

MIT Open Access Articles

Unipotent classes and special Weyl group representations

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Lusztig, G. "Unipotent Classes and Special Weyl Group Representations." Journal of Algebra 321 11 (2009): 3418-49.

As Published: 10.1016/j.jalgebra.2008.04.004

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/140230

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

UNIPOTENT CLASSES AND SPECIAL WEYL GROUP REPRESENTATIONS

G. Lusztig

Introduction

0.1. Let G be a simple adjoint algebraic group over \mathbb{C} and let \mathcal{X} be the set of unipotent conjugacy classes in G. Let $C \in \mathcal{X}$ and let $u \in C$. The following invariants of C are important in representation theory:

-the dimension \mathbf{b}_C of the fixed point set of $\mathrm{Ad}(u)$ on the flag manifold of G;

-the number \mathbf{z}_C of connected components of the centralizer of u in G;

-the number $\tilde{\mathbf{z}}_C$ of connected components of the centralizer of a unipotent element in the simply connected covering of G which projects to u;

-the irreducible representation ρ_C of the Weyl group **W** of G corresponding to C and the constant local system under the Springer correspondence [Sp].

Let $\tilde{\mathcal{S}}_{\mathbf{W}}$ be the set of isomorphism classes of irreducible representations of \mathbf{W} of the form ρ_C for some $C \in \mathcal{X}$. It is known [Sp] that $C \mapsto \rho_C$ is a bijection $\mathcal{X} \xrightarrow{\sim} \tilde{\mathcal{S}}_{\mathbf{W}}$.

Note that the definition of each of \mathbf{b}_C , \mathbf{z}_C , $\tilde{\mathbf{z}}_C$ is based on considerations of algebraic geometry and in the case of $\tilde{\mathcal{S}}_{\mathbf{W}}$, also on considerations of étale cohomology.

In [L1, Sec.9] I conjectured that $\tilde{S}_{\mathbf{W}}$, $C \mapsto \mathbf{b}_C$ and $C \mapsto \mathbf{z}_C$ can be determined purely in terms of data involving the Weyl group \mathbf{W} (more precisely, the "special representations" of the "parahoric" subgroups of \mathbf{W} , see 1.1, 1.2). At that time I could only prove this conjecture for $\tilde{S}_{\mathbf{W}}$ and for $C \mapsto \mathbf{b}_C$ assuming that G is of classical type (my proof was based on [S1]) and a little later for G of type F_4 (based on [S2]). In [AL] the conjecture for $\tilde{S}_{\mathbf{W}}$ and $C \mapsto \mathbf{b}_C$ was established for G of type E_6, E_7, E_8 . At the time [L4] was written, I proved the remaining conjecture of [L1] (concerning $C \mapsto \mathbf{z}_C$); this was stated in [L4, 13.3]. For classical groups the proof involved a new description (in terms of "symbols") of the Springer correspondence for classical groups (given in [L5]) while for exceptional groups this was a purely mechanical verification based on the tables [Al]. The conjecture of [L1] is restated and proved here as Theorem 1.5(a),(b1),(b2). At the same time we state and prove a complement to that conjecture, namely that $C \mapsto \tilde{\mathbf{z}}_C$ is determined purely in terms of data involving \mathbf{W} (see Theorem 1.5(b3)). Note that for classical groups

Supported in part by the National Science Foundation

this involves some combinatorial considerations while for exceptional groups this involves only a purely mechanical verification based on the known tables.

Notation. For a finite set F let |F| be the cardinal of F. For i, j in \mathbf{Z} we set $[i, j] = \{n \in \mathbf{Z}; i \le n \le j\}$. For x, y in \mathbf{Z} we write $x \ll y$ if $x \le y - 2$.

Contents

- 1. Statement of the main result.
- 2. Combinatorics.
- 3. Type A_{n-1} .
- 4. Type B_n .
- 5. Type C_n .
- 6. Type D_n .
- 7. Exceptional types.

Index.

1. Statement of the main result

- **1.1.** Let W be a finite crystallographic Coxeter group. Let $\operatorname{Irr}(W)$ be the set of isomorphism classes of irreducible representations of W over \mathbf{Q} . If $E \in \operatorname{Irr}(W)$ and E' is a finite dimensional $\mathbf{Q}[W]$ -module, let $[E:E']_W$ be the multiplicity of E in E'. Let S_W^i be the i-th symmetric power of the reflection representation of W. For any $E \in \operatorname{Irr}(W)$ we define integers $f_E \geq 1$, $a_E \geq 0$ by the requirement that the generic degree of the Hecke algebra representation corresponding to E is of the form $\frac{1}{f_E}\mathbf{q}^{a_E}$ +higher powers of \mathbf{q} (\mathbf{q} is an indeterminate); let b_E be the smallest integer $i \geq 0$ such that $[E:S_W^i]_W \geq 1$. As observed in $[L1, \operatorname{Sec}.2]$, we have $a_E \leq b_E$ for any $E \in \operatorname{Irr}(W)$; following $[L1, \operatorname{Sec}.2]$ we set $\mathcal{S}_W = \{E \in \operatorname{Irr}(W); a_E = b_E\}$; this is the set of "special representations" of W. Let $\operatorname{Irr}(W)^{\dagger} = \{E \in \operatorname{Irr}(W); [E:S_W^{b_E}]_W = 1\}$. We have $\mathcal{S}_W \subset \operatorname{Irr}(W)^{\dagger}$.
- 1.2. In this paper we fix a root datum of finite type $\mathcal{R} = (Y, X, \check{\alpha}_i, \alpha_i (i \in I), \langle, \rangle)$. (Here Y, X are free abelian groups of finite rank, $\langle, \rangle : Y \times X \to \mathbf{Z}$ is a perfect pairing, $\check{\alpha}_i \in Y$ are the simple coroots and $\alpha_i \in X$ are the simple roots.) We assume that $I \neq \emptyset$ and that \mathcal{R} is of adjoint type that is, $\{\alpha_i; i \in I\}$ is a \mathbf{Z} -basis of X. Let $R \subset X$ (resp. $\check{R} \subset Y$) be the set of roots (resp. coroots); let $\check{\alpha} \leftrightarrow \alpha$ be the canonical bijection $\check{R} \leftrightarrow R$. We assume that \mathcal{R} is irreducible that is, there is a unique $\alpha_0 \in R$ such that $\check{\alpha}_0 \check{\alpha}_i \notin \check{R}$ for any $i \in I$. Let $\tilde{I} = I \sqcup \{0\}$. For $i \in \tilde{I}$ let $s_i : X \to X$ be the reflection determined by $\alpha_i, \check{\alpha}_i$. Let \mathbf{W} be the subgroup of GL(X) generated by $\{s_i; i \in I\}$, a finite crystallographic Coxeter group containing s_0 . The elements $s_i(i \in \tilde{I})$ in \mathbf{W} satisfy the relations of the affine Weyl group of type dual to that of \mathcal{R} . Let $\tilde{\mathcal{A}} = \{J; J \subsetneq \tilde{I}\}$. For any $J \in \tilde{\mathcal{A}}$, let \mathbf{W}_J be the subgroup of \mathbf{W} generated by $\{s_i; i \in J\}$, a finite crystallographic Coxeter group with set of generators $\{s_i; i \in J\}$, said to be a parahoric subgroup of \mathbf{W} .

Let Ω be the (commutative) subgroup of \mathbf{W} consisting of all $\omega \in \mathbf{W}$ such that $\omega(\alpha_i) = \alpha_{\omega(i)} \ (i \in \tilde{I})$ for some (necessarily unique) permutation $\underline{\omega} : \tilde{I} \xrightarrow{\sim} \tilde{I}$.

1.3. If $J \in \tilde{\mathcal{A}}$ and $E_1 \in \operatorname{Irr}(\mathbf{W}_J)^{\dagger}$, there is a unique $E \in \operatorname{Irr}(\mathbf{W})$ such that $b_E = b_{E_1}$ and $[E : \operatorname{Ind}_{\mathbf{W}_J}^{\mathbf{W}}(E_1)]_{\mathbf{W}} \geq 1$. (Then $[E : \operatorname{Ind}_{\mathbf{W}_J}^{\mathbf{W}}(E_1)]_{\mathbf{W}} = 1$ and $E \in \operatorname{Irr}(\mathbf{W})^{\dagger}$.) We write $E = j_{\mathbf{W}_J}^{\mathbf{W}}(E_1)$. Let $E \in \operatorname{Irr}(\mathbf{W})$ and let

$$\mathcal{Z}_E = \{(J, E_1); J \in \tilde{\mathcal{A}}, E_1 \in \mathcal{S}_{\mathbf{W}_J}, E = j_{\mathbf{W}_J}^{\mathbf{W}}(E_1)\}.$$

Let

$$\bar{\mathcal{S}}_{\mathbf{W}} = \{ E \in \operatorname{Irr}(\mathbf{W}); \mathcal{Z}_E \neq \emptyset \}.$$

Let $E \in \bar{\mathcal{S}}_{\mathbf{W}}$. We set

$$\mathfrak{a}_E = \max_{(J, E_1) \in \mathcal{Z}_E} f_{E_1}.$$

Let $\mathcal{Z}_{E}^{\spadesuit} = \{(J, E_1) \in \mathcal{Z}_E; f_{E_1} = \mathfrak{a}_E\}$. We have $\mathcal{Z}_{E}^{\spadesuit} \neq \emptyset$.

If $(J, E_1) \in \mathcal{Z}_E$ and $\omega \in \Omega$ then $\mathrm{Ad}(\omega) : \mathbf{W}_J \xrightarrow{\sim} \mathbf{W}_{\underline{\omega}(J)}$ carries E_1 to a representation ${}^{\omega}E_1 \in \mathcal{S}_{\mathbf{W}_{\underline{\omega}(J)}}$ such that $\mathrm{Ind}_{\mathbf{W}_J^{\mathbf{W}}}(E_1) = \mathrm{Ind}_{\mathbf{W}_{\underline{\omega}(J)}^{\mathbf{W}}}({}^{\omega}E_1), b_{{}^{\omega}E_1} = b_{E_1}$ and $f_{{}^{\omega}E_1} = f_{E_1}$. It follows that $j_{\mathbf{W}_J}^{\mathbf{W}}(E_1) = j_{\mathbf{W}_{\underline{\omega}(J)}}^{\mathbf{W}}({}^{\omega}E_1)$. Thus $(\underline{\omega}(J), {}^{\omega}E_1) \in \mathcal{Z}_E$ and $\omega : (J, E_1) \mapsto (\underline{\omega}(J), {}^{\omega}E_1)$ is an action of Ω on \mathcal{Z}_E . This restricts to an action of Ω on $\mathcal{Z}_E^{\spadesuit}$. The stabilizer in Ω of $(J, E_1) \in \mathcal{Z}_E^{\spadesuit}$ for this action is denoted by Ω_{J, E_1} . We set

$$\mathfrak{c}_E = \max_{(J, E_1) \in \mathcal{Z}_E^{\spadesuit}} |\Omega_{J, E_1}|.$$

1.4. Let G be a semisimple (adjoint) algebraic group over \mathbf{C} with root datum \mathcal{R} . Let $\mathcal{X}, C \mapsto \rho_C, C \mapsto \mathbf{b}_C, C \mapsto \mathbf{z}_C, C \mapsto \tilde{\mathbf{z}}_C, \tilde{\mathcal{S}}_{\mathbf{W}}$ be as in 0.1.

Theorem 1.5. (a) $\tilde{\mathcal{S}}_{\mathbf{W}} = \bar{\mathcal{S}}_{\mathbf{W}}$.

- (b) Let $C \in \mathcal{X}$. Set $E = \rho_C \in \bar{\mathcal{S}}_{\mathbf{W}}$. Then:
- (b1) $\mathbf{b}_C = b_E$;
- (b2) $\mathbf{z}_C = \mathfrak{a}_E$;
- (b3) $\tilde{\mathbf{z}}_C/\mathbf{z}_C = \mathfrak{c}_E$.

For exceptional types the proof of (a),(b1)-(b3) consists in examining the existing tables. Some relevant data is collected in $\S 7$. The proof for the classical types is given in $\S 3-\S 6$ after combinatorial preliminaries in 1.9-1.11 and $\S 2$.

1.6. Let G' be a connected reductive group over \mathbf{C} such that G is the quotient of G' by its centre.

Note that 1.5(a) is closely connected to the definition of a unipotent support of a character sheaf on G' provided by [L6, 10.7]. In fact, [L6, 10.7(iii)] provides a proof of the inclusion $\bar{\mathcal{S}}_{\mathbf{W}} \subset \tilde{\mathcal{S}}_{\mathbf{W}}$ without case by case checking.

For any $g \in G'$ let g_u be the unipotent part of g. We now state an alternative conjectural definition of the unipotent support of a character sheaf on G'.

Conjecture 1.7. Let A be a character sheaf on G'. There exists a unique unipotent class C in G' such that:

- (i) $A|_{\{g\}} \neq 0$ for some $g \in G'$ with $g_u \in C$;
- (ii) if $g' \in G'$ satisfies $A|_{\{g'\}} \neq 0$ then the conjugacy class of g'_u in G' has $dimension < \dim(C)$.
- 1.8. Theorem 1.5 remains valid if C is replaced by an algebraically closed field whose characteristic is either 0 or a prime which is good for G and which (if G is of type A_{n-1}) does not divide n.
- **1.9.** In the rest of this section we discuss some preliminaries to the proof of 1.5. If $J, J' \in \tilde{\mathcal{A}}$, $J \subset J'$ and $E_1 \in \operatorname{Irr}(\mathbf{W}_J)^{\dagger}$, there is a unique $E'_1 \in \operatorname{Irr}(\mathbf{W}_{J'})$ such that $b_{E_1} = b_{E'_1}$ and $[E'_1 : \operatorname{Ind}_{\mathbf{W}_J}^{\mathbf{W}_{J'}}(E_1)]_{\mathbf{W}_{J'}} \ge 1$. (Then $[E'_1 : \operatorname{Ind}_{\mathbf{W}_J}^{\mathbf{W}_{J'}}(E_1)]_{\mathbf{W}_{J'}} = 1$ and $E'_1 \in \operatorname{Irr}(\mathbf{W}_{J'})^{\dagger}$.) We write $E'_1 = j_{\mathbf{W}_J}^{\mathbf{W}_{J'}}(E_1)$. Note that
- (a) $j_{\mathbf{W}_{J}}^{\mathbf{W}}(E_{1}) = j_{\mathbf{W}_{J'}}^{\mathbf{W}_{J'}}(j_{\mathbf{W}_{J}}^{\mathbf{W}_{J'}}(E_{1}));$ (b) if, in addition, $E_{1} \in \mathcal{S}_{\mathbf{W}_{J}}$, then $E'_{1} \in \mathcal{S}_{\mathbf{W}_{J'}}$ and $f_{E_{1}} \leq f_{E'_{1}}.$ (See [L1, Sec.4].)

Let \mathcal{P}' be the collection of parahoric subgroups W of \mathbf{W} such that $W = \mathbf{W}_J$ for some $J \subset \tilde{I}$, $|J| = |\tilde{I}| - 1$. From (a),(b) we see that

 $\bar{\mathcal{S}}_{\mathbf{W}} = \{ E \in \operatorname{Irr}(\mathbf{W}); E = j_W^{\mathbf{W}}(E_1) \text{ for some } W \in \mathcal{P}' \text{ and some } E_1 \in \mathcal{S}_W \},$

(d)
$$\mathfrak{a}_E = \max_{(J,E_1)\in\mathcal{Z}_E; |J|=|\tilde{I}|-1} f_{E_1} \text{ for } E \in \bar{\mathcal{S}}_{\mathbf{W}}.$$

If $W = W_1 \times W_2$ where W_1, W_2 are finite crystallographic Coxeter groups and $E_1 \in \operatorname{Irr}(W_1), E_2 \in \operatorname{Irr}(W_2)$ then $E := E_1 \boxtimes E_2 \in \operatorname{Irr}(W)$ belongs to \mathcal{S}_W if and only if $E_1 \in \mathcal{S}_{W_1}$ and $E_2 \in \mathcal{S}_{W_2}$; in this case we have

- (e) $a_E = a_{E_1} + a_{E_2}$, $f_E = f_{E_1} f_{E_2}$.
- **1.10.** We show:
 - (a) if $J, J' \in \mathcal{A}$ and $\mathbf{W}_J = \mathbf{W}_{J'} \neq \mathbf{W}$ then J = J'.

It is enough to show that if $J, J' \in \tilde{\mathcal{A}}$ and $\mathbf{W}_J \subset \mathbf{W}_{J'} \neq \mathbf{W}$ then $J \subset J'$. To see this we may assume that J consists of a single element j. We have $s_j \in \mathbf{W}_{J'}$. Assume that $j \notin J'$. If $J' \cup \{j\} \neq I$ then $\mathbf{W}_{J' \cup \{j\}}$ is a Coxeter group on the generators $\{s_h; h \in J' \cup \{j\}\}\$. In particular s_j is not contained in the subgroup $\mathbf{W}_{J'}$ generated by $\{s_h; h \in J'\}$, a contradiction. Thus we have $J' \cup \{j\} = \tilde{J}$. We see that $\mathbf{W}_{J'}$ contains $\{s_h; h \in J' \cup \{j\}\}$ which generates \mathbf{W} . Thus $\mathbf{W}_J = \mathbf{W}$ which is again a contradiction. This proves (a).

1.11. For a subgroup $\tilde{\Omega}$ of Ω let $\mathcal{P}^{\tilde{\Omega}}$ be the collection of parahoric subgroups W of **W** such that $W = \mathbf{W}_J$ for some $J \in \mathcal{A}$ where J is Ω -stable and is maximal with this property. From the definitions we have

$$\mathfrak{c}_E = \max |\tilde{\Omega}|,$$

where the maximum is taken over all subgroups $\tilde{\Omega} \subset \Omega$ and all $(J, E_1) \in \mathcal{Z}_E^{\spadesuit}$ such that $\mathbf{W}_J \in \mathcal{P}^{\tilde{\Omega}}$, $\tilde{\Omega} \subset \Omega_{J,E_1}$.

2. Combinatorics

2.1. In this section we fix $m \in \mathbb{N}$.

Let $Z_m = \{z_* = (z_0, z_1, z_2, \dots, z_m) \in \mathbf{N}^{m+1}; z_0 < z_1 < \dots < z_m\}$. Let $z_*^0 = z_*^{0,m} = (0, 1, 2, \dots, m) \in Z_m$. For any $z_* \in Z_m$ we have $z_* - z_*^0 \in \mathbf{N}^{m+1}$. Hence

$$\rho_0: Z_m \to \mathbf{N}, z_* \mapsto \sum_{i \in [0,m]} (z_i - z_i^0)$$
 and

$$\beta_0: Z_m \to \mathbf{N}, z_* \mapsto \sum_{0 \le i < j \le m} (z_i - z_i^0)$$

are well defined. For any $n \in \mathbf{N}$ we set $Z_m^n = \{z_* \in Z_m; \rho_0(z_*) = n\}$.

