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Abstract

The Gutenberg-Richter law tells us that there is a tenfold increase in the number of
earthquakes of magnitude m > M when M decreases by one unit. Thus, the vast
majority of earthquakes occur at magnitudes so small that the vibrations they cause
can barely be recorded at the surface of Earth. Given that earthquakes are the symp-
toms of motion on faults, observing small earthquakes brings valuable information on
fault mechanisms. In this thesis, not only do I focus on studying small-to-moderate
size earthquakes (M < 4), but I study properties that emerge when many of these
earthquakes interact. Many of my conclusions are drawn from observations of earth-
quake temporal clustering.

I present the automatic earthquake detection and location method that I devel-
oped for collecting the time and space coordinates of as many earthquakes as possible,
and base all subsequent analyses on these. My investigations covered two study re-
gions: the Southwestern Alps, and the western section of the North Anatolian Fault
that last broke in August 1999. In both studies, I demonstrate how different fault sys-
tems produce seismicity with different temporal clustering properties. Observations
of temporal clustering describe seismicity patterns between two end-members: the
swarm-like seismicity with little inter-event triggering, and the cascade-like seismicity
with strong earthquake interaction.

Temporal clustering and the analysis of earthquake source characteristics in the
Southwestern Alps helped explain differences in fault mechanisms in the two most
active areas of the study region. My results also point towards non self-similar earth-
quakes. Along the North Anatolian Fault, in addition to temporal clustering, I ana-
lyzed the earthquake focal mechanisms, used them to infer the state of stress in the
fault zone, and thus provided a comprehensive description of the study region. A
major conclusion of this study is that strongly time clustered seismicity developed in
normal fault systems several years after the 1999 Izmit earthquake, and may indicate
the inter-play between seismic and aseismic slip on these faults.
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this force is resisted by frictionFf between the mass and the table. . 48

1.1.2 Spring-slider model.A: A block, the slider, lies on a surface and is
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spring with sti�ness k. Thus, the slider is pulled by an elastic forcek�

where� is the elongation of the spring. This loading force is resisted by

the friction Ff . B: Numeric simulation of the spring-slider model with

rate-and-state friction and aging law (cf. Equation (1.2)). The slider

is stationary most of the time (inter-seismic phase, see zero slip rate,

in solid red, and �at displacement curve, in solid blue), but catches

up with the motion of the loading point (dashed blue line) in periodic,

fast slip events. The stick-slip behavior ensures that the spring does

not keep accumulating energy inde�nitely. C: Focus on the fast slip

event (the rupture) when the inertial term of the equations of motion

cannot be neglicted (left hand side of Equation (1.1)). All axes are

non-dimensional quantities. Courtesy of Ekaterina Bolotskaya. . . . . 49
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1.1.3 Stability domains predicted by rate-and-state friction (Equation (1.2)).

The middle panel shows a measure of stability,� , as a function of

depth. These stability domains are sketched for a subduction interface

(left) and a crustal fault (right). The rightmost panel shows the depth

distribution of earthquakes for a section of the San Andreas fault near

Park�eld. Figure from Scholz (1998). . . . . . . . . . . . . . . . . . . 51

1.1.4 Fault areaA against seismic momentM 0. The slope in the log-log

domain is 2/3, indicating that A / M 2=3
0 . Lines of equal stress drops

for circular cracks are shown. Figure from (Kanamori and Anderson,

1975). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.1.5 Amplitude spectrum corner frequencyf c against seismic momentM 0

(the corresponding moment magnitudeMw is given at the top). The

red dashed lines shown the constant stress drop scaling. Figure from

Allmann and Shearer (2009). . . . . . . . . . . . . . . . . . . . . . . . 55

1.2.1A: Sketch of a plane wave reaching the surface.B: Normal sum vs.

beamformed sum,i.e. shift and sum. Figure from Rost and Thomas

(2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.3.1 Frequency-magnitude relationship, referred to as the Gutenberg-Richter

law (cf. Equation (1.7)). The slope in the log-log domain indicates a

b-valueb= 1. Figure 23 from Kanamori and Brodsky (2004), see their

caption for description of the data. . . . . . . . . . . . . . . . . . . . 61

1.3.2 Coulomb stress changes from the M7.6 1872 Owens valley are still

consistent with the occurrence of moderate-to-largeM � 4 earthquakes
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in blue (inhibit failure). Figure from Stein et al. (2019). . . . . . . . . 64
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1.3.3 Quanti�cation of the strength of earthquake clustering. An example

of a weakly (blue) and strongly (green) time clustered sequences are

given. A: Event count number, i.e. the number of events per unit

time. B: Autocorrelation of the event count number. The weakly clus-

tered sequence shows the characteristic delta autocorrelation of random

sequences, whereas the strongly clustered sequence keeps a high corre-

lation over a long time scale.C: Measure of the power law exponent

of the event count spectrum. Clustered sequences exhibit large power

law exponents.D: Fraction x of time bins with size� occupied by at

least one earthquake:x / � 1� F . Clustered sequences have large fractal

dimensionsF . Figure from (Beaucé et al., 2019). . . . . . . . . . . . 66

2.1.1 Interpretative cross-section of the Western Alps. Following the closure

of the Alpine Tethys ocean, the collision of the European and Adri-

atic margins formed the Alps and the subduction complex illustrated

here. A clear understanding of what is driving the deformation and the

seismic activity in these complex geological units is still lacking. Ab-

breviations: FPF � Frontal Penninic Fault, Srp � serpentinized, RMF �

Rivoli-Marene deep fault. We show the locations of the CIFALPS sta-

tions on the topographic pro�le of the cross-section. The onset shows

the location of the transect in the Western Alps, Europe. Figure mod-

i�ed from Zhao et al. (2015) and Solarino et al. (2018). . . . . . . . . 80

13



2.2.1Top left panel (A): Spatial discretization of the volume beneath the

study region. Using a velocity model, each point of the grid is associ-

ated with a collection of source-receiver travel times. The grid points

are called potential seismic sources. As an example, let us consider

an earthquake with location shown by the yellow star, and recorded

at multiple stations. Right panel (B): The envelopes of the earth-

quake waveforms are shifted using the travel times of a potential seismic

source close to the real location (yellow star). The shifted envelopes

are then stacked to calculate the network response (green waveform,

cf. Equation 2.1). The resulting network response is intrinsically re-

lated to the potential seismic source from which the travel times were

calculated: di�erent potential seismic sources give di�erent network re-

sponses.Bottom panel (C): Composite network response (cf. Equa-

tion 2.2) calculated over one day. We subtract a curve connecting the

local minima of the CNR to set its baseline to zero. To adapt to vari-

ations in the level of noise, we use a time-dependent threshold: the

value "median + 10� MAD " is evaluated every 30 minutes and a lin-

ear interpolation makes the threshold varying continuously within each

30-minute bin. Using small bin sizes enables the threshold to adapt

to locally noisy episodes, but at the risk of discarding actual events: a

30-minute bin size is a good compromise between the two. We perform

the peak selection on a smoothed CNR and impose a minimum peak

distance, which explains why some of the values above threshold are

not selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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2.2.2Left panel (A): We randomly sample detections from the database

of candidate template events and identify each channel asearthquake

or non-earthquake. We attribute the label earthquaketo the detections

with more than nine channels identi�ed as earthquakes (non-earthquake

otherwise). This arbitrary choice can be tuned in order to select more

or less low SNR earthquakes in the template database.Right panel

(B): Structure of our binary logistic classi�er. The signal features are

�rst preprocessed by standardizing them (i.e. removing the mean and

setting the standard deviation to one) and bounding them between -1

and 1 through the use of hyperbolic tangent. A linear combination of

the preprocessed signal features generates a scalar, which is fed into the

logistic function (also called sigmoid function). The resulting output is

bounded between 0 and 1, and is interpreted as the probability of being

an earthquake. An output greater than 0.5 means the detection is more

likely to be an earthquake than a non-earthquake. This algorithm was

built using the Python library Keras (Chollet et al., 2015). . . . . . . 85

2.2.3Left panel (A): The waveforms of a template event (red waveforms),

on 12 stations and each of the 3 components, match well the data (blue

waveforms): a new earthquake is detected. The correlation coe�cient

(CC) is given on each channel.Right panel (B): Comparison of the

template waveform on one channel (red waveform) with the waveforms

of a few detected events (blue waveforms). . . . . . . . . . . . . . . . 88
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2.2.4 Relocation of the second generation templates.Top panel (A): The

denoised and stacked waveforms obtained from the SVDWF (blue wave-

forms) are transformed following Baillard et al. (2014) to get a signal

that is sensitive to phase arrivals (orange waveforms). The arrival

times predicted by the new location are shown by black and red bars

for the P- and S-wave, respectively.Bottom left panel (B): The

composite network response (blue curve) is calculated using the or-

ange signal shown inA . The neighborhood of the maximum of the

CNR is analyzed to build a weighting function (red curve, cf. 2.A

for details). This weighting function is used to calculate a weighted

average of the distance to the best potential seismic source (cf. Equa-

tion 2.8 in 2.A), i.e. the potential source associated with the highest

CNR. We de�ne this weighted average as the uncertainty on the loca-

tion. Bottom right panel (C): Each sample of the CNR shown inB

is associated with a potential source in the grid; the color codes for the

value of the CNR and the transparent points are those for which the

weighting function is zero. In this example, the location uncertainty is

3.05 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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2.3.1 Locations of the 1,406 template events. Template events relocated with

an uncertainty � r < 15 km are shown with �lled dots, and template

events for which we did not �nd a reliable location are shown with open

diamonds; the color scale codes for the depth of the events. Black in-

verted triangles are the seismic stations used in this study. We note

that the uncertainty estimation described in Section 2.2.5 does not al-

ways perform well for deep events, which do not only feature simple

P- and S-wave arrivals as assumed in the calculation of the network

response. Therefore, a few events with� r < 15 km still show odd lo-

cations (e.g. deep events located out of the group of deep earthquakes

around Torino). The purple star indicates the epicenter of aM L 3.9

earthquake that occurred in early October 2012, and which is impor-

tant for the discussion in Section 2.4. The onset shows the position of

the Western Alps in Europe. Theblack dashed linecorresponds to the

axis along which the stations from the CIFALPS network are deployed;

this axis is used to project the locations of the template events for 2D

cross sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.3.2Left panel (A): Daily seismic rate (left axis,blue continuous curve)

and daily magnitude distribution (right axis, red dots). Details on the

local magnitude scale are given in 2.B.Right panels (B): Recurrence

time vs detection time for three templates located in three distinct

geographic regions. The Briançonnais and the Dora Maira massif are

dominated by episodes of burst-like seismicity, and the Ubaye valley

hosts continuous seismic activity that does not feature clear foreshocks-

mainshock-aftershocks sequences. Local magnitudes are coded in color:

we observe a smaller magnitude range in the Ubaye valley than for the

earthquake sequences in the Briançonnais and in the Dora Maira massif. 95
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2.3.3 Quanti�cation of temporal clustering. Top left panel (A): Event

count number e(t) for earthquakes detected with two di�erent tem-

plates. The event count number is calculated by dividing the time axis

into 5-minute bins, and counting the number of events within each bin.

Top right panel (B): Autocorrelation function of the event count

number. We de�ne the correlation time � as the time interval over

which the autocorrelation function is greater than the threshold plot-

ted with the dashed black line (arbitrarily set to 0.12). Bottom left

panel (C): Power spectral density of the event count number. The

spectrum of the event count number has a power-law dependence on

the frequency when temporal clustering occurs. We de�ne the power-

law exponent � as the clustering coe�cient. Bottom right panel

(D): Fractal analysis of the earthquake sequences. Within a limited

range of size of time intervals, the fraction of occupied intervals follows

a power-law, whose exponent is related to the fractal dimension of the

earthquake occurrence. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.4.1 Cross-section along the CIFALPS axis showing 976 templates that were

well relocated (� r < 15 km). Top panel (A): Number of detected

earthquakes per template.Bottom panel (B): Sources with fractal

dimensionD > 0:2, i.e. sources exhibiting temporal clustering. The

fractal dimension was calculated by taking the event counte(t) of each

template plus all the templates within a 10-km radius, over the whole

study period. Even though intense seismic activity is located in the

Ubaye valley, this seismicity is not associated with signi�cant temporal

clustering, showing that there is no systematic relation between tem-

poral clustering and number of events per unit volume. The purple

star indicates the location of theM L 3.9 earthquake that we mention

in the discussion (Section 2.4). The red structures are reported from

the geological cross-section in Figure 2.1.1. . . . . . . . . . . . . . . . 99
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2.B.1Magnitude estimation of the reference event. For each template, we use

the highest SNR detections to calculate the average S-wave spectrum

(Equation 2.9) and �t it with the Boatwright model (Equation 2.11).

The low-frequency plateau gives us the seismic momentM 0. The aver-

age is calculated over all the stations and components that satisfy the

SNR criterion. Thus, for each frequency sample the number of chan-

nels included in the average may vary, as we can see with the color

scale. Since frequency samples with a higher number of channels are

more reliable, we give them larger weight in the inversion. . . . . . . 107

2.S.1Left panel (A): Earthquake recorded at multiple stations. The wave-

forms are �ltered in the band 1-12Hz and downsampled from 100 or

125 Hz to 50 Hz.Right panel (B): The envelopes of the seismic data

are calculated and standardized: the daily median is removed, and the

resulting signal is divided by its daily MAD (Median Absolute Devi-

ation). Eventually, we cut out the 95th percentile of the signals by

saturating the standardized envelopesu(t) with hyperbolic tangent:

~u(t) = p95 � tanh
�

u(t)
p95

�
; where p95 is the 95th percentile ofu(t).

This processing ensures the stations to have equal noise level before

stacking (cf. Figure 2.S.2), and decreases the e�ect of undesired spuri-

ous signals in the data. The three superimposed layers show the three

components: north, east and vertical. . . . . . . . . . . . . . . . . . . 108

2.S.2 Statistics of the envelope data for a given day. Di�erent whisker boxes

are for di�erent stations, with each component (north, east, vertical)

in di�erent subplots. Legend of the whisker boxes: orange line:

median, lower side of the box: Q1, upper side of the box: Q3, lower

whisker: Q1 - 1.5(Q3-Q1), upper whisker: Q3 + 1.5(Q3-Q1).Top

panel: Raw envelopes.Bottom panel: MAD-normalized envelopes:

~u(t) = u(t )� Median( u(t ))
MAD( u(t )) . After normalization, the stations exhibit similar

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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2.S.3 Composite network response (CNR,cf. Equation 2.2 in main mate-

rial). Left panel (A): Illustration of the maxima searching operation

achieved to calculate the composite network response from all the net-

work responses of the grid.Right panel (B): Histogram of the CNR

samples presented in(C) . The thresholdmedian + 10� MAD is given

for information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.S.4 Second generation templates: increasing the SNR of the template wave-

forms. Top panel: Template matching provides us with many noisy

repetitions of the same waveform. Di�erent stacking methods can ex-

tract the coherent information from this collection of noisy records.

