Systems: I first provided an overview of dynamical systems. Dynamical
systems appear in a wide variety of fields including mathematics, physics, chemistry,
biology, economics, engineering, and medicine. Practitioners use dynamical systems
to model and predict physical phenomena, implement signal processing and control
algorithms on embedded systems, and solve machine learning and optimization prob-
lems. A dynamical system typically consists of one or more interdependent variables
which change over time. Dynamical systems are typically implemented as a system of
ordinary differential equations (ODEs) or partial differential equations (PDEs). The
work presented in this thesis focuses on dynamical systems are implemented with
ODEs.

Ordinary differential equation solvers simulate systems of ordinary differential
equations on digital hardware. Classical differential equation solvers segment time
into discrete time steps and compute the system’s state at each time step. Digital
ODE solvers have difficulty simulating dynamical systems with both fast and slow

dynamics accurately and efficiently. The ODE solver must segment time at a fine

82

granularity to accurately simulate such a dynamical system. For this reason, among
others, digital solvers cannot always efficiently simulate non-linear dynamical systems
and dynamical systems which operate on different time scales. Other digital simu-
lation approaches which have more predictable performance characteristics primarily
work with linear dynamical systems. Practitioners often independently introduce ap-
proximations into the dynamical system to make it more amenable to efficient digital

simulation.

In this thesis, I simulate dynamical systems with analog hardware. Under this
paradigm, the evolution of the currents and voltages within the analog device capture
the dynamical system’s dynamics over time. This computational model does discretize

simulation time and can operate on non-linear dynamical systems.

Historical Analog Computers: I then provide an overview of historical dynamical
system-solving analog computers. Historically, practitioners used electrical analog
computers to perform dynamical system simulations. These analog computers were
programmable and configured with potentiometers, switches, and a patchbay. Re-
searchers proposed a variety of compilation and scaling approaches for this hardware.
These automated approaches were designed to work with high-precision functional
units which could be manufactured with little process variation. Even after these
analog computers disappeared from the computational landscape, analog computa-

tion remained an important part of many hardware systems.

Modern Dynamical System-Solving Analog Devices: One prominent line of
work focuses on designing ultra-low power reconfigurable analog devices that solve
dynamical systems. These analog devices are silicon chips manufactured with conven-
tional fabrication processes and leverage the advances made in analog IC fabrication.
These hardware platforms consume very little power, deliver predictable performance
characteristics, and are capable of interfacing directly with analog signals. Currently,
this hardware is programmed directly at a low level with little or no automation.
Historical compilation approaches are ill-suited for these modern analog computers
because modern analog hardware offers lower precision functional units sensitive to

process variation and noise. In this thesis, I target this class of analog devices and

83

present a compiler that automatically maps general dynamical systems to a recon-
figurable analog device of class. This is the first compiler to automatically map
dynamical system computations to reconfigurable analog hardware of this class.
Other Kinds of Reconfigurable Analog Devices: I provided an overview of
other kinds of reconfigurable analog devices. For each class of devices, I contrast the
programming techniques used to target the device with the compilation techniques
presented in this thesis. I primarily discuss mixed-signal spiking neural network accel-
erators and mixed-signal machine learning accelerators. Many of these mixed-signal
accelerators offer functional units which directly correspond to computational opera-
tions in the high-level program and do not require the compiler to reason about the
low-level device physics of the mixed-signal circuits. In contrast, the work presented
in this thesis identifies non-trivial mappings between functional units and mathemat-
ical operators and automatically reasons about low-level physical behaviors. I also
discuss field-programmable analog arrays. The programming techniques for field-
programmable analog arrays are complementary to the techniques presented in this
work.

Software Techniques: I conclude the chapter with an overview of related numer-
ical computation and compilation techniques. I discussed why code generation and
superoptimization techniques are not well suited for circuit synthesis. 1 then con-
trasted the circuit synthesis approach employed in this thesis to deductive synthesis
approaches to generalized rewrite-based solvers presented in other work. I next dis-
cussed how compilation techniques for coarse-grained reconfigurable architectures and
FPGA place-and-route techniques relate to the place and route technique presented
in this thesis. I then discussed how interval analysis and scaling approaches from

numerical computation related to the compilation techniques presented in this work.

84

Chapter 3

Dynamical Systems

A dynamical system is a system whose state evolves over time. Dynamical systems
appear in a wide variety of fields, including mathematics, physics, chemistry, biology,
economics, engineering, and medicine. A dynamical system typically consists of one
or more interdependent variables which change over time. Dynamical systems are
typically implemented as a system of ordinary differential equations (ODEs) or partial

differential equations (PDEs) and are used to solve a variety of different problems:

e Understanding Physical Phenomena: Dynamical systems computations in
the biological sciences are often used for medical dosage optimization, disease
prediction, and understanding biological phenomena. [74, 117]. For example,
medical practitioners may use a dynamical system to model the effect of a hor-
mone injection on an individual’s hormone levels and then use this information
to derive an initial dosage. Practitioners are primarily interested in simulating
such systems over a window of time and then inspecting the trajectories of the
dynamical system variables or retrieving the steady-state (stable) values of the

dynamical system variables.

e Understanding the Environment: Dynamical systems are deployed on em-
bedded systems to reconstruct higher-order information from environmental
signals in real-time |78, 14]. Examples of such use cases include the prediction

of the angle of origin of a sound wave from an array of sensors and the tracking

85

of the orientation of an object from sensor inputs.

e Interacting the Environment: Dynamical systems can be used to control
actuators such as motors 33, 9]. Typically these dynamical systems produce
driving signals to these actuators to accomplish some goal. This sort of use case
is common in fields such as robotics and controls. A dynamical system may be
used to stabilize a drone or balance an inverted pendulum, for example. These
sensor-actuator applications typically have real-time performance requirements
and are sometimes implemented on resource-constrained digital devices such as

microcontrollers.

While dynamical systems are invaluable in many different domains, there are chal-

lenges with executing these systems accurately and performantly:

e Stiff Dynamics: Studying dynamical systems on digital hardware can be
challenging as systems are often stiff and therefore prone to numerical insta-
bility |94, 36]. In this context, a stiff system is a system that is prone to
numerical instability unless the time steps taken are extremely small. For ex-
ample, many biological systems are stiff systems with both fast-evolving and
slow-evolving dynamics. When possible, practitioners will often substitute fast-
evolving dynamics with closed-form solutions to resolve stiffness issues with the
target dynamical system. This substitution approximates the original behavior
because it assumes the fast dynamics reaches a steady-state (stable) solution

instantaneously.

Nonlinear Dynamics: Non-linear dynamical systems are often difficult to sim-
ulate as they are more difficult to analyze than linear systems and often use ex-
pensive operators. Practitioners often linearize dynamical system non-linearities
to make the computations tractable amenable to efficient digital simulation. For
dynamical systems which model physical phenomena, this reduces the accuracy
of the model in relation to the corresponding physical system [37, 138, 21|. For
dynamical systems which observe and interact with the environment, this can

reduce the fidelity of the produced outputs.

86

Real-time Dynamical Systems on Embedded Devices: Dynamical sys-
tems which interact with the environment often need to continuously process
signals in real-time. Because these applications are typically run on embedded
systems, these dynamical system implementations must meet these performance
requirements on energy- and compute-constrained platforms. Typically, these
dynamical systems are discretized and aggressively simplified so that they can
performantly execute on an embedded digital device such as a microcontroller.
Even with these simplifications, attaining real-time performance may still be

difficult if the sensed values evolve too quickly.

In this chapter, I provide an overview of dynamical systems and describe how these
systems are modeled and solved today. I then introduce a dynamical system speci-
fication language (DSS) for describing dynamical systems. In Chapter 6, I use the
dynamical system specification language described in this chapter to specify twelve
benchmark applications from the physics, biology, controls, and robotics domains and

two real-time signal processing applications.

3.1 Dynamical System Overview

A dynamical system is a system made up of one or more variables that evolve over
time. Dynamical systems are typically modeled with ordinary differential equations
(ODEs) or partial differential equations (PDEs). There also exist other, less com-
monly used, dynamical system formulations, such as integro-differential and delay
equations [73].

In this work, I focus on dynamical systems which can be modeled with ordinary
differential equations. An ordinary differential equation (ODE) is a differential equa-
tion in which all derivatives are taken with respect to an independent variable such
as time. ODEs support a narrower class of systems than PDEs as PDEs also allow
for partial derivatives to be taken with respect to other dynamical system variables. I

present the general formulation of time-varying ordinary differential equations below:

87

Ft,z,@,..,7") =0

In the above formulation, the time ¢ is the dynamical system time, and the vector 7 is
the vector of dynamical system variables. All variables in the above formulation take
on real values. The initial state of the dynamical system Z(0) = &, is the vector of
starting values for each variable in the system. Each dynamical system variable starts
at its initial state and evolves over time in accordance with the above dynamics. The
above formulation is general but more difficult to solve. Typically dynamical system
variables are called state variables, and the system’s initial state is referred to as
the initial condition. In this work, I target a subset of ODEs called explicit ODEs.

Explicit ODEs can be rewritten to take on the following form:

F(t, 2@, .., 7") = g™

The compiler requires the input dynamical system to be expressed as a set of first-
order explicit differential equations. Any system of explicit ODEs can be reduced to

an explicit first-order system of ordinary differential equations:

The left-hand side of the relation is the first-order derivative of each state variable,
and the right-hand side of the relation specifies the dynamics of each state variable
over time. FEach state variable’s dynamics is written as an expression over state
variables and time. A system of first-order ODEs is linear if each expression is a
linear combination of state variables and time. Linear systems of ODEs are desirable
because they are easier to implement efficiently and are amenable to a broader set of
analyses and alternate representations |58, 98, 99, 17, 77|. Practitioners often linearize
non-linear systems to enjoy these benefits. These linearization techniques may reduce
the efficacy or accuracy of the dynamical system since it involves approximating the
dynamics of the system.

External Inputs: In these systems, external inputs from sensors, for example, are

88

often written as uninterpreted functions of time (g(t)).

3.1.1 Execution of First-Order ODEs

Practitioners are typically interested in simulating a dynamical system. Generally,
dynamical system simulation techniques compute the trajectories of the state vari-
ables over simulation time. I focus on simulation techniques for first-order ODEs:

Digital Simulation: Numerical solvers simulate dynamical systems by discretizing
time into small chunks and computing the state of the system at each point in time.
It maintains a decimal vector x of state variable values and the current simulation
time. The state vector is instantiated to the initial state of the dynamical system at

the start of the simulation. The state is then updated for each time step:

x:= x+0t-F(t+dt x)
t:= t+4t

The above relations compute state of the system at t + 0t from the state of the

system at time t. The time step 0t determines how much to advance simulation time.
This time step may be fixed or adaptively adjusted from simulation statistics [22, 10].
Any behaviors which occur between time t and time t + dt are not captured in the
digital simulation. Therefore, while taking larger steps results in a faster simulation,
it may produce inaccurate signal trajectories.
Analog Simulation: First-order ODEs may also be simulated with programmable
analog devices. Under this paradigm, the analog device is itself a dynamical system
that evolves over time. First, the analog substrate is configured such that the dy-
namics of the voltages and currents in the device match the dynamics of the state
variables in the target dynamical system. Then the substrate is manipulated so that
its initial state matches the initial state of the dynamical system. The dynamical
system is then simulated by observing the relevant properties in the analog substrate
over time.

