
Compilation Techniques for Reconfigurable Analog
Devices

by

Sara Achour
B.S., University of California, Los Angeles (2013)

S.M., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

c○ Sara Achour, MMXXI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

August 27, 2021
Certified by. .

Martin Rinard
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Compilation Techniques for Reconfigurable Analog Devices

by

Sara Achour

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Reconfigurable dynamical-system solving analog devices are a powerful new ultra-low-
power computing substrate capable of executing dynamical systems in a performant
and energy-efficient manner. This class of devices leverages the physical behavior of
transistors to directly implement computation. Under this paradigm, voltages and
currents within the device implement continuously evolving variables in the compu-
tation. These hardware platforms are challenging to use because they are subject
to a variety of low-level physical behaviors that profoundly affect the computation.
Relevant physical behaviors include operating range and frequency limitations, noise,
process variation, and quantization error.

In this thesis, I present compilation techniques for automatically configuring such
devices to execute dynamical systems and present the first compiler that automati-
cally targets a physical dynamical system-solving reconfigurable analog device of this
class. The presented compiler frees the end user from reasoning about the low-level
physical behaviors present in the hardware and automates the process of mapping
the dynamical system to the analog hardware. This thesis also introduces specifi-
cation languages for describing dynamical systems, and the capabilities and physical
limitations of the reprogrammable analog hardware. The compiler targets these spec-
ifications when mapping the computation.

To faithfully implement a computation, the compiler configures the device so that
the original dynamical system dynamics can be recovered from the physics of the
device at runtime. The mapped computation simultaneously leverages the device
physics to implement the desired computation, respect the physical limitations of the
device, and attenuate away the unwanted physical behaviors present in the analog
hardware. The compiler configures and composes together the analog blocks and
simultaneously accounts for all of the low-level behaviors present in the device.

The compiler first maps the target dynamical system to the analog hardware
and then transforms the produced circuit to attenuate away unwanted analog be-
havior. The compiler employs a multi-stage, algebraic rewrite-based circuit synthesis
procedure to map the dynamical system to the analog hardware. This procedure syn-
thesizes analog circuits that effectively use parametric and specialized analog blocks

3

and leverage physical laws to perform computation.
The compiler automatically transforms the mapped circuit to attenuate away the

unwanted analog behaviors present in the circuit. This transformation transforms
the signals to respect the operating range and frequency limitations present in the
hardware and reduces the effect of analog noise, quantization error, process variation-
induced behavioral deviations on the computation. The transformed circuit preserves
the original dynamics of the system such that the original dynamical system variable
trajectories can be recovered by applying a compiler-derived recovery transform. The
compiler formulates the problem of transforming the circuit as a convex optimization
problem – this enables the compiler to optimally identify circuit transformations that
maximize circuit characteristics such as execution speed and signal quality.

The compiler deploys a cross-cutting program optimization in which the calibra-
tion algorithm and compiler work together to reduce the effect of process variation-
induced behavioral variations on the overall computation. This thesis presents the
concept of a delta model, a hardware abstraction that captures the device-specific
behavioral deviations present in the calibrated analog hardware. The compiler uses
this hardware abstraction to compensate for behavioral variations for the specific
device at hand while transforming the circuit. This optimization involves all parts
of the software stack. I introduce delta model language constructs to the hardware
specification language, develop a novel delta-model aware circuit scaling optimization,
and introduce new calibration and characterization procedures into the device run-
time and firmware to implement this optimization. With this optimization enabled,
I am able to attain higher fidelity results with more consistency on the target hard-
ware. This thesis also presents a co-designed calibration algorithm that prioritizes
eliminating behavioral deviations that cannot be compensated for in compilation.

I evaluate the compiler on applications from the biology, physics, and controls
domains. The results demonstrate that these applications execute with acceptable
error while consuming microjoules of energy.

Thesis Supervisor: Martin Rinard
Title: Professor of Electrical Engineering and Computer Science

4

Acknowledgments

I want to thank my advisor, Martin Rinard, for supervising my research and mentoring

me over these years. Under his guidance, I felt that I grew as both a researcher and

a communicator. I greatly appreciated all of his insights over the years – research-

related, philosophical, and otherwise.

I would also like to express my gratitude to Michael Carbin and Yannis Tsividis for

serving as readers for this thesis. I greatly appreciated all of the valuable insights they

brought to this work. I would like to thank Yannis Tsividis especially for working

with me on this project and providing the hardware prototypes I targeted in this

research. His expertise and insights were invaluable for this line of work.

I would like to take the time to acknowledge all of my wonderful colleagues from

the programming languages and systems communities for all of the insights they’ve

offered over the years. I’d like to thank Sasa Misailovic, Michael Carbin, Stelios

Sidiroglou-Douskos, Jeff Perkins, and Michael Gordon for showing me the ropes when

I first started as a graduate student and involving me in the various grants we’ve had

throughout the years. I’d like to more generally thank both the current and former

members of the PAC group. The camaraderie within the group undoubtedly helped

make the most strenuous of deadlines more bearable.

I will always be grateful for all of my mentors throughout undergrad that set me

on this path. I’d like to thank Jens Palsberg and Glenn Reinman for introducing

me to computer science research. Without their guidance, I would likely have not

discovered this career path. I am also forever indebted to Joe DiStefano, who taught

mentored me through my undergraduate years. Had I not been a part of the compu-

tational systems biology interdepartmental program he supervised, I would not have

discovered computer science as a field of study.

While this journey was long, it was far from lonely. I will forever be grateful

to all of my friends from MIT for being there for me throughout this process. I

will fondly remember all of the thanksgivings, patio beers, Dungeons and Dragons

sessions, adrenaline-inducing boating excursions that we had over the years. It was

5

these adventures that really made my time here at MIT special. I’d like to thank

my flatmates Eva Golos, Deborah Pohlmann, Lindsay Brownell, and Kasturi Shah

for living with me over the years. Our morning coffees, spontaneous brunches, and

post-work outings made even the bleakest of days enjoyable. I would like to also

extend my gratitude to all of the people at WMBR for hosting me and giving 1001 a

home. Monday nights will always hold a special place in my heart. Finally, I would

like to thank my family for ensuring I received a good education and encouraging me

to pursue a career in STEM. Without their support, this journey surely would have

been more difficult.

This thesis is dedicated to my grandmother, Zaina, who ensured her children

received the education that she was denied as a girl. In loving memory of my grand-

father, Said.

6

Contents

1 Introduction 27

1.1 Dynamical Systems . 30

1.2 Analog Computing . 32

1.2.1 Modern Analog Computing 32

1.3 Problem Statement . 36

1.3.1 Challenges . 36

1.3.2 Advancement over State of the Art 37

1.3.3 Circuit Synthesis . 40

1.3.4 Circuit Scaling . 41

1.4 Overview of Thesis . 43

1.4.1 Background and Related Work 44

1.4.2 Dynamical Systems . 44

1.4.3 Dynamical System Applications 44

1.4.4 Reconfigurable Analog Devices 45

1.4.5 Scaled and Unscaled ADPs 47

1.4.6 Compilation Overview . 48

1.4.7 Circuit Synthesis . 49

1.4.8 Circuit Scaling . 50

1.4.9 Results . 52

1.5 Reading Strategies for this Thesis . 54

1.6 Summary . 55

7

2 Related Work 59

2.1 Dynamical Systems . 60

2.1.1 Applications . 60

2.1.2 Types of Dynamical Systems 62

2.1.3 Differential Equation Solvers 63

2.2 History of Analog Computing . 64

2.2.1 Compilers for Historical Analog Computers 66

2.3 Dynamical System-Solving Reconfigurable Analog Device 69

2.3.1 Compilers for Dynamical System-Solving Analog Devices . . . 71

2.4 Other Kinds of Reconfigurable Analog Devices 73

2.4.1 Spiking Neural Networks . 73

2.4.2 Neural Networks and Machine Learning 74

2.4.3 Field-Programmable Analog Arrays and Analog Fabrics 76

2.5 Compilation and Synthesis Techniques 76

2.5.1 Deductive Synthesis . 76

2.5.2 Code Generation . 77

2.5.3 Superoptimization and Rewrite Systems 78

2.5.4 Compilers for CGRAs . 79

2.5.5 FPGA Place+Route Algorithms 80

2.5.6 Interval Analysis . 81

2.5.7 Scaling . 81

2.6 Conclusion . 82

3 Dynamical Systems 85

3.1 Dynamical System Overview . 87

3.1.1 Execution of First-Order ODEs 89

3.1.2 Changing the Speed of First-Order ODEs 90

3.2 The Dynamical System Specification Language 90

3.2.1 Mathematical Expression Language 91

3.2.2 Dynamical System Specification Language 93

8

3.3 Conclusion . 95

4 Dynamical System Applications 97

4.1 Simple Oscillator (cos) . 98

4.2 Dampened Harmonic Oscillator (cosc) 99

4.3 Pendulum (pend) . 100

4.4 Spring (spring) . 101

4.5 Vanderpol Oscillator (vanderpol) . 102

4.6 Forced Vanderpol Oscillator (forced) 103

4.7 1D Heat Model (heatN4X2) . 104

4.8 PID Controller (pid) . 105

4.9 Kalman Filter (kalman) . 107

4.10 Michaelis Menten Reaction (smmrxn) 109

4.11 Genetic Toggle Switch (gentog) . 111

4.12 Botulism Neurotoxin (bont4) . 113

4.13 Example Real-Time Dynamical Systems 114

4.13.1 Bias Shift Detector . 114

4.13.2 Denoiser . 116

4.14 Conclusion . 117

5 Reconfigurable Analog Devices 119

5.1 Programmability of of Analog Devices 124

5.2 Low-Level Physics and Analog Devices 126

5.3 Delta Models . 130

5.4 Notation for Language Grammars . 133

5.5 Analog Device Specification Language 136

5.5.1 Block Specification Language 137

5.5.2 Device Layout Specification 142

5.6 Analog Device Programming Language 145

5.7 HCDCv2 Analog Device Specification 146

5.7.1 HCDCv2 Block Specifications 148

9

5.7.2 HCDCv2 Layout . 163

5.8 HCDCv2 Manufacturing Variations, Calibration, and Delta Models . 164

5.8.1 HCDCv2 Calibration . 165

5.8.2 HCDCv2 Delta Models . 166

5.8.3 Example: mul block . 167

5.9 HCDCv2 Software Stack and Runtime 171

5.9.1 HCDCv2 Low-Level Programming Interface 172

5.9.2 The Calibration, Profiling, and Delta Model Databases 173

5.9.3 Calibration, Profiling, and Model Elicitation 175

5.9.4 Analog Device Program Execution 177

5.9.5 ADP Execution on the HCDCv2 178

5.10 Conclusion . 180

6 Scaled and Unscaled ADPs 183

6.1 Simple Oscillator (cos) . 188

6.1.1 Signal Dynamics of Unscaled ADP 189

6.1.2 Challenges with Running the Unscaled ADP 190

6.1.3 Scaled ADP . 193

6.1.4 Physical Realizability of Scaled ADP 194

6.1.5 Preservation of Original Dynamics in Scaled ADP 196

6.2 Notation and Overview . 198

6.2.1 Unscaled Signal Dynamics . 199

6.2.2 Syntactic Matching . 199

6.2.3 Scaled Signal Dynamics . 200

6.2.4 Signal Preservation . 200

6.3 Dynamical System Applications . 205

6.3.1 Dampened Harmonic Oscillator (cosc) 205

6.3.2 Pendulum (pend) . 210

6.3.3 Spring (spring) . 218

6.3.4 Van der Pol Oscillator (vanderpol) 227

10

6.3.5 Heat Equation (heatN4X2) . 234

6.3.6 Forced Van der Pol Oscillator (forced) 242

6.3.7 PID Controller (pid) . 249

6.3.8 Kalman Filter (kalman) . 259

6.3.9 Michaelis Menten Reaction (smmrxn) 266

6.3.10 Genetic Toggle Switch (gentog) 275

6.3.11 Botulism Neurotoxin (bont4) 287

6.4 General Trends . 292

6.4.1 Unscaled ADPs . 292

6.4.2 Scaled ADPs . 293

6.5 Conclusion . 296

7 Compilation Overview 299

7.1 Harmonic Oscillator . 301

7.1.1 Harmonic Oscillator Dynamical System Specification 302

7.2 The SIMPL Analog Device . 303

7.3 The Harmonic Oscillator on the SIMPL Device 309

7.3.1 Unscaled ADP . 309

7.3.2 Scaled ADP . 312

7.4 Circuit Synthesis (LGraph) . 317

7.4.1 Tableau-based vADP Fragment Synthesis 319

7.4.2 vADP Assembly . 327

7.4.3 vADP Place and Route . 337

7.5 LScale Compilation Pass . 343

7.5.1 CGP Generation Procedure 347

7.5.2 Factor Constraint Generation 353

7.6 Conclusion . 358

8 Circuit Synthesis 361

8.1 Problem Definition . 362

8.1.1 Notation . 362

11

8.1.2 Dynamical System Specification 365

8.1.3 Analog Device Specification 365

8.1.4 Analog Device Program . 366

8.1.5 Virtual Analog Device Program 366

8.2 vADP Fragment Synthesis . 367

8.2.1 The Tableau . 367

8.2.2 Basic Approach . 368

8.2.3 The Initial Tableau . 368

8.2.4 The Solved Tableau . 369

8.2.5 The → Operator . 369

8.2.6 Goal and Relation Selection 369

8.2.7 Unification . 370

8.2.8 Applying the Unification to the Tableau 372

8.2.9 Applying the Unification to the vADP 372

8.2.10 Applying the Unification to Tableau Relations 374

8.2.11 Putting it all Together . 376

8.2.12 Computation with Physical Laws 376

8.2.13 Search Algorithm . 379

8.2.14 Synthesis Optimizations . 380

8.3 Assembly . 380

8.3.1 Circuit Collation . 381

8.3.2 Assembly Fragment Synthesis Overview 381

8.3.3 AFSP Interface Elicitation . 382

8.3.4 AFSP Fragment Generation 383

8.3.5 Assembly Fragment Integration 394

8.4 Place and Route . 395

8.4.1 Placement . 395

8.4.2 Routing . 397

8.4.3 Block Placement Problem Generation 397

8.4.4 Place and Route Algorithm 399

12

8.5 Conclusion . 400

9 Analog Circuit Scaling 403

9.1 The CGP and GP . 405

9.1.1 The Geometric Programming Problem 405

9.1.2 The Combinatorial Geometric Programming Problem 406

9.2 Problem Definition . 407

9.2.1 Notation . 408

9.2.2 Analog Device Specification 408

9.2.3 Dynamical System Specification and Analog Device Program . 410

9.2.4 Delta Model Database and Calibration Strategy 410

9.2.5 Analog and Digital Quality Measures 411

9.3 CGP Generation . 412

9.3.1 CGP Variables . 413

9.3.2 Combinatorial Geometric Programming Problem Formulation 416

9.4 CGP Factor Constraint Generation 420

9.4.1 Expression Factoring Algorithm (fact) 421

9.4.2 Master Expression Elicitation (master) 423

9.5 Completing the ADP . 428

9.5.1 Mode Selection . 429

9.5.2 Scale Transform Generation 429

9.5.3 Generating the Scaled ADP 430

9.5.4 Implementation . 430

9.6 Conclusion . 430

10 Results 433

10.1 Experimental Setup . 443

10.1.1 Compilation of Scaled ADPs 443

10.1.2 Execution of Scaled ADPs . 444

10.1.3 Overview of Statistical Measures 445

10.2 Quality, Runtime, Power, and Energy 447

13

10.2.1 End-to-End Result Quality (% rmse) 449

10.3 Compiler Optimizations and Result Quality 450

10.3.1 Effect of Scaling Transform 451

10.3.2 Effect of Mode Selection . 451

10.3.3 Effect of Delta Model Compensation 458

10.3.4 Effect of Calibration Strategy 459

10.4 Compilation Time . 462

10.5 Optimality of Scaled and Unscaled ADPs 464

10.5.1 Metrics . 465

10.5.2 Optimality of ADP Circuit Topology 467

10.5.3 Execution Speed Optimality 469

10.5.4 Signal Dynamic Range Optimality 470

10.5.5 Data Field Value Optimality 472

10.5.6 balanced Scale Objective Function Value Optimality 474

10.5.7 Analog and Digital Quality Measure Breakdown 475

10.6 Viability of Unscaled ADPs . 477

10.6.1 Execution Speed of Unscaled ADPs 477

10.6.2 Signal Dynamic Ranges of Unscaled ADPs 478

10.6.3 Data Field Values of Unscaled ADPs 479

10.7 Scaling Transform Complexity . 480

10.8 Compilation Outcomes and Result Quality 481

10.8.1 Block Instance Selection and Result Quality 483

10.8.2 The Scale Objective Function and Result Quality 486

10.9 Alternate Scaling Objective Functions 492

10.9.1 Quality, Power, Energy, and Runtime 492

10.9.2 Analysis of Best-Performing Circuits 494

10.10Realtime Case Studies . 495

10.10.1Case Study A: Bias Shift Detector 496

10.10.2Case Study B: Denoiser . 497

10.11Conclusion . 498

14

11 Conclusion 503

11.1 Review . 504

11.1.1 Circuit Scaling . 505

11.1.2 Calibration, Delta Models, and Software Compensation 507

11.1.3 Analog Device Specification Language 508

11.1.4 Circuit Synthesis . 510

11.2 Limitations . 512

11.2.1 Expressivity of Dynamical System Specification Language . . 512

11.2.2 Expressivity of Analog Device Specification Language 513

11.2.3 Compiler Limitations . 514

11.3 Future Directions . 514

11.3.1 Compiler Optimizations . 514

11.3.2 Mixed-Signal Computing Paradigms 515

11.3.3 Automated Design-Space Exploration 516

11.4 Concluding Thoughts . 517

A Appendix 531

A.1 Interval Propagation Function (ival-prop) 531

A.2 Expression Evaluation Function (eval) 533

A.3 Geometric Program Encoding Tricks 534

A.3.1 Interval Encoding . 534

15

16

List of Figures

3-1 Math expressions . 91

3-2 Dynamical system specification language (DSSL) grammar 93

4-1 Simple harmonic oscillator (cos) . 98

4-2 Dampened oscillator (cosc) . 99

4-3 Pendulum (pend) . 100

4-4 Two-spring system (spring) . 101

4-5 Van der pol oscillator (vanderpol) 102

4-6 Forced van der pol oscillator (forced) 103

4-7 1D heat equation (heatN4X2) . 104

4-8 Proportional-integral controller (pid) 105

4-9 Kalman filter (kalman) . 107

4-10 Michaelis-Menten chemical reaction (smmrxn) 109

4-11 Genetic toggle switch (gentog) . 111

4-12 Botulism neurotoxin model (bont4) 113

4-13 Bias change detector . 114

4-14 Signal denoiser . 116

5-1 ADSL block specification grammar 137

5-2 ADSL device layout specification grammar 143

5-3 Grammar for analog device program language (ADPL) 145

5-4 Die photo of HCDCv2 chip and HCDCv2 Analog Device [51] 147

5-5 Integrator (int) block specification 149

5-6 Multiplier (mul) block specification 151

17

5-7 Current copier (fan) block specification 153

5-8 Digital-to-analog converter (dac) block specification 155

5-9 LUT (lut) block specification . 156

5-10 Analog-to-digital converter (adc) block specification 157

5-11 External input/output (extin,extout) block specification 158

5-12 Routing block specifications . 159

5-13 Kirchhoff’s Law . 160

5-14 HCDCv2 device specification (1/2) 161

5-15 HCDCv2 device specification (2/2) 162

5-16 HCDCv2 Layout Overview . 163

5-17 Calibrated Block Error for Maximize Fit/Minimize Error Calibration

Strategies for Multiplier (1,3,0,0) 167

5-18 Uncorrectable Delta Model Error for Maximize Fit/Minimize Error

Calibration Strategies for Multiplier (1,3,0,0) 170

5-19 Laboratory Setup for HCDCv2 . 171

5-20 Calibration, Delta Model, and Profiling Database Overview 174

5-21 Calibration, Profiling, and Model Inference Operations 175

5-22 Block Configuration, Connection, and Execution Operations 177

6-1 cos dynamical system specification 186

6-2 cos unscaled ADP . 186

6-3 cos unscaled ADP - circuit representation 187

6-4 cos unscaled ADP signal dynamics 189

6-5 cos scaled ADP . 191

6-6 cos scaled adp - circuit representation 192

6-7 cos scaled ADP signal dynamics . 196

6-8 cosc dynamical system specification 203

6-9 cosc unscaled ADP . 203

6-10 cosc unscaled ADP signal dynamics 203

6-11 cosc scaled ADP . 204

18

6-12 cosc scaled ADP signal dynamics . 204

6-13 pend dynamical system specification 208

6-14 pend unscaled ADP . 208

6-15 pend unscaled ADP signal dynamics 208

6-16 pend scaled ADP . 209

6-17 pend scaled ADP signal dynamics . 209

6-18 spring dynamical system specification 214

6-19 spring ADP connections . 214

6-20 spring unscaled ADP - excluding connections 215

6-21 spring unscaled ADP signal dynamics 215

6-22 spring scaled ADP - excluding connections 216

6-23 spring scaled ADP signal dynamics 217

6-24 vanderpol dynamical system specification 224

6-25 vanderpol unscaled ADP . 224

6-26 vanderpol unscaled ADP signal dynamics 225

6-27 vanderpol scaled ADP . 225

6-28 vanderpol scaled ADP signal dynamics 226

6-29 heatN4X2 dynamical system specification 230

6-30 heatN4X2 ADP connections . 230

6-31 heatN4X2 unscaled ADP - excluding connections 231

6-32 heatN4X2 unscaled ADP signal dynamics 231

6-33 heatN4X2 scaled ADP - excluding connections 232

6-34 heatN4X2 scaled ADP signal dynamics 233

6-35 forced dynamical system specification 239

6-36 forced ADP connections . 239

6-38 forced unscaled ADP signal dynamics 240

6-37 forced unscaled ADP . 240

6-40 forced scaled ADP signal dynamics 241

6-39 forced scaled ADP . 241

6-41 pid dynamical system specification 246

19

6-42 pid ADP connections . 246

6-44 pid unscaled ADP signal dynamics 247

6-43 pid unscaled ADP . 247

6-46 pid scaled ADP signal dynamics . 248

6-45 pid scaled ADP . 248

6-47 kalman dynamical system specification 254

6-48 kalman unscaled ADP . 255

6-49 kalman unscaled ADP signal dynamics 256

6-50 kalman scaled ADP . 257

6-51 kalman scaled ADP signal dynamics 258

6-52 smmrxn dynamical system specification 264

6-53 smmrxn unscaled ADP . 264

6-54 smmrxn unscaled ADP signal dynamics 264

6-55 smmrxn scaled ADP . 265

6-56 smmrxn scaled ADP signal dynamics 265

6-57 gentog dynamical system specification 270

6-58 gentog ADP connections . 270

6-59 gentog unscaled ADP - excluding connections 271

6-60 gentog unscaled ADP signal dynamics 272

6-61 gentog scaled ADP - excluding connections 273

6-62 gentog scaled ADP signal dynamics 274

6-63 bont4 dynamical system specification 283

6-64 bont4 ADP connections . 283

6-65 bont4 unscaled ADP - excluding connections 284

6-66 bont4 unscaled ADP signal dynamics 284

6-67 bont4 scaled ADP - excluding connections 285

6-68 bont4 scaled ADP signal dynamics 286

7-1 Compiler Overview . 300

7-2 Simple Harmonic Oscillator . 301

20

7-3 Harmonic Oscillator DSS . 302

7-4 SIMPL Analog Blocks . 303

7-5 SIMPL Device Layout . 303

7-6 ADS Layout Specification for SIMPL 307

7-7 Analog circuit described by unscaled ADP 309

7-8 Unscaled ADP implementing harmonic oscillator 309

7-9 Unscaled dynamics of the cos benchmark 310

7-10 Unscaled ADP implementing harmonic oscillator 312

7-11 Scaled ADP implementing harmonic oscillator 313

7-12 Scaled dynamics of the harmonic oscillator 315

7-13 Circuit Synthesis (LGraph) Overview 317

7-14 vADP Fragment Synthesis (LGraph) Overview 319

7-15 vADP Fragments for Harmonic Oscillator 321

7-16 vADP Synthesis Steps for Harmonic Oscillator Position 322

7-17 vADP Assembly Step Overview . 328

7-18 Assembly Fragment Synthesis Overview 330

7-19 Disconnected vADP for Harmonic Oscillator 332

7-20 Harmonic Oscillator vADP after Assembly Procedure 333

7-21 Complex Multi-Level Assembly Fragment Generation 335

7-22 Tree structure generation. s is shorthand for an analog current. . . . 336

7-23 LGraph Place and Route Overview 337

7-24 BPP Placement Operation Overview 339

7-25 Harmonic Oscillator ADP after Place and Route 341

7-26 Circuit Scaling Overview (LScale) 343

7-27 Scaled Harmonic Oscillator ADP . 349

7-28 Factor Constraint Generation Procedure(LScale) 354

8-1 Example of partially specialized virtual block instance 375

8-2 Overview of Kirchhoff’s law . 377

8-3 Tree restructuring example . 390

21

9-1 Circuit scaling pass overview (LScale) 407

9-2 Expression factoring rules (fact) . 422

10-1 Measured waveforms for lowest error ADPs 449

10-2 Measured waveforms for single-mode nomaster executions 452

10-3 Measured waveforms for ideal, minerr, and maxfit executions (1/3) 454

10-4 Measured waveforms for ideal, minerr, and maxfit executions (2/3) 455

10-5 Measured waveforms for ideal, minerr, and maxfit executions (3/3) 456

10-6 Distribution of % rmses for ideal, minerr, and maxfit executions . . 457

10-7 Breakdown of % rmses by originating unscaled ADP (1/2) 484

10-8 Breakdown of % rmses by originating unscaled ADP (2/2) 485

10-9 External input for bias shift detector 496

10-10Output signal from bias shift detector 496

10-11External input for denoiser . 497

10-12Output signal from denoiser . 497

A-1 Interval propagation function . 532

A-2 Expression evaluation function . 533

22

List of Tables

5.1 Shorthand for language grammars . 134

9.1 CGP scale transform and mode selection variable summary 413

9.2 CGP property variable summary . 413

10.1 Dynamical system benchmarks . 443

10.2 Quality, runtime, power, and energy of best-performing ADPs 447

10.3 Performance of single-mode (nomaster) executions 453

10.4 Compilation times for the LGraph and LScale compilation passes. . . 462

10.5 LGraph performance breakdown by compilation pass. 462

10.6 Breakdown of ADP connections and blocks (by block type) 467

10.7 Breakdown of ADP route blocks . 468

10.8 Execution speeds for scaled ADPs . 469

10.9 Dynamic ranges of the time varying signals in the scaled ADPs . . . 471

10.10Signal amplitudes of the fixed signals in the scaled ADPs 473

10.11Breakdown of balanced scale objective values 474

10.12Breakdown of analog and digital quality measures by signal type . . . 475

10.13Execution speeds for unscaled ADPs 478

10.14Dynamic ranges of the time-varying signals in the unscaled ADPs . . 479

10.15Signal amplitudes of the fixed signals in the unscaled ADPs 480

10.16Summary of magnitude and time scale factors for scaled ADPs 481

10.17Correlation analysis between ADP quality measures / balanced scal-

ing objective values and the % rmse of measured waveforms. 486

10.18Quality, runtime, power, and energy of single executions 490

23

10.19Summary of signals maximized by the single scale objective function 491

A.1 GP Constraint Derivation for Two-Sided Intervals 535

24

List of Algorithms

1 Unification application to vADP in tableau (apply-vadp) 373

2 Unification application to tableau hardware relations (apply-rel) . . 374

3 vADP fragment synthesis search algorithm 379

4 Concrete assembly block generation algorithm (BuildConcBlock) . . 385

5 Assembly tree structure generation algorithm (BuildTreeStructure) 387

6 Assembly tree level generation algorithm (BuildLevel) 387

7 Level restructuring algorithm (RestructureLevel) 388

8 Level restructuring helper function (Restruct) 389

9 vADP translation algorithm (LevelsToVADP) 392

10 vADP output signal selection algorithm (SelectFreeOutputPort) . 393

11 vADP assembly fragment integration algorithm (IntegrateFragment) 394

12 vADP source signal selection algorithm (SelectFreeVADPSource) . . 395

13 Place and route algorithm (PlaceAndRoute) 399

14 Delta model retrieval function (delta-model) 411

15 Factor constraint generation algorithm (factor) 420

16 Master expression elicitation algorithm (master) 424

17 Expression harmonization algorithm (harm) 425

18 Direct expression harmonization algorithm (harm-direct) 427

25

26

Chapter 1

Introduction

Specialized computing platforms, implemented on a range of devices including ana-

log, photonic, and digital devices, are becoming pervasive and crucial for satisfying

the computational needs of different domains. Examples include specialized devices

that efficiently solve problems in machine learning, quantum computing, signal pro-

cessing, robotics, and biology [120, 56, 54, 11, 108, 85, 105, 29, 128, 31, 140, 132,

51, 61, 141, 15, 109, 102, 62, 87, 89, 38]. Delivering the potential of such devices

to domain specialists is a challenge as there is sometimes a significant gap between

the programming interface that the device provides and a programming model the

end user can use productively. This gap between an effective high-level programming

model and the hardware programming interface often occurs in designs that prioritize

accuracy, device area, or performance over usability.

I present a new compiler for ultra-low power reconfigurable analog computing

platforms which solve dynamical systems [61, 51, 128, 140]. These devices are pro-

grammed by routing together configurable analog blocks using digitally programmable

interconnects. The programmed computation is then executed by powering on the

analog device and observing the voltage and current trajectories over time. These

signal trajectories capture the evolution of dynamical system quantities over time.

The presented compiler automates the programming process so that these devices

are more accessible to programmers. The compiler automatically performs all of the

device configuration steps for the end user and automatically reasons about any low-

27

level physical behaviors present in the device. With this compiler, the end user needs

only to specify the dynamical system, variables of interest, and value ranges for each

variable. The compiler produces, as output, a configuration for the analog device

that encodes a circuit comprised of configured analog blocks. The original dynamical

system dynamics can be recovered from the circuit dynamics at runtime by applying

a compiler-derived recovery transform.

To faithfully implement the computation, the compiler transforms the computa-

tion to reduce the effect of a variety of low-level physical behaviors on the overall

computation. Relevant low-level physical behaviors include operating range and fre-

quency limitations, noise, process variation-induced behavioral deviations, and quan-

tization error. These low-level behaviors can have a profound effect on the fidelity

of the mapped computation. The compiler transforms the mapped computation to

respect the physical limitations of the device and attenuate away the unwanted phys-

ical behaviors present in the analog blocks – this reduces the effect of these low-level

physical behaviors on the computation. The original dynamical system dynamics can

be recovered from the transformed computation at runtime by applying a compiler-

derived recovery transform. The compiler, therefore, frees the end user from reasoning

about and compensating for the low-level physical behaviors present in the hardware

when designing the computation.

The compiler deploys a cross-cutting program optimization in which the device

calibration algorithm and compiler work together to reduce the effect of process

variation-induced behavioral variations on the overall computation. Each block on the

analog device is designed to implement some function 𝑔. However, due to the effects

of process variation, the blocks rarely implement 𝑔 accurately post-fabrication. To

mitigate this issue, designers introduce calibration circuits into the hardware. With

this addition, each block in the analog hardware can be calibrated to implement a

range of functions 𝑓1...𝑓𝑛.

Traditional Approach: Traditionally, the compiler targets the function 𝑔 that each

block is designed to implement. The calibration algorithm then calibrates each block

to implement the function 𝑓𝑖 that most closely approximates the function 𝑔. With this

28

traditional approach, the compiler may produce circuits that inaccurately execute the

target computation. These inaccuracies occur when the circuit includes blocks that

cannot be calibrated to closely approximate the function 𝑔.

Co-Designed Approach: This work deploys a cross-cutting compiler optimization

which enables the compiler to target a range of functions 𝑔1...𝑔𝑚 for each block.

Under this paradigm, the calibration algorithm identifies the function pair ⟨𝑓𝑖, 𝑔𝑗⟩ in

which 𝑓𝑖 most closely approximates 𝑔𝑗 over all pairs of 𝑓 and 𝑔 functions. Because

each block on the device may be calibrated to implement a range of functions, the

calibration algorithm is free to select a function 𝑔𝑗 for each block that can be imple-

mented with the smallest error in hardware. This approach introduces less error into

the computation because each block in the associated circuit may be calibrated to

implement the function that delivers the lowest error.

This thesis introduces a delta model specification construct that codifies the space

of functions 𝑔1...𝑔𝑚 for each block and a delta model hardware abstraction that de-

scribes, for each block instance in the device on hand, the function 𝑔𝑗 the block

instance has been calibrated to most closely approximate. The compiler uses the

delta model hardware abstraction to compensate for behavioral variations present in

the calibrated hardware when transforming the circuit. This compiler optimization

enables the compiler to reduce the effect of process variation on the overall compu-

tation. I also present a co-designed calibration algorithm that selects the function

𝑔𝑗 the target block can be calibrated to most closely approximate and calibrates the

block to implement the desired function.

The compiler automatically maps the target dynamical system to the analog hard-

ware. The compiler productively configures and composes together programmable

mixed-signal blocks that implement a host of non-standard, complex functions and

leverages physical laws, such as Kirchhoff’s law, to implement the desired compu-

tation. The compiler also introduces special-purpose blocks to convert, copy, and

route signals as necessary to implement the desired computation. These capabilities

together enable the compiler to effectively map the target dynamical system to the

analog hardware.

29

The compiler presented in this thesis works with a specification of the target analog

device written in the analog device specification language. The analog device speci-

fication language offers language constructs for describing the programmable blocks,

programmable connections, and the low-level physical behaviors present in the target

device. Because the compiler targets a specification of the analog device, it is capable

of targeting a range of devices. Specific devices include simulated devices based on

mixed-signal gene-protein network accelerators [128, 140] and the HCDCv2 differen-

tial equation solving analog device[61, 51, 132, 61, 51]. I evaluate the compiler on

the HCDCv2 differential-equation solving analog device [61, 51, 132]. This compiler

is the first to target any simulated or fabricated reconfigurable differential equation-

solving analog device. I evaluate the compiler on a broad range of dynamical systems

from the physics, biology, and controls domains. The automatically generated config-

urations execute the described dynamical system computations with acceptable error

while consuming significantly less energy than corresponding digital computations.

1.1 Dynamical Systems

A dynamical system is a system whose state evolves over time. Dynamical systems

appear in a wide variety of fields including mathematics, physics, chemistry, biology,

economics, engineering, machine learning, signal processing, and medicine [74, 117,

78, 14, 33, 9, 20, 143, 19, 45, 12, 25, 47, 118]. In the biological and physical sciences,

researchers use dynamical systems to predict and understand the behavior of physical

processes [74, 117]. For example, medical practitioners may use a dynamical system

to model the effect of an injection on an individual’s hormone levels and then use this

information to derive an initial dosage.

Dynamical systems also often appear in systems which interact with the environ-

ment. Dynamical systems can be used to reconstruct higher-order information from

environmental signals and control actuators (e.g. motors) in real-time [78, 14, 33, 9].

For example, a drone may use a dynamical system to adjust the speed of its rotors

based on wind conditions.

30

Dynamical systems are typically implemented with ordinary differential equations

(ODEs) or partial differential equations (PDEs). In this work, I focus on dynamical

systems comprised of ordinary differential equations. An ordinary differential equa-

tion (ODE) is a differential equation in which all derivatives are taken with respect

to an independent variable, typically time. Practitioners generally are interested in

simulating a dynamical system. Dynamical system simulators and solvers compute

the trajectories of the state variables over simulation time.

While dynamical systems are invaluable in many different domains, there are

challenges with simulating dynamical systems accurately and performantly on dig-

ital hardware. Digital ODE solvers have difficulty efficiently simulating non-linear

differential equations or differential equations with dynamics which operate on dif-

ferent time scales. To mitigate these issues, practitioners linearize the differen-

tial equations or replace fast-evolving differential equations with closed-form solu-

tions [107, 41, 133, 58, 98, 99, 17]. These optimizations approximate the dynamical

system but enable the digital solver to more efficiently simulate the system.

These efficiency issues are especially important for dynamical system applications

with real-time performance requirements. Real-time dynamical systems typically in-

terface with the environment and appear in robotics, communications, and feature

recognition (e.g. voice recognition) applications [129, 106, 139]. To function correctly,

the real-time dynamical system must continuously process sensor inputs or continu-

ously tune actuator parameters without falling behind. Because these applications are

typically run on embedded systems, these dynamical system implementations must

meet real-time performance requirements on energy- and compute-constrained plat-

forms. Typically, practitioners discretize or aggressively simplify real-time dynamical

systems to improve performance [139]. Even with these simplifications, performantly

executing such computations in energy- and compute-constrained environments re-

mains a challenge.

31

1.2 Analog Computing

Historically, practitioners simulated dynamical systems with analog computers. This

form of analog computing primarily involved manually building analog circuits from

basic electrical components such as resistors, capacitors, and inductors to simulate

dynamical systems [130, 34, 104, 91]. These historical analog computers offered high-

precision analog primitives that could be manufactured at low tolerances. These

functional units performed computation at high accuracy – usually within 0.01%

error relative to the full-scale range of the signal for linear components [65].

Typically, the programmer would draft a circuit whose physical behavior was anal-

ogous to the dynamical system dynamics. In these circuits, the physics of the voltages

in the circuit over time match the dynamics of the target dynamical system over time.

To execute the dynamical system, the practitioner would power on the analog circuit

and observe the trajectories of the analog voltages of interest for a period of time.

If the practitioner designed the circuit correctly, the observed current and voltage

trajectories would follow the same path as the dynamical system variable trajecto-

ries. Researchers favored performing numerical computations with analog hardware

because digital hardware was not yet mature enough to perform these computations

efficiently. These historical analog computing platforms disappeared as the perfor-

mance of digital computers improved.

1.2.1 Modern Analog Computing

In recent years, analog computation has been experiencing a renaissance in the hard-

ware community. Hardware designers have put forth a variety of modern day digitally

programmable electrical analog devices [51, 61, 54, 11, 105, 29, 128, 31, 140, 109, 15,

102]. These analog devices use standard CMOS processes and leverage transistor

physics to perform computation. This line of research focuses on ultra-low power

reconfigurable electrical analog devices which simulate dynamical system computa-

tions [61, 51, 128, 140].

This class of modern dynamical system-solving analog devices leverages the ana-

32

log behavior of transistors to implement computation. Under this paradigm, voltages

and currents within the device capture the dynamics of the continuously evolving

variables in the dynamical system. This computational model closely resembles the

computational model employed by historical analog devices. Because modern devices

make use of standard CMOS processes, they are much smaller than their historical

counterparts. These devices also offer digitally programmable interconnects and val-

ues and are much easier to automatically configure and integrate with digital systems.

Unlike historical analog computers, modern dynamical system-solving analog de-

vices are engineered for energy efficiency and capable of performing computation with

very little power [51, 61]. These modern analog devices provide low-power approx-

imate computational blocks that incur between 1%-5% error. These low-precision

blocks are difficult to manufacture at low tolerances and are therefore sensitive to the

effects of process variation [132, 51, 61]. These modern analog blocks are also subject

to operating range and frequency limitations and are sensitive to noise. In contrast,

historical analog devices consumed much more power and area but provided high

precision components that could be manufactured at low tolerances and were there-

fore less affected by process variation. Because modern analog devices are inherently

approximate devices, they require the development of fundamentally new program-

ming techniques. Applying the programming techniques used for historical analog

computers would produce unacceptably inaccurate results on this class of modern

hardware.

Benefits of Modern Dynamical System-Solving Analog Devices

Dynamical system-solving analog devices are attractive computational targets be-

cause they are low power devices and have predictable performance characteris-

tics [51, 61]. In these systems, the mapping between dynamical system simulation

time and wall-clock time can be statically computed with high accuracy at compile-

time. This mapping defines how many milliseconds of wall-clock time it takes to

simulate the dynamical system for one unit of simulation time. Practitioners can

then use this mapping to determine if the analog implementation of the dynamical

33

system meets the performance requirements of the target computation.

Today, dynamical systems are simulated with digital dynamical system simulators.

Digital simulators do not typically have predictable performance characteristics when

simulating non-linear and stiff dynamical systems [107, 41, 133, 58, 98, 99, 17]. Stat-

ically inferring a tight execution time bound for digital dynamical system simulators

therefore remains a challenge.

This class of modern analog devices is also capable of efficiently simulating com-

plex dynamical systems. Because dynamical system-solving analog devices are highly

parallel spatial computing substrates, the execution time of the dynamical system

does not necessarily increase with dynamical system size and complexity.

These performance characteristics together enable practitioners to execute dynam-

ical systems which execute predictably and performantly while consuming very little

energy. In addition, some dynamical system-solving analog devices can compute on

externally provided analog signals and support emitting analog signals to externally

accessible hardware interfaces [51, 61]. These devices therefore support low power,

realtime signal processing applications that work with analog sensors and actuators.

Programming Modern Dynamical System-Solving Analog Devices

Modern dynamical system-solving analog devices are programmed by routing together

configurable analog blocks using programmable interconnects to form an analog cir-

cuit. For the programmed circuit to faithfully implement the dynamical system, the

original dynamical system variable trajectories must be recoverable from the voltage

and current trajectories at runtime. The original dynamical system trajectories are

recovered by applying a recovery transform to the measured signal trajectories. The

recovery transform maps signal values to dynamical system variable values and wall-

clock time samples to simulation time samples. A dynamical system is recoverable

from a programmed circuit if it can be recovered at runtime through the use of a

recovery transform.

Physical Limitations, Noise, and Quantization Error: This class of reconfig-

urable analog devices is subject to a variety of low-level physical effects which affect

34

the fidelity of the computation. Analog blocks impose frequency, current, and voltage

range limitations and have unique noise characteristics. The digital interfaces to ana-

log blocks are subject to the effects of quantization error and encode a limited range

of digital values. The practitioner must account for all of these low-level physical

behaviors when programming the hardware.

Process Variation: Analog blocks are also subject to process variation-induced vari-

ations in behavior – these unwanted behaviors appear post-fabrication and vary from

device to device. Hardware designers typically introduce calibration circuits into their

design to reduce the effect of process variation on the overall computation. These cali-

bration circuits are tuned online post-fabrication to eliminate unwanted behavior from

the device on hand. These calibration circuits either self-tune autonomously or are

configured by an algorithm implemented in the device firmware. In some cases, the

calibration circuits fail to completely eliminate the process variation-induced behav-

ioral variations from the analog blocks. This causes the calibrated block’s behavior

to deviate from its expected behavior and introduces error into the computation. In

extreme cases, practitioners may need to hand-select well-behaved blocks or manually

account for behavioral deviations present in the device on-hand when programming

the hardware.

Prior to the techniques presented in this thesis, practitioners had to manually

program these state-of-the-art dynamical system-solving analog devices to implement

the desired computation. This process involves manually drafting an analog circuit

composed of configured blocks. Because these blocks are implemented with analog

circuits, practitioners must also account for a host of low-level physical behaviors,

including noise, process variation, and signal and frequency range limitations. To

do so, practitioners must manually transform the programmed circuit to account

for these behaviors while simultaneously ensuring the original dynamical system is

recoverable at runtime. This arduous, error-prone programming process remains a

significant barrier to adopting these platforms today.

35

1.3 Problem Statement

My thesis research presents a compiler for reconfigurable dynamical system-solving

analog devices. The compiler automatically generates an analog circuit composed

of configured blocks and transforms the circuit to account for the low-level physical

behaviors present in the hardware. The compiler accepts, as input, a specification of

the dynamical system and a specification of the analog device. The compiler produces,

as output, an analog device program (ADP) which can be executed on the analog

hardware. The analog device program configures and connects together a subset of

blocks resident on the target analog device and specifies the recovery transform. The

recover transform recovers the original dynamical system dynamics from the ADP

signal trajectories. The end user provides the dynamical system specification, and

the hardware designer provides the analog device specification.

The analog device program produced by the compiler implements a circuit whose

physical behavior captures the behavior of the target dynamical system such that

the original dynamical system is recoverable at runtime. The compiler automatically

derives a recovery transform that recovers the original dynamical system as part of

the compilation process. To our knowledge, this is the first compiler to target a

simulated or fabricated differential-equation solving reconfigurable analog device of

this class.

1.3.1 Challenges

Reconfigurable analog computing platforms present fundamentally different program-

ming challenges than digital computing platforms:

∙ The low-level physics of the device can have a fundamental effect on the compu-

tation – analog blocks impose frequency, current, and voltage range limitations

and have unique noise and error characteristics. Analog blocks are also sub-

ject to process variation-induced variations in behavior. All of these low-level

physical behaviors must be taken into consideration when programming the de-

vice. This is especially true for modern incarnations of analog devices which

36

often offer low precision, approximate blocks and are sensitive to the effects of

process variation. Failing to adequately consider these low-level behaviors in-

troduces more error into an already approximate computation – this may cause

the mapped program to execute with unacceptable error.

∙ The provided analog blocks may implement complex functions – analog devices

provide highly specialized blocks that implement anything from simple func-

tions to sets of differential equations. These blocks are highly configurable and

often can be reconfigured to implement a multitude of different functions. Be-

cause there is no universally agreed upon collection of analog blocks, the set

of provided programmable blocks may vary across analog computing platforms.

Furthermore, two blocks of the same type may not implement the same set of

functions in practice due to variations introduced during fabrication.

∙ Analog blocks cannot be arbitrarily routed together — the programmable in-

terconnects are heavily constrained and limited in quantity. Therefore, com-

putations must be carefully laid out on the device so that all the necessary

connections can be made.

All of these factors together make reconfigurable analog devices a challenging

compilation target that requires fundamentally new techniques.

1.3.2 Advancement over State of the Art

This thesis introduces new languages which together define the compilation problem.

The compiler maps programs written in the dynamical system specification language

to an analog device. The compiler works with a specification of the device, written

in the analog device programming language. The compiler produces, as output, a

transformed analog circuit, written in the analog device programming language:

∙ Dynamical System Specification Languages - In this thesis, I introduce a

specification language for defining dynamical systems. The dynamical system

specification language (DSSL) provides constructs for specifying systems of

37

first-order differential equations. The DSSL is the high-level language targeted

by the compiler.

∙ Analog Device Specification Language: This thesis presents a novel spec-

ification language for reconfigurable analog devices. The analog device speci-

fication language (ADSL) offers block specification constructs for defining the

programming interface, dynamics, physical behaviors, and physical limitations

of each block. The specification language also provides constructs for specify-

ing the spatial layout of blocks on the device and the available digitally pro-

grammable connections offered by the device. A key challenge with designing

the ADSL is identifying the right abstractions for the programming interface

and low-level physical behaviors.

∙ Analog Device Programming Language: This thesis also presents a pro-

gramming language (ADPL) for analog devices. The analog device program-

ming language offers constructs for configuring blocks and enabling digitally

programmable connections within the device. These two constructs together

are used to describe a circuit of configured blocks on the device. The ADPL

also supports defining a recovery transform – this recovery transform recovers

the original dynamical system dynamics at runtime.

The compiler presented in this thesis leverages the following compilation tech-

niques to target the analog device effectively:

∙ Circuit Synthesis - This thesis presents a novel circuit synthesis procedure

that derives an analog device program that implements the given dynamical sys-

tem, subject to the resource and connectivity constraints of the analog device.

This circuit synthesis procedure can identify non-trivial usages of the available

blocks to implement the desired circuit and use specialized blocks when neces-

sary to forward, convert, and copy signals.

∙ Circuit Scaling - This thesis presents a novel circuit scaling procedure that au-

tomatically transforms an input analog device program to abide by the physical

38

restrictions imposed by the device. The resulting transformed circuit captures

the original dynamical system such that the original dynamical system is re-

coverable at runtime. The circuit scaling procedure derives a transform that

automatically compensates for process variation-induced behavioral deviations

present in the device. This compensation operation is critical for obtaining

accurate executions on modern analog devices.

∙ Synergistic Calibration and Compilation - This thesis presents a novel

cross-cutting compiler optimization in which the device calibration routines

and compiler work together to reduce the effect of process variation-induced

behavioral deviations on the overall computation.

Traditionally, architects design calibration algorithms to eliminate the subset

of the behavioral deviations that can be attenuated away with the calibra-

tion circuitry. I introduce a co-designed calibration algorithm that prioritizes

eliminating behavioral variations that the compiler cannot handle during com-

pilation.

I introduce the concept of a delta model, a new hardware abstraction that cap-

tures behavioral deviations present in the calibrated hardware. The compiler

targets the delta model representation of the behavioral deviations when tar-

geting the device on hand. The compiler identifies and compensates for any

correctable behavioral deviations when scaling the circuit. This abstraction

provides the compiler with a more accurate representation of the empirically

observed behavior of the calibrated device on hand. The compiler uses these

models to produce programs that deliver better end-to-end accuracy. All uncor-

rectable behavioral deviations are accepted as part of the behavior of the block

and introduce error into the overall computation.

This optimization involves all parts of the software stack. I introduce delta

model language constructs to the ADSL, develop a novel delta-model aware

circuit scaling optimization, and introduce new calibration and characterization

procedures into the device runtime and firmware to implement this optimization.

39

With this optimization enabled, I am able to attain higher fidelity results with

more consistency on the target hardware.

1.3.3 Circuit Synthesis

Because analog blocks are often engineered for efficiency and generality rather than

ease of use, there may be a substantial semantic gap between the dynamical system

and the analog hardware. For example, some analog devices may only provide compu-

tational blocks that implement complicated functions which are difficult to compose

together.

The goal of the circuit synthesis procedure is to derive an analog device program

that implements the given dynamical system, subject to the resource and connectivity

constraints of the analog device. The circuit synthesis procedure ensures the physics

of the circuit implemented by the derived analog device program is algebraically

equivalent to the dynamics of the dynamical system. Two relations are algebraically

equivalent if they produce the same output over all possible inputs. The circuit

synthesis procedure works with an idealized representation of the hardware which is

not subject to low-level physical behaviors.

The circuit synthesis procedure automatically derives an analog circuit comprised

of configured analog blocks that implements the target dynamical system. The circuit

synthesis algorithm can identify non-trivial usages of the available blocks to implement

the desired circuit. The compiler also employs a spatially aware routing procedure

that can successfully map circuits in the presence of a restrictive routing environment.

The circuit synthesis procedure produces an analog device program that encodes a

circuit which is algebraically equivalent to the starting dynamical system. In this

thesis, I refer to an ADP produced by the circuit synthesis procedure as an unscaled

ADP.

40

1.3.4 Circuit Scaling

The physical behavior of an analog device has a profound impact on the implemented

computation. Relevant phenomena include quantization error, noise, manufacturing

variations, and frequency, current, and voltage range limitations. For an analog device

program to faithfully implement a dynamical system, it must not violate the physical

constraints of the analog hardware. A compilation goal is therefore to transform the

analog device program to abide by the physical restrictions imposed by the device,

while ensuring the dynamics of the original dynamical system can be recovered at

runtime.

The circuit scaling procedure computes a scaling transform comprised of magni-

tude scale factors which scale the values and signals in the ADP and a time scale

factor which changes the execution speed of the computation. The circuit scaling

procedure applies the scaling transform to the provided unscaled ADP to produce a

scaled ADP. The scaling transform is applied to the unscaled ADP by multiplying

each digitally settable value by its magnitude scale factor. This internally sets the

execution speed of the computation and scales all the signals in the ADP by their

respective magnitude scale factors. The circuit scaling procedure exploits a property

of dynamical systems to tune the execution speed of the dynamical system (Sec-

tion 3.1.2). The scaled ADP specifies a recovery transform that recovers the original

dynamical system dynamics at runtime. The specified recovery transform multiplies

the signal samples and time samples by statically derived constant factors.

The circuit scaling procedure produces a scaled ADP which respects all of the

frequency, current, and voltage range limitations imposed by the device and com-

pensates for the subset of process variation-induced behavioral variations which are

amenable to static compensation. The scaled ADP also increases the dynamic range

of the signals when possible to reduce the effect of noise and error on the computation.

Applying the recovery transform specified in the scaled ADP at runtime recovers the

original dynamical system dynamics from the observed signal trajectories.

The circuit scaling procedure frames the core problem of finding a scaling trans-

41

form as a geometric programming problem. A geometric programming problem is a

type of constrained optimization problem that can be solved optimally and efficiently

with a numerical solver [18, 92]. The geometric programming problem contains an

objective function that encodes the optimality criteria of the optimization problem.

Because geometric programming problems can support non-linear constraints, the cir-

cuit scaling algorithm can propagate the scaling transform through non-linear analog

blocks. The problem constraints ensure the dynamical system dynamics are recover-

able from the scaled ADP and encode the physical limitations of the hardware. The

objective function encodes what property of the scaled ADP to optimize. In this

thesis, I use an objective function that jointly maximizes the computation speed and

the signal-to-noise ratio of the signals and values.

The circuit scaling algorithm presented in this thesis also deploys a delta model

compensation optimization which compensates for manufacturing variation-induced

behavioral deviations present in the calibrated device. This optimization enables the

compiler to tailor the scaling procedure to more effectively target the device on hand.

The delta model compensation optimization intelligently scales the circuit to reduce

the effect of a subset of correctable behavioral deviations. Here, a correctable behav-

ioral deviation is a deviation which scales a signal or value within an analog block.

This optimization augments the geometric programming problem recoverability con-

straints to incorporate the effect of these correctable deviations on the scaled signals.

The delta model compensation optimization works with a set of empirically elicited

delta models for the device on hand.

Note that the circuit scaling algorithm presented in this thesis supports partially

reprogramming the ADP blocks to better scale the circuit. The algorithm formulates

the circuit scaling+block reprogramming problem as a combinatorial geometric pro-

gramming problem (CGP) which contains both geometric programming constraints

and discrete constraints. The circuit scaling algorithm solves the CGP to obtain a

set of block reprogramming operations. Once the compiler has reprogrammed the

blocks, the CGP simplifies to a geometric programming problem which computes the

optimal scaling transform for the ADP.

42

Evaluation

Using the above techniques, I designed a compilation toolchain that targets the

HCDCv2 analog device[51, 61]. The HCDCv2 analog device is an ultra low power

reconfigurable analog computing platform designed for running general non-linear dy-

namical systems. I compile twelve benchmark applications from the biology, physics,

and controls domains to the HCDCv2 with the implemented compilation toolchain.

The compilation toolchain produces multiple scaled ADPs that all implement the tar-

get dynamical system. I execute the produced scaled ADPs on the analog hardware

and compare the recovered variable trajectories with reference trajectories computed

with a high-precision digital differential equation solver. For all benchmark applica-

tions, the compiler is able to identify analog programs that execute the dynamical

system on the analog hardware at high fidelity.

I then investigate the effect the presented compiler optimizations have on the fi-

delity of the end-to-end results. The scaling transform is integral to producing circuits

that can be executed on the analog device. The behavioral deviation compensation

and block reprogramming optimizations are critical to producing circuits that accu-

rately execute the target dynamical system on the analog hardware. These findings

demonstrate that the circuit scaling procedure and its associated optimizations are

critical parts of the compilation process.

To the best of my knowledge, this compiler is the first to target any modern pro-

grammable analog device for dynamical systems. This thesis is the first to present

experimental results for any compiled computation executing on any physical pro-

grammable analog device of this class.

1.4 Overview of Thesis

I next present a summary of the topics covered in this thesis. Each section in this

summary corresponds to a chapter in the thesis.

43

1.4.1 Background and Related Work (Chapter 2)

I present an overview of the related work. I first provide an overview of use cases for

dynamical systems, outline the types of dynamical systems, and provide an overview

of digital simulation approaches for dynamical systems. I then discuss classes of dy-

namical systems which are difficult to simulate accurately and efficiently with digital

solvers. I then provide an overview of the history of analog computing and describe

how practitioners programmed historical analog devices in the past. I then present

an overview of the kinds of modern reconfigurable analog devices seen today and

contrast the software techniques employed by these devices. I conclude this chapter

with a discussion of related compilation techniques and numerical methods.

1.4.2 Dynamical Systems (Chapter 3)

I present the high-level dynamical system specification language (DSSL) targeted by

the compiler. The dynamical system specification language is a high-level program-

ming language used for describing dynamical systems. I first present an overview

of dynamical systems and ordinary differential equations (ODEs) and discuss digital

and analog simulation approaches for ODEs. I introduce the time scaling property

of ODEs – the compiler leverages this time scaling property to change the execution

speed of the computation. I then formally introduce the dynamical system specifica-

tion language and summarize all of the language constructs.

1.4.3 Dynamical System Applications (Chapter 4)

I present the dynamical system specifications for twelve benchmark dynamical system

applications from the biological, physics, and controls domains. I then present the

dynamical system specifications for two real-time signal processing applications that

continuously perform computation on external analog signals.

44

1.4.4 Reconfigurable Analog Devices (Chapter 5)

I provide a comprehensive overview of differential equation-solving analog devices

and introduce the analog device specification language. In this chapter, I also present

the analog device specification for the HCDCv2 hardware platform and provide an

overview of the HCDCv2 runtime system and firmware.

Programming Challenges from the Gates Up

I first provide an overview of the high-level and low-level programming interfaces

for the target class of devices. I next present an overview of the low-level physical

behaviors (unexpected signal biases and gains, frequency-dependent behavior, and

noise) present in this class of devices. I then discuss how these behaviors are mitigated

(or propagated to higher levels of abstraction) in the device firmware, in the device

runtime, in the analog device specification. Common mitigation strategies include

calibrating the hardware and imposing physical restrictions such as operating range

and frequency limitations on the device. The compiler automatically reasons about

the low-level behaviors which are not mitigated at lower levels of abstraction.

Delta Models and Calibration

I next introduce the concept of a delta model – a hardware abstraction that cap-

tures process variation-induced behavioral variations present in the calibrated device

on hand. This compiler uses this hardware abstraction to produce programs that

execute more accurately on the analog device. The calibration algorithm deployed

in the device firmware impacts the delta models’ ability to capture the behavioral

variations present in the calibrated hardware. I refer to the calibration algorithm as

the calibration strategy in this thesis. I introduce a traditional calibration strategy

which is typically used in hardware design, and a co-designed calibration strategy

which is designed with the capabilities of delta models in mind. I then describe the

effect these calibration strategies have on the delta model.

45

Analog Device Specification and Programming Language

I rigorously describe the analog device specification language. The analog device

specification language enables hardware designers to define all of the available digi-

tally settable connections and programmable blocks within the device. The language

will support the specification of blocks with specialized programming interfaces and

provide constructs for describing the spatial layout of these blocks in hardware. The

analog device specification language offers language constructs for defining the input-

output relation implemented by each block and noise, operating range, and frequency

annotations for specifying the physical limitations and low-level physical behaviors

present within the block. The analog device specification language also offers con-

structs for defining delta model specifications. The compiler combines each block’s

delta model specification with empirically derived delta model information to identify

a block’s delta models.

I rigorously describe the analog device programming language. The analog de-

vice programming language (ADPL) supports the specification of circuits comprised

of configured analog blocks. The language offers constructs for programming block

values and connecting block ports together with digitally programmable signals. The

analog device programming language supports annotating signals within the circuit

with dynamical system variables and expressions. The compiler uses these annota-

tions to relate currents and voltages to quantities in the target dynamical system.

The programming language also supports the specification of a scaling transform for

the described circuit. This transform is applied to the data field values before execu-

tion – the resulting scaled circuit respects all of the physical behaviors and limitations

imposed on the computation by the analog device. The scaling transform is also used

to recover the original dynamical system dynamics from the signal trajectories.

The HCDCv2

I present the analog device specification for the HCDCv2 and describe the calibra-

tion procedures and runtime system deployed by the HCDCv2. I first present the

46

block specifications and device layout specification for the HCDCv2. I then provide

an overview of the calibration strategies deployed by the HCDCv2. The calibra-

tion strategy dictates how the firmware calibrates the blocks in the HCDCv2. Each

calibration strategy prioritizes eliminating a subset of unwanted behaviors within a

calibrated block. The HCDCv2 firmware offers two calibration strategies: a tradi-

tional calibration strategy (minimize_error) and a co-designed calibration strategy

(maximize_fit). The traditional calibration strategy seeks to calibrate each block

to deliver the block input-output relation described in the HCDCv2 analog device

specification. The co-designed calibration strategy prioritizes eliminating behaviors

that the compiler cannot statically compensate for with a delta model. I provide a de-

tailed multiplier case study which demonstrates how the delta model and calibration

strategy interact on a fabricated instance of the HCDCv2.

I then provide an overview of the HCDCv2 runtime and low-level programming

interface. I discuss the device calibration and characterization procedures employed

by the device runtime and describe how the runtime empirically derives delta model

information from the HCDCv2. The HCDCv2 runtime system stores the collected

calibration, characterization, and delta model information in calibration, profiling,

and delta model databases. I conclude the chapter with an overview of how the

HCDCv2 runtime executes an ADP to the HCDCv2.

1.4.5 Scaled and Unscaled ADPs (Chapter 6)

I next present a detailed overview of the analog device programs produced by the

compiler. This chapter introduces the concept of an unscaled ADP and a scaled

ADP:

∙ Unscaled ADPs: The compiler first produces an unscaled ADP which im-

plements the target dynamical system. In an unscaled ADP, the physics of

the currents and voltages are semantically equivalent to the dynamical system

dynamics. The unscaled ADP does not consider any of the operating range

and frequency limitations of the device or take into account the effect of analog

47

noise, quantization, or process variation.

∙ Scaled ADPs: The compiler produces a scaled ADP from the unscaled ADP

which takes into account all of the physical restrictions and behaviors described

above. The scaled ADP specifies a scaling transform that scales all of the

programmable values and signals in the circuit so that the circuit dynamics

respect the physical constraints of the device.

A scaling transform is a collection of constant coefficients that describe how

all the signals in the program are scaled. The scaling transform is applied at

compile-time by multiplying all digitally set values by their respective coef-

ficients. The resulting scaled computation preserves the original behavior of

the dynamical system such that it can be recovered at runtime by multiplying

the signals by constant values. I discuss this dynamical system preservation

property in detail.

I present a cosine ADP case study in which the cosine dynamical system (Sec-

tion 4.1) is programmed to the HCDCv2 analog device. This case study presents the

unscaled and scaled ADPs for the cosine application. I then present the unscaled and

scaled ADPs for the twelve benchmark applications introduced in Chapter 4. All of

these ADPs were produced by the compiler.

1.4.6 Compilation Overview (Chapter 7)

I provide a high-level overview of the compilation process. In this chapter, I demon-

strate how the compiler maps a harmonic oscillator dynamical system computation

to a simple reconfigurable analog device (the SIMPL analog device). Each step of

compilation is described at a high level and then demonstrated on this running ex-

ample.

I first introduce the harmonic oscillator dynamical system specification, the SIMPL

analog device specification and the unscaled and scaled ADPs for the harmonic os-

cillator. The dynamical system and analog device specifications are the inputs to the

48

compiler, and the unscaled and scaled ADPs are the intermediate and final outputs

of the compiler.

I then describe the operation of the compiler at a high level. The compiler operates

in two phases:

∙ Circuit Synthesis (LGraph): The compiler first synthesizes a circuit com-

prised of configured blocks that implements the provided dynamical system.

The LGraph pass first synthesizes a circuit fragment that implements each rela-

tion in the dynamical system. It then assembles all of the circuit fragments to

form a full circuit that implements the dynamical system. Finally, it maps the

circuit blocks to locations on the device and connections to sequences of digi-

tally settable connections in the device. The LGraph compilation pass returns

an unscaled ADP as output.

∙ Circuit Scaling (LScale): The compiler then derives a scaling transform

for the circuit which preserves the integrity of mapped analog computation in

the presence of low-level physical behaviors (automated circuit scaling). The

LGraph pass returns a scaled ADP which implements the dynamical system

computation.

1.4.7 Circuit Synthesis (Chapter 8)

I provide a rigorous description of the circuit synthesis pass. This circuit synthe-

sis pass produces analog device programs which are guaranteed to be algebraically

equivalent to the provided dynamical system. That is, the analog device program

specifies a circuit that implements a dynamical system that can be transformed into

the original dynamical system by successively applying algebraic rewrite rules.

The proposed compiler uses a staged circuit synthesis algorithm that efficiently

synthesizes circuits by breaking up the compilation process into multiple, more spe-

cialized passes. Each pass refines the circuit by adding and configuring blocks. This

multi-stage compilation approach enables the compiler to explicitly handle special-use

blocks, such as blocks that route and copy signals.

49

I formally describe the circuit synthesis procedure. I first introduce all of the nec-

essary notation and mathematical constructs used in this chapter. I then rigorously

describe each step of circuit synthesis:

∙ Circuit Fragment Synthesis: The circuit synthesis pass first synthesizes a

circuit fragment that implements each dynamical system relation. This pro-

cedure uses a novel tableau-based search algorithm that incrementally builds

the circuit fragment by successively unifying analog blocks with goals in the

tableau. The unification algorithm uses a sophisticated algebraic rewrite engine

capable of identifying non-trivial usages of analog blocks. This rewrite engine

enables the unification algorithm to configure complex analog building blocks

to implement the desired expressions.

∙ Assembly: The circuit synthesis pass then assembles all of the produced frag-

ments to form a completed circuit. The circuit assembly procedure inserts blocks

when necessary to copies and convert signals. The output of this procedure is

a circuit that implements the dynamical system.

∙ Place and Route: The circuit synthesis pass then maps all blocks to the

circuit to locations on the analog device and all connections in the circuit to

digitally settable connections in the analog device. The placement and routing

algorithm intelligently uses the device layout information to map the circuit to

the analog hardware. This algorithm inserts routing blocks when necessary to

make the desired connections.

1.4.8 Circuit Scaling (Chapter 9)

I provide a rigorous description of the circuit scaling pass. The circuit scaling pass

computes a scaling transform for a provided unscaled ADP.

I first introduce the combinatorial geometric programming (CGP) and geomet-

ric programming problem (GP) formulations used by the circuit scaling pass. These

problem formulations both encode the circuit scaling problem. The geometric pro-

gramming problem (GP) is a type of optimization problem that can be efficiently

50

solved with a convex solver to minimize some objective function. The CGP is an ex-

tension to the convex optimization problem that supports the specification of discrete

constraints over integer variables. The CGP becomes a GP once all of the integer

variables are assigned to values. The circuit scaling pass uses both of these problem

formulations to scale the circuit.

I then formally descibe the circuit scaling pass. I first introduce all the new

notation used in this chapter. This chapter reuses the notation introduced in Chap-

ter 8 and introduces new constructs which capture physical behaviors and limitations

present in the analog device.

I then formally describe how the compiler derives a CGP from the unscaled ADP.

The compiler derives a collection of linear constraints from the (nonlinear) dynamics

and structure of the circuit described in the ADP. The CGP encodes the device

operating range and frequency restrictions and the effects of noise and quantization

error on the computation. The CGP also ensures that the scaling transform preserves

the original dynamics of the unscaled ADP (and dynamical system). Specifically, the

CGP ensures that the scaled dynamics at every input and output port equals the

unscaled dynamics of the port times some constant coefficient. The compiler uses the

delta model information from Chapter 5 to produce a scaling transform that preserves

the original dynamics in the presence of manufacturing variation-induced behavioral

variations. The CGP formulation enables the compiler to reconfigure blocks to better

scale the circuit. The compiler encodes these reconfiguration operations as discrete

variables and constraints in the CGP. The discrete constraints capture the effect of

each reconfiguration operation on the scaling problem.

I then describe how the compiler uses the CGP to scale the circuit. The com-

piler first solves the CGP to produce a set of block reconfiguration operations which

are then applied to the unscaled ADP. The compiler then concretizes the discrete

CGP variables which capture the reconfiguration operations to produce a set of GP

constraints. The compiler then constructs the GP by combining the derived GP

constraints with a user-provided scaling objective function that captures the circuit

property to optimize. The compiler solves the GP to identify the scaling transform

51

that best minimizes some criteria. In this thesis, I use a balanced scaling objective

function that jointly maximizes the execution speed and the dynamic range of the

scaled signals.

1.4.9 Results (Chapter 10)

I evaluate the efficacy of the compiler. I compile the twelve benchmarks presented in

Chapter 3 to the HCDCv2 with the compiler presented in this thesis. I perform the

following analyses to evaluate the efficacy of my compiler:

∙ Power, Energy, and Quality Analysis: I study the execution time and

energy usage of each application and qualitatively and quantitatively examine

the agreement between the collected analog waveforms and the ground-truth

dynamical system dynamics. I find that the produced scaled ADPs execute in

0.25-1.92 milliseconds, consume 0.10-5.09 𝜇J of energy, and report 3.46×10−6%-

1.96% error. Here, the reported error is the root-mean-squared error of the mea-

sured waveform with the recovery transform applied relative to the amplitude of

the reference waveform. I compute the reference waveform for each benchmark

application by simulating the dynamical system with a high precision digital

ordinary differential equation solver. After all compiler optimizations are ap-

plied, the collected analog waveforms with the recovery transform applied are

visually indistinguishable from the reference waveforms.

∙ Effect of Compiler Optimizations: I study the effect of different compiler

optimizations on the fidelity of the produced waveforms. Both the scaling trans-

form and the partial block reprogramming feature employed by the circuit scal-

ing pass are crucial for obtaining a good quality result for a number of the

benchmarks. I also investigate the importance of incorporating delta model

information into the scaling procedure and find that this improves the fidelity

of the result for 10 of the 12 benchmarks. I then investigate the effect of the

calibration strategy on the quality of the produced results. For 9 of the 12

52

benchmarks, the co-designed calibration strategy delivers comparable or lower-

error results more consistently than the traditional strategy.

∙ Compilation Outcomes: I present the compilation times and study the op-

timality of the produced unscaled and scaled ADPs. I find that the unscaled

ADPs rarely use more special-use routing and assembly blocks than necessary.

The scaled ADPs frequently run at the maximum speed of the device. Generally

speaking, the compiler is not able to simultaneously maximize all of the signals

and values in a given ADP. However, the compiler can maximize at least one

value for all benchmarks and one signal for 9 of the 12 benchmarks. For all of

the benchmarks, the compiler can produce a scaled ADP in which at least half

the signals occupy 50% of the port operating ranges. These results indicate that

the compiler can effectively scale the ADP to attain good speeds and signal dy-

namic ranges while respecting operating range and frequency limitations. I then

investigate how well the scaled ADPs minimize the balanced scale objective

function introduced in Chapter 9. I find that the compiler can identify multiple

scaling transforms that scale signals in different ways but attain comparable

balanced scale objective values. These findings demonstrate that the compiler

can identify multiple good scaling transforms within the space of physically vi-

able, recoverable scaling transforms. I then investigate why the unscaled ADPs

cannot be directly executed on the analog device. I find that in all cases, the

unscaled ADPs violate the frequency and operating range restrictions imposed

by the device.

∙ Compilation Outcomes and Result Quality: I investigate the relationship

between the scaled ADP characteristics and the end-to-end result quality. The

goal of this analysis is to determine if there are any ADP characteristics that are

strongly predictive of the end-to-end result quality. I find that the block instance

selection has a profound impact on the quality of the produced waveforms.

I use this observation to inform a potential future research direction in the

concluding chapter of this thesis (Chapter 11). I also find that the balanced

53

objective function value is predictive of the end-to-end result quality for 11 of

the 12 benchmarks (Pearson coefficient > 0.5). For 6 of the 12 benchmarks, the

balanced objective function value strongly correlates with the quality of the

produced waveform (Pearson coefficient > 0.9). The results of the analysis can

be used to inform future compilation techniques.

∙ Alternative Scaling Objective Functions: I investigate the potential of an

alternative scaling objective function. This analysis aims to determine if the

scaling objective function deployed by the compiler can be further improved

in future work. I find that for 5 of the 12 benchmarks, the alternate scaling

objective attains better or comparable quality results while consuming less en-

ergy. I use the results of this analysis to inform future research directions in the

concluding chapter of this thesis.

Realtime Case Studies: I compile and execute the real-time dynamical sys-

tem applications from Section 4.13 on the HCDCv2. I find that for both dy-

namical systems, the HCDCv2 performs the desired signal processing operation

in real-time on an externally provided signal.

1.5 Reading Strategies for this Thesis

I next present a collection of strategies for reading this thesis. These reading strategies

outline which chapters to focus on and are organized by reading goal:

∙ I want to understand this research area at a high level – Read the background

chapter (Chapter 2), Section 3.1 of the dynamical systems chapter (Chapter 3),

the introduction and Sections 5.1-5.3 of the reconfigurable analog devices chap-

ter (Chapter 5), and the conclusion chapter (Chapter 11). These sections pro-

vide an overview of prior work, outline the high-level challenges for the applica-

tion domain and target hardware, and outline some productive future research

directions for this domain.

54

∙ I want to target a differential-equation solving analog hardware - Read the dy-

namical systems chapter (Chapter 3), dynamical system applications chapter

(Chapter 4), reconfigurable analog devices chapter (Chapter 5), and the analog

device programs chapter (Chapter 6). These chapters rigorously describe the

behavior of the target hardware platform and provide a set of twelve worked

examples for the HCDCv2 analog hardware.

∙ I want to compare against your results - Read the dynamical systems chapter

(Chapter 3), dynamical system applications chapter (Chapter 4), and results

chapter (Chapter 10). These chapters rigorously describe the benchmark appli-

cations and present a rigorous evaluation of the compiler on the target hardware

platform.

∙ I want to understand how the compiler works at a high level - Read the dynam-

ical systems chapter (Chapter 3), the introduction and Sections 5.1- 5.6 of the

reconfigurable analog device chapter, section 6.1 of the unscaled/scaled ADPs

chapter (Chapter 6), and the compilation overview chapter (Chapter 7). These

sections introduce the specification languages employed by the compiler and

provide an overview of the operation of the compiler on an example program.

∙ I want to implement or extend the compiler - First read the dynamical system

chapter (Chapter 3), the reconfigurable analog devices chapter (Chapter 5),

and unscaled/scaled ADPs chapter (Chapter 6). These chapters provide a

comprehensive overview of the compiler inputs and outputs. Then read the

compilation overview (Chapter 7), circuit synthesis (Chapter 8), and circuit

scaling (Chapter 9) chapters. These chapters rigorously describe the operation

of the compiler.

1.6 Summary

Specialized computing platforms, implemented on a range of devices including analog,

photonic, and digital devices, are becoming pervasive and crucial for satisfying the

55

computational needs of different domains. We are already seeing a proliferation of

specialized devices that efficiently solve problems in machine learning, signal process-

ing, and biology. This thesis focuses on an emergent class of reconfigurable ultra-low

power analog devices which solve dynamical systems.

A dynamical system is a system whose state evolves over time. Dynamical sys-

tems appear in a wide variety of fields including mathematics, physics, chemistry,

biology, economics, engineering, and medicine. Typically, practitioners are interested

in simulating a dynamical system. Digital dynamical solvers have difficulty efficiently

simulating non-linear differential equations or differential equations with dynamics

which operate on different time scales. These efficiency issues are exacerbated for

dynamical system applications which process realtime signals or execute on resource-

constrained embedded systems.

In recent years, there has been a proliferation of ulta-low power reconfigurable

analog devices which solve dynamical systems. These analog devices use standard

CMOS processes and leverage transistor physics to perform computation. These de-

vices are attractive computational targets because they consume very little power

and deliver predictable performance regardless of the size and complexity of the dy-

namical system. In these systems, the time required to run a dynamical system can

be computed statically at compile-time. These modern analog computing platforms

are inherently approximate and offer medium-precision blocks that introduce error

into the computation. Furthermore, these blocks cannot be manufactured at low

tolerances and therefore experience a high degree of variation post-fabrication.

Research Problem: Presently, these devices lack software tooling and must be

manually configured by the programmer to implement the desired dynamical system

computation. These devices are programmed by routing together configurable analog

blocks using programmable interconnects. To faithfully implement a computation,

the device physics must preserve the original dynamical system dynamics such that

the practitioner can recover the original dynamical system variable trajectories from

the measured signals at runtime by applying a recovery transform.

This class of analog devices present fundamentally different programming chal-

56

lenges than digital computing platforms. First, low-level physics of the device has

a fundamental effect on the computation and must therefore be taken into account

when programming the device. Analog blocks impose frequency, current, and volt-

age range limitations and have unique noise and error characteristics. All of these

low-level physical behaviors must be taken into consideration when programming the

device.

Analog blocks are also subject to process variation-induced behavioral deviations.

While researchers have developed hardware-based mitigation mechanisms for dealing

with process variation (such as device calibration), these mitigation techniques do

not adequately eliminate all unwanted behaviors across all blocks. Any behavioral

deviations that cannot be eliminated with hardware mitigation techniques must be

compensated for in software or contribute to the computation error.

These analog devices offer highly specialized programmable analog blocks that

implement anything from simple functions to sets of differential equations. The set

of available analog blocks may vary wildly from device to device. Furthermore, these

analog blocks cannot be arbitrarily routed together since the routing environment in

such devices is highly restrictive.

This Thesis: The goal of this research is to automate the programming process so

that these devices are more accessible to programmers. In this thesis, I present a

compiler that takes as input a dynamical system and produces as output a configu-

ration for the analog device which implements the dynamical system on the analog

hardware. The compiler first automatically derives an analog circuits comprised of

configured analog blocks which implement the target dynamical system. The com-

piler then scales all the values in the provided unscaled ADP and produces a scaled

circuit respects all of the physical constraints and behaviors present in the device.

The transformed circuit preserves the original dynamics of the dynamical system –

that is, the original dynamics of any signal can be recovered at runtime by multiplying

it by a statically derived constant factor. This transform compensates for the process

variation-induced behavioral deviations that could not be corrected for in calibration

and rescales the signals and values in the circuit to reduce the effect of noise and

57

quantization error.

In this thesis, I develop a compilation toolchain which targets the ultra-low-power

HCDCv2 analog device and use the compiler to map twelve dynamical system bench-

mark applications to a physical HCDCv2 device. To the best of my knowledge, this

compiler is the first to successfully target a physical (as opposed to simulated) pro-

grammable analog device for dynamical systems and this thesis is the first to present

experimental results for any compiled computation executing on any physical pro-

grammable analog device of this class.

58

Chapter 2

Related Work

This chapter presents an overview of the relevant related work for the work in this

thesis. In this chapter, I cover the following topics:

∙ Dynamical Systems (Section 2.1): I introduce application domains for dy-

namical systems and provide an overview of the types of dynamical systems

commonly seen in practice. I then discuss the numerical methods used for

simulating dynamical systems and their drawbacks.

∙ History of Analog Computing (Section 2.2): I provide a brief overview

of how practitioners historically used analog computers to simulate dynamical

systems. I describe the computational model and programming model used for

these historical analog computing platforms. I then provide an overview of the

automated programming techniques used for these hardware platforms.

∙ Dynamical System-Solving Reconfigurable Analog Devices (Section 2.3):

Recently, researchers have proposed modern reconfigurable analog devices which

leverage the analog behavior of transistors to execute dynamical system compu-

tations. These devices can be configured post-fabrication to simulate a variety

of different dynamical systems. I provide an overview of how these devices sim-

ulate dynamical systems, why they are attractive computational targets, and

how they are programmed today. I describe how the compiler presented in this

thesis lowers the barrier of entry for programming this class of devices.

59

∙ Other Reconfigurable Analog Computing Platforms (Section 2.4): Re-

searchers have proposed a multitude of reconfigurable mixed-signal and ana-

log computing platforms that target a variety of other application domains. I

provide an overview of these computing platforms, broken up by application

domain. I contrast the programming techniques used to target each class of

computing platforms with the compilation techniques proposed in this thesis.

∙ Software Techniques (Section 2.5): I provide an overview of related synthe-

sis, compilation, hardware configuration, and numerical computing techniques.

I describe how each software technique relates to the compilation techniques

employed by my compiler.

2.1 Dynamical Systems

A dynamical system is a system whose state evolves over time. Dynamical systems

appear in a wide variety of fields and are typically implemented as ordinary differential

equations or partial differential equations. Typically, the goal is to simulate or solve

a dynamical system. Today, digital differential equation solvers are used to simulate

dynamical systems. Many of these solvers have difficulty efficiently solving non-linear

systems or systems with dynamics that operate on different time scales. To ame-

liorate these issues, practitioners often introduce approximations into the dynamical

system. Common approximations include linearization and replacing parts of the dy-

namical system with closed-form approximations. This section provides an overview

of dynamical system applications and types of dynamical systems and discusses the

numerical simulation approaches used to simulate dynamical systems today.

2.1.1 Applications

Dynamical systems appear in a wide variety of fields including mathematics, physics,

chemistry, biology, economics, engineering, and medicine. In the biological sciences,

practitioners use dynamical systems for medical dosage optimization and disease pre-

60

diction applications and to better understand biological phenomena. [74, 117]. In the

physical sciences, practitioners use dynamical systems to model physical phenomena

such as earthquakes, glacial movement, and planetary motion [47, 112]. In economics,

practitioners use dynamical systems to predict changes in the market [118]. These dy-

namical system computations are typically run on compute clusters and workstations

where power is readily available.

Dynamical systems are also deployed on embedded systems which interact with

the environment. These dynamical systems process signals, from sensors, for example,

to reconstruct higher-order information from the environment in real-time [78, 14].

Embedded dynamical systems can also produce driving signals to control actuators

such as motors to meet some sort of objective [33, 9]. This sort of use case is common

in fields such as robotics. These sensor-actuator applications have real-time perfor-

mance requirements and are often implemented on resource-constrained embedded

systems such as microcontrollers.

Dynamical systems can also be used to perform both unconstrained and con-

strained optimization. Researchers have proposed procedures for transforming opti-

mization problems into time-varying dynamical systems [20, 143]. These dynamical

system encodings of optimization problems converge to a local optimum over time,

given an initial guess. It is also possible to encode various computer algorithms with

dynamical systems. Researchers have previously presented dynamical systems which

sort lists, diagonalize matrices, and solve SAT problems [19].

Dynamical systems also appear in spiking neural networks. A spiking neural net-

work is an artificial neural network inspired by biological neuronal networks. A spiking

neural network contains a collection of interconnected neurons which communicate

with one another. Each neuron produces a spike as output when its membrane elec-

trical charge surpasses a certain threshold. The behavior of the membrane electrical

charge over time is modeled with a time-varying dynamical system.

Dynamical systems also appear in some classes of machine learning models. Continuous-

time recurrent neural networks and neural ODEs are both implemented with dynam-

ical systems [45, 12, 25].

61

Relationship to this work: In this thesis, I present a compiler that maps dynami-

cal systems to dynamical system-solving reconfigurable analog devices. These devices

are attractive computational targets for real-time embedded dynamical system com-

putations since they operate at ultra-low power and have predictable performance

characteristics. Some of these devices are also able to interface with sensors and ac-

tuators directly. Refer to Section 2.3 for an overview of dynamical system-solving

reconfigurable analog devices.

2.1.2 Types of Dynamical Systems

A dynamical system typically consists of one or more interdependent variables which

change over time. Dynamical systems are usually implemented as a system of ordi-

nary differential equations (ODEs) or partial differential equations (PDEs). Systems

of ordinary differential equations contain derivatives taken with respect to an indepen-

dent variable (usually time). Partial differential equations contain derivatives taken

with respect to other variables.

There are various subclasses of ODEs that support non-trivial operators. Stochas-

tic differential equations (SDEs) are systems of ODEs with stochastic behavior [8].

These stochastic systems typically have ODEs with a deterministic component and a

state-dependent stochastic component. Delay differential equations (DDEs) are sys-

tems of differential equations that contain time delayed variables [73]. A time-delayed

variable is a variable which references a value in the past. Because both of these sub-

classes of ODEs have difficult-to-simulate dynamics, they typically require specialized

solvers.

Relationship to this work: In this thesis, I focus on time-varying dynamical sys-

tems made up of ordinary differential equations. The dynamical systems I target in

this work do not contain stochastic behavior or time-delayed variables.

62

2.1.3 Differential Equation Solvers

Practitioners simulate dynamical systems comprised of ordinary differential equations

on digital hardware with ordinary differential equation (ODE) solvers. Classic ODE

solver methods operate by breaking up simulation time into multiple time steps and

then sequentially computing the state of the dynamical system at each time step

[22, 10]. The exact time step segmentation strategy depends on the solver. Some

solvers accept a fixed time step size from the user, while other solvers adaptively

tune the time step size depending on the system dynamics. One drawback to this

simulation technique is that it cannot capture any dynamics which occur between time

steps [113, 114]. As a result, the simulator may produce inaccurate results depending

on the characteristics of the dynamical system and how the solver is parametrized.

Finite difference methods approximately solve ordinary differential equations by

approximating derivatives with value differences [77]. These methods require the dy-

namical system to be linearized before simulation. This linearization step eliminates

non-linear dynamics from the system and reduces the fidelity of the end-to-end result.

Finite difference methods are popular because they are easy to implement and can

be solved efficiently in more resource-constrained systems.

Some kinds of ordinary differential equations are difficult to simulate accurately

and performantly with digital ODE solvers. Dynamical systems with both fast-

evolving and slow-evolving dynamics can introduce numerical instabilities into the

digital simulation [94, 36]. This can cause the ODE solver to produce an inaccurate

result. Practitioners will often substitute fast-evolving dynamics with closed-form so-

lutions when possible to resolve instability issues in the simulation[107, 41, 133]. These

closed-form solutions often involve computationally expensive, highly non-linear op-

erators [30, 27].

Non-linear dynamical systems are often difficult to simulate as they often use

expensive operators and are difficult to analyze automatically. Non-linear dynami-

cal systems also introduce non-linearities into the dynamical system dynamics. These

non-linearities may introduce numerical instabilities into the digital simulation. Prac-

63

titioners often linearize dynamical system non-linearities to make the computations

tractable and amenable to efficient digital simulation [58, 98, 99, 17]. For dynamical

systems which model physical phenomena, this reduces the accuracy of the model in

relation to the corresponding physical system [37, 138, 21].

Practitioners use a variety of specialized solvers to simulate dynamical systems

implemented with PDEs, SDEs, and DDEs. Dynamical systems comprised of par-

tial differential equations are typically solved with finite difference or finite element

methods [7]. Variants of systems of ODEs, such as SDEs and DDEs, are simulated

with specialized solvers [96, 13]. These specialized solvers efficiently simulate the

difficult-to-simulate behaviors in these systems.

Relationship to this work: In this thesis, I focus on simulating dynamical systems

with analog hardware. Under this paradigm, the evolution of the currents and volt-

ages within the analog device capture the dynamical system’s dynamics over time.

This computational model does not discretize simulation time and can operate on

non-linear dynamical systems. Therefore, this analog approach to solving dynamical

systems does not suffer from the same set of issues as digital ODE solvers.

2.2 History of Analog Computing

Historically, researchers used electrical analog computers to perform dynamical sys-

tem simulation and study control systems [130, 34, 104, 91]. Practitioners used these

analog computers to perform flight simulations, design autopilot systems, implement

radar systems, and teach control theory [130, 34, 104, 91]. Digital computers eventu-

ally replaced these analog computing platforms as transistor sizing improved.

Early electrical analog computers primarily performed computation with ana-

log voltages and provided components that implemented basic mathematical oper-

ators [134, 63, 64, 127]. Common operators included simple summation, summation

with integration, scaling by a constant value, and signal multiplication. These com-

ponents implemented high-precision analog primitives that could be manufactured at

low tolerances. As a result, these components performed computation at high ac-

64

curacy – usually within 0.01% error relative to the full-scale range of the signal for

linear components [65].

Programming Techniques: Practitioners routed these components together to

form circuits through the use of a patchbay. These early analog computers con-

tained programmable switches that changed the functions implemented by the hard-

ware blocks and potentiometers that scaled signals by constant coefficients[49, 63].

Practitioners would set the potentiometer values and manipulate the switches on the

analog computer to program the components to deliver the desired behavior. These

computers also supported fine-grain monitoring of each computational unit’s input

and output signals. Practitioners would leverage this capability to identify instances

where signals are saturated and to more easily debug the programmed circuit [53].

To program a computation to the analog computer, the practitioner would first

manually derive a circuit comprised of configured components that implements the

desired dynamical system computation with pen and paper. After identifying a cir-

cuit, the researcher would then scale the potentiometer values in the circuit so that the

computation executes accurately without saturating any of the circuit components [6].

The practitioner would then translate the derived circuit to a set of potentiometer

values, block switch settings, and a patchbay wiring scheme [49].

Relationship to this work: This thesis research focuses on modern incarnations

of electrical analog computing platforms which solve dynamical systems. Unlike his-

torical analog computers, modern analog computers are silicon chips with digitally

programmable interconnects and values. These modern analog computers deliver sig-

nificant energy savings but offer lower precision approximate computational blocks

(1%-5% error) [132, 51, 61]. These blocks are subject to the effects of process variation

and noise. The programming techniques used to configure high precision historical

analog hardware would not necessarily deliver good results on modern analog hard-

ware designed to execute approximate computations.

Modern reconfigurable analog devices perform computation primarily with ana-

log currents and offer different programming and debugging interfaces than historical

analog devices. The circuit topology is set with programmable interconnects instead

65

of a patchbay, and the individual components are configured by setting bits instead of

configuring switches and potentiometer values. This programming interface is com-

pletely digital and more amenable to automatic configuration than historical analog

devices. Historical analog devices supported monitoring all voltages which are ac-

cessible through the patchbay. In contrast, modern reconfigurable analog devices

offer a limited debugging interface where only a select subset of components and sig-

nals can be monitored at runtime. Modern analog devices therefore cannot support

programming techniques that monitor all signals at runtime.

2.2.1 Compilers for Historical Analog Computers

In the past, researchers developed compilers which targeted early analog computers[49,

90, 75, 43, 40, 90, 75, 55, 126, 123, 122, 90, 75, 100]. The three most complete efforts

to build a compiler for an analog computer were the APACHE system [49] which

targeted the PACE 231-R analog computer[63], the HAL system [43] which targeted

the EAI 680 analog/logic computer [64], and the Hytran and HOI systems which

targeted the Hydac 2400 and EAI 8900 analog computers. Several other early com-

pilation approaches were aspirational and never fully implemented [55, 126], failed to

fully automate the compilation process [123, 122, 40, 90, 75], or targeted idealized

hardware platforms which did not exist in the real world [100].

The APACHE compiler automatically derived patchbay wiring instructions, po-

tentiometer settings, and switch configurations from the high-level dynamical system

specification [49]. The mapping technique employed by the APACHE system was

highly specialized to the PACE-231-R and could not be generalized to other analog

computing platforms or extended to work with mixed-signal or logical blocks com-

mon in hybrid computation [42]. The HAL compiler automatically derived digital

programs, patchbay wiring instructions, potentiometer settings, and switch configu-

rations from a low-level assembly program. The hybrid assembly programming lan-

guage offered analog component-based primitives that provided programmers with

fine-grain control of the produced circuits [43]. The HAL compiler worked with pro-

grams provided at a much lower level of abstraction than the APACHE compiler

66

but supported the digital and mixed-signal blocks often seen in hybrid computing

platforms. The Hytran and HOI systems [40, 90] were extensively used to check

programs statically but did not automate the circuit generation and circuit scaling

process. These systems required the end user to manually provide the circuit topology

and scale factors to the software system. In summary, of the fully realized compil-

ers, only the APACHE compiler presented an approach for automatically deriving a

circuit from a dynamical system.

The APACHE and HAL compilers supported automatically scaling the target

computation to respect the operating ranges present in the hardware [49]. These

approaches derived constant scaling factors that were then multiplied with the po-

tentiometer values to scale the target computation to respect the hardware operating

ranges [52, 53, 93]. These scaling techniques leveraged a hardware-in-the-loop scale

factor refinement algorithm that dynamically adjusted the scale factors when sig-

nals are saturated. These scaling techniques monitored the output voltage of each

component to refine the scaling transform. In some cases, these automated scaling

procedures produced scaling transforms with large scaling factors – in these cases,

the practitioner had to adjust the circuit topology manually. These early automated

scaling techniques only worked with circuits comprised of linear operators and mul-

tiplication operations, only considered the operating range restrictions present in the

hardware, and focused on producing valid transforms rather than optimal transforms.

Relationship to this work: The automated circuit generation procedure employed

for the APACHE compiler cannot be directly applied to this modern analog hardware

presented in this work. The APACHE compiler was highly specialized to target the

PACE 231-R analog computer lacked support for mixed-signal and digital components

and only supported voltage-mode computation. The modern analog hardware tar-

geted in this work computes with analog currents and contains digital blocks such as

LUTs and analog-digital interfaces such as DACs and ADCs – the APACHE compiler

does not support this computational model or these blocks. Moreover, the APACHE

compiler deployed a mapping algorithm that was not readily generalizable or exten-

sible and could not identify creative usages of components. In contrast, the compiler

67

presented in this work can leverage algebraic rewrite systems and synthesis techniques

to identify non-trivial compositions of blocks. Other early compilers could not auto-

matically generate circuits and required the end user provide the circuit topology as

an input.

The automated scaling procedures used for early analog computers cannot be

applied to the modern dynamical system-solving analog computers targeted in this

work. Early scaling methods only reasoned about operating range limitations and

focus on producing a valid (often suboptimal) scaling transform – this is insufficient

for targeting modern analog hardware. Unlike historical analog devices, which offer

high-precision low-tolerance computational blocks, modern analog devices offer ap-

proximate computational blocks that introduce more error into the computation and

are more sensitive to process variation and noise. The scaling approach employed

in this thesis considers a wide range of behaviors, including process variation, noise,

quantization error (from digital logic), and frequency limitations. This scaling ap-

proach also scales the circuit to optimize a circuit characteristic, such as dynamic

range or execution speed. These capabilities enable the compiler presented in this

thesis to map the high-level computation to approximate computational blocks more

effectively and more productively attenuate away unwanted analog behaviors.

The scaling algorithm presented in this thesis is also capable of automatically

reasoning about a wide range of non-linear operators, including exponentiation, tran-

scendental functions, and discontinuous functions. This scaling approach can also

reprogram the analog blocks to better scale the circuit. In contrast, early automated

scaling approaches require user intervention to reprogram the hardware and only

scaled circuits made up of linear operators and signal multipliers.

Another shortcoming of early automated scaling approaches is that they often

were hardware-in-the-loop techniques that monitored all component output voltages.

It is not feasible to monitor all intermediate signals on a modern analog computing

platform implemented in silicon. Typically, these devices offer only a few externally

accessible input and output interfaces. The automated scaling procedure presented

in this thesis does not require any runtime monitoring of signals to scale the circuit.

68

The scaling transform is computed entirely at compile-time from specifications of the

target hardware and dynamical system.

2.3 Dynamical System-Solving Reconfigurable Ana-

log Device

One prominent line of work focuses on reconfigurable analog devices that solve dy-

namical systems [105, 29, 128, 31, 140, 132, 51, 61, 141]. A dynamical system-solving

analog device is a type of reconfigurable analog device that uses the analog behavior

of transistors to perform dynamical system simulation. These analog devices leverage

the advanced metal–oxide–semiconductor fabrication technologies traditionally found

in consumer electronics such as cell phones, biomedical devices, and edge devices [132].

These reconfigurable analog devices operate in an ultra-low power regime and can

efficiently execute potentially complex non-linear dynamical system computations

with microwatts to milliwatts of power. Because these reconfigurable analog devices

represent dynamical system quantities with continuously evolving currents and volt-

ages, they are not subject to the time discretization errors discussed in Section 2.1.3.

This class of devices also offers predictable performance characteristics. The compiler

can compute the correspondence between wall-clock (execution) time and dynamical

system time statically at compile-time for such platforms. Typically, these devices

can simulate a one-time unit of dynamical system time in 7.93 microseconds to 0.30

milliseconds of wall-clock time, depending on the hardware platform. Because these

devices execute perform computation in parallel, the performance of the hardware

does not necessarily degrade with problem size.

Some of these analog computing platforms have special capabilities. For example,

the devices may be capable of directly processing analog signals in real-time [132, 51,

61] or directly implementing stochastic computation with analog noise [140]. These

performance characteristics and hardware capabilities together make these devices

especially appealing for real-time embedded dynamical system computations.

69

Internally, these devices contain collections of digitally configurable analog blocks

that may be routed together with digitally programmable interconnects to form var-

ious analog circuits. The goal of compilation is to identify a circuit that preserves

the original dynamical system dynamics — that is, the original dynamical system

dynamics can be recovered at runtime from the signal trajectories with a recovery

transform. The computation is then run by powering on the device and observing

the evolution of the currents and voltages of interest over time. The original dy-

namical system variable trajectories are then recovered from the voltage and current

trajectories at runtime by applying a recovery transformation. Because these devices

directly exploit the physics of the underlying hardware substrate, these computations

are susceptible to the effects of analog noise and process variation. The computation

must also respect the analog device’s operating range and frequency restrictions to

execute as expected on the analog device.

The computational model described above is a continuous-time computational

model which directly maps dynamical system simulation time to wall-clock time. Re-

searchers have also proposed hybrid computing platforms which solve dynamical sys-

tems in discrete-time using finite-difference methods [79]. These hardware platforms

use analog circuitry to compute the derivatives of the dynamical system variables with

respect to time. In this thesis, I focus on continuous-time dynamical system-solving

analog devices.

Dynamical system-solving analog devices can be used to execute a variety of dif-

ferent computations. Researchers have developed reconfigurable analog devices which

solve SAT problems and perform constrained optimization [142, 137]. This research

formulates the target SAT problems and quadratic programming problems as time-

varying dynamical systems.

Programming Techniques: Modern dynamical system-solving analog devices are

typically programmed directly with little or no automation [50]. To program these de-

vices, practitioners configure individual blocks on the device and enable the necessary

programmable interconnects to form the desired circuit. Before writing the circuit to

the device, the programmer may have to manually transform the circuit parameters

70

to ensure the circuit respects the device’s operating range and frequency constraints.

The designer may also transform the circuit to reduce the effects of noise and pro-

cess variation. After transforming the circuit, the programmer manually derives the

recovery transformation. This recovery transform recovers the original dynamical

system dynamics from the signal trajectories. The programmer must carefully choose

a circuit transformation that ensures the original dynamical system is recoverable at

runtime.

Relationship to this work: This thesis research presents a compiler that targets

programmable analog devices that solve differential equations in continuous time. I

designed this compiler to be broadly applicable across multiple different hardware

platforms and dynamical system use cases. The compiler works with a dynamical

system specification and a hardware specification that describes the blocks and con-

nections available on the analog device. The compiler works with these specifications

to produce an analog circuit – this enables the compiler to target a variety of recon-

figurable dynamical system-solving analog devices and compile dynamical systems

from a variety of different application domains. I demonstrate that this compiler

can effectively target a fabricated reconfigurable dynamical system-solving analog

device [132, 51, 61] in practice in this thesis.

2.3.1 Compilers for Dynamical System-Solving Analog De-

vices

There has been some recent work on mapping biological networks to programmable

analog devices specifically designed to run biological systems. The proposed compiler

maps biological models implemented in a systems biology markup language (SBML)

to a reconfigurable analog device that simulates reaction networks [140]. The com-

piler produces, as output, a configuration for the target hardware and a system of

differential equations that implements the biological model. The target device con-

tains twenty block instances of a chemical reaction block that can be configured to

implement various chemical reactions.

71

The key technical contribution in this work is a program transformation that

expands lumped kinetic models into systems of chemical reactions. This program

transformation operates directly on the biological model. A lumped kinetic model

condenses systems of chemical reactions into a set of closed-form algebraic functions

which capture the steady-state of the relevant compounds in the system. The authors

present a pattern matching-based method for expanding the lumped kinetic models.

The expanded reactions are then directly mapped onto the target analog hardware.

Relationship to this work: The work presented in [86] was published after our

work on analog compilation [4, 2, 3]. The lumped kinetic expansion optimization

and SBML parser presented in [86] is complementary to my own work and can be

incorporated into my compiler as a simple, domain-specific front-end. In this scenario,

the differential equations emitted by the lumped kinetics expansion optimization pass

would become an input to my compiler.

The compiler presented in [86] does not systematically reason about the low-

level physical behaviors in the hardware (such as process-variation induced behavioral

variations) or transform the circuit to improve the dynamic range of the signals. While

the authors perform some corrections to handle unexpected gains in analog currents

produced from digitally settable data fields, these corrections are localized to the

specific data fields. These corrections therefore do not compensate for all unexpected

gains in the device. As a result, the compiled computation produces results that do

not agree with the reference implementation of the program. The authors list signals

with small dynamic ranges and unexpected gains as possible sources of imprecision

in the compiled computation.

In constrast, the compiler presented in this thesis automatically transforms the

produced circuits to respect all of the operating range and frequency limitations

present within the hardware and considers the effects of process variation, quantiza-

tion error, and noise on the computation. The compiler also increases the dynamic

ranges of the signals to reduce the effect of error on the computation. As a result,

the compiled computations produce results that strongly agree with the reference

implementations of the benchmark applications.

72

The circuit generation algorithm presented in [86] uses a hand-implemented map-

ping procedure to map expanded reactions to analog circuits. This mapping procedure

is designed to target the cytomorphic chip [140] specifically and cannot be general-

ized to other kinds of reconfigurable dynamical system-solving hardware platforms.

In contrast, the compiler presented in this thesis targets a hardware specification and

offers a general compiler architecture for targeting a variety of different reconfigurable

differential equation-solving analog devices.

In summary, the compiler presented in [86] can only be compared to a subset of

the work presented in this thesis (circuit synthesis) and is unlikely to be nearly as

broadly applicable as the techniques presented in this work. Moreover, parts of the

compiler presented in [86] which deal with the analog behavior are still relatively

immature when compared to the compiler presented in this thesis.

2.4 Other Kinds of Reconfigurable Analog Devices

Pure and mixed-mode analog accelerators have been developed for accelerating a

broad range of applications, including neural networks, SAT solvers, and neuromor-

phic computations [15, 109, 102, 62, 87, 89, 38]. Modern reconfigurable analog devices

may leverage a variety of different physical phenomena to implement computation.

Researchers have proposed photonic analog computing platforms which leverage the

physical properties of light to perform computation, for example [85, 116, 81]. In this

section, I focus on electrical analog devices implemented with mixed-signal and analog

ICs. This class of reconfigurable analog devices targets a wide variety of application

domains and computational models. In this section, I introduce reconfigurable analog

devices by application domain.

2.4.1 Spiking Neural Networks

Researchers have designed analog computing platforms that implement spiking neural

networks [89, 69, 15]. These devices are attractive computational targets because they

can simulate large spiking neural networks (SNNs) at low power. Typically, these

73

platforms implement the neuronal models with analog circuitry and route/process

spikes to neurons with digital circuitry. Researchers have also designed mixed-signal

SNN accelerators which leverage device mismatch to implement device-specific, non-

uniform neuron models [89].

Programming Techniques: Compilers that target mixed-signal spiking neural net-

works accelerators typically directly map the target spiking neural network to hard-

ware elements. This mapping procedure directly maps neuron parameters to circuit

parameters and neurons to analog functional units within the hardware. Because

mixed-signal SNN accelerators offer analog functional units which directly correspond

to SNN elements, the mapping process is relatively straightforward. The compiler

employed in [89] maps a non-linear dynamical system to a network of analog neuron

elements. This mapping identifies a neuron topology that approximately implements

each differential equation in the target dynamical system. With this computational

model, integration is performed in discrete time.

Relationship to this work: This thesis targets dynamical-system solving analog

devices that solve differential equations in continuous time. This compilation for this

class of hardware is fundamentally different from the compilation problem for spiking

neural networks. For our target class of hardware, there is no straightforward mapping

between the target dynamical system and the analog computational units provided

by the hardware. Furthermore, the devices targeted in this thesis perform dynamical

system simulation purely in analog. The compiler must explicitly introduce logic to

re-use and route signals. In contrast, mixed-signal SNN accelerators represent neuron

inputs and outputs as digital signals. The SNN compiler is free to route and buffer

these digital signals through the chip without reasoning about any analog behavior.

2.4.2 Neural Networks and Machine Learning

Researchers have also developed mixed-signal programming-in-memory systems which

implement multiply-accumulate operations directly in memory with analog ICs [48,

23, 24, 88]. These systems are attractive computational targets for big-data applica-

tions because they perform computation directly on data in memory and therefore

74

require less data movement. The stored data is typically binary data in these systems,

and the applied weights are typically decimal values between -1 and 1.

Researchers have also developed mixed-signal and analog accelerators which fully

implement neural networks [111, 39, 121]. Some of these mixed-signal devices imple-

ment neural networks which approximate digital sub-computations [39, 121].

Programming Techniques: The analog logic in these accelerators typically imple-

ments straightforward mathematical sub-computations such as weighted summation.

These analog logic units are typically embedded in a larger digital system that imple-

ments the rest of the neural network operators. Depending on the hardware platform,

the analog units are programmed through specialized hardware instructions or auto-

matically programmed by the compiler during the mapping process. Because there

is a direct correspondence between the neural network topology and the functional

units on the device, the mapping process is relatively straightforward.

One key challenge with programming analog MAC computational units is accu-

rately setting the weights. Because analog ICs are sensitive to low-level physical

behaviors present in the hardware, the programmed weights do not accurately reflect

the actual weights applied in the hardware. Researchers have proposed alternate neu-

ral network training algorithms that consider hardware imperfections when training

the models [24].

Relationship to this work: This thesis targets dynamical-system solving analog

devices. These devices fully implement the entire dynamical system computation in

analog hardware. For this hardware, there is no straightforward mapping between the

target dynamical system and the provided functional units. The compiler presented

in this thesis identifies non-trivial mappings between the hardware and the dynamical

system.

The dynamical systems targeted in this thesis often contain values that lie outside

of the range of values supported by the analog hardware. The compiler presented in

this thesis transforms the computation so that it can be accurately implemented in

the analog hardware.

75

2.4.3 Field-Programmable Analog Arrays and Analog Fabrics

Researchers have developed reconfigurable analog fabrics which enable individual

transistors to be routed together [120, 56, 54, 11, 108]. These versatile devices are

capable of implementing a variety of different analog and mixed-signal circuits.

Programming Techniques: These devices are programmed with a Simulink-style

block diagram language. The configurable blocks in this language are parametrized

analog circuits which route together transistors within the fabric. The associated

software toolchain composes together the configured circuits in the block diagram to

form a low-level circuit.

Relationship to this work: The compilation techniques presented in this the-

sis are complementary to the software techniques used to target field-programmable

analog arrays. The compiler presented in this thesis targets analog devices with pro-

grammable analog functional units that implement high-level mathematical functions.

The compilation techniques presented in this thesis can automatically derive a block

diagram that implements a dynamical system, given a library of FPAA mathematical

blocks. The FPAA software toolchain can then be used to map the derived block

diagram to a low-level circuit.

2.5 Compilation and Synthesis Techniques

The compilation techniques presented in this thesis draw inspiration from compilation

and synthesis techniques presented in academic literature. In this section, I provide an

overview of related techniques. For each software technique, I describe the relationship

between the proposed technique and the technique employed by our compiler.

2.5.1 Deductive Synthesis

The broad concept of a tableau has been widely used in theorem proving [1] and for

the synthesis of functional programs [82, 84, 83]. In this context, logical deduction

rules transform a set of assertions and goals into a proof, potentially with output

76

entries that make it possible to extract a program from the proof.

Relationship to this work: The compiler uses a tableau to organize a search for a

configuration of the target analog hardware platform that is algebraically equivalent

to the specified dynamical system. Unlike these previous approaches, the compiler

works with complex multifunctional analog components, not standard programming

language primitives. To correctly utilize these components, the compiler uses alge-

braic unification and must deal successfully with the cascading relation entanglement

inherent in the use of such powerful but complex analog components.

Also, unlike these previous approaches, the compiler synthesis algorithms operate

in the presence of resource constraints — they synthesize the dynamical system onto a

hardware platform with finite resources. The compiler synthesis algorithms therefore

must track the resources that have been consumed in the synthesis (including complex

partially consumed components), with the synthesis failing if it consumes too many

resources.

2.5.2 Code Generation

Code generators extract machine code from intermediate representations of the pro-

grams [35, 5, 44]. Code generators use tree pattern matching to translate code trees

into sequences of machine instructions. Typically, code generators work with concise

machine specifications which map IR patterns to instructions.

Relationship to this work: The compiler presented in this thesis works with dy-

namical systems that may contain feedback loops and circular dependencies. These

dynamical systems cannot be represented as trees and cannot be mapped to analog

hardware with code generation techniques.

Individual differential equation relations can be represented as trees with variables

and constant values as terminal nodes. However, for these relations, the mapping be-

tween hardware blocks and differential equation terms and expressions is often highly

non-trivial. The compiler may need to select and apply non-trivial transformations

that alter (and sometimes complicate) the expression tree structure while mapping

the differential equation to the hardware. Code generation algorithms do not support

77

these sorts of transformations.

2.5.3 Superoptimization and Rewrite Systems

Researchers have proposed domains-specific superoptimizers which combine mathe-

matical and machine rewrite rules to generate search spaces of instruction sequences

that implement a given computation [68, 136]. Typically the goal of such optimiz-

ers is to implement a computation with a specific instruction set. Superoptimizers

typically employ search-based algorithms to find efficient instruction sequences.

Recently, researchers have developed tools for developing solver-aided languages [131].

These general-purpose tools enable programmers to define rewrite systems that trans-

form programs.

Relationship to this work: The compiler proposed in this work differs from su-

peroptimization research in that it produces inherently parallel analog hardware con-

figurations with no concept of sequencing. The target blocks include a finite set

of complex, potentially partially utilized analog building blocks optimized for ana-

log efficiency, not digital machine instructions. And the relevant reasoning involves

continuous, non-linear functions, not digital logic.

The compiler uses a custom, multi-stage circuit synthesis procedure to construct

a circuit that implements a given dynamical system. This circuit synthesis procedure

uses an off-the-shelf computer algebra system that efficiently searches over algebraic

rewrite rules. The multi-stage circuit synthesis algorithm uses domain information to

decompose the problem and efficiently synthesize circuits. To implement the circuit

synthesis procedure with a general rewrite system, the hardware domain information,

algebraic rewrite rules, and usages of the analog blocks would need to be encoded

as rewrite rules. This embedding of the synthesis problem is likely to produce a

prohibitively large search space which the generalized solver would have to navigate

efficiently.

78

2.5.4 Compilers for CGRAs

Researchers have developed compilation techniques for coarse-grained reconfigurable

architectures (CGRAs) [125, 97]. CGRAs are digital spatial computing platforms

that typically offer processing elements and memory blocks linked together with a

programmable mesh. Depending on the architecture, the individual processing ele-

ments may themselves be configurable and implement multiple operators. CGRAs

are digital computational substrates and therefore support storing and loading digital

values from memory.

Researchers have developed compilation techniques and hardware specification

languages for this class of accelerators [70]. These contributions focus on accelerators

that offer digital computing elements and offer language constructs for memories,

registers, and communication interfaces. The associated compilation techniques rea-

son about data movement and exploit parallelization opportunities. Researchers have

also proposed techniques that automate the process of mapping a data-flow graph to

a CGRA [26]. These techniques identify embeddings of the data-flow graph in the

CGRA computational substrate.

Relationship to this work: The compilation techniques and language constructs

used for CGRAs cannot be effectively applied to differential-equation solving ana-

log computing platforms. Reconfigurable analog devices primarily work with analog

signals which cannot readily be re-routed, buffered, loaded, or stored during exe-

cution. Furthermore, a key focus of CGRA compilers is in identifying parallelism.

Because reconfigurable analog devices execute all computation in parallel by design,

the compiler does not need to identify parallelization opportunities when mapping

the computation to the hardware. The core circuit synthesis algorithm presented in

this thesis solves a fundamentally different set of problems than the CGRA compilers.

The CGRA mapping technique proposed in [26] is similar to the place+route

algorithm proposed in this thesis. One key difference is that this mapping technique

does not consider the spatial orientation of the functional units when mapping the

DFG to the hardware. In reconfigurable analog devices, spatially co-located blocks are

79

easier to connect together than spatially distant blocks. The place+route algorithm

presented in this thesis exploits the blocks’ spatial orientation to more performantly

map the analog circuit to the hardware.

2.5.5 FPGA Place+Route Algorithms

Over the years, researchers have developed a multitude of place-and-route procedures

for mapping digital designs to FPGAs [124, 115, 16]. FPGA place-and-route proce-

dures map digital logic elements to physical resources on the FPGA and maps con-

nections between elements to digitally settable paths in the FPGA. Typically, these

place-and-route algorithms identify placements that minimize the length of the wires

or place digital elements relatively uniformly within the computational substrate.

These place-and-route procedures take advantage of the rich routing environment of-

fered by FPGAs. For example, some place-and-route algorithms will randomly place

logic elements within the FPGAs while exploring candidate digital design layouts –

because FPGAs offer a large number of interconnects, these random placements likely

translate to valid layouts of the design.

Relationship to this work: In this thesis, I present a place+route algorithm that

maps an analog circuit to the programmable analog hardware. This place+route

algorithm maps analog blocks to physical blocks on the analog device and maps con-

nections between elements to digitally settable paths within the analog device. This

place+route algorithm presented in this work differs from FPGA place-and-route

algorithms because it targets a device that offers a highly restrictive routing envi-

ronment which requires the allocation of specialized functional units to form certain

connections. The place+route algorithm presented in this thesis generates valid block

placements in the presence of restrictive routing conditions and introduces functional

units when necessary to form connections. In contrast, FPGA place+route algorithms

operate under the assumption that a large number of placements are valid and may

explore a large number of invalid placements when applied to this class of hardware.

FPGA place+route algorithms also do not typically support introducing specialized

functional units to form connections.

80

2.5.6 Interval Analysis

Interval analysis has a long history in fields such as electrical engineering, control

theory, and robotics [71, 66]. Researchers have proposed algebras for propagating

intervals through mathematical functions [57, 67]. These interval analysis techniques

are often used in numerical computation to statically analyze user-defined problems

before solving them. Some interval analysis techniques can contract intervals to at-

tain tighter bounds on variables and expressions. There also exist interval analysis

techniques that automatically derive interval bounds for ordinary differential equa-

tions [28, 101]. For some biological and physical systems, it is possible to derive tight

interval bounds analytically by leveraging conservation laws [72, 60].

Relationship to this work: The compiler presented in this thesis uses interval

analysis to bound the analog signals for the parameter scaling process. The compiler

uses basic interval arithmetic (without contraction) to propagate intervals through

mathematical functions [57].

The compiler presented in this thesis requires the programmer to provide interval

annotations for each of the time-varying variables in the dynamical system. These

interval annotations tell the compiler the range of values each variable may take on.

These annotations can conceivably be automatically derived for some systems using

the above techniques.

2.5.7 Scaling

Scaling is used in numerical computation to reduce the effect of numerical error and

improve the stability of numerical computations [119, 59]. These numerical scaling

transforms are typically highly domain-specific and are often manually derived. Scal-

ing transformations for numerical computations typically only consider the numerical

error of the computations.

Practitioners also manipulate the timescale of time-varying dynamical systems

comprised of ODEs to render the system more amenable to simulation and lineariza-

tion [103]. These approaches typically introduce a tunable time scale parameter into

81

the numerical computation that multiplies all the derivatives by a constant factor.

Relationship to this work: The compiler presented in this thesis automatically

scales the quantities in the analog circuit so that the signals within the circuit respect

all of the physical limitations of the hardware. The compiler considers a wide range

of low-level analog behaviors and physical constraints when scaling the circuit. In

contrast, numerical scaling approaches focus on numerical stability and numerical

error.

The compiler uses the same basic approach employed by numerical time scaling

approaches to change the timescale of the computation. Unlike numerical approaches,

the compiler considers analog frequency restrictions imposed by the hardware when

changing the timescale and optimizes execution speed instead of numerical stability.

2.6 Conclusion

In this chapter, I presented an overview of the relevant related work for this thesis.

Dynamical Systems: I first provided an overview of dynamical systems. Dynamical

systems appear in a wide variety of fields including mathematics, physics, chemistry,

biology, economics, engineering, and medicine. Practitioners use dynamical systems

to model and predict physical phenomena, implement signal processing and control

algorithms on embedded systems, and solve machine learning and optimization prob-

lems. A dynamical system typically consists of one or more interdependent variables

which change over time. Dynamical systems are typically implemented as a system of

ordinary differential equations (ODEs) or partial differential equations (PDEs). The

work presented in this thesis focuses on dynamical systems are implemented with

ODEs.

Ordinary differential equation solvers simulate systems of ordinary differential

equations on digital hardware. Classical differential equation solvers segment time

into discrete time steps and compute the system’s state at each time step. Digital

ODE solvers have difficulty simulating dynamical systems with both fast and slow

dynamics accurately and efficiently. The ODE solver must segment time at a fine

82

granularity to accurately simulate such a dynamical system. For this reason, among

others, digital solvers cannot always efficiently simulate non-linear dynamical systems

and dynamical systems which operate on different time scales. Other digital simu-

lation approaches which have more predictable performance characteristics primarily

work with linear dynamical systems. Practitioners often independently introduce ap-

proximations into the dynamical system to make it more amenable to efficient digital

simulation.

In this thesis, I simulate dynamical systems with analog hardware. Under this

paradigm, the evolution of the currents and voltages within the analog device capture

the dynamical system’s dynamics over time. This computational model does discretize

simulation time and can operate on non-linear dynamical systems.

Historical Analog Computers: I then provide an overview of historical dynamical

system-solving analog computers. Historically, practitioners used electrical analog

computers to perform dynamical system simulations. These analog computers were

programmable and configured with potentiometers, switches, and a patchbay. Re-

searchers proposed a variety of compilation and scaling approaches for this hardware.

These automated approaches were designed to work with high-precision functional

units which could be manufactured with little process variation. Even after these

analog computers disappeared from the computational landscape, analog computa-

tion remained an important part of many hardware systems.

Modern Dynamical System-Solving Analog Devices: One prominent line of

work focuses on designing ultra-low power reconfigurable analog devices that solve

dynamical systems. These analog devices are silicon chips manufactured with conven-

tional fabrication processes and leverage the advances made in analog IC fabrication.

These hardware platforms consume very little power, deliver predictable performance

characteristics, and are capable of interfacing directly with analog signals. Currently,

this hardware is programmed directly at a low level with little or no automation.

Historical compilation approaches are ill-suited for these modern analog computers

because modern analog hardware offers lower precision functional units sensitive to

process variation and noise. In this thesis, I target this class of analog devices and

83

present a compiler that automatically maps general dynamical systems to a recon-

figurable analog device of class. This is the first compiler to automatically map

dynamical system computations to reconfigurable analog hardware of this class.

Other Kinds of Reconfigurable Analog Devices: I provided an overview of

other kinds of reconfigurable analog devices. For each class of devices, I contrast the

programming techniques used to target the device with the compilation techniques

presented in this thesis. I primarily discuss mixed-signal spiking neural network accel-

erators and mixed-signal machine learning accelerators. Many of these mixed-signal

accelerators offer functional units which directly correspond to computational opera-

tions in the high-level program and do not require the compiler to reason about the

low-level device physics of the mixed-signal circuits. In contrast, the work presented

in this thesis identifies non-trivial mappings between functional units and mathemat-

ical operators and automatically reasons about low-level physical behaviors. I also

discuss field-programmable analog arrays. The programming techniques for field-

programmable analog arrays are complementary to the techniques presented in this

work.

Software Techniques: I conclude the chapter with an overview of related numer-

ical computation and compilation techniques. I discussed why code generation and

superoptimization techniques are not well suited for circuit synthesis. I then con-

trasted the circuit synthesis approach employed in this thesis to deductive synthesis

approaches to generalized rewrite-based solvers presented in other work. I next dis-

cussed how compilation techniques for coarse-grained reconfigurable architectures and

FPGA place-and-route techniques relate to the place and route technique presented

in this thesis. I then discussed how interval analysis and scaling approaches from

numerical computation related to the compilation techniques presented in this work.

84

Chapter 3

Dynamical Systems

A dynamical system is a system whose state evolves over time. Dynamical systems

appear in a wide variety of fields, including mathematics, physics, chemistry, biology,

economics, engineering, and medicine. A dynamical system typically consists of one

or more interdependent variables which change over time. Dynamical systems are

typically implemented as a system of ordinary differential equations (ODEs) or partial

differential equations (PDEs) and are used to solve a variety of different problems:

∙ Understanding Physical Phenomena: Dynamical systems computations in

the biological sciences are often used for medical dosage optimization, disease

prediction, and understanding biological phenomena. [74, 117]. For example,

medical practitioners may use a dynamical system to model the effect of a hor-

mone injection on an individual’s hormone levels and then use this information

to derive an initial dosage. Practitioners are primarily interested in simulating

such systems over a window of time and then inspecting the trajectories of the

dynamical system variables or retrieving the steady-state (stable) values of the

dynamical system variables.

∙ Understanding the Environment: Dynamical systems are deployed on em-

bedded systems to reconstruct higher-order information from environmental

signals in real-time [78, 14]. Examples of such use cases include the prediction

of the angle of origin of a sound wave from an array of sensors and the tracking

85

of the orientation of an object from sensor inputs.

∙ Interacting the Environment: Dynamical systems can be used to control

actuators such as motors [33, 9]. Typically these dynamical systems produce

driving signals to these actuators to accomplish some goal. This sort of use case

is common in fields such as robotics and controls. A dynamical system may be

used to stabilize a drone or balance an inverted pendulum, for example. These

sensor-actuator applications typically have real-time performance requirements

and are sometimes implemented on resource-constrained digital devices such as

microcontrollers.

While dynamical systems are invaluable in many different domains, there are chal-

lenges with executing these systems accurately and performantly:

∙ Stiff Dynamics: Studying dynamical systems on digital hardware can be

challenging as systems are often stiff and therefore prone to numerical insta-

bility [94, 36]. In this context, a stiff system is a system that is prone to

numerical instability unless the time steps taken are extremely small. For ex-

ample, many biological systems are stiff systems with both fast-evolving and

slow-evolving dynamics. When possible, practitioners will often substitute fast-

evolving dynamics with closed-form solutions to resolve stiffness issues with the

target dynamical system. This substitution approximates the original behavior

because it assumes the fast dynamics reaches a steady-state (stable) solution

instantaneously.

Nonlinear Dynamics: Non-linear dynamical systems are often difficult to sim-

ulate as they are more difficult to analyze than linear systems and often use ex-

pensive operators. Practitioners often linearize dynamical system non-linearities

to make the computations tractable amenable to efficient digital simulation. For

dynamical systems which model physical phenomena, this reduces the accuracy

of the model in relation to the corresponding physical system [37, 138, 21]. For

dynamical systems which observe and interact with the environment, this can

reduce the fidelity of the produced outputs.

86

Real-time Dynamical Systems on Embedded Devices: Dynamical sys-

tems which interact with the environment often need to continuously process

signals in real-time. Because these applications are typically run on embedded

systems, these dynamical system implementations must meet these performance

requirements on energy- and compute-constrained platforms. Typically, these

dynamical systems are discretized and aggressively simplified so that they can

performantly execute on an embedded digital device such as a microcontroller.

Even with these simplifications, attaining real-time performance may still be

difficult if the sensed values evolve too quickly.

In this chapter, I provide an overview of dynamical systems and describe how these

systems are modeled and solved today. I then introduce a dynamical system speci-

fication language (DSS) for describing dynamical systems. In Chapter 6, I use the

dynamical system specification language described in this chapter to specify twelve

benchmark applications from the physics, biology, controls, and robotics domains and

two real-time signal processing applications.

3.1 Dynamical System Overview

A dynamical system is a system made up of one or more variables that evolve over

time. Dynamical systems are typically modeled with ordinary differential equations

(ODEs) or partial differential equations (PDEs). There also exist other, less com-

monly used, dynamical system formulations, such as integro-differential and delay

equations [73].

In this work, I focus on dynamical systems which can be modeled with ordinary

differential equations. An ordinary differential equation (ODE) is a differential equa-

tion in which all derivatives are taken with respect to an independent variable such

as time. ODEs support a narrower class of systems than PDEs as PDEs also allow

for partial derivatives to be taken with respect to other dynamical system variables. I

present the general formulation of time-varying ordinary differential equations below:

87

𝐹 (𝑡, �⃗�, �⃗�′, ..., �⃗�(𝑛)) = 0

In the above formulation, the time 𝑡 is the dynamical system time, and the vector �⃗� is

the vector of dynamical system variables. All variables in the above formulation take

on real values. The initial state of the dynamical system �⃗�(0) = �⃗�0 is the vector of

starting values for each variable in the system. Each dynamical system variable starts

at its initial state and evolves over time in accordance with the above dynamics. The

above formulation is general but more difficult to solve. Typically dynamical system

variables are called state variables, and the system’s initial state is referred to as

the initial condition. In this work, I target a subset of ODEs called explicit ODEs.

Explicit ODEs can be rewritten to take on the following form:

𝐹 (𝑡, �⃗�, �⃗�′, ..., �⃗�(𝑛−1)) = 𝑥(𝑛)

The compiler requires the input dynamical system to be expressed as a set of first-

order explicit differential equations. Any system of explicit ODEs can be reduced to

an explicit first-order system of ordinary differential equations:

�⃗�′ = 𝐹 (𝑡, �⃗�)

The left-hand side of the relation is the first-order derivative of each state variable,

and the right-hand side of the relation specifies the dynamics of each state variable

over time. Each state variable’s dynamics is written as an expression over state

variables and time. A system of first-order ODEs is linear if each expression is a

linear combination of state variables and time. Linear systems of ODEs are desirable

because they are easier to implement efficiently and are amenable to a broader set of

analyses and alternate representations [58, 98, 99, 17, 77]. Practitioners often linearize

non-linear systems to enjoy these benefits. These linearization techniques may reduce

the efficacy or accuracy of the dynamical system since it involves approximating the

dynamics of the system.

External Inputs: In these systems, external inputs from sensors, for example, are

88

often written as uninterpreted functions of time (𝑔(𝑡)).

3.1.1 Execution of First-Order ODEs

Practitioners are typically interested in simulating a dynamical system. Generally,

dynamical system simulation techniques compute the trajectories of the state vari-

ables over simulation time. I focus on simulation techniques for first-order ODEs:

Digital Simulation: Numerical solvers simulate dynamical systems by discretizing

time into small chunks and computing the state of the system at each point in time.

It maintains a decimal vector x of state variable values and the current simulation

time. The state vector is instantiated to the initial state of the dynamical system at

the start of the simulation. The state is then updated for each time step:

x := x + 𝛿𝑡 · 𝐹 (𝑡 + 𝛿𝑡, x)

t := t + 𝛿𝑡

The above relations compute state of the system at t + 𝛿𝑡 from the state of the

system at time t. The time step 𝛿𝑡 determines how much to advance simulation time.

This time step may be fixed or adaptively adjusted from simulation statistics [22, 10].

Any behaviors which occur between time t and time t + 𝛿𝑡 are not captured in the

digital simulation. Therefore, while taking larger steps results in a faster simulation,

it may produce inaccurate signal trajectories.

Analog Simulation: First-order ODEs may also be simulated with programmable

analog devices. Under this paradigm, the analog device is itself a dynamical system

that evolves over time. First, the analog substrate is configured such that the dy-

namics of the voltages and currents in the device match the dynamics of the state

variables in the target dynamical system. Then the substrate is manipulated so that

its initial state matches the initial state of the dynamical system. The dynamical

system is then simulated by observing the relevant properties in the analog substrate

over time.

Analog devices operate in the continuous time-domain, circumventing the time

89

scale issues that often plague stiff dynamical system computations implemented with

discretized time steps [134]. Time does not tick in intervals as in standard clocked

digital systems but instead runs continuously and asynchronously. Because dynamical

system time is mapped to hardware time, the time required to simulate the dynamical

system can be statically computed before execution. The analog computational model

is also massively parallel. While larger dynamical systems use more substrate and

therefore consume more area, they do not necessarily take any longer to execute than

a smaller dynamical system.

3.1.2 Changing the Speed of First-Order ODEs

The compiler presented in this thesis can tune the execution speed of the dynamical

system by leveraging a time-scaling property of first-order ODEs. Given a system of

first-order ODEs, the speed at which the trajectories evolve can be manipulated by

multiplying the derivatives of all the state variables by a constant coefficient:

�⃗�′ = 𝛼 · 𝐹 (𝑡, �⃗�)

The above equation adjusts the system of first-order ODEs to execute at 𝛼x the

original simulation speed. Choosing an 𝛼 value less than one causes the trajectories to

evolve more slowly, reducing the simulation speed of the dynamical system. Choosing

an 𝛼 value greater than one causes the trajectories to evolve more quickly, increasing

the simulation speed of the dynamical system.

3.2 The Dynamical System Specification Language

This work presents a specification language for dynamical systems. This language

is used to specify dynamical systems to the compiler. The dynamical system spec-

ification language (DSSL) is the high-level language for this system. The language

supports defining dynamical system state variables and functions and annotating vari-

ables with interval bounds and frequency limits. The DSSL works with the subset

90

x ∈ RealNumbers, v ∈ Literals
n ∈ NaturalNumbers,
x+ ∈ RealNumbers ≥ 0,
VarList ::= v | VarList,v
I ::= [x1,x2]
E ::= E1 + E2 | E1*E2 | x | v

| integ(E1,E2) | (E) | call(v,EList)
EList ::= E | E,ExprList
F ::= F1 + F2 | F1*F2 | x | v

| integ(F1,F2) | (F) | F1/F2
| sgn(F) | ln(F) | exp(F) | sin(F) | cos(F) | abs(F)
| min(F1, F2) | max(F1, F2) | pow(F1, F2)

FuncDecl ::= v(VarList) = F

Figure 3-1: Math expressions

of mathematical expressions that can be formally described with the expression lan-

guage presented in Section 3.2.1. The hardware specification languages presented in

Chapter 5 also reference the expression language.

3.2.1 Mathematical Expression Language

Figure 3-1 presents the space of mathematical expressions supported by the com-

piler. These expressions contain both variable literals v and real numbers x. The

expression language offers both a basic expression construct 𝐸 that defines operators

typically natively supported in analog and mixed-signal devices and an expanded ex-

pression construct 𝐹 that extends the basic expression construct to include a wider

set of operations. The operations supported in the basic expression construct 𝐸 are

summarized below:

∙ Addition and Multiplication: The addition (E1 + E2) and multiplication

E1*E2 operators implement addition and multiplication over basic expressions,

respectively.

∙ Integration: The integration integ(E1,E2) operation integrates the derivative

E1 over time. The initival value of the integrated signal is E2.

∙ Function Invocation: The function invocation operation call(v,lst(E))

91

invokes a user-defined function with the name v with a list of of basic expressions

EList as function inputs. The body of the function is typically defined outside of

the expression using a a function declaration statement v(VarList) = F which

maps a function definition to its implementation. The v literal specifies the

name of the function and the variable literal list VarList is the list of function

argument names. The extended expression F is the body of the function. The

body of the function may only reference variables which are function arguments.

The extended expression construct F supports all mathematical operators already

supported in E.It extends the set of supported operators to include a variety of non-

linear mathematical operations:

∙ Minimum and Maximum: The minimum min(F1, F2) and maximum max(F1,

F2) operations take the minimum and maximum of the extended expression op-

erations F1 and F2 respectively.

∙ Exponentiation: The exponentiation operation pow(F1, F2) raises the ex-

pression F1 to the expression F2.

∙ Natural Log and Natural Exponentiation: The natural log ln(F) and

natural exponentiation operations exp(F) compute the natural log (𝑙𝑛(𝐹)) or

the exponential (𝑒𝐹) of the expression argument F.

∙ Sine and Cosine: The sine sin(F) and cosine operations cos(F) compute the

sine and cosine of the expression argument F.

∙ Absolute Value and Sign: The absolute value abs(F) and sign operations

sgn(F) take the absolute value and the compute the sign (1 or -1) of the ex-

pression F. Both of these functions are non-linear and introduce discontinuities

into the expression at zero.

92

Stmt ::= var v = E | extern v | interval VarList = I
| freq VarList = x | func FuncDecl | time x
| realtime I

Body ::= Stmt | Body ; Stmt
Prog ::= prog v { Body }

Figure 3-2: Grammar for DSSL

3.2.2 Dynamical System Specification Language

Figure 3-2 presents the dynamical system specification language (DSSL). The

language supports binding symbolic expressions to dynamical system variables and

specifying the interval bound and optionally the frequency bound of each variable.

The DSSL offers constructs for defining named functions which can later be invoked

in the dynamical system relations. The language constructs are summarized below:

∙ Variable Definitions: Each relation declaration statement var v = E binds

a variable v to an basic mathematical expression E. These relations together de-

scribe the differential equations and straight-line functions that together specify

the dynamical system behavior.

∙ Function Definitions: The DSSL supports extended expression operations

provided the expression is enclosed in a user-defined function. These func-

tions may be defined in the DSS with function declaration statements (func

FuncDecl or func v(VarList) = F). Each function declaration defines a named

function v which accepts a list of named arguments VarList and implements

the extended expression F.

∙ Interval Annotations: The DSSL requires variables be annotated with an

interval bound. This interval bound interval VarList = [x1,x2] indicates

that the listed variables VarList will not fall below the value x1 or exceed the

value x2 at any point in time. The compiler uses these interval annotations to

ensure the analog signals capture the full range of values for each variable.

∙ Execution Time: The DSSL requires the end user to specify the execution

time of the dynamical system in simulation time units. The execution time

93

statement time x indicates the specified dynamical system should be run for

x units of simulation time. The compiler uses the specified simulation time to

determine the execution time of the mapped computation.

The DSSL also supports defining dynamical systems which work with real-time sig-

nals. These real-time signals are continuously evolving external inputs which may be

taken from sensors or routed from other mixed-signal devices. The DSSL real-time

constructs involve real-time frequencies and real-time latencies that are expressed

in terms of wall-clock time. The constructs for working with real-time signals are

summarized below:

∙ External Variable Definitions: The DSSL supports describing dynamical

systems which work with continuously evolving external inputs. The extern v

declaration defines an external variable named v.

∙ Maximum Frequency Annotations: The DSSL requires each external vari-

able to be annotated with a maximum frequency annotation. Each maxi-

mum frequency annotation freq VarList = x indicates that the listed vari-

ables VarList will not exceed the maximum frequency x. The specified maxi-

mum frequency is the maximum real-time frequency of the signal. For example,

the maximum frequency of an externally provided signal mic carrying a sound

wave from a microphone would be the maximum frequency picked up by the

microphone (20 kHz). The corresponding DSS statement would be freq mic

= 20000. The compiler uses these annotations to determine which hardware

features can reasonably be used with the defined external signal.

