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GENERIC CHARACTER SHEAVES ON

DISCONNECTED GROUPS AND CHARACTER VALUES

G. Lusztig

Introduction

The theory of character sheaves [L3] on a reductive group G over an alge-
braically closed field and the theory of irreducible characters of G over a finite
field are two parallel theories; the first one is geometric (involving intersection
cohomology complexes on G), the second one involves functions on the group of
rational points of G. In the case where G is connected, a bridge between the two
theories was constructed in [L1] and strengthened in [L2], [S]. In this paper we
begin the construction of the analogous bridge in the general case, extending the
method of [L1]. Here we restrict ourselves to character sheaves which are ”generic”
(in particular their support is a full connected component of G) and show how such
character sheaves are related to characters of representations (see Theorem 1.2).
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1. Statement of the Theorem

1.1. Let k be an algebraic closure of a finite field Fq. Let G be a reductive
algebraic group over k with identity component G0 such that G/G0 is cyclic,
generated by a fixed connected component D. We assume that G has a fixed
Fq-rational structure with Frobenius map F : G −→ G such that F (D) = D. Let
l be a prime number invertible in k; let Q̄l be an algebraic closure of the l-adic
numbers. All group representations are assumed to be finite dimensional over Q̄l.
We say ”local system” instead of ”Q̄l-local system”.

Let B be the variety of Borel subgroups of G0. Now F : G −→ G induces a
morphism B −→ B denoted again by F . We fix B∗ ∈ B and a maximal torus T of
B∗ such that F (B∗) = B∗, F (T ) = T . Let U∗ be the unipotent radical of B∗. Let
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2 G. LUSZTIG

NB∗ (resp. NT ) be the normalizer of B∗ (resp. T ) in G. Let T̃ = NT ∩NB∗, a

closed F -stable subgroup of G with identity component T . Let T̃D = T̃ ∩D.
Let N = NT ∩ G0. Let W = N /T be the Weyl group. Let D : T

∼
−→ T ,

D : W
∼
−→ W be the automorphisms induced by Ad(d) : N −→ N where d is any

element of T̃D. Now F : N −→ N induces an automorphism ofW denoted again by
F . For w ∈ W let [w] be the inverse image of w under the obvious map N −→ W
and let w be the automorphism Ad(x) : T −→ T for any x ∈ [w]. For w ∈ W
let Ow be the G0-orbit in B × B (G0 acting by simultaneous conjugation on both
factors) that contains (B∗, xB∗x−1) for some/any x ∈ [w]. Define the ”length
function” l : W −→ N by l(w) = dimOw − dimB. For any y ∈ G0 we define

k(y) ∈ N by y ∈ U∗k(y)U∗. For y ∈ G0, τ ∈ T̃ we have k(τyτ−1) = τk(y)τ−1

and F (k(y)) = k(F (y)). For x ∈ G0 we define Fx : G −→ G by Fx(g) = xF (g)x−1;
this is the Frobenius map for an Fq-rational structure on G. (Indeed if y ∈ G0 is

such that x = y−1F (y), then Ad(y) : G
∼
−→ G carries Fx to F .) If w ∈W satisfies

D(w) = w and x ∈ [w] then T, T̃ are Fx-stable; thus Fx is the Frobenius map for

an Fq-rational structure on T̃ whose group of rational points is T̃Fx . Since T̃Fx

D

is the set of rational points of T̃D (a homogeneous T -space under left translation)

for the rational structure defined by Fx : T̃D −→ T̃D, we have T̃Fx

D 6= ∅.

Let Z∅ = {(B0, g) ∈ B ×D; gB0g
−1 = B0}. Let d ∈ T̃D. We set

Ż∅,d = {(h0U
∗, g) ∈ (G0/U∗)×D; h−1

0 gh0d
−1 ∈ B∗}.

Define a∅ : Ż∅,d −→ Z∅ by (h0U
∗, g) 7→ (h0B

∗h−1
0 , g). Now a∅ is a principal T -

bundle where T acts (freely) on Ż∅,d by t0 : (h0U
∗, g) 7→ (h0t

−1
0 , g). Define p∅ :

Z∅ −→ D by (B0, g) 7→ g. We define b∅ : Ż∅,d −→ T by (h0U
∗, g) 7→ k(h−1

0 gh0d
−1).