Analog devices operate in the continuous time-domain, circumventing the time

89

scale issues that often plague stiff dynamical system computations implemented with
discretized time steps [134]. Time does not tick in intervals as in standard clocked
digital systems but instead runs continuously and asynchronously. Because dynamical
system time is mapped to hardware time, the time required to simulate the dynamical
system can be statically computed before execution. The analog computational model
is also massively parallel. While larger dynamical systems use more substrate and
therefore consume more area, they do not necessarily take any longer to execute than

a smaller dynamical system.

3.1.2 Changing the Speed of First-Order ODEs

The compiler presented in this thesis can tune the execution speed of the dynamical
system by leveraging a time-scaling property of first-order ODEs. Given a system of
first-order ODEs, the speed at which the trajectories evolve can be manipulated by

multiplying the derivatives of all the state variables by a constant coefficient:

7 =a-F(t7T)

The above equation adjusts the system of first-order ODEs to execute at ax the
original simulation speed. Choosing an « value less than one causes the trajectories to
evolve more slowly, reducing the simulation speed of the dynamical system. Choosing
an « value greater than one causes the trajectories to evolve more quickly, increasing

the simulation speed of the dynamical system.

3.2 The Dynamical System Specification Language

This work presents a specification language for dynamical systems. This language
is used to specify dynamical systems to the compiler. The dynamical system spec-
ification language (DSSL) is the high-level language for this system. The language
supports defining dynamical system state variables and functions and annotating vari-

ables with interval bounds and frequency limits. The DSSL works with the subset

90

x € RealNumbers, v € Literals
n € NaturalNumbers,
x* € RealNumbers > 0,

VarList ::= v | VarlList,v
I ::= [x1,x%2]
E ::=FE +Ey | Ey*Ey | x | v
| integ(E1,E9) | (E) | call(v,EList)
EList ::= E | E,ExprList
F ::=F1 + Fo | F1*Fo | x| v

| integ(F1,F2) | (F) | F1/Fo
| sgn(F) | 1n(F) | exp(F) | sin(F) | cos(F) | abs(F)
| min(Fy, F2) | max(Fy, Fo) | pow(Fy, Fa)

FuncDecl ::= v(VarlList) = F

Figure 3-1: Math expressions

of mathematical expressions that can be formally described with the expression lan-
guage presented in Section 3.2.1. The hardware specification languages presented in

Chapter 5 also reference the expression language.

3.2.1 Mathematical Expression Language

Figure 3-1 presents the space of mathematical expressions supported by the com-
piler. These expressions contain both variable literals v and real numbers x. The
expression language offers both a basic expression construct E that defines operators
typically natively supported in analog and mixed-signal devices and an expanded ex-
pression construct F' that extends the basic expression construct to include a wider
set of operations. The operations supported in the basic expression construct E are

summarized below:

e Addition and Multiplication: The addition (E; + E;) and multiplication
E,*E, operators implement addition and multiplication over basic expressions,

respectively.

e Integration: The integration integ(E; Ey) operation integrates the derivative

E; over time. The initival value of the integrated signal is E,.

e Function Invocation: The function invocation operation call(v,1st(E))

91

invokes a user-defined function with the name v with a list of of basic expressions
EList as function inputs. The body of the function is typically defined outside of
the expression using a a function declaration statement v(VarList) = F which
maps a function definition to its implementation. The v literal specifies the
name of the function and the variable literal list VarList is the list of function
argument names. The extended expression F is the body of the function. The

body of the function may only reference variables which are function arguments.

The extended expression construct F supports all mathematical operators already
supported in E.It extends the set of supported operators to include a variety of non-

linear mathematical operations:

e Minimum and Maximum: The minimum min(F;, Fs) and maximum max (F;
Fy) operations take the minimum and maximum of the extended expression op-

erations F; and Fy respectively.

e Exponentiation: The exponentiation operation pow(F;, Fy) raises the ex-

pression F; to the expression Fj.

e Natural Log and Natural Exponentiation: The natural log 1n(F) and
natural exponentiation operations exp (F) compute the natural log (In(F)) or

the exponential (e') of the expression argument F.

e Sine and Cosine: The sine sin(F) and cosine operations cos (F) compute the

sine and cosine of the expression argument F.

e Absolute Value and Sign: The absolute value abs(F) and sign operations
sgn(F) take the absolute value and the compute the sign (1 or -1) of the ex-
pression F. Both of these functions are non-linear and introduce discontinuities

into the expression at zero.

92

Stmt
| freq VarList

extern v | interval VarList = I

= var v = E |
= x | func FuncDecl | time x

| realtime I

Body ::
Prog :

= Stmt | Body ; Stmt
:= prog v { Body }

Figure 3-2: Grammar for DSSL

3.2.2 Dynamical System Specification Language

Figure 3-2 presents the dynamical system specification language (DSSL). The

language supports binding symbolic expressions to dynamical system variables and

specifying the interval bound and optionally the frequency bound of each variable.

The DSSL offers constructs for defining named functions which can later be invoked

in the dynamical system relations. The language constructs are summarized below:

Variable Definitions: Each relation declaration statement var v = E binds
a variable v to an basic mathematical expression E. These relations together de-
scribe the differential equations and straight-line functions that together specify

the dynamical system behavior.

Function Definitions: The DSSL supports extended expression operations
provided the expression is enclosed in a user-defined function. These func-
tions may be defined in the DSS with function declaration statements (func
FuncDecl or func v(VarList) = F). Each function declaration defines a named
function v which accepts a list of named arguments VarList and implements

the extended expression F.

Interval Annotations: The DSSL requires variables be annotated with an
interval bound. This interval bound interval VarList = [x;,%s] indicates
that the listed variables VarList will not fall below the value x; or exceed the
value x5 at any point in time. The compiler uses these interval annotations to

ensure the analog signals capture the full range of values for each variable.

Execution Time: The DSSL requires the end user to specify the execution

time of the dynamical system in simulation time units. The execution time

93

statement time x indicates the specified dynamical system should be run for
x units of simulation time. The compiler uses the specified simulation time to

determine the execution time of the mapped computation.

The DSSL also supports defining dynamical systems which work with real-time sig-
nals. These real-time signals are continuously evolving external inputs which may be
taken from sensors or routed from other mixed-signal devices. The DSSL real-time
constructs involve real-time frequencies and real-time latencies that are expressed
in terms of wall-clock time. The constructs for working with real-time signals are

summarized below:

e External Variable Definitions: The DSSL supports describing dynamical
systems which work with continuously evolving external inputs. The extern v

declaration defines an external variable named v.

¢ Maximum Frequency Annotations: The DSSL requires each external vari-
able to be annotated with a maximum frequency annotation. FEach maxi-
mum frequency annotation freq VarList = x indicates that the listed vari-
ables VarList will not exceed the maximum frequency x. The specified maxi-
mum frequency is the maximum real-time frequency of the signal. For example,
the maximum frequency of an externally provided signal mic carrying a sound
wave from a microphone would be the maximum frequency picked up by the
microphone (20 kHz). The corresponding DSS statement would be freq mic
= 20000. The compiler uses these annotations to determine which hardware

features can reasonably be used with the defined external signal.

e Real-time Simulation Speed: The DSSL supports defining the acceptable
range of simulation speeds for real-time applications. The realtime [x;,xs]
statement indicates the one unit of simulation time must correspond to between

1 seconds of wall-clock time. These annotations ensure that the

x;! and x;
specified dynamical system evolves quickly enough to react to changes in a real-

time external signal, and slowly enough to track the slower evolving dynamics

94

in the external signal. This annotation is typically only provided if an external
variable is defined. For example, a dynamical system that processes a sound
wave at 20 kHz may need to evolve at two to three times the external signal
speed (40 — 60kH z) to process the signal efficiently and accurately. For such
a system, one unit of dynamical system time would therefore need to map
to at least 0.0166-0.025 milliseconds of wall-clock time. The real-time speed

annotation for such a system would be realtime [40000 , 60000].

Before compilation, an interval propagation algorithm fills any the missing interval
annotations in the dynamical system specification. It then performs a well-formedness
check which ensures that all non-external variables have defined behavior and can be
bounded. All external variables must have both interval and frequency bounds. The
time statement describes how much time (in simulation units) to run the computation

for.

3.3 Conclusion

Dynamical system computations appear in a broad range of domains, including math-
ematics, physics, chemistry, biology, economics, engineering, and medicine. Practi-
tioners use dynamical systems to understand physical phenomena, analyze sensed
information from the environment, and control actuators such as motors. In this the-
sis, I focus on dynamical systems implemented with systems of first-order ordinary
differential equations (ODEs). These first-order ODEs capture the evolution of one
or more variables over time.

Typically, practitioners simulate first-order ODEs with ODE solvers. Digital ODE
solvers discretize simulation time and compute the state of the system at each time
step. Digital ODE solvers have difficulty efficiently simulating dynamical systems
with non-linear dynamics or systems with dynamics that evolve at different time
scales. These simulation issues are exacerbated when run on embedded devices that

are heavily resource-constrained and must process stimuli in real-time.

95

In contrast, analog simulation approaches do not discretize time. Instead, simula-
tion time is directly mapped to wall-clock time. With this simulation approach, the
amount of time required to execute a dynamical system can be accurately computed
ahead of time regardless of the dynamical system’s complexity. This property enables
programmable analog devices to deliver predictable performance in the presence of
complex dynamics.

In this chapter, I present the dynamical system specification language. The com-
piler presented in this thesis maps dynamical systems written in the dynamical system
specification language to the target analog hardware. The dynamical system specifi-
cation language supports the specification of systems of first-order ordinary differen-
tial equations. The core dynamical system specification supports defining differential
equations and functions. The dynamical system requires all time-varying variables
have interval annotations which bound the range of values the variable may take on.

The dynamical system specification language also provides constructs for defining
real-time signals which process external signals. The language offers constructs for
defining the range of acceptable execution speeds, in hertz, for the real-time system.
The dynamical system language also supports the definition of external signals. Each
externally provided signal must also be annotated with a maximum frequency anno-
tation that indicates how fast the external signal evolves and an interval annotation
that indicates the dynamic range of the external signal. These constructs enable the

compiler to map applications that work with external signals to the analog hardware.

96

Chapter 4

Dynamical System Applications

This chapter presents the dynamical system specifications for twelve benchmark dy-
namical systems and two real-time signal processing applications that continuously
process external signals. This chapter presents two types of applications:
Benchmark Applications: I present twelve benchmark applications, six of which
were previously hand-implemented by my collaborators and six of which are novel
or from my prior work [4, 2|. For each benchmark application, I describe what
the dynamical system application is modeling at a high level and provide a general
overview of the dynamical system characteristics. I discuss whether the system is
linear or nonlinear and describe each of the variables in the dynamical system. When
applicable, I discuss commonly used approximating linearizations that reduce the
complexity of the problem, domain-specific variable properties and measures of result
fidelity, and analytical techniques for bounding dynamical system variables.

