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ABSTRACT 
 
This thesis quantifies the costs and emissions of a potential sustainable aviation fuel supply chain 
in the US in 2035 while incorporating regional uncertainty analysis. Feedstock availability is 
quantified using projected arable land availability, agricultural yields, and projected waste and 
residue availability. A mixed-integer linear programming model was developed to minimize 
supply chain costs, subject to uncertain variables which were analyzed using Monte Carlo 
simulations. Under a baseline set of assumptions, an average of 78% of 2035 US jet fuel demand 
can be met with sustainable aviation fuels. The optimization model is applied using inputs from 
four socioeconomic scenarios to meet 25% and 50% of projected 2035 demand. The sensitivity 
of the results to a carbon emissions cost of 100 $/tonne CO2e is also evaluated. Under a baseline 
set of assumptions, when 50% of 2035 US demand is offset, sustainable aviation fuel is produced 
with 50% higher costs and 39% lower emissions than conventional jet fuel. In all scenarios, the 
introduction of a 100 $/tonne CO2e carbon emissions cost resulted in optimized supply chains 
using feedstocks and pathways with lower life cycle emissions but higher capital costs.  
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Chapter 1  Introduction 
In 2019, commercial aviation accounted for approximately 2% of US greenhouse gas (GHG) emissions 

[1]. The environmental impact of aviation is expected to increase, as the North American commercial 

aviation market is expected to grow by approximately 3% annually from 2020-2039 [2]. Sustainable 

aviation fuels (SAF), with lower life cycle emissions than conventional jet fuel, have been identified as a 

short- to medium-term solution to mitigate commercial aviation’s environmental impact [3]. These 

sustainable aviation fuels have been approved as drop-in fuels, which can be used in the engines of 

existing aircraft.  

The life cycle emissions of SAF pathways have been studied extensively [4–7]. These studies found that, 

depending on the feedstocks and fuel conversion pathways considered, sustainable aviation fuels provide 

life-cycle GHG reductions of 26% to 91% from conventional jet fuel. The potential global emissions 

reduction from the use of alternative jet fuels in the year 2050 was evaluated in Staples et al. 2018 [8]. A 

similar study was conducted for the US for the year 2050 [9]. These studies found that the use of SAF 

could reduce 2050 worldwide aviation emissions by a maximum of 68%, and US aviation emissions by 

42%. However, these life cycle assessment (LCA) studies and system wide analyses do not account for 

regional uncertainty, and treat uncertain variables such as crop yield and fuel conversion efficiency 

deterministically.  Therefore, these deterministic studies do not quantify the range of potential GHG 

emissions reductions from a SAF supply chain that may occur from different realizations of uncertain 

variables. The production costs associated with SAF pathways have been quantified using techno-

economic analysis (TEA) and determined to come at a cost premium to conventional jet fuel production 

costs [10,11]. However similar to previous LCA analyses, these TEA studies have not accounted for 

regional variability in key inputs such as capital area cost factors and utility costs.  

Previous studies have built on LCA and TEA analyses to minimize US SAF supply chain costs or 

emissions using linear optimization models. Lewis et al 2018 use a geospatially explicit linear 

optimization model to produce a cost-minimized US nationwide SAF supply chain based on waste and 
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residue feedstock availability and demand centers [12]. Other studies have optimized SAF production 

using wastes and residues for a regional supply chain while minimizing costs or emissions and meeting 

various fuel demand levels [13,14] . However, no previous study has evaluated the costs and emissions of 

a US SAF supply chain using wastes, residues and crops while incorporating uncertainty analysis.  

The objectives of this study are to quantify the potential production capacity of SAF in the US in 2035, 

and to evaluate the costs, emissions, abatement costs and feedstocks and pathways used in the optimal 

SAF supply chain, subject to uncertainty in pathway inputs and variations in scenario assumptions. In this 

analysis, we use a cost minimization spatially resolved linear programming model to quantify the costs 

and emissions associated with a three-stage SAF supply chain in the US in the year 2035 while 

incorporating regional uncertainty and variability in key inputs. The supply chain is also evaluated under 

variations in the fraction of total jet fuel demand fulfilled, cost of carbon emissions, and socioeconomic 

scenario projections. We evaluate the potential production of sustainable aviation fuel in the US in 2035 

using crops, waste oils and greases, crop residues, forestry residues and municipal solid waste (MSW). 

The conversion of these feedstocks to jet fuel is considered using: Alcohol-to-Jet (ATJ) via ethanol, 

Hydroprocessed esters and fatty acids (HEFA), Synthesized iso-paraffins (SIP), and Fischer-Tropsch (FT) 

[15]. The supply chain costs and emissions associated with each feedstock and pathway are calculated 

using harmonized regional stochastic inputs. The SAF supply chain is then optimized using a mixed-

integer linear programming model. This study is the first to evaluate a potential US sustainable aviation 

fuel supply chain using a linear optimization model while incorporating uncertain regional inputs. 
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Chapter 2  Methods 

In this analysis, we first calculate 2035 SAF feedstock availability on the county level for 15 feedstocks. 

Next, we introduce the mass and energy balances and associated uncertainties in the six feedstock-to-fuel 

pathways under consideration. We quantify the costs and lifecycle emissions associated with feedstock 

production, transportation, fuel production and fuel transportation using regional data and uncertainty 

analysis. All costs and emissions are allocated among output products according to their energy output 

shares [16]. Airport level jet fuel demand is calculated and aggregated to the county level. Cost and 

emission inputs that are uncertain are simulated using Monte Carlo analysis. Following the Monte Carlo 

analysis, the uncertain inputs are used in a three-stage single period optimization model, which outputs 

the optimal minimum cost SAF supply chain for each run case, subject to demand requirements. The 

optimization model is also run with carbon emissions costs of 0 $/tonne CO2e and 100 $/tonne CO2e to 

evaluate the impact of carbon pricing on supply chain costs and emissions. The change in costs and GHG 

emissions compared to petroleum-derived jet fuel is assessed. A summary of the methods used in this 

analysis is presented in Figure 2-1. 

 

Figure 2-1. Flow chart of analysis. 

 

2.1  Feedstock Availability 

Four main scenarios are considered in this analysis to evaluate future potential SAF supply chains. The 

key inputs for each of these scenarios are shown in Table 2-1. Scenario 1 is considered the baseline 

scenario in this analysis.  

  

Feedstock 
Availability
Modeling

Emissions 
Modeling

Financial 
Modeling

Transportation 
Modeling

Jet Fuel  
Demand 

Modeling
Supply Chain 
Optimization
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Table 2-1. Scenario Assumptions for 2035. 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Land Use Pattern 
under Special 
Report Emissions 
Scenarios 

A1B A2 B1 B2 

Hadley climate 
change scenario 
for GAEZ yields 

A1F1 A2 B1 B2 

Shared 
Socioeconomic 
Pathways 

SSP5 SSP3 SSP1 SSP2 

2016 Billion Ton 
Report Wood 
Energy and 
Market Scenario 

High Housing, 
High Wood 
Energy Demand 

Moderate 
Housing, High 
Wood Energy 
Demand 

High Housing, 
Low Wood 
Energy Demand 

Moderate 
Housing, Low 
Wood Energy 
Demand 

Agro-climatic 
suitability 
threshold  

Moderate Medium Good Medium 

Pastureland 
availability 

20% 10% 10% 10% 

 

Ten cultivated energy crops, crop residues and forestry residues, waste fats, oils and greases (FOGs), and 

MSW are considered as feasible feedstocks for SAF. The conversion pathways considered for each 

feedstock are shown in Table 2-2. Although many of the feedstocks listed may be used in multiple 

pathways, each feedstock is mapped to only one pathway in this analysis. Crop availability and crop 

residue availability are treated as uncertain, while MSW, FOG and forestry residue availability is 

deterministic and scenario dependent. 

  



11 
 

Table 2-2. Feedstocks and pathways considered. 

Feedstock Pathway Fuel Products Source 
Corn 
Grain Sorghum 
Wheat 

ATJ Jet, Gasoline, Diesel [17,18] 

Soybean 
Canola 
Sunflower 

HEFA crop Jet, Gasoline, Diesel, 
Lightends 

[5,17,19] 

Sugarcane 
Sugarbeet 

SIP Jet [4,7] 

Miscanthus 
Switchgrass 
Crop Residue 
Forestry Residue 

FT biomass Jet, Naphtha, Diesel [20] 

Used Cooking Oil 
Animal Fats 

HEFA FOG Jet, Gasoline, Diesel, 
Lightends 

[5] 

Municipal Solid Waste FT MSW Jet, Diesel, Gasoline [21] 
 

 Energy Crops 

Land use in the conterminous US in 2035 is estimated using data sets from the US Geological Survey 

(USGS) FORE-SCE model, which contains annual land use projections at a spatial resolution of 250 

meters for four scenarios (A1B, A2, B1, B2) based on the Intergovernmental Panel on Climate Change 

(IPCC) Special Report on Emission Scenarios (SRES) [22]. Land is considered available for conversion 

to cropland for SAF production only if it is designated as grassland, shrubland, or pastureland. Between 

10-20% of pastureland is available for conversion to crop land, as shown in Table 2-1, in order to 

preserve land for livestock grazing [8]. The available pastureland is then aggregated from the 250-meter 

resolution dataset to the county level.  

The pastureland available for conversion to cropland for each crop in each county is further limited by 

imposing a minimum suitability condition using the Global Agro-ecological Zones (GAEZ) version 3.0 

model developed by the International Institute for Applied Systems Analysis (IIASA) and the Food and 

Agriculture Organization of the United Nations (FAO) [23]. The GAEZ model calculates crop suitability 
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on a 5 arc-minute grid cell resolution by comparing crop-specific growth requirements to local climate 

and soil conditions at various agricultural input levels and time frames.  In this analysis, we assume high 

input levels and rainfed systems, to avoid diverting water resources from food crops or human use. 

Additionally, GAEZ models the mean suitability for three 30-year periods: 2011-2040, 2041-2070, and 

2071-2100. We use data for 2011-2040 and consider three suitability levels, “moderate”, “medium”, and 

“high”. Land below the minimum crop-specific suitability level is not considered available for 

conversion, in order to limit converting land where crop cultivation is unlikely.  

Ten crops are considered as feedstock for SAF: corn, sorghum, wheat, soybean, canola, sunflower, 

sugarcane, sugarbeet, miscanthus and switchgrass. Multi-cropping is not considered in this analysis 

therefore if land is converted from pastureland to cropland, only one crop is considered for cultivation 

annually. Eight of these ten crops are historically grown in the US, with the exceptions being the energy 

grasses miscanthus and switchgrass. For these eight crops, US Department of Agriculture (USDA) 

county-level yield data is extrapolated to 2035 with a 95% confidence interval, which is used to construct 

triangular distributions for uncertainty analysis [24]. In counties in which historical yield data is 

insufficient, state level data is used. Switchgrass and miscanthus yields are taken from the 2016 Billion-

Ton Report [25], in which data from over 110 field trials was used to estimate county-specific per-acre 

yields based on 30-year historic weather data for switchgrass and miscanthus. In this analysis, we use the 

base-case scenario from the BTR, which assumed a 1% annual yield improvement for energy crops 

through a 2015-2040 simulation period. To construct probability distributions for switchgrass and 

miscanthus, current yields are used as a lower bound, while a 2% annual yield improvement is assumed 

for the upper bound. 

