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Abstract

As the western boundary current of the North Atlantic, the Gulf Stream is a well-
established area of interest for the United States Navy, predominately due to its
proximity to the continental shelf and the associated challenges of acoustic propaga-
tion across large property gradients. Autonomous underwater gliders conduct routine,
high-resolution surveys along the U.S. East Coast, including within the Gulf Stream.
These observations are assimilated into the operational Navy Coastal Ocean Model
(NCOM). An investigation of the forecast-to-nowcast changes in the model for 2017
demonstrates the impact of the observations on the model. The magnitude of model
change as a function of distance from nearest new observation reveals relatively large
impact of glider observations within a radius of 𝒪(100) km. Glider observations are
associated with larger local impact than Argo data, likely due to glider sampling fo-
cusing on large spatial gradients. Due to the advective nature of the Gulf Stream
system, the impact of glider observations in the model is anisotropic with larger im-
pacts extending downstream from observation locations. Forecast-to-nowcast changes
in modeled temperature, salinity, and density result in improved agreement between
observed and modeled ocean structure within the upper 200 m over the 24 hours
between successive model runs.

Thesis Supervisor: Dr. Robert E. Todd
Title: Associate Scientist, Woods Hole Oceanographic Institution

3



4



Acknowledgments

This research was funded via the United States Navy’s Civilian Institution Program

with the Massachusetts Institute of Technology/Woods Hole Oceanographic Institu-

tion Joint Program (MIT/WHOI JP).

Glider observations and analyses have been generously supported by the National

Science Foundation (OCE-0220769, OCE-1558521, OCE-1633911, OCE-1923362),

NOAA’s Global Ocean Monitoring and Observing Program (NA14OAR4320158,

NA19OAR4320074), the Office of Naval Research (N000141713040), Eastman Chem-

ical Corporation, WHOI’s Oceans and Climate Change Institute, and the W. Van

Alan Clark, Jr. Chair for Excellence in Oceanography at WHOI (awarded to Breck

Owens).

Credit for the success of the Spray glider missions is owed to several individuals,

including Patrick Deane, Joleen Heiderich, Raymond Graham, Larry George, Ben

Hodges, and Breck Owens at WHOI and Jeff Sherman, Dan Rudnick, Ben Reine-

man, Guilherme Castelão, and Evan Randall-Goodwin of the Instrument Develop-

ment Group at the Scripps Institution of Oceanography. The Physical Oceanography

Division at NOAA’s Atlantic Oceanographic and Meteorological Laboratory (AOML),

the University of Miami’s Rosenstiel School of Marine and Atmospheric Science (RS-

MAS), the East Carolina University Coastal Studies Institute, and North Carolina

State University’s Center for Marine Sciences and Technology (CMAST) provided

laboratory space for glider operations.

Thank you Lea Locke-Wynn, Fleet Numerical Meteorology and Oceanography

Center (FNMOC), for providing a complete dataset of RNCOM output for a year-

long analysis.

Thank you Frank Baker, Deputy Executive, Director Oceanographer and Naviga-

tor of the Navy (N2N6EDB), and Jay Wallmark, Director, Oceanographic Depart-

ment, Naval Oceanographic Office (NAVOCEANO), for coordination and delivery of

the NAVOCEANO Slocum glider data used in this analysis.

I especially want to thank my advisor, Robert Todd, for his guidance and dedica-

5



tion to my learning experience over the last two years. I arrived to the program six

years after completing undergrad and very rusty in the realm of academics. Robert

always made time to provide assistance, whether for research or classwork, for even

the most trivial of questions. He has been instrumental in my development as a

student, researcher, and oceanographer. He was considerate of my second full-time

job as a father and husband, particularly as we tackled the issues of the COVID-19

pandemic. However, it should be noted that one of the selling points of Robert’s work

when I first arrived was that I would get field work opportunities in warm weather.

As it turned out, I only had two experiences deploying or recovering gliders. The first

was a January recovery near the New England shelf (not warm), and the second was

a trip to Miami when it was so cold iguanas were falling out of trees!

I owe significant gratitude to my classmates and friends within the Joint Program.

Without my cohort in Physical Oceanography - Cora Hersh, Jinshi Chen, Michael

Dotzel, Alan Gaul, Glenn Liu, Lukas Lobert, Pad Poemnamthip, Mason Rogers - I

would not have made it through classes, and that is not an exaggeration. While I will

miss our chats on the sixteenth floor of the Green Building most, our pandemic Zoom

meetings to discuss problem sets brought sanity to my isolation and allowed me to

laugh and socialize at a time when it was desperately needed. I would also like to

thank my fellow Navy students, especially Pete Roemer, Jacob Heuss, Jeff Grabon,

Bradli Howard, Tim Getscher, who made balancing our roles as Navy officers and

students easier and enjoyable.

This entire experience would not have been possible were it not for the love and

support of my family. Since I first decided to apply to the Joint Program almost four

years ago, my wife Tricia has expertly handled the stresses and challenges of keeping

our life in balance. She has put up with long nights of studying and writing papers

and a move from Hawaii to Boston, all while raising our two daughters. Thank you

for constantly listening to my complaints and offering advice along the way, I know

it must have been tough feigning interest at times. To Adelaide and Maeve, thank

you for providing love and joy through the times of the pandemic, it certainly made

working from home a lot easier.

6



Contents

1 Introduction 15

2 Model and Observations 21

2.1 Regional Model: NCOM . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Glider Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Spray gliders (WHOI) . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Slocum gliders (NAVOCEANO) . . . . . . . . . . . . . . . . . 26

2.3 Argo Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Analysis and Results 29

3.1 Forecast-to-Nowcast Changes in Simulated Fields . . . . . . . . . . . 29

3.2 Spatial Impacts of Observations . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 One-dimensional horizontal length scale . . . . . . . . . . . . . 33

