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Abstract

The Gutenberg-Richter law tells us that there is a tenfold increase in the number of
earthquakes of magnitude m > M when M decreases by one unit. Thus, the vast
majority of earthquakes occur at magnitudes so small that the vibrations they cause
can barely be recorded at the surface of Earth. Given that earthquakes are the symp-
toms of motion on faults, observing small earthquakes brings valuable information on
fault mechanisms. In this thesis, not only do I focus on studying small-to-moderate
size earthquakes (M < 4), but | study properties that emerge when many of these
earthquakes interact. Many of my conclusions are drawn from observations of earth-
quake temporal clustering.

| present the automatic earthquake detection and location method that | devel-
oped for collecting the time and space coordinates of as many earthquakes as possible,
and base all subsequent analyses on these. My investigations covered two study re-
gions: the Southwestern Alps, and the western section of the North Anatolian Fault
that last broke in August 1999. In both studies, | demonstrate how di [erknt fault sys-
tems produce seismicity with dilerknt temporal clustering properties. Observations
of temporal clustering describe seismicity patterns between two end-members: the
swarm-like seismicity with little inter-event triggering, and the cascade-like seismicity
with strong earthquake interaction.

Temporal clustering and the analysis of earthquake source characteristics in the
Southwestern Alps helped explain dilerences in fault mechanisms in the two most
active areas of the study region. My results also point towards non self-similar earth-
quakes. Along the North Anatolian Fault, in addition to temporal clustering, | ana-
lyzed the earthquake focal mechanisms, used them to infer the state of stress in the
fault zone, and thus provided a comprehensive description of the study region. A
major conclusion of this study is that strongly time clustered seismicity developed in
normal fault systems several years after the 1999 Izmit earthquake, and may indicate
the inter-play between seismic and aseismic slip on these faults.
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List of Figures

1.1.1 A mass sits on an inclined table and is subject to several forces: its
weight W causes the normal forc&, due to the reaction of the table.
The weight has a component that is tangential to the table~;, and

this force is resisted by frictionF; between the mass and the table. . 48

1.1.2 Spring-slider model.A: A block, the slider, lies on a surface and is
coupled to a loading point moving at constant velocityv, through a
spring with sti ness k. Thus, the slider is pulled by an elastic forcé
where is the elongation of the spring. This loading force is resisted by
the friction F¢. B: Numeric simulation of the spring-slider model with
rate-and-state friction and aging law ¢f. Equation (1.2)). The slider
Is stationary most of the time (inter-seismic phase, see zero slip rate,
in solid red, and at displacement curve, in solid blue), but catches
up with the motion of the loading point (dashed blue line) in periodic,
fast slip events. The stick-slip behavior ensures that the spring does
not keep accumulating energy inde nitely. C: Focus on the fast slip
event (the rupture) when the inertial term of the equations of motion
cannot be neglicted (left hand side of Equation (1.1)). All axes are

non-dimensional quantities. Courtesy of Ekaterina Bolotskaya. . . . . 49
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1.1.3 Stability domains predicted by rate-and-state friction (Equation (1.2)).
The middle panel shows a measure of stability,, as a function of
depth. These stability domains are sketched for a subduction interface
(left) and a crustal fault (right). The rightmost panel shows the depth
distribution of earthquakes for a section of the San Andreas fault near

Park eld. Figure from Scholz (1998). . . . . . ... . ... ... ... 51

1.1.4 Fault areaA against seismic momenM,. The slope in the log-log
domain is 2/3, indicating that A / M§:3. Lines of equal stress drops
for circular cracks are shown. Figure from (Kanamori and Anderson,
1975). o o 53

1.1.5 Amplitude spectrum corner frequency. against seismic momeniM,
(the corresponding moment magnitudeM,, is given at the top). The
red dashed lines shown the constant stress drop scaling. Figure from
Allmann and Shearer (2009).. . . . . . . . . . ... .. .. 55

1.2.1A: Sketch of a plane wave reaching the surfacé3: Normal sum vs.
beamformed sumj.e. shift and sum. Figure from Rost and Thomas
(2002). . . . . 59

1.3.1 Frequency-magnitude relationship, referred to as the Gutenberg-Richter
law (cf. Equation (1.7)). The slope in the log-log domain indicates a
b-valueb= 1. Figure 23 from Kanamori and Brodsky (2004), see their

caption for description of thedata. . . ... ... ... .. ...... 61

1.3.2 Coulomb stress changes from the M7.6 1872 Owens valley are still
consistent with the occurrence of moderate-to-largd 4 earthquakes
more than a century later. Areas of Coulomb stress increase are shown
in red (promote failure) and areas of coulomb stress decrease are shown

in blue (inhibit failure). Figure from Stein et al. (2019). . . . . . . .. 64
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1.3.3 Quanti cation of the strength of earthquake clustering. An example
of a weakly (blue) and strongly (green) time clustered sequences are
given. A: Event count number, i.e. the number of events per unit
time. B: Autocorrelation of the event count number. The weakly clus-
tered sequence shows the characteristic delta autocorrelation of random
sequences, whereas the strongly clustered sequence keeps a high corre-
lation over a long time scale.C: Measure of the power law exponent
of the event count spectrum. Clustered sequences exhibit large power
law exponents.D: Fraction x of time bins with size occupied by at
least one earthquakex / ! F. Clustered sequences have large fractal

dimensionsF . Figure from (Beaucé et al., 2019). . .. .. ... ... 66

2.1.1 Interpretative cross-section of the Western Alps. Following the closure
of the Alpine Tethys ocean, the collision of the European and Adri-
atic margins formed the Alps and the subduction complex illustrated
here. A clear understanding of what is driving the deformation and the
seismic activity in these complex geological units is still lacking. Ab-
breviations: FPF Frontal Penninic Fault, Srp serpentinized, RMF
Rivoli-Marene deep fault. We show the locations of the CIFALPS sta-
tions on the topographic pro le of the cross-section. The onset shows
the location of the transect in the Western Alps, Europe. Figure mod-

I ed from Zhao et al. (2015) and Solarino et al. (2018). . . . . .. .. 80
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2.2.1Top left panel (A):  Spatial discretization of the volume beneath the
study region. Using a velocity model, each point of the grid is associ-
ated with a collection of source-receiver travel times. The grid points
are called potential seismic sources. As an example, let us consider
an earthquake with location shown by the yellow star, and recorded
at multiple stations. Right panel (B): The envelopes of the earth-
guake waveforms are shifted using the travel times of a potential seismic
source close to the real locationygllow star). The shifted envelopes
are then stacked to calculate the network responsgréen waveform
cf. Equation 2.1). The resulting network response is intrinsically re-
lated to the potential seismic source from which the travel times were
calculated: di erent potential seismic sources give di erent network re-
sponsesBottom panel (C): Composite network responsecf. Equa-
tion 2.2) calculated over one day. We subtract a curve connecting the
local minima of the CNR to set its baseline to zero. To adapt to vari-
ations in the level of noise, we use a time-dependent threshold: the
value "median +10 MAD" is evaluated every 30 minutes and a lin-
ear interpolation makes the threshold varying continuously within each
30-minute bin. Using small bin sizes enables the threshold to adapt
to locally noisy episodes, but at the risk of discarding actual events: a
30-minute bin size is a good compromise between the two. We perform
the peak selection on a smoothed CNR and impose a minimum peak
distance, which explains why some of the values above threshold are

not selected. . . . . . . . . ...
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2.2.2Left panel (A): We randomly sample detections from the database
of candidate template events and identify each channel aarthquake
or non-earthquake We attribute the label earthquaketo the detections
with more than nine channels identi ed as earthquakespn-earthquake
otherwise). This arbitrary choice can be tuned in order to select more
or less low SNR earthquakes in the template databas®ight panel
(B): Structure of our binary logistic classi er. The signal features are
rst preprocessed by standardizing themi(e. removing the mean and
setting the standard deviation to one) and bounding them between -1
and 1 through the use of hyperbolic tangent. A linear combination of
the preprocessed signal features generates a scalar, which is fed into the
logistic function (also called sigmoid function). The resulting output is
bounded between 0 and 1, and is interpreted as the probability of being
an earthquake. An output greater than 0.5 means the detection is more
likely to be an earthquake than a non-earthquake. This algorithm was

built using the Python library Keras (Chollet et al., 2015). . . . . . . 85

2.2.3Left panel (A): The waveforms of a template eventréd waveformg,
on 12 stations and each of the 3 components, match well the datale
waveformg: a new earthquake is detected. The correlation coe cient
(CC) is given on each channelRight panel (B): Comparison of the
template waveform on one channekéd waveforn) with the waveforms

of a few detected eventshlue waveformy . . . ... ... ... ... 88
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2.2.4 Relocation of the second generation template$op panel (A): The
denoised and stacked waveforms obtained from the SVDWBl(e wave-
forms) are transformed following Baillard et al. (2014) to get a signal
that is sensitive to phase arrivals grange waveforms The arrival
times predicted by the new location are shown by black and red bars
for the P- and S-wave, respectively.Bottom left panel (B): The
composite network responseb(ue curve is calculated using the or-
ange signal shown inA. The neighborhood of the maximum of the
CNR is analyzed to build a weighting function (ed curve cf. 2.A
for details). This weighting function is used to calculate a weighted
average of the distance to the best potential seismic sourad.(Equa-
tion 2.8 in 2.A), i.e. the potential source associated with the highest
CNR. We de ne this weighted average as the uncertainty on the loca-
tion. Bottom right panel (C): Each sample of the CNR shown iiB
Is associated with a potential source in the grid; the color codes for the
value of the CNR and the transparent points are those for which the

weighting function is zero. In this example, the location uncertainty is
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2.3.1 Locations of the 1,406 template events. Template events relocated with
an uncertainty r < 15km are shown with lled dots, and template
events for which we did not nd a reliable location are shown with open
diamonds; the color scale codes for the depth of the events. Black in-
verted triangles are the seismic stations used in this study. We note
that the uncertainty estimation described in Section 2.2.5 does not al-
ways perform well for deep events, which do not only feature simple
P- and S-wave arrivals as assumed in the calculation of the network
response. Therefore, a few events withr < 15 km still show odd lo-
cations (e.g. deep events located out of the group of deep earthquakes
around Torino). The purple star indicates the epicenter of a1 3.9
earthquake that occurred in early October 2012, and which is impor-
tant for the discussion in Section 2.4. The onset shows the position of
the Western Alps in Europe. Theblack dashed lineorresponds to the
axis along which the stations from the CIFALPS network are deployed;
this axis is used to project the locations of the template events for 2D

CroSS SECtiONS. . . . . . . o o e 93

2.3.2Left panel (A): Daily seismic rate (left axis,blue continuous curvé
and daily magnitude distribution (right axis, red dots). Details on the
local magnitude scale are given in 2.BRight panels (B): Recurrence
time vs detection time for three templates located in three distinct
geographic regions. The Brianconnais and the Dora Maira massif are
dominated by episodes of burst-like seismicity, and the Ubaye valley
hosts continuous seismic activity that does not feature clear foreshocks-
mainshock-aftershocks sequences. Local magnitudes are coded in color:
we observe a smaller magnitude range in the Ubaye valley than for the

earthquake sequences in the Briangonnais and in the Dora Maira massif. 95
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2.3.3 Quanti cation of temporal clustering. Top left panel (A): Event
count number e(t) for earthquakes detected with two di erent tem-
plates. The event count number is calculated by dividing the time axis
into 5-minute bins, and counting the number of events within each bin.
Top right panel (B):  Autocorrelation function of the event count
number. We de ne the correlation time as the time interval over
which the autocorrelation function is greater than the threshold plot-
ted with the dashed black line (arbitrarily set to 0.12). Bottom left
panel (C): Power spectral density of the event count number. The
spectrum of the event count number has a power-law dependence on
the frequency when temporal clustering occurs. We de ne the power-
law exponent as the clustering coe cient. Bottom right panel
(D): Fractal analysis of the earthquake sequences. Within a limited
range of size of time intervals, the fraction of occupied intervals follows
a power-law, whose exponent is related to the fractal dimension of the

earthquake occurrence. . . . . . . . ... L L oo 97

2.4.1 Cross-section along the CIFALPS axis showing 976 templates that were
well relocated ( r < 15km). Top panel (A): Number of detected
earthquakes per template.Bottom panel (B):  Sources with fractal
dimensionD > 0:2, i.e. sources exhibiting temporal clustering. The
fractal dimension was calculated by taking the event courg(t) of each
template plus all the templates within a 10-km radius, over the whole
study period. Even though intense seismic activity is located in the
Ubaye valley, this seismicity is not associated with signi cant temporal
clustering, showing that there is no systematic relation between tem-
poral clustering and number of events per unit volume. The purple
star indicates the location of theM 3.9 earthquake that we mention
in the discussion (Section 2.4). The red structures are reported from

the geological cross-section in Figure 2.1.1. . . . .. ... ... .. .. 99
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2.B.1Magnitude estimation of the reference event. For each template, we use
the highest SNR detections to calculate the average S-wave spectrum
(Equation 2.9) and t it with the Boatwright model (Equation 2.11).
The low-frequency plateau gives us the seismic momewiy. The aver-
age is calculated over all the stations and components that satisfy the
SNR criterion. Thus, for each frequency sample the number of chan-
nels included in the average may vary, as we can see with the color
scale. Since frequency samples with a higher number of channels are

more reliable, we give them larger weight in the inversion. . .. . .. 107

2.S.1Left panel (A): Earthquake recorded at multiple stations. The wave-
forms are lItered in the band 1-12Hz and downsampled from 100 or
125 Hz to 50 Hz.Right panel (B): The envelopes of the seismic data
are calculated and standardized: the daily median is removed, and the
resulting signal is divided by its daily MAD (Median Absolute Devi-
ation). Eventually, we cut out the 95th percentile of the signals by
saturating the standardized envelopesi(t) with hyperbolic tangent:
t{t) = pos tanh % ; where pgs is the 95th percentile ofu(t).
This processing ensures the stations to have equal noise level before
stacking (cf. Figure 2.S.2), and decreases the e ect of undesired spuri-
ous signals in the data. The three superimposed layers show the three

components: north, east and vertical. . . . . ... ... ........ 108

2.S.2 Statistics of the envelope data for a given day. Di erent whisker boxes
are for di erent stations, with each component (north, east, vertical)
in di erent subplots. Legend of the whisker boxes: orange line:
median, lower side of the box: Q1, upper side of the box: Q3, lower
whisker: Q1 - 1.5(Q3-Q1), upper whisker: Q3 + 1.5(Q3-Q1).Top
panel: Raw envelopesBottom panel: MAD-normalized envelopes:
t(t) = a2 After normalization, the stations exhibit similar
distributions. . . . . . .. L 109