I next present the dynamical system specification describing the dynamical system
and provide plots of the dynamical system variable trajectories. I obtain the dynami-
cal system variable trajectories by solving the dynamical system with a high-precision
digital solver. I evaluate the compiler on these benchmark dynamical systems in the
Chapter 10 of this thesis. The variable trajectories presented in this chapter are the
reference trajectories used in Chapter 10.

Real-time Signal Processing Applications: I introduce two real-time signal pro-

cessing applications that continuously process external signals. These signal process-

97

ing applications are targeted in the case studies presented in Section 10.10. I discuss
the purpose of each signal processing application and provide a breakdown of the
associated dynamical system’s characteristics. I then present the dynamical system
specification for each signal processing application. Note that I do not provide dy-
namical system variable trajectories for these real-time applications. Because digital
dynamical system solvers are designed to simulate closed systems, I cannot use a dig-
ital solver to simulate open dynamical systems that work with external signals and

interact with the environment.

4.1 Simple Oscillator (cos)

Y, P Position
1 1
0.5
[[[
el e °
2 2 2
= 0 = 0 3 0.0
€ € €
< < <
-1 -1 -02
0 10 20 0 10 20 0 10 20
Time (simulation units) Time (simulation units) Time (simulation units)
var V = integ(-P,0.0);
var P = integ(V, 1.0);

var Position = emit(0.6%P);
interval p = [-1,1];
interval v = [-1,1];

time 20;

Figure 4-1: Simple oscillating mass.

The simple oscillator application (Figure 4-1) models the position and velocity
of an oscillating mass. The closed-form solutions of the position and velocity of
the above system are cos(t) and -sin(t) respectively. The DSS for this system
contains two linear differential equations which model the position P and velocity V
of the oscillator and a straight-line function Position that observes the position over

time. This system records the position of the mass for 20 units of simulation time.

98

4.2 Dampened Harmonic Oscillator (cosc)

\Y P Position
5
3 g g5
20 2 2
o o o
£ g0 g0
< < <
-5
-5 -5
0 10 20 0 5 10 15 20 0 5 10 15 20
Time (simulation units) Time (simulation units) Time (simulation units)
var v = integ(-0.22%v - 0.84*P,-2.0);
var p = integ(v, 9.0);

var Position = emit(p);
interval p = [-10,10];
interval v = [-10,15];
time 20;

Figure 4-2: Dampened oscillating mass.

The dampened harmonic oscillator application (Figure 4-2) models a mass at-
tached to a spring where the spring exerts some resistance on the mass as it moves.
The dynamical system comprises two linear differential equations that model the ve-
locity v and position p of the mass and one straight-line equation Position that
records the mass’s position over time. The above dynamical system executes for 20
simulation time units. This system is marginally more complex than the simple oscil-
lator as it introduces a -0.22*v term that models the effect of the mass’s resistance

to motion into the equation modeling the velocity of the mass.

99

4.3 Pendulum (pend)

angvel ang Angle

1 1
[Q [
E E E

20 20 20
Qo o Q
£ £ £
< < <

-1 -1 -1

0 10 20 0 10 20 0 10 20
Time (simulation units) Time (simulation units) Time (simulation units)

func sinf(T) = sin(T)

var angvel = integ(-0.18*angvel-0.8*call(sinf,ang),-1.0);
var ang = integ(angvel, 1.0);

var Angle = emit(ang);

[-1.5,1.5];

interval ang =
= [-1.5,1.5];

interval v
time 20;

Figure 4-3: Movement of a pendulum.

The pendulum application (Figure 4-3) implements a simple physics model which
captures the behavior of a swinging pendulum over time. The dynamical system is
made up of two differential equations which model the angular velocity angvel and
angle ang of the pendulum and a straight line equation Angle which monitors the
pendulum angle over time. This dynamical system executes for 20 units of simulation
time.

The equation modeling the position is linear, and the equation modeling the veloc-
ity is nonlinear in the above system. The pendulum model is a nonlinear dynamical
system because it makes use of the sin function. The above DSS introduces the
sinf function which accepts an argument T and computes sin(T). Note that a com-
mon approximating linearization of the above model involves approximating the sine
function with the angle of the pendulum [80]. This approximation is reasonable for

situations where the angular velocity ©' is small.

100

4.4 Spring (spring)

PA PB PosA
2 2
1
£ 2 o 2
IS £ £ 0
< < <
-1 -1 -1
0 5 10 15 20 0 10 20 0 5 10 15 20
Time (simulation units) Time (simulation units) Time (simulation units)
VA
func frc(T) = sgn(T)*sqrt(abs(T)) 1
var fPA = call(frc,PA) § o
var fPB = call(frc,PB) %
var VA = integ(O.S*fPB - fPA - 0.15%VA,0.0); <-1
var VB = integ(0.5*fPA - fPB - 0.15%VB,0.0);
. 0 5 10 15 20
var PA = integ (VA,2.0); Time (simulation units)

var PB = integ(VB,-1.0);
var PosA = emit(PA);

VB
interval PA = [-2.5,2.5];
interval VA [-2.5,2.5];
interval PB = [-2.5,2.5]; '
interval VB [-2.5,2.5]; -1
) 5 10 15 20

time 20;

o
-

Amplitude
o

Time (simulation units)

Figure 4-4: Two-spring system

The spring application is a physics model which captures the dynamics of two
masses A and B that are linked together by a system of springs. The dynamical
system models the position and velocity of masses A and B and records the position
of mass A as an external signal. The spring application records the position of the
spring for 20 simulation time units.

The equations modeling the velocity of both masses are non-linear as they in-
clude sgn (PA) *sqrt (PA) and sgn(PB) *sqrt (PB) terms respectively. The above DSS
writes both of these non-linear terms to the temporary variables fPA and £PB to reduce
the complexity of the velocity expressions. A common approximating linearization for
the above non-linear system involves replacing the sqn(PA)-v/PA and sgn(PB)-+/PB
terms with the variables PA and PB.

101

4.5 Vanderpol Oscillator (vanderpo1)

U \% 0SC
2 2 2

()] [} (9]
e o] e
2 2 2
= 0 = 0 = 0
IS 1 1<
< < <

-2 -2 -2

0 20 40 0 20 40 0 20 40
Time (simulation units) Time (simulation units) Time (simulation units)

var V = integ(0.2x(Vx(1.0-UxU)) - U,-0.5);
var U = integ(V,0.0);

var 0SC = emit(U);
interval U = [-2.5,2.5];
interval V = [-2.5,2.5];
time 10;

Figure 4-5: Van der Pol oscillator.

The vanderpol application (Figure 4-5) executes a two-dimensional non-linear
Van der Pol oscillator for 10 units of simulation time. The Van der Pol oscillator
model has long been used in the physical and biological sciences to model phenomena
ranging from seismic activity to vocal folds. The basic formulation of the Van der

Pol oscillator is as follows:

u=v g=pl -2y —a+g(t)

The vanderpol application is a nonlinear dynamical system made up of two dif-
ferential equations and one straight-line function. This implementation of the Van
der Pol oscillator models two variables V and U. This model is unforced, meaning the
external input term g(¢) in the above differential equation modeling V is set to zero.
This application observes the evolution of the oscillating variable U over time. The p
parameter in the above implementation is 0.2 and the V and U variables are initially
set to -0.5 and 0.0 respectively. The bounds for the oscillator variables are elicited

by executing the above dynamical system.

102

4.6 Forced Vanderpol Oscillator (zorceq)

X 0SsC
2
2 2
()] [} (9]
E 3 3
% 0 % 0 % 0
IS 1 1<
< < <
-2 - -2
0 20 40 0 20 40 0 20 40
Time (simulation units) Time (simulation units) Time (simulation units)
VW
1
var VW = integ(-W, 0.0); 3
var W = integ(VW, 1.0); § 0
var Y = integ(5*%(W + 0.2x(Yx(1.0-X*X)) - X),0.0); =
var X = integ(5*(Y),-0.5); e B0
var OSC = emit (X), Time (simulation units)
interval VW = [-1.0,1.0]; w
interval W = [-1.0,1.0]; !
interval X = [-2.2,2.2]; E
interval Y = [-2.2,2.2]; s °
time 50; <
-1
0 20 40

Time (simulation units)

Figure 4-6: Van der Pol oscillator with an oscillating forcing function.

The forced application (Figure 4-6) extends the basic Van der Pol oscillator
from Section 4-5 to accept a forcing function. This system is nonlinear and contains
four differential equations and one straight-line function. The forced Van der Pol
oscillator internally generates an oscillating function with a velocity VW and position
W that implements the closed form function cos(t). The position VW of the oscillating
input is provided as the forcing function g(t) to the Van der Pol oscillator.

In the above implementation, the Van der Pol oscillator differential equations
modeling Y and X are each scaled by a factor of five. This scaling coefficient modifies
the oscillator to evolve 5x faster than provided the forcing function. The bounds for

the oscillator variables are elicited by executing the above dynamical system.

103

4.7 1D Heat Model (heatnax2)

DO D1 D2
1.5 0.75

9]) Lo [}

310 3 S0.50

§0.5 E-O > ;O.ZS

0.0 0.0 0.00
0 50 100 0 50 100 0 50 100
Time (simulation units) Time (simulation units) Time (simulation units)

var £DO = D1-2*D0+2.0; D3
var DO = integ(1.0%*fD0O, 0.0); 04
var f£D1 = DO-2*D1+D2; 3
var D1 = integ(1.0*fD1, 0.0); éoz
var fD2 = D1-2*D2+D3; <
var D2 = integ(1.0%fD2, 0.0); 001 % 5
var st = D2-2*D3; Time (simulation units)
var D3 = 1nteg(10*fD3, 00) H POINT
var POINT = emit(D1); Lo
interval DO = [0.0,2.0]; 3
interval D1 = [0.0,2.0]; 205
interval D2 = [0.0,2.0]; B
interval D3 = [0.0,2.0]; >0 50 100

Time (simulation units)

time 120;

Figure 4-7: One-dimensional heat model with four points.

The heat application implements a one-dimensional, grid-based model of the heat
equation PDE. This application models the heat moving through a one-dimensional
line of points. This system is a linear system comprised of four differential equations
which each model one point in the line. This system observes the heat at the second
point (D1) for 120 units of simulation time.

In the above equation, the DO, D1, D2, and D3 variables correspond to the first,
second, third and fourth points in the line. each point both accepts heat from and
releases heat to the neighboring points. The first point DO is consistently supplied
with two units of heat. The heat then flows from the first point to all the other points.
All of the variables are bounded by using the principle of conservation of heat — no
single point can have more heat than the total amount of heat put into the system.
The intermediate variables £D0, £D1, £D2, and £D3 store the derivatives of the state
variables DO, D1, D2, and D3. The DSS defines these intermediate variables to ensure

the compiler processes the derivative expressions separately.