3.2.2 Impact of Argo Observations . . . . . . . . . . . . . . . . . . . 38

3.2.3 Impact in Two-Dimensional Coordinate System . . . . . . . . 38

3.3 NCOM Improvement from Observations . . . . . . . . . . . . . . . . 46

3.3.1 Statistical Significance of Nowcast Improvement . . . . . . . . 47

4 Summary and Future Work 53

7



THIS PAGE INTENTIONALLY LEFT BLANK

8



List of Figures

1-1 Bathymetry of the Gulf Stream region along the US East Coast with

the NCOM US East domain indicated by the black box. (a) Trajec-

tories of all WHOI-operated Spray gliders (blue) and NAVOCEANO-

operated Slocum gliders (green), as well as the location of all Argo

profiles (cyan) during 2017. Highlighted in yellow is a segment of glider

observations from 24-26 April 2017, for which observations are shown in

Figure 2-2. The mean 40-cm absolute dynamic height (ADT) contour

(red) delineates the mean position of the Gulf Stream. (b) Stream-

wise coordinate system, as discussed in Section 3.2.3. Thin red lines

are drawn every 20 km in the cross-stream direction and every 100 km

in the along-stream direction as measured relative to the 40-cm SSH

contour (bold red as in (a)). . . . . . . . . . . . . . . . . . . . . . . . 19

2-1 Horizontal transects of (a) temperature, (b) salinity and (c) potential

density along 72.1010∘W in the NCOM US East nowcast for 27 April

2017. The area outlined in red indicates the horizontal and vertical

extent of the glider observations shown in Fig. 2-2. . . . . . . . . . . 23

2-2 (a–c) Spray glider observations of (a,d) temperature, (b,e) salinity, and

(c,f) potential density from 24–26 April 2017 along the yellow transect

in Fig. 1-1, and (d–f) the approximately coincident model nowcast

fields from Fig. 2-1. Black contours are isopycnals with a spacing of

0.5 kg m−3 and the 26.0 kg m−3 isopycnal in bold. . . . . . . . . . . . 26

9



3-1 (a) 24-hour-ahead forecast and (b) nowcast of temperature at 30 m for

0000Z on 27 April 2017. Glider trajectories (in black) extend from one

week before the model run to the day of. Shown in (c) are temperature

differences from forecast to nowcast, as well as an indication of the

locations of newly available glider observations for the nowcast (yellow

segment of glider trajectory). . . . . . . . . . . . . . . . . . . . . . . 31

3-2 (a) 24-hour-ahead forecast and (b) nowcast of salinity at 30 m for 0000Z

on 27 April 2017. Glider trajectories (in black) extend from one week

before the model run to the day of. Shown in (c) are salinity differences

from forecast to nowcast, as well as an indication of the locations of

newly available glider observations for the nowcast (yellow segment of

glider trajectory). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3-3 (a) 24-hour-ahead forecast and (b) nowcast of potential density (𝜎𝜃) at

30 m for 0000Z on 27 April 2017. Glider trajectories (in black) extend

from one week before the model run to the day of. Shown in (c) are

𝜎𝜃 differences from forecast to nowcast, as well as an indication of the

locations of newly available glider observations for the nowcast (yellow

segment of glider trajectory). . . . . . . . . . . . . . . . . . . . . . . 32

3-4 Normalized root-mean-square (RMS) changes from 𝜏24 to 𝜏00 for (a)

temperature, (b) salinity, and (c) potential density at the surface. In

all panels, the black transect denotes the PEACH glider sampling pat-

tern. The inset in (b) shows details of RMS salinity changes along the

PEACH transect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3-5 Histogram of RMS-averaged impact and great-circle distance from ob-

servation, for temperature, salinity and potential density at (a–c) 30

m and (d–f) 200 m depth. Nonlinear exponential fits are annotated in

black with red star indicating the decay length scale for given variable

and depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10



3-6 Normalized RMS-averaged impacts as a function of great-circle dis-

tance from observation, for temperature, salinity and potential den-

sity; (a–c) are glider impacts, (d–f) are Argo impacts. Color coding

indicates the different depth range regimes: 0–200 m (black), 250–500

m (red), 600–2000 m (blue), 2500–5000 m (green). . . . . . . . . . . . 36

3-7 Left panels (a–c) are the normalized nonlinear fit coefficients as defined

by Equation 3.1 for temperature, salinity and potential density, respec-

tively, as a function of depth. Length scale (𝐿) is in black, initial value

(𝐴) in bold red, and asymptotic value (𝐵) in red. Right panels (d–f)

show model variability with depth as given by the standard deviation

of the time mean for each corresponding variable. Gray shaded region

indicates those areas where the exponential fit is most valid to describe

observational impact. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-8 Two-dimensional contour plot of RMS temperature impact at 30 m

depth. Black dashes at ∆𝑥=0 and ∆𝑦=0 indicate location of his-

tograms in Figs. 3-9 and 3-10. . . . . . . . . . . . . . . . . . . . . . . 40

3-9 Histograms of ∆𝑅𝑀𝑆 forecast-to-nowcast changes at 30 m in (a,d) tem-

perature, (b,e) salinity, and (c,f) potential density, binned by (a–c)

along-stream and (d–f) cross-stream distance from the nearest glider

observation. Positive (negative) along-stream distances correspond to

nearest glider observations downstream (upstream) of a model grid

point. Positive (negative) cross-stream distances correspond to near-

est glider observations offshore (onshore) of a model grid point. Black

and red stars indicate the decay length scales for positive and negative

directions. Red and black dashed lines indicate the mean outer values

of the histogram for |∆𝑦|>200 km and |∆𝑥|>100 km, examined further

in Fig. 3-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11



3-10 Normalized RMS-averaged forecast-to-nowcast change for each model

depth level for the two-dimensional coordinate system. Temperature,

salinity and potential density are displayed for all depths in the along-

stream (a–c) and cross-stream (d–f) directions. Color coding indicates

the different depth range regimes: 0–200 m (black), 250–500 m (red),

600–2000 m (blue), 2500–5000 m (green). . . . . . . . . . . . . . . . . 44

3-11 Averaged two-dimensional histograms from 0–200 m for temperature,

salinity, and potential density in the along-stream (a–c) and cross-

stream (d–f) directions. The corresponding fits and stars indicate the

exponential fit and subsequent average decay length scales for the entire

depth range in the positive (red) and negative (black) directions. . . . 45

3-12 Asymptotic values as a function of depth for temperature, salinity, and

potential density in the along-stream direction (a–c) and cross-stream

direction (d–f). Solid black (red) lines indicate positive (negative)

mean values of the histogram, and corresponding shading indicates

standard deviation of the same. Dotted black (red) lines indicate those

exponential asymptotic values (𝐵) for positive (negative) fits that fall

within 2 standard deviations of the mean. . . . . . . . . . . . . . . . 46

3-13 Nowcast versus forecast comparison on 09 September 2017. Interpo-

lated forecast (blue) and nowcast (red) profiles are shown with obser-

vations from one glider profile (yellow) at 2032Z for (a) temperature,

(b) salinity, and (c) potential density. Differences between given model

run and observation are shown for (d–f) temperature, salinity, and po-

tential density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3-14 Forecast error (blue) and nowcast error (red) for (a,c,e) temperature,

salinity, and potential density. Statistical significance between loss

functions represented by a Diebold-Mariano test statistic value (𝑆1;

black) greater than the critical value at 95% significance (1.645) for

(b,d,f) temperature, salinity, and potential density. . . . . . . . . . . 51

12



List of Tables

2.1 Glider observational statistics for 2017. . . . . . . . . . . . . . . . . . 27

13



THIS PAGE INTENTIONALLY LEFT BLANK

14



Chapter 1

Introduction

Western boundary currents play a key role in the global climate system by redistribut-

ing heat from the tropics to the subtropics and subpolar regions (Imawaki et al., 2013;

Kwon et al., 2010) and by transferring heat into the atmosphere. As the western

boundary current of the North Atlantic subtropical gyre, the Gulf Stream is a major

component of the Atlantic Meridional Overturning Circulation (Cunningham et al.,

2007), bringing warm and saline waters from the tropics poleward to higher latitudes.

The current begins as a topographically constrained jet in the Florida Strait and

then flows along the continental margin before it departs from the US East Coast

at Cape Hatteras, North Carolina, becoming a free-flowing, meandering current that

sheds large eddies. The spatial and temporal variability of the Gulf Stream increases

as it evolves downstream (e.g., Andres , 2016), resulting in significant temperature

and salinity fluctuations along the continental margin, either directly via interaction

of coastal flows with the Gulf Stream (e.g., Todd , 2020) or indirectly via mesoscale

eddies (e.g., Gawarkiewicz et al., 2018).