∙ Real-time Simulation Speed: The DSSL supports defining the acceptable

range of simulation speeds for real-time applications. The realtime [x1,x2]

statement indicates the one unit of simulation time must correspond to between

x−1
1 and x−1

2 seconds of wall-clock time. These annotations ensure that the

specified dynamical system evolves quickly enough to react to changes in a real-

time external signal, and slowly enough to track the slower evolving dynamics

94

in the external signal. This annotation is typically only provided if an external

variable is defined. For example, a dynamical system that processes a sound

wave at 20 𝑘𝐻𝑧 may need to evolve at two to three times the external signal

speed (40 − 60𝑘𝐻𝑧) to process the signal efficiently and accurately. For such

a system, one unit of dynamical system time would therefore need to map

to at least 0.0166-0.025 milliseconds of wall-clock time. The real-time speed

annotation for such a system would be realtime [40000 , 60000].

Before compilation, an interval propagation algorithm fills any the missing interval

annotations in the dynamical system specification. It then performs a well-formedness

check which ensures that all non-external variables have defined behavior and can be

bounded. All external variables must have both interval and frequency bounds. The

time statement describes how much time (in simulation units) to run the computation

for.

3.3 Conclusion

Dynamical system computations appear in a broad range of domains, including math-

ematics, physics, chemistry, biology, economics, engineering, and medicine. Practi-

tioners use dynamical systems to understand physical phenomena, analyze sensed

information from the environment, and control actuators such as motors. In this the-

sis, I focus on dynamical systems implemented with systems of first-order ordinary

differential equations (ODEs). These first-order ODEs capture the evolution of one

or more variables over time.

Typically, practitioners simulate first-order ODEs with ODE solvers. Digital ODE

solvers discretize simulation time and compute the state of the system at each time

step. Digital ODE solvers have difficulty efficiently simulating dynamical systems

with non-linear dynamics or systems with dynamics that evolve at different time

scales. These simulation issues are exacerbated when run on embedded devices that

are heavily resource-constrained and must process stimuli in real-time.

95

In contrast, analog simulation approaches do not discretize time. Instead, simula-

tion time is directly mapped to wall-clock time. With this simulation approach, the

amount of time required to execute a dynamical system can be accurately computed

ahead of time regardless of the dynamical system’s complexity. This property enables

programmable analog devices to deliver predictable performance in the presence of

complex dynamics.

In this chapter, I present the dynamical system specification language. The com-

piler presented in this thesis maps dynamical systems written in the dynamical system

specification language to the target analog hardware. The dynamical system specifi-

cation language supports the specification of systems of first-order ordinary differen-

tial equations. The core dynamical system specification supports defining differential

equations and functions. The dynamical system requires all time-varying variables

have interval annotations which bound the range of values the variable may take on.

The dynamical system specification language also provides constructs for defining

real-time signals which process external signals. The language offers constructs for

defining the range of acceptable execution speeds, in hertz, for the real-time system.

The dynamical system language also supports the definition of external signals. Each

externally provided signal must also be annotated with a maximum frequency anno-

tation that indicates how fast the external signal evolves and an interval annotation

that indicates the dynamic range of the external signal. These constructs enable the

compiler to map applications that work with external signals to the analog hardware.

96

Chapter 4

Dynamical System Applications

This chapter presents the dynamical system specifications for twelve benchmark dy-

namical systems and two real-time signal processing applications that continuously

process external signals. This chapter presents two types of applications:

Benchmark Applications: I present twelve benchmark applications, six of which

were previously hand-implemented by my collaborators and six of which are novel

or from my prior work [4, 2]. For each benchmark application, I describe what

the dynamical system application is modeling at a high level and provide a general

overview of the dynamical system characteristics. I discuss whether the system is

linear or nonlinear and describe each of the variables in the dynamical system. When

applicable, I discuss commonly used approximating linearizations that reduce the

complexity of the problem, domain-specific variable properties and measures of result

fidelity, and analytical techniques for bounding dynamical system variables.

I next present the dynamical system specification describing the dynamical system

and provide plots of the dynamical system variable trajectories. I obtain the dynami-

cal system variable trajectories by solving the dynamical system with a high-precision

digital solver. I evaluate the compiler on these benchmark dynamical systems in the

Chapter 10 of this thesis. The variable trajectories presented in this chapter are the

reference trajectories used in Chapter 10.

Real-time Signal Processing Applications: I introduce two real-time signal pro-

cessing applications that continuously process external signals. These signal process-

97

ing applications are targeted in the case studies presented in Section 10.10. I discuss

the purpose of each signal processing application and provide a breakdown of the

associated dynamical system’s characteristics. I then present the dynamical system

specification for each signal processing application. Note that I do not provide dy-

namical system variable trajectories for these real-time applications. Because digital

dynamical system solvers are designed to simulate closed systems, I cannot use a dig-

ital solver to simulate open dynamical systems that work with external signals and

interact with the environment.

4.1 Simple Oscillator (cos)

var V = integ(-P,0.0);
var P = integ(V, 1.0);
var Position = emit(0.6*P);
interval p = [-1,1];
interval v = [-1,1];
time 20;

Figure 4-1: Simple oscillating mass.

The simple oscillator application (Figure 4-1) models the position and velocity

of an oscillating mass. The closed-form solutions of the position and velocity of

the above system are cos(t) and -sin(t) respectively. The DSS for this system

contains two linear differential equations which model the position P and velocity V

of the oscillator and a straight-line function Position that observes the position over

time. This system records the position of the mass for 20 units of simulation time.

98

4.2 Dampened Harmonic Oscillator (cosc)

var v = integ(-0.22*v - 0.84*P,-2.0);
var p = integ(v, 9.0);
var Position = emit(p);
interval p = [-10,10];
interval v = [-10,15];
time 20;

Figure 4-2: Dampened oscillating mass.

The dampened harmonic oscillator application (Figure 4-2) models a mass at-

tached to a spring where the spring exerts some resistance on the mass as it moves.

The dynamical system comprises two linear differential equations that model the ve-

locity v and position p of the mass and one straight-line equation Position that

records the mass’s position over time. The above dynamical system executes for 20

simulation time units. This system is marginally more complex than the simple oscil-

lator as it introduces a -0.22*v term that models the effect of the mass’s resistance

to motion into the equation modeling the velocity of the mass.

99

4.3 Pendulum (pend)

func sinf(T) = sin(T)
var angvel = integ(-0.18*angvel-0.8*call(sinf,ang),-1.0);
var ang = integ(angvel, 1.0);
var Angle = emit(ang);
interval ang = [-1.5,1.5];
interval v = [-1.5,1.5];
time 20;

Figure 4-3: Movement of a pendulum.

The pendulum application (Figure 4-3) implements a simple physics model which

captures the behavior of a swinging pendulum over time. The dynamical system is

made up of two differential equations which model the angular velocity angvel and

angle ang of the pendulum and a straight line equation Angle which monitors the

pendulum angle over time. This dynamical system executes for 20 units of simulation

time.

The equation modeling the position is linear, and the equation modeling the veloc-

ity is nonlinear in the above system. The pendulum model is a nonlinear dynamical

system because it makes use of the sin function. The above DSS introduces the

sinf function which accepts an argument T and computes sin(T). Note that a com-

mon approximating linearization of the above model involves approximating the sine

function with the angle of the pendulum [80]. This approximation is reasonable for

situations where the angular velocity Θ′ is small.

100

4.4 Spring (spring)

func frc(T) = sgn(T)*sqrt(abs(T))
var fPA = call(frc,PA)
var fPB = call(frc,PB)
var VA = integ(0.5*fPB - fPA - 0.15*VA,0.0);
var VB = integ(0.5*fPA - fPB - 0.15*VB,0.0);
var PA = integ(VA,2.0);
var PB = integ(VB,-1.0);
var PosA = emit(PA);
interval PA = [-2.5,2.5];
interval VA = [-2.5,2.5];
interval PB = [-2.5,2.5];
interval VB = [-2.5,2.5];
time 20;

Figure 4-4: Two-spring system

The spring application is a physics model which captures the dynamics of two

masses A and B that are linked together by a system of springs. The dynamical

system models the position and velocity of masses A and B and records the position

of mass A as an external signal. The spring application records the position of the

spring for 20 simulation time units.

The equations modeling the velocity of both masses are non-linear as they in-

clude sgn(PA)*sqrt(PA) and sgn(PB)*sqrt(PB) terms respectively. The above DSS

writes both of these non-linear terms to the temporary variables fPA and fPB to reduce

the complexity of the velocity expressions. A common approximating linearization for

the above non-linear system involves replacing the 𝑠𝑞𝑛(𝑃𝐴)·
√
𝑃𝐴 and 𝑠𝑔𝑛(𝑃𝐵)·

√
𝑃𝐵

terms with the variables 𝑃𝐴 and 𝑃𝐵.

101

4.5 Vanderpol Oscillator (vanderpol)

var V = integ(0.2*(V*(1.0-U*U)) - U,-0.5);
var U = integ(V,0.0);
var OSC = emit(U);
interval U = [-2.5,2.5];
interval V = [-2.5,2.5];
time 10;

Figure 4-5: Van der Pol oscillator.

The vanderpol application (Figure 4-5) executes a two-dimensional non-linear

Van der Pol oscillator for 10 units of simulation time. The Van der Pol oscillator

model has long been used in the physical and biological sciences to model phenomena

ranging from seismic activity to vocal folds. The basic formulation of the Van der

Pol oscillator is as follows:

�̇� = 𝑣 �̇� = 𝜇(1 − 𝑥2)𝑦 − 𝑥 + 𝑔(𝑡)

The vanderpol application is a nonlinear dynamical system made up of two dif-

ferential equations and one straight-line function. This implementation of the Van

der Pol oscillator models two variables V and U. This model is unforced, meaning the

external input term 𝑔(𝑡) in the above differential equation modeling V is set to zero.

This application observes the evolution of the oscillating variable U over time. The 𝜇

parameter in the above implementation is 0.2 and the V and U variables are initially

set to -0.5 and 0.0 respectively. The bounds for the oscillator variables are elicited

by executing the above dynamical system.

102

4.6 Forced Vanderpol Oscillator (forced)

var VW = integ(-W, 0.0);
var W = integ(VW, 1.0);
var Y = integ(5*(W + 0.2*(Y*(1.0-X*X)) - X),0.0);
var X = integ(5*(Y),-0.5);
var OSC = emit(X);
interval VW = [-1.0,1.0];
interval W = [-1.0,1.0];
interval X = [-2.2,2.2];
interval Y = [-2.2,2.2];
time 50;

Figure 4-6: Van der Pol oscillator with an oscillating forcing function.

The forced application (Figure 4-6) extends the basic Van der Pol oscillator

from Section 4-5 to accept a forcing function. This system is nonlinear and contains

four differential equations and one straight-line function. The forced Van der Pol

oscillator internally generates an oscillating function with a velocity VW and position

W that implements the closed form function cos(t). The position VW of the oscillating

input is provided as the forcing function g(t) to the Van der Pol oscillator.

In the above implementation, the Van der Pol oscillator differential equations

modeling Y and X are each scaled by a factor of five. This scaling coefficient modifies

the oscillator to evolve 5x faster than provided the forcing function. The bounds for

the oscillator variables are elicited by executing the above dynamical system.

103

4.7 1D Heat Model (heatN4X2)

var fD0 = D1-2*D0+2.0;
var D0 = integ(1.0*fD0, 0.0);
var fD1 = D0-2*D1+D2;
var D1 = integ(1.0*fD1, 0.0);
var fD2 = D1-2*D2+D3;
var D2 = integ(1.0*fD2, 0.0);
var fD3 = D2-2*D3;
var D3 = integ(1.0*fD3, 0.0);
var POINT = emit(D1);
interval D0 = [0.0,2.0];
interval D1 = [0.0,2.0];
interval D2 = [0.0,2.0];
interval D3 = [0.0,2.0];
time 120;

Figure 4-7: One-dimensional heat model with four points.

The heat application implements a one-dimensional, grid-based model of the heat

equation PDE. This application models the heat moving through a one-dimensional

line of points. This system is a linear system comprised of four differential equations

which each model one point in the line. This system observes the heat at the second

point (D1) for 120 units of simulation time.

In the above equation, the D0, D1, D2, and D3 variables correspond to the first,

second, third and fourth points in the line. each point both accepts heat from and

releases heat to the neighboring points. The first point D0 is consistently supplied

with two units of heat. The heat then flows from the first point to all the other points.

All of the variables are bounded by using the principle of conservation of heat – no

single point can have more heat than the total amount of heat put into the system.

The intermediate variables fD0, fD1, fD2, and fD3 store the derivatives of the state

variables D0, D1, D2, and D3. The DSS defines these intermediate variables to ensure

the compiler processes the derivative expressions separately.

104

4.8 PID Controller (pid)

var VSIG = integ(-0.25*VSIG, 0.0);
var SIG = integ(VSIG, 1.0);
interval VSIG = [-0.5,0.5];
interval SIG = [-1.0,1.0];

var ERR = PLANT-SIG;
var CTRL =-2.0*ERR-8.0*INTEG;
var INTEG = integ(ERR - 0.3*INTEG,0.0);
var PLANT = integ(CTRL + 1, 0.0)
var Controlled = emit(CTRL);
interval PLANT = [-2.0,2.0];
interval CTRL = [-2.0,2.0];
interval ERR = [-2.0,2.0];
interval INTEG = [-2.0,2.0];
time 200;

Figure 4-8: Proportional-integral controller.

The pid application is a proportional-integral controller that computes a compen-

sating signal that attenuates away the unwanted dynamics from an oscillating input.

The above application is a linear system made up of three straight line equations and

four differential equations and is executed for 200 units of simulation time.

The pid application internally generates an oscillating signal with velocity VSIG

and position SIG that implements the closed-form function cos(0.25*t). The oscil-

lator position SIG is the reference function the PI controller is trying to match. The

PLANT signal is the output of an unknown system that accepts an input signal. The

goal of the PI controller is to find the control signal which causes the output of the

unknown system PLANT to match the reference signal SIG. I use a simple unknown

system that integrates the provided control signal and adds a fixed error of 1 to

the generated output. The ERR variable tracks the error between the observed and

reference signal.

105

The PI controller generates a control (CTRL) signal that is provided as an input

into an unknown system. The control signal contains both a term that is proportional

to the observed error (-2.0*ERR) and the integrated error over time (-8.0*INTEG).

The integrated error INTEG starts at zero and computes the integral of the error signal

over time with some leakage.

In the above figures, the error of the system ERR quickly converges to approxi-

mately zero. After some initial fluctuations, the reference signal SIG and observed

signal PLANT follow the same trajectory.

106

4.9 Kalman Filter (kalman)

var VSIG = integ(-0.04*SIG, 0.0)
var SIG = integ(VSIG, 0.7)
var E = SIG-X
var RP = (1/2.0)*P
var X = integ(RP*E, 0)
var P = integ(0.6-RP*P, 0.0)
var STATE = emit(X)
interval VSIG = [-0.3,0.3]
interval SIG = [-1.0,1.0]
interval X = [-1.0,1.0]
interval P = [0.0,1.0]
time 50

Figure 4-9: Noise-eliminating kalman filter.

The continuous-time Kalman filter tracks the average of a noisy signal for 50

simulation units [78]. Typically, Kalman filters are implemented discretely using an

algorithm which predicts the next state of the system and an update step which

studies the agreement between the prediction and measured state and updates the

underlying model accordingly. This continuous-time formulation performs both steps

simultaneously and continuously. The model used by the Kalman filter tracks the

estimated state of the signal and the accuracy of the state estimation. The general

model of the one-dimensional continuous-time continuous-observation average track-

ing kalman filter is as follows:

𝐸𝑟𝑟𝑜𝑟 = 𝐼𝑛𝑝𝑢𝑡− 𝑆𝑡𝑎𝑡𝑒

𝑆𝑡𝑎𝑡𝑒 =
∫︀
𝑃𝑟𝑜𝑐𝑁𝑜𝑖𝑠𝑒−1 · 𝐶𝑜𝑣 · 𝐸𝑟𝑟𝑜𝑟 𝑆𝑡𝑎𝑡𝑒(0) = 𝑆𝑡𝑎𝑡𝑒0

𝐶𝑜𝑣 =
∫︀
𝑀𝑒𝑎𝑠𝑁𝑜𝑖𝑠𝑒+ 𝑃𝑟𝑜𝑐𝑁𝑜𝑖𝑠𝑒−1 · 𝐶𝑜𝑣2 𝐶𝑜𝑣(0) = 0.0

107

The 𝑆𝑡𝑎𝑡𝑒 variable tracks the predicted noiseless trajectory of the input signal over

time, and the 𝐶𝑜𝑣 variable tracks the process noise variance over time. The process

noise captures the error in the prediction that results from modeling approximations.

The 𝑆𝑡𝑎𝑡𝑒 variable is continuously updated with the measured error between the ob-

served input and the prediction. The initial value of the 𝑆𝑡𝑎𝑡𝑒 variable is typically

an initial guess. The 𝐶𝑜𝑣 variable is also continuously updated to account for mea-

surement noise and noise arising from uncaptured dynamics. The 𝑀𝑒𝑎𝑠𝑁𝑜𝑖𝑠𝑒 and

𝑃𝑟𝑜𝑐𝑁𝑜𝑖𝑠𝑒 parameters specify the degree of measurement and process noise present

in the system.

The above kalman application implements a Kalman filter which denoises an in-

put signal. It implements a nonlinear system made up of six differential equations

and three straight line functions. The VSIG and SIG variables model the position and

velocity of a oscillator which implements the closed-form function 0.7*cos(0.2*t).

This signal SIG is used as an input to the Kalman filter. The Kalman filter then tracks

the provided signal using the above model with a measurement noise of 0.1 and a pro-

cess noise of 2.0. The variable X is the state of the system, and the variable P is the

estimated variance of the process noise. Note that the quantity 𝑃𝑟𝑜𝑐𝑁𝑜𝑖𝑠𝑒−1 · 𝐶𝑜𝑣

is stored in the temporary variable RP. This optimization improves the agreement

between the 0.5*P*P and 0.5*P terms in the X and P differential equations respec-

tively. The interval bounds for all the variables are derived by exercising the above

dynamical system.

108

4.10 Michaelis Menten Reaction (smmrxn)

var E = 0.8-ES
var S = 0.5-ES
var ES = integ(E*S - 0.3*ES, 0.0)
var COMPLEX = emit(ES)
interval E = [0.0,0.8]
interval S = [0.0,0.5]
interval ES = [0.0,0.5]
time 20

Figure 4-10: Michaelis-Menten chemical reaction.

The Michaelis-Menten chemical reaction is a simple chemical reaction which mod-

els the formation of an enzyme-substrate complex from two reagents [95]. The

Michaelis-Menten chemical reaction can be summarized with the following reaction

equations:

𝐸 + 𝑆 →𝑘𝑓 𝐸𝑆

𝐸𝑆 →𝑘𝑟 𝐸 + 𝑆

In the first reaction equation, the enzyme 𝐸 and substrate 𝑆 come together to form

the enzyme-substrate complex 𝐸𝑆. The formation rate of this compound is 𝑘𝑓 . The

second reaction equation models the decomposition of the enzyme-substrate com-

plex back into the enzyme and substrate reagents. The dissassociation rate of this

compound is 𝑘𝑟. These rates are typically empirically measured through wet-lab

experiments. The following set of differential equations models the above system:

�̇� = 𝑘𝑟 · 𝐸𝑆 − 𝑘𝑓 · 𝐸 · 𝑆 𝐸(0) = 𝐸0

�̇� = 𝑘𝑟 · 𝐸𝑆 − 𝑘𝑓 · 𝐸 · 𝑆 𝑆(0) = 𝑆0

�̇�𝑆 = 𝑘𝑓 · 𝐸 · 𝑆 − 𝑘𝑟 · 𝐸𝑆 𝐸𝑆(0) = 𝐸𝑆0

In the above model, the reagents 𝐸 and 𝑆 are depleted at the same rate 𝑘𝑓 · 𝐸 · 𝑆

the complex 𝐸𝑆 is formed. The complex 𝐸𝑆 is depleted at the same rate 𝑘𝑟 · 𝐸𝑆

109

the enzyme 𝐸 and substrate 𝑆 are formed. Both of these rates are influenced by

the reaction rate constants defined above. This system can be futher simplified by

leveraging the fact that these reactions are occuring in a closed system. In this closed

system, the following conservation equalities must hold:

𝐸 + 𝐸𝑆 = 𝐸𝑆0 + 𝐸0

𝑆 + 𝐸𝑆 = 𝐸𝑆0 + 𝑆0

The first equality specifies that the total amount of enzyme and complex in the

system must equal the initial amount of enzyme and complex in the system. Because

no enzyme can be added or removed from the system at any time, all the available

enzyme was either initially in the system or part of the starting amount of the complex

𝐸𝑆. The same applies to the substrate 𝑆. I then use these conservation relations to

simplify the system:

𝐸 = 𝐸0 + 𝐸𝑆0 − 𝐸𝑆

𝑆 = 𝑆0 + 𝐸𝑆0 − 𝐸𝑆

�̇�𝑆 = 𝑘𝑓 · 𝐸 · 𝑆 − 𝑘𝑟 · 𝐸𝑆 𝐸𝑆(0) = 𝐸𝑆0

The above simplification replaces the differential equations modeling 𝐸 and 𝑆

with straight-line equations derived from the above conservation relation.

The smmrxn application executes the above simplified dynamical system that mod-

els the Michaelis-Menten chemical reaction. The system is a nonlinear system made

up of three straight-line equations and one differential equation. This application

tracks the concentration of the enzyme-substrate complex ES for 20 simulation time

units. The formation and disassociation parameters are instantiated to 1.0 and 0.3,

respectively. The initial enzyme, substrate, and complex quantities are 0.8, 0.5, and

0.0, respectively. The interval bounds for all the variables are derived from the above

conservation equations. The maximum amount of 𝐸𝑆 in the system is the initial

amount of the limiting reagent 𝑚𝑖𝑛(𝐸0, 𝑆0). All variables are positive since they are

tracking physical quantities (chemical concentrations).

110

4.11 Genetic Toggle Switch (gentog)

var VPERT = integ(-PERT, 0.0)
var PERT = integ(VPERT, 0.5)
var IPTG = 0.5+PERT

func utf(T) = 15.62/pow((1+max(T,0)),2.5)
func vtf(T) = 15.6/(1+max(T,0))
func umod(T) = pow((1+max(T,0)),-2.0015)

var UMOD = call(umod,IPTG)
var UTF = call(utf,V)
var VTF = call(vtf,(U*UMOD))
interval UMOD = [0.0,1.0]
interval UTF = [0.0,16.0]
interval VTF = [0.0,16.0]

var V = integ(VTF - V, 0.0)
var U = integ(UTF - U, 0.0)
var compV = emit(V)

interval V = [0.0,16.0]
interval U = [0.0,1.2]
time 20

Figure 4-11: Genetic toggle switch.

The genetic toggle switch is a synthetic bi-stable gene regulatory network [46].

It models the activity of the repressor proteins 𝑈 and 𝑉 in the presence of a small

excitatory molecule 𝐼𝑃𝑇𝐺. The repressor 𝑉 binds to 𝑈 , inhibiting its production.

The repressor 𝑈 also binds to 𝑉 , inhibiting its production. The small molecule 𝐼𝑃𝑇𝐺

binds to the repressor 𝑈 , inhibiting its activity.

The gentog application implements the genetic toggle switch. It is a non-linear

111

dynamical system made up of 2 differential equations and 4 straight-line functions.

The UTF and VTF variables track the transcription rate of the genes which encode

the U and V proteins. The UMOD variable captures the interaction between the IPTG

molecule and the repressor protein U.

112

4.12 Botulism Neurotoxin (bont4)

var bulkB = integ(-0.015*bulkB, 1.0)
var freeB = integ(0.15*bulkB-0.058*freeB, 1.0)
var bndB = integ(0.058*freeB - 0.141*bndB, 0.0)
var transB = integ(0.141*bndB - 0.013*transB, 0.0)
var lyticB = integ(0.013*transB, 0.0)
var MTRANSB = emit(transB)

interval bulkB = [-1.0,1.0]
interval freeB = [-0.02,0.02]
interval bndB = [-0.03,0.03]
interval transB = [-0.06,0.06]
interval lyticB = [-0.004,0.004]

time 20

Figure 4-12: Botulism neurotoxin model.

The bont4 application implements a biological model of the botulism neurotoxin

pathway [76]. This dynamical system is a linear system with five differential equations

and one straight-line function. The following four-stage reaction summarizes the

lifecycle of the botulism neurotoxin:

𝑏𝑢𝑙𝑘 →𝑘𝑆 𝑓𝑟𝑒𝑒 →𝑘𝐵 𝑏𝑜𝑢𝑛𝑑 →𝑘𝑇 𝑡𝑟𝑎𝑛𝑠𝑙𝑜𝑐𝑎𝑡𝑒𝑑 →𝑘𝐿 𝑙𝑦𝑡𝑖𝑐

First, bulk neurotoxin (𝑏𝑢𝑙𝑘) is translated to free neurotoxin. Then, the free

neurotoxin (𝑓𝑟𝑒𝑒) binds to sites on synaptic termini. The bound neurotoxin (𝑏𝑜𝑢𝑛𝑑)

is then translocated into the neuroplasm (𝑡𝑟𝑎𝑛𝑠𝑙𝑜𝑐𝑎𝑡𝑒𝑑). Once the neurotoxin is in the

neuroplasm, it exerts its toxic effects (𝑙𝑦𝑡𝑖𝑐). I am primarily interested in observing

the level of translocated neurotoxin over time for a system with a starting amount of

1.0 units of bulk neurotoxin. The amount of translocated neurotoxin is observed for

20 simulation time units. All of the rate constants 𝑘𝑆, 𝑘𝐵, 𝑘𝑇 and 𝑘𝐿 are empirically

113

measured from wet-lab experiments. The bont application above instantiates 𝑘𝑆, 𝑘𝐵,

𝑘𝑇 and 𝑘𝐿 to 0.015, 0.058, 0.141, and 0.013 respectively. All intervals are derived

by executing the dynamical system and observing the trajectories of the quantities.

4.13 Example Real-Time Dynamical Systems

I introduce two real-time applications which operate on externally provided real-time

signals.

4.13.1 Bias Shift Detector

extern U;

interval U = [-1.0,1.0]; freq U = 40000;

var X = extin(U)

var Y = integ(0.3*X - 0.8*Y, 0.0);

var Trigger = emit(Y);

interval Y = [-1.0,1.0];

realtime [38000,42000];

time 0.0008;

Figure 4-13: Bias change detector

The bias shift detector identifies shifts in the average value of an externally pro-

vided input. The bias shift detector is designed to be used in conjunction with a

thresholding circuit – these two components together can produce a smart interrupt

that wakes up a co-processor when the average of the measured signal moves outside

of its expected range.

The detector accepts an external input signal U with a frequency of 40 kHz and a

dynamic range of [-1,1]. The detector produces, as output, a trigger signal (Trigger)

which tracks the average of the input signal. The bias shift detector must execute at

around the same speed as the input signal. The DSS limits the realtime integration

speed of the system to 38-42 kHz (realtime statement). This frequency restriction

114

ensures the dynamical system evolves at approximately the same speed as the external

signal. This benchmark processes the external signal for a total of 8 milliseconds.

The bias shift detector implements a leaky integrator. A leaky integrator is a

linear dynamical system composed of one state variable which integrates a forcing

function X over time:

𝑋 ′ = 𝑌 − 𝛼 ·𝑋

The 𝛼 term determines the rate at which the leaky integrator forgets the system’s

current state. The Y term is the external signal to integrate. A leaky integrator is

equivalent to a first-order low pass filter with the following transfer function 𝐻(𝑠) =

𝑌 (𝑠)
𝑋(𝑠)

. I derive the transfer function below for this system below:

L(𝑌 (𝑡)) = 𝑌 (𝑠) = L(
∫︀
𝛽 ·𝑋(𝑡) − 𝛼 · 𝑌 (𝑡))

𝑠−1L(𝛽 ·𝑋(𝑡) − 𝛼 · 𝑌 (𝑡))

𝑌 (𝑠) = 𝑠−1(𝛽 ·𝑋(𝑠) − 𝛼 · 𝑌 (𝑠))

𝑌 (𝑠) + 𝛼 · 𝑠−1𝑌 (𝑠) = 𝛽 · 𝑠−1𝑋(𝑠)

𝑌 (𝑠) · (1 + 𝛼 · 𝑠−1) = 𝛽 · 𝑠−1𝑋(𝑠)

𝑌 (𝑠)
𝑋(𝑠)

= 𝛽 · 𝑠−1 · (1 + 𝛼 · 1
𝑠
)
−1

𝑌 (𝑠)
𝑋(𝑠)

= 𝛽 · (𝑠 · 𝛼−1 + 1)
−1

The above transfer function implements a low-pass filter with a gain of 𝛽 and

a cutoff frequency of 𝛼. For the above bias shift detector, the gain of the filter is

0.3, and the cutoff frequency is 0.8x the baseline integration speed of the dynamical

system. The cutoff frequency is therefore between 30.4-33.6 kHz.

115

4.13.2 Denoiser

extern SIG;

interval SIG = [-1.0,1.0];

freq SIG = 40000;

var U = extin(SIG);

var E = U-X;

var RP = 1.0*P;

var X = integ(RP*E, 0.0);

var P = integ(1.0 - RP*P, 0.0);

var Output = emit(X);

interval X = [-1.0,1.0];

interval P = [0.0,1.0];

realtime [38000,42000];

time 0.0008;

Figure 4-14: Signal denoiser

The denoiser removes the noise from an externally provided input signal and

emits the smoothed signal as output. The denoiser is an example of a real-time

analog signal processing application. Such computations can continuously process

signals with high-frequency components without requiring signal sampling. Typically,

the produced computation result is a lower frequency signal that can be efficiently

sampled and processed by a low-power digital processor. Other examples of real-time

signal processing applications include frequency de-modulation and generalized state

estimation [106, 135].

The detector accepts an external input signal U with a frequency of 40 kHz and a

dynamic range of [-1,1]. The detector produces, as output, a trigger signal (Trigger)

which changes level when the average of the input signal changes. The bias shift

116

detector must execute at around the same speed as the input signal. The DSS limits

the realtime integration speed of the system to 38-42 kHz (realtime statement). This

execution speed restriction ensures that the state estimation computation keeps pace

with the externally provided signal. This benchmark processes the external signal for

a total of 8 milliseconds.

The denoiser implements the Kalman filter introduced in Section 4.9. The Kalman

filter is instantiated with a measurement noise parameter of 1.0 and a process noise

parameter of 1.0. The E, X, and P variables implement the error, internal state, and

predicted error of the Kalman filter.

4.14 Conclusion

This chapter presents twelve benchmark dynamical systems from the biological, physics,

and control systems domains. For each benchmark application, I discuss the approxi-

mations typically applied for each type of application and outline any approximations

I apply to the dynamical system in the dynamical system specification. When applica-

ble, I discuss how the interval bounds for the dynamical systems could be analytically

derived. I also present two dynamical system applications which process real-time sig-

nals in this chapter. Each of these real-time applications performs computation on a

continuously evolving, externally provided signal.

Further Reading: Chapter 6 presents the analog hardware implementations of the

twelve benchmark dynamical systems presented in this chapter on the HCDCv2 re-

configurable analog device. Chapter 10 presents the results from executing the twelve

benchmark dynamical systems on the HCDCv2 reconfigurable analog device. The two

real-time dynamical system computations presented in this chapter are implemented

and evaluated on the target hardware platform in Section 10.10.

117

118

Chapter 5

Reconfigurable Analog Devices

The compilation techniques presented in Chapters 7, 8, and 9 automate the process

of deriving an analog circuit which implements a given dynamical system compu-

tation on a differential equation-solving analog device. The compiler presented in

this work [3] targets the HCDCv2 analog device [132, 61, 51]. The HCDCv2 re-

configurable analog device is an ultra-low power differential equation-solving analog

device designed to solve non-linear ordinary differential equations. My earlier work on

compilation [4, 2] targeted reconfigurable dynamical system-solving analog computing

platforms which simulate biological systems [105, 128, 140, 141].

This chapter provides an overview of reconfigurable differential-equation solving

analog devices, presents the relevant analog device specification and programming

languages utilized by the compiler, and HCDCv2 analog device specification and

runtime system.

The target class of reconfigurable analog devices leverages the physical behavior

of transistors to implement computation. Under this paradigm, voltages and currents

within the device implement continuous variables in the computation. These devices

are programmed by routing together configurable analog blocks using programmable

interconnects to form a circuit. To faithfully implement a computation, the physics

of the circuit must capture the underlying dynamics of the dynamical system so that

the trajectory of each variable can be recovered at runtime by applying a recovery

transformation. This class of differential equation-solving analog devices are typically

119

programmed in two ways:

∙ Connection Formation: Connections between blocks are formed by digitally

enabling interconnects on the device.

∙ Block Configuration: Each block in the analog device is digitally config-

urable. Blocks are typically parametric and may be digitally programmed to

implement one of many different functions. Some blocks may also accept digi-

tally settable data fields which appear in the input-output relation implemented

by the block.

Together, these two configuration techniques are used to implement circuits com-

prised of configured blocks. Once the circuit is programmed into the analog device,

the dynamical system is executed by powering on the circuit and observing the cur-

rents and voltages over time. Each of these currents and voltages models a variable

or expression from the dynamical system. The compiler is responsible for construct-

ing the analog circuit that captures the dynamics of the target dynamical system.

compilation problem is challenging for several reasons:

∙ Complex, Non-Standard Blocks: There is no universally agreed-upon col-

lection of analog blocks – the devices instead provide highly specialized blocks

that implement anything from simple functions to sets of differential equations.

These blocks are highly configurable and often can be reconfigured to imple-

ment a multitude of different functions. The compiler may need to identify

non-trivial compositions of these blocks to implement the desired functions.

In analog devices, not all computation is performed with analog blocks, and

not all blocks perform computation. Analog devices which work with analog

currents do not provide adder blocks to the compiler and typically require ad-

dition operations to be implemented with Kirchhoff’s law. These same analog

devices provide copier blocks to duplicate analog currents. These blocks do not

perform computation but must be used to route signals to multiple places.

120

∙ Restrictive Routing Environment: Analog devices typically provide highly

restrictive interconnects and offer few digitally programmable connections. The

compiler, therefore, must carefully map all the blocks in the derived circuit to

locations on the device. The compiler may need to insert additional blocks to

implement connections between blocks that are far apart.

∙ Low-Level Physical Behaviors: Analog devices are subject to analog noise

and process variation and exhibit value- and frequency-dependent non-idealities.

While the hardware designer does mitigate some of these behaviors in the device

design, the compiler must automatically compensate for all remaining physical

behaviors in the derived circuit. One common mitigation strategy includes

changing the dynamical system parameters written to the circuit. This process

is called scaling the circuit.

The compilation techniques presented in Chapters 7, 8, and 9 automatically

address the above challenges. This chapter covers the following topics:

∙ Low-Level Programming Interfaces of Analog Devices(Section 5.1): I

describe the kinds of programmable degrees of freedom included in analog de-

signs. I then describe the high-level abstractions I use to capture these low-level

programming constructs. These high-level abstractions make up the device pro-

gramming interface.

∙ Low-Level Physics and Analog Devices(Section 5.2): I describe the low-

level physical phenomena which introduce unwanted behaviors in the analog

device. I discuss which physical phenomena are mitigated at an architectural

level and how each mitigation strategy works. For the phenomena which are

mitigated at an architectural level, I describe how to mitigate each unwanted

physical behavior. I then describe how the compiler automatically handles these

unwanted behaviors at a higher level of abstraction.

∙ Delta Models and Calibration(Section 5.3): I introduce the concept of a

delta model. Delta models are used to capture process variation-induced behav-

121

ioral variations in the hardware. The compiler uses the delta model information

to more accurately target the device on hand. I describe what delta models look

like, how the compiler uses the delta models, and how they are elicited from the

device on hand.

∙ Analog Device Specification Language (ADSL)(Section 5.5): I present

the analog device specification language. The ADSL describes the physical

limitations and behaviors present in the analog device. The ADSL also speci-

fies the programming interface and high-level behavior of the target dynamical

system-solving analog device.

Section 5.5.1 describes how programmable functional blocks are specified in this

language. This section also describes how the block specifications encode the

block operating range and frequency limitations, block noise, block quantization

error, and block delta models. Section 5.5.2 describes the language constructs

offered to specify the device layout and the programmable connections available

in hardware. The analog device specification language grammars make use of

the grammar shortcuts presented in Section 5.4 of this chapter.

∙ Analog Device Programming Language(Section 5.6): I present the high-

level analog device programming language (ADPL) that is used to program

the reconfigurable analog device. The analog device programming language

configures analog blocks and links block ports together with digitally settable

connections. The analog device programming language grammars make use of

the grammar shortcuts presented in Section 5.4.

∙ HCDCv2 Analog Device Specification(Section 5.7): I present the analog

device specification (ADS) for the HCDCv2 analog device. This section pro-

vides a detailed overview of each block’s high- and low-level programming in-

terfaces and physical limitations. Section 5.7.1 presents the specification for the

programmable blocks in the device. Section 5.7.2 presents the programmable

connections available on the HCDCv2 device and the overall device layout.

122

∙ HCDCv2 Calibration and Delta Models(Section 5.8): I discuss the cal-

ibration strategies implemented by the HCDCv2. I present a multiplier case

study where I walk through how the delta models are elicited from the hard-

ware and used by the compiler. I discuss the effect of the calibration strategy

on the compiler’s ability to target the device. The HCDCv2 supports two

software-defined calibration algorithms which are implemented in the device

firmware. The firmware implements a traditional (minimize_error) calibration

algorithm that aims to eliminate all unexpected behavior and a co-designed cal-

ibration algorithm (maximize_fit) that prioritizes eliminating behavioral devi-

ations which cannot be compensated for in compilation. I provide an overview

of how the calibration algorithms affect the inferred block delta models and

provide a multiplier case study that concretely illustrates the interplay between

the calibration algorithm and the elicited delta model for a fabricated multiplier

instance.

∙ HCDCv2 Software Stack and Runtime(Section 5.9): I discuss the HCDCv2

low-level programming interface and the calibration, characterization, and cir-

cuit execution procedures for the target HCDCv2 analog device. This discussion

provides some insight into the operation of the hardware underneath the pro-

vided hardware abstraction.

Section 5.9.1 presents the HCDCv2 low-level programming interface used to

write circuits to the HCDCv2, calibrate the HCDCv2, and characterize blocks

on the HCDCv2. Section 5.9.2 presents an overview of the databases used

to store the device-specific calibration and characterization information. Sec-

tion 5.9.3 describes the HCDCv2 runtime procedures used to populate the cal-

ibration and characterization databases – these runtime procedures are per-

formed offline before the device is used to execute dynamical systems. Sec-

tion 5.9.4 describes the workflow for executing an ADP on the HCDCv2.

123

5.1 Programmability of of Analog Devices

Reconfigurable analog devices offer blocks that may be routed together by enabling

digitally programmable interconnects. Each block on the analog device is digitally

reconfigurable and may be programmed to implement a variety of different functions.

Internally, each block is a mixed-signal circuit comprised of circuit components such

as capacitors, resistors, and transistors. The designer typically makes the circuit

programmable in several different ways:

∙ Changing the Circuit Structure: The designer may introduce digitally set-

table bits which redirect how signals are routed within the analog circuit. This

design feature enables the hardware designer to implement multiple functions

with the same circuit.

∙ Current and Voltage Sources: The designer may introduce programmable

current and voltage sources into their design. Each of these current and voltage

sources accepts a bit vector and translates the bit vector to a current level. The

encoding scheme used by the source varies depending on the underlying design.

∙ Digital Logic: The designer may introduce digital logic into their design to

improve the expressivity of the device. For example, the designer may intro-

duce digital lookup tables (LUTs) into their design to implement user-defined

functions on the analog hardware.

The device firmware provides a low-level programming interface that may be used

to program an analog circuit to the analog device. The device firmware offers three

kinds of settable digital values which together program the analog blocks:

∙ Static Codes: Static codes choose the function the analog unit implements.

Static codes are combinatorial and do not represent decimal values. Setting

static codes may affect the function implemented by the block and alter the

block’s physical characteristics. Static codes typically encode digitally settable

bits that change the circuit structure. In this chapter, I will ascribe static code

values to literals to improve readability.

124

∙ Dynamic Codes: Dynamic codes set constant digital values which appear

in the function implemented by the block. Dynamic codes are digital integer

values that map to decimal values. Dynamic codes typically are implemented

as programmable current and voltage sources in the underlying analog circuit.

Dynamic codes are also sometimes used to program digital logic elements such

as LUTs. These logic elements may appear in analog circuits which offer pro-

grammable functions, for example.

∙ Calibration Codes: Calibration codes are internally set by the device runtime

and firmware to eliminate any unwanted block behaviors. Calibration codes

typically map to current and voltage sources in the underlying analog circuit.

These current and voltage sources inject compensating signals into the analog

circuit to remove unwanted behavior. The device firmware identifies the best

set of calibration code values for the block at hand and the runtime writes the

calibration code values to the device.

The device firmware also provides an interface for enabling and disabling digitally

settable connections within the hardware.

This chapter presents an analog device specification language that offers a more

natural abstraction for these low-level codes. I also present an analog device pro-

gramming language that supports the configuration and connection of blocks at this

higher level of abstraction. The compiler targets the analog device specification and

produces an analog device program that implements the target dynamical system.

The platform-specific runtime system then enables the analog device program con-

nections in the firmware. It also translates the block configurations to static and

dynamic code assignments and then writes these assignments to the device firmware.

The runtime internally maintains the calibration code assignments.

The analog device specification language is made up of a collection of block spec-

ifications and a device layout specification. Each block specification defines block

input ports and output ports, where each output port implements an input-output

relation. Each block input and output may work with an analog current, an analog

125

voltage, or a continuously evolving digital signal. Each block specification encodes

the static and dynamic codes with the following constructs:

∙ Block Modes: The block static codes are encoded as block modes. Each block

mode corresponds to a set of static code assignments. The block specification

language supports defining mode-dependent input-output relations.

∙ Data Fields: The dynamic codes belonging to a block are encoded as digitally

settable data fields. The ADSL supports both constant data fields and data

fields that implement expressions. Each data field is associated with an encoding

scheme that specifies how to translate the decimal values written to each data

field into integer values. The block data fields may appear in the input-output

relations of the output ports.

The input-output relation implemented at each output port captures the idealized

behavior of the block provided the block is not adversely affected by the low-level

physics of the device.

5.2 Low-Level Physics and Analog Devices

Because analog devices directly leverage the underlying physics of the transistors,

they are sensitive to the effects of process variations introduced during fabrication.

These variations affect the low-level behavior of analog circuits on the device and

alter the behavior of individual analog blocks on the hardware. The HCDCv2 is no

exception and is also subject to these low-level physical effects:

∙ Unexpected Signal Biases: Signals within a circuit may experience unex-

pected offsets, called biases. If left uncorrected, these biases can significantly

alter the function implemented by the analog block or introduce fixed biases

into the output signals. Signals with bias issues produce errors that accumulate

throughout the computation when integrated over time.

126

∙ Unexpected Signal Gains: Signals within a circuit may be scaled by random,

non-unitary constant coefficients. These constant coefficients are referred to as

signal gains. Unexpected signal gains within a block may drastically alter the

function implemented by the analog block and introduce unexpected gains into

the output signals. Signal gains also waste parts of the signal range.

∙ Static Errors: Some blocks experience static errors when exercised with cer-

tain inputs. These static errors may arise from nonlinearities in the circuit.

These errors may manifest as point errors that occur in very small regions of

the input space or adversely affect the output for large regions of the input

space. These errors produce unexpected and difficult-to-model behaviors when

the block is exercised with these inputs.

∙ Unexpected Behaviors at High Frequencies: Many analog blocks act as

low-pass filters and attenuate away high-frequency signals. These errors may

cause blocks to produce incorrect results for signals with fast-evolving frequency

components.

∙ Analog Noise: All analog blocks are subject to analog noise. In the HCDCv2,

the noise is typically randomly distributed around zero and can be adequately

modeled with a Gaussian distribution. Analog noise introduces random per-

turbations into the computation – these perturbations may disproportionately

affect the computation if the affected signal amplitudes are small.

To mitigate these issues, hardware designers have introduced a variety of mitigation

strategies into the hardware design and documentation:

∙ Device Calibration: Hardware designers often strategically insert programmable

current and voltage sources or introduce digitally configurable logic into their

circuit designs. These programmable circuit components enable the designer

to correct unwanted signal biases, unwanted signal gains, and static errors in

the circuit after fabrication. Each circuit component can be configured by set-

ting its respective calibration code. The device is calibrated before use to

127

eliminate as much unwanted behavior as possible. The calibration procedure

performs a search over calibration codes to find the best set of codes. Because

it is sometimes not feasible to eliminate all unwanted behavior, the hardware

designer prioritizes eliminating the subset of behaviors that the compiler cannot

automatically compensate for. For this reason, some hardware platforms offer

multiple calibration strategies, each of which uses different criteria for selecting

the best set of codes. The end user selects the calibration strategy before device

calibration.

In practice, the analog blocks still may not behave as expected even after cal-

ibration. These post-calibration variations in behavior may change depending

on the block’s configuration and may vary across individual block instances.

Examples of behavioral deviations which may persist post-calibration are un-

expected biases and signal gains, and static errors.

∙ Frequency Limitations: Hardware designers identify the maximum supported

frequency for each block during the initial characterization of the device. The

identified frequency is the highest frequency signal a block can work with be-

fore frequency-dependent unexpected behaviors affect the computation. The

compiler is then responsible for only providing signals within the supported

frequency range.

∙ Operating Range Limitations: Hardware designers identify the minimum

and maximum supported values at each block input and output during the

design and initial characterization of the device. The minimum and maximum

supported values together make up the operating range of the block input and

output. Providing values outside of the port’s operating range may damage

the analog block or produce an incorrect result due to nonlinearities present

in the underlying analog circuit. These operating range specifications are then

provided to the end user.

The compiler is then responsible for ensuring the programmed circuit doesn’t

violate any of these constraints.

128

∙ Analog Noise: Hardware designers identify the noise characteristics for each

block during the initial characterization of the device. These noise measure-

ments are then provided to the end user. The hardware designer may specify

the noise characteristics as a symbolic distribution, a noise figure, or a simple

standard deviation.

The compiler uses this information provided by the hardware designer to target

the analog device effectively. Note that the compiler targets a specification of the

analog device which encapsulates many of the above behaviors:

∙ Delta Models and Compiler-Guided Compensation: Some behavioral

variations which remain post-calibration can be compensated for in compilation.

For example, the compiler can correct for unexpected gains by selectively adjust-

ing the data field values in the circuit. Other variations cannot be compensated

for effectively. For example, the compiler can correct for unexpected biases by

introducing digital-to-analog converters into the circuit that inject compensat-

ing analog currents into the affected ports. However, in practice, this correction

technique introduces more error and drastically increases resource utilization.

Other types of unexpected behaviors, such as static point errors, are difficult to

model and cannot be compensated for effectively at compile-time.

In this thesis, I introduce the concept of a delta model – a symbolic model

which captures a subset of the unexpected behaviors present in the block after

calibration. In this thesis, the delta models are used to capture unexpected

gains and unexpected biases present in the calibrated blocks. The compiler

then uses the block delta models to more effectively target the device on hand.

The compiler compensates for unexpected gains by carefully scaling the circuit

and adjusts for any unexpected biases introduced into data fields when assigning

values to the block data fields. Section 5.3 provides a high-level overview of how

delta models are elicited from the chip and used by the compiler.

∙ Frequency Limitation Specifications: The compiler-writer incorporates fre-

quency limit annotations into the analog device specification. The compiler

129

adjusts the speed of the computation such that all of the frequency limit anno-

tations are respected.

∙ Operating Range Limitation Specifications: The compiler-writer incor-

porates per-port operating range limit annotations in the analog device specifi-

cation. The compiler adjusts the dynamic range of the signals in the circuit so

that none of the specified operating range limitations are violated.

∙ Noise Specifications: The compiler-writer incorporates noise annotations in

the analog device specification. In the analog device specification, the noise for

each block port is defined as a standard deviation of the signal. The compiler

uses the noise information to improve the signal-to-noise ratio at each of the

ports. The compiler accomplishes this by selectively increasing the dynamic

range of signals which are overcome by the noise floor.

Because the compiler handles all of the above phenomena, the end user is not

required to reason about the low-level analog behaviors present in the device. The

end user needs only to specify the calibration strategy the compiler should target.

The end user can also optionally provide a minimum signal-to-noise ratio measure to

limit to what degree the signals in the circuit are compressed.

5.3 Delta Models

Analog devices frequently do not perfectly implement the input-output relations de-

scribed in the analog device specification post-calibration. These behavioral devia-

tions may change depending on how the individual block is programmed. This thesis

introduces the concept of a delta model, a mathematical model that captures the

actual behavior of a calibrated, configured block. The block delta models are made

up of two major components:

∙ Delta Model Specification (Section 5.5.1): The analog device specification

provides a delta model specification for each block. Each delta model specifi-

cation is a templatized input-output relation over data fields, block ports, and

130

delta model parameters. The delta model parameters are variables that are

resolved to constant values when targeting a specific block instance on the de-

vice. The delta model specification offers delta model parameter annotations

which indicate which parameters can be compensated for in compilation and

what each parameter value would ideally be if the block exhibited no behavioral

variations.

Consider a multiplier block which ideally implements the function c*x. In this

input-output relation, c is a data field and x is an input port. The delta model

specification this multiplier is (𝛼*c+𝛽)*x + 𝛾. In this specification, c is a data

field, x is an input port, and 𝛼, 𝛽, and 𝛾 are delta model parameters. The ideal

values for the 𝛼,𝛽, and 𝛾 delta model parameters are 1, 0, and 0 respectively.

With this instantiation, the multiplier implements (1*c+0)*x+0 or c*x – this

perfectly scales the signal by the constant value provided by data field c.

In practice, though, the delta model parameter values may deviate from their

expected values. The compiler is able to effectively target blocks that have 𝛼

and 𝛽 parameters that deviate from 1 and 0. The compiler can statically correct

for the 𝛼 and 𝛽 parameters in compilation by carefully scaling the circuit and

setting data field values. The delta model specification, therefore, annotates

both of these parameters as correctable. The correctable annotation indicates

that the compiler can statically handle variations in a delta model parameter

value.

In contrast, the compiler cannot effectively correct the 𝛾 parameter. The com-

piler could potentially eliminate this 𝛾 parameter at the output port by summing

the output signal with a signal implementing −𝛾. However, this is an expensive

and ineffective correction in practice. To implement the −𝛾 signal, the com-

piler would need to introduce a digital-to-analog converter into the circuit –

this block also introduces error into the computation. This compensation oper-

ation, therefore, increases the resource utilization of the circuit and introduces

more error into the computation. For this reason, the 𝛾 parameter is deemed

131

uncorrectable.

∙ Delta Model Database (Section 5.9.2): The device runtime populates the

delta model parameters in the delta model specification for each block instance

in the device on hand. The delta model parameter values for the target device

are stored in the delta model database. The compiler uses the stored delta model

parameters from the delta model database and the delta model specification

from the analog device specification to target the device.

The delta model database is populated offline by the runtime system. The

runtime’s profiling procedure exercises each block over a set of block inputs and

stores the profiling data in the profiling database. The runtime’s delta model

elicitation procedure fits the profiling data to the delta model specifications

defined in the device’s ADS. The delta model parameters are the free variables

in the model fitting procedure.

For example, consider the case where the runtime has already identified the

delta model parameters for the constant multiplier at location 0. The runtime

identified these parameters before compilation by profiling the block and fitting

the delta model 𝛼*c+𝛽)*x + 𝛾 to the collected data. The computed delta

model parameters reside in the delta model database for the device on hand.

or the multiplier at location 0, the values of delta model parameters 𝛼, 𝛽, and

𝛾 are 0.95, 0.012, and 0.001 respectively.

The compiler uses the 𝛼, 𝛽, and 𝛾 delta model parameters to concretize, or

specialize, the delta model specification to describe the behavior of multiplier

block 0 . The multiplier at location 0 implements (0.95*c+0.012)*x+0.001 on

the target device. The compiler then compensates for the 𝛼 and 𝛽 parameters

at compile time. The compiler scales the input signal at port x of multiplier 0

by 1.053x to compensate for the 𝛼 parameter of 0.95 when scaling the circuit.

After scaling, the compiler shifts the value written to c by -0.012 to account

for the 𝛽 delta model parameter of 0.012.

132

Delta Models and Calibration

The delta model specification defines correctable delta model parameters which may

deviate from their ideal values and uncorrectable delta model parameters which must

closely adhere to their ideal values. The hardware designer can use this information

to design calibration strategies that work well with the compiler. In this thesis, I

explore two different types of calibration strategies:

∙ Traditional Calibration: The traditional calibration strategy calibrates the

device such that all delta model parameters adhere to their idealized value.

This calibration strategy produces calibrated blocks that implement the ideal

input-output relations as accurately as possible. If the constant multiplier in-

troduced above were calibrated with the traditional calibration strategy, the

runtime could calibrate the block to implement c*x. This calibration strategy

reflects how device calibration is typically performed for these kinds of hardware

platforms.

∙ Co-Designed Calibration: The co-designed calibration strategy calibrates

the device to allow for deviations in the delta model parameters that can be

compensated for by the compiler. All other parameters must adhere to their

idealized value. If the constant multiplier introduced above were calibrated

with the co-designed calibration strategy, it would be configured to implement

(𝛼*c+𝛽)*x where 𝛼 and 𝛽 may deviate from 1 and 0. This calibration strategy

prioritizes eliminating delta parameters and other behaviors that cannot be

compensated for in compilation over delivering the ideal input-output relation.

The compiler uses the delta model specifications and the delta model database

together to compensate for the behavioral variations present in the device on hand.

5.4 Notation for Language Grammars

Figure 5.1 presents the shorthand notation used by the language grammars described

in this chapter. These notational shortcuts are used to reduce the complexity of the

133

shortcut expanded rule
body(<r>) body<r> ::= <r> | body<r>;<r>
seq(<r>) seq<r> ::= <r> | seq<r>,<r>
tup(<r>) tup<r> ::= (seq(<r>))
lst(<r>) lst<r> ::= [seq(<r>)]
pat(<r>) pat<r> ::= | <r> | pat(<r>) | <r>
match(<r1>,<r2>) match<r1><r2> ::= (pat(<r1>)-><r2>)*
multi(<r1>,<r2>) multi<r1><r2> ::= <r2> | func match(<r1>,<r2>)

Table 5.1: Shorthand for common syntactic entities

language grammars. Each of these shorthand functions accepts one or more symbols

and produces a set of rules which implement the desired syntactic entity. These

constructs generate rules for sequencing (seq), tuples and lists (tup, lst), and pattern

matching (pat,match, multi). I summarize each of these convenience functions below:

∙ Semicolon-Delimited Statements: The body(<r>) function implements a semicolon-

delimited sequence of the symbol <r>. The body(<r>) function injects the body<r> =

<r> | body<r>; <r> rules in the language grammar. After expansion, the body<r>

symbol is inserted everywhere where the convenience function was initially used.

∙ Comma-Delimited Statements: The seq(<r>) convenience function implements

a comma-delimited sequence of the symbol <r>. For example, the seq(E) function

inserts the seqE ::= E | seqE; E rule into the language grammar. After expansion,

the seq<r> symbol is inserted everywhere where the function was initially used.

∙ Tuples: The tup(<r>) function implements tuples made up of the symbol <r>. This

function makes use of the seq(<r>) shortcut to implement the comma-delimited list

of <r> elements. The tup(<r>) shortcut inserts the tup<r> ::= [seq<r>] and

the seq<r> ::= <r> | seq<r> , <r> rules into the language. After expansion, the

tup<r> symbol is inserted everywhere where the function was initially used.

For example, the Q ::= tup(E) invocation adds the tupE ::= (seqE) rule, the

seqE ::= <r> | seqE , E rule, and the Q ::= tupE rule. The Q symbol recognizes

strings such as (a+b,x*y) and (w*w) after the expansion.

∙ Lists: The lst(<r> function implements comma-delimited lists made up of the sym-

bol <r>. This function makes use of the seq(<r>) convenience function to implement

the comma-delimited list. The lst(<r>) function inserts the lst<r> ::= [seq<r>

134

] and the seq<r> ::= <r> | seq<r> , <r> rules into the language grammar. After

expansion, the lst<r> symbol is inserted everywhere where the function was initially

used.

For example, the Q ::= lst(E) invocation adds the lstE ::= [seqE] rule, the

seqE ::= <r> | seqE , E rule, and the Q ::= lstE rule. The Q symbol recognizes

snippets such as [a+b,x*y] and [w*w] after the expansion.

∙ Patterns: The pat(<r>) function implements pipe-delimited sequences of the symbol

<r>. The pat(<r>) function inserts the pat<r> ::= | <r> | pat<r> | <r> rule into

the language grammar. Each invocation of pat(<r>) is replaced with the symbol

pat<r> after the function is expanded.

For example, the Q ::= pat(E) invocation adds the patE ::= | E | patE | E rule

and the Q::=patE rule to the grammar. The Q symbol recognizes snippets such as

|a+b | x*y and | q.

∙ Pattern Matching The match(<r1>,<r2>) function implements sequences of pat-

tern matching statements of the form <r1> <r2> for the symbols <r1> and <r2>.

This symbol expands the pat(<r1>) convenience function to build the sequence of

pipe-delimited <r1> symbols and adds the match<r1><r2> ::= (pat(<r1>)-><r2>

)* rule into the language grammar. Each match(<r1>,<r2>) invocation is replaced

with the match<r1><r2> symbol after the shortcuts are expanded.

For example, the Q::= match(E,I) rule expands to the following set of rules after the

match function is expanded to the patE ::= | E | patE | E rule, the matchE ::=

(patE -> I)* rule, and the Q::= matchEI rule. The Q symbol is able to recognize

snippets such as | x + v -> [0,1] | v -> [0,2].

∙ Parametric Statements: The multi(<r1>,<r2>) shortcut implements a symbol

which is either the symbol <r2> or a pattern matching statement over the <r1> sym-

bol which evaluates to the <r2> symbol. This function expands the pat(<r1>) and

match(<r1>,<r2>) functions to build the match statements and adds the match<r1><r2>

::= <r2> | func match<r1><r2> rule into the language grammar. Each shortcut in-

vocation multi(<r1>,<r2>) is replaced with the multi<r1><r2> symbol.

135

5.5 Analog Device Specification Language

The compiler works with a specification of the target analog device that captures the func-

tional behavior, programming interface, and the physical limitations and behaviors present

within the device. This language can be used to specify a variety of reconfigurable, differen-

tial equation-solving analog devices. In this thesis, I focus on the analog device specification

for the HCDCv2 analog device. This analog device specification (ADS), written in the ana-

log device specification language (ADSL), comprises a collection of block specifications and

an analog device layout specification:

Spec ::= (BlockSpec)*DeviceSpec

Each analog device specification (ADS) provides a formal block specification (BlockSpec,

Section 5.5.1) for each kind of block resident on the target device. The analog device speci-

fication also provides a device layout specification (DeviceSpec, Section 5.5.2) which defines

all the individual instances of each kind of block and how the defined block instances may be

connected together. The device layout specification also defines how these block instances

are spatially laid out on the analog hardware.

The compiler produces as output an analog device program (ADP) written in the ana-

log device programming language (ADPL). The ADP describes a mixed-signal circuit com-

prised of configured blocks. The analog device program configures one or more block in-

stances and routes these blocks together with digitally programmable connections. The

produced ADP is executable and can be run on the analog device described by the input

ADS.

The generated ADP specifically targets the ADS provided to the compiler. The ADP

will only configure blocks with an ADS block specification and only make connections that

are listed in the device specification. Each ADP block configuration only writes values to

variables that are part of the programming interface of the block.

This section will formally describe the analog device specification language and the ana-

log device programming language. These specification languages will be used in Section 5.7

to formally describe the programming interface and available blocks for the HCDCv2 de-

vice. Both languages use the mathematical expressions introduced in Section 3.2.1 and the

grammar convenience functions introduced in Section 5.4.

136

Mode = tuple(l), ModeR = tuple(l|*)
BlockT ::= compute | assemble | route
DeltaT ::= gain | offset | other
AnalogT ::= current | voltage
SigT ::= analog AnalogT | digital
DataT ::= const | expr lst(v)
PortT ::= in | out
QuantT ::= linear d
IFace ::= PortT seq(v) sigT (extern)? | data v DataT
DeltaM ::= delta-par seq(v) (correctable)? DeltaT ideally x

| delta lst(v) = multi(ModeR,E)
Impl ::= rel v = multi(ModeR,E)

| interval seq(v) = multi(ModeR,I)
| quantize lst(v) = multi(ModeR,QuantT)
| maxfreq lst(v) = multi(ModeR,n) | noise lst(v) multi(ModeR,x)
| DeltaM

Def ::= block v BlockT modes lst(Mode)
Stmt ::= IFace | Impl
BlockSpec ::= Def {body(Stmt)}

Figure 5-1: ADSL block specification grammar.

5.5.1 Block Specification Language

The block specification language captures the behavior of each block on the analog

device. The block specification language uses the basic and extended expressions presented in

Section 3.2.1 to formally describe block behavior. Figure 5-1 presents the block specification

language. Each block specification is made up of a block definition (Def) and a collection of

block interface (Iface) and implementation (Impl) statements.

Block Definition(Def): Each block definition block v BlockT modes lst(Mode) specifies

the block name v and type BlockT then lists all of the possible modes lst(Mode) which may

be configured to the block.

∙ Block Type (BlockT): The block type indicates what the specified block is used for.

Each block either computes (compute), copies and converts signals (assemble), or

routes signals (route) through the chip.

The block type influences the kinds of computations which are allowed in the block

specification. The compute blocks are not subject to any restrictions on the imple-

mented computation. In comparison with compute blocks, assembly and route blocks

are specialized blocks with additional constraints. assemble blocks may only copy or

137

negate signals with only unity (-1 or 1) coefficients. The route blocks have a single

mode, only one input port and one output port, and cannot perform any computation

on the input signals. route blocks exist to enable successful signal routing in the

presence of constraints on connections between output and input ports from different

blocks.

∙ Block Modes (lst(Mode)): Each block is parametric and can be placed in one of many

possible block modes. The block modes set the behavior and the physical restrictions

imposed on the block. Each block mode is described as a tuple of literals.

Block Interface(Iface): Each block has a set of associated input and output ports. Block

ports may be routed together to form a circuit. Each block port works with one kind of

time-varying signal. The type of signal may impose limitations on how the block ports may

be routed together. Analog currents are added together by joining wires and cannot be used

more than once without the aid of a copier block. Analog voltages must be added together

with a dedicated block but can be used more than once without any special hardware.

Blocks may also be programmed by digitally setting block data fields. The block mode

and block data fields together make up the programming interface of the block. The block

interface statements together specify all of the block ports and data fields:

∙ Input Block Ports: Each block may have any number of input block ports. Each

input port accepts a time-varying signal of a specific signal type. Each input port

definition statement in seq(v) sigT (extern)? declares one or more named input

ports seq(v) with the synin port type and the specified signal type sigT. Supported

signals include analog currents (analog current), analog voltages (analog voltage), and

time-varying digital signals (digital). Some input ports may be externally accessible

(extern) External input ports accept externally provided signals from other devices,

such as sensors.

∙ Output Block Ports: Each block has one or more output ports. Each output port

produces a time-varying signal of a specific signal type. This output port carries the

result of whatever computation the block is designed to implement. Each output

port definition statement out seq(v) sigT (extern)? declares one or more named

ports seq(v) with the synout port type the specified signal type sigT. The output

138

ports support the same signal types as the input ports. Some output ports may be

may be externally accessible (extern). External output ports are linked to externally

accessible pins on the device may be observed with an external measurement device

such as an oscilloscope.

∙ Constant Data Fields: Some blocks offer digitally programmable constant data

fields which resolve to constant decimal values during execution. These constant data

fields influence the input-output relation implemented at each block output port. Each

constant data field definition data v const declares a named data field v with the

const data type.

∙ Expression Data Fields: Some blocks offer digitally programmable expression data

fields which can be used to provide user-defined functions to a block. Expression data

fields typically define part of the input-output relation implemented at each block

output port. Each expression data field definition data v expr lst(v) declares a

named data field v with the expr data type which accepts the variable arguments

lst(v). Each defined expression data field only accepts expressions which use variables

in the provided argument list.

Block Implementation(Impl): Each block output implements an input-output relation

over block inputs and data fields. Ideally, the signal at each block output evolves in accor-

dance with the block output’s input-output relation. I refer to this as the ideal behavior

of the block. In practice, each block is subject to noise, quantization error, and process

variation and must work with signals which do not violate the block’s operating range and

frequency restrictions. The block implementation statements specify the input-output rela-

tion for each output and describe all of the physical limitations and behaviors which must

be considered during compilation:

∙ Input-Output Relation: Each block output implements a parametric input-output

relation which changes depending on the block mode. This input-output relation may

involve any of the block data fields and input ports defined in the block interface.

Each provided expression may involve the input ports and data fields specified in the

block interface.

The block rel statements capture the behavior of the output port in the absence

139

of manufacturing variations, noise, and quantization error. Each rel statement de-

fines the expression implemented at each output port under each mode. The re-

lation statement rel v = multi(ModeR,E) specifies the mode-dependent expression

multi(ModeR,E) implemented at the output port v.

∙ Operating Range Restrictions: Each port and constant data field may only take on

a limited range of values. Analog ports may only accept values within their respective

current and voltage operating ranges. Supplying values outside these ranges may

damage the block or cause the block to behave incorrectly. Digital ports and data

fields can only encode values that fall within the supported range of values. The range

of supported values for a particular port or data field may change depending on the

block mode.

All operating range restrictions are defined in the block specification with interval

statements. Each interval statement describes the range of values supported at a

port or data field. The operating range restriction interval seq(v) = multi(ModeR,I)

specifies a mode-dependent interval multi(ModeR,I) which captures the range of val-

ues supported at the port or data field v under each block mode. Note that interval

statements can also be written for expression data field arguments.

∙ Frequency Restrictions: Blocks may also require the device to run computations

at a lower speed to operate properly. Analog blocks often act as low-pass filters

and attenuate away higher frequency components of a signal. Blocks that work with

analog and digital signals internally sample analog signals at a specific rate and cannot

process signals frequency components that exceed the Nyquist frequency.

These frequency restrictions are expressed as upper limits on the maximum frequency

of the device (maxfreq). Each maximum frequency restriction statement maxfreq

lst(v) = multi(ModeR,n) specifies a mode-dependent maximum supported frequency

multi(ModeR,n) for the listed set of block ports lst(v). These maximum frequency

restrictions apply if the any of the listed ports are in use (connected to another port).

∙ Noise: Blocks with analog signals often introduce analog noise into the computa-

tion. This noise may be further amplified depending on the mode of the block.

The noise statements describe the standard deviation of the signals at the analog

140

ports. Each noise statement specifies noise lst(v) = multi(ModeR,x) the mode-

dependent standard deviation multi(ModeR,x) of the signal at the analog ports

lst(v).

∙ Quantization Error: Blocks with digital ports and data fields are subject to resolu-

tion limitations and quantization error. The quantize statements describe the value

encoding scheme used at each digital port and data field. The quantize and interval

statements together determine the quantization error of a digital port or data field.

Each quantize statement quantize lst(v) = multi(ModeR,QuantT) statement spec-

ifies the mode-dependent quantization strategy multi(ModeR,QuantT) for the list of

digital ports and data fields lst(v). Currently, only linearly encoded digital values are

supported. The linear d clause indicates the digital signal is divided into d equally

spaced segments.

∙ Delta Model: In practice, fabricated instances of the block may implement variations

of the described input-output relation. These variations in behavior are typically

eliminated through a process called calibration. However, it is not always possible to

eliminate all of these variations in behavior. For this reason, all remaining variations

in behavior are exposed at compile-time through the delta model specification.

The delta model specification of the block (delta-par and delta statements) de-

scribes all the functions which may be implemented at an output port in practice

after the block has been calibrated. Each delta model contains one or more delta

model parameters. Delta model parameters may be correctable or uncorrectable ((cor-

rectable)?). Correctable delta model parameters can be statically compensated for at

compile-time, while uncorrectable delta model parameters cannot. Each delta model

parameter also has a parameter type (gain, offset, or other) which indicates what

kind of unwanted behavior is captured with the parameter. The compiler uses the

parameter type to further narrow down the correctable delta model parameters that

should be compensated for by a given compilation pass. All delta model parameters

have an ideal parameter value ideally x. Instantiating the delta model parameter to

its ideal parameter value typically eliminates the effect of the parameter on the block

dynamics.

Correctable Delta Model Parameters: Correctable delta model parameters can be com-

141

pensated for at compile-time. The correctable delta parameter definition statement

delta-par seq(v) correctable DeltaT ideally x defines a list of correctable delta

model parameters seq(v) which have the type DeltaT and ideally would take on the

value x.

Uncorrectable Delta Model Parameters: Uncorrectable delta model parameters cannot

be corrected at compile-time. The delta parameter definition statement delta-par

seq(v) DeltaT ideally x defines a list of uncorrectable delta model parameters

seq(v) which have type DeltaT and should ideally should be close to the real value

x.

The Delta Model Relation: Each analog output port is optionally assigned a delta

model specification. The delta model specification is a mode-dependent input-output

relation over data fields, block inputs, and delta model parameters. Each delta

lst(v) = multi(ModeR,E) statement defines a mode-dependent mathematical ex-

pression multi(ModeR,E) which describes the space of delta models at the output

ports lst(v).

Block interval statements are required for all ports and data, quantize statements are

required only for digital ports, and maxfreq and noise statements are optional. Together,

the interval and maxfreq specify the physical restrictions of the block. These statements

impose hard constraints on the block which must be honored for hardware to operate cor-

rectly. The noise, quantize, and delta statements specify the physical behaviors of the

block. These statements specify unwanted behaviors which may alter the accuracy of the

signal produced at each block input. Typically, these behaviors cannot be completely cor-

rected, but can be attenuated away through careful programming.

5.5.2 Device Layout Specification

Figure 5-2 presents the device layout specification language, which identifies the blocks

and connections available on the analog device. The device specification defines a collection

of locations Loc on the analog device. Each device location may contain at most one of each

kind of block. Each block instance is therefore uniquely identified by the block location and

the block name. Each device location Loc is encoded as a tuple of numbers (tuple(n)).

142

Loc = tuple(n)
PatLoc = tuple(*|n)
Ports = seq(l) @ seq(PatLoc) (port v)?
Stmt ::= struct lst(n) in v

| views seq(v) | freq n
| blk seq(l) @ PatLoc
| conn Ports1 with Ports2

DeviceSpec ::= device v {block(Stmt)}

Figure 5-2: ADSL device layout specification grammar

Analog hardware designers provide more digitally programmable connections for spa-

tially co-located locations than for spatially distant locations. It is therefore important for

the device specification to also describe the spatial orientation of each location on the analog

device. The device specification organizes the spatial structures of the device into sequen-

tially organized views. The first view is the most general view which contains the largest

structures on the device. The subsequent views capture successively finer grain device struc-

tures. Each spatial structure in a view v𝑖 is uniquely identified with a spatial location tuple

of 𝑖 + 1 numbers. Block instances may only be bound to spatial locations belonging to

the finest grain view – this corresponds to the last view in the specification. The spatial

locations from the finest grain view are simply referred to as locations.

Each view 𝑣𝑖 partitions the spatial locations from the parent view 𝑣𝑖−1 into one or more

substructures. The location tuple (n0,..,n𝑖,..,n𝑚) captures each structure the location

belongs to in each view. Given a view v𝑖, the location tuple belongs to the structure at the

spatial location (n_0,..,n_i). The structure at spatial location (n0,..,n𝑖−1,n𝑖) is inside

the parent structure (n_0,..,n_i-1) from the previous view v𝑖−1. The integer identifier n𝑖

identifies the the structure within the parent structure (n0,..,n𝑖−1). The distance between

two spatial locations can therefore be approximated by computing the length of the shared

prefix between the location tuples.

The following language constructs specify the spatial layout of the device locations and map

blocks to locations:

∙ Views: The view specification statement views lst(v) provides an ordered list of

named views lst(v) for the analog device. The most general (first) view contains

structures with spatial locations of length 1 and the most specific (nth) view contains

143

spatial locations of length n.

∙ View Structures: Each view is made up of a collection of non-overlapping structures.

The struct lst(n) in v statement defines the set of integers txlst(n) which identify

strctures for a view v. The 𝑖𝑡ℎ value of any spatial location must belong to lst(n) to

be valid.

∙ Block Instances: The blk statements declare new block instances. Each block

instance declaration blk seq(l) @ seq(PatLoc) statement maps blocks seq(l) to

device locations which match the location pattern seq(PatLoc). The location pattern

PatLoc is a tuple of integers n and wildcard symbols *. The location pattern only

accepts locations which match all of the integer identifiers in the tuple. For example,

the location pattern (3,*,2,*) would match location (3,3,2,0) but not location

(3,3,1,0).

∙ Connections: The conn statements declare sets of connections between the ports of

block instances. Each connection statement conn Ports1 with Ports2 adds a set of

digitally programmable connections which link all of the output ports in Ports1 with

all the input ports in Ports2. The statement adds connections for pairs of input and

output ports which have the same signal type.

Each port collection Port specifies a set of input or output port instances. A port

instance is uniquely identified by the block name and location and the port name.

Each port collection clause seq(l) @ seq(Loc) (port v)? contains all of the ports

belonging to block instances whose block name is in seq(l) and block location is

in seq(Loc). If the (port v)? clause is specified, the collection only contains port

instances with the port name v.

∙ Hardware Time Constant: The frequency statement synfreq x defines the base-

line integration speed of the device x in hertz. The hardware time constant is the

reciprocal of the baseline integration speed (x−1). The hardware time constant spec-

ifies the amount of wall-clock time which corresponds to one unit of integration time.

144

Loc = tuple(n)
Mode = tuple(l)
Port = block l1 port l2 @ Loc
Cfg ::= set l = x | set l = F | modes lst(Mode) |scale l = x | source E at l
AStmt ::= config block l @ Loc {body(Cfg) }

|conn Port1 with Port2
|timescale x

ADP ::= body(AStmt)

Figure 5-3: Grammar for analog device program language (ADPL)

5.6 Analog Device Programming Language

An analog device program (ADP) specifies a configuration of the analog device as gen-

erated by the compiler from an input ADS and DSS. At a high level, the ADP configures

the analog device specified in the ADS to implement a mixed-signal circuit comprised of

configured blocks. This mixed-signal circuit implements the provided DSS. The ADP is

loaded into the device via a platform-specific runtime system.

The ADP optionally specifies the scaling transform, which scales the computation to

ensure it respects the physical constraints of the device. The scaling transform is composed

of a collection of magnitude scaling factor assignments for the ports and data fields in the

ADP and time scaling factor, which describes the speed of the computation. An ADP which

defines a scaling transform is called a scaled ADP. An ADP which does not define a scaling

transform is called a unscaled ADP. Figure 5-3 presents the analog device programming

language:

∙ Connections: The analog device program forms a circuit by specifying which dig-

itally settable connections to enable on the analog device. Each conn Port1 with

Port2 statement connects the input port Port1 with the output port Port2. Each

port declaration block l1 port l2 @ Loc references the port l2 from the block in-

stance l1 at location Loc. Each connection statement only connects together ports

which have a defined connection in the ADS.

∙ Block Configurations: The block configuration (config) statements digitally con-

figure block instances so that they implement the desired expressions. It specifies the

name and location of the block instance, values for digitally settable fields, and the set

of viable modes for that block. The block configuration statement config block l @

145

Loc {body(Cfg) } writes the block configuration body(Cfg) to the block instance

with the name l at location Loc. The block configuration Cfg instantiates the data

fields and modes defined in the ADS block specification for block l. The data fields

and modes together make up the programming interface of the block:

Constant Data Field Assignments: Each constant data field assignment set l = x

sets the constant data field l to the real value x.

Expression Data Field Assignments: Each expression data field assignment set l =

F instantiates an expression data field l to the extended expression F. The expression F

may only reference the listed variable arguments for expression data field l as specified

in the ADS.

Mode Assignments: The mode assignment statement modes lst(Mode) selects the

subset of modes lst(Mode) for the configured block instance. A block configuration

is considered complete if only one viable mode is listed for each block.

Source Annotations: Source annotations map physical signals to dynamical system

variables and expressions. Each source annotation source E at l specifies that the

signal at port or data field l implements the dynamical system expression E. The

dynamical system expression E may only contain DSS variables.

Magnitude Scale Factors: Each magnitude scale factor declaration scale l = x as-

signs the magnitude scale factor value x to the port or data field l. During execution,

the runtime multiplies each block data field value by the associated magnitude scale

factor. This applies the scaling transform to the circuit.

∙ The Time Scale Factor: The timescale x statement specifies the time scaling

factor x of the scaled ADP. The runtime multiplies the time scale factor with the

ADS time constant to compute the mapping between wall-clock time and simulation

time for the scaled computation. The runtime uses this mapping to compute the

runtime of the computation.

5.7 HCDCv2 Analog Device Specification

This section presents the analog device specification of the HCDCv2. Figure 5-4 presents

a picture of the HCDCv2 analog device. The HCDCv2 analog device provides integration

146

Figure 5-4: Die photo of HCDCv2 chip and HCDCv2 Analog Device [51]

and multiplication analog blocks, current copier blocks, and digital-to-analog converters and

analog-to-digital converters. The HCDCv2 is a current-mode programmable analog device

with a baseline integration speed of 126000 Hz. At this speed, one unit of integration time

corresponds to 7.93 𝜇s of wall clock time. The hardware time constant is therefore 7.93 𝜇s.

The HCDCv2 represents continuously evolving program values using three types of signals:

∙ Analog Currents: The majority of the signals in the HCDCv2 are analog currents.

The HCDCv2 typically works with currents between [-2,2] 𝜇A but can be configured

to work with currents as large as [-20,20] 𝜇A.

∙ Analog Voltages: All externally accessible signals on the HCDCv2 are analog volt-

ages ranging from [-1.2,1.2] V. These voltages are easier to measure reliably than the

analog currents, which are internally used to perform the computation.

∙ Digital Signals: Some blocks work with continuously evolving digital signals. These

digital signals are eight bit values (between 0-255) which map to decimal values be-

tween [-1,0.998]. Given a decimal value x, the digital encoding of this value is x*128

+ 128. In this section, the todec function maps HCDCv2 digital values to decimal

values and the fromdec function maps decimal values to HCDCv2 digital values.

Compilation and Execution:The compiler targets the HCDCv2 ADS and produces

ADPs which can be written to the HCDCv2. The HCDCv2 runtime then executes the

ADPs generated by the compiler and records all externally accessible signals to files. The

HCDCv2 runtime also provides functions for calibrating, profiling, and eliciting delta models

147

from the device. The runtime maintains a calibration database that stores calibration infor-

mation, a profiling database that stores profiling information, and a delta model database

that stores the delta model parameters for each block on the device. All of these procedures

are performed offline before compilation.

5.7.1 HCDCv2 Block Specifications

The HCDCv2 has 6 types of computational blocks (mul, adc, dac, int, extin, extout, and

lut), 4 types of route blocks (tout, tin, cout, cin), and 1 type of copier block (fan).

The low-level programming interface of the HCDCv2 blocks is made up of static, dy-

namic, and calibration codes. Each HCDCv2 block is programmed by writing a collection

of positive, integer-valued, digital codes to the block’s memory. The codes are summarized

below:

∙ Static Codes: The block’s static codes change the block input-output relations and

influence the operating range, noise characteristics, and frequency limitations of the

block. The ADS encodes each combination of static code values are encoded as a

distinct block mode. The compiler selects the block modes during compilation – this

instantiates the static codes for each block.

∙ Dynamic Codes: The block dynamic codes map to programmable decimal values

into the block input-output relations. Each dynamic code is an 8-bit value that maps

to decimal values between -1 and 0.998. The dynamic codes use the same encoding

scheme as the digital signals presented at the beginning of Section 5.7. The ADS

encodes each block’s dynamic codes as constant and expression data fields in the

ADS. The compiler instantiates constant and expression during compilation – this

instantiates the dynamic codes for each block.

∙ Calibration Codes: The block calibration codes are used to calibrate the block. The

HCDCv2 firmware deploys calibration routines that identify the best set of calibration

code values for each block. Refer to Section 5.8 for a discussion of the HCDCv2

calibration routines. The HCDCv2 runtime calibrates the HCDCv2 blocks offline

(before compilation) and stores the calibration code values in the calibration code

database. The HCDCv2 writes the stored calibration code values to the HCDCv2

148

1 block int type compute modes [(+,m,m),
2 (+,m,h),(+,h,m),(+,h,h),(-,m,m),
3 ,(-,m,h),(-,h,m),(-,h,h)] {
4 in x analog current; out z analog current;
5 data z0 const;
6 rel z = func |(h,m,+) -> integ(0.1*x,2*z0)
7 |(m,m,+) -> integ(x,2*z0) |(h,h,+) -> integ(x,20*z0)
8 |(m,h,+) -> integ(10*x,20*z0)
9 |(h,m,-) -> -integ(0.1*x,2*z0)

10 |(m,m,-) -> -integ(x,2*z0) |(h,h,-) -> -integ(x,20*z0)
11 |(m,h,-) -> -integ(10*x,20*z0)
12 delta-par a,b correctable gain ideally 1;
13 delta-par c correctable offset ideally 0;
14 delta-par u offset ideally 0;
15 delta z = func |(h,m,+) -> integ(0.1*a*x+u,2*(b*z0+c))
16 |(m,m,+) -> integ(a*x+u,2*(b*z0+c))
17 |(h,h,+) -> integ(a*x+u,20*(b*z0+c))
18 |(m,h,+) -> integ(10*a*x+u,20*(b*z0+c))
19 |(h,m,-) -> -integ(0.1*a*x+u,2*(b*z0+c))
20 |(m,m,-) -> -integ(a*x+u,2*(b*z0+c))
21 |(h,h,-) -> -integ(a*x+u,20*(b*z0+c))
22 |(m,h,-) -> -integ(10*a*x+u,20*(b*z0+c))
23 quantize z0 = linear 256;
24 max-freq z = 80000;
25 noise x = func | (m,*,*) -> 0.02 | (h,*,*) -> 0.2
26 noise z = func | (*,m,*) -> 0.02 | (*,h,*) -> 0.2
27 interval z0 = [-1,0.998];
28 interval z = func |(*,m,*) -> [-2,2] |(*,h,*) -> [-20,20];
29 interval x = func |(m,*,*) -> [-2,2] |(h,*,*) -> [-20,20];}

Figure 5-5: Block specification for integrator

before executing each ADP.

This section presents the block specifications for the HCDCv2 analog device and summa-

rizes the static, dynamic, and calibration codes for each block. All of the block specifications

presented in this section define delta models – the compiler uses these delta model specifi-

cations and the delta model parameters defined in the delta model database to compensate

for behavioral deviations during compilation. Refer to Section 5.9 for more information on

how the HCDCv2 software stack elicits delta models.

Integrator (int) Block

The HCDCv2 provides an integrator (int) block which integrates an analog signal over

time. The int block accepts an analog current input at port x and produces an analog

current output at port z. It has one dynamic code (z0) and three static codes (in,out,sgn).

149

The static codes in and out may either be assigned m or h. The code sgn is either + or

-. Figure 5-5 presents the ADP block specification for the integrator (int) block. The int

block is defined as a compute block with 11 modes.

Modes: Each combination of static code values is encoded as a distinct ADP block mode.

Each block mode used in the specification is (in,out,sgn). The integrator block works

with one analog input x, one constant data field z0, and one output z. The constant data

field z0 is mapped by the HCDCv2 runtime to the dynamic code z0.

Functionality:The rel statement describes input-output relation implemented at the out-

put port z of the integrator block under each mode. The block generally integrates the

current at input port x starting with an initial value determined by dynamic code z0. De-

pending on the mode, the block may introduce constant coefficients into the implemented

expression or negate the output.

The block specification also includes a delta model specification (lines 12-18) which cap-

tures the space of behavioral deviations in the fabricated integrator blocks. The multiplier

block has three correctable delta model parameters (a, b, c) and one uncorrectable delta

model parameter (u). The a parameter scales the derivative and the b and c parameters

linearly transform the initial condition. The u parameter is the offset of the derivative and

cannot be easily compensated for in compilation. The delta parameter u ideally would be

close to zero. The delta model parameters a, b, and c parameters can be compensated

for by the compiler. The a and b parameters are compensated for by the LScale pass of

compilation and the c parameter is compensated for by the HCDCv2 runtime.

The block mode influences the current range restrictions imposed on ports x and z. For

example, when in is m, the port accepts currents between [-2,2] 𝜇A. When in is h, the port

accepts currents between [-20,20] 𝜇A. The z0 data field uses the same value encoding scheme

as the digital signals presented at the beginning of Section 5.7. The block mode also affects

the noise characteristics of the block. The analog currents at ports x and z are subject to

more noise when static codes in and out are set to h.

The integrator block limits the simulation speed to 80 kHz. This frequency limitation is

necessary for ensuring the integrator isn’t forced to operate in a regime where the frequency-

gain characteristics of the signal become complex.

Calibration Codes: The int block also works with 5 calibration codes (biasIn, biasOut,

pmos, nmos, gainCal). The biasIn and biasOut codes take on values between 0 and 63.

150

1 block mult type compute modes [(m,m,m),
2 (m,m,h),(h,m,h),(m,h,h),(h,h,h),
3 ,(x,m,m),(x,m,h),(x,h,m),(x,h,h)] {
4 in x,y analog current; out z analog current;
5 data c const;
6 rel z = func |(m,m,h) -> 5*x*y,
7 |(m,m,m)|(h,m,h)|(m,h,h) -> 0.5*x*y
8 |(h,m,m)|(m,h,m)|(h,h,h) -> 0.05*x*y
9 |(x,m,h)->10*c*x |(x,h,m) -> 0.1*c*x

10 |(x,h,h)|(x,m,m) -> c*x;
11

12 delta-par u correctable gain ideally 1;
13 delta-par v correctable offset ideally 0;
14 delta-par w offset ideally 0;
15 delta z = func |(m,m,h) -> u*5*x*y+w,
16 |(m,m,m)|(h,m,h)|(m,h,h) -> u*0.5*x*y+w
17 |(h,m,m)|(m,h,m)|(h,h,h) -> u*0.05*x*y+w
18 |(x,m,h)->10*c*x |(x,h,m) -> 0.1*(u*c+v)*x+w
19 |(x,h,h)|(x,m,m) -> (u*c+v)*x+w;
20

21 quantize c = linear 256;
22 max-freq z = func |(m,*,*) -> 40000 | (h,*,*) -> 40000 | (x,*,*) -> 126000
23 noise z = func | (*,*,m) -> 0.02 | (*,*,h) -> 0.2
24 noise x = func | (*,m,*) -> 0.02 | (*,h,*) -> 0.2
25 noise y = func | (m,*,*) -> 0.02 | (h,*,*) -> 0.2
26 interval c = [-1,0.998];
27 interval z = func |(*,*,m) -> [-2,2] |(*,*,h) -> [-20,20];
28 interval x = func |(*,m,*) -> [-2,2] |(*,h,*) -> [-20,20];
29 interval y = func |(h,*,*) -> [-20,20] |(*,*,*) -> [-2,2]; }

Figure 5-6: Block specification for multiplier

The pmos and nmos codes take on values between 0 and 7. These calibration codes are used

to eliminate bias in the block and tune the block to achieve unity gain.

Multiplier (mul) Block

The HCDCv2 provides a multiplier (mul) block which scales signals and multiplies signals

together. The mul block accepts two analog current inputs (ports x and y) and produces

one analog current output (port z). It has one dynamic code (c) and four static codes (in0,

in1, out, and vga). The static codes in0, in1, and out may either be assigned m or h. The

vga static code is either true or false.

Figure 5-6 presents the block specification for an analog multiplier. The type clause

identifies the multiplier as a compute block. The block has eleven modes, two analog current

inputs (x and y), one constant data field (c), and one analog current output (z). The constant

151

data field c corresponds to the the dynamic code c in the mul analog block. The block mode

and constant data field makes up the programming interface for the block.

Modes: The modes define modes (m,m,m) through (x,h,h). The block modes encode all

the possible combinations of static code assignments for the multiplier block:

if vga = true then (x,in0,out) else (in1,in0,out)

The above mode representation encodes each combination of static code values as a

tuple of literals. The value of the in1 static code is included in the encoding if vga is unset.

Otherwise, the value of the in1 static code is set to the x literal.

Functionality: The rel statement describes input-output relation implemented at the

output port z of the multiplier block under each mode. For example, when the block mode

matches (x,h,h) or (x,m,m) the block multiplies the analog input signal x by the digital

parameter c so that the expression implemented by z is c*x.

The block specification also includes a delta model specification that captures the space

of behavioral deviations in the fabricated multiplier blocks. The multiplier block has two

correctable delta model parameters (u, v) and one uncorrectable delta model parameter (w).

The delta model parameter w implements an uncorrectable offset and would ideally take

on a value close to zero. The delta model parameters u and v can be compensated for by

the compiler. The u parameter implements an unexpected gain is compensated for by the

LScale compilation pass, and the v parameter implements an unexpected data field offset

and is compensated for by the HCDCv2 runtime.

The current ranges accepted at multiplier ports x,y, and z are defined with the interval

statements on lines 23-25. Each port’s value must fall within the port’s operating range for

the block to function correctly. The interval statements in Figure 5-6 define the operating

ranges for ports z, x, and y as a function of the block mode. For example, the value of port

z must remain between -2 and 2 𝜇A for odes matching (*,*,m) and between -20 and 20

𝜇A for modes matching (*,*,h). The range of digital values supported by data field c is

defined by the interval statement on line 22.

The noise introduced into port z defined with the noise statement on line 2. Each of

these noise statements identifies the standard deviation of the noise associated with each

block port. The block defined in Figure 5-6, for example, produces a noisy signal at port

z – this signal has a standard deviation of 0.02 𝜇A for modes matching (* * m) and a

standard deviation of 0.2 𝜇A for modes matching (* * h).

152

1 block fan type assemble modes [(+,+,+,m),(-,+,+,m),(+,-,+,m),(+,+,-,m),(-,-,+,m),
2 (-,+,-,m),(+,-,-,m)(-,-,-,m), (+,+,+,h),(-,+,+,h),(+,-,+,h),(+,+,-,h),(-,-,+,h),
3 (-,+,-,h),(+,-,-,h)(-,-,-,h)] {
4 in x analog current; out z0,z1,z2 analog current;
5

6 rel z0 = func |(+,*,*,*) -> x |(-,*,*,*) -> -x
7 rel z1 = func |(*,+,*,*) -> x |(*,-,*,*) -> -x
8 rel z2 = func |(*,*,+,*) -> x |(*,*,-,*) -> -x
9

10

11 delta-par a0,a1,a2 gain ideally 1.0;
12 delta-par b0,b1,b2 offset ideally 0.0;
13 delta z0 = func |(+,*,*,*) -> a0*x+b0 |(-,*,*,*) -> -a0*x+b0
14 delta z1 = func |(+,*,*,*) -> a1*x+b1 |(-,*,*,*) -> -a1*x+b1
15 delta z2 = func |(+,*,*,*) -> a2*x+b2 |(-,*,*,*) -> -a2*x+b2
16

17 noise x,z0,z1,z2 = func | (*,*,*,m) -> 0.02 | (*,*,*,h) -> 0.04
18 interval x,z0,z1,z2 = func |(*,*,*,m) -> [-2,2] |(*,*,*,h) -> [-20,20]; }

Figure 5-7: Block specification for current copier.

The multiplier imposes a maximum frequency limitation on the computation if the mul-

tiplier is configured to multiply x and y. The HCDCv2 cannot execute the mapped com-

putation at a rate faster than 40 kHz when the multiplier is configured to multiply two

time-varying signals. This restriction is necessary because the multiplier begins to exhibit

unwanted frequency-gain characteristics at frequencies above 40 kHz.

Digital ports are quantized into a finite set of values as specified by their corresponding

quantize and interval statements. The block defined in Figure 5-6, for example, quantizes

c into 256 digital values between -1 and 0.9921 (with the values spaced 0.0071825 apart).

The c data field field uses the same value encoding scheme as the digital signals presented

at the beginning of Section 5.7.

Calibration Codes: The mul block also works with 6 calibration codes (bias0,bias1,

nmos, pmos, biasOut, and gainCal). The bias0, bias1, biasOut, and gainCal codes each

take on values between 0 and 63. The pmos and nmos codes take on values between 0 and 7.

These calibration codes are used to eliminate bias in the block and tune the block to achieve

unity gain.

Fanout (fan) Block

The HCDCv2 provides a current copier (fan) block that copies analog currents so that

153

a particular signal may be used in more than one place. This block is integral to perform-

ing current-mode analog computation because analog currents cannot be used more than

once without altering the signal. The fan block accepts an analog current input at port

x and produces three analog current outputs at ports z0,z1,z2. It has four static codes

(sgn0,sgn1,sgn2,in). The static codes sgn0,sgn1, and sgn2 are either + or - and static

code in is either m or h.

Figure 5-7 presents the block specification for the fan block. The block definition in-

stantiates fan as an assembly block with 13 modes. The block accepts an analog current x

as input and produces three analog currents z0, z1, and z3 as outputs.

Modes: The defined modes encode all possible combinations of static code values for the

fan. Each combination of static codes is encoded as a tuple of literals (sgn,0,sgn1,sgn2,in)

where each tuple corresponds to a block mode.

Functionality:The block generally produces copies of the current at input port x. When

sgn0 is -, the first output is negated, when sgn1 is -, the second output is negated, and

when sgn2 is -, the third output is negated. The in static code controls the current range

accepted at input port x. When in m mode, port x accepts currents between [-2,2] 𝜇A. When

in h mode, port x accepts currents between [-20,20] 𝜇A. The in static code affects the noise

characteristics of the block – when in h mode, all signals are subject to more noise.

The block specification also provides a delta model for each output port. It defines

six uncorrectable delta model parameters a0, a1,a2,b0,b1,b2 which linearly transform the

current produced at each output. The a1, a1, and a2 parameters are technically correctable

at compile time but make it more difficult for the compiler produce valid ADPs. For this

reason they are marked uncorrectable. Ideally the a0, a1, and a2 parameter values would

be close to one and the b0, b1, and b2 parameter values would be close to zero.

Calibration Codes: The fan block works with (pmos,nmos,bias0,bias1,bias2,biasIn).

The pmos and nmos codes take on values between 0 and 7. The bias0, bias1, bias2, and

biasIn codes take on values between 0 and 64. These codes are used to eliminate any bias

in the block.

Digital-to-Analog Converter (dac) Block

The dac block converts a digital signal from either memory or a lookup table to an analog

current (port z). The dac block is hardwired to two lookup tables which emit time-varying

154

1 block dac type compute modes [(const,m),(const,h),(dyn,m),(dyn,h)] {
2 in x digital; out z analog current;
3 data c const;
4 rel z = func |(const,m) -> 2*c
5 |(const,h) -> 20*c | (dyn,m) -> 2*x
6 |(dyn,h) -> 20*x
7

8 delta-par a correctable gain ideally 1;
9 delta-par b correctable offset ideally 0;

10 delta z = func |(const,m) -> 2*(a*c+b)
11 |(const,h) -> 20*(a*c+b) | (dyn,m) -> 2*(a*x+b)
12 |(dyn,h) -> 20*(a*x+b)
13

14 quantize x,c = linear 256;
15 noise z = func | (*,m) -> 0.01 | (*,h) -> 0.1
16 interval x,c = [-1,0.998];
17 interval z = func |(*,m) -> [-2,2] |(*,h) -> [-20,20]; }

Figure 5-8: Block specification for dac

digital signals. It has one dynamic code (c) and three static codes (sgn,in,src). Static code

in may be either m or h, static code sgn may be either + or -, and static code src may be

mem,lut0, or lut1. The dac routes the digital signal from the first lookup table when src

is lut0 and routes the digital signal from the second lookup table when src is lut1. The

sgn code negates the produced analog signal when it is set to -. Because this functionality

is not useful to the compiler, the HCDCv2 runtime fixes the sgn code to + and does not

expose the behavior of this code in the ADS.

Figure 5-8 presents the ADS block specification for the digital-to-analog converter. The

dac block is a compute block which accepts a digital input x and constant data field c and

produces an analog output z. The data field c is mapped to the dac dynamic code c by the

HCDCv2 runtime.

Modes:The dac definition specifies four modes which indirectly encode the values of the

in, and src static codes as a tuple of literals:

if src = mem then (const,in) else (dyn,in)

The above encoding directly encodes the value of src in the tuple of literals. The

HCDCv2 runtime automatically derives the final value of the src static code when the

mode is (dyn,in) by analyzing the connections in the ADP.

Functionality:The rel statement describes the ideal input-output relation implemented at

port z. Generally speaking, the block converts a digital signal to an analog current. The

155

1 block lut type compute modes [(*)] {
2 in x digital; out z digital;
3 data f expr vars +bracc;
4 rel z = call(f,[x])
5 quantize x,z = linear 256;
6 interval x,z = [-1,0.998];
7 }

Figure 5-9: Block specification for lut

src code determines whether the dac block converts the digital signal provided by one of

the time-varying hardwired inputs (x) or if it converts the data field c to an analog signal.

The in static code determines the magnitude of the produced analog signal at z.

The delta model for the dac block introduces the correctable a and b parameters. These

parameters linearly transform the produced analog signal. The a parameter is compensated

for by the LScale pass of the compiler and the b parameter is compensated for by the

HCDCv2 runtime.

The block mode determines the current range of the analog signal at port z. The analog

current at z is between [-2,2] 𝜇A when in is m. The analog current at z is between [-20,20]

𝜇A when in is h.

Calibration Codes: The dac block also works with three calibration codes (pmos,nmos,gainCal).

The nmos and pmos calibration codes take on values between 0 and 7. The gainCal code

takes on values between 0 and 64. These calibration codes are used to eliminate bias and

tune the block to achieve unity gain.

LUT (lut) Block

The lut block applies a user-defined one-input/one-output function to a continuously evolv-

ing digital signal. The lut input is hardwired to two adc blocks which emit digital signals.

The lut output is hardwired to two dac blocks. The src static code of the dac block deter-

mines which lut it reads from. The lut block one static code src) which determines which

of the two adc blocks to read from. The src field may be either adc0 or adc1. Each lut

block also has an indexable memory segment containing 255 dynamic codes (c[0]...c[255])

which capture the behavior of the user defined function. At runtime, the lut block looks

up the incoming digital value in its lookup table (the indexable segment of dynamic codes)

and returns the result.

156

1 block adc type compute modes [(m),(h)] {
2 in x analog current; out z digital;
3 rel z = func |(m) -> 0.5*x | (h) -> 0.05*x
4

5 delta-par a correctable gain ideally 1;
6 delta-par b correctable offset ideally 0;
7 delta z = func |(m) -> 0.5*(a*x+b) |(h) -> 0.05*(a*x+b)
8 quantize z = linear 256;
9 interval z = [-1,0.998];

10 interval x = func |(m) -> [-2,2] |(h) -> [-20,20]
11 noise x = func |(m) -> 0.01 |(h) -> 0.1
12 }

Figure 5-10: Block specification for adc

Figure 5-9 presents the ADS block specification for the lut block. The lut is a compute

block with one mode. The HCDCv2 runtime automatically infers the value of the src static

code by analyzing the connections in the ADP, so it does not need to be exposed to the

compiler. The lut works with one digital input x and one digital output z and accepts an

expression data field f. The expression data field f accepts one input variable and is mapped

to a symbolic expression by the compiler. This symbolic expression is used to instantiate

the 255 dynamic codes in the lut block.

Because the lut block operates entirely in the digital domain, it is not subject to the

effects of noise and does exhibit any behavioral deviations which need to be captured by

delta models. The lut block also does not need to be calibrated since it does not leverage

any analog behavior. Both the digital input and output ports use the encoding scheme for

digital signals presented at the beginning of Section 5.7.

Analog-to-Digital Converter (adc) Block

Figure 5-12 presents the ADS specification of the HCDCv2 analog to digital converter

(adc) block. The adc block accepts an analog current input at port x and produces contin-

uously evolving digital output at port z. This block is used in conjunction with an dac and

lut blocks to implement an arbitrary time-varying one-input/one-output functions. It has

one static code (in) which may either be assigned to m or h. The ADP block specification

defines two modes which directly encode the value of this static code.

Functionality: Generally, the adc scales down and converts the analog value at port x to

an digital signal between [-1,1]. The block works with currents between [-2,2] 𝜇A when

157

1 block extout type compute modes [(*)] {
2 in x analog current; out z analog voltage;
3 rel z = emit(0.6*x)
4 interval z = [-2.0,2.0];
5 interval z = [-1.2,1.2];
6 noise z = 0.01; }
7

8 block extin type compute modes [(*)] {
9 in x analog voltage; out z analog current;

10 rel z = extvar(2.0*x)
11 interval z = [-1.0,1.0];
12 interval z = [-2.0,2.0];
13 noise z = 0.01; }

Figure 5-11: Block specification for externally accessible ports (extin and extout)

in (m) mode and currents between [-20,20] 𝜇A when in (h) when in (h) mode. The block

scales the incoming analog signal by a mode-dependent constant coefficient to normalize the

signal. The analog signal at x is also subject to more noise when the block is in (h) mode.

The time-varying digital values at z use the encoding scheme for digital signals presented

at the beginning of Section 5.7.

The adc block specification also defines a delta model that describes the allowed be-

havioral deviations for the block. It defines two correctable delta model parameters a and

b which linearly transform the incoming analog signal. The a delta model parameter is

compensated for by the LScale scaling procedure. The b parameter is compensated for by

the HCDCv2 runtime.

Calibration Codes: The adc block also works with 8 calibration codes: pmos,pmos2,nmos,i2v_-

cal,upper_fs,upper, lower_fs,lower. The pmos, pmos2, and nmos calibration codes take

on values between 0 and 7. The upper_fs and lower_fs calibration codes take on values

between 0 and 3. The lower and upper calibration codes take on values between 0 and 63.

These calibration codes are used to eliminate bias and tune the block to achieve unity gain.

The extin and extout blocks

The extout block converts a current input (port x) into a voltage and routes the voltage

signal to an externally accessible pin. This outgoing signal can be probed with measurement

equipment or routed to peripheral circuits. This block has no static, dynamic, or calibration

codes and has exactly one mode. It implements the function 0.6*x, where x accepts analog

158

1 block cin type route modes [(*)] {
2 in x analog current; out z analog current;
3 rel z = x
4 interval z = [-20.0,20.0]; }
5 block cout type route modes [(*)] {
6 in x analog current; out z analog current;
7 rel z = x
8 interval z = [-20.0,20.0]; }
9 block tin type route modes [(*)] {

10 in x analog current; out z analog current;
11 rel z = x
12 interval z = [-20.0,20.0]; }
13 block tout type route modes [(*)] {
14 in x analog current; out z analog current;
15 rel z = x
16 interval z = [-20.0,20.0]; }
17

Figure 5-12: Block specification for routing blocks (tin, tout, cin, and cout)

currents between [-2,2] 𝜇A. The voltage emitted at z is between [-1.2,1.2] volts.

The extin block converts an externally provided analog voltage to an analog current

which is internally accessible within the HCDCv2. The incoming signal can be supplied

from an external peripheral device, such as a sensor. This block has no static, dynamic,

or calibration codes and has exactly one mode. It implements the function 2.0*x, where x

accepts voltages between [-1,1] volts. The current emitted at z is between [-2,2] 𝜇A.

The Routing Blocks (tin,tout,cin, and cout)

The tin, tout, cin, and cout blocks are all used to route signals between substructures

in the HCDCv2. They all accept one input at port x and produce one output at port (z).

Each of the route blocks have exactly one mode and no static, dynamic, or calibration

codes. These routing blocks all implement equality relations and are used to forward signals

through the device.

Addition with Kirchoff’s Law

The HCDCv2 does not offer blocks that perform addition and subtraction. Instead, these

computations are performed by leveraging Kirchoff’s law. Kirchoff’s law states that the sum

of all currents flowing into the same join point is zero. Two analog currents are therefore

added together by connecting them to the same port. The signal flowing out of the port

159

1

current
A

current
-(A+B)

current
B

A+B+(-(A+B)) = 0

x

op

y

ip

z

x

op’

y

3

A B

A+B

2

current
-(A+B)

current
A+B

Kirchhoff's law Current motion Kirchhoff’s Law
with Block

Figure 5-13: Overview of Kirchhoff’s law

and into the block equals the sum of the signals flowing into that port.

Figure 5-13 graphically depicts how Kirchoff’s law implements addition. If two wires

carrying currents A and B flow into the same join point, then the current flowing out of the

join point (wire C) equals A+B.

160

1 device hcdc {
2 freq 126000;
3 views chip,tile,slice,index;
4 loc 0,1 chip; loc 0,1,2,3 in tile;
5 loc 0,1,2,3 in slice; loc 0,1,2,3 index;
6 blk tin, tout @ (*,*,*,*)
7 blk int,mul,fan,dac,cin,cout @ (*,*,*,0)
8 blk mul,fan @ (*,*,*,1)
9 blk adc,lut @ (*,*,0,0)

10 blk adc,lut @ (*,*,2,0)
11 blk extin,extout @ (*,3,2,0)
12 blk extin,extout @ (*,3,3,0)
13

14 // block-to-block connections
15 conn mul,dac,int,tin,fan @ (0,0,*,*) with mul,adc,int,tout,fan @ (0,0,*,*)
16 conn lut @ (0,0,*,*) with dac @ (0,0,*,*)
17 conn adc @ (0,0,*,*) with lut @ (0,0,*,*)
18

19 conn mul,dac,int,tin,fan @ (0,1,*,*) with mul,adc,int,tout,fan @ (0,1,*,*)
20 conn lut @ (0,1,*,*) with dac @ (0,1,*,*)
21 conn adc @ (0,1,*,*) with lut @ (0,1,*,*)
22

23 conn mul,dac,int,tin,fan @ (0,2,*,*) with mul,adc,int,tout,fan @ (0,2,*,*)
24 conn lut @ (0,2,*,*) with dac @ (0,2,*,*)
25 conn adc @ (0,2,*,*) with lut @ (0,2,*,*)
26

27 conn mul,dac,int,tin,fan @ (0,3,*,*) with mul,adc,int,tout,fan @ (0,3,*,*)
28 conn lut @ (0,3,*,*) with dac @ (0,3,*,*)
29 conn adc @ (0,3,*,*) with lut @ (0,3,*,*)
30

31 conn mul,dac,int,tin,fan @ (1,0,*,*) with mul,adc,int,tout,fan @ (1,0,*,*)
32 conn lut @ (1,0,*,*) with dac @ (1,0,*,*)
33 conn adc @ (1,0,*,*) with lut @ (1,0,*,*)
34

35 conn mul,dac,int,tin,fan @ (0,1,*,*) with mul,adc,int,tout,fan @ (0,1,*,*)
36 conn lut @ (1,1,*,*) with dac @ (1,1,*,*)
37 conn adc @ (1,1,*,*) with lut @ (1,1,*,*)
38

39 conn mul,dac,int,tin,fan @ (0,2,*,*) with mul,adc,int,tout,fan @ (0,2,*,*)
40 conn lut @ (1,2,*,*) with dac @ (1,2,*,*)
41 conn adc @ (1,2,*,*) with lut @ (1,2,*,*)
42

43 conn mul,dac,int,tin,fan @ (0,3,*,*) with mul,adc,int,tout,fan @ (0,3,*,*)
44 conn lut @ (1,3,*,*) with dac @ (1,3,*,*)
45 conn adc @ (1,3,*,*) with lut @ (1,3,*,*)

Figure 5-14: HCDCv2 device specification

161

1 // inter-tile connections
2 conn tout @ (0,*,*,*) with tin @ (0,*,*,*)
3 conn tout @ (1,*,*,*) with tin @ (1,*,*,*)
4

5 // tile-chip and tile-external input/output connections
6 conn tout @ (0,0,*,*) with cout,extout @ (0,0,*,*)
7 conn tout @ (0,1,*,*) with cout,extout @ (0,1,*,*)
8 conn tout @ (0,2,*,*) with cout,extout @ (0,2,*,*)
9 conn tout @ (0,3,*,*) with cout,extout @ (0,3,*,*)

10 conn tout @ (1,0,*,*) with cout,extout @ (1,0,*,*)
11 conn tout @ (1,1,*,*) with cout,extout @ (1,1,*,*)
12 conn tout @ (1,2,*,*) with cout,extout @ (1,2,*,*)
13 conn tout @ (1,3,*,*) with cout,extout @ (1,3,*,*)
14

15 conn extin,cin @ (0,0,*,*) with tin @ (0,0,*,*)
16 conn extin,cin @ (0,1,*,*) with tin @ (0,1,*,*)
17 conn extin,cin @ (0,2,*,*) with tin @ (0,2,*,*)
18 conn extin,cin @ (0,3,*,*) with tin @ (0,3,*,*)
19 conn extin,cin @ (1,0,*,*) with tin @ (1,0,*,*)
20 conn extin,cin @ (1,1,*,*) with tin @ (1,1,*,*)
21 conn extin,cin @ (1,2,*,*) with tin @ (1,2,*,*)
22 conn extin,cin @ (1,3,*,*) with tin @ (1,3,*,*)
23

24 // inter-chip connections
25 conn cout @ (0,0,0,0) with cin @ (1,1,3,0)
26 conn cout @ (0,0,1,0) with cin @ (1,1,2,0)
27 conn cout @ (0,0,2,0) with cin @ (1,1,1,0)
28 conn cout @ (0,0,3,0) with cin @ (1,1,0,0)
29 conn cout @ (0,2,0,0) with cin @ (1,0,3,0)
30 conn cout @ (0,2,1,0) with cin @ (1,0,2,0)
31 conn cout @ (0,2,2,0) with cin @ (1,0,1,0)
32 conn cout @ (0,2,3,0) with cin @ (1,0,0,0)
33 conn cout @ (0,3,0,0) with cin @ (1,3,0,0)
34 conn cout @ (0,3,1,0) with cin @ (1,3,1,0)
35

36 conn cout @ (1,0,0,0) with cin @ (0,1,3,0)
37 conn cout @ (1,0,1,0) with cin @ (0,1,2,0)
38 conn cout @ (1,0,2,0) with cin @ (0,1,1,0)
39 conn cout @ (1,0,3,0) with cin @ (0,1,0,0)
40 conn cout @ (1,2,0,0) with cin @ (0,0,3,0)
41 conn cout @ (1,2,1,0) with cin @ (0,0,2,0)
42 conn cout @ (1,2,2,0) with cin @ (0,0,1,0)
43 conn cout @ (1,2,3,0) with cin @ (0,0,0,0)
44 conn cout @ (1,3,0,0) with cin @ (0,3,0,0)
45 conn cout @ (1,3,1,0) with cin @ (0,3,1,0)
46 }
47

Figure 5-15: HCDCv2 device specification (continued)

162

Chip 0

Tile 11 HCDC

Chip 0

Tile 0 Tile 1

Tile 2 Tile 3

Chip 1

Tile 0 Tile 1

Tile 2 Tile 3

2
int mult

Tile 1 Tile 0

int multtout tin

Tile 1

int tout cout

Chip 1

Tile 1

cin tin mult

Chip 0

Tile 3

int tout extout

Tile 1

Slice 0

Index 0

Index 1

Slice 1

Index 0

Index 1

Slice 2

Index 0

Index 1

Slice 3

Index 0

Index 1

Figure 5-16: HCDCv2 chip, tile, slice, and index layout and connection rules.

5.7.2 HCDCv2 Layout

The HCDCv2 has between 16-128 hierarchically organized instances of each block. The

HCDCv2 has two chips, where each chip has four tiles, each tile has four slices, and each

slice has four indices. Subfigure 1 of Figure 5-16 presents a diagram of how the chips, tiles,

slices, and indices are laid out on the HCDCv2. Block instances are uniquely identified by

the chip, tile, slice, and index they reside at. Each HCDCv2 index may therefore contain

no more than one instance of each block type. The HCDCv2 has a mul and fan blocks at

indices 0 and 1 of each slice, int and dac blocks at index 0 of each slice, and adc and lut

blocks at index 0 of even slices. The HCDCv2 has tin and tout blocks at each index and

cin and cout blocks at index 0 of each slice. Each chip has two extin and two extout

blocks which are at chip 0, tile 3, slice 2, index 0 and chip 0, tile 3, slice 3, index 0.

The HCDCv2 provides a collection of digitally programmable connections which may

be enabled on the fly. Generally, blocks that are physically close together on the HCDCv2

are easier to connect together than blocks that are far apart. The HCDCv2 requires distant

connections to be indirectly made by routing the signal through several different routing

blocks. Subfigure 2 of Figure 5-16 presents an overview of how blocks colocated on the same

tile, on different tiles, and on different chips may be connected together. All blocks within

the same tile (except extin and extout blocks) may be connected together by enabling a

single programmable connection. Blocks on different tiles may be connected together by

routing the signals through a tout block on the source block’s tile and then through a tin

block on the destination block’s tile. Blocks on different chips may be connected together

by routing signals first through tout, cout, cin,tin, and cin blocks. Any block can be

163

connected to a cext block on the same tile provided the signal is routed through a tout

block.

Figure 5-14 and Figure 5-15 presents the partial device specification for the HCDCv2.

I omit the connection statements from the above specification for brevity. The HCDCv2

block locations are made up of four integer addresses. The values correspond to the chip,

tile, slice, and index of the block. The HCDCv2 device specification describes four views:

chip, tile, slice, and index. Lines 3-4 describe a device layout with two chips, four tiles per

chip (numbered 0-3), four slices per tile (numbered 0-3), and four indices per slice (numbered

0-3).

Lines 6-12 define the block instances available on the HCDCv2 device. The HCDCv2

contains tin and tout routing block instances at every index on the device. The HCDCv2

contains instances of the mul and fan blocks at indices 0 and 1 of every slice and instances

of int and dac blocks at index 0 of every slice. The adc and lut blocks are only available

at index 0 of even slices. The extin and extout blocks are only available at two locations

per chip.

The remainder of the device specification defines connections between block instances

on the device. Lines 25-45 of Figure 5-14 defines the programmable connections between

the compute and assembly blocks that reside on the same tile. Lines 2 and 3 of Figure 5-

15 defines the programmable connections between tiles residing on the same chip. Lines

6-13 of Figure 5-15 defines the programmable connections between chip/external inputs

and tile inputs. Lines 15-22 of Figure 5-15 defines the programmable connections between

tile outputs and chip/external outputs. Lines 25-45 of Figure 5-15 define the connections

between chips.

5.8 HCDCv2 Manufacturing Variations, Calibration,

and Delta Models

Due to variations in the manufacturing process, individual HCDCv2 blocks experience vari-

ations in behavior in practice. These behavioral variations change depending on the block

mode and how the block is calibrated. The HCDCv2 implements calibration strategies that

eliminate unwanted behaviors from the hardware. After calibration, the HCDCv2 runtime

164

identifies the delta model parameters for each of the calibrated blocks. These delta model

parameters are used by the compiler to more accurately target the device on hand. This

section describes the calibration strategies deployed by the HCDCv2, the workflow for pop-

ulating the delta model database. I also present a multiplier case study that explores the

effect the two calibration strategies have on the delta models for a multiplier block.

5.8.1 HCDCv2 Calibration

The HCDCv2 firmware implements multiple user-settable calibration strategies that can

be used to calibrate the HCDCv2 blocks. These calibration strategies identify the best

calibration code values for a block instance under a given block mode. The criteria for

determining the best set of calibration code assignments depends on the calibration strategy

used:

∙ Traditional Calibration Strategy (minimize_error): The HCDCv2 firmware im-

plements a traditional calibration strategy that calibrates the blocks so that the delta

model parameters adhere to their ideal values. This calibration strategy effectively

calibrates the blocks to implement the input-output relations defined by the block

rel statements. The minimize_error calibration strategy is the calibration strategy

traditionally used in hardware design.

∙ Co-Designed Delta Model (maximize_fit): The HCDCv2 firmware implements a

co-designed calibration strategy that prioritizes eliminating hard-to-correct unwanted

behaviors such as point errors and unwanted biases in the calibrated blocks. I de-

signed this calibration strategy with knowledge of what the compiler can statically

compensate for in mind. This calibration strategy allows for behavioral deviations

that the compiler can compensate for in compilation. With this calibration strat-

egy, the blocks are calibrated such that the uncorrectable delta model parameters

adhere to their ideal values. The correctable delta model parameters are allowed to

deviate from their ideal values under this strategy. The maximize_fit calibration is

a novel compilation-aware calibration strategy that allows for controlled behavioral

deviations, provided these deviations can be compensated for in software.

The device firmware executes the HCDCv2 calibration procedure. Each block calibration

strategy performs a heuristic search that efficiently searches over calibration code values

165

to find the best set of calibration codes. The firmware evaluates each set of candidate

calibration code values by testing the block instance on a small set of test points. The

calibration code values returned by the calibration procedure are written to the calibration

database. The HCDCv2 runtime retrieves these calibration code values and writes them to

the HCDCv2 before executing an ADP.

Uniqueness: Each set of calibration code values is uniquely identified by the block instance

name and location, the calibration strategy used to derive the values, and a block mode.

The static code values encode the mode of the block.

5.8.2 HCDCv2 Delta Models

The HCDCv2 analog device specification defines mode-dependent delta model specifications

for each of the blocks. The HCDCv2 runtime elicits delta model parameter values from the

device. Each set of delta model parameters is uniquely identified by the block instance name

and location, the output port name, the calibration strategy used to derive the values, and

the block mode. The static codes of the block encode the block mode. The compiler uses

both the delta model specifications from the ADS and the delta model parameters from the

delta model database to effectively target the device at hand. The delta model specification

can be concretized to implement the following relations:

∙ Ideal Input-Output Relation: The ideal input-output relation describes the be-

havior of the block if no behavioral variations occur. The delta model specification

implements the ideal input-output relation of a block instance when all delta model

parameters are set to their ideal values. Under these conditions, the delta model

specifications match the ideal input-output relations (rel statements) defined with

block. The traditional minimize_error calibration strategy calibrates the block to

implement the ideal input-output relation of the block.

∙ Delta Model: The delta model captures the empirically observed behavioral devia-

tions of the block. The delta model specification captures the empirical behavior of

a block instance when all of the delta model parameters are set to the delta model

parameter values from the delta model database. The delta model captures the subset

of behavioral deviations that delta model specification can model effectively.

166

∙ Correctable Delta Model: The compiler works with the correctable delta model

that captures the subset of behavioral deviations that can be compensated for in

compilation. The delta model specification captures the correctable behavior of a

block instance when all of the uncorrectable delta model parameters are set to their

ideal values, and all of the correctable parameters are set to the empirically derived

delta model parameters from the delta model database. The co-designed maximize_-

fit calibration strategy calibrates the block so that only the correctable delta model

parameters deviate from their ideal values.

The HCDCv2 runtime identifies the delta model parameters for the blocks by profiling

the blocks offline. The collected data is then fit to the block delta model specifications from

the ADS to derive the delta model parameter values for each configured block instance.

These parameters are stored in a delta model database. The compiler retrieves parameter

values from this database to derive the correctable input-output relations for the relevant

block instances. Refer to Sections 5.9.1-5.9.3 for more information on the profiling and

model elicitation process.

5.8.3 Example: mul block

(a) minimize_error (b) maximize_fit

Figure 5-17: Block errors associated with the minimize_error and maximize_fit
calibration strategies for multiplier (1,3,0,0).

This case study investigates the ideal behavior, and the correctable and uncorrectable

behavioral deviations present in a calibrated multiplier block in (x,m,h) mode. When the

167

mul block is in (x,m,h) mode, the static codes in0,in1 are m, the static code out is h, and

the vga static code is true. I present the delta model specification for the multiplier block

below:

1 delta-par u,v correctable;

2 delta-par w;

3 delta z = func |(m,m,h) -> u*5*x*y+w,

4 |(m,m,m)|(h,m,h)|(m,h,h) -> u*0.5*x*y+w

5 |(h,m,m)|(m,h,m)|(h,h,h) -> u*0.05*x*y+w

6 |(x,m,h)->10*(u*c+v)*x+w |(x,h,m) -> 0.1*(u*c+v)*x+w

7 |(x,h,h)|(x,m,m) -> (u*c+v)*x+w;

In the above relation, u,v, and w delta model parameters all capture variations in gain and

bias in the block. The ideal values for the delta model parameters u,v, and w are 1, 0, and 0

respectively. The u and v parameters are correctable. The delta model specification defines

the input-output relation 10*(u*c+v)*x+w when the block is placed in (x,m,h) mode.

∙ Ideal Input-Output Relation: The mul block ideally implements 10*c*x when the

block is in (x,m,h) mode. The delta model relation implements 10*(1*c+0)*x+0 or

10*c*x when all of the delta model parameters are set to their idealized values. This

matches the expression defined by the rel statement for the block.

This case study investigates the behavior of the multiplier block at chip 1, tile 3, slice

3, index 0 of the HCDCv2 board at hand. I calibrate this block with both the minimize_-

error and maximize_fit calibration strategies to get the set of calibration code values. I

then profile the block by exercising it over the space of values c and x may take on. For

each combination of c and x, the output current at z is measured to obtain the empirically

observed output. This profiling dataset is then fit to the above delta model with u, v, and w

as free variables. The calibrated blocks are then profiled and analyzed to identify the delta

model parameter values:

∙ Minimize Error: The error minimization calibration procedure assigns the calibra-

tion codes pmos, nmos, gainCal, bias0, bias1, and biasOut to 3, 2, 63, 34, 32, and

41 respectively. The calibrated block assigns the u, v, and w parameters to 0.979,

0.0346 , and -0.102 respectively.

168

∙ Maximize Fit: The delta model fit maximization calibration procedure assigns the

calibration codes pmos, nmos, gainCal, bias0, bias1, and biasOut to 1, 1, 10, 33,

32, and 39 respectively. The calibrated block assigns the u, v, and w parameters to

0.736, 0.0284, and 0.0104 respectively.

The delta models for port z the multiplier at chip 1, tile 3, slice 0, index 0 of the HCDCv2

board when the multiplier is in (x,m,h) mode are as follows:

∙ Minimize Error: The delta model of output port z is (0.979*c - 0.0346)*x-0.102

when the block is in (x,m,h) mode and has been calibrated with the minimize_error

calibration strategy.

While this behavior closely resembles the ideal input-output relation c*x, it does

introduce some degree of uncorrectable error. The w term is -0.102, which is about

0.5% of the dynamic range of the signal. Figure 5-17a presents the input-dependent

static error in the calibrated block that cannot be captured with the delta model.

This static error is referred to as unmodellable since it cannot be captured with the

delta model. This calibrated block exhibits between 0% and 1% unmodellable error

depending on the value of x and c. This unmodellable error occurs because the

calibration strategy cannot fully eliminate all unwanted behavior from the block.

∙ Maximize Fit: The delta model for port z is (0.736*c-0.0284)*x + 0.0104 when

the block is in (x,m,h) mode and has been calibrated with the maximize_fit cali-

bration strategy.

While this behavior deviates from the ideal input-output relation 10*c*x, it introduces

far less uncorrectable error into the behavior of the block. The w delta model parameter

value is 0.0104, which is about 0.05

The compiler can is only able to compensate for the correctable delta model parameters

in the delta model specification. The delta model specification for output port z under

(x,m,m) mode is (u*c+v)*x+0 or (u*x+v)*x if only the correctable parameters are allowed

to deviate from their ideal values (w is 0). The correctable input-output relations for the

multiplier at chip 1, tile 3, slice 0, index 0 of the HCDCv2 board, when the multiplier is in

(x,m,h) mode, are as follows:

169

(a) minimize_error (b) maximize_fit

Figure 5-18: Uncorrectable delta model error associated with the minimize_error
and maximize_fit calibration strategy for multiplier (1,3,0,0).

∙ Minimize Error: The correctable input-output relation of output port z is (0.979*c

- 0.0346)*x when the block is in (x,m,h) mode and has been calibrated with the

minimize_error calibration strategy. The 1.02 and 0.04 delta model parameter

values can be statically compensated for in compilation. For example, to implement

0.6*x, I would compute the solution to 0.979*c - 0.0346 = 0.6 to find the value of

data field c. I find that c should be set to 0.648 instead of 0.6. The offset (-0.102)

cannot be compensated for and becomes part of the block’s uncorrectable delta model

error.

Figure 5-18a presents the error at output port z if I use the correctable delta model

for the calibrated block. This error is the discrepancy between the measured values

and the values computed by the correctable input-output relation. When the block

is calibrated with this calibration strategy, the compiler cannot compensate for a

significant amount of the error present in the block.

∙ Maximize Fit: The correctable input-output relation for port z is (0.736*c -

0.0284)*x when the block is in (x,m,m) mode and has been calibrated with the

maximize_fit calibration strategy. The 0.736 and 0.0284 delta model parameter

values can be statically compensated for in compilation. For example, to implement

0.6*x, I would compute the solution to 0.736*c - 0.0284 = 0.6 to find the value of

data field c. I find that c should be set to 0.854 instead of 0.6. The offset (0.0104)

cannot be compensated for and becomes part of the block’s uncorrectable delta model

170

Computer[1]

Command
Dispatch

Microcontroller[2]

Command
Interpreter

Analog
Library

Analog Chip [3]

 GPIO[c]

Grendel
Runtime

ADP

HCDC API
commands

Oscilloscope [4]

USB

[d]

14

3

2

sockets
 [a]

wiring[b]

Grendel Runtime

Figure 5-19: Laboratory Setup for HCDCv2

error.

Figure 5-18b presents the error at output port z if I use the correctable delta model

for the calibrated block. This error is the discrepancy between the measured values

and the values computed by the correctable input-output relation. When the block is

calibrated with this calibration strategy, the compiler can compensate for a significant

amount of the error present in the block.

5.9 HCDCv2 Software Stack and Runtime

The HCDCv2 runtime provides high-level operations for calibration, profiling, and model

inference. These operations are used to calibrate the HCDCv2 and elicit delta models

for the calibrated device. The HCDCv2 runtime extensively caches board information in

several databases to avoid unnecessarily calibrating and characterizing blocks on the device.

The HCDCv2 runtime also provides high-level operations for configuring blocks, setting

connections, and running simulations. These operations are used to execute an input ADP

on the target analog device.

Figure 5-19 presents an overview of the runtime environment. The HCDCv2 analog

chip is hard-wired to an Arduino Due microcontroller running a command interpreter for

the HCDCv2 API. This microcontroller runs all of the calibration and profiling logic and

applies the dispatched HCDCv2 commands to the HCDCv2. The externally available pins

on the HCDCv2 are connected to a networked Sigilent 1020XE oscilloscope. I use this

measurement device to collect waveforms from the HCDCv2. Both the microcontroller and

171

the oscilloscope communicate with the host machine over USB and sockets, respectively.

The HCDCv2 runtime implements each high-level operation as a sequence of queries

to the HCDCv2 API presented in Section 5.9.1. The HCDCv2 API is a low-level interface

used for programming the HCDCv2 and any measurement devices. Each HCDCv2 API

invocation is either dispatched to the command interpreter on the microcontroller or the

oscilloscope. The microcontroller parses each HCDCv2 API command and configures the

attached HCDCv2 accordingly. The oscilloscope HCDCv2 API calls are used to configure the

oscilloscope. The runtime collects and processes any returned values from the oscilloscope

and microcontroller.

5.9.1 HCDCv2 Low-Level Programming Interface

The HCDCv2 exposes an API for configuring analog blocks, enabling and disabling con-

nections, and executing the simulation. This API also offers endpoints for profiling and

calibration blocks on the chip. The block calibration procedure the calibration code values

that eliminates the most unwanted block behavior under the provided set of static code

assignments. The calibration procedure works with a calibration strategy that tells the

firmware what constitutes unwanted behavior. The block profiling procedure tests a block

with analog inputs and dynamic and static code assignments and returns the measured block

output. I summarize the API endpoints below:

set_state command: The set_state command takes as input the kind of block to update,

the chip, tile, slice, and index number of the target block, and the static, dynamic, and

calibration code assignments to write to the block. The firmware writes the provided codes

to the block at the specified location on the HCDCv2.

enable_conn command: The enable_conn command takes as input a source and desti-

nation port instance description. A port instance description consists of the port name,

the kind of block the port belongs to, and the block instance’s chip, tile, slice, and index

number. The firmware turns on the connection between the specified source and destination

ports.

disable_conn command: The disable_conn command takes as input a source and desti-

nation port description. The firmware turns off the connection between the specified source

and destination ports.

172

calibrate command: The calibrate command takes as input the kind of block to calibrate

and the chip, tile, slice, and index number of that block. It also takes in the calibration

strategy the calibration procedure should use to evaluate calibration code assignments. The

firmware calibrates the selected block with the provided calibration strategy. The calibration

procedure uses the static code assignments that have previously been written to the target

block.

profile command: The profile command takes as input the kind of block to profile, the

output port to probe, and the chip, tile, slice, and index number of that block. It also

takes, as input, one or more analog input values to feed into the target block. The firmware

generates the required analog signals, routes these signals into the target block, and measures

the signal at the desired output port. It returns the mean and standard deviation of the

signal at the port. The profile command also supports specialized profiling operations for

measuring the gain and bias of integrators – these specialized profiling operations are selected

with an optional method argument.

set_sim_time command: The profile command takes as input the amount of time, in wall

clock seconds, to execute the simulation for. The firmware caches the simulation time in

memory for later use.

run_sim command: The simulation execution command takes no inputs and returns no

outputs. The firmware powers on the programmed circuit and runs it for the simulation

time stored in firmware memory.

oscilloscope commands: The API offers commands for configuring a networked Sigilent

1020XE oscilloscope. These commands support configuring the trigger signal, setting the

voltage and time scale, and retrieving waveforms from the oscilloscope. The oscilloscope

samples the voltage signal at the externally accessible output port z of the cext block at

location (0,3,2,0). All oscilloscope commands are directly dispatched to the measurement

device.

5.9.2 The Calibration, Profiling, and Delta Model Databases

Because profiling and calibration are time-consuming operations, the HCDCv2 runtime en-

vironment internally caches profiling and calibration data for later use. This runtime envi-

ronment tracks board-specific calibration and characterization information with a series of

173

1

3

2

Calibration
Database

Calibration
Codes

Profiling
Data

Profiling
Dataset
Database

Delta Model
Database

Delta Model

Block Instance

Static
Codes

Output Port
Calibration
Strategy

Block Instance

Static Codes

Block Instance

Static Codes

Output Port

Calibration
Strategy

Calibration
Strategy

Figure 5-20: Overview of query structure to the HCDCv2 calibration, delta model,
and profiling databases

databases. Figure 5-20 presents an overview of the HCDCv2 runtime databases:

∙ Calibration Database: The calibration database stores the calibration code as-

signments returned by the calibrate invocations. The block instance, static code

assignments, and calibration strategy together uniquely identify each set of calibra-

tion code assignments in the calibration database. When the runtime calibrates a

block, it first checks for an existing entry in the calibration database. If an entry

already exists, the runtime returns the cached calibration code assignments.

Profiling Dataset Database: The profiling dataset database stores the profiling

data returned by the profile invocations. Each dataset contains one or more input-

output tuples where inputs are both dynamic code assignments and analog inputs.

The block instance, probed output port, static code assignments, and calibration

strategy together uniquely identify each profiling dataset. The runtime uses the pro-

filing datasets to derive the delta model parameters for each calibrated, configured

block instance.

Delta Model Database: The delta model database stores the delta model parameter

values for each calibrated, configured block instance. The delta model parameters and

the delta model specification together capture the empirically observed behavioral

deviations at each output port of each block instance. The block instance, output

port, static code assignments, and calibration strategy uniquely identify the delta

174

Calibration
Profiling

Profiling
Data

Model Inference Delta Model

Calibration
Codes

Calibration
Strategy

Calibration
Database

Delta Model
Database

calibrate

1

3

2

Block Instance

Static Codes

Block Instance

Static
Codes

Output Port

Block Instance

Static Codes

Output Port

HCDCv2
HCDCv2

Calibration
Strategy

Profiling Dataset
Database

Calibration
Database

Profiling
Dataset
Database

Calibration
Strategy

set_state
profile

set_state

calibration
codes profiling

data

ADS

ADS

Figure 5-21: Overview of the calibration, profiling, and model inference operations.

model parameter values for each configured, calibrated output port instance. The

compiler and runtime combine the delta model parameter values and the delta model

specification to produce correctable delta models – these correctable delta models are

used to statically compensate for behavioral deviations in software.

5.9.3 Calibration, Profiling, and Model Elicitation

Figure 5-21 presents the operation of the calibration, profiling, and delta model inference

routines offered HCDCv2 runtime. These high-level operations cache calibration and pro-

filing information to avoid unnecessarily reexecuting calibrate and profile commands.

All of these routines work with a target block instance to calibrate or characterize, a set of

static code assignments to write to the block, and a calibration strategy to use:

Calibration: The calibration routine calibrates the provided block instance using the spec-

ified calibration strategy under the provided set of static code assignments. It calibrates the

block instance and stores the returned set of calibration code assignments in the calibration

database. If the block instance has already been calibrated with this calibration strategy

and set of static code assignments, it returns the calibration code assignments from the

175

database. To calibrate the block, it executes the set_state operation to write the static

codes to the block instance and then executes the calibrate operation to calibrate the block

instance with the provided calibration strategy. It writes the calibration code assignments

to the calibration database.

Profiling: The profiling routine characterizes the behavior of the output port belonging

to a calibrated block instance under the provided set of static codes. The profiling routine

accepts, as input, the location and output port of the target block, the static codes, and

the calibration strategy to use with the target block, and the analog device specification.

The profiler reads calibration data from the calibration database and writes profiling data

to the profiling dataset database. The profiling routine characterizes the block’s behavior

over the block’s input space by exercising the block over a set of evenly spaced test inputs.

The device ADS identifies the range of the test input values the profiler should generate.

It returns the dataset of observed input-output pairs. The runtime records the data in the

profiling dataset database and returns the dataset to the user.