The GAEZ model is then used to impose an upper bound on the maximum attainable crop yields in each 

US state, under the assumed high input level and rainfed conditions. If the county-level crop yield 

extrapolated from historical USDA data exceeds the state-level GAEZ maximum attainable crop-yield, 

the GAEZ yield replaces the extrapolated yield in the triangular probability distribution. An example of 
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this method is shown in Figure 2-2, in which historical county level corn yield data from Jasper County, 

Indiana is linearly extrapolated to 2035 with a 95% confidence interval. In this example, the upper 

estimate for corn yield in 2035 exceeds the GAEZ maximum attainable yield in Indiana, so the GAEZ 

yield is used as the upper bound in a triangular probability distribution for 2035 corn yield in Jasper 

County, Indiana.  

 

Figure 2-2. Yield Extrapolation of corn yields in Jasper County, Indiana. 

 Crop Residues 

The production of crop residue is considered for the eight annual crops previously mentioned. The annual 

per-acre yield of each of these crops is extrapolated to 2035. However, since these crops are grown on 

cropland, the maximum attainable yield data from irrigated land, rather than from rainfed land, is used 

from the GAEZ model to provide an upper bound. Crop residue production is estimated by multiplying 

per-acre yields by the crop-specific straw-to-grain ratio shown in Table 2-3 [26]. 
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Table 2-3. Crop-specific straw to grain ratios. 

Crop Straw/grain 
ratio 

Corn 1.0 
Sorghum 1.5 
Wheat 1.5 
Soybean 1.0 
Canola 1.5 
Sunflower 1.0 
Sugarcane 0.25 
Sugarbeet 0.25 

 

The mix of crops grown in each county on cropland is calculated using data from the 2019 USDA 

Cropland Data Layer (CDL) [27]. The CDL is a 30-meter resolution crop-specific land cover data layer 

created annually for the continental US using satellite imagery and agricultural ground truth. The county 

specific cropland distribution of crops is assumed to stay constant through 2035. Cropland area 

projections are estimated using the FORE-SCE model, and aggregated to the county level. The county-

level sustainable residue removal rates, defined as the fraction of crop residue that can be removed 

without causing erosion or soil organic carbon loss, for corn, wheat and sorghum are taken from Muth et 

al. 2013 [28], and compared to county-level yield data from the USDA. The average sustainable residue 

removal rate for corn, wheat and sorghum in each county is used as the sustainable residue removal rate 

for the other five annual crops considered in this analysis. For reference, the average sustainable residue 

removal rate for corn across all counties in the US is 31%, with a standard deviation of 22%. The total 

crop residue produced in each county is therefore a function of cropland area, crop mix, irrigated crop 

yields, straw to grain ratios, and sustainable residue removal rates. The total amount of crop residue varies 

in each Monte-Carlo run case due to crop yield uncertainties.  

 Forestry Residues 

County level forestry residue availability in 2035 is taken from the 2016 Billion Ton Report (BTR) [25]. 

The BTR uses a linear programming model to estimate forestland production over time. The model 



15 
 

accounts for various logging methods, forest stand species, and location specific logging residue retention 

rates and aggregates results to the county level. Additionally, the BTR analyzed six potential future 

scenarios, with three levels of demand for biomass for energy, and three levels of demand for housing. 

The scenarios we used in this analysis are shown in Table 2-1. We note that similar to our analysis, the 

BTR assumes there is no land use change from/to forestry and non-forestry use. 

 Waste fats, oils and greases (FOG) 

The production of yellow grease and rendered animal fats are estimated on a per capita basis. County 

level population projections for all US counties in the year 2035 are taken from Hauer 2019 [29]. Hauer 

projects the US population in five-year intervals for the period 2020-2100 controlled to the five Shared 

Socioeconomic Pathways (SSPs). The SSPs are mapped to the scenarios in our analysis as shown in Table 

2-1.  

Yellow grease production is estimated as 4 kg per person per year [30], with a collection rate of 85% 

based on USDA data [31]. Based on current yellow grease utilization in the United States, we further 

assume that 13% of yellow grease is used for animal feed, 30% is used for biodiesel, with the remainder 

available for SAF production [30].  

We analyze rendered animal fat generation for poultry, cattle and pigs. The USDA projects that per capita 

meat consumption in the US will increase from 2019 to 2029 by less than 1%, therefore we assume that 

per capita livestock slaughter will remain constant to 2035 [32]. Per capita livestock production is shown 

in Table 2-4.  County-level animal production is estimated using future population projections and county 

level livestock inventory from the 2017 USDA Census of Agriculture [33]. The spatial distribution of 

livestock is assumed constant to 2035.  
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Table 2-4. Per capita liveweight livestock production in the US in 2035. 

Product Per Capita Production 
(kg/year) 

Cattle 60.5 
Pigs 47.7 
Poultry 88.5 

 

We use the method from Milbrandt et al. 2018 [30] to calculate the availability of rendered animal fats for 

the SAF industry. The fat percentage of the liveweight of each animal is applied, and the edible fat 

percentage is subtracted. Additionally, a large fraction of rendered animal fats is currently used in the 

animal feed industry and for biodiesel production.  The key inputs for calculating rendered animal fat 

availability for the SAF market is shown in Table 2-5.  

Table 2-5. Waste FOG assumptions [30]. 

 Fat % of 
liveweight 

Inedible fat % of 
total fat 

% of inedible fat 
not used in other 
industries 

Net waste FOG 
available from 
animal liveweight 

Cattle 12% 64% 28% 2.2% 
Pigs 5% 89% 20% 0.9% 
Poultry 3% 100% 37% 1.1% 

 

 Municipal Solid Waste (MSW) 

MSW production is calculated on a per capita basis and projected to the year 2025 [34]. The 2025 

projections show a less than one percent change from current empirical data, therefore annual per capita 

MSW production of 840 kg is assumed constant to 2035. County-level MSW availability is calculated by 

combining county-level population projections with per capita MSW production. The composition of 

MSW is assumed constant to 2035, and is provided for 2014 by the Environmental Protection Agency 

(EPA), as is landfill rate by component, and is shown in Table 2-6 [35]. The system boundary of the 

MSW Fischer-Tropsch (FT) pathway is set where MSW discards exit a sorting facility as described in 
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Suresh et. al 2018 [21], therefore only the MSW that remains after recycling and compost enter this 

analysis.  

Table 2-6. MSW composition and landfill rate. 

Material Share of each component Component landfill rate 
Paper 26.6% 28.4% 
Organics 34.4% 57.4% 
Plastics 12.9% 75.5% 
Metals and Glass 13.4% 57.2% 
Rubbers, leather, textiles 9.5% 59.8% 
Other 3.2% 58.1% 

 

2.2 GHG emissions modeling  

GHG emissions are modeled along each step of the SAF supply chain: land use conversion, feedstock 

cultivation, feedstock conversion to SAF, feedstock and fuel transportation, and fuel combustion. 

 Emissions Factors  

The emissions factors of electricity and hydrogen are projected to change in the future due to the 

increased use of production methods with lower life cycle emissions. These changes will impact the total 

life cycle emissions of the SAF supply chain [8]. The emissions factors for other energy inputs such as 

natural gas are assumed constant to 2035 and are taken from the GREET 2020 model. Electricity 

emissions factors are projected annually for the period 2019-2050 by the Energy Information 

Administration for the nine US Census Divisions [36]. In this analysis we use the 2035 reference case, 

which projects a 25% reduction in the average US electricity emissions factor from 2019. The electricity 

emissions factor for each US Census Division is shown in Table B-1 in Appendix B . 

The emission factor for US hydrogen in 2035 is based on projections from Singh et. al 2005 and the 2006 

World Energy Outlook [37,38]. Three hydrogen production source mixes are considered and are based on 

the current production method modeled in GREET, and the “reference” and “carbon constraint” cases for 
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North America in the year 2030 from the World Energy Outlook. We use the current hydrogen emissions 

factor when modeling Scenario 1, the 2035 “reference” case when modeling Scenarios 2 and 4, and the 

“carbon constraint” case when modeling Scenario 3. Singh et al. project that hydrogen produced by 

renewables will come from 70% biomass, 26% wind and 4% solar. The emissions factors for the 

reference and carbon constraint cases were calculated by modeling the projected mixes in GREET. The 

hydrogen production methods and corresponding emissions factors are shown in Table B-2 in Appendix 

B . 

 Feedstock Production Emissions 

Data availability determines the resolution of emissions modeling for each feedstock. Cultivated crop 

production emissions are modeled on the state level. Waste grease rendering emissions are modeled on a 

regional level, while forest residue emissions and crop residue production emissions are modeled on a 

national level.  

Crop yield projections for 2035 are determined on a county level using the method described in Section 

2.1.1. State level nitrogen, phosphate and potash fertilizer application rates for corn, wheat and soybean 

from 1964-2018 are taken from the USDA, and extrapolated to 2035 [39]. For all other crops, state level 

crop enterprise budgets are used to obtain current fertilizer application rates. A list of enterprise budgets 

used in this analysis is provided in Table B-3 in Appendix B .  The average increase in application rate for 

corn, wheat and soybean is obtained for each state and fertilizer, and is used to estimate the future 

application rates for the other seven crops. Herbicide and pesticide application rates for all crops are 

obtained from state level enterprise budgets [8]. Farming energy requirements are treated as uncertain, 

and these probability distributions are shown in Table B-4 in Appendix B  along with the breakdown of 

energy inputs for each crop. Farming energy requirements are assumed constant to 2035, and due to a 

lack of available data, are assumed constant throughout the US. Energy requirements for the production 

of forestry residues and crop residues are also assumed constant throughout the US and are shown in 

Table B-4. We assume that utilities are supplied by the state in which each county is located. 
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Crop residue production emissions are calculated using cultivation energy distributions and crop-specific 

nutrient replacement rates. The mass concentration of Nitrogen, Phosphorous and Potassium for residues 

of the eight annual crops considered in this analysis are taken from Chatterjee 2013 [40]. We assume 

complete replacement of the nutrients removed by crop residue harvesting.  

The system boundary for HEFA fuels derived from yellow grease and animal fats begins with the 

rendering process. This follows the approach used in CORSIA and Seber et al 2014 [5,7].  Energy inputs 

for rendering yellow grease and animal fats are treated as uncertain, and probability distributions are 

derived from data from previous studies [5,41,42]. These rendering energy inputs are shown in Table B-5. 

Due to regional variations in electricity emissions factors, the emissions associated with the rendering 

step varies between US Census Divisions.  

The system boundary of the MSW FT pathway is described in detail in Suresh et al 2018 [21]. Notably, 

the MSW system boundary excludes curbside collection, transportation and initial sorting, which must 

occur regardless. Additionally, we use the same parameter distributions for lifecycle emission Monte 

Carlo analysis as Suresh et al 2018.  

 Feedstock-to-fuel Conversion Emissions 

In this study we model six alternative jet fuel pathways: ATJ, HEFA FOG, HEFA crop, SIP, FT biomass 

and FT MSW. Output fuel yields are modeled as probability distributions due to uncertainty in each 

pathway. These distributions along with detailed technical assumptions used for the mass and energy 

balances for each feedstock and pathway are found in Appendix A . We consider the “maximum jet” 

product profile from Pearlson et al 2013 for the HEFA pathway [11].  