- **2.2.** Let X_m be the set of all $x_* = (x_0, x_1, x_2, \dots, x_m) \in \mathbb{N}^{m+1}$ such that $x_i \leq x_{i+1}$ for $i \in [0, m-1]$, $x_i < x_{i+2}$ for $i \in [0, m-2]$. For $x_* \in X_m$ let $\mathfrak{S}(x_*)$ be the set of all $i \in [0, m]$ such that $x_{i-1} < x_i < x_{i+1}$ (with the convention $x_{-1} = -\infty, x_{m+1} = \infty$). Note that
 - (a) $|\mathfrak{S}(x_*)| \cong m-1 \mod 2$;
 - (b) $\mathfrak{S}(x_*) = \emptyset$ if and only if m is odd and $x_i = x_{i+1}$ for $i = 0, 1, \dots, (m-1)/2$.
- **2.3.** Let Y_m be the set of all $y_* = (y_0, y_1, y_2, \dots, y_m) \in \mathbf{N}^{m+1}$ such that $y_i \leq y_{i+1}$ for $i \in [0, m-1], y_i \ll y_{i+2}$ for $i \in [0, m-2]$. For $y_* \in Y_m$ let $\mathfrak{I}(y_*)$ be the set of all intervals $[i, j] \subset [0, m]$ (with $i \leq j$) such that

$$y_{i-1} - (i-1) < y_i - i = y_{i+1} - i + 1 = \dots = y_j - j < y_{j+1} - (j+1)$$
 (with the convention $y_{-1} = -\infty, y_{m+1} = \infty$). We have

(a) $\mathfrak{I}(y_*) = \emptyset$ if and only if m is odd and $y_i = y_{i+1}$ for $i = 0, 1, \dots, (m-1)/2$. Let

$$\mathfrak{I}'(y_*) = \{\mathcal{I} \in \mathfrak{I}(y_*); \mathcal{I} = [i,j] \text{ with } |[i,j]| = \text{odd}\},$$

$$\mathfrak{I}''(y_*) = \{ \mathcal{I} \in \mathfrak{I}(y_*); \mathcal{I} = [i, j] \text{ with } |[i, j]| = \text{even} \}.$$

We have

(b) $|\Im'(y_*)| \cong m - 1 \mod 2$.

Let $R(y_*)$ be the set of all $k \in [0, m]$ such that k = i or k = j for some (necessarily unique) $[i, j] \in \mathfrak{I}(y_*)$. Let $R_0(y_*)$ be the set of all $k \in [0, m]$ such that k = i for some (necessarily unique) $[i, j] \in \mathfrak{I}(y_*)$ with i = j. Clearly,

(c)
$$|R(y_*)| + |R_0(y_*)| = 2|\mathfrak{I}(y_*)|.$$

2.4. Let $x_*, x_*' \in X_m$ and let $y_* = x_* + x_*' \in \mathbf{N}^{m+1}$. Note that $y \in Y_m$. If $k \in \mathfrak{S}(x_*)$ then $x_{k-1} < x_k < x_{k+1}, x_{k-1}' \le x_k' \le x_{k+1}'$ (and at least one of the last two \le is <). Hence $y_{k-1} < y_k < y_{k+1}$ (and at least one of the last two < is \ll). Hence $k \in R(y_*)$. Thus $\mathfrak{S}(x_*) \subset R(y_*)$. Similarly, $\mathfrak{S}(x_*') \subset R(y_*)$. We see that $\mathfrak{S}(x_*) \cup \mathfrak{S}(x_*') \subset R(y_*)$. If $k \in \mathfrak{S}(x_*) \cap \mathfrak{S}(x_*')$ then $x_{k-1} < x_k < x_{k+1}, x_{k-1}' < x_k' < x_{k+1}'$ hence $y_{k-1} \ll y_k \ll y_{k+1}$ so that $k \in R_0(y_*)$. Thus, $\mathfrak{S}(x_*) \cap \mathfrak{S}(x_*') \subset R_0(y_*)$ and

$$|\mathfrak{S}(x_*)| + |\mathfrak{S}(x_*')| = |\mathfrak{S}(x_*) \cup \mathfrak{S}(x_*')| + |\mathfrak{S}(x_*) \cap \mathfrak{S}(x_*')| \le |R(y_*)| + |R_0(y_*)|.$$

Using this and 2.3(c) we see that

(a)
$$|\mathfrak{S}(x_*)| + |\mathfrak{S}(x_*')| \le 2|\mathfrak{I}(y_*)|,$$

with equality if and only if $\mathfrak{S}(x_*) \cup \mathfrak{S}(x_*') = R(y_*)$ and $\mathfrak{S}(x_*) \cap \mathfrak{S}(x_*') = R_0(y_*)$.

2.5. Let $y_* \in Y_m$. We consider a partition $[0, m] = \mathcal{J}_0 \sqcup \mathcal{J}_1 \sqcup \ldots \mathcal{J}_t$ where for each $s \in [0, t]$ we have $\mathcal{J}_s = [m_s, m'_{s+1}]$ with $m_s \leq m'_{s+1}$, $m_0 = 0$, $m'_{t+1} = m$ and for each $s \in [1, t]$ we have $m_s = m'_s + 1$. We require that for $s \in [1, t]$ we have $y_{m'_s} \ll y_{m_s}$ and for any $s \in [0, t]$ we have either

```
(i) |\mathcal{J}_s| = 2 and (y_{m_s}, y_{m'_{s+1}}) = (a_s, a_s), or
```

(ii)
$$(y_{m_s}, y_{m_s+1}, \dots, y_{m'_{s+1}}) = (a_s, a_s + 1, a_s + 2, \dots).$$

for some $a_s \in \mathbf{N}$. Such a partition exists and is unique. Let

$$\mathcal{G}_1(y_*) = \{s \in [0, t]; s \text{ is as in (i)}\}, \, \mathcal{G}_2(y_*) = \{s \in [0, t]; s \text{ is as in (ii)}\}.$$
 We have

 $\mathfrak{I}(y_*) = \{[i,j]; i = m_s, j = m'_{s+1} \text{ for some } s \in \mathcal{G}_2(y_*)\};$

$$R(y_*) = \{i \in [0, m]; i = m_s \text{ or } i = m'_{s+1} \text{ for some } s \in \mathcal{G}_2(y_*)\};$$

$$R_0(y_*) = \{i \in [0, m]; i = m_s = m'_{s+1} \text{ for some } s \in \mathcal{G}_2(y_*)\}.$$

2.6. Let $y_* \in Y_m$. Let $S'(y_*)$ be the set consisting of all pairs $x_* = (x_0, x_1, \dots, x_m), x_*' = (x_0', x_1', \dots, x_m')$

in \mathbb{N}^{m+1} which satisfy (i)-(iv) below (notation in 2.5):

(i) for any
$$s \in \mathcal{G}_1(y_*)$$
 we have $(x_{m_s}, x_{m'_{s+1}}) = (u_s, u_s), (x'_{m_s}, x'_{m'_{s+1}}) = (u'_s, u'_s), u_s + u'_s = a_s;$

(ii) for any $s \in \mathcal{G}_2(y_*)$ we have either

(ii1)
$$(x_{m_s}, x_{m_s+1}, \dots, x_{m'_{s+1}}) = (u_s, u_s + 1, u_s + 1, u_s + 2, u_s + 2, u_s + 3, \dots),$$

 $(x'_{m_s}, x'_{m_s+1}, \dots, x'_{m'_{s+1}}) = (u'_s, u'_s, u'_s + 1, u'_s + 1, u'_s + 2, u'_s + 2, \dots), u_s + u'_s = a_s,$
or

(ii2)
$$(x_{m_s}, x_{m_s+1}, \dots, x_{m'_{s+1}}) = (u_s, u_s, u_s + 1, u_s + 1, u_s + 2, u_s + 2, \dots),$$

 $(x'_{m_s}, x'_{m_s+1}, \dots, x'_{m'_{s+1}}) = (u'_s, u'_s + 1, u'_s + 1, u'_s + 2, u'_s + 2, u'_s + 3, \dots), u_s + u'_s = u_s.$

(iii) for any $s \in [1, t]$ we have $x_{m'_s} < x_{m_s}, x'_{m'_s} < x'_{m_s}$;

(iv) if
$$\Im'(y_*) = \emptyset$$
 then for any $s \in \mathcal{G}_2(y_*)$, $(x_{m_s}, x_{m_s+1}, \dots, x_{m'_{s+1}})$, $(x'_{m_s}, x'_{m_s+1}, \dots, x'_{m'_{s+1}})$ are as in (ii1).

An element (x_*, x_*') of $S'(y_*)$ can be constructed by induction as follows. Assume that the entries x_i, x_i' have been already chosen for $i \in \mathcal{J}_0 \cup \mathcal{J}_1 \cup \cdots \cup \mathcal{J}_{s-1}$ for some $s \in [0, t]$ so that (i)-(iii) hold as far as it makes sense. In the case where s > 0 let $\xi = x_{m_s'}, \xi' = x_{m_s'}'$; in the case where s = 0 let $\xi = \xi' = -\infty$. In any case we have $\xi + \xi' \leq a_s - 2$ hence we can find u_s, u_s' in \mathbb{N} such that $\xi < u_s, \xi' < u_s', u_s + u_s' = a_s$. (The number of choices is $y_{m_s} - y_{m_s'} - 1$ if s > 0 and $y_0 + 1$ if s = 0.) Then we define

$$(x_{m_s}, x_{m_s+1}, \dots, x_{m'_{s+1}}), (x'_{m_s}, x'_{m_s+1}, \dots, x'_{m'_{s+1}})$$

by (i) if $s \in \mathcal{G}_1(y_*)$ and by (ii) if $s \in \mathcal{G}_2(y_*)$. This gives two choices for each $s \in \mathcal{G}_2(y_*)$ such that $|\mathcal{J}_s| > 1$, unless $\mathfrak{I}'(y_*) = \emptyset$ when there is only one choice. This completes the inductive definition of x_*, x_*' . We see that $S'(y_*) \neq \emptyset$.

Let $S(y_*)$ be the set of all $(x_*, x_*') \in X_m \times X_m$ such that (v), (vi), (vii) below hold:

(v)
$$x_* + x'_* = y_*$$
,

(vi) $\mathfrak{S}(x_*) \cup \mathfrak{S}(x_*') = R(y_*)$, $\mathfrak{S}(x_*) \cap \mathfrak{S}(x_*') = R_0(y_*)$ (or equivalently $|\mathfrak{S}(x_*)| + |\mathfrak{S}(x_*')| = 2|\mathfrak{I}(y_*)|$),

(vii) if $\mathfrak{I}'(y_*) = \emptyset$ (so that m is odd), then $\mathfrak{S}(x_*') = \emptyset$.

From the definitions we see that $S(y_*) = S'(y_*)$. Hence

(a) $S(y_*) \neq \emptyset$.

From 2.4(a) we see that:

- (b) if $\mathfrak{I}(y_*) = \emptyset$ and $(x_*, x_*') \in S(y_*)$ then $\mathfrak{S}(x_*) = \emptyset$, $\mathfrak{S}(x_*') = \emptyset$. On the other hand,
- (c) if $\Im'(y_*) \neq \emptyset$ and $(x_*, x_*') \in S(y_*)$ then $\mathfrak{S}(x_*) \neq \emptyset$, $\mathfrak{S}(x_*') \neq \emptyset$. Indeed, let $[i, j] \in \Im'(y_*)$. Then we have either $i \in \mathfrak{S}(x_*), j \in \mathfrak{S}(x_*')$ or $i \in \mathfrak{S}(x_*'), j \in \mathfrak{S}(x_*)$; in both cases the conclusion of (c) holds.
- **2.7.** In this subsection we assume that m is even, ≥ 2 . We set

$$\tilde{X}_m = \{x_* \in X_m; x_0 = 0, x_1 \ge 1\}, \ \tilde{Y}_m = \{y_* \in Y_m; y_1 \ge 1\}.$$

If $x_* \in X_m$, $x'_* \in \tilde{X}_m$, then $x_* + x'_* \in \tilde{Y}_m$.

Let $y_* \in \tilde{Y}_m$ be such that

(a) $y_0 = 0, y_1 = 1$.

(Thus $\Im(y_*)$ contains an interval of form $[0,\alpha]$ hence $\Im(y_*) \neq \emptyset$.) Let $\tilde{S}'(y_*)$ be the set consisting of all pairs $x_* = (x_0, x_1, \ldots, x_m), x'_* = (x'_0, x'_1, \ldots, x'_m)$ in \mathbf{N}^{m+1} which satisfy the conditions (i)-(iii) in 2.6 together with conditions (i),(ii) below (notation in 2.5):

- (i) for s = 0 (necessarily in $\mathcal{G}_2(y_*)$) we have $(x_0, x_1, \ldots, x_{m'_1}) = (0, 0, 1, 1, 2, 2, \ldots), (x'_0, x'_1, \ldots, x'_{m'_1}) = (0, 1, 1, 2, 2, 3, 3, \ldots)$ (so that $0 \in \mathfrak{S}(x'_*)$);
- (ii) if $\Im(y_*) = \{[0, \alpha]\} \cup \Im''(y_*)$ (so that $\Im'(y_*) = \{[0, \alpha]\}$) then for any $s \in \mathcal{G}_2(y_*) \{0\}, (x_{m_s}, x_{m_s+1}, \dots, x_{m'_{s+1}}), (x'_{m_s}, x'_{m_s+1}, \dots, x'_{m'_{s+1}})$ are as in 2.6(ii1).

We can construct an element in $\tilde{S}'(y_*)$ by the same method as in 2.6. In particular, $\tilde{S}'(y_*) \neq \emptyset$.

Now let $\tilde{S}(y_*)$ be the set of all $(x_*, x_*') \in X_m \times \tilde{X}_m$ such that

- (iii) $x_* + x'_* = y_*$,
- (iv) $\mathfrak{S}(x_*) \cup \mathfrak{S}(x_*') = R(y_*)$, $\mathfrak{S}(x_*) \cap \mathfrak{S}(x_*') = R_0(y_*)$ (or equivalently $|\mathfrak{S}(x_*)| + |\mathfrak{S}(x_*')| = 2|\mathfrak{I}(y_*)|$),
 - (v) if $\Im(y_*) = \{[0, \alpha]\} \cup \Im''(y_*)$, then $\mathfrak{S}(x_*') = \{0\}$.

From the definitions we see that $\tilde{S}(y_*) = \tilde{S}'(y_*)$. Hence

(b) $\tilde{S}(y) \neq \emptyset$.

Note that

- (c) if $\Im(y_*) = \{[0, \alpha]\}$ and $(x_*, x_*') \in \tilde{S}(y_*)$, then $\mathfrak{S}(x_*) = \{\alpha\}$, $\mathfrak{S}(x_*') = \{0\}$. Indeed from 2.4(a) we see that $|\mathfrak{S}(x_*)| + |\mathfrak{S}(x_*')| \leq 2$. On the other hand, we have $0 \in \mathfrak{S}(x_*')$ and $\alpha \in \mathfrak{S}(x_*)$ (see (i)) since in this case α is even; (c) follows. Note that
- (d) if $\mathfrak{I}'(y_*)$ contains at least one interval $\neq [0, \alpha]$ and $(x_*, x_*') \in \tilde{S}(y_*)$, then $|\mathfrak{S}(x_*')| \geq 3$.

Indeed, let $[i,j] \in \mathfrak{I}'(y_*), [i,j] \neq [0,\alpha]$. Then we have either $i \in \mathfrak{S}(x_*), j \in \mathfrak{S}(x_*')$

or $i \in \mathfrak{S}(x'_*), j \in \mathfrak{S}(x_*)$. Since $0 \in \mathfrak{S}(x'_*)$ we see that $|\mathfrak{S}(x'_*)| \geq 2$. Since $|\mathfrak{S}(x'_*)|$ is odd we see that $|\mathfrak{S}(x'_*)| \geq 3$.

2.8. Let $x_*^0 \in X_m$ be $(0,0,1,1,\ldots,(n-1),(n-1),n)$ if m=2n and $(0,0,1,1,\ldots,n,n)$ if m=2n+1. For any $x_* \in X_m$ we have $x_i \geq x_i^0$ for all $i \in [0,m]$. Hence

$$\rho: X_m \to \mathbf{N}, \, \xi_* \mapsto \sum_{i \in [0,m]} (x_i - x_i^0)$$
 and

$$\beta: X_m \to \mathbf{N}, x_* \mapsto \sum_{0 \le i \le j \le m} (x_i - x_i^0)$$

are well defined.

Let $y_*^0 \in Y_m$ be (0,0,2,2,...,(m-2),(m-2),m) if m is even and (0,0,2,2,...,(m-1),(m-1)) if m is odd. For any $y_* \in Y_m$ we have $y_i \geq y_i^0$ for all $i \in [0,m]$. Hence

$$\rho': Y_m \stackrel{\text{J}}{\to} \mathbf{N}, y_* \mapsto \sum_{i \in [0,m]} (y_i - y_i^0)$$
 and

$$\beta': Y_m \to \mathbf{N}, \ y_* \mapsto \sum_{0 \le i < j \le m} (y_i - y_i^0)$$

are well defined. Since $x_*^0 + x_*^0 = y_*^0$ we have

$$\rho'(x_* + x_*') = \rho(x_*) + \rho(x_*'), \ \beta'(x_* + x_*') = \beta(x_*) + \beta(x_*')$$

for any $x_*, x_*' \in X_m$. For any $n \in \mathbf{N}$ we set $X_m^n = \{x_* \in X_m; \rho(x_*) = n\}, Y_m^n = \{y_* \in Y_m; \rho'(y_*) = n\}.$

Assume that $m=2k, \ k\geq 1$. Let $\tilde{x}^0_*\in \tilde{X}_m$ be $(0,1,1,\ldots,k,k)$. For any $x_*\in \tilde{X}_m$ we have $x_i\geq \tilde{x}^0_i$ for all i. Hence

$$\tilde{\rho}: \tilde{X}_m \to \mathbf{N}, \, \xi_* \mapsto \sum_{i \in [0,m]} (x_i - \tilde{x}_i^0)$$
 and

$$\tilde{\beta} : \tilde{X}_m \to \mathbf{N}, \, x_* \mapsto \sum_{0 \le i < j \le m} (x_i - \tilde{x}_i^0)$$

are well defined. Let $\tilde{y}^0_* = (0, 1, 2, 3, ..., m) \in Y_m$. For any $y_* \in \tilde{Y}_m$ we have $y_i \geq \tilde{y}^0_i$ for all i. Hence

$$\tilde{\rho}': \tilde{Y}_m \to \mathbf{N}, y_* \mapsto \sum_{i \in [0,m]} (y_i - \tilde{y}_i^0)$$
 and

$$\tilde{\beta}' : \tilde{Y}_m \to \mathbf{N}, \ y_* \mapsto \sum_{0 < i < j < m} (y_i - \tilde{y}_i^0)$$

are well defined. Since $x_*^0 + \tilde{x}_*^0 = \tilde{y}_*^0$ we have

$$\tilde{\rho}'(x_* + x_*') = \rho(x_*) + \tilde{\rho}(x_*'), \ \tilde{\beta}'(x_* + x_*') = \beta(x_*) + \tilde{\beta}(x_*')$$

for any $x_* \in X_m$, $x'_* \in \tilde{X}_m$. For any $n \in \mathbf{N}$ we set

$$\tilde{X}_{m}^{n} = \{x_{*} \in \tilde{X}_{m}; \tilde{\rho}(x_{*}) = n\}, \ \tilde{Y}_{m}^{n} = \{y_{*} \in \tilde{Y}_{m}; \tilde{\rho}'(y_{*}) = n\}.$$

2.9. Let \mathcal{E}_m be the set of all $e_* = (e_0, e_1, \dots, e_m) \in \mathbf{N}^{m+1}$ such that $e_0 \leq e_1 \leq \dots \leq e_m$. For any $n \in \mathbf{N}$ let $\mathcal{E}_m^n = \{e_* \in \mathcal{E}_m; \sum_i e_i = n\}$.

