

MIT Open Access Articles

Representations of reductive groups over finite rings

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: G. Lusztig, Representations of Reductive Groups over Finite Rings, Representation Theory 8 (2004)

As Published: 10.1090/S1088-4165-04-00232-8

Publisher: American Mathematical Society (AMS)

Persistent URL: https://hdl.handle.net/1721.1/140237

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

REPRESENTATIONS OF REDUCTIVE GROUPS OVER FINITE RINGS

G. Lusztig

INTRODUCTION

0.1. In [L, Sec.4] a cohomological construction was given (without proof) for certain representations of a Chevalley group over a finite ring R (arising from the ring of integers in a non-archimedean local field by reduction modulo a power of the maximal ideal); that construction was an extension of the construction of the virtual representations R_T^{θ} in [DL] for groups over a finite field. One of the aims of this paper is to provide the missing proof. For simplicity we will assume that $R = \mathbf{F}_{q,r} = \mathbf{F}_q[[\epsilon]]/(\epsilon^r)$ (ϵ is an indeterminate, \mathbf{F}_q is a finite field with q elements and $r \geq 1$). The general case requires only minor modifications. On the other hand, we treat possibly twisted groups.

Let \mathbf{F} be an algebraic closure of \mathbf{F}_q . Let G be a connected reductive algebraic group defined over \mathbf{F} with a given \mathbf{F}_q -rational structure with associated Frobenius map $F: G \to G$.

Using a cohomological method, extending that of [DL], we will construct a family of irreducible representations of the finite group $G(\mathbf{F}_{q,r}), r \geq 1$, attached to a "maximal torus" and a character of it in general position. In the case where $r \geq 2$ and G is split over \mathbf{F}_q , the representations that we construct are likely to be the same as those found by Gérardin [G] by a non-cohomological method (induction from a subgroup if r is even; induction from a subgroup in combination with a use of a Weil representation, if r is odd, ≥ 3). In any case, since for r = 1, the cohomological construction is the only known construction of the generic representations, it seems natural to seek a cohomological construction which works uniformly for all $r \geq 1$; this is what we do in this paper.

In contrast with the case r = 1, for $r \ge 2$ not all irreducible representations of $G(\mathbf{F}_{q,r})$ appear in the virtual representations that we construct. The study of SL_2 with r = 2 (see §3) suggests that, to remedy this, one has to consider also virtual representations attached to double cosets with respect to a "Borel subgroup" other than those indexed by the Weyl group.

Supported in part by the National Science Foundation

0.2. Notation. Let ϵ be an indeterminate. If X is an affine algebraic variety over \mathbf{F} and $r \geq 1$, we set $X_r = X(\mathbf{F}[[\epsilon]]/(\epsilon^r))$. Thus, if X is the set of common zeroes of the polynomials $f_i : \mathbf{F}^N \to \mathbf{F}(i = 1, \ldots, m)$, then X_r is the set of all $(x_1, x_2, \ldots, x_N) \in (\mathbf{F}[[\epsilon]]/(\epsilon^r))^N$ such that $f_i(x_1, x_2, \ldots, x_N)$ (a priori an element of $\mathbf{F}[[\epsilon]]/(\epsilon^r)$) is equal to 0 for $i = 1, \ldots, m$. We have $X_1 = X$. For r = 0 we set X_r =point. Then $X \mapsto X_r$ is a functor from the category of algebraic varieties over \mathbf{F} into itself. If X' is a closed subvariety of X then X'_r is a closed subvariety of X_r . If X is irreducible of dimension d then X_r is irreducible of dimension dr. For any $r \geq r' \geq 0$ we have a canonical morphism $\phi_{r,r'} : X_r \to X_{r'}$. If $r \geq 1$, we have naturally $X \subset X_r$ (using $\mathbf{F} \subset \mathbf{F}[[\epsilon]]/(\epsilon^r)$). If G is an algebraic group over \mathbf{F} then G_r is naturally an algebraic group shence its kernel, G_r' , is a normal subgroup of G_r . For $r \geq 1$ we have naturally $G \subset G_r$. We have

$$\{1\} = G_r^r \subset G_r^{r-1} \subset \ldots G_r^1 \subset G_r^0 = G_r.$$

For $r > r' \ge 0$, we set $G_r^{r',*} = G_r^{r'} - G_r^{r'+1}$. We have a partition $G_r = G_r^{0,*} \sqcup G_r^{1,*} \sqcup \ldots \sqcup G_r^{r-1,*} \sqcup \{1\}.$

We fix a prime number l invertible in **F**. If X is an algebraic variety over **F** we write $H_c^j(X)$ istead of $H_c^j(X, \bar{\mathbf{Q}}_l)$.

For a finite group Γ let $\hat{\Gamma} = \text{Hom}(\Gamma, \bar{\mathbf{Q}}_l^*)$.

0.3. If T is a commutative algebraic group over **F** with a fixed \mathbf{F}_q -structure and with Frobenius map $F: T \to T$ we have a norm map

 $N_F^{F^n}: T^{F^n} \to T^F, t \mapsto tF(t)F^2(t) \dots F^{n-1}(t).$

1. Lemmas

Lemma 1.1. Let $\mathcal{T}, \mathcal{T}'$ be two commutative, connected algebraic groups over \mathbf{F} with fixed \mathbf{F}_q -rational structures with Frobenius maps $F: \mathcal{T} \to \mathcal{T}, F: \mathcal{T}' \to \mathcal{T}'$. Let $f: \mathcal{T} \xrightarrow{\sim} \mathcal{T}'$ be an isomorphism of algebraic groups over \mathbf{F} . Let $n \geq 1$ be such that $F^n f = fF^n: \mathcal{T} \to \mathcal{T}'$; thus $f: \mathcal{T}^{F^n} \xrightarrow{\sim} \mathcal{T}'^{F^n}$. Let

$$H = \{(t, t') \in \mathcal{T} \times \mathcal{T}'; f(F(t)^{-1}t) = F(t')^{-1}t'\}.$$

(A subgroup of $\mathcal{T} \times \mathcal{T}'$ containing $\mathcal{T}^F \times \mathcal{T}'^F$.) Let $\theta \in \widehat{\mathcal{T}^F}$, $\theta' \in \widehat{\mathcal{T}'^F}$ be such that $\theta^{-1} \boxtimes \theta'$ is trivial on $(\mathcal{T}^F \times \mathcal{T}'^F) \cap H^0$. Then $\theta N_F^{F^n} = \theta' N_F^{F^n} f \in \widehat{T^{F^n}}$.

Setting $t_1 = tF(t) \dots F^{n-1}(t) \in \mathcal{T}$, $t_2 = f(t)F(f(t)) \dots F^{n-1}(f(t)) \in \mathcal{T}'$ for $t \in \mathcal{T}$, we have

$$f(F(t_1)^{-1}t_1) = f(tF^n(t)^{-1}) = f(t)f(F^n(t))^{-1} = f(t)F^n(f(t))^{-1} = F(t_2)^{-1}t_2,$$

so that $(t_1, t_2) \in H$. Now $t \mapsto (t_1, t_2)$ is a morphism $\mathcal{T} \to H$ of algebraic varieties and \mathcal{T} is connected; hence the image of this morphism is contained in H^0 . In particular, if $t \in \mathcal{T}^{F^n}$ we have $(N_F^{F^n}(t), N_F^{F^n}(f(t))) \in (\mathcal{T}^F \times \mathcal{T}'^F) \cap H^0$ hence, by assumption, $\theta^{-1}(N_F^{F^n}(t))\theta'(N_F^{F^n}(f(t))) = 1$ for all $t \in \mathcal{T}^{F^n}$. The lemma is proved. **1.2.** Let G be a connected reductive algebraic group over \mathbf{F} with a fixed \mathbf{F}_{q} rational structure with Frobenius map $F: G \to G$. If $r \geq 1$ then $F: G \to G$ induces a homomorphism $F: G_r \to G_r$ which is the Frobenius map for a \mathbf{F}_{q} rational structure on G_r .

Let T, T' be two F-stable maximal tori of G and let U (resp. U') be the unipotent radical of a Borel subgroup of G that contains T (resp. T'). Note that U, U' are not necessarily defined over \mathbf{F}_q . Let $r \geq 2$. Let $\mathcal{T} = T_r^{r-1}, \mathcal{T}' = T_r'^{r-1}$,

$$\Sigma = \{ (x, x', y) \in F(U_r) \times F(U_r') \times G_r; xF(y) = yx' \}.$$

Let $N(T,T') = \{\nu \in G; \nu^{-1}T\nu = T'\}$. Then T acts on N(T,T') by left multiplication and T' acts on N(T,T') by right multiplication. The orbits of T are the same as the orbits of T'; we set $W(T,T') = T \setminus N(T,T') = N(T,T')/T'$ (a finite set). For each $w \in W(T,T')$ we choose a representative \dot{w} in N(T,T'). We have $G = \sqcup_{w \in W(T,T')} G_w$ where $G_w = UT\dot{w}U' = U\dot{w}T'U'$.

Let $G_{w,r}$ be the inverse image of G_w under $\phi_{r,1} : G_r \to G$ and let $\Sigma_w = \{(x, x', y) \in \Sigma; y \in G_{w,r}\}.$

Now $T_r^F \times T_r'^F$ acts on Σ by $(t, t') : (x, x', y) \mapsto (txt^{-1}, t'x't'^{-1}, tyt'^{-1})$. This restricts to an action of $T_r^F \times T_r'^F$ on Σ_w for any $w \in W$.

If $\theta \in \widehat{T_r^F}, \theta' \in \widehat{T_r'^F}$ and M is a $T_r^F \times T_r'^F$ -module, we shall write $M_{\theta^{-1},\theta'}$ for the subspace of M on which $T_r^F \times T_r'^F$ acts according to $\theta^{-1} \boxtimes \theta'$.

Lemma 1.3. Assume that $r \geq 2$. Let $w \in W(T,T')$. Let $\theta \in \widehat{T_r^F}$, $\theta' \in \widehat{T_r^F}$. Assume that $H^j_c(\Sigma_w)_{\theta^{-1},\theta'} \neq 0$ for some $j \in \mathbf{Z}$. Let $g = F(\dot{w})^{-1}$ and let $n \geq 1$ be such that $g \in G^{F^n}$. Then $\operatorname{Ad}(g)$ carries \mathcal{T}^{F^n} onto \mathcal{T}'^{F^n} and $\theta|_{\mathcal{T}^F} \circ N_F^{F^n} \in \widehat{\mathcal{T}^{F^n}}$.

By the definition of $G_{w,r}$, the map $U_r \times G_r^1 \times (T_r \dot{w}) \times U'_r \to G_{w,r}$ given by $(u, k, \nu, u') \mapsto uk\nu u'$ is a locally trivial fibration with all fibres isomorphic to a fixed affine space. Hence the map

$$\hat{\Sigma}_w = \{ (x, x', u, u', k, \nu) \in F(U_r) \times F(U'_r) \times U_r \times U'_r \times G^1_r \times T_r \dot{w}; \\ xF(u)F(k)F(\nu)F(u') = uk\nu u'x' \} \to \Sigma_w$$

given by $(x, x', u, u', k, \nu) \mapsto (x, x', uk\nu u')$, is a locally trivial fibration with all fibres isomorphic to a fixed affine space. This map is compatible with the $T_r^F \times T_r'^F$ actions where $T_r^F \times T_r'^F$ acts on $\tilde{\Sigma}_w$ by

(a)
$$(t,t'): (x,x',u,u',k,\nu) \mapsto (txt^{-1},t'x't'^{-1},tut^{-1},t'u't'^{-1},tkt^{-1},t\nu t'^{-1}).$$

Hence there exists $j' \in \mathbf{Z}$ such that $H_c^{j'}(\tilde{\Sigma}_w)_{\theta^{-1},\theta'} \neq 0$. By the substitution $xF(u) \mapsto x, x'F(u')^{-1} \mapsto x'$, the variety $\tilde{\Sigma}_w$ is rewritten as (b) $\{(x, x', u, u', k, \nu) \in F(U_r) \times F(U'_r) \times U_r \times U'_r \times G^1_r \times T_r \dot{w}; xF(k)F(\nu) = uk\nu u'x'\};$

in these coordinates, the action of $T_r^F \times T_r'^F$ is still given by (a). Let

$$H = \{(t, t') \in \mathcal{T} \times \mathcal{T}'; t'F(t')^{-1} = F(\dot{w})^{-1}tF(t)^{-1}F(\dot{w})\}.$$

(A closed subgroup of $T_r \times T'_r$.) It acts on the variety (b) by the same formula as in (a). (We use the fact that hk = kh for any $h \in G_r^{r-1}, k \in G_r^1$.) By [DL, 6.5], the induced action of H on $H_c^{j'}(\tilde{\Sigma}_w)$ is trivial when restricted to H^0 . In particular, the intersection $(T_r^F \times T_r'^F) \cap H^0$ acts trivially on $H_c^{j'}(\tilde{\Sigma}_w)$. Since $H_c^{j'}(\tilde{\Sigma}_w)_{\theta^{-1},\theta'} \neq 0$, it follows that $\theta^{-1} \boxtimes \theta'$ is trivial on $(T_r^F \times T_r'^F) \cap H^0$. Let $g = F(\dot{w})^{-1}$ and let $n \geq 1$ be such that $g \in G^{F^n}$. Then Ad(g) carries \mathcal{T}^{F^n} onto \mathcal{T}'^{F^n} and (by Lemma 1.1 with $f = \operatorname{Ad}(g)$) it carries $\theta|_{\mathcal{T}^F} \circ N_F^{F^n}$ to $\theta'|_{\mathcal{T}'^F} \circ N_F^{F^n}$. The lemma is proved.

Lemma 1.4. Assume that $r \geq 2$. Let $\theta \in \widehat{T_r^F}$, $\theta' \in \widehat{T_r'^F}$ be such that

(a)
$$H_c^j(\Sigma)_{\theta^{-1},\theta'} \neq 0$$

for some $j \in \mathbf{Z}$. There exists $n \ge 1$ and $g \in N(T', T)^{F^n}$ such that $\operatorname{Ad}(g)$ carries $\theta|_{\mathcal{T}^F} \circ N_F^{F^n} \in \widehat{\mathcal{T}^{F^n}}$ to $\theta'|_{\mathcal{T}'^F} \circ N_F^{F^n} \in \widehat{\mathcal{T}'^{F^n}}$.

The subvarieties G_w of G have the following property: for some ordering \leq of W(T,T'), the unions $\cup_{w' \leq w} G_{w'}$ are closed in G. It follows that the unions $\cup_{w' \leq w} G_{w',r}$ are closed in G_r and the unions $\cup_{w' \leq w} \Sigma_{w'}$ are closed in Σ . The spectral sequence associated to the filtration of Σ by these unions, together with (a), shows that there exists $w \in W(T,T')$ and $j \in \mathbb{Z}$ such that $H^j_c(\Sigma_w)_{\theta^{-1},\theta'} \neq 0$. We can therefore apply Lemma 1.3. The lemma follows.

1.5. Let Φ be the set of characters $\alpha : T \to \mathbf{F}^*$ such that $\alpha \neq 1$ and T acts on some line $L_{\alpha} \subset LieG$ via α (in the adjoint action); for such α , let G^{α} be the one dimensional unipotent subgroup of G such that $LieG^{\alpha} = L_{\alpha}$. For $\alpha \in \Phi$ there is a unique 1-dimensional torus T^{α} in T such that T^{α} is contained in the subgroup of G generated by $G^{\alpha}, G^{\alpha^{-1}}$. Let $\mathcal{T}^{\alpha} = (T^{\alpha})_r^{r-1}$ (a one dimensional subgroup of $\mathcal{T} = T_r^{r-1}$).

Let $\chi \in \widehat{\mathcal{T}^F}$. We say that χ is *regular* if for any $\alpha \in \Phi$ and any $n \geq 1$ such that $F^n(\mathcal{T}^\alpha) = \mathcal{T}^\alpha$, the restriction of $\chi \circ N_F^{F^n} : \mathcal{T}^{F^n} \to \overline{\mathbf{Q}}_l^*$ to $(\mathcal{T}^\alpha)^{F^n}$ is non-trivial. (It is enough to check that $\chi \circ N_F^{F^n}|_{(\mathcal{T}^\alpha)^{F^n}}$ is non-trivial for any α and for just one n such that $F^n(\mathcal{T}^\alpha) = \mathcal{T}^\alpha$ for all α .)

Let $\theta \in \widehat{T^F}$. We say that θ is *regular* if $\theta|_{\mathcal{T}^F}$ is regular.

1.6. Let T be an F-stable maximal torus of G. Let $U, \tilde{U}, V, \tilde{V}$ be unipotent radicals of Borel subgroups containing T such that $U \cap V = \tilde{U} \cap \tilde{V} = \{1\}$. Let Φ be as in 1.5. Let

$$\Phi^+ = \{ \alpha \in \Phi; G^\alpha \subset \tilde{V} \}, \Phi^- = \{ \alpha \in \Phi; G^\alpha \subset \tilde{U} \}.$$

Then $\Phi = \Phi^+ \sqcup \Phi^-$ and $\Phi^- = \{\alpha^{-1}; \alpha \in \Phi^+\}.$

For $\alpha \in \Phi^+$ let $ht(\alpha)$ be the largest integer $n \ge 1$ such that $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ with $\alpha_i \in \Phi^+$.

Let $x \in (G^{\alpha})_r^b, x' \in (G^{\alpha'})_r^c$ where $\alpha, \alpha' \in \Phi$ and $b, c \in [0, r]$.

(a) If $b + c \ge r$ then xx' = x'x.

(b) If $b + c \leq r$ and $\alpha \alpha' \neq 1$ then xx' = x'xu where u is of the form $\prod_{i,i'\geq 1;\alpha^i\alpha'^{i'}\in\Phi} u_{i,i'}$ with $u_{i,i'}\in (G^{\alpha^i\alpha'^{i'}})_r^{b+b'}$.

(The factors in the last product are written in some fixed order. In the special case where b + c = r - 1, these factors commute with each other by (a), since $r - 1 + r - 1 \ge r$.)

(c) If $b+c \ge r-1$, $b+2c \ge r$ and $\alpha \alpha' = 1$ then $xx' = x'x\tau_{x,x'}u$ where $\tau_{x,x'} \in \mathcal{T}^{\alpha}$ and $u \in (G^{\alpha})_r^{r-1}$ are uniquely determined.

Lemma 1.7. We fix an order on Φ^+ . For any $z \in \tilde{V}_r, \beta \in \Phi^+$, define $x_{\beta}^z \in G_r^{\beta}$ by $z = \prod_{\beta \in \Phi^+} x_{\beta}^z$ (factors written using the given order on Φ^+). Let $\alpha \in \Phi^-, a \in [1, r-1]$. Let $z \in \tilde{V}_r^a$ be such that $x_{\beta}^z \in (G^{\beta})_r^{a+1}$ for all $\beta \in \Phi^+$ with $ht(\beta) > ht(\alpha^{-1})$. Let $\xi \in (G^{\alpha})_r^{r-a-1}$. Then $\xi z = z\xi\tau_{\xi,z}\omega_{\xi,z}$ where $\tau_{\xi,z} \in \mathcal{T}^{\alpha}$ and $\omega_{\xi,z} \in \tilde{U}_r^{r-1}$.

We argue by induction on $N_z = \sharp(\beta \in \Phi^+; x_{\beta}^z \neq 1)$. If $N_z = 0$ the result is clear. Assume now that $N_z = 1$ so that $z \in G_r^\beta$ with $\beta \in \Phi^+$. If $\alpha\beta = 1$, the result follows from 1.6(c). If $\alpha\beta \neq 1$ and $ht(\beta) > ht(\alpha^{-1})$ then $z \in (G^\beta)_r^{a+1}$ and $\xi z = z\xi$ by 1.6(b). If $\alpha\beta \neq 1$ and $ht(\beta) \leq ht(\alpha^{-1})$ then by 1.6(b) we have $\xi z = z\xi u$ where $u = \prod_{i,i' \geq 1; \alpha^i \beta^{i'} \in \Phi} u_{i,i'}$ with $u_{i,i'} \in (G^{\alpha^i \beta^{i'}})_r^{r-1}$; it is enough to show that if $i, i' \geq 1$, we cannot have $\alpha^i \beta^{i'} \in \Phi^+$. (If $\alpha^i \beta^{i'} \in \Phi^+$ for some $i, i' \geq 1$ then $\alpha\beta \in \Phi^+$ hence $ht(\beta) > ht(\alpha^{-1})$, contradiction.)

Assume now that $N_z \ge 2$. We can write z = z'z'' where $z', z'' \in \tilde{V}_r^a$, $N_{z'} < N_z, N_{z''} < N_z$. Using the induction hypothesis we have

$$\xi z = \xi z' z'' = z' \xi \tau_{\xi, z'} \omega_{\xi, z'} z'$$

where $\tau_{\xi,z'} \in \mathcal{T}^{\alpha}$, $\omega_{\xi,z'} \in \tilde{U}_r^{r-1}$. We have $\omega_{\xi,z'} z'' = z'' \omega_{\xi,z'}$ and $\tau_{\xi,z'} z'' = z'' \tau_{\xi,z'}$. Using again the induction hypothesis, we have

$$z'\xi\tau_{\xi,z'}\omega_{\xi,z'}z'' = z'\xi\tau_{\xi,z'}z''\omega_{\xi,z'} = z'\xi z''\tau_{\xi,z'}\omega_{\xi,z'} = z'z''\xi\tau_{\xi,z''}\omega_{\xi,z''}\tau_{\xi,z'}\omega_{\xi,z'} = z\xi\tau_{\xi,z'}\tau_{\xi,z''}\omega_{\xi,z'}\omega_{\xi,z''}.$$

Thus, $\xi z = z \xi \tau_{\xi,z} \omega_{\xi,z}$ where

$$\tau_{\xi,z} = \tau_{\xi,z'}\tau_{\xi,z''}, \omega_{\xi,z} = \omega_{\xi,z'}\omega_{\xi,z''}.$$

The lemma is proved.

1.8. In the setup of 1.6, let $Z = V \cap \tilde{V}$. Let $\Phi' = \{\beta \in \Phi; G^{\beta} \subset Z\}$. We have $\Phi' \subset \Phi^+$. Let \mathcal{X} be the set of all subsets $I \subset \Phi'$ such that $I \neq \emptyset$ and $ht : \Phi^+ \to \mathbf{N}$ is constant on I.

To any $z \in Z_r^1 - \{1\}$ we associate a pair (a, I_z) where $a \in [1, r - 1]$ and $I_z \in \mathcal{X}$ as follows. We define a by the condition that $z \in Z_r^{a,*}$. If $x_\beta^z \in G^\beta$ are defined as in 1.8 in terms of a fixed order on Φ^+ , then $x_\beta^z \in (G^\beta)_r^a$ for all $\beta \in \tilde{\Phi}$ and $x_\beta^z = 1$ for all $\beta \in \Phi^+ - \tilde{\Phi}$. Let I_z be the set of all $\alpha' \in \tilde{\Phi}$ such that $x_{\alpha'}^z \in (G^{\alpha'})_r^{a,*}$ and $x_\beta^z \in (G^\beta)_r^{a+1}$ for all $\beta \in \Phi^+$ such that $ht(\beta) > ht(\alpha')$. It is easy to see, using 1.6(a),(b), that the definition of I_z does not depend on the choice of an order on Φ^+ . For $a \in [1, r - 1]$ and $I \in \mathcal{X}$ let $Z_r^{a,*,I}$ be the set of all $z \in Z_r^1 - \{1\}$ such that $z \in Z_r^{a,*}, I = I_z$. Thus we have a partition

(a)
$$Z_r^1 - \{1\} = \bigsqcup_{a \in [1, r-1], I \in \mathcal{X}} Z_r^{a, *, I}$$

Lemma 1.9. Let T, T', U, U', r, T, T' be as in 1.2. Let $\theta \in \widehat{T_r^F}, \theta' \in \widehat{T_r'^F}$. Assume that $\theta'|_{\mathcal{T}^F} = \chi$ is regular. Let Σ be as in 1.2. Then $\sum_{j \in \mathbf{Z}} (-1)^j \dim H^j_c(\Sigma)_{\theta^{-1}, \theta'}$ is equal to the number of $w \in W(T, T')^F$ such that $Ad(\dot{w}) : T_r'^F \to T_r^F$ carries θ to θ' .

Using the partition $\Sigma = \bigsqcup_{w \in W(T,T')} \Sigma_w$ we see that it is enough to prove that $\sum_{j \in \mathbf{Z}} (-1)^j \dim H^j_c(\Sigma_w)_{\theta^{-1},\theta'}$ is equal to 1 if F(w) = w and $Ad(\dot{w}) : T'_r \to T^F_r$ carries θ to θ' and equals 0, otherwise. We now fix $w \in W(T,T')$. We have

$$\Sigma_w$$

 $= \{(x, x', y) \in F(U_r) \times F(U'_r) \times G_r; xF(y) = yx', y \in U_r G_r^1 \dot{w} T'_r U'_r = U_r Z_r^1 \dot{w} T'_r U'_r\}$ where $Z = V \cap \dot{w} V' \dot{w}^{-1}$. Here V (resp. V') is the unipotent radical of a Borel subgroup containing T (resp. T') such that $U \cap V = \{1\}$ (resp. $U' \cap V' = \{1\}$. Let

$$\hat{\Sigma}_w = \{ (x, x', u, u', z, \tau') \in F(U_r) \times F(U'_r) \times U_r \times U'_r \times Z^1_r \times T'_r; xF(u)F(z)F(\dot{w})F(\tau')F(u') = uz\dot{w}\tau'u'x' \}.$$

The map $\hat{\Sigma}_w \to \Sigma_w$ given by $(x, x', u, u', z, \tau') \mapsto (x, x', uz \dot{w} \tau' u')$ is a locally trivial fibration with all fibres isomorphic to a fixed affine space. This map is compatible with the $T_r^F \times T_r'^F$ -actions where $T_r^F \times T_r'^F$ acts on $\hat{\Sigma}_w$ by (a)

$$(t,t'): (x,x',u,u',z,\tau') \mapsto (txt^{-1},t'x't'^{-1},tut^{-1},t'u't'^{-1},tzt^{-1},\dot{w}^{-1}t\dot{w}\tau t'^{-1}).$$

Hence it is enough to show that

 $\sum_{j \in \mathbf{Z}} (-1)^j \dim H^j_c(\hat{\Sigma}_w)_{\theta^{-1}, \theta'} \text{ is equal to 1 if } F(w) = w \text{ and } Ad(\dot{w}) : T'_r \to T^F_r$ carries θ to θ' and equals 0, otherwise.

By the change of variable $xF(u) \mapsto x, x'F(u')^{-1} \mapsto x'$ we may rewrite $\hat{\Sigma}_w$ as

$$\hat{\Sigma}_w = \{ (x, x', u, u', z, \tau') \in F(U_r) \times F(U'_r) \times U_r \times U'_r \times Z^1_r \times T'_r; xF(z)F(\dot{w})F(\tau') = uz\dot{w}\tau'u'x' \}$$

with the $T_r^F \times T_r'^F$ -action still given by (a). We have a partition $\hat{\Sigma}_w = \hat{\Sigma}'_w \sqcup \hat{\Sigma}''_w$ where

$$\hat{\Sigma}'_{w} = \{ (x, x', u, u', z, \tau') \in F(U_r) \times F(U'_r) \times U_r \times U'_r \times (Z_r^1 - \{1\}) \times T'_r ; xF(z)F(\dot{w})F(\tau') = uz\dot{w}\tau'u'x' \},\$$

$$\hat{\Sigma}''_w = \{(x, x', u, u', 1, \tau') \in F(U_r) \times F(U'_r) \times U_r \times U'_r \times \{1\} \times T'_r; xF(\dot{w})F(\tau') = u\dot{w}\tau'u'x'\},\$$

are stable under the $T_r^F \times T_r'^F$ -action. It is then enough to show that

(b) $\sum_{j \in \mathbf{Z}} (-1)^j \dim H^j_c(\hat{\Sigma}''_w)_{\theta^{-1},\theta'}$ is equal to 1 if F(w) = w and $Ad(\dot{w}) : T'_r F \to T^F_r$ carries θ to θ' and equals 0, otherwise.

(c) $H_c^j(\hat{\Sigma}'_w)_{\theta^{-1},\theta'} = 0$ for all j.

We first prove (c). If M is a \mathcal{T}'^F -module we shall write $M_{(\chi)}$ for the subspace of M on which \mathcal{T}'^F acts according to χ . Now \mathcal{T}'^F acts on $\hat{\Sigma}'_w$ by

$$t': (x, x', u, u', z, \tau') \mapsto (x, t'x't'^{-1}, u, t'u't'^{-1}, z, \tau't'^{-1}).$$

Hence $H_c^j(\hat{\Sigma}'_w)$ becomes a \mathcal{T}'^F -module. It is enough to show that $H_c^j(\hat{\Sigma}'_w)_{(\chi)} = 0$.

We shall use the definitions and results in 1.6-1.8 relative to $U, \tilde{U}, V, \tilde{V}$ where $\tilde{U} = \dot{w}U'\dot{w}^{-1}$, $\tilde{V} = \dot{w}V'\dot{w}^{-1}$. The partition 1.8(a) gives rise to a partition $\hat{\Sigma}'_w = \sqcup_{a,I}\hat{\Sigma}^{a,I}_w$ indexed by $a \in [0, r-1], I \in \mathcal{X}$ where

$$\hat{\Sigma}^{a,I}_w = \{ (x, x', u, u', z, \tau') \in \hat{\Sigma}'_w; z \in Z^{a,*,I}_r \}.$$

It is easy to see that there is a total order on the set of indices (a, I) such that the union of the $\hat{\Sigma}_w^{a,I}$ for (a, I) less than or equal than some given (a^0, I^0) is closed in $\hat{\Sigma}'_w$. Since the subsets $\hat{\Sigma}_w^{a,I}$ are stable under the action of \mathcal{T}'^F , we see that, in order to prove (c), it is enough to show that

(d)
$$H_c^j(\hat{\Sigma}_w^{a,I})_{(\chi)} = 0$$

for any fixed a, I as above. We choose $\alpha' \in I$. Let $\alpha = \alpha'^{-1}$. Then $G_r^{\alpha} \subset U_r \cap \dot{w} U'_r \dot{w}^{-1}$.

For any $z \in Z_r^{a,*}, \xi \in (G^{\alpha})_r^{r-a-1}$ we have

$$\xi z = z \xi \tau_{\xi,z} \omega_{\xi,z}$$

where $\tau_{\xi,z} \in \mathcal{T}^{\alpha}, \omega(\xi, z) \in \dot{w}U_r'^{r-1}\dot{w}^{-1}$ are uniquely determined. (See 1.7.) Moreover, the map $(G^{\alpha})_r^{r-a-1} \to \mathcal{T}^{\alpha}, \xi \mapsto \tau(\xi, z)$ factors through an isomorphism

$$\lambda_z : (G^{\alpha})_r^{r-a-1} / (G^{\alpha})_r^{r-a} \xrightarrow{\sim} \mathcal{T}^{\alpha}.$$

Let $\pi: (G^{\alpha})_r^{r-a-1} \to (G^{\alpha})_r^{r-a-1}/(G^{\alpha})_r^{r-a}$ be the canonical homomorphism. We can find a morphism of algebraic varieties

$$\psi: (G^{\alpha})_r^{r-a-1}/(G^{\alpha})_r^{r-a} \to (G^{\alpha})_r^{r-a-1}$$

such that $\pi \psi = 1$ and $\psi(1) = 1$. Let

$$\mathcal{H}' = \{ t' \in \mathcal{T}'; t'^{-1}F(t') \in \dot{w}^{-1}\mathcal{T}^{\alpha}\dot{w} \}.$$

This is a closed subgroup of \mathcal{T}' . For any $t' \in \mathcal{H}'$ we define $f_{t'} : \hat{\Sigma}^{a,I}_w \to \hat{\Sigma}^{a,I}_w$ by

$$f_{t'}(x, x', u, u', z, \tau') = (xF(\xi), \hat{x}', u, F(t')^{-1}u'F(t'), z, \tau'F(t'))$$

where

$$\xi = \psi \lambda_z^{-1} (\dot{w} F(t')^{-1} t' \dot{w}^{-1}) \in (G^{\alpha})_r^{r-a-1} \subset U_r \cap \dot{w} U_r' \dot{w}^{-1}$$

and $\hat{x}' \in G_r$ is defined by the condition that

$$xF(\xi)F(z)F(\dot{w})F(\tau'F(t')) = uz\dot{w}\tau'F(t')F(t')^{-1}u'F(t')\hat{x}'$$

In order for this to be well defined we must check that $\hat{x}' \in F(U'_r)$. Thus we must show that

 $xF(\xi)F(z)F(\dot{w})F(\tau'F(t'))\in uz\dot{w}\tau'u'F(t')F(U'_r)$ or that

 $xF(z)F(\xi)F(\tau_{\xi,z})F(\omega_{\xi,z})F(\dot{w})F(\tau'F(t')) \in uz\dot{w}\tau'u'F(t')F(U'_r).$ Since $xF(z) = uz\dot{w}\tau'u'x'F(\tau')^{-1}F(\dot{w}^{-1})$, it is enough to show that

$$uz\dot{w}\tau'u'x'F(\tau')^{-1}F(\dot{w}^{-1})F(\xi)F(\tau_{\xi,z})F(\omega_{\xi,z})F(\dot{w})F(\tau'F(t'))$$

$$\in uz\dot{w}\tau'u'F(t')F(U'_r)$$

or that

 $x'F(\tau')^{-1}F(\dot{w}^{-1})F(\xi)F(\tau_{\xi,z})F(\omega_{\xi,z})F(\dot{w})F(\tau'F(t')) \in F(t')F(U'_r).$ Since $x' \in F(U'_r), F(\dot{w}^{-1})F(\omega_{\xi,z})F(\dot{w}) \in F(U'_r)$, it is enough to check that

 $F(\tau')^{-1}F(\dot{w}^{-1})F(\xi)F(\tau_{\xi,z})F(\dot{w})F(\tau'F(t')) \in F(t')F(U'_r).$

Since $F(\dot{w}^{-1})F(\xi)F(\dot{w}) \in F(U'_r)$ it is enough to check that

$$F(\tau')^{-1}F(\dot{w}^{-1})F(\tau_{\xi,z})F(\dot{w})F(\tau'F(t')) \in F(t')F(U'_r)$$

or that

 $F(\dot{w}^{-1})F(\tau_{\xi,z})F(\dot{w})F(F(t')) = F(t')$ or that $\dot{w}^{-1}\tau_{\xi,z}\dot{w} = F(t')^{-1}t'$ or that $\lambda_z(\pi_z(\xi)) = \dot{w}F(t')^{-1}t'\dot{w}^{-1}$. But this is clear.

Thus, $f_{t'}: \hat{\Sigma}^{a,I}_w \to \hat{\Sigma}^{a,I}_w$ is well defined for $t' \in \mathcal{H}'$. It is clearly an isomorphism for any $t' \in \mathcal{H}'$. In particular, it is a well defined isomorphism for any $t' \in \mathcal{H}'^0$. By general principles, the induced map $f_{t'}^*: H^j_c(\hat{\Sigma}^{a,I}_w) \to H^j_c(\hat{\Sigma}^{a,I}_w)$ is constant when t' varies in \mathcal{H}'^0 . In particular, it is constant when t' varies in $\mathcal{T}'^F \cap \mathcal{H}'^0$. Now $\mathcal{T}'^F \subset \mathcal{H}'$ and for $t' \in \mathcal{T}'^F$, the map $f_{t'}$ coincides with the action of t' in the \mathcal{T}'^F -action on $\hat{\Sigma}^{a,I}_w$. (We use that $\psi(1) = 1$.) We see that the induced action of \mathcal{T}'^F on $H^j_c(\hat{\Sigma}^{a,I}_w)$ is trivial when restricted to $\mathcal{T}'^F \cap \mathcal{H}'^0$.

We can find $n \geq 1$ such that $F^n(\dot{w}^{-1}\mathcal{T}^\alpha\dot{w}) = \dot{w}^{-1}\mathcal{T}^\alpha\dot{w}$. Then $t' \mapsto t'F(t')F^2(t')\dots F^{n-1}(t')$ is a well defined morphism $\dot{w}^{-1}\mathcal{T}^\alpha\dot{w} \to \mathcal{H}'$. Its image is a connected subgroup of \mathcal{H}' hence is contained in \mathcal{H}'^0 . If $t' \in (\dot{w}^{-1}\mathcal{T}^\alpha\dot{w})^{F^n}$ then $N_F^{F^n}(t') \in \mathcal{T}'^F$; thus, $N_F^{F^n}(t') \in \mathcal{T}'^F \cap \mathcal{H}'^0$. We see that the action of $N_F^{F^n}(t') \in \mathcal{T}'^F$ on $H^j_c(\hat{\Sigma}^{a,I}_w)$ is trivial for any $t' \in (\dot{w}^{-1}\mathcal{T}^\alpha\dot{w})^{F^n}$.

If we assume that $H_c^j(\hat{\Sigma}_w^{a,I})_{(\chi)} \neq 0$, it follows that $t' \mapsto \chi(N_F^{F^n}(t'))$ is the trivial character of $(\dot{w}^{-1}\mathcal{T}^{\alpha}\dot{w})^{F^n}$. This contradicts our assumption that χ is regular. Thus, (d) holds. Hence (c) holds.

We now prove (b). Let

$$\tilde{H} = \{(t, t') \in T_r \times T'_r; tF(t)^{-1} = F(\dot{w})t'F(t')^{-1}F(\dot{w}^{-1})\}.$$

This is a closed subgroup of $T_r \times T'_r$ containing $T_r^F \times T'_r^F$. Now the action of $T_r^F \times T'_r^F$ on $\hat{\Sigma}''_w$ extends to an action of \tilde{H} given by the same formula. To see this consider $(t, t') \in \tilde{H}$ and $(x, x', u, u', 1, \tau') \in \hat{\Sigma}''_w$. We must show that

$$(txt^{-1}, t'x't'^{-1}, tut^{-1}, t'u't'^{-1}, 1, \dot{w}^{-1}t\dot{w}\tau't'^{-1}) \in \hat{\Sigma}''_u$$
that is.

that is, $txt^{-1}F(\dot{w})F(\dot{w}^{-1})F(t)F(\dot{w})F(\tau')F(t'^{-1}) = tut^{-1}\dot{w}\dot{w}^{-1}t\dot{w}\tau't'^{-1}t'u't'^{-1}t'x't'^{-1}$ or that

 $xt^{-1}F(t)F(\dot{w})F(\tau')F(t'^{-1}) = u\dot{w}\tau'u'x't'^{-1}$ or that $xt^{-1}F(t)F(\dot{w})F(\tau')F(t'^{-1}) = xF(\dot{w})F(\tau')t'^{-1}$ or that $t^{-1}E(t)F(\dot{w})F(\tau')^{-1}$. This is clear that $t^{-1}F(t)F(t)F(t'^{-1}) = F(t)F(t'^{-1})$.

or that $t^{-1}F(t)F(w)F(t'^{-1}) = F(w)t'^{-1}$; this is clear. Let T_*, T'_* be the reductive part of T_r, T'_r (thus T_* is a torus isomorphic to T). Let $\tilde{H}_* = \tilde{H} \cap (T_* \times T'_*)$. Then \tilde{H}^0_* is a torus acting on $\hat{\Sigma}''_w$ by restriction of the \tilde{H} -action. The fixed point set $(\hat{\Sigma}''_w)^{\hat{H}^0_*}$ of the \tilde{H}^0_* -action is stable under the action of $T_r^F \times T'_r^F$ and by general principles we have

$$\sum_{j \in \mathbf{Z}} (-1)^j \dim H_c^j(\hat{\Sigma}''_w)_{\theta^{-1},\theta'} = \sum_{j \in \mathbf{Z}} (-1)^j \dim H_c^j((\hat{\Sigma}''_w)^{\tilde{H}^0_*})_{\theta^{-1},\theta'}.$$

It is then enough to show that

(e) $\sum_{j \in \mathbf{Z}} (-1)^j \dim H^j_c((\hat{\Sigma}''_w)^{\tilde{H}^0_*})_{\theta^{-1},\theta'}$ is equal to 1 if F(w) = w and $Ad(\dot{w}) : T'_r \to T^F_r$ carries θ to θ' and equals 0, otherwise.

Let $(x, x', u, u', 1, \tau) \in (\hat{\Sigma}''_w)^{\tilde{H}^0_*}$. By Lang's theorem the first projection $\tilde{H}_* \to T_*$ is surjective. It follows that the first projection $\tilde{H}^0_* \to T_*$ is surjective. Similarly the second projection $\tilde{H}^0_* \to T'_*$ is surjective. Hence for any $t \in T_*, t' \in T'_*$ we have $txt^{-1} = x, t'x't'^{-1} = x', tut^{-1} = u, t'u't'^{-1} = u'$

hence x = x' = u = u' = 1. Thus, $(\hat{\Sigma}''_w)^{\tilde{H}^0_*}$ is contained in (f) $\{(1, 1, 1, 1, 1, \tau'); \tau' \in T'_r, F(\dot{w}\tau') = \dot{w}\tau'\}.$

The set (f) is clearly contained in the fixed point set of \tilde{H} . Note that (f) is empty

unless F(w) = w. We can therefore assume that F(w) = w. In this case, (f) is stable under the action of \tilde{H} . In particular it is stable under the action of \tilde{H}_*^0 . Since (f) is finite and \tilde{H}_*^0 is connected, we see that \tilde{H}_*^0 must act trivially on (f). Thus, (f) is exactly the fixed point set of \tilde{H}_*^0 . Hence this fixed point can be identified with $(\dot{w}T'_r)^F$. From this (e) follows easily. The lemma is proved.

2. The main results

2.1. Let G, F be as in 1.2. Let T be an F-stable maximal torus in G and let U be the unipotent radical of a Borel subgroup of G that contains T. (Note that U is not necessarily F-stable.) Let $r \geq 1$. Let $\mathcal{R}(G_r^F)$ be the group of virtual representations of G_r^F over $\bar{\mathbf{Q}}_l$. Let \langle,\rangle be the standard inner product $\mathcal{R}(G_r^F) \times \mathcal{R}(G_r^F) \to \mathbf{Z}$. Let

$$S_{T,U} = \{g \in G_r; g^{-1}F(g) \in F(U_r)\}.$$

The finite group $G_r^F \times T_r^F$ acts on $S_{T,U}$ by $(g_1,t) : g \mapsto g_1gt^{-1}$. For any $i \in \mathbb{Z}$ we have an induced action of $G_r^F \times T_r^F$ on $H_c^i(S_{T,U})$. For $\theta \in \widehat{T_r^F}$, we denote by $H_c^i(S_{T,U})_{\theta}$ the subspace of $H_c^i(S_{T,U})$ on which T_r^F acts according to θ . This is a G_r^F -submodule of $H_c^i(S_{T,U})$. Let

$$R^{\theta}_{T_r,U_r} = \sum_{i \in \mathbf{Z}} (-1)^i H^i_c(S_{T,U})_{\theta} \in \mathcal{R}(G^F_r).$$

Proposition 2.2. Assume that $r \ge 2$. Let (T', U', θ') be another triple like T, U, θ . Let $\mathcal{T} = T_r^{r-1}, \mathcal{T}' = T_r'^{r-1}$.

(a) Let i, i' be integers. Assume that there exists an irreducible G_r^F -module that appears in the G_r^F -module $(H_c^i(S_{T,U})_{\theta^{-1}})^*$ (dual of $H_c^i(S_{T,U})_{\theta^{-1}})$ and in the G_r^F module $H_c^{i'}(S_{T',U'})_{\theta'}$. There exists $n \ge 1$ and $g \in N(T',T)^{F^n}$ such that $\operatorname{Ad}(g)$ carries $\theta \circ N_F^{F^n}|_{\mathcal{T}^{F^n}} \in \widehat{\mathcal{T}^{F^n}}$ to $\theta' \circ N_F^{F^n}|_{\mathcal{T}'^{F^n}} \in \widehat{\mathcal{T}'^{F^n}}$.

 $\begin{aligned} & \operatorname{carries} \theta \circ N_F^{F^n}|_{\mathcal{T}^{F^n}} \in \widehat{\mathcal{T}^{F^n}} \text{ to } \theta' \circ N_F^{F^n}|_{\mathcal{T}'^{F^n}} \in \widehat{\mathcal{T}'^{F^n}}. \\ & (b) \text{ Assume that there exists an irreducible } G_r^F \operatorname{-module that appears in the virtual} \\ & G_r^F \operatorname{-module} \sum_i (-1)^i H_c^i(S_{T,U})_{\theta} \text{ and in the virtual} G_r^F \operatorname{-module} \sum_i (-1)^i H_c^i(S_{T',U'})_{\theta'}. \\ & \text{ There exists } n \ge 1 \text{ and } g \in N(T',T)^{F^n} \text{ such that } \operatorname{Ad}(g) \text{ carries } \theta \circ N_F^{F^n}|_{\mathcal{T}^{F^n}} \in \widehat{\mathcal{T}^{F^n}}. \end{aligned}$

We prove (a). Consider the free G_r^F -action on $S_{T,U} \times S_{T',U'}$ given by $g_1 : (g,g') \mapsto (g_1g,g_1g')$. The map

$$(g,g') \mapsto (x,x',y), x = g^{-1}F(g), x' = g'^{-1}F(g'), y = g^{-1}g'$$

defines an isomorphism of $G_r^F \setminus (S_{T,U} \times S_{T',U'})$ onto Σ (as in 1.2).

The action of $T_r^F \times T_r'^F$ on $S_{T,U} \times S_{T',U'}$ given by right multiplication by t^{-1} on the first factor and by t'^{-1} on the second factor becomes an action of $T_r^F \times T_r'^F$ on Σ given by $(x, x', y) \mapsto (txt^{-1}, t'x't'^{-1}, tyt'^{-1})$. Our assumption implies that the G_r^F -module $H_c^i(S_{T,U})_{\theta^{-1}} \otimes H_c^{i'}(S_{T',U'})_{\theta'}$ contains the unit representation with non-zero multiplicity. Hence the subspace of $H_c^{i+i'}(G_r^F \setminus (S_{T,U} \times S_{T',U'}))$ on which $T_r^F \times T_r'^F$ acts according to $\theta^{-1} \boxtimes \theta'$ is non-zero. Equivalently, $H_c^{i+i'}(\Sigma)_{\theta^{-1},\theta'} \neq 0$. We now use Lemma 1.4; (a) follows.

We prove (b). By general principles we have

$$\sum_{i} (-1)^{i} (H_{c}^{i}(S_{T,U})_{\theta^{-1}})^{*} = \sum_{i} (-1)^{i} H_{c}^{i}(S_{T,U})_{\theta}.$$

Hence the assumption of (b) implies that the assumption of (a) holds. Hence the conclusion of (a) holds. The proposition is proved.

Proposition 2.3. We preserve the setup of 2.2. Assume that θ or θ' is regular. The inner product $\langle R^{\theta}_{T_r,U_r}, R^{\theta'}_{T'_r,U'_r} \rangle$ is equal to the number of $w \in W(T,T')^F$ such that $Ad(\dot{w}): T'_r \to T^F_r$ carries θ to θ' .

We may assume that θ' is regular. As in the proof of 2.2, we have

$$\langle R^{\theta}_{T_r,U_r}, R^{\theta'}_{T'_r,U'_r} \rangle$$

$$= \sum_{i,i' \in \mathbf{Z}} (-1)^{i+i'} \dim(H^i_c(S_{T,U})_{\theta^{-1}} \otimes H^{i'}_c(S_{T',U'})_{\theta})^{G^F_r}$$

$$= \sum_{j \in \mathbf{Z}} (-1)^j \dim H^j_c(G^F_r \setminus (S_{T,U} \times S_{T',U'}))_{\theta^{-1},\theta'}$$

$$= \sum_{j \in \mathbf{Z}} (-1)^j \dim H^j_c(\Sigma)_{\theta^{-1},\theta'}$$

where $()^{G_r^F}$ denotes the space of G_r^F -invariants. It remains to use 1.9.

Corollary 2.4. Assume that $r \geq 2$. Let T, U be as in 2.1. Assume that $\theta \in \widehat{T_r^F}$ is regular.

(a) $R^{\theta}_{T_r,U_r}$ is independent of the choice of U.

(b) Assume also that the stabilizer of θ in $W(T,T)^F$ is {1}. Then $R^{\theta}_{T_r,U_r}$ is \pm an irreducible G^F_r -module.

We prove (a). Let U' be the unipotent radical of another Borel subgroup of G containing T. Let $R = R_{T_r,U_r}^{\theta}$, $R' = R_{T_r,U_r}^{\theta}$. By 2.3 we have

 $\langle R, R \rangle = \langle R, R' \rangle = \langle R', R \rangle = \langle R', R' \rangle.$ Hence $\langle R - R', R - R' \rangle = 0$, so that R = R'. This proves (a). In the setup of (b), we see from 2.3 that $\langle R_{T_r,U_r}^{\theta}, R_{T_r,U_r}^{\theta} \rangle = 1$. This proves (b).

2.5. Assume that $r \ge 2$. Let T be as in 2.1. Assume that $\theta \in \widehat{T_r^F}$ is regular. We set

 $R^{\theta}_{T_r} = R^{\theta}_{T_r, U_r}$

where U is chosen as in 2.1. (By 2.4(a), this is independent of the choice of U.)

3. An example

3.1. Let $A = \mathbf{F}[[\epsilon]]/(\epsilon^2)$. Define $F : A \to A$ by $F(a_0 + \epsilon a_1) = a_0^q + \epsilon a_1^q$ where $a_0, a_1 \in \mathbf{F}$. Let V be a 2-dimensional **F**-vector space with a fixed \mathbf{F}_q -rational structure with Frobenius map $F : V \to V$. Let G = SL(V). Then G has an \mathbf{F}_q -rational structure with Frobenius map $F : G \to G$ such that F(gv) = F(g)F(v) for all $g \in G, v \in V$. Let $V_2 = A \otimes_{\mathbf{F}} V$. Then G_2 (see 0.2) may be identified with the group of all automorphisms of the free A-module V_2 with determinant 1. We regard V as a subset of V_2 by $v \mapsto 1 \otimes v$. Any element of V_2 can be written uniquely in the form $v_0 + \epsilon v_1$ where $v_0, v_1 \in V$. The Frobenius map $F : V_2 \to V_2$ satisfies $F(v_0 + \epsilon v_1) = F(v_0) + \epsilon F(v_1)$ for $v_0, v_1 \in V$.

Let $\widehat{G_2^F}$ be the set of isomorphism classes of irreducible representations of G_2^F over $\overline{\mathbf{Q}}_l$. The objects of $\widehat{G_2^F}$ can be classified using the fact that G_2^F is a semidirect product of G^F and \mathbf{F}_q^3 .

The table below shows the number of representations in G_2^F of various dimensions assuming that q is odd; the first column indicates the dimension, the second column indicates the number of representations of that dimension.

The analogous table in the case where q is a power of 2 is

$$\begin{array}{ccccc} \dim & & \sharp \\ 1 & 1 \\ q & 1 \\ q+1 & (q-2)/2 \\ q-1 & q/2 \\ q^2+q & (q-1)(q-2)/2 \\ (q^2+q)/2 & 2(q-1) \\ q^2-q & (q^2-q)/2 \\ (q^2-q)/2 & 2(q-1) \\ q^2-1 & q \end{array}$$

3.2. Let \mathcal{B} be the set of all A-submodules $L \subset V_2$ such that L is a direct summand of V_2 and L is free of rank 1. Now G_2 acts transitively on \mathcal{B} . The diagonal action on $\mathcal{B} \times \mathcal{B}$ has three orbits $\mathcal{O}, \mathcal{O}', \mathcal{O}''$ where

 $\mathcal{O} = \{ (L, L') \in \mathcal{B} \times \mathcal{B}; L = L' \}, \\ \mathcal{O}' = \{ (L, L') \in \mathcal{B} \times \mathcal{B}; L \cap L' = \epsilon L = \epsilon L' \}, \\ \mathcal{O}'' = \{ (L, L') \in \mathcal{B} \times \mathcal{B}; L \cap L' = 0 \}.$

If $L \in \mathcal{B}$ then $F(L) \in \mathcal{B}$. Thus we obtain a map $F : \mathcal{B} \to \mathcal{B}$, the Frobenius map of a \mathbf{F}_q -rational structure on \mathcal{B} . Let

$$\begin{split} X &= \{L \in \mathcal{B}; (L, F(L)) \in \mathcal{O}\}, \\ X' &= \{L \in \mathcal{B}; (L, F(L)) \in \mathcal{O}'\}, \\ X'' &= \{L \in \mathcal{B}; (L, F(L)) \in \mathcal{O}''\}. \end{split}$$

Then X, X', X'' form a partition of \mathcal{B} into G_2^F -stable subvarieties.

We now define some finite coverings of X, X', X'' as follows. Let e, e' be an **F**basis of V such that F(e) = e, F(e') = e'. Let <u>T</u> be the subgroup of G consisting of the automorphisms $e \mapsto ae, e' \mapsto a^{-1}e'$ with $a \in \mathbf{F}^*$. (An F-stable maximal torus of G.) Let <u>U</u> be the subgroup of G consisting of the automorphisms

 $e \mapsto e + be', e' \mapsto e'$ with $b \in \mathbf{F}^*$. Let $\nu \in G$ be such that $\nu(e) = e', \nu(e') = -e$. Let $h \in G$ be such that $he = e, he' = e' + \epsilon e$. Let

$$\begin{split} \tilde{X} &= \{g \in G_2; g^{-1}F(g) \in \underline{U}_2\}/\underline{U}_2, \\ \tilde{X}' &= \{g \in G_2; g^{-1}F(g) \in h\underline{U}_2\}/(\underline{U}_2 \cap h\underline{U}_2 h^{-1}), \\ \tilde{X}'' &= \{g \in G_2; g^{-1}F(g) \in \nu \underline{U}_2\}. \end{split}$$

(We use the action of \underline{U}_2 or $\underline{U}_2 \cap h\underline{U}_2 h^{-1}$ on G_2 by right translation.) Then $g \mapsto Age'$ is a well defined morphism $\tilde{X} \to X, \tilde{X}' \to X', \tilde{X}'' \to X''$. This is a finite principal covering with group $\Gamma, \Gamma', \Gamma''$ respectively (acting by right translation) where

$$\begin{split} &\Gamma = \underline{T}_2^F \text{ (of order } q^2 - q) \\ &\Gamma' = \{x \in \underline{T}_2 \underline{U}_2; x^{-1} hF(x) \in h\underline{U}\} / (\underline{U} \cap h\underline{U}h^{-1}) \cong \{\pm 1\} \times \mathbf{F}_q \text{ (of order } 2q \text{ if } q \text{ is odd, of order } q \text{ if } q \text{ is a power of } 2) \end{split}$$

 $\Gamma'' = \{t \in \underline{T}_2; F(t) = t^{-1}\} \text{ (of order } q^2 + q).$

For any variety Y with an action of a finite group and any character ω of that finite group, let $H_c^j(Y)_{\omega}$ denote the subspace of $H_c^j(Y)$ on which the finite group acts according to ω . Thus, for ω in $\hat{\Gamma}$ (resp. $\hat{\Gamma}', \hat{\Gamma}''$), $H_c^j(\tilde{X})_{\omega}$ (resp. $H_c^j(\tilde{X}')_{\omega}, H_c^j(\tilde{X}')_{\omega}$) is well defined.

3.3. Let $Y = \{g \in G; g^{-1}F(g) \in h\underline{U}_2\}$. We wish to describe Y more explicitly. If $g \in G_2$, the condition that $g \in Y$ is that

 $F(g)e = ghue = gh(e + xe') = g(e + xe' + \epsilon xe),$

 $F(g)e' = ghue' = gh(e') = g(e' + \epsilon e)$

for some $x \in A$. Define $a, b, c, d \in A$ by ge = ae + be', ge' = ce + de'. The condition that $g \in Y$ is

$$F(a)e + F(b)e' = ae + be' + \epsilon xae + \epsilon xbe' + xce + xde',$$

 $F(c)e + F(d)e' = ce + de' + \epsilon ae + \epsilon be'$

for some $x \in A$. Thus, we may identify Y with the set of all $(a, b, c, d) \in A^4$ such that

 $F(a) = a + \epsilon xa + xc, F(b) = b + \epsilon xb + xd, F(c) = c + \epsilon a, F(d) = d + \epsilon b, ad - bc = 1$ for some $x \in A$, or equivalently, such that

 $(F(a) - a)(\epsilon b + d) = (F(b) - b)(\epsilon a + c), F(c) = c + \epsilon a, F(d) = d + \epsilon b, ad - bc = 1.$ Setting $a = a_0 + \epsilon a_1, b = b_0 + \epsilon b_1, c = c_0 + \epsilon c_1, d = d_0 + \epsilon d_1$ with $a_i, d_i \in \mathbf{F}$, we see that Y is identified with the set consisting of all $(a_0, b_0, c_0, d_0, a_1, b_1, c_1, d_1) \in \mathbf{F}^8$ such that

- (a) $c_0^q = c_0, d_0^q = d_0, c_1^q = c_1 + a_0, d_1^q = d_1 + b_0,$
- (b) $a_0d_0 b_0c_0 = 1$, $\bar{a_0d_1} + a_1d_0 \bar{b}_0c_1 b_1c_0 = 0$,
- (c) $(a_0^q a_0)d_0 = (b_0^q b_0)c_0,$

 $(a_0^q - a_0)b_0 + (a_0^q - a_0)d_1 + (a_1^q - a_1)d_0 = (b_0^q - b_0)a_0 + (b_0^q - b_0)c_1 + (b_1^q - b_1)c_0.$ Actually the equations (c) are a consequence of the other equations, hence they can be omitted. The first equation (b) can be written (using (a)):

 $(c_1^q - c_1)d_0 - (d_1^q - d_1)c_0 = 1,$ that is,

 $(c_1d_0 - d_1c_0)^q - (c_1d_0 - d_1c_0) = 1.$

Setting $f = c_1 d_0 - d_1 c_0$, we see that Y is identified with the set of all $(a_0, b_0, c_0, d_0, a_1, b_1, c_1, d_1, f) \in \mathbf{F}^9$

such that

 $c_0^q = c_0, d_0^q = d_0, c_1^q = c_1 + a_0, d_1^q = d_1 + b_0,$

 $f^{q} - f = 1, c_{1}d_{0} - d_{1}c_{0} = f, a_{0}d_{1} + a_{1}d_{0} - b_{0}c_{1} - b_{1}c_{0} = 0.$

Now on Y we have a free right action of $\underline{U}_2^1 = \underline{U}_2 \cap h \underline{U}_2 h^{-1}$, $u: g \mapsto gu$. In terms of coordinates, this is $(a, b, c, d) \mapsto (a + \epsilon xc, b + \epsilon xd, c, d), x \in \mathbf{F}$ or

$$(a_0, b_0, c_0, d_0, a_1, b_1, c_1, d_1, f) \mapsto (a_0, b_0, c_0, d_0, a_1 + xc_0, b_1 + xd_0, c_1, d_1, f).$$

The set of orbits $Y/\underline{U}_2^1 = \tilde{X}'$ may be identified with the set of all

 $(a_0, b_0, c_0, d_0, c_1, d_1, f) \in \mathbf{F}^7$

such that

$$c_0^q = c_0, d_0^q = d_0, c_1^q = c_1 + a_0, d_1^q = d_1 + b_0, f^q - f = 1, c_1 d_0 - d_1 c_0 = f.$$

We consider the obvious projection of this set to the finite set

 $\{(c_0, d_0, f) \in \mathbf{F}^3; c_0^q = c_0, d_0^q = d_0, f^q - f = 1, (c_0, d_0) \neq (0, 0)\}.$ The fibre of this projection at $(c_0, d_0, f) \in \mathbf{F}^3$ is the affine line $\{(c_1, d_1) \in \mathbf{F}^2; c_1 d_0 - c_1 d_1 \in \mathbf{F}^2\}$ $d_1c_0 = f$. Thus, \tilde{X}' is a union of $(q^2 - 1)q$ affine lines. Hence $H^j_c(\tilde{X}') = 0$ for $j \neq 2$ and $H_c^2(\tilde{X}')$ is a permutation representation of G_2^F of dimension $(q^2 - 1)q$. For q odd, it follows easily that, as a G_2^F -module, $H_c^2(\tilde{X}')$ is the direct sum of the 2q irreducible representations of degree $(q^2 - 1)/2$ (each one with multiplicity 1); more precisely, for any $\omega' \in \hat{\Gamma}'$, $H_c^2(\tilde{X}')_{\omega'}$ is irreducible of degree $(q^2 - 1)/2$ and each irreducible representation of degree $(q^2 - 1)/2$ is obtained for exactly one ω' .

Similarly, for q a power of 2, $H^2_c(\tilde{X}')$ is the direct sum of the q irreducible representations of degree $q^2 - 1$ (each one with multiplicity 1); more precisely, for any $\omega' \in \hat{\Gamma}'$, $H_c^2(\tilde{X}')_{\omega'}$ is irreducible of degree $q^2 - 1$ and each irreducible representation of degree $q^2 - 1$ is obtained for exactly one ω' . **3.4.** Now \tilde{X} is a permutation representation of G_2^F of dimension $q^4 - q^2$ which is easy to analyze. We see that $H_c^j(\tilde{X}) = 0$ for $j \neq 0$ and, for q odd, $H_c^0(\tilde{X})$ is the direct sum of all irreducible representations of degree $q^2 + q$ and q + 1 (each one with multiplicity 2), those of degree 1, q, (q+1)/2 (each one with multiplicity 1) and $H_c^2(\tilde{X}')_{\omega'}$ with $\omega' \in \hat{\Gamma}', \omega'^2 = 1$ (each one with multiplicity q - 1). More precisely, if $\omega \in \hat{\Gamma}$ then $H_c^0(\tilde{X})_{\omega}$ is

irreducible of degree $q^2 + q$ if $\omega|_{T_2^{1F}} \neq 1$;

the direct sum of $\bigoplus_{\omega' \in \hat{\Gamma}; \omega'^2 = 1} H_c^2(\tilde{X}')_{\omega'}$ with an irreducible representations of degree q + 1, if $\omega|_{\underline{T}_2^{1F}} = 1, \omega^2 \neq 1$;

the direct sum of $\bigoplus_{\omega'\in\hat{\Gamma};\omega'^2=1}H_c^2(\tilde{X}')_{\omega'}$ with the two irreducible representations of degree (q+1)/2, if $\omega|_{T_1^{1F}}=1, \omega^2=1, \omega\neq 1$;

the direct sum of $\bigoplus_{\omega' \in \hat{\Gamma}; \omega'^2 = 1} H_c^2(\tilde{X}')_{\omega'}$ with the two irreducible representations of degree 1 and q, if $\omega = 1$.

On the other hand, for q a power of 2, $H_c^0(\tilde{X})$ is the direct sum of all irreducible representations of degree $q^2 + q$ and q + 1 (each one with multiplicity 2), those of degree 1, q, $(q^2+q)/2$ (each one with multiplicity 1) and $H_c^2(\tilde{X}')_1$ (with multiplicity q-1). More precisely, if $\omega \in \hat{\Gamma}$ then $H_c^0(\tilde{X})_{\omega}$ is

irreducible of degree $q^2 + q$ if $\omega|_{T_2^{1F}} \neq 1, \omega^2 \neq 1$;

the direct sum of two irreducible representations of degree $(q^2 + q)/2$ if $\omega^2 = 1, \omega \neq 1$;

the direct sum of $H_c^2(\tilde{X}')_1$ with an irreducible representations of degree q+1, if $\omega|_{\underline{T}_2^{1_F}} = 1, \omega \neq 1$;

the direct sum of $H_c^2(\tilde{X}')_1$ with the two irreducible representations of degree 1 and q, if $\omega = 1$.

3.5. Let

$$\mathfrak{S}_0 = \{ x_0 \in V; x_0 \land F(x_0) = e \land e' \}, \quad \mathfrak{S}_{00} = \{ x_0 \in \mathfrak{S}_0; F^2(x_0) = -x_0 \}.$$

Now G^F acts on \mathfrak{S}_0 (restriction of the *G*-action on *V*). This restricts to a G^F action on \mathfrak{S}_{00} . We show that this action is simply transitive. If $g \in G^F$ keeps fixed some $x_0 \in \mathfrak{S}_{00}$ then it also keeps fixed $F(x_0)$ hence it must be 1 (recall that $x_0, F(x_0)$ form a basis of *V*). Thus the G^F -action on \mathfrak{S}_{00} has trivial isotropy. We may identify \mathfrak{S}_{00} with $\{(a, b) \in \mathbf{F}^2; ab^q - a^q b = 1, a^{q^2} = -a, b^{q^2} = -b\}$. For such (a, b) we have automatically $a \neq 0$. We make a change of variable $(a, b) \mapsto (a, c)$ where c = b/a. Then \mathfrak{S}_{00} becomes

 $\{(a,c)\in \mathbf{F}^2; a^{q+1}(c^q-c)=1, a^{q^2}=-a, c^{q^2}=c\}.$

The second projection maps this to $\{c \in \mathbf{F}; c^{q^2} = c, c^q \neq c\}$ which has $q^2 - q$ elements. The fibre at c is $\{a \in \mathbf{F}; a^{q+1} = (c^q - c)^{-1}\}$. (For such a we have automatically $a^{q^2} = -a$ since $c^{q^2} = c$.) This fibre has exactly q + 1 elements since $(c^q - c)^{-1} \neq 0$. We see that $\sharp(\mathfrak{S}_{00}) = (q+1)(q^2 - q) = \sharp(G^F)$. It follows that the G^F -action on \mathfrak{S}_{00} is indeed simply transitive.

3.6. We now analyze \tilde{X}'' . Let

$$\mathfrak{S} = \{ x \in V_2; x \wedge F(x) = e \wedge e' \}$$

Now G_2^F acts on \mathfrak{S} by $g_1: x \mapsto g_1 x$. The map $g \mapsto g(e')$ defines an isomorphism $\iota: \tilde{X}'' \xrightarrow{\sim} \mathfrak{S}$.

We check that this is a well defined bijection. Let $g \in \tilde{X}''$. Then $F(g) = g\nu u$ for some $u \in \underline{U}_2$. Let x = ge'. Then for some $u \in \underline{U}_2$ we have

$$x \wedge F(x) = (ge') \wedge F(ge') = (ge') \wedge F(g)e' = e' \wedge g^{-1}F(g)e' = e' \wedge \nu ue'$$
$$= e' \wedge \nu e' = e' \wedge (-e) = e \wedge e',$$

hence $x \in \mathfrak{S}$ and ι is well defined. Now let $x \in \mathfrak{S}$. We can find $g \in G_2$ such that ge' = x. Then

$$e \wedge e' = x \wedge F(x) = (ge') \wedge F(ge') = (ge') \wedge F(g)e' = e' \wedge g^{-1}F(g)e'.$$

Hence $g^{-1}F(g)e' = -e + be'$ for some $b \in A$. It follows that $g^{-1}F(g) = u'\nu u$ where $u, u' \in \underline{U}_2$. Then $(gu')^{-1}F(gu') = \nu uF(u')$ hence $gu' \in \tilde{X}''$. Clearly, $\iota(gu') = x$ so that ι is surjective. Now assume that $g, g' \in \tilde{X}''$ satisfy $\iota(g) = \iota(g')$ that is ge' = g'e'. Then $g' = gu', u' \in \underline{U}_2$. We have $g'^{-1}F(g') = \nu u$ with $u \in \underline{U}_2$ hence $u'^{-1}g^{-1}F(g)F(u') = \nu u$. Also, $g^{-1}F(g) = \nu \tilde{u}$ with $\tilde{u} \in \underline{U}_2$ hence $u'^{-1}\nu \tilde{u}F(u') = \nu u$ so that $u' \in \nu \underline{U}_2\nu^{-1}$. Thus, $u' \in \underline{U}_2 \cap (\nu \underline{U}_2\nu^{-1}) = \{1\}$ hence u' = 1 and g' = g. Thus, ι is injective hence bijective. It commutes with the G_2^F -actions.

Now \mathfrak{S} consists of the elements $x_0 + \epsilon x_1$, with $x_0, x_1 \in V$ such that $(x_0 + \epsilon x_1) \wedge (F(x_0) + \epsilon F(x_1)) = e \wedge e'$, that is

 $x_0 \wedge F(x_0) = e \wedge e'$ and $x_1 \wedge F(x_0) + x_0 \wedge F(x_1) = 0$. We have a morphism

 $\kappa: \mathfrak{S} \to \mathfrak{S}_0, x_0 + \epsilon x_1 \mapsto x_0.$

If $x_0 \in \mathfrak{S}_0$ then $\kappa^{-1}(x_0)$ may be identified with

 $\{x_1 \in V; x_1 \wedge F(x_0) + x_0 \wedge F(x_1) = 0\}.$

Note that $x_0, F(x_0)$ form a basis of V hence $F^2(x_0) = c_0 x_0 + c_1 F(x_0)$ with $c_0, c_1 \in \mathbf{F}$. Since $x_0 \wedge F(x_0) = e \wedge e'$ is F-stable, we have $x_0 \wedge F(x_0) = F(x_0) \wedge F^2(x_0)$ hence $c_0 = -1$. Let $\mathfrak{S}_{01} = \mathfrak{S}_0 - \mathfrak{S}_{00}$. We have a partition $\mathfrak{S} = \mathfrak{S}_* \cup \mathfrak{S}_{**}$ where $\mathfrak{S}_* = \kappa^{-1}(\mathfrak{S}_{00}), \mathfrak{S}_{**} = \kappa^{-1}(\mathfrak{S}_{01})$ are G_2^F -stable. If $x_0 \in \mathfrak{S}_0$, then any $x_1 \in V$ can be written uniquely in the form

 $x_1 = a_0 x_0 + a_1 F(x_0)$

with $a_0, a_1 \in \mathbf{F}$. The condition that $x_0 + \epsilon x_1 \in \kappa^{-1}(x_0)$ is

 $(a_0x_0 + a_1F(x_0)) \wedge F(x_0) + x_0 \wedge (a_0^qF(x_0) + a_1^qF^2(x_0)) = 0,$ that is,

 $a_0 x_0 \wedge F(x_0) + x_0 \wedge (a_0^q F(x_0) - a_1^q x_0 + a_1^q c_1 F(x_0)) = 0,$ that is, $a_0x_0 \wedge F(x_0) + a_0^q x_0 \wedge F(x_0) + a_1^q c_1 x_0 \wedge F(x_0) = 0,$ or $a_0 + a_0^q + a_1^q c_1 = 0.$

Thus we may identify $\kappa^{-1}(x_0)$ with $\{(a_0, a_1) \in \mathbf{F}^2; a_0 + a_0^q + a_1^q c_1 = 0\}$. If $c_1 \neq 0$ (that is if $x_0 \in \mathfrak{S}_{01}$) this is isomorphic to the affine line. Thus, κ restricts to an affine line bundle $\mathfrak{S}_{**} \to \mathfrak{S}_{01}$.

Now the action of Γ'' on \tilde{X}'' corresponds under ι to the action of $\{\lambda \in A; \lambda F(\lambda) = 1\}$ on \mathfrak{S} by scalar multiplication. Hence the action of $\{t \in \Gamma''; t \in T_2^1\}$ on \tilde{X}'' corresponds to the action of $A' = \{\lambda \in A; \lambda F(\lambda) = 1, \lambda \in 1 + \epsilon A\}$ on \mathfrak{S} by scalar multiplication. The action of $1 + \epsilon \lambda_1 \in A'$ (with $\lambda_1 \in \mathbf{F}$) in the coordinates (x_0, a_0, a_1) is $(x_0, a_0, a_1) \mapsto (x_0, a_0 + \lambda_1, a_1)$. Thus it preserves each fibre of κ .

Now \mathfrak{S}_{**} is stable under the action of $\{\lambda \in A; \lambda F(\lambda) = 1\}$ and the restriction of this action to A' preserves each fibre of $\mathfrak{S}_{**} \to \mathfrak{S}_{01}$ (an affine line); hence this group acts trivially on $H^j_c()$ of each such fibre hence it also acts trivially on $H^j_c(\mathfrak{S}_{**})$. Thus, $H^j_c(\mathfrak{S}) \to H^j_c(\mathfrak{S}_*)$ is an isomorphism on the part where $\sum_{\lambda \in A'} \lambda$ acts as 0.

We now study $H_c^j(\mathfrak{S}_*)$. If $x_0 \in \mathfrak{S}_{00}$ then $\kappa^{-1}(x_0)$ may be identified with $\{(a_0, a_1) \in \mathbf{F}^2; a_0 + a_0^q = 0\}$. Thus, \mathfrak{S}_* is an affine line bundle over

$$\mathfrak{S}_{00} \times \{a_0 \in \mathbf{F}; a_0 + a_0^q = 0\}$$

which is a transitive permutation representation of G_2^F that is explicitly known from 3.5. It follows that $H_c^j(\mathfrak{S}_*) = 0$ for $j \neq 2$ and the part of $H_c^2(\mathfrak{S}_*)$ where $\sum_{\lambda \in A'} \lambda$ acts as 0 is the direct sum of the irreducible representations of degree $q^2 - q$ (each one with multiplicity 2) and of degree $(q^2 - q)/2$ (each one with multiplicity 1); note that the latter representations occur only when q is a power of 2.

We now study the part of $H_c^j(\mathfrak{S})$ where A' acts as 1. This is the same as $H_c^j(A' \setminus \mathfrak{S})$. The map $(x_0, a_0, a_1) \mapsto (x_0, \tilde{a}_0, a_1), \tilde{a}_0 = a_0 + a_0^q$ is an isomorphism of $A' \setminus \mathfrak{S}$ with the set of all $(x_0, \tilde{a}_0, a_1) \in \mathfrak{S}_0 \times \mathbf{F} \times \mathbf{F}$ such that $\tilde{a}_0 + a_1^q c_1 = 0$. (Here c_1 is determined by x_0 as above.) Hence the map $(x_0, a_0, a_1) \mapsto (x_0, a_1)$ is an isomorphism $A' \setminus \mathfrak{S} \xrightarrow{\sim} \mathfrak{S}_0 \times \mathbf{F}$. Thus, $H_c^j(A' \setminus \mathfrak{S}) = H_c^{j-2}(\mathfrak{S}_0)$. Thus, G_2^F acts on $H_c^j(A' \setminus \mathfrak{S})$ through its quotient G^F and that action is explicitly known from the representation theory of G^F .

We see that $H_c^4(\tilde{X}'')$ is the 1 dimensional representation; $H_c^3(\tilde{X}'')$ is the direct sum of all irreducible representations of degree q - 1 (each one with multiplicity 2) and those of degree (q - 1)/2, q (each one with multiplicity 1); $H_c^2(\tilde{X}'')$ is the direct sum of all irreducible representations of degree $q^2 - q$ (each one with multiplicity 2) and of degree $(q^2 - q)/2$ (each one with multiplicity 1); $H_c^j(\tilde{X}'') = 0$ for $j \notin \{2, 3, 4\}$; note that the representations of degree (q - 1)/2 occur only for qodd, while those of degree $(q^2 - q)/2$ occur only for q a power of 2.

More precisely, if $\omega \in \hat{\Gamma}''$ and q is odd, then

 $H_c^4(\tilde{X}'')_{\omega}$ is irreducible of degree 1 if $\omega = 1$ and is 0 otherwise;

 $H_c^3(\tilde{X}'')_{\omega}$ is irreducible of degree q-1 if $\omega|_{\Gamma''\cap T_2^1}=1$, $\omega^2 \neq 1$; it is the direct sum of two irreducible representations of degree (q-1)/2 if $\omega|_{\Gamma''\cap T_2^1}=1$, $\omega^2=1$, $\omega\neq 1$;

it it is irreducible of degree q if $\omega = 1$; it is 0 if $\omega|_{\Gamma'' \cap T_2^1} \neq 1$;

 $H_c^2(\tilde{X}'')_{\omega}$ is irreducible of degree $q^2 - q$ if $\omega|_{\Gamma'' \cap T_2^1} \neq 1$ and is 0 otherwise.

Similarly, if $\omega \in \hat{\Gamma}''$ and q is a power of 2, then

 $H_c^4(\tilde{X}'')_{\omega}$ is irreducible of degree 1 if $\omega = 1$ and is 0 otherwise;

 $H_c^3(\tilde{X}'')_{\omega}$ is irreducible of degree q-1 if $\omega|_{\Gamma''\cap T_2^1}=1$, $\omega\neq 1$; it is irreducible of degree q if $\omega=1$; it is 0 if $\omega|_{\Gamma''\cap T_2^1}\neq 1$;

 $H_c^2(\tilde{X}'')_{\omega}$ is irreducible of degree $q^2 - q$ if $\omega|_{\Gamma'' \cap T_2^1} \neq 1$, $\omega^2 \neq 1$; it is the direct sum of two irreducible representations of degree $(q^2 - q)/2$ if $\omega^2 = 1, \omega \neq 1$; it is 0 otherwise.

3.7. We see that any irreducible representation of G_2^F appears in at least one of the representations $H_c^j(\tilde{X})_{\omega}, H_c^j(\tilde{X}')_{\omega}, H_c^j(\tilde{X}'')_{\omega}$. More precisely, the regular representation of G_2^F is a **Q**-linear combination of the virtual representations

$$\sum_{j\in\mathbf{Z}}(-1)^{j}H_{c}^{j}(\tilde{X})_{\omega}, \sum_{j\in\mathbf{Z}}(-1)^{j}H_{c}^{j}(\tilde{X}')_{\omega}, \sum_{j\in\mathbf{Z}}(-1)^{j}H_{c}^{j}(\tilde{X}'')_{\omega}.$$

3.8. Let $\gamma \in G$ be such that $\gamma^{-1}F(\gamma) = \nu$. We set $T = \gamma \underline{T}\gamma^{-1}$, $U = \gamma \underline{U}\gamma^{-1}$. Then T is an F-stable maximal torus of G and U is the unipotent radical of a Borel subgroup of G containing T. Hence $S_{T,U}$ is defined (with r = 2). Now $g \mapsto g\gamma^{-1}$ defines an isomorphism $\tilde{X}'' \xrightarrow{\sim} S_{T,U}$

and an isomorphism $\Gamma'' \xrightarrow{\sim} T_2^F$. Also $G_2^F \times \Gamma''$ acts on \tilde{X}'' by $(g_1, t) : g \mapsto g_1 g t^{-1}$. This action is compatible with the $G_2^F \times T_2^F$ -action on $S_{T,U}$ via the isomorphisms above. We see that the virtual representations $\sum_{j \in \mathbf{Z}} (-1)^j H_c^j (\tilde{X}'')_{\omega}$ of G_2^F are the same as the virtual representations $R_{T,U}^{\theta}$.

3.9. We return to the general setup of 1.2. Let <u>B</u> be an F-stable Borel subgroup of G with unipotent radical <u>U</u>. For any $x \in G_r$ let $X_x = \{g \in G_r; g^{-1}F(g) \in x\underline{U}_r\}$. Then G_r^F acts on X_x by left translations hence it acts naturally on $H_c^j(X_x)$. Note that the isomorphism class of the G_r^F -module $H_c^j(X_x)$ depends only on the $(\underline{U}_r, \underline{U}_r)$ double coset of x in G_r . We conjecture that any irreducible representation of G_r^F appears in $\sum_{j \in \mathbf{Z}} (-1)^j H_c^j(X_x)$ for some $x \in G_r$. This holds for r = 1 (see [DL]) and also for $G = SL_2, r = 2$, by the results in this section.

References

- [DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math. 103 (1976), 103-161.
- [G] P. Gérardin, Construction de séries discrètes p-adiques, Lecture Notes in Math., vol. 462, Springer, Berlin, 1975.
- [L] G. Lusztig, Some remarks on the supercuspidal representations of p-adic semisimple groups, Proc.Symp.Pure Math. 33(1) (1979), 171-175, Amer.Math.Soc.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139