The profile routine first looks up the calibration code assignments for the block instance

under the provided set of static code assignments and calibration strategy in the calibra-

tion database. The runtime then writes the static and calibration code assignments to the

provided block instance with the set_state command. After the block is configured, the

profiler is ready to test the block. It breaks up the space of dynamic codes and analog

inputs into a grid of evenly spaced points. The runtime dispatches a profile operation to

the HCDCv2 for each combination of inputs. Each profile operation drives the provided

inputs into the target block and returns the measured signal at the specified output port.

The runtime collects these input-output pairs into a profiling dataset and then writes this

dataset to the profiling database. If there’s already an entry in the database, the runtime

adds the collected data to the existing dataset. Note that the HCDCv2 runtime does not

profile blocks that already have large datasets.

Model Inference: The model inference routine infers the delta model parameter values for

the provided output port instance under the provided static codes and calibration strategy.

The inference routine accepts, as input, the target block location and output port, the

static code values and the calibration strategy to use with the block, and the analog device

specification. The model inference routine first reads the profiling dataset for the configured,

calibrated output port instance from the calibration database. The inference routine fits the

176

Simulation Execution

Simulation Time Waveforms

set_sim_time

run_sim

Calibration
Database

Calibration
Objective

Block Instance

Static Codes Set Block State

set_state

HCDCv2

HCDCv2

Set Connection

set_conn

Source Block Instance

Dest Block Instance

Source Output Port

Dest. Output Port

HCDCv2
3

1 2

oscilloscope
commands

Sigilent 1020XE
OscilloscopeTrigger

signal

waveform

Dynamic Codes

Figure 5-22: HCDCv2 block configuration, connection, and execution operations

profiling data to the delta model specification specified in the ADS and then writes the

inferred delta model parameter values to the delta model database.

5.9.4 Analog Device Program Execution

Figure 5-22 presents the HCDCv2 runtime operations for configuring blocks, setting connec-

tions, and simulating circuits. These high-level operations automate some of the bookkeeping

operations required to configure and execute a circuit.

∙ Set Block State: This operation writes a set of static, dynamic, and calibration

code assignments to a specific block instance. This configuration operation accepts,

as input, the target block instance, the set of static and dynamic code values to write

to the block, and the calibration strategy to use for the block. The HCDCv2 runtime

fills in the calibration code assignments by looking up the block instance, static codes,

calibration strategy, and block instance in the calibration database. THe runtime then

then writes the static, dynamic, and calibration code assignments to the target block

instance with the set_state command.

∙ Set Connection: This operation enables a connection between the input and output

port of two block instances. It accepts as input the source block instance and output

port and the destination block instance and input port. It dispatches a single set_-

177

conn command which enables the desired connection.

∙ Simulation Execution: This operation runs the configured circuit on the HCDCv2

and returns the waveform. The runtime accepts as input the amount of time (in sec-

onds) to execute the simulation for. The routine first dispatches the set_sim_time

command to prepare the chip for running the desired experiment for the specified

amount of time. The routine also configures the oscilloscope voltage and time divi-

sion settings and sets up the oscilloscope to begin recording when a trigger signal is

received. The routine then dispatches the run_sim command, which executes the cir-

cuit for the desired amount of wall-clock time. The HCDCv2 triggers the oscilloscope

just before starting the computation. The oscilloscope returns the waveform of the

measured external signal.

Together these operations write an analog circuit to the HCDCv2 and execute the analog

circuit for a specified amount of wall clock time.

5.9.5 ADP Execution on the HCDCv2

The HCDCv2 runtime system supports executing an input ADP on the HCDCv2. The

HCDCv2 runtime system accepts, as input, an ADP which targets the HCDCv2 analog

device specification and the amount of time to simulate the dynamical system for (𝑡).

The runtime system first writes the circuit described by the ADP to the HCDCv2. It

translates each ADP config statement into a set of static and dynamic code assignments

and writes the block state to the HCDCv2 with the set state runtime command:

∙ Mode Translation: The runtime looks up each block mode in an internal mode-

static code look-up table to identify the correct set of static code assignments for the

chosen block mode.

∙ Constant Data Field Translation: The runtime scales each ADP constant data

field value by its associated scaling factor (scale statements) and then adjusts the

scaled value to compensate for any correctable offsets in the block. The runtime re-

trieves the delta model parameter values for the configured, calibrated block instance

from the delta model database. The computed decimal value is then translated into

178

a byte value using the quantize and interval statements from the ADS block spec-

ification.

∙ Expression Data Field Translation: The runtime adjusts each expression data

field value to compensate for any correctable offsets in the attached adc and dac

blocks. The runtime retrieves the delta model parameter values for the adc and dac

blocks from the delta model database. The resulting modified expression is then trans-

lated to a look-up table using the quantize and interval statements from the block

specification. These look-up table values are assigned to the appropriate dynamic

codes.

The ADP conn statements are written to the HCDCv2 with the HCDCv2 runtime set

connection routine. At this point, the ADP is fully programmed onto the HCDCv2 and is

ready for execution. The HCDCv2 runtime computes the number of wall-clock seconds to

record from the runtime in dynamical system simulation time units (𝑡):

7.93 · 10−6 · 𝜏−1 · 𝑡

The runtime multiplies the simulation time by the baseline integration speed of the HCDCv2

(7.93 𝜇s) and time scale factor (timescale statement) of the ADP to compute the runtime in wall-

clock seconds. The HCDCv2 has operates at a baseline frequency of 126000 Hz (freq statement).

At this baseline speed, one unit of hardware integration time corresponds to 126000−1𝐻𝑧 = 7.93𝜇 𝑠

of wall clock time.

The HCDCv2 runtime then invokes the simulation execution operation with the computed

runtime in wall-clock seconds to run the provided ADP. This command powers on and observes the

programmed circuit, then returns the measured waveform from the probed cext block at (0,3,2,0).

The time and amplitude of the returned waveform are measured in wall-clock seconds and volts,

respectively. The HCDCv2 runtime converts the time and the amplitude of the signal back into

dynamical system units before returning the signal.

Time Recovery: The HCDCv2 runtime converts each time measurement 𝑡𝑖 from wall clock time

to dynamical system time with the following relation:

(7.93 · 10−6 · 𝜏−1)−1 · 𝑡𝑖

The above relation multiplies each sample by the reciprocal of the time scale factor that maps

dynamical system time to wall-clock time.

179

Amplitude Recovery: The HCDCv2 runtime identifies the scale factor associated with port z of

the cext block at (0,3,2,0) in the ADP. The port scale factor is identified by an ADP statement

of the form scale z = a in the config statement for block (0,3,2,0) of block cext. It divides each

voltage measurement 𝑣𝑖 by the port’s scale factor a to recover the signal amplitude in dynamical

system amplitude units.

5.10 Conclusion

Differential equation-solving analog devices are a promising new class of ultra-low-power computing

platforms that solve dynamical systems energy efficiently. Internally, these devices contain pro-

grammable analog blocks and a programmable interconnect for forming circuits. This class of ana-

log devices is digitally re-configurable and programmed by digitally routing signals between blocks

and configuring individual blocks to implement the desired computations. In this thesis, I target

the HCDCv2, a re-programmable differential-equation solving analog device that targets general

non-linear dynamical systems.

The analog blocks present in these devices are subject to a range of low-level physical behaviors

that affect the fidelity of the mapped computation. Relevant phenomena include analog noise,

frequency- and input-dependent fixed errors, and unexpected gains and biases that are introduced

into the block post-fabrication. Hardware designers eliminate unexpected gains and biases and

some forms of static error through a process called calibration. The calibration procedure tunes the

circuits in the device to eliminate unwanted behaviors. Traditionally, the calibration procedure aims

to eliminate all unexpected behavioral deviations from each target block. In this work, I present

an alternative co-designed calibration strategy that prioritizes eliminating unwanted behaviors that

cannot be compensated for in compilation.

The compiler reasons about all other low-level block behaviors. The hardware designer provides

frequency and operating range restrictions to the compiler to ensure the analog blocks are well-

behaved and do not exhibit frequency- and value-dependent unwanted behaviors. The hardware

designer also provides analog noise descriptions to the compiler. The compiler uses this information

to produce circuits that respect the physical limitations of the system.

In practice, the calibration procedure may not fully eliminate the unexpected gains and biases

present in the given block. In this chapter, I introduce the concept of a delta model. A delta

model is a symbolic model which captures the unexpected behavior present in a block instance after

calibration. The delta model parameters for the device at hand are derived by characterizing the

calibrated blocks and fitting this characterization to a parameterized version of the delta model

called the delta model specification. The compiler uses the delta models for the target device to

more effectively target the device on hand.

180

In this chapter, I introduce an analog device specification language (ADSL) that enables the

hardware designer to describe the programmable analog blocks and available digitally programmable

interconnects to the compiler. The ADSL supports the specification of block programming inter-

faces, block input and output ports, and the block’s input-output relations. The ADSL also supports

the specification of operating range and frequency restrictions, analog noise, and quantization er-

ror. The ADSL offers language constructs for defining delta model specifications and delta model

parameters.

I then introduce the analog device programming language (ADPL) that specifies analog circuits

comprised of configured analog blocks. The compiler produces analog device programs written in

the ADPL as compilation outputs. The ADPL offers language constructs for configuring analog

blocks, routing signals between blocks, and specifying transformations that change the digital values

written to the circuit.

The remainder of the chapter covers the operation of the HCDCv2. I first present the ADS for

the HCDCv2. I then describe the calibration algorithms, runtime system, and low-level interface

employed by the HCDCv2.

181

182

Chapter 6

Scaled and Unscaled ADPs

The compiler maps the target dynamical system computation to the analog hardware and generates,

as output, a circuit composed of configured blocks. For the produced circuit to faithfully implement

the target dynamical system computation, the circuit physics must preserve the original dynamical

system dynamics such that the original dynamical system variable trajectories can be recovered at

runtime from the voltage and current trajectories by applying a compiler-derived recovery transform.

The compiler specifies the produced circuit and associated recovery transform in the analog device

program language (ADPL) presented in Chapter 5.

Programming Challenges: Analog devices, including the HCDCv2, exploit the device physics to

implement computation directly with physical signals. While this direct computation is the key to

the energy efficiency of analog devices, it also requires produced ADP to operate successfully in the

presence of a variety of challenging physical phenomena. The compiler must address these challenges

when crafting a circuit:

∙ Operating Ranges: Physical properties such as voltage and currents have operating ranges

that limit the range of values a signal or value may take on. Each voltage or current must fall

within its respective operating range for the device to operate properly. If these operating

ranges are violated, the component may become damaged or fail to perform the computation

to specification. Each operating range is specified as a minimum and maximum signal value.

∙ Manufacturing Variations: Two blocks of the same type may not implement exactly the

same set of functions in practice due to variations introduced in the manufacturing process.

These manufacturing variations may cause the block’s behavior to deviate from the promised

specification. While hardware designers deploy hardware measures such as device calibration

to mitigate the effects of process variation, these hardware measures do not always fully

eliminate these variations in behavior.

183

∙ Frequency Limitations: Certain blocks may impose speed limitations on the target compu-

tation when operating under certain modes. The hardware designer imposes these frequency

limitations to ensure the block doesn’t operate in regimes where the frequency affects the

block behavior.

∙ Analog Noise and Digital Error: All analog signals are subject to some form of analog

noise. Similarly, all digital signals and fields are subject to quantization error. These sources

of error may have an outsized effect on signals with small amplitudes and dynamic ranges.

These noise and error characteristics may change depending on the block mode.

The compiler produces an unscaled ADP that directly maps the target dynamical system to the

analog hardware a scaled ADP that respects the physical constraints of the analog hardware:

∙ Unscaled ADP: The unscaled ADP maps the dynamical system to the analog device with-

out considering any of the physical restrictions and behaviors present in the device. The

physics of the unscaled ADP exactly match the dynamics of the dynamical system, provided

all of the blocks behave ideally under all conditions. The unscaled ADP typically cannot

be directly run on the analog hardware since it does not consider the physical constraints of

the device. The compiler produces the unscaled ADP during the circuit synthesis stage of

compilation. Refer to Chapter 7 and Chapter 8 for more information on circuit synthesis.

∙ Scaled ADP: The scaled ADP scales all signals and values in the circuit so that it executes

correctly given the operating range and frequency restrictions imposed on the hardware.

The scaled ADP preserves the original dynamics of the dynamical system so that it can

be recovered from the measured signals at runtime by applying an inverting transform. The

scaled ADP also compensates for any behavioral deviations and attenuates the effects of noise

and quantization error. The compiler produces each scaled ADP with a specific calibration

strategy in mind – this is necessary because the behavioral deviations present in the calibrated

blocks change depending on how the blocks are calibrated. Refer to Chapter 7 and Chapter 9

for more information on circuit synthesis.

The scaled ADP defines a scaling transform and recovery transform for the circuit. The

scaling transform comprises positive, constant magnitude scale factors that change the dy-

namic ranges and amplitudes of all the digital and analog signals and a time scale factor that

changes the speed of the simulation. The magnitude scale factors are defined in the scaled

ADP with scale statements and the time scale factor is defined in the scaled ADP with a

timescale statement.

The scaled ADP can be directly run on the analog hardware. The HCDCv2 runtime dis-

patches and executes the provided scaled ADP on the device on hand.

184

The compiler first produces an unscaled ADP which implements the target dynamical system.

The unscaled ADP configures the data fields and mode of each block instance and routes the block

instances together to form a circuit. The compiler then scales the unscaled ADP to produce the

scaled ADP. While computing the scaling transform, the compiler partially reconfigures the blocks

in the unscaled ADP to better scale the circuit. For example, the compiler may change the block

mode or alter the expressions mapped to expression data fields to obtain a better scaling transform.

∙ Cosine ADP: I first walk through the unscaled and scaled ADPs for the cosine benchmark

from Section 4.1. This example introduces all the concepts which will be used throughout the

chapter.

∙ Overview and Notation: I present a comprehensive overview of how the unscaled and

scaled ADPs are presented in this chapter. This overview also more formally introduces the

notation used in the cosine program.

∙ Unscaled ADPs: I present the unscaled ADPs for each benchmark application from Sec-

tions 4.2-4.12. I discuss the complexity of the unscaled ADP and describe how the signals

in the unscaled ADP relate to variables and expressions from the dynamical system. This

analysis also examines the signal dynamics of the unscaled circuit. The signal dynamics are

made up of symbolic expressions which describe the evolution of the currents and voltages in

the ADP over time. I demonstrate that the signal dynamics are semantically equivalent to

the dynamical system dynamics for the unscaled ADP.

∙ Scaled ADPs for Dynamical System Applications: I present the scaled ADPs for

each benchmark application from Sections 4.2-4.12. I provide an overview of how the scaling

transform scales the signals, values, and execution speed. For each scaled ADP, I present the

scaled dynamics of the circuit and demonstrate that the scaled dynamic preserves the original

dynamics of the system.

∙ Discussion: I discuss the overarching trends seen in the unscaled and scaled ADPs.

185

1 var V = integ(-P,0.0);
2 var P = integ(V, 1.0);
3 var Position = emit(0.6*P);
4 interval P = [-1,1];
5 interval V = [-1,1];
6 time 20;

Figure 6-1: Dynamical system specification for the cos benchmark

1 config block integ @ (0, 3, 2, 0) {
2 modes [(m,m,+)];
3 source V at z;
4 set z0 at 0.000;
5 }
6 config block integ @ (0, 3, 1, 0) {
7 modes [(m,m,+)];
8 source P at z;
9 set z0 at 0.500;

10 }
11 config block fanout @ (0, 3, 3, 1) {
12 modes [(+,+,-,m), (+,+,-,h)];
13 source P at x;
14 }
15 config block tout @ (0, 3, 0, 0) {
16 modes [(*)];
17 }
18 config block extout @ (0, 3, 2, 0) {
19 modes [(*)];
20 source Position at z;
21 }
22 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 3, 1);
23 conn block fanout port z2 loc (0, 3, 3, 1) with block integ port x loc (0, 3, 2, 0);
24 conn block integ port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 1, 0);
25 conn block fanout port z0 loc (0, 3, 3, 1) with block tout port x loc (0, 3, 0, 0);
26 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);

Figure 6-2: Unscaled ADP for cos benchmark

186

x

integ_0_3_2_0

z

x

integ_0_3_1_0

z

[modes]
(m,m,+)
[data]
z0=0.00
[labels]
z=V

x

fanout_0_3_3_1

z0 z1 z2

[modes]
(m,m,+)
[data]
z0=0.50
[labels]
z=P

x

extout_0_3_2_0

z

[modes]
(*)
[labels]
z=Position

x

tout_0_3_0_0

z

[modes]
(+,+,-,m)
(+,+,-,h)
[labels]
z0,z1=P
z2=((-1)*P)

[modes]
(*)

Figure 6-3: Circuit representation of unscaled ADP for the cos application

187

6.1 Simple Oscillator (cos)

Figure 6-1 presents the dynamical system for the simple oscillator application which was introduced

in Section 4.1. The dynamical system defines the state variables P and V and the observation variable

Position which observes the variable P over time.

Figure 6-2 presents the ADP which implements the simple oscillator dynamical system presented

in Figure 6-1. Figure 6-3 presents a diagram of the circuit implemented by the unscaled ADP. The

block instances (grey) have input ports (top boxes) and output ports (bottom boxes). The yellow

callout boxes in the figure present the configuration written to each block in the ADP. The blue

connections between ports route together the programmable blocks to implement the harmonic

oscillator. Refer to Section 5.7 for a complete analog device specification for the HCDCv2 analog

device. The above unscaled ADP performs the following operations:

∙ Data Fields and Modes: The compiler configures a subset of block instances available in

the HCDCv2 to implement the desired functions. Each block instance configuration sets the

modes and the data fields of the block. Lines 2,7,12,16, and 19 all set the modes for each

block instance. Lines 4 and 9 set the constant data field values that determine the initial

condition for the integrator blocks. The programming interface of each block is provided by

the device ADS.

∙ Connections: The compiler connects together input and output ports by enabling digitally

settable connections defined in the ADS. Lines 22-26 enable a subset of the available digitally

programmable connections on the device.

∙ Dynamical System Variables: The compiler maps analog signals at ports in the ADP to

dynamical system variables with source annotations. For each annotated port, the physics

the signal at that port implements the dynamics of the mapped dynamical system variable

or expression. Lines 8 and 3 map the the position P and velocity V to the analog currents

produced by the integrator (integ) blocks at location (0,3,1,0) and (0,3,2,0) respec-

tively. Line 13 maps the signal observation variable Position to the voltage at port z of the

observation (extout) block.

The above ADP uses two integrator (integ) blocks and a signal observation (extout) block

to implement the oscillator computation. The circuit also uses a current copier (fanout) block to

copy and negate the position P – these positive and negative copies of P are used to implement the

Position and V variables respectively. Note that analog currents must be copied to be used multiple

times in a circuit. The unscaled ADP also introduces a tout route block to make the connection

between the current copier and the observation block. This is necessary because the fanout block

at (0,3,3,1) and extout block at (0,3,2,0) cannot be directly connected.

188

V = integ((-1*P),(2*0))
P = integ(V,(2*0.50))

Position = emit(0.60*P)

Figure 6-4: Unscaled dynamics of the cos benchmark

6.1.1 Signal Dynamics of Unscaled ADP

The dynamics of the unscaled ADP are guaranteed to implement the dynamics of the dynamical

system presented in Figure 6-1. I derive a set of symbolic expressions which capture the time-

varying dynamics of the signals moving through the ports which implement the V, P, and Pos

dynamical system variables (Lines 3,8,20 of Figure 6-2). I derive each expression by traversing the

unscaled ADP and propagating the mapped dynamical system variables through the block input-

output relations through the circuit without simplification. The dynamics of the labeled signals are

presented as a collection of variable-expression assignments.

Figure 6-4 presents the symbolic expressions governing the dynamics of the analog currents

implementing P, V, and Pos. I derive each symbolic expression by propagating the dynamical system

variables through the input-output relations implemented by each of the configured blocks. The

above symbolic expressions contain digitally settable constant and expression data fields (blue),

dynamical system variables and expressions (dark blue), and block dynamics (black)

The above signal expressions do not syntactically match the starting dynamical system expres-

sions. The compiler instantiates the initial condition of the P variable to 0.50 to compensate for

the device coefficient 2.0. A device coefficient or device term is an algebraic term introduced by a

block. The compiler cannot directly modify device coefficients. The above ADP also uses device

coefficients when possible to implement dynamical system values. The compiler negates the P signal

and implements the coefficient 0.60 in the Position signal expression by leveraging the existing

block dynamics instead of introducing additional blocks.

Deriving the Dynamics of V

The ADP implements the variable V at output port z of the integ block at (0,3,2,0). The

current at z implements integ(x,2*z0) when the block mode is (m,m,+) and the data field z0 is

instantiated to 0.00:

V = integ(x,2*0.000)

I next to derive the dynamics of the analog signal supplied to the input port x. Looking at

the ADP, the negated position (-1)*P at port z2 of the fanout block is routed to port x of the

integrator block. The current at z2 of the current copier implements (-1)*x when the block mode

189

is set to either (+,+,-,m) or (+,+,-,h) mode:

V = integ((-1)*P,2*0.000)

The above symbolic expression describes the dynamics of the signal implementing the velocity

V. This symbolic expression perfectly captures the signal dynamics provided the HCDCv2 blocks

perfectly implement the input-output relations from the ADS block specifications.

6.1.2 Challenges with Running the Unscaled ADP

In practice, the unscaled ADP does not faithfully implement the described dynamical system on an

analog device for the following reasons:

∙ Frequency Limit Violations: The unscaled ADP directly maps the dynamical system

simulation time to hardware time. With this mapping, one unit of simulation time corresponds

to one unit of hardware integration time, which corresponds to 126000−1 units of wall-clock

time. The integration speed of the unscaled circuit is, therefore, 126 kHz. This integration

speed exceeds the maximum supported frequency of 80 kHz. The integrator blocks impose

this frequency restriction in the circuit.

∙ Not Recoverable: The above circuit targets an idealized model of the HCDCv2 analog

device. In this idealized model, each block of the same type in the circuit implements the

same set of input-output relations. In practice, these blocks implement functions which

deviate from the idealized dynamics of the block. For example, the integrators at (0,3,2,0)

and (0,3,1,0) are both expected to implement integ(x,2*z0) when in (m,m,+) mode.

However, in practice, these integrators implement (integ(0.9821*x, 0.7978*2*z0) and

integ(0.9786*x, 0.7417*2*z0) respectively when in (m,m,+) mode. The unscaled circuit

does not account for these behavioral variations which occur in practice in the device.

The unscaled ADP also fails to capitalize on the full abilities of the HCDCv2 platform. The

signals implementing V and P have a dynamic range of [-1,1] 𝜇A and the signal implementing the

Position variable has a dynamic range of [-0.60,0.60] V. The device supports analog currents ranging

from [-2,2] 𝜇A and analog voltages ranging from [-1.2,1.2] V. The signals which implement variables

in the unscaled ADP therefore only use half of the available dynamic range. This increases the

impact of noise on the computation.

The compiler scales the input analog device program to mitigate the above issues. This procedure

also modifies the mode for each block since the block mode affects the physical constraints and

behaviors of that block.

190

1 config block integ @ (0, 3, 2, 0) {
2 modes [(h,h,+)];
3 scale x = 1.116; scale z = 3.624; scale z0 = 0.465;
4 source V at z;
5 set z0 at 0.000;
6 }
7 config block integ @ (0, 3, 1, 0) {
8 modes [(h,m,+)];
9 scale x = 3.624; scale z = 1.116; scale z0 = 1.885;

10 source P at z;
11 set z0 at 0.500;
12 }
13 config block fanout @ (0, 3, 3, 1) {
14 modes [(+,+,-,m)];
15 scale x,z0,z1 = 1.116;
16 source P at x;
17 }
18 config block tout @ (0, 3, 0, 0) {
19 modes [(*)];
20 scale x,z = 1.116;
21 }
22 config block extout @ (0, 3, 2, 0) {
23 modes [(*)];
24 scale x,z = 1.116;
25 source Position at z;
26 }
27 timescale 0.306674
28 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 3, 1);
29 conn block fanout port z2 loc (0, 3, 3, 1) with block integ port x loc (0, 3, 2, 0);
30 conn block integ port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 1, 0);
31 conn block fanout port z0 loc (0, 3, 3, 1) with block tout port x loc (0, 3, 0, 0);
32 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);

Figure 6-5: Scaled dynamics of the cos benchmark

191

x

integ_0_3_2_0

z

x

integ_0_3_1_0

z

[modes]
(h,h,+)
[data]
z0=0.00
[labels]

z=V

z0=0.465
x=1.116
z=3.624

x

fanout_0_3_3_1

z0 z1 z2

[modes]
(h,m,+)
[data]
z0=0.50
[labels]

z=P

z0=1.885
x=3.624
z=1.116

x

extout_0_3_2_0

z

[modes]
(*)
[labels]
z=Position

x,z=1.116

x

tout_0_3_0_0

z

[modes]
(+,+,-,m)
[labels]
z0,z1=P
z2=((-1)*P)

x,z0,z1,z2=1.116

[modes]
(*) x,z=1.116

time scale factor
0.307

Figure 6-6: Circuit representation of scaled ADP for the cos benchmark

192

6.1.3 Scaled ADP

Figure 6-5 presents the scaled ADP for the harmonic oscillator. Figure 6-6 presents a diagram of

the circuit implemented by the scaled ADP. The teal boxes present the magnitude scale factors for

the port and data fields and the pink box presents the time scale factor. Lines 3,9,15,20, and 24

define the magnitude scale factors for the ports and data fields in the ADP. Line 27 defines the

time scale factor for the ADP. The defined scale transform scales execution time by 0.306674 –

the harmonic oscillator dynamics therefore evolve at 0.306674x the baseline execution speed of the

system. The magnitude of the signals implementing the V, P, and Position variables are scaled by

3.624, 1.116, and 1.116 respectively. The compiler scales the values supplied to data field z0 of

integrators (0,3,2,0) and (0,3,1,0) by 0.465 and 1.885 respectively.

The scaled ADP changes the modes of the integrator blocks at (0,3,2,0) and (0,3,1,0) to

from (m,m,+) to (h,h,+) and (h,m,+) respectively. The mode change from (m,m,+) to (h,h,+)

scales the initial condition of the integrated signal by 10 and increases the operating range of the

port x and z from [-2,2] to [-20,20]. The mode change from (m,m,+) to (h,m,+) scales the derivative

of the signal by 0.1 and integrates the operating range of port x from [-2,2] to [-20,20]. The scaled

ADP selects the (+,+,-,m) mode for the current copier block. This mode limits the operating range

at ports x, z0, z1, and z2 ports to [-2,2] 𝜇A. This compiler selects this mode from the (+,+,-,m)

and (+,+„-,h) modes specified in the unscaled ADP.

Execution: The HCDCv2 runtime executes the above scaled ADP by first applying the scal-

ing transform and then configuring the device to implement the transformed ADP. The runtime

then runs the configured circuit and records any externally accessible signals. For the above

ADP, the runtime would record the signal implementing the Position variable from port z of

the extout(0,3,2,0) block. The scaled ADP respects all of the physical constraints of the hard-

ware during execution. After execution, runtime recovers the original dynamics of the variables from

the recorded signals by inverting the scaling transform. I describe the scaling transform application

and inversion operators below:

∙ Applying the Transform: The scaling transform is applied by multiplying each digitally

settable data field by its magnitude scale factor. This automatically internally scales all the

signals within the circuit by their associated magnitude scale factors and scales the simulation

speed by the time scale factor. To apply the scaling transform in the above ADP, the data field

value provided to port z0 of integrator integ(0,3,1,0) is multiplied by 1.885 (1.885*0.50

= 0.9425) and the data field value provided to port z0 of the integrator integ(0,3,2,0) is

multiplied by 0.465 (0*0.465=0.0).

∙ Inverting the Transform: To recover the original dynamical system dynamics from the

collected signals, the scaling transform must be inverted. To apply the recovery transform,

193

the compiler divides the signal by the associated port’s magnitude scale factor and multiplies

each time sample, measured in wall-clock time, by the ADP’s time scale factor and the time

constant defined in the ADS. This inverted scaling transform is also referred to as the recovery

transform in this thesis. In the above ADP, the amplitude of the recorded Position signal is

divided by 1.116 – the magnitude scale factor associated with port z of the extout(0,3,2,0)

block. To recover simulation time, each time sample t𝑖 is multiplied by the time scale factor

0.306674 and the hardware time constant 126000. The conversion factor 0.306674*126000

translates the time samples from wall-clock time to dynamical system simulation time.

The scaled ADP has several key characteristics which enable it to account for the described

physical behaviors while also preserving the original dynamical system dynamics. I summarize these

properties below :

∙ Physically Realizable (Section 6.1.4): Each of the signals in the scaled ADP respects the

operating range and frequency limitations of the port accepting the signal. The scaled circuit

minimizes the effect of quantization error and analog noise on the computation.

∙ Recoverable (Section 6.1.5): The original simulation can be recovered by scaling the mag-

nitudes and times recorded at the sampled digital outputs by derived scaling factors. The

scaled ADP preserves the original dynamics of the dynamical system. To ensure the original

simulation is recoverable, the scaled ADP must preserve the original dynamics of the unscaled

circuit. The scaled ADP compensates for any behavioral deviations present in the device on

hand to preserve the original dynamics of the dynamical system. In the scaled ADP, the

dynamics of each scaled signal can be written as the idealized unscaled signal dynamics of

the signal times a constant coefficient. The idealized dynamics of each signal from the un-

scaled ADP can therefore be recovered by factoring out a constant coefficient from the scaled

dynamics of the target signal.

Note that because behavioral deviations change based on how the blocks are calibrated,

the scale transform targets blocks calibrated with a specific calibration strategy. The cos

application targets the maximize_fit calibration strategy provided by the HCDCv2.

These properties together enable the scaled ADP to be executed faithfully on the analog device

and ensure the inverting transform successfully recovers the original dynamics.

6.1.4 Physical Realizability of Scaled ADP

The scaled ADP presented in Figure 6-5 respects all of the operating range limitations and frequency

range limitations imposed by the HCDCv2:

194

∙ Operating Range Limitations: The magnitude of the signals implementing V, P, and

Position are scaled by 3.624, 1.116, and 1.116 respectively. The dynamic range of the V

signal changes from [-1,1] to [-3.624,3.624] and the dynamic range of the P signal changes from

[-1,1] to [-1.116,1.116] with the above scale transform. The dynamic range of the Position

signal changes from [-0.6,0.6] to [-0.6696,0.6696]. Because the signal implementing V is out-

side the operating range [-2,2], the compiler changes the block modes of the integ blocks

at (0,3,2,0) and (0,3,1,0) to (h,h,+) and (h,m,+) respectively. These modes support

signals between [-20,20] 𝜇A at ports z and x respectively. The scaled data field values 0.9425

and 0.00 both fall within the data field operating range of [-1,1].

∙ Frequency Limitations: The above circuit maps 3.26 units of hardware time to one unit

of simulation time. This corresponds to a simulation speed of 0.306674*126 or 38.640 kHz.

Therefore, the simulation speed of the scaled circuit does not exceed the maximum supported

execution speed of 80 kHz. This frequency is the maximum frequency supported by the

integrator block.

The scaled circuit scales the analog signals and digital values in the circuit to reduce the effect

of quantization error and noise on the computation:

∙ Maximize Data Field Values: All of the non-zero, digitally settable multiplier coefficients

are scaled to be as close to -1 or 1 as possible; these are the maximum supported digital values

for the blocks. This scaling strategy reduces the effect of quantization error on the digital

values. In the above scaled ADP, the data field value 0.50 (line 11) is scaled up from 0.50

to 0.9425.

∙ Maximize Signal Dynamic Ranges: All time-varying signals are scaled up to consume as

much of the port operating ranges as possible. This scaling strategy improves the signal-to-

noise ratio (SNR) for the scaled signals and reduces the effect of analog noise. The dynamic

range of V, P, and Position signals are all scaled up so that they occupy a larger dynamic

range.

195

V𝑠𝑐 = (3.6240*V)
= integ((3.2608*(0.9954*(1.1165*((-1)*P)))),((7.8000*2)*(0.4646*0)))

P𝑠𝑐 = (1.1165*P)
= integ((3.2608*(0.0945*(3.6240*V))),((0.5922*2)*(1.8852*0.5000)))

Position𝑠𝑐 = (1.1165*Position) = (0.6000*emit((1.1165*P)))

Figure 6-7: Scaled dynamics of the cos benchmark

6.1.5 Preservation of Original Dynamics in Scaled ADP

The compiler identifies a scaling transform preserves the original dynamics of the dynamical system.

The scale transform preserves the original dynamical system dynamics if the original dynamical

system variable trajectories can be recovered at runtime by applying a statically derived inverting

transform. For the derived scaling transform to preserve the original dynamical system dynamics, the

scaled signal dynamics must simplify to the original unscaled signal dynamics times the magnitude

scale factor of the variable. If this property holds, then the original dynamics can be recovered

by applying the inverting transform. The computed scaling transform must also compensate for

behaviors that may compromise the integrity of the scaled signals:

∙ Behavioral Deviations in Calibrated Blocks: The computed scaling transform must

compensate for any empirically observed behavioral variations in the calibrated blocks. For

the HCDCv2, these behavioral deviations for the target calibration strategy are retrieved

from the delta model database introduced in Chapter 5. The scaling transform compensates

for the correctable delta model parameters in each delta model.

∙ Mode Changes: The compiler occasionally changes the assigned block modes when scaling

the ADP. In some cases, changing the block mode may also change the input-output relation

implemented by the block. The computed scaling transform must correct for any changes in

block behavior that arise from changing the block mode.

Figure 6-7 presents the scaled signal dynamics for the scaled signals V𝑠𝑐, P𝑠𝑐, and Positions𝑠𝑐

(Lines 3,8,11 of Figure 6-5) which implement V, P, and Position dynamical system variables. Each of

the above signal relations contains magnitude and time scale factors (red) and compensation terms

(grey). The compensation terms capture the effect of empirically observed behavioral deviations

and changes to the block mode on the computation.

∙ Scaled Signals and Values: The scaled signal relations reference two data field scale factors,

three variable scale factors, and one time scale factor (3.624−1 =0.306). The scaled circuit

scales the data fields implementing 0 and 0.500 by 0.465 and 1.885 respectively. The scaled

circuit scales the V, P, and Position variables by 3.624x, 1.116x, and 1.116x respectively.

∙ Compensation Terms: The 0.995 and 0.592 compensation terms capture the empirically

observed block instance-specific gain terms present in the integrator blocks. The 0.448e-02

196

and 7.800 compensation terms capture both the effects of a block mode change and model

the behavioral deviations found on the device. The 0.995 compensation term captures an

imperfection in the calibrated block which causes the input signal x to be scaled 0.995. The

7.800 compensation term captures the effect of changing the block mode from (m,m,+) to

(h,h,+) and the empirically observed behavior of the calibrated block. In the unscaled circuit,

the initial condition of the integrated signal is 2.0*z0. In the scaled circuit presented above,

the scaled initial condition is 20.0*0.78*z0; this is 7.8x larger than the initial condition of

the unscaled circuit.

∙ Execution Speed: The speed of the scaled computation is 0.306x the baseline integration

speed of the device. The scaled signals evolve 0.306x more slowly than the dynamical system

dynamics, relative to the baseline integration speed of the device (as defined in the ADS).

The compiler exploits a property of dynamical systems when designing the scaling transform

– this property enables the compiler to tune the execution speed of the dynamical system. If

all derivatives are scaled by some coefficient 𝛼, then the simulation evolves at 𝛼x the baseline

execution speed. Refer to Section3.1.2 for more information on how the compiler is able to

adjust the speed of the dynamical system.

The 0.306−1=3.2608 term sets the simulation speed by leveraging the above dynamical

system property. This coefficient is introduced into the derivative of each state variable in the

scaled ADS. The 3.6208 term sets the ratio between the scaled variable and the derivative

of the scaled variable. In the above equations, the derivative of V is scaled by 0.9954*1.1165

= 1.111. This scale factor is 0.306x smaller than 3.624, the magnitude scale factor of V.

Signal Preservation: In the scaled ADP, each scaled signal preserves the original signal dynamics

from the unscaled ADP (blue, dark blue, and black terms). For example, the original dynamics

of V can be recovered from the scaled signal V𝑠𝑐 since the following equality relation holds:

V𝑠𝑐=(3.6240*V)=integ((3.2608*(0.9954*(1.1165*((-1)*P)))),((7.8000*2)*(0.4646*0)))

I next show that this equality relation holds.I first factor out an expression of scale factors and

compensation terms (red and grey terms) from the right-hand side of the relation.

V𝑠𝑐=(3.6240*V) = integ((3.2608*0.9954*1.1165)*((-1)*P),((7.8000*0.4646)*(2*0)))

V𝑠𝑐=(3.6240*V) = integ((3.6240)*((-1)*P),((3.6240)*(2*0)))

V𝑠𝑐=(3.6240*V) = (3.6240)*integ(((-1)*P),2*0)

V𝑠𝑐=(3.6240*V) = (3.6240)*V

I first factor out the scale factors and compensation terms from the derivative and initial condi-

tion expressions in the integration operator. The expression 3.2608*0.9954*1.1165 can be factored

197

out of the derivative of V𝑠𝑐. This expression simplifies to 3.6240, the magnitude scale factor of V. The

scale expression 7.800*0.4646 can be factored out of the initial value V(0) of V𝑠𝑐. This expression

simplifies to 3.624, the magnitude scale factor of V.

I then simplify these expressions to the constant value 3.624. Because both the initial condition

and derivative are scaled by the same amount, I can factor out the 3.624 from the integration opera-

tor. The integ((-1)*P, 2*0) expression matches the signal dynamics for V presented in Figure 6-4.

I am therefore able to manually confirm that the right-hand side of the scaled signal relation equals

the unscaled dynamics of the signal times an expression of symbolic terms which simplifies to the

magnitude scale factor 3.624. The scaled signal dynamics presented above, therefore, preserve the

original dynamics of the velocity of the harmonic oscillator.

Preservation of Signal Dynamics in Scaled ADP

The compiler produces scaled ADPs that preserve the original signal dynamics from the unscaled

ADP. This preservation property also preserves the dynamical system dynamics. For the cos

application, the compiler produces a scaled ADP which preserves the original dynamical system

dynamics presented in Figure 6-2. I can confirm that the scaled ADP preserves the original dynamics

by analyzing the scaled signals presented in Figure 6-5:

∙ V variable: The scale expressions for the derivative and initial condition of the signal both

simplify to 3.624, the magnitude scale factor for V:

V𝑠𝑐’ = 3.6240*V’ = 3.261*0.995*1.116*((-1)*P)

V𝑠𝑐(0) = 3.6240*V(0) = 7.800*0.465*0.0

∙ P variable: The scale factors for the derivative and initial condition of the signal both simplify

to 1.116, the magnitude scale factor of P:

P𝑠𝑐’ = 1.116*P’ = 3.261*9.448e-02*3.624*V

P𝑠𝑐(0) = 1.116*P(0) = 0.592*1.885*0.5

∙ Position variable: The scale expression factored from the dynamics of the signal matches

the magnitude scale factor of the Position variable:

Position𝑠𝑐 = 1.116*Position = 0.6*(1.116*P)

6.2 Notation and Overview

The remainder of this chapter presents the unscaled and scaled signal dynamics for each of the

benchmarks for each benchmark application presented in Chapter 4. I present the following for each

198

benchmark application:

∙ Original Dynamical System: I present the original dynamical system dynamics. Each

dynamical system is written in the dynamical system specification language introduced in

Chapter 3.

∙ Unscaled and Scaled ADP: I present the unscaled and scaled ADPs for the target appli-

cations. I discuss the complexity of the unscaled ADP and describe any mode changes made

in the scaled ADP.

∙ Unscaled and Scaled Signal Dynamics: I present the unscaled and scaled signal dynamics

for the target applications. I discuss the magnitude and time scale factors for each scaling

transform and discuss what behaviors each of the compensation terms captures.

∙ Demonstration of Signal Preservation: I demonstrate that the computed scaling trans-

form preserves the dynamics of the unscaled circuit.

6.2.1 Unscaled Signal Dynamics

This analysis presents the dynamics of each signal in the unscaled ADP. The unscaled signal dy-

namics contains the following kinds of terms:

∙ Data Field Values (blue): The signal dynamics contains the values written to digitally-

programmable constant and expression data fields.

∙ Dynamical System Variables(dark blue): The signal dynamics contains dynamical sys-

tem variables and expressions. These variables represent analog signals at ports in the ADP

with source annotations.

∙ Block Dynamics(black): The signal dynamics contains block dynamics, as defined by the

input-output relations in the ADS. Coefficients and terms which are part of the block dynam-

ics are referred to as device coefficients or device terms in this analysis. The compiler must

therefore compensate for these device coefficients. The produced unscaled ADPs compensate

for these behaviors in a few ways:

6.2.2 Syntactic Matching

I often discuss to what extent the signal dynamics syntactically match the dynamical system dy-

namics. For a signal expression to syntactically match a dynamical system expression, it must use

the exact same operators, variables, and values in exactly the same order. Term reordering is only

allowed for associative operators. For example, A+B and B+A syntactically match for this definition

of syntactic matching.

199

6.2.3 Scaled Signal Dynamics

This analysis also presents the dynamics of each signal in the scaled ADP. Like the unscaled signal

dynamics, the scaled signal dynamics contain data field values, dynamical system variables, and

terms describing the block dynamics. The scaled dynamics of each signal also introduces the following

new constructs:

∙ Time and Magnitude Scale Factors (red): The compiler derives a scaling transform

comprised of time and magnitude scale factors. The scale transform is applied by multiplying

each data field by a magnitude scale factor. All other scale factors which appear in the scaled

signal expression are implicitly set by applying the magnitude scale factors to the ADP data

fields.

∙ Injected Coefficients(purple): the compiler injects coefficients into the expressions imple-

mented by expression data fields to more freely scale the ADP. See the pend application for

an example of how scaling transform uses injected coefficients.

∙ Compensation Terms (grey): The scaled signal dynamics incorporate compensation terms

that model the effect of empirically observed behavioral variations and changes to the block

mode on the block’s behavior.

The scaled signal expression matches the unscaled signal expression if all of the compensation

terms, scale factors, and injected variables are eliminated or factored out of the expression.

6.2.4 Signal Preservation

The original dynamical system dynamics can be recovered from the scaled adp at runtime because

the scaled ADP preserves the original dynamical system dynamics. The compiler produces scaled

ADPs which preserve the signal dynamics from the unscaled ADP and the original dynamical

system dynamics. The preservation property is described below:

∙ Preservation Property: Consider a relation describing the scaled signal dynamics of the

form V𝑠𝑐 = x*V = E𝑠𝑐 where V is a dynamical system variable and x is a positive, real number.

The scaled signal dynamics perserves the original dynamics of the variable V = E if a constant

coefficient y can be factored out of E such that y*E= E𝑠𝑐 and y=x.

For each application, I show how the scaled signal dynamics preserves the original behavior

of the unscaled circuit. Because of the way I choose to formulate the scaled circuit dynamics in

this chapter, I can show that the y*E=E𝑠𝑐 property holds by factoring out an expression E𝑦 which

contains all of the scale factors, compensation terms, and injected coefficients from the scaled signal

expression E𝑠𝑐. The E𝑦 expression simplifies to the constant value y. I present a shorthand for

200

demonstrating signal preservation for four types of signals (I-IV). This shorthand is used to more

compactly show preservation for the benchmark applications:

(type I) Variable Assignment: Consider a scaled variable-expression assignment with no addi-

tion operators V𝑠𝑐 = x*V = E_sc which preserves the original dynamics of the signal V = E. For

each signal of this form, I factor out an expression E𝑦 of scale factors, compensation terms, and

injected coefficients from E𝑠𝑐 such that E𝑦*E = E𝑠𝑐. I can then simplify E_y to obtain the constant

value scf(y) which equals scf(x). Provided E𝑦 = x and E𝑦*E = E𝑠𝑐, this scaled signal expression

preserves the original dynamics of the signal:

1 V𝑠𝑐 = x*V = E𝑠𝑐

2 V𝑠𝑐 = x*V = E𝑦*E

3 V𝑠𝑐 = x*V = y*E

4 V𝑠𝑐 = x*V = x*E

5 V𝑠𝑐 = x*V = x*V

I compactly represent the above derivation for signals of this type with the following notation:

V x = E𝑦

(type II) Variable Assignment with Addition: Consider a scaled variable-expression assign-

ment with addition operators V𝑠𝑐 = x*V = E𝑠𝑐,1+E𝑠𝑐,2+...+E𝑠𝑐,𝑛 which preserves the original dy-

namics of the signal V = E1+E2+...+E𝑛. For each E𝑠𝑐,𝑖 expression, I factor out an expression E𝑦,𝑖

of scale factors, compensation terms, and injected coefficients such that E𝑦,𝑖*E𝑖 = E𝑠𝑐,𝑖. I can then

simplify each E𝑦,𝑖 to obtain the constant value y which equals x. Provided E𝑦,𝑖 = x and E𝑦,𝑖*E𝑖 =

E𝑠𝑐,𝑖, than the sum of signals preserves the original dynamics:

1 V𝑠𝑐 = x*V = E𝑠𝑐,1+E𝑠𝑐,2+...+E𝑠𝑐,𝑛

2 V𝑠𝑐 = x*V = E𝑦,1*E1+E𝑦,2*E2+...+E𝑦,𝑛*E𝑛

3 V𝑠𝑐 = x*V = y1*E1+y2*E2+...+y𝑛*E𝑛

4 V𝑠𝑐 = x*V = x*E1+x*E2+...+x*E𝑛

5 V𝑠𝑐 = x*V = x*(E1+E2+...+E𝑛)

6 V𝑠𝑐 = x*V = x*V

I compactly represent the above derivation for signals of this type with the following notation:
E1 x = E𝑦,1

...

E𝑛 x = y𝑦,𝑛
(type III) Differential Equation:Consider a scaled differential equation V𝑠𝑐 = x*V = integ(E𝑠𝑐,1,E𝑠𝑐,2)

which preserves the original dynamics of the signal V = integ(E1,E2). For each signal E𝑠𝑐,𝑖, I fac-

tor out an expression E_y,i of scale factors, compensation terms, and injected coefficients such

201

that E𝑦,𝑖*E𝑖 = E𝑠𝑐,𝑖. I can then simplify each E𝑦,𝑖 to obtain the constant value y which equals x.

Provided E𝑦,1 = E𝑦,2 = x, E𝑦,2*E2 = E𝑠𝑐,2, and E𝑦,1*E1 = E𝑠𝑐,1, than the integrated signal preserves

the original dynamics:
V𝑠𝑐 = x*V = integ(E𝑠𝑐,1,E𝑠𝑐,2)

V𝑠𝑐 = x*V =
∫︀

E𝑠𝑐,1 V𝑠𝑐(0) = x*V(0) = E𝑠𝑐,2

V𝑠𝑐 = x*V =
∫︀

E𝑦,1*E1 V𝑠𝑐(0) = x*V(0) = E𝑦,2*E2

V𝑠𝑐 = x*V =
∫︀

y1*E1 V𝑠𝑐(0) = x*V(0) = y2*E2

V𝑠𝑐 = x*V = x*(
∫︀

E1) V𝑠𝑐(0) = x*V(0) = x*(E2)

V𝑠𝑐 = x*V x*integ(E1,E2)

V𝑠𝑐 = x*V x*V
I compactly represent the above derivation for signals of this type with the following notation:

V x = E𝑦,1

V(0) x = E𝑦,2
(type IV) Differential Equation with Addition:Consider a scaled differential equation V𝑠𝑐

= x*V = integ(E𝑠𝑐,1+...+E𝑠𝑐,𝑛,E𝑛+1) which preserves the original dynamics of the signal V =

integ(E1+...+E𝑛,E𝑛+1). For each scaled expression E𝑠𝑐,𝑖, I factor out an expression E𝑦,𝑖 of scale

factors, compensation terms, and injected coefficients for both the derivative expressions such that

E𝑦,𝑖*E𝑖 = E𝑠𝑐,𝑖. Each expression E𝑦,𝑖 simplifies to the constant value y_i which equals x. Provided

E𝑦,𝑖 = x and E𝑦,𝑖*E𝑖 = E𝑠𝑐,𝑖, then the integrated signal preserves the original dynamics:

V𝑠𝑐 = x*V =
∫︀

E𝑠𝑐,1+...+E𝑠𝑐,𝑛 V𝑠𝑐(0) = x*V(0) = E𝑠𝑐,𝑛+1

V𝑠𝑐 = x*V =
∫︀

E𝑦,1*E1+...+E𝑦,𝑛*E𝑛 V𝑠𝑐(0) = x*V(0) = E𝑦,𝑛+1*E𝑛+1

V𝑠𝑐 = x*V =
∫︀

y1*E1+...+y𝑛*E𝑛 V𝑠𝑐(0) = x*V(0) = y𝑛+1*E𝑛+1

V𝑠𝑐 = x*V =
∫︀

x*E1+...+x*E𝑛 V𝑠𝑐(0) = x*V(0) = x*E𝑛+1

V𝑠𝑐 = x*V =
∫︀

x*(E1+...+E𝑛) V𝑠𝑐(0) = x*V(0) = x*E𝑛+1

V𝑠𝑐 = x*V = x*integ(E1+...+E𝑛,E𝑛+1)
I compactly represent the above derivation for signals of this type with the following notation:

E1 x = E𝑦,1

...

E𝑛 x = E𝑦,𝑛

V(0) x = E𝑦,𝑛+1

Note that the signal preservation rules are guaranteed to hold if the involved expression E equals

zero. This is because zero remains the same regardless of what it is multiplied with.

202

1 var V = integ(-0.22*V - 0.84*P,-2.0);

2 var P = integ(V, 9.0);

3 var Position = emit(P);

4 interval P = [-10,10];

5 interval V = [-10,15];

6 time 20;

Figure 6-8: Dynamical system specification for cosc benchmark

1 config block integ @ (0, 3, 2, 0) {
2 modes [(m,m,+)]; source V at z; set z0 at -1.000; }
3 config block integ @ (0, 3, 0, 0) {
4 modes [(m,m,+)]; source P at z; set z0 at 4.500; }
5 config block mult @ (0, 3, 3, 0) {
6 modes [(x,m,m), (x,h,h)]; set c at -0.840; }
7 config block mult @ (0, 3, 2, 1) {
8 modes [(x,m,m), (x,h,h)]; set c at -0.220; }
9 config block mult @ (0, 3, 0, 0) {

10 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
11 config block extout @ (0, 3, 2, 0) {
12 modes [(*)]; source Position at z; }
13 config block fanout @ (0, 3, 2, 1) {
14 modes [(+,+,+,m), (+,+,+,h)]; source V at z0; source V at z1;
15 source V at z2; }
16 config block fanout @ (0, 3, 3, 0) {
17 modes [(+,+,+,m), (+,+,+,h)]; source P at z0; source P at z1;
18 source P at z2; }
19 config block tout @ (0, 3, 0, 0) {
20 modes [(*)]; }
21 conn block mult port z loc (0, 3, 3, 0) with block integ port x loc (0, 3, 2, 0);
22 conn block mult port z loc (0, 3, 2, 1) with block integ port x loc (0, 3, 2, 0);
23 conn block mult port z loc (0, 3, 0, 0) with block tout port x loc (0, 3, 0, 0);
24 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
25 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 1);
26 conn block integ port z loc (0, 3, 0, 0) with block fanout port x loc (0, 3, 3, 0);
27 conn block fanout port z0 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 3, 0);
28 conn block fanout port z1 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 0, 0);
29 conn block fanout port z0 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 2, 1);
30 conn block fanout port z1 loc (0, 3, 2, 1) with block integ port x loc (0, 3, 0, 0);

Figure 6-9: Unscaled ADP of cosc benchmark

1 V = integ((((-0.84)*P))+(((-0.22)*V)),(2*(-1)))
2 P = integ(V,(2*4.50))
3 Position = emit((0.60*(1.67*P)))

Figure 6-10: Signal dynamics of unscaled ADP for cosc benchmark

203

1 config block integ @ (0, 3, 2, 0) {
2 modes [(h,m,+)]; scale x = 0.811; source V at z; scale z = 0.121; set z0 at -1.000;
3 scale z0 = 0.135; }
4 config block integ @ (0, 3, 0, 0) {
5 modes [(m,m,+)]; scale x = 0.121; source P at z; scale z = 0.188; set z0 at 4.500;
6 scale z0 = 0.209; }
7 config block mult @ (0, 3, 3, 0) {
8 modes [(x,m,h)]; scale x = 0.188; scale y = 1.000; scale z = 0.811; set c at -0.840;
9 scale c = 0.439; }

10 config block mult @ (0, 3, 2, 1) {
11 modes [(x,m,h)]; scale x = 0.121; scale y = 1.000; scale z = 0.811; set c at -0.220;
12 scale c = 0.714; }
13 config block mult @ (0, 3, 0, 1) {
14 modes [(x,m,m)]; scale x = 0.188; scale y = 1.000; scale z = 0.105; set c at 1.667;
15 scale c = 0.566; }
16 config block extout @ (0, 3, 2, 0) {
17 modes [(*)]; scale x = 0.105; source Position at z; scale z = 0.105; }
18 config block fanout @ (0, 3, 2, 1) {
19 modes [(+,+,+,m)]; scale x = 0.121; source V at z0; scale z0 = 0.121;
20 source V at z1; scale z1 = 0.121; source V at z2; scale z2 = 0.121; }
21 config block fanout @ (0, 3, 3, 1) {
22 modes [(+,+,+,m)]; scale x = 0.188; source P at z0; scale z0 = 0.188;
23 source P at z1; scale z1 = 0.188; source P at z2; scale z2 = 0.188; }
24 config block tout @ (0, 3, 0, 0) {
25 modes [(*)]; scale x = 0.105; scale z = 0.105; }
26 conn block mult port z loc (0, 3, 3, 0) with block integ port x loc (0, 3, 2, 0);
27 conn block mult port z loc (0, 3, 2, 1) with block integ port x loc (0, 3, 2, 0);
28 conn block mult port z loc (0, 3, 0, 1) with block tout port x loc (0, 3, 0, 0);
29 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
30 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 1);
31 conn block integ port z loc (0, 3, 0, 0) with block fanout port x loc (0, 3, 3, 1);
32 conn block fanout port z0 loc (0, 3, 3, 1) with block mult port x loc (0, 3, 3, 0);
33 conn block fanout port z1 loc (0, 3, 3, 1) with block mult port x loc (0, 3, 0, 1);
34 conn block fanout port z0 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 2, 1);
35 conn block fanout port z1 loc (0, 3, 2, 1) with block integ port x loc (0, 3, 0, 0);
36 timescale 0.634921

Figure 6-11: Scaled ADP of cosc benchmark

1 V𝑠𝑐 = (0.1206*V) = integ((1.5750*(0.0944*((9.8309*((0.4392*(-0.8400))*(0.1878*P))))

2 +((9.4169*((0.7139*(-0.2200))*(0.1206*V)))))),((0.8906*2)*(0.1354*(-1))))

3 P𝑠𝑐 = (0.1878*P) = integ((1.5750*(0.9885*(0.1206*V))),((0.8964*2)*(0.2095*4.5000)))

4 Position𝑠𝑐 = (0.1052*Position) = (0.6000*emit((0.9906*((0.5656*1.6665)*(0.1878*P)))))

Figure 6-12: Scaled dynamics for the cosc benchmark

204

6.3 Dynamical System Applications

I next present the unscaled and scaled ADPs for each benchmark application from Sections 4.2-

4.12. For each unscaled ADP, I discuss the complexity of the circuit and describe how the signals in

the unscaled ADP relate to variables and expressions from the dynamical system. For each scaled

ADP, For each scaled ADP, I discuss the characteristics of the scaling transform, present the scaled

dynamics of the circuit, and demonstrate that the scaled signal dynamics preserves the original

dynamics of the system.

6.3.1 Dampened Harmonic Oscillator (cosc)

Figure 6-8 presents the dynamical system specification for the cosc application. The cosc applica-

tion defines the P and V state variables and the Position variable:

var V = integ(-0.22*V - 0.84*P,-2.0);

var P = integ(V, 9.0);

var Position = emit(P);

The Unscaled ADP

Figure 6-9 presents the unscaled ADP for the cosc application. The ADP uses three multipliers,

two current copiers, two integrators, one routing (tout) block, and one observation (extout) block.

Lines 21-30 enable the nine connections necessary to form the desired circuit. The circuit contains

has five constant data fields which provide the values -1, 4.5, -0.840, -0.220, and 1.667 to the

circuit.

Figure 6-10 presents the physics of the labeled signals at lines 2,4,11 of the unscaled ADP. The

ADP implements V and P with analog currents and Position with an analog voltage:

V = integ((((-0.84)*P)+((-0.22)*V)),(2*(-1)))

P = integ(V,(2*4.50))

Position = emit((0.60*(1.67*P)))

The dynamics of the V, P, and Position signals all fail to syntactically match the dynamical system

dynamics presented above.

∙ V: The compiler implements the initial condition 2 as 2*-1, where 2 is a device term and -1

is a data field. This signal is the analog current at port z of integrator (0,3,2,0).

∙ P: The compiler implements the initial condition 9 as 2*4.5, where 2 is a device term and

4.5 is a data field. This signal is the analog current at port z of integrator (0,3,0,0).

205

∙ Position(observation block (0,3,2,0),port z): The compiler introduces the 1.67 data field

to compensate for the 0.60 device term. This signal is the analog voltage at port z of

observation block (0,3,2,0).

The Scaled ADP

Figure 6-11 presents the scaled ADP for the cosc application. The scaled ADP contains 5 data

field scale factors, three variable scale factors, and one time scale factor. The scaled ADP defines

a total of 30 magnitude scale factors and one time scale factor (0.6349). The speed of the scaled

computation is therefore 0.6349x the baseline integration speed of the device. The compiler also

selectively changes the block modes to more effectively scale the circuit. Some of these block mode

modifications change the input-output relation implemented by the block. The block mode changes

which change the block input-output relations are summarized below:

block location mode (unscaled ADP) mode (scaled ADP)

integ (0, 3, 2, 0) [(m,m,+)] (h,m,+)

mult (0, 3, 3, 0) [(x,m,m), (x,h,h)] (x,m,h)

mult (0, 3, 2, 1) [(x,m,m), (x,h,h)] (x,m,h)

Columns 1 and 2 specify the block instances, and Columns 3 and 4 present the modes assigned to

the block instance in the unscaled and scaled ADPs, respectively. The scaling transform compensates

for all changes to the input-output relation. Each of these mode changes alters the input-output

relation implemented at the output ports of the block:

∙ integrator (0,3,2,0): The compiler changes the mode from (m,m,+) to (h,m,+). This

modification scales the derivative signal by 0.1 and increases the supported operating range

of the derivative signal.

∙ multipliers: The compiler changes the multiplier modes from (x,m,m) or (x,h,h) to (x,m,h).

This modification scales the output signal by 10 but reduces the supported operating range

of the input signal (relative to (x,h,h)).

Figure 6-12 presents the physics of the scaled signals implementing the V, P, and Position

dynamical system variables:

V𝑠𝑐 = (0.1206*V) = integ((1.5750*(0.0944*((9.8309*((0.4392*(-0.8400))*(0.1878*P)))

+(9.4169*((0.7139*(-0.2200))*(0.1206*V)))))),((0.8906*2)*(0.1354*(-1))))

P𝑠𝑐 = (0.1878*P) = integ((1.5750*(0.9885*(0.1206*V))),((0.8964*2)*(0.2095*4.5000)))

Position𝑠𝑐 = (0.1052*Position) = (0.6000*emit((0.9906*((0.5656*1.6665)*(0.1878*P)))))

206

The compiler scales the V, P, and Position signals by 0.1206,0.1878, and 0.1052 respectively.

The compiler scales the data fields values 0.84, -0.22, -1, 4.5, and 1.667 by 0.439, 0.714, 0.135,

0.209, and 0.566 respectively.

All compensation terms capture the behavioral deviations present in the device. The 0.0945

compensation term additionally captures the effect of the integrator mode change on the compu-

tation. The 9.831 and 9.417 compensation terms additionally capture the effect of changing the

multiplier mode on the computation. The 0.891, 0.989, and 0.896 compensation terms only cap-

ture the behavioral deviations of the blocks.

Preservation: The scale factors (red) and compensation terms (grey) can be eliminated from the

physics of each scaled signal:

∙ V variable (IV): The scale factor for each term in the derivative and the initial condition all

simplify to 0.121, the magnitude scale factor of the variable V:

-0.84*P 0.121 = 1.575*9.445e-2*9.831*0.439*0.188

-0.22*V 0.121 = 1.575*9.445e-2*9.417*0.714*0.121

V(0) 0.121 = 0.891*0.135

∙ P variable (III): The scale factor for the derivative and the the initial condition all simplify

to 0.188, the magnitude scale factor of the variable P:

P’ 0.188 = 1.575*0.989*0.121

P(0) 0.188 = 0.896*0.209

∙ Position variable (I): The signal expression for the Position signal simplifies to 0.1052,

the magnitude scale factor for the position variable Position:

Position 0.1052 =0.9906*0.5656*0.1878

207

1 func sinf(T) = sin(T)
2 var angvel = integ(-0.18*angvel-0.8*call(sinf,ang),-1.0);
3 var ang = integ(angvel, 1.0);
4 var Angle = emit(ang);
5 interval ang = [-1.5,1.5];
6 interval v = [-1.5,1.5];
7 time 20;

Figure 6-13: Dynamical system specification for pend benchmark

1 config block lut @ (0, 3, 2, 0) {
2 modes [(*)]; set e at (1*(0.05*((-0.80)*sin((2*(1*y)))))); }
3 config block adc @ (0, 3, 2, 0) { modes [(m)]; }
4 config block dac @ (0, 3, 2, 0) {
5 modes [(dyn,h)]; set c at 0.000; }
6 config block integ @ (0, 3, 3, 0) {
7 modes [(m,m,+)]; source angvel at z; set z0 at -0.500; }
8 config block integ @ (0, 3, 1, 0) {
9 modes [(m,m,+)]; source ang at z; set z0 at 0.500; }

10 config block mult @ (0, 3, 1, 0) {
11 modes [(x,m,m), (x,h,h)]; set c at -0.180; }
12 config block mult @ (0, 3, 3, 0) {
13 modes [(x,m,m), (x,h,h)]; set c at 1.000; }
14 config block mult @ (0, 3, 3, 1) {
15 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
16 config block extout @ (0, 3, 2, 0) {
17 modes [(*)]; source Angle at z; }
18 config block fanout @ (0, 3, 3, 0) {
19 modes [(+,+,+,m), (+,+,+,h)]; source angvel at z0; source angvel at z1;
20 source angvel at z2; }
21 config block fanout @ (0, 3, 3, 1) {
22 modes [(+,+,+,m), (+,+,+,h)]; source ang at z0; source ang at z1;
23 source ang at z2; }
24 config block tout @ (0, 3, 0, 0) { modes [(*)]; }
25 conn block adc port z loc (0, 3, 2, 0) with block lut port x loc (0, 3, 2, 0);
26 conn block lut port z loc (0, 3, 2, 0) with block dac port x loc (0, 3, 2, 0);
27 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 3, 0);
28 conn block dac port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 3, 0);
29 conn block mult port z loc (0, 3, 3, 0) with block integ port x loc (0, 3, 1, 0);
30 conn block mult port z loc (0, 3, 3, 1) with block tout port x loc (0, 3, 0, 0);
31 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
32 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 3, 0);
33 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 3, 1);
34 conn block fanout port z0 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 1, 0);
35 conn block fanout port z1 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 3, 0);
36 conn block fanout port z0 loc (0, 3, 3, 1) with block adc port x loc (0, 3, 2, 0);
37 conn block fanout port z1 loc (0, 3, 3, 1) with block mult port x loc (0, 3, 3, 1);

Figure 6-14: Unscaled ADP of pend benchmark

1 angvel = integ((((-0.18)*angvel))+((20*(0.05*((-0.80)*sin((2*(0.50*ang))))))),

2 (2*(-0.50)))

3 ang = integ((1*angvel),(2*0.50))

4 Angle = emit((0.60*(1.67*ang)))

Figure 6-15: Signal dynamics of unscaled ADP for for pend benchmark

208

1 config block lut @ (0, 3, 2, 0) {
2 modes [(*)]; scale x = 1.257; scale z = 23.564;
3 set e at (23.5645*(0.0500*((-0.8000)*sin((2*(0.7957*y)))))); scale e = 23.564; }
4 config block adc @ (0, 3, 2, 0) {
5 modes [(m)]; scale x = 1.204; scale z = 1.257; }
6 config block dac @ (0, 3, 2, 0) {
7 modes [(dyn,m)]; scale x = 23.564; scale z = 2.176; set c at 0.000; scale c = 1.000; }
8 config block integ @ (0, 3, 3, 0) {
9 modes [(h,m,+)]; scale x = 2.176; source angvel at z; scale z = 0.653;

10 set z0 at -0.500; scale z0 = 0.712; }
11 config block integ @ (0, 3, 1, 0) {
12 modes [(m,m,+)]; scale x = 0.390; source ang at z; scale z = 1.204; set z0 at 0.500;
13 scale z0 = 1.299; }
14 config block mult @ (0, 3, 1, 0) {
15 modes [(x,m,m)]; scale x = 0.653; scale y = 1.000; scale z = 2.176; set c at -0.180;
16 scale c = 3.353; }
17 config block mult @ (0, 3, 3, 0) {
18 modes [(x,m,m)]; scale x = 0.653; scale y = 1.000; scale z = 0.390; set c at 1.000;
19 scale c = 0.601; }
20 config block mult @ (0, 3, 3, 1) {
21 modes [(x,m,m)]; scale x = 1.204; scale y = 1.000; scale z = 0.679; set c at 1.667;
22 scale c = 0.566; }
23 config block extout @ (0, 3, 2, 0) {
24 modes [(*)]; scale x = 0.679; source Angle at z; scale z = 0.679; }
25 config block fanout @ (0, 3, 3, 0) {
26 modes [(+,+,+,m)]; scale x = 0.653; source angvel at z0; scale z0 = 0.653;
27 source angvel at z1; scale z1 = 0.653; source angvel at z2; scale z2 = 0.653; }
28 config block fanout @ (0, 3, 3, 1) {
29 modes [(+,+,+,m)]; scale x = 1.204; source ang at z0; scale z0 = 1.204;
30 source ang at z1; scale z1 = 1.204; source ang at z2; scale z2 = 1.204; }
31 config block tout @ (0, 3, 0, 0) {
32 modes [(*)]; scale x = 0.679; scale z = 0.679; }
33 conn block adc port z loc (0, 3, 2, 0) with block lut port x loc (0, 3, 2, 0);
34 conn block lut port z loc (0, 3, 2, 0) with block dac port x loc (0, 3, 2, 0);
35 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 3, 0);
36 conn block dac port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 3, 0);
37 conn block mult port z loc (0, 3, 3, 0) with block integ port x loc (0, 3, 1, 0);
38 conn block mult port z loc (0, 3, 3, 1) with block tout port x loc (0, 3, 0, 0);
39 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
40 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 3, 0);
41 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 3, 1);
42 conn block fanout port z0 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 1, 0);
43 conn block fanout port z1 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 3, 0);
44 conn block fanout port z0 loc (0, 3, 3, 1) with block adc port x loc (0, 3, 2, 0);
45 conn block fanout port z1 loc (0, 3, 3, 1) with block mult port x loc (0, 3, 3, 1);
46 timescale 0.317460

Figure 6-16: Scaled ADP of pend benchmark

1 angvel𝑠𝑐 = (0.6530*angvel) = integ((3.1500*(0.0953*((0.9939*((3.3529*(-0.1800))*(0.6530*angvel)))

2 +((0.0923*20)*(23.5645*(0.0500*((-0.8000)*sin((2*(0.7957*

3 ((1.0441*0.5000)*(1.2036*ang)))))))))))),((0.9173*2)*(0.7119*(-0.5000))))

4 ang𝑠𝑐 = (1.2036*ang) = integ((3.1500*(0.9791*(0.9939*((0.6013*0.9999)*(0.6530*angvel))))),

5 ((0.9264*2)*(1.2992*0.5000)))

6 Angle𝑠𝑐 = (0.6790*Angle) = (0.6000*emit((0.9975*((0.5656*1.6665)*(1.2036*ang)))))

Figure 6-17: Scaled dynamics for the pend benchmark

209

6.3.2 Pendulum (pend)

Figure 6-13 presents the dynamical system specification for the pend application. The pend appli-

cation defines the angvel and ang state variables and the Angle variable. The dynamical system

uses the sinf(T) function which computes the sin function (sin(T)) of an input:

func sinf(T) = sin(T)

var angvel = integ(-0.18*angvel-0.8*call(sinf,ang),-1.0);

var ang = integ(angvel, 1.0);

var Angle = emit(ang);

The Unscaled ADP

Figure 6-14 presents the unscaled ADP for the pend application. The ADP uses three multipliers,

two current copiers, two integrators, one routing (tout) block, one observation (extout) block,

one analog-to-digital converter (ADC, adc), one digital-to-analog converter (DAC, dac), and one

lookup table lut). The compiler uses the route block to forward the signal implementing ang to the

observation block. The current copiers are used to produce two copies of P and V respectively. The

compiler implements the addition operator from the relation governing V with Kirchhoff’s law. To

add the signals together compiler forwards all of the signals implementing the addition terms to the

same port. The signal flowing into the block from that port implements the sum of all the addition

terms.

Lines 15-27 enable the twelve connections necessary to form the desired circuit. The circuit

contains has six constant data fields which provide the values -0.50, 0.50,-0.180, 1.00, and 1.667.

The lut block implements the function e(x) where e is a programmable expression data field

and x is a time-varying digital input. The compiler configures the data field e to implement the

expression 0.05*(-0.80)*sin(2*x). The compiler integrates the lut block into the rest of the

circuit using an analog-to-digital converter and digital-to-analog converter.

Figure 6-15 presents the physics of the unscaled ADP for the pend application. The ADP

implements the ang, angvel variables with analog currents and the Angle variable with an analog

voltage:

1 angvel = integ((((-0.18)*angvel)

2 +(20*(0.05*((-0.80)*sin((2*(0.50*ang))))))),(2*(-0.50)))

3 ang = integ((1.00*angvel),(2*0.50))

4 Angle = emit((0.60*(1.67*ang)))

The dynamics of ang, angvel and Angle all fail to syntactically match the dynamical system

dynamcis presented above:

210

∙ angvel: The compiler inserts the 0.05 and 2.0 constants into the expression assigned to

the expression data field. The compiler includes these values to compensate for the device

coefficients introduced by the adc and dac blocks. The compiler also sets the initial condition

of the integrator to 0.5 instead of -1 to account for the 2.0 device coefficient introduced by

the integrator. This signal is the analog current at port z of integrator (0,3,3,0).

∙ ang: The compiler sets the initial condition of the integrator to 0.5 instead of 1.0 to account

for the 2.0 device coefficient introduced by the integrator. The compiler also introduces a 1.0

coefficient into the derivative of the ang variable. The compiler later modifies this coefficient to

more freely scale the ADP. This signal is the analog current at port z of integrator (0,3,1,0).

∙ Angle: This signal is the analog voltage at port z of observation block (0,3,2,0). The

compiler introduces the 1.67 data field value to to account for the 0.60 device coefficient

introduced by the observation block.

Scaled ADP

Figure 6-16 presents the scaled ADP for the pend application. The scaled ADP defines a total

of 39 magnitude scale factors. The scaled ADP contains 5 data field scale factors, two injected

coefficients, and one time scale factor (0.3174). The injected coefficients are introduced into the

expression mapped to the expression data field to scale the data field argument x and the computed

result. The speed of the computation is 0.3174x the baseline integration speed of the device. I

summarize all of the mode changes which change the input-output relations of the blocks below:

block location mode (unscaled ADP) mode (scaled ADP)

dac (0, 3, 2, 0) [(dyn,h)] (dyn,m)

integ (0, 3, 3, 0) [(m,m,+)] (h,m,+)

All changes to the block input-output relations are compensated for by the scaling transform.

Each of these mode changes alters the input-output relations implemented at the output ports of

the blocks:

∙ DAC (0,3,2,0): The compiler changes the mode from (dyn,h) to (dyn,m). This modifi-

cation scales the output signal by 0.1 and reduces the operating range of the output sginal.

∙ integrator (0,3,3,0): The compiler changes the mode from (m,m,+) to (h,m,+). This

modification scales the derivative of the output signal by 0.1 and reduces the operating

range of the output signal.

Figure 6-17 presents the physucs of the scaled signals implementing the angvel, ang, and Angle

dynamical system variables:

211

1 angvel𝑠𝑐 = (0.6530*angvel) = integ((3.1500*(0.0953*((0.9939*((3.3529*(-0.1800))*(0.6530*angvel)))

2 +((0.0923*20)*(23.5645*(0.0500*((-0.8000)*sin((2*(0.7957*

3 ((1.0441*0.5000)*(1.2036*ang)))))))))))),((0.9173*2)*(0.7119*(-0.5000))))

4 ang𝑠𝑐 = (1.2036*ang) = integ((3.1500*(0.9791*(0.9939*((0.6013*0.9999)*(0.6530*angvel))))),

5 ((0.9264*2)*(1.2992*0.5000)))

6 Angle𝑠𝑐 = (0.6790*Angle) = (0.6000*emit((0.9975*((0.5656*1.6665)*(1.2036*ang)))))

The compiler scales the magnitude of the angvel, ang, and Angle variables by 0.653, 1.204,

and 0.679 respectively. The compiler scales the data fields -0.18, -0.50, 1.0,0.50, and 1.667 by

3.353, 0.712, 0.601, 1.299, and 0.566 respectively. It scales the speed of the computation by

3.150−1 or 0.317.

The compiler modifies the expression assigned to the expression data field from 0.05*(-0.80)

sin((2*x)) to 23.5645*0.05*(-0.80)*sin((2*(0.7957*x). The compiler injects the 0.7957 and

23.5645 values into the expression to scale the argument x and the output of the expression re-

spectively. The 0.7957 injected value cancels out the effect of both the scaling transform and the

compensation terms from the scale expression. The 0.7957*1.0441*1.2036 term simplifies to 1.0,

eliminating the scale transform and behavioral variations from the input argument. Because the the

input signal is effectively unscaled, the compiler doesn’t need to propagate the scaling transform

through the expression data field dynamics. The compiler scales the data field result by 23.5646x

by inserting the value 23.5645 into the expression.

The compensation terms with values between 0.917-1.044 only capture the behavioral varia-

tions in the device. The 0.0953 and 0.0923 compensation terms capture the effect of the mode

changes described above. All other compensation terms capture both the effects of changing the

block mode and model the behavioral deviations found on the device.

Preservation: The scale factors (red), injected coefficients (purple), and compensation terms (grey)

can be factored out of the right- and left-hand side of each relation and eliminated from both sides

of the equation:

∙ angvel variable (IV): The terms in the derivative and the scale factor in the initial condition

all simplify to 0.653, the angvel magnitude scale factor :

-0.18*(angvel) 0.653 = 3.150*9.526e-02*0.994*3.353*0.653

0.80*sin(ang) 0.653 = 3.150*9.526e-2*9.235e-02*23.564

angvel(0) 0.653 = 0.917*0.712

The compiler does not need to propagate the scale transform and compensation terms through

the data field expression because it cancels out the effects of the scaling transform and com-

pensation terms on each expression data field input. The scaled signal implementing angvel

supplies the expression data field input x with the scaled signal 1.0441*0.5000*1.2036*ang.

212

The compiler multiplies the data field input x with 0.7957 to cancel out the effects of the

scaling transform and compensation terms on the input:

1.0 = 0.7957*1.0441*1.2036

The product of the compensation terms, injected values, and scale factors factored out of

the expression data field argument x simplifies to 1. The input x provided to the data

field expression is, therefore, an unscaled input. The injected 23.564 term scales the value

computed by the expression data field by 23.564.

∙ ang variable (III): The scale factor for the derivative and the initial condition both simplify

to 1.204, the scale factor for the ang variable:

-0.18*(ang) 1.204 = 3.150*0.979*0.994*0.601*0.653

ang(0) 1.204 = 0.926*1.299

∙ Angle variable (I): The scale expression for the signal simplifies to 0.679, the scale factor

of the Angle variable:

Angle 0.679 = 0.997*0.566*1.204

213

1 func frc(T) = sgn(T)*sqrt(abs(T))
2 var fPA = call(frc,PA)
3 var fPB = call(frc,PB)
4 var VA = integ(0.5*fPB - fPA - 0.15*VA,0.0);
5 var VB = integ(0.5*fPA - fPB - 0.15*VB,0.0);
6 var PA = integ(VA,2.0);
7 var PB = integ(VB,-1.0);
8 var PosA = emit(PA);
9 interval PA = [-2.5,2.5];

10 interval VA = [-2.5,2.5];
11 interval PB = [-2.5,2.5];
12 interval VB = [-2.5,2.5];
13 time 20;

Figure 6-18: Dynamical system specification for spring benchmark.

1 conn block adc port z loc (0, 0, 2, 0) with block lut port x loc (0, 0, 2, 0);
2 conn block lut port z loc (0, 0, 2, 0) with block dac port x loc (0, 0, 2, 0);
3 conn block adc port z loc (0, 0, 0, 0) with block lut port x loc (0, 0, 0, 0);
4 conn block lut port z loc (0, 0, 0, 0) with block dac port x loc (0, 0, 0, 0);
5 conn block mult port z loc (0, 0, 3, 0) with block integ port x loc (0, 0, 3, 0);
6 conn block mult port z loc (0, 0, 1, 1) with block integ port x loc (0, 0, 3, 0);
7 conn block mult port z loc (0, 0, 0, 1) with block integ port x loc (0, 0, 3, 0);
8 conn block mult port z loc (0, 0, 0, 0) with block integ port x loc (0, 0, 1, 0);
9 conn block mult port z loc (0, 0, 1, 0) with block integ port x loc (0, 0, 1, 0);

10 conn block mult port z loc (0, 0, 2, 1) with block integ port x loc (0, 0, 1, 0);
11 conn block mult port z loc (0, 3, 0, 0) with block tout port x loc (0, 3, 0, 0);
12 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
13 conn block dac port z loc (0, 0, 2, 0) with block fanout port x loc (0, 0, 2, 0);
14 conn block dac port z loc (0, 0, 0, 0) with block fanout port x loc (0, 0, 3, 0);
15 conn block integ port z loc (0, 0, 3, 0) with block fanout port x loc (0, 0, 3, 1);
16 conn block integ port z loc (0, 0, 1, 0) with block fanout port x loc (0, 0, 0, 0);
17 conn block integ port z loc (0, 0, 0, 0) with block fanout port x loc (0, 0, 2, 1);
18 conn block fanout port z0 loc (0, 0, 2, 1) with block adc port x loc (0, 0, 2, 0);
19 conn block fanout port z1 loc (0, 0, 2, 1) with block tout port x loc (0, 0, 0, 0);
20 conn block tout port z loc (0, 0, 0, 0) with block tin port x loc (0, 3, 0, 0);
21 conn block tin port z loc (0, 3, 0, 0) with block mult port x loc (0, 3, 0, 0);
22 conn block integ port z loc (0, 0, 2, 0) with block adc port x loc (0, 0, 0, 0);
23 conn block fanout port z0 loc (0, 0, 3, 0) with block mult port x loc (0, 0, 3, 0);
24 conn block fanout port z1 loc (0, 0, 3, 0) with block mult port x loc (0, 0, 0, 0);
25 conn block fanout port z0 loc (0, 0, 3, 1) with block mult port x loc (0, 0, 1, 1);
26 conn block fanout port z1 loc (0, 0, 3, 1) with block integ port x loc (0, 0, 0, 0);
27 conn block fanout port z0 loc (0, 0, 2, 0) with block mult port x loc (0, 0, 0, 1);
28 conn block fanout port z1 loc (0, 0, 2, 0) with block mult port x loc (0, 0, 2, 1);
29 conn block fanout port z0 loc (0, 0, 0, 0) with block mult port x loc (0, 0, 1, 0);
30 conn block fanout port z1 loc (0, 0, 0, 0) with block integ port x loc (0, 0, 2, 0);

Figure 6-19: Connections for unscaled and scaled ADPs of spring benchmark

214

1 config block lut @ (0, 0, 2, 0) {
2 modes [(*)]; set e at (1*(0.05*(pow(|(2*(1*y))|,0.50)*sgn((2*(1*y)))))); }
3 config block lut @ (0, 0, 0, 0) {
4 modes [(*)]; set e at (1*(0.05*(pow(|(2*(1*y))|,0.50)*sgn((2*(1*y)))))); }
5 config block adc @ (0, 0, 2, 0) { modes [(m)]; }
6 config block adc @ (0, 0, 0, 0) { modes [(m)]; }
7 config block dac @ (0, 0, 2, 0) { modes [(dyn,h)]; source fPA at z; set c at 0.000; }
8 config block dac @ (0, 0, 0, 0) { modes [(dyn,h)]; source fPB at z; set c at 0.000; }
9 config block integ @ (0, 0, 3, 0) { modes [(m,m,+)]; source VA at z; set z0 at 0.000; }

10 config block integ @ (0, 0, 1, 0) { modes [(m,m,+)]; source VB at z; set z0 at 0.000; }
11 config block integ @ (0, 0, 0, 0) { modes [(m,m,+)]; source PA at z; set z0 at 1.000; }
12 config block integ @ (0, 0, 2, 0) { modes [(m,m,+)]; source PB at z; set z0 at -0.500; }
13 config block mult @ (0, 0, 3, 0) { modes [(x,m,m), (x,h,h)]; set c at 0.500; }
14 config block mult @ (0, 0, 1, 1) { modes [(x,m,m), (x,h,h)]; set c at -0.150; }
15 config block mult @ (0, 0, 0, 1) { modes [(x,m,m), (x,h,h)]; set c at -1.000; }
16 config block mult @ (0, 0, 0, 0) { modes [(x,m,m), (x,h,h)]; set c at -1.000; }
17 config block mult @ (0, 0, 1, 0) { modes [(x,m,m), (x,h,h)]; set c at -0.150; }
18 config block mult @ (0, 0, 2, 1) { modes [(x,m,m), (x,h,h)]; set c at 0.500; }
19 config block mult @ (0, 3, 0, 0) { modes [(x,m,m), (x,h,h)]; set c at 1.667; }
20 config block extout @ (0, 3, 2, 0) { modes [(*)]; source PosA at z; }
21 config block fanout @ (0, 0, 2, 0) {
22 modes [(+,+,+,m), (+,+,+,h)]; source fPA at z0; source fPA at z1;
23 source fPA at z2; }
24 config block fanout @ (0, 0, 3, 0) {
25 modes [(+,+,+,m), (+,+,+,h)]; source fPB at z0; source fPB at z1;
26 source fPB at z2; }
27 config block fanout @ (0, 0, 3, 1) {
28 modes [(+,+,+,m), (+,+,+,h)]; source VA at z0; source VA at z1;
29 source VA at z2; }
30 config block fanout @ (0, 0, 0, 0) {
31 modes [(+,+,+,m), (+,+,+,h)]; source VB at z0; source VB at z1;
32 source VB at z2; }
33 config block fanout @ (0, 0, 2, 1) {
34 modes [(+,+,+,m), (+,+,+,h)]; source PA at z0; source PA at z1;
35 source PA at z2; }
36 config block tout @ (0, 3, 0, 0) { modes [(*)]; }
37 config block tout @ (0, 0, 0, 0) { modes [(*)]; }
38 config block tin @ (0, 3, 0, 0) { modes [(*)]; }

Figure 6-20: Block configurations for unscaled ADP of spring benchmark. See
Figure 6-19 for connection statements.

1 fPA = (20*(0.05*(pow(|(2*(0.50*PA))|,0.50)*sgn((2*(0.50*PA))))))

2 fPB = (20*(0.05*(pow(|(2*(0.50*PB))|,0.50)*sgn((2*(0.50*PB))))))

3 VA = integ(((0.50*fPB)+(((-0.15)*VA) +((-1.00)*fPA))),(2*0))

4 VB = integ((((-1.00)*fPB)+(((-0.15)*VB) +(0.50*fPA))),(2*0))

5 PA = integ(VA,(2*1))

6 PB = integ(VB,(2*(-0.50)))

7 PosA = emit((0.60*(1.67*PA)))

Figure 6-21: Signal Dynamics for the spring unscaled ADP

215

1 config block lut @ (0, 0, 2, 0) {
2 modes [(*)]; scale x = 0.805; scale z = 12.710;
3 set e at (12.7097*(0.0500*(pow(|(2*(1.2425*y))|,0.5000)*sgn((2*(1.2425*y)))))); scale e = 12.710; }
4 config block lut @ (0, 0, 0, 0) {
5 modes [(*)]; scale x = 0.591; scale z = 15.392;
6 set e at (15.3922*(0.0500*(pow(|(2*(1.6908*y))|,0.5000)*sgn((2*(1.6908*y)))))); scale e = 15.392; }
7 config block adc @ (0, 0, 2, 0) {
8 modes [(h)]; scale x = 7.557; scale z = 0.805; }
9 config block adc @ (0, 0, 0, 0) {

10 modes [(m)]; scale x = 0.560; scale z = 0.591; }
11 config block dac @ (0, 0, 2, 0) {
12 modes [(dyn,h)]; scale x = 12.710; source fPA at z; scale z = 11.659; set c at 0.000;
13 scale c = 1.000; }
14 config block dac @ (0, 0, 0, 0) {
15 modes [(dyn,h)]; scale x = 15.392; source fPB at z; scale z = 14.201; set c at 0.000;
16 scale c = 1.000; }
17 config block integ @ (0, 0, 3, 0) {
18 modes [(h,m,+)]; scale x = 1.705; source VA at z; scale z = 1.113; set z0 at 0.000;
19 scale z0 = 1.333; }
20 config block integ @ (0, 0, 1, 0) {
21 modes [(h,m,+)]; scale x = 1.344; source VB at z; scale z = 0.843; set z0 at 0.000;
22 scale z0 = 1.077; }
23 config block integ @ (0, 0, 0, 0) {
24 modes [(h,h,+)]; scale x = 1.113; source PA at z; scale z = 7.557; set z0 at 1.000;
25 scale z0 = 0.943; }
26 config block integ @ (0, 0, 2, 0) {
27 modes [(h,m,+)]; scale x = 0.843; source PB at z; scale z = 0.560; set z0 at -0.500;
28 scale z0 = 0.751; }
29 config block mult @ (0, 0, 3, 0) {
30 modes [(x,h,m)]; scale x = 14.201; scale y = 1.000; scale z = 1.705; set c at 0.500;
31 scale c = 1.222; }
32 config block mult @ (0, 0, 1, 1) {
33 modes [(x,m,m)]; scale x = 1.113; scale y = 1.000; scale z = 1.705; set c at -0.150;
34 scale c = 1.594; }
35 config block mult @ (0, 0, 0, 1) {
36 modes [(x,h,h)]; scale x = 11.659; scale y = 1.000; scale z = 1.705; set c at -1.000;
37 scale c = 0.147; }
38 config block mult @ (0, 0, 0, 0) {
39 modes [(x,h,m)]; scale x = 14.201; scale y = 1.000; scale z = 1.344; set c at -1.000;
40 scale c = 0.950; }
41 config block mult @ (0, 0, 1, 0) {
42 modes [(x,m,m)]; scale x = 0.843; scale y = 1.000; scale z = 1.344; set c at -0.150;
43 scale c = 1.630; }
44 config block mult @ (0, 0, 2, 1) {
45 modes [(x,h,m)]; scale x = 11.659; scale y = 1.000; scale z = 1.344; set c at 0.500;
46 scale c = 1.812; }
47 config block mult @ (0, 3, 0, 0) {
48 modes [(x,h,m)]; scale x = 7.557; scale y = 1.000; scale z = 0.410; set c at 1.667;
49 scale c = 0.566; }
50 config block extout @ (0, 3, 2, 0) {
51 modes [(*)]; scale x = 0.410; source PosA at z; scale z = 0.410; }
52 config block fanout @ (0, 0, 2, 0) {
53 modes [(+,+,+,h)]; scale x = 11.659; source fPA at z0; scale z0 = 11.659;
54 source fPA at z1; scale z1 = 11.659; source fPA at z2; scale z2 = 11.659; }
55 config block fanout @ (0, 0, 3, 0) {
56 modes [(+,+,+,h)]; scale x = 14.201; source fPB at z0; scale z0 = 14.201;
57 source fPB at z1; scale z1 = 14.201; source fPB at z2; scale z2 = 14.201; }
58 config block fanout @ (0, 0, 3, 1) {
59 modes [(+,+,+,m)]; scale x = 1.113; source VA at z0; scale z0 = 1.113;
60 source VA at z1; scale z1 = 1.113; source VA at z2; scale z2 = 1.113; }
61 config block fanout @ (0, 0, 0, 0) {
62 modes [(+,+,+,m)]; scale x = 0.843; source VB at z0; scale z0 = 0.843;
63 source VB at z1; scale z1 = 0.843; source VB at z2; scale z2 = 0.843; }
64 config block fanout @ (0, 0, 2, 1) {
65 modes [(+,+,+,h)]; scale x = 7.557; source PA at z0; scale z0 = 7.557;
66 source PA at z1; scale z1 = 7.557; source PA at z2; scale z2 = 7.557; }
67 config block tout @ (0, 3, 0, 0) {
68 modes [(*)]; scale x = 0.410; scale z = 0.410; }
69 config block tout @ (0, 0, 0, 0) {
70 modes [(*)]; scale x = 7.557; scale z = 7.557; }
71 config block tin @ (0, 3, 0, 0) {
72 modes [(*)]; scale x = 7.557; scale z = 7.557; }
73 timescale 0.148403

Figure 6-22: Block configurations and timescale statement for scaled ADP of
spring benchmark. See Figure 6-19 for connection statements.

216

1 fPA𝑠𝑐 = (11.6594*fPA) = ((0.9174*20)*(12.7097*(0.0500*(pow(|(2*(1.2425*
2 ((0.1065*0.5000)*(7.5575*PA))))|,0.5000)*sgn((2*(1.2425*((0.1065*0.5000)*(7.5575*PA)))))))))
3 fPB𝑠𝑐 = (14.2009*fPB) = ((0.9226*20)*(15.3922*(0.0500*(pow(|(2*(1.6908*
4 ((1.0567*0.5000)*(0.5597*PB))))|,0.5000)*sgn((2*(1.6908*((1.0567*0.5000)*(0.5597*PB)))))))))
5 VA𝑠𝑐 = (1.1131*VA) = integ((6.7384*(0.0969*((0.0983*((1.2222*0.5000)*(14.2009*fPB)))
6 +((0.9608*((1.5945*(-0.1500))*(1.1131*VA)))
7 +(0.9929*((0.1473*(-1.0000))*(11.6594*fPA))))))),((0.8349*2)*(1.3332*0)))
8 VB𝑠𝑐 = (0.8431*VB) = integ((6.7384*(0.0931*((0.0997*((0.9500*(-1.0000))*(14.2009*fPB)))
9 +((0.9785*((1.6298*(-0.1500))*(0.8431*VB)))

10 +(0.0636*((1.8123*0.5000)*(11.6594*fPA))))))),((0.7827*2)*(1.0772*0)))
11 PA𝑠𝑐 = (7.5575*PA) = integ((6.7384*(1.0076*(1.1131*VA))),((8.0179*2)*0.9426))
12 PB𝑠𝑐 = (0.5597*PB) = integ((6.7384*(0.0985*(0.8431*VB))),((0.7449*2)*(0.7514*(-0.5000))))
13 PosA𝑠𝑐 = (0.4100*PosA) = (0.6000*emit((0.0959*((0.5656*1.6667)*(7.5575*PA)))))

Figure 6-23: Scaled signal dynamics for spring benchmark

217

6.3.3 Spring (spring)

Figure 6-18 presents the original dynamical system for the spring application. The spring appli-

cation defines VA, VB, PA, and PB state variables and PosA, fPA, and fPB intermediate variables:

1 func frc(T) = sgn(T)*sqrt(abs(T))

2 var fPA = call(frc,PA)

3 var fPB = call(frc,PB)

4 var VA = integ(0.5*fPB - fPA - 0.15*VA,0.0);

5 var VB = integ(0.5*fPA - fPB - 0.15*VB,0.0);

6 var PA = integ(VA,2.0);

7 var PB = integ(VB,-1.0);

8 var PosA = emit(PA);

The spring application uses the frc function which computes the signed square root 𝑠𝑔𝑛(𝑇) ·√︀
| 𝑇 |. The frc function is invoked with the PA and PB state variables as arguments.

Unscaled ADP

Figure 6-20 and Figure 6-20 present the unscaled ADP for the spring application. The ADP has

a total of 26 blocks and 30 connections. The circuit contains 7 multipliers, 4 integrators, 2 ADCs,

2 DACs, 2 LUTs, 5 current copiers, 1 observation block, and 3 routing (tin and tout) blocks. the

compiler uses the route blocks to forward the signal to the HCDCv2 tile (0,3) so that it can be

provided to the extout block. The compiler uses the five copiers to produce two copies of the signals

implementing fPA, fPB, PA, VA, VB. The compiler uses Kirchhoff’s law to implement the addition

operators seen in VA and VB with digitally settable connections. The ADP contains 11 constant data

fields and 2 expression data fields. The integrator data fields provide the values 0.0, 1.0, and -0.50

to the circuit. The multiplier data fields provide the values 0.5, -0.15, -1.0, -1.0, -0.15, 0.5,

and 1.667 to the circuit. The ADP contains 2 expression data fields which are both configured to

implement the expression 0.05*pow(|(2*x)|,0.5)*sgn(2*x)), where x is the input value provided

to the expression data field.

Figure 6-21 presents the physics of the labelled signals from the unscaled ADP. The ADP

implements the fPA and fPB as time-varying digital signals, VA, VB, PA, and PB as analog currents,

and PosA as an analog voltage:

1 fPA = (20*(0.05*(pow(|(2*(0.50*PA))|,0.50)*sgn((2*(0.50*PA))))))

2 fPB = (20*(0.05*(pow(|(2*(0.50*PB))|,0.50)*sgn((2*(0.50*PB))))))

3 VA = integ(((0.50*fPB)+(((-0.15)*VA) +((-1.00)*fPA))),(2*0))

4 VB = integ((((-1.00)*fPB)+(((-0.15)*VB) +(0.50*fPA))),(2*0))

218

5 PA = integ(VA,(2*1))

6 PB = integ(VB,(2*(-0.50)))

7 PosA = emit((0.60*(1.67*PA)))

The fPA, fPB, VA, VB, PA, PB, and PosA signal expressions syntactically do not match the original

dynamical system relations:

∙ fPA and fPB: The compiler introduces the 2 and 0.5 values into the data field expression to

account for the 0.50 and 20 device terms introduced by the ADC and DAC blocks respectively.

The fPA and fPB signals are the time-varying digital signals at port z of DAC (0,0,2,0) and

port z of DAC (0,0,0,0).

∙ VA: The compiler implements the subtraction operation with a combination of addition (via

Kirchhoff’s law) and signal negation. The fPA and 0.15*VA terms are negated and summed

together instead of subtracted from the 0.50*fPB term. The initial condition does not need

to be adjusted because 2*0 is 0. This signal is the analog current at port z of integrator

(0,0,3,0).

∙ VB: The compiler implements the subtraction operation with a combination of addition (via

Kirchhoff’s law) and signal negation. The fPB and 0.15*VB terms are negated and summed

together instead of subtracted from the 0.50*fPA term. The initial condition does not need

to be adjusted because 2*0 is 0. This signal is the analog current at port z of integrator

(0,0,1,0).

∙ PA: The compiler implements the initial condition 2 as 2*1 where 2 is a device term and 1 is

a data field. This signal is the analog current at port z of integrator (0,0,0,0).

∙ PB: The compiler implements the initial condition -1 as 2*-0.5 where 2 is a device term and

-0.5 is a data field. This signal is the analog current at port z of integrator (0,0,2,0).

∙ PosA: The compiler introduces the 1.67 data field to compensate for the 0.60 device term.

This signal is the analog voltage at port z of observation block (0,3,2,0).

Scaled ADP

Figure 6-19 and Figure 6-22 present the scaled ADP for the spring application. The scaled ADP

defines a total of 39 magnitude scale factors. The scaled ADP specifies eleven data field scale factors,

six injected coefficients, seven variable scale factors, and one time scale factor (0.148). The speed

of the computation is 0.148x the baseline integration speed of the device. The compiler also changes

the block modes for a subset of the ADP blocks. The block mode changes which alter the block

input-output relations are summarized below:

219

block location mode (unscaled ADP) mode (scaled ADP)
adc (0, 0, 2, 0) [(m)] (h)

integ (0, 0, 3, 0) [(m,m,+)] (h,m,+)
integ (0, 0, 1, 0) [(m,m,+)] (h,m,+)
integ (0, 0, 0, 0) [(m,m,+)] (h,h,+)
integ (0, 0, 2, 0) [(m,m,+)] (h,m,+)
mult (0, 0, 3, 0) [(x,m,m), (x,h,h)] (x,h,m)
mult (0, 0, 0, 0) [(x,m,m), (x,h,h)] (x,h,m)
mult (0, 0, 2, 1) [(x,m,m), (x,h,h)] (x,h,m)
mult (0, 3, 0, 0) [(x,m,m), (x,h,h)] (x,h,m)

∙ multipliers: The compiler changes the mode from (x,m,m) or (x,h,h) to (x,h,m). This

modification enables the compiler to multiply the input signal by a smaller constant value.

This mode change scales the output signal by 0.1 and reduces the operating range of the

output port (relative to the (x,h,h) mode).

∙ ADC (0,0,2,0): The compiler changes the mode from (m) to (h). The modification scales

the output signal by 0.1 and increases the operating range of the input port.

∙ integrators (0,0,3,0), (0,0,1,0), and (0,0,2,0): The compiler changes the mode from

(m,m,+) to (h,m,+). This modification scales the derivative of the output signal by 0.1 and

increases the operating range of the block input port.

∙ integrator (0,0,0,0): The compiler changes the mode from (m,m,+) to (h,h,+). This

modification scales the initial value of the signal by 10 and increases the operating range of

both the block input and output ports.

Each of these mode changes alters the input-output relation implemented at the output ports

of the block. The scaling transform compensates for these changes to the input-output relation.

Figure 6-23 presents the dynamics of the scaled signals from the scaled ADP for the spring

benchmark:

1 fPA𝑠𝑐 = (11.6594*fPA) = ((0.9174*20)*(12.7097*(0.0500*(pow(|(2*(1.2425*

2 ((0.1065*0.5000)*(7.5575*PA))))|,0.5000)*sgn((2*(1.2425*((0.1065*0.5000)*(7.5575*PA)))))))))

3 fPB𝑠𝑐 = (14.2009*fPB) = ((0.9226*20)*(15.3922*(0.0500*(pow(|(2*(1.6908*

4 ((1.0567*0.5000)*(0.5597*PB))))|,0.5000)*sgn((2*(1.6908*((1.0567*0.5000)*(0.5597*PB)))))))))

5 VA𝑠𝑐 = (1.1131*VA) = integ((6.7384*(0.0969*((0.0983*((1.2222*0.5000)*(14.2009*fPB)))

6 +((0.9608*((1.5945*(-0.1500))*(1.1131*VA)))

7 +(0.9929*((0.1473*(-1.0000))*(11.6594*fPA))))))),((0.8349*2)*(1.3332*0)))

8 VB𝑠𝑐 = (0.8431*VB) = integ((6.7384*(0.0931*((0.0997*((0.9500*(-1.0000))*(14.2009*fPB)))

9 +((0.9785*((1.6298*(-0.1500))*(0.8431*VB)))

10 +(0.0636*((1.8123*0.5000)*(11.6594*fPA))))))),((0.7827*2)*(1.0772*0)))

11 PA𝑠𝑐 = (7.5575*PA) = integ((6.7384*(1.0076*(1.1131*VA))),((8.0179*2)*0.9426))

12 PB𝑠𝑐 = (0.5597*PB) = integ((6.7384*(0.0985*(0.8431*VB))),((0.7449*2)*(0.7514*(-0.5000))))

13 PosA𝑠𝑐 = (0.4100*PosA) = (0.6000*emit((0.0959*((0.5656*1.6667)*(7.5575*PA)))))

220

The compiler scales the magnitude of the fPA, fPB, VA, VB, PA, PB, and PosA variables by

11.659, 14.201, and 1.113, 0.843, 7.577, 0.560, and 0.410 respectively. The compiler reports a

time scale factor of 0.148. The compiler therefore changes the speed of the computation by a factor

of 6.738−1 or 0.148. The scaled signal dynamics use eleven constant data field scale factors, six

injected coefficients, seven variable scale factors, and one time scale factor 0.148. I summarize the

scaled data field values below:

∙ In the fPA signal, the compiler injects coefficients 1.2425 and 12.7097 into the expression

data field. The 1.2425 coefficient eliminates the scaling transform and compensation terms

from the input argument. The 12.7097 coefficient scales the data field expression result by a

factor of 12.7097x.

∙ In the fPB signal, the compiler injects coefficients 1.6908 and 15.3922 into the expression

data field. The 1.6908 coefficient eliminates the scaling transform and compensation terms

from the input argument. The 15.3922 coefficient scales the data field expression result by a

factor of 15.3922x.

∙ In the VA signal, the 0.50, -0.15, -1.0, and 0 data field values are scaled by 1.222, 1.594,

0.147, and 1.333 respectively.

∙ In the VB signal, -1.0, -0.15, 0.5, and 0 data fields are scaled by 0.950, 14.201, 1.630,

1.812, and 1.077 respectively.

∙ In the PA and PB signals, the 1 and -0.5 data field values are scaled by 0.943 and 0.751

respectively.

∙ The 1.667 data field value in the PosA signal is scaled by 0.566.

The compensation terms with values between 0.745-1.057 capture only behavioral variations

in the device. All other compensation terms capture both the effect of changing the block mode and

model the behavioral deviations found on the device. The compensation terms between 0.0636-0.1065

capture the mode changes for modes which introduce the 0.1 coefficient into the input-output re-

lation. The compensation term 8.0197 captures the mode changes for the mode which introduces

10.0 coefficient into the input-output relation.

Preservation: The scale factors (red), injected variables (purple), and compensation terms (grey)

can be factored out of the right- and left-hand side of each relation and eliminated from both sides

of the equation:

∙ fPA variable (I): The signal expression for the signal dynamics simplifies to 11.659, the scale

factor for the fPA variable.

fPA 11.6594 = 0.917*12.710

221

The compiler does not need to propagate the scale transform and compensation terms through

the data field expression because it cancels out the effects of the scaling transform and com-

pensation terms on each expression data field input. The signal implementing fPA supplies the

expression data field input x with the scaled signal 0.1065*0.5000*7.5575*PA. The compiler

multiplies the data field input x with 1.2425 to cancel out the effects of the scaling transform

and compensation terms on the input:

1.0 = 1.2425*0.1065*7.5575

The product of the compensation terms, injected values, and scale factors factored out of

the expression data field argument x simplifies to 1. The input x provided to the data

field expression is, therefore, an unscaled input. The injected 23.564 term scales the value

computed by the expression data field by 23.564x.

∙ fPB variable (I): The signal expression for the signal dynamics simplifies to 14.201, the scale

factor for the variable fPB:

fPB 14.2009 = 0.923*15.392

The compiler does not need to propagate the scale transform and compensation terms through

the data field expression because it cancels out the effects of the scaling transform and com-

pensation terms on each expression data field input. The signal implementing fPB supplies the

expression data field input x with the scaled signal 1.0567*0.5000*0.5597*PB. The compiler

multiplies the data field input x with 1.6908 to cancel out the effects of the scaling transform

and compensation terms on the input:

1.0 = 1.6908*1.0567*0.5597

The product of the compensation terms, injected values, and scale factors factored out of

the expression data field argument x simplifies to 1. The input x provided to the data

field expression is, therefore, an unscaled input. The injected 15.392 term scales the value

computed by the expression data field by 15.392x.

∙ VA variable (IV): The scale expressions for the terms in the derivative and the initial condi-

tion all simplify to 1.113, the magnitude scale factor of the VA variable:

0.5*fPB 1.1131 = 6.738*9.687e-02*9.825e-02*1.222*14.201

-0.15*VA 1.1131 = 6.738*9.687e-02*0.961*1.594*1.113

-1.0*fPA 1.1131 = 6.738*9.687e-02*6.363e-02*1.812*11.659

222

∙ VB variable (IV): The scale expressions for all the derivative terms and the initial condition

all simplify to 0.8431, the magnitude scale factor for the VP variable:

-1*fPB 0.8431 = 6.738*9.306e-02*9.966e-02*0.950,14.201

-0.15*VB 0.8431 = 6.738*9.306e-02*0.978*1.630*0.843

0.5*fPA 0.8431 = 6.738*9.306e-02*6.363e-2*1.812*11.659

∙ PA variable (III): The scale expression for the initial condition and the derivative of the

signal both simplify to 7.557, the magnitude scale factor of the PA variable:

PA(0) 7.5575 = 8.018*0.943

PA’ 7.5575 = 6.738*1.009*1.113

∙ PB variable(III): The scale expression for the initial condition and the derivative of the signal

both simplify to 0.5597, the magnitude scale factor of the PB variable:

PB(0) 0.5597 = 0.745*0.751

PB’ 0.5597 = 6.738*9.852e-02*0.843

∙ PosA variable(I): The scale expression for the signal dynamics simplifies to 0.4100, the

magnitude scale factor for the PosA variable:

PosA 0.4100 = 9.592e-02*0.566*7.557

223

1 var V = integ(0.2*(V*(1.0-U*U)) - U,-0.5);

2 var U = integ(V,0.0);

3 var OSC = emit(U);

4 interval U = [-2.5,2.5];

5 interval V = [-2.5,2.5];

6 time 10;

Figure 6-24: Dynamical system specification for vanderpol benchmark

1 config block integ @ (0, 3, 3, 0) {
2 modes [(m,m,+)]; source V at z; set z0 at 0.000; }
3 config block integ @ (0, 3, 1, 0) {
4 modes [(m,m,+)]; source U at z; set z0 at -0.250; }
5 config block mult @ (0, 3, 1, 0) {
6 modes [(x,m,m), (x,h,h)]; set c at -1.000; }
7 config block mult @ (0, 3, 1, 1) {
8 modes [(m,m,m), (m,h,h), (h,m,h)]; set c at 0.000; }
9 config block mult @ (0, 3, 3, 0) {

10 modes [(m,m,m), (m,h,h), (h,m,h)]; set c at 0.000; }
11 config block mult @ (0, 3, 0, 0) {
12 modes [(x,m,m), (x,h,h)]; set c at -0.800; }
13 config block mult @ (0, 3, 0, 1) {
14 modes [(x,m,m), (x,h,h)]; set c at 1.000; }
15 config block mult @ (0, 3, 2, 0) {
16 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
17 config block dac @ (0, 3, 0, 0) {
18 modes [(const,m)]; set c at 0.200; }
19 config block extout @ (0, 3, 2, 0) {
20 modes [(*)]; source OSC at z; }
21 config block fanout @ (0, 3, 3, 0) {
22 modes [(+,+,+,m), (+,+,+,h)]; source V at z0; source V at z1;
23 source V at z2; }
24 config block fanout @ (0, 3, 0, 1) {
25 modes [(+,+,+,m), (+,+,+,h)]; source U at z1; source U at z2; }
26 config block fanout @ (0, 3, 0, 0) {
27 modes [(+,+,+,m), (+,+,+,h)]; source U at z0; source U at z1;
28 source U at z2; }
29 config block tout @ (0, 3, 0, 0) {
30 modes [(*)]; }
31 conn block mult port z loc (0, 3, 0, 0) with block mult port x loc (0, 3, 3, 0);
32 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 3, 0);
33 conn block mult port z loc (0, 3, 1, 1) with block integ port x loc (0, 3, 3, 0);
34 conn block dac port z loc (0, 3, 0, 0) with block mult port x loc (0, 3, 1, 1);
35 conn block mult port z loc (0, 3, 3, 0) with block mult port x loc (0, 3, 1, 1);
36 conn block mult port z loc (0, 3, 0, 1) with block integ port x loc (0, 3, 1, 0);
37 conn block mult port z loc (0, 3, 2, 0) with block tout port x loc (0, 3, 0, 0);
38 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
39 conn block fanout port z0 loc (0, 3, 0, 1) with block fanout port x loc (0, 3, 0, 0);
40 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 3, 0);
41 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 0, 1);
42 conn block fanout port z1 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 1, 0);
43 conn block fanout port z2 loc (0, 3, 0, 1) with block mult port y loc (0, 3, 3, 0);
44 conn block fanout port z0 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 0, 0);
45 conn block fanout port z1 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 2, 0);
46 conn block fanout port z0 loc (0, 3, 3, 0) with block mult port y loc (0, 3, 1, 1);
47 conn block fanout port z1 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 0, 1);

Figure 6-25: Unscaled ADP of vanderpol benchmark

224

1 V = integ((((-1.00)*U)+((0.50*((2*0.20)

2 +((0.50*((-0.80)*U))*U)))*V)),(2*0))

3 U = integ((1.00*V),(2*(-0.25)))

4 OSC = emit((0.60*(1.67*U)))

Figure 6-26: Signal dynamics of unscaled ADP for vanderpol benchmark

1 config block integ @ (0, 3, 3, 0) {
2 modes [(m,m,+)]; scale x = 0.247; source V at z; scale z = 0.760; set z0 at 0.000;
3 scale z0 = 0.828; }
4 config block integ @ (0, 3, 1, 0) {
5 modes [(h,h,+)]; scale x = 2.584; source U at z; scale z = 7.600; set z0 at -0.250;
6 scale z0 = 0.827; }
7 config block mult @ (0, 3, 1, 0) {
8 modes [(x,h,m)]; scale x = 7.600; scale y = 1.000; scale z = 0.247; set c at -1.000;
9 scale c = 0.327; }

10 config block mult @ (0, 3, 1, 1) {
11 modes [(m,h,m)]; scale x = 2.666; scale y = 0.760; scale z = 0.247; set c at 0.000;
12 scale c = 1.000; }
13 config block mult @ (0, 3, 3, 0) {
14 modes [(h,m,h)]; scale x = 0.288; scale y = 7.600; scale z = 2.666; set c at 0.000;
15 scale c = 1.000; }
16 config block mult @ (0, 3, 0, 0) {
17 modes [(x,h,m)]; scale x = 7.600; scale y = 1.000; scale z = 0.288; set c at -0.800;
18 scale c = 0.395; }
19 config block mult @ (0, 3, 0, 1) {
20 modes [(x,m,h)]; scale x = 0.760; scale y = 1.000; scale z = 2.584; set c at 1.000;
21 scale c = 0.340; }
22 config block mult @ (0, 3, 2, 0) {
23 modes [(x,h,m)]; scale x = 7.600; scale y = 1.000; scale z = 0.424; set c at 1.667;
24 scale c = 0.566; }
25 config block dac @ (0, 3, 0, 0) {
26 modes [(const,m)]; scale x = 1.000; scale z = 2.666; set c at 0.200; scale c = 2.902; }
27 config block extout @ (0, 3, 2, 0) {
28 modes [(*)]; scale x = 0.424; source OSC at z; scale z = 0.424; }
29 config block fanout @ (0, 3, 3, 0) {
30 modes [(+,+,+,m)]; scale x = 0.760; source V at z0; scale z0 = 0.760;
31 source V at z1; scale z1 = 0.760; source V at z2; scale z2 = 0.760; }
32 config block fanout @ (0, 3, 0, 1) {
33 modes [(+,+,+,h)]; scale x = 7.600; scale z0 = 7.600; source U at z1; scale z1 = 7.600;
34 source U at z2; scale z2 = 7.600; }
35 config block fanout @ (0, 3, 0, 0) {
36 modes [(+,+,+,h)]; scale x = 7.600; source U at z0; scale z0 = 7.600;
37 source U at z1; scale z1 = 7.600; source U at z2; scale z2 = 7.600; }
38 config block tout @ (0, 3, 0, 0) {
39 modes [(*)]; scale x = 0.424; scale z = 0.424; }
40 conn block mult port z loc (0, 3, 0, 0) with block mult port x loc (0, 3, 3, 0);
41 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 3, 0);
42 conn block mult port z loc (0, 3, 1, 1) with block integ port x loc (0, 3, 3, 0);
43 conn block dac port z loc (0, 3, 0, 0) with block mult port x loc (0, 3, 1, 1);
44 conn block mult port z loc (0, 3, 3, 0) with block mult port x loc (0, 3, 1, 1);
45 conn block mult port z loc (0, 3, 0, 1) with block integ port x loc (0, 3, 1, 0);
46 conn block mult port z loc (0, 3, 2, 0) with block tout port x loc (0, 3, 0, 0);
47 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
48 conn block fanout port z0 loc (0, 3, 0, 1) with block fanout port x loc (0, 3, 0, 0);
49 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 3, 0);
50 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 0, 1);
51 conn block fanout port z1 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 1, 0);
52 conn block fanout port z2 loc (0, 3, 0, 1) with block mult port y loc (0, 3, 3, 0);
53 conn block fanout port z0 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 0, 0);
54 conn block fanout port z1 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 2, 0);
55 conn block fanout port z0 loc (0, 3, 3, 0) with block mult port y loc (0, 3, 1, 1);
56 conn block fanout port z1 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 0, 1);
57 timescale 0.317460

Figure 6-27: Scaled ADP of vanderpol benchmark

225

1 V𝑠𝑐 = (0.7600*V) = integ((3.1500*(0.9754*((0.0995*((0.3273*(-0.9999))*(7.6000*U)))
2 +((0.1221*0.5000)*((((0.9186*2)*(2.9022*0.2000))
3 +((1.2190*0.5000)*((0.0959*((0.3947*(-0.8000))*(7.6000*U)))*(7.6000*U))))*(0.7600*V))))))
4 ,((0.9177*2)*(0.8281*0)))
5 U𝑠𝑐 = (7.6000*U) = integ((3.1500*(0.9337*(10.0058*((0.3398*0.9999)*(0.7600*V))))),
6 ((9.1847*2)*(0.8275*(-0.2500))))
7 OSC𝑠𝑐 = (0.4241*OSC) = (0.6000*emit((0.0987*((0.5656*1.6665)*(7.6000*U)))))

Figure 6-28: Scaled signal dynamics for vanderpol benchmark

226

6.3.4 Van der Pol Oscillator (vanderpol)

Figure 6-24 presents the original dynamical system for the vanderpol application. The vanderpol

application defines the V and U state variables and the OSC variable:

1 V = integ(0.2*(V*(1.0-U*U)) - U,-0.5);

2 U = integ(V,0.0);

3 OSC = emit(U);

Unscaled ADP

Figure 6-25 presents the unscaled ADP for the vanderpol application. The ADP has a total of

14 blocks and 17 connections. The circuit contains 6 multipliers, 2 integrators, 1 DAC, 3 current

copiers, 1 observation block, and 1 routing (tout) block. Lines 31-47 define the 17 connections

necessary to form the desired circuit. The compiler uses the route block to forward the signal to

the extout block. The unscaled ADP uses two copiers to produce four copies of U and one copier

to produce two copies of V. The ADP uses Kirchoff’s law to implement the addition operators in

the relation governing V. The circuit instantiates 7 constant data fields to provide the values -1.0,

0.20, -0.80, 0.0, 1.0, -0.25, and 1.67 to the circuit.

Figure 6-26 presents the physics of the of the labelled signals from the unscaled ADP. The ADP

implements V and U as analog currents and OSC as an analog voltage:

1 V = integ((((-1.00)*U)+((0.50*((2*0.20)

2 +((0.50*((-0.80)*U))*U)))*V)),(2*0))

3 U = integ((1.00*V),(2*(-0.25)))

4 OSC = emit((0.60*(1.67*U)))

The dynamics of the U, V, and OSC signals all fail to syntactically the dynamical system dynamic:

∙ V: The compiler rewrites the 0.2*(V*(1.0-U*U)) term. The 0.2*V and 0.2*U*U*V sub-terms

are implemented as 0.5*2*0.20*V and 0.50*0.50*-0.80*U*U*V respectively. The -0.80

coefficient compensates for the two 0.50 device terms introduced by the multipliers. The

0.20 coefficient doesn’t need to compensate for any device terms since the 2 and 0.50 terms

cancel one another out. The compiler implements the subtraction operation by negating the

0.80 and 1.0 data field values and summing the negated signals. This signal is the analog

current at port z of integrator (0,3,3,0).

∙ U: The compiler implements the initial condition -0.25 as 2*(-0.25) to account for the device

term 2 introduced by the integrator. The compiler also introduces the 1.0 data field value

into the expression. This signal is the analog current at port z of integrator (0,3,1,0).

227

∙ OSC: The OSC signal introduces the 1.67 data field value to correct for the 0.60 device

coefficient introduced by the observation block. This signal is the analog voltage at port z of

observation block (0,3,2,0).

Scaled ADP

Figure 6-27 presents the scaled adp for the vanderpol benchmark. The scaled ADP has seven data

field scale factors, three variable scale factors, and one time scale factor (0.317). The speed of the

scaled computation is therefore 0.6349x the baseline integration speed of the device. The compiler

also selectively changes the block modes to more effectively scale the circuit. The mode modifications

which change block input-output relations are summarized below:

block location mode (unscaled ADP) mode (scaled ADP)

integ (0, 3, 1, 0) [(m,m,+)] (h,h,+)

mult (0, 3, 1, 0) [(x,m,m), (x,h,h)] (x,h,m)

mult (0, 3, 1, 1) [(m,m,m), (m,h,h), (h,m,h)] (m,h,m)

mult (0, 3, 0, 0) [(x,m,m), (x,h,h)] (x,h,m)

mult (0, 3, 0, 1) [(x,m,m), (x,h,h)] (x,m,h)

mult (0, 3, 2, 0) [(x,m,m), (x,h,h)] (x,h,m)

Each of the above mode changes alters the input-output relation implemented at the output

ports of the block. All of the changes to the input-output relation are compensated for by the

scaling transform:

∙ integrator (0,3,1,0): The compiler changes the mode from (m,m,+) to (h,h,+). This

modification scales the initial value of the output signal by 10 and increases the operating

ranges of the block input and output ports.

∙ multipliers (0,3,1,0), (0,3,1,1), (0,3,0,0), and (0,3,2,0): The compiler changes the

mode from (x,m,m) or (x,h,h) to (x,h,m). This modification scales the output signal by

0.1 and reduces the operating range of the output port (relative to (x,h,h) mode.

∙ multiplier (0,3,0,1): The compiler changes the mode from (x,m,m) or (x,h,h) to (x,m,h).

This modification scales the output signal by 10.0 and reduces the operating range of the

input port (relative to (x,h,h) mode).

Figure 6-28 presents the dynamics of the scaled scaled signals from the scaled ADP for the

vanderpol benchmark:

1 V𝑠𝑐 = (0.7600*V) = integ((3.1500*(0.9754*((0.0995*((0.3273*(-0.9999))*(7.6000*U)))

2 +((0.1221*0.5000)*((((0.9186*2)*(2.9022*0.2000))

228

3 +((1.2190*0.5000)*((0.0959*((0.3947*(-0.8000))*(7.6000*U)))*(7.6000*U))))*(0.7600*V))))))

4 ,((0.9177*2)*(0.8281*0)))

5 U𝑠𝑐 = (7.6000*U) = integ((3.1500*(0.9337*(10.0058*((0.3398*0.9999)*(0.7600*V))))),

6 ((9.1847*2)*(0.8275*(-0.2500))))

7 OSC𝑠𝑐 = (0.4241*OSC) = (0.6000*emit((0.0987*((0.5656*1.6665)*(7.6000*U)))))

The compiler scales the V, U, and OSC variables by 0.7600, 7.600, and 0.424 respectively. I

summarize the scaled data field values below:

∙ In the V signal, the compiler scales the -1.0, 0.20, -0.80, and 0 data field values by

0.327,2.902, 0.395, and 0.828 respectively.

∙ In the U signal, the compiler scales the 1.0 and -0.25 data field values by 0.340 and 0.827

respectively.

∙ In the OSC signal, the compiler scales the 1.667 data field value by 0.566.

All compensation terms capture the behavioral deviations found in the device. The compensation

terms with values between 0.0918-0.122 also compensate for mode changes which scale signals by

0.1. The 9.185 compensation term also compensates for the mode change which scales the output

signal by 10. The compensation terms with values between 0.934-1.219 capture only the behavioral

variations present in the device.

Preservation: The scale factors (red) and compensation terms (grey) can be factored out of the

right- and left-hand side of each relation and eliminated from both sides of the equation:

∙ V variable (IV): The scale expression for each of the derivative terms and the initial condition

all simplify to 0.760, the magnitude scale factor of the V variable:

-1.0*U 0.7600 =3.150*0.975*9.945e-02*0.327*7.600

0.20*V 0.7600 = 3.150*0.975*0.122*0.919*2.902*0.760

-0.20*U*U*V 0.7600 = 3.150*0.975*0.122*1.219*9.594e-2*0.395*7.600*7.600*0.760

V(0) 0.7600 = 0.9177*0.8281

∙ U variable (III): The scale expression for both the initial condition and the derivative of V

all simplify to 7.6, the magnitude scale factor of the U variable:

U’ 7.600 = 3.150*0.934*10.006*0.340*0.760

U(0) 7.600 = 9.185*0.827

∙ Pos variable (I):The scale expression for the signal simplifies to 0.424, the magnitude scale

factor for the Pos variable:

PosA 0.424 = 9.867e-02*0.566*7.600

229

1 var fD0 = D1-2*D0+2.0

2 var D0 = integ(1.0*fD0, 0.0)

3 var fD1 = D0-2*D1+D2

4 var D1 = integ(1.0*fD1, 0.0)

5 var fD2 = D1-2*D2+D3

6 var D2 = integ(1.0*fD2, 0.0)

7 var fD3 = D2-2*D3

8 var D3 = integ(1.0*fD3, 0.0)

9 var POINT = emit(D1)

10

11 interval D0 = [0.0,2.0]

12 interval D1 = [0.0,2.0]

13 interval D2 = [0.0,2.0]

14 interval D3 = [0.0,2.0]

15 time 120

Figure 6-29: Dynamical system specification for heatN4X2 benchmark

1 conn block mult port z loc (0, 3, 2, 1) with block integ port x loc (0, 3, 2, 0);
2 conn block mult port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 1, 0);
3 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 3, 0);
4 conn block mult port z loc (0, 3, 1, 1) with block integ port x loc (0, 3, 0, 0);
5 conn block mult port z loc (0, 3, 0, 0) with block tout port x loc (0, 3, 0, 0);
6 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
7 conn block fanout port z0 loc (0, 3, 2, 1) with block fanout port x loc (0, 3, 0, 1);
8 conn block fanout port z0 loc (0, 3, 0, 0) with block fanout port x loc (0, 3, 2, 0);
9 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 3, 1);

10 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 2, 1);
11 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 0, 0);
12 conn block integ port z loc (0, 3, 0, 0) with block fanout port x loc (0, 3, 3, 0);
13 conn block fanout port z2 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 0, 0);
14 conn block fanout port z0 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 1, 1);
15 conn block fanout port z1 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 1, 1);
16 conn block fanout port z2 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 1, 1);
17 conn block fanout port z1 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 1, 0);
18 conn block fanout port z2 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 1, 0);
19 conn block fanout port z2 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 1, 0);
20 conn block fanout port z0 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 1, 0);
21 conn block fanout port z1 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 2, 0);
22 conn block fanout port z2 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 2, 0);
23 conn block fanout port z0 loc (0, 3, 3, 1) with block mult port x loc (0, 3, 2, 0);
24 conn block fanout port z1 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 2, 0);
25 conn block dac port z loc (0, 3, 1, 0) with block mult port x loc (0, 3, 2, 1);
26 conn block fanout port z1 loc (0, 3, 3, 1) with block mult port x loc (0, 3, 2, 1);
27 conn block fanout port z2 loc (0, 3, 3, 1) with block mult port x loc (0, 3, 2, 1);
28 conn block fanout port z0 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 2, 1);

Figure 6-30: Connections from unscaled/scaled ADP for heatN4X2 benchmark

230

1 config block dac @ (0, 3, 1, 0) {
2 modes [(const,m)]; set c at 1.000; }
3 config block integ @ (0, 3, 2, 0) {
4 modes [(m,m,+)]; source D0 at z; set z0 at 0.000; }
5 config block integ @ (0, 3, 1, 0) {
6 modes [(m,m,+)]; source D1 at z; set z0 at 0.000; }
7 config block integ @ (0, 3, 3, 0) {
8 modes [(m,m,+)]; source D2 at z; set z0 at 0.000; }
9 config block integ @ (0, 3, 0, 0) {

10 modes [(m,m,+)]; source D3 at z; set z0 at 0.000; }
11 config block mult @ (0, 3, 2, 1) {
12 modes [(x,m,m), (x,h,h)]; source fD0 at x; set c at 1.000; }
13 config block mult @ (0, 3, 2, 0) {
14 modes [(x,m,m), (x,h,h)]; source fD1 at x; set c at 1.000; }
15 config block mult @ (0, 3, 1, 0) {
16 modes [(x,m,m), (x,h,h)]; source fD2 at x; set c at 1.000; }
17 config block mult @ (0, 3, 1, 1) {
18 modes [(x,m,m), (x,h,h)]; source fD3 at x; set c at 1.000; }
19 config block mult @ (0, 3, 0, 0) {
20 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
21 config block extout @ (0, 3, 2, 0) {
22 modes [(*)]; source POINT at z; }
23 config block fanout @ (0, 3, 3, 1) {
24 modes [(+,-,-,m), (+,-,-,h)]; source D0 at z0; source ((-1)*D0) at z1;
25 source ((-1)*D0) at z2; }
26 config block fanout @ (0, 3, 2, 1) {
27 modes [(+,-,-,m), (+,-,-,h)]; source ((-1)*D1) at z1; source ((-1)*D1) at z2; }
28 config block fanout @ (0, 3, 0, 1) {
29 modes [(+,+,+,m), (+,+,+,h)]; source D1 at z0; source D1 at z1;
30 source D1 at z2; }
31 config block fanout @ (0, 3, 0, 0) {
32 modes [(+,+,-,m), (+,+,-,h)]; source D2 at z1; source ((-1)*D2) at z2; }
33 config block fanout @ (0, 3, 2, 0) {
34 modes [(+,+,-,m), (+,+,-,h)]; source D2 at z0; source D2 at z1;
35 source ((-1)*D2) at z2; }
36 config block fanout @ (0, 3, 3, 0) {
37 modes [(+,-,-,m), (+,-,-,h)]; source D3 at z0; source ((-1)*D3) at z1;
38 source ((-1)*D3) at z2; }
39 config block tout @ (0, 3, 0, 0) {
40 modes [(*)]; }

Figure 6-31: Block Configurations from unscaled ADP for heatN4X2 benchmark.
Refer to Figure 6-30 for connections.

1 fD0 = ((2*1)+(((-1)*D0)+(((-1)*D0)+D1)))

2 D0 = integ((1.00*fD0),(2*0))

3 fD1 = (((-1)*D1)+(((-1)*D1)+(D0+D2)))

4 D1 = integ((1.00*fD1),(2*0))

5 fD2 = (D1+(((-1)*D2)+(((-1)*D2)+D3)))

6 D2 = integ((1.00*fD2),(2*0))

7 fD3 = (D2+(((-1)*D3)+((-1)*D3)))

8 D3 = integ((1.00*fD3),(2*0))

9 POINT = emit((0.60*(1.67*D1)))

Figure 6-32: Signal dynamics of the unscaled ADP for heatN4X2 benchmark

231

1 config block dac @ (0, 3, 1, 0) {
2 modes [(const,m)]; scale x = 1.000; scale z = 0.475; set c at 1.000; scale c = 0.511; }
3 config block integ @ (0, 3, 2, 0) {
4 modes [(m,m,+)]; scale x = 0.313; source D0 at z; scale z = 0.475; set z0 at 0.000;
5 scale z0 = 0.533; }
6 config block integ @ (0, 3, 1, 0) {
7 modes [(h,m,+)]; scale x = 3.202; source D1 at z; scale z = 0.475; set z0 at 0.000;
8 scale z0 = 0.513; }
9 config block integ @ (0, 3, 3, 0) {

10 modes [(m,m,+)]; scale x = 0.309; source D2 at z; scale z = 0.475; set z0 at 0.000;
11 scale z0 = 0.518; }
12 config block integ @ (0, 3, 0, 0) {
13 modes [(h,m,+)]; scale x = 3.046; source D3 at z; scale z = 0.475; set z0 at 0.000;
14 scale z0 = 0.530; }
15 config block mult @ (0, 3, 2, 1) {
16 modes [(x,m,m)]; source fD0 at x; scale x = 0.475; scale y = 1.000; scale z = 0.313;
17 set c at 1.000; scale c = 0.680; }
18 config block mult @ (0, 3, 2, 0) {
19 modes [(x,m,h)]; source fD1 at x; scale x = 0.475; scale y = 1.000; scale z = 3.202;
20 set c at 1.000; scale c = 0.688; }
21 config block mult @ (0, 3, 1, 0) {
22 modes [(x,m,m)]; source fD2 at x; scale x = 0.475; scale y = 1.000; scale z = 0.309;
23 set c at 1.000; scale c = 0.655; }
24 config block mult @ (0, 3, 1, 1) {
25 modes [(x,m,h)]; source fD3 at x; scale x = 0.475; scale y = 1.000; scale z = 3.046;
26 set c at 1.000; scale c = 0.663; }
27 config block mult @ (0, 3, 0, 0) {
28 modes [(x,m,m)]; scale x = 0.475; scale y = 1.000; scale z = 0.269; set c at 1.667;
29 scale c = 0.566; }
30 config block extout @ (0, 3, 2, 0) {
31 modes [(*)]; scale x = 0.269; source POINT at z; scale z = 0.269; }
32 config block fanout @ (0, 3, 3, 1) {
33 modes [(+,-,-,m)]; scale x = 0.475; source D0 at z0; scale z0 = 0.475;
34 source ((-1)*D0) at z1; scale z1 = 0.475; source ((-1)*D0) at z2; scale z2 = 0.475; }
35 config block fanout @ (0, 3, 2, 1) {
36 modes [(+,-,-,m)]; scale x = 0.475; scale z0 = 0.475; source ((-1)*D1) at z1; scale z1 = 0.475;
37 source ((-1)*D1) at z2; scale z2 = 0.475; }
38 config block fanout @ (0, 3, 0, 1) {
39 modes [(+,+,+,m)]; scale x = 0.475; source D1 at z0; scale z0 = 0.475;
40 source D1 at z1; scale z1 = 0.475; source D1 at z2; scale z2 = 0.475; }
41 config block fanout @ (0, 3, 0, 0) {
42 modes [(+,+,-,m)]; scale x = 0.475; scale z0 = 0.475; source D2 at z1; scale z1 = 0.475;
43 source ((-1)*D2) at z2; scale z2 = 0.475; }
44 config block fanout @ (0, 3, 2, 0) {
45 modes [(+,+,-,m)]; scale x = 0.475; source D2 at z0; scale z0 = 0.475;
46 source D2 at z1; scale z1 = 0.475; source ((-1)*D2) at z2; scale z2 = 0.475; }
47 config block fanout @ (0, 3, 3, 0) {
48 modes [(+,-,-,m)]; scale x = 0.475; source D3 at z0; scale z0 = 0.475;
49 source ((-1)*D3) at z1; scale z1 = 0.475; source ((-1)*D3) at z2; scale z2 = 0.475; }
50 config block tout @ (0, 3, 0, 0) {
51 modes [(*)]; scale x = 0.269; scale z = 0.269; }
52 timescale 0.634921

Figure 6-33: Block configurations and timescale statement from scaled ADP of
heatN4X2 benchmark. Refer to Figure 6-30 for scaled ADP connections.

232

1 fD0𝑠𝑐 = (0.4750*fD0) = (((0.9292*2)*0.5112)+((0.4750*((-1)*D0))+((0.4750*((-1)*D0))+(0.4750*D1))))

2 D0𝑠𝑐 = (0.4750*D0) = integ((1.5750*(0.9638*(0.9692*((0.6797*1.0000)*(0.4750*fD0))))),

3 ((0.8908*2)*(0.5332*0)))

4 fD1𝑠𝑐 = (0.4750*fD1) = ((0.4750*((-1)*D1))+((0.4750*((-1)*D1))+((0.4750*D0)+(0.4750*D2))))

5 D1𝑠𝑐 = (0.4750*D1) = integ((1.5750*(0.0942*(9.7939*((0.6884*1.0000)*(0.4750*fD1))))),

6 ((0.9265*2)*(0.5127*0)))

7 fD2𝑠𝑐 = (0.4750*fD2) = ((0.4750*D1)+((0.4750*((-1)*D2))+((0.4750*((-1)*D2))+(0.4750*D3))))

8 D2𝑠𝑐 = (0.4750*D2) = integ((1.5750*(0.9754*(0.9939*((0.6549*1.0000)*(0.4750*D2))))),

9 ((0.9177*2)*(0.5176*0)))

10 fD3𝑠𝑐 = (0.4750*fD3) = ((0.4750*D2)+((0.4750*((-1)*D3))+(0.4750*((-1)*D3))))

11 D3𝑠𝑐 = (0.4750*D3) = integ((1.5750*(0.0990*(9.6717*((0.6630*1.0000)*(0.4750*fD3))))),

12 ((0.8967*2)*(0.5297*0)))

13 POINT𝑠𝑐 = (0.2685*POINT) = (0.6000*emit((0.9996*((0.5655*1.6667)*(0.4750*D1)))))

Figure 6-34: Scaled signal dynamics for heatN4X2 benchmark

233

6.3.5 Heat Equation (heatN4X2)

Figure 6-29 presents the dynamical system for the heatN4X2 application. The heatN4X2 application

defines the fD0, fD1, fD2, fD3, and POINT variables and the D0, D1, D2, and D3 state variables.