Bottom panel: Stacking methods such as theN th -root stack (red

waveform) or the phase-weighted stack (yellow waveform) greatly im-

prove the SNR with respect to the linear stack, but also distort wave-

forms because of non-linear operations. Our preferred method is the

SVDWF (green waveform), which only performs linear operations. It

exhibits a better SNR than the linear stack, and preserves the shape

of the target waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.S.5 Comparison of the existing catalog with our catalog inside the dashed

box; this region is where the geometry of the network allows best per-

formances. Two events match if their origin times and locations are

less than � T and � r , respectively. � T and � r are two arbitrarily

chosen thresholds. The unmatched events are shown with �lled dots

and the color codes their depth. For information, our template loca-

tions are shown with open diamonds. We missed 142 out of the 825

events (17%) documented in the catalog. However, we detected 16,430

new events,i.e. we detected a total of 17,113 earthquakes (21 times

more detections with respect to the existing catalog). We show the

same comparison for di�erent� T and � r in Figure 2.S.6. Some of

the unmatched events presented here are likely to be associated with

inconsistencies in reported locations. . . . . . . . . . . . . . . . . . . 112
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2.S.6 We perform the same comparison as in Figure 2.S.5 for di�erent thresh-

olds in order to investigate the e�ect of such arbitrary criteria. As the

number of unmatched events decreases when we relax the criteria on

origin time and location, it suggests that some of the unmatched events

are only due to inconsistencies in location between the catalogs. . . . 113

2.S.7 Distribution of magnitude of the 142 undetected events within the

restricted area shown in Figure 2.S.5. Since the locations of the unde-

tected events are close to the locations of our template events, we likely

missed them because of their low magnitudes rather than because of

the con�guration of the station network. . . . . . . . . . . . . . . . . 114

2.S.8 Frequency magnitude distribution of the �nal catalog, only using tem-

plates with � r < 15 km. The maximum likelihood estimate (red curve)

is made on the range [1,+ 1 ). We observe the Gutenberg-Richter re-

lation to break down at M L � 1 (black dashed line). . . . . . . . . . . 114

2.S.9 On both panels, the y-axis reports the position of the templates pro-

jected along the axis de�ned by the linear network CIFALPS.Top

panel: Number of detected earthquakes per 10-day sliding window

for each template. Bottom panel: Clustering coe�cient ( cf. def-

inition in main material Figure 2.3.3) per 10-day sliding window for

each template. Comparison of the two panels shows that strong seis-

mic activity is often associated with high temporal clustering, but also

that this is not always true. We observe continuous seismic activity

beneath the Ubaye valley (with projected location around CT20), but

only few episodes of high temporal clustering. This is consistent with

previous observations pointing at a mixture of swarm-like seismicity

and foreshocks-mainshock-aftershocks sequences in the Ubaye valley

Daniel et al. (2011); Leclère et al. (2012, 2013); De Barros et al. (2019). 115
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2.S.10Cross-section along the CIFALPS axis showing 976 templates that were

well relocated (� r < 15 km). The color codes for di�erent attributes

in each cross-section,from top to bottom: number of detections,

correlation time, fractal dimension and clustering coe�cient of the one-

year earthquake sequence of each template. Visual inspection seems

to reveal that the fractal dimension o�ers a more contrasted image of

temporal clustering than the clustering coe�cient. . . . . . . . . . . . 116

3.2.1 Centroid locations (�lled dots) of the 81 groups of similar template

earthquakes. Color shows the centroid depth. Each group detected at

least 10 events, and these similar earthquakes are used for computing

spectral ratios (Equations (3.2) and (3.3)). Black inverted triangles

are the 82 seismic stations used in this study. The seismicity in the

Ubaye valley and in the Dora Maira massif is discussed at length in

this manuscript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.2.2 Waveform alignment and spectral ratio of a pair of events on a single

station. A-C: Three component P-wave waveforms of event 1 (black)

and event 2 (orange). The �rst P-wave arrivals have a correlation

coe�cient (CC) of 0.75 after shifting event 2 backward by one sample.

D-F: Three component S-wave waveforms of event 1 (black) and event

2 (orange). The �rst S-wave arrivals have a correlation coe�cient of

0.87 after shifting event 2 forward by 6 samples. Note: the CC was

computed on a narrow window around the �rst arrivals, and not over

the whole time window shown here.G-I: P- (dashed blue) and S-wave

(solid orange) spectral ratios (Equation (3.3)) of the three component

waveforms shown above. . . . . . . . . . . . . . . . . . . . . . . . . . 129
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3.2.3 Multi-station average spectral ratio for a given pair of events.A, B:

P-wave and S-wave average spectral ratio, respectively. Lines colored

with a shade of blue are single-channel spectral ratios. The color shows

the correlation coe�cient between the �rst arrivals of the P or S wave

(see Figure 3.2.2). The orange line is the median stack (see Equa-

tion (3.4) and text) and the shaded grey area shows the uncertainty

on the stack. Only single-channel spectral ratios with CC greater than

0.5 are included in the average, in addition to the signal-to-noise ratio

(SNR) criterion (see panels below).C, D: P-wave and S-wave single-

channel SNR. The SNR is computed with respect to a noise window

taken just before the P-wave arrival. Solid lines are SNRs of the �rst

event of the pair, dotted lines are SNRs of the second event. Color is

the same as for panels A and B. The dashed black line is the threshold

on SNR above which a frequency bin is included in the average. Both

SNRs of event 1 and 2 are required to be above threshold. . . . . . . 130

3.2.4 Multi-station average spectral ratios between the largest magnitude

event and all others (thick colored lines) and model predicted spectral

ratios (thin colored lines) forA: the P wave andB: the S wave. Curves

are colored according to the catalog magnitude of the second event.

The corner frequencies of the two eventsf c;1, f c;2 of each pair are

shown with black circled dots. Note that this group of earthquakes

was taken from the Dora Maira massif (see location on Figure 3.2.1),

and that the model does not seem to explain well the low-frequency

part of the ratios ("bump" in the 3- 8 Hz band). . . . . . . . . . . . . 134

3.3.1 Inverted seismic moments and corner frequencies for a given group of

similar earthquakes (the same as in Figure 3.2.4), on the P (blue dots)

and the S (orange dots) waves. The power-law exponent� of the f c-

M 0 scaling relation (Equation (3.12)) is measured by a robust linear

regression in the log-log domain (l1-norm minimization). Uncertainties

are estimated with bootstrap resampling. . . . . . . . . . . . . . . . . 135
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3.3.2 Corner frequency vs seismic moment scaling and other parameters.A:

Centroid depth. B: Power-law exponent� of Equation (3.12). The

color scale is centered around the self-similarity power-law exponent:

� ss = 1=3 (white). All exponents that were not di�erent from � ss

within the 1-� uncertainty were set to � ss on this map. C: Number

of events that were successfully inverted in each group (P- and S-wave

inversion). D: Fractal dimension of the time series of event count

per unit time (see Beaucé et al., 2019). Large values mean strong

temporal clustering. Diamonds are results from groups with less than

10 successfully inverted events (see panel C). The rest of the groups

are shown with dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.3.3 All corner frequencies and seismic moments that were successfully in-

verted. A: P-wave inversion.B: S-wave inversion. Fitting a power-law

to the data f c / M � �
0 yields low exponents� : 0:08 and 0:14 for the P

and S waves, respectively. These data could also be explained by the

canonical scaling law,i.e. � ss = 1=3, and a spread of stress drop values

(see 0.1, 1, 10, 100 and1000 MPalines, computed with the model from

Madariaga, 1976). Grey diamonds are results from groups with less

than 10 successfully inverted events (see Figure 3.3.2C). . . . . . . . . 138
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3.3.4 Unusual corner frequency - seismic moment scaling relationship in

the Dora Maira massif. Multi-station average displacement amplitude

spectra ofA: P waves andB: S waves corrected for geometrical spread-

ing and attenuation (assuming aQ / f � 0:5 model,e.g.Campillo et al.,

1985). We use the magnitudes and corner frequencies inferred with

the spectral ratio inversion to further average amplitude spectra and

corner frequencies in magnitude bins (black diamonds are the average

corner frequencies). Dashed black lines show the self-similar (/ f � 3)

and the inverted (/ f � 6:67, i.e. � = 0:14) scaling. C: P-wave and

D: S-wave amplitude spectra are unsuccessfully collapsed using the

self-similar scaling. E: P-wave andF: S-wave amplitude spectra are

satisfactorily collapsed using the inverted scaling. . . . . . . . . . . . 139

3.3.5 Unusual corner frequency - seismic moment scaling relationship in the

Ubaye valley. Multi-station average displacement amplitude spectra

of A: P waves andB: S waves corrected for geometrical spreading

and attenuation (assuming aQ / f � 0:5 model, e.g. Campillo et al.,

1985). We use the magnitudes and corner frequencies inferred with

the spectral ratio inversion to further average amplitude spectra and

corner frequencies in magnitude bins (black diamonds are the average

corner frequencies). Dashed black lines show the self-similar (/ f � 3)

and the inverted (/ f � 11:34, i.e. � = 0:09) scaling. C: P-wave and

D: S-wave amplitude spectra are unsuccessfully collapsed using the

self-similar scaling. E: P-wave andF: S-wave amplitude spectra are

satisfactorily collapsed using the inverted scaling. . . . . . . . . . . . 140

3.4.1 Corner frequencies and seismic moments estimated inA: the Ubaye

valley and B: the Dora Maira massif, for the P (blue symbols) and S

(orange symbols) waves. Solid lines indicate di�erent levels of constant

stress drop scaling (computed following the model of Madariaga, 1976).

The inverted scaling laws are shown with the dashed lines. . . . . . . 143
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3.S.1 Multi-station average spectral ratios between the largest magnitude

event and all others (thick colored lines) and model predicted spectral

ratios (thin solid line: l2 loss, thin dashed line: soft l1 loss).Left col-

umn (A, C, E): P wave. Right column (B, D, F): S wave. Top

row (A, B): Brune model ( = 1 in Equation (3.6) in main text).

Middle row (C, D): Boatwright model ( = 2 in Equation (3.6)

in main text). Bottom row (E, F): Custom model ( is a free pa-

rameter). The Boatwright and custom models with the l2 loss do not

converge to a satisfactory solution on the largest magnitude event. . . 149

3.S.2 Residuals between log observations and log models for P (blue distri-

butions) and S (orange distributions) waves.First row (A, B, C):

L2 loss with the Brune, Boatwright and custom model.Second row

(D, E, F): Soft l1 loss with the Brune, Boatwright and custom model.

The Boatwright model with the soft l1 loss does marginally best. . . . 150

3.S.3 Inverted corner frequenciesf c and seismic momentsM 0 for all events.

The exponent of the scaling lawf c / M � �
0 was estimated with a linear

regression in the log-log domain using the least absolute value crite-

rion (dashed lines). Uncertainties were estimated by bootstrapping the

data set and repeating the regression.First row (A, B, C): L2 loss

with the Brune, Boatwright and custom model. Second row (D, E,

F): Soft l1 loss with the Brune, Boatwright and custom model. Pre-

ferred inversions show consistent results between the P and S waves.

Boatwright and soft l1 loss also produce the smallest residuals (cf.

Figure 3.S.2), therefore we choose this model in the study. . . . . . . 151

26



3.S.4 P-S averaged power-law exponent� (cf. Equation (3.12)) vs. A: Cen-

troid depth, B: Root mean square (RMS) residual,C: Total number of

inverted events (P- and S-wave inversions), andD: Fractal dimension

of the event count per unit time (see main text). Red diamonds are

groups for which less than 10 events were successfully inverted, there-

fore for which the power-law exponent is not very reliable. Blue dots

are the rest of the groups. . . . . . . . . . . . . . . . . . . . . . . . . 152
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4.1.1A: Large scale view of the North Anatolian Fault Zone. Abbrevia-

tions: NAFZ - North Anatolian Fault Zone, EAFZ - East Anatolian

Fault Zone. The red arrows indicate the direction of coseismic mo-

tion. Our study region is located at the western end of the North

Anatolian Fault (NAF). B: Magni�ed view of the fault zone in our

study region. Larger font names are the main geologic units: Istan-

bul Zone, Armutlu Block, Almacik Mountains and Sakarya Terrane.

The smaller font, italic names are segments and faults of the NAF:

the Izmit-Sapanca segment, the Sapanca lake step-over, the Sapanca-

Akyazi segment (which together constitute the Northern strand), the

Karadere segment and the Southern strand ( names following Barka

et al., 2002). The Sapanca-Akyazi segment is made of the Sakarya

fault and the Akyazi fault. The �at area around the Akyazi fault is

referred to as the Akyazi plain. Both Lake Sapanca and the Akyazi

plain are pull-apart basins. The large red star indicates the epicenter

of the Mw7.4 Izmit earthquake, and the small purple star indicates the

epicenter of theMw7.2 Düzce earthquake.C: The seismic stations used

in this study are from the temporary experiment DANA ( 70 stations,

red triangles; DANA , 2012) and the permanent network ( 9 stations,

black triangles; Kandilli Observatory And Earthquake Research Insti-

tute, Bo§aziçi University, 1971). Each column of the DANA array is

indexed by a letter and each row is indexed by a number (DA01, DA02,

..., DB01, ...). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.2.1 Summary �owchart of the earthquake detection and location method.

For clarity, only a subset of stations is shown in the above panels,

but all the analysis is carried on the 79 stations together. Template

matching is performed on the 10 stations closest to the source and the

detection threshold is set to8� RMS of the correlation coe�cients in a

30-minute sliding window. See Data and Resources for code availability.165
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4.3.1 Map view of the locations of the template earthquakes detected and

used in this study. Only templates with maximum horizontal uncer-

tainty less than 15 km and depth less than20 km are shown (total of

3,320 templates). Filled dots are for natural earthquakes (1,471 tem-

plates), and squares are for mining-related events (1,849 templates; see

text for details about identifying templates as mining templates).A:

Event depths. B: Cumulative number of event detections per tem-

plate. Most of the earthquake signals found in the dataset actually

originate from outside the North Anatolian Fault Zone. C: Maximum

vertical uncertainty derived from the uncertainty ellipsoids. D: Max-

imum horizontal uncertainty derived from the uncertainty ellipsoids.

