
WANG Xianghui (Orcid ID: 0000-0002-5887-7775)

Self-adaptation and Distributed Knowledge-based Service
Ecosystem Evolution

Xianghui Wang1, Zhiyong Feng2, Keman Huang3,4,*, Shizhan Chen2

1 Department of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China

2 Department of Computer Science and Technology, Tianjin University, Tianjin 300072, China

 3 School of Information, Renmin University of China, Beijing 100086, China

4 Sloan School of Management, MIT, Cambridge 02142, USA

wxh_225@163.com, zyfeng@tju.edu.cn , keman@ruc.edu.cn, Shizhan@tju.edu.cn

Abstract: Web services (or Web APIs) on the Internet tends to encounter various unexpected

runtime failures because of their dynamicity and distribution. Self-adaptation technologies for the

service-based business process can effectively repair runtime failures and improve its success rate.

However, the same failures may occur on subsequent invocations because relevant processes do not

evolve after failures. This makes the response time of the business processes too long. We proposed a

self-adaptation and distributed knowledge-based evolution model (SDKEM) to guarantee business

processes' stabilities, that is, low failure rates and stable response time. SDKEM adopts a service

knowledge base (SKB) to organize services from a provider and uses bridge rules to eliminate semantic

conflicts among multiple distributed SKBs. It can automatically trigger the evolution of a service

ecosystem through the designed self-adaptation mechanism. We adopt the "survival of the fittest"

principle for crucial elements in the ecosystem during evolution so that ultimately, service-based

processes and services with high stability remain. Experiments show that, with the developed evolution

mechanism, runtime failures of business processes significantly reduce. In most cases, their response

time and success rates are comparable to those under the running situation where no runtime failure

occurs, meaning the runtime failures within a service-based process are automatically repaired.

Key words: service ecosystem, runtime self-adaptation, distributed knowledge, service evolution,

stability evaluation.

1 Introduction

Under cloud computing and micro-service architectures, more and more low-cost services emerge on

the Internet[1][2]. They are provided by different providers through open services or API platforms,

This is the author manuscript accepted for publication and has undergone full peer review but has not
been through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1002/cpe.6469

This article is protected by copyright. All rights reserved.

http://orcid.org/0000-0002-5887-7775
mailto:yi-liu10@mails.tsinghua.edu.cn
mailto:fanyus@tsinghua.edu.cn
mailto:wtan@us.ibm.com
http://dx.doi.org/10.1002/cpe.6469
http://dx.doi.org/10.1002/cpe.6469
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6469&domain=pdf&date_stamp=2021-07-05

such as programmableweb 1 . Meanwhile, various business operations and human tasks[3] in an

enterprise also are encapsulated as services, and they are implemented through real software

applications or employees from different departments. A developer can utilize off-the-shelf process

model tools[4][5] and service composition technologies[6][7] to create various business processes for

specific business goals. Thus, in an enterprise, a service ecosystem naturally consists of users

(providers and consumers), services and service-based business processes, and infrastructure[8].

Notably, an existing business process can be used as a service and becomes a component service of

other business processes. Under a dynamic and distributed environment, business processes tend to

encounter runtime failures because their component services may fail when being invoked due to

various situations. For example, a service is removed, its interface description is changed, or some

network exception occurs. To reduce the failure rates of business processes, self-adaptation

technologies for service-based processes[9][10] are adopted to repair faulted processes at runtime.

However, after self-adaptation, faulted services and original processes don't be evolved. This means

that the same failures will occur when retuning the process. Therefore, it is necessary to provide an

evolution model to evolve services and business processes in a service ecosystem continuously. During

evolution, "survival of the fittest" occurs among these elements. That is, "bad" services are eliminated

in the course of competition; and, relevant processes are updated into new versions through using

"good" services to replace those "bad" ones. Thus, in a service ecosystem, all business processes will

have a high success rate and stable response time.

In practice, it will encounter three main difficulties in the following to implement the evolution model.

1) It is difficult to evaluate how "bad" of web services and business processes. In practice, providers

offer quality information about their services, such as user number, success rate etc. However,

different providers provide different quality indexes and evaluation criteria. Also, providers,

services, and business processes can influence the evaluation of each other.

2) There is no holistic and continuous evolution approach for a service ecosystem. Existing

approaches either off-line evolve services and relevant service-based processes, or online adjust

the execution path of a process only for the current run. And they ignore the holistic and

continuous evolution of a service ecosystem. Hence, services and providers' changes cannot

immediately be reflected in relevant processes and increase the failure rate and response time of

business processes.

1 https://www.programmableweb.com 2021-01-26

3) Conflicts among semantics of services hamper the evolution of a service ecosystem. The semantics

of services can play an important role in determining their competition and cooperative

relationships. However, semantic vocabularies may be from different ontologies, so that some

conflicts may exist. For example, two vocabularies with the same name have different semantics,

or two vocabularies with different names have the same semantics.

This paper proposes an evolution model that can overcome the difficulties above and guarantee holistic

and continuous healthy evolution of a service ecosystem. The model consists of a stability evaluation

model and various evolution mechanisms. Based on the self-adaptation mechanism and distributed

knowledge among different providers, it can automatically catch evolution opportunities and evolve

various elements in a service ecosystem.

The main contributions of this paper are in the following folds:

1) A stability evaluation model is designed to evaluate the stabilities of services, providers, and

business processes.

2) A self-adaptation and distributed knowledge-based evolution model for a service ecosystem is

proposed.

3) Experiments show that our evolution model can continuously evolve a service ecosystem, which

significantly decreases the runtime failure rate of services in running business processes and

guarantees the stability of business processes.

The remainder of this paper is organized as follows. Section 2 introduces related works and section 3

presents preliminary work of our evolution model. Section 4 describes an overview and architecture of

our evolution model. Section 5 presents a stability evaluation model in a service ecosystem, and then

section 6 provides approaches about competition and cooperation considering stability and distributed

knowledge. Section 7 describes evolution mechanisms in the model. Section 8 shows a prototype

system and reports the empirical results. Section 9 concludes the paper.

2 Related Work

Like the natural world ecosystem, a service ecosystem is a dynamic system with a continuous evolution

in the digital world. Web services (or Web APIs) are considered as species, and they are produced by

special providers or through integrating multiple other services[8]. Users can utilize these services to

achieve their own functional or non-functional requirements. Because of dynamism, a service

ecosystem is always changing. For example, new services emerge, old services are removed, or

services change due to general network exceptions.

Recently, there are some researches on the evolution of service ecosystems from different perspectives.

Some studies focus on the user-centric service ecosystem. Literature[11] constructed service ecosystem

with time feature according to the current user's API usage history and aimed to recommend

appropriate APIs to users. Some investigate the global service ecosystem from a macro-economic

perspective. Literature [12][13] adopted a complex social network model to illustrate the structure of

service ecosystems and predict the evolution trend of service ecosystems from the view of a business.

The prediction results are used to provide decision support for providers or market regulators. Others

focus on a developer-centric service ecosystem and help developers build and iterate service-based

software quickly. Our approach is related to the evolution of the developer-centric service ecosystem.

According to the difference of information used in evolution, these researches are divided into four

categories: interface-document-based, running-log-based, and complex-network-based and runtime-

self-adaptation-based.

2.1 Interface Document based

Interface description documents are open in the form of WSDL, WADL[14], or text documents etc.,

and also are a unique basis of invoking related services. A service's functional and structural changes

can be reflected in its interface document and can be identified through comparison between new and

old interface documents. WSDarwin[15] is an evolution framework for a service-oriented system.

When a service-based system failed to run, it compared interface description documents. Compared

results were used to update old client stub of this service. The old client stub invoked the new client

stub. Meanwhile, it still received old inputs and responded to old outputs. Literature[16] automatically

checked the change of description documents through notification management architecture for service

evolution. They used an evolution agent (EVA) to manage a group of RESTful services, and maintain

client lists for each service. Once changes occur over a service, the EVA automatically informs all

clients of this service, and then it deployed corresponding new service implementation. This approach

only evolves services in the ecosystem, and doesn't specify evolution approaches for related service-

based processes.

2.2 Running Log based

The running logs of service-based systems can reflect running details of related services, including

success or failure, session-level data among different services etc. Adalberto etc.[17] proposed a

service evolution model. Through retrospectively and prospectively analyzing these logs, past model

and future model are obtained, respectively. And these can offer important suggestions about system

architecture improvement and deployment trade-offs for developers. The analysis work for running

logs is time-consuming and can't provide an evolution strategy for the service ecosystem in a real-time

style.

2.3 Complex Network based

Elements in a service ecosystem have various correlations, such as service-service, service-provider,

and service (service composition)-consumer, and these correlations can be modeled by a complex

network[18].

Through analyzing the complex network, Xia etc.[19] identified the feature of perishing services, and

used a statistic machine learning algorithm to forecast potential perishing services. This can provide

key information for service ecosystem evolution. Based on a complex network model for a service

ecosystem, Liu etc.[20] predicted failure services, and they were replaced from existing service-based

processes through special replacement strategies. This approach can update all service-based processes

related to those failure services. Like the interface-document-based approach, it can reduce service

failure rate when a service-based process runs and guarantees the ecosystem's response efficiency.

However, it can't immediately evolve running processes when runtime failures occur.