Note that b∅ commutes with the T -actions where T acts on T by
(a) t0 : t 7→ t0tD(t−1

0 ).
Let L be a local system of rank 1 on T such that

(i) L⊗n ∼= Q̄l for some n ≥ 1 invertible in k;
(ii) D∗L ∼= L;

From (i),(ii) we see (using [L3, 28.2(a)]) that L is equivariant for the T -action (a)

on T . Hence b∗
∅
L is a T -equivariant local system on Ż∅,d. Since a∅ is a principal

T -bundle there is a well defined local system L̃∅ on Z∅ such that a∗
∅
L̃∅ = b∗

∅
L.

Note that the isomorphism class of L̃∅ is independent of the choice of d. Assume
in addition that:

(iii) {w ∈W ;D(w) = w,w∗L ∼= L} = {1}.
We show:

(b) p∅!L̃∅ is an irreducible intersection cohomology complex on D.
We identify Z∅ with the variety X = {(g, xB∗) ∈ G ×G0/B∗; x−1gx ∈ NB∗} (as

in [L3, I, 5.4] with P = B∗, L = T, S = T̃D) by (g, xB∗) ↔ (xB∗x−1, g). Then L̃∅

becomes the local system Ē on X defined as in [L3, I, 5.6] in terms of the local

system E = j∗L on T̃D where j : T̃D −→ T is y 7→ d−1y. (Note that E is equivariant
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for the conjugation action of T on T̃D.) In our case we have Ē = IC(X, Ē) since X
is smooth. Hence from [L3, I, 5.7] we see that p∅!Ē is an intersection cohomology
complex on D corresponding to a semisimple local system on an open dense subset
of D which, by the results in [L3, II, 7.10], is irreducible if and only if the following

condition is satisfied: if w ∈W,x ∈ [w] satisfy Ad(x)(T̃D) = T̃D and Ad(x)∗E ∼= E ,
then w = 1. This is clearly equivalent to condition (iii). This proves (b).

From (b) and the definitions we see that p∅!L̃∅[dimD] is a character sheaf on D
in the sense of [L3, VI]. A character sheaf on D of this form is said to be generic.
We can state the following result.

Theorem 1.2. Let A be a generic character sheaf on D such that F ∗A ∼= A
where F : D −→ D is the restriction of F : G −→ G. Let ψ : F ∗A −→ A be an
isomorphism. Define χψ : DF −→ Q̄l by g 7→

∑
i∈Z

(−1)itr(ψ,Hi
g(A)) where Hi is

the i-th cohomology sheaf and Hi
g is its stalk at g. There exists a GF -module V

and a scalar λ ∈ Q̄∗
l such that χψ(g) = λtr(g, V ) for all g ∈ DF .

The proof is given in §3. We now make some preliminary observations. In
the setup of 1.1 we have A = p∅!L̃∅[dimD] where L satisfies 1.1(i),(ii),(iii) and

F ∗(p∅!L̃∅) ∼= p∅!L̃∅. Hence we have p∅!F̃ ∗L∅
∼= p∅!L̃∅. By a computation in [L3,

IV, 21.18] we deduce that there exists w′ ∈ W such that D(w′) = w′, w′∗F ∗L ∼= L.
Setting w = F (w′) we see that

(a) D(w) = w, F ∗w∗L ∼= L.

1.3. Let w = (w1, w2, . . . , wr) be a sequence in W . Let lw = l(w1)+ l(w2)+ · · ·+
l(wr). Let

Zw = {(B0, B1, . . . , Br, g) ∈ Br+1×D; gB0g
−1 = Br, (Bi−1, Bi) ∈ Owi

(i ∈ [1, r])}.

This agrees with the definition in 1.1 when r = 0, that is w = ∅. Let d ∈ T̃D. We
define Żw,d as in 1.1 when r = 0 and by

Żw,d = {(h0U
∗, h1B

∗, . . . , hr−1B
∗, hrU

∗, g) ∈

(G0/U∗)× (G0/B∗)× . . .× (G0/B∗)× (G0/U∗)×D;

k(h−1
i−1hi) ∈ [wi](i ∈ [1, r]), h−1

r gh0d
−1 ∈ U∗};

when r ≥ 1. Define aw : Żw,d −→ Zw as in 1.1 when r = 0 and by

(h0U
∗, h1B

∗, . . . , hr−1B
∗, hrU

∗, g) 7→

(h0B
∗h−1

0 , h1B
∗h−1

1 , . . . , hr−1B
∗hr−1, hrB

∗h−1
r , g),

when r ≥ 1. Note that aw is a principal T -bundle where T acts (freely) on Żw,d

as in 1.1 when r = 0 and by

t0 : (h0U
∗, h1B

∗, . . . , hr−1B
∗, hrU

∗, g) 7→

(h0t
−1
0 U∗, h1B

∗, . . . , hr−1B
∗, hrdt

−1
0 d−1U∗, g)
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when r ≥ 1. Define pw : Zw −→ D by (B0, B1, . . . , Br, g) 7→ g.
In the remainder of this subsection we assume that w1w2 . . . wr = 1; this holds