 Transportation Emissions 

We assume that feedstocks can be transported from supply counties to biorefinery counties via rail, 

trucking, and barge, while jet fuel is transported from refineries to airports via rail, trucking, barge and 

pipeline. The energy required to transport products on a per ton-mile basis is modeled in GREET for each 
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transportation mode. Transportation energy efficiency improvements from 2020 to 2035 are projected by 

the EIA and applied to the values from GREET [36]. The energy efficiency improvements for rail, freight 

trucking and domestic shipping are 9.4%, 17.8% and 9.4% respectively. GREET assumes that electricity 

is consumed to operate liquid pipelines, therefore the emissions associated with transportation of jet fuel 

via pipeline are reduced with lower future electricity emissions factors. 

 Land Use Change Emissions 

GHG emissions as a result of changes in soil and biomass content are estimated using the Agro-ecological 

Zone Emission Factor (AEZ-EF) model, version 52 [43]. This model reflects the pulse of GHG emissions 

per unit area from a one-time change in land use, from pastureland to cropland with annual crop 

cultivation, miscanthus cultivation or switchgrass cultivation. We calculate the average LUC emissions 

factor in each county for each of these three land conversion pairings. LUC emissions are allocated using 

the energy allocation method, and are amortized over a 30-year period.  

2.3 Financial modeling  

Similar to GHG emissions, costs are modeled along each step of the SAF supply chain. All costs in this 

analysis are expressed in 2019 USD.  

 Utility Costs 

US average electricity, natural gas and crude oil prices are projected to 2035 by the EIA [36]. We assume 

that these prices are uncertain, and use the EIA baseline, high economic growth and low economic growth 

cases to construct probability distributions, shown in Table B-6. We correlate historical state electricity 

and natural gas prices from 1990-2018 to the US average values, and use the 2035 US EIA projections to 

project 2035 state level electricity and natural gas prices in each Monte Carlo run case [44,45]. We also 

correlate historical crude oil prices to gasoline prices in each of the Petroleum Administration for Defense 

Districts (PADD) [46], which are then correlated to diesel and propane prices in each PADD region. 

These price correlations are shown in Table B-7.  
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Hydrogen production costs are dependent on the production mix assumed in 2035 as described in Section 

2.2.1. Hydrogen production costs from wind and solar are taken from projections from IRENA 2019, and 

production costs from biomass and natural gas are from Parkinson et al 2019 [47,48]. The production 

costs and production mixes for each scenario are used to calculate the average hydrogen production cost. 

These production costs are shown in Table B-2 in Appendix B  for each scenario. Other pathway input 

costs that are treated as deterministic and constant throughout the US are shown in Table B-8. 

 Feedstock Production Costs 

Crop production costs are modeled on the county level, due to per acre fixed costs such as machinery 

capital recovery, and county level yields. State level crop-specific enterprise budgets are used to estimate 

per-acre crop production costs. These crop budgets include costs from: seed, fertilizer, herbicides and 

pesticides, fuel, lube and electricity, repairs, labor, land, custom services, machinery capital recovery, 

taxes and insurance, and farm overhead [49]. We use average costs from each USDA Farm Resource 

Region for states without crop-specific enterprise budgets.  

Crop residue cultivation costs are also modeled on the county level due to fixed per acre costs and county-

specific crop yields and sustainable residue removal rates. We model crop residue production costs from 

chopping, baling, on-farm hauling, and nutrient replacement. We use the assumptions from Gallagher et 

al 2003, which used the same chopping, baling and on-farm hauling costs for crop residue cultivation for 

all counties and crops [50]. Chopping, baling and on-farm hauling costs are taken from the 2020 Iowa 

Farm custom rate survey and are estimated as 12.40 $/acre, 12.35 $/bale and 3.15 $/bale respectively [51]. 

We assume that one bale is equal to 1,200 pounds of dry crop residue [51].  

Forest residue production costs are estimated using data from the Billion Ton Report. Logging residue 

harvesting costs for six forest stand types are modeled in five US regions assuming both clear cutting and 

thinning operations. The mix of stand type and cut option are unique to each county in each of the four 

future scenarios considered in our analysis. The harvesting costs range from 14.06 to 18.44 $ per dry ton 

of logging residue [25]. 
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Due to a lack of publicly available data, we do not estimate rendering costs for yellow grease and animal 

fats [31]. Instead, we use the market value of these products in this analysis to estimate production costs. 

Due to significant historical variability in the market prices of rendered animal fats and yellow grease, we 

treat these prices as uncertain and generate probability distributions based on historical data [52,53]. 

These probability distributions are shown in Table B-5. We assume FOG prices are uniform across the 

US in each Monte Carlo run case. We use the assumption from previous studies of zero-cost MSW 

feedstock [10,21].  

 Refinery Financial Assumptions 

Biorefinery reference capacities and capital cost estimates are obtained from literature and shown in Table 

B-9.  Capital cost estimates are adjusted to 2019 USD using the Chemical Engineering Plant Cost Index 

[54]. In the optimization analysis, we explore economies of scale by allowing potential refinery capacities 

to range from 1,000 to 10,000 barrels per day (BPD) of fuel products. A scaling factor of 0.7 is used for 

all biorefineries [55], while a scaling factor of 0.34 is used for crop oil production facilities [56]. The 

HEFA crop pathway requires both an oil extraction facility and a HEFA facility, which we assume are 

collocated in our optimization model. A piecewise linear approximation is applied to linearize the capital 

cost curves for use in the optimization model. The annual capital cost of each refinery is assumed to be 

13.8% of capital investment costs and is calculated using a 20-year refinery lifetime and a weighted 

average cost of capital (WACC) of 12.5%, which is the average WACC of four public biofuel companies: 

Gevo, Aemetis, Renewable Energy Group and Alto Ingredients [57].  

Based on the work of Bann et al. 2017, a beta PERT distribution that varies between 80% and 150% of 

the deterministic value was used to model uncertainty in capital cost estimates. Working capital is 5% of 

the fixed capital investment, and direct operating costs such as maintenance and overhead are 7.7% of the 

fixed capital investment [10]. We incorporate income tax by using the combined state and federal 

corporate income tax rates, and assume straight line depreciation for a 20-year refinery operating lifetime 

[58]. We account for location dependent cost differences in labor, equipment and materials by applying 
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county level area cost factors generated by the US Department of Defense [59]. Each refinery is assumed 

to operate for 350 days per year. Variable operating costs are calculated for each pathway using the inputs 

in Appendix A  and costs in Appendix B .  

 Transportation Costs 

Transportation costs per ton-mile via road, rail and barge are taken from the Bureau of Transportation 

Statistics [60]. We assume transportation costs are constant for all biomass on a total weight basis, and the 

cost of transporting all liquids is constant on a volumetric basis, following the assumptions in Parker et al 

2010 [14]. Pipeline tariff rates for transport of jet fuel are route dependent and are modeled in the Freight 

and Fuel Transportation Optimization Tool (FTOT) [61]. We also use a transloading cost from FTOT to 

account for costs associated with switching transport modes. Transloading costs and road, rail and barge 

transportation costs for solids and liquids are shown in Table B-10. 

 Land Use Change Costs 

Land conversion costs are separated into land establishment costs and vegetation clearing costs in 

accordance with the assumptions used in the Model of Agricultural Production and its Impact on the 

Environment (MAgPIE) [62]. MAgPIE is a global land use allocation model which calculates costs for 

the conversion of one land type to another. MAgPIE assumes a global establishment cost factor of 8000 

$/hectare, which is based on Kreidenweis et al 2018 [63]. The establishment cost accounts for the need 

for infrastructure and field preparation such as building farm roads, fencing, levelling and draining. 

MAgPIE also assumes a global clearing cost of 5 $/tonne of carbon stock reduction in the soil. We use the 

land use change emissions data from the AEZ-EF model to calculate the land conversion cost for each 

AEZ and LUC pairing, while accounting for establishment and clearing costs. LUC costs are then 

amortized over a 30-year period. 
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2.4 Transportation Modeling  

The transportation network from FTOT is used to model the distances and modes of transporting 

feedstock and jet fuel between counties. FTOT is a geospatially explicit model that uses a GIS-based 

multimodal network consisting of road, rail, water and pipeline networks in the US. FTOT also models 

intermodal facilities where mode transfers occur, and models tariff and capacity information for fuel 

product pipelines [61]. We use a shortest path algorithm, the modal transportation costs in Table B-10 and 

the network model from FTOT to determine the lowest cost routes for all possible origin and destination 

pairs of counties. We run this algorithm with the pipeline mode enabled when modeling jet fuel 

transportation, and disabled when modeling feedstock transportation. For transportation within a county, 

we assume road transport over a distance of two-thirds of the county radius, which is calculated using the 

county area [13].  

2.5 Jet Fuel Demand 

Future US jet fuel demand is modeled on an airport level and is constant in the four scenarios in this 

analysis. Commercial passenger flight traffic schedules from 2019 are taken from data from OAG, and 

separated into route-aircraft combinations [64]. We simulate fuel burn for each aircraft-route combination 

using the Aviation Emissions Inventory Code [65], and assume a 1% annual improvement in fuel burn 

across all aircraft-route combinations [66]. We project 2035 air traffic using the 2020 Boeing Commercial 

Market Outlook [2], which projects annual traffic growth by global region. We then calculate fuel burn 

totals by departure airport for the year 2035, and aggregate jet fuel demand to the county level. The total 

projected 2035 US jet fuel demand for scheduled passenger flights is 26.2 Billion gallons or 3.4 EJ.  

2.6 Supply Chain Optimization 

The objective of the optimization model is to minimize annual SAF supply chain costs that are composed 

of six costs: land use change costs (CL), feedstock production costs (CF), feedstock transportation costs 

(CTF), refinery related costs (CR), jet transportation costs (CTJ), and jet combustion related costs (CC) (Eq. 
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(1)). This model is similar to the renewable jet fuel supply chain model presented in Huang et al. 2019 

[13].  

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐿𝐿 + 𝐶𝐶𝐹𝐹 + 𝐶𝐶𝑇𝑇𝑇𝑇 + 𝐶𝐶𝑅𝑅 + 𝐶𝐶𝑇𝑇𝑇𝑇 + 𝐶𝐶𝐶𝐶  (1) 

The inputs and decision variables used in this model are shown in Table 2-7 and Table 2-8 respectively.  

Table 2-7. Inputs used in the optimization model. 

Symbol Description 
Pi Pastureland available for conversion to cropland in county i 
Sni Pastureland available for conversion to cropland assuming feedstock n in county i  
bni Availability of feedstock n in county i (known for residues, FOG and MSW) 
αnf  Allocation factor for feedstock n 
αr
p Allocation factor for pathway r 

cnil  Unit annual land use change cost in county i assuming feedstock n 

cnif  Unit production cost of feedstock n in county i   

cnijtf  Unit transportation cost for feedstock n from county i to county j 

cnjr  Unit refinery variable operating cost for feedstock n in county j 
cjk
ta Unit transportation cost of jet fuel from county j to county k 

enil  Unit annual land use change emissions in county i assuming feedstock n 

enif  Unit production emissions of feedstock n in county i   

enijtf  Unit transportation emissions for feedstock n from county i to county j 

enjr  Unit refinery related emissions for feedstock n in county j 
ejk
ta Unit transportation emissions of jet fuel from county j to county k 

ec Unit combustion emissions of jet fuel produced by the FT MSW pathway 
q Carbon cost 
yni Per acre crop yield of crop n in county i 
λll Minimum capacity limit of a refinery at capacity level l 
λl
u Maximum capacity limit of a refinery at capacity level l 
βn Feedstock to fuel conversion efficiency for feedstock n 
γn Feedstock to jet conversion efficiency for feedstock n 
Dk Jet fuel demand in county k 
Aj Capital cost area cost factor in county j 
xrl Fixed capital cost for a refinery at capacity level l for pathway r 
zrl Variable capital cost for a refinery at capacity level l for pathway r 
a Annual refinery cost factor 
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Table 2-8. Decision variables in the optimization model. 