2.4 Runtime Self-adaptation based

By means of runtime self-adaptation, a runtime failure over a service-based process can be

automatically repaired by adjusting the running process's execution paths in time. Existing runtime

self-adaptation approaches mainly include three categories: exception mechanism based[21][22][23],

ECA (event-condition-action) rules[24] or variability models[25][26], and goal-based[27][28]. Those

approaches above only updated the current execution of a process and didn't update the process

definition. Failures caught may occur again in the next execution. Thus, response time could not be

reduced when the same failures occurred again.

In summary, none of the existing approaches automatically implements holistic and continuous

evolution of a service ecosystem because of the various problems above. They can't guarantee the

sustainable stability of business processes.

Therefore, we provided a service ecosystem evolution model DKEM in our previous work[29]. Based

on the proposed evolution mechanism, the model could guarantee holistic and continuous evolution of

a service ecosystem. However, the work only provided an idea and was short of implementation details.

In this paper, we add implementation details and improve the model.

3 Preliminary Work

In this paper, our evolution model is implemented on the basis of self-adaptation and distributed

knowledge and is called SDKEM. It employs a self-adaption mechanism and distributed knowledge

conception in our previous self-adaptation framework D3LSRAF[10]. D3LSRAF is implemented by

combining exception mechanisms and goal-based approaches. Here, preliminary works will be

presented in the following.

3.1 Self-adaptation Mechanism

In D3LSRAF, a service-based process was described by BPMN2.0[21]. Each service in the process

was encapsulated as a serviceTask in BPMN2.0. In the serviceTask, there was a built-in exception

handling unit for the current service. The exception unit could catch three types of unexpected runtime

failures over the current service, and invoke corresponding adaptation strategies for these failures to

repair the service. The three types of failures were called local failures, include UnPre (preconditions

unsatisfied), UnExe (execution failure), and UnEff (effects unachieved). Meanwhile, if the service

failed to be repaired, a global failure over the current process was thrown and would be caught and

handled by a built-in exception handling unit at the process level. The global failure was called

LocalAdaptFail. A service-based process following previous definition specifications could run on an

existing workflow engine for BPMN2.0, and automatically repair various failures through

preconfigured adaptation strategies in the corresponding exception-handling unit.

3.2 Service Knowledge Base

Services from the same provider and business domain are organized as an individual service knowledge

base (SKB). An SKB includes four components: D, TP, Facts, and Actions. Here, D represents an

ontology; TP represents services where their IOPE features are annotated by the ontology in D; Facts

represents facts related to IOPEs of these services, and the facts may be known or produced by existing

service instances; and Actions represents existing service instances corresponding to services in TP, and

their input parameters and preconditions are instantiated by facts in Facts.

For instance, SK is an SKB and its component TP includes various services about a train. Component D

provides vocabularies about a train, such as City, Station, Date, Train and so on.ProposeTrain is a

service in TP can provide relevant train information according to given cities and date information.

To make services from different knowledge bases cooperate with each other, various bridge rules

between any two different ontologies are introduced to eliminate semantic conflicts among different

knowledge bases, and they can describe equivalence, subclass or sameAs relations between two

vocabularies in different ontologies. For example, semantic vocabularies Station and TrainStation are

two concepts respectively in ontology o1 and o2, but they have the same semantics. Thus, a bridge rule

< 𝑜𝑜1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑜𝑜2,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 > is introduced and means that Station and TrainStation

have the same semantics. Here, the rule type is equalc. In D3LSRAF, six types of bridge rules are

introduced: intoc, ontoc, equalc, intor, ontor and equalr. The first three are used for concepts, and the

last three are for object properties. Rules with the prefix into, onto and equal respectively represent

included, including and equality relationships between two concepts or properties. Especially, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝐹𝐹

is the bridge rule type with the condition, and when the condition in F is true, the corresponding rule

will hold.

3.3 Automatic Service Composition Considering Distributed Knowledge

In D3LSRAF, an automatic service composition planner is the core operation to implement self-

adaptation of service-based processes, and it is used to find suitable alternatives for faulted services or

business processes from available services. The planner can find composition results from single SKB

or from multiple SKBs by means of two planning algorithms: LocalD3LPlanning and

GlobalD3LPlanning. LocalD3LPlanning can search for a solution from each SKB, and each solution

only consists of services from the corresponding SKB. However, GlobalD3LPlanning can search for a

solution from multiple SKBs, and services in a solution may be selected from different SKBs.

The two algorithms are both implemented through improving classical AI graph planning algorithms.

Given a service request < 𝐼𝐼𝐼𝐼, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 >, where In and Init represents known input parameters

and known preconditions about these inputs, Out and Goal represents expected output parameters and

expected effects. Firstly, the planning algorithms create a planning graph where state layers and action

layers alternately according to component In and Init, and then search composition solution from the

graph according to component Out and Goal. Each state layer includes all facts that can be produced by

service instances in the previous action layer, and each action layer includes all service instances that

can be satisfied by facts in the previous state layer.

4 Overview of SDKEM

In this paper, a service ecosystem is developer-oriented and consists of various elements related to

building software systems: web services, service-based business processes, and stakeholders. And

stakeholders have three types: software developers, providers, and users. Generally, software

developers can collect available web services from different providers on the Internet and integrate

them together to form various business processes that satisfy different requirements of users.

In practice, a service ecosystem continuously changes because of various dynamic factors. For

example, old web services are removed or updated, new web services are added, old requirements of

users are changed etc. These changes may make those old business processes fail to run or can't

produce expected results. To make the ecosystem evolve normally, software developers need to repair

those faulted or unsuitable business processes in time. It is time-consuming and trivial for developers to

do this repair manually.

SDKEM can assist developers in automatically evolve a service ecosystem and reduce software

maintenance costs for developers. In SDKEM, services from one provider are organized as an

individual SKB. Here, a SKB may use multiple ontologies to annotate their services semantically. And,

bridge rules in D3LSRAF are adopted to eliminate various semantic conflicts among different

ontologies. During the evolution of a service ecosystem, they can support competition and cooperation

among services from distributed SKBs. Fig. 1 shows the structure of the service ecosystem for

SDKEM.

Figure 1. Structure of service ecosystem for SDKEM.

To implementation the evolution of a service ecosystem, SDKEM solves three main problems in the

following:

• How to evaluate "good" or "bad" web services or business processes?

• How to evolve business processes?

• How to evolve services and bridge rules?

SDKEM provides a stability evaluation model to compute the stability of business processes, services,

and SKBs. Here, an element with higher stability is better, and will win out during evolution. And, the

stability is computed according to service running histories, including invocation times, failure type,

failure times etc.

SDKEM considers a runtime failure over the current business process as an evolution opportunity and

then automatically evolves the process at runtime. After evolution, a faulted process is substituted with

a new version with higher stability than the old. Catching failures and invoking evolution operations

are implemented through a self-adaptation mechanism in D3LSRAF. Automatic service composition

algorithms in D3LSRAF are improved to find an alternative with higher stability for current processes.

In SDKEM, every invocation information(success or failure) for every service will be recorded when

related business processes run. Thus, according to this information, the stability of services is computed

by the stability evaluation model. Those services with low stability will be automatically marked as

perishing services. Developers will further evolve the perishing services through updating service

descriptions or removing them. Furthermore, SDKEM also assists developers to semi-automatically

evolve bridge rules when new vocabularies are added to existing ontologies or new ontologies are

introduced. This can ensure that full competition and cooperation among services from different SKBs

occur.

Service ecosystem infrastructure for SDKEM in Fig. 1 provides functions to support the various

previous evolution and consists of three databases and four function modules. The architecture of the

infrastructure is shown in Fig. 2. And details of its components are shown in the following.

Service DB database stores basic information in a service ecosystem, including service semantic and

syntactic information, SKBs, service-based processes.

Service Running Histories database stores service invocation histories during the life cycle of this

ecosystem, including invocation times, various exception times, etc.

Bridge Rule DB database stores all domain ontologies that are used in SKBs, and various bridge rules

among them.

Manage Process module mainly consists of sub-modules related to service-based processes.

• Manage Process Definition is used to create a service-based process. It can invoke Service

Composition with Stability sub-module to implement automatic creation of the process.

• Service Composition with Stability can automatically generate a service-based process with

higher stability for a service request according to the current running context. It implements two

automatic service composition algorithms to separately obtain a composition result with high

stability from one SKB or all knowledge bases. The module also provides the automatic

conversion operation from a semantic composition solution to a syntactic one to execute the

service-based process.

• Process Executor provides the running environment for a defined process, and can directly

employ an existing workflow engine, such as Activiti2.

• Self-adaptation for service-based Process can automatically execute and monitor a service-

based process. When a failure occurs at runtime, this module immediately executes the

automatic repair for the failure through Service Composition with Stability and Process

Executor module. Here, we achieve this module by improving the self-adaptation framework in

D3LSRAF.

• Evolve Service-based Process can invoke Self-adaptation for service-based Process and Service

Composition with Stability module when a process is evolved.

Evaluate Stability module can compute stability of services, SKBs, and service-based processes

according to following stability evaluation model and running data in Service Running Histories

database. The module will be invoked while evolving a process.

Manage Service module can manage service definitions from providers, manage various SKB base

information, and assist developers in evolving those perishing services and SKBs.