2.S.3 Composite network response (CNRf. Equation 2.2 in main mate-
rial). Left panel (A): lllustration of the maxima searching operation
achieved to calculate the composite network response from all the net-
work responses of the gridRight panel (B): Histogram of the CNR
samples presented ifC) . The thresholdmedian +10 MAD is given

for information. . . . . . . . . . .. 110

2.S.4 Second generation templates: increasing the SNR of the template wave-
forms. Top panel: Template matching provides us with many noisy
repetitions of the same waveform. Di erent stacking methods can ex-
tract the coherent information from this collection of noisy records.
Bottom panel:  Stacking methods such as thé\ ™ -root stack (red
waveform) or the phase-weighted stackyellow waveform greatly im-
prove the SNR with respect to the linear stack, but also distort wave-
forms because of non-linear operations. Our preferred method is the
SVDWEF (green waveforn), which only performs linear operations. It
exhibits a better SNR than the linear stack, and preserves the shape

of the target waveform. . . . . . . . . . ... ... oL 111

2.S.5 Comparison of the existing catalog with our catalog inside the dashed
box; this region is where the geometry of the network allows best per-
formances. Two events match if their origin times and locations are
less than T and r, respectively. T and r are two arbitrarily
chosen thresholds. The unmatched events are shown with lled dots
and the color codes their depth. For information, our template loca-
tions are shown with open diamonds. We missed 142 out of the 825
events (17%) documented in the catalog. However, we detected 16,430
new events,i.e. we detected a total of 17,113 earthquakes (21 times
more detections with respect to the existing catalog). We show the
same comparison for dierent T and r in Figure 2.5.6. Some of
the unmatched events presented here are likely to be associated with

inconsistencies in reported locations. . . . . .. ... ... ... ... 112
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2.S.6 We perform the same comparison as in Figure 2.S.5 for di erent thresh-
olds in order to investigate the e ect of such arbitrary criteria. As the
number of unmatched events decreases when we relax the criteria on
origin time and location, it suggests that some of the unmatched events

are only due to inconsistencies in location between the catalogs.

2.S.7 Distribution of magnitude of the 142 undetected events within the
restricted area shown in Figure 2.S.5. Since the locations of the unde-
tected events are close to the locations of our template events, we likely
missed them because of their low magnitudes rather than because of

the con guration of the station network. . . . . . ... ... ..... 114

2.S.8 Frequency magnitude distribution of the nal catalog, only using tem-
plates with r < 15 km. The maximum likelihood estimate ed curve)
is made on the range [1+ 1 ). We observe the Gutenberg-Richter re-

lation to break down atM_ 1 (black dashed ling . . . . ... ... 114

2.5.9 On both panels, the y-axis reports the position of the templates pro-
jected along the axis de ned by the linear network CIFALPS.Top
panel: Number of detected earthquakes per 10-day sliding window
for each template. Bottom panel:  Clustering coe cient (cf. def-
inition in main material Figure 2.3.3) per 10-day sliding window for
each template. Comparison of the two panels shows that strong seis-
mic activity is often associated with high temporal clustering, but also
that this is not always true. We observe continuous seismic activity
beneath the Ubaye valley (with projected location around CT20), but
only few episodes of high temporal clustering. This is consistent with
previous observations pointing at a mixture of swarm-like seismicity

and foreshocks-mainshock-aftershocks sequences in the Ubaye valley

Daniel et al. (2011); Leclere et al. (2012, 2013); De Barros et al. (2019). 115
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2.S.1@ross-section along the CIFALPS axis showing 976 templates that were
well relocated ( r < 15km). The color codes for di erent attributes
in each cross-sectionfrom top to bottom: number of detections,
correlation time, fractal dimension and clustering coe cient of the one-
year earthquake sequence of each template. Visual inspection seems
to reveal that the fractal dimension o ers a more contrasted image of

temporal clustering than the clustering coecient. . . . . . .. .. .. 116

3.2.1 Centroid locations ( lled dots) of the 81 groups of similar template
earthquakes. Color shows the centroid depth. Each group detected at
least 10 events, and these similar earthquakes are used for computing
spectral ratios (Equations (3.2) and (3.3)). Black inverted triangles
are the 82 seismic stations used in this study. The seismicity in the
Ubaye valley and in the Dora Maira massif is discussed at length in

thismanuscript. . . . . . . . . . ... 127

3.2.2 Waveform alignment and spectral ratio of a pair of events on a single
station. A-C: Three component P-wave waveforms of event 1 (black)
and event 2 (orange). The rst P-wave arrivals have a correlation
coe cient (CC) of 0.75 after shifting event 2 backward by one sample.
D-F: Three component S-wave waveforms of event 1 (black) and event
2 (orange). The rst S-wave arrivals have a correlation coe cient of
0.87 after shifting event 2 forward by 6 samples. Note: the CC was
computed on a narrow window around the rst arrivals, and not over
the whole time window shown hereG-I: P- (dashed blue) and S-wave
(solid orange) spectral ratios (Equation (3.3)) of the three component

waveforms shown above. . . . . . . . . . . ... ... 129



3.2.3 Multi-station average spectral ratio for a given pair of eventsA, B:
P-wave and S-wave average spectral ratio, respectively. Lines colored
with a shade of blue are single-channel spectral ratios. The color shows
the correlation coe cient between the rst arrivals of the P or S wave
(see Figure 3.2.2). The orange line is the median stack (see Equa-
tion (3.4) and text) and the shaded grey area shows the uncertainty
on the stack. Only single-channel spectral ratios with CC greater than
0.5 are included in the average, in addition to the signal-to-noise ratio
(SNR) criterion (see panels below)C, D: P-wave and S-wave single-
channel SNR. The SNR is computed with respect to a noise window
taken just before the P-wave arrival. Solid lines are SNRs of the rst
event of the pair, dotted lines are SNRs of the second event. Color is
the same as for panels A and B. The dashed black line is the threshold

on SNR above which a frequency bin is included in the average. Both

SNRs of event 1 and 2 are required to be above threshold. . . . . .. 130

3.2.4 Multi-station average spectral ratios between the largest magnitude
event and all others (thick colored lines) and model predicted spectral
ratios (thin colored lines) forA: the P wave andB: the S wave. Curves
are colored according to the catalog magnitude of the second event.
The corner frequencies of the two events.;, f., of each pair are
shown with black circled dots. Note that this group of earthquakes
was taken from the Dora Maira massif (see location on Figure 3.2.1),
and that the model does not seem to explain well the low-frequency
part of the ratios ("bump" in the 3-8 Hzband). . ... ........ 134

3.3.1 Inverted seismic moments and corner frequencies for a given group of
similar earthquakes (the same as in Figure 3.2.4), on the P (blue dots)
and the S (orange dots) waves. The power-law exponentof the f .-

Mg scaling relation (Equation (3.12)) is measured by a robust linear
regression in the log-log domain (I1-norm minimization). Uncertainties

are estimated with bootstrap resampling. . . . . . ... ... ... .. 135
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3.3.2 Corner frequency vs seismic moment scaling and other parameteXs.
Centroid depth. B: Power-law exponent of Equation (3.12). The
color scale is centered around the self-similarity power-law exponent:

ss = 1=3 (white). All exponents that were not di erent from ¢
within the 1- uncertainty were set to s on this map. C: Number
of events that were successfully inverted in each group (P- and S-wave
inversion). D: Fractal dimension of the time series of event count
per unit time (see Beaucé et al.,, 2019). Large values mean strong
temporal clustering. Diamonds are results from groups with less than
10 successfully inverted events (see panel C). The rest of the groups

are shown with dots. . . . . . . . . . . . . . . . . 137

3.3.3 All corner frequencies and seismic moments that were successfully in-
verted. A: P-wave inversion.B: S-wave inversion. Fitting a power-law
to the dataf./ M, vyields low exponents : 0:08 and 0:14 for the P
and S waves, respectively. These data could also be explained by the
canonical scaling lawj.e. ¢s =1=3, and a spread of stress drop values
(see 0.1, 1, 10, 100 antO00 MPalines, computed with the model from
Madariaga, 1976). Grey diamonds are results from groups with less

than 10 successfully inverted events (see Figure 3.3.2C).. . . . . . .. 138
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3.3.4 Unusual corner frequency - seismic moment scaling relationship in
the Dora Maira massif. Multi-station average displacement amplitude
spectra of A: P waves andB: S waves corrected for geometrical spread-
ing and attenuation (assuming &Q / f ° model,e.g. Campillo et al.,
1985). We use the magnitudes and corner frequencies inferred with
the spectral ratio inversion to further average amplitude spectra and
corner frequencies in magnitude bins (black diamonds are the average
corner frequencies). Dashed black lines show the self-similar { 3)
and the inverted ( f ©% ie. = 0:14) scaling. C: P-wave and
D: S-wave amplitude spectra are unsuccessfully collapsed using the
self-similar scaling. E: P-wave andF: S-wave amplitude spectra are

satisfactorily collapsed using the inverted scaling. . . . ... ... ..

3.3.5 Unusual corner frequency - seismic moment scaling relationship in the
Ubaye valley. Multi-station average displacement amplitude spectra
of A: P waves andB: S waves corrected for geometrical spreading
and attenuation (assuming aQ / f %° model, e.g. Campillo et al.,
1985). We use the magnitudes and corner frequencies inferred with
the spectral ratio inversion to further average amplitude spectra and
corner frequencies in magnitude bins (black diamonds are the average
corner frequencies). Dashed black lines show the self-similar { 3)
and the inverted (¢ f 34 i.e. = 0:09) scaling. C: P-wave and
D: S-wave amplitude spectra are unsuccessfully collapsed using the
self-similar scaling. E: P-wave andF: S-wave amplitude spectra are

satisfactorily collapsed using the inverted scaling. . . ... ... ...

3.4.1 Corner frequencies and seismic moments estimatedAn the Ubaye
valley and B: the Dora Maira massif, for the P (blue symbols) and S
(orange symbols) waves. Solid lines indicate di erent levels of constant
stress drop scaling (computed following the model of Madariaga, 1976).

The inverted scaling laws are shown with the dashed lines. . . . . ..
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3.S.1 Multi-station average spectral ratios between the largest magnitude
event and all others (thick colored lines) and model predicted spectral
ratios (thin solid line: 12 loss, thin dashed line: soft |1 loss)Left col-
umn (A, C, E): P wave. Right column (B, D, F): S wave. Top
row (A, B): Brune model ( = 1 in Equation (3.6) in main text).
Middle row (C, D):  Boatwright model ( = 2 in Equation (3.6)
in main text). Bottom row (E, F):  Custom model ( is a free pa-
rameter). The Boatwright and custom models with the 12 loss do not

converge to a satisfactory solution on the largest magnitude event. . . 149

3.S.2 Residuals between log observations and log models for P (blue distri-
butions) and S (orange distributions) waves First row (A, B, C):
L2 loss with the Brune, Boatwright and custom model.Second row
(D, E, F): Soft I1 loss with the Brune, Boatwright and custom model.
The Boatwright model with the soft |1 loss does marginally best. . . . 150

3.S.3Inverted corner frequenciels, and seismic momentd for all events.
The exponent of the scaling law./ M, was estimated with a linear
regression in the log-log domain using the least absolute value crite-
rion (dashed lines). Uncertainties were estimated by bootstrapping the
data set and repeating the regressiortirst row (A, B, C): L2 loss
with the Brune, Boatwright and custom model. Second row (D, E,
F): Soft 11 loss with the Brune, Boatwright and custom model. Pre-
ferred inversions show consistent results between the P and S waves.
Boatwright and soft |11 loss also produce the smallest residualsf(

Figure 3.S.2), therefore we choose this model in the study. . . . . .. 151
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3.S5.4 P-S averaged power-law exponent(cf. Equation (3.12)) vs. A: Cen-
troid depth, B: Root mean square (RMS) residualC: Total number of
inverted events (P- and S-wave inversions), anD: Fractal dimension
of the event count per unit time (see main text). Red diamonds are
groups for which less than 10 events were successfully inverted, there-
fore for which the power-law exponent is not very reliable. Blue dots

are therestofthegroups. . . ... ... ... ... ... ....... 152
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4.1.1A: Large scale view of the North Anatolian Fault Zone. Abbrevia-
tions: NAFZ - North Anatolian Fault Zone, EAFZ - East Anatolian
Fault Zone. The red arrows indicate the direction of coseismic mo-
tion. Our study region is located at the western end of the North
Anatolian Fault (NAF). B: Magnied view of the fault zone in our
study region. Larger font names are the main geologic units: Istan-
bul Zone, Armutlu Block, Almacik Mountains and Sakarya Terrane.
The smaller font, italic names are segments and faults of the NAF:
the Izmit-Sapanca segment, the Sapanca lake step-over, the Sapanca-
Akyazi segment (which together constitute the Northern strand), the
Karadere segment and the Southern strand ( names following Barka
et al., 2002). The Sapanca-Akyazi segment is made of the Sakarya
fault and the Akyazi fault. The at area around the Akyazi fault is
referred to as the Akyazi plain. Both Lake Sapanca and the Akyazi
plain are pull-apart basins. The large red star indicates the epicenter
of the M,, 7.4 1zmit earthquake, and the small purple star indicates the
epicenter of theM,, 7.2 Duizce earthquakeC: The seismic stations used
in this study are from the temporary experiment DANA ( 70 stations,
red triangles; DANA , 2012) and the permanent network ( 9 stations,
black triangles; Kandilli Observatory And Earthquake Research Insti-
tute, Bo8azici University, 1971). Each column of the DANA array is
indexed by a letter and each row is indexed by a number (DAO1, DAOZ2,
aa DBOL, L) 162

4.2.1 Summary owchart of the earthquake detection and location method.
For clarity, only a subset of stations is shown in the above panels,
but all the analysis is carried on the 79 stations together. Template
matching is performed on the 10 stations closest to the source and the
detection threshold is set to8 RMS of the correlation coe cients in a

30-minute sliding window. See Data and Resources for code availability. 165
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4.3.1 Map view of the locations of the template earthquakes detected and

used in this study. Only templates with maximum horizontal uncer-
tainty less than 15km and depth less than20 km are shown (total of
3,320 templates). Filled dots are for natural earthquakes (1,471 tem-
plates), and squares are for mining-related events (1,849 templates; see
text for details about identifying templates as mining templates).A:
Event depths. B: Cumulative number of event detections per tem-
plate. Most of the earthquake signals found in the dataset actually
originate from outside the North Anatolian Fault Zone. C: Maximum
vertical uncertainty derived from the uncertainty ellipsoids. D: Max-
imum horizontal uncertainty derived from the uncertainty ellipsoids.

