

MIT Open Access Articles

Singular Supports for Character Sheaves on a Group Compactification

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: He, X., Lusztig, G. Singular Supports for Character Sheaves on a Group

Compactification. GAFA Geom. funct. anal. 17, 1915–1923 (2008)

As Published: 10.1007/s00039-007-0641-8

Publisher: Springer Nature America, Inc

Persistent URL: https://hdl.handle.net/1721.1/140248

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of Use: Article is made available in accordance with the publisher's policy and may be

subject to US copyright law. Please refer to the publisher's site for terms of use.

SINGULAR SUPPORTS FOR CHARACTER SHEAVES ON A GROUP COMPACTIFICATION

Xuhua He and George Lusztig

ABSTRACT. Let G be a semisimple adjoint group over \mathbf{C} and \bar{G} be the De Concini-Procesi completion of G. In this paper, we define a Lagrangian subvariety Λ of the cotangent bundle of \bar{G} such that the singular support of any character sheaf on \bar{G} is contained in Λ .

- **1.1.** In this paper all algebraic varieties are assumed to be over a fixed algebraically closed field of characteristic 0.
- If X is a smooth variety, let T^*X be the cotangent bundle of X. For any morphism $\alpha: X \to Y$ of smooth varieties and $x \in X$, we write $\alpha^*: T^*_{\alpha(x)}Y \to T^*_xX$ for the map induced by α . If moreover, $\alpha: X \to Y$ is a locally trivial fibration with smooth connected fibres and Λ is a closed Lagrangian subvariety of T^*Y , then let $\alpha^{\bigstar}(\Lambda) = \bigcup_{x \in X} \alpha^*(\Lambda \cap T^*_{\alpha(x)}Y) \subset T^*X$. Then
- (a) $\alpha^{\bigstar}(\Lambda)$ is a closed Lagrangian subvariety of T^*X . Moreover, the set of irreducible components of Λ is naturally in bijection with the set of irreducible components of $\alpha^{\bigstar}(\Lambda)$.
- Let X, Y be smooth irreducible varieties and let $\alpha : X \to Y$ be a principal P-bundle for a free action of a connected linear algebraic group P on X.
- (b) If Λ' is a closed Lagrangian subvariety of T^*X stable under the P-action then $\Lambda' = \alpha^*(\Lambda)$ for a unique closed Lagrangian subvariety Λ of T^*Y .
- Let X be a smooth irreducible variety and let $i: Y \to X$ be the inclusion of a locally closed smooth irreducible subvariety. Let Λ be a closed Lagrangian subvariety of T^*Y . Let $i_{\bigstar}(\Lambda)$ be the subset of T^*X consisting of all $\xi \in T_x^*X$ such that $x \in Y$ and the image of ξ under the obvious surjective map $T_x^*X \to T_x^*Y$ belongs to $\Lambda \cap T_x^*Y$. Note that
- (c) $i_{\bigstar}(\Lambda)$ is a locally closed Lagrangian subvariety of T^*X . Moreover, the set of irreducible components of $i_{\bigstar}(\Lambda)$ is naturally in bijection with the set of irreducible components of Λ .

²⁰⁰⁰ Mathematics Subject Classification. 20G99.

X. H. is is supported by NSF grant DMS-0111298. G.L. is supported in part by NSF grant DMS-0243345.

For an algebraic variety X we write $\mathcal{D}(X)$ for the bounded derived category of constructible $\bar{\mathbf{Q}}_l$ -sheaves on X where l is a fixed prime number. For X smooth and $C \in \mathcal{D}(X)$, we denote by SS(X) the singular support of C (a closed Lagrangian subvariety of T^*X). Let A be a connected linear algebraic group acting on a smooth variety X and let B be a connected subgroup of A. Let $\mu_A: T^*X \to \mathrm{Lie}(A)^*$ be the moment map of the A-action on X. Consider the diagram $X \xleftarrow{pr_1} A \times X \xrightarrow{pr_2} A \times_B X \xrightarrow{\pi} X$ where B acts on $A \times X$ by $b: (a,x) \mapsto (ab^{-1},bx)$, $A \times_B X$ is the quotient space and $\pi(a,x) = ax$. Then for any B-equivariant perverse sheaf C on X there is a well defined perverse sheaf C' on $A \times_B X$ such that $pr_2^*C' = pr_1^*C$ up to a shift. We set $\Gamma_B^A(C) = \pi_*C' \in \mathcal{D}(X)$. By [MV, 1.2] we have

- (d) $SS(\Gamma_B^A(C)) \subset \overline{A \cdot SS(C)}$.
- On the other hand, we have
 - (e) $SS(C) \subset \mu_B^{-1}(0)$.

Indeed, if $p_1: B \times X \to X$ is the action and $p_2: B \times X \to X$ is the second projection we have $p_1^*(C) = p_2^*(C)$. Hence $SS(p_1^*(C)) = SS(p_2^*(C))$. Using [KS, 4.1.2] we can rewrite this as $p_1^{\bigstar}(SS(C)) = p_2^{\bigstar}(SS(C))$. Hence if $x \in X$ and $\xi \in T_x^*X \cap SS(C)$ then the image of ξ under the map $T_x^*X \to T_1^*(B)$ induced by $B \to X, b \mapsto bx$ is 0. This proves (e).