As expected, template earthquakes that are located further from the

stations have larger location uncertainties. . . . . . . . . . . . . . . . 169

4.3.2 Spatio-temporal distribution of the earthquake activity in the study

region. The longitude of each event is shown against its origin time,

and the color codes the latitude.A: We detected 31,356 events with

the 3,320 template earthquakes presented in Figure 4.3.1 from 2012-05-

04 to 2013-09-20.B: The templates due to natural seismicity detected

16,708 earthquakes. The seismic activity taking place on the NAF

(latitudes 40:40°N-40:80°N) is eclipsed by the numerous earthquakes

occurring elsewhere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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4.3.3 Earthquakes in the North Anatolian Fault Zone.A: Locations of the

template earthquakes with color coded depths. We de�ne nine subre-

gions along the di�erent segments of the fault. Only in this �gure the

Sapanca-Akyazi region is subdivided into a fault parallel and a fault

perpendicular sections. The dashed lines inside each colored box de�ne

either fault parallel or fault perpendicular cross-sections (see bottom

panels, C). The color shading of each box is only to help distinguish

between them.B: Earthquake hypocenters successfully relocated with

the double-di�erence method and color coded by depth. Events for

which relocation was not successful were attributed the template loca-

tion. C: Depth cross-sections of the di�erent areas introduced above.

The earthquake locations contained in the boxes are projected onto the

boxes' central axis (thin black dashed lines). The bottom x-axes are

distances along the cross-section axes in kilometers, and the top x-axes

are the geographic coordinates relevant to each cross-section (either

longitude or latitude). . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.3.4 Earthquake activity seen on recurrence time vs detection time graphs

for di�erent subsets of the earthquake catalog (refer to Figure 4.3.3

for the name of the areas). The recurrence time is the time between

two consecutive events detected by a same template. Note that the

y-axis is in log scale and that some seismic episodes span many orders

of magnitude of recurrence time. These episodes are characteristic of

burst-like, or cascade activity (see text). The color codes the local

magnitude, and inverted grey triangles are events for which no reliable

estimates were obtained. . . . . . . . . . . . . . . . . . . . . . . . . . 176
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4.3.5A: Map view of template earthquakes with color-coded fractal dimen-

sion (cf. Equation (4.4)) showing the strength of temporal clustering.

B: Map view of template earthquakes with color coded cumulative

number of detections. In both top panels, the shaded areas refer to

the regions introduced in Figure 4.3.3.C: Template earthquakes with

color coded fractal dimension on fault parallel and fault perpendicular

cross-sections (same color scale as panelA ). Hypocenters are projected

along the dashed axes shown on the map view. High fractal dimen-

sions mean strongly time clustered activity (i.e. past events strongly

in�uence the timings of future events). . . . . . . . . . . . . . . . . . 177

4.3.6 Clustering vs. depth vs. event density. Inside each region, templates

are binned per distance from the bottom of the seismogenic zone and

the fractal dimension is averaged among the 10% largest values (one

dot per bin). The location of the bottom of the seismogenic zone is

approximated by the depth of the locally deepest template. Dots are

colored according to the average inter-event distance in the cloud of

earthquakes detected by the selected template; this is a proxy for event

density. Darker colors mean higher event density. Strongest clustering

tends to occur at the bottom of the seismogenic zone,i.e. at the

transition zone between stable and unstable sliding. . . . . . . . . . . 179
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4.4.1 Estimation of focal mechanisms.A: We �nd the synthetic waveforms

that �t best the �rst P- and S-wave arrivals on all seismic stations and

components. Black waveforms are data, blue and red dashed waveforms

are synthetic P and S waves, respectively (Cotton and Coutant, 1997,

computed with Axitra,). The waveforms are bandpass �ltered in 2-

6 Hz. Fine waveform realignment is performed by cross-correlating the

synthetics and data to account for errors in location.B: To estimate

uncertainties on focal mechanisms, we generate 100 focal mechanism

solutions by randomly excluding 10 stations each time (leave-10-out

jackknife resampling). The colored focal mechanism on the left is the

solution from the minimum of the averaged 100 objective functions,

and on the right is the solution from averaging the 100 (normalized)

moment tensors. We chose to use the latter as our best solution.C:

Location of the template earthquake taken as an example. The solution

shows a right-lateral strike-slip fault striking to the northeast. . . . . 183

4.4.2 Focal mechanisms of all 436 template earthquakes located in the vicin-

ity of the North Anatolian Fault, following the method described in

Section 4.4.1. The beachballs are lower hemisphere P-wave radiation

patterns and their size is scaled according to their uncertainty (smaller

beachballs have larger errors).A: Strike-slip faulting earthquakes.B:

Reverse faulting earthquakes.C: Normal faulting earthquakes. D:

Distribution of faulting regimes with depth. Each event of the catalog

is attributed the focal mechanism of the template to which it correlates

best. E: Focal mechanisms located in the so-called Kaverina diagram

(Kaverina et al., 1996), which we use to categorize the faulting regimes.

The colors of the symbols match the other panels. This panel was cre-

ated with a plotting routine from the focal mechanism analysis software

FMC (Álvarez-Gómez, 2019). . . . . . . . . . . . . . . . . . . . . . . 184
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4.4.3 Inverted local stress tensors linked on the map to their corresponding

subregion. The stereographic projections show the orientations of the

three principal stresses� 1, � 2 and � 3, from most compressive to least

compressive. The grey symbols are the 2000 solutions obtained by

repeating the inversion on randomly sampled data sets from the 100

focal mechanism solutions available for each template earthquake. See

Table 4.2 for numerical values of azimuth and plunge. We use these em-

pirical distributions to estimate the 80% and 90% con�dence intervals,

shown here with the darker and lighter contour lines. The histograms

show the distributions of shape ratios (R, see Equation (4.6)) and the

vertical red bars indicate the shape ratios obtained by inverting the

set of best focal mechanisms. In terms of deviatoric stress,R < 0:5

indicates that � 2 is compressional, whereasR > 0:5 indicates that � 2

is extensional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.5.1 Comparison of the two step-overs bounding the Sapanca-Akyazi seg-

ment on both sides.A: Eastern side of Lake Sapanca.B: Beneath the

Akyazi plain, between Sapanca-Akyazi and Karadere.Top panels:

Lower-hemisphere focal mechanisms of template earthquakes colored

according to their depth. Arrows indicate the predominant di�erent

slip directions among the focal mechanisms. The side panels show the

distribution of faulting styles with depth. Each detected event is at-

tributed the focal mechanism of the template earthquake with which

it correlates best.Bottom panels: Frequency-magnitude distribution. 193
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4.S.1Top left panel: Mining-related seismicity is characterized by predom-

inantly diurne seismicity, whereas we expect no preferred time for nat-

ural seismicity. In fact, natural seismicity shows slightly more events

at night because noise is generally lower, and earthquake detection is

easier.Bottom left panel: Mining-related seismicity also often shows

no earthquakes on Sundays.Right panels: The waveforms produced

by these mining-induced earthquakes have all characteristics of natural

earthquakes, with clear P and S waves. . . . . . . . . . . . . . . . . . 200

4.S.2 Average S-wave spectrum �tted with the Brune model (red curve).

This is a weighted average of all single-channel S-wave spectra (thin

grey spectra, Equation (4.7)). The weight of each frequency bin of

each channel is proportional to the excess signal-to-noise ratio (SNR)

de�ned asw(f ) = SNR( f ) � SNRt (f ), whereSNRt (f ) is the minimum

SNR value that the frequency binf must exceed in order to contribute

to the average. Every frequency bin of the average spectrum also has a

weight that is equal to the sum of the single-channel weights. Note that

because we correct the single-channel spectra for geometric spreading

and attenuation, the low-frequency plateau shown here gives directly

the seismic momentM 0. . . . . . . . . . . . . . . . . . . . . . . . . . 202
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4.S.3 Seismicity of the 2012-07-07M L 4.1 Serdivan earthquake sequence.Top

left panel: Cumulative number of earthquakes and local magnitudes

M L . The mainshock was followed by about 30 events in the next

four hours, but only we recorded only 10 events in the next 26 days.

Top right panel: Epicenters colored by time relative to the main-

shock. Epicenters' alignment and the largest events' focal mechanisms

suggest the existence of two conjugate faults and a network of sec-

ondary faults. Bottom left panels: Spatio-temporal evolution of the

earthquake sequence. Successfully relocated hypocenters do not show

any migration pattern consistent with �uid di�usion with di�usivity

D � 0:2 � 0:3m2/s typically observed for swarm seismicity (Shapiro

et al., 2002) nor fast linear migration (> 30 km/day), suggesting that

the earlier part of the sequence was controlled by static and dynamic

stress changes. However, we can visually identify a southeastward mi-

gration of the seismicity in the later days of the sequence (top right

panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
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4.S.4 Quanti�cation of the strength of temporal clustering.Top left panel:

Earthquake occurrence time series, alias the event count,i.e. number of

events per unit time.Top right panel: Autocorrelation of the event

count. A random time series would show a perfect Dirac function.

Bottom left panel: Spectrum of the event count. The spectrum of a

time clustered event count follows a power law/ f � � and � quanti�es

the strength of temporal clustering. Bottom right panel: Fractal

analysis of the event count. We measure the number of time bins oc-

cupied by at least one event when dividing the time axis into smaller

and smaller time bins. The slope of the curve gives the fractal dimen-

sion, which also quanti�es the strength of temporal clustering. We �t

the curve between100 s(to avoid dealing with short time scales that

can be corrupted by events counted twice, even though we normally

take care of that) and the inverse of the average event rate (to avoid

�tting the time scales where fractality trivially breaks down). . . . . . 204

4.S.5 Earthquake clustering along the North Anatolian Fault Zone.Top

panel: Fractal dimension (as introduced in Figure 4.S.4). The eastern

Marmara Sea and Lake Sapanca show the strongest clustering along the

NAF. Bottom panel: Cumulative number of detections per template. 205

4.S.6 Objective function used in the focal mechanism estimate.Top row:

Root Mean Square (RMS) waveform amplitude di�erence.Middle

column: Negativewaveform correlation (minimizing the negative cor-

relation means maximizing the correlation).Bottom row: The ob-

jective function is made of the sum of these two terms. Note that the

RMS and the correlation are already scaled so that they can be summed

without having one term dominate the sum. The three columns show

orthogonal 2D slices containing the best solution. . . . . . . . . . . . 206
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4.S.7 Faulting regime vs depth in each region. Each event is attributed the

focal mechanism of the template earthquake with which it correlates

best. If the corresponding template earthquake has no focal mechanism

estimate, the event is not included in these histograms. . . . . . . . . 207

4.S.8 Regional stress state: All focal mechanism data, both from the north-

ern and the southern strands, were inverted.Left panel: Pressure

(P, red inverted triangles) and tension (T, blue dots) axes of all focal

mechanisms. The study region taken as a whole exhibits a wide vari-

ety of P/T axes, which violates the assumption of uniform stress state.

Middle panel: Directions of the principal stresses on an equal area

stereographic projection. The principal stresses are ordered from most

compressive (� 1) to least compressive (� 3). The numbers in the legend

are the azimuth (angle from north) and the plunge (angle from hori-

zontal) of the axes. The contours are the 90% and the 95% con�dence

regions.Right panel: Shape ratio, de�ned asR = � 1 � � 2
� 1 � � 3

. It measures

the relative magnitude of the principal stresses. In both the middle

and right panels, the distribution of possible solutions was obtained by

randomly sampling the set of possible focal mechanisms generated for

each template earthquake (see main text). . . . . . . . . . . . . . . . 208
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5.2.1 Decomposition of GNSS displacement time series based on local seis-

micity. The GNSS station is IZMT, Turkey, located north of the

NAF. The original displacement time series (grey inverted triangles)

is decomposed into the low seismicity displacement time series (black

squares) and the high seismicity displacement time series (orange dots).

Decomposition is performed on di�erentiated time series (speed), and

decomposed time series are then integrated (back to displacement).

A: East component. B: North component. C: Vertical upward com-

ponent. The long term speed is �rst estimated on the initial time

series with a linear regression (grey solid line), and the low seismicity

and high seismicity speeds (black and orange solide lines, respectively)

are then determined such that the modelled displacements sum to the

initially modelled displacement. That is, the black and orange solid

lines put together are forced to match the grey line when inverting for

the high and low seismicity speeds. The vertical component is usually

harder to interpret because subject to environmental noise such as rain

falls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.2.2 The sand pile model traditionally used to describe a self-organized

critical system. a: Critical state of a sand pile. b: A large avalanche

occurred on the right side of the pile, thus the system is locally no

longer at the critical state on this side. The pile has to be rebuilt

before developing large avalanches on this side.c: A small avalanche

occurred on the right side, making the right side more unstable and fu-

ture avalanches more likely.d: As the right side of the pile approaches

the critical state, moderate-size avalanches occur. Figure from Sykes

et al. (1999). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
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5.2.3 Sites of a 2-D grid are occupied with probabilityp. A: p = 0:420. B:

p = pc = 0:593 (i.e. at the critical state, see Stau�er and Aharony,

2018). A cluster that links the two sides of the grid appear at the

critical state (i.e. there is a path for percolation from one side to the

other). C: p = 0:850. The size of the clusters is given by the color

scale.D-F : At p = pc, clusters exhibit scale invariance. When zooming

in the grid, there is no length scale that gives a sense of scale (the size

of a pixel becomes actually visible inF). . . . . . . . . . . . . . . . . 229

A.2.1Work�ow of the CPU implementation of our program Fast Matched-

Filter (FMF). A single large I/O operation is achieved at the beginning

by reading the templates' waveforms and the continuous data. Beside,

the sums of the squared templates and the cumulative sum of the

squared data are computed before entering the loops to avoid redun-

dant operations. After that, the iterative computation of the CC starts

and is parallelized with OpenMP: di�erent sliding windows (chunks)

of the data are assigned to di�erent threads. The two dashed boxes

indicate which part is executed by the wrapper, and which one by the

C code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.3.1Work�ow of the GPU implementation of FMF. The continuous seismic

data and the templates are �rst read from the disk by the CPUs and

transferred to the GPUs. The GPUs take advantage of the collective

behavior of the threads and their quick access to shared memory to

e�ciently parallelize the computation. One GPU sets up several blocks

(� 10) whom each creates many threads (512) that computes the CC

on all the components of a given template/station and at di�erent

times (CCs;c(tn i )). The average correlation coe�cients are computed

through a weighted average, and are eventually transferred back to the

CPUs. The two dashed boxes indicate which part is executed by the

wrapper, and which one by the CUDA C code. . . . . . . . . . . . . . 246
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A.3.2Organization of the grid of thread blocks set up by the GPU to compute

the correlation between one template and the data. The block size (the

number of threads per block) is 512 and the grid size (the total number

of blocks) isNB . The grid size depends on the length of the data array

and on the temporal step;NB is just enough so that all the correlation

coe�cients are computed. Note that this scheme holds for a single

template, but the same scheme runs in parallel when several GPUs are

available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A.4.1Comparison of the run times of matched-�lter searches with di�erent

codes. Matched-�ltering is achieved between one-day long synthetic

seismograms on 5 stations, 3 components and a set of 8-second long

templates whose size varies from 1 to 10. The sampling rate is 10 Hz

and the temporal step used in the CC computation is 1 sample. Note

the log scale on the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . 248

A.4.2Comparison of the run times of several matched-�lter searches using

the CPU and the GPU implementations of our FMF and EQcorrscan.

