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Impacts of subjective evaluations and inertia from existing travel modes on 1 

adoption of autonomous mobility-on-demand 2 

 3 

 4 

HIGHLIGHTS 5 

 Model how subjective evaluation of existing modes influence autonomous mobility-on-6 

demand (AMOD) adoption 7 

 Model impact of inertia from existing travel modes on AMOD choice 8 

 Find that subjective evaluations and inertia both predict mode choice 9 

 Particularly, positive evaluations and current use of ridehailing are strongly predictive of 10 

AMOD choice 11 

 12 

 13 

ABSTRACT 14 

As autonomous vehicle (AV) technology advances, it is important to understand its potential 15 

demand and user characteristics. Literature from stated preference surveys find that attitudes and 16 

current travel behavior are as or more important than demographics in determining intention to 17 

purchase or use AVs. Yet to date no study has looked at how attitudes and use of existing modes 18 

both simultaneously affect AV adoption. In this study, we conduct a stated preference survey in 19 

Singapore to investigate how the subjective evaluation of existing travel modes (attitudes) and 20 

inertia based on previous use of existing modes affect the adoption of an autonomous mobility-on-21 

demand service (AMOD). Using a sample size of 2,003 individuals and 11,613 choice 22 

observations, we estimate a mixed logit discrete choice model incorporating latent variables 23 

capturing subjective evaluations of existing travel modes (determined through confirmatory factor 24 

analysis), a two-part formulation of modal inertia, and other trip-specific and socio-demographic 25 

variables. Results show that subjective evaluation and use of existing modes both affect the 26 

adoption of AMOD. Specifically, people with a positive evaluation of ridehailing and those who 27 

are current ridehailing users are more likely to choose AMOD. Additionally, those who are current 28 

car drivers are more likely to choose AMOD, while users of public transit were less likely to choose 29 

AMOD. Given that ridehailing is the closest existing mode to our hypothetical AMOD service, 30 

our results might suggest that how AVs are implemented and their similarity to existing modes 31 

may be critical to the formation of attitudes and direction of inertia impacting adoption. Our 32 

research provides insights on the potential relationship between AVs and existing modes that could 33 

valuable in AV network design and service planning. 34 

 35 

 36 

Keywords: Autonomous vehicles; mode choice; mixed logit model; factor analysis; latent 37 
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1. INTRODUCTION 1 

As autonomous vehicle (AV) technology continues to advance, it is important to understand how 2 

it will impact our existing transportation systems. However, many factors make these future 3 

impacts uncertain, including how the technology will be deployed and regulated, whether 4 

infrastructure will change along with the vehicles, how service models and markets will adapt, and 5 

how individual consumers will adopt the technology, potentially changing their existing travel 6 

behavior (Fagnant and Kockelman, 2015). Given that AVs have not yet moved beyond 7 

development and testing to full commercial deployment, analyzing the long-term effects of AVs 8 

on transportation systems and travel behavior rely on modeling of potential future scenarios (e.g., 9 

Basu et al., 2018; Nieuwenhuijsen et al., 2018; Milakis et al., 2017; Gruel and Stanford, 2016).  10 

 11 

One of the most pivotal aspects to consider in constructing these future scenarios is the adoption 12 

behavior of individual travelers. Because adoption of emerging technologies is uncertain and 13 

heterogeneous, consumers’ perceptions of and intentions to use AVs have been an active area of 14 

research in recent years. Since AVs are not yet commercially available, most studies make use of 15 

hypothetical stated choice surveys to analyze people’s willingness to pay for and likelihood to 16 

adopt AVs (e.g., Gkartzonikas and Gkritza, 2019; Becker and Axhausen, 2017). Past studies have 17 

found separately that attitudes towards AVs and existing travel behavior play a significant role in 18 

predicting AV adoption (in addition to individual socio-demographics). However, no study to date 19 

has looked at how people’s perceptions and use of current travel modes both simultaneously 20 

influence and help forecast AV adoption.  21 

 22 

To address this research gap, this study analyzes the impact of people’s perceptions and use of 23 

current travel modes on the adoption behavior of AVs with a stated preference survey. In particular, 24 

the study aims to answer the following questions:  25 

 How does the subjective evaluations of existing travel modes influence AV adoption and 26 

potential substitution patterns between different modes? 27 

 How does use of existing travel modes (modal inertia) affect AV adoption? 28 

 Are the impacts of subjective evaluations and use of existing travel modes distinct? And, 29 

if so, are they consistent? 30 

In answering these research questions, this study contributes to both our substantive understanding 31 

of AV adoption as well as methodological state-of-practice regarding survey designs and 32 

econometric models to analyze the problem.  33 

 34 

The study is conducted in Singapore, which is a world leader in adopting new transport 35 

technologies and experimenting with different policy regulations and aims to be one of the first 36 

markets to adopt AVs if they become commercially available (Abdullah, 2019). Specifically, we 37 

consider the adoption of an autonomous mobility-on-demand (AMOD) service in which a fleet of 38 

AVs are dynamically matched with trip requests. This is the form of AV deployment that the 39 

Singapore Land and Transport Authority (LDA) has announced to pilot and deploy (Bhunia, 2017). 40 

 41 

The rest of this paper is organized as follows. Section 2 reviews existing literature on AV adoption 42 

analysis; Section 3 discusses the survey design; Section 4 provides details on model formulation; 43 

and Section 5 presents the model results. We conclude with a discussion of the results, study 44 

limitations, and potential for future studies in Section 6. 45 

 46 
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2. LITERATURE REVIEW 1 

A growing body of literature is exploring the questions of who will adopt AVs, when, and in what 2 

form. Gkartzonikas and Gkritza (2019) recently provided a comprehensive review of the literature 3 

characterizing potential AV user preferences and behaviors. Most of the studies reviewed use 4 

descriptive statistical analyses and regression methods of stated preference survey data to identify 5 

socioeconomic, travel characteristics, and attitudes of individuals affecting AV adoption choices 6 

and willingness to pay under different implementation scenarios (e.g., privately-owned vs. fleet-7 

based, as first/last mile service for public transit, etc.).  8 

 9 

Existing research has found that, similar to traditional mode choice, trip characteristics like travel 10 

time and travel cost as well as attributes of the built environment are critical predictors of AV 11 

adoption (Gkartzonikas and Gkritza, 2019; Nodjomian and Kockelman, 2019; Shabanpour et al., 12 

2018; Becker and Axhausen, 2017; Bansal et al., 2016; Krueger et al., 2016; Yap et al., 2016). 13 

Other studies show that socio-demographic characteristics of the traveler also help determine AV 14 

adoption decisions. For example, multiple studies have found that younger and more wealthy 15 

people have higher interests in and willingness to adopt AVs (Spurlock et al., 2019; Shabanpour 16 

et al., 2018; Bansal et al., 2016; Krueger et al., 2016). While the role that gender plays is less 17 

certain (Cai et al., 2019; Spurlock et al., 2019; Bansal et al., 2016). Another group of studies have 18 

demonstrated that an individual’s previous travel experiences, particularly of car crashes, are 19 

correlated with greater interest in AVs and their potential safety benefits (Shabanpour et al., 2018; 20 

Bansal et al., 2016).  21 

2.1 General Attitudes and Perceptions of Autonomous Vehicles 22 

Some studies have explored the critical influence of attitudinal factors on people’s stated intention 23 

to adopt AVs. One subset of this literature explores how general attitudes towards risk (Wang and 24 

Zhao, 2019), innovation and interest in new technologies (Lavieri and Bhat, 2018; Haboucha, et 25 

al., 2017), and environmental concerns (Haboucha, et al., 2017; Yap, et al., 2016) affect intention 26 

to adopt AVs. Others have considered the influence of perceptions of AV technology, including 27 

benefits and performance (Liu, et al., 2019; Hewitt, et al., 2019; Madigan, et al., 2016; Payre 2014; 28 

Fraedrich and Lenz 2014; Schoettle and Sivak 2014), safety and trust (Liu, et al., 2019; Yap, et al., 29 

2016; Bansal 2016; Kyriakidis 2015; Payre 2014; Fraedrich and Lenz 2014; Howard and Dai 2014), 30 

and hedonic enjoyment (Payre, 2014).  31 

2.2 Existing Travel Behavior 32 

A more limited number of studies have linked existing travel behavior—by private car, transit, 33 

biking, and walking—to their adoption of AMOD. Krueger et al. (2016) found that those who 34 

travel exclusively by private car or taxi are more likely to adopt AMOD, and Haboucha et al. (2017) 35 

observed that those without transit experience are less likely to use AMOD. A recent study 36 

conducted in Singapore separately estimating choice models for drivers and transit users and found 37 

that their tendencies to switch to AMOD are different (Cai et al., 2019). 38 

2.3 Our Contribution 39 

While the above studies have explored many of the factors that traditionally influence mode choice, 40 

few of them explicitly account for the fact that AMOD would be introduced into an urban mobility 41 

system in which there are incumbent modes and established travel patterns. In such situations, both 42 

attitudes and actual use of existing transportation modes may influence consumer adoption of AV 43 
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technology. While previous studies have considered the impact of attitudes towards AV 1 

technology on adoption, none have incorporated attitudes towards or perceptions of incumbent 2 

travel modes. Furthermore, while some studies have considered how adoption differs among users 3 

of cars, transit, and other modes or the influence of travel habits, these studies have not explicitly 4 

modeled how the inertia of existing travel behavior might influence AV choice. 5 

 6 
In this study, we add to existing literature by considering how both subjective evaluations and 7 

actual use of existing travel modes impact adoption of AMOD over other modes of travel. Research 8 

in psychology has firmly established that people’s attitudes and actual behaviors are distinct (e.g., 9 

Ajzen and Fishbein, 1977) and can even be at odds if choices are constrained (e.g., de Vos, 2018 10 

for a transportation application and Festinger, 1962 for a general theory of cognitive dissonance). 11 

Therefore, we hypothesize that subjective evaluations (attitudes) and inertia are distinct factors 12 

that both influence whether an individual will switch from their current travel behavior and adopt 13 

a new AMOD service. We incorporate these two concepts into a state-of-the-art hybrid choice 14 

model that includes trip characteristics and traveler characteristics and allows for heterogeneity in 15 

estimated sensitivities to these explanatory variables (McFadden and Train, 2000). We use 16 

confirmatory factor analysis to estimate latent variables representing subjective evaluations of 17 

existing travel modes and add them to the model. We incorporate existing use of travel modes as 18 

measures of inertia (Cherchi et al., 2017; Cherchi and Manca, 2011; Train, 2009; Yáñez, 2009; 19 

Cantillo, et al., 2007). This approach enables us to study the potential substitution patterns of 20 

AMOD with other travel modes which can help identify potential user groups of AMOD and draw 21 

insights on AV system design.  22 

3. SURVEY DESIGN AND DATA 23 

This study incorporates people’s subjective evaluations and inertia into the analysis of potential 24 

adoption of AMOD services, using data collected from a dynamic online survey administered in 25 

Singapore in July 2017 (Shen et al., 2019). Here we present the details on the survey design, 26 

introduce the key variables used in the study, and discuss the representativeness of our sample of 27 

2,003 individuals and 11,613 choice observations.  28 

3.1 Survey Design 29 

The survey consisted of four parts: a revealed preference (RP) travel diary of a typical trip for a 30 

given purpose, a series of stated preference (SP) choice experiments with AMOD as a new 31 

potential travel mode for the trips in the respondents’ travel diaries, and questions about 32 

respondents’ perceptions of existing modes and socio-demographic information. Figure 1 shows 33 

the survey procedure. 34 

 35 

In the RP portion of the survey, each respondent was first presented with a trip purpose—commute 36 