1.2. Let G be a connected reductive algebraic group. Let $\mathfrak{g}=\mathrm{Lie}(G)$. Let \mathcal{N} be the variety of nilpotent elements in \mathfrak{g}^* . Let B be a Borel subgroup of G. Let K be a closed connected subgroup of G. Then $B_K = B \cap K$ is a parabolic subgroup of K. Assume that G acts on a smooth variety X. Let C be a B_K -equivariant perverse sheaf on X; assume also that there exists a finite covering $a: \tilde{B} \to B$ such that C is \tilde{B} -equivariant for the \tilde{B} -action $\tilde{b}: x \mapsto a(\tilde{b})x$ on X. By 1.1(e) we have $\mu_{\tilde{B}}(SS(C)) = 0$. Since $\mathrm{Lie}(\tilde{B}) = \mathrm{Lie}(B)$ we then have $\mu_{B}(SS(C)) = 0$. It follows that $\mu_{G}(SS(C))$ is contained in the kernel of the obvious map $\mathfrak{g}^* \to \mathrm{Lie}(B)^*$ hence is contained in \mathcal{N} . Since \mathcal{N} is stable under the coadjoint action we have $\mu_{G}(K \cdot SS(C)) = K\mu_{G}(SS(C)) \subset \mathcal{N}$. Using this together with 1.1(d) and the fact that $\mu_{G}^{-1}(\mathcal{N})$ is closed in T^*X we see that $SS(\Gamma_{B_K}^K(C)) \subset \mu_{G}^{-1}(\mathcal{N})$. Applying 1.1(e) to $\Gamma_{B_K}^K(C), K$ instead of C, B we see that $SS(\Gamma_{B_K}^K(C)) \subset \mu_{K}^{-1}(0) = \mu_{G}^{-1}(\mathrm{Lie}(K)^{\perp})$ where $\mathrm{Lie}(K)^{\perp} \subset \mathfrak{g}^*$ is the annihilator of $\mathrm{Lie}(K) \subset \mathfrak{g}$. Thus we have

(a)
$$SS(\Gamma_{B_K}^K(C)) \subset \mu_G^{-1}(\text{Lie}(K)^{\perp} \cap \mathcal{N}).$$

1.3. We now replace $G, \mathfrak{g}, B, K, B_K, X, C$ by $G \times G, \mathfrak{g} \times \mathfrak{g}, B \times B, G_{\Delta}, B_{\Delta}, X', C'$ where $G_{\Delta} = \{(g, g') \in G \times G; g = g'\}, B_{\Delta} = \{(g, g') \in B \times B; g = g'\}, X'$ is a smooth variety with a given action of $G \times G$ and C' is a B_{Δ} -equivariant perverse sheaf on X'; we assume that there exists a finite covering $a' : \tilde{B}' \to B \times B$ such that C' is \tilde{B}' -equivariant for the \tilde{B}' -action $\tilde{b}' : x' \mapsto a'(\tilde{b}')x'$ on X'. We have the following special case of 1.2(a):

(a)
$$SS(\Gamma_{B_{\Delta}}^{G_{\Delta}}(C')) \subset \mu_{G \times G}^{-1}(\mathcal{N}^{-})$$

where

$$\mathcal{N}^{-} = \{ (f, f') \in \mathfrak{g}^* \times \mathfrak{g}^*; f + f' = 0, f, f' \text{ nilpotent } \}.$$

- **1.4.** Let **W** be the Weyl group of G and let **I** be the set of simple reflections in **W**. Let G' be a possibly disconnected algebraic group with identity component G and with a given connected component D. Now $G \times G$ acts transitively on D by $(g_1, g_2) : g \mapsto g_1 g g_2^{-1}$. Hence the moment map $\mu_{G \times G} : T^*D \to \mathfrak{g}^* \times \mathfrak{g}^*$ is well defined. In [L1, 4.5] a class of perverse sheaves (called character sheaves) on D is introduced. These appear as constituents of some perverse cohomology sheaf of $\Gamma_{B_{\Delta}}^{G_{\Delta}}(C')$ for some C' as in 1.3 (with X' = D). Hence from 1.3(a) we deduce:
- (a) If K is a parabolic character sheaf on D then $SS(K) \subset \mu_{G\times G}^{-1}(\mathcal{N}^-)$. In the case where G' = G = D a statement close to (a) appears in [MV, 2.8] (where it is attributed to the second author) and in [Gi].
- **1.5.** We preserve the setup of 1.4. For any $J \subset \mathbf{I}$ let \mathcal{P}_J be the set of parabolic subgroups of G of type J. In particular \mathcal{P}_\emptyset is the set of Borel subgroups of G. For $J \subset \mathbf{I}$ let \mathbf{W}_J be the subgroup of \mathbf{W} generated by J; let \mathbf{W}^J (resp. ${}^J\mathbf{W}$) be the set of all $w \in \mathbf{W}$ such that w has minimal length among the elements in $\mathbf{W}_J w$ (resp. $w\mathbf{W}_J$). Let $\delta: \mathbf{W} \xrightarrow{\sim} \mathbf{W}$ be the isomorphism such that $\delta(\mathbf{I}) = \mathbf{I}$ and such that $J \subset \mathbf{I}, P \in \mathcal{P}_J, g \in D \implies gPg^{-1} \in \mathcal{P}_{\delta(J)}$. Following [L2, 8.18], for $J, J' \subset \mathbf{I}$ and $g \in J'\mathbf{W} \cap \mathbf{W}^J$ such that $\mathrm{Ad}(g)(\delta(J)) = J'$ we set