Matched-�ltering is achieved between a set of one-day long synthetic

seismograms on 12 stations, 3 components and a set of 8-second long

templates whose size varies from 1 to 50. The sampling rate is 50 Hz

and the temporal step takes the values 1,5 and 10. Note the log scale

on the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

A.5.1Matched-�lter search of one template in the Western Alps, France over

a single day. Top left panel: Map of the region showing the tem-

plate's location (star) and the neighboring stations (inverted triangles).

Bottom left panel: Correlation coe�cients (Equation A.2) over the

whole day. The threshold of10 � MAD f CC(t)g is plotted with the

dashed line. A total of 83 earthquakes was detected with constraining

each event to be separated by at least 3 seconds.Right panel: Tem-

plate's channel CT23.HHZ (top record) and 10 examples of detections

on this same channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
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B.2.1De�nition of the instability parameter (Equation (B.13), following Vavry£uk

et al., 2013) in the Mohr space with thenegative compressioncon-

vention. The red straight lines are the failure lines whose slopes are

controlled by the friction � . The most unstable fault has coordinates

(� c; � c) in the Mohr space. The� i 's are the principal stresses ordered

from most compressive to least compressive. . . . . . . . . . . . . . . 264

B.3.1Synthetic experiment 1. The true stress tensor (leftmost column, mid-

dle row, large black symbols) promotes right-lateral strike-slip faulting

on east-west oriented vertical faults. The shape ratio is 0.50. The fault

orientations are randomly chosen from a range of parameters that is

physically sensible given the stress state (see text), and the rakes are

chosen such that slip is along the maximum shear stress direction.a,

e, i: Data set with only the 100 true fault planes.b, f, j: Noise free

data set with both the fault planes and their auxiliary planes. c, g,

k: Data set with noisy fault planes with strikes/dips/rakes perturbed

by random values in[� 3°; +3°], and their auxiliary planes. d, h, i:

Data set with noisy fault planes with strikes/dips/rakes perturbed by

random values in[� 10°; +10°], and their auxiliary planes. a, b, c,

d: Fault planes (black lines) and auxiliary planes (grey lines).e, f,

g, h: Lower hemisphere, equal area stereographic projections of the

principal stress axes and their 95% con�dence intervals (CI) estimated

from 1000 bootstrap resamplings: solid lines =� 1 CI, dashed lines =

� 2 CI, dot-dashed lines =� 3 CI. The legend shows the inverted shape

ratios R, and the mean anglej� � j between the predicted shear di-

rections on the true fault planesand the true slip directions. Circles,

squares and triangles are the most compressive (� 1), intermediate (� 2)

and least compressive (� 3) stresses, respectively.i, j, k, l: The dis-

tributions of shape ratios from the 1000 bootstrap resamplings. The

vertical black line indices the true shape ratio. The proposed method

is labeled "Iterative failure criterion" and is shaded for clarity. . . . . 267
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B.3.2Predicted shear stress magnitudes.a, c: Synthetic experiment 1. b,

d: Synthetic experiment 2. The linear inversion does not predict the

relative shear stress magnitudes correctly, but our iterative procedure

retrieves the true values. . . . . . . . . . . . . . . . . . . . . . . . . . 268

B.3.3Synthetic experiment 2. The true stress tensor (e) promotes right-

lateral oblique strike-slip faulting with a normal faulting component

on east-west oriented faults. The shape ratio is 0.70. Same legend as

Figure B.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

B.4.1Inversion of the central Crete data set from Angelier (1979).a: Fault

plane orientations. b: Principal stress directions of the inverted stress

tensor with the linear method due to Michael (1984) (blue symbols)

and the iterative method introduced in Section B.2.2. In the original
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� 2 CI, dot-dashed lines =� 3 CI. c: Empirical shape ratio distributions

estimated from the bootstrap resampling. d: Distribution of shear
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Chapter 1

Introduction

1.1 The Earthquake Phenomenon

1.1.1 Birth of the Modern Understanding of Earthquakes

For most of Human's history, earthquakes were considered of supernatural origin or,

if otherwise such as in ancient Greece, explanations were based on little scienti�c

grounding. The �rst occurrences of measuring earthquakes were reported in China

about 2000 years ago with the invention of the seismoscope by the scientist Zhang

Heng. The device measured the incident direction of passing waves produced by a

distant earthquake, and was used to determine approximately the location of the

earthquake in order to send aid to a�ected regions in a timely manner. Ironically,

building an e�cient replica of Zhang Heng's device in the modern era appeared to be

challenging.

It was only in 1884 that a complete description of what is now called the earth-

quake cycle was made by Gilbert (1884). Gilbert sought to explain the formation of

mountains and observed , in the Great Basin, California, the presence of "fractures"

on the side of the mountains. He concluded that slow accumulation of strain over

long time scales was responsible for the uprising of the mountains and that strain

was relieved by sudden slip along these fractures, that he also called fault scarps.
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He attributed earthquakes to these sudden slip phenomena, and set the basis for all

modern descriptions of earthquake rupture by describing the cycle of accumulation

and release as a stick-slip phenomenon due to friction on the fault.

Even though Gilbert's theory did not o�er a quantitative description, it intro-

duced for the �rst time the concepts of a cycle with a long and a short time scales,

earthquakes caused by sudden slip on a fault, and friction as the balancing force.

Twenty-two years later, the 18 April 1906 San Francisco M7.9 earthquake struck and

devastated the city. Triangulation surveys performed before and after the earth-

quake delivered, for the �rst time, a description of the deformation �eld caused at

the surface by an earthquake. A few years after the 1906 event, based on these new

observations of surface deformation, Reid published his elastic rebound theory, in

which he described the accumulation of strain energy localized along faults and its

sudden release in earthquakes (Reid, 1910).

The elastic rebound theory was still to be completed with a mathematical de-

scription of the wave�eld radiated by the sudden slip on a fault, or an equivalent set

of forces. The notion of double-couple �rst emerged among Japanese seismologists

(Nakano, 1923, 1930; Honda, 1957) and became accepted worldwide as a successful

model to describe the forces that act during faulting and generate the observed waves.

Representation theorems were derived to provide mathematical formulas to compute

the wave�eld given a displacement discontinuity across a fault, or equivalently, a set

of double-couples (e.g. Burridge and Knopo�, 1964; Aki and Richards, 1980). The

understanding of the pattern of radiated waves from a given type of faulting gave, in

turn, ways of interpreting seismograms to infer fault characteristics (cf. "beachballs",

Stauder, 1962; Sykes, 1967).

The theoretical developments of the �rst half of the 20th century were limited by

the lack of data to validate or disprove theories. Earthquake science, and seismology

in general, entered its modern era when the �rst global networks of seismographs
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were deployed in the early 1960s, notably with the Worldwide Standardized Seismic

Network managed by the US Geological Survey. Since then, observations have be-

come always more abundant and led to new discoveries about the complexity of the

earthquake phenomenon (e.g. non-volcanic tremors, Obara, 2002).

1.1.2 Earthquakes as Sliding Instabilities

The previous section has remotely touched the topic ofkinematic descriptions of fault-

ing by mentioning representation theorems, namely, descriptions that assume the slip

distribution on the fault and compute the radiated wave�eld. I will now present a

dynamic description of the full earthquake cycle, that is, a description given by solv-

ing the equations of motion (Newton's second law) on the fault.

In his seminal paper (Gilbert, 1884), Gilbert described earthquakes as the fast

slipping phase of a stick-slip phenomenon due to the competing tectonic and frictional

forces on the fault. Stick-slip occurs in systems that alternate between a stable state

(stick) and an unstable state (slip). Friction related phenomena have been known to

exhibit such a stick-slip behavior. Early work by Amontons in 1699 (itself based on

unpublished work by Leonardo da Vinci) and Coulomb in 1785 showed that:

(i) the frictional force Ff resisting the motion of a mass is proportional to the

normal forceFn exerted on this mass (see Figure 1.1.1):Ff = �F n , where the

coe�cient of proportionality � is called the coe�cient of friction.

(ii) If this same mass is stationary and pulled by a tangential forceFt , this mass

will remain stationary as long asFt � � sFn and friction balances this force:

Ff = Ft . � s is called the coe�cient of static friction.

(iii) Once the mass has initiated motion because ofFf > � sFn , the coe�cient of

friction suddenly drops to � d, the coe�cient of dynamic friction.

If the coe�cient of dynamic friction � d is smaller than the coe�cient of static
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Figure 1.1.1: A mass sits on an inclined table and is subject to several forces: its
weight W causes the normal forceFn due to the reaction of the table. The weight has
a component that is tangential to the tableFt , and this force is resisted by friction
Ff between the mass and the table.

friction � s, then the system is unstable: the force that was resisting right before the

onset of motion,Ff = � sFn , suddenly drops to a lower value,Ff = � dFn , and the

motion accelerates even more. If one were to incline the table shown in Figure 1.1.1,

the normal forceFn would gradually get smaller while the tangential forceFt would

be growing until overcoming� sFn . The mass would then slide all the way down the

table. Once the motion stops, for example because the force that was driving the

motion drops, the coe�cient of friction starts increasing. This healing process was

observed by Coulomb. Everyone has probably experienced the di�erence between

static and dynamic friction, for example when moving a heavy piece of furniture on

the �oor: the initial e�ort to initiate motion is the most demanding because one has

to overcome this "starting friction".

Thus, earthquakes can be described as frictional instabilities on faults. The sim-

plest model of the earthquake cycle is the spring-slider model (cf. Figure 1.1.2A).

A block rests on a surface and is coupled to a loading point through a spring with

sti�ness k. The loading point moves with the constant velocityVL and loads the block

with the elastic forcek� due to the elongation� of the spring. This elastic force is

resisted by friction Ff between the block and the surface, and therefore the equation

48



of motion is:
d2u
dt2

= k� � Ff ; � = VL t � u: (1.1)

In Equation (1.1), � is the elongation of the spring andu is the position, or displace-

ment, of the block.

Figure 1.1.2: Spring-slider model. A: A block, the slider, lies on a surface and
is coupled to a loading point moving at constant velocityVL through a spring with
sti�ness k. Thus, the slider is pulled by an elastic forcek� where� is the elongation of
the spring. This loading force is resisted by the frictionFf . B: Numeric simulation of
the spring-slider model with rate-and-state friction and aging law (cf. Equation (1.2)).
The slider is stationary most of the time (inter-seismic phase, see zero slip rate, in solid
red, and �at displacement curve, in solid blue), but catches up with the motion of the
loading point (dashed blue line) in periodic, fast slip events. The stick-slip behavior
ensures that the spring does not keep accumulating energy inde�nitely.C: Focus on
the fast slip event (the rupture) when the inertial term of the equations of motion
cannot be neglicted (left hand side of Equation (1.1)). All axes are non-dimensional
quantities. Courtesy of Ekaterina Bolotskaya.

The block stays still until the elastic force overcomes the starting friction. If the

dynamic friction is lower than the static friction, the onset of motion also marks the

sudden acceleration of the block: this is the analog of an earthquake. Sliding stops
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when the spring has shortened enough and then healing starts. This simple model

describes a stick-slip phenomenon due to the interplay between an elastic force and

friction, and has therefore been used to provide a simple mathematical description

of the earthquake cycle. The model also provides the means of investigating how the

speci�c form of the friction force Ff in�uences the cycle.

An underdeveloped characteristic of friction in Coulomb's work was the transition

from � s to � d as the mass slides. This transition controls the dynamics of the slip

event, and therefore the friction law describing this transition is essential. Various

friction laws have been proposed and all of them rely on at least one characteristic

length scaleDc over which the transition occurs, possibly representing the smoothing

of the contact area between the block and the surface as sliding occurs (e.g.Dieterich,

1978; Ruina, 1983). The simplest law describes a linear drop from� s to � d as a func-

tion of slip D and over the distanceDc. This law is called slip weakening.

More complex friction laws were proposed to describe laboratory experiments

more satisfactorily than slip weakening. Today, the most commonly used law is the

rate-and-state dependent friction, whose single state variable� form is (Dieterich,

1992; Ruina, 1983):

� (V; � ) = � 0 + a ln
�

V
V �

�
+ bln

�
�V �

Dc

�
: (1.2)

In Equation (1.2), V is the slip rate, � is the state variable,a and b are material-

dependent parameters that controls the dependence on slip rate and state variable,

as well as the stability of the system. � 0 is the reference coe�cient of friction for

V = V � and � = Dc=V� . Equation (1.2) needs to be completed with an equation that

describes the evolution of the state variable (aging law or slip law).

The success of rate-and-state friction lies in its ability to reproduce many exper-

imentally observed features such as slip instability, and healing, slip rate dependent
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steady states (Dieterich, 2007). Tuning the values ofa and b, rate-and-state friction

can also describe stable sliding (� d > � s, slip strengthening). Thus, rate-and-state

friction elegantly explains the depth distribution of earthquakes by showing that seis-

mogenic depths coincide with the depth range where values ofa and b are such that

frictional instability is possible (see Figure 1.1.3 and Scholz, 1998).

Figure 1.1.3: Stability domains predicted by rate-and-state friction (Equation (1.2)).
The middle panel shows a measure of stability,� , as a function of depth. These
stability domains are sketched for a subduction interface (left) and a crustal fault
(right). The rightmost panel shows the depth distribution of earthquakes for a section
of the San Andreas fault near Park�eld. Figure from Scholz (1998).

Despite the success of rate-and-state friction in modeling friction on faults and

laboratory samples, the parameters su�er from a lack of interpretability. Just as en-

tropy was unexplained before the era of statistical mechanics, rate-and-state friction

cannot be currently derived from fundamental physics. Furthermore, there is little

certainty about how a, b, and Dc scale from the laboratory to Earth. These drawbacks

actually apply to other friction laws. In fact, it seems that any law that describes an

unstable slip event would provide a good description of the dynamic rupture, given

an appropriate set of parameters. Work remains to be done to understand the forces

at play in earthquakes. I purposely entitled this section "Earthquake as Sliding In-

stabilities" to emphasize that the essence of the current description of earthquake
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dynamics is not friction but instability.

The spring-slider model is useful to capture �rst order features of the earthquake

cycle and dynamics, and multiple interacting sliders can even be considered to re-

produce statistical features of seismicity (Burridge and Knopo�, 1967, and see Sec-

tion 1.3). However, a 0-D description (a point) of an earthquake is obviously an

oversimpli�cation that fails to describe important aspects of the earthquake dynam-

ics, such as the fault geometry and the in�uence of radiated waves.