1 var fD0 = D1-2*D0 + 2.0

2 var D0 = integ(1.0*fD0, 0.0)

3 var fD1 = D0-2*D1+D2

4 var D1 = integ(1.0*fD1, 0.0)

5 var fD2 = D1-2*D2+D3

6 var D2 = integ(1.0*fD2, 0.0)

7 var fD3 = D2-2*D3

8 var D3 = integ(1.0*fD3, 0.0)

9 var POINT = emit(D1)

Unscaled ADP

Figure 6-31 and Figure 6-30 presents the unscaled ADP for the heatN4X2 application. The ADP

has a total of 18 blocks and 28 connections. The ADP contains 5 multipliers, 4 integrators, 6

current copiers, 1 observation block, and 1 routing (tout) block. The compiler uses the route block

to forward the signal implementing POINT to the extout block. The unscaled ADP uses four copiers

to produce 2 positive copies and 2 negative copies of the D1 and D2 signals, two copier to produce

1 positive and 2 negative copies of the D0 and D3 signals. The compiler uses the negated copier

signals and Kirchhoff’s law together to implement the -2*D0, -2*D1, -2*D2, and -2*D3 terms in the

dynamical system. The circuit instantiates 9 constant data fields which together provide the values

1.0,0.0,and 1.67 to the circuit.

Figure 6-32 presents the physics of the signals in the unscaled ADP. The ADP implements fD0,

D0, fD1, D1, fD2, D2, fD3, and D3 as analog currents and POINT as an analog voltage:

1 fD0 = ((2*1)+(((-1)*D0)+(((-1)*D0)+D1)))

2 D0 = integ((1.00*fD0),(2*0))

3 fD1 = (((-1)*D1)+(((-1)*D1)+(D0+D2)))

4 D1 = integ((1.00*fD1),(2*0))

5 fD2 = (D1+(((-1)*D2)+(((-1)*D2)+D3)))

6 D2 = integ((1.00*fD2),(2*0))

7 fD3 = (D2+(((-1)*D3)+((-1)*D3)))

8 D3 = integ((1.00*fD3),(2*0))

9 POINT = emit((0.60*(1.67*D1)))

234

The signal dynamics for the fD0, D0, fD1, D1, fD2, D2, fD3, D3, and POINT signals all do not

syntactically match original dynamical system relations:

∙ fD0: The compiler implements the -2*D0 term with the ((-1)*D0 + (-1)*D0) expression.

The compiler implements this expression with two negative copies of the D0 signal and Kirch-

hoff’s law. The compiler implements the 2 term as 2*1 where 2 is a device term and 1 is

a data field value. Port x of multiplier (0,3,2,1) implements fD0. This rewritten term

requires no constant data fields – the negation is performed by intelligently setting the mode

of the copier blocks.

∙ fD1, fD2, and fD3: The compiler implements the -2*D1, -2*D2, -2*D3 terms with the

((-1)*D0+(-1)*D0),((-1)*D1 +(-1)*D1), ((-1)*D2+(-1)*D2), and ((-1)*D3+(-1)*D3) ex-

pressions respectively. The compiler implements these expressions with negative copies of the

D1, D2, and D3 signals and Kirchhoff’s law. Port x of multiplier (0,3,2,0) implements fD1,

port x of multiplier (0,3,1,0) implements fD2, and port x of multiplier (0,3,0,0) imple-

ments fD3.

∙ D0,D1,D2,D3: The signal relations for the state variables largely match the relations from the

dynamical system specification. The initial condition does not need to be adjusted because

2*0 is 0. The analog currents at port z of integrators (0,3,2,0),(0,3,1,0), (0,3,3,0), and

(0,3,0,0) implement D0, D1, D2, and D3 respectively.

∙ POINT: The compiler introduces the 1.67 data field to compensate for the 0.60 device term.

The signal is the analog voltage at port z of observation block (0,3,2,0).

Scaled ADP

Figure 6-33 and Figure 6-30 presents the scaled adp for the heatN4X2 benchmark. The scaled ADP

defines a total of 63 magnitude scaled factors. The scaled ADP specifies nine data field scale factors,

nine variable scale factors, and one time scale factor (0.6349). The speed of the computation is

0.6349x the baseline integration speed of the device. The compiler also changes the block modes

for a subset of ADP blocks. The block mode changes which alter the input-output relations are

summarized below:

block location mode (unscaled ADP) mode (scaled ADP)

integ (0, 3, 1, 0) [(m,m,+)] (h,m,+)

integ (0, 3, 0, 0) [(m,m,+)] (h,m,+)

mult (0, 3, 2, 0) [(x,m,m), (x,h,h)] (x,m,h)

mult (0, 3, 1, 1) [(x,m,m), (x,h,h)] (x,m,h)

235

∙ multipliers: The compiler changes the mode from (x,m,m) or (x,h,h) to (x,m,h). This

modification enables the compiler to multiply the input signal by a constant value greater

than one. This mode change scales the outptu signal by 10 and reduces the operating range

of the input port (relative to (x,h,h) mode.

∙ integrators: The compiler changes the mode from (m,m,+) to (h,m,+). This mode change

scales the derivative by 0.1 and increases the operating range of the input port. This mode

modification reduces the integration speed of the integrator.

Each of the above mode changes alters the input-output relation implemented at the output ports

of the blocks. The scaling transform compensates for these changes to the input-output relation.

Figure 6-34 presents the scaled dynamics of the scaled ADP for the heatN4X2 benchmark:

1 fD0𝑠𝑐 = (0.4750*fD0) = (((0.9292*2)*0.5112)+((0.4750*((-1)*D0))+((0.4750*((-1)*D0))+(0.4750*D1))))

2 D0𝑠𝑐 = (0.4750*D0) = integ((1.5750*(0.9638*(0.9692*((0.6797*1.0000)*(0.4750*fD0))))),

3 ((0.8908*2)*(0.5332*0)))

4 fD1𝑠𝑐 = (0.4750*fD1) = ((0.4750*((-1)*D1))+((0.4750*((-1)*D1))+((0.4750*D0)+(0.4750*D2))))

5 D1𝑠𝑐 = (0.4750*D1) = integ((1.5750*(0.0942*(9.7939*((0.6884*1.0000)*(0.4750*fD1))))),

6 ((0.9265*2)*(0.5127*0)))

7 fD2𝑠𝑐 = (0.4750*fD2) = ((0.4750*D1)+((0.4750*((-1)*D2))+((0.4750*((-1)*D2))+(0.4750*D3))))

8 D2𝑠𝑐 = (0.4750*D2) = integ((1.5750*(0.9754*(0.9939*((0.6549*1.0000)*(0.4750*D2))))),

9 ((0.9177*2)*(0.5176*0)))

10 fD3𝑠𝑐 = (0.4750*fD3) = ((0.4750*D2)+((0.4750*((-1)*D3))+(0.4750*((-1)*D3))))

11 D3𝑠𝑐 = (0.4750*D3) = integ((1.5750*(0.0990*(9.6717*((0.6630*1.0000)*(0.4750*fD3))))),

12 ((0.8967*2)*(0.5297*0)))

13 POINT𝑠𝑐 = (0.2685*POINT) = (0.6000*emit((0.9996*((0.5655*1.6667)*(0.4750*D1)))))

The compiler scales the magnitude of the fD0, D0, fD1, D1, fD2, D2, fD3, D3 signals by 0.4750

and the magnitude of the POINT signal by 0.2685. The compiler reports a time scale factor of

0.6349. The compiler therefore changes the speed of the computation by a factor of 1.5750−1 or

0.6349. The scaled signal dynamics use 9 constant data field scale factors, 9 variable scale factors

and one time scale factor 0.6349. I summarize the scaled data field values below:

∙ D0, D1, D2, and D3: For the signals implementing D0, D1, D2, and D3, the compiler scales the

data field value 1 by 0.6979, 0.6884, 0.6549, and 0.6630 respectively. The compiler scales

the 1 data field by different amounts to compensate for variations in the integration speed

of the integrators. The initial condition for all the state variables is 0. The magnitude scale

factor applied to the data field z0 of the integrators therefore has no effect.

∙ POINT: The 1.667 data field value in the POINT signal is scaled by 0.5655.

The compensation terms with values between 0.9292-0.9996 capture only the behavioral variations

present in the device. The compensation terms with values 0.0942 and 0.0990 capture the mode

236

changes for modes which introduce 0.1 coefficients into the input-output relation. The compensation

terms 9.7939 and 9.6717 capture the mode changes for modes which introduce 10 coefficients into

the input-output relation.

Preservation:The scale factors (red) and compensation terms (grey) can be factored out of the

right- and left-hand side of each relation and eliminated from both sides of the equation:

∙ fD0 variable (II): The scale expression for each of the terms in the sum expression all

simplify to 0.4750, the magnitude scale factor of the fD0 variable:

2.0 0.4750 = 0.9292*0.5112

(-1)*D0 0.4750 = 0.4750

(-1)*D0 0.4750 = 0.4750

D1 0.4750 = 0.4750

∙ D0 variable (III): The scale expression for the derivative and the initial condition all simplify

to 0.4750, the magnitude scale factor of the D0 variable:

D0’ 0.4750 = 1.5750*0.9638*0.9692*0.6797*0.4750

D0(0) 0.4750 = 0.8908*0.5332

∙ fD1 variable (II): The scale expression for each of the terms in the sum expression all

simplify to 0.4750, the magnitude scale factor of the fD1 variable:

D0 0.4750 = 0.4750

(-1)*D1 0.4750 = 0.4750

(-1)*D1 0.4750 = 0.4750

D2 0.4750 = 0.4750

∙ D1 variable (III): The scale expression for the derivative and the initial condition all simplify

to 0.4750, the magnitude scale factor of the D1 variable:

D1’ 0.4750 = 1.5750*0.0942*9.7939*0.6884*0.4750

D1(0) 0.4750 = 0.9265*0.5127

∙ fD2 variable (II): The scale expression for each of the terms in the sum expression all

simplify to 0.4750, the magnitude scale factor of the fD2 variable:

237

D1 0.4750 = 0.4750

(-1)*D2 0.4750 = 0.4750

(-1)*D2 0.4750 = 0.4750

D3 0.4750 = 0.4750

∙ D2 variable (III): The scale expression for the derivative and the initial condition all simplify

to 0.4750, the magnitude scale factor of the D2 variable:

D2’ 0.4750 = 1.5750*0.9754*0.9939*0.6549*0.4750

D2(0) 0.4750 = 0.9177*0.5176

∙ fD3 variable (II): The scale expression for each of the terms in the sum expression all

simplify to 0.4750, the magnitude scale factor of the fD3 variable:

D2 0.4750 = 0.4750

(-1)*D3 0.4750 = 0.4750

(-1)*D3 0.4750 = 0.4750

∙ D3 variable (III): The scale expression for the derivative and the initial condition all simplify

to 0.4750, the magnitude scale factor of the D3 variable:

D3’ 0.4750 = 1.5750*0.0990*9.6717*0.6630*0.4750

D3(0) 0.4750 = 0.8967*0.5297

∙ POINT variable (I):The scale expression for the signal simplifies to 0.2685, the magnitude

scale factor for the POINT variable:

PosA 0.2685 = 0.9996*0.5655*0.4750

238

1 var VW = integ(-W, 0.0);
2 var W = integ(VW, 1.0);
3 var Y = integ(5*(W + 0.2*(Y*(1.0-X*X)) - X),0.0);
4 var X = integ(5*(Y),-0.5);
5 var OSC = emit(X);
6 interval VW = [-1.0,1.0];
7 interval W = [-1.0,1.0];
8 interval X = [-2.2,2.2];
9 interval Y = [-2.2,2.2];

10 time 50;

Figure 6-35: Dynamical system for forced benchmark

1 conn block mult port z loc (0, 3, 0, 1) with block mult port x loc (0, 3, 1, 1);
2 conn block mult port z loc (0, 3, 3, 1) with block integ port x loc (0, 3, 2, 0);
3 conn block mult port z loc (0, 3, 3, 0) with block integ port x loc (0, 3, 2, 0);
4 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 2, 0);
5 conn block dac port z loc (0, 3, 2, 0) with block mult port x loc (0, 3, 3, 1);
6 conn block mult port z loc (0, 3, 1, 1) with block mult port x loc (0, 3, 3, 1);
7 conn block mult port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 3, 0);
8 conn block mult port z loc (0, 3, 2, 1) with block tout port x loc (0, 3, 0, 0);
9 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);

10 conn block fanout port z0 loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 1);
11 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 1, 0);
12 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 3, 0);
13 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 2, 0);
14 conn block integ port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 1, 0);
15 conn block fanout port z2 loc (0, 3, 1, 0) with block integ port x loc (0, 3, 0, 0);
16 conn block fanout port z0 loc (0, 3, 1, 0) with block mult port x loc (0, 3, 3, 0);
17 conn block fanout port z1 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 1, 0);
18 conn block fanout port z2 loc (0, 3, 2, 0) with block mult port y loc (0, 3, 1, 1);
19 conn block fanout port z0 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 0, 1);
20 conn block fanout port z1 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 2, 1);
21 conn block fanout port z0 loc (0, 3, 3, 0) with block mult port y loc (0, 3, 3, 1);
22 conn block fanout port z1 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 2, 0);

Figure 6-36: Connections from unscaled/scaled ADP for forced benchmark

239

1 VW = integ(((-1)*W),(2*0))
2 W = integ(VW,(2*0.50))
3 Y = integ((((0.50*((2*1)+((0.50*((-4)*X))*X)))*Y)+((5*W)+((-5)*X))),(2*0))
4 X = integ((5*Y),(2*(-0.25)))
5 OSC = emit((0.60*(1.67*X)))

Figure 6-38: Signal dynamics of the unscaled ADP for forced benchmark

1 config block integ @ (0, 3, 1, 0) {
2 modes [(m,m,+)]; source W at z; set z0 at 0.500; }
3 config block integ @ (0, 3, 0, 0) {
4 modes [(m,m,+)]; source VW at z; set z0 at 0.000; }
5 config block integ @ (0, 3, 2, 0) {
6 modes [(m,m,+)]; source Y at z; set z0 at 0.000; }
7 config block integ @ (0, 3, 3, 0) {
8 modes [(m,m,+)]; source X at z; set z0 at -0.250; }
9 config block mult @ (0, 3, 3, 0) {

10 modes [(x,m,m), (x,h,h)]; set c at 5.000; }
11 config block mult @ (0, 3, 1, 0) {
12 modes [(x,m,m), (x,h,h)]; set c at -5.000; }
13 config block mult @ (0, 3, 3, 1) {
14 modes [(m,m,m), (m,h,h), (h,m,h)]; set c at 0.000; }
15 config block mult @ (0, 3, 1, 1) {
16 modes [(m,m,m), (m,h,h), (h,m,h)]; set c at 0.000; }
17 config block mult @ (0, 3, 0, 1) {
18 modes [(x,m,m), (x,h,h)]; set c at -4.000; }
19 config block mult @ (0, 3, 2, 0) {
20 modes [(x,m,m), (x,h,h)]; set c at 5.000; }
21 config block mult @ (0, 3, 2, 1) {
22 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
23 config block dac @ (0, 3, 2, 0) {
24 modes [(const,m)]; set c at 1.000; }
25 config block extout @ (0, 3, 2, 0) {
26 modes [(*)]; source OSC at z; }
27 config block fanout @ (0, 3, 1, 0) {
28 modes [(+,+,-,m), (+,+,-,h)]; source W at z0; source W at z1;
29 source ((-1)*W) at z2; }
30 config block fanout @ (0, 3, 3, 0) {
31 modes [(+,+,+,m), (+,+,+,h)]; source Y at z0; source Y at z1;
32 source Y at z2; }
33 config block fanout @ (0, 3, 2, 0) {
34 modes [(+,+,+,m), (+,+,+,h)]; source X at z1; source X at z2; }
35 config block fanout @ (0, 3, 2, 1) {
36 modes [(+,+,+,m), (+,+,+,h)]; source X at z0; source X at z1;
37 source X at z2; }
38 config block tout @ (0, 3, 0, 0) {
39 modes [(*)]; }

Figure 6-37: Unscaled ADP for forced benchmark

240

1 VW𝑠𝑐 = (0.4455*VW) = integ((3.2071*(0.0993*(1.3982*((-1)*W)))),((0.8885*2)*(0.5014*0)))
2 W𝑠𝑐 = (1.3982*W) = integ((3.2071*(0.9786*(0.4455*VW))),((0.7417*2)*(1.8852*0.5000)))
3 Y𝑠𝑐 = (0.8252*Y) = integ((3.2071*(0.9954*(((1.0920*0.5000)*((((0.9229*2)*0.3108)
4 +((11.8046*0.5000)*((0.9927*((0.1575*(-4))*(0.3943*X)))*(0.3943*X))))*(0.8252*Y)))
5 +((0.9806*((0.1885*5)*(1.3982*W)))
6 +(9.6928*((0.0676*(-5))*(0.3943*X))))))),((7.8000*2)*(0.1058*0)))
7 X𝑠𝑐 = (0.3943*X) = integ((3.2071*(0.9619*(0.9723*((0.1593*5)*(0.8252*Y))))),
8 ((0.7799*2)*(0.5055*(-0.2500))))
9 OSC𝑠𝑐 = (0.5182*OSC) = (0.6000*emit((7.0476*((0.1865*1.6665)*(0.3943*X)))))

Figure 6-40: Signal dynamics of the scaled ADP for forced benchmark

1 config block integ @ (0, 3, 1, 0) {
2 modes [(m,m,+)]; scale x = 0.446; source W at z; scale z = 1.398; set z0 at 0.500;
3 scale z0 = 1.885; }
4 config block integ @ (0, 3, 0, 0) {
5 modes [(h,m,+)]; scale x = 1.398; source VW at z; scale z = 0.446; set z0 at 0.000;
6 scale z0 = 0.501; }
7 config block integ @ (0, 3, 2, 0) {
8 modes [(h,h,+)]; scale x = 0.258; source Y at z; scale z = 0.825; set z0 at 0.000;
9 scale z0 = 0.106; }

10 config block integ @ (0, 3, 3, 0) {
11 modes [(m,m,+)]; scale x = 0.128; source X at z; scale z = 0.394; set z0 at -0.250;
12 scale z0 = 0.506; }
13 config block mult @ (0, 3, 3, 0) {
14 modes [(x,m,m)]; scale x = 1.398; scale y = 1.000; scale z = 0.258; set c at 5.000;
15 scale c = 0.189; }
16 config block mult @ (0, 3, 1, 0) {
17 modes [(x,m,h)]; scale x = 0.394; scale y = 1.000; scale z = 0.258; set c at -5.000;
18 scale c = 0.068; }
19 config block mult @ (0, 3, 3, 1) {
20 modes [(m,h,h)]; scale x = 0.287; scale y = 0.825; scale z = 0.258; set c at 0.000;
21 scale c = 1.000; }
22 config block mult @ (0, 3, 1, 1) {
23 modes [(m,m,h)]; scale x = 0.062; scale y = 0.394; scale z = 0.287; set c at 0.000;
24 scale c = 1.000; }
25 config block mult @ (0, 3, 0, 1) {
26 modes [(x,m,m)]; scale x = 0.394; scale y = 1.000; scale z = 0.062; set c at -4.000;
27 scale c = 0.157; }
28 config block mult @ (0, 3, 2, 0) {
29 modes [(x,m,m)]; scale x = 0.825; scale y = 1.000; scale z = 0.128; set c at 5.000;
30 scale c = 0.159; }
31 config block mult @ (0, 3, 2, 1) {
32 modes [(x,m,h)]; scale x = 0.394; scale y = 1.000; scale z = 0.518; set c at 1.667;
33 scale c = 0.187; }
34 config block dac @ (0, 3, 2, 0) {
35 modes [(const,m)]; scale x = 1.000; scale z = 0.287; set c at 1.000; scale c = 0.311; }
36 config block extout @ (0, 3, 2, 0) {
37 modes [(*)]; scale x = 0.518; source OSC at z; scale z = 0.518; }
38 config block fanout @ (0, 3, 1, 0) {
39 modes [(+,+,-,m)]; scale x = 1.398; source W at z0; scale z0 = 1.398;
40 source W at z1; scale z1 = 1.398; source ((-1)*W) at z2; scale z2 = 1.398; }
41 config block fanout @ (0, 3, 3, 0) {
42 modes [(+,+,+,m)]; scale x = 0.825; source Y at z0; scale z0 = 0.825;
43 source Y at z1; scale z1 = 0.825; source Y at z2; scale z2 = 0.825; }
44 config block fanout @ (0, 3, 2, 0) {
45 modes [(+,+,+,m)]; scale x = 0.394; scale z0 = 0.394; source X at z1; scale z1 = 0.394;
46 source X at z2; scale z2 = 0.394; }
47 config block fanout @ (0, 3, 2, 1) {
48 modes [(+,+,+,m)]; scale x = 0.394; source X at z0; scale z0 = 0.394;
49 source X at z1; scale z1 = 0.394; source X at z2; scale z2 = 0.394; }
50 config block tout @ (0, 3, 0, 0) {
51 modes [(*)]; scale x = 0.518; scale z = 0.518; }
52 timescale 0.311811

Figure 6-39: Scaled ADP of forced benchmark.

241

6.3.6 Forced Van der Pol Oscillator (forced)

Figure 6-35 presents the original dynamical system for the forced application. The forced appli-

cation defines VW, W, Y, X state variables and a OSC intermediate variable:

1 var VW = integ(-W, 0.0);

2 var W = integ(VW, 1.0);

3 var Y = integ(5*(W + 0.2*(Y*(1.0-X*X)) - X),0.0);

4 var X = integ(5*(Y),-0.5);

5 var OSC = emit(X);

Unscaled ADP

Figure 6-37 and Figure 6-36 present the unscaled ADP for the forced application. The ADP has

a total of 18 blocks and 22 connections. The circuit contains 7 multipliers, 4 integrators, 4 current

copiers, 1 observation block, and 1 route (tout) block. The compiler uses the tout route block to

forward the signal implementing OSC to the extout block. The compiler uses 2 copiers to produce 4

copies of dynamical system variable X, 1 copier to produce 2 copies of variable Y, and one copier to

produce 2 copies of variable W. The ADP uses Kirchhoff’s law to implement the addition operations

in the relation governing Y. The circuit instantiates 10 constant data fields which provide the 0.50,

0.0, 1.0, -4.0, 5, -5, -0.25, and 1.67 values to the circuit.

Figure 6-38 presents the dynamics of the signals from the unscaled ADP for the forced bench-

mark. The ADP implements the W, VW, Y, and X signals as analog currents and the OSC signal as an

analog voltage:

1 VW = integ(((-1)*W),(2*0))

2 W = integ(VW,(2*0.50))

3 Y = integ((((0.50*((2*1)+((0.50*((-4)*X))*X)))*Y)+((5*W)+((-5)*X))),(2*0))

4 X = integ((5*Y),(2*(-0.25)))

5 OSC = emit((0.60*(1.67*X)))

The W, VW, Y, X, and OSC signal expressions syntactically do not match the original dynamical

system relations:

∙ VW: The compiler implements the -W term as (-1)*W. The compiler produces the negated

signal (-1)*W by strategically setting a current copier mode. The initial condition 0.0 is

implemented as 2*0 where 0 is a data field value and 2 is a device termin introduced by an

integrator block. The analog current at port z of integrator (0,3,0,0) implements VW.

242

∙ W: The compiler implements the 1 initial condition as 2*0.50 where 0.50 is a data field value 2

is a device term introduced by the integrator block. The analog current at port z of integrator

(0,3,1,0) implements W.

∙ Y: The compiler distributes the 5 coefficient to the -X, W, and 0.2*(Y*(1.0+X*X))) terms in

the derivative. The compiler also changes the -X*X term to -4*X*X to compensate for the

two 0.5 device terms introduced by the multipliers in the ADP. The analog current at port

z of integrator (0,3,2,0) implements Y.

∙ X: The compiler implements the -0.5 initial condition as 2*0.25 where 0.25 is a data field

value and 2.0 is a device term introduced by the integrator block. The analog current at

port z of integrator (0,3,3,0) implements X.

∙ OSC: The compiler introduces the 1.67 data field value to compensate for the 0.60 device

term introduced by the observation block. The analog voltage at port z of observation block

(0,3,2,0) implements OSC.

Scaled ADP

Figure 6-39 and Figure 6-36 present the scaled ADP for the forced application. The scaled ADP

defines a total of 63 magnitude scale factors. The scaled ADP specifies 10 data field scale factors,

5 variable scale factors, and one time scale factor (0.3118). The speed of the scaled computation is

therefore 0.3118x the baseline integration speed of the device. The compiler also changes the block

modes for a subset of ADP blocks to better scale the circuit. The block mode changes which alter

the block input-output relations are summarized below:

block location mode (unscaled ADP) mode (scaled ADP)

integ (0, 3, 0, 0) [(m,m,+)] (h,m,+)

integ (0, 3, 2, 0) [(m,m,+)] (h,h,+)

mult (0, 3, 1, 0) [(x,m,m), (x,h,h)] (x,m,h)

mult (0, 3, 1, 1) [(m,m,m), (m,h,h), (h,m,h)] (m,m,h)

mult (0, 3, 2, 1) [(x,m,m), (x,h,h)] (x,m,h)

∙ integrator (0,3,0,0): The compiler changes the mode from (m,m,+) to (h,m,+). This

modification scales the derivative of the output signal by 0.1 and increases the operating

range of the block input port x.

∙ integrator (0,3,2,0): The compiler changes the mode from (m,m,+) to (h,h,+). This

modification scales the initial value of the output signal by 10 and increases the operating

range of the block input port x and block output port z.

243

∙ multipliers (0,3,1,0) and (0,3,2,1): The compiler changes the mode from (x,m,m) or

(x,h,h) to (x,m,h). This modification scales the output signal by 10 and decreases the

operating range of the input port x (relative to mode (x,h,h)).

∙ multiplier (0,3,1,1): The compiler changes the mode from (m,m,m), (m,h,h), or (h,m,h)

to (m,m,h). This scales the output signal by 10 and decreases the operating range of either

the x or the y input ports.

Each of the above mode changes alters the input-output relations implemented by the blocks.

The scaling transform compensates for these changes to the input-output relation.

Figure 6-40 presents the scaled dynamics of the scaled ADP for the forced benchmark.

1 VW𝑠𝑐 = (0.4455*VW) = integ((3.2071*(0.0993*(1.3982*((-1)*W)))),((0.8885*2)*(0.5014*0)))

2 W𝑠𝑐 = (1.3982*W) = integ((3.2071*(0.9786*(0.4455*VW))),((0.7417*2)*(1.8852*0.5000)))

3 Y𝑠𝑐 = (0.8252*Y) = integ((3.2071*(0.9954*(((1.0920*0.5000)*((((0.9229*2)*0.3108)

4 +((11.8046*0.5000)*((0.9927*((0.1575*(-4))*(0.3943*X)))*(0.3943*X))))*(0.8252*Y)))

5 +((0.9806*((0.1885*5)*(1.3982*W)))

6 +(9.6928*((0.0676*(-5))*(0.3943*X))))))),((7.8000*2)*(0.1058*0)))

7 X𝑠𝑐 = (0.3943*X) = integ((3.2071*(0.9619*(0.9723*((0.1593*5)*(0.8252*Y))))),

8 ((0.7799*2)*(0.5055*(-0.2500))))

9 OSC𝑠𝑐 = (0.5182*OSC) = (0.6000*emit((7.0476*((0.1865*1.6665)*(0.3943*X)))))

The compiler scales the magnitude of the VW, W, Y, X, and OSC signals by 0.4455, 1.3982, 0.8252,

0.3943, and 0.5182 respectively. The compiler reports a time scale factor of 0.3118. The compiler

therefore changes the speed of the computation by a factor of 3.2071−1 or 0.3118. The scaled

dynamics use 10 constant data field scale factors, 5 variable scale factors and one time scale factor

0.3118. I summarize the scaled data fields below:

∙ In the W and VW signals, the compiler scales the 0.50 and 0.0 data field values by 1.8852 and

0.5014 respectively.

∙ In the Y signal, the compiler scales the-4, 5, -5, and 0 data field values by 0.1575, 0.1885,

0.0676, and 0.1058 respectively.

∙ In the OSC and X signals, the compiler scales the 5, -0.25, and 1.67 data field values by

0.1593, 0.5055, and 0.1865 respectively.

The compensation terms with values between 0.7417-0.9954 capture only the behavioral vari-

ations present in the device. All other compensation terms capture both the effect of changing the

block mode and the behavioral deviations found in the device. The compensation term 0.0993

compensates for a mode change which introduces the 0.1 coefficient into the block input-output

relation. The compensation terms with values between 7.8-11.8046 compensate for mode changes

introduce the 10 coefficient into the block input-output relation.

244

Preservation:The scale factors (red) and compensation terms (grey) can be factored out of the

right- and left-hand side of each relation and eliminated from both sides of the equation:

∙ VW variable (III): The scale expression for both the initial condition and the derivative of

VW all simplify to 0.4455, the magnitude scale factor of the VW variable:

VW’ 0.4455 3.2071*0.0993*1.3982

VW(0) 0.4455 0.8885*0.5014

∙ W variable (III): The scale expression for both the initial condition and the derivative of W

all simplify to 1.3982, the magnitude scale factor of the W variable:

W’ 1.3982 = 3.2071*0.9786*0.4455

W(0) 1.3982 = 0.7417*1.8852

∙ Y variable (IV): The scale expression for each of the derivative terms and the initial condition

all simplify to 0.8252, the magnitude scale factor of the Y variable:

(-5.0)*(X) 0.8252 = 3.2071*0.9954*9.6928*0.0676*0.3943

(-5.0)*(W) 0.8252 = 3.2071*0.99540.9806*0.1885*1.3982

Y 0.8252 = 3.2071*0.9954*1.0920*0.8252*0.9229*0.3108

-(X*X)*Y 0.8252 = 3.2071*0.9954*1.0920*0.8252*11.8046*0.9927*0.1575

*0.3943*0.3943

Y(0) 0.8252 = 7.8000*0.1058

∙ X variable (III): The scale expression for both the initial condition and the derivative of X

all simplify to 0.3943, the magnitude scale factor of the X variable:

X’ 0.3943 =3.2071*0.9619*0.9723*0.1593*0.8252

X(0) 0.3943 =0.7799*0.5055

∙ OSC variable (I):The scale expression for the signal simplifies to 0.5182, the magnitude scale

factor for the OSC variable:

OSC 0.5182 = 7.0476*0.1865*0.3943

245

1 var VSIG = integ(-0.25*VSIG, 0.0);
2 var SIG = integ(VSIG, 1.0);
3 var ERR = PLANT-SIG;
4 var CTRL =-2.0*ERR-8.0*INTEG;
5 var INTEG = integ(ERR - 0.3*INTEG,0.0);
6 var PLANT = integ(CTRL + 1, 0.0)
7 var Controlled = emit(CTRL);
8

9 interval VSIG = [-0.5,0.5];
10 interval SIG = [-1.0,1.0];
11 interval PLANT = [-2.0,2.0];
12 interval CTRL = [-2.0,2.0];
13 interval ERR = [-2.0,2.0];
14 interval INTEG = [-2.0,2.0];
15 time 200;

Figure 6-41: Dynamical system specification for pid benchmark

1 conn block mult port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 0, 0);
2 conn block mult port z loc (0, 3, 2, 1) with block integ port x loc (0, 3, 1, 0);
3 conn block mult port z loc (0, 3, 1, 1) with block integ port x loc (0, 3, 1, 0);
4 conn block dac port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 2, 0);
5 conn block mult port z loc (0, 3, 0, 1) with block tout port x loc (0, 3, 0, 0);
6 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
7 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 3, 0);
8 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 0, 0);
9 conn block integ port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 3, 0);

10 conn block fanout port z0 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 0, 0);
11 conn block fanout port z1 loc (0, 3, 3, 0) with block mult port x loc (0, 3, 2, 0);
12 conn block fanout port z0 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 3, 0);
13 conn block fanout port z1 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 2, 1);
14 conn block fanout port z0 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 3, 1);
15 conn block fanout port z1 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 1, 1);
16 conn block fanout port z0 loc (0, 3, 3, 1) with block integ port x loc (0, 3, 2, 0);
17 conn block fanout port z1 loc (0, 3, 3, 1) with block mult port x loc (0, 3, 0, 1);
18 conn block mult port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 1);
19 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 1);
20 conn block mult port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 3, 1);
21 conn block mult port z loc (0, 3, 3, 1) with block fanout port x loc (0, 3, 3, 1);

Figure 6-42: Connections from unscaled/scaled ADP for pid benchmark

246

1 VSIG = integ(((-0.25)*SIG),(2*0))
2 SIG = integ(VSIG,(2*0.50))
3 ERR = (((-1.00)*SIG)+PLANT)
4 CTRL = (((-2)*ERR)+((-8)*INTEG))
5 INTEG = integ(((1.00*ERR)
6 +((-0.30)*INTEG)),(2*0))
7 PLANT = integ(((2*0.50)+CTRL),(2*0))
8 Controlled = emit((0.60*(1.67*CTRL)))

Figure 6-44: Signal dynamics of the unscaled ADP for pid benchmark

1 config block integ @ (0, 3, 3, 0) {
2 modes [(m,m,+)]; source SIG at z; set z0 at 0.500; }
3 config block integ @ (0, 3, 0, 0) {
4 modes [(m,m,+)]; source VSIG at z; set z0 at 0.000; }
5 config block integ @ (0, 3, 1, 0) {
6 modes [(m,m,+)]; source INTEG at z; set z0 at 0.000; }
7 config block integ @ (0, 3, 2, 0) {
8 modes [(m,m,+)]; source PLANT at z; set z0 at 0.000; }
9 config block mult @ (0, 3, 0, 0) {

10 modes [(x,m,m), (x,h,h)]; set c at -0.250; }
11 config block mult @ (0, 3, 2, 0) {
12 modes [(x,m,m), (x,h,h)]; set c at -1.000; }
13 config block mult @ (0, 3, 3, 0) {
14 modes [(x,m,m), (x,h,h)]; set c at -2.000; }
15 config block mult @ (0, 3, 3, 1) {
16 modes [(x,m,m), (x,h,h)]; set c at -8.000; }
17 config block mult @ (0, 3, 2, 1) {
18 modes [(x,m,m), (x,h,h)]; set c at 1.000; }
19 config block mult @ (0, 3, 1, 1) {
20 modes [(x,m,m), (x,h,h)]; set c at -0.300; }
21 config block mult @ (0, 3, 0, 1) {
22 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
23 config block dac @ (0, 3, 2, 0) {
24 modes [(const,m)]; set c at 0.500; }
25 config block extout @ (0, 3, 2, 0) {
26 modes [(*)]; source Controlled at z; }
27 config block fanout @ (0, 3, 3, 0) {
28 modes [(+,+,+,m), (+,+,+,h)]; source SIG at z0; source SIG at z1;
29 source SIG at z2; }
30 config block fanout @ (0, 3, 2, 1) {
31 modes [(+,+,+,m), (+,+,+,h)]; source ERR at x; source ERR at z0;
32 source ERR at z1; source ERR at z2; }
33 config block fanout @ (0, 3, 3, 1) {
34 modes [(+,+,+,m), (+,+,+,h)]; source CTRL at x; source CTRL at z0;
35 source CTRL at z1; source CTRL at z2; }
36 config block fanout @ (0, 3, 0, 0) {
37 modes [(+,+,+,m), (+,+,+,h)]; source INTEG at z0; source INTEG at z1;
38 source INTEG at z2; }
39 config block tout @ (0, 3, 0, 0) {
40 modes [(*)]; }

Figure 6-43: Unscaled ADP for pid benchmark

247

1 VSIG𝑠𝑐 = (3.1333*VSIG) = integ((3.7462*(0.0993*(0.7227*((1.0293*(-0.2500))*(11.3168*SIG))))),
2 ((0.8885*2)*(3.5263*0)))
3 SIG𝑠𝑐 = (11.3168*SIG) = integ((3.7462*(0.9641*(3.1333*VSIG))),((6.0031*2)*(1.8852*0.5000)))
4 ERR𝑠𝑐 = (3.5427*ERR) = ((0.9708*((0.3225*(-1.0000))*(11.3168*SIG)))
5 +(3.5427*PLANT))
6 CTRL𝑠𝑐 = (0.9500*CTRL) = ((0.9854*((0.2721*(-2))*(3.5427*ERR)))
7 +(9.6822*((0.1188*(-8))*(0.8263*INTEG))))
8 INTEG𝑠𝑐 = (0.8263*INTEG) = integ((3.7462*(0.0945*((0.6991*((0.9426*1.0000)*(3.5427*ERR)))
9 +(0.9658*((2.9253*(-0.3000))*(0.8263*INTEG)))))),((0.5922*2)*(1.3951*0)))

10 PLANT𝑠𝑐 = (3.5427*PLANT) = integ((3.7462*(0.9954*(((0.9229*2)*(1.0294*0.5000))
11 +(0.9500*CTRL)))),((7.8000*2)*(0.4542*0)))
12 Controlled𝑠𝑐 = (0.5334*Controlled) = (0.6000*emit((0.9927*((0.5656*1.6667)*(0.9500*CTRL)))))

Figure 6-46: Scaled signal dynamics for pid benchmark

1 config block integ @ (0, 3, 3, 0) {
2 modes [(h,h,+)]; scale x = 3.133; source SIG at z; scale z = 11.317; set z0 at 0.500;
3 scale z0 = 1.885; }
4 config block integ @ (0, 3, 0, 0) {
5 modes [(h,m,+)]; scale x = 8.419; source VSIG at z; scale z = 3.133; set z0 at 0.000;
6 scale z0 = 3.526; }
7 config block integ @ (0, 3, 1, 0) {
8 modes [(h,m,+)]; scale x = 2.334; source INTEG at z; scale z = 0.826;
9 set z0 at 0.000; scale z0 = 1.395; }

10 config block integ @ (0, 3, 2, 0) {
11 modes [(h,h,+)]; scale x = 0.950; source PLANT at z; scale z = 3.543;
12 set z0 at 0.000; scale z0 = 0.454; }
13 config block mult @ (0, 3, 0, 0) {
14 modes [(x,h,h)]; scale x = 11.317; scale y = 1.000; scale z = 8.419; set c at -0.250;
15 scale c = 1.029; }
16 config block mult @ (0, 3, 2, 0) {
17 modes [(x,h,h)]; scale x = 11.317; scale y = 1.000; scale z = 3.543; set c at -1.000;
18 scale c = 0.322; }
19 config block mult @ (0, 3, 3, 0) {
20 modes [(x,h,h)]; scale x = 3.543; scale y = 1.000; scale z = 0.950; set c at -2.000;
21 scale c = 0.272; }
22 config block mult @ (0, 3, 3, 1) {
23 modes [(x,m,h)]; scale x = 0.826; scale y = 1.000; scale z = 0.950; set c at -8.000;
24 scale c = 0.119; }
25 config block mult @ (0, 3, 2, 1) {
26 modes [(x,h,h)]; scale x = 3.543; scale y = 1.000; scale z = 2.334; set c at 1.000;
27 scale c = 0.943; }
28 config block mult @ (0, 3, 1, 1) {
29 modes [(x,m,m)]; scale x = 0.826; scale y = 1.000; scale z = 2.334; set c at -0.300;
30 scale c = 2.925; }
31 config block mult @ (0, 3, 0, 1) {
32 modes [(x,m,m)]; scale x = 0.950; scale y = 1.000; scale z = 0.533; set c at 1.667;
33 scale c = 0.566; }
34 config block dac @ (0, 3, 2, 0) {
35 modes [(const,m)]; scale x = 1.000; scale z = 0.950; set c at 0.500; scale c = 1.029; }
36 config block extout @ (0, 3, 2, 0) {
37 modes [(*)]; scale x = 0.533; source Controlled at z; scale z = 0.533; }
38 config block fanout @ (0, 3, 3, 0) {
39 modes [(+,+,+,h)]; scale x = 11.317; source SIG at z0; scale z0 = 11.317;
40 source SIG at z1; scale z1 = 11.317; source SIG at z2; scale z2 = 11.317; }
41 config block fanout @ (0, 3, 2, 1) {
42 modes [(+,+,+,h)]; source ERR at x; scale x = 3.543; source ERR at z0;
43 scale z0 = 3.543; source ERR at z1; scale z1 = 3.543; source ERR at z2;
44 scale z2 = 3.543; }
45 config block fanout @ (0, 3, 3, 1) {
46 modes [(+,+,+,m)]; source CTRL at x; scale x = 0.950; source CTRL at z0;
47 scale z0 = 0.950; source CTRL at z1; scale z1 = 0.950; source CTRL at z2;
48 scale z2 = 0.950; }
49 config block fanout @ (0, 3, 0, 0) {
50 modes [(+,+,+,m)]; scale x = 0.826; source INTEG at z0; scale z0 = 0.826;
51 source INTEG at z1; scale z1 = 0.826; source INTEG at z2; scale z2 = 0.826; }
52 config block tout @ (0, 3, 0, 0) {
53 modes [(*)]; scale x = 0.533; scale z = 0.533; }
54 timescale 0.266937

Figure 6-45: Scaled ADP for pid benchmark.

248

6.3.7 PID Controller (pid)

Figure 6-41 presents the original dynamical system for the pid application. The pid application

defines VSIG, SIG, INTEG, PLANT state variables and ERR, CTRL, and Controlled intermediate vari-

ables:

1 var VSIG = integ(-0.25*VSIG, 0.0);

2 var SIG = integ(VSIG, 1.0);

3 var ERR = PLANT-SIG;

4 var CTRL = -2.0*ERR-8.0*INTEG;

5 var INTEG = integ(ERR - 0.3*INTEG,0.0);

6 var PLANT = integ(CTRL + 1, 0.0)

7 var Controlled = emit(CTRL);

Unscaled ADP

Figure 6-43 and Figure 6-42 present the unscaled ADP for the pid application. The ADP has a

total of 18 blocks and 21 connections. The circuit contains 7 multipliers, 4 integrators, 1 DAC, 4

current copiers, 1 observation block, and 1 route (tout) block. The compiler uses the tout route

block to forward the signal implementing CTRL to the extout block. The unscaled ADP uses four

copiers to produce 2 copies of the SIG, ERR, CTRL, and INTEG signals. The compiler uses Kirchhoff’s

law to implement the addition operators in the relations governing ERR, CTRL, INTEG, and PLANT

variables. The circuit instantiates 12 constant data fields to provide the values 0.50, -0.25, 0.0,

-1.0, -2.0, -8.0, 1.0, -0.30, 0.50, and 1.67 to the circuit.

Figure 6-44 presents the dynamics of the signals from the unscaled ADP for the pid benchmark.

The ADP implements the VSIG, SIG, INTEG, PLANT, ERR, and CTRL signals as analog currents and

the Controlled signal as an analog voltage:

1 VSIG = integ(((-0.25)*SIG),(2*0))

2 SIG = integ(VSIG,(2*0.50))

3 ERR = (((-1.00)*SIG)+PLANT)

4 CTRL = (((-2)*ERR)+((-8)*INTEG))

5 INTEG = integ(((1.00*ERR)+((-0.30)*INTEG)),(2*0))

6 PLANT = integ(((2*0.50)+CTRL),(2*0))

7 Controlled = emit((0.60*(1.67*CTRL)))

The SIG, ERR, CTRL, INTEG, PLANT, and Controlled signal expressions do not syntactically match

the original dynamical system relations:

249

∙ VSIG: The compiler implements the initial condition 0.0 as 2*0.0 where 0.0 is a data field

value and 2 is a device term introduced by an integrator block. The analog current at port z

of integrator (0,3,0,0) implements the VSIG variable.

∙ SIG: The compiler implements the initial condition from 1.0 as 2*0.5 where 0.50 to account

for the device term 2.0. The analog current at port z of integrator (0,3,3,0) implements

the SIG variable.

∙ ERR: The compiler negates the SIG variable by introducing the -1.0 data field value. The

compiler then adds the (-1)*SIG signal to the PLANT signal. This is necessary because

subtraction is not explicitly supported in the device. The analog current at port x of current

copier (0,3,2,1) implements the ERR variable.

∙ CTRL: The compiler implements -2*ERR-8*INTEG expression by multiplying ERR and INTEG

by 2 and -8 respectively and then adding the terms together. This is necessary because

subtraction is not explicitly supported in the device. The analog current at port x of current

copier (0,3,3,1) implements the CTRL variable.

∙ INTEG: The compiler implements the ERR term as 1.00*ERR, where 1.00 is a data field value.

The compiler implements the ERR-0.3*INTEG expression by multiplying ERR and INTEG by

1.0 and -0.3 and then summing the terms together. Again, the compiler performs this trans-

formation because subtraction is not supported in the device. The 1.0 and -0.3 coefficients

are implemented as data field values. The initial condition 0.0 is implemented as 2*0.0

where 0.0 is a data field value and 2 is a device term introduced by the integrator block. The

analog current at port z of integrator (0,3,1,0) implements the INTEG variable.

∙ PLANT: The compiler implements 1.0 term as 2*0.5, where 0.5 is a data field value and 2 is a

device constant introduced by the DAC. The analog current at port z of integrator (0,3,2,0)

implements the PLANT variable.

∙ Controlled: The compiler introduces the 1.67 data field value to compensate for the 0.60

device term introduced by the observation block. The analog current at port z of observation

block (0,3,2,0) implements the Controlled variable.

Scaled ADP

Figure 6-46 and Figure 6-42 present the scaled dynamics of the scaled ADP for the pid benchmark.

The scaled ADP has a total of 63 magnitude scale factors. The scaled ADP has 12 data field

scale factors, 7 variable scale factors, and one time scale factor (0.2669). The speed of the scaled

computation is 0.2669x the baseline integration speed of the device. The compiler also changes the

250

block modes for a subset of the ADP blocks to better scale the circuit. The block mode changes

which alter the block input-output relations are summarized below:

block location mode (unscaled ADP) mode (scaled ADP)

integ (0, 3, 3, 0) [(m,m,+)] (h,h,+)

integ (0, 3, 0, 0) [(m,m,+)] (h,m,+)

integ (0, 3, 1, 0) [(m,m,+)] (h,m,+)

integ (0, 3, 2, 0) [(m,m,+)] (h,h,+)

mult (0, 3, 3, 1) [(x,m,m), (x,h,h)] (x,m,h)

∙ integrators (0,3,3,0) and (0,3,2,0): The compiler changes the integrator mode from

(m,m,+) to (h,h,+). This modification to the mode scales the initial value of the signal by

10 and increases the operating range of the input port x and output port z of the block.

∙ integrators (0,3,0,0) and (0,3,1,0): The compiler changes the integrator mode from

(m,m,+) to (h,m,+). This modification scales the derivative of the output signal by 0.1 and

increases the operating range of the input port x.

∙ multiplier (0,3,3,1): The compiler changes the multiplier mode from (x,m,m) or (x,h,h)

to (x,m,h). This modification scales the output signal by 10.0 and reduces the operating

range of the input port x (relative to mode (x,h,h)).

Each of the above mode changes alters the input-output relations implemented by the block.

The scaling transform compensates for these changes to the input-output relation.

Figure 6-46 presents the scaled dynamics of the scaled ADP for the pid benchmark:

1 VSIG𝑠𝑐 = (3.1333*VSIG) = integ((3.7462*(0.0993*(0.7227*((1.0293*(-0.2500))*(11.3168*SIG))))),

2 ((0.8885*2)*(3.5263*0)))

3 SIG𝑠𝑐 = (11.3168*SIG) = integ((3.7462*(0.9641*(3.1333*VSIG))),((6.0031*2)*(1.8852*0.5000)))

4 ERR𝑠𝑐 = (3.5427*ERR) = ((0.9708*((0.3225*(-1.0000))*(11.3168*SIG)))

5 +(3.5427*PLANT))

6 CTRL𝑠𝑐 = (0.9500*CTRL) = ((0.9854*((0.2721*(-2))*(3.5427*ERR)))

7 +(9.6822*((0.1188*(-8))*(0.8263*INTEG))))

8 INTEG𝑠𝑐 = (0.8263*INTEG) = integ((3.7462*(0.0945*((0.6991*((0.9426*1.0000)*(3.5427*ERR)))

9 +(0.9658*((2.9253*(-0.3000))*(0.8263*INTEG)))))),((0.5922*2)*(1.3951*0)))

10 PLANT𝑠𝑐 = (3.5427*PLANT) = integ((3.7462*(0.9954*(((0.9229*2)*(1.0294*0.5000))

11 +(0.9500*CTRL)))),((7.8000*2)*(0.4542*0)))

12 Controlled𝑠𝑐 = (0.5334*Controlled) = (0.6000*emit((0.9927*((0.5656*1.6667)*(0.9500*CTRL)))))

The compiler scales the VSIG, SIG, ERR, CTRL, INTEG, PLANT, and Controlled variables by

3.1333, 11.3166, 3.5427, 0.9500, 0.8263, 3.5427, and 0.5335 respectively. The compiler reports

a time scale factor of 0.2669. The compiler therefore scales the speed of the computation by a factor

251

of 3.7462−1 or 0.2669. The scaled ADP has 12 data field scale factors, 7 variable scale factors,

and one time scale factor. I summarize the scaled data field values below:

∙ In the scaled VSIG and SIG signals, the compiler scales the data field values -0.25, 0, and

0.50 by 1.0293,3.5263, and 1.8852 respectively.

∙ In the scaled ERR,CTRL,INTEG signals, the compiler scales the -2, -8, 1.0, -0.3, and 0.0 data

field values by 0.2721, 0.1188, 0.9426, 2.9253, and 1.3951 receptively.

∙ In the scaled PLANT and Controlled signals, the compiler scales the 0.5, 0.0, and 1.667

data field by 1.0294, 0.4542, and 0.5656 respectively.

The compensation terms with values between 0.5922-0.9954 capture only behavioral variations

in the device. The remaining compensation terms capture both the effect of changing the block mode

and model the behavioral deviations found in the device. The compensation terms with the values

0.0993 and 0.0945 capture the mode changes which introduce the constant coefficient 0.1 into

the block input-output relations. The compensation terms between 6.00-9.68 capture the mode

changes which introduce the constant coefficient 10 into the block input-output relations.

Preservation: The scale factors (red) and compensation terms (grey) can be factored out of the

right- and left-hand side of each relation and eliminated from both sides of the equation:

∙ VSIG variable (III): The scale expression for both the initial condition and the derivative of

VSIG all simplify to 3.1333, the magnitude scale factor of the VSIG variable:

VSIG’ 3.1333 = 3.7462*0.0993*0.7227*1.0293*11.3168*SIG

VSIG(0) 3.1333 = 0.8885*3.5263

∙ SIG variable (III): The scale expression for both the initial condition and the derivative of

SIG all simplify to 11.3168, the magnitude scale factor of the SIG variable:

SIG’ 11.3168 = 3.7462*0.9641*3.1333

SIG(0) 11.3168 = 6.0031*1.8852

∙ ERR variable (II): The scale expression for each of the terms in the signal expression for ERR

all simplify to 3.5427, the magnitude scale factor of the ERR variable:

-SIG 3.5427 = 0.9708*0.3225*11.3168

PLANT 3.5427 = 3.5427

252

∙ CTRL variable (II): The scale expression for each of the terms in the signal expression for

CTRL all simplify to 0.9500, the magnitude scale factor of the CTRL variable:

-2.0*ERR 0.9500 = 0.9854*0.2721*3.5427

-8.0*INTEG 0.9500 = 9.6822*0.1188*0.8263

∙ INTEG variable (IV): The scale expression for each of the derivative terms and the initial

condition all simplify to 0.8263, the magnitude scale factor of the INTEG variable:

ERR 0.8263 = 3.7462*0.0945*0.6991*0.9426*3.5427

-0.3*INTEG 0.8263 = 3.7462*0.0945*0.9658*2.9253*0.8263

INTEG(0) 0.8263 = 0.5922*1.3951

∙ PLANT variable (IV): The scale expression for each of the derivative terms and the initial

condition all simplify to 3.5427, the magnitude scale factor of the PLANT variable:

1.0 3.5427 = 3.7462*0.9954*0.9229*1.0294

CTRL 3.5427 = 3.7462*0.9954*0.9500

PLANT(0) 3.5427 = 7.8000*0.4542

∙ Controlled variable (I):The scale expression for the signal simplifies to 0.5334, the mag-

nitude scale factor for the Controlled variable:

Controlled 0.5334 =0.9927*0.5656*0.9500

253

1 var VSIG = integ(-0.04*SIG, 0.0)

2 var SIG = integ(VSIG, 0.7)

3 var E = SIG-X

4 var RP = (1/2.0)*P

5 var X = integ(RP*E, 0)

6 var P = integ(0.6-RP*P, 0.0)

7 var STATE = emit(X)

8 interval VSIG = [-0.3,0.3]

9 interval SIG = [-1.0,1.0]

10 interval X = [-1.0,1.0]

11 interval P = [0.0,1.0]

12 time 50

Figure 6-47: Dynamical system specification for kalman benchmark

254

1 config block integ @ (0, 3, 1, 0) {
2 modes [(m,m,+)]; source SIG at z; set z0 at 0.350; }
3 config block integ @ (0, 3, 0, 0) {
4 modes [(m,m,+)]; source VSIG at z; set z0 at 0.000; }
5 config block integ @ (0, 3, 3, 0) {
6 modes [(m,m,+)]; source X at z; set z0 at 0.000; }
7 config block integ @ (0, 3, 2, 0) {
8 modes [(m,m,+)]; source P at z; set z0 at 0.000; }
9 config block mult @ (0, 3, 3, 0) {

10 modes [(x,m,m), (x,h,h)]; set c at -0.040; }
11 config block mult @ (0, 3, 1, 1) {
12 modes [(x,m,m), (x,h,h)]; source RP at z; set c at 0.500; }
13 config block mult @ (0, 3, 0, 1) {
14 modes [(m,m,m), (m,h,h), (h,m,h)]; set c at 0.000; }
15 config block mult @ (0, 3, 1, 0) {
16 modes [(x,m,m), (x,h,h)]; source E at x; set c at 2.000; }
17 config block mult @ (0, 3, 0, 0) {
18 modes [(m,m,m), (m,h,h), (h,m,h)]; set c at 0.000; }
19 config block mult @ (0, 3, 3, 1) {
20 modes [(x,m,m), (x,h,h)]; set c at -2.000; }
21 config block mult @ (0, 3, 2, 1) {
22 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
23 config block dac @ (0, 3, 2, 0) {
24 modes [(const,m)]; set c at 0.300; }
25 config block extout @ (0, 3, 2, 0) {
26 modes [(*)]; source STATE at z; }
27 config block fanout @ (0, 3, 1, 1) {
28 modes [(+,+,+,m), (+,+,+,h)]; source SIG at z0; source SIG at z1;
29 source SIG at z2; }
30 config block fanout @ (0, 3, 1, 0) {
31 modes [(+,+,+,m), (+,+,+,h)]; source RP at z0; source RP at z1;
32 source RP at z2; }
33 config block fanout @ (0, 3, 2, 1) {
34 modes [(+,+,-,m), (+,+,-,h)]; source X at z0; source X at z1;
35 source ((-1)*X) at z2; }
36 config block fanout @ (0, 3, 2, 0) {
37 modes [(+,+,+,m), (+,+,+,h)]; source P at z0; source P at z1;
38 source P at z2; }
39 config block tout @ (0, 3, 0, 0) {
40 modes [(*)]; }
41 conn block mult port z loc (0, 3, 3, 0) with block integ port x loc (0, 3, 0, 0);
42 conn block mult port z loc (0, 3, 0, 1) with block integ port x loc (0, 3, 3, 0);
43 conn block mult port z loc (0, 3, 1, 0) with block mult port x loc (0, 3, 0, 1);
44 conn block mult port z loc (0, 3, 3, 1) with block mult port x loc (0, 3, 0, 0);
45 conn block dac port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 2, 0);
46 conn block mult port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 2, 0);
47 conn block mult port z loc (0, 3, 2, 1) with block tout port x loc (0, 3, 0, 0);
48 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
49 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 1, 1);
50 conn block mult port z loc (0, 3, 1, 1) with block fanout port x loc (0, 3, 1, 0);
51 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 2, 1);
52 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 0);
53 conn block integ port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 1, 0);
54 conn block fanout port z0 loc (0, 3, 1, 1) with block mult port x loc (0, 3, 3, 0);
55 conn block fanout port z0 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 1, 1);
56 conn block fanout port z1 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 3, 1);
57 conn block fanout port z0 loc (0, 3, 1, 0) with block mult port y loc (0, 3, 0, 1);
58 conn block fanout port z1 loc (0, 3, 1, 0) with block mult port y loc (0, 3, 0, 0);
59 conn block fanout port z0 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 2, 1);
60 conn block fanout port z1 loc (0, 3, 1, 1) with block mult port x loc (0, 3, 1, 0);
61 conn block fanout port z2 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 1, 0);

Figure 6-48: Unscaled ADP for kalman benchmark

255

1 VSIG = integ(((-0.04)*SIG),(2*0))

2 SIG = integ(VSIG,(2*0.35))

3 E = (SIG+((-1)*X))

4 RP = (0.50*P)

5 X = integ(((0.50*(2.00*(SIG+((-1)*X))))*RP),(2*0))

6 P = integ(((2*0.30)+((0.50*((-2)*P))*RP)),(2*0))

7 STATE = emit((0.60*(1.67*X)))

Figure 6-49: Signal dynamics of the unscaled ADP for kalman benchmark

256

1 config block integ @ (0, 3, 1, 0) {
2 modes [(h,h,+)]; scale x = 3.756; source SIG at z; scale z = 11.176; set z0 at 0.350;
3 scale z0 = 1.351; }
4 config block integ @ (0, 3, 0, 0) {
5 modes [(h,m,+)]; scale x = 12.002; source VSIG at z; scale z = 3.756;
6 set z0 at 0.000; scale z0 = 4.227; }
7 config block integ @ (0, 3, 3, 0) {
8 modes [(h,h,+)]; scale x = 3.680; source X at z; scale z = 11.176; set z0 at 0.000;
9 scale z0 = 1.862; }

10 config block integ @ (0, 3, 2, 0) {
11 modes [(m,m,+)]; scale x = 0.614; source P at z; scale z = 1.900; set z0 at 0.000;
12 scale z0 = 2.382; }
13 config block mult @ (0, 3, 3, 1) {
14 modes [(x,h,m)]; scale x = 11.176; scale y = 1.000; scale z = 12.002; set c at -0.040;
15 scale c = 10.932; }
16 config block mult @ (0, 3, 1, 1) {
17 modes [(x,m,m)]; scale x = 1.900; scale y = 1.000; source RP at z; scale z = 2.103;
18 set c at 0.500; scale c = 1.146; }
19 config block mult @ (0, 3, 0, 0) {
20 modes [(m,m,h)]; scale x = 0.140; scale y = 2.103; scale z = 3.680; set c at 0.000;
21 scale c = 1.000; }
22 config block mult @ (0, 3, 1, 0) {
23 modes [(x,h,m)]; source E at x; scale x = 11.176; scale y = 1.000; scale z = 0.140;
24 set c at 2.000; scale c = 0.128; }
25 config block mult @ (0, 3, 0, 1) {
26 modes [(m,m,m)]; scale x = 0.214; scale y = 2.103; scale z = 0.614; set c at 0.000;
27 scale c = 1.000; }
28 config block mult @ (0, 3, 3, 0) {
29 modes [(x,m,m)]; scale x = 1.900; scale y = 1.000; scale z = 0.214; set c at -2.000;
30 scale c = 0.115; }
31 config block mult @ (0, 3, 2, 1) {
32 modes [(x,h,h)]; scale x = 11.176; scale y = 1.000; scale z = 1.140; set c at 1.667;
33 scale c = 0.146; }
34 config block dac @ (0, 3, 2, 0) {
35 modes [(const,m)]; scale x = 1.000; scale z = 0.614; set c at 0.300; scale c = 0.665; }
36 config block extout @ (0, 3, 2, 0) {
37 modes [(*)]; scale x = 1.140; source STATE at z; scale z = 1.140; }
38 config block fanout @ (0, 3, 1, 1) {
39 modes [(+,+,+,h)]; scale x = 11.176; source SIG at z0; scale z0 = 11.176;
40 source SIG at z1; scale z1 = 11.176; source SIG at z2; scale z2 = 11.176; }
41 config block fanout @ (0, 3, 1, 0) {
42 modes [(+,+,+,m)]; scale x = 2.103; source RP at z0; scale z0 = 2.103;
43 source RP at z1; scale z1 = 2.103; source RP at z2; scale z2 = 2.103; }
44 config block fanout @ (0, 3, 2, 1) {
45 modes [(+,+,-,h)]; scale x = 11.176; source X at z0; scale z0 = 11.176;
46 source X at z1; scale z1 = 11.176; source ((-1)*X) at z2; scale z2 = 11.176; }
47 config block fanout @ (0, 3, 2, 0) {
48 modes [(+,+,+,m)]; scale x = 1.900; source P at z0; scale z0 = 1.900;
49 source P at z1; scale z1 = 1.900; source P at z2; scale z2 = 1.900; }
50 config block tout @ (0, 3, 0, 0) {
51 modes [(*)]; scale x = 1.140; scale z = 1.140; }
52 conn block mult port z loc (0, 3, 3, 1) with block integ port x loc (0, 3, 0, 0);
53 conn block mult port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 3, 0);
54 conn block mult port z loc (0, 3, 1, 0) with block mult port x loc (0, 3, 0, 0);
55 conn block mult port z loc (0, 3, 3, 0) with block mult port x loc (0, 3, 0, 1);
56 conn block dac port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 2, 0);
57 conn block mult port z loc (0, 3, 0, 1) with block integ port x loc (0, 3, 2, 0);
58 conn block mult port z loc (0, 3, 2, 1) with block tout port x loc (0, 3, 0, 0);
59 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
60 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 1, 1);
61 conn block mult port z loc (0, 3, 1, 1) with block fanout port x loc (0, 3, 1, 0);
62 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 2, 1);
63 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 0);
64 conn block integ port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 1, 0);
65 conn block fanout port z0 loc (0, 3, 1, 1) with block mult port x loc (0, 3, 3, 1);
66 conn block fanout port z0 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 1, 1);
67 conn block fanout port z1 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 3, 0);
68 conn block fanout port z0 loc (0, 3, 1, 0) with block mult port y loc (0, 3, 0, 0);
69 conn block fanout port z1 loc (0, 3, 1, 0) with block mult port y loc (0, 3, 0, 1);
70 conn block fanout port z0 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 2, 1);
71 conn block fanout port z1 loc (0, 3, 1, 1) with block mult port x loc (0, 3, 1, 0);
72 conn block fanout port z2 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 1, 0);
73 timescale 0.317460

Figure 6-50: Scaled ADP of kalman benchmark

257

1 VSIG𝑠𝑐 = (3.7561*VSIG) = integ((3.1500*(0.0993*(0.0982*((10.9319*(-0.0400))*(11.1765*SIG))))),
2 ((0.8885*2)*(4.2272*0)))
3 SIG𝑠𝑐 = (11.1765*SIG) = integ((3.1500*(0.9446*(3.7561*VSIG))),((8.2713*2)*(1.3512*0.3500)))
4 E𝑠𝑐 = (11.1765*E) = ((11.1765*SIG)+(11.1765*((-1)*X)))
5 RP𝑠𝑐 = (2.1034*RP) = (0.9658*((1.1462*0.5000)*(1.9000*P)))
6 X𝑠𝑐 = (11.1765*X) = integ((3.1500*(0.9641*((12.4843*0.5000)*((0.0977*((0.1283*1.9998)*((11.1765*SIG)
7 +(11.1765*((-1)*X)))))*(2.1034*RP))))),
8 ((6.0031*2)*(1.8618*0)))
9 P𝑠𝑐 = (1.9000*P) = integ((3.1500*(0.9821*(((0.9229*2)*(0.6655*0.3000))

10 +((1.3613*0.5000)*((0.9806*((0.1151*(-2))*(1.9000*P)))*(2.1034*RP)))))),((0.7978*2)*(2.3815*0)))
11 STATE𝑠𝑐 = (1.1401*STATE) = (0.6000*emit((0.6991*((0.1459*1.6665)*(11.1765*X)))))

Figure 6-51: Scaled signal dynamics for kalman benchmark

258

6.3.8 Kalman Filter (kalman)

Figure 6-47 presents the original dynamical system for the kalman application. The kalman appli-

cation definfes VSIG, SIG, X, and P state variables and E and RP intermediate variables:

1 var VSIG = integ(-0.04*SIG, 0.0)

2 var SIG = integ(VSIG, 0.7)

3 var E = SIG-X

4 var RP = 0.50*P

5 var X = integ(RP*E, 0)

6 var P = integ(0.6-RP*P, 0.0)

7 var STATE = emit(X)

Unscaled ADP

Figure 6-48 presents the unscaled ADP for the kalman application. The ADP has a total of 18

blocks and 21 connections. The circuit contains 7 multipliers, 4 integrators, 1 DAC, 4 current copiers,

1 observation block, and 1 route (tout) block. The compiler uses the tout route block to forward

the signal to the extout block. The unscaled ADP uses 4 copier to produce 2 copies of the SIG, RP,

X, and P signals. The ADP uses Kirchhoff’s law to implement the addition operators in the relation

governing E and P. The circuit instantiates 10 constant data fields which provide the 0.35, -0.04,

0.50, 2.0, 0.30, -2.0, 1.67, and 0 values to the circuit.

Figure 6-49 presents the dynamics of the signals from the unscaled ADP for the kalman bench-

mark. The ADP implements VSIG, SIG E, RP, X, and P variables with analog currents and the STATE

variable with an analog voltage:

1 VSIG = integ(((-0.04)*SIG),(2*0))

2 SIG = integ(VSIG,(2*0.35))

3 E = (SIG+((-1)*X))

4 RP = (0.50*P)

5 X = integ(((0.50*(2.00*E))*RP),(2*0))

6 P = integ(((2*0.30)+((0.50*((-2)*P))*RP)),(2*0))

7 STATE = emit((0.60*(1.67*X)))

The SIG, E, X, P, and STATE signal expressions do not syntactically match the original dynamical

system relations. I summarize the relationship between the dynamical system relations and the

signal dynamics below:

∙ VSIG: The compiler implements the initial condition 0.0 as 2*0.0 where 0.0 is a data field

value and 2 is a device term introduced by the integrator. The analog current at port z of

259

integrator (0,3,0,0) implements the VSIG variable.

∙ SIG: The compiler implements the initial condition 0.7 as 2*0.35 where 0.35 is a data field

value and 2 is a device term introduced by the integrator block. The analog current at port

z of integrator (0,3,1,0) implements the SIG variable.

∙ E: The compiler implements the expression SIG-X by negating X and then adding it with SIG.

This is necessary because subtraction is not explicitly supported in the device. Note that

this negation operation is done without introducing a constant data field value. The analog

current at port x of multiplier (0,3,1,0) implements the E variable.

∙ RP: The signal expression which implements RP matches the dynamical system relation for

RP. The analog current at port z of multiplier (0,3,1,1) implements the RP variable.

∙ X: The compiler implmements RP*E as 0.50*2.00*E*RP. The compiler introduces the 2.00

data field value to compensate for the out the 0.50 device term introduced by the signal

multiplier block. The initial condition 0.0 is implemented as 2*0.0 where 0.0 is a data

field value and 2 is a device term. The analog current at port z of integrator (0,3,3,0)

implements the X variable.

∙ P: The compiler introduces the 2.00 data field value to compensate for the 0.50 device

constant introduced by the multiplier block. The compiler implements the 0.6 term as

2*0.30 where 0.30 is a data field value and 2.0 is the device constant introduced by the

DAC. The compiler implements the subtraction by negating RP*P and adding it to 2*0.30.

The analog current at port z of the integrator (0,3,2,0) implements the P variable.

∙ STATE: The compiler introduces the 1.67 data field value to compensate for the 0.60 device

term introduced by the observation block. The analog voltage at port z of the observation

block at (0,3,2,0) implements the STATE variable.

Scaled ADP

Figure 6-50 presents the scaled ADP for the kalman benchmark. The scaled ADP has a total of

63 magnitude scale factors. The scaled ADP has 10 data field scale factors, 7 variable scale factors,

and one time scale factor (0.3174). The speed of the scaled computation is therefore 0.3174x the

baseline integration speed of the device. The compiler also changes th eblock mode for a subset of

ADP blocks. The block mode modifications which change the input-output relations implemented

by the blocks are summarized below:

∙ multipliers (0,3,3,1) and (0,3,1,0): The compiler changes the block mode from (x,m,m)

or (x,h,h) to (x,h,m). This modification scales the output signal by 0.1 and reduces the

operating range of the output port z (relative to the (x,h,h) mode).

260

block location mode (unscaled ADP) mode (scaled ADP)
integ (0, 3, 1, 0) [(m,m,+)] (h,h,+)
integ (0, 3, 0, 0) [(m,m,+)] (h,m,+)
integ (0, 3, 3, 0) [(m,m,+)] (h,h,+)
mult (0, 3, 3, 1) [(x,m,m), (x,h,h)] (x,h,m)
mult (0, 3, 0, 0) [(m,m,m), (m,h,h), (h,m,h)] (m,m,h)
mult (0, 3, 1, 0) [(x,m,m), (x,h,h)] (x,h,m)

∙ multiplier (0,3,0,0): The compiler changes the block mode from (m,m,m), (m,h,h) or

(h,m,h) to (m,m,h). This modification scales the output signal by 10.0 and reduces the

operating range of the either the input port x or the input port y (relative to mode (m,h,h)

or (h,m,h)).

∙ integrators (0,3,1,0) and (0,3,3,0): The compiler changes the block mode from (m,m,+)

to (h,h,+). This modification scales the initial condition by 10 and increases the operating

range of the input port x and the output port z.

∙ integrator (0,3,0,0): The compiler changes the block mode from (m,m,+) to (h,m,+).

This modification scales the derivative of the signal by 0.1 and increases the operating range

of the input port x.

Each of the above mode modifications changes the input-output relations implemented by the

block. The scaling transform compensates for these changes to the input-output relations.

Figure 6-51 presents the scaled dynamics of the scaled ADP for the kalman benchmark.

1 VSIG𝑠𝑐 = (3.7561*VSIG) = integ((3.1500*(0.0993*(0.0982*((10.9319*(-0.0400))*(11.1765*SIG))))),

2 ((0.8885*2)*(4.2272*0)))

3 SIG𝑠𝑐 = (11.1765*SIG) = integ((3.1500*(0.9446*(3.7561*VSIG))),

4 ((8.2713*2)*(1.3512*0.3500)))

5 E𝑠𝑐 = (11.1765*E) = ((11.1765*SIG))+((11.1765*((-1)*X)))

6 RP𝑠𝑐 = (2.1034*RP) = (0.9658*((1.1462*0.5000)*(1.9000*P)))

7 X𝑠𝑐 = (11.1765*X) = integ((3.1500*(0.9641

8 *((12.4843*0.5000)*((0.0977*((0.1283*1.9998)*(11.1765*E)))*(2.1034*RP))))),

9 ((6.0031*2)*(1.8618*0)))

10 P𝑠𝑐 = (1.9000*P) = integ((3.1500*(0.9821*(((0.9229*2)*(0.6655*0.3000)))

11 +(((1.3613*0.5000)*((0.9806*((0.1151*(-2))*(1.9000*P)))*(2.1034*RP)))))),

12 ((0.7978*2)*(2.3815*0)))

13 STATE𝑠𝑐 = (1.1401*STATE) = (0.6000*emit((0.6991*((0.1459*1.6665)*(11.1765*X)))))

The compiler scales the VSIG, SIG, E, RP, X, P, and STATE variables by 3.7561, 11.1764, 11.1765,

2.1034, 11.1765, 1.900, and 1.1401 respectively. The compiler reports a time scale factor of

0.3174. The compiler therefore changes the speed of the computation by a factor of 3.1500−1 or

0.3174. The scaled signal dynamics use 10 data field scale factors, 7 variable scale factors, and one

time scale factor 0.3174. I summarize the scaled data field values below:

261

∙ In the VSIG and SIG signals, the compiler scales the 0.04, 0.0, and 0.35 data field values by

10.9319,4.2272, and 1.3512 respectively.

∙ In the RP and X signals, the compiler scales the 0.5, 1.9998 and 0.0 data field values by

1.1462, 0.1283, and 1.8618 respectively.

∙ In the P and STATE signals, the compiler scales the 0.3, -2, 0, and 1.67 data field values by

0.6655, 0.1151, 2.3815, and 0.1459 respectively.

The compensation terms with values between 0.6991-9806 capture the behavioral variations

present in the device. All other compensation terms capture both the effects of changing the block

mode and the behavioral deviations present in the device. The compensation terms with values

between 0.0977-0.0993 capture mode modifications which scale signals by 0.1. The compensation

terms 6.0031 and 8.2713 capture mode modifications which scale signals by 10.

Preservation: The scale factors (red) and compensation terms (grey) can be factored out of the

right- and left-hand side of each relation and eliminated from both sides of the equation:

∙ VSIG variable (III): The scale expression for both the initial condition and the derivative of

VSIG all simplify to 3.7561, the magnitude scale factor of the VSIG variable:

VSIG’ 3.7561 = 0.0993*0.0982*10.9319*11.1765

VSIG(0) 3.7561 = 0.8885*4.2272

∙ SIG variable (III): The scale expression for both the initial condition and the derivative of

SIG all simplify to 11.1765, the magnitude scale factor of the SIG variable:

SIG’ 11.1765 = 0.9446*3.7561

SIG(0) 11.1765 = 8.2713*1.3512

∙ E variable (II): The scale expression for each of the terms in the signal expression for E all

simplify to 11.1765, the magnitude scale factor of the E variable. Note that because this

signal contains no data fields and therefore has no additional degrees of freedom, all terms

are scaled by the magnitude scale factor for E:

SIG 11.1765 = 11.1765

-X 11.1765 = 11.1765

∙ RP variable (I):The scale expression for the signal simplifies to 2.1034, the magnitude scale

factor for the RP variable:

RP 2.1034 = 0.9658*1.1462*1.9000

262

∙ X variable (III): The scale expression for both the initial condition and the derivative of X

all simplify to 11.1765, the magnitude scale factor of the X variable:

X’ 11.1765 = 3.1500*0.9641*12.4843*0.0977*0.1283*11.1765*2.1034

X(0) 11.1765 = 6.0031*1.8618

∙ P variable (IV): The scale expression for each of the derivative terms and the initial condition

for the signal P all simplify to 1.900, the magnitude scale factor of the P variable:

0.6 1.900 = 3.1500*0.9821*0.9229*0.6655

-RP*P 1.900 = 3.1500*0.9821*1.3613*0.9806*0.1151*1.9000*2.1034

P(0) 1.900 = 0.7978*2.3815

∙ STATE variable (I):The scale expression for the signal simplifies to 1.1401, the magnitude

scale factor for the STATE variable:

STATE 1.1401 = 0.6991*0.1459*11.1765

263

1 var E = 0.8-ES

2 var S = 0.5-ES

3 var ES = integ(E*S - 0.3*ES, 0.0)

4 var COMPLEX = emit(ES)

5 interval E = [0.0,0.8]

6 interval S = [0.0,0.5]

7 interval ES = [0.0,0.5]

8 time 20

Figure 6-52: Dynamical system specification for smmrxn benchmark

1 config block dac @ (0, 3, 2, 0) {
2 modes [(const,m)]; set c at 0.400; }
3 config block dac @ (0, 3, 1, 0) {
4 modes [(const,m)]; set c at 0.250; }
5 config block integ @ (0, 3, 2, 0) {
6 modes [(m,m,+)]; source ES at z; set z0 at 0.000; }
7 config block mult @ (0, 3, 1, 0) {
8 modes [(x,m,m), (x,h,h)]; set c at -0.300; }
9 config block mult @ (0, 3, 0, 0) {

10 modes [(m,m,m), (m,h,h), (h,m,h)]; source S at y; set c at 0.000; }
11 config block mult @ (0, 3, 0, 1) {
12 modes [(x,m,m), (x,h,h)]; source E at x; set c at 2.000; }
13 config block mult @ (0, 3, 3, 1) {
14 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
15 config block extout @ (0, 3, 2, 0) {
16 modes [(*)]; source COMPLEX at z; }
17 config block fanout @ (0, 3, 2, 1) {
18 modes [(+,+,-,m), (+,+,-,h)]; source ES at z1; source ((-1)*ES) at z2; }
19 config block fanout @ (0, 3, 2, 0) {
20 modes [(+,+,-,m), (+,+,-,h)]; source ES at z0; source ES at z1;
21 source ((-1)*ES) at z2; }
22 config block tout @ (0, 3, 0, 0) {
23 modes [(*)]; }
24 conn block mult port z loc (0, 3, 0, 1) with block mult port x loc (0, 3, 0, 0);
25 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 2, 0);
26 conn block mult port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 2, 0);
27 conn block mult port z loc (0, 3, 3, 1) with block tout port x loc (0, 3, 0, 0);
28 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
29 conn block fanout port z0 loc (0, 3, 2, 1) with block fanout port x loc (0, 3, 2, 0);
30 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 1);
31 conn block fanout port z1 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 1, 0);
32 conn block fanout port z0 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 3, 1);
33 conn block dac port z loc (0, 3, 2, 0) with block mult port x loc (0, 3, 0, 1);
34 conn block fanout port z2 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 0, 1);
35 conn block dac port z loc (0, 3, 1, 0) with block mult port y loc (0, 3, 0, 0);
36 conn block fanout port z2 loc (0, 3, 2, 0) with block mult port y loc (0, 3, 0, 0);

Figure 6-53: Unscaled ADP for smmrxn benchmark

1 E = ((2*0.40)+((-1)*ES))

2 S = ((2*0.25)+((-1)*ES))

3 ES = integ((((-0.30)*ES)+((0.50*(2.00*((2*0.40)

4 +((-1)*ES))))*((2*0.25)+((-1)*ES)))),(2*0))

5 COMPLEX = emit((0.60*(1.67*ES)))

Figure 6-54: Signal dynamics of the unscaled ADP for smmrxn benchmark

264

1 config block dac @ (0, 3, 2, 0) {
2 modes [(const,m)]; scale x = 1.000; scale z = 2.175; set c at 0.400; scale c = 2.356; }
3 config block dac @ (0, 3, 1, 0) {
4 modes [(const,m)]; scale x = 1.000; scale z = 2.175; set c at 0.250; scale c = 2.345; }
5 config block integ @ (0, 3, 2, 0) {
6 modes [(h,m,+)]; scale x = 6.768; source ES at z; scale z = 2.175; set z0 at 0.000;
7 scale z0 = 3.012; }
8 config block mult @ (0, 3, 1, 0) {
9 modes [(x,m,m)]; scale x = 2.175; scale y = 1.000; scale z = 6.768; set c at -0.300;

10 scale c = 3.167; }
11 config block mult @ (0, 3, 0, 0) {
12 modes [(m,m,h)]; scale x = 0.249; source S at y; scale y = 2.175; scale z = 6.768;
13 set c at 0.000; scale c = 1.000; }
14 config block mult @ (0, 3, 0, 1) {
15 modes [(x,m,m)]; source E at x; scale x = 2.175; scale y = 1.000; scale z = 0.249;
16 set c at 2.000; scale c = 0.115; }
17 config block mult @ (0, 3, 3, 1) {
18 modes [(x,m,m)]; scale x = 2.175; scale y = 1.000; scale z = 1.206; set c at 1.667;
19 scale c = 0.566; }
20 config block extout @ (0, 3, 2, 0) {
21 modes [(*)]; scale x = 1.206; source COMPLEX at z; scale z = 1.206; }
22 config block fanout @ (0, 3, 2, 1) {
23 modes [(+,+,-,m)]; scale x = 2.175; scale z0 = 2.175; source ES at z1; scale z1 = 2.175;
24 source ((-1)*ES) at z2; scale z2 = 2.175; }
25 config block fanout @ (0, 3, 2, 0) {
26 modes [(+,+,-,m)]; scale x = 2.175; source ES at z0; scale z0 = 2.175;
27 source ES at z1; scale z1 = 2.175; source ((-1)*ES) at z2; scale z2 = 2.175; }
28 config block tout @ (0, 3, 0, 0) {
29 modes [(*)]; scale x = 1.206; scale z = 1.206; }
30 conn block mult port z loc (0, 3, 0, 1) with block mult port x loc (0, 3, 0, 0);
31 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 2, 0);
32 conn block mult port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 2, 0);
33 conn block mult port z loc (0, 3, 3, 1) with block tout port x loc (0, 3, 0, 0);
34 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
35 conn block fanout port z0 loc (0, 3, 2, 1) with block fanout port x loc (0, 3, 2, 0);
36 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 1);
37 conn block fanout port z1 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 1, 0);
38 conn block fanout port z0 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 3, 1);
39 conn block dac port z loc (0, 3, 2, 0) with block mult port x loc (0, 3, 0, 1);
40 conn block fanout port z2 loc (0, 3, 2, 1) with block mult port x loc (0, 3, 0, 1);
41 conn block dac port z loc (0, 3, 1, 0) with block mult port y loc (0, 3, 0, 0);
42 conn block fanout port z2 loc (0, 3, 2, 0) with block mult port y loc (0, 3, 0, 0);
43 timescale 0.316998

Figure 6-55: Scaled ADP of smmrxn benchmark.

1 E𝑠𝑐 = (2.1747*E) = (((0.9229*2)*(2.3564*0.4000))

2 +(2.1747*((-1)*ES)))

3 S𝑠𝑐 = (2.1747*S) = (((0.9275*2)*(2.3448*0.2500))

4 +(2.1747*((-1)*ES)))

5 ES𝑠𝑐 = (2.1747*ES) = integ((3.1546*(0.1019*((0.9827*((3.1667*(-0.3000))*(2.1747*ES)))

6 +((12.4843*0.5000)*((0.9927*((0.1155*1.9998)*(((0.9229*2)*(2.3564*0.4000))

7 +(2.1747*((-1)*ES)))))*(((0.9275*2)*(2.3448*0.2500))

8 +(2.1747*((-1)*ES)))))))),((0.7219*2)*(3.0124*0)))

9 COMPLEX𝑠𝑐 = (1.2062*COMPLEX) = (0.6000*emit((0.9806*((0.5656*1.6665)*(2.1747*ES)))))

Figure 6-56: Scaled signal dynamics for smmrxn benchmark

265

6.3.9 Michaelis Menten Reaction (smmrxn)

Figure 6-52 presents the original dynamical system for the smmrxn application. The smmrxn appli-

cation defines E, S, and ES state variables and a COMPLEX intermediate variable:

1 var E = 0.8-ES

2 var S = 0.5-ES

3 var ES = integ(E*S - 0.3*ES, 0.0)

4 var COMPLEX = emit(ES)

Unscaled ADP

Figure 6-53 presents the unscaled ADP for the smmrxn application. The ADP has a total of 11

blocks and 13 connections. The circuit contains 4 multipliers, one integrator, 2 DACs, 2 current

copiers, 1 observation block, and one route (tout) block. The compiler uses the tout route block to

forward the signal to the extout block. The unscaled ADP uses 2 copiers to produce 4 copies of ES.

The compiler uses Kirchhoff’s law to implement the addition operators in the relations governing

E,S, and ES. The circuit instantiates 6 constant data fields to provide the 0.40,0.25,-0.30,2.00,1,

and 1.67 values to the circuit.

Figure 6-54 presents the dynamics of the signals from the unscaled ADP for the smmrxn bench-

mark. The unscaled ADP implements the E, S, and ES variables as analog currents and the COMPLEX

variable as an analog voltage:

1 E = ((2*0.40)+((-1)*ES))

2 S = ((2*0.25)+((-1)*ES))

3 ES = integ((((-0.30)*ES)+((0.50*(2.00*(E))*(S)),(2*0))

4 COMPLEX = emit((0.60*(1.67*ES)))

The E, S, ES, and COMPLEX signal expressions do not syntactically match the original dynamical

system relations:

∙ E: The compiler implements the 0.8 term as 2*0.4 where 0.4 is a data field value and 2.0 is a

device term introduced introduced by a DAC block. The compiler implements the subtraction

operation by negating ES and adding it to 2*0.4. The analog current at port x of multiplier

(0,3,0,1) implements the E variable.

∙ S: The compiler implements the 0.5 term as 2*0.25 where 0.25 is a data field value and

2.0 is a device term introduced by a DAC block. The compiler implements the subtraction

operation bu negating ES and adding it to 2*0.25. The analog current at port y of multiplier

(0,3,0,0) implements the S variable.

266

∙ ES: The compiler introduces the 2.00 data field value to compensate for the device term 0.5

which was introduced by the multiplier. The compiler implements subtraction by negating

0.30*ES and adding the negated signal to E*S. The analog current at port z of integrator

(0,3,2,0) implements the ES variable.

∙ COMPLEX: The compiler introduces the 1.67 data field value to cancel out the 0.60 device

term introduced by the observation block. The analog voltage at port z of observation block

(0,3,2,0) implements the COMPLEX variable.

Scaled ADP

Figure 6-55 presents the scaled ADP for the smmrxn benchmark. The scaled ADP defines a total

of 37 magnitude scale factors. The scaled ADP specifies 6 data field scale factors, 4 variable scale

factors, and one time scale factor (0.3170). The speed of the scaled computation is 0.3170x the

baseline integration speed of the device. The compiler also changes the block modes for a subset of

the ADP blocks. The block mode modifications which alter the block’s input-output relations are

summarized below:

block location mode (unscaled ADP) mode (scaled ADP)

integ (0, 3, 2, 0) [(m,m,+)] (h,m,+)

mult (0, 3, 0, 0) [(m,m,m), (m,h,h), (h,m,h)] (m,m,h)

∙ multiplier (0,3,0,0): The compiler changes the mode from (m,m,m), (m,h,h), or (h,m,h)

to (m,m,h). This modification scales the output signal by 10.0 and reduces the operating

range of either input port x or y (relative to mode (h,m,h) and (m,h,h)).

∙ integrator (0,3,2,0): The compiler changes the mode from (m,m,+) to (h,m,+). This

modification scales the derivative of the output signal by 0.1 and expands the operating

range of the input port x.

Each of the above mode changes alters the input-output relation implemented at the output

ports of the block. The scaling transform compensates for these changes in the behavior of each

block.

Figure 6-56 presents the scaled dynamics of the scaled ADP for the smmrxn benchmark.

1 E𝑠𝑐 = (2.1747*E) = (((0.9229*2)*(2.3564*0.4000))

2 +(2.1747*((-1)*ES)))

3 S𝑠𝑐 = (2.1747*S) = (((0.9275*2)*(2.3448*0.2500))

4 +(2.1747*((-1)*ES)))

5 ES𝑠𝑐 = (2.1747*ES) = integ((3.1546*(0.1019*((0.9827*((3.1667*(-0.3000))*(2.1747*ES)))

6 +((12.4843*0.5000)*((0.9927*((0.1155*1.9998)*(2.1747*E)*(2.1747*S), ((0.7219*2)*(3.0124*0)))

7 COMPLEX𝑠𝑐 = (1.2062*COMPLEX) = (0.6000*emit((0.9806*((0.5656*1.6665)*(2.1747*ES)))))

267

The compiler scales the E, S, and ES variables by 2.1747 and the COMPLEX variable by 1.2062.

The compiler reports a time scale factor of 0.3170. The compiler therefore scales the speed of the

computation by a factor of 0.3170−1 or 3.1546. The scaled signal dynamics use 6 data field scale

factors, 4 variable scale factors, and one time scale factor. I summarize the scaled data field values

below:

∙ In the E and S signals, the compiler scales the 0.40 and 0.25 data field value by 2.3564 and

2.3448 respectively.

∙ In the ES signal, the -0.3, 2.0, and 0 data field values are scaled by 3.1667, 0.1155, and

3.0124 respectively.

∙ In the COMPLEX signal, the 1.67 data field value is scaled by 0.5656.

The compensation terms with values between 0.7219-0.9806 capture the behavioral variations

present in the device. All other compensation terms capture both the behavioral deviations within

the device and the effects of modifying the mode on the input-output relation. The compensation

term 0.1019 captures the 0.1 coefficient introduced by a change of mode. The compensation term

12.4843 captures the 10.0 coefficient introduced by a change of mode.

Preservation: The scale factors (red) and compensation terms (grey) can be factored out of the

right- and left-hand side of each relation and eliminated from both sides of the equation:

∙ E variable (II): The scale expression for each of the terms in the signal expression for E all

simplify to 2.1747, the magnitude scale factor of the E variable:

0.8 2.1747 = 0.9229*2.3564

ES 2.1747 = 2.1747

∙ S variable (II): The scale expression for each of the terms in the signal expression for 2.1747

all simplify to S, the magnitude scale factor of the S variable:

0.5 2.1747 = 0.9275*2.3448

-ES 2.1747 = 2.1747

∙ ES variable (IV): The scale expression for each of the derivative terms and the initial

condition all simplify to 2.1747, the magnitude scale factor of the ES variable:

-ES 2.1747 = 3.1546*0.1019*0.9827*3.1667*2.1747

E*S 2.1747 = 3.1546*0.1019*12.4843*0.9927*0.1155*2.1747*2.1747

ES(0) 2.1747 = 0.7219*3.0124

268

∙ COMPLEX variable (I):The scale expression for the signal simplifies to 1.2062, the magnitude

scale factor for the COMPLEX variable:

COMPLEX 1.2062 = 0.9806*0.5656*2.1747

269

1 func utf(T) = 15.62/pow((1+max(T,0)),2.5)

2 func vtf(T) = 15.6/(1+max(T,0))

3 func umod(T) = pow((1+max(T,0)),-2.0015)

4

5 var VPERT = integ(-PERT, 0.0)

6 var PERT = integ(VPERT, 0.5)

7 var IPTG = 0.5+PERT

8 var UMOD = call(umod,IPTG)

9 var UTF = call(utf,V)

10 var VTF = call(vtf,(U*UMOD))

11 var V = integ(VTF - V, 0.0)

12 var U = integ(UTF - U, 0.0)

13 var compV = emit(V)

14

15

16 interval UMOD = [0.0,1.0]

17 interval UTF = [0.0,16.0]

18 interval VTF = [0.0,16.0]

19 interval V = [0.0,16.0]

20 interval U = [0.0,1.2]

21 time 20

Figure 6-57: Dynamical system specification for gentog benchmark

1 conn block mult port z loc (0, 2, 1, 1) with block integ port x loc (0, 2, 1, 0);
2 conn block adc port z loc (0, 2, 2, 0) with block lut port x loc (0, 2, 2, 0);
3 conn block lut port z loc (0, 2, 2, 0) with block dac port x loc (0, 2, 2, 0);
4 conn block adc port z loc (0, 3, 0, 0) with block lut port x loc (0, 3, 0, 0);
5 conn block lut port z loc (0, 3, 0, 0) with block dac port x loc (0, 3, 0, 0);
6 conn block adc port z loc (0, 3, 2, 0) with block lut port x loc (0, 3, 2, 0);
7 conn block lut port z loc (0, 3, 2, 0) with block dac port x loc (0, 3, 2, 0);
8 conn block mult port z loc (0, 3, 2, 0) with block adc port x loc (0, 3, 2, 0);
9 conn block mult port z loc (0, 3, 0, 1) with block integ port x loc (0, 3, 0, 0);

10 conn block mult port z loc (0, 3, 2, 1) with block integ port x loc (0, 3, 0, 0);
11 conn block mult port z loc (0, 3, 1, 1) with block integ port x loc (0, 3, 1, 0);
12 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 1, 0);
13 conn block mult port z loc (0, 3, 0, 0) with block tout port x loc (0, 3, 0, 0);
14 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
15 conn block integ port z loc (0, 2, 3, 0) with block fanout port x loc (0, 2, 2, 0);
16 conn block integ port z loc (0, 3, 0, 0) with block fanout port x loc (0, 3, 0, 0);
17 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 0, 1);
18 conn block integ port z loc (0, 2, 1, 0) with block integ port x loc (0, 2, 3, 0);
19 conn block fanout port z0 loc (0, 2, 2, 0) with block mult port x loc (0, 2, 1, 1);
20 conn block fanout port z0 loc (0, 3, 0, 0) with block adc port x loc (0, 3, 0, 0);
21 conn block fanout port z1 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 0, 1);
22 conn block fanout port z2 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 0, 0);
23 conn block dac port z loc (0, 2, 2, 0) with block tout port x loc (0, 2, 0, 0);
24 conn block tout port z loc (0, 2, 0, 0) with block tin port x loc (0, 3, 0, 0);
25 conn block tin port z loc (0, 3, 0, 0) with block mult port y loc (0, 3, 2, 0);
26 conn block fanout port z0 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 2, 0);
27 conn block fanout port z1 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 2, 0);
28 conn block fanout port z2 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 1, 1);
29 conn block dac port z loc (0, 3, 2, 0) with block mult port x loc (0, 3, 2, 1);
30 conn block dac port z loc (0, 3, 0, 0) with block mult port x loc (0, 3, 1, 0);
31 conn block dac port z loc (0, 2, 3, 0) with block adc port x loc (0, 2, 2, 0);
32 conn block fanout port z1 loc (0, 2, 2, 0) with block adc port x loc (0, 2, 2, 0);

Figure 6-58: Connections from unscaled/scaled ADP for gentog benchmark

270

1 config block integ @ (0, 2, 3, 0) {
2 modes [(m,m,+)]; source PERT at z; set z0 at 0.250; }
3 config block integ @ (0, 2, 1, 0) {
4 modes [(m,m,+)]; source VPERT at z; set z0 at 0.000; }
5 config block integ @ (0, 3, 0, 0) {
6 modes [(m,m,+)]; source V at z; set z0 at 0.000; }
7 config block integ @ (0, 3, 1, 0) {
8 modes [(m,m,+)]; source U at z; set z0 at 0.000; }
9 config block mult @ (0, 2, 1, 1) {

10 modes [(x,m,m), (x,h,h)]; set c at -1.000; }
11 config block mult @ (0, 3, 2, 0) {
12 modes [(m,m,m), (m,h,h), (h,m,h)]; set c at 0.000; }
13 config block mult @ (0, 3, 0, 1) {
14 modes [(x,m,m), (x,h,h)]; set c at -1.000; }
15 config block mult @ (0, 3, 2, 1) {
16 modes [(x,m,m), (x,h,h)]; set c at 1.000; }
17 config block mult @ (0, 3, 1, 1) {
18 modes [(x,m,m), (x,h,h)]; set c at -1.000; }
19 config block mult @ (0, 3, 1, 0) {
20 modes [(x,m,m), (x,h,h)]; set c at 1.000; }
21 config block mult @ (0, 3, 0, 0) {
22 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
23 config block dac @ (0, 2, 3, 0) {
24 modes [(const,m)]; set c at 0.250; }
25 config block dac @ (0, 2, 2, 0) {
26 modes [(dyn,h)]; source UMOD at z; set c at 0.000; }
27 config block dac @ (0, 3, 0, 0) {
28 modes [(dyn,h)]; source UTF at z; set c at 0.000; }
29 config block dac @ (0, 3, 2, 0) {
30 modes [(dyn,h)]; source VTF at z; set c at 0.000; }
31 config block lut @ (0, 2, 2, 0) {
32 modes [(*)]; set e at (1*(0.05*pow((1)+(max((2*(1*y)),0)),(-2.00)))); }
33 config block lut @ (0, 3, 0, 0) {
34 modes [(*)]; set e at (1*(0.05*(15.62*pow((1)+(pow(max((2*(1*y)),0),2.50)),(-1))))); }
35 config block lut @ (0, 3, 2, 0) {
36 modes [(*)]; set e at (1*(0.05*(15.60*pow((1)+(max((2*(1*y)),0)),(-1))))); }
37 config block adc @ (0, 2, 2, 0) {
38 modes [(m)]; source IPTG at x; }
39 config block adc @ (0, 3, 0, 0) {
40 modes [(m)]; }
41 config block adc @ (0, 3, 2, 0) {
42 modes [(m)]; }
43 config block extout @ (0, 3, 2, 0) {
44 modes [(*)]; source compV at z; }
45 config block fanout @ (0, 2, 2, 0) {
46 modes [(+,+,+,m), (+,+,+,h)]; source PERT at z0; source PERT at z1;
47 source PERT at z2; }
48 config block fanout @ (0, 3, 0, 0) {
49 modes [(+,+,+,m), (+,+,+,h)]; source V at z0; source V at z1;
50 source V at z2; }
51 config block fanout @ (0, 3, 0, 1) {
52 modes [(+,+,+,m), (+,+,+,h)]; source U at z0; source U at z1;
53 source U at z2; }
54 config block tout @ (0, 3, 0, 0) { modes [(*)]; }
55 config block tout @ (0, 2, 0, 0) { modes [(*)]; }
56 config block tin @ (0, 3, 0, 0) { modes [(*)]; }

Figure 6-59: Block Configurations from unscaled ADP for gentog benchmark. Refer
to Figure 6-58 for scaled ADP connections.

271

1 VPERT = integ(((-1.00)*PERT),(2*0))

2 PERT = integ(VPERT,(2*0.25))

3 IPTG = ((2*0.25)+PERT)

4 UMOD = (20*(0.05*pow((1+max((2*(0.50*IPTG)),0)),(-2.00))))

5 UTF = (20*(0.05*(15.62*pow((1+pow(max((2*(0.50*V)),0),2.50)),(-1)))))

6 VTF = (20*(0.05*(15.60*pow((1+max((2*(0.50*((0.50*(U+U))*UMOD))),0)),(-1)))))

7 V = integ((((-1.00)*V)+(1.00*VTF)),(2*0))

8 U = integ((((-1.00)*U)+(1.00*UTF)),(2*0))

9 compV = emit((0.60*(1.67*V)))

Figure 6-60: Signal dynamics of the unscaled ADP for gentog benchmark

272

1 config block integ @ (0, 2, 3, 0) {
2 modes [(h,h,+)]; scale x = 1.660; source PERT at z; scale z = 18.102;
3 set z0 at 0.250; scale z0 = 2.653; }
4 config block integ @ (0, 2, 1, 0) {
5 modes [(h,m,+)]; scale x = 1.431; source VPERT at z; scale z = 1.660;
6 set z0 at 0.000; scale z0 = 2.146; }
7 config block integ @ (0, 3, 0, 0) {
8 modes [(h,h,+)]; scale x = 0.098; source V at z; scale z = 1.107; set z0 at 0.000;
9 scale z0 = 0.141; }

10 config block integ @ (0, 3, 1, 0) {
11 modes [(h,h,+)]; scale x = 0.639; source U at z; scale z = 6.918; set z0 at 0.000;
12 scale z0 = 0.836; }
13 config block mult @ (0, 2, 1, 1) {
14 modes [(x,h,m)]; scale x = 18.102; scale y = 1.000; scale z = 1.431; set c at -1.000;
15 scale c = 0.791; }
16 config block mult @ (0, 3, 2, 0) {
17 modes [(m,h,h)]; scale x = 6.918; scale y = 1.753; scale z = 14.967; set c at 0.000;
18 scale c = 1.000; }
19 config block mult @ (0, 3, 0, 1) {
20 modes [(x,h,m)]; scale x = 1.107; scale y = 1.000; scale z = 0.098; set c at -1.000;
21 scale c = 0.896; }
22 config block mult @ (0, 3, 2, 1) {
23 modes [(x,m,m)]; scale x = 0.110; scale y = 1.000; scale z = 0.098; set c at 1.000;
24 scale c = 0.943; }
25 config block mult @ (0, 3, 1, 1) {
26 modes [(x,h,m)]; scale x = 6.918; scale y = 1.000; scale z = 0.639; set c at -1.000;
27 scale c = 0.950; }
28 config block mult @ (0, 3, 1, 0) {
29 modes [(x,m,h)]; scale x = 0.111; scale y = 1.000; scale z = 0.639; set c at 1.000;
30 scale c = 0.595; }
31 config block mult @ (0, 3, 0, 0) {
32 modes [(x,h,m)]; scale x = 1.107; scale y = 1.000; scale z = 0.060; set c at 1.667;
33 scale c = 0.566; }
34 config block dac @ (0, 2, 3, 0) {
35 modes [(const,h)]; scale x = 1.000; scale z = 18.102; set c at 0.250; scale c = 1.958; }
36 config block dac @ (0, 2, 2, 0) {
37 modes [(dyn,m)]; scale x = 18.272; source UMOD at z; scale z = 1.753; set c at 0.000;
38 scale c = 1.000; }
39 config block dac @ (0, 3, 0, 0) {
40 modes [(dyn,m)]; scale x = 1.207; source UTF at z; scale z = 0.111; set c at 0.000;
41 scale c = 1.000; }
42 config block dac @ (0, 3, 2, 0) {
43 modes [(dyn,m)]; scale x = 1.186; source VTF at z; scale z = 0.110; set c at 0.000;
44 scale c = 1.000; }
45 config block lut @ (0, 2, 2, 0) {
46 modes [(*)]; scale x = 1.885; scale z = 18.272;
47 set e at (18.2724*(0.0500*pow((1)+(max((2*(0.5305*y)),0)),(-2.0015)))); scale e = 18.272; }
48 config block lut @ (0, 3, 0, 0) {
49 modes [(*)]; scale x = 0.118; scale z = 1.207;
50 set e at (1.2069*(0.0500*(15.6200*pow((1)+(pow(max((2*(8.4874*y)),0),2.5000)),(-1))))); scale e = 1.207; }
51 config block lut @ (0, 3, 2, 0) {
52 modes [(*)]; scale x = 1.571; scale z = 1.186;
53 set e at (1.1860*(0.0500*(15.6000*pow((1)+(max((2*(0.6366*y)),0)),(-1))))); scale e = 1.186; }
54 config block adc @ (0, 2, 2, 0) {
55 modes [(h)]; source IPTG at x; scale x = 18.102; scale z = 1.885; }
56 config block adc @ (0, 3, 0, 0) {
57 modes [(h)]; scale x = 1.107; scale z = 0.118; }
58 config block adc @ (0, 3, 2, 0) {
59 modes [(h)]; scale x = 14.967; scale z = 1.571; }
60 config block extout @ (0, 3, 2, 0) {
61 modes [(*)]; scale x = 0.060; source compV at z; scale z = 0.060; }
62 config block fanout @ (0, 2, 2, 0) {
63 modes [(+,+,+,h)]; scale x = 18.102; source PERT at z0; scale z0 = 18.102;
64 source PERT at z1; scale z1 = 18.102; source PERT at z2; scale z2 = 18.102; }
65 config block fanout @ (0, 3, 0, 0) {
66 modes [(+,+,+,h)]; scale x = 1.107; source V at z0; scale z0 = 1.107;
67 source V at z1; scale z1 = 1.107; source V at z2; scale z2 = 1.107; }
68 config block fanout @ (0, 3, 0, 1) {
69 modes [(+,+,+,h)]; scale x = 6.918; source U at z0; scale z0 = 6.918;
70 source U at z1; scale z1 = 6.918; source U at z2; scale z2 = 6.918; }
71 config block tout @ (0, 3, 0, 0) { modes [(*)]; scale x = 0.060; scale z = 0.060; }
72 config block tout @ (0, 2, 0, 0) { modes [(*)]; scale x = 1.753; scale z = 1.753; }
73 config block tin @ (0, 3, 0, 0) { modes [(*)]; scale x = 1.753; scale z = 1.753; }
74 timescale 0.087259

Figure 6-61: Block configurations and timescale statement from scaled ADP of
gentog benchmark. Refer to Figure 6-58 for scaled ADP connections.

273

1 VPERT𝑠𝑐 = (1.6604*VPERT) = integ((11.4602*(0.1012*(0.1000*((0.7909*(-1.0000))*(18.1021*PERT))))),

2 ((0.7738*2)*(2.1458*0)))

3 PERT𝑠𝑐 = (18.1021*PERT) = integ((11.4602*(0.9513*(1.6604*VPERT))),((6.8244*2)*(2.6526*0.2500)))

4 IPTG𝑠𝑐 = (18.1021*IPTG) = (((9.2446*2)*(1.9581*0.2500))+(18.1021*PERT))

5 UMOD𝑠𝑐 = (1.7527*UMOD) = ((0.0959*20)*(18.2724*(0.0500*pow((1+max((2*(0.5305

6 *((0.1041*0.5000)*(18.1021*IPTG)))),0)),(-2.0015)))))

7 UTF𝑠𝑐 = (0.1109*UTF) = ((0.0919*20)*(1.2069*(0.0500*(15.6200*pow((1+pow(max((2*(8.4874

8 *((0.1065*0.5000)*(1.1068*V)))),0),2.5000)),(-1))))))

9 VTF𝑠𝑐 = (0.1095*VTF) = ((0.0923*20)*(1.1860*(0.0500*(15.6000*pow((1+max((2*(0.6366

10 *((0.1050*0.500)*((1.2343*0.500)*(((6.9184*U)+(6.9184*U))*(1.7527*UMOD)))))),0)),(-1))))))

11 V𝑠𝑐 = (1.1068*V) = integ((11.4602*(0.9892*((0.0985*((0.8959*(-1.0000))*(1.1068*V)))

12 +(0.9457*((0.9426*1.0000)*(0.1095*VTF)))))),((7.8379*2)*(0.1412*0)))

13 U𝑠𝑐 = (6.9184*U) = integ((11.4602*(0.9446*((0.0972*((0.9500*(-1.0000))*(6.9184*U)))

14 +(9.6928*((0.5948*1.0000)*(0.1109*UTF)))))),((8.2713*2)*(0.8364*0)))

15 compV𝑠𝑐 = (0.0600*compV) = (0.6000*emit((0.0959*((0.5655*1.6667)*(1.1068*V)))))

Figure 6-62: Scaled signal dynamics for gentog benchmark

274

6.3.10 Genetic Toggle Switch (gentog)

Figure 6-52 presents the original dynamical system for the gentog application. The gentog ap-

plication defines the VPERT, PERT, U, and V state variables and the IPTG, UMOD,UTFVTF, and compV

intermediate variables.

1 func utf(T) = 15.62/pow((1+max(T,0)),2.5)

2 func vtf(T) = 15.6/(1+max(T,0))

3 func umod(T) = pow((1+max(T,0)),-2.0015)

4

5 var VPERT = integ(-PERT, 0.0)

6 var PERT = integ(VPERT, 0.5)

7 var IPTG = 0.5+PERT

8 var UMOD = call(umod,IPTG)

9 var UTF = call(utf,V)

10 var VTF = call(vtf,(U*UMOD))

11 var V = integ(VTF - V, 0.0)

12 var U = integ(UTF - U, 0.0)

13 var compV = emit(V)

The gentog application uses the utf, vtf, and umod functions which compute the 15.62 · (1 +

𝑇)−2.5, 15.6 · (1+𝑇)−1, and (1+𝑇)−2.0015 functions respectively. The umod function is invoked with

the IPTG function as an argument, the utf function is invoked with the V function as an argument,

and the vtf function is invoked with the U*UMOD term as an argument. The max(T,0) invocations

ensure that the input argument is greater than or equal to zero. This is necessary because the U, V,

and IPTG variables all capture protein or small molecule levels which cannot take on negative values.

Unscaled ADP

Figures 6-59 and 6-58 present the unscaled ADP for the gentog application. The ADP has a total

of 28 blocks and 32 connections. The circuit contains 7 multipliers, 4 integrators, 3 ADCs, 4 DACs,

3 LUTs, 3 current copiers, 1 observation block, and 3 routing (tin and tout) blocks. The compiler

uses the tin and tout route blocks are to forward the signal implementing VTF from port z of

DAC (0,2,2,0) to port y of multiplier (0,3,2,0). The compiler partitions the circuit across tiles

because tiles (0,2) and (0,3) each only have 2 LUTs and 2 ADCs. The compiler must therefore

use more than one tile to to use 4 ADCs, 4 DACs, and 3 LUTs. The compiler uses the remaining

tout route block to forward the signal implementing V to the observation block. The unscaled ADP

uses three copiers to produce 2 copies of the V, PERT, and U signals. The ADP uses Kirchoff’s

law to implement the addition operators in the relations governing U,V,IPTG, and VTF. The circuit

275

instantiates 11 constant data fields to provide the values -1.0, 0.0, 0.25, 1.0, and 1.67 to the

circuit.

Figure 6-60 presents the dynamics of the signals from the unscaled ADP for the smmrxn bench-

mark. The unscaled ADP implements the PERT, VPERT, IPTG, UMOD, UTF, VTF, U, and V variables as

analog currents and the compV variable as an analog voltage:

1 VPERT = integ(((-1.00)*PERT),(2*0))

2 PERT = integ(VPERT,(2*0.25))

3 IPTG = ((2*0.25)+PERT)

4 UMOD = (20*(0.05*pow((1+max((2*(0.50*IPTG)),0)),(-2.00))))

5 UTF = (20*(0.05*(15.62*pow((1+pow(max((2*(0.50*V)),0),2.50)),(-1)))))

6 VTF = (20*(0.05*(15.60*pow((1+max((2*(0.50*((0.50*(U+U))*UMOD))),0)),(-1)))))

7 V = integ((((-1.00)*V)+(1.00*VTF)),(2*0))

8 U = integ((((-1.00)*U)+(1.00*UTF)),(2*0))

9 compV = emit((0.60*(1.67*V)))

The PERT, VPERT, IPTG, UMOD, UTF, VTF, U, V, and compV signal expressions all fail to syntactically

match the original dynamical system relations:

∙ VPERT: The compiler implements the 0 initial condition with the 2*0.0 expression where 0.0

is a data field value and 2 is a device term introduced by a integrator block. The compiler

negates the PERT signal by multiplying it with -1.0. The analog current at port z of integrator

(0,2,1,0) implements the VPERT variable.

∙ PERT: The compiler implements the 0.5 initial condition with the 2*0.25 expression where

0.25 is a data field value and 2.0 is a device term introduced by an integrator. The analog

current at port z of integrator (0,2,3,0) implements the PERT variable.

∙ IPTG: The compiler implements the 0.5 term as 2*0.25 where where 0.25 is a data field

value and 2.0 is a device term introduced by a DAC. The compiler implements the addition

operation with Kirchhoff’s law. The analog current at port x of ADC (0,2,2,0) implements

the IPTG variable.

∙ UMOD: The compiler introduces the 2 and 0.5 terms into the data field expression to compen-

sate for the 0.50 and 20 device terms introduced by the ADC and DAC blocks respectively.

The compiler multiplies the expression data field input with the coefficient 2.0 to compensate

for the 0.5 device term introduced by the DAC. The compiler multiplies the expression data

field output with the coefficient 0.05 to compensate for the device term introduced by the

ADC. The analog current at port z of DAC (0,2,2,0) implements the UMOD variable.

276

∙ UTF: The compiler introduces the 2 and 0.5 terms into the data field expression to compensate

for the 0.50 and 20 device terms introduced by the ADC and DAC blocks respectively. The

analog current at port z of DAC (0,3,0,0) implements the UTF variable.

∙ VTF:The compiler introduces the 2 and 0.5 terms into the data field expression to compensate

for the 0.50 and 20 device terms introduced by the ADC and DAC blocks respectively. The

compiler also rewrites the U*UMOD argument as 0.5*(U+U)*UMOD. The compiler doubles the

U signal by adding it with itself – this cancels out the 0.5 device term introduced by the

multiplier. The analog current at port z of DAC (0,3,2,0) implements the VTF variable.

∙ U: The compiler implements UTF-U by negating the U term and adding it with UTF. The

compiler negates U by introducing the -1.0 data field value and multiplying it with U. This

is necessary because subtraction is not explicitly supported in the device. The analog current

at port z of integrator (0,3,1,0) implements the U variable.

∙ V: The compiler implements VTF-V by negating the V term and adding it with VTF. The

compiler negates V by introducing the -1.0 data field value and multiplying it with V. This

is necessary because subtraction is not explicitly supported in the device. The analog current

at port z of integrator (0,3,0,0) implements V.

∙ compV: The compiler introduces the 1.67 data field value to cancel out the 0.60 device term

introduced by the observation block. The analog voltage at port z of observation block

(0,3,2,0) implements the compV variable.

Scaled ADP

Figure 6-62 presents the scaled ADP for the smmrxn application. The scaled ADP has a total of

90 magnitude scale factors. The scaled ADP has 11 data field scale factors, 9 variable scale factors,

and one time scale factor (0.08729). The speed of computation is 0.08729x the baseline integration

speed of the device. The compiler also changes the block mode for a subset of ADP blocks. The

block mode modifications which change the block input-output relations are summarized below:

277

block location mode (unscaled ADP) mode (scaled ADP)

integ (0, 2, 3, 0) [(m,m,+)] (h,h,+)

integ (0, 2, 1, 0) [(m,m,+)] (h,m,+)

integ (0, 3, 0, 0) [(m,m,+)] (h,h,+)

integ (0, 3, 1, 0) [(m,m,+)] (h,h,+)

mult (0, 2, 1, 1) [(x,m,m), (x,h,h)] (x,h,m)

mult (0, 3, 0, 1) [(x,m,m), (x,h,h)] (x,h,m)

mult (0, 3, 1, 1) [(x,m,m), (x,h,h)] (x,h,m)

mult (0, 3, 1, 0) [(x,m,m), (x,h,h)] (x,m,h)

mult (0, 3, 0, 0) [(x,m,m), (x,h,h)] (x,h,m)

dac (0, 2, 3, 0) [(const,m)] (const,h)

dac (0, 2, 2, 0) [(dyn,h)] (dyn,m)

dac (0, 3, 0, 0) [(dyn,h)] (dyn,m)

dac (0, 3, 2, 0) [(dyn,h)] (dyn,m)

adc (0, 2, 2, 0) [(m)] (h)

adc (0, 3, 0, 0) [(m)] (h)

adc (0, 3, 2, 0) [(m)] (h)

The scaled ADP changes 5 multiplier modes, 4 integrator modes, 3 DAC modes, and 3 ADC

modes to scale the circuit:

∙ integrators (0,2,3,0), (0,3,0,0), and (0,3,1,0): The compiler changes the mode from

(m,m,+) to (h,h,+). This modification scales the initial condition by 10 and expands the

operating range of the input port x and the output port z.

∙ integrator (0,2,1,0): The compiler changes the mode from (m,m,+) to (h,m,+). This

modification scales the derivative of the output signal by 0.1 and expands the operating

range of the input port x.

∙ multipliers (0,2,1,1),(0,3,0,1), (0,3,1,1), and (0,3,0,0): The compiler changes the

mode from (x,m,m) or (x,h,h) to (x,h,m). This modification scales the output signal by

0.1 and reduces the operating range of the output port z (relative to the mode (x,h,h)).

∙ multiplier (0,3,1,0): The compiler changes the mode from (x,m,m) or (x,h,h) to (x,m,h).

This modification scales the output signal by 10.0 and reduces the operating range of the

input port x (relative to the mode (x,h,h).

∙ DAC (0,2,3,0): The compiler changes the mode from (const,m) to (const,h). This

modification scales the output signal by 10 an expands the operating range of the output

port z.

278

∙ DACs (0,2,2,0),(0,3,0,0), and (0,3,2,0): The compiler changes the mode from (dyn,h)

to (dyn,m). This modification scales the output signal by 0.1 an reduces the operating range

of the output port z.

∙ all ADCs: The compiler changes the mode from (m) to (h). This modification scales the

output signal by 0.1 and increases the operating range of the input port x.

Figure 6-62 presents the scaled dynamics of the scaled ADP for the smmrxn benchmark.

1 VPERT𝑠𝑐 = (1.6604*VPERT) = integ((11.4602*(0.1012*(0.1000*((0.7909*(-1.0000))*(18.1021*PERT))))),

2 ((0.7738*2)*(2.1458*0)))

3 PERT𝑠𝑐 = (18.1021*PERT) = integ((11.4602*(0.9513*(1.6604*VPERT))),((6.8244*2)*(2.6526*0.2500)))

4 IPTG𝑠𝑐 = (18.1021*IPTG) = (((9.2446*2)*(1.9581*0.2500))+(18.1021*PERT))

5 UMOD𝑠𝑐 = (1.7527*UMOD) = ((0.0959*20)*(18.2724*(0.0500*pow((1+max((2*(0.5305

6 *((0.1041*0.5000)*(18.1021*IPTG)))),0)),(-2.0015)))))

7 UTF𝑠𝑐 = (0.1109*UTF) = ((0.0919*20)*(1.2069*(0.0500*(15.6200*pow((1+pow(max((2*(8.4874

8 *((0.1065*0.5000)*(1.1068*V)))),0),2.5000)),(-1))))))

9 VTF𝑠𝑐 = (0.1095*VTF) = ((0.0923*20)*(1.1860*(0.0500*(15.6000*pow((1+max((2*(0.6366

10 *((0.1050*0.500)*((1.2343*0.500)*(((6.9184*U)+(6.9184*U))*(1.7527*UMOD)))))),0)),(-1))))))

11 V𝑠𝑐 = (1.1068*V) = integ((11.4602*(0.9892*((0.0985*((0.8959*(-1.0000))*(1.1068*V)))

12 +(0.9457*((0.9426*1.0000)*(0.1095*VTF)))))),((7.8379*2)*(0.1412*0)))

13 U𝑠𝑐 = (6.9184*U) = integ((11.4602*(0.9446*((0.0972*((0.9500*(-1.0000))*(6.9184*U)))

14 +(9.6928*((0.5948*1.0000)*(0.1109*UTF)))))),((8.2713*2)*(0.8364*0)))

15 compV𝑠𝑐 = (0.0600*compV) = (0.6000*emit((0.0959*((0.5655*1.6667)*(1.1068*V)))))

The compiler scales the VPERT, PERT, IPTG, UMOD, UTF, VTF, V, U, and compV variables by 1.6604,

18.1021, 18.1021, 1.7527, 0.1109, 0.1095, 1.1068, 6.9184, and 0.0600 respectively. The compiler

reports a time scale factor of 0.08729. The compiler therefore changes the speed of the computation

by a factor of 11.4602−1 or 0.08729. The scaled signal dynamics use eleven data field scale factors,

9 variable scale factors, 6 injected coefficients, and one time scale factor 0.08729. I summarize the

scaled data field values below:

∙ In the VPERT and PERT signals, the compiler scales the -1.0, 0.0, 0.25 data field values by

0.7909, 2.1458, and 2.6526 respectively.

∙ In the IPTG and V signals, the compiler scales the 0.25, -1, 1.0, and 0 data field values by

1.9581, 0.8959, 0.9426, and 0.1412 respectively.

∙ In the U and compV signals, the compiler scales the -1.0, 1.0, 0, and 1.67 values by 0.9500,

0.5948, 0.8364, and 0.5655 respectively.

∙ For the UMOD signal, the compiler injects the 0.5305 and 18.2724 coefficients into the data

field expression. The 0.5305 coefficient eliminates the scaling transform and compensation

terms from the input expression and the 18.2724 term scales the data field expression result

by 18.2724x.

279

∙ For the UTF signal, the compiler injects the 8.4874 and 1.2069 coefficients into the data

field expression. The 8.4874 coefficient eliminates the scaling transform and compensation

terms from the input expression and the 1.2069 term scales the data field expression result

by 1.2069x.

∙ For the VTF signal, the compiler injects the 0.6366 and 1.1860 coefficients into the data

field expression. The 0.6366 coefficient eliminates the scaling transform and compensation

terms from the input expression and the 1.1860 term scales the data field expression result

by 1.1860x.

The compensation terms with values between 0.7738-1.2343 capture only the behavioral vari-

ations present in the device. All other compensation terms capture both the effect of changing the

block mode and model the behavioral deviations found on the device. The compensation terms

between 0.0923-0.1041 capture mode changes which introduce the 0.1 coefficient into the block

input-output relations. The compensation terms between 6.8244-9.244 compensate for the mode

changes introduce the 10 coefficient into the input-output relations.

Preservation:The scale factors (red) and compensation terms (grey) can be factored out of the

right- and left-hand side of each relation and eliminated from both sides of the equation:

∙ VPERT variable (III): The scale expression for both the initial condition and the derivative

of VPERT all simplify to 1.6604, the magnitude scale factor of the VPERT variable:

VPERT’ 1.6604 = 11.4602*0.1012*0.1000*0.7909*18.1021

VPERT(0) 1.6604 = 0.7738*2.1458

∙ PERT variable (III): The scale expression for both the initial condition and the derivative of

PERT all simplify to 18.1021, the magnitude scale factor of the PERT variable:

PERT’ 18.1021 = 11.4602*0.9513*1.6604

PERT(0) 18.1021 = 6.8244*2.6526

∙ IPTG variable (II): The scale expression for each of the terms in the signal expression for

IPTG all simplify to 18.1021, the magnitude scale factor of the IPTG variable:

0.5 18.1021 = 9.2446*1.9581

PERT 18.1021 = 18.1021

∙ UMOD variable (I):The scale expression for the signal simplifies to 1.7527, the magnitude

scale factor for the UMOD variable:

280

UMOD 1.7527 = 0.0959*18.2724

The body of the data field expression can be ignored when proving preservation because the

scaling transform is eliminated at the data expression input:

1.00 = 0.5305*0.1041*18.1021

The injected value 0.5305 cancels out both the scaling transform and the compensation terms

introduced by the ADC.

∙ UTF variable (I):The scale expression for the signal simplifies to 0.1109, the magnitude scale

factor for the UTF variable:

UTF 0.1109 = 0.0919*1.2069

The body of the data field expression can be ignored when proving preservation because the

scaling transform is eliminated at the data expression input:

1.00 = 8.4874*0.1065*1*1.1068

The injected value 8.4874 cancels out both the scaling transform and the compensation terms

introduced by the ADC.

∙ VTF variable (I):The scale expression for the signal simplifies to 0.1095, the magnitude scale

factor for the VTF variable:

VTF 0.1095 = 0.0923*1.1860

The body of the data field expression can be ignored when proving preservation because the

scaling transform is eliminated at the data expression input:

1.00 = 0.6366*0.1050*1.2343*1*1*6.9184*1*1*1.7527

The injected value 0.6366 cancels out both the scaling transform and the compensation terms

introduced by the ADC, multiplier, and current copiers.

∙ V variable (IV): The scale expression for each of the derivative terms and the initial condition

all simplify to 1.1068, the magnitude scale factor of the V variable:

281

-V 1.1068 = 11.4602*0.9892*0.0985*0.8959*1.1068

VTF 1.1068 = 11.4602*0.9892*0.9457*0.9426*0.1095

V(0) 1.1068 = 7.8379*0.1412

∙ U variable (IV): The scale expression for each of the derivative terms and the initial condition

all simplify to 6.9184, the magnitude scale factor of the U variable:

-U 6.9184 = 11.4602*0.9446*0.0972*0.9500*6.9184

UTF 6.9184 = 11.4602*0.9446*9.6928*0.5948*0.1109

U(0) 6.9184 = 8.2713*0.8364

∙ compV variable (I):The scale expression for the signal simplifies to 0.0600, the magnitude

scale factor for the compV variable:

compV 0.0600 = 0.0959*0.5655*1.1068

282

1 var bulkB = integ(-0.015*bulkB, 1.0)

2 var freeB = integ(0.15*bulkB-0.058*freeB, 1.0)

3 var bndB = integ(0.058*freeB-0.141*bndB, 0.0)

4 var transB = integ(0.141*bndB-0.013*transB, 0.0)

5 var lyticB = integ(0.013*transB, 0.0)

6 var MTRANSB = emit(transB)

7

8 interval bulkB = [-1.0,1.0]

9 interval freeB = [-0.02,0.02]

10 interval bndB = [-0.03,0.03]

11 interval transB = [-0.06,0.06]

12 interval lyticB = [-0.004,0.004]

13

14 time 20

Figure 6-63: Dynamical system for bont4 benchmark

1 conn block mult port z loc (0, 3, 3, 0) with block integ port x loc (0, 3, 2, 0);
2 conn block mult port z loc (0, 3, 0, 0) with block integ port x loc (0, 3, 3, 0);
3 conn block mult port z loc (0, 3, 2, 0) with block integ port x loc (0, 3, 3, 0);
4 conn block mult port z loc (0, 3, 3, 1) with block integ port x loc (0, 3, 0, 0);
5 conn block mult port z loc (0, 3, 1, 1) with block integ port x loc (0, 3, 0, 0);
6 conn block mult port z loc (0, 3, 0, 1) with block integ port x loc (0, 3, 1, 0);
7 conn block mult port z loc (0, 3, 1, 0) with block integ port x loc (0, 3, 1, 0);
8 conn block mult port z loc (0, 2, 2, 0) with block integ port x loc (0, 2, 3, 0);
9 conn block mult port z loc (0, 3, 2, 1) with block tout port x loc (0, 3, 0, 0);

10 conn block tout port z loc (0, 3, 0, 0) with block extout port x loc (0, 3, 2, 0);
11 conn block integ port z loc (0, 3, 2, 0) with block fanout port x loc (0, 3, 2, 0);
12 conn block integ port z loc (0, 3, 3, 0) with block fanout port x loc (0, 3, 0, 1);
13 conn block integ port z loc (0, 3, 0, 0) with block fanout port x loc (0, 3, 0, 0);
14 conn block integ port z loc (0, 3, 1, 0) with block fanout port x loc (0, 3, 1, 0);
15 conn block fanout port z0 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 3, 0);
16 conn block fanout port z1 loc (0, 3, 2, 0) with block mult port x loc (0, 3, 0, 0);
17 conn block fanout port z0 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 2, 0);
18 conn block fanout port z1 loc (0, 3, 0, 1) with block mult port x loc (0, 3, 1, 1);
19 conn block fanout port z0 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 3, 1);
20 conn block fanout port z1 loc (0, 3, 0, 0) with block mult port x loc (0, 3, 0, 1);
21 conn block fanout port z0 loc (0, 3, 1, 0) with block mult port x loc (0, 3, 1, 0);
22 conn block fanout port z1 loc (0, 3, 1, 0) with block tout port x loc (0, 3, 0, 1);
23 conn block tout port z loc (0, 3, 0, 1) with block tin port x loc (0, 2, 0, 0);
24 conn block tin port z loc (0, 2, 0, 0) with block mult port x loc (0, 2, 2, 0);
25 conn block fanout port z2 loc (0, 3, 1, 0) with block mult port x loc (0, 3, 2, 1);

Figure 6-64: Connections from unscaled/scaled ADP for bont4 benchmark

283

1 config block integ @ (0, 3, 2, 0) {
2 modes [(m,m,+)]; source bulkB at z; set z0 at 0.500; }
3 config block integ @ (0, 3, 3, 0) {
4 modes [(m,m,+)]; source freeB at z; set z0 at 0.000; }
5 config block integ @ (0, 3, 0, 0) {
6 modes [(m,m,+)]; source bndB at z; set z0 at 0.000; }
7 config block integ @ (0, 3, 1, 0) {
8 modes [(m,m,+)]; source transB at z; set z0 at 0.000; }
9 config block integ @ (0, 2, 3, 0) {

10 modes [(m,m,+)]; source lyticB at z; set z0 at 0.000; }
11 config block mult @ (0, 3, 3, 0) {
12 modes [(x,m,m), (x,h,h)]; set c at -0.015; }
13 config block mult @ (0, 3, 0, 0) {
14 modes [(x,m,m), (x,h,h)]; set c at 0.015; }
15 config block mult @ (0, 3, 2, 0) {
16 modes [(x,m,m), (x,h,h)]; set c at -0.058; }
17 config block mult @ (0, 3, 3, 1) {
18 modes [(x,m,m), (x,h,h)]; set c at -0.141; }
19 config block mult @ (0, 3, 1, 1) {
20 modes [(x,m,m), (x,h,h)]; set c at 0.058; }
21 config block mult @ (0, 3, 0, 1) {
22 modes [(x,m,m), (x,h,h)]; set c at 0.141; }
23 config block mult @ (0, 3, 1, 0) {
24 modes [(x,m,m), (x,h,h)]; set c at -0.013; }
25 config block mult @ (0, 2, 2, 0) {
26 modes [(x,m,m), (x,h,h)]; set c at 0.013; }
27 config block mult @ (0, 3, 2, 1) {
28 modes [(x,m,m), (x,h,h)]; set c at 1.667; }
29 config block extout @ (0, 3, 2, 0) {
30 modes [(*)]; source MTRANSB at z; }
31 config block fanout @ (0, 3, 2, 0) {
32 modes [(+,+,+,m), (+,+,+,h)]; source bulkB at z0; source bulkB at z1;
33 source bulkB at z2; }
34 config block fanout @ (0, 3, 0, 1) {
35 modes [(+,+,+,m), (+,+,+,h)]; source freeB at z0; source freeB at z1;
36 source freeB at z2; }
37 config block fanout @ (0, 3, 0, 0) {
38 modes [(+,+,+,m), (+,+,+,h)]; source bndB at z0; source bndB at z1;
39 source bndB at z2; }
40 config block fanout @ (0, 3, 1, 0) {
41 modes [(+,+,+,m), (+,+,+,h)]; source transB at z0; source transB at z1;
42 source transB at z2; }
43 config block tout @ (0, 3, 0, 0) {
44 modes [(*)]; }
45 config block tout @ (0, 3, 0, 1) {
46 modes [(*)]; }
47 config block tin @ (0, 2, 0, 0) {
48 modes [(*)]; }

Figure 6-65: Block Configurations from unscaled ADP for bont4 benchmark. Refer
to Figure 6-64 for scaled ADP connections.

1 bulkB = integ(((-0.01)*bulkB),(2*0.50))

2 freeB = integ(((0.01*bulkB)+((-0.06)*freeB)),(2*0))

3 bndB = integ((((-0.14)*bndB)+(0.06*freeB)),(2*0))

4 transB = integ(((0.14*bndB)+((-0.013)*transB)),(2*0))

5 lyticB = integ((0.013*transB),(2*0))

6 MTRANSB = emit((0.60*(1.67*transB)))

Figure 6-66: Signal dynamics of the unscaled ADP for bont4 benchmark

284

1 config block integ @ (0, 3, 2, 0) {
2 modes [(h,m,+)]; scale x = 8.234; source bulkB at z; scale z = 1.361;
3 set z0 at 0.500; scale z0 = 1.885; }
4 config block integ @ (0, 3, 3, 0) {
5 modes [(h,m,+)]; scale x = 61.806; source freeB at z; scale z = 9.500;
6 set z0 at 0.000; scale z0 = 15.600; }
7 config block integ @ (0, 3, 0, 0) {
8 modes [(h,h,+)]; scale x = 163.596; source bndB at z; scale z = 262.566;
9 set z0 at 0.000; scale z0 = 33.500; }

10 config block integ @ (0, 3, 1, 0) {
11 modes [(h,m,+)]; scale x = 172.820; source transB at z; scale z = 26.492;
12 set z0 at 0.000; scale z0 = 44.733; }
13 config block integ @ (0, 2, 3, 0) {
14 modes [(h,m,+)]; scale x = 1934.663; source lyticB at z; scale z = 313.918;
15 set z0 at 0.000; scale z0 = 386.101; }
16 config block mult @ (0, 3, 3, 0) {
17 modes [(x,m,m)]; scale x = 1.361; scale y = 1.000; scale z = 8.234; set c at -0.015;
18 scale c = 6.170; }
19 config block mult @ (0, 3, 0, 0) {
20 modes [(x,h,h)]; scale x = 1.361; scale y = 1.000; scale z = 61.806; set c at 0.015;
21 scale c = 62.839; }
22 config block mult @ (0, 3, 2, 0) {
23 modes [(x,m,m)]; scale x = 9.500; scale y = 1.000; scale z = 61.806; set c at -0.058;
24 scale c = 6.691; }
25 config block mult @ (0, 3, 3, 1) {
26 modes [(x,h,m)]; scale x = 262.566; scale y = 1.000; scale z = 163.596; set c at -0.141;
27 scale c = 6.343; }
28 config block mult @ (0, 3, 1, 1) {
29 modes [(x,h,h)]; scale x = 9.500; scale y = 1.000; scale z = 163.596; set c at 0.058;
30 scale c = 16.251; }
31 config block mult @ (0, 3, 0, 1) {
32 modes [(x,h,m)]; scale x = 262.566; scale y = 1.000; scale z = 172.820; set c at 0.141;
33 scale c = 6.685; }
34 config block mult @ (0, 3, 1, 0) {
35 modes [(x,m,m)]; scale x = 26.492; scale y = 1.000; scale z = 172.820; set c at -0.013;
36 scale c = 6.638; }
37 config block mult @ (0, 2, 2, 0) {
38 modes [(x,h,h)]; scale x = 26.492; scale y = 1.000; scale z = 1934.663; set c at 0.013;
39 scale c = 72.506; }
40 config block mult @ (0, 3, 2, 1) {
41 modes [(x,m,m)]; scale x = 26.492; scale y = 1.000; scale z = 14.169; set c at 1.667;
42 scale c = 0.566; }
43 config block extout @ (0, 3, 2, 0) {
44 modes [(*)]; scale x = 14.169; source MTRANSB at z; scale z = 14.169; }
45 config block fanout @ (0, 3, 2, 0) {
46 modes [(+,+,+,m)]; scale x = 1.361; source bulkB at z0; scale z0 = 1.361;
47 source bulkB at z1; scale z1 = 1.361; source bulkB at z2; scale z2 = 1.361; }
48 config block fanout @ (0, 3, 0, 1) {
49 modes [(+,+,+,m)]; scale x = 9.500; source freeB at z0; scale z0 = 9.500;
50 source freeB at z1; scale z1 = 9.500; source freeB at z2; scale z2 = 9.500; }
51 config block fanout @ (0, 3, 0, 0) {
52 modes [(+,+,+,h)]; scale x = 262.566; source bndB at z0; scale z0 = 262.566;
53 source bndB at z1; scale z1 = 262.566; source bndB at z2; scale z2 = 262.566; }
54 config block fanout @ (0, 3, 1, 0) {
55 modes [(+,+,+,m)]; scale x = 26.492; source transB at z0; scale z0 = 26.492;
56 source transB at z1; scale z1 = 26.492; source transB at z2; scale z2 = 26.492; }
57 config block tout @ (0, 3, 0, 0) { modes [(*)]; scale x = 14.169; scale z = 14.169; }
58 config block tout @ (0, 3, 0, 1) { modes [(*)]; scale x = 26.492; scale z = 26.492; }
59 config block tin @ (0, 2, 0, 0) { modes [(*)]; scale x = 26.492; scale z = 26.492; }
60 timescale 0.616322

Figure 6-67: Block configurations and timescale statement from scaled ADP of
bont4 benchmark. Refer to Figure 6-64 for scaled ADP connections.