Given the longstanding strategic value of operating within or near the shelfbreak

environment (Alvarez , 1969), the US Navy has invested in understanding western

boundary currents and their associated oceanographic properties. Acoustic propaga-

tion along the shelf is important to naval operations and planning, yet changes in

the sound speed field due to the spatial and temporal variation of the shelf-break

front (Lynch et al., 2003; Colin et al., 2013) can make analysis of the shallow-water

15



environment particularly complex and difficult to predict. Similarly, other small-scale

aspects of military operations (e.g., ship routing, search and rescue) can be improved

by the ability to resolve nearshore mesoscale features common to the western bound-

ary current regions (Rhodes et al., 2002).

Understanding western boundary current systems is further limited by the inter-

national regulations of scientific research near the shelf. The United Nations Con-

vention for the Law of the Sea (UNCLOS) authorizes countries to restrict marine

scientific research within its exclusive economic zone (EEZ), which inhibits access to

the continental shelf without additional financial and foreign policy considerations

(e.g., country clearances). Projects in other prominent western boundary regions of

the world exist (e.g., Rainville et al., 2013; Andres et al., 2017), yet the aforementioned

considerations impact extent and duration of projects, especially in the deployment

and use of in situ platforms. The Gulf Stream provides unique access to a western

boundary current that is predominately within US territorial waters, allowing for

lesser restrictions on research opportunities that are better suited for understanding

the spatial and temporal variability of the region.

Inconsistent coverage of an area and the persistent need for nearshore forecasting

has led to the Navy’s heavy reliance on numerical prediction for large areas of the

ocean. The Naval Oceanography community has spent over four decades developing

ocean prediction capabilities designed for the mesoscale and smaller, to include the

nearshore environment, for the purposes of tactical level planning (Burnett et al.,

2014). This development yielded capabilities like the Navy Coastal Ocean Model

(NCOM), with horizontal and vertical resolution capable of capturing dynamics in

the interior and up onto the continental shelf.

While numerical prediction has been critical in improving characterization of the

nearshore environment, its value is contingent upon its ability to replicate real-world

conditions. Observations of sufficient spatial and temporal frequency provide em-

pirical evidence of ocean conditions for comparison and validation. The ubiquity of

satellite remote-sensing has allowed for near-real time, global coverage of sea surface

temperature (SST) and sea surface height anomalies (SSHA), and the Navy has used
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ocean frontal analysis (e.g., Olson et al., 1983; Miller , 1994) as one way to char-

acterize this nearshore variability. Yet subsurface conditions, especially areas with

large gradients, are still largely unresolved even with techniques to project surface

conditions vertically (e.g., the Modular Ocean Data Assimilation System (MODAS);

Fox et al., 2002). Sustained in situ observations are needed to constrain subsurface

properties and the location of gradients.

For many years, an undersea cable in the Florida Strait (Baringer and Larsen,

2001), ship-based hydrographic surveys (Shoosmith et al., 2005), and transects along

the CMV Oleander line between New Jersey and Bermuda (Flagg et al., 2006), have

provided key observational constraints on Gulf Stream variability. However, the dis-

tances between these locations are large enough to leave much of the Gulf Stream

region unconstrained by in situ observations. Observations from Argo profiling floats

(Riser et al., 2016; Jayne et al., 2017; Roemmich et al., 2019) amply constrain subsur-

face conditions in the central basin, but Argo was not designed to adequately resolve

narrow western boundary currents (Todd et al., 2019; Goes et al., 2020). In an effort

to close the gap in Gulf Stream observations, Spray autonomous gliders have routinely

sampled the Gulf Stream since April 2015 (Todd , 2017, 2021; Heiderich and Todd ,

2020). To date, thirty-eight glider missions have collected nearly 22,000 profiles while

criss-crossing the western boundary current between Miami, FL and Cape Cod, MA.

For areas like western boundary currents with large gradients and significant vari-

ability, it is important that model output is representative of the valuable in situ

data it is provided. The regularity and extent of the Spray glider program supports

research of a dynamic feature in the ocean where the scope of observations is of-

ten restricted. Furthermore, the placement of the gliders within the US East Coast

NCOM domain enables us to analyze directly the relationship between model and

observations. There have been other instances of investigation in a model’s capability

to accurately predict observed oceanographic features (Kerry et al., 2018; Douglass

and Mask , 2019). We aim to determine the spatial extent to which the Spray gliders

impact the NCOM model, and further distinguish whether such impacts improve to

model accuracy.
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Here we examine the impact of assimilating Spray glider measurements along the

US East Coast in the operational NCOM model. Background on NCOM physics

and its data assimilation process is detailed in Section 2.1. The collection and data-

reporting procedures of both Spray and the NAVOCEANO-operated Slocum gliders

are detailed in Section 2.2, and a brief overview of the Argo floats is provided in

Section 2.3. Section 3.1 investigates the changes between successive NCOM model

runs due to observational inputs and provides motivation for determining extent of

spatial impacts. Section 3.2 explains how we calculate this impact in both one-

and two-dimensions, including demonstration of the anisotropic spatial footprint of

observations that results from the highly advective nature of the Gulf Stream system.

We compare these impacts with Argo in one-dimension in Section 3.2.2 to demonstrate

the differences, and subsequent benefits, of glider sampling in a dynamic environment.

Section 3.3 quantifies the improvement on NCOM accuracy following assimilation of

additional observations. Section 4 summarizes the results and discusses potential

future work.
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Figure 1-1: Bathymetry of the Gulf Stream region along the US East Coast with the
NCOM US East domain indicated by the black box. (a) Trajectories of all WHOI-
operated Spray gliders (blue) and NAVOCEANO-operated Slocum gliders (green), as
well as the location of all Argo profiles (cyan) during 2017. Highlighted in yellow is
a segment of glider observations from 24-26 April 2017, for which observations are
shown in Figure 2-2. The mean 40-cm absolute dynamic height (ADT) contour (red)
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as discussed in Section 3.2.3. Thin red lines are drawn every 20 km in the cross-stream
direction and every 100 km in the along-stream direction as measured relative to the
40-cm SSH contour (bold red as in (a)).
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Chapter 2

Model and Observations

This chapter describes the numerical model output and observations used in this

analysis. Our analysis focuses on 2017, a year in which glider surveys of the Gulf

Stream were particularly prevalent; 2017-specific mission statistics are included in

Table 2.1.