1.1.3 Scaling Laws in Earthquakes

The spring-slider model taught us that sliding events occur to restore the elongation

of the spring � to zero. Equivalently, these sliding events restore the loading force

exerted on the slider to zero. The drop in loading force� T during an event is set

by the elongation of the spring just before the onset of sliding� 0: � T = k� 0. It

appears that � 0 is also the slipD of the sliding event. If A is the contact area be-

tween the slider and the support, then the static stress drop� � of a sliding event is

� � = kD=A. Thus, we have shown that slip is proportional to stress drop, and it

can also be shown that the maximum slip rate and acceleration are proportional to

stress drop too (Nur, 1978; Scholz, 2019, Chapter 2). Stress drop thus appears to be

a fundamental parameter to describe earthquake processes.

Unlike the spring-slider model, real earthquakes extend over 2-D surfaces and

another parameter that describes the size of an earthquake is useful: the seismic

moment M 0. The seismic momentM 0 and the stress drop� � are de�ned by:

M 0 = GA �D; (1.3)

� � = CG
�D
L

: (1.4)
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In Equations (1.3) and (1.4),G is the shear modulus (also called rigidity� , in Pa), A is

the fault area (m2), L is the linear dimension of the fault (m), �D is the average slip on

the fault (m), and C is a non-dimensional shape factor (� 1). Using Equation (1.4) to

expressG �D as a function of� � , we can write explicitly the relation between seismic

moment and stress drop:

M 0 =
1
C

� �AL: (1.5)

Estimates of seismic moment and fault area have shown a remarkable linear relation

betweenlogA and logM 0 indicating A / M 2=3
0 or, equivalently,M 0 / A3=2 (Kanamori

and Anderson, 1975). This scaling is interpreted as the scale invariance of stress drop

� � , and L / A1=2. Equivalently, M 0 / L3. The latter implies that the shape ratio

of faults is constant, which seems true for most but the largest earthquakes (Denolle

and Shearer, 2016).

Figure 1.1.4: Fault areaA against seismic momentM 0. The slope in the log-log
domain is 2/3, indicating that A / M 2=3

0 . Lines of equal stress drops for circular
cracks are shown. Figure from (Kanamori and Anderson, 1975).

The scale invariance of stress drop is a central result in earthquake seismology and

suggests the similarity between small and large earthquakes, or self-similarity. The
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concept of self-similar earthquakes was �rst introduced by Aki (Aki, 1967) to develop

a model of earthquake amplitude spectra de�ned by a single parameter: the linear

fault dimension L. Self-similarity also implies a constant rupture velocityvr among

earthquakes. In turn, these predict that the rupture duration� is proportional to

the linear dimensionL: � / L . Aki showed that his model of amplitude spectrum

could be used to estimate the rupture duration from the spectrum's corner frequency,

f c / 1=� , and produced observations of� / L . Additional scaling observations

con�rmed that the approximation of constant rupture velocity was reasonable (e.g.

M 0 / � 3, Kanamori and Brodsky, 2004).

Following the pioneering work of Aki (1967), amplitude spectrum corner frequen-

cies are now commonly used to estimate the source dimension. Results over a wide

range of magnitudes (Mw0-9) indicate that the corner frequency scales asf c / M � 1=3
0

(see Figure 1.1.5, Allmann and Shearer, 2009). Scatter in the data is explained by dif-

ferences in stress drop, all events showing stress drops between0:1 MPa and 100 MPa.

This is a strong evidence for the scale invariance of stress drops. The scaling laws

mentioned in this section are summarized in Table1.1.

Source Parameters Reference Scaling Relation
seismic momentM 0, fault area A Kanamori and Anderson (1975) M 0 / A3=2

seismic momentM 0, source duration� Kanamori and Brodsky (2004) M 0 / � 3

seismic momentM 0, linear dimensionL Denolle and Shearer (2016) M 0 / L3

corner frequencyf c, linear dimensionL Aki (1967) f c / 1=L
seismic momentM 0, corner frequencyf c Allmann and Shearer (2009) M 0 / f � 3

c

Table 1.1: Summary of scaling relations between source parameters. N.B.: These
relations only hold for earthquakes that do not saturate the seismogenic width.

It is known and well understood that large earthquakes are not similar to small

ones in the sense that all scaling laws assumingA / L2 break down when earthquakes

saturate the seismogenic width. In this case, an earthquake can only grow laterally

and the fault area becomes (asymptotically) proportional to its lateral lengthA / L.

The scaling laws in Table 1.1 need to be changed accordingly (Denolle and Shearer,
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Figure 1.1.5: Amplitude spectrum corner frequencyf c against seismic momentM 0

(the corresponding moment magnitudeMw is given at the top). The red dashed lines
shown the constant stress drop scaling. Figure from Allmann and Shearer (2009).

2016). Despite the dependence of shape ratio on magnitude for large earthquakes,

which implies the break of self-similarity, the question remains whether small and

large earthquakes are dynamically similar. A parameter that I have not discussed so

far, the ratio of energy radiated in seismic wavesER to the seismic momentM 0, called

scaled energy~e = ER=M0, informs about the dynamics of earthquakes. Mitigated re-

sults sometimes show scale invariant~e(Baltay et al., 2011; Denolle and Shearer, 2016),

but others suggest a systematic dependence on magnitude (Abercrombie, 1995). Ac-

curate measures ofER for small earthquakes is di�cult due to noise. The scaling of

~e is key for earthquake forecasting and early warning as a scale independent~e would

mean that the earthquake initiation process is scale invariant and that nothing can

tell if an earthquake is going to grow into a large rupture when observing the �rst

P-wave arrival at a seismometer.

Even though clear scaling relationships between source parameters are observed
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(see Figures 1.1.4, 1.1.5), details seem to be obscured by their simplicity. Breakdown

of self-similarity for smallest size earthquakes have long been sought as it is thought

that there exists a lower limit to earthquake sizes (the nucleation length), which would

break scale invariance (Cattania, 2020). Proving departures from these laws is di�-

cult as observational limits are signi�cant. Estimating a correct corner frequency from

amplitude spectra strongly relies on the correction of path e�ects that corrupt the

source information in recordings, and on instruments with su�ciently large frequency

bandwidths (Abercrombie, 1995; Ide and Beroza, 2001; Abercrombie, 2015, 2021).

However, several studies have produced results that show (maybe apparent) devia-

tions from self-similarity (Lin et al., 2016; Farge et al., 2020, Chapter 3 of this thesis).

1.2 The Earthquake Detection Problem

1.2.1 Motivations

Seismology is largely an observational science. The introduction to the earthquake

phenomenon given in the previous section showed that earthquake seismology would

not exist without data. Nowadays, �eld observations are completed by the abundant

recordings of the ground motion on seismometers. In order to use the recordings

of earthquake signals to study the seismic source or Earth's interior, one evidently

needs to �nd these recordings that are associated with a particular event. The earth-

quake detection problem consists of determining when a seismometer, or an array of

seismometers, is recording an earthquake signal, as opposed to ambient seismic noise

travelling in the earth. With earthquake detection methods, earthquake signals are

identi�ed in recordings and their origin times are stored in a catalog. Note that the

detection problem is often solved together with the location problem so that both

time and space information is available for subsequent studies.

The most trivial detection method is certainly that of looking with the naked
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eye through continuous recordings of the ground motion for signals with earthquake

characteristics: impulsive arrival, multiple phases (e.g. the P- and then the S-wave

arrivals), coda wave, etc. While still routinely used in observatories because it en-

sures making (hopefully) good quality catalogs with picks of P and S arrival times,

this method is limited by human capacities. An analyst is likely to miss events when

working for a long time, can make errors when picking the P and S arrival times,

and typically fails at identifying earthquakes when the signals are weak and hidden

in the ambient noise. Most importantly, the capacity of an analyst to combine infor-

mation from multiple seismograms at once is limited. The notion of signal visibility,

or signal-to-noise ratio (SNR), is fundamental in the earthquake detection problem.

Furthermore, since all humans work slightly di�erently, the catalogs based on visual

picks are noisy and uncertainty in individual picks is hard to know.

The deployment of large scale arrays of seismometers in the 1960s, such as the

Large Aperture Seismic Array (LASA) in Montana and the Norwegian Seismic Array

(NORSAR) in Norway, fed the rapid development of array detection methods. Early

detection methods relied on heavy mathematics from the statistical theory of signal

detection (Vanderkulk et al., 1965; Capon, 1970). The base of array methods is to

sum together potentially noisy but coherent signals from multiple seismometers. The

noise, if uncorrelated between seismometers, will interfere destructively when sum-

ming. Thus, array methods provide the means for detecting weak earthquake signals

with low SNR but recorded at multiple locations. Such array methods were moti-

vated not only by the will to improve our understanding of earthquakes and Earth's

interior, but also by the necessity of monitoring nuclear tests during the Cold War.

Therefore, earthquake detection methods were also a widely documented topic in the

Soviet scienti�c literature, and later English translations made it available to a wider

audience (Kushnir et al., 1992).
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1.2.2 A Brief Tour from Beamforming to Arti�cial Intelligence

To sum coherently earthquake signals observed at di�erent seismometers with dif-

ferent time delays, one needs to time-shift the recordings according to the relative

time delays prior to summation. If a plane wave with known incidence is recorded

by multiple seismometers at the surface (cf. Figure 1.2.1A), then the relative time

delays at which the wave is recorded at each seismometer can be computed given

some knowledge of the wave velocity. These time delays are used to shift and sum

the recordingsui (t) collected by the seismometers in order to form a beamb(t):

b(t) =
X

i

ui (t � � i ): (1.6)

In Equation (1.6), summation is over the seismograms indexed byi , and � i is the

relative time delay computed at seismometeri . The beam o�ers obvious advantages

over a naive summation of all seismograms, and may make earthquake signals hidden

in noise become visible (see Figure 1.2.1B, and Rost and Thomas, 2002). Of course,

the incidence of the target plane wave is in general not known, and one may build

many beams over a grid of possible incidences, and retain only the beam that gives

the largest sum. This method of shifting and summing seismograms by assuming

di�erent possible plane wave incidences is called beamforming.

The beamforming method described by Equation (1.6) is naive in that it assumes

that, once correctly shifted in time, seismograms will sum constructively. Due to the

radiation pattern of earthquakes, the sum might in fact be zero because of opposite

wave polarities. Seismologists have introduced the use of characteristic functions in

place of the raw seismograms to better serve the detection purposes. Such a charac-

teristic function could simply be the absolute value, in order to avoid the destructive

summation of opposite polarity waves. A popular characteristic function measures

the ratio between the short term average to the long term average seismic energy

(STA/LTA Freiberger, 1963; Allen, 1978). The STA/LTA method enhances the onset

of impulsive signals and adapts to changes in the background noise (e.g. night vs
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Figure 1.2.1: A: Sketch of a plane wave reaching the surface.B: Normal sum vs.
beamformed sum,i.e. shift and sum. Figure from Rost and Thomas (2002).

day time). Various characteristic functions have been used (signal envelope, higher

order statistical moments, etc). Moreover, the assumption of plane waves can be

relaxed and travel times can be computed in a more realistic Earth. This generalized

beamforming has been successfully applied in di�erent geological contexts to detect

various kinds of seismic events (Frank et al., 2014; Poiata et al., 2016, and Chapter 2

of this thesis).

The use of characteristic functions partly aims at compensating for incoherency

emerging from directivity and propagation e�ects. In fact, these e�ects are respon-

sible for most of an earthquake signal's complexity. They can be fully accounted for

by using a given earthquake as a template pattern to look for all events with simi-

lar signals and time delays. This similarity based method, called template matching

(Gibbons and Ringdal, 2006; Ross et al., 2019, Chapters 2, 4 and Appendix A of this

thesis), is highly e�ective at detecting earthquakes originating from similar location

and faulting (i.e. same directivity and propagation e�ects). The main drawback of

the method is that it relies on some prior knowledge of the target seismicity, and does

not generalize to earthquakes that are not located in the proximity of the template
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earthquakes. Template matching plays a key role in this thesis, and is therefore dis-

cussed at length in the following chapters.

Recently, the �eld of earthquake detection has undergone profound changes with

the rise of statistical learning methods (Bergen et al., 2019). The large amount of in-

formation stored in earthquake catalogs made by the past generations of seismologists

with classic techniques, such as those mentioned above, provides all the data necessary

to train complex models to detect earthquakes (but also phase picking and associ-

ation, location and others Zhu and Beroza, 2019; Mousavi et al., 2020; Majstorovi¢

et al., 2021). Deep learning models, sometimes referred to as arti�cial intelligence,

have proven particularly e�cient at this task and recent models have shown good

abilities at generalizing to multiple data sets (for example, see the use of PhaseNet in

Chapter 4 of this thesis Zhu and Beroza, 2019). These models will certainly become

the standard usage in the next years.

1.3 Collective Properties of Earthquakes

Even though the scaling laws described earlier in Section 1.1.3 are visible when study-

ing groups of earthquakes, they still only relate properties of single earthquakes. Here,

I give an introduction to important collective properties of earthquakes,i.e. prop-

erties that emerge when several earthquakes interact. Observation and discussion of

earthquake interactions is a central topic of this thesis.

1.3.1 The Gutenberg-Richter Law

A well-known scaling law that was left aside in Section 1.1.3 is the frequency-magnitude

relation, better known as the Gutenberg-Richter law (Gutenberg and Richter, 1941).

This law describes the expected number of earthquakesN (M ) with magnitude m
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greater than a certain valueM within a given period of observation (see Figure 1.3.1):

logN (M ) = a � blogM: (1.7)

In Equation (1.7), a and bare constants, and are not related to thea and bparameters

mentioned in the rate-and-state friction law (Section 1.1.2).a is the total number

of earthquakes within the space-time region of observation, andb, originally called

the b-value, characterizes the relative frequency between small and large magnitude

earthquakes.

Figure 1.3.1: Frequency-magnitude relationship, referred to as the Gutenberg-Richter
law (cf. Equation (1.7)). The slope in the log-log domain indicates a b-valueb = 1.
Figure 23 from Kanamori and Brodsky (2004), see their caption for description of the
data.

Worldwide observations of the Gutenberg-Richter law show b-valuesb = 1 (cf.

Figure 1.3.1, Kanamori and Brodsky, 2004). This �rst tells us that there is a ten-fold

increase inN (M ) every time M decreases by one unit. For example, every year we

can expect to observe 10 times moreM � 7 than M � 8. Deeper implications come

when this law is interpreted. Such a power law frequency-size distribution is inti-

mately related to the concepts of criticality and fractals (Turcotte, 1989). Aki (1981)

proposed an explanation of the Gutenberg-Richter law with a fractal distribution of

fault sizes, assuming the scaling laws of self-similarity (see Table 1.1). The cascading

of events among these faults of all scales produce the observed frequency-magnitude
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distribution. Given that critical phenomena are characterized by local interactions

that are able to build up into long range interactions, other models have tried, and

succeeded, to reproduce the Gutenberg-Richter law with many simple elements inter-

acting with their neighbors (Burridge and Knopo�, 1967; Bak and Tang, 1989). Thus,

the Gutenberg-Richter law is understood as a collective phenomenon that would not

exist without interactions.