285

1 bulkB𝑠𝑐 = (1.3609*bulkB) = integ((1.6225*(0.1019*(0.9806*((6.1698*(-0.0150))*(1.3609*bulkB))))),
2 ((0.7219*2)*(1.8852*0.5000)))
3 freeB𝑠𝑐 = (9.5000*freeB) = integ((1.6225*(0.0947*((0.7227*((62.8385*0.0150)*(1.3609*bulkB))))
4 +((0.9723*((6.6913*(-0.0580))*(9.5000*freeB)))))),((0.6090*2)*(15.6002*0)))
5 bndB𝑠𝑐 = (262.5659*bndB) = integ((1.6225*(0.9892*((0.0982*((6.3428*(-0.1410))*(262.5659*bndB))))
6 +((1.0596*((16.2513*0.0580)*(9.5000*freeB)))))),((7.8379*2)*(33.4996*0)))
7 transB𝑠𝑐 = (26.4925*transB) = integ((1.6225*(0.0945*((0.0985*((6.6850*0.1410)*(262.5659*bndB))))
8 +((0.9827*((6.6381*(-0.0130))*(26.4925*transB)))))),((0.5922*2)*(44.7327*0)))
9 lyticB𝑠𝑐 = (313.9181*lyticB) = integ((1.6225*(0.1000*(1.0072*((72.5060*0.0130)*(26.4925*transB))))),

10 ((0.8130*2)*(386.1007*0)))
11 MTRANSB𝑠𝑐 = (14.1694*MTRANSB) = (0.6000*emit((0.9457*((0.5655*1.6667)*(26.4925*transB)))))

Figure 6-68: Scaled signal dynamics for bont4 benchmark

286

6.3.11 Botulism Neurotoxin (bont4)

Figure 6-63 presents the original dynamical system for the bont4 application. The bont4 applica-

tion defines the bulkB, freeB, bndB, transB, lyticB state variables and the MTRANSB intermediate

variable:

1 var bulkB = integ(-0.015*bulkB, 1.0)

2 var freeB = integ(0.015*bulkB-0.058*freeB, 1.0)

3 var bndB = integ(0.058*freeB-0.141*bndB, 0.0)

4 var transB = integ(0.141*bndB-0.013*transB, 0.0)

5 var lyticB = integ(0.013*transB, 0.0)

6 var MTRANSB = emit(transB)

Unscaled ADP

Figure 6-65 presents the unscaled ADP for the bont4 application. The ADP has a total of 22

blocks and 25 connections. The circuit contains 9 multipliers, 5 integrators, 4 current copiers, 1

observation block, and 3 route (tin andtout) blocks. The compiler uses the tin and tout route

blocks to forward the signal implementing transB from the current copier at (0,3,1,0) to the

multiplier at (0,2,2,0). The forwarded signal is then used to compute lyticB. The compiler

splits the circuit across multiple tiles the circuit uses 9 multipliers but each tile contains at most

8 multipliers. The compiler uses the remaining tout block to forward the signal implementing

transB to the observation block. The unscaled ADP uses the three copiers to produce 2 copies of

the bulkB, freeB, and bndB signals and one copier to produce 3 copies of the transB signal. The

compiler uses Kirchhoff’s law to implement the addition operators in the relations governing freeB,

bndB, and transB. The circuit instantiates 14 constant data fields to provide the -0.015, 0.50,

0.015, -0.058, 0.0, 0.058, 0.141, -0.013, 0.013, and 1.67 values to the circuit.

Figure 6-66 presents the dynamics of the signals from the unscaled ADP for the bont4 bench-

mark. The compiler implements the bulkB, freeB, bndB, transB, and lyticB variables as analog

currents and the MTRANSB variable as an analog voltage:

1 bulkB = integ(((-0.01)*bulkB),(2*0.50))

2 freeB = integ(((0.01*bulkB)+((-0.06)*freeB)),(2*0))

3 bndB = integ((((-0.14)*bndB)+(0.06*freeB)),(2*0))

4 transB = integ(((0.14*bndB)+((-0.013)*transB)),(2*0))

5 lyticB = integ((0.013*transB),(2*0))

6 MTRANSB = emit((0.60*(1.67*transB)))

The unscaled ADP has 6 labelled analog currents which implement the bulkB, freeB, bndB,

287

transB, lyticB, and MTRANSB dynamical system variables. Note that the bulkB, freeB, bndB,

transB, and MTRANS signal expressions do not syntactically match the original dynamical system

relations:

∙ bulkB: The compiler implements the 1.0 initial condition as 2*0.5 where 0.5 is a data field

value and 2.0 is a device term introduced by the integrator block. The analog current at

port z of integrator (0,3,2,0) implements the bulkB variable.

∙ freeB: The compiler implements a negated version of the 0.058*freeB term as (-0.058)*freeB.

The compiler then adds negated term (-0.058)*freeB to the 0.015*bulkB term with Kirch-

hoff’s law to implement the derivative expression. This is necessary because subtraction is not

explicitly supported in the device. The compiler implements initial condition 0.0 as 2.0*0.0

where 0.0 is a data field value and 2.0 is a device term introduced by the integrator. The

analog current at port z of integrator (0,3,3,0) implements the freeB variable.

∙ bndB: The compiler implements a negated version of the 0.141*bndB term as (-0.141)*bndB.

The compiler then adds negated term (-0.141)*bndB to the 0.058*freeB term with Kirch-

hoff’s law to implement the derivative expression. This is necessary because subtraction is

not explicitly supported in the device. The analog current at port z of integrator (0,3,0,0)

implements the bndB variable.

∙ transB: The compiler implements a negated version of the 0.013*transB term as (-0.013)*transB.

The compiler then adds negated term (-0.013)*transB to the 0.141*bndB term with Kirch-

hoff’s law to implement the derivative expression. This is necessary because subtraction is

not explicitly supported in the device. The analog current at port z of integrator (0,3,1,0)

implements the transB variable.

∙ lyticB: The compiler implements initial condition 0.0 as 2.0*0.0 where 0.0 is a data field

value and 2.0 is a device term introduced by the integrator. The analog current at port z of

integrator (0,2,3,0) implements the lyticB variable.

∙ MTRANSB: The compiler introduces the 1.67 data field value to compensate for the 0.60 device

term introduced by the observation block. The analog voltage at port z of observation block

(0,3,2,0) implements the MTRANSB variable.

Scaled ADP

Figure 6-64 and Figure 6-67 scaled ADP for the bont4 benchmark. The scaled ADP has a total of

75 magnitude scale factors. The scaled ADP has 14 data field scale factors, 6 variable scale factors,

and one time scale factor (0.616322). The speed of the scaled computation is therefore 0.616322x

the baseline integration speed of the device. The compiler also changes the block modes for a subset

288

of the ADP blocks to better scale te circuit. The block mode modifications which change the block

input-output relations are summarized below:

block location mode (unscaled ADP) mode (scaled ADP)

integ (0, 3, 2, 0) [(m,m,+)] (h,m,+)

integ (0, 3, 3, 0) [(m,m,+)] (h,m,+)

integ (0, 3, 0, 0) [(m,m,+)] (h,h,+)

integ (0, 3, 1, 0) [(m,m,+)] (h,m,+)

integ (0, 2, 3, 0) [(m,m,+)] (h,m,+)

mult (0, 3, 3, 1) [(x,m,m), (x,h,h)] (x,h,m)

mult (0, 3, 0, 1) [(x,m,m), (x,h,h)] (x,h,m)

∙ integrators (0,3,2,0), (0,3,3,0), (0,3,1,0), and (0,2,3,0): The compiler changes

the integrator mode from (m,m,+) to (h,m,+). This modification scales the derivative of the

output signal by 0.1 and expands the operating range of input port x.

∙ integrator (0,3,0,0): The compiler changes the integrator mode from (m,m,+) to (h,h,+).

This modification scales the initial condition by 10.0 and expands the operating range of the

input port x and the output port z.

∙ all multipliers: The compiler changes the multiplier mode from (x,m,m) or (x,h,h) to

(x,h,m). This modification scales the output signal by 0.1 but reduces the operating range

of the output port z (relative to the mode (x,h,h)).

Figure 6-68 presents the scaled dynamics of the scaled ADP for the bont4 benchmark.

1 bulkB𝑠𝑐 = (1.3609*bulkB) = integ((1.6225*(0.1019*(0.9806*((6.1698*(-0.0150))*(1.3609*bulkB))))),

2 ((0.7219*2)*(1.8852*0.5000)))

3 freeB𝑠𝑐 = (9.5000*freeB) = integ((1.6225*(0.0947*((0.7227*((62.8385*0.0150)*(1.3609*bulkB)))

4 +(0.9723*((6.6913*(-0.0580))*(9.5000*freeB)))))),((0.6090*2)*(15.6002*0)))

5 bndB𝑠𝑐 = (262.5659*bndB) = integ((1.6225*(0.9892*((0.0982*((6.3428*(-0.1410))*(262.5659*bndB)))

6 +(1.0596*((16.2513*0.0580)*(9.5000*freeB)))))),((7.8379*2)*(33.4996*0)))

7 transB𝑠𝑐 = (26.4925*transB) = integ((1.6225*(0.0945*((0.0985*((6.6850*0.1410)*(262.5659*bndB)))

8 +(0.9827*((6.6381*(-0.0130))*(26.4925*transB)))))),((0.5922*2)*(44.7327*0)))

9 lyticB𝑠𝑐 = (313.9181*lyticB) = integ((1.6225*(0.1000*(1.0072*((72.5060*0.0130)*(26.4925*transB))))),

10 ((0.8130*2)*(386.1007*0)))

11 MTRANSB𝑠𝑐 = (14.1694*MTRANSB) = (0.6000*emit((0.9457*((0.5655*1.6667)*(26.4925*transB)))))

The compiler scales the bulkB, freeB, bndB, transB, lyticB, and MTRANSB variables by 1.3609,

9.500, 262.5659, 26.4925, 313.9181, and 14.1694 respectively. The compiler reports a time scale

factor of 0.616322. The compiler therefore scales the speed of the computation by a factor of

1.6225−1 or 0.616322. The scaled ADP has 14 data field scale factors, 6 variable scale factors, and

one time scale factor 0.616322. I summarize the scaled data field values below:

289

∙ In the bulkB and freeB signals, the compiler scales the -0.0150, 0.5000, 0.0150, -0.580,

and 0.0 data field values by 6.1698, 1.8852, 62.8385, 6.6913, and 15.6002 respectively.

∙ In the bndB signal, the compiler scales the -0.1410, 0.0580, and 0 data field values by

6.3428,16.2513, and 33.4996 respectively.

∙ In the transB signal, the compiler scales the 0.1410, -0.0130, and 0.0 values by 6.6850,6.6381,

and 44.7327 respectively.

∙ In the lyticB signal, the compiler scales the 0.0130 and 0 data field value by 72.5060 and

386.1007 respectively.

∙ The compiler scales the 1.667 data field value in the MTRANSB by 0.5655.

The compensation terms with values between 0.6090-1.0596 capture only the behavioral vari-

ations present in the device. All other compensation terms capture both the effect of changing the

block mode and model the behavioral deviations found on the device. The compensation terms

with values between 0.0947-0.1000 compensate for mode changes which scale signals by 0.1. The

compensation term 7.839 compensates for the mode change which scales signals by 10.

Preservation:The scale factors (red) and compensation terms (grey) can be factored out of the

right- and left-hand side of each relation and eliminated from both sides of the equation:

∙ bulkB variable (III): The scale expression for both the initial condition and the derivative

of bulkB all simplify to 1.3609, the magnitude scale factor of the bulkB variable:

bulkB’ 1.3609 = 1.6225*0.1019*0.9806*6.16981.3609

bulkB(0) 1.3609 = 0.7219*1.8852

∙ freeB variable (IV): The scale expression for each of the derivative terms and the initial

condition all simplify to 9.5000, the magnitude scale factor of the freeB variable:

0.015*bulkB 9.5000 = 1.6225*0.0947*0.7227*62.8385*1.3609

-0.058*freeB 9.5000 = 1.6225*0.0947*0.9723*6.6913*9.5000

freeB(0) 9.5000 = 0.6090*15.6002

∙ bndB variable (IV): The scale expression for each of the derivative terms and the initial

condition all simplify to 262.5659, the magnitude scale factor of the bndB variable:

0.058*freeB 262.5659 = 1.6225*0.9892*1.0596*16.2513*9.5000

-0.141*bndB 262.5659 = (1.6225*0.9892*0.0982*6.3428*262.5659

bndB(0) 262.5659 = 7.8379*33.4996

290

∙ transB variable (IV): The scale expression for each of the derivative terms and the initial

condition all simplify to 26.4925, the magnitude scale factor of the transB variable:

0.141*bndB 26.4925 = 1.6225*0.0945*0.0985*6.6850*262.5659

-0.013*transB 26.4925 = 1.6225*0.0945*0.9827*6.6381*-0.0130*26.4925

transB(0) 26.4925 = 0.5922*44.7327

∙ lyticB variable (III): The scale expression for both the initial condition and the derivative

of lyticB all simplify to 313.9181, the magnitude scale factor of the lyticB variable:

lyticB’ 313.9181 = 1.6225*0.1000*1.0072*72.5060*26.4925

lyticB(0) 313.9181 = 0.8130*386.1007

∙ MTRANSB variable (I):The scale expression for the signal simplifies to 14.1694, the magnitude

scale factor for the MTRANSB variable:

MTRANSB 14.1694 = 0.9457*0.5655*26.4925

291

6.4 General Trends

I next present an overview of the general trends observed in the unscaled and scaled ADPs presented

in this chapter.

6.4.1 Unscaled ADPs

The compiler produces unscaled ADPs that directly implement the target dynamical system. In

this analysis, the symbolic expressions governing the signal physics rarely syntactically match the

signal dynamics in the studied benchmarks. This phenomenon occurs because the HCDCv2 blocks

often introduce constant coefficients that cannot be directly set through programming the block. I

discuss several common mitigation strategies utilized by the compiler below:

∙ Materializing Data Field Values: The compiler introduces additional blocks into the

ADP to cancel out the device terms. These blocks are typically multipliers which have been

configured to scale an input signal by a digitally programmable constant data field ((x,m,m),

(x,m,h), (x,h,h) or (x,h,m) modes).

∙ Modifying Data Field Values: The compiler modifies constant fields to cancel out device

terms. While this compensation technique does not introduce any additional logic into the

circuit, it requires that a constant data field already exists in the right place.

∙ Doubling Signals with Copiers: The compiler sometimes compensates for device terms of

the form (0.5)𝑛 by adding a target signal together multiple times. For example, the compiler

might implement X as 0.5*(X + X), where the X+X term cancels out the 0.5 device coefficient.

This compensation approach often does not require additional logic if the target signal is

already copied with a current copier. The compiler implements the addition operation by

strategically connecting the copied signals together and leveraging Kirchhoff’s law to perform

summation.

∙ Injecting Values into Data Field Expressions: The compiler sometimes compensates

for device terms by modifying the expressions assigned to expression data fields. This com-

pensation approach requires no additional logic but only can be used if the device term is

multiplied with an expression data field term. For example, the expression data field ln(x)

may be modified to 0.2*5*ln(x), where the 5 term cancels out the 0.2 device coefficient.

Note that in some instances, the compiler directly uses the device terms to implement dynamical

system dynamics. The compiler’s ability to intelligently leverage device terms reduces the number

of constant data fields and blocks needed in the produced ADP.

292

The compiler also rewrites terms to implement dynamics that the HCDCv2 does not directly

support. The HCDCv2 does not directly offer a subtraction, so the compiler often rewrites terms to

implement subtraction with the logic blocks and physical laws:

∙ Addition with Signal Negation: The compiler often implements subtraction by negating

one term with a current copier and then adding it with the other term by leveraging Kirchhoff’s

law. For example, the compiler would implement an expression A-B as A+((-1)*B) where

-1 is a device term. This approach does not require additional logic if the negated signal is

already supplied to a current copier.

∙ Materializing Negative Coefficients: The compiler will sometimes implement subtraction

by introducing additional blocks into the ADP which provide negating coefficients. For

example, the compiler would implement and expression A-B as A+((-1)*B), where -1 is a

value supplied by a constant data field.

∙ Relocating Negation into Data Field Values: The compiler implements subtraction by

negating constant data fields which already exist in the ADP. For example, the compiler would

implement A-0.3B as A+(-0.3)*B, where -0.3 is the negated constant data field value. This

approach does not require any additional logic, but only works if there already is a constant

coefficient in the term.

6.4.2 Scaled ADPs

For all applications, the compiler both alters the modes assigned to ADP blocks and scales the signals

and data fields such that the resulting simulation executes within the physical constraints imposed

by the HCDCv2. Many of the produced scaling transforms are highly diverse and specify many

distinct scaling factors. These scaling transforms are sophisticated and compensate for behavioral

deviations and changes to the input-output relation introduced by mode changes.

The compiler guarantees that all the computed scaled ADPs preserve the original dynamics

from the unscaled ADP. I can confirm this preservation property holds for all of the benchmark

applications.

Magnitude Scale Factors

All of the magnitude scale factors that appear in a signal’s scaled dynamics are multiplied with a data

field value or a port. The magnitude scale factors multiplied with data field values directly change

the value written to the data field. The magnitude scale factors multiplied with block ports variables

are indirectly set by data fields elsewhere in the circuit and change the signal’s dynamic range at

293

the associated port. The compiler strategically sets the magnitude scale factors to accomplish the

following:

∙ The compiler scales down signals and data fields to fit within the data field operating ranges.

For these signals and data fields, the associated magnitude scale factor is typically less than

one.

∙ The compiler scales up signals and data fields to reduce the effect of noise and quantization

error. For these signals and data fields, the associated magnitude scale factor is typically

more than one.

∙ The compiler scales signals and data fields to counteract the effect of process variation-induced

behavioral deviations and mode changes on the computation.

∙ The compiler scales signals to manipulate the speed of the computation. The compiler scales

the computation speed so that the computation abides by the frequency limitations imposed

by the blocks in the circuit.

Modifications to the Block Mode

The compiler often modifies the block modes of the multipliers, integrators, ADCs, and DACs in the

circuit to more freely scale the computation. These modifications simultaneously modify the block

ports’ operating ranges and the input-output relations implemented by the block.

Note that it isn’t always advantageous to increase the operating range at all ports. Increasing

the operating range of a port also increases the noise floor associated with the port. This change to

the operating range can adversely affect signals which under-utilize the expanded operating range.

The compiler, therefore, selects modes that offer larger operating ranges only when necessary when

scaling the circuit. I discuss the implications of several frequently seen mode modifications below:

∙ integrator (m,m,+) to (h,m,+): This modification increases the supported operating range

of the derivative signal accepted at port x and scales the derivative signal by a factor of 0.1.

The compiler makes this modification to slow down the computation and support derivative

signals with larger dynamic ranges.

∙ integrator (m,m,+) to (h,h,+): This modification increases the operating ranges for the

derivative and state variable signals at port x and z. This modification also scales up the

initial condition by a factor of 10. The compiler makes this modification to support derivative

and state variable signals with larger dynamic ranges.

∙ integrator (m,m,+) to (m,h,+): This modification increases the operating range of the

output signal at z and scales the derivative and initial condition by 10x. The compiler makes

294

this modification to increase the dynamic range of a state variable. This modification is not

typically used to speed up the computation in practice because many blocks impose strict

frequency limitations that keep the computation speed below the baseline integration speed.

∙ multiplier (x,m,m)/(x,h,h) to (x,h,m): This modification decreases the operating range

of the output signal (relative to (x,h,h) and scales the output signal by 0.1. The compiler

often applies this modification when it aims to multiply a signal by a small value. Recall the

constant data field c has limited resolution. This modification enables the compiler to specify

the coefficient at finer granularity with data field c.

∙ multiplier (x,m,m)/(x,h,h) to (x,m,h): This modification decreases the operating range

of the input signal (relative to (x,h,h) and scales the output signal by 10.0. The compiler

applies this modification to scale up the output signal by a factor greater than one.

∙ multiplier (m,m,m),(m,h,h),(h,m,h) to (m,m,h): This modification reduces the operating

range of the input signal (relative to (h,m,h) and scales the output signal by 10.0. The

compiler applies this modification to scale up the output signal by a factor greater than one.

∙ multiplier (m,m,m),(m,h,h),(h,m,h) to (h,m,m),(m,h,m): This modification reduces the

operating range of the output signal (relative to (h,m,h),(m,h,h) and scales the output

signal by 0.1. The compiler applies this modification to scale down the output signal by a

factor greater than one and to reduce the operating ranges of the ports processing the input

signals.

∙ DAC (dyn|const,h) to (dyn|const,m): This modification decreases the operating range of

the analog output and scales the analog signal by 0.1. The compiler applies this modification

to reduce the effect of noise on the output signal for output signals which under-utilize the

operating range of the DAC.

∙ DAC (dyn|const,m) to (dyn|const,h): This modification increases the operating range of

the analog output and scales the analog signal by 10.0. The compiler applies this modification

to increase the dynamic range of the output signal.

∙ ADC (m) to (h): This modification increases the acceptable operating range for the input

analog signal and scales down the analog signal by 0.1. The compiler applies this modification

to convert signals which have a large dynamic range.

Injected Coefficients

The compiler often injects constant coefficients into the expressions assigned to expression data fields

when scaling the circuit. For an expression data field f(y), where the function f is programmable

and accepts one input y, the compiler typically injects coefficients in the following way:

295

x*f(x’*y)

The compiler uses the x coefficient to scale the result computed by the data field and the x’

coefficient to eliminate the scaling transform and compensation terms associated with y. This expres-

sion data field modification eliminates the need for the compiler to propagate the scaling transform

through the often highly nonlinear data field expression dynamics. For each of the expression data

fields, I can validate that the x’ successfully cancels out the scaling factors and compensation terms

associated with the expression at y.

Changing the Computation Speed

The compiler indirectly sets the computation speed by scaling the derivative of each of the state

variables by the time scale factor 𝜏 . For signals implementing differential equations, the time scale

factor appears in the scaled signal dynamics in the following form:

x*V = integ(𝜏−1*E,E’)

The 𝜏−1 term controls the ratio of the scaled derivative V’ to the scaled state variable. Because

the original dynamics are preserved in the scaled circuit, the scale expression for the derivative is

guaranteed to simplify to x. So, if the scale factor factored out of E is x’, the following equality

relation must hold:

x = 𝜏−1*x’

In the above relation, increasing the time scale factor increases the magnitude of the derivative

relative to the variable magnitude – this accelerates the computation. Decreasing the time scale

factor decreases the magnitude of the derivative relative to the variable magnitude – this decelerates

the computation. The time scale factor is indirectly set by carefully scaling the data field values

that control the magnitude of the derivative and the initial condition of each differential equation.

6.5 Conclusion

The compiler accepts as input a dynamical system and analog device specification. The compiler

first produces an unscaled ADP implementation of the provided dynamical system. The physics

of the unscaled ADP exactly match the dynamics of the dynamical system provided all the blocks

behave ideally under all operating conditions. The unscaled ADP cannot typically be run on the

296

analog hardware because it doesn’t consider the operating range and frequency limitations, noise

present in the hardware.

The compiler scales signals and values in the unscaled ADP to produce a scaled ADP. The

scaled ADP respects all of the physical limitations and behaviors present in the analog device and

preserves the original dynamics of the unscaled ADP (and the dynamical system). The original

dynamics of any signal can be recovered from the scaled ADP at runtime by applying a compiler-

derived inverting transform. The compiler selectively reprograms blocks in the unscaled ADP to

better scale the circuit. The compiler also incorporates the delta model information for the device

on hand to scale the circuit. The scaled ADP respects all of the physical constraints of the hardware

and can therefore be directly run on the analog device.

In this chapter, I provide a detailed overview of the unscaled and scaled ADPs for the cosine

benchmark application introduced in Section 4.1. I then discuss the unscaled and scaled ADPs for

each of the twelve benchmark applications presented in Chapter 4. I conclude the chapter with a

discussion of the overarching compilation trends present across the studied benchmark applications.

Further Reading : The unscaled and scaled ADPs presented in this chapter are the best-performing

ADPs identified in Chapter 10. Chapter 7 provides an overview of how the compiler produces the

unscaled and scaled ADPs from the dynamical system. Chapter 8 rigorously describes how the

compiler produces unscaled ADPs and Chapter 9 rigorously describes how the compiler derives a

scaled ADP from an unscaled ADP.

297

298

Chapter 7

Compilation Overview

This chapter provides a basic overview of the compiler and all of its intermediate representations.

This chapter walks through an illustrative example demonstrating how the compiler maps the har-

monic oscillator (Section 7.1) to the SIMPL analog device (Section 7.2). The result of this process is

an analog device program (ADP) that implements the harmonic oscillator on the SIMPL hardware

(Section 7.3). I choose to walk through the compilation process on a simplified hardware platform

to demonstrate how each step of compilation operates more tractably.

Figure 7-1 presents a high-level overview of the compilation process. The first stage of compila-

tion involves synthesizing an unscaled ADP which implements the input dynamical system on the

target analog device (LGraph, Section 8). The LGraph compilation pass works with a specification of

the dynamical system (DSS) and the analog device (ADS) and produces as output and analog device

program (ADP) that implements the dynamical system on the analog device. An ADP implements

a dynamical system if the physics of the circuit described by the ADP matches the dynamics of

the target dynamical system. The circuit synthesis procedure assumes the hardware perfectly im-

plements the input-output relations described in the ADS and is not subject to noise, quantization

error, or operating- and frequency-range restrictions. The step of compilation primarily works with

the input-output relations and modes described in the ADS and the differential equations described

in the DSS. It produces an unscaled ADP which is later scaled by the circuit scaling procedure.

The circuit scaling procedure (LScale, Chapter 9) scales all the values and signals in the unscaled

ADP to respect the physical constraints of the hardware. The LScale pass operates on the unscaled

ADP produced by the LGraph compilation pass. It produces as output a scaled ADP which respects

all the operating range and frequency constraints imposed by the analog device and minimizes the

effects of noise, quantization error, and process variation on the described circuit. The LScale

compilation pass ensures the original dynamical system simulation can be recovered from the scaled

circuit by applying a compiler-derived inverting transform to the measured signals. This step of

299

DSS

LGraph

ADS

WaveformsLScale

ADS

Unscaled
ADP

Scaled
ADP

Calibration
Database

Delta Model
Database

Calibration
Objective

Scaling
Objective
Function

Minimum
AQM and
DQM

DSS

Calibration
Objective

Analog
Device

Measurement
Devices

Simulation
Time

ADS

Figure 7-1: overview of compiler

compilation works the operating range, frequency, and noise annotations in the ADS and the interval

annotations in the DSS. It also accepts a calibration strategy and delta model database, which

together describe the process variations observed in the calibrated device on hand (Chapter 5). The

scaling procedure identifies the scaling transform that minimizes the user-provided circuit metric

(scaling objective function) and adheres to the user-provided minimum acceptable analog and digital

quality measures (AQMmin and DQMmin). This procedure may also adjust the ADP block mode

selections when necessary to produce a good scaling transform.

The scaled ADP generated by the compiler can then be executed on an analog device such as

the HCDCv2 or the SIMPL analog device. The runtime accepts as input the device ADS, the scaled

ADP produced by the LScale pass, and the execution time in simulation time units. The runtime

additionally requires the end user to provide the calibration strategy that the scaling procedure

used and the calibration database for the device on hand. The runtime uses these inputs to ensure

the analog blocks are calibrated with the same calibration strategy used by the compiler. The

runtime executes the circuit on the target analog device and returns the waveforms collected from

the externally accessible pins. Note that this chapter does not explore the runtime behavior of the

SIMPL analog device since it is an abstract hardware platform introduced for illustrative purposes.

This chapter covers the following topics:

Simple Harmonic Oscillator: It derives the harmonic oscillator model and variable bounds from a

simple mass-spring system. It introduces the harmonic oscillator mathematical model and dynamical

system specification.

SIMPL Analog Device and Harmonic Oscillator ADPs: It presents the analog device speci-

fication describing the behavior for the SIMPL analog device. The SIMPL analog device is a simple

reconfigurable analog computing platform loosely inspired from the HCDCv2. It then presents both

the unscaled and scaled ADPs that implement the harmonic oscillator on the SIMPL analog device.

LGraph Compilation Pass: It demonstrates how the circuit synthesis procedure synthesizes an

300

unscaled ADP which implements the harmonic oscillator. The synthesis process first synthesizes

a sub-circuit comprised of compute blocks which implements each differential equation in the dy-

namical system (Section 7.4.1). It then assembles together these sub-circuits to form a completed

circuit, inserting assembly blocks to copy signals when necessary (Section 7.4.2). It then maps each

block to a location on the SIMPL device, inserting route blocks to form connections when necessary

(Section 7.4.3).

LScale Compilation Pass: It demonstrates how the circuit scaling procedure produces a scaled

ADP from an unscaled ADP. The scaling process formulates the scaling problem as a constraint

problem. This constraint program is then solved to produce a scaling transform. Section 7.5.1

describes how LScale derives a constraint problem from the scaling pass inputs.

7.1 Harmonic Oscillator

2.0 kg

k=0.5 kg/s

v′ = -0.25∗p
p′ = v

10 m

p

v0 m/s

0

P

V

1 2 3

Figure 7-2: Simple harmonic oscillator

Figure 7-2 presents a spring-mass system which behaves as a harmonic oscillator. 1 This

system is comprised of a 2 kg mass attached to a spring with a force constant of 0.5 𝑘𝑔/𝑠. 2 I

wish to model the position 𝑝 and velocity 𝑣 of the mass over time given an initial position of 10 m

and an initial velocity of 0 m/s. 3 When released from this initial state, the the position of the

mass oscillates between -10 and 10 meters and the velocity of the mass oscillates between -4 and 4

m/s. I capture the behavior of the position and velocity of the mass with the following differential

equations:

�̇� = −0.25 · 𝑝 𝑣(0) = 0

�̇� = 𝑣 𝑝(0) = 10

301

7.1.1 Harmonic Oscillator Dynamical System Specification

var v = integ(-0.25*p,0.0);

var p = integ(v, 10.0);

var pos = emit(p);

interval p = [-10,10];

interval v = [-5,5];

time 20;

Figure 7-3: Harmonic Oscillator DSS

Figure 7-3 presents the dynamical system specification (DSS) that implements the harmonic

oscillator. This system models the position 𝑝 and velocity 𝑣 of a dampened spring oscillator over

time. The var statements declare and define the dynamics of the 𝑝 and 𝑣 variables; the

interval statements annotate each variable with the range of values it may take on. The v

and p variables are annotated to be between [-5,5] m/s and [-10,10] m respectively. The pos

variable corresponds to the observation of the position p over time. The oscillator executes

for twenty simulation units.

The specification provides interval annotations for the position and velocity variables.

These interval annotations indicate the position p falls between -10 and 10 m, and the

velocity v falls between -5 and 5 m/s, respectively. These annotations can be statically

derived by applying the conservation of energy principle to the system. Because this system

has no dissipative forces, the potential energy and kinetic energy must always sum to the

total energy of the system:

Kinetic Energy+ Potential Energy = Total Energy

For the spring oscillator, the energy conservation equation of the system is the following:

1

2
𝑚 · 𝑣2 + 1/2𝑘 · 𝑝2 = Total Energy

In its initial state, the following system has 25 Joules of energy:

1

2
· 2 𝑘𝑔 · (0 𝑚/𝑠)2 + 1/2(0.5 𝑘𝑔/𝑠)(10𝑚)2 = 25𝑘𝑔 ·𝑚2𝑠−2

When the total energy of the system is converted entirely to kinetic energy (12𝑚 ·𝑣2), the velocity

of the mass is either -5 or 5 m/s:

1

2
· 2 𝑘𝑔 · 𝑣2 = 25

302

When the total energy of the system is converted entirely to potential energy (12𝑚 · 𝑣2), the

position of the mass is either -10 or 10 m.

1

2
· 0.5 𝑘𝑔/𝑠 · 𝑝2 = 25

Therefore, the position and velocity of the mass fall between [-10,10] m and [-5,5] m/s, respec-

tively. These intervals specify the dynamic range of the position and velocity. The dynamic range

of a time-varying signal is the range of values it may assume at any point in time.

7.2 The SIMPL Analog Device

MUL

x

z

c

y

INTEG

x

z
z0

OBS

x

z

FAN

x

z0 z1

TIN

x

z

TOUT

x

z

Figure 7-4: SIMPL Analog Blocks

Tile 0

Slice 0

Slice 1

Tile 1

Slice 0

Slice 1

Figure 7-5: SIMPL Device Layout

This chapter targets a simplified programmable analog device inspired by the HCDCv2 analog

chip. Figure 7-4 presents the six digitally programmable analog blocks available on this device.

Computation blocks include integrators (INT), multipliers (MUL), and measurement blocks (OBS).

The device also provides assembly blocks which copy analog currents (FAN) and routing blocks (TIN

and TOUT) which direct signals inside the chip. Addition is performed by sending multiple currents

to the same input port. The device has four distinct locations (0,0), (0,1), (1,0), and (1,1). The

device has TIN,TOUT,INT, MUL, and FAN block instances at all locations. The OBS is only available

at locations (0,0) and (0,1). Refer to the device layout specification presented below for more

information. The SIMPL analog device offers one calibration strategy fast which calibrates each

of the blocks to minimize error. The SIMPL analog device runtime supports the elicitation of delta

model parameter values from the device on hand. I next present the block specifications for each of

the SIMPL blocks.

303

MUL block

The multiplier block is a compute block which accepts analog currents at input ports x and y

and digital values at digital field c. It produces an analog current at output port z which

implements a mode-dependent function of these inputs. The function implemented by the

block depends on the block mode. I include the specification of the multiplier block below:

1 block mul type compute modes [(m,m,m),(x,m,m),(x,h,h),(x,h,m)] {

2 in x,y analog current; out z analog current; data c const;

3 rel z = func |(x,m,m) -> c*x |(x,h,h) -> c*x

4 |(x,h,m) -> 0.1*c*x |(m,m,m) -> 0.5*x*y

5

6 delta-par u correctable gain ideally 1.0

7 delta z = func |(x,m,m) -> u*c*x |(x,h,h) -> u*c*x

8 |(x,h,m) -> 0.1*u*c*x |(m,m,m) -> u*0.5*x*y

9

10 quantize c = linear 256; interval c = [-1,1];

11 maxfreq x = func | (*,*,h) -> 100800 | (*,*,m) -> 126000;

12 interval z = func |(*,*,m) -> [-2,2] |(*,*,h) -> [-20,20];

13 interval x = func |(*,m,*) -> [-2,2] |(*,h,*) -> [-20,20];

14 interval y = [-2,2];

15 }

The multiplier block works with modes (x,m,m), (x,h,h), (x,h,m), (m,m,m). The current at

port z implements c*x, c*x, 0.1*c*x, and x*y when the mode is (x,m,m), (x,h,h), (x,h,m),

(m,m,m) respectively. Note that the (x,m,m) and (x,h,h) modes implement the same

function but accept signals with different dynamic ranges at 𝑥 and 𝑧. The multiplier block

limits the the frequency of the device to 100800 when in (x,m,h) and (x,h,h) modes.

The multiplier block is subject to the effects of process variation. The delta model

specification for the multiplier block has a single delta model parameter u which introduces

a non-unity constant coefficient into the block’s input-output relation. The u delta model

parameter is correctable and implements an unexpected gain. The delta model specification

implements the relation governing port z when u is one. Refer to Chapter 5 for more

information on delta models, delta model parameters, and delta model specifications.

Delta Models: The delta model specification and the block instance-specific empirically

304

derived delta model parameter values together define the delta models for a multiplier block

instance. For example, the the values for delta model parameter u for the multiplier blocks

at locations (0,0) ,(0,1), (1,0), and (1,1) are presented below:

mode MUL (0,0) MUL (0,1) MUL (1,0) MUL (1,1)

(x,m,m) 0.90913 0.94875 0.9296 0.91912

(x,h,h) 0.89942 0.87330 0.85212 0.89321

(x,h,m) 0.98321 0.93110 0.94212 0.98942

(x,m,m) 1 1 1 1

The above delta model parameter values are combined with the delta model specifications

to get the delta model for each mode. For example, the delta model parameter value for u

is 0.0.98321 when the MUL (0,0) block instance is in (x,h,m) mode. According to the

delta model definitions in the block specification, the delta model specification is 0.1*u*c*x

when the block is in (x,h,m) mode. The delta model for MUL (0,0) under (x,h,m) mode

is therefore 0.1*0.98321*c*x. This delta model is used by the compiler to more accurately

target the device on hand. Refer to Section 7.5.2 for an overview of how the compiler

compensates for the u delta model parameter.

INTEG block

The integrator block is a compute block which accepts an analog current at input port x and

a digital field z0. It produces an output z which implements implements a mode-dependent

function of these inputs.

1 block integ type compute modes [(m,m),(h,h),(h,m)] {

2 in x analog current; out z analog current; data z0 const;

3 rel z = func |(m,m) -> integ(x,2*z0) |(h,h) -> integ(x,20*z0)

4 |(h,m) -> integ(0.1*x,2*z0)

5 quantize z0 = linear 256; interval z0 = [-1,1];

6 interval z = func |(*,m) -> [-2,2] |(*,h) -> [-20,20];

7 interval x = func |(m,*) -> [-2,2] |(h,*) -> [-20,20];

8 }

The integrator block works with modes (m,m), (h,h), and (h,m). The analog current

at port z implements integ(x,2*z0), integ(x, 20*z0), and integ(0.1*x, 2*z0 when in

305

modes (m,m), (h,h), and (h,m) respectively. The integrator block behaves ideally in the

presence of process variation and therefore does not define a delta model.

OBS block

The observation block is a compute block that accepts an analog current at input port x

and produces a voltage at an externally acceptable output z.

1 block obs type compute modes [(dfl)] {

2 in x analog current; out z analog voltage extern;

3 rel z = emit(0.6*x);

4 interval x = [-2,2]; interval z = [-1.2,1.2]

5 }

The voltage at z implements emit(0.6*x). The obs block has exactly one mode called dfl.

The output port z is externally observable.

FAN block

The fan block is an assembly block which accepts an analog current at input port x and

produces two copies of the current at z0 and z1.

1 block obs type assemble modes [(m)

2 (-,-,m),(-,m),(-, m),(h),(-,-,h),(-,h),(-, h)]{

3 in x analog current; out z0,z1 analog current;

4 rel z0 = func | (*,*) -> x | (-,*,*) -> -x;

5 rel z1 = func | (*, *) -> x | (*,-,*) -> -x;

6 interval z0,z1,x = func | (*,*,m) -> -2,2 | (*,*,h) -> -20,20

7 }

The FAN block works with modes (+,+,m)..(-,+,h). The current at z0 is negated when

in modes (-,+,m),(-,-,h),(-,+,m), and (-,-,h). The current at z1 is negated when in

modes (+,-,m), (-,-,m), (+,-,h), and (-,-,h). The analog currents at ports x,z0, and z1

must fall within [-2,2] when in modes (*,*,m) and within [-20,20] when in modes (*,*,h).

306

TIN and TOUT blocks

The tile in and tile out blocks are route blocks that send the analog current at input port x

to output port z. These blocks have exactly one mode called dfl.

1 block tin type route modes [(dfl)]{

2 in x analog current; out z analog current;

3 rel z = x; interval z = -20,20 }

4 block tout type route modes [(dfl)]{

5 in x analog current; out z analog current;

6 rel z = x; interval z = -20,20 }

SIMPL Analog Device Layout Specification

1 device simpl {

2 freq 126000;

3 views tile, slice;

4 loc 0,1 in tile; loc 0,1 in slice;

5 blk INT,MUL,FAN,TIN,TOUT @ (*,*);

6 blk OBS @ (*,0);

7 conn INT,MUL,FAN,TIN @ (0,*) with INT,MUL,FAN,OBS,TOUT @ (0,*);

8 conn INT,MUL,FAN,TIN @ (1,*) with INT,MUL,FAN,OBS,TOUT @ (1,*);

9 conn TIN @ (0,*) with TIN @ (1,*);

10 conn TOUT @ (1,*) with TIN @ (0,*);

11 }

Figure 7-6: SIMPL layout specification

Figure 7-6 presents the device specification for the SIMPL analog device. The device

has two views (tile and slice). There are two tiles (0 and 1) on the device, and two slices (0

and 1) per tile (line 4).

Each block location identifies the tile and slice of the block. For example, a mul block

at idx(0,1) is on tile 0, slice 1 and therefore also belongs to location 0 in the tile view.

This specification attaches an integrator (INT), multiplier (MUL), copier (FAN), and two

routing blocks (TIN and TOUT) to each slice (lines 5). The device has exactly two observation

blocks (obs), which reside on slice 0 of tiles 0 and 1 (line 6). The SIMPL device supports

307

connecting all blocks to all other blocks within a tile (lines 7-8) but requires routing blocks

(TIN and TOUT) to be used to connect blocks belonging to different tiles (lines 9-10). In the

above specification, the baseline time constant is 126000 Hz – so that one unit of integration

time corresponds to 7.93 𝜇s (1/126000) of wall clock time. The time constant describes the

integration speed of the analog device.

308

MUL
(0,1)

x

z
c

y

INTEG
(0,0)

x

z
z0

V

MUL
(1,0)

x

z
c

y

OBS
(1,0)

x

z

Pos

INTEG
(0,1)

x

z
z0

P

MUL
(0,0)

x

z
c

y
FAN
(0,0)

x

z0 z1

P P

TIN
(1,0)

x

z

TOUT
(0,0)

x

z

modes:
(dfl)

modes:
(dfl) modes:

(+,+,m)
(+,+,h)

z0=5.0
modes:
(m,m)

c=1.0
modes:
(x,m,m)
(x,h,h)

c=-0.25
Modes:
(x,m,m)
(x,h,h)

z0=0.0
modes:
(m,m)

c=1.66
modes:
(x,m,m)
(x,h,h)

modes:
(dfl)

Figure 7-7: Analog circuit described by unscaled ADP

1 config block MUL @ (0, 1) { modes [(x,m,m),(x,h,h)]; set c at -0.25; }
2 config block INTEG @ (0, 0) { modes [(m,m)]; set z0 at 0.000; source V at z; }
3 config block MUL @ (0, 0) { modes [(x,m,m),(x,h,h)]; set c at 1.000; }
4 config block INTEG @ (0, 1) { modes [(m,m)]; set z0 at 5.000; source P at z; }
5 config block MUL @ (0, 0) { modes [(x,m,m),(x,h,h)]; set c at 1.666; }
6 config block OBS @ (1,0) { modes [(dfl)]; source Position at z }
7 config block FAN @ (0, 0) { modes [(+,+,m), (+,+,h)]; source P at x; }
8 config block TOUT @ (0, 0) { modes [(dfl)];}
9 config block TIN @ (1, 0) { modes [(dfl)];}

10 conn block INT port z loc (0, 0) with block MUL port x loc (0, 0);
11 conn block MUL port z loc (0, 0) with block INT port x loc (0, 1);
12 conn block INT port z loc (0, 1) with block FAN port x loc (0, 0);
13 conn block MUL port z loc (0, 1) with block INT port x loc (0, 0);
14 conn block FAN port z1 loc (0,0) with block MUL port x loc (0,1);
15 conn block FAN port z0 loc (0,0) with block TOUT port x loc (0,0);
16 conn block TOUT port z loc (0,0) with block TIN port x loc (1,0);
17 conn block TIN port z loc (1,0) with block MUL port x loc (1,0);
18 conn block MUL port z loc (1,0) with block OBS port x loc (1,0);

Figure 7-8: Unscaled ADP implementing harmonic oscillator

7.3 The Harmonic Oscillator on the SIMPL Device

I next present the unscaled and scaled ADPs that implement the harmonic oscillator on the

SIMPL analog device. Refer to Chapter 6 for an overview of unscaled and scaled ADPs.

7.3.1 Unscaled ADP

Figure 7-8 presents the unscaled ADP and Figure 7-7 presents a diagram of the circuit

described in the unscaled ADP. The ADP contains the following statements:

∙ Block Configurations(Line 1-9): Each block configuration instantiates all digitally

settable fields present in the block (set.. statements) and selects a a subset of modes

309

for the block instance (modes.. statements). the INT (0,0) and INT (0,1) are placed

in (m,m) mode (Lines 2,4) and programmed so z0 equals 0.0 and 5.0 respectively. The

MUL (0,0), MUL (0,1) and MUL (1,0) blocks are all placed in (x,m,m) or (x,h,h) mode

and configured so the coefficient c equals 1.0, -0.25, and 1.666 respectively. The FAN

(0,0) is placed in (+,+,m) or (+,+,h) mode. Note that generally speaking, each

block instance in the ADP implements the same input-output relation under all the

specified block modes.

Digitally Settable Connections(Lines 10-18): The ADP enables the subset of

digitally programmable connections necessary to implement the circuit presented in

Figure 7-7.

Dynamical System Annotations(Lines 1-9): The ADP source.. statements in

Lines 1-9 indicate which analog signals implement dynamical system variables. The

signal at port z of INT (0,0) implements the dynamical system variable V (line 2)

and the signal at port z of INT (0,1) implements the dynamical system P (line 4).

The signal at port z of the OBS (1,0) implements the observed position pos – this

port is externally accessible and is observable with a measurement device.

The ADP implements the core harmonic oscillator computation with INT and MUL blocks.

The ADP uses the FAN to produce multiple copies of the signal implementing the position

P. This block is necessary because analog currents must be copied to be used more than

once. The ADP uses the TIN and TOUT routing blocks to connect FAN (0,0) and MUL

(1,0). These blocks are necessary because the MUL block is on a different tile and cannot

be directly connected on the FAN block. Note that the hardware does not provide enough

multipliers within a tile to implement the above configuration on a single tile.

Signal Dynamics Dynamical System

v = integ((-0.25*p),(2*0)) v = integ(v,0.0)

p = integ((1.0*v),(2*0.50)) p = integ(-0.25*p,1.0)

pos = emit(0.60*(1.666*v)) pos = emit(p)

Figure 7-9: Unscaled dynamics of the cos benchmark

The each signal faithfully implements a dynamical system variable if the symbolic ex-

pression governing the physics of the signal matches the variable dynamics. Figure 7-9

310

presents a comparison of the dynamics of the ADP signals (column 1) and the dynamics of

the dynamical system variables (column 2). Each signal relation contains a mixture of data

field values (blue), dynamical system variables (dark blue), and block dynamics (black).

Line 1 presents the dynamics of the signal implementing the velocity V at port z of INT

(0,0). Line 2 presents the dynamics of the signal implementing the position P at port z of

INT (0,1). Line 3 presents the signal implementing the observed position Position at port

z of the OBS (1,0) block.

All of the signal relations are algebraically equivalent to their corresponding dynamical

system relations. While the relations do not syntactically match up, the implement the same

algebraic functions. The initial conditions for the P and V signals are scaled by 0.5 to offset

the 2.0 coefficient introduced by the INT blocks. The p signal also introduces a 1.0 term

which comes from MUL (0,0). In the pos signal, the unscaled ADP introduces a 1.666 term

to offset the 0.60 coefficient introduced by the OBS block.

311

1 config block MUL @ (0, 1) {
2 modes [(x,m,m)]; set c at -0.25;
3 scale c = 1.6864; scale x = 0.20; scale z = 0.3200;
4 }
5 config block INTEG @ (0, 0) {
6 modes [(m,m)]; set z0 at 0.000; source V at z;
7 scale x = 0.3200; scale z = 0.4000; scale z0 = 0.4000;
8 }
9 config block MUL @ (0, 0) {

10 modes [(x,m,m)]; set c at 1.000;
11 scale c = 0.4400; scale x = 0.4000; scale z = 0.1600;
12 }
13 config block INTEG @ (0, 1) {
14 modes [(m,m)]; set z0 at 5.000; source P at z;
15 scale z = 0.2000; scale x = 0.1600; scale z0 = 0.2000;
16 }
17 config block MUL @ (1, 0) {
18 modes [(x,m,m)]; set c at 1.666;
19 scale x = 0.2000; scale z = 0.1116; scale c = 0.6002;
20 }
21 config block OBS @ (1,0) { modes [(dfl)]; source Position at z;
22 scale x,z = 0.1116 }
23 config block FAN @ (0, 0) { modes [(+,+,m), (+,+,h)]; source P at x;
24 scale x,z0,z1,z2 = 0.2000 }
25 config block TOUT @ (0, 0) { modes [(dfl)]; scale x,z = 0.2000; }
26 config block TIN @ (1, 0) { modes [(dfl)]; scale x,z = 0.2000;}
27 timescale 0.800;
28 conn block INT port z loc (0, 0) with block MUL port x loc (0, 0);
29 conn block MUL port z loc (0, 0) with block INT port x loc (0, 1);
30 conn block INT port z loc (0, 1) with block FAN port x loc (0, 0);
31 conn block MUL port z loc (0, 1) with block INT port x loc (0, 0);
32 conn block FAN port z1 loc (0,0) with block MUL port x loc (0,1);
33 conn block FAN port z0 loc (0,0) with block TOUT port x loc (0,0);
34 conn block TOUT port z loc (0,0) with block TIN port x loc (1,0);
35 conn block TIN port z loc (1,0) with block MUL port x loc (1,0);
36 conn block MUL port z loc (1,0) with block OBS port x loc (1,0);

Figure 7-10: Unscaled ADP implementing harmonic oscillator

7.3.2 Scaled ADP

The compiler scales the unscaled ADP to mitigate the above issues. The resulting scaled

ADP respects any operating range and frequency limitations and accounts for the effects of

process variation, noise, and quantization error during execution. The scaled ADP defines a

scaling transform that describes how to scale all of the signals and values in the circuit. The

scaling transform also defines the execution speed of the scaled computation. The scaled

ADP also selects a final mode for each of the block instances.

Figure 7-10 presents the scaled ADP which implements the harmonic oscillator and

Figure 7-11 presents a circuit representation of the scaled ADP. The scaled ADP specifies

the scaling transform for the circuit. The scaling transform is made up of a set of magnitude

scale factors scale.. statements) for each port and data field in the circuit and a time scale

factor (timescale statement) which specifies the execution speed of the scaled computation.

312

MUL
(0,1)

x

z
c

y

INTEG
(0,0)

x

z
z0

V

MUL
(1,0)

x

z
c

y

OBS
(1,0)

x

z

Pos

INTEG
(0,1)

x

z
z0

P

MUL
(0,0)

x

z
c

y
FAN
(0,0)

x

z0 z1

P P

TIN
(1,0)

x

z

TOUT
(0,0)

x

z

modes:
(dfl)

modes:
(dfl)

modes:

z0=5.0

modes:
(m,m)

c=1.0

Modes:

c=-0.25

Modes:

z0=0.0

modes:
(m,m)

c=1.66

modes:

modes:
(dfl)

α=1.686
α=0.44

α=0.600

0.400

0.160

0.200

α=0.20

0.320

0.40

α=0.40

0.200

0.20

0.112

0.112

0.20

𝜏 = 0.800

(x,m,m)
(x,m,m)

(+,+,m)

(x,m,m)

0.20

0.20

0.20

0.20 0.20
0.20

0.320
0.160

0.112

Figure 7-11: Scaled ADP implementing harmonic oscillator

Lines 3,7,11,15,21-24 define the magnitude scale factors (scale.. statements) for each port

and data field in the circuit. The scaled ADP scales the ports implementing the velocity v,

position p, and observation, pos of the oscillator by 0.40, 0.20, and 0.1116 respectively.

Line 25 defines a time scale factor of 0.800. The scaled circuit slows down the implemented

simulation by a factor of 0.800x the original speed. Lines 2,10, and 18 select the (x,m,m)

mode for all three of the block instances which are in use.

Using the Scaling Transform: The scaling transform is applied before execution. The

scaling transform is applied by multiplying the data fields by their respective scale factors

and written to their device. For the above circuit, the c and z0 data fields in the ADP

are multiplied by their respective magnitude scale factors and written to the device. After

execution, the end user can recover the original dynamical system trajectories from the

measured by dividing the signal’s amplitude by its magnitude scale factor and multiplying

the time samples by the baseline integration speed and the time scale factor. For example,

the original trajectory of the pos variable is recovered from the pos signal by dividing the

amplitude by 0.1116 and multiplying the time samples by 0.800*126000.

Physical Realizability: The scaled ADP presented above is physically realizable. It

respects all of the operating range and frequency restrictions present in the device and

attenuates away the effects of noise and quantization error:

313

∙ Operating Range Restrictions: The scaled ADP scales down the value at c from 1.66

to 0.6002*1.66=0.999 so that it falls within the operating range [-1,1]. The scaled

ADP scales down the signal implementing v (Line 6,7) from [-5,5] to 0.40*[-5,5]

= [-2,2] so that it falls within the operating range [-2,2]. The ADP scales down

the signal implementing p from [-10,10] to 0.2*[-10,10] = [-2,2] so that it falls

within the operating range [-2,2]. The ADP scales the signal implementing pos from

[-10,10] to 0.1115*[-10,10] so that it falls within the operating range [-1.2,1.2]

∙ Frequency Restrictions: The above circuit maps 1.25 units of hardware time to one

unit of simulation time. This corresponds to a simulation speed of 0.8*126 or 100.8

kHz. Therefore, the scaled circuit’s simulation speed does not exceed the maximum

supported execution speed of 100.8 kHz. This frequency is the maximum frequency

supported by the multipliers in the circuit.

∙ Noise and Quantization Error : The signals implementing p and v fully utilize the

entire operating range of the port. The data field z0 of INT (0,1) and data field c

MUL (1,0) are both supplied with the maximum supported digital value scf(0.2)*5

= scf(0.602)*1.666 = 1.0.

It is not usually possible to maximize every single signal and value in a given ADP.

Port z of MUL (0,1) and MUL (0,0) both produce scaled signals with a dynamic range

of 0.32*[-2.5,2.5] = 0.16*[-5,5] = [-0.8,0.8]. These signals underutilize the

available operating range of the port [-2.0,2.0]. The data field c of MUL (0,1)

accepts the scaled value 0.44*1.0=0.44 and the data field c of MUL (0,0) accepts the

scaled value scf(1.6864)*(-0.25) = -0.4216. Both scaled values are smaller than

the maximum supported values -1 and 1.

Preservation of Original Dynamics: The scaled ADP preserves the original dynamics

of the dynamical system such that the end user can recover the original dynamics from the

scaled dynamics at runtime by applying an inverting transform. The scaled ADP must

compensate for any empirically observed behavioral deviations in the calibrated device.

The scaled ADP also compensates for any changes in the signal dynamics which arise from

changing the block modes.

314

Signal Dynamics Dynamical System

v𝑠𝑐 = 0.40*v = integ(0.8−1(0.94875*(1.6864*-0.25)*(0.20*p)), 2*(0.40*0.0))

p𝑠𝑐 = 0.20*p = integ(0.8−1(0.90913*(0.4400*1.0)*(0.40*v)), 2*(0.20*5.0))

pos𝑠𝑐 = 0.1116*pos = emit(0.6*(0.9296*(0.6002*1.666)*(0.20*p))

Figure 7-12: Scaled dynamics of the harmonic oscillator

Figure 7-12 presents the dynamics of the scaled signals for the scaled ADP. The above

relations contain ,agnitude and time scale factors (red) and compensation terms (grey)

which capture the multiplier behavioral deviations (grey) in addition to the data fields,

dynamical system variables, and the idealized block dynamics. Line 1 presents the dynamics

of the signal implementing the velocity V at port z of INT (0,0). Line 2 presents the

dynamics of the signal implementing the position P at port z of INT (0,1). Line 3 presents

the signal implementing the observed position Position at port z of the OBS (1,0) block.

Refer to Chapter 9 for more information on how the scaled signal dynamics are derived from

the scaled ADP.

A scaled signal relation preserves the original dynamical system dynamics if the right

hand side of the relation can be rewritten to equal the original unscaled dynamics of the

signal times the signal’s magnitude scale factor:

∙ v Signal: The magnitude scale factor 0.40 for v can be factored out of the derivative

0.81*0.94875*1.6864*0.20 = 0.40 and the initial value of the scaled signal imple-

menting v. The expression of unfactored terms integ(-0.25*p,2*0.0) matches the

dynamics of v = integ(-0.25*p,0.0). The 0.94875 delta model parameter value is

introduced into the signal dynamics when the MUL (0,1) block is in tx(x,m,m) mode.

∙ p Signal: The magnitude scale factor 0.20 for p can be factored out of the deriva-

tive 0.81*0.90913*0.4400*0.40 = 0.20 and the initial value of the scaled signal

implementing v. The expression of unfactored terms integ(1*v,2*5.0) matches the

dynamics of p = integ(v,10.0). The 0.90913 delta model parameter value is intro-

duced into the signal dynamics when the MUL (0,0) block is in (x,m,m) mode.

∙ pos Signal: The magnitude scale factor 0.1116 for pos can be factored out of the

expression 0.9296*0.6600*0.20 = 0.1116 and the initial value of the scaled signal

implementing v. The expression of unfactored terms emit(0.6*1.666*p) matches the

315

dynamics of the observed position pos = emit(p). The 0.9296 delta model parameter

value is introduced into the signal dynamics when the MUL (1,0) block is in (x,m,m)

mode.

316

DSS

ADS

ADP

ADS ADS

VADP
Fragments

VADP
FragmentsVADP
Fragments

Fully
Connected

VADP

Figure 7-13: overview of circuit synthesis procedure (LGraph)

7.4 Circuit Synthesis (LGraph)

To implement a dynamical system on an analog device, the analog building blocks resident

on the device must be configured and routed together so that the physics of the device (be-

havior of the currents/voltages over time) matches the behavior of the dynamical system.

The compiler synthesizes analog device configurations that are guaranteed to be algebraically

equivalent to the starting dynamical system – that is, the configuration implements a dy-

namical system that can be transformed into the original dynamical system by successively

applying algebraic rewrite rules.

This compiler accepts as input a specification of the dynamical system to compile (DSS)

and a specification of the analog device (ADS). The analog device specification describes

each block’s behavior and programming interface and the programmable connections avail-

able on the device. It produces, as output, an analog device program (ADP) which im-

plements the provided dynamical system on the target analog hardware. Internally, the

compiler works with an extended representation of the analog device program (vADP) that

supports defining circuit fragments. This chapter covers the following:

∙ Synthesis: LGraph synthesizes a collection of vADP fragments made up of compute

blocks that implement each relation in the dynamical system specification.

∙ Assembly: LGraph assembles a complete vADP that implements the dynamical

system from these vADP fragments, copying and converting signals with assembly

blocks when necessary. Assembly blocks perform simple operations over one input

(e.g., negation) or signal conversion. This stage resolves any sinks present in the

vADP fragments.

∙ Routing: LGraph assigns vADP block identifiers to locations on the device, insert-

317

ing routing blocks when necessary. The resulting ADP respects any resource and

connectivity constraints present in the device.

The vADP: The vADP is the intermediate circuit representation that the LGraph pass

uses to represent partial circuits and circuits with abstract locations. The vADP differs

from the ADP in two key ways:

∙ Abstract Locations: vADP blocks are assigned abstract identifiers instead of con-

crete device locations. These identifiers allow the compiler to distinguish between

blocks instances of the same block type. The compiler resolves these identifiers to

device locations in the place-and-route stage.

∙ Fragment Support: vADPs can describe both circuit fragments and complete cir-

cuits. The vADP introduces sink constructs which indicate where signals implement-

ing DSS expressions are needed in the circuit. A vADP is considered fully connected

or complete if it contains no sink statements. I describe a sink as fulfilled if a signal

implementing the desired dynamical system expression is provided to the sink.

Each vADP is made up of one or more vADP statements which configure and connect

blocks together. These statements closely resemble the constructs provided in an analog

device programming language:

∙ conn(block,ident,port,block’,ident’,port’): This statement connects the port

port of the block block with identifier ident to the port port’ of the block block’

with identifier ident’.

∙ config(block,ident,modes,datafield=value,..): This statement configures the

block block with identifier ident. The block modes are set to the set of modes modes

and the data fields are instantiated to the assigned values (datafield=value).

∙ sink(block,ident,port,expr): This statement describes where an incoming signal

is needed in the vADP circuit. It indicates the input port port of the block block with

identifier ident must be provided a signal which implements the dynamical system

expression expr to operate as expected.

∙ source(block,ident,port,expr): This statement describes where a signal imple-

menting an expression is being a produced. It indicates the output port port of the

318

Create
Initial

Tableau
DSS

ADS

Physical
Laws

Tableau
Transition

Initial
Tableau

Derived
Tableau

VADP
Fragment

Extract
VADP

Fragment

Solved
Tableau

Derived
Tableau

...

...

...

...

Derived
Tableau

Figure 7-14: overview of tableau-based synthesis (LGraph)

block block with identifier ident produces a signal which implements the dynamical

system expression expr.

7.4.1 Tableau-based vADP Fragment Synthesis

The fragment synthesis procedure accepts as input the ADS and DSS and synthesizes a

vADP fragment for each variable in the DSS. The synthesis procedure invokes the frag-

ment search algorithm on each variable-expression assignment in the DSS – this algorithm

synthesizes a vADP fragment which implements the provided variable-expression assign-

ment.

Figure 7-17 presents an overview of the fragment search algorithm. It accepts, as input,

the target dynamical system relation, the available compute blocks from the ADS, and a

library of physical current and voltage laws. The fragment synthesis procedure uses these

laws to implement certain operations, such as addition with currents. Each physical law

is a named expression describing mathematical operation implemented by the law. The

expression is defined over a set of abstract law variables specific to the described physical

law. Each law variable is associated with a type of signal (current, voltage) and may only

work with that signal. Each physical law also comes with a simplification procedure which

eliminates all occurrences of the law from a given vADP.

The fragment search algorithm performs a search over tableaus. A tableau is an algebraic

representation of the state of the search. The tableau contains a set of goal dynamical system

relations to implement, a set of hardware relations to use, and the vADP which has been

generated so far:

∙ Goals: The tableau goals capture the parts of the circuit fragment which still need to

319

be synthesized. They assign dynamical system expressions to block ports (port(block,ident,port))

or dynamical system variables.

∙ Virtual Analog Device Program: The tableau vADP statements describe the

circuit fragment which has been built up so far.

∙ Hardware relations: The tableau relations describe all of the block input-output

relations the search algorithm may use to build the circuit. Each relation assigns a

block port (port(block,ident,port)) to hardware expression. All the variables in

the hardware expressions are input ports and data fields that belong to the block

block with identifier ident. The tableau relations may also contain physical laws

that the compiler can also use to implement computation. Each law relation assigns

an invocation of a named law (law(name,ident)) to an expression describing the

physics of the described law. All the variables in the law expression are abstract vari-

ables that are eliminated from the final vADP using the law’s programmer-provided

simplification procedure.

The synthesis procedure generally operates by deriving new tableaus from existing

tableaus using the tableau transition relation. At a high level, the tableau translation rela-

tion selects a goal and tableau relation, finds an instantiation of the tableau relation which

implements the dynamical system expression from the goal, and then extends the vADP

fragment to include the configured block which implements the instantiated relation. The

transition relation returns a new tableau that captures the described vADP fragment exten-

sion. Because the transition relation is non-deterministic, it can be invoked multiple times

on the same tableau to produce multiple candidate search paths.

The search starts with an initial tableau with an empty vADP and a single goal –

the provided dynamical system relation. The initial tableau relations contain all of the

compute block input-output relations from the ADS, and the provided physical laws. It then

recursively applies the tableau transition relation to the initial tableau and all subsequently

derived tableaus to identify a set of solved tableaus. A tableau is considered solved when

there are no goals left. The vADP fragment in the solved tableau implements the starting

dynamical system relation.

320

INTEG
0

x

z
z0

z0=5.0
modes:
(h,m)

P

MUL
0

x

z
c

y

c=10.0
modes:
(x,m,m)
(x,h,h)

V

INTEG
0

x

z
z0

z0=5.0
modes:
(m,m)

P

V

INTEG
0

x

z
z0

z0=0.5
modes:
(h,h)

P

V
1 2 3

Figure 7-15: vADP fragments for harmonic oscillator position

Fragment Synthesis for Harmonic Oscillator

Figure 7-15 presents three vADP fragments which all implement the relation p = integ(v,10).

All of these fragments compute the position of the harmonic oscillator over time when sup-

plied with its velocity at velocity sink V. I describe how each fragment implements the

position of the harmonic oscillator below:

1. Fragment 1 implements the position of the harmonic oscillator with the current at out-

put port z of integrator 0. It configures integrator 0 to implement integ(0.1*x,2*5)

at port z, configures multiplier 0 to implement 10*x at port z, and provides an analog

current implementing the velocity of the harmonic oscillator to port x of multiplier 0.

The current at z of integrator is therefore integ(0.1*(10*v),2*5), which simplifies

to integ(v,10)

2. Fragment 2 implements the position of the harmonic oscillator with the current at

output port z of integrator zero. It configures integrator 0 to implement integ(x,2*5)

and provides an analog current implementing the velocity of the harmonic oscillator

of port x of integrator 0. The current at z of the integrator is therefore integ(v,2*5),

which simplifies to integ(v,10).

3. Fragment 3 implements the position of the harmonic oscillator with the current at out-

put port z of integrator zero. It configures integrator 0 to implement integ(x,20*0.5)

and provides an analog current implementing the velocity of the harmonic oscillator of

321

INTEG
0

x

z
z0

z0=5.0
modes:
(h,m)

P

MUL
0

x

z
c

y

c=10.0
modes:
(x,m,m)
(x,h,h)

V

P

p = integ(v,10)

INTEG
0

x

z
z0

z0=5.0
modes:
(h,m)

P

x = 10*v

1

2

INTEG
0

x

z
z0

z0=5.0
modes:
(h,m)

P

MUL
0

x

z
c

y

c=10.0
modes:
(x,m,m)
(x,h,h)

x = v
3 3

Figure 7-16: vADP synthesis procedure for position

port x of integrator 0. The current at z of the integrator is therefore integ(v,20*0.5),

which simplifies to integ(v,10).

Figure 7-16 walks through the process of generating a vADP fragment (fragment 1) that

implements the position of the harmonic oscillator p=integ(v,10). LGraph first constructs

an initial tableau from the dynamical system relation and the set of available compute

blocks:

goals available relations

p=integ(v,10) port(integ,0,z) = integ(0.1*x,2.0*z0) if {(h,m)}

vadp port(integ,0,z) = integ(x,2.0*z0) if {(m,m)}

port(integ,0,z) = integ(x,20.0*z0) if {(h,h)}

port(mul,0,z) = c*x if {(x,m,m),(x,h,h)}

law(kirch,0) = a+b

...

The above tableau has a single goal that specifies the dynamics of the position of the

oscillator. The initial tableau starts with an empty vADP because no fragment has been

synthesized yet.

The compiler derives the available relations in the tableau from block specifications in

the ADS. Each available relation specifies the dynamics implemented at a specific port of a

block when the block is placed under a specific set of modes. For example, the first relation

specifies the dynamics of the signal at output port z of the integ block with identifier 0

322

when in (h,m) mode. The set of available relations also contains a single law describing

Kirchhoff’s law. The compiler uses Kirchhoff’s law to implement addition in the produced

circuits.

Kirchhoff’s law states that the sum of currents at any point where wires meet is zero.

The compiler may add two analog currents together in the target hardware by routing the

signal from two output ports to the same input port. In this scenario, the signal flowing

from the input port into the block must equal the sum of the signals coming from the output

ports.

The kirch law describes how addition is implemented with Kirchhoff’s law. In this

relation, z, a, and b are all analog currents.The compiler uses a numerical identifier to

differentiate between different invocations of Kirchhoff’s law. The kirch law is associated

with a simplification procedure (not shown) which translates a usage of Kirchoff’s law to a

circuit. The simplification procedure for Kirchhoff’s law routes the output ports connected

to law variables a and b to the input port connected to law variable z.

Next, LGraph applies the tableau transition rule to begin synthesizing the vADP frag-

ment. The transition rule non-deterministically selects an hardware relation from the set of

available hardware relations and a goal to solve. It then unifies the dynamics of the block

with the target dynamical system expression to produce a configuration for the enclosing

block. This invocation of the transition rule selects the output port z of the integ block

with identifier 0 and mode (h,m). The integ block implements integ(0.1*x,2*z0) at port

z when in mode (h,m). It rewrites the selected relation to implement the provided goal and

derives the following tableau:

goals available relations

port(integ,0,x)=10*v port(integ,1,z) = integ(0.1*x,2.0*z0) if {(h,m)}

vadp port(integ,1,z) = integ(x,2.0*z0) if {(m,m)}

config(integ,0,{(h,m))}, z0=5) port(integ,1,z) = integ(x,20.0*z0) if {(h,h)}

source(integ,0,z,p) port(mul,0,z) = c*x if {(x,m,m),(x,h,h)}

law(kirch,0,z) = a+b

...

The derived tableau shown above describes the search state after the partial fragment

in part (1) of the above figure is synthesized. It places the integrator with identifier 0 in

323

(h,m) mode and sets the digitally programmable data field to z0 (config statement). It

also adds a new tableau goal which requires a signal implementing the dynamical system

expression 10*v be provided to port x of this integrator to 10*v. Under this concretization,

the integ block implements integ(0.1*10*v,2*5), which simplifies to integ(v,10) – the

position of the harmonic oscillator. Because z0 is a digitally settable field that is instantiated

when the block is programmed, it is part of the block configuration (gray speech bubble). To

implement this concretization, the analog port x must be supplied with a current that models

10*v. It affixes the source label z to port z of integrator 0 – this tells the compiler that

this fragment implements the position of the oscillator. This tableau removes the available

hardware relation for the output port z of the block integ 0 because that output port has

already been used. The tableau adds a fresh set of available hardware relations for the block

integ 1 – these relations enable the compiler to use a fresh integrator later in the synthesis

procedure.

LGraph next applies the tableau transition to the above derived tableau to further ex-

tend the vADP fragment to implement 10*v at input port x of integrator 0. The tableau

transition function selects hardware relation describing the signal at port z of the mul block

when in modes (x,m,m) or (x,h,h). This hardware relation specifies two modes because

they both implement the relation c*x at output port z. LGraph determines that the cur-

rent at z implements 10*v when the data field c is 10 and the input current provided to x

implements the velocity v. The compiler derives the following tableau after completing the

unification process:

goals available relations

port(mult,0,x)=v port(integ,1,z) = integ(0.1*x,2.0*z0) if {(h,m)}

vadp port(integ,1,z) = integ(x,2.0*z0) if {(m,m)}

config(integ,0,{(h,m))}, z0=5) port(integ,1,z) = integ(x,20.0*z0) if {(h,h)}

source(integ,0,z,p) port(mul,1,z) = c*x if {(x,m,m),(x,h,h)}

config(mul,0,{(x,m,m),(x,h,h)},c=10) law(kirch,0,z) = a+b

conn(mult,0,z,integ,0,x) ...

The above derived tableau describes the search state after the partial fragment in part

(2) of the above figure has been synthesized. It places the multiplier with identifier 0 in

(x,m,m) or (x,h,h) mode and sets data field c to 10 (config statement). It adds a single

324

goal requiring the harmonic oscillator velocity v be provided into port x of the multiplier.

Under these conditions, the multiplier implements 10*v at port z which satisfies the selected

goal. The tableau also contains a vADP connection statement (conn) which routes the signal

implementing 10*v from the multiplier output port z to the input port x of integrator 0.

goals available relations

port(integ,1,z) = integ(0.1*x,2.0*z0) if {(h,m)}

vadp port(integ,1,z) = integ(x,2.0*z0) if {(m,m)}

config(integ,0,{(h,m))}, z0=5) port(integ,1,z)) = integ(x,20.0*z0) if {(h,h)}

source(integ,0,z,p) port(mul,1,z) = c*x if {(x,m,m),(x,h,h)}

config(mul,0,{(x,m,m),(x,h,h)},c=10) law(kirch,0,z) = a+b

conn(mult,0,z,integ,0,x) ...

sink(mult,0,v)

The derived tableau presented above describes the search state after the fragment in

part (3) of the above figure has been synthesized. It adds a vADP sink annotation which

maps the harmonic oscillator velocity (v) to the input port x of multiplier 0.

At this point, the tableau has no goals left and is therefore considered a solved tableau.

LGraph returns the vADP fragment in the tableau as a candidate vADP fragment that

implements the position of the harmonic oscillator. The resulting fragment implements the

position of the harmonic oscillator with the analog current output port z of integrator 0,

provided an analog current carrying the velocity is supplied to input port x.

Example: vADP Synthesis with Physical Laws

The tableau synthesis procedure is also able to leverage physical laws to implement com-

putation. This following example illustrates how LGraph uses Kirchhoff’s law to implement

addition. Consider the following starting tableau:

goals available relations

q=integ(2*v,10) port(integ,0,z) = integ(0.1*x,2.0*z0) if {(h,m)}

vadp port(integ,0,z) = integ(x,2.0*z0) if {(m,m)}

port(integ,0,z) = integ(x,20.0*z0) if {(h,h)}

port(mul,0,z) = c*x if {(x,m,m),(x,h,h)}

law(kirch,0) = a+b

...

325

The above tableau has a single goal (q=integ(2*v,10)). The tableau also provides a set

of available relations implementing integration, multiplication, and addition. The addition

operation is provided with by the kirch physical law. This physical law performs addition

over two law variables (a and b). The identifier of the physical law enables LGraph to

differentiate between multiple uses of the same law. This kirch relation has an identifier 0

– this indicates that the law has not been used before.

The LGraph synthesizer first implements the target goal using the dynamics of the in-

tegrator block in (m,m) mode. The resulting derived tableau describes a vADP fragment

containing a single integrator block:

goals available relations

port(integ,0,x)=2*v port(integ,1,z) = integ(0.1*x,2.0*z0) if {(h,m)}

vadp port(integ,1,z) = integ(x,2.0*z0) if {(m,m)}

config(integ,0,{(m,m))}, z0=5) port(integ,1,z) = integ(x,20.0*z0) if {(h,h)}

source(integ,0,z,q) port(mul,0,z) = c*x if {(x,m,m),(x,h,h)}

law(kirch,0,z) = a+b

...

To solve the derived tableau, the synthesizer must route an analog current implementing

2*v to the input port of the integrator. The port(integ,0,x) = 2*v goal encodes this

requirement. The synthesizer selects the kirch law relation to fulfill this goal. It unifies the

goal expression 2*v with the physics of Kirchhoff’s law (a+b) and derives a new tableau:

goals available relations

law(kirch,0,a)=v port(integ,1,z) = integ(0.1*x,2.0*z0) if {(h,m)}

law(kirch,0,b)=v

vadp port(integ,1,z) = integ(x,2.0*z0) if {(m,m)}

config(integ,0,{(m,m))}, z0=5) port(integ,1,z) = integ(x,20.0*z0) if {(h,h)}

source(integ,0,z,q) port(mul,0,z) = c*x if {(x,m,m),(x,h,h)}

conn(kirch,0,z,integ,0,x) law(kirch,1,z) = a+b

...

The derived tableau now contains two goals which require two signals implementing v

be mapped to the law variables a and b. The synthesizer solves these goals by affixing

326

vsourcestatements to the to both law variables. The resulting solved tableau contains a

vADP fragment which implements q=integ(2*v,10):

goals available relations

port(integ,1,z) = integ(0.1*x,2.0*z0) if {(h,m)}

vadp port(integ,1,z) = integ(x,2.0*z0) if {(m,m)}

config(integ,0,{(m,m))}, z0=5) port(integ,1,z) = integ(x,20.0*z0) if {(h,h)}

source(integ,0,z,q) port(mul,0,z) = c*x if {(x,m,m),(x,h,h)}

conn(kirch,0,z,integ,0,x) law(kirch,1,z) = a+b

sink(kirch,0,a,v) ...

sink(kirch,0,b,v)

This vADP fragment is incomplete in its current state because it contains a mixture

of block instance ports and law variables. The synthesizer eliminates all law variables from

usages of Kirchhoff’s law by iteratively invoking the vADP simplification procedure which

was provided with as part of the law specification. This procedure identifies a single usage

of Kirchhoff’s law in the vADP and translates the usage to a set of vADP connections. I

present the vADP fragment with all of the law variables eliminated below:

source(integ,0,z,q)

config(integ,0,{(m,m))}, z0=5)

sink(integ,0,x,v)

sink(integ,0,x,v)

The above vADP fragment labels port x of integrator 0 with two sink statements im-

plementing the dynamical system variable v. This fragment sends therefore two currents

implementing v are sent to port x of integrator 0. Kirchhoff’s law states that the sum of

currents at any join point is zero. In the above circuit, the signal flowing from port x into the

integrator circuitry equals the sum of the signals flowing into port x (v+v). This connection

fulfills the requirement that a signal implementing 2*v be provided to the input port of

integrator 0.

7.4.2 vADP Assembly

The vADP assembly step of the synthesis procedure assembles the vADP fragments com-

puted in the fragment synthesis step to form a completed vADP. The returned completed

327

Circuit
Collation

VADP
Fragments

VADP
Fragments

Disconn.
VADP

Disconn.
VADP

Assembly
Fragment

Integration

Fully
Connected

VADP

Assembly
Fragment
VADP

Assembly
Fragment
Synthesis

ADS

Disconn.
VADP

Dynamical
System
Variable

Assembly
VADP

Fragment

Assembly
VADP

Fragment

1
2

3

Figure 7-17: Overview of vADP assembly step.

vADP implements the dynamical system specified in the DSS. The assembly procedure

inserts assembly blocks (blocks with the assemble type) to copy and convert signals as

necessary.

The assembly step works with the collection of vADP fragments that each implement

individual dynamical system relations from the DSS and the analog device specification

(ADS). The analog device specification describes all the assembly blocks which may be

used in the assembly process.

The assembly algorithm first combines all of the vADP fragments to form a single

disconnected vADP. The vADP appears disconnected because none of the sink vADP

sink statements have been fulfilled yet. The assembly algorithm first collates together the

vADP fragments (circuit collation) to form the disconnected circuit. To complete the

disconnected vADP, the assembly algorithm must route any generated signals (vADP

source statements) to where they are needed (vADP sink statements). This is not a

straightforward process because (1) some signals (analog currents) cannot directly be used

more than once (2) there may be type mismatches between signal sources and sinks (3)

the signal required at the sink might differ slightly from the signal provided at the source.

The assembly algorithm resolves these issues by generating assembly fragments which link

together the sources and sinks. Each assembly fragment performs all of the transformations

and signal duplications necessary for a specific signal source to fulfill all related signal sinks.

The assembly algorithm next synthesizes an assembly fragment for each dynamical sys-

328

tem variable in the dynamical system specification. The algorithm first analyzes the dis-

connected circuit to determine how many copies of the target variable are needed in the

completed circuit. It then produces a vADP fragment of assembly blocks which produces

the desired set of signals.

After all of the assembly fragments have been synthesized, the assembly algorithm incor-

porates each generated assembly fragment into the disconnected circuit to form a completed

circuit. The assembly fragment integration procedure routes the appropriate source signals

to the disconnected vADP and assembly fragment sink ports. Each vADP sink is removed

from the circuit once it has been fulfilled. The integration step produces a vADP with no

remaining sink statements.

329

Interface
Elicitation

Tree
Structure

Generation

VADP
Translation

Assembly
VADP

Fragment

Assembly
Fragment
Interface

Dynamical
System
Variable

Disconn.
VADP

Dynamical
System
Variable

Conc. Asm.
Block

Generation

ADS

Concrete
Assembly
Blocks

Assembly
Fragment
Structure

Figure 7-18: Overview of assembly fragment synthesis (LGraph)

Assembly Fragment Synthesis

Figure 7-18 provides an overview of how LGraph synthesizes an assembly fragment for a par-

ticular dynamical system variable. The assembly algorithm works with several realizations

of each assembly fragment. Each of these representations works with signals are defined by

the type (current, voltage, or digital) and the dynamical system expression it implements:

Assembly Fragment Interface: The assembly fragment interface specifies the input-

output interface of the assembly fragment. The input interface is the collection of signals

which must be provided to the fragment. The output interface is the collection of signals

which are produced by the fragment. The input interface of each assembly fragment is

always exactly one signal which implements a dynamical system variable.

Assembly vADP Fragment: The assembly vADP fragment is the fully realized circuit

that implements the above interface. It contains exactly one vADP sink that accepts

the signal at the input interface and contains one or more vADP sources, each of which

implements a signal from the output interface. The circuit described by the vADP fragment

is made up of configured assembly blocks arranged into a tree-like structure. These assembly

blocks compute the vADP sources from the provided vADP sink.

Assembly Fragment Structure: The assembly fragment structure is a sketch of the

vADP fragment that implements the fragment interface. It is an intermediate structure

from which the above vADP fragment is derived. This structural representation organizes

330

configured assembly blocks into a roughly tree-like structure comprised of sequentially or-

ganized levels. In this structure, the level at index i contains all the blocks at depth i

of the tree. Each level contains one or more configured assembly blocks and has an input

and output interface. The input interface is the collection of signals required by the levels’

blocks, and the output interface is the collection of signals produced by the levels’ blocks.

The structure has the following properties:

1. The topmost level (level 0) has an input interface that matches the assembly fragment

interface.

2. Each level’s output interface contains the subset of signals required at the next level’s

input interface. This property ensures the structure doesn’t require any externally

provided signals aside from the signal provided at the input interface. Signals which

are used to fulfill the input interface of the next level are considered bound. All other

signals are free signals which are not required to implement the structure.

3. The collection of all free signals in the structure contains the signals required at the

output interface of the assembly fragment. This property ensures that the output

interface is implemented by the assembly fragment.

Assembly Fragment Synthesis: The assembly fragment synthesis procedure (AFSP) ac-

cepts as input the disconnected vADP and the target dynamical system variable to target –

I will call this variable the target DSS variable. First, it identifies the input-output interface

of the fragment to be synthesized (interface elicitation). The assembly input interface con-

tains one signal which implements the target DSS variable in the disconnected circuit. The

assembly output interface contains a collection of signals that fulfill all the sink statements.

Each of these output signals is a function of the target DSS variable provided at the input

interface.

The AFSP performs a restricted form of synthesis that assumes all assembly blocks

accept the target DSS variable as input. It derives a library of concrete assembly blocks from

the assembly blocks in the ADS and the target DSS variable. Each concrete assembly block

accepts an input signal implementing the target dynamical system variable and is assigned

a fixed mode. Because the behavior of the concrete assembly blocks is deterministic, the

AFSP is able to pre-compute all of the output signals produced by each block. This enables

331

INTEG
0

x

z
z0

z0=5.0
modes:
(h,m)

P

MUL
0

x

z
c

y

c=10.0
modes:
(x,m,m)
(x,h,h)

V

MUL
1

x

z
c

y

INTEG
1

x

z
z0

c=-0.25
modes:
(x,m,m)
(x,h,h)

z0=0.0
modes:
(m,m)
(h,h)

P

V

MUL
2

x

z
c

y

c=1.66
modes:
(x,m,m)
(x,h,h)

P

OBS
0

x

z

Pos

1 2 3

Figure 7-19: Disconnected vADP for harmonic oscillator

the AFSP to synthesize circuits without having to reason about the input-output relations

implemented by the assembly blocks.

The AFSP synthesizes the fragment in two stages. It first synthesizes the assembly

fragment structure and then translates the structure to a vADP assembly fragment. The

fragment structure synthesis algorithm is a recursive algorithm that synthesizes the assembly

fragment structure starting from the bottom-most level. At each step, the algorithm non-

deterministically builds a level made up of concrete assembly blocks which implement the

desired set of signals. The algorithm starts with the set of signals at the output interface

and terminates when the desired set of signals is exactly the signal required at the input

interface of the fragment.

Once the structure is derived, the AFSP then translates the assembly fragment structure

into a vADP fragment. It converts the signal required at the input interface of the topmost

level of the structure to a vADP sink. All free signals in the structure are translated to

vADP sources, and all bound signals are translated to vADP connections. The blocks in

the structure levels become vADP block configuration statements.

Assembly Workflow Example: Assembly for Harmonic Oscillator

The assembly stage of compilation assembles together the vADP circuit fragments, each of

which implements an individual DSS variable, to form a completed circuit that implements

the input DSS. The assembly procedure inserts assembly blocks to copy and convert signals

as necessary.

332

MUL
1

x

z
c

y

INTEG
1

x

z
z0

P

V

MUL
2

x

z
c

y

P

OBS
0

x

z

Pos

INTEG
0

x

z
z0

P

MUL
0

x

z
c

y

V
FAN
0

x

z0 z1

P

P P

modes:
(+,+,m)
(+,+,h)

Figure 7-20: Completed vADP after assembly step.

Figure 7-19 presents the disconnected circuit. This disconnected circuit is made up of

three vADP fragments, each of which implements individual relations from the DSS on

the SIMPL hardware. Fragments 1 and 2 implement the position p and velocity v of the

harmonic oscillator as analog currents. Fragment 3 implements the pos observation variable

using an analog voltage. Note that the block identifiers have been reassigned so that each

block is uniquely identified. To complete these fragments, an analog current carrying the

position p must be provided to the sinks at input port x of multipliers 1 and 2 and an analog

current carrying the velocity v must be provided to the sink at input port x of multiplier

0. The assembly procedure derives the fragment input-output interface required for each

variable and synthesizes an assembly fragment if necessary:

∙ Velocity (v): The velocity (v) variable has input interface containing one signal

((v,current)) and an output interface containing one signal ((v,current)). The

assembly procedure determines the input and output interfaces match exactly and

directly connect output port z of integrator 1 to input port x of multiplier 0 instead

of synthesizing a fragment.

∙ Position (p): The position (p) variable has an input interface containing one sig-

nal ((p,current)) and an output interface containing two signals ((current,p),

(p,current)). Because variables implemented using analog currents cannot be routed

to multiple ports without compromising the integrity of the signal, analog currents

333

cannot be used more than once. The assembly procedure must therefore synthesize

an assembly vADP fragment which duplicates the signal at the input interface. The

AFSP synthesizes an assembly vADP fragment containing a fanout block with iden-

tifier 0 under modes {(+,+,m),(+,+,h)}. In this fragment, the input port x of the

fanout block is a vADP sink (sink(fan,0,x,p)) and the output ports z0 and z1 of the

fanout block are vADP sources (source(fan,0,z0,p), and source(fan,0,z1,p)).

∙ Observation (pos): The observed position (pos) has an input interface containing

one signal ((pos,voltage)) at an empty output interface. The assembly procedure

determines the observed position isn’t needed anywhere does not take further action.

Figure 7-20 presents the completed, assembled vADP circuit with all of the assembly

fragments integrated. In the assembled circuit, the port implementing the velocity v is

connected to port x of multiplier 0 to satisfy the sink v. The output port implementing

the position p is connected to the input port of the current copier 0. This current copier

is part of an assembly fragment that accepts one input current implementing p at its input

interface and produces two output currents implementing p at its output interface. The

current copier outputs are connected to the two sinks requiring p. Once all the sinks in the

vADP are satisfied, they are eliminated from the circuit to produce the final vADP.

Example: Synthesizing a Complex Fragment

I next describe how the AFSP synthesizes a more complex assembly fragment containing

multiple levels. This fragment accepts an analog current implementing the position p and

produces four analog currents that implement -p.

Figure 7-21 presents overview the concrete assembly block library derived from the ADS,

the assembly fragment interface, the produced assembly fragment structure and the finalized

assembly vADP fragment:

1. The concrete assembly block library contains a concrete block for each fanout block

mode. Each concrete fanout block accepts a signal implementing p at input port x.

The fan block produces two positive copies of p when in mode (+,+,m), two negative

copies of p when in mode (-,-,m), and one positive and one negative copy of p when

in mode (+,-,m) and (-,+,m). The AFSP uses these concrete assembly blocks to

synthesize the desired assembly fragment.

334

(p,s)

(-p,s) (-p,s)
(-p,s) (-p,s)

S
sinks

s
src

CXB
lib

FAN

x

z0 z1

(+,+,m)

(p,s) (p,s)

FAN

x

z0 z1

(-,-,m)

(-p,s) (-p,s)

(p,s) (p,s)

1 Level 0

FAN

x

z0 z1

(+,+,m)

(p,s) (p,s)

Level 1

FAN

x

z0 z1

(-,-,m)

(-p,s) (-p,s)

FAN

x

z0 z1

(-,-,m)

(-p,s) (-p,s)

(p,s)(p,s)

FAN 0

x

z0 z1

(+,+,m)

FAN 1

x

z0 z1

(-,-,m) FAN 2

x

z0 z1

(-,-,m)

(p,s)

-P -P -P -P

P2

FAN

x

z0 z1

(+,-,m)

 (p,s) (-p,s)

(p,s)

FAN

x

z0 z1

(-,+,m)

(-p,s) (p,s)

(p,s)

Figure 7-21: Overview of assembly fragment generation for a complex multi-level
fragment. s is shorthand for analog currents

2. The assembly fragment interface requires one current implementing p at its input

interface ((p,current)) and four currents implementing p at its output interface

((-p,current), (-p,current), (-p,current), (-p,current)). The AFSP synthe-

sizes a fragment which implements this interface. This interface is derived during the

interface elicitation step of fragment synthesis.

3. The AFSP first derives an assembly fragment structure made up of two levels. The

topmost level accepts an analog current implementing p and produces two analog cur-

rents implementing p. The bottom-most (next) level consumes the two analog currents

implementing p from the previous level and produces four currents implementing -p

as output.

The assembly fragment implements the interface presented in (1) of the figure. The

topmost level only requires a single signal implementing p input interface, and the

bottom-most level produces four copies of -p required at the output interface. This

structure also ensures that the input signals required at each level are provided by

the blocks on the parent level. The concrete blocks at level 1 take two currents

implementing 𝑝 as input. These currents are produced as output by the concrete

block in level 0.

335

1

FAN

x

z0 z1

(-,-,m)

(-p,s) (-p,s)

FAN

x

z0 z1

(-,-,m)

(-p,s) (-p,s)

(p,s)(p,s)

S
req

[(-p,s), (-p,s), (-p,s), (-p,s)]

S
next

[(p,s), (p,s)]

2

FAN

x

z0 z1

(+,+,m)

(p,s) (p,s)

S
req

[(p,s), (p,s)]

S
req

[(p,s)]

3

Level 0

FAN

x

z0 z1

(+,+,m)

(p,s) (p,s)

Level 1

FAN

x

z0 z1

(-,-,m)

(-p,s) (-p,s)

FAN

x

z0 z1

(-,-,m)

(-p,s) (-p,s)

(p,s)(p,s)

s
src

(p,s)

S
sinks

[(-p,s),(-p,s),(-p,s),(-p,s)]

Figure 7-22: Tree structure generation. s is shorthand for an analog current.

4. The AFSP then translates the assembly fragment structure to a vADP fragment,

inserting vADP connections, sources, and sinks when necessary. The resulting vADP

fragment accepts an analog current implementing p at port x of fanout block 0 and

produces four analog currents implementing -p at ports z0 and z1 of fanout blocks

1 and 2. The signal dependences between levels become connections between block

ports. The vADP sink and source statements together implement the input-output

interface of the fragment.

Assembly Structure Synthesis: I next describe how the AFSP derives the assembly

fragment structure from the interface presented in Figure 7-21. Each step of the structure

generation procedure works with a collection of output signals (𝑠𝑟𝑒𝑞) to generate and the

source signal (𝑠𝑠𝑟𝑐) provided to the input interface of the fragment. The structure generation

procedure generates levels from the bottom-up.

It first starts by generating a level made up of concrete assembly blocks which implement

the four copies of -p required at the output interface of the fragment. The produced level

contains two fanout blocks, both of which are in (-,-,m) mode. This level requires two

analog currents implementing p to produce the desired outputs.

The algorithm then recursively generates a parent level that provides two positive copies

of p. It generates a level containing one fanout block in (+,+,m) mode that consumes an

analog current implementing p and produces two analog currents implementing p as output.

336

ADSVADP

Block
Placement

View
0

ADSVADP

Block
Placement

View
1

ADSVADP

Block
Placement

View
n

ADP
Generation

VADP

ADP
Location

Assignments

Spatial
Location

Assignments
(view 0)

Spatial
Location

Assignments
(view 1)

...

Figure 7-23: overview of vADP place and route procedure

Because this level implements the fragment’s input interface (𝑠𝑠𝑟𝑐) at its input interface, no

further levels are needed. The generation procedure joins the two produced levels together

and returns the combined structure.

The final generated structure is a two-level structure. The topmost level contains exactly

one fanout block in (+,+,m) mode that accepts a signal implementing p and produces two

signals implementing p. The second level consumes the two signals implementing p produced

by the topmost level and produces four signals implementing -p at its output interface. The

second level contains two fanout blocks in (-,-,m) mode.

7.4.3 vADP Place and Route

The LGraph place and route procedure maps vADP block instances to block locations on the

target analog device and implements vADP connections with sequences of available digitally

programmable connections, inserting route blocks as necessary. This stage of compilation

inserts route blocks when a connection cannot be directly made on the analog device. This

procedure works with the fully connected vADP produced in the previous compilation stage

and the analog device specification. It produces as output an analog device program where

all of the virtual block instances are resolved to block locations.

LGraph incorporates a spatially aware placement algorithm that places interconnected

blocks close to each other in the device. It incrementally resolves the location of each block in

the circuit by assigning it to spatial locations in increasingly specific views. This is necessary

as the placement problem quickly becomes intractable when the locations are solved for

directly. Recall that the ADS organizes device locations into sequentially organized spatial

views [[1...𝑖...𝑛]]. Each view contains one or more spatial locations which correspond to

regions where blocks are co-located on the analog device. The spatial locations on the most

337

specific view (𝑛) are the unique block locations that identify block instances.

Figure 7-23 presents a high-level overview of the placement algorithm. The placement

algorithm breaks down the block placement problem into several smaller, more manageable

placement operations which map virtual block instances to spatial locations in the target

view. Each placement operation produces a set of spatial location assignments that are

guaranteed to uphold the following properties:

∙ Block Availability: If 𝑛 blocks of the same type are mapped to the same spatial

location, The spatial location contains at least 𝑛 blocks of that type.

∙ Distinct Connections: Each connection in the vADP between two spatial locations

may be mapped to a distinct path containing zero or more route blocks on the analog

device.

The algorithm incrementally refines the spatial location of each block instance by placing

it at a location in each view. The algorithm first assigns vADP block instances to spatial

locations belonging to the most general (root) view. It then iteratively places the vADP

block instances at spatial locations for each subsequent view, using the spatial location

assignments for the parent view as restricting assignments for the placement problem. If no

satisfying assignments for a view can be found, the algorithm backtracks and finds alternate

assignments for a parent view. I note that this algorithm doesn’t need to backtrack often,

as early placement decisions assign blocks to larger structures in the device that are difficult

to connect together. The produced location assignments place densely connected sets of

blocks within the same spatial region of the chip. This is desirable as analog device micro-

architectures typically prioritize providing programmable connections between blocks that

are spatially co-located.

This algorithm continues until it has assigned the vADP block instances to spatial

locations from the most specific view on the device. At this point, each spatial location cor-

responds to a distinct available block location on the analog device. LGraph then uses these

spatial location assignments to generate an ADP from the input vADP (ADP generation).

This step of compilation also maps vADP connections to sequences of digitally settable

connections and route blocks on the analog device. This connection mapping procedure is

guaranteed to complete successfully because the placement problem ensures

338

Fully
Connected

VADP

Spatial
Location

Assignments

Block
Placement
Problem

View i

Spatial
Location

Assignments
(view i-1)

Figure 7-24: Overview of single block placement operation for spatial view 𝑖.

Block Placement

Figure 7-24 presents the workflow for a single placement operation. The placement operation

accepts as input a fully connected vADP, a target spatial view, and an optional set of

restricting spatial location assignments for the previous spatial view. It produces as output

a set of spatial location assignments which assign the block instances from the input vADP

to spatial locations from the target spatial view. The placement operation generates a BPP

from the provided inputs and then solves the BPP with the BPP solver. The BPP solver

uses an off-the-shelf ilp solver to find a satisfying solution and then translates the solution

to a set of spatial location assignments. Note that the BPP solver is non-deterministic and

can be queried multiple times to attain multiple candidate spatial location assignments.

Place and Route for Harmonic Oscillator

The routing stage of compilation maps each block identifier to a location on the analog

device to produce the final ADP. LGraph inserts routing blocks as necessary to make all

connections physically realizable. Figure 7-20 presents a completed vADP before the place

and route procedure has been invoked. It has three multipliers (0,1, and 2), two integrators

(0, 1), one fanout, and one observation block. Each of these block instances is uniquely

identified with a numerical identifier. The place and route procedure maps each of these

block instances to locations on the SIMPL analog device.

SIMPL Device Layout: Recall the SIMPL analog device specification has two spatial

views: the tile view and the slice view. The tile view has two spatial locations (tx0 and

1) and slice view has four spatial locations ((0,0), (0,1), (1,0), and (1,1)). Each slice

location has one of each type of block. Each tile has two incoming (TIN) routing blocks and

339

two outgoing (TOUT) routing blocks. These blocks are used to pass signals from one tile to

another. A block output on tile 0 may be connected to a block input on tile 1 by routing

the signal through a TOUT block on tile 0 and a TIN on tile 1. A block output on tile 1 may

be connected to a block input on tile 0 by routing a signal through a TOUT on tile 1 and a

TIN on tile 0. All blocks within a tile can be connected to one another without restriction.

The placement algorithm first assigns vADP block identifiers to spatial locations on the

tile view. It first constructs a block placement problem (BPP) which encodes the spatial

location assignment problem for the tile view. The problem is formulated to ensure any

satisfying set of spatial location assignments satisfy the following criteria:

∙ The SIMPL analog device only provides two instances of each block type per tile. The

produced assignments must therefore map at most two blocks of the same type to a

single tile.

∙ The SIMPL analog device only provides enough routing blocks to support a maximum

of four non-overlapping paths between tiles. Two of these paths move signals from

tile 0 to tile 1. The other two paths move signals from tile 1 to tile 0. Therefore,

the assignment problem must place blocks so that any straddling connections can be

mapped to a non-overlapping path within the device.

These two constraints ensure that the computed block assignments do not exhaust the

block instances and routing resources available at each tile. The produced BPP is then

solved with the BPP solver to get a set of satisfying spatial location assignments. The

solver computes the following assignments for the above circuit:

MUL 0 ↦→ (0) MUL 1 ↦→ (0) MUL 2 ↦→ (1) INT 0 ↦→ (0)

INT 1 ↦→ (0) FAN 0 ↦→ (0) OBS 0 ↦→ (1)

The above assignments map MUL 2 and OBS 0 to tile 1 and the remaining blocks to tile

0. This assignment scheme assigns at most two blocks of each type per tile and ensures only

the connection between FAN 0 and MUL 2 straddles tiles. I can see this set of assignments

meets the criteria listed above.

Next, LGraph maps vADP block instances to slices on the SIMPL analog device using

the above tile assignments as restricting assignments. It generates a BPP for the slice view

that enforce the following criteria:

340

MUL
(0,1)

x

z
c

y

INTEG
(0,0)

x

z
z0

V

MUL
(1,0)

x

z
c

y

OBS
(1,0)

x

z

Pos

INTEG
(0,1)

x

z
z0

P

MUL
(0,0)

x

z
c

y
FAN
(0,0)

x

z0 z1

P P

TIN
(1,0)

x

z

TOUT
(0,0)

x

z

modes:
(dfl)

modes:
(dfl)

Figure 7-25: ADP of harmonic oscillator after place and route procedure.

∙ The produced assignments must map at most one block of each type to a single slice.

∙ The MUL 2 and OBS 0 blocks may only be mapped to slices (1,0) and (1,1). The

remaining blocks must be mapped to slice (0,0) or (0,1). These restrictions arise

because the vADP blocks have already been previously assigned to tiles. The BPP

generator uses these tile assignments to restrict the space of valid spatial location

assignments.

The above constraints ensure any set of produced spatial assignments does not the block

instances available on each slice. The BPP also encodes connectivity constraints for the

above placement problem. However, because the SIMPL analog device provides a dedicated

direct connection between any pair of blocks within a tile, this does not actually constrain

the mapping problem. One possible solution to the produced BPP problem is presented

below:

MUL 0 ↦→ (0,0) MUL 1 ↦→ (0,1) MUL 2 ↦→ (1,0) INT 0 ↦→ (0,1)

INT 1 ↦→ (0,0) FAN 0 ↦→ (0,0) OBS 0 ↦→ (1,0)

Because the slice is the most specific view in the SIMPL device, the above assignments

are also valid final location assignments. LGraph is now free to route the connections between

blocks to sequences of digitally programmable connections and routing blocks. It is able to

directly map all the connections between blocks residing on the same tile to digitally settable

341

connections. The connection from port z of FAN (0,0) to port x of MUL 0,1 is mapped to

the sequence of digitally settable connections:

FAN (0,0).z → TOUT (0,0).x → TOUT (0,0).z → TIN (1,0).x → TIN (1,0).z → MUL (1,0).x

The above connections route the current at port z of the fanout block through TOUT

(0,0) and TOUT (1,0) to tile 1. The signal can then be routed to port x of MUL (1,0).

Figure 7-25 presents the final unscaled ADP. In it, the vADP block identifiers have been

replaced with SIMPL block locations and the relevant routing blocks (TIN and TOUT) have

been introduced to make the desired connections.

342

Unscaled
ADP

ADS

Delta
Model

Database

Minimum
AQM and
DQM

Combinatorial
Geometric
Program

Unscaled
ADP

Mode
Selections

Scaled
ADP

Combinatorial
Geometric
Program

DSS

Calibration
Objective

Scale
Transform

Mode
Selections

Scaling
Objective
Function

Geometric
Program

Figure 7-26: Overview of circuit scaling procedure (LScale)

7.5 LScale Compilation Pass

The LScale compilation scales the provided input unscaled ADP and produces a scaled

ADP which is both physically realizable and recoverable. The LScale compilation pass for-

mulates the problem of obtaining a physically realizable and recoverable scaling transform

as a constraint satisfaction problem (specifically, a combinational geometric program). The

solution to this problem delivers a set of mode selections and scaling factors that, when ap-

plied to the digital inputs of the analog device, produces a physically realizable, recoverable,

and good quality simulation.

343

LScale Inputs

Figure 7-26 presents an overview of the LScale scaling procedure. LScale works with the

following inputs:

∙ Unscaled analog device program (ADP): The LScale pass accepts an unscaled

ADP – this is the ADP produced by the circuit synthesis pass of compilation. The

unscaled ADP implements the target dynamical system provided the hardware be-

haves ideally and is not subject to any low-level physical behaviors and hardware

restrictions.

∙ Dynamical system specification (DSS): The DSS specifies the target dynamical

system implemented by the unscaled ADP. The DSS provides interval annotations

that define the value ranges for the unscaled signals that implement dynamical system

variables in the ADP. LScale uses these interval annotations to bound all of the signals

in the ADP.

∙ Analog device specification (ADS): The ADS provides a formal specification of

the mode-dependent operating range and frequency restrictions and the noise and

quantization error present in the hardware. The ADS also provides delta model

specifications which describe which empirically derived behaviors can be compensated

for through circuit scaling.

∙ Calibration strategy and delta model database: The calibration strategy, delta

model database, and ADS delta model specifications together define the delta models

for the device on hand. A delta model is a hardware abstraction that captures the

empirically observed behavioral deviations present in a calibrated block when under

a particular mode. The delta model specification defines a mathematical expression

over data fields, block ports, and delta model parameters – this expression is called

a parametrized delta model. The delta model parameters defined in the delta model

specification capture the unexpected offsets and unexpected gains present in the hard-

ware. Refer to Section 5.3 for information on the delta model abstraction and refer to

Section 5.9 for an example of how a platform-specific runtime derives the delta model

parameters for the chip on-hand.

344

The LScale pass can compensate for the subset of unexpected gains that can be tuned

by scaling the block’s data field values and input signals. The delta model parameters

implementing these compensatable gains are annotated in the analog device specifica-

tion as correctable gain parameters. The LScale pass, therefore, works with delta

models that capture the correctable gains present in the device on hand.

∙ Scaling objective function: The scaling objective function specifies what circuit

property the scaling procedure should minimize. The scaling objective function may,

for example, maximize the execution speed of the computation or the signal-to-noise

ratio of the signals in the circuit.

∙ Minimum analog and digital quality measures (AQMmin and DQMmin):

The analog and digital quality measures enforce a lower bound on the signal-to-noise

and signal-to-quantization error ratios for each data field and port in the ADP. These

quality measures are optional.

LScale Outputs

The compiler produces a scaled ADP that is optimal with respect to the user-provided

scaling objective function. The LScale procedure derives both a scaling transform and a set

of mode selections for the input ADP:

∙ Mode Selections: LScale selects the mode for each block instance in the ADP.

LScale is capable of reconfiguring blocks that offer multiple equally viable modes

that impose different physical limitations.

∙ Scaling Transform: The scaling transform describes how all the values in the ADP

are scaled. It contains magnitude scaling factors that scale the data fields and signals

in the circuit and a time scaling factor that scales the simulation speed of the circuit.

The scaling transform identifies the recovery transform for the scaled circuit. The re-

covery transform recovers the original dynamical system dynamics from any measured

signal in the scaled circuit. This transform recovers the magnitude of the signal by

dividing the amplitude of the signal by the magnitude scale factor of the associated

port. It recovers the time of the signal by multiplying the time samples, measured in

345

wall-clock seconds, by the hardware time constant from the ADS (measured in Hz)

and the time scale factor of the scaled ADP.

The compiler incorporates the computed scaling transform and the mode selections into

the input unscaled ADP to produce the scaled ADP. The scaled ADP is the final output

of the LScale pass.

The scaled circuit contains all the information necessary to apply the scaling transform to

the circuit and recover the original dynamical system trajectories from the scaled signals. At

execution time, the runtime system applies the scaling transform to the circuit by multiplying

each constant data field by its respective magnitude scale factor. After execution, the

runtime uses the recovery transform to recover the original dynamical system trajectories

from the measured signals. Refer to Chapter 6 for a more detailed discussion of scaled and

unscaled circuits.

General Operation

The LScale pass formulates the problem of identifying a scaling transform and set of mode

selections as a CGP. The compiler derives a combinatorial geometric program (CGP) from

the ADP, ADS, DSS, the optional AQMmin and DQMmin, the delta model database, and

the calibration strategy.

The LScale pass solves the CGP to obtain a set of mode selections and a scaling trans-

form that optimally scales the circuit. The LScale pass identifies the scaling transform

that minimizes the user-provided scaling objective function under the chosen set of mode

selections.

A CGP is a type of constraint problem made up of both integer-valued variables and

positive, constant, real-valued variables. The CGP contains both combinatorial constraints

over integer and real variables and geometric programming constraints over real variables.

The compiler directly solves the CGP with an SMT solver to produce a set of integer-valued

and real-valued variable assignments.

The LScale pass captures the selected mode for each block instance with integer-valued

variables and the scaling transform and mode-dependent hardware properties with real-

valued variables. LScale encodes all of the constraints that ensure the scaling transform is

physically realizable, of good quality, and recoverable as geometric programming constraints.

346

The SMT constraints encode the effect of different block mode selections on the scaling

problem.

Resolving the integer-valued variables to values eliminates all of the combinatorial con-

straints from the CGP and reduces the CGP to a geometric programming problem (GP).

The remaining geometric programming constraints and real-valued variables form a geo-

metric programming problem (GP). A geometric programming problem (GP) is a type of

convex optimization problem that can be optimally and efficiently solved with a numerical

solver. Refer to Chapter 9 for a rigorous description of the CGP and GP.

LScale first solves the CGP with an SMT solver to obtain a set of mode selections

– the CGP represents these mode selections as integer-valued variable assignments. The

compiler queries the SMT solver repeatedly to get multiple viable mode selections for the

provided ADP. The compiler then applies these mode selections to the CGP to produce

a geometric programming problem (GP). LScale then solves the GP with a convex solver

using the user-provided scaling objective function as the minimization criteria. The resulting

solution is optimal with respect to the provided scaling objective function. The compiler

then incorporates the derived scaling transform and the computed mode selections into the

input unscaled ADP to produce the scaled ADP.

7.5.1 CGP Generation Procedure

In this section, I cover how LScale generates the combinational geometric programming

problem (CGP) from the compilation pass inputs. The CGP generation procedure produces

a CGP for the input ADP which can be solved to obtain a scaling transform and set of

mode selections. The CGP generation procedure produces many kinds of constraints:

Operating Range Constraints: The ports and data fields in the analog hardware impose

operating range restrictions on the supplied signals and values. The operating range con-

straints ensure that each scaled signal and value falls within the operating range of the data

field or port. LScale derives these constraints by inspecting the operation range limitations

specified by the ADS. It derives the interval of the unscaled signal by analyzing the ADP

with the interval annotations provided in the DSS.

Frequency Constraints: Some analog blocks impose frequency limitations on the mapped

computation. The frequency constraints limit the simulation speed of the scaled circuit.

347

LScale derives these constraints from the frequency limitations specified in the ADS.

Analog and Digital Quality Restrictions: In the hardware, the fidelity of the analog

signals is affected by analog noise. The fidelity of the digital signals is affected by quantiza-

tion error. The quantization error and noise constraints ensure that LScale does not scale

down any single value or signal to the point where noise and quantization error compromises

signal fidelity.

These constraints work with a proxy for signal or value quality called a quality measure.

The quality measure of a scaled signal is the ratio of the magnitude of the scaled signal to

the noise or quantization error associated with the analog port or digital data field. The

noise constraints ensure each analog signal has a quality measure that exceeds the user-

provided AQM. The quantization constraints ensure each digital signal and value has a

quality measure that exceeds the user-provided DQM.

Connection Constraints: The connection constraints ensure the magnitude scale variables

assigned to two connected ports are equal. These constraints ensure LScale scales each pair

of connected ports by the same amount.

Factor Constraints: The factor constraints ensure that a positive, constant, scale factor

may be factored out of the idealized dynamics of each output port in the ADP. These con-

straints ensure the scaling transform can be propagated through the dynamics of each block

and separated from the original idealized dynamics at each output port. The computed scale

factors must also compensate for any unexpected gains in the block instance. An unexpected

gain is a type of empirically observed behavioral deviation which can be compensated for by

scaling the circuit. The LScale pass produces the factor constraints for a particular block

instance with a specialized analysis called the factor constraint generation procedure. Refer

to Section 7.5.2 for more information on the factor constraint generation procedure.

Illustrative Example: Harmonic Oscillator

In the following section, I walk through how LScale generates each of the above constraints

for the above unscaled ADP implementing the harmonic oscillator.

Operating Range Constraint: LScale generates an operating range constraint for each

port and data field in the above ADP. Each operating range constraint ensures the scaled

analog signal or value falls within the operating range of the port or data field:

348

MUL
(0,1)

x

z
c

y

INTEG
(0,0)

x

z
z0

V

MUL
(1,0)

x

z
c

y

OBS
(1,0)

x

z

Pos

INTEG
(0,1)

x

z
z0

P

MUL
(0,0)

x

z
c

y
FAN
(0,0)

x

z0 z1

P P

TIN
(1,0)

x

z

TOUT
(0,0)

x

z

modes:
(dfl)

modes:
(dfl)

modes:

z0=5.0

modes:
(m,m)

c=1.0

Modes:

c=-0.25

Modes:

z0=0.0

modes:
(m,m)

c=1.66

modes:

modes:
(dfl)

(x,m,m)
(x,m,m)

(+,+,m)

(x,m,m)

0.400

0.160

0.200

0.320

0.40

0.200

0.20

0.112

0.112

0.20

𝜏 = 0.800

0.20

0.20

0.20

0.20 0.20
0.20

0.320
0.160

0.112

α=1.686
α=0.44

α=0.20
α=0.40

α=0.600

Figure 7-27: Scaled ADP implementing harmonic oscillator.

mag(INT(0,0), x) · [−2.5, 2.5] ⊆ op-range-prop(INT(0,0), x) · [−2, 2]

The above constraint ensures the dynamic range of the unscaled signal at port x ([-2.5,2.5])

of integrator INT (0,0) falls within the operating range of port x when scaled by the port’s

magnitude scale factor 𝑢(INT(0,0), 𝑥). The op-range-prop(INT(0,0),) property is a pair of

mode-dependent property variables which captures the variations in operating ranges across

block modes:

mode(INT(0,0)) = (m,m) =⇒ op-range-prop(INT(0,0), x) = [1, 1]

mode(INT(0,0)) = (m,h) =⇒ op-range-prop(INT(0,0), x) = [1, 1]

mode(INT(0,0)) = (h,h) =⇒ op-range-prop(INT(0,0), x) = [10, 10]

mode(INT(0,0)) = (h,m) =⇒ op-range-prop(INT(0,0), x) = [10, 10]

The above integer implication constraints capture the relationship between the integrator

mode and the operating range of port x. The mode(INT(0,0)) integer variable encodes the

mode selected for mode(INT(0,0)). When the mode is (m,m) or (m,h), the operating range

of port x is [1, 1] · [−2, 2]. When the mode is h,h or (h,m) the operating range of port x is

[10, 10] · [−2, 2] = [−20, 20,].

LGraph also generates operating range constraints for constant signals and data fields:

349

mag(INT(0,1), 𝑧0) · [5, 5] ⊆ op-range-prop(INT(0,1), z0) · [−1, 1]

The above constraint ensures data field providing the the scaled initial condition for integrator

INT(0,1) falls within [−1, 1]. The operating range property op-range-prop(INT(0,1), z0) always

resolves to [1,1].

Analog Quality Restrictions: LScale produces analog quality constraints for each analog signal

in the ADP. These constraints ensure that all analog signals are not scaled down to the point where

they are overtaken by noise. LScale ensures the best-case signal to noise ratio for each scaled signal

exceeds the analog quality measure (AQM) for the scaling problem:

mag(INT(0,0), x) · 2.5
noise-prop(INT(0,0), 𝑥)

≥ AQM

The above constraint ensures the ratio of the the magnitude of the scaled signal at port x

of integrator INT(0,0) to the noise at that port noise-prop(INT(0,0), x) exceeds the real-valued

analog quality measure variable (AQM). The noise at port x of the integrator block is dependent

on the selected mode. It resolves to 0.001 when in (m,m) or (m,h) mode and resolves to 0.01 when

in (h,m) and (h,h) mode. LScale adds a second constraint ensuring that the AQM of the scaled

circuit exceeds the user-provided minimum analog quality measure:

AQM ≥ AQMmin

The objective scaling function employed by the compiler often incorporates the quality measure

variables into the objective scaling function to maximize the signal quality. Maximizing the AQM,

for example, maximizes the quality measure of the worst-quality analog signal in the ADP.

Digital Quality Restrictions: LScale produces digital quality constraints which ensure each

digital signal and data field value in the ADP are not scaled down to the point where they are

overtaken by quantization error:

mag(INT(0,1), z0) · 5.0
quant-prop(INT(0,1), 𝑧0)

≥ DQM

The above constraint ensures the ratio of the scaled value written to data field z0 of block

INT(0,1) to the quantization error quant-prop(INT(0,1)𝑧0,) clears the digital quality measure for

the circuit. The quantization error is derived from the quantize statements in the ADS block

specification. The quantization error for the above data field is always 1/128 = 0.0078125. LScale

adds a second constraint ensuring the DQM of the scaled circuit exceeds the user-provided digital

quality measure:

350

DQM ≥ DQMmin

Like the AQM variable, the DQM variable may also appear in the scaling objective function.

Maximizing the DQM maximizes the quality measure of the worst-quality digital signal or value in

the ADP.

Frequency Constraints: LGraph imposes frequency constraints that limit the speed of the scaled

simulation. These constraints are sometimes necessary to use blocks that deviate from their spec-

ification when supplied signals with high-frequency components. The multiplier block MUL(0,0)

requires the simulation be run at a maximum speed of 100.8 Khz when in (h,h) or (m,h) mode:

time-var ≤ max-freq-prop(MUL(0,0), 𝑧)

The above constraint ensure the time scaling factor time-var doesn’t exceed the maximum

supported speed of the multiplier block. The max-freq-prop(MUL(0,0), 𝑧) property resolves to
100.8𝑘𝐻𝑧
126𝑘ℎ𝑧 = 0.8 when the mode selection variable mode(MUL(0,0)) is set to (x,h,h) or (x,m,h). It

resolves to 1.0 otherwise.

Connectivity Constraints: LScale produces connectivity constraints that ensure the signals at

two connected ports are scaled by the same amount. This constraint is necessary for ensuring the

original simulation is recoverable:

mag(MUL(0,1), z) = mag(INT(0,0), x)

The above connectivity constraint ensures the signal at port z of block MUL(0,1) is scaled by

the same amount as the signal at port z of block INT(0,0).

Factor Constraints: LScale produces factor constraints that ensure the scaling transform can

be eliminated from each signal by applying the compiler-derived recovery transform. The factor

constraints also ensure that the scaling transform compensates for any unexpected gains present in

the device on hand.

The factor constraints ensure that the scaled dynamics at each output port equals the original

dynamics of the signal times a constant scaling factor. This constant scaling factor is the magnitude

scale factor of the port. For example, the following expression describes the scaled dynamics of the

signal at output port z of multiplier MUL (0,1):

𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) · (mag(MUL(0,1), c) · c) · (mag(MUL(0,1), x) · x)

The above scaled expression contains the port and data field variables c and x, the magnitude

scale factors for ports c and x and the process variation variable property which captures the

351

empirically observed variations in behavior. The above process variation variable resolves to 0.95,

0.87, 0.093, and 8.9 when the multiplier block is in (x,m,m), (x,h,h), (x,h,m), and (x,m,h)

respectively. I wish to separate out the original, idealized dynamics of the output port z (c*x) from

the above expression. This can be accomplished by reshuffling the magnitude scale variables and

process variation variable properties in the above expression:

𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) · mag(MUL(0,1), c) · mag(MUL(0,1), x) · (c · x)

The magnitude scale factor at port z of multiplier MUL(0,1) must therefore equal the above

expression of scale factors:

mag(MUL(0,1), z) = 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) · mag(MUL(0,1), c) · mag(MUL(0,1), x)

Factor Constraints and Integration: In some cases, LScale may produce additional factor constraints

to ensure an expression of magnitude and time scale factors and properties can be factored out of the

scaled dynamics of a block. Take for, for example, the integrator block INT(0,0) which implements

the following scaled dynamics:

𝑧 =
∫︀
𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(INT(0,0), z, 0) · (mag(INT(0,0), x) · x) · time-var 𝑑𝑡

𝑧(0) = 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(INT(0,0), z, 1) · mag(INT(0,0), z0) · z0

The above integration operation scales hardware integration time by the time scale factor

time-var and scales the input signal x and initial condition by their respective magnitude scale vari-

ables. Both the derivative signal and initial condition of the integrator are scaled by empirically ob-

served mode-dependent constant coefficients 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(INT(0,0), z, 0) and 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(INT(0,0), z, 1).

For the above relation to faithfully integrate the desired signal, the magnitude scale factor for the

initial value of the signal at port z (𝑧(0)) must match the magnitude scale factor at signal z. LScale

therefore produces the following intermediate constraint which enforces this requirement:

mag(INT(0,0), z) = 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(INT(0,0), z, 0) · mag(INT(0,0), x) · time-var

= 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(INT(0,0), z, 1) · mag(INT(0,0), z0)

The above constraint ensures the factored scale expression for both the initial condition 𝑧(0) and

the variable 𝑧 match. This factored scale expression must equal the magnitude scale factor assigned

to port z.

Factor Constraints and Expression Data Fields: The CGP generation procedure modifies the

expressions mapped to expression data fields to more flexibly scale the circuit. This capability of

the LScale procedure does not naturally appear in the harmonic oscillator example presented in

352

this chapter because the harmonic oscillator dynamical system does not define any uninterpreted

functions, and the SIMPL analog device does not offer any analog blocks that contain expression data

fields. For completeness, I will briefly illustrate this concept using the programmable user-defined

function block lut introduced in Section 5.7.

The lut block contains a digital output port z, a digital input port x, and a programmable

expression data field f that accepts one input. The output port z of the lut block computes f(x). For

ADPs containing expression data fields, the LScale pass introduces real-valued injection variables

that introduce coefficients into the expressions mapped to expression data fields. I summarize the

original, idealized dynamics and the scaled dynamics with the injection variables incorporated for

the lut at (0,0) below:

𝑧 = inj(lut(0,0), f, 1) · f(inj(lut(0,0), f, 0) · mag(lut(0,0), x) · x)

The LScale pass introduces the inj(lut (0,0),f,0) injection variable to scale the input argu-

ment to the expression data field and the inj(lut (0,0),f,1) injection variable to scale the result of

the expression data field. These injection variables are resolved to values during optimization and

incorporated into the expression mapped to the expression data field. The LScale pass introduces

the following constraints into the CGP:

mag(lut(0,0), z) = inj(lut(0,0), g, 1)

1 = inj(lut(0,0), g, 0) · mag(lut(0,0), x)

The above constraints eliminate the scaling transform from the data field inputs and scale

the data field result. The first constraint scales the data field result, and the second constraint

eliminates the scaling factor from the data field input x. Because expression data fields are often

mapped to highly nonlinear expressions, it is often desirable to eliminate the scaling transform from

the data field inputs as it removes the need to propagate the scaling transform through the mapped

expression. Refer to Chapter 9 for a detailed discussion on injection variables and expression data

field constraints.

7.5.2 Factor Constraint Generation

The factor constraint generation procedure automatically produces the factor constraints described

in the previous section. It accepts as input the block instance, block configuration (from the ADP),

and output port to analyze, the delta model database and calibration strategy to target, and the

device ADS. The factor constraint generation procedure internally works with a symbolic expression,

called a master expression, which models all unexpected gains which can be corrected for through

353

Mode
Selections

Scaled
ADP

Scale
Transform

Calibration
Objective

ADS

Block
Instance

Output
Port

Block
Config

Master
Expression

Change
Variable CGP
Constraints

Factor GP
Constraints

Delta Model
Database

Factored Scale
Expression

Figure 7-28: Overview of the factor constraint generation procedure.

circuit scaling and captures the effect of changing the block mode on the computation. The factor

constraint generation procedure first elicits a master expression from the provided inputs and then

generates the factor constraints from the derived master expression. The factor constraint generation

routine produces, as output, a set of CGP and GP constraints and an expression of scale transform

variables and process variation property variables which has been factored out of the scaled master

expression.

In this section, I describe the operation of the factor constraint generation procedure for the for

output port z of multiplier MUL (0,1) in the circuit presented in Figure 7-7. This multiplier block

is initially configured to be in (x,m,m) or (x,h,h) mode. In this example, the target multiplier

block has been calibrated with the fast calibration strategy offered by the SIMPL analog hardware.

The LScale compilation procedure compensates for the subset of unexpected gains present in the

calibrated multiplier block that are amenable to correction. These unexpected gains are provided

to the compiler in the form of a delta model. Refer to Section 7.2 for an overview of the delta

models associated with the multiplier block instances on the SIMPL device. The delta models for

the multiplier (0,1) are presented below:

(x,m,m) 0.94875*c*x (x,h,h) 0.87330*c*x

(x,h,m) 0.1*0.93110*c*x (m,m,m) 0.5*1.0*x*y

The Master Expression

The master expression models all unexpected gains that can be corrected through circuit scaling

and captures the effect of changing the block mode on the computation. This master expression

contains block ports, data fields, and mode-dependent property variables called process variation

property variables. The master expression for the multiplier (0,1) is presented below:

𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) · 𝑐 · 𝑥

354

The compiler defines the proc-var(MUL (0,1),z,0) mode-dependent process variation property

variable. Each process variation property variable captures some observed deviation from the ref-

erence expression under a particular mode. Each process variation property variable resolves to a

positive constant coefficient when the block mode variable is fixed to an integer value.

Reference Expression: The master expression captures all deviations in behavior relative to a

reference expression that describes the idealized behavior of the target output port in the unscaled

circuit. The reference expression is the expression implemented at the target output port under

the modes defined in the input unscaled ADP. In the running example, the input unscaled ADP

configures the multiplier (0,1) to be in either (x,m,m) or (x,h,h) mode. Both modes implement

the same input-output relation at port z. The reference expression for port z of multiplier (0,1) is

therefore c*x. The master expression implements the reference expression when all process variation

property variables are set to one:

1.0 · 𝑐 · 𝑥

The above equation validates that the master expression for MUL (0,1) implements the reference

expression c*x when the process variation property variables are set to one. This property ensures

that the master expression implements the idealized dynamics of the block, provided the process

variation property variables can be factored out or eliminated.

Delta Models: The compiler ensures the master expression implements the delta models associated

with the block instance. The master expression elicitation procedure produces a set of CGP con-

straints which ensure the process variation property variables are assigned to the correct values under

each mode. The compiler generates the following process variation property variable constraints for

the MUL(0,1) block:

mode(MUL(0,1)) = (x,m,m) ⇒ 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) = 0.94875

mode(MUL(0,1)) = (x,h,m) ⇒ 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) = 0.093110

mode(MUL(0,1)) = (x,h,h) ⇒ 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) = 0.87330

The following constraints map the process variation property variable to the appropriate value

depending on the mode. Under these constraints, the master expression implements the 0.94875*c*x,

0.87330*c*x, 0.1*0.93110*c*x delta models when the mode variable mode(MUL (0,1)) for multi-

plier MUL(0,1) is set to the (x,m,m) (x,h,h), (x,h,m) mode respectively.

The master expression and the above implication statements together model how the delta mod-

els deviate from the reference expression. For example, setting the mode variable for multiplier MUL

(0,1) to (x,m,m) specializes the master expression so that it implements 0.94875*c*x – the delta

model for port z of the MUL (0,1) under (x,m,m) mode. Some of the mode variable assignments

355

incorporate both the delta model parameter and the effect of changing the mode. For example, the

mode variable is assigned to 0.1*0.93110=0.093110 when the mode is changed to (x,h,m). The

delta model parameter 0.93110 is scaled by 0.1 to account for the fact that the output signal is

scaled by 0.1 when the block mode is changed from (x,m,m) to (x,h,m).

The master expression derivation procedure fails to incorporate the delta model for mode

(m,m,m) into the master expression. The LScale pass therefore adds the following constraint that

the mode (m,m,m) is not selected for the MUL (0,1) block:

mode(MUL(0,1)) ̸= (m,m,m)

The compiler also produces a constraint that prevents the multiplier block MUL(0,1) from being

put in (m,m,m) mode. The compiler introduces this mode restriction because it could not identify

a master expression that could implement both the delta model for the block in (m,m,m) mode

(0.5*1*x*y) and the reference expression (c*x).

Master Expression Elicitation

The master expression elicitation procedure derives the master expression and associated CGP

constraints for a target output port instance from the input ADP, ADS, delta model database,

and calibration strategy. The identified master expression models the effect of changing the mode

on the signal and captures the effect of any unexpected gains on the signal dynamics. The master

expression elicitation procedure returns the computed master expression and a set of CGP constraints

which must hold for the master expression to faithfully implement the delta models associated with

the target output port instance.

The master expression elicitation procedure first identifies the reference expression and the delta

models for the target output port instance. The procedure derives the reference expression by looking

up the input-output relation in the ADS under the modes listed in the unscaled input ADP.

Next, the master expression elicitation procedure constructs the delta models for the target

output port from the ADS delta model specifications, the delta model database, and the calibration

strategies. The compiler derives these delta models by substituting all correctable gain delta model

parameters with the appropriate values from the delta model database and setting all other delta

model parameters to their ideal values.

Finally, the master expression elicitation procedure harmonizes the delta model expressions and

reference expression to produce a master expression which can be specialized to implement both

the delta models and the reference expression. The harmonization procedure also produces CGP

constraints which map process variation property variables to values, and CGP constraints which

prevent block modes that are not captured by the master expression from being selected. Refer to

356

Section 9.4.2 for details on how the master expression is derived.

Expression Factoring Algorithm

The expression factoring algorithm factors out a scale expression from the scaled dynamics of the

signal at the target output port. This algorithm accepts as input a master expression that describes

the behavior of the target output port. It produces, as output, the scale expression which has been

factored out of the scaled dynamics and a set of geometric programming constraints which must hold

for the factoring procedure to complete successfully. The factored scale expression contains scale

transform variables, such as magnitude and time scaling variables, injection variables, and process

variation property variables that capture the device’s unexpected gains. The derived factoring

constraints ensure that the scaled dynamics of the signal for the device on hand equals the idealized

dynamics of the signal times the factored out scale expression.

Scaled Master Expression: The expression factoring algorithm first derives a scaled master

expression that captures the dynamics of the scaled signal for the device on hand. The scaled master

expression models the unexpected gains present in the hardware, the effects of mode selection on

the computation, and the scaling transform. The compiler obtains the scaled master expression by

symbolically applying the scaling transform to the provided master expression. To symbolically apply

the scale transform, the compiler multiplies all ports and data fields by their respective magnitude

scale factors. I present the scaled master expression for the MUL (0,1) multiplier block below:

𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) · (mag(MUL(0,1), c) · c) · (mag(MUL(0,1), x) · x)

The above expression models how the signal at port z of multiplier block (0,1) would behave

if the scaling transform were applied to the unscaled ADP.

Constraint Generation: The compiler next produces factor constraints which ensure an expression

made up of scale transform variables and process variation property variables can be factored out

of the dynamics of the scaled signal. Provided the returned factor constraints hold, the scaled

dynamics of the signal should equal the factored scale expression times the reference expression.

Refer to Section 9.4 for discussion on how the compiler generally derives the factor constraints and

scale expression from the scaled master expression.

For the multiplier block MUL (0,1), the expression factoring algorithm is able to factor out a

scale expression from the scaled master expression by shuffling around the terms in the expression:

𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) · mag(MUL(0,1), c) · mag(MUL(0,1), x) · (c · x)

The above factored expression is the product of the original reference expression c*x and a scale

expression 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0)·mag(MUL(0,1), c)·mag(MUL(0,1), x) made up of magnitude scale

357

factor and process variation terms. Note that no factor constraints are necessary to perform this

factoring operation since multiplication is associative. The expression factoring algorithm returns

an empty set of factor constraints and the following factored scale expression:

𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) · mag(MUL(0,1), c) · mag(MUL(0,1), x)

Finalization

The factor constraint generation procedure collates together the CGP constraints computed by the

master expression elicitation procedure and the GP constraints computed by the expression factoring

algorithm to produce a complete set of factor constraints. The factor constraint generation procedure

completes the set of constraints by adding a geometric programming constraint that links the factored

scale expression to the magnitude scale factor of the target output port:

mag(MUL(0,1), z) = 𝑝𝑟𝑜𝑐-𝑣𝑎𝑟(MUL(0,1), z, 0) · mag(MUL(0,1), c) · mag(MUL(0,1), x)

The above constraint ensures the magnitude scale factor for the output port z of multiplier

block MUL (0,1) equals the scale expression factored out of the scaled signal dynamics. The factor

constraint generation procedure then returns the complete set of CGP and GP constraints and the

factored scale expression.

7.6 Conclusion

This chapter presented a high-level overview of how the compiler compiles a target dynamical system

to a differential equation-solving reconfigurable analog device. Throughout this chapter, I used a

running example in which I mapped a simple harmonic oscillator to the SIMPL reconfigurable analog

device. This the SIMPL device is a simplified dynamical system-solving analog device inspired from

the HCDCv2.

The compiler first synthesizes an unscaled ADP which implements the dynamical system (circuit

synthesis) on the target analog device. The compiler then scales the unscaled ADP so that it respects

the physical constraints imposed by the hardware while also preserving the original dynamics of the

dynamical system (circuit scaling). The scaled ADP can then be executed on the target hardware

platform.

Circuit Synthesis: I first presented the operation of the circuit synthesis procedure. The circuit

synthesis pass accepts as input a dynamical system specification and an analog device specification

and produces an unscaled ADP.

358

The circuit synthesis pass first synthesizes a collection of circuit fragments that implement the

relations in the dynamical system specification (synthesis procedure). The fragment synthesis pro-

cedure employs a tableau-based search algorithm to construct a circuit fragment for each dynamical

system relation. This algorithm leverages an algebraic rewrite system to identify creative usages

of the analog blocks. This algorithm enables the compiler to more effectively map the dynamical

system relations to the analog hardware.

The circuit synthesis pass then links the fragments together to form a completed circuit (assembly

procedure). The assembly procedure introduces assembly blocks as necessary to route and copy

signals. Examples of assembly blocks include current copiers and signal converters. The assembly

procedure sometimes needs to add additional blocks because some signals, such as analog currents,

cannot be used multiple times.

The circuit synthesis pass then maps blocks to locations on the analog device, inserting route

blocks when necessary (place+route procedure). Analog devices often provide dedicated route blocks

which forward signals over long distances. The place+route procedure inserts these route blocks

when necessary to implement the connections in the circuit.

The place+route procedure encodes the block placement problem as an integer linear program-

ming problem. This place+route algorithm leverages the device layout information from the ADS

and the insight that fewer long-distance connections are available on a given piece of hardware to

decompose the problem into a sequence of smaller sub-problems. Instead of solving a single inte-

ger linear programming problem, the place+route procedure breaks up the placement problem into

several smaller integer linear programming problems that incrementally resolve the location of each

block to finer-grain spatial structures.

Circuit Scaling: I next provided an overview of the circuit scaling pass. The circuit scaling pass

accepts as input the unscaled ADP produced by the circuit synthesis pass, the ADS and DSS, the

calibration strategy to target, a scaling objective function, and the delta model database for the

device on-hand. The ADS, calibration strategy, and delta model database together fully define the

physical constraints and behaviors present in the device on hand. The DSS provides the variable

intervals for the unscaled ADP and the scaling objective function describes what criteria to minimize

when scaling the circuit.

The circuit scaling pass frames the scaling problem as a combinatorial geometric programming

problem (CGP). The formulation enables the circuit scaling pass to simultaneously reprogram blocks

in the unscaled ADP and derive a scaling transform. This reprogramming feature enables the

scaling pass to more flexibly scale the circuit. The combinatorial geometric programming problem

captures the operating range and frequency restrictions imposed by the device, encodes the effect of

analog noise and quantization error on the signals, and models the empirically observed behavioral

deviations present in the device on hand. The CGP also adds the necessary constraints to ensure

359

that the scaled ADP preserves the original dynamics of the dynamical system.

Further Reading : The compilation overview makes use of the dynamical system specification lan-

guage introduced in Chapter 3 and the analog device specification and analog device programming

languages introduced in Chapter 5. Refer to Chapter 6 for more discussion on unscaled and scaled

ADPs. Refer to Chapter 8 for a rigorous description of the circuit synthesis pass. Refer to Chapter 9

for a rigorous description of the circuit scaling pass.

360

Chapter 8

Circuit Synthesis

To implement a dynamical system on an analog device, the analog building blocks resident on

the device must be configured and routed together so that the physics of the device (behavior

of the currents/voltages over time) matches the behavior of the dynamical system. The compiler

synthesizes analog device programs that are guaranteed to be algebraically equivalent to the starting

dynamical system, provided the analog blocks behave ideally and are not subject to any low-level

physical behaviors. That is, each produced ADP implements a dynamical system that can be

rewritten to match the original dynamical system by successively applying algebraic rewrite rules.