Symbol Description 
lni Pastureland converted to cropland for feedstock n in county i 
tnijf  Amount of feedstock n transported from county i to county j 

tnija  Amount of SAF transported from county j to county k 

Rjrl
f  Biorefinery fuel capacity in county j at level l with pathway r 

Rjr
f  Total biorefinery fuel capacity in county j with pathway r 

Rjr
a  Total biorefinery jet capacity in county j with pathway r 

vjrl Binary variable indicating if there is a biorefinery in county j at level l using pathway r 
vjr Binary variable indicating if there is a biorefinery in county j using pathway r 
bni Availability of feedstock n in county i (unknown for crop feedstocks) 

 

The total amount of land converted in each county must be less than the available pastureland in that 

county (Eq. (2)). Additionally, since soil suitability requirements are unique to each crop and further limit 

land availability, the land converted for the purpose of cultivating each crop must be less than the crop-

specific pastureland available in each county (Eq. (3)). The land use change costs (CL) are allocated to jet 

fuel by the feedstock specific energy allocation factor 𝛼𝛼𝑛𝑛
𝑓𝑓. The land use change costs are also a function of 

the land converted to cropland for each crop, the county and crop specific land use change costs and 

emissions, and the cost of carbon (Eq. (4)).  

 � 𝑙𝑙𝑛𝑛𝑛𝑛
𝑛𝑛=1:10

≤ 𝑃𝑃𝑖𝑖 (2) 

 

 𝑙𝑙𝑛𝑛𝑛𝑛 ≤ 𝑆𝑆𝑛𝑛𝑛𝑛 (3) 

 

 𝐶𝐶𝐿𝐿 = � � 𝑙𝑙𝑛𝑛𝑛𝑛𝛼𝛼𝑛𝑛
𝑓𝑓(𝑐𝑐𝑛𝑛𝑛𝑛𝑙𝑙 + 𝑒𝑒𝑛𝑛𝑛𝑛𝑙𝑙 ∗ 𝑞𝑞)

𝑛𝑛=1:10𝑖𝑖

 (4) 
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The feedstocks are numbered according to the order presented in Table 2-2, where feedstocks 1-10 

represent the cultivated energy crops. The availability of energy crop feedstocks in each county is 

dependent on the land converted for those crops and their county specific yields (Eq. (5)). The availability 

of the waste and residue feedstocks are scenario specific and are assumed as inputs to the optimization 

model. The amount of each feedstock transported from supply counties to refinery counties must be less 

than the availability of each feedstock in the supply counties (Eq. (6)). The total feedstock production cost 

(CF) is then a function of the total amount of each feedstock transported, feedstock energy allocation 

factors, unit feedstock production costs, unit feedstock production emissions and the cost of carbon (Eq. 

(7)).  

 𝑏𝑏𝑛𝑛𝑛𝑛 = 𝑙𝑙𝑛𝑛𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛 ,     ∀𝑛𝑛 = 1: 10 (5) 

 

 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 ≤ 𝑏𝑏𝑛𝑛𝑛𝑛 (6) 

 

 𝐶𝐶𝐹𝐹 = ���𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛼𝛼𝑛𝑛

𝑓𝑓(𝑐𝑐𝑛𝑛𝑛𝑛
𝑓𝑓 + 𝑒𝑒𝑛𝑛𝑛𝑛

𝑓𝑓 𝑞𝑞)
𝑗𝑗𝑖𝑖𝑛𝑛

 (7) 

 

The total feedstock transportation cost (CTF) is a function of the total amount of each feedstock 

transported, feedstock allocation factors, the costs and emissions associated with transporting each 

feedstock from supply counties to refinery counties, and the cost of carbon (Eq. (8)). 

 𝐶𝐶𝑇𝑇𝑇𝑇 = ���𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛼𝛼𝑛𝑛

𝑓𝑓(𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛
𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡 𝑞𝑞)
𝑗𝑗𝑖𝑖𝑛𝑛

 (8) 
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The model uses a piecewise linear approximation to estimate capital investment costs for each type of 

refinery at three capacity levels: 1,000-4,000 BPD, 4,000-7,000 BPD, and 7,000-10,000 BPD. If a 

refinery using pathway r exists in county j at capacity level l, the total fuel capacity must be between the 

minimum and maximum capacities for that level (Eq. (9)). The feasible feedstock and pathway 

combinations assumed in this analysis are shown in Table 2-2. We assume that only one refinery of each 

pathway may exist in each county (Eq. (10)), and therefore the sum of refinery capacities at all levels for 

pathway r in county j must equal the total capacity for that pathway and county (Eq. (11)). The total fuel 

produced at a refinery using pathway r is equal to the sum of compatible feedstocks transported to that 

county and the feedstock specific feedstock-to-fuel conversion efficiency (Eq. (12)-(17)). We assume that 

in each optimization run case, the fuel conversion efficiency for each pathway is uniform for all potential 

refineries. The total fuel capacity is used, as opposed to the jet capacity, because reference capital costs 

and capacities from previous studies are expressed in terms of total fuel capacity. Additionally, this 

allows the capacity levels to remain uniform between pathways even though the output product slate is 

unique to each pathway.  

 𝜆𝜆𝑙𝑙𝑙𝑙𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑓𝑓 ≤ 𝜆𝜆𝑙𝑙𝑢𝑢𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 (9) 

 

 �𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗
𝑙𝑙

= 𝑣𝑣𝑗𝑗𝑗𝑗 (10) 

 

 �𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑓𝑓

𝑙𝑙

= 𝑅𝑅𝑗𝑗𝑗𝑗
𝑓𝑓  (11) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛽𝛽𝑛𝑛

𝑖𝑖𝑛𝑛=1:3

= 𝑅𝑅𝑗𝑗1
𝑓𝑓  (12) 
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 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛽𝛽𝑛𝑛

𝑖𝑖𝑛𝑛=4:6

= 𝑅𝑅𝑗𝑗2
𝑓𝑓  (13) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛽𝛽𝑛𝑛

𝑖𝑖𝑛𝑛=7:8

= 𝑅𝑅𝑗𝑗3
𝑓𝑓  (14) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛽𝛽𝑛𝑛

𝑖𝑖𝑛𝑛=9:12

= 𝑅𝑅𝑗𝑗4
𝑓𝑓  (15) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛽𝛽𝑛𝑛

𝑖𝑖𝑛𝑛=13:14

= 𝑅𝑅𝑗𝑗5
𝑓𝑓  (16) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛽𝛽𝑛𝑛

𝑖𝑖𝑛𝑛=15

= 𝑅𝑅𝑗𝑗6
𝑓𝑓  (17) 

 

The total jet fuel produced at a refinery using pathway r is equal to the sum of compatible feedstocks 

transported to that county and the feedstock specific feedstock-to-jet conversion efficiency (Eq. (18)-

(23)). The jet fuel transported from each county must be equal to the amount of jet fuel produced by each 

refinery in that county (Eq. (24)). Additionally, the total amount of jet fuel transported to each county k 

must meet or exceed the demand (Eq. (25)). 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛾𝛾𝑛𝑛

𝑖𝑖𝑛𝑛=1:3

= 𝑅𝑅𝑗𝑗1𝑎𝑎  (18) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛾𝛾𝑛𝑛

𝑖𝑖𝑛𝑛=4:6

= 𝑅𝑅𝑗𝑗2𝑎𝑎  (19) 
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 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛾𝛾𝑛𝑛

𝑖𝑖𝑛𝑛=7:8

= 𝑅𝑅𝑗𝑗3𝑎𝑎  (20) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛾𝛾𝑛𝑛

𝑖𝑖𝑛𝑛=9:12

= 𝑅𝑅𝑗𝑗4𝑎𝑎  (21) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛾𝛾𝑛𝑛

𝑖𝑖𝑛𝑛=13:14

= 𝑅𝑅𝑗𝑗5𝑎𝑎  (22) 

 

 � �𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛾𝛾𝑛𝑛

𝑖𝑖𝑛𝑛=15

= 𝑅𝑅𝑗𝑗6𝑎𝑎  (23) 

 

 �𝑡𝑡𝑗𝑗𝑗𝑗𝑎𝑎

𝑘𝑘

= �𝑅𝑅𝑗𝑗𝑗𝑗𝑎𝑎

𝑟𝑟

 (24) 

 

 �𝑡𝑡𝑗𝑗𝑗𝑗𝑎𝑎

𝑗𝑗

≥ 𝐷𝐷𝑘𝑘 (25) 

 

The annual refinery related costs (CR) are a function of operating costs and annual capital related costs 

(Eq. (26)). The operating costs are a function of the total amount of feedstock transported to county j, 

feedstock allocation factors, the cost and emissions associated with converting one unit of feedstock to jet 

fuel, and the cost of carbon (Eq. (27)). Annual refinery capital costs are linearly related to refinery capital 

investment costs by the input a, which is the sum of the annual annuity factor (13.8%), working capital 

(5%) and direct operating cost (7.7%) assumptions. Refinery capital investment costs at each capacity 

level are the sum of fixed and variable capital related costs which are a result of the piecewise linear 

approximation to the capital cost curve. Annual capital related costs are also a function of the county-
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specific area cost factor, and the pathway specific allocation factor, which is the average allocation factor 

of the feedstocks used by each pathway (Eq. (28)). 

 𝐶𝐶𝑅𝑅 = 𝑂𝑂 + 𝐼𝐼 (26) 

 

 𝑂𝑂 = ���𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛼𝛼𝑛𝑛

𝑓𝑓(𝑐𝑐𝑛𝑛𝑛𝑛𝑟𝑟 + 𝑒𝑒𝑛𝑛𝑛𝑛𝑟𝑟 𝑞𝑞)
𝑛𝑛𝑖𝑖𝑗𝑗

 (27) 

 

 𝐼𝐼 = ���𝛼𝛼𝑟𝑟
𝑝𝑝𝐴𝐴𝑗𝑗�𝑥𝑥𝑟𝑟𝑟𝑟𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗

𝑓𝑓 𝑧𝑧𝑟𝑟𝑟𝑟�𝑎𝑎
𝑙𝑙𝑗𝑗𝑟𝑟

 (28) 

 

The jet transportation cost (CTJ) is a function of the amount of jet fuel transported, the costs and emissions 

associated with transporting jet fuel from refinery counties to demand counties, and the cost of carbon 

(Eq. (29)). 

