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Abstract

As network speeds increase, it becomes possible to accommodate increasingly bursty
traffic that can degrade the service received by others. It is argued that this degrada-
tion can be avoided by an appropriate choice of service discipline. The data submitted
by the user while in the active state is modeled as a message. The bursty user is then
characterized as a source that submits long messages. It is verified that a queueing
discipline that performs round robin on the messages in the system reduces the ef-
fects of bursty traffic. A discrete time round robin queue with a memoryless arrival
process of messages with general length distribution is analyzed by examination of
the reverse time system. The mean message system time is found to grow linearly
with the message length. It is also verified that the message system time variance is
upper bounded by a linear function of the message length. It is also found that the
stationary distribution of a network of round robin queues has a product form. The
stationary distribution of the queue of a network link is the same as it would be if

the link were isolated with the network traffic of that link offered directly to the link.
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Chapter 1

Introduction

1.1 The Burstiness Problem

A data network consists of a set of interconnected data communication links. A
network may be used for a single purpose or a variety of purposes. For example,
a network may be used for voice conversation, electronic mail, file transfer, remote
database lookup and the interactive use of remote computers. Each of these uses
makes its own particular set of demands on a data network. Although a network
that has a single use may be designed to be particularly efficient, there are benefits
to building networks that serve a variety of uses.

In particular, the incremental cost of providing additional data link capacity for
additional uses is usually small. Moreover, these incremental costs are rapidly getting
smaller. Still, one may argue that a particular use may be in sufficient demand to
merit a separate network optimized for that use. Eventually, we might have one
network for voice, a second for electronic mail and a third for file transfer. The
difficulty with this approach is simply that each subsequent new use may require a
new network. Furthermore, as network speeds continue to increase, networks almost
certainly will be used in ways that we cannot predict. Since it is difficult to identify
the future uses of a network, it would be desirable to identify networks that would be
suitable for a variety of uses.

However, different users can make conflicting demands on a network. An inter-
active user may send messages consisting of commands of just a few characters. For
this user, small delay would be important. An electronic mail customer might send

messages of at most a few thousand characters and would be able to tolerate signif-



icantly greater delays. Another user might use the network infrequently to transfer
very large files such as digitized video images. This user would be called bursty. If
a large file were sent over a link without interruption, the messages of other users
of the link may suffer unacceptably long delays. That is, the bursty user can de-
grade the service received by the other users. In addition, as network speeds increase,
users with greater burstiness can be accommodated and the problems associated with
bursty users become more significant. OQur intention is to show that the degradation
in service caused by burstiness is avoidable. In particular, we will describe a network

that provides satisfactory service for all users.

1.2 Reducing the Effect of Burstiness

We will examine a network model that treats a bursty source as a session that submits
long messages. Our aim is to have the network provide service in such a way that long
messages are unable to penalize short messages. Furthermore, we make the following

claim:
Shorter messages should wait less.

We will say that a queue provides length discrimination if service is provided in such
a way that shorter messages wait less. Without reference to a particular network or
its uses, it is difficult to state this definition with greater precision. However, we can
make several arguments supporting the claim that length discrimination is a desirable
property for queueing systems with variable burstiness.

First, a long message can endure additional waiting time before that waiting time
becomes a significant fraction of the system time. For a message with 10° packets, a
waiting time of 10° slots would be inconsequential. Yet, for a one packet message, a
wait of 10° slots would be very significant. Considering that a single digitized video
image could require 10® bits, a message of 10° packets is not unrealistic.

A second argument favoring reduced delay for short messages is that a long mes-
sage session should be willing to endure the delay that would occur if every other
session submitted long messages. That is, a session cannot expect better service than

that it would obtain if all sessions acted as it does.



Another reason to provide length discrimination is that it may be important for
network control messages, which tend to be short, to receive fast service. Lastly, a
final argument is even simpler. In many networks, short messages are often generated
by impatient human customers.

The above arguments make no assumptions about the uses of a network. Hence,
we believe that for future high speed networks, whose uses are difficult to determine,
the property that short messages receive better service is particularly desirable. In
this work, we identify a queue discipline that provides length discrimination. We will
describe this service strategy, which we call round robin, in great detail. However, the
basic method of round robin is quite simple. The backlogged messages are arranged
in a ring and the server cycles around the ring providing each message one unit of
service. When a new message arrives, it is inserted into the ring. When the service
requirement of a message has been met, that message departs and is removed from
the ring.

Given our intention to provide small delay for short messages, it is easy to see
that many queueing disciplines are unsuitable for networks with different types of
sources. Consider the following example of a single link with two message classes. We
define a slot as the length of time required to send one packet. Suppose that at the
end of each slot, a class 1 message arrives with probability 1/150, a class 2 message
arrives with probability 3/50000 but no more than one message arrives in a slot. For
both sessions, the number of packets in a message is geometrically distributed with
an average length of 10 packets for a class 1 message and 10000 packets for a class 2
message.

Since the arrival process is memoryless, both short and long messages join the
queue in a typical state. So, for the first come first served (FCFS) queue, the distri-
bution of the waiting time (the time in the system before service) of the long message
would be the same as that of the short message. In fact, the average waiting time for
a message of either class is 18000 slots. Under round robin service, we will be able to
verify that the average waiting time would be 18 slots for a class 1 message and 19998
slots for a class 2 message. Of course, providing better service for class 1 messages
does increase delay for class 2 messages. However, the typical class 2 message has
10000 packets so that the increase in the average system time for class 2 messages

is only about seven percent. This penalty is relatively modest especially if it were



important to provide small delay for class 1 messages.

For the FCFS system, the long delay experienced by a short message results from
both the service demands of long messages ahead of it in the queue as well as the
(possibly long) residual requirement of the message in service. Even if the short
message could bypass long messages in the queue, the possibility of arriving while a
long message is in service can generate inordinately long delays. In short, burstiness
is a problem for any queueing discipline that cannot preempt the message in service.

Note that when we speak of preemption of a message, the intention is to allow the
server to interrupt the transmission of a message after one or more packets in order
to transmit the packets of another message. In this context, a packet would contain
perhaps several hundred bits so that the overhead required to associate a packet with
a particular message would be relatively insignificant.

Even for reasonably simple choices of queue discipline, analyzing a single queue
can be difficult. There may be many appropriate queueing disciplines that we are
unable to effectively examine. We cannot hope to argue that a particular queue
discipline is best. Instead, we will show that a queue that performs round robin on
the messages in the system happens to have some desirable properties. In particular,
given a fixed packet rate, a session will have its average message waiting time decrease
as its message length decreases. That is, less bursty sessions will get better service.
In addition, the service received by a session will depend only on that session’s own
message process and the overall packet arrival rate. In short, one session need not
care if other sessions submit long messages infrequently or short messages at a high

rate as long as the overall packet rate remains the same.

1.3 Related Work

The basic goals of this research have been to show that

e The round robin queue can be analyzed without approximation.

o The round robin queue has desirable properties for a network with bursty

sources.

This thesis has been motivated by the flow control problems caused by bursty sources.

However, our analysis of round robin is of interest, independent of its application to

10



flow control. In this section, we will describe related work in the fields of queueing

and flow control.

1.3.1 Queueing

The round robin service discipline has been studied directly as well as by a processor

sharing approximation. We will consider these two types of analysis separately.

Direct Analysis of Round Robin

The term round robin is used to describe a wide variety of cyclic queueing systems.

We choose to divide these queues into two basic types.

o Message Round Robin A single server cycles among different messages that are
generated by a single arrival process. How the server moves from message to

message must be specified.

o Session Round Robin A single queue is used by a fixed number of sessions. Each
session has an independent message arrival process and a separate queue for its
messages. Typically, the messages of a single session are given FCFS service.
The server cycles among the sessions that have backlogged messages. The order
of the sessions within this cycle may be fixed or may vary dynamically if a
session loses its position whenever its queue becomes empty. How the server
moves from one session to the next and how the sessions are ordered in the

service cycle must be specified.

This thesis analyzes a particular type of message round robin queue. However,
much of the queueing literature is directed toward session round robin. Session round
robin systems are often called polling systems or cyclic service systems. Polling sys-
tems have been extensively studied under a wide variety of assumptions; see [Tak88]
for a complete survey. Typically, analysis of these systems concentrates on the mean
and distribution of the message waiting time at each queue. Among systems of this
type, those that operate in discrete time for which the server provides a limited
amount of service to each queue before switching are similar to the round robin queue
we analyze. Takagi [Tak87| has analyzed a discrete time, limited service polling system

in which each session queue can buffer a single message that consists of a geometric
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number of characters. During each visit of the server, one character of a message
is served. In addition, the order of the sessions within the cycle is fixed and there
is overhead associated with moving from one queue to the next. The transform of
the message waiting time distribution is found. Despite the use of geometric message
lengths, exact analysis of this queue is surprisingly difficult.

In [Dai87], a priority queue in which messages of each priority class are provided
round robin service is studied. For each priority class z, the message arrivals form
a Poisson process and message lengths (in bytes) are chosen from a general service
distribution G;. Arrival processes for different priority classes are independent. Mes-
sages are segmented into packets with overhead added. Between message arrivals and
departures, the server cycles among the messages in the system that have highest pri-
ority. Upon the arrival of a message of priority higher than that of the message being
served, transmission of the packet currently in service is completed before the new
arrival goes into service. This work focuses on the mean system time of a message of
a given priority class as a function of the message length and maximum packet size.

Doshi and Rege, [DoR85|, examine a two stage queue in which the first queue
is first come first served (FCFS) and the second queue is round robin. Messages in
the FCFS queue are always given priority over messages in the round robin queue.
The service strategy allows each message a maximum amount of service in the FCFS
queue. A message that does not have its service requirement fulfilled in the FCFS
queue moves to the round robin queue. We call such a system a FCFS-RR queue. The
intention of FCFS-RR is to provide very fast service to the short messages that can
complete service in the FCFS queue. Consideration is given to both a general service
distribution as well as one in which a message belongs to one of two classes such that
a message in the first class is certain to complete service in the FCFS queue while a
message of the second class has an exponentially distributed length. The emphasis in
this work is on the Laplace-Stieltjes transform of the system time distribution.

For the FCFS-RR queue, the special case in which the first packet of a message
is served in the FCFS queue appears to be quite similar to the round robin queue
studied in this thesis. This special case is also examined by Fraser and Morgan; see
[FrtM84]. In this work, successive packets from the queue are assembled into frames
for transmission on trunks. Queueing and framing delays are studied, by analysis

and simulation, for a network serving several types of traffic. The motivation for this
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work is to provide fast service for the single character messages of interactive users
on a network that may also handle longer messages generated by file transfer.

Morgan continues this work in [Mor89]. In this work, it is stressed that ‘well
behaved users should be protected against the demands of the hogs.” Three systems,
FCFS, Round Robin, and the two stage FCFS-RR queue, are considered. For a mix-
ture of traffic, mean delay analysis is given. Heavy traffic approximations are also
made. Discussion of this work in the context of flow control will follow in Subsec-
tion 1.3.2.

Processor Sharing

Often the round robin queue is approximated by the continuous time processor sharing
model in which, given n jobs in the system, all jobs are served simultaneously each
with rate 1/n. It is argued [Kle76] that the processor sharing system is obtained as the
limiting case of a round robin queue in which the unit of work becomes infinitesimal.
That is, as the unit of work approaches zero, the round robin server can be thought
of as serving all customers simultaneously.

When all service times have the same exponential distribution, the analysis of the
processor sharing system is the same as that for the M/M/1 queue. With general
service requirements and multiple classes, the stationary properties of the proces-
sor sharing queue can be analyzed through examination of the reverse time queue
[Ros83] or by verification of the Chapman-Kolmogorov equations [Yas83]. However,
this analysis requires the use of an uncountable state space. Alternatively, Kelly ex-
amines the reverse time queue while approximating general service requirements by
sums of exponential random variables [Kel79]. This approximation of general service
times by sums of exponential random variables seems particularly questionable when
the service times are deterministic.

By reversibility, the stationary distribution of the processor sharing queue can
be found. This allows the mean system time as a function of message length to be
determined. However, reversibility does not yield any additional information about
the moments or distribution of the message system time. Both Yashkov and Ott
[Ott84] study the distribution of the message system time by a decomposition of the

system time into a sum of independent random variables. Yashkov focuses on the case
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in which a message arrives to find the state of the queue described by the stationary
distribution. Ott considers the case in which a message arrives to find a particular
state and averages over this set of states, verifying the results of Yashkov.

The advantage of the processor sharing queue is that it is relatively tractable,
particularly when the message lengths are exponentially distributed. However, one
should keep in mind that the processor sharing queue is usually a mathematical
abstraction. In real systems, the server usually provides discrete units of service, one
at a time. It is difficult to determine the validity of the approximation of round robin
by processor sharing without actually analyzing round robin directly. Clearly, one can
put more faith in the approximation when the unit of work is small in comparison to

the service requirements of the customers.

Priority Queues

How a network can provide service to customers with very different requirements
has been examined by Régnier, using priority queues; see [Reg86]. Given a set of
session rates and priority assignments, it is possible to find the average delay for each
session. Sessions requiring low delay are given high priority. However, identifying the
collection of feasible session rates and delays as well as an appropriate criterion for
optimality is very complicated. The basic difficulty is that a session cannot receive
higher priority without penalty to lower priority sessions. )
Thorough analysis requires that message lengths be chosen from an exponential
distribution common to all sessions. Furthermore, for each session, the message ar-
rivals must form a Poisson process. Even with these restrictions, analysis of networks
of these priority queues still requires the assumption that the queue departure pro-
cesses are Poisson. Although this assumption is technically incorrect, it is widely used
since a Poisson process tends to be a good approximation for the departure process
in a network of queues. Differences in analysis aside, the Régnier’s model does not

characterize networks with sources of variable burstiness.

1.3.2 Flow Control

Flow control is the regulation of the movement of messages or packets into as well as

within the network. Thorough discussion of flow control issues and methods can be
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found in [BeG87]. Flow control serves a variety of purposes including preventing buffer
overflow, limiting cross network delay, enforcing session packet rates and reducing the
effects of burstiness. Of these objectives, message based round robin service attempts
only to restrict the ability of a bursty session to increase delay for other sessions.
Round robin does not regulate the ability of sources to dump packets into the network
nor does it provide a mechanism to assign or limit session packet rates. As we shall see,
it will remain important to limit the average data rate of each session simply because
the performance of any queue is inextricably tied to the overall load. However, we
believe that a flow control strategy designed to severely restrict burstiness is not
generally desirable. For example, when the network is not busy, limiting the ability
of an active bursty session to submit packets to the network wastes network resources
and results in that session enduring unnecessary delay.

For most of our analysis, we assume there exists infinite buffer space allowing
arbitrarily long delays at each link. However, we demonstrate that it is possible
to analyze a round robin queue in which the number of messages in the system is
bounded. That is, a new arrival that would cause the number of messages in the
queue to exceed the bound is blocked. Note that in our model, a message can be
arbitrarily long. As a result, a bound on the number of backlogged messages is not a
bound on the number of backlogged packets. However, we will show that the bound on
messages does guarantee a bounded system time for any message that is not blocked.
In short, round robin is not a flow control scheme, although it does achieve some of
the basic goals of flow control.

The use of round robin service as part of a flow control strategy has been consid-
ered. Much of this effort has focused on the fairness properties of round robin. We

now examine some of this work.

Max-Min Fair Flow Control

A network in which session round robin service is provided at each link in conjunction
with window flow control has been analyzed by Hahne; see [Hah86]. At each link,
a separate queue is maintained for each session. During each slot at each link, the
sessions are polled in round robin order until a session that has a packet to send is

found. After this packet is sent, polling begins at the next session in the round robin
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ring. At each link, a finite length queue (a window) is allocated for each session using
the link. A session can send a packet over a link only if its window at the next link
is not full.

Hahne’s analysis of session round robin focused on the ability of the network to
enforce session throughput rates that have the property that each session rate is as
large as possible subject to the contraint that every smaller session rate is as large as
possible. Such a set of rates is known as maz-min fair.

Hahne examined session round robin under heavy load conditions. That is, each
session offered a packet to the network at every opportunity. It was shown that
the session throughput rates approached the max-min fair rates as the window sizes
increased. In addition, it was verified that sessions that used small windows would
be guaranteed both small delays and a lower bound on service rate.

Both Hahne’s approach and the message round robin queue described in this
thesis allow sessions that require small network delay to coexist with other sessions
that may try to maximize their use of the network capacity. Moreover, we believe that
the typical operation of the two round robin strategies often may be quite similar.
When no session has more than one message at a link waiting for service, session
and message round robin operate identically. For message round robin on high speed
networks in which the rate of any one session is small, we show that it is very unlikely
for a session to have more than one message waiting at a link. Consequently, the two
round robin systems should behave similarly much of the time. '

Hahne’s heavy load analysis of session round robin permitted cross network delay
guarantees to be made but did not allow the examination of the average properties of
the network. In comparison, we will be able to analyze the typical behavior of message
round robin but we will not be able to bound worst case cross network delay. In fact,
the desire to characterize the typical operation of session round robin prompted the

study of message round robin.

Other Forms of Fairness

For networks with sources of varying degrees of burstiness, alternative notions of
fairness have been proposed. In [Mor89], Morgan defines fairness as ‘the protection

of light users insofar as possible.” Furthermore, he examines the use of round robin as
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a method of passive flow control. In particular, he concludes that round robin unlike
packet FCFS, protects the well-behaved, that is non-bursty, user from the effects of
ill-behaved or bursty sources.

Network fairness is also addressed in [DKS89]. Although fairness is not explicitly
defined, the emphasis is on using the queueing discipline to protect light users, such
as interactive computer sessions, from bursty traffic such as file transfers. Only net-
works in which packets have variable lengths are considered. With this restriction,
it is concluded that packet by packet session round robin would be unfair but that
bit by bit session round robin would be a fair but impractical strategy. A queue
discipline that approximates bit by bit session round robin is then proposed. Upon
arrival, a packet is given a time stamp corresponding to the time at which it would
complete service under bit by bit session round robin. After a service completion (or
message arrival in the preemptive version), service is then provided to the packet with
the earliest time stamp. It is argued that the preemptive version of this method is
impractical. For the nonpreemptive version, it is verified by simulation that round
robin service protects an interactive user submitting 40 byte packets from a collection
of file transfer sources submitting 1000 byte packets. The simulations were performed
using a variety of flow control algorithms in conjunction with the queue diséipline.
In comparison, FCFS service failed to protect the interactive user despite the use of
flow control.

In [Zha89], Zhang proposes a queue discipline similar to that in [DKS89]. The
arriving packets of a session are stamped according to a Virtual Clock maintained
for that session. In each slot, the packet with the earliest stamp is transmitted.
After a packet arrival of session ¢, virtual clock ¢ is advanced by 1/r;, where r; is a
predetermined average packet rate for session i. In addition, a virtual clock is never
allowed to fall behind the real time. While the queue has a backlog, the packets of a
session are not transmitted faster than the average rate. It is difficult to determine
the extent to which this type of service is similar to round robin. Compared to round
robin, the advantage of Zhang’s approach is that the server is not constrained to treat

all sessions identically.
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1.4 Thesis Overview

This work can be divided into two parts. The first five chapters consider only an
isolated round robin queue used by a single session. The remaining chapters consider
networks used by many sessions in which round robin service is provided at each link.

In Chapter 2, we will outline the basic results that we will need from the theory
of Markov chains. In addition, we will describe our data network model and consider
our modeling assumptions. Lastly, we will describe the simplest form of the round
robin queue and find its stationary distribution.

Chapter 3 considers a more complicated round robin queue in which messages are
assigned to classes and the service requirement of a message depends on its class. We
derive the stationary distribution for this queue and the marginal distribution for the
number of queued messages belonging to a subset of the message classes. Further, we
use classes to examine the average message delay as a function of the message length.

In Cha.ptér 4, we describe a way to decompose the system time of a message into
a collection of independent random variables. We then use this decomposition to find
the first and second moments of the system time of a message as a function of the
message length. An upper bound to the message system time variance is also found.

In Chapter 5, we find the stationary distribution for a last come first served (LCFS)
queue. We do this by essentially the same method as we employed for the round robin
queue. We find that the stationary distributions for the round robin and the LCFS
queues are the same. This implies that the mean system time of a message is the same
under the two strategies. This prompts us to compare the variance of the system time
under the two service disciplines. We find that for long messages, the system time
variance is roughly the same for both disciplines. However, we prove that round robin
always provides a smaller system time variance than LCFS. In addition, we identify
a class of systems, called permutation queues, all of which have the same stationary
distribution. We verify that round robin and LCFS are types of permutation queues.

In Chapter 6, we examine a round robin queue that permits messages to be blocked
if the number of messages in the system exceeds a threshold. The stationary distribu-
tion and the blocking probability is found. However, we find that a network of such
queues is not amenable to analysis.

Chapter 7 considers a round robin queue that is used by multiple sessions. This
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queue provides service in such a way that we can reduce this queue to one that has
multiple message classes. We also verify that the performance penalty associated with
this reduction is small.

Chapter 8 proves that a network of round robin queues used by multiple sessions
has a product form stationary distribution. That is, the equilibrium behavior of a
link is the same as it would be in isolation with each session that had used that
network link submitting new messages directly without passage through a network.
We construct a proof that is valid for two different models. In the first model, when
a message enters the network, its length is chosen from a distribution that may be
unique to the session that submitted the message. This message has the same length
at every link in the network. In the second model, each time a message arrives at a
link, its length is an independent random variable that is described by a distribution
that may be unique to the session that submitted the message. Effectively, a message
chooses a new length each time it arrives at a new link. This second model is not
a particularly appropriate choice in the context of data networks. However, with
respect to more general queueing networks, the independence result for the second
model is of some interest.

The effect of round robin service on routing and flow control is discussed in Chap-
ter 9. We argue that routing based on average session data rates is an appropriate
strategy when the links provide round robin service. In addition, we argue that the
use of round robin service simplifies several other difficult data network problems. In
particular, it becomes possible to argue that network costs or usage charges should
have a very simple form.

We briefly summarize this work in Chapter 10. In addition, we consider some

unresolved issues.

1.5 New Results

Much of the queueing analysis in this thesis appears to be new. To a certain extent,
this is a consequence of the view that the discrete time M/G/1 queue is less insightful
as well as less tractable than its continuous time counterpart. We believe that this
view may be correct for FCFS systems but not for round robin queues. Although

processor sharing is mathematically well understood, it is not physically realizable.
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Previously, the merits of the processor sharing approximation have been validated
by simulation of round robin systems. Qur analysis verifies that a particular discrete
timne round robin queue shares the following known properties of the processor sharing

queue.
o The number in the queue is geometrically distributed.

o The service requirement of a departing message is independent of the state of

the queue the instant after departure.

e The service already received by a given message is independent of the number
of other messages in the queue as well as the service already received by those

other messages.
e The stationary distribution of a network of queues has a product form solution.
¢ The mean delay of a message is proportional to the length of the message.

We are unaware of any previously known results of this type for a round robin queue,

The delay analysis of Chapter 4 is also new, partly because of the specificity of
the round robin queue model. Although the message system time variance results are
new, they are analagous to the known results for the processor sharing queue

The application of round robin to flow control has been studied more extensively.
The desirability of round robin service has been recognized in a variety of contexts. In
this work, we argue that length discrimination is a desirable queue property. We then
verify that round robin service provides length discrimination. Morever, a session’s
mean message delay is found to be independent of the burstiness of the other sessions.
In addition, this work argues that the burst length is a valuable way to characterize the
burstiness of a source. Previously, this conclusion has been recognized (see [Mor89)

for example) but stated less explicitly.
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Chapter 2

Preliminaries

In this chapter, we describe the data network model that we will use throughout
the remainder of this work. Furthermore, in Section 2.2, we summarize some results
about Markov chains and reversibility that we will need in our subsequent analysis.
In the last.section, we will describe and analyze the simplest form of the round robin

queue.

2.1 The Data Network Model

In our network model, each communication link provides an errorless point to point
communication channel between a pair of nodes. Nodes can receive, store and trans-
mit fixed length packets of data. A packet will take precisely one unit of time, a slot,
to be sent over a link. We will assume that the nodes are completely synchronized
such that all nodes begin packet transmissions at the same instant.

A packet originates at an external source and passes through a sequence of nodes
and links to a destination that is also outside of the network. A source-destination
pair is called a session and the sequence of nodes and links used by a session is called
a route. At the end of each slot, we will allow each source to submit a collection
of packets, a message, to the first node on its route. That is, during a slot, a node
may receive an arbitrarily large number of packets from each of its external sources.
However, a node can send only one packet per slot over a link.

At the end of each slot, a session submits a message with some fixed probability
independent of all other message arrivals. We will call this probability the message
rate of the session. For each session, the number of packets in a message will be

a random variable that is independent of all arrival times and of all other message
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lengths. The product of a session’s message rate and average message length will be
called the packet rate of the session. A message that arrives at the end of slot s can
begin service at the start of slot s+ 1. If the last packet of this message is sent during
slot ¢, we will say that the system time of the message is t — s. We will define the
waiting time to be the difference of the system time and the length of the message.
Note that the waiting time equals the number of slots a message is in the system
during which it does not receive service.

The requirements of a fixed packet length and synchronized slot times have been
made for analytic convenience. The assumption of fixed packet lengths is quite reason-
able since it is commonly made in the design of fast packet networks. The assumption
of synchronized slot times is less reasonable. We shall see that requiring all links to
operate at the same speed plays a crucial role in our analysis. However, the require;
ment that all packet transmissions begin at the same instant is of little importance
and could be discarded.

‘Comumnunication links are not errorless in practice, but ensuring that messages are
received correctly can be separated from the issue of how the network should provide
service to its messages. In addition, as links become increasingly reliable, errors
become rare events that should have relatively little effect on the overall network
throughput or delay. Since, it is our intention to characterize the performance of
networks with bursty sources, we will ignore the small effect of errors.

As we shall see, the model we have chosen will be reasonably simple to analyze.
However, one can argue that the memoryless arrival process is an unrealistically simple
choice, particularly for bursty sessions. Perhaps a better model would be one in which
a session is silent for some length of time followed by an active period during which the
session submits packets at some high rate. Such an arrival process is not memoryless.
Yet, if we call the collection of packets submitted during an active period a message,
then the message length characterizes the burstiness of the session. If desired, we
could add to the model an extra access link that feeds the packets into the network
proper at the appropriate rate. Since the packets pass through each link one by one, it
makes little difference whether all of the packets enter the network at once or in a high
rate stream. In either case, we sacrifice little by taking advantage of the tractability

of our simpler memoryless model.
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2.2 Reversibility and Markov Chains

In this work, we will derive the stationary distributions of several queueing systems by
examination of the queue under time reversal. Before doing so, we need to describe the
properties of the time reversed Markov chain. A thorough treatment of this subject
can be found in either [Kel79] or [Ros83].

Let Uy, ..., Uy represent the sequence of states of a discrete time, aperiodic Markov
chain with transition probabilities P;; and stationary distribution ;. Suppose that
the system was started so that P{Up = ¢} = m;. In this case, P{U; = i} = m; for all
t. We can generate a new process whose sample paths consist of sample paths of the
Markov chain in reversed order. The sequence of states of this new system would be
Uk,...,Up. We call this new process the reverse time system since it can be viewed
as a process that starts at time k (with the stationary initial distribution) and runs
backwards until time 0.

We can show that the sequence of state transitions of the reverse time system is
also a Markov chain. If we let Y represent the sequence of states U,y,,...,Us, we can

write
P{Ut ='isUt+1 =j1Y =y}
P{Up1 = 7,Y =y}
P{U, = i}P{Ui41 = j|U; =} P{Y = y|U; = 1, U1 = j}
P{Uis1 = j}P{Y = y|U;+1 = j}

7 P; P{Y = y|Up1 = j}

i P{Y = y|{Uy1 = j}
1|'.'P,'j

LE]

P{U. =i|lUp: =35 Y =y} =

The distribution of the state U, given the states U;41,..., U depends only on the state
Ui41. So, the reverse time process is a Markov chain with transition probabilities
7: P
Pt ==
ji ;

We will make use of the following result.

Theorem 1 Consider an irreducible Markov chain with transition probabilities P;;.
If one can find nonnegative numbers 7;, i > 0, summing to unity and [P}, a transition
probability matrix, such that

m; Py = m; P, (2.1)

Ji
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then the w; are the stationary probabilities for both chains and the Py; are the tran-

sition probabilities for the reversed chain.

Proof Equation 2.1 directly implies that the Pj; are the transition probabilities for

the reverse time chain. If we sum (2.1), over all 7, we have

oo e <]
®
i=1 =1

Summing (2.1) over all j yields

= -]

| .
2 miPy=m
2

Hence, the ; represent the unique stationary distribution of both the forward and

reverse time chains.
We call the chain reversible if for all states ¢z and j,

P = P;

ij —
When a queue is reversible, the forward and reverse time Markov chains are the same.
That is, the forward time system is indistinguishable from the reverse time system.
As an example, it can be verified that the Markov chain for any birth death process
is reversible.

In the context of queues, there is a set of correspondences between the forward
and reverse time systems. Consider a single link of the discrete time data network
described in Section 2.1 Let X, represent the state of the system at the start of slot
t. In this casé, X1,..., Xk would be a sample path of the forward time system. The
corresponding sample path in the reverse time system would be X,...,X;. That is,
in reverse time, the system starts at slot £ and proceeds through slots k — 1,k —2...
In reverse time, X, represents the state of the queue at the conclusion of slot ¢.

Suppose a message completes service in the forward time system at the end of
slot s. At the start of slot s + 1, the state X,;; would reflect the fact that the
system contains one less message. For the reverse time system, the fact that X,y
has one more message than X, would indicate that a message arrived at the start of
slot 3. In short, the forward time departure corresponds precisely to the reverse time
arrival. Similarly, a forward time arrival is equivalent to a reverse time departure.

We summarize these correspondences in the following table.
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" Forward Time Reverse Time

Start of Slot s End of Slot s
End of Slot s Start of Slot s h
Slot s Arrival Slot s Departure

Slot s Departure Slot s Arrival

Arrivals Before Slot s | Departures After Slot s

Departures After Slot s | Arrivals Before Slot s

The queues that we will consider will not be reversible. Instead, these queues will
have a property defined by Kelly as quasi-reversibility. We will call a discrete time
queue quasi-reversible if its state X, is a stationary Markov chain such that X, is

independent of

e Arrival times of customers after time ¢

e Departure times of customers before time ¢

For the model we have chosen, the forward time arrival process is memoryless and
X, is independent of the arrival process in slots t,t+1,.... We will examine queues for
which we hypothesize that in reverse time, the state X, is independent of the arrival
process in slots ¢t — 1,¢ — 2, .... In this case, we can conclude that in forward time, X
is independent of the departure process in slots £—1,¢—2,... because the reverse time
arrival process corresponds to the forward time departure process. In short, we will
consider queues for which forward and reverse time are essentially indistinguishable
as long as only the arrivals and departures of the system can be observed.

Our method will be to construct a system for which it will be relatively easy
to guess the behavior of the reverse time system. This guess will specify a set of

transition probabilities P;. We then will find ; satisfying (2.1) to verify our guess.

2.3 One Link — One Session

Consider a data network with a single session using an isolated link. During each unit

of time, a new message arrives with probability A. With probability 1 — ), there is
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no arrival. Each message has an independent integer packet length X described by
g(z) = P{X =z} and G(z) = P{X > z} such that G(0) = 1. Given that a message
has already had w units of service, we will need to know the conditional probability
that the message’s service requirement will be fulfilled after its next packet is sent.

We denote this probability by r(w) = P{X = w + 1|X > w}. It’s easily seen that

r(w) = glw+1)

G(w)

In the transition from time ¢ to time t + 1, the following sequence of events occurs:

1. The message at the front of the queue has one packet sent.

2. Following service, this message will depart if all of its packets have been sent.

Otherwise, the message will be rotated to the back of the queue.

3. If a new message arrives at the end of slot ¢, it is placed at the front of the

queue to begin service at time ¢ + 1.

Let n,w,,...,w, represent the state of the queue, where n is the number of mes-
sages in the system and w; is the number of packets already sent of the message in
position i. We will call this queue RR-1. Note that if the system state at the start
of slot s has w; = 0, then a new message arrived and was inserted at the head of the
queue at the end of slot s — 1. For all : > 1, w; > 1 since a message cannot be rotated

to the back of the queue until it has had one packet sent.

Conjecture 2 The reverse time process is also a round robin queueing system with
Bernoulli arrivals of rate A\ and independent packet lengths distributed according to

G. At time t, the following sequence of events occurs:

1. The message at the front of the queue departs if all of its packets have been

sent.

2. If a message arrives at the start of slot t, it is inserted at the front of the queue.

Otherwise, the message at the back of the queue is rotated to the front.

3. The message at the front of the queue has one packet sent.

The system is still a discrete time Markov process with state n,w,,...,w, where
n Is the number of messages in the system and w; is the number of packets of the

message in position ¢ that remain to be sent .
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Figure 2.1: The Forward Time Sequence of Events Within a Slot

Arrival Departure

e

Slot T
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Figure 2.2: The Conjectured Reverse Time Sequence of Events Within a Slot

Note that we have chosen the round robin queue precisely so that it is possible
to describe the reverse time system easily. Moreover, there is no mystery in how the
reverse time queue was conjectured. In forward time, the sequence of events within a

slot, as depicted in Figure 2.1, is
1. Service The front message is served.
2. Departure or Rotation. The front message departs or is rotated to the back.
3. Arrival If a new message arrives it is inserted at the front of the queue.

For the reverse time queue, the sequence of corresponding events occurs in the
reverse order. That is, the reverse time sequence of events, as shown in Figure 2.2, is

simply
1. Departure
2. Arrival or (Reverse) Rotation

3. Service
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Note that it is vital that the new arrival in forward time receive the next unit of
service since the corresponding event in reverse time consists of a message completing

service and departing.

2.3.1 Proof of Conjecture 2

To verify Conjecture 2, we will use Theorem 1. Conjecture 2 specifies the reverse
time transition probabilities Pjj. We will find limiting state probabilities ; such that
m;P;; = m; P}; to prove the conjecture.

Given an arbitrary state u, we need to examine the set of transitions to neighboring
states u' in the the forward time chain and the corresponding transitions from u' to u
in the reverse time chain. We will call © and u' a state transition pair and will write

Pu,u’

*
P, u'yu
The four basic transitions that we must consider are:
e The front message is served and departs. No new message arrives.

In this instance, our state transition pair is

(1 = A)r(w)

n—1,w,,...,w,

Ny Wyyeee, Wy

Ag(wy + 1)
since in forward time, the probability of no new message is 1 — A and the
probability of a service completion is 7(w;). In reverse time, we need a new
message to arrive requiring w; + 1 units of service to return to the starting

state. This transition pair implies that 7, ,,.. », must satisfy

(w1 +1)

g
Wﬂ,wl,...,w"(l - A) —G-(wl) = Ag(WI + l)ﬂn—l,wg,....w..

Rewriting yields
Tnwy,eywn — m@(ﬂ)l)ﬂ'n_l‘wzwqwn
Repeating this process for the departure of the remaining messages in the system
implies that
A
Trwy,mwn = Mg H —_—/\G(w{) (2.2)



where 74 is the empty state probability. However, we must verify that this

particular choice for ,,,,, wwa Will satisfy (2.1) for the other transition pairs.

The front message is served but does not depart. No new message arrives.

For the reverse transition, we must not have a message arrive to ensure that the
Inessage at the rear of the queue is rotated and served. This state transition
pair is

(1 =) ~ r(wy)]

n,wi,...,w, N, Wy, ..., Wy, wy + 1

1-2
since 1 — ) is the probability of no new arrival, and 1 — 7(w, ) is the conditional
probability of a Inessage not departing after w, + 1 units of service given that
the message did not depart after w; units of service. In reverse time, the system

makes the reverse transition when there is no arrival. We must check that
"ﬂ,wn,---,wn(l - ’\)[1 - "'('wl)] = (1 - A)"’ﬂ.wz.---.wan+l

Since 1 — r(w;) can be rewritten as G(w, + 1)/G(w,), we must have

erd (i T2500) = (w1 5800 2B+ )

which holds by cancellatjon.

The front message is served and departs. A new message arrives.

In reverse time, the front message departs immediately. To return to the original
state, there must be a new arrival requiring exactly w, + 1 units of service. The
corresponding transition pair is

/\7‘(1.01 )

n,Wy,...,w, n,0,w,,...,w,

Ag(w; + 1)

We must verify that

gt l) (02 G - N o (B A
A Gw,) (%E T AG(w.)) = Ag(w, + l)mG(O) (%g mG(""))
which holds since G(0) = 1.

29



¢ The front message is served but does not depart. A new message arrives.

For the reverse transition, the front message will immediately depart and the
rear message will be rotated and served iff no new message arrives. Hence, the
transitions are
All — r(wq)]
Ny, Wy ..., Wn n+1,0,ws, ..., wy,w; +1
1-2A
Substituting G(w, + 1)/G(w;) for,1 — r(w;), we find that

wn,wl,...,w,’\—a—é‘:‘ﬁl) = (1-)) (ﬁ) Blws 1 1) (m 1:‘[2 li_Aa(w,.))

= (1 = M) Tn41,0,w3,.mtwn wr +1
since G(0) = 1.

This proves Conjecture 2.

2.3.2 The Distribution of the Number in the Queue

We can use (2.2) to find the distribution for the number in the queue. Note that
X =Y G()
1=0
and that G(0) =1 so
X-1=3G06)
=1

Let N represent the number in the queue and Py(n) be the probability mass function
for N. We note that if a message is not at the front of the queue, then at least one
of its packets must have been sent. By summing over all possible states with V > 1

messages we find

oo

Py(n) = i; i nW1 e Wn
/\

wp=1

_ A "n(ia(wl)(z G(wz))---(iﬁ(wn))

wn=1
AX - 1) -t
= "”’1— 1—




We note that 74, the probability that the system is empty, is equal to Py(0). Applying
Y2 o Pn(n) =1 yields my =1 — AX and

Lk M=

1-)X (n=0)
Py(n) =4 _ MX -1)) (M =)\ (2.3)
o (1 A=) (A0
We see that the queue is stable iff
MX -1)
<5 <1

We note that this condition holds iff the usual condition for stability of a work con-
serving queue, AX < 1, holds.

2.3.3 Model Sensitivity

Certain aspects of the round robin queue model can be altered without changing the
results in any great way. However, changing other aspects of the model destroys the
reversible properties of the queue. We now will address these possibilities.

The operation of a round robin system from slot to slot requires several basic

steps. We will describe these steps in the following general terms.
Service A message is served.

Departure After service, a message may depart.

Rotation A message may be rotated.

Arrival If a new message arrives, it is inserted in the queue.

The reverse time properties of the queue are very sensitive to the particular operations
involved in each of these steps as well as the ordering of these steps. For many
permutations of these steps, the reversibility analysis fails.

The choice of state description is also important. There are two basic ways to
represent the state of the queue. We can choose the state n,w,,...,w,, where w;
represents the number of packets already sent for the message in position :. The

alternative is to have w; represent the number of packets remaining to be sent.
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For the queue RR-1, we chose w; to be the service already received by message 1.
Had we chosen w; to be the residual service requirement of message z, the analysis
by reversibility would not have worked. We emphasize that this is difficult to see
without actually writing down the possible state transitions..

One round robin queue that we can analyze orders the necessary steps in the

following way.
1. Arrival If a new message arrives, insert it at the front of the queue.
2. Service The front message is served.
3. Departure The front message departs or is rotated.

We represent the state of the queue by n,w,,...,w,, where w; is the number of
packets already sent of the message in position :. We will call this queue RR-2. For
both RR-1 and RR-2 the stationary distribution is described by (2.2). However, RR-2
may be considered a more natural choice than RR-1 for a round robin queue in that
a message has its first packet sent in the same slot in which the message arrives. For
the corresponding event in reverse time, a message departs in the same slot in which
its last packet is sent. In comparison, for RR-1 in reverse time, a message departs at
the start of the slot after its last packet is sent. As a result, w; > 1 for all :. This fact
simplifies the distribution for the number in the queue. In particular, for this queue,

pym = (1-2850) (MDY oz

If our intention is to examine only a single queue, RR-2 is the more straightforward
one to consider.

The queue RR-1 allows the possibility that w; = 0. As we shall see, this will
complicate later work. However, for the purpose of analyzing a network of queues, it
will be vital that we preserve the (Service, Departure, Arrival) sequence of operations
used by RR-1. Consider a network of RR-2 queues and suppose at the end of slot
s, a message completes service at link ! on its way to link /. Under the (Arrival,
Service, Departure) sequence of operations of RR-2, the message does not arrive at
link I’ until slot s+ 1. At the very start of slot s + 1, neither the state of link / nor I’

reflects the fact that a message will arrive at I’ at the end of the slot. The message is
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effectively in limbo. In comparison, under the (Service, Departure, Arrival) approach
used by RR-1, when the message leaves link [ it arrives instantly at !’ and the state
of link [' at the start of slot s + 1 includes the new arrival. For this reason, we will

focus our attention on the (Service, Departure, Arrival) round robin queue.
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Chapter 3
Multiple Message Classes

We now will analyze a somewhat more complicated system in which each message
belongs to a class. The operation of this queue is the same as that of the queue RR-1
of Section 2.3. That is, the class of a message does not alter the service received by
that message. If our only interest were the distribution of the number of messages
in the queue, classes would be unnecessary. Message classes permit us to examine
additional properties of the round robin queue.

We will denote the set of classes by C and we will assume that C is countable.
During each slot, a message of class c arrives with probability A.. No more than one
message can arrive in any slot and the probability of no message arriving during a
slot is 1 — A where A = Y _¢¢c Ac. Each class ¢ message has an independent integer
packet length X, described by g.(z) = Pr{X. = =} and G.(z) = P{X. > z} such that
G.(0) = 1. As before, given that a class c message has already had w packets sent, the
conditional probability that the message’s service requirement will be fulfilled after
its next packet is sent will be denoted by

re(w) = Pr{X.=w+1|X, > w}
ge(w+1)
Ge(w)

At time ¢, the following sequence of events occurs:

1. The message at the front of the queue has one packet sent.

2. Following service, this message will depart if all of its packets have been sent.

Otherwise, the message will be rotated to the back of the queue.

3. If a new message arrives at the end of slot ¢, it is placed at the front of the

queue to begin service at time ¢ + 1.
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Let n,y1,-..,Yn represent the state of the queue, where n is the number of mes-
sages in the system and y; = (wi, ci) such that for the message in position %, w; is the
number of packets already transmitted and c; is the class of the message. Once again,
we conjecture that the reverse time system is a round robin system of the same type

as the forward system.

Conjecture 3 The reverse time process is a round robin queueing system. At the
start of slot t, a message of class c arrives with probability .. No more than one
message can arrive in any slot and the probability of no message arriving during a
slot is 1 — \ where A = C_; A.. Each class c message has an independent service time

distributed according to G.. During slot t, the following sequence of events occurs:

1. The message at the front of the queue departs if all of its packets have been

sent.

2. If a new message arrives, it is inserted at the front of the queue. Otherwise, the

message at the back of the queue is rotated to the front.

3. The message at the front of the queue has one packet sent.

The system is still a discrete time Markov process with the state n,y1,...,Yn
representing the remaining integer service demands (as well as the classes) of the

messages in the system.

3.1 Proof of Conjecture 3

Of course, we will use Theorem 1 to verify Conjecture 3. This proof is virtually the
same as before except we must consider the class of each message.

The four basic transitions that we must consider are:

e The front message is served and departs. No new message arrives.

For the reverse transition, a new message of class c; and length w; + 1 must

arrive to return to the original state. In this instance, the transition pair is

(1= A)re, (w1)

Y153 Yn n—l,yz,...,yﬂ

—

’\Cl 9o, (wl + 1)
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This transition pair implies that 7, ., must satisfy

ey (wl + 1)

— = Ac c +1 n— o ¥Yn
Gcl(wl) lg l(wl )7r 1,y240009¥

W”vyl v'--;yn(l - )

Rewriting yields \
= Jea 7

W"!ylv"-vyn - 1 _ AGCI (wl)"rn"lvllzl-"vyn

Repeating this process for the departure of the remaining messages in the system

implies that =, ,. must satisfy

/\c'
W“vyl ye1lin W‘t H Gc, (wi (3- 1)

=1
where 74 is the empty state probability. Once again, we must verify that this

particular choice for m,,,. . . Will satisfy (2.1) for the other transition pairs.

The other transitions are:

o The front message is served but does not depart. No new message arrives.

For the reverse transition, we must have no arrival to ensure that the mes-
sage at the rear of the queue is rotated and served. This state transition pair

corresponds to

(1= A1 = re, (w1)]

Yy ) Yn n,yz,...,y,,,(w1+1,c1)
1-2AX

We must check that

W"-Vl r"-vyll(l - A)[]' - rcl (wl )] = (1 - A)w"vmv'-'vynv(wl +1vcl)

Since (1 — 7, (w;) can be rewritten as G,, (w; + 1)/G, (w1), we must have

which holds by cancellation.

e The front message is served and departs. A new class ¢ message arrives.
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In reverse time, the front message departs immediately. To return to the original
state, there must be a new class ¢; arrival requiring exactly w;+1 units of service.

The corresponding transition pair is

’\c"'q (wl )

Y1y Yn n,(O,c),yz,...,yn
Acl 9 (wl + 1)

Since G.(0) = 1, we can verify that

. Aege, (w1 + 1) _ g
Yl yeensln act (wl) cl <1

= '-'1 e, (wl +1 )Wn.(o.c),yz.....y,.

o o)
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