The analog device programs produced by the circuit synthesis pass are the unscaled analog device

programs presented in Chapter 6.

The analog configuration synthesis procedure accepts as input a specification of the dynami-

cal system to compile (DSS) and a specification of the analog device (ADS). The analog device

specification describes each block’s behavior and programming interface and the programmable con-

nections available on the device. It produces as output an analog device program (ADP) which

implements the provided dynamical system on the target analog hardware. Internally, the compiler

works with an extended representation of the analog device program (vADP) that supports defining

circuit fragments. This chapter covers the following configuration synthesis steps:

Fragment Synthesis (Section 8.2): I describe how the compiler synthesizes circuit fragments

which implement dynamical system relations. This fragment synthesis procedure is non-trivial be-

cause the compiler may need to compose together blocks in non-trivial ways to obtain the desired

dynamics. I provide a formalization of the tableau-based synthesis procedure which produces correct-

by-construction circuit fragments that are algebraically equivalent to the starting circuit. This step

of compilation produces a collection of vADP fragments made up of compute blocks that implement

each relation in the DSS.

Assembly (Section 8.3): I describe how the compiler assembles a complete circuit from the

361

synthesized circuit fragments. This assembly procedure is non-trivial as the compiler may need to

copy and transform signals to connect the synthesized fragments together. The compiler, therefore,

generates bridge circuits composed of assemble blocks that link fragments together. This section

describes how the compiler generates these bridging circuits and incorporates these bridge circuits

into the larger circuit. This step of compilation produces a complete vADP circuit from the vADP

fragments generated by the synthesis procedure.

Routing (Section 8.4): I describe the compiler’s place and route procedure. The place and

route procedure maps the blocks and connections in the completed circuit to locations and digitally

programmable interconnects on the analog device. This routing procedure is non-trivial as the

compiler may need to inject route blocks to form certain connections. The routing procedure assigns

each vADP block instance to a block location on the device, inserting routing blocks when necessary.

It produces an analog device program (ADP) from the complete vADP circuit produced in the

previous step. The resulting ADP respects any resource and connectivity constraints present in the

device.

8.1 Problem Definition

LGraph accepts, as input, a dynamical system and analog device specification (ADS,DSS) and

produces, as output, a program for the specified analog device (ADP) which implements the provided

dynamical system. I introduce the notation and mathematical constructs in the following section.

8.1.1 Notation

In this chapter, I express spaces of elements with descriptive words, sets of elements belonging to

that space with capital letters, and elements belonging to the space with lower case letters. For

example, I might introduce a space of generic variables 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠 where a generic variable 𝑔𝑣 is

in the space 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠. A set of generic variables is written as 𝐺𝑉 .

A function maps one space of elements to another. For example, I might introduce a dup2

function which maps generic variables to pairs of generic variables. I formally define this function

as dup2 : 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠 → 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠×𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠. This formalism also uses literals which

map to constant values.

Math Primitives: This chapter makes use of several common numerical spaces and mathematical

operators. The N and R quantities correspond to the space of natural numbers and the space of real

numbers, respectively. I use the notation R𝑚 to represent the space of real vectors of length m. The

× operator computes the cartesian product of two sets or spaces, and the P operator computes the

powerset of a set or space. This notation also makes ample use of sets, multisets, and sequences.

362

I denote a set with curly braces ({}). Sequences of variables are denoted with the [[]] operator.

The 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛() operator returns the element contained by a set if the set contains a single value.

Multisets are denoted with the 𝑀 operator.

Nondeterminism: This chapter presents algorithms which make non-deterministic choices. The

choose({..}, 𝑛) function non-deterministically selects up to 𝑛 elements from a set without replace-

ment. If the set contains less than 𝑛 elements, then the choose function fails.

Multisets: A multiset is an ordered collection of elements that may contain multiple instances of an

element. A multiset over some set of elements 𝐺𝑉 is a mapping from 𝐺𝑉 to N (𝑀 : 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠 →

N). The multiset can also be represented as a set of element-count pairs:

{(𝑔𝑣,𝑀𝑔𝑣) | 𝑔𝑣 ∈ 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠}

The above representation of a multiset defines the multiset as a set of element-cardinality pairs

for each element 𝑔𝑣 in the space of elements 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠. Alternatively, multisets can be written

as polynomials over set elements:

𝑔𝑣𝑛0
0 𝑔𝑣𝑛1

1 ...𝑔𝑣𝑛𝑛
𝑚 = {(𝑔𝑣0, 𝑛0), (𝑔𝑣1, 𝑛1), ..., (𝑔𝑣𝑚, 𝑛𝑛)}

The elements 𝑔𝑣0, 𝑔𝑣1.., , 𝑔𝑣𝑚 are elements belonging to the space of elements 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠 and

the exponents 𝑛0, 𝑛1, ..., 𝑛𝑚 are the counts of the listed elements. The equivalent set representation

is written on the right-hand side of the equality sign. The empty multiset 0 is a multiset where all

elements are mapped to zero. The following operators are standard operators for multisets unless

otherwise indicated:

Multiset Inclusion (⊆): The multiset inclusion operator ⊆ tests if one multiset is contained within

another:

𝑀 ⊆ 𝑀 ′ 𝑖𝑓𝑓 ∀𝑔𝑣 ∈ 𝐺𝑉,𝑀𝑔𝑣 ≤ 𝑀 ′𝑔𝑣

The inclusion operator returns true if the cardinality of each element in the first multiset is less

than or equal to the cardinality of the element in the second multiset.

Multiset Union (∪): The multiset union operator creates a new multiset which contains all the

elements in the provided multisets 𝑀 and 𝑀 ′:

∀𝑔𝑣 ∈ 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠, (𝑀 ∪𝑀 ′)𝑔𝑣 = (𝑀𝑔𝑣) + (𝑀 ′𝑔𝑣)

The union operator crafts a new multiset 𝑀 ∪𝑀 ′ which maps 𝑔𝑣 to the sum of the individual 𝑔𝑣

counts 𝑀𝑔𝑣 +𝑀 ′𝑔𝑣.

Multiset Difference (−): The multiset difference operator subtracts one multiset 𝑀 from another

multiset 𝑀 ′. The difference operator requires 𝑀 ′ ⊆ 𝑀 to succeed:

363

∀𝑔𝑣 ∈ 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠, (𝑀 −𝑀 ′)𝑔𝑣 = (𝑀𝑔𝑣)− (𝑀 ′𝑔𝑣), 𝑖𝑓𝑀 ⊆ 𝑀 ′

Multiset Support 𝑆𝑢𝑝𝑝 : The multiset support operator retrieves the set of elements that have

more than one element in the provided multiset:

𝑆𝑢𝑝𝑝 𝑀 = {𝑔𝑣 ∈ 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠 | 𝑀𝑔𝑣 > 0}

The multiset support operator is also used to test element membership. The 𝑔𝑣 ∈ 𝑆𝑢𝑝𝑝 𝑀

clause determines if an element belongs to a multiset.

Multiset Intersection ∩: I introduce a new multiset intersection operator which computes a

minimal multiset from two multisets 𝑀 and 𝑀 ′:

∀𝑔𝑣 ∈ 𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠, (𝑀 ∩𝑀 ′)𝑔𝑣 = 𝑚𝑖𝑛(𝑀𝑔𝑣,𝑀𝑔𝑣)

The intersection operator creates a multiset which only contains the common elements between the

two provided multisets. Each reported element count is the minimum of the element counts from

the provided sets.

Multisets from List (multi): I introduce a new operator (multi) which transforms a sequence of

elements into a multiset. The count for each element in the multiset corresponds to the number of

occurrences of that element in the provided sequence.

Multiset to Element (element): I introduce a new operator which transforms a multiset to a

single element:

element(𝑀) = 𝑔𝑣 𝑖𝑓 𝑆𝑢𝑝𝑝 𝑀 = {𝑔𝑣}

The singleton operator requires that the support of the multiset contains exactly one element.

It returns the element contained in the multiset.

Size of Multiset: I introduce a new operator which computes the size of a multiset:

size(𝑀) =
∑︁

𝑔𝑣∈𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠

𝑀𝑔𝑣

The size operator returns the sum of all the cardinalities of all the elements in the multiset.

Expressions: This formalism works with symbolic mathematical expressions 𝑒 ∈ 𝐸𝑥𝑝𝑟𝑠 over vari-

ables 𝑣 ∈ 𝑉 𝑎𝑟𝑠. The vars : 𝐸𝑥𝑝𝑟𝑠 → P(𝑉 𝑎𝑟𝑠) function returns the variables which appear in the

expression. The 𝑒[𝑣/𝑒′] notation replaces all of occurrences of the variable 𝑣 in 𝑒 with 𝑒′. I gen-

erally express a variable-expression assignment with the assignment construct 𝑎 ∈ 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 =

𝑉 𝑎𝑟𝑠×𝐸𝑥𝑝𝑟𝑠. The sub : 𝐸𝑥𝑝𝑟𝑠× P(𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠) → 𝐸𝑥𝑝𝑟𝑠 function accepts an input expression

364

and a set of assignments and returns the expression with the all the variable-expression substitutions

applied. For example, the sub(𝑣+𝑣′, {(𝑣, 𝑒), (𝑣′, 𝑒′)}) invocation of the substitution function returns

the expression 𝑒+ 𝑒′.

Note that these expressions may contain dynamical system variables, hardware variables, or a

mixture of the two. Therefore, the space of variables 𝑉 𝑎𝑟𝑠 contains variables that appear in the

hardware specification and the dynamical system specification.

8.1.2 Dynamical System Specification

The dynamical system specification is comprised of dynamical system variables 𝑑𝑣 ∈ 𝐷𝑆𝑉 𝑎𝑟𝑠, where

the dynamics of each variable 𝑑𝑣 is modeled as expression 𝑑𝑒 ∈ 𝐷𝑆𝐸𝑥𝑝𝑟𝑠 = {𝑒 ∈ 𝐸𝑥𝑝𝑟𝑠 | vars(𝑒) ⊆

𝐷𝑆𝑉 𝑎𝑟𝑠}. The dsexpr : 𝐷𝑆𝑉 𝑎𝑟𝑠 → 𝐷𝑆𝐸𝑥𝑝𝑟𝑠 function maps dynamical system variables to

dynamical system expressions.

8.1.3 Analog Device Specification

LGraph works with a collection of programmable compute blocks 𝑐𝑏 ∈ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑙𝑜𝑐𝑘𝑠, assembly

blocks 𝑥𝑏 ∈ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝑠, and routing blocks 𝑟𝑏 ∈ 𝑅𝑜𝑢𝑡𝑒𝐵𝑙𝑜𝑐𝑘𝑠. Together, these blocks make

up the blocks 𝑏 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠 available on the analog hardware.

Blocks have input ports 𝑖𝑝 ∈ 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 and output ports 𝑜𝑝 ∈ 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠. Each port works

with a signal of type 𝑠𝑡 ∈ 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 where 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 = {digital, current, voltage}. The

sigtype : 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠
⋃︀
𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 → 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 function maps ports to signal types. Each

block provides a digital programming interface to the compiler in the form of a digitally settable

mode 𝑚 ∈ 𝑀𝑜𝑑𝑒𝑠 and collection of data fields 𝑑𝑓 ∈ 𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠. Each data field is associated with

a type 𝑑𝑓𝑡 ∈ 𝐷𝐹𝑇 where 𝐷𝐹𝑇 = {constant, expression}. Constant data fields (constant) map

to constant values 𝑦 ∈ R. Expression data fields (expression) map to symbolic expressions.

The df-type : 𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠 → 𝐷𝐹𝑇 function maps data fields to data field types. The block :

𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠
⋃︀
𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠

⋃︀
𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 → 𝐵𝑙𝑜𝑐𝑘𝑠 function returns the block that contains the

specified input port, output port, or data field.

Each block output port 𝑜𝑝 ∈ 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 implements a collection of expressions ℎ𝑒 ∈ 𝐻𝑤𝐸𝑥𝑝𝑟𝑠,

where 𝐻𝑤𝐸𝑥𝑝𝑟𝑠 = {ℎ𝑒 ∈ 𝐻𝑤𝐸𝑥𝑝𝑟𝑠 | vars(ℎ𝑒) ⊆ 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠∪𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠}. The exact hardware

expression implemented at each output port depends on the mode of the block. The portexpr :

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 × 𝑀𝑜𝑑𝑒𝑠 → 𝐻𝑤𝐸𝑥𝑝𝑟𝑠 function returns the expression implemented by each output

port for each block mode.

The hardware specification language enables the designer to specify multiple instances of the

declared blocks in the device specification. Each block instance 𝑏𝑖 ∈ 𝐵𝑙𝑜𝑐𝑘𝐼𝑛𝑠𝑡 = 𝐵𝑙𝑜𝑐𝑘𝑠 × 𝐿𝑜𝑐𝑠

where 𝑏𝑖 = (𝑏, 𝑙) is identified as a block 𝑏 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠 at location 𝑙 ∈ 𝐿𝑜𝑐𝑠. In this chapter, I write

365

block instances as block-location tuples (𝑏, 𝑙). The specification defines the available programmable

connections between ports of block instances 𝑐 ∈ 𝐶𝑜𝑛𝑛𝑠 = 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠×𝐿𝑜𝑐𝑠×𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠×𝐿𝑜𝑐𝑠.

The hardware specification works with a description of the spatial layout of the device. Each

of the device is organized into 𝑛 ∈ N sequentially organized spatial views numbered 1...𝑖...𝑛. Each

spatial view 𝑖 contains one or more spatial locations 𝑠𝑙𝑖 ∈ 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑠𝑖 = N𝑖+1. Every location in

a particular view also belongs to a location in all preceding views. Block instances may only be

bound to locations from the most specific view (the leaf view). The space of block instance locations

corresponds to the set of locations belonging to the most specific view 𝐿𝑜𝑐𝑠 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑠𝑛. I use

the spat-member(𝑠𝑙𝑠𝑣, 𝑠𝑙′𝑠𝑣′) function to test if some location 𝑠𝑙𝑠𝑣 is contained by spatial location

𝑠𝑙′𝑠𝑣′ .

8.1.4 Analog Device Program

The solver generates an analog device program (ADP) which implements an analog circuit on the

target analog hardware. The ADP is made up of a collection of statements 𝑧 ∈ 𝑆𝑡𝑚𝑡𝑠 which describe

the subset of programmable connections to enable, how to configure each block, and which signals

correspond to which dynamical system variables:

∙ conn(𝑜𝑝, 𝑙, 𝑖𝑝, 𝑙′): This statement enables the connection from output port 𝑜𝑝 of block instance

(block(𝑜𝑝), 𝑙) to input port 𝑖𝑝 of block instance (block(𝑖𝑝), 𝑙′)

∙ config(𝑏, 𝑙,𝑀,𝑋): This statement configures the block 𝑏 at location 𝑙. The configuration

𝑋 ⊆ 𝐶𝑜𝑛𝑓𝑖𝑔𝑠 = 𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠 × 𝐷𝑆𝐸𝑥𝑝𝑟𝑠 describes how to set each data field in the block

and the mode set 𝑀 specifies the set of modes that deliver the desired behavior for that block

instance.

∙ source(𝑜𝑝, 𝑙, 𝑑𝑣): This statement maps the signal of type sigtype(𝑜𝑝) at output port 𝑜𝑝 the

the dynamical system variable 𝑑𝑣. The evolution of this signal sigtype(𝑜𝑝) at this port is

analogous to the evolution of the variable 𝑑𝑣 in the dynamical system.

8.1.5 Virtual Analog Device Program

The vADP is made up of a collection of statements 𝑣𝑧 ∈ 𝑉 𝑆𝑡𝑚𝑡𝑠 that together describe an analog

circuit or analog circuit fragment. In contrast with ADPs, vADPs supports the specification of

circuit fragments and identify block instances with abstract numerical identifiers 𝑖 ∈ N instead of

device locations 𝑙 ∈ 𝐿𝑜𝑐𝑠. The vADP distinguishes between multiple uses of the same block using

a block identifier 𝑖 ∈ N. Each virtual block instance 𝑣𝑏𝑖 ∈ 𝑉 𝑖𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝐼𝑛𝑠𝑡 = 𝐵𝑙𝑜𝑐𝑘𝑠 × N is later

mapped to a physical block instance 𝑏𝑖 ∈ 𝐵𝑙𝑜𝑐𝑘𝐼𝑛𝑠𝑡 on the analog device. In this chapter, I write

virtual block instances as block-identifier tuples (𝑏, 𝑖). The vADP accepts the following statements

366

∙ vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖′): This statement connects the output port 𝑜𝑝 of block block(𝑜𝑝) with iden-

tifier 𝑖 to input port 𝑖𝑝 of block block(𝑖𝑝) with identifier 𝑖′.

∙ vconfig(𝑏, 𝑖,𝑀, 𝑥): This statement configures the block 𝑏 with identifier 𝑖. The block modes

are set to 𝑀 and the programmable block fields are configured using configuration 𝑥 ∈

𝐶𝑜𝑛𝑓𝑖𝑔𝑠.

∙ vsink(𝑖𝑝, 𝑖, 𝑑𝑒): This statement describes where an incoming signal is needed in the vADP

circuit. A signal of type sigtype(𝑖𝑝) that implements dynamical system expression 𝑑𝑒 must

be provided to input port 𝑖𝑝 of block block(𝑖𝑝) with identifier 𝑖 to complete the circuit. A

vADP is a vadp fragment if vADP contains any vsink statements.

∙ vsource(𝑜𝑝, 𝑖, 𝑑𝑒): This statement maps the signal at an output port 𝑜𝑝 of block block(𝑜𝑝)

with identifier 𝑖 to a dynamical system expression 𝑑𝑒. The evolution of the signal of type

sigtype(𝑜𝑝) at that port matches the trajectory of 𝑑𝑒 over time.

8.2 vADP Fragment Synthesis

The vADP fragment synthesis algorithm accepts, as input, the dynamical system specification with

dynamical system variables 𝐷𝑉 and a a hardware specification with compute blocks 𝐶𝐵 which

contain input ports 𝐼𝑃 , and output ports 𝑂𝑃 . For each variable 𝑑𝑣 ∈ 𝐷𝑉 it produces a collection

of vADP fragments. Each vADP implements the dynamics of 𝑑𝑣 (dsexpr(𝑑𝑣) = 𝑑𝑒) using a circuit

fragment made up of compute blocks.

8.2.1 The Tableau

The synthesis algorithm works with algebraic structure called a tableau. The tableau 𝑡 ∈ 𝑇𝑎𝑏𝑙𝑒𝑎𝑢𝑠 =

P(𝐺𝑜𝑎𝑙𝑠) × P(𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠) × P(𝑉 𝑆𝑡𝑚𝑡𝑠) is composed of goals 𝑔 ∈ 𝐺 ⊆ 𝐺𝑜𝑎𝑙𝑠 to solve, a set of

hardware relations 𝑟 ∈ 𝑅 ⊆ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 are used to solve these goals, and a set of vADP statements

𝑉 𝑍 ⊆ 𝑉 𝑆𝑡𝑚𝑡𝑠 that describe the vADP fragment.

Goals: The tableau goals describe the dynamics which still need to be implemented in the vADP

fragment. Each goal 𝑔 ∈ 𝐺𝑜𝑎𝑙𝑠 or goal(𝑖𝑝, 𝑖, 𝑒)) describes a mathematical relation that must be

implemented on the analog hardware. A goal of the form goal(𝑖𝑝, 𝑖, 𝑑𝑒) assigns the signal fed into

input port 𝑖𝑝 to a dynamical system expression. A goal of the form goal(𝑑𝑣, 𝑑𝑒) maps the dynamical

system variable 𝑑𝑣 to a dynamical system expression 𝑑𝑒. The expression 𝑑𝑒 is referred to as the

dynamics of the goal or the goal expression.

Relations: The tableau relations describe the available compute operations on the analog device.

Each relation describes a mathematical expression that may be implemented on the analog hardware.

367

Each relation rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒) describes the dynamics (ℎ𝑒) implemented by port 𝑜𝑝 belonging to

block block(𝑜𝑝) with identifier 𝑖 when one of the modes 𝑚 ∈ 𝑀 is selected. I refer to the hardware

expression ℎ𝑒 as the dynamics of the relation.

vADP Statements: The tableau vADP statements encode the circuit fragment produced by this

procedure. The synthesis algorithm continually extends the circuit encoded with the vADPs to

implement more tableau goals.

8.2.2 Basic Approach

The synthesis algorithm accepts as input a dynamical system variable to synthesize (𝑑𝑣) and a

dynamical system and analog device specification. It produces a virtual analog device program that

implements the dynamical system variable’s dynamics on the analog hardware.

The compiler first constructs an initial tableau 𝑡0 which contains a single goal describing the

dynamics of the target variable. It then nondeterministically applies a transition relation → to the

initial tableau to derive more tableaus:

synth(𝑑𝑣) = {𝑉 𝑍 | ⟨goal(𝑑𝑣, dsexpr(𝑑𝑣)), 𝑅0, ∅⟩ →* ⟨∅, 𝑅, 𝑉 𝑍⟩}

It performs this procedure until it finds a solved tableau. A tableau is marked as solved when

there are no more goals left. The set of vADP statements in the solved tableau encodes a circuit

fragment that implements the dynamics of the target dynamical system variable 𝑑𝑣.

8.2.3 The Initial Tableau

Given a dynamical system variable 𝑑𝑣 to synthesize, the compiler constructs a initial tableau 𝑡0:

𝑡0 = ⟨{goal(𝑑𝑣, dsexpr(𝑑𝑣))}, 𝑅0, ∅⟩

The initial tableau has a single goal goal(𝑑𝑣, dsexpr(𝑑𝑣)) which encodes the dynamics of 𝑑𝑣. To

eliminate this goal, the synthesis algorithm must synthesize a circuit that implements the expression

dsexpr(𝑑𝑣). The initial tableau also contains a set of starting relations (𝑅0) and an empty vADP.

The starting relation set contains a relation for each distinct expression ℎ𝑒 implemented by each

output port 𝑜𝑝 ∈ 𝑂𝑃 :

𝑅0 = {rel(𝑜𝑝, 0,𝑀, ℎ𝑒) | portexpr(𝑜𝑝,𝑚) = ℎ𝑒 ∀ 𝑚 ∈ 𝑀 ∧ 𝑜𝑝 ∈ 𝑂𝑃}

The mode set 𝑀 specifies the set of modes 𝑚 ∈ 𝑀 that, when selected, implement hardware

expression ℎ𝑒 at port 𝑜𝑝. All the relations in the starting relation set together capture the range of

368

functions the analog hardware can implement.

8.2.4 The Solved Tableau

A tableau 𝑡𝑠𝑙𝑛 is considered solved if there are no goals left. The set of vADP statements in the

tableau is the vADP fragment which implements the starting dynamical system variable.

𝑡𝑠𝑙𝑛 = ⟨{}, 𝑅, 𝑉 𝑍⟩

8.2.5 The → Operator

The synthesis algorithm (synth) produces a set of solved tableaus from the initial tableau by re-

peatedly applying the tableau transition operator →.

synth(𝑑𝑣, 𝑑𝑒) = {𝑉 𝑍 | ⟨goal(𝑑𝑣, 𝑑𝑒), 𝑅0, ∅⟩ →* ⟨∅, 𝑅, 𝑉 𝑍⟩}

The synthesis algorithm accepts as input the dynamical system variable (𝑑𝑣) and its dynamics

(𝑑𝑒). It produces a set of solution tableaus that implement the dynamical system variable on the

analog device. I formalize the operation of the synthesis algorithm as a transition relation 𝑡 → 𝑡′,

where each transition corresponds to a solver step on the tableau.

1. Goal and Relation Selection. The tableau transition operation first selects a goal 𝑔 and a

relation 𝑟 which describes the dynamics of some output port 𝑜𝑝 under some set of modes 𝑀 .

2. Unification: The transition then derives a set of assignments that concretizes the dynamics of

the signal emitted at output port 𝑜𝑝 such that it is algebraically equivalent to the dynamics of

the goal. Two expressions 𝑒 and 𝑒′ are algebraically equivalent if there exists a set of algebraic

rewrite rules which transforms 𝑒 into 𝑒′.

3. Application. It applies these assignments to the tableau to derive an updated tableau. The

application process resolves the target goal, consumes the target relation, and extends the

vADP to implement the goal dynamics with the selected relation.

8.2.6 Goal and Relation Selection

The transition relation → is a one-way transition that solves a single goal in the provided tableau.

First, the transition relation selects a goal 𝑔 and relation 𝑟. It then checks the goal and relation to

make sure they work with the same type of signal. This type-checking operation ensures that only

ports which work with the same type of signal are connected together in the produced circuit.

369

typecheck(𝑔, 𝑟) . . .

⟨{𝑔} ∪𝐺, {𝑟} ∪𝑅, 𝑉 𝑍⟩ → . . .

The typecheck operation accepts a goal and relation and determines if the goal and relation work

with the same type of signal. The behavior of the typechecking operation is described below:

function typecheck(𝑔,𝑟)

match ⟨𝑟, 𝑔⟩ with

| ⟨rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒),goal(𝑑𝑣, 𝑑𝑒)⟩ -> true

| ⟨rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒),goal(𝑖𝑝, 𝑖′, ℎ𝑒′)⟩ -> sigtype(𝑖𝑝) = sigtype(𝑜𝑝)

The typecheck operation always passes if the selected goal maps a dynamical system variable

to a dynamical system expression. The compiler can use any available hardware relation to satisfy

such a goal. If the goal maps an input port to a dynamical system expression, the signal type of the

input port must match the signal type of the output port chosen relation:

8.2.7 Unification

The transition relation then unifies the dynamics of the selected hardware relation 𝑟 with the dy-

namics of the selected goal 𝑔:

typecheck(𝑔, 𝑟) unify(𝑔, 𝑟) = 𝐴 . . .

⟨{𝑔} ∪𝐺, {𝑟} ∪𝑅, 𝑉 𝑍⟩ → . . .

The unification (unify) procedure accepts as input a relation 𝑟 = rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒) and a goal

of the form goal(𝑑𝑣, 𝑑𝑒) or goal(𝑖𝑝, 𝑖, 𝑑𝑒) and specializes the enclosing block block(𝑜𝑝) to fulfill

the provided goal. It computes a set of assignments 𝐴 which specialize the block to implement the

dynamical system expression 𝑑𝑒 at output port 𝑜𝑝. The unification procedure uses the expression

unification (unify-expr) algorithm to produce the set of assignments from the hardware expression

and dynamical system expression.

The unify-expr(ℎ𝑒, 𝑑𝑒) function accepts a hardware expression and dynamical system expres-

sion as input and produces a set of assignments. These assignments map block data fields or input

ports in the virtual block instance (𝑣𝑏𝑖 = (block(𝑜𝑝), 𝑖)) to dynamical system expressions. The

unify-expr routine guarantees the dynamics of hardware expression ℎ𝑒 with the assignments applied

is algebraically equivalent to the dynamical system expression 𝑑𝑒. Two expressions are algebraically

equivalent if they implement the same input-output relation:

370

𝑑𝑒 ≡ sub(ℎ𝑒,𝐴)

The signal at output port 𝑜𝑝 implements 𝑑𝑒 when the data field assignments in 𝐴 are applied

to the virtual block instance, and each input port is supplied with a signal that implements the

assigned expression. A virtual block instance is considered specialized once it has been partially or

fully configured to implement a set of expressions at its output ports.

Expression Unification (unify-expr)

Expression unification procedure (unify-expr(ℎ𝑒, 𝑑𝑒)) identifies a set of port- and data field ex-

pression assignments which render the hardware and dynamical system expressions algebraically

equivalent.

The unification procedure treats each port and data field in the hardware expression as a hole

(�) that can be filled with a dynamical system expression 𝑑𝑒. The procedure may optionally accept

constraints that limit what types of dynamical system expressions can be bound to certain holes.

The expression unification procedure applies the following constraints to the expression unification

procedure:

∙ Constant Data Fields: Data fields 𝑑𝑓 which accept constant values df-type(𝑑𝑓) = constant

can only be map to real numbers 𝑦 ∈ R.

The expression unification algorithm uses an algebraic unification engine to unify the hardware

and dynamical system expressions. The algebraic unification algorithm progressively applies alge-

braic rewrite rules to the target hardware expression. It produces a set of port- and data field-

assignments that can be substituted into the hardware expression to produce a concrete expression

over dynamical system variables. The resulting concretized expression is algebraically equivalent to

the target dynamical system expression. This unification technique is well suited for analog devices

which expose complex analog blocks that implement highly nontrivial algebraic functions. For ex-

ample, an algebraic unification approach would be able to compute a set of assignments that unify

the dynamical system expression 𝑑𝑣−4 with the following hardware relation:

𝑖𝑝1

(𝑖𝑝2

𝑖𝑝3
+ 1)

𝑑𝑓

The above hardware relation is algebraically equivalent to the dynamical system expression when

𝑑𝑓 is 4, 𝑖𝑝1 is 1, 𝑖𝑝2 is (𝑑𝑣 − 1), and 𝑖𝑝3 is 1. I can substitute the following assignments into the

above hardware expression and derive the expression 𝑑𝑣−4 by applying algebraic rewrite rules:

1

(𝑑𝑣−1
1 + 1)4

= 𝑑𝑣−4

371

8.2.8 Applying the Unification to the Tableau

After the algorithm unifies the goal 𝑔 and relation 𝑟, LGraph applies the unification assignments 𝐴

to the starting tableau to derive a new tableau that solves the goal 𝑔 with the relation 𝑟:

typecheck(𝑔, 𝑟) unify(𝑔, 𝑟) = 𝐴

𝑟 = rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒) 𝐺′ = {goal(𝑖𝑝, 𝑖, 𝑑𝑒) | ⟨𝑖𝑝, 𝑑𝑒⟩ ∈ 𝐴}

𝑅′ = apply-rel(𝑟,𝐴,𝑅)

𝑉 𝑍 ′ = apply-vadp(𝑔, 𝑟, 𝐴, 𝑉 𝑍)

⟨{𝑔} ∪𝐺, {𝑟} ∪𝑅, 𝑉 𝑍⟩ → ⟨𝐺 ∪𝐺′, 𝑅′, 𝑉 𝑍 ′⟩

The transition relation extends the circuit fragment to include the unified hardware relation

(𝑉 𝑍 ′), augments the set of goals to include any input port assignments imposed by the unification

operation (𝐺′), and updates the set of relations to capture the effect of the unification on the analog

hardware (𝑅′). The apply-rels algorithm applies the unification to the starting tableau relations,

and the apply-vadp algorithm applies the unification to the starting vADP fragment.

The transition relation produces a new goal for each input port assignment in the set of unifi-

cation assignments 𝐴. Future → executions will resolve these goals to subcircuits which provide the

desired dynamical system expressions to each of these input ports.

8.2.9 Applying the Unification to the vADP

Algorithm 1 presents the algorithm for applying the unification to the tableau vADP. The apply-vadp

routine accepts, as input, the relation 𝑟 = rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒) and goal 𝑔 that were used in the uni-

fication procedure, and the set of port and data field assignments 𝐴 returned by the unification

procedure. It returns an updated vADP 𝑉 𝑍 ′ which specializes virtual block instance associated

with relation 𝑟 to implement the unification and connects it to the rest of the circuit.

The provided unifications configure the virtual block instance (block(𝑜𝑝), 𝑖) containing hard-

ware relation 𝑟 = rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒). The algorithm first identifies the any existing block configuration

statements in the vADP involving virtual block instance (block(𝑜𝑝), 𝑖). Lines 7-9 of the algorithm

identify the subset of vADP statements that configure the virtual block instance containing the

hardware relation 𝑟. The algorithm then identifies the subset of assignments in 𝐴 that map expres-

sions to block data fields. The compiler uses these assignments to configure the block. The derived

data field assignments 𝑋 and modes 𝑀 together configure the virtual block instance to implement

the required dynamics at output port 𝑜𝑝. If the vADP 𝑉 𝑍 already contains a configuration for the

virtual block instance (block(𝑜𝑝), 𝑖) associated with relation 𝑟, then it updates that configuration to

include the new data field assignments and modes (line 16). This updated configuration preserves

the dynamics of any other previously specialized output ports in the virtual block instance. Other-

372

Algorithm 1 Algorithm for applying unification assignments to vADP in tableau
(apply-vadp)
1: # g: the goal to solve
2: # r: the hardware relation to unify with the goal
3: # A: the port/data-field assignments returned by the unification algorithm
4: # VZ: the current vADP from the tableau
5: # returns: the updated vADP with the unification applied
6: function apply-vadp(𝑔, 𝑟, 𝐴,𝑉 𝑍)
7: let rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒) = 𝑟
8: let 𝑐𝑏 = block(𝑜𝑝)
9: let 𝑉 𝑍𝑐𝑜𝑛𝑓𝑖𝑔 = {vconfig(𝑐𝑏′, 𝑖′,𝑀 ′, 𝑋 ′) ∈ 𝑉 𝑍 | 𝑐𝑏′ = 𝑐𝑏 ∧ 𝑖 = 𝑖′}

10: let 𝑋 = {(𝑑𝑓, 𝑑𝑒) ∈ 𝐴}
11: let 𝑣𝑧 = match 𝑔 with
12: | goal(𝑑𝑣, 𝑑𝑒) -> vsource(𝑜𝑝, 𝑖, 𝑑𝑣)
13: | goal(𝑖𝑝, 𝑖′, 𝑑𝑒) -> vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖′)
14:
15: let 𝑣𝑧′ = match 𝑉 𝑍𝑐𝑜𝑛𝑓𝑖𝑔 with
16: | {vconfig(, ,𝑀 ′, 𝑋 ′)} -> vconfig(𝑐𝑏, 𝑖,𝑀 ∩𝑀 ′, 𝑋 ∪𝑋 ′)
17: | ∅ -> vconfig(𝑐𝑏, 𝑖,𝑀,𝑋)
18:
19: assert valid 𝑣𝑧′

20: return {𝑣𝑧, 𝑣𝑧′} ∪ (𝑉 𝑍/𝑉 𝑍𝑜𝑙𝑑)

wise, it creates a fresh vADP configuration statement which writes the data field assignments and

modes to the block instance (line 17). The algorithm also creates a vADP statement that links the

circuit encoded in the tableau vADP to the newly configured block (lines 11-13).

It may not be possible to specialize a block instance that another unification operation has

previously specialized. Line 19 tests the validity of the block configuration. An invalid vconfig

statement either has no valid modes (𝑀 is ∅) or maps a data field to two different values ((𝑑𝑓, 𝑒) ∈ 𝑋

and (𝑑𝑓, 𝑒′) ∈ 𝑋). Such configurations cannot be programmed to the device and are marked as

invalid. If the vconfig statement is invalid, the compiler cannot apply the unification to the tableau,

and the transition operation fails.

The algorithm then derives a vADP statement (𝑣𝑧′) which routes the signal at output port 𝑜𝑝

to where it is needed. If the target goal 𝑔 maps the dynamical system expression 𝑑𝑒 to the input

port 𝑖𝑝 of block instance block(𝑖𝑝, 𝑖′), it produces a vconn statement connecting output port 𝑜𝑝 to

the input port 𝑖𝑝. Note that the type-checking operation typecheck used earlier in the synthesis

procedure ensures that 𝑜𝑝 and 𝑖𝑝 work with signals of the same type. If the target goal 𝑔 maps the

dynamical system expression 𝑑𝑒 to a dynamical system variable 𝑑𝑣, it produces a vsource statement

which labels the output port 𝑜𝑝 with the dynamical system variable 𝑑𝑣.

373

Algorithm 2 Algorithm for applying unification assignments to available hardware
relations in tableau (apply-rel)
1: # r: The hardware relation used in the unification
2: # A: The port and data field assignments computed by the unification algorithm.
3: # R: The set of hardware relations from the tableau.
4: # returns an updated set of relations with the appropriate relations specialized.
5: function apply-rel(𝑟,𝐴,𝑅)
6: let rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒) = 𝑟
7: let 𝑐𝑏 = block(𝑜𝑝)
8: let 𝑅𝑜𝑙𝑑 = {rel(𝑜𝑝′, 𝑖′,𝑀 ′, ℎ𝑒′) ∈ 𝑅 | block(𝑜𝑝′) = 𝑐𝑏 ∧ 𝑖 = 𝑖′}
9: let 𝑅𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = {rel(𝑜𝑝′, 𝑖,𝑀 ′ ∩𝑀, sub(ℎ𝑒′, 𝐴)) | rel(𝑜𝑝′, 𝑖′,𝑀 ′, ℎ𝑒′) ∈ 𝑅𝑜𝑙𝑑 ∧𝑀 ′ ∩𝑀 ̸= ∅}

10: let 𝑖𝑙𝑎𝑡𝑒𝑠𝑡 = 𝑚𝑎𝑥({𝑖′ | rel(𝑜𝑝′, 𝑖′,𝑀 ′, ℎ𝑒′) ∈ 𝑅 ∧ 𝑐𝑏 = block(𝑜𝑝′)})
11: if 𝑖𝑙𝑎𝑡𝑒𝑠𝑡 == 𝑖 then
12: let 𝑖𝑛𝑒𝑤 = 𝑖𝑙𝑎𝑡𝑒𝑠𝑡 + 1
13: let 𝑅𝑛𝑒𝑤 = {rel(𝑜𝑝′, 𝑖𝑛𝑒𝑤, modes(𝑜𝑝, ℎ𝑒′), ℎ𝑒′) | 𝑜𝑝 ∈ 𝑂𝑃 ∧ block(𝑜𝑝) = 𝑐𝑏}
14: else
15: let 𝑅𝑛𝑒𝑤 = ∅
16: let 𝑅𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 = 𝑅/𝑅𝑜𝑙𝑑

17: return 𝑅𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 ∪𝑅𝑛𝑒𝑤 ∪𝑅𝑢𝑝𝑑𝑎𝑡𝑒𝑑

8.2.10 Applying the Unification to Tableau Relations

Algorithm 2 presents the algorithm for applying the unification to the tableau relations. The unifica-

tion application algorithm (apply-rel) updates the tableau relations to incorporate the unification

produced by the unify routine. The apply-rel(𝑟,𝐴,𝑅) routine accepts, as input, the relation which

was used in the unification procedure 𝑟 = rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒), the set of port and data field assignments

𝐴 returned by the unification procedure and the set of relations 𝑅 from the tableau. It returns an

updated set of hardware relations that incorporates the unification information. The returned set of

relations specializes the virtual block instance containing the provided hardware relation and adds

a fresh instance of the specialized block to replenish the partially (or fully) specialized relations.

The apply-rel function first identifies the set of relations 𝑅𝑜𝑙𝑑 that to the partially specialized

virtual block instance (block(𝑜𝑝), 𝑖) (line 6-8). It then further specializes the affected relations by

concretizing the associated hardware expression using the input port and data field assignments (𝐴)

and only allowing for modes that implement the selected relation 𝑟 (𝑀). If a relation is identified

as invalid, the compiler excludes it from the set of updated relations 𝑅𝑢𝑝𝑑𝑎𝑡𝑒𝑑 (line 9). A relation is

considered invalid if it contains no viable modes that implement both relations.

If the 𝑜𝑝 port belongs to a previously unused block (𝑖 equals 𝑖𝑚𝑎𝑥), the apply-rel algorithm

creates a new block of the same type and constructs a set of fresh relations for that block 𝑅𝑛𝑒𝑤

(lines 11-13). The algorithm first identifies if the selected relation 𝑟 belongs to the most recently

created virtual block instance of block 𝑐𝑏 (lines 10-11). If so, the algorithm creates a new virtual

block instance (𝑐𝑏, 𝑖𝑛𝑒𝑤) and adds the associated relations.

The compiler also includes any relations from the original relation set that are unaffected by the

374

(b,i)

df

op
A

op
B

ip
A

ip
B

ip
C

op
A
= df*ip

A
*ip

B

op
B
= df*ip

B
*ip

C

modes {m
A
,m

B
}

modes {m
B
,m

C
}

(b,i)

df

op
A

op
B

ip
A

ip
B

ip
C

X+Y Z

df=0.5
modes:

{m
A
,m

B
}

op
A
= 0.5*(X+Y)*Z

op
B
= 0.5*Z*ip

C

modes {m
A
,m

B
}

modes {m
B
}

Figure 8-1: Specialization of virtual block instance with multiple outputs

unification operation 𝑅𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 in the updated set of relations (line 16).

Illustrative Example

Figure 8-1 presents a a virtual block instance (𝑏, 𝑖) with multiple output ports before and after it

has been specialized by the unify routine. The virtual block instance has three input ports (𝑖𝑝𝐴,

𝑖𝑝𝐵 , 𝑖𝑝𝐶), one data field 𝑑𝑓 , three modes (𝑚𝐴,𝑚𝐵 , and 𝑚𝐶) and two output ports (𝑜𝑝𝐴,𝑜𝑝𝐵). The

𝑜𝑝𝐴 port implements 𝑑𝑓 · 𝑖𝑝𝐴 · 𝑖𝑝𝐵 when in mode 𝑚𝐴 or 𝑚𝐵 and 𝑜𝑝𝐵 implements 𝑑𝑓 · 𝑖𝑝𝐵 · 𝑖𝑝𝐶 when

(𝑏, 𝑖) is in mode 𝑚𝐵 or 𝑚𝐶 . Prior to unification, the set of tableau relations 𝑅 contains exactly two

relations, both of which are associated with this virtual block instance:

𝑟𝐴 = rel(𝑜𝑝𝐴, 𝑏, 𝑖, {𝑚𝐴,𝑚𝐵}, 𝑑𝑓 · 𝑖𝑝𝐴 · 𝑖𝑝𝐵)

𝑟𝐵 = rel(𝑜𝑝𝐵 , 𝑏, 𝑖, {𝑚𝐵 ,𝑚𝐶}, 𝑑𝑓 · 𝑖𝑝𝐵 · 𝑖𝑝𝐶)

Figure 8-1 presents the virtual block instance (𝑏, 𝑖) after the relation 𝑟𝐴 has been used to imple-

ment the expression 0.5 ·𝑑𝑣𝑍 · (𝑑𝑣𝑋 +𝑑𝑣𝑌). In this block, input port 𝑖𝑝𝐴 implements 𝑑𝑣𝑋 +𝑑𝑣𝑌 and

input port 𝑖𝑝𝐵 implements 𝑑𝑣𝑍 . The input port assignments are 𝐴 = {(𝑖𝑝𝐴, 𝑑𝑣𝑋+𝑑𝑣𝑌), (𝑖𝑝𝐵 , 𝑑𝑣𝑍)})

and the data field 𝑑𝑓 is assigned to 0.5 (𝑋 = {(𝑑𝑓, 0.5)}).

The apply-rel(𝑟𝐴, 𝑋,𝐴,𝑅) function removes any relations associated with the expended output

port 𝑜𝑝𝐴 (𝑟𝐴) and updates the relation 𝑟𝐵 so that it is consistent with the partially concretized virtual

block instance:

𝑟𝐵 = rel(𝑜𝑝𝐵 , 𝑏, 𝑖, {𝑚𝐵} , 0.5 · 𝑑𝑣𝑍 · 𝑖𝑝𝐶)

375

The relation 𝑟𝐴 places the block in mode 𝑚𝐴 or 𝑚𝐵 to deliver the desired expression at 𝑜𝑝𝐴. The

algorithm updates relation 𝑟𝐵 to only specify mode 𝑚𝐵 – the only mode that implements both 𝑟𝐴

and 𝑟𝐵 . Next, the algorithm concretizes 𝑟𝐵 ’s hardware expression using the input port assignments

and data field assignments.

The apply-rel routine ensures that the returned relation set contains exactly one fresh (pre-

viously unused) virtual block instance of each block kind. It therefore adds a fresh set of relations

(𝑟𝐴′ and 𝑟𝐵′) for a new instance 𝑖′ of block 𝑏 after updating 𝑟𝐵 in 𝑅:

𝑟𝐵 = rel(𝑜𝑝𝐵 , 𝑏, 𝑖, {𝑚𝐵}, 0.5 · 𝑑𝑣𝑍 · 𝑖𝑝𝐶)

𝑟𝐴′ = rel(𝑜𝑝𝐴, 𝑏, 𝑖′, {𝑚𝐴,𝑚𝐵}, 𝑑𝑓 · 𝑖𝑝𝐴 · 𝑖𝑝𝐵)

𝑟𝐵′ = rel(𝑜𝑝𝐵 , 𝑏, 𝑖′, {𝑚𝐵 ,𝑚𝐶}, 𝑑𝑓 · 𝑖𝑝𝐵 · 𝑖𝑝𝐶)

8.2.11 Putting it all Together

The inference rule presents the formalization the → unification transition below. This is the primary

rule the transition operator uses to build up the vADP:

typecheck(𝑔, 𝑟) unify(𝑔, 𝑟) = 𝐴

𝑟 = rel(𝑜𝑝, 𝑖,𝑀, ℎ𝑒) 𝐺′ = {goal(𝑖𝑝, 𝑖, 𝑑𝑒) | ⟨𝑖𝑝, 𝑑𝑒⟩ ∈ 𝐴}

𝑅′ = apply-rels(𝑟,𝐴,𝑅)

𝑉 𝑍 ′ = apply-vadp(𝑔, 𝑟, 𝐴, 𝑉 𝑍)

⟨{𝑔} ∪𝐺, {𝑟} ∪𝑅, 𝑉 𝑍⟩ → ⟨𝐺 ∪𝐺′, 𝑅′, 𝑉 𝑍 ′⟩

The → operator resolves trivial goals that map some input port 𝑖𝑝 to a dynamical system variable

𝑑𝑣 by inserting vsink statements into the vADP. This statement is later satisfied in the assembly

phase with an incoming signal of the same type carrying the requested dynamical system variable.

sigtype(𝑖𝑝) = 𝑠𝑡 𝑣𝑧 = vsink(𝑖𝑝, 𝑖, 𝑠𝑡, 𝑑𝑣)

⟨𝑔(𝑖𝑝, 𝑖, 𝑑𝑣) ∪𝐺,𝑅, 𝑉 𝑍⟩ → ⟨𝐺,𝑅, {𝑣𝑧} ∪ 𝑉 𝑍⟩

8.2.12 Computation with Physical Laws

Some analog devices perform computation by leveraging the physical behavior of a signal. For

example, many current-mode devices require developers use Kirchhoff’s law to add analog currents

together. These devices, therefore, do not provide compute blocks that perform addition. Kirchhoff’s

law states that at any point in a circuit, the sum of incoming currents equals the sum of outgoing

376

1 2

x

op

y

KIRCH

1 2

ip

z

current
A

current
A+B

current
B

x

op’

y

x

op

y

ip

z

x

op’

y3

A+B-(A+B) = 0

Figure 8-2: Kirchhoff’s law. (1) Illustration of the law. (2) Addition circuit before
simplification (3) Addition circuit after simplification

currents. Under this paradigm, two analog currents may be added together by routing them to the

same input port. Figure 8-2 presents a diagram illustrating how Kirchoff’s law works.

The compiler can produce circuits that leverage the physical laws governing the signal to perform

computation. Each physical law is encoded as a specialized relation that describes the physics of

the law. The synthesis algorithm populates the set of available relations in the tableau from both

compute blocks and physical laws. In the synthesis procedure, physical law relations are treated

differently from other relations in two key ways:

1. Physical Law Application: Each physical law may override how the unification is applied

to the vADP statements in the tableau (Section 8.2.9). These application procedures may

optionally introduce physical law variables (𝑙𝑣 ∈ 𝐿𝑎𝑤𝑉 𝑎𝑟𝑠) into the vADP which are later

resolved to virtual block instance and ports.

2. Physical Law Simplification: Each physical law provides a vADP simplification procedure

which eliminates all physical law variables from a target vADP.

A tableau physical law relation law(𝑙𝑣𝑎𝑝𝑝, 𝑖, 𝑒) is comprised of an expression 𝑒 over law variables,

an identifier 𝑖 that uniquely identifies the usage of the law, and a law variable 𝑙𝑣𝑎𝑝𝑝 that captures

the outgoing signal for the described law. Each law variable (𝑙𝑣) has an associated signal type.

The synthesizer applies the physical law-specific application procedure whenever it unifies a goal

with a physical law relation. It applies the simplification procedure to eliminate any law variables

before returning the synthesized vADP fragment. Because physical law computations do not require

dedicated hardware, they cannot be exhausted and always replenished in the tableau.

Illustrative Example: Kirchoff’s law

The LGraph synthesizer can perform addition computations by leveraging Kirchoff’s law. It imple-

ments Kirchhoff’s law with the following relation:

377

law(𝑙𝑣𝑘𝑖𝑟𝑐ℎ, 𝑖, 𝑙𝑣𝑘,1 + 𝑙𝑣𝑘,2)

The above relation describes a law variable 𝑙𝑣𝑘𝑖𝑟𝑐ℎ which implements the sum of two input law

variables. All the law variables work with signals of type current. In the following example, I

describe how the synthesis procedure uses Kirchhoff’s law to satisfy the goal goal(𝑖𝑝, 𝑖𝑖𝑛𝑝, 2 *𝑋 +

4 * 𝑌).

The synthesizer unifies Kirchhoff’s law with the goal. This produces the subgoals 𝑙𝑣𝑘,1 = 2 *𝑋

and 𝑙𝑣𝑘,2 = 4 * 𝑌 and adds the following vADP statement to the vADP:

vconn(𝑙𝑣𝑘𝑖𝑟𝑐ℎ, 𝑖, 𝑖𝑝, 𝑖𝑖𝑛𝑝)

The above vADP connection statement forwards the signal after Kirchhoff’s law is applied to

the goal’s input port. A fresh relation implementing Kirchhoff’s law is also added back into the

tableau. The synthesis procedure continues until it identifies a solved tableau. The solved tableau’s

vADP will contain a set of statements involving the first invocation of Kirchhoff’s law:

vconn(𝑙𝑣𝑘𝑖𝑟𝑐ℎ, 𝑖, 𝑖𝑝, 𝑖𝑖𝑛𝑝) vconn(𝑜𝑝1, 𝑖1, 𝑙𝑣𝑘,1, 𝑖) vconn(𝑜𝑝2, 𝑖2, 𝑙𝑣𝑘,2, 𝑖)

The above vADP fragment uses Kirchhoff’s law to calculate the sum of the signals at (𝑜𝑝, 𝑖′ and

(𝑜𝑝′, 𝑖′′) to input port (𝑖𝑝, 𝑖′′′). All the involved law variables reference the 𝑖𝑡ℎ usage of Kirchhoff’s

law. LGraph applies the law’s simplification algorithm to eliminate any law variables from the vADP:

vconn(𝑜𝑝1, 𝑖1, 𝑖𝑝, 𝑖𝑖𝑛𝑝) vconn(𝑜𝑝2, 𝑖2, 𝑖𝑝, 𝑖𝑖𝑛𝑝)

The above vADP fragment performs addition by directly connecting both outputs to the input

port (𝑖𝑝, 𝑖𝑖𝑛𝑝). The associated simplification algorithm effectively translates a usage of Kirchhoff’s

law to a circuit structure.

378

8.2.13 Search Algorithm

Algorithm 3 vADP fragment synthesis search algorithm
1: # 𝑡0: Initial tableau containing dynamical system relation.
2: # returns the vADP fragment which implements the dynamical system relation
3: function search(𝑡0)
4: 𝑇𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = {𝑡0}
5: while 𝑇𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ̸= ∅ do
6: 𝑡 = {⟨𝐺,𝑅, 𝑉 𝑍⟩}=choose(𝑇𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟, 1)
7: if 𝐺 ̸= ∅ then
8: 𝑇 = choose({𝑡′ | 𝑡 → 𝑡′}, 𝑛)
9: 𝑇𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = (𝑇𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟/{𝑡}) ∪ 𝑇

10: else
11: return VZ
12: return no solution

Algorithm 3 presents the search algorithm employed by the circuit synthesis procedure (LGraph).

The algorithm explores the search space defined by the tableau transition relation →. It maintains

a set of tableau configurations 𝑇𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 at the frontier of the explored space. At each step, the

algorithm chooses a tableau configuration 𝑡 : ⟨𝐺,𝑅, 𝑉 𝑍⟩ ∈ 𝑇𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 to explore. If all of the goals in

the chosen tableau 𝑡 = ⟨𝐺,𝑅, 𝑉 𝑍⟩ have been solved (i.e., 𝐺 = ∅), the algorithm returns the tableau

vADP fragment 𝑉 𝑍. Otherwise, it selects a subset 𝑇 of the set of tableau configurations directly

reachable from 𝑡 under → and replaces 𝑡 in 𝑇𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 with 𝑇 . The decisions that LGraph makes when

it chooses a tableau configuration 𝑡 (line 6) and selects a subset 𝑇 of new tableaus to explore (line

8) have a significant impact on the effectiveness of the search algorithm.

Choosing 𝑡: In line 6, LGraph applies a heuristic designed to find the tableau configuration 𝑡 that

is closest to being solved. This heuristic scores each tableau configuration based on the maximum

complexity of the remaining goals. The tableau selection heuristic chooses the tableau 𝑡 with the

smallest score.

Selecting 𝑇 : LGraph prioritizes solving goals 𝑔 ∈ 𝐺 which have fewer algebraic operators. LGraph

therefore applies the unification algorithm to the least complex goal in the tableau. LGraph repeat-

edly applies the tableau transition rule → to tableau 𝑡 to obtain 𝑇 , a set of derived tableaus. If any

of the goals are unsolvable, LGraph sets 𝑇 = ∅, effectively pruning the entire search subspace rooted

at 𝑡. The rationale is that the unsolvable trivial goal ensures that the pruned subspace contains no

solved tableau configurations.

The → operator may generate a large number of tableau configurations. To maintain the

tractability of the search algorithm, the current LGraph implementation discards generated tableau

configurations so that 𝑇 contains, at most, 𝑛 tableau configurations from each explored 𝑟 and 𝑔

combination.

Search Depth: The depth of the search procedure is technically bounded as there are a limited

number of instances of each block to use. However, in practice, it may take a long time to explore the

379

space. For this reason, our algorithm accepts a maximum depth. This maximum depth restriction

imposes an upper limit on how many goals the search algorithm should solve before giving up.

8.2.14 Synthesis Optimizations

LGraph implements several extensions to the synthesis procedure that enables the formation of more

sophisticated circuits. I summarize these extensions below:

Resource Limitations: LGraph reasons about resource limitations when synthesizing vADP as-

sembly fragments LGraph does not produce relations for a fresh virtual block instance if the tableau

vADP has already exhausted all the block instances available on the analog device. Similarly,

LGraph will reject transitions that connect ports that cannot be connected together in hardware.

Short-circuit Detection: LGraph detects tableau vADPs that contain cycles and eliminates such

tableaus from the search space. This is done because the behavior of cycles between stateless

compute blocks in analog hardware is not well-defined. In some situations, forming such a cycle

may introduce a short circuit and damage the hardware. The compiler allows for cycles if the cycle

contains at least one stateful integrator block.

8.3 Assembly

The assembly procedure builds a complete vADP circuit from a set of vADP fragments which

each implement a dynamical system variable. The complete vADP circuit models all the dynamical

system variables in the dynamical system and has fulfilled all the vsink statements in the circuit.

I refer to a vsink statement as fulfilled if the associated input port is connected to an output

port carrying a signal of the desired type that implements the desired expression. The assembly

procedure works with signals implemented dynamical system variables and expressions. A circuit

signal 𝑠 ∈ 𝑆𝑖𝑔𝑛𝑎𝑙𝑠 = 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑦𝑝𝑒 × 𝐷𝑆𝐸𝑥𝑝𝑟𝑠 implements a dynamical system expression with a

physical circuit property. The assembly procedure operates in three phases:

1. Circuit Collation: This stage collates together the vADP fragments generated by the

synthesis compilation pass to form a disconnected circuit that implements all dynamical

system variables in the dynamical system.

2. Assembly Fragment Synthesis: This stage produces a set of vADP fragments that satisfy

all the vsink statements in the disconnected vADP. For each dynamical system variable,

this stage synthesizes an assembly fragment that accepts, as input, a signal implementing

this variable and produces, as output, a collection of signals which fulfill a subset of vsink

statements.

380

3. Circuit Completion: This stage completes the disconnected vADP by integrating the

generated assembly fragments into the circuit. The resulting completed vADP has no vsink

statements left, as the integrated assembly fragments have fulfilled them.

8.3.1 Circuit Collation

For each dynamical system variable, the collation procedure accepts as input a set of vADP frag-

ments which implement the dynamics of that variable. Each synthesized fragment contains a single

vsource statement implementing the dynamical system variable and any number of vsink state-

ments which indicate where certain signals are needed in the fragment. Section 8.2 describes the

synthesis compilation pass in detail.

The collation procedure nondeterministically selects a vADP fragment for each dynamical sys-

tem variable and collates these fragments together to form a disconnected circuit. Each dynamical

system variable is uniquely implemented by one vsource statement in the resulting disconnected

circuit. The collation procedure re-assigns block identifiers when merging these fragments to pre-

vent identifier collisions. It produces as output a disconnected vADP made up of fragments that

implement the dynamical system.

8.3.2 Assembly Fragment Synthesis Overview

For each dynamical system variable 𝑑𝑣, the assembly fragment synthesis procedure (AFSP) produces

a vADP assembly fragment 𝑉 𝑍𝑎𝑠𝑚,𝑑𝑣. It accepts as input a signal implementing 𝑑𝑣 – the vsource

statement from the disconnected circuit fulfills this signal. The assembly fragment produces a

collection of signals that fulfill vsink statements in the disconnected circuit. The body of the

fragment is made up of assembly blocks 𝑥𝑏 ∈ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝑠 that transform and copy the input

signal to implement the desired output signals and statements. Note the compiler must copy analog

currents (signals of type current) to use them multiple times.

The following subsection describes the assembly fragment synthesis procedure for a dynamical

system variable 𝑑𝑣. The fragment synthesis procedure operates in two stages:

1. Interface Elicitation: The AFSP first infers the interface (input and output signals) for

the assembly fragment from the disconnected vADP. All produced assembly fragments must

implement this interface. The type of the signal tells the compiler what kind of signal should

be used to implement the expression.

2. Fragment Generation: The AFSP then generates one or more assembly fragments that im-

plement the inferred input-output signal interface. Each fragment contains a vsink statement

381

that accepts the input signal identified in the interface elicitation step and a set of vsource

statements that implement the output signals identified in the interface elicitation step.

8.3.3 AFSP Interface Elicitation

The AFSP interface elicitation algorithm accepts as input a dynamical system variable 𝑑𝑣 to assemble

and derives the input-output interface (sources and sinks) for the assembly fragment must implement

to bridge the ports in the disconnected circuit. The interface elicitation algorithm analyzes the

disconnected circuit vADP𝑑𝑖𝑠𝑐𝑜𝑛𝑛 to identify the input-output interface of the fragment. The input

interface is a single signal 𝑠𝑖𝑛 and the output interface is a multiset of signals 𝑀𝑠, ...

Recall that in the disconnected circuit, each dynamical system variable is implemented at exactly

one output port. The vADP identifies the output port which implements some dynamical system

variable 𝑑𝑣 with a vsource statement. The AFSP must only produce fragments which can accept

this signal as input – this is the input interface (𝑠𝑠𝑟𝑐) of the assembly fragment:

𝑠𝑠𝑟𝑐 = element(multi([[⟨sigtype(𝑜𝑝), 𝑑𝑣⟩ | vsource(𝑜𝑝, 𝑖, 𝑑𝑣) ∈ vADP𝑑𝑖𝑠𝑐𝑜𝑛𝑛]]))

It first identifies the vsource(𝑜𝑝, 𝑖, 𝑑𝑣) statement in the disconnected vadp (vADP𝑑𝑖𝑠𝑐𝑜𝑛𝑛) which

implements the target dynamical system variable 𝑑𝑣. The signal at the identified output port 𝑜𝑝 will

be provided as input to the assembly fragment. The produced assembly fragment must therefore

accept a signal of type sigtype(𝑜𝑝) implementing 𝑑𝑣 – this is the only input provided to the assembly

fragment. The source signal elicitation operation always succeeds because the disconnected vADP

contains exactly one vADP fragment which implements each dv.

The AFSP next collects all the vsink statements in the disconnected vADP which are functions

of the dynamical system variable 𝑑𝑣. All of these statements must be fulfilled by the produced

assembly fragment as they cannot be fulfilled by manipulating a signal which implements a different

dynamical system variable. The AFSP derives a multiset of signals which describe the output

interface of the produced fragment:

𝑀𝑠𝑖𝑛𝑘𝑠 = dedup(multi([[⟨sigtype(𝑖𝑝), 𝑑𝑒⟩ | vsink(𝑖𝑝, 𝑖, 𝑑𝑒) ∈ 𝑉 𝑍𝑑𝑖𝑠𝑐𝑜𝑛𝑛 ∧ vars(𝑑𝑒) = {𝑑𝑣}]]))

It identifies each sink statement vsink(𝑖𝑝, 𝑖, 𝑑𝑒) in the disconnected vadp (vADP𝑑𝑖𝑠𝑐𝑜𝑛𝑛) which

requires a signal that is a function of 𝑑𝑣. For each of these statements, the produced assembly frag-

ment must generate a signal of the same type sigtype(𝑖𝑝) that implements the required expression

𝑑𝑒. Some analog signals (e.g. voltage and digital) signals can be routed to multiple places. The

382

dedup consolidates voltage and digital signals which can be used multiple times into a multiset

element with cardinality one.

Signal Consolidation (dedup): The dedup function de-duplicates multiple occurances of voltage

and digital signals in the multiset:

∀⟨𝑠𝑡, 𝑑𝑒⟩ ∈ 𝑆𝑖𝑔𝑛𝑎𝑙𝑠, dedup(𝑀)⟨𝑠𝑡, 𝑑𝑒⟩ = 𝑀⟨𝑠𝑡, 𝑑𝑒⟩ if 𝑠𝑡 = current else 1

The function reduces the count for all digital and voltage signals to one and leaves analog

current signals intact. The algorithm must preserve the multiplicity of analog currents because

they cannot be used more than once and must therefore be copied to be used in multiple places.

8.3.4 AFSP Fragment Generation

The fragment generation procedure synthesizes the assembly fragment that implements the input-

output interface inferred in the previous step. It accepts as input the derived interface (𝑠𝑠𝑟𝑐 =

⟨𝑠𝑡𝑠𝑟𝑐, 𝑑𝑣⟩ and 𝑀𝑠𝑖𝑛𝑘𝑠) and a set of assembly blocks 𝑋𝐵 ⊆ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝑠. It produces as output

a vADP fragment, made up of assembly blocks, that implements the desired interface.

The AFSP internally works with a library of automatically derived concrete assembly blocks

(𝐶𝑋𝐵𝑙𝑖𝑏). I formalize the space of concrete assembly blocks below:

𝑐𝑥𝑏 ∈ 𝐶𝑜𝑛𝑐𝐴𝑠𝑚𝐵𝑙𝑜𝑐𝑘𝑠 = 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝑠×𝑀𝑜𝑑𝑒𝑠× 𝑆𝑖𝑔𝑛𝑎𝑙𝑠× P(𝑆𝑖𝑔𝑛𝑎𝑙𝑠)

Each concrete assembly block 𝑐𝑥𝑏 has a fixed mode and accepts a single input signal implement-

ing 𝑑𝑣. Assembly blocks may only have one input and may not have any data fields (see Section 5.5).

Each concrete block produces a multiset of signals at its output ports. Because concrete assembly

blocks are fully specialized, the fragment generation procedure is much simpler than the synthesis

phase described in Section 8.2. The assembly procedure, therefore, does not make use of algebraic

unification or tableau-based synthesis algorithms introduced in Section 8.2 to construct assembly

fragments.

The AFSP first organizes concrete blocks into sequentially organized levels. These levels loosely

capture the general structure of the assembly fragment. Each level 𝑖 is described as a multiset of

concrete blocks (𝑀𝑙𝑣,𝑖) and an input-output interface implemented as multisets of input and output

signals (𝑀𝑖𝑛,𝑖 and 𝑀𝑜𝑢𝑡,𝑖). These level inputs and outputs directly map to the signals at the input

and output ports of the concrete blocks in the level. A sequence of levels is well-formed if the

following properties hold:

Implements Input Interface: The input interface of the topmost level (𝑀𝑖𝑛,0) contains exactly

383

one signal element(𝑀𝑖𝑛,0) = {𝑠𝑠𝑟𝑐}. This property ensures the fragment implements the input

interface elicited in the previous step.

Internally Consistent: The AFSP ensures each level’s outputs contain the signals required by

the next level’s input interface. Given an interior level 𝑖, the signals the input interface of the

interior level 𝑀𝑖𝑛,𝑖 must be satisfied with the signals at the output interfaces of the parent levels

𝑀𝑜𝑢𝑡,0..𝑀𝑜𝑢𝑡,𝑖−1. The output interface signals used to satisfy the input interface of an interior level

𝑖 are referred to as bound signals. Each pair of levels 𝑖 and 𝑗 is associated with a multiset of

bound signals 𝑀𝑏𝑛𝑑,𝑖,𝑗 which contains all the signals routed from level 𝑖 to level 𝑗. The structure is

consistent if the following holds:

dedup(𝑀𝑖𝑛,𝑖) ⊆ dedup(
⋃︁

𝑗=0...𝑖−1

𝑀𝑏𝑛𝑑,𝑖,𝑗)

The input interface of a fragment level 𝑖 is considered satisfied if the multiset of signals from

preceding levels to level 𝑖 includes the signals at the input interface. The input interface of level 𝑖

only needs one copy of a signal if it is a voltage or a digital signal since the compiler can reuse

these signals multiple times. The dedup invocation reduces the count of any voltage and digital

signals to one. Any signals within a level 𝑗 which are not provided to a child level are considered

free signals (𝑀𝑓𝑟𝑒𝑒,𝑗).

Implements Output Interface: The unused signals in the assembly fragment must implement

the output interface elicited in the interface elicitation step:

𝑀𝑠𝑖𝑛𝑘𝑠 ⊆
⋃︁

𝑖∈0...𝑛

𝑀𝑓𝑟𝑒𝑒,𝑖

The multiset of all free variables in the assembly fragment must include the collection of output

signals required at the output interface of the fragment.

The AFSP translates the assembly fragment structure into a vADP fragment, inserting vADP

connections, sources, and sinks when necessary. The AFSP is always able to generate a vADP

fragment implementing the provided interface from this structure. Because the input tree structure

ensures that each input signal at each tree level 𝑖 is satisfied by an output signal on a parent level,

the vADP translation procedure does not need to introduce any unexpected vADP signal sinks.

Because the tree structure is guaranteed to implement all the required signals as free signals, the pro-

duced vADP generates the vADP signal sources necessary to bridge fragments in the disconnected

circuit.

384

Algorithm 4 Algorithm for building corpus of concrete assembly blocks
1: # xb: Assembly block to concretize.
2: # 𝑠𝑠𝑟𝑐: Input signal provided to assembly block.
3: # returns a collection of concrete assembly blocks which accept 𝑠𝑠𝑟𝑐 as input
4: function BuildConcBlock(𝑥𝑏,𝑠𝑠𝑟𝑐)
5: ⟨𝑠𝑡𝑠𝑟𝑐, 𝑑𝑣𝑠𝑟𝑐⟩ = 𝑠𝑠𝑟𝑐
6: for {𝑚 ∈ 𝑀𝑜𝑑𝑒𝑠 | 𝑚 ∈ modes(𝑥𝑏)} do
7: 𝑀 = 0
8: 𝑖𝑝 = 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛({𝑖𝑝 ∈ 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 | block(𝑖𝑝) = 𝑥𝑏})
9: 𝑠𝑡𝑖𝑛 = sigtype(𝑖𝑝)

10: for {𝑜𝑝 ∈ 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 | block(𝑜𝑝) = 𝑥𝑏} do
11: 𝑑𝑒 = portexpr(𝑜𝑝,𝑚)[𝑖𝑝/𝑑𝑣𝑠𝑟𝑐]
12: 𝑠𝑡 = sigtype(𝑜𝑝)
13: 𝑀 = 𝑀 ∪ ⟨𝑠𝑡, 𝑑𝑒⟩1

14: generate ⟨𝑥𝑏,𝑚, ⟨𝑠𝑡𝑖𝑛, 𝑑𝑣𝑠𝑟𝑐⟩,𝑀⟩

Concrete Assembly Block Generation

The AFSP pre-computes the library of concrete assembly blocks 𝑐𝑥𝑏𝑙𝑖𝑏 from the set of assembly

blocks 𝑋𝐵. Algorithm 4 presents the algorithm which translates an assembly block into a set of

concrete assembly blocks. The algorithm accepts as input the assembly block to process (𝑥𝑏) and the

signal (𝑠𝑠𝑟𝑐) expected at the input interface of the fragment. This signal implements the dynamical

system variable 𝑑𝑣𝑠𝑟𝑐 with a signal of type 𝑠𝑡𝑠𝑟𝑐.

The algorithm then generates a concrete assembly block for each mode in the block (lines 6-14).

Each concrete assembly block is defined as a tuple containing the corresponding ADS assembly

block (𝑥𝑏), the selected mode, the signal accepted at the input port, and the multiset of signals

implemented the block output ports when 𝑑𝑣𝑠𝑟𝑐 is supplied as input (line 14). The algorithm

identifies the type of the signal (𝑠𝑡𝑖𝑛) accepted at the input port in lines 8-9 and selects the block

mode in line 6.

The algorithm derives the multiset of output signals (𝑀) implemented at the assembly block’s

output ports in lines 10-13. The algorithm derives the concretized dynamics and type of the signal

at each output port (lines 11-12). The signal dynamics and signal type fully identify the signal

implemented at the output port. The algorithm derives the concretized dynamics by first applying

the selected mode and then substituting all occurrences of the input port with the input dynamical

system variable (𝑑𝑣𝑠𝑟𝑐).

Tree Structure Generation

The tree structure generation algorithm accepts as input a library of concrete assembly blocks

𝐶𝑋𝐵𝑙𝑖𝑏 and the elicited input-output interface of the fragment (𝑠𝑠𝑟𝑐 and 𝑀𝑠𝑖𝑛𝑘𝑠). It produces, as

output, a sequence of levels that capture the levels in the tree. This tree structure is nondetermin-

istically generated. The topmost level accepts as input the input interface signal 𝑠𝑠𝑟𝑐. For all other

385

levels, the level’s inputs are satisfied by a subset of the preceding levels’ outputs. The tree structure

produces at its output interface a multiset of freely available signals that satisfy the multiset of

provided required signals 𝑀𝑠𝑖𝑛𝑘𝑠.

Feasability: The AFSP determines if it is possible to implement a collection of signals (𝑀) with

the available concrete block library:

feas(𝐶𝑋𝐵𝑙𝑖𝑏,𝑀) = 𝑆𝑢𝑝𝑝 𝑀 ⊆ 𝑆𝑢𝑝𝑝
⋃︁

𝑀 ′∈𝑆𝑖𝑔𝑠

𝑀 ′ where 𝑆𝑖𝑔𝑠 = {𝑀 ′ | ⟨𝑥𝑏,𝑚, 𝑠′,𝑀 ′⟩ ∈ 𝐶𝑋𝐵𝑙𝑖𝑏}

For a collection of signals to be feasible, the AFSP must be able to find at least one concrete

block which implements each signal in the block library. Therefore the support of the signal multiset

𝑀 must be a subset of the support of the multiset describing all of the concrete block library output

signals.

General Approach The tree generation algorithm recursively builds up the tree structure from

the bottom-most level. The compiler initially invokes the algorithm with the multiset of signals that

the output interface of the fragment must implement (𝑀𝑠𝑖𝑛𝑘𝑠). These signals eventually become the

free signals in the produced fragment. This procedure uses the BuildLevel routine to generate a

candidate level that implements the provided output signals. The BuildLevel routine accepts as

input a library of concrete assembly blocks and a sequence of signals to implement and returns a

candidate level that implements the provided signals.

The algorithm then restructures this single candidate level into multiple levels with the Re-

structureLevel routine to minimize the number of input signals required at the topmost level.

This routine takes a target level and its required inputs as arguments. It returns a sequence of

multiple levels and the multiset of required inputs for the topmost level. The returned multi-level

sequence is the restructured, multi-level structure.

Note that this section describes a simplified version of the approach utilized by the compiler. The

implemented approach produces multiple assembly fragments and uses versions of the BuildLevel

and RestructureLevel routines which return multiple candidate levels and structures.

386

Algorithm 5 Assembly tree structure generation algorithm
1: # CXB: Concrete assembly block library.
2: # 𝑠𝑠𝑟𝑐: Input signal provided to assembly fragment structure.
3: # 𝑀𝑟𝑒𝑞: Multiset of required output signals.
4: # returns assembly fragment structure
5: procedure BuildTreeStructure(𝐶𝑋𝐵𝑙𝑖𝑏,𝑠𝑠𝑟𝑐,𝑀𝑟𝑒𝑞)
6: if ¬feas(𝐶𝑋𝐵𝑙𝑖𝑏,𝑀𝑟𝑒𝑞) then return
7: 𝑀𝑙𝑣 = BuildLevel(𝐶𝑋𝐵𝑙𝑖𝑏,𝑀𝑟𝑒𝑞)
8: ⟨𝑀𝑖𝑛,0, [[𝑀𝑙𝑣,0, ...,𝑀𝑙𝑣,𝑘]]⟩ = RestructureLevel(𝑀𝑟𝑒𝑞,𝑀𝑙𝑣)
9: if 𝑀𝑖𝑛,0 = 𝑠1𝑠𝑟𝑐 then

10: generate [[𝑀𝑙𝑣,0, ...,𝑀𝑙𝑣,𝑘]]
11: else
12: 𝑝𝑎𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙𝑠 = BuildTreeStructure(𝐶𝑋𝐵𝑙𝑖𝑏,𝑠𝑠𝑟𝑐,𝑀𝑖𝑛,0)
13: generate 𝑝𝑎𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙𝑠+ [[𝑀𝑙𝑣,0, ...,𝑀𝑙𝑣,𝑘]]

BuildTreeStructure Routine: Algorithm 5 presents the tree structure generation algorithm.

The algorithm first derives a level that implements all the required signals (𝑀𝑟𝑒𝑞) and restructures

the produced level into multiple levels (𝑀𝑙𝑣,0...𝑀𝑙𝑣,𝑘) to minimize the number of required input

signals (lines 3-4). It then checks to see if the input signals of the first restructured level (𝑀𝑙𝑣,0)

matches the input interface for the fragment. If the topmost level implements the input interface,

then the tree structure is complete, and the algorithm returns the produced levels (lines 9-19).

If the topmost level does not implement the provided interface, then the the algorithm recursively

generates a parent tree structure that implements the signals required by the topmost level of the

derived structure. This recursive call produces a parent tree structure (𝑝𝑎𝑟𝑒𝑛𝑡𝐿𝑒𝑣𝑒𝑙𝑠) which includes

the multiset of freely available signals 𝑀𝑖𝑛,0. The structure generation algorithm uses these signals

to satisfy the input interface of the first restructured level 𝑀𝑙𝑣,0 of the multi-level structure. The

algorithm joins the parent structure with the derived multi-level structure to produce the full tree

structure (line 13).

Algorithm 6 Assembly tree level generation algorithm
1: # CXB: Concrete assembly block library.
2: # 𝑀𝑟𝑒𝑞: Multiset of required output signals.
3: # returns assembly fragment structure
4: function BuildLevel(𝐶𝑋𝐵𝑙𝑖𝑏,𝑀𝑟𝑒𝑞)
5: if 𝑀𝑟𝑒𝑞 = 0 then return []
6: 𝑐𝑥𝑏 = ⟨𝑥𝑏,𝑚, 𝑠,𝑀⟩ = getBest(𝐶𝑋𝐵𝑙𝑖𝑏,𝑀𝑟𝑒𝑞)
7: 𝑀 ′

𝑟𝑒𝑞 = 𝑀𝑟𝑒𝑞 −𝑀
8: 𝑀𝑙𝑣 =BuildLevel(𝐶𝑋𝐵𝑙𝑖𝑏,𝑀 ′

𝑟𝑒𝑞)
9: generate 𝑐𝑥𝑏1 ∪𝑀𝑙𝑣

BuildLevel Routine: Algorithm 6 presents the BuildLevel routine. The BuildLevel routine

accepts a concrete block library 𝐶𝑋𝐵𝑙𝑖𝑏 and a multiset of free signals to implement 𝑀𝑟𝑒𝑞 as output

signals. The routine returns a single level (sequence of concrete assembly blocks) as output.

387

The algorithm first selects the best concrete assembly block 𝑐𝑥𝑏 in the block library using the

getBest function. The getBest function returns the concrete block which implements the most

output signals. It then computes an updated collection of required free signals 𝑀 ′
𝑟𝑒𝑞𝑠 which exclude

the outputs implemented by the selected concrete block. It then recursively invokes BuildLevel

on remaining outputs to populate the rest of the level.

Algorithm 7 Level restructuring algorithm
1: # CXB: Concrete assembly block library.
2: # 𝑀𝑟𝑒𝑞𝑠: Free output signals to preserve. A multiset of signals.
3: # 𝑀𝑙𝑣: Level to restructure. A multiset of concrete assembly blocks.
4: # returns the multiset of input signals required by the restructured levels and the restructured

levels (as a sequence of concrete assembly block multisets)
5: function RestructureLevel(𝑀𝑟𝑒𝑞𝑠,𝑀𝑙𝑣)
6: 𝑀𝑖𝑛𝑠,𝑀𝑜𝑢𝑡𝑠 = 0, 0
7: for ⟨𝑥𝑏,𝑚, 𝑠,𝑀⟩𝑛 ∈ 𝑀𝑙𝑣 do
8: 𝑀𝑖𝑛𝑠 = 𝑀𝑖𝑛𝑠 ∪ 𝑠𝑛

9: for 𝑘 ∈ 0...𝑛 do
10: 𝑀𝑜𝑢𝑡𝑠 = 𝑀𝑜𝑢𝑡𝑠 ∪𝑀

11: [[𝑀𝑙𝑣,0, ...,𝑀𝑙𝑣,𝑘]]= Restruct(𝑀𝑖𝑛𝑠,𝑀𝑜𝑢𝑡𝑠,𝑀𝑟𝑒𝑞𝑠,𝑀𝑙𝑣)
12: 𝑀 ′

𝑖𝑛𝑠 = 0
13: for ⟨𝑥𝑏,𝑚, 𝑠,𝑀⟩𝑛 in 𝑀𝑙𝑣,0

14: 𝑀 ′
𝑖𝑛𝑠 = 𝑀 ′

𝑖𝑛𝑠 ∪ 𝑠𝑛

15:
16: return 𝑀 ′

𝑖𝑛𝑠, [𝑀𝑙𝑣,0, ...,𝑀𝑙𝑣,𝑘]

RestructureLevel Routine: Algorithm 7 presents the high-level algorithm for restructuring a

tree level. The level restructuring routine accepts as input a single level of concrete assembly blocks

and the multiset of required free output signals which the restructured levels must produce. The

routine then restructures the concrete assembly blocks into multiple levels to reduce the number of

signals required at the topmost level.

The algorithm first derives the input and output signals that describe the input-output interface

for the provided level (lines 6-10). It then restructures the level using the Restruct helper function.

This function accepts the level inputs and outputs, the level itself, and the required multiset of output

signals. It produces a multi-level structure which the required output signals as free signals. The

algorithm then derives the multiset of inputs required at the topmost level (𝑀𝑖𝑛𝑠) from the structure.

It returns both the structure and the new multiset of required input signals.

388

Algorithm 8 Level restructuring helper function
1: # 𝑀𝑖𝑛𝑠: Multiset of level input signals.
2: # 𝑀𝑖𝑛𝑠: Multiset of level output signals.
3: # 𝑀𝑟𝑒𝑞𝑠: Multiset of free output signals to implement in the restructured levels.
4: # 𝑀𝑙𝑣: Level to restructure. A multiset of concrete assembly blocks.
5: # returns the rearranged multi-level assembly structure as a sequence of assembly structure

levels (concrete assembly block multisets).
6: procedure Restruct(𝑀𝑖𝑛𝑠,𝑀𝑜𝑢𝑡𝑠,𝑀𝑟𝑒𝑞𝑠,𝑀𝑙𝑣)
7: if | 𝑙𝑒𝑣𝑒𝑙 |= 0 then return [[[[]]]]

8: ⟨𝑀𝑠𝑒𝑙, 𝑐𝑥𝑏𝑟𝑜𝑜𝑡⟩= bestRoot(𝑙𝑒𝑣𝑒𝑙,𝑀𝑟𝑒𝑞𝑠,𝑀𝑖𝑛𝑠)
9: 𝑀 ′

𝑙𝑣 = 𝑀𝑙𝑣 − 𝑐𝑥𝑏1𝑟𝑜𝑜𝑡
10: 𝑀 ′

𝑖𝑛𝑠 = 𝑀𝑖𝑛𝑠 −𝑀𝑠𝑒𝑙

11: 𝑀 ′
𝑜𝑢𝑡𝑠 = 𝑀𝑜𝑢𝑡𝑠 −𝑀𝑠𝑒𝑙

12: assert 𝑀𝑟𝑒𝑞𝑠 ⊆ 𝑀 ′
𝑜𝑢𝑡𝑠

13: [𝑀𝑙𝑣,0,𝑀𝑙𝑣,1, ...]= Restruct(𝑀 ′
𝑖𝑛𝑠,𝑀 ′

𝑜𝑢𝑡𝑠,𝑀𝑟𝑒𝑞𝑠, 𝑀 ′
𝑙𝑣)

14: 𝑀 ′
𝑙𝑣,0 = 𝑟𝑜𝑜𝑡1

15: 𝑀 ′
𝑙𝑣,1 = 0

16: for 𝑐𝑥𝑏𝑛𝑐ℎ𝑙 in 𝑀𝑙𝑣,0

17: for 𝑘 ∈ 0...𝑛 do
18: ⟨𝑥𝑏,𝑚, 𝑠,𝑀⟩ = 𝑐𝑥𝑏𝑐ℎ𝑙
19: if 𝑠 ∈ 𝑆𝑢𝑝𝑝 𝑀𝑠𝑒𝑙 then
20: 𝑀 ′

𝑙𝑣,1 = 𝑀 ′
𝑙𝑣,1 ∪ 𝑐𝑥𝑏1𝑐ℎ𝑙

21: 𝑀𝑠𝑒𝑙 = 𝑀𝑠𝑒𝑙 − 𝑠1

22: else
23: 𝑀 ′

𝑙𝑣,0 = 𝑀 ′
𝑙𝑣,0 ∪ 𝑐𝑥𝑏1𝑐ℎ𝑙

24:
25: return [[𝑀 ′

𝑙𝑣,0,𝑀
′
𝑙𝑣,1,𝑀𝑙𝑣,1, ...]]

Restruct Routine: Algorithm 8 presents the algorithm implemented by the Restruct helper

function. This helper function is responsible for deriving a multi-level structure from a flat level. It

accepts as input a multiset of level input signals 𝑀𝑖𝑛𝑠, a multiset of level output signals 𝑀𝑜𝑢𝑡𝑠, the

level to restructure, and a multiset of free output signals 𝑀𝑟𝑒𝑞 required at the level output interface.

The algorithm first selects a root block from the set of assembly blocks in the level. The algorithm

uses the output signals produced by the selected block to satisfy the input signals required by the

other concrete assembly blocks contained in this level. The algorithm uses the bestRoot function to

select the block to move up to a higher level (line 8). The bestRoot function identifies the concrete

assembly block whose outputs cover the most level inputs (𝑀𝑖𝑛𝑠).

The bestRoot function returns both the concrete assembly block (𝑐𝑥𝑏𝑟𝑜𝑜𝑡) and the subset of

the selected block’s output signals to use when restructuring the level (𝑀𝑠𝑒𝑙). The algorithm uses

the selected signals to satisfy the input interfaces of a subset of concrete assembly blocks within

the new multi-level structure. Because the selected output signals will be internal to the multi-level

structure, they will no longer be accessible at either the input or output interface. The algorithm

removes the selected signals from the multiset of input signals required at the level’s input interface

and from the multiset of free signals at the level’s output interface (lines 10 and 11). The algorithm

389

[+p,-p,-p,-p,-p]TDE
reqs

FAN0

x

z0 z1

+p +p

+p

FAN1

x

z0 z1

+p -p

+p

FAN2

x

z0 z1

+p -p

+p

FAN3

x

z0 z1

-p -p

+p

Le
v
el

1

FAN0

x

z0 z1

+p +p

+p

FAN1

x

z0 z1

+p -p

+p

FAN2

x

z0 z1

+p -p

+p

FAN3

x

z0 z1

-p -p

+p

Le
v
el

2

r1

FAN2

x

z0 z1

+p -p

+p

FAN1

x

z0 z1

+p -p

+p

FAN3

x

z0 z1

-p -p

+p

L
e
v
el

r2

FAN1

x

z0 z1

+p -p

+p

FAN3

x

z0 z1

-p -p

+p

L
e
v
el

r3

FAN3

x

z0 z1

-p -p

+pr4

L
ev
e
l
0

3

r4

FAN3

x

z0 z1

-p -p

+p

L
ev
e
l
0r3

FAN3

x

z0 z1

-p -p

+p

FAN1

x

z0 z1

+p -p

+p

r2

 L
e
ve
l

0

Le
ve
l

1

FAN2

x

z0 z1

+p -p

+p

FAN3

x

z0 z1

-p -p

+p

FAN1

x

z0 z1

+p -p

+p
r1

Le

ve
l

1
Le

ve
l
 2

FAN2

x

z0 z1

+p -p

+p

FAN3

x

z0 z1

-p -p

+p

FAN1

x

z0 z1

+p -p

+p
L
ev
e
l
0

FAN0

x

z0 z1

+p +p

+p

Figure 8-3: Example invocation of tree restructuring algorithm. All signals are of the
same type and the modes are omitted.

also updates the provided level to exclude the selected root block (line 9).

The algorithm then recursively calls the Restruct routine with these new multisets of external

inputs and outputs to derive the substructure which implements the remaining nodes (line 13). It

then creates a new structure where the selected root block is at the topmost (1st) level (𝑀 ′
𝑙𝑣,0) and

that block’s children are at the next (2nd) level (𝑀 ′
𝑙𝑣,1). It sorts all the blocks at the topmost level of

the derived substructure (𝑀𝑙𝑣,0) into either the topmost level or the second level (lines 16-23). For

each target block, the algorithm tests if the block’s input can be satisfied with one of the selected

outputs from the root node. If the target block’s input matches one of the selected outputs, the

compiler adds the block to the second level. If the algorithm cannot satisfy the input interface of

the target block with one of the selected signals, it adds the block to the topmost level.

Illustrative Example: Figure 8-3 presents an example execution of the restructuring algo-

rithm. This algorithm starts with a single level of concrete assembly blocks that implement the

required signals. It produces a multi-level structure of rearranged concrete assembly blocks that

implement the required signals while requiring fewer outputs.

1. This execution starts with a flat level of four concrete FAN blocks which together implement

four negative copies and three positive copies of 𝑝. The compiler requires all negative copies

of 𝑝 and one positive copy of 𝑝 to be implemented as free signals in the restructured struc-

390

ture. This constraint ensures the produced structure produces the signals required to bridge

fragments in the disconnected circuit.

2. The algorithm recursively decomposes the input level by repeatedly selecting root blocks and

output signals from the level. The algorithm first chooses the FAN0 block (r1). This block is

chosen first because it produces two positive copies of 𝑝 – the compiler can use these copies

to satisfy two signals at the level input interface without dipping into the required signals.

The algorithm next chooses the FAN2 block (r2). The FAN2 block produces one positive copy

of 𝑝 that can be used to resolve one level input. At this point, the algorithm cannot select

any more block outputs without drawing from the multiset of required signals. The algorithm

chooses FAN1 first, and FAN3 second (r3 and r4). The algorithm does not select any signals for

either block since doing so would cause the new structure to fail to implement the required

signals at the output interface.

3. The algorithm then builds the multi-level structure by successively adding each selected block.

It first returns a single-level structure comprised of a single FAN3 block (r4). The algorithm

then adds the FAN1 block to the structure (r3). Because the FAN1 block has no selected

signals, the algorithm adds the FAN3 block to the same level as the FAN1 block. Next, the

algorithm adds the FAN2 block to the structure (r2). Because the FAN2 block has one selected

positive copy of 𝑝, either the FAN3 and FAN1 block can be placed underneath FAN2. The

resulting structure has two levels, an upper level with FAN2 and FAN1 blocks and a lower level

with a FAN3 block. Finally, the algorithm adds the FAN0 block to the structure (r1). The

algorithm has previously selected two positive copies of 𝑝 for this block. The algorithm uses

these positive copies of 𝑝 as input signals for both the FAN2 and FAN1 blocks.

The resulting structure has three levels, accepts one positive copy of 𝑝, and produces one positive

copy of 𝑝 and four negative copies of 𝑝 as free signals. The derived structure internally uses three

positive copies of 𝑝.

Translation to vADP (TreeToVADP)

Algorithm 9 presents the vADP translation algorithm. This algorithm translates the derive assembly

fragment structure to a vADP fragment. The vADP translation routine accepts as input a tree

structure (levels) and returns a vADP fragment which implements the tree structure.

This algorithm works with sets of output port signals 𝑜𝑠 ∈ 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑆𝑖𝑔𝑛𝑎𝑙𝑠 = 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠×

N× 𝑆𝑖𝑔𝑛𝑎𝑙𝑠. The algorithm iterates over the sequence of levels starting with the topmost level. At

each level, it generates vconfig statements that configure the assembly blocks. If the target level

is the topmost level, then the algorithm produces a vsink statement for each assembly block input.

This vsink statement defines the input interface of the fragment. The assembly fragment generation

391

Algorithm 9 vADP translation algorithm
1: # levels: Assembly fragment structure. A sequence of concrete assembly block multisets.
2: # returns a vADP fragment which implements the provided assembly fragment structure.
3: function LevelsToVADP(levels)
4: let 𝑂𝑆𝑓𝑟𝑒𝑒 = ∅
5: for 𝑀𝑙𝑣,𝑖 in 𝑙𝑒𝑣𝑒𝑙𝑠 do
6: let 𝑂𝑆𝑜𝑢𝑡𝑠,𝑖 = ∅
7: for ⟨𝑥𝑏,𝑚, 𝑠,𝑀⟩𝑛 in 𝑀𝑙𝑣,𝑖 do
8: for 𝑘 ∈ 0...𝑛 do
9: let ⟨𝑠𝑡, 𝑑𝑒⟩ = 𝑠

10: let 𝑖𝑛𝑒𝑤 = fresh-id(𝑥𝑏)
11: let 𝑖𝑝 = 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛({𝑖𝑝 ∈ 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 | block(𝑖𝑝) = 𝑥𝑏})
12: let 𝑂𝑆 = {⟨𝑜𝑝, 𝑖𝑛𝑒𝑤, ⟨sigtype(𝑜𝑝), portexpr(𝑚, 𝑜𝑝)[𝑖𝑝/𝑑𝑒]⟩⟩ | block(𝑜𝑝) = 𝑥𝑏}
13: let 𝑂𝑆𝑜𝑢𝑡𝑠,𝑖 = 𝑂𝑆𝑜𝑢𝑡𝑠,𝑖 ∪𝑂𝑆
14: generate vconfig(𝑥𝑏, 𝑖𝑛𝑒𝑤, {𝑚}, ∅)
15: if 𝑖 = 0 then
16: assert | 𝑀𝑙𝑣,𝑖 |== 1
17: generate vsink(𝑖𝑝, 𝑖𝑛𝑒𝑤, 𝑑𝑒)
18: else
19: let ⟨𝑜𝑝, 𝑖, 𝑠′⟩ = SelectFreeOutputPort(𝑂𝑆𝑓𝑟𝑒𝑒,𝑠)
20: let 𝑂𝑆𝑓𝑟𝑒𝑒 = 𝑂𝑆𝑓𝑟𝑒𝑒/⟨𝑜𝑝, 𝑖, 𝑠′⟩
21: generate vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖𝑛𝑒𝑤)
22: let 𝑂𝑆𝑓𝑟𝑒𝑒 = 𝑂𝑆𝑓𝑟𝑒𝑒 ∪𝑂𝑆𝑜𝑢𝑡𝑠,𝑖

23: for ⟨𝑜𝑝, 𝑖, ⟨𝑠𝑡, 𝑑𝑒⟩⟩ ∈ 𝑂𝑆𝑓𝑟𝑒𝑒 do
24: generate vsource(𝑜𝑝, 𝑖, 𝑑𝑒)

procedure guarantees the input interface of the produced fragment has exactly one vsink statement

that accepts the input signal 𝑠𝑠𝑟𝑐.

If the target level is an interior level, then the algorithm inserts vconn statements that route

free signals from the preceding levels to where they are needed in the current level. The algorithm

maintains a set of output ports with freely available outputs (𝑂𝑆𝑓𝑟𝑒𝑒). For each assembly block

𝑥𝑏 requiring signal 𝑠, the algorithm selects an output port that implements 𝑠 from the set of freely

available output ports. The SelectFreeOutputPort function invocation nondeterministically

chooses a free output port from 𝑂𝑆𝑓𝑟𝑒𝑒 which implements the desired signal and returns the chosen

output port. The chosen output port becomes the starting port in the vconn statement. After each

level is processed, the algorithm adds all the output ports from the level to the set of freely available

outputs. The algorithm must perform this operation after all of the concrete assembly blocks in the

level have been processed to avoid introducing cycles into the vADP fragment.

After processing all the levels, the algorithm translates any remaining free output ports to

vsource statements. The assembly fragment generation procedure guarantees that these output

ports implement the signals required at the output interface of the fragment.

Selecting a Free Output Port: Algorithm 10 presents the algorithm for selecting a free output

port. The algorithm accepts as input a set of freely available output port signals and the target

392

Algorithm 10 vADP output signal selection algorithm
1: # 𝑂𝑆𝑓𝑟𝑒𝑒: The set of unused (free) output port signals
2: # 𝑠: The target output signal.
3: # returns the chosen output port signal and the set of remaining free signals.
4: function SelectFreeOutputPort(𝑂𝑆𝑓𝑟𝑒𝑒,𝑠)
5: let ⟨𝑠𝑡, 𝑑𝑒⟩ = 𝑠
6: let {𝑜𝑠} = choose({⟨𝑜𝑝, 𝑖, 𝑠′⟩ ∈ 𝑂𝑆𝑓𝑟𝑒𝑒 | 𝑠′ = 𝑠}, 1)
7: if 𝑠𝑡 = digital ∨ 𝑠𝑡 = voltage then return 𝑜𝑠,𝑂𝑆𝑓𝑟𝑒𝑒

8: else
9: return 𝑜𝑠,𝑂𝑆𝑓𝑟𝑒𝑒/{𝑠𝑖𝑔}

signal. The algorithm returns the chosen output port signal and the set of remaining free output

port signals.

The algorithm nondeterministically chooses an output port signal from the set of free output

signals which implement the signal 𝑠 (line 6). If the output port implements an analog current,

the algorithm removes the output port from the set of free output ports. This step is necessary

because analog currents may only be used once. If the output port implements an analog voltage

or a digital signal, then it is kept in the set of free output ports. The algorithm can use analog

voltages and digital signals more than once since routing such signals to multiple places does not

compromise the fidelity of the signals.

393

8.3.5 Assembly Fragment Integration

The compiler generates an assembly fragment 𝑉 𝑍𝑎𝑠𝑚,𝑑𝑣 for each dynamical system variable 𝑑𝑣 in

the target dynamical system. The compiler integrates each assembly fragment into the disconnected

circuit (𝑉 𝑍𝑑𝑖𝑠𝑐𝑜𝑛𝑛). The assembly fragment integration procedure links disparate subcircuits to-

gether and resolves vsink statements in the disconnected circuit. After the integration procedure,

the vADP is fully connected and has no vsink statements left.

Algorithm 11 vADP assembly fragment integration algorithm
𝑉 𝑍𝑎𝑠𝑚: vADP assembly fragment
𝑉 𝑍𝑑𝑖𝑠𝑐𝑜𝑛𝑛: disconnected vADP
returns a vADP assembly fragment which integrates the provided assembly fragment.
function IntegrateFragment(𝑉 𝑍𝑎𝑠𝑚, 𝑉 𝑍𝑑𝑖𝑠𝑐𝑜𝑛𝑛)

let vsink(𝑖𝑝, 𝑖, 𝑑𝑣) = 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛({vsink(𝑖𝑝, 𝑖, 𝑑𝑒) ∈ 𝑉 𝑍𝑎𝑠𝑚 | 𝑑𝑒 = 𝑑𝑣})
let vsource(𝑜𝑝, 𝑖′, 𝑑𝑣′) = 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛({vsource(𝑜𝑝, 𝑖, 𝑑𝑣) ∈ 𝑉 𝑍𝑑𝑖𝑠𝑐𝑜𝑛𝑛 | 𝑑𝑒 = 𝑑𝑣})
for 𝑣𝑧 ∈ 𝑉 𝑍𝑎𝑠𝑚/{vsink(𝑖𝑝, 𝑖′, 𝑑𝑣)} do

generate 𝑣𝑧

generate vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖)
let sinks = {vsink(𝑖𝑝, 𝑖, 𝑑𝑒) ∈ 𝑉 𝑍𝑑𝑖𝑠𝑐𝑜𝑛𝑛 | vars(𝑑𝑒) = {𝑑𝑣}}
let srcs = {vsource(𝑜𝑝, 𝑖, 𝑑𝑒) ∈ 𝑉 𝑍𝑎𝑠𝑚}
for 𝑣𝑧 ∈ 𝑉 𝑍𝑑𝑖𝑠𝑐𝑜𝑛𝑛/𝑠𝑖𝑛𝑘𝑠 do

generate 𝑣𝑧

for vsink(𝑖𝑝, 𝑖, 𝑑𝑒) in 𝑠𝑖𝑛𝑘𝑠 do
let vsource(𝑜𝑝, 𝑖, 𝑑𝑒′), 𝑠𝑟𝑐𝑠 = 𝑠𝑒𝑙𝑒𝑐𝑡𝐹𝑟𝑒𝑒𝑉 𝐴𝐷𝑃𝑆𝑜𝑢𝑟𝑐𝑒(𝑠𝑟𝑐𝑠, sigtype(𝑖𝑝), 𝑑𝑒)
generate vconn(𝑜𝑝, 𝑖′, 𝑖𝑝, 𝑖)

Algorithm 11 presents the algorithm for integrating an assembly fragment into the disconnected

circuit. The integration algorithm accepts as input the disconnected circuit and the assembly frag-

ment to integrate. It returns the vADP with the integrated assembly fragment as output.

The algorithm first identifies the relevant vsource and vsink statements in the disconnected

vADP. This step is identical to the procedure used to identify the source and sink signals in the

interface elicitation step (Section 8.3.3). It first identifies the vsource statement in the disconnected

vADP which implements the target dynamical system variable 𝑑𝑣 (vsource(𝑜𝑝, 𝑖, 𝑑𝑣)). The AFSP

guarantees that the assembly fragment contains a single vsink statement which accepts a signal of

type sigtype(𝑜𝑝) implementing 𝑑𝑣 – the exact signal produced by the identified vsource statement.

The algorithm inserts a vconn which connects the identified source and sink statements. At this

point, the identified vsink statement is satisfied and can be excluded from the generated vADP.

Next, the algorithm identifies all the vsink statements in the disconnected circuit that must be

satisfied by the target assembly fragment. It then identifies a vsource statement in the assembly

fragment for each vsink statement in the disconnected circuit and produces a vconn statement

bridging the identified source and sink. The selectVADPSource function nondeterministically chooses

a vsource statement which implements the signal required by the vsink statement and updates the

394

list of free vADP sources (𝑠𝑟𝑐𝑠) if necessary. The vADP returned by the integration procedure

contains no sink statements involving the dynamical system variable 𝑑𝑣.

Algorithm 12 VADP source signal selection algorithm
1: # free: set of free vsource statements
2: # st: type of target signal.
3: # de: dynamical system expression implemented by target signal.
4: # returns the chosen vsource statement and the updated set of unused (free) vsource state-

ments
5: procedure SelectFreeVADPSource(𝑓𝑟𝑒𝑒,𝑠𝑡,𝑑𝑒)
6: let {𝑠𝑖𝑔} = choose({vsource(𝑜𝑝, 𝑖, 𝑑𝑒′) ∈ 𝑓𝑟𝑒𝑒 | 𝑑𝑒′ = 𝑑𝑒 ∧ sigtype(𝑜𝑝) = 𝑠𝑡}, 1)
7: if 𝑠𝑡 = digital ∨ 𝑠𝑡 = voltage then return 𝑠𝑖𝑔, 𝑓𝑟𝑒𝑒
8: elsereturn 𝑠𝑖𝑔, 𝑓𝑟𝑒𝑒/{𝑠𝑖𝑔}

Selecting a Free vsource: Algorithm 12 presents the vADP signal selection algorithm. Given a

set of unused (free) vsourcestatements and the desired signal, the algorithm nondeterministically

selects a free vsource statement which implements the signal:

The algorithm nondeterministically chooses an output port that implements the desired dynam-

ical system expression using a signal of the desired type is from the set of free vADP sources (line

6). If the output port implements an analog current, then it is removed from the set of free vADP

sources. This step is necessary because analog currents may only be used once. If the output port

implements an analog voltage or a digital signal, then it is kept in the set of free vADP sources.

Because the compiler can use such signals more than once, the signals are not removed from the set

of free sources after the algorithm chooses them.

8.4 Place and Route

The place and route (P+R) stage of compilation maps vADP block instances ⟨𝑏, 𝑖⟩ to block loca-

tions 𝑙 ∈ 𝐿𝑜𝑐𝑠, inserting route blocks 𝑟𝑏 ∈ 𝑅𝑜𝑢𝑡𝑒𝐵𝑙𝑜𝑐𝑘𝑠 as necessary. The place and route procedure

accepts as input the completed vADP and the device layout specification from the ADS (see Sec-

tion 5.5). The place and route procedure resolves all virtual block instances to locations on the

hardware and maps connections to sequences of digitally programmable interconnects available in

hardware. It produces an analog device program that implements the completed vADP on the

target hardware.

8.4.1 Placement

LGraph incorporates a spatially aware placement algorithm that places interconnected blocks close

to each other in the device. It incrementally resolves the location of each block in the circuit

by assigning it to spatial locations in increasingly specific views. Recall the hardware specification

395

organizes the device into sequentially organized spatial views [[1...𝑖...𝑛]]. Each view contains multiple

spatial locations that capture spatial regions where blocks are co-located on the analog device. The

spatial locations on the most specific view (𝑛) are the unique block locations that identify block

instances.

The placement algorithm breaks down the block placement problem into several smaller, more

manageable block placement problems (BPPs). The algorithm incrementally refines the spatial

location of each block instance by placing it at a location in each view. The algorithm first solves

the BPP for the most general (root) view. It then iteratively solves the BPP for each subsequent

view, using the location assignments for the parent view as restricting assignments for the BPP. If

the algorithm cannot find a set of satisfying assignments for a view, the algorithm backtracks and

finds alternate assignments for a parent view. Note that this algorithm doesn’t need to backtrack

often, as early placement decisions assign blocks to larger structures in the device that are difficult

to connect together. The produced location assignments place densely connected sets of blocks

within the same spatial region of the chip. This placement strategy is desirable as analog device

micro-architectures typically prioritize providing programmable connections between blocks that are

spatially co-located.

Note that the placement algorithm takes longer assigning locations to vADPs that implement

large dynamical systems where variables are used many times. The placement algorithm must

densely pack the blocks at every view in these systems to avoid exhausting the available route

blocks. As a result, the algorithm has to backtrack more often, causing performance degradations.

Block Placement Problem (BPP)

The block placement problem (BPP) is an integer linear programming problem that assigns virtual

block instances from a vADP to locations in a target spatial view 𝑠𝑣, subject to a set of restricting

spatial location assignments for the preceding view. The BPP nondeterministically produces a set

of satisfying spatial location assignments which are consistent with the restricting assignments and

respect the block instance and connectivity limitations imposed by the ADS. A set of assignments

is consistent if each assigned location is a child of its respective restricting location.

The BPP is made up of a collection of constraints over binary membership variables [110]. The

BPP contains three types of binary membership variables:

∙ Instance Variables: Instance variables b-inst(𝑏, 𝑖, 𝑠𝑙𝑠𝑣) assign vADP block instances to

locations in the view. The location assignments are derived from the set of enabled (set to 1)

instance variables.

∙ Path Variables: Path variables b-path(vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖′), 𝑖𝑑) assign vADP connections to

distinct paths on the device. Each BPP path is associated with a starting block location

396

(𝑏, 𝑠𝑙𝑠𝑣), ending block location (𝑏′, 𝑠𝑙′𝑠𝑣) (where 𝑏, 𝑏′ ∈ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝐵𝑙𝑜𝑐𝑘𝑠 ∪ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵𝑙𝑜𝑐𝑘𝑠).

Each path may directly connect two blocks or indirectly route the signal through a set of

route block locations {(𝑟𝑏, 𝑠𝑙𝑠𝑣) ∈ 𝑆𝑝𝑎𝑡𝐵𝑙𝑜𝑐𝑘𝐼𝑛𝑠𝑡𝑠𝑣 | 𝑟𝑏 ∈ 𝑅𝐵}.

The BPP only models paths between distinct locations because analog devices typically pro-

vide fewer connections between spatially distant blocks (blocks assigned to different locations)

than spatially co-located blocks (blocks assigned to the same location). This simplification

reduces the complexity of the vADP while still producing a set of routable placements.

∙ Route Block Variables: Route block variables b-rb(𝑖𝑑, 𝑟𝑏, 𝑠𝑙𝑠𝑣) assign route block locations

to path identifiers 𝑖𝑑. If a BPP path contains one or more route blocks, then the route block

variables for that path are enabled. The BPP uses these variables to ensure that the same

route block isn’t used for multiple distinct paths.

8.4.2 Routing

The routing algorithm maps connections in the vADP to paths in the ADS. Each path contains

one or more digitally programmable connections that are linked together with route blocks. For

each connection, the routing algorithm assigns a candidate path that implements the connection.

After each path assignment, the algorithm removes any intersecting paths from the set of candidate

paths. If no viable candidate paths are left, the algorithm backtracks and selects a different path

assignment for an earlier connection. This lightweight algorithm is often able to find satisfying

routing solutions because the BPPs solved during placement encode coarse-grain routing restrictions

into the placement problem.

8.4.3 Block Placement Problem Generation

The BPP solver generates a block placement problem for a spatial view 𝑠𝑣 from the input vADP,

the ADS, and a set of restricting assignments 𝐵𝐿𝑠𝑣−1. It produces a set of BPP constraints, that

when solved with an ILP solver, produce a set of spatial location assignments that meet the criteria

outlined in Section 8.4.1. The generated constraints are described below:

Block-Location Assignment : Each block instance in the vADP is assigned to exactly one location

in the spatial view. For example, given a block configuration statement vconfig(𝑏, 𝑖,𝑀,𝐴), the sum

of all BPP instance assignments must equal exactly one:

∑︁
𝑠𝑙𝑠𝑣

b-inst(𝑏, 𝑖, 𝑠𝑙𝑠𝑣) = 1 (8.1)

Block Availability : The number of block instances mapped to each location in the ADS does not

exceed the available number of blocks at that location. For example the block 𝑏 at location 𝑠𝑙𝑠𝑣 in

397

view 𝑠𝑣 has | {𝑠𝑙𝑛 | spat-member(𝑠𝑙𝑛, 𝑠𝑙𝑠𝑝𝑎𝑡𝑣𝑖𝑒𝑤)} | block instances at the most specific view on the

chip. Therefore, the sum of all BPP instance assignments involving 𝑠𝑙𝑠𝑣 must be less than or equal

to the total number of available instances:

∑︁
𝑖

b-inst(𝑏, 𝑖, 𝑠𝑙𝑠𝑝𝑎𝑡𝑣𝑖𝑒𝑤) ≤| {𝑠𝑙𝑛 | spat-member(𝑠𝑙𝑛, 𝑠𝑙𝑠𝑝𝑎𝑡𝑣𝑖𝑒𝑤)} | (8.2)

Path Assignment : Each vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖′) statement must be assigned to exactly one path on the

analog device:

∑︁
𝑖𝑑

b-path(vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖′), 𝑖𝑑) = 1 (8.3)

Note that the BPP only encodes path assignments which bridge the vconn input and output blocks.

In the above example, it will only consider paths which connect block(𝑜𝑝) blocks to block(𝑖𝑝)

blocks.

Block Instance Consistency : Each path assignment must be consistent with the instance as-

signments made to the source and destination virtual block instances. For example, if a vADP

connection vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖′) is assigned to a BPP path 𝑖𝑑 which connects (block(𝑜𝑝), 𝑠𝑙𝑠𝑣) to

(block(𝑖𝑝), 𝑠𝑙′𝑠𝑣), then the virtual block instances must be assigned the to the appropriate block

locations:

b-path(vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖′), 𝑖𝑑) = b-inst(block(𝑜𝑝), 𝑖, 𝑠𝑙𝑠𝑣) ∧ b-inst(block(𝑖𝑝), 𝑖′, 𝑠𝑙′𝑠𝑣) (8.4)

Route Block Utilization : Each path assignment must utilize all the route blocks which appear in

the path. For example, if BPP path with identifier 𝑖𝑑 is in use, each route block location (𝑟𝑏, 𝑠𝑙𝑠𝑣)

which appears on the path must marked as enabled:

∑︁
vconn(𝑜𝑝,𝑖,𝑖𝑝,𝑖′)

b-path(vconn(𝑜𝑝, 𝑖, 𝑖𝑝, 𝑖′), 𝑖𝑑) = b-rb(𝑖𝑑, 𝑟𝑏, 𝑠𝑙𝑠𝑣) (8.5)

Route Block Availability : Each route block may only be used once. A route block 𝑟𝑏 at location

𝑠𝑙𝑠𝑣 must have at most one route block assignment active at a time:

∑︁
𝑖𝑑

b-rb(𝑖𝑑, 𝑟𝑏, 𝑠𝑙𝑠𝑣) ≤ 1 (8.6)

This constraint ensures that no two utilized indirect paths intersect.

Restricting Assignments: If a block has a restricting location assignment, the block can only be

assigned to child locations of the restricting location in the target view. If some virtual block instance

(𝑏, 𝑖) has been previously assigned to location 𝑠𝑙𝑠𝑣−1 by a preceding block placement operation, it

398

can only be assigned to spatial locations which are contained by 𝑠𝑙𝑠𝑣−1.

∑︁
𝑠𝑙𝑠𝑣

b-inst(𝑏, 𝑖𝑑𝑒𝑛𝑡, 𝑠𝑙𝑠𝑣) = 0 if ¬spat-member(𝑠𝑙𝑠𝑣, 𝑠𝑙𝑠𝑣−1) (8.7)

8.4.4 Place and Route Algorithm

The place and route algorithm operates by progressively assigning a location 𝑠𝑙𝑠𝑣 to each virtual

block instance (𝑏, 𝑖) for each spatial view 1...𝑠𝑣..𝑛. Given a spatial view 𝑠𝑣, each block-location

assignment 𝑏𝑙𝑠𝑣 consists of a virtual block instance (block and identifier) and a spatial location – a

tuple of integers – belonging to spatial view 𝑠𝑣:

𝑏𝑙𝑠𝑣 ∈ 𝐵𝑙𝑜𝑐𝑘𝐿𝑜𝑐𝐴𝑠𝑠𝑖𝑔𝑛𝑠𝑠𝑣 = 𝐵𝑙𝑜𝑐𝑘𝑠× N× 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑠𝑠𝑣

I use the notation 𝐵𝐿𝑠𝑣 to refer to a set of block-location assignments for spatial view 𝑠𝑣.

Algorithm 13 Place and route algorithm
𝑠𝑣: Current spatial view to assign blocks to.
𝑉 𝑍: The vADP to map to the hardware.
𝐵𝐿𝑠𝑣−1: The set of spatial location assignments from the previous spatial view.
returns a set of ADPs which implement the vADP on the target hardware.
function PlaceAndRoute((𝑠𝑣,𝑉 𝑍,𝐵𝐿𝑠𝑣−1))

if 𝑠𝑣 − 1 = 𝑛 then
generate Route(𝐵𝐿𝑠𝑣,𝑉 𝑍)

else
for 𝐵𝐿𝑠𝑣 ∈ SolveBPP(𝑠𝑣,𝑉 𝑍,𝐵𝐿𝑠𝑣−1) do

for 𝑍 ∈ PlaceAndRoute(𝑠𝑣 + 1,𝑉 𝑍,𝐵𝐿𝑠𝑣) do
generate 𝑍

Algorithm 13 presents the place and route algorithm. The algorithm accepts as input a vADP

to process, a spatial view 𝑠𝑣 to target, and a set of block-location assignments 𝐵𝐿𝑠𝑣−1 made to the

preceding view. It produces multiple analog device programs 𝑍 that implement the provided vADP

on the analog hardware.

If the preceding view (𝑠𝑣 − 1) is the most specific view in the analog device, the algorithm

translates the vADP to an ADP using the assignments made to the preceding view. Otherwise,

the placement algorithm solves a block placement problem to compute the set of block-location

assignments for spatial view 𝑠𝑣. The SolveBPP function solves the block placement problem for the

view, given the set of restricting spatial location assignments 𝐵𝐿𝑠𝑣−1. It then recursively calls on

PlaceAndRoute to complete the assignment process for subsequent views for each set of computed

block-location assignments 𝐵𝐿𝑠𝑣.

399

8.5 Conclusion

In this chapter, I presented a rigorous description of the circuit synthesis pass. The circuit synthesis

pass of compilation synthesizes an analog circuit comprised of configured blocks that implement a

target dynamical system. This compilation pass works with an idealized abstraction of the hardware

platform and does not consider any low-level physical effects and physical behaviors present in

the device. The circuit synthesis pass takes, as input, an analog device specification (ADS) and

a dynamical system specification (DSS). It returns an analog device program that implements

the provided dynamical system on the analog device described in the ADS. The circuit internally

works with a virtual analog device program (vADP) representation that supports defining circuit

fragments. The vADP representation identifies blocks with numerical identifiers instead of device

locations.

I first introduce all of the necessary notation for accessing information from the ADS and DSS

and present the mathematical constructs for defining ADPs and vADPs. I also introduce notation

for non-deterministic operators, multisets, mathematical expressions, and variable assignments. I

then describe each step of circuit synthesis using this notation.

Fragment Synthesis: The circuit synthesis pass first synthesizes a collection of vADP fragments

which each implement a target dynamical system relation. This step of synthesis accepts as input

the analog device specification and the dynamical system relation to implement and produces a

set of vADP fragments that implement the dynamical system relation as output. Each produced

vADP fragment routes together a collection of configured analog compute blocks together to form a

partial circuit. The fragment synthesis procedure annotates the vADP fragment’s input and output

interface with signal sink and source annotations, respectively. The fragment synthesis procedure

employs a tableau-based synthesis algorithm to construct fragments. Each tableau contains a set of

goals, a set of available hardware relations, and the vADP currently being derived. The algorithm

begins with an initial tableau containing and repeatedly derives tableaus from this starting tableau

until it identifies a solved tableau. The fragment synthesis procedure returns the vADP from the

solved tableau.

The synthesis algorithm uses the tableau transition (→) operator to derive a new tableau from a

seed tableau. The tableau transition operator selects a compatible goal and hardware relation from

the tableau and then unifies the goal with the hardware relation to derive a block configuration that

solves the goal with the selected hardware relation. The unification algorithm derives a set of port-

and data field assignments that render the hardware relation algebraically equivalent to the chosen

goal when substituted into the hardware relation. The unification algorithm makes use of a computer

algebra system to identify non-trivial unifications. The transition operator then updates the tableau

vADP, goals, and hardware relations to reflect the results of the unification. After describing the

400

basic operation of the fragment synthesis procedure, I describe the extension to fragment synthesis

that enables the compiler to use physical laws such as Kirchoff’s law to perform computation.

Assembly: The circuit synthesis pass then assembles together the vADP fragments to form a

completed circuit. The assembly procedure first selects a vADP fragment that implements each dy-

namical system relation and collates the fragments together to form a disconnected circuit comprised

of circuit fragments. The assembly procedure synthesizes vADP fragments comprised of assembly

blocks that interface between disconnected vADP fragments in the disconnected circuit. The as-

sembly procedure employs a specialized form of fragment synthesis which specifically targets copier

and conversion blocks, which do not implement complex computations. The assembly procedure

first identifies the input-output interface for the assembly fragment by analyzing the disconnected

circuit. It then produces assembly fragments that implement the derived input-output interface.

The compiler produces assembly fragments in two stages – the compiler first produces a sketch of

the assembly fragment, called the assembly fragment structure, that captures the general topology

of the fragment. The compiler then translates the fragment structure into a vADP fragment – the

vADP fragments are integrated into the disconnected vADP to produce a fully connected vADP

that implements the dynamical system.

Place+Route: The circuit synthesis pass then maps vADP block instances to locations on the

analog device, inserting route blocks when necessary. The place+route procedure accepts a fully

connected vADP as input and produces an ADP as output. The place+route procedure frames the

mapping problem as a series of integer linear programming problems. Each integer linear program-

ming problem maps the blocks in the vADP to increasingly fine-grained structures (spatial locations)

on the device. The placement procedure leverages the insight that, in reconfigurable analog devices,

there are typically fewer connections between coarse-grained structures than fine-grained structures.

Coarse-grained structures also contain more blocks of each type than fine-grained structures since

fine-grained structures are enclosed in coarse-grained structures.

I introduce the block placement problem, an ILP problem that encodes the block availability and

routing constraints present within the hardware. The block placement problem ensures the blocks

assigned to each spatial location do not exceed the total number of available blocks at that spatial

location. The block placement problem also ensures that there are enough distinct paths between

spatial locations to implement the vADP connections. Once the place+route algorithm derives a set

of vADP block instance-location assignments, it then translates the vADP to an ADP, inserting

route blocks as necessary to indirectly make connections.

401

402

Chapter 9

Analog Circuit Scaling

Chapter 8 treated the available analog blocks as idealized computational units that implement

abstract algebraic functions. Analog devices, including the HCDCv2, exploit the device physics to

directly implement computation with physical signals such as analog currents. While this direct

computation is the key to the energy efficiency of analog devices, it also requires computations to

operate successfully in the presence of challenging physical phenomena such as noise, quantization

error, process variations, and frequency limitations.

The compiler manages these challenges by scaling the computation to respect the physical lim-

itations and behaviors of the device. This transform respects all of the imposed voltage, current,

and frequency limitations and compensates for variations within the device and delivers acceptably

accurate computations in the presence of noise and quantization error. This scaled computation

ensures the original dynamical system dynamics are recoverable at runtime by scaling the time and

magnitude of the collected signals by a compiler-derived inverting transform. Refer to Chapter 6 for

a primer on how the scaling transform works and Chapter 7.5 for a high-level overview on how the

circuit scaling procedure generates the scaling transform.

The compiler computes a scaling transform to scale the target unscaled computation. This

scaling transform is made up of magnitude scale factors which scale the amplitude of each data field

and signal in the target circuit and a time scale factor that changes the speed of the simulation

on hardware. This compiler derives a scaling transform which is guaranteed to have the following

properties:

∙ Physically Realizable: Each of the signals in the scaled ADP respects the operating range

and frequency limitations of the port accepting the signal.

∙ Recoverable: The original simulation can be recovered by scaling the magnitudes and times

recorded at the sampled digital outputs by derived scaling factors.

403

∙ Good Quality: The scaled circuit minimizes the effect of quantization error and analog noise

on the computation and compensates for the effects of any manufacturing variations in the

device.

The LScale compilation pass is responsible for computing the best scaling transform for an

unscaled circuit. Because so many of these physical limitations and behaviors are influenced by the

mode of the block, the LScale compilation pass also changes the block modes in the ADP when ben-

eficial. LScale formulates the problem of identifying a scaling transform and set of mode selections

which deliver the above criteria as a constraint satisfaction problem – specifically a combinational

geometric program (CGP). When solved, this problem produces a set of mode selections and scaling

factors that deliver a physically realizable and recoverable simulation when applied to the digital

inputs of the analog device.

Chapter Summary: In this chapter, I more formally describe the operation of the LScale compi-

lation pass. This chapter covers the following topics:

∙ The CGP and GP (Section 9.1): I formally introduce the basic combinational geometric

program and geometric program formulations. I demonstrate that a combinational geometric

program reduces to a geometric program (GP) when all discrete variables are concretized. The

geometric programming problem can then be converted to a convex optimization problem and

solved using a convex solver. The resulting solution is optimal with respect to the chosen

objective function.

∙ CGP Generation Procedure (Section 9.3): I formally introduce all of the notation

for describing the LScale CGP and present the algorithm for deriving the CGP from the

input unscaled ADP. This constraint generation procedure ensures that any satisfying scaling

transform renders the ADP physically realizable, of good quality, and recoverable.

∙ CGP Factor Constraint Generation (Section 9.4): I present the algorithm for deriving

the constraints which ensure . The produced factor constraints ensure that the signal of each

output port is recoverable, provided all the block inputs and data fields are also recoverable.

The factor constraint generation procedure includes optimizations that enable the compiler

to compensate for behavioral variations and more aggressively change the block modes. The

factor constraint generation algorithm works with master expressions that capture the cor-

rectable behavioral variations and the model the effect of mode changes on the block behavior.

The factor constraints are incorporated into the CGP by the CGP generation procedure.

∙ Scaling the ADP (Section 9.5): The CGP generation procedure tractably compensates

for process variations present in the device on hand by deriving a symbolic expression for

each ADP output port which captures the full range of empirically observed behaviors. This

404

symbolic expression is referred to as the master expression of the output port in this thesis.

The CGP generation procedure uses the master expression during CGP generation to produce

constraints that ensure the original dynamics of the dynamical system are recoverable at each

output port. I formally describe the the algorithm used for eliciting this symbolic expression

from the observed empirical behavior of the block.

9.1 The CGP and GP

The CGP is a type of mixed-integer constraint problem which contains both integer-valued (𝑘 ∈ I)

and positive, non-zero real-valued variables (𝑦+ ∈ R+). The CGP supports a number of non-linear

constraints over its real-valued variables and a highly restrictive set of implication and disjunc-

tion constraints over its integer-valued variables. The constraints over the integer-valued variables

are used to relate the integer variable values to real variable values or limit the set of values an

integer-valued variable can take on. A special property of the CGP is that becomes a geometric

programming problem when the all of the integer-valued variables are concretized. A geometric

programming problem is a type of constrained optimization problem which can be solved with a

convex optimizer [18, 92].

For this reason, the CGP is typically solved twice. The CGP is first directly solved with a SMT

solver to obtain a set of viable integer variable and real variable assignments. The real variable

assignments are discarded and the integer variable assignments are applied to the CGP to produce

a GP. This procedure eliminates all integer variables and constraints, leaving only geometric con-

straints. These geometric constraints can then be paired with an geometric programming objective

function to find an optimal set of geometric variable assignments with respect to some metric.

9.1.1 The Geometric Programming Problem

A geometric programming problem consists of an objective function 𝑝𝑜𝑜𝑝𝑡 and constraints 𝑔𝑐 ∈

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 over the geometric program variables 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑉 𝑎𝑟𝑠. The geometric pro-

gram may contain inequality constraints 𝑚𝑜𝑖 ≤ 1 ∈ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 and equality constraints

𝑝𝑜𝑗 = 1 ∈ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠𝑜𝑝𝑡

𝑚𝑜𝑖 ≤ 1, 𝑖 = 1, ..., 𝑛

𝑝𝑜𝑗 = 1, 𝑗 = 1, ...,𝑚

Here the 𝑚𝑜 are monomials of the following form, where 𝑦+𝑖 ∈ R+ (positive real numbers), 𝑔𝑣 ∈

405

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑉 𝑎𝑟𝑠, and 𝑥𝑖 ∈ R:

𝑚𝑖 = 𝑦𝑖
∏︁

𝑗∈0..𝑛

𝑔𝑣
𝑥𝑖,𝑗

𝑖,𝑗

Monomials are closed under multiplication and exponentiation to a real number, and are therefore

closed under division by extension. Any positive nonzero constant is a monomial. The 𝑝𝑜𝑗 are

posynomials (sums of monomials) of the following form:

𝑝𝑜𝑖 =
∑︁
𝑖

𝑚𝑜𝑖 =
∑︁
𝑖

𝑦+𝑖
∏︁

𝑗∈0..𝑛

𝑔𝑣
𝑥𝑖,𝑗

𝑖,𝑗

The variables in a geometric program (i.e., 𝑔𝑣 ∈ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑉 𝑎𝑟𝑠) take on only positive, non-zero

values. The geometric program solver first transforms the geometric programming problem into

a linear programming problem by taking the logarithm of the constraints and objective function.

It then solves the linear programming problem with a convex optimizer to find the optimal set of

assignments.

9.1.2 The Combinatorial Geometric Programming Problem

The combinatorial geometric programming problem (CGP) is a constraint problem which contains

both geometric program constraints (𝑔𝑐 ∈ 𝐺𝐶) over geometric program variables and limited set

integer constraints over geometric program variables (𝑔𝑣 ∈ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑉 𝑎𝑟𝑠) and integer variables

(𝑖𝑣 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑉 𝑎𝑟𝑠). It supports two kinds of integer constraints:

Geometric Program Variable Assignment Constraints: The CGP introduces variable assign-

ment constraints which set the value of geometric programming variables depending on the value of

an integer variable:

𝑖𝑣 = 𝑘 =⇒ 𝑔𝑣 = 𝑦+

Integer Variable Limitation Constraints: The CGP introduces constraints which limit the set

of values each integer variable may take on:

⋁︁
0..𝑖..𝑁

𝑖𝑣 = 𝑘𝑖

Integer Variable Exclusion Constraints: The CGP introduces constraints which disallow integer

variables from taking on certain integer values.

𝑖𝑣 ̸= 𝑘

406

ADS

DSS

Scaled
ADP

LScale

Solve GP
(Convex)

 Solve CGP
(SMT)

CGP Problem
Generation

Delta
Model

Database

Unscaled
ADP

Combinatorial
Geometric Program

(CGP)

Geometric
Program (GP)

+
Mode Selections

Minimum
AQM and
DQM

Scaling
Objective
Function

Calibration
Strategy

Figure 9-1: Overview of circuit scaling (LScale) pass

9.2 Problem Definition

LScale accepts a dynamical system specification (DSS), analog device specification (ADS), an

analog device program (ADP), the scaling objective function to minimize, an empirically-derived

delta model database, and the calibration strategy to target. The LScale pass also optionally

accepts a a minimum analog and digital quality measure (AQMmin and DQMmin). The delta

model database captures all of the device-specific behavioral deviations observed in the calibrated

blocks for the device on hand. The calibration strategy specifies how the blocks are calibrated. Refer

to Section 5 for a detailed discussion on delta models and device calibration.

LScale produces as output a scaled analog device program where each block is assigned exactly

one mode. This scaled analog device program contains a collection of magnitude scaling factors

(defined with scf statements) and a time scaling factor (defined with a timescale statement). The

computed scaling transform and mode assignments transform the signals so that they abide by the

operating range limitations and frequency limitations described in the ADS and compensate for

any unexpected correctable signal gains described in the delta model database. All scaled signals

meet the quality requirements specified by the user-provided AQMmin and DQMmin. The scaled

ADP ensures that the original dynamics of the input DSS can be recovered by scaling the signal by

scaling factors and time constant. The resulting scaling transform is also optimal and minimizes the

user-provided objective function. The scaling procedure also computes a set of injection variables

which modify the expressions implemented at expression data fields in the ADP. These injection

variables enable LScale to more flexibly scale the ADP.

LScale produces this scaled analog device program in two stages. First it derives a combinatorial

geometric program (CGP) from the ADP, ADS, DSS, minimum quality measures (AQMmin,

DQMmin), calibration strategy, and delta model database. This CGP contains both geometric

programming constraints and SMT constraints. The geometric programming constraints ensure the

407

produced scaling transform is physically realizable and recoverable. The SMT constraints encode the

effect of changing the block mode on the geometric constraint problem. The CGP is solved with an

SMT solver to produce a geometric program and a set of mode assignments. This geometric program

constraints are then paired with a scaling objective function to form a convex optimization problem.

This convex optimization problem is then solved to find the scaling transform that minimizes the

scaling objective function – this is the optimal scaling transform. The scaling transform, mode

selections, and injection variables are then incorporated into the input ADP to produce the scaled

ADP (Section 9.5).

9.2.1 Notation

This chapter reuses the set notation and notations for mathematical expressions, real numbers, and

natural numbers presented in Section 8.1. It also introduces several new mathematical constructs

in this chapter.

Many of the techniques presented in this chapter work with positive, nonzero, real values. I use

the notation 𝑦+ ∈ R+ to express positive, nonzero reals. Intervals [𝑦, 𝑦′] = 𝑖𝑣𝑎𝑙 ∈ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 = R×R

describe ranges of values. The first number is the lower bound of the interval, and the second number

is the upper bound. The lower bound is always less than or equal to the upper bound. If the lower

and upper bound of an interval is equal, then the interval describes a constant value.

I also introduce a factor function factor. This function takes an algebraic expression as input

and decomposes the expression into a positive constant coefficient and a base expression. If factor(𝑒)

returns ⟨𝑦+, 𝑒′⟩ then 𝑒 ≡ 𝑦+ × 𝑒′.

9.2.2 Analog Device Specification

This chapter uses the basic notation presented in Section 8.1 of this thesis. Specifically, it reuses

the notation for block modes (𝑚 ∈ 𝑀𝑜𝑑𝑒𝑠), input and output ports (𝑖𝑝 ∈ 𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠, 𝑜𝑝 ∈

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠, and 𝑝 ∈ 𝑃𝑜𝑟𝑡𝑠), and block instance locations (𝑙 ∈ 𝐿𝑜𝑐𝑠). It uses the block :

𝑃𝑜𝑟𝑡𝑠 → 𝐵𝑙𝑜𝑐𝑘𝑠 function to retrieve the block which contains a port or data field and the portexpr :

𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠×𝑀𝑜𝑑𝑒𝑠 → 𝐻𝑤𝐸𝑥𝑝𝑟𝑠 function to retrieve the expression implemented at each output

port. It introduces several new notational constructs which capture the physical limitations and

behaviors of the analog device:

∙ Quantization Error : The quantization error is the maximum possible error for a digital

value at a data field or digital port. It corresponds to the maximum distance between two

consecutive digital decimal values. This distance between values is automatically computed

from the quantize statements in the ADS by dividing the range of the digital port by the

408

number of values. The quantize-error : 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 → R+ function maps block output

ports and modes to quantization error values. This function is derived from the quantize

statements in each block specification.

∙ Noise : Each noise property is the standard deviation of the analog noise for an analog signal

at an analog port. It captures the signal fluctuations experienced in the analog substrate and is

automatically computed from noise statements in the ADS. The noise : 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 → R+

function maps block output ports and modes to noise values. This function is derived from

noise statements in each block specification.

∙ Maximum Frequency : Each max-freq property captures the maximum supported speed of

the mapped computation. These properties automatically computed from maxfreq statements

in the ADS. The max-freq : 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 → R+ function maps block output ports and

modes to maximum frequencies. This function is derived from maxfreq statements in each

block specification.

∙ Operating Range : Each op-range property captures the range of analog or digital val-

ues supported by a port or data field. These properties are automatically computed from

interval annotations in the ADS. The oprangefn : (𝑃𝑜𝑟𝑡𝑠 ∪ 𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠) → 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

function maps block ports,data fields and modes to intervals. This function is derived from

maxfreq statements in each block specification.

∙ Time Constant : I also reference the hardware time constant (tc) in this chapter. The

freq statement in the device layout specification defines the hardware time constant. The

time constant describes the mapping between wall clock time and hardware time. One unit

of hardware time corresponds to 𝑡𝑐−1 seconds of wall clock time.

∙ Delta Model Specification : The delta model specification defines a set of mode-dependent

expressions over block ports 𝑝 ∈ 𝑝𝑜𝑟𝑡𝑠, data fields 𝑑𝑓 ∈ 𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠, and delta model parame-

ters 𝑑𝑝 ∈ 𝐷𝑃 . The delta model specification for an output port is retrieved with the following

function: delta-spec : 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 ×𝑀𝑜𝑑𝑒𝑠 → 𝐸𝑥𝑝𝑟𝑠. Each delta model specification is

uniquely identified by the block output port and block mode.

Each delta model parameter may be correctable or uncorrectable (𝐷𝑃𝑇𝑦𝑝𝑒 = {correctable,

uncorrectable}) and is associated with an ideal value 𝑦 ∈ R. The ADS annotates correctable

delta model parameters with a hint 𝐷𝑃𝐴𝑛𝑛𝑜𝑡𝑠 = {gain, offset, other} which indicates

what kind of behavioral deviation the parameter captures. The delta parameter information

function delta-par-info : 𝐵𝑙𝑜𝑐𝑘𝑠×𝐷𝑃 → R×𝐷𝑃𝑇𝑦𝑝𝑒×𝐷𝑃𝐴𝑛𝑛𝑜𝑡𝑠 returns the information

for a delta model parameter.

409

9.2.3 Dynamical System Specification and Analog Device Pro-

gram

This chapter uses the interval annotations included in the dynamical system specification and the

structure of the analog device program to derive the dynamic range of the signal over each wire.

LScale derives an interval for each port and data field by mapping the DSS interval annotations on

the ADP and then performing interval propagation to derive all the other unscaled signal intervals.

The signal-ival : 𝑃𝑜𝑟𝑡𝑠 ∪ 𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠 × 𝐿𝑜𝑐𝑠 → 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 function returns the interval of the

signal at a particular port or data field in the ADP. Refer to Section A.1 of the Appendix for details

on the interval propagation algorithm.

LScale also pre-computes several quantities related to real-time execution from the dynamical

system specification. LScale derives the maximum defined external signal frequency max-extern-freq

for all of the defined DSS freq annotations. LScale also records and the the minimum real-time ex-

ecution speed min-realtime-speed and maximum real-time execution speed max-realtime-speed

from the realtime annotation in the DSS.

This chapter reuses the ADP notation presented in Section 8.1. Specifically, it works with

the config(𝑏, 𝑙,𝑀,𝐴) and conn(𝑜𝑝, 𝑙, 𝑖𝑝, 𝑙′) statements in the ADP in its formalization the scaling

transform.