 𝐶𝐶𝑇𝑇𝑇𝑇 = ��𝑡𝑡𝑗𝑗𝑗𝑗𝑎𝑎 (𝑐𝑐𝑗𝑗𝑘𝑘𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡𝑞𝑞)
𝑘𝑘𝑗𝑗

 (29) 

 

The jet combustion cost (CC) is a result of non-biogenic combustion emissions due to jet fuel produced 

via the FT MSW pathway. A portion of the carbon in MSW is non-biogenic, therefore a percentage of 

combustion emissions from FT MSW SAF must be considered in this analysis. The non-biogenic 

proportion of carbon in MSW is treated as stochastic and the associated probability distribution is taken 

from Suresh et al. 2018 [21]. The jet combustion cost is a function of the total MSW transported to 

refineries, the feedstock-to-jet conversion efficiency, the emissions associated with the combustion of the 

non-biogenic portion of MSW derived jet fuel, and the cost of carbon (Eq. (30)).  
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 𝐶𝐶𝐶𝐶 = ��𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
𝑓𝑓 𝛾𝛾𝑛𝑛𝑒𝑒𝑐𝑐𝑞𝑞

𝑗𝑗𝑖𝑖

,     𝑛𝑛 = 15 (30) 

 

To reduce the overall problem size, we restrict feedstock transportation to routes in which the unit 

feedstock transportation cost is below 50 $/short ton. This corresponds to a maximum transportation 

distance of 240 miles if the feedstock is transported only via trucks. This is in line with the ethanol 

industry, where most ethanol plants in the US are located within 50 miles of feedstock-producing areas 

[67]. We do not restrict jet fuel transportation.  

The uncertain inputs described in previous sections are modeled stochastically using a Monte Carlo 

simulation in MATLAB. The MATLAB model was run 100 times for each of the four scenarios 

considered and sampled values from each probability distribution, which provided the input values 

necessary for the supply chain optimization. The optimization model was then run to meet 50% and 25% 

of demand in Scenario 1, and 25% of demand in Scenarios 2-4. Additionally, for each of these scenarios 

and demand levels, a carbon emissions cost of 0 $/tonne CO2e and 100 $/tonne CO2e are evaluated. This 

results in a total of 1,000 optimization model runs. The model is developed in the Julia language version 

1.0.5 and solved using Gurobi 9.1.1 with the optimality gap set at 3%.  
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Chapter 3  Results 

3.1 Potential SAF Production 

We first assess the feasibility of meeting 2035 US jet fuel demand by calculating the maximum potential 

SAF production in 100 run cases of each of the four scenarios. In each run case, we assume all available 

residues and waste products are converted to jet fuel, and all available pastureland meeting crop 

suitability conditions in each county is converted to cropland. We assume the crop yielding the most jet 

fuel in each county is cultivated for this part of the analysis. The mean and 95% confidence intervals of 

SAF production potential from 100 runs of each of the four scenarios considered are shown in Table 3-1.  

Table 3-1. Mean and 95% confidence interval of potential SAF production. 

Scenario Potential SAF Production (Billion Gallons) 
S1 20.35 [18.37-23.19] 
S2 10.78 [9.43-12.35] 
S3 9.42 [8.18-10.74] 
S4 10.40 [9.15-11.81] 

 

Considering the projected 2035 US jet fuel demand is 26.2 billion gallons, it is not feasible to meet all of 

US jet fuel demand with SAF under the set of assumptions considered in this analysis. Scenario 1 

produces the most SAF due to the 20% pastureland availability assumption and the lower crop suitability 

threshold. The average fraction of total 2035 jet fuel demand that can be met in each of the four scenarios 

is 77.6%, 41.1%, 35.9% and 39.6% respectively. Using S1 inputs, 65% of run cases can meet 75% of 

2035 US jet fuel demand, and 100% of S1 run cases can meet 50% of demand. However, zero run cases 

using S2, S3 or S4 inputs can meet 50% of demand. The uncertainty in SAF production potential in run 

cases from each scenario is due to irrigated and rainfed crop yield uncertainties and feedstock-to-jet 

conversion efficiency uncertainties. The average amount of SAF produced by each feedstock type in each 

scenario when production is maximized is shown in Figure 3-1. An average of 6.42, 6.08, 6.05 and 6.10 

billion gallons of SAF is derived from residues and wastes in scenarios S1, S2, S3, and S4 respectively. 
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Additionally, 81.2, 30.7, 21.6, and 27.8 million acres of pastureland is converted to cropland when SAF 

production is maximized in scenarios S1, S2, S3, and S4 respectively. 

 

Figure 3-1. Average SAF production potential in each scenario. 

3.2 Baseline Optimization Scenario Results 

In this section, we present the results from the supply chain optimization using baseline S1 inputs at both 

carbon costs and both levels of demand.  

 Carbon Pricing Sensitivity Results 

In this section we compare the optimization results with and without a carbon emissions cost from S1 

inputs when the demand at each county is 50% of projected 2035 demand. The averages and 95% 

confidence intervals of the costs and emissions along each step of the optimized supply chain for each of 

the 100 cases without a carbon cost and the 100 cases with a carbon cost using S1 inputs at 50% demand 

are shown in Table 3-2. We note that supply chain costs do not include carbon emissions costs.  
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 Table 3-2. Mean and 95% confidence intervals of the costs and emissions along the SAF supply chain 
using S1 inputs with and without carbon costs. 

 0 $/tonne CO2e 100 $/tonne CO2e 
 Costs ($ Billion) Emissions (Million 

tonnes CO2e) 
Costs ($ Billion) Emissions (Million 

tonnes CO2e) 
Land use change 2.4 [2.1-2.8] 30.1 [23.7-36.3] 1.8 [1.4-2.3] 16.4 [7.3-24.3] 
Feedstock 
production 

13.3 [11.6-16.0] 24.7 [22.6-28.1] 11.3 [8.7-15.1] 19.6 [15.5-23.4] 

Feedstock 
transportation 

1.6 [1.2-2.2] 1.0 [0.8-1.3] 1.7 [1.3-2.4] 1.1 [0.9-1.4] 

Refinery 
costs/emissions 

18.7 [15.1-22.2] 27.6 [20.2-34.3] 22.7 [19.6-26.6] 16.7 [7.7-25.1] 

Jet transportation 1.25 [1.19-1.30] 0.83 [0.80-0.87] 1.26 [1.21-1.30] 0.82 [0.79-0.84] 
Jet combustion  8.0 [7.0-8.9]  8.0 [7.0-8.9] 
Total 37.2 [31.8-44.0] 92.2 [78.3-107.4] 38.7 [33.8-44.6] 62.6 [40.7-81.3] 

 

The average per-unit SAF emissions across the entire supply chain for the 100 cases without a carbon cost 

and the 100 cases with a carbon cost are 54.1 gCO2e/MJ and 36.6 gCO2e/MJ respectively, while the 

average unit SAF cost is 0.75 $/L and 0.78 $/L respectively. These values are 39% and 59% lower than 

the baseline petroleum-derived jet fuel life cycle emissions of 89.0 gCO2e/MJ, and 50% and 56% higher 

than the 2019 market jet fuel price of 0.50 $/L [7,68]. The average unit GHG abatement cost for S1 cases 

without a carbon cost meeting 50% of demand is 210 $/tonne CO2e, while the average abatement cost for 

cases with a 100 $/tonne carbon cost is 158 $/tonne CO2e.  

These unit cost and unit emission values and the results from Table 3-2 indicate that the introduction of a 

carbon cost in the optimization drives the optimal supply chain towards lower emission feedstocks and 

pathways that are more capital intensive. When a carbon cost of 100 $/tonne is introduced, the average 

total land use change emissions, feedstock production emissions and refinery related emissions decrease 

by 45.5%, 20.6% and 39.5% respectively, while the average total refinery related costs increase by 

21.4%. The average avoided GHG emissions from replacing 50% of 2035 conventional jet fuel demand 

with SAF is 59.4 million tonnes and 89.2 million tonnes in cases without and with a 100 $/tonne carbon 

cost respectively.  
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Histogram plots showing the distribution of total supply chain costs, total supply chain emissions and unit 

GHG abatement costs for both of these cases are shown in Figure C-1 in Appendix C . To evaluate the 

sensitivity of the results to more optimization run cases, we compared the results of 100 runs of the S1 

50% demand zero carbon cost case with 100 additional runs of the same scenario and found that the 

average total supply chain cost, total supply chain emissions and unit GHG abatement cost changed by 

less than one percent. The distributions of these results for the 200 runs is shown in Figure C-2.  

The optimal supply chain configurations for one representative run case using Scenario 1 inputs, meeting 

50% of demand and a carbon cost of 0 $/tonne and 100 $/tonne are shown in Figure 3-2. These maps 

show the optimal location of biorefineries, and the counties in which land is converted from pastureland 

to cropland. The maps also show the pathways each biorefinery uses and the dominant crop grown on the 

converted land in each county. A map of the optimal supply chain for this run case including airport 

locations is shown in Figure C-3.  
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Figure 3-2. Optimal supply chain configurations for one run using S1 inputs meeting 50% of demand 

without (a) and with (b) a carbon emissions cost. 

Although Figure 3-2 is only representative of one set of random S1 inputs, the maps demonstrate that 

when a carbon cost is introduced into the optimization problem, the minimum cost optimal supply chain 

uses different feedstocks and pathways to fulfill jet fuel demand. This is further shown in Figure 3-3 

(a) 

(b) 
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which shows the distribution of SAF produced by each feedstock in each of the 100 optimization runs 

with and without a carbon cost.  

The results in Figure 3-3 also demonstrate that there is uncertainty in the optimal SAF supply chain 

configuration in both scenarios with and without a carbon emissions cost, due to the uncertainty 

associated with the optimization model inputs such as crop yields and refinery capital costs. Additionally, 

despite the uncertainty in these key inputs, the results in Figure 3-3 show that the introduction of a carbon 

cost reduces uncertainty in the quantity of SAF produced via the FT pathway with crop residues. The 

standard deviation of the volume of SAF produced with crop residue in the 100 cases with a carbon cost 

is 31% lower than the standard deviation in the cases without a carbon cost.  

 

Figure 3-3. Distribution of SAF produced from each feedstock in S1 50% demand optimization cases. 

In both cases with and without a carbon cost, the most SAF is produced via the ATJ pathway using corn 

as the feedstock, with an average of 48.2% and 31.8% of SAF produced via corn ATJ. When a carbon 

cost is introduced, the optimization drives SAF production towards the FT biomass pathway. This is 

because the FT biomass pathway has lower life cycle emissions but higher capital costs than the other 

pathways considered in this analysis. Averages and 95% confidence intervals for average unit costs and 

unit emissions for SAF produced by each pathway across the entire US supply chain in each of the 100 

runs using S1 inputs at 50% demand and no carbon cost are shown in Table C-1.  
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The average and 95% confidence intervals of SAF production from each pathway in cases with and 

without a carbon cost is shown in Table 3-3. The results in Table 3-3 and Figure 3-3 show that the amount 

of MSW and waste greases used for SAF production is maximized regardless of carbon emissions 

pricing, due to the low costs and low emissions associated with the FT MSW and HEFA FOG pathways. 

The average refinery size across all pathways and both carbon costs is 9700 BPD, which indicates that the 

optimization takes advantage of economies of scale to reduce overall costs. The median number of 

refineries used in the cases with and without a carbon cost is 323 and 271 respectively. The cases with a 

carbon cost require more refineries because the fraction of jet fuel produced via the FT Biomass pathway 

is lower than that of the ATJ pathway. More information about the number of refineries built in each 

scenario is shown in Table C-2. Average state-level SAF production sorted by pathway from 100 

optimization runs using S1 inputs at 50% of projected demand with no carbon cost is shown in Table C-3.  

Table 3-3. Average and 95% confidence interval of SAF produced from each pathway in S1 50% demand 
optimization results. 