$$Z_{J,u,\delta} = \{(P, P', gU_P); P \in \mathcal{P}_J, P' \in \mathcal{P}_{J'}, g \in D, pos(P', gPg^{-1}) = y\}.$$

Now $G \times G$ acts (transitively) on $Z_{J,y,\delta}$ by

$$(g_1, g_2): (P, P', gU_P) \mapsto (g_2 P g_2^{-1}, g_1 P' g_1^{-1}, g_1 g g_2^{-1}).$$

Hence the moment map $\mu_{G\times G}: T^*Z_{J,y,\delta}\to \mathfrak{g}^*\times \mathfrak{g}^*$ is well defined. In [L2, Section 11] a class of perverse sheaves (called parabolic character sheaves) on $Z_{J,y,\delta}$ is introduced. These appear as constituents of some perverse cohomology sheaf of $\Gamma_{B_{\Delta}}^{G_{\Delta}}(C')$ for some C' as in 1.3 (with $X'=Z_{J,y,\delta}$). Hence from 1.3(a) we deduce:

- (a) If K is a parabolic character sheaf on $Z_{J,y,\delta}$ then $SS(K) \subset \mu_{G\times G}^{-1}(\mathcal{N}^-)$. When $J = \mathbf{I}$, this reduces to 1.4(a).
- **1.6.** Assume that G is adjoint. Let \bar{G} be the De Concini-Procesi compactification of G. Then $G \times G$ acts naturally on \bar{G} extending continuously the action (g_1, g_2) : $g \mapsto g_1 g g_2^{-1}$ of $G \times G$ on G. Hence the moment map $\mu_{G \times G} : T^*\bar{G} \to \mathfrak{g}^* \times \mathfrak{g}^*$ is well defined. In [L2] a class of perverse sheaves (called parabolic character sheaves) on \bar{G} is introduced. It has been shown by He [H2] and by Springer (unpublished) that any parabolic character sheaf on \bar{G} appears as a constituent of some perverse cohomology sheaf of $\Gamma_{B_{\Delta}}^{G_{\Delta}}(C')$ for some C' as in 1.3 (with $X' = \bar{G}$). Hence from 1.3(a) we deduce:
 - (a) If K is a parabolic character sheaf on \bar{G} then $SS(K) \subset \mu_{G\times G}^{-1}(\mathcal{N}^-)$.

1.7. In the setup of 1.4 let $\Lambda(D) = \mu_{G \times G}^{-1}(\mathcal{N}^-)$. We want to describe the variety $\Lambda(D)$. For $g \in D$ let I_g be the isotropy group at g of the $G \times G$ -action on D that is, $I_g = \{(g_1, g_2) \in G \times G; g_2 = g^{-1}g_1g\}$. We have $\operatorname{Lie}(I_g) = \{(y_1, y_2) \in \mathfrak{g} \times \mathfrak{g}; y_2 = \operatorname{Ad}(g)^{-1}(y_1)\}$ and the annihilator of $\operatorname{Lie}(I_g)$ in $\mathfrak{g}^* \times \mathfrak{g}^*$ is $\operatorname{Lie}(I_g)^{\perp} = \{(z_1, z_2) \in \mathfrak{g}^* \times \mathfrak{g}^*; z_1 + \operatorname{Ad}(g)(z_2) = 0\}$. This may be identified with the fibre of T^*D at g. Then

$$\Lambda(D) = \{ (g, z_1, z_2) \in D \times \mathfrak{g}^* \times \mathfrak{g}^*; z_1 + \operatorname{Ad}(g)(z_2) = 0, z_1 + z_2 = 0, z_2 \in \mathcal{N} \}
= \{ (g, z, -z); g \in D, z \in \mathcal{N}, \operatorname{Ad}(g)(z) = z \} = \sqcup_{\mathcal{O}} X_{\mathcal{O}}$$