As expected, template earthquakes that are located further from the

stations have larger location uncertainties. . . . . ... .. ... ... 169

4.3.2 Spatio-temporal distribution of the earthquake activity in the study

region. The longitude of each event is shown against its origin time,
and the color codes the latitude.A: We detected 31,356 events with
the 3,320 template earthquakes presented in Figure 4.3.1 from 2012-05-
04 to 2013-09-20B: The templates due to natural seismicity detected
16,708 earthquakes. The seismic activity taking place on the NAF
(latitudes 40.40°N-40.8C°N) is eclipsed by the numerous earthquakes

occurring elsewhere. . . . . . ... . o L L L



4.3.3 Earthquakes in the North Anatolian Fault Zone.A: Locations of the
template earthquakes with color coded depths. We de ne nine subre-
gions along the di erent segments of the fault. Only in this gure the
Sapanca-Akyazi region is subdivided into a fault parallel and a fault
perpendicular sections. The dashed lines inside each colored box de ne
either fault parallel or fault perpendicular cross-sections (see bottom
panels, C). The color shading of each box is only to help distinguish
between them.B: Earthquake hypocenters successfully relocated with
the double-di erence method and color coded by depth. Events for
which relocation was not successful were attributed the template loca-
tion. C: Depth cross-sections of the di erent areas introduced above.
The earthquake locations contained in the boxes are projected onto the
boxes' central axis (thin black dashed lines). The bottom x-axes are
distances along the cross-section axes in kilometers, and the top x-axes

are the geographic coordinates relevant to each cross-section (either

longitude or latitude). . . . . ... .. 174

4.3.4 Earthquake activity seen on recurrence time vs detection time graphs
for di erent subsets of the earthquake catalog (refer to Figure 4.3.3
for the name of the areas). The recurrence time is the time between

two consecutive events detected by a same template. Note that the

y-axis is in log scale and that some seismic episodes span many orders

of magnitude of recurrence time. These episodes are characteristic of
burst-like, or cascade activity (see text). The color codes the local
magnitude, and inverted grey triangles are events for which no reliable

estimates were obtained. . . . . . . . . . ...



4.3.5A: Map view of template earthquakes with color-coded fractal dimen-
sion (cf. Equation (4.4)) showing the strength of temporal clustering.
B: Map view of template earthquakes with color coded cumulative
number of detections. In both top panels, the shaded areas refer to
the regions introduced in Figure 4.3.3C: Template earthquakes with
color coded fractal dimension on fault parallel and fault perpendicular
cross-sections (same color scale as paAgl Hypocenters are projected
along the dashed axes shown on the map view. High fractal dimen-

sions mean strongly time clustered activity i(fe. past events strongly

in uence the timings of future events). . . . ... ... ... ..... 177

4.3.6 Clustering vs. depth vs. event density. Inside each region, templates
are binned per distance from the bottom of the seismogenic zone and
the fractal dimension is averaged among the 10% largest values (one
dot per bin). The location of the bottom of the seismogenic zone is
approximated by the depth of the locally deepest template. Dots are
colored according to the average inter-event distance in the cloud of
earthquakes detected by the selected template; this is a proxy for event
density. Darker colors mean higher event density. Strongest clustering
tends to occur at the bottom of the seismogenic zonege. at the

transition zone between stable and unstable sliding. . . . .. ... ..
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4.4.1 Estimation of focal mechanismsA: We nd the synthetic waveforms
that t best the rst P- and S-wave arrivals on all seismic stations and
components. Black waveforms are data, blue and red dashed waveforms
are synthetic P and S waves, respectively (Cotton and Coutant, 1997,
computed with Axitra,). The waveforms are bandpass lItered in 2-

6 Hz. Fine waveform realignment is performed by cross-correlating the
synthetics and data to account for errors in location.B: To estimate
uncertainties on focal mechanisms, we generate 100 focal mechanism
solutions by randomly excluding 10 stations each time (leave-10-out
jackknife resampling). The colored focal mechanism on the left is the
solution from the minimum of the averaged 100 objective functions,
and on the right is the solution from averaging the 100 (normalized)
moment tensors. We chose to use the latter as our best solutio@:
Location of the template earthquake taken as an example. The solution

shows a right-lateral strike-slip fault striking to the northeast. . . . . 183

4.4.2 Focal mechanisms of all 436 template earthquakes located in the vicin-
ity of the North Anatolian Fault, following the method described in
Section 4.4.1. The beachballs are lower hemisphere P-wave radiation
patterns and their size is scaled according to their uncertainty (smaller
beachballs have larger errors)A: Strike-slip faulting earthquakes.B:
Reverse faulting earthquakes.C: Normal faulting earthquakes. D:
Distribution of faulting regimes with depth. Each event of the catalog
is attributed the focal mechanism of the template to which it correlates
best. E: Focal mechanisms located in the so-called Kaverina diagram
(Kaverina et al., 1996), which we use to categorize the faulting regimes.
The colors of the symbols match the other panels. This panel was cre-
ated with a plotting routine from the focal mechanism analysis software
FMC (Alvarez-Gomez, 2019). . . . . . . . . i i i 184



4.4.3 Inverted local stress tensors linked on the map to their corresponding
subregion. The stereographic projections show the orientations of the
three principal stresses ;, , and 3, from most compressive to least
compressive. The grey symbols are the 2000 solutions obtained by
repeating the inversion on randomly sampled data sets from the 100
focal mechanism solutions available for each template earthquake. See
Table 4.2 for numerical values of azimuth and plunge. We use these em-
pirical distributions to estimate the 80% and 90% con dence intervals,
shown here with the darker and lighter contour lines. The histograms
show the distributions of shape ratiosR, see Equation (4.6)) and the
vertical red bars indicate the shape ratios obtained by inverting the
set of best focal mechanisms. In terms of deviatoric streRR,< 0:5
indicates that , is compressional, whereaR > 0:5 indicates that

is extensional. . . . . . . ... 187

4.5.1 Comparison of the two step-overs bounding the Sapanca-Akyazi seg-
ment on both sides.A: Eastern side of Lake SapancaB: Beneath the
Akyazi plain, between Sapanca-Akyazi and KaradereTop panels:
Lower-hemisphere focal mechanisms of template earthquakes colored
according to their depth. Arrows indicate the predominant di erent
slip directions among the focal mechanisms. The side panels show the
distribution of faulting styles with depth. Each detected event is at-
tributed the focal mechanism of the template earthquake with which

it correlates best. Bottom panels: Frequency-magnitude distribution. 193
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4.S.1Top left panel:  Mining-related seismicity is characterized by predom-
inantly diurne seismicity, whereas we expect no preferred time for nat-
ural seismicity. In fact, natural seismicity shows slightly more events
at night because noise is generally lower, and earthquake detection is
easier.Bottom left panel:  Mining-related seismicity also often shows
no earthquakes on SundaysRight panels: The waveforms produced
by these mining-induced earthquakes have all characteristics of natural

earthquakes, with clear Pand Swaves. . . ... . ... ... ... .. 200

4.S.2 Average S-wave spectrum tted with the Brune model (red curve).
This is a weighted average of all single-channel S-wave spectra (thin
grey spectra, Equation (4.7)). The weight of each frequency bin of
each channel is proportional to the excess signal-to-noise ratio (SNR)
de ned asw(f) = SNR(f) SNR(f), whereSNR(f) is the minimum
SNR value that the frequency binf must exceed in order to contribute
to the average. Every frequency bin of the average spectrum also has a
weight that is equal to the sum of the single-channel weights. Note that
because we correct the single-channel spectra for geometric spreading
and attenuation, the low-frequency plateau shown here gives directly

the seismic momentMq. . . . . . . . . ... L o 202



4.S.3 Seismicity of the 2012-07-0M | 4.1 Serdivan earthquake sequencé&op
left panel: Cumulative number of earthquakes and local magnitudes
M_. The mainshock was followed by about 30 events in the next
four hours, but only we recorded only 10 events in the next 26 days.
Top right panel:  Epicenters colored by time relative to the main-
shock. Epicenters' alignment and the largest events' focal mechanisms
suggest the existence of two conjugate faults and a network of sec-
ondary faults. Bottom left panels:  Spatio-temporal evolution of the
earthquake sequence. Successfully relocated hypocenters do not show
any migration pattern consistent with uid di usion with di usivity
D 02 0:3m?s typically observed for swarm seismicity (Shapiro
et al., 2002) nor fast linear migration & 30 km/day), suggesting that
the earlier part of the sequence was controlled by static and dynamic
stress changes. However, we can visually identify a southeastward mi-

gration of the seismicity in the later days of the sequence (top right
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4.S.4 Quanti cation of the strength of temporal clustering.Top left panel:
Earthquake occurrence time series, alias the event coung. number of
events per unit timeTop right panel:  Autocorrelation of the event
count. A random time series would show a perfect Dirac function.
Bottom left panel:  Spectrum of the event count. The spectrum of a
time clustered event count follows a power law f and quanties
the strength of temporal clustering. Bottom right panel: Fractal
analysis of the event count. We measure the number of time bins oc-
cupied by at least one event when dividing the time axis into smaller
and smaller time bins. The slope of the curve gives the fractal dimen-
sion, which also quanti es the strength of temporal clustering. We t
the curve betweenl100 s(to avoid dealing with short time scales that
can be corrupted by events counted twice, even though we normally
take care of that) and the inverse of the average event rate (to avoid

tting the time scales where fractality trivially breaks down). . . . . . 204

4.S.5 Earthquake clustering along the North Anatolian Fault Zone.Top
panel: Fractal dimension (as introduced in Figure 4.S.4). The eastern
Marmara Sea and Lake Sapanca show the strongest clustering along the

NAF. Bottom panel: Cumulative number of detections per template. 205

4.S.6 Objective function used in the focal mechanism estimatdop row:
Root Mean Square (RMS) waveform amplitude di erence.Middle
column: Negativewaveform correlation (minimizing the negative cor-
relation means maximizing the correlation). Bottom row: The ob-
jective function is made of the sum of these two terms. Note that the
RMS and the correlation are already scaled so that they can be summed
without having one term dominate the sum. The three columns show

orthogonal 2D slices containing the best solution. . . . .. ... ... 206
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4.S.7 Faulting regime vs depth in each region. Each event is attributed the
focal mechanism of the template earthquake with which it correlates
best. If the corresponding template earthquake has no focal mechanism

estimate, the event is not included in these histograms. . . . .. . ..

4.S.8 Regional stress state: All focal mechanism data, both from the north-
ern and the southern strands, were invertedLeft panel: Pressure
(P, red inverted triangles) and tension (T, blue dots) axes of all focal
mechanisms. The study region taken as a whole exhibits a wide vari-
ety of P/T axes, which violates the assumption of uniform stress state.
Middle panel: Directions of the principal stresses on an equal area
stereographic projection. The principal stresses are ordered from most
compressive (1) to least compressive (3). The numbers in the legend
are the azimuth (angle from north) and the plunge (angle from hori-
zontal) of the axes. The contours are the 90% and the 95% con dence

regions. Right panel: Shape ratio, de ned ask = ~—2. It measures

the relative magnitude of the principal stresses. In both the middle
and right panels, the distribution of possible solutions was obtained by
randomly sampling the set of possible focal mechanisms generated for

each template earthquake (see maintext). . .. ... ... ... ...

37

207



5.2.1 Decomposition of GNSS displacement time series based on local seis-
micity. The GNSS station is IZMT, Turkey, located north of the
NAF. The original displacement time series (grey inverted triangles)

Is decomposed into the low seismicity displacement time series (black
squares) and the high seismicity displacement time series (orange dots).
Decomposition is performed on di erentiated time series (speed), and
decomposed time series are then integrated (back to displacement).
A: East component. B: North component. C: Vertical upward com-
ponent. The long term speed is rst estimated on the initial time
series with a linear regression (grey solid line), and the low seismicity
and high seismicity speeds (black and orange solide lines, respectively)
are then determined such that the modelled displacements sum to the
initially modelled displacement. That is, the black and orange solid
lines put together are forced to match the grey line when inverting for
the high and low seismicity speeds. The vertical component is usually
harder to interpret because subject to environmental noise such as rain
falls. . . . . . e 223

5.2.2 The sand pile model traditionally used to describe a self-organized
critical system. a: Critical state of a sand pile. b: A large avalanche
occurred on the right side of the pile, thus the system is locally no
longer at the critical state on this side. The pile has to be rebuilt
before developing large avalanches on this side. A small avalanche
occurred on the right side, making the right side more unstable and fu-
ture avalanches more likelyd: As the right side of the pile approaches
the critical state, moderate-size avalanches occur. Figure from Sykes

etal (1999). . o . v 228



5.2.3 Sites of a 2-D grid are occupied with probabilitp. A: p=0:420 B:
p = p. = 0:593 (i.e. at the critical state, see Stau er and Aharony,
2018). A cluster that links the two sides of the grid appear at the
critical state (i.e. there is a path for percolation from one side to the
other). C: p = 0:850 The size of the clusters is given by the color

scale.D-F : At p = p., clusters exhibit scale invariance. When zooming

in the grid, there is no length scale that gives a sense of scale (the size

of a pixel becomes actually visible ifF). . . . . .. ... .. ... .. 229

A.2.1Work ow of the CPU implementation of our program Fast Matched-
Filter (FMF). A single large 1/0 operation is achieved at the beginning
by reading the templates' waveforms and the continuous data. Beside,

the sums of the squared templates and the cumulative sum of the

squared data are computed before entering the loops to avoid redun-

dant operations. After that, the iterative computation of the CC starts
and is parallelized with OpenMP: di erent sliding windows (chunks)
of the data are assigned to di erent threads. The two dashed boxes
indicate which part is executed by the wrapper, and which one by the
Ccode. . . ...