Let $x_* \in X_m$. We associate to x_* an element $\hat{x}_* \in X_m$ as follows. Let $i_0 < i_1 < \cdots < i_s$ be the elements of $\mathfrak{S}(x_*)$ in increasing order. Clearly, each of the sets $[0, i_0 - 1], [i_0 + 1, i_1 - 1], \ldots, [i_{s-1} + 1, i_s - 1], [i_s + 1, m]$ has even cardinal, say $2t_0, 2(t_1 - 1), \ldots, 2(t_s - 1), 2t_{s+1}$ (respectively). We define $\hat{x}_* = (\hat{x}_0, \hat{x}_1, \ldots, \hat{x}_m) \in \mathbf{N}^{m+1}$ by

$$(\hat{x}_0, \hat{x}_1, \dots, \hat{x}_{i_0} - 1) = (0, 0, 1, 1, \dots, t_0 - 1, t_0 - 1), h_{i_0} = t_0,$$

$$(\hat{x}_{i_0+1}, \hat{x}_{i_0+2}, \dots, \hat{x}_{i_1-1})$$

$$= (t_0+1, t_0+1, t_0+2, t_0+2, \dots, t_0+t_1-1, t_0+t_1-1), h_{i_1} = t_0+t_1,$$

$$(\hat{x}_{i_1+1}, \hat{x}_{i_1+2}, \dots, \hat{x}_{i_2-1}) = (t_0 + t_1 + 1, t_0 + t_1 + 1, t_0 + t_1 + 2, t_0 + t_1 + 2, \dots, t_0 + t_1 + t_2 - 1, t_0 + t_1 + t_2 - 1),$$

$$h_{i_2} = t_0 + t_1 + t_2,$$

. . .

$$(\hat{x}_{i_s+1}, \hat{x}_{i_s+2}, \dots, hx_m)$$

$$= (t_0 + t_1 + \dots + t_s + 1, t_0 + t_1 + \dots + t_s + 1, t_0 + t_1 + \dots + t_s + 2, t_0 + t_1 + \dots + t_s + 2, \dots, t_0 + t_1 + \dots + t_{s+1}, t_0 + t_1 + \dots + t_{s+1}).$$

Note that \hat{x}_* depends only on $\mathfrak{S}(x_*)$, not on x_* itself. We have $\hat{x}_* \in X_m$, $\mathfrak{S}(\hat{x}_*) = \mathfrak{S}(x_*)$. Let $e_* = x_* - \hat{x}_*$. We have $e_* \in \mathcal{E}_m$. Moreover for any $i \in [0, m-1]$ such that $\hat{x}_i = \hat{x}_{i+1}$ we have $e_i = e_{i+1}$.

- **2.10.** Let $x_* \in X_m$, $e_* \in \mathcal{E}_m$. Then $x_* + e_* \in X_m$ hence $y_* := x_* + e_* + x_* \in Y_m$. Assume that $\mathfrak{S}(e_* + x_*) = \mathfrak{S}(x_*)$ and $(x_*, e_* + x_*) \in S(y_*)$. Then $\mathfrak{S}(x_*) \cup \mathfrak{S}(e_* + x_*) = R(y_*)$, $\mathfrak{S}(x_*) \cap \mathfrak{S}(e_* + x_*) = R_0(y_*)$ hence $\mathfrak{S}(x_*) = R(y_*) = R_0(y_*)$. It follows that for any $\mathcal{I} \in \mathfrak{I}(y_*)$ we have $|\mathcal{I}| = 1$.
- **2.11.** Conversely, let $y_* \in Y_m^n$ be such that for any $\mathcal{I} \in \mathfrak{I}(y_*)$ we have $|\mathcal{I}| = 1$. By 2.6(a) we can find $(x_*, x_*') \in S(y_*)$. We have $x_* + x_*' = y_*$, $\mathfrak{S}(x_*) \cup \mathfrak{S}(x_*') = R(y_*)$, $\mathfrak{S}(x_*) \cap \mathfrak{S}(x_*') = R_0(y_*)$. From our assumption we have $R_0(y_*) = R(y_*)$. Hence $\mathfrak{S}(x_*) \cup \mathfrak{S}(x_*') = \mathfrak{S}(x_*) \cap \mathfrak{S}(x_*')$ so that $\mathfrak{S}(x_*) = \mathfrak{S}(x_*')$. By 2.9 we have $\hat{x}_* = \hat{x}_*' \in X_m$ and $e_* := x_* \hat{x}_* \in \mathcal{E}_m, e_*' := x_*' \hat{x}_*' \in \mathcal{E}_m$. Moreover, if $i \in [0, m-1]$ and $\hat{x}_i = \hat{x}_{i+1}$ then $e_i = e_{i+1}$ and $e_i' = e_{i+1}'$ hence $\tilde{e}_i = \tilde{e}_{i+1}$ where $\tilde{e}_* = e_* + e_*' \in \mathcal{E}_m$. It follows that $\mathfrak{S}(\tilde{e}_* + \hat{x}_*) = \mathfrak{S}(\hat{x}_*) = \mathfrak{S}(x_*) = R(y_*) = R_0(y_*)$. Since $|\mathfrak{S}(x_*)| + |\mathfrak{S}(x_*')| = 2|\mathfrak{I}(y_*)|$ we have $|\mathfrak{S}(\hat{x}_*)| + |\mathfrak{S}(\tilde{e}_* + \hat{x}_*)| = 2|\mathfrak{I}(y_*)|$. Also, if $\mathfrak{I}'(y_*) = \emptyset$ then by 2.6(vii) we have $\mathfrak{S}(x_*') = \emptyset$. Hence $\mathfrak{S}(\hat{x}_*) = \mathfrak{S}(\tilde{e}_* + \hat{x}_*) = \emptyset$. In any case we see that $y_* = \hat{x}_* + \tilde{e}_* + \hat{x}_*, (\hat{x}_*, \tilde{e}_* + \hat{x}_*) \in S(y_*), \mathfrak{S}(\tilde{e}_* + \hat{x}_*) = \mathfrak{S}(\hat{x}_*)$.

3. Type A_{n-1}

3.1. For $n \in \mathbb{N}$ let S_n be the group of all permutations of $\{1, 2, ..., n\}$. We have $S_0 = S_1 = \{1\}$; for $n \geq 2$ we regard S_n as a Coxeter group whose generators are the transpositions (i, i + 1) for $i \in [1, n - 1]$. We have $S_{S_n} = \operatorname{Irr}(S_n)$. If k is large (relative to n) we have a natural bijection $\operatorname{Irr}(S_n) \leftrightarrow Z_k^n$, $[z_*] \leftrightarrow z_*$, see [L4, 4.4]. For example, [(0, 1, ..., k - n, k - n + 2, ..., k, k + 1)] is the sign representation of S_n . For any $z_* \in Z_k^n$ we have $\beta_0(z_*) = b_{[z_*]}$, see [L4, (4.4.2)].

Assume now that n = n' + n'' with n', n'' in **N**. The set of permutations of $\{1, 2, ..., n\}$ which leave stable each of the subsets $\{1, 2, ..., n'\}$, $\{n' + 1, n' + 2, ..., n\}$ is a standard parabolic subgroup of S_n which may be identified with $S_{n'} \times S_{n''}$.

For $z'_* \in Z_k^{n'}$, $z''_* \in Z_k^{n'}$ we have $z'_* + z''_* - z^0_* \in Z_k^n$ and from the definitions we have:

(a) $[[z'_* + z''_* - z^0_*] : \operatorname{Ind}_{S_{n'} \times S_{n''}}^{S_n}([z'_*] \boxtimes [z''_*])]_{S_n} = 1.$ Note also that $\beta_0(z'_*) + \beta_0(z''_*) = \beta_0(z'_* + z''_* - z^0_*)$ hence $b_{[z'_*]} + b_{[z''_*]} = b_{[z'_* + z''_* - z^0_*]}$, so that

(b)
$$[z'_* + z''_* - z^0_*] = j^{S_n}_{S_{n'} \times S_{n''}}([z'_*] \boxtimes [z''_*]).$$

3.2. In this subsection we assume that G is of type A_{n-1} $(n \ge 2)$. In this case 1.5(a),(b1),(b2) are immediate. We prove 1.5(b3).

For $C \in \mathcal{X}$ let $E = \rho_C$. We have $E = [z_*]$ for a unique $z_* \in Z_k^n$. We have $\mathbf{z}_C = 1$ and $\tilde{\mathbf{z}}_C = \text{g.c.d.}\{n, z_j - z_j^0 (j \in [0, k])\}$ where g.c.d. denotes the greatest common divisor. We identify $\{1, 2, \ldots, n\} = \mathbf{Z}/n$ in the obvious way. We also identify $\mathbf{W} = S_n$ as Coxeter groups so that the reflections $s_i (i \in \tilde{I})$ are the transpositions (i, i+1) with $i \in \mathbf{Z}/n$ (with i+1 computed in \mathbf{Z}/n .) Now Ω is a cyclic group of order n with generator $\omega : i \mapsto i+1$ for all $i \in \mathbf{Z}/n$. For any $d \mid n$ (divisor $d \geq 1$ of n) let Ω_d be the subgroup of Ω generated by $\omega^{n/d}$. For any coset P of Ω_d in Ω let S_n^P be the set of all permutations w of \mathbf{Z}/n such that for any $r \in P$ the subset $\{r+1, r+2, \ldots, r+(n/d)\}$ is w-stable. We may identify S_n^P with a product of d copies of $S_{n/d}$. Note that \mathcal{P}^{Ω_d} (see 1.11) consists of the subgroups S_n^P as above; each of these subgroups is stable under the conjugation action of Ω_d on \mathbf{W} . An irreducible representation $\boxtimes_{h=1}^d [\tilde{z}_*^{(h)}]$ (with $\tilde{z}_*^{(h)} \in Z_n^{n/d}$) of S_n^P (identified with $S_{n/d}^d$) is Ω_d -stable if and only if $\tilde{z}_*^{(h)} = \tilde{z}_*$ is independent of h; in this case we have

$$j_{S_n^P}^{S_n}(\boxtimes_{h=1}^d [\tilde{z}_*^{(h)}]) = [\sum_{h=1}^d \tilde{z}_*^{(h)} - (d-1)z_*^0] = [d\tilde{z}_* - (d-1)z_*^0]$$

as we see by applying (d-1) times 3.1(b). Using this and 1.11 we see that

$$\mathfrak{c}_{[z_*]} = \max d$$

where max is taken over all divisors $d \ge 1$ of n such that $z_* - z_*^0 = d(\tilde{z}_* - z_*^0)$ for some $\tilde{z}_* \in Z_k^{n/d}$. Equivalently, we have

$$\mathfrak{c}_{[z_*]} = \text{g.c.d.}\{n, z_j - z_j^0 (j \in [0, k])\}.$$

Since this is equal to $\tilde{\mathbf{z}}_C/\mathbf{z}_C$ we see that 1.5(b3) is proved in our case.

4. Type
$$B_n$$

4.1. For $n \in \mathbb{N}$ let W_n be the group of permutations of the set $\{1, 2, \ldots, n, n', \ldots, 2', 1'\}$ which commute with the involution $i \mapsto i', i' \mapsto i(i \in [1, n])$. We have $W_0 = \{1\}$; for $n \geq 1$ we regard W_n as a Coxeter group of type $B_n = C_n$ whose generators are the transposition (n, n') and the products of two transpositions (i, i + 1)((i + 1)', i') for $i \in [1, n - 1]$. By [L2, §2] we have $Irr(W_n) = Irr(W_n)^{\dagger}$.

4.2. In the remainder of this section we fix an even integer m = 2k which is large relative to n.

Let $U_k^n = \{(z_*; z_*') \in Z_k \times Z_{k-1}; \rho_0(z_*) + \rho_0(z_*') = n\}$. As in [L4, 4.5] we have a bijection

(a) $\operatorname{Irr}(W_n) \leftrightarrow U_k^n$, $[z_*; z_*'] \leftrightarrow (z_*; z_*')$.

(In *loc.cit.* the notation $\begin{pmatrix} z_* \\ z'_* \end{pmatrix}$ was used instead of $(z_*; z'_*)$.) By [L2, §2] we have

(b)
$$b_{[z_*;z'_*]} = 2\beta_0(z_*) + 2\beta_0(z'_*) + \rho_0(z'_*).$$

There is a unique bijection $\zeta_n: \mathcal{S}_{W_n} \xrightarrow{\sim} X_m^n$ under which $x_* \in X_m^n$ corresponds to $\{[z_*, z_*']\}$ where $z_* = (x_0, x_2, x_4, \dots, x_m), z_*' = (x_1, x_3, x_5, \dots, x_{m-1})$. This bijection has the following property: if $E \in \mathcal{S}_{W_n}, x_* = \zeta_n(E)$ then $b_E = \beta(x_*), f_E = 2^{(|\mathfrak{S}(x_*)|-1)/2}$.

- **4.3.** Let $u_* \in Z_m$. Define $\ddot{u}_* \in Z_k$, $\dot{u}_* \in Z_{k-1}$ by $\ddot{u}_i = u_{2i} i$ for $i \in [0, k]$, $\dot{u}_i = u_{2i+1} i 1$ for $i \in [0, k-1]$.
- **4.4.** Let $(p,q) \in \mathbb{N}^2$ be such that p+q=n. The group of all permutations of $\{1,2,\ldots,n,n',\ldots,2',1'\}$ in W_n that leave stable each of the subsets

$$\{1, 2, \dots, p\}, \{p', \dots, 2', 1'\}, \{p+1, \dots, n-1, n\} \cup \{n', (n-1)', \dots, (p+1)'\}$$

is a standard parabolic subgroup of W_n which may be identified with $S_p \times W_q$ in an obvious way.

Let $(\tilde{z}_*; \tilde{z}'_*) \in U_k^q$, $u_* \in Z_m^p$. Let $v_* = \tilde{z}_* + \ddot{u}_* - z_*^{0,k}$, $v'_* = \tilde{z}'_* + \dot{u}_* - z_*^{0,k-1}$. Then $(v_*; v'_*) \in U_k^n$, $[u_*] \in Irr(S_p)$, $[\tilde{z}_*; \tilde{z}'_*] \in Irr(W_q)$, $[v_*; v'_*] \in Irr(W_n)$. We show:

(a) $[v_*; v'_*] = j_{S_p \times W_q}^{W_n}([u_*] \boxtimes [\tilde{z}_*; \tilde{z}'_*])$.

We can assume that $p \geq 1$ and that the result holds for p replaced by $\tilde{p} < p$. In the case where $[u_*]$ is the sign representation of S_p , (a) can be proved along the lines of [L3, 2.7]. If $[u_*]$ is not the sign representation of S_p , we can find p', p'' in $\mathbb{N}_{>0}$ such that p' + p'' = p and $u' \in Z_{2k}^{p'}$, $u' \in Z_{2k}^{p''}$ such that $u_* = u'_* + u''_* - z_*^{0,m}$. By 3.1(b), we have $[u_*] = j_{S_{n'} \times S_{n''}}^{S_p}([u'_*] \boxtimes [u''_*])$. Hence

$$[u_*]\boxtimes [\tilde{z}_*;\tilde{z}'_*]=j_{S_{r'}\times S_{r''}\times W_q}^{S_p\times W_q}([u'_*]\boxtimes [u''_*]\boxtimes [\tilde{z}_*;\tilde{z}'_*])$$

and

$$\begin{split} j^{W_n}_{S_p \times W_q}([u_*] \boxtimes [\tilde{z}_*; \tilde{z}_*']) &= j^{W_n}_{S_p \times W_q} j^{S_p \times W_q}_{S_{p'} \times S_{p''} \times W_q}([u_*'] \boxtimes [u_*''] \boxtimes [\tilde{z}_*; \tilde{z}_*']) \\ &= j^{W_n}_{S_{p'} \times S_{p''} \times W_q}([u_*'] \boxtimes [u_*''] \boxtimes [\tilde{z}_*; \tilde{z}_*']) \\ &= j^{W_n}_{S_{p'} \times W_{p''+q}} j^{S_{p'} \times W_{p''+q}}_{S_{p'} \times S_{p''} \times W_q}([u_*'] \boxtimes [u_*''] \boxtimes [\tilde{z}_*; \tilde{z}_*']) \\ &= j^{W_n}_{S_{p'} \times W_{p''+q}}([u_*'] \boxtimes [\tilde{z}_* + \ddot{u}_*'' - z_*^{0,k}; \tilde{z}_*' + \dot{u}_*'' - z_*^{0,k-1}]) \\ &= [\tilde{z}_* + \ddot{u}_*'' + \ddot{u}_*' - 2z_*^{0,k}; \tilde{z}_*' + \dot{u}_*'' + \dot{u}_*' - 2z_*^{0,k-1}] \\ &= [\tilde{z}_* + \ddot{u}_* - z_*^{0,k}; \tilde{z}_*' + \dot{u}_* - z_*^{0,k-1}]. \end{split}$$

(We have used the induction hypothesis for p replaced by p' or p''.) This proves (a).

