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Abstract: E-scooter sharing provides a last-mile solution to complement transit services, but less 
was known about its effectiveness in serving short-distance transit trips. We investigate the potential 
of using e-scooter sharing to replace short-distance transit trips of excessive indirectness, multiple 
transfers, and long access-egress walking. First, we conducted a stated preference survey on e-
scooter users in the Central Area of Singapore and estimated mixed logit models to examine factors 
influencing the choice of e-scooters and transit. We then calculated the number of transit trips that 
can be replaced by e-scooters. Second, we analyzed the decision of e-scooter companies in terms of 
the trade-offs between serving more e-scooter trips and making more revenue under varying fares.  
The results show that fare, MRT transfer, and MRT access-egress walking distance have 
significantly negative impacts on mode utilities with random tastes among respondents. Male, 
young and high-income groups are more heterogeneous in e-scooter preferences compared with 
other groups. The loss of mode share can be nearly 17% if maximizing the revenue. We classify 
trade-off situations into five categories and provide suggestions of how to balance between mode 
share and revenue for each category. Several implications are drawn for better harnessing and 
regulating this new mobility service, including where to deploy e-scooters to satisfy the demand 
unmet by the transit and how to reach a proper balance between private operators and public welfare. 
 
Keywords: E-scooter sharing; Public transit; Modal shift; Stated preference; Mixed logit models; 
Travel demand analysis.  
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1. Introduction 

1.1 The emergence of e-scooter sharing as a new micro mobility service 

E-scooter sharing becomes a new micro-mobility service in many cities, after various start-
ups sprouted around the globe since 2017, such as Bird, Lime, Spin, and Skip in United States and 
Europe, Telepod and Neuron in Singapore. Some ride-hailing companies also smelled 
opportunities and invested in this new option, like Lyft Scooters, Jump, and GrabWheels.�A 
typical shared e-scooter in Singapore is a two-wheel vehicle concisely designed with a standing 
deck and a handlebar, powered by the electric battery (Fig. 1).  E-scooter-sharing service brings 
convenience to the public. Users can unlock e-scooters with smartphones, and pay after ending 
trips. E-scooter sharing companies need to recharge and rebalance periodically to maintain good 
services.  

The e-scooter provides an environmentally-friendly alternative to other transportation 
options. It was perceived to reduce carbon emissions (Hwang J., 2010), improve life quality and 
health (Zagol B. and Krasuski R., 2010), offer mobility aid to the elderly (May E. et al., 2010; 
Johnson M. et al., 2013; Pettersson I. et al., 2016) and the disabled (Hoenig H. et al., 2007; 
Jannink M. et al., 2008; Samuelsson K. and Wressle E., 2014). Since the sharing economy in 
transportation swept the world from early 2010s, e-scooter sharing emerged as a new concept that 
enabled mass utilization of smart and affordable mobilities for short-distance trips (see the mottos 
of Bird1 and Lime scooter2). Attentions were largely drawn to how users parked e-scooters (Fang 
et al., 2018), e-scooters nuisances (Riggs and Kawashima, 2020), user safety concerns (Allem and 
Majmundar, 2019; Badeau et al., 2019; Sikka et al., 2019; James et al., 2019), data privacy 
(Peterson, 2019), customer segments (Degele et al., 2018), fleet distribution optimization (Chen et 
al., 2018), social equity (Wood et al., 2019), and spatiotemporal usage patterns (McKenzie, 2019; 
McKenzie, 2020). 

 

Fig. 1. Examples of shared e-scooters in Singapore (Neuron) 
 
1.2 An opportunity to replace short-distance transit trips 

As the e-scooter service rapidly expands, limited research was conducted to examine the 
impacts of e-scooter sharing on other transport means. The reports in United States revealed that 
the e-scooter sharing had replaced some driving in Portland (Portland Bureau of Transportation, 
2019), reduced ride-hailing trips in San Francisco (Rao, 2018), and would be a strong alternative 

�
1 https://www.bird.co/. 
2 https://www.li.me/about-us. 
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to private automobiles for trips between 0.5 and 2 miles in Chicago (Smith and Schwieterman, 
2019). Fitt and Curl (2019) discovered that 57% of e-scooters replaced trips that would otherwise 
had been made by active modes in New Zealand. However, the relationship between the e-scooter 
sharing and public transit was not fully explored, which is the gap that this research aims to 
investigate.  

Our study focuses on a Singapore case. Public transport plays a significant role in facilitating 
daily travels in Singapore, partly due to strict car ownership regulation and congestion pricing. 
Specifically, the Mass Rapid Transit (MRT, i.e., metro system) reached a mode share of 28% (not 
including bus) in 2016 (Land Transport Authority, 2018). While MRT serves efficiently for most 
trips, it is inconvenient to take some short-distance MRT trips in Singapore Central Area (SCA) 
(shown in Fig. 2) because of excessive indirectness, multiple transfers, and long access-egress 
walking distance (Tripadvisor, 2018). As revealed by 2012 Singapore Household Interview Travel 
Survey (HITS)3, the average MRT indirectness (ratio of MRT network distance to the shortest 
street path) is 1.314 for the MRT trips that started and ended in SCA, and its maximum ratio 
reaches 4.112, which is much more than the average indirectness of global transit networks 
(Derrible and Kennedy, 2010). In SCA, 20.98 % of MRT trips have at least 1 transfer which is 
higher than the average transfer level in Singapore, and passengers have to walk for almost 1km 
on average to reach MRT stations. Thus, even if the trip origins and destinations are 
geographically close to each other, the travelling distance and time on MRT network could turn 
out to be long. To provide more transport options for short-distance trips in SCA, some e-scooter 
sharing companies, like Neuron, launched their services in 2018. Neuron deployed e-scooters in 
SCA and designated the e-scooter parking locations inside a geo-fence (Fig. 2). SCA is a compact, 
high-density, and mixed land-use planning area for business, recreation, and culture. The new 
micro-mobility service may offer a competitive option to replace certain short-distance transit trips 
in SCA, by providing a direct connection with no transfer and less working efforts4. For example, 
it takes 30 minutes and 2 transfers for a passenger to travel from Rochor station to Bencoolen 
station by MRT, but only 8 minutes by a direct e-scooter at the speed of 7km/h (Appendix A). This 
finding is also supported by the HITS data: if taking 3km as a comfortable riding distance for e-
scooters, 16.1% of the MRT trips, which are longer than 3km in transit network distance, would 
otherwise be served more directly with e-scooters under 3km if using the shortest street paths; the 
percentage increased to 23.7% if users willing to ride 3.5 km (Appendix B).  
 

�
3�Singapore Household Interview Travel Survey is a national travel survey conducted every four to five years, 
which is designed to capture personal characteristics and daily trip-making decisions of each person in the 
household. 
4 Given that the Singapore bus headway could reach up to 30 minutes during off-peak hours, we did not compare 
the e-scooter sharing to bus for short-distance trips.  
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Fig. 2. MRT network in Singapore Central Area (left) and scenarios that e-scooter is competitive 
to MRT (right) 
 
1.3 Research goal and questions 

This study attempts to understand to what extent e-scooter sharing can replace short-distance 
transit trips. We approach in two facets. The first is on users’ perceptional level through a stated 
preference survey. In other words, how people state their preferences for e-scooters over transit in 
different scenarios. The second is on e-scooter companies’ operational level: given the users’ 
stated preference, how would the e-scooter sharing company tradeoff between serving more trips 
and seeking more revenue. Three research questions (RQ) are outlined below. RQ1 and RQ2 focus 
on the first facet, and RQ3 is centered on the second. 

RQ1: What variables and how they influence users’ mode choices of e-scooter sharing and 
transit? 

RQ2: How many short-distance transit trips are perceived to be replaced by e-scooters? 
RQ3: How will e-scooter sharing company tradeoff between mode share maximization and 

revenue maximization? 
The rest of the paper is organized as follows. Section 2 gives an overview of existing work in 

this domain. Section 3 explains the research methods and data processing. The results of three 
research questions are presented in section 4. Then a broader view of this study is discussed in 
section 5. Finally, section 6 summarizes our findings as the conclusion. 
 