104

4.8 PID Controller (pia)

ERR , CTRL INTEG PLANT
0.5
[@ [o (] 1
3 00 3 3 3
= £ 0 = =
-1.0 -2 -1
100 200 0 50 100 150 200 0 100 200 0 100 200
Time (simulation units) Time (simulation units) Time (simulation units) Time (simulation units)
var VSIG = integ(-0.25%VSIG, 0.0);
var SIG = integ(VSIG, 1.0); <G
interval VSIG = [-0.5,0.5]; !
interval SIG = [-1.0,1.0]; 8
£ 0
§
var ERR = PLANT-SIG; 1
var CTRL =-2.0*ERR-8.0*INTEG; ® Time (simutation units)
var INTEG = integ(ERR - 0.3*INTEG,0.0); VSIG
var PLANT = integ(CTRL + 1, 0.0) 0.5
var Controlled = emit(CTRL); g
interval PLANT = [-2.0,2.0]; g’
interval CTRL = [-2.0,2.0]; o5
interval ERR = [_2 .0 N 2. O] 5 0 Time (simt?aotion units)200
interval INTEG = [-2.0,2.0];

time 200;

Figure 4-8: Proportional-integral controller.

The pid application is a proportional-integral controller that computes a compen-
sating signal that attenuates away the unwanted dynamics from an oscillating input.
The above application is a linear system made up of three straight line equations and
four differential equations and is executed for 200 units of simulation time.

The pid application internally generates an oscillating signal with velocity VSIG
and position SIG that implements the closed-form function cos(0.25%t). The oscil-
lator position SIG is the reference function the PI controller is trying to match. The
PLANT signal is the output of an unknown system that accepts an input signal. The
goal of the PI controller is to find the control signal which causes the output of the
unknown system PLANT to match the reference signal SIG. I use a simple unknown
system that integrates the provided control signal and adds a fixed error of 1 to
the generated output. The ERR variable tracks the error between the observed and

reference signal.

105

The PI controller generates a control (CTRL) signal that is provided as an input
into an unknown system. The control signal contains both a term that is proportional
to the observed error (-2.0*ERR) and the integrated error over time (-8.0%INTEG).
The integrated error INTEG starts at zero and computes the integral of the error signal
over time with some leakage.

In the above figures, the error of the system ERR quickly converges to approxi-
mately zero. After some initial fluctuations, the reference signal SIG and observed

signal PLANT follow the same trajectory.

106

4.9 Kalman Filter (xaiman)

VSIG SIG X
0.1 0.5 0.5
5 35 3
% 0.0 %_ 0.0 % 0.0
€ I3 £
< << <<
-0.1 -0.5 —-0.5
0 50 100 0 50 100 0 50 100
Time (simulation units) Time (simulation units) Time (simulation units)
E
var VSIG = integ(-0.04*SIG, 0.0)
0.5
var SIG = integ(VSIG, 0.7) 3
var E = SIG-X g
var RP = (1/2.0)*P “00
var X = 1nteg(RP*E, 0) 0 50 100
var P = integ (O .6-RP*P 0. 0) Time (simulation units)
var STATE = emit(X) p
interval VSIG = [-0.3,0.3] 1.0
interval SIG = [-1.0,1.0] 3
interval X = [-1.0,1.0] g05
interval P = [0.0,1.0] =
time 50 00) 50 160

Time (simulation units)

Figure 4-9: Noise-eliminating kalman filter.

The continuous-time Kalman filter tracks the average of a noisy signal for 50
simulation units [78]. Typically, Kalman filters are implemented discretely using an
algorithm which predicts the next state of the system and an update step which
studies the agreement between the prediction and measured state and updates the
underlying model accordingly. This continuous-time formulation performs both steps
simultaneously and continuously. The model used by the Kalman filter tracks the
estimated state of the signal and the accuracy of the state estimation. The general
model of the one-dimensional continuous-time continuous-observation average track-

ing kalman filter is as follows:

Error = Input — State
State = [ProcNoise™!-Couv - Error State(0) = Stateg
Cov = [MeasNoise + ProcNoise™! - Cov? Cov(0) = 0.0

107

The State variable tracks the predicted noiseless trajectory of the input signal over
time, and the C'ov variable tracks the process noise variance over time. The process
noise captures the error in the prediction that results from modeling approximations.
The State variable is continuously updated with the measured error between the ob-
served input and the prediction. The initial value of the State variable is typically
an initial guess. The Cov variable is also continuously updated to account for mea-
surement noise and noise arising from uncaptured dynamics. The MeasNoise and
ProcNoise parameters specify the degree of measurement and process noise present
in the system.

The above kalman application implements a Kalman filter which denoises an in-
put signal. It implements a nonlinear system made up of six differential equations
and three straight line functions. The VSIG and SIG variables model the position and
velocity of a oscillator which implements the closed-form function 0.7*cos(0.2*t).
This signal SIG is used as an input to the Kalman filter. The Kalman filter then tracks
the provided signal using the above model with a measurement noise of 0.1 and a pro-
cess noise of 2.0. The variable X is the state of the system, and the variable P is the
estimated variance of the process noise. Note that the quantity ProcNoise™! - Cov
is stored in the temporary variable RP. This optimization improves the agreement
between the 0.5%P*P and 0.5*P terms in the X and P differential equations respec-
tively. The interval bounds for all the variables are derived by exercising the above

dynamical system.

108

4.10 Michaelis Menten Reaction (smrm)

E S ES COMPLEX
0.5

o
o
o
w
o
w

e
q
I
>
o
N

o
o
o
W

o
=
Amplitude

Amplitude
Amplitude
Amplitude

=)
n
o
N
o
)
<)
=)

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (simulation units) Time (simulation units) Time (simulation units) Time (simulation units)

var E = 0.8-ES

var S = 0.5-ES

var ES = integ(E*S - 0.3+*ES, 0.0)
var COMPLEX = emit (ES)

interval E = [0.0,0.8]

interval S = [0.0,0.5]

interval ES = [0.0,0.5]

time 20

Figure 4-10: Michaelis-Menten chemical reaction.

The Michaelis-Menten chemical reaction is a simple chemical reaction which mod-
els the formation of an enzyme-substrate complex from two reagents [95]. The
Michaelis-Menten chemical reaction can be summarized with the following reaction

equations:

E—i—S—)kaS
ES—)kTE+S

In the first reaction equation, the enzyme E and substrate S come together to form
the enzyme-substrate complex ES. The formation rate of this compound is ky. The
second reaction equation models the decomposition of the enzyme-substrate com-
plex back into the enzyme and substrate reagents. The dissassociation rate of this
compound is k.. These rates are typically empirically measured through wet-lab

experiments. The following set of differential equations models the above system:

E=k -ES—k;-E-S E(0) = Ey
S=k.-ES—k;-E-S S(0) = S
ES=ki-E-S—k.-ES ES(0)=FESp

In the above model, the reagents £ and S are depleted at the same rate ky - £+ S
the complex ES is formed. The complex ES is depleted at the same rate k, - ES

109

the enzyme E and substrate S are formed. Both of these rates are influenced by
the reaction rate constants defined above. This system can be futher simplified by
leveraging the fact that these reactions are occuring in a closed system. In this closed

system, the following conservation equalities must hold:

S+ES=FES)+ Sy

The first equality specifies that the total amount of enzyme and complex in the
system must equal the initial amount of enzyme and complex in the system. Because
no enzyme can be added or removed from the system at any time, all the available
enzyme was either initially in the system or part of the starting amount of the complex
ES. The same applies to the substrate S. I then use these conservation relations to

simplify the system:

E=FEy+ ESy— ES
S =Sy+ ESy— ES
ES=k;-E-S—k.-ES ES(0)=ESp

The above simplification replaces the differential equations modeling £ and S
with straight-line equations derived from the above conservation relation.

The smmrxn application executes the above simplified dynamical system that mod-
els the Michaelis-Menten chemical reaction. The system is a nonlinear system made
up of three straight-line equations and one differential equation. This application
tracks the concentration of the enzyme-substrate complex ES for 20 simulation time
units. The formation and disassociation parameters are instantiated to 1.0 and 0.3,
respectively. The initial enzyme, substrate, and complex quantities are 0.8, 0.5, and
0.0, respectively. The interval bounds for all the variables are derived from the above
conservation equations. The maximum amount of ES in the system is the initial
amount of the limiting reagent min(Ey, So). All variables are positive since they are

tracking physical quantities (chemical concentrations).

110

4.11 Genetic Toggle Switch (gentog)

UTF VTF U \

15 15
o e Ch 8

2 10 214 2 2 10
a a a a

£ s £ £03 £ s
< < < <

0 12 0.0 0

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (simulation units) Time (simulation units) Time (simulation units) Time (simulation units)

IPTG

var VPERT = integ(-PERT, 0.0)
var PERT = integ(VPERT, 0.5) 2
var IPTG = 0.5+PERT
0 5 10 15 20

Time (simulation units)

o
o

o
Amplitude
o
w

e
o

func utf(T) = 15.62/pow((1+max(T,0)),2.5)
func vtf(T) = 15.6/(1+max(T,0)) UMOD

func umod(T) = pow((1+max(T,0)),-2.0015) '
0
var UMOD = call (umod,IPTG)
0 5 10 15 20

var UTF = call(utf,V) Time (simulation units)
var VTF call(vtf, (UxUMOD))
PERT

interval UMOD = [0.0,1.0] 05
interval UTF = [0.0,16.0]
interval VIF = [0.0,16.0] £ o0
var V = integ(VIF - V, 0.0) -05
0 10 20

var U integ (UTF - U, 0.0) Time (simulation units)
var compV = emit (V) VPERT

0.5
interval V [0.0,16.0]
interval U = [0.0,1.2] £ o0
time 20
-0.5
0 10 20

Time (simulation units)

Amplitude
=] =) =
U ~ o
a S

e
N
(o]

Amplitude

Amplitude

Figure 4-11: Genetic toggle switch.

The genetic toggle switch is a synthetic bi-stable gene regulatory network [46].
It models the activity of the repressor proteins U and V in the presence of a small
excitatory molecule I PT'G. The repressor V binds to U, inhibiting its production.
The repressor U also binds to V', inhibiting its production. The small molecule I PT'G
binds to the repressor U, inhibiting its activity.

The gentog application implements the genetic toggle switch. It is a non-linear

111

dynamical system made up of 2 differential equations and 4 straight-line functions.
The UTF and VTF variables track the transcription rate of the genes which encode
the U and V proteins. The UMOD variable captures the interaction between the IPTG

molecule and the repressor protein U.

112

4.12 Botulism Neurotoxin (bonta)

bulkB freeB bndB transB
1.0 0.15 0.06
0.04
Zoo $o10 g $o04
EL %0.05 go.oz go.oz
<0.8 < < <
0.00 0.00 0.00
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 5 10 15 20
Time (simulation units) Time (simulation units) Time (simulation units) Time (simulation units)
var bulkB = integ(-0.015%bulkB, 1.0) iyticB
var freeB = integ(0.15*%bulkB-0.058*freeB, 1.0) 0.004

var bndB = integ(0.058*freeB - 0.141%bndB, 0.0)
var transB = integ(0.141%bndB - 0.013*transB, 0.0)
var lyticB = integ(0.013*transB, 0.0) 0,000

var MTRANSB = emit(transB) 0 10 20

Time (simulation units)

0.002

Amplitude

interval bulkB [-1.0,1.0] MTRANSB
interval freeB

i [-0.02,0.02]

interval bndB = [-0.03,0.03] _ 04
interval transB = [-0.06,0.06] .02
interval lyticB = [-0.004,0.004] 0.00

Tlme 5|mu|at|0n unlts)

Amplitude
o o

time 20

Figure 4-12: Botulism neurotoxin model.