automatically when r = 0. We define bw : Żw,d −→ T as in 1.1 when r = 0 and by

(h0U
∗, h1B

∗, . . . , hr−1B
∗, hrU

∗, g) 7→ k(h−1
0 h1)k(h

−1
1 h2) . . . k(h

−1
r−1hr)

when r ≥ 1. Note that bw commutes with the T -actions where T acts on T as in
1.1(a).

Let L be a local system of rank 1 on T such that 1.1(i),(ii) hold. As in 1.1, L
is equivariant for the T -action 1.1(a) on T . Hence b∗wL is a T -equivariant local

system on Żw,d. Since aw is a principal T -bundle there is a well defined local

system L̃w on Zw such that a∗wL̃w = b∗wL.

Lemma 1.4. Assume that w1w2 . . . wr = 1 and that L (as in 1.3) satisfies
(i) α̌∗L 6∼= Q̄l for any coroot α̌ : k∗ −→ T .

Then pw!L̃w[lw](lw/2) ∼= p∅!L̃∅. (Note that lw is even.)

Assume first that for some i ∈ [1, r] we have wi = w′
iw

′′
i where w′

i, w
′′
i in W

satisfy l(w′
iw

′′
i ) = l(w′

i) + l(w′′
i ). Let

w′ = (w1, w2, . . . , wi−1, w
′
i, w

′′
i , wi+1, . . . , wn).

The map (B0, B1, . . . , Br+1, g) 7→ (B0, B1, Bi−1, Bi+1, . . . , Br+1, g) defines an iso-
morphism Zw′ −→ Zw compatible with the maps pw′ , pw and with the local systems
L̃w′ , L̃w. Since lw′ = lw we have

(a) pw!L̃w[lw](lw/2) ∼= pw′!L̃w′ [lw′ ](lw′/2).
Using (a) repeatedly we can assume that l(wi) = 1 for all i ∈ [1, r]. We will prove
the result in this case by induction on r. Note that r is even. When r = 0 the
result is obvious. We now assume that r ≥ 2. Since w1w2 . . . wr = 1, we can
find j ∈ [1, r − 1] such that l(w1w2 . . . wj) = j, l(w1w2 . . . wj+1) = j − 1. We can
find a sequence w′ = (w′

1, w
′
2, . . . , w

′
r) in W such that l(w′

i) = 1 for all i ∈ [1, r],
w′

1w
′
2 . . .w

′
j = w1w2 . . . wj , w

′
j = w′

j+1, w
′
i = wi for i ∈ [j + 1, r]. Let

u = (w1w2 . . . wj , wj+1, . . . , wr) = (w′
1w

′
2 . . . w

′
j , w

′
j+1, . . . , w

′
r).

Using (a) repeatedly we see that

pw!L̃w[lw](lw/2) ∼= pu!L̃u[lu](lu/2) ∼= pw′!L̃w′ [lw′ ](lw′/2).

Replacing w by w′ we see that we may assume in addition that wj = wj+1

for some j ∈ [1, r − 1]. We have a partition Zw = Z ′
w ∪ Z ′′

w where Z ′
w (resp.

Z ′′
w
) is defined by the condition Bj−1 = Bj+1 (resp. Bj−1 6= Bj+1). Let w′ =

(w1, w, . . . , wj−1, wj+2, . . . , wr), w
′′ = (w1, w, . . . , wj−1, wj+1, . . . , wr). Define c :

Z ′
w −→ Zw′ by

(B0, B1, . . . , Br, g) 7→ (B0, B1, . . . , Bj−1, Bj+2, . . . , Br, g).
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This is an affine line bundle and L̃w|Z′

w

= c∗L̃w′ . Let p′
w

be the restriction of pw
to Z ′

w. We have p′w = pw′c. Since the induction hypothesis applies to w′ we have

p′
w!(L̃w|Z′

w

)[lw](lw/2) = pw′!c!c
∗L̃w′ [lw](lw/2)

= pw′!L̃w′ [−2](−1)[lw](lw/2) = pw′!L̃w′ [lw′ ](lw′/2) = p∅!L̃∅.(b)

Define e : Z ′′
w
−→ Zw′′ by

(B0, B1, . . . , Br, g) 7→ (B0, B1, . . . , Bj−1, Bj+1, . . . , Br, g).