1.3.2 Cascades, Interactions, and Temporal Clustering

Cascades of earthquakes have long been observed as sequences of aftershocks following

sizable earthquakes. The �rst mathematical description of the enhanced seismic ac-

tivity following a large earthquake appeared in the late 19th century with the Omori

law n(t) = K (t + c)� 1(Omori, 1894), which was later generalized by Utsu as (Utsu,

1961, 2002):

n(t) =
K

(t + c)p : (1.8)

In Equation (1.8), t is the time measured from the reference event called the main-

shock,n(t) is the number of earthquakes per unit time, andK; c are constants. The

power law exponentp describes how fast the seismicity rate drops after the main-

shock, and is usually around 1 (as stated in the original law).

Cascades of earthquakes such as those observed with aftershock sequences are now

understood as resulting from interactions between faults or subfaults (Burridge and

Knopo�, 1967). A simple model that helps understand triggering through interaction

is the Coulomb stress model, which is closely related to the frictional instability

discussed in Section 1.1.2. We saw that the onset of motion of a block occurred when

the tangential force exceeded a threshold set by the coe�cient of static friction� s,

which constitutes the Coulomb failure criterion. Thus, the proximity of a fault to the
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Coulomb failure criterion can be quanti�ed by the Coulomb stressC:

C = � � � s� n ; (1.9)

where� is the shear stress resolved on the direction of slip on the fault, and� n is the

normal stress on the fault (including e�ects such as pore-�uid pressure). IfC > 0,

then the failure criterion is satis�ed and the fault slips. The change in Coulomb stress

� C produced by an outside perturbation, such as a nearby earthquake, quanti�es

whether this perturbation took the fault closer or further to failure (King and Cocco,

2001):

� C = � � � � s� � n : (1.10)

The � symbol indicates the di�erence between after and before the stress perturba-

tion. If the Coulomb stress change is larger than zero,� C > 0, then the perturbation

promoted failure on the fault, or otherwise inhibited the failure if� C < 0. This

method has successfully explained the patterns of moderate-to-large earthquakes in

terms of stress perturbations due to past earthquakes (King and Cocco, 2001; Stein

et al., 1997, and see Figure 1.3.2), and is useful to understand earthquake triggering

in terms of stress transfer. However, the assumptions it relies on may limit its ap-

plicability in practice. When computing the Coulomb stress on a fault, one needs to

know its orientation in order to correctly decompose stress into its normal and tan-

gential components. Faults may have complex geometries, and the Coulomb stress

change is often simply computed on "optimally oriented" faults. Furthermore, the

tangential component is taken along an a priori slip direction (e.g. same direction

as the regional sense of motion), but faults, particularly at small scales, may slip in

di�erent directions depending on how they are stressed.

The static stress changes involved in the Coulomb failure criterion are not the

only way earthquakes can interact. It has been observed that dynamic stress changes

caused by elastic waves can trigger earthquakes (Fan and Shearer, 2016), and that

the disturbance of a stably sliding fault by a nearby earthquake could, in turn, trigger
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Figure 1.3.2: Coulomb stress changes from the M7.6 1872 Owens valley are still
consistent with the occurrence of moderate-to-largeM � 4 earthquakes more than a
century later. Areas of Coulomb stress increase are shown in red (promote failure)
and areas of coulomb stress decrease are shown in blue (inhibit failure). Figure from
Stein et al. (2019).

other earthquakes located in the vicinity (Dublanchet et al., 2013; Cattania, 2019).

Any process caused by an earthquake that perturbs the stress �eld plays a role in

earthquake interaction. All these mechanisms have in common that they alter the

timings of fault ruptures, and, consequently, the patterns of earthquake occurrence

seen in earthquake catalogs.

Triggering of earthquakes by other earthquakes has been observed in earthquake

catalogs as deviations from a purely random earthquake occurrence typically de-

scribed by a Poisson law (Gardner and Knopo�, 1974). The cascading of events due

to earthquake interactions constitutes the core property of time clustered earthquake

occurrence. In this thesis, temporal clustering refers exclusively to these cascade-like

sequences. The most represented manifestation of temporal clustering is certainly

the production of aftershocks after a large earthquake. It is now worth mentioning

64



that, given mechanisms such as static stress transfers, we now know that any earth-

quake produces its own sequence of aftershocks, although aftershock productivity is

higher for larger earthquakes (Marsan and Lengline, 2008). Such time clustered se-

quences exhibit time scale invariance as the distribution of inter-event times follow

a power law (up to a certain time scale when scale invariance breaks). In the case

of aftershock sequences, we actually expect such a power law distribution from the

generalized Omori law (Equation (1.8)). Because of this time scale invariance, time

clustered sequences obey fractal patterns (Smalley Jr et al., 1987, and this thesis),

which sometimes is interpreted as cascades in a critically stressed Earth (Main, 1995).

Several methods exist to characterize the clustering of earthquakes. Historically,

the focus has been on analyzing the distribution of inter-event times with a single

scalar: the ratio between the standard deviation and the average of this distribution,

named the coe�cient of variation Cv (Kagan and Jackson, 1991):

Cv =

8
>>>>><

>>>>>:

0 periodic seismicity

1 poissonian seismicity

> 1 clustered seismicity:

(1.11)

Equation (1.11) can be interpreted as follows: for periodic seismicity,Cv = 0, the

probability of an earthquake is larger after a period of quiescence, while for clustered

seismicity, Cv > 1, this probability is lower than would be for poissonian seismicity.

Other methods lie on the time scale invariance of clustered seismicity and look for

strong power law or fractal characteristics in earthquake occurrence. The spectrum

of the event number per unit time of a clustered sequence shows a power law depen-

dence on frequency,/ f � � , and the power law exponent� measures the strength of

clustering (cf. Figure 1.3.3, Frank et al., 2016). The fractality of the event number

per unit time becomes apparent when observing the power law between the fraction

x of time bins with duration � that are occupied by at least one event and the bin
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duration � (cf. Figure 1.3.3, Smalley Jr et al., 1987):

x / � 1� F : (1.12)

In Equation (1.12), the power law exponent1 � F involves the fractal dimensionF

of the time series (Lowen and Teich, 2005). The fractal dimensionF of the event

count per unit time is extensively used to characterize temporal clustering in this

thesis. Note that the fractal dimension is calledD in the following chapters, which

should not be confused with slip on the faultD mentioned in Sections 1.1.2 and 1.1.3.

Figure 1.3.3: Quanti�cation of the strength of earthquake clustering. An example of
a weakly (blue) and strongly (green) time clustered sequences are given.A: Event
count number, i.e. the number of events per unit time. B: Autocorrelation of the
event count number. The weakly clustered sequence shows the characteristic delta
autocorrelation of random sequences, whereas the strongly clustered sequence keeps
a high correlation over a long time scale.C: Measure of the power law exponent of
the event count spectrum. Clustered sequences exhibit large power law exponents.
D: Fraction x of time bins with size� occupied by at least one earthquake:x / � 1� F .
Clustered sequences have large fractal dimensionsF . Figure from (Beaucé et al.,
2019).
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Work has been done on understanding the topology of earthquake clusters either

in the time-space domain (Frohlich and Davis, 1990), or in the energy-time-space

domain (Zaliapin et al., 2008). These studies involve de�ning distances in a certain

domain and analyzing the distances between nearest neighbors. Earthquake sequences

attributed to di�erent types of seismicity ( e.g. swarm-like vs. cascade-like) and ge-

ological contexts were identi�ed based on their topological di�erences (Zaliapin and

Ben-Zion, 2013; Martínez-Garzón et al., 2019). While powerful descriptors of cluster-

ing processes, the products of such methods are also more di�cult to analyze than a

simple scalar such asCv or D, which we preferred in this thesis.

1.4 Goals and Structure of the Thesis

This chapter has introduced useful concepts for understanding the motivations and

conclusions of my thesis. As the thesis' title suggests, my generic goals were to:

- produce new observations of seismicity with automated earthquake detection

and location methods,

- systematically characterize faults with the time clustering property of their

seismicity,

- advance the understanding of how clustering relates to fault mechanisms, in

particular with aseismic slip.

My investigations targeted two regions: the Alps, in Europe, and the western section

of the North Anatolian Fault, in Turkey. Because of the history of the North Anato-

lian Fault, my work was deeply related to understanding how the last major rupture

in 1999 had perturbed the fault system.

Chapter 2 "Systematic Detection of Clustered Seismicity Beneath the Southwest-

ern Alps" presents a detailed study of earthquake detection and location in the South-

western Alps, describing in detail the method, and shows the �rst observations of tem-
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poral clustering of the thesis. Time clustering properties, or its absence, are discussed

along other geological evidence to relate them to fault properties and environmental

factors.

Chapter 3 "The Rupture Complexity of Small Earthquakes in the Southwest-

ern Alps" pushes further the analysis of the Southwestern Alps earthquake catalog

(Beaucé et al., 2019) by analyzing earthquake spectra via the spectral ratio method

to characterize earthquake sources. Spectra's corner frequencies and the seismic mo-

ments are estimated, and variations in thef c / M � �
0 scaling relationship are investi-

gated. Evidence of apparent departures from self-similarity is shown and discussed in

terms of source physics, and related to the observations of temporal clustering made

in Chapter 2.

Chapter 4 "Seismotectonic Study of the North Anatolian Fault Zone Thirteen

Years After the 1999 M7.4 Izmit Earthquake" presents an extensive study of the seis-

micity in the western section of the North Anatolian Fault, where the Izmit earthquake

propagated (Beaucé et al., 2021b). The earthquake detection and location method

from Chapter 2 was improved and applied to dense array data. In addition to the

space-time catalog and quanti�cation of temporal clustering, this study produces a

large data set of focal mechanisms and use them in an inversion scheme to estimate

the stress tensor in several areas. The inversion method is the topic of Appendix B

(Beaucé et al., 2021a). Results are discussed altogether to draw conclusions about

the state of the fault with respect to before and shortly after the Izmit earthquake.

A major �nding of this study is that highly clustered seismicity tends to occur at

the bottom of the seismogenic zone and is likely to be associated with normal faults

slipping aseismically.

Chapter 5 "Conclusions and Perspectives" summarizes the results of this the-

sis and the contributions to advancing the interpretation of earthquake clustering.

Quanti�cation of clustering is a valuable seismic observable that we believe will help
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characterize the state of the crust in future studies. Finally, perspectives are given

on extending the systematic observation of clustered seismicity to longer times and

interesting fault systems, and on the inclusion of geodetic data into seismological

studies (preliminary results are presented).

Appendix A "Fast Matched Filter (FMF): An E�cient Seismic Matched-Filter

Search for Both CPU and GPU Architectures" describes the high performance com-

puting software for template matching that I co-wrote with William B. Frank (Beaucé

et al., 2018). The success of the algorithm lies in its GPU implementation that al-

lows speeds far greater than any CPU architecture. FMF has already emerged as a

popular template matching software in the community.

Appendix B "An Iterative Linear Method for Estimating the Stress Tensor from

Earthquake Focal Mechanism Data: Method and Examples" describes the new method-

ology we have developed to invert focal mechanisms for stress tensor (Beaucé et al.,

2021a). This work accompanies the results presented in Chapter 4. The method

takes a novel approach to combine the e�ciency of the classic linear inversion and an

iterative scheme that relaxes a constraining assumption. We have released a Python

package that fully implements the proposed method.

During my time as a student at MIT, I have put particular e�orts into de-

veloping open source numerical tools that are available to the community, and I

highly encourage the interested reader to check out my Github account athttps:

//github.com/ebeauce and ask questions if needed.
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Chapter 2

Systematic Detection of Clustered

Seismicity Beneath the Southwestern

Alps 1

Abstract

We present a new automated earthquake detection and location method based on
beamforming (or back projection) and template matching, and apply it to study the
seismicity of the Southwestern Alps. We use beamforming with prior knowledge of
the 3D variations of seismic velocities as a �rst detection run to search for earthquakes
that are used as templates in a subsequent matched-�lter search. Template match-
ing allows us to detect low signal to noise ratio events, and thus to obtain a high
spatiotemporal resolution of the seismicity in the Southwestern Alps. We describe
how we address the problem of false positives in energy-based earthquake detection
with supervised machine learning, and how to best leverage template matching to
iteratively re�ne the templates and the detection. We detected 18,754 earthquakes
over one year (our catalog is available online), and observed temporal clustering of
the earthquake occurrence in several regions. This statistical study of the collective
behavior of earthquakes provides insights into the mechanisms of earthquake occur-
rence. Based on our observations, we infer the mechanisms responsible for the seismic
activity in three regions of interest: the Ubaye valley, the Briançonnais and the Dora
Maira massif. Our conclusions point to the importance of fault interactions to explain
the earthquake occurrence in the Briançonnais and the Dora Maira massif, whereas
�uids seem to be the major driving mechanism in the Ubaye valley.

1Published as Beaucé, E., Frank, W. B., Paul, A., Campillo, M., and van der Hilst, R. D. (2019).
Systematic detection of clustered seismicity beneath the Southwestern Alps. Journal of Geophysical
Research: Solid Earth, 124(11), 11531-11548.
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2.1 Introduction

Earthquake catalogs are the cornerstone of many studies in seismology, such as char-

acterizing the seismic source (e.g. Abercrombie, 1995; Ide et al., 2003), estimating

the amount of stress released at plate margins and understanding the role of repeat-

ing seismicity in this releasing process (e.g. Nadeau et al., 1995; Wech and Creager,

2011; Shelly et al., 2011; Frank et al., 2014), constructing reference earth models

(e.g. Dziewonski and Anderson, 1981; Kennett and Engdahl, 1991; Kennett et al.,

1995), seismic tomography (e.g. Dziewonski and Woodhouse, 1987; Van der Hilst

et al., 1997; Li et al., 2008), seismic hazard estimation (e.g. on California Earth-

quake Probabilities, 1995), or modeling of the earthquake cycle (model calibration,

e.g.Richards-Dinger and Dieterich, 2012). The �rst generation of regional and global

catalogs were based on phase arrival picks on analog records (e.g. Engdahl et al.,

1998). With the advent of digital recording, energy-based detection methods such as

the short-term/long-term average (STA/LTA, Allen, 1982) method became popular.

The transition to digital recording and storage, the implementation of protocols

for data curation and sharing, the increasing availability of data from networks and

arrays, and the recognition of di�erent types of earthquake signals motivated the de-

velopment of more sophisticated earthquake detection and location algorithms, based,

for instance, on array processing (e.g. Meng and Ben-Zion, 2017), or learning meth-

ods, such as neural networks (e.g. Perol et al., 2018). Automated data processing is

not only essential for extracting signal from large, and rapidly increasing, data vol-

umes, it also leads to uniform catalog quality.