2.1 Regional Model: NCOM

The US Navy Coastal Ocean Model (NCOM) was designed by the Naval Research

Laboratory (NRL) and is a free surface, primitive-equation model with hydrostatic,

Boussinesq, and incompressible approximations (Barron et al., 2006). NCOM was op-

erated by the US Naval Oceanographic Office (NAVOCEANO) until 2019, after which

the Fleet Numerical Meteorology and Oceanography Center (FNMOC) assumed re-

sponsibility as the Navy’s chief modeling entity. To improve regional and coastal

ocean forecasting capabilities, the RELOcatable ocean nowcast/forecast (RELO) sys-

tem was developed to provide NCOM forecasts at increased spatial resolution within

regional domains and to handle the inputs and outputs of data processing and data

assimilation (Rowley and Mask , 2014; Smith et al., 2017). The NCOM domain of

interest here is referred to as NCOM US East and covers the US East Coast (Fig. 1-

1), spanning from Cuba to Cape Cod (20∘ to 42.0978∘N) and eastward to Bermuda

(63.9018∘ to 82∘W).
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NCOM US East has horizontal resolution of 1/30∘, or approximately 3 km. The

model is run using a hybrid vertical scheme of sigma- and z-coordinates, with a

terrain following sigma-coordinate system from the surface to a predetermined sigma-

z interface, and fixed z-levels from there to the domain’s maximum depth of 5000

m. Model output analyzed here was interpolated to a 40-level z-grid with greater

resolution near the surface than at depth. The model forecasts temperature, salinity,

and current structure, as well as air-sea interface properties like surface elevation, wind

stress, and heat/salt fluxes; other properties can be derived, such as potential density

(e.g., Fig. 2-1). Lateral boundary conditions are drawn from the 1/12∘ global HYbrid

Coordinate Ocean Model (HYCOM; Metzger et al., 2014), and surface boundary

conditions are obtained from the Coupled Ocean Atmosphere Mesoscale Prediction

System (COAMPS; Hodur et al., 2002).

NCOM model runs are released daily at 0000Z, forecasting at 3-hour time inter-

vals for a 96-hour period. These forecasts are updated daily using the Navy Coupled

Ocean Data Assimilation (NCODA) three-dimensional variational (3DVAR) system

(Cummings and Smedstad , 2013), which assimilates satellite and in situ data made

available since the last model run to improve the initial conditions for the next fore-

cast. All observational fields are analyzed concurrently, undergoing automated quality

control checks in which each new observation is verified against the first guess of a

previous NCOM forecast. Climatological fields are used to determine a probability

of error for each observation, and, in cases where observations are limited, they can

be used to generate synthetic temperature and salinity profiles based on SST and

SSH observations (Fox et al., 2002). The assimilation and analysis of the incoming

observations are incrementally applied (Bloom et al., 1996) during a model hindcast

run; by the time the updated nowcast is released, all additions of data have been

reflected in the model. The global HYCOM model has a similar data assimilation

scheme using the Global Ocean Forecast System 3.0 (GOFS 3.0).

Model output is publicly releasable and made available to the general public. Most

data used here were retrieved from the National Oceanic and Atmospheric Adminis-

tration’s (NOAA) National Centers for Environmental Information (NCEI). Output
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for the full 4-day forecast is available as netCDF files within hours of an updated

model run. In instances where particular dates or time intervals were unavailable via

NCEI, NAVOCEANO was able to provide missing data upon request.
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Figure 2-1: Horizontal transects of (a) temperature, (b) salinity and (c) potential
density along 72.1010∘W in the NCOM US East nowcast for 27 April 2017. The area
outlined in red indicates the horizontal and vertical extent of the glider observations
shown in Fig. 2-2.

2.2 Glider Observations

2.2.1 Spray gliders (WHOI)

Spray autonomous underwater gliders (Sherman et al., 2001; Rudnick , 2016) surveyed

the Gulf Stream and adjacent waters along the US East Coast throughout 2017.

Three of the eight Spray glider missions completed were in support of the NSF-funded

‘Processes driving Exchange At Cape Hatteras (PEACH)’ project. PEACH gliders

repeatedly sampled along and across the continental margin north of Cape Hatteras,

North Carolina beginning in April 2017 (Todd , 2020). The five other missions were
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part of an ongoing effort to routinely survey the Gulf Stream along the US East Coast

from Miami, Florida to the shelf edge off southern New England (Todd , 2017, 2021;

Heiderich and Todd , 2020). Gliders moved through the water at about 0.25 m s−1

horizontally and 0.1 m s−1 vertically. When steering across the Gulf Stream, gliders

were advected downstream at a speed of roughly 1 m s−1, resulting in zigzag transects

(Fig. 1-1). Typical mission duration was about four months.

As a buoyancy driven platform, a Spray glider executes a series of sawtooth dives,

reaching maximum depths up to 1000 m in deep water or to within a few meters of

the bottom in shallower areas. Each glider is equipped with a pumped Sea-Bird 41CP

conductivity-temperature-depth (CTD) instrument, measuring temperature, salinity,

and pressure on the ascending portion of the profile at a rate of 1/8 Hz. Potential

density (𝜎𝜃) is derived from measured temperature and salinity. In 2017, each Spray

glider was also equipped with a 1-MHz Nortek AD2CP Doppler current profiler and a

Seapoint chlorophyll floroumeter, providing measurements of absolute velocity (Todd

et al., 2017) and chlorophyll a flourescence, respectively. Velocity and chlorophyll

measurements are not provided to NAVOCEANO for the NCODA data assimilation

process and are not discussed further here. Observations from an example transect

across the Gulf Stream near 72∘W during 24–26 April 2017 (Fig. 2-2a–c) capture the

large cross-stream gradients in temperature and salinity that typify the Gulf Stream.

This particular transect also captured low salinity water from Mid-Atlantic Bight

(MAB) shelf that had been entrained within the Gulf Stream (e.g., Ford et al., 1952;

Todd , 2020).

Glider observations are relayed in near-real time each time a glider surfaces using

Iridium satellite antennas located within either glider wing. CTD measurements from

each profile are decimated by a factor of three to five for near-real time data transmis-

sion. We use these decimated data throughout this analysis. Temperature and salinity

measurements from each dive are received by the Scripps Institution of Oceanogra-

phy (SIO) Instrument Development Group (IDG). Every four hours, newly received

measurements are sent via email to NAVOCEANO for data assimilation into NCOM

via NCODA and the RELO system. Simultaneously, the data are also delivered to
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the Global Telecommunications System (GTS) via the Integrated Ocean Observing

System (IOOS) Glider Data Assembly Center (DAC), which provides global access

in a publicly accessible database.

Post-processing of real-time glider data is limited to a few automated quality

assurance checks once it is transferred to the SIO server. Best estimates of profile

locations are calculated from pre- and post-dive GPS fixes, with automated thresholds

to flag and interpolate over poor quality or missing fixes. Temperature and salinity

checks include global ranges and determining whether the CTD was on or off during

the dive. The email delivery method does not include these flags and does not remove

flagged data; it is expected that operational users are applying their own quality

control checks prior to model assimilation or other use. In the event of a major CTD

failure, automated emails from SIO to NAVOCEANO are stopped until the situation

is resolved. However, in cases of intermittent periods of erroneous data (i.e., as a

result of clogged CTD), regular reporting to NAVOCEANO continues.
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Figure 2-2: (a–c) Spray glider observations of (a,d) temperature, (b,e) salinity, and
(c,f) potential density from 24–26 April 2017 along the yellow transect in Fig. 1-1,
and (d–f) the approximately coincident model nowcast fields from Fig. 2-1. Black
contours are isopycnals with a spacing of 0.5 kg m−3 and the 26.0 kg m−3 isopycnal
in bold.