Let p′′
w

be the restriction of pw to Z ′′
w
. We have p′′

w
= pw′′e. We show that

p′′
w!(L̃w|Z′′

w

) = 0. It is enough to show that

(c) pw′′!e!(L̃w|Z′′

w

) = 0.

Hence it is enough to show that e!(L̃w|Z′′

w

) = 0. It is also enough to show that, if

E is a fibre of e, then Hi
c(E, L̃w|E) = 0 for any i. As in the proof of [L3, VI, 28.10]

we may identify E = k∗ in such a way that L̃w|E becomes α̌∗(L) for some coroot
α̌ : k∗ −→ T . We then use that Hi

c(k
∗, α̌∗L) = 0 which follows from α̌∗L 6∼= Q̄l.

Using (c) and the exact triangle

(pw′′!e!(L̃w|Z′′

w

), pw!L̃w, p
′
w!(L̃w|Z′

w

))

we see that

pw!L̃w[lw](lw/2) = p′
w!(L̃w|Z′

w

)[lw])(lw/2) = p∅!L̃∅

(the last equality follows from (b)). The lemma is proved.

Lemma 1.5. Assume that L (as in 1.3) satisfies 1.1(iii). Then L satisfies 1.4(i).

Let RL be the set of roots α : T −→ k∗ such that the corresponding coroot α̌
satisfies α̌∗L ∼= Q̄l. Let WL be the subgroup of W generated by the reflections
with respect to the various α ∈ RL. Since D∗L ∼= L we have D(WL) = WL.
Assume that 1.4(i) does not hold. Then RL 6= ∅ and WL 6= {1}. By [DL, 5.17]
the fixed point set of D : WL −→ WL is 6= {1}. Let w ∈ WL − {1} be such that
D(d)w = w. Since w ∈WL we have w∗L ∼= L (see [L3, VI, 28.3(b)]). Thus 1.1(iii)
does not hold. The lemma is proved.

2. Constructing representations of GF

2.1. In this section we construct some representations of GF using the method of
[DL]. See [M],[DM] for other results in this direction.

Let L be a local system of rank 1 on T such that 1.1(i) holds. For any t ∈ T let
Lt be the stalk of L at t. Assume that we are given w ∈W and x ∈ [w] such that
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(i) F ∗
xL

∼= L;
(Fx : T −→ T as in 1.1). Let φ : F ∗

xL −→ L be the unique isomorphism of
local systems on T which induces the identity map on L1. For t ∈ T , φ induces
an isomorphism LFx(t)

∼
−→ Lt. When t ∈ TFx this is an automorphism of the

1-dimensional vector space Lt given by multiplication by θ(t) ∈ Q̄∗
l . It is well

known that t 7→ θ(t) is a group homomorphism TFx −→ Q̄∗
l .

Following [DL] we define

Y = {hU∗ ∈ G0/U∗; h−1F (h) ∈ U∗xU∗}.

For (g, t) ∈ G0F × TFx we define eg,t : Y −→ Y by hU∗ 7→ ght−1U∗. Note
that (g, t) 7→ eg,t is an action of G0F × TFx on Y . Hence G0F × TFx acts on
Hi
c(Y ) := Hi

c(Y, Q̄l) by (g, τ) 7→ e∗g−1,τ−1 . We set

Hi
c(Y )θ = {ξ ∈ Hi

c(Y ); e∗1,t−1ξ = θ(t)−1ξ for all t ∈ TFx};

this is a G0F × TFx-stable subspace of Hi
c(Y ).

For g ∈ G0F we define ǫg : Hi
c(Y )θ −→ Hi

c(Y )θ by ǫg(ξ) = e∗g−1,1. This makes

Hi
c(Y )θ into a G0F -module.
We can find an integer r ≥ 1 such that

F r(x) = x, xF (x) . . . F r−1(x) = 1.

Indeed we first find an integer r1 ≥ 1 such that F r1(x) = x and then we find
an integer r2 ≥ 1 such that (xF (x) . . .F r1−1(x))r2 = 1. Then r = r1r2 has the
required properties. Then hU∗ 7→ F r(h)U∗ is a well defined map Y −→ Y denoted
again by F r. Also,

F r = F rx : G −→ G.