A.3.1Work ow of the GPU implementation of FMF. The continuous seismic
data and the templates are rst read from the disk by the CPUs and
transferred to the GPUs. The GPUs take advantage of the collective
behavior of the threads and their quick access to shared memory to
e ciently parallelize the computation. One GPU sets up several blocks
(10 whom each creates many threads (512) that computes the CC
on all the components of a given template/station and at di erent
times (CCs(tn,)). The average correlation coe cients are computed
through a weighted average, and are eventually transferred back to the
CPUs. The two dashed boxes indicate which part is executed by the
wrapper, and which one by the CUDACcode. . . . . . ... ... ..
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A.3.20rganization of the grid of thread blocks set up by the GPU to compute
the correlation between one template and the data. The block size (the
number of threads per block) is 512 and the grid size (the total number
of blocks) isNg. The grid size depends on the length of the data array
and on the temporal step;Ng is just enough so that all the correlation
coe cients are computed. Note that this scheme holds for a single
template, but the same scheme runs in parallel when several GPUs are

available. . . . . . . 247

A.4.1Comparison of the run times of matched- Iter searches with di erent
codes. Matched- Itering is achieved between one-day long synthetic
seismograms on 5 stations, 3 components and a set of 8-second long
templates whose size varies from 1 to 10. The sampling rate is 10 Hz
and the temporal step used in the CC computation is 1 sample. Note

the log scaleonthey-axis. . . . .. ... ... ... ... ....... 248

A.4.2Comparison of the run times of several matched- Iter searches using
the CPU and the GPU implementations of our FMF and EQcorrscan.
Matched- Itering is achieved between a set of one-day long synthetic
seismograms on 12 stations, 3 components and a set of 8-second long
templates whose size varies from 1 to 50. The sampling rate is 50 Hz
and the temporal step takes the values 1,5 and 10. Note the log scale

onthey-axis. . . . . . . . . . e 249

A.5.1Matched- Iter search of one template in the Western Alps, France over
a single day. Top left panel: Map of the region showing the tem-
plate's location (star) and the neighboring stations (inverted triangles).
Bottom left panel:  Correlation coe cients (Equation A.2) over the
whole day. The threshold ofl0 MAD fCC(t)g is plotted with the
dashed line A total of 83 earthquakes was detected with constraining
each event to be separated by at least 3 secondRight panel: Tem-
plate's channel CT23.HHZ (top record) and 10 examples of detections

on this same channel. . . . . . . . . . . .. ... ... 251



B.2.1De nition of the instability parameter (Equation (B.13), following Vavry£uk
et al., 2013) in the Mohr space with thenegative compressiorcon-
vention. The red straight lines are the failure lines whose slopes are
controlled by the friction . The most unstable fault has coordinates

( ¢; ¢) in the Mohr space. The i's are the principal stresses ordered

from most compressive to least compressive. . . . ... .. ... ... 264

B.3.1Synthetic experiment 1. The true stress tensor (leftmost column, mid-
dle row, large black symbols) promotes right-lateral strike-slip faulting
on east-west oriented vertical faults. The shape ratio is 0.50. The fault
orientations are randomly chosen from a range of parameters that is
physically sensible given the stress state (see text), and the rakes are
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Chapter 1

Introduction

1.1 The Earthquake Phenomenon

1.1.1 Birth of the Modern Understanding of Earthquakes

For most of Human's history, earthquakes were considered of supernatural origin or,
if otherwise such as in ancient Greece, explanations were based on little scientic
grounding. The rst occurrences of measuring earthquakes were reported in China
about 2000 years ago with the invention of the seismoscope by the scientist Zhang
Heng. The device measured the incident direction of passing waves produced by a
distant earthquake, and was used to determine approximately the location of the
earthquake in order to send aid to a ected regions in a timely manner. Ironically,
building an e cient replica of Zhang Heng's device in the modern era appeared to be

challenging.

It was only in 1884 that a complete description of what is now called the earth-
guake cycle was made by Gilbert (1884). Gilbert sought to explain the formation of
mountains and observed , in the Great Basin, California, the presence of "fractures”
on the side of the mountains. He concluded that slow accumulation of strain over
long time scales was responsible for the uprising of the mountains and that strain

was relieved by sudden slip along these fractures, that he also called fault scarps.
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He attributed earthquakes to these sudden slip phenomena, and set the basis for all
modern descriptions of earthquake rupture by describing the cycle of accumulation

and release as a stick-slip phenomenon due to friction on the fault.

Even though Gilbert's theory did not o er a quantitative description, it intro-
duced for the rst time the concepts of a cycle with a long and a short time scales,
earthquakes caused by sudden slip on a fault, and friction as the balancing force.
Twenty-two years later, the 18 April 1906 San Francisco M7.9 earthquake struck and
devastated the city. Triangulation surveys performed before and after the earth-
guake delivered, for the rst time, a description of the deformation eld caused at
the surface by an earthquake. A few years after the 1906 event, based on these new
observations of surface deformation, Reid published his elastic rebound theory, in
which he described the accumulation of strain energy localized along faults and its

sudden release in earthquakes (Reid, 1910).

The elastic rebound theory was still to be completed with a mathematical de-
scription of the wave eld radiated by the sudden slip on a fault, or an equivalent set
of forces. The notion of double-couple rst emerged among Japanese seismologists
(Nakano, 1923, 1930; Honda, 1957) and became accepted worldwide as a successful
model to describe the forces that act during faulting and generate the observed waves.
Representation theorems were derived to provide mathematical formulas to compute
the wave eld given a displacement discontinuity across a fault, or equivalently, a set
of double-couples €.g. Burridge and Knopo, 1964; Aki and Richards, 1980). The
understanding of the pattern of radiated waves from a given type of faulting gave, in
turn, ways of interpreting seismograms to infer fault characteristicscf. "beachballs”,
Stauder, 1962; Sykes, 1967).

The theoretical developments of the rst half of the 20th century were limited by
the lack of data to validate or disprove theories. Earthquake science, and seismology

in general, entered its modern era when the rst global networks of seismographs
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were deployed in the early 1960s, notably with the Worldwide Standardized Seismic
Network managed by the US Geological Survey. Since then, observations have be-
come always more abundant and led to new discoveries about the complexity of the

earthquake phenomenond.g. non-volcanic tremors, Obara, 2002).

1.1.2 Earthquakes as Sliding Instabilities

The previous section has remotely touched the topic &inematic descriptions of fault-
ing by mentioning representation theorems, namely, descriptions that assume the slip
distribution on the fault and compute the radiated wave eld. | will now present a
dynamic description of the full earthquake cycle, that is, a description given by solv-

ing the equations of motion (Newton's second law) on the fault.

In his seminal paper (Gilbert, 1884), Gilbert described earthquakes as the fast
slipping phase of a stick-slip phenomenon due to the competing tectonic and frictional
forces on the fault. Stick-slip occurs in systems that alternate between a stable state
(stick) and an unstable state (slip). Friction related phenomena have been known to
exhibit such a stick-slip behavior. Early work by Amontons in 1699 (itself based on

unpublished work by Leonardo da Vinci) and Coulomb in 1785 showed that:

(i) the frictional force F; resisting the motion of a mass is proportional to the
normal forceF, exerted on this mass (see Figure 1.1.1F; = F ,, where the

coe cient of proportionality  is called the coe cient of friction.

(ii) If this same mass is stationary and pulled by a tangential forc&;, this mass
will remain stationary as long asF; sFn and friction balances this force:

F: = Fi. s is called the coe cient of static friction.

(i) Once the mass has initiated motion because d¥; > sF,, the coe cient of

friction suddenly drops to 4, the coe cient of dynamic friction.

If the coe cient of dynamic friction 4 is smaller than the coe cient of static
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Figure 1.1.1: A mass sits on an inclined table and is subject to several forces: its
weight W causes the normal forc&,, due to the reaction of the table. The weight has

a component that is tangential to the tableF;, and this force is resisted by friction

F; between the mass and the table.

friction 4, then the system is unstable: the force that was resisting right before the
onset of motion,F; = ¢F,, suddenly drops to a lower valueF; = 4F,, and the
motion accelerates even more. If one were to incline the table shown in Figure 1.1.1,
the normal forceF, would gradually get smaller while the tangential forcé-; would

be growing until overcoming sF,. The mass would then slide all the way down the
table. Once the motion stops, for example because the force that was driving the
motion drops, the coe cient of friction starts increasing. This healing process was
observed by Coulomb. Everyone has probably experienced the di erence between
static and dynamic friction, for example when moving a heavy piece of furniture on
the oor: the initial e ort to initiate motion is the most demanding because one has

to overcome this "starting friction".

Thus, earthquakes can be described as frictional instabilities on faults. The sim-
plest model of the earthquake cycle is the spring-slider modedf( Figure 1.1.2A).
A block rests on a surface and is coupled to a loading point through a spring with
sti ness k. The loading point moves with the constant velocityv, and loads the block
with the elastic forcek due to the elongation of the spring. This elastic force is

resisted by friction F; between the block and the surface, and therefore the equation
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of motion is:
d’u _

qz - Fs; =Wt w (1.2)

In Equation (1.1), is the elongation of the spring andi is the position, or displace-

ment, of the block.

Figure 1.1.2: Spring-slider model. A: A block, the slider, lies on a surface and
is coupled to a loading point moving at constant velocity/, through a spring with
sti ness k. Thus, the slider is pulled by an elastic forc& where is the elongation of
the spring. This loading force is resisted by the frictiofr¢ . B: Numeric simulation of
the spring-slider model with rate-and-state friction and aging lawdf. Equation (1.2)).
The slider is stationary most of the time (inter-seismic phase, see zero slip rate, in solid
red, and at displacement curve, in solid blue), but catches up with the motion of the
loading point (dashed blue line) in periodic, fast slip events. The stick-slip behavior
ensures that the spring does not keep accumulating energy inde nitel: Focus on
the fast slip event (the rupture) when the inertial term of the equations of motion
cannot be neglicted (left hand side of Equation (1.1)). All axes are non-dimensional
guantities. Courtesy of Ekaterina Bolotskaya.

The block stays still until the elastic force overcomes the starting friction. If the
dynamic friction is lower than the static friction, the onset of motion also marks the

sudden acceleration of the block: this is the analog of an earthquake. Sliding stops
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when the spring has shortened enough and then healing starts. This simple model
describes a stick-slip phenomenon due to the interplay between an elastic force and
friction, and has therefore been used to provide a simple mathematical description
of the earthquake cycle. The model also provides the means of investigating how the

speci ¢ form of the friction force F; in uences the cycle.

An underdeveloped characteristic of friction in Coulomb's work was the transition
from ¢ to 4 as the mass slides. This transition controls the dynamics of the slip
event, and therefore the friction law describing this transition is essential. Various
friction laws have been proposed and all of them rely on at least one characteristic
length scaleD . over which the transition occurs, possibly representing the smoothing
of the contact area between the block and the surface as sliding occueg(Dieterich,
1978; Ruina, 1983). The simplest law describes a linear drop fromto 4 as a func-

tion of slip D and over the distanceD.. This law is called slip weakening.

More complex friction laws were proposed to describe laboratory experiments
more satisfactorily than slip weakening. Today, the most commonly used law is the
rate-and-state dependent friction, whose single state variable form is (Dieterich,
1992; Ruina, 1983):

\%
D¢

(V; )= o+aln Vl + bin (1.2)

In Equation (1.2), V is the slip rate, is the state variable,a and b are material-
dependent parameters that controls the dependence on slip rate and state variable,
as well as the stability of the system. 4 is the reference coe cient of friction for

V =V and = D.=V . Equation (1.2) needs to be completed with an equation that

describes the evolution of the state variable (aging law or slip law).

The success of rate-and-state friction lies in its ability to reproduce many exper-

imentally observed features such as slip instability, and healing, slip rate dependent
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steady states (Dieterich, 2007). Tuning the values & and b, rate-and-state friction
can also describe stable sliding § > s, slip strengthening). Thus, rate-and-state
friction elegantly explains the depth distribution of earthquakes by showing that seis-
mogenic depths coincide with the depth range where valuesafind b are such that

frictional instability is possible (see Figure 1.1.3 and Scholz, 1998).

Figure 1.1.3: Stability domains predicted by rate-and-state friction (Equation (1.2)).
The middle panel shows a measure of stability,, as a function of depth. These
stability domains are sketched for a subduction interface (left) and a crustal fault
(right). The rightmost panel shows the depth distribution of earthquakes for a section
of the San Andreas fault near Park eld. Figure from Scholz (1998).

Despite the success of rate-and-state friction in modeling friction on faults and
laboratory samples, the parameters su er from a lack of interpretability. Just as en-
tropy was unexplained before the era of statistical mechanics, rate-and-state friction
cannot be currently derived from fundamental physics. Furthermore, there is little
certainty about how a, b, and D scale from the laboratory to Earth. These drawbacks
actually apply to other friction laws. In fact, it seems that any law that describes an
unstable slip event would provide a good description of the dynamic rupture, given
an appropriate set of parameters. Work remains to be done to understand the forces
at play in earthquakes. | purposely entitled this section "Earthquake as Sliding In-

stabilities” to emphasize that the essence of the current description of earthquake

51



dynamics is not friction but instability.

The spring-slider model is useful to capture rst order features of the earthquake
cycle and dynamics, and multiple interacting sliders can even be considered to re-
produce statistical features of seismicity (Burridge and Knopo, 1967, and see Sec-
tion 1.3). However, a 0-D description (a point) of an earthquake is obviously an
oversimpli cation that fails to describe important aspects of the earthquake dynam-

ics, such as the fault geometry and the in uence of radiated waves.

1.1.3 Scaling Laws in Earthquakes

The spring-slider model taught us that sliding events occur to restore the elongation
of the spring to zero. Equivalently, these sliding events restore the loading force
exerted on the slider to zero. The drop in loading force T during an event is set
by the elongation of the spring just before the onset of sliding;: T = k o. It
appears that ¢ is also the slipD of the sliding event. If A is the contact area be-
tween the slider and the support, then the static stress drop of a sliding event is

= kD=A. Thus, we have shown that slip is proportional to stress drop, and it
can also be shown that the maximum slip rate and acceleration are proportional to
stress drop too (Nur, 1978; Scholz, 2019, Chapter 2). Stress drop thus appears to be

a fundamental parameter to describe earthquake processes.