where \mathcal{O} runs over the (finite) set of $\mathrm{Ad}(G)$ -orbits on \mathcal{N} which are normalized by some element of D and $X_{\mathcal{O}} = \{(g,z,-z); g \in D, z \in \mathcal{O}, \mathrm{Ad}(g)(z) = z\}$. We pick $\xi \in \mathcal{O}$ and let $\mathcal{Z}' = \{h \in G'; \mathrm{Ad}(h)\xi = \xi\}, \mathcal{Z} = \{h \in G; \mathrm{Ad}(h)\xi = \xi\}$. Let $\underline{\mathcal{Z}}'$ (resp. $\underline{\mathcal{Z}}$) be the group of connected components of \mathcal{Z}' (resp. \mathcal{Z}). Then $\underline{\mathcal{Z}}'$ is a finite group and $\underline{\mathcal{Z}}$ is a subgroup of $\underline{\mathcal{Z}}'$. Let $\underline{\mathcal{Z}}_1$ be the set of connected components of \mathcal{Z}' that are contained in D. Then $\underline{\mathcal{Z}}_1$ is a subset of \mathcal{Z}' ; also, $\underline{\mathcal{Z}}$ acts on $\underline{\mathcal{Z}}_1$ by conjugation inside $\underline{\mathcal{Z}}'$. Let $F_{\mathcal{O}}^D$ be the set of orbits of this action. Note that $F_{\mathcal{O}}^D$ is independent (up to unique isomorphism) of the choice of ξ .

Let $\tilde{X} = \{(g,r) \in D \times G; r^{-1}gr \in \mathcal{Z}'\}$. Then \mathcal{Z} acts freely on \tilde{X} by $h: (g,r) \mapsto (g,rh^{-1})$ and we have an isomorphism $\mathcal{Z} \setminus \tilde{X} \xrightarrow{\sim} X_{\mathcal{O}}, (g,r) \mapsto (g,\operatorname{Ad}(r)\xi)$. By the change of variable $(g,r) \mapsto (g',r), g' = r^{-1}gr, \tilde{X}$ becomes $\{(g',r); g' \in \mathcal{Z}' \cap D, r \in G\}$. In the new coordinates, the free action of \mathcal{Z} on \tilde{X} is $h: (g',r) \mapsto (hg'h^{-1},rh^{-1})$. We see that \tilde{X} is smooth of pure dimension $\dim(\mathcal{Z} \times G)$ and its connected components are indexed naturally by $\underline{\mathcal{Z}}_1$ (the connected component containing (g',r) is indexed by the image of g' in $\underline{\mathcal{Z}}_1$). The action of \mathcal{Z} on \tilde{X} permutes the connected components of \tilde{X} according to the action of $\underline{\mathcal{Z}}$ on $\underline{\mathcal{Z}}_1$ considered above. We see that $X_{\mathcal{O}} = \mathcal{Z} \setminus \tilde{X}$ is smooth of pure dimension $\dim G$ and its connected components are indexed naturally by the set $F_{\mathcal{O}}^D$.

We see that $\Lambda(D)$ can be partitioned into finitely many locally closed, irreducible, smooth subvarieties of dimension dim G, indexed by the finite set $F(D) := \sqcup_{\mathcal{O}} F_{\mathcal{O}}^{D}$. In particular, $\Lambda(D)$ has pure dimension dim G. More precisely, one checks that

- (a) $\Lambda(D)$ is a closed Lagrangian subvariety of T^*D .
- **1.8.** In the setup of 1.5 we set $\Lambda(Z_{J,y,\delta}) = \mu_{G\times G}^{-1}(\mathcal{N}^-)$. We want to describe the variety $\Lambda(Z_{J,y,\delta})$.

Following [L2, 8.18] we consider the partition $Z_{J,y,\delta} = \sqcup_{\mathbf{s}} Z_{J,y,\delta}^{\mathbf{s}}$ where $Z_{J,y,\delta}^{\mathbf{s}}$ are certain locally closed smooth irreducible G_{Δ} -stable subvarieties of $Z_{J,Y,\delta}$ indexed by the elements \mathbf{s} of a finite set $S(J, \mathrm{Ad}(y)\delta)$ which is in canonical bijection with $J'\mathbf{W}$, see [L1, 2.5]. Note that each \mathbf{s} is a sequence $(J_n, J'_n, u_n)_{n\geq 0}$ where J_n, J'_n are subsets of \mathbf{I} such that J_n, J'_n are independent of n for large n and $u_n \in \mathbf{W}$ is 1 for large n.

We wish to define a Lagrangian subvariety $\Lambda(Z_{J,y,\delta}^{\mathbf{s}})$ of $T^*(Z_{J,y,\delta}^{\mathbf{s}})$.