(We have F rx (g) = (xF (x) . . . F r−1(x))F r(g)(xF (x) . . .F r−1(x))−1 = F r(g).) Hence
F r acts trivially on TFx . We see that F r : Y −→ Y commutes with eg,t : Y −→ Y
for any (g, t) ∈ G0F × TFx . Hence (F r)∗ : Hi

c(Y ) −→ Hi
c(Y ) leaves stable the

subspace Hi
c(Y )θ. Note that:

for any i, all eigenvalues of (F r)∗ : Hi
c(Y ) −→ Hi

c(Y ) are of the form root of 1
times qnr/2 where n ∈ Z.
(See [L1, 6.1(e)] and the references there.)

Replacing r by an integer multiple we may therefore assume that r satisfies in
addition the following condition:

(a) for any i, all eigenvalues of (F r)∗ : Hi
c(Y ) −→ Hi

c(Y ) are of the form qnr/2

where n ∈ Z.

2.2. We preserve the setup of 2.1 and assume in addition that L satisfies 1.4(i).
Let i0 = 2dimU∗ − l(w). Note that

(a) Hi
c(Y )θ = 0 for i 6= i0; if i = i0 then all eigenvalues of (F r)∗ : Hi

c(Y )θ −→
Hi
c(Y )θ are of the form qir/2.

For the first statement in (a) see [DL, 9.9] and the remarks in the proof of [L1,
8.15]. The second statement in (a) is deduced from 2.1(a) as in the proof of [L1,
6.6(c)].
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2.3. We preserve the setup of 2.1 and assume in addition that L satisfies 1.1(ii)
and that w ∈W satisfies D(w) = w. From the definitions we see that D : T −→ T
commutes with Fx : T −→ T hence D restricts to an automorphism of TFx and
that

(a) θ(D(t)) = θ(t) for any t ∈ TFx .
We show:

(b) there exists a homomorphism θ̃ : T̃Fx −→ Q̄∗
l such that θ̃|TFx = θ.

Let d ∈ T̃Fx

D . Let n = |G/G0| = |T̃Fx/TFx |. Then t0 := dn ∈ TFx . Let c ∈ Q̄∗
l

be such that cn = θ(t0). For any t ∈ TFx and j ∈ Z we set θ̃(djt) = cjθ(t).

This is well defined: if djt = dj
′

t′ with j, j′ ∈ Z, t, t′ ∈ TFx then j′ = j + nj0,
j0 ∈ Z and t′ = tj00 t so that θ(t′) = cnj0θ(t) and cjθ(t) = cj

′

θ(t′). We show that

if j, j′ ∈ Z, t, t′ ∈ TFx then θ̃(djtdj
′

t′) = θ̃(djt)θ̃(dj
′

t′) that is cj+j
′

θ(D−j′(t)t′) =

cjθ(t)cj
′

θ(t′); this follows from (a). This proves (b).

Let Γ = {(g, τ) ∈ GF×T̃Fx ; gτ−1 ∈ G0}, a subgroup of GF×T̃Fx . For (g, τ) ∈ Γ
we define eg,τ : Y −→ Y by hU∗ 7→ ghτ−1U∗. To see that this is well defined we
assume that h ∈ G0 satisfies h−1F (h) ∈ U∗xU∗ and (g, τ) ∈ Γ; we compute

(ghτ−1)−1F (ghτ−1) = τh−1g−1gF (h)F (τ−1)

= τh−1F (h)F (τ−1) ∈ τU∗xU∗F (τ−1) = U∗τxF (τ−1)U∗ = U∗xU∗,

since τxF (τ−1) = x (that is Fx(τ) = τ). Note that (g, τ) 7→ eg,τ is an action
of Γ on Y (extending the action of G0F × TFx). Hence Γ acts on Hi

c(Y ) by
(g, τ) 7→ e∗g−1,τ−1 . Note that Hi

c(Y )θ is a Γ-stable subspace of Hi
c(Y ). This follows

from the identity
eg−1,τ−1e1,t−1 = e1,τ−1t−1τeg−1,τ−1

for g ∈ GF , τ ∈ T̃Fx , t ∈ TFx together with the identity θ(t) = θ(τ−1tτ) which is
a consequence of (a).

For g ∈ GF we define ǫg : H
i
c(Y )θ −→ Hi

c(Y )θ by

ǫg(ξ) = θ̃(τ)e∗g−1,τ−1ξ

for any ξ ∈ Hi
c(Y )θ and any τ ∈ T̃Fx such that gτ−1 ∈ G0. Assume that τ ′ ∈ T̃Fx

is another element such that gτ ′−1 ∈ G0. Then τ ′ = τt with t ∈ TFx and

θ̃(τ ′)e∗g−1,τ ′−1ξ = θ̃(τ)θ(t)e∗g−1,τ−1e∗1,t−1ξ = θ̃(τ)e∗g−1,τ−1ξ

so that ǫg is well defined. For g, g′ in GF we choose τ, τ ′ in T̃Fx such that gτ−1 ∈
G0, g′τ ′−1 ∈ G0; we have

ǫgǫg′ξ = θ̃(τ ′)θ̃(τ)e∗g−1,τ−1e∗g′−1,τ ′−1ξ = θ̃(ττ ′)e∗(gg′)−1,(ττ ′)−1ξ = ǫgg′ξ.