Manage Distributed Knowledge module can manage ontologies about semantics, manually manage

bridge rules, and evolve bridge rules. Here, Manage Ontology sub-module can employ an existing

ontology management tool, such as Protege3.

2 https://www.activiti.org/

3 https://protege.stanford.edu/

Figure 2. Architecture of Service Ecosystem Infrastructure for SDKEM.

The main implementation details of SDKEM will be shown in the following sections.

5 Stability Evaluation of Service Ecosystem

This section firstly presents stability concepts and formal definitions of elements in a service

ecosystem, then illustrates a stability evaluation model.

5.1 Stability Concept View

In a service ecosystem, a provider can provide multiple services, and a service-based process can

compose of multiple services from different providers. Here, we model services from a provider as a

SKB. The stability concept view is shown in Fig. 3.

Figure 3. Stability concept view.

The stability of service, SKB, and the service-based process is the basis of competition during an

evolution. In our paper, three assumptions are made: 1) a service with high stability always can succeed

in to respond a request during its life cycle; 2) a highly stable service-based process always not only

succeed in responding but also has optimal response time for each invocation; 3) all services in a highly

stable SKB have high stability. These assumptions are consistent with the actual situation in reality.

Service is the key element in a service ecosystem, and its stability can be predicted from running

histories, such as invocation and failure frequency etc. And the stability can affect the stability of other

related service-based processes and SKBs. Meanwhile, SKBs can also affect the stability of

corresponding service-based processes. For example, a SKB with lower stability can be considered that

services in the base may be lower stable; a service-based process including services with lower stability

has a lower stability.

5.2 Basic Concepts

Service is a basic business operator unit, and it may be a software service from the Internet, or a human

service from some business department of an enterprise. Generally, a service comprises multiple

operators, where each operator can implement a special function, and also is called API. Here, we

consider an operator with a special function as a service for convenience.

Definition 1: Service. A service can be expressed as a tuple ⟨𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆⟩, where,

• FunSem describes functional semantics including inputs (I), outputs (O), preconditions (P), and

effects (E)[30];

• InvSyn describes invocation details at the syntactic level, including input/output parameters,

access address, request methods, etc.;

• StabInd describes indicators related to its stability, including total invocation frequency (IF) and

failure frequency (FF).

A SKB may include multiple services, and may use multiple domain ontologies to annotate semantics

of services. In practice, a service ecosystem generally includes multiple SKBs.

Definition 2: Service Knowledge Base. A service knowledge base(SKB) is modeled as a tuple

⟨𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆⟩, where, TP, Facts, and Actions are the same as in D3LSRAF (Section);

Ds is a set of ontologies that are used to annotate services in TP; Stab represents stability coefficient of

the knowledge base, and it relates to the stability of services inTP.

A service-based process includes multiple services from different SKBs.

Definition 3: Service-based Process. A service-based process is expressed as a tuple

⟨𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆⟩, where,

• Sset is a set of services that are used in the process;

• SKBset is a set of SKBs that include services in Sset;

• SKBMap is a one-to-many mapping from SKBset to Sset;

• Seq describes cooperative relationships among services, and is expressed as a service instance

set sequence ⟨{𝑎𝑎1,⋯ ,𝑎𝑎𝑛𝑛},⋯ , {𝑏𝑏1,⋯ , 𝑏𝑏𝑚𝑚}⟩, and each set in Seq is called an execution step[31] .

Service instances in an execution step are run in parallel, and execution steps in the sequence

are sequentially run;

• Stab is the stability coefficient of the process, and it relates to the services in Seq.

Definition 4: Local process. A local process is a service-based process where its component SKBset

only includes one SKB.

Definition 5: Global process. A global process is a service-based process where its component SKBset

includes all SKBs in a service ecosystem.

5.3 Stability Evaluation Model

In a service ecosystem, service change is a key factor in changing the stability of related elements, such

as removing an old service, or updating function or interface invocation syntax of an old service etc.

These changes can cause permanent invocation failures of related services. Meanwhile, a dynamic

network environment also can make temporary invocation failures, such as temporary connect failure,

or running context disturbed. In subsequent invocation, a temporary failure may occur few times, and a

permanent failure always occurs. Therefore, the failure rate is a key factor distinguishing the two types

of failures and reflecting the stability of service.

Definition 6: Stability of Service. Let s be a service, stability of s is expressed as a function stable(s):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) = �
1 𝑠𝑠. 𝐼𝐼𝐼𝐼 = 0

𝑠𝑠.𝐼𝐼𝐼𝐼−𝑠𝑠.𝐹𝐹𝐹𝐹
𝑠𝑠.𝐼𝐼𝐼𝐼

𝑠𝑠. 𝐼𝐼𝐼𝐼 ≠ 0 (1)

For a service s, it would go through three statuses during its life cycle: new, active, and perishing. A

new service means that it never is invoked by any consumer; An active service means that it ever is

invoked by some consumers successfully, and it expects to be invoked in the future; A perishing

service means that its stability is poor and has been abandoned. We use a function status(s) to represent

the status of service s, and its definition is shown in the following:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) = �
𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) = 1 ∧ 𝑠𝑠. 𝐼𝐼𝐼𝐼 = 0
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) > 𝑃𝑃 ∧ 𝑠𝑠. 𝐼𝐼𝐼𝐼 ≠ 0

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) ≤ 𝑃𝑃
 (2)

Here, P is a threshold value to distinguish active and perishing services.

In practice, except for running histories, a provider's reputation can also affect the future stability of

services provided. We can consider that services from a provider with a better reputation would be with

higher stability. Here, we use the stability of SKB to represent the reputation of the related provider.

Definition 7: Stability of SKB. Let skb be a SKB, its stability is expressed as the following:

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =

⎩
⎪
⎨

⎪
⎧

0 𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑁𝑁𝑁𝑁

𝑇𝑇𝑁𝑁−𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴 = 0

∑ (𝑠𝑠∈𝑠𝑠𝑠𝑠𝑠𝑠.𝑇𝑇𝑇𝑇∧𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠.𝐼𝐼𝐼𝐼−𝑠𝑠.𝐹𝐹𝐹𝐹)
∑ 𝑠𝑠𝑠𝑠∈𝑠𝑠𝑠𝑠𝑠𝑠.𝑇𝑇𝑇𝑇∧𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .𝐼𝐼𝐼𝐼

𝐴𝐴𝐴𝐴 > 0

× 𝐴𝐴𝐴𝐴
𝑇𝑇𝑇𝑇−𝑃𝑃𝑃𝑃

+ 𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇−𝑃𝑃𝑃𝑃

 (3)

Here, AN is the number of active services, NN is the number of new services, PN is the number of

perishing services, TN is the total number of services.

It can be seen that the stability of a SKB is related to the status of included services and invocation

histories, and reflects the reputation of a provider from a global view. A provider will have a higher

reputation when the total failure rate of all services is lower. If all services from a provider are

perishing services, the reputation of the provider is worst. Especially if two services from different

SKBs have similar stability, the one from a SKB with higher stability will win in the competition.

A service-based process is constructed based on mutual cooperation among services from different

SKBs. In this paper, we assume that all processes don't have redundant services. Therefore, the stability

of a cooperative relationship among multiple services can become lower as the stability of any of them

lower. Moreover, to make the stability of a service-based process more reasonable, the stability of SKB

should also be considered.

Definition 8: Stability of service-based process. Let sp be a service-based process, its stability is

expressed as the following:

𝑠𝑠𝑠𝑠. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∏ [𝑠𝑠𝑠𝑠𝑠𝑠∈𝑠𝑠𝑠𝑠.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (∏ 𝑠𝑠𝑠𝑠∈𝑠𝑠𝑠𝑠.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠𝑠𝑠) 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠)) × 𝑠𝑠𝑠𝑠𝑠𝑠. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] (4)

6 Competition and Cooperation Considering Stability and Distributed
Knowledge

Competition and cooperation among services are key activities to promote the evolution of a service

ecosystem. Automatic service composition can make the activities occur automatically. Here, stability

is competition basis among services, and can affect cooperation result among multiple services.

Meanwhile, bridge rules can be used to eliminate semantic conflicts among knowledge bases to

improve interoperability.

In SDKEM, we design two automatic service composition algorithms to promote competition and

cooperation, respectively called local planning with stability (LPlanWithStab) and global planning with

stability (GPlanWithStab). Both of them can respond to a service request with distributed knowledge

(short for DK-SR). Its semantics over components may be from different SKBs. Compared with DK-

SR, a service request, which semantics are from only one SKB, is called Single-SR. Based on all SKBs

in a service ecosystem, LPlanWithStab tries to search the most stable local process from all knowledge

bases, and GPlanWithStab tries to search the most stable global process.

6.1 LPlanWithStab

LPlanWithStab uses local reasoning with stability in each SKB to search for the most stable local

process. And the reasoning is implemented through introducing stability factors in LocalD3LPlanning

in D3LSRAF, shown in Fig. 4. It firstly converts a DK-SR into a Single-SR for each knowledge base

according to various bridge rules. Then, it concurrently searches multiple most stable local processes

from all bases through local reasoning with stability. Lastly, it picks the most stable one from these

local processes.