Assume first that \mathbf{s} is such that $J_n = J, J'_n = J', u_n = 1$ for all n. In this case we have J = J'. Let $P \in \mathcal{P}_J$ and let L be a Levi subgroup of P. Then $\mathbf{d}_{\mathbf{s}} = \{g \in D; gLg^{-1} = L, \operatorname{pos}(P, gPg^{-1}) = y\}$ is a connected component of the algebraic group $N_{G'}(L)$ with identity component L. Hence $\Lambda(\mathbf{d}_{\mathbf{s}}) \subset T^*\mathbf{d}_{\mathbf{s}}$ is defined as in 1.7. We have a diagram $Z_{J,y,\delta}^{\mathbf{s}} \stackrel{\alpha}{\leftarrow} G \times \mathbf{d}_{\mathbf{s}} \stackrel{pr_2}{\longrightarrow} \mathbf{d}_{\mathbf{s}}$ where $\alpha(h,g) = (hPh^{-1}, hPh^{-1}, U_{hPh^{-1}}hgh^{-1}U_{hPh^{-1}})$. Note that α is a principal P-bundle where P acts on $G \times \mathbf{d}_{\mathbf{s}}$ by $p: (h,g) = (hp^{-1}, \bar{p}g\bar{p}^{-1})$ (we denote the canonical homomorphism $P \to L$ by \bar{p}). Let $\Lambda' = pr_2^*\Lambda(\mathbf{d}_{\mathbf{s}}) \subset T^*(G \times \mathbf{d}_{\mathbf{s}})$. By 1.1(a) and 1.7(a), Λ' is a closed Lagrangian subvariety of $T^*(G \times \mathbf{d}_{\mathbf{s}})$. It is clearly stable under the natural action of P on $T^*(G \times \mathbf{d}_{\mathbf{s}})$ (since $\Lambda(\mathbf{d}_{\mathbf{s}})$ is L-stable). By 1.1(b) there is a unique Lagrangian subvariety Λ'' of $T^*(Z_{J,y,\delta}^{\mathbf{s}})$ such that $\alpha^*\Lambda'' = \Lambda'$. We set $\Lambda(Z_{J,y,\delta}^{\mathbf{s}}) = \Lambda''$.

We now consider a general $\mathbf{s}=(J_n,J'_n,u_n)_{n\in\mathbf{N}}$. For any $r\in\mathbf{N}$ let $\mathbf{s}_r=(J_n,J'_n,u_n)_{n\geq r},\ y_r=u_{r-1}^{-1}\dots u_1^{-1}u_0^{-1}y$. Then $Z_{J_r,y_r,\delta}^{\mathbf{s}_r}$ is defined and we have a canonical map $f_r:Z_{J,y,\delta}^{\mathbf{s}}\to Z_{J_r,y_r,\delta}^{\mathbf{s}_r}$ (a composition of affine space bundles, see [L2, 8.20(a)]). Moreover for sufficiently large $r,\mathbf{s}_r,J_r,y_r,f_r$ are independent of r; we write $\mathbf{s}_\infty,J_\infty,y_\infty,f_\infty$ instead of \mathbf{s}_r,J_r,y_r,f_r . Note also that $\mathbf{s}_\infty,J_\infty,y_\infty$ are of the type considered earlier, so that $\Lambda(Z_{J_\infty,y_\infty,\delta}^{\mathbf{s}_\infty})$ is defined as above. We set $\Lambda(Z_{J_\infty,y_\infty}^{\mathbf{s}})=f_\infty^{\bigstar}(\Lambda(Z_{J_\infty,y_\infty,\delta}^{\mathbf{s}_\infty}))$.

We now define

$$\Lambda'(Z_{J,y,\delta}) = \sqcup_{\mathbf{s} \in S(J, \mathrm{Ad}(y)\delta)} (i_{\mathbf{s}})_{\bigstar} (\Lambda(Z_{J,y,\delta}^{\mathbf{s}}))$$

where $i_{\mathbf{s}}: Z_{J,y,\delta}^{\mathbf{s}} \to Z_{J,y,\delta}$ is the inclusion. From 1.1(c) we see that $\Lambda'(Z_{J,y,\delta})$ is a finite union of locally closed Lagrangian subvarieties of $T^*(Z_{J,y,\delta})$.

We state the following result:

Proposition 1.9. We have $\Lambda(Z_{J,y,\delta}) = \Lambda'(Z_{J,y,\delta})$. In particular, $\Lambda'(Z_{J,y,\delta})$ is closed in $T^*(Z_{J,y,\delta})$ and $\Lambda(Z_{J,y,\delta})$ is a Lagrangian subvariety of $T^*(Z_{J,y,\delta})$.

Let $x \in Z_{J,y,\delta}^{\mathbf{s}}$. We will show that $\Lambda(Z_{J,y,\delta}) \cap T_x^*(Z_{J,y,\delta}) = \Lambda'(Z_{J,y,\delta}) \cap T_x^*(Z_{J,y,\delta})$. We identify \mathfrak{g} with \mathfrak{g}^* via a G-invariant symmetric bilinear form. Choose an element g_0 in D that normalizes B and a maximal torus T of B. Let P_J be the unique element in \mathcal{P}_J that contains B. For $w \in W$, we choose a representative \dot{w} of w in N(T). Set $h_{J,y,\delta} = (P_J, \dot{y}^{-1}P_{J'}, U_{\dot{y}^{-1}P_{J'}}g_0U_{P_J}) \in Z_{J,y,\delta}$. The element $\mathbf{s} \in S(J, \mathrm{Ad}(y)\delta)$ corresponds to an element $w' \in J'W$ under the bijection in [L1, 2.5]. Set $w = (w')^{-1}y \in w \in W^{\delta(J)}$. By [H1, 1.10],

$$Z_{J,y,\delta}^{\mathbf{s}} = G_{\Delta}(P_{J_{\infty}}\dot{w}, 1) \cdot h_{J,y,\delta} = G_{\Delta}(L_{J_{\infty}}\dot{w}, 1) \cdot h_{J,y,\delta}.$$