4.5. In the remainder of this section we assume that G has type B_n $(n \ge 2)$. We identify $\mathbf{W} = W_n$ as Coxeter groups in the standard way. The reflections $s_j (j \in \tilde{I})$ are the transpositions (n, n'), (1, 1') and the products of two transpositions (i, i + 1)(i', (i + 1)') for $i \in [1, n - 1]$. The group Ω has order 2 with generator given by the involution $i \mapsto (n + 1 - i)', i' \mapsto (n + 1 - i)$ for $i \in [1, n]$.

Let $(r, p, q) \in \mathbb{N}^3$ be such that r + p + q = n. The group of all permutations of $\{1, 2, \ldots, n, n', \ldots, 2', 1'\}$ in W_n that leave stable each of the subsets

$$\{1, 2, \dots, r\} \cup \{r', \dots, 2', 1'\}, \{r+1, r+2, \dots, r+p\},$$

$$\{(r+p)', \dots, (r+2)', (r+1)'\},$$

$$\{r+p+1, \dots, n-1, n\} \cup \{n', (n-1)', \dots, (r+p+1)'\}$$

is a parahoric subgroup of **W** which may be identified with $W_r \times S_p \times W_q$ in an obvious way.

Let $(z_*; z_*') \in U_k^r$, $(\tilde{z}_*; \tilde{z}_*') \in U_k^q$, $u_* \in Z_{2k}^p$, Define $\ddot{u}_* \in Z_k, \dot{u}_* \in Z_{k-1}$ as in 4.3. Let $w_* = z_* + \tilde{z}_* + \ddot{u}_* - 2z_*^{0,k}$, $w_*' = z_*' + \tilde{z}_*' + \dot{u}_* - 2z_*^{0,k-1}$. Then $(w_*, w_*') \in U_k^n$, $[z_*; z_*'] \in \operatorname{Irr}(W_r)$, $[u_*] \in \operatorname{Irr}(S_p)$, $[\tilde{z}_*; \tilde{z}_*'] \in \operatorname{Irr}(W_q)$, $[w_*, w_*'] \in \operatorname{Irr}(W_n)$. We show:

(a) $[w_*; w_*'] = j_{W_r \times S_p \times W_q}^{W_n}([z_*; z_*'] \boxtimes [u_*] \boxtimes [\tilde{z}_*; \tilde{z}_*'])$. In particular, $[[w_*; w_*'] : \operatorname{Ind}_{W_r \times S_p \times W_q}^{W_n}([z_*; z_*'] \boxtimes [u_*] \boxtimes [\tilde{z}_*; \tilde{z}_*'])]_{W_n} = 1$.

Assume first that p = 0. We have:

(b)
$$[[z_* + \tilde{z}_* - z_*^{0,k}; z_*' + \tilde{z}_*' - z_*^{0,k-1}] : \operatorname{Ind}_{W_r \times W_q}^{W_n}([z_*; z_*'] \boxtimes [\tilde{z}_*; \tilde{z}_*'])]_{W_n} = 1.$$

Using the definitions this can be deduced from the analogous statement for S_n , see 3.1(a). Moreover we have $b_{[z_*+\tilde{z}_*-z_*^{0,k};z_*'+\tilde{z}_*'-z_*^{0,k-1}]}=b_{[z_*;z_*']}+b_{[\tilde{z}_*;\tilde{z}_*']}$. It follows that

(c)
$$[z_* + \tilde{z}_* - z_*^{0,k}; z_*' + \tilde{z}_*' - z_*^{0,k-1}] = j_{W_r \times W_q}^{W_n}([z_*; z_*'] \boxtimes [\tilde{z}_*; \tilde{z}_*']).$$

Thus (a) holds in this special case.

In the general case we use 4.4(a) with n replaced by p + q and (c) applied to n, r, 0, p + q instead of n, r, p, q. We obtain

$$\begin{split} j_{W_r \times S_p \times W_q}^{W_n}([z_*; z_*'] \boxtimes [u_*] \boxtimes [\tilde{z}_*; \tilde{z}_*']) \\ &= j_{W_r \times W_{p+q}}^{W_n}(j_{W_r \times S_p \times W_q}^{W_r \times W_{p+q}}([z_*; z_*'] \boxtimes [u_*] \boxtimes [\tilde{z}_*; \tilde{z}_*'])) \\ &= j_{W_r \times W_{p+q}}^{W_n}([z_*; z_*'] \boxtimes [\tilde{z}_* + \ddot{u}_* - z_*^{0,k}; \tilde{z}_*' + \dot{u}_* - z_*^{0,k-1}]) = [w_*; w_*']. \end{split}$$

This proves (a).

4.6. By [L5, §13], there is a unique bijection $\tau: \tilde{\mathcal{S}}_{\mathbf{W}} \to Y_m^n$ such that for any $y_* \in Y_m^n$, the fibre $\tau^{-1}(y_*)$ is $[z_*, z_*']$ where $z_* = (y_0, y_2 - 1, y_4 - 2, \dots, y_m - m/2)$, $z_*' = (y_1, y_3 - 1, y_5 - 2, \dots, y_{m-1} - (m-2)/2)$. This bijection has the following property: if $C \in \mathcal{X}$ and $y_* = \tau(\rho_C)$, then $\mathbf{b}_C = \beta'(y_*)$, $\mathbf{z}_C = 2^{|\mathfrak{I}(y_*)|-1}$. From [L5, §14] we see that:

$$\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2 \text{ if } |\mathcal{I}| = 1 \text{ for any } \mathcal{I} \in \mathfrak{I}(y_*), \\ \tilde{\mathbf{z}}_C/\mathbf{z}_C = 1 \text{ if } |\mathcal{I}| > 1 \text{ for some } \mathcal{I} \in \mathfrak{I}(y_*).$$

4.7. In the setup of 4.5 we assume that $[z_*; z'_*] \in \mathcal{S}_{W_r}$, $[\tilde{z}_*; \tilde{z}'_*] \in \mathcal{S}_{W_q}$. Define $x_* \in X_m^r$, $\tilde{x}_* \in X_m^q$ by $\zeta_r([z_*; z'_*]) = x_*$, $\zeta_q([\tilde{z}_*; \tilde{z}'_*]) = \tilde{x}_*$. Let $e_* = u_* - z_*^{0,m} \in \mathcal{E}_m$. We show:

(a) $[w_*, w_*'] \in \tilde{\mathcal{S}}_{\mathbf{W}}$ and $\tau([w_*, w_*']) = x_* + e_* + \tilde{x}_*$. We have $w_i = x_{2i} + \tilde{x}_{2i} + u_{2i} - i - 2i$ for $i \in [0, k], w_i' = x_{2i+1} + \tilde{x} + 2i+1 + u_{2i+1} - i - 1 - 2i$ for $i \in [0, k-1]$. Define $y_* \in \mathbf{N}^{m+1}$ by $w_i = y_{2i} - i$ for $i \in [0, k], w_i' = y_{2i+1} - i$ for $i \in [0, k-1]$. Then $y_* = x_* + \tilde{x}_* + e_*$. Since $x_* \in X_m, \tilde{x}_* \in X_m, e_* \in \mathcal{E}_m$ we have $y_* \in Y_m$. More precisely, $y_* \in Y_m^n$. Using 4.6 we deduce that $[w_*, w_*'] \in \tilde{\mathcal{S}}_{\mathbf{W}}$ and (a) follows.

From (a) and 4.5(a) we see that for (r, p, q) as in 4.5, the assignment $(E_1, E_2, \tilde{E}_1) \mapsto j_{W_r \times S_p \times W_q}^{W_n}(E_1 \boxtimes E_2 \boxtimes \tilde{E}_1)$

is a map $j: \mathcal{S}_{W_r} \times \mathcal{S}_{S_p} \times \mathcal{S}_{W_q} \to \tilde{\mathcal{S}}_{\mathbf{W}}$ and we have a commutative diagram

$$S_{W_r} \times S_{S_p} \times S_{W_q} \xrightarrow{j} \tilde{S}_{\mathbf{W}}$$

$$\zeta_r \times \xi_p \times \zeta_q \downarrow \qquad \qquad \tau \downarrow$$

$$X_m^r \times \mathcal{E}_m^p \times X_m^q \xrightarrow{h} Y_m^n$$

where h is given by $(x_*, e_*, \tilde{x}_*) \mapsto x_* + e_* + \tilde{x}_*$ and $\xi_p : \mathcal{S}_{S_p} \to \mathcal{E}_m^p$ is the bijection $[e_* + z_*^{0,m}] \leftrightarrow e_*$.

4.8. Note that \mathcal{P}' (see 1.9) is exactly the collection of parahoric subgroups $W_r \times S_0 \times W_q$ of W_n with (r, p, q) as in 4.5 and p = 0. By 4.7, $j_{W_r \times S_0 \times W_q}^{W_n}$ carries $S_{W_r} \times S_{S_0} \times S_{W_q}$ into $\tilde{S}_{\mathbf{W}}$. Hence $\bar{S}_{\mathbf{W}} \subset \tilde{S}_{\mathbf{W}}$.

Conversely, let $E \in \tilde{\mathcal{S}}_{\mathbf{W}}$. With τ as in 4.6, let $y_* = \tau(E) \in Y_m^n$. By 2.6(a) we can find $(x_*, \tilde{x}_*) \in S(y_*)$. Define r, q in \mathbf{N} by $x_* \in X_m^r, \tilde{x}_* \in X_m^q$. We must have r + q = n. Let $e_* = (0, 0, \dots, 0) \in \mathcal{E}_m^0$. In the commutative diagram in 4.7 (with p = 0) we have $h(x_*, e_*, \tilde{x}_*) = y_*$, $(x_*, e_*, \tilde{x}_*) = (\zeta_r(E_1), \xi_p(\mathbf{Q}), \zeta_q(\tilde{E}_1))$ where $E_1 \in \mathcal{S}_{W_r}$, $\tilde{E}_1 \in \mathcal{S}_{W_q}$ (recall that ζ_r, ζ_q are bijections) and $\tau(j(E_1, \mathbf{Q}, \tilde{E}_1)) = \tau(E)$. Since τ is bijective we deduce that $E = j(E_1, \mathbf{Q}, \tilde{E}_1)$. Thus, $E \in \bar{\mathcal{S}}_{\mathbf{W}}$. Thus, $\tilde{\mathcal{S}}_{\mathbf{W}} \subset \bar{\mathcal{S}}_{\mathbf{W}}$. We see that $\tilde{\mathcal{S}}_{\mathbf{W}} = \bar{\mathcal{S}}_{\mathbf{W}}$. This proves 1.5(a) in our case.

4.9. In the remainder of this section we fix $C \in \mathcal{X}$ and we set $E = \rho_C \in \tilde{\mathcal{S}}_{\mathbf{W}}$, $y_* = \tau(E) \in Y_m^n$ (τ as in 4.6).

Let $(r,q) \in \mathbb{N}^2$, $E_1 \in \mathcal{S}_{W_r}$, $\tilde{E}_1 \in \mathcal{S}_{W_q}$ be such that r+q=n, $E=j_{W_r \times S_0 \times W_q}^{W_n}(E_1 \boxtimes \mathbf{Q} \boxtimes \tilde{E}_1)$.

(These exist since $E \in \bar{S}_{\mathbf{W}}$.) We set $x_* = \zeta_r(E_1) \in X_m^r$, $\tilde{x}_* = \zeta_q(\tilde{E}_1) \in X_m^q$. From the commutative diagram in 4.7 we see that $x_* + \tilde{x}_* = y_*$. By 4.6 we have $\mathbf{b}_C = \beta'(y_*)$. Since $\beta'(x_* + \tilde{x}_*) = \beta(x_*) + \beta(\tilde{x}_*)$, we have $\mathbf{b}_C = \beta(x_*) + \beta(\tilde{x}_*)$. Since $\beta(x_*) = b_{E_1}$, $\beta(\tilde{x}_*) = b_{\tilde{E}_1}$, we have $\mathbf{b}_C = b_{E_1} + b_{\tilde{E}_1}$ hence $\mathbf{b}_C = b_{E_1 \boxtimes \mathbf{Q} \boxtimes \tilde{E}_1}$. Since $E = j_{W_r \times S_0 \times W_q}^{W_n}(E_1 \boxtimes \mathbf{Q} \boxtimes \tilde{E}_1)$ we have $b_{E_1 \boxtimes \mathbf{Q} \boxtimes \tilde{E}_1} = b_E$ hence $\mathbf{b}_C = b_E$, proving 1.5(b1) in our case.

Next we note that $f_{E_1} = 2^{(|\mathfrak{S}(x_*)|-1)/2}$, $f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(\tilde{x}_*)|-1)/2}$, $\mathbf{z}_C = 2^{|\mathfrak{I}(y_*)|-1}$, $|\mathfrak{S}(x_*)| + |\mathfrak{S}(\tilde{x}_*)| \le 2|\mathfrak{I}(y_*)|$. Hence

$$f_{E_1 \boxtimes \mathbf{Q} \boxtimes \tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)| + |\mathfrak{S}(\tilde{x}_*)| - 2)/2} \le 2^{|\mathfrak{I}(y_*)| - 1} = \mathbf{z}_C.$$

Taking maximum over all r, q, E_1, \tilde{E}_1 as above we obtain $\mathfrak{a}_E \leq \mathbf{z}_C$.

Using again 2.6(a) we can find $(x_*, \tilde{x}_*) \in S(y_*)$. Define r, q in \mathbf{N} by $x_* \in X_m^r$, $\tilde{x}_* \in X_m^q$. We must have r + q = n. Define $E_1 \in \mathcal{S}_{W_r}$, $\tilde{E}_1 \in \mathcal{S}_{W_q}$ by $x_* = \zeta_r(E_1)$, $\tilde{x}_* = \zeta_q(\tilde{E}_1)$. As earlier in the proof we have $E = j_{W_r \times \mathbf{Q} \times W_q}^{W_n}(E_1 \boxtimes \mathbf{Q} \boxtimes \tilde{E}_1)$. We have

$$f_{E_1 \boxtimes \mathbf{Q} \boxtimes \tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)| + |\mathfrak{S}(\tilde{x}_*)| - 2)/2} = 2^{|\Im(y_*)| - 1} = \mathbf{z}_C.$$

It follows that $\mathfrak{a}_E = \mathbf{z}_C$, proving 1.5(b2) in our case.

4.10. Assume now that $\tilde{\mathbf{z}}_C/\mathbf{z}_C=2$. By 4.6, for any $\mathcal{I}\in\mathfrak{I}(y_*)$ we have $|\mathcal{I}|=1$. By 2.11 we can find (r,p,q) as in 4.5 with q=r and $x_*\in X_m^r$, $e_*\in\mathcal{E}_m^p$ such that $y_*=x_*+e_*+x_*, (x_*,e_*+x_*)\in S(y_*), \,\mathfrak{S}(e_*+x_*)=\mathfrak{S}(x_*)$. Define $E_1\in\mathcal{S}_{W_r}$, $E_2\in\mathcal{S}_{S_p}$ by $x_*=\zeta_r(E_1),\,e_*=\xi_p(E_2)$. Using the commutative diagram in 4.7 we see that $E=j_{W_r\times S_p\times W_r}^{W_n}(E_1\boxtimes E_2\boxtimes E_1)$. Moreover,

$$f_{E_1\boxtimes E_2\boxtimes E_1}=2^{(|\mathfrak{S}(x_*)|+|\mathfrak{S}(x_*)|-2)/2}=2^{(|\mathfrak{S}(x_*)|+|\mathfrak{S}(e_*+x_*)|-2)/2}=2^{|\mathfrak{I}(y_*)|-1}=\mathbf{z}_C.$$

We have $W_r \times S_p \times W_r = \mathbf{W}_J$ for a unique J which is Ω -stable. Moreover, $E_1 \boxtimes E_2 \boxtimes E_1$ is Ω -stable. We see that $\mathfrak{c}_E = 2$.

4.11. Conversely, assume that $\mathfrak{c}_E = 2$. Using 1.11 we see that there exist (r, p, q) as in 4.5 with q = r and $E_1 \in \mathcal{S}_{W_r}$, $E_2 \in \mathcal{S}_{S_p}$ such that $E = j_{W_r \times S_p \times W_r}^{W_n}(E_1 \boxtimes E_2 \boxtimes E_1)$, $f_{E_1 \boxtimes E_2 \boxtimes E_1} = \mathbf{z}_C$. We set $x_* = \zeta_r(E_1) \in X_m^r$, $e_* = \xi_p(E_2)$. We have $y_* = x_* + e_* + x_*$ and

$$2^{(|\mathfrak{S}(x_*)|+|\mathfrak{S}(x_*)|-2)/2} = 2^{|\mathfrak{I}(y_*)|-1};$$

hence $|\mathfrak{S}(x_*)| + |\mathfrak{S}(x_*)| = |\mathfrak{I}(y_*)|$. Let $E_1' = j_{S_p \times W_r}^{W_{p+r}}(E_2 \boxtimes E_1) \in \mathcal{S}_{W_{p+r}}$. Then $E = j_{W_r \times W_{p+r}}^{W_n}(E_1 \boxtimes E_1')$. Using 1.5(b2) and the definition we have $f_{E_1 \boxtimes E_1'} \leq \mathfrak{a}_E = \mathbf{z}_C$. By 1.9(b) we have $f_{E_2 \boxtimes E_1} \leq f_{E_1'}$. Hence $\mathbf{z}_C = f_{E_1 \boxtimes E_2 \boxtimes E_1} \leq f_{E_1 \boxtimes E_1'} \leq \mathbf{z}_C$; this forces $f_{E_2 \boxtimes E_1} = f_{E_1'}$. The last equality can be rewritten as

$$2^{(|\mathfrak{S}(x_*)|-1)/2} = 2^{(|\mathfrak{S}(e_*+x_*)|-1)/2}$$

since $e_* + x_* = \zeta_{p+r}(E_1')$ (a consequence of 4.4(a)). Hence $|\mathfrak{S}(e_* + x_*)| = |\mathfrak{S}(x_*)|$ and $|\mathfrak{S}(x_*)| + |\mathfrak{S}(e_* + x_*)| = 2|\mathfrak{I}(y_*)|$. Thus, $(x_*, e_* + x_*) \in S(y_*)$. Using 2.10 we see that for any $\mathcal{I} \in \mathfrak{I}(y_*)$ we have $|\mathcal{I}| = 1$. By 4.6 we have $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2$.

4.12. From 4.10, 4.11, we see that $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2$ if and only if $\mathfrak{c}_E = 2$. Since $\mathfrak{c}_E \in [1,2]$ and $\tilde{\mathbf{z}}_C/\mathbf{z}_C \in [1,2]$ we see that $\tilde{\mathbf{z}}_C/\mathbf{z}_C = \mathfrak{c}_E$; this proves 1.5(b3) in our case.