The local reasoning firstly creates a relaxed planning graph through forwarding search according to

components In and Init in the Single-SR. Then, it searches a service-based process from the graph

through backward search according to component Out and Goal in the Single-SR. During the backward

search, stability heuristic strategy is adopted to ensure the searching goal for each action layer is most

stable, and, for each fact in a goal, the most stable action will be picked. The stability of a goal is

evaluated by the formula in (5):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔) = ∏ 𝑚𝑚𝑓𝑓∈𝑔𝑔 𝑎𝑎𝑥𝑥𝑎𝑎∈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) (5)

, where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑓𝑓 represents the action set that produces the fact 𝑓𝑓, and if 𝑠𝑠 is the service related to

action 𝑎𝑎, then 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠). Obviously, a local process obtained by the reasoning is locally

optimal.

Figure 4. The implementation procedure of LPlanWithStab.

6.2 GPlanWithStab

GPlanWithStab utilizes bridge rules to make multiple SKBs into a whole distributed knowledge base,

and executes global reasoning to obtain the most stable global process(Fig. 5).

The reasoning is implemented through introducing bridge rules and stability factors in

GlobalD3LPlanning in D3LSRAF. Global reasoning firstly creates a relaxed planning graph where

services generate actions in action layers with new and active status, and semantics of facts in state

layers are from multiple knowledge bases. Then, it determines whether given DK-SR is satisfied by the

last state layer or not. Here, bridge rules are used to eliminate semantics conflicts among different

knowledge bases. If the request is satisfied, and then some concrete goals, where all facts are

instantiated, can be generated according to the last state layer. Thus, it picks the most stable goal from

all ones, and then searches the locally optimal solution using a stability Heuristic strategy.

For each goal in the state layer, its stability is evaluated by the formula in (6):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑔𝑔) = ∏ 𝑚𝑚𝑓𝑓∈𝑔𝑔 𝑎𝑎𝑥𝑥𝑎𝑎∈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎) × 𝑠𝑠𝑠𝑠𝑏𝑏𝑎𝑎. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (6)

, where 𝑠𝑠𝑠𝑠𝑏𝑏𝑎𝑎 represents a SKB including service related to the action 𝑎𝑎. Facts in a goal and actions

generating these facts may be from different knowledge bases. Generally, a more stable provider can

provide more stable services. And this tendency is reflected by the formula through introducing

stability of the corresponding knowledge base. Thus, the global reasoning will pick those more stable

actions from more stable knowledge bases for a given goal.

Figure 5. The implementation procedure of GPlanWithStab.

7 Evolution Mechanisms in SDKEM

Evolution mechanisms in SDKEM can implement the evolution of various elements, including bridge

rules, service-based process, service, and SKB. Its implementation procedure is shown in Fig. 6.

Figure 6. Evolution mechanisms of SDKEM.

7.1 Evolving Bridge Rule

Under a dynamic environment, ontologies tend to change because of changes in available web services.

To promote cooperation among all services, it is necessary to evolve bridge rules according to these

changes. In SDKEM, a developer triggered the evolution when he introduces new vocabularies to

annotate web services. Before evolution, the developer needs to set special bridge rules between new

and old vocabularies manually, and specify synonyms of new vocabularies. Then, he invokes a bridge

rule evolution algorithm (Fig. 7) to generate new implied bridge rules. After evolution, new bridge

rules are added into Bridge Rule DB, and will work in the subsequent service-based process evolution.

Here, function inverse(rtype) (line 2) will return different rule type according to given rtype. If rtype is

equalc or equalr, it will return rtype; if rtype starts with intoc or intor, it will return ontoc or ontor; if

rtype starts with ontoc or ontor, it will return intoc or intor. Funtion synequal(synvoctb) (line 4) will

return bridge rules of equal type according synonym vocabulary table synvoctb.

Algorithm 1 EvolveBRLib
Inputs: brlib: all bridge rules in current rule library; newmbrs: new bridge rules added

manually; synvoctb: synonym vocabulary table
Outputs: updated brlib
1. FOR each <v1, rtype, v2> in newmbrs DO

2. IF rtype is not equalrF THEN newmbrs←newmbrs∪{ <v2, inverse(rtype), v1>}
3. END FOR
4. brlib=brlib∪synequal(synvoctb)
5. FOR each <v1, rtype, v2> in newmbrs DO
6. FOR each <v3, rtype’, v4> in brlib DO
7. IF rtype==rtype’ and v1==v4 THEN brlib =brlib∪{ <v3, rtype, v2>}
8. IF rtype==rtype’ and v2==v3 THEN brlib =brlib∪{ <v1, rtype, v4>}
9. IF rtype start with ‘equal’ and rtype’ start with ‘into’ or ‘onto’ THEN
10. IF v1==v3 THEN brlib =brlib∪{ <v2, rtype’, v4>}
11. IF v1==v4 THEN brlib =brlib∪{ <v3, rtype’, v2>}
12. IF v2==v3 THEN brlib =brlib∪{ <v1, rtype’, v4>}
13. IF v2==v4 THEN brlib =brlib∪{ <v3, rtype’, v1>}
14. END IF
15. IF rtype’ start with ‘equal’ and rtype start with ‘into’ or ‘onto’ THEN
16. IF v1==v3 THEN brlib =brlib∪{ <v4, rtype, v2>}
17. IF v1==v4 THEN brlib =brlib∪{ <v3, rtype, v2>}
18. IF v2==v3 THEN brlib =brlib∪{ <v1, rtype, v4>}
19. IF v2==v4 THEN brlib =brlib∪{ <v1, rtype, v3>}
20. END IF
21. END FOR
22. END FOR
23. RETURN brlib∪newmbrs

Figure 7. Algorithm of bridge rule evolution.

7.2 Evolving Service-based Process

SDKEM can automatically trigger the evolution of a service-based process through monitoring its

running self-adaptation exceptions and automatically evolve the process when online repairing it.

During repair and evolution, services from all SKBs compete and cooperate with each other to raise

response success rate and stability of updated service-based processes.

Two evolution patterns are designed: local and global, and they may frequently occur during the

running of a service-based process. Local evolution is triggered by one of three failures at service level:

UnPre, UnExe, and UnEff, and can evolve a process by means of local self-adaptation at service level.

Global evolution is triggered by LocalAdaptFail, and can achieve the evolution through global self-

adaptation at process level.

7.2.1 Local Evolution Pattern

When one of the local self-adaptation failures occurs over a service, a local evolution automatically

starts. It firstly carries out local self-adaptation with stability at the service level (LAwithStab) for

current failure, and then evolves the whole service ecosystem. To raise the adaptation success rate, in

LAwithStab, LPlanWithStab is adopted to obtain a high stable adaptation process. During LAwithStab,

if there is no adaptation process or current adaptation process fails to run, and then a LocalAdaptFail is

thrown and a global evolution pattern will be adopted; otherwise, LAwithStab succeeds in running, and

further evolution continues.

Specially, we assume that the occurrence of UnPre is temporary and corresponding service is always

normal. Therefore, when the failure is UnPre, the local evolution would terminate after local adaptation

succeeds to run. However, when the failure is UnExe or UnEff, the further local evolution continues. It

firstly revalues stability of the faulted service and corresponding SKB according to Definition 6 & 7,

and then labels those, which stability is less than a given threshold value as perishing. Subsequently, it

updates the original process through local replacement (LReplace).

Furthermore, after LAwithStab runs successfully for a service 𝑠𝑠 in process 𝑝𝑝, a local adaptation process

𝑎𝑎𝑎𝑎 has been generated and runs successfully. However, a successful run of 𝑎𝑎𝑎𝑎 might be achieved by

self-adaptation, because 𝑎𝑎𝑎𝑎 also could encounter some failures under a dynamical running

environment. Therefore, multiple adaptation processes might be produced for a successful run of

LAwithStab. To guarantee the stability of 𝑝𝑝, LReplace is adopted to attempt the replacement of 𝑠𝑠 with

normal services in all adaptation processes by means of GPlanWithStab. Local evolution automatically

runs in the corresponding service invocation unit, and it can't affect the running of other services in the

current original process.

7.2.2 Global Evolution Pattern

When LocalAdaptFail occurs for a process, a global evolution automatically starts. It firstly carries out

the global self-adaptation with stability at the process level (GAwithStab) to repair the original process.

If the self-adaptation fails, the global evolution terminates, and then the original process terminates

with failure. Otherwise, stability of the faulted service and related SKB are revalued according to

current running histories. Just as in local evolution, for a service, if its stability is less than a given

threshold value, they will be labeled as perishing. After revaluation, the original process is updated

through global replacement (GReplace).

GAwithStab adopts GPlanWithStab to search a more stable global adaptation process for the goal of the

original process. The successful run of GAwithStab means at least one global adaptation process is

generated and runs successfully. When the adaptation process encounters some failures at runtime,

more than one adaptation process would be produced. Furthermore, when GAwithStab succeeds in

running, the goal of the original process 𝑝𝑝 is achieved, and 𝑝𝑝 will terminate with success. Therefore,

those services, that run successfully in all adaptation processes and 𝑝𝑝, can be enough to plan a new

process for achieving the same function request with 𝑝𝑝. Based on these adaptation processes, GReplace

is adopted to update the original process.