Analysis of the seismic wave�eld recorded at multiple sensors leverages the co-

herency of the signal across the station array to detect seismic phases which human

eyes would have failed to identify. Network-based detection has led to the identi�ca-

tion of phenomena such as low frequency earthquakes (e.g.Shelly et al., 2007; Brown

et al., 2008; Frank et al., 2014) and non-volcanic tremor (e.g. Obara, 2002; Rogers
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and Dragert, 2003).

We develop an earthquake detection method that combines array processing, or,

more precisely, a beamformed network response (Frank and Shapiro, 2014) and tem-

plate matching (Gibbons and Ringdal, 2006; Shelly et al., 2007; Frank and Shapiro,

2014; Ross et al., 2019). Template matching is known to be e�cient at detecting

low signal-to-noise ratio (SNR) signals (i.e. with SNR < 1), and the required prior

knowledge of the target seismicity is obtained from the beamformed network response.

We applied this new detection algorithm to one year of seismic data from 87 sta-

tions located in the Southwestern Alps, between August 2012 and August 2013, in-

cluding 55 stations from the temporary network CIFALPS (Zhao et al., 2016,cf.>[and

see more information in Data and Resources). Although the Western Alps have been

studied for a long time, the mechanisms driving the seismicity are still not well under-

stood (Nocquet, 2012,cf.>[and references therein), and a more complete earthquake

catalog will make possible new studies to investigate the tectonic processes that cause

them. The Alps were formed following the closure of the Alpine Tethys ocean, due

to converging motion between Europe and Africa. The mountain range is located at

the border between the Eurasian plate and the Adriatic plate (cf. Figure 2.1.1). In

the Western Alps, Chopin (1984) gave the �rst petrological evidence for continental

subduction, which was later con�rmed by several geophysical studies (e.g. Nicolas

et al., 1990; Zhao et al., 2015). It is unclear, however, whether subduction is still

taking place. Even though geodetic data show that the Adriatic plate is rotating

counterclockwise with respect to stable Europe (e.g. Serpelloni et al., 2007), there

is no observation of shortening in the Western Alps and part of the seismic activity

is observed to occur under an extensional regime (c.f. analysis of earthquake focal

mechanisms, Delacou et al., 2004). Various studies (e.g.Delacou et al., 2004; Nocquet

et al., 2016; Walpersdorf et al., 2018) show that the earthquake activity in the South-

western Alps is likely to be due to a complex combination of plate tectonic forces

and other forces such as buoyancy forces or post glacial rebound. A more detailed
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characterization of seismic activity, which is indicative of active deformation, will help

address these issues.

Figure 2.1.1: Interpretative cross-section of the Western Alps. Following the closure
of the Alpine Tethys ocean, the collision of the European and Adriatic margins formed
the Alps and the subduction complex illustrated here. A clear understanding of what
is driving the deformation and the seismic activity in these complex geological units
is still lacking. Abbreviations: FPF � Frontal Penninic Fault, Srp � serpentinized,
RMF � Rivoli-Marene deep fault. We show the locations of the CIFALPS stations
on the topographic pro�le of the cross-section. The onset shows the location of the
transect in the Western Alps, Europe. Figure modi�ed from Zhao et al. (2015) and
Solarino et al. (2018).

We �rst describe the earthquake detection method, and then present the earth-

quake catalog we thus obtained in the Southwestern Alps. We gain new insights into

the seismicity of the study region by investigating the collective behavior of earth-

quakes, made possible by the large number of detected events. We then discuss the

importance of earthquake interaction in the observed behavior of clustered seismicity.
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2.2 Earthquake Detection Method

Detecting low SNR seismic signals by means of template matching requires knowl-

edge of the type of signal to search for in the data. This can be obtained from an

existing earthquake catalog or from a preliminary detection run. Since the former is

not publicly available for our study area, we produced a preliminary catalog using the

energy-based detection method from Frank and Shapiro (2014), which is described in

the following. The events thus found were then used as template events in a subse-

quent matched-�lter search.

2.2.1 Data Pre-processing

We used seismic data recorded between August 2012 and August 2013 at 87 seis-

mic stations in the Southwestern Alps. The network includes 55 broadband sen-

sors from the temporary CIFALPS array (Zhao et al., 2016, China-Italy-France Alps

survey,>[sampling at 100 Hz), and 32 broadband sensors from French and Italian

networks (sampling at 100 Hz or 125 Hz, see Data and Resources). The data are

downsampled to 50 Hz and �ltered in the band 1-12Hz, which we found was a good

compromise between targeting the frequency band of interest for observing local earth-

quakes and removing undesired signal.

2.2.2 Energy-based Detection (Composite Network Response)

The beamformed network response method due to Frank and Shapiro (2014) seeks to

determine the origin, in time and space, of the seismic energy recorded at an array.

This approach leverages the coherency of seismic energy across a receiver array for

automatic event detection. Using wave speeds according to a 3-D reference model

(Potin, 2016), the apparent travel times measured in the seismograms are then asso-

ciated with a source location.

As a toy example, let us consider the earthquake whose location is indicated by
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a yellow star in Figure 2.2.1, and whose waveforms are recorded at multiple stations

at the surface. Because spatial coherency of the seismic waveforms is not ensured

(e.g. due to crustal heterogeneities or focal mechanism), we prefer to work with

the envelopes of the waveforms. The envelope is the amplitude of the analytical

representation of a time series, it is calculated after the preprocessing described in

Section 2.2.1 and the processing of the data is illustrated in Figure 2.S.1. We �rst

discretize the volume beneath the study region into a grid of points, each of which

representing a possible location of the seismic source (cf. Figure 2.2.1A). Each of these

hypothetical sources is associated with a collection of P- and S-wave travel times to

each of the stations. For a su�ciently accurate velocity model, the travel times from

the potential source closest to the real source will provide the best alignment with the

envelopes of the seismic data (cf. Figure 2.2.1B). We de�ne the stack of the shifted

envelopes as the network response:

NRk(t) =
X

s;c

f
�
us;c(t + � k

s;c)
�

: (2.1)

In Equation 2.1, k identi�es a potential source ands, c are the station and the

component indexes, respectively. We use the S-wave travel times on the horizontal

components and the P-wave travel times on the vertical component;� k
s;c is the travel

time from potential sourcek to station s on componentc. u is the data and f is

some transformation of the seismic waveforms. In our casef relates to the function

"envelope" (see Supplementary Material Figure 2.S.1). The sourcek� that yields the

largest network response is found by a grid search and represents a proxy of the real

source location. Locating earthquakes through such a grid search, that is, shifting

and stacking seismic energy, is also known as back projection or migration (e.g. Ishii

et al., 2005; Walker et al., 2005; Honda and Aoi, 2009), but the objective here is

detection.

For earthquake detection purposes, the quantity of interest is the largest network

response of the grid at each time step. We de�ne the composite network response
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Figure 2.2.1: Top left panel (A): Spatial discretization of the volume beneath the
study region. Using a velocity model, each point of the grid is associated with a
collection of source-receiver travel times. The grid points are called potential seismic
sources. As an example, let us consider an earthquake with location shown by the
yellow star, and recorded at multiple stations.Right panel (B): The envelopes of
the earthquake waveforms are shifted using the travel times of a potential seismic
source close to the real location (yellow star). The shifted envelopes are then stacked
to calculate the network response (green waveform, cf. Equation 2.1). The resulting
network response is intrinsically related to the potential seismic source from which the
travel times were calculated: di�erent potential seismic sources give di�erent network
responses. Bottom panel (C): Composite network response (cf. Equation 2.2)
calculated over one day. We subtract a curve connecting the local minima of the
CNR to set its baseline to zero. To adapt to variations in the level of noise, we use
a time-dependent threshold: the value "median + 10� MAD " is evaluated every 30
minutes and a linear interpolation makes the threshold varying continuously within
each 30-minute bin. Using small bin sizes enables the threshold to adapt to locally
noisy episodes, but at the risk of discarding actual events: a 30-minute bin size is a
good compromise between the two. We perform the peak selection on a smoothed
CNR and impose a minimum peak distance, which explains why some of the values
above threshold are not selected.
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(CNR) as:

CNR(t) = max
k

f NRk(t)g = NR k � : (2.2)

The process of searching forNRk � , continuously in time, is illustrated in Figure 2.S.3.

Figure 2.2.1C shows an example of CNR from real data. We postprocess the CNR

by removing the baseline � a curve connecting the local minima � to set the noise

level to zero (which explains the negative values in CNR). The peaks of CNR that

exceed a user-de�ned threshold are detections of events, and the source locations are

given by the correspondingk� . We use the following time-dependent threshold:

threshold(t) = median (CNR) ( t) + 10 � MAD (CNR) ( t); (2.3)

where MAD stands for median absolute deviation. We evaluatemedian (CNR)+10�

MAD (CNR) in 30-minute bins and make a continuously varying threshold by linearly

interpolating the values obtained every 30 minutes.

Each detection yields a so-called template event (located atk� ), and the template

for that event is then built by extracting waveforms using the detection time, travel

times from k� to each of the stations considered in the template (in our case, the

20 stations that are closest tok� ), and a window length (we choose 8 seconds). For

our application in Section 2.3, we considered potential sources 1 km apart on a reg-

ular 3D cartesian grid (to 80 km depth) beneath a geographic area from5:5o-9:0oE

in longitude and 43:5o-46:0oN in latitude. This 1 km spacing is a good compromise

between computation time, array sizes and detection performances.

2.2.3 Classi�cation of Seismic Signals

Before using a template in a matched-�lter search it is important to verify that the

signal is due to an earthquake, because the CNR can be in�uenced by non-earthquake
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signals, such as proximal noise sources, electronic noise, and by issues in the prepro-

cessing. For this purpose, we conduct a signal classi�cation step prior to template

matching.

Figure 2.2.2:Left panel (A): We randomly sample detections from the database of
candidate template events and identify each channel asearthquakeor non-earthquake.
We attribute the label earthquaketo the detections with more than nine channels
identi�ed as earthquakes (non-earthquakeotherwise). This arbitrary choice can be
tuned in order to select more or less low SNR earthquakes in the template database.
Right panel (B): Structure of our binary logistic classi�er. The signal features are
�rst preprocessed by standardizing them (i.e. removing the mean and setting the
standard deviation to one) and bounding them between -1 and 1 through the use of
hyperbolic tangent. A linear combination of the preprocessed signal features generates
a scalar, which is fed into the logistic function (also called sigmoid function). The
resulting output is bounded between 0 and 1, and is interpreted as the probability
of being an earthquake. An output greater than 0.5 means the detection is more
likely to be an earthquake than a non-earthquake. This algorithm was built using the
Python library Keras (Chollet et al., 2015).

For automated analysis and signal classi�cation we use supervised machine learn-

ing: to discriminate earthquakes from non-earthquakes, an algorithm is trained on a

relatively small set of examples classi�ed by a human expert. Our algorithm computes

a linear combination of the signal features to generate a scalar that is fed into the
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logistic function (bounds the output between 0 and 1), which gives the probability

of being an earthquake. Therefore, our algorithm is a binary logistic classi�er. More

information on the structure of the classi�er is provided in Figure 2.2.2. For each

three-component record extracted from the 20 stations, we calculate �ve features:

- the amplitude maximum,

- the �rst three statistical moments of the distribution of the peaks of the wave-

form autocorrelation function: variance, skewness, and kurtosis,

- the maximum of the moving kurtosis along the extracted time series,

for a total of 300 features per event detection. The amplitude maxima help identify

strong signals, the maximum of the moving kurtosis is sensitive to seismic phase ar-

rivals, and the statistical moments of the autocorrelation function discriminate spikes

(with large kurtosis) from impulsive earthquake waveforms. These features are not

dependent on the relative phase of the signals, which renders them insensitive to small

source mislocation.

For our application, Section 2.3.1, we manually labeled the waveforms of 500 de-

tections as earthquakes or noise (any non-earthquake signals). We note that labeling

the waveforms currently prevents the full automation of the method, but it has to be

done only once. In the training dataset, a 60 channel (20 stations� 3 components)

template event is labeled as an earthquake if more than nine channels were individ-

ually identi�ed as earthquake waveforms by eyes. This somewhat arbitrary criterion

is used to reject the low SNR earthquakes that would not be interesting for use as

template events, or which are not identi�ed as earthquakes with high con�dence. For

training the algorithm, we split the dataset into two independent sub datasets: the

training dataset (75% of the detections) and the validation dataset (25% of the de-

tections). Each of these datasets were then augmented by a factor 100 by shu�ing

the channels in the templates (the classi�cation output must not depend on the order

in which the input features are given). While optimizing the classi�er with gradi-
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ent descent on the training dataset, we evaluated the error on the validation dataset

and stopped optimizing when this error began to increase. This method, which is

known as early stopping (e.g.Yao et al., 2007), implicitly regularizes the classi�er by

providing a criterion for stopping the training when further updating the parameters

would only over�t the data. On average, for several randomly selected training and

validation datasets, we had a training accuracy of 0.92 and a validation accuracy of

0.90. Eventually, the classi�cation process outputs a database of template events to

be used in template matching.

2.2.4 Template Matching

In seismology, we often approximate the Earth as a linear �lter and write an earth-

quake seismogram as the convolution of a source term with a propagation term and

an instrument term:

u(r; t ) = S(t)M (r ; � )
| {z }

source

� G(r; t ; � )
| {z }
propagation

� I (t)
|{z}

instrument

: (2.4)

In Equation 2.4, the source term is the product of the source time functionS

and the focal mechanismM that describes e�ects due to preferred directions in the

rupture process (e.g. rupture on a fault plane). The propagation termG, the Green's

function, describes how the earth responds to an impulsive source for a given travel

path. We include site e�ects in the Green's function.I represents how the recording

device distorts actual ground motion. The receiver location isr and the source loca-

tion is � . Equation 2.4 shows that colocated earthquakes produce similar waveforms

because of similar Green's functions. Moreover, similarity is high when the source

functions have the same shape (similar focal mechanisms and magnitudes). Template

matching leverages this expected similarity to detect new events.

Template matching consists of scanning continuous recordings in search for matches

between data and the waveforms that constitute a template. This method has proven
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Figure 2.2.3: Left panel (A): The waveforms of a template event (red waveforms),
on 12 stations and each of the 3 components, match well the data (blue waveforms):
a new earthquake is detected. The correlation coe�cient (CC) is given on each
channel. Right panel (B): Comparison of the template waveform on one channel
(red waveform) with the waveforms of a few detected events (blue waveforms).

to be e�cient at detecting events with low SNR (SNR< 1, e.g. Gibbons and Ringdal,

2006; Shelly et al., 2007; Frank et al., 2014; Ross et al., 2019). Formally, scanning the

data means calculating the correlation coe�cient between the template waveforms

and the data, continuously in time. We use the following de�nition of the average
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correlation coe�cient:

CC(t) =
X

s;c

ws;c

NX

n=1

Ts;c(tn )us;c(t + tn + � s;c)q P N
n=1 T2

s;c(tn )
P N

n=1 u2
s;c(t + tn + � s;c)

: (2.5)

In Equation 2.5, N is the length of the template waveform,n is a temporal index, and

ws;c is the weight attributed to station s and componentc. If all weights are equal,

with ws;c = 1=NsNc (with Ns, Nc being the number of stations and components), then

it is equivalent to calculating the arithmetic mean. For stations and componentc,

Ts;c is the waveform template,us;c the continuous data, and� s;c the moveout (or time

shift) in us;c. The time t is the detection time, meaning that the template window

starts at time � s;c after the detection time. The template windows start four seconds

before the S wave on the horizontal components and one second before the P wave on

the vertical component. We note that Equation 2.5 assumes the mean ofTs;c and us;c

within each sliding window of lengthN is zero. We have shown in previous work that

this assumption is correct when the data are �ltered such that the lower non-zero

period in the data is shorter than the window length (cf. Data and Resources and

Beaucé et al., 2017). In the application presented in Section 2.3, template matching

was done with a detection threshold of eight times the daily root mean square (RMS)

of the correlation coe�cient time series. This detection threshold is more conservative

than the commonly used threshold of8� MAD (Shelly et al., 2007; Brown et al., 2008;

Baratin et al., 2018,e.g.>[ 8 � RMS � 12� MAD ).

Evaluating the correlation coe�cient over long periods of time, and for many tem-

plates, requires high performance computing to do it within a reasonable amount of

time. We use the software Fast Matched Filter (Beaucé et al., 2017), which is par-

ticularly quick when run on graphics processing units (GPUs). The scanning process

is illustrated in Figure 2.2.3. In the application to data from the Southwestern Alps

we use just over 1,400 templates, a template duration of 8 s (with 50 samples per

second), and one year of continuous data from 87 3-component stations, and we eval-

uated CC(t) every sample. Eight seconds is a good compromise between extracting

89



a representative chunk of the target waveform, and a reasonable computation time.

Running our codes simultaneously on 12 nodes equipped with one Tesla K20m GPU

each took 12 h. As expected, reading operations (I/O) of data and templates is the

most time consuming task.

2.2.5 Second Generation Templates

As illustrated in Figure 2.2.3, a matched-�lter search provides us with many repeti-

tions of the same target waveform. By stacking the waveforms of the detected events

we can enhance the SNR in the template waveform, which decreases the unwanted

correlation component of the CC between data and noise in the template, thus im-

proving the quality of the detection, and allows the template events to be located

better.

Non-linear stacking, like the Nth-root stack or the phase-weighted stack, greatly

improves the SNR with respect to the linear stack, but also distorts the target wave-

form because of their non-linear nature. Even if it does not enhance SNR as much as

non-linear stacking, we prefer the Singular Value Decomposition-based Wiener Fil-

ter (SVDWF) because it does not distort the waveform. SVDWF is based on the

association of spectral �ltering (keeping a limited number of singular vectors from

the singular value decomposition) and Wiener �ltering, and was initially developed

for processing noise correlation functions (Moreau et al., 2017). For each station and

each component, the matrix of detected events is �rst denoised using SVDWF, and

a new template waveform is then obtained by stacking the denoised waveforms. Fig-

ure 2.S.4 illustrates the performance of these di�erent stacking strategies.

Detection and location involve �nding the optimal network response for a given

f in Equation 2.1. For detection purposes, we prefer using the envelope forf, but

for location purposes, we choosef to be the kurtosis-based transform presented in

Figure 2.2.4A (from Baillard et al., 2014). This transform makes the signal more sen-

sitive to seismic phase arrivals and, thus, biases the CNR towards �nding the travel
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times that align well the seismic phase arrivals. Performing this relocation process on

the second generation template waveforms reduces the spatial spread of the potential

sources that yield a large CNR (cf. Figure 2.2.4, more details in 2.A).

The second generation templates are used in a subsequent matched-�lter search

to detect more events. This process � new template generation and matched-�lter

search � can be iterated several times until the earthquake catalog does not show

notable updates between two iterations. During successive iterations, we optimize

the template database by regrouping template events with same location and simi-

lar waveforms (template events with locations closer than 20 km and with average

waveform correlation coe�cient greater than 0.8) to avoid redundant matched-�lter

searches.

2.3 Seismicity of the Southwestern Alps

We applied the earthquake detection method presented in Section 2.2 � that is, the

combination of the Composite Network Response (CNR), signal classi�cation, and

template matching (with SVDWF) � to the preprocessed seismic data described in

Section 2.2.1.

2.3.1 Catalog

Calculating the CNR as described in Section 2.2.2 yielded a total of 50,262 detections

(candidate template events). After applying the classi�er described in Section 2.2.3,

we were left with 1,725 template events. We further reduced this number to 1,406

by regrouping redundant template events (cf. Section 2.2.5); Figure 2.3.1 shows their

locations. The matched-�lter search yielded 18,754 non-redundant detections, with

redundancy de�ned as events with similar waveforms (average CC> 0.8), detected

within a time interval of three seconds and from template earthquakes located within
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Figure 2.2.4: Relocation of the second generation templates.Top panel (A): The
denoised and stacked waveforms obtained from the SVDWF (blue waveforms) are
transformed following Baillard et al. (2014) to get a signal that is sensitive to phase
arrivals (orange waveforms). The arrival times predicted by the new location are
shown by black and red bars for the P- and S-wave, respectively.Bottom left
panel (B): The composite network response (blue curve) is calculated using the
orange signal shown inA . The neighborhood of the maximum of the CNR is analyzed
to build a weighting function (red curve, cf. 2.A for details). This weighting function
is used to calculate a weighted average of the distance to the best potential seismic
source (cf. Equation 2.8 in 2.A), i.e. the potential source associated with the highest
CNR. We de�ne this weighted average as the uncertainty on the location.Bottom
right panel (C): Each sample of the CNR shown inB is associated with a potential
source in the grid; the color codes for the value of the CNR and the transparent
points are those for which the weighting function is zero. In this example, the location
uncertainty is 3.05 km.

20 km from each other. This arbitrary choice may remove actual earthquakes from the

catalog and leave some double counted events but produces a reasonable number of

detected events. Our earthquake catalog is available online (see Data and Resources).

To evaluate how well our detection method performs, we compared our catalog

to the SISmalp catalog of Potin (2016). The number of events detected and located
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Figure 2.3.1: Locations of the 1,406 template events. Template events relocated with
an uncertainty � r < 15 km are shown with �lled dots, and template events for which
we did not �nd a reliable location are shown with open diamonds; the color scale
codes for the depth of the events. Black inverted triangles are the seismic stations
used in this study. We note that the uncertainty estimation described in Section 2.2.5
does not always perform well for deep events, which do not only feature simple P- and
S-wave arrivals as assumed in the calculation of the network response. Therefore, a
few events with� r < 15 km still show odd locations (e.g. deep events located out of
the group of deep earthquakes around Torino). The purple star indicates the epicenter
of a M L 3.9 earthquake that occurred in early October 2012, and which is important
for the discussion in Section 2.4. The onset shows the position of the Western Alps in
Europe. Theblack dashed linecorresponds to the axis along which the stations from
the CIFALPS network are deployed; this axis is used to project the locations of the
template events for 2D cross sections.

by our algorithm is more than an order of magnitude larger than the approximately

1,200 included in the SISmalp catalog for our study region; more details on the com-

parison with this catalog are given in Figures 2.S.5 and 2.S.6. The events that we

seem to have missed all have magnitude less than one and most less than 0.4 (cf. Fig-

ure 2.S.7), which might explain inconsistencies in reported location or non-detection.

We note here that other catalogs are also publicly available for this region, such as the

Réseau National de Surveillance Sismique catalog with 383 events, and the Istituto

Nazionale di Geo�sica e Vulcanologia catalog with 743 events.
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The temporal distribution of the 18,754 events is shown in Figure 2.3.2A with

the daily seismic rate. We also report the magnitude of the events for earthquakes

with M > 1 and located with high con�dence (� r < 5 km). These local magni-

tudes are based on waveform amplitude ratios, they were estimated following the

procedure described in 2.B. Amplitude ratios of events with M< 1 are contami-

nated by noise and therefore the resulting magnitude estimates are not meaningful.

M = 1 is also where we observe the Gutenberg-Richter relation to break down (see

Figure 2.S.8). The daily seismic rate shows continuous seismic activity in the South-

western Alps, and reveals the existence of episodes of strong, burst-like seismicity

(e.g. October 2012 and January 2013). Figure 2.3.2B shows the earthquake tempo-

ral distribution on recurrence time versus detection time graphs for three templates

in distinct geographical regions: the Ubaye valley, the Briançonnais and the Dora

Maira massif (cf. locations in Figure 2.1.1). The recurrence time is the time interval

between two colocated earthquakes, and thus is de�ned template-wise. These three

templates o�er a representative view of the diversity of seismic behaviors observed in

our study region. The Ubaye valley hosts continuous seismic activity without clear

sequences of foreshocks-mainshock-aftershocks, but the seismicity of the Briançonnais

and the Dora Maira massif are dominated by burst-like episodes. These episodes are

characterized by recurrence times spanning many orders of magnitudes, which is the

signature of temporal clustering. Seismicity in the Ubaye valley also di�ers from the

burst-like seismicity observed in the Briançonnais and the Dora Maira massif by the

smaller magnitude range it spans (cf. Figure 2.3.2B).

2.3.2 Temporal Clustering of the Seismicity

Unlike Poisson seismicity, clustered earthquake sequences have earthquake occur-

rence that is not random in time: instead, time clustered seismicity suggests that

past events in�uence the occurrence of future ones. We emphasize that an earth-

quake sequence with high seismic rate does not have to be clustered in time, but

can be Poissonian (e.g. Frank et al., 2018). Temporal clustering is often observed
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Figure 2.3.2: Left panel (A): Daily seismic rate (left axis,blue continuous curve)
and daily magnitude distribution (right axis, red dots). Details on the local magnitude
scale are given in 2.B.Right panels (B): Recurrence time vs detection time for
three templates located in three distinct geographic regions. The Briançonnais and
the Dora Maira massif are dominated by episodes of burst-like seismicity, and the
Ubaye valley hosts continuous seismic activity that does not feature clear foreshocks-
mainshock-aftershocks sequences. Local magnitudes are coded in color: we observe
a smaller magnitude range in the Ubaye valley than for the earthquake sequences in
the Briançonnais and in the Dora Maira massif.

for sequences of foreshocks-mainshock-aftershocks (e.g. Utsu, 1961; Knopo�, 1964;

Gardner and Knopo�, 1974; Zaliapin and Ben-Zion, 2013b) and is thought to be the

signature of stress redistribution on neighboring faults taking place during the seis-

mic rupture (e.g. Burridge and Knopo�, 1967; Dieterich, 1992; Stein, 1999). More

generally, temporal clustering can be explained by various mechanisms implying in-

teractions between earthquakes (e.g.Frank et al., 2016). The observation of temporal

clustering thus provides a window into the mechanisms of earthquake occurrence.

Quantifying the degree of temporal clustering requires characterization of the time

series of earthquake occurrence. While accurate knowledge of the earthquake locations

and magnitudes allows sophisticated characterization of clustering in the time-space-

energy domain (e.g. Zaliapin et al., 2008; Zaliapin and Ben-Zion, 2013a), restricting

the analysis to the time-space domain is an appropriate choice for the Southwestern
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Alps since earthquake magnitudes are small. To describe seismic activity, we intro-

duce the event counte(t) (cf. Figure 2.3.3A), that is, the number of events in narrow

time windows (bins). We characterize clustering by means of the autocorrelation and

spectrum of e(t) (Figure 2.3.3B and C). By de�nition, temporal clustering implies

temporal correlation of the earthquake occurrence at non-zero correlation time in

the autocorrelation function. We observe that clustered earthquake sequences ex-

hibit power-law dependence ofe(t) on frequency (~e(f ) / f � � , similar to Frank et al.,

2016). The strength of temporal clustering is quanti�ed by� , referred to as clustering

coe�cient, which can be estimated from the slope of the spectrum in log-log space

(Figure 2.3.3C). A strongly clustered earthquake sequence has a large� whereas an

earthquake sequence close to a Poisson sequence has a small� , and � = 0 indicates

a purely random sequence (�at spectrum).

Processes exhibiting a power-law spectrum are scale-invariant processes, within a

certain range of scales limited by natural bounds. For instance, we expect the power-

law ~e(f ) / f � � to hold between the period of activation of the fault/seismic source

(smallest frequency) and the smallest time interval we can resolve between two earth-

quakes (highest frequency). A powerful analysis tool for scale-invariant time series

comes from the theory of fractal clustering (e.g. Turcotte, 1997; Lowen and Teich,

2005). Fractal analysis, which has been applied to earthquake occurrence in various

studies (e.g. Smalley Jr et al., 1987; Lee and Schwarcz, 1995), consists of counting

earthquakes in time intervals of variable width. In the case of fractal clustering, the

fraction of occupied intervalsx has a power-law dependence on the size of the in-

tervals � , i.e. x / � 1� D . The fractal dimensionD is zero for a Poisson distributed

earthquake occurrence, and is typically larger than 0.2 for clustered seismicity (cf.

Figure 2.3.3D). We used correlation time, clustering coe�cient� and fractal dimen-

sion D to characterize the temporal clustering in our study region. We found that

the clustering coe�cient was well appropriate for studying clustering over short times,

whereas the fractal dimension gave the most contrasted results for studying the long-

term clustering (see Supplementary Material Figure 2.S.9 and Figure 2.S.10). We
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present our observations of temporal clustering in Figure 2.4.1.

Figure 2.3.3: Quanti�cation of temporal clustering.Top left panel (A): Event count
number e(t) for earthquakes detected with two di�erent templates. The event count
number is calculated by dividing the time axis into 5-minute bins, and counting the
number of events within each bin.Top right panel (B): Autocorrelation function
of the event count number. We de�ne the correlation time� as the time interval
over which the autocorrelation function is greater than the threshold plotted with the
dashed black line (arbitrarily set to 0.12).Bottom left panel (C): Power spectral
density of the event count number. The spectrum of the event count number has a
power-law dependence on the frequency when temporal clustering occurs. We de�ne
the power-law exponent� as the clustering coe�cient. Bottom right panel (D):
Fractal analysis of the earthquake sequences. Within a limited range of size of time
intervals, the fraction of occupied intervals follows a power-law, whose exponent is
related to the fractal dimension of the earthquake occurrence.

Comparison between Figure 2.4.1A and Figure 2.4.1B shows that there is no trivial

correlation between the number of earthquakes per template (i.e. number of earth-

quakes in some volume around the template location) and temporal clustering. We

distinguish three geographic regions of high seismic activity: from west to east, the
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