5. Type C_n

- **5.1.** For $n \in \mathbb{N}$ let W'_n be the set of all elements in W_n which are even permutations of $\{1, 2, ..., n, n', ..., 2', 1'\}$. We have $W'_0 = W'_1 = \{1\}$. For $n \geq 2$ we regard W'_n as a Coxeter group of type D_n whose generators are the products of two transpositions (i, i+1)((i+1)', i') for $i \in [1, n-1]$ and (n-1, n')(n, (n-1)').
- **5.2.** In this subsection we fix an integer k which is large relative to n.

Let V_k^n be the set of unordered pairs (z_*, z'_*) in $Z_{k-1} \times Z_{k-1}$ such that $\rho_0(z^*) + \rho_0(z'_*) = n$. If $n \geq 2$ we have as in [L4, 4.5] a map $\iota : \operatorname{Irr}(W'_n) \to V_k^n$. (In loc.cit. the notation $\binom{z_*}{z'_*}$ was used instead of (z_*, z'_*) .) Now ι is also defined when $n \in \{0, 1\}$; it is the unique map between two sets of cardinal 1.

Let ${}^{\dagger}V_k^n$ be the set of ordered pairs $(z_*; z'_*)$ in $Z_{k-1} \times Z_{k-1}$ such that $\rho_0(z^*) + \rho_0(z'_*) = n$ and either $\rho_0(z_*) > \rho_0(z'_*)$ or $z_* = z'_*$. We regard ${}^{\dagger}V_k^n$ as a subset of V_k^n by forgetting the order of a pair. We define a partition ${}^{\dagger}V_k^n = {}^{\dagger}V_k^n \sqcup {}^{\prime\prime}V_k^n$ by ${}^{\prime\prime}V_k^n = \{(z_*; z'_*) \in {}^{\dagger}V_k^n; z_* = z'_*\}$ if $n \geq 2$, ${}^{\prime\prime}V_k^n = \emptyset$ if $n \leq 1$,

 ${}^{\prime}V_{k}^{n} = \{(z_{*}; z_{*}^{\prime}) \in {}^{\dagger}V_{k}^{n}; z_{*} \neq z_{*}^{\prime}\} \text{ if } n \geq 1, {}^{\prime}V_{k}^{n} = {}^{\dagger}V_{k}^{n} \text{ if } n = 0.$

By [L2, §2] we have $Irr(W'_n)^{\dagger} = \iota^{-1}({}^{\dagger}V^n_k)$. For $(z_*; z'_*) \in {}^{\dagger}V^n_k$ and $\kappa \in \{0, 1\}$ we define $[z_*, z'_*]^{\kappa} \in Irr(W'_n)^{\dagger}$ by the following requirements: if $(z_*; z'_*) \in {}'V^n_k$, then $\iota^{-1}(z_*; z'_*)$ has a single element $[z_*; z'_*]^0 = [z_*; z'_*]^1$; if $(z_*; z'_*) \in {}''V^n_k$, then $\iota^{-1}(z_*; z'_*)$ consists of two elements $[z_*; z'_*]^0$, $[z_*; z'_*]^1$.

By [L2, §2], if $(z_*; z_*') \in {}^{\dagger}V_k^n$ then $b_{[z_*; z_*']^{\kappa}} = 2\beta_0(z_*) + 2\beta_0(z_*') + \rho_0(z_*')$.

There is a unique map $\zeta'_n: \mathcal{S}_{W'_n} \to X^n_{2k-1}$ such that for any $x_* \in X^n_{2k-1}$, $\zeta'_n^{-1}(x_*)$ is $\{[z_*; z'_*]^0 = [z_*; z'_*]^1\}$ (if $\mathfrak{S}(x_*) \neq \emptyset$ or if n = 0) and is $\{[z_*; z'_*]^0, [z_*; z'_*]^1\}$ (if $\mathfrak{S}(x_*) = \emptyset$ and $n \geq 2$) where

 $z_* = (x_1, x_3, x_5, \dots, x_{2k-1}), z'_* = (x_0, x_2, x_4, \dots, x_{2k-2}).$

This map has the following property: if $E \in \mathcal{S}_{W'_n}$, $x_* = \zeta'_n(E)$ then $b_E = \beta(x_*)$, $f_E = 2^{\max((|\mathfrak{S}(x_*)|-2)/2,0)}$.

There is a unique map $\tilde{\zeta}_n: \mathcal{S}_{W'_n} \to \tilde{X}_{2k}^n$ such that for any $x_* \in \tilde{X}_{2k}^n$, $\tilde{\zeta}_n^{-1}(x_*)$ is $\{[z_*; z_*']^0 = [z_*, z_*']^1\}$ (if $\mathfrak{S}(x_*) \neq \{0\}$ or if n = 0) and is $\{[z_*; z_*']^0, [z_*, z_*']^1\}$ (if $\mathfrak{S}(x_*) = \{0\}$ and $n \geq 2$) where $z_* = (x_2 - 1, x_4 - 1, \dots, x_{2k} - 1), z_*' = (x_1 - 1, x_3 - 1, x_5 - 1, \dots, x_{2k-1} - 1).$

This map has the following property: if $E \in \mathcal{S}_{W'_n}$, $x_* = \tilde{\zeta}_n(E)$, then $b_E = \beta(x_*)$, $f_E = 2^{\max((|\mathfrak{S}(x_*)|-3)/2,0)}$.

5.3. In the remainder of this section we assume that G is of type C_n $(n \geq 3)$ and we identify $\mathbf{W} = W_n$ as Coxeter groups in the standard way; we also fix an even integer m = 2k which is large relative to n. The reflections $s_j(j \in \tilde{I})$ are the transposition (1, 1') and the products of two transpositions (i, i+1)(i', (i+1)') for $i \in [1, n-1]$ and (n-1, n')(n, (n-1)'). The group Ω has order 2 with generator given by the transposition (n, n').

Let $(r,q) \in \mathbb{N}^2$ be such that r+q=n. The group of all permutations of $\{1,2,\ldots,n,n',\ldots,2',1'\}$ in W_n that leave stable the subset $\{1,2,\ldots,r\} \cup \{r',\ldots,2',1'\}$ and which restrict to an even permutation of $\{r+1,\ldots,n-1,n\} \cup \{r',\ldots,2',1'\}$

 $\{n', (n-1)', \ldots, (r+1)'\}$, is a parahoric subgroup of **W** which may be identified with $W_r \times W'_q$ in an obvious way. Let $(z_*; z'_*) \in U^r_k$, $(\tilde{z}_*; \tilde{z}'_*) \in {}^{\dagger}V^q_k$. Let

 $\tilde{z}_*^! = (0, \tilde{z}_0 + 1, \tilde{z}_1 + 1, \dots, \tilde{z}_{k-1} + 1) \in Z_k.$

Let $w_* = z_* + \tilde{z}_*! - z_*^{0,k}$, $w_*' = z_*' + \tilde{z}_*' - z_*^{0,k-1}$. Then $[z_*; z_*'] \in \operatorname{Irr}(W_r)$, $[\tilde{z}_*; \tilde{z}_*']^{\kappa} \in \operatorname{Irr}(W_q')^{\dagger}$ (k = 0, 1), $[w_*; w_*'] \in \operatorname{Irr}(W_n)$ are well defined and we have

(a) $[[w_*; w'_*] : \operatorname{Ind}_{W_r \times W'_q}^{W_n}([z_*; z'_*] \boxtimes [\tilde{z}_*; \tilde{z}'_*]^{\kappa})]_{W_n} = 1.$

(This can be deduced from the second sentence in 4.5(a) with p=0.) Moreover, we have $b_{[w_*;w'_*]}=b_{[z_*;z'_*]}+b_{[\tilde{z}_*;\tilde{z}'_*]^\kappa}$. It follows that

- (b) $[w_*; w'_*] = j_{W_r \times W'_q}^{W_r} ([z_*; z'_*] \boxtimes [\tilde{z}_*; \tilde{z}'_*]^{\kappa}).$
- **5.4.** By [L5, §12], there is a unique bijection $\tilde{\tau}: \tilde{\mathcal{S}}_{\mathbf{W}} \to \tilde{Y}_m^n$ such that for any $y_* \in \tilde{Y}_m^n$, the fibre $\tilde{\tau}^{-1}(y_*)$ is $\{[z_*, z_*']\}$ where $z_* = (y_0, y_2 1, y_4 2, \dots, y_m m/2)$, $z_*' = (y_1 1, y_3 2, y_5 3, \dots, y_{m-1} m/2)$. This bijection has the following property: if $C \in \mathcal{X}$ and $y_* = \tilde{\tau}(\rho_C)$ then $\mathbf{b}_C = \tilde{\beta}'(y_*)$, $\mathbf{z}_C = 2^{|\mathfrak{I}(y_*)| 1 \tilde{\delta}_{y_*}}$ where $\tilde{\delta}_{y_*} = 1$ if there exists $\mathcal{I} \in \mathcal{I}'(y_*)$ such that $0 \notin \mathcal{I}$ and $\tilde{\delta}_{y_*} = 0$ if there is no $\mathcal{I} \in \mathcal{I}'(y_*)$ such that $0 \notin \mathcal{I}$. Moreover, $\tilde{\mathbf{z}}_C = 2^{|\mathfrak{I}(y_*)| 1}$. Hence $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2^{\tilde{\delta}_{y_*}}$.
- **5.5.** In the setup of 5.3 we assume that $[z_*; z'_*] \in \mathcal{S}_{W_r}$, $[\tilde{z}_*; \tilde{z}'_*]^k \in \mathcal{S}_{W'_q}$. We set $x_* = \zeta_r([z_*; z'_*]) \in X_m^r$, $\tilde{x}_* = \tilde{\zeta}_q([\tilde{z}_*; \tilde{z}'_*]^\kappa) \in \tilde{X}_m^q$. We show:
 - (a) $[w_*, w'_*] \in \tilde{\mathcal{S}}_{\mathbf{W}}$ and $\tilde{\tau}([w_*, w'_*]) = x_* + \tilde{x}_*$.

We have $w_i = x_{2i} + \tilde{x}_{2i} - i$, $w'_i = x_{2i+1} + \tilde{x}_{2i+1} - 1 - i$. Define $y_* \in \mathbf{N}^{m+1}$ by $y_{2i} = w_i + i$ for $i \in [0, k]$, $y_{2i+1} = w'_i + i + 1$ for $i \in [0, k-1]$. We have $y_* = x_* + \tilde{x}_*$. Since $x_* \in X_m$, $\tilde{x}_* \in X_m$, we have $y_* \in \tilde{Y}_m$. More precisely, $y_* \in \tilde{Y}_m^n$. Using 5.4 we deduce that $[w_*, w'_*] \in \tilde{S}_{\mathbf{W}}$ and (a) follows.

From (a) and 5.3(b) we see that for (r,q) as in 5.3, the assignment $(E_1, \tilde{E}_1) \mapsto j_{W_r \times W_q'}^{W_n}(E_1 \boxtimes \tilde{E}_1)$ is a map $j: \mathcal{S}_{W_r} \times \mathcal{S}_{W_q'} \to \tilde{\mathcal{S}}_{\mathbf{W}}$ and we have a commutative diagram

$$\begin{array}{ccc} \mathcal{S}_{W_r} \times \mathcal{S}_{W_q'} & \stackrel{j}{\longrightarrow} & \tilde{\mathcal{S}}_{\mathbf{W}} \\ \zeta_r \times \tilde{\zeta}_q & & \tilde{\tau} \downarrow \\ X_m^r \times \tilde{X}_m^q & \stackrel{h}{\longrightarrow} & \tilde{Y}_m^n \end{array}$$

where h is given by $(x_*, \tilde{x}_*) \mapsto x_* + \tilde{x}_*$.

5.6. Note that \mathcal{P}' is exactly the collection of subgroups $W_r \times W_q'$ of W_n with (r,q) as in 5.3 and $q \neq 1$. (On the other hand $W_{n-1} \times W_1'$ is a maximal parabolic subgroup of the Coxeter group W_n .) By 5.5, $j_{W_r \times W_q'}^{W_n}$ carries $\mathcal{S}_{W_r} \times \mathcal{S}_{W_q'}$ into $\tilde{\mathcal{S}}_{\mathbf{W}}$. Hence $\bar{\mathcal{S}}_{\mathbf{W}} \subset \tilde{\mathcal{S}}_{\mathbf{W}}$.

Conversely, let $E \in \tilde{\mathcal{S}}_{\mathbf{W}}$. With $\tilde{\tau}$ as in 5.4, let $y_* = \tilde{\tau}(E) \in \tilde{Y}_m^n$. By 2.7(b) we can find $(x_*, \tilde{x}_*) \in \tilde{S}(y_*)$. (The assumption 2.7(a) is automatically satisfied since m is large relative to n.) Define r, q in \mathbf{N} by $x_* \in X_m^r, \tilde{x}_* \in \tilde{X}_m^q$. We must have r + q = n. In the commutative diagram in 5.5 we have $h(x_*, \tilde{x}_*) = y_*, (x_*, \tilde{x}_*) = y_*$

 $(\zeta_r(E_1), \tilde{\zeta}_q(\tilde{E}_1))$ where $E_1 \in \mathcal{S}_{W_r}, \tilde{E}_1 \in \mathcal{S}_{W'_q}$ (recall that $\zeta_r, \tilde{\zeta}_q$ are surjective) and $\tilde{\tau}(j(E_1, \tilde{E}_1)) = \tilde{\tau}(E)$. Since $\tilde{\tau}$ is bijective we deduce that $E = j(E_1, \tilde{E}_1)$. Thus, $E \in \bar{\mathcal{S}}_{\mathbf{W}}$ and $\tilde{\mathcal{S}}_{\mathbf{W}} \subset \bar{\mathcal{S}}_{\mathbf{W}}$. We see that $\tilde{\mathcal{S}}_{\mathbf{W}} = \bar{\mathcal{S}}_{\mathbf{W}}$. This proves 1.5(a) in our case.

5.7. In the remainder of this section we fix $C \in \mathcal{X}$ and we set $E = \rho_C \in \tilde{\mathcal{S}}_{\mathbf{W}}$, $y_* = \tilde{\tau}(E) \in \tilde{Y}_m^n$ (with $\tilde{\tau}$ as in 5.4).

Let $(r,q) \in \mathbf{N}^2$, $E_1 \in \mathcal{S}_{W_r}$, $\tilde{E}_1 \in \mathcal{S}_{W_q'}$ be such that r+q=n, $E=j_{W_r \times W_q'}^{W_n}(E_1 \boxtimes \tilde{E}_1)$. (These exist since $E \in \bar{\mathcal{S}}_{\mathbf{W}}$.) We set $x_* = \zeta_r(E_1) \in X_m^r$, $\tilde{x}_* = \tilde{\zeta}_q(\tilde{E}_1) \in \tilde{X}_m^q$. From the commutative diagram in 5.5 we see that $x_* + \tilde{x}_* = y_*$. By 5.4 we have $\mathbf{b}_C = \tilde{\beta}'(y_*)$. Since $\tilde{\beta}'(x_* + \tilde{x}_*) = \beta(x_*) + \tilde{\beta}(\tilde{x}_*)$ we have $\mathbf{b}_C = \beta(x_*) + \tilde{\beta}(\tilde{x}_*)$. Since $\beta(x_*) = b_{E_1}$, $\tilde{\beta}(\tilde{x}_*) = b_{\tilde{E}_1}$, we have $\mathbf{b}_C = b_{E_1} + b_{\tilde{E}_1}$ hence $\mathbf{b}_C = b_{E_1 \boxtimes \tilde{E}_1}$. Since $E = j_{W_r \times W_q'}^{W_n}(E_1 \boxtimes \tilde{E}_1)$ we have $b_{E_1 \boxtimes \tilde{E}_1} = b_E$ hence $\mathbf{b}_C = b_E$, proving 1.5(b1) in our case.

If $|\mathfrak{S}(\tilde{x}_*)| \geq 3$ then

$$\begin{split} f_{E_1 \boxtimes \tilde{E}_1} &= f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)| - 1)/2} 2^{(|\mathfrak{S}(\tilde{x}_*)| - 3)/2} \\ &= 2^{(|\mathfrak{S}(x_*)| + |\mathfrak{S}(\tilde{x}_*)| - 4)/2} < 2^{|\Im(y_*)| - 2} < \mathbf{z}_C. \end{split}$$

If $|\mathfrak{S}(\tilde{x}_*)| = 1$ and $|\mathfrak{S}(x_*)| \leq 2|\mathfrak{I}(y_*)| - 3$ then

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)|-1)/2} \le 2^{|\mathfrak{I}(y_*)|-2} \le \mathbf{z}_C.$$

If $|\mathfrak{S}(\tilde{x}_*)| = 1$ (hence $\mathfrak{S}(\tilde{x}_*) = \{0\}$) and $|\mathfrak{S}(x_*)| = 2|\mathfrak{I}(y_*)| - 1$ then $\tilde{\delta}_{y_*} = 0$ so that $\mathbf{z}_C = 2^{|\mathfrak{I}(y_*)|-1}$ and

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)|-1)/2} = 2^{|\mathfrak{I}(y_*)|-1} = \mathbf{z}_C.$$

Thus in any case we have $f_{E_1 \boxtimes \tilde{E}_1} \leq \mathbf{z}_C$. Taking maximum over all r, q, E_1, \tilde{E}_1 as above we obtain $\mathfrak{a}_E \leq \mathbf{z}_C$.