The bont4 application implements a biological model of the botulism neurotoxin
pathway [76]. This dynamical system is a linear system with five differential equations
and one straight-line function. The following four-stage reaction summarizes the

lifecycle of the botulism neurotoxin:
bulk =" free —*8 bound =" translocated —** lytic

First, bulk neurotoxin (bulk) is translated to free neurotoxin. Then, the free
neurotoxin (free) binds to sites on synaptic termini. The bound neurotoxin (bound)
is then translocated into the neuroplasm (translocated). Once the neurotoxin is in the
neuroplasm, it exerts its toxic effects (lytic). I am primarily interested in observing
the level of translocated neurotoxin over time for a system with a starting amount of
1.0 units of bulk neurotoxin. The amount of translocated neurotoxin is observed for

20 simulation time units. All of the rate constants kg, kg, kr and kj;, are empirically

113

measured from wet-lab experiments. The bont application above instantiates kg, kg,
kr and kj, to 0.015, 0.058, 0.141, and 0.013 respectively. All intervals are derived

by executing the dynamical system and observing the trajectories of the quantities.

4.13 Example Real-Time Dynamical Systems

I introduce two real-time applications which operate on externally provided real-time

signals.

4.13.1 Bias Shift Detector

extern U;

interval U = [-1.0,1.0]; freq U = 40000;

var X = extin(U)

var Y = integ(0.3*X - 0.8%Y, 0.0);
var Trigger = emit(Y);

interval Y = [-1.0,1.0];

realtime [38000,42000];

time 0.0008;

Figure 4-13: Bias change detector

The bias shift detector identifies shifts in the average value of an externally pro-
vided input. The bias shift detector is designed to be used in conjunction with a
thresholding circuit — these two components together can produce a smart interrupt
that wakes up a co-processor when the average of the measured signal moves outside
of its expected range.

The detector accepts an external input signal U with a frequency of 40 kHz and a
dynamic range of [-1,1]. The detector produces, as output, a trigger signal (Trigger)
which tracks the average of the input signal. The bias shift detector must execute at
around the same speed as the input signal. The DSS limits the realtime integration

speed of the system to 38-42 kHz (realtime statement). This frequency restriction

114

ensures the dynamical system evolves at approximately the same speed as the external

signal. This benchmark processes the external signal for a total of 8 milliseconds.

The bias shift detector implements a leaky integrator. A leaky integrator is a
linear dynamical system composed of one state variable which integrates a forcing

function X over time:

X'=Y-a-X

The « term determines the rate at which the leaky integrator forgets the system’s
current state. The Y term is the external signal to integrate. A leaky integrator is
equivalent to a first-order low pass filter with the following transfer function H(s) =

;/(EZ)) I derive the transfer function below for this system below:

LY(£) = Y(s) = L(J5-X(t) —a-Y (1))
SILB- X(t) —a - V(1))

Y(s)= s1(8 X(s)—a-Y(s))
Y(s)+a-s7'Y(s)= B-s1X(s)
Y(s)-(1+a-sh)= p-s'1X(s)

g = Bes e (lasy)”

1

X() Be(s-a™t+1)

The above transfer function implements a low-pass filter with a gain of g and
a cutoff frequency of a. For the above bias shift detector, the gain of the filter is
0.3, and the cutoff frequency is 0.8x the baseline integration speed of the dynamical

system. The cutoff frequency is therefore between 30.4-33.6 kHz.

115

4.13.2 Denoiser

extern SIG;
interval SIG = [-1.0,1.0];
freq SIG = 40000;

var U = extin(SIG);

var E U-X;
var RP = 1.0%P;
var X = integ(RP*E, 0.0);

var P = integ(1.0 - RP*P, 0.0);

var Output = emit(X);
interval X = [-1.0,1.0];
interval P = [0.0,1.0];

realtime [38000,42000];
time 0.0008;

Figure 4-14: Signal denoiser

The denoiser removes the noise from an externally provided input signal and
emits the smoothed signal as output. The denoiser is an example of a real-time
analog signal processing application. Such computations can continuously process
signals with high-frequency components without requiring signal sampling. Typically,
the produced computation result is a lower frequency signal that can be efficiently
sampled and processed by a low-power digital processor. Other examples of real-time
signal processing applications include frequency de-modulation and generalized state
estimation [106, 135].

The detector accepts an external input signal U with a frequency of 40 kHz and a
dynamic range of [-1,1]. The detector produces, as output, a trigger signal (Trigger)

which changes level when the average of the input signal changes. The bias shift

116

detector must execute at around the same speed as the input signal. The DSS limits
the realtime integration speed of the system to 38-42 kHz (realtime statement). This
execution speed restriction ensures that the state estimation computation keeps pace
with the externally provided signal. This benchmark processes the external signal for
a total of 8 milliseconds.

The denoiser implements the Kalman filter introduced in Section 4.9. The Kalman
filter is instantiated with a measurement noise parameter of 1.0 and a process noise
parameter of 1.0. The E, X, and P variables implement the error, internal state, and

predicted error of the Kalman filter.

4.14 Conclusion

This chapter presents twelve benchmark dynamical systems from the biological, physics,
and control systems domains. For each benchmark application, I discuss the approxi-
mations typically applied for each type of application and outline any approximations
I apply to the dynamical system in the dynamical system specification. When applica-
ble, I discuss how the interval bounds for the dynamical systems could be analytically
derived. I also present two dynamical system applications which process real-time sig-
nals in this chapter. Each of these real-time applications performs computation on a
continuously evolving, externally provided signal.

Further Reading: Chapter 6 presents the analog hardware implementations of the
twelve benchmark dynamical systems presented in this chapter on the HCDCv2 re-
configurable analog device. Chapter 10 presents the results from executing the twelve
benchmark dynamical systems on the HCDCv2 reconfigurable analog device. The two
real-time dynamical system computations presented in this chapter are implemented

and evaluated on the target hardware platform in Section 10.10.

117

118

Chapter 5

Reconfigurable Analog Devices

The compilation techniques presented in Chapters 7, 8, and 9 automate the process
of deriving an analog circuit which implements a given dynamical system compu-
tation on a differential equation-solving analog device. The compiler presented in
this work [3]| targets the HCDCv2 analog device [132, 61, 51|. The HCDCv2 re-
configurable analog device is an ultra-low power differential equation-solving analog
device designed to solve non-linear ordinary differential equations. My earlier work on
compilation [4, 2| targeted reconfigurable dynamical system-solving analog computing
platforms which simulate biological systems [105, 128, 140, 141].

This chapter provides an overview of reconfigurable differential-equation solving
analog devices, presents the relevant analog device specification and programming
languages utilized by the compiler, and HCDCv2 analog device specification and
runtime system.

The target class of reconfigurable analog devices leverages the physical behavior
of transistors to implement computation. Under this paradigm, voltages and currents
within the device implement continuous variables in the computation. These devices
are programmed by routing together configurable analog blocks using programmable
interconnects to form a circuit. To faithfully implement a computation, the physics
of the circuit must capture the underlying dynamics of the dynamical system so that
the trajectory of each variable can be recovered at runtime by applying a recovery

transformation. This class of differential equation-solving analog devices are typically

119

programmed in two ways:

e Connection Formation: Connections between blocks are formed by digitally

enabling interconnects on the device.

e Block Configuration: Each block in the analog device is digitally config-
urable. Blocks are typically parametric and may be digitally programmed to
implement one of many different functions. Some blocks may also accept digi-
tally settable data fields which appear in the input-output relation implemented
by the block.

Together, these two configuration techniques are used to implement circuits com-
prised of configured blocks. Once the circuit is programmed into the analog device,
the dynamical system is executed by powering on the circuit and observing the cur-
rents and voltages over time. Each of these currents and voltages models a variable
or expression from the dynamical system. The compiler is responsible for construct-
ing the analog circuit that captures the dynamics of the target dynamical system.

compilation problem is challenging for several reasons:

e Complex, Non-Standard Blocks: There is no universally agreed-upon col-
lection of analog blocks — the devices instead provide highly specialized blocks
that implement anything from simple functions to sets of differential equations.
These blocks are highly configurable and often can be reconfigured to imple-
ment a multitude of different functions. The compiler may need to identify

non-trivial compositions of these blocks to implement the desired functions.

In analog devices, not all computation is performed with analog blocks, and
not all blocks perform computation. Analog devices which work with analog
currents do not provide adder blocks to the compiler and typically require ad-
dition operations to be implemented with Kirchhoff’s law. These same analog
devices provide copier blocks to duplicate analog currents. These blocks do not

perform computation but must be used to route signals to multiple places.

120

e Restrictive Routing Environment: Analog devices typically provide highly
restrictive interconnects and offer few digitally programmable connections. The
compiler, therefore, must carefully map all the blocks in the derived circuit to
locations on the device. The compiler may need to insert additional blocks to

implement connections between blocks that are far apart.

e Low-Level Physical Behaviors: Analog devices are subject to analog noise
and process variation and exhibit value- and frequency-dependent non-idealities.
While the hardware designer does mitigate some of these behaviors in the device
design, the compiler must automatically compensate for all remaining physical
behaviors in the derived circuit. One common mitigation strategy includes
changing the dynamical system parameters written to the circuit. This process

is called scaling the circuit.

The compilation techniques presented in Chapters 7, 8, and 9 automatically

address the above challenges. This chapter covers the following topics:

e Low-Level Programming Interfaces of Analog Devices(Section 5.1): 1
describe the kinds of programmable degrees of freedom included in analog de-
signs. I then describe the high-level abstractions I use to capture these low-level
programming constructs. These high-level abstractions make up the device pro-

gramming interface.

e Low-Level Physics and Analog Devices(Section 5.2): I describe the low-
level physical phenomena which introduce unwanted behaviors in the analog
device. I discuss which physical phenomena are mitigated at an architectural
level and how each mitigation strategy works. For the phenomena which are
mitigated at an architectural level, I describe how to mitigate each unwanted
physical behavior. I then describe how the compiler automatically handles these

unwanted behaviors at a higher level of abstraction.

e Delta Models and Calibration(Section 5.3): I introduce the concept of a

delta model. Delta models are used to capture process variation-induced behav-

121

ioral variations in the hardware. The compiler uses the delta model information
to more accurately target the device on hand. I describe what delta models look
like, how the compiler uses the delta models, and how they are elicited from the

device on hand.

Analog Device Specification Language (ADSL)(Section 5.5): I present
the analog device specification language. The ADSL describes the physical
limitations and behaviors present in the analog device. The ADSL also speci-
fies the programming interface and high-level behavior of the target dynamical

system-solving analog device.

Section 5.5.1 describes how programmable functional blocks are specified in this
language. This section also describes how the block specifications encode the
block operating range and frequency limitations, block noise, block quantization
error, and block delta models. Section 5.5.2 describes the language constructs
offered to specify the device layout and the programmable connections available
in hardware. The analog device specification language grammars make use of

the grammar shortcuts presented in Section 5.4 of this chapter.

Analog Device Programming Language(Section 5.6): I present the high-
level analog device programming language (ADPL) that is used to program
the reconfigurable analog device. The analog device programming language
configures analog blocks and links block ports together with digitally settable
connections. The analog device programming language grammars make use of

the grammar shortcuts presented in Section 5.4.