2.2.2 Slocum gliders (NAVOCEANO)

Slocum gliders (Webb et al., 2001; Schofield et al., 2007) are another type of buoy-

ancy driven platform that share many parallels in design and function with Spray

gliders (Rudnick et al., 2004) and return similar temperature, salinity, and pressure

measurements. From 18 October to 13 December 2017, five Slocum gliders operated
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by NAVOCEANO were deployed within the NCOM US East domain. Observations

from these gliders are included alongside the Spray glider observations in the following

analysis. Unlike the Spray gliders, the Slocum gliders primarily operated in virtual

mooring mode at locations seaward of the Gulf Stream (within approximately 100

km of 30.5∘N, 77∘W), with a brief, two-day sampling period south of Cape Hatteras

from 11 to 13 December 2017 (Fig. 1-1, green trajectories). Full mission statistics for

both Spray and Slocum gliders are included in Table 2.1.

Spray (WHOI) Slocum (NAVOCEANO)

Missions 8 5

Dives 6,047 2,649

Glider Days 640 95

Distance 21,580 km 2,259 km

Table 2.1: Glider observational statistics for 2017.

2.3 Argo Observations

In addition to the gliders, Argo profiling floats provide near-real time measurements

in the region for NCOM data assimilation. These buoyancy-driven floats typically

profile between 2000 m and the surface once every 10 days, measuring temperature,

salinity, and pressure. The Argo observations used in this analysis were obtained

from the Argo Global Data Assembly Center (Argo, 2020). During 2017, there were

a total of 2,301 Argo observations within the US East domain, ranging from just off

the continental shelf to the Atlantic interior (Fig. 1-1, cyan).
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Chapter 3

Analysis and Results

This chapter evaluates the impact of glider observations on the NCOM US East

model. We begin by comparing 24-hour-ahead forecasts to nowcasts at the same

valid time, allowing us to identify changes to the simulated ocean properties that pre-

sumably result from including newly available observations in each successive model

run (Section 3.1). We then estimate the spatial footprint and magnitude of impact of

glider observations in the model, and we compare this footprint against that of ob-

servations from Argo floats (Section 3.2). Finally, we demonstrate that the nowcast

simulations have significantly smaller biases relative to in situ observations than do

the 24-hour-ahead forecasts (Section 3.3).

3.1 Forecast-to-Nowcast Changes in Simulated Fields

To characterize changes to the NCOM US East simulation in the 24-hour span be-

tween subsequent model runs, we first compare 24-hour-ahead forcasts (denoted 𝜏24)

and nowcasts (denoted 𝜏00) at the same valid time and compute differences at each

grid point (Figs. 3-1, 3-2, and 3-3). The locations of glider observations tend to coin-

cide with some of the largest changes between model runs, particularly in areas where

the gradients are strongest along the Gulf Stream front. For instance, an apparent

southward shift in the northern edge of the Gulf Stream between forecast and now-

cast resulted in a 6 ∘C temperature reduction and a ∼2 PSU salinity increase in the
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vicinity of newly available glider observations on 27 April 2017 (Figs. 3-1, 3-2). Such

movement of the Gulf Stream front due to data assimilation was previously noted as

a shift in the location at which the 15 ∘C isotherm intersects the 200-m isobath near

Cape Hatteras (Todd and Locke-Wynne, 2017).

While the correspondence between observation locations and the model changes

on a particular day is encouraging, a more robust analysis is needed to clarify typical

impacts of glider observations on the simulations. For temperature, salinity and

potential density, we compute the root-mean-square (RMS) changes between forecast

and nowcast values at each model grid point, with averaging over calendar year 2017.

We normalize these RMS changes by the lateral standard deviation in the time-mean

field at each depth. The resulting maps of normalized RMS changes (Fig. 3-4) support

the previous single-day comparisons; the largest run-to-run changes occur along the

Gulf Stream, where the gradients are large. Furthermore, the presence of the glider

observations can be attributed to an increase in model corrections, particularly in

the vicinity of Cape Hatteras, where sampling for PEACH was particularly dense. A

region of large RMS changes in NCOM aligns well with the PEACH glider transect,

which was repeatedly sampled from April through December of 2017 (Fig. 3-4). We

note that relatively large run-to-run changes occur well to the east of the PEACH

region, but do not extend upstream relative to the Gulf Stream’s flow. We examine

this directional dependence in observational impact in Section 3.2.3.
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Figure 3-1: (a) 24-hour-ahead forecast and (b) nowcast of temperature at 30 m for
0000Z on 27 April 2017. Glider trajectories (in black) extend from one week before
the model run to the day of. Shown in (c) are temperature differences from forecast to
nowcast, as well as an indication of the locations of newly available glider observations
for the nowcast (yellow segment of glider trajectory).
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Figure 3-2: (a) 24-hour-ahead forecast and (b) nowcast of salinity at 30 m for 0000Z
on 27 April 2017. Glider trajectories (in black) extend from one week before the model
run to the day of. Shown in (c) are salinity differences from forecast to nowcast, as
well as an indication of the locations of newly available glider observations for the
nowcast (yellow segment of glider trajectory).
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Figure 3-3: (a) 24-hour-ahead forecast and (b) nowcast of potential density (𝜎𝜃) at
30 m for 0000Z on 27 April 2017. Glider trajectories (in black) extend from one week
before the model run to the day of. Shown in (c) are 𝜎𝜃 differences from forecast to
nowcast, as well as an indication of the locations of newly available glider observations
for the nowcast (yellow segment of glider trajectory).

  28
o
N 

  32
o
N 

  36o
N 

  40o
N 

  76
o
W 

a

Temperature

Depth: 0m

  24o
N 

  20o
N 

  64
o
W   68

o
W   72

o
W   80o

W   76
o
W 

b

Salinity

Depth: 0m

  64
o
W   68

o
W   72

o
W   80o

W   76
o
W 

c

Potential Density

Depth: 0m

  64
o
W   68

o
W   72

o
W   80o

W 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

RMS Change
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3.2 Spatial Impacts of Observations

We now seek to quantify the spatial extent of glider observations’ impact on forecast-

to-nowcast model changes. Our initial assessment employs an estimation of a one-

dimensional, horizontal length scale. We use this one-dimensional framework to com-

pare magnitude of impact between gliders and the Argo profiling floats. We then

further our analysis by using a two-dimensional coordinate system to focus on the

anisotropy of the model physics.

3.2.1 One-dimensional horizontal length scale

To evaluate one-dimensional impacts for a given day, we determine the minimum

great-circle distance from each model grid point to a glider measurement that was

made available for assimilation within the preceding 24 hours. Forecast-to-nowcast

changes in the model at each depth are then RMS-averaged by distance to observation

with a bin size of 20 km. The resulting histograms (e.g., Fig. 3-5) show how the size

of the forecast-to-nowcast change in a particular parameter varies with distance from

a glider observation. To more readily compare histograms at different depths, we

normalize by the standard deviation of the time-mean field at each depth, with the

resulting values denoted here as ∆𝑅𝑀𝑆 (Fig. 3-6a–c).