5.8. Assume now that $\tilde{\delta}_{y_*} = 1$. Then $|\mathfrak{I}(y_*)| \geq 2$. By 2.7(b) we can find $(x_*, \tilde{x}_*) \in \tilde{S}(y_*)$. By 2.7(d) we have $|\mathfrak{S}(\tilde{x}_*)| \geq 3$. Define $(r,q) \in \mathbf{N}^2$ by $x_* \in X_m^r, \tilde{x}_* \in \tilde{X}_m^q$. We must have r+q=n. We can find $E_1 \in \mathcal{S}_{W_r}, \tilde{E}_1 \in \mathcal{S}_{W_q'}$ such that $x_* = \zeta_r(E_1), \tilde{x}_* = \tilde{\zeta}_q(\tilde{E}_1)$. As earlier in the proof, we have $E = j_{W_r \times W_q'}^{W_n}(E_1 \boxtimes \tilde{E}_1)$ and

$$f_{E_1\boxtimes \tilde{E}_1}=f_{E_1}f_{\tilde{E}_1}=2^{(|\mathfrak{S}(x_*)|-1)/2+(|\mathfrak{S}(\tilde{x}_*)|-3)/2}=2^{|\Im(y_*)|-2}=\mathbf{z}_C.$$

5.9. Next we assume that $\tilde{\delta}_{y_*} = 0$. By 2.7(b) we can find $(x_*, \tilde{x}_*) \in \tilde{S}(y_*)$. By 2.7(v) we have $\mathfrak{S}(\tilde{x}_*) = \{0\}$. Then $|\mathfrak{S}(x_*)| = 2|\mathfrak{I}(y_*)| - 1$. Define $(r, q) \in \mathbb{N}^2$ by $x_* \in X_m^r, \tilde{x}_* \in \tilde{X}_m^q$. We must have r + q = n. We can find $E_1 \in \mathcal{S}_{W_r}, \tilde{E}_1 \in \mathcal{S}_{W_q'}$ such that $x_* = \zeta_r(E_1), \tilde{x}_* = \tilde{\zeta}_q(\tilde{E}_1)$. We have $E = j_{W_r \times W_q'}^{W_n}(E_1 \boxtimes \tilde{E}_1)$ and

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)|-1)/2} = 2^{|\mathfrak{I}(y_*)|-1} = \mathbf{z}_C.$$

Using this and 5.8 we see that in any case, $\mathfrak{a}_E = \mathbf{z}_C$, proving 1.5(b2) in our case.

5.10. Assume first that $\delta_{y_*} = 1$. Let $r, q, x_*, \tilde{x}_*, E_1, \tilde{E}_1$ be as in 5.8. Then $|\mathfrak{S}(\tilde{x}_*)| \geq 3$ hence $q \geq 1$ (so that the unique J such that $\mathbf{W}_J = W_r \times W_q'$ is Ω -stable) and \tilde{E}_1 is Ω -stable. It follows that $\mathfrak{c}_E = 2$.

Conversely, assume that $\mathfrak{c}_E = 2$. Using 1.11 we see that there exist $(r,q) \in \mathbb{N}^2$ be such that r + q = n with $q \geq 1$ and $E_1 \in \mathcal{S}_{W_r}$, $\tilde{E}_1 \in \mathcal{S}_{W'_q}$ such that \tilde{E}_1 is Ω -stable, $E = j_{W_r \times W'_q}^{W_n}(E_1 \boxtimes \tilde{E}_1)$, $f_{E_1 \boxtimes \tilde{E}_1} = \mathbf{z}_C$. We set $x_* = \zeta_r(E_1) \in X_m^r$, $\tilde{x}_* = \tilde{\zeta}_q(\tilde{E}_1) \in \tilde{X}_m^q$. We have $y_* = x_* + \tilde{x}_*$. Since \tilde{E}_1 is Ω -stable, we have $|\mathfrak{S}(\tilde{x}_*)| \geq 3$. Hence

$$2^{|\Im(y_*)|-2} \leq \mathbf{z}_C = f_{E_1 \boxtimes \tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)|-1)/2 + (|\mathfrak{S}(\tilde{x}_*)|-3)/2} \leq 2^{|\Im(y_*)|-2}.$$

It follows that $2^{|\Im(y_*)|-2} = \mathbf{z}_C$ so that $\tilde{\delta}_{y_*} = 1$.

We see that $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2$ if and only if $\mathfrak{c}_E = 2$. Since $\mathfrak{c}_E \in [1, 2]$ and $\tilde{\mathbf{z}}_C/\mathbf{z}_C \in [1, 2]$ we see that $\tilde{\mathbf{z}}_C/\mathbf{z}_C = \mathfrak{c}_E$; this proves 1.5(b3) in our case.

6. Type D_n

- **6.1.** In this section we assume that G is of type D_n $(n \ge 4)$. We identify $\mathbf{W} = W'_n$ as Coxeter groups in the usual way. The reflections $s_j (j \in \tilde{I})$ are the products of two transpositions (i, i+1)(i', (i+1)') for $i \in [1, n-1]$ and (n-1, n')(n, (n-1)'), (1, 2')(2, 1'). Define $\omega_1 \in W'_n$ by $i \mapsto (n+1-i)', i' \mapsto n+1-i$ for $i \in [1, n-1]$, $n \mapsto 1$, $n' \mapsto 1'$ (if n is even) and by $i \mapsto (n+1-i)', i' \mapsto n+1-i$ for $i \in [1, n]$ (if n is even). Define $\omega_2 \in W'_n$ by $i \mapsto i$ for $i \in [2, n-1], 1 \mapsto 1', 1' \mapsto 1, n \mapsto n', n' \mapsto n$. We have $\omega_1, \omega_2 \in \Omega$. If n is odd, Ω is cyclic of order 4 with generator ω_1 such that $\omega_1^2 = \omega_2$. If n is even, Ω is noncyclic of order 4 with generators ω_1, ω_2 of order 2.
- **6.2.** In the remainder of this section we fix an odd integer m = 2k 1 which is large relative to n.

Let $(p,q) \in \mathbb{N}^2$ be such that $p+q=n, q \geq 1$. The group of all permutations of $\{1,2,\ldots,n,n',\ldots,2',1'\}$ in W_n that leave stable each of the subsets $\{1,2,\ldots,p\}$, $\{p',\ldots,2',1'\}$ and induce an even permutation on the subset $\{p+1,\ldots,n-1,n\} \cup \{n',(n-1)',\ldots,(p+1)'\}$ is a standard parabolic subgroup of W'_n which may be identified with $S_p \times W'_q$ in an obvious way.

Let $(\tilde{z}_*; \tilde{z}'_*) \in {}'V_k^q$, $u_* \in Z_{2k-1}^p$. Define $\ddot{u}_* \in Z_{k-1}$, $\dot{u}_* \in Z_{k-1}$ by $\ddot{u}_i = u_{2i} - i$, $\dot{u}_i = u_{2i+1} - i - 1$ for $i \in [0, k-1]$. Let $v_* = \tilde{z}_* + \dot{u}_* - z_*^{0,k-1}$, $v_*' = \tilde{z}'_* + \ddot{u}_* - z_*^{0,k-1}$. Then $(v_*; v_*') \in {}'V_k^n$, $[u_*] \in \operatorname{Irr}(S_p)$, $[\tilde{z}_*; \tilde{z}'_*] \in \operatorname{Irr}(W_q')$, $[v_*; v_*'] \in \operatorname{Irr}(W_n')$. We have:

(a)
$$[v_*; v_*']^0 = j_{S_p \times W_q'}^{W_n'}([u_*] \boxtimes [\tilde{z}_*; \tilde{z}_*']^0).$$

The proof is similar to that of 4.4(a).

6.3. Let $(r, p, q) \in \mathbb{N}^3$ be such that r + p + q = n. The group of all permutations of $\{1, 2, \ldots, n, n', \ldots, 2', 1'\}$ in W'_n that leave stable each of the subsets

$$\{r+1, r+2, \ldots, r+p\}, \{(r+p)', \ldots, (r+2)', (r+1)'\}$$

and induce an even permutation on each of the subsets

$$\{1, 2, \dots, r\} \cup \{r', \dots, 2', 1'\}, \{r+p+1, \dots, n-1, n\} \cup \{n', (n-1)', \dots, (r+p+1)'\}$$

is a parahoric subgroup of **W** which may be identified with $W'_r \times S_p^{(0)} \times W'_q$ in an obvious way. $(S_p^{(0)})$ is a copy of S_p .)

When $r = 0, p \ge 2$, the group of all permutations of $\{1, 2, ..., n, n', ..., 2', 1'\}$ in W'_n that leave stable each of the subsets

$$\{1', 2, \dots, p\}, \{p', \dots, 2', 1\}, \{p+1, \dots, n-1, n\} \cup \{n', (n-1)', \dots, (p+1)'\}$$

is a parahoric subgroup of **W** which may be identified with $W'_r \times S_p^{(1)} \times W'_q$. $(S_p^{(1)})$ is a copy of S_p .)

When $p \geq 2, q = 0$, the group of all permutations of $\{1, 2, \ldots, n, n', \ldots, 2', 1'\}$ in W'_n that leave stable each of the subsets

$$\{r+1, r+2, \ldots, n-1, n'\}, \{n, (n-1)', \ldots, (r+2)', (r+1)'\}, \{1, 2, \ldots, r\} \cup \{r', \ldots, 2', 1'\}$$

is a parahoric subgroup of **W** which may be identified with $W'_r \times S_p^{(2)} \times W'_q$. $(S_p^{(2)})$ is a copy of S_p .)

When r = q = 0, the group of all permutations of $\{1, 2, ..., n, n', ..., 2', 1'\}$ in W_n' that leave stable each of the subsets $\{1',2,3,\ldots,n-1,n'\},$ $\{n,(n-1)'\ldots,3',2',1\}$ is a parahoric subgroup of **W** which may be identified with $W'_r \times S_p^{(3)} \times W'_q$. $(S_p^{(3)})$ is a copy of S_p .)

Thus the parahoric subgroup $W'_r \times S^{(\lambda)}_p \times W'_q$ is defined in the following cases: (a) $\lambda = 0; p \geq 2, r = 0, \lambda = 1; p \geq 2, q = 0, \lambda = 2; r = q = 0, \lambda = 3.$

(a)
$$\lambda = 0; p \ge 2, r = 0, \lambda = 1; p \ge 2, q = 0, \lambda = 2; r = q = 0, \lambda = 3$$

When p = 0 we write also $W'_r \times W'_q$ instead of $W'_r \times S_p^{(0)} \times W'_q$. Let $(z_*; z'_*) \in {}^{\dagger}V_k^r$, $(\tilde{z}_*; \tilde{z}'_*) \in {}^{\dagger}V_k^q$, $u_* \in Z_{2k-1}^p$, Define $\ddot{u}_* \in Z_{k-1}$, $\dot{u}_* \in Z_{k-1}$ by $\ddot{u}_{i} = u_{2i} - i, \ \dot{u}_{i} = u_{2i+1} - i - 1 \text{ for } i \in [0, k-1]. \text{ Let } w_{*} = z_{*} + \tilde{z}_{*} + \dot{u}_{*} - 2z_{*}^{0,k-1}, \\ w'_{*} = z'_{*} + \tilde{z}'_{*} + \ddot{u}_{*} - 2z_{*}^{0,k-1}. \text{ Then } (w_{*}, w'_{*}) \in {}^{\dagger}V_{k}^{n}. \\ \text{For } \kappa, \tilde{\kappa}, \kappa' \in \{0, 1\} \text{ we have } [z_{*}; z'_{*}]^{\kappa} \in \text{Irr}(W'_{r})^{\dagger}, \ [u_{*}] \in \text{Irr}(S_{p}), \ [\tilde{z}_{*}; \tilde{z}'_{*}]^{\tilde{\kappa}} \in \mathbb{C}$

 $\operatorname{Irr}(W_n')^{\dagger}$, $[w_*, w_*']^{\kappa'} \in \operatorname{Irr}(W_n')^{\dagger}$. For λ as in (a) we have:

(b)
$$[w_*; w'_*]^{\kappa'} = j^{W'_n}_{W'_r \times S_p^{(\lambda)} \times W'_q} ([z_*; z'_*]^{\kappa} \boxtimes [u_*] \boxtimes [\tilde{z}_*; \tilde{z}'_*]^{\tilde{\kappa}})$$

with the following restriction on κ' : if $z_* = z'_*, \tilde{z}_* = \tilde{z}'_*, \dot{u}_* = \ddot{u}_*$, then $w_* = w'_*$ and κ' in (b) is uniquely determined by $\kappa, \tilde{\kappa}, \lambda$; moreover, both $\kappa' = 0$ and $\kappa' = 1$ are obtained from some $(\kappa, \tilde{\kappa}, \lambda)$.

Now (b) can be proved in a way similar to 4.5(a); alternatively, from the second statement of 4.5(a) one can deduce that

$$[[w_*; w'_*]^{\kappa'} : \operatorname{Ind}_{W'_r \times S_p^{(\lambda)} \times W'_q}^{W'_n} ([z_*; z'_*]^{\kappa} \boxtimes [u_*] \boxtimes [\tilde{z}_*; \tilde{z}'_*]^{\tilde{\kappa}})]_{W'_n} \ge 1;$$

we can also check directly that $b_{[w_*;w'_*]^{\kappa'}} = b_{[z_*;z'_*]^{\kappa}} + b_{[u_*]} + b_{[\tilde{z}_*;\tilde{z}'_*]^{\tilde{\kappa}}}$ and (b) follows.

6.4. By [L5, §13], we have $\tilde{\mathcal{S}}_{\mathbf{W}} \subset \operatorname{Irr}(W'_n)^{\dagger}$ and there is a unique map $\tau : \tilde{\mathcal{S}}_{\mathbf{W}} \to Y^n_m$ such that for $y_* \in Y^n_m$, $\tau^{-1}(y_*)$ consists of $[z_*; z'_*]^0 = [z_*; z'_*]^1$ (if $\mathfrak{I}(y_*) \neq \emptyset$) and consists of $[z_*; z'_*]^0$, $[z_*; z'_*]^1$ (if $\mathfrak{I}(y_*) = \emptyset$) where

$$z_* = (y_1, y_3 - 1, y_5 - 2, \dots, y_m - (m - 1)/2),$$

 $z'_* = (y_0, y_2 - 1, y_4 - 2, \dots, y_{m-1} - (m - 1)/2).$

This map has the following property: if $C \in \mathcal{X}$ and $y_* = \tau(\rho_C)$, then $\mathbf{b}_C = \beta'(y_*)$, $\mathbf{z}_C = 2^{\max(|\Im(y_*)| - 1 - \delta_{y_*}, 0)}$ where $\delta_{y_*} = 1$ if $\Im'(y_*) \neq \emptyset$ and $\delta_{y_*} = 0$ if $\Im'(y_*) = \emptyset$. Moreover, $\check{\mathbf{z}}_C/\mathbf{z}_C$ is:

- 4 if $\delta_{y_*} = 1$ and $|\mathcal{I}| = 1$ for any $\mathcal{I} \in \mathfrak{I}(y_*)$,
- 2 if $\delta_{y_*} = 1$ and $|\mathcal{I}| > 1$ for some $\mathcal{I} \in \mathfrak{I}(y_*)$,
- 2 if $\Im(y_*) = \emptyset$,
- 1 if $\delta_{y_*} = 0$ and $|\mathcal{I}| > 1$ for some $\mathcal{I} \in \mathfrak{I}(y_*)$.

More precisely, let $\underline{G} \to G$ be a double covering which is a special orthogonal group and let $\underline{\mathbf{z}}_C$ be the number of connected components of the centralizer in \underline{G} of a unipotent element of \underline{G} which maps to an element of C. From [L5, §14] we see that:

$$\underline{\tilde{\mathbf{z}}}_C/\underline{\mathbf{z}}_C = 2 \text{ if } |\mathcal{I}| = 1 \text{ for any } \mathcal{I} \in \mathfrak{I}(y_*),$$

$$\tilde{\mathbf{z}}_C/\mathbf{z}_C = 1 \text{ if } |\mathcal{I}| > 1 \text{ for some } \mathcal{I} \in \mathfrak{I}(y_*).$$

On the other hand, from $\underline{\mathbf{z}}_C = 2^{\max(|\Im(y_*)|-1,0)}$, $\mathbf{z}_C = 2^{\max(|\Im(y_*)|-1-\delta_{y_*},0)}$, we see that $\underline{\mathbf{z}}_C/\mathbf{z}_C = 2^{\delta_{y_*}}$.

6.5. In the setup of 6.3 we assume that $[z_*; z'_*]^{\kappa} \in \mathcal{S}_{W'_r}$, $[\tilde{z}_*; \tilde{z}'_*]^{\tilde{\kappa}} \in \mathcal{S}_{W'_q}$ and κ' is as in 6.3(b). Define $x_* \in X_m^r$, $\tilde{x}_* \in X_m^q$ by $\zeta'_r([z_*; z'_*]^{\kappa}) = x_*$, $\zeta'_q([\tilde{z}_*; \tilde{z}'_*]^{\tilde{\kappa}}) = \tilde{x}_*$. Let $e_* = u_* - z_*^{0,m} \in \mathcal{E}_m$. We show:

(a)
$$[w_*, w'_*]^{\kappa'} \in \tilde{\mathcal{S}}_{\mathbf{W}}$$
 and $\tau([w_*, w'_*]^{\kappa'}) = x_* + e_* + \tilde{x}_*$.

We have $w_i = x_{2i+1} + \tilde{x}_{2i+1} + u_{2i+1} - i - 2i - 1$, $w_i' = x_{2i} + \tilde{x}_{2i} + u_{2i} - i - 2i$ for $i \in [0, k-1]$. Define $y_* \in \mathbf{N}^{m+1}$ by $w_i = y_{2i+1} - i$, $w_i' = y_{2i} - i$ for $i \in [0, k-1]$. Then $y_* = x_* + \tilde{x}_* + e_*$. Since $x_* \in X_m$, $\tilde{x}_* \in X_m$, $e_* \in \mathcal{E}_m$ we have $y_* \in Y_m$. More precisely, $y_* \in Y_m^n$. Using 6.4 we deduce that $[w_*, w_*']^{\kappa'} \in \tilde{\mathcal{S}}_{\mathbf{W}}$ and (a) follows.

From (a) and 6.3(b) we see that for λ as in 6.3(a), the assignment $(E_1, E_2, \tilde{E}_1) \mapsto j_{W_r \times S_p^{(\lambda)} \times W_q}^{W_n} (E_1 \boxtimes E_2 \boxtimes \tilde{E}_1)$ is a map $j : \mathcal{S}_{W'_r} \times \mathcal{S}_{S_p} \times \mathcal{S}_{W'_q} \to \tilde{\mathcal{S}}_{\mathbf{W}}$ and we have a commutative diagram

$$\mathcal{S}_{W'_r} \times \mathcal{S}_{S_p} \times \mathcal{S}_{W'_q} \xrightarrow{j} \widetilde{\mathcal{S}}_{\mathbf{W}}$$

$$\zeta'_r \times \xi_p \times \zeta'_q \downarrow \qquad \qquad \tau \downarrow$$

$$X_m^r \times \mathcal{E}_m^p \times X_m^q \xrightarrow{h} Y_m^n$$

where h is given by $(x_*, e_*, \tilde{x}_*) \mapsto x_* + e_* + \tilde{x}_*$ and $\xi_p : \mathcal{S}_{S_p} \to \mathcal{E}_m^p$ is the bijection $[e_* + z_*^{0,m}] \leftrightarrow e_*$.