We see that
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g 7→ ǫg defines a GF -module structure on Hi
c(Y )θ extending the G0F -module

structure in 2.1.
(Note that this extension depends on the choice of θ̃.) We show:

(c) If (g, τ) ∈ Γ then F reg,τ : Y −→ Y is the Frobenius map of an Fq-rational
structure on Y .
Since eg,t is a part of a Γ-action, it has finite order. Since F r = F rx : G −→ G (see
2.1), we see that F r : Y −→ Y commutes with eg,τ : Y −→ Y . Hence (c) holds.

2.4. We preserve the setup of 2.3 and assume in addition that L satisfies 1.3(i).
Let i0 = 2dimU∗ − l(w). Using 2.2(a), 2.3(c) and Grothendieck’s trace formula
we see that for (g, d) ∈ Γ we have

(−1)l(w)θ̃(d)qi0r/2tr(ǫg, H
i0
c (Y )θ)

= θ̃(d)
∑

i

(−1)itr((F r)∗ǫg, H
i
c(Y )θ) =

∑

i

(−1)itr((F r)∗e∗g−1,d−1 , Hi
c(Y )θ)

=
∑

i

(−1)i|TFx |−1
∑

t∈TFx

tr((F r)∗e∗g−1,d−1e∗1,t−1 , Hi
c(Y ))θ(t)

= |TFx |−1
∑

t∈TFx

∑

i

(−1)itr((F r)∗e∗g−1,(dt)−1 , H
i
c(Y ))θ(t)

= |TFx |−1
∑

t∈TFx

|Y F
re

g−1,(dt)−1 |θ(t)

= |TFx |−1
∑

t∈TFx

|{hU∗ ∈ (G0/U∗); h−1F (h) ∈ U∗xU∗, h−1g−1F r(h)dt ∈ U∗}|θ(t).

3. Proof of Theorem 1.2

3.1. Let A, ψ, χψ be as in 1.2. Let L, w be as in the end of 1.2. Let x ∈ [w]. From
1.2(a) we see that 2.1(i) holds. Let r ≥ 1 be as in 2.1. Let

w = (w, F (w), . . . , F r−1(w)).

By the choice of r we have wF (w) . . . F r−1(w) = 1. Define a morphism F̃ : Zw −→
Zw by

F̃ (B0, B1, . . . , Br, g) = (F (g−1Br−1g), F (B0), F (B1), . . . , F (Br−1), F (g)).

We show:
(a) Let g ∈ DF and let F̃g : p

−1
w

(g) −→ p−1
w

(g) be the restriction of F̃ : Zw −→ Zw.

Then F̃g is the Frobenius map of an Fq-rational structure on p−1
w (g).

It is enough to note that the map Br+1 −→ Br+1 given by

(B0, B1, . . . , Br) 7→ (F (g−1Br−1g), F (B0), F (B1), . . . , F (Br−1))
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is the composition of the map

F ′ : (B0, B1, . . . , Br) 7→ (F (B0), F (B1), . . . , F (Br))

(the Frobenius map of an Fq-rational structure on Br+1) with the automorphism

(B0, B1, . . . , Br) 7→ (g−1Br−1g, B0, B1, . . . , Br−1)

of Br+1 which commutes with F ′ and has finite order (since g has finite order in
G).

Let d ∈ T̃Fx

D . Define a morphism F̃ ′ : Żw,d −→ Żw,d by

F̃ ′(h0U
∗, h1B

∗, . . . , hr−1B
∗, hrU

∗, g) = (h′0U
∗, h′1B

∗, . . . , h′r−1B
∗, h′rU

∗, F (g))

where

h′0 = F (g−1hr−1k(h
−1
r−1hr))x

−1d, h′r = F (hr−1k(h
−1
r−1hr)x

−1,

h′i = F (hi−1) for i ∈ [1, r − 1].

This is well defined since

(F (hr−1k(h
−1
r−1hr)x

−1)−1F (g)F (g−1hr−1k(h
−1
r−1hr))x

−1)dd−1 = 1.