HCDCv2 Analog Device Specification(Section 5.7): I present the analog
device specification (ADS) for the HCDCv2 analog device. This section pro-
vides a detailed overview of each block’s high- and low-level programming in-
terfaces and physical limitations. Section 5.7.1 presents the specification for the
programmable blocks in the device. Section 5.7.2 presents the programmable

connections available on the HCDCv2 device and the overall device layout.

122

e HCDCv2 Calibration and Delta Models(Section 5.8): I discuss the cal-
ibration strategies implemented by the HCDCv2. I present a multiplier case
study where I walk through how the delta models are elicited from the hard-
ware and used by the compiler. I discuss the effect of the calibration strategy
on the compiler’s ability to target the device. The HCDCv2 supports two
software-defined calibration algorithms which are implemented in the device
firmware. The firmware implements a traditional (minimize_error) calibration
algorithm that aims to eliminate all unexpected behavior and a co-designed cal-
ibration algorithm (maximize_fit) that prioritizes eliminating behavioral devi-
ations which cannot be compensated for in compilation. I provide an overview
of how the calibration algorithms affect the inferred block delta models and
provide a multiplier case study that concretely illustrates the interplay between
the calibration algorithm and the elicited delta model for a fabricated multiplier

instance.

e HCDCv2 Software Stack and Runtime(Section 5.9): I discuss the HCDCv2
low-level programming interface and the calibration, characterization, and cir-
cuit execution procedures for the target HCDCv2 analog device. This discussion
provides some insight into the operation of the hardware underneath the pro-

vided hardware abstraction.

Section 5.9.1 presents the HCDCv2 low-level programming interface used to
write circuits to the HCDCv2, calibrate the HCDCv2, and characterize blocks
on the HCDCv2. Section 5.9.2 presents an overview of the databases used
to store the device-specific calibration and characterization information. Sec-
tion 5.9.3 describes the HCDCv2 runtime procedures used to populate the cal-
ibration and characterization databases — these runtime procedures are per-
formed offline before the device is used to execute dynamical systems. Sec-

tion 5.9.4 describes the workflow for executing an ADP on the HCDCv2.

123

5.1 Programmability of of Analog Devices

Reconfigurable analog devices offer blocks that may be routed together by enabling
digitally programmable interconnects. Each block on the analog device is digitally
reconfigurable and may be programmed to implement a variety of different functions.
Internally, each block is a mixed-signal circuit comprised of circuit components such
as capacitors, resistors, and transistors. The designer typically makes the circuit

programmable in several different ways:

e Changing the Circuit Structure: The designer may introduce digitally set-
table bits which redirect how signals are routed within the analog circuit. This
design feature enables the hardware designer to implement multiple functions

with the same circuit.

e Current and Voltage Sources: The designer may introduce programmable
current and voltage sources into their design. Each of these current and voltage
sources accepts a bit vector and translates the bit vector to a current level. The

encoding scheme used by the source varies depending on the underlying design.

e Digital Logic: The designer may introduce digital logic into their design to
improve the expressivity of the device. For example, the designer may intro-
duce digital lookup tables (LUTS) into their design to implement user-defined

functions on the analog hardware.

The device firmware provides a low-level programming interface that may be used
to program an analog circuit to the analog device. The device firmware offers three

kinds of settable digital values which together program the analog blocks:

e Static Codes: Static codes choose the function the analog unit implements.
Static codes are combinatorial and do not represent decimal values. Setting
static codes may affect the function implemented by the block and alter the
block’s physical characteristics. Static codes typically encode digitally settable
bits that change the circuit structure. In this chapter, I will ascribe static code

values to literals to improve readability.

124

e Dynamic Codes: Dynamic codes set constant digital values which appear
in the function implemented by the block. Dynamic codes are digital integer
values that map to decimal values. Dynamic codes typically are implemented
as programmable current and voltage sources in the underlying analog circuit.
Dynamic codes are also sometimes used to program digital logic elements such
as LUTs. These logic elements may appear in analog circuits which offer pro-

grammable functions, for example.

e Calibration Codes: Calibration codes are internally set by the device runtime
and firmware to eliminate any unwanted block behaviors. Calibration codes
typically map to current and voltage sources in the underlying analog circuit.
These current and voltage sources inject compensating signals into the analog
circuit to remove unwanted behavior. The device firmware identifies the best
set of calibration code values for the block at hand and the runtime writes the

calibration code values to the device.

The device firmware also provides an interface for enabling and disabling digitally
settable connections within the hardware.

This chapter presents an analog device specification language that offers a more
natural abstraction for these low-level codes. I also present an analog device pro-
gramming language that supports the configuration and connection of blocks at this
higher level of abstraction. The compiler targets the analog device specification and
produces an analog device program that implements the target dynamical system.
The platform-specific runtime system then enables the analog device program con-
nections in the firmware. It also translates the block configurations to static and
dynamic code assignments and then writes these assignments to the device firmware.
The runtime internally maintains the calibration code assignments.

The analog device specification language is made up of a collection of block spec-
ifications and a device layout specification. Each block specification defines block
input ports and output ports, where each output port implements an input-output

relation. Each block input and output may work with an analog current, an analog

125

voltage, or a continuously evolving digital signal. Each block specification encodes

the static and dynamic codes with the following constructs:

e Block Modes: The block static codes are encoded as block modes. Each block
mode corresponds to a set of static code assignments. The block specification

language supports defining mode-dependent input-output relations.

e Data Fields: The dynamic codes belonging to a block are encoded as digitally
settable data fields. The ADSL supports both constant data fields and data
fields that implement expressions. Each data field is associated with an encoding
scheme that specifies how to translate the decimal values written to each data
field into integer values. The block data fields may appear in the input-output

relations of the output ports.

The input-output relation implemented at each output port captures the idealized
behavior of the block provided the block is not adversely affected by the low-level
physics of the device.

5.2 Low-Level Physics and Analog Devices

Because analog devices directly leverage the underlying physics of the transistors,
they are sensitive to the effects of process variations introduced during fabrication.
These variations affect the low-level behavior of analog circuits on the device and
alter the behavior of individual analog blocks on the hardware. The HCDCv2 is no

exception and is also subject to these low-level physical effects:

e Unexpected Signal Biases: Signals within a circuit may experience unex-
pected offsets, called biases. If left uncorrected, these biases can significantly
alter the function implemented by the analog block or introduce fixed biases
into the output signals. Signals with bias issues produce errors that accumulate

throughout the computation when integrated over time.

126

e Unexpected Signal Gains: Signals within a circuit may be scaled by random,
non-unitary constant coefficients. These constant coefficients are referred to as
signal gains. Unexpected signal gains within a block may drastically alter the
function implemented by the analog block and introduce unexpected gains into

the output signals. Signal gains also waste parts of the signal range.

e Static Errors: Some blocks experience static errors when exercised with cer-
tain inputs. These static errors may arise from nonlinearities in the circuit.
These errors may manifest as point errors that occur in very small regions of
the input space or adversely affect the output for large regions of the input
space. These errors produce unexpected and difficult-to-model behaviors when

the block is exercised with these inputs.

e Unexpected Behaviors at High Frequencies: Many analog blocks act as
low-pass filters and attenuate away high-frequency signals. These errors may
cause blocks to produce incorrect results for signals with fast-evolving frequency

components.

e Analog Noise: All analog blocks are subject to analog noise. In the HCDCv2,
the noise is typically randomly distributed around zero and can be adequately
modeled with a Gaussian distribution. Analog noise introduces random per-
turbations into the computation — these perturbations may disproportionately

affect the computation if the affected signal amplitudes are small.

To mitigate these issues, hardware designers have introduced a variety of mitigation

strategies into the hardware design and documentation:

e Device Calibration: Hardware designers often strategically insert programmable
current and voltage sources or introduce digitally configurable logic into their
circuit designs. These programmable circuit components enable the designer
to correct unwanted signal biases, unwanted signal gains, and static errors in
the circuit after fabrication. Each circuit component can be configured by set-

ting its respective calibration code. The device is calibrated before use to

127

eliminate as much unwanted behavior as possible. The calibration procedure
performs a search over calibration codes to find the best set of codes. Because
it is sometimes not feasible to eliminate all unwanted behavior, the hardware
designer prioritizes eliminating the subset of behaviors that the compiler cannot
automatically compensate for. For this reason, some hardware platforms offer
multiple calibration strategies, each of which uses different criteria for selecting
the best set of codes. The end user selects the calibration strategy before device

calibration.

In practice, the analog blocks still may not behave as expected even after cal-
ibration. These post-calibration variations in behavior may change depending
on the block’s configuration and may vary across individual block instances.
Examples of behavioral deviations which may persist post-calibration are un-

expected biases and signal gains, and static errors.

Frequency Limitations: Hardware designers identify the maximum supported
frequency for each block during the initial characterization of the device. The
identified frequency is the highest frequency signal a block can work with be-
fore frequency-dependent unexpected behaviors affect the computation. The
compiler is then responsible for only providing signals within the supported

frequency range.

Operating Range Limitations: Hardware designers identify the minimum
and maximum supported values at each block input and output during the
design and initial characterization of the device. The minimum and maximum
supported values together make up the operating range of the block input and
output. Providing values outside of the port’s operating range may damage
the analog block or produce an incorrect result due to nonlinearities present
in the underlying analog circuit. These operating range specifications are then

provided to the end user.

The compiler is then responsible for ensuring the programmed circuit doesn’t

violate any of these constraints.

128

e Analog Noise: Hardware designers identify the noise characteristics for each
block during the initial characterization of the device. These noise measure-
ments are then provided to the end user. The hardware designer may specify
the noise characteristics as a symbolic distribution, a noise figure, or a simple

standard deviation.

The compiler uses this information provided by the hardware designer to target
the analog device effectively. Note that the compiler targets a specification of the

analog device which encapsulates many of the above behaviors:

e Delta Models and Compiler-Guided Compensation: Some behavioral
variations which remain post-calibration can be compensated for in compilation.
For example, the compiler can correct for unexpected gains by selectively adjust-
ing the data field values in the circuit. Other variations cannot be compensated
for effectively. For example, the compiler can correct for unexpected biases by
introducing digital-to-analog converters into the circuit that inject compensat-
ing analog currents into the affected ports. However, in practice, this correction
technique introduces more error and drastically increases resource utilization.
Other types of unexpected behaviors, such as static point errors, are difficult to

model and cannot be compensated for effectively at compile-time.

In this thesis, I introduce the concept of a delta model — a symbolic model
which captures a subset of the unexpected behaviors present in the block after
calibration. In this thesis, the delta models are used to capture unexpected
gains and unexpected biases present in the calibrated blocks. The compiler
then uses the block delta models to more effectively target the device on hand.
The compiler compensates for unexpected gains by carefully scaling the circuit
and adjusts for any unexpected biases introduced into data fields when assigning
values to the block data fields. Section 5.3 provides a high-level overview of how

delta models are elicited from the chip and used by the compiler.

e Frequency Limitation Specifications: The compiler-writer incorporates fre-

quency limit annotations into the analog device specification. The compiler

129

adjusts the speed of the computation such that all of the frequency limit anno-

tations are respected.

e Operating Range Limitation Specifications: The compiler-writer incor-
porates per-port operating range limit annotations in the analog device specifi-
cation. The compiler adjusts the dynamic range of the signals in the circuit so

that none of the specified operating range limitations are violated.

e Noise Specifications: The compiler-writer incorporates noise annotations in
the analog device specification. In the analog device specification, the noise for
each block port is defined as a standard deviation of the signal. The compiler
uses the noise information to improve the signal-to-noise ratio at each of the
ports. The compiler accomplishes this by selectively increasing the dynamic

range of signals which are overcome by the noise floor.