Here, we assume that an original process has no redundant services, that is, each service is necessary

for the execution of the process. Therefore, in LReplace and GReplace, we always use adaptation

processes to replace the faulted services by means of GPlanWithStab.

Specially, the evolution for an adaptation process is meaningless because they are produced during the

run of an original process and are temporary. Therefore, when an evolution is triggered by a failure on

an adaptation process, it will only invoke other operations excepting LReplace or GReplace to repair

the failure and to perish corresponding faulted service, but not update the adaptation process.

7.3 Evolving Service and SKB

In a service ecosystem, service running histories are recorded during service-based processes run.

Therefore, according to definitions 6&7, the stabilities of services and SKBs can be computed. When

stabilities of services are lower than a given threshold, these services are automatically annotated as

perishing services during evolution. Then, extra evolution operation for perishing services and SKBs is

carried out. Algorithm 2 in Fig. 8 shows the implementation procedure.

Algorithm 2 Evolving perishing service and service knowledge base
Inputs: s: a perishing service, skb: a service knowledge base containing s
Outputs: an updated skb
01. newInvSyn ← new invocation information of s from its official website
02. oldInvSyn ← s.InvSyn, that is, old invocation information of s.
03. IF newInvSyn doesn’t exist or newInvSyn==oldInvSyn THEN remove s from
skb.TP
04. ELSE
05. s.InvSyn ← newInvSyn
06. s.FunSem ← new function semantics manually annotated by developers
07. s.IF ← 0
08. END IF
09. IF skb.TP==Ø THEN remove skb
10. RETURN skb

Figure 8. The implementation procedure of evolving perishing service and SKB.

In practice, services are perished because of various factors from their providers. For example, they are

removed or their invocation information(request/response parameters, access URL, etc.) are updated.

To efficiently evolve these services, different evolution strategies should be adapted according to

different factors. Those removed services also are removed from its SKB (line 03); those updated

services are re-crawled and semantically annotated, and then are set as new services (lines 05 − 07).

Furthermore, SKBs without any services are meaningless for the current service ecosystem. Therefore,

they will be removed during the evolution (line 09). The evolution operation can be manually carried

out by developers of the current service ecosystem.

8 Experiment Evaluation

In this section, we design a series of experiments to evaluate the effectiveness of SDKEM, the

influence on business process response efficiency, and the role of stability evaluation. Also, we present

a prototype system for SDKEM.

8.1 Test Case Illustration

Currently, there is no standard test case of service ecosystem evolution research. We create a test case

through crawling APIs from open API platforms4, and designing real web APIs by ourselves.

Request and response of web APIs from open platforms are organized loosely. For example, a service

for searching train information between two cities returns a list including trains, and each element for a

train has more than 20 parameters (train No., start and end station,distance etc.); a service for flight

order creation receives more than 10 request parameters including passenger (name, type, ID No.,

mobile etc.), flight information(take off port, landing port, flight No. etc.), order ID and total amount.

These loose structures make interaction among services difficult. To interact easily, for a service, we

use some business objects to wrap those related items, and consider those objects as parameters that are

the basis of semantic annotation. Meanwhile, we create an ontology file for each provider to annotate

IOPE of services.

Furthermore, most of the services on open platforms are information-providing. However, in an

organization, to achieve a complex business goal, a lot of world-altering services are needed.

Therefore, according to actual application scenarios, we also design some services to implement

specific functions, such as Order food, Payment with different ways, Handle vehicle violations, etc.

Also, human services are required for a whole business process. Thus, we design some essential human

services, such as Take various vehicles, Send express, etc.

Ultimately, our test case comprises 18 SKBs, 110 services, 13 domain ontology files, and its detailed

information is shown in Table 1. Here, only one SKB has no service, because its ontology is 𝐷𝐷1. 𝐷𝐷1

includes abstract concepts and predicates to express abstract service requests.

4 https://www.jisuapi.com https://www.juhe.cn

Table 1. Details of our test case

Ontology Domain SKB Num Service Num
D1 Common 1 0
D2 City traffic 2 17
D3 Train 2 7
D4 Flight 2 8
D5 Restaurant 1 12
D6 Tourist spot 1 7
D7 Express 1 8
D8 Communication 1 14
D9 Hotel 2 7
D10 Inn 2 7
D11 Payment 1 13
D12 Weather 1 3
D13 Vehicle Violation 1 7

To eliminate semantic conflicts among these ontologies, 668 bridge rules are generated including 476

rules among concepts(intoc 32, ontoc 32,equalc 412) and 192 rules among predicates(intor 49, ontor

49, equalr 94). In all bridge rules, 46 rules are created manually.

Meanwhile, we create 30 different service-based processes by means of GPlanWithStab, and are called

original processes in the following. These processes can basically cover services from various domains

in Table 1. We also design 5 running situations with failures: 𝑟𝑟𝑠𝑠1 , ⋯ , 𝑟𝑟𝑠𝑠4 , 𝑟𝑟𝑠𝑠5 . In each running

situation, different numbers of failures(UnPre, UnExe, or UnEff) at service level and different service

running histories(invocation frequency and failure frequency) are set in advance. In 𝑟𝑟𝑠𝑠𝑛𝑛(1 ≤ 𝑛𝑛 ≤ 5),

the number of failures is 𝑛𝑛 ∗ 10. Specially, we use 𝑟𝑟𝑠𝑠0 to represent a running situation without failures.

That is, In 𝑟𝑟𝑠𝑠0, all original processes can success to run and can't encounter any runtime failure.

8.2 Experiment Environment

We simulate the implementation of all services in the test case under JavaEE platform. Here, all

services are RESTful, and are deployed on the application server Tomcat8.0. Original processes and

new processes during the following experiments are described by standard BPMN2.0. In them, each

service is invoked by custom serviceTask in BPMN2.0. The execution environment of processes is

workflow engine Activiti 5.22. In addition, service DB, bridge rule DB and workflow engine database

use MySQL5.1. And the prototype system is installed on ThinkPad X1 (1.80GHz,1.99GHz, 16GRAM,

Win10). In the following experiments, if not otherwise specified, all 642 bridge rules are put in Bridge

DB, and can't be changed during the experiments.

8.3 Effectiveness Evaluation

8.3.1 General Effectiveness

To evaluate the general effectiveness of SDKEM, we do the first experiment. In this experiment, for

each running situation 𝑟𝑟𝑟𝑟, all original processes run two times. Firstly, we make all these processes run

once in 𝑟𝑟𝑟𝑟 , and record the number of original processes succeeding to run (SuccessNum) and the

number of original processes without failure services (NoFailNumBefore) during the run. After the run,

the situation 𝑟𝑟𝑟𝑟 is updated to 𝑟𝑟𝑟𝑟′, because the service running histories are changed. Then, in 𝑟𝑟𝑟𝑟′, we

make these processes run once again and record the number of original processes without failure

services (NoFailNumAfter) during this run. Lastly, we compare these numbers, shown in Fig. 9.

Figure 9. Comparison among NoFailNumBefore, SuccessNum and NoFailNumAfter in each running situation.

It can be seen that, in all running situations, SDKEM improves the response success rate of original

processes and also decreases their failure frequency. Here is an example. In 𝑟𝑟𝑟𝑟2, NoFailNumBefore is

17. It means only 17 original processes can succeed in running if the evolution mechanism don't work.

However, under the evolution mechanism, 28 original processes run successfully, and 24 in the 28

processes have no failure service. That is, all failure services in 7 original processes are replaced after

the first run. These replacements obviously decrease the runtime failure frequency of the second run.

After each run, we also record the numbers of various failures caught, shown in Table 2. From the

table, we found that, in each situation, the total number of failures caught (the last row) is less in the

second run than in the first run. The maximum reduction is 57.1% in 𝑟𝑟𝑠𝑠1, and the minimum reduction

is 6.4% in 𝑟𝑟𝑠𝑠4.

Table 2. Details of failures caught in each running situation

Failure 𝑟𝑟𝑠𝑠1 𝑟𝑟𝑠𝑠1′ 𝑟𝑟𝑠𝑠2 𝑟𝑟𝑠𝑠2′ 𝑟𝑟𝑠𝑠3 𝑟𝑟𝑠𝑠3′ 𝑟𝑟𝑠𝑠4 𝑟𝑟𝑠𝑠4′ 𝑟𝑟𝑠𝑠5 𝑟𝑟𝑠𝑠5′
UnPre 0 0 0 0 0 0 1 1 2 0
UnExe 1 1 13 5 11 3 14 13 21 10
UnEff 9 2 1 1 12 7 11 10 16 11
LocalAdaptFail 4 3 3 2 13 6 21 20 12 14
Sum 14 6 17 8 36 16 47 44 51 35

8.3.2 Effectiveness of Evolution Mechanism

The evolution mechanism plays a key role in improving the response success rate and decreasing

runtime failures. To prove this, we do the second experiment. Firstly, we design 5 different evolution

situations: 𝑒𝑒𝑠𝑠1 (no evolution), 𝑒𝑒𝑠𝑠2 (only local adaptation), 𝑒𝑒𝑠𝑠3 (only local and global adaptation),

𝑒𝑒𝑠𝑠4(only local evolution), 𝑒𝑒𝑠𝑠5(local and global evolution). Secondly, in each group of 𝑒𝑒𝑠𝑠𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 5)

and 𝑟𝑟𝑠𝑠𝑗𝑗(1 ≤ 𝑗𝑗 ≤ 5), we make all original processes run once. After the run, we record the number of

original processes succeeding to run (Suc) and the number of original processes without failure services

(NoFail), shown in Table 3. It is noticed that adaptation operations improve the response success rate

of these processes, and that update operations make more and more processes not include any failure

service (in 𝑒𝑒𝑠𝑠4 and 𝑒𝑒𝑠𝑠5).