Unlike the spring-slider model, real earthquakes extend over 2-D surfaces and
another parameter that describes the size of an earthquake is useful: the seismic

moment My. The seismic momeniM, and the stress drop  are de ned by:
Mo = GAD; (1.3)

= CG%: (1.4)



In Equations (1.3) and (1.4),G is the shear modulus (also called rigidity , in Pa), A is
the fault area (m?), L is the linear dimension of the fault (m),D is the average slip on
the fault (m), and C is a non-dimensional shape factor ( 1). Using Equation (1.4) to
expressGD as a function of |, we can write explicitly the relation between seismic

moment and stress drop:
1

MO:C

AL: (1.5)

Estimates of seismic moment and fault area have shown a remarkable linear relation

betweenlogA andlogM, indicating A / M.~ or, equivalently,M, / A3 (Kanamori

and Anderson, 1975). This scaling is interpreted as the scale invariance of stress drop
,and L / A¥2, Equivalently, Mo/ L3. The latter implies that the shape ratio

of faults is constant, which seems true for most but the largest earthquakes (Denolle

and Shearer, 2016).

Figure 1.1.4: Fault areaA against seismic momenM,. The slope in the log-log
domain is 2/3, indicating that A / M§-3. Lines of equal stress drops for circular
cracks are shown. Figure from (Kanamori and Anderson, 1975).

The scale invariance of stress drop is a central result in earthquake seismology and

suggests the similarity between small and large earthquakes, or self-similarity. The
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concept of self-similar earthquakes was rst introduced by Aki (Aki, 1967) to develop
a model of earthquake amplitude spectra de ned by a single parameter: the linear
fault dimension L. Self-similarity also implies a constant rupture velocityy, among
earthquakes. In turn, these predict that the rupture duration is proportional to
the linear dimensionL: / L. Aki showed that his model of amplitude spectrum
could be used to estimate the rupture duration from the spectrum's corner frequency,
fe / 1=, and produced observations of / L. Additional scaling observations
con rmed that the approximation of constant rupture velocity was reasonabledq.g.

Mo/ 3, Kanamori and Brodsky, 2004).

Following the pioneering work of Aki (1967), amplitude spectrum corner frequen-
cies are now commonly used to estimate the source dimension. Results over a wide
range of magnitudes §1,,0-9) indicate that the corner frequency scales dg/ M, 1=
(see Figure 1.1.5, Allmann and Shearer, 2009). Scatter in the data is explained by dif-
ferences in stress drop, all events showing stress drops betwadrMPa and 100 MPa
This is a strong evidence for the scale invariance of stress drops. The scaling laws

mentioned in this section are summarized in Tablel.1.

Source Parameters Reference Scaling Relation
seismic momentM, fault area A Kanamori and Anderson (1975) Mo/ A3
seismic momentM o, source duration Kanamori and Brodsky (2004) Mo/ 3
seismic momentM, linear dimensionL Denolle and Shearer (2016) Mo/ L3
corner frequencyf ¢, linear dimensionL Aki (1967) fel 1=L
seismic momentMg, corner frequencyf. | Allmann and Shearer (2009) Mo/ f.°

Table 1.1: Summary of scaling relations between source parameters. N.B.: These
relations only hold for earthquakes that do not saturate the seismogenic width.

It is known and well understood that large earthquakes are not similar to small
ones in the sense that all scaling laws assumifAg/ L? break down when earthquakes
saturate the seismogenic width. In this case, an earthquake can only grow laterally
and the fault area becomes (asymptotically) proportional to its lateral lengttA / L.

The scaling laws in Table 1.1 need to be changed accordingly (Denolle and Shearer,
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Figure 1.1.5: Amplitude spectrum corner frequency. against seismic momeni,
(the corresponding moment magnitudév,, is given at the top). The red dashed lines
shown the constant stress drop scaling. Figure from Allmann and Shearer (2009).

2016). Despite the dependence of shape ratio on magnitude for large earthquakes,
which implies the break of self-similarity, the question remains whether small and
large earthquakes are dynamically similar. A parameter that | have not discussed so
far, the ratio of energy radiated in seismic waveSy to the seismic momentM, called
scaled energye = EgR=M,, informs about the dynamics of earthquakes. Mitigated re-
sults sometimes show scale invariaet(Baltay et al., 2011; Denolle and Shearer, 2016),
but others suggest a systematic dependence on magnitude (Abercrombie, 1995). Ac-
curate measures oEr for small earthquakes is di cult due to noise. The scaling of
eis key for earthquake forecasting and early warning as a scale independemould
mean that the earthquake initiation process is scale invariant and that nothing can
tell if an earthquake is going to grow into a large rupture when observing the rst

P-wave arrival at a seismometer.

Even though clear scaling relationships between source parameters are observed
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(see Figures 1.1.4, 1.1.5), details seem to be obscured by their simplicity. Breakdown
of self-similarity for smallest size earthquakes have long been sought as it is thought
that there exists a lower limit to earthquake sizes (the nucleation length), which would
break scale invariance (Cattania, 2020). Proving departures from these laws is di -
cult as observational limits are signi cant. Estimating a correct corner frequency from
amplitude spectra strongly relies on the correction of path e ects that corrupt the
source information in recordings, and on instruments with su ciently large frequency
bandwidths (Abercrombie, 1995; Ide and Beroza, 2001; Abercrombie, 2015, 2021).
However, several studies have produced results that show (maybe apparent) devia-

tions from self-similarity (Lin et al., 2016; Farge et al., 2020, Chapter 3 of this thesis).

1.2 The Earthquake Detection Problem

1.2.1 Motivations

Seismology is largely an observational science. The introduction to the earthquake
phenomenon given in the previous section showed that earthquake seismology would
not exist without data. Nowadays, eld observations are completed by the abundant
recordings of the ground motion on seismometers. In order to use the recordings
of earthquake signals to study the seismic source or Earth's interior, one evidently
needs to nd these recordings that are associated with a particular event. The earth-
guake detection problem consists of determining when a seismometer, or an array of
seismometers, is recording an earthquake signal, as opposed to ambient seismic noise
travelling in the earth. With earthquake detection methods, earthquake signals are
identi ed in recordings and their origin times are stored in a catalog. Note that the
detection problem is often solved together with the location problem so that both

time and space information is available for subsequent studies.

The most trivial detection method is certainly that of looking with the naked

56



eye through continuous recordings of the ground motion for signals with earthquake
characteristics: impulsive arrival, multiple phasesd.g. the P- and then the S-wave
arrivals), coda wave, etc. While still routinely used in observatories because it en-
sures making (hopefully) good quality catalogs with picks of P and S arrival times,
this method is limited by human capacities. An analyst is likely to miss events when
working for a long time, can make errors when picking the P and S arrival times,
and typically fails at identifying earthquakes when the signals are weak and hidden
in the ambient noise. Most importantly, the capacity of an analyst to combine infor-
mation from multiple seismograms at once is limited. The notion of signal visibility,
or signal-to-noise ratio (SNR), is fundamental in the earthquake detection problem.
Furthermore, since all humans work slightly di erently, the catalogs based on visual

picks are noisy and uncertainty in individual picks is hard to know.

The deployment of large scale arrays of seismometers in the 1960s, such as the
Large Aperture Seismic Array (LASA) in Montana and the Norwegian Seismic Array
(NORSAR) in Norway, fed the rapid development of array detection methods. Early
detection methods relied on heavy mathematics from the statistical theory of signal
detection (Vanderkulk et al., 1965; Capon, 1970). The base of array methods is to
sum together potentially noisy but coherent signals from multiple seismometers. The
noise, if uncorrelated between seismometers, will interfere destructively when sum-
ming. Thus, array methods provide the means for detecting weak earthquake signals
with low SNR but recorded at multiple locations. Such array methods were moti-
vated not only by the will to improve our understanding of earthquakes and Earth's
interior, but also by the necessity of monitoring nuclear tests during the Cold War.
Therefore, earthquake detection methods were also a widely documented topic in the
Soviet scienti c literature, and later English translations made it available to a wider

audience (Kushnir et al., 1992).
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1.2.2 A Brief Tour from Beamforming to Arti cial Intelligence

To sum coherently earthquake signals observed at di erent seismometers with dif-
ferent time delays, one needs to time-shift the recordings according to the relative
time delays prior to summation. If a plane wave with known incidence is recorded
by multiple seismometers at the surfacec{. Figure 1.2.1A), then the relative time
delays at which the wave is recorded at each seismometer can be computed given
some knowledge of the wave velocity. These time delays are used to shift and sum

the recordingsu;(t) collected by the seismometers in order to form a beakit):

X
bt)y=" uw(t ) (1.6)

In Equation (1.6), summation is over the seismograms indexed by and ; is the
relative time delay computed at seismometer. The beam o ers obvious advantages
over a naive summation of all seismograms, and may make earthquake signals hidden
in noise become visible (see Figure 1.2.1B, and Rost and Thomas, 2002). Of course,
the incidence of the target plane wave is in general not known, and one may build
many beams over a grid of possible incidences, and retain only the beam that gives
the largest sum. This method of shifting and summing seismograms by assuming

di erent possible plane wave incidences is called beamforming.

The beamforming method described by Equation (1.6) is naive in that it assumes
that, once correctly shifted in time, seismograms will sum constructively. Due to the
radiation pattern of earthquakes, the sum might in fact be zero because of opposite
wave polarities. Seismologists have introduced the use of characteristic functions in
place of the raw seismograms to better serve the detection purposes. Such a charac-
teristic function could simply be the absolute value, in order to avoid the destructive
summation of opposite polarity waves. A popular characteristic function measures
the ratio between the short term average to the long term average seismic energy
(STA/LTA Freiberger, 1963; Allen, 1978). The STA/LTA method enhances the onset

of impulsive signals and adapts to changes in the background noiseg( night vs
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Figure 1.2.1: A: Sketch of a plane wave reaching the surfacéd: Normal sum vs.
beamformed sumj.e. shift and sum. Figure from Rost and Thomas (2002).

day time). Various characteristic functions have been used (signal envelope, higher
order statistical moments, etc). Moreover, the assumption of plane waves can be
relaxed and travel times can be computed in a more realistic Earth. This generalized
beamforming has been successfully applied in di erent geological contexts to detect
various kinds of seismic events (Frank et al., 2014; Poiata et al., 2016, and Chapter 2
of this thesis).

The use of characteristic functions partly aims at compensating for incoherency
emerging from directivity and propagation e ects. In fact, these e ects are respon-
sible for most of an earthquake signal's complexity. They can be fully accounted for
by using a given earthquake as a template pattern to look for all events with simi-
lar signals and time delays. This similarity based method, called template matching
(Gibbons and Ringdal, 2006; Ross et al., 2019, Chapters 2, 4 and Appendix A of this
thesis), is highly e ective at detecting earthquakes originating from similar location
and faulting (i.e. same directivity and propagation e ects). The main drawback of
the method is that it relies on some prior knowledge of the target seismicity, and does

not generalize to earthquakes that are not located in the proximity of the template
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earthquakes. Template matching plays a key role in this thesis, and is therefore dis-

cussed at length in the following chapters.

Recently, the eld of earthquake detection has undergone profound changes with
the rise of statistical learning methods (Bergen et al., 2019). The large amount of in-
formation stored in earthquake catalogs made by the past generations of seismologists
with classic techniques, such as those mentioned above, provides all the data necessary
to train complex models to detect earthquakes (but also phase picking and associ-
ation, location and others Zhu and Beroza, 2019; Mousavi et al., 2020; Majstorovi¢
et al., 2021). Deep learning models, sometimes referred to as arti cial intelligence,
have proven particularly e cient at this task and recent models have shown good
abilities at generalizing to multiple data sets (for example, see the use of PhaseNet in
Chapter 4 of this thesis Zhu and Beroza, 2019). These models will certainly become

the standard usage in the next years.

1.3 Collective Properties of Earthquakes

Even though the scaling laws described earlier in Section 1.1.3 are visible when study-
ing groups of earthquakes, they still only relate properties of single earthquakes. Here,
| give an introduction to important collective properties of earthquakesj.e. prop-

erties that emerge when several earthquakes interact. Observation and discussion of

earthquake interactions is a central topic of this thesis.

1.3.1 The Gutenberg-Richter Law

A well-known scaling law that was left aside in Section 1.1.3 is the frequency-magnitude
relation, better known as the Gutenberg-Richter law (Gutenberg and Richter, 1941).

This law describes the expected number of earthquakés(M) with magnitude m

60



greater than a certain valueM within a given period of observation (see Figure 1.3.1):

logN(M)= a blogM: 2.7)

In Equation (1.7), a and bare constants, and are not related to tha and b parameters
mentioned in the rate-and-state friction law (Section 1.1.2).a is the total number
of earthquakes within the space-time region of observation, arg originally called
the b-value, characterizes the relative frequency between small and large magnitude

earthquakes.

Figure 1.3.1: Frequency-magnitude relationship, referred to as the Gutenberg-Richter
law (cf. Equation (1.7)). The slope in the log-log domain indicates a b-value= 1.
Figure 23 from Kanamori and Brodsky (2004), see their caption for description of the
data.

Worldwide observations of the Gutenberg-Richter law show b-valugs= 1 (cf.
Figure 1.3.1, Kanamori and Brodsky, 2004). This rst tells us that there is a ten-fold
increase inN (M) every time M decreases by one unit. For example, every year we
can expect to observe 10 times motd 7 than M 8. Deeper implications come
when this law is interpreted. Such a power law frequency-size distribution is inti-
mately related to the concepts of criticality and fractals (Turcotte, 1989). Aki (1981)
proposed an explanation of the Gutenberg-Richter law with a fractal distribution of
fault sizes, assuming the scaling laws of self-similarity (see Table 1.1). The cascading

of events among these faults of all scales produce the observed frequency-magnitude
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distribution. Given that critical phenomena are characterized by local interactions
that are able to build up into long range interactions, other models have tried, and
succeeded, to reproduce the Gutenberg-Richter law with many simple elements inter-
acting with their neighbors (Burridge and Knopo , 1967; Bak and Tang, 1989). Thus,
the Gutenberg-Richter law is understood as a collective phenomenon that would not

exist without interactions.

1.3.2 Cascades, Interactions, and Temporal Clustering

Cascades of earthquakes have long been observed as sequences of aftershocks following
sizable earthquakes. The rst mathematical description of the enhanced seismic ac-
tivity following a large earthquake appeared in the late 19th century with the Omori

law n(t) = K (t + ¢) (Omori, 1894), which was later generalized by Utsu as (Utsu,

1961, 2002):
K

In Equation (1.8), t is the time measured from the reference event called the main-
shock,n(t) is the number of earthquakes per unit time, and; c are constants. The
power law exponentp describes how fast the seismicity rate drops after the main-

shock, and is usually around 1 (as stated in the original law).