Based on general shapes of these normalized histograms, we consider four distinct

depth ranges. In the first range (0–200 m), histograms exhibit roughly exponential

decay; the local impacts, those nearest the newly available observations, are markedly

higher than the values at greater distances. This exponential shape suggests a decay

of impact with range, motivating further analysis to determine an appropriate scale

(see below). The next depth range (250–500 m) maintains the highest impacts locally,

but rather than an exponential decay with distance, we now see a more linear trend.

The average, normalized magnitude of impact in the 250–500 m and 600–2000 m

depth ranges is comparable, likely because glider and other observations (e.g., Argo)

from 600–1000 m are still prominent and thus contribute to local and non-local varia-

tion. However, it is important to note that the absolute magnitude at the 600–2000 m
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range is less than at the shallower depths due to the decrease in lateral variance with

depth (Fig. 3-7d–f). Additionally, the 600–2000 m depth range does not exhibit decay

in response with increasing distance from glider observations, with the largest impacts

at intermediate or remote distances. We suspect that this behavior is a result of the

generally weak gradients and temporal variability at these depths being reasonably

well captured by other components of the operational forecast system (e.g., assimi-

lation of Argo, initialization from global HYCOM, etc.). At depths of 2500–5000 m,

which are well outside of the expected glider observational footprint, the normalized

forecast-to-nowcast change values are both very small and unchanging with distance

from glider observations. We note that while Slocum missions were included in the

averaging process and resulting histograms, the inclusion had negligible impact on

the results given their relatively low sample size and the general location outside of

the Gulf Stream.

The shape of the normalized histograms at depths shallower than 200 m suggests

that a horizontal length scale for glider impact can be estimated using exponential

fitting. At each depth we use a nonlinear, least-squares fit of an exponential plus a

constant such that

∆𝑅𝑀𝑆 = 𝐴𝑒−𝑥/𝐿 + 𝐵, (3.1)

where 𝐴 is distance from a glider observation, 𝐴 measures the size of the model change

in the immediate vicinity of glider observations; 𝐿 is the lateral scale over which that

local impact decays; and 𝐵 is representative of the non-local (‘asymptotic’) changes

to the model, which are likely attributable to assimilation of other observations (e.g.,

SSH, SST, Argo). With the majority of the model grid points located within 1000

km of the nearest observation, the fit focuses on the first 800 km to better capture

the decay scale and avoid those bins with poor averaging. Fits to example histograms

(without normalization) for temperature, salinity, and potential density illustrate the

decay length scales at 30 m and 200 m (Fig. 3-5, black curves and red stars).

We compare the normalized, nonlinear-fit coefficients (𝐴,𝐵,𝐿) at each depth to
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the vertical structure of the model’s variability, which we represent by the lateral

standard deviation of the time mean fields (Fig. 3-7). For all three variables, the nor-

malized local and remote model changes (A,B) peak in the upper 100 m, where lateral

variance is largest (Fig. 3-7d–f). The corresponding decay scales (𝐿) are 𝒪(100) km

in the upper 100 m. From 100 to 200 m, the normalized model changes decrease,

indicating that the magnitude of model changes decay more rapidly with depth than

does the domain-wide variance. Length scales (𝐿) obtained from the least-squares fit

grow in this depth range, likely correspondingly to the transition to the more linear

decay with distance from the observations noted above. The high local values and

sensible decay scales provided by the exponential fit capture the model’s horizontal

radius of impact for a given observation, as quantified by the average length scale.

Most changes in ocean density occur within this depth range, which typically includes

the mixed layer and thermocline, therefore any estimations on length scales are best

determined here.

The shapes of the histograms in deeper depth ranges suggest minimal dependence

on observational input in the 24 hours preceding the analysis time. Below 200 m, the

exponential fit is no longer a valid model for the variables, as evidenced by length

scales becoming unrealistically large. Below 500 m, the model exhibits little local

impact as the histograms do not exhibit decay with distance. In the 600–2000 m

depth range, this may be attributed to Argo observations, climatology, and boundary

conditions, which seem sufficient to constrain deep water properties of the model.
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3.2.2 Impact of Argo Observations

Gliders are not the only platforms routinely providing subsurface data that can con-

strain operational models. We now consider how forecast-to-nowcast changes in

NCOM US East are related to observations from Argo floats. We use the same

techniques as in Section 3.2.1 to generate normalized histograms of Argo impact as

a function of distance and depth. We then compare the local and remote impacts of

Argo observations to those of glider observations (Fig. 3-6d–f).

Argo observations have a notably smaller local impact than do glider observations

(Fig. 3-5). At grid points nearest Argo observations, ∆𝑅𝑀𝑆 is approximately a factor

of two smaller than for similar distances from glider observations. This discrepancy

is likely attributable to the fact that most Argo observations are seaward of the Gulf

Stream (Fig. 1-1), where gradients are weaker than those typically sampled by gliders

in the Gulf Stream itself. Kerry et al. (2018) similarly emphasize that observations in

areas with large variability have high impact and that gliders are among the platforms

best suited to provide such observations.

Other aspects of the Argo impact are generally similar to the glider observational

impact. The largest Argo impacts were at the depths with the most variability (0–

200 m). The general shape of the upper level histograms suggest an exponential

relationship. Given the spatial distribution of the floats, the magnitude of Argo

impact beyond 400 km becomes affected by other observations which influences the

calculated length scales. The remote impacts (𝐵) were of the same magnitude as

for the gliders, suggesting as before that these values are representative of other

observational inputs the broad scale impact of other assimilated observations.

3.2.3 Impact in Two-Dimensional Coordinate System

We now expand upon the one-dimensional analysis of section 3.2.1 by evaluating

impact of glider observations in a two-dimensional coordinate system that accounts

for the advective nature of the Gulf Stream, which occupies a large portion of the

model domain. Following Heiderich and Todd (2020) and Todd (2021), we use the
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mean position of the 40-cm absolute dynamic height (ADT) contour to define an

along-stream coordinate system with origin at 25∘N. For any model grid point or

observation location, the cross-stream position (𝑥) is taken to be the minimum great

circle distance to the 40-cm ADT contour (positive offshore) and the along-stream

position (𝑦) is the distance from the origin to the nearest point along the 40-cm ADT

contour (positive downstream). Note that along-stream coordinates become poorly

defined at cross-stream distances exceeding the radius of curvature of the 40-cm ADT

contour (Fig. 1-1b).

We then compute RMS forecast-to-nowcast changes as a function of along- and

cross-stream distance to the nearest glider observation made available within the 24

hours between model runs. To focus on the areas with the largest impact, the domain

of the histograms was constrained to ±200 km in the cross-stream direction and

±500 km in the along-stream direction, with bin sizes of 25 and 50 km, respectively.

Negative values of ∆𝑥 indicate that the nearest observation available from the gliders

is onshore of the model point, while positive values of ∆𝑥 indicate observations located

offshore. In the along-stream direction, observations that are upstream of the model

point correspond to negative values of ∆𝑦 and positive values of ∆𝑦 correspond to

observations that are downstream of a model grid point.