9.2.4 Delta Model Database and Calibration Strategy

The LScale pass uses delta models to compensate for the behavioral variations in the calibrated

blocks. A delta model is an algebraic expression that describes the signal’s empirically observed

behavior at an output port instance when the block is under a particular mode. Refer to Chapter 5

for more information on delta models. The LScale pass accepts as input the calibration strategy

𝑐𝑠 ∈ 𝐶𝑎𝑙𝑖𝑏𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠 to target. The LScale pass requires the calibration strategy as input because

the behavioral variations, and therefore the delta model, change depending on how the block is

calibrated. The LScale pass constructs the delta models from the delta model parameters in the

delta model database and delta model specification from the ADS:

Delta Model Database: The delta model database is a repository of all empirically derived

delta model parameters for the calibrated block instances for the device on hand. The delta

model parameters for the a particular output port instance is retrieved with the following func-

tion: delta-db : 𝐶𝑎𝑙𝑖𝑏𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠 × 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠 × 𝐿𝑜𝑐𝑠 × 𝑀𝑜𝑑𝑒𝑠 → P(𝐷𝑃 × R). This function

accepts the target calibration strategy, the output port instance, and the target block mode as input

and returns a set of delta model parameter assignments. The returned delta model parameter as-

signments can be substituted into the delta model specification in the ADS to obtain a delta model

which describes the empirically observed behavior of the target output port instance.

410

Algorithm 14 Delta model retrieval function (delta-model)
1: function delta-model(𝑐𝑠, 𝑜𝑝, 𝑙,𝑚)
2: 𝑒 = delta-spec(𝑜𝑝,𝑚)
3: for ⟨𝑑𝑝, 𝑦⟩ ∈ delta-db(𝑐𝑠, 𝑜𝑝, 𝑙,𝑚) do
4: ⟨𝑦′, 𝑑𝑝𝑡𝑦𝑝𝑒, 𝑑𝑝𝑎𝑛𝑛𝑜𝑡⟩ = delta-par-info(block(𝑜𝑝), 𝑑𝑝)
5: if 𝑑𝑝𝑡𝑦𝑝𝑒 = correctable ∧ 𝑑𝑝𝑎𝑛𝑛𝑜𝑡 = gain then
6: 𝑒=sub(𝑒, {⟨𝑑𝑝, 𝑦⟩})
7: else
8: 𝑒=sub(𝑒, {⟨𝑑𝑝, 𝑦′⟩})

return 𝑒

The Delta Model Retrieval Function: The delta model retrieval function delta-model :

𝐶𝑎𝑙𝑖𝑏𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠×𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠× 𝐿𝑜𝑐𝑠×𝑀𝑜𝑑𝑒𝑠 → 𝐸𝑥𝑝𝑟𝑠 returns a delta model expression which

captures the behavioral variations that can be compensated for by the LScale compilation pass.

Figure 14 presents the delta model retrieval function. The delta-model function accepts the

output port instance, the block mode, and the calibration strategy to target as input and returns a

delta model expression containing only ports and data fields. The delta model expression only allows

the delta model parameters that implement correctable gains to deviate from their ideal values. The

scaling transform computed in the LScale pass can only compensate for correctable gains in the

delta model.

The algorithm first retrieves the delta model specification for the provided output port and

mode from the ADS. It then concretizes the delta model specification expression with the data

from the delta model database. The delta-model function sets delta model parameters which are

correctable gains to the delta model parameter values from the database. The delta-model function

sets all other delta model parameters to their respective ideal values, as defined in the ADS. The

ADS specifies delta model parameter type and whether the delta model parameter is correctable or

uncorrectable.

9.2.5 Analog and Digital Quality Measures

The scaling problem works with analog and digital quality measures. These measures limit how

much the scaling procedure can compress any individual analog signal, digital signal, or value. These

quality measures work with signal amplitudes. The amplitude of a signal with interval [𝑦, 𝑦′] is the

dynamic range (𝑦′ − 𝑦) of the signal, provided the signal is dynamic (𝑦′ ̸= 𝑦). It is the amplitude of

the value (|𝑦|) if the signal is a constant value (𝑦 = 𝑦′). The amplitude : 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 → R+ computes

the amplitude of a given interval. I describe the quality measures below:

Analog Quality Measure [AQM]: The AQM is a parameter that specifies the minimum allowed

signal-to-noise ratio for the analog signals in the ADP. For constant analog signals, the AQM

specifies the lower bound for the ratio of the magnitude of the signal to the analog noise (AQM ≤

411

|𝑠𝑖𝑔𝑛𝑎𝑙|/𝑛𝑜𝑖𝑠𝑒). If the analog signal is dynamic, the AQM specifies the upper bound for the ratio

of the noise to the dynamic range of the signal (AQM ≤ (𝑚𝑎𝑥(𝑠𝑖𝑔𝑛𝑎𝑙)−𝑚𝑖𝑛(𝑠𝑖𝑔𝑛𝑎𝑙))).

Digital Quality Measure [DQM]: The DQM is a parameter that specifies the minimum allowed

signal-to-noise ratio for the digital signals in the ADP. For constant digital signals, the DQM

specifies the lower bound for the ratio of the magnitude of the signal to the quantization error

(DQM ≤ |𝑠𝑖𝑔𝑛𝑎𝑙|/𝑒𝑟𝑟𝑜𝑟). For dynamic digital signals, the DQM specifies the lower bound for the

ratio of the dynamic range of the signal to the error (DQM ≤ (𝑚𝑎𝑥(𝑠𝑖𝑔𝑛𝑎𝑙)−𝑚𝑖𝑛(𝑠𝑖𝑔𝑛𝑎𝑙))/𝑒𝑟𝑟𝑜𝑟).

While LScale accepts a user-specified minimum AQM and DQM (AQMmin and DQMmin),

it can also automatically derive the best AQM and DQM for the provided analog device program.

It does this by incorporating the AQM and DQM into the objective function.

9.3 CGP Generation

The CGP generation procedure produces a constraint problem that encodes all of the quality, phys-

ical realizability, and recovery requirements imposed on the input ADP. The solution to this con-

straint problem is a valid set of mode selections and scaling transform. The CGP models block mode

selections as integer-valued mode selection variables. where each mode selection variable and value

corresponds to a block mode. The CGP defines the scaling transform and mode-dependent block

properties as positive real variables. The CGP encodes all the quality, physical realizability, and

recovery requirements as geometric program constraints. The CGP encodes all the mode-property

variable relationships with CGP integer constraints. With this encoding, the CGP can be concretized

with a set of mode selections to derive a GP which can be solved with a convex solver to get an

optimal scaling transform with respect to some objective function. The scale transform obtained by

solving the GP will still respect all the physical limitations and behaviors of the device because these

restrictions are encoded as geometric program constraints. This section will formalize the procedure

for generating the CGP from the following LScale compilation pass inputs:

DSS: The CGP generation procedure uses the DSS interval annotations to compute the unscaled

signal ranges for each port in the input unscaled ADP.

ADS: The CGP generation procedure uses the ADS to identify the operating range and frequency

limitations and the noise and quantization error for each block which appears in the ADP.

Delta Model Database and Calibration Strategy: The CGP generation procedure uses the

delta model database and calibration strategy to compensate for any observed behavioral devia-

tions. Refer to the discussion on factor constraints and the master expression elicitation section

(Section 9.4) for more information.

Minimum AQM and DQM: The CGP generation procedure produces a CGP which ensures the

scaled circuit AQM and DQM clear the user-defined minimum analog and digital quality measures.

412

variable values type scope usage
magnitude scale factor R+ scale transform (𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠 ∪ 𝑃𝑜𝑟𝑡𝑠)× 𝐿𝑜𝑐𝑠 𝑢(𝑝, 𝑙)

time scale factor R+ scale transform 𝜏
injection variable R+ scale transform 𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠× 𝐿𝑜𝑐𝑠× I 𝑖𝑣(𝑑𝑓, 𝑙, 𝑘)

selected mode I mode selection 𝐵𝑙𝑜𝑐𝑘𝑠× 𝐿𝑜𝑐𝑠 𝑚𝑣(𝑏, 𝑙)

Table 9.1: Summary of scale transform and mode selection variables.

variable values scope usage source
process variation R+ 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑜𝑟𝑡𝑠× 𝐿𝑜𝑐𝑠× I dv-prop(𝑜𝑝, 𝑙, 𝑘) multi†
operating range 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑃𝑜𝑟𝑡𝑠 ∪𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠 op-range-prop(𝑝, 𝑙) ADS

maximum frequency R+ 𝑃𝑜𝑟𝑡𝑠 max-freq-prop(𝑝, 𝑙) ADS
analog noise1 R+ 𝑃𝑜𝑟𝑡𝑠× 𝐿𝑜𝑐𝑠 noise-prop(𝑝, 𝑙) ADS

quantization error2 R+ (𝑃𝑜𝑟𝑡𝑠 ∪𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠)× 𝐿𝑜𝑐𝑠 quant-prop(𝑑𝑓, 𝑙) ADS
unscaled interval3 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 (𝑃𝑜𝑟𝑡𝑠 ∪𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠)× 𝐿𝑜𝑐𝑠 ival-prop(𝑝, 𝑙) DSS

unscaled amplitude3 R+ (𝑃𝑜𝑟𝑡𝑠 ∪𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠)× 𝐿𝑜𝑐𝑠 ampl-prop(𝑝, 𝑙) DSS

Table 9.2: Summary of mode-dependent property variables. 1 this property is only
specified for analog ports. 2 this property is only specified for digital ports. 3 Not a
mode-dependent variable. † The process variation property values are derived from
the delta model database, calibration strategy, and ADS.

These quantities ensure none of the analog or digital signals are scaled down to the point where they

are overtaken by noise and error.

9.3.1 CGP Variables

The CGP works with a variety of positive real-valued and integer-valued variables. Table 9.1 intro-

duces the CGP variables which make up the scaling transform and mode selections and Table 9.2

presents the CGP mode-dependent properties. The values column presents the values each type of

variable may take on, the type column presents whether the variable is part of the scale transform

or mode selections, the scope column presents the space of variables of this type, the usage column

presents an example variable description of that type. The source column of the property table

presents where the mode-dependent property values are derived from. I summarize the variables

below:

Magnitude Scale Variables: The core scaling transform is made up of positive, real-valued per-

port/per-data field magnitude scale variables (𝑢(𝑝, 𝑙) and 𝑢(𝑑𝑓, 𝑙)), which capture the degree to which

the magnitude each signal and data field is scaled.

Time Scale Variable: The CGP contains a single time scale variable 𝜏 which captures the inte-

gration speed of the scaled circuit relative to the baseline hardware integration speed. This variable

is mapped to a positive, real value that captures the integration speed relative to the baseline hard-

ware integration speed. If 𝜏 is mapped to one, then the integration speed of the scaled circuit is the

baseline hardware integration speed, as defined by the hardware time constant.

413

Injection Variables: The computed scale transform also contains injection variables (𝑖𝑣(𝑑𝑓, 𝑙, 𝑘)).

The injection variables allow the compiler to modify the function implemented at each expression

data field to more flexibly scale the input ADP. The compiler allocates each expression data field

𝑑𝑓 with 𝑛 arguments a collection of 𝑛+1 injection variables. Arguments 0..k..n of data field 𝑑𝑓 have

injection variables 𝑖𝑣(𝑙, 𝑑𝑓, 𝑗)..𝑖𝑣(𝑙, 𝑑𝑓, 𝑗)..𝑖𝑣(𝑙, 𝑑𝑓, 𝑛). The output of the data field has the injection

variable 𝑖𝑣(𝑙, 𝑑𝑓, 𝑛 + 1). LScale modifies the expression 𝑒 implemented by the data field to include

the injection variables:

𝑖𝑣(𝑙, 𝑑𝑓, 𝑛+ 1) · sub(𝑒, {(𝑣0, 𝑖𝑣(𝑙, 𝑑𝑓, 0) · 𝑣0), .., (𝑣𝑛, 𝑖𝑣(𝑙, 𝑑𝑓, 𝑛) · 𝑣𝑛)}

The above function multiplies each occurrence of each argument 𝑣𝑖 by its respective injection

variable 𝑖𝑣(𝑙, 𝑑𝑓, 𝑖). The entire expression is multiplied by the output injection variable 𝑖𝑣(𝑙, 𝑑𝑓, 𝑛+1).

Mode Selections: The mode selection variables (𝑚𝑣(𝑏, 𝑙)) encode the selected mode for each

block instance in the ADP. The mode-int function maps modes to integer values. The assigned

mode selection variable value typically sets the property variable values in the generated CGP. The

concretized CGP resolves all mode selection variables to integer values.

Properties: The program also works with port- and data field-specific property variables that

encode the operating ranges, maximum frequencies, noise, and quantization error associated with

block ports and data fields presented in the analog device specification. All property variables are

either mode-invariant (and therefore fixed) or mode-dependent and assigned to constant values once

a mode is selected.

The quantization error property variables encode the maximum digital error for each data field

and digital port. The noise property variables encode the analog noise associated with each analog

port. The operating range and maximum frequency properties encode the operating range and

the maximum frequency supported by each port and data field. The operating range property

takes on interval values. All other properties take on positive, real-valued values. Note that the

constraint generation procedure can translate constraints over intervals to constraints over positive

real numbers. Refer to Appendix A.3.1 for more information. The process variation property

variables encode the discrepancy between the empirically observed behavior of the block’s output

port and the expected, idealized behavior. Refer to Section 9.4 for more information on how the

change variable values and change variables are generated.

The unscaled interval and amplitude properties encode the intervals and the amplitudes of

the unscaled signals in the input ADP. The compiler derives these intervals by propagating the

dynamical system variable intervals defined in the DSS through the ADP. Refer to Appendix A.1

for more information on interval propagation. For some port 𝑝 belonging to block instance (𝑏, 𝑙𝑜𝑐), the

interval and amplitude property values are signal-ival(𝑝, 𝑙) and |signal-ival(𝑝, 𝑙)| respectively.

414

Note that these property values are not dependent on the mode.

Process Variation Property Variables: The behavioral deviations from manufacturing vari-

ations are incorporated into each output port’s dynamics as mode-dependent process variation

property variables. Process variation property variables dv-prop(𝑙, 𝑜𝑝, 𝑖) are positive, real-valued

variables that capture deviations from the expected behavior at the output port instance (𝑜𝑝, 𝑙).

An output port instance may be associated with one or more process variation property variables.

Section 9.4.2 describes how LScale derives a single symbolic expression containing process variation

property variables that captures all of the behavioral deviations observed at an output port instance

relative to a reference expression which captures the expected behavior. Section 9.4 describes how

process variation property variables are incorporated into the CGP problem.

Symbolically Applying the Scaling Transform (apply-xform)

In many places, LScale substitutes in the above magnitude scale variables into an unscaled symbolic

expression to derive a scaled symbolic expression. The apply-xform function accepts as input an

unscaled hardware expression 𝑒 and the location 𝑙 of the enclosing block instance and returns the

expression with the magnitude scale variables applied. The scaling transform application routine

makes the following substitutions:

Variables: All constant data field (𝑑𝑓 ∈ 𝐷𝑎𝑡𝑎𝐹𝑖𝑒𝑙𝑑𝑠 where df-type(𝑑𝑓) = constant) and port

(𝑝 ∈ 𝑝𝑜𝑟𝑡𝑠) variables are scaled by their respective magnitude scale factors:

apply-xform(𝑙, 𝑑𝑓) = 𝑢(𝑑𝑓, 𝑙) · 𝑑𝑓 apply-xform(𝑙, 𝑝) = 𝑢(𝑝, 𝑙) · 𝑝

Integration Operations: The derivatives of all integration operations are scaled by the reciprocal

of the time scale factor 𝜏−1. This transformation exploits a property of ordinary differential equations

(ODEs) to change the integration speed:

apply-xform(𝑙, integ(𝑒, 𝑒′)) = integ(𝜏−1 · apply-xform(𝑙, 𝑒), apply-xform(𝑙, 𝑒′))

The 𝜏−1 term controls the ratio of the scaled derivative to the scaled state variable. A small

𝜏 value scales down the derivative of the signal relative to the magnitude of the signal. A large 𝜏

value scales up the derivative of the signal relative to the

Expression Data Field Invocations: All expression data field invocations are modified to incor-

porate the injection variables:

apply-xform(𝑙, call(𝑑𝑓, [𝑒0, ..., 𝑒𝑛]) =

𝑖𝑣(𝑑𝑓, 𝑙, 𝑛+ 1) · call(𝑑𝑓, [𝑖𝑣(𝑑𝑓, 𝑙, 0) · apply-xform(𝑙, 𝑒0),

𝑖𝑣(𝑑𝑓, 𝑙, 𝑛) · apply-xform(𝑙, 𝑒𝑛)])]

The data field 𝑑𝑓 is an expression data field df-type(𝑑𝑓) = expression. The above rule

multiplies the expression data field result with the injection variable 𝑖𝑣(𝑑𝑓, 𝑙, 𝑛 + 1) and multiplies

415

each argument 𝑒𝑖 with the injection variable 𝑖𝑣(𝑑𝑓, 𝑙, 𝑖).

All Other Operations: The scale transform application function recursively traverses all other

mathematical operations:

apply-xform(𝑙, 𝑒 · 𝑒′) = apply-xform(𝑙, 𝑒) · apply-xform(𝑙, 𝑒′)
For example, the algorithm recursively applies the scaling transform to the operands of the above

multiplication operation and returns the product of the returned sub-expressions.

9.3.2 Combinatorial Geometric Programming Problem For-

mulation

The combinatorial geometric programming problem CC is a constraint problem composed of geo-

metric programming and SMT constraints. The type of each constraint is written in brackets – each

constraint is either a geometric programming constraint gc or a CGP integer constraint int-cstr.

Block Mode Linkage [int-cstr]: The CGP contains block mode linkage constraints which ensure

each mode selection variable 𝑚𝑣(𝑏, 𝑙) can only be assigned to values which correspond to block

modes:

⋁︁
𝑚∈modes𝑏

𝑚𝑣(𝑏, 𝑙) = mode-int(𝑚)

The above statement limits the mode variable to one of the listed modes for the block 𝑏.

Property-Mode Linkage [int-cstr]: The CGP generates property-mode linkage constraints for

each mode-dependent property in the CGP. These constraints model the effect of selecting the mode

on the physical limitations and behaviors of the target block instance:

𝑚𝑣(𝑏, 𝑙) = mode-int(𝑚) =⇒ noise-prop(𝑜𝑝, 𝑙) = noise(𝑜𝑝,𝑚)

The above statement assigns the noise property for the output port 𝑜𝑝 at location 𝑙 to 𝑦+ when

the mode variable for the block 𝑏 at location 𝑙 is set to mode 𝑚. I use the =⇒ operator to model

the effect of mode selections on each block instance’s property values. The CGP generator produces

these constraints for the analog noise, quantization error, operating range, and maximum frequency

properties by looking up the property values in the ADS. The master expression elicitation procedure

produces the implication constraints for the process variation properties (Section 9.4). The compiler

assigns unscaled interval and amplitude properties to constant values and intervals. Note that the

compiler resolves all interval properties to positive, non-zero values through additional analysis.

Refer to Appendix A.3 for information on the interval encoding tricks utilized by the compiler.

Operating Range Limitations [gc]: For each port 𝑝 and data field 𝑑𝑓 in the ADP, the CGP

ensures the operating range of the port contains the dynamic range of the scaled signal or value.

416

These operating range constraints take the following form:

𝑢(𝑝, 𝑙) · ival-prop(𝑝, 𝑙) ⊆ op-range-prop(𝑝, 𝑙)

The above constraint captures the above hardware operating range restriction for a port 𝑝. The

signal in question is scaled by the magnitude scaling factor 𝑢(𝑝, 𝑙) and has an unscaled dynamic

range of ival-prop(𝑝, 𝑙). The operating range of the port is op-range-prop(𝑝, 𝑙). Note that the

CGP does not directly support ⊆ operations over intervals. The CGP generator performs additional

analysis to translate the above constraint into multiple constraints over positive, real numbers. The

compiler also adds the same kind of constraint for each data field 𝑑𝑓 :

𝑢(𝑑𝑓, 𝑙) · ival-prop(𝑑𝑓, 𝑙) ⊆ op-range-prop(𝑑𝑓, 𝑙)

The 𝑢(𝑑𝑓, 𝑙), ival-prop((, 𝑑𝑓), 𝑙), and op-range-prop(𝑑𝑓, 𝑙) quantities capture the data field

magnitude scale factor, unscaled data field value, and mode-dependent data field operating range

respectively.

Frequency Limitations [gc]: For each port 𝑝 with a defined maximum frequency in the ADS, the

integration speed of the produced scaled ADP must be lower than the maximum frequency. The

following constraint ensures the simulation speed of the scaled ADP does not exceed the maximum

supported speed of the device:

𝜏 · 𝑡𝑐 ≤ max-freq-prop(𝑝, 𝑙)

The integration speed of the scaled computation is the time scaling factor 𝜏 times the baseline

integration speed of the analog hardware (𝑡𝑐). The integration speed of the scaled computation must

not exceed the maximum speed imposed by the port instance (max-freq-prop(𝑝, 𝑙)).

Analog Quality Restrictions [gc]: The analog quality constraints ensure no signal is scaled down

to the point where the signal quality falls below the analog quality measure. For each analog port,

the ratio of the amplitude of the scaled signal to the noise must be larger than the analog quality

measure (AQM). For each analog port 𝑝 (sigtype(𝑝) ∈ {current, voltage}) in the ADP, LScale

derives an analog quality restriction constraint of the following form:

AQM ≤ noise-prop(𝑝, 𝑙)−1 · ampl-prop(𝑝, 𝑙) · 𝑢(𝑝, 𝑙)

In the above constraint, the ratio of the scaled signal amplitude 𝑢(𝑝, 𝑙) · ampl-prop(𝑝, 𝑙) to the

analog noise (noise-prop(𝑝, 𝑙)) is greater than the analog quality measure AQM.

Digital Quality Restrictions [gc]: The digital quality constraints ensure no digital value or signal

is scaled down to the point where the fidelity of the values falls below the digital quality measure.

For each digital port or data field, the ratio of scaled signal amplitude to the quantization error must

417

be greater than than the digital quality measure (DQM). The quantization error is the difference

between two consecutive digital decimal values and is automatically computed by dividing the range

of the digital port by the number of values. For each digital ADP port 𝑝 (sigtype(𝑝) = digital)

and data field 𝑑𝑓 , LScale derives a digital quality restriction constraint of the following form:

DQM ≤ quant-prop(𝑝, 𝑙)−1 · ampl-prop(𝑝, 𝑙) · 𝑢(𝑝, 𝑙)

DQM ≤ quant-prop(𝑑𝑓, 𝑙)−1 · ampl-prop(𝑑𝑓, 𝑙) · 𝑢(𝑑𝑓, 𝑙)
The above digital quality constraints ensure the ratio of the scaled signal amplitude to the digital

signal or data field value to the quantization error is greater than the digital quality measure (DQM):

AQM and DQM Restrictions [gc]: The AQM and DQM constraints ensure that the circuit

AQM and DQM clear the user-provided minimum AQM and DQM (AQMmin and DQMmin).

AQMmin ≤ AQM ∧ DQMmin ≤ DQM

The above constraint ensures that the scaling transform AQM is larger than the minimum AQM

and the scaling transform DQM is larger than the minimum DQM.

External Signal Frequency Restrictions [gc]: For each port 𝑝 with a defined maximum fre-

quency in the ADS, the speed of each external signal must be lower than the maximum frequency.

The following constraint ensures the maximum frequency of the external signals does not exceed the

maximum supported speed of the device:

max-extern-freq ≤ max-freq-prop(𝑝, 𝑙)

Realtime Execution Speed Restrictions [gc]: If the dynamical system specification defines a

realtime minimum and maximum frequency, the integration speed of the produced scaled ADP must

fall between the defined minimum and maximum frequency. The following constraint ensures the

simulation speed of the scaled ADP falls within the specified frequency range:

𝜏 · 𝑡𝑐 ≤ max-realtime-speed

𝜏 · 𝑡𝑐 ≥ min-realtime-speed

Recovery Constraints

LScale generates CGP constraints that ensure the original simulation dynamics can be recovered

from any port within the circuit by scaling the signal magnitude and time by constant factors. These

recovery constraints ensure the scaled dynamics of a signal can always be written as the unscaled

dynamics of the signal times a constant factor. The recovery constraints also compensate for any

behavioral variations observed in the circuit.

Connectivity [gc]: This constraint ensures that the scaling factors of two connected ports are

scaled by the same amount. For each ADP connection statement of the form conn(op,l,ip,l’),

418

LScale derives a connectivity constraint which ensure the signals at both ports are scaled by the

same amount:

𝑢(𝑜𝑝, 𝑙) = 𝑢(𝑖𝑝, 𝑙′)

The above constraint ensures the magnitude scaling factor associated with two connected input

and output port instances are equal. This constraint ensures the source and destination ports of a

signal scale the signal by the same amount.

These connectivity constraints automatically ensure that addition operations implemented via

Kirchhoff’s law are properly scaled. Take for example two output ports instances (⟨𝑜𝑝, 𝑙⟩ and ⟨𝑜𝑝′, 𝑙′′⟩)

which are connected to the input port ⟨𝑖𝑝, 𝑙′⟩. The signal flowing into the input port ⟨𝑖𝑝, 𝑙′⟩ equals

the sum of the signals flowing out of the two output ports. LScale will generate two cgp constraints

which ensures all three ports are scaled by the same amount:

𝑢(𝑖𝑝, 𝑙′) = 𝑢(𝑜𝑝, 𝑙) 𝑢(𝑖𝑝, 𝑙′) = 𝑢(𝑜𝑝′′, 𝑙′′)

The above constraints ensure it is possible to factor out a constant factor from the sum of the scaled

output signals flowing into 𝑢(𝑖𝑝, 𝑙′).

Factor Constraints: The factor constraints ensure that the scaled dynamics of each output port

𝑜𝑝 at location 𝑙 with all of the associated behavioral deviations is equivalent to the original idealized

dynamics scaled by a constant value. To produce factor constraints, the CGP generation algorithm

requires a reference mode 𝑚𝑟𝑒𝑓 . The factoring algorithm will use the implemented expression at

output port 𝑜𝑝 under mode 𝑚𝑟𝑒𝑓 as the reference expression 𝑒𝑟𝑒𝑓 . This reference expression captures

expected dynamics at output port 𝑜𝑝 by the unscaled ADP. The compiler retrieves the reference

mode 𝑚𝑟𝑒𝑓 from the modes listed in the block instance’s config statement:

𝑚𝑟𝑒𝑓 ∈ 𝑀 | config(block(𝑜𝑝), 𝑙,𝑀,𝐴)

I formally describe the reference mode selection process above. The selected reference mode 𝑚𝑟𝑒𝑓

is chosen from one of the listed modes in the associated block instance’s config statement. LScale

first invokes the factoring algorithm to factor out a scaling expression from the block’s observed

dynamics. The factoring algorithm also derives a set of factoring constraints that must hold for the

factor operation to complete successfully:

𝐶𝐶,𝑚𝑜 = factor(𝑐𝑠, 𝑜𝑝, 𝑙,𝑚𝑟𝑒𝑓)

The above factoring algorithm factor factors out a scale expression from the scaled dynamics

of the signal at output port instance ⟨𝑜𝑝, 𝑙⟩. It returns the factored out scale expression 𝑚𝑜 and a

419

set of CGP constraints 𝐶𝐶 which must hold for the factoring operation to complete successfully.

The monomial 𝑚𝑜 may contain scale transform variables and process variation variables. All mode-

dependent process variation variables capture the deviations in the behavior of the signal relative to

the provided reference mode 𝑚𝑟𝑒𝑓 . The factor constraints 𝐶𝐶 ensure the computed scaling transform

preserves the original dynamical system dynamics.

The CGP generation algorithm adds all of the computed constraints 𝐶𝐶 returned by the fac-

toring algorithm to the CGP. It also adds the following constraint that links the factored scale

expression to the magnitude scale factor of the port instance ⟨𝑜𝑝, 𝑙⟩

𝑢(𝑜𝑝, 𝑙) = 𝑚𝑜

The above constraint ensures the magnitude scale factor assigned to the output port 𝑜𝑝 matches

the monomial 𝑚𝑜 factored out of the output port.

9.4 CGP Factor Constraint Generation

The factor constraints ensure that the scaled dynamics of each output port 𝑜𝑝 with all of the

associated correctable behavioral deviations is equivalent to the expected unscaled dynamics of the

output port scaled by a constant value. The factor constraint generation algorithm accepts an output

port instance ⟨𝑜𝑝, 𝑙⟩ and a reference mode 𝑚𝑟𝑒𝑓 as input. It returns a set of CGP constraints and

the factored monomial of scale transform variables (magnitude, time, and injection) and process

variation variables.

Algorithm 15 Factor constraint generation algorithm.
1: function factor(𝑐𝑠, 𝑜𝑝,𝑙,𝑚𝑟𝑒𝑓)
2: let 𝑒𝑟𝑒𝑓 = portexpr(𝑜𝑝,𝑚𝑟𝑒𝑓)
3: let 𝐶𝐶, 𝑒𝑜𝑏𝑠 = master(𝑐𝑠, 𝑜𝑝, 𝑙, 𝑒𝑟𝑒𝑓)
4: let 𝐺𝐶,𝑚𝑜, 𝑒𝑖𝑑𝑙 = fact(apply-xform(𝑙, 𝑒𝑜𝑏𝑠))
5: assert 𝑒𝑖𝑑𝑙 ≡ 𝑒𝑟𝑒𝑓
6: return 𝑚𝑜,𝐶𝐶 ∪𝐺𝐶

The algorithm above summarizes the general operation of the factor constraint generation al-

gorithm. It first looks up the reference input-output relation 𝑒𝑟𝑒𝑓 implemented at output port 𝑜𝑝

when the block is placed in the reference mode 𝑚𝑟𝑒𝑓 . It then invokes the master expression elicita-

tion procedure to obtain a single symbolic master expression 𝑒𝑜𝑏𝑠. The symbolic master expression

implements the correctable delta models at output port instance ⟨𝑜𝑝, 𝑙⟩ under calibration strategy 𝑐𝑠

relative to the reference expression 𝑒𝑟𝑒𝑓 . The master expression 𝑒𝑜𝑏𝑠 implements multiple correctable

delta models depending on how the the mode variable 𝑚𝑣(block(𝑜𝑝), 𝑙) is instantiated.

The master expression elicitation procedure also returns a set of CGP constraints that must hold

for the master expression to faithfully implement the output port’s delta models. These constraints

420

further restrict the acceptable modes for the associated mode selection variable 𝑚𝑣(block(𝑜𝑝), 𝑙).

The master expression implements the reference expression 𝑒𝑟𝑒𝑓 when all the process variation

property variables are set to one.

Finally, the factoring algorithm invokes the expression factoring routine fact (Section 9.4.1)

on the master expression with the scaling transform applied apply-xform(𝑙, 𝑒𝑜𝑏𝑠). The expression

factoring routine factors out the scaling transform and process variation property variables from the

signal. This routine returns the factored out monomial 𝑚𝑜, an unscaled expression 𝑒𝑖𝑑𝑙, and the set of

geometric programming constraints (𝐺𝐶) which must hold for the factoring operation of complete

successfully. The returned unscaled expression 𝑒𝑖𝑑𝑙 is equivalent to the reference expression 𝑒𝑟𝑒𝑓

provided to the master expression elicitation procedure. The factor routine returns the factored

monomial and the combined set of CGP constraints returned by the master expression elicitation

and expression factoring routines.

Preservation of Dynamics: The constraint generation algorithm ensures the following relation

holds under the generated CGP and GP constraints:

apply-xform(𝑙, 𝑒𝑜𝑏𝑠) = 𝑚𝑜 · 𝑒𝑟𝑒𝑓

The above equality relation ensures the master expression for the output port instance ⟨𝑜𝑝, 𝑙⟩ with
the scaling transform applied equals the output port’s reference expression 𝑒𝑟𝑒𝑓 times the scaling

expression monomial (𝑚𝑜) derived by the factoring algorithm. This monomial resolves to a positive,

constant value when the CGP is solved.

9.4.1 Expression Factoring Algorithm (fact)

The fact function accepts as input a scaled expression to factor and produces both a set of geometric

programming constraints 𝐺𝐶, the factored monomial 𝑚𝑜, and the unscaled expression 𝑒𝑖𝑑𝑙. These

factor constraints ensure LScale can factor out a monomial expression 𝑚𝑜 made up of scale transform

and process variation property variables from the input scaled expression.

The factor function fact accepts an input expression 𝑒 which may contain magnitude scale

transform variables (magnitude and time scaling variables and injection variables) and process vari-

ation property variables. It produces constraints that make it possible to factor out a monomial

made up of scale transform and process variation property variables from the scaled expression.

It returns the set of geometric programming constraints 𝐺𝐶 and the factored monomial 𝑚𝑜, and

the unscaled expression 𝑒𝑖𝑑𝑙. This unscaled expression contains no CGP variables. This factoring

algorithm upholds the following relation if the returned geometric constraints 𝐺𝐶 holds:

𝑚𝑜 · 𝑒𝑖𝑑𝑙 ≡ 𝑒

The above relation asserts that the original expression is equivalent to the factored monomial

times the unscaled expression.

421

invocation constraints (𝐺𝐶) monomial (𝑚𝑜) unscaled expr (𝑒𝑖𝑑𝑙)
fact(𝑦) 1 𝑦
fact(𝑝) 1 𝑝
fact(𝑑𝑓) 1 𝑑𝑓

fact(dv-prop(𝑜𝑝, 𝑙, 𝑖)) dv-prop(𝑜𝑝, 𝑙, 𝑖) 1
fact(𝑢(𝑝, 𝑙)) 𝑢(𝑝, 𝑙) 1
fact(𝑢(𝑑𝑓, 𝑙)) 𝑢(𝑙, 𝑑𝑓) 1

fact(𝜏) 𝜏 1
fact(𝑖𝑣(𝑑𝑓, 𝑙, 𝑖)) 𝑖𝑣(𝑑𝑓, 𝑙, 𝑖) 1

fact(𝑒× 𝑒′) 𝑚𝑜×𝑚𝑜′ 𝑒𝑖𝑑𝑙 × 𝑒′𝑖𝑑𝑙
fact(𝑒÷ 𝑒′) 𝑚𝑜/𝑚𝑜′ 𝑒𝑖𝑑𝑙/𝑒

′
𝑖𝑑𝑙

fact(𝑒+ 𝑒′) 𝑚𝑜 = 𝑚𝑜′ 𝑚𝑜 𝑒𝑖𝑑𝑙 + 𝑒′𝑖𝑑𝑙
fact(sgn(𝑒)) 1 sgn(𝑒𝑖𝑑𝑙)
fact(abs(𝑒)) 𝑚𝑜 abs(𝑒𝑖𝑑𝑙)

fact(min(𝑒, 𝑒′)) 𝑚𝑜 = 𝑚𝑜′ 𝑚𝑜 min(𝑒𝑖𝑑𝑙, 𝑒′𝑖𝑑𝑙)
fact(max(𝑒, 𝑒′)) 𝑚𝑜 = 𝑚𝑜′ 𝑚𝑜 max(𝑒𝑖𝑑𝑙, 𝑒′𝑖𝑑𝑙)

fact(exp(𝑒)) 𝑚𝑜 = 1 1 exp(𝑒𝑖𝑑𝑙)
fact(ln(𝑒)) 𝑚𝑜 = 1 1 ln(𝑒𝑖𝑑𝑙)

fact(sin(𝑒)) 𝑚𝑜 = 1 1 sin(𝑒𝑖𝑑𝑙)
fact(cos(𝑒)) 𝑚𝑜 = 1 1 cos(𝑒𝑖𝑑𝑙)

fact(pow(𝑒, 𝑦′)) 𝑚𝑜′ = 1 𝑚𝑜𝑦
′

pow(𝑒𝑖𝑑𝑙, 𝑦′)
fact(pow(𝑒, 𝑒′)) 𝑚𝑜 = 𝑚𝑜′ = 1 1 pow(𝑒𝑖𝑑𝑙, 𝑒′𝑖𝑑𝑙)

fact(integ(𝑒, 𝑒′)) 𝑚𝑜′ = 𝑚𝑜 𝑚𝑜′ integ(𝑒𝑖𝑑𝑙, 𝑒′𝑖𝑑𝑙)
fact(call(𝑑𝑓, [𝑒0, ..𝑒𝑗 .., 𝑒𝑛])) 𝑚𝑜𝑗 = 1 1 call(𝑑𝑓, [𝑒0, ..𝑒𝑗 .., 𝑒𝑛])

fact(emit(𝑒)) 𝑚𝑜 emit(𝑒𝑖𝑑𝑙)
fact(extvar(𝑒)) 𝑚𝑜 extvar(𝑒𝑖𝑑𝑙)

where ⟨𝐺𝐶,𝑚𝑜, 𝑒𝑖𝑑𝑙⟩ = fact(𝑒) , ⟨𝐺𝐶 ′,𝑚𝑜′, 𝑒𝑖𝑑𝑙⟩ = fact(𝑒′), ⟨𝐺𝐶𝑗 ,𝑚𝑜𝑗 , 𝑒𝑗,𝑖𝑑𝑙⟩ = fact(𝑒𝑗)

Figure 9-2: General operation of the fact function.

Figure 9-2 presents the operation of the fact. the leftmost column presents the fact invocation.

Columns 2-4 present the geometric program constraints which are added, the returned monomial,

and unscaled expression respectively. Each row adds the necessary constraints to ensure the above

relation holds. I summarize its operation below:

∙ fact(𝑦): The constant value 𝑦 cannot be scaled, and therefore has the scaling factor 1. The

unscaled expression is 𝑦.

∙ fact(dv-prop(𝑜𝑝, 𝑙, 𝑖)): The process variation property variable dv-prop(𝑜𝑝, 𝑙, 𝑖) scales the

constant value 1 by the monomial dv-prop(𝑜𝑝, 𝑙, 𝑖). LScale must factor out or eliminate

all process variation property variables from the block dynamics to ensure all behavioral

variations can be corrected for by scaling the circuit.

∙ fact(𝑝),fact(𝑑𝑓): All port and data field variables are scaled by 1. In this formulation, the

magnitude scale variables are already incorporated into the target scaled expression.

∙ fact(𝑢(𝑝, 𝑙)),fact(𝑢(𝑑𝑓, 𝑙)),fact(𝜏), fact(𝑖𝑣(𝑑𝑓, 𝑙, 𝑘): All magnitude and time scale variables

422

scale a constant value 1 by the monomial 𝑢(𝑙, 𝑝), 𝑢(𝑙, 𝑑𝑓), and 𝜏 respectively. All injection

variables scale the constant value 1 by the monomial 𝑖𝑣(𝑑𝑓, 𝑙, 𝑘).

For the remaining invocations, I introduce sub-expressions 𝑒 and 𝑒′ which implement 𝑚𝑜 · 𝑒𝑖𝑑𝑙
and 𝑚𝑜 · 𝑒′𝑖𝑑𝑙 provided constraints 𝐺𝐶 and 𝐺𝐶 ′ hold. The operation of the fact algorithm on these

rules is summarized below:

∙ fact(𝑒·𝑒′) and fact(𝑒/𝑒′): The monomial 𝑚𝑜·𝑚𝑜′ can be factored out of the scaled expression

𝑚𝑜 · 𝑒𝑖𝑑𝑙 · 𝑚𝑜′ · 𝑒′𝑖𝑑𝑙. The monomial 𝑚𝑜/𝑚𝑜′ can be factored out of the scaled expression

𝑚𝑜 · 𝑒𝑖𝑑𝑙/(𝑚𝑜′ · 𝑒′𝑖𝑑𝑙). Both factoring operations are achievable by simply shuffling around the

terms.

∙ fact(𝑒+ 𝑒′) and fact(𝑒− 𝑒′): The monomial 𝑚𝑜 can be factored out of a scaled expression

𝑚𝑜 · 𝑒𝑖𝑑𝑙 + 𝑚𝑜′ · 𝑒′𝑖𝑑𝑙 or 𝑚𝑜 · 𝑒𝑖𝑑𝑙 − 𝑚𝑜′ · 𝑒′𝑖𝑑𝑙 provided 𝑚𝑜 = 𝑚𝑜′. The resulting factored

expressions implement 𝑚𝑜 · (𝑒𝑖𝑑𝑙 + 𝑒𝑖𝑑𝑙) and 𝑚𝑜 · (𝑒𝑖𝑑𝑙 − 𝑒𝑖𝑑𝑙) respectively.

∙ fact(pow(𝑒, 𝑒′)): If 𝑒′ evaluates to a constant value 𝑦, the scaling factor 𝑚𝑜𝑦 can be factored

out of the scaled expression pow(𝑚𝑜 ·𝑒,𝑚𝑜′ ·𝑥) provided 𝑚𝑜′ = 1. If 𝑒 is not a constant value,

the expression cannot be scaled and therefore has a scaling factor of 1. For the scaling factor

to be 1, 𝑚𝑜 must also be 1.

∙ fact(integ(𝑒, 𝑒′)): The scaling factor 𝑚𝑜 can be factored out of the integration operation∫︀
𝑚𝑜·𝑒𝑑𝑡 with an initial value of 𝑚𝑜′ ·𝑒′ provided the factored monomial of the initial condition

𝑚𝑜′ equals the factored monomial of the integrated signal 𝑚𝑜. The factoring algorithm adds

a constraint 𝑚𝑜 = 𝑚𝑜′ that ensures the initial value and the time-varying values of the

integrated signal are scaled by the same amount.

∙ fact(call(𝑑𝑓, [𝑒0, .., 𝑒𝑗 , .., 𝑒𝑛])): For a call operation that invokes the expression stored in

expression data field 𝑑𝑓 (df-type(𝑑𝑓) = expression) with arguments [𝑒0..𝑒𝑛], The factoring

algorithm ensures the each factored monomial associated with an input argument equals 1.

It therefore adds a constraint of the form 𝑚𝑜𝑗 = 1 for each input expression 𝑒𝑗 . Typically,

the factored monomials for these input arguments have injection variables which provide

additional degrees of freedom for meeting this constraint. These variables become part of the

expression assigned to the data field 𝑑𝑓 .

9.4.2 Master Expression Elicitation (master)

The master expression elicitation procedure (master) derives a master expression that implements

the correctable delta model expressions for an output port instance relative to a reference expression

𝑒𝑟𝑒𝑓 . The master expression elicitation procedure introduces mode-dependent process variation

423

property variables when necessary to harmonize mode-dependent disparate behaviors across delta

models. Each process variation property variable dv-prop(𝑙, 𝑜𝑝, 𝑖) is uniquely identified by the

output port instance (𝑜𝑝, 𝑙) of the associated master expression and its numerical identifier 𝑖 ∈ I.

The derived master expression has the following properties:

∙ Setting all the process variation property variables to one transforms the master expression

to the reference expression.

∙ There is a set of process variation property variable assignments for each block mode that

transforms the master expression to the delta expression for that mode. If there is no such

set of assignments for a particular mode, then the master expression elicitation procedure

returns constraints that explicitly forbid the selection of the offending mode.

Algorithm 16 Master expression elicitation (master).
1: # 𝑐𝑠: Target calibration strategy.
2: # 𝑜𝑝: Output port identifier of target output port instance.
3: # 𝑙: Location of target output port instance.
4: # 𝑒𝑟𝑒𝑓 : Reference expression.
5: function master(𝑐𝑠,𝑜𝑝,𝑙,𝑒𝑟𝑒𝑓)
6: let 𝑀𝐸 = {delta-model(𝑐𝑠, 𝑜𝑝, 𝑙,𝑚) | 𝑚 ∈ modes(block(𝑜𝑝))})
7: let 𝑀,𝐶𝐶, 𝑒𝑚𝑠𝑡 = harm(𝑒𝑟𝑒𝑓 ,𝑀𝐸)
8: if 𝑀 ̸= ∅ then
9: return 𝐶𝐶, 𝑒𝑚𝑠𝑡

10: else
11: error harmonization failed

Master Expression Elicitation: Algorithm 16 presents the master expression elicitation proce-

dure. The elicitation procedure accepts as input a calibration strategy 𝑐𝑠, an output port instance

(𝑜𝑝, 𝑙) and a reference expression 𝑒𝑟𝑒𝑓 .

The elicitation algorithm first retrieves the set of correctable delta models for the output port

instance ⟨𝑜𝑝, 𝑙⟩ with calibration strategy 𝑐𝑠 with the delta-model delta model retrieval function

introduced in Section 9.2. The delta model retrieval function only allows delta model parameters

that implement correctable gains to deviate from their ideal values in the returned delta model. The

delta model database is repeatedly queried with each block mode to build a set of mode-expression

tuples 𝑀𝐸 ∈ P(𝑀𝑜𝑑𝑒𝑠× 𝐸𝑥𝑝𝑟𝑠) which capture the correctable behavioral deviations of output

port instance under each mode. I will refer to 𝑀𝐸 as the delta mode-expressions for the rest of this

section.

The master expression elicitation algorithm then invokes the harm function to derive a single

symbolic master expression 𝑒𝑚𝑠𝑡 which encompasses both the reference expression behavior and all

the behaviors of the delta mode-expressions. The harm also returns a set of mode-limiting CGP

constraints which must hold for the harmonization operation to succeed and the subset of modes 𝑀

424

which are modeled with the returned master expression. If the returned master expression models

zero modes, then the harmonization procedure fails with an error. If the master expression 𝑒𝑚𝑠𝑡

captures at least one mode, it returns the calculated CGP constraints 𝐶𝐶 and the master expression

𝑒𝑚𝑠𝑡.

Harmonization Function (harm)

The harmonization function identifies a unifying master expression that captures both the reference

expression’s behavior 𝑒𝑟𝑒𝑓 and the behaviors of all of the delta mode-expressions 𝑀𝐸.

Algorithm 17 Harmonization function (harm)
1: # op: output port identifier of target output port instance.
2: # l: location of target output port instance.
3: # 𝑒𝑟𝑒𝑓 : Reference expression to harmonize against.
4: # ME: Set of delta mode-expressions to harmonize
5: # returns the set of supported modes, a set of new CGP constraints, and the master expression.
6: function harm(𝑜𝑝, 𝑙, 𝑒𝑟𝑒𝑓 ,𝑀𝐸)
7: let 𝑀,𝐶𝐶, 𝑒𝑚𝑠𝑡 = harm-direct(𝑜𝑝, 𝑙, 𝑒𝑟𝑒𝑓 ,𝑀𝐸)
8: if sameOp(𝑒𝑟𝑒𝑓 ,𝑀𝐸) and 𝑀 = then
9: let op = getOp(𝑒𝑟𝑒𝑓 ,𝑀𝐸)

10: let 𝐶𝐶𝑑𝑒𝑐𝑜𝑚𝑝 = ∅
11: let 𝑀𝑑𝑒𝑐𝑜𝑚𝑝 = {𝑚 | ⟨𝑚, 𝑒⟩ ∈ 𝑀𝐸}
12: let subexprs = array(getNumArgs(op))
13: for i in 0...getNumArgs(op) do
14: let 𝑒𝑖,𝑟𝑒𝑓 = getArg(𝑒𝑟𝑒𝑓 ,i)
15: let 𝑀𝐸𝑖 = {⟨𝑚, getArg(𝑒, 𝑖)⟩ | ⟨𝑚, 𝑒⟩ ∈ 𝑀𝐸}
16: let 𝑀𝑖, 𝐶𝐶𝑖, 𝑒𝑖,𝑚𝑠𝑡 = harm(𝑜𝑝, 𝑙, 𝑒′𝑟𝑒𝑓 ,𝑀𝐸′)
17: let 𝑀𝑑𝑒𝑐𝑜𝑚𝑝 = 𝑀𝑑𝑒𝑐𝑜𝑚𝑝 ∩𝑀 ′

18: let 𝐶𝐶𝑑𝑒𝑐𝑜𝑚𝑝 = 𝐶𝐶𝑑𝑒𝑐𝑜𝑚𝑝 ∪ 𝐶𝐶 ′

19: let subexprs[i] = 𝑒𝑚𝑠𝑡

20: let 𝑒′𝑚𝑠𝑡 = buildExpr(op,subexprs)
21: return 𝑀𝑑𝑒𝑐𝑜𝑚𝑝, 𝐶𝐶, 𝑒′𝑚𝑠𝑡

22: else
23: return 𝑀,𝐶𝐶, 𝑒𝑚𝑠𝑡

Algorithm 17 presents the harmonization algorithm. The algorithm accepts as input the output

port instance (𝑜𝑝, 𝑙), the reference expression 𝑒𝑟𝑒𝑓 , and the delta mode-expressions 𝑀𝐸. It returns

the identified master expression 𝑒𝑚𝑠𝑡, the set of derived of CGP constraints (𝐶𝐶), and the subset

of modes captured by the master expression (𝑀).

The harmonization algorithm first invokes the harm-direct function to directly harmonize the

reference expression with all of the delta model expressions. The harm-direct function tries to create

a master expression that models the provided reference expression and delta model expressions. If the

direct harmonization operation failed (the set of returned modes is empty), then the harmonization

algorithm decomposes all the expressions and recursively harmonizes the sub-expressions.

425

Before decomposing all of the expressions, the algorithm first tests to see if the reference ex-

pression and all of the delta-model expressions all have the same root operator (sameOp). If all the

expressions implement the same operator, the algorithm gets the root operator (op)and sets up the

initial state of the decomposition procedure. The initial set of captured modes consists of all the

modes in the provided delta mode-expression set. The initial set of constraints is the empty set. The

algorithm also creates an empty subexprs array to later store the computed master sub-expressions.

The algorithm next iterates over each operand accepted by the operator op. For each operand

with some position i, the algorithm identifies the sub-expression at position i in the reference

expression (𝑒𝑖,𝑟𝑒𝑓). It also constructs a new delta mode-sub-expression set 𝑀𝐸𝑖 which pairs each

mode with the i𝑡ℎ argument of the associated delta expression. It then invokes harm on the reference

sub-expression and the delta mode-subexpression set to derive a master subexpression for operator

argument i. The returned set of captured modes 𝑀𝑖, CGP constraints 𝐶𝐶𝑖, and master expression

𝑒𝑖,𝑚𝑠𝑡 are then used to update the subexpression array (subexpr) and the running set of captured

modes (𝑀𝑑𝑒𝑐𝑜𝑚𝑝) and CGP constraints (𝐶𝐶𝑑𝑒𝑐𝑜𝑚𝑝).

After all of the sub-expressions have been harmonized, the algorithm builds the final master

expression 𝑒′𝑚𝑠𝑡 from the list of master sub-expressions subexprs and the root operator op. It

returns the set of captured modes and CGP constraints (𝑀𝑑𝑒𝑐𝑜𝑚𝑝 and 𝐶𝐶𝑑𝑒𝑐𝑜𝑚𝑝 and the finalized

master expression 𝑒′𝑚𝑠𝑡.

426

Direct Harmonization (harm-direct)

Algorithm 18 Direct expression harmonization algorithm
1: # op: Output port identifier of target output port instance.
2: # l: Location of target output port instance.
3: # 𝑒𝑟𝑒𝑓 : Reference expression to harmonize against.
4: # ME: Delta mode-expression set to harmonize.
5: # returns a set of new CGP constraints and the master expression.
6: function harm-direct(𝑜𝑝,𝑙,𝑒𝑟𝑒𝑓 ,𝑀𝐸)
7: let 𝑦+𝑟𝑒𝑓 , 𝑒𝑏𝑎𝑠𝑒 = factor-coeff(𝑒𝑟𝑒𝑓)
8: let 𝑏 = block(𝑜𝑝)
9: let 𝐶𝐶 = ∅

10: let 𝑀 = ∅
11: new dv-prop(𝑜𝑝, 𝑙, 𝑖)
12: let 𝑒𝑚𝑠𝑡 = dv-prop(𝑜𝑝, 𝑙, 𝑖) · 𝑒𝑟𝑒𝑓
13: for ⟨𝑚, 𝑒⟩ in 𝑀𝐸 do
14: 𝑦+𝑑𝑒𝑣, 𝑒𝑑𝑒𝑣 = factor-coeff(𝑒)
15: if 𝑒𝑑𝑒𝑣 ≡ 𝑒𝑏𝑎𝑠𝑒 then
16: let 𝑐𝑐 = {{𝑚𝑣(𝑏, 𝑙) = mode-int(𝑚) ⇒ dv-prop(𝑜𝑝, 𝑙, 𝑖) = 𝑦+𝑑𝑒𝑣/𝑦

+
𝑟𝑒𝑓}}

17: let 𝑀 = 𝑀 ∪ {𝑚}
18: let CC = 𝐶𝐶 ∪ {𝑐𝑐}
19: else
20: let 𝑐𝑐 = {{𝑚𝑣(𝑏, 𝑙) ̸= mode-int(𝑚)}}
21: let CC = 𝐶𝐶 ∪ {𝑐𝑐}
22: return 𝐶𝐶, 𝑒𝑚𝑠𝑡

Algorithm 18 presents the direct harmonization function harm-direct(𝑜𝑝, 𝑙, 𝑒𝑟𝑒𝑓 ,𝑀𝐸). This

algorithm harmonizes the provided reference expression 𝑒𝑟𝑒𝑓 with a set of delta mode-expressions

𝑀𝐸. It returns the resulting harmonized master expression, the computed CGP constraints, and

the set of modes captured in the master expression. The computed master expression must equal

the reference expression when all the process variation property variables are one. The computed

master expression must also resolve to the appropriate mode-dependent delta expression when the

mode selection variable 𝑚𝑣(block(𝑜𝑝), 𝑙) is set to a specific mode. The direct harmonization function

produces a master expression that fulfills the above conditions.

The harm-direct function harmonizes a reference expression 𝑒𝑟𝑒𝑓 with a set of delta mode-

expressions 𝑀𝐸. It first decomposes the reference expression 𝑒𝑟𝑒𝑓 into a positive constant coeffi-

cient 𝑦+𝑟𝑒𝑓 and basic expression 𝑒𝑏𝑎𝑠𝑒 where 𝑦+𝑟𝑒𝑓 · 𝑒𝑏𝑎𝑠𝑒 = 𝑒𝑟𝑒𝑓 . The factor-coeff utility function

factors out a positive coefficient from the input expression and decomposed expression. Next, the

algorithm sets up the starting set of constraints 𝐶𝐶 and modes 𝑀 captured by the derived master

expression – both sets are initially empty. The direct harmonization algorithm then instantiates a

new process variation property variable dv-prop(𝑜𝑝, 𝑙, 𝑖) and defines the master expression for the

direct harmonization procedure:

𝑒𝑚𝑠𝑡 = dv-prop(𝑜𝑝, 𝑙, 𝑖) · 𝑒𝑟𝑒𝑓

427

The above master expression equals the reference expression when the process variation property

variable dv-prop(𝑜𝑝, 𝑙, 𝑖) is set to one. Next, the algorithm must ensure the master expression imple-

ments the correctable delta model for each mode. The algorithm iterates over each mode-expression

pair in the delta mode-expression set and then attempts to implement each delta expression with

the master expression. It rewrites each delta expression as the product of a positive constant co-

efficient 𝑦+𝑑𝑒𝑣 and a base expression 𝑒𝑑𝑒𝑣. If the base deviation expression is equivalent to the base

reference expression, then the algorithm adds the appropriate process variation property variable

linkage constraints. In that case, the algorithm can transform the master expression to the delta

expression of the current mode by setting the process variation property variable dv-prop(𝑜𝑝, 𝑙, 𝑖) to

a value. The algorithm introduces a new implication CGP constraint that instantiates the process

variation property variable to the 𝑦+𝑑𝑒𝑣/𝑦
+
𝑟𝑒𝑓 value:

{{𝑚𝑣(𝑏, 𝑙) = mode-int(𝑚) ⇒ dv-prop(𝑜𝑝, 𝑙, 𝑖) = 𝑦+𝑑𝑒𝑣/𝑦
+
𝑟𝑒𝑓}}

The assigned property value computes the ratio of the coefficient of the delta expression to the

coefficient of the reference expression. When this mode is selected, the master expression implements

the following expression:

𝑦+𝑑𝑒𝑣/𝑦
+
𝑟𝑒𝑓 · 𝑦+𝑟𝑒𝑓 · 𝑒𝑏𝑎𝑠𝑒

This expression simplifies to 𝑦+𝑑𝑒𝑣 · 𝑒𝑏𝑎𝑠𝑒 – the delta expression for the current mode. If the

two base expressions are not equivalent 𝑒𝑏𝑎𝑠𝑒 ̸≡ 𝑒𝑑𝑒𝑣, then the master expression cannot implement

the delta expression for that mode. The algorithm adds a CGP constraint that ensures the mode

selection variable for the offending block instance is not assigned to the offending mode:

{{𝑚𝑣(𝑏, 𝑙) ̸= mode-int(𝑚)}}

The above constraint ensures the mode of the enclosing block instance 𝑚𝑣(𝑏, 𝑙𝑜𝑐) is not assigned to

the offending mode 𝑚. After all of the mode-expression tuples have been processed, the algorithm

returns the collected CGP constraints and computed master expression.

9.5 Completing the ADP

The compiler first generates and solves the CGP to obtain a set of mode selections. The compiler

then applies the mode selections to the ADP to complete the ADP. The compiler also applies the

mode selections to the CGP to derive a GP which computes the scaling transform. The compiler

then solves the GP to minimize the provided scaling objective function. The compiler applies the

derived scaling transform to the completed ADP.

428

9.5.1 Mode Selection

LScale first nondeterministically produces a set of mode assignments by solving the CGP with an

SMT solver. With this formulation, LScale is always able to find valid mode assignments if they

exist. If the CGP is infeasible, then the underlying GP is also infeasible for all possible mode selec-

tions. In this situation, the ADP is unscalable and not executable on the analog hardware. LScale

finds alternate mode selections by progressively blacklisting mode selection variable assignments that

it has already generated. Note that the SMT problem is often solved easily, as the subset of SMT

constraints I use is fairly restrictive.

9.5.2 Scale Transform Generation

The compiler substitutes all the derived mode selections into the CGP – this resolves all property

variables to values and eliminates all of the SMT constraints and discrete variables from the con-

straint problem. This operation transforms the CGP into a pure geometric programming problem

which can be optimized using a convex solver. It pairs the derived geometric programming problem

with the user-defined scaling objective function 𝑝𝑜𝑜𝑝𝑡. The scaling objective function defines the cri-

teria to minimize when scaling the circuit. The convex solver finds the scaling transform comprised

of magnitude and time scale factors and injection variable values that minimizes the provided scal-

ing objective function. Currently, the compiler supports scaling objective functions which minimize

execution time and maximize analog and digital signal quality for the target ADP:

∙ Maximum Speed: The objective function 𝑝𝑜𝑜𝑝𝑡 = 𝜏−1 maximizes the simulation speed.

This objective function is useful for minimizing the simulation time and enabling developers

to understand the range of feasible simulation times.

∙ Maximum Quality: The objective function 𝑝𝑜𝑜𝑝𝑡 = AQM−1·DQM−1 maximizes the analog

and digital quality measures for the circuit. This objective function is useful for producing

scaled circuits which maximize the quality of the computation.

∙ Balanced Quality: The objective function 𝑝𝑜𝑜𝑝𝑡 = 𝜏−1 ·AQM−1 ·DQM−1 maximizes both

the quality and the speed of the simulation. This objective function is useful for producing

performant scaling transforms that produce high fidelity results. The compiler typically uses

the balanced scaling objective function to scale the provided circuits.

This range of implemented objective functions highlights the flexibility of formulating the con-

figuration scaling problem as a geometric program.

429

9.5.3 Generating the Scaled ADP

LScale then incorporates the set of mode selections and the scaling transform to the ADP. Given

an ADP configuration for block instance ⟨𝑏, 𝑙⟩, LScale makes the following modifications:

1. It assigns a magnitude scale factor to each port and data field in the block instance. The

compiler encodes each scale factor assignment as a scale statement in the ADP.

2. It assigns the time scale factor to the ADP. The compiler encodes the time scale factor

assignment as a timescale statement in the ADP.

3. It modifies the set of viable modes to list only the mode assigned to the block instance’s

associated mode variable 𝑚𝑣(𝑏, 𝑙). The compiler modifies the modes statement in each block

configuration to reference the selected mode.

4. It modifies each expression data field assignment to incorporate the computed injection vari-

ables. The compiler modifies the set statements in the block instance configurations to

reference the updated expression data field values.

9.5.4 Implementation

The LScale pass uses the Z3 SMT solver to solve the CGP [32]. The LScale pass makes use of

the minimize feature provided by recent versions of the Z3 solver to identify mode selections that

minimize the scale objective value. The LScale pass also supports invoking the Z3 solver without

the minimize feature and then using a convex optimizer to solve the scaling problem. The compiler

uses this approach of the Z3 solver fails to return an optimal result. In practice, the Z3 solver can

consistently identify the optimal result. The LScale pass produces multiple scaled ADPs from the

same unscaled ADP by progressively blacklisting mode selections that have already been reported.

The LScale pass supports finer grain quality measures in practice. It maintains analog quality

measures for the state variables and variables externally observed by the user and dedicated digital

quality measures for time-varying digital signals. The scaling objective function jointly maximizes

all of these quality measures to maximize the quality of the signals and values.

9.6 Conclusion

In this chapter, I rigorously describe the circuit scaling pass of the compiler. Analog devices are

subject to a variety of physical phenomena such as noise, quantization error, process variations, and

frequency limitations. The compiler scales the computation to respect all of the imposed voltage,

current, and frequency limitations and compensate for behavioral variations within the device while

delivering acceptably accurate computations in the presence of noise and quantization error. This

430

scaled computation ensures the original dynamical system dynamics are recoverable at runtime by

applying a compiler-derived inverting transform. When scaling the circuit, the circuit scaling pass

may selectively change the block modes in the analog circuit to better scale the circuit.

I first introduce the geometric programming (GP) and combinatorial geometric programming

(CGP) constraint problems that I use throughout this chapter. The compiler formulates the circuit

scaling problem as a CGP, a type of mixed-integer constraint problem which contains both positive

non-zero real-valued variables and integer-valued variables. The compiler solves the CGP with an

SMT solver. A key property of the CGP is that it reduces to a geometric programming problem when

all of the integer-valued variables are assigned to values. The geometric programming problem is a

type of convex optimization problem which supports non-linear constraints and objective functions.

The solution to the geometric programming problem returned by the convex solver is guaranteed to

be optimal – that is, it minimizes the provided objective function.

I then provide an overview of the overall operation of the circuit scaling procedure. The circuit

scaling procedure first derives a CGP that captures the physical limitations and behaviors present

in the hardware. The CGP generation step accepts as input the unscaled ADP, the ADS and DSS,

and the delta model database and the calibration strategy to target. The delta model database, delta

model specifications, and calibration strategy together define the delta models for the device on hand.

The CGP generation step also optionally accepts minimum analog and digital quality measures that

limit the extent to which the scaling transform can scale down any single signal or value. The CGP

variables encode the scaling transform and the set of selected block modes. The CGP is then solved

to produce a set of mode modifications which are then applied to the CGP to produce a GP. The

GP is then paired with a scaling objective function which captures the circuit criteria to optimize.

The GP is solved with a convex solver to produce an optimal scaling transform that minimizes the

provided scaling objective function. The compiler applies both the scaling transform and the mode

modifications to the unscaled ADP to produce a scaled ADP.

I then introduce the notation for formally specifying the scaling problem. I extend the ADS

notation presented in Chapter 8 to include operating range, frequency, noise, quantization error,

and delta model specification information. I extend the DSS notation presented in Chapter 8 to

include interval annotations. I extend the ADP notation from Chapter 8 to include notations for

describing the calibration strategy and delta models. I also formally define the user-provided analog

and digital quality measures.

I next formally introduce the CGP generation procedure. I first described how the scaling

transform, mode selections, and ADP properties are captured in the CGP. I introduce the concept

of an injection variable – a constant coefficient that is injected into the expression assigned to an

expression data field to more flexibly scale the circuit. I then describe how the compiler generates

each of the CGP constraints from the provided inputs. The compiler generates CGP constraints that

431

link block modes to ADP property values, encode operating range and frequency limitations, capture

the effect of quantization error and noise on signal quality, enforce the user-provided minimum quality

measures, and ensure real-time computations execute at the correct speed.

The CGP also contains a number of recovery constraints that ensure the original dynamical

system dynamics can be recovered from any port in the scaled ADP by applying an inverting

transform. Specifically, these constraints ensure the scaled dynamics of a signal with the delta

models applied equals the unscaled dynamics of the signal times a constant coefficient. These factor

constraints are formulated so the compiler can more freely change the modes of the blocks and more

accurately target the device on hand.

The compiler derives these constraints by analyzing the scaled dynamics of the signals at each

output port. The compiler derives the scaled dynamics of each signal by symbolically applying

the scaling transform to a master expression for that signal. The master expression is a single

symbolic expression that captures the behavior of the scaled signal under different modes relative to

the ideal behavior of the signal from the unscaled ADP. The circuit scaling procedure incorporates

the delta model information into the master expression so that the resulting scaling transform can

compensate for any correctable gains present in the device on hand. The master expression also

models the mode-dependent behavior of the output port. The mode-dependent property variables

in the symbolic expression capture the effect of changing the mode on the master expression. The

master expression enables the compiler to adjust the block modes more freely and compensate for

behavioral deviations in the hardware.

Further Reading : Refer to Chapter 6 for an introduction to scaled ADPs and the scaling transform.

Refer to Chapter 5 for an introduction to delta models, delta model specifications, and the delta

model database.

432

Chapter 10

Results

This chapter presents the empirical evaluation of the compiler presented in this thesis. In this eval-

uation, I compile twelve benchmarks from the biology, controls, and physics domains (Sections 4.1-

Sections 4.12) to the HCDCv2 analog device presented in Chapter 5. This evaluation covers the

following concepts:

∙ Performance - I investigate the energy and power consumption and the execution times of

the lowest error circuits. I found the lowest error circuits execute in 0.25-1.92 ms, consume

0.10-5.09 𝜇J of energy and 0.20-1.10 mW of power. The produced waveforms are indistin-

guishable from the expected dynamics.

∙ Compiler Design - I investigate the impact of different compiler optimizations on the end-

to-end result. I study the importance of the scaling transform and the mode selection and

delta model compensation optimizations employed by the circuit scaling pass. I find that all

investigated aspects of the compiler design are integral to consistently obtaining good quality

results.

I also compare the co-designed calibration strategy to the traditional calibration strategy.

Refer to Chapter 5 for an overview of both calibration strategies. I find that for 10 of the

12 benchmark applications, the co-designed calibration strategy produces lower error results

or more consistently produces results of the same quality. From this analysis, I can conclude

that the co-designed strategy calibrates the device to behave more predictably and eliminates

more unwanted behaviors than the traditional strategy.

∙ Circuit Optimality - I investigate the optimality of the produced circuits. The produced

circuits use few extraneous analog blocks and often attain the maximum execution speed

supported by the device. I also investigate how effectively the signals in the circuits utilize

the operating ranges available on the device. While the compiler does not maximize the

433

signals’ dynamic ranges on all wires, it does use a good fraction of the available operating

range for a majority of signals.

I also investigate the optimality of the balanced scaling objective function values for the pro-

duced circuits. I find that the compiler produces a variety of equally viable scaling transforms

which all scale the circuit differently but successfully minimize the balanced scaling objective

function.

∙ Unscaled ADP Viability: I investigate why the produced unscaled circuits cannot be

executed on the target hardware platform. I find that all ADPs generated by the circuit

synthesis procedure violate at least one operating range or frequency constraint.

∙ Circuit Attributes and Quality - I investigate the relationship between different circuit

attributes and the end-to-end result quality. I find that the block instance selection has a

significant impact on the quality of the end-to-end result. I am also able to confirm that the

balanced scale objective function is a good predictor of the end-to-end result quality.

∙ Beyond the balanced Scaling Objective - I investigate whether there is potentially a

better scaling objective than the balanced scaling objective. I compile the benchmark appli-

cations with an alternative objective function that maximizes one signal in the target circuit.

I find that this alternative objective function produces higher fidelity or better performing,

lower energy circuits for a subset of benchmark applications.

∙ Real-time Signal Processing Case Studies - I present two realtime signal processing case

studies which directly perform computation on an externally provided, continuously evolving

signal.

I next present a high-level roadmap of the results chapter. I summarize the questions addressed

in each section and provide an overview of the key results from my evaluation.

Key Results

The compiler presented in this thesis produces scaled ADPs which execute the energy efficiently

and performantly on the analog hardware (Table 10.2) with great accuracy (Figure 10-1).

The circuit scaling procedure and all of the circuit scaling optimizations are integral to gener-

ating ADPs that produce high quality results. Without the scaling transform, the compiler cannot

produce ADPs which can be executed on the analog hardware (Sections 10.3.1 and 10.6). Without

mode selection, the compiler produces ADPs that yield poor results for a significant fraction of the

benchmarks (10.3.2). The compiler cannot produce executable scaled ADPs for two benchmarks

without mode selection. The delta model compensation optimization employed by the circuit scaling

434

procedure further improves the fidelity of the produced waveforms (Section 10.3.3). Without delta

model compensation, the produced waveforms noticeably deviate from the reference signal.

The circuit synthesis procedure produces ADPs that use no additional copier blocks and few

additional routing blocks (Sections 10.5.2). For a significant fraction of benchmarks, the compiler

incorporates additional multiplier blocks into the ADP to compensate for coefficients introduced by

the HCDCv2 blocks.

Experimental Setup (Section 10.1)

I evaluated the compilation toolchain on the twelve benchmark dynamical system applications in-

troduced in Chapter 3. I configure the toolchain to target the HCDCv2 re-configurable device

introduced in Chapter 5. For each of the benchmark applications, I compiled the application’s DSS

with the compiler to produce a collection of two hundred scaled ADPs that all implement the start-

ing DSS. Each of these scaled ADPs uses different block instances, selects different block modes,

or implements a different scaling transform. I produce many candidate scaled ADPs for each appli-

cation so that I may study the effect of scaled ADP characteristics on the end-to-end result. I am

also able to study the distribution of compilation outcomes with this setup. Chapter 6 presents a

representative ADP for each benchmark application.

∙ Compilation (Section 10.1.1): The compiler is provided with the DSS of the benchmark

application and the ADS for the HCDCv2 analog hardware. The compiler produces 10

distinct unscaled ADPs per application and 20 distinct scaled ADPs for each unscaled ADP.

Of the 20 scaled ADPs, the compiler produces 10 scaled ADPs which target blocks calibrated

with the minimize_error HCDCv2 calibration strategy and 10 scaled ADPs which target

blocks calibrated with the maximize_fit calibration strategy. Both calibration strategies are

described in Chapter 5.

The compiler produces scaling transforms by minimizing the balanced scaling objective func-

tion introduced in Chapter 9. The balanced scaling objective function maximizes both the

analog and digital signal qualities and the execution speed of the scaled circuit. The circuit

scaling procedure implements two key optimizations: delta model compensation and mode

selection. The delta model compensation optimization allows the compiler to produce scaled

ADPs that compensate for the low-level physical behaviors captured by the block delta mod-

els. Refer to Chapter 5 for an overview of delta models. The mode selection optimization

allows the compiler to change the block modes when producing the scaled ADPs to better

scale the circuit.

∙ Execution (Section 10.1.2): Each compiled scaled ADP is then executed on the Sendyne

development board, which interfaces with the HCDCv2 chip [132, 61, 51]. I compare each

435

recorded signal with a reference waveform computed with a high-precision digital differential

equation simulator. I quantitatively capture the degree of agreement between the two signals

with the percent normalized root-mean-squared error (% rmse). This quality metric computes

the root-mean-squared error between the two signals and then normalizes the measure with

the maximum amplitude of the reference signal.

∙ Evaluation Metrics (Section 10.1.3): The analyses in this chapter often study the distri-

bution of measures across scaled ADPs. To reduce the effect of outlier executions, I use the

median, inter-quartile range (IQR), and first and third quartiles to capture the distribution

of a particular metric.

Quality, Runtime, Power, and Energy (Section 10.2)

I investigate the power, energy consumption, and execution time for the lowest-error (best-performing)

executions for each benchmark application. Section 10.2 presents a quantitative study of the perfor-

mance characteristics of the lowest-error executions. The lowest-error benchmark applications exe-

cute in 0.25-1.92 milliseconds and consume 0.10-5.09 𝜇J of energy while accruing between 3.461×10−6

and 1.96% normalized root-mean-squared error. Section 10.2.1 presents a qualitative study of the

degree of agreement between the measured signals and the reference waveforms. Visually, the refer-

ence waveforms and recorded signals are indistinguishable from one another. Because the waveforms

align, the compile-time estimate of the execution time accurately predicts the actual time required

to simulate the dynamical system on the analog hardware.

Evaluation of Compiler Design (Section 10.3)

I investigate to what extent the compiler optimizations enable the compiler to produce circuits con-

sistently that yield high quality results. To better understand the variations across result outcomes,

I evaluate the distribution of % root-mean-squared errors across all executions for each benchmark.

This analysis investigates the importance of the scaling transform, mode selection, delta model

compensation, and calibration strategy on the end-to-end result:

∙ Scaling Transform (Section 10.3.1): I produced executions with circuit scaling turned off.

Without circuit scaling, all of the compiled benchmark applications violated hardware con-

straints and could be executed on the HCDCv2. The scaling transform is therefore integral

for producing circuits that can be executed on the analog device.

∙ Mode Selection (Section 10.3.2): I next produced executions with circuit scaling turned on,

but master expressions turned off – this prevents the compiler from aggressively changing the

mode when scaling the circuit. For six benchmarks, the best-performing executions without

436

mode selection deviated significantly from the reference waveforms. Two compiled benchmark

applications violate hardware constraints and cannot be executed on the HCDCv2. The four

benchmarks which produced good results still had higher errors than the best-performing

executions from Section 10.2 and did not confer any significant runtime, power, or energy

benefits. The mode selection optimization is therefore integral for obtaining good quality

results.

∙ Delta Model Compensation(Section 10.3.3): I next compare the executions with and

without delta model compensation. Eleven of the benchmarks produce lower error results

more consistently with delta model compensation enabled. The inclusion of delta model com-

pensation is therefore helpful in further improving the accuracy of the produced executions.

∙ Calibration Strategy (Section 10.3.4): I next compare the efficacy of the co-designed

(maximize_fit) calibration strategy with the traditional calibration strategy (minimize_-

error). I found the co-designed calibration strategy can more consistently produce lower

error results than the traditional strategy. The co-designed strategy either more consistently

delivers comparable error to the traditional strategy or more consistently produces lower er-

ror results than the traditional strategy for nine benchmarks. The co-optimized calibration

strategy, therefore, helps improve the predictability of the HCDCv2 in many cases. In some

situations, the co-optimized calibration strategy is even able to deliver better results.

Compilation Times (Section 10.4)

I then investigate the time required for the compiler to produce the scaled ADPs. This analysis

reports the compilation times and provides a performance breakdown of the compiler by compilation

pass. The compiler takes between 0.33-34.87 seconds to compile the benchmark applications. For

most applications, this time is spent in the LGraph pass synthesizing the circuit.

Optimality of Compilation Outcomes (Section 10.5)

I then study the optimality of the unscaled and scaled ADPs produced by the compiler. Sec-

tion 10.5.1 presents the evaluation metrics which I use in these analyses. I investigate the optimality

of the following ADP characteristics in this section:

437

∙ Resource Utilization (Section 10.5.2): I first investigate the resource utilization of the

produced ADPs. Here, an optimal circuit would not incorporate any unnecessary blocks into

the ADP. I validate that, for 11 of the 12 applications, the produced ADPs use the minimum

number of routing and assembly blocks to implement the target dynamical system. The

remaining benchmark uses the minimum number of assembly blocks and two more routing

blocks than necessary. The compiler also uses the minimum number of required compute

blocks for all compute blocks except the multiplier block. The multiplier blocks are generally

used to correct for coefficients introduced by the device. The compiler can therefore produce

circuits that implement the desired computations without using too many extraneous blocks.

∙ Execution Speed (Section 10.5.3): I investigate whether the scaled ADPs execute at the

maximum speed supported by the HCDCv2. For 7 of 12 applications, the compiler produces

at least one scaled ADP which attains the maximum possible speed supported by the device.

For 3 of the 12 applications, all scaled ADPs operate at the maximum possible execution speed

supported by the HCDCv2. The execution speed is at least 49.7% of the maximum possible

execution speed supported by the device for all benchmarks. This analysis demonstrates that,

for a majority of applications, the compiler can fully exploit the performance characteristics

of the HCDCv2.

∙ Dynamic Ranges of Signals (Section 10.5.4):I next investigate how effectively the scaled

ADPs scale the signals within the circuit. It is often desirable to scale signals to have

large dynamic ranges since signals with large dynamic ranges are more robust to noise and

quantization error. It is generally not possible to maximize the dynamic range of all the

signals in a given circuit. For 9 of the 12 applications, the compiler produces scaled ADPs

that maximize at least one signal. For all applications, the compiler produces scaled ADPs in

which at least half the signals occupy 50% of the operating range. This analysis demonstrates

that the compiler can produce scaled ADPs with signals which exploit a significant fraction

of the available operating ranges.

438

∙ Amplitude of Values (Section 10.5.5): I next investigate how effectively the scaled ADPs

scale the fixed signals and values within the circuit. It is often desirable to scale fixed signals

and values to have larger magnitudes since values with large magnitudes are more robust to

noise and quantization error. It is generally not possible to maximize the magnitude of all fixed

signals and values within a given circuit. For all applications, the compiler produces scaled

ADPs that maximize at least one data field value. For all applications, the compiler produces

scaled ADPs in which at least half the data field values are larger than 0.5 (the maximum

possible magnitude is 1.0). This analysis demonstrates that the compiler is, therefore, able

to produce scaled ADPs with data field values and fixed signals which have relatively large

magnitudes.

∙ Scale Objective Function Value (Section 10.5.6): The compiler is instructed to scale the

ADP to minimize a balanced objective function which jointly maximizes quality and speed.

I investigate the spread of balanced objective function values produced by the compiler. I

find that the compiler can consistently find circuits that minimize the balanced objective

function.

∙ Scale Objective and Quality Measure Analysis (Section 10.5.7): The compiler may

identify multiple candidate scaling transforms which all minimize the balanced scaling ob-

jective function. I investigate the spread of the analog and digital quality measure values for

each benchmark application – these quality measures together with the execution speed make

up the balanced scaling objective function. This analysis reports multiple different quality

measures and execution speeds because the compiler can minimize balanced scaling objective

function in multiple different ways.

In this analysis, I show that the compiler produces a wide range of scaling transforms that

report various quality measures but all attain comparable scaling objective values. This anal-

ysis demonstrates that the compiler can identify multiple good candidate scaling transforms

within the space of physically realizable, recoverable scaling transforms.

Viability of the Unscaled ADP (Section 10.6)

I investigate why the unscaled ADPs produced by the compiler cannot viably be executed on the

HCDCv2. Sections 10.6.1, 10.6.2, and 10.6.3 investigate how severely the unscaled ADPs violate

the frequency and operating range restrictions of the device.

For 11 benchmark applications, the unscaled ADPs contain values that exceed the maximum

supported data field value – these applications cannot be written to the device at all. For all of the

benchmark applications, the unscaled adps contain signals which violate the operating range and

frequency restrictions of the device. These unscaled ADPs cannot be safely executed on the analog

439

device. All of these violations together concretely justify the need for a scaling transform.

Complexity of Scaling Transform (Section 10.7)

I then investigate the complexity of the scaling transform. I perform a detailed analysis of the

characteristics of the scaled ADPs. The analysis summarizes the value ranges of the time and

magnitude scale factors and identifies which proportion of the scale factors are unique. I find

that the produced scaling transforms define between 4-30 unique (14-90 total) magnitude factors

ranging from 0.01 to 3.46×104 and define time scale factors ranging from 0.09 to 0.63. This analysis

demonstrates that the compiler derives complex scaling transforms with many distinct scale factors

which span a wide range of values.

Compilation Outcomes and Result Quality (Section 10.8)

Section 10.5.6 reported that the scaled ADPs for a given benchmark report comparable balanced

scale objective values. However, in practice, the produced waveforms vary significantly depending

on the execution. This disparity between the static measure of circuit optimality and the actual

end-to-end result quality may arise because the compilation procedure fails to consider the full range

of hardware behaviors that may impact the end-to-end result.

440

This section investigates the relationship between the quality of the end-to-end result and the

scaled ADP characteristics. The results of this analysis can be used to inform future compiler

optimizations. For each investigated ADP characteristic, I investigate if the chosen calibration

strategy affects the relationship between the studied ADP characteristic and the end-to-end result.

In this analysis, I study the effect of the following ADP characteristics on end-to-end result quality:

∙ Block Instance Selections(Section 10.8.1): I investigate the relationship between the loca-

tions of the blocks in the scaled ADPs and the end-to-end result. For all of the benchmark

applications, the subset of selected block instances has a sizable effect on the distribution of

errors. This observation indicates that the location assignments derived in the place+route

stage of compilation significantly affect result fidelity. In some cases, the maximize_fit cali-

bration strategy can reduce, but not eliminate, these variances in the end-to-end result. For

this reason, I believe it would be productive to engineer an extension to the place+route

procedure that incorporates the effect of each block instance on the quality of the end-to-end

result.

∙ Quality Measures, Speed, and Scaling Objective (Section 10.8.2): I investigate how

the execution speed, scaling objective function value, and quality measures relate to the error

of the end-to-end result. The primary goal of this analysis is to determine how predictive the

scaling objective is of result fidelity. Another goal of this analysis is to understand whether

any of the constitutive components of the scaling objective function (the speed and quality

measures) strongly correlate with the end-to-end results. If any of these measures correlate

strongly for all executions, then the balanced scaling objective likely can be simplified to a

single term.

In this analysis, I compute the Pearson correlation coefficient (PCC) between the balanced

scaling objective value and the % normalized root-mean-squared error of the measured wave-

form. For 11 of the benchmarks, the balanced scaling objective function value correlates

(PCC ≥ 0.5) with the quality of the produced waveforms. For six of these benchmarks, the

balanced scaling objective function value strongly correlates (PCC >0.9) with the quality

of the end-to-end result. For 10 of 12 applications, the scaling objective function value corre-

lates more strongly with the end-to-end result than the execution speed or any single quality

measure. These observations indicate that the balanced scale objective is a good heuristic for

identifying good scaling transforms. The balanced scale objective likely cannot be reduced

to a single term and remain a good predictor.

It’s important to note that while the balanced scaling objective is a reasonably good predictor

of quality, it is not a strong predictor of quality for all applications. The balanced scaling

objective function is also less effective at predicting the quality of executions that use the

441

maximize_fit calibration strategy. I believe it would be productive to engineer objective

functions which better predict result quality for these cases.

Potential of Alternate Scaling Objective Functions (Section 10.9)

I next explore the potential benefits of engineering an alternate scaling objective function. I introduce

a new single-signal scaling objective function that maximizes a single signal or value, subject to a

loose minimum AQM and DQM bound. I compare ADPs produced with this new scaling objective

function with the ADPs produced with the balanced scaling objective function used by the compiler.

If a subset of these single-signal maximizing executions outperforms the balanced scaling objective,

then there is likely a signal or subset of signals which the compiler can maximize to deliver a good

result. One potential future direction would be to develop a static analysis routine that identifies

the subset of important signals in the ADP.

∙ Performance (Section 10.9.1): I compare the performance of this scaling objective function

to the balanced scaling objective function used by the compiler. This analysis contrasts

the quality, power, energy, and runtime characteristics of the two scaling objectives. This

analysis aims to identify if these single-signal executions identify a new and desirable point

in the tradeoff space.

For five of the benchmarks, the single-signal objective function produces lower error execu-

tions. For four benchmarks, the single-signal objective function produces faster, lower energy,

or lower power executions. These more performant executions produce waveforms with error

characteristics that are better or competitive with the best-performing balanced executions

discussed in Section 10.2. There are signals that, when maximized, unlock more performant

or more accurate regions in the tradeoff space.

∙ Signal Characteristics (Section 10.9.2): I next investigate the characteristics of the signals

maximized by the single-signal scaling objective function. This analysis aims to identify

any patterns that can be leveraged to develop new scaling objective functions. Ten of the

maximized signals implemented dynamical variables and eight of the signals implemented

intermediate dynamical system expressions. Based on these observations, there doesn’t seem

to be a unifying heuristic that would identify these signals. I anticipate that a more thorough

analysis would need to be developed to identify the signals to maximize.

Real-time Signals (Section 10.10)

I next compile and execute the two real-time signal processing applications introduced in Section 4.13

on the HCDCv2. Real-time signal processing applications are attractive computational targets for

442

benchmark description observation time diffeqs funcs nonlinear
cos cosine signal 20 su 2 1 no
cosc dampened oscillator oscillator amplitude 20 su 2 1 no
pend pendulum position of mass 20 su 2 1 yes
spring two-mass spring system position of mass 1 20 su 4 3 yes

vanderpol vanderpol oscillator signal 50 su 2 1 yes
heatN4X2 movement of heat heat at point 2 120 su 4 1 no

forced forced vanderpol oscillator signal 10 su 4 1 yes
pid PI controller velocity 200 su 4 3 no

kalman kalman filter average 50 su 6 3 yes
gentog genetic toggle switch concentration of V 20 su 4 4 yes

smmrxn michaelis menten reaction complex 20 su 1 3 yes
bont4 bont signal 20 su 5 1 no

Table 10.1: Dynamical system benchmarks used in evaluation.

analog devices such as the HCDCv2 since they have real-time performance requirements and typically

operate in an energy-constrained environment.

Both evaluated signal processing applications accept an external analog signal as input, compute

over the signal continuously in real-time, and emit a continually evolving result. I validate that the

real-time signal processing applications perform computation on an externally provided real-time

signal which exercises each application’s functionality with acceptable accuracy.

10.1 Experimental Setup

Figure 10.1 presents an overview of the benchmark applications used in the evaluation. The bench-

mark applications contain between 2-6 differential equations and 1-4 straight-line functions. Seven

of the twelve benchmarks implement non-linear dynamical systems. Each benchmark application

produces one observable signal (observation column) and executes for 20-200 simulation time units

(time column).

10.1.1 Compilation of Scaled ADPs

For each dynamical system benchmark, I configure the compiler to produce a total of 200 scaled

ADPs. The 200 ADPs produced for each benchmark all implement the target dynamical system

but may use different block instances, make different mode selections, target different calibration

strategies, or specify different scaling transforms. I produced 200 ADPs for each benchmark by

configuring the LGraph pass to generate ten ADPs and configuring the LScale pass to generate

twenty scaled ADPs for each unscaled ADP. The LScale pass identifies ten distinct mode selections

which minimize the balanced scale objective functions. Ten of the produced scaled ADPs target the

minimize_error calibration strategy and ten of the produced scaled ADPs target the maximize_fit

calibration strategy:

∙ minerr: ADPs compiled with the minerr configuration target analog blocks calibrated with

443

the minimize_error calibration strategy. This calibration strategy calibrates blocks so that

their behavior adheres to the input-output relations specified in the ADS. The minimize_-

error strategy is the calibration strategy that is traditionally used for calibrating analog

hardware.

∙ maxfit: ADPs compiled with the maxfit configuration target analog blocks calibrated with

the maximize_fit calibration strategy. This calibration strategy allows for controlled behav-

ioral deviations, provided the compiler can statically compensate for the behavioral deviations.

The maximize_fit calibration strategy is co-designed to work together with the LScale pass

of the compiler to produce accurate scaled ADPs.

The compiler produces scaled ADPs that minimize the balanced scale objective function. The

balanced scale objective function jointly maximizes the quality and speed of the signals in the ADP.

For all the scaled ADPs, the compiler compensates for the behaviors described in the devices’ delta

models and freely changes the mode selections for the blocks to better scale the circuit.

I limit the port and data field operating ranges to 95% of the entire operating range when scaling

the circuit to limit the effect of difficult-to-characterize non-linearities on the computation. These

non-linearities exist at the edges of the input space of most blocks.

10.1.2 Execution of Scaled ADPs

I evaluated the compiled benchmarks on the Sendyne development board, which interfaces with the

HCDCv2 [132, 61, 51]. See Chapter 5 for more information on the computational blocks available

on this platform.

Signal Acquisition and Analysis:

I collected waveforms for each benchmark using a Sigilent X1020E oscilloscope. I measure the

amplitude of the analog waveform in 𝑚𝑉 and the time samples in wall-clock seconds. I apply the

compiler-derived recovery transform to each signal to recover the original dynamical system dynamics

from each measured waveform. I then compare the recovered signals to a reference simulation of the

dynamical system computed by a standard digital differential equation solver that digitally simulates

the dynamical system with high precision. As appropriate, I shift the measured signal in the time

domain and apply minor changes to the time constant (scale by 0.98-1.02x) to account for otherwise

uncharacterized deviations in hardware behavior.

Energy Consumption: I used an empirically-derived energy model provided by our collaborators

to estimate the energy consumption of the device [50]. I use a model-based approach, as it is difficult

to isolate the analog chip’s power draw because it is embedded on a larger development board with

other supporting circuitry. The maximum power consumption of the device is 1.2 mW.

444

10.1.3 Overview of Statistical Measures

The analyses presented in this chapter use a variety of statistical measures to summarize distributions

of outcomes. The chosen statistical measures are robust to outlier results and adequately capture

both the typical outcome and the spread of outcomes:

∙ Median: The median value is the value at the 50% percentile of the dataset. Half of the

values in the dataset are greater than the median value, and half of the values in the dataset

are smaller than the median value.

∙ First (Q1) and Third (Q3) Quartiles: The first and third quartiles are values at the 25%

and 75% percentile of the dataset. The Q1 and Q3 quartiles quantify the lower and upper

values of the middle 50% of values in the dataset. These quartiles, therefore, exclude any

extreme values present in the dataset.

∙ Interquartile Range (IQR): The interquartile range (IQR) quantifies the spread of values.

The IQRis the difference between the third and first quartile of the dataset (Q3-Q1). The

IQRquantifies the typical spread of outcomes in the dataset.

∙ Low (WT) and And High (WB) Values: The low and high values of the dataset quan-

tify the lowest and highest non-outlier values. All values outside of the range [median -

1.5*IQR,median + 1.5*iqr] are reported as outliers.

∙ Minimum and Maximum Values: The minimum and maximum values of the dataset

quantify the lowest and highest values (including outliers). These metrics are the simple

minimum and maximum of the dataset.

For some results, only the minimum and maximum values are reported. These results are

written as a range max(x) - min(x) if the minimum and maximum values differ. If the

minimum and maximum values are the same, then only one number is reported.

445

Box Plot Visualizations

+

Median

Q3

Q1

WT

WB

IQR

Outliers

The above statistics are typically presented as a table of values or a box and whisker plot (left

figure). The figure to the left is an annotated version of the box and whisker plot. The orange line

on the plot indicates the median value of the distribution. The top and the bottom of the box are

the third and first quartiles of the data, and the top and bottom notches are the high and low values

of the data. Any points above or below the box and whisker plot are outlier values. Typically, the

outliers are excluded from box and whisker plots as they reduce the readability of the plot.

Statistical Measures and End-to-End Quality

The presented analyses often discuss the distribution of % root-mean-squared (% rmse) errors for all

executions of a particular type. These analyses use the following terms to describe the distribution

of observed errors:

∙ Best-performing execution (minimum) – The best-performing execution is the execution with

the lowest % rmse. The best-performing execution is the most accurate execution produced

by the compiler. This execution is the best the compiler can do for the target benchmark for

a given execution type.

∙ Typical execution (median) – This analysis reports the median error for all minerr and all

ideal executions. The execution with the median error can be thought of as the error an end

user might see from a typical execution. The typical error is the % rmse associated with the

typical execution.

446

benchmark execution %rmse runtime (ms) power (mW) energy (uJ)
cos maxfit 0.05 0.52 0.20 0.10
cosc minerr 1.96 0.25 0.40 0.10
pend minerr 0.15 0.50 0.45 0.23
spring minerr 0.99 1.09 1.03 1.13

vanderpol minerr 1.19 1.25 0.74 0.92
forced maxfit 0.69 0.25 0.84 0.21

heatN4X2 minerr 0.01 1.50 0.76 1.14
pid maxfit 0.63 5.95 0.86 5.09

kalman maxfit 0.04 2.50 0.86 2.16
smmrxn maxfit 4.50e-04 0.50 0.53 0.27
gentog maxfit 1.72 1.82 1.10 2.00
bont4 maxfit 3.46e-06 0.26 0.93 0.24

Table 10.2: Quality, runtime, power, and energy measures for best performing ADPs.

∙ Error spread (iqr) – This analysis reports the IQR for all minerr and ideal executions. The

IQR captures the spread of errors for a particular execution type (excluding any outliers).

Execution types which produce executions with a small error IQRare able to more consistently

deliver executions with similar error characteristics.

10.2 Quality, Runtime, Power, and Energy

Table 10.2 presents the performance characteristics of the best-performing (lowest % rmse) dynamical

system simulations when executed on the HCDCv2 board. Column 1 reports the type of execution

(minerr or maxfit) which has the lowest error. Columns 2-5 report the normalized root mean-

squared error (% rmse), runtime, power, and energy consumption of each benchmark.

Quality: The normalized root-mean-squared error ranges from 3.46 · 10−6% to 1.96% of the dynamic

range of the signal for the best performing execution depending on the benchmark. This high degree

of agreement between the reference and measured signal indicates that the compiler is capable of

producing highly accurate ADPs for a wide range of benchmark applications. The low error also

confirms that the computed mapping between wall-clock time and simulation time is within the 2%

error margin described in the experimental setup. This indicates that the statically derived runtime

estimation is an accurate estimate of the time required to execute the benchmark applications.

None of the applications report a zero % rmse – this is not unexpected as the compilation

procedure does not capture and compensate for all possible behaviors present in the analog device.

For example, the compiler does not model or compensate for the frequency-gain characteristics for

each block instance. The compiler captures (with delta models) but does not compensate for any

residual signal biases present in the blocks post-calibration. The compiler also does not eliminate

the physical phenomena captured in the hardware specification. For example, the noise present in

the block may still affect the computation as the scaling procedure only reduces the effect of the

447

noise on the computation.

Runtime: The execution times range from 0.25 to 5.95 milliseconds for the best-performing execu-

tions. The execution times vary significantly across benchmarks because different benchmarks are

executed for different numbers of simulation time units. Variations in the time scale factor value

also affect the execution time of the benchmark.

The time required to run each benchmark does not grow with the complexity of the benchmark.

For example, the bont benchmark contains five differential equations and one function but completes

in less wall-clock time than the much simpler cos benchmark (both benchmarks execute for 20

simulation time units). The HCDCv2 is also capable of executing non-linear systems in less time than

linear systems. For example, the nonlinear smmrxn benchmark executes to completion in less time

than the linear cos benchmark (both benchmark execute for 20 su). In contrast, traditional digital

simulation techniques take longer to simulate larger dynamical systems and experience performance

degradations when simulating non-linear systems.

Power Consumption: The power consumption ranges from 0.20 to 1.10 milliwatts depending

on the benchmark for the best performing executions. There are variations in power consumption

because only the enabled components draw power. The power consumption of a block may also vary

depending on the block mode and the integration speed of the scaled circuit.

Energy Consumption: The total energy consumption for each execution is equal to the power

consumption multiplied by the runtime. The energy consumption ranges from 0.10-5.09 𝜇J depend-

ing on the benchmark for the best performing executions. Overall, these benchmark applications

consume very little energy.

Best-Performing Execution: For the cos, pid, kalman, forced, smmrxn, gentog, and bont4

benchmarks, the maxfit calibration strategy produces the best-performing execution. For the cosc,

pend, spring, vanderpol, and heatN4X2 benchmarks, the minerr calibration strategy produces

the best-performing execution. Note that sometimes the minerr produces better executions than

maxfit executions. Refer to Section 10.3.4 for a deeper analysis of the relationship between the

calibration strategy and the end-to-end result.

448

0 10 20
time

0

10

[V
] (

co
nc

)
gentog

(a) gentog

0 10 20
time

0.000

0.025

0.050

sig
na

l (
un

its
) bont4

(b) bont4

0 10 20
time

0.0

0.2

[E
S]

 (c
on

c)

smmrxn

(c) smmrxn

0 100 200
time

2

0

2

ve
lo

cit
y

(v
el

oc
ity

) pid

(d) pid

0 50 100
time

0.5

0.0

0.5

av
er

ag
e

(u
ni

ts
) kalman

(e) kalsmooth

0 20 40
time

2

0

2
sig

na
l (

am
pl

itu
de

) vanderpol

(f) vander

0 5 10
time

2

0

2

sig
na

l (
am

pl
itu

de
) forced

(g) forced

0 10 20
time

0

2

m
as

s 1
 (p

os
iti

on
) spring

(h) spring

0 10 20
time

5

0

5

am
pl

 (u
ni

ts
)

cosc

(i) cosc

0 10 20
time

1

0

1

po
sit

io
n

(a
ng

le
) pend

(j) pend

0 50 100
time

0.0

0.5

1.0
he

at
 (u

ni
ts

)
heatN4X2

(k) heatN4X2

0 10 20
time

0.5

0.0

0.5

sig
na

l (
sig

na
l) cos

(l) cos

Figure 10-1: Measured and reference waveforms for the lowest-error ADPs. Each
reported waveform is from a minerr or maxfit execution. red lines are reference
signals. green lines are measured signals. Note that measured signals are largely
visually indistinguishable from reference signals.

10.2.1 End-to-End Result Quality (% rmse)

Figure 10-1 presents a qualitative comparison of the analog signals measured from the HCDCv2

(green) with the reference simulation (red) for the best performing ADPs from the previous section.

I obtain the reference simulations by solving the benchmark applications with a high precision digital

differential equation simulator. In all cases, the analog signal closely tracks the reference simulation,

as can be seen by the fact that the signals are essentially indistinguishable. In Figure 10-1, only a

single line is visible for each benchmark application – this is because the reference waveforms and

measured waveforms are superimposed on top of one another. The most visible deviations occur

for the spring benchmark. Small deviations in the measured signal are acceptable in the above

benchmarks as the benchmark applications themselves allow for some error:

Physical Systems: Dynamical systems model physical phenomena (e.g., physics and biology sim-

ulations) that are inherently approximate: the constants are often derived from empirical measure-

ments and, in many cases, the dynamics are approximations of physical phenomena. With these

449

systems, state variable trajectories are typically inspected visually.

Control Systems: Control systems are typically designed with some high-level objective in mind.

For the pid program, the objective is to attenuate any perturbations. For the kalman program, the

goal is to track an input signal. Both the analog and reference implementations of these computations

meet these objectives.

10.3 Compiler Optimizations and Result Quality

I next investigate the effect of various compiler optimization and compiler design decisions on the

end-to-end result quality.

What if the compiler doesn’t scale the circuit? Section 10.3.1 investigates the impact of

disabling the circuit scaling compilation pass on the end-to-end result quality. With circuit scaling

disabled, none of the benchmarks could be executed on the hardware. The circuit scaling procedure

is therefore integral to mapping computations onto the analog hardware.

What if the compiler scales the circuit but doesn’t aggressively change the mode? : Sec-

tion 10.3.2 investigates of the effect of disabling master expression support in the LScale pass. This

modification to compilation bars the scaling procedure from selecting any modes which are not al-

ready specified in the unscaled ADP. In this analysis, the delta model compensation optimization

is also disabled.

With aggressive mode selection disabled, only the bont4, heatN4X2, cosc, and smmrxn bench-

marks produce results which agree with the reference signal. The cos and forced benchmarks could

not be compiled at all. The compiler’s ability to aggressively change the block modes significantly

improves its ability to scale the circuit effectively.

What if the compiler doesn’t compensate for behavioral variations? : Section 10.3.3 inves-

tigates the effect of delta model compensation on the end-to-end result. With delta model com-

pensation disabled, only the vanderpol benchmark produces an execution that closely matches the

reference executions. With delta model compensation disabled, ten of the twelve benchmarks report

a higher median error, and five of the ten benchmarks report a higher spread of errors. Therefore,

LScales ability to compensate for behavioral variations produces lower-error executions on average

and can produce executions with an overall lower error.

What if the compiler targets a calibration strategy that has been co-designed to work

with the circuit scaling procedure? : Section 10.3.4 also investigates the effect of the calibration

strategy on the end-to-end result. This analysis compares executions which target the minimize_-

error calibration strategy with executions which target the maximize_fit calibration strategy.

The minimize_error calibration strategy is a classical calibration strategy that calibrates blocks

to implement the input-output relations described in the ADS. In contrast, the maximize_fit

450

calibration strategy is specially designed to work with the scaling procedure. It allows blocks to

deviate from the desired input-output relation provided the LScale compilation pass can correct the

behavioral variations with delta model compensation techniques.

With the co-designed maximize_fit calibration strategy, eight of the twelve benchmarks report

a lower median error, and five of the twelve benchmarks report a lower spread of errors (four

are comparable). For seven of the ten benchmarks, the lowest-error execution is a maximize_fit

execution. Therefore, the co-designed calibration strategy more consistently produces comparable

or lower error results for a significant fraction of applications.

10.3.1 Effect of Scaling Transform

What if the compiler doesn’t scale the circuit?

To explore the effect of circuit scaling on the quality of the end-to-end execution result, I execute

the circuit scaling pass with an identity transform where all signals and values are scaled by one. I

introduce a new type of execution to perform this analysis:

∙ noscale: The noscale executions isolate the effect of the scaling transform on the fidelity of

the result. To produce these executions, I direct the circuit scaling pass to set each time and

magnitude scale factor to one. I also disable delta model compensation since the compensation

process requires a non-unitary scaling transform.

The compiler is unable to generate any ADPs that respect the physical constraints of the device

with circuit scaling disabled. All benchmarks assign one or more data fields to values outside the

supported data field value ranges or violate the device’s operating range and frequency constraints.

These results suggest that the circuit scaling pass enables the compiler to successfully map dynamical

systems to the analog hardware.

10.3.2 Effect of Mode Selection

What if the compiler scales the circuit, but doesn’t aggressively change the mode?

I next investigate what effect the inclusion of master expressions has on the end-to-end result.

The master expression elicitation procedure enables the circuit scaling pass to more flexibly change

the block modes in the ADP and to account for behavioral deviations in the device. This analysis

aims to identify the effect the mode selection feature has on the quality of the end-to-end result.

This analysis introduces a new type of execution that scales a given ADP without using master

expressions.

451

0 10 20
time

0

10

[V
] (

co
nc

)
gentog

(a) gentog

0 10 20
time

0.000

0.025

0.050

sig
na

l (
un

its
) bont4

(b) bont4

0 10 20
time

0.0

0.2

[E
S]

 (c
on

c)

smmrxn

(c) smmrxn

0 100 200
time

2

0

2

ve
lo

cit
y

(v
el

oc
ity

) pid

(d) pid

0 50 100
time

0

1

av
er

ag
e

(u
ni

ts
) kalman

(e) kalman

0 20 40
time

2

0

2
sig

na
l (

am
pl

itu
de

) vanderpol

(f) vander

0 10 20
time

0

2

m
as

s 1
 (p

os
iti

on
) spring

(g) spring

0 10 20
time

5

0

5

am
pl

 (u
ni

ts
)

cosc

(h) cosc

0 10 20
time

1

0

1

po
sit

io
n

(a
ng

le
) pend

(i) pend

0 50 100
time

0.0

0.5

1.0
he

at
 (u

ni
ts

)
heatN4X2

(j) heatN4X2

Figure 10-2: Benchmark executions on HDACv2 analog board. red lines are reference
signals. green lines are measured signals.

∙ nomaster: For these executions, the compiler scales the circuit without using master ex-

pressions. Without master expressions, the compiler cannot aggressively change the mode

or perform delta model compensation when producing nomaster ADPs. The compiler may

only use the block modes listed in the unscaled ADP when scaling the circuit. I execute each

produced scaled ADP on the device after the device has been calibrated with the minimize_-

error calibration strategy. The minimize_error calibration strategy calibrates the blocks to

implement the input-output relations defined in the ADS. Blocks calibrated with this strategy

require less delta model compensation.

Figure 10-2 presents a comparison of the best-performing (lowest % rmse) waveform (green)

to the reference signal (red) for the nomaster executions. The LScale pass was unable to scale

forced and cos benchmarks without using a master expression. The measured signals for the

bont4, heat, smmrxn, and cosc benchmarks track the reference signals fairly closely. All other

benchmarks deviate significantly from the expected dynamics. These waveform deviations likely

occur because the compiler cannot freely change block mode during the circuit scaling process. Recall

452

LScale pass runtime (s) best-performing execution
runtime power energy

program execution median iqr min max %rmse (ms) (mW) (uJ)
bont4 minerr/maxfit 6.87 6.23 0.19 16.25 3.461e-06 0.26 0.93 0.24
bont4 nomaster 6.87 6.23 0.19 16.25 1.319e-04 0.25 0.82 0.21

heatN4X2 minerr/maxfit 3.10 1.78 0.22 8.83 1.193e-02 1.50 0.76 1.14
heatN4X2 nomaster 3.10 1.78 0.22 8.83 3.956e-01 1.50 0.74 1.11
smmrxn minerr/maxfit 1.69 1.46 0.09 3.71 4.495e-04 0.50 0.53 0.27
smmrxn nomaster 1.69 1.46 0.09 3.71 2.063e-02 0.50 0.53 0.26

cosc minerr/maxfit 1.45 1.16 0.08 3.6 1.958e+00 0.25 0.40 0.10
cosc nomaster 1.45 1.16 0.08 3.6 1.693e+01 0.25 0.38 0.10

Table 10.3: LScale compilation times and quality, runtime, power and energy mea-
surements for accurate nomaster executions

that the HCDCv2 blocks often offer high dynamic range modes that both change the block’s input-

output relation and significantly expand the port operating ranges. Without master expressions, the

compiler cannot select these modes unless they are already selected in the unscaled ADP. Therefore,

the inclusion of master expressions in the scaling procedure is crucial for attaining good results for

a significant subset of benchmark applications.

For the benchmark applications which report nomaster executions that execute accurately, I

observe negligible LScale pass compilation time improvements and no appreciable execution time or

power improvements. Table 10.3 presents the performance characteristics for the accurate nomaster

executions. Including master expressions in the scaling procedure incurs no additional overhead.

The best-performing nomaster executions report higher error than the best performing minerr and

maxfit executions for the above benchmarks. The nomaster executions report slightly lower power

and energy consumption figures because the higher energy block modes are likely not selected by

the LScale pass.

453

0 10 20
time

0.5

0.0

0.5
sig

na
l (

sig
na

l) cos

(a) cos,ideal

0 10 20
time

0.5

0.0

0.5

sig
na

l (
sig

na
l) cos

(b) cos,minerr

0 10 20
time

0.5

0.0

0.5

sig
na

l (
sig

na
l) cos

(c) cos,maxfit

0 10 20
time

5

0

5

am
pl

 (u
ni

ts
)

cosc

(d) cosc,ideal

0 10 20
time

5

0

5
am

pl
 (u

ni
ts

)
cosc

(e) cosc,minerr

0 10 20
time

5

0

5

am
pl

 (u
ni

ts
)

cosc

(f) cosc,maxfit

0 10 20
time

1

0

1

po
sit

io
n

(a
ng

le
) pend

(g) pend,ideal

0 10 20
time

1

0

1

po
sit

io
n

(a
ng

le
) pend

(h) pend,minerr

0 10 20
time

1

0

1
po

sit
io

n
(a

ng
le

) pend

(i) pend,maxfit

0 10 20
time

0

2

m
as

s 1
 (p

os
iti

on
) spring

(j) spring,ideal

0 10 20
time

0

2

m
as

s 1
 (p

os
iti

on
) spring

(k) spring,minerr

0 10 20
time

0

2

m
as

s 1
 (p

os
iti

on
) spring

(l) spring,maxfit

Figure 10-3: Waveforms for ideal, minerr, and maxfit executions of the cos, cosc,
pend, and spring benchmarks. Each above execution is the median %rmse execution.
red lines are reference signals. green lines are measured signals.

454

0 20 40
time

2

0

2
sig

na
l (

am
pl

itu
de

) vanderpol

(a) vanderpol,ideal

0 20 40
time

2

0

2

sig
na

l (
am

pl
itu

de
) vanderpol

(b) vanderpol,minerr

0 20 40
time

2

0

2

sig
na

l (
am

pl
itu

de
) vanderpol

(c) vanderpol,maxfit

0 50 100
time

0.0

0.5

1.0

he
at

 (u
ni

ts
)

heatN4X2

(d) heatN4X2,ideal

0 50 100
time

0.0

0.5

1.0
he

at
 (u

ni
ts

)
heatN4X2

(e) heatN4X2,minerr

0 50 100
time

0.0

0.5

1.0

he
at

 (u
ni

ts
)

heatN4X2

(f) heatN4X2,maxfit

0 50 100
time

0.5

0.0

0.5

av
er

ag
e

(u
ni

ts
) kalman

(g) kalman,ideal

0 50 100
time

0.5

0.0

0.5

av
er

ag
e

(u
ni

ts
) kalman

(h) kalman,minerr

0 50 100
time

0.5

0.0

0.5
av

er
ag

e
(u

ni
ts

) kalman

(i) kalman,maxfit

0 100 200
time

2

0

2

ve
lo

cit
y

(v
el

oc
ity

) pid

(j) pid,ideal

0 100 200
time

2

0

2

ve
lo

cit
y

(v
el

oc
ity

) pid

(k) pid,minerr

0 100 200
time

2

0

2

ve
lo

cit
y

(v
el

oc
ity

) pid

(l) pid,maxfit

Figure 10-4: Waveforms for ideal, minerr, and maxfit executions of the vanderpol,
heatN4X2, kalman, and pid benchmarks. Each above execution is the median %rmse
execution. red lines are reference signals. green lines are measured signals.

455

0 5 10
time

2

0

2
sig

na
l (

am
pl

itu
de

) forced

(a) forced,ideal

0 5 10
time

2

0

2

sig
na

l (
am

pl
itu

de
) forced

(b) forced,minerr

0 5 10
time

2

0

2

sig
na

l (
am

pl
itu

de
) forced

(c) forced,maxfit

0 10 20
time

0.0

0.2

[E
S]

 (c
on

c)

smmrxn

(d) smmrxn,ideal

0 10 20
time

0.0

0.2
[E

S]
 (c

on
c)

smmrxn

(e) smmrxn,minerr

0 10 20
time

0.0

0.2

[E
S]

 (c
on

c)

smmrxn

(f) smmrxn,maxfit

0 10 20
time

0

10

[V
] (

co
nc

)

gentog

(g) gentog,ideal

0 10 20
time

0

10

[V
] (

co
nc

)

gentog

(h) gentog,minerr

0 10 20
time

0

10
[V

] (
co

nc
)

gentog

(i) gentog,maxfit

0 10 20
time

0.000

0.025

0.050

sig
na

l (
un

its
) bont4

(j) bont4,ideal

0 10 20
time

0.000

0.025

0.050

sig
na

l (
un

its
) bont4

(k) bont4,minerr

0 10 20
time

0.000

0.025

0.050

sig
na

l (
un

its
) bont4

(l) bont4,maxfit

Figure 10-5: Waveforms for ideal, minerr, and maxfit executions of the forced,
smmrxn, gentog, and bont4 benchmarks. Each above execution is the median %rmse
execution. red lines are reference signals. green lines are measured signals.

456

ideal minerr maxfit
compensation method

0

500

1000

1500

%
 rm

se
gentog

(a) gentog

ideal minerr maxfit
compensation method

0.000

0.001

0.002

%
 rm

se

bont4

(b) bont4

ideal minerr maxfit
compensation method

0.0

0.2

0.4

%
 rm

se

smmrxn

(c) smmrxn

ideal minerr maxfit
compensation method

10

20

30

%
 rm

se

pid

(d) pid

ideal minerr maxfit
compensation method

0.0

2.5

5.0

7.5

%
 rm

se

kalman

(e) kalman

ideal minerr maxfit
compensation method

0

200

400

%
 rm

se
vanderpol

(f) vander

ideal minerr maxfit
compensation method

0

50

100

150

%
 rm

se

forced

(g) forced

ideal minerr maxfit
compensation method

5

10

%
 rm

se

spring

(h) spring

ideal minerr maxfit
compensation method

0

50

100

%
 rm

se

cosc

(i) cosc

ideal minerr maxfit
compensation method

0

5

10

%
 rm

se

pend

(j) pend

ideal minerr maxfit
compensation method

0

1

2

%
 rm

se

heatN4X2

(k) heatN4X2

ideal minerr maxfit
compensation method

0

2

4

%
 rm

se

cos

(l) cos

Figure 10-6: Distribution of % rmses for ideal, minerr, and maxfit executions. The
y-axis reports the % rmse and the x-axis reports the type of execution. Refer to
Section 10.1.3 for an overview of box plots.

457

10.3.3 Effect of Delta Model Compensation

What if the compiler scales the circuit and uses master expressions, but does not correct

for behavioral deviations?

I next investigate the effect of the delta model compensation feature from the circuit scaling

pass. Delta model compensation enables the circuit scaling pass to consider the empirically observed

behavioral deviations present in the device when scaling the circuit. To evaluate this compiler feature,

I introduce a new kind of execution:

∙ ideal: For these executions, the compiler scales the circuit without performing delta model

compensation. Instead, the circuit scaling pass assumes each block perfectly implements the

idealized input-output relation defined by the rel statements in the ADS block specification.

Each scaled ideal ADP targets the minimize_error calibration strategy. Blocks calibrated

with this strategy require less delta model compensation.

This analysis compares the ideal executions described above with the minerr executions intro-

duced in Section 10.1. The minerr executions also target the minimize_error calibration strategy

but are produced with delta model compensation enabled. This analysis uses the error metrics

described in Section 10.1.3 to describe the distribution of errors for each execution.

Best-Performing Executions

The ideal and minerr plots in Figures 10-3, 10-4, and 10-5 report the best-performing executions

for the ideal and minerr execution types respectively. For all applications except vanderpol,

the best-performing ideal execution does not track the signal as closely as the minerr execution.

For the cosc, pend, spring, and pid executions, the initial condition is incorrect but the overall

trajectory tracks well. For the remaining executions, the overall trajectory for the ideal execution

does not track the reference signal as well as the minerr execution. This indicates that delta model

compensation enables the compiler to identify scaled ADPs which produce lower end-to-end errors

than the ideal executions.

Typical Executions

The ideal and minerr boxplots in Figure 10-6 present the distribution of errors for the ideal and

minerr executions respectively. The error for the typical execution is indicated with the orange line

on each box plot. For most of the benchmarks, the delta model compensation optimization improves

the overall fidelity of the result. For all applications except the vander and cosc benchmarks,

the minerr executions report a lower typical execution error than the ideal executions. This

observation indicates that delta model compensation enables the compiler to produce lower-error

458

results. I attribute this to the fact that the compensation procedure can correct for instance- and

mode-dependent behavioral variations. For the vander and cosc benchmarks, the minerr and

ideal executions report comparable typical execution error. For these applications, delta model

compensation doesn’t significantly improve the average-case error.

Consistency of Executions

The ideal and minerr boxplots in Figure 10-6 present the distribution of errors for the ideal and

minerr executions respectively. The consistency of an execution is indicated by the size of the IQR

– a larger IQR indicates the executions do not consistently attain the same error. For many of the

benchmarks, delta model compensation reduces the spread of errors observed across executions. For

the gentog, bont4, smmrxn, pid, kalman, forced, pend, and heatN4X2 executions, the error spread

is lower for the minerr executions than for the ideal executions.

For the vander, spring, cosc, and cos benchmarks, the minerr executions report a larger spread

of errors than the ideal executions. One possible explanation is that delta model compensation

reduces the set of viable block modes for a subset of the block instances because it introduces

non-idealities that cannot be compensated for by the compiler. For example, the delta model

compensation procedure might introduce non-unity terms into the derivatives of the integ blocks.

The compiler cannot correct these terms if the ADP does not introduce blocks that scale the

derivative signals.

10.3.4 Effect of Calibration Strategy

What if the compiler targets a calibration strategy that has been co-designed to work

with the circuit scaling procedure?

I next investigate the effect of calibration strategy on the overall accuracy of the computation.

This analysis investigates if this co-designed (maximize_fit) calibration strategy produces lower

error executions than the classical (minimize_error) calibration strategy:

∙ maximize_fit strategy – The maximize_fit calibration strategy is a new calibration strat-

egy which was designed to work in concert with the LScale compilation pass. The maximize_-

fit strategy prioritizes eliminating point errors over implementing the ADS input-output

relations. Blocks calibrated with this strategy can produce scaled output signals and scale

parts of the implemented input-output relations. Note that one downside of the maximize_-

fit strategy is that it may waste parts of the input and output port operating range if the

behavior deviates significantly.

459

∙ minimize_error strategy – The minimize_error calibration strategy is a traditional cali-

bration strategy calibrates the device to implement the input-output relations from the ADS.

The minimize_error strategy effectively uses the entire operating range of each block since

it does not deviate from the provided specification, but it may fail to eliminate point errors

or errors in parts of the input space.

This analysis compares the maxfit and minerr executions introduced in Section 10.1. This

analysis uses the error metrics described in Section 10.1.3 to describe the distribution of errors for

each execution.

Best-Performing Executions

The minerr and maxfit plots in Figure 10-3, Figure 10-4, and Figure 10-5 present the best-

performing execution for the minerr and maxfit executions. For the pend, spring, vanderpol,

kalman, pid, forced, and smmrxn executions, the minerr executions do not track the reference

signal as closely as the maxfit executions. One possible explanation is that the minimize_error

calibration strategy introduces small errors into the input-output relation which are attenuated away

when the block is calibrated with the maximize_fit calibration strategy.

For the cos, cosc, heatN4X2, and gentog benchmark, both the minerr and maxfit executions

track the reference signal equally well. For these executions, the compiler was able to find a scaled

ADP for both calibration strategies which delivers a good result.

For the heatN4X2 benchmark, the minerr execution produces a better result than the maxfit

execution. This situation may occur when the compiler happens to identify a combination of block

instances and block modes which can be calibrated effectively with the minimize_error calibration

strategy. Because the minimize_error strategy maximizes the usable operating range of each port,

it’s likely to produce a good result provided the calibration algorithm can eliminate all of the block

errors. For this application, the compiler happens to identify a scaled ADP which has this property.

Typical Executions

The minerr and maxfit boxplots in Figure 10-6 present the distribution of errors for the minerr

and maxfit executions respectively. The error for the typical execution is indicated with the orange

line on each box plot. For the smmrxn, pid, kalman, forced, spring, cosc, and pend benchmarks,

the maxfit executions report a lower median error than the minerr executions. For the gentog,

heatN4X2, and cos benchmarks, the maxfit executions report a comparable median error to the

minerr executions. Therefore, for 10 of the 12 benchmarks, the maxfit executions produce better or

similar results as the minerr executions. This indicates that the co-designed calibration strategy is

able to to produce a lower-error results than the classical calibration strategy. The maxfit executions

460

may enjoy a better result on average for many applications because the maximize_fit calibration

strategy produces more blocks which are well-behaved on-average.

The vander and bont4 benchmarks, the maxfit executions report a higher median error than

the minerr executions. Note that for the bont4 benchmark, the median error is only slightly higher

for the maxfit executions than the minerr executions. One possible explanation is that, for these

benchmarks, that wasting parts of the operating range has a larger effect on the end-to-end result

than point errors for a higher proportion of ADPs.

Consistency of Executions

The minerr and maxfit boxplots in Figure 10-6 present the distribution of errors for the minerr and

maxfit executions respectively. The consistency of an execution is indicated by the size of the IQR

– a larger IQR indicates the executions do not consistently attain the same error. For the smmrxn,

pid, kalman, vander, spring, txcosc, and cos benchmarks, the maxfit executions report a smaller

spread of errors than the minerr executions. The maximize_fit calibration strategy is likely able to

more consistently deliver the same results across different block modes and block instances because

it adopts a relaxed functional specification for each block which allows for controlled deviations.

This likely enables the maximize_fit calibration strategy to identify a low error configuration for a

larger fraction of blocks.

For the bont4, pend, and forced benchmarks, the maxfit executions report a similar spread

of errors as the minerr executions. Note that the maxfit executions for the pend and forced

benchmarks the achieve a lower median error than the minerr executions. Therefore, for nine of the

twelve benchmarks, the maxfit executions either more consistently deliver the same error or deliver

a lower error at comparable consistency when compared to the minerr executions.

For the heatN4X2 and gentog benchmarks, the maxfit executions report a larger spread of

errors than the minerr executions. Note that in both these applications, the increase in the error

spread is relatively minor. One possible explanation is that for these benchmarks, the large range of

behavioral variations found in the maximize_fit executions has a significant impact on the quality

of the produced scaling transforms. The maxfit executions may therefore produce a larger error

spread as the functions implemented by the blocks calibrated with the maximize_fit calibration

strategy may vary significantly across block instances and block modes.

461

LGraph runtimes (s) LScale runtimes(s)
benchmark median iqr min max median iqr min max

cos 0.31 0.01 0.30 1.49 0.13 0.16 0.03 0.28
cosc 0.12 0.03 0.10 4.59 0.76 0.37 0.41 0.98
pend 0.14 1.19 0.11 5.72 0.94 0.33 0.50 1.31
spring 0.37 0.01 0.36 23.45 5.74 1.13 4.17 7.51

vanderpol 0.30 0.03 0.29 13.96 1.91 0.40 1.38 2.73
heatN4X2 0.57 0.02 0.55 31.84 1.92 1.04 1.13 3.03

pid 0.33 0.01 0.32 18.63 3.63 1.00 2.54 5.47
kalman 0.35 0.02 0.34 18.72 3.56 1.13 2.49 4.43
forced 0.40 0.06 0.39 22.98 3.62 0.63 2.42 4.61

smmrxn 0.18 0.03 0.15 8.03 0.82 0.47 0.49 1.22
gentog 0.36 0.03 0.35 24.72 6.13 2.15 4.02 8.58
bont4 0.38 0.03 0.36 22.74 3.63 0.73 2.79 5.07

Table 10.4: Compilation times for the LGraph and LScale compilation passes.

synthesis assembly place+route
benchmark time median iqr min max median iqr min max

cos 0.21 0.06 0.00 0.06 0.06 0.31 0.01 0.30 1.06
cosc 0.50 0.07 0.00 0.07 0.07 0.12 0.00 0.11 3.81
pend 0.57 0.06 0.00 0.06 0.06 0.14 1.19 0.11 4.94
spring 1.34 0.07 0.00 0.07 0.07 0.37 0.01 0.36 21.85

vanderpol 1.48 0.07 0.00 0.07 0.07 0.30 0.03 0.29 12.25
heatN4X2 1.98 0.08 0.00 0.08 0.08 0.57 0.02 0.55 29.60

pid 1.84 0.08 0.00 0.08 0.08 0.33 0.01 0.32 16.54
kalman 1.42 0.07 0.00 0.07 0.07 0.35 0.02 0.34 17.04
forced 2.25 0.07 0.00 0.07 0.07 0.40 0.06 0.39 20.50

smmrxn 1.30 0.07 0.00 0.07 0.07 0.18 0.03 0.15 6.50
gentog 1.84 0.08 0.00 0.08 0.08 0.36 0.03 0.35 22.60
bont4 1.16 0.08 0.00 0.08 0.08 0.38 0.03 0.36 21.34

Table 10.5: LGraph performance breakdown by compilation pass.

10.4 Compilation Time

Table 10.4 presents the compilation times for the LGraph and LScale compilation passes. Columns

2,3,4, and 5 report the median time, the execution time spread (inter-quartile range), and the

minimum and maximum times required for LScale to synthesize unscaled circuits. Columns 6,7,8,

and 7 report the median time, the IQR, and the minimum and maximum runtimes required for

LScale compilation pass. I use the interquartile range to quantify variations in execution time since

it excludes outlier executions.

LGraph Performance: The median time required to synthesize a circuit is 0.12-0.57 seconds. The

performance of the LGraph pass is relatively stable for most benchmarks. For all benchmarks except

the pend benchmark, the IQRfor the execution times range from 0.01-0.06 seconds. The pend

benchmark has an IQRof 1.19. The worst-case synthesis time varies significantly across benchmarks.

The maximum time required to synthesize a circuit is 1.49-31.84 seconds. Figure 10.5 presents a

462

breakdown of the LGraph pass runtime results by compilation pass.

∙ Fragment Synthesis: The fragment synthesis pass takes between 0.21-2.25 seconds depend-

ing on the benchmark. Generally, the time required to synthesize fragments increases with

the number of variables and the complexity of the variable relations. I do not present a

median, minimum, or maximum execution time for the fragment synthesis pass. I omit these

metrics because the compiler generates all synthesized circuits from a single invocation of the

fragment synthesis pass.

∙ Assembly: The performance of the assembly pass is relatively stable and does not vary

greatly across executions. The median runtime of the assembly pass is between 0.06-0.08

seconds depending on the benchmark. The IQR of the assembly pass runtimes is negligible.

The maximum execution time of the assembly pass ranges from 0.06-0.08 seconds.

∙ Place+Route: The worst-case executions of the LGraph pass spend the majority of the time

in the place+route procedure. The median runtime of the place+route procedure is between

0.31-0.57 seconds depending on the benchmark application. The IQR of the place+route

pass runtimes is between 0.00-0.06 seconds for all benchmarks except the pend benchmark.

Note that the pend benchmark has an IQR of 1.19. The uneven performance for the pend

benchmark arises from performance instabilities in the place+route procedure. The worst-case

execution time for the place+route procedure is between 1.06-29.60 seconds.

These runtime variations result from inefficiencies in the ILP solver. In our experience, LGraph

must solve a fairly difficult placement and routing problem to map these benchmarks to the

analog hardware. This problem is still difficult to solve even with the decomposition employed

by the compiler.

LScale Performance: The performance of the LScale compilation pass is relatively stable. The

median LScale runtime of the LScale pass ranges from 0.13-6.13 seconds depending on the bench-

mark. The IQR is 0.16-2.16 seconds and the maximum execution time is 0.28-5.07 seconds depending

on the benchmark.

463

10.5 Optimality of Scaled and Unscaled ADPs

How optimal are the scaled and unscaled circuits?

I next investigate the optimality of the scaled and unscaled ADPs produced by the compiler.

In this context, the optimality of a ADP is determined by three criteria:

∙ Does the ADP use the minimum number of blocks required to implement the computation?

It is often desirable to minimize the block usage of a produced ADP. If the compiler can

efficiently use blocks, it can potentially fit larger computations onto the device. Using fewer

blocks can also improve the error characteristics of the produced results in some situations.

Unnecessarily introducing analog blocks introduces more sources of error and noise into the

computation.

Section 10.5.2 investigates the distribution of blocks for each of the benchmark applications

and discusses the optimality of the produced unscaled ADPs. I discuss cases where the ADP

uses additional compute blocks to implement the dynamical system and provide justification

for assembly and routing block usages. I can validate that, for all applications, the produced

ADPs use the minimum number of routing and assembly blocks to implement the target

dynamical system. The compiler also uses the minimum number of required compute blocks

for all compute blocks except the multiplier block. The multiplier blocks are generally used

to correct for coefficients introduced by the device.

∙ Does the ADP reach the maximum attainable execution speed for the computation? It is often

desirable to maximize the execution speed of the computation as it would require less time to

execute to completion. Section 10.5.3 investigates the execution speeds of the scaled ADPs.

∙ Does the ADP maximize the dynamic range of time-varying signals in the ADP? It is often

desirable to maximize the dynamic range of time-varying signals as it reduces the effect of noise

and quantization error on the overall computation. Note that it is not usually possible to fully

utilize the entire operating range at every port in a given ADP. Section 10.5.4 investigates

the dynamic range of the time-varying signals in the scaled ADPs.

∙ Does the ADP maximize the magnitude of the values in the ADP? It is often desirable to

use data field values with larger magnitudes to reduce the effect of quantization error. Scaling

up data field values may potentially improve the fidelity of the computation. Section 10.5.5

investigates the magnitudes of the data field values in the scaled ADPs.

∙ Does the ADP minimize the balanced scale objective function specified to the compiler? : The

compiler is instructed to scale the ADP to minimize a balanced objective function which

jointly maximizes quality and speed. Section 10.5.6 investigates the spread of balanced

464

objective function values produced by the compiler. I demonstrate that the compiler is able

to consistently find circuits which minimize the balanced objective function.

∙ Does the ADP produce a wide variety of optimal/close-to-optimal scaling transforms? : The

compiler may identify multiple candidate scaling transforms which all minimize the balanced

scale objective function. Section 10.5.6 and Section 10.5.7 investigate the spread of balanced

scale objective values and analog and digital quality measure values produced by the compiler.

This spread of quality measures occurs because the compiler returns ten scaled circuits for

each unscaled circuit, each of which implements a distinct scaling transform that minimizes

the balanced scale objective. This objective function maximizes the minimum analog and

digital quality measures of the scaled circuit and the execution speed of the ADP.

10.5.1 Metrics

I introduce new metrics for evaluating the optimality of the scaled ADPs. The speed utilization

metric captures how close the scaled circuit’s execution speed is to the maximum execution speed.

The operating range and value utilization metrics capture how effectively a signal or value capitalizes

on the available operating range.

The Speed Utilization Metric

This analysis introduces the speed utilization metric. Given an ADP with an execution speed

𝜏 = time-var × 𝑡𝑐 and a maximum speed supported by the circuit 𝜏𝑚𝑎𝑥, the speed utilization is

described with the equation:

𝜏/𝜏𝑚𝑎𝑥 · 100

The above formulation computes the ratio of the attained execution speed to the maximum

possible speed. Note that because the maximum speed of the hardware depends on the blocks

modes, it is separately computed for each ADP in this analysis.

A speed utilization of 100% indicates that the ADP attains the maximum possible execution

speed supported by the hardware. In contrast, a speed utilization under 100% indicates the ADP

does not fully exploit the capabilities of the hardware. Both of these utilizations abide by the

frequency constraints the analog device imposes on the computation.

A speed utilization of over 100% indicates that the ADP evolves too quickly and is therefore

unsupported by the hardware. ADPs with execution speeds that exceed 100% may trigger frequency-

dependent unwanted behaviors in the hardware. Refer to Chapter 5 for a more detailed discussion

of frequency-dependent behavior on analog hardware.

465

The Operating Range Utilization Metric

This analysis introduces the operating range utilization metric. This metric captures how much of

the available operating range is used by a time-varying signal or a constant value. I next describe

how this metric is computed for a signal with a signal or value with a dynamic range of [𝑦𝑠𝑖𝑔, 𝑦′𝑠𝑖𝑔]

which is subject to the operating range restriction [𝑦𝑜𝑝, 𝑦
′
𝑜𝑝].

Time-Varying Signals: For signals which may take on a range of values (R𝑠𝑖𝑔 < R𝑠𝑖𝑔′), the

utilization is computed with the following equation:

𝑦′𝑠𝑖𝑔 − 𝑦𝑠𝑖𝑔

𝑦′𝑜𝑝 − 𝑦𝑜𝑝
· 100%

The above formula computes the ratio of the spread of signal values to the range of values

supported by the port.

Fixed Signals: Fixed signals carry constant values within the device. For the target hardware,

the programmable constant data fields produce all the fixed signals in the circuit. For a fixed signal

(R𝑠𝑖𝑔 = R𝑠𝑖𝑔′), the utilization is computed with the following equation:

𝑦𝑠𝑖𝑔
𝑚𝑎𝑥(|𝑦𝑜𝑝′ |, |𝑦𝑜𝑝|)

· 100%

The above equation computes the ratio of the magnitude of the fixed signal to the magnitude

of the maximum value supported by the hardware.

An operating range utilization of 100% makes full use of the operating range of a port or data

field. Conversely, an operating range utilization less than 100% under-utilizes the supported dynamic

range of a port or data field. Both of these operating range utilization quantities do not violate the

operating range constraints of the hardware.

An operating range utilization over 100% uses a larger range of values or a larger value than is

supported by a port or data field. These signals violate the operating range limitations imposed by

the analog hardware. ADPs containing fixed signals with utilizations greater than 100% typically

cannot even be programmed to the device. Because fixed signals are typically implemented with

constant data fields, generating a fixed signal with a utilization metric over 100% typically requires

a data field to be set to a value outside the supported value range.

Note that the utilization is limited to 95% of the full operating range of a port or data field for

this evaluation (Section 10.1.1). Therefore, in this analysis, a signal or value fully utilizes the port

or data field if they report 95% utilization.

Operating Range Utilization Statistics: The ADPs of interest contain between 14-75 signals

and data field utilization measures – one for each port and data field in the hardware. It is therefore

infeasible to directly report all of these individual measures. This analysis summarizes the distribu-

tion of utilization measures using the median, IQR, minimum and maximum metrics presented in

466

benchmark blocks conns mult int adc dac lut fan extout route kirch
cos 5 5 0 2 0 0 0 1 1 2 0
cosc 9 10 3 2 0 0 0 2 1 2 1
pend 12 13 3/+1 2 1 1 1 2 1 2 1
spring 24 28 7/+1 4 2 2 2 5 1 3 2
vanderpol 14 17 6/+3 2 0 1 0 3 1 2 2
heatN4X2 18 28 5/+5 4 0 1 0 6 1 2 4
forced 18 22 7/+3 4 0 1 0 4 1 2 2
pid 18 21 7/+3 4 0 1 0 4 1 2 4
kalman 18 21 7/+2 4 0 1 0 4 1 2 2
smmrxn 11 13 4/+1 1 0 2 0 2 1 2 3
gentog 28 32 7/+6 4 3 4 3 3 1 4 4
bont4 22 25 9/+1 5 0 0 0 4 1 4 3

Table 10.6: Summary of ADP connections and blocks. The block counts are broken
down by block type. The route column reports the number of cin, cout, tin, and
tout blocks in the ADP. The kirch column reports the number of times Kirchhoff’s
law is used to sum signals in the ADP.

Section 10.1.3. I report these metrics for both the time-varying signals and the fixed signals in the

ADP.

10.5.2 Optimality of ADP Circuit Topology

Columns 2-15 of Table 10.6 present the block and connection breakdown for each benchmark. The

range of block counts is reported for benchmarks where the number of blocks of a particular type

varies across ADPs. For each benchmark and block type, I record the number of extraneous blocks

relative to the baseline number of blocks as a second number following a slash. For the cos, cosc,

pend, spring, and vander benchmarks, the baseline is computed from hand-implemented configu-

rations written by the hardware designers [50]. For the remaining benchmarks, the baseline is the

minimum number of blocks required to implement each benchmark. I compute this baseline metric

by counting the operators in the dynamical system computation. Note that, for these benchmarks,

it may be necessary to use more blocks than the reported minimum number of blocks to implement

the application in practice.