 0 $/tonne CO2e 100 $/tonne CO2e 
Pathway SAF produced (Billion gallons) SAF produced (Billion gallons) 
ATJ 7.33 [4.32-9.92] 4.52 [1.97-7.31] 
HEFA 
Crop 

0.60 [0.00-1.58] 0.30 [0.00-0.73] 

SIP 0.40 [0.00-1.78] 0.43 [0.00-2.09] 
FT 
Biomass 

2.44 [0.15-5.12] 5.52 [2.95-8.04] 

HEFA 
FOG 

0.40 [0.31-0.43] 0.39 [0.31-0.43] 

FT MSW 1.95 [1.84-2.04] 1.95 [1.84-2.04] 
 

Additionally, the increase in SAF production from miscanthus, switchgrass, and crop residue drives the 

45.5% decrease in LUC emissions in the cases with a carbon cost. There are no LUC emissions associated 

with crop residue production, and the LUC emissions associated with converting pastureland to cropland 

for switchgrass or miscanthus are significantly lower than the LUC emissions associated with converting 

pastureland to cropland for annual crops [43]. Between cases with no carbon cost and cases with a 100 
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$/tonne carbon cost, the average total amount of pastureland converted to cropland decreases 13.3% from 

51.3 million acres to 44.5 million acres. This represents a 15.0% or a 13.0% increase in cultivated land 

area in 2035, based on the USGS projections [22].  

 Supply Chain Scaling Sensitivity Results 

The mean and 95% confidence intervals of results from 100 optimization runs using S1 inputs meeting 

25% and 50% of demand with and without a carbon cost are summarized in Table 3-4.  

Table 3-4. Mean and 95% confidence intervals of optimization results using S1 inputs. 

 0 $/tonne CO2e 100 $/tonne CO2e 
 25% Demand 50% Demand 25% Demand 50% Demand 
Costs ($B) 15.4 [13.4-17.8] 37.2 [31.8-44.0] 16.5 [14.4-19.2] 38.7 [33.8-44.6] 
Emissions (Million 
tonnes CO2e) 

43.3 [33.1-49.6] 92.2 [78.3-107.4] 23.6 [13.1-38.2] 62.6 [40.7-81.3] 

Avoided 
Emissions (Million 
tonnes CO2e) 

32.6 [26.3-42.7] 59.4 [44.2-73.3] 52.3 [37.7-62.7] 89.2 [70.4-110.9] 

Average Unit Cost 
($/L) 

0.62 [0.54-0.72] 0.75 [0.64-0.89] 0.67 [0.58-0.77] 0.78 [0.68-0.90] 

Average Unit 
Emissions 
(gCO2e/MJ) 

50.8 [38.9-58.2] 54.1 [46.0-63.0] 27.7 [15.4-44.8] 36.6 [23.9-47.7] 

Average Unit 
Abatement Cost 
($/tonne CO2e) 

95 [29-199] 210 [121-353] 79 [40-137] 157 [94-239] 

 

The average total avoided emissions in the 25% demand cases is over half of the average avoided 

emissions in the 50% demand cases. This indicates that the feedstocks and pathways used to meet the first 

25% of demand have both lower costs and lower life cycle emissions than those used to meet the next 

25% of demand. This can also be determined by comparing the average unit abatement costs of the 25% 

demand cases with the 50% demand cases.  
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The optimization cases meeting 25% of the jet fuel demand with a 100 $/tonne carbon cost achieve on 

average 88% of the total avoided emissions in the cases with no carbon cost meeting 50% of demand.  

This emphasizes the benefit of introducing a carbon cost into the SAF supply chain. As mentioned 

previously, the carbon emissions cost drives the optimization towards feedstocks and pathways with 

lower life cycle emissions. This is shown in Figure 3-4, which shows the average SAF production from 

each feedstock group in each of the S1 scenarios.  

 

Figure 3-4. Average SAF production from feedstock groups in optimized supply chains using S1 inputs at 

both demand levels with and without a carbon emissions cost. 

The optimal supply chain configurations for one representative run case using Scenario 1 inputs meeting 

25% of demand and a carbon cost of 0 $/tonne and 100 $/tonne are shown in Figure C-4. The average 

total pastureland converted to cropland in the cases without a carbon cost increases 158% from 19.9 

million acres to 51.3 million acres when demand is increased from 25% to 50% of projected jet demand. 

In the cases with the carbon cost, the average total pastureland converted to cropland increases 163% 

from 16.9 million acres to 44.5 million acres.  
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3.3 Alternative Scenario Results 

In this section, we present the results from the supply chain optimization using S2, S3 and S4 inputs 

meeting 25% of demand with no carbon emissions cost. As shown in Table 3-1, Scenarios 2-4 are unable 

to meet 50% of 2035 projected jet fuel demand. Therefore, the supply chain optimization was only run 

with demand set at 25% of projected demand for these scenarios. The mean and 95% confidence intervals 

of results from 100 optimization runs using S2, S3 and S4 inputs meeting 25% of demand without a 

carbon cost are summarized in Table 3-5.  

Table 3-5. Mean and 95% confidence intervals of optimization results using S2, S3 and S4 inputs meeting 
25% of demand with no carbon cost. 

Scenario S2 S3 S4 
Costs ($B) 17.6 [15.3-20.7] 17.6 [15.4-20.6] 17.3 [15.1-20.3] 
Emissions (Million 
tonnes CO2e) 

35.2 [22.4-46.6] 29.6 [20.6-39.3] 34.0 [22.0-45.2] 

Avoided Emissions 
(Million tonnes CO2e) 

40.7 [29.3-53.4] 46.2 [36.5-55.3] 41.8 [30.7-53.9] 

Average Unit Cost 
($/L) 

0.71 [0.62-0.83] 0.71 [0.62-0.83] 0.70 [0.61-0.82] 

Average Unit 
Emissions (gCO2e/MJ) 

41.3 [26.3-54.6] 34.8 [24.1-46.1] 40.0 [25.8-53.0] 

Average Unit 
Abatement Cost 
($/tonne CO2e) 

128 [74-205] 112 [66-177] 118 [67-191] 

 

The land use restrictions in the S2, S3 and S4 scenarios cause the supply chain optimization to convert 

less pastureland to cropland and use more crop residues and forestry residues, which is similar to the 

impact of imposing a carbon cost on the supply chain. Compared to the S1 results at the same demand 

level, the S2, S3 and S4 results have higher costs but lower emissions, resulting in higher average unit 

abatement costs. The average unit SAF costs from the S1 scenario, which assumes up to 20% of 

pastureland may be converted to cropland, is 13% lower than the unit SAF costs from the S3 scenario, 

which is the most restrictive scenario in terms of land availability. However, the unit emissions from the 
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S3 scenario are 31% lower than the unit emissions from the S1 scenario. The increase in SAF production 

from residue products is shown in Figure 3-5. 

 

Figure 3-5. Average SAF production from each feedstock group in optimized supply chains using S1, S2, 

S3 and S4 inputs meeting 25% of demand with no carbon cost. 

The average total area of pastureland converted to cropland in the S2, S3 and S4 scenarios are 16.5, 13.8 

and 15.6 million acres respectively. Compared to the average of the S1 scenarios meeting 25% of jet fuel 

demand, this represents up to a 31% reduction in land use change. Additionally, the land use conversion 

restrictions imposed in the S2, S3 and S4 scenarios causes the geographic extent of land use change to 

expand compared to the results from the S1 scenario. The average number of counties with a nonzero 

amount of pastureland converted to cropland in the S1, S2, S3 and S4 scenarios is 1003, 1976, 1910 and 

1962 respectively. This is shown in the maps presented in Figure C-5 in Appendix C .  

Results from the supply chain optimization using S2, S3 and S4 inputs meeting 25% of demand with a 

100 $/tonne carbon emissions cost are shown in Figure C-6 and Table C-4 in Appendix C . In all cases, 

the introduction of a carbon emissions cost causes higher supply chain costs, and lower supply chain 

emissions by producing more SAF via the FT Biomass pathway, which results in lower land use change 



44 
 

emissions, lower feedstock and refinery related emissions, and higher refinery related capital costs. 

Additionally, in all cases the amount of SAF produced from MSW and FOG is maximized, with 

differences between scenarios caused by variations in 2035 population projections.  
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Chapter 4  Conclusions 
This study quantifies the potential volume of SAF that can be produced in the US in the year 2035 while 

evaluating uncertainty in key inputs. The results from this analysis indicate that under a baseline set of 

assumptions, an average of 78% of 2035 US jet fuel demand can be met with SAF, requiring complete 

utilization of available waste and residue feedstocks.  

This study is the first to optimize the US SAF supply chain using spatially resolved cost and emissions 

inputs while incorporating regional stochasticity in selected variables. We developed a three-stage supply 

chain optimization model, and used Monte Carlo simulations to capture uncertainty in the overall supply 

chain costs and emissions, and optimal feedstock and pathway choices. Under a baseline set of 

assumptions, when 50% of 2035 US demand is offset, SAF is produced with 50% higher costs and 39% 

lower emissions than conventional jet fuel. The results also demonstrate that there is uncertainty in the 

optimal SAF supply chain configuration due to the uncertainty associated with the optimization model 

inputs such as crop yields and refinery capital costs. 

The results from this analysis demonstrate that policies have the ability to impact overall costs and 

emissions as well as the feedstocks and pathways used in a potential US SAF supply chain.  In all 

scenarios, the introduction of a 100 $/tonne CO2e carbon emissions cost caused the optimal supply chains 

to reduce emissions and increase costs by converting less pastureland to cropland, and by using more crop 

residues, forestry residues and lignocellulosic crops for SAF production.  The introduction of stricter land 

use restrictions caused similar changes in the optimal supply chains. Additionally, this analysis 

demonstrates that an increase in a SAF production mandate, from 25% to 50% of 2035 conventional jet 

fuel demand, results in 21% higher average unit costs, 6% higher unit emissions and 121% higher unit 

abatement costs.  

Future work may consider additional fuel conversion pathways, and may allow feedstocks to be processed 

using multiple pathways. Further, the framework developed in this analysis can be expanded to evaluate 

the system wide impacts of additional policies on the SAF supply chain, such as feedstock subsidies and 
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output based incentives [69]. Finally, future work may expand the life cycle analysis to consider 

biogeophysical effects, such as the changes in contrail radiative forcing associated with biofuel use, or the 

climate impacts of surface albedo due to land use change.  
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 Pathway Inputs and Outputs 
 

Table A-1. Pathway Inputs and Outputs for ATJ pathway via Ethanol. 

   Corn/Sorghum Wheat Source 

Fermentation 
to Ethanol 

Inputs 

Alpha Amylase 
[g/MJEtOH] 

0.031 0.114 

[17,18] 

Gluco Amylase 
[g/MJEtOH] 

0.067  

Yeast 
[g/MJEtOH] 

0.034 0.0002 

Sulfuric Acid 
[g/MJEtOH] 

0.058 0.76 

Ammonia 
[g/MJEtOH] 

0.22  

Sodium 
Hydroxide 
[g/MJEtOH] 

0.28 0.76 

Calcium Oxide 
[g/MJEtOH] 

0.13  

Natural Gas 
[MJ/MJEtOH] 

0.319 0.393 

Electricity 
[MJ/MJEtOH] 

0.033  

Outputs 

Ethanol 
[MJEtOH/dry ton 
feedstock] 

Beta PERT 
[9380, 9552, 
9725] 

Uniform 
[6349, 
8720] 

[6,17,18,70] 
DDGS [ton/dry 
US ton 
feedstock] 

0.340 0.345 

Electricity [MJ 
/dry ton 
feedstock] 

 588 

Alcohol 
upgrading to 
drop-in fuels 

Inputs 

Ethanol 
[MJEtOH/MJJet] 

Beta PERT 
[1.075, 1.434, 2.509] 

[17,71] 

Electricity 
[MJ/MJJet] 

0.033 

Hydrogen 
[g/MJJet] 

0.67 

ZSM-5 catalyst 
[g/MJJet] 

0.11 

Outputs 

Jet [MJJet] 1 

[17] 
Diesel 
[MJDiesel/MJJet] 

0.12 

Gasoline 
[MJGasoline/MJJet] 

0.21 
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Table A-2. Pathway Inputs and Outputs for HEFA crop and HEFA FOG pathways. 