Because the compiler handles all of the above phenomena, the end user is not
required to reason about the low-level analog behaviors present in the device. The
end user needs only to specify the calibration strategy the compiler should target.
The end user can also optionally provide a minimum signal-to-noise ratio measure to

limit to what degree the signals in the circuit are compressed.

5.3 Delta Models

Analog devices frequently do not perfectly implement the input-output relations de-
scribed in the analog device specification post-calibration. These behavioral devia-
tions may change depending on how the individual block is programmed. This thesis
introduces the concept of a delta model, a mathematical model that captures the
actual behavior of a calibrated, configured block. The block delta models are made

up of two major components:

e Delta Model Specification (Section 5.5.1): The analog device specification
provides a delta model specification for each block. Each delta model specifi-

cation is a templatized input-output relation over data fields, block ports, and

130

delta model parameters. The delta model parameters are variables that are
resolved to constant values when targeting a specific block instance on the de-
vice. The delta model specification offers delta model parameter annotations
which indicate which parameters can be compensated for in compilation and
what each parameter value would ideally be if the block exhibited no behavioral

variations.

Consider a multiplier block which ideally implements the function c*x. In this
input-output relation, c is a data field and x is an input port. The delta model
specification this multiplier is (a*c+3)*x + ~. In this specification, c is a data
field, x is an input port, and «, 3, and ~ are delta model parameters. The ideal
values for the a,3, and ~ delta model parameters are 1, 0, and 0 respectively.
With this instantiation, the multiplier implements (1*c+0)*x+0 or c*x — this

perfectly scales the signal by the constant value provided by data field c.

In practice, though, the delta model parameter values may deviate from their
expected values. The compiler is able to effectively target blocks that have «
and [parameters that deviate from 1 and 0. The compiler can statically correct
for the a and [parameters in compilation by carefully scaling the circuit and
setting data field values. The delta model specification, therefore, annotates
both of these parameters as correctable. The correctable annotation indicates
that the compiler can statically handle variations in a delta model parameter

value.

In contrast, the compiler cannot effectively correct the v parameter. The com-
piler could potentially eliminate this v parameter at the output port by summing
the output signal with a signal implementing —v. However, this is an expensive
and ineffective correction in practice. To implement the —~v signal, the com-
piler would need to introduce a digital-to-analog converter into the circuit —
this block also introduces error into the computation. This compensation oper-
ation, therefore, increases the resource utilization of the circuit and introduces

more error into the computation. For this reason, the v parameter is deemed

131

uncorrectable.

Delta Model Database (Section 5.9.2): The device runtime populates the
delta model parameters in the delta model specification for each block instance
in the device on hand. The delta model parameter values for the target device
are stored in the delta model database. The compiler uses the stored delta model
parameters from the delta model database and the delta model specification

from the analog device specification to target the device.

The delta model database is populated offline by the runtime system. The
runtime’s profiling procedure exercises each block over a set of block inputs and
stores the profiling data in the profiling database. The runtime’s delta model
elicitation procedure fits the profiling data to the delta model specifications
defined in the device’s ADS. The delta model parameters are the free variables

in the model fitting procedure.

For example, consider the case where the runtime has already identified the
delta model parameters for the constant multiplier at location 0. The runtime
identified these parameters before compilation by profiling the block and fitting
the delta model axc+f)*x + 7 to the collected data. The computed delta
model parameters reside in the delta model database for the device on hand.
or the multiplier at location 0, the values of delta model parameters «, 3, and

~v are 0.95, 0.012, and 0.001 respectively.

The compiler uses the «a, £, and v delta model parameters to concretize, or
specialize, the delta model specification to describe the behavior of multiplier
block 0 . The multiplier at location 0 implements (0.95%c+0.012) *x+0.001 on
the target device. The compiler then compensates for the o and § parameters
at compile time. The compiler scales the input signal at port x of multiplier 0
by 1.053x to compensate for the o parameter of 0.95 when scaling the circuit.
After scaling, the compiler shifts the value written to ¢ by -0.012 to account

for the 8 delta model parameter of 0.012.

132

Delta Models and Calibration

The delta model specification defines correctable delta model parameters which may
deviate from their ideal values and uncorrectable delta model parameters which must
closely adhere to their ideal values. The hardware designer can use this information
to design calibration strategies that work well with the compiler. In this thesis, I

explore two different types of calibration strategies:

e Traditional Calibration: The traditional calibration strategy calibrates the
device such that all delta model parameters adhere to their idealized value.
This calibration strategy produces calibrated blocks that implement the ideal
input-output relations as accurately as possible. If the constant multiplier in-
troduced above were calibrated with the traditional calibration strategy, the
runtime could calibrate the block to implement c*x. This calibration strategy
reflects how device calibration is typically performed for these kinds of hardware

platforms.

e Co-Designed Calibration: The co-designed calibration strategy calibrates
the device to allow for deviations in the delta model parameters that can be
compensated for by the compiler. All other parameters must adhere to their
idealized value. If the constant multiplier introduced above were calibrated
with the co-designed calibration strategy, it would be configured to implement
(a*xc+(3)*x where o and 8 may deviate from 1 and 0. This calibration strategy
prioritizes eliminating delta parameters and other behaviors that cannot be

compensated for in compilation over delivering the ideal input-output relation.

The compiler uses the delta model specifications and the delta model database

together to compensate for the behavioral variations present in the device on hand.

5.4 Notation for Language Grammars

Figure 5.1 presents the shorthand notation used by the language grammars described

in this chapter. These notational shortcuts are used to reduce the complexity of the

133

shortcut

expanded rule

body (<r>) body<r> ::= <r> | body<r>;<r>

seq(<r>) seq<r> ::= <r> | seq<r>,<r>

tup (<r>) tup<r> ::= (seq(<r>))

1st(<r>) lst<r> ::= [seq(<r>)]

pat (<r>) pat<r> ::= | <r> | pat(<r>) | <r>
match(<r1>,<r2>) match<ri><r2> ::= (pat(<ril>)-><r2>)*
multi(<ri1>,<r2>) multi<ri><r2> ::= <r2> | func match(<ril>,<r2>)

Table 5.1: Shorthand for common syntactic entities

language grammars. Each of these shorthand functions accepts one or more symbols

and produces a set of rules which implement the desired syntactic entity. These

constructs generate rules for sequencing (seq), tuples and lists (tup, 1st), and pattern

matching (pat,match, multi). I summarize each of these convenience functions below:

e Semicolon-Delimited Statements: The body (<r>) function implements a semicolon-

delimited sequence of the symbol <r>. The body (<r>) function injects the body<r> =
<r> | body<r>; <r> rules in the language grammar. After expansion, the body<r>

symbol is inserted everywhere where the convenience function was initially used.

Comma-Delimited Statements: The seq(<r>) convenience function implements
a comma-delimited sequence of the symbol <r>. For example, the seq(E) function
inserts the seqE ::= E | seqE; E rule into the language grammar. After expansion,

the seq<r> symbol is inserted everywhere where the function was initially used.

Tuples: The tup(<r>) function implements tuples made up of the symbol <r>. This
function makes use of the seq(<r>) shortcut to implement the comma-delimited list
of <r> elements. The tup(<r>) shortcut inserts the tup<r> ::= [seq<r>] and
the seq<r> ::= <r> | seq<r> , <r> rules into the language. After expansion, the

tup<r> symbol is inserted everywhere where the function was initially used.
For example, the Q ::= tup(E) invocation adds the tupE ::= (seqE) rule, the

seqE ::= <r> | seqE , E rule, and the Q ::= tupE rule. The Q symbol recognizes

strings such as (a+b,x*y) and (wxw) after the expansion.

Lists: The 1st (<r> function implements comma-delimited lists made up of the sym-
bol <r>. This function makes use of the seq(<r>) convenience function to implement

the comma-delimited list. The 1st(<r>) function inserts the 1st<r> ::= [seq<r>

134

1 and the seq<r> ::= <r> | seqg<r> , <r> rules into the language grammar. After

expansion, the 1st<r> symbol is inserted everywhere where the function was initially

used.
For example, the Q ::= 1st(E) invocation adds the 1stE ::= [seqE | rule, the
seqE ::= <r> | seqE , E rule, and the Q ::= 1stE rule. The Q symbol recognizes

snippets such as [a+b,x*y] and [w*w] after the expansion.

Patterns: The pat (<r>) function implements pipe-delimited sequences of the symbol
<r>. The pat (<r>) function inserts the pat<r> ::= | <r> | pat<r> | <r>ruleinto
the language grammar. Each invocation of pat(<r>) is replaced with the symbol

pat<r> after the function is expanded.

For example, the Q ::= pat(E) invocation adds the patE ::= | E | patE | E rule
and the Q::=patE rule to the grammar. The Q symbol recognizes snippets such as

latb | x*y and | q.

Pattern Matching The match(<r1>,<r2>) function implements sequences of pat-
tern matching statements of the form <ri1> <r2> for the symbols <ri1> and <r2>.
This symbol expands the pat(<ri1>) convenience function to build the sequence of
pipe-delimited <r1> symbols and adds the match<r1><r2> ::= (pat(<ri>)-><r2>
)* rule into the language grammar. Each match(<ri>,<r2>) invocation is replaced

with the match<ri><r2> symbol after the shortcuts are expanded.

For example, the Q: := match(E,I) rule expands to the following set of rules after the
match function is expanded to the patE ::= | E | patE | E rule, the matchE ::=
(patE -> I)* rule, and the Q::= matchEI rule. The Q symbol is able to recognize

snippets such as | x + v -> [0,1] | v -> [0,2].

Parametric Statements: The multi(<ri1>,<r2>) shortcut implements a symbol
which is either the symbol <r2> or a pattern matching statement over the <r1> sym-
bol which evaluates to the <r2> symbol. This function expands the pat(<r1>) and
match(<ri1>,<r2>) functions to build the match statements and adds the match<ri><r2>
1:= <r2> | func match<ri1><r2> rule into the language grammar. Each shortcut in-

vocation multi(<ri1>,<r2>) is replaced with the multi<ri><r2> symbol.

135

5.5 Analog Device Specification Language

The compiler works with a specification of the target analog device that captures the func-
tional behavior, programming interface, and the physical limitations and behaviors present
within the device. This language can be used to specify a variety of reconfigurable, differen-
tial equation-solving analog devices. In this thesis, I focus on the analog device specification
for the HCDCv2 analog device. This analog device specification (ADS), written in the ana-
log device specification language (ADSL), comprises a collection of block specifications and

an analog device layout specification:
Spec ::= (BlockSpec)*DeviceSpec

Each analog device specification (ADS) provides a formal block specification (BLlockSpec,
Section 5.5.1) for each kind of block resident on the target device. The analog device speci-
fication also provides a device layout specification (DeviceSpec, Section 5.5.2) which defines
all the individual instances of each kind of block and how the defined block instances may be
connected together. The device layout specification also defines how these block instances
are spatially laid out on the analog hardware.