We show that the T -action on Żw,d (see 1.3) satisfies F̃
′(t0x̃) = Fx(t0)F̃

′(x̃) for

t0 ∈ T, x̃ ∈ Żw,d. Let (hi) be as above. We must show:

F (g−1hr−1k(h
−1
r−1hrdt

−1
0 d−1))x−1d = F (g−1hr−1k(h

−1
r−1hr))x

−1dxF (t−1
0 )x−1,

F (hr−1k(h
−1
r−1hrdt

−1
0 d−1)x−1 = F (hr−1k(h

−1
r−1hr)x

−1dxF (t0)
−1x−1d−1,

which follow from F (d) = x−1dx. Note that

(b) awF̃
′ = F̃ aw : Żw,d −→ Zw.

We show:
(c) |a−1

w (y)F̃
′

| = |TFx | for any y ∈ ZF̃w.
Since a−1

w
(y) is a homogeneous T -space this follows from Lang’s theorem applied

to (T, Fx).
We have
(d) pwF̃ = Fpw : Zw −→ D.

3.2. We show:
(a) bwF̃

′ = Fxbw : Żw,d −→ T .
Let (h0, h1, . . . , hr, g) ∈ (G0)r+1 ×D be such that

(h0U
∗, h1B

∗, . . . , hr−1B
∗, hrU

∗, g) ∈ Żw,d.
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Let (h′1, h
′
2, . . . , h

′
r) be as in 3.1. We set

µ = k(h−1
0 h1)k(h

−1
1 h2) . . . k(h

−1
r−1hr) ∈ T,

µ′ = k(h−1
0 h1)k(h

−1
1 h2) . . . k(h

−1
r−2hr−1) ∈ B∗F r−1(x)−1B∗

µ̃ = k(h′0
−1h′1)k(h

′
1
−1h′2) . . . k(h

′
r−1

−1h′r) ∈ T

so that µ = µ′k(h−1
r−1hr) and

µ̃ = k(d−1xF (k(h−1
r−1hr)

−1h−1
r−1gh0))

× k(F (h−1
0 h1)) . . . k(F (h

−1
r−3hr−2))k(F (h

−1
r−2hr−1k(h

−1
r−1hr))x

−1)

= d−1xF (k(h−1
r−1hr)

−1)F (d)k(F (d−1)F (h−1
r−1gh0))F (µ

′)F (k(h−1
r−1hr))x

−1

= d−1xF (d)F (µ)x−1 = xF (µ)x−1 = Fx(µ),

as required.

3.3. Let φ : F ∗
xL

∼
−→ L, θ : TFx −→ Q̄∗

l be as in 2.1. We shall denote by ? the
various isomorphisms induced by φ such as:

(a) F̃ ′∗b∗
w
L = b∗

w
F ∗
xL

∼
−→ b∗

w
L (see 3.2(a)),

(b) F̃ ′∗a∗
w
L̃w

∼
−→ a∗

w
L̃w (coming from (a)),

(c) a∗wF̃
∗L̃w

∼
−→ a∗wL̃w (see (b) and 3.1(b)),

(d) F̃ ∗L̃w

∼
−→ L̃w (coming from (c)),

(e) pw!F̃
∗L̃w

∼
−→ pw!L̃w (coming from (d)),

(f) F ∗pw!L̃w

∼
−→ pw!L̃w (coming from (e) and 3.1(d)).

(g) F ∗(pw!L̃w[lw])
∼
−→ pw!L̃w[lw] (coming from (f)).

3.4. For any g ∈ DF we compute

∑

i

(−1)itr(?,Hi
g(pw!L̃w)) =

∑

i

(−1)itr(?, Hi
c(p

−1
w

(g), L̃w))

=
∑

y∈p−1
w (g);F̃ (y)=y

tr(?, (L̃w)y)

where Hi is the i-th cohomology sheaf. (The last two sums are equal by the
Grothendieck trace formula applied in the context of 3.1(a).) Using 3.1(c) we see
that the last sum equals

|TFx |−1
∑

ỹ∈a−1
w (p−1

w (g))F̃
′

tr(?, (a∗wL̃w)ỹ) = |TFx |−1
∑

ỹ∈a−1
w (p−1

w (g))F̃
′

tr(?, (b∗wLw)ỹ)

= |TFx |−1
∑

ỹ∈a−1
w

(p−1
w

(g))F̃ ′

tr(?, (Lw)bw(ỹ)).
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Now a−1
w

(p−1
w

(g))F̃
′

can be identified with the set of all

(h0U
∗, h1B

∗, . . . , hr−1B
∗, hrU

∗) ∈ (G0/U∗)×(G0/B∗)× . . .×(G0/B∗)×(G0/U∗)

such that
(a) k(h−1

i−1hi) ∈ F i−1(x)T for i ∈ [1, r],

(b) h−1
r gh0d

−1 ∈ U∗,
(c) h0U

∗ = F (g−1hr−1k(h
−1
r−1hr))x

−1dU∗,
(d) hiB

∗ = F (hi−1)B
∗ for i ∈ [1, r − 1].