Table 3. Influence of different evolution situations on processes

ES 𝑟𝑟𝑠𝑠1

𝑟𝑟𝑠𝑠2

𝑟𝑟𝑠𝑠3

𝑟𝑟𝑠𝑠4

𝑟𝑟𝑠𝑠5

 Suc NoFail Suc NoFail Suc NoFail Suc NoFail Suc NoFail

𝑒𝑒𝑠𝑠1 20 20 17 17 13 13 9 9 9 9
𝑒𝑒𝑠𝑠2 26 20 27 17 19 13 12 9 19 9
𝑒𝑒𝑠𝑠3 27 20 28 17 26 13 13 9 19 9
𝑒𝑒𝑠𝑠4 26 26 27 24 19 16 12 9 19 14
𝑒𝑒𝑠𝑠5 27 27 28 24 26 23 13 10 19 14

In 𝑟𝑟𝑠𝑠3 , the advantage of this evolution mechanism is clearly presented. In the first 3 evolution

situations, NoFail always is 13, because there is no update operation. However, as local and global

adaptation measures are added, 𝑆𝑆𝑆𝑆𝑆𝑆 gradually increases. 𝑆𝑆𝑆𝑆𝑆𝑆 in 𝑒𝑒𝑠𝑠2 is 6 more than in 𝑒𝑒𝑠𝑠1, and 𝑆𝑆𝑆𝑆𝑆𝑆 in

𝑒𝑒𝑠𝑠3 is 7 more than in 𝑒𝑒𝑠𝑠2. In 𝑒𝑒𝑠𝑠4, local evolution measure is set, and it includes local adaptation and

local update operation(LReplace). Under the local evolution, 4 LReplaces are carried out, and 3

processes are updated. Based on 𝑒𝑒𝑠𝑠4, in 𝑒𝑒𝑠𝑠5, global evolution measure is added, and it includes global

adaptation and global update operation(GReplace). Under the local and global evolution, 4 LReplaces

and 7 GReplaces are invoked, and finally, 10 original processes are updated.

8.3.3 Effectiveness of Bridge Rule Evolution

To reflect the role of bridge rule evolution, we do the third experiment. Firstly, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 bridge rule

evolution situations are created, shown in Table 4. In each situation, three respects are set: the number

of existed bridge rules in Bridge DB (BRLib), ontologies added during the running (NewOnto), and the

number of manual bridge rules added during the running (NewMRule). Then, we invoke algorithm 1 to

generate all rules, where we assume vocabularies with the same local name are synonyms. Next, in

each group of 𝑏𝑏𝑏𝑏𝑠𝑠𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 5) and 𝑟𝑟𝑠𝑠𝑗𝑗(1 ≤ 𝑗𝑗 ≤ 5), we make all original processes run once. After the

run, We record the number of newly generated bridge rules (NewBR), and the response success rate of

these processes, shown in Table 5.

Table 4. Bridge rule evolution situations

BRS BRLib NewOnto NewMRule
𝑏𝑏𝑏𝑏𝑠𝑠1 0 0 0
𝑏𝑏𝑏𝑏𝑠𝑠2 0 𝐷𝐷1,𝐷𝐷2 46
𝑏𝑏𝑏𝑏𝑠𝑠3 0 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3,𝐷𝐷4 46
𝑏𝑏𝑏𝑏𝑠𝑠4 0 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3,𝐷𝐷4,𝐷𝐷9,𝐷𝐷10 46
𝑏𝑏𝑏𝑏𝑠𝑠5 416 0 46

It is noticed that, during the run, those new ontologies and manual bridge rules are perceived, and new

bridge rules are generated. Meanwhile, as the number of available bridge rules increases, the response

success rate is improved. Except in 𝑟𝑟𝑠𝑠4, this improvement is obvious in other running situations. For

example, in 𝑟𝑟𝑠𝑠3 , the success rate continuously increases from 46.7% in 𝑏𝑏𝑏𝑏𝑠𝑠1 to 86.7% in 𝑏𝑏𝑏𝑏𝑠𝑠5 . In

𝑏𝑏𝑏𝑏𝑠𝑠5, after 252 bridge rules are generated, 668 bridge rules are available, the response success rate of

original processes in 𝑟𝑟𝑠𝑠4 also is improved.

Table 5. Bridge rule evolution in various running situations

BRS NewBR 𝑟𝑟𝑠𝑠1 𝑟𝑟𝑠𝑠2 𝑟𝑟𝑠𝑠3 𝑟𝑟𝑠𝑠4 𝑟𝑟𝑠𝑠5
𝑏𝑏𝑏𝑏𝑠𝑠1 0 66.7% 56.7% 46.7% 30.0% 30.0%
𝑏𝑏𝑏𝑏𝑠𝑠2 136 66.7% 56.7% 50.0% 30.0% 36.6%
𝑏𝑏𝑏𝑏𝑠𝑠3 166 73.3% 73.3% 60.0% 30.0% 46.7%
𝑏𝑏𝑏𝑏𝑠𝑠4 258 86.7% 83.3% 70.0% 30.0% 46.7%
𝑏𝑏𝑏𝑏𝑠𝑠5 252 90.0% 93.3% 86.7% 43.3% 63.3%

8.4 Response Efficiency Evaluation

To evaluate the influence of SDKEM on the response efficiency of processes, we do the fourth

experiment. Firstly, we make all original processes run in 𝑟𝑟𝑠𝑠0, and record the running time of each

original process. For a process, the time is called its NormalTime. Then, we redo the two runs in the

first experiment and record the running time of each original process in each run. For a process, its

running time in the first run is called its OnEvTime, and the time in the second run is called its

AfterEvTime. Lastly, we pick all original processes that are updated and succeed to run in the first run.

Meanwhile, we compute two increase rates in the running time of these processes. They reflect the

impact of evolution operation on the running time of processes, and respectively are called OnEvInc

and AfterEvInc. For a process, its OnEvInc is computed by (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)/
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, and its AfterEvInc is computed by (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)/𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.

Table 6 shows the statistical data onto the two increase rates for all picked processes in each running

situation, including the minimal and maximal OnEvInc(OnEvIncMin and OnEvIncMax), the minimal

and maximal AfterEvInc(AfterEvIncMin and AfterEvIncMax), and the number of picked processes.

Table 6. Influence of SDKEM on running time of original processes

Increase 𝑟𝑟𝑠𝑠1 𝑟𝑟𝑠𝑠2 𝑟𝑟𝑠𝑠3 𝑟𝑟𝑠𝑠4 𝑟𝑟𝑠𝑠5
OnEvIncMin 48.7% 51.8% 34.6% 157.3% 38%
OnEvIncMax 557.4% 121.1% 11387% 288.6% 254.7%
AfterEvIncMin −0.3% −1.9% −20.8% 3.1% −30.2%
AfterEvIncMax 15.6% 108% 119% 51.6% 52.7%
UpdatedNum 7 7(1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 10 2 6

It is noticed that SDKEM greatly improves the response efficiency of processes with failure services.

The running time of a process increases greatly when an evolution operation is invoked. However, after

this evolution, its running time is closer to its NormalTime than its OnEvTime. Here is an example. In

𝑟𝑟𝑠𝑠3, there is a process which OnEvInc is 11387%. This means, to make the process run successfully,

the evolution operations spend a lot of time repairing various runtime failures in the process. After

these evolution operations are carried out, all failure services are replaced with those successful

services. We found the AfterEvInc of this process only is −20.8%, this is also the minimal AfterEvInc

in 𝑟𝑟𝑠𝑠3. That is, after evolution, the running time of this process is less than its NormalTime.

Specially, in 𝑟𝑟𝑠𝑠2, there is a special picked process. Although it was updated and succeeded in running,

it still encountered a failure in the second run. The failure only was repaired and did not trigger

corresponding update operation in the first run, because the stability of its candidate service is lower.

This directly increases the AfterEvTime of this process, and its AfterEvInc is 108%. However, the

highest AfterEvInc of other 6 picked processes is only 5.6%. This means that the running time of most

of the updated processes is close to the normal time.

8.5 Stability Evaluation

To illustrate the role of the stability evaluation model, we do the fifth experiment. In each running

situation 𝑟𝑟𝑟𝑟 , we firstly make all original processes run once and use 𝑟𝑟𝑟𝑟′ to represent the running

situation after the run. Then, we pick all original processes that are updated, and compute their

stabilities. For a picked process 𝑝𝑝, there are two versions: the old version before updated, and the new

version after updated. Based on the service running histories in 𝑟𝑟𝑟𝑟′, we respectively compute the

stabilities of the two version of 𝑝𝑝, and are expressed as oldstab and newstab. Lastly, we compute the

stability increase value of 𝑝𝑝 by 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. Table 7 shows the statistical data onto stability

increase values of all picked processes in each running situation, including the minimal and maximal

increase values (SMin and SMax). The last row shows the number of picked processes(UpdatedNum) in

each running situations.