Note that $\Lambda(Z_{J,y,\delta})$ and $\Lambda'(Z_{J,y,\delta})$ are stable under the action of G_{Δ} . Then we may assume that $x=(l_1\dot{w},1)\cdot h_{J,y,\delta}$ for some $l_1\in L_{J_{\infty}}$. By [H1, 1.10(2)], $(P_{J_{\infty}})_{\Delta}\cdot (L_{J_{\infty}},1)x=(P_{J_{\infty}},1)\cdot x$, where $(P_{J_{\infty}})_{\Delta}=\{(g,g')\in P_{J_{\infty}}\times P_{J_{\infty}};g=g'\}$. For $u\in U_{P_{J_{\infty}}}$, $(u,1)\cdot x=(u'l,u')\cdot x$ for some $u'\in U_{P_{J_{\infty}}}$ and $l\in L_{J_{\infty}}$. Note that

 $(U_{P_{J_{\infty}}}, U_{P_{J_{\infty}}}) \cdot (l, 1) \cdot x = (U_{P_{J_{\infty}}}l, 1) \cdot x$ and $(P_{J_{\infty}}, 1) \cdot x \cong U_{P_{J_{\infty}}} \times (L_{J_{\infty}}, 1) \cdot x$. Thus $(l, 1) \cdot x = x$ and $(U_{P_{J_{\infty}}}, 1) \cdot x \subset (P_{J_{\infty}})_{\Delta} \cdot x$. Therefore, for $(f, -f) \in \mu_{G \times G}(T_x^*(Z_{J,y,\delta}))$, we have that $(f, -f)(\text{Lie}(U_{P_{J_{\infty}}}), 0) = (f, -f)(\text{Lie}(P_{J_{\infty}})_{\Delta}) = 0$, i. e., $f \in \text{Lie}(P_{J_{\infty}})$. In particular, f is nilpotent if and only if the image of f under $\text{Lie}(P_{J_{\infty}}) \to \text{Lie}(P_{J_{\infty}})/\text{Lie}(U_{P_{J_{\infty}}}) \cong \text{Lie}(L_{J_{\infty}})$ is nilpotent.

Hence $\mu_{G\times G}(\Lambda(Z_{J,y,\delta})\cap T_x^*(Z_{J,y,\delta}))$ consists elements of the form (u+l, -u-l) with $u\in \mathrm{Lie}(U_{P_{J_\infty}})$, l nilpotent in $\mathrm{Lie}(L_{J_\infty})$ and $(u, -u)I_x=(l, -l)I_x=0$, where I_x is the Lie subalgebra of the isotropic subgroup of $G\times G$ at point x.

Denote by N_x the stalk at point x of the conormal bundle $N_{Z_{J,y,\delta}^s}^*(Z_{J,y,\delta})$. Since $Z_{J,y,\delta}^s = G_{\Delta}(P_{J_{\infty}}, 1)h_{J,y,\delta}$, we have

$$\mu_{G\times G}(N_x) = \{(u, -u); u \in \text{Lie}(U_{P_{J_\infty}}), (u, -u)I_x = 0\}.$$

Let $p_x: T_x^*(Z_{J,y,\delta}) \to T_x^*(Z_{J,y,\delta}^{\mathbf{s}}) \cong T_x^*(Z_{J,y,\delta})/N_x$ be the obvious surjective map. Then $\Lambda(Z_{J,y,\delta}) \cap T_x^*(Z_{J,y,\delta}) = p_x^{-1}(p_x(\Lambda(Z_{J,y,\delta}) \cap T_x^*(Z_{J,y,\delta})))$. Note that

$$I_x = \{(u_1 + \operatorname{Ad}(l_1 \dot{w} g_0)l, u_2 + l); u_1 \in \operatorname{Ad}(l_1 \dot{w} \dot{y}^{-1}) \operatorname{Lie}(U_{P_{J'}}), u_2 \in \operatorname{Lie}(U_{P_J}), l \in \operatorname{Lie}(L_J) \}.$$

Thus for $l \in \text{Lie}(L_{J_{\infty}})$, $(l, -l)I_x = 0$ if and only if $\text{Ad}(l_1\dot{w}g_0)l = l$.