The analog device configurations produced by LGraph have between 5-32 blocks and 5-42 con-

nections. Each ADP uses between 1 and 6 current copiers (fan) and between 2-4 routing blocks

per configuration. The compiler uses every type of compute, copy, and routing block available on

the device. The compiler also uses Kirchhoff’s law in 0-4 circuit locations to implement addition

over analog currents – this is required for 11 of the 12 benchmarks. I observe there is no variance

in the block counts across synthesized ADPs. This is likely because the compiler can exercise the

place+route procedure to generate ten different ADPs. I manually verified this by inspecting the

produced ADPs for each benchmark.

467

benchmark total cin cout tin tout
cos 2 0 0 0 1
cosc 2 0 0 0 1
pend 2 0 0 0 1
spring 2 0 0 1 2

vanderpol 2 0 0 0 1
heatN4X2 2 0 0 0 1

forced 2 0 0 0 1
pid 2 0 0 0 1

kalman 2 0 0 0 1
smmrxn 2 0 0 0 1
gentog 4 0 0 1 2
bont4 4 0 0 1 2

Table 10.7: Breakdown of ADP route blocks. The total column reports the total
number of route blocks. The total column reports the same block counts as the
route column of Figure 10.6.

For all benchmarks, LGraph also uses the minimum number of copier (fan) blocks. Each copier

block produces three copies of an input signal. To compute the minimum number of copiers, I counted

the number of occurrences of each variable in the DSS for each benchmark and then computed the

minimum number of copier blocks required. For example, The forced Vanderpol oscillator uses X

four times, Y twice, and W twice. The ADP implementation of this oscillator would require a total

of four fan blocks to produce multiple copies of the relevant signals. Each compiled benchmark uses

exactly the minimum required number of copier blocks.

LGraph uses the minimum amount of dac, adc, and lut, and int compute blocks. These

blocks are typically only inserted when the corresponding operator appears in the DSS. LGraph will

sometimes insert more multipliers than strictly necessary because some HCDCv2 blocks introduce

constant coefficients that need to be compensated for in the ADP. For example, the LGraph pro-

cedure uses two multipliers to implement A*B. This is necessary because themult block computes

0.5*X*Y. The synthesis procedure inserts a second mult block which computes 2*A to cancel out

the 0.5 coefficient.

For all benchmarks except the spring benchmark, the compiler used the minimum number

of route blocks. Figure 10.7 presents a detailed decomposition of the types of route blocks used.

The HCDCv2 requires that a tout block always be used to route a signal to the extout block. The

spring benchmark maps most of the computation to tile (0,0) and therefore must use an additional

tin and tout tile to route the signal of interest to tile (0,3) so that it can be routed to an extout

block. The bont benchmark uses one additional tin and tout block because it requires more

integrators than are available on one tile and therefore had to partition the circuit across

two tiles. It partitions the circuit so that only one connection straddles both tiles. This is

468

% maximum speed
benchmark median iqr min max

cos 47.9 1.7 14.9 49.7
cosc 67.5 47.2 52.0 100.0
pend 100.0 0.0 100.0 100.0
spring 49.4 2.6 43.4 54.1

vanderpol 100.0 0.0 100.0 100.0
heatN4X2 100.0 0.0 98.8 100.0

forced 30.5 67.7 30.4 98.2
pid 50.2 3.9 29.8 94.6

kalman 100.0 0.0 100.0 100.0
smmrxn 98.1 6.4 91.6 100.0
gentog 27.5 0.6 27.2 71.9
bont4 100.0 0.0 97.1 100.0

Table 10.8: Optimality of the scaled ADP execution speeds. Each row reports the
distribution of % speed utilizations for the listed benchmark. Benchmarks with a
speed utilizations of 100% run at the maximum speed supported by the HCDCv2.

the minimal number of distant connections that can be made for this application.

The gentog benchmark also partitions the ADP across two tiles because it requires three

lut and three adc blocks but only two reside within a given tile. It therefore uses an extra

tin and tout block to make one long-distance connection between tiles. This partition only

requires one connection to straddle two tiles. The heat benchmark is partitioned across two

tiles and requires two signals cross tiles. It therefore requires a total of two additional tin

and tout blocks – each additional tin and tout pair is used to make a single long-distance

connection between ports.

10.5.3 Execution Speed Optimality

This analysis studies the relationship between the execution speeds of the scaled ADPs and

the maximum supported speed of the device. In this analysis, I am primarily interested in

whether the scaled ADPs attain the maximum execution speed supported by the analog

hardware. Table 10.8 presents the distribution of speed utilization metrics for the scaled

ADPs of each benchmark. A speed utilization of 100% (bolded) reaches the maximum

supported speed of the device. The scaled ADP speeds all respect the maximum supported

speed of the device. This is the case because the scaling procedure considers the device

frequency limitations when scaling the circuit.

The compiler is able to produce scaling transforms that fully exploit the performance

of the hardware. For all applications except the cos, forced, and gentog benchmarks,

469

at least one of the scaled ADPs operate at the maximum possible speed supported by the

device. For the pend, vanderpol, kalman, and bont4 benchmarks, all executions achieve the

maximum attainable speed of the hardware. For the heatN4X2 benchmark, more than half

of the executions achieve the maximum attainable speed (median). The compiler attains the

maximum speed for many of the executions because the balanced scale objective function

maximizes the time scale factor time-varalong with the signal quality measures (AQM

and DQM). Note that the maximum execution speed is ADP-specific, as the blocks within

the circuit impose additional frequency limitations which affect the maximum speed of the

circuit.

The scaled ADPs is not always able to attain the maximum achievable speed for all

applications. The cos, spring,forced, and pid applications report maximum speed utiliza-

tions of 49.7%, 54.1%, 98.2% and 94% respectively. The LScale pass is likely unable to fully

exploit the maximum supported speed of the hardware for these applications because doing

so has a significant effect on the quality measures (AQM and DQM). The execution speed

and signal quality are interrelated – as the execution speed increases, the dynamic ranges

of the state variable signals decrease (assuming a fixed derivative signal). Because of this

phenomenon, increasing the speed can reduce the AQM of the circuit to the point where

the scaling transform is no longer optimal.

Note that the maximum attainable execution speed changes depending on the blocks

in use and the selected block modes. Note that for the HCDCv2, the frequency limit may

change if a multiplier, ADC, or integrator is introduced into the circuit. The frequency

limit of the multiplier depends on if the multiplier is multiplying two signals ((m,*,*) and

(h,*,*)) of if the multiplier is scaling a signal ((x,*,*). These decisions are made during

the LGraph compilation pass. The LScale pass, therefore, cannot change the frequency

limit by strategically selecting modes for this device. I, therefore, omit any analysis on the

optimality of the mode selections when studying the execution speed.

10.5.4 Signal Dynamic Range Optimality

This analysis studies the relationship between signal ranges of the time-varying analog and

digital signals in the scaled ADPs and the maximum supported operating ranges of the

device. In this analysis, I am primarily interested in whether the scaled ADPs effectively

470

% signal utilization
program median iqr min max

cos 5.9-60.0 0.0-54.0 1.9-10.0 97.9-100.0
cosc 40.8-93.1 16.6-68.5 9.8-79.3 81.6-98.9
pend 47.4-89.3 36.0-47.5 8.8-52.4 88.1-95.0
spring 65.4-92.1 4.6-36.4 6.1-14.0 91.0-100.0

vanderpol 53.5-100.0 0.0-82.7 10.0-93.0 100.0
heatN4X2 50.0 0.0 45.0-47.1 50.0

forced 9.6-91.9 27.1-86.4 4.6-9.2 94.3-100.0
pid 35.5-77.4 29.9-66.9 5.2-10.0 100.0

kalman 13.1-72.3 6.7-52.9 2.3-6.2 83.9-100.0
smmrxn 52.9-62.5 0.0 52.3-62.5 56.7-100.0
gentog 47.6-71.3 46.5-66.0 4.3-10.0 93.2-100.0
bont4 73.1-90.7 16.2-35.6 6.4-67.1 100.0

Table 10.9: Optimality of the scaled ADP operating ranges. Each row reports the
distribution of operating range utilizations for the listed benchmark. This table only
reports the operating range utilizations for time-varying signals

utilize the available operating ranges present within the device.

Table 10.9 presents the distribution of signal utilization metrics for the time-varying

signals for each benchmark. For each statistical measure, I report a range of values for

that measure seen across all of the scaled ADPs for that benchmark. For example, the cos

benchmark reports a median signal utilization of 5.9-60.0 – the median signal utilization

metrics of the scaled ADPs range from 5.9 to 60. For all benchmarks, the scaled ADPs

report signal utilization metrics equal to or under 100%. Recall any signal utilizations over

100% violate the operating range constraints of the device.

All of the signal utilization metrics are less than 100% because the LScale pass produces

scaling transforms that respect all of the operating range constraints. For all scaled ADPs,

the scaled signals use, at most, 25.0% to 100% of the available signal range. For the cos,

spring, vanderpol, forced, pid, kalman, gentog, and bont4 benchmarks, the scaled ADP

contains at least one signal which fully exploits the available signal range. This indicates

the LScale pass is able to scale up signals and values to fully exploit the operating ranges

present in the hardware.

For all scaled ADPs, the scaled signals use at least 6.2-93.0% of the available signal

ranges in the best case and at least 1.9-26.2% of the available signal ranges in the worst

case. For all benchmarks except the cos benchmark, the signal with the lowest utilization

uses at least 4% of the dynamic range. The best-case minimum signal utilizations are likely

the best utilizations attainable for these low-performing signals. The compiler maximizes

471

analog and digital quality measures, which maximize the SNR of the signals with the smallest

dynamic ranges in the circuit. This operation also maximizes the utilization of these signals.

For all benchmarks, there is at least one ADPs that reports a median signal utilization of

at least 50%. Of these applications, the spring, vanderpol, heatN4X2, smmrxn, and bont4

benchmarks report a median signal utilization of at least 50% for all ADPs. Therefore, for

a significant fraction of the benchmark applications, the compiler can attain a reasonably

good dynamic range for the majority of the signals.

The signal utilizations vary significantly across individual scaled ADPs and benchmarks.

Depending on the benchmark application and ADP, the median signal utilization ranges

from 5.9%-100.0%, and the IQRranges from 0.0-85.7%. This high degree of variation in

signal utilizations across benchmarks is expected, as it’s not typically possible to maximize

the signal’s dynamic range on every single wire. The degree to which the compiler can

maximize individual signal ranges depends on the characteristics of the circuit implementing

the dynamical system.

For all benchmark applications, the minimum, maximum, median, and IQR measures

vary significantly across ADPs. The high degree of variation in signal utilizations for ADPs

implementing the same benchmark suggests that the compiler produces a wide variety of

equally viable scaling transforms, each of which scales the signals very differently. This is

explored further in Section 10.5.6 and Section 10.5.7.

10.5.5 Data Field Value Optimality

This analysis presents a statistical summary of the data field value utilization scaled ADPs

for each benchmark application. In this analysis, I am primarily interested in whether the

scaled ADPs effectively scale the data field values present within the device.

Table 10.10 report the utilization of the scaled data field values. The table reports the

minimum and maximum values for each statistical measure. For all benchmarks, the scaled

ADPs report value utilizations less than or equal to 100%. All of the utilizations fall under

100% because the LScale pass produces scaling transforms that respect all of the operation

range constraints.

The maximum utilization for the ADPs range from 6.6% to 100.0%. For all applications

except the cos benchmark, the compiler produces scaled ADPs that maximize at least one

472

% value utilization
program median iqr min max

cos 6.6-100.0 0.0 6.6-100.0 6.6-100.0
cosc 35.2-100.0 18.1-85.7 7.4-16.1 100.0
pend 62.9-70.3 5.4-40.1 36.8-57.9 100.0
spring 33.8-64.8 56.9-77.0 13.4-20.5 100.0

vanderpol 34.7-61.0 18.4-36.7 19.4-33.8 100.0
heatN4X2 68.5-73.0 9.4-25.6 50.0 100.0

forced 33.0-97.7 12.3-69.8 9.1-36.8 100.0
pid 36.2-78.2 21.5-61.1 9.3-41.0 100.0

kalman 23.4-80.1 10.0-63.3 16.9-46.1 55.4-100.0
smmrxn 21.6-91.6 40.3-56.5 9.5-33.3 100.0
gentog 45.4-93.3 19.9-57.4 9.2-47.7 100.0
bont4 40.5-100.0 5.0-81.7 4.0-40.9 100.0

Table 10.10: Optimality of the scaled ADP operating ranges. Each row reports the
distribution of operating range utilizations for the listed benchmark. This table only
reports the operating range utilizations for fixed signals and constant values.

value. This observation indicates the LScale pass can scale up values to attain the maximum

possible values supported by the programmable data fields.

For the scaled ADPs, the best-case minimum value utilization is between 9.2-100.0%

and the worst-case value utilization is between 1.9-26.2%, depending on the benchmark.

The best-case minimum value utilizations are likely the best utilizations attainable for these

low-performing data field values. Because the compiler maximizes the SNR of the smallest

amplitude values in the circuit, the utilization of these values is likely also maximized by

the compiler.

For all benchmarks, there is at least one ADP which reports a median value utilization

of at least 50%. Of these applications, the pend and heatN4X2 benchmarks report a median

value utilization of at least 50% of the values for all ADPs. Therefore, for a significant

fraction of the benchmark applications, the compiler can identify an ADP which attains a

reasonably good magnitude for the majority of the values. A value utilization greater than

50% translates to at most 1.56% quantization error.

The utilization distribution metrics also vary widely across scaled ADPs and bench-

marks. Depending on the benchmark application, the median value utilization is between

6.2-94.3%, and the value utilization IQR is between 0%-80.7%. This observation suggests

that the constant data field values take on a broad range of values within each benchmark

application. The high degree of variation in signal utilizations for ADPs implementing the

same benchmark suggests that the compiler produces a wide variety of equally viable scaling

473

balanced scale objective
program median iqr min max worst-case

cos 9.04e-07 6.16e-07 5.96e-07 8.96e-05 1.26e-04
cosc 1.03e-06 9.13e-07 3.44e-07 2.18e-06 2.68e-01
pend 3.47e-05 1.13e-05 2.33e-05 1.01e-04 3.48e-01
spring 1.69e-04 1.20e-05 1.34e-04 5.25e-04 1.10e+04

vanderpol 1.96e-07 3.74e-08 1.21e-07 7.42e-07 4.97e+03
heatN4X2 1.07e-07 9.85e-09 1.05e-07 1.16e-07 2.37e+02

forced 5.71e-06 7.32e-06 2.00e-06 1.41e-05 1.01e+00
pid 3.12e-06 1.98e-07 8.61e-07 5.15e-06 1.01e+15

kalsmooth 2.86e-06 2.16e-06 2.10e-06 7.60e-06 1.14e+18
smmrxn 1.29e-06 2.24e-06 8.81e-07 4.29e-06 1.30e+03
gentog 3.94e-04 1.55e-03 3.13e-04 2.22e-03 3.26e+07
bont4 8.44e-06 8.41e-06 6.41e-06 1.15e-04 2.50e+02

Table 10.11: Distribution of balanced scale objective values for the benchmark ap-
plications. Lower scale objective values are better. The worst-case balanced scale
objective values are obtained by maximizing the objective function.

transforms, each of which scales the data field values in the ADP very differently. This is

explored further in Section 10.5.6 and Section 10.5.7.

10.5.6 balanced Scale Objective Function Value Optimality

Table 10.11 presents the objective function values for the scaled ADPs. Columns 2-5 present

the distribution of balanced objective function values and Column 6 presents the maximum

(worst case) possible value for balanced the objective function. I computed the maximum

possible value by maximizing (instead of minimizing) the balanced objective function for

each of the benchmark applications. The worst-case values range from 1.26e-4 to 1.14e+18,

depending on the benchmark.

The scaled ADPs are guaranteed to be optimal since the underlying optimization prob-

lem is convex. However, Table 10.11 reports a distribution of values. These variances occur

because the compiler produces multiple scaled ADPs by progressively removing already

generated scaling transforms and mode selections from the solution space. The compiler,

therefore, generates a sequence of scaling transforms of decreasing optimality, each of which

is optimal given the constraints over the solution space. Table 10.11 are the smallest attain-

able values for the benchmarks.

For all of the benchmark applications, the median values are several orders of magni-

tude smaller than the worst-case values. The median objective function values range from

1.07e-7 to 3.94e-4, depending on the benchmark. This observation indicates that the

474

time-varying signal qualities
program AQM DQM label state vars observe digital

cos 3.6-19.0 8.0-121.1 11.4-57.0 11.4-114.0 58.9-114.0
cosc 46.5-103.2 9.0-19.6 46.5-103.2 82.2-180.9 76.1-106.2
pend 41.9-99.5 44.9-70.7 41.9-99.5 90.0-99.5 92.9-101.8
spring 5.8-13.3 16.3-25.0 47.5-95.0 76.8-128.6 87.8-100.4 52.1-87.2

vanderpol 47.5-95.0 23.7-41.2 47.5-95.0 101.6-190.0 101.1-106.1
heatN4X2 47.5-52.9 65.7-66.5 47.5-52.9 95.0-95.0 51.3-53.7

forced 9.5-17.5 11.1-44.9 18.2-55.8 18.2-111.6 67.5-114.0
pid 7.9-12.8 11.3-50.1 45.9-95.0 45.9-99.9 94.4-114.0

kalman 2.8-7.0 20.6-56.3 13.6-52.6 25.0-63.5 87.6-114.0
smmrxn 5.2-13.7 11.6-40.3 50.3-59.4 100.6-118.7 59.7-114.0
gentog 6.1-7.9 11.2-63.0 52.0-84.2 52.0-84.2 95.9-100.3 81.8-120.6
bont4 1.2-1.6 4.9-49.9 12.1-106.1 12.1-127.5 85.0-106.1

Table 10.12: Breakdown of analog quality measures for scaled ADPs

space of candidate scaling transforms that satisfy all the constraints contains both good and

bad scaling transforms. This observation also indicates that the compiler can effectively

navigate the space of candidate scaling transforms and identify good transforms.

For all benchmark applications, the IQR of the scale objective values falls between 9.85e-

09 and 1.55e-03. These value spreads are relatively narrow, especially when compared to

the worst-case objective function value. This observation indicates that there are multi-

ple good candidate scaling transforms that have similar scale objectives. The compiler is

able to identify these scaling transforms and return multiple scaled ADPs with comparable

optimality.

10.5.7 Analog and Digital Quality Measure Breakdown

I next study the spread of analog quality measures (AQMs) and digital quality measures

(DQMs) for the scaled ADPs. The AQMs capture the ratio of the maximum value of the

scaled analog signals to the noise floor. For example, a scaled signal with an AQM of 3.5 has

a maximum signal amplitude which is 3.5x the noise floor of the wire carrying the signal.

The DQMs capture the ratio of the maximum value of the scaled digital signals to the

quantization error. For example, a scaled data field value with a DQM of 10.5 implements a

value that is 10.5x the quantization error of the data field. This scaled value would therefore

have 10.5−1× 100%=9.5% error. Generally speaking, signals and values with larger AQMs

or DQMs are less affected by analog noise and error.

Table 10.12 presents a breakdown of the analog and digital quality measures for the

475

scaled ADPs. The balanced scale objective function jointly maximizes the execution speed

and all of the quality measures presented in this table. Columns 2 and 3 present the range

of the minimum AQMs and DQMs across all ADPs. Columns 4-7 present a breakdown of

the smallest quality measures for time-varying signals, organized by signal type:

∙ label (Column 4): This column reports the range of minimum quality measures

for the subset of signals which have been affixed with ADP source source labels.

These signals implement variables and dynamical system expressions. These quality

measures may be analog quality measures or digital quality measures since time-

varying digital signals can also implement dynamical system expressions.

∙ state vars (Column 5): This column reports the range of minimum analog quality

measures for the subset of signals which implement dynamical system state variables.

∙ observe (Column 6): This column reports the range of minimum analog quality

measures for the subset of signals which are externally accessible and can be measured

with an external measurement device.

∙ digital (Column 7): This column reports the range of minimum digital quality

measures for the digital time-varying signals.

Overall, both the DQMs and AQMs vary substantially within each benchmark. These

variances occur because there exist multiple viable scaling transforms with different quality

measure characteristics that resolve to approximately the same scale objective function value.

The compiler, therefore, identifies multiple close-to-optimal scaling transforms with different

quality characteristics.

Depending on the benchmark, the DQMs range from 4.92-70.73. The digital value with

the smallest reported minimum DQM is 4.92x the quantization error of the data field or

digital port. This translates to about 20% error for the value with the lowest DQM.

Depending on the benchmark, the AQMs range from 1.2-103.25. The maximum value

for the scaled signal with the smallest AQM is 1.24x the noise floor. The maximum value

for the scaled signal with the largest minimum AQM is 103.25x the noise floor. The bont4

benchmark reports the smallest minimum overall AQM of 1.2-1.6. Note that an ADP may

still accurately execute a computation even if it contains signals with small dynamic ranges,

476

provided these signals do not have a significant impact on the overall computation. Refer

to Section 10.8.2 for a correlation study of the quality measures and the end-to-end result.

For all benchmark applications, the scaled ADPs report higher minimum AQMs for the

signals implementing observations, state variables, and the signals affixed with sourcelabels.

This is likely because the balanced scale objective individually maximizes these minimum

AQMs in addition to the overall minimum AQM of the circuit.

The scaled ADPs also report much higher minimum DQMs for time-varying digital

signals. Depending on the benchmark, the minimum DQMs is between 52.1 and 120.6.

These DQMs are much higher than the overall minimum DQM because the balanced

calibration strategy independently maximizes the minimum quality measure for these signals.

10.6 Viability of Unscaled ADPs

Why is the scaling transform necessary for successful compilation?

I next investigate why the unscaled ADPs are not amenable to execution. This analysis

justifies the need for a scaling transform comprised of time and magnitude scale factors. I

demonstrate that the unscaled ADPs violate the operating range and frequency constraints

hardware in this analysis. In this analysis, I study the execution speed, data field values,

and signal dynamic ranges in the unscaled ADPs. This analysis makes use of the analysis

metrics introduced in Section 10.5.1.

10.6.1 Execution Speed of Unscaled ADPs

First, I investigate whether the time scaling component of the scaling transform is necessary

for producing ADPs that can viably run on the analog hardware. Table 10.13 presents the

distribution of speed utilization metrics for the unscaled ADPs of each benchmark. Each

unscaled ADP directly maps simulation time to hardware time (the time scale factor 𝜏 is

1.0).

For all applications, the unscaled ADP speeds all exceed the maximum supported speed

of the device. These unscaled ADPs, therefore, cannot be safely run on the analog hardware.

The compiler must therefore adjust the execution speed of all of the unscaled ADPs to

respect the frequency limitations on the device.

477

% value utilization
program median iqr min max

cos unsc 157.5 0.0 157.5 157.5
cosc unsc 157.5 0.0 157.5 157.5
pend unsc 315.0 0.0 315.0 315.0
spring unsc 315.0 0.0 315.0 315.0

vanderpol unsc 315.0 0.0 315.0 315.0
heatN4X2 unsc 157.5 0.0 157.5 157.5

forced unsc 315.0 0.0 315.0 315.0
pid unsc 157.5 0.0 157.5 157.5

kalman unsc 315.0 0.0 315.0 315.0
smmrxn unsc 315.0 0.0 315.0 315.0
gentog unsc 315.0 0.0 315.0 315.0
bont4 unsc 157.5 0.0 157.5 157.5

Table 10.13: Execution speed utilization of unscaled ADPs for each benchmark appli-
cation. Execution speed utilizations exceeding 100% violate the frequency constraints
of the HCDCv2.

10.6.2 Signal Dynamic Ranges of Unscaled ADPs

Table 10.14 presents the operating range utilization metrics for the time-varying signals in

the ADPs. All utilizations greater than 100% violate the operating range constraints of the

hardware.

The cosc, pend, spring, vanderpol, heatN4X2, forced, pid, and gentog benchmarks

all contain signals with dynamic ranges which exceed the operating range supported by the

analog hardware. The unscaled ADPs for these benchmark applications therefore contain

signals which saturate ports within the HCDCv2. These applications therefore cannot be

safely run on the analog hardware.

The cos, kalman, and bont4 benchmarks all contain signals with dynamic ranges which

fall within the maximum supported operating ranges. However, these benchmarks still

cannot be executed on the analog hardware as they violate the execution speed constraints

of the device.

478

% signal utilization
program median iqr min max

cos 5.3-52.6 0.0-47.4 5.3 87.7
cosc 65.8-657.9 13.2-460.5 52.6-526.3 877.1
pend 7.9-78.9 0.0-71.1 7.9-78.9 131.6
spring 7.9-78.9 14.5-71.1 3.9-6.4 193.0

vanderpol 131.6 0.0-118.4 13.2-131.6 219.3
heatN4X2 10.5-105.3 0.0 10.5-105.3 175.4

forced 11.6-115.8 3.2-110.5 5.3 193.0
pid 10.5-105.3 0.0-94.7 2.6-17.5 175.4

kalman 3.7-36.8 2.6-50.0 0.7 87.7
smmrxn 2.6-26.3 0.0 2.6-26.3 43.9
gentog 52.6 77.9-835.8 2.6 1403.5
bont4 0.7-4.2 4.0-9.6 0.0 5.3-52.6

Table 10.14: Distribution of operating range utilizations for the time-varying sig-
nals in the unscaled ADPs. Each row reports the distribution of operating range
utilizations for each benchmark application. Only the operating range utilizations
for time-varying signals are reported. Operating range utilizations exceeding 100%
violate the operating range constraints of the HCDCv2.

10.6.3 Data Field Values of Unscaled ADPs

Table 10.14 presents the operating range utilization metrics for the data field values in the

ADPs. All values with utilizations greater than 100% violate the operating range constraints

of the data fields and cannot be written to the device.

For all applications except the cos application, the unscaled ADPs contain value uti-

lizations that exceed 100%. Therefore, almost all of the unscaled ADPs cannot even be

written to the target device. For these applications, the compiler must scale the signal and

value magnitudes so that they can be written to the analog device.

For the cos application, all the data field values have operating range utilizations less

than or equal to 53%. The unscaled ADPs for the cos application can therefore be written

to the device. However, the cos application cannot be executed on the device since it exceeds

the maximum execution speed of the device.

479

% value utilization
program median iqr min max

cos 53.0 0.0 53.0 53.0
cosc 105.3 88.4 23.2 477.4
pend 53.0 53.4 18.9 176.8
spring 53.0 52.6 15.8 176.8

vanderpol 84.2 81.9 21.1 176.8
heatN4X2 106.1 0.0 10.5-105.3 176.8

forced 176.8 421.1 26.3 530.5
pid 79.2 106.4 26.3 842.1

kalman 45.1 153.5-160.3 3.2-4.2 212.2
smmrxn 31.6-42.1 80.6-94.3 2.6-26.3 212.2
gentog 105.3 79.6 2.6 176.8
bont4 6.1 13.3 1.4 176.8

Table 10.15: Distribution of operating range utilizations for the fixed signals/data
field values in the unscaled ADPs. Each row reports the distribution of operating
range utilizations for each benchmark application. Only the operating range utiliza-
tions for fixed signals and data field values are reported. Operating range utilizations
exceeding 100% violate the operating range constraints of the HCDCv2.

10.7 Scaling Transform Complexity

Are the scaling transforms complex enough to warrant an automated approach?

This section provides a general breakdown of the scaled circuit. I summarize the range

of time and magnitude scale factors and identify which proportion of the scale factors are

unique. This analysis demonstrates that the compiler derives complex scaling transforms

with many distinct scale factors which span a wide range of values.

Table 10.16 presents the time and magnitude scale factor statistics and the statistics of

the injected variables. Column 2 presents the range of time scale factor values. Columns

3-5 present the total number of magnitude scale factors, the number of unique magnitude

scale factor values, and the range of magnitude scale factor values. Columns 6-9 present the

total number of injected variables, the number of unique injected variable values, and the

range of injected variable values.

The scaling transformations produced by LScale have between 4 and 30 unique signal

scaling factors. For the pend, spring, and gentoggle benchmarks, LScale injects 2-6

unique constant coefficients into the expression data fields to more freely scale the circuit.

The magnitude scale factors range from 0.01-34648.75 the injected values range from 0.53-

23.56. The bont4 benchmark reports a high scaling factor for the signal implementing the

expression 0.013*transB. This signal is scaled up because the unscaled dynamic range for

480

magnitude scale factors injected values
benchmark tau total unique range total unique range

cos 0.09-0.32 14 4 0.12-3.73 0 0
cosc 0.33-0.63 30 10 0.06-4.32 0 0
pend 0.32 39 13 0.39-23.56 2 2 0.80-23.56
spring 0.14-0.17 82 23-24 0.15-15.39 4 4 1.08-15.39

vanderpol 0.32 49 14-15 0.18-7.60 0 0
heatN4X2 0.63-0.63 63 17 0.26-4.75 0 0

forced 0.10-0.31 63 19-20 0.06-8.64 0 0
pid 0.19-0.60 63 20-21 0.05-12.67 0 0

kalman 0.32 63 21 0.08-27.46 0 0
smmrxn 0.29-0.32 37 11 0.09-21.55 0 0
gentog 0.09-0.23 90 30 0.01-18.85 6 6 0.53-18.85
bont4 0.62-0.63 75 26 0.57-34648.75 0 0

Table 10.16: Summary of scaling transform magnitude scale factors, time scale fac-
tors, and injected coefficients. The total column reports the total number of scale
factors/injected coefficients, the unique column reports the number of unique scale
factors/injected values, and the range column reports the range of values for the scale
factors and injected values.

this term is very small.

The time scaling factors configure the ADPs to execute at 0.09x-0.63x the baseline speed

of the analog device (126000 Hz). The slowest simulation (0.09x baseline) executes one unit

of simulation time in 7.00 · 10−5 seconds of wall-clock time.

10.8 Compilation Outcomes and Result Quality

Section 10.5.6 reported that the scaled ADPs for a given benchmark report comparable

balanced scale objective values. However, in practice, the produced waveforms vary sig-

nificantly depending on the execution. This disparity between the static measure of circuit

optimality and the actual end-to-end result quality may arise because the compilation pro-

cedure fails to consider the full range of hardware behaviors that may impact the end-to-end

result.

I present an analysis that investigates the relationship between the quality of the end-

to-end result and the scaled ADP characteristics. The results of this analysis can be used

to inform future optimizations to the compiler. For each investigated ADP characteristic,

I study if the chosen calibration strategy affects the relationship between the target ADP

characteristic and the end-to-end result. If the calibration algorithm can eliminate an un-

wanted low-level behavior that is not currently considered by the compiler, then a novel

481

compiler optimization may not be required. I study the effect of the following ADP char-

acteristics on end-to-end result quality and evaluate if modifying the calibration strategy

reduces the impact of some of these unmodeled effects:

∙ Block Instance Selections (Section 10.8.1): I investigate the relationship between

the locations of the blocks in the scaled ADPs and the end-to-end result.

∙ Scale Objective Function Values: I investigate the relationship between the

balanced scale objective function values and the end-to-end result quality. The goal

of this analysis is to understand how predictive the bbalanced scale objective function

is of the end-to-end result. I also perform a more detailed analysis of how the analog

and digital quality measures and execution speed are related to the end-to-end result

quality. The goal of this analysis is to determine if the balanced scale objective could

instead be replaced with a simple objective function that maximizes a single quality

measure or the execution speed.

Metrics and Methodology

The block instance analysis studies the maxfit and minerr executions from Section 10.1.

The analysis groups the minerr and maxfit executions by originating circuit number (0-10).

Each circuit number corresponds to an unscaled ADP which was generated by the LGraph

compilation pass. I manually inspected each unscaled ADP manually to ensure that only

the block locations differ across generated circuits.

The quality measure analysis and dynamic signal range analyses perform an in-depth

analysis of the first unscaled ADP generated by the LGraph pass. I chose to focus on a

single unscaled ADP to control for the effect of different block instance selections on the

end-to-end result. These analyses make use of the single scaling objective function, a new

scaling objective function that produces a wide variety of scaled circuits:

∙ single: The ADPs scaled with the single objective maximize one magnitude scale

factor or time scale factor. The compiler produces a single ADP for each time and

magnitude scale factor in the ADP.

Each single ADP must have a minimum AQM of 1.0, a minimum DQM of 5.0 for

data field values, and a minimum DQM of 5.0 for time-varying digital signals. The

482

minimum time scale factor value is 0.001. These restrictions over the signal quality

and speed prevent the compiler from producing scaling transforms that completely

degrade the quality of any single signal. I intentionally select a loose lower bound

on the minimum AQM and DQM and a loose lower bound for the execution speed.

These loose minimum bounds are smaller than all the observed speeds, AQMs, and

DQMs reported in Sections 10.7 and 10.5.7.

The analyses presented in this section work with four types of executions. These execu-

tions capture all scaling objective and calibration strategy combinations:

∙ single/maxfit - The compiler uses the single scaling objective and targets blocks

calibrated with the maximize_fit calibration strategy. The compiler produces a

scaled ADP for each time and magnitude scale factor in the ADP.

∙ single/minerr - The compiler uses the single scaling objective and targets blocks

calibrated with the minimize_error calibration strategy. The compiler produces a

scaled ADP for each time and magnitude scale factor in the ADP.

∙ bal/maxfit - The compiler uses the balanced scaling objective and targets blocks

calibrated with the maximize_fit calibration strategy. The compiler produces 10

scaled ADPs.

∙ bal/minerr - The compiler uses the balanced scaling objective and targets blocks

calibrated with the minimize_error calibration strategy. The compiler produces 10

scaled ADPs.

10.8.1 Block Instance Selection and Result Quality

Does the selection of block instances in the ADP have a significant effect on the

end to end error?

Figure 10-7 and Figure 10-8 present the distribution of % rmses (y axis) for each gen-

erated LGraph circuit (x axis). Each plot breaks down the % rmse by circuit number for

either the minerr or maxfit executions of a particular benchmark. Each box and whisker

plot within the graph reports the distribution of errors for the LScale circuits generated

483

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

500

1000
%

 rm
se

gentog

(a) gentog,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

500

1000

%
 rm

se

gentog

(b) gentog,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0.00000

0.00025

0.00050

0.00075

%
 rm

se

bont4

(c) bont4,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0.00000

0.00025

0.00050

0.00075

%
 rm

se

bont4

(d) bont4,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0.0

0.2

0.4

%
 rm

se

smmrxn

(e) smmrxn,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0.0

0.2

0.4
%

 rm
se

smmrxn

(f) smmrxn,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

2

4

%
 rm

se

pid

(g) pid,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

2

4

%
 rm

se

pid

(h) pid,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

10

20

30

%
 rm

se

kalman

(i) kalman,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

10

20

30

%
 rm

se

kalman

(j) kalman,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

200

400

600

%
 rm

se
vanderpol

(k) vander,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

200

400

600

%
 rm

se

vanderpol

(l) vander,maxfit

Figure 10-7: Breakdown of % rmses by originating unscaled ADP. Each plot reports
the breakdown for the minerr executions or for the maxfit executions of a benchmark.
The y-axis reports the % rmse and the x-axis reports the identifier of the originating
unscaled ADP. Refer to Section 10.1.3 for an overview of box plots.

from the target LGraph circuit with the specified calibration strategy (maximize_fit or

minimize_error).

For all the benchmarks, the distribution of % rmses varies significantly across LGraph

circuits. This observation indicates that the chosen block instances have a significant impact

on the end-to-end result of the computation. This may be because different instances of the

same block have different error characteristics; these differences adversely impact the fidelity

of the result.

The maxfit executions more consistently produce good results across differnt LGraph

circuits than the minerr executions. For the gentog, pid, smmrxn, forced, spring, and cos

applications, the maxfit results report significantly less error (lower median) and deliver low-

error results more consistantly (smaller IQR) than the minerr results. For these applications,

484

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

200

400

600
%

 rm
se

forced

(a) forced,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

200

400

600

%
 rm

se

forced

(b) forced,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

10

20

%
 rm

se

spring

(c) spring,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

10

20

%
 rm

se

spring

(d) spring,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

100

200

%
 rm

se

cosc

(e) cosc,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

100

200

%
 rm

se
cosc

(f) cosc,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

5

10

%
 rm

se

pend

(g) pend,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

5

10

%
 rm

se

pend

(h) pend,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0.0

0.5

1.0

1.5

%
 rm

se

heatN4X2

(i) heatN4X2,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0.0

0.5

1.0

1.5

%
 rm

se

heatN4X2

(j) heatN4X2,maxfit

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

10

20

30
%

 rm
se

cos

(k) cos,minerr

0 1 2 3 4 5 6 7 8 9
unscaled circuit #

0

10

20

30

%
 rm

se

cos

(l) cos,maxfit

Figure 10-8: Breakdown of % rmses by originating unscaled ADP. Each plot reports
the breakdown for the minerr executions or for the maxfit executions of a benchmark.
The y-axis reports the % rmse and the x-axis reports the identifier of the originating
unscaled ADP. Refer to Section 10.1.3 for an overview of box plots.

the scaled ADPs which target the maximize_fit calibration strategy definitively produces

better results than the minerr executions. One possible explanation is the maximize_fit

calibration routine is able to eliminate unwanted behavior in a broader range of blocks since

it allows for calibrated blocks to have non-unity gains.

In some cases, the minerr executions outperform the maxfit executions. For the kalman,

vanderpol,cosc, and pend executions, the maxfit executions report a higher error (higher

median) for some LGraph circuits and lower error (lower median) for others. For these

applications, the best calibration strategy to use differs depending on the circuit. One

possible explanation for this is that in some circuits, the minimize_error calibration routine

is able to eliminate unwanted behavior and also deliver unity gain.

485

calib time varying signals scaling
program strategy speed DQM AQM label state vars observe digital objective

cos minerr -0.69 0.19 -0.04 0.02 0.59 0.22 -0.06
cos maxfit 0.18 0.09 0.02 0.17 -0.14 0.15 -0.15
cosc minerr 0.06 -0.22 -0.21 -0.38 -0.39 -0.99 0.99
cosc maxfit 0.09 -0.07 -0.33 -0.26 -0.20 -0.40 1.00
pend minerr 0.00 -0.24 -0.22 -0.35 -0.11 -0.69 -0.03 0.96
pend maxfit 0.00 -0.43 -0.46 -0.46 -0.17 -0.35 -0.38 0.59
spring minerr 0.04 -0.09 -0.04 -0.09 -0.08 -0.69 -0.34 0.61
spring maxfit 0.17 0.10 -0.14 -0.21 -0.19 -0.49 -0.15 0.42

vanderpol minerr n/a -0.22 -0.27 -0.35 -0.32 -0.26 0.74
vanderpol maxfit n/a -0.41 -0.43 -0.40 -0.31 -0.38 0.43
heatN4X2 minerr -0.00 -0.20 -0.31 -0.35 -0.25 0.16 0.34
heatN4X2 maxfit -0.00 -0.27 -0.22 -0.41 0.05 -0.58 0.99

forced minerr n/a -0.16 -0.44 -0.48 0.05 -0.52 0.73
forced maxfit 0.00 -0.23 -0.29 -0.43 0.04 -0.36 0.77
pid minerr 0.44 -0.47 -0.63 -0.61 -0.45 -0.64 0.88
pid maxfit 0.28 -0.41 -0.49 -0.44 -0.28 -0.57 0.97

kalman minerr 0.00 -0.22 -0.29 -0.27 0.03 -0.35 0.80
kalman maxfit -0.00 -0.74 -0.30 -0.18 0.17 0.06 0.11
smmrxn minerr 0.20 -0.20 -0.21 -0.72 0.23 -0.79 0.98
smmrxn maxfit 0.07 -0.04 -0.33 -0.43 0.06 -0.44 1.00
gentog minerr 0.06 -0.03 -0.13 -0.09 -0.02 -0.62 -0.06 0.99
gentog maxfit 0.14 -0.19 -0.04 -0.16 -0.14 -0.65 -0.14 0.93
bont4 minerr n/a -0.11 -0.49 -0.38 -0.51 -0.49 0.62
bont4 maxfit n/a -0.12 -0.23 -0.45 -0.46 -0.51 0.96

Table 10.17: Relationship between ADP execution speed, quality measures, and
balanced scale objective function value and the end-to-end result. Each cell reports
the Pearson correlation coefficient (PCC) between the % rmse and the target ADP
characteristic. ADP characteristics may be weakly correlated/uncorrelated (regular),
correlated (bold) or strongly correlated (blue, bold) with the end-to-end error. All
cases where the PCC cannot be computed are marked as not applicable (n/a).

Conclusion: Neither calibration strategy fully attenuates away the errors resulting from

variations in the selected block instances. Furthermore, block instance selection is a sig-

nificant source of unpredictability in the end-to-end result. For this reason, It would be

productive to invest time in developing analyses that relate the block instance-specific char-

acteristics to the fidelity of the end-to-end result.

10.8.2 The Scale Objective Function and Result Quality

I next investigate the relationship between the ADP characteristics and the end-to-end

result. In this section, I study the correlation between the end-to-end result and the ADP

quality measures, execution speed, and balanced scale objective function values. The goal

486

of this analysis is to identify which scaled ADP characteristics are strongly predictive of the

end-to-end result. I use the Pearson correlation coefficient to study the relationship between

each ADP characteristic and the end-to-end result. The Pearson correlation coefficient

(PCC) is a measure of linear correlation between two sets of data. The PCC may be any

value from -1 to 1. A value close to -1 indicates that the error decreases as the ADP

characteristic increases. A value close to one indicates that the error increases as the ADP

characteristic increases. A value close to zero indicates that the ADP characteristic has

little to no effect on the quality of the end-to-end result. This analysis describes PCCs

with a magnitude above 0.5 as correlated and PCCs with a magnitude above 0.9 as strongly

correlated. Note that the PCC cannot be computed for ADP characteristics which take on

the same value for all executions.

Table 10.17 presents the Pearson correlation coefficients for the execution speed, quality

measures, and balanced scale objective values of the scaled ADPs. Each PCC reports

how strongly correlated the ADP characteristic is with the end-to-end result. For example,

for the cosc executions which target the maximize-fit calibration strategy (row 4), the

balanced scale objective value is strongly correlated (has a PCC of 1.00) with the error

of the end-to-end result. For this benchmark, minimizing the balanced scale objective is

therefore likely to also minimize the error of the end-to-end result.

Columns 1 and 2 report the benchmark and calibration strategy of each entry in the table.

The minerr calibration strategy entries report the correlations for the the bal/minerr and

single/minerr executions. The maxfit calibration strategy entries report the correlations

for the bal/maxfit and single/maxfit executions.

Columns 3, 4, and 5 present the correlations for the execution speed and the minimum

DQM and AQM. Columns 6-9 present the PCCs between the end-to-end result and the min-

imum quality measures for different subsets of time-varying signals in the ADP. I previously

introduced these classes of time-varying in Section 10.5.7:

∙ label (Column 6): This column reports the quality measure correlations for the

subset of signals which have been affixed with ADP source source labels. These

signals implement variables and dynamical system expressions.

∙ state vars (Column 7): This column reports the quality measure correlations for

the subset of signals which implement dynamical system state variables.

487

∙ observe (Column 8): This column reports the quality measure correlations for the

subset of signals which are measured in this evaluation.

∙ digital (Column9): This column reports the quality measure correlations for the

subset of digital time-varying signals.

Column 10 presents the correlation between the end-to-end result and the balanced

scale objective function value.

Columns 5-8 presents the correlations for the minimum AQMs for analog signals with

source labels, the analog signals implementing state variables, and the observed analog

signals, respectively. Column 9 presents the correlation for the minimum DQM for all time-

varying signals within the ADP. Column 10 presents the correlation of the balanced scaling

objective function value and the end-to-end error.

Scaling Objective:For all benchmarks except the cos benchmark, the balanced scaling

objective value are correlated with the end-to-end result. Fhe cosc, pend, heatN4X2, pid,

smmrxn, gentog, and bont4 benchmarks, the end-to-end result quality is strongly correlated

with the balanced scaling objective value. This indicates that, in many cases, the balanced

scaling objective value is strongly predictive of the quality of the end-to-end result.

The cos benchmark quality is not strongly correlated with the balanced scaling objective

function value. For this benchmark, the execution speed is negatively correlated with the

end-to-end error, and the state variable AQM is positively correlated with the end-to-end

error. These two correlated values likely work against each other in the balanced scaling

objective function. For this application, it would likely be better to directly maximize the

speed, subject to a set of minimum AQM constraints.

For the spring, vanderpol, and kalman benchmark applications, only the executions

which target the minimize_error calibration strategy have balanced scaling objective val-

ues which strongly correlate with the end-to-end result. This indicates that the balanced

scaling objective value doesn’t identify low-error scaled ADPs as effectively when targeting

the maximize_fit scaling objective. This may be because other factors, such as unused

portions of the signal ranges, and not accounted for in the objective function.

For the heatN4X2 benchmark, only the executions which target the maximize_fit cal-

ibration strategy have balanced scaling objective values which strongly correlate with the

end-to-end result. One possible explanation is that the minimize_error calibration strategy

488

introduces unmodelled block behaviors into the ADP which the compiler cannot compensate

for in compilation.

Speed and Quality Measures: The cosc, pend, spring, heatN4X2, forced, pid, smmrxn,

gentog, and bont4 benchmarks all have executions where the error of the end-to-end result

decreases with an increasing AQM for the observed signals. The remaining executions all

correlate with different measures. The error in the cos benchmark decreases with increasing

speed, the error in the kalman benchmark decreases with an increasing dqm. The end-to-end

error for the vanderpol benchmark is not well correlated with any single measure. For most

benchmarks, the observed signal quality is most strongly correlated with the quality of the

end-to-end result. However, no single quality measure or speed is strongly correlated with

the end-to-end result across all benchmarks.

For all benchmarks except the cos and spring benchmarks, the balanced scaling ob-

jective value is much more strongly correlated with the end-to-end error than the execution

speed or any one quality measure. This observation indicates that the inclusion of the

AQMs, DQMs, and speed in the balanced execution formula enables it to better predict

the result fidelity than any one quality measure. Note that for the kalman execution, only

the minimize_error entry correlates strongly with the scaling objective value.

Conclusion: The balanced scaling objective function is an effective predictor of the end-

to-end result for many kinds of applications. The balanced scaling objective does not

adequately correlate with the end-to-end result quality though for some executions which

target maximize_fit calibration strategy. A potential direction for future work would be

the design of a better scaling objective for targeting the maximize_fit calibration strategy.

489

program criteria balanced single balanced single
cos % rmse 7.400e-02 6.880e-02
cos runtime 0.50 ms
cos power 0.19 mW
cos energy 0.10 𝜇J
cosc % rmse 3.332e+00 1.495e+00
cosc runtime 0.25 ms
cosc power 0.37 mW
cosc energy 0.09 𝜇J

spring % rmse 6.528e-01
spring runtime 0.94 ms 0.50 ms 3.375e+00 1.894e+00
spring power 0.94 mW 0.91 mW 3.698e+00 2.685e+00
spring energy 0.90 𝜇J 0.45 𝜇J 3.698e+00 1.894e+00

heatN4X2 % rmse 2.874e-02 2.646e-02
heatN4X2 runtime 1.50 ms
heatN4X2 power 0.72 mW
heatN4X2 energy 1.09 𝜇J

pid % rmse 1.501e+00
pid runtime 4.79 ms 2.50 ms 2.124e+00 5.403e+01
pid power 0.84 mW 0.82 mW 4.727e+00 7.036e+01
pid energy 4.09 𝜇J 2.05 𝜇J 4.727e+00 5.403e+01

kalman % rmse 2.853e-01 2.033e-02
kalman runtime 2.50 ms
kalman power 0.85 mW 0.84 mW 6.389e+00 2.903e-01
kalman energy 2.12 𝜇J 2.10 𝜇J 6.389e+00 2.903e-01
smmrxn % rmse 1.211e-03 1.125e-03
smmrxn runtime 0.50 ms
smmrxn power 0.52 mW
smmrxn energy 0.26 𝜇J
gentog % rmse 9.439e+00
gentog runtime 0.69 ms 0.50 ms 9.876e+01 1.627e+01
gentog power 1.07 mW 1.05 mW 3.597e+01 1.627e+01
gentog energy 0.76 𝜇J 0.53 𝜇J 1.163e+02 1.627e+01
bont4 % rmse 7.905e-05
bont4 runtime 0.25 ms
bont4 power 1.00 mW 0.97 mW 1.201e-04 1.310e-04
bont4 energy 0.25 𝜇J 0.24 𝜇J 1.201e-04 1.310e-04

Table 10.18: Summary of single performance executions which outperform balanced
executions. Any benchmarks which do not obtain performance improvements with
single executions are omitted.

490

program criteria scale factor expression
cos % rmse mag(integ(0,3,2,0),x) ((-1)*P)
cos runtime
cos power
cos energy
cosc % rmse mag(integ(0,3,0,0),x) V
cosc runtime
cosc power
cosc energy

spring % rmse
spring runtime mag(integ(0,0,1,0),z) VB
spring power mag(mult(0,0,0,0),z) ((-1.00)*fPB)
spring energy mag(integ(0,0,1,0),z) VB

heatN4X2 % rmse mag(fanout(0,3,0,0),z0) D1
heatN4X2 runtime
heatN4X2 power
heatN4X2 energy

pid % rmse
pid runtime mag(fanout(0,3,2,1),z0) ERR
pid power mag(integ(0,3,0,0),x) ((10*(-0.25))*SIG)
pid energy mag(fanout(0,3,2,1),z0) ERR

kalman % rmse mag(mult(0,3,0,1),x) (2.00*(SIG)+(((-1)*X)))
kalman runtime
kalman power mag(mult(0,3,3,0),z) ((-0.04)*SIG)
kalman energy mag(mult(0,3,3,0),z) ((-0.04)*SIG)
smmrxn % rmse mag(mult(0,3,0,0),z) ((10*2.00)*((20*0.40))+(((-1)*ES)))
smmrxn runtime
smmrxn power
smmrxn energy
gentog % rmse
gentog runtime mag(lut(0,3,2,0),z) (0.05*(15.60*pow((1)

+(max((2*(0.50*((0.50*(U)+(U))*UMOD))),0)),(-1))))
gentog power mag(lut(0,3,2,0),z) (0.05*(15.60*pow((1)

+(max((2*(0.50*((0.50*(U)+(U))*UMOD))),0)),(-1))))
gentog energy mag(lut(0,3,2,0),z) (0.05*(15.60*pow((1)

+(max((2*(0.50*((0.50*(U)+(U))*UMOD))),0)),(-1))))
bont4 % rmse
bont4 runtime
bont4 power mag(fanout(0,3,2,0),z0) bulkB
bont4 energy mag(fanout(0,3,2,0),z0) bulkB

Table 10.19: single scale objective summary for best performing single executions
for the cos, spring, kalman, gentog, and bont4 benhcmarks.

491

10.9 Alternate Scaling Objective Functions

Is there a better scaling objective function than the balanced scaling objective

function?

I next explore the potential benefits of engineering an alternate scaling objective function.

In this section, I investigate the viability of the single scaling objective function introduced

in Section 10.8 as a potential alternate scaling objective function.

∙ Quality, Power, Energy, and Runtime: I first compare the performance of this

scaling objective to the balanced scaling objective used by the compiler. This analysis

contrasts the quality, power, energy, and runtime characteristics of the two scaling

objectives. This analysis aims to identify if these single-signal executions identify a

new and desirable point in the tradeoff space.

∙ Scaling Objective Characteristics: I next investigate the characteristics of these

signals to identify if any trends which can be used to develop new objective functions.

10.9.1 Quality, Power, Energy, and Runtime

Figure 10.18 presents the single executions which produce higher quality results or consume

less time,power, or energy than the balanced executions. Each row in the table presents one

single execution which outperforms all the balanced executions on a particular metric. The

execution is selected by identifying the subset of single executions which outperform the

balanced executions a target metric. I then selected single execution with the lowest error

from that subset. Columns 1 and 2 present the benchmark and the target metric, column

3 and 4 present the metric values for the balanced and single executions, and columns 5

and 6 present the % rmses for the balanced and single executions. For example, for the

runtime entry of the spring benchmark, the compiler produces a single execution which

completes in 0.50 ms and reports a 1.894 % rmse. This is faster than the fastest balanced

execution, which takes 0.94 ms and reports a 3.375 % rmse.

∙ Quality (% rmse rows): For the cos, cosc, heatN4X2, kalman, and smmrxn bench-

marks, the single scale objective is able to identify higher quality executions than

the balanced scale objective. The accuracy of the cosc and kalman benchmarks sig-

nificantly improve by 2.23x and 14.03x respectively. The cos, heatN4X2, and smmrxn

492

all report minor accuracy improvements of 1.07x, 1.08x, and 1.07x respectively. For

these benchmarks, there is likely a subset of signals within the ADP which have a

disproportionate effect on the end-to-end result. For the pend, spring, vanderpol,

heatN4X2, pid, forced, gentog, and bont4 benchmarks, the balanced executions

generally produce higher quality results than the single executions.

∙ Runtime (runtime rows): For the spring, pid, and gentog benchmarks, the single

scale objective identifies executions which run faster than the balanced executions.

For the spring and gentog benchmarks, the single execution also reports a lower

error relative to the fastest balanced execution. For the pid benchmark, the accuracy

of the fast single is far worse than the accuracy of the fastest balanced execution.

Therefore, for some benchmarks the single scale objective is able to identify faster

executions which also accrue less error when compared to the fastest balanced exe-

cution.

The compiler finds faster scaled ADPs with the single scale objective because one of

the invocations directly maximizes the time scale factor for one of its execution. Note

that this outcome is consistent with the execution speed utilization results presented

in Section 10.5.3. In it, the spring, pid, and gentog benchmarks all failed to attain

the maximum possible execution speed with the balanced scale objective.

∙ Power (power rows): For the spring, pid, kalman, gentog and bont4 benchmarks,

the single scale objective identifies executions which consume marginally less power

than the balanced executions. Of these benchmarks, the spring, kalman, and gentog

benchmarks also report lower errors than the lowest power balanced execution. For

the pid benchmark, the accuracy of the fast single is far worse than the accuracy of

the lowest-power balanced execution. Therefore, the single scale objective is able

to identify lower power executions for some benchmarks which also accrue less error

than the lowest-power balanced execution.

The single executions may attain a lower power consumption because the signals

in the circuit are subject to a more relaxed minimum AQM and DQM requirement.

This relaxation of the scaling problem frees the compiler to select lower power modes

when scaling the circuit. In some cases, this relaxation also enables the compiler to

produce higher fidelity results. The single executions for the spring and kalman

493

benchmarks both report lower errors than the balanced executions.

∙ Energy (energy rows): For the spring, kalman, pid, gentog, and bont4 bench-

marks, the single scale objective identifies executions which consume less energy

than the balanced executions. The single executions for the spring, kalman, and

gentog benchmarks all report lower error than the lowest energy balanced executions.

The single executions for the pid and bont4 benchmarks both report a higher er-

ror. Note that the bont4 benchmark reports a marginally higher error. Therefore, the

single scale objective is able to identify lower energy executions for some benchmarks

which also accrue less error than the lowest-energy balanced execution.

For the bont4 and kalman benchmarks, the lower energy consumption resulted from

lower power consumption. For all other benchmarks, the lower energy consumption

resulted from both lower power consumption and faster runtimes.

From this analysis, I can conclude that the single scaling objective enables the com-

piler to identify scaled ADPs that occupy promising new points in the tradeoff space. I

next qualitatively investigate the characteristics of the single scaled ADPs reported in

Table 10.18.

10.9.2 Analysis of Best-Performing Circuits

I next qualitatively analyze the scaling objective functions for the best-performing single

executions for the benchmark applications presented in Table 10.18. Table 10.19 presents

an an overview of the signals maximized by the single executions presented in Table 10.18.

Columns 1 and 2 present the benchmark application and the performance metric the single

execution outperforms the balanced executions on. Recall that each single execution max-

imizes a single signal or maximizes the execution speed. Columns 4 and 5 present the mag-

nitude scale factor associated with the maximized signal and associated dynamical system

expression implemented by that signal. If there is no single execution that outperforms

the balanced executions for a particular metric, columns 4-6 are left blank. This table omits

any benchmarks which do not report performant single executions.

For the cos, cosc, spring, heatN4X2, pid, and bont4 benchmarks, the best-performing

single executions all maximize signals which implement variables or negated variables.

494

There is likely a subset of dynamical system variables for these benchmark applications that

disproportionately affect the result and must therefore be maximized. These high-impact

dynamical system variables could perhaps be identified by analyzing the dynamical system

directly before compilation.

For the pid, kalman, smmrxn, and gentog benchmarks, the best-performing single

executions all maximize signals which calculate intermediate expressions in the ADP. For

these benchmark applications, there is likely a more complex, specialized scaling objective

exists which would strategically maximize the certain signals within the ADP. Identifying

such signals would require some analysis which identifies which signals in the circuit have a

disproportionate effect on the end-to-end result.

Therefore, from this analysis, I can conclude that there is likely no generally applicable

heuristic for identifying the signals which have a disproportionate effect on the end-to-end

result.

10.10 Realtime Case Studies

I next compile and execute the two real-time signal processing applications introduced in

Section 4.13 of the thesis on the HCDCv2. Both signal processing applications accept an

external analog signal as input, compute the signal continuously in real-time, and then emit

the result. I provided the the external signal by routing the output of an external signal

generator to the cin block at location (1,3,3,0) on the HCDCv2.

495

Figure 10-9: External input signal pro-
vided to bias shift detector.

Figure 10-10: Output signal of bias
shift detector.

10.10.1 Case Study A: Bias Shift Detector

The bias shift detector identifies shifts in the average value of an external signal. The output

of the shift detector changes levels when a change in the average is detected. For this case

study, I provide the HCDCv2 with an oscillating signal. This oscillating signal is centered

around zero, has a frequency of 40 kHz, and has an amplitude of 0.25 V.

Figure 10-9 presents the analog signal provided to the device. As 4.5 milliseconds, the

average of the oscillating signal shifts from zero to 0.5. The average then shifts back down

to zero after one millisecond. A simple thresholding operation would not adequately detect

this shift in the average since the signal oscillates.

I compiled the bias shift detection dynamical system from Section 4.13.1 to the HCDCv2

and measured the externally accessible denoised signal produced by the application. The

compiler scales the signal being emitted at the observation block cout by 0.4916x. The

voltage of the measured signal is, therefore, 0.4916x the dynamical system observation vari-

able. The time scale factor is 0.3016 which translates to a frequency of 0.3016*126 kHz,

or 38 kHz – this is within the acceptable frequency range of 38-42 kHz for the benchmark

application.

Figure 10-10 presents the output signal emitted by the bias shift detector after the

recovery transform has been applied. The detector produces a signal with an amplitude of

-0.10 or a voltage of 49.16 mV when the average of the signal is zero. When the average

of the external signal shifts to 0.5, the output of the bias detector also shifts to 0.15 or

7.374 mV. Note that the gain of the implemented denoiser is 0.5x – this is higher than

496

Figure 10-11: External input signal
provided to denoiser.

Figure 10-12: Output signal from de-
noiser.

the expected gain of 0.3. This higher gain is not an issue for this use-case as a larger gain

increases the dynamic range of the output. This larger than expected dynamic range enables

thresholding circuits to more clearly delineate between different average values.

The signal produced by the bias detector can wake up a co-processor when a change in the

sensed value occurs. The HCDCv2 output signal can be provided to a thresholding circuit

that generates an interrupt when the voltage passes five millivolts. The main processor can

then use this trigger to wake up the system.

10.10.2 Case Study B: Denoiser

The bias shift detector smoothes a noisy, externally provided signal and emits the denoised

output. For this case study, I supply the HCDCv2 with a noisy pulse as input. The pulse

has an amplitude of 1.5 V, lasts for one millisecond, and is offset from zero by -0.75 V.

Figure 10-11 presents the analog signal provided to the device. As 4 milliseconds, the

signal shifts from -0.75 to 0.75. The average then shifts back down to -0.75 after one

millisecond.

I compiled the denoiser dynamical system from Section 4.13.2 to the HCDCv2 and mea-

sured the externally accessible denoised signal produced by the application. The compiler

scales the signal being emitted at the observation block cout by 0.8948x. The voltage of the

measured signal is, therefore, 0.8948x the dynamical system observation variable. The time

scale factor is 0.3175 which translates to a frequency of 0.3175*126 kHz, or 40 kHz – this

is within the acceptable frequency range of 38-42 kHz for the benchmark application.

497

Figure 10-10 presents the output signal emitted by the denoiser after the recovery trans-

form has been applied to the measured signal. The detector produces a signal with an

amplitude of -1.0 or a voltage of -0.895 V before the pulse is dispatched. While the pulse

is active, the denoiser shifts to 0.6 or 0.537 V. Note that the leading edge of the pulse

is not crisp in the denoised output. This is because the denoiser internally implements an

average-tracking Kalman filter. This average tracking Kalman filter is configured to slowly

adjust its internal state. It, therefore, takes some time to process the discontinuity at four

milliseconds.

The denoised signal produced by the HCDCv2 can be provided to a DAC with a lower

sampling rate and further processed on a digital machine. The HCDCv2 is an appealing

platform for this case because it can implement real-time signal processing operations which

can operate on higher frequency signals. These analog signal processing computations pro-

duce lower frequency signals as output which can easily be sampled and processed by a

low-power digital device such as a microcontroller.

10.11 Conclusion

I built out a compilation toolchain that targets the HCDCv2 reconfigurable analog device

and evaluated the compilation toolchain on twelve benchmark applications from the biology,

physics, and controls domains. The lowest-error compiled benchmark applications execute

in 0.25-1.92 ms, consume 0.10-5.09 𝜇J of energy ad 0.20-1.10 mW of power. The waveforms

produced by the compiled circuits were indistinguishable from the original dynamical system

trajectories.

Importance of Compiler Optimizations: I next investigated the importance of differ-

ent compiler optimizations on the end-to-end result. I determined that the circuit scaling

procedure is integral to producing executable ADPs for all benchmark applications. I also

evaluated the importance of the mode modification feature implemented by the circuit scal-

ing procedure. I confirmed that for 8 of the 12 benchmarks, the mode modification feature

enabled the circuit scaling procedure to produce much higher quality results. I then eval-

uated the importance of the delta model compensation feature implemented by the circuit

scaling procedure. For 11 of the 12 benchmarks, delta model compensation improves the

quality of the produced result.

498

Performance of Co-Designed Calibration Strategy: I then investigated whether the

co-designed calibration strategy produces better results than the traditional calibration

strategy. The co-designed calibration strategy prioritizes eliminating uncorrectable un-

wanted behaviors present in the blocks. This strategy, therefore, allows for block behavior

to deviate from the expected behavior, provided the compiler can handle these deviations

in compilation. I found that for 10 of the 12 benchmark applications, the co-designed cali-

bration strategy produces lower error results. For 8 of the 12 benchmark applications, the

co-designed calibration strategy more consistently produces results of the same quality. From

these results, I can conclude the co-designed strategy calibrates the device to behave more

predictably and eliminates more unmitigateable unwanted behaviors than the traditional

strategy.

Compilation Times: I then presented the compilation times for the benchmark applica-

tions. The circuit synthesis pass takes between 1.49 to 31.84 seconds to synthesize a circuit,

and the circuit scaling pass takes between 0.13 to 6.13 seconds to scale a given circuit.

ADP Optimality: I then studied the optimality of the unscaled circuits. For all of the

benchmarks, the compiled ADPs use the minimum number of assembly blocks. For 11 of the

12 benchmarks, the compiled ADPs use the minimum number of route blocks. For 10 of the

12 benchmarks, the compiled ADPs introduce additional multipliers into the computation

when synthesizing the circuit. The compiler uses these multiplier blocks to compensate for

constant values introduced by the analog blocks. The compiler uses the minimum number

of all other compute blocks.

I then studied the optimality of the scaled circuits. For 9 of the 12 benchmarks, the

compiler produces scaled circuits that execute at (at least) 95% of the maximum speed

supported by the device. Generally speaking, the circuit scaling procedure cannot simulta-

neously maximize all signals and values in the ADP. However, the compiler can deliver a

good dynamic range of a significant fraction of signals. Signals with a high dynamic range

are less affected by noise and quantization error. For all of the benchmarks, the compiler

produces at least one ADP where at least half of the signals use 50% of the available oper-

ating range. The compiler can also scale up the constant values so that they are less affected

by quantization error. For all of the benchmarks, the compiler produces at least one ADP

where at least half the value amplitudes are greater than 0.5 – the HCDCv2 supports digital

values between -1 and 1.

499

I also investigated how effectively the scaled circuits minimized the balanced scaling

objective function used by the compiler. The circuit scaling pass was generally able to

identify multiple viable scaling transforms that all minimize the balanced scale objective

function. I found that for all applications, the median objective function values of the scaled

circuits were orders of magnitude better than the worst-case objective function value. For

each benchmark, the spread of scale objective function values is also relatively small.

I then investigated the distribution of quality measures for each scaled circuit. I found

that the quality measures varied substantially within each benchmark. The compiler, there-

fore, identifies multiple close-to-optimal scaling transforms which have different quality char-

acteristics.

Unscaled ADPs: I then investigated why the unscaled ADPs produced by the compiler

cannot be run on the HCDCv2. I found that all unscaled ADPs violate the operating range

and frequency constraints imposed by the hardware. For eleven of the twelve benchmarks,

all of the unscaled ADPs contain at least one data field value that falls outside the range

of values supported by the hardware. These unscaled ADPs cannot even be written to the

analog hardware.

Scaled ADP Complexity: I then investigated the complexity of the scale transforms

produced by the compiler. The goal of this analysis was to identify if the scaling transforms

were complex enough to warrant automated analysis. The benchmark applications contained

between 14-90 magnitude scale factors (4-30 unique values), 0-6 injected values and one time

scale factor. The scale factors took on a large range of values. The compiler, therefore,

identifies complex scaling transforms comprised of multiple distinct scale factors.

ADP Characteristics and Result Quality: I then studied the relationship between

various ADP characteristics and the end-to-end result quality. I discovered that the block

instance selections have a significant effect on the quality of the end-to-end result. This

observation is not currently factored into the compilation problem. I also was able to confirm

that the balanced scaling objective value is predictive of the quality of the end-to-end result

for 11 of the 12 benchmark applications. This finding indicates that the balanced scaling

objective is a good heuristic for end-to-end result quality.

Alternate Scaling Objective Functions: I explored an alternative scaling objective

function to the balanced scaling objective that maximizes a single signal or value. The goal

of this analysis was to identify it is possible to engineer a scaling objective function that

500

improves on the balanced scale objective function. I was able to confirm that, for a subset

of the benchmarks, this alternate scaling objective is able to unlock lower energy or higher

performance executions with comparable or better error characteristics.

Realtime Case Studies: I presented two case studies in which the HCDCv2 is configured

to compute on an external, continuously evolving analog signal. In both cases, the HCDCv2

is able to analyze the signal in real-time and produce satisfactory results.

Further Reading : Refer to Chapter 6 for a qualitative analysis of each of the best-performing

scaled ADPs reported in this chapter.

501

502

Chapter 11

Conclusion

In recent years, analog computation has been experiencing a renaissance in the hardware

community. Hardware designers have put forth a variety of modern day digitally pro-

grammable electrical analog devices which are capable of efficiently performing a variety of

computations [51, 61, 54, 11, 105, 29, 128, 31, 140, 109, 15, 102]. These analog devices use

standard CMOS processes and leverage transistor physics to perform computation. This

line of research focuses on ultra-low power reconfigurable electrical analog devices which

simulate dynamical system computations [61, 51, 128, 140]. Dynamical system-solving ana-

log devices are attractive computational targets because they are low-power devices, have

predictable performance characteristics, and can directly interface with analog sensors and

actuators [51, 61].

In this thesis, I present a compiler that automatically programs a reconfigurable dynam-

ical system-solving analog device to implement a target dynamical system. This is the first

compiler to automatically target a reprogrammable analog device of this class. The presented

compiler frees the end-user from reasoning about the low-level analog behaviors present in

the hardware and automates the process of building the analog circuit that implements the

desired computation. The compiler is able to reason about a variety of low-level physical

behaviors, including analog noise, quantization error, process variation-induced behavioral

variations, and signal and frequency range limitations.

The compiler configures the device so that the original dynamical system dynamics can

be recovered from the circuit physics at runtime through the use of a compiler-derived re-

covery transform. The compiler transforms the target computation to respect the physical

503

limitations of the hardware and attenuate unwanted physical behaviors from the compu-

tation. Prior to this work, practitioners would have to manually derive and transform the

programmed circuit to account for low-level behaviors while simultaneously ensuring the

original dynamical system is recoverable at runtime. The compiler automates this ardu-

ous, error-prone programming process and decreases the barrier to adopting these platforms

today.

This chapter reflects on the high-level design decisions made when pursuing this work

and identifies, to what extent, the developed techniques can be applied to other hardware

platforms. I conclude this chapter by discussing limitations and directions for future work.

11.1 Review

The work presented in this thesis demonstrates that it is possible to automatically pro-

gram dynamical system-solving reconfigurable analog devices to implement dynamical sys-

tem computations with acceptable accuracy. In this section, I explore the rationale behind

the high-level decisions made when designing the compiler. This section overviews the fol-

lowing topics:

∙ Circuit Scaling: I provide rationale for why I chose to work with scaling transforms

composed of constant factors and outline the benefits of the convex optimization

problem formulation. I discuss the relationship between the sophistication of the

circuit transform and the complexity of the optimization problem.

∙ Calibration, Delta Models, and Software Compensation: I discuss the key

insights behind designing the cross-cutting compiler optimization that reasons about

behavioral variations. I then reflect on how these insights can potentially applied to

other hardware platforms.

∙ Analog Device Specification Language: I outline the design decisions I made

when designing the analog device specification language. I provide a set of best prac-

tices, substantiated with personal experience, for creating analog hardware abstrac-

tions.

∙ Circuit Synthesis: I discuss the generality of the circuit synthesis pass and motivate

the decisions behind the chosen circuit synthesis problem decomposition. I describe

504

the effect this decomposition has on the performance of the compiler and the resource

efficiency of the produced circuit.

In this section, I evaluate the generality of the presented compilation techniques and

discuss to what extent they can be reused in future work. I anticipate that many of the

methods presented in this thesis are amenable to reuse and can be re-purposed to target

other kinds of hardware platforms.

11.1.1 Circuit Scaling

The low-level physics of the device has a fundamental effect on the computation. Ana-

log blocks within the hardware impose frequency, current, and voltage range limitations

and have unique noise and error characteristics. Analog blocks are also subject to process

variation-induced variations in behavior. These behavioral variations differ from fabricated

device to fabricated device. All of these analog behaviors can adversely affect the mapped

computation.

The compiler presented in this thesis automatically reasons about all of these low-level

behaviors when mapping the dynamical system to the analog hardware. The compiler

deploys a circuit scaling procedure that automatically transforms a circuit to respect the

physical constraints of the device. The signals in the transformed circuit abide by the

operating range and frequency limitations imposed by the device and have a large enough

dynamic range to overcome the effects of noise and quantization error. The transformed

circuit also compensates for behavioral deviations present on the device. The transformed

circuit also preserves the original behavior of the dynamical system such that it can be

recovered at runtime by applying an inverting transform.

Generality: I anticipate this automated scaling technique will be able to consider and, in

some cases, compensate for a wide range of other physical phenomena. The circuit scaling

procedure formulates the core problem of identifying a scaling transform as a geometric

programming problem. A geometric programming problem is a convex optimization problem

that supports non-linear constraints over positive, non-zero, real-valued variables. This

formulation can currently capture operating range and bandwidth limitations, analog noise,

a subset of process variation-induced behavioral variations, and digital quantization error.

Though these constraints are specific to this class of reprogrammable analog devices, the

505

problem formulation and associated transform are general and can likely be applied more

broadly.

Expressivity: The scaling transform formulation used in this work is both expressive and

easy to efficiently derive from the circuit characteristics. A key challenge was identifying

a sufficiently expressive transform that can be efficiently solved and effectively propagated

through the circuit dynamics. I discuss the limitations I imposed on the transformation to

ensure it can both be efficiently solved and effectively propagated below:

Positive, Non-Zero Scale Factors: The scaling transform supports scaling signals and data

fields by positive, non-zero values. In my experience, excluding negative and zero scale

factors does not appreciably reduce the power of the scaling transform for this target class

of hardware. Scale factors should never equal zero, as it destroys the associated signal or

value. Scaling signals by negative values may be helpful for analog devices which offer blocks

that have asymmetrical operating ranges (e.g., [-1,20]). In my experience, this situation

isn’t common in practice because analog hardware platforms tend to offer symmetrical port

operating ranges.

Extending the scaling transform to include negative values without changing the scaling

problem formulation would render the scaling problem non-convex. The scaling problem

could be formulated as a linear programming problem if both convexity and support for

negative scale factors are desired. This formulation would not support the propagation of

signals through non-linear block dynamics or support time scaling. These restrictions limit

the compiler’s ability to scale the circuit effectively.

Other Circuit Transforms: The scaling transform proposed in this work is more restric-

tive than other transformations, such as linear and polynomial transformations. In my

experience, it is difficult to formulate the problem of deriving these more complex circuit

transformations as convex optimization problems. These more complex transforms are also

more difficult to propagate through blocks implementing non-linear functions. For these

sorts of transformations, the compiler can less productively use the transform to reduce the

effect of physical behaviors on the computation.

506

11.1.2 Calibration, Delta Models, and Software Compensa-

tion

In this thesis, I presented a cross-cutting compiler optimization that enables the compiler

to target the specific device on hand more effectively. The key insight behind this compiler

optimization is that the circuit scaling pass of compilation can compensate for unexpected

signal gains in the calibrated blocks. This optimization requires the device calibration algo-

rithm, runtime system, analog device specification, and compiler to work together to target

the hardware effectively. I present a general framework for capturing and compensating for

unexpected behaviors present in the hardware. I introduce the concept of a delta model, a

hardware abstraction that captures the behavioral deviations present in a configured block

instance. The compiler targets the delta models for the device on hand when scaling the

circuit.

Process variation-induced behavioral deviations are prevalent in a wide range of different

mixed-signal and analog ICs [48, 23, 24, 88]. I anticipate this approach can compensate for

many other behaviors present in other mixed-signal hardware platforms. Specifically, I ex-

pect the general delta model abstraction to be broadly applicable across devices. Depending

on the target hardware platform, the specific software compensation methods and device

calibration and characterization routines may vary.

In this thesis, I present a co-designed calibration strategy that prioritizes eliminates

unwanted behaviors that cannot be compensated for in compilation. I believe hardware

designers can use the insights behind the design of this calibration strategy to design more

effective device calibration algorithms for other mixed-signal platforms. Traditionally, device

calibration algorithms aim to eliminate all unexpected behavior present in the hardware.

However, if some of these unexpected behaviors can be corrected in software, the hardware

designer is free to design calibration algorithms that prioritize eliminating more problematic

unwanted behaviors. This insight may also facilitate the development of more resource-

efficient designs. For example, the hardware designer could opt to use simpler calibration

circuits or select more resource-efficient designs which are more sensitive to process variation-

induced errors.

507

11.1.3 Analog Device Specification Language

A key challenge in developing the compiler was identifying the right abstractions for the ana-

log hardware. In this thesis, I presented the analog device specification language (ADSL),

a specification language for describing the programmable blocks and connections available

on the analog device. The analog device specification language supported defining blocks

with specialized programming interfaces and offered language constructs for describing low-

level physical behaviors present in the blocks. I believe compiler writers can use the lessons

learned in designing the ADSL to develop hardware abstractions for other reconfigurable

mixed-signal hardware platforms. I summarize these lessons below:

Programming Interfaces: It is integral to expose a rich hardware programming interface

to the compiler-writer and perform as few programming decisions in the device firmware

and runtime as possible. The compiler has more domain information at its disposal and

can apply more aggressive program transformations to the computation. Therefore, the

compiler-writer is better positioned to handle these low-level programming decisions than

the runtime system and firmware. Though the compiler itself works a rich hardware interface,

the compiler mustn’t leak these low-level hardware details to the programmer, as this would

affect the usability of the hardware.

Rationale: In this research, I lowered the level of abstraction for the target hardware and

provided my compiler with fine-grain control of how each block is programmed. This decision

was a critical factor in the success of this research. Initially, the hardware programming

interface for the HCDCv2 operated at a much higher level abstraction. This interface did

not allow the end user to fully configure the block modes or write calibration configurations

to the blocks. The device firmware instead made these programming decisions at runtime.

By lowering the abstraction level, I was able to target the hardware much more effectively

and obtain higher fidelity results on the target platform.

Abstractions for Low-level Physical Behaviors: A good analog hardware abstraction

should capture all the behaviors that matter at a level of abstraction that is amenable to

automated reasoning. In my experience, it is not necessary to fully model all of the low-level

behaviors in great detail to productively target a piece of analog hardware.

Rationale: When I developed the ADSL, I decided how the specification language should

model each of the low-level analog behaviors present in the hardware. For example, in the

508

ADSL, I represent analog noise as a standard deviation – I chose this representation over a

more detailed abstraction that captures the distribution of the noise. In this case, the simpler

noise abstraction was preferable because it was easier for the compiler to reason about

automatically. Even with this simplified noise model, the compiler is capable of producing

circuits that deliver high-fidelity results. I also navigated these sorts of expressivity tradeoffs

when designing the delta model specifications.

Capturing Complicated Physical Behaviors: Typically, the goal is to directly model

the analog behavior and then design software techniques that automatically reason about

this behavior to target the device. It is not always feasible to directly model analog behavior,

as some analog behaviors are challenging to capture and even more difficult to automatically

reason about.

For these sorts of challenging behaviors, it is often productive to impose physical re-

strictions in the hardware abstraction that ensure that the target analog behavior has a

negligible effect on the computation. These physical restrictions may reduce the perfor-

mance or fidelity of the mapped computations on the device but make the hardware easier

to target with automated techniques. The compiler-writer may also choose to impose a

physical restriction to reduce the effect of certain behaviors and reduce the scope of the

compilation problem.

Rationale: When designing the ADSL, I had to identify the right abstraction for encoding

the effects of frequency-dependent block behavior on the computation. Note that analog

blocks often experience reductions in signal gain when working with high-frequency signals.

Because this behavior is non-trivial to reason about automatically, I chose to instead specify a

maximum frequency limitation that ensures the frequency-dependent behavior of each block

has a negligible effect on the computation. With this abstraction, the compiler can effectively

target the hardware without reasoning about frequency-dependent behavior, provided the

produced computation honors the frequency restrictions imposed by the analog hardware

specification. Note that this frequency restriction causes the compiler to produce slower

computations since it limits the speed of the dynamical system on the analog hardware.

Prioritization of Physical Behaviors: It is important to prioritize accurately modeling

the analog behaviors that have the largest effect on the computation. The compiler-writer

should identify this prioritization by studying the characterization information collected

from a fabricated device whenever possible.

509

Rationale: Early versions of the ADSL focused on modeling analog noise and did not focus

on process-variation induced behavioral variations. Once I started working with the device,

it became evident that static error introduced during fabrication had a sizeable effect on the

computation even after the device was calibrated. This observation inspired the development

of the delta model abstraction. In the final hardware abstraction, I modeled the behavioral

variations for the target device on hand in great detail and opted to model analog noise as

a fixed standard deviation. In short, I prioritized accurately modeling behavioral variations

over analog noise because the static error had a more sizeable effect on the computation.

11.1.4 Circuit Synthesis

For dynamical system-solving reconfigurable analog devices, there is no universally agreed-

upon collection of analog building blocks. Instead, this class of analog devices offers highly

specialized reconfigurable analog blocks that may be configured to implement a variety

of computations. These blocks implement anything from simple functions to differential

equations. Some of these blocks may be special-use blocks that do not typically compute on

signals. Examples of special use blocks include blocks that copy analog currents and blocks

that route signals through the device.

The compiler’s circuit synthesis procedure efficiently and automatically constructs analog

circuits from non-standard computational and special-use blocks. The compiler employs a

multi-stage, algebraic rewrite-based circuit synthesis procedure to map the dynamical system

to the analog hardware.

Generality: The circuit synthesis procedure is a multi-stage procedure that handles non-

standard computational blocks, special-use copier blocks, and special-use routing blocks in

dedicated compilation passes. This compilation approach works best with current-mode ana-

log devices containing special-use and parametric blocks. The specific synthesis techniques

address specific architectural features that are likely to be prevalent in multiple analog de-

vices. I anticipate compiler writers can use the compilation techniques employed in this

thesis in conjunction with new approaches to design new compilers that efficiently target

other reconfigurable mixed-signal architectures.

Resource Efficiency: The compiler deploys specialized circuit synthesis routines that

intelligently introduce special-use blocks into the circuit. This decomposition enables the

510

compiler to produce resource-efficient, physically mappable circuits – a circuit is physically

mappable if all of the blocks and connections can be mapped to physical block locations and

physical interconnects on the hardware. Consider a more straightforward approach where the

compiler does not distinguish between special-use and computational blocks during circuit

synthesis. With this simpler approach, the compiler would introduce special-use blocks

into the circuit unnecessarily or inappropriately since many of these blocks implement the

equality relation and can therefore be inserted almost anywhere. The circuits produced by

such an approach may be suboptimal and use extraneous copying and routing blocks or may

not be physically mappable on the hardware.

I anticipate this circuit synthesis problem decomposition could be reused to produce

efficient circuits for other reconfigurable mixed-signal hardware platforms that offer special-

use blocks. This decomposition was architected with the insight that the compiler should

deploy specialized algorithms that efficiently introduce special-use blocks into the synthesized

circuit. Compiler designers may find this insight helpful when architecting new synthesis

problem decompositions.

Performance: The architecture of the circuit synthesis procedure enables the compiler to

produce circuits efficiently. Many of the employed compiler optimizations aim to reduce

the size of the problems provided to the circuit synthesis subroutines – this is important as

some of the synthesis subroutines scale poorly with increasing problem size. For example,

the compiler uses the computationally expensive search-based circuit fragment synthesis al-

gorithm to produce circuit fragments for each dynamical system relation and then assembles

these fragments into a circuit with a lightweight assembly algorithm. With this decomposi-

tion, the performance of the circuit fragment synthesis algorithm depends on the complexity

of the target algebraic relation rather than the dynamical system size. The circuit fragment

synthesis invocations can also be parallelized with this decomposition. The drawback to us-

ing this decomposition is that it restricts the kinds of connections that can be made between

circuit fragments and therefore limits the types of circuits that the compiler can generate.

For example, with this compilation approach, the compiler cannot automatically reuse part

of one circuit fragment to compute a subexpression in another circuit fragment.

In this work, I explore one possible compiler architecture that efficiently generates cir-

cuits for a broad range of applications for the target class of hardware. This compilation

approach may not work well for all hardware platforms. For example, some hardware plat-

511

forms may require circuit patterns that cannot be produced with this compiler architecture.

For this reason, I anticipate the overall compilation strategy may differ depending on the

characteristics of the target device.

11.2 Limitations

I next discuss the limitations of the work presented in this thesis. I discuss the expressivity of

the dynamical system and analog device specification languages and the limitations imposed

by the circuit synthesis and circuit scaling compilation passes.

11.2.1 Expressivity of Dynamical System Specification Lan-

guage

The dynamical system specification language presented in this work focuses on first-order

explicit ordinary differential equations. This language does not offer constructs for defining

implicit ordinary differential equations, time-delayed differential equations, partial differen-

tial equations, or stochastic differential equations.

Implementing these other classes of differential equations in analog requires the devel-

opment of new analog functional units. For example, time-delayed differential equations,

stochastic differential equations and require hardware functional units that implement time

delays and statistical distributions. Partial differential equations require hardware units

that take the derivative of a signal with respect to another signal. I believe that it is not

productive to expand the expressivity of the specification language to include these classes of

dynamical systems until these hardware units are readily available in mixed-signal systems.

Other classes of dynamical systems require the development of new software techniques.

For example, including support for implicit differential equations would significantly com-

plicate the circuit synthesis procedure since the compiler can no longer leverage the first-

order notation to synthesize the circuit fragments implementing individual variables inde-

pendently. While these dynamical systems are presently outside the scope of this work, they

can eventually be targeted by the compiler with future work.

The dynamical system specification language supports a subset of explicit ordinary dif-

ferential equations. More specifically, the specification language does not support functions

512

that explicitly reference time or variables that take on discrete values. These mathematical

operators are excluded from the specification language as they are non-trivial implement

in analog and likely require specialized handling. For example, modeling time in analog

is challenging because time increases linearly in an unbounded fashion. These operations

likely require specialized hardware mapping procedures which are outside of the scope of

this work. Note that these custom mapping procedures may not be necessary if hardware

designers draft new hardware units which support these operators.

In summary, the limitations of dynamical system-solving mixed-signal devices primarily

inform the expressivity limitations imposed in the dynamical system specification language.

In some cases, I also limit the expressivity of the dynamical system specification language

to reduce the scope of the compilation problem. These restrictions on language expressivity

can be lifted as more compilation techniques are developed.

11.2.2 Expressivity of Analog Device Specification Language

The analog device specification language focuses solely on continuous-time digital and ana-

log blocks. The specification language does not support the specification of dynamic stateful

digital components, such as flip-flops and memories, or clocked digital blocks, such as digital

clocks. The analog device specification language also does not support blocks that imple-

ment more sophisticated mathematical operators such as probability distributions, partial

derivatives, and time-delayed variables. These blocks were not prevalent in the hardware I

targeted and were therefore not included in the language.

The analog device specification language offers language constructs for defining the op-

erating range and frequency limitations, behavioral variations, and analog noise present in

each block. These language constructs do not model these analog behaviors in a high degree

of detail. For example, the analog noise annotations specify the analog noise as a standard

deviation rather than a distribution. I choose to use this simplified view of the low-level

analog behaviors because it is more amenable to static analysis. Note that the compiler can

produce circuits that implement the desired computation at high fidelity with this simplified

abstraction of the analog behaviors. In the future, it might be productive to provide a more

detailed specification of the analog behaviors for hardware emulation purposes.

513

11.2.3 Compiler Limitations

Presently, the circuit synthesis pass is not guaranteed to find an analog circuit that imple-

ments the dynamical system if one exists. The fragment synthesis step of circuit synthesis

does not identify all possible algebraic unifications for a given block when searching through

circuit fragments. In practice, the circuit synthesis pass works well and can identify circuits

for all of the explored dynamical system applications. However, I anticipate the circuit

synthesis pass may fail to produce circuits for applications that require highly non-trivial

algebraic rewrites. These sorts of rewrites are likely unsupported by the algebraic unification

routine.

Presently, the circuit scaling pass does not guarantee that produced scaled circuit will

execute the dynamical system with acceptable error. Instead, the scaling procedure intro-

duces constraints that ensure the signals and values in the circuit overcome the noise floor.

These constraints involve the analog and digital quality measures of the circuit. These mea-

sures serve as proxies for the signal-to-noise ratio of the analog and digital signals in the

hardware. This approach produces scaled circuits that work well in practice but cannot

guarantee that all produced circuits would execute the target computation with acceptable

error.

11.3 Future Directions

I next discuss potential future directions. I first discuss potential future compiler opti-

mizations that can be investigated immediately. The core insights behind these compiler

optimizations are substantiated by the findings presented in Chapter 10. I then present

some long-term research directions inspired by the findings in this work.

11.3.1 Compiler Optimizations

The analyses presented in this thesis lay the groundwork for several potential future compiler

optimizations and analyses. These future extensions can potentially enable the compiler to

produce analog circuits that yield higher fidelity results.

Presently, the compiler treats all block instances of a given block type as equally good

during the place and route stage of compilation. In Chapter 10, I identified that the block

514

instance selections made during the place+route procedure actually have a profound impact

on the quality of the end-to-end result. Therefore, one potential future research direction

would involve designing new place+route procedures that consider block fidelity when as-

signing block placements. This optimization would enable the compiler to produce scaled

ADPs that strategically use accurate blocks in parts of the circuit that require greater

accuracy.

Because each device would likely have a limited number of high-fidelity block instances,

it would also be productive to develop circuit analyses that identify which signals in a given

circuit are sensitive to error. The compiler could then map the blocks which work with

these error-sensitive signals to high fidelity block instances on the device. Such an analysis

could also be used by the circuit scaling procedure to infer fine-grain signal-specific quality

constraints for the scaled circuits.

Presently, the compiler works with a user-defined set of minimum quality bounds and

scales all benchmarks with the balanced scale objective. In Chapter 10, I determined that

for some benchmarks, there exist alternate scaling objectives that deliver better results than

the balanced scaling objective. In the presented analysis, I generate a collection of alternate

scaling objectives that are all subject to a set of loose minimum quality restrictions. I believe

it would be productive to develop a circuit analysis that identifies the best scaling objective

function for a given circuit and identifies a set of minimum quality bounds for that circuit.

Such an analysis would enable the compiler to produce scaled ADPs that deliver higher

fidelity results or deliver better performance and energy efficiency without sacrificing signal

fidelity.

11.3.2 Mixed-Signal Computing Paradigms

One potential future research direction involves identifying programming paradigms for hy-

brid computations which involve both analog and digital hardware. This hybrid computa-

tional model takes advantage of the energy efficiency of dynamical system-solving analog

substrates and the flexibility of digital logic. For example, feature detection applications

may perform feature identification in analog and then switch to a digital computation when

a feature is detected [78, 14]. For applications such as global constrained optimization, it

would be productive to solve the constrained local optimization sub-problems in analog and

515

track the global optimization state with digital logic.

In this thesis, I map the entire dynamical systems computation onto the target analog

device. To extend this work to support hybrid systems, I would embed the dynamical

system specification language into a more conventional programming language for digital

systems. To pursue this line of work, I would need to design programming interfaces for

mediating between digital and analog parts of the program and identify to what extent

the programmer can modify the analog computation at runtime. For example, with global

optimization, the surrounding digital program might dynamically adjust the search space

and initial guess of the local search depending on the results returned by the analog hardware.

These modifications would affect the initial condition and interval bounds for the state

variables in the computation. The scaling transform associated with the analog computation

would need to be dynamically adjusted at runtime to account for interval ranges and data

field values to support such a computation. This retargeting operation would need to incur

minimal overhead to maximize energy savings.

11.3.3 Automated Design-Space Exploration

This thesis presents a compiler that targets a fabricated analog device with a fixed design.

The target analog device imposes a variety of physical constraints which affect the efficacy

of the compiler. These physical constraints cannot be modified post-fabrication. Relevant

physical constraints include operating range and frequency limitations and limitations on

the number of block instances and connections. The hardware designer made these high-

level design decisions before device fabrication. The hardware designer may conservatively

design the hardware to support a broad range of applications. For example, the hardware

designer may opt to support signals with large dynamic ranges or offer an excess of block

instances and connections. These decisions may unnecessarily increase the device area and

power consumption.

One potential research direction involves leveraging the compilation techniques presented

in this thesis to facilitate design space exploration. This line of research would enable hard-

ware designers to make informed design decisions when designing reconfigurable analog

hardware platforms. To pursue this line of work, I would extend the hardware specifica-

tion to support parametric hardware designs with unknown design parameters. This research

516

direction aims to identify resource-efficient candidate parametrizations of the hardware spec-

ifications that effectively execute a set of representative dynamical systems. A key challenge

would be designing a set of analyses that identify the hardware specification’s optimal design

parameters.

Novel Hardware Abstractions: One potential future research direction involves working

closely with hardware designers to create new hardware abstractions that take into account

the capabilities of state-of-the-art software techniques. These abstractions may enable de-

signers to produce simpler, more resource-efficient, and more performant hardware designs

that better fit the needs of the target domain. These improved hardware abstractions may,

for example, allow for the hardware to exhibit unexpected behavioral deviations, provided

these deviations can be compensated for in software.

Consider analog hardware platforms which leverage the physical behavior of materials

to perform computation. For these devices, variations introduced by the fabrication process

typically translate to deviations in behavior in the computational units. Designers, therefore,

incorporate compensating calibration circuits into their design to correct behavioral devia-

tions after fabrication. These circuits are digitally configured through an objective-driven

process called calibration. I propose developing and implementing a general specification

language that enables compiler writers to describe acceptable behavioral deviations – that

is, behaviors that can be mitigated with software techniques. This specification can then

be analyzed to derive the device’s calibration algorithms and characterization and model

inference procedures.

11.4 Concluding Thoughts

This thesis investigates compilation techniques for ultra-low power reconfigurable analog

computing platforms which solve dynamical systems [61, 51, 128, 140]. In this work, I

present a compiler that frees the end user from having to reason about the low-level analog

limitations and behaviors present in the hardware and automates the process of deriving the

circuit for the desired computation. This work lowers the barrier of entry for programming

this class of devices and renders these devices more accessible to end users.

This work focuses on mixed-signal reconfigurable hardware designed to solve dynamical

systems. There has recently been a proliferation of mixed-signal platforms and physical

517

substrates that perform computation [120, 56, 54, 11, 108, 85, 105, 29, 128, 31, 140, 132, 51,

61, 141, 15, 109, 102, 62, 87, 89, 38]. These specialized computing platforms are becoming

pervasive and crucial for satisfying the computational needs of different domains. In some

cases, these novel computing platforms enable the efficient computation of entire classes of

computations. Researchers have developed such platforms for a variety of different domains,

including machine learning, quantum computing, signal processing, robotics, and biology.

These computing platforms typically leverage certain analog behaviors to perform com-

putation efficiently. Because there is rarely a perfect mapping between the problem domain

and the target analog substrate, these platforms also likely exhibit analog behaviors for

which there is no analog in the problem domain. These unwanted analog behaviors must

be managed or mitigated in hardware or software for the device to reliably and faithfully

perform computations.

I believe these nascent computing platforms would benefit greatly from the development

of software techniques that automatically amplify desired analog behaviors and mitigate un-

wanted analog behaviors. Software-based techniques offer several advantages over hardware

mitigation techniques. First, software techniques enable the hardware to execute compu-

tations at higher fidelity without introducing area, power, or performance overheads into

hardware design. Second, software techniques can automate labor-intensive programming

procedures and enable hardware researchers to more systematically explore the capabili-

ties of their hardware. Third, the software development cycle is significantly faster than

the hardware design cycle and is typically less capital intensive. As a result, researchers

can rapidly develop multiple software-based techniques in a relatively short span of time

for a target class of hardware. Software-based techniques can also aggressively optimize

the computation since they operate at a higher level of abstraction and have more domain

information at their disposal. These capabilities together make software-based mitigation

approaches an attractive and promising direction for future research.

I anticipate the lessons learned targeting dynamical system-solving analog devices can

inform and inspire future software techniques for other mixed-signal and analog computing

substrates. While the specific set of analog behaviors to consider may vary depending on

the computational platform at hand, the approach to abstracting and statically reasoning

about analog behavior can be broadly applied to multiple devices. The development of novel

physics-aware software techniques, such as those presented in this thesis, promises to unlock

518

the potential of these non-traditional computing substrates and enables the development of a

large range of non-standard computing platforms. With this potential unlocked, these non-

standard computing platforms may then deliver significant performance, area, and energy

benefits. I anticipate these novel physics-aware software techniques will also promote the

exploration of new, non-standard, and transformative points in the hardware design space.

These hardware technologies have the potential to significantly increase our computational

capabilities, reduce the design, fabrication, and disposal costs associated with hardware pro-

duction, and enable groundbreaking advances in our ability to compute, sense, and interact

with physical world.

519

520

Bibliography

[1] Handbook of Tableau Methods. Springer, 1999.

[2] Sara Achour and Martin Rinard. Time dilation and contraction for programmable
analog devices with jaunt. In ACM SIGPLAN Notices, volume 53, pages 229–242.
ACM, 2018.

[3] Sara Achour and Martin Rinard. Noise-aware dynamical system compilation for analog
devices with legno. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 149–
166, 2020.

[4] Sara Achour, Rahul Sarpeshkar, and Martin C Rinard. Configuration synthesis for
programmable analog devices with arco. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 177–193.
ACM, 2016.

[5] Alfred V Aho, Mahadevan Ganapathi, and Steven WK Tjiang. Code generation us-
ing tree matching and dynamic programming. ACM Transactions on Programming
Languages and Systems (TOPLAS), 11(4):491–516, 1989.

[6] Thomas Carey Alan Carlson, George Hannauer and Peter J. Holsberg. Handbook of
Analog Computation, Second Edition, volume 37. Electronic Associates, Inc, 1967.

[7] William F Ames. Numerical methods for partial differential equations. Academic press,
2014.

[8] Ludwig Arnold. Stochastic differential equations. New York, 1974.

[9] Karl Johan Åström and Tore Hägglund. PID controllers: theory, design, and tuning,
volume 2. Instrument society of America Research Triangle Park, NC, 1995.

[10] Kendall Atkinson, Weimin Han, and David E Stewart. Numerical solution of ordinary
differential equations, volume 108. John Wiley & Sons, 2011.

[11] Arindam Basu, Stephen Brink, Craig Schlottmann, Shubha Ramakrishnan, Csaba
Petre, Scott Koziol, Faik Baskaya, Christopher M Twigg, and Paul Hasler. A floating-
gate-based field-programmable analog array. IEEE Journal of Solid-State Circuits,
45(9):1781–1794, 2010.

[12] Randall D Beer. On the dynamics of small continuous-time recurrent neural networks.
Adaptive Behavior, 3(4):469–509, 1995.

521

[13] Alfredo Bellen and Marino Zennaro. Numerical methods for delay differential equa-
tions. Oxford university press, 2013.

[14] Jacob Benesty, Israel Cohen, and Jingdong Chen. Array Beamforming with Linear
Difference Equations, volume 20. Springer Nature, 2021.

[15] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Shobhit Choudhary, Anand R
Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V Arthur, Paul
Merolla, Kwabena Boahen, et al. Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations. Proceedings of the IEEE, 102(5):699–716, 2014.

[16] Vaughn Betz and Jonathan Rose. Vpr: A new packing, placement and routing tool
for fpga research. In International Workshop on Field Programmable Logic and Appli-
cations, pages 213–222. Springer, 1997.

[17] David F Bizup and Donald E Brown. The over extended kalman filter- don’t use it!
In Proceedings of the Sixth International Conference of Information Fusion, volume 1,
pages 40–46. Citeseer, 2003.

[18] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial
on geometric programming. Optimization and engineering, 8(1):67, 2007.

[19] R.W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve
linear programming problems. Linear Algebra and its Applications, 146:79–91, 1991.

[20] AA Brown and MC Bartholomew-Biggs. Ode versus sqp methods for constrained
optimization. Journal of optimization theory and applications, 62(3):371–386, 1989.

[21] Donald G Buerk. Can we model nitric oxide biotransport? a survey of mathematical
models for a simple diatomic molecule with surprisingly complex biological activities.
Annual review of biomedical engineering, 3(1):109–143, 2001.

[22] John Charles Butcher. A history of runge-kutta methods. Applied numerical mathe-
matics, 20(3):247–260, 1996.

[23] Chih-Cheng Chang, Pin-Chun Chen, Teyuh Chou, I-Ting Wang, Boris Hudec, Che-
Chia Chang, Chia-Ming Tsai, Tian-Sheuan Chang, and Tuo-Hung Hou. Mitigating
asymmetric nonlinear weight update effects in hardware neural network based on ana-
log resistive synapse. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 8(1):116–124, 2017.

[24] Chih-Cheng Chang, Jen-Chieh Liu, Yu-Lin Shen, Teyuh Chou, Pin-Chun Chen, I-Ting
Wang, Chih-Chun Su, Ming-Hong Wu, Boris Hudec, Che-Chia Chang, et al. Chal-
lenges and opportunities toward online training acceleration using rram-based hard-
ware neural network. In 2017 IEEE International Electron Devices Meeting (IEDM),
pages 11–6. IEEE, 2017.

[25] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural
ordinary differential equations. arXiv preprint arXiv:1806.07366, 2018.

[26] S Alexander Chin and Jason H Anderson. An architecture-agnostic integer linear
programming approach to cgra mapping. In Proceedings of the 55th Annual Design
Automation Conference, pages 1–6, 2018.

522

[27] Krishna Choudhary and Atul Narang. Analytical expressions and physics for single-
cell mrna distributions of the lac operon of e. coli. Biophysical journal, 117(3):572–586,
2019.

[28] George F Corliss. Survey of interval algorithms for ordinary differential equations.
Applied Mathematics and Computation, 31:112–120, 1989.

[29] G.E.R. Cowan, R.C. Melville, and Y. Tsividis. A VLSI analog computer/digital com-
puter accelerator. Solid-State Circuits, IEEE Journal of, 41(1):42–53, Jan 2006.

[30] Nick Csicsery and Ricky O’Laughlin. A mathematical model of a synthetically con-
structed genetic toggle switch. Mathematical method in Bioengineering Report, 2013.

[31] Ramiz Daniel, Sung Sik Woo, Lorenzo Turicchia, and Rahul Sarpeshkar. Analog
transistor models of bacterial genetic circuits. In Biomedical Circuits and Systems
Conference (BioCAS), 2011 IEEE, pages 333–336. IEEE, 2011.

[32] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,
2008.

[33] Richard C.. Dorf and Robert H Bishop. Modern control systems. Pearson Prentice
Hall, 2008.

[34] J.L. Douce and H. Wilson. The automatic synthesis of control systems with con-
straints. Mathematics and Computers in Simulation, 7(1):18 – 22, 1965.

[35] Helmut Emmelmann, F-W Schröer, and Rudolf Landwehr. Beg: a generator for
efficient back ends. In ACM Sigplan Notices, volume 24, pages 227–237. ACM, 1989.

[36] Kamil Erguler and Michael PH Stumpf. Practical limits for reverse engineering of
dynamical systems: a statistical analysis of sensitivity and parameter inferability in
systems biology models. Molecular BioSystems, 7(5):1593–1602, 2011.

[37] Jason Ernst and Manolis Kellis. ChromHMM: automating chromatin-state discovery
and characterization. Nature Methods, 9(3):215–6, mar 2012.

[38] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for general-
purpose approximate programs. MICRO, 2012.

[39] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural accel-
eration for general-purpose approximate programs. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 449–460.
IEEE Computer Society, 2012.

[40] DJ Evans. Hybrid computation. ga bekey and wa karplus. john wiley, 1968. 464 pp.
illustrated. 125s. The Aeronautical Journal, 73(708):1052–1052, 1969.

[41] Edward H Flach and Santiago Schnell. Use and abuse of the quasi-steady-state ap-
proximation. IEE Proceedings-Systems Biology, 153(4):187–191, 2006.

[42] MA Franklin and JC Strauss. Automated programming of analog hybrid computers:
—a review. Simulation, 18(1):11–19, 1972.

523

[43] Mark A Franklin and Jon C Strauss. A hybird computer programming system. In
Proceedings of the November 18-20, 1969, fall joint computer conference, pages 275–
285, 1969.

[44] Christopher W Fraser, David R Hanson, and Todd A Proebsting. Engineering a
simple, efficient code-generator generator. ACM Letters on Programming Languages
and Systems (LOPLAS), 1(3):213–226, 1992.

[45] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by
continuous time recurrent neural networks. Neural networks, 6(6):801–806, 1993.

[46] Timothy S Gardner, Charles R Cantor, and James J Collins. Construction of a genetic
toggle switch in escherichia coli. Nature, 403(6767):339–342, 2000.

[47] Eva M. Golos, Hongjian Fang, and Robert D. van der Hilst. Variations in seismic
wave speed and vp/vs ratio in the north american lithosphere. Journal of Geophysical
Research: Solid Earth, 125(12):e2020JB020574, 2020.

[48] Sujan Kumar Gonugondla, Mingu Kang, and Naresh Shanbhag. A 42pj/decision 3.12
tops/w robust in-memory machine learning classifier with on-chip training. In 2018
IEEE International Solid-State Circuits Conference-(ISSCC), pages 490–492. IEEE,
2018.

[49] Clement Green, Hervé D’Hoop, and André Debroux. Apache-a breakthrough in analog
computing. IRE Transactions on Electronic Computers, (5):699–706, 1962.

[50] Ning Guo. Investigation of Energy-Efficient Hybrid Analog/Digital Approximate Com-
putation in Continuous Time. PhD thesis, Columbia University, 2017.

[51] Ning Guo, Yipeng Huang, Tao Mai, Sharvil Patil, Chi Cao, Mingoo Seok, Simha Sethu-
madhavan, and Yannis Tsividis. Energy-efficient hybrid analog/digital approximate
computation in continuous time. IEEE Journal of Solid-State Circuits, 51(7):1514–
1524, 2016.

[52] Carroll Ray Hall and SJ Kahne. An improved method for analog computer scaling.
Mathematics and Computers in Simulation, 12(1):27–32, 1970.

[53] Carroll Ray Hall and Stephen J Kahne. Automated scaling for hybrid computers.
IEEE Transactions on Computers, 100(5):416–423, 1969.

[54] Tyson S Hall, Christopher M Twigg, Jordan D Gray, Paul Hasler, and David V An-
derson. Large-scale field-programmable analog arrays for analog signal processing.
Circuits and Systems I: Regular Papers, IEEE Transactions on, 52(11):2298–2307,
2005.

[55] Ensign John H Hanna and Ensign Harold E Millan Jr. Automated analog programming
in hybrid systems: A method of making the analog computer accessible to all engineers.
Naval Engineers Journal, 78(5):895–899, 1966.

[56] Jennifer Hasler. Opportunities in physical computing driven by analog realization.
In 2016 IEEE International Conference on Rebooting Computing (ICRC), pages 1–8.
IEEE, 2016.

524

[57] Timothy Hickey, Qun Ju, and Maarten H Van Emden. Interval arithmetic: From
principles to implementation. Journal of the ACM (JACM), 48(5):1038–1068, 2001.

[58] Desmond J Higham and Lloyd N Trefethen. Stiffness of odes. BIT Numerical Mathe-
matics, 33(2):285–303, 1993.

[59] Nicholas J Higham, D Steven Mackey, Françoise Tisseur, and Seamus D Garvey. Scal-
ing, sensitivity and stability in the numerical solution of quadratic eigenvalue problems.
International journal for numerical methods in engineering, 73(3):344–360, 2008.

[60] Fritz Horn and Roy Jackson. General mass action kinetics. Archive for rational
mechanics and analysis, 47(2):81–116, 1972.

[61] Yipeng Huang, Ning Guo, Mingoo Seok, Yannis Tsividis, Kyle Mandli, and Simha
Sethumadhavan. Hybrid analog-digital solution of nonlinear partial differential equa-
tions. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 665–678. IEEE, 2017.

[62] Yipeng Huang, Ning Guo, Mingoo Seok, Yannis Tsividis, and Simha Sethumadhavan.
Analog computing in a modern context: A linear algebra accelerator case study. IEEE
Micro, 37(3):30–38, 2017.

[63] Electronic Associates Inc. Pace EAI 231R Manual. 1961.

[64] Electronic Associates Inc. EAI 680 Reference Handbook. 1966.

[65] Electronic Associates Inc. EAI 680 scientific computing system: Brochurean econom-
ical, high-performance, hybrid computer. 1966.

[66] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis: With
Examples in Parameter and State Estimation, Robust Control and Robotics. Springer
London, 2012.

[67] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Interval analysis. In
Applied interval analysis, pages 11–43. Springer, 2001.

[68] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: a goal-directed superoptimizer,
volume 37. ACM, 2002.

[69] Dion Khodagholy, Jennifer N Gelinas, Thomas Thesen, Werner Doyle, Orrin Devinsky,
George G Malliaras, and György Buzsáki. Neurogrid: recording action potentials from
the surface of the brain. Nature neuroscience, 18(2):310–315, 2015.

[70] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al.
Spatial: A language and compiler for application accelerators. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 296–311, 2018.

[71] L.V. Kolev. Interval Methods for Circuit Analysis. Advanced series on circuits and
systems. World Scientific, 1993.

[72] Kenneth S Krane. Modern physics. John Wiley & Sons, 2019.

525

[73] Yang Kuang. Delay differential equations. University of California Press, 2012.

[74] E Lalonde, A S Ishkanian, J Sykes, M Fraser, H Ross-Adams, N Erho, M J Dunning,
S Halim, A D Lamb, N C Moon, G Zafarana, A Y Warren, X Meng, J Thoms, M R
Grzadkowski, A Berlin, C L Have, V R Ramnarine, C Q Yao, C A Malloff, L L Lam,
H Xie, N J Harding, D Y Mak, K C Chu, L C Chong, D H Sendorek, C P’ng, C C
Collins, J A Squire, I Jurisica, C Cooper, R Eeles, M Pintilie, A Dal Pra, E Davicioni,
W L Lam, M Milosevic, D E Neal, T van der Kwast, P C Boutros, and R G Bristow.
Tumour genomic and microenvironmental heterogeneity for integrated prediction of
5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet
Oncol, 15(13):1521–1532, 2014.

[75] J Paul Landauer. Program-generation system for modern hybrid computers. Simula-
tion, 26(6):169–176, 1976.

[76] Frank J Lebeda, Michael Adler, Keith Erickson, and Yaroslav Chushak. Onset dy-
namics of type a botulinum neurotoxin-induced paralysis. Journal of pharmacokinetics
and pharmacodynamics, 35(3):251, 2008.

[77] Randall J LeVeque. Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems. SIAM, 2007.

[78] Frank L Lewis, Lihua Xie, and Dan Popa. Optimal and robust estimation: with an
introduction to stochastic control theory. CRC press, 2017.

[79] Jifu Liang, Nilan Udayanga, Arjuna Madanayake, S. I. Hariharan, and Soumyajit Man-
dal. An offset-cancelling discrete-time analog computer for solving 1-d wave equations.
IEEE Journal of Solid-State Circuits, pages 1–1, 2021.

[80] FMS Lima and P Arun. An accurate formula for the period of a simple pendulum
oscillating beyond the small angle regime. American Journal of Physics, 74(10):892–
895, 2006.

[81] Xing Lin, Yair Rivenson, Nezih T Yardimci, Muhammed Veli, Yi Luo, Mona Jar-
rahi, and Aydogan Ozcan. All-optical machine learning using diffractive deep neural
networks. Science, 361(6406):1004–1008, 2018.

[82] Yonathan Malachi, Zohar Manna, and Richard Waldinger. Tablog: The deductive-
tableau programming language. In Proceedings of the 1984 ACM Symposium on LISP
and functional programming, pages 323–330, 1984.

[83] Zohar Manna and Richard Waldinger. A deductive approach to program synthesis.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):90–121,
1980.

[84] Zohar Manna and Richard Waldinger. Fundamentals of deductive program synthesis.
Software Engineering, IEEE Transactions on, 18(8):674–704, 1992.

[85] Peter L McMahon, Alireza Marandi, Yoshitaka Haribara, Ryan Hamerly, Carsten
Langrock, Shuhei Tamate, Takahiro Inagaki, Hiroki Takesue, Shoko Utsunomiya,
Kazuyuki Aihara, et al. A fully programmable 100-spin coherent ising machine with
all-to-all connections. Science, 354(6312):614–617, 2016.

526

[86] J Kyle Medley, Jonathan Teo, Sung Sik Woo, Joseph Hellerstein, Rahul Sarpeshkar,
and Herbert M Sauro. A compiler for biological networks on silicon chips. PLoS
computational biology, 16(9):e1008063, 2020.

[87] Botond Molnár, Ferenc Molnár, Melinda Varga, Zoltán Toroczkai, and Mária Ercsey-
Ravasz. A continuous-time maxsat solver with high analog performance. Nature
communications, 9(1):4864, 2018.

[88] Boris Murmann. Mixed-signal computing for deep neural network inference. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 29(1):3–13, 2020.

[89] Alexander Neckar, Sam Fok, Ben V Benjamin, Terrence C Stewart, Nick N Oza,
Aaron R Voelker, Chris Eliasmith, Rajit Manohar, and Kwabena Boahen. Braindrop:
A mixed-signal neuromorphic architecture with a dynamical systems-based program-
ming model. Proceedings of the IEEE, 107(1):144–164, 2018.

[90] Wolfgang Ocker and Sandra Teger. Hytran: A software system to aid the analog
programmer. In Proceedings of the October 27-29, 1964, fall joint computer conference,
part I, pages 291–298, 1964.

[91] Yakup Paker and Stephen H. Unger. {ADAC} — a programmed direct analog com-
puter. Mathematics and Computers in Simulation, 9(1):16 – 23, 1967.

[92] Alberto Paoluzzi, Valerio Pascucci, Michele Vicentino, Claudio Baldazzi, and Simone
Portuesi. Geometric Programming, pages 51–93. John Wiley & Sons, Ltd, 2005.

[93] Henry M Paynter and Julian Suez. Automatic digital setup and scaling of analog
computers. In Joint Automatic Control Conference, number 1, pages 156–173, 1963.

[94] Linda Petzold. Automatic selection of methods for solving stiff and nonstiff systems of
ordinary differential equations. SIAM journal on scientific and statistical computing,
4(1):136–148, 1983.

[95] Denise R. Ferrier PhD. Biochemistry (Lippincott Illustrated Reviews Series). LWW,
2013.

[96] Eckhard Platen. An introduction to numerical methods for stochastic differential
equations. Acta numerica, 8(5):197–246, 1999.

[97] Raghu Prabhakar, Yaqi Zhang, and Kunle Olukotun. Coarse-grained reconfigurable
architectures. NANO-CHIPS 2030, pages 227–246, 2020.

[98] Juan I Ramos. Linearized methods for ordinary differential equations. Applied math-
ematics and computation, 104(2-3):109–129, 1999.

[99] Juan I Ramos. Linearization techniques for singularly-perturbed initial-value problems
of ordinary differential equations. Applied mathematics and computation, 163(3):1143–
1163, 2005.

[100] Harriett Badaker Rigas and David J Coombs. Patch: Analog computer patching from
a digital simulation language. IEEE Transactions on Computers, 100(10):1140–1146,
1971.

527

[101] Robert Rihm. Interval methods for initial value problems in odes. Topics in Validated
Computations, pages 173–207, 1994.

[102] Sylvain Saighi, Yannick Bornat, Jean Tomas, Gwendal Le Masson, and Sylvie Re-
naud. A library of analog operators based on the Hodgkin-Huxley formalism for the
design of tunable, real-time, silicon neurons. Biomedical Circuits and Systems, IEEE
Transactions on, 5(1):3–19, 2011.

[103] Mitsuji Sampei and Katsuhisa Furuta. On time scaling for nonlinear systems: Ap-
plication to linearization. IEEE Transactions on Automatic Control, 31(5):459–462,
1986.

[104] Sams. Arrangement and scaling of equations. Mathematics and Computers in Simu-
lation, 6(3):179 – 182, 1964.

[105] Rahul Sarpeshkar. Ultra Low Power Bioelectronics: Fundamentals, Biomedical Appli-
cations, and Bio-Inspired Systems. Cambridge University Press, 2010.

[106] Frank Schadt, Friedemann Mohr, and Markus Holzer. Application of kalman filters
as a tool for phase and frequency demodulation of iq signals. In 2008 IEEE Region 8
International Conference on Computational Technologies in Electrical and Electronics
Engineering, pages 421–424. IEEE, 2008.

[107] M Schauer and R Heinrich. Quasi-steady-state approximation in the mathematical
modeling of biochemical reaction networks. Mathematical biosciences, 65(2):155–170,
1983.

[108] Craig R Schlottmann, Samuel Shapero, Stephen Nease, and Paul Hasler. A digitally
enhanced dynamically reconfigurable analog platform for low-power signal processing.
IEEE Journal of Solid-State Circuits, 47(9):2174–2184, 2012.

[109] Christian Schneider and Howard Card. Analog CMOS synaptic learning circuits
adapted from invertebrate biology. Circuits and Systems, IEEE Transactions on,
38(12):1430–1438, 1991.

[110] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998.

[111] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac: A
convolutional neural network accelerator with in-situ analog arithmetic in crossbars.
ACM SIGARCH Computer Architecture News, 44(3):14–26, 2016.

[112] Kasturi S Shah, Samuel S Pegler, and Brent M Minchew. Two-layer fluid flows on
inclined surfaces. Journal of Fluid Mechanics, 917, 2021.

[113] Lawrence F Shampine and Charles William Gear. A user’s view of solving stiff ordinary
differential equations. SIAM review, 21(1):1–17, 1979.

[114] LF Shampine. Solving ordinary differential equations for simulation. Mathematics and
Computers in Simulation, 20(3):204–207, 1978.

528

[115] Akshay Sharma. Place and Route Techniques for FPGA Architecture Advancement.
University of Washington, 2005.

[116] Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones,
Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund, et al. Deep
learning with coherent nanophotonic circuits. Nature Photonics, 11(7):441, 2017.

[117] Richard I Sherwood, Tatsunori Hashimoto, Charles W O’Donnell, Sophia Lewis,
Amira a Barkal, John Peter van Hoff, Vivek Karun, Tommi Jaakkola, and David K
Gifford. Discovery of directional and nondirectional pioneer transcription factors by
modeling DNase profile magnitude and shape. Nature Biotechnology, 32(2):171–8, mar
2014.

[118] AS Shinde and KC Takale. Study of black-scholes model and its applications. Procedia
Engineering, 38:270–279, 2012.

[119] Robert D Skeel. Scaling for numerical stability in gaussian elimination. Journal of the
ACM (JACM), 26(3):494–526, 1979.

[120] Paul D Smith, Matt Kucic, and Paul Hasler. Accurate programming of analog floating-
gate arrays. In 2002 IEEE International Symposium on Circuits and Systems (ISCAS),
volume 5, pages V–V. IEEE, 2002.

[121] Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi Es-
maeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. General-purpose code
acceleration with limited-precision analog computation. ACM SIGARCH Computer
Architecture News, 42(3):505–516, 2014.

[122] Marvin L Stein. Automatic digital programming of analog computers. IEEE Trans-
actions on Electronic Computers, (2):100–111, 1963.

[123] Marvin L Stein, Jack Rose, and Donn B Parker. A compiler with an analog-oriented
input language. In Papers presented at the the March 3-5, 1959, western joint computer
conference, pages 92–102, 1959.

[124] Luca Sterpone and Massimo Violante. A new reliability-oriented place and route
algorithm for sram-based fpgas. IEEE Transactions on Computers, 55(6):732–744,
2006.

[125] Vaishali Tehre and Ravindra Kshirsagar. Survey on coarse grained reconfigurable
architectures. International Journal of Computer Applications, 48(16):1–7, 2012.

[126] Emil J Tejkowski. ANSIR: a language for patching and checking analog and hybrid
Computers. PhD thesis, University of Notre Dame, 1969.

[127] AEG Telefunken. Hybrid Precision Analog Computer System RA 770D Operating
Manual. 1966.

[128] Jonathan J. Y. Teo, Sung Sik Woo, and Rahul Sarpeshkar. Synthetic biology: A
unifying view and review using analog circuits. IEEE Trans. Biomed. Circuits and
Systems, 9(4):453–474, 2015.

529

[129] Naftali Tishby. A dynamical systems approach to speech processing. In International
Conference on Acoustics, Speech, and Signal Processing, pages 365–368. IEEE, 1990.

[130] Rajko Tomovic. Proceedings of the international association for analog computation
method of iteration and analog computation. Mathematics and Computers in Simu-
lation, 1(2):60 – 63, 1958.

[131] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. In
Proceedings of the 2013 ACM international symposium on New ideas, new paradigms,
and reflections on programming & software, pages 135–152, 2013.

[132] Yannis Tsividis. Not your father’s analog computer. IEEE Spectrum, 55(2):38–43,
2018.

[133] T Turanyi, AS Tomlin, and MJ Pilling. On the error of the quasi-steady-state approx-
imation. The Journal of Physical Chemistry, 97(1):163–172, 1993.

[134] Bernd Ulmann. Analog and Hybrid Computer Programming. Walter de Gruyter GmbH
& Co KG, 2020.

[135] Gustavo Valverde and Vladimir Terzija. Unscented kalman filter for power system
dynamic state estimation. IET generation, transmission & distribution, 5(1):29–37,
2010.

[136] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and Adrian Samp-
son. Vectorization for digital signal processors via equality saturation. In Proceedings
of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 874–886, 2021.

[137] Sergey Vichik, Murat Arcak, and Francesco Borrelli. Stability of an analog optimiza-
tion circuit for quadratic programming. Systems & Control Letters, 88:68–74, 2016.

[138] Herbert Weiner. The illusion of simplicity: the medical model revisited. The American
journal of psychiatry, 1978.

[139] Tim Wescott. Applied control theory for embedded systems. Elsevier, 2011.

[140] Sung Sik Woo, Jaewook Kim, and Rahul Sarpeshkar. A cytomorphic chip for quanti-
tative modeling of fundamental bio-molecular circuits. IEEE Trans. Biomed. Circuits
and Systems, 9(4):527–542, 2015.

[141] Sung Sik Woo, Jaewook Kim, and Rahul Sarpeshkar. A digitally programmable cyto-
morphic chip for simulation of arbitrary biochemical reaction networks. IEEE trans-
actions on biomedical circuits and systems, 12(2):360–378, 2018.

[142] Xunzhao Yin, Zoltán Toroczkai, and Xiaobo Sharon Hu. An analog sat solver based on
a deterministic dynamical system: (invited paper). In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 794–799, 2017.

[143] Zhou Zongfang and Yong Shi. A convergence of ode method in constrained optimiza-
tion. Journal of mathematical analysis and applications, 218(1):297–307, 1998.

530

Appendix A

Appendix

531

ival-prop(𝑥, 𝐼𝐴) = [𝑥, 𝑥]
ival-prop(𝑣, 𝐼𝐴) = 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛({𝑥 | (𝑣, 𝑖𝑣𝑎𝑙) ∈ 𝐴}) if ∃(𝑣, 𝑖𝑣𝑎𝑙) ∈ 𝐼𝐴

error otherwise

ival-prop(𝑏𝑖𝑛𝑜𝑝(𝑒, 𝑒′), 𝐼𝐴) = 𝑏𝑖𝑛𝑜𝑝(ival-prop(𝑒, 𝐼𝐴), ival-prop(𝑒′, 𝐼𝐴))
ival-prop(𝑢𝑛𝑜𝑝(𝑒), 𝐼𝐴) = ival-prop(𝑢𝑛𝑜𝑝(𝑒), 𝐼𝐴)
ival-prop(integ(𝑒, 𝑒′)) = error

Figure A-1: ival-prop(𝑒) = 𝑖𝑣𝑎𝑙 function

A.1 Interval Propagation Function (ival-prop)

Figure A-1 presents the interval function ival-prop, which accepts an expression 𝑒 and

a set of interval assignments 𝐼𝐴 ⊆ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 : P(𝐺𝑒𝑛𝑒𝑟𝑖𝑐𝑉 𝑎𝑟𝑠× 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠).

The interval function and returns the interval 𝑖𝑣𝑎𝑙 which captures all the values computed

by the expression:

∙ ival-prop(𝑥, 𝐼𝐴): The interval of a constant value is [𝑥, 𝑥].

∙ ival-prop(𝑣, 𝐼𝐴): The interval of a variable 𝑣 is the interval defined in the dynamical

system specification. Each variable interval is identified with a interval statement

in the DSS.

For the remaining rules, I introduce sub-expressions 𝑒 and 𝑒′ with intervals [𝑥, 𝑦] = ival-prop(𝑒)

and [𝑥′, 𝑦′] = ival-prop(𝑒′).

∙ ival-prop(𝑏𝑖𝑛𝑜𝑝(𝑒, 𝑒′), 𝐼𝐴): I use interval arithmetic to define the interval of an ex-

pression 𝑏𝑖𝑛𝑜𝑝(𝑒, 𝑒′), where 𝑏𝑖𝑛𝑜𝑝 is an mathematical operator which accepts two

arguments. This rule covers addition, subtraction, exponentiation, multiplication,

minimization (min(𝑒, 𝑒′)), and maximization (max(𝑒, 𝑒′)) functions.

I implement an interval propagation rule for each mathematical operator. For ex-

ample, ival-prop(𝑒− 𝑒′, 𝐼𝐴) is [𝑥− 𝑦′, 𝑦 − 𝑥′], where [𝑥, 𝑦] = ival-prop(𝑒, 𝐼𝐴) and

[𝑥′, 𝑦′] = ival-prop(𝑒′, 𝐼𝐴), since the smallest possible value is the lower bound of

𝑒 minus the upper bound of 𝑒′ and the largest possible value is the upper bound

of 𝑒 minus the lower bound of 𝑒′. ival-prop(𝑒 + 𝑒′, 𝐼𝐴) is [𝑥 + 𝑥′, 𝑦 + 𝑦′] where

[𝑥, 𝑦] = ival-prop(𝑒, 𝐼𝐴) and [𝑥′, 𝑦′] = ival-prop(𝑒′, 𝐼𝐴).

∙ ival-prop(𝑢𝑛𝑜𝑝(𝑒), 𝐼𝐴): I use interval arithmetic to derive the interval of an expres-

sion 𝑢𝑛𝑜𝑝(𝑒, 𝑒′), where 𝑢𝑛𝑜𝑝 is a mathematical operator which accepts one argument.

532

This rule covers natural logarithms, natural exponentiation (exp), absolute value, sign

(sgn), sine, and cosine functions. This rule also covers the observation (emit) and

external input (extvar) functions.

I implement an interval propagation role for each mathematical operator. For example

ival-prop(sgn(𝑒), 𝐼𝐴) is [1, 1] where [𝑥, 𝑦] = ival-prop(𝑒, 𝐼𝐴) and 𝑥 ≥ 0 and 𝑦 ≥ 0.

If 𝑥 < 0 and 𝑦 > 0, then the returned interval is [−1, 1]. If 𝑥 < 0 and 𝑦 < 0, then the

returned interval is [−1,−1].

∙ ival-prop(𝑣 = integ(𝑒, 𝑒′): The interval propagation algorithm does not propagate

intervals through integration operations.

533

eval(𝑥,𝐴) = 𝑥
eval(𝑣,𝐴) = 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛({𝑥 | (𝑣, 𝑦) ∈ 𝐴}) if ∃(𝑣, 𝑦) ∈ 𝐴

𝑣 otherwise

eval(𝑒⊙ 𝑒′, 𝐴) = eval(𝑒,𝐴)⊙ eval(𝑒′, 𝐴)
eval(𝑓𝑢𝑛𝑐(𝑒)) = eval(𝑒,𝐴)

eval(integ(𝑒, 𝑒′, 𝐴) = integ(eval(𝑒,𝐴), eval(𝑒′, 𝐴))

Figure A-2: eval(𝑒𝑝) = 𝑒𝑣 function

A.2 Expression Evaluation Function (eval)

Figure A-2 presents the evaluation function eval, which accepts an expression 𝑒 and a set

of expression-value assignments (𝐴 ⊂ 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠). It evaluates the provided expression

by applying the provided assignments.

∙ eval(𝑦,𝐴): The constant 𝑦 evaluates to 𝑦.

∙ eval(𝑣,𝐴): The variable 𝑣 evaluates to its mapped value 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛((){𝑥 | (𝑣, 𝑦) ∈ 𝐴})

if there is an assignment (𝑣, 𝑦) ∈ 𝐴. If there is no mapping for variable 𝑣, then the

evaluation function returns 𝑣.

∙ eval(𝑒 ⊙ 𝑒′, 𝐴): The evaluation function recursively evaluates 𝑒 and 𝑒′ to values 𝑦

and 𝑦′. It evaluates 𝑦 ⊙ 𝑦′ and returns the evaluated value. If either or both of these

expressions evaluate to expressions (𝑒𝑒𝑣𝑎𝑙 and 𝑒′𝑒𝑣𝑎𝑙), it returns the partially evalu-

ated expression 𝑒𝑒𝑣𝑎𝑙 ⊙ 𝑒′𝑒𝑣𝑎𝑙. This rule covers addition, subtraction, exponentiation,

multiplication, minimization (min(𝑒, 𝑒′)), and maximization (max(𝑒, 𝑒′)) functions.

∙ eval(𝑓𝑢𝑛𝑐(𝑒), 𝐴): The evaluation function recursively evaluates 𝑒 to value 𝑦. It eval-

uates 𝑓𝑢𝑛𝑐(𝑦) and returns the evaluated value. If the expression 𝑒 evaluates to an ex-

pression (𝑒𝑒𝑣𝑎𝑙), the algorithm returns the partially evaluated expression 𝑓𝑢𝑛𝑐(𝑒𝑒𝑣𝑎𝑙).

This rule covers natural logarithms, natural exponentiation (exp), absolute value, sign

(sgn), sine, and cosine functions. This rule also covers the observation (emit) and

external input (extvar) functions.

∙ eval(integ(𝑒, 𝑒′), 𝐹): The evaluation function recursively evaluates the differential

equation expression 𝑒 and initial condition 𝑒′ to yield the evaluated expressions 𝑒𝑒𝑣𝑎𝑙

and 𝑒′𝑒𝑣𝑎𝑙. It returns the evaluated integral integ(𝑒𝑒𝑣𝑎𝑙, 𝑒′𝑒𝑣𝑎𝑙)

534

A.3 Geometric Program Encoding Tricks

The compiler uses several constraint encoding tricks to flexibly implement a wide range of

constraints as geometric programming constraints.

Equality over Monomials: Equality relations over monomials can be rewritten into geo-

metric programming constraints of the form 𝑚𝑜 = 1:

𝑚𝑜 = 𝑚𝑜′ ⇒ 𝑚𝑜

𝑚𝑜′
= 1

The above rewrite rule leverages the fact that the ratio of two monomials is also a monomial.

Inequality over Monomials: Inequalities over monomials can be rewritten into geometric pro-

gramming constraints of the form 𝑚𝑜 ≤ 1:

𝑚𝑜 ≤ 𝑚𝑜′ ⇒ 𝑚𝑜

𝑚𝑜′
≤ 1

The above rewrite rule leverages the fact the ratio of two monomials is also a monomial.

A.3.1 Interval Encoding

The compiler represents interval geometric programming variables as pairs of positive real-valued

scalar variables that encode the interval’s lower and upper bounds. Because these variables must be

positive, the compiler statically reasons over any sign differences during problem generation. The

compiler encodes constraints over intervals as constraints over the lower and upper bound variables.

The compiler supports ⊆ constraints over numerical intervals to geometric programming constraints.

These constraints take the form:

𝑚𝑜 · 𝑖𝑣𝑎𝑙 ⊆ 𝑚𝑜′𝑖𝑣𝑎𝑙′

In the above constraint, a scaled numerical interval 𝑚𝑜 ·𝑖𝑣𝑎𝑙 must be contained by the scaled interval

𝑚𝑜′𝑖𝑣𝑎𝑙′. The interval 𝑖𝑣𝑎𝑙 has bounds [𝑦𝑙𝑜𝑤, 𝑦ℎ𝑖𝑔ℎ] and the interval 𝑖𝑣𝑎𝑙′ has bounds [𝑦′𝑙𝑜𝑤, 𝑦
′
ℎ𝑖𝑔ℎ].

T

The interval encoding algorithm analyzes this constraint and transforms it into two constraints

over real numbers. The encoding procedure takes advantage of the fact that monomials can only

take on positive non-zero values to statically evaluate the ⊆ constraint for cases where the lower and

upper bounds of the subinterval and interval have different signs.

TableA.1 presents all the cases handled by the constraint generation. It generates a constraint

that restricts the lower bound of the intervals and a constraint that restricts the upper bound of the

intervals. I summarize the encoding procedure below:

𝑦𝑙𝑜𝑤 ≥ 0∧ 𝑦′𝑙𝑜𝑤 ≤ 0: In this case, the lower bound of the subinterval is always greater than the lower

535

subinterval interval constraint
𝑦𝑙𝑜𝑤 ≥ 0 𝑦𝑙𝑜𝑤 ≥ 0 𝑚𝑜𝑙𝑜𝑤 · 𝑦𝑙𝑜𝑤 ≥ 𝑚𝑜′𝑙𝑜𝑤𝑦

′
𝑙𝑜𝑤

𝑦𝑙𝑜𝑤 ≤ 0 𝑦𝑙𝑜𝑤 ≤ 0 𝑚𝑜𝑙𝑜𝑤 · −𝑦𝑙𝑜𝑤 ≤ 𝑚𝑜′𝑙𝑜𝑤 − 𝑦′𝑙𝑜𝑤
𝑦𝑙𝑜𝑤 ≤ 0 𝑦′𝑙𝑜𝑤 ≥ 0 false
𝑦𝑙𝑜𝑤 ≥ 0 𝑦′𝑙𝑜𝑤 ≤ 0 true
𝑦ℎ𝑖𝑔ℎ ≥ 0 𝑦ℎ𝑖𝑔ℎ ≥ 0 𝑚𝑜 · 𝑦ℎ𝑖𝑔ℎ ≤ 𝑚𝑜′ℎ𝑖𝑔ℎ𝑦

′
ℎ𝑖𝑔ℎ

𝑦ℎ𝑖𝑔ℎ ≤ 0 𝑦ℎ𝑖𝑔ℎ ≤ 0 𝑚𝑜ℎ𝑖𝑔ℎ · −𝑦ℎ𝑖𝑔ℎ ≥ 𝑚𝑜′ℎ𝑖𝑔ℎ − 𝑦′ℎ𝑖𝑔ℎ
𝑦ℎ𝑖𝑔ℎ ≥ 0 𝑦′ℎ𝑖𝑔ℎ ≤ 0 false
𝑦ℎ𝑖𝑔ℎ ≤ 0 𝑦′ℎ𝑖𝑔ℎ ≥ 0 true

Table A.1: Cases for translation of ⊆ operator to geometric programming constraints

bound of the interval. The lower bound constraints, therefore, always hold, and this constraint is

trivially true.

𝑦𝑙𝑜𝑤 ≤ ∧𝑦′𝑙𝑜𝑤 ≥ 0: In this case, the lower bound of the subinterval is always smaller than the lower

bound of the interval. The lower bound constraint, therefore, never holds (this constraint is trivially

false).

𝑦ℎ𝑖𝑔ℎ ≤ 0 ∧ 𝑦′ℎ𝑖𝑔ℎ ≥ 0 : In this case, the upper bound of the subinterval is always smaller than the

upper bound of the interval. The upper bound constraint, therefore, always holds (this constraint

is trivially false).

𝑦ℎ𝑖𝑔ℎ ≥ 0 ∧ 𝑦′ℎ𝑖𝑔ℎ ≤ 0: In this case, the upper bound of the subinterval is always larger than the

upper bound of the interval. The upper bound constraint, therefore, never holds (this constraint is

trivially false).

536