(We then have automatically hrU
∗ = F (hr−1k(h

−1
r−1hr)x

−1U∗.) If h0U
∗ is given,

then (d) determines successively h2B
∗, . . . hr−1B

∗ in a unique way and (b) deter-
mines hrU

∗ in a unique way. We see that the equations (a)-(d) are equivalent to
the following equations for h0U

∗:

h−1
0 F (h0) ∈ B∗xB∗, F r−1(h0)

−1gh0d
−1 ∈ B∗F r−1(x)B∗,

F r(h0)
−1gh0d

−1U∗ = k(F r(h0)
−1gF (h0)F (d

−1))x−1U∗

(if r ≥ 2) and

h−1
0 gh0d

−1 ∈ B∗xB∗, F (h0)
−1gh0d

−1U∗ = k(F (h0)
−1gF (h0)F (d

−1))x−1U∗

(if r = 1). In both cases these equations are equivalent to

(e) h−1
0 F (h0) ∈ U∗txF (t)−1U∗, F r(h0)

−1gh0d
−1 ∈ F r(t)U∗

for some t ∈ T . We then have F r−1(h0)
−1gh0d

−1 ∈ U∗F r−1(t)F r−1(x)U∗. For
h0U

∗, t as in (e) we compute

k(h−1
0 F (h0))k(F (h0)

−1F 2(h0)) . . . k(F
r−2(h0)

−1F r−1(h0))k(F
r−1(h0)

−1gh0d
−1)

= (txF (t)−1)(F (t)F (x)F 2(t−1)) . . . (F r−2(t)F r−2(x)F r−1(t)−1)(F r−1(t)F r−1(x))

= txF (x) . . . F r−1(x) = t.

By 3.2(a) the result of the last computation is necessarily in TFx . Thus Fx(t) = t.
Hence F r(t) = t and the equations (e) become

(f) h−1
0 F (h0) ∈ U∗xU∗, F r(h0)

−1gh0d
−1 ∈ TFxU∗.

We see that
∑

i

(−1)itr(?,Hi
g(pw!L̃w)) = |TFx |−1

∑

t∈TFx

at = |TFx |−1
∑

t′∈TFx

a′t′

where

at = |{hU∗ ∈ (G0/U∗); h−1F (h) ∈ U∗xU∗, dh−1g−1F r(h)t ∈ U∗}|θ(t),
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a′t′ = |{hU∗ ∈ (G0/U∗); h−1F (h) ∈ U∗xU∗, h−1g−1F r(h)dt′ ∈ U∗}|θ(dt′d−1).

Comparing with the last formula in 2.4 and using θ(dt′d−1) = θ(t′) for t′ ∈ TFx

we obtain (with i0 as in 2.4):

∑

i

(−1)itr(?,Hi
g(pw!L̃w)) = (−1)l(w)θ̃(d)qi0r/2tr(ǫg, H

i0
c (Y )θ).

Let us choose an isomorphism pw!L̃w[lw] ∼= p∅!L̃∅. (This exists by 1.4; note that
1.4(i) holds by 1.5.) Via this isomorphism, the isomorphism 3.3(g) corresponds to

an isomorphism F ∗(p∅!L̃∅) −→ p∅!L̃∅ that is to an isomorphism ψ′ : F ∗A
∼
−→ A so

that ∑

i

(−1)itr(?,Hi
g(pw!L̃w)) =

∑

i

(−1)itr(ψ′,Hi
g(A))

for any g ∈ DF . (We use that lw is even.) Since A is irreducible, we must have
ψ = λ′ψ′ for some λ′ ∈ Q̄∗

l . It follows that

∑

i∈Z

(−1)itr(ψ,Hi
g(A)) = λ′(−1)l(w)θ̃(d)qi0r/2tr(ǫg, H

i0
c (Y )θ)

for any g ∈ DF . Thus Theorem 1.2 holds with V being the GF -module Hi0
c (Y )θ,

which is irreducible (even as a G0F -module) if G0 has connected centre, but is not
necessarily irreducible in general.
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