2. Related work: relationship between shared micro mobility and public transit 

This literature review focuses on the relationship between shared micro mobility and public 
transit. Since e-scooter sharing literatures are limited, we also include bike sharing—a similar but 
more studied domain. Many studies investigated inter-modality between shared micro mobility 
and transit. Shaheen S. and Chan N (2016) reviewed the history of shared mobility and underlined 
that shared bikes and e-scooters were potentially playing a pivotal role in promoting 
multimodality by serving first and last mile trips. Shaheen S. and Cohen A. (2018) reviewed the 
convergence of trends leading to fundamental changes in public transportation, and highlighted 
the potentials of shared micro mobility as last-mile connectors to transit. Wisniewski (2018) found 
that scooters could fill gap in Chicago for short trips to and from transit. Jin F. et al. (2018) studied 
the dockless shared-bikes in Beijing and revealed that increases in shared-bike rides lead to 
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increases in subway traffic, attributing it to the complementary effect of bike sharing on subway. 
Zhang Z et al. (2018) mapped the bicycle traffic on an equal population cartogram of Shanghai 
and demonstrated that the bicycle-metro integration had already become a basic model for daily 
transport in Shanghai. Zhou et al. (2018) carried out questionnaires on modal shift in metro 
commuting of Shanghai and revealed that one third of respondents shifted from walking and 
feeder bus to dockless bike in connecting metro commuting. Campbell et al. (2016) investigated 
the role of shared bikes and e-bikeshare as an attractive first and last-mile solution, determining 
that e-bikeshare drew users from bus links but it was unclear for shared bikes. U.S. Department of 
Transportation (2018) set the goal of improving regional performance by integrating shared 
mobility into multimodal transportation. All these researches demonstrated that shared micro 
mobility could provide first and last-mile connections to public transit as a complement, but did 
less to investigate its substitutional or replacing impact on transit trips. 

Shared micro mobility is competitive to serve short-distance trips, especially when it is more 
direct than public transports, more affordable than automobiles, and more effort-saving than walking. 
McKenzie (2020) revealed that e-scooter services had been established based on an induced demand 
for short-distance travel options in Washington D.C. Smith and Schwieterman (2019) analyzed 
hypothetical trips in Chicago and found that e-scooter was an attractive option for short trips, but 
less important for the long haul. Limited studies investigated how shared micro mobility would 
replace other transport services for short-distance trips. Some compared the duration of shared micro 
mobility with ride-hailing (McKenzie, 2020) and taxi (Faghih-Imani et al., 2017) and suggested that 
shared bike and e-scooters would be a competitive alternative to automobiles for short trips during 
peak hours. Fitt and Curl (2019) designed a survey and revealed that e-scooter users were most 
likely to use e-scooters in substituting walking, private cars, and ride sourcing for short trips around 
3km. But to the best of our knowledge, to what extent the shared micro mobility would replace 
public transit for short-distance trips was not explored. 
 

3. Methods and Data 

The methods and data processing in this paper comprise four steps. First, we measure the 
transit network indirectness, transfer, and access-egress walking. Second, we did a stated 
preference survey to Neuron e-scooter users and structured the survey to make e-scooters and 
MRT as competitors for short-distance trips. Third, based on the stated preference survey, we 
develop mixed logit models to examine factors influencing the choice of e-scooters and MRT 
(RQ1). Fourth, we use the observed Neuron e-scooter trips as a proxy of short-distance travel 
demand. Based on the estimates of logit models, we calculate the potential of using e-scooters to 
serve transit trips at different levels of indirectness, transfer, and walking (RQ2). In the end, we 
measure the trade-offs between e-scooter mode share maximization and revenue maximization 
under a dynamic pricing (RQ3). 
 
3.1 Measuring transit network indirectness, transfer, and access-egress walking  

Transit designed for general public will inevitably lead to inconvenience for individuals due 
to indirect route, transfers (Metropolitan Transportation Authority, 2019), insufficient coverage 
ratio (AllTransit, 2019), last-mile gap (Government Technology, 2017), and long headway or 
waiting time (Jiao and Dillivan, 2013), etc. Given the characteristics of SCA, we measure the 
inconvenience of short-distance transit trips by MRT network indirectness (!!), MRT transfer 
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("!), and MRT access-egress walking distance (#!).   
Transit networks designed for a large spatial coverage will result in indirectness (Black, 

1995; Murray et al., 1998; Kepaptsoglou and Karlaftis, 2009). Levinson and EI-Geneidy (2009), 
Barthelemy (2011), Huang and Levinson (2015) defined the transit network indirectness as the 
ratio of the shortest network distance over the Euclidean distance between origins and 
destinations. Zhao and Ubaka (2004), Zhao (2006), Zhao and Zeng (2006) measured the transit 
route indirectness as the ratio of the distance along the transit route over the shortest street 
network distance between two nodes with a weighting factor. Lee (2006 and 2012) defined the 
transit network indirectness as not only an absolute degree of circuity (difference between the 
travelling time on a current transit network and on a hypothetical transit network of the possible 
shortest connections), but also as a comparative degree of competitiveness (difference between 
auto and transit travel time). Research revealed that transit network indirectness would reduce 
transit ridership (Huang and Levinson, 2015; Lee, 2006). Moreover, transit transfer would make a 
trip more onerous by incurring additional travelling time and physical activities (Horowitz and 
Zlosel, 1981; Guo and Wilson, 2004). Transfer was estimated to generate penalties equivalent to 
4.9 minutes of in-vehicle time in London (Guo and Wilson, 2011) and 5 to 15 minutes of in-
vehicle time in general (Litman, 2008). Derrible and Kennedy (2010) compared the transit 
network structures of 33 cities, and pointed out that Singapore had a high transfer possibility and a 
large number of the maximum transfers. Reducing transit transfers has been proposed as an 
important goal for transit network optimization (Zhao and Ubaka, 2004; Zhao, 2006; Zhao and 
Zeng, 2006; Yu et al., 2012). Additionally, increasing the coverage ratio to reduce access-egress 
walking distance is crucial for enhancing transit service quality (Guihaire and Hao, 2008). 
Research showed that longer walking distance to transit station would decrease transit ridership 
(Keijer and Rietveld, 2000; Zhao et al., 2003; Derrible and Kennedy, 2009).   

In this study, the MRT network indirectness (!!) is measured as the ratio of the travelling 
distance using MRT network (including MRT access-egress walking distance) over the shortest 
path on street network. The access-egress walking distance (#!) is measured by sum of the first 
and last-mile walking distances following the shortest path on street network. The shortest path is 
calculated using Dijkstra's algorithm (Dijkstra, 1959).  
 
3.2 Stated preference survey 

We carried out a stated preference survey to Neuron e-scooter users and asked them about 
choices of e-scooters or MRT under a series of scenarios, based on which to estimate the 
coefficients of variables influencing users’ mode choices using logit models. 

First, considering the indirectness, transfer, and access-egress walking distance in transit 
trips, we selected the following variables to define the scenarios in the stated preference survey: 
number of MRT stop (!!), number of MRT transfer ("!), MRT access-egress walking distance 
(#!), MRT fare ($!), MRT traveling time (%!), e-scooter travelling time (%"#), and e-scooter fare 
($"#). The e-scooter fare was set by the Neuron e-scooter company at the rate of 1 SGD (Singapore 
dollar)� to start and 0.12 SGD per minute after the first minute. For calculating the MRT travelling 
time, we did a field survey and observed that pedestrians in Singapore central area usually walked 
at an average speed of 3km/h and spent about 6 minutes to enter the starting MRT station and exit 
the ending MRT station, 2.5 minutes to pass one MRT stop, and 3 minutes to take one MRT 
transfer. Thus, in the stated preference survey we assumed that MRT traveling time was calculated 
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as #!  * (20 minute/km) + !!  * 2.5 minute + 6 minute + "!  * 3 minute. 
Then, we set the variables at multiple levels to construct the experiment (Table 1). There are 

24 MRT stations near Neuron e-scooter parking locations in SCA. MRT trips in SCA are often 
short, and the majority of them have no more than 6 stops and 2 transfers5. Our field survey 
revealed that passengers normally walked less than 0.8 km to reach a single MRT station. Based 
on the range of these MRT variables, we categorized the number of MRT stop with three levels (2, 
4, 6), the number of MRT transfer with 3 levels (0, 1, 2), and the MRT access-egress walking 
distance with 2 levels (0.6 km, 1.2 km). The variable MRT fare was set based on the official MRT 
fare calculator, which normally cost 0.77 SGD for 1-2 stops, 0.97 SGD for 3-4 stops, and 1.07 
SGD for 5-6 stops. Also, as revealed in the summary of Neuron users’ traveling distances 
(Appendix C) and the relation of traveling time and distance (Appendix D), 70.22% e-scooter trips 
were shorter than 3 km, which took about 10 minutes for 1 km, 20 minutes for 2 km, and 30 
minutes for 3 km. Therefore, we grouped the e-scooter travelling time into three levels (10 
minutes, 20 minutes, 30 minutes), with the corresponding e-scooter fare as 2.08 SGD, 3.28 SGD, 
and 4.48 SGD. 

�
5 Only the trips from Marina South Pier MRT station to Newton MRT station have 7 stops, and only the trips from Bugis MRT station to 
Bencoolen MRT station have 3 transfers. 
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Table 1. Setting the levels of variables in the stated preference survey 
Variables Levels 
MRT stop ($!) 2, 4, 6 
MRT transfer ("!) 0, 1, 2 
MRT access-egress walking distance (#!) 0.6 km, 1.2 km 
MRT fare (%!) 0.77 SGD for 1-2 stops 

0.97 SGD for 3-4 stops 
1.07 SGD for 5-6 stops 

MRT travelling time (&!) #! * (20 minute/km) + $! * 2.5 minute + 6 
minute + "! * 3 minute 

E-scooter travelling time (&"#) 10 minutes 
20 minutes 
30 minutes 

E-scooter fare ($"#) 1 + 0.12 ∗ (%"# − 1) 
 

Next, by combining three levels of MRT stops, three levels of MRT transfers, two levels of 
MRT walking distance, and three levels of e-scooter time/fare, we obtained 3*3*2*3=54 
scenarios. We removed impossible combinations and finally generated 34 scenarios to carry out an 
online stated preference survey. The impossible scenarios include the situations where alternative 
e-scooter travelling time is unrealistically long or short and the situations where the number of 
MRT transfers is equal to or more than the number of MRT stops. Since it was not ideal for one 
respondent to answer 34 questions, we divided 34 scenarios into 5 questionnaire groups shown in 
Appendix E. Respondents were asked to choose between MRT and e-scooter in each scenario. A 
questionnaire example is presented in Appendix F.  

The stated preference survey was sent to more than 10000 Neuron e-scooter sharing 
registered users through an online platform from November 26th, 2018 to December 6th, 2018. The 
users mainly include white-collar workers, students, and tourists in SCA. Finally, 758 complete 
responses were returned (148 for group 1, 152 for group 2, 142 for group 3, 158 for group 4, and 
158 for group 5), with a response rate of about 7.58% and consisting of 5366 answers to all 34 
scenarios. The response rate was high compared with normal online survey, because the 
respondents received coupons as a monetary incentive to participate in the survey. Table 2 
illustrates the sociodemographic statistics of all survey respondents and compares it with 2018 
Singapore census. The percentages of age below 22 and age above 46 in survey respondents are 
lower than that in Singapore general population, while the percentage of age 23-45 is higher, 
indicating that shared e-scooters attract more young and middle-aged adults than other age groups. 
The male ratio of survey respondents is nearly 75%, which is much higher than 49% in Singapore 
census, possibly because males are more willing to embrace new technology or more responsive 
to surveys. The portion of monthly income group below 1500 SGD in respondents is higher than 
that in general population. This is probably because higher-income people prefer to use other 
motorized modes more than e-scooters. 
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Table 2. Sociodemographic statistics of respondents to the stated preference survey 
 Stated preference survey respondents 2018 Singapore census 

Age    
22 and younger 117 15.44% 24.13% 
23-28 200 26.38% 10.59% 
29-34 196 25.86% 7.04% 
35-45 187 24.67% 15.44% 
46-65 57 7.52% 29.77% 
Above 65 1 0.13% 13.03% 
Gender    
Female 186 24.54% 50.99% 
Male 564 74.41% 49.01% 
Prefer not to answer 8 1.05%  
Monthly income    
SGD 1500 and below 164 21.64% 16.41% 
SGD 1501- SGD 3000 175 23.09% 25.48% 
SGD 3001- SGD 5000 123 16.23% 24.70% 
SGD 5001- SGD 8000 86 11.34% 16.60% 
SGD 8001 and above 105 13.85% 16.81% 
Prefer not to answer 105 13.85%  

Source of 2018 Singapore census: the age and gender statistics are from Singapore Department of 
Statistics; the monthly income statistics are from Singapore Ministry of Manpower, employed 
residents aged 15 and over by gross monthly income from work. 
 

3.3 Logit models 

(1) Multinomial logit model 

We first constructed a multinomial logit model as a base model to examine the survey data. 
Considering the collinearities between MRT travelling time and other MRT variables as well as 
between e-scooter travelling time and e-scooter fare in design of stated preference survey, we 
exclude MRT travelling time (%!) and e-scooter travelling time (%"#) from the logit models. We 
also add a variable of respondents’ past e-scooter experience ('"#) into the model inputs which is 
measured by a respondent’s total e-scootering time (minute) in the one month before the stated 
preference survey. We obtained the information of respondents’ past e-scooter experience by 
linking their ID to their trip history. 

The e-scooter utility (/"#) and MRT utility (/!) could be written as:�
                                    ("# = *"# + ,$ ∙ %"# + ," ∙ '"# + ."#                                                    (1) 

                          (! = *! + ,$ ∙ %! + ,# ∙ $! + ,% ∙ "! + ,& ∙ #! +.!                              (2) 
Where 0"# and 0! are the alternative specific constants (ASC) of the mode e-scooter and MRT, 
indicating the preference on that mode. The ASC of mode MRT is normalized to zero. %"#,	'"#, %!, 

$!, "!, #! are the variables that determine the utilities and are in alignment with the variable 
settings in the stated preference survey. 	2 is a series of coefficients to be estimated. ."# and .! are 
the error terms. 

The probability of choosing e-scooter (0"#) and MRT (0!) could be written as: 

                                                  0"# = "!"#
"!"#'"!$					                                                                            (3) 

                                                       0! = 1 − 0"#	                                                                                (4)   
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(2) Mixed logit model with random parameters 

To account for the random tastes among respondents in parameters, we develop a mixed logit 
model with the integrals of standard logit probabilities over the density of parameters: 
                                                    3$%(2) = ∫6$%(2)7(2|9):2                                                     (5)   
where 3$% is the probability of individual n choosing alternative i, 6$%(2) is the logit probability 
evaluated at parameters 2: 

                                                               6$%(2) =
"!"#(%)

∑ "!"'(%)(
'

                                                           (6) 

and 7(2|9) is the density function of 2 described by the parameter 9. The distribution of 7(2|9) is 
usually a normal distribution, a lognormal distribution, or a triangular distribution according to 
actual conditions. Therefore, the estimation of parameters 2 becomes the estimation of parameter 
9. 

(3) Individual-specific error components 

Since there are repeated choices of the same individuals in the stated preference survey, we 
then consider the panel effect of correlation among the responses of the same individuals by 
including individual-specific error components into mixed logit models. The utility of choosing 
alternative i for individual n can be defined as: 

                                /$% = 0% + ;$% ∙ =$ + 2'($)*! ∙ >% + ?$% ∙ =$ + @%                               (7) 
where ?$% ∙ =$ is the individual-specific error component with ?$% as a vector of random terms of 
zero means and =$ as the observed variables of individual n, and @% is the error term with 
independent and identically distributed extreme value (IID EV). That is, ?$% ∙ =$ + @% defines the 
stochastic portion of utility and can be correlated among the same individuals according to the 
specification of =$.  2'($)*! are the random parameters and >% are observed variables related to 
alternative i. 0% is the ASC of alternative i. We also include ;$% ∙ =$ as the individual heterogeneity 
in ASC depending on the observed variables	=$ of individual n with ;$% as fixed parameters. 
 

(4) Individual heterogeneity around the means of random parameters 

To capture additional panel effect of correlation among the responses of same individuals that 
is not accounted for by error components, we further inject individual heterogeneity into the 
means of random parameters. We denote that the random parameters 2'($)*! follow normal 
distributions and take the form as: 

                                                      2'($)*! = A + B ∙ C                                                       (8) 
where A are the means and B are the standard deviations of 2'($)*!, and v is a standard normal 
distribution with the mean of 0 and the standard deviation of 1. 

To allow for individual heterogeneity around the means of random parameters, we adapt the 
methods by Greene and Hensher (2006) and Beville and Kerr (2009) and specify A as: 

                                                           A = 2+ + D ∙ E$                                                        (9) 
where the means A are heterogeneous according to the observed variable E$ of individual n, and 
2+ and D are the fixed parameters that capture the mean shift in random parameters. 
 
3.4 E-scooter trip data processing 

We acquired 23319 Neuron e-scooter trips containing origins and destinations during one-
month period from October 15th, 2018 to November 14th, 2018. These trips both started and ended 
in SCA. The data had been preprocessed to remove unrealistically short trips of less than 1 minute 
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and long trips of more than 900 minutes. Around 400 e-scooters were in operation. Users were 
required to park e-scooters at designated parking locations inside the geo-fenced area. Otherwise, 
users would be penalized with a convenience fee of 5 SGD if not returning e-scooters to the 
parking locations, or rewarded with an incentive fee of 2 SGD if taking e-scooters that were 
previously outside parking locations back to the parking locations.  

Commuting e-scooter trips during MRT operation hours were selected from the dataset. First, 
23319 e-scooter trips were divided into three categories in Table 3, namely 15070 one-way trips of 
origins and destinations both inside the parking locations (type A), 6839 round trips with 
overlapped origins and destinations inside the parking locations (type B), and 1410 one-way trips 
with either origins or destinations or both outside the parking locations (type C). To select the e-
scooter trips that were comparable to MRT ones in SCA, we removed the detoured type A trips 
(indirectness above 5) and type B trips because they were more likely for tourism and sightseeing 
purposes, and we removed type C trips because they were associated with extra convenience fee 
or incentive fee that did not match normal cases in our stated preference survey. After that, we 
obtained 12695 non-detoured type A trips (indirectness below 5) which were more likely for 
commuting purposes of work-related business and personal errands. We further removed the e-
scooter trips off the MRT operation hours (06:38-23:45) and finally filtered out 11640 non-
detoured type A trips to represent commuting e-scooter trips during MRT operation hours for 
addressing RQ2 and RQ3. 

 
Table 3. Descriptive statistics of e-scooter trips 
Type of trips Trip # Trip % Trip time 

(minute) 
Trip mileage 
(km) 

Mean Stdev. Mean Stdev. 
A: One-way trip with 
OD both inside the 
parking locations 

Non-detoured  
(Indirectness <= 5) 

12695 54.44% 21.48 34.01 2.132 2.033 

Detoured 
(Indirectness > 5) 

2375 10.19% 74.12 79.32 7.753 5.463 

B: Round trip with overlapped OD inside the 
parking locations 

6839 29.33% 23.99 49.76 2.203 3.531 

C�One-way trip with OD either or both outside 
the parking locations 

1410 6.04% 36.50 45.13 3.955 4.472 

Total 23319 100%   

 

4. Results 

4.1 Users’ perceptions: stated preference survey to measure mode choices of e-scooters and 

transit 

4.1.1 Logit models 

We investigate what variables and how they determine users’ mode choices of e-scooter 
sharing and transit through a series of logit models in Table 4 (RQ1). Model 1 is a base model 
with the multinomial logit structure. Model 2 is a mixed logit model with random parameters. 
Model 3 is model 2 plus individual-specific error components. Model 4 is model 3 plus gender 
heterogeneity around means of random parameters. All models are estimated with maximum 
likelihood method using R packages. In the mixed logit model 2, model 3, model 4, we use normal 
distributions for random parameters which perform optimal model fit and generate behaviorally 
meaningful results.  
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Looking into the parameter estimates of the multinomial logit model 1, MRT transfer, MRT 
access-egress walking distance, and fare have significantly negative impacts in determining 
respondents’ mode choices, but the number of MRT stops and respondents’ past e-scooter 
experience are not significant. By fixing the ASC of MRT as zero, the ASC of e-scooters is 0.412, 
indicating that the respondents in general have a positive preference for e-scooters.  

Model 2 accounts for random tastes among respondents by including random parameters into 
a mixed logit model. The estimates of model 2 produces expected signs. The parameter means are 
significantly negative for MRT transfer, MRT access-egress walking distance, and fare, but are 
insignificant for past e-scooter experience and number of MRT stops, which is consistent with the 
parameter estimates of model 1. The random tastes are confirmed in the significant standard 
deviation of all parameters except respondents’ past e-scooter experience. Model 2 shows 
additional explanatory power compared to model 1, as the McFadden's pseudo R2 increases from 
0.0813 to 0.2774.  

Model 3 extends model 2 by adding individual-specific error components and individual 
heterogeneity around ASC in e-scooter utilities while fixing those of MRT utilities as zero. E-
scooter has a significantly positive ASC by default. Males tend to have a lower e-scooter ASC, but 
are more heterogeneous in e-scooter preference than non-males. The age groups 23-34 have the 
lowest e-scooter ASC, and the age group below 22 are most heterogeneous in e-scooter 
preference. As for the income groups, the higher the income level, the lower the increase in e-
scooter ASC, however, the income group 5000-8000 SGD has the most heterogeneous preference 
for e-scooters. The likelihood ratio-test statistic from model 2 to model 3 is 1036 (p<0.001), 
showing a better model fit for model 3 when including error components and heterogeneity around 
e-scooter ASC. 

Model 4 further injects gender heterogeneity into the means of random parameters. The 
random parameters of MRT transfer, MRT access-egress walking distance, and fare have 
significantly negative means by default, which is aligned with model 2 and model 3. Being a male 
mitigates the average intensity of how MRT transfer and fare affect utilities. When including 
heterogeneity around the means of random parameters, model 4 shows better measure of 
goodness-of-fit compared with model 3, as the likelihood ratio-test statistic is 22 (p<0.001). 

Overall, these findings demonstrate that fare, MRT transfer, and MRT access-egress walking 
distance have significantly negative impacts on mode utilities with random tastes among 
respondents. Male, young and high-income groups are more heterogeneous in e-scooter 
preferences. Also, gender would affect the way of how fare and transit transfer determine the 
mode choices. 
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Table 4. Results of logit model 1-4 
  Model 1 Model 2 Model 3 Model 4 
Attributes Alternatives  Mean Stdev. Mean Stdev. Mean Stdev. 
E-scooter ASC E-scooter  0.412*  0.476*   1.738*   0.157  
Random parameter         
Past e-scooter experience E-scooter -0.000249  0.00056 0.00216 -0.00202* 0.00813* -0.00158 0.01745* 
MRT stop MRT  0.0445  0.0479  0.2644* -0.0330 0.7794*  0.0052 0.3568* 
MRT transfer MRT -0.498* -1.198* 1.442* -1.815* 2.389* -1.146* 2.247* 
MRT walking  MRT -1.228* -2.201* 1.291* -3.386* 0.129 -2.873* 0.912* 
Fare E-scooter & MRT -0.521* -0.991* 0.813* -1.655* 1.305* -1.127* 1.062* 
Error components     
Male E-scooter     2.995*  3.272* 
Age �22 E-scooter     4.652*  3.455* 
Age 23-28 E-scooter     1.635*  0.248 
Age 29-34 E-scooter     0.586  0.398 
Age 35-45 E-scooter     0.533  0.689 
Income �1500 E-scooter     15.210*  11.815* 
Income 1501-3000 E-scooter     8.043*  8.406* 
Income 3001-5000 E-scooter     7.279*  12.239* 
Income 5001-8000 E-scooter     21.738*  12.151* 
Income > 8000 E-scooter     7.054*  7.049* 
Heterogeneity around E-scooter ASC     
Male E-scooter    -0.663*   0.952  
Age �22  E-scooter    -0.175  -0.377  
Age 23-28 E-scooter    -1.354*  -0.386  
Age 29-34 E-scooter    -1.749*  -0.577  
Age 35-45 E-scooter    -1.180*   0.041  
Income �1500 E-scooter     3.666*   2.986*  
Income 1501-3000 E-scooter     2.079*   0.693*  
Income 3001-5000 E-scooter     1.493*   1.988*  
Income 5001-8000 E-scooter     2.229*    1.970*  
Income > 8000 E-scooter     0.445   0.022  
Heterogeneity around means of random parameters     
Male * MRT transfer MRT       0.870*  
Male * MRT walking MRT       0.369  
Male * Fare E-scooter & MRT       0.752*  
Summary of statistics     
McFadden's pseudo R2  0.0813 0.2774 0.4245 0.4275 
Log-Likelihood  -3237 -2546 -2028 -2017 
Number of observations   5366 5366 5366 5366 

Note: * p<0.05. The gender, age, and income variables (i.e. Male, Age �22, Age 23-28, Age 29-34, Age 35-45, 

Income �1500, Income 1501-3000, Income 3001-5000, Income 5001-8000, Income > 8000) are dummy variables. 

To avoid collinearity, we exclude females and a small proportion of unknown genders from gender variables, exclude 

age>45 from age variables, and exclude the unknown income from income variables.  
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4.1.2 E-scooters mode share by replacing transit trips 

We further investigate how many short-distance transit trips are perceived to be possibly 
replaced by e-scooters (RQ2). We use the trip data introduced in section 3.4 as a proxy of short-
distance travel demand and split them into groups on different levels of transit inconvenience. We 
do a comparison of MRT and e-scooter performances and calculate the e-scooter mode share in 
each group.  

We set different levels of transit inconvenience in Eq (10) and table 5: 
 

                                             3( = 45 ∈ 3�!! > 8	&	"! ≥ ;	&	#! ≥ <	=                                                  (10) 

 
where M is a collection of all origin-destination (OD) pairs; 3( is a subset at certain level of transit 
inconvenience, m is one OD pair; d, t, w are pre-determined thresholds of MRT network 
indirectness (!!), MRT transfer ("!), and MRT access-egress walking distance (#!). The 
thresholds of five transit inconvenience levels F%,, F%-, F%., F%/, F%0 are defined in table 5.	F′% 
is the complement set of F% and by nature has lower inconvenience than F%. 
 
Table 5. Thresholds of five transit inconvenience levels 

Inconvenience level Threshold of !! Threshold of "! Threshold of #! 
3() !! > 2.276 "! ≥ 1 #! ≥ 0.6	C5 
3(* !! > 8 "! ≥ 1 #! ≥ 0.6	C5 
3(+ !! > 8 "! ≥ 1 #! ≥ 1.2	C5 
3(, !! > 8 "! ≥ 2 #! ≥ 0.6	C5  
3(- !! > 8 "! ≥ 2 #! ≥ 1.2	C5  

 
The travel demand is firstly categorized into the transit inconvenience level F%, (H! > 2.276, 

"! ≥ 1, and #! ≥ 0.6	LM ) and its complement set F′%,. We select 2.276 as a threshold of H!, 
because it is the average MRT indirectness of observed trips.	Fig. 3 presents hourly trip numbers 
under F%,and F’%,.	F%, account for 18.48% short-distance trips which have higher than 2.276 
MRT indirectness, at least 1 transfer, and longer than 0.6 km walking distance. Although the trip 
numbers in F%, and F’%,	fluctuate across the day with peaks at 18:00, their percentages remain 
relatively constant. Fig. 4 shows the spatial distribution of the monthly trip numbers for F%,and 
F’%, aggregated at origins. Trips with transit inconvenience F%,	appear more in SCA core than the 
periphery, while F′%, are the opposite.  
 

 
Fig. 3. Hourly number (left) and percentage of trips (right) on MRT inconvenience level F%, and 
F’%,  
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Fig. 4. Monthly number of trips on MRT inconvenience level F%, (left) and F’%, (right) 
aggregated at origins (starting e-scooter parking locations) 
 

We then do a comparison of e-scooters and MRT performances when serving 18.48% trips 
under transit inconvenience level F%, and 81.52% under F’%,. The results are shown in Table 6 
and Appendix G. Overall, e-scooters are found to generate less average time, mileage, and e-
scooter indirectness (e-scooter mileage over the shortest street network distance) for F%, than 
F′%,. We compute e-scooter mode shares for the two travel demand groups F%, and F’%,	using the 
coefficients derived from the base model 1 in Table 4. The average e-scooter probability is 77.4% 
for F%, and 57.6% for F’%,. This contrast demonstrates that the less convenient the MRT trips, the 
more MRT trips would be replaced by e-scooter sharing. 
 
Table 6. Comparisons between MRT and e-scooter performances for 3() and 3’()  

 Trips of 3() Trips of 3’() 
E-scooter  Average e-scooter indirectness 1.609 1.664 

Average e-scooter time 18.188 min 21.726 min 
Average e-scooter mileage 1.837 km 2.161 km 

MRT  Average MRT indirectness 4.255 1.828 
Average access-egress walking distance 1.131 km 0.880 km 
Percentage of 0 transfer 0.000% 70.102% 
Percentage of 1 transfer 47.420% 21.383% 
Percentage of 2 transfers 49.512% 7.472%% 
Percentage of 3 transfers 3.068% 1.043%% 

Average ratio of e-scooter mileage to MRT mileage  0.461 1.132 
 

We further test the sensitivity of e-scooter mode share to transit inconvenience levels by 
varying the thresholds in F%-, F%., F%/, F%0 in Table 5. We change Im’s threshold d from 1.314 
(average value in HITS data) to 10. The results presented in Fig.5 show that 1) the average e-
scooter mode share for F%-, F%., F%/, F%0 is always higher than that for their complement set 
F’%-, F’%., F’%/, F’%0, where the former is always above 72.2% and the latter remains stable 
around 60%; 2) under the same MRT transfer and MRT access-egress walking distance threshold, 
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the higher the MRT network indirectness’s threshold d, the larger the e-scooter probability; 3) the 
sensitivity to the thresholds of MRT transfer and MRT access-egress walking distance present a 
similar trend. This sensitivity test corroborates our previous finding in that, although there is no 
universal benchmark of transit inconvenience, e-scooters would replace more MRT trips 
whichever have higher inconvenience levels of indirectness, transfer, and walking. 
 

 
Fig. 5. Sensitivity of e-scooter mode share to MRT inconvenience levels 
 
4.2 Operational trade-offs between e-scooter mode share maximization and revenue 

maximization 

The objectives of serving more e-scooters trips (mode share maximization) and seeking more 
revenue (revenue maximization) are not always aligned. The previous sections ascertain the fact 
that people tend to use e-scooters more when the short-distance transit trips have higher 
inconvenience level of indirectness, transfer, and walking. This implies an induced need for short-
distance travel options and a potential market for e-scooter sharing. Serving more trips or 
attracting more users might be the central concern when an e-scooter company is initially 
launched. However, the private company will inevitably seek higher revenue in the long run. As 
outlined in RQ3, understanding the trade-offs between mode share maximization and revenue 
maximization becomes important to inform public policy making. In this section, using the 
observed trip data as a proxy of short-distance travel demand, we investigate the alignment and 
discrepancy between the goals of gaining e-scooter mode share and revenue, compare the conflicts 
between the mode share maximization and revenue maximization under a dynamic pricing, and 
discuss possible trade-off strategies between two objectives. 

We start to understand the relationship between mode share maximization and revenue 
maximization in two hypothetical cases, as shown in Fig. 6.  First, for each e-scooter OD pair, we 
compute e-scooter mode share and revenue with varying e-scooter fare ($"#). E-scooter mode 
share is approximated by e-scooter probability (3"#), computed using $"# in Eq (1), (2), (3). The 
coefficients are derived from base model 1 in Table 4. E-scooter revenue is then measured as 
O"# = 3"# ∗ $"#. The difference between case 1 and 2 in Fig 6 is whether the probability of 
choosing e-scooter is higher than transit when the revenue reaches its maximum. In Fig. 6, three 
critical points are identified. Q is when the probability of choosing e-scooter (3"#) is the same as 
choosing MRT (3!), which is also the point when probability shows the most decreasing rate (the 
first derivative is lowest). N is the e-scooter revenue (O"#) tipping point where it reaches the 
maximum. L is the point where e-scooter revenue (O"#) has the most decreasing rate. Using these 
critical points, five stages of e-scooter services A1-A5 can then be classified as shown in Fig 6. 
There are two sequences of point Q, N, L: either Q is between N and L (case 1), or N is between Q 
and L (case 2).  
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A1-A5 show different stages in any of which e-scooter probability and revenue increase or 
decrease monotonically, as summarized in Table 7. The goal of mode-share-seeking is aligned with 
revenue-seeking in A1, A2 and A3 stages, because e-scooter probability and revenue curves have 
the same monotonicity. On the contrary, there is discrepancy between two goals in A4 and A5 stages 
due to their opposite monotonicity. Notably, A5 has much sharper discrepancy than A4, because a 
decreasing rate of revenue growth coincides with an increasing rate of probability decline in A5 but 
a decreasing rate of probability decline in A4. 

We divide the travel demand into trips under A1-A5 e-scooter services by which stage its e-
scooter fare falls in. Fig. 7 reports the numbers of travel demand under A1-A5 e-scooter services in 
hours of day and aggregated at origins. A1-A4 have only small trip volumes of mild hourly 
fluctuations, with hot spots along the Singapore river. But A5 shows a much larger trip volume, with 
the temporal peak hours in 8:00, 13:00, 18:00 and an evenly spatial distribution in SCA. The large 
volume of A5 indicates that the majority of e-scooter services has intensive conflicts between its 
mode share increase and revenue increase. 

 

Fig. 6. E-scooter mode share (probability) and e-scooter revenue in relationship to e-scooter fare 
Case 1: Q is between N and L, using ( %! = 0.77, "! = 1, #! = 1.2	C5) as an example 

Case 2: N is between Q and L, using ( %! = 0.77, "! = 0, #! = 0.6	C5) as an example 
 

Table 7. Impact of reducing e-scooter fare on e-scooter probability and revenue for A1-A5 stages 
E-scooter stages When reducing e-scooter fare ($"#) 

E-scooter probability (3"#) E-scooter revenue (O"#) 
A1 Increases at an increasing rate Increases at an increasing rate 
A2 Increases at an increasing rate Increases at a decreasing rate 
A3 Increases at a decreasing rate Increases at a decreasing rate 
A4 Increases at an increasing rate Decreases at an increasing rate 
A5 Increases at a decreasing rate Decreases at a decreasing rate 
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Fig. 7. Numbers of travel demand under A1-A5 e-scooter services: average daily number in hours 
of the day and monthly number aggregated at origins (e-scooter starting parking locations) 
 

When the e-scooter company adjusts the fare to increase e-scooter mode share in each OD 
segment, what could be the impact on e-scooter revenue and vice versa? To maximize the revenue, 
the fare needs to be adjusted to the point N in Fig. 6; and to maximize mode share (probability), the 
fare needs to be adjusted to a lower fare in which the service can still be sustained economically. In 
this work, the fare lower bound is set to be the minimum cost calculated on the current fare structure 
(1 SGD to start and 0.12 SGD per other minute) by assuming that users spend the shortest time and 
follow the shortest road path at the allowable maximum speed of non-motorized vehicle in 
Singapore (15 km/h). The e-scooter fare lower bound is smaller than the fare at revenue maximum 
point N for all A1-A5 services. Only for a few 5.24% A5 services, the fare is already lower than the 
fare lower bound, and thus will not be adjusted in probability maximization. We compute individual 
trip’s e-scooter probability change and revenue change under either probability maximization or 
revenue maximization, and show two changes in a bi-dimensional histogram in Fig. 8. Table 8 show 
change in average e-scooter probability and revenue totals for all trips under two maximizations. 
This comparison ascertains that the loss of revenue and e-scooter mode share can reach as high as 
26.02% and 16.64% if blindly maximizing the other one. With respect to the percentage change, 
revenue maximization brings more gains with less loss than mode share maximization. 
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Fig. 8. Change in e-scooter probability (x-axis) and revenue (y-axis) for individual trips: e-scooter 
probability maximization (left) and revenue maximization (right) 
 
Table 8. Change in average e-scooter probability and total revenue for all trips 

 Average e-scooter 
probability 

Total e-scooter revenue (SGD) 

Original value 0.613 18409.108 
Change after e-scooter 
probability maximization  

+0.165  
(Increase by 26.92%) 

-4789.952 
(Decrease by 26.02%) 

Change after e-scooter 
revenue maximization 

-0.102 
(Decrease by 16.64%) 

+6914.401 
(Increase by 37.56%) 

 
Given that maximization of one objective would result in loss of the other, a win-loss 

situation, how do we balance two maximizations so to serve more trips without much sacrifice in 
revenue, and vice versa? We answer this question by exploring the solutions that could reduce two 
goals’ discrepancy. The trade-off solutions for A1-A5 services are summarized in Table 9. Under 
e-scooter probability maximization, a possible trade-off solution for A1, A2, A3 is to stop reducing 
fare at the revenue maximum point N, or to a lower fare of higher probability but the same 
revenue. A trade-off solution for A4 services is to stop reducing fare at point Q where probability 
increases the fastest. A trade-off solution for A5 services could be adjusting the fare to the middle 
point between current fare and the fare lower bound. Similarly, under e-scooter revenue 
maximization, a possible trade-off solution for A5 services in case 2 of Fig.6 is to adjust the fare to 
point Q. The results of these trade-off solutions are compared and shown in the last two columns 
of Table 9, which reports a pronounced save of the decrease in one end, while still maintaining a 
significant increase in the other. Taking the large volume of A5 e-scooter services as an example, 
maximizing the probability for A5 services whose fare lower bound is smaller than current fare 
would increase their average probability by 10.83% and decrease the total revenue by 30.65%. But 
the trade-off solution to the middle point could save the total revenue decrease to 13.12% and still 
maintain 5.92% increase in the average probability. Likewise, maximizing the revenue for A5 
services in case 2 increases their total revenue by 28.37% and decreases the average probability by 
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30.76%. But the trade-off solution could save the average probability decrease to 19.34% and still 
generate 23.76% increase in the total revenue. In sum, these trade-off strategies provide a useful 
tool for e-scooter company and public authority to consider a balance between the two different 
goals of mode share and revenue. 

 
 
 
.
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Table 9-1. Trade-offs for e-scooter probability maximization 

E-scooter service 
Average probability_ 
original value 

Overall revenue 
(SGD)_original value 

Fare adjustment strategies 
(* indicates the trade-off solutions) 

Average probability 
_change 

Total revenue 
(SGD)_change  

A1, 
A2, 
A3 

Revenue at fare lower 
bound >= current revenue 0.076 480.302 

To the fare lower bound +0.678 
(+894.61%) 

+661.280 
(+137.68%) 

To the fare at point N* +0.440 
(+580.77%) 

+1278.445 
(+266.18%) 

Revenue at fare lower 
bound < current revenue 
 

0.381 2422.930 

To the fare lower bound +0.388 
(+101.84%) 

-1081.443 
(-44.63%) 

To a lower e-scooter fare of the same revenue but higher 
probability* 

+0.249 
(+65.42%) 

0.000 
(0.00%) 

To the fare at point N* +0.131 
(+34.39%) 

+347.072 
(+14.32%) 

A4 0.451 844.021 
To the fare lower bound +0.137 

(+30.38%) 
-267.191 
(-31.66%) 

To the fare at point Q*6 +0.049 
(+10.76%) 

-62.700 
(-7.43%) 

A5 

Current fare <= fare lower 
bound  0.828 505.175 No fare adjustment 0.000 

(0.00%) 
0.000 
(0.00%) 

Current fare > fare lower 
bound 0.721 13386.276 

To the fare lower bound +0.078 
(+10.83%) 

-4102.597 
(-30.65%) 

To the middle point of fare lower bound and current fare* +0.043 
(+5.92%) 

-1756.880 
(-13.12%) 

 

�
��For 0.24% of A4 whose fare lower bound is larger than that at point Q, the services’ fare is adjusted to the fare lower bound.�
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Table 9-2. Trade-offs for e-scooter revenue maximization 

E-scooter service Average probability_ 
original value 

Overall revenue 
(SGD)_original value  

Fare adjustment strategies 
(* indicates the trade-off solutions) 

Average probability 
_change 

Total revenue 
(SGD)_change  

A1, A2, A3 0.281 3673.636 To the fare at point N +0.233 
(+82.92%) 

+1625.517 
(+44.25%) 

A4 0.451 844.021 To the fare at point N -0.096 
(-21.30%) 

+68.372 
(+8.10%) 

A5 Case 1: fare at point N<fare 
at point Q< fare at point L 

0.786 10504.988 To the fare at point N -0.207 
(-26.28%) 

+4259.767 
(+40.55%) 

Case 2: fare at point Q<fare 
at point N< fare at point L 

0.620 3386.463 To the fare at point N -0.191 
(-30.76%) 

+960.746 
(+28.37%) 

To the fare at point Q* -0.120 
(-19.34%) 

+804.648 
(+23.76%) 
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5. Discussions 
E-scooter sharing is an emerging mobility service. This work pioneers the study of using e-

scooters to replace short-distance transit trips of excessive indirectness, multiple transfers, and 
long access-egress walking. We focus on two facets, namely (1) the perceptional acceptance of 
using e-scooters based on a stated preference survey, and (2) the operational trade-off between e-
scooter mode share and revenue. The findings offer insights into how these services could be 
utilized and regulated to e-scooter operators, transportation planners, and policy makers. 

On the first facet, analyses show that transit transfer and access-egress walking distance 
significantly reduce transit mode share, and e-scooters are perceived to have higher potentials of 
replacing short-distance transit trips of greater indirectness, transfer, and walking. This deepens 
our understanding about where and how to deploy e-scooters to effectively satisfy the demand 
unmet by transit. The appropriate locations to supply e-scooters are either the point far from any 
transit stations or around transit stations that have a high possibility of transfers to other stations in 
SCA (e.g. Bencoolen station, Raffles Place station, City Hall station, etc.). Also, the analyses 
reveal that sociodemographic features would affect the way of how fare and transit transfer 
influence mode choices. This provides references for precise e-scooter supply strategies. For 
example, in the blocks where people are more sensitive to transit transfer, more resources of e-
scooters can be provided. 

Using e-scooter sharing to replace short-distance MRT trips in SCA can ease MRT 
congestion during peak hours. For the purpose of reducing MRT crowding, Singapore Land 
Transport Authority launched the program of Travel Smart Journeys in 2019. It includes 
incentivizing the public to reconsider other green modes during peak hours, such as personal 
mobility devices. Shared e-scooters provide an alternative transport option to alleviate MRT 
crowding in SCA as our analyses show that e-scooters are competitive to serve MRT trips with 
higher than 2.276 network indirectness, at least 1 transfer, and longer than 0.6 km walking 
distance. Considering the limited urban space for e-scooter supply, it is worth further 
investigations in how to smartly allocate e-scooters spatially and manage supply during hours of 
day for satisfying short-distance travel demand. 

On the second facet, trade-off solutions are compared to leverage on the objectives of e-
scooter mode share and revenue. The principle of our suggestions is to increase mode share 
without much sacrificing in revenue. What a specific trade-off strategy to select should be based 
on the value judgement of loss. For probability maximization in A1, A2, A3 services, if the 
revenue loss is compared to the initial revenue before adjustment, a proper trade-off solution is to 
stop reducing fare where the revenue is as same as before. However, if the revenue loss is 
compared to the maximum revenue, an ideal trade-off strategy is to stop reducing fare at revenue 
maximum point. Also, the objectives of the private e-scooter company and urban transport 
authorities are not always aligned. This could happen when the private company seeks for higher 
revenue and mitigate e-scooter supply where affordable and convenient connections are needed 
but not profitable. As Singapore Land Transport Master Plan 2040 highlights the importance of 
harnessing the strength of new mobility services to provide more point-to-point transport options, 
the behavior of private e-scooter operators should be regulated to reach a proper balance between 
e-scooter mode share and revenue and between private operators and public transport authorities.  

Moreover, e-scooters involves safety and nuisance concerns that are revealed as a barrier to 
people’s decision making in shifting to micro-mobility. This has aroused wide attentions. In e-
scooter pilot programs of US cities, road safety is a prior consideration in operators’ permit 
application, including helmet requirement, headlamp and rear reflector installation, device and 
battery safety test, education on users to obey traffic rules, congestion pricing to reduce injuries, 
etc. (Wood et al., 2019; Riggs and Kawashima, 2020). More than relying on private companies to 
implement safety rules, Singapore Land Transport Authority is planning for more cycling path in 
the near future to accommodate electronic micro mobilities, in order to reduce conflicts in right of 
way and enhance road safety. It has triggered dialogues among operators, users, and legislators 
about urban design and planning for a safer street infrastructure. As for e-scooter nuisance, 
parking chaos has become a major problem in many cities (James, 2019). For example, the 
random e-scooter parking might block the walkways and car parking space, become an easy target 
for public space vandalism, and cause disturbance to road traffic. To keep street neat and free of 
obstructions, shared e-scooters are required to park at the street furniture zones in Washington 
D.C. (District Department of Transportation, 2020), and at the designated parking zones with 
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markers or racks in Singapore (Land Transport Authority, 2020). Another concern is uncontrolled 
expansion of e-scooter fleet size (Hall et al., 2019). Operator fleet caps are also adopted in 
Singapore to limit the quota of each operator and regulate their supply deployment. All of these 
indicate that proper regulations on e-scooters are necessary and are the prerequisite for smart use 
of this new mobility.  

Some limitations remain in this study. First, the stated preference survey was conducted to 
only e-scooter users through collaborations with Neuron. This guaranteed that all respondents 
were familiar with e-scooter concept, but it would inevitably result in a selection bias. As all the 
respondents are already e-scooter users, the potential of e-scooter usage for short transit trips 
could be overestimated. The future research shall seek to recruit more non-users, which can reduce 
the bias and allow for a random control trial. The stated preference survey was conducted from 
November 26th, 2018 to December 6th, 2018, which had more rainfalls and lower mean daily 
temperature than other seasons and might lead to the lower likelihood of using shared e-scooters. 
More supplementary survey during other seasons can be added in further studies. Second, due to 
the limited access to the full travel demand data, we used the observed e-scooter trips as a proxy 
of short-distance travel demand. This reflects the real e-scooter fare and time than a hypothetical 
case, but is subject to the data bias toward the use of e-scooters. In further studies, other sources of 
trips would be helpful to serve as a supplement, such as transit trips. Also, as the e-scooter trips 
were obtained one month before the stated preference survey, the changes in weather might have 
an impact on the travel behavior. The survey time overlapped with the monsoon seasons in 
Singapore and therefore had more rainfalls than the one month before the survey. As a 
consequence, respondents might be more inclined to shared e-scooters in the one month before the 
survey. Additionally, given that e-scooter trips only have the information of origins and 
destinations inside parking locations, we did not include the walking distance accessing and 
egressing the e-scooter parking locations. In SCA, users walk for 0.2 km on average to reach e-
scooter parking locations. More precise travel demand data would allow for a better depiction of 
real situations. Third, in designing the stated preference survey, the average MRT travelling time 
was estimated using other MRT variables, and e-scooter travelling fare was computed using e-
scooter travelling time based on Neuron’s real pricing structure. Therefore, MRT and e-scooter 
travelling time were excluded from the logit model inputs. Their effects have been accounted 
through including these other variables. However, in other studies, to understand the effect of 
travelling time on utilities independently, we would need the traveling time to be not associated 
with other variables, and this needs further inspections. Future work shall expand the survey 
respondents and vary the survey timing, test the survey results on multiple-sourced and more 
precise travel demand data, and account for situations where travelling time can have an 
independent impact on mode choices. 