(to work or school), shopping (to grocery store or supermarket), or recreation/entertainment. The 37 

respondents were then asked to report the postal codes of trip origin (O) and destination (D), and 38 

the mode with which the trip was usually made. Based on the respondent’s revealed OD, some 39 

attributes, including walking time, bus access walking time, bus in-vehicle time, ridehailing in-40 

vehicle time, and ridehailing travel cost, were trip-specific and obtained from Google API. Other 41 

attributes, including bus travel cost, bus waiting time, and ridehailing waiting time, were static and 42 

taken to be the market average.  43 
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Figure 1. Survey process diagram 1 

 2 
 3 

For the SP portion of the survey, the respondents were asked to choose among incumbent modes 4 

(bus, walk, drive, and ridehailing) and a new AMOD service (ridehailing with AV) for the same 5 

trip purpose as RP but with varying levels of trip attributes. AMOD was chosen for the study since 6 

this was the main form of AV deployment being piloted in Singapore at the time of data collection 7 

(Bhunia, 2017). To make sure all respondents were aware of the new technology being presented, 8 

every respondent watched an introductory video before answering the SP questions.  9 

Table 1. SP attribute generation by mode 10 

 Static Attributes Trip-Specific Attributes 

Mode Name Levels Name Levels 

Walk   Walk time 

RP response × 

0.5, 1, or 1.5 

Public transit (PT) Cost ($S) 

Wait time (min) 

0.5, 0.9, or 1.5 

3, 5, or 10 

Walk time 

In-vehicle time 

Ridehailing (RH) Wait time (min) 1, 3, or 8 Cost 

In-vehicle time 

Autonomous mobility-

on-demand (AMOD) 

Wait time (min) 1, 3, or 8 Cost 

In-vehicle time 

 11 

Similar to the RP portion, there were static and trip-specific attributes in the SP choice experiment. 12 

The static attributes had three levels, with the median anchored to the market average and the 13 

high/low values set to the levels specified in Table 1. Each trip-specific attribute also had three 14 

levels, with the median anchored to the value calculated from the RP responses, to make the 15 

choices were more realistic and familiar to the respondents. High/low values were set as 1.5 and 16 

0.5 times the value given in the RP responses, respectively. For the AMOD service (not present in 17 

RP), trip-specific attributes were assumed to be similar to those of ridehailing and prices were 18 

determined according to the pricing schemes of Uber/Grab at the time in Singapore (Shen et al., 19 

2019; Mo et al., 2021). Given these attributes level, a partial orthogonal balanced design was 20 

generated, resulting in 27 scenarios. Six out of these 27 SP scenarios were randomly chosen for 21 

each respondent to answer sequentially. While this random blocking destroys the perfect 22 

orthogonality of the research design, it is a typical question generation procedure used in AV 23 

choice experiments to limit the number of complex questions answered per respondent (e.g., 24 
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Haboucha, Ishaq, and Shiftan, 2017; Krueger, Rashidi, and Rose, 2016). A sample interface seen 1 

by respondents is shown in Figure 2.  2 

Figure 2. Example interface for stated preference choice experiment  3 

  4 
 5 

The third part of the survey included Likert-scale questions on the subjective evaluation of existing 6 

travel modes. Based on studies by Kroesen et al. (2017) and Molin et al. (2016), we selected five 7 

key attributes of the current travel modes to make up the subjective evaluation: reliability, ease to 8 

use, safety, comfort, and enjoyment. The specific statements are shown in Table 2. For each 9 

statement, responses were collected on a 7-point Likert scale, ranging from “totally disagree” (1) 10 

to “totally agree” (7). 11 

Table 2. Indicators used to derive latent variable measures of subjective evaluation of 12 

existing travel modes 13 

Subjective evaluation 

(latent variable) 

Indicator Question 

Pro-walk 

Walk safe I think walking feels safe.  

Walk comfortable I think walking is comfortable. 

Walk reliable I think walking is a reliable mode. 

Walk easy I think walking feels easy. 

Walk enjoyable I enjoy walking. 

Pro-public transit (PT) 

PT safe I think taking public transport feels safe. 

PT comfortable I think taking public transport is comfortable. 

PT reliable I think public transport is a reliable mode. 

PT easy I think taking public transport is easy. 

PT enjoyable I enjoy taking public transport. 

Pro-ridehailing (RH) 

RH safe I think ridehailing feels safe. 

RH comfortable I think ridehailing is comfortable. 

RH reliable I think ridehailing is a reliable mode. 

RH easy I think ridehailing is easy. 

RH enjoyable I enjoy ridehailing. 

Pro-drive 

Drive safe I think driving feels safe. 

Drive comfortable I think driving is comfortable. 

Drive reliable I think driving is a reliable mode. 

Drive easy I think driving is easy. 

Drive enjoyable I enjoy driving. 

 14 
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3.2 Sample Socio-demographics and Representativeness 1 

The final portion of the survey collected the socio-demographic information for each respondent, 2 

including gender, ethnicity, employment, age, education, income, and car ownership. To determine 3 

the representativeness of our sample, we compared the share of individuals by gender, age, 4 

ethnicity, educational attainment, income, and car ownership in our sample to available population 5 

statistics. We find that our sample overrepresented males, younger and more highly educated 6 

individual, and middle-income, car-owning households (see Table 3).  7 

 8 

Because there are clear differences between the sample and the population in certain demographic 9 

categories, we calculate survey weights using iterative proportional fitting (IPF or raking). Weights 10 

were calculated using the anesrake package in R (Pasek, 2018), which implements the American 11 

National Election Study (ANES) weighting algorithm documented in (DeBell and Krosnick, 2009). 12 

Convergence was reached so that weighted sample proportions exactly match the population 13 

proportions for all characteristics listed in Table 3.  14 

Table 3. Socio-demographic characteristics of survey sample compared to Singapore 15 

population 16 

Socio-demographic 

characteristics 

Bin Sample (%) Population (%) 

Age (as percent of adult 

population aged 20 or 

older, 2017) 

20-29 

30-39 

40-49 

50-59 

60 and older 

29.1 

24.6 

23.4 

15.5 

7.4 

17.5 

18.5 

19.6 

19.6 

24.8 

Gender (2017) Male 

Female 

45.8 

54.1 

49.0 

51.0 

Ethnicity (2017) Chinese 

Malay 

Indian 

Other (or declined to answer) 

85.0 

6.0 

4.5 

4.5 

74.3 

13.4 

9.0 

3.2 

Monthly household 

income (S$) (2017) 

Not working or below 2,000 

2,000 – 3,999 

4,000 – 5,999 

6,000 – 7,999 

8,000 – 9,999 

10,000 – 11,999 

12,000 – 14,999 

15,000 – 19,999 

20,000 and over 

10.2 

15.2 

15.9 

15.9 

13.7 

10.8 

4.7 

8.6 

5.0 

19.0 

10.6 

10.6 

10.4 

9.6 

7.9 

8.9 

9.7 

13.3 

Educational attainment 

(2016) 

Below secondary 

Secondary 

Post-secondary (non-tertiary) 

Diploma or professional qualification 

University 

0.3  

10.1  

6.1  

26.1  

57.4 

29.3 

17.9 

8.9 

14.7 

29.1 

Marital status (2016) Single, never married 

Married or domestic partnership 

Widowed 

Divorced or separated 

44.3 

51.5 

0.8 

3.3 

31.6 

29.5 

5.3 

3.6 

Household car 

ownership (2017) 

0 

1 or more 

43.5 

56.5 

64.7 

35.3 
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Table note: Population data comes from the Singapore Department of Statistics: age for adult population 20 years and 1 
older, gender, ethnicity, marital status, and educational attainment for population 25 and older (2018); household 2 
income (2020); and car ownership for 2017/2018 (2021). 3 

4. MODEL SPECIFICATION 4 

In this study, a hybrid choice model was used to measure the impact of people’s subjective 5 

evaluations and inertia on the potential adoption of AMOD. The high-level model structure is 6 

shown in Figure 3. First, the respondent’s subjective evaluations of the existing modes were 7 

captured by four latent variables estimated from confirmatory factor analysis (CFA). Additionally, 8 

the concept of inertia was built from the use of previous travel modes (RP responses) and choices 9 

made in previous choice situations in SP responses. Then, these estimated factor scores and inertia 10 

measures were entered into a mixed multinomial logit (MMNL) model, along with the 11 

demographic and trip-specific attributes presented in the survey. The model was estimated using 12 

a sequential estimation approach. The following sections describe each step of the process in detail. 13 

Figure 3. Path diagram of the hybrid choice model  14 

 15 
Figure note: Rectangual boxes represent observed variables such as characteristics of respondents and attributes of 16 
choice alternatives (modes), inertia variables, psychometric indicators, and mode choices are represented by 17 
rectangular boxes; ovals represent latent variables such as utilities and subjective evaluations; solid arrows represent 18 
structural equations; dashed arrows represent measurement equations. The CFA model and MMNL model were 19 
estimated sequentially, with factor scores for each subjective evaluation latent variable treated as observed variables 20 
in the choice model. 21 

4.1 Subjective Evaluations  22 

Respondent’s subjective evaluations of existing travel modes—walking, public transit (PT), 23 

ridehailing (RH), and driving—are estimated as latent variables based on responses to five 24 
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indicators related to safety, comfort, reliability, ease of use, and enjoyment of use (see Table 2). 1 

Responses for each indicator were recorded on a 7-point Likert scale, which we treat as ordinal 2 

following best-practice recommendations when including latent factors in hybrid choice models 3 

(Bahamonde-Birke and de Dios Ortúzar, 2017). CFA is used to develop and validate each latent 4 

variable as discussed further in Appendix A.  5 

 6 

The CFA model structures are shown in Figure 4, with each latent variable validated and estimated 7 

separately. The latent variables represent the subjective evaluations of existing modes, and are 8 

indexed by m= {1, 2, 3, 4} that represents pro-walk, pro-PT, pro-RH and pro-drive, respectively. 9 

The indicators were assumed to be independent except for the indicators of safety and reliability 10 

for the pro-walk latent variable based on Lagrange modification indices in the CFA model (see 11 

Appendix A).  12 

 13 

Figure 4. Structure of the Confirmatory Factor Analysis models for the subjective 14 

evaluation of existing travel modes 15 

 16 
 17 

 18 

Denote the 𝑚-th latent variable of individual 𝑛 as 𝐴𝑛𝑚. Let 𝑍𝑛𝑚𝑘 be the response to individual n’s 19 

response the k-th indicator statement corresponding to the 𝑚-th latent variable, where 𝑘 ∈ 𝑄𝑚 and 20 

𝑄𝑚 is the set of indicators for 𝑚-th latent variable found in Table 2. For example, for 𝑚 = 1 (pro-21 

walk), 𝑄𝑚 ={Walk safe, Walk comfortable, Walk reliable, Walk easy, Walk enjoyable}.  22 

 23 

𝑍𝑛𝑚𝑘 takes values on a 7-point Likert scale, and is therefore an ordinal variable. However, the 24 

typical CFA model requires the dependent variable to be continuous. A conventional way to model 25 

ordinal responses in CFA is assuming that there is an underlying unobserved continuous variable 26 

𝑍𝑛𝑚𝑘
∗  ∈ (−∞, +∞) that drives the ordered responses 𝑍𝑛𝑚𝑘 (Yang-Wallentin et al., 2010; Muthén, 27 

1984). The measurement equation of 𝑍𝑛𝑚𝑘
∗   is assumed to have the following form: 28 