6.6. Note that \mathcal{P}' is exactly the collection of parahoric subgroups $W'_r \times W'_q$ of W'_n with $(r,q) \in \mathbf{N}^2$ such that $r+q=n, r \neq 1, q \neq 1$. (On the other hand $W'_{n-1} \times W'_1$,

 $W_1' \times W_{n-1}'$ are maximal parabolic subgroup of the Coxeter group W_n' .) By 6.5, $j_{W_n' \times W_q'}^{W_n'}$ carries $\mathcal{S}_{W_r'} \times \mathcal{S}_{W_q}'$ into $\tilde{\mathcal{S}}_{\mathbf{W}}$. Hence $\bar{\mathcal{S}}_{\mathbf{W}} \subset \tilde{\mathcal{S}}_{\mathbf{W}}$.

Conversely, let $E \in \tilde{\mathcal{S}}_{\mathbf{W}}$, $y_* = \tau(E) \in Y_m^n$ (τ as in 6.4). By 2.6(a) we can find $(x_*, \tilde{x}_*) \in S(y_*)$. Define r, q in \mathbf{N} by $x_* \in X_m^r$, $\tilde{x}_* \in X_m^q$. We must have r + q = n. In the commutative diagram in 6.5 we have $h(x_*, \tilde{x}_*) = y_*$, $x_* = \zeta_r'(E_1), \tilde{x}_* = \zeta_q'(\tilde{E}_1)$ where $E_1 \in \mathcal{S}_{W_r'}$, $\tilde{E}_1 \in \mathcal{S}_{W_q'}$ (recall that ζ_r' , ζ_q' are surjective) and $\tau(j(E_1, \tilde{E}_1) = \tau(E)$. Thus $j(E_1, \tilde{E}_1)$, E are in the same fibre of $\iota : {}^{\dagger}V_k^n \to \operatorname{Irr}(W_n')^{\dagger}$. Replacing E_1 or \tilde{E}_1 by an element in the same fibre of $\iota : {}^{\dagger}V_k^r \to \operatorname{Irr}(W_r')^{\dagger}$ or $\iota : {}^{\dagger}V_k^q \to \operatorname{Irr}(W_q')^{\dagger}$ we see that we can assume that $j(E_1, \tilde{E}_1) = E$. Thus, $E \in \bar{S}_{\mathbf{W}}$. Thus, $\tilde{S}_{\mathbf{W}} \subset \bar{S}_{\mathbf{W}}$. We see that $\tilde{S}_{\mathbf{W}} = \bar{S}_{\mathbf{W}}$. This proves 1.5(a) in our case.

6.7. In the remainder of this section we fix $C \in \mathcal{X}$ and we set $E = \rho_C \in \tilde{\mathcal{S}}_{\mathbf{W}}$, $y_* = \tau(E) \in Y_m^n$ (with τ as in 6.4).

Let $(r,q) \in \mathbf{N}^2$, $E_1 \in \mathcal{S}_{W'_r}$, $\tilde{E}_1 \in \mathcal{S}_{W'_q}$ be such that r+q=n, $E=j^{W'_n}_{W'_r \times W'_q}(E_1 \boxtimes \tilde{E}_1)$. (These exist since $E \in \bar{\mathcal{S}}_{\mathbf{W}}$.) Define $x_* \in X^r_m$, $\tilde{x}_* \in X^q_m$ by $x_* = \zeta'_r(E_1)$, $\tilde{x}_* = \zeta'_q(\tilde{E}_1)$. From the commutative diagram in 6.5 we see that $x_* + \tilde{x}_* = y_*$. By 6.4, we have $\mathbf{b}_C = \beta'(y_*)$. Since $\beta'(x_* + \tilde{x}_*) = \beta(x_*) + \beta(\tilde{x}_*)$ we have $\mathbf{b}_C = \beta(x_*) + \beta(\tilde{x}_*)$. Since $\beta(x_*) = b_{E_1}$, $\beta(\tilde{x}_*) = b_{\tilde{E}_1}$, we have $\mathbf{b}_C = b_{E_1} + b_{\tilde{E}_1}$ hence $\mathbf{b}_C = b_{E_1 \boxtimes \tilde{E}_1}$. Since $E = j^{W'_n}_{W'_r \times W'_q}(E_1 \boxtimes \tilde{E}_1)$ we have $b_{E_1 \boxtimes \tilde{E}_1} = b_E$ hence $\mathbf{b}_C = b_E$, proving 1.5(b1) in our case.

If $|\mathfrak{S}(x_*)| \geq 2$, $|\mathfrak{S}(\tilde{x}_*)| \geq 2$, then

$$\begin{split} f_{E_1 \boxtimes \tilde{E}_1} &= f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)| - 2)/2} 2^{(|\mathfrak{S}(\tilde{x}_*)| - 2)/2)} \\ &= 2^{(|\mathfrak{S}(x_*)| + |\mathfrak{S}(\tilde{x}_*)| - 4)/2} < 2^{|\mathfrak{I}(y_*)| - 2} < \mathbf{z}_C. \end{split}$$

If $|\mathfrak{S}(x_*)| = 0$, $2 \le |\mathfrak{S}(\tilde{x}_*)| \le 2|\mathfrak{I}(y_*)| - 2$ then

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(\tilde{x}_*)| - 2)/2} \le 2^{|\mathfrak{I}(y_*)| - 2} \le \mathbf{z}_C.$$

Similarly, if $2 \leq |\mathfrak{S}(x_*)| \leq 2|\mathfrak{I}(y_*)| - 2$, $|\mathfrak{S}(\tilde{x}_*)| = 0$, then $f_{E_1 \boxtimes \tilde{E}_1} \leq \mathbf{z}_C$. If $|\mathfrak{S}(x_*)| = 0$, $2 \leq |\mathfrak{S}(\tilde{x}_*)| = 2|\mathfrak{I}(y_*)|$ then $\mathfrak{I}'(y_*) = \emptyset$ and

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(\tilde{x}_*)| - 2)/2)} = 2^{|\mathfrak{I}(y_*)| - 1} \le \mathbf{z}_C.$$

Similarly, if $2 \leq |\mathfrak{S}(x_*)| = 2|\mathfrak{I}(y_*)|$, $|\mathfrak{S}(\tilde{x}_*)| = 0$ then $f_{E_1 \boxtimes \tilde{E}_1} \leq \mathbf{z}_C$. If $|\mathfrak{S}(x_*)| = 0$, $|\mathfrak{S}(\tilde{x}_*)| = 0$, then

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 1 = \mathbf{z}_C.$$

Thus in any case we have $f_{E_1 \boxtimes \tilde{E}_1} \leq \mathbf{z}_C$. Taking maximum over all r, q, E_1, \tilde{E}_1 as above we obtain $\mathfrak{a}_E \leq \mathbf{z}_C$.

6.8. Assume now that $\delta_{y_*} = 1$. Then $|\mathfrak{I}(y_*)| \geq 2$. By 2.6(a) we can find $(x_*, \tilde{x}_*) \in S(y_*)$. By 2.6(c) we have $|\mathfrak{S}(x_*)| \geq 2$, $|\mathfrak{S}(\tilde{x}_*)| \geq 2$. Define $(r,q) \in \mathbf{N}^2$ by $x_* \in X_m^r, \tilde{x}_* \in X_m^q$. We must have r+q=n. We can find $E_1 \in \mathcal{S}_{W'_r}, \tilde{E}_1 \in \mathcal{S}_{W'_q}$ such that $x_* = \zeta'_r(E_1), \tilde{x}_* = \zeta'_q(\tilde{E}_1)$. As earlier in the proof we can assume that $E = j_{W'_r \times W'_q}^{W'_n}(E_1 \boxtimes \tilde{E}_1)$ and we have

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)| - 2)/2 + (|\mathfrak{S}(\tilde{x}_*)| - 2)/2} = 2^{|\mathfrak{I}(y_*)| - 2} = \mathbf{z}_C.$$

6.9. Next we assume that $\Im(y_*) \neq \emptyset$ and $\delta_{y_*} = 0$. By 2.6(a) we can find $(x_*, \tilde{x}_*) \in S(y_*)$. By 2.6(vii) we have $\mathfrak{S}(\tilde{x}_*) = \emptyset$. Then $|\mathfrak{S}(x_*)| = 2|\Im(y_*)|$. Define $(r, q) \in \mathbb{N}^2$ by $x_* \in X_m^r, \tilde{x}_* \in X_m^q$. We must have r+q=n. We can find $E_1 \in \mathcal{S}_{W'_r}, \tilde{E}_1 \in \mathcal{S}_{W'_q}$ such that $x_* = \zeta'_r(E_1), \ \tilde{x}_* = \zeta'_q(\tilde{E}_1)$. We can assume that $E = j_{W'_r \times W'_q}^{W'_n}(E_1 \boxtimes \tilde{E}_1)$ and we have

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(\tilde{x}_*)| - 2)/2} = 2^{|\mathfrak{I}(y_*)| - 1} = \mathbf{z}_C.$$

Now we assume that $\Im(y_*) = \emptyset$. By 2.6(a) we can find $(x_*, \tilde{x}_*) \in S(y_*)$. By 2.6(b) we have $\mathfrak{S}(x_*) = \emptyset$, $\mathfrak{S}(\tilde{x}_*) = \emptyset$. Define $(r,q) \in \mathbf{N}^2$ by $x_* \in X_m^r, \tilde{x}_* \in X_m^q$. We must have r + q = n. We can find $E_1 \in \mathcal{S}_{W'_r}, \tilde{E}_1 \in \mathcal{S}_{W'_q}$ such that $x_* = \zeta'_r(E_1), \tilde{x}_* = \zeta'_q(\tilde{E}_1)$. We can assume that $E = j_{W'_r \times W'_q}^{W'_n}(E_1 \boxtimes \tilde{E}_1)$ and we have $f_{E_1 \boxtimes \tilde{E}_1} = 1 = \mathbf{z}_C$.

We see that in any case, $\mathfrak{a}_E = \mathbf{z}_C$, proving 1.5(b2) in our case.

6.10. For $g \in \Omega$ let $\langle g \rangle$ be the subgroup of Ω generated by g.

When n is even the subgroups of Ω are $\{1\}$, $\langle \omega_1 \rangle$, $\langle \omega_2 \rangle$, $\langle \omega_1 \omega_2 \rangle$, Ω ; when n is odd the subgroups of Ω are $\{1\}$, $\langle \omega_2 \rangle$, Ω .

- (a) The collection of subgroups $W'_r \times S_p^{(0)} \times W'_q$ (with $r = q \ge 1$) contains all subgroups in \mathcal{P}^{Ω} .
 - (b) The collection of subgroups $W'_r \times W'_q$ contains all subgroups in $\mathcal{P}^{\langle \omega_2 \rangle}$.
- (c) For n even, the collection in (a) together with the subgroups $W_0' \times S_p^{(\lambda)} \times W_0'$ (with $\lambda = 0$ or 3) contains all subgroups in $\mathcal{P}^{\langle \omega_1 \rangle}$.
- (d) For n even, the collection in (a) together with the subgroups $W'_0 \times S_p^{(\lambda)} \times W'_0$ (with $\lambda = 1$ or 2) contains all subgroups in $\mathcal{P}^{\langle \omega_1 \omega_2 \rangle}$.
- **6.11.** Assume that $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 4$. Then $\delta_{y_*} = 1$ and $|\mathcal{I}| = 1$ for any $\mathcal{I} \in \mathfrak{I}(y_*)$. By 2.11 we can find $r, p, x_* \in X_m^r$, $e_* \in \mathcal{E}_m^p$ (with r + p + r = n) such that $y_* = x_* + e_* + x_*$, $(x_*, e_* + x_*) \in S(y_*)$, $\mathfrak{S}(x_*) = \mathfrak{S}(e_* + x_*) \neq \emptyset$. Note that $r \geq 1$. Define $E_1 \in \mathcal{S}_{W'_r}$ by $\zeta'_r(E_1) = x_*$, $E_2 \in \mathcal{S}_{S_p}$ by $\xi_p(E_2) = e_*$. We have $E = j_{W'_r \times S_n^{(0)} \times W'_r}^{W'_n}(E_1 \boxtimes E_2 \boxtimes E_1)$ and

$$f_{E_1 \boxtimes E_2 \boxtimes E_1} = 2^{(|\mathfrak{S}(x_*)| - 2)/2} 2^{(|\mathfrak{S}(x_*)| - 2)/2} = 2^{(|\mathfrak{S}(x_*)| - 2)/2} 2^{(|\mathfrak{S}(e_* + x_*)| - 2)/2}$$
$$= 2^{|\mathfrak{I}(y_*)| - 2} = \mathbf{z}_C.$$

We have $W'_r \times S_p^{(0)} \times W'_r \in \mathcal{P}^{\Omega}$. Moreover, $E_1 \boxtimes E_2 \boxtimes E_1$ is Ω -stable. We see that $\mathfrak{c}_E = 4$.

6.12. Conversely, assume that $\mathfrak{c}_{E} = 4$. By 1.11 and 6.10(a), there exist (r, p, q) as in 6.3 with $q = r \geq 1$ and $E_1 \in \mathcal{S}_{W'_r}$, $E_2 \in \mathcal{S}_{S_p}$ such that $E = j_{W'_r \times S_p^{(0)} \times W'_r}^{W'_n}(E_1 \boxtimes E_2 \boxtimes E_1)$, $f_{E_1 \boxtimes E_2 \boxtimes E_1} = \mathbf{z}_C$ and such that E_1 extends to a W_r -module. We set $x_* = \zeta'_r(E_1) \in X_m^r$, $e_* = \xi_p(E_2)$. We have $y_* = x_* + e_* + x_*$. Since E_1 extends to a W_r -module we have $\mathfrak{S}(x_*) \neq \emptyset$, hence $\mathfrak{I}(y_*) \neq \emptyset$. Thus, $\mathbf{z}_C = 2^{|\mathfrak{I}(y_*)|-1-\delta_{y_*}}$, $2^{(|\mathfrak{S}(x_*)|-2+|\mathfrak{S}(x_*)|-2)/2} = 2^{|\mathfrak{I}(y_*)|-1-\delta_{y_*}}$ and $|\mathfrak{S}(x_*)|+|\mathfrak{S}(x_*)|=2|\mathfrak{I}(y_*)|+1-\delta_{y_*}$. Since $|\mathfrak{S}(x_*)|+|\mathfrak{S}(x_*)|=2|\mathfrak{I}(y_*)|$, we have $1-\delta_{y_*} \leq 0$ hence $\delta_{y_*} = 1$ and $|\mathfrak{S}(x_*)|+|\mathfrak{S}(x_*)|=2|\mathfrak{I}(y_*)|$.

 $|\mathfrak{S}(x_*)| + |\mathfrak{S}(x_*)| = 2|\mathfrak{I}(y_*)|.$ Let $E'_1 = j^{W'_{p+r}}_{S_p \times W'_r}(E_2 \boxtimes E_1) \in \mathcal{S}_{W'_{p+r}}.$ Then $E = j^{W'_n}_{W'_r \times W'_{p+r}}(E_1 \boxtimes E'_1).$ By 1.5(b2) we have $f_{E_1 \boxtimes E'_1} \leq \mathbf{z}_C.$ By 1.9(b) we have $f_{E_2 \boxtimes E_1} \leq f_{E'_1}.$ Hence $\mathbf{z}_C = f_{E_1 \boxtimes E_2 \boxtimes E_1} \leq f_{E_1 \boxtimes E'_1} \leq \mathbf{z}_C;$ this forces $f_{E_2 \boxtimes E_1} = f_{E'_1}.$ The last equality can be rewritten as

$$2^{(|\mathfrak{S}(x_*)|-2)/2} = 2^{(|\mathfrak{S}(e_*+x_*)|-2)/2}$$

since $e_* + x_* = \zeta'_{p+r}(E'_1)$ (a consequence of 6.2(a)). Hence $|\mathfrak{S}(e_* + x_*)| = |\mathfrak{S}(x_*)|$. We have also $(x_*, e_* + x_*) \in S(y_*)$. Using 2.10, we see that for any $\mathcal{I} \in \mathfrak{I}(y_*)$ we have $|\mathcal{I}| = 1$. Thus, $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 4$.

Using this together with 6.11, we see that $\mathfrak{c}_E = 4$ if and only if $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 4$.

- **6.13.** Assume that $\Im(y_*)=\emptyset$. Then n is even. Define $e_*\in \mathbf{N}^{m+1}$ by $y_*=x_*^0+e_*+x_*^0$. We have $e_*\in\mathcal{E}_m^n$. Define $E_1\in\mathcal{S}_{W_0'}$ by $\zeta_0'(E_1)=x_*^0$, $E_2\in\mathcal{S}_{S_n}$ by $\xi_n(E_2)=e_*$. For some $\lambda\in[0,3]$ we have $E=j_{W_0'\times S_n^{(\lambda)}\times W_0'}^{W_n'}(E_1\boxtimes E_2\boxtimes E_1)$, see 6.3. We have $f_{E_1\boxtimes E_2\boxtimes E_1}=1=\mathbf{z}_C$. Note that $W_0'\times S_n^{(\lambda)}\times W_0'\in\mathcal{P}^{\Omega_1}$ where Ω_1 is $\langle\omega_1\rangle$ or $\langle\omega_1\omega_2\rangle$; moreover $E_1\boxtimes E_2\boxtimes E_1$ is Ω_1 -stable. We see that $\mathfrak{c}_E\geq 2$. By 6.12 we cannot have $\mathfrak{c}_E=4$. Hence $\mathfrak{c}_E=2$.
- **6.14.** Assume that $\delta_{y_*} = 1$ and $|\mathcal{I}| > 1$ for some $\mathcal{I} \in \mathfrak{I}(y_*)$. We have $|\mathfrak{I}(y_*)| \geq 2$. By 2.6(a) we can find $(x_*, \tilde{x}_*) \in S(y_*)$. By 2.6(c) we have $|\mathfrak{S}(x_*)| \geq 2$, $|\mathfrak{S}(\tilde{x}_*)| \geq 2$. Define $(r, q) \in \mathbb{N}^2$ by $x_* \in X_m^r$, $\tilde{x}_* \in X_m^q$. We must have r+q=n and $r \geq 1$, $q \geq 1$. We can find uniquely $E_1 \in \mathcal{S}_{W'_r}$, $\tilde{E}_1 \in \mathcal{S}_{W'_q}$ such that $x_* = \zeta'_r(E_1)$, $\tilde{x}_* = \zeta'_q(\tilde{E}_1)$. We have $E = j_{W'_r \times W'_q}^{W'_n}(E_1 \boxtimes \tilde{E}_1)$ and

$$f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)| - 2)/2 + (|\mathfrak{S}(\tilde{x}_*)| - 2)/2} = 2^{|\mathfrak{I}(y_*)| - 2} = \mathbf{z}_C.$$

We have $W'_r \times W'_q \in \mathcal{P}^{\langle \omega_2 \rangle}$ and $E_1 \boxtimes \tilde{E}_1$ is $\langle \omega_2 \rangle$ -stable. We see that $\mathfrak{c}_E \geq 2$. By 6.12 we cannot have $\mathfrak{c}_E = 4$. Hence $\mathfrak{c}_E = 2$.

- **6.15.** Assume that $\mathfrak{c}_E = 2$. By 1.11 and 6.10, either (i) or (ii) below holds.
- (i) there exist (r, p, q) as in 6.3 with q = r, $\lambda \in [0, 3]$ (with $\lambda = 0$ unless r = 0) and $E_1 \in \mathcal{S}_{W'_r}$, $E_2 \in \mathcal{S}_{S_p}$ such that $E = j_{W'_r \times S_p^{(\lambda)} \times W'_r}^{W'_n}(E_1 \boxtimes E_2 \boxtimes E_1)$, $f_{E_1 \boxtimes E_2 \boxtimes E_1} = \mathbf{z}_C$;

24

(ii) there exist (r,q) with r+q=n and $E_1 \in \mathcal{S}_{W'_r}$, $\tilde{E}_1 \in \mathcal{S}_{W'_q}$ such that E_1 extends to a W_r -module, \tilde{E}_1 extends to a W_q -module, $E=j^{W'_n}_{W'_r\times W'_q}(E_1\boxtimes \tilde{E}_1)$ and $f_{E_1\boxtimes \tilde{E}_1}=\mathbf{z}_C$.

Assume first that (i) holds. We set $x_* = \zeta_r'(E_1) \in X_m^r$. If $r \geq 1$ and E_1 extends to a W_r -module then $E_1 \boxtimes E_2 \boxtimes E_1$ is Ω -stable (note that $W_r' \times S_p^{(\lambda)} \times W_r' \in \mathcal{P}^{\Omega}$) so that $\mathfrak{c}_E = 4$ contradicting $\mathfrak{c}_E = 2$. Thus, either $r \geq 1$ and E_1 does not extend to a W_r -module or r = 0. It follows that $\mathfrak{S}(x_*) = \emptyset$ and $f_{E_1} = 1$ so that $\mathbf{z}_C = 1$. Hence either $|\mathfrak{I}(y_*)| = 0$ or $|\mathfrak{I}(y_*)| = 2$, $\delta_{y_*} = 1$. In the first case we have $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2$. In the second case, using $\delta_{y_*} = 1$ we see that $\tilde{\mathbf{z}}_C/\mathbf{z}_C \geq 2$; if we had $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 4$ we would have $\mathfrak{c}_E = 4$, a contradiction. Thus in both cases we have $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2$.

Next assume that (ii) holds. We set $x_* = \zeta_r'(E_1) \in X_m^r$, $\tilde{x}_* = \zeta_q'(\tilde{E}_1) \in \tilde{X}_m^q$. We have $y_* = x_* + \tilde{x}_*$. Since E_1 extends to a W_r -module and \tilde{E}_1 extends to a W_q -module we have $|\mathfrak{S}(x_*)| \geq 2$, $|\mathfrak{S}(\tilde{x}_*)| \geq 2$. Hence

$$2^{|\Im(y_*)|-2} \le \mathbf{z}_C = f_{E_1 \boxtimes \tilde{E}_1} = f_{E_1} f_{\tilde{E}_1} = 2^{(|\mathfrak{S}(x_*)|-2)/2 + (|\mathfrak{S}(\tilde{x}_*)|-2)/2} \le 2^{|\Im(y_*)|-2}.$$

It follows that $2^{|\mathfrak{I}(y_*)|-2} = \mathbf{z}_C$ so that $\delta_{y_*} = 1$. This implies that $\tilde{\mathbf{z}}_C/\mathbf{z}_C \geq 2$; if we had $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 4$ we would have $\mathfrak{c}_E = 4$, a contradiction. Thus we have $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2$. Using this together with 6.13, 6.14, we see that $\mathfrak{c}_E = 2$ if and only if $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2$.

6.16. By 6.12, we have $\mathfrak{c}_E = 4$ if and only if $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 4$. By 6.15, we have $\mathfrak{c}_E = 2$ if and only if $\tilde{\mathbf{z}}_C/\mathbf{z}_C = 2$. Since $\mathfrak{c}_E \in \{1, 2, 4\}$ and $\tilde{\mathbf{z}}_C/\mathbf{z}_C \in \{1, 2, 4\}$ we see that $\mathfrak{c}_E = \tilde{\mathbf{z}}_C/\mathbf{z}_C$; this proves 1.5(b3) in our case.

7. Exceptional types

7.1. In this section we assume that G is an exceptional group. For each type we give a table with rows indexed by the unipotent conjugacy classes in G in which the row corresponding to $C \in \mathcal{X}$ has four entries:

$$\rho_C \qquad \mathbf{b}_C \qquad a \times a' \quad (J, E_1)$$

where $a = \mathbf{z}_C$, $a' = \tilde{\mathbf{z}}_C/\mathbf{z}_C$ and (J, E_1) is an example of an element of \mathcal{Z}_E ($E = \rho_C$) such that $f_{E_1} = \mathbf{z}_C$ and $|\Omega_{J,E_1}| = \tilde{\mathbf{z}}_C/\mathbf{z}_C$. (When $\Omega = \{1\}$ we have a' = 1 and we write a instead of $a \times a'$). We specify an irreducible representation E_1 of a Weyl group either by using the notation of [L4, Ch.4] (for type E_6, E_7, E_8) or by specifying its degree. The representation is then determined by its b_{E_1} which equals \mathbf{b}_C in the table or (in the case of G_2, F_4) by other information in the same row of the table. On the other hand, ϵ always denotes the sign representation. In a pair (J, E_1) , J is any subset of \tilde{I} such that \mathbf{W}_J has the specified type; in addition, for type F_4 , we denote by A_2 (resp. A'_2) a subset J of \tilde{I} such that \mathbf{W}_J is of type A_2 and is contained (resp. not contained) in a parahoric subgroup of type B_4).

The group Ω is $\{1\}$ for types G_2 , F_4 and is a cyclic group of order 9-n for type $E_n(n=6,7,8)$.

Type G_2

(J, E_1)	$a \times a'$	\mathbf{b}_C	$ ho_C$
$(\emptyset,1)$	1	0	1
$(G_2,2)$	6	1	2
(A_1A_1,ϵ)	1	2	2
(A_2,ϵ)	1	3	1
(G_2,ϵ)	1	6	1

Type F_4

$ ho_C$	\mathbf{b}_C	$a \times a'$	(J,E_1)
1	0	1	$(\emptyset,1)$
4	1	2	$(F_4,4)$
9	2	2	$(F_4, 9)$
8	3	1	(A_2,ϵ)
8	3	1	(A_2',ϵ)
12	4	24	$(F_4, 12)$
16	5	2	$(C_3A_1, 3 \boxtimes \epsilon)$
9	6	2	$(B_4, 6)$
6	6	1	(A_2A_2',ϵ)
4	7	1	(A_3A_1,ϵ)
8	9	1	(C_3,ϵ)
8	9	2	$(B_4,4)$
9	10	1	(C_3A_1,ϵ)
4	13	2	$(F_4,4)$
2	16	1	(B_4,ϵ)
1	24	1	(F_4,ϵ)

Type E_6

$$\rho_C \qquad \mathbf{b}_C \qquad a \times a' \qquad \qquad (J, E_1) \\
 1_p \qquad 0 \qquad 1 \times 3 \qquad \qquad (\emptyset, 1) \\
 6_p \qquad 1 \qquad 1 \times 3 \qquad \qquad (D_4, 4) \\
 20_p \qquad 2 \qquad 1 \times 1 \qquad \qquad (E_6, 20_p) \\
 30_p \qquad 3 \qquad 2 \times 3 \qquad \qquad (D_4, 8)$$

15_q	4	1×3	$(A_1A_1A_1A_1,\epsilon)$
64_p	4	1×1	$(E_6, 64_p)$
60_p	5	1×1	$(E_6, 60_p)$
24_p	6	1×1	$(E_6, 24_p)$
81_p	6	1×1	$(E_6, 81_p)$
80_s	7	6×1	$(E_6, 80_s)$
60_s	8	1×1	$(A_3A_1A_1,\epsilon)$
10_s	9	1×3	$(A_2A_2A_2,\epsilon)$
$81'_p$	10	1×1	$(E_6,81_p')$
$60'_p$	11	1×1	$(E_6, 60_p')$
$24_p'$	12	1×3	(D_4,ϵ)
$64'_p$	13	1×1	$(E_6, 64_p')$
$30_p'$	15	2×1	$(E_6, 30_p')$
$15_q'$	16	1×1	(A_5A_1,ϵ)
$20_p'$	20	1×1	$(E_6, 20_p')$
$6'_p$	25	1×1	$(E_6, 6_p')$
$1_p'$	36	1×1	(E_6,ϵ)

Type E_7

$ ho_C$	\mathbf{b}_C	$a \times a'$	(J, E_1)
1_a	0	1×2	$(\emptyset,1)$
$7'_a$	1	1×2	$(E_6, 6_p)$
27_a	2	1×2	$(E_6, 20_p)$
$56'_a$	3	2×2	$(E_6, 30_p)$
$21_b'$	3	1×1	$(E_7,21_b')$
120_a	4	2×1	$(E_7, 120_a)$
35_b	4	1×2	$(A_7, 14)$
$189_b'$	5	2×2	$(A_1D_4A_1, \epsilon \boxtimes 8 \boxtimes \epsilon)$
105_b	6	1×1	$(E_7, 105_b)$
210_a	6	1×2	$(A_7, 35)$
168_a	6	1×2	$(A_7, 56)$
$315_a'$	7	6×2	$(E_6, 80_s)$
$189_c'$	7	1×1	$(E_7, 189_c')$

405_a	8	2×1	$(E_7, 405_a)$
280_b	8	1×2	$(A_7, 56)$
$70'_a$	9	1×2	$(A_2A_2A_2,\epsilon)$
$216_a'$	9	1×1	$(D_6A_1, 30 \boxtimes \epsilon)$
$378_a'$	9	1×2	$(A_7, 70)$
420_a	10	2×1	$(E_7, 420_a)$
210_b	10	1×1	$(E_7, 210_b)$
$512_a'$	11	2×1	$(E_7, 512_a')$
105_c	12	1×2	(D_4,ϵ)
84_a	12	1×2	$(A_7, 14)$
$420'_a$	13	2×1	$(D_6, 24)$
210_b	13	1×2	$(A_3A_3A_1,\epsilon)$
$378_a'$	14	2×1	$(D_6A_1, 24 \boxtimes \epsilon)$
$105_c'$	15	1×1	$(A_5A_2, \epsilon \boxtimes 1)$
$405_a'$	15	2×2	$(E_6, 30_p')$
216_a	16	1×2	$(A_7, 20)$
315_a	16	6×1	$(E_7, 315_a)$
$280_b'$	17	1×1	$(D_6A_1, 15 \boxtimes \epsilon)$
70_a	18	1×1	(A_5A_2,ϵ)
189_c	20	1×2	$(E_6, 20_p')$
$210_a'$	21	1×1	$(E_7, 210_a')$
$168_a'$	(21	1×1	$(E_7, 168_a')$
$105_b'$	21	1×2	$(A_{7},7)$
189_b	22	1×1	$(E_7, 189_b)$
$120'_a$	25	2×1	$(E_7, 120_a')$
15_a	28	1×2	(A_7,ϵ)
56_a	30	2×1	$(E_7, 56_a)$
$35_b'$	31	1×1	(D_6A_1,ϵ)
21_b	36	1×2	(E_6,ϵ)
$27_a'$	37	1×1	$(E_7, 27_a')$
7_a	46	1×1	$(E_7,7_a)$
$1'_a$	63	1×1	(E_7,ϵ)

$ ho_C$	\mathbf{b}_C	$a \times a'$	(J,E_1)
1_x	0	1	$(\emptyset,1)$
8_z	1	1	$(E_8,8_z)$
35_x	2	1	$(E_8, 35_x)$
112_z	3	2	$(E_8, 112_z)$
84_x	4	1	$(E_7A_1,21_b'\boxtimes\epsilon)$
210_x	4	2	$(E_8, 210_x)$
560_z	5	2	$(E_7A_1, 120_a \boxtimes \epsilon)$
567_x	6	1	$(E_8, 567_x)$
700_{x}	6	2	$(E_8, 700_x)$
400_x	7	1	$(A_2A_1A_1A_1A_1,\epsilon)$
1400_z	7	6	$(E_6, 80_s)$
1400_{x}	8	6	$(E_8, 1400_x)$
1344_{x}	8	1	$(E_7A_1, 189_c' \boxtimes \epsilon)$
448_z	9	1	$(A_2A_2A_2,\epsilon)$
3240_z	9	2	$(E_7A_1, 405_a \boxtimes \epsilon)$
2240_{x}	10	6	$(E_6A_2, 80_s \boxtimes \epsilon)$
2268_x	10	2	$(E_8, 2268_x)$
4096_{x}	11	2	$(E_7, 512_a')$
1400_z	11	1	$(E_7A_1, 210_b \boxtimes \epsilon)$
525_x	12	1	(D_4,ϵ)
4200_{x}	12	2	$(E_8, 4200_x)$
972_x	12	1	(A_3A_3,ϵ)
2800_z	13	2	$(E_8, 2800_z)$
4536_z	13	2	$(D_8, 560)$
6075_{x}	14	2	$(D_8, 280)$
2835_x	14	1	$(A_4 A_2 A_1, \epsilon)$
4200_z	15	1	(A_5,ϵ)
5600_z	15	2	$(E_6, 30_p')$
4480_{y}	16	120	$(E_8, 4480_y)$
3200_x	16	1	(A_5A_1,ϵ)
7168_w	17	6	$(E_7A_1, 315_a \boxtimes \epsilon)$
4200_{y}	18	2	$(D_8, 252)$

3150_y	18	2	$(E_6A_2, 30_p' \boxtimes \epsilon)$
2016_w	19	1	$(A_5A_2A_1,\epsilon)$
1344_w	19	1	$(D_5A_3, 5 \boxtimes \epsilon)$
2100_y	20	1	(D_5,ϵ)
420_y	20	1	(A_4A_4,ϵ)
$5600_z'$	21	2	$(E_8, 5600_z')$
$4200_z'$	21	2	$(D_8, 224)$
$3200_x'$	22	1	$(E_7A_1, 168_a \boxtimes \epsilon)$
$6075_x'$	22	1	$(E_8, 6075'_x)$
$2835_x'$	22	1	(A_6A_1,ϵ)
$4536_z'$	23	1	(D_5A_2,ϵ)
$4200_x'$	24	2	$(E_8, 4200_x')$
$2800_z'$	25	2	$(E_7, 120_a')$
$4096_x'$	26	2	$(E_8, 4096'_x)$
$840'_x$	26	1	(D_5A_3,ϵ)
$700_x'$	28	1	(A_7,ϵ)
$2240_x'$	28	2	$(E_8, 2240'_x)$
$1400_z'$	29	1	(A_7A_1,ϵ)
$2268_x'$	30	2	$(E_7, 56_a)$
$3240_z'$	31	2	$(E_7A_1, 56_a \boxtimes \epsilon)$
$1400_x'$	32	6	$(E_8, 1400_x')$
$1050_x'$	34	1	$(D_8, 28)$
$525_x'$	36	1	$(E_6,\epsilon))$
$175_x'$	36	1	(A_8,ϵ)
$1400_z'$	37	6	$(E_8, 1400_z')$
$1344_x'$	38	1	$(E_7A_1, 27_a' \boxtimes \epsilon)$
$448'_z$	39	1	(E_6A_2,ϵ)
$700_x'$	42	2	$(E_8, 700_x')$
$400'_z$	43	1	$(D_8, 8)$
$567'_x$	46	1	$(E_{7},7_{a})$
$560'_z$	47	1	$(E_7A_1, 7_a \boxtimes \epsilon)$
$210_x'$	52	2	$(E_8, 210_x')$
$50'_x$	56	1	(D_8,ϵ)

INDEX

- 0.1: $\mathcal{X}, \rho_C, \mathbf{b}_C, \mathbf{z}_C, \tilde{\mathbf{z}}_C, \tilde{\mathcal{S}}_{\mathbf{W}}$
- 1.1: $\operatorname{Irr}(W), f_E, a_E, b_E, \mathcal{S}_W, \operatorname{Irr}(W)^{\dagger}$
- 1.2: $\mathcal{R}, \tilde{I}, \tilde{\mathcal{A}}, \mathbf{W}, \mathbf{W}_J, s_i, \Omega$
- 1.3: $j_{\mathbf{W}_{J}}^{\mathbf{W}}(E_{1}), \bar{\mathcal{S}}_{\mathbf{W}}, \mathcal{Z}_{E}, \mathfrak{a}_{E}, \mathcal{Z}_{E}^{\spadesuit}, \Omega_{J,E_{1}}, \mathfrak{c}_{E}$
- 1.4: G
- 1.9: P'
- 1.11: $\mathcal{P}^{\tilde{\Omega}}$
- 2.9: \mathcal{E}_{m}
- 4.1: W_n
- 4.2: U_k^n, ζ_n
- 4.6: τ
- 5.1: W'_n 5.2: $V_k^n, {}^{\dagger}V_k^n, \zeta'_n, \tilde{\zeta}_n$
- 6.4: τ

References

- [Al] D.Alvis, Induce/restrict matrices for exceptional Weyl groups, math.RT/0506377.
- [AL] D.Alvis and G.Lusztig, On Springer's correspondence for simple groups of type E_n (n = 6, 7, 8), Math. Proc. Camb. Phil. Soc. **92** (1982), 65-78.
- [L2] G.Lusztig, Irreducible representations of finite classical groups, Inv.Math. 43 (1977), 125-175.
- [L1] G.Lusztig, A class of irreducible representations of a Weyl group, Proc. Kon. Nederl. Akad. (A) **82** (1979), 323-335.
- [L3] G.Lusztig, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent.math. **64** (1981), 263-296.
- [L4] G.Lusztig, Characters of reductive groups over a finite field, Ann.Math.Studies, vol. 107, Princeton U.Press, 1984.
- [L5] G.Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), 205-272.
- [L6] G.Lusztig, A unipotent support for irreducible representations, Adv.in Math. 94 (1992), 139-179.
- [S1] T.Shoji, On the Springer representations of Weyl groups of classical algebraic groups, Comm.in Alg. 7 (1979), 1713-1745,2027-2033.
- [S2] T.Shoji, On the Springer representations of Chevalley groups of type F₄, Comm.in Alg. 8 (1980), 409-440.

[Sp] T.A.Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent.Math. **36** (1976), 173-207.

Department of Mathematics, M.I.T., Cambridge, MA 02139