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Abstract: The success of robot localization based on visual odometry (VO) largely depends on the
quality of the acquired images. In challenging light conditions, specialized auto-exposure (AE)
algorithms that purposely select camera exposure time and gain to maximize the image information
can therefore greatly improve localization performance. In this work, an AE algorithm is introduced
which, unlike existing algorithms, fully leverages the camera’s photometric response function to
accurately predict the optimal exposure of future frames. It also features feedback that compensates
for prediction inaccuracies due to image saturation and explicitly balances motion blur and image
noise effects. For validation, stereo cameras mounted on a custom-built motion table allow different
AE algorithms to be benchmarked on the same repeated reference trajectory using the stereo imple-
mentation of ORB-SLAM3. Experimental evidence shows that (1) the gradient information metric
appropriately serves as a proxy of indirect/feature-based VO performance; (2) the proposed predic-
tion model based on simulated exposure changes is more accurate than using γ transformations; and
(3) the overall accuracy of the estimated trajectory achieved using the proposed algorithm equals
or surpasses classic exposure control approaches. The source code of the algorithm and all datasets
used in this work are shared openly with the robotics community.

Keywords: auto-exposure; visual odometry; simultaneous localization and mapping; robot vision

1. Introduction

The success of robot localization methods based on vision relies on the quality of the
camera exposure. While many methods exist to mitigate poor exposure effects after images
have been acquired (e.g., motion blur [1–7], saturation [8], low contrast [9–11]), these often
jeopardize the real-time capabilities of state estimation. Moreover, the performance of these
specialized visual odometry (VO) and simultaneous localization and mapping (SLAM)
pipelines can only be less than or equal to some equivalent generic pipelines fed with
appropriately acquired images. Under challenging light conditions, such as when dealing
with HDR scenes, non-static illumination, or low-light conditions, the appropriate selection
of an image exposure time and gain is therefore crucial. However, in comparison to the
methods mentioned above, pre-acquisition methods such as auto-exposure (AE) algorithms
have received relatively little attention in the robot vision community. This is due in
part to the fact that fine-tuning a specialized VO/SLAM pipeline can be achieved using
a small set of prerecorded videos. In comparison, tuning an auto-exposure algorithm for
maximizing VO performance requires more elaborate testing procedures such as replicating
a camera trajectory multiple times under different parameter settings. As summarized
in Table 1, existing AE algorithms mainly differ in the following aspects: (1) the metric
optimized by the algorithm; (2) the model used to predict the effect of future changes in
gain and exposure; (3) the strategy employed to balance gain and exposure time; (4) the
control policy used to update the exposure parameters. As the merits and shortcomings of
existing methods can be attributed to each of these individual aspects, they are addressed
sequentially in the following sections.
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Table 1. AE algorithms for VO/SLAM applications.

Ref. Year Optimization Metric Prediction Model Gain/Exposure
Balance Strategy Control Policy

[12] 2009 Average intensity
deviation from ref. None Exposure priority PI controller

[13] 2010 Image entropy (2) None Preset relationship Unspecified

[14] 2013 Average intensity
deviation from ref. Implicit Implicit Learned (randomly

connected NN)

[15] 2017 “Soft” gradient percentile Photometric response Exposure priority Gradient descent

[16] 2018 Gradient information (5) γ transformations Exposure priority Nonlinear feedback
minimizing (γ∗ − 1)

[17] 2018
Average

entropy-weighted
gradient (12)

Implicit Fixed gain Learned (Gaussian
process)

[18] 2019
Combined gradient

information, entropy,
and noise metric (14)

None Implicit Nelder-Mead

[19] 2020 Gradient information (5) γ transformations Exposure priority Nonlinear feedback
minimizing (γ∗ − 1)

[20] 2021
Number of detected

features and matched
features across frames

Implicit Implicit Learned (CNN)

Ours 2021 Gradient information (5)
PRF-based

transformations and
saturation feedback

Minimizing motion blur
and noise Linear feedforward

1.1. Optimization Metrics

In the context of vision-based robot localization, the metric optimized by an AE
algorithm acts as a proxy to the overall VO performance. The value of these optimization
metrics depends on the exposure of the image. In this work, the exposure is quantified
using the exposure level E, defined as

E = log2 (tg) = log2 t +
(

log2 10
20

)
gdB, (1)

where t and g are the exposure time and gain, and gdB is the gain in dB. One common
optimization metric is the deviation between some reference value and the average pixel
intensity over the whole image or some region of interest (ROI) [12,14,21]. Minimizing
this deviation is the most common AE approach available on most commercial off-the-
shelf cameras. Although the metric is fast to compute, it is more useful for acquiring
visually appealing images than for VO applications. Instead, AE algorithms for robot
vision typically maximize the content of the image which is specifically relevant for feature
detection and tracking. For instance, early work by Pan [22] in the field of autonomous
driving maximizes the mean difference in intensity between lane markings and the road.
A more general algorithm was later proposed by Lu [13] which maximizes image entropy,
the assumption being that images with high entropy are well exposed. The image entropy
metric Me is defined in this context as

Me = −
Nl

∑
i=1

Pi log2 Pi, (2)
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where Pi is the proportion of pixels in the image with an intensity value i out of the Nl
possible levels. Shim [16,23] later observed that images with strong gradients are more
likely result in features being detected and matched. To balance the relative weight of
weak and strong image gradients and to limit sensitivity to noise, Shim proposed that the
gradient information m∗i of a pixel i should be defined as

m∗i =

{
1
N log(λ(mi − δ) + 1), if mi ≥ δ,
0 otherwise,

(3)

where mi is the gradient magnitude of the ith pixel (normalized on a unit scale), δ ∈ R+ is
the activation threshold, λ ∈ R+ is a shaping parameter, and N is a normalization factor
defined as

N = log(λ(1− δ) + 1). (4)

Finally, the gradient information metric Mg is defined as

Mg =
Np

∑
i=1

m∗i , (5)

where Np is the total number of pixels in the image. As proposed in Shim’s original paper,
λ was set in this work to 1000 [16]. The activation threshold δ was set to 0.30, which is larger
than the value of 0.06 originally used by Shim. Indeed, a desired feature of the metric is that
it should be independent of image noise. As image noise increases with gain, the metric
value should not vary when acquiring the image of a static scene at a given exposure level
E, even if the image is acquired with different combinations of exposure gain and time.
When using an activation threshold of 0.06, experimentation showed that the image noise
in dark frames causes Mg to vary greatly for different gains (see Figure 1). In comparison,
a threshold of 0.30 decouples metric values from image noise while the optimal exposure
level remains the same.
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Figure 1. Comparison of the gradient information metric Mg for different threshold values δ. Each
dot represents the metric computed for an image of a static scene with a constant illuminance of
about 50 lux captured with different gains and exposure times.

Zhang [15] later introduced a closely related metric labeled the “soft” gradient per-
centile. It approximates a certain percentile of the image pixel gradients (e.g., the median
gradient) and, unlike gradient information, it is differentiable with respect to exposure time.
This property proves useful in deriving a controller policy based on gradient descent.

However, Me, Mg, and the median gradient can be sensitive to noise. To avoid the
problem, Kim [17] proposed to weight the gradient of each pixel i by a factor which depends
on the entropy ei of the pixel defined as

ei = −P(Ii) log2 P(Ii), (6)



Sensors 2022, 22, 835 4 of 19

where P(Ii) is the proportion of pixels in the image with the same intensity as pixel i.
The weight Wi of a pixel is then defined as

Wi =
wi

∑N
j=1 wj

, (7)

where

wi =
1
σe

exp

(
−1

2

(
ei − ē

σe

)2
)

, (8)

and where ē and σe are, respectively, the mean pixel entropy and standard deviation. Finally,
the authors define the entropy-weighted gradient m̌i of a pixel as

m̌i = Wim2
i + π(ei)SiWi

1
Np

Np

∑
j=1

m2
j , (9)

where

Si =

{
1 if ei ≤ ethresh,
0 otherwise,

(10)

and π(·) is an activation function defined as

π(ei) =
2

1 + exp(−αei + τ)
− 1, (11)

where α ∈ R+ and τ ∈ R+ are shaping factors. For the present work, ethresh = 0.05, α = 32
and τ = 4 as in [17]. The entropy-weighted gradient metric Mewg is then computed as

Mewg =
Np

∑
i=1

m̌i. (12)

As an alternative to Kim’s weighted gradient, Shin [18] proposed that the noise σnoise
of an image (I) be directly approximated as

σnoise =

√
π

2
1

Ns

Np

∑
i=1

Hi ·Ui · |I ∗M|i, (13)

where Hi and Ui are the ith entry of binary matrices, respectively, masking out the non-
homogeneous and the saturated regions of the image, Ns is the number of pixels that are
both homogeneous and unsaturated, and M is the noise estimation kernel proposed by
Immerkaer [24]. The approximation σnoise of the image noise is then incorporated in a
hybrid image quality metric Mq defined as

Mq = α
Mg

sg
+ (1− α)Me − βσnoise, (14)

where α ∈ (0, 1) and β ∈ R+ are weighting factors, and sg is the standard deviation of the
gradient information metric evaluated individually over each cell of a grid. The present
work uses the authors’ original values of α = 0.4 and β = 0.4 proposed in [18].

More recently, Tomasi [20] also proposed to directly maximize the number of detected
and successfully matched features across frames as a proxy for VO performance through a
self-supervised learning method. However, from the current state of the literature, it re-
mains unclear how these metrics compare to one another as substitutes of VO performance,
since direct cross-correlation analyses are rarely offered. Furthermore, other metrics, such
as the Lowe ratio has not yet been incorporated into an AE algorithm. Its merits as a proxy
of VO performance are worth exploring in this work.



Sensors 2022, 22, 835 5 of 19

1.2. Prediction Models

While purely reactive approaches (e.g., [12,13,18]) do not require any characterization
of the camera, they do require the slow process of sampling real-world images to converge.
Instead, predictive AE algorithms use a model to predict the effect of future exposure
parameters on the optimization metric. For learned control policies (e.g., [14,17,20]), a pre-
dictive model is implicitly embedded in the policy. In contrast, explicit predictive methods
offer more interpretability, and leverage known information about the camera’s image
acquisition process. For instance, Shim [16,23] proposed to use discrete γ transformations
to predict the effects of future variations of exposure parameters. For each pixel intensity
Iin ∈ {0, 1, . . . , 255} of an image and for any given γ ∈ R+, the predicted pixel intensity
Iout ∈ {0, 1, . . . , 255} is mapped as

Iout = 255 ·
(

Iin

255

)γ

. (15)

This approach does not require any camera characterization, but there exists no direct
link between γ transformations and changes in camera exposure other than γ < 1.0
simulates a more exposed image while γ > 1.0 simulates a less exposed one. To avoid this
limitation, Zhang [15] proposed to leverage the photometric response function (PRF) of the
camera as a way to make better predictions. This function fPRF maps the exposure E of the
camera sensor to the intensity Iout of the image:

Iout = fPRF(E). (16)

The PRF of a camera can be found through a simple calibration procedure [25] or
be estimated online [26], but only up to an offset which depends on the unknown scene
irradiance. While Zhang leverages this PRF within a gradient descent step to select the next
exposure parameters, it has not been incorporated into an explicit prediction step similar to
Shim’s algorithm.

1.3. Gain/Exposure Balance Strategies

From the definition of the exposure level E given in (1), there are infinitely many
combinations of exposure time and gain that will result in the same exposure level. Most
existing AE algorithms (e.g., [12,15,16,19]) disambiguate this choice using an “exposure
priority”. With this approach, the exposure time is always adjusted first while maintaining
gain at a fixed low value. When exposure time reaches an upper limit, gain is increased to
meet the required exposure level, thus minimizing image noise. In low-light conditions,
this method is seriously prone to motion blur. One way to solve the issue is to impose
some fixed relationship between g and t (e.g., g = kt, where k ∈ R+) [13]. However, such
a relationship is suboptimal as it does not allow motion blur and noise to be balanced
dynamically based on the current motion of the camera.

1.4. Control Policies

Almost every algorithm summarized in Table 1 employs a different control policy. Yet,
the merits of each (apart from allowing some predictive control or leveraging some learning
method) cannot realistically be compared in isolation from the choice of optimization
metric, prediction model, and gain/exposure balance strategy. Among these, Shim’s AE
algorithm [16,19] stands apart by its use of an explicit prediction model which enables the
quick convergence of the camera exposure parameters with a simple feedback law. It is
also the method closest to the one proposed in this work.

For every incoming frame, the authors simulate changes in exposure by applying
a sequence of discrete γ transformations (15) to the input image. The gradient infor-
mation metric of each simulated image is then computed and a polynomial function
ffit(γ) is fit to the resulting data. The optimal transformation is then approximated as
γ∗ = arg max ffit(γ). As there exists no direct relationship between γ transformations and
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changes in exposure level, the authors then set the exposure level of the next frame Ek+1
using the nonlinear update

Ek+1 = (1 + αkp(r− 1))Ek, (17)

where
r = d · tan(arctan(1/d)(1− γ∗)) + 1, (18)

and

α =

{
1/2 if γ∗ ≥ 1,
1 otherwise.

(19)

1.5. Proposed Approach

The aim of the present work is to detail and support the development of an auto-
exposure algorithm for the purpose of vision-based robot localization in challenging light
conditions. Unlike other methods, the algorithm detailed in Section 2.1 fully leverages the
camera’s PRF to predict the exposure that maximizes gradient information. It also incorpo-
rates feedback on the error between the actual and predicted gradient information metrics
to compensate for PRF inaccuracies due to image saturation. Finally, it balances gain and
exposure time based on time-varying predictions of motion blur intensity. Using the setup
and testing procedure detailed in Section 2.2, the overall performance of the algorithm
is assessed through extensive experimental validation. First, a cross-correlation analysis
(Section 3.1) for a wide range of optimization metrics supports the use of gradient infor-
mation as an appropriate proxy of VO performance. A convergence analysis (Section 3.2)
then demonstrates the respective effects of using predictions based on PRF and feedback
to compensate prediction errors due to saturation. Finally, the AE algorithm’s ability to
reduce robot localization error is assessed experimentally in Section 3.3 and demonstrates
that the proposed approach outperforms other exposure control approaches.

2. Materials and Methods
2.1. Proposed AE Algorithm

The proposed algorithm actively adjusts the camera gain and exposure time to improve
VO performance by maximizing the image gradient information metric (5). While the
algorithm can handle any proxy of VO performance, this choice of metric is supported by
the detailed comparison included in Section 3.1. A schematic and pseudocode summarizing
the algorithm are provided in Figure 2 and Algorithm 1. The C++ source code and a ROS
wrapper for this algorithm are made publicly available (https://github.com/MIT-Bilab/vo-
autoexpose accessed on 30 November 2021). The code also includes options to experiment
with the different alterations of the algorithm tested in this work. It supports, for instance,
Shim’s prediction model based on γ transformations by reusing some portions of the
open-source code shared by Mehta [19].

Rough optical flow

from previous frame

Step 1 Image predictions Step 2 Find maximum

Step 3 Saturation 

feedback

Mg

�E*

Mk+1
*

�E*

Predict best exposure level

New frame

gk+1

tk+1

Balance gain and 

exposure time

Ek+1

Iin

Iout

Iin

Iout

Iin

Iout

�E

Mk

Mk-1, Mk , Mk
*

d

Figure 2. Schematic of the AE algorithm proposed in the present work.

https://github.com/MIT-Bilab/vo-autoexpose
https://github.com/MIT-Bilab/vo-autoexpose
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Algorithm 1 AE for challenging light conditions.
1: function ROUGHOPTICALFLOW(Ik−1, Ik)
2: Ǐk−1, Ǐk ← Downsize Ik−1 and Ik (e.g., 90 × 68)
3: ∆x, ∆y← Compute Farneback optical flow from Ik and Ik−1

4: d̄← 1
np

np

∑
i=1

√
∆x2

i + ∆y2
i

5: return d̄
6: end function
7:
8: function PREDICTBESTEXPOSURELEVEL(Ik , tk , gk , M∗k )
9: for i← 1, npredictions do . Step 1: Image predictions

10: Ipredict ← Predict image based on ∆Ei using lookup table i
11: pi ← Compute gradient information from Ipredict using Sobel operators and (5)
12: end for
13:
14: ffit(∆E)← Compute 6th degree polynomial least-square approximation of p = f (∆E) . Step 2: Find

maximum
15: ∆E∗ ← 0
16: while |δ| > threshold do
17: δ← f ′fit(∆E∗)/ f ′′fit(∆E∗)
18: ∆E∗ ← E∗ + δ
19: end while
20:
21: Mk ← Compute gradient information of Ik according to (5) . Step 3: Saturation feedback
22: M∗k+1 ← Predict gradient information of next frame as ffit(∆E∗)
23: Ek+1 ← Compute according to (22) using Mk−1, Mk , M∗k , and ∆E∗
24:
25: return Ek+1, M∗k+1
26: end function
27:
28: function BALANCEGAINEXPOSURETIME(Ek+1, d̄)
29: gk+1 ← Compute according to (25)
30: tk+1 ← Compute according to (26)
31: tk+1, gk+1 ← If tk+1 is out of bounds, compensate with gk+1 (and vice-versa)
32: return tk+1, gk+1
33: end function
34:
35: k← 1 . Main algorithm loop
36: loop
37: Ik , tk , gk ← Pull new camera frame
38: Ik ← Downsize Ik (e.g., 360 × 270)
39: Ik ← Apply median blur to Ik
40: Ek+1, M∗k+1 ← PREDICTBESTEXPOSURELEVEL(Ik , tk , gk , M∗k )
41: if k > 1 then
42: d̄← ROUGHOPTICALFLOW(Ik−1, Ik)
43: end if
44: tk+1, gk+1 ← BALANCEGAINEXPOSURETIME(Ek+1, d̄)
45: k← k + 1
46: end loop

For every new camera frame Ik, the main algorithm loop consists of first predicting
the best exposure level Ek+1 of the next frame. This process can be broken down into three
main steps. In Step 1, npredictions, discrete changes in exposure level are artificially applied
to the image. Unlike Shim’s method, which uses predictions based on γ transformations,
changes in exposure level can only be predicted if the camera’s PRF is available. Figure 3a,
for instance, shows the PRF of the camera used in this work. It relates the exposure
level of any pixel to its intensity and can be obtained from a simple static calibration
procedure [25]. The function is only defined up to some offset in E which depends on the
illumination of the scene. Given the camera’s PRF and for any given change in exposure
level ∆E, one can approximate a monotonically increasing function gexp similar to the γ
transformation (15) which maps the intensity value Iin of every pixel in the input image to
its predicted value Iout:

Iout = gexp(Iin). (20)

Examples of gexp transformations for different changes in exposure level are provided
in Figure 3b. The figure also includes examples of γ transformations to illustrate the
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difference. A justification for using gexp instead of γ transformations relies on the detailed
comparison included in Section 3.2. Step 1 terminates with the calculation of the gradient
information metric of each simulated image Ipredict. The metric of the ith simulated image
is denoted as pi.

−15 −10 −5

(a) E

0

100

200

I o
u
t
[0
–
2
5
5
]

Iin

gexp(Iin)

∆E

0 200
(b) Iin [0–255]

I o
u
t
[0
–
2
5
5
]

gexp

∆E = -2.00

∆E = 0.00

∆E = 2.00

γ transforms

γ = 0.53

γ = 1.00

γ = 1.90

Figure 3. Example of a camera’s photometric response function and different corresponding gexp

transformations: (a) The photometric response function of the camera relates the intensity of a
pixel to its exposure level. For any given change in exposure ∆E, a pixel intensity Iin always has a
corresponding transformed pixel gexp(Iin). (b) The gexp transformations relate the pixel intensity
of an input image Iin to its predicted intensity Iout given a certain change in exposure level ∆E.
The mapping of these transformations is obtained directly from the camera’s photometric response
function. Different γ transformations (15) are also shown for comparison.

Step 2 consists of estimating the change in exposure level ∆E∗ that maximizes gradient
information. A least-squares 6th degree polynomial approximation ffit is fit through the
metrics of the simulated images. Newton’s iterative method initialized at the origin is then
used to approximate ∆E∗ as the maximum argument of ffit. This step is largely inspired by
Shim’s approach to find the optimal γ∗ transformation, as described in Section 1.4.

Finally, Step 3 aims to compensate prediction errors due to image saturation. Indeed,
saturated pixels cannot accurately be mapped by gexp, which is problematic for large and
sudden changes in lighting conditions (e.g., lights turning on/off). Under such circum-
stances, the gexp transformation systematically underestimates changes in exposure level
which could greatly improve gradient information by unsaturating some part of an image.
This leads to smaller steps |∆E| and a longer convergence time. To circumvent some of
the issue, the proposed strategy is to artificially increase |∆E| when the improvement in
the gradient information metric from one frame to the next is substantially better than
predicted (e.g., Figure 4).

(a)  (b)

Shrinking 
saturated region New image 

content

Figure 4. Example of a static scene for which changes in pixel intensity cannot be accurately predicted
by gexp. (a) Scene with a single large overexposed region. (b) The same scene with a smaller
overexposed region revealing image content not predicted by gexp.

Let r be the ratio of the actual change in the gradient information metric over the
predicted one:

r =
Mk −Mk−1

M∗k −Mk−1 + ε
, (21)
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where ε ∈ R+ is a relatively small number (e.g., ε = 0.1) and M∗k = ffit(∆E∗). Then,
the exposure level Ek+1 of the next frame is selected as

Ek+1 =

{
Ek + ∆E∗ if r < rth,
Ek + fd∆E∗ otherwise,

(22)

where fd > 1.0 is a constant factor on the step size and rth ∈ R+ is the threshold of r (e.g.,
fd = 1.5, rth = 1.1 were used in this work).

Once the desired exposure level for the next frame Ek+1 is set, explicit values for the
camera gain gk+1 and exposure time tk+1 still need to be selected. It is well known that
image noise increases with gain, that motion blur increases with exposure time, and that
both negatively affect localization. The relative importance of each effect largely depends on
the specific VO/SLAM algorithm used. Feature-based algorithms, such as ORB-SLAM [27]
and VINS-Fusion [28], for instance, are more strongly affected by motion blur and less
affected by noise than methods such as DSO [29], which minimizes photometric error. The
proposed algorithm exploits a simple way to balance gain gk+1 and exposure time tk+1
based on a single constant factor w ∈ R+, weighting the relative importance of image noise
and motion blur as

arg min
tk+1,gk+1

(
d̄2

+
koffset

c

)
tk+1 + w(gk+1 − 1)

s.t. tk+1 · gk+1 = c,

(23)

where koffset ∈ R+ is a constant scalar (koffset = 8 in this work), d̄ is the average speed of
image points (pixels/second), which can be approximated with Farneback’s optical flow
method [30], and, from (1),

c = 2Ek+1 . (24)

Hence, the procedure associates a cost that grows quadratically with the average
motion blur length and linearly with gain. This choice of the exponents for the cost function
is consistent with the experimental characterization of ORB-SLAM3 included in Section 3.1.
It shows that ORB-SLAM3 is more sensitive to motion blur than image noise (gain) and that
the rate at which it degrades increases with exposure time. Hence, the cost function (23)
is specific to ORB-SLAM3 and might not be appropriate for direct VO methods such as
DSO [29]. One should recharacterize the sensitivity of the method with respect to noise and
motion blur before deciding on specific exponents. The choice of hyperparameter w also
depends on the selected VO algorithm. In this work, w was hand-tuned for ORB-SLAM3.
Starting with a unit value, w was gradually decreased over multiple test sequences until a
peak performance was reached around w = 0.02. Indeed, the AE algorithm can become
unstable for small values of w as the exposure parameters vary too quickly. When using
the AE algorithm with other VO methods, the same procedure should be repeated to tune
w. For instance, DSO [29] is a direct VO method which is more sensitive to image noise
than feature-based methods like ORB-SLAM3.

If the minimization problem (23) is feasible, then it admits the unique solution

gk+1 =

√
cd̄2

+ koffset
w

, and (25)

tk+1 =
c

gk+1
. (26)

This solution depends on the average speed of image points d̄ determined by optical flow.
For small values of d̄, the method selects images with a low gain, thus minimizing noise.
For large values of d̄, the method selects images with a low exposure time, thus minimizing
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motion blur. Unlike existing AE methods, the one proposed thus leverages optical flow to
select exposure parameters that are optimal given the current motion of points in the image.

2.2. Experimental Setup

The experimental setup used in this work and shown in Figure 5 comprises two
monochrome machine vision cameras (FLIR BFS-U3-16S2M) 80 mm apart and simulta-
neously triggered at 60 Hz. Images are acquired at a 720 × 540 resolution using a 2 ×
2 binning in order to increase light sensitivity. All experiments are performed with the
cameras mounted on a custom three-axis (xy–yaw) motion table. Each axis is actuated by a
NEMA 23 stepper motor. The drives used to power each motor (Tinkerforge silent stepper
bricks) also provide a ground truth trajectory with a precision of ~0.1 mm. The cameras
communicate over USB3 to a separate computer which runs the proposed AE algorithm in
real time at 60 Hz on a single core of an AMD Ryzen 7 3700x CPU.

A top-view schematic of the static scene observed throughout the experiments is
shown in Figure 6a. Targets with a unique texture (e.g., AprilTags), such as shown in
Figure 6b, were plastered throughout the room in order to prevent tracking failures of
the VO algorithm. The distance between the camera and these targets varies during the
recording between approximately 0.2 m and 2.5 m.

3x stepper motors

2x cameras

0.4 m

control board
(motor drives and

camera trigger)

x

y

yaw

Figure 5. Picture of the custom experimental setup consisting of a stereo camera setup mounted on a
three-axis (xy–yaw) motion table.

Scale: 1 m

Motion
table

Textured
targets

(b) Textured target(a) Schematic of the observed scene

Unobservable

Figure 6. Details of the scene observed during the tests: (a) Schematic of the observed scene showing
the approximate placement of the textured targets placed around the room. (b) Sample image of a
textured target placed in the room.
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3. Results
3.1. Benchmarking Proxies of VO Performance

In order to benchmark the different proxies of VO performance introduced in Section 1.1,
the motion table was commanded to execute a preset path. The maximum linear speed
reached over the trajectory is 100 mm/s and the maximum rotation speed is 100 deg/s.
Each frame of the left camera video feed was preprocessed with a median blur filter and
a static γ transformation of 0.3 to enhance image contrast. Four different static exposure
settings were used. For each setting, the trajectory was repeated four times. The video feed
of the cameras for each repetition was then post-processed 10 times with ORB-SLAM3 [27]
in stereo mode without loop closures. Each estimated trajectory was then compared against
the ground-truth trajectory, and VO performance was measured using the mean translation
relative pose error (RPE) computed over 20 mm sub-trajectories [31]. The VO performance
for the four static camera exposure settings is presented in Figure 7. It shows that increasing
the exposure time both increases the median RPE and the spread of the results. It also
shows that ORB-SLAM is relatively insensitive to image noise due to high gain. This
supports choosing an AE algorithm with a gain/exposure balance strategy that favors low
exposure times (small w). The best and worst trajectories estimated by the VO algorithm
are also overlaid over the ground-truth trajectory of the left camera in Figure 8.

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

Mean translation RPE [m] (per 0.02 m traveled)

1.0 ms, 23.5 dB

1.5 ms, 0.0 dB

7.5 ms, 6.0 dB

15 ms, 0.0 dBS
et
ti
n
g
s
(t
,
g
)

Figure 7. VO performance acquired with the three-axis motion table for different fixed exposure
parameters. Each pair of parameters (exposure time, gain) is used over four recordings. Each
recording is post-processed 10 times with ORB-SLAM. Failed runs (tracking lost) are not included.

0.0 0.1 0.2 0.3

x [m]

−0.20

−0.15

−0.10

−0.05

y
[m

]

Ground-truth path

Best estimated path

Worst estimated path

Figure 8. Top view of the ground-truth path followed by the left camera throughout all of the test
sequences. The best and worst paths estimated by ORB-SLAM3 are overlaid for comparison.

Then, for each image of the video sequence recorded by the left camera, the following
metrics were computed: the gradient information metric Mg, the gradient median (similar
to Zhang’s “soft” percentile metric [15]), the entropy metric Me, the entropy-weighted
gradient metric Mewg, and the quality metric Mq. In addition, from the synchronized left
and right camera frames, the number of good stereo matches and the Lowe ratio for these
matches were also computed. For each sequence, the median of the metric over the whole
sequence is plotted in Figure 9 against the corresponding average translation RPE. The
gradient information metric (a) and Lowe ratio (g) show the best correlations with VO error
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(r = −0.73 for both). As computing the Lowe ratio is more computationally expensive,
Shim’s gradient information was selected as the optimization metric for the AE algorithm
proposed in this work.
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r = −0.73
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r = −0.37

5.5 6.0 6.5
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(f) Number of good
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Figure 9. Linear regression and 95% confidence region for different candidate proxies of VO performance:
(a) Gradient information metric (5). (b) Median gradient. (c) Entropy metric (2). (d) Entropy-weighted
gradient metric (12). (e) Quality metric (14). (f) Number of good stereo matches. (g) Lowe ratio for the
stereo matches.

Although the median gradient (Figure 9b) is closely related to the gradient information
metric, image noise can artificially increase its value, which explains the lower correlation
(r = −0.37). In comparison, the thresholding function (3) used in the definition of the
gradient information metric allows to mitigate this bias, as detailed in Section 1.

In [13], the authors show that image entropy is maximized when the number of under-
or overexposed pixels of an image is minimized. The authors then show that under static
conditions, images selected based on entropy lead to better localization compared to some
static exposure parameters. However, out of all the tested metrics in the present work,
image entropy (Figure 9c) has the worst cross-correlation with VO error (r = 0.26). This
indicates that while the metric might limit the number of saturated pixels, it fails to properly
capture the detrimental effects of motion blur and noise. Another explanation for this poor
result is that, in some cases, it might also be beneficial to allow some parts of the image to
be under- or overexposed in order to highlight more informative regions of the image.

The entropy-weighted gradient Mewg (Figure 9d) was initially proposed in [17] to
minimize noise effects on the image gradient. As such, the cross-correlation achieved by
the metric (r = −0.40) is slightly better than that achieved with the median gradient. Yet, it
is still far from the cross-correlation achieved with the gradient information metric. This
supports that a thresholding function such as (3) is more effective for removing noise effects
than weighting the image gradient with entropy.

Another way to limit sensitivity to noise was proposed in [18]. As detailed in Section 1.1,
the authors introduced the quality metric Mq (Figure 9e). This metric is a hybrid metric
between gradient information and entropy from which a weighted estimation of the image
noise intensity is subtracted. Here, again, the poor cross-correlation achieved by the metric
(r = −0.26) indicates that a thresholding function such as (3) is more effective for removing
noise effects than subtracting the estimated noise intensity from the image metric. This low
cross-correlation is also, in part, explained due to Mq directly incorporating the entropy
metric Me, which does not correlate to VO error.

For the test sequences used in the present work, the cross-correlation between the
number of good stereo matches (Figure 9f) and VO error was almost nonexistent (r = 0.02).
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These good stereo matches were determined by first detecting ORB features in each cor-
responding left and right images. Each feature in the left image was then matched to
one in the right image using the k-nearest neighbors algorithm. Matches were labeled as
“good” if the stereo equipolar error was smaller than 1 pixel and if the Lowe ratio of the
match was smaller than 0.7. Despite this outlier rejection scheme, image noise was still
found to have a large impact on the number of good matches. However, feature tracking
performance largely depends on the saliency of the features. Hence, unlike the raw number
of good stereo matches, the median Lowe ratio of those good matches (Figure 9g) strongly
correlates with VO error (r = −0.73).

3.2. Convergence Analysis

The AE algorithm proposed in this work uses a prediction model based on the camera’s
PRF. It also incorporates feedback to correct for some of the prediction inaccuracies due
to image saturations. As shown by the camera’s response to a step in ambient light
(Figure 10), these choices have a drastic effect on the camera’s response time. For instance,
without saturation feedback, the proposed algorithm can take up to 100 frames to converge
compared to about 15 frames with feedback. Similar convergence speeds can be achieved
using Shim’s control method [16,19], which incorporates a prediction model based on γ
transformations. However, the two methods do not converge to the same exposure level.
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−5

0

E

Figure 10. Step response of the proposed AE algorithm subject to an instantaneous increase in
ambient light (from ~1 to ~150 lux). Frames are acquired and processed in real time at 60 Hz.

To investigate how γ transformations affect the predicted optimal exposure level,
images of a static scene were acquired at different exposure levels (E). The gradient
information metric (Mg) was then computed for each image as well as the optimal transfor-
mation γ∗ predicted by Shim’s method. Both are plotted as a function of exposure level
in Figure 11. To simulate three different cameras’ PRF, the same procedure was repeated
with static γ transformations applied to the incoming images with values of 0.6 and 0.3.
The idea behind Shim’s approach is that for the exposure level corresponding to γ∗ = 1,
Mg should also be maximum. However, as can be seen from Figure 11, the procedure
systematically underestimates the optimal exposure level. In comparison, the true optimal
exposure level only slightly varies for different cameras’ PRF. A prediction model using
PRF-based transformations therefore avoids this bias and selects exposure levels which are
closer to the true optimal ones.
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Figure 11. Gradient information metric for different exposure levels of the same static image. Each
peak (marked with discontinuous vertical lines) corresponds to the true optimal exposure level.
Peaks for the bottom graph (marked with continuous vertical lines) correspond to the optimal
exposure levels predicted by Shim’s γ transformations [16]. Each colored curve represents a different
camera’s PRF.

3.3. VO Performance

The performance of the proposed AE algorithm was tested and directly compared
to using fixed exposure parameters, the camera’s built-in AE algorithm, and Mehta’s
open-source implementation of Shim’s algorithm [19]. A supplementary video illustrat-
ing this comparison is available online (https://youtu.be/Guvhvb-uQpE accessed on
30 November 2021). The fixed exposure parameters were hand-tuned such that tracking
would not be lost due to under- or over-saturation. The reference pixel intensity value
tracked by the built-in AE algorithm was set to 20% of the maximum pixel intensity value.
Using higher target values would result in some frames being overexposed, and tracking
would be lost. To allow a fair comparison, Mehta’s original code was altered to use the
gain/exposure balance strategy of this work. Settings for the nonlinear controller were also
selected to obtain a convergence time similar to the method proposed in this work (i.e.,
kp = 1.6 and d = 0.1, as demonstrated in Section 3.2).

For these tests, the maximum exposure time of the camera was set to 7.5 ms, which
represents about half of the cameras’ sampling time at 60 Hz. All incoming images were
again preprocessed with a median blur filter and a contrast-enhancing γ transformation
of 0.3. Each exposure method was tested in two scenarios. For both scenarios, the camera
underwent the same trajectory and the objects in the scene remained the same. However,
in scenario (a) , lighting varied greatly between the different regions of the image (1–217 lux),
while in scenario (b), lighting remained relatively low and constant (2–4 lux).

As can be seen in Figure 12, the proposed AE algorithm systematically produces
images with higher gradient metrics compared to the other active methods. The mean
VO accuracy of each method are also compared in Figure 13 and demonstrate that the
proposed algorithm achieves a lower tracking error. While the static parameters result in a
similar performance to the proposed method in scenario (a), the same static parameters
in (b) results in suboptimal performance. It should be mentioned that the test conditions
(a) and (b) were chosen such that static parameters would generate images that a VO
algorithm can track. Reusing the same parameters in drastically different light conditions
(e.g., in sunlight) instead systematically results in VO failure.

https://youtu.be/Guvhvb-uQpE
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Figure 12. Median gradient information metric Mg over the whole trajectory repeated using different
AE algorithms: (a) Sequences where lighting varies greatly (1–217 lux). (b) Sequences with low,
but constant lighting (2–4 lux).
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(a) Varying light conditions (1–217 lux).
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(b) Low, constant light (2–4 lux).

Figure 13. VO performance of different AE algorithms with the same repeated trajectory where each
box represents the distribution of results for a sequence post-processed 10 times with ORB-SLAM:
(a) Sequences where lighting varies greatly (1–217 lux). (b) Sequences with low, but constant lighting
(2–4 lux).

Finally, the exposure parameters selected by each exposure control method are com-
pared in Figure 14 for scenario (a). As underlined in Section 3.2, Shim’s control method
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(which uses predictions based on γ transformations) underestimates the optimal camera
exposure, leading to suboptimal VO performance.
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Figure 14. Comparison of the image exposure parameters selected by different AE algorithms. Light
intensity captured by the cameras oscillates between 1 lux for the darker parts of the scene and 217 lux
for the brighter parts (e.g., over the 1.5–3.5 s and 6.5–7.0 s intervals).

4. Discussion
4.1. Optimization Metrics

One of the main differences between existing AE algorithms is the metric being
(implicitly or explicitly) optimized. Even though the gradient information metric (5)
first proposed by Shim can be sensitive to high noise levels, it was found in this work
to be an acceptable proxy for VO performance. Compared to the other metrics tested
in this work, it exhibits the best linear correlation with the mean VO localization error.
This conclusion contrasts some of the existing literature advocating the superiority of
other metrics, but to the authors’ knowledge, no other work has previously compared
metrics based on an extensive direct cross-correlation with VO performance. For instance,
Kim’s [17] benchmark involves comparing the saturation rate of images defined as optimal
according to the different metrics. Zhang [15] compares metrics based on the number of
FAST features detected in the “best” image of different standard datasets (where the “best”
image is selected as the one with the highest score and varies according to which metric
is used). This approach still does not directly relate metric values to VO performance.
Shin [18] uses an approach which is closest to this work by directly comparing the absolute
pose error associated with images selected according to the different metrics. The authors
conclude that the quality metric Mq is a better proxy of VO performance as the best images
predicted by other metrics tend to be highly noisy. However, the underlying assumption
is that AE algorithms optimize a metric over the whole parameter space. Yet most AE
algorithms, including this one, avoid the problem by optimizing the metric over the
exposure level first. A different strategy is then used to balance gain and exposure time.

4.2. Prediction Models

As underlined in Section 1.2, existing AE algorithms use different models to predict
the effects of future exposure parameters. Results presented in this work support using a
prediction model based on the camera’s PRF rather than γ transformations due to the bias
introduced by the latter. Although Zhang [15] also relies on the camera’s PRF to predict
optimal changes in exposure level, the authors only evaluate the gradient of the metric at
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the current exposure level to inform the size of a gradient descent step. Similar to Shim’s
approach, the proposed algorithm uses a set of discrete mappings based on the PRF (20)
which greatly increase the range over which predictions are valid.

4.3. Computational Efficiency

Despite using a rough optical flow and a set of discrete simulations to drive the
selection of exposure parameters, the C++ implementation of the proposed algorithm is
able to run at 60 Hz on a single core of an AMD Ryzen 7 3700x (3.60 GHz) using a downsized
image resolution of 360 × 270 pixels for simulations and 90 × 68 pixels for the optical flow.
This real-time performance is competitive with other standard AE algorithms. Indeed, this
is similar to the performance obtained by Shim [16], who reported achieving 70 Hz using an
Intel Core i5-6260U (1.80 GHz) for a downsized image resolution of 320 × 240 pixels. While
Tomasi [20] was able to reach a processing rate of 640 Hz using a trained CNN, the algorithm
was implemented on an NVIDIA GeForce GTX 1050 Ti GPU. Reimplementing the proposed
algorithm on a GPU (which are known to be 1–2 orders of magnitude faster than CPUs for
image processing) would likely yield a similar processing rate.

Some AE algorithms can, however, achieve significantly lower processing times, which
might prove more useful for some applications that require high frame rates with limited
computational power (e.g., high-speed VO on drones). For these applications, the higher
frame rate enabled by the quicker AE algorithm might offset the limitation of a suboptimal
selection of the camera exposure parameters. For instance, the AE algorithm built in
most modern cameras requires negligible run time as it implements a PI controller on the
difference between the average pixel intensity and some reference value. Similarly, the AE
control policies proposed by Kim [17] (Gaussian inference) and Shin [18] (Nelder–Mead
optimization) also require minimum processing times with respect to the computation time
of the actual optimization metric employed. For instance, Shin reported a computation
time of <0.01 ms for a step of the Nelder–Mead method compared to the 3.23 ms required
to compute the gradient-based metric of an image downsized to 800 × 600 px running on
an i7-7700HQ (2.80 GHz). Both methods, however, have the downside that they require the
use of query images before they can converge. These query images lead to large, oscillating
changes in exposure parameters which can be detrimental for VO. Finally, while Zhang [15]
does not provide details on the computational performance of the method, the algorithm
does involve a few more steps, such as transforming each pixel intensity with the inverse of
the camera’s PRF, computing the gradients of both the image and the transformed image,
and ordering the list of the derivative of the gradient magnitudes at each pixel.

4.4. Saturation Feedback

To the authors’ knowledge, no other AE algorithm incorporates feedback on the
difference between the predicted and the actual image metric to compensate for prediction
errors due to saturated pixels. These prediction errors are especially predominant when
the scene undergoes large and sudden changes in illumination. For instance, saturation
feedback was shown to improve the algorithm’s speed of convergence after the lights in
a room are turned on or off. However, one limitation of the method is that it adjusts the
change in exposure level between the current and the next frame based on the difference
between the current image metric and the one previously predicted. This delay can lead
the proposed AE algorithm to sporadically overshoot the optimal exposure level, especially
for larger values of the step size control parameter fd.

5. Conclusions

Overall, the proposed AE algorithm was shown through experimental validation to
perform at least as well as (and, on average, better than) other exposure control approaches
under different challenging light conditions. One limitation of this validation is that it relies
on the use of ORB-SLAM3 [27], which is known to be relatively insensitive to image noise.
Future work should therefore include validation of the algorithm with VO/SLAM pipelines
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that are more sensitive to noise, such as direct methods like DSO [29]. Indeed, some of the
design choices made in this work, including the hyperparameter w and the order of the
exponents associated to the terms in (23), were made specifically for ORB-SLAM3 and may
not be applicable to other VO methods. Another limitation of this work is that it assumes
that a robot relies entirely on vision for localization. In practice, a suite of sensors (e.g.,
IMU, wheel encoders, LiDAR) can compensate for some of the inaccuracies of VO pipelines.
Future work should therefore also explore the contribution to the proposed AE algorithm
when information from other sensing modalities are also present.

Supplementary Materials: A supplementary video comparing the proposed algorithm with other
AE methods is available online (https://youtu.be/Guvhvb-uQpE accessed on 30 November 2021).
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