Cascades of earthquakes such as those observed with aftershock sequences are now
understood as resulting from interactions between faults or subfaults (Burridge and
Knopo, 1967). A simple model that helps understand triggering through interaction
is the Coulomb stress model, which is closely related to the frictional instability
discussed in Section 1.1.2. We saw that the onset of motion of a block occurred when
the tangential force exceeded a threshold set by the coe cient of static frictiong,

which constitutes the Coulomb failure criterion. Thus, the proximity of a fault to the

62



Coulomb failure criterion can be quanti ed by the Coulomb stres€:

C= s n (1.9

where is the shear stress resolved on the direction of slip on the fault, and is the
normal stress on the fault (including e ects such as pore- uid pressure). I€ > O,
then the failure criterion is satis ed and the fault slips. The change in Coulomb stress
C produced by an outside perturbation, such as a nearby earthquake, quanti es
whether this perturbation took the fault closer or further to failure (King and Cocco,
2001):
C= s n (1.10)

The symbol indicates the di erence between after and before the stress perturba-
tion. If the Coulomb stress change is larger than zero,C > 0, then the perturbation
promoted failure on the fault, or otherwise inhibited the failure if C < 0. This
method has successfully explained the patterns of moderate-to-large earthquakes in
terms of stress perturbations due to past earthquakes (King and Cocco, 2001; Stein
et al., 1997, and see Figure 1.3.2), and is useful to understand earthquake triggering
in terms of stress transfer. However, the assumptions it relies on may limit its ap-
plicability in practice. When computing the Coulomb stress on a fault, one needs to
know its orientation in order to correctly decompose stress into its normal and tan-
gential components. Faults may have complex geometries, and the Coulomb stress
change is often simply computed on "optimally oriented" faults. Furthermore, the
tangential component is taken along an a priori slip directiong.g. same direction

as the regional sense of motion), but faults, particularly at small scales, may slip in

di erent directions depending on how they are stressed.

The static stress changes involved in the Coulomb failure criterion are not the
only way earthquakes can interact. It has been observed that dynamic stress changes
caused by elastic waves can trigger earthquakes (Fan and Shearer, 2016), and that

the disturbance of a stably sliding fault by a nearby earthquake could, in turn, trigger
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Figure 1.3.2: Coulomb stress changes from the M7.6 1872 Owens valley are still
consistent with the occurrence of moderate-to-largél 4 earthquakes more than a
century later. Areas of Coulomb stress increase are shown in red (promote failure)
and areas of coulomb stress decrease are shown in blue (inhibit failure). Figure from
Stein et al. (2019).

other earthquakes located in the vicinity (Dublanchet et al., 2013; Cattania, 2019).
Any process caused by an earthquake that perturbs the stress eld plays a role in
earthquake interaction. All these mechanisms have in common that they alter the
timings of fault ruptures, and, consequently, the patterns of earthquake occurrence

seen in earthquake catalogs.

Triggering of earthquakes by other earthquakes has been observed in earthquake
catalogs as deviations from a purely random earthquake occurrence typically de-
scribed by a Poisson law (Gardner and Knopo, 1974). The cascading of events due
to earthquake interactions constitutes the core property of time clustered earthquake
occurrence. In this thesis, temporal clustering refers exclusively to these cascade-like
sequences. The most represented manifestation of temporal clustering is certainly

the production of aftershocks after a large earthquake. It is now worth mentioning
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that, given mechanisms such as static stress transfers, we now know that any earth-
guake produces its own sequence of aftershocks, although aftershock productivity is
higher for larger earthquakes (Marsan and Lengline, 2008). Such time clustered se-
guences exhibit time scale invariance as the distribution of inter-event times follow

a power law (up to a certain time scale when scale invariance breaks). In the case
of aftershock sequences, we actually expect such a power law distribution from the
generalized Omori law (Equation (1.8)). Because of this time scale invariance, time
clustered sequences obey fractal patterns (Smalley Jr et al., 1987, and this thesis),

which sometimes is interpreted as cascades in a critically stressed Earth (Main, 1995).

Several methods exist to characterize the clustering of earthquakes. Historically,
the focus has been on analyzing the distribution of inter-event times with a single
scalar: the ratio between the standard deviation and the average of this distribution,

named the coe cient of variation C, (Kagan and Jackson, 1991):

8
% 0 periodic seismicity
Cy = E 1  poissonian seismicity (1.11)

- > 1 clustered seismicity

Equation (1.11) can be interpreted as follows: for periodic seismicitg, = 0, the
probability of an earthquake is larger after a period of quiescence, while for clustered
seismicity, C, > 1, this probability is lower than would be for poissonian seismicity.
Other methods lie on the time scale invariance of clustered seismicity and look for
strong power law or fractal characteristics in earthquake occurrence. The spectrum
of the event number per unit time of a clustered sequence shows a power law depen-
dence on frequency, f , and the power law exponent measures the strength of
clustering (cf. Figure 1.3.3, Frank et al., 2016). The fractality of the event number
per unit time becomes apparent when observing the power law between the fraction

x of time bins with duration that are occupied by at least one event and the bin
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duration (cf. Figure 1.3.3, Smalley Jr et al., 1987):

x/ 1F: (1.12)

In Equation (1.12), the power law exponentl F involves the fractal dimensionF
of the time series (Lowen and Teich, 2005). The fractal dimensidh of the event
count per unit time is extensively used to characterize temporal clustering in this
thesis. Note that the fractal dimension is called in the following chapters, which

should not be confused with slip on the faulD mentioned in Sections 1.1.2 and 1.1.3.

Figure 1.3.3: Quanti cation of the strength of earthquake clustering. An example of

a weakly (blue) and strongly (green) time clustered sequences are givel. Event
count number, i.e. the number of events per unit time. B: Autocorrelation of the
event count number. The weakly clustered sequence shows the characteristic delta
autocorrelation of random sequences, whereas the strongly clustered sequence keeps
a high correlation over a long time scaleC: Measure of the power law exponent of

the event count spectrum. Clustered sequences exhibit large power law exponents.
D: Fraction x of time bins with size occupied by at least one earthquakex / ! F.
Clustered sequences have large fractal dimensioRs Figure from (Beaucé et al.,
2019).
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Work has been done on understanding the topology of earthquake clusters either
in the time-space domain (Frohlich and Davis, 1990), or in the energy-time-space
domain (Zaliapin et al., 2008). These studies involve de ning distances in a certain
domain and analyzing the distances between nearest neighbors. Earthquake sequences
attributed to di erent types of seismicity (e.g. swarm-like vs. cascade-like) and ge-
ological contexts were identi ed based on their topological di erences (Zaliapin and
Ben-Zion, 2013; Martinez-Garzén et al., 2019). While powerful descriptors of cluster-
ing processes, the products of such methods are also more di cult to analyze than a

simple scalar such a€, or D, which we preferred in this thesis.

1.4 Goals and Structure of the Thesis

This chapter has introduced useful concepts for understanding the motivations and
conclusions of my thesis. As the thesis' title suggests, my generic goals were to:
- produce new observations of seismicity with automated earthquake detection

and location methods,

- systematically characterize faults with the time clustering property of their
seismicity,
- advance the understanding of how clustering relates to fault mechanisms, in

particular with aseismic slip.

My investigations targeted two regions: the Alps, in Europe, and the western section
of the North Anatolian Fault, in Turkey. Because of the history of the North Anato-
lian Fault, my work was deeply related to understanding how the last major rupture

in 1999 had perturbed the fault system.

Chapter 2 "Systematic Detection of Clustered Seismicity Beneath the Southwest-
ern Alps" presents a detailed study of earthquake detection and location in the South-

western Alps, describing in detail the method, and shows the rst observations of tem-
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poral clustering of the thesis. Time clustering properties, or its absence, are discussed
along other geological evidence to relate them to fault properties and environmental

factors.

Chapter 3 "The Rupture Complexity of Small Earthquakes in the Southwest-
ern Alps" pushes further the analysis of the Southwestern Alps earthquake catalog
(Beaucé et al., 2019) by analyzing earthquake spectra via the spectral ratio method
to characterize earthquake sources. Spectra's corner frequencies and the seismic mo-
ments are estimated, and variations in thé./ M, scaling relationship are investi-
gated. Evidence of apparent departures from self-similarity is shown and discussed in
terms of source physics, and related to the observations of temporal clustering made

in Chapter 2.

Chapter 4 "Seismotectonic Study of the North Anatolian Fault Zone Thirteen
Years After the 1999 M7.4 Izmit Earthquake" presents an extensive study of the seis-
micity in the western section of the North Anatolian Fault, where the Izmit earthquake
propagated (Beaucé et al., 2021b). The earthquake detection and location method
from Chapter 2 was improved and applied to dense array data. In addition to the
space-time catalog and quanti cation of temporal clustering, this study produces a
large data set of focal mechanisms and use them in an inversion scheme to estimate
the stress tensor in several areas. The inversion method is the topic of Appendix B
(Beaucé et al., 2021a). Results are discussed altogether to draw conclusions about
the state of the fault with respect to before and shortly after the 1zmit earthquake.

A major nding of this study is that highly clustered seismicity tends to occur at
the bottom of the seismogenic zone and is likely to be associated with normal faults

slipping aseismically.

Chapter 5 "Conclusions and Perspectives” summarizes the results of this the-
sis and the contributions to advancing the interpretation of earthquake clustering.

Quanti cation of clustering is a valuable seismic observable that we believe will help
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characterize the state of the crust in future studies. Finally, perspectives are given
on extending the systematic observation of clustered seismicity to longer times and
interesting fault systems, and on the inclusion of geodetic data into seismological

studies (preliminary results are presented).

Appendix A "Fast Matched Filter (FMF): An E cient Seismic Matched-Filter
Search for Both CPU and GPU Architectures" describes the high performance com-
puting software for template matching that | co-wrote with William B. Frank (Beaucé
et al., 2018). The success of the algorithm lies in its GPU implementation that al-
lows speeds far greater than any CPU architecture. FMF has already emerged as a

popular template matching software in the community.

Appendix B "An lterative Linear Method for Estimating the Stress Tensor from
Earthquake Focal Mechanism Data: Method and Examples” describes the new method-
ology we have developed to invert focal mechanisms for stress tensor (Beaucé et al.,
2021a). This work accompanies the results presented in Chapter 4. The method
takes a novel approach to combine the e ciency of the classic linear inversion and an
iterative scheme that relaxes a constraining assumption. We have released a Python

package that fully implements the proposed method.

During my time as a student at MIT, | have put particular e orts into de-
veloping open source numerical tools that are available to the community, and |
highly encourage the interested reader to check out my Github account &ttps:

/lgithub.com/ebeauce and ask questions if needed.
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Chapter 2

Systematic Detection of Clustered
Seismicity Beneath the Southwestern

Alps 1

Abstract

We present a new automated earthquake detection and location method based on
beamforming (or back projection) and template matching, and apply it to study the
seismicity of the Southwestern Alps. We use beamforming with prior knowledge of
the 3D variations of seismic velocities as a rst detection run to search for earthquakes
that are used as templates in a subsequent matched- Iter search. Template match-
ing allows us to detect low signal to noise ratio events, and thus to obtain a high
spatiotemporal resolution of the seismicity in the Southwestern Alps. We describe
how we address the problem of false positives in energy-based earthquake detection
with supervised machine learning, and how to best leverage template matching to
iteratively re ne the templates and the detection. We detected 18,754 earthquakes
over one year (our catalog is available online), and observed temporal clustering of
the earthquake occurrence in several regions. This statistical study of the collective
behavior of earthquakes provides insights into the mechanisms of earthquake occur-
rence. Based on our observations, we infer the mechanisms responsible for the seismic
activity in three regions of interest: the Ubaye valley, the Briangonnais and the Dora
Maira massif. Our conclusions point to the importance of fault interactions to explain
the earthquake occurrence in the Brianconnais and the Dora Maira massif, whereas
uids seem to be the major driving mechanism in the Ubaye valley.

LPublished as Beaucé, E., Frank, W. B., Paul, A., Campillo, M., and van der Hilst, R. D. (2019).
Systematic detection of clustered seismicity beneath the Southwestern Alps. Journal of Geophysical
Research: Solid Earth, 124(11), 11531-11548.
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2.1 Introduction

Earthquake catalogs are the cornerstone of many studies in seismology, such as char-
acterizing the seismic sourcee(g. Abercrombie, 1995; Ide et al., 2003), estimating
the amount of stress released at plate margins and understanding the role of repeat-
ing seismicity in this releasing process(g. Nadeau et al., 1995; Wech and Creager,
2011; Shelly et al., 2011; Frank et al., 2014), constructing reference earth models
(e.g. Dziewonski and Anderson, 1981; Kennett and Engdahl, 1991; Kennett et al.,
1995), seismic tomography €.g. Dziewonski and Woodhouse, 1987; Van der Hilst
et al.,, 1997; Li et al., 2008), seismic hazard estimatiore.q. on California Earth-
guake Probabilities, 1995), or modeling of the earthquake cycle (model calibration,
e.g.Richards-Dinger and Dieterich, 2012). The rst generation of regional and global
catalogs were based on phase arrival picks on analog recordgg(Engdahl et al.,
1998). With the advent of digital recording, energy-based detection methods such as

the short-term/long-term average (STA/LTA, Allen, 1982) method became popular.

The transition to digital recording and storage, the implementation of protocols
for data curation and sharing, the increasing availability of data from networks and
arrays, and the recognition of di erent types of earthquake signals motivated the de-
velopment of more sophisticated earthquake detection and location algorithms, based,
for instance, on array processinge(g. Meng and Ben-Zion, 2017), or learning meth-
ods, such as neural networkse(g. Perol et al., 2018). Automated data processing is
not only essential for extracting signal from large, and rapidly increasing, data vol-

umes, it also leads to uniform catalog quality.

Analysis of the seismic wave eld recorded at multiple sensors leverages the co-
herency of the signal across the station array to detect seismic phases which human
eyes would have failed to identify. Network-based detection has led to the identi ca-
tion of phenomena such as low frequency earthquakesd. Shelly et al., 2007; Brown

et al., 2008; Frank et al., 2014) and non-volcanic tremore(g. Obara, 2002; Rogers
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and Dragert, 2003).