An example histogram for temperature at 30 m depth shows the two-dimensional

extent of the observational impact (Fig. 3-8). As seen in the one-dimensional case,

the greatest model change is concentrated nearest the observations. Local impact

is roughly symmetric across both axes with a decay scale of approximately 100 km

as found in Section 3.2.1. At greater distances, the impacts become more asym-

metric; the along-stream direction shows larger model changes downstream of new

observations (∆𝑦<0). While there are some indications that the along- and cross-

stream dependence of model sensitivity to observations are linked (e.g., tilted pattern

in Fig. 3-8), we will focus on the these two directions independently by considering

patterns of histograms with ∆𝑥=0 or ∆𝑦=0. As in Section 3.2.1, we fit the nonlinear

function from Eq. 3.1 for ±∆𝑥 and ±∆𝑦 in order to better understand the local and

remote impacts in each of the four directions (Fig. 3-9). As in the one-dimensional

39



case, we normalize the two-dimensional histograms to better understand the variation

of the local response with depth (Fig. 3-10).
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Figure 3-8: Two-dimensional contour plot of RMS temperature impact at 30 m depth.
Black dashes at ∆𝑥=0 and ∆𝑦=0 indicate location of histograms in Figs. 3-9 and 3-10.

We focus first on the local response in the along-stream direction. There is again

a clear distinction of histograms between depth ranges. The 0–200 m range shows a

clear local maximum nearest the observations, and the decay with distance has an

exponential form. In the 250–500 m and 600–2000 m depth ranges, there still appears

to be some local influence, but to a lesser degree, and the decay no longer appears
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exponential. Below 2500 m, the observational impact is small and independent of

distance.

Given the shape of the normalized histograms, we can again infer that the majority

of the impact from the glider observations occurs within the upper 200 m, and thus

that the exponential decay scales can be estimated in this depth range only. We

then average all the histograms in the 0–200 m range and fit Eq. 3.1 to the ∆𝑦>0

and ∆𝑦<0 portions to determine typical length scales (Fig. 3-11). As in the one-

dimensional case, the resulting decay scales are 𝒪(100) km for all three variables.

The local scale of the response is generally isotropic and not strongly impacted by

advection.

Unlike the local response, the remote response in the along-stream direction is

asymmetric with greater model impact downstream of observations. The larger re-

mote responses in the downstream direction of flow support the higher RMS run-

to-run changes in temperature, salinity, and potential density observed east of the

PEACH region (Fig. 3-4). Since the fit of Eq. 3.1 only works at select depths, we use

the average ∆𝑅𝑀𝑆 for along-stream distance ∆𝑦>200 km and ∆𝑦<200 km to repre-

sent the remote model response at each depth. The representative values are larger

for upstream observations (∆𝑦<0) than downstream observations (∆𝑦>0) (Fig. 3-9,

red and black dashed lines); for example, at 30 m, temperature, salinity, and poten-

tial density in the model change by about twice as much downstream of observations

compared to upstream of observations.

In the vertical, the mean of ∆𝑅𝑀𝑆 for ∆𝑦<200 km is larger than for ∆y>200 km

throughout the upper 200 m (Fig. 3-12). Standard deviations of ∆𝑅𝑀𝑆 for ∆𝑦>200

km and ∆𝑦<200 km provide a measure of range dependent variability in ∆𝑅𝑀𝑆.

Differences between ∆𝑅𝑀𝑆 averaged for upstream and downstream of observations

differ by more than their respective standard errors above 200 m. We note that in

this depth range, the remote response coefficients (𝐵) from the exponential fits agree

reasonably well, indicating Eq. 3.1 is a decent model of observational impact. Deeper

than 200 m, the asymmetry in along-stream impact of the glider observations becomes

negligible as the overall forecast-to-nowcast change in the model becomes smaller.
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The significant asymmetry in observational impact in the along-stream direction is

reflective of flow-dependence in the data assimilation process, and its tendency to

elongate correlations in the along-stream direction (Cummings , 2005; Cummings and

Smedstad , 2013).

In the cross-stream direction, there is no asymmetry at long range from the ob-

servations, nor do we expect there to be large remote impacts (Fig. 3-12d–f). The

elevated local impact does generally extend farther offshore than inshore from a glider

observation, with large ∆𝑅𝑀𝑆 drift for ∆𝑥<0 and correspondingly longer L estimates

(Fig. 3-11d–f). However, the proximity of the Gulf Stream front, where large changes

from 𝜏24 to 𝜏00 tend to occur, to the shelf means that relatively few observations are

located far shoreward of these model changes, since glider observations are seaward

of the ∼100-m isobath. Observations farther offshore (e.g., in the Sargasso Sea) have

less model impact since variability there is weaker.
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Figure 3-9: Histograms of ∆𝑅𝑀𝑆 forecast-to-nowcast changes at 30 m in (a,d) tem-
perature, (b,e) salinity, and (c,f) potential density, binned by (a–c) along-stream and
(d–f) cross-stream distance from the nearest glider observation. Positive (negative)
along-stream distances correspond to nearest glider observations downstream (up-
stream) of a model grid point. Positive (negative) cross-stream distances correspond
to nearest glider observations offshore (onshore) of a model grid point. Black and red
stars indicate the decay length scales for positive and negative directions. Red and
black dashed lines indicate the mean outer values of the histogram for |∆𝑦|>200 km
and |∆𝑥|>100 km, examined further in Fig. 3-12.
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Figure 3-10: Normalized RMS-averaged forecast-to-nowcast change for each model
depth level for the two-dimensional coordinate system. Temperature, salinity and
potential density are displayed for all depths in the along-stream (a–c) and cross-
stream (d–f) directions. Color coding indicates the different depth range regimes:
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Figure 3-11: Averaged two-dimensional histograms from 0–200 m for temperature,
salinity, and potential density in the along-stream (a–c) and cross-stream (d–f) direc-
tions. The corresponding fits and stars indicate the exponential fit and subsequent
average decay length scales for the entire depth range in the positive (red) and neg-
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Figure 3-12: Asymptotic values as a function of depth for temperature, salinity, and
potential density in the along-stream direction (a–c) and cross-stream direction (d–f).
Solid black (red) lines indicate positive (negative) mean values of the histogram, and
corresponding shading indicates standard deviation of the same. Dotted black (red)
lines indicate those exponential asymptotic values (𝐵) for positive (negative) fits that
fall within 2 standard deviations of the mean.

3.3 NCOM Improvement from Observations

Having established the observational impact on model forecasting capabilities over

a 24-hour span, we now examine the extent to which forecast-to-nowcast changes in

NCOM bring the model into better agreement with observations. We start by exam-

ining interpolated profiles for one day, drawing direct comparisons between forecast,

nowcast, and the applicable observations to demonstrate the empirical improvement

between model runs. For each variable, forecast and nowcast NCOM fields are in-

terpolated to the location of each glider profile from the preceding 24 hours. Glider

observations are interpolated vertically to the 40 NCOM depth levels.