We identify $T_x^*(Z_{J,y,\delta})$ with $\mu_{G\times G}(T_x^*(Z_{J,y,\delta})) \subset \mathfrak{g} \times \mathfrak{g}$ and regard $T_x^*(Z_{J,y,\delta}^{\mathbf{s}})$ as a subspace of $(\mathfrak{g} \times \mathfrak{g})/N_x$. Set $M = \{(l,-l); l \in \text{Lie}(L_{J_\infty}), \text{Ad}(l_1\dot{w}g_0)l = l\} \subset \mathfrak{g} \times \mathfrak{g}$. Then

$$(1) p_x(\Lambda(Z_{J,y,\delta}) \cap T_x^*(Z_{J,y,\delta})) = (M+N_x)/N_x.$$

Now consider the commuting diagram

$$(P_{J_{\infty}})_{\Delta}(L_{J_{\infty}}\dot{w},1) \cdot h_{J,y,\delta} \xrightarrow{i_{1}} Z_{J,y,\delta}^{\mathbf{s}}$$

$$f_{\infty}^{\prime} \downarrow \qquad \qquad f_{\infty} \downarrow$$

$$(P_{J_{\infty}})_{\Delta}(L_{J_{\infty}}\dot{w},1) \cdot h_{J_{\infty},y_{\infty},\delta} \xrightarrow{i_{2}} Z_{J_{\infty},y_{\infty},\delta}^{\mathbf{s}_{\infty}},$$

where i_1, i_2 are inclusions and f'_{∞} is the restriction of f_{∞} . Let $x' = f_{\infty}(x) \in Z^{\mathbf{s}_{\infty}}_{J_{\infty}, y_{\infty}, \delta}$. Since f'_{∞} is $P_{J_{\infty}} \times P_{J_{\infty}}$ -invariant, we have the following commuting diagram

$$T_{x'}^* \big((P_{J_{\infty}})_{\Delta} (L_{J_{\infty}} \dot{w}, 1) \cdot h_{J_{\infty}, y_{\infty}, \delta} \big) \xrightarrow{\frac{1}{\mu_{P_{J_{\infty}}} \times P_{J_{\infty}}}} \operatorname{Lie}(P_{J_{\infty}})^* \times \operatorname{Lie}(P_{J_{\infty}})^*$$

$$id \downarrow$$

$$T_x^* \big((P_{J_{\infty}})_{\Delta} (L_{J_{\infty}} \dot{w}, 1) \cdot h_{J, y, \delta} \big) \xrightarrow{\frac{2}{\mu_{P_{J_{\infty}}} \times P_{J_{\infty}}}} \operatorname{Lie}(P_{J_{\infty}})^* \times \operatorname{Lie}(P_{J_{\infty}})^*,$$

where ${}^1\mu_{P_{J_\infty}\times P_{J_\infty}}$ and ${}^2\mu_{P_{J_\infty}\times P_{J_\infty}}$ are the moment maps. Since the actions of $P_{J_\infty}\times P_{J_\infty}$ on $(P_{J_\infty})_\Delta(L_{J_\infty}\dot{w},1)\cdot h_{J,y,\delta}$ and $(P_{J_\infty})_\Delta(L_{J_\infty}\dot{w},1)\cdot h_{J_\infty,y_\infty,\delta}$ are transitive, ${}^1\mu_{P_{J_\infty}\times P_{J_\infty}}$ and ${}^2\mu_{P_{J_\infty}\times P_{J_\infty}}$ are injective.

Set
$$\Lambda_{x'}(Z_{J_{\infty},y_{\infty},\delta}^{\mathbf{s}_{\infty}}) = \Lambda(Z_{J_{\infty},y_{\infty},\delta}^{\mathbf{s}_{\infty}}) \cap T_{x'}^{*}(Z_{J_{\infty},y_{\infty},\delta}^{\mathbf{s}_{\infty}})$$
. Then

$$^{2}\mu_{P_{J_{\infty}}\times P_{J_{\infty}}}\left(i_{2}^{*}(\Lambda_{x'}(Z_{J_{\infty},y_{\infty},\delta}^{\mathbf{s}_{\infty}})\right)={}^{1}\mu_{P_{J_{\infty}}\times P_{J_{\infty}}}\left((f_{\infty}')^{*}i_{2}^{*}(\Lambda_{x'}(Z_{J_{\infty},y_{\infty},\delta}^{\mathbf{s}_{\infty}})\right)=M.$$

Here we identify $\operatorname{Lie}(P_{J_{\infty}})^*$ with $\operatorname{Lie}(P_{J_{\infty}}^-)$ via the symmetric bilinear form. Moreover, $i_1^*f_{\infty}^*=(f_{\infty}')^*i_2^*$ maps $\Lambda_{x'}(Z_{J_{\infty},y_{\infty},\delta}^{\mathbf{s}_{\infty}})$ bijectively onto its image. Therefore ${}^1\mu_{P_{J_{\infty}}\times P_{J_{\infty}}}\left(i_1^*(\Lambda(Z_{J,y,\delta}^{\mathbf{s}})\cap T_x^*(Z_{J,y,\delta}^{\mathbf{s}}))\right)=M$ and i_1^* maps $\Lambda(Z_{J,y,\delta}^{\mathbf{s}})\cap T_x^*(Z_{J,y,\delta}^{\mathbf{s}})$ bijectively onto its image. In other words,

(2) $\Lambda(Z_{J,u,\delta}^{\mathbf{s}}) \cap T_x^*(Z_{J,u,\delta}^{\mathbf{s}}) = (M+N_x)/N_x.$

Combining (1) and (2), $p_x(\Lambda(Z_{J,y,\delta}) \cap T_x^*(Z_{J,y,\delta})) = \Lambda(Z_{J,y,\delta}^{\mathbf{s}}) \cap T_x^*(Z_{J,y,\delta}^{\mathbf{s}})$. The proposition is proved.