Table 7. Stability changes of original processes

Increase 𝑟𝑟𝑠𝑠1 𝑟𝑟𝑠𝑠2 𝑟𝑟𝑠𝑠3 𝑟𝑟𝑠𝑠4 𝑟𝑟𝑠𝑠5
SMin/SMax 0.31/0.54 0.10/0.32 0.11/0.61 0.14/0.39 0/0.47
UpdatedNum 7 8 10 2 9

It can be seen that, for most processes, the stabilities of their new versions are higher than their old

versions. This can guarantee the new version of a process has fewer runtime failures and higher

response efficiency. In 𝑟𝑟𝑟𝑟3, for all picked processes, the stabilities of their new versions increase at

least 0.11, and at most 0.61. For the process with the most SMax, the running times of its old version

and new version respectively are 25862𝑚𝑚𝑚𝑚 and 1721𝑚𝑚𝑚𝑚. Obviously, the response efficiency of the

process is greatly improved.

Especially, in 𝑟𝑟𝑠𝑠5,oldstabs of 3 processes are equal to the newstabs. At the moment when they are

updated, their newstabs are higher than the oldstabs. As the subsequent processes run, current service

running histories are changed. This makes the stabilities of services in the new versions become lower.

Therefore, it is reasonable that the stability of one process is not changed. Also, two perishing services

appear in 𝑟𝑟𝑠𝑠5 , because their stabilities are lower than the given threshold value 0.2 . These

phenomenons also reflect that the stabilities of services are constantly changing.

In addition, we also compute the stability of each SKB in various running situations. Due to space

limitations, Table 8 only shows the stabilities of 9 knowledge bases. In the remaining 9 bases, one has

no service, and its stability always is 1, and the stabilities of others are 1 in no less than 2 running

situations. It is noticed that, in most cases, the stability of a knowledge base is different in a different

running situation. For example, the stabilities of knowledge base 𝑠𝑠𝑠𝑠𝑠𝑠1 in 5 running situations are all

different. The highest is 0.94 in 𝑟𝑟𝑠𝑠4, and the lowest is 0.88 in 𝑟𝑟𝑠𝑠1. This is because the running histories

of services in 𝑠𝑠𝑠𝑠𝑠𝑠1 are different in these running situations. Therefore, the stabilities of services also

affect the stabilities of related SKBs.

Table 8. Comparison of stabilities of SKBs

RS skb1 skb2 skb3 skb4 skb5 skb6 skb7 skb8 skb9
𝑟𝑟𝑠𝑠1 0.875 1.0 0.864 1.0 1.0 1.0 0.962 0.989 0.938
𝑟𝑟𝑠𝑠2 0.929 0.924 0.912 0.867 0.948 0.952 0.912 0.986 0.962
𝑟𝑟𝑠𝑠3 0.935 0.88 0.933 0.882 0.905 0.917 0.870 0.963 0.976
𝑟𝑟𝑠𝑠4 0.942 0.85 0.942 0.889 0.868 0.870 0.858 0.956 0.894
𝑟𝑟𝑠𝑠5 0.914 0.963 0.742 0.778 0.896 0.844 0.844 0.891 0.882

8.6 Prototype System

A prototype system for SDKEM can assist developers in managing their Web services, SKBs, and

knowledge(ontologies and bridge rules); automatically generate a business process for a given service

request, and provide a running environment for automatic evolution of the business process. Fig 10

shows the user interface for business process generation and running.

Figure 10. User interface for business process generation and running

In this interface, a developer can define his own service request, generate a corresponding business

process, running the process, and look over running details of this process. And evolution operations

will be automatically invoked when some running failures occur.

In general, SDKEM can effectively and efficiently evolve various elements in a service ecosystem

during a service-based process running, including services, current service-based process, and SKBs.

Stabilities of these elements play an core role in "survival of the fittest" of them. Compared with

previous approaches, SDKEM has outstanding advantages in real-time, evolved elements, and

supporting distributed knowledge, shown in Table 9. Specially, SDKEM is an extended version of

DKEM, and more implementation details are presented in this paper.

Table 9. Comparison with existing approaches

No. Approach Real-time Evolved elements Distributed knowledge
1 Interface Document

based [14-16]
Yes Service No

2 Running Log based [17] No Service No
3 Complex Network

based[18-20]
No Service-based process No

4 Run-time Self-adaptation
based [21-28]

Yes Service-based process
(only one run)

Partial

5 DKEM[29] Yes Service&Service-based
process&SKB

Yes

6 SDKEM Yes Service&Service-based
process&SKB&Bridge

rule

Yes

9 Conclusion and future work

In this paper, we propose an automatic service ecosystem evolution model SDKEM. It can capture

various evolution opportunities and automatically trigger the evolution of service-based processes.

Using bridge rules and self-adaptation technology, SDKEM automatically promotes competition and

cooperation among services with distributed knowledge. During evolution, service-based processes

with high stability are picked out to replace faulted ones. Service-based processes' stability is evaluated

according to a stability evaluation model, which considers the effect of related services and related

providers on stability. Especially, local and global evolution patterns are designed to evolve service-

based processes, and a bridge rule evolution algorithm is presented to generate bridge rules when

ontologies change automatically. Also, perishing services and SKBs are evolved by developers with the

help of our prototype system. Ultimately, SDKEM can make a service ecosystem continuously and

healthily evolve. Experiment results show that SDKEM can effectively and efficiently achieve holistic

and continuous evolution of a service ecosystem, and guarantee more stable response time and a lower

failure rate of business processes under dynamic and distributed running environments.

In SDKEM, evolution operations about perishing services are manually completed by developers,

including semantic annotation, updating interface description, etc. In the future, we will improve

SDKEM to carry out these operations automatically. Also, we will consider more QoS features in the

stability evaluation model, such as throughput capacity, cost, the reputation of providers, etc.

Acknowledgment

This work is supported by the key project of the National Natural Science Foundation of China

(61832014, 62032016), Natural Science Foundation of Shandong Province (ZR2018MF012,

ZR2020MF084), Project of Shandong Province Higher Educational Science and Technology Program

(J18KA364), and Doctoral Fund of Shandong Jianzhu University(X19045Z).

References:
[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,R. Mustafin, and L. Safina, "Microservices:
yesterday, today, and tomorrow," Present and Ulterior Software Engineering, pp. 195–216, 2017.

[2] M. Villamizar, O. Garces, H. Castro, M. Verano, L. Salamanca, R. Casal- 'las, and S. Gil, "Evaluating the monolithic
and the microservice architecture pattern to deploy web applications in the cloud," in Computing Colombian Conference,
2015.

[3] K. Huang, J. Yao, J. Zhang, and Z. Feng, "Human-as-a-service: Growth in human service ecosystem," in IEEE
International Conference on Services Computing, 2016, pp. 90–97.

[4] L. J. R. Stroppi, O. Chiotti, and P. D. Villarreal, "Extending bpmn 2.0:Method and tool support," in International
Workshop, 2011, pp. 59–73.

[5] L. Cesari, R. Pugliese, and F. Tiezzi, "A tool for rapid development of ws-bpel applications," Acm Sigapp Applied
Computing Review, vol. 11,no. 1, pp. 27–40, 2010.

[6] A. L. Lemos, F. Daniel, and B. Benatallah, "Web service composition:a survey of techniques and tools," Acm
Computing Surveys, vol. 48, no. 3,pp. 1–41, 2015.

[7] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino, "Restful service composition at a glance: A survey,"
Journal of Network &Computer Applications, vol. 60, no. C, pp. 32–53, 2016.

[8] G. Castelli, M. Mamei, A. Rosi, and F. Zambonelli, "Engineering pervasive service ecosystems:the sapere approach,"
Acm Transactions on Autonomous & Adaptive Systems, vol. 10, no. 1, pp. 1–27, 2015.

[9] X. Wang, Z. Feng, K. Huang, and W. Tan, "An automatic self-adaptation framework for service-based process based on
exception handling," Concurrency & Computation Practice & Experience, vol. 29, no. 5,2017.

[10] X. Wang, Z. Feng, and K. Huang, "D3l-based service runtime selfadaptation using replanning," IEEE Access, vol. PP,
no. 99, pp. 1–1,2018.

[11] H. Wang, Z. Tu, Y. Fu, Z. Wang, and X. Xu, "Time-aware user profiling from personal service ecosystem," Neural
Computing and Applications, pp. 1–23, 2020.

[12] O. Adeleye, J. Yu, S. Yongchareon, and Y. Han, "Constructing and evaluating an evolving web-api network for service
discovery," in International Conference on Service-Oriented Computing, 2018.

[13] B. Rahul C, "On the evolution of service ecosystems: A study of the emerging api economy," Handbook of Service
Science, vol. 2, pp. 479–495, 2018.

[14] M. J. Hadley, "Web application description language (wadl) specification," 2009.

[15] M. Fokaefs and E. Stroulia, "Wsdarwin: Studying the evolution of web service systems," 2014.

[16] H. T. Tran, H. Baraki, R. Kuppili, A. Taherkordi, and K. Geihs, "A notification management architecture for service
co-evolution in the internet of things," in Maintenance and Evolution of Service-Oriented and Cloud-Based Environments,
2016, pp. 9–15.