 29 

Eq. (1)  𝑍𝑛𝑚𝑘
∗ = 𝜃0𝑚𝑘 + 𝜃1𝑚𝑘𝐴𝑛𝑚 + 𝜂𝑚𝑘 30 

 31 

where 𝜃0𝑚𝑘 is the intercept; 𝜃1𝑚𝑘 is the factor loading of the 𝑚-th latent variable onto indicator 𝑘; 32 

and 𝜂𝑚𝑘 ∼ 𝒩(0, 𝜎𝑚𝑘) is a normally distributed error term for the 𝑚-th latent variable. Note that 33 
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𝜂𝑚𝑘 (∀𝑘 ∈ 𝑄𝑚) are assumed to be independent unless correlations are introduced explicitly into 1 

the model.  2 

 3 

The relationship of 𝑍𝑛𝑚𝑘 and 𝑍𝑛𝑚𝑘
∗  can be expressed as  4 

 5 

Eq. (2)  𝑍𝑛𝑚𝑘 = 𝑐 ⇔   𝜏𝑚,𝑐−1 < 𝑍𝑛𝑚𝑘
∗ < 𝜏𝑚,𝑐  6 

 7 

where 𝑐 ∈ {1,2, … 7} is the 7-point Likert scale. 𝜏𝑚,𝑐 is the threshold parameter for answer 𝑐 and 8 

it follows that −∞ = 𝜏𝑚,0 < 𝜏𝑚,1 < ⋯ < 𝜏𝑚,7 = +∞. Therefore, the probability of observing 9 

𝑍𝑛𝑚𝑘 given the latent variable 𝐴𝑛𝑚 can be expressed as:  10 

 11 

Eq. (3) 12 

Pr(𝑍𝑛𝑚𝑘 = 𝑐 | 𝐴𝑛𝑚) = Pr(𝜏𝑚,𝑐−1 < 𝑍𝑛𝑚𝑘
∗ < 𝜏𝑚,𝑐 | 𝐴𝑛𝑚) = ∫ 𝜙𝑚𝑘( 𝜂) 𝑑𝜂

𝜏𝑚,𝑐−𝜃0𝑚𝑘−𝜃1𝑚𝑘𝐴𝑛𝑚

𝜏𝑚,𝑐−1−𝜃0𝑚𝑘−𝜃1𝑚𝑘𝐴𝑛𝑚

 13 

 14 

where 𝜙𝑚𝑘(⋅) is the probability density function of 𝜂𝑚𝑘.  15 

 16 

To obtain the factor scores for each latent variable for each individual (�̂�𝑛𝑚), the expected a 17 

posteriori (EAP) method is used (Estabrook and Neale, 2013; Shi and Lee, 1997). Specifically,  18 

 19 

Eq. (4)           �̂�𝑛𝑚 = 𝐸[𝐴𝑛𝑚] = ∫ 𝑤𝑓𝐴𝑛𝑚|𝒁(𝑤) 𝑑𝑤
𝑤

= ∫ 𝑤
𝑓𝐴𝑛𝑚

(𝑤)Pr(𝒁 | 𝐴𝑛𝑚=𝑤)

∫ 𝑓𝐴𝑛𝑚
(𝑤′)Pr(𝒁 | 𝐴𝑛𝑚=𝑤′) 𝑑𝑤′

𝑤′

 𝑑𝑤
𝑤

 20 

 21 

where 𝐸[∙] is the expectation.  𝑓𝐴𝑛𝑚|𝒁(∙) is the posteriori probability density function of 𝐴𝑛𝑚. 𝒁 is 22 

the vector of all 𝑍𝑛𝑚𝑘. Pr(𝒁 | 𝐴𝑛𝑚 = 𝑤) can be calculated as the product of all Pr (𝑍𝑛𝑚𝑘 | 𝐴𝑛𝑚 =23 

𝑤).  𝑓𝐴𝑛𝑚
(∙) is the prior probability density function of 𝐴𝑛𝑚. Eq. 4 indicates that 𝐴𝑛𝑚 = �̂�𝑛𝑚 +24 

𝛿𝑚, where 𝛿𝑚 is an error term with mean of zero. In this study, we assume 𝛿𝑚 ∼ 𝒩(0, 𝜎𝑚
2 ) for the 25 

convenience of the MMNL model estimation.  26 

4.2 Inertia of Existing Travel Modes 27 

An individual’s previous experience may impact their current choice (often termed “inertia”). 28 

When individuals are faced with new situations, inertia represents the tendency to stick with past 29 

choices rather than the disposition to change (Train, 2009; Yáñez, 2009; Cantillo et al., 2007). In 30 

this study, we hypothesize that the current use of travel modes poses an inertial effect in the 31 

respondents’ stated preferences. The definition of inertia was adapted from Cherchi et al. (2017) 32 

in which inertia was formulated considering both lagged and hazard effects1, accounting for inertia 33 

from the previous use of existing modes and from repeated selection of an existing mode in the 34 

survey.  35 

 36 

The sequence of each question is labeled as choice situation t, where 𝑡 =  0 for the RP question 37 

and 𝑡 =  {1, … , 6} for the SP questions. The lagged inertia of mode 𝑗 for individual 𝑛 in choice 38 

                                                 
1 A “habit” latent variable is considered in Cherchi et al., (2017) in the inertia formulation. But it is not available in 

our study. We therefore drop the components that include latent variables. 
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situation 𝑡, denoted as 𝐼𝑛𝑗𝑡
L , represents the lagged effect of individual 𝑛’s previous choice in the RP 1 

question on the individual’s current choice. Therefore, 𝐼𝑛𝑗𝑡
L  takes the value 1 if the current choice 2 

agrees with the previous choice and 0 otherwise. Mathematically, 3 

 4 

Eq. (5)   𝐼𝑛𝑗𝑡
L = {

1, if 𝑌𝑛
𝑅𝑃 = 𝑗

0, otherwise
                 ∀ 𝑗 ∈ 𝑆, 𝑡 ≥ 1  5 

 6 

where 𝑌𝑛
𝑅𝑃 is the choice of individual 𝑛 in the RP portion, and 𝑆 ={Walk, PT, RH, Drive} is the 7 

set of existing travel modes.  8 

 9 

The second type of the inertia accounts for the effect that as more inertia is formed if the mode is 10 

selected more often in the panel data, and therefore is a function of the number of times that a 11 

mode is selected in different choice situations by the same individual. Let 𝐼𝑛𝑗𝑡
H  represent the hazard 12 

inertia of mode 𝑗 for individual 𝑛 in choice situation 𝑡, and it is assumed to have the inverse 13 

Weibull distribution: 14 

 15 

Eq. (6)   𝐼𝑛𝑗𝑡
H = (𝐹𝑅𝐸𝑛𝑗𝑡)

1−𝛾𝑗
                      ∀ 𝑗 ∈ 𝑆, 𝑡 ≥ 1 16 

 17 

where 𝐹𝑅𝐸𝑛𝑗𝑡 is the adjusted number of times mode 𝑗 is selected from choice situations 0 (RP) to 18 

𝑡 − 1  for individual 𝑛 . The adjustment is done on 𝐹𝑅𝐸𝑛𝑗𝑡  by increasing it one unit as the 19 

respondent selects mode 𝑗 and decreasing it one unit as the respondent switches to another mode 20 

(Cherchi et al., 2017). Note that 𝐹𝑅𝐸𝑛𝑗𝑡 will not be further decreased when it reaches 0. 𝛾𝑗 ∈ [0,1] 21 

is the hazard function parameter (HFP) to be estimated.  22 

 23 

These two types of inertia are both included in the utility specification for each mode, capturing 24 

inertia effects from the previous use of existing modes and repeated selection of an existing mode 25 

in the survey. 26 

4.3 Mixed Multinomial Logit Model 27 

To model people’s choices, a MMNL was formulated, with the overall model structure shown in 28 

Figure 3. Utilities of the alternative modes consist of alternative-specific trip attributes, individual 29 

characteristics, subjective evaluations of existing travel modes (latent variable factor scores from 30 

CFA) and use of existing modes (inertia). Since RP and SP questions capture people’s observed 31 

past choices and expected future choices, respectively, their utility functions should be modeled 32 

separately (Ben-Akiva et al., 1994). Individual 𝑛’s utility of mode 𝑗 in choice situation 𝑡 is defined 33 

by: 34 

 35 

Eq. (7) 36 

𝑈𝑛𝑗
𝑅𝑃  = 𝑉𝑛𝑗

𝑅𝑃 + 휀𝑗
𝑅𝑃 = 𝛽𝑗

𝐴𝑆𝐶 + 𝜷𝒋
𝑻𝑻𝒏𝒋

𝑹𝑷  + 𝜷𝒋
𝑿𝑿𝒏 + ∑ 𝛽𝑚𝑗

𝐴 (�̂�𝑛𝑚 + 𝛿𝑚)
4

𝑚=1
+ 휀𝑗

𝑅𝑃 37 

 38 

Eq. (8) 39 
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 𝑈𝑛𝑗𝑡
𝑆𝑃  = 𝑉𝑛𝑗𝑡

𝑆𝑃 + 휀𝑗
𝑆𝑃1 

= 𝛽𝑗
𝐴𝑆𝐶 + 𝜷𝒋

𝑻𝑻𝒏𝒋𝒕 + 𝜷𝒋
𝑿𝑿𝒏 + ∑ 𝛽𝑚𝑗

𝐴 (�̂�𝑛𝑚 + 𝛿𝑚)
4

𝑚=1
+ ∑ 𝛽𝑗′𝑗

𝐿 𝐼𝑛𝑗′𝑡
L

𝑗′∈𝑆
2 

+ ∑ 𝛽𝑗′𝑗
𝐻 𝐼𝑛𝑗′𝑡

H

𝑗′∈𝑆
+ 휀𝑗𝑡

𝑆𝑃  3 

 4 
 5 

where 𝑈𝑛𝑗𝑡
𝑆𝑃  and 𝑈𝑛𝑗

𝑅𝑃 are the utility functions of the SP and RP, respectively. The subscript t in RP 6 

utility function is ignored because there is only one RP choice situation and 𝑡 = 0 for RP by 7 

definition. 𝛽𝑗
𝐴𝑆𝐶  are the alternative-specific constants; 𝑻𝒏𝒋

𝑹𝑷  and 𝑻𝒏𝒋𝒕 are alternative-specific trip 8 

attributes of mode 𝑗; 𝑿𝒏 is the vector of socio-demographic variables of individual n; 𝜷𝒋
𝑿, 𝜷𝒋

𝑻, 𝛽𝑚𝑗
𝐴 , 9 

𝛽
𝑗′𝑗

𝐿 , and 𝛽
𝑗′𝑗

𝐻  are the coefficients to be estimated; 휀𝑗
𝑅𝑃 and 휀𝑗𝑡

𝑆𝑃 are the Gumbel-distributed error term 10 

for the RP and SP questions, respectively. The scale of RP data (𝜇𝑅𝑃) is normalized to 1 and the 11 

scale of SP data is denoted as 𝜇𝑆𝑃, which will be estimated in the model.  12 

 13 

Let 𝛿𝑗 = ∑ 𝛽𝑚𝑗
𝐴 𝛿𝑚

4
𝑚=1  represent the aggregated normal error term with distribution 𝒩(0, �̃�𝑗

2 =14 

∑ (𝛽𝑚𝑗
𝐴 𝜎𝑚)

24
𝑚=1  ). Note that 𝛿𝑗 are independent from each other based on our CFA model structure. 15 

Thus, the probability for an individual n choosing mode j can be expressed by the following 16 

equation: 17 

 18 

Eq. (9) 19 

Pr(𝑌𝑛𝑡 = 𝑗) = ∫ Pr(𝑌𝑛𝑡 = 𝑗 | 𝛿𝑗 = 𝑤) 𝜙�̃�𝑗
(𝑤)𝑑𝑤 = ∫

exp (𝜇𝑉𝑛𝑗𝑡)

∑ exp (𝜇𝑉𝑛𝑗′′𝑡) 𝑗′′∈𝐶𝑛

𝜙�̃�𝑗
(𝑤)𝑑𝑤  20 

 21 

where 𝑌𝑛𝑡  is the mode choice of individual 𝑛  at situation t; 𝜙�̃�𝑗
(𝑤) is the probability density 22 

function of 𝛿𝑗;  𝐶𝑛 is the choice set for individual 𝑛; Note that for RP questions, we have 𝜇 =23 

𝜇𝑅𝑃 = 1  and 𝑉𝑛𝑗𝑡 = 𝑉𝑛𝑗
𝑅𝑃  according to Eq. 7; while 𝜇 = 𝜇𝑆𝑃  and 𝑉𝑛𝑗𝑡 = 𝑉𝑛𝑗𝑡

𝑆𝑃  for SP questions 24 

according to Eq. 8.  25 

 26 

Since our research question is the extent to which subjective evaluations and use of existing modes 27 

impact the adoption of a new AMOD service, we include evaluations and inertia for all existing 28 

modes in the utility function for AMOD. The utility functions of existing modes (walking, PT, RH, 29 

and driving) only contain the subjective evaluation and inertia of that specific mode. Because 30 

people often walk as part of PT trips, we also add subjective evaluation and inertia of walking into 31 

the utility of PT. Further, we assume that all modes are available to all individuals except for 32 

driving, and driving is available to individuals with a driver’s license. 33 

4.4 Model Estimation 34 

The overall likelihood function of the hybrid model can be written as a combination of the CFA 35 

model and the MMNL model:    36 

 37 

Eq. (10) 𝐿(𝜽, 𝜷, 𝝈, 𝜇𝑆𝑃) = ∏ ∏ Pr(𝑌𝑛𝑡) · ∏ ∏ Pr(𝑍𝑛𝑚𝑘)𝑘∈𝑄𝑚
4
𝑚=1

𝑇
𝑡=0

𝑁
𝑛=1  38 

 39 
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where 𝜽, 𝜷, 𝝈 and 𝜇𝑆𝑃 are the coefficients to be estimated. 𝑇 =  6 is the number of SP questions. 1 

There is no closed form expression for Pr(𝑌𝑛𝑡) as it includes an integral of Gaussian distribution. 2 

Thus, maximum simulated likelihood (MSL) is used (Train, 2009). Although simultaneous 3 

estimation of both the MMNL and the CFA models is theoretically possible and statistically 4 

efficient since it includes full information on measurement error into the estimation of all model 5 

parameters, this approach is computationally inhibitive. Therefore, we adopt a sequential 6 

estimation approach as is often used for complex choice models with latent variables (e.g., 7 

Haboucha et al., 2017; Yap et al., 2016; Vij et al., 2013).  8 

 9 

The estimation procedure consists of two steps: 1) estimating CFA model and output latent factor 10 

scores and 2) estimating the MMNL model to get the parameters of interest. In the first step, we 11 

fit the ordinal CFA model shown in Figure 4 using diagonally weighted least squares (DWLS) 12 

estimation (Li, 2016; Muthén, 1984), a method specifically designed for CFA estimation with 13 

ordinal data, as implemented in the R lavaan package (Rosseel, 2012). The method makes no 14 

distributional assumptions about the observed ordinal variables, and a normal latent distribution 15 

underlying each observed ordinal variable is instead assumed (as described in Section 4.1). Then 16 

the factor scores for each latent variable and each individual (i.e., �̂�𝑛𝑚) are estimated using Eq 3. 17 

In the second step, we estimate the MMNL with MSL, obtaining 𝜷, �̃�𝒋 and 𝜇𝑆𝑃. The model is 18 

estimated using PandasBiogeme with 2,000 random draws (Bierlaire, 2018). All input code and 19 

results are saved at https://github.com/mbc96325/Mixture-logit-model-for-AV-adoption. 20 

 21 

The main models estimated in this paper did not include survey weights. This is because logit 22 

models provide unbiased model coefficients regardless of sample representativeness, particularly 23 

when all socio-demographic characteristics are included as controls (Bahamonde-Birke and 24 

Hanappi, 2016; Efthymiou and Antoniou, 2016). The models were additionally estimated with 25 

survey weights as a robustness check, which showed that our main findings were not affected by 26 

the unrepresentativeness of our sample (see Appendix B). 27 

4.5 Evaluation Scenarios 28 

To explore how both subjective evaluations and inertia affect people’s stated preference, 29 

particularly the adoption of AMOD, we estimate and compare four models: 30 

 31 

 M1 (base): Socioeconomic variables + mode attributes 32 

 M2 (only subjective evaluations): Socioeconomic variables + mode attributes + subjective 33 

evaluations 34 

 M3 (only inertia): Socioeconomic variables + mode attributes + inertia 35 

 M4 (subjective evaluations + inertia): Socioeconomic variables + mode attributes + 36 

subjective evaluations + inertia 37 

 38 

By comparing the coefficients across the four models, the impact of subjective evaluations and 39 

inertia on model fit and parameter interpretation can be evaluated both separately and together in 40 

the same framework. 41 

https://github.com/mbc96325/Mixture-logit-model-for-AV-adoption


 

15 

 

 

5. RESULTS AND DISCUSSION 1 

In this section, we focus on the results and discussion of the mode choice models incorporating 2 

subjective evaluations and inertia. The results of the supporting CFA analysis are shown in 3 

Appendix A. We hypothesize that an individual’s choice of mode depends on both their subjective 4 

evaluations of modes and their existing use of the modes (inertia), which are distinct constructs.  5 

5.1 Correlation between Subjective Evaluation and Inertia 6 

First, we considered whether subjective evaluations and inertia indeed contained different 7 

information. Intuitively, if there’s high correspondence between people’s attitudes and behavior, 8 

then these two constructs will measure the same thing. High correlation would not only lead to the 9 

inclusion of unnecessary variables, but also introduce multicollinearity problems that affect model 10 

estimation and interpretation.  11 

 12 

To verify that our measures of subjective evaluation and inertia are distinct variables, we first 13 

consider the correlation matrix between them (Table 4). It shows that almost no correlation exists 14 

between subjective evaluations and lag inertia (observed choices) for all modes. Slightly higher 15 

correlation exists between subjective evaluations and the hazard inertia (stated preference), but the 16 

maximum correlation was 0.411 (for driving).  17 

 18 

To verify that the correlations will not affect model estimation, the variance inflation factors (VIFs) 19 

were estimated (Table 4). The variance inflation factor is a standard measure of multicollinearity, 20 

which is the inverse of the R2 value of the linear regression between the target variable and all 21 

other variables. A high VIF means that the target variable can be expressed as a linear combination 22 

of all other variables with a strong fit; therefore, multicollinearity problems will follow if all 23 

variables are included in model estimation. The common rule of thumb is that a value higher than 24 

5 or 10 indicates severe multicollinearity that needs to be addressed (O’brien 2007). In this case, 25 

the highest VIF score is 3.35, which means that no significant multicollinearity problems exist in 26 

including both the subjective evaluations and the inertia terms in the choice model. Therefore, we 27 

conclude that our measure of subjective evaluations, observed use of existing modes (lag-inertia), 28 

and repeated stated preference for a mode (hazard-inertia) can all play different roles in people’s 29 

mode choice. 30 

Table 4.  Pearson correlation coefficients (ρ) between and VIF of subjective evaluation and 31 

inertia for each travel mode 32 

 Walk PT RH Drive 

ρ: subjective evaluation and lag-term inertia 0.192 *** -0.016 * 0.129 *** 0.006 

ρ: subjective evaluation and hazard-term inertia 0.160 *** 0.045 *** 0.125 *** 0.411 *** 

VIF: subjective evaluation 1.467 1.716 1.341 1.249 

VIF: lag-term inertia 3.049 3.347 1.755 1.127 

VIF: hazard-term inertia 1.709 1.908 1.428 1.582 

5.2 Model Fit 33 

To evaluate model fit, four metrics were calculated: log-likelihood, Akaike Information Criterion 34 

(AIC), Bayesian Information Criterion (BIC), and adjusted ρ2. The values are presented in the 35 

bottom panel of Table 5. For all metrics, model performances improved from M1 to M4, meaning 36 

both subjective evaluations and inertia improved the explanatory power of the model. Among the 37 
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improvements, M3 and M4 were significantly better than M1 and M2. Although both helped to 1 

improve the model fit, the actual choices (represented by inertia) can better model people’s stated 2 

preferences than their subjective evaluations of the alternatives. Nevertheless, M4 was better than 3 

M3 along all dimensions; therefore, subjective evaluations did play a role in the respondents’ stated 4 

preferences. Further, the parameters estimated for the explanatory variables (subjective 5 

evaluations, inertia, sociodemographic variables, and except for alternative-specific constants) had 6 

the same sign and similar magnitudes in all models. Therefore, the results from M4 in which all 7 

factors were included are discussed in the following sections. 8 

Table 5. Results from the unweighted hybrid choice models: unstandardized parameter 9 

(standard error) 10 

Parameter 
M1 

Base 

M2 

Base + subjective  

evaluations 

M3 

Base + inertia 

M4 

Base + subjective  

evaluations + inertia 

Alternative specific constants (𝜷𝑨𝑺𝑪) 

Walk   0.000 (fixed)  0.000 (fixed)  0.000 (fixed)  0.000 (fixed) 

Public transport (PT) -0.147 (0.108) -0.056 (0.114)  0.690 (0.146) ***  0.761 (0.190) *** 

Ridehailing (RH) -0.616 (0.126) *** -0.531 (0.126) *** -0.450 (0.164) *** -0.412 (0.183) ** 

Drive  0.103 (0.081)  0.199 (0.083) **  0.027 (0.114) -0.089 (0.177) 

AMOD -0.697 (0.137) *** -0.504 (0.147) *** -0.425 (0.191) ** -0.470 (0.228) ** 

Subjective evaluations (𝜷𝒎
𝑨 ) 

Walk: Pro-walk -  0.775 (0.065) *** -  0.863 (0.108) *** 

PT: Pro-walk - -0.048 (0.046) - -0.029 (0.090) 

PT: Pro-PT -  0.698 (0.068) *** -  0.524 (0.089) *** 

RH: Pro-RH -  0.568 (0.047) *** -  0.550 (0.069) *** 

Drive: Pro-drive -  0.597 (0.057) *** -  0.577 (0.116) *** 

AMOD: Pro-walk -  0.027 (0.059) -  0.184 (0.095) * 

AMOD: Pro-PT - -0.054 (0.081) - -0.098 (0.088) 

AMOD: Pro-RH -  0.416 (0.050) *** -  0.386 (0.071) *** 

AMOD: Pro-drive -  0.039 (0.053) - -0.055 (0.075) 

Inertia (lagged 𝜷𝒋
𝑳 and hazard 𝜷𝒋

𝑯) 

Walk: Lag inertia-walk - - -0.485 (0.089) *** -0.592 (0.110) *** 

Walk: Hazard inertia-walk - -  0.813 (0.079) ***  0.831 (0.096) *** 

PT: Lag inertia-walk - - -0.926 (0.090) *** -1.200 (0.146) *** 

PT: Hazard inertia-walk - -  0.222 (0.052) ***  0.194 (0.067) *** 

PT: Lag inertia-PT - - -0.979 (0.072) *** -1.340 (0.138) *** 

PT: Hazard inertia-PT - -  0.780 (0.073) ***  1.200 (0.155) *** 

RH: Lag inertia-RH - -  1.110 (0.106) ***  1.230 (0.147) *** 

RH: Hazard inertia-RH - -  0.772 (0.085) ***  0.944 (0.127) *** 

Drive: Lag inertia-drive - -  0.201 (0.367)  0.240 (0.591) 

Drive: Hazard inertia-drive - -  1.330 (0.136) ***  2.430 (0.377) *** 

AMOD: Lag inertia-walk - -  0.000 (fixed)  0.000 (fixed) 

AMOD: Hazard inertia-walk - - -0.120 (0.066) * -0.100 (0.070) 

AMOD: Lag inertia-PT - -  0.364 (0.091) ***  0.404 (0.106) *** 

AMOD: Hazard inertia-PT - -  0.074 (0.044) *  0.101 (0.052) * 

AMOD: Lag inertia-RH - -  1.410 (0.140) ***  1.600 (0.191) *** 

AMOD: Hazard inertia-RH - -  0.507 (0.072) ***  0.665 (0.106) *** 

AMOD: Lag inertia-drive - -  0.764 (0.247) ***  0.702 (0.281) ** 

AMOD: Hazard inertia-drive - -  0.157 (0.102)  0.254 (0.124) ** 

Mode attributes (𝜷𝑻) 

Walk: Walking time (min) -0.050 (0.003) *** -0.050 (0.003) *** -0.046 (0.003) *** -0.054 (0.004) *** 

PT: Travel cost ($SG) -0.221 (0.018) *** -0.240 (0.021) *** -0.278 (0.024) *** -0.396 (0.046) *** 

PT: In-vehicle time (min) -0.020 (0.001) *** -0.020 (0.001) *** -0.022 (0.002) *** -0.027 (0.003) *** 

PT: Waiting time (min) -0.031 (0.004) *** -0.031 (0.004) *** -0.034 (0.005) *** -0.043 (0.008) *** 

PT: Walking time (min) -0.034 (0.003) *** -0.035 (0.003) *** -0.035 (0.003) *** -0.047 (0.005) *** 

RH: Travel cost ($SG) -0.061 (0.005) *** -0.065 (0.005) *** -0.073 (0.006) *** -0.092 (0.009) *** 

RH: In-vehicle time (min) -0.028 (0.003) *** -0.030 (0.003) *** -0.032 (0.004) *** -0.046 (0.006) *** 
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Parameter 
M1 

Base 

M2 

Base + subjective  

evaluations 

M3 

Base + inertia 

M4 

Base + subjective  

evaluations + inertia 

RH: Waiting time (min) -0.042 (0.007) *** -0.036 (0.006) *** -0.036 (0.008) *** -0.039 (0.009) *** 

Drive: Travel cost ($SG) -0.116 (0.007) *** -0.110 (0.007) *** -0.109 (0.007) *** -0.149 (0.016) *** 

Drive: In-vehicle time (min) -0.040 (0.004) *** -0.042 (0.004) *** -0.046 (0.005) *** -0.064 (0.009) *** 

Drive: Walking time (min) -0.054 (0.011) *** -0.051 (0.010) *** -0.038 (0.013) *** -0.062 (0.021) *** 

AV: Travel cost ($SG) -0.094 (0.006) *** -0.096 (0.006) *** -0.113 (0.008) *** -0.132 (0.012) *** 

AV: In-vehicle time (min) -0.033 (0.003) *** -0.034 (0.003) *** -0.039 (0.004) *** -0.049 (0.005) *** 

AV: Waiting time (min) -0.043 (0.007) *** -0.040 (0.006) *** -0.045 (0.008) *** -0.051 (0.009) *** 

Individual characteristics (𝜷𝑿) 

PT: Income1 < SG$ 4,000  0.096 (0.054) *  0.129 (0.056) **  0.099 (0.067)  0.190 (0.089) ** 

PT: Income1 > SG$ 12,000 -0.002 (0.071) -0.032 (0.073)  0.041 (0.087)  0.025 (0.111) 

PT: Single   0.052 (0.063)  0.068 (0.065)  0.126 (0.079)  0.208 (0.104) ** 

PT: Driver license  -0.190 (0.051) *** -0.171 (0.054) *** -0.139 (0.063) ** -0.161 (0.083) * 

PT: Chinese -0.013 (0.064) -0.007 (0.067) -0.010 (0.080)  0.032 (0.104) 

PT: Commute trip  0.727 (0.062) ***  0.725 (0.066) ***  0.700 (0.079) ***  0.955 (0.126) *** 

PT: Full-time job  0.063 (0.052)  0.051 (0.054)  0.013 (0.064)  0.005 (0.084) 

PT: High education2   0.107 (0.049) **  0.069 (0.051)  0.089 (0.061)  0.043 (0.079) 

PT: Age > 60 -0.013 (0.096) -0.094 (0.100) -0.014 (0.120) -0.120 (0.158) 

PT: Age < 35  0.113 (0.054) **  0.025 (0.056)  0.031 (0.067) -0.091 (0.088) 

PT: Car owner   0.066 (0.129)  0.079 (0.134) -0.113 (0.153) -0.224 (0.195) 

PT: Male -0.037 (0.047) -0.021 (0.048) -0.013 (0.058)  0.003 (0.075) 

PT: Have kid under 18 -0.029 (0.065) -0.014 (0.068)  0.004 (0.081)  0.008 (0.105) 

RH: Income < SG$ 4,000 -0.121 (0.065) * -0.070 (0.064) -0.072 (0.079) -0.023 (0.086) 

RH: Income > SG$ 12,000  0.170 (0.081) **  0.127 (0.081)  0.127 (0.098)  0.108 (0.108) 

RH: Single  -0.111 (0.075) -0.085 (0.074) -0.008 (0.091)  0.032 (0.100) 

RH: Driver license  -0.291 (0.061) *** -0.225 (0.060) *** -0.268 (0.074) *** -0.216 (0.082) *** 

RH: Chinese -0.371 (0.073) *** -0.342 (0.073) *** -0.302 (0.089) *** -0.311 (0.098) *** 

RH: Commute trip  0.346 (0.060) ***  0.350 (0.060) ***  0.475 (0.079) ***  0.551 (0.093) *** 

RH: Full-time job  0.207 (0.063) ***  0.169 (0.062) ***  0.152 (0.076) **  0.124 (0.084) 

RH: High education   0.134 (0.058) **  0.064 (0.058)  0.117 (0.071) *  0.052 (0.078) 

RH: Age > 60 -0.045 (0.120) -0.027 (0.120) -0.014 (0.146) -0.020 (0.163) 

RH: Age < 35  0.366 (0.066) ***  0.225 (0.065) ***  0.285 (0.079) ***  0.183 (0.086) ** 

RH: Car owner   0.558 (0.142) ***  0.658 (0.143) ***  0.303 (0.167) *  0.427 (0.184) ** 

RH: Male -0.185 (0.057) *** -0.177 (0.056) *** -0.081 (0.069) -0.090 (0.075) 

RH: Have kid under 18  0.170 (0.077) **  0.211 (0.077) ***  0.203 (0.094) **  0.287 (0.105) *** 

Drive: Income < SG$ 4,000 -0.151 (0.098) -0.121 (0.100) -0.003 (0.132)  0.086 (0.203) 

Drive: Income > SG$ 12,000  0.144 (0.084) *  0.142 (0.084) *  0.157 (0.108)  0.259 (0.157) * 

Drive: Single   0.089 (0.093)  0.165 (0.093) *  0.065 (0.124)  0.223 (0.188) 

Drive: Driver license   0.103 (0.081)  0.199 (0.083) **  0.027 (0.114) -0.089 (0.177) 

Drive: Chinese -0.082 (0.105) -0.138 (0.106) -0.120 (0.141) -0.242 (0.211) 

Drive: Commute trip  0.427 (0.073) ***  0.396 (0.074) ***  0.480 (0.101) ***  0.619 (0.154) *** 

Drive: Full-time job -0.034 (0.078) -0.074 (0.079)  0.006 (0.105) -0.017 (0.160) 

Drive: High education   0.038 (0.070)  0.016 (0.070) -0.016 (0.093) -0.104 (0.140) 

Drive: Age > 60 -0.035 (0.136) -0.119 (0.139) -0.019 (0.184) -0.155 (0.278) 

Drive: Age < 35  0.223 (0.079) ***  0.174 (0.080) **  0.123 (0.105)  0.075 (0.159) 

Drive: Car owner   0.411 (0.137) ***  0.478 (0.140) ***  0.218 (0.171)  0.314 (0.236) 

Drive: Male -0.036 (0.065) -0.063 (0.066) -0.001 (0.087)  0.015 (0.131) 

Drive: Have kid under 18  0.074 (0.089)  0.093 (0.089)  0.095 (0.119)  0.160 (0.177) 

AV: Income < SG$ 4,000 -0.110 (0.070) -0.064 (0.069) -0.062 (0.084) -0.015 (0.094) 

AV: Income > SG$ 12,000  0.100 (0.086)  0.061 (0.086)  0.067 (0.103)  0.053 (0.115) 

AV: Single  -0.126 (0.081) -0.114 (0.080) -0.066 (0.097) -0.065 (0.107) 

AV: Driver license  -0.058 (0.065) -0.032 (0.067) -0.037 (0.079)  0.028 (0.091) 

AV: Chinese -0.170 (0.080) ** -0.166 (0.080) ** -0.109 (0.097) -0.112 (0.107) 

AV: Commute trip  0.479 (0.066) ***  0.448 (0.065) ***  0.447 (0.083) ***  0.478 (0.095) *** 

AV: Full-time job  0.222 (0.068) ***  0.187 (0.068) ***  0.174 (0.082) **  0.165 (0.092) * 

AV: High education   0.177 (0.063) ***  0.123 (0.062) **  0.147 (0.076) *  0.118 (0.085) 

AV: Age > 60 -0.018 (0.130) -0.017 (0.130) -0.031 (0.157) -0.013 (0.175) 

AV: Age < 35  0.476 (0.072) ***  0.327 (0.070) ***  0.383 (0.086) ***  0.298 (0.095) *** 
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Parameter 
M1 

Base 

M2 

Base + subjective  

evaluations 

M3 

Base + inertia 

M4 

Base + subjective  

evaluations + inertia 

AV: Car owner  0.228 (0.154)  0.318 (0.156) ** -0.015 (0.181)  0.083 (0.202) 

AV: Male -0.045 (0.060) -0.039 (0.059)  0.082 (0.072)  0.091 (0.080) 

AV: Have kid under 18  0.214 (0.082) ***  0.238 (0.082) ***  0.230 (0.100) **  0.298 (0.112) *** 

Others 

SP scale3 (𝜇𝑆𝑃)  1.390 (0.073) ***  1.440 (0.075) *** 1.210 (0.070) *** 1.160 (0.094) * 

Walk: HFP4 (𝛾𝑘) - - 0.364 (0.063) *** 0.332 (0.069) *** 

PT: HFP (𝛾𝑘) - - 0.222 (0.049) *** 0.258 (0.045) *** 

RH: HFP (𝛾𝑘) - - 0.247 (0.099) ** 0.283 (0.104) *** 

Drive: HFP (𝛾𝑘) - - 0.590 (0.070) *** 0.607 (0.063) *** 

PT: Std. Dev. 5 (�̃�𝑗) - 0.486 (0.138) *** - 1.390 (0.209) *** 

RH: Std. Dev. (�̃�𝑗) - 0.003 (0.136) - 0.010 (0.123) 

Drive: Std. Dev. (�̃�𝑗) - 0.009 (0.109) - 1.770 (0.310) *** 

AV: Std. Dev. (�̃�𝑗) - 0.001 (0.075) - 0.000 (0.088) 

Statistical summary     

Final log-likelihood -12299.32 -11983.09 -10389.58 -10236.7 

AIC 24740.65 24134.19 20963.17 20683.40 

BIC 25263.20 24752.42 21640.28 21456.19 

ρ2 0.266 0.285 0.380 0.389 

Adjusted ρ2 0.262 0.280 0.375 0.383 

*: p-value < 0.10; **: p-value < 0.05; ***: p-value < 0.01; 
1: “Income” means household monthly income. 
2: “High education” means with Bachelor’s degree or higher. 
3: The p-value for 𝜇𝑆𝑃 is tested against 1 instead of 0 (using t-test) because 𝜇𝑅𝑃 is normalized to 1. 𝜇𝑆𝑃 in all models are greater 

than 1, meaning RP responses contain more random noise than SP responses (Polydoropoulou and Ben-Akiva, 2001). 
4: “HFP” means hazard function parameter. 

5: “Std. Dev.” means standard deviation. 

Table notes: For all models, results were estimated from a sample of 2,003 individuals, 11,613 choice observations, 1 
with an initial log-likelihood of -16764.55. 2 

5.3 Inertia 3 

Here we consider the impact of our inertia terms on people’s stated preference for AMOD or other 4 

modes. The lagged inertia variable indicates familiarity (previous use) of the mode and the hazard 5 

inertia variable represents the repeated choice of the mode under different choice scenarios. 6 

Including both inertia terms significantly improves model performance, even when including them 7 

in the same model as the subjective evaluations of existing modes (M4).  8 

 9 

We start with a discussion of the lagged inertia variables. For existing modes, greater familiarity 10 

from use of the existing mode did not always lead to a greater likelihood of choosing it in the 11 

hypothetical choice scenarios. For ridehailing (and, not significantly, driving), the coefficient for 12 

lagged inertia is positive, suggesting that the users of these current modes were more likely to 13 

continue using them. In other words, respondents that are currently using car-based modes are 14 

doing so by choice. On the other hand, the choices to walk or take public transit were negatively 15 

predicted by existing use of those modes. Individuals who were walking and taking public transit 16 

tended to switch modes if a better alternative was presented in their stated preference choice sets. 17 

This result might suggest that individuals currently walk or take public transit in Singapore because 18 

they lacked an affordable or easy alternative rather than because it is their true preference. 19 

 20 

Considering likelihood to switch to AMOD from existing modes, we found that users with greater 21 

lag inertia for ridehailing were the most likely to switch to AMOD, followed by driving, public 22 

transit, and then walking. All else being equal, individuals who currently use ridehailing and drive 23 
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their personal car were the most likely to switch to AMOD when it becomes available, with 1 

coefficients of lag inertia of 1.600 and 0.702, respectively. This could indicate that individuals are 2 

more likely to adopt a new AMOD when it is similar to what they already use to travel—e.g., 3 

ridehailing, or to a lesser extent, driving a car. Cai et al. (2019) reached similar conclusions by 4 

estimating AV choice models separately for Singaporean drivers and transit users.  5 

 6 

All hazard inertia coefficients for the existing modes are statistically significant and positive, 7 

meaning that people tend to choose one mode repeatedly when presented with different choice 8 

scenarios. This may be reflective of an anchoring effect where people are overly reliant on the first 9 

piece of information for decision-making and evaluate latter scenarios with respect to the previous 10 

ones. In other words, respondents may have related subsequent choice scenarios to a previous one, 11 

deciding whether to switch from the previous choice. For the choice of switching to AMOD we 12 

again find an effect similar to lagged inertia, where people who previously chose ridehailing in the 13 

choice experiments were the most likely to switch to AMOD in subsequent choice scenarios. The 14 

coefficient for hazard inertia is strongly positive for ridehailing and negative for walking. The 15 

hazard inertia terms for both driving and public transit were not consistently statistically different 16 

from zero across the weighted and unweighted models (see Appendix B).  17 

5.4 Subjective Evaluations of Existing Travel Modes (Attitudes) 18 

Additionally, we consider how the subjective evaluation of existing travel modes—in terms of 19 

their safety, comfort, reliability, enjoyment, and ease of use—influence the choice of AMOD over 20 

other modes of travel. Including these subjective evaluations produces a smaller, but still 21 

statistically significant improvement on model fit beyond inertia and other individual- and mode-22 

specific attributes (comparing M4 to M3). This indicates that subjective evaluations of existing 23 

modes offer behavioral insights into mode choice decision making separate and in addition to 24 

existing use of those modes. 25 

 26 

In general, we find that positive evaluations of an existing mode contribute to a greater likelihood 27 

of choosing that mode. For example, those who had stronger positive evaluations of walking, 28 

public transit, ridehailing, and driving were more likely to choose these modes. Subjective 29 

evaluations of existing modes are less predictive of stated preference towards a new travel mode, 30 

in our case AMOD. M4 finds that an individual’s subjective evaluations of driving and public 31 

transit do not significantly influence choice to use AMOD, while having a positive attitude towards 32 

ridehailing and walking is a significant predictor of choosing AMOD (see also weighted model 33 

results in Appendix B). Since ridehailing, being a chauffeured mobility-on-demand service, is the 34 

most similar to our hypothetical AMOD mode in terms of its trip attributes, this finding might 35 

suggest that positive evaluations of existing services that were similar to in terms of service design 36 

may help to predict adoption of new technologies. However, this positive relationship between 37 

ridehailing attitudes and AMOD choice may alternatively be due to other shared predictors not 38 

captured in the model, such as an individual’s familiarity with smartphone apps, propensity or 39 

interest in using new technologies in general, or other factors. 40 

 41 

Since subjective evaluations matter in decision making and it is difficult to ask for people’s 42 

evaluations on something not implemented, close neighbors to new technologies might be used as 43 

proxies to evaluate people’s likely reactions towards and identify potential adopters of new 44 

transportation modes or technologies. But the choice of proxy is not a trivial issue; it depends not 45 
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only on the technology itself, but also on how the technology will be implemented within the 1 

mobility system. 2 

5.5 Socio-demographic Variables and Mode Attributes  3 

Finally, we briefly discuss the estimated parameters for the socio-demographic characteristics of 4 

travelers (𝜷𝑿) and mode attributes (𝜷𝑻) for M4 shown in Table 5.   5 

5.5.1 Mode-Specific Attributes 6 

When it comes to mode-specific attributes, we find that all travel time and cost related variables 7 

have negative coefficients, as expected, and are statistically different from zero with p-value < .01. 8 

We can also use these coefficients to estimate values of in-vehicle, waiting, and walking time for 9 

our different mode choices (Table 6).  10 

 11 

Comparing the cost and in-vehicle time coefficients across modes, we find that individuals are the 12 

most sensitive to PT travel cost and least sensitive to PT travel time—suggesting that people take 13 

public transport with the expectation that it is not time-efficient. From the estimated coefficients 14 

for AMOD, we see that individuals are expecting this service to be time-efficient. We also find 15 

that the choice to take AMOD or ridehailing is more sensitive to waiting time than public transit. 16 

Finally, we find that the value of walking time for driving is similar in magnitude to the value of 17 

waiting time for both AMOD and ridehailing. 18 

Table 6. Values of time estimated from M4 19 

 PT RH Drive AMOD 

Value of in-vehicle time (S$/min) 4.1 30.0 25.8 22.3 

Value of waiting time (S$/min) 6.5 25.4 -- 23.2 

Value of walk time (S$/min) 7.12 -- 25.0 -- 

 20 

5.5.2 Characteristics of Travelers 21 

The effects of traveler characteristics are included in the utility functions for PT, RH, drive, and 22 

AMOD, with walking treated as the reference mode. Here we discuss the coefficients from M4 23 

that were found to be significant at a 95% confidence level (see Table 5). Where possible, we 24 

compare our results to the literature in general and specifically to the findings from Cai et al. (2019), 25 

which presents results from a similar survey conducted in at similar time and in the same 26 

location—i.e., Singapore. 27 

 28 

We find that income is not a significant predictor of AMOD choice, although the coefficient is 29 

positive suggesting that individuals with higher income may be more willing to adopt AVs, which 30 

is consistent with findings from Liu et al. (2019) and Shabanpour et al. (2018). Similar to Cai et 31 

al. (2019), we find that having a lower income is a significant predictor of greater transit use in our 32 

sample of Singaporean residents. While we see no significant impact of income on AMOD choice, 33 

we do find that related sociodemographic characteristic of employment is predictive. People with 34 

a full-time job are found to be more likely to take ridehailing (similar to findings by Moody and 35 

Zhao, 2020) and AMOD. When it comes to the effect of education on AV mode choice, some 36 

studies have found education to be a significant predictor (Liu et al., 2019; Bansal et al., 2016) 37 

while others have found either insignificant effect (Zmud and Sener, 2017) or mixed effects for 38 

different forms of AV (Cai et al., 2019). In our study we find that high education level is a positive, 39 
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but not significant indicator of AMOD adoption after controlling for subjective evaluation and use 1 

of existing modes. 2 

 3 

When it comes to age, gender, and ethnicity, we find that younger people have a greater inclination 4 

towards ridehailing and AMOD (in line with Cai et al., 2019; Liu et al., 2019; Shabanpour et al., 5 

2018) as well as driving. Gender is not found to be a significant predictor of mode choice, whereas 6 

people who self-report as Chinese ethnicity are less likely to take ridehailing and AMOD. 7 

 8 

As expected, we find that people with a driver’s license are more likely to drive than walk and less 9 

likely to take ridehailing or public transit. It is not a significant predictor of AMOD choice. 10 

Relatedly, having more cars in the household predicts greater choice of driving and ridehailing. 11 

The finding that car ownership is positively predictive of ridehailing adoption has been observed 12 

in other survey studies in Singapore (Moody and Zhao, 2020) and may reflect the fact that car 13 

owners are accustomed to traveling with car-based modes. Car ownership, like having a driver’s 14 

license, is not significantly predictive of AMOD choice. 15 

 16 

Finally, when it comes to trip purpose, we find that all modes are preferred over walking for 17 

commuting trips, with the most preferred mode being public transport. 18 

6. CONCLUSION 19 

This paper studied how subjective evaluations and inertia from use of existing modes affect 20 

individual choices on AMOD adoption using a combined revealed and stated preference survey. 21 

To obtain subjective evaluations, the respondents were asked to rate on a 7-point Likert scale their 22 

impressions of the existing modes based on safety, comfort, reliability, enjoyment, and ease of use. 23 

A confirmatory factor analysis was performed to obtain the subjective evaluations of existing 24 

modes. In addition, use of existing modes for a given trip from the revealed preference portion and 25 

from repeated selection in the stated preference portion of the survey were included in the choice 26 

model as modal inertia terms, measuring a respondent’s tendency to stick to their current mode of 27 

travel. A mixed logit choice model was estimated to investigate how subjective evaluations and 28 

use of existing modes separately and simultaneously affect individuals’ mode choice when a new 29 

autonomous mobility-on-demand (AMOD) service is introduced. 30 

 31 

We found that subjective evaluations and past mode use are related, but distinct constructs that 32 

jointly influence people’s future mode choices. In general, we found that individuals who have 33 

positive subjective evaluations of a given mode are more likely to choose it for their trip and that, 34 

even controlling for these attitudes and other individual- and mode-specific attributes, there is 35 

indeed significant inertia in mode choice.  36 

 37 

When it comes to modeling the adoption of a new, hypothetical AMOD service, we find that 38 

individuals with positive attitudes towards and existing use of car-based modes that are similar to 39 

the new AV service are more likely to switch to AMOD. In particular, we found that people with 40 

a positive evaluation of ridehailing and those that are currently ridehailing users are the most likely 41 

to choose AMOD. Additionally, those who are current car drivers are more likely to choose 42 

AMOD, while users of public transit were less likely to choose AMOD. Given that ridehailing is 43 

the closest existing mode to our hypothetical AMOD service, our results might suggest that how 44 

AVs are implemented and their similarity to existing modes may be critical to the formation of 45 
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attitudes and direction of inertia impacting adoption. However, future work is needed to further 1 

explore the substitutability between existing, chauffeured ridehailing services and new AMOD 2 

services. 3 

 4 

This finding may have significant implications for how we predict adoption of and design service 5 

for AVs. We find that subjective evaluations of existing modes provide useful information only 6 

when the proposed implementation is similar enough to an existing mode. When we measure 7 

people’s acceptance of new technologies, contexts that relate to the individual’s perceptions and 8 

use of existing travel options can help to solicit meaningful intentions. On the other hand, 9 

interactions with existing modes, represented by inertia, provide more information on whether 10 

people will choose the newly introduced travel mode. The study found that people familiar with 11 

mobility options that are already similar to the newly proposed mode had a greater tendency to 12 

switch. Here we caution that the purpose of our model is in describing rather than predicting 13 

adoption of AV services. If our model were to be used for prediction, further model calibration 14 

and appropriate weighting of the sample to be representative of the Singaporean population would 15 

likely be necessary. 16 

 17 

While this work contributes to existing understanding of user adoption of autonomous vehicle 18 

technology and extends the state-of-practice on mode choice modeling with latent variables and 19 

inertial terms, there remain many areas for future research. For example, our study only considered 20 

one form of AV implementation, namely an autonomous mobility-on-demand service. Since we 21 

found that both subjective evaluations and inertia from use of existing modes are most influential 22 

when the existing mode is very similar to the new mode introduced in the choice experiment, it 23 

could be interesting to study these same research questions for other forms of AV deployment, 24 

such as private ownership or autonomous public transit. The impact of subjective evaluations and 25 

inertia on different AV implementations may corroborate or challenge the interpretation of the 26 

model results presented in this study. Furthermore, research could consider how subjective 27 

evaluation and current use of existing travel modes influence AV choice in other settings or for 28 

specific groups of individuals (perhaps using latent classes), thereby helping to generalize the 29 

findings from this study to other geographies or target populations of interest. Finally, as AV 30 

technology matures and becomes commercially available in the mobility market, it will be 31 

important to observe actual user adoption of these services and compare these revealed preferences 32 

with previous stated preference studies.  33 
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APPENDIX A: RESULTS OF CONFIRMATORY FACTOR ANALYSIS 1 

Convergent Validity 2 

For each latent variable, we follow the same process to demonstrate that the survey items that 3 

measure the same construct are indeed highly related (convergent validity). We begin by 4 

estimating a baseline confirmatory factor analysis model with all survey items loading onto a 5 

single factor. To ensure convergent validity, we want the majority of the item variances to be 6 

explained by the single factor (standardized factor loading of > 0.70 and an R2 > 0.5) as suggested 7 

by Kline (2016). While this threshold was not met for all items, they did meet a more practical cut-8 

off of 0.45 and no items showed factor loading that were so poor they warranted removing from 9 

the model entirely. This also means that the characteristics/items that make up the subjective 10 

evaluation latent variable are the same for each of the four modes (see Table A1).  11 

We also compare the overall model fit to established standards: a chi-square test statistic that is 12 

not statistically different from zero, CFI and TLI greater than 0.90, and RMSEA and SRMR less 13 

than 0.08 (Kline, 2016) (see Table A2). If the model does not meet established standards of model 14 

fit, then we investigate Lagrangian Multiplier modification indices (MIs). We review each pair of 15 

items for which MIs are high, indicating that introducing a correlation between their error terms 16 

could significantly improve the chi-square of the model. If needed, correlated error terms were 17 

added one by one and each time we re-estimated the model and check the factor loadings, model 18 

fit, and MIs. Only one model, the model for pro-walk subjective evaluations, warranted the 19 

inclusion of a correlated error term between the indicators for safety and reliability (see Table A1). 20 

Table A1. Standardized factor loadings and R2 values for CFA models (estimated separately for each subjective 21 
evaluation factor) 22 

Factor Indicator Standardized factor loading R2
 

Pro-walk I think walking feels safe 0.511 0.261 

 I think walking is comfortable 0.678 0.460 

 I think walking is a reliable mode 0.728 0.530 

 I think walking feels easy 0.792 0.628 

 I enjoy walking 0.895 0.802 

 correlation between errors for safe and reliable 0.336 -- 

Pro-PT I think taking public transport feels safe 0.532 0.283 

 I think taking public transport is comfortable 0.675 0.456 

 I think public transport is a reliable mode 0.763 0.581  

 I think taking public transport is easy 0.720 0.519  

 I enjoy taking public transport 0.898 0.807 

Pro-RH I think ridehailing feels safe 0.686 0.470 

 I think ridehailing is comfortable 0.769 0.592 

 I think ridehailing is a reliable mode 0.816 0.665 

 I think ridehailing is easy 0.758 0.575 

 I enjoy ridehailing 0.811 0.658 

Pro-drive I think driving feels safe 0.655 0.429 

 I think driving is comfortable 0.794 0.630 

 I think driving is a reliable mode 0.821 0.675 

 I think driving is easy 0.872 0.761 

 I enjoy driving 0.864 0.747 

Note: All factor loadings for all models were found to be statistically significant at the 1% level. 23 
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Table A2. Robust model fit statistics for the estimated CFA models 1 

Model Χ2, p-value CFI TLI RMSEA SRMR 

Pro-walk: Baseline + correlated error  28.205, 0.000 0.995 0.988 0.055 0.032 

Pro-PT: Baseline 33.510, 0.000 0.996 0.993 0.053 0.037 

Pro-RH: Baseline 30.188, 0.674 0.998 0.996 0.050 0.023 

Pro-drive: Baseline   3.037, 0.694 1.000 1.000 0.000 0.012 

Divergent Validity 2 

Having established the convergent validity of our latent variables, we now want to ensure that they 3 

collectively demonstrate reasonable divergent (or discriminant) validity. We run a CFA model 4 

simultaneously estimating the final specifications of all of our latent variables and allowing them 5 

to correlate. We are looking to show that items presumed to measure a certain latent variable do 6 

not have significant cross-loadings with other latent variable. We only estimate this combined CFA 7 

model for the subset of respondents  8 

 9 

This combined CFA model demonstrates moderately acceptable model fit across multiple indices: 10 

𝜒2(N = 953, df = 163) = 3966.99, p < .01, CFI = 0.917, TLI = 0.904, RMSEA = 0.075 with 90% 11 

CI [0.072, 0.078], and SRMR = 0.096. Of particular interest for discriminant validity is the 12 

correlations among the latent variables given in Table A3. We find these correlations range 13 

between 0.288 and 0.737, suggested that they are related, but distinct variables.  14 

 15 
Table A3. Correlations among the subjective evaluations (latent variables) of the different modes  16 

 Walk PT RH Drive 

Walk 1.000    

PT 0.737 1.000   

RH 0.288 0.589 1.000  

Drive 0.314 0.326 0.442 1.000 

 17 

We additionally consider the MIs among the latent variables and their indicators. We find that 18 

there are only a few MIs large enough to suggest potential cross-loading of indicators among latent 19 

variables. However, given the moderate model fit without these cross-loadings, we do not include 20 

them when estimating the correlations above. 21 

Reliability  22 

Finally, we estimate three common reliability indices for our latent variables: Cronbach’s alpha 23 

(α), composite reliability (or Ω) and maximal reliability (H). For these reliability calculations, we 24 

treat our ordinal 7-point Likert scale indicators as a continuous as an approximation. We find that 25 

our latent variables show strong internal consistency (α), composite reliability, and maximal 26 

reliability, with all indices above 0.7 (Kline, 2016) as shown in Table A4.  27 

Table A4. Reliability indices for the estimated latent variables 28 

Latent variable (SE) Cronbach’s alpha (α) Composite reliability (Ω) Maximal reliability (H) 

Walking 0.908 0.898 0.905 

PT 0.875 0.876 0.889 

RH 0.804 0.805 0.822 
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Drive 0.886 0.869 0.891 

 1 

APPENDIX B: MODEL ESTIMATION RESULTS WITH SAMPLE WEIGHTS 2 

Table B1. Results from the weighted hybrid choice models: unstandardized parameter 3 

(standard error) 4 

Parameter 
M1 

Base 

M2 

Base + subjective  

evaluations 

M3 

Base + inertia 

M4 

Base + subjective  

evaluations + inertia 

Alternative specific constants (𝜷𝑨𝑺𝑪) 

Walk   0.000 (fixed)  0.000 (fixed)  0.000 (fixed)  0.000 (fixed) 

Public transport (PT) -0.398 (0.110) *** -0.325 (0.110) ***  0.545 (0.130) ***  0.454 (0.161) *** 

Ridehailing (RH) -0.829 (0.127) *** -0.610 (0.124) *** -0.571 (0.143) *** -0.543 (0.166) *** 

Drive  0.163 (0.112)  0.405 (0.110) ***  0.116 (0.133)  0.098 (0.216) 

AMOD -0.992 (0.147) *** -0.835 (0.161) *** -0.721 (0.178) *** -0.773 (0.229) *** 

Subjective evaluations (𝜷𝒎
𝑨 ) 

Walk: Pro-walk -  1.060 (0.075) *** -  0.891 (0.107) *** 

PT: Pro-walk -  0.077 (0.055) -  0.126 (0.080) 

PT: Pro-PT -  0.638 (0.053) *** -  0.499 (0.085) *** 

RH: Pro-RH -  0.619 (0.046) *** -  0.588 (0.071) *** 

Drive: Pro-drive -  0.544 (0.069) *** -  0.446 (0.139) *** 

AMOD: Pro-walk -  0.141 (0.077) * -  0.272 (0.093) *** 

AMOD: Pro-PT - -0.009 (0.077) - -0.078 (0.092) 

AMOD: Pro-RH -  0.426 (0.052) *** -  0.374 (0.072) *** 

AMOD: Pro-drive - -0.103 (0.068) - -0.056 (0.086) 

Inertia (lagged 𝜷𝒋
𝑳 and hazard 𝜷𝒋

𝑯) 

Walk: Lag inertia-walk - - -0.440 (0.081) *** -0.534 (0.102) *** 

Walk: Hazard inertia-walk - -  0.880 (0.079) ***  0.913 (0.099) *** 

PT: Lag inertia-walk - - -1.010 (0.088) *** -1.130 (0.138) *** 

PT: Hazard inertia-walk - -  0.270 (0.054) ***  0.266 (0.067) *** 

PT: Lag inertia-PT - - -0.942 (0.068) *** -1.110 (0.124) *** 

PT: Hazard inertia-PT - -  0.797 (0.071) ***  1.080 (0.157) *** 

RH: Lag inertia-RH - -  1.160 (0.103) ***  1.180 (0.138) *** 

RH: Hazard inertia-RH - -  0.748 (0.081) ***  0.911 (0.135) *** 

Drive: Lag inertia-drive - -  0.182 (0.310)  0.160 (0.549) 

Drive: Hazard inertia-drive - -  1.210 (0.143) ***  2.450 (0.500) *** 

AMOD: Lag inertia-walk - -  0.000 (fixed)  0.000 (fixed) 

AMOD: Hazard inertia-walk - - -0.108 (0.067) -0.110 (0.074) 

AMOD: Lag inertia-PT - -  0.374 (0.087) ***  0.403 (0.104) *** 

AMOD: Hazard inertia-PT - -  0.019 (0.044)  0.043 (0.051) 

AMOD: Lag inertia-RH - -  1.240 (0.138) ***  1.310 (0.177) *** 

AMOD: Hazard inertia-RH - -  0.571 (0.074) ***  0.712 (0.119) *** 

AMOD: Lag inertia-drive - -  0.819 (0.182) ***  0.851 (0.217) *** 

AMOD: Hazard inertia-drive - -  0.016 (0.119)  0.067 (0.150) 