   Soybean Canola Sunflower FOG Source 

Oil 
Extraction 

Inputs 

Natural Gas 
[MJ/ dry ton 
feedstock] 

1203.3 1022.1 0  

[7,17,19] 

Electricity [MJ/ 
dry ton 
feedstock] 

168.7 172.7 172.7  

Hexane 
[kg/ dry ton 
feedstock] 

0.477 2.013 2.013  

Outputs 

Crop Oil 
[ton/dry ton 
feedstock] 

0.215 0.464 0.460  

Meal [ton/ton 
oil] 

3.5 1.112 1.058  

HEFA 
processing 

Inputs 

Oil/FOG  
[lb./ MJJet] 

Beta PERT 
[0.093, 0.098, 0.124] 

[5,11] 

Natural Gas 
[MJ/ lb. oil] 

3.39 

Electricity 
[MJ/ lb. oil] 

0.10 

Outputs 

Jet [MJJet] 1 
Diesel 
[MJDiesel/MJJet] 

0.470 

Gasoline 
[MJGasoline/MJJet] 

0.143 

Lightends 
[MJLightends/MJJet] 

0.201 
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Table A-3. Pathway Inputs and Outputs for SIP Pathway. 

  Sugarcane Sugarbeet Source 

Inputs 

Lime 
[kg/ ton dry 
feedstock] 

2.935  

[4,7,72] 

Sulfuric Acid 
[g/ MJJet] 

 0.155 

Sodium Carbonate 
[g/ MJJet] 

 0.045 

Hydrochloric Acid 
[g/ MJJet] 

 0.022 

Formaldehyde 
[g/ MJJet] 

 0.134 

Natural Gas 
[MJ/ MJJet] 

 0.046 

Hydrogen  
[g/ MJJet] 

0.911 0.911 

Outputs 

Jet [MJJet /dry ton 
feedstock] 

Beta PERT 
[1974, 3034, 
4680] 

Beta PERT 
[3581, 4600, 
4958] 

Electricity [MJ/ dry 
ton feedstock] 

1032 1867 

 

Table A-4. Pathway Inputs and Outputs for FT Biomass Pathway 

  All FT Biomass 
feedstock 

Source 

Outputs 

Fuel Product 
[MJFuel / 
MJfeedstock] 

Beta PERT 
[0.42, 0.45, 0.52] 

[20] 
Jet 
[MJJet / MJFuel] 

0.25 

Diesel [MJDiesel/ 
MJFuel] 

0.55 

Gasoline 
[MJGasoline/ MJFuel] 

0.20 
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Table A-5. Pathway Inputs and Outputs for FT MSW Pathway 

  MSW Source 

Outputs 

Fuel Products 
[MJFuel / MJMSW] 

Beta PERT 
[0.4970, 0.5354, 
0.5716] 

[21,73] 
Jet 
[MJJet/MJFuel] 

0.126 

Diesel 
[MJDiesel/MJFuel] 

0.762 

Gasoline 
[MJGasoline/MJFuel] 

0.112 
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 Additional Model Inputs 
 

Table B-1. 2035 Electricity Emissions Factors for US Census Regions. 

Region Emissions Factor (gCO2e/MJ) 
US Average 86.5 
New England 25.7 
Middle Atlantic 70.1 
South Atlantic 73.9 
East North Central 128.8 
East South Central 96.1 
West North Central 129.3 
West South Central 97.7 
Mountain 103.7 
Pacific 23.1 

 

Table B-2. 2035 hydrogen production mixes, costs and emissions factors. 

Production Case Production Method Emissions Factor 
(gCO2e/MJ) 

Cost ($/kg H2) 

Current  100% Natural Gas 94.66 1.26 
Reference 87.5% Natural Gas 

12.5% Renewables 
85.94 1.39 

Carbon Constraint 10% Natural Gas 
90% Renewables 

31.91 2.24 
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Table B-3. Crop enterprise budgets used in this analysis. 

Crop States Source 
Canola Kansas, Minnesota, North Dakota, Texas, Wisconsin [74–78] 
Corn Alabama, Arkansas, California, Colorado, Georgia, Idaho, 

Indiana, Kansas, Kentucky, Louisiana, Maryland, Minnesota, 
Mississippi, Missouri, Nebraska, North Carolina, North 
Dakota, Ohio, South Dakota, Tennessee, Texas 

[76–96] 

Miscanthus Illinois, Iowa, Pennsylvania [97], [98], [99] 
Sorghum Arkansas, California, Colorado, Georgia, Kansas, Kentucky, 

Louisiana, Maryland, Mississippi, Missouri, Nebraska, North 
Carolina, Tennessee, Texas 

[76,77,79–87,89,90,93] 

Soybean Alabama, Arkansas, Colorado, Georgia, Indiana, Kansas, 
Kentucky, Louisiana, Maryland, Minnesota, Mississippi, 
Missouri, Nebraska, North Carolina, North Dakota, Ohio, 
South Dakota, Tennessee, Texas 

[76–91,94–96] 

Sugarbeet Colorado, Idaho, Minnesota, Nebraska, Wyoming [82,86,92,94,100] 
Sugarcane Louisiana, Texas [76,90] 
Sunflower California, Colorado, Kansas, Nebraska, North Dakota, 

South Dakota, Texas 
[76–78,82,86,93,95] 

Switchgrass Illinois, Oklahoma, Tennessee [97,101,102] 
Wheat Arkansas, California, Colorado, Georgia, Idaho, Indiana, 

Kansas, Kentucky, Louisiana, Maryland, Minnesota, 
Mississippi, Missouri, Nebraska, North Carolina, North 
Dakota, Ohio, South Dakota, Tennessee, Texas 

 [76,77,79–87,90–96] 
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Table B-4. Feedstock production energy distributions for crops, crop residue and forestry residue 

Feedstock Energy Requirement 
Distribution (MJ/ dry 
tonne feedstock) 

Energy Inputs Source 

Corn Weibull (416.4, 6.3) 49% Diesel 
18% LPG 
15% Gasoline 
13% Natural Gas 
5% Electricity 

[17,103] 

Sorghum Normal (680, 170) 46% Natural Gas 
36% Diesel 
18% Gasoline 

[17,104] 

Wheat Triangular (836, 1020, 1070) 62% Diesel 
24% Electricity 
14% Gasoline 

[17,105] 

Soybean Triangular (701, 821, 1191) 70% Diesel 
16% Gasoline 
5% Natural Gas 
5% Electricity 
4% LPG 

[17,20] 

Canola Triangular (528, 547, 803) 97% Diesel 
3% Electricity 

[17,20] 

Sunflower Uniform (1887, 1906) 100% Diesel [19,106] 
Sugarcane Normal (100, 6.1) 38% Diesel 

19% LPG 
12% Gasoline 
22% Natural Gas 
9% Electricity 

[17,103] 

Sugarbeet Triangular (141, 208, 380) 59% Diesel 
28% Gasoline 
13% Electricity 

[107] 

Miscanthus Normal (153, 9.1) 93% Diesel 
7% Electricity 

[17,103] 

Switchgrass Normal (144, 33.4) 100% Diesel [17,103] 
Crop Residue Normal (219, 13.4) 100% Diesel  [17,103] 
Forestry Residue Normal (267, 35.3) 100% Diesel [17,108] 
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Table B-5. Rendering Energy Inputs and Market Prices for FOGs. 

Product Natural Gas Input 
(MJ/tonne rendered 
product) 

Electricity Input 
(MJ/tonne rendered 
product) 

Market Prices ($/tonne) 

Yellow Grease Triangular 
(290,1460,2240) 

Triangular (63,150,250) Beta PERT (350, 504, 
660) 

Tallow Triangular 
(5490,8390,11500) 

Triangular (570,630,1560) Beta PERT (441, 638, 
834) 

Poultry Fat Uniform (7510,8460) Uniform (709, 738) Beta PERT (378, 546, 
714) 

Pork Fat Uniform (6380,8290) Uniform (681,703) Beta PERT (371, 537, 
702) 

 

Table B-6. Probability distributions for uncertain cost inputs. 

Commodity Costs 
Electricity ($/kWh) Triangular (0.0636, 0.0646, 0.0648) 
Natural Gas ($/Mcf) Triangular (4.29, 4.40, 4.53) 
Crude Oil ($/bbl.) Triangular (77, 79, 80) 

 

Table B-7. PADD specific fuel price correlations. 

Region Crude (x) to gasoline 
($/bbl. to $/gal.) 

Gasoline (x) to diesel 
($/gal. to $/gal.) 

Gasoline (x) to 
propane ($/gal. to 
$/gal.) 

PADD 1 (East 
Coast) 

0.0297x + 0.6257 1.2011x – 0.2334 0.4956x – 0.1078 

PADD 2 (Mid-
West) 

0.0292x + 0.6264 1.1924x – 0.2364 0.4889x – 0.1496 

PADD 3 (Gulf 
Coast) 

0.0278x + 0.6090 1.2386x – 0.2729 0.5189x - 0.2106 

PADD 4 
(Mountains) 

0.0281x + 0.7284 1.2329x – 0.3135 0.5216x – 0.2310 

PADD 5 
(Pacific) 

0.0311x + 0.8341 1.1303x – 0.2462 0.5228x – 0.2388 
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Table B-8. Deterministic input costs. 

Input Price Source 
Nitrogen fertilizer ($/lb.) 0.39 

[39] Phosphorus fertilizer ($/lb.) 0.33 
Potassium fertilizer ($/lb.) 0.23 
Agricultural lime (Spread) 
($/ton) 

38 [109] 

Alpha amylase ($/kg) 3.41 

[110] 

Gluco amylase ($/kg) 3.41 
Yeast ($/kg) 2.81 
Sulfuric acid ($/kg) 0.13 
Ammonia ($/kg) 0.65 
Sodium hydroxide ($/kg) 0.59 
Calcium oxide ($/kg)  0.29 
ZSM-5 catalyst ($/kg) 22.71 [111] 
Hexane ($/kg) 0.89 [56] 
Sodium carbonate ($/kg) 0.26 [112] 
Hydrochloric acid ($/kg) 0.12 [113] 

 

Table B-9. Reference capital costs and capacities. 

Facility Deterministic CAPEX 
(Million USD) 

Reference Capacity 
(Daily BPD) 

Source 

ATJ 163 2000 [4] 
HEFA 68 2000 [10] 
Crop Oil Extraction 119 173 (Million kg oil 

annually) 
[56] 

SIP 201 2000 [4] 
FT Biomass 610 3202 [114] 
FT MSW 264 1778 [21] 

 

Table B-10. Costs for each transportation mode. 