Future research may consider to explore the potential of e-scooter sharing in the following 
aspects. 1)  Built environment can influence individual transit modal shift to shared micro mobilities 
(Martin and Shaheen, 2014). How the factors, like urban density, land use diversity, street design, 
and sociodemographic features, impact on e-scooter sharing needs further examination. 
Comparative studies across multiple cities are demanded to gain general insights into promoting e-
scooter sharing. 2) In addition to transit network indirectness, transfer, and access-egress walking 
distance, other factors of transit services can also affect transit experience, therefore influencing 
transit modal shift. For example, the effects of transit punctuality, reliability, environment inside 
carriages and congestion level during peak hours need further investigation. 3) There are other 
factors besides revenue for an e-scooter operator to consider, such as viscosity of users and 
advertisement effectiveness. Comprehensive discussions of those trade-offs can be conducted. 4) 
As shared e-scooters have potentials to serve short-distance transit trips, future research on fleet size 
management and rebalancing shall be considered. How to find optimal e-scooter distributions 
spatially and temporarily according to the varying travel demand unsatisfied by transit is worth 
investigations.  5) Safety, nuisance, and lack of bike lanes have become major barriers for shared e-
scooters (Shaheen and Cohen, 2019). It is worth more explorations in planning and policy toolkits 
about regulating e-scooters, such as curb space management, parking guidelines, safety rules, fleet 
caps, and design of dedicated paths. 
 

6. Conclusions 
The emergence of e-scooter sharing as a new micro mobility service provides an attractive 
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option for short-distance travelers. Surprisingly less was known about its effectiveness in serving 
short-distance transit trips. In this work, we investigate the potential of using e-scooter sharing to 
replace short-distance transit trips in Singapore Central Area on two levels, namely users’ 
perceptional level and e-scooter companies’ operational level. Through a stated preference survey 
and mixed logit models, we find that fare, MRT transfer, and MRT access-egress walking distance 
have significantly negative impacts on mode utilities with random tastes among respondents. Male, 
young and high-income groups are more heterogeneous in e-scooter preferences. In analyzing the 
travel demands under different levels of transit inconvenience, we discover that higher level of 
transit indirectness, more transfers, and longer access-egress walking result in a higher probability 
of using e-scooters. Through analyzing the decision of e-scooter companies in terms of the trade-
offs between serving more e-scooter trips and making more revenue under varying fares, we find 
that the revenue loss can be significant if to blindly maximize e-scooter’s mode share, and vice versa. 
To achieve a better balance between two goals, we figure out the trade-off places in-between two 
maximization extremes that could save much loss in one by only a small decrease in the maximized 
amount of the other, through keeping two goals’ alignment and reducing their discrepancy. This 
study would inform operators, planners and policy-makers on how to harness and regulate this new 
mobility service. It provides suggestions on deploying shared e-scooters to satisfy the demand 
unmet by transit, especially where transit travels have greater indirectness, transfer, and access-
egress walking distance. E-scooter supply strategies at different locations can be varied according 
to the sociodemographic features which influence e-scooter preference and mode choices. When 
public authorities and private operators have conflicts in serving more individual trips and seeking 
more revenue, the trade-off can be gauged to achieve a proper balance. The possible means include 
administrative regulations (i.e. issue the operator permit which requires operators to serve 
inconvenient short transit trips at some designated locations) or economic interventions (i.e. 
subsidies to operators provided by public authorities). 
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Appendix A. Typical scenarios that shared e-scooters are competitive to MRT in SCA 

Origin  
MRT station 

Destination 
MRT station 

MRT 
traveling time 

(Min) 

MRT 
transfers 

MRT fare 
(SGD) 

E-scooter 
travelling 

time (Min) 

E-scooter 
fare 

(SGD) 
Tanjong Pagar Telok Ayer 26 2 0.77 6 1.60 
Tanjong Pagar Downtown 30 2 0.77 6 1.60 
Tanjong Pagar Marina Bay 15 1 0.77 10 2.08 

Downtown Raffles Place 26 2 0.77 8 1.84 
Fort Canning Clark Quay 15 1 0.77 8 1.84 
Fort Canning Dhoby Ghaut 20 1 0.77 10 2.08 

City Hall Esplanade 20 1 0.77 5 1.48 
Rochor Bencoolen 30 2 1.07 6 1.60 
Bugis Bencoolen 30 0 1.07 8 1.84 

Bras Basch Bugis 20 1 0.77 8 1.84 
Esplanade Bugis 15 1 0.77 6 1.60 

Dhoby Ghaut Bencoolen 25 1 0.87 6 1.60 
Raffles Place Clark Quay 17 1 0.87 10 2.08 
Downtown Marina Bay 15 1 0.77 4 1.36 

Raffles Place Telok Ayer 22 2 0.87 4 1.36 
 
Appendix B. Statistics of MRT trips that started and ended in SCA. Data is from 2012 Singapore 
Household Interview Travel Survey. 
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Appendix C. Histogram of Neuron e-scooter trip mileage in SCA 

 
 
Appendix D. Time-distance relation of Neuron e-scooter trips in SCA 
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Appendix E. Experimental design of the stated preference survey. 34 scenarios were divided into 5 
questionnaire groups, following the principals that: (1) each group contained 6-7 scenarios where 
the scenarios in favor of either MRT or e-scooter were evenly and proportionally distributed to avoid 
self-enhancement; (2) the 6-7 scenarios in each group covered all levels of each variable. 

Scenario Sm 
Number 
of MRT 
stop 

Rm 
MRT 
transfer  

Wm 
MRT access-
egress walking 
distance (km) 

Tes 
E-scooter 
travelling time 
(minute) 

Tm 
MRT 
travelling time 
(minute) 

Fm 
MRT fare 
(SGD) 
 

Fes 
E-scooter 
fare (SGD) 
 

Questionnaire 
Group 

1 2 0 0.6 10 23 0.77 2.08 1 
2 2 0 0.6 20 23 0.77 3.28 2 
3 2 0 1.2 10 35 0.77 2.08 1 
4 2 0 1.2 20 35 0.77 3.28 2 
5 2 0 1.2 30 35 0.77 4.48 3 
6 2 1 0.6 10 26 0.77 2.08 1 
7 2 1 0.6 20 26 0.77 3.28 2 
8 2 1 1.2 10 38 0.77 2.08 5 
9 2 1 1.2 20 38 0.77 3.28 2 
10 4 0 0.6 20 28 0.97 3.28 4 
11 4 0 1.2 20 40 0.97 3.28 1 
12 4 0 1.2 30 40 0.97 4.48 1 
13 4 1 0.6 10 31 0.97 2.08 4 
14 4 1 0.6 20 31 0.97 3.28 4 
15 4 1 0.6 30 31 0.97 4.48 3 
16 4 1 1.2 10 43 0.97 2.08 2 
17 4 1 1.2 20 43 0.97 3.28 2 
18 4 1 1.2 30 43 0.97 4.48 3 
19 4 2 0.6 10 34 0.97 2.08 4 
20 4 2 0.6 20 34 0.97 3.28 5 
21 4 2 0.6 30 34 0.97 4.48 5 
22 4 2 1.2 10 46 0.97 2.08 4 
23 4 2 1.2 20 46 0.97 3.28 1 
24 4 2 1.2 30 46 0.97 4.48 3 
25 6 0 0.6 30 33 1.07 4.48 4 
26 6 0 1.2 30 45 1.07 4.48 5 
27 6 1 0.6 30 36 1.07 4.48 4 
28 6 1 1.2 30 48 1.07 4.48 5 
29 6 2 0.6 10 39 1.07 2.08 5 
30 6 2 0.6 20 39 1.07 3.28 3 
31 6 2 0.6 30 39 1.07 4.48 5 
32 6 2 1.2 10 51 1.07 2.08 3 
33 6 2 1.2 20 51 1.07 3.28 3 
34 6 2 1.2 30 51 1.07 4.48 2 
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Appendix F. Question example of the stated preference survey  

 
 
 
 
Appendix G. Bi-directional histogram of travel demands under transit inconvenience level !!" 
(left) and !′!" (right) 
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