Mode attributes (𝜷𝑻) 

Walk: Walking time (min) -0.058 (0.003) *** -0.055 (0.003) *** -0.046 (0.003) *** -0.053 (0.004) *** 

PT: Travel cost ($SG) -0.247 (0.019) *** -0.245 (0.018) *** -0.261 (0.022) *** -0.346 (0.045) *** 

PT: In-vehicle time (min) -0.023 (0.001) *** -0.022 (0.001) *** -0.024 (0.002) *** -0.028 (0.003) *** 

PT: Waiting time (min) -0.022 (0.004) *** -0.020 (0.004) *** -0.021 (0.005) *** -0.025 (0.006) *** 

PT: Walking time (min) -0.030 (0.002) *** -0.027 (0.002) *** -0.029 (0.003) *** -0.035 (0.004) *** 

RH: Travel cost ($SG) -0.047 (0.004) *** -0.049 (0.004) *** -0.054 (0.005) *** -0.066 (0.007) *** 

RH: In-vehicle time (min) -0.037 (0.004) *** -0.039 (0.004) *** -0.039 (0.004) *** -0.051 (0.006) *** 

RH: Waiting time (min) -0.043 (0.007) *** -0.036 (0.006) *** -0.029 (0.007) *** -0.036 (0.009) *** 

Drive: Travel cost ($SG) -0.140 (0.008) *** -0.129 (0.007) *** -0.115 (0.008) *** -0.163 (0.022) *** 

Drive: In-vehicle time (min) -0.037 (0.005) *** -0.041 (0.005) *** -0.045 (0.006) *** -0.064 (0.011) *** 

Drive: Walking time (min) -0.097 (0.018) *** -0.086 (0.018) *** -0.068 (0.021) *** -0.102 (0.035) *** 
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Parameter 
M1 

Base 

M2 

Base + subjective  

evaluations 

M3 

Base + inertia 

M4 

Base + subjective  

evaluations + inertia 

AV: Travel cost ($SG) -0.083 (0.006) *** -0.081 (0.005) *** -0.085 (0.006) *** -0.099 (0.010) *** 

AV: In-vehicle time (min) -0.040 (0.004) *** -0.040 (0.003) *** -0.041 (0.004) *** -0.050 (0.006) *** 

AV: Waiting time (min) -0.061 (0.008) *** -0.055 (0.007) *** -0.050 (0.008) *** -0.059 (0.010) *** 

Individual characteristics (𝜷𝑿) 

PT: Income1 < SG$ 4,000  0.173 (0.059) ***  0.184 (0.058) ***  0.141 (0.065) **  0.225 (0.086) *** 

PT: Income1 > SG$ 12,000  0.072 (0.067)  0.041 (0.066)  0.077 (0.072)  0.069 (0.087) 

PT: Single   0.135 (0.065) **  0.133 (0.063) **  0.165 (0.072) **  0.253 (0.095) *** 

PT: Driver license  -0.219 (0.055) *** -0.077 (0.053) -0.121 (0.059) ** -0.040 (0.072) 

PT: Chinese -0.106 (0.059) * -0.072 (0.058) -0.114 (0.065) * -0.094 (0.079) 

PT: Commute trip  0.638 (0.057) ***  0.565 (0.055) ***  0.436 (0.061) ***  0.569 (0.097) *** 

PT: Full-time job  0.246 (0.055) ***  0.147 (0.053) ***  0.216 (0.059) ***  0.200 (0.074) *** 

PT: High education2   0.117 (0.055) **  0.102 (0.053) *  0.031 (0.058)  0.006 (0.071) 

PT: Age > 60 -0.020 (0.067) -0.105 (0.065)  0.088 (0.073)  0.054 (0.090) 

PT: Age < 35  0.031 (0.062) -0.027 (0.061) -0.003 (0.067) -0.056 (0.083) 

PT: Car owner   0.087 (0.161)  0.154 (0.157) -0.006 (0.166) -0.069 (0.201) 

PT: Male  0.024 (0.050)  0.036 (0.049)  0.003 (0.054) -0.014 (0.067) 

PT: Have kid under 18  0.068 (0.078)  0.082 (0.076)  0.012 (0.085)  0.031 (0.104) 

RH: Income < SG$ 4,000 -0.280 (0.072) *** -0.242 (0.070) *** -0.162 (0.075) ** -0.140 (0.085) * 

RH: Income > SG$ 12,000  0.281 (0.080) ***  0.193 (0.078) **  0.102 (0.083)  0.049 (0.094) 

RH: Single   0.076 (0.078)  0.049 (0.077)  0.179 (0.084) **  0.220 (0.097) ** 

RH: Driver license  -0.459 (0.068) *** -0.289 (0.065) *** -0.292 (0.070) *** -0.208 (0.079) *** 

RH: Chinese -0.550 (0.071) *** -0.531 (0.069) *** -0.366 (0.074) *** -0.412 (0.087) *** 

RH: Commute trip  0.248 (0.061) ***  0.249 (0.060) ***  0.271 (0.065) ***  0.327 (0.077) *** 

RH: Full-time job  0.086 (0.065) -0.013 (0.064)  0.146 (0.069) **  0.072 (0.078) 

RH: High education   0.238 (0.065) ***  0.126 (0.063) **  0.095 (0.067)  0.014 (0.076) 

RH: Age > 60 -0.064 (0.084) -0.035 (0.083)  0.110 (0.088)  0.146 (0.101) 

RH: Age < 35  0.397 (0.075) ***  0.268 (0.072) ***  0.292 (0.078) ***  0.242 (0.088) *** 

RH: Car owner   0.348 (0.181) *  0.544 (0.178) ***  0.251 (0.184)  0.392 (0.210) * 

RH: Male -0.054 (0.061) -0.053 (0.060)  0.066 (0.064)  0.063 (0.072) 

RH: Have kid under 18  0.571 (0.092) ***  0.559 (0.090) ***  0.387 (0.098) ***  0.484 (0.116) *** 

Drive: Income < SG$ 4,000 -0.724 (0.168) *** -0.708 (0.166) *** -0.616 (0.190) *** -0.712 (0.303) ** 

Drive: Income > SG$ 12,000  0.226 (0.102) **  0.253 (0.099) **  0.172 (0.116)  0.280 (0.182) 

Drive: Single   0.343 (0.122) ***  0.328 (0.117) ***  0.334 (0.144) **  0.549 (0.237) ** 

Drive: Driver license   0.163 (0.112)  0.405 (0.110) ***  0.116 (0.133)  0.098 (0.216) 

Drive: Chinese -0.396 (0.121) *** -0.456 (0.119) *** -0.341 (0.139) ** -0.535 (0.227) ** 

Drive: Commute trip  0.481 (0.094) ***  0.372 (0.092) ***  0.429 (0.109) ***  0.430 (0.174) ** 

Drive: Full-time job  0.160 (0.096) *  0.051 (0.093)  0.218 (0.111) **  0.238 (0.177) 

Drive: High education  -0.047 (0.093) -0.036 (0.091) -0.109 (0.107) -0.198 (0.172) 

Drive: Age > 60 -0.244 (0.131) * -0.351 (0.127) *** -0.076 (0.155) -0.179 (0.247) 

Drive: Age < 35 -0.178 (0.118) -0.194 (0.117) * -0.129 (0.135) -0.295 (0.219) 

Drive: Car owner   0.686 (0.170) ***  0.698 (0.169) ***  0.296 (0.186)  0.530 (0.280) * 

Drive: Male -0.021 (0.093) -0.126 (0.091) -0.042 (0.107) -0.091 (0.169) 

Drive: Have kid under 18  0.209 (0.136)  0.147 (0.131)  0.143 (0.158)  0.228 (0.248) 

AV: Income < SG$ 4,000 -0.318 (0.083) *** -0.302 (0.080) *** -0.217 (0.085) ** -0.226 (0.097) ** 

AV: Income > SG$ 12,000  0.333 (0.085) ***  0.291 (0.083) ***  0.227 (0.087) ***  0.234 (0.101) ** 

AV: Single   0.065 (0.088)  0.036 (0.085)  0.080 (0.091)  0.090 (0.104) 

AV: Driver license  -0.117 (0.073)  0.038 (0.072)  0.045 (0.076)  0.150 (0.089) * 

AV: Chinese -0.248 (0.079) *** -0.263 (0.076) *** -0.055 (0.081) -0.076 (0.092) 

AV: Commute trip  0.369 (0.069) ***  0.326 (0.068) ***  0.211 (0.072) ***  0.230 (0.084) *** 

AV: Full-time job  0.237 (0.075) ***  0.122 (0.072) *  0.244 (0.077) ***  0.192 (0.088) ** 

AV: High education   0.208 (0.072) ***  0.139 (0.070) **  0.076 (0.074)  0.047 (0.084) 

AV: Age > 60  0.020 (0.093)  0.018 (0.091)  0.079 (0.097)  0.110 (0.111) 

AV: Age < 35  0.482 (0.085) ***  0.335 (0.081) ***  0.360 (0.086) ***  0.317 (0.099) *** 

AV: Car owner -0.053 (0.203)  0.153 (0.199) -0.141 (0.204) -0.008 (0.233) 

AV: Male  0.127 (0.068) *  0.115 (0.065) *  0.241 (0.070) ***  0.258 (0.081) *** 

AV: Have kid under 18  0.325 (0.100) ***  0.310 (0.097) ***  0.099 (0.104)  0.153 (0.119) 

Others 
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Parameter 
M1 

Base 

M2 

Base + subjective  

evaluations 

M3 

Base + inertia 

M4 

Base + subjective  

evaluations + inertia 

SP scale3 (𝜇𝑆𝑃) 1.190 (0.056) *** 1.260 (0.057) *** 1.240 (0.070) *** 1.120 (0.091) *** 

Walk: HFP4 (𝛾𝑘) - - 0.463 (0.055) *** 0.435 (0.061) *** 

PT: HFP (𝛾𝑘) - - 0.234 (0.044) *** 0.254 (0.043) *** 

RH: HFP (𝛾𝑘) - - 0.396 (0.098) *** 0.447 (0.102) *** 

Drive: HFP (𝛾𝑘) - - 0.539 (0.086) *** 0.590 (0.073) *** 

PT: Std. Dev. 5 (�̃�𝑗) - 0.019 (0.100) - 0.939 (0.253) *** 

RH: Std. Dev. (�̃�𝑗) - 0.013 (0.143) - 0.011 (0.123) 

Drive: Std. Dev. (�̃�𝑗) - 0.020 (0.171) - 1.870 (0.433) *** 

AV: Std. Dev. (�̃�𝑗) - 0.016 (0.082) - 0.005 (0.091) 

Statistical summary     

Final log-likelihood -12573.51 -12249.88 -10650.53 -10510.63 

AIC 25289.02 24667.76 21485.05 21231.26 

BIC 25811.57 25285.99 22162.16 22004.05 

ρ2 0.272 0.291 0.384 0.392 

Adjusted ρ2 0.268 0.286 0.378 0.386 

*: p-value < 0.10; **: p-value < 0.05; ***: p-value < 0.01; 
1: “Income” means household monthly income. 
2: “High education” means with Bachelor’s degree or higher. 
3: The p-value for 𝜇𝑆𝑃 is tested against 1 instead of 0 (using t-test) because 𝜇𝑅𝑃 is normalized to 1. 𝜇𝑆𝑃 in all models are greater 

than 1, meaning RP responses contain more random noise than SP responses (Polydoropoulou and Ben-Akiva, 2001). 
4: “HFP” means hazard function parameter. 

5: “Std. Dev.” means standard deviation. 

Table notes: For all models, results were estimated from a sample of 2,003 individuals, 11,613 choice observations, 1 
with an initial log-likelihood of -17279.16. 2 
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