For the particular example profile in Fig. 3-13, the nowcast clearly matches ob-

served profiles of temperature, salinity, and potential density more closely than does

the 24-hour-ahead forecast. Differences between the modeled and observed profiles

are denoted here as 𝑒𝑖𝑡 and 𝑒𝑗𝑡 for forecast and nowcast errors, respectively. The
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magnitude of forecast error is larger in the upper 200 m, where temperature and

salinity differences between forecast and observations are almost twice the difference

for the nowcast (Fig. 3-13d–f). Note that the density profile changes less dramati-

cally from forecast to nowcast; this is likely due to the model’s assimilation of SSH

from satellite altimetry. In areas where vertical stratification is strong, the model in-

fers the barotropic and baroclinic structures based on SSHA anomalies (Cummings ,

2005; Cummings and Smedstad , 2013, 2014). It is therefore likely that NCOM greater

skill in forecasting density profiles than it does the underlying temperature and salin-

ity profiles. The addition of subsurface in situ data here results in more accurate

temperature and salinity profiles; this example profile was taken north of the Gulf

Stream near Cape Hatteras where the presence of variable water masses like those

from Mid-Atlantic Bight (MAB) resulted in the lower salinity values measured by the

glider. Additionally, the nowcast captures the subsurface temperature minimum not

previously seen in the 24-hour-ahead forecast.

3.3.1 Statistical Significance of Nowcast Improvement

While the single example above shows improvement from forecast to nowcast, we seek

a more comprehensive analysis that assesses the statistical significance of forecast-to-

nowcast model improvements during the entire year. We test the hypothesis that the

RMS difference between nowcast and observation for 2017 is smaller than the RMS

difference between 24-hour-ahead forecast and observation for each variable.

Before computing RMS differences between model and observations, we remove

instances in which the misfit between model and observation was more than three

times the standard deviation of the misfit at a given depth. These outliers accounted

for less than 2% of all available data and are predominately within 30 m of the sur-

face and located at or near the 200-m isobath. This isobath corresponds to the shelf

break, along which the Gulf Stream frequently flows between Florida and North Car-

olina. The proximity of the Gulf Stream front makes this region prone to subsurface

water property variations that are difficult for the model to capture with SST and

SSH data alone. One particular example of these large deviations was observed by
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PEACH gliders near Cape Hatteras, where subsurface export of MAB Cold Pool wa-

ters from the shelf resulted in uncommonly low temperature measurements (Todd ,

2020), which the model likely would have been unable to forecast without sufficient

in situ data. Since the observed profiles analyzed here are the unprocessed data sent

to NAVOCEANO, erroneous observational measurements are also a possibility. As

discussed in Section 2.2.1, we assume these were removed by NAVOCEANO in the

data assimilation process, so they are also excluded from this analysis.

The close proximity of observations for a given day also provides the possibility of

over-representing what the model may have deemed a ‘super-observation’ (Cummings ,

2005). To account for this, we compute daily RMS averages of model-data differences

(𝑒𝑖𝑡 and 𝑒𝑗𝑡) at each depth, then average over the year. The RMS averaged forecast and

nowcast errors are defined here as as 𝑔(𝑒𝑖𝑡) and 𝑔(𝑒𝑗𝑡), respectively; they represent the

‘loss functions’ used in the subsequent statistical comparison. This approach reduces

the number of independent realizations by an order of magnitude (now 𝒪(300)).

The averaged forecast errors for temperature and salinity are generally larger than

nowcast errors, especially in the upper 200 m (Fig. 3-14). To determine the statis-

tical significance of this comparison, we employ the Diebold-Mariano test (Diebold

and Mariano, 1995), which explicitly evaluates the accuracy of two forecasts by com-

paring their respective loss functions. For each NCOM depth level, we test the null

hypothesis of equal forecast accuracy

𝐻0 : 𝐸[𝑔(𝑒𝑖𝑡)] = 𝐸[𝑔(𝑒𝑗𝑡)], or 𝐸[𝑑𝑡] = 0, (3.2)

where 𝑑𝑡 is defined as the loss differential, or the difference between both loss func-

tions. Furthermore, as we are primarily interested in determining nowcast (𝐸[𝑔(𝑒𝑗𝑡)])

improvement over the forecast (𝐸[𝑔(𝑒𝑖𝑡)]), so we propose the one-sided alternative

hypothesis

𝐻1 : 𝐸[𝑔(𝑒𝑖𝑡)] > 𝐸[𝑔(𝑒𝑗𝑡)], (3.3)

which requires a decision rule for an upper-tailed test of a 𝑧-statistic variant. The
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Diebold-Mariano statistic used here for large sample sizes T is given by

𝑆1 =
𝑑√︁

2𝜋𝑓𝑑(0)
𝑇

(3.4)

where 𝑑 can be expressed as the mean loss differential and
√︁

2𝜋𝑓𝑑(0)
𝑇

is the standard

error of the loss differential. At a 95% significance level on a standard normal dis-

tribution, the statistic must be larger than the 𝑧𝛼 value of 1.645. We compute the

Diebold-Mariano test-statistic at each depth level and compare the results against

this critical value (Fig. 3-14). The results overwhelmingly support rejecting the null

hypothesis in favor of the alternative test that the forecast errors are larger than

the nowcast errors at all depths except 0 m and 1000 m, where observational mea-

surements were scarce. It is thus clear that the changes to modeled fields resulting

from assimilation of new observations within 24 hours of model valid time bring the

operational NCOM simulations significantly closer to reality.
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Chapter 4

Summary and Future Work

This analysis characterizes the impact of underwater glider and Argo observations

on NCOM numerical prediction in the Gulf Stream region. We confirm that changes

in the model can be attributed to persistent glider observations, as seen with salin-

ity measurements in the vicinity of Cape Hatteras (Fig. 3-4). The one-dimensional

(Fig. 3-6) and two-dimensional (Fig. 3-10) relationships between model impact and

distance from observations illustrate the large local impact of observational input

within a radius of 𝒪(100) km. The local impacts of Argo observations are smaller by

comparison (Fig. 3-6d-f), emphasizing the importance of glider observational focus in

areas like the Gulf Stream, where large spatial gradients are difficult for the model

to represent accurately. The two-dimensional analysis also shows the anisotropic fea-

tures of the model (Fig. 3-8) with greater impacts downstream of glider observations

as evidence of the flow-dependence within the NCOM domain (Fig. 3-12). Finally,

we showed that the nowcast simulation is significantly closer to observations, pre-

sumably due to assimilation of additional observations that become available within

24 hours of the valid time (Fig. 3-14). These results highlight the importance of

routine, high-resolution sampling of oceanic regions with large gradients, such as the

Gulf Stream and other western boundary currents, to constrain operational ocean

forecasts. Autonomous underwater gliders are particularly useful tools for such sam-

pling, particularly when piloted to repeatedly cross frontal features as is done with

Spray gliders in the Gulf Stream.
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There are further applications and directions this analysis could take. As the

focus here was on 2017 data only, including several years of glider data in the RMS

averaging may resolve findings like the decay radius or the along- and cross-stream

dependence, as noted in the two-dimensional analysis in Section 3.2.3 (Fig. 3-8).

Spray gliders surveying the Gulf Stream are equipped with 1-MHz Nortek AD2CP

Doppler current profilers (Todd et al., 2017), providing in situ current measurements

in the Gulf Stream. While these are not reported to NAVOCEANO in real time, the

processed glider velocities could be compared to the geostrophic velocity fields NCOM

derives from geopotential (Cummings and Smedstad , 2013). Such comparisons could

indicate the quality of the velocity predictions provided by the 3DVAR system and

NCOM output.
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