Transport Mode Solid Cost (cents/tonne-mile) Liquid Cost (cents/kgal-mile) 
Road 18.83 54.04 
Rail 4.23 12.14 
Barge 2.94 8.44 
Pipeline  Route specific 
Transloading Cost 12.35 $/tonne 40 $/kgal 
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 Additional Results 

 

Figure C-1. Distributions of 100 optimization results for total annual costs, total annual emissions, and 
unit GHG abatement costs for S1 inputs meeting 50% of demand with and without a carbon cost. 
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Figure C-2 . Distributions of 200 optimization results for total annual costs, total annual emissions, and 
unit GHG abatement costs for S1 inputs meeting 50% of demand without a carbon cost. 
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Figure C-3. Optimal supply chain configuration for one run using S1 inputs meeting 50% of demand with 
airport locations. 

 

Table C-1. Average and 95% confidence intervals for average unit costs and emissions for SAF produced 
from each pathway in each of the 100 optimized supply chains using S1 inputs at 50% demand and no 
carbon cost.  

Pathway Unit SAF Cost ($/L) Unit SAF Emissions 
(gCO2e/MJ) 

ATJ 0.71 [0.63-0.81] 64.0 [56.5-74.4] 
HEFA crop 0.68 [0.59-0.79] 71.7 [60.9-83.5] 
HEFA FOG 0.60 [0.49-0.75] 22.7 [21.0-25.0] 
SIP 0.84 [0.52-1.14] 49.5 [34.7-67.9] 
FT Biomass 0.88 [0.79-1.01] 7.6 [4.4-10.3] 
FT MSW 0.36 [0.29-0.46] 25.6 [19.5-31.6] 

 

The unit cost and emissions values include contributions from land use change.  The unit cost of SAF via 
the FT MSW pathway is below the 2019 conventional jet fuel price as a result of large refinery sizes and 
economies of scale. This was also reported in Niziolek et al 2015 [73]. 
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Table C-2. Summary of median and 95% confidence intervals of refineries built in all scenarios, demand 
levels, and costs of carbon emissions. 

   Number of Refineries 
Demand Scenario Carbon 

Cost 
($/tonne 
CO2e) 

Total ATJ HEFA 
crop 

HEFA 
FOG 

SIP MSW FT 
Biomass 

50% S1 0 271 
[215-
320] 

72 [44-
93] 

7 [0-
22] 

6 [4-6] 1 [0-
19] 

106 
[100-
111] 

72 [4-
144] 

100 323 
[275-
369] 

45 [22-
71] 

4 [0-
11] 

6 [4-6] 1 [0-
26] 

107 
[101-
11] 

157 [81-
226] 

25% S1 0 155 
[148-
184] 

32 [19-
39] 

3 [0-
13] 

6 [4-6] 0 [0-3] 105 
[99-
109] 

4 [0-50] 

100 204 
[160-
232] 

12 [0-
33] 

1 [0-7] 6 [5-7] 0 [0-1] 106 
[100-
110] 

75 [16-
116] 

S2 0 173 
[143-
204] 

24 [11-
40] 

2 [0-5] 4 [4-6] 0 [0-4] 88 [83-
92] 

53 [8-
104] 

100 211 
[174-
235] 

8 [0-
24] 

0 [0-2] 4 [4-6] 0 [0-2] 89 [82-
96] 

107 [60-
129] 

S3 0 187 
[163-
212] 

18 [6-
30] 

1 [0-4] 5 [4-6] 0 [0-2] 97 [92-
103] 

65 [26-
100] 

100 219 
[187-
241] 

8 [0-
19] 

0 [0-2] 5 [4-6] 0 [0-2] 100 
[94-
104] 

107 [67-
131] 

S4 0 181 
[152-
209] 

22 [10-
37] 

2 [0-5] 5 [4-6] 0 [0-3] 96 [91-
100] 

56 [8-
94] 

100 217 
[181-
237] 

8 [0-
22] 

0 [0-2] 5 [4-6] 0 [0-2] 98 [91-
102] 

108 [61-
126] 
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Table C-3. Average SAF production in each US state from 100 optimization runs using S1 inputs at 50% 
of demand and zero carbon cost. 

 SAF Production (Million Gallons) 

State Total ATJ 
HEFA 
FOG 

HEFA 
crop SIP 

FT 
MSW 

FT 
Biomass 

Nebraska 2087.92 1469.19 0.00 159.86 0.00 30.98 427.88 
Indiana 1937.83 1314.29 74.65 120.10 179.65 150.06 99.07 
Illinois 725.38 536.72 0.00 0.00 0.00 18.75 169.91 
Texas 664.90 383.23 76.16 0.27 12.75 37.45 155.03 
Kentucky 626.01 298.58 0.00 0.00 0.00 74.64 252.79 
Alabama 612.93 341.85 0.04 0.00 0.00 89.47 181.57 
South Dakota 586.78 343.72 0.00 20.70 0.00 36.04 186.31 
Florida 522.14 222.28 0.00 99.04 1.06 37.42 162.33 
Oklahoma 473.87 39.75 77.18 0.32 64.68 213.68 78.24 
California 472.34 280.76 59.54 0.00 5.89 74.90 51.25 
North 
Carolina 457.98 260.72 0.00 0.00 0.25 91.04 105.97 
Ohio 390.22 77.43 36.29 0.32 7.56 167.92 100.71 
Louisiana 357.20 55.11 70.84 3.84 0.00 224.81 2.60 
New York 348.03 196.81 0.00 0.00 3.80 145.60 1.82 
Tennessee 331.24 281.56 0.00 0.24 9.33 18.67 21.44 
Arkansas 320.23 241.84 0.00 44.06 0.00 19.18 15.14 
Virginia 282.22 222.71 0.42 0.00 4.85 0.00 54.24 
West Virginia 220.41 157.15 0.00 41.83 0.00 0.00 21.43 
Missouri 202.88 178.00 0.00 0.00 0.00 0.00 24.87 
Pennsylvania 175.62 54.52 0.00 0.00 2.57 73.78 44.75 
Washington 154.86 105.80 0.00 8.31 0.00 18.73 22.01 
North Dakota 151.29 89.67 0.00 61.37 0.00 0.00 0.26 
Oregon 117.49 109.33 0.00 0.00 0.00 3.04 5.12 
Idaho 109.32 109.32 0.00 0.00 0.00 0.00 0.00 
Maryland 96.87 50.19 0.00 16.29 0.00 30.39 0.00 
Iowa 91.84 35.17 0.00 0.00 0.00 37.44 19.23 
Colorado 84.40 0.00 0.00 0.00 5.99 78.41 0.00 
Arizona 83.84 0.00 0.00 23.06 0.00 54.95 5.84 
Minnesota 75.57 28.04 0.00 21.56 0.00 18.03 7.94 
New Mexico 71.56 34.24 0.00 0.00 0.00 37.32 0.00 
Wyoming 59.66 35.71 0.00 0.00 3.56 18.94 1.45 
Georgia 39.84 2.73 0.00 0.66 0.00 36.46 0.00 
Maine 39.12 0.00 0.00 0.81 0.00 38.00 0.31 
Vermont 34.99 0.00 0.00 0.15 0.00 18.74 16.09 
Utah 27.34 27.34 0.00 0.00 0.00 0.00 0.00 
Connecticut 18.82 0.00 0.00 0.00 0.00 18.76 0.06 
Montana 18.76 0.00 0.00 0.00 0.00 18.76 0.00 
Kansas 18.54 0.00 0.00 0.00 0.00 18.54 0.00 
South 
Carolina 16.11 0.00 0.00 13.76 0.00 0.00 2.35 
Mississippi 6.26 0.00 0.00 0.00 5.90 0.00 0.36 
Wisconsin 0.85 0.41 0.00 0.00 0.16 0.00 0.28 
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Michigan 0.51 0.00 0.00 0.00 0.00 0.00 0.51 
Delaware 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Massachusetts 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Nevada 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
New 
Hampshire 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
New Jersey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rhode Island 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

This shows the average geographic distributions of the biorefineries. States without any biofuel 
production still supply feedstock to refineries in other states.  
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Figure C-4. Optimal supply chain configurations for one run using S1 inputs meeting 25% of demand 
with and without a carbon emissions cost. 
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Table C-4. Summary of mean and 95% confidence intervals of optimization results from all scenarios, 
carbon costs and levels of demand. 

Scenario S1 S2 S3 S4 
% of 
Demand 

50% 25% 25% 25% 25% 

Carbon 
Cost 
($/tonne 
CO2e) 

0 100 0 100 0 100 0 100 0 100 

Costs ($B) 37.2 
[31.8-
44.0] 

38.7 
[33.8-
44.6] 

15.4 
[13.4-
17.8] 

16.5 
[14.4-
19.2] 

17.6 
[15.3-
20.7] 

18.3 
[16.1-
21.3] 

17.6 
[15.4-
20.6] 

18.2 
[16.0-
21.2] 

17.3 
[15.1-
20.3] 

18.0 
[15.9-
21.1] 

Emissions 
(Million 
tonnes 
CO2e) 

92.2 
[78.3-
107.4] 

62.6 
[40.7-
81.3] 

43.3 
[33.1-
49.6] 

23.6 
[13.1-
38.2] 

35.2 
[22.4-
46.6] 

19.2 
[12.7-
30.9] 

29.6 
[20.6-
39.3] 

18.5 
[13.4-
26.8] 

34.0 
[22.0-
45.2] 

19.0 
[12.9-
29.6] 

Avoided 
Emissions 
(Million 
tonnes 
CO2e) 

59.4 
[44.2-
73.3] 

89.2 
[70.4-
110.9] 

32.6 
[26.3-
42.7] 

52.3 
[37.7-
62.7] 

40.7 
[29.3-
53.4] 

56.6 
[44.9-
63.1] 

46.2 
[36.5-
55.3] 

57.3 
[49.1-
62.5] 

41.8 
[30.7-
53.9] 

56.9 
[46.3-
62.9] 

Average 
Unit Cost 
($/L) 

0.75 
[0.64-
0.89] 

0.78 
[0.68-
0.90] 

0.62 
[0.54-
0.72] 

0.67 
[0.58-
0.77] 

0.71 
[0.62-
0.83] 

0.74 
[0.65-
0.86] 

0.71 
[0.62-
0.83] 

0.73 
[0.65-
0.85] 

0.70 
[0.61-
0.82] 

0.73 
[0.64-
0.85] 

Average 
Unit 
Emissions 
(gCO2e/MJ) 

54.1 
[46.0-
63.0] 

36.6 
[23.9-
47.7] 

50.8 
[38.9-
58.2] 

27.7 
[15.4-
44.8] 

41.3 
[26.3-
54.6] 

22.6 
[15.0-
36.3] 

34.8 
[24.1-
46.1] 

21.7 
[15.7-
31.4] 

40.0 
[25.8-
53.0] 

22.3 
[15.2-
34.7] 

Average 
Unit 
Abatement 
Cost 
($/tonne 
CO2e) 

210 
[121-
353] 

157 
[94-
239] 

95 
[29-
199] 

79 
[40-
137] 

128 
[74-
205] 

105 
[66-
157] 

112 
[66-
177] 

101 
[63-
152] 

118 
[67-
191] 

99 
[61-
152] 
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Figure C-5. Optimal supply chain configurations for one run using S1, S2, S3 and S4 inputs meeting 25% 
of demand with no carbon emissions cost. 



65 
 

 

Figure C-6. Average SAF production from each feedstock group from 100 optimization runs using inputs 
from each scenario, demand level, and carbon emissions cost. 
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