We develop an earthquake detection method that combines array processing, or,
more precisely, a beamformed network response (Frank and Shapiro, 2014) and tem-
plate matching (Gibbons and Ringdal, 2006; Shelly et al., 2007; Frank and Shapiro,
2014; Ross et al., 2019). Template matching is known to be e cient at detecting
low signal-to-noise ratio (SNR) signalsi(e. with SNR < 1), and the required prior

knowledge of the target seismicity is obtained from the beamformed network response.

We applied this new detection algorithm to one year of seismic data from 87 sta-
tions located in the Southwestern Alps, between August 2012 and August 2013, in-
cluding 55 stations from the temporary network CIFALPS (Zhao et al., 2016f.>[and
see more information in Data and Resources). Although the Western Alps have been
studied for a long time, the mechanisms driving the seismicity are still not well under-
stood (Nocquet, 2012¢f.>[and references therein), and a more complete earthquake
catalog will make possible new studies to investigate the tectonic processes that cause
them. The Alps were formed following the closure of the Alpine Tethys ocean, due
to converging motion between Europe and Africa. The mountain range is located at
the border between the Eurasian plate and the Adriatic platedf. Figure 2.1.1). In
the Western Alps, Chopin (1984) gave the rst petrological evidence for continental
subduction, which was later con rmed by several geophysical studies.g. Nicolas
et al., 1990; Zhao et al., 2015). It is unclear, however, whether subduction is still
taking place. Even though geodetic data show that the Adriatic plate is rotating
counterclockwise with respect to stable Europee(g. Serpelloni et al., 2007), there
is no observation of shortening in the Western Alps and part of the seismic activity
is observed to occur under an extensional regime.f. analysis of earthquake focal
mechanisms, Delacou et al., 2004). Various studies.g. Delacou et al., 2004; Nocquet
et al., 2016; Walpersdorf et al., 2018) show that the earthquake activity in the South-
western Alps is likely to be due to a complex combination of plate tectonic forces

and other forces such as buoyancy forces or post glacial rebound. A more detailed
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characterization of seismic activity, which is indicative of active deformation, will help

address these issues.

Figure 2.1.1: Interpretative cross-section of the Western Alps. Following the closure
of the Alpine Tethys ocean, the collision of the European and Adriatic margins formed
the Alps and the subduction complex illustrated here. A clear understanding of what
is driving the deformation and the seismic activity in these complex geological units
is still lacking. Abbreviations: FPF Frontal Penninic Fault, Srp serpentinized,
RMF Rivoli-Marene deep fault. We show the locations of the CIFALPS stations
on the topographic pro le of the cross-section. The onset shows the location of the
transect in the Western Alps, Europe. Figure modi ed from Zhao et al. (2015) and
Solarino et al. (2018).

We rst describe the earthquake detection method, and then present the earth-
quake catalog we thus obtained in the Southwestern Alps. We gain new insights into
the seismicity of the study region by investigating the collective behavior of earth-
guakes, made possible by the large number of detected events. We then discuss the

importance of earthquake interaction in the observed behavior of clustered seismicity.
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2.2 Earthquake Detection Method

Detecting low SNR seismic signals by means of template matching requires knowl-
edge of the type of signal to search for in the data. This can be obtained from an
existing earthquake catalog or from a preliminary detection run. Since the former is
not publicly available for our study area, we produced a preliminary catalog using the
energy-based detection method from Frank and Shapiro (2014), which is described in
the following. The events thus found were then used as template events in a subse-

guent matched- Iter search.

2.2.1 Data Pre-processing

We used seismic data recorded between August 2012 and August 2013 at 87 seis-
mic stations in the Southwestern Alps. The network includes 55 broadband sen-
sors from the temporary CIFALPS array (Zhao et al., 2016, China-Italy-France Alps
survey,>[sampling at 100 Hz), and 32 broadband sensors from French and Italian
networks (sampling at 100 Hz or 125 Hz, see Data and Resources). The data are
downsampled to 50 Hz and Itered in the band 1-12Hz, which we found was a good
compromise between targeting the frequency band of interest for observing local earth-

guakes and removing undesired signal.

2.2.2 Energy-based Detection (Composite Network Response)

The beamformed network response method due to Frank and Shapiro (2014) seeks to
determine the origin, in time and space, of the seismic energy recorded at an array.
This approach leverages the coherency of seismic energy across a receiver array for
automatic event detection. Using wave speeds according to a 3-D reference model
(Potin, 2016), the apparent travel times measured in the seismograms are then asso-

ciated with a source location.

As a toy example, let us consider the earthquake whose location is indicated by
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a yellow star in Figure 2.2.1, and whose waveforms are recorded at multiple stations
at the surface. Because spatial coherency of the seismic waveforms is not ensured
(e.g. due to crustal heterogeneities or focal mechanism), we prefer to work with
the envelopes of the waveforms. The envelope is the amplitude of the analytical
representation of a time series, it is calculated after the preprocessing described in
Section 2.2.1 and the processing of the data is illustrated in Figure 2.S.1. We rst
discretize the volume beneath the study region into a grid of points, each of which
representing a possible location of the seismic sourcé (Figure 2.2.1A). Each of these
hypothetical sources is associated with a collection of P- and S-wave travel times to
each of the stations. For a su ciently accurate velocity model, the travel times from
the potential source closest to the real source will provide the best alignment with the
envelopes of the seismic datec{. Figure 2.2.1B). We de ne the stack of the shifted

envelopes as the network response:

X
NRe(t) = f ug(t+ &) : (2.1)

S;C

In Equation 2.1, k identi es a potential source ands, c are the station and the
component indexes, respectively. We use the S-wave travel times on the horizontal
components and the P-wave travel times on the vertical componenta";c Is the travel
time from potential sourcek to station s on componentc. u is the data andf is
some transformation of the seismic waveforms. In our cakeelates to the function
"envelope" (see Supplementary Material Figure 2.S.1). The sour&e that yields the
largest network response is found by a grid search and represents a proxy of the real
source location. Locating earthquakes through such a grid search, that is, shifting
and stacking seismic energy, is also known as back projection or migratiand; Ishii
et al.,, 2005; Walker et al., 2005; Honda and Aoi, 2009), but the objective here is

detection.

For earthquake detection purposes, the quantity of interest is the largest network

response of the grid at each time step. We de ne the composite network response
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Figure 2.2.1: Top left panel (A):  Spatial discretization of the volume beneath the
study region. Using a velocity model, each point of the grid is associated with a
collection of source-receiver travel times. The grid points are called potential seismic
sources. As an example, let us consider an earthquake with location shown by the
yellow star, and recorded at multiple stations.Right panel (B): The envelopes of
the earthquake waveforms are shifted using the travel times of a potential seismic
source close to the real locationygllow star). The shifted envelopes are then stacked
to calculate the network responsegreen waveformcf. Equation 2.1). The resulting
network response is intrinsically related to the potential seismic source from which the
travel times were calculated: di erent potential seismic sources give di erent network
responses. Bottom panel (C): Composite network responsecf. Equation 2.2)
calculated over one day. We subtract a curve connecting the local minima of the
CNR to set its baseline to zero. To adapt to variations in the level of noise, we use
a time-dependent threshold: the valuerthedian +10 MAD™" is evaluated every 30
minutes and a linear interpolation makes the threshold varying continuously within
each 30-minute bin. Using small bin sizes enables the threshold to adapt to locally
noisy episodes, but at the risk of discarding actual events: a 30-minute bin size is a
good compromise between the two. We perform the peak selection on a smoothed
CNR and impose a minimum peak distance, which explains why some of the values
above threshold are not selected.
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(CNR) as:
CNR(t) = mex fNRk(t)g=NRy : (2.2)

The process of searching fddRy , continuously in time, is illustrated in Figure 2.S.3.

Figure 2.2.1C shows an example of CNR from real data. We postprocess the CNR
by removing the baseline a curve connecting the local minima to set the noise
level to zero (which explains the negative values in CNR). The peaks of CNR that
exceed a user-de ned threshold are detections of events, and the source locations are

given by the corresponding . We use the following time-dependent threshold:
threshold(t) = median (CNR) (t) + 10 MAD (CNR) ( t); (2.3)

where MAD stands for median absolute deviation. We evaluateedian (CNR)+10
MAD (CNR) in 30-minute bins and make a continuously varying threshold by linearly

interpolating the values obtained every 30 minutes.

Each detection yields a so-called template event (located kt), and the template
for that event is then built by extracting waveforms using the detection time, travel
times from k to each of the stations considered in the template (in our case, the
20 stations that are closest tdk ), and a window length (we choose 8 seconds). For
our application in Section 2.3, we considered potential sources 1 km apart on a reg-
ular 3D cartesian grid (to 80 km depth) beneath a geographic area froB5°-9:0°E
in longitude and 435°-46:0°N in latitude. This 1 km spacing is a good compromise

between computation time, array sizes and detection performances.

2.2.3 Classi cation of Seismic Signals

Before using a template in a matched- Iter search it is important to verify that the

signal is due to an earthquake, because the CNR can be in uenced by non-earthquake
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signals, such as proximal noise sources, electronic noise, and by issues in the prepro-
cessing. For this purpose, we conduct a signal classi cation step prior to template

matching.

Figure 2.2.2: Left panel (A): We randomly sample detections from the database of
candidate template events and identify each channel aarthquakeor non-earthquake
We attribute the label earthquaketo the detections with more than nine channels
identi ed as earthquakes (on-earthquakeotherwise). This arbitrary choice can be
tuned in order to select more or less low SNR earthquakes in the template database.
Right panel (B):  Structure of our binary logistic classi er. The signal features are
rst preprocessed by standardizing them i(e. removing the mean and setting the
standard deviation to one) and bounding them between -1 and 1 through the use of
hyperbolic tangent. A linear combination of the preprocessed signal features generates
a scalar, which is fed into the logistic function (also called sigmoid function). The
resulting output is bounded between 0 and 1, and is interpreted as the probability
of being an earthquake. An output greater than 0.5 means the detection is more
likely to be an earthquake than a non-earthquake. This algorithm was built using the
Python library Keras (Chollet et al., 2015).

For automated analysis and signal classi cation we use supervised machine learn-
ing: to discriminate earthquakes from non-earthquakes, an algorithm is trained on a
relatively small set of examples classi ed by a human expert. Our algorithm computes

a linear combination of the signal features to generate a scalar that is fed into the
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logistic function (bounds the output between 0 and 1), which gives the probability
of being an earthquake. Therefore, our algorithm is a binary logistic classi er. More
information on the structure of the classi er is provided in Figure 2.2.2. For each

three-component record extracted from the 20 stations, we calculate ve features:

- the amplitude maximum,

- the rst three statistical moments of the distribution of the peaks of the wave-

form autocorrelation function: variance, skewness, and kurtosis,

- the maximum of the moving kurtosis along the extracted time series,

for a total of 300 features per event detection. The amplitude maxima help identify
strong signals, the maximum of the moving kurtosis is sensitive to seismic phase ar-
rivals, and the statistical moments of the autocorrelation function discriminate spikes
(with large kurtosis) from impulsive earthquake waveforms. These features are not
dependent on the relative phase of the signals, which renders them insensitive to small

source mislocation.

For our application, Section 2.3.1, we manually labeled the waveforms of 500 de-
tections as earthquakes or noise (any non-earthquake signals). We note that labeling
the waveforms currently prevents the full automation of the method, but it has to be
done only once. In the training dataset, a 60 channel (20 stations 3 components)
template event is labeled as an earthquake if more than nine channels were individ-
ually identi ed as earthquake waveforms by eyes. This somewhat arbitrary criterion
is used to reject the low SNR earthquakes that would not be interesting for use as
template events, or which are not identi ed as earthquakes with high con dence. For
training the algorithm, we split the dataset into two independent sub datasets: the
training dataset (75% of the detections) and the validation dataset (25% of the de-
tections). Each of these datasets were then augmented by a factor 100 by shuing
the channels in the templates (the classi cation output must not depend on the order

in which the input features are given). While optimizing the classi er with gradi-
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ent descent on the training dataset, we evaluated the error on the validation dataset
and stopped optimizing when this error began to increase. This method, which is
known as early stopping €.g. Yao et al., 2007), implicitly regularizes the classi er by
providing a criterion for stopping the training when further updating the parameters
would only overt the data. On average, for several randomly selected training and
validation datasets, we had a training accuracy of 0.92 and a validation accuracy of
0.90. Eventually, the classi cation process outputs a database of template events to

be used in template matching.

2.2.4 Template Matching

In seismology, we often approximate the Earth as a linear lter and write an earth-
guake seismogram as the convolution of a source term with a propagation term and

an instrument term:

u(r;t) = F(t)'\"z(“? Pir'zt;_ ; Il{g}) ; (2.4)

source propagation  instrument

In Equation 2.4, the source term is the product of the source time functio®
and the focal mechanisnmM that describes e ects due to preferred directions in the
rupture process €.g. rupture on a fault plane). The propagation termG, the Green's
function, describes how the earth responds to an impulsive source for a given travel
path. We include site e ects in the Green's function.I represents how the recording
device distorts actual ground motion. The receiver location is and the source loca-
tion is . Equation 2.4 shows that colocated earthquakes produce similar waveforms
because of similar Green's functions. Moreover, similarity is high when the source
functions have the same shape (similar focal mechanisms and magnitudes). Template

matching leverages this expected similarity to detect new events.