Corollary 1.10. The set of irreducible components of $\Lambda(Z_{J,y,\delta})$ is in natural bijection with $\sqcup_{\mathbf{s}\in S(J,\mathrm{Ad}(y)\delta)}F(\mathbf{d}_{\mathbf{s}_{\infty}})$ (notation of 1.7, 1.8).

1.11. In the setup of 1.6 let $\Lambda(\bar{G}) = \mu_{G \times G}^{-1}(\mathcal{N}^-)$. We want to describe the variety $\Lambda(Z_{J,y,\delta})$. As in [L2, 12.3], we have $\bar{G} = \sqcup_{J \subset \mathbf{I}} G_J$ where G_J are the various $G \times G_J$ orbits in \bar{G} ; moreover we may identify $G_J = T_J \setminus Z_{J,y_J,1}$ where y_J is the longest element in \mathbf{W}^J and T_J is a torus acting freely on $Z_{J,y_J,1}$. Let $a_J : Z_{J,y_J,1} \to G_J$ be the canonical map.

For each J let $\mu_{G\times G;J}:G_J\to \mathfrak{g}^*\times \mathfrak{g}^*$ be the moment map of the restriction of the $G\times G$ -action on \bar{G} to G_J . Let $i_J:G_J\to \bar{G}$ be the inclusion. From the definitions, we have

(a)
$$\Lambda(\vec{G}) = \sqcup_{J \subset \mathbf{I}}(i_J)_{\bigstar} \mu_{G \times G; J}^{-1}(\mathcal{N}^-)$$

and
$$\Lambda(Z_{J,y_J,1}) = a_J^{\bigstar}(\mu_{G \times G;J}^{-1}(\mathcal{N}^-)).$$

Since $\Lambda(Z_{J,y_J,1})$ is a T_J -stable Lagrangian subvariety of $T^*(Z_{J,y_J,1})$ (see 1.9), it follows that $\mu_{G\times G;J}^{-1}(\mathcal{N}^-)$ is a Lagrangian subvariety of $T^*(G_J)$. Hence, using 1.1(c), we see that $(i_J)_{\bigstar}\mu_{G\times G;J}^{-1}(\mathcal{N}^-)$ is a Lagrangian subvariety of $T^*\bar{G}$. Using this and (a) we see that

(b) $\Lambda(\bar{G})$ is a Lagrangian subvariety of $T^*\bar{G}$.

From the previous proof we see that

- (c) The set of irreducible components of $\Lambda(\bar{G})$ is in natural bijection with $\sqcup_{J\subset \mathbf{I}} \sqcup_{\mathbf{s}\in S(J,\operatorname{Ad}(y_J))} F(\mathbf{d}_{\mathbf{s}_{\infty}})$ (notation of 1.7, 1.8).
- **1.12.** Let $X = Z_{J,y,\delta}$ or \bar{G} . There is a well-defined map from the irreducible components of $\Lambda(X)$ to the nilpotent conjugacy classes of \mathfrak{g}^* which sends the irreducible component C of $\Lambda(X)$ to the nilpotent conjugacy class \mathcal{O} , where $\mu_{G\times G}(C)\cap\{(f,-f)\in\mathcal{O}\times\mathcal{O}\}$ is dense in $\mu_{G\times G}(C)$.

REFERENCES

- [Gi] V. Ginzburg, Admissible modules on a symmetric space, Astérisque 173-174 (1989), 199-256.
- [H1] X. He, The G-stable pieces of the wonderful compactification, math.RT/0412302.
- [H2] X. He, The character sheaves on the group compactification, math.RT/0508068.

- [KS] M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, Berlin, 1994.
- [L1] G. Lusztig, Parabolic character sheaves I, Moscow Math.J 4 (2004), 153-179.
- [L2] G. Lusztig, Parabolic character sheaves II, Moscow Math.J. 4 (2004), 869-896.
- [MV] I. Mirković and K. Vilonen, Characteristic varieties of character sheaves, Invent.Math. 93 (1988), 405-418.
- [S] T. A. Springer, Intersection cohomology of B×B-orbit closures in group compactifications, J.Alg. 258 (2002), 71-111.

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540 $E\text{-}mail\ address:\ hugo@math.ias.edu$

Department of Mathematics, M.I.T., Cambridge, MA 02139 E-mail address: gyuri@math.mit.edu