The compiler produces as output an analog device program (ADP) written in the ana-
log device programming language (ADPL). The ADP describes a mixed-signal circuit com-
prised of configured blocks. The analog device program configures one or more block in-
stances and routes these blocks together with digitally programmable connections. The
produced ADP is executable and can be run on the analog device described by the input
ADS.

The generated ADP specifically targets the ADS provided to the compiler. The ADP
will only configure blocks with an ADS block specification and only make connections that
are listed in the device specification. Each ADP block configuration only writes values to
variables that are part of the programming interface of the block.

This section will formally describe the analog device specification language and the ana-
log device programming language. These specification languages will be used in Section 5.7
to formally describe the programming interface and available blocks for the HCDCv2 de-
vice. Both languages use the mathematical expressions introduced in Section 3.2.1 and the

grammar convenience functions introduced in Section 5.4.

136

Mode = tuple(l), ModeR = tuple(l|*)

BlockT ::= compute | assemble | route

DeltaT = gain | offset | other

AnalogT ::= current | voltage

SigT = analog AnalogT | digital

DataT = const | expr lst(v)

PortT ::= in | out

QuantT ::= linear d

IFace ::= PortT seq(v) sigT (extern)? | data v DataT

DeltaM ::= delta-par seq(v) (correctable)? DeltaT ideally x
| delta 1st(v) = multi(ModeR,E)

Impl ::= rel v = multi(ModeR,E)
| interval seq(v) = multi(ModeR,I)
| quantize 1st(v) = multi(ModeR,QuantT)
| maxfreq 1lst(v) = multi(ModeR,n) | noise 1st(v) multi(ModeR,x)
| DeltaM

Def ::= block v BlockT modes lst(Mode)

Stmt ::= IFace | Impl

BlockSpec ::= Def {body(Stmt)}

Figure 5-1: ADSL block specification grammar.

5.5.1 Block Specification Language

The block specification language captures the behavior of each block on the analog
device. The block specification language uses the basic and extended expressions presented in
Section 3.2.1 to formally describe block behavior. Figure 5-1 presents the block specification
language. Each block specification is made up of a block definition (Def) and a collection of
block interface (Iface) and implementation (Impl) statements.

Block Definition(Def): Each block definition block v BlockT modes lst(Mode) specifies
the block name v and type BlockT then lists all of the possible modes Ist(Mode) which may
be configured to the block.

e Block Type (BlockT): The block type indicates what the specified block is used for.
Each block either computes (compute), copies and converts signals (assemble), or

routes signals (route) through the chip.

The block type influences the kinds of computations which are allowed in the block
specification. The compute blocks are not subject to any restrictions on the imple-
mented computation. In comparison with compute blocks, assembly and route blocks

are specialized blocks with additional constraints. assemble blocks may only copy or

137

negate signals with only unity (-1 or 1) coefficients. The route blocks have a single
mode, only one input port and one output port, and cannot perform any computation
on the input signals. route blocks exist to enable successful signal routing in the
presence of constraints on connections between output and input ports from different

blocks.

e Block Modes (1st (Mode)): Each block is parametric and can be placed in one of many
possible block modes. The block modes set the behavior and the physical restrictions

imposed on the block. Each block mode is described as a tuple of literals.

Block Interface(Iface): Each block has a set of associated input and output ports. Block
ports may be routed together to form a circuit. Each block port works with one kind of
time-varying signal. The type of signal may impose limitations on how the block ports may
be routed together. Analog currents are added together by joining wires and cannot be used
more than once without the aid of a copier block. Analog voltages must be added together
with a dedicated block but can be used more than once without any special hardware.

Blocks may also be programmed by digitally setting block data fields. The block mode
and block data fields together make up the programming interface of the block. The block
interface statements together specify all of the block ports and data fields:

e Input Block Ports: Each block may have any number of input block ports. Each
input port accepts a time-varying signal of a specific signal type. Each input port
definition statement in seq(v) sigT (extern)? declares one or more named input
ports seq(v) with the synin port type and the specified signal type sigT. Supported
signals include analog currents (analog current), analog voltages (analog voltage), and
time-varying digital signals (digital). Some input ports may be externally accessible
(extern) External input ports accept externally provided signals from other devices,

such as sensors.

e Output Block Ports: Each block has one or more output ports. Each output port
produces a time-varying signal of a specific signal type. This output port carries the
result of whatever computation the block is designed to implement. Each output
port definition statement out seq(v) sigT (extern)? declares one or more named

ports seq(v) with the synout port type the specified signal type sigT. The output

138

ports support the same signal types as the input ports. Some output ports may be
may be externally accessible (extern). External output ports are linked to externally
accessible pins on the device may be observed with an external measurement device

such as an oscilloscope.

e Constant Data Fields: Some blocks offer digitally programmable constant data
fields which resolve to constant decimal values during execution. These constant data
fields influence the input-output relation implemented at each block output port. Each
constant data field definition data v const declares a named data field v with the

const data type.

e Expression Data Fields: Some blocks offer digitally programmable expression data
fields which can be used to provide user-defined functions to a block. Expression data
fields typically define part of the input-output relation implemented at each block
output port. Each expression data field definition data v expr 1lst(v) declares a
named data field v with the expr data type which accepts the variable arguments
Ist(v). Each defined expression data field only accepts expressions which use variables

in the provided argument list.

Block Implementation(Impl): Each block output implements an input-output relation
over block inputs and data fields. Ideally, the signal at each block output evolves in accor-
dance with the block output’s input-output relation. I refer to this as the ideal behavior
of the block. In practice, each block is subject to noise, quantization error, and process
variation and must work with signals which do not violate the block’s operating range and
frequency restrictions. The block implementation statements specify the input-output rela-
tion for each output and describe all of the physical limitations and behaviors which must

be considered during compilation:

e Input-Output Relation: Each block output implements a parametric input-output
relation which changes depending on the block mode. This input-output relation may
involve any of the block data fields and input ports defined in the block interface.
Each provided expression may involve the input ports and data fields specified in the

block interface.

The block rel statements capture the behavior of the output port in the absence

139

of manufacturing variations, noise, and quantization error. Each rel statement de-
fines the expression implemented at each output port under each mode. The re-
lation statement rel v = multi(ModeR,E) specifies the mode-dependent expression

multi(ModeR,E) implemented at the output port v.

Operating Range Restrictions: Each port and constant data field may only take on
a limited range of values. Analog ports may only accept values within their respective
current and voltage operating ranges. Supplying values outside these ranges may
damage the block or cause the block to behave incorrectly. Digital ports and data
fields can only encode values that fall within the supported range of values. The range
of supported values for a particular port or data field may change depending on the

block mode.

All operating range restrictions are defined in the block specification with interval
statements. Each interval statement describes the range of values supported at a
port or data field. The operating range restriction interval seq(v) = multi(ModeR,I)
specifies a mode-dependent interval multi(ModeR,I) which captures the range of val-
ues supported at the port or data field v under each block mode. Note that interval

statements can also be written for expression data field arguments.

Frequency Restrictions: Blocks may also require the device to run computations
at a lower speed to operate properly. Analog blocks often act as low-pass filters
and attenuate away higher frequency components of a signal. Blocks that work with
analog and digital signals internally sample analog signals at a specific rate and cannot

process signals frequency components that exceed the Nyquist frequency.

These frequency restrictions are expressed as upper limits on the maximum frequency
of the device (maxfreq). Each maximum frequency restriction statement maxfreq
1st(v) = multi(ModeR,n) specifies a mode-dependent maximum supported frequency
multi(ModeR,n) for the listed set of block ports 1st(v). These maximum frequency

restrictions apply if the any of the listed ports are in use (connected to another port).

Noise: Blocks with analog signals often introduce analog noise into the computa-
tion. This noise may be further amplified depending on the mode of the block.

The noise statements describe the standard deviation of the signals at the analog

140

ports. Each noise statement specifies noise 1st(v) = multi(ModeR,x) the mode-
dependent standard deviation multi(ModeR,x) of the signal at the analog ports

1st(v).

Quantization Error: Blocks with digital ports and data fields are subject to resolu-
tion limitations and quantization error. The quantize statements describe the value
encoding scheme used at each digital port and data field. The quantize and interval
statements together determine the quantization error of a digital port or data field.
Each quantize statement quantize 1st(v) = multi(ModeR,QuantT) statement spec-
ifies the mode-dependent quantization strategy multi(ModeR,QuantT) for the list of
digital ports and data fields Ist(v). Currently, only linearly encoded digital values are
supported. The linear d clause indicates the digital signal is divided into d equally

spaced segments.

Delta Model: In practice, fabricated instances of the block may implement variations
of the described input-output relation. These variations in behavior are typically
eliminated through a process called calibration. However, it is not always possible to
eliminate all of these variations in behavior. For this reason, all remaining variations

in behavior are exposed at compile-time through the delta model specification.

The delta model specification of the block (delta-par and delta statements) de-
scribes all the functions which may be implemented at an output port in practice
after the block has been calibrated. Each delta model contains one or more delta
model parameters. Delta model parameters may be correctable or uncorrectable ((cor-
rectable)?). Correctable delta model parameters can be statically compensated for at
compile-time, while uncorrectable delta model parameters cannot. Each delta model
parameter also has a parameter type (gain, offset, or other) which indicates what
kind of unwanted behavior is captured with the parameter. The compiler uses the
parameter type to further narrow down the correctable delta model parameters that
should be compensated for by a given compilation pass. All delta model parameters
have an ideal parameter value ideally x. Instantiating the delta model parameter to
its ideal parameter value typically eliminates the effect of the parameter on the block

dynamics.

Correctable Delta Model Parameters: Correctable delta model parameters can be com-

141

pensated for at compile-time. The correctable delta parameter definition statement
delta-par seq(v) correctable DeltaT ideally x defines a list of correctable delta
model parameters seq(v) which have the type DeltaT and ideally would take on the

value x.

Uncorrectable Delta Model Parameters: Uncorrectable delta model parameters cannot
be corrected at compile-time. The delta parameter definition statement delta-par
seq(v) DeltaT ideally x defines a list of uncorrectable delta model parameters
seq(v) which have type DeltaT and should ideally should be close to the real value

X.

The Delta Model Relation: Each analog output port is optionally assigned a delta
model specification. The delta model specification is a mode-dependent input-output
relation over data fields, block inputs, and delta model parameters. Each delta
1st(v) = multi(ModeR,E) statement defines a mode-dependent mathematical ex-
pression multi(ModeR,E) which describes the space of delta models at the output

ports 1st(v).

Block interval statements are required for all ports and data, quantize statements are
required only for digital ports, and maxfreq and noise statements are optional. Together,
the interval and maxfreq specify the physical restrictions of the block. These statements
impose hard constraints on the block which must be honored for hardware to operate cor-
rectly. The noise, quantize, and delta statements specify the physical behaviors of the
block. These statements specify unwanted behaviors which may alter the accuracy of the
signal produced at each block input. Typically, these behaviors cannot be completely cor-

rected, but can be attenuated away through careful programming.

5.5.2 Device Layout Specification

Figure 5-2 presents the d