Template matching consists of scanning continuous recordings in search for matches

between data and the waveforms that constitute a template. This method has proven
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Figure 2.2.3: Left panel (A): The waveforms of a template eventréd waveformg,
on 12 stations and each of the 3 components, match well the datalye waveformk

a new earthquake is detected. The correlation coe cient (CC) is given on each
channel. Right panel (B): Comparison of the template waveform on one channel
(red waveform) with the waveforms of a few detected eventb(ue waveformg

to be e cient at detecting events with low SNR (SNR< 1, e.g. Gibbons and Ringdal,
2006; Shelly et al., 2007; Frank et al., 2014; Ross et al., 2019). Formally, scanning the
data means calculating the correlation coe cient between the template waveforms

and the data, continuously in time. We use the following de nition of the average
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correlation coe cient:

X X Ts, U+ th + o
cCt) = e gpelimllellt It so)

PN PN
S,C n=1 n=1 Tsz’c(tn) n=1 ug’c(t + tn + s:c)

(2.5)

In Equation 2.5, N is the length of the template waveformpn is a temporal index, and
Ws.c IS the weight attributed to station s and componentc. If all weights are equal,
with ws.c = 1=NsN. (with Ng, N being the number of stations and components), then
it is equivalent to calculating the arithmetic mean. For stations and componentc,
Ts.c is the waveform template us.. the continuous data, and .. the moveout (or time
shift) in us.. The time t is the detection time, meaning that the template window
starts at time . after the detection time. The template windows start four seconds
before the S wave on the horizontal components and one second before the P wave on
the vertical component. We note that Equation 2.5 assumes the meantf. and us.
within each sliding window of lengthN is zero. We have shown in previous work that
this assumption is correct when the data are lItered such that the lower non-zero
period in the data is shorter than the window length ¢f. Data and Resources and
Beaucé et al., 2017). In the application presented in Section 2.3, template matching
was done with a detection threshold of eight times the daily root mean square (RMS)
of the correlation coe cient time series. This detection threshold is more conservative
than the commonly used threshold 08 MAD (Shelly et al., 2007; Brown et al., 2008;
Baratin et al., 2018,e.g>[8 RMS 12 MAD).

Evaluating the correlation coe cient over long periods of time, and for many tem-
plates, requires high performance computing to do it within a reasonable amount of
time. We use the software Fast Matched Filter (Beaucé et al., 2017), which is par-
ticularly quick when run on graphics processing units (GPUs). The scanning process
is illustrated in Figure 2.2.3. In the application to data from the Southwestern Alps
we use just over 1,400 templates, a template duration of 8 s (with 50 samples per
second), and one year of continuous data from 87 3-component stations, and we eval-

uated CC(t) every sample. Eight seconds is a good compromise between extracting
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a representative chunk of the target waveform, and a reasonable computation time.
Running our codes simultaneously on 12 nodes equipped with one Tesla K20m GPU
each took 12 h. As expected, reading operations (I/O) of data and templates is the

most time consuming task.

2.2.5 Second Generation Templates

As illustrated in Figure 2.2.3, a matched- Iter search provides us with many repeti-
tions of the same target waveform. By stacking the waveforms of the detected events
we can enhance the SNR in the template waveform, which decreases the unwanted
correlation component of the CC between data and noise in the template, thus im-
proving the quality of the detection, and allows the template events to be located

better.

Non-linear stacking, like the Nth-root stack or the phase-weighted stack, greatly
improves the SNR with respect to the linear stack, but also distorts the target wave-
form because of their non-linear nature. Even if it does not enhance SNR as much as
non-linear stacking, we prefer the Singular Value Decomposition-based Wiener Fil-
ter (SVDWF) because it does not distort the waveform. SVDWEF is based on the
association of spectral Itering (keeping a limited number of singular vectors from
the singular value decomposition) and Wiener ltering, and was initially developed
for processing noise correlation functions (Moreau et al., 2017). For each station and
each component, the matrix of detected events is rst denoised using SVDWF, and
a new template waveform is then obtained by stacking the denoised waveforms. Fig-

ure 2.S.4 illustrates the performance of these di erent stacking strategies.

Detection and location involve nding the optimal network response for a given
f in Equation 2.1. For detection purposes, we prefer using the envelope forbut
for location purposes, we choosk to be the kurtosis-based transform presented in
Figure 2.2.4A (from Baillard et al., 2014). This transform makes the signal more sen-

sitive to seismic phase arrivals and, thus, biases the CNR towards nding the travel
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times that align well the seismic phase arrivals. Performing this relocation process on
the second generation template waveforms reduces the spatial spread of the potential

sources that yield a large CNR ¢f. Figure 2.2.4, more details in 2.A).

The second generation templates are used in a subsequent matched- lter search
to detect more events. This process new template generation and matched- Iter
search can be iterated several times until the earthquake catalog does not show
notable updates between two iterations. During successive iterations, we optimize
the template database by regrouping template events with same location and simi-
lar waveforms (template events with locations closer than 20 km and with average
waveform correlation coe cient greater than 0.8) to avoid redundant matched- Iter

searches.

2.3 Seismicity of the Southwestern Alps

We applied the earthquake detection method presented in Section 2.2 that is, the
combination of the Composite Network Response (CNR), signal classi cation, and
template matching (with SVDWF) to the preprocessed seismic data described in

Section 2.2.1.

2.3.1 Catalog

Calculating the CNR as described in Section 2.2.2 yielded a total of 50,262 detections
(candidate template events). After applying the classi er described in Section 2.2.3,
we were left with 1,725 template events. We further reduced this number to 1,406
by regrouping redundant template eventsdf. Section 2.2.5); Figure 2.3.1 shows their
locations. The matched- lter search yielded 18,754 non-redundant detections, with
redundancy de ned as events with similar waveforms (average C& 0.8), detected

within a time interval of three seconds and from template earthquakes located within
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Figure 2.2.4: Relocation of the second generation template$op panel (A): The
denoised and stacked waveforms obtained from the SVDWMbIge waveform} are
transformed following Baillard et al. (2014) to get a signal that is sensitive to phase
arrivals (orange waveforms The arrival times predicted by the new location are
shown by black and red bars for the P- and S-wave, respectivel\Bottom left
panel (B): The composite network responseblue curve is calculated using the
orange signal shown i\ . The neighborhood of the maximum of the CNR is analyzed
to build a weighting function (red curve cf. 2.A for details). This weighting function

is used to calculate a weighted average of the distance to the best potential seismic
source €f. Equation 2.8 in 2.A),i.e. the potential source associated with the highest
CNR. We de ne this weighted average as the uncertainty on the locationBottom
right panel (C): Each sample of the CNR shown i is associated with a potential
source in the grid; the color codes for the value of the CNR and the transparent
points are those for which the weighting function is zero. In this example, the location
uncertainty is 3.05 km.

20 km from each other. This arbitrary choice may remove actual earthquakes from the
catalog and leave some double counted events but produces a reasonable number of

detected events. Our earthquake catalog is available online (see Data and Resources).

To evaluate how well our detection method performs, we compared our catalog

to the SISmalp catalog of Potin (2016). The number of events detected and located
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Figure 2.3.1: Locations of the 1,406 template events. Template events relocated with
an uncertainty r < 15km are shown with lled dots, and template events for which
we did not nd a reliable location are shown with open diamonds; the color scale
codes for the depth of the events. Black inverted triangles are the seismic stations
used in this study. We note that the uncertainty estimation described in Section 2.2.5
does not always perform well for deep events, which do not only feature simple P- and
S-wave arrivals as assumed in the calculation of the network response. Therefore, a
few events with r < 15km still show odd locations €.g. deep events located out of
the group of deep earthquakes around Torino). The purple star indicates the epicenter
of a M| 3.9 earthquake that occurred in early October 2012, and which is important
for the discussion in Section 2.4. The onset shows the position of the Western Alps in
Europe. Theblack dashed lineorresponds to the axis along which the stations from
the CIFALPS network are deployed; this axis is used to project the locations of the
template events for 2D cross sections.

by our algorithm is more than an order of magnitude larger than the approximately
1,200 included in the SISmalp catalog for our study region; more details on the com-
parison with this catalog are given in Figures 2.S.5 and 2.S.6. The events that we
seem to have missed all have magnitude less than one and most less thand.4Rig-
ure 2.S.7), which might explain inconsistencies in reported location or non-detection.
We note here that other catalogs are also publicly available for this region, such as the
Réseau National de Surveillance Sismique catalog with 383 events, and the Istituto

Nazionale di Geo sica e Vulcanologia catalog with 743 events.
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The temporal distribution of the 18,754 events is shown in Figure 2.3.2A with
the daily seismic rate. We also report the magnitude of the events for earthquakes
with M > 1 and located with high condence (r < 5 km). These local magni-
tudes are based on waveform amplitude ratios, they were estimated following the
procedure described in 2.B. Amplitude ratios of events with M 1 are contami-
nated by noise and therefore the resulting magnitude estimates are not meaningful.
M =1 is also where we observe the Gutenberg-Richter relation to break down (see
Figure 2.S.8). The daily seismic rate shows continuous seismic activity in the South-
western Alps, and reveals the existence of episodes of strong, burst-like seismicity
(e.g. October 2012 and January 2013). Figure 2.3.2B shows the earthquake tempo-
ral distribution on recurrence time versus detection time graphs for three templates
in distinct geographical regions: the Ubaye valley, the Briangonnais and the Dora
Maira massif (f. locations in Figure 2.1.1). The recurrence time is the time interval
between two colocated earthquakes, and thus is de ned template-wise. These three
templates o er a representative view of the diversity of seismic behaviors observed in
our study region. The Ubaye valley hosts continuous seismic activity without clear
sequences of foreshocks-mainshock-aftershocks, but the seismicity of the Briangonnais
and the Dora Maira massif are dominated by burst-like episodes. These episodes are
characterized by recurrence times spanning many orders of magnitudes, which is the
signature of temporal clustering. Seismicity in the Ubaye valley also di ers from the
burst-like seismicity observed in the Briangconnais and the Dora Maira massif by the

smaller magnitude range it spansdf. Figure 2.3.2B).

2.3.2 Temporal Clustering of the Seismicity

Unlike Poisson seismicity, clustered earthquake sequences have earthquake occur-
rence that is not random in time: instead, time clustered seismicity suggests that
past events in uence the occurrence of future ones. We emphasize that an earth-
guake sequence with high seismic rate does not have to be clustered in time, but

can be Poissonian €.g. Frank et al., 2018). Temporal clustering is often observed
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Figure 2.3.2: Left panel (A): Daily seismic rate (left axis,blue continuous curvé

and daily magnitude distribution (right axis, red dots). Details on the local magnitude
scale are given in 2.BRight panels (B): Recurrence time vs detection time for
three templates located in three distinct geographic regions. The Briangonnais and
the Dora Maira massif are dominated by episodes of burst-like seismicity, and the
Ubaye valley hosts continuous seismic activity that does not feature clear foreshocks-
mainshock-aftershocks sequences. Local magnitudes are coded in color: we observe
a smaller magnitude range in the Ubaye valley than for the earthquake sequences in
the Briangconnais and in the Dora Maira massif.

for sequences of foreshocks-mainshock-aftershockgy(Utsu, 1961; Knopo, 1964;
Gardner and Knopo, 1974; Zaliapin and Ben-Zion, 2013b) and is thought to be the
signature of stress redistribution on neighboring faults taking place during the seis-
mic rupture (e.g. Burridge and Knopo, 1967; Dieterich, 1992; Stein, 1999). More
generally, temporal clustering can be explained by various mechanisms implying in-
teractions between earthquakese(g. Frank et al., 2016). The observation of temporal

clustering thus provides a window into the mechanisms of earthquake occurrence.

Quantifying the degree of temporal clustering requires characterization of the time
series of earthquake occurrence. While accurate knowledge of the earthquake locations
and magnitudes allows sophisticated characterization of clustering in the time-space-
energy domain €.g. Zaliapin et al., 2008; Zaliapin and Ben-Zion, 2013a), restricting

the analysis to the time-space domain is an appropriate choice for the Southwestern
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Alps since earthquake magnitudes are small. To describe seismic activity, we intro-
duce the event counte(t) (cf. Figure 2.3.3A), that is, the number of events in narrow
time windows (bins). We characterize clustering by means of the autocorrelation and
spectrum of e(t) (Figure 2.3.3B and C). By de nition, temporal clustering implies
temporal correlation of the earthquake occurrence at non-zero correlation time in
the autocorrelation function. We observe that clustered earthquake sequences ex-
hibit power-law dependence of(t) on frequency &f)/ f , similar to Frank et al.,
2016). The strength of temporal clustering is quanti ed by , referred to as clustering
coe cient, which can be estimated from the slope of the spectrum in log-log space
(Figure 2.3.3C). A strongly clustered earthquake sequence has a largevhereas an
earthquake sequence close to a Poisson sequence has a smalhd = 0 indicates

a purely random sequence ( at spectrum).

Processes exhibiting a power-law spectrum are scale-invariant processes, within a
certain range of scales limited by natural bounds. For instance, we expect the power-
law e(f) / f to hold between the period of activation of the fault/seismic source
(smallest frequency) and the smallest time interval we can resolve between two earth-
guakes (highest frequency). A powerful analysis tool for scale-invariant time series
comes from the theory of fractal clustering €.9. Turcotte, 1997; Lowen and Teich,
2005). Fractal analysis, which has been applied to earthquake occurrence in various
studies (.g. Smalley Jr et al., 1987; Lee and Schwarcz, 1995), consists of counting
earthquakes in time intervals of variable width. In the case of fractal clustering, the
fraction of occupied intervalsx has a power-law dependence on the size of the in-
tervals ,i.e. x/ 1 P. The fractal dimensionD is zero for a Poisson distributed
earthquake occurrence, and is typically larger than 0.2 for clustered seismicitgf.(
Figure 2.3.3D). We used correlation time, clustering coe cient and fractal dimen-
sion D to characterize the temporal clustering in our study region. We found that
the clustering coe cient was well appropriate for studying clustering over short times,
whereas the fractal dimension gave the most contrasted results for studying the long-

term clustering (see Supplementary Material Figure 2.S.9 and Figure 2.S.10). We
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present our observations of temporal clustering in Figure 2.4.1.

Figure 2.3.3: Quanti cation of temporal clustering. Top left panel (A):  Event count
number e(t) for earthquakes detected with two di erent templates. The event count
number is calculated by dividing the time axis into 5-minute bins, and counting the
number of events within each bin.Top right panel (B):  Autocorrelation function

of the event count number. We de ne the correlation time as the time interval
over which the autocorrelation function is greater than the threshold plotted with the
dashed black line (arbitrarily set to 0.12).Bottom left panel (C):  Power spectral
density of the event count number. The spectrum of the event count number has a
power-law dependence on the frequency when temporal clustering occurs. We de ne
the power-law exponent as the clustering coe cient. Bottom right panel (D):
Fractal analysis of the earthquake sequences. Within a limited range of size of time
intervals, the fraction of occupied intervals follows a power-law, whose exponent is
related to the fractal dimension of the earthquake occurrence.

Comparison between Figure 2.4.1A and Figure 2.4.1B shows that there is no trivial
correlation between the number of earthquakes per templatéd. number of earth-
guakes in some volume around the template location) and temporal clustering. We

distinguish three geographic regions of high seismic activity: from west to east, the
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