[17] A. R. Sampaio, H. Kadiyala, H. Bo, J. Steinbacher, T. Erwin, N. Rosa,I. Beschastnikh, and J. Rubin, "Supporting
microservice evolution," in IEEE International Conference on Software Maintenance and Evolution, 2017, pp. 539–543.

[18] Y. Liu, Y. Fan, and K. Huang, "Service ecosystem evolution and controlling: A research framework for the effects of
dynamic services," in International Conference on Service Sciences, 2013, pp. 28–33.

[19] B. Xia, Y. Fan, and K. Huang, "Prediction method of perishing services in web service ecosystem," Computer
Integrated Manufacturing Systems, vol. 20, no. 8, pp. 2060–2070, 2014.

[20] Y. Liu, Y. Fan, K. Huang, and W. Tan, "Failure analysis and tolerance strategies in web service ecosystems,"
Concurrency & Computation Practice & Experience, vol. 27, no. 5, pp. 1355–1374, 2015.

[21] M. Chinosi and A. Trombetta, "Bpmn: An introduction to the standard," Computer Standards Interfaces, vol. 34, no. 1,
pp. 124–134, 2012.

[22] P. W. Wang, Z. J. Ding, C. J. Jiang, M. C. Zhou, and Y. W. Zheng, "Automatic web service composition based on
uncertainty execution effects," IEEE Transactions on Services Computing, vol. 9, no. 4, pp.551–565, 2016.

[23] Z. Wei, F. Bastani, I. L. Yen, J. Fu, and Y. Zhang, "Automated holistic service composition: Modeling and
composition reasoning techniques," in IEEE International Conference on Web Services, 2017.

[24] M. Polese, G. Tretola, and E. Zimeo, "Self-adaptive management of web processes," in IEEE International Symposium
on Web Systems Evolution, 2010.

[25] G. H. Alfe'rez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz, "Dynamic adaptation of service compositions with
variability models," Journal of Systems & Software, vol. 91, no. 5, pp. 24–47, 2014.

[26] A. Murguzur, S. Trujillo, H. L. Truong, S. Dustdar, s. Ortiz, and G. Sagardui, "Runtime variability for context-aware
smart workflows." IEEE Software, vol. 32, no. 3, pp. 52–60, 2015.

[27] A. Bucchiarone, M. D. Sanctis, A. Marconi, M. Pistore, and P. Traverso, "Incremental composition for adaptive by-
design service based systems," in IEEE International Conference on Web Services, 2016.

[28] N. van Beest, E. Kaldeli, P. Bulanov, J. Wortmann, and A. Lazovik, "Automated runtime repair of business processes,"
Information Systems,vol. 39, pp. 45–79, 2014.

[29] X. Wang, Z. Feng, S. Chen, and K. Huang, "Dkem: A distributed knowledge based evolution model for service
ecosystem," in 2018 International Conference on Web Services, 2018.

[30] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith, S. Narayanan, M. Paolucci, B. Parsia, and T.
R. Payne, "Owl-s:Semantic markup for web services," In Proceedings of the International Semantic Web Working
Symposium (SWWS), 2004.

[31] X. Wang and Z. Feng, "Semantic web service composition considering iope matching," Journal of Tianjin University,
vol. 50, no. 9, pp. 984–996, 2017.

onto1

Manage Service Manage Distributed Knowledge

Self-adaptation for Service-based Process

Evolve Service-based Process

Process Executor
Service Composition

with Stability

Evaluate
Stability

Service DB Bridge Rule DB

Manage Process Definition

Service Running
Histories

Manage Process
Management

Manage Service
Definition

Evolve Service

Manage Ontology Evolve Bridge Rules

Manage Bridge Rules

Manage SKB

Invocation Freq
Update at runtime

Service-based process

Failure FreqService running histories

Stability of
service-based process

Stability of service

Stability of service
knowledge base

Affect

Affect

Affect

...

...

...

...

Start

End

DK-SR

Convert into Single-SR
in SKB skb1

Convert into Single-SR
in SKB skb2

Convert into Single-SR
in SKB skbn

Local reasoning with
stability in skb1

Single-SR sr1 Single-SR sr2 Single-SR srn

Local reasoning with
stability in skb2

Local reasoning with
stability in skbn

Local process p1

Pick the most stable among p1, p2, ..., pn

Local process p2 Local process pn

Most stable local process

yes

yes

no
no

no

yes

DK-SR rq

Determine satisfication of rq

Initialize planning graph

Expend planning graph

Search a locally optimal solution

Have solution

Level off or planning
graph reach max level
规划图已达最大层

Satisfied

…

Service knowledge base

skb1
Start

End

Generate some
concrete goals

skbn

Pick services with new and active status

Global
reasoning

Bridge rules

Pick most stable request

SDKEM
Local evolution pattern

no
yes

yes

no

UnExeUnPre UnEff

Local self-adaptation with stability at
service level (LAwithStab)

success

is UnPre

Global self-adaptation with stability at
process level (GAwithStab)

LocalAdaptFail

Update process through global
replacement (GReplace)

Update process through local
replacement (LReplace)

success

Revalue stability and perishing
Revalue stability and perishing

no

Terminate successfully

Global evolution pattern

Terminate unsuccessfully

yes

Evolve service and SKB

Evolve bridge rule

Algorithm 1 EvolveBRLib
Inputs: brlib: all bridge rules in current rule library; newmbrs: new bridge rules added

manually; synvoctb: synonym vocabulary table
Outputs: updated brlib
1. FOR each <v1, rtype, v2> in newmbrs DO
2. IF rtype is not equalrF THEN newmbrs←newmbrs∪{ <v2, inverse(rtype), v1>}
3. END FOR
4. brlib=brlib∪synequal(synvoctb)
5. FOR each <v1, rtype, v2> in newmbrs DO
6. FOR each <v3, rtype’, v4> in brlib DO
7. IF rtype==rtype’ and v1==v4 THEN brlib =brlib∪{<v3, rtype, v2>}
8. IF rtype==rtype’ and v2==v3 THEN brlib =brlib∪{<v1, rtype, v4>}
9. IF rtype start with ‘equal’ and rtype’ start with ‘into’ or ‘onto’THEN
10. IF v1==v3 THEN brlib =brlib∪{<v2, rtype’, v4>}
11. IF v1==v4 THEN brlib =brlib∪{<v3, rtype’, v2>}
12. IF v2==v3 THEN brlib =brlib∪{<v1, rtype’, v4>}
13. IF v2==v4 THEN brlib =brlib∪{<v3, rtype’, v1>}
14. END IF
15. IF rtype’ start with ‘equal’ and rtype start with ‘into’ or ‘onto’THEN
16. IF v1==v3 THEN brlib =brlib∪{<v4, rtype, v2>}
17. IF v1==v4 THEN brlib =brlib∪{<v3, rtype, v2>}
18. IF v2==v3 THEN brlib =brlib∪{<v1, rtype, v4>}
19. IF v2==v4 THEN brlib =brlib∪{<v1, rtype, v3>}
20. END IF
21. END FOR
22. END FOR
23. RETURN brlib∪newmbrs

Algorithm 2 Evolving perishing service and service knowledge base
Inputs: s: a perishing service, skb: a service knowledge base containing s
Outputs: an updated skb
01. newInvSyn← new invocation information of s from its official website
02. oldInvSyn← s.InvSyn, that is, old invocation information of s.
03. IF newInvSyn doesn’t exist or newInvSyn==oldInvSyn THEN remove s from
skb.TP
04. ELSE
05. s.InvSyn← newInvSyn
06. s.FunSem← new function semantics manually annotated by developers
07. s.IF← 0
08. END IF
09. IF skb.TP==Ø THEN remove skb
10. RETURN skb

Business process diagram

Real-time running status of the
business process including

evolution details

Existing requests

Picked or new request details

	1 Introduction
	2 Related Work
	2.1 Interface Document based
	2.2 Running Log based
	2.3 Complex Network based
	2.4 Runtime Self-adaptation based

	3 Preliminary Work
	3.1 Self-adaptation Mechanism
	3.2 Service Knowledge Base
	3.3 Automatic Service Composition Considering Distributed Knowledge

	4 Overview of SDKEM
	5 Stability Evaluation of Service Ecosystem
	5.1 Stability Concept View
	5.2 Basic Concepts
	5.3 Stability Evaluation Model

	6 Competition and Cooperation Considering Stability and Distributed Knowledge
	6.1 LPlanWithStab
	6.2 GPlanWithStab

	7 Evolution Mechanisms in SDKEM
	7.1 Evolving Bridge Rule
	7.2 Evolving Service-based Process
	7.2.1 Local Evolution Pattern
	7.2.2 Global Evolution Pattern

	7.3 Evolving Service and SKB

	8 Experiment Evaluation
	8.1 Test Case Illustration
	8.2 Experiment Environment
	8.3 Effectiveness Evaluation
	8.3.1 General Effectiveness
	8.3.2 Effectiveness of Evolution Mechanism
	8.3.3 Effectiveness of Bridge Rule Evolution

	8.4 Response Efficiency Evaluation
	8.5 Stability Evaluation
	8.6 Prototype System

	9 Conclusion and future work
	